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Abstract. We consider the free boundary problem for current-vortex sheets in ideal incompressible
magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally)
stable due to the existence of surface waves solutions to the linearized equations. The existence of such
waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source
terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity
and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth
solutions with no loss of derivatives. The result of this paper gives some hope for proving the local
existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result
would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz
instabilities, which is well known in astrophysics.

1. Introduction

1.1. The Eulerian description. We consider the equations of incompressible magneto-hydrodynamics
(MHD), i.e. the equations governing the motion of a perfectly conducting inviscid incompressible plasma.
In the case of a homogeneous plasma (the density ρ ≡ const > 0), the equations in a dimensionless form
read:











∂tu+∇ · (u⊗ u−H ⊗H) +∇q = 0 ,

∂tH −∇× (u×H) = 0 ,

div u = 0 , divH = 0 ,

(1)

where u = (u1, u2, u3) denotes the plasma velocity, H = (H1, H2, H3) is the magnetic field (in Alfvén
velocity units), q = p+ |H |2/2 is the total pressure, p being the pressure.

For smooth solutions, system (1) can be written in equivalent form as










∂tu+ (u · ∇)u − (H · ∇)H +∇q = 0 ,

∂tH + (u · ∇)H − (H · ∇)u = 0 ,

div u = 0 , divH = 0 .

(2)

We are interested in weak solutions of (1) that are smooth on either side of a smooth hypersurface
Γ(t) = {x3 = f(t, x′)} in [0, T ]×Ω, where Ω ⊂ R

3, x′ = (x1, x2) and that satisfy suitable jump conditions
at each point of the front Γ(t). For simplicity we assume that the density is the same constant on either
side of Γ(t).
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Let us denote Ω±(t) = {x3 ≷ f(t, x′)}, where Ω = Ω+(t)∪Ω−(t)∪Γ(t); given any function g we denote
g± = g in Ω±(t) and [g] = g+|Γ − g−|Γ the jump across Γ(t).

We look for smooth solutions (u±, H±, q±) of (2) in Ω±(t) such that Γ(t) is a tangential discontinuity,
namely the plasma does not flow through the discontinuity front and the magnetic field is tangent to
Γ(t), see e.g. [8], so that the boundary conditions take the form

σ = u± · n , H± · n = 0 , [q] = 0 on Γ(t) .

Here n = n(t) denotes the outward unit normal on ∂Ω−(t) and σ denotes the velocity of propagation of
the interface Γ(t). With our parametrization of Γ(t), an equivalent formulation of these jump conditions
is

∂tf = u± ·N , H± ·N = 0 , [q] = 0 on Γ(t) , (3)

with N := (−∂1f,−∂2f, 1). Notice that the function f describing the discontinuity front is part of the
unknown of the problem, i.e. this is a free boundary problem.

System (2), (3) is supplemented with initial conditions

u±(0, x) = u±0 (x) , H±(0, x) = H±
0 (x) , x ∈ Ω±(0) ,

f(0, x′) = f0(x
′) , x′ ∈ Γ(0),

(4)

where div u±0 = divH±
0 = 0 in Ω±(0). The aim of this article is to show a priori estimates for smooth

solutions to (2), (3), (4). This must be seen as a preliminary step before proving the existence and
uniqueness of solutions to (2), (3), (4).

In the last years there has been a renewed interest for the analysis of free interface problems in fluid
dynamics, especially for the Euler equations in vacuum and the water waves problem, see [6, 7] and the
references thereinto. This fact has produced different methodologies for obtaining a priori estimates and
the proof of existence of solutions. If the interface moves with the velocity of fluid particles, a natural
approach consists in the introduction of Lagrangian coordinates, that reduces the original problem to a
new one on a fixed domain. This approach has been recently employed with success in a series of papers
by Coutand and Shkoller on the incompressible and compressible Euler equations in vacuum, see [6, 7].
However, this method seems hardly applicable to problem (2), (3), (4).

In the present paper we follow a different approach. To reduce our free boundary problem to the fixed
domain, we consider a change of variables inspired from Lannes [9]. The control of the function describing
the free interface follows from a stability condition introduced by Trakhinin in [13]. The a priori estimate
in Sobolev norm of the solution is then obtained by showing the boundedness of a higher-order energy
functional.

1.2. The reference domain Ω. To avoid using local coordinate charts necessary for arbitrary geome-
tries, and for simplicity, we will assume that the space domain Ω occupied by the fluid is given by

Ω := {(x1, x2, x3) ∈ R
3 | x′ = (x1, x2) ∈ T

2 , x3 ∈ (−1, 1)} ,
where T2 denotes the 2-torus, which can be thougt of as the unit square with periodic boundary conditions.
This permits the use of one global Cartesian coordinates system. We also set

Ω± := Ω ∩ {x3 ≷ 0} , Γ := Ω ∩ {x3 = 0} .
On the top and bottom boundaries

Γ± := {(x′,±1) , x′ ∈ T
2}

of the domain Ω, we prescribe the usual boundary conditions

u3 = H3 = 0 on [0, T ]× Γ± . (5)

The moving discontinuity front is given by

Γ(t) := {(x′, x3) ∈ T
2 × R , x3 = f(t, x′)} ,

where it is assumed that −1 < f(t, ·) < 1.
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1.3. An equivalent formulation in the fixed domain Ω. To reduce the free boundary problem (2),
(3), (4), (5) to the fixed domain Ω, we introduce a suitable change of variables that is inspired from [9].
This choice is motivated below. In all what follows, Hs(ω) denotes the Sobolev space of order s on a
domain ω. We recall that on the torus T

2, Hs(T2) can be defined by means of the Fourier coefficients
and coincides with the set of distributions u such that

∑

n∈Z2

(

1 + |n|2
)s |cn(u)|2 < +∞ ,

cn(u) denoting the n-th Fourier coefficient of u. The following Lemma shows how to lift functions from
Γ to Ω.

Lemma 1 ([9]). Let m ≥ 1 be an integer. Then there exists a continuous linear map f ∈ Hm−0.5(Γ) 7→
ψ ∈ Hm(Ω) such that ψ(x′, 0) = f(x′) on Γ, ψ(x′,±1) = 0 on Γ±, and moreover ∂3ψ(x

′, 0) = 0 if m ≥ 2.

For the sake of completeness, we recall the proof of Lemma 1 in Section 7 at the end of this article. The
following Lemma gives the time-dependent version of Lemma 1.

Lemma 2. Let m ≥ 1 be an integer and let T > 0. Then there exists a continuous linear map
f ∈ ∩m−1

j=0 C j([0, T ];Hm−j−0.5(T2)) 7→ ψ ∈ ∩m−1
j=0 C j([0, T ];Hm−j(Ω)) such that ψ(t, x′, 0) = f(t, x′),

ψ(t, x′,±1) = 0, and moreover ∂3ψ(t, x
′, 0) = 0 if m ≥ 2. Furthermore, there exists a constant C > 0

that is independent of T and only depends on m, such that

∀ f ∈ ∩m−1
j=0 C

j([0, T ];Hm−j−0.5(T2)) , ∀ j = 0, . . . ,m− 1 , ∀ t ∈ [0, T ] ,

‖∂jtψ(t, ·)‖Hm−j(Ω) ≤ C ‖∂jt f(t, ·)‖Hm−j−0.5(T2) .

The proof of Lemma 2 is also postponed to Section 7. The diffeomorphism that reduces the free boundary
problem (2), (3), (4), (5) to the fixed domain Ω is given in the following Lemma.

Lemma 3. Let m ≥ 3 be an integer. Then there exists a numerical constant ε0 > 0 such that for all
T > 0, for all f ∈ ∩m−1

j=0 C j([0, T ];Hm−j−0.5(T2)) satisfying ‖f‖C ([0,T ];H2.5(T2)) ≤ ε0, the function

Ψ(t, x) :=
(

x′, x3 + ψ(t, x)
)

, (t, x) ∈ [0, T ]× Ω , (6)

with ψ as in Lemma 2, defines an Hm-diffeomorphism of Ω for all t ∈ [0, T ]. Moreover, there holds

∂jtΨ ∈ C ([0, T ];Hm−j(Ω)) for j = 0, . . . ,m − 1, Ψ(t, x′, 0) = (x′, f(t, x′)), Ψ(t, x′,±1) = (x′,±1),
∂3Ψ(t, x′, 0) = (0, 0, 1), and

∀ t ∈ [0, T ] , ‖ψ(t, ·)‖W 1,∞(Ω) ≤
1

2
.

Proof of Lemma 3. The proof follows directly from Lemma 2 and the Sobolev imbedding Theorem, be-
cause

∂3Ψ3(t, x) = 1 + ∂3ψ(t, x) ≥ 1− ‖ψ(t, ·)‖C ([0,T ];W 1,∞(Ω)) ≥ 1− C ‖f‖C ([0,T ];H2.5(T2)) ≥ 1/2 ,

provided that f is taken sufficiently small in C ([0, T ];H2.5(T2)). In the latter inequality, C denotes a
numerical constant. The other properties of Ψ follow directly from Lemma 2. �

We set
A := [DΨ]−1 (inverse of the Jacobian matrix) ,
J := det [DΨ] (determinant of the Jacobian matrix) ,
a := J A (transpose of the cofactor matrix) ,

and we compute

A =





1 0 0
0 1 0

−∂1ψ/J −∂2ψ/J 1/J



 , J = 1 + ∂3ψ , a =





J 0 0
0 J 0

−∂1ψ −∂2ψ 1



 . (7)
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We already observe that under the smallness condition of Lemma 3, all coordinates of A are bounded by
2 and J ∈ [1/2; 3/2]. Now we may reduce the free boundary problem (2), (3), (4), (5) to a problem in
the fixed domain Ω by the change of variables (6). Let us set

v±(t, x) := u±(t,Ψ(t, x)) , B±(t, x) := H±(t,Ψ(t, x)) , Q±(t, x) := q±(t,Ψ(t, x)) .

