Stability of finite difference schemes for hyperbolic initial boundary value problems - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2009

Stability of finite difference schemes for hyperbolic initial boundary value problems

Résumé

We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming stability for the dicretization of the hyperbolic operator as well as a geometric regularity condition, we show that an appropriate determinant condition, that is the analogue of the uniform Kreiss-Lopatinskii condition for the continuous problem, yields strong stability for the discretized initial boundary value problem. The analysis relies on a suitable discrete block structure condition and the construction of suitable symmetrizers. Our work extends the results of Gustafsson, Kreiss, Sundstrom to a wider class of finite difference schemes.
Fichier principal
Vignette du fichier
IBVP_num_version2.pdf (407.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00339527 , version 1 (18-11-2008)
hal-00339527 , version 2 (12-01-2009)

Identifiants

  • HAL Id : hal-00339527 , version 2

Citer

Jean-François Coulombel. Stability of finite difference schemes for hyperbolic initial boundary value problems. SIAM Journal on Numerical Analysis, 2009, 47 (4), pp.2844-2871. ⟨hal-00339527v2⟩
215 Consultations
219 Téléchargements

Partager

More