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Abstract

As data in real-world applications continuously evolve, the ability of artificial
intelligence systems to learn incrementally while preserving previously acquired
knowledge has become increasingly critical. However, deploying continual learn-
ing (CL) methods in practice is impeded by blurred task boundaries, severe data
imbalance, and the high computational demands and data privacy concerns as-
sociated with large models. This thesis addresses these challenges through three
core contributions, thus enhancing the feasibility and robustness of CL in dynamic
environments. First, to manage blurred task boundaries, where data distributions
often overlap, we propose a novel Distribution-Shift Incremental Learning (DS-IL)
scenario. In this framework, an entropy-guided learning approach effectively lever-
ages these overlaps to mitigate catastrophic forgetting without maintaining large
memory buffers. In real-world scenarios, data imbalance is a common challenge
that can significantly hinder the performance of learning systems. To address this
issue, our second contribution introduces a Memory Selection and Contrastive
Learning (MSCL) strategy. By actively sampling representative instances and
coupling them with current data in a contrastive loss, the model better balances
underrepresented classes and domains. This approach not only preserves crucial
historical information but also maintains robust performance under significantly
skewed data distributions. Finally, to alleviate the computational overhead of
continually training diffusion models, particularly relevant in scenarios with data
privacy constraints or prohibitive storage costs, we introduce a Multi-Mode Adap-
tive Generative Distillation (MAGD) framework. Using generative distillation,
noisy intermediate representations, and exponential moving averages, this method
enables efficient continual updates while preserving high-quality image generation
and classification performance. Collectively, these contributions form a compre-
hensive framework for scalable, memory-efficient, and computationally tractable
continual learning. Through effective knowledge retention, dynamic adaptation to
imbalanced data, and resource-efficient generative replay, this thesis expands the
applicability of CL methods to a wider range of real-world settings.
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Résumé

Face à l’évolution continue des données dans les applications du monde réel, la ca-
pacité des systèmes d’intelligence artificielle à apprendre de manière incrémentale
tout en préservant les connaissances acquises précédemment est devenue de plus
en plus critique. Cependant, le déploiement des méthodes d’apprentissage con-
tinu (CL) dans la pratique est entravé par des frontières de tâches floues, un
déséquilibre sévère des données, et les fortes exigences computationnelles et
les préoccupations liées à la confidentialité des données associées aux grands
modèles. Cette thèse aborde ces défis à travers trois contributions principales,
améliorant ainsi la faisabilité et la robustesse du CL dans des environnements dy-
namiques. Premièrement, pour gérer les frontières de tâches floues, où les distri-
butions de données se chevauchent souvent, nous proposons un nouveau scénario
d’Apprentissage Incrémental du Changement de Distribution (DS-IL). Dans ce
cadre, une approche d’apprentissage guidée par l’entropie exploite efficacement
ces chevauchements pour atténuer l’oubli catastrophique sans maintenir de grands
tampons de mémoire. Dans les scénarios réels, le déséquilibre des données est
un défi commun qui peut entraver significativement la performance des systèmes
d’apprentissage. Pour aborder ce problème, notre deuxième contribution introduit
une stratégie de Sélection de Mémoire et d’Apprentissage Contrastif (MSCL). En
échantillonnant activement des instances représentatives et en les couplant avec des
données actuelles dans une perte contrastive, le modèle équilibre mieux les classes
et les domaines sous-représentés. Cette approche préserve non seulement des infor-
mations historiques cruciales, mais maintient également une performance robuste
sous des distributions de données considérablement biaisées. Enfin, pour alléger
la charge computationnelle de la formation continue des modèles de diffusion, par-
ticulièrement pertinente dans des scénarios avec des contraintes de confidentialité
des données ou des coûts de stockage prohibitifs, nous introduisons un cadre de
Distillation Générative Adaptative Multi-Mode (MAGD). Utilisant la distillation
générative, des représentations intermédiaires bruyantes, et des moyennes mobiles
exponentielles, cette méthode permet des mises à jour continues efficaces tout en
préservant une haute qualité de génération d’images et de performance de clas-
sification. Collectivement, ces contributions forment un cadre complet pour un
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CHAPTER 0. RÉSUMÉ

apprentissage continu, évolutif, efficace en mémoire et gérable computationnelle-
ment. À travers une rétention de connaissances efficace, une adaptation dynamique
à des données déséquilibrées et une relecture générative efficiente en ressources,
cette thèse étend l’applicabilité des méthodes de CL à un plus large éventail de
paramètres du monde réel.
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Chapter 1

Introduction

Deep learning has become a cornerstone of modern artificial intelligence, allow-
ing significant advancements in fields such as computer vision, natural language
processing, and speech recognition. By leveraging large datasets and deep neural
networks, deep learning models have achieved unprecedented performance levels,
often surpassing human capabilities in specific tasks [20, 132]. These models have
been instrumental in applications such as autonomous vehicles, robotics, medical
diagnostics, [65, 144, 21] that profoundly impact society and improve human lives.

Despite these successes, deploying deep learning models in real-world scenarios
presents several critical challenges:

• Substantial computational costs: Deep learning models often require sig-
nificant computational resources and time to train, which can hinder their
applicability in fast-paced, real-world environments. In many applications,
such as real-time decision-making in autonomous vehicles or adaptive user
interfaces, there is a critical need for models that can be trained or updated
quickly to reflect new data or changing conditions. The lengthy training
times of large models like CLIP [113], which was trained on 256 V100 GPUs
for 12 days using 600 million image/text pairs, are impractical for such sce-
narios. This limitation makes it challenging to deploy deep learning solutions
that need to quickly adapt, reducing their effectiveness in dynamic environ-
ments where timely responses are essential.

• Distribution shift and catastrophic forgetting: In dynamic environ-
ments, data distributions change over time. When applying large founda-
tion models on personal devices, the new data may differ significantly from
the original training set. Due to limited computational resources, retrain-
ing the entire model is impractical. Simply fine-tuning the model with new
data often leads to catastrophic forgetting [4, 5], where the model forgets
previously learned knowledge, compromising overall performance.
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• Data privacy concerns: Companies often keep their data confidential to
protect user privacy and maintain a competitive advantage [22, 71]. This
practice poses obstacles for independent researchers and developers, who
may lack access to large-scale proprietary datasets. Consequently, they are
limited to using their own collected data or open-source datasets, which can
restrict the development and application of deep learning models.

To address these challenges, various approaches have been proposed:

• Knowledge Distillation involves transferring knowledge from a large, com-
plex model to a smaller, more efficient one [18, 82]. This approach reduces
computational costs by enabling the deployment of lightweight models that
require less memory and computational power, making them suitable for
real-time applications and devices with limited resources. However, it does
not adapt the previously trained model to new data, limiting its ability to
handle changing environments or distribution shifts.

• Transfer Learning leverages pre-trained models on large datasets to im-
prove learning on a new, related task with less data [13, 77]. This method
addresses both computational costs and data privacy concerns. By fine-
tuning pre-trained models with smaller, task-specific datasets, developers
can achieve good performance without extensive computational resources or
access to large proprietary datasets. However, this approach often leads to
catastrophic forgetting of previous tasks, as it does not consider main-
taining performance on the original tasks after adaptation.

• Online Learning algorithms update models incrementally over a sequential
stream of data [7, 110]. This method is more efficient compared to traditional
offline training. However, online learning often encounters performance drops
and typically assumes that the training data stream is independently and
identically distributed (i.i.d.), which is usually not the case in real-world
applications where data distributions change over time.

• Meta Learning, commonly known as ”learning to learn,” aims to equip
models with the ability to quickly adapt to new tasks using only a small
amount of data [28]. This paradigm focuses on training models that gener-
alize from previous experiences to learn new tasks more efficiently. However,
meta-learning does not explicitly consider maintaining performance on pre-
trained tasks, which can result in forgetting previously acquired knowledge
when adapting to new tasks.

Although there have been great advances in these areas, none of the afore-
mentioned approaches can fully achieve the goal of building an intelligent agent
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capable of learning from a dynamically changing environment while retaining pre-
viously acquired knowledge, all within limited computational resources and limited
storage to training data. Therefore, in this thesis, we focus primarily on contin-
ual learning, integrating methods from other fields to address these challenges
and enhance the practicality of continual learning algorithms in more realistic,
real-world scenarios.

We briefly illustrate the different learning paradigms in Figure 1.1; the details
are discussed in Section 2.2.

1.1 Continual Learning

Continual learning, also known as lifelong learning, is a machine learning paradigm
where an intelligent agent learns continuously from a stream of data, adapting to
new tasks and environments over time while retaining previously acquired knowl-
edge[158, 73]. Unlike traditional learning methods that rely on static datasets and
assume that all training data is available at once, continual learning models are de-
signed to handle dynamic, non-stationary data distributions common in real-world
scenarios.

The main constraints of continual learning include:

• Limited Access to Previous Data: In many cases, storing all past data
is impractical due to memory limitations or privacy concerns. The model
must learn new tasks without relying on the availability of previous training
data, which complicates the retention of previously acquired knowledge.

• Dynamic and Non-Stationary Environments: Data distributions can
change over time (distribution shift), and the model must adapt to these
changes without prior knowledge of when or how the shifts occur.

• Limited Computational Resources: Continual learning often needs to
be implemented on devices with constrained computational capabilities, such
as mobile phones or embedded systems. Efficient algorithms are required to
enable incremental learning without extensive retraining or excessive memory
consumption

• Balancing Plasticity and Stability: The model needs to remain plastic
enough to learn new information while being stable enough to retain prior
knowledge. Achieving this balance is a significant technical challenge[30].

In this thesis, we focus on advancing continual learning to address the afore-
mentioned challenges, enhancing its practicality and effectiveness in real-world sce-
narios where environments are dynamic, resources are limited, and data privacy
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is paramount. We propose integrating methods from other fields with continual
learning to develop solutions that can learn adaptively over time without forget-
ting previous knowledge, all while operating within computational constraints and
limited access to prior data.

1.2 Applications

This thesis is also part of the FairWastes project, which aims to automate one of the
sorting steps to reduce workers’ exposure to hazardous conditions. In this project,
waste is collected from various regions and time periods, including items such as
cardboard, paper, plastic, wood, etc. The waste is transported on a conveyor
belt, where, traditionally, a large number of workers manually sort through it.
However, this method is both costly and poses significant health risks to workers.
The project seeks to leverage various sensors to capture images and other relevant
data, which are then processed and transmitted to a robotic arm to automate the
sorting process. The variability in waste composition, influenced by regional and
temporal factors, necessitates adaptive and robust solutions. This dynamic closely
resembles a continual learning scenario, where data distribution shifts over time.
In this thesis, we apply our methods to this real-world dataset and evaluate their
performance. The details of the dataset are presented in Section 3.5, while the
results of different methods are discussed in Section 3.5.

1.3 Contributions

The contributions of this thesis are listed as follows:

• Entropy-Guided Self-Regulated Learning Without Forgetting for
Distribution-Shift Continual Learning with blurred task bound-
aries: Recent research on CL has focused on Domain-Incremental Learning
(DIL) or Class-Incremental Learning (CIL) with well-defined task bound-
aries and no overlap of data between tasks[73, 46, 95]. However, for real-life
applications, e.g., waste sorting, robotic grasping, etc., the model needs to be
constantly updated to fit new data. Additionally, there is usually an over-
lap between new and old data. Thus, task boundaries may not be well-
defined, and a more smooth scenario is needed. Thus, we propose a more
general scenario, namely Distribution-Shift Incremental Learning (DS-IL),
which enables soft task boundaries with possible mixtures of data distribu-
tions over tasks and thereby subsumes the two previous CL scenarios: DIL
and CIL are simply DS-IL. Moreover, given the increasingly greater impor-
tance of data privacy in real-life applications and, incidentally, data storage
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efficiency, we further introduce an entropy-guided self-regulated distillation
process without memory, which leverages data similarities between tasks
with soft-boundaries. Experimented on a variety of datasets, our proposed
method outperforms or matches state-of-the-art continual learning methods.

• Adaptive Class Aware Memory Selection and Contrastive Rep-
resentation Learning for Robust Online Continual Learning in
both Balanced and Imbalanced Data Environments: Online Con-
tinual Learning (OCL) is a framework where models learn continuously from
a stream of data without revisiting previously seen data. This is crucial
for many real-life applications, e.g., waste sorting, healthcare monitoring,
and robotics, where data evolves over time. However, current state-of-
the-art continuous learning methods struggle with dynamic and unbalanced
data[127, 74, 126], often failing to adapt and leading to severe performance
degradation. Thus, we introduce Memory Selection with Contrastive Learn-
ing (MSCL), an advanced approach to Continual Learning (CL) designed
to tackle these challenges. MSCL integrates Feature-Distance Based Sample
Selection (FDBS) for effective memory adaptation, emphasizing inter-class
similarities and intra-class diversity, with a novel contrastive learning loss
(SCL) for evolving data representation consolidation. Our extensive evalua-
tions on datasets including CIFAR-100, Tiny-ImageNet, PACS, and Domain-
Net demonstrate that MSCL not only surpasses existing memory-based CL
methods on data balanced scenarios, but also excels particularly in imbal-
anced scenarios, thereby establishing a novel state of the art in both balanced
and imbalanced learning contexts.

• Online Continual Learning of Diffusion Models: Multi-Mode
Adaptive Generative Distillation:Most state-of-the-art[124, 145] contin-
ual learning methods rely on storing real data in a memory set, an approach
often infeasible due to privacy constraints. Generative models, particularly
diffusion models, offer a high-fidelity alternative for replay but are typically
used in a static, task-defined manner. In more realistic online continual
learning (OCL) where new data arrive sequentially, the diffusion model itself
can suffer from catastrophic forgetting, and generating replay samples be-
comes computationally expensive. Existing distillation techniques[143, 133]
reduce generation steps but assume a fixed teacher model, making them un-
suitable when the teacher must also adapt to shifting distributions. We pro-
pose Multi-Mode Adaptive Generative Distillation (MAGD), a novel frame-
work for continually training diffusion models under distribution shifts, while
reducing computation. MAGD integrates Noisy Intermediate Generative
Distillation (NIGD), which leverages intermediate noisy samples to main-

5



CHAPTER 1. INTRODUCTION

tain generation quality, and SNR-Guided Generative Distillation (SGGD),
which disentangles denoising from the generative process for efficient knowl-
edge transfer. By combining these with an Exponential Moving Average
(EMA) teacher model, MAGD mitigates catastrophic forgetting as new data
arrive. Experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 show
that MAGD reduces generation overhead by up to 25% relative to standard
generative distillation and 92% compared to DDGR-1000, while maintain-
ing generating quality. Furthermore, in class-conditioned diffusion models,
MAGD outperforms memory-based methods in terms of classification accu-
racy.

1.4 Publications

Here is the list of publications published and under review during my thesis:

• [147]Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen.
”When continual learning meets robotic grasp detection: a novel benchmark
on the Jacquard dataset”. Published in the 18th International Conference
on Computer Vision Theory and Applications (VISAPP), Feb 2023, Lisbon,
Portugal.

• [146]Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen.
”Entropy-Guided Self-Regulated Learning Without Forgetting for
Distribution-Shift Continual Learning with blurred task boundaries”,
5th International Conference on Robotics, Computer Vision, and Intelligent
Systems, 2025, Porto, Portugal.

• [160]Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen. ”Im-
balanced data robust online continual learning based on evolving class aware
memory selection and built-in contrastive representation learning”. Pub-
lished in IEEE International Conference on Image Processing (ICIP), 2024,
Abu Dhabi, United Arab Emirates.

• Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen. ”Adaptive
Class Aware Memory Selection and Contrastive Representation Learning for
Robust Online Continual Learning in both Balanced and Imbalanced Data
Environments”. Under review in IEEE Transactions on Knowledge and Data
Engineering,2025.

• Rui Yang, Matthieu Grard, Emmanuel Dellandréa, Liming Chen. ”Fast
Multi-Mode Adaptive Generative Distillation for Continually Learning Dif-
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fusion Models”. Under review in IEEE International Conference on Image
Processing (ICIP) ,2025.

1.5 Outline

The rest of this thesis is organized into five chapiters:

• Chapter 2 provides a foundational overview of deep neural networks and
explores various machine learning paradigms that intersect with the domain
of continual learning (CL). It begins with a basic introduction to deep neural
networks, and then discusses different machine learning fields. Following this,
the chapter delves into the specific scenarios under which continual learning
operates, the metrics used to evaluate continual learning systems, and offers
a comprehensive review of state-of-the-art methods in the field. Lastly, the
chapter briefly introduces diffusion models, setting the stage for their detailed
discussion and application in Chapter 5.

• Chapter 3 presents our work on handling scenarios with blurred task bound-
aries, introducing the entropy-guided exemplar-free method, and demon-
strating its effectiveness compared to baseline methods.

• In Chapter 4: Addresses the challenge of imbalanced online continual learn-
ing, introducing a memory-based method combining a specific memory se-
lection process with a contrastive learning loss function, and evaluating its
performance on various benchmarks.

• Chapter 5 focuses on continually training diffusion models, proposing mul-
tiple distillation techniques to reduce computational costs and mitigate for-
getting during training, and demonstrating effectiveness in both traditional
CL scenarios and online settings.

• Chapter 6 concludes by summarizing our work and contributions, and out-
lines potential future research directions and open questions for further ad-
vancements in continual learning.
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Figure 1.1: The main settings of different learning paradigms are illustrated in the
figure, inspired by [58].
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Chapter 2

Literature Review

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) have revolutionized the field of machine learning
by demonstrating exceptional abilities in tasks such as image recognition, natural
language processing, and predictive analytics. Deep learning, a subset of machine
learning, employs neural architectures with multiple layers of nonlinear process-
ing units, allowing the learning of representations of data with multiple levels of
abstraction [20]. Over recent years, various architectures have been proposed, in-
cluding Convolutional Neural Networks (CNNs) [3], Residual Networks (ResNets)
[17], and Transformers [37]. These networks are capable of discovering intricate
structures in large datasets by leveraging the backpropagation algorithm, which
guides how a machine should change its internal parameters to compute the rep-
resentation in each layer from the representation in the previous layer [12].

2.1.1 Offline Training

Despite the substantial success of modern deep neural networks, they predomi-
nantly rely on offline training using mini-batch SGD updates. Given a dataset
D = {xi, yi}Ni=1 and a model fθ with parameters θ, the general objective in train-
ing, from the perspective of maximizing the likelihood, is formulated as:

θ = max
θ

p(D|θ) (2.1)

In offline training, it is assumed that each data pair (x, y) is sampled indepen-
dently and identically distributed (i.i.d.) from D. Thus, in supervised learning,
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the likelihood can be expressed as:

log p(D|θ) =
N∑
i=1

log p(yi|xi, θ) (2.2)

The global objective can then be expressed as:

L(D, θ) = − 1

N

N∑
i=1

log p(yi|xi, θ) (2.3)

During the training process, mini-batch SGD is utilized to approximate this
global objective. For each iteration, a mini-batch Bk = {xi, yi}nk

i=1 is se-
lected, thus the objective for this mini-batch can be expressed as Lk(Bk, θ) =
− 1

nk

∑nk

i=1 log p(yi|xi, θ). Because each mini-batch is i.i.d., the expected value of

the mini-batch Lk(θ) is an unbiased estimator of the global objective L(θ):

E[Lk(Bk, θ)] = L(D, θ) (2.4)

The dataset’s stability (no drift) and availability (can be reviewed multiple
times) in offline training allow for revisiting different mini-batches multiple times
to approximate the expectations accurately. Overall, offline training relies funda-
mentally on two conditions:

• Each data pair (x, y) is sampled i.i.d. from D.

• The training dataset is stable and available, enabling multiple reviews during
training.

2.2 Different Learning Paradigms

• Knowledge Distillation aims to transfer the knowledge from a larger, more
complex model (referred to as the ”teacher” model with parameters θtea) to
a smaller, more efficient model (referred to as the ”student” model with
parameters θstu). Given a pre-trained teacher model and the original dataset
D = {xi, yi}Ni=1, the student model is trained to emulate the behavior of the
teacher. The general objective of knowledge distillation can be formulated
as minimizing the following loss function:

L(D, θstu) =
1

N

N∑
n=1

d(ϕθstu(xi), fθtea(xi)) (2.5)
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The function d(., .) measures the similarity between the outputs of the two
models, which could be an L1 or L2 distance for regression tasks, or a
Kullback-Leibler divergence loss for classification tasks where the outputs
are probabilities [18]. This loss function encourages the student model to
produce outputs that closely match those of the teacher model across the
dataset. By doing so, the student learns to approximate the complex func-
tion represented by the teacher, leveraging the teacher’s ability to generalize
from the same input data while operating under potentially less computa-
tional overhead or memory usage.

• Transfer Learning seeks to leverage knowledge acquired from one domain
or task (source) to enhance learning in a related but distinct domain or
task (target). In this paradigm, we differentiate between the source domain
with its distribution Dsource = {xSou

i , ySoui }NSou
i=1 where the model, denoted by

fθSou , is initially trained, and the target domain with distribution Dtarget =
{xTar

i , yTar
i }NTar

i=1 . Once the source model fθSou is trained on Dsource, the
objective in transfer learning involves adapting this model to perform well on
Dtarget. The model for the target domain, represented by fθTar , is initialized
using the weights from θSou and further trained to minimize the loss on the
target data. The loss function for the target model is defined as:

L(Dtarget, θ
Tar) =

1

NTar

NTar∑
i=1

l(fθTar(xTar
i ), yTar

i ) (2.6)

where l is a loss function appropriate for the task (e.g., cross-entropy for
classification or mean squared error for regression).

• Online Learning learns models in a sequential order and adapts to new
data continuously as it arrives. In this paradigm, data arrives in a sequence
of batches Bk = (xk

i , y
k
i )

nk
i=1, for k = 1, 2, 3, . . . , K, where nk is the batch size

for each time step k. The global objective, similar to offline training (Eq.
2.3), aims to minimize the cumulative loss over all observed data. The global
objective in online learning can be formulated as minimizing the sum of losses
over time L(D, θ) = 1

K

∑K
k=1 Lk(Bk, θ), where each Lk(θ) is computed as:

Lk(Bk, θ) =
1

nk

nk∑
i=1

l(fθ(x
k
i ), y

k
i ) (2.7)

In online learning, the stochastic nature of data presentation and the single-
pass learning constraint mean that each batch Bk influences the model pa-
rameters θ once. This limitation complicates the approximation of the ex-
pected loss, E[Lk(Bk, θ)] since historical data is not retained for revisiting
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or recalibrating the model’s parameters. As a result, the model must rely
on the immediate feedback from each batch to perform updates and must be
robust against variations in data quality and distribution.