Then system (2), (3), (4), (5) can be reformulated on the fixed reference domain Ω as


















































∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B± +AT ∇Q± = 0 ,

∂tB
± + (ṽ± · ∇)B± − (B̃± · ∇)v± = 0 ,

(AT ∇) · v± = 0 , (AT ∇) · B± = 0 , in [0, T ]× Ω± ,

∂tf = v± ·N , B± ·N = 0 , [Q] = 0 , on [0, T ]× Γ ,

v±3 = B±
3 = 0 , on [0, T ]× Γ± ,

v±|t=0 = v±0 , B±
|t=0 = B±

0 , on Ω± ,

f|t=0 = f0 , on Γ .

(8)

In (8), we have set

N := (−∂1ψ,−∂2ψ, 1) ,
ṽ := Av − (0, 0, ∂tψ/J) = (v1, v2, (v ·N − ∂tψ)/J) , B̃ := AB = (B1, B2, B ·N/J) . (9)

Vectors are written indifferently in rows or columns in order to simplify the redaction. Notice that

J = 1 , N = (−∂1f,−∂2f, 1) on Γ , ṽ3 = B̃3 = 0 on Γ and Γ± . (10)

We warn the reader that in (8), the notation AT is used to denote the transpose of A and has nothing
to do with the time interval [0, T ] on which the smooth solution is sought. We hope that this does not
create any confusion.

1.4. The main result.

1.4.1. The linearized stability conditions. The necessary and sufficient linear stability conditions for pla-
nar (constant coefficients) current-vortex sheets was found a long time ago by Syrovatskii [12] and Axford
[2]. Let us consider constant vectors u±, H± satisfying (3) with the planar front f(t, x′) ≡ σ t + ξ′ · x′
and constant pressures q± ≡ 0. (Here we consider for this paragraph that x′ belongs to R

2 instead of T2

and x3 ∈ R. This is however of no consequence on what follows.) The linear stability conditions for such
piecewise constant solutions to (1) read

|[u]|2 ≤ 2
(

|H+|2 + |H−|2
)

, (11a)

|H+ × [u]|2 + |H− × [u]|2 ≤ 2 |H+ ×H−|2 . (11b)

Under the additional assumption H+×H− 6= 0, then (11a) follows from (11b) and the strict inequality in
(11a) follows from the strict inequality in (11b). The case of equality in (11b) corresponds to the transition
to violent instability, i.e. ill-posedness of the linearized problem. In the region of parameters defined by
(11), the associated linearized equations admit surface waves of the form exp(i τ t+ i η · x′ − |η| |x3|) for
η ∈ R

2 \ {0} and some suitable τ ∈ R, see [12, 2] or [4, page 510]. We also refer to [1] for the derivation
of weakly nonlinear surface waves.

The interior of the set of parameters described by (11) is defined by the condition

|H+ × [u]|2 + |H− × [u]|2 < 2 |H+ ×H−|2 . (12)

In particular, H+ × H− 6= 0 and (11a) becomes redundant. The condition (12) is always satisfied for
current sheets, i.e. if [u] = 0 and H+ ×H− 6= 0. If [u] 6= 0, condition (12) can be rewritten as

|[u]| <
√
2 |H+| |H−| | sin(ϕ+ − ϕ−)|

√

|H+|2 sin2 ϕ+ + |H−|2 sin2 ϕ−

,

where ϕ± denotes the oriented angle between [u] and H±.
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Under the “spectral stability condition” (12), Morando, Trakhinin and Trebeschi [10] have shown an
a priori estimate with a loss of three derivatives for solutions to the linearized equations with constant
coefficients. In this paper we shall consider the following more restrictive situation:

max
(

|H+ × [u]|, |H− × [u]|
)

< |H+ ×H−| . (13)

Under the latter more restrictive stability condition, which represents “half” of the stability domain
defined by (12), Trakhinin [14] has shown an a priori estimate in the anisotropic space H1

∗ , without loss of
derivatives from the data, for solutions of the linearized incompressible equations with variable coefficients.
Similar stability conditions have also been considered by Trakhinin for the analysis of linearized and
nonlinear stability of compressible current-vortex sheets, see [13, 15, 5]. The choice of the space H1

∗ in
[14] was motivated by the fact that the free boundary Γ(t) is characteristic. However, we shall prove here
that no loss of derivatives in the normal direction to the boundary occurs and we shall obtain estimates
in standard Sobolev spaces. Though there is no loss of derivatives from the source terms of the equations
to the solution in the main a priori estimate of [14], the regularity assumptions on the coefficients are
rather strong (stronger than what we shall assume here), and it is not so clear that the estimate in H1

∗

is sufficient to prove an estimate in some Hm
∗ , m large enough, with coefficients in the same space Hm

∗ .
There are even strong reasons to believe that with the formulation of [14], a loss of regularity will occur
with respect to the coefficients of the linearized equations.

Our goal here is to prove a closed estimate where coefficients are estimated in the same space as the
data. As a matter of fact, we have found it more convenient to work directly on solutions to the nonlinear
equations. Since we are considering classical solutions in three space dimensions, our a priori estimate
will be proved in H3(Ω), a space that is imbedded in W 1,∞ by the Sobolev imbedding Theorem.

1.4.2. The main result. For a pair of functions u = (u+, u−) ∈ Hs(Ω+) ×Hs(Ω−), with real s ≥ 1, we
will shortly write

‖u+‖s,+ := ‖u+‖Hs(Ω+) , ‖u−‖s,− := ‖u−‖Hs(Ω−) , ‖u±‖s,± := ‖u+‖s,+ + ‖u−‖s,− .
We also let | · |p,± denote the Lp norm on Ω±, and | · |p denote the Lp norm on Ω for p ≥ 1 and p 6= 2;
the L2 norm on Ω± is denoted by ‖ · ||±. Our main result reads as follows.

Theorem 4. Let δ0 ∈ ]0, 1/2], let R > 0, and let v±0 , B
±
0 ∈ H4(Ω±), f0 ∈ H4.5(T2) satisfy

∀x′ ∈ T
2 , |B+

0 ×B−
0 (x′, 0)| ≥ δ0 ,

∀x′ ∈ T
2 , max

(

|B+
0 × [v0] (x

′, 0)|, |B−
0 × [v0] (x

′, 0)|
)

≤ (1− δ0) |B+
0 ×B−

0 (x′, 0)| , (14)

‖v±0 ‖3,± + ‖B±
0 ‖3,± + ‖f0‖H3.5(T2) ≤ R .

Then there exist ε1 > 0, T0 > 0 and C1 > 0 that depend only on δ0 and R such that if ‖f0‖H2.5(T2) ≤ ε1,

then for all solution (v±, B±, Q±) ∈ C ([0, T ];H4(Ω±)), f ∈ C ([0, T ];H4.5(T2)) to (8) satisfying (without
loss of generality)

∫

Ω−

Q−(t, x) dx +

∫

Ω+

Q+(t, x) dx = 0 ,

for all t ∈ [0, T ], the following estimates hold:

‖v±(t)‖3,± + ‖B±(t)‖3,± + ‖Q±(t)‖3,±+ ‖f(t)‖H3.5(T2) ≤ C1 ,
‖f(t)‖H2.5(T2) ≤ 2 ε1 ,

(15)

for all t ∈ [0,min{T, T0}].
Directly from (8) and (15) it readily follows a uniform estimate for ‖∂tv±(t)‖2,±, ‖∂tB±(t)‖2,± and

‖∂tf(t)‖H2.5(T2).
The first two conditions (14) are nothing but a uniform version of (13) on the initial front. Then

our main result gives a uniform control of solutions to (8) provided that a flatness condition is satisfied
by the initial front. The main result also shows that the front remains sufficiently flat on a small time
interval. The main interest of Theorem 4 is to show that energy estimates without loss of derivatives
can be proved for (8) in the framework of standard Sobolev spaces. We hope that in a near future, our
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approach will yield an existence and uniqueness result for (8) without using a Nash-Moser iteration. As
far as we know, no existence result has been proved yet for (8), with or without a Nash-Moser iteration.

1.4.3. Strategy of the proof. We consider the following energy functional

E (t) := ‖v±(t), B±(t)‖23,± + ‖Q±(t)‖23,± + ‖f(t)‖2H3.5(T2) + ‖∂tf(t)‖2H2.5(T2) . (16)

Even though this function is not conserved, it is possible to show that supt∈[0,T0] E (t) remains uniformly

bounded for sufficiently smooth solutions to (8), whenever T0 > 0 is taken sufficiently small (T0 being
independent of the solution that we are considering). The strategy for proving Theorem 4 is the follow-
ing: we first estimate the velocity and magnetic field by showing energy estimates on their tangential
derivatives (meaning the ∂1 and ∂2 derivatives), on their divergence and on their curl. Computing the
curl equation is the crucial point if one wants to use standard Sobolev spaces (this is one difference with
[14]). The front f will be estimated directly from the boundary conditions in (8). Eventually, the pressure
will be estimated by showing that Q± satisfy an elliptic system with source terms depending only on
v±, B±, f which have been estimated previously. Then we shall combine all these estimates to show that
they yield a uniform control of solutions on a time interval that only depends on the size of the initial
data.

