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Abstract

We study the stability of finite difference schemes for hyperbolic initial boundary value
problems in one space dimension. Assuming `2-stability for the dicretization of the hyperbolic
operator as well as a geometric regularity condition, we show that an appropriate determinant
condition, that is the analogue of the uniform Kreiss-Lopatinskii condition for the continuous
problem, yields strong stability for the discretized initial boundary value problem. The
analysis relies on a suitable discrete block structure condition and the construction of suitable
symmetrizers. Our work extends the results of [9] to a wider class of finite difference schemes.

AMS subject classification: 65N12, 65N06, 35L50.
Keywords: Hyperbolic systems, boundary conditions, finite difference schemes, stability, sym-
metrizers.

1 Introduction

The goal of this article is to make a precise study of the stability of finite difference schemes
for hyperbolic initial boundary value problems in one space dimension. There has been a wide
series of works on this subject, see e.g. [10, 18, 9, 5, 6] and the references therein. In the
fundamental contribution [9], it was shown that strong stability of finite difference approxima-
tions is equivalent to an appropriate “determinant condition”, under the assumption that the
discretization of the hyperbolic operator is either dissipative or unitary, see Assumption 5.4 in
[9]. The determinant condition is the analogue of the uniform Kreiss-Lopatinskii condition for
hyperbolic boundary value problems, see [11]. The results of [9] were extended to the multidi-
mensional case in [16], assuming that the discretization of the hyperbolic operator is dissipative
in the tangential directions. We also refer to [3] for a study of multidimensional finite volume
approximations in the case of symmetric systems.

In one space dimension, the dissipativity assumption is not very restrictive. As a matter of
fact, many finite difference approximations of the equation:

∂tu + A ∂xu = f , (t, x) ∈ R+ × R ,

are dissipative under the assumption that 0 is not an eigenvalue of A and that the CFL condition
is not satisfied in an optimal way. For initial boundary value problems on the half-line {x > 0},
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this assumption on the matrix A means precisely that the boundary {x = 0} is noncharacteristic.
In two space dimensions, the dissipativity assumption is much more restrictive (it is also much
more difficult to check). In some cases, finite difference approximations of the equation:

∂tu + A1 ∂x1u + A2 ∂x2u = f , (t, x1, x2) ∈ R+ × R× R ,

can be dissipative only if neither A1 nor A2 have 0 as an eigenvalue, which is far more restrictive
than assuming that the boundary of the half-space {x2 > 0} is non-characteristic. It is also
rather restrictive from the point of view of applications (one can think of the linearized gas
dynamics equations for instance).

The purpose of this article is therefore to extend the theory of [9] to the widest possible
class of finite difference schemes. The reasons are twofold: first to cover as many applications as
possible by diminishing the assumptions on the finite difference scheme, second to highlight the
structural assumptions that are needed in the procedure to derive maximal energy estimates for
the discretization of the initial boundary value problem. Our goal is also to avoid as much as
possible using the specificities of hyperbolic systems in one space dimension so our results will
be useful for a future extension to the multidimensional case. We shall give two examples of
schemes that are covered by our results and that do not enter the framework of [9]. Let us now
briefly recall the procedure to derive energy estimates for hyperbolic boundary value problems.

In the analysis of hyperbolic initial boundary value problems (both for continuous and dis-
cretized problems), energy estimates are based on two main steps. The first step consists in
writing the problem as an “evolution equation” in the normal direction to the boundary, and in
reducing the symbol of this evolution equation under a convenient form (that is usually called
the block structure). Usually this evolution equation in the normal variable is not hyperbolic so
the symbol cannot be reduced to diagonal form. The second step of the analysis is to construct
symmetrizers for this reduced form of the equations. The “compatibility” between the operator
and the boundary conditions is encoded in a determinant condition, usually known as the uni-
form Kreiss-Lopatinskii condition. For the continuous problem, the block structure condition
was proved by Kreiss [11] for strictly hyperbolic operators and non-characteristic boundary. Ma-
jda and Osher [12] observed that this condition is satisfied by many physical examples that are
hyperbolic with constant multiplicity, both in the characteristic and non-characteristic case. The
derivation of the determinant condition and the construction of symmetrizers were performed in
[11]. Kreiss’s result was extended by Métivier [13] to hyperbolic operators with constant mul-
tiplicity (both for noncharacteristic and characteristic boundaries). Eventually, it was shown
by Métivier and Zumbrun [15] that the block structure condition is equivalent to a geometric
regularity property for the eigenvalues of the symbol associated with the Cauchy problem. The
result in [15] characterizes completely the structural conditions on the hyperbolic operator that
make the symmetrizers construction in [11] work.

Our goal is to extend the results of [15] to the “discrete” case. This requires first of all to
define a suitable discrete block structure condition, then to show that geometric regularity of the
eigenvalues of the symbol of the discretized hyperbolic operator is equivalent to the discrete block
structure condition. The next step of the analysis is to construct symmetrizers and to prove
maximal energy estimates. In the discrete case, the eigenvalues of the symbol of the discretized
hyperbolic operator can have a more complex behavior than the eigenvalues of the symbol of
the continuous hyperbolic operator. Consequently, we have less information about the diagonal
blocks involved in the discrete block structure. We are then led to make some restrictions on the
discretized hyperbolic operator that give some additional information on the blocks and allow
us to construct a symmetrizer. We shall consider a wider class of schemes than those considered
in [9]. As a matter of fact, the restrictions in [9] were such that the authors could use the
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symmetrizers constructed in [11]. Weakening the assumptions of [9] requires the introduction
of a new type of symmetrizers. The construction of these new symmetrizers is performed here
in details. We also improve the results of [9] by showing some refined results under weaker
assumptions. Our new construction of symmetrizers is flexible enough to be generalized to even
more general situations than what we consider here (we give a possible generalization in an
appendix).

Notations In all this paper, we use the notations:

U := {ζ ∈ C, |ζ| > 1} , U := {ζ ∈ C, |ζ| ≥ 1} ,

D := {ζ ∈ C, |ζ| < 1} , S1 := {ζ ∈ C, |ζ| = 1} .

We let Mp,N (K) denote the set of p ×N matrices with entries in K = R or C, and we use the
notation MN (K) when p = N . If M ∈ MN (C), sp(M) denotes the spectrum of M , while M∗

denotes the conjugate transpose of M . The matrix (M + M∗)/2 is called the real part of M
and is denoted Re M . We let I denote the identity matrix, without mentioning the dimension.
If H1,H2 ∈ MN (C) are two hermitian matrices, we write H1 ≥ H2 if for all x ∈ CN we have
x∗ (H1 − H2) x ≥ 0. The norm of a vector x ∈ CN is |x| := (x∗ x)1/2. Eventually, we let `2

denote the set of square integrable sequences, without mentioning the indeces of the sequences
(sequences may be valued in Ck for some integer k).

2 Main results

We consider a hyperbolic initial boundary value problem in one space dimension:
∂tu + A ∂xu = F (t, x) , (t, x) ∈ R+ × R+ ,

B u(t, 0) = g(t) , t ∈ R+ ,

u(0, x) = f(x) , x ∈ R+ ,

(1)

where A ∈ MN (R) is diagonalizable with real eigenvalues, and B ∈ MN+,N (R) with N+ the
number of positive eigenvalues of A (counted with their multiplicity). We assume that the
boundary is noncharacteristic, that is 0 6∈ sp(A). Problem (1) is well-posed in L2 if and only if:

RN = Ker B ⊕ E+(A) ,

where E+(A) is the unstable eigenspace of A (associated with positive eigenvalues of A).
We now introduce the finite difference approximation of (1). Let ∆x,∆t > 0 denote a space

and a time step where λ = ∆t/∆x is a fixed positive constant, and let p, q, r, s be some integers.
The solution to (1) is approximated by a sequence (Un

j ) defined for n ∈ N, and j ∈ −r+1+N. For
j = −r + 1, . . . , 0, Un

j approximates the trace u(n ∆t, 0) on the boundary {x = 0}, and possibly
the trace of normal derivatives. The boundary meshes [j ∆x, (j + 1)∆x[, j = −r + 1, . . . , 0,
shrink to {0} as ∆x tends to 0, so the “formal” continuous limit problem as ∆x tends to 0 is
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set on the half-line R+. We consider finite difference approximations of (1) that read1:

Un+1
j =

s∑
σ=0

Qσ Un−σ
j + ∆t Fn

j , j ≥ 1 , n ≥ s ,

Un+1
j =

s∑
σ=−1

Bj,σ Un−σ
1 + gn

j , j = −r + 1, . . . , 0 , n ≥ s ,

Un
j = fn

j , j ≥ −r + 1 , n = 0, . . . , s ,

(2)

where the operators Qσ and Bj,σ are given by:

Qσ :=
p∑

`=−r

A`,σ T ` , Bj,σ :=
q∑

`=0

B`,j,σ T ` , T ` Um
k := Um

k+` . (3)

In (3), all matrices A`,σ, B`,j,σ belong to MN (R). We recall the following definition from [9]:

Definition 1 (Strong stability [9]). The finite difference approximation (2) is said to be strongly
stable if there exists a constant C such that for all γ > 0 and all ∆t ∈ ]0, 1], the solution (Un

j )
of (2) with fn

j = 0 satisfies the estimate:

γ

γ ∆t + 1

∑
n≥s

∑
j≥−r+1

∆t ∆x e−2 γ n ∆t |Un
j |2 +

∑
n≥s

0∑
j=−r+1

∆t e−2 γ n ∆t |Un
j |2

≤ C

γ ∆t + 1
γ

∑
n≥s

∑
j≥1

∆t ∆x e−2 γ n ∆t |Fn
j |2 +

∑
n≥s

0∑
j=−r+1

∆t e−2 γ n ∆t |gn
j |2
 .

The estimate in definition 1 is the discrete counterpart of the maximal energy estimate for
the “continuous” problem (1):

γ

∫ ∫
R+×R+

e−2 γ t|u(t, x)|2 dt dx +
∫

R+

e−2 γ t|u(t, 0)|2 dt

≤ C

{
1
γ

∫ ∫
R+×R+

e−2 γ t|F (t, x)|2 dt dx +
∫

R+

e−2 γ t|g(t)|2 dt

}
.

For later use, we introduce the symbol associated with the discretization of the hyperbolic
operator:

∀κ ∈ C \ {0} , A (κ) :=


Q̂0(κ) . . . . . . Q̂s(κ)

I 0 . . . 0

0
. . . . . .

...
0 0 I 0

 ∈ MN(s+1)(C) , Q̂σ(κ) :=
p∑

`=−r

κ` A`,σ .

(4)
The uniform power boundedness of A (κ) for κ ∈ S1 is a necessary and sufficient condition to
have `2-stability for the discretized Cauchy problem, see for instance [4, chapter III.1] or [8,
chapter 5]. This stability condition for the discretized Cauchy problem will play an important
role in the stability analysis for the discretized initial boundary value problem (2), just like

1We do not focus here on the construction of such approximations and refer to [8] for some examples that
enter our framework.
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hyperbolicity plays an important role for the stability analysis of hyperbolic initial boundary
value problems, see e.g. [11, 13, 15].

Let us now introduce the resolvent equation:
wj −

s∑
σ=0

z−σ−1 Qσ wj = Fj , j ≥ 1 ,

wj −
s∑

σ=−1

z−σ−1 Bj,σ w1 = gj , j = −r + 1, . . . , 0 ,

(5)

where z ∈ U , (Fj) ∈ `2, and g−r+1, . . . , g0 ∈ CN , that is obtained from (2) by applying a
Laplace transform in time, see [9]. Then strong stability of (2) can be first characterized by an
estimate on the resolvent equation:

Proposition 1 ([9]). The approximation (2) is strongly stable if and only if there exists a
constant C > 0 such that for all z ∈ U , for all (Fj) ∈ `2, and for all g−r+1, . . . , g0 ∈ CN , the
resolvent equation (5) has a unique solution (wj) ∈ `2 and this solution satisfies:

|z| − 1
|z|

∑
j≥−r+1

|wj |2 +
0∑

j=−r+1

|wj |2 ≤ C

 |z|
|z| − 1

∑
j≥1

|Fj |2 +
0∑

j=−r+1

|gj |2
 . (6)

The goal of this article is to give necessary and/or sufficient conditions on the symbol (4)
and on the boundary conditions in (2) so that the energy estimate (6) holds true, which implies
strong stability in the sense of definition 1. As detailed in the introduction, it is convenient
to rewrite the resolvent equation (5) as an “evolution equation” for the sequence (wj). For
` = −r, . . . , p, we define the matrices:

∀ z ∈ C \ {0} , A`(z) := δ`0 I −
s∑

σ=0

z−σ−1 A`,σ , (7)

where δ`1`2 is the Kronecker symbol. Then as in [9], we make the following assumption:

Assumption 1. The matrices A−r(z) and Ap(z) are invertible for all z ∈ U , or equivalently
for all z in some open neighborhood V of U .

As usual, it is convenient to rewrite the “multi-step” induction (5) as a “one-step” induction
for an augmented vector. Assumption 1 is crucial to achieve this reduction.

We first consider the case q < p. In that case, all the wj ’s involved in the “boundary
conditions” for the resolvent equation (5) are coordinates of the augmented vector2 W1 :=
(wp, . . . , w1−r). Using assumption 1, we can define a matrix M(z) that is holomorphic on some
open neighborhood V of U :

∀ z ∈ V , M(z) :=


−Ap(z)−1 Ap−1(z) . . . . . . −Ap(z)−1 A−r(z)

I 0 . . . 0

0
. . . . . .

...
0 0 I 0

 ∈ MN(p+r)(C) . (8)

2Vectors are written indifferently in rows or columns to simplify the redaction.
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Using the definition (3) for the operators Qσ, Bj,σ and the matrix M, we can rewrite the resolvent
equation (5) as an induction relation for the augmented vector Wj := (wj+p−1, . . . , wj−r). This
induction relation reads: {

Wj+1 = M(z) Wj + F̃j , j ≥ 1 ,

B(z) W1 = g ,
(9)

where the new source terms (F̃j), g in (9) are given by:

F̃j := (Ap(z)−1 Fj , 0, . . . , 0) , g := (g0, . . . , g1−r) .