• Meta Learning involves two levels of learning: the meta-training phase and
the meta-testing phase. During meta-training, the model learns across mul-
tiple learning tasks, each potentially drawn from different distributions but
sharing some commonality. The meta-testing phase evaluates the model’s
ability to adapt to new tasks, again using only a limited amount of data.
Given a distribution of tasks p(T ), where each task Tk includes its own
data distribution p(Dk). The meta-learning model trains across multiple
tasks sampled from p(T )[28, 88]. The model parameters θ are updated in
the meta-training phase to minimize the expected loss across tasks sampled
from p(T ):

θ∗ = argmin
θ

ETk∼p(K)[L(Tk, θ)] (2.8)

Here, L(Tk, θ) typically involves further adaptation on Dk. During meta-
testing, the effectiveness of θ∗ is assessed on new tasks, using few examples
to adapt θ∗ to each new task.

2.3 Continual Learning

Distinct from other learning paradigms, continual learning uniquely focuses on
developing models that can acquire new knowledge sequentially across a series of
tasks while retaining previously learned knowledge. This paradigm addresses the
critical challenge of catastrophic forgetting, where a model loses the knowledge
it had learned from earlier tasks upon learning new ones. The goal of continual
learning is to build systems that can update their knowledge continuously and
adaptively.

Given a series of tasks as T1, T2, . . . , Tn, where each task Tk is associated with a
datasetDk = {xk

i , y
k
i }

Nk
i=1. The overall objective in continual learning is to optimize

the model’s parameters θ over all the tasks:

θ∗ = argmin
θ

n∑
k=1

L(θ,Dk) (2.9)

However, due to the inherent limitations of continual learning, it is not feasible
to revisit all previous datasets. Therefore, the objective during the training of task
Tk can be formulated as follows using a memory set (M ):

Lk = L(Dk, θ) + L(M , θ) (2.10)
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In continual learning, the memory set (M ) plays a crucial role. It is widely used
to retain essential data from previous tasks, which may include real samples[24, 61,
60, 111] or synthetic data generated by models such as GANs[54, 75], VAEs[66],
or diffusion models[134]. Typically, the parameters θ for the task Tk are initialized
from the previous model with parameters θk−1, which was trained on prior tasks.
This differs from offline training, where data (Dk) is assumed to be i.i.d. and
revisiting previous datasets is possible. In continual learning, the inability to
review data from previous tasks often leads to catastrophic forgetting.

Compared to other learning paradigms, continual learning focuses on the reten-
tion of knowledge from previously trained models, which intersects the principles
of Knowledge Distillation[24, 81, 64, 115] and Transfer Learning. It also
involves updating the model in response to a continuous stream of data, relat-
ing closely to Online Learning[159]. Furthermore, continual learning strategies
often overlap concepts from meta learning, especially in scenarios where only
limited data from new tasks are available. However, continual learning emphasizes
the retention of previously acquired knowledge, ensuring that the model remains
proficient in previous tasks even after training on new ones.

2.3.1 Continual Learning Scenarios

Traditional Scenarios This category includes three primary scenarios: Task-
Incremental Learning (TIL), Class-Incremental Learning (CIL), and Domain-
Incremental Learning (DIL)[73, 46] as illustrated in Figure 2.1. We define a se-
ries of tasks as T1, T2, . . . , Tn, where each task Tk is associated with a dataset
Dk = {xk

i , y
k
i }

Nk
i=1, and Ck represents the unique class labels in Dk. The index k

serves as the task identity, indicating the origin of the data. In these scenarios, we
typically assume that: 1) the task boundaries are well-defined, meaning the task
identity is known during training; 2) the datasets are balanced, implying an equal
number of data points across different classes or domains.

• Task-Incremental Learning (TIL): In TIL, k is provided during both
training and testing phases, which implies that the task origin of the data
is always known. Common architectures for this scenario often utilize task-
specific components that are activated only for their respective tasks[23, 53].

• Class-Incremental Learning (CIL): CIL extends TIL by enforcing that
the class labels across different tasks do not overlap, i.e., Ck ∩ C l = ∅ for
k ̸= l. Moreover, while k is available during training, it is not during testing,
making CIL more challenging than TIL.

• Domain-Incremental Learning (DIL): Unlike CIL, DIL maintains a con-
sistent label space across tasks, Ck = C l for k ̸= l, but the input distribution
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Label: 0, 1
Train: ID=0
Test:  ID=0

Label: 0, 1
Train: ID=1
Test:  ID=1

Label: 0, 1
Train: ID=n
Test:  ID=n

Label: 0, 1
Train: ID=0
Test: ID: N/A

Label: 2, 3
Train: ID=1
Test: ID: N/A

Label: 8, 9
Train: ID=n
Test: ID: N/A

Label:dog, guitar

« painting »

Train: ID=0
Test: ID: N/A

Label:dog, guitar

« photo »

Train: ID=1
Test: ID: N/A

Label:dog, guitar

« sketch »

Train: ID=n
Test: ID: N/A

……

Task 1 Task 2 Task n

CIL

TIL

DIL

Figure 2.1: Illustration of three scenarios: Task-Incremental Learning (TIL), Class-
Incremental Learning (CIL), and Domain-Incremental Learning (DIL). The main
difference between TIL and CIL is that in CIL, the task ID is not provided during
testing, making CIL more challenging. DIL focuses on the distribution shift of the
input data, while the output labels remain unchanged.

varies between tasks. A common challenge in DIL is adapting to changes in
the input distribution, such as in the dataset PACS[32], where each domain
can be treated as a separate task. Here, k is not available during testing.

Advanced Scenarios These scenarios consider more realistic applications that
do not conform to the traditional scenario constraints. Consequently, new scenarios
have been proposed, such as:

• Task-Free Continual Learning (TFCL)[40] deviates from the traditional
models by not defining task boundaries. Thus, k is unknown during both
training and testing. Methods that depend on k during training, such as
those cited in[24, 81, 41], are not applicable in TFCL.

• Blurred Boundary Continual Learning (BBCL)[56], which builds on
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the principles of TFCL, also does not identify k during training or testing.
BBCL, however, requires that the transition between tasks be smoother.

• Imbalanced Continual Learning (ICL)[126, 104, 91], does not restrict
the use of k. ICL focuses on handling datasets where the distribution of
data among classes or domains is uneven, mirroring more closely real-world
scenarios.

• Online Continual Learning (OCL)[59] treats data as a stream, St =
{xt

i, y
t
i}nt

i=1, where t is the time step, and nt is the batch size at that step.
Unlike previous scenarios, St can only be viewed once and is not reviewed
multiple times as in offline training. OCL is often combined with other
scenarios to create hybrid models such as Online Class-Incremental Learning
(OCIL)[85] and Online Task-Free Continual Learning (OTFCL)[128, 162].

Table 2.1: Overall description of different continual learning scenarios. × means
no, ✓ means yes, and ⋆ means optional.

Scenario
Training Testing

Task-id(k) Online Balance Task-id(k)
TIL ✓ × ✓ ✓
CIL ✓ ⋆ ✓ ×
DIL ✓ ⋆ ⋆ ×
TFCL × ⋆ ⋆ ×
BBCL ⋆ ⋆ ⋆ ×
ICL ⋆ ⋆ × ×

2.3.2 Datasets

• MNIST[6] consists of 60,000 training images and 10,000 testing images of
10 handwritten digits, each of size 28 × 28. In continual learning, MNIST
is often used to create various benchmarks such as Split-MNIST, Rotated-
MNIST, and Permuted-MNIST[73], which help in studying model robustness
against task shifts and transformations.

• FashionMNIST[38] features Zalando’s article images with a training set
of 60,000 examples and a test set of 10,000 examples. Each example is a
28 × 28 grayscale image, associated with one of 10 classes. This dataset
serves as a more challenging alternative to MNIST in continual learning
scenarios, offering a different set of visual features for tasks requiring fashion
item recognition.
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• CIFAR-10[11] comprises 60,000 32×32 RGB images in 10 classes, with each
class containing 5,000 training images and 1,000 testing images. CIFAR-10
is widely used in continual learning to evaluate a model’s ability to handle
more complex image data across similar tasks.

• CIFAR-100[11] is similar to CIFAR-10 but with 100 classes, each containing
500 training images and 100 testing images. This dataset is beneficial for
testing continual learning methods that must handle a higher degree of class
granularity.

• Mini-ImageNet[26], a subset of ImageNet[9], includes 100 classes, each
with 500 3 × 84 × 84 images for training and 100 images for testing. Mini-
ImageNet is typically used in few-shot learning scenarios within continual
learning, focusing on rapid adaptation to new tasks.

• TinyImageNet[19] downscales ImageNet to 200 classes, each with 500 3×
64 × 64 images for training and 50 images for testing. This dataset tests
continual learning algorithms’ effectiveness across a broad range of classes
and larger image sizes compared to Mini-ImageNet.

• PACS[32] contains images from four distinct domains: Art painting, Car-
toon, Photo, and Sketch, each with the same seven classes. It includes 9,991
RGB images in total and is extensively used to assess domain generalization
in continual learning frameworks.

• DomainNet[51] features images from six distinct domains (e.g., real, paint-
ing, clipart, quickdraw, infograph, and sketch), ranging from 48K to 172K
images per domain (600K in total), categorized into 345 classes. This dataset
challenges continual learning systems to maintain performance across exten-
sive and diverse visual domains and classes.

2.3.3 Evaluation Metrics

Given n tasks denoted as T1, T2, . . . , Tn, each task Tk is associated with a training
set Dtrain

k and a test set Dtest
k . After training our model on Tk, the model is

evaluated on the test sets of all tasks. As detailed in Tab. 2.2, we use Ri,j to
represent the model’s performance after training on Ti and testing on Tj. This
metric could be represented as classification accuracy for discriminative models,
or as a FID score [29] for generative models.

The common metrics used in continual learning are as follows:
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Table 2.2: Illustration of Evaluation Metrics in Continual Learning

Test On
T1 T2 . . . Tn−1 Tn

T1 R1,1 R1,2 R1,n−1 R1,n

T2 R2,1 R2,2 R2,n−1 R2,n

. . .
Tn−1 Rn−1,1 Rn−1,2 Rn−1,n−1 Rn−1,n

After Training

Tn Rn,1 Rn,2 Rn,n−1 Rn,n

• Average Accuracy (AA)[43] evaluates the model’s performance on all
trained tasks after training on task Tk as shown below:

AAk =
1

k

k∑
j=1

Rk,j (2.11)

In practice, the final average accuracy AAn is used, which represents the
performance after training on the final task Tn and testing on the test set of
all tasks.

• Average Incremental Accuracy (AIA)[81], unlike AA, which represents
the model’s performance immediately after training on the current task, AIA
considers the performance across all prior tasks.

AIAk =
1

k

k∑
i=1

AAi =
1

k

k∑
i=1

(
1

i

i∑
j=1

Ri,j

)
(2.12)

• Average Forgetting (AF)[43] measures how much performance on a task
has declined from its peak, which was observed in earlier evaluations:

AFk =
1

k − 1

k−1∑
j=1

fj,k (2.13)

where fj,k = maxi∈{1,...,k−1}(Ri,j −Rk,j).

• Backward Transfer (BWT)[34], unlike AF, evaluates the change in per-
formance on a previous task j by calculating the difference between the per-
formance when it was last trained and its current performance after learning
subsequent tasks:

BWTk =
1

k − 1

k−1∑
j=1

(Rk,j −Rj,j) (2.14)
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In most cases, the best performance on the test set of task Tj is obtained
immediately after training on Tj. Therefore, AFk = −BWTk for most ex-
periments, indicating the magnitude of forgetting.

2.4 Continual Learning Methods

In this section, we present the state-of-the-art in continual learning, categoriz-
ing existing approaches into three primary groups: regularization-based methods,
architecture-based methods, and memory-based methods. Although memory-
based methods generally achieve the best performance in realistic and complex
scenarios where the task identity is not provided during training, we begin by
reviewing regularization-based methods from a Bayesian perspective to provide
foundational understanding.

2.4.1 Regularization-based Methods

Regularization-based methods add explicit or implicit regularization terms to the
loss function to constrain the update of the model parameters, thus helping to
retain knowledge from previous tasks.

2.4.1.1 General Analysis from a Bayesian Perspective.

From a Bayesian standpoint, the posterior distribution of the model parameters θ
after observing k tasks with datasets D1, . . . ,Dk can be expressed as

log p(θ|D1, . . . ,Dk) = log p(θ|D1, . . . ,Dk−1)
Previous posterior

+ log p(Dk|θ)
Current likelyhood

− log p(Dk|D1, . . . ,Dk−1)
Constant

(2.15)

Assuming that the datasets are independent given θ, the term
log p(Dk|D1, . . . , Dk−1) is a constant with respect to θ and can be ignored
during optimization. Thus, the posterior simplifies to:

log p(θ|D1, . . . ,Dk) ∝ log p(Dk|θ) + log p(θ|D1, . . . ,Dk−1) (2.16)

This equation shows that updating the model parameters involves combining
the likelihood of the current data log p(Dk|θ) with the prior knowledge encap-
sulated in the previous posterior log p(θ|D1, . . . ,Dk−1). However, directly com-
puting or storing the previous posterior is generally intractable. Therefore, most
regularization-based continual learning methods focus on approximating this pre-
vious posterior. In the following, we explain the current methods from this per-
spective.
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2.4.1.2 Explicit Regularization

Explicit regularization methods add quadratic constraints to the loss function to
limit the updates of model parameters during training on new tasks. Specifically,
they penalize changes in parameters by adding a term of the form

∑
i αi(θ

k
i −θk−1

i )2,
where θki is the current parameter for the task k, θk−1

i is the parameter from
previous tasks, and αi is an importance weight that measures the importance
parameter θi has to retain previous knowledge.

The origin of this quadratic term stems from a second-order Taylor expansion
of the log-posterior distribution around the parameters obtained from previous
tasks. Suppose that our model has l parameters denoted as θ = (θ1, θ2, . . . , θl).
We approximate the previous posterior distribution as an independent multivariate
Gaussian with mean µk−1 and precision matrix (inverse of the covariance matrix)
Λ−1

k−1 : p(θ|D1, . . . ,Dk−1) ≈ N (θ;µk−1,Λ
−1
k−1) Expanding the logarithm of this

posterior around θ = µk−1 using a second-order Taylor expansion yields:

log p(θ|µk−1,Λ
−1
k−1) ≈ log p(µk−1|µk−1,Λ

−1
k−1)−

1

2
(θ−µk−1)

⊤Λk−1(θ−µk−1) (2.17)

Here, the first-order derivative term vanishes at θ = µk−1, because we assume the
gradient at this point approximates zero. The Hessian matrix of the log-posterior,
evaluated at θ = µk−1, is given by:

Hi,j =
∂2 log p(θ|µk−1,Λ

−1
k−1)

∂θi∂θj
;H = −Λk−1 (2.18)

In practice, µk−1 represents the parameters obtained after training on the previous
tasks (D1, . . . , Dk−1).

• Elastic Weight Consolidation (EWC) [30] proposes using the Fisher
Information Matrix (FIM) to approximate the Hessian of the log-posterior
computed on task k − 1. The FIM is defined as:

Fk−1 = E[▽θ log p(Dk−1|θ)▽θ log p(Dk−1|θ)⊤]|θ=µk−1
(2.19)

where µk−1 represents the model parameters after training on task k − 1.
This approach uses the squared gradients of the log-likelihood with respect
to the parameters to estimate their importance. By adding a quadratic
penalty term proportional to the parameter importance, EWC discourages
significant changes to crucial parameters during training on new tasks.

• Synaptic Intelligence (SI) [39] calculates the importance of each param-
eter by accumulating its contribution to the loss reduction over time. The
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importance measure Hi,i for parameter θi is computed as:

Hi,i =
∑
t

△θti .g
t
i

(△θti)
2 + ϵ

(2.20)

where ∆θti is the change in parameter θi at time step t, gti is the gradient
of the loss with respect to θi at time step t, and ϵ is a small constant to
stabilize the calculation. Unlike EWC, SI updates the importance weights
online during training, eliminating the need for separate computations after
each task.

• Memory Aware Synapses (MAS) [27] utilizes the sensitivity of the
model’s outputs to changes in parameters to compute importance weights,
independent of the loss function. The importance Hi,i is estimated as:

Hi,i = Ex∼[D1,...,Dk−1]

[(
∂fθ(x)

∂θi

)2
]

(2.21)

where fθ(x) is the model’s output for input x. The advantage of MAS over
EWC and SI is its ability to use unlabeled data to estimate parameter im-
portance, as it relies solely on the model’s output responses rather than on
loss computations that require ground-truth labels.

• Additional methods aim to refine the approximation of the Hessian ma-
trix: R-EWC[48] performs a factorized rotation of the parameter space
to diagonalize the FIM. This transformation captures complex parameter
interactions and can lead to a more accurate estimation of parameter im-
portance. ALASSO[68] introduces an asymmetric quadratic penalty that
overestimates the importance on one side of the parameter space.

2.4.1.3 Implicit Regularization

Apart from explicitly constraining parameter updates using second-order Tay-
lor expansions, another approach to preventing catastrophic forgetting is em-
ploying online variational inference to approximate the posterior probability
p(θ|D1, . . . ,Dk) at Tk. This approximation is formulated as: :

qk(θ) = argmin
q

KL

(
q(θ)

∣∣∣∣ 1Zk

qk−1(θ)p(Dk|θ)
)

(2.22)

Where Zk is a normalization constant. In practice, we often assume qk(θ) fol-
lows a multivariate Gaussian distribution N (µk,Λ

−1
k ) Several methods have been

developed based on this variational inference framework:

20



2.4. CONTINUAL LEARNING METHODS

• Variational Continual Learning (VCL) [72] proposes minimizing the
following objective function:

Lk = Eθ∼qk(θ)[log p(D|θ)] +KL(qk(θ)|qk−1(θ)) (2.23)

Here, Eθ∼qk(θ) [log p(Dk|θ)] is the expected log-likelihood of the current
dataset Dk under the approximate posterior qk(θ), which corresponds to
the cross-entropy loss in classification problems. The KL divergence term
acts as a regularizer, encouraging the new posterior qk(θ) to stay close to
the previous posterior qk−1(θ). Since both qk(θ) and qk−1(θ) are Gaussian
distributions, the KL divergence can be computed in closed form, facilitating
efficient optimization.

• FOO-VB[120] also employs Bayesian neural networks similar to VCL but
introduces a key difference. FOO-VB incorporates Monte Carlo approxima-
tions not only during the inference phase, but also when updating the mean
and variance of the network parameters. This approach enables an online
update mechanism that is more suitable for continual learning scenarios, as it
allows the model to adapt its parameters incrementally as new data arrives.

• There are also some methods continue in this direction such asVAR-GP[89]
utilize a variational autoregressive Gaussian process to model temporal de-
pendencies in sequential data, enhancing the model’s ability to adapt over
time. FROMP[96] applies Bayesian inference directly in the function space.
GRS[92] adapts to non-stationary data.

Regularization-based methods generally have a clear mathematical foundation
from the Bayesian perspective, as they incorporate prior knowledge into the learn-
ing process. These methods typically assume that the model parameters follow a
multivariate Gaussian distribution. In explicit regularization, various approaches
are used to approximate the Hessian matrix, which serves as the importance weight
for each parameter. This approximation relies on a second-order Taylor expansion
of the loss function around the critical point θ⋆. Consequently, these methods are
effective only under certain conditions: 1.The loss function’s landscape must be
smooth around the critical point θ⋆. This ensures that the second-order approxi-
mation is valid. 2.The data distribution between different tasks should not change
dramatically. Significant shifts can invalidate the assumptions made during the
approximation. However, in realistic scenarios, these conditions are often not met
due to complex loss landscapes and substantial distributional shifts between tasks.
Moreover, explicit regularization methods often employ Bayesian neural networks,
which require higher computational costs. The assumption that parameters follow
a multivariate Gaussian distribution may not hold in complex settings, limiting the
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practicality of these methods. Therefore, while regularization-based approaches
are theoretically sound, their applicability in real-world continual learning scenar-
ios is much constrained.

2.4.2 Architecture-Based Methods

Architecture-based methods are not discussed extensively in this thesis and are
not used for comparison in our scenarios. Thus, we provide a relatively brief intro-
duction to these methods. Architecture-based methods focus on either isolating
parameters based on task identity and activating the corresponding parameters
during inference, or dynamically expanding neural networks to learn new infor-
mation. After training on the current task, the networks are then compressed.
Several methods have been proposed in this direction.

• Progressive Neural Networks (PNNs) [25]: PNNs add a new neural
network module for each new task while keeping previously learned modules
fixed. This prevents interference between tasks and allows for knowledge
transfer via lateral connections.

• Piggyback [49]: Piggyback leverages a single fixed-size model where sep-
arate weight masks are learned during training. Each mask activates the
weights corresponding to a specific task.

• Dynamically Expandable Representation (DER) [118]: DER dynam-
ically expands new feature extractors and encourages the network to use
fewer neurons, promoting efficiency in representation.

• Dynamic Token Expansion (DyTox) [107]: DyTox dynamically expands
a task-specific block in a transformer-based architecture, allowing the model
to adapt to new tasks by adding tokens.

• Online Discrepancy Distance Learning (ODDL) [131]: Compared with
previous methods, this approach also trains an auxiliary Variational Au-
toencoder (VAE) to generate images of the previous dataset. This enables
the evaluation of the discrepancy between generated images and the current
dataset. Without relying on task identity, it uses this discrepancy evaluation
to determine if the network should be expanded.

Most architecture-based methods require task identity during training, which
is not convenient in realistic scenarios where task boundaries are not well-defined.
Some methods propose specific conditions to determine if the distribution shifts
to a new domain; however, in online continual learning where the data is non-
stationary, it is difficult to make such decisions. Thus, in this thesis, we do not
consider these methods.
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2.4.3 Memory-based Methods

In this section, we primarily focus on memory-based methods, illustrated in Fig-
ure 2.2, which are among the most effective strategies for mitigating catastrophic
forgetting. These methods concentrate on two main aspects: 1. Memory Set
Management: This involves decisions on how to select, store, and replay mem-
ories. 2. Utilization of the Memory Set: This typically involves integrating
the memory set with other approaches such as contrastive learning, knowledge
distillation, and data augmentation to formulate new objectives. We will explore
these aspects in detail in subsequent sections.

𝜽𝟏

𝑀1

𝐷1
𝜽𝟐

𝐷2

𝑀𝑛

𝐷𝑛
𝜽𝒏……

……

……
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Figure 2.2: In the general framework of memory-based methods, for each task k,
we work with the current dataset Dk and the preceding memory set Mk−1. These
are combined to update our model. After the update, we derive a new memory
set Mk, which is then utilized for the next task.