Not so surprisingly, Theorem 4 requires an additional degree of regularity on the solution compared to
the space in which we prove the estimate. This technical point is assumed only to justify all computations
below (integration by parts and so on). This is exactly the same as when one proves a priori estimates
for solutions to first order hyperbolic problems and in many aspects our analysis is closely linked to
techniques used in hyperbolic boundary problems with characteristic boundaries. In particular, if we
believe that coefficients of the differential operators in (8) should have the same regularity as the solution
to (8), then A should belong to H3 if v±, B± belong to H3. This forces the lifting ψ of the front f to
belong to H4 and this is where it is crucial to gain half-derivative from f to ψ. This is the reason why
we have adopted the same lifting procedure as in [9].

2. Estimate of tangential derivatives

2.1. Uniform control of low order derivatives. From now on we consider a time T ′ > 0 such that
we have for our given solution the uniform estimates:

∀ t ∈ [0, T ′] , ‖f(t, ·)‖H2.5(T2) ≤ ε0 , (17a)

‖v±(t)− v±0 , B
±(t)−B±

0 ‖2,± ≤ ε0 , (17b)

where in (17), the numerical constant ε0 is given by Lemma 3. Let us already observe that with our
choice of ε0, (17a) implies

∀ (t, x) ∈ [0, T ′]× Ω , |∇ψ(t, x)| ≤ 1

2
.

Moreover, the Sobolev imbedding Theorem implies that the H2 norm dominates the L∞ norm on Ω±

so we can further restrict ε0, depending only on δ0, such that the following inequalities are implied by
(17b):

∀ (t, x′) ∈ [0, T ′]× T
2 , |B+ ×B− (t, x′, 0)| ≥ δ0

2
, (18a)

∀ (t, x′) ∈ [0, T ′]× T
2 ,

max
(

|B+ × [v] (t, x′, 0)|, |B− × [v] (t, x′, 0)|
)

|B+ ×B− (t, x′, 0)| ≤ 1− δ0
2
. (18b)

Of course, the time T ′ chosen above a priori depends on the particular solution that we are considering,
and one of our goals is to show below that T ′ can be chosen to depend only on δ0 and on the norm R of
the initial data.

We will denote generic numerical constants (for instance constants that appear in Sobolev imbeddings)
by the same letter C or by M0. Such constants are allowed to depend only on δ0 and R. We also let
F denote a generic nonnegative nondecreasing function which does not depend on the solution. In
particular, we feel free to use F + F = F , F × F = F and so on. We shall sometimes write u(t) instead
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of u(t, ·), for some given function u depending on t and x. For shortness we shall write ‖v±, B±‖3,±
for ‖v±‖3,± + ‖B±‖3,±, and similarly for ‖∂tv±, ∂tB±‖2,± and other quantities. Let us now turn to the
derivation of L2 estimates for tangential derivatives of the velocity and magnetic field.

2.2. Estimates of tangential derivatives. Let us denote by ∂ = (∂1, ∂2) the horizontal (tangential)
derivatives. Inspired from [13, 14] we define on [0, T ] the energy functional

H (t) :=
1

2

∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

) (

∂
α
v±

∂
α
B±

)

·
(

∂
α
v±

∂
α
B±

)

dx , (19)

where λ± = λ(v±, B±) is a C 1 function that will be chosen appropriately later on. In particular, the
choice of λ± will be made so that we have

‖λ+‖L∞([0,T ′]×Ω+) < 1 , ‖λ−‖L∞([0,T ′]×Ω−) < 1 , (20)

which will imply that the matrix in the integrals defining H (t) is positive definite (hence we shall recover
a control of the tangential derivatives of the solution).

We compute the time derivative

H
′(t) =

1

2

∑

±

∑

|α|≤3

∫

Ω±

(

0 −∂tλ±
−∂tλ± 0

)(

∂
α
v±

∂
α
B±

)

·
(

∂
α
v±

∂
α
B±

)

dx

+
∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

)(

∂
α
∂tv

±

∂
α
∂tB

±

)

·
(

∂
α
v±

∂
α
B±

)

dx

=−
∑

±

∑

|α|≤3

∫

Ω±

∂tλ
± ∂

α
v± · ∂αB± dx

−
∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

)





∂
α
{

(ṽ± · ∇)v± − (B̃± · ∇)B± +AT∇Q±
}

∂
α
{

(ṽ± · ∇)B± − (B̃± · ∇)v±
}



 ·
(

∂
α
v±

∂
α
B±

)

dx

=

5
∑

p=1

Hp(t) , (21)

where each term Hp in the decomposition will be defined below, and we leave as a very simple exercise
to the reader to check that the sum of all these terms coincides with the time derivative H

′(t). We now
define and estimate all the terms in the decomposition of H ′(t). We first consider

H1(t) := −
∑

±

∑

|α|≤3

∫

Ω±

∂tλ
± ∂

α
v± · ∂αB± dx ,

which is trivially estimated by

∀ t ∈ [0, T ′] , |H1(t)| ≤ C E (t)
∑

±

‖∂tλ±‖L∞(Ω±) . (22)

Next we consider some of the terms with the highest number of derivatives. Let us define

H2(t) := −
∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

)(

(ṽ± · ∇)∂
α
v± − (B̃± · ∇)∂

α
B±

(ṽ± · ∇)∂
α
B± − (B̃± · ∇)∂

α
v±

)

·
(

∂
α
v±

∂
α
B±

)

dx .

This term is estimated by integrating by parts and recalling the boundary condition (10). We obtain

H2(t) =
∑

±

∑

|α|≤3

∫

Ω±

1

2

(

div ṽ± + div (λ±B̃±)
)(

|∂αv±|2 + |∂αB±|2
)

−
(

div B̃± + div (λ±ṽ±)
)

∂
α
v± · ∂αB± dx ,
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from which we already get

|H2(t)| ≤ C E (t)
∑

±

‖div ṽ±, div B̃±‖L∞(Ω±) + ‖div (λ±ṽ±), div (λ±B̃±)‖L∞(Ω±) .

Using the expression of ṽ±, B̃±, we get (recall that the estimate (17a) implies in particular 1+∂3ψ ≥ 1/2)

∀ t ∈ [0, T ′] , ‖div ṽ±, div B̃±‖L∞(Ω±) ≤ F (E (t)) ,

‖div (λ±ṽ±), div (λ±B̃±)‖L∞(Ω±) ≤ F (E (t)) ‖λ±‖W 1,∞(Ω±) .

We thus end up with

∀ t ∈ [0, T ′] , |H2(t)| ≤ F (E (t))
(

1 +
∑

±

‖λ±‖W 1,∞(Ω±)

)

. (23)

Let us now consider the term

H3(t) :=−
∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

)(

AT∇ (∂
α
Q±)

0

)

·
(

∂
α
v±

∂
α
B±

)

dx

=−
∑

±

∑

|α|≤3

∫

Ω±

AT∇ (∂
α
Q±) ·

{

∂
α
v± − λ± ∂

α
B±

}

dx .

This is the term which requires the most careful analysis. We first observe that the term in the sum
which corresponds to α = 0 (no tangential derivative) is estimated in an elementary way by Cauchy-
Schwarz inequality, and admits an upper bound that is the same as in (23). We thus feel free to slightly
modify the definition of H3 and from now on we only consider the sum over the multi-indices α satisfying
1 ≤ |α| ≤ 3. A first integration by parts gives (here we use Einstein’s convention over repeated indices)

H3(t) =
∑

1≤|α|≤3

∫

Γ

A3i ∂
α
Q+

{

∂
α
v+i − λ+ ∂

α
B+

i

}

dx′

−
∑

1≤|α|≤3

∫

Γ+

A3i ∂
α
Q+

{

∂
α
v+i − λ+ ∂

α
B+

i

}

dx′

−
∑

1≤|α|≤3

∫

Γ

A3i ∂
α
Q−

{

∂
α
v−i − λ− ∂

α
B−

i

}

dx′ (24)

+
∑

1≤|α|≤3

∫

Γ−

A3i ∂
α
Q−

{

∂
α
v−i − λ− ∂

α
B−

i

}

dx′

+
∑

±

∑

1≤|α|≤3

∫

Ω±

∂
α
Q± ∂j

{

Aji (∂
α
v±i − λ± ∂

α
B±

i )
}

dx .

Let us notice first that

A3i {∂
α
v±i − λ± ∂

α
B±

i }|x3=±1 =
1

J
{∂αv±3 − λ± ∂

α
B±

3 }|x3=±1 = 0 ,

because of (7) and ψ = v±3 = B±
3 = 0 on [0, T ]×Γ±. Therefore the second and fourth boundary integrals

on Γ± in (24) vanish identically. As for the two boundary integrals on Γ, from (7), (10) and the boundary
condition [Q] = 0 on Γ we have

A3· = N , [∂
α
Q] = 0 on Γ .

Therefore we may rewrite (24) as H3(t) = H31(t) + H32(t) with

H31(t) :=
∑

1≤|α|≤3

∫

Γ

∂
α
Q
[

(∂
α
v − λ∂

α
B) ·N

]

dx′ , (25)

H32(t) :=
∑

±

∑

1≤|α|≤3

∫

Ω±

∂
α
Q± ∂j

{

Aji (∂
α
v±i − λ± ∂

α
B±

i )
}

dx , (26)
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where [·] in (25) still denotes the jump across Γ, and Q denotes the common trace of Q± on Γ.
Let us first consider the term H31(t), which is where the choice of λ± is made. The boundary conditions

[v ·N ] = B± ·N = 0 on Γ yield ∂
α
([v ·N ]) = ∂

α
(B± ·N) = 0 on Γ. Therefore we may write

H31(t) = −
∑

1≤|α|≤3

∫

Γ

∂
α
Q
[

[∂
α
;N ] · v − λ [∂

α
;N ] ·B

]

dx′ ,

where [∂
α
;N ] denotes the commutator between ∂

α
and the multiplication by N . This commutator can

be written as a sum of the form

[∂
α
;N ] = ∂

α
N +

∑

1≤|β|≤|α|−1

⋆ ∂
β
N ∂

α−β
,

where ⋆ denotes some harmless numerical coefficient. Let us assume for the time being that we can
construct λ± on [0, T ′]× Γ that satisfy

{

λ+B+
1 − λ−B−

1 = [v1] ,

λ+B+
2 − λ−B−

2 = [v2] ,
(27)

so that [v′ − λB′] = 0, where we have set v′ := (v1, v2) and so on. Then the decomposition of the
commutator reduces H31(t) to

H31(t) =
∑

1≤|α|≤3

∑

1≤|β|≤|α|−1

⋆

∫

Γ

∂
α
Q∂

β∇′f ·
(

∂
α−β

v′ − λ∂
α−β

B′
)

dx′ ,

where we have set ∇′ := (∂1, ∂2) (here the indices ± do not play any role so we feel free to omit them).
We now recall the following classical product estimate.