It is easy to check that the matrix B(z) ∈ MNr,N(p+r) depends holomorphically on z ∈ C \ {0}
and has maximal rank N r for all z. The exact expression of the matrix B(z) can be easily
obtained from (5) and (3) but is not very relevant here. The new resolvent equation (9) is of
course equivalent to (5).

Let us now treat the case q ≥ p. In that case, we can still write the resolvent equation under
the form (9) up to defining Wj := (wj+q, . . . , wj−r), j ≥ 1, and:

M(z) :=


−Ap(z)−1 Ap−1(z) . . . −Ap(z)−1 A−r(z) 0 . . . 0

I 0 . . . . . . 0
0 0 0
0 0 . . . 0 I 0

 ∈ MN(q+r+1)(C) .

The definition of B(z) ∈ MNr,N(q+r+1) varies from the previous case but this matrix keeps a
maximal rank N r for all z and is still holomorphic on C \ {0}. This equivalent form of the
resolvent equation varies from what was done in [9]. In our approach, we can ensure that the
matrix B(z) has maximal rank for all z ∈ U . This is important in view of the so-called uniform
Kreiss-Lopatinskii condition assumed below in Theorem 2. This maximal rank property of B is
not so clear if one uses the method in [9, page 672] when q ≥ p. This is why we propose this
alternative approach to rewrite the resolvent equation.

For simplicity, we shall deal from now on with the case q < p but our proofs can be extended
in a straightforward way to the case q ≥ p. Some intermediate results vary slightly but the
method and arguments are the same in both cases.

Our goal is to prove an energy estimate for (9), which will yield an energy estimate for
(5) and prove strong stability for the finite difference scheme (2) thanks to Proposition 1. We
introduce the following terminology:

Definition 2 (Discrete block structure condition). Let M be a holomorphic function on some
open neighborhood of U with values in Mm(C) for some integer m. Then M is said to satisfy
the discrete block structure condition if the two following conditions are satisfied:

1. for all z ∈ U , sp(M(z)) ∩ S1 = ∅,

2. for all z ∈ U , there exists an open neighborhood O of z in C, and there exists an invertible
matrix T (z) that is holomorphic with respect to z ∈ O such that:

∀ z ∈ O , T (z)−1 M(z) T (z) = diag (M1(z), . . . ,ML(z)) ,

where the number L of diagonal blocks and the size ν` of each block M` do not depend on
z ∈ O, and where each block satisfies one of the following properties:

• there exists δ > 0 such that for all z ∈ O, M`(z)∗ M`(z) ≥ (1 + δ) I,
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• there exists δ > 0 such that for all z ∈ O, M`(z)∗ M`(z) ≤ (1− δ) I,

• ν` = 1, z and M`(z) belong to S1, and z M ′
`(z) M`(z) ∈ R \ {0},

• ν` > 1, z ∈ S1 and M`(z) has the form:

M`(z) = κ`


1 1 0 0

0
. . . . . . 0

...
. . . . . . 1

0 . . . 0 1

 , κ` ∈ S1 .

Moreover the lower left coefficient m` of M ′
`(z) is such that for all µ ∈ C with Re σ >

0, and for all complex number ζ such that ζν` = κ` m` z µ, then Re ζ 6= 0.

We refer to the blocks M` as being of the first, second, third or fourth type.

The discrete block structure condition is more precise than the normal form of [9, Theorem
9.1]. Definition 2 clarifies the structure of the blocks associated with eigenvalues in S1. Such
blocks are either scalar, which was not clear in [9], or have a Jordan structure. This clarification
will simplify the construction of symmetrizers.

Our first main result gives necessary and sufficient conditions on the symbol A so that the
matrix M defined by (8) satisfies the discrete block structure condition:

Theorem 1. Let assumption 1 be satisfied. Then M defined by (8) satisfies the discrete block
structure condition if and only if the symbol A defined by (4) satisfies the two following condi-
tions:

• there exists a constant C > 0 such that for all κ ∈ S1 and all n ∈ N, ‖A (κ)n‖ ≤ C,
(uniform power boundedness)

• if κ ∈ S1 and z ∈ S1∩sp(A (κ)) has algebraic multiplicity α, then there exist some functions
λ1(κ), . . . , λα(κ) that are holomorphic in a neighborhood W of κ in C, such that:

λ1(κ) = · · · = λα(κ) = z ,

det
(
z I −A (κ)

)
= ϑ(κ, z)

α∏
j=1

(
z − λj(κ)

)
, (10)

with ϑ a holomorphic function of (κ, z) in some neighborhood of (κ, z) in C2 such that
ϑ(κ, z) 6= 0, and there exist some vectors E1(κ), . . . , Eα(κ) ∈ CN(s+1) that are holomorphic
with respect to κ ∈ W , that are linearly independent for all κ ∈ W , and that satisfy:

∀κ ∈ W , ∀ j = 1, . . . , α , A (κ) Ej(κ) = λj(κ) Ej(κ) .

Theorem 1 shows that M satisfies the discrete block structure condition if and only if the
discretization of the hyperbolic operator is `2-stable and moreover the eigenvalues of the symbol
A that belong to the unit circle are geometrically regular. No geometric regularity is required
for eigenvalues in D. Theorem 1 is the analogue for finite difference schemes of Theorem C.3
in [15]. The assumptions of Theorem 1 allow more general situations than the cases covered by
[9]. In particular, we show that assumptions 5.2 and 5.3 in [9] are not necessary to reduce M to
the discrete block structure. Let us make the following:
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Remark 1. We recall that the geometric regularity of the eigenvalues in S1 is not a consequence
of the uniform power boundedness of {A (κ) , κ ∈ S1}. For instance the following matrix:(

1 + Υ(κ) Υ(κ)
0 1 + Υ(κ)

)
, Υ(κ) :=

(κ− κ−1)2

4
,

is holomorphic with respect to κ ∈ C\{0}, and is uniformly power bounded for κ ∈ S1. However
1 is not a geometrically regular eigenvalue for κ = 1.

The reduction of M to the discrete block structure is a crucial step towards proving energy
estimates as we shall see below. It is indeed easier to construct symmetrizers for each block
rather than directly constructing a symmetrizer for the whole matrix M.

In what follows, we are going to give sufficient conditions on the symbol A and on the
boundary conditions in (2) that yield strong stability. Unfortunately, our structural conditions
on A are slightly more restrictive than the conditions in Theorem 1 that ensure the discrete
block condition for M. However we shall allow more general situations than what was considered
in [9]. We shall also give some examples of new situations where our analysis applies.

Let us introduce the following terminology that is inspired from [14]:

Definition 3 (K-symmetrizer). Let assumption 1 be satisfied, and let M be defined by (8). Then
M is said to admit a K-symmetrizer if for all z ∈ U , there exists a decomposition:

CN(p+r) = Es ⊕ Eu , dim Es = N r , dim Eu = N p ,

with associated projectors (πs, πu), such that for all K ≥ 1, there exists a neighborhood O of z
in C, there exists a C∞ function S on O with values in MN(p+r)(C), and there exists a constant
c > 0 such that the following properties hold for all z ∈ O ∩U :

• S(z) is hermitian,

• M(z)∗ S(z) M(z)− S(z) ≥ c (|z| − 1)/|z| I,

• for all W ∈ CN(p+r), W ∗ S(z) W ≥ K2 |πu W |2 − |πs W |2.

Before going on, we make the following:

Remark 2. In definition 3, the neighborhood O, the mapping S and the constant c heavily
depend on K. What is important is that the decomposition of CN(p+r) only depends on the point
z that is considered.

If z ∈ U , the first estimate in definition 3 is equivalent to proving that M(z)∗ S(z) M(z)−S(z)
is positive definite.

The last estimate in definition 3 can be deduced from the estimate:

∀W ∈ CN(p+r) , W ∗ S(z) W ≥
(
K2 +

1
2
)
|πu W |2 − 1

2
|πs W |2 .

This reduces the third point to a verification only at the point z. We shall repeatedly use this
property in our construction of K-symmetrizers.

Our second main result gives sufficient conditions for strong stability of (2) and is the fol-
lowing:
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Theorem 2. Let assumption 1 be satisfied. Assume that the symbol A (κ) defined by (4) is
uniformly power bounded for κ ∈ S1, and that M defined by (8) admits a K-symmetrizer. For
z ∈ U , we let Es(z) denote the generalized eigenspace associated with eigenvalues of M(z) in
D. Then Es(z) has constant dimension N r for all z ∈ U and Es defines a holomorphic vector
bundle over U that can be extended in a unique way as a continuous vector bundle over U . We
let Es(z) denote this continuous extension for z ∈ S1(= ∂U ).

In addition to all assumptions above, assume that for all z ∈ U we have Es(z)∩Ker B(z) =
{0}. (In what follows this condition is referred to as the uniform Kreiss-Lopatinskii condition.)
Then the scheme (2) is strongly stable.

Theorem 2 reduces the verification of the strong stability of (2) to i) constructing a suitable
symmetrizer for M in the neighborhood of any point z ∈ U , and ii) verifying the so-called uni-
form Kreiss-Lopatinskii condition. This condition may be formulated as a determinant condition
provided that we choose a basis of Es(z) and a basis of Ker B(z). Point i) is usually performed
by first reducing M to the discrete block structure, and this is where Theorem 1 is useful. The
verification of the uniform Kreiss-Lopatinskii condition may be quite involved since it requires
to compute the continuous extension of Es to U . For low order schemes where r is small, the
computations may be performed with no major difficulty, see e.g. [9, section 6]; however the
verification becomes really complicated for high order schemes with large r. Nevertheless, one
may try a numerical verification of this condition, as indicated in [8, chapter 13]. The continuous
extension of Es(z) to z ∈ U is not explicitely proved in [9] though it is crucially needed in the
formulation of the so-called determinant condition.

Our last main result gives sufficient conditions for the existence of a K-symmetrizer. Com-
bined with the result of Theorem 2 above, Theorem 3 below thus gives sufficient conditions for
strong stability of (2).

Theorem 3. Let assumption 1 be satisfied, and assume that the symbol A (κ) is uniformly power
bounded for κ ∈ S1. Assume moreover that all the eigenvalues of A (κ), κ ∈ S1, that belong to
S1 are geometrically regular and that at least one of the three following properties is satisfied by
each eigenvalue λj(κ) in the decomposition (10):

i) λ′j(κ) 6= 0,

ii) λj(κ) ∈ S1 for all κ ∈ S1 ∩W ,

iii) Re (κ2 λj(κ) λ′′j (κ)) > 0.

Then M defined by (8) admits a K-symmetrizer. In particular, if the uniform Kreiss-Lopatinskii
condition is satisfied, the scheme (2) is strongly stable.

The rest of this paper is devoted to the proofs of Theorems 1, 2 and 3. In section 6 we
shall detail some examples of schemes for which our analysis applies. This section includes new
examples that were not covered by the analysis of [9]. Appendices A and B are devoted to the
proof of intermediate results that are used in the proofs of the main Theorems. Eventually,
appendix C is devoted to an extension of Theorem 3 where we consider even more general
situations. The purpose of appendix C is to convince the reader that our new construction of
symmetrizers can be adapted to any situation where we make a dissipation type assumption for
the eigenvalues λj . A systematic treatment in the general case is postponed to a future work.

Possible generalizations of our results are detailed in the following:
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Remark 3. A possible generalization of Theorem 2 is to show that the vector bundle Es can be
continuously extended to U assuming only that the discrete block structure condition is satisfied
by M. This would allow to define the uniform Kreiss-Lopatinskii condition as in Theorem 2 for
a wider class of numerical schemes. However, checking the uniform Kreiss-Lopatinskii condition
is useless if one is not also able to construct symmetrizers. In our work, extending continuously
the bundle Es to U appears as a consequence of the symmetrizers construction, even though it
may be already hidden in the discrete block structure condition.

Our construction of symmetrizers is smooth with respect to the frequency z. We thus have all
the ingredients for an extension of our results to variable coefficients difference operators. The
only new ingredient that is needed is a suitable quantification for pseudo-difference operators,
see e.g. [16, section 4].

Eventually, our results generalize the theory in [9] so we can extend to our more general
framework some previous results that were based on the results of [9], see e.g. [5, 6, 7] for
simplified stability criteria or convergence estimates. Since we have not used the specificities of
the one-dimensional framework, our analysis can be a good starting point for a generalization of
Michelson’s results [16] in several space dimensions. This is left to a future work.

3 Proof of Theorem 1

Let us recall that we assume q < p for simplicity. We first assume that the symbol A (κ) is
uniformly power bounded for κ ∈ S1 and that its eigenvalues that belong to the unit circle S1

are geometrically regular. We are going to show that M satisfies the discrete block structure
condition. Recall that M is holomorphic on an open neighborhood V of U , see (8). We first
recall a classical Lemma:

Lemma 1 ([9]). Let assumption 1 be satisfied and assume that A (κ) is uniformly power bounded
for κ ∈ S1. Then for all z ∈ V , the eigenvalues of M(z) are those κ ∈ C \ {0} such that:

det (A (κ)− z I) = 0 .

In particular for all z ∈ U , M(z) has no eigenvalue on the unit circle S1 and the number of
eigenvalues in D equals N r (eigenvalues are counted with their algebraic multiplicity).