2.4.3.1 Memory Set Management

Effective management of the memory set begins with the crucial task of data point
selection. Identifying the most critical data that retains knowledge and accurately
represents previous distributions remains an underexplored area. Initially, we de-
tail two prevalent memory selection strategies used in numerous memory-based
methods: Reservoir Sampling and Herding.
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• Reservoir Sampling often denoted as ER (Experience Replay), was ini-
tially proposed in [2] and later introduced to the field of Continual Learning
in key studies such as [61] and [45]. This method enables random selection of
data points without prior knowledge of the data stream’s total length, which
aligns perfectly with the demands of continual learning. The implementation
of this algorithm is detailed in Algorithm 1. This is often considered as an
important baseline.

• Herding is prominently utilized in iCaRL [24], which calculates the mean
of features for each class after training on each task, selecting data points
that are closest to this mean as shown in Algorithm 2. This method is
typically employed in class-incremental learning scenarios. However, its ap-
plication becomes problematic in online scenarios where task boundaries are
not clearly defined. In such cases, using all samples of each class to com-
pute the class mean is not feasible, especially when multiple domains exist
within a single class. Consequently, relying on a single class mean may be
insufficient.

Other memory selection methods as:

• Gradient-based sample selection (GSS)[59] proposes to maximize the
variance of gradient directions of the data samples in the replay buffer for
data sample diversity but with no guarantee that the selected data are class
representative. Furthermore, the replay buffer can be quickly saturated with-
out any further update when local maximum of gradient variance is achieved.

• Class-balancing reservoir sampling (CBRS)[80] considers scenarios
where the training data may be imbalanced, with unequal representation
of classes, the application of Reservoir Sampling could result in a similarly
imbalanced memory set in terms of class distribution. To address this, it is
proposed to implement random selection within each class while promoting
a balanced memory set by preferentially discarding samples from the most
populous class. However, this method does not account for the presence
of multiple domains within a class and may also result in the selection of
samples that are not the most representative of their respective classes.

• Partitioning Reservoir Sampling (PRS) [91] represents a variant of
Reservoir Sampling. PRS calculates a target allocation for each class in the
memory set based on the running frequency of each class. In contrast to
Class-Balanced Reservoir Sampling (CBRS), which stores an equal number
of samples for each class, PRS adjusts its strategy to reflect the training
distribution. However, both methods share similar drawbacks.
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• Online Corset Selection (OCS)[119] is a gradient-based memory selec-
tion method. This approach computes the gradient for each data point in
the training batch, assessing minibatch similarity and sample diversity based
on cosine similarity. Initially, OCS constructs a corset for training. After
training, it selects samples from the corset that best represent the overall
gradient characteristics of the corset in terms of cosine similarity for storage
in the memory set. However, in a continual learning scenario where model
parameters change over time, the gradients may only provide local informa-
tion and prove less useful over prolonged training processes. Additionally,
in imbalanced continual learning scenarios, OCS might overlook data from
less-represented classes.

• Rainbow Memory (RM) [104] enhances the diversity of the memory set
by estimating the uncertainty of an image. To calculate uncertainty, RM
applies various data augmentations to a given image and then computes
the variance in the model’s outputs across the different augmented views.
However, reliance on extensive data augmentation can significantly increase
computational costs. Furthermore, while enhancing diversity, this approach
may overlook important samples, such as those near the decision boundary,
which are crucial for effective model training.

• Coresets via Bilevel Optimization [79] addresses the coreset selection
problem in deep learning as a bilevel optimization problem. The outer
objective seeks to find a coreset that minimizes the total loss across the
entire dataset, while the inner objective aims to identify the best model
within the coreset. Because it calculates the Hessian matrix during selec-
tion, this approach utilizes a proxy model (functions in a reproducing kernel
Hilbert space associated with the Neural Tangent Kernel (NTK)). Although
it demonstrates effectiveness in small coresets, the computational complexity
of O(n2) increases with the size of the coreset, rendering it impractical for
larger coresets.

• Bilevel Coreset Selection via Regularization (BCSR)The approach
outlined in [136] leverages the framework of bilevel optimization to identify
the coreset. Unlike [79], which employs a proxy model utilizing the Neural
Tangent Kernel (NTK), BCSR directly incorporates the original model’s
architecture. It approximates the Hessian-inverse-vector product using a
specific quadratic programming solution, which can reduce computational
costs. However, the computational expense still increases rapidly with the
number of parameters in the model.
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Algorithm 1 Reservoir Sampling. M is the memory set, Nm is the memory
budget, N is the number of examples observed so far, and Bt represents the current
batch in time step t.

UpdateMemorySet(M, Nm, N,Bt)
for i in range(len(Bt)) do
xi, yi = Bt[i]
if Nm > len(M) then
M.append(xi, yi)

else
k = randint(0,N+i)
if k < Nm then
M[k] = xi, yi

end if
end if

end for
return M

Algorithm 2 Herding. Pc is the subset of memory set M for class c, Nm is
the memory budget, Nc is the number of classes observed so far, ϕθ is our feature
extractor with parameters θ,and Xc is the data of class c of the current task.

UpdateMemorySet(M, Nm, Nc, Xc, ϕθ)
Pc = [ ]
np =

Nm

Nc

µ = ϕθ(Xc)
len(Xc)

{Compute the mean of the features}
for i in range(np) do
pi = argminx∈Xc

||µ− 1
np
(ϕθ(x) +

∑i−1
j=1 ϕθ(pj))||

Pc.append(pi)
end for
M.append(Pc)
return M
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Besides the memory selection methods, there are also some methods study how
to retrieve samples from the memory set during training. Here, we present some
methods widely used in Continual leanring.

• Maximally Interfered Retrieval (MIR)[60] recognizes that certain sam-
ples are crucial for retaining previously learned information during training.
In practice, it employs a strategy where a pseudo-update is performed on the
current model using only the input batch. The method then evaluates the
increase in loss between the current model and the model after the pseudo-
update. Subsequently, it selects the top-K samples that most increase the
loss for inclusion in the training of the current model. This technique is
straightforward to integrate with other memory-based methods, as it does
not significantly increase computational costs. Typically, MIR enhances the
performance compared to random sampling.

• Adversarial Shapley Value Experience Replay (ASER)[98] employ
the concept of Shapley values, originally proposed by [1], to estimate the
utility (importance) of each sample in the memory batch and retrieve the
top-K important samples for training. Practically, it utilizes a KNN-based
classifier to assess the overall performance impact of discarding a sample,
which is then used to define the Shapley value of that sample. Due to the
computational cost associated with the KNN-based classifier, especially with
a large number of samples, the size of the retrieved samples is limited.

• Reweighted Sampling in [80], a method is proposed to assign a weight
to each class in the memory set, where the weight is inverse to the total
number of images in that class within the memory set. When retrieving
samples from the memory set, the probability of each sample being chosen
corresponds to its class weight. The benefit of this method is that it can
provide a more balanced memory batch for training, especially when the
memory set is imbalanced. This approach helps to ensure fair representation
of all classes during the training process.

2.4.3.2 Utilization of the Memory Set

In addition to memory management techniques, an important question remains
about how to effectively utilize these memory samples to retain previously learned
knowledge. We primarily discuss three aspects of using the memory set: 1.
Knowledge Distillation 2. Contrastive Learning 3.Bias in the Final Clas-
sification Layer
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Knowledge distillation is a powerful technique for preserving previously
learned knowledge and is considered a form of functional regularization. By trans-
ferring knowledge from a larger or previous model to a current smaller or updated
model, it helps to maintain performance consistency across model iterations.

• Learning Without Forgetting (LWF)[23] is the first work that intro-
duce knowledge distillation into the continual learning field. In their original
paper, it does not use the memory set. It uses a multi-head classfication
layers corresponds to the task identity. For each training task it use the final
output of the previous trained model as a target to constrained the current
model’s update. In rencent papers, they often combined knowledge distilla-
tion with the ER as a baseline which is often denoted as ER-distill or simply
as ER. Further more, EEIL[41] use also the final layer’s output to generate
the distillation loss. however, it separetly distill knowlege by divideve the
final output into old classes and new classed to solve the bias durning the
continual learning. In rencent year, AYT[157] propose to update the batch
normalization infomation of previous model by using the current training
data not a fixed teacher model as previous work.

• Pooled Outputs Distillation (PODNet)[81] comparing with LWF, it
not only considers the final layer’s output, it also considers the intermediate
layers’ output and try to retain knowledge by align the intermediate layers’
output of old and current model. This is a stronger constraint than sim-
ple distilation, if the distribution changes rapidly, it can hurt the model’s
plasticity to the new training data. eTag[152] continually refine the tarin-
ing process, it trains the feature extractor by distilling the output of the
intermediates layer and use a lightweight generator to produce task-specific
features to retain knowledge in the classfication layer.

• Incremental Classifier and Representation Learning (iCaRL)[24] use
a distillation at the feature level. It combines a memory set selected by
herding and a NCM classifier considred as an importance baseline for class-
incremental learning. Otherwise, LUCIR[64] propose to use cosine normal-
ization to the features, and then distill from the normalized features.

Contrastive Learning is increasingly employed in various memory-based meth-
ods, enhanced by data augmentation to improve representation learning during
training. This approach solidifies the distinctions and similarities among samples,
thus enhancing the robustness of the learned representations. Below, we outline
some notable methods:
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• Supervised Contrastive Replay (SCR)[111] utilizes the Supervised
Contrastive Learning Loss (SCL) from [90], combined with data aug-
mentation. It integrates the Nearest Class Mean (NCM) classifier, achieving
superior performance compared to traditional memory replay methods such
as ER and MIR. However, the original form of SCL may face convergence
issues in continual learning scenarios.

• Continual Prototype Evolution (CoPE) [93] employs a proxy-based
contrastive learning loss to retain knowledge. It calculates a proxy for each
class during training and updates these proxies using a moving average in on-
line training. The method constructs a contrastive learning loss akin to SCL
using these proxies. Moreover, Proxy-based Contrastive Replay (PCR)
[140], another proxy-based method, replaces the positive and negative pairs
in the supervised contrastive learning loss with learned proxies, facilitating
faster convergence and reducing bias in the final classification layer.

• Prototype Augmentation and Self-Supervision (PASS)[121] stores a
prototype for each class instead of actual images. During training, it distorts
these prototypes by applying Gaussian noise and then directly feeds them
to the classifier. To foster the learning of more transferable features across
tasks, PASS also incorporates a self-supervised learning loss (SSL) with la-
bel augmentation[67]. This method achieves state-of-the-art performance in
class-incremental learning among memory-free methods. However, it may
not perform as well in other scenarios, such as domain incremental learn-
ing or more complex real-world situations where the class prototypes do not
capture the full class information.

• Online Continual Learning through Mutual Information Maximiza-
tion (OCM) [124] posits that cross-entropy (CE) primarily learns discrimi-
native features for each task, which may not translate well to other tasks. To
address this, it proposes maximizing the mutual information between past
and current data. Various data augmentation techniques, such as local and
global rotations, are used to construct an InfoNCE-like[50] contrastive loss.
Despite its high computational cost, it serves as a strong baseline.

• Online Prototype Learning for Online Continual Learning (OnPro)
[145] targets shortcut learning in online continual learning. It computes on-
line prototypes for both original images and their augmented versions, con-
structing a contrastive loss based on the similarity between the original and
augmented prototypes to overcome shortcut learning. To further compact
the feature space, it also employs the original SCL at the instance level.
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Utilizing similar data augmentation techniques as OCM, it achieves state-
of-the-art performance, although at a significant computational expense.

Bias in the final classification layer was first identified by [74] who noted
a model’s propensity to predict recently seen classes by analyzing the confusion
matrix of predictions. Subsequently, [76] examined the weight vectors of the final
layer across different classes, finding that the norm of the weight vector for recently
learned classes was significantly higher than that of older classes, indicating a bias
toward newly learned classes. Recent studies, such as [78, 135], have attributed
this bias primarily to the use of cross-entropy loss during training. The loss from
cross-entropy at a data point (x, y) can be calculated as follows:

Lce(fθ(x), y) = −
C∑
i=1

ycilog(pci) ; pci =
eoi∑C
j eoj

(2.24)

Here, θ represents the model parameters and the output logits are θ(x) =
[o1, o2, . . . , oC ]. The probability pci corresponds to corresponds to the class ci prob-
ability computed from the softmax function over C, the total number of classes in
the final classification layer. The vector y is a one-hot vector where yci ∈ {0, 1}.
The gradient for each output logit is derived as:

∂Lce(θ(x), y)

∂oi
= pci − yci (2.25)

This formula reveals that for the target class, where yci = 1, the gradient
becomes pci − 1 which is negative, effectively reducing the logit of the target class.
Conversely, for other classes, the gradient is pci , which is positive and increases
the logit of non-target classes. During training, particularly in a class-incremental
learning scenario where batches predominantly contain data from current classes,
this mechanism introduces a strong bias. To address this phenomenon, several
solutions have been proposed, which aim to mitigate the inherent bias introduced
by cross-entropy loss.

• Nearest-Class-Mean Classifier (NCM)[14] is widely utilized in various
continual learning methods such as[24, 111, 81, 102]. This classifier replaces
the traditional fully-connected classification layer with an NCM, which lever-
ages the features stored in the memory set. During inference, the NCM as-
sesses the distance between the feature vector of the test data and the class
means, which are either calculated during training or derived from the mem-
ory set. This approach effectively reduces the bias towards currently learned
classes, typically observed in the final layer of the network. However, the ef-
ficacy of the NCM largely depends on the quality of the class means. These
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means are usually computed from a memory set, which may not adequately
represent the entire class if there is a domain shift within the class during
training. This limitation highlights the need for careful management of the
memory set to ensure that it remains representative of each class’s features
over time.

• Weight Alignement (WA) proposed by [76], is a post-processing method
used during inference to mitigate class imbalance. It involves evaluating the
average norms of the weights associated with old and new classes and calcu-
lating the ratio between them. This ratio is then used to adjust the output
logits, thereby boosting the logits of older classes. While straightforward
to implement, this method does not address imbalances within old classes
themselves nor does it account for domain variations.

• Post-Scaling[109] is another post-processing technique that tracks the num-
ber of data instances encountered for different classes. It computes a bias
correction term as log(pn(c)

pi(c)
) where pi(c) represents the ratio of the sample

number of class i to the total encountered images, and pn(c) represents the
uniform distribution as 1/C, where C is the total number of classes. This
term is directly added to the output logits to enhance outputs for classes with
fewer samples and reduce them for classes with more samples. Although this
method is simple to implement and can adjust logits effectively, it does not
aid in retaining learned features from underrepresented classes.

• GDumB[97] employs a greedy balancing sampler designed to maintain a
balanced memory set across classes. Prior to inference, the method involves
retraining the final classification layer exclusively with data from this bal-
anced memory set, effectively reducing bias introduced by class imbalance.
However, the overall performance of the classifier is highly contingent on the
size and representativeness of the memory set. While GDumb simplifies the
management of the memory set by ensuring balance, this approach can also
be critiqued for its potential to oversimplify complex class distributions.

• Bias Correction Layer is from BiC[74] is another post-processing method,
comparing with GDumB, it not retrain the final classification layer but add
a liner correction layer trained only on a small balanced set.

• Asymmetric Cross-Entropy (ER-ACE), proposed in [122], addresses
the overlap of representations between old and new classes caused by the
classic cross-entropy loss. It suggests using the following objective instead of
the classical cross-entropy loss:

Lace = Lce(Bm, Cold ∪ Ccurr) + Lce(Bcurr, Ccurr) (2.26)
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Here, Bm represents the batch sampled from the memory set, and Bcurr de-
notes the current batch. The sets Cold and Ccurr represent the previously seen
classes and the classes in the current batch, respectively. When using the
memory batch, this method activates all output logits to help separate fea-
tures of current from old classes. Conversely, when using the current batch,
it activates only the logits corresponding to the current classes to foster
learning of discriminative features within new classes. This approach helps
alleviate the label imbalance between current and previously seen classes.

• Gradient Self-Adaptation (GSA)[135] observes that the gradients of the
final layers are imbalanced during online continual learning, stemming from
data and cross-task class imbalances. It proposes computing the rate of accu-
mulated positive and negative gradients and embedding this rate to adjust
the cross-entropy loss. This method can effectively improve performance;
however, its benefits are still limited when task boundaries are unknown.

2.4.3.3 Others

Several other methods that are not covered in the previous sections can also miti-
gate catastrophic forgetting, including:

• Online Update with Moving Average: This strategy is based on the as-
sumption that knowledge is stored within the parameters of a neural network.
When a previous model is adaptable to new data, the new knowledge is incor-
porated into the parameters of the new model. In an online continual learning
scenario, defining a teacher model using distillation techniques can be chal-
lenging. It updates the teacher models by employing an exponential moving
average (EMA) of the previous and current models after training a batch.
This EMA-based teacher model, which contains both old and new knowl-
edge, is considered effective. Unlike the classical EMA approach, SDP[139]
utilizes two auxiliary models for a more refined update of the teacher model.
Similarly, MKD[164] uses multiple auxiliary models combined with data aug-
mentation to compute a KL-divergence loss. CLeWI[154] employs a novel
interpolation technique proposed in [138] to merge two neural networks and
updates the post-training statistics of the batch normalization layers.

• Exemplar-free Methods: Specifically, in the Class-Incremental Learn-
ing scenario, exemplar-free methods are predominantly prototype-based and
combined with the Nearest Class Mean (NCM) classifier. SDC[102] pro-
poses storing the mean features of each class as prototypes and updates the
existing prototypes by evaluating the average movement of the current sam-
ple in the feature space, both before and after the model update. Building
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on SDC, ADC[151] uses adversarial samples to calculate the average move-
ment of previous prototypes in the feature space. LDC[163] introduces a
learnable projector to adapt previous prototypes to the new feature space.

Table 2.3: Summary of recently proposed continual learning methods, catego-
rized by settings, mechanisms, and techniques employed. In the table, ”TIL,”
”CIL,” and ”OCL” correspond to the scenarios of task-incremental learning, class-
incremental learning, and online continual learning, respectively. ”Reg,” ”Mem,”
and ”PI” represent three categories of continual learning methods: regularization-
based, memory-based, and parameter isolation (architecture-based). The tech-
niques include ”DA” for data augmentation; ”ConL” for contrastive learning loss;
”KD” for knowledge distillation; ”Gene” for generative replay; ”PP” for post-
processing; ”EMA” for exponential moving average; and ”Pt” for prototype-based
methods.

Settings Mechanisms Techniques
Methods TIL CIL OCL Reg Mem PI DA ConL KD Gene PP EMA Pt

EWC[30], SI[39], MAS[27]
✓ ✓ ✓ ✓

R-EWC[48], ALASSO[68],RWalk[70]
VCL[72], VAR-GP[89], GRS[92]

✓ ✓ ✓ ✓ ✓
A-GEM[42], GEM[34], OGD[62]
MER[52], La-MAML[84] ✓ ✓ ✓ ✓ ✓
ODDL[131],CN-DPM[94] ✓ ✓ ✓ ✓ ✓ ✓
Piggyback[49], HAT[53]

✓ ✓
PackNet[35], UCL[57], CLNP[63]
PNN[25], DER[118], DyTox[107] ✓ ✓ ✓ ✓ ✓
ER[61], GSS[59], MIR[60]

✓ ✓ ✓ ✓CBRS[80], DSDM[129], OCS[119]
CBO[79], BSCR[136], ASER[98]
iCaRL[24], LUCIR[64], EEIL[41]

✓ ✓ ✓ ✓
PODNet[81], eTag[152],AYT[157]
LwF-MC[23], LwM[44], DMC[103] ✓ ✓ ✓ ✓ ✓
WA[76], PS[109], GDumB[97] ✓ ✓ ✓ ✓ ✓
BiC[74] ✓ ✓ ✓ ✓ ✓
SCR[111], ER-ACE[122]

✓ ✓ ✓ ✓ ✓ ✓ ✓
OCM[124], GSA[135]
SDC[102], ADC[151], LDC[163] ✓ ✓ ✓ ✓ ✓
PASS[121] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CoPE[93], OnPro[145], PCR[140] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SDP[139],CLeWI[154],MKD[164] ✓ ✓ ✓ ✓ ✓ ✓ ✓
MeRGAN[55], lifelongGAN[75], GD[142] ✓ ✓ ✓ ✓ ✓
DDGR[134],DiffClass[156],GUIDE[150] ✓ ✓ ✓ ✓ ✓

2.5 Diffusion Models in Continual Learning

Currently, the state-of-the-art performance is achieved by memory-based methods
in continual learning scenarios. It means that a memory set is nessesary. However,
in some situations, the original data is not accessible due to privacy or safety issues.
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A successible strategy by using a generative model to reproduce the prvious data is
used in continual learning as in [55, 75, 116]. In recent years, diffusion models has
attracted much more attention [86, 114, 106] in generating high-quality images.
Some papers[142, 134, 156, 137] start study the potential of using diffusion models
in continual learning. Here, we provide a breif introduction of diffusion models
and current attemps of using diffusion models in continual learning scenarios.

2.5.1 Denoising Diffusion Probabilistic Models (DDPM)

The Denoising Diffusion Probabilistic Model (DDPM) is a generative model that
transforms a gaussian distribution into a complex one through a series of learnable
diffusion steps. This model comprises two primary processes: the forward process,
which progressively adds noise to data, and the reverse process, which attempts
to reconstruct the original data by removing the noise. Both processes can be
modeled as Markov chains.

Given a data sample x0 drawn from the real data distribution q(x), the forward
process introduces Gaussian noise over T timesteps, resulting in a sequence of in-
creasingly noisy samples x1, . . . , xT . The relationship between consecutive samples
is defined by the equation:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2.27)

where βt are predefined noise levels at each timestep. The overall forward
transition is the product of the transitions at each step:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2.28)

In the model, we define αt = 1− βt and ᾱt =
∏t

i=1 αi. Using these, the sample
xt at any timestep t can be expressed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ ; q(xt|x0) = N (xt;

√
ᾱtx0, 1− ᾱtI) (2.29)

The noise schedule βt is typically predefined, with earlier works like[87] using a
linear schedule, while later improvements by [112] adopted a cosine-based schedule
to optimize the negative-log-likelihood (NLL) of generated images.

During training, the model learns to predict the noise added at each timestep
based on the noisy image, which is essential for the reverse process—iteratively
reconstructing less noisy images until a denoised image is obtained.

In the reverse process of DDPM, the goal is to reconstruct the original im-
age from its noised version by effectively reversing the forward diffusion process.
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Algorithm 3 Training

1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on ∇θ∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ)∥2

6: until converged

However, directly computing the conditional probability p(xt−1|xt) is not straight-
forward as it is not explicitly defined in the forward process. Using Bayesian
inference, the conditional distribution p(xt−1|xt, x0) can be derived as follows:

p(xt−1|xt, x0) = N (xt−1|µ̂t(xt, x0), β̂tI) = p(xt|xt−1, x0)
p(xt−1|x0)

p(xt|x0)
(2.30)

Here, p(xt|xt−1, x0), p(xt−1|x0), and p(xt|x0) are Gaussian distributions, and
their means and variances are known from the forward process. The expression
for µ̂t and β̂t can be computed as follows:

µ̂t =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵt) ; β̂t =
1− ᾱt−1

1− ᾱt

βt (2.31)

where αt and ᾱt are parameters from the forward process as defined previously,
and ϵt is the estimated noise. The variance β̂tI adjusts as we step backwards,
reflecting the decreasing uncertainty as we approach the original data.