Lemma 5. The product mapping H0.5(T2)×H1.5(T2) −→ H0.5(T2), (f, g) 7−→ f g is continuous.

We can now estimate each term in the above decomposition of H31(t). In the case |α| − |β| = 1, we
get (use Lemma 5 for the product estimate and the fact that H1.5(T2) is an algebra)
∣

∣

∣

∣

∫

Γ

∂
α
Q∂

β∇′f ·
(

∂
α−β

v′ − λ∂
α−β

B′
)

dx′
∣

∣

∣

∣

≤ C
∥

∥

∥∂
α
Q
∥

∥

∥

H−0.5(Γ)

∥

∥

∥∂
β∇′f ·

(

∂
α−β

v′ − λ∂
α−β

B′
)

∥

∥

∥

H0.5(Γ)

≤ C ‖∇Q‖H1.5(Γ)

∥

∥

∥∂
β∇′f

∥

∥

∥

H0.5(T2)

∥

∥

∥∂
α−β

v′ − λ∂
α−β

B′
∥

∥

∥

H1.5(Γ)

≤ F (E (t))
(

1 +
∑

±

‖λ±‖H1.5(Γ)

)

.

In the case |α| − |β| ≥ 2, which only happens for |α| = 3 and |β| = 1, we have
∣

∣

∣

∣

∫

Γ

∂
α
Q∂

β∇′f ·
(

∂
α−β

v′ − λ∂
α−β

B′
)

dx′
∣

∣

∣

∣

≤ C
∥

∥

∥∂
α
Q
∥

∥

∥

H−0.5(Γ)

∥

∥

∥∂
β∇′f ·

(

∂
α−β

v′ − λ∂
α−β

B′
)

∥

∥

∥

H0.5(Γ)

≤ C ‖∇Q‖H1.5(Γ)

∥

∥

∥∂
β∇′f

∥

∥

∥

H1.5(T2)

∥

∥

∥∂
α−β

v′ − λ∂
α−β

B′
∥

∥

∥

H0.5(Γ)

≤ F (E (t))
(

1 +
∑

±

‖λ±‖H1.5(Γ)

)

.

Summing all the estimates, we have obtained

∀ t ∈ [0, T ′] , |H31(t)| ≤ F (E (t))
(

1 +
∑

±

‖λ±‖H1.5(Γ)

)

, (28)

provided that we can construct λ± that satisfy (27). Let us therefore turn to the construction of these
functions.

We first observe that the boundary conditions (10) give

B±
3 = B±

1 ∂1f +B±
2 ∂2f , [v3] = [v1] ∂1f + [v2] ∂2f , on Γ ,
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so (27) is equivalent to the relation

[v] = λ+ B+ − λ−B− on Γ .

Using the lower bound (18a) on the time interval [0, T ′], we know that (27) is a Cramer system (otherwise,
B+ and B− would be colinear). Hence λ± are uniquely determined on [0, T ′] × Γ and have the same
regularity as v±, B± on the boundary Γ. Moreover, the latter relations give

|λ±(t, x′, 0)| = |B∓ × [v]|
|B+ ×B−| (t, x

′, 0) ≤ 1− δ0
2
,

where we have used (18b). As in [13, 14], we extend λ± to the domains Ω± as functions that do not
depend on the normal variable x3. Using time or tangential differentiation on the system (27), we can
easily obtain the estimates

∀ t ∈ [0, T ′] , ‖λ±‖H1.5(Γ) + ‖λ±‖W 1,∞(Ω±) + ‖∂tλ±‖L∞(Ω±) ≤ F (E (t)) , (29)

‖λ±‖L∞(Ω±) ≤ 1− δ0
2
.

The latter estimates on λ± simplify (22), (23) and (28), and give

∀ t ∈ [0, T ′] , |H1(t)|+ |H2(t)| + |H31(t)| ≤ F (E (t)) . (30)

We emphasize that in the estimate (30), the nondecreasing function F depends on δ0 because the estimates
on λ± depend on δ0, but F does not depend on the particular solution that we are considering.

Let us now consider the term H32(t) in (26). We decompose H32(t) as H32(t) = H321(t) + H322(t),
with

H321(t) :=
∑

±

∑

1≤|α|≤3

∫

Ω±

∂
α
Q± (∂jAji) (∂

α
v±i − λ± ∂

α
B±

i ) dx ,

H322(t) :=
∑

±

∑

1≤|α|≤3

∫

Ω±

∂
α
Q±Aji ∂j(∂

α
v±i − λ± ∂

α
B±

i ) dx .

The first term H321(t) is easily estimated by applying Cauchy-Schwarz inequality and by using the L∞

estimate of λ±, see (29):

∀ t ∈ [0, T ′] , |H321(t)| ≤ F (E (t)) . (31)

As for H322(t), since we have the divergence constraint Aji ∂jv
±
i = Aji ∂jB

±
i = 0, we may write

H322(t) = −
∑

±

∑

1≤|α|≤3

∫

Ω±

∂
α
Q±

{

[∂
α
;Aji ∂j ]v

±
i +Aji (∂jλ

±) ∂
α
B±

i − λ± [∂
α
;Aji ∂j ]B

±
i

}

dx ,

where [·; ·] still denotes the commutator. The latter terms are now estimated in a somehow brutal way
by applying Cauchy-Schwarz inequality. We recall that the H4 norm of ψ is controlled by the H3.5 norm
of f thanks to Lemma 1, and that commutators in L2 are controlled by standard estimates which may
be found for instance in [3, page 295]. Eventually we obtain

∀ t ∈ [0, T ′] , |H322(t)| ≤ F (E (t)) .

Combining with (31), and (30), we end up with

∀ t ∈ [0, T ′] , |H1(t)|+ |H2(t)|+ |H3(t)| ≤ F (E (t)) . (32)

Going on with the estimate of the terms in the decomposition (21) of H ′(t), we finally consider

H4(t) := −
∑

±

∑

|α|≤3

∫

Ω±

(

1 −λ±
−λ± 1

)(

[∂
α
; ṽ± · ∇]v± − [∂

α
; B̃± · ∇]B±

[∂
α
; ṽ± · ∇]B± − [∂

α
; B̃± · ∇]v±

)

·
(

∂
α
v±

∂
α
B±

)

dx ,

and

H5(t) := −
∑

±

∑

|α|≤3

∫

Ω±

[

∂
α
;AT∇

]

Q± ·
{

∂
α
v± − λ± ∂

α
B±

}

dx .
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Indeed the reader can check that the relation (21) holds with the above definitions of H1, . . . ,H5. Ap-
plying again the classical commutator estimates and using once again the L∞ estimates of λ±, we have

∀ t ∈ [0, T ′] , |H4(t)|+ |H5(t)| ≤ F (E (t)) . (33)

Combining (32) and (33), we have therefore derived the inequality

∀ t ∈ [0, T ′] , |H ′(t)| ≤ F (E (t)) ,

for a given nonnegative nondecreasing function F that is independent of the solution. Integrating from
0 to t ∈ [0, T ′] and using the L∞ bounds on λ±, we have already proved our main a priori estimate for
tangential derivatives:

∀ t ∈ [0, T ′] ,
∑

|α|≤3

∥

∥∂
α
v±(t), ∂

α
B±(t)

∥

∥

2

±
≤M0 + t F ( max

0≤s≤t
E (s)) , (34)

where M0 is a numerical constant that only depends on δ0 and R (here we have used (29) to derive a
lower bound for the positive definite matrix appearing in the definition of the energy functional H ).

3. Divergence and curl estimates for v and B

3.1. Estimates for the divergence. In this section we derive suitable estimates for the divergence of
v±, B± in Ω±. Expanding the divergence constraint for v±, we find that for each t ∈ [0, T ′], there holds

∂1v
±
1 − ∂1ψ

J
∂3v

±
1 + ∂2v

±
2 − ∂2ψ

J
∂3v

±
2 +

1

J
∂3v

±
3 = 0 in Ω± ,

from which the identity

div v± =
∇ψ · ∂3v±

J
in Ω±

readily follows. Since H2(Ω±) is an algebra, we get

∀ t ∈ [0, T ′] , ‖div v±(t)‖2,± ≤ C

∥

∥

∥

∥

∇ψ
J

(t)

∥

∥

∥

∥

2

‖∂3v±(t)‖2,± ≤ C ‖f(t)‖H2.5(T2) ‖v±(t)‖3,± .