Lemma 1 shows that the first condition in definition 2 is satisfied. Furthermore, this property
immediately implies that the discrete block structure condition is satisfied in the neighborhood
of any z ∈ U . More precisely, in a small neighborhood O of z ∈ U , the generalized eigenspace
associated with eigenvalues of M(z) in D and the generalized eigenspace associated with eigen-
values of M(z) in U both depend holomorphically on z ∈ O. We can then reduce M(z) to a
block diagonal form:

T (z)−1 M(z) T (z) = diag (M[(z), M](z)) , M[(z) ∈ MN r(C) , M](z) ∈ MN p(C) ,

where the eigenvalues of M[(z) belong to D and the eigenvalues of M](z) belong to U . The
change of basis T (z) depends holomorphically on z ∈ O. Up to a constant change of basis, we
can achieve the inequalities:

M[(z)∗ M[(z) ≤ (1− 2 δ) I , M](z)∗ M](z) ≥ (1 + 2 δ) I ,

with δ some positive constant. Thanks to a continuity argument, we can conclude that the
discrete block structure condition is satisfied in a neighborhood of z. The reduction only involves
blocks of the first and second type.
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We now turn to the case z ∈ S1. If M(z) has no eigenvalue in S1 then we are reduced to
the preceeding case. We thus assume that M(z) has some eigenvalues in S1. More precisely,
let κ1, . . . , κk denote the elements of sp(M(z))∩ S1. We also let α1, . . . , αk denote the algebraic
multiplicity of these eigenvalues. The generalized eigenspace Ker(M(z) − κj I)αj associated
with κj is denoted Kj . For z sufficiently close to z, we also let Kj(z) denote the generalized
eigenspace of M(z) associated with its αj eigenvalues that are close to κj . The space Kj(z)
depends holomorphically on z. Then for z in a small neighborhood O of z, we can perform a
block diagonalization of M(z) with a holomorphic change of basis:

T (z)−1 M(z) T (z) = diag (M[(z), M](z), M1(z), . . . , Mk(z)) ,

where the eigenvalues of M[(z) belong to D, the eigenvalues of M](z) belong to U , and for all
j = 1, . . . , k the αj eigenvalues of Mj(z) belong to a sufficiently small neighborhood of κj . As
in the preceeding case, we can easily achieve the inequalities:

∀ z ∈ O , M[(z)∗ M[(z) ≤ (1− δ) I , M](z)∗ M](z) ≥ (1 + δ) I ,

so from now on we focus on the blocks Mj(z). For the sake of clarity, we shall only deal with
the block M1(z). This is only to avoid overloaded notations with many indeces. Of course, the
analysis below is valid for any of the blocks Mj(z). We are going to show that in a convenient
holomorphic basis of K1(z), the block M1(z) reduces to a block diagonal form with blocks of the
third and fourth types. The proof follows the analysis of [13, 15] and splits in several steps.

• Following [13], we first study the characteristic polynomial of M1(z). For z close to z, the
α1 eigenvalues of M1(z) are close to κ1. A standard computation shows that for all z ∈ V and
all κ ∈ C \ {0}, we have3:

det(M(z)− κ I) = ϑ(κ, z) det (z I −A (κ)) , (11)

where ϑ is holomorphic with respect to (κ, z) and does not vanish on C \ {0} × V . We thus
obtain:

det(M1(z)− κ I) = ϑ(κ, z) det (z I −A (κ)) , (12)

where ϑ is holomorphic with respect to (κ, z) and does not vanish on a small neighborhood of
(κ1, z). The generic notation ϑ is used for a nonvanishing holomorphic function that may vary
from one line to the other. We know that z ∈ S1 is an eigenvalue of A (κ1) so we can use the
geometric regularity assumption. For (κ, z) in a sufficiently small neighborhood of (κ1, z), (12)
reads:

det(M1(z)− κ I) = ϑ(κ, z)
α∏

j=1

(
z − λj(κ)

)
, (13)

where α is a fixed integer, and the λj ’s are holomorphic functions on a neighborhood W of κ1

and satisfy λj(κ1) = z. Thanks to the uniform power boundedness of the matrices A (κ) for
κ ∈ S1, we know that |λj(κ)| ≤ 1 for κ ∈ S1 ∩ W . Using a Taylor expansion of λj(κ1 eiξ) for
ξ ∈ R close to 0, we obtain that there exists a real number αj such that:

κ1 λ′j(κ1) = αj z , αj ∈ R . (14)

Thanks to (13), we can see that κ1 is a root with finite multiplicity νj of the holomorphic
function z − λj(·):

∀ ν = 1, . . . , νj − 1 , λ
(ν)
j (κ1) = 0 , λ

(νj)
j (κ1) 6= 0 . (15)

3This relation is a little stronger than the result recalled in Lemma 1, but it can be obtained by applying
standard computation rules for determinants.
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We can therefore apply the Weierstrass preparation Theorem to the holomorphic function z −
λj(κ): for all j = 1, . . . , α, there exists Pj(κ, z) that is a unitary polynomial function in κ with
degree νj , such that for (κ, z) close to (κ1, z):

z − λj(κ) = ϑ(κ, z) Pj(κ, z) , Pj(κ, z) = (κ− κ1)
νj , ϑ(κ1, z) 6= 0 . (16)

Using (16), (13) reduces to:

det(M1(z)− κ I) = ϑ(κ, z)
α∏

j=1

Pj(κ, z) . (17)

For z close to z, the polynomial Pj(·, z) has νj roots close to κ1. Consequently, the size of the
block M1(z) equals ν1+ · · ·+να. We also know that the size of this block equals α1, the algebraic
multiplicity of the eigenvalue κ1. Up to reordering the terms, there exists an integer β such that:

ν1 = · · · = νβ = 1 , νβ+1, . . . , να ≥ 2 .

For j = 1, . . . , β, we know that λ′j(κ1) 6= 0 or equivalently αj 6= 0 in (14). Therefore λj is a
biholomorphic homeomorphism from a neighborhood W of κ1 to a neighborhood O of z. We let
µj denote its (holomorphic) inverse. With such notations, we obtain Pj(κ, z) = κ−µj(z) for all
j = 1, . . . , β.

Using the relation (16), we also obtain ∂zPj(κ1, z) 6= 0. Then Puiseux’s expansions theory
shows that for z close to z and z 6= z, the νj roots of Pj(·, z) are simple, see for instance [1].

• For each eigenvalue λj(κ), j = 1, . . . , α and κ close to κ1, we know that A (κ) has a
holomorphic eigenvector Ej(κ) ∈ CN(s+1). Using the definition (4) of A , we find that Ej(κ) can
be written as:

∀ j = 1, . . . , α , Ej(κ) =


λj(κ)s ej(κ)

...
λj(κ) ej(κ)

ej(κ)

 , ej(κ) ∈ CN .

The vectors e1(κ1), . . . , eα(κ1) are linearly independent in CN because E1(κ1), . . . , Eα(κ1) are
linearly independent in CN(s+1). Therefore when κ is close to κ1, the vectors e1(κ), . . . , eα(κ)
remain linearly independent. We define the following vectors:

∀ j = 1, . . . , α , Ej(κ) :=


κp+r−1 ej(κ)

...
κ ej(κ)
ej(κ)

 ∈ CN(p+r) .

These vectors depend holomorphically on κ, and they are linearly independent for κ close to
κ1. Using the relations (7) and (8), some straightforward computations show that Ej(κ) is an
eigenvector of the matrix M(λj(κ)) associated with the eigenvalue κ:

∀ j = 1, . . . , α ,
(
M(λj(κ))− κ I

)
Ej(κ) = 0 . (18)

In particular, for j = 1, . . . , β and for z in a neighborhood O of z, we have:

∀ j = 1, . . . , β , ∀ z ∈ O ,
(
M(z)− µj(z) I

)
Ej(µj(z)) = 0 . (19)
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Recall that µj is the holomorphic inverse of λj for j = 1, . . . , β, that is when λ′j(κ1) 6= 0. For
all j = 1, . . . , β, we have thus constructed a holomorphic eigenvalue µj(z) and a holomorphic
eigenvector Ej(µj(z)) of M(z). Moreover, we have µ′j(z) = 1/λ′j(κ1) so we get:

∀ j = 1, . . . , β , µj(z) = κ1 ∈ S1 , z µ′j(z) µj(z) =
1
αj

∈ R \ {0} .

• We now turn to the most difficult case j = β + 1, . . . , α. We start from (18), differentiate
this relation νj − 1 times with respect to κ, and evaluate the result at κ = κ1:(

M(z)− κ1 I
)
Ej(κ1) = 0 ,

− Ej(κ1) +
(
M(z)− κ1 I

)
E ′

j (κ1) = 0 ,

...

− (νj − 1) E
(νj−2)
j (κ1) +

(
M(z)− κ1 I

)
E

(νj−1)
j (κ1) = 0 .

Then for all j = β + 1, . . . , α, we define the following vectors:

(
E j,1, . . . ,E j,νj

)
:=
(
Ej(κ1),

κ1

1!
E ′

j (κ1), . . . ,
κ

νj−1
1

(νj − 1)!
E

(νj−1)
j (κ1)

)
, (20)

that satisfy the relations:(
M(z)− κ1 I

)
E j,1 = 0 , ∀µ = 2, . . . , νj ,

(
M(z)− κ1 I

)
E j,µ = κ1 E j,µ−1 . (21)

Using the relations (19) and (21), we can show as in [13, 15] that the vectors:

E1(κ1), . . . ,Eβ(κ1), E β+1,1, . . . ,E β+1,νβ+1
, . . . , E α,1, . . . ,E α,να

,

are linearly independent. Moreover, these α1 vectors span the generalized eigenspace K1 of M(z)
associated with the eigenvalue κ1. So far we have thus obtained a basis of K1 in which the block
M1(z) reads:

M1(z) = diag
(
κ1, . . . , κ1,Mβ+1, . . . ,Mα

)
, M j := κ1


1 1 0 0

0
. . . . . . 0

...
. . . . . . 1

0 . . . 0 1

 ∈ Mνj (C) .

In the final step of the analysis, we are going to extend the definition of the vectors E j,µ to a
neighborhood of z. The proof follows the arguments of [13].

• Let us recall that for all j = 1, . . . , α, the polynomial Pj is defined by (16). We can choose
r > 0 such that for z in a neighborhood O of z, the νj roots of Pj(·, z) belong to the disc of
center κ1 and radius r/2. Then for all z ∈ O, for all j = β + 1, . . . , α and for all µ = 1, . . . , νj ,
we define a vector Ej,µ(z) by the following formula:

Ej,µ(z) :=
κµ−1

1 (νj − µ)!
2 i π νj !

∫
|κ−κ1|=r

∂µ
κPj(κ, z)
Pj(κ, z)

Ej(κ) dκ .

Cauchy’s formula shows that for z = z, Ej,µ(z) coincides with the vector E j,µ defined by (20).
Moreover, Ej,µ(z) depends holomorphically on z ∈ O. Consequently we can choose the neigh-
borhood O such that for all z ∈ O, the vectors:

E1(µ1(z)), . . . ,Eβ(µβ(z)), Eβ+1,1(z), . . . ,Eβ+1,νβ+1
(z), . . . , Eα,1(z), . . . ,Eα,να(z), (22)
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are linearly independent. We are going to show that these vectors span the invariant subspace
K1(z), and that in this basis of K1(z), the matrix M1(z) is in block diagonal form with blocks
of the third and fourth type.

We follow [13]: for z close to z and j = β + 1, . . . , α, we let Fj(z) denote the vector space
spanned by the linearly independent vectors Ej,1(z), . . . ,Ej,νj (z). For j = 1, . . . , β, we let Fj(z)
denote the one-dimensional vector space spanned by Ej(µj(z)). Then for all j, the dimension of
Fj(z) is νj . Moreover the sum of the Fj(z) is direct and has dimension α1. We already know
that for j = 1, . . . , β, Ej(µj(z)) is an eigenvector of M(z) for the eigenvalue µj(z), see (19).
Consequently, Fj(z) is stable by the matrix M(z) and Fj(z) ⊂ K1(z) for j = 1, . . . , β. We are
now going to show that the same properties hold true for j = β + 1, . . . , α. For z = z, thanks
to (21), we know that Fj(z) is stable by M(z) and Fj(z) ⊂ K1. From now on we thus consider
a fixed z ∈ O \ {z}.

For all j = β + 1, . . . , α, we let κj,1, . . . , κj,νj denote the νj disctinct roots of the polynomial
Pj(·, z). These roots belong to the disc of center κ1 and radius r/2. Therefore, using the residue
Theorem, we obtain:

Ej,µ(z) =
νj∑

m=1

ωj,µ,m Ej(κj,m) ,

for some suitable complex numbers ωj,µ,m. Therefore Fj(z) is contained in the vector space
F̃j(z) spanned by the vectors Ej(κj,1), . . . ,Ej(κj,νj ). Because the dimension of Fj(z) is νj , we
can conlude that the dimension of F̃j(z) is also νj and Fj(z) = F̃j(z). Let us now show that
F̃j(z) is stable by M(z). We know that Pj(κj,m, z) = 0 so z = λj(κj,m). Using (18) we see
that Ej(κj,m) is an eigenvector of M(z) for the eigenvalue κj,m that is close to κ1. Consequently
the vector space F̃j(z) is stable by M(z) and F̃j(z) ⊂ K1(z). Since Fj(z) = F̃j(z), we have
proved that for all j = 1, . . . , α, Fj(z) is stable by M(z) and Fj(z) ⊂ K1(z). Using a dimension
argument, we have obtained:

K1(z) = F1(z)⊕ · · · ⊕ Fα(z) ,

and each Fj(z) is a stable vector space for M(z). Moreover, the characteristic polynomial of the
restriction of M(z) to Fj(z) is Pj(·, z). We have thus constructed a holomorphic basis of K1(z)
in which the matrix M1(z) reads:

M1(z) = diag
(
µ1(z), . . . , µβ(z),Mβ+1(z), . . . ,Mα(z)

)
.

We also know that the characteristic polynomial of Mj(z) is Pj(·, z) for j = β + 1, . . . , α, and
Mj(z) is the Jordan block M j defined above.