The reverse process is iterative, where at each step, the model estimates the
less noisy image xt−1 from a noisier image xt using the model’s learned parameters.
This process continues until the original image is reconstructed from the noised
image at xT

Algorithm 4 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: xt−1 =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σtz

5: end for
6: return x0

In the DDPM, the variance σ2
t of the noise added in the reverse reconstruction

process is typically set equal to βt. In the Denoising Diffusion Implicit Model
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(DDIM)[99], σt is instead set to zero, which makes the reverse process deterministic
and thus more computationally efficient.

Although diffusion models are capable of generating high-quality images, their
reverse process often requires substantial computational resources, limiting their
practical applications. Several methods have been proposed to reduce the com-
putational cost of the reverse process. For instance, DDIM uses a deterministic
reverse process, which can significantly reduce the number of reverse steps required.
Another approach is Progressive Distillation[130], which distills trained deter-
ministic samplers into new models with halved sampling steps. The student model,
initialized from the teacher model, denoises towards a target where one student
DDIM step corresponds to two teacher steps, as opposed to using the original
sample x0 as the denoising target. Through iterative progressive distillation, the
number of sampling steps can be halved in each iteration. Additionally, Consis-
tency Models[143] learn to map any intermediate noisy data points xt, t > 0, on
the diffusion sampling trajectory, back to its origin x0 directly.

2.5.2 Continual Learning Methods

In the context of continual learning, diffusion models are increasingly being ap-
plied as an alternative to traditional memory buffers during the training on new
data. These models leverage their generative capabilities to recapitulate previous
knowledge, thereby alleviating issues related to catastrophic forgetting.

• Diffusion-based Generative Replay (DDGR)[134] utilizes a class-
conditioned generative model to substitute the traditional memory set. Prior
to each task, DDGR employs the previously trained diffusion model to gener-
ate a number of synthetic samples equivalent to the current training dataset.
Both the diffusion model and the classifier are then retrained using these syn-
thetic samples alongside real data. Although this method leverages the high
quality and diversity of images produced by diffusion models to achieve state-
of-the-art performance in class-incremental learning, it does not address the
computational costs associated with full generation steps of diffusion models.

• Stable Diffusion for Distillation and Replay (SDDR)[137] incorpo-
rates a pre-trained stable diffusion model to generate supplementary sam-
ples during training. This straightforward application of diffusion models in
continual learning shows consistent improvement in performance. However,
because the pre-trained model remains fixed, it cannot adapt to shifts in
data distribution during training, posing challenges in dynamic real-world
scenarios.
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• Diffusion-Based Class Incremental Learning (DiffClass)[156] main-
tains a distinct diffusion model for each task, utilizing these models to gen-
erate data from previous tasks. When training a new task, it employs multi-
distribution matching to augment synthetic images. Despite its effectiveness,
this method requires expanding the architecture with each new task, which
may be impractical in environments with limited storage.

• Generative Distillation[142] utilizes a previously trained diffusion model
as a teacher to generate noisy images, which are then used to distill knowledge
into the current model. This strategy allows for updates in boundary-free
scenarios and leverages synthetic image generation prior to each task. How-
ever, the simple distillation approach does not fully exploit the capabilities
of diffusion models, limiting the potential performance improvements.

• Guidance-based Incremental Learning with Diffusion Models
(GUIDE)[150] employs a class-conditional diffusion model to generate sam-
ples that potentially lie on decision boundaries, thus enhancing classification
accuracy. This approach introduces class information during the genera-
tion process, similar to earlier methods that stored real images[104]. While
GUIDE improves classification performance, the need for continual updates
of the diffusion model remains a challenge for enhancing the overall model
performance.

2.6 Positioning

In this thesis, we tackle several pressing challenges within the realm of continual
learning (CL), specifically in contexts where traditional approaches falter due to
blurred task boundaries, data imbalance, data privacy, and computational ineffi-
ciency. Our three primary contributions each address distinct aspects of these chal-
lenges, collectively pushing forward the state of CL by introducing novel method-
ologies that are both scalable and practical.

Traditionally, the CL community has focused on scenarios such as Task-
Incremental Learning (TIL), Class-Incremental Learning (CIL), and Domain-
Incremental Learning (DIL), which assume well-defined task boundaries and sig-
nificant shifts in data distribution without any overlap between tasks. However,
in dynamic real-world applications like waste sorting, data collected from different
regions and seasons are not entirely distinct, often displaying considerable over-
lap. This overlap indicates that task boundaries in such real-world scenarios are
inherently blurred, which challenges traditional CL paradigms.

To better accommodate these real-world complexities, we propose a novel sce-
nario named Distribution-Shift Incremental Learning (DS-IL). This frame-
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work facilitates soft task boundaries with potential mixtures of data distributions
across tasks, reflecting the more nuanced and intertwined nature of real-world
data. Existing methods typically depend on maintaining a memory set or neces-
sitate expanding the architecture for each new task, approaches that significantly
increase both computational costs and storage requirements [81, 34, 24, 25, 118].

To address these issues, particularly the problem of forgetting in blurred bound-
ary scenarios, we introduce an entropy-guided method that eschews the need for
a memory set. By using entropy as an indicator to assess whether the previously
trained model recognizes current samples, which indicates overlap, we adaptively
adjust the knowledge distillation process. This method leverages the inherent
data overlaps to refine model training dynamically, effectively mitigating forget-
ting without the overhead associated with traditional approaches. Our experiments
demonstrate that this entropy-guided approach significantly alleviates forgetting
in DS-IL scenarios, as detailed in Chapter 3.

In our initial experiments, when applying our entropy-guided approach to com-
plex scenarios where data distributions shift rapidly, such as transitioning from real
images to sketches, the method proved inadequate. This limitation highlighted the
necessity of a memory set to manage drastic changes in data characteristics effec-
tively. Current memory-based methods, often evaluated using balanced datasets
like CIFAR-10, CIFAR-100, and ImageNet, tend to underperform in imbalanced
continual learning scenarios [24, 61, 59, 98, 60]. These methods struggle primarily
due to their inability to manage the imbalance across different classes and do-
mains effectively. Specifically, models tend to develop a bias towards dominant
categories, and similarly, the memory sets mirror these biases. Another critical
issue is the insufficient acquisition of knowledge from underrepresented categories,
leading to poor performance on the test set.

To address these challenges, we propose a refined approach focusing on two key
aspects: 1) effective management of the memory set, and 2) strategic utilization
of the memory set. Our method first relies on feature-based similarities between
memory sets and current samples. These similarities enable the selection of more
representative samples that enhance the inter-class similarity and intra-class vari-
ance within the memory set, thus creating a more balanced training environment.
Furthermore, to augment the generality and robustness of our model, we incorpo-
rate the memory set alongside current samples to generate a contrastive learning
loss. This approach not only preserves past knowledge but also enhances the
model’s adaptability and performance across varied and evolving data distribu-
tions.

Our experiments demonstrate that this method significantly outperforms exist-
ing approaches in scenarios characterized by imbalanced data distributions. The
comprehensive details and empirical validations of our approach are presented in
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Chapter 4.
While memory-based methods have achieved state-of-the-art performance in

various continual learning scenarios, modern challenges associated with data pri-
vacy and commercial competition restrict their practicality. Prominent AI com-
panies such as OpenAI, Google, and Microsoft have opted for closed-source ap-
proaches, which complicate the storage of real images in memory sets. As a result,
leveraging generative models to synthesize training samples presents a viable alter-
native. Previous studies have employed Generative Adversarial Networks (GANs)
to generate historical data samples [54, 75]; however, these models often suffer from
rapid degradation in image quality during continual training. This degradation is
primarily due to the accumulation of errors as the model is trained sequentially
across tasks, leading to significant deterioration in both image generation and
classification performance.

In response to these issues, diffusion models have gained significant attention
for their ability to generate high-quality images. Recent approaches in the commu-
nity have started integrating diffusion models into continual learning frameworks
[155, 134, 153, 156]. These methods typically utilize diffusion models as replay
buffers to enhance classification accuracy. However, they often overlook critical
challenges such as the computational costs associated with generating images and
the complexities involved in continually training diffusion models.

Our final contribution addresses these gaps by focusing on how to train dif-
fusion models continually and efficiently, which is crucial for their application in
realistic settings. We introduce a novel framework that incorporates strategies such
as Noisy Intermediate Generative Distillation (NIGD), Signal-Guided Generative
Distillation (SGGD), and Exponential Moving Average (EMA). These strategies
enable the efficient and effective continuous training of diffusion models within
an online continual learning framework. By optimizing the training process, our
approach reduces computational overhead and minimizes the error accumulation
over successive tasks, thereby maintaining the quality of generated images and the
model’s classification accuracy.

Collectively, these contributions not only address specific technical hurdles but
also synergize to form a robust framework for continual learning. This framework
enhances the scalability and applicability of continual learning systems across a
variety of domains, making it a valuable asset for practical deployment in dynamic
and resource-constrained environments.
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Chapter 3

Continual Learning with Blurred
Task Boundaries

In this section, we firstly consider a specific realistic scenario where the task bound-
aries are blurred and there is an overlapping between tasks. In this scenario, we
propose an entropy-guided distillation method which use the entropy informa-
tion as an indicator to find the part of overlapping. and distill knowledge from
the overlapping to overcome catastrophic forgetting. This work is presented in our
published paper ”Entropy-Guided Self-Regulated Learning Without Forgetting for
Distribution- Shift Continual Learning with blurred task boundaries” [146].

3.1 Motivation

Continual Learning (CL) has emerged as a critical avenue in machine learning,
enabling models to adapt to evolving information without discarding previously
acquired knowledge. This capacity is indispensable for applications in dynamic
environments, such as autonomous vehicles and healthcare monitoring systems,
where data distributions shift over time. Traditional CL methods [24, 81, 41, 74,
64] generally assume clear and discrete task boundaries, such as TIL, CIL, and
DIL [73, 46], and perform well under controlled conditions where tasks are strictly
separated. However, these assumptions do not hold in some real-world scenarios
where data from multiple tasks often overlaps, leading to blurred or non-existent
task divisions.

Recent efforts to address this challenge, including the NIC scenario [33] and the
Continuous Task Agnostic model [120], remain limited in scope. NIC focuses on
new classes and instances within a single dataset, restricting its applicability, while
the Continuous Task Agnostic model handles only linear task shifts, overlooking
the more complex patterns of data evolution that arise in practice. Consequently,
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many studies confine DIL and CIL to isolated domains and neglect their inherent
interconnectedness.

In practical settings such as waste sorting and robotic navigation, the same ob-
jects or environments can recur in slightly different forms across multiple sessions.
These repeated yet shifted distributions strain conventional CL systems, which of-
ten suffer from catastrophic forgetting the inadvertent erosion of previously learned
information when new data is introduced. Existing solutions further require large
memory buffers or specialized model architectures, increasing computational costs
and raising privacy concerns.

To address these shortcomings, we propose a new CL framework called
Distribution-Shift Incremental Learning (DS-IL). DS-IL is designed to accom-
modate overlapping data distributions across tasks, thereby facilitating smoother
transitions that better mirror real-world conditions. Our approach integrates an
entropy-guided self-regulated knowledge distillation procedure, which eliminates
reliance on stored past data for guidance and mitigates both storage and privacy
issues. By using entropy measurements to identify similarities between newly en-
countered samples and previously learned tasks, the model dynamically adjusts its
learning priorities and preserves relevant knowledge.

The shift to DS-IL represents a significant advancement in the field of CL,
aligning more closely with the complex and unpredictable nature of real-world
data. This approach not only enhances the model’s ability to learn continually in
a more natural and less constrained manner but also reduces the computational
overhead associated with traditional methods. The introduction of DS-IL, tested
on benchmarks like PACS[31] and CIFAR-100[10], demonstrates promising results
in maintaining high performance across continually evolving data landscapes with-
out the need for extensive memory storage or computational resources.

3.2 Distribution-Shift Incremental Learning

(DS-IL)

For simplicity without loss of generality, let us consider only two tasks T1 and T2

with their data D1 for T1 : {xi, yi}i∈1:n1
drawn from a joint distribution p1(x, y),

and D2 for T2 : {xi, yi}i∈1:n2
drawn from a joint distribution p2(x, y). Let l be

the loss function (cross-entropy for classification). Let ϕ be the output of the
model, and θ its parameters. Then, we can construct the objectives for T1 and T2,
respectively:

T1 : L1(D1, θ) =

n1∑
i=1

l(ϕθ(xi), yi)) (3.1)
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T2 : L2(D2, θ) =

n2∑
i=1

l(ϕθ(xi), yi)) (3.2)

Gradient descent, such as Stochastic Gradient Descent (SGD), can be used to
update the parameters θ to minimize the objective function. If p1(x, y) equals
p2(x, y), L1 approximates L2. Thus, when training only with D2, L1 will not
increase and the model will not forget T1. However, if p1(x, y) is very different
from p2(x, y), the gradient direction of L1 may violate the gradient direction of
L2 when updating the parameters only with the gradients of L2. Therefore, the
objective function L1 will increase, and the phenomenon of catastrophic forgetting
will occur.

From a Bayesian perspective, the joint distribution p(x, y) can be decomposed
as follows:

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (3.3)

p(x) and p(y) denote the probability density of the input and output, respec-
tively. p(x|y) denotes the conditional probability of an output given an input.
p(x|y) denotes the conditional probability of an input given an output. For con-
tinual learning, the shift of these four terms is primarily involved, e.g., p(x) mainly
changes in Domain-Incremental Learning (DIL), whereas p(y) mainly changes in
Class-Incremental Learning (CIL). We can create different scenarios by adjusting
the proportion of these four terms.

From this data distribution shift perspective, it is easy to interpret DIL or CIL
as DS-IL and extend them to Smooth-DIL or CIL when task transitions are blurred
and data distributions mixed up. Thus, DS-IL is a continual learning scenario in
which models learn knowledge by successively shifting p(x), p(y), p(x|y) and p(y|x)
on tasks.

3.2.1 From CIL to DS-IL

For a classic CIL, each new task only contains a few new classes. Thus, the density
probability of the previous classes equals zero, and some new output variables y
appear. The CIL setting can be considered to be an extreme case of the DS-IL
setting where data labels are only available for the novel classes of the second task
T2. Thus, p(y) changes rapidly. By smoothing the change of p(y), we can increase
the similarity between tasks and generate a smoother and more flexible version of
CIL, as shown in Figure 3.2.
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Figure 3.1: Illustration of TIL in which the data have both class id and task id.
Moreover, task id is provided for both training and testing.

3.2.2 From DIL to DS-IL

The classic DIL defines each domain as a single task with well-defined task bound-
aries. This means that the domain shift is discontinuous. Thus, we can quickly
transform a DIL into a CIL by labeling the data with domain and class labels as
shown in Figure 3.3, thereby interpreting DIL as DS-IL. However, in many real-
life applications, there are no clear and well-defined task boundaries with evident
domain labels. Task transitions can be fuzzy, and data distributions of different
tasks can overlap and mix up, resulting in a Smooth-DIL as shown in Figure 3.3,
which is enabled by DS-IL.

3.3 Entropy-Guided Self-Regulated Learning

without Forgetting

To ensure simplicity without loss of generality, we consider the same hypotheses as
in Section 3.2. There are only two tasks. From Equation (3.1) and Equation (3.2),
we can derive the joint objective for both task 1 and task 2 as:

Ltotal = L1 + L2 (3.4)

=
∑
D1

l(ϕθ(xi), yi)) +
∑
D2

l(ϕθ(xj), yj))

When training on T2, if we could store all the data from T1, then we can
construct the objective L1. However, for CL, we can only use a small part or none
of D1 (dataset for T1). Thus, the core problem is how to approximate L1.
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Figure 3.2: Illustration of CIL and Smooth-CIL using three tasks with three
classes. In the original CIL setting, each task only contains instances of one class.
The Smooth-CIL breaks this limit, and each task may have multiple classes. Thus,
the shift of p(y) in our scenario is smoother.

3.3.1 LWF (Learning without Forgetting)

LWF[23] proposes to use the previous model to generate a soft label and replaces
the cross-entropy loss with a distillation loss. In this work, to fit our scenario, we
only use the concept of knowledge distillation to represent LWF . θ∗ represents
the parameters learned from T1; llwf corresponds to the distillation loss; M is the
memory set which is from D1 and D2. Then, the new objective is as follows:

L̂total = L̂1 + L2 (3.5)

L̂1 =
∑
M

llwf (ϕθ(xi), ϕθ∗(xi)) (3.6)

LWF uses distillation loss to approximate the previous objective function L1.

3.3.2 The proposed ER-LWF approach

As we discussed in Section 3.2, the distribution shift between tasks is not always
rigid and discontinuous. Thus, some current data may possibly be similar to
previous data. Here, we use D1 ∩D2 to represent the set of similar data. It then
becomes crucial to find this intersection without access to D1. We propose to use
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Figure 3.3: Assume there are two domains, and each domain contains the same
class labels. The classic DIL considers each domain as a single task. In Smooth-
DIL, each task can contain two domains, but the distribution of different domains
is different for each task. Therefore, from DIL to CIL, we can label data by using
both the domain label and the class label. In this figure, there are four different
labels, corresponding to four tasks.

the output of the previously learned model to verify if the data are similar. Let
EI denote the entropy. Then, EI for given data is defined as follows:

EI(x, y) = EI(p(y|θ∗, x)) = EI(softmax(ϕ(y|θ∗, x))) (3.7)

The closer EI is to zero, the more familiar and confident the model is about
the input data, and the more corresponding data is valuable for reconstructing the
L1. On the contrary, if EI is large, output distribution is close to discrete uniform
distribution. This means that the model hardly classifies the given input data.

Rather than looking for similar data in D1 ∩ D2, we propose to use EI to
modulate distillation loss. Given an N-class classifier, the upper-bound of EI over
its outputs corresponds to discrete uniform distribution:

EIupper = −
N∑
1

(
1

N
log(

1

N
)) = log(N) (3.8)

0 ⩽ EI(x, y) ⩽ log(N) (3.9)

Thus, we can define our Entropy−Guided weight (EG-weight) for given data
as follows:
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weg(x, y) = 1− EI(x, y)

log(N)
(3.10)

Then, the previous objective function could be approximated as:

L̂1 =
∑
D2

weg(xi, yi)llwf (ϕθ(xi), ϕθ∗(xi)) , (xi, yi) ∈ D2 (3.11)

From Equation (3.11), we only use the current data D2 and our EG-weight
to approximate the previous loss function. The benefits of this formulation are
threefold:

• Memory is not necessary;

• weg(x, y) can verify if a model is familiar with data from D2 or not. If the
model is familiar with data, then weg(x, y) will be close to 1, else it will be
close to 0;

• It can be used for online updates.

The corresponding algorithm, ER-LWF, is detailed in Algorithm 5.

3.4 Experiments on Academic Datasets

In this section, we first present our experimental protocols under DS-IL in Sec-
tion 3.4.1 and then introduce the methods we use in Section 3.4.2. Finally, the
results are discussed in Section 3.4.3.

3.4.1 Experimental protocols

As we discussed in Section 3.2, we can generate a Smooth-CIL and a Smooth-DIL
for classic CIL and DIL, respectively. In this section, we continue this idea and
conduct experiments on two datasets: PACS and CIFAR-100.

PACS is an image dataset originally for data generalization[31]. It consists of
four domains: photo, art painting, cartoon, and sketch. Each domain contains
seven classes. For simplicity, each image is resized to 64×64 for all scenarios, and
20% of each domain is used to construct our test set. We repeated each experiment
three times.

First, for DIL, the dataset is divided into four tasks. Each task has one domain.
The learning order arbitrarily chosen is: art − painting → cartoon → photo →
sketch.
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Algorithm 5 ER-LWF for continual learning

Train(θ,D, n, T )
D: # dataset; θ: # model parameters;
T : # of tasks; N : # of batches
for t = 1:T do
for n = 1:N do
sample data (xn, yn) from Dt;
# CE: Cross-Entropy loss;
lcurrent = CE(ϕθ(xn), yn);
if t >1 then
# KD: knowledge distillation loss;
# θ∗: previous model parameters;
llwf = KD(ϕθ(xn), ϕθ∗(xn))
# weg(xn, yn) : EG-weight;
lER−LWF = weg(xn, yn) ∗ llwf

else
lER−LWF = 0

end if
ltotal = lcurrent + lER−LWF

Update(ltotal, θ)
end for

end for
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We then generate six tasks containing all seven categories for Smooth-DIL.
However, the four domains are mixed up with different proportions over the six
tasks, and also the domain ratio is randomly generated. To compensate for this
randomness, we generate three experiments with varying domain ratios.

In our CIL under the DS-IL perspective, each task contains all the categories.
However, there is only one dominant class, and others have few exemplars. PACS
has seven classes. Thus, we consider seven tasks, where each task contains only
one dominant class.

Similar to Smooth-DIL, Smooth-CIL has six tasks for which the category ratio
changes. The category ratio is randomly generated. We generate three experiments
with varying proportions of the class.

CIFAR-100 [10] has 20 superclasses, where each superclass contains five classes.
Each class comprises 600 images, of which 500 are used for training and 100 for
testing. To use the dataset in our experiments, we need to create a notion of the
domain in CIFAR-100. For example, there is a superclass fish that corresponds to
five classes: aquarium fish, flatfish, ray, shark, trout. Each can be seen as a domain
of fish. Thus, we use the superclass label as our new class label and the original
class label as the domain label. Finally, the original CIFAR-100 is transformed
into a dataset containing 20 classes and five domains. For simplicity, we keep the
same training set and test set as the original version of CIFAR-100. We use the
original image size that is 32*32*3. Each experiment is repeated three times.

Then, the rest is similar to the PACS dataset. For DIL, each superclass has
five domains (subclasses). Thus, we generate five tasks for DIL. Then, we generate
eight tasks containing different domain distributions for Smooth-DIL. We created
ten tasks for CIL, where each task has two dominant classes. Finally, for Smooth-
CIL, we produced eight tasks containing different class label distributions. We
provide the details in the supplementary material to ensure completeness.

3.4.2 Training Methods

We use the standard PyTorch[69] implementation of ResNet-18[17] in both proto-
cols. Because our method does not use memory, we mainly compare our approach
to other regularization-based methods (online-EWC, SI, LWF without memory).
We also test ER and LWF as the baselines of memory-based methods. FOO-
VB[120], which targets the task agnostic CL scenario, is also tested for compari-
son.