The analogue estimate for the divergence of B± is obtained by following the same lines, and we have
thus proved the a priori estimate

∀ t ∈ [0, T ′] , ‖div v±(t), divB±(t)‖2,± ≤ C0 ‖f(t)‖H2.5(T2) ‖v±(t), B±(t)‖3,± . (35)

3.2. Estimates for the curl. In order to estimate the curl of v±, B± we proceed as follows. Let us
introduce the curl of the Eulerian velocity and magnetic fields u,H

ζ̃ := curlu , ξ̃ := curlH ,

and set
{

ζ := ζ̃ ◦Ψ = (curlu) ◦Ψ = (AT∇)× (u ◦Ψ) = (AT∇)× v ,

ξ := ξ̃ ◦Ψ = (curlH) ◦Ψ = (AT∇)× (H ◦Ψ) = (AT∇)×B .
(36)

Using the definition of the matrix A in (7), the relations (36) can be easily inverted to find

curl v = ζ +
∇ψ × ∂3v

J
, curlB = ξ +

∇ψ × ∂3B

J
. (37)

Applying the curl operator to the original equations (2) satisfied by (u,H), we easily find that the Eulerian

curls (ζ̃ , ξ̃) solve the system
{

∂tζ̃
± + (u± · ∇)ζ̃± − (H± · ∇)ξ̃± − (ζ̃± · ∇)u± + (ξ̃± · ∇)H± = 0 ,

∂tξ̃
± + (u± · ∇)ξ̃± − (H± · ∇)ζ̃± + [curl;u± · ∇]H± − [curl;H± · ∇]u± = 0 ,

in
⋃

t∈[0,T ]

{t} × Ω±(t). Making use of (36) and recalling the definitions in (9), it follows that (ζ, ξ) solve

{

∂tζ
± + (ṽ± · ∇)ζ± − (B̃± · ∇)ξ± − (Aζ± · ∇)v± + (Aξ± · ∇)B± = 0 ,

∂tξ
± + (ṽ± · ∇)ξ± − (B̃± · ∇)ζ± + [AT∇×;Av± · ∇]B± − [AT∇×;AB± · ∇]v± = 0 ,

(38)
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in [0, T ] × Ω±. Thus, in order to estimate the curl of v±, B±, we are reduced, after (37), to proving
suitable bounds for the H2−norm of the solution (ζ, ξ) to (38). Let us observe that with our regularity
assumptions on the original solution, there holds (ζ, ξ) ∈ C 1(H2) ∩ C (H3) so all integration by parts
below are legitimate.

Let us introduce an associated energy functional K defined by

K (t) :=
1

2

∑

±

∑

|β|≤2

∫

Ω±

{

|∂βζ±(t)|2 + |∂βξ±(t)|2
}

dx . (39)

Differentiating with respect to t and making use of (7), (9), (38) gives

K
′(t) =

∑

±

∑

|β|≤2

∫

Ω±

{

∂β∂tζ
± · ∂βζ± + ∂β∂tξ

± · ∂βξ±
}

dx = K1(t) + K2(t) + K3(t) , (40)

where

K1(t) := −
∑

±

∑

|β|≤2

∫

Ω±

{

(ṽ± · ∇)∂βζ± − (B̃± · ∇)∂βξ±
}

· ∂βζ±

+
{

(ṽ± · ∇)∂βξ± − (B̃± · ∇)∂βζ±
}

· ∂βξ± dx ,

K2(t) := −
∑

±

∑

|β|≤2

∫

Ω±

{

[∂β ; ṽ± · ∇]ζ± − [∂β ; B̃± · ∇]ξ±
}

· ∂βζ±

+
{

[∂β ; ṽ± · ∇]ξ± − [∂β; B̃± · ∇]ζ±
}

· ∂βξ± dx ,

K3(t) := −
∑

±

∑

|β|≤2

∫

Ω±

∂β
(

(Aξ± · ∇)B± − (Aζ± · ∇)v±
)

· ∂βζ±

+ ∂β
([

AT∇×;Av± · ∇
]

B± −
[

AT∇×;AB± · ∇
]

v±
)

· ∂βξ± dx .

Let us estimate separately each of the above Ki, for i = 1, 2, 3. We start with K1. To estimate this term,
we use Leibniz’ rule and integrate by parts. The boundary conditions (10) give

K1(t) = −1

2

∑

±

∑

|β|≤2

∫

Ω±

{

ṽ± · ∇
(

|∂βζ±|2 + |∂βξ±|2
)

− 2 B̃± · ∇
(

∂βξ± · ∂βζ±
)

}

dx

=
∑

±

∑

|β|≤2

∫

Ω±

{

1

2
div ṽ±

(

|∂βζ±|2 + |∂βξ±|2
)

− div B̃± ∂βξ± · ∂βζ±
}

dx .

Applying Cauchy-Schwarz inequality, we obtain

∀ t ∈ [0, T ′] , |K1(t)| ≤ F (E (t)) . (41)

Let us now deal with the term K2. We focus on the first integral involved in the definition of K2,
namely

∑

|β|≤2

∫

Ω±

[∂β; ṽ± · ∇]ζ± · ∂βζ± dx .

In the sequel ∂1 and ∂2 stand for any derivative of order one and order two respectively. The commutator
is zero if β = 0. If |β| = 1, the integral is of the form

∫

Ω±

∂1ζ± ∂1ṽ± ∂1ζ± dx .

Using an L∞ bound for ∂1ṽ± and Cauchy-Schwarz for the two remaining terms, we have
∣

∣

∣

∣

∫

Ω±

∂1ζ± ∂1ṽ± ∂1ζ± dx

∣

∣

∣

∣

≤ F (E (t)) .
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It remains to examine the terms in the commutator with |β| = 2. We can easily check that such a
commutator can be rewritten as a sum of the form (we omit the harmless numerical constants)

∫

Ω±

∂1ṽ± ∂2ζ± ∂2ζ± + ∂2ṽ± ∂1ζ± ∂2ζ± dx .

The first term is estimated as in the case |β| = 1 by using an L∞ bound for ∂1ṽ±. The second of these
two terms requires more attention. We combine Hölder’s inequality and the Sobolev imbedding Theorem
(recall that in three space dimensions H1 is imbedded in L6):

∣

∣

∣

∣

∫

Ω±

∂2ṽ± ∂1ζ± ∂2ζ± dx

∣

∣

∣

∣

≤ |∂2ṽ±|3,± |∂1ζ±|6,± ‖∂2ζ±‖± ≤ C ‖ṽ±‖3,± ‖ζ±‖22,± ≤ F (E (t)) .

In a completely similar way, we can handle the other commutators in K2(t) to finally get the estimate

∀ t ∈ [0, T ′] , |K2(t)| ≤ F (E (t)) . (42)

We now turn to the last term K3, that we write in the form K3(t) = K31(t) + K32(t) with

K31(t) := −
∑

±

∑

|β|≤2

∫

Ω±

∂β
(

(Aξ± · ∇)B± − (Aζ± · ∇)v±
)

· ∂βζ± dx ,

K32(t) := −
∑

±

∑

|β|≤2

∫

Ω±

∂β
{

[AT∇×;Av± · ∇]B± − [AT∇×;AB± · ∇]v±
}

· ∂βξ± dx .

The first integral in K31(t) are estimated by Cauchy-Schwarz inequality and by using the fact that
H2(Ω±) is an algebra:

∣

∣

∣

∣

∫

Ω±

∂β
(

(Aξ± · ∇)B±
)

· ∂βζ± dx

∣

∣

∣

∣

≤ ‖ζ±‖2,± ‖(Aξ± · ∇)B±‖2,±

≤ ‖ζ±‖2,± ‖A‖2 ‖ξ±‖2,± ‖B±‖3,± ≤ F (E (t)) .

The second integral in K31(t) is estimated in the same way and we get

∀ t ∈ [0, T ′] , |K31(t)| ≤ F (E (t)) . (43)

As for K32(t), it is rather easy to see that the quantity [AT∇×;Av± · ∇]B± − [AT∇×;AB± · ∇]v± can
be expanded as a sum of terms of the form

A∂1Av± ∂1B± +A∂1AB± ∂1v± +AA∂1v± ∂1B± ,

where we have disregarded the indices for the sake of simplicity. Hence the H2 norm of this quantity can
be estimated by a quantity of the form F (E (t)). Using Cauchy-Schwarz inequality in K32(t), we end up
with

∀ t ∈ [0, T ′] , |K32(t)| ≤ F (E (t)) .

Combining the latter estimate with (41), (42) and (43), we have obtained

∀ t ∈ [0, T ′] , |K ′(t)| ≤ F (E (t)) .