• The only remaining task is to obtain the property stated in definition 2 for the lower
left corner coefficient mj of M ′

j(z). We know that Pj(κ, z) is the characteristic polynomial of
Mj(z). Computing the derivative of det(Mj(z) − κ1 I) with respect to z and evaluating at
z = z, we obtain mj 6= 0 (because ∂zPj(κ1, z) 6= 0). We can then compute the first term in the
Puiseux expansion of the eigenvalues of Mj(z) as in [9] (we refer the reader to [1] for a complete
justification of the Puiseux expansions for the eigenvalues of Mj(z)). Following [9, page 676],
the conclusion on mj follows from the following estimate:

Lemma 2 ([9]). Let A (κ) be uniformly power bounded for κ ∈ S1 and let assumption 1 be
satisfied. Then there exists a constant C > 0 such that for all z ∈ U and for all κ ∈ S1, we
have:

‖(M(z)− κ I)−1‖ ≤ C
|z|

|z| − 1
.
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We give an alternative elementary proof of Lemma 2 in appendix A. Our proof relies on very
simple algebraic computations and does not use the arguments of [9].

So far we have proved that the uniform power boundedness of {A (κ) , κ ∈ S1} and the
geometric regularity of its eigenvalues in S1 imply the discrete block structure for M. From
now on, we wish to prove the converse and therefore assume that M satisfies the discrete block
structure assumption. The proof follows [15, appendix C]. First of all, relation (11) shows that
for all κ ∈ S1, the eigenvalues of A (κ) lie in D. We are first going to show that the eigenvalues
of A (κ) that belong to S1 are geometrically regular. Then we shall show that A (κ) is uniformly
power bounded. We have the following:

Lemma 3. Let F := {κ ∈ S1 , sp(A (κ)) ∩ S1 6= ∅}. Then F is a closed subset of S1.

We omit the proof of this Lemma that easily follows from a compactness argument. Let κ ∈ F ,
and let z ∈ sp(A (κ)) ∩ S1 have algebraic multiplicity α. Using relation (11), we know that κ is
an eigenvalue of M(z). Because M satisfies the discrete block structure condition, we know that
there exists a neighborhood O of z and a holomorphic change of basis T (z) for z ∈ O such that:

T (z)−1 M(z) T (z) = diag (M1(z), . . . , ML′(z), ML′+1(z), . . . , ML(z)) ,

where for all ` = 1, . . . , L′, κ ∈ sp(M`(z)) and for all ` ≥ L′ + 1, κ 6∈ sp(M`(z)). Since κ ∈ S1,
M` is necessarily a block of the third or fourth type4 for all ` = 1, . . . , L′. Consequently the
spectrum of M`(z) is reduced to {κ} for ` = 1, . . . , L′. For all ` = 1, . . . , L′ and z ∈ O, we define:

P`(κ, z) = det(M`(z)− κ I) .

We clearly have:

det(M(z)− κ I) = ϑ(κ, z)
L′∏

`=1

P`(κ, z) , ϑ(κ, z) 6= 0 .

Using the relation (11), we obtain:

det(z I −A (κ)) = ϑ(κ, z)
L′∏

`=1

P`(κ, z) , ϑ(κ, z) 6= 0 ,

and ϑ is holomorphic with respect to (κ, z) in a neighborhood of (κ, z). Using the discrete block
structure condition, we also have ∂zP`(κ, z) 6= 0 because M` is a block of the third or fourth
type. Applying the Weierstrass preparation Theorem to P`, there exists a holomorphic function
λ` defined on a neighborhood W of κ such that:

P`(κ, z) = ϑ(κ, z) (z − λ`(κ)) , λ`(κ) = z , ϑ(κ, z) 6= 0 .

We have thus obtained the factorization:

det(z I −A (κ)) = ϑ(κ, z)
L′∏

`=1

(z − λ`(κ)) , ϑ(κ, z) 6= 0 .

In particular, this shows that L′ is the algebraic multiplicity α of z as an eigenvalue of A (κ).
4Blocks of the first and second type have no eigenvalue in S1.
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We know that M`(λ`(κ))− κ I has a nontrivial kernel for all κ close to κ and ` = 1, . . . , L′.
Following [15], we can show that this kernel has dimension 1 for all κ, and is spanned by some
vector that can be chosen holomorphically with respect to κ. We can therefore construct some
vectors E1(κ), . . . ,EL′(κ) that depend holomorphically on κ, that are linearly independent for
all κ ∈ W , and that satisfy:

∀ ` = 1, . . . , L′ , (M(λ`(κ))− κ I) E`(κ) = 0 .

Using some previous computations, the existence of such vectors E`(κ) yields the existence of
vectors E1(κ), . . . , EL′(κ) ∈ CN(s+1) that depend holomorphically on κ, and that satisfy:

∀ ` = 1, . . . , L′ , (A (κ)− λ`(κ) I) E`(κ) = 0 .

We have thus proved that z is a geometrically regular eigenvalue of A (κ).
It remains to show that A (κ) is uniformly power bounded. For all κ ∈ F , we have shown

that there exists a neighborhood W of κ in C, and there exists a holomorphic change of basis
Q(κ) such that:

∀κ ∈ W , Q(κ)−1 A (κ) Q(κ) = diag (λ1(κ), . . . , λL(κ),A[(κ)) ,

where λ1(κ), . . . , λL(κ) are complex numbers that satisfy λj(κ) ∈ S1, and A[(κ) is a block whose
eigenvalues belong to D for all κ ∈ W . There is no restriction in assuming that W is open, that
Q(κ) and Q(κ)−1 are uniformly bounded on W , and that the spectrum of A[(κ) is uniformly
bounded away from S1 for κ ∈ W .

Since F is compact, we can use a finite covering of F by such neighborhoods W1, . . . ,Wk.
For all κ ∈ S1 ∩Wi, the eigenvalues λ1(κ), . . . , λLi(κ) belong to D ∪ S1. Moreover, there exists
a constant δ > 0 such that for all κ ∈ Wi, the eigenvalues of A[(κ) have a modulus bounded by
1 − δ. Using also a uniform bound for Qi(κ) and Qi(κ)−1, we can conclude that there exists a
constant C > 0 such that:

∀κ ∈ S1 ∩ ∪iWi , ∀n ∈ N , ‖A (κ)n‖ ≤ C .

For κ in the closed subset (S1 \ ∪iWi) of S1, we know that the spectrum of A (κ) lies inside D.
Consequently, there exists a constant δ > 0 such that for all κ ∈ (S1 \ ∪iWi), the eigenvalues of
A (κ) have a modulus bounded by 1 − δ. This shows that there exists a constant C > 0 such
that:

∀κ ∈ S1 \ ∪iWi , ∀n ∈ N , ‖A (κ)n‖ ≤ C .

The matrix A (κ) is uniformly power bounded for κ ∈ S1, and the proof of Theorem 1 is complete.

4 Proof of Theorem 2

Let assumption 1 be satisfied, and assume that A (κ) is uniformly power bounded for κ ∈ S1.
Then Lemma 1 shows that the “stable” subspace Es(z) of M(z) has constant dimension N r for all
z ∈ U . The holomorphic dependance of M(z) on z implies that Es(z) also varies holomorphically
with z on U , see e.g. [1].

Let z ∈ S1 and let us show that Es(z) has a limit as z ∈ U tends to z. Let K > 2, and
let us consider the decomposition CN(p+r) = Es ⊕ Eu as well as the neighborhood O and the
symmetrizer S given in definition 3. We consider z ∈ O ∩U and W1 ∈ Es(z). We then define
the sequence:

Wj+1 = M(z) Wj , j ≥ 1 . (23)
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Because W1 ∈ Es(z), we have (Wj) ∈ `2. Following some calculations of [9, page 681], we first
take the scalar product of (23) with S(z) Wj+1, take the real part of the equality and sum for
j = 1 to some integer J :

Re
J∑

j=1

W ∗
j+1 S(z) M(z) Wj −

J+1∑
j=2

W ∗
j S(z) Wj = 0 . (24)

Then we take the scalar product of (23) with S(z) M(z) Wj , take the real part of the equality
and sum for j = 1 to J :

J∑
j=1

W ∗
j M(z)∗ S(z) M(z) Wj − Re

J∑
j=1

W ∗
j+1 S(z) M(z) Wj = 0 . (25)

The sum of (24) and (25) yields:

W ∗
1 S(z) W1 −W ∗

J+1 S(z) WJ+1 +
J∑

j=1

W ∗
j

(
M(z)∗ S(z) M(z)− S(z)

)
Wj︸ ︷︷ ︸

≥0

= 0 .

Letting J tend to infinity, we obtain W ∗
1 S(z) W1 ≤ 0 for all W1 ∈ Es(z). Using the properties

of S, we obtain:
∀ z ∈ O ∩U , ∀W1 ∈ Es(z) , K |πu W1| ≤ |πs W1| .

The end of the analysis follows [14]. Writing πs W1 = W1 − πu W1, we get:

∀ z ∈ O ∩U , ∀W1 ∈ Es(z) , (K − 1) |πu W1| ≤ |W1| . (26)

The estimate (26) shows that the mapping:

Φ(z) : Es(z) −→ Es

W1 7−→ πs W1 ,

is injective, and is therefore an isomorphism because the dimensions of Es(z) and Es are equal.
We can then write the inverse mapping Φ(z)−1 in the following way:

Φ(z)−1 : Es −→ Es(z)
W 1 7−→ W 1 + ϕ(z) W 1 ,

where ϕ(z) is a linear mapping from Es to Eu. Using (26) we have:

∀ z ∈ O ∩U , ∀W 1 ∈ Es , |ϕ(z) W 1| ≤
1

K − 2
|W 1| . (27)

Combining the fact that Φ(z)−1 is surjective and the estimate (27) shows that the space Es(z)
tends to Es as z ∈ U tends to z. We have thus extended Es to U . Following again [14] and
performing some similar calculations as above, we can show that this extension of Es to U
defines a continuous vector bundle over U . We refer to [14] for more details.

From now on, we further assume that for all z ∈ U we have Es(z) ∩ Ker B(z) = {0},
which is the uniform Kreiss-Lopatinskii condition. We are going to show that the scheme (2) is
strongly stable. We first consider the case of large frequencies z:
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Lemma 4 ([9]). There exist two constants R0 ≥ 2 and C0 ≥ 0 that depend only on the scheme
(2) such that for all z verifying |z| ≥ R0, for all (Fj) ∈ `2 and all g−r+1, . . . , g0 ∈ CN , the
resolvent equation (5) has a unique solution (wj) ∈ `2 and this solution satisfies:

∑
j≥−r+1

|wj |2 ≤ C0

(∑
j≥1

|Fj |2 +
0∑

j=−r+1

|gj |2
)

.

Proof. For z = ∞, the resolvent equation (5) formally reduces to:{
wj = Fj , j ≥ 1 ,

wj −Bj,−1 w1 = gj , j = −r + 1, . . . , 0 .
(28)

We let R(F, g) denote the sequence (wj)j≥−r+1 solution to (28). It is clear that R is a continuous
linear operator on the Hilbert space `2×CN r with values in `2. For z ∈ U , the resolvent equation
(5) may be recast as:

w = R
(
F +

( s∑
σ=0

z−σ−1Qσwj

)
j≥1

, g +
( s∑

σ=0

z−σ−1Bj,σw1

)
j=−r+1,...,0

)
,

which is a fixed point problem. This problem may be solved, for large enough |z|, by applying
the Banach fixed point Theorem, which gives a unique solution w ∈ `2. We omit the details
that are almost straightforward. The estimate of the solution w ∈ `2 in terms of F and g is also
straightforward.

It remains to solve the resolvent equation when |z| ∈ ]1, R0] and to obtain the corresponding
estimate (6). We are first going to prove that for |z| ∈ ]1, R0], the resolvent equation satisfies
an a priori estimate. More precisely, let (wj) ∈ `2, and let F ∈ `2, g−r+1, . . . , g0 be defined such
that (5) holds. We rewrite (5) under the equivalent form (9), as detailed in the introduction.
Then we have:

Lemma 5. There exists a constant c0 > 0 and there exists a C∞ function S on the closed
annulus {1 ≤ |ζ| ≤ R0} with values in MN(p+r)(C) such that the following properties hold for
all z ∈ {1 ≤ |ζ| ≤ R0}:

• S(z) is hermitian,

• M(z)∗ S(z) M(z)− S(z) ≥ c0 (|z| − 1)/|z| I,

• for all W ∈ CN(p+r), W ∗ S(z) W ≥ c0 |W |2 − |B(z) W |2/c0.

The proof of Lemma 5 follows from the existence of a K-symmetrizer and from the uniform
Kreiss-Lopatinskii condition. We first construct the symmetrizer S in the neighborhood of any
point of the annulus {1 ≤ |ζ| ≤ R0} by choosing K sufficiently large. We refer to [15] for
a similar analysis. The construction of a global smooth symmetrizer on the annulus requires
a partition of unity as in the analysis of the continuous problem, see e.g. [2, 11]. Using the
symmetrizer S of Lemma 5, we can perform some similar calculations to what we have done at
the beginning of this section to obtain relations (24) and (25). Here the source term F̃j has to
be taken into account, while it did not appear in (23). We obtain:

W ∗
1 S(z) W1 +

+∞∑
j=1

W ∗
j

(
M(z)∗ S(z) M(z)−S(z)

)
Wj = −Re

+∞∑
j=1

(S(z) Wj+1 +S(z) M(z) Wj)∗ F̃j .
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Using some uniform bounds for S(z) and M(z) on the annulus as well as the properties of S
given in Lemma 5, we end up with:

|z| − 1
|z|

∑
j≥1

|Wj |2 + |W1|2 ≤ C1

 |z|
|z| − 1

∑
j≥1

|F̃j |2 + |g|2
 ,

for some appropriate numerical constant C1. This estimate immediately yields the a priori
estimate (6) for (5) when |z| ∈ ]1, R0] by using the definition of (Wj), (F̃j), g.

Up to now, we have only proved an a priori estimate for the resolvent equation (5) when
|z| ∈ ]1, R0]. It remains to show that (5) may be solved in a unique way for arbitrary source
terms. This step of the proof did not appear in [9]. We make use of the following general result:

Lemma 6. Let E be a Banach space, and let T denote a nonempty connected set. Let L be a
continuous function defined on T with values in the space L (E) of continuous linear maps on
E. Assume moreover that the two following conditions are satisfied:

• there exists a constant C0 > 0 such that for all t ∈ T and for all x ∈ E, we have
|x|E ≤ C0 |L(t) x|E,

• there exists some t0 ∈ T such that L(t0) is an isomorphism.