We use Cumulative and Fine-tuning as the upper bound and lower bound,
respectively. Cumulative means that all of the data seen so far are available for
each training. Fine-tuning means that the previous model parameters are used
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as the initial parameters for the next task. Furthermore, the memory budget is
set to 400 for PACS and to 1000 for CIFAR-100.

To ensure a fair comparison, we turn off the data augmentation for all experi-
ments. We rely on the Adam optimizer[15], which is re-initialized for each task. All
hyperparameters are selected by a grid search on the validation set. Our network
is trained on a single RTX 3070 8GB GPU and an i7-10700 8-core CPU.

3.4.3 Results

Table 3.1: Results on DIL, Smooth-DIL, CIL, and Smooth for the PACS
dataset[31]. AA corresponds to Average Accuracy as Equation (2.11), whileBWT
stands for Backward Transfer defined in Equation (2.14).For both of them, the big-
ger, the better. The budget of memory-based methods is set at 400 images in total.
The value here is the percentage and is the average accuracy of the model over
all experiments after training on all tasks. We display the best without-memory
method in bold font. Methods with an asterisk ∗ use memory.

Methods DIL Smooth-DIL CIL Smooth-CIL
AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑

Cumulative(upper) 54.2± 1.3 0.8± 0.1 59.5± 1.1 6.3± 0.3 58.0± 1.6 14.7± 0.8 58.91± 1.4 7.8± 0.5
F.T. (lower) 30± 3.5 −38.9± 4.2 54.2± 2.5 4.5± 0.5 30.0± 2.9 4.7± 0.5 50.6± 2.6 2.4± 0.3
Online-EWC[43] 29.6± 2.8 −39.7± 4.5 54.8± 1.8 4.6±±0.8 30.7± 2.5 5.4± 0.6 50.8± 2.5 2.3± 0.3
SI[39] 31.6± 2.5 −38.5± 4.1 55.8± 1.7 5.6± 0.8 30± 2.8 4.3± 0.6 51.1± 2.2 2.7± 0.4
FOO-VB[120] 29.6± 2.5 −21.3± 2.7 58.5± 1.3 5.3± 0.6 38.5± 2.5 7.5± 0.8 55.4± 2.5 3.8± 0.6
LWF[23] 27.7± 3.1 −26.8± 2.5 57.4± 1.5 5.5± 0.7 29.5± 2.7 8.2± 1.2 55± 2.4 5.4± 0.5
ER∗[61] 44.3± 1.8 −12.1± 1.5 54.4± 1.7 4.1± 0.6 37.8± 2.3 4.1± 0.6 52± 1.6 2.8± 0.3
LWF(memory)∗[23] 47.7± 1.7 −7.1± 1.1 57.9± 1.1 5.9± 0.5 39.8± 2.2 4.2± 0.5 56± 1.5 5.3± 0.3
ER-LWF (ours) 30.2± 2.5 −32.5± 3.2 58.9± 1.3 5.6± 0.5 38.8± 2.5 10.7± 1.0 56.1± 1.8 5.5± 0.4

3.4.3.1 PACS results

Table 3.1 and Figure 3.4 show the results on the PACS dataset[31]. The results
on the Smooth-CIL and Smooth-DIL show that our ER-LWF outperforms all
other methods, including even the memory-based ones. In the smooth version, the
similarities between different tasks are magnified. Thus, current data are more
likely to reconstruct the previous loss function. That is why our method performs
well and can even reach the upper bound.

From the DIL column in Table 3.1, we find that all regularization-based meth-
ods fail in this scenario, and that their performance is close to the lower bound
(Fine-tuning), including our ER-LWF approach. In contrast, memory-based ap-
proaches perform better.

For the results on the PACS CIL, our ER-LWF performs best compared with
other regularization-based methods, and its performance is very close to that of
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Figure 3.4: Results related to the PACS dataset[31]. Testing accuracy (average
on three runs) is provided after training on each task for different methods and
different scenarios.

LWF with memory. However, there is still a big gap between the upper bound and
other methods. This means that only replaying the previous data is not enough,
and that the loss function or the gradient requires more constraints.

To conclude, our method does not work on DIL but performs well on the others.
Furthermore, it consistently performs better than the LWF without memory.

3.4.3.2 CIFAR-100 results

The results on the CIFAR-100 dataset are presented in Table 3.2 and Figure 3.5.
As for Smooth-DIL, CIL, and Smooth-CIL, similar phenomena to the PACS
experiments can be observed. Our proposed ER-LWF outperforms all other
regularization-based methods, and its performance is even better than memory-
based methods for smooth scenarios.

For the DIL setting with CIFAR-100, we do not observe the same result as for
PACS. The LWF family’s methods all perform well. This can be explained by the
way we define the DIL scenario with CIFAR-100. As discussed in Section 3.4.1,
CIFAR-100 has 20 superclasses, and each superclass contains five subclasses. In
the proposed DIL protocol, each subclass is considered to be a domain, thereby
leading to slight differences between tasks. As a result, we can reconstruct the
previous objective more efficiently compared with the PACS DIL.

We also find that FOO-VB, which initially targets the task agnostic CL scenario
(an extremely smooth scenario), is close to our method for the Smooth-DIL and
Smooth-CIL scenarios. However, our method performs much better when data
distribution shifts more rapidly, as shown in the DIL and CIL plots of Figure 3.5.

Compared to LWF, we designed EG-weight Equation (3.10) to self-regulate
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the original LWF loss. This can give more weight to similar data and less weight
to unrelated data. Thus, the model can have more plasticity when the current
data are different and more stability when the current data are similar. This is
confirmed by the results obtained on the CIFAR-100 and PACS, from which we
can observe that our method consistently outperforms or matches the performance
of LWF without memory.

Table 3.2: Results on the CIFAR-100 dataset[10]. The budget for memory-based
methods is set at 1000. It uses the same setting as Table 3.1.

Methods DIL Smooth-DIL CIL Smooth-CIL
AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑ AA(%)↑ BWT(%)↑

Cumulative(upper) 38.8± 1.0 −1.4± 0.2 41.7± 1.2 8.8± 0.5 42.9± 1.1 14.5± 0.7 41.4± 1.2 9.2± 0.5
F.T. (lower) 28.4± 1.5 −26.5± 1.2 35.3± 1.3 4.7± 0.6 15.5± 2.9 1.7± 0.5 33.1± 1.8 3.7± 0.5
Online-EWC[43] 30.3± 1.6 −30.7± 1.5 36.1± 1.3 4.6± 0.8 15.6± 3.1 2.2± 0.8 34.4± 1.8 4.2± 0.4
SI[39] 31.0± 1.4 −30.5± 1.6 37.7± 1.5 6.7± 0.8 15.5± 2.8 1.4± 0.6 33.1± 2.3 3.2± 0.5
FOO-VB[120] 31.4± 1.5 −29.9± 1.3 41.4± 1.6 7.5± 1.1 18.5± 2.2 3.4± 1.0 40.2± 1.5 6.2± 0.6
LWF[23] 36.9± 1.8 −19.6± 1.0 39.8± 1.4 5.9± 0.7 23.9± 2.5 5.9± 0.9 38.0± 1.6 5.2± 0.6
ER∗[61] 31.3± 1.2 −23.0± 1.1 36.2± 1.2 4.4± 0.5 24.1± 1.5 3.4± 0.5 36.2± 1.5 5.5± 0.3
LWF(memory)∗[23] 36.7± 1.3 −4.8± 0.5 39.8± 1.2 5.9± 0.6 26.0± 1.8 7.5± 0.6 38.3± 1.4 6.9± 0.6
ER-LWF (ours) 37.0± 1.5 −12.6± 0.8 41.4± 1.2 7.9± 0.8 25.8± 2.0 8.2± 0.6 40.3± 1.4 7.9± 0.5

Figure 3.5: Results related to the CIFAR-100 dataset[10].Testing accuracy (aver-
age over three runs) is provided after training on each task for different methods
and different scenarios.

3.5 Experiments on FairWastes Dataset

3.5.1 FairWastes Dataset

The original FairWaste Dataset comprises two folders: one for training and one
for testing, each containing images captured from various sensors, as illustrated in
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Figure 3.6: Three images from three different sensors respectively

Figure 3.6. Each image is accompanied by an object detection label in the COCO
format [16]. For classification tasks, we initially segmented the original images into
multiple sub-images using the mask labels, ensuring that each sub-image contained
only one object, as depicted in Figure 3.7.

After performing image segmentation, we structured the dataset as outlined
in Table 1, which contains 13 distinct material categories. The dataset exhibits
an imbalanced distribution of objects: materials such as bois, carton, plâtre, and
film are overrepresented, while others, including pile, condensateur, polystyrène,
textile, and gravat, are underrepresented. Additionally, some materials appear
exclusively in the training set, whereas others are only present in the test set.
To enhance the dataset’s usability, we have restructured it to achieve a more
balanced distribution. Specifically, the test set now contains a number of samples
for each material that is proportional to its overall occurrence in the dataset. All
experiments reported in this study have been conducted on this revised version of
the dataset.

3.5.2 Scenario

In the FairWaste Dataset, data are derived from various scenes, which can be
interpreted as distinct domains as illustrated in Figure 3.8. We have designated
each ’acquisition’ as an individual task where the domain and the classed varies
from different tasks. Thus, we have 26 distinct tasks in total. This scenario is
denoted as Domain-Class-Inc in this thesis.
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Figure 3.7: Cropping the original images for Classification purpose

Figure 3.8: The distribution of Dataset based on the different scenes
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Material Train Test
Bois 3382 2900
Carton 1188 241
Plâtre 1012 52
Plastique 852 853
Film 406 1
Ferreux 295 21
Mousse 269 451
Papier 215 218
Pile 186 0
Condensateur 101 0
Polystyrène 0 98
Textile 0 21
Gravat 0 12

Table 3.3: Original DataSet

Material Train Test
Bois 6047 200
Carton 1216 200
Plâtre 894 200
Plastique 1491 200
Mousse 617 100
Ferreux 259 50
Film 353 50
Papier 385 50
Pile 186 50
Condensateur 51 50
Polystyrène 88 10
Textile 16 5
Gravat 7 5

Table 3.4: Revised Dataset

Table 3.5: Results on the FairWastes dataset. The memory budget for memory-
based methods is set to 400. The same methods as in Table 3.1 are used. We
report the final classification accuracy, averaged over three runs.

Methods Cumulative F.T. Online-EWC SI FOO-VB LWF ER∗ LWF∗(memory) Ours
AA(%)↑ 81.5±1.5 37.4±3.3 39.2±4.2 40.1±3.5 42.6±2.9 39.7 ± 3.1 48.8±2.4 52.2±2.2 53.5±2.7

3.5.3 Results

The results are shown in Table 3.5. In this real-world scenario, different ’acquisi-
tions’ are considered as a single task, and different tasks have overlaps. The results
demonstrate that our method can even outperform memory-based methods such
as ER and LWF with memory.

3.6 Limitations

In this work, to better fit real-life applications, we make an assumption that task
boundaries are blurred, in other words their data distributions overlap or at least
have a certain degree of similarity. Smooth-CL setting, i.e., Smooth-DIL and
CIL, and regular CL setting, i.e. DIL and CIL, correspond to high-level and
low-level similarity, respectively. However, if the task boundaries are well-defined
with no overlapping of domains, then our method may fail since it makes use
of the current data and the previous model output to approximate the previous
loss function. If the previous model cannot recognize or provide a meaningful
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output, the EG-weight Equation (3.10) will be close to zero. Then, our method
degenerates to Fine-tuning. In our experiments, the most difficult CL scenario is
the DIL setting on the PACS dataset. Since we assign each domain to a single task
in DIL, the similarity between the data of different domains may be very slight
when the gap between different domains is too large. In this situation, we cannot
find similar data from the current task, meaning that the previous loss function
cannot be reconstructed. From the DIL plot of Figure 3.4, we can see that model
performance degenerates rapidly in the final task. In our experiments, the last
task of the DIL corresponds to sketch, which is the domain that is most different.
We think that this is what accounted for this poor performance.

3.7 Conclusion

In this section, we propose a new continual learning paradigm, namely
Distribution-Shift Incremental Learning (DS-IL), which, by considering soft
task boundaries as encountered in real-world applications, subsumes traditional
Domain-Incremental Learning (DIL) and Class-Incremental Learning (CIL) sce-
narios. Furthermore, we propose ER-LWF, a novel CL method which extends
LWF to deal with CL under the DS-IL setting where there are no well-defined
task boundaries. It uses the entropy information of the previously learned model’s
output on the current data to self-regulate the original knowledge distillation loss.
This EG-weight can provide the model with more stability when the current data
are similar to the previous data, or with more plasticity otherwise. Based on
the results of the PACS and CIFAR-100 datasets, we show that our proposed
CL method, without memory, consistently outperforms the classic LWF (without
memory) and can reach the upper bound for the Smooth-CL scenarios. Addi-
tionally, on the FairWastes dataset, our method continues to outperform other
baselines.
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Chapter 4

Online Continual Learning in
both Balanced and Imbalanced
Data Environments

Because our previous method struggled when data distributions shifted rapidly,
this chapter addresses a more challenging scenario: imbalanced online continual
learning, where data distributions change quickly and task boundaries are not
defined. We present our work on this topic, which is partially published in ”Im-
balanced data robust online continual learning based on evolving class aware mem-
ory selection and built-in contrastive representation learning”[160] and ”Adaptive
Class Aware Memory Selection and Contrastive Representation Learning for Ro-
bust Online Continual Learning in both Balanced and Imbalanced Data Environ-
ments”.

4.1 Motivation

Continual learning (CL) seeks to enable models to learn from data streams
over extended periods without retaining access to previously encountered sam-
ples. However, when new information arrives, catastrophic forgetting can oc-
cur, erasing previously acquired knowledge [30, 39]. Most traditional CL meth-
ods—including regularization-based [30, 39, 27], parameter isolation-based [25,
117], and rehearsal-based approaches [61, 59, 119] assume either clearly defined
task boundaries or relatively balanced data distributions. Such assumptions sim-
plify the learning process, but rarely hold in practical applications.

By contrast, real-world data streams are often non-stationary and highly im-
balanced [74, 126], and they may include domain shifts that introduce entirely new
feature distributions over time [131, 31, 51]. In scenarios where the model receives
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continuous input without predefined tasks—sometimes referred to as task-free on-
line continual learning (OCL) [40]—the learning algorithm must dynamically ad-
just class boundaries and representations. Meanwhile, existing rehearsal-based
methods commonly rely on strategies such as random reservoir sampling [61] or
herding [24], which overlook how imbalanced or evolving data distributions affect
both class diversity and inter-class boundaries.

Additionally, while contrastive learning [90] has proven effective for improving
representation quality, many CL approaches do not fully leverage sample selection
to maximize the benefit of replay. They typically focus on augmentations and
instance-level similarities within a mini-batch while underestimating how a care-
fully selected memory buffer can help adapt previously learned representations to
new data. This gap becomes especially problematic when classes are introduced
gradually or domains change abruptly, limiting the model’s ability to refine its
learned boundaries in an online manner.

To address these challenges, we propose a memory-based online CL method
that emphasizes class and domain-aware sample selection alongside contrastive rep-
resentation consolidation. Our method, Memory Selection and Contrastive
Representation Learning (MSCL), continually updates a diverse memory set
that captures the evolving complexity of class boundaries and domain shifts, while
a novel contrastive loss aligns new samples with historical knowledge. Through
this combination of adaptive memory selection and enhanced representation learn-
ing, MSCL aims to mitigate catastrophic forgetting and thrive in non-stationary,
imbalanced streaming environments.

4.2 Preliminary and problem statement

We consider the setting of online task-free continual learning. The learner receives
non-stationary data stream O through a series of data batches denoted as Sstr

t =
(xi, yi)

Nb

i=1 at time step t. Here, (xi, yi) represents an input data and its label,
respectively, and Nb denotes the batch size. The learner is represented as f(·;θ) =
g ◦F , where g represents a classifier and F denotes a feature extractor. We define
a memory set as Smem = (xj, yj)

M
j=1, where M is the memory size. We use the

function l(·, ·) to denote the loss function. The global objective from time step 0
to T can be computed as follows:

l∗ =
T∑
t=0

∑
(xi,yi)∈Sstrt

l(f(xi;θ), yi) (4.1)

However, within the setting of online continual learning, the learner does not
have access to the entire data at each training step but only the current data batch
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and those in the memory set if any memory. Therefore, the objective at time step
T can be formulated as follows:

lT =
∑
SstrT

l(f(xi;θT−1), yi)

current loss

+
∑
Smem

l(f(xj;θT−1), yj)

replay loss

(4.2)

As a result, to enable online continual learning without catastrophic forgetting,
one needs to minimize the gap between l∗ and lT :

min(l∗ − lT ) = min(
T−1∑
t=0

∑
Sstrt \Smem

l(f(xi;θT−1), yi)) (4.3)

In this paper, we are interested in memory-based online CL. Our objective is
to define a strategy which carefully selects data samples to store in the memory
set and continuously refines data representation to minimize the gap as shown in
Equation (4.3).

4.3 Methodology

The proposed method, denoted as MSCL, consists of two main components,
namely Feature-distance based sample selection (FDBS) (sect.4.3.1) and con-
trastive learning for better discriminative feature representation (sect.4.3.2). The
whole algorithm is sketched in algo.6.

4.3.1 Feature-Distance based sample selection

In the context of imbalanced online domain and class continual learning scenarios,
models need to contend with at least two types of distribution shifts: correlation
shift and diversity shift. In classification problems, these distribution shifts can
result in increased inter-class similarity and intra-class variance, ultimately lead-
ing to catastrophic forgetting. Current memory selection methods (e.g., ER [36],
CBRS [80], GSS [59], OCS [119]) are unable to effectively address both of these
challenges simultaneously. To tackle this issue, we introduce our feature-based
method, referred to as Feature-Based Dissimilarity Selection (FDBS). FDBS en-
courages the model to select data points that are the most dissimilar within a
class and the most similar between different classes. This strategy aims to en-
hance both inter-class similarity and intra-class variance within the memory set.
Consequently, FDBS helps to narrow the gap between the memory set and the
true data distribution, as highlighted in Equation 4.3.
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Intra-class

Inter-class

Figure 4.1: We illustrate domains using colors and categories with shapes. It
shows models adapting to datasets with high inter-class similarity and intra-class
variance, highlighting the challenge of differentiating closely related categories.

Let M to denote the memory size and K the number of data samples so far
streamed. Let p to denote our projection head. The current batch size is set to Nb,
and the sampled memory batch size is Nm. When the learner receives a batch of
data Sstr from the stream O, we check for each new data sample xi in Sstr whether
the memory set is full. If it is not full, we can directly store xi. However, if the
memory set is full, we need to evaluate the importance weight wi of the new data
sample xi to determine whether it is worth storing. The key to this process is
to keep the memory set aware of intra-class diversity and inter-class boundaries
based on the feature distances between the new data sample xi and the memory
set. It involves the following three main steps:

• Sample a batch of data, denoted as Sm, from the memory set with size Nm.
Double views the current batch and the memory batch. Sm

doub contains both
the original images and the augmented views from the memory batch. Apply
the same notation to Sstr

doub. To get the features, we use z(x) = p ◦ F (x).

• We then calculate the feature distance, denoted as D (refer to Equa-
tion (4.4)), between every data point in the set Sstr

doub and each data sample
stored in Sm

doub. Subsequently, we identify the minimum distance between the
input data and the memory set for each input data sample, resulting in the
vector dstr as defined in Equation (4.4)

Di,j = dist {z(xi), z(xj)}(xi∈Sstrdoub;xj∈Smdoub)
(4.4)

• Subsequently, we compute Dmem, as in Equation (4.5), the feature distance
between every data in Sm

doub and Smem, and the minimum distance for each
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Random

FDBS
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Figure 4.2: We illustrate domains using colors and categories with shapes.Our
proposed MSCL involves mapping input data and a memory set into a shared
feature space. Here, Di,j represents the distance between input data xi and data
xj in the memory set. We use the same indexing convention for other formulas.
We calculate distances, D and a, between input data and memory set, and then
derive an importance weight matrix quantifying each input data representative
importance w.r.t those in the memory set based on the analysis of their intra-
class diversity or inter-class similarity in the feature space. These importance
weights are combined with random selection to give birth to our Feature-Distance
based Sample Selection (FDBS) which identifies the most representative input
data points for storage into the memory set. Armed with this importance weight
matrix, we proceed to craft a novel Contrastive Loss (SCL) aimed at refining
the feature space by compacting intra-class data and creating greater separation
among inter-class data.

data point in the memory set in dmem, as shown in Equation (4.5). We
then calculate a as in Equation (4.7) a weighted average distance from a
data point in the memory set to all other points, using a RBF kernel as in
Equation (4.7) to weight the distances. We aim to assign higher weight to
closer distances.

Dmem
i,j = dist {z(xi), z(xj)}(xi∈Smdoub,xj∈Smem) (4.5)

dstr
i = min(Di,:);d

mem
i = min(Dmem

i,j ̸=i) (4.6)

• By computing the difference between a andD, we can derive an importance
weight for each new data. This weight is subsequently combined with the
reservoir sampling coefficient to determine the probability of selecting the
new data point.
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αi,j = e−
∥Dmem

i,j −dmem
i ∥2

2σ2 ; ai =

∑M
j ̸=i D

mem
i,j αi,j∑M

j ̸=i αi,j

(4.7)

Importance weight is the core concept of our proposed method. It serves to
assess the significance of a new data sample with respect to the memory set, with a
focus on promoting diversity among previously encountered intra-class data while
also considering the potential closeness to inter-class boundaries. Specifically, we
calculate this importance weight, as defined in Equation (4.9), to capture the
influence of each data point in the memory set on an input data sample. This
influence is determined by whether they belong to the same class, as illustrated in
Figure 4.2 Our approach is based on the intuitive notion that when two points, xi

and xj, are closer in proximity, the impact of xj on xi becomes more pronounced.
To achieve this, we employ a Radial Basis Function (RBF) kernel, as expressed in
Equation (4.8). This kernel ensures that the influence of distant points diminishes
rapidly. Additionally, we use the sign function, as shown in Equation (4.8), to
assign a value of 1 if the classes are the same and -1 otherwise.

When comparing a new data sample xi with a memory set data point xj,
we consider two scenarios based on their class labels. If they share the same
class label, as shown in Figure 4.2, and if the feature distance Di,j significantly
exceeds aj, it implies a substantial difference between xi and xj. In this case,
we assign Wi,j a value greater than 1, promoting the selection of xi for storage.
However, when xi and xj have different class labels, we aim to store data points
near decision boundaries to capture closer class boundaries caused by increased
inter-class similarities. We achieve this by setting Wi,j using Equation (4.9) with
the sign function returning -1. If aj significantly surpasses Di,j, it implies that
despite their different labels, xi closely resembles xj, motivating us to store xi.
Conversely, if aj is substantially smaller than Di,j, it suggests that the model can
readily distinguish between xi and xj, leading us to exclude xi from storage. When
Di,j is approximately equal to aj, we consider xi as a typical data point close to
xj, leading Wi,j to approach 1, resulting in a random selection.