We can now integrate this inequality from 0 to t and use (37). The “error” terms ∇ψ × ∂3v
±
3 /J ,

∇ψ × ∂3B
±
3 /J are estimated as in the paragraph on the divergence estimate, see (35), so eventually we

get

∀ t ∈ [0, T ′] , ‖curl v±(t), curlB±(t)‖22,± ≤M0

+ t F ( max
0≤s≤t

E (s)) + C0 ‖f(t)‖2H2.5(T2) ‖v±(t), B±(t)‖23,± . (44)
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3.3. Final estimate for the velocity and magnetic field. With the above divergence and curl
estimates, we are ready to obtain the main a priori estimate for the velocity and magnetic field in each
domain Ω±. The only point is to observe, through elementary algebraic manipulations, that the H3 norm
of a vector field is controlled by the L2 norms of tangential derivatives of order ≤ 3 and by the H2 norms
of its divergence and of its curl. We thus add the estimates (34), (35) and (44) to obtain

∀ t ∈ [0, T ′] , ‖v±(t), B±(t)‖23,± ≤M0 + t F ( max
0≤s≤t

E (s)) + C0 ‖f(t)‖2H2.5(T2) ‖v±(t), B±(t)‖23,± ,

where, of course, the numerical constants M0, C0 are independent of the solution. Consequently, up to
choosing ε0 small enough so that C0 ε0 ≤ 1/2 and adapting the time interval [0, T ′] so that (17a) is valid
with the new definition of ε0, we obtain

∀ t ∈ [0, T ′] , ‖v±(t), B±(t)‖23,± ≤M0 + t F ( max
0≤s≤t

E (s)) . (45)

4. Estimate of the front

From the linear system of the boundary conditions on Γ
{

B+
1 ∂1f +B+

2 ∂2f = B+
3 ,

B−
1 ∂1f +B−

2 ∂2f = B−
3 ,

(46)

we have already seen that the determinant B+
1 B

−
2 −B+

2 B
−
1 does not vanish on [0, T ′]×Γ. More precisely,

we have

|B+
1 B

−
2 −B+

2 B
−
1 (t, x′, 0)|2 =

|B+ ×B−(t, x′, 0)|2
1 + |∇′f(t, x′)|2 ≥ δ20

4 (1 + C ε20)
,

where we have used (18a), (17a) and the imbedding H1.5(T2) →֒ L∞(T2). We also note that thanks to
(17b), the L∞ norm of B± is uniformly controlled on [0, T ′]. Therefore, using the latter uniform bound
for the determinant and inverting the linear system (46), we have

∀ t ∈ [0, T ′] , ‖∇′f(t)‖H2.5(T2) ≤ C0 ‖B±(t)‖3,± , (47)

with C0 depending only on δ0 and R.
From the other boundary conditions on Γ:

∂tf = v±3 − v±1 ∂1f − v±2 ∂2f ,

(47) and the fact that H2.5(T2) is an algebra, we infer the second main estimate for f :

∀ t ∈ [0, T ′] , ‖∂tf(t)‖H2.5(T2) ≤ C0

(

‖v±(t)‖3,± + ‖v±(t), B±(t)‖23,±
)

. (48)

In particular, we can integrate from 0 to t and get

∀ t ∈ [0, T ′] , ‖f(t)‖H2.5(T2) ≤ ‖f0‖H2.5(T2) + t F ( max
0≤s≤t

E (s)) . (49)

We simplify (47), (48) and (49) by using (45) (we feel free to use t2 ≤ t which always holds by assuming,
without loss of generality T ′ ≤ 1):

∀ t ∈ [0, T ′] , ‖∂tf(t)‖2H2.5(T2) ≤M0 + t F ( max
0≤s≤t

E (s)) ,

‖f(t)‖2H3.5(T2) ≤M0 + t F ( max
0≤s≤t

E (s)) , (50)

‖f(t)‖H2.5(T2) ≤ ‖f0‖H2.5(T2) + t F ( max
0≤s≤t

E (s)) .

The last estimate in (50) says that f(t) remains small in H2.5 provided that we start from small initial
data and the first and second estimates in (50) give a control of ∂tf(t) in H

2.5 and f in H3.5. We observe
that f(t) is expected to remain small in H2.5 but has no reason to be small in H3.5 (in particular because
no smallness condition has been made on the norm of f0 in H3.5).
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5. The elliptic problem for the total pressure

We first deduce from (8) the elliptic system of equations solved by the total pressure. Applying AT∇·
to the equation for v± in (8) gives

−AT∇ · (AT∇Q±) = AT∇ ·
{

∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B±

}

.

Using the divergence relations AT∇ · v± = AT∇ ·B± = 0, we then deduce the equations

−AT∇ · (AT∇Q±) = F
± , (51)

where we have set

F
± := −∂tAki ∂kv

±
i +Aki ∂kṽ

± · ∇v±i − ṽ± · ∇Aki ∂kv
±
i −Aki ∂kB̃

± · ∇B±
i + B̃± · ∇Aki ∂kB

±
i . (52)

Recalling that a = J A we get from (51) the equivalent equations

− aT∇ · (AT ∇Q±) = J F
± . (53)

Now we look for the boundary conditions satisfied by Q±. Since ṽ±3 = B̃±
3 = 0 and ψ = v±3 = B±

3 = 0 on
[0, T ]×Γ±, from the third equation for v± in (8) evaluated on Γ± we obtain the homogeneous Neumann
condition

∂3Q
± = 0 on [0, T ]× Γ± . (54)

On Γ we take the scalar product of the equation for v± in (8) with the vector N . We get

− (AT ∇Q±) ·N =
{

∂tv
± + (ṽ± · ∇)v± − (B̃± · ∇)B±

}

·N . (55)

Let us compute the jump of each quantity in (55) across Γ. Since [Q] = 0 gives [∂1Q] = [∂2Q] = 0 on
[0, T ]× Γ, we obtain (recall that J = 1 on Γ)

[

(AT ∇Q) ·N
]

= [Aℓj Nj ∂ℓQ] = (1 + |∇′f |2) [∂3Q] . (56)

Using the boundary conditions ∂tf = v± ·N, B± ·N = 0, on [0, T ]× Γ, we also deduce
[

{∂tv + (ṽ · ∇)v − (B̃ · ∇)B} ·N
]

= [2 v′ · ∇′∂tf + (v′ · ∇′)∇′f · v′ − (B′ · ∇′)∇′f · B′] . (57)

Thus from (55), (56) and (57), we find the boundary condition

[Aℓj Nj ∂ℓQ] = G on [0, T ]× Γ , (58)

where we have set

G := − [2 v′ · ∇′∂tf + (v′ · ∇′)∇′f · v′ − (B′ · ∇′)∇′f · B′] . (59)

Collecting the equations (51), (54), (58) gives the elliptic problem






























−AT∇ · (AT ∇Q±) = F± , on [0, T ]× Ω± ,

[Q] = 0 , on [0, T ]× Γ ,

[Aℓj Nj ∂ℓQ] = G , on [0, T ]× Γ ,

∂3Q
± = 0 on [0, T ]× Γ± ,

(x1, x2) 7→ Q±(t, x1, x2, x3) is 1− periodic,

(60)

with F± and G defined in (52), (59), respectively.

Remark 6. When one tries to solve the elliptic system for the pressure, it may be easier to work with the
formulation (53) instead of (51) because of the necessary compatibility condition on the data F±,G . More
precisely, trying to solve problem (8) by a fixed point argument, one possible step could be the resolution of
system (60). (We have in mind the approach used in [11], for the resolution of the incompressible MHD
equations in a fixed domain under slip boundary conditions.) Thus the compatibilty condition needs to be
satisfied by the data.
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In order to formulate the compatibility condition we compute by an integration by parts

−
∑

±

∫

Ω±

aT∇ · (AT ∇Q±) dx = −
∫

Γ+

a3iAki ∂kQ
+ dx′ +

∫

Γ

a3iAki [∂kQ] dx′ +

∫

Γ−

a3iAki ∂kQ
− dx′

+
∑

±

∫

Ω±

∂kakiAhi ∂hQ
± dx ,

where the last integral vanishes because of the so-called Piola’s identity ∂kaki = 0. The boundary condi-
tions for Q yield

−
∑

±

∫

Ω±

aT∇ · (AT ∇Q±) dx =

∫

Γ

a3iAki [∂kQ] dx′ =

∫

Γ

AkiNi [∂kQ] dx′ .

This shows that the data F ,G of problem (60) need to satisfy the condition

∑

±

∫

Ω±

J F
± dx =

∫

Γ

G dx′ .

This condition is satisfied with our definitions since

∑

±

∫

Ω±

J F
± dx =

∑

±

∫

Ω±

aT∇ · {∂tv± + (ṽ± · ∇)v± − (B̃± · ∇)B±} dx

= −
∫

Γ

[

N · {∂tv + (ṽ · ∇)v − (B̃ · ∇)B}
]

dx′ =

∫

Γ

G dx′ ,

from (57), (59), and by computations as above. Thus the compatibility condition is satisfied.
Our approach here is different because we have already assumed that the solution exists and we only

wish to prove an a priori estimate on a time interval that is independent of the solution. Consequently,
we shall deal with the slightly more symmetric formulation (51) to derive energy estimates.

In the rest of this section we study the elliptic problem (60) for generic data F±,G . Only at the
end of the section we will go back to the specific definition of F±,G given in (52), (59). As (60) is
time-independent, in the sense that time appears only as a parameter, for simplicity of notation from
now on in this section the explicit dependence on t will be neglected.

5.1. The functional framework. Thanks to the continuity of the total pressure across Γ, we can define
the pressure Q ∈ H1(Ω) by Q := Q± on Ω±. The function Q belongs to the Hilbert space

V :=

{

R ∈ H1(Ω) ,

∫

Ω

R dx = 0

}

.

The space V equipped with the norm ‖∇R‖L2(Ω) is indeed a Hilbert space, because of the Poincaré

inequality, and the norm ‖∇R‖L2(Ω) is equivalent to the standard H1 norm. In what follows, the function

Q will be estimated in the space V , and we shall repeatedly use the fact that the L2 norm of ∇Q is
equivalent to ‖Q±‖1,±.

5.2. The general procedure for the pressure estimate. Step 1 We start from (60), multiply each

equation in Ω± by Q±, integrate over Ω± and use integration by parts. This yields

∑

±

∫

Ω±

∂k(Akj Q
±)Aℓj ∂ℓQ

± dx =

∫

Γ+

A3j Q
+Aℓj ∂ℓQ

+ dx′ −
∫

Γ−

A3j Q
−Aℓj ∂ℓQ

− dx′

−
∫

Γ

A3j Q
+Aℓj ∂ℓQ

+ dx′ +

∫

Γ

A3j Q
−Aℓj ∂ℓQ

− dx′

+
∑

±

∫

Ω±

Q±
F

± dx .
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We recall that from the boundary conditions, ψ and ∂3Q
± vanish on Γ± so the integrals on Γ± vanish.