Then L(t) is an isomorphism for all t ∈ T .

The proof of Lemma 6 is given in appendix B. Lemma 6 shows that the resolvent equation
can be uniquely solved for all z ∈ U . Indeed, for all z ∈ U , we define the mapping:

L(z) : `2 −→ `2

w 7−→ L(z) w with (L(z) w)j :=

{
wj −

∑s
σ=0 z−σ−1 Qσ wj , j ≥ 1 ,

wj −
∑s

σ=−1 z−σ−1 Bj,σ w1 , j = −r + 1, . . . , 0 .

We can easily verify that L is a continuous map from U to the set L (`2) and for all |z| ≥ R0,
L(z) is an isomorphism thanks to Lemma 4. We can then apply Lemma 6 on every annulus
{1+ε ≤ |z| ≤ 1/ε}, ε > 0 small enough, and conclude that L(z) is an isomorphism for all z ∈ U .
This shows that the resolvent equation (5) can be uniquely solved for all z ∈ U and all source
terms F ∈ `2, g−r+1, . . . , g0 ∈ CN . The corresponding estimate of the unique solution w ∈ `2

follows from the analysis above and we have therefore proved that the scheme (2) is strongly
stable. The proof of Theorem 2 is complete.

5 Proof of Theorem 3

Using the result of Lemma 1, we know that the “stable” subspace Es(z) of M(z) has constant
dimension N r for all z ∈ U and varies holomorphically with respect to z ∈ U . Using Theorem
1 we also know that M satisfies the discrete block structure condition. We are now going to
build a K-symmetrizer in the neighborhood of any point z ∈ U .

We first consider a point z ∈ U . Using Theorem 1 we can reduce the matrix M(z) to a
block-diagonal form5:

T−1 M(z) T = diag (Ms, Mu) .

5Recall that for z ∈ U , blocks of the third and fourth type do not appear in the discrete block structure.
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The first block Ms satisfies (Ms)∗ Ms ≤ (1− δ) I and the second block Mu satisfies (Mu)∗ Mu ≥
(1+ δ) I for some appropriate constant δ > 0. It is then easy to construct a K-symmetrizer, the
spaces Es, Eu in the decomposition of CN (p+r) being nothing but the “stable” and “unstable”
subspace of M(z) associated with eigenvalues in D and U . We let πs, πu denote the corresponding
projectors. Then there exists a constant c0 > 0 such that for all W ∈ CN (p+r), the following
estimates hold:

c0 |πs W | ≤ |(T−1 W )1| ≤
1
c0
|πs W | , c0 |πu W | ≤ |(T−1 W )2| ≤

1
c0
|πu W | ,

where we use the notation U = (U1, U2) with U1 ∈ CN r, U2 ∈ CN p for any vector U ∈ CN (p+r).
The symmetrizer S can be chosen independent of z as follows:

S := (T−1)∗ diag
(
− c2

0

2
I,

K2 + 1/2
c2
0

I
)
T−1 .

Then M(z)∗ S M(z)− S is positive definite, and we have:

W ∗ S W ≥
(
K2 +

1
2

)
|πu W |2 − 1

2
|πs W |2 .

Choosing S independent of z, and z sufficiently close to z, we have constructed a K-symmetrizer
near z.

We turn to the case z ∈ S1. Using Theorem 1, we can first reduce M to a block-diagonal
form with a holomorphic change of basis on a neighborhood O of z:

T (z)−1 M(z) T (z) = diag
(Ms(z), Mu(z),ms

1(z), . . . ,ms
I(z),mu

1(z), . . . ,mu
J(z),H1(z), . . . ,HK(z), P1(z), . . . , PL(z)) ,

where in the terminology of definition 2 Ms is a block of the first type, Mu is a block of the
second type, the ms

i ’s (resp. mu
j ’s) are blocks of the third type with z (ms

i )
′(z) ms

i (z) < 0 (resp.
z (mu

j )′(z) mu
j (z) > 0). Eventually the blocks Hk’s and P`’s are of the fourth type, the size of

each block P` is 2, and we have:

det(Hk(z)− κ I) = ϑ(κ, z) (z − Λk(κ)) , Λk(κk) = z , Λ′k(κk) = 0 ,

det(P`(z)− κ I) = ϑ(κ, z) (z − λ`(κ)) , λ`(κ`) = z , λ′`(κ`) = 0 , Re (κ2
` z λ′′` (κ`)) > 0 .

In the relations above, the numbers κ1, . . . , κK ,κ1, . . . ,κL all belong to S1. Moreover, we have
Λk(κ) ∈ S1 for all κ ∈ S1 close enough to κk. The generic notation ϑ is again used to denote
a holomorphic function of its arguments that does not vanish. The blocks Hk’s will be referred
to as “hyperbolic blocks” while the blocks P`’s will be referred to as “parabolic blocks”. This
terminology will be clarified below.

To prove the existence of a K-symmetrizer for M in the neighborhood of z, we are first going
to construct a K-symmetrizer for the block-diagonal matrix M̃ := T−1 M T . The decomposition
of CN (p+r) is defined as follows. For each block Hk, we let µk denote the number of eigenvalues
of Hk(z) in D for z ∈ O ∩U . This number is independent of z thanks to Lemma 1. We also let
νk (resp. νs, νu) denote the size of the block Hk (resp. Ms, Mu). Then we define:

Ẽ
s

:= Cνs ⊕ {0} ⊕I
i=1 C1 ⊕J

j=1 {0} ⊕K
k=1 Cµk × {0} ⊕L

`=1 C1 × {0} ,

Ẽ
u

:= {0} ⊕ Cνu ⊕I
i=1 {0} ⊕J

j=1 C1 ⊕K
k=1 {0} × Cνk−µk ⊕L

`=1 {0} × C1 ,
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where the decomposition of Ẽ
s
, Ẽ

u
follows the block-diagonal form of M̃(z), and where the

notation Cµk × {0} (resp. {0} × Cνk−µk) denotes the subspace of Cνk spanned by the µk first
(resp. νk − µk last) vectors of the canonical basis. Observe that each block Pl(z) has exactly
one eigenvalue in D and one eigenvalue in U for z ∈ O ∩U , so the dimension of Ẽ

s
(resp. Ẽ

u
)

equals N r (resp. N p). We let π̃s, π̃u denote the projectors associated with the decomposition
CN (p+r) = Ẽ

s
⊕ Ẽ

u
.

We now fix a constant K ≥ 1. The symmetrizer S̃(z) for the matrix M̃(z) is chosen in
block-diagonal form:

S̃(z) := diag (Ss,Su, rs
1, . . . , r

s
I , r

u
1 , . . . , ru

J , R1(z), . . . , RK(z), S1(z), . . . , SL(z)) ,

and we detail now the construction of each block in the symmetrizer.
• Construction of the constant matrices Ss and Su. These matrices are defined as in the

case z ∈ U by Ss := −I/2 and Su := (K2 + 1/2) I. For z ∈ U sufficiently close to z, we have:

Ms(z)∗ Ss Ms(z)− Ss ≥ c
|z| − 1
|z|

I , Mu(z)∗ Su Mu(z)− Su ≥ c
|z| − 1
|z|

I ,

for some appropriate constant c > 0.
• Construction of the numbers rs

1, . . . , r
s
I , r

u
1 , . . . , ru

J . Let us begin with the following:

Lemma 7. We have ms
1(z), . . . ,ms

I(z) ∈ D and mu
1(z), . . . ,mu

J(z) ∈ U for all z ∈ O ∩ U .
Moreover up to shrinking the neighborhood O of z, there exists a constant c > 0 such that the
following inequalities hold for all z ∈ O ∩U :

∀ i = 1, . . . , I , |ms
i (z)|2 − 1 ≤ −c

|z| − 1
|z|

,

∀ j = 1, . . . , J , |mu
j (z)|2 − 1 ≥ c

|z| − 1
|z|

.

Proof. There is no loss of generality in assuming that O is connected. Then for z ∈ O ∩ U ,
ms

i (z) and mu
j (z) are eigenvalues of M(z) so they cannot belong to S1. Performing a Taylor

expansion of ms
i ((1 + ε)z) and mu

j ((1 + ε)z) for ε > 0 small, we see that ms
i ((1 + ε)z) ∈ D and

mu
j ((1 + ε)z) ∈ U for ε > 0 small enough. Since O ∩U is connected, we have ms

i (z) ∈ D and
mu

j (z) ∈ U for all z ∈ O ∩U .
For simplicity, let us now deal with ms

1. For τ in a small neighborhood of 0, we define:

h(τ) := ln
ms

1(z eτ )
ms

1(z)
,

where ln denotes the standard logarithm defined on C\R−. We have h′(0) = z (ms
1)
′(z) ms

i (z) <
0, and we also know that h(τ) has negative real part when τ has positive real part. In particular,
h(τ) has nonpositive real part when τ is purely imaginary. Then a direct Taylor expansion yields
the estimate6:

Re h(τ) ≤ h′(0)
4

Re τ ,

for Re τ ≥ 0 and τ close to 0. The estimate for |ms
1(z)|2 easily follows. The case of the mu

j ’s is
similar.

6Here we use the crucial fact that Re h(iy) ≤ 0 for all real y close to 0. The only inequality h′(0) < 0 is not
sufficient to yield the estimate. This part of the analysis was not so clear in [9, page 678].
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For all i = 1, . . . , I we define rs
i := −1/2 and for all j = 1, . . . , J we define rs

j := K2 + 1/2.
Using Lemma 7, we have:

rs
i (|ms

i (z)|2 − 1) ≥ c
|z| − 1
|z|

, ru
j (|mu

j (z)|2 − 1) ≥ c
|z| − 1
|z|

,

for some appropriate constant c > 0 and for all z ∈ O ∩U .
• Construction of the symmetrizers S1(z), . . . , SL(z). This is the main difficulty in the proof

of Theorem 3 where new arguments are needed. For simplicity, we are going to construct the
symmetrizer S1(z) associated with the block P1(z). Recall that we have:

det(P1(z)− κ I) = ϑ(κ, z) (z − λ1(κ)) , λ1(κ1) = z , λ′1(κ1) = 0 , Re (κ2
1 z λ′′1(κ1)) > 0 .

According to Theorem 1, we even know that the lower left coefficient ω1 of P ′
1(z) satisfies ω1 6= 0

and Re (κ1 ω1 z) ≥ 0. Indeed these two conditions can be seen to be equivalent to the property
stated in definition 2 for a 2× 2 block. We are first going to prove that the real part of κ1 ω1 z
is positive. To prove this property, let us write:

P1(z) = κ1

(
1 1
0 1

)
+
(

p1(z) p3(z)
p2(z) p4(z)

)
, p′2(z) = ω1 .

Using the fact that κ is an eigenvalue of P1(λ1(κ)) for all κ close to κ1, we obtain:

(κ− κ1)2 = (κ− κ1) (p1(z) + p4(z))− p1(z) p4(z) + p2(z) (κ1 + p3(z))|z=λ1(κ) .

Differentiating twice and evaluating at κ = κ1, we obtain ω1 = 2/(κ1 λ′′1(κ1)). The inequality
Re (κ1 ω1 z) > 0 immediately follows from the assumption on λ1.

To construct a symmetrizer for P1, it is easier to work in “flat” coordinates. In the original
coordinates, z belongs to the exterior of a disc so the curvature of the disc makes the calculations
heavier. We shall reduce below to coordinates in a half-space. Let us denote ξ1 the argument of
κ1, that is κ1 = exp(i ξ1). Then we can define a matrix that depends holomorphicallly on z in
a neighborhood of z by the following formula:

P1(z) := i ξ1 I +
+∞∑
n=1

(−1)n−1

n

(
κ1 P1(z)− I

)n
.

This matrix satisfies P1(z) = expP1(z) for all z close enough to z. We compute:

P1(z) =
(

i ξ1 1
0 i ξ1

)
= i ξ1 I + N . (29)

The first derivative P′
1(z) is related to P ′

1(z) through the differential of the exponential function
at P1(z). More precisely, we recall the following formula that is fully justified in [17, page 78]:

d exp|A B :=
d
dz

exp(A + z B)|z=0 = exp(A)
+∞∑
p=0

(−1)p

(p + 1)!
(adA)p B , (adA) B := A B −B A .

(30)
We differentiate the relation P1(z) = expP1(z), evaluate at z = z and use (29), (30) to obtain:

κ1 P ′
1(z) = P′

1(z) +
1
2

(N P′
1(z) + P′

1(z) N) +
1
6

N P′
1(z) N . (31)
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The nilpotent matrix N is defined in (29). The relation (31) shows that the lower left element
of P′

1(z) equals κ1 ω1. Eventually, we define the matrix:

P1(τ) := Q−1
0 P1(z eτ ) Q0 , Q0 := diag (−i, 1) . (32)

It depends holomorphically on τ in a neighborhood of 0 and satisfies P1(0) = i (ξ1 I + N).
Moreover, the lower left coefficient of P′1(0), that is from now on denoted α1, has negative
imaginary part.

If we want to see the analogy and the differences with the analysis of the continuous problem,
for which we refer to [11, 2], we need to introduce a final change of basis that is due to Ralston
(see [19] for the relevance of this change of basis):

Q(τ) :=
(
−i (P1(τ)− i ξ1 I) e2 e2

)
, e2 :=

(
0
1

)
.

The matrix Q(τ) depends holomorphically on τ , it attains the value I for τ = 0 and is therefore
invertible for τ close to 0. Moreover, the matrix Q−1 P1 Q reads:

P̌1(τ) := Q(τ)−1 P1(τ) Q(τ) = i (ξ1 I + N) +
(

b1(τ) 0
b2(τ) 0

)
, (33)

where the functions b1, b2 are holomorphic and vanish for τ = 0. Moreover, we compute b′2(0) =
α1. Let us recall that α1 denotes the lower left coefficient of P′1(0) and has negative imaginary
part.