βi,j = e−
∥Di,j−dstri ∥2

2τ2
; sgn(yi, yj) =

{
1 if yi = yj
−1 if yi ̸= yj

(4.8)

Wi,j = e
sgn(yi,yj)

Di,j−aj
Di,j+aj

βi,j
(yi ∈ Sstr

doub; yj ∈ Sm
doub) (4.9)

To take into account the influence of all data points in the memory set on a
new input data point for its importance weight, we directly multiply the impact
of each memory point as shown in Equation (4.10).
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To get the final probability pi for a new data sample xi to be chosen for storage
in memory, we introduce the reservoir sampling. Given a fixed memory size M
and the number of data samples observed so far in the data stream, denoted as
K, M/K represents the probability of each data sample being randomly selected.
We then use the importance weight wi to adjust the probability of the new data
sampled xi being selected, as shown in Equation (4.10). This allows us to handle
imbalanced data and retain a certain level of randomness.

wi =

∑2Nm

j=1 Wi,j

2Nm

; pi = min(wi
M

K
, 1) (4.10)

4.3.2 Contrastive learning for better discriminative fea-
ture representation

Our Feature-Distance Based Sample Selection (FDBS) can effectively store the
most representative samples during training. However, the latent space of our
memory set may not be compact, potentially degrading our classification perfor-
mance. To address this issue, we introduce the use of contrastive learning loss.
Previous methods, such as OnPro[145] and CaSSLe[108], have already employed
supervised contrastive learning[90] to learn instance-wise representations:

LSUP =

2Nb∑
i=1

1

|Ibi |
∑
j∈Ibi

log

(
exp(sim(zbi , z

b
j)/τsc)∑

k ̸=i exp(sim(zbi , z
b
k)/τsc)

)

+

2Nm∑
i=1

1

|Imi |
∑
j∈Ibi

log

(
exp(sim(zmi , zmj )/τsc)∑
k ̸=i exp(sim(zmi , zmk )/τsc)

)
(4.11)

Where Nb and Nm represent the number of training data in the current batch
and the batch sampled from the memory set, respectively. Ii is the set of positive
samples for zi. This equation separately computes the supervised contrastive loss
for current data and data from the memory set. However, it overlooks the distance
between the memory set and current data. To address this issue, we propose the
use of an importance weight to compute a specific contrastive learning loss.

The importance weight Wi,j, derived from Equation (4.9), measures feature
space similarity between data points and is differentiable. Inspired by contrastive
learning’s goal to distinguish between similar (positive) and dissimilar (negative)
sample pairs. IWL aims to decrease inter-class similarity and intra-class variance,
serving as an adversarial element to memory selection and compacting the feature
space for better memory selection. For a data batch of size Nb, we select a mini-
batch from the memory set of size Nm, and compute LIWL as per Equation (4.12),
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Algorithm 6 Train a batch at time step t

Input: F , g ,Smem, Sstr, n, K, Zmem stores the features of the mem-
ory set, Nb is the current batch size, and Nm is the memory batch
size.

1: for n steps do
2: sample batch I,Xm,ym of size Nm from Smem {I : the index of the samples

in Smem}
3: Xstr,ystr = Sstr

4: Xm
doub = cat(aug(Xm),Xm)

5: Xstr
doub = cat(aug(Xstr),Xstr)

6: Zm, ŷm = p ◦ F (Xm
doub), g ◦ F (Xm

doub)
7: Zstr, ŷstr = p ◦ F (Xstr

doub), g ◦ F (Xstr
doub)

8: α = 0.1 + 0.9 ∗ 0.99t
9: Current Loss : Lcur = ℓ(ŷstr,ystr)
10: Replay Loss : Lr = ℓ(ŷm,ym)
11: Update Zmem[I] = Zm[: Nm]
12: Dmem = dist(Zm,Zmem) as Equation (4.5)
13: Compute a based on Equation (4.7)
14: D = dist(Zstr,Zm) as Equation (4.4)
15: Compute w based on Equation (4.9) and Equation (4.10)
16: LIWL = LIWL(w) as Equation (4.12)
17: LSUP = LSUP (X

str,ystr,Xmem,ymem) as Equation (4.11)
18: Total Loss : L = αLcur + (1− α)Lr + LIWL + LSUP

19: Update: F, g : Adam.step( )
20: FDBS(Smem,Sstr

t ,w,D,M ,K,Zmem) as shown in Algorithm 7
21: end for

optimizing Wi,j to align data points with matching class labels closer and separate
those with differing labels.

LIWL =

∑2
i=1Nm

∑2Nb

j=1 log(Wi,j)∑2Nm

i=1

∑2Nb

j=1 βi,j

(4.12)

Thus, our total contrastive learning loss is:

LSCL = LSUP + LIWL (4.13)
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Algorithm 7 FDBS at time step t

Input: Smem, Sstr, w, D, M , K, Zmem

1: Xmem,ymem = Smem;
2: for each data i, (xi, yi) in Sstr

t do
3: K = K + 1
4: if len(Smem) < M then
5: store (xi, yi) in Smem

6: else
7: p = wi ∗M/K
8: r = random.rand()
9: if r < p or yi /∈ Smem then
10: c = most frequent(ymem)
11: I = index(ymem == c)
12: k = random.choice(I)
13: Xmem[k],ymem[k] = xi, yi;
14: Zmem[k] = Z(xi)
15: else
16: ignore (xi, yi)
17: end if
18: end if
19: end for

4.4 Experiments and Results

We introduce balanced CL benchmarks in sect.4.4.1, define imbalanced ones in
sect.4.4.2, describe the baselines and implementations details in sect.4.4.3, and
present the experimental results both on balanced scenarios in sect.4.4.4 and im-
balanced ones in sect.4.4.5.

4.4.1 Balanced benchmarks

Building upon previous research [73, 59, 81], we utilize three well-established Con-
tinual Learning (CL) benchmarks: Split Mini-ImageNet, Split CIFAR-100, and
PACS. For Split CIFAR-100, we partition the original CIFAR-100 dataset [10] into
ten subsets, with each subset representing a distinct task comprising ten classes.
For Split Mini-ImageNet[26], we partition the original Mini-ImageNet dataset into
10 subsets, with each subset representing a distinct task comprising ten classes.
As for PACS [31], it encompasses four domains: photo, art painting, cartoon, and
sketch. Each domain consists of the same seven classes. In our experiments, we
treat each domain as an individual task, resulting in a total of four tasks. Notably,
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due to significant differences between images in each domain, one can observe a
notable increase in inter-class variance within this dataset.

4.4.2 Imbalanced benchmarks

Existing CL benchmarks, with uniform class and domain distributions, fail to test
CL methods on non-stationary, imbalanced data. Thus, we’ve created benchmarks
specifically to assess CL methods’ robustness to data imbalance.

4.4.2.1 Imbalanced Class-Incremental Learning (Imb CIL).

To establish an imbalanced Class-incremental scenario for split CIFAR-100 and
split mini-ImageNet, we build upon the approach introduced by [80]. Unlike tra-
ditional benchmarks that distribute instances equally among classes, we induce
class imbalance by utilizing a predefined ratio vector, denoted as r, encompassing
five distinct ratios: (10−2, 10−1.5 , 10−1, 10−0.5, 100). In this setup, for each run and
each class, we randomly select a ratio from r and multiply it by the number of
images corresponding to that class. This calculation determines the final number
of images allocated to the class, thus establishing our imbalanced class scenario.
We maintain the remaining conditions consistent with the corresponding balanced
scenario.

4.4.2.2 Imbalanced Domain-incremental Learning (Imb DIL)

We adapt the PACS dataset, encompassing four domains, and follow an approach
akin to our Imbalanced Class-Incremental method. For each domain, we randomly
select a ratio from r, multiply it with the image count of the domain, thereby
maintaining a balanced class count within the imbalanced domain.

4.4.2.3 Imbalanced Class and Domain Incremental Learning (Imb C-
DIL).

We further refine the PACS dataset to generate an imbalanced class-domain incre-
mental scenario, which mirrors a more realistic data setting. This scenario involves
randomly selecting a ratio from r for each class and domain, and multiplying it
with the count of instances for that class within the domain. This operation yields
4 ∗ 7 values for PACS, resulting in a diverse number of data points across different
classes and domains. This approach accentuates the growth of inter-class simi-
larity and intra-class variance. Because both the class and domain are already
imbalanced in the original DomainNet[51], we directly use its original format to
generate the imbalanced scenario. We adhere to a sampling without replacement
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strategy for data stream generation. Once data from a pair of class and domain is
exhausted, we transition to the next pair.

Table 4.1: We report the results of our experiments conducted on balanced sce-
narios. We present the average accuracy(AA) as mean and standard deviation
over five independent runs.

Mini-ImageNet CIFAR-100 PACS
F.T. 4.2 ± 0.2 4.4±0.2 20.6±0.2
i.i.d. Off 52.5 ± 0.1 49.8±0.3 59.6±0.1

M=1k M=2k M=5k M=1k M=2k M=5k M=0.1k M=0.2k M=0.5k
ER 10.1±0.7 13.2±0.8 16.5±1.8 11.0±0.7 14.2±0.5 20.2±0.9 36.1±1.2 38.6±1.4 39.8±1.5
GSS 10.2±0.6 13.1 ± 1.2 14.2±0.9 10.3 ± 0.5 13.3 ± 0.5 17.5 ± 1.2 35.8 ± 2.8 37.8 ± 3.2 38.7 ± 2.2
CBRS 10.3±0.8 13.5 ± 0.9 16.4±2.1 11.0 ± 0.6 14.5 ± 0.8 20.5± 0.8 36.3 ± 1.1 38.8 ± 1.6 40.1 ± 1.7
MIR 10.7±0.7 14.8 ± 1.1 17.5±1.5 11.5 ± 0.4 15.1 ± 0.5 21.7 ± 0.9 37.6 ± 0.9 40.2 ± 0.8 43.2 ± 1.2
OCS 10.8±0.5 15.1 ± 1.1 17.8±1.6 11.4 ± 0.5 14.8 ± 0.8 21.3 ± 0.9 36.8 ± 0.7 39.6 ± 0.7 42.2 ± 1.1
OnPro 21.2±0.4 30.5 ± 0.5 34.5±0.8 26.6 ± 0.5 30.6 ± 0.8 36.6 ± 0.8 36.3 ± 1.3 40.5 ± 1.3 41.4 ± 1.5
MSCL(ours) 24.7±0.4 33.9 ± 0.5 36.9±0.9 27.5 ± 0.4 31.2 ± 0.7 37.5 ± 0.8 38.8 ± 0.9 42.7 ± 1.1 45.8 ± 1.3

Table 4.2: Results on our imbalanced scenarios. We present the average accu-
racy(AA) as mean and standard deviation over five independent runs. For PACS,
the memory size was set to 1000, while for all other scenarios, the memory size
was set to 5000.

Scenarios Imb CIL Imb DIL Imb C-DIL
CIFAR-100 Mini-ImageNet PACS PACS DomainNet

Fine Tunning 3.1± 0.3 3.5± 0.2 15.5± 1.3 14.3± 1.2 2.3± 0.6
i.i.d. Offline 41.6± 0.5 43.1± 0.6 46.3± 0.4 46.1± 0.9 37.2± 0.7
ER 7.1± 0.8 8.2± 1.3 25.6± 2.1 22.4± 1.3 6.2± 0.6
GSS 8.3± 0.7 7.9± 0.5 24.4± 1.7 20.2± 2.1 5.1± 0.4
CBRS 10.2± 0.4 11.3± 0.6 25.9± 1.5 23.6± 1.7 6.1± 0.6
MIR 7.5± 0.9 8.9± 0.3 25.8± 2.1 22.2± 2.5 6.4± 0.4
OCS 11.6± 0.6 12.3± 0.4 27.1± 1.4 24.7± 1.3 8.4± 0.7
OnPro 22.3± 0.5 15.8± 0.7 27.1± 1.7 25.5± 1.4 11.2± 0.9
MSCL(Ours) 24.8±0.6 17.2±0.4 31.2±0.8 30.6±0.7 12.4±0.7

4.4.3 Baselines and implementation details

As the proposed FDBS is a memory-based online CL method, we compare it pri-
marily against other memory-centric techniques such as Experience Replay (ER)
[61], Gradient-Based Sample Selection (GSS) [59], Class-Balancing Reservoir Sam-
pling (CBRS) [80], Maximally Interfering Retrieval (MIR) [60], and Online Corset
Selection(OCS)[119]. Online Prototype Learning(OnPro) [145] achieved the SOTA
performance in the Class-incremental scenario over Cifar-100 and Mini-ImageNet.
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We compare Fine-tuning (F.T.), where pre-existing model parameters are used
as starting points for new tasks without additional data, against i.i.d. offline
training, a method that grants complete access to the dataset, allowing multiple
data reviews for maximum performance. In this comparison, FT represents the
lower bound of performance, while offline training serves as the upper bound.
Our method introduces Feature-Distance Based Sampling (FDBS) for choosing
samples and Contrastive Learning Loss for better representation learning. We test
the effectiveness of FDBS combined with LSCL in our experiments.

We adopt a reduced ResNet-18 architecture similar to that used in [61]. We
maintain a fixed batch size of 20 for the incoming data stream, with one update
steps per batch. We set the σ value in our radial basis function (RBF) kernel at 0.1,
and the τ value in Equation (4.9) at 1.0. Our approach’s performance is evaluated
across the balanced and imbalanced benchmarks through five independent runs,
from which we compute the average accuracy.

4.4.4 Results on balanced benchmarks

Results for balanced scenarios are shown in Table 4.1. In class incremental learning
(CIL) scenarios such as split Mini-ImageNet and CIFAR-100, classical methods like
ER, CBRS, and GSS do not perform well with low memory sizes. This is because,
with a low memory size relative to the training data size, these methods heavily
bias towards the memory data. As the memory size increases, the performance of
these methods significantly improves. OnPro, which uses rich data augmentation
and evaluates the class mean for each update, performs very well in these scenar-
ios. In comparison, our method uses a more representative selection strategy and
incorporates a comprehensive contrastive loss, leading to consistent improvements
in results. In domain incremental learning (DIL) scenarios such as PACS, OnPro
does not perform as well as in CIL scenarios, because the class mean loses its
significance across multiple domains. However, our method still achieves the best
results. Our memory selection strategy aims to increase intra-class variance, lead-
ing to greater diversity in the memory and improved performance. Additionally,
MSCL maintains stable performance with lower standard deviations, indicating
more reliable and consistent results. This robustness, combined with its superior
accuracy, highlights MSCL’s efficiency and reliability in handling various memory
sizes and datasets.

4.4.5 Results on imbalanced scenarios

Table 4.2 displays the experimental results in the imbalanced settings. For imbal-
anced CIL scenarios, the CBRS method, which maintains an equal count of im-
ages from each class in memory, outperforms the basic ER approach. Meanwhile,
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OCS, by continuously evaluating data batch gradients, filters noise and selects
more representative data, shining particularly in imbalanced contexts. However,
our method stands out, consistently leading in all imbalanced tests. As scenarios
evolve from Imb DIL to Imb C-DIL, other methods’ accuracy drops significantly,
but FDBS maintains robust performance. Its strength lies in using feature-distance
to fine-tune memory selection, preserving class boundaries and boosting intra-class
diversity.

4.5 Experiments on FairWastes Dataset

4.5.1 Scenarios

The details of the dataset are discussed in Section 3.5. We follow the same prepro-
cessing methods for this dataset in this chapter. The original FairWastes dataset
is neither balanced across classes nor domains, allowing us to easily generate two
imbalanced scenarios as follows:

• Domain and Class Incremental Learning: In the FairWaste Dataset,
data are derived from various scenes, which can be interpreted as distinct
domains. We have designated each ’acquisition’ as an individual task, creat-
ing a scenario of imbalanced domain and class incremental learning. Thus,
we have 26 distinct tasks in total.

• Class Incremental Learning: The dataset encompasses 13 unique ma-
terials, each representing a distinct task in our class incremental learning
framework. To more accurately mimic real-world conditions, we construct
the initial task to include all classes, utilizing 30 percent of the total data.
Consequently, our model undertakes 14 tasks in total, sequentially intro-
duced to replicate the incremental learning process.

For both scenarios, we feed the data as an online stream, which differs from
the scenario described in Section 3.5.

4.5.2 Results

For all scenarios, we adopt the standard ResNet-18 [17]architecture implemented
in PyTorch[69]. The replay buffer size is configured as 400. We maintain a fixed
batch size of 20 for the incoming data stream, with five update steps per batch.
The results are shown in Table 4.3

For the Class incremental scenario, the CBRS method, which maintains an
equal count of images from each class in memory, outperforms the basic ER ap-
proach. Meanwhile, OCS, by continuously evaluating data batch gradients, filters
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noise and selects more representative data, shining particularly in imbalanced con-
texts. However, our FDBS method stands out, consistently leading in all scenar-
ios. As scenarios evolve from Class-Inc to Domain-Class-Inc, methods’ (such as
ER,GSS, and CBRS) accuracy drops significantly, but ours maintains robust per-
formance. Its strength lies in using feature-distance to fine-tune memory selection,
preserving class boundaries and boosting intra-class diversity. This advantage is
amplified when paired with the IWL, reinforcing the benefits seen in balanced
scenarios.

Table 4.3: Comparison of different methods in Domain-Class Inc and Class-Inc
scenarios on FairWastes Dataset

Scenarios Domain-Class Inc Class-Inc
Fine-Tuning 33.4± 3.7 57.5± 2.8
i.i.d. Offline 81.5± 1.5 81.5± 1.5
ER 42.8±2.5 61.8±2.2
GSS 26.7±3.6 59.9±2.9
CBRS 48.5±2.9 62.5±2.0
MIR 71.2±1.8 67.5±1.5
OCS 69.3±2.1 67.1±1.8
Ours 73.8±1.4 72.6±1.2

4.6 Ablation Study and Extensive Experiments

We conduct an ablation study in Section 4.6.1, discuss the impact of σ and τ of
RBF kernel in Section 4.6.2, compare the running time of different methods in
Section 4.6.3, assess the impact of memory size in Section 4.6.4, evaluate aver-
age forgetting in Section 4.6.5, illustrate the distribution of our memory set in
Section 4.6.6, explore the integration of our method with other methods in Sec-
tion 4.6.7, and finally present the results of the methods in the classical class
incremental scenario in Section 4.6.8.

4.6.1 Ablation study

Our method comprises two key components: the memory selection method FDBS
for memory adaptation and the contrastive learning loss LSCL, as detailed in Equa-
tion (4.13), for evolving data representation consolidation. Tab.4.4 highlights the
contributions and effectiveness of each component. As can be seen there, memory
adaptation by FDBS and data representation consolidation through LSCL prove

70



4.6. ABLATION STUDY AND EXTENSIVE EXPERIMENTS

Figure 4.3: RBF kernel values with different σ

to be both useful and complementary, with FDBS consistently enhancing perfor-
mance, especially in imbalanced scenarios, while LSCL appears further critical.

Table 4.4: Ablation studies on balanced CIFAR-100 and imbalanced DomainNet.
We set the memory size to 5000.

Method Balanced CIFAR-100 Imb DomainNet
F.T. 4.4± 0.2 2.3± 0.6
w/o LSCL 22.1± 1.2 7.8± 0.8
w/o FDBS 34.7± 0.9 9.5± 0.9
MSCL 37.5 ± 0.8 12.4 ± 0.7

4.6.2 The impact of σ in RBF kernel

The Radial Basis Function (RBF) kernel is a widely used kernel function in ma-
chine learning, defined as [8]:

K(x1, x2) = exp(−||x1 − x2||2

2σ2
) (4.14)

In our implementation, we normalize the feature vectors x1 and x2 such that
||x1|| = 1 and ||x2|| = 1. With this normalization, the squared Euclidean distance
between x1 and x2 satisfies ||x1 − x2|| ∈ [0, 2], since the maximum distance occurs
when x1 and x2 are in opposite directions.

To illustrate the effect of σ on the kernel values, we plot K(x1, x2) for different
values of σ over the range ||x1 − x2|| ∈ [0, 2]:

As shown in Figure 4.3, the parameter σ controls the radius of influence of the
kernel function. When σ is small, the kernel value K(x1, x2) is significant only
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Table 4.5: Results of varing σ and τ on Blanaced CIFAR-100 with a memory size
of 2000.

τ \σ 0.1 0.5 1.0 1.5
0.1 30.5 28.7 28.9 30.1
0.5 29.6 28.2 28.0 28.8
1.0 31.5 29.1 29.5 30.6
1.5 30.6 30.3 29.6 30.5

when x1 and x2 are very close; for larger distances, the kernel value approaches
zero rapidly. Conversely, a larger σ results in a broader influence, allowing more
distant points to contribute meaningfully to the kernel value.

To evaluate the impact of σ and another parameter τ on our method, we
conducted experiments using a memory size of 2000 on the Balanced CIFAR-100
dataset. The results are summarized in Table 4.5.

In our framework, σ is the parameter in Equation (4.7), which determines the
number of points that significantly contribute to the calculation of the average
distance a from a data point in the memory set to other points. A smaller σ
means that only nearby points have a substantial impact on a, effectively focusing
on local neighborhoods.

Similarly, τ is the parameter in Equation (4.8), which influences the calculation
of the importance weights w. A larger τ allows for contributions from more distant
points when computing these weights.

Our experimental results indicate that setting σ = 0.1 and τ = 1.0 yields the
best performance. This suggests that when calculating the average distance a
within the memory set, it is beneficial to focus on the nearest points, as distant
points may introduce noise or irrelevant information. However, when computing
the importance weights w, considering the influence of all points in the memory
set (achieved by a larger τ) is advantageous.

4.6.3 Running Time

In this section, we evaluate the overall running time of our method on the Bal-
anced CIFAR-100 scenario with a memory size of 5K. The results are presented in
Figure 4.4. Our method shows only a minor increase in running time compared to
ER and MIR, while achieving significantly better performance.

4.6.4 The impact of memory size

We compare our FDBS with other memory selection methods by adjusting the size
of the memory set. The experiments were conducted using the imbalanced class-
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Figure 4.4: Running Time of different methods on Blanced CIFAR-100.

domain incremental scenario of PACS, and the results are presented in Table 4.6.
The experimental results show consistent performance improvements for our

proposed FDBS method across all memory sizes tested. Our method outperforms
all other memory selection methods in each case, with the magnitude of the im-
provement being more pronounced for larger memory sizes.