So we get

∑

±

∫

Ω±

Akj ∂kQ
±Aℓj ∂ℓQ

± dx =−
∑

±

∫

Ω±

(∂kAkj)Q
±Aℓj ∂ℓQ

± dx

−
∫

Γ

Q|Γ G dx′ +
∑

±

∫

Ω±

Q±
F

± dx ,

where Q|Γ denotes the common trace of Q± on Γ. The integral on the left hand side gives the coercive
term in ∇Q± (see the definition (7) and recall the condition ‖∇ψ‖L∞([0,T ′]×Ω) ≤ 1/2). Then we apply
the Cauchy-Schwarz and Poincaré inequalities to derive

c ‖Q±‖21,± ≤ ‖F±‖2± + ‖G ‖2H−0.5(T2) +
∑

±

∫

Ω±

|∂kAkj | |Q±| |∂ℓQ±| dx ,

for a suitable numerical constant c > 0. Then we use the Hölder and Sobolev inequalities to derive

∑

±

∫

Ω±

|∂kAkj | |Q±| |∂ℓQ±| dx ≤ C ‖∇Q±‖± |∇A|4 |Q±|4,±

≤ C ‖A‖2 ‖Q±‖21,± ≤ C ‖f(t)‖H2.5(T2) ‖Q±‖21,± .
Up to choosing ε0 small enough, we have thus derived the first estimate

∀ t ∈ [0, T ′] , ‖Q±‖21,± ≤ C0

(

‖F±‖2± + ‖G ‖2H−0.5(T2)

)

. (61)

Step 2 We are now going to estimate Q± in H2(Ω±). Let us first apply a tangential derivative ∂ to

(60), with ∂ = ∂1 or ∂ = ∂2. Defining Q
±
:= ∂Q±, we obtain the elliptic system































−AT∇ · (AT ∇Q±
) = F

±
, on [0, T ]× Ω± ,

[Q] = 0 , on [0, T ]× Γ ,

[Aℓj Nj ∂ℓQ] = G , on [0, T ]× Γ ,

∂3Q
±
= 0 on [0, T ]× Γ± ,

(x1, x2) 7→ Q
±
(t, x1, x2, x3) is 1− periodic,

(62)

where the new source terms F
±
,G are defined by

F
±
:= ∂F± + ∂Akj ∂k(Aℓj ∂ℓQ

±) +Akj ∂k((∂Aℓj) ∂ℓQ
±) , (63)

G := ∂G − ∂(Aℓj Nj) [∂ℓQ] = ∂G − ∂(|∇′f |2) [∂3Q] . (64)

We apply the same procedure of integration by parts as above, obtaining first

∑

±

∫

Ω±

Akj ∂kQ
±
Aℓj ∂ℓQ

±
dx =−

∑

±

∫

Ω±

(∂kAkj)Q
±
Aℓj ∂ℓQ

±
dx

−
∫

Γ

Q|Γ G dx′ +
∑

±

∫

Ω±

Q
±

F
±
dx ,

where Q|Γ denotes the common trace of Q
±

on Γ. The integrals on the left hand side give the coercive
terms and, as above, we can absorb the first integrals occuring in the right hand side by choosing ε0 small
enough. We thus have

c ‖Q±‖21,± ≤ −
∫

Γ

Q|Γ G dx′ +
∑

±

∫

Ω±

Q
±

F
±
dx .

We now estimate the integrals on Ω±, recalling the definition (63) for F
±
. Let us first observe that

the term with ∂F± can be integrated by parts and we can then apply Cauchy-Schwarz and Young
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inequalities. The other terms are estimated as follows:

∑

±

∫

Ω±

|Q±| |∂Akj | |Aℓj | |∂k∂ℓQ±| dx ≤ C ‖Q±‖2,± |∇A|4 |A|∞ |Q±|4,±

≤ C ‖A‖22 ‖Q±‖22,± ≤ C ‖f(t)‖2H2.5(T2) ‖Q±‖22,± ,

∑

±

∫

Ω±

|Q±| |∂Akj | |∂kAℓj | |∂ℓQ±| dx ≤ C |Q±|4,± |∇A|24 |∇Q±|4,±

≤ C ‖A‖22 ‖Q±‖22,± ≤ C ‖f(t)‖2H2.5(T2) ‖Q±‖22,± ,
and applying similar sequences of inequalities, the reader can get quickly convinced that all other terms

in the product Q
±

F
±
are estimated by the same quantity. We thus have

c ‖Q±‖21,± ≤ ‖F±‖2± +

∣

∣

∣

∣

∫

Γ

Q|Γ G dx′
∣

∣

∣

∣

+ C ‖f(t)‖2H2.5(T2) ‖Q±‖22,± .

Let us now turn to the boundary term. Of course, we have
∣

∣

∣

∣

∫

Γ

Q|Γ ∂G dx′
∣

∣

∣

∣

≤ ‖G ‖H0.5(T2) ‖Q|Γ‖H0.5(Γ) ≤ C ‖G ‖H0.5(T2) ‖Q
±‖1,± .

The remaining term occuring in G is easily estimated as follows:
∣

∣

∣

∣

∫

Γ

Q|Γ [∂3Q] ∂(|∇′f |2) dx′
∣

∣

∣

∣

≤
∣

∣Q|Γ
∣

∣

3
|[∂3Q]|3

∣

∣∂(|∇′f |2)
∣

∣

3

≤ C ‖Q|Γ‖H0.5(Γ) ‖[∂3Q]‖H0.5(Γ) ‖|∇′f |2‖H1.5(T2) ≤ C ‖Q±‖22,± ‖f(t)‖2H2.5(T2) ,

where we have used H0.5(Γ) →֒ L4(Γ) (which holds in two space dimensions), and the fact that H1.5(Γ)
is an algebra. Applying Young’s inequality again, we thus obtain

‖Q±‖21,± ≤ C0

(

‖F±‖2± + ‖G ‖2H0.5(T2) + ‖f(t)‖2H2.5(T2) ‖Q±‖22,±
)

. (65)

Step 3 The remaining second order derivative ∂23Q
± is estimated directly from the equation (60) by

using the explicit expression of the coefficients Akj . More precisely, (60) reads

Aji Aki ∂j∂kQ
± = −F

± −Aji ∂jAki ∂kQ
± ,

that is,

1 + |∇′ψ|2
(1 + ∂3ψ)2

∂23Q
± + ∂21Q

± + ∂22Q
± − 2

∂1ψ ∂1∂3Q
±

1 + ∂3ψ
− 2

∂2ψ ∂2∂3Q
±

1 + ∂3ψ
= −F

± −Aji ∂jAki ∂kQ
± . (66)

We thus obtain

c ‖∂23Q±‖2± ≤ C
(

‖Q±‖21,± + ‖F±‖2± + ‖A∂1A∂1Q±‖2±
)

≤ C
(

‖Q±‖21,± + ‖F±‖2± + ‖f(t)‖2H2.5(T2) ‖Q±‖22,±
)

.

Combining with (61) and (65) and choosing the numerical constant ε0 sufficiently small, we obtain

∀ t ∈ [0, T ′] , ‖Q±‖22,± ≤ C0

(

‖F±‖2± + ‖G ‖2H0.5(T2)

)

. (67)

Step 4 We now apply the estimate (67) to the solution Q
±

to the problem (62), which has the same
form as (60) but with different source terms (defined in (63) and (64)). We thus have

∀ t ∈ [0, T ′] , ‖Q±‖22,± ≤ C
(

‖F±‖2± + ‖G ‖2H0.5(T2)

)

.

The L2-estimate of F
±

follows by applying similar arguments as above; for instance, we have

‖∂1A∂1A∂1Q+‖+ ≤ ‖∂1A∂1A‖+ ‖Q+‖W 1,∞(Ω+) ≤ C |∇A|24 ‖Q+‖3,+ ≤ C ‖f(t)‖2H2.5(T2) ‖Q±‖3,± .
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All the other terms in F
±

admit the same upper bound, that is

‖F±‖2± ≤ C
(

‖F±‖21,± + C ‖f(t)‖2H2.5(T2) ‖Q±‖23,±
)

.

As far as the boundary source term is concerned, we apply Lemma 5 and obtain

‖∂(|∇′f |2) [∂3Q]‖H0.5(Γ) ≤ C ‖∂(|∇′f |2)‖H0.5(T2) ‖[∂3Q]‖H1.5(Γ) ≤ C ‖f(t)‖2H2.5(T2) ‖Q±‖23,± .
We have thus derived the upper bound

∀ t ∈ [0, T ′] , ‖Q±‖22,± ≤ C
(

‖F±‖21,± + ‖G ‖2H1.5(T2) + ‖f(t)‖2H2.5(T2) ‖Q±‖23,±
)

.

The remaining third order derivative ∂33Q
± can be estimated by applying ∂3 to the equation (66). The

commutators are estimated exactly as above, and we now feel free to skip a few details. Eventually, up
to choosing a sufficiently small numerical constant ε0 > 0, and provided that T ′ is such that (17a) holds,
we derive the estimate

∀ t ∈ [0, T ′] , ‖Q±‖23,± ≤ C0

(

‖F±‖21,± + ‖G ‖2H1.5(T2)

)

. (68)

5.3. The final pressure estimate. It only remains to use the definition of the source terms F±,G in
(68). Using first the fact that H1.5(T2) is an algebra and recalling the definition (59) of G , we have

‖G (t)‖H1.5(T2) ≤ C
(

‖v±(t)‖3,±‖∂tf(t)‖H2.5(T2) + ‖v±(t), B±(t)‖23,±‖f(t)‖H3.5(T2)

)

,

and using (45), (50), we get

‖G (t)‖2H1.5(T2) ≤M0 + t F ( max
0≤s≤t

E (s)) .