After all these preliminary transformations, the construction of the symmetrizer S1 relies on
the following:

Lemma 8. There exist a neighborhood of 0, a C∞ mapping Š defined on this neighborhood with
values in M2(C), and there exists a constant c > 0 such that for all τ close to 0 the following
properties hold:

• Š(τ) is hermitian,

• Re (Š(τ) P̌1(τ)) ≥ c
(
Re τ + (Im τ)2

)
I if Re τ ≥ 0,

• for all W ∈ C2, W ∗ Š(0)W ≥ (K2 + 1/2) |W2|2 − |W1|2/2.

Proof. The proof follows the ideas in [11] but we can not adopt the same construction here.
Some new ingredients are needed7. The additional term (Im τ)2 in the estimate explains the
terminology “parabolic block” introduced above for P1. This new term appears because of the
“dissipation” assumption made on λ1.

In all the proof of Lemma 8, we use the notation τ = γ + i δ. The symmetrizer Š is sought,
as in [11], under the form:

Š(τ) = Š0(δ) + γ Š1 ,

where Š0 is a C∞ function of the real variable δ, and Š1 is a constant hermitian matrix8. The
matrix Š0(δ) is chosen under the form:

Š0(δ) :=
(

0 α1 + c0 δ
α1 + c0 δ a0

)
,

7The problem treated by Kreiss [11] in the continuous case corresponds to α1 ∈ R \ {0} while here, the
“dissipation” assumption on λ1 yields Im α1 < 0.

8In [11], Š0(δ) can be chosen with real coefficients and such that the real part of Š0(δ) P̌1(i δ) is identically zero.
In our case, it is not possible to choose a matrix Š0(δ) with real coefficients so that the real part of Š0(δ) P̌1(i δ)
is nonnegative.
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where a0, c0 are real constants. Decomposing b2(i δ) = i α1 δ+δ2 b3(δ) for some analytic function
b3, (33) and our choice of Š0 yield:

Re (Š0(δ) P̌1(i δ)) =
(

c0 δ2(−Im α1 + δ b3(δ)) + δ2 Re (α1 b3(δ)) ?(
(α1 + c0δ) b1(iδ) + a0 b2(iδ)

)
/2 −Im α1

)
=
(

δ2 (−c0 Im α1 + Re (α1b3(0))) ?
i α1 δ (a0 + b′1(0))/2 −Im α1

)
+
(

O(δ3) ?
O(δ2) 0

)
,

where the ? coefficients are such that the matrices above are hermitian. We first fix the constant
a0 large enough such that the following estimate holds:

∀W ∈ C2 , W ∗ Š0(0)W ≥ (K2 + 1/2) |W2|2 − |W1|2/2 .

Once a0 is fixed, we can choose c0 large enough such that for all δ sufficiently small, we have:

Re (Š0(δ) P̌1(i δ)) ≥ δ2 I .

Defining the matrix Š1 as in [11] by:

Š1 :=
(

0 i g
−i g 0

)
,

we compute:

Re (Š(τ) P̌1(τ)) = Re (Š0(δ) P̌1(i δ)) + γ Re (Š0(0) P̌′1(0) + Š1 P̌1(0)) + γ o(1) ,

Re (Š0(0) P̌′1(0) + Š1 P̌1(0)) =
(

|α1|2 ?
α1 (a0 + b′1(0))/2 g

)
.

Choosing g large enough, we obtain all the properties stated in Lemma 8 for the symmetrizer
Š(τ).

Using the symmetrizer Š of Lemma 8, we define S1(z) := (Q(τ)−1Q−1
0 )∗Š(τ)Q(τ)−1Q−1

0

where τ = ln(z/z). The matrix S1(z) is hermitian and S1 is a C∞ function of z. Using Q(0) = I
and the explicit expression of Q0, see (32), we also obtain:

∀W ∈ C2 , W ∗ S1(z) W ≥ (K2 + 1/2) |W2|2 − |W1|2/2 .

It remains to check that S1(z) symmetrizes P1(z). This is done by following the calculations of
[9, page 685] so we omit the details. With some appropriate constant c > 0, we obtain:

P1(z)∗ S1(z) P1(z)− S1(z) ≥ c
|z| − 1
|z|

I ,

for all z ∈ U close enough to z.
• Construction of R1(z), . . . , RK(z). Following the analysis of the preceeding case, we can

first write each hyperbolic block Hk(z) under the form Hk(z) = expHk(z). Then up to a
holomorphic change of basis Q, we can reduce Hk to the following form (see [19]):

Q(τ)−1 Hk(z eτ ) Q(τ) =


i ξ

k
i 0 0

0
. . . . . . 0

...
. . . i

0 · · · 0 i ξ
k

+


b1(τ) 0 · · · 0

...
...

...
...

...
...

bνk
(τ) 0 · · · 0

 .
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This relation holds for all τ in a sufficiently small neighborhood of 0. Moreover, following [13],
we can show that b′νk

(0) is a nonzero real number and that the bj ’s are purely imaginary valued
when τ is purely imaginary. The change of basis Q can be chosen such that Q(0) is upper
triangular. Then the analysis of [11], see also [2], shows that there exists a K-symmetrizer
Rk(z) for Hk(z). In particular, Rk satisfies:

W ∗ Rk(z) W ≥ (K2 + 1/2) |W2|2 − 1/2 |W1|2 ,

where W = (W1,W2), W1 ∈ Cµk ,W2 ∈ Cνk−µk . The calculations of [9, page 685] show that Rk

is also a K-symmetrizer for the hyperbolic block Hk = expHk.
• End of the analysis. The definition of our symmetrizer S̃(z) shows that S̃ is a C∞ function

of z and it symmetrizes M̃ = T−1 M T in the following sense:

M̃(z)∗ S̃(z) M̃(z)− S̃(z) ≥ c
|z| − 1
|z|

I ,

for z ∈ U sufficiently close to z. Moreover, the matrix S̃(z) satisfies:

W ∗ S̃(z) W ≥ (K2 + 1/2) |π̃u W |2 − 1/2 |π̃s W |2 .

We now obtain the existence of a K-symmetrizer for M by setting Es,u := T (z) Ẽ
s,u

, S(z) :=
(T (z)−1)∗ S̃(z) T (z)−1 and so on. The proof of Theorem 3 is complete.

In appendix C we extend our analysis of parabolic blocks to the case of an eigenvalue λj

that satisfies a dissipation estimate9 of order 4, namely:

|λj(κ eiξ)| ≤ 1− c ξ4 , c > 0 , (34)

for ξ ∈ R close to 0. Such an estimate may occur in various cases. For instance, one can have
λ′j(κ) 6= 0. The symmetrizer construction in this case is treated in Theorem 3. One can also
have the estimate (34) with λ′j(κ) = 0, λ′′j (κ) 6= 0 and Re (κ2 λj(κ) λ′′j (κ)) = 0. This case
is not covered by Theorem 3. As a matter of fact, this case corresponds to the limit where
the strict inequality of condition iii) of Theorem 3 becomes an equality. We show in appendix
C how to modify the symmetrizer construction in order to take this weaker assumption into
account. Another possible case where (34) is valid occurs when λ′j(κ) = λ′′j (κ) = λ′′′j (κ) = 0 and

λ
(4)
j (κ) 6= 0. This situation is not covered by Theorem 3 and leads to a block of size 4. We shall

give an example of numerical scheme where this highly degenerate situation occurs and detail
the symmetrizer construction. The last possibility for (34) to occur is λ′j(κ) = λ′′j (κ) = 0 and
λ′′′j (κ) 6= 0, which leads to a block of size 3.

We believe that the construction of a K-symmetrizer can be performed as long as the eigen-
values λj satisfy a dissipation estimate. This generalization is postponed to a future work.

6 Some old and new examples

In this section, we give some examples of numerical schemes for which our analysis applies. We
do not focus on the numerical treatment of the boundary conditions but rather on the possible
discretizations of the hyperbolic operator. For all the schemes below, the matrices Al,σ in (3)

9The condition iii) in Theorem 3 corresponds to a dissipation estimate of order 2, which is the simplest
dissipation estimate one can get when λ′

j(κ) = 0.
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are polynomials of the matrix λ A. All these matrices are therefore diagonalizable in a fixed
basis where A is diagonal. Without loss of generality, we thus restrict in this section to the case
of a scalar equation:

∂tu + a ∂xu = f .

For simplicity, we assume a > 0 but the case a < 0 produces similar results. We recall that
A (κ) denotes the symbol defined by (4). For scalar equations and one-step schemes (s = 0),
this symbol is a complex number so the uniform power-boundedness and geometric regularity
of eigenvalues reduce to the inequality |A (κ)| ≤ 1 for all κ ∈ S1.

Let us begin with some classical first and second order schemes:

The upwind scheme The scheme reads:

un+1
j = λ aun

j−1 + (1− λ a) un
j ,

and we compute:
A (κ) = λ aκ−1 + (1− λ a) .

The scheme is `2-stable (and geometrically regular) if and only if λ a ≤ 1. Assumption 1 is also
satisfied if λ a ≤ 1. If λ a = 1 we have |A (κ)| = 1 for all κ ∈ S1 and A ′(κ) = −κ−2 6= 0. If
λ a < 1 we have |A (κ)| = 1 if and only if κ = 1, and A ′(1) = −λ a 6= 0. The upwind scheme
enters the framework of Theorem 3 if λ a ≤ 1.

The Lax-Friedrichs scheme The scheme reads:

un+1
j =

un
j−1 + un

j+1

2
− λ a

2
(un

j+1 − un
j−1) ,

and we compute:

A (κ) =
κ−1 + κ

2
− λ a

2
(κ− κ−1) .

The scheme is `2-stable (and geometrically regular) if and only if λ a ≤ 1. When λ a = 1
the scheme reduces to the upwind scheme analyzed above so we further assume λ a < 1. In
that case, assumption 1 is satisfied and we have A (κ) ∈ S1 if and only if κ = ±1. Moreover
A ′(±1) = −λ a 6= 0. If λ a ≤ 1, the Lax-Friedrichs scheme enters the framework of Theorem 3.

The Lax-Wendroff scheme The scheme reads:

un+1
j = un

j −
λ a

2
(un

j+1 − un
j−1) +

λ2 a2

2
(un

j+1 + un
j−1 − 2 un

j ) ,

and we compute:

A (κ) = 1− λ a

2
(κ− κ−1) +

λ2 a2

2
(κ + κ−1 − 2) .

The scheme is `2-stable (and geometrically regular) if and only if λ a ≤ 1. When λ a = 1 the
scheme reduces to the upwind scheme so we further assume λ a < 1. Assumption 1 is satisfied
if λ a < 1. In that case, we have A (κ) ∈ S1 if and only if κ = 1, and A ′(1) = −λ a 6= 0. If
λ a ≤ 1, the Lax-Wendroff scheme enters the framework of Theorem 3.
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The leap-frog scheme The scheme reads:

un+1
j = un−1

j − λ a (un
j+1 − un

j−1) ,

and we compute:

A (κ) =
(
−λ a (κ− κ−1) 1

1 0

)
.

The scheme is `2-stable and the eigenvalues of A (κ) are geometrically regular if and only if
λ a < 1. In that case, assumption 1 is satisfied. The eigenvalues of A (eiξ) are:

z1(ξ) = −i λ a sin ξ +
√

1− λ2 a2 sin2 ξ , z2(ξ) = −i λ a sin ξ −
√

1− λ2 a2 sin2 ξ .

We have z1(ξ), z2(ξ) ∈ S1 for all ξ ∈ R. Since λ a < 1, we can also construct eigenvectors E1(ξ)
and E2(ξ) associated with the eigenvalues z1(ξ), z2(ξ). These eigenvalues and eigenvectors extend
to a complex neighborhood of any point eiξ of S1 so the eigenvalues of A (κ) are geometrically
regular. If λ a < 1, the leap-frog scheme enters the framework of Theorem 3.

We now turn to a more involved class of schemes:

The Runge-Kutta schemes We follow the description of Runge-Kutta schemes in [8, chapter
6]. Introducing the notation:

QUj :=
2
3

(Uj+1 − Uj−1)−
1
12

(Uj+2 − Uj−2) ,

which is a fourth-order approximation of the space derivative ∂xU , the Runge-Kutta scheme of
order 3 reads:

un+1
j =

3∑
`=0

(−λ aQ)`

`!
un

j . (35)

We compute:

A (κ) =
3∑

`=0

(
− λ a Q̂(κ)

)`
`!

, Q̂(κ) =
2
3

(κ− κ−1)− 1
12

(κ2 − κ−2) .

Assumption 1 is satisfied as long as a 6= 0. We thus check the `2-stability of the scheme and
compute:

|A (eiξ)|2 = 1− λ4 a4

972
h(ξ)4

(
1− λ2 a2

27
h(ξ)2

)
, h(ξ) := (4− cos ξ) sin ξ .

The maximum of |h| on R can be explicitely computed and equals |h(ξ0)| where ξ0 satisfies
cos ξ0 = 1−

√
6/2. For later use, we let β denote the maximum10 of |h| on R. Then the scheme

(35) is `2-stable (and geometrically regular) if and only if λ a ≤ 3
√

3/β. We now analyze the
behavior of A (κ) when it touches the unit circle S1.

If λ a < 3
√

3/β, we have A (κ) ∈ S1 if and only if κ = ±1. In that case, we have A ′(1) =
−λ a 6= 0 and A ′(−1) = −(5/3) λ a 6= 0. If λ a = 3

√
3/β, we have A (κ) ∈ S1 if and only if

10The exact value of β is (3 +
√

6/2)
√√

6− 3/2.
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κ = ±1 or κ = e±iξ0 with ξ0 defined above. We still have A ′(1) = −λ a 6= 0 and A ′(−1) =
−(5/3) λ a 6= 0 but now we also have A ′(e±iξ0) = 0. However, we can also compute:

Re
(
e±2iξ0 A (e±iξ0) A ′′(e±iξ0)

)
=

27
4 β2

(
3−

√
6

3

)
> 0 .