Table 4.6: Comparison of different memory selection methods on Imb C-DIL PACS
for three different memory sizes. We present the final accuracy as mean and
standard deviation over five independent runs

Memory size
Methods 100 200 500 1000
ER 16.4±2.3 18.3±2.5 20.4± 1.8 22.4± 1.3
GSS 15.7±1.6 16.6±1.9 18.2±2.3 20.2±2.1
CBRS 17.2±2.1 19.1±2.1 21.6±1.5 23.6±1.7
OCS 18.3±1.8 21.4±2.2 22.7±1.6 24.7±1.3
FDBS 19.7±1.9 23.5±2.6 24.7±2.0 26.8±2.2

4.6.5 Comprehensive Evaluation of Average Forgetting

We use the metric known as Average ForgettingEquation (2.13) to measure the
extent of knowledge forgotten after training. We compare our method with differ-
ent approaches across three typical scenarios: balanced CIFAR-100, imbalanced
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CIFAR-100, and imbalanced class and domain PACS. For the experiments, we set
the memory size to 5k for CIFAR-100 and 1k for PACS.

Table 4.7: Comparison average forgetting(AF) of different methods on balanced
CIFAR-100, Imbalanced CIFAR-100, and Imbalanced class-domain PACS. We
present the average accuracy(AF) as mean and standard deviation over five in-
dependent runs

CIFAR-100 Imb CIFAR-100 Imb C-DIL PACS
F.T. 53.2 ± 2.8 27.5 ± 1.6 35.5 ± 2.2
ER 40.8 ± 3.5 22.7 ± 1.3 23.9 ± 1.5
GSS 38.2 ± 2.3 23.5 ± 1.8 25.7 ± 1.4
CBRS 37.4 ± 3.1 17.8 ± 1.1 22.8 ± 1.5
MIR 35.6 ± 1.8 22.3 ± 1.5 23.5 ± 1.9
OCS 22.5 ± 1.5 16.5 ± 0.9 21.4 ± 1.4
OnPro 16.3 ± 1.4 14.7 ± 0.9 20.4 ± 1.4
MSCL(ours) 15.4 ± 1.1 13.6 ± 0.8 17.5 ± 0.9

Table 4.7 demonstrates that, in both balanced and imbalanced scenarios, our
method achieves the lowest forgetting and has a lower standard deviation. This
indicates that our method is better at retaining learned knowledge while adapting
to new information.

4.6.6 The distribution of our memory set

To gain deeper insights into the efficacy of our memory selection method, we exam-
ine the distribution of our memory set. Our experiments focus on the challenging
task of imbalanced Domain-Incremental Learning using the PACS dataset, which
comprises four distinct domains (e.g., photo, art painting, cartoon, and sketch).
Following training, we analyze the distribution of our memory set, shedding light
on how our method has shaped the representation of critical data points within
this dynamic learning environment. The results of this analysis are presented in
Table 4.8, while the ratios of different domains within the memory set generated
by various methods are shown in Figure 4.5.

Methods such as ER and CBRS opt for random image selection, aiming to
maintain a distribution akin to the original dataset. In contrast, our method pri-
oritizes increasing intra-class diversity, thereby influencing a more balanced distri-
bution of stored images. This approach plays a crucial role in improving the overall
performance of continual learning. Additionally, the integration of our Contrastive
Learning Loss (SCL) further enhances the feature space consolidation within our
memory set. This refinement proves instrumental in effectively capturing images
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Figure 4.5: The ratio of different domains within the memory set compared to the
original scenario.

from minority domains, contributing to a more robust and balanced representation
of data.

Table 4.8: Comparison of Memory Set Composition Across Methods in Imbalanced
Domain-Incremental Learning (imb DIL) Scenario of PACS. We set the memory
size as 1000.

Methods /Domains Photo Art Painting Cartoon Sketch
Our Scenario 500 1000 2000 3000
ER 78 155 320 447
GSS 125 570 248 57
CBRS 73 162 342 423
OCS 130 183 286 401
FDBS(ours) 156 193 339 312
MSCL(Ours) 190 227 291 292

4.6.7 Collaborative Learning with other memory-based
methods

In our evaluation, we consider three notable continual learning methods, Pod-
Net[81] and AFC[125]. We integrate our Feature-Distance Based Sample Selec-
tion (FDBS) method instead of their primary memory selection method, which
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was originally either random or based on herding. We also introduce our novel
contrastive learning loss SCL. Our experiments encompass two distinct scenar-
ios: Balanced CIFAR-100 and the imbalanced Class-Domain Incremental Learning
(imb C-DIL) of PACS. The results of these experiments are presented in Table 4.9.
Remarkably, our method consistently enhances the performance of these continual
learning methods both on balanced and imbalanced scenarios.

Table 4.9: Combining FDBS with Other Memory-Based Methods: Experiments
on Balanced Split CIFAR-100 (Memory Size: 5000) and Imbalanced Class-Domain
Incremental Learning on PACS (Memory Size: 1000).The final accuracy was pre-
sented as the mean and standard deviation over five independent runs.

Methods Split-CIFAR100 Imb C-DIL PACS
PodNet 19.5 ± 1.4 20.4 ± 1.1
PodNet + MSCL 25.6 ± 2.3 29.5± 0.8
AFC 19.4 ± 1.7 21.5 ± 1.2
AFC + MSCL 25.4 ± 2.6 27.6± 0.9

4.6.8 Results on Balanced class-incremental learning sce-
nario

We have further evaluated the effectiveness of our proposed approach in the context
of classic balanced class-incremental learning. In this scenario, the task boundary
is well-defined, and for each task, we employ offline training for multiple epochs.
For this purpose, we conducted an experiment named Cifar 100-B0 as detailed
in [118]. In this experiment, we partitioned the original Cifar 100 dataset into
10 and 20 distinct tasks, with each task encompassing a set of 5 distinct classes.
The memory size is set as 2000. The result is presented in Table 4.10. Even
in the classic class-incremental learning scenario, our proposed method can still
significantly improve the previous state-of-the-art method.

4.7 Conclusion

This research advances continual learning (CL) by tackling critical hur-
dles—namely blurred task boundaries and severe data imbalance that limit real-
world deployment. The Memory Selection and Contrastive Learning (MSCL)
method presented here offers a robust means of adapting to imbalanced data
streams without sacrificing historical knowledge. Through a combination of
feature-distance based sampling and novel contrastive learning, MSCL effectively
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Table 4.10: Results for classic class-incremental learning on CIFAR-100. Results
marked with ’*’ are obtained directly from [118]. The memory size is set to 2000.

Methods 10 steps 20 steps
iCaRL*[24] 65.2 ± 1.0 61.2 ± 0.8
BiC*[74] 68.8 ± 1.2 66.4 ± 0.3
PodNet*[81] 58.0 ± 1.3 53.9 ± 0.8
AFC[125] 61.2 ± 1.4 54.7 ± 0.8
WA*[76] 69.4 ± 0.3 67.3 ± 0.2
MSCL(ours) 72.5 ± 0.4 70.5 ± 0.5

manages intra-class diversity and inter-class similarity, resulting in a discriminative
representation essential for on-the-fly adaptation in dynamic environments.

Importantly, this second contribution complements the other two pillars of the
thesis. While the first contribution focuses on mitigating catastrophic forgetting
under moderate distribution shifts using an entropy-guided approach, MSCL is
adept at handling more pronounced and imbalanced shifts where memory replay
is necessary. In turn, the third contribution alleviates computational overhead
through generative distillation, further extending CL’s applicability to resource-
constrained settings. Together, these three methods form a comprehensive frame-
work that enhances CL’s viability for a wide spectrum of real-world scenarios
emphasizing scalability, memory efficiency, and computational feasibility.
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Chapter 5

Online Continual Learning of
Diffusion Models

In the previous chapter, we introduced a memory-based approach to address the
imbalanced online continual learning scenario. However, many real-world appli-
cations impose strict data privacy or safety requirements that prevent access to
the original data, thereby rendering a direct memory buffer infeasible. To over-
come this constraint, we explore the use of diffusion models as an alternative for
generating representative samples. Nevertheless, diffusion models themselves are
susceptible to catastrophic forgetting when trained continually. Consequently, our
objective extends beyond employing them as pseudo replay buffers for previously
encountered data distributions to the continual training of diffusion models. This
work is partially presented in ”Online Continual Learning of Diffusion Models:
Multi-Mode Adaptive Generative Distillation”.

5.1 Motivation

Building upon the previous contributions in this thesis, where we addressed data
imbalance using memory-based strategies and mitigated catastrophic forgetting
via careful memory selection, an additional constraint emerges in many real-world
applications: strict data privacy and safety requirements. In such settings, models
often cannot store or revisit the original training data, making replay buffers infea-
sible. Consequently, generative replay using large-scale generative models stands
out as an appealing alternative for preserving learned knowledge without exposing
sensitive information.

When employing generative replay, the quality of synthesized samples is
paramount. Among various generative models, diffusion models have emerged
as a state-of-the-art method for generating high-fidelity images [87, 106]. Recent
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works have successfully applied diffusion models to class-incremental learning sce-
narios, treating them primarily as generators to recreate older classes [134, 156,
137]. However, these approaches typically assume well-defined task boundaries:
before training each new task, they rely on the diffusion model to generate suffi-
cient replay samples, often overlooking computational constraints. Consequently,
they are not readily applicable to online continual learning (OCL), where data
arrive sequentially without clear task demarcations. In OCL, two key challenges
arise. First, diffusion models are computationally expensive to sample from be-
cause they rely on iterative denoising steps that can run into the hundreds or
thousands. Efficiently generating replay samples is therefore crucial. Second, be-
cause no clear task boundaries exist, models must be updated with each incoming
data batch. Both the classifier and the diffusion model face the risk of catastrophic
forgetting, highlighting the need for an efficient update mechanism that preserves
previously learned knowledge.

To reduce the computational cost in the generation of diffusion models, several
techniques have been proposed to reduce computational overhead by transferring
noise-prediction knowledge from a large teacher model to a more efficient student
[130, 143, 133]. These distillation methods can drastically cut the number of
sampling steps needed to generate images, thereby lowering computational costs.
However, they frequently assume that the teacher diffusion model is fixed and
that the original data remain accessible. Such assumptions break down in OCL
scenarios, where the dataset is no longer available and the teacher model itself must
adapt to new data continuously. Repeatedly retraining both teacher and student
models in each new learning phase quickly becomes prohibitively expensive.

To address these shortcomings, we introduce Online Multi-Mode Adaptive
Generative Distillation (MAGD)—a novel framework designed to surmount the
principal obstacles in continually training diffusion models under online condi-
tions. MAGD unifies generative replay and knowledge distillation, enabling ef-
ficient knowledge transfer across sequential tasks. This integration tackles long-
standing challenges in continual learning, including deteriorating image quality,
excessive computational costs, and class imbalance. Our method contains three
components:

• Noisy Intermediate Generative Distillation (NIGD): We propose an
enhanced distillation strategy that leverages both intermediate noisy im-
ages (xτ ) directly generated from the reverse process and noisy images (x̂τ )
obtained by adding noise to the final image (x0). The intermediate noisy
images capture detailed local information, while the latter provide richer
global context. This complementary approach enhances the stability of the
distillation process in online continual learning (OCL) scenarios, maximiz-
ing data utility without increasing computational overhead. By preserving
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image quality across successive tasks, NIGD significantly improves overall
training efficiency.

• SNR-Guided Generative Distillation (SGGD): Inspired by recent
studies on the denoising capabilities of diffusion models [123, 148], we use an
SNR-based threshold to dynamically select among current data, generated
samples, or Gaussian noise to replay, minimizing the frequency of full gener-
ation cycles and cutting computational costs without losing performance

• Preserving Learned Knowledge with EMA: We employ an Exponential
Moving Average (EMA) strategy to update our diffusion model, drawing
inspiration from techniques[164, 83] used in online continual learning and
self-supervised contrastive learning. By updating the teacher model through
EMA, we effectively maintain previously learned knowledge while adapting
to new data. This approach enhances the knowledge distillation process in
our framework, allowing the model to better handle the challenges of online
continual learning scenarios.

In summary, our contributions are as follows:

• We introduce a novel method, Online Multi-Mode Adaptive Genera-
tive Distillation (MAGD), which targets the continual learning of diffu-
sion models in OCL. This method comprises three key components: Noisy
Intermediate Generative Distillation (NIGD), SNR-Guided Generative Dis-
tillation (SGGD), and Exponential Moving Average (EMA). MAGD signifi-
cantly reduces computational costs while maintaining or enhancing genera-
tion performance.

• Empirical evaluations on Fashion-MNIST, CIFAR-10, and CIFAR-100 show
that MAGD reduces overall generation steps (e.g., 10 for Fashion-MNIST,
25 for CIFAR) while preserving or even improving performance. Notably, it
achieves a 25% reduction in computation compared to standard distillation
and a 92% saving over methods using 1000-step denoising (DDGR-1000), all
while producing higher-quality generated samples and strong classification
performance.

5.2 Problem formulation

Following recent work in continual learning [127, 111], we explore the online con-
tinual learning scenario where a model learns from an online data stream, with
each sample presented only once. Formally, we define a data stream at time step k
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as Bk = {(xi, yi)}Nb
i=1, where each pair (xi, yi) corresponds to an input data point

and its associated label, respectively, and Nb represents the batch size.
The diffusion model is denoted by ϵθ, comprising T generative steps. We define

the online continual learning algorithm A as follows:

Ak : (ϵθk−1 ,Bk,Mk−1) → (ϵθk ,Mk) (5.1)

At each time step k, the model receives a small batch Bk. It updates based on
this current batch Bk and data in Mk−1, where Mk represents the memory set
that stores either true images or generated images at time step k. In this study,
we employ a diffusion model to generate images to replace the memory set M,
thereby eliminating the need to store true images.
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Figure 5.1: Illustration of Our Method. The yellow region represents SGGD,
the blue region denotes NIGD, and the red region corresponds to training on
the current batch Bk. ϵθk−1

t
is our EMA-teacher, and ϵθk is our current model.

5.3 Methodology

5.3.1 Generative replay and Generative distillation

In this section, we explore the mechanisms of Generative Replay (DGR) and its
advanced variant, Generative Distillation (DGR-distill), which are detailed in Al-
gorithm 8. We consider both Generative Replay (DGR) and Generative Distil-
lation (DGR-distill) [142] as our baselines, which are among the most commonly
used strategies applying generative models to continual learning algorithms. Before
training on a new batchBk, they first use the previous noise prediction model ϵθk−1
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to generate a memory batch Xr. We then add noise ϵr corresponding to the diffu-
sion step tr to obtain the noisy images Xr. The two methods differ only in the tar-
get used for the distillation loss. In DGR, it uses the known added noise as the pre-
diction target : LDGR = MSE(ϵr, ϵθk(X̃r, tr)). However, in DGR-distill, it uses the

previous model’s output as target : LDGR−distill = MSE(ϵθk−1(X̃r, tr), ϵθk(X̃r, tr))

Algorithm 8 Train diffusion model at step k

Input: θk−1
t is the previous teacher model parameters, θk−1 is the previous model

parameters, Bk, Nb is the batch size, n is the number of iterations, λ is the
updating speed in EMA.

1: Get current data Xc,yc of size Nb from Bk

2: θks = θk−1 {Initialize the current model}
3: for n steps do
4: tc, tr ∼ Uniform({1, . . . , T})
5: ϵc, ϵr ∼ N (0; I)

6: X̃c =
√
ᾱtcXc +

√
1− ᾱtcϵc

7: Xr = DDIM(ϵr,θ
k−1
t ) {Gnerate Images from previous diffusion model}

8: X̃r =
√
ᾱtrXr +

√
1− ᾱtrϵr

9: Lcurrent = MSE(ϵθk(Xc, tc), ϵc){current loss}
10: if method == ”DGR” then
11: Lreplay = MSE(ϵθk(X̃r, tr),ϵr)
12: else if method == ”DGR-distill” then
13: Lreplay = MSE(ϵθk(X̃r, tr),ϵθk−1

t
(X̃r, tr))

14: end if
15: Ltotal = Lcurrent + Lreplay

16: Ltotal.backward()
17: Update θk

18: end for
19: θkt = (1 - λ)θk−1

t + λ θk{Update teacher model}

5.3.2 Noisy Intermediate Generative Distillation (NIGD)

To efficiently generate images, we utilize a DDIM scheduler [99], which operates
over a selected subset of steps {τ1, τ2, . . . , τs} from the total number of steps T ,
thereby reducing the number of necessary steps to S. As discussed in Section 5.3.1,
current continual learning methods that apply diffusion models use either DGR or
DGR-distill. Both approaches initially generate the original images x0 using the
full S steps, then add noise to produce x̂τi at specified time steps τi, as illustrated
in Figure 5.2. However, if we utilize only x̂τi for distillation during the generation
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DDIM denoising process consisting of 𝑆 steps

Figure 5.2: An illustration of the DDIM denoising process with S steps shows
two approaches: using S − i steps to directly generate xτi , or first generating the
original images x0, followed by adding noise to produce the noisy image x̂τi at
step τi.

Figure 5.3: Evaluation of ri with 20 generation steps
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process, the diffusion model can directly generate noisy images at time step denoted
by xτi . These noisy images can also be useful for distillation as they require only
S−i generation steps. We then compute the differences between them and explain
their utility for distillation.

xτi =
√

ᾱτi ∗
xτi+1

−
√

1− ᾱτi+1
ϵθ(xτi+1

)
√
ᾱτi+1

+
√
1− ᾱτiϵθ(xτi+1

) (5.2)

After completing S steps of the reverse process, we obtain the generated
image denoted as x0. In the forward process, the distribution q(xτi |x0) =
N (xτi ;

√
ᾱτix0, (1 − ᾱτi)I) describes how the image x0 transitions to its noisy

versions. Specifically, we derive the noisy images x̂τi directly from x0.

x̂τi =
√

ᾱτix0 +
√

(1− ᾱτi)ϵ (5.3)

We can then derive the difference between x̂τi and xτi (full demonstration is
detailed in the Appendix A.1) :

x̂τi − xτi =
1∑

j=i

(rjϵθ(xτj)) (5.4)

rj =
√
ᾱτi(

√
1− ᾱτj−1

ᾱτj−1

−

√
1− ᾱτj

ᾱτj

) (5.5)

From Equation (5.4), we observe that the difference between the noisy image
x̂τi , derived from the generated x0 by adding noise, and the directly generated
noisy image xτi depends solely on the generation steps from τi to τ1. As illustrated
in Figure 5.3, we evaluate the values of rj when τi = 500 (i = 10) for 20 steps
of DDIM. We find that for all j < 10, the residuals rj are smaller than 1 and
significantly lower than rj for j > 10. This indicates that the residual component
is relatively weaker compared to the noisy image xτi .

In our continual learning scenario, we employ the previously trained diffusion
model at time k − 1, denoted as θk−1, as our teacher model. Our objective is to
train the new model θk by distilling knowledge from the teacher model. Therefore,
for any given τi, we require:

ϵθk(xτi−1
|xτi , τi) = ϵθk−1(xτi−1

|xτi , τi) (5.6)

During the generation process, the previously trained model generates xτi with-
out access to x̂τi . However, xτi is crucial for distilling knowledge from the previous
model, as it retains more localized information.

We demonstrate that in a S-step DDIM generation process, both the directly
generated noisy image xτi and the noisy image x̂τi obtained by adding noise to x0
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are valuable for distillation. The former helps retain more local information, while
the latter preserves more global details, as shown in Figure 5.2.

This study suggests two methods of obtaining a noised image, for any given
diffusion step, τi as shown in Figure 5.2:

1. Two-Stage Approach: Generate x0 using S steps, then add noise for step
τi to get x̂τi .

2. Direct Approach: Directly generate xτi using S − i steps.

In practice, we distill knowledge from both the intermediate noisy images and
the two-stage noisy images produced during the inverse process.

5.3.3 SNR-Guided Generative Distillation (SGGD)

Research by [123] discovered that a diffusion model operates in two distinct phases
based on the time steps (t): as a denoiser for refining corrupted images into final
samples when t is small, and as a generator for creating images from noise when t is
larger. Their research shows robust generalization across datasets such as CIFAR-
10 and CelebA, particularly in the early stages of diffusion (when (t/T < 0.1)), as
illustrated in Fig. 3 of [123]

The use of solely generated images for training in continual learning scenar-
ios, as discussed in [36], [47], and [134], leads to progressive degradation in image
quality. To counter this, we propose utilizing the early-stage denoising capabilities
of diffusion models to distill knowledge directly from current training data, rather
than generated images. This approach yields several benefits: (1) Enhanced image
clarity. (2) Preservation of knowledge from earlier stages. (3) Reduced computa-
tional cost by eliminating the need for image generation in the initial steps.

Figure 5.4: logSNR Across Time Steps in Fashion-MNIST and CIFAR-10

To find the turning point tc of the time step before which current training data
can be effectively used, we calculate the Signal-to-Noise Ratio (SNR) along with
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the time step. This measurement assesses the relative amplitude of the added
noise compared to the original image. We use the same formula as in [123]:

SNR(x0, t) =
ᾱtx

2
0

1− ᾱt

(5.7)

where x0 is the original image. The SNR quantifies the amplitude ratio between
the original image and noise. Research by [123] demonstrates that a log(SNR) =
3 serves as a reliable threshold, which does not negatively impact the FID of
generated images. The critical time steps, tlow, are determined as 50 for Fashion-
MNIST and 35 for CIFAR-10, as shown in Figure 5.4.

As the time step increases and log(SNR) becomes significantly negative, in-
dicating a strong dominance of noise over signal, the diffusion model’s input ap-
proximates Gaussian noise. In such scenarios, distilling knowledge from Gaussian
noise becomes crucial. We utilize a rescaled schedule, as suggested by [141], where
a log(SNR) = −9 marks the input as nearly indistinguishable from noise. The
identified transition points, thigh, are 878 for Fashion-MNIST and 848 for CIFAR-
10, detailed in Figure 5.4.

In the yellow region of Figure 5.1, we propose selecting images for distillation
based on the training step tr and two thresholds: tlow and thigh. Specifically:

• If tr < tlow, images are selected from the current batch for distillation.

• If tr > thigh, Gaussian noise is directly used for distillation.

• Otherwise, noisy images are generated from previous model

To manage this process, log(SNR) for each image batch is calculated. Ad-
ditionally, the thresholds tlow and thigh are dynamically updated using a moving
average formula based on each training batch. This adaptive approach minimizes
the need for manual tuning of these parameters and reduces the overall number of
images that need to be generated by approximately 20%, without compromising
performance outcomes.

