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Sidharth Jaggi Professeur à l’University of Bristol Rapporteur
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1 Introduction

1.1 Covert communication in physical layer security

Communication confidentiality is classically ensured by encryption [65], however, cryptographic security
can be compromised with sufficiently large computational power. Recently, there has been growing interest
in securing the physical environment used for communication, known as the physical layer of the Open
Systems Interconnection (OSI) model (Figure 1).

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

User
Transmit

Data
Receive

Data

Fig. 1: OSI model.

Securing the physical layer could in principle replace cryptography or network encapsulation as everything
ultimately depends on the physical layer. Thus physical-layer security aims to exploit the randomness
inherent in wired or wireless communication channels to guarantee confidentiality even against compu-
tationally unlimited attackers.
Physical layer security was first investigated in the security paradigm of Wyner’s wiretap channel model
[81] where it is required that the adversary should not learn any information about the transmitted mes-
sage while the intended receiver should be able to decode the message without any error. To characterize
the quantity of information that could be sent securely over a noisy channel in the presence of an eaves-
dropper who observes the channel output, Wyner [81] introduced the metric known as secrecy capacity.
It was shown that there exist wiretap codes [81, 19] that can achieve a positive rate of communication
if the channel of the eavesdropper is more noisy than the channel of the legitimate receiver. Another
possible scenario investigated within the field of physical layer security is the generation of secret keys
at multiple terminals sharing a common random source [53] such as a wireless environment. These keys
can then be used for encryption. Even though their exchange is vulnerable to jamming and man-in-the-
middle attacks, appropriate countermeasures [3, 54] have been studied to mitigate these vulnerabilities.
Physical layer security can be leveraged to provide many other services such as authentication using
physical unclonable functions [56] or radio-frequency (RF) physical layer authentication (fingerprinting)
[79].
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Covert communication In this thesis, we focus on another problem in physical security, namely
“covert communication”, also known as “communication with a low probability of detection”. In this
scenario, the legitimate transmitter and receiver want to prevent a potential eavesdropper from making a
good guess on whether a communication is ongoing or not. Covertness is desirable in many applications,
since merely revealing who is communicating, when and from where can leak sensitive information, even if
the content of the communication is not disclosed. We aim at ensuring covertness while ensuring reliable
communication for the legitimate receiver: meaning ensuring a small error in decoding and theoretically,
an error-free communication if the time of communication is sufficiently long.

Spread-Spectrum Communication Practical covert communication has been studied in the con-
text of spread-spectrum technology [68, Pt. 5, Ch. 1], where the energy of the signal is spread over a
large bandwidth. With this technique, the spectral density peaks of the signal approach the noise floor,
which makes the signal harder to detect in the frequency domain. While spread-spectrum communication
is widely used when the communicating parties have a hardware advantage over the eavesdropper, its
security is often debated. In fact, there is little theoretical assurance about how difficult it is for an
eavesdropper to detect the communication. Moreover, its usage is mostly confined to military contexts,
for instance during the Cold War, its development and use were initiated by the MIT, Bell Labs, and
USSR laboratories [82]. However, it is impractical for individuals where hardware resources may be
limited and frequency hopping might be restricted by law.

Steganography Covert communication has also been studied in the context of steganography [48],
which involves concealing information in digital fixed-size objects. The terminology for