A priori estimates for 3D incompressible current-vortex sheets - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2012

A priori estimates for 3D incompressible current-vortex sheets

Résumé

We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.
Fichier principal
Vignette du fichier
CMST.pdf (313.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00565759 , version 1 (14-02-2011)

Identifiants

Citer

Jean-François Coulombel, Alessandro Morando, Paolo Secchi, Paola Trebeschi. A priori estimates for 3D incompressible current-vortex sheets. Communications in Mathematical Physics, 2012, 311 (1), pp.247-275. ⟨10.1007/s00220-011-1340-8⟩. ⟨hal-00565759⟩
248 Consultations
188 Téléchargements

Altmetric

Partager

More