5.3.4 EMA in Online Continual Learning

In an Online Continual Learning setting, unlike classic class-incremental learning
where task boundaries allow the use of a previously trained model as a static
teacher model [81, 74, 24], no such boundaries exist. This necessitates a different
approach to updating our teacher model dynamically. We adopt the concept of
Exponential Moving Average (EMA), as utilized in [83, 164], to update our teacher
model at time k:
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θkt = (1− λ)θk−1
t + λθk (5.8)

Here, θk is our current diffusion model, updated with the latest training batch.
θt represents our teacher model. The parameter λ is a hyperparameter that controls
the rate of update; for this study, we set λ to 0.01. This setting ensures that the
teacher model gradually integrates new knowledge while maintaining stability over
time, a crucial aspect in the absence of clear task boundaries.

5.3.5 Workflow and overall objective

Our method’s workflow is illustrated in Figure 5.1. At the training step k, we
first initialize the current model ϵθk using the parameters from the previous model
ϵθk−1 . We then update ϵθk by processing the current batch Bk and distilling knowl-
edge from the EMA-based teacher ϵθk−1

t
. Because the previous batch Bk−1 is not

retained, it is unavailable for training at this step. The current batch Bk comprises
images (Xc), labels (Yc).

The process starts by randomly selecting time steps tr, and generating Gaussian
noise ϵr. According to the resampling guidelines in SNR-Guided Generative
Distillation (SGGD) Section 5.3.3, we categorize tr into three types: tcur for
replaying current images xtcur , tgau for replaying Gaussian noise xtgau , and tge for
replaying generated noisy images. For instances categorized under tge, we employ
Noisy Intermediate Generative Distillation (NIGD) to produce half of the
images as directly noisy images xtge and the other half as two-stage noisy images
x̂tge . By combining all types of noisy images for replay, we can construct our

noisy memory batch as X̃r. The replay loss is then calculated based on these
categorizations.

Lreplay = MSE(ϵθk(X̃r, tr), ϵθk−1
t

(X̃r, tr)) (5.9)

Next, we sample time steps tc and noise ϵc. We then pass the current noisy
training data (X̃c, ϵc) through our current model to obtain:

Lcurrent = MSE(ϵθk(X̃c, tc), ϵc) (5.10)

Finally, the overall objective is formulated as:

Ltotal = αLcurrent + (1− α)Lreplay (5.11)

where α is a hyperparameter controls the balance between the current loss and
the replay loss. After updating our current model ϵθk , we then use Equation (5.8)
to update our EMA-based teacher. Typically, the value of α is decreased as train-
ing progresses to reduce the updates on the current batch, thereby enhancing the
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model’s stability. In the context of online continual learning, we update α dynam-
ically with the following formula:

α = 0.1 + 0.4 ∗ 0.995k (5.12)

where k represents the current training step. This formulation ensures that λ
gradually decreases over time from 0.5 to 0.1, providing a smooth transition from
focusing on the current batch to maintaining stability through replay.

Then, we present the algorithm of our method in Algorithm 9.

5.4 Experiments and Results

5.4.1 Datasets

In this paper, we use three well-used datasets in online continual learning such as
Fashion-MNIST,CIFAR-10, and CIFAR-100. For all datasets, we use half of
classes as the zero task T0 where we train our model offline and the model can be
considered as a well-trained initial model. Then, we feed the half of the dataset in
on online stream.

5.4.2 Evaluation metrics and Methods

In this paper, we assess image quality using the Fréchet Inception Distance (FID),
which is calculated between generated images and a test set from previously en-
countered tasks. To evaluate the model’s capability to generate balanced batches,
we compute the Kullback-Leibler Divergence (KLD) between the uniform distri-
bution and the predicted class distribution of the generated images. Additionally,
we measure the average classification accuracy (AA) for class-conditional diffusion
models.

We explore two types of diffusion models in our experiments: unconditional
and class-conditioned. The references for diffusion models include [87, 21].

For unconditional diffusion model, We compare our method primarily with deep
generative approaches such as DGR, DGR with distillation [142], and DDGR
[134], along with the memory-based method ER [61], as well as Fine-tuning and
Joint-training as lower and upper bound, respectively.

• F.T. (Fine-tuning): Fine-tunes only on the current task (lower bound).

• J.T. (Joint-training): Trains on all encountered tasks jointly (upper
bound).
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Additionally, we utilize DDGR-1000, which involves 1000 full generation
steps and provides state-of-the-art performance but at a high computational cost,
thereby acting as a secondary upper bound. We also measure training time for all
methods on a 1 × NVIDIA A100 40GB, using DGR-distill as the baseline
for comparison.

For class-conditional diffusion model, we can compare the final classification
accuracy with two memory-free methods as BIR[100] and PASS[121], and one
memory-based methods: PCR[140].

For Fashion-MNIST, we deploy a small UNet [87, 21] with 10 DDIM steps.
For CIFAR-10 and CIFAR-100, a medium-sized UNet with 25 DDIM steps is
used. Both ER and PCR method employs a memory buffer of size 1000. We
employ EMASection 5.3.4 for all diffusion models.

5.4.3 Overall results

In Table 5.1 and Table 5.2, we present the results, summarized as mean and stan-
dard deviation over five random runs for both unconditional and class-conditioned
diffusion models.

Unconditional Diffusion Model Results: In Table 5.1, our method signifi-
cantly outperforms the classical DGR-distill, demonstrating substantial improve-
ments in both FID and KLD scores across various datasets. We observe an im-
provement range of approximately 4.5 to 5.3 in FID scores, alongside superior KLD
performance, while concurrently achieving a 25% reduction in computational costs.
Notably, our approach matches the performance of the more computationally in-
tensive DDGR-1000 model, which requires up to 1000 generation steps. Specifi-
cally, for Fashion-MNIST, our method equals the FID and KLD scores obtained
by DDGR-1000 with just 10 generation steps, and it requires only 25 steps for
CIFAR-10 and CIFAR-100. Moreover, our method reduces the computational de-
mand by 92% compared to DDGR-1000, underscoring its efficiency and potential
for practical applications requiring lower resource utilization.

Class-Conditioned Diffusion Model Results: In Table 5.2, when examining
the class-conditioned diffusion model, our method does not just compete on FID
scores but also demonstrates a clear advantage in classification accuracy. It consis-
tently surpasses the performance of basic DGR-distill and closely approaches, and
in some metrics exceeds, that of DDGR-1000. Remarkably, our approach outper-
forms the memory-based method PCR, even with a significantly larger memory
buffer.
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These results validate the effectiveness of our comprehensive generative distilla-
tion strategy, which substantially elevates the benchmarks set by DGR-distill. By
efficiently leveraging fewer generation steps, our method not only curtails compu-
tational expenses but also enhances the generative quality of models across diverse
datasets.

Table 5.1: Results Presented as Mean and Standard Deviation Over 5 Random
Runs, with unconditional diffusion model

Fashion-MNIST CIFAR-10 CIFAR-100
FID↓ KLD↓ Time↓ FID↓ KLD↓ Time↓ FID↓ KLD↓ Time↓

F.T. 95.5 ± 10.2 4.75 ±1.81 ×0.15 73.5±5.8 3.83±1.15 ×0.08 85.2 ± 6.9 8.55 ± 3.37 ×0.08
DDGR-1000 19.2 ± 2.5 0.09 ± 0.01 ×20.5 37.8 ± 3.4 0.15 ± 0.02 ×8.75 42.6 ± 3.5 0.9 ± 0.31 ×8.75
J.T. 14.7 ± 1.5 0.07 ± 0.01 ×0.15 27.3±2.1 0.11±0.01 ×0.08 32.4 ±2.5 0.61 ± 0.13 ×0.08
ER 25.9±3.9 0.38±0.15 ×0.15 50.5±5.9 0.35±0.13 ×0.08 52.6±5.4 2.2 ± 0.75 ×0.08
DGR 90.5 ± 10.5 1.15 ±0.23 ×0.91 75.3 ± 6.6 1.55 ± 0.58 ×0.95 80.8 ± 8.2 3.6 ± 0.87 ×0.95
DGR-distill 24.8 ± 3.4 0.17 ± 0.08 0.8h ×1 46.3 ± 6.0 0.28 ± 0.14 1.5h ×1 48.5 ± 5.6 1.5 ± 0.41 1.5h ×1
Ours 20.3 ± 2.2 0.10 ± 0.04 ×0.75 41.3 ± 4.6 0.17 ± 0.09 ×0.72 42.4 ± 4.8 1.05 ± 0.35 ×0.72

Table 5.2: Results Presented as Mean and Standard Deviation Over 5 Random
Runs, with class-conditioned diffusion model

CIFAR-10 CIFAR-100
FID↓ AA↑ Time↓ FID↓ AA↑ Time↓

F.T. 58.5±7.8 11.2 ± 0.2 × 0.07 65.2 ± 8.9 4.5 ±0.3 × 0.07
DDGR-1000 31.5 ± 1.6 45.7 ± 1.2 × 9.21 35.8 ± 2.3 28.8 ± 0.9 × 9.21
J.T. 26.3±1.8 73.5 ± 0.5 × 0.07 30.5 ±2.2 67.4 ± 0.3 × 0.07
ER 42.5±5.1 31.8 ± 2.5 × 0.07 52.6±5.4 18.9 ± 3.1 × 0.07
DGR-distill 39.3 ± 4.2 38.8 ± 3.8 1.7h × 1 44.5 ± 4.5 24.3 ± 2.4 1.7h × 1
BIR - 30.5 ± 3.7 - - 16.3 ± 3.8 -
PASS - 37.8 ± 2.5 - - 20.5 ± 2.7 -
PCR - 40.5 ± 3.2 - - 25.7 ± 2.2 -
Ours 34.7 ± 3.5 42.1 ± 2.1 × 0.71 38.2 ± 3.7 27.5 ± 1.3 × 0.71

5.5 Ablation Study and Extensive Experiments

5.6 Ablation Study

Our method incorporates two innovative components: NIGD and SGGD. SGGD
utilizes three types of replay images: Gaussian noise, current images, and gen-
erative images. NIGD employs two methods to generate noisy images from the
diffusion model: a two-stage approach and a direct approach. We use the DGR-
distill backbone with unconditional diffusion models and apply 10 generation steps
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for Fashion-MNIST. Our results demonstrate that both SGGD and NIGD enhance
the quality of the generated images while reducing computational costs.

Table 5.3: Ablation Study on Fashion-MNIST

FID↓ KLD↓ Time↓
w. Generative (two-stage) 24.8 ± 3.4 0.17 ±0.08 0.8h × 1
w. Current 56.9 ± 3.8 0.33 ± 0.12 ×0.25
w. Gaussian 35.4 ± 2.6 0.76 ± 0.09 ×0.25
w. SGGD 22.4±3.8 0.15±0.08 ×0.85
w. Generative (direct) 23.8 ± 5.8 0.15 ± 0.09 ×0.63
w. NIGD 21.5 ± 2.7 0.13 ±0.05 ×0.83
Ours 20.1 ± 2.2 0.10 ± 0.03 ×0.75

5.6.1 The Influence of Generation Steps

In this section, we analyze the impact of varying generation steps on our method
(using the unconditional diffusion model). As shown in Table 5.4, our method
consistently outperforms the baseline (DGR-distill) by a large margin in both FID
and KLD across all generation steps. Notably, our method with only 25 steps
achieves FID scores close to those of DGR-distill with 100 steps. Furthermore, our
method with 50 steps closely matches DDGR-1000, achieving FID scores of 39.4
vs 37.8 and KLD of 0.15 vs 0.15.

Table 5.4: FID and KLD on CIFAR-10 Across Different Generation Steps

Steps 5 10 25 50 100
FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑ FID↓ KLD↑

DGR-distill 56.4 ± 8.7 0.55 ± 0.15 50.5±7.4 0.35±0.15 46.3±6.0 0.28±0.14 44.1 ±5.7 0.22 ±0.09 42.5±3.9 0.16 ±0.06
Ours 52.5± 7.9 0.31 ± 0.11 46.9± 7.1 0.25 ±0.10 41.3 ± 4.6 0.18 ±0.09 39.4 ± 4.3 0.15 ±0.06 37.1±3.4 0.14 ± 0.05

5.6.2 Results Across Tasks

Here, we present the results of different methods using an unconditional diffusion
model on Fashion-MNIST and CIFAR-10 across various tasks, as illustrated in Fig-
ure 5.5. The results show that our method consistently outperforms the baseline.
Unlike ER and DGR-distill, our method also enhances the model’s performance as
it learns new tasks, demonstrating greater stability during the learning process.
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Figure 5.5: Evaluation of FID Score and KLD Across Tasks for Different Methods
on Fashion-MNIST and CIFAR-10 (unconditional model)

5.7 Conclusion

In this chapter, we introduced the Multi-Mode Adaptive Generative Distillation
(MAGD) approach to mitigate catastrophic forgetting and reduce computational
costs in online continuous training of diffusion models. By integrating NIGD,
SGGD, and EMA, our method maintains high-quality image generation while re-
ducing computational expenses by up to 25% compared to basic DGR-distill and
92% compared to DDGR-1000. In class-conditioned models, MAGD significantly
outperforms basic DGR-distill and surpasses memory-based methods in terms of
classification accuracy, demonstrating its potential as a viable alternative to tra-
ditional memory buffers.

These results underscore the broader goals of this thesis: developing practical,
efficient, and privacy-conscious continual learning solutions. By eliminating the
need to store original data and focusing on a lightweight generative replay mecha-
nism, MAGD advances the prospects for deploying diffusion models in real-world,
rapidly evolving environments. In the future, we will investigate the scalability of
our framework to more complex datasets, explore synergies with other advanced
CL techniques, and delve deeper into optimizing the trade-offs among data fidelity,
model size, and computational efficiency.
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Conclusions and Perspectives

In this thesis, we address the complex challenge of continual learning from stream-
ing, evolving data under strict computational and privacy constraints, aiming to
preserve previously acquired knowledge. Our research contributes to three funda-
mental aspects of continual learning (CL): operating in environments with blurred
task boundaries and overlapping distributions, adapting to highly imbalanced on-
line data streams, and reducing the computational burden and privacy issues as-
sociated with training diffusion models continually.

In Chapter 3, we introduce the Distribution-Shift Incremental Learning (DS-
IL) framework, which acknowledges that task boundaries are often indistinct, and
data distributions may overlap in practical settings. We propose an entropy-guided
self-regulated distillation process that effectively utilizes soft task boundaries with-
out relying on extensive memory buffers. This method demonstrates significant
efficacy in managing moderate distribution shifts, indicating that task overlap
can be utilized to mitigate catastrophic forgetting. However, we also find that in
scenarios with substantial distribution shifts, reliance solely on no-memory strate-
gies may be inadequate, thus underscoring the potential necessity for hybrid or
memory-based approaches.

Chapter 4 discusses the Memory Selection with Contrastive Learning (MSCL)
framework, which merges a class-aware memory selection mechanism with con-
trastive representation learning to handle both balanced and imbalanced data
streams effectively. This framework dynamically selects representative instances
in a resource-efficient way while employing contrastive loss to enhance robust and
evolving feature representations. Our experiments across various datasets validate
the effectiveness of this approach, particularly in severe data imbalances.

Chapter 5 addresses the computational challenges of training large diffusion
models in an ongoing manner. We present the Multi-Mode Adaptive Generative
Distillation (MAGD) strategy, which facilitates efficient continual updates with
minimal knowledge loss. This framework utilizes generative distillation across
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noisy intermediate representations and employs exponential moving averages to
preserve high-fidelity generative capabilities. Notably, MAGD significantly re-
duces the computational overhead and mitigates privacy and storage concerns, as
evidenced by our empirical results that show sustained high-quality performance in
image generation and classification compared to traditional replay-based methods.

Collectively, these innovations advance continual learning towards greater ap-
plicability in real-world, resource-limited, and privacy-sensitive scenarios. This
thesis demonstrates that by strategically integrating adaptive distillation, targeted
memory selection, and contrastive learning, it is feasible to harmonize the de-
mands of knowledge retention, computational efficiency, and model adaptability.
Our research contributes to the foundational efforts in advancing autonomous, in-
crementally learning systems in areas such as computer vision and robotics. It
also suggests potential pathways for integrating large-scale foundation models and
multi-modal data streams into continual learning frameworks.

For future work, I believe there are two core directions to explore: model gener-
alization in continual learning and the representation and utilization of knowledge
within artificial neural networks.

Enhancing model generalization in continual learning is a critical chal-
lenge given the dynamic nature of real-world data. In traditional supervised learn-
ing, especially within class-incremental scenarios[74, 81], the introduction of new
classes often leads to significant shifts in data distribution, causing models to over-
fit on recent information and subsequently forget previously acquired knowledge.
Recent approaches have leveraged contrastive learning, extensive data augmen-
tation, and self-supervised techniques to extract invariant features that remain
robust despite these distributional changes[111, 104, 124, 145]. Notably, self-
supervised methods[108, 149] have shown promise in reducing catastrophic for-
getting, suggesting that the learned features are more transferable across tasks.
However, our current understanding of the underlying mechanisms remains lim-
ited, and there is a clear need for further exploration of dynamic regularization
strategies, meta-learning frameworks, and theoretical analyses of the representa-
tion spaces in neural networks. Such research could provide deeper insights into
balancing the stability-plasticity trade-off, thereby enhancing the model’s ability
to integrate new information while preserving existing knowledge.

A second important aspect concerns the representation and utilization of
knowledge within artificial neural networks. Most continual learning approaches
define knowledge as either raw data stored[24, 61] in memory buffers for replay,
or as static model parameters[118, 107] inherited from previous training itera-
tions. While techniques such as parameter freezing and knowledge distillation
help mitigate forgetting, they oversimplify the multifaceted nature of human cog-
nition, which relies on latent, abstract constructs that can be selectively activated
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depending on the context. Exploring alternative forms of knowledge representa-
tion, such as structured frameworks like concept bottleneck models[161], knowledge
graphs[101, 105], or neural-symbolic architectures, offers a promising avenue for
capturing this complexity. Additionally, incorporating adaptive parameter alloca-
tion strategies and dynamic knowledge activation mechanisms, potentially inspired
by biological memory consolidation processes, could further enhance the retention
and transfer of learned information without succumbing to catastrophic forget-
ting. Such advancements would not only improve continual learning performance
but also contribute to the development of more interpretable and flexible artificial
intelligence systems.
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Appendix A

Online Continual Learning of
Diffusion Models

A.1 Demonstration

In this section, we demonstrate the difference between the directly generated noisy
image and the noisy image generated from the original image.

Firstly, we have the noisy images x̂τi generated from x0.

x̂τi =
√

ᾱτix0 +
√

(1− ᾱτi)ϵ (A.1)

We can also obtain the noisy image at step τi from the image at the previous
step τi+1 using the model ϵθ, as shown in Equation (A.2).

xτi =
√
ᾱτi ∗

xτi+1
−
√

1− ᾱτi+1
ϵθ(xτi+1

)
√
ᾱτi+1

+
√

1− ᾱτiϵθ(xτi+1
) (A.2)

We can then reformulate Equation (A.2) as follows:

xτi = kτi+1
xτi+1

+ lτi+1
ϵθ(xτi+1

) (A.3)

where kτi+1
=
√

ᾱτi

ᾱτi+1
, and lτi+1

=
√
1− ᾱτi − kτi+1

√
1− ᾱτi+1

For a DDIM process comprising S steps, we have:

xτs−1 = kτsxτs + lτsϵθ(xτs)

xτs−2 = kτs−1xτs−1 + lτs−1ϵθ(xτs−1)

. . .

xτi = kτi+1
xτi+1

+ lτi+1
ϵθ(xτi+1

) (A.4)
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Starting from the initial step, with τs = 999 for a total of 1000 steps, xτs

represents random noise. Based on the recurrence relation, we obtain:

xτi =

√
ᾱτi

ᾱτs

ϵ+

√
ᾱτi

ᾱτs−1

lτsϵθ(xτs)+

. . .

+

√
ᾱτi

ᾱτi+1

lτi+2
ϵθ(xτi+2

) + lτi+1
ϵθ(xτi+1

) (A.5)

x0 =

√
ᾱ0

ᾱτs

ϵ+

√
ᾱ0

ᾱτs−1

lτsϵθ(xτs)+

. . .

+

√
ᾱ0

ᾱτ1

lτ2ϵθ(xτ2) + lτ1ϵθ(xτ1) (A.6)

By introduce Equation (A.6) into Equation (A.1) and minus Equation (A.5),
we derive:

x̂τi = xτi +
1∑

j=i

(rjϵθ(xτj)) (A.7)

where:

rj =

√
ᾱτi

ᾱτj−1

lτj =
√

ᾱτi(

√
1− ᾱτj−1

ᾱτj−1

−

√
1− ᾱτj

ᾱτj

) (A.8)

A.2 Algorithm
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Algorithm 9 Train diffusion model at step k (Ours)

Input: θk−1
t ,θk−1, Bk, Nb is the batch size, n is the number of iterations, tlow is

the transition point for current batch, and thigh is the transition point for Gaussian
noise, λ is the updating speed in EMA.

1: Get current data Xc,yc of size Nb from Bk

2: θk = θk−1

3: for n steps do
4: tc, tr ∼ Uniform({1, . . . , T})
5: ϵc, ϵr ∼ N (0; I)
6: t̂low = {t|log(SNR(Xc, t)) = 3}
7: t̂high = {t|log(SNR(Xc, t)) = −9}
8: X̃c =

√
ᾱtcXc +

√
1− ᾱtcϵc {Add noise to the current training batch}

9: X̃r = []
10: for i, t in enumerate(tr) do
11: if t < tlow then
12: xr = Xc[i]
13: x̃r =

√
ᾱtxr +

√
1− ᾱtϵr {Add noise to the current batch}

14: X̃r add x̃r {Add Current}
15: else if t > thigh then

16: X̃r add ϵr[i] {Add Gaussian}
17: else
18: tau = random.random()(random value from 0 to 1.)
19: if tau < 0.5 then
20: xt = DDIM(ϵr[i],θ

k−1
t ) {Get noisy images from previous diffusion

model}
21: X̃r add xt {Add directly noisy image}
22: else
23: x0 = DDIM(ϵr[i],θ

k−1
t ) {Get original images from previous diffusion

model}
24: x̂t =

√
ᾱtrx0 +

√
1− ᾱtrϵr[i] {Get noisy image from the original im-

age.}
25: X̃r add x̂t {Add two-stage noisy image}
26: end if
27: end if
28: end for
29: Lcurrent = MSE(ϵθk(Xc, tc), ϵc)

30: Lreplay = MSE(ϵθk(X̃r, tr), ϵθk−1
t

(X̃r, tr))

31: Ltotal = αLcurrent + (1− α)Lreplay

32: Ltotal.backward()
33: Update θk−1

34: α = 0.1 + 0.4 ∗ 0.995k
35: tlow = 0.999tlow + 0.001t̂low
36: thigh = 0.999thigh + 0.001t̂high
37: end for
38: θkt = (1 - λ)θk−1

t + λ θk{Update teacher model}
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