The source terms F± can be estimated by applying the classical estimate

‖u1 u2‖H1 ≤ C (‖u1‖L∞ ‖u2‖H1 + ‖u2‖L∞ ‖u1‖H1) .

Analyzing each separate term in the definition (52) of F± by applying the latter product estimate and
by using (17), (45) or (50), we get

‖F±(t)‖21,± ≤M0 + t F ( max
0≤s≤t

E (s)) .

Adding the previous two inequalities, we obtain our final estimate for the pressure:

∀ t ∈ [0, T ′] , ‖Q±‖23,± ≤M0 + t F ( max
0≤s≤t

E (s)) . (69)

6. Proof of Theorem 4

If we summarize the analysis of the previous sections, we have shown that there exist some numerical
constants ε0 > 0 and M0 > 0, there exists a nonnegative nondecreasing function F on R

+, all three
depending only on δ0 and R such that, on any time interval [0, T ′] for which the inequalities (17) are
valid, there holds

∀ t ∈ [0, T ′] , E (t) ≤M0 + t F ( max
0≤s≤t

E (s)) . (70)

The function F and the constants ε0,M0 are independent of the particular solution that we are consid-
ering. Moreover, H2(Ω±) is an algebra so applying direct estimates on (8) we find

∀ t ∈ [0, T ′] , ‖∂tv±(t), ∂tB±(t)‖2,± ≤ F (E (t)) ,

so integrating with respect to t we have

∀ t ∈ [0, T ′] , ‖v±(t)− v±0 , B
±(t)−B±

0 ‖2,± ≤ t F ( max
0≤s≤t

E (s)) . (71)

From now on, the nonnegative nondecreasing function F is fixed, as well as the constants ε0, M0.
To complete the proof of Theorem 4, we define ε1 := ε0/2, and we choose a time T0 > 0 such that
2T0 F (2M0) ≤ M0 and 2T0 F (2M0) ≤ ε1. We emphasize that the definition of T0 only depends on δ0
and R. Then we define T ′ as the maximal time on which (17) holds (T ′ is positive because (17) holds at
the initial time with a strict inequality). We will see that T0 ≤ T ′ if T0 < T , and T ′ = T < T0 if T < T0.
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There are now two possibilities. Let us first assume T > T0, and let us define I as the set of all times
t ∈ [0, T0] such that

max
0≤s≤t

E (s) ≤ 2M0 , max
0≤s≤t

‖v±(s)− v±0 , B
±(s)−B±

0 ‖2,± ≤ ε0 , max
0≤s≤t

‖f(s)‖H2.5(T2) ≤ ε0 .

Then I is non-empty since it contains 0 (use (70) for t = 0), and I is closed since all functions involved
in the definition of I are continuous. Let us show that I is open. Let t ∈ I. Using (70), we have

E (t) ≤M0 + t F ( max
0≤s≤t

E (s)) ≤M0 + T0 F (2M0) < 2M0 .

In the same way, (50), (71) and the definition of ε1 give

‖v±(t)− v±0 , B
±(t)−B±

0 ‖2,± < ε0 , ‖f(t)‖H2.5(T2) < ε0 .

Consequently, there exists a neighborhood of t in [0, T0] that is included in I. In other words, I is open.
Hence I = [0, T0] and the result of Theorem 4 is proved. The proof in the case T ≤ T0 is similar.

7. Proof of Lemma 1

Given χ ∈ C∞
0 (R), χ = 1 on [−1, 1], we define

f (1)(x′, x3) := χ(x3|D|) f(x′) , ψ(x′, x3) := (1 − x23) f
(1)(x′, x3) , (72)

where χ(x3|D|) is the pseudo-differential operator with |D| being the Fourier multiplier in the variables
x′. From the definition it readily follows that ψ(x′, 0) = f(x′), ψ(x′,±1) = 0 for all x′ ∈ T

2. Moreover,

∂3ψ(x
′, x3) = −2 x3 f

(1)(x′, x3) + (1 − x23)χ
′(x3|D|) |D| f(x′) , (73)

which vanishes if x3 = 0. Given any function g defined on T
2, let us denote by ck(g) the k-th Fourier

coefficient

ck(g) =

∫

T2

e−2 i π k·x′

g(x′) dx′ , k ∈ Z
2 .

Since ck(f
(1)(·, x3)) = χ(x3 |k|) ck(f), we compute

‖ψ(·, x3)‖2Hm(T2) = (1− x23)
2 ‖f (1)(·, x3)‖2Hm(T2) ≤ C (1 − x23)

2
∑

k∈Z2

(1 + |k|2)m
∣

∣

∣
ck(f

(1)(·, x3))
∣

∣

∣

2

≤ C (1− x23)
2
∑

k∈Z2

(1 + |k|2)m χ2(x3 |k|) |ck(f)|2 .

It follows that

‖ψ‖2L2
x3

(Hm(T2)) ≤ C

∫ 1

−1

(1− x23)
2
∑

k∈Z2

(1 + |k|2)m χ2(x3 |k|) |ck(f)|2 dx3

≤ C
∑

k∈Z2

(1 + |k|2)m |ck(f)|2
∫ 1

−1

χ2(x3 |k|) dx3

≤ C |c0(f)|2 + C
∑

|k|≥1

(1 + |k|2)m |ck(f)|2
1

|k|

∫ |k|

−|k|

χ2(s) ds .

Denoting by X ∈ C∞(R) the primitive function of χ2 vanishing at −∞, i.e. X ′(s) = χ2(s), we notice
that X is bounded over all R. Then

‖ψ‖2L2
x3

(Hm(T2)) ≤ C |c0(f)|2 + C
∑

|k|≥1

(1 + |k|2)m−1/2|ck(f)|2 sup
s∈R

|X(s)| ≤ C ‖f‖2Hm−1/2(T2) . (74)
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In a similar way, from (73), we obtain

‖∂3ψ‖2L2
x3

(Hm−1(T2)) ≤ C
(

‖χ(x3 |D|) f‖2L2
x3

(Hm−1(T2)) + ‖χ′(x3 |D|) |D| f‖2L2
x3

(Hm−1(T2))

)

≤ C
∑

k∈Z2

(1 + |k|2)m−1 |ck(f)|2
∫ 1

−1

χ2(x3 |k|) dx3

+ C
∑

k∈Z2

(1 + |k|2)m−1 |k|2 |ck(f)|2
∫ 1

−1

|χ′(x3 |k|)|2 dx3

≤ C ‖f‖2Hm−3/2(T2) + C
∑

k 6=0

(1 + |k|2)m−1|k| |ck(f)|2
∫ |k|

−|k|

|χ′(s)|2 ds .

Denoting by Y ∈ C∞(R) a primitive function of (χ′)2, we also notice that Y is bounded over all R, so as
in (74), we get

‖∂3ψ‖2L2
x3

(Hm−1(T2)) ≤ C ‖f‖2Hm−3/2(T2) + C
∑

|k|≥1

(1 + |k|2)m−1/2 |ck(f)|2 sup
s∈R

|Y (s)| ≤ C ‖f‖2Hm−1/2(T2) .

Iterating the same argument yields

‖∂j3ψ‖2L2
x3

(Hm−j(T2)) ≤ C ‖f‖2Hm−1/2(T2) , j = 0, . . . ,m .

Adding over j = 0, . . . ,m finally gives ψ ∈ Hm(Ω) and the continuity of the map f 7→ ψ.
The proof of Lemma 2 follows from Lemma 1, with t as a parameter. Notice also that the map

f → f (1), see (72), is linear and that the time regularity is conserved because, with obvious notation,

(∂jt f)
(1) = ∂jt (f

(1)). The conclusions of Lemma 2 follow directly.
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[9] D. Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654 (electronic), 2005.

[10] A. Morando, Y. Trakhinin & P. Trebeschi. Stability of incompressible current-vortex sheets. J. Math. Anal. Appl.,
347(2):502–520, 2008.

[11] P. Secchi. On the equations of ideal incompressible magnetohydrodynamics. Rend. Sem. Mat. Univ. Padova, 90:103–
119, 1993.

[12] S.I. Syrovatskij. The stability of tangential discontinuities in a magnetohydrodynamic medium. Zhurnal ksperimen-

tal’noi i Teoreticheskoi Fiziki, 24:622–629, 1953.
[13] Y. Trakhinin. Existence of compressible current-vortex sheets: Variable coefficients linear analysis. Arch. Ration. Mech.

Anal., 177(3):331–366, 2005.
[14] Y. Trakhinin. On the existence of incompressible current-vortex sheets: study of a linearized free boundary value

problem. Math. Methods Appl. Sci., 28(8):917–945, 2005.
[15] Y. Trakhinin. The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech.

Anal., 191(2):245–310, 2009.

E-mail address: jean-francois.coulombel@math.univ-lille1.fr

E-mail address: alessandro.morando@ing.unibs.it

E-mail address: paolo.secchi@ing.unibs.it

E-mail address: paola.trebeschi@ing.unibs.it


	1. Introduction
	1.1. The Eulerian description
	1.2. The reference domain 
	1.3. An equivalent formulation in the fixed domain 
	1.4. The main result

	2. Estimate of tangential derivatives
	2.1. Uniform control of low order derivatives
	2.2. Estimates of tangential derivatives

	3. Divergence and curl estimates for v and B
	3.1. Estimates for the divergence
	3.2. Estimates for the curl
	3.3. Final estimate for the velocity and magnetic field

	4. Estimate of the front
	5. The elliptic problem for the total pressure
	5.1. The functional framework
	5.2. The general procedure for the pressure estimate
	5.3. The final pressure estimate

	6. Proof of Theorem 4
	7. Proof of Lemma 1
	References