If λ a ≤ 3
√

3/β, the Runge-Kutta scheme (35) enters the framework of Theorem 3.
The Runge-Kutta scheme of order 4 reads:

un+1
j =

4∑
`=0

(−λ aQ)`

`!
un

j , (36)

and we compute:

A (κ) =
4∑

`=0

(
− λ a Q̂(κ)

)`
`!

.

Assumption 1 is again satisfied as long as a 6= 0. We thus check the `2-stability of the scheme
and compute:

|A (eiξ)|2 = 1− λ6 a6

52488
h(ξ)6

(
1− λ2 a2

72
h(ξ)2

)
,

where the function h is defined as above. Then the scheme (36) is `2-stable (and geometrically
regular) if and only if λ a ≤ 6

√
2/β. We now analyze the behavior of A (κ) when it touches the

unit circle.
If λ a < 6

√
2/β, we have A (κ) ∈ S1 if and only if κ = ±1. In that case, we have A ′(1) =

−λ a 6= 0 and A ′(−1) = −(5/3) λ a 6= 0. If λ a = 6
√

2/β, we have A (κ) ∈ S1 if and only if
κ = ±1 or κ = e±iξ0 with ξ0 defined above. We still have A ′(1) = −λ a 6= 0 and A ′(−1) =
−(5/3) λ a 6= 0 but now we also have A ′(e±iξ0) = 0. However, we can also compute:

Re
(
e±2iξ0 A (e±iξ0) A ′′(e±iξ0)

)
=

64
β2

(
3−

√
6

3

)
> 0 .

If λ a ≤ 6
√

2/β, the Runge-Kutta scheme (36) enters the framework of Theorem 3. We have
thus obtained two new situations where our analysis applies and that could not be analyzed
with the theory in [9]. To illustrate the computations above, we show in figure 1 the curve
{A (κ), κ ∈ S1}. It touches the unit circle at a regular point and at two cusps that correspond
to κ = e±2iξ0 . For ξ close to ξ0, we have an estimate of the form:

|A (eiξ)| ≤ 1− c (ξ − ξ0)2 .

A An elementary proof of Lemma 2

We assume that the matrix A (κ) defined by (4) is uniformly power bounded for κ ∈ S1, and
that assumption 1 is satisfied. Applying the Kreiss matrix Theorem11, there exists a constant
C > 0 such that:

∀κ ∈ S1 , ∀ z ∈ U , ‖(A (κ)− z I)−1‖ ≤ C

|z| − 1
.

11Here we only use the easy part of the Kreiss matrix Theorem so our proof is really elementary !
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Figure 1: The curve {A (κ), κ ∈ S1} (black dots), and the unit circle (red).

Using the expression (4) of A (κ), we can compute the vector (A (κ) − z I)−1 Y , with Y =
(y, 0, . . . , 0) ∈ CN(s+1) and y ∈ CN . Indeed, let X = (x0, . . . , xs) ∈ CN(s+1) be the unique
solution to (A (κ)− z I) X = Y . We have:

∀σ = 0, . . . , s, xσ = zs−σ xs ,(
I −

s∑
σ=0

z−σ−1 Q̂σ(κ)

)
xs = −z−s−1 y .

We have the estimate (|z| − 1) |X| ≤ C |y| so in particular, we have (|z| − 1) |x0| ≤ C |y|. Using
the relation x0 = zs xs, we get an estimate:

|xs| ≤
C |z|−s

|z| − 1
|y| , where xs = −z−s−1

(
I −

s∑
σ=0

z−σ−1 Q̂σ(κ)

)−1

y .

Taking the supremum over y ∈ CN , we obtain that there exists a constant C > 0 such that:

∀κ ∈ S1 , ∀ z ∈ U ,

∥∥∥∥∥∥
(

I −
s∑

σ=0

z−σ−1 Q̂σ(κ)

)−1
∥∥∥∥∥∥ ≤ C

|z|
|z| − 1

. (37)

We also easily compute the relation:

I −
s∑

σ=0

z−σ−1 Q̂σ(κ) =
p∑

`=−r

κ` A`(z) , (38)

where the matrices A`(z) are defined by (7).
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Let κ ∈ S1 and let z ∈ U . We now consider a vector b = (bp, . . . , b−r+1) ∈ CN(p+r) and we
let x = (xp−1, . . . , x−r) be the unique solution to (M(z) − κ I) x = b. From the definition (8),
we obtain the relations:

∀ ` = −r + 1, . . . , p− 1, x` = κr+` x−r +
`+r−1∑
j=0

κj b`−j ,

κr

(
p∑

`=−r

κ` A`(z)

)
x−r = −b̃(κ, z) ,

with a vector b̃(κ, z) defined by:

b̃(κ, z) := Ap(z) bp +
p−1∑

`=−r+1

A`(z)
`+r−1∑
j=0

κj b`−j + κ Ap(z)
p+r−2∑

j=0

κj bp−1−j .

For z ∈ U and κ ∈ S1, we have a uniform bound:

|̃b(κ, z)| ≤ C |b| ,

because the matrices A`(z) are uniformly bounded for z ∈ U , see (7). We then use the relation
(38) and the estimate (37) to obtain an upper bound for |x−r|:

|x−r| ≤ C
|z|

|z| − 1
|b| ,

with a constant C that is uniform with respect to κ ∈ S1 and z ∈ U . The other components
x−r+1, . . . , xp−1 of x are easily estimated in terms of x−r and b. We have thus proved that there
exists a constant C > 0 such that for all z ∈ U and for all κ ∈ S1, we have:

|(M(z)− κ I)−1 b| ≤ C
|z|

|z| − 1
|b| .

The proof of Lemma 2 is complete.

B Proof of Lemma 6

We already know that L (E) is a Banach space and that the set of isomorphisms Gl(E) is an
open subset of L (E). This first property shows that the set {t ∈ T /L(t) ∈ Gl(E)} is open
because L is continuous. It only remains to show that this set is closed and the claim will follow
(this set is nonempty thanks to the assumption of Lemma 6). We thus consider a sequence (tn)
in T that converges to some t ∈ T and such that for all n, L(tn) belongs to Gl(E). We are
going to show that L(t) also belongs to Gl(E). Using the Banach isomorphism Theorem, it is
enough to prove that L(t) is a bijection.

Due to the uniform bound |x|E ≤ C0 |L(t) x|E , it is clear that L(t) is injective and that for
all n we have ‖L(tn)−1‖L (E) ≤ C0. It remains to show that L(t) is surjective. Let y ∈ E. For
all integers n and p, we have:

|L(tn+p)−1 y − L(tn)−1 y|E ≤ ‖L(tn+p)−1 − L(tn)−1‖L (E) |y|E
≤ ‖L(tn+p)−1 (L(tn)− L(tn+p))L(tn)−1‖L (E) |y|E ≤ C2

0 ‖L(tn+p)− L(tn)‖L (E) |y|E .

These inequalities show that (L(tn)−1 y) is a Cauchy sequence in E and therefore converges to
some x ∈ E. Moreover we have L(tn) L(tn)−1 y = y for all n and passing to the limit we get
L(t) x = y. Here we use again the continuity of L. This shows that L(t) is surjective, which
completes the proof.
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C An extension of Theorem 3

The aim of this appendix is to prove an extended version of Theorem 3 that allows higher
dissipation estimates than the second order dissipation that corresponds to case iii) in Theorem
3.

C.1 A preliminary fact on parametrized curves

We first need to establish the following:

Lemma 9. Let κ ∈ S1, let W be an open neighborhood of κ, and let λ be a holomorphic function
defined on W with λ(κ) ∈ S1. Assume moreover that for all ξ ∈ R sufficiently close to 0, we
have |λ(κ ei ξ)| ≤ 1. Then one of the two following properties holds true:

• for all ξ ∈ R sufficiently close to 0, we have |λ(κ ei ξ)| = 1,

• there exists a positive integer k and a constant c > 0 such that for all ξ ∈ R sufficiently close
to 0, we have:

|λ(κ ei ξ)| ≤ 1− c ξ2 k . (39)

Lemma 9 shows that the parametrized curve {λ(κ ei ξ), ξ ∈ R} can be tangent to infinite
order to the unit circle if and only if it is included in the unit circle. In all other cases, the
tangency point corresponds to a regular point (λ′(κ) 6= 0) or to a cusp (λ′(κ) = 0). We refer to
figure 1 for an example.

Proof of Lemma 9. The function:
f : ζ 7−→ λ(κ ei ζ) ,

is holomorphic on some neighborhood of 0, and f(0) ∈ S1. We can therefore define a holomorphic
function g on some neighborhood of 0 such that f = eg. We then have Re g = ln |f |. Eventually,
let us define the real valued C∞ function h(ξ) = |f(ξ)| for ξ ∈ R sufficiently close to 0.

Let us assume that all derivatives of h at 0 vanish (here the derivatives are taken with respect
to the real variable ξ). Then all derivatives of ln h with respect to ξ at 0 vanish:

∀ k ∈ N ,
dk lnh

dξk
(0) =

∂k Re g

∂ξk
(0) = Re

∂kg

∂ξk
(0) = 0 .

The Cauchy-Riemann relations imply that all derivatives of g with respect to the complex
variable ζ at 0 are purely imaginary, so g(ξ) ∈ i R for all ξ ∈ R close to 0 (use an expansion of
g in power series). We have therefore obtained f(ξ) ∈ S1 for all ξ ∈ R close to 0.

The only other possibility for h is that there exists a smallest positive integer k0 such that
h(k0)(0) 6= 0. Thanks to the assumption on λ, we have h(ξ) ≤ 1 for all ξ close to 0. This property
implies that k0 is even and h(k0)(0) < 0. The claim follows from Taylor’s formula.

Using Taylor’s formula, we see that the case k = 1 in (39) corresponds either to condition
i) or to condition iii) in Theorem 3. In the following paragraph, we show how to take the case
k = 2 into account in the symmetrizers construction.
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C.2 A generalization of Theorem 3

We now prove the following:

Theorem 4. Let assumption 1 be satisfied, and assume that the symbol A (κ) is uniformly power
bounded for κ ∈ S1. Assume moreover that all the eigenvalues of A (κ), κ ∈ S1, that belong to
S1 are geometrically regular and that at least one of the five following properties is satisfied by
each eigenvalue λj(κ) in the decomposition (10):

i) λ′j(κ) 6= 0,

ii) λj(κ) ∈ S1 for all κ ∈ S1 sufficiently close to κ,

iii) Re
(
κ2 λj(κ) λ′′j (κ)

)
> 0.

iv) κ2 λj(κ) λ′′j (κ)) ∈ i R \ {0} and Re
[
λj(κ)

(
κ4 λ

(4)
j (κ) + 6 κ3 λ′′′j (κ)

)]
+ 3 |λ′′j (κ)|2 < 0.

v) λ′j(κ) = λ′′j (κ)) = λ′′′j (κ) = 0 and Re
(
κ4 λj(κ) λ

(4)
j (κ)

)
< 0.

Then M defined by (8) admits a K-symmetrizer. In particular, if the uniform Kreiss-Lopatinskii
condition is satisfied, the scheme (2) is strongly stable.

Proof. We follow the proof of Theorem 3. In the block decomposition of M(z), we can have
some new 2× 2 blocks that are associated with an eigenvalue λj of A satisfying condition iv) in
Theorem 4 or some 4 × 4 blocks that are associated with an eigenvalue λj satisfying condition
v). We thus only need to show that we can construct a K-symmetrizer for such blocks.

Let us first deal with a 2× 2 matrix P (z) that satisfies:

det(P (z)− κ I) = ϑ(κ, z) (z − λ(κ)) , P (z) = κ

(
1 1
0 1

)
,

where λ is holomorphic in a neighborhood of κ and satisfies condition iv) in Theorem 4 (we drop
the index j for simplicity). Let us begin with the following:

Lemma 10. Let κ = ei ξ and let us define the holomorphic function `(ζ) := ln
[
λ(eζ)/z

]
for ζ

close to i ξ. Then we have:

`′(i ξ) = 0 , `′′(i ξ) ∈ i R \ {0} , `′′′(i ξ) ∈ R , Re `(4)(i ξ) < 0 .

The proof of Lemma 10 follows from the assumptions on λ and from straightforward com-
putations so we omit it. As in the proof of Theorem 3, we can then define a matrix P(τ) that
depends holomorphically on τ in a neighborhood of 0 and such that P (z) = exp P(ln(z/z)). The
lower left coefficient of P′(0) is nonzero thanks to (30) so we have:

det(P(τ)− ζ I) = ϑ(ζ, τ) (τ − `(ζ)) ,

where ` is defined in Lemma 10. Moreover, there exists a holomorphic change of basis Q(τ) such
that:

P̌(τ) := Q(τ)−1 P(τ) Q(τ) =
(

i ξ i

0 i ξ

)
+
(

b1(τ) 0
b2(τ) 0

)
, (40)

where both functions b1, b2 vanish for τ = 0. Using Lemma 10 and differentiating four times the
relation:

(ζ − i ξ)2 = (ζ − i ξ) b1(`(ζ)) + i b2(`(ζ)) ,
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we obtain the following result:

b′2(0) ∈ R \ {0} , b′1(0) ∈ R , b′2(0)Re b′′2(0) < 0 . (41)

Then the proof of Theorem 4 follows from:

Lemma 11. Let P̌ denote the matrix in (40) and let the functions b1, b2 satisfy (41). Let K ≥ 1.
Then there exist a neighborhood of 0, a C∞ mapping Š defined on this neighborhood with values
in M2(C), and there exists a constant c > 0 such that for all τ close to 0 the following properties
hold:

• Š(τ) is hermitian,

• Re (Š(τ) P̌(τ)) ≥ c
(
Re τ + (Im τ)2

)
I if Re τ ≥ 0,

• for all W ∈ C2, W ∗ Š(0)W ≥ (K2 + 1/2) |W2|2 − |W1|2/2.

Using Lemma 11, the proof of Theorem 4 follows with the same arguments as used in the
proof of Theorem 3. We thus focus on the proof of Lemma 11.

Proof of Lemma 11. We introduce the notations:

α1 := b′1(0) , α2 := b′2(0) , β := −b′′2(0)
α2

.

From (41) the number β has positive real part. As in the proof of Lemma 8, we use the notation
τ = γ + i δ. We can write:

b1(i δ) = i α1 δ + δ2 g1(δ) , b2(i δ) = i α2 δ + α2 β δ2 + δ3 g2(δ) ,

for some appropriate analytic functions g1, g2. The symmetrizer Š is chosen under the form:

Š(τ) = Š0(δ) + γ Š1 ,

where Š0 is a C∞ function of the real variable δ, and Š1 is a constant hermitian matrix. The
matrix Š0(δ) is chosen under the form12:

Š0(δ) :=
(

α2 (α1 + b) δ α2 + i e δ2

α2 − i e δ2 b

)
,

where b, e are real constants. We first fix b > 0 sufficiently large so that the following estimate
holds:

W ∗ Š0(0)W ≥ (K2 +
1
2
) |W2|2 −

1
2
|W1|2 .

With our choice for Š0, we compute:

Re (Š0(δ) P̌(i δ)) = δ2

(
α2

2 Re β ?
α2

2
(b β + g1(0)) e

)
+ O(δ3) ,

12The expression for Š0 differs from the one used in the proof of Lemma 8, and it also differs from the construction
used by Kreiss in the continuous case. For each dissipative behavior of the eigenvalue λj there corresponds a
specific form of the symmetrizer.
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where the ? coefficient is such that the matrix above is hermitian. We can then choose e large
enough such that for all δ sufficiently small, we have:

Re (Š0(δ) P̌(i δ)) ≥ c δ2 I ,

for some appropriate constant c > 0. The construction of Š is then achieved, as in Lemma 8,
by taking:

Š1 :=
(

0 i g
−i g 0

)
,

with g > 0 sufficiently large. The proof of Lemma 11 is complete.

Up to now, we have proved the existence of a K-symmetrizer for blocks associated with
eigenvalues λj that satisfy condition iv) in Theorem 4. To complete the proof of Theorem 4, we
turn to the case of eigenvalues λj that satisfy condition v). More precisely, we consider a 4× 4
matrix P (z) that satisfies:

det(P (z)− κ I) = ϑ(κ, z) (z − λ(κ)) , P (z) = κ


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,

where λ is holomorphic in a neighborhood of κ and satisfies condition v) in Theorem 4 (we
drop again the index j for simplicity). As in Lemma 10, we introduce the holomorphic function
`(ζ) := ln

[
λ(eζ)/z

]
for ζ close to i ξ (ξ denotes the argument of κ as in Lemma 10). Then we

have:
`′(i ξ) = `′′(i ξ) = `′′′(i ξ) = 0 , Re `(4)(i ξ) < 0 . (42)

As in the proof of Theorem 3, we can define a matrix P(τ) that depends holomorphically on τ
in a neighborhood of 0 and such that P (z) = exp P(ln(z/z)). The lower left coefficient of P′(0)
is nonzero (use again (30)) and we have:

det(P(τ)− ζ I) = ϑ(ζ, τ) (τ − `(ζ)) , (43)

where ` is defined above and satisfies (42). Moreover, Ralston’s Lemma [19] shows that there
exists a holomorphic change of basis Q(τ) such that:

P̌(τ) := Q(τ)−1 P(τ) Q(τ) =


i ξ i 0 0
0 i ξ i 0
0 0 i ξ i

0 0 0 i ξ

+


b1(τ) 0 0 0
b2(τ) 0 0 0
b3(τ) 0 0 0
b4(τ) 0 0 0

 , (44)

where all functions b1, b2, b3, b4 vanish for τ = 0. Using (43), we have det(P(`(ζ))− ζ I) = 0 for
all ζ. Expanding this 4× 4 determinant and using the property (42) for `, we find:

Im b′4(0) < 0 . (45)

The existence of a K-symmetrizer is summarized in the following:

Lemma 12. Let P̌ denote the matrix in (44) and let the functions b1, b2, b3, b4 satisfy (45). Let
K ≥ 1. Then there exist a neighborhood of 0, a C∞ mapping Š defined on this neighborhood with
values in M4(C), and there exists a constant c > 0 such that for all τ close to 0 the following
properties hold:
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• Š(τ) is hermitian,

• Re (Š(τ) P̌(τ)) ≥ c
(
Re τ + (Im τ)2

)
I if Re τ ≥ 0,

• for all W ∈ C4, W ∗ Š(0)W ≥ (K2 + 1/2) |W2|2− |W1|2/2 where we use the decomposition
W = (W1,W2), W1,W2 ∈ C2.

Proof of Lemma 12. We keep the notation τ = γ + i δ. In the proof of Lemma 12, we shall
frequently decompose 4× 4 matrices into four subblocks of size 2× 2. For instance, the matrix
P̌(i δ) is decomposed as follows:

P̌(i δ) = i ξ I +
(

P1 −P∗1
0 P1

)
+
(

δ B1(δ) 0
i δ B2 + δ2 B3(δ) 0

)
, P1 :=

(
0 i
0 0

)
, (46)

where B1, B3 are analytic functions with values in M2(C), and B2 is the constant matrix defined
by:

B2 :=
(

b′3(0) 0
b′4(0) 0

)
. (47)

We seek the symmetrizer Š under the form:

Š(τ) = Š0(δ) + γ Š1 ,

where Š0 is a C∞ function of the real variable δ, and Š1 is a constant hermitian matrix. Let us
first focus on the construction of Š0. We choose Š0 of the following form:

Š0(δ) :=
(

δ2 A0 B0 + δ C0

B∗
0 + δ C∗

0 D0

)
, (48)

where A0, D0 are constant hermitian 2×2 matrices, and where B0, C0 are constant 2×2 matrices
to be chosen later on. Using (46) and (48), we obtain:

Š0(δ) P̌(i δ) =
(

i δ B0 B2 + δ2 (A0 P1 + i C0 B2 + B0 B3(0)) B0 P1 + δ C0 P1

B∗
0 P1 + δ (C∗

0 P1 + B∗
0 B1(0) + iD0 B2) D0 P1 −B∗

0 P∗1

)
+
(

O(δ3) O(δ2)
O(δ2) O(δ)

)
, (49)

and then we take the real part of this equality. First of all, we choose the matrix B0 such that
when we compute the real part, the extra-diagonal term vanishes when δ = 0. This is equivalent
to requiring B∗

0 P1 + (B0 P1)∗ = 0, so we choose B0 of the form:

B0 :=
(

0 e1

e1 e2

)
, e1, e2 ∈ C . (50)

Next, we want to make the linear term in δ in the upper left subblock of (49) vanish. In other
words, we want B0 B2 to be hermitian. Recalling that B2 is given by (47), and B0 is given by
(50), we choose:

e1 := α b′4(0) , α ∈ R , e2 := −e1 b′3(0)
b′4(0)

. (51)

Our next requirement is that the lower right subblock in the real part of (49) should be definite
positive, uniformly with respect to δ. This amounts to choosing B0 and D0 such that the real
part of D0 P1 −B∗

0 P∗1 is definite positive. We compute:

Re (D0 P1 −B∗
0 P∗1) =

(
Im e1 i (a− e2)/2

i (e2 − a)/2 Im e3

)
, with D0 :=

(
a e3

e3 b

)
. (52)
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We recall that the coefficient b′4(0) satisfies (45), so we choose α = 1 in (51). The matrix B0 is
then completely determined by (50) and (51). Part of the matrix D0 will be determined by the
“boundary conditions” and part of it will be determined by (52). More precisely, let us first fix
the coefficient a = K2 +1+‖B0‖2 in the definition (52) of D0. Then we can choose e3 ∈ i R such
that the matrix Re (D0 P1 − B∗

0 P∗1) in (52) is positive definite. Eventually, we can choose the
lower right coefficient b of D0 such that the matrix Š(0) satisfies the last condition of Lemma
12, see (48). (Recall that our definition of Š gives Š(0) = Š0(0) and Š0(0) is given in (48), with
B0 given by (50), (51).)

Let us summarize what we have done above. We have determined the matrices B0 and D0

such that the last condition in Lemma 12 is satisfied, and such that taking the real part of (49),
we obtain:

Re (Š0(δ) P̌(i δ)) =
(

δ2 Re (A0 P1 + i C0 B2 + B0 B3(0)) ?
δ (C∗

0 P1 + (C0 P1)∗ + B∗
0 B1(0) + iD0 B2)/2 Re (D0 P1 −B∗

0 P∗1)

)
+
(

O(δ3) ?
O(δ2) O(δ)

)
. (53)

The lower right 2 × 2 matrix in (53) is positive definite, uniformly with respect to δ provided
that δ is sufficiently small. We now choose C0 such that C∗

0 P1 + (C0 P1)∗ vanishes, so the lower
left 2× 2 matrix will be completely determined by B0 and D0 that have been fixed above. It is
sufficient to choose C0 of the form:

C0 :=
(

0 e4

e4 e5

)
, e4, e5 ∈ C , (54)

so (53) reduces to:

Re (Š0(δ) P̌(i δ)) =
(

δ2 Re (A0 P1 + i C0 B2 + B0 B3(0)) ?
δ (B∗

0 B1(0) + iD0 B2)/2 Re (D0 P1 −B∗
0 P∗1)

)
+
(

O(δ3) ?
O(δ2) O(δ)

)
. (55)

Choosing C0 as in (54), and A0 of the form13:

A0 :=
(

0 e6

e6 0

)
,

we compute:

Re (A0 P1 + i C0 B2 + B0 B3(0)) =
(

− Im (e4 b′4(0)) ?
i(e4 b′3(0) + e5 b′4(0))/2 − Im e6

)
︸ ︷︷ ︸

H

+ Re (B0 B3(0)) .

At this stage, we can choose e5 such that the extra-diagonal term in H vanishes, and we choose
e4 = µ ∈ R, e6 = −i µ with µ > 0 so large that the diagonal blocks in (55) dominate the
extra-diagonal blocks (recall that the extra-diagonal terms do not depend on µ). More precisely,
we can achieve the estimate:

Re (Š0(δ) P̌(i δ)) ≥
(

c δ2 I 0
0 c I

)
+
(

O(δ3) ?
O(δ2) O(δ)

)
, (56)

13Recall that A0 should be hermitian because Š0(δ) should be hermitian for all δ.
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where c is a positive constant, and the “remainder terms” in the right-hand side of (56) can be
absorbed by choosing δ sufficiently small. The matrix Š0(δ) is now completely determined, and
it satisfies:

Re (Š0(δ) P̌(i δ)) ≥ c δ2 I .

The last task is to choose Š1. We start from the relation:

Re (Š(τ) P̌(τ)) = Re (Š0(δ) P̌(i δ)) + γ Re (Š0(0) P̌′(0) + Š1 P̌(0)) + γ o(1) . (57)

Then we choose a hermitian matrix Š1 of the form:

Š1 = i


0 g1 0 g2

−g1 0 g2 0
0 −g2 0 g2

−g2 0 −g2 0

 , g1, g2 ∈ R .

We compute:

Re (Š0(0) P̌′(0) + Š1 P̌(0)) =
(

H1 ?
H2 g2 I

)
, (58)

where the matrix H1 is hermitian, and H1,H2 are given by:

H1 =
(
|b′4(0)|2 0

0 g1

)
, H2 =

1
2
(
B∗

0 B1(0) + D0 B2

)
+
(
−g1/2 0

0 0

)
.

We first choose g1 = 1, then we choose g2 > 0 sufficiently large in order to “absorb” the extra-
diagonal block H2 in (58). The decomposition (57) shows that the second property of Lemma
12. The proof of Lemma 12 is complete.

The end of the analysis follows from the same arguments used in the end of the proof
of Theorem 3. More precisely, we have a K-symmetrizer for P̌, then we can construct a K-
symmetrizer for the 4× 4 block P . The proof of Theorem 4 is complete.

To conclude this article, we give an example of a numerical scheme such that condition v) in
Theorem 4 occurs. We keep the same notations as in the section on Runge-Kutta schemes. We
consider the following discretization of the space derivative:

QUj :=
3
8

(Uj+1 − Uj−1) +
1
24

(Uj+3 − Uj−3) ,

which is a second-order approximation14 of the space derivative ∂xU . As in (35), the Runge-
Kutta scheme of order 3 reads:

un+1
j =

3∑
`=0

(−λ aQ)`

`!
un

j . (59)

We compute:

A (κ) =
3∑

`=0

(
− λ a Q̂(κ)

)`
`!

, Q̂(κ) =
3
8

(κ− κ−1) +
1
24

(κ3 − κ−3) .

14It may seem absurd to consider a scheme with so many points to reach only second-order accuracy. However,
if one wishes to do a general theory, the theory should be able to cover all cases, even the absurd ones !
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Assumption 1 is satisfied as long as a 6= 0. We thus check the `2-stability of the scheme and
compute:

|A (eiξ)|2 = 1− λ4 a4

12
h(ξ)4

(
1− λ2 a2

3
h(ξ)2

)
, h(ξ) := sin ξ − 1

3
sin3 ξ .

The maximum of |h| on R is 2/3, and it is attained when ξ ∈ π/2 + Z π. Then the scheme (59)
is `2-stable (and geometrically regular) if and only if λ a ≤ 3

√
3/2.

We now analyze the behavior of A (κ) when it touches the unit circle S1. We assume that the
CFL condition is chosen in an optimal way, that is λ a = 3

√
3/2. Then we have A (κ) ∈ S1 if and

only if κ ∈ {±1,±i}. We compute Q̂(i) = 2 i/3, Q̂′(i) = Q̂′′(i) = Q̂′′′(i) = 0, and Q̂(4)(i) = −6 i.
We then derive A ′(i) = A ′′(i) = A ′′′(i) = 0, and A (4)(i) = 27 − i 9

√
3/2. Then we can check

that condition v) in Theorem 4 is satisfied at κ = i. The same conclusion holds at κ = −i.

References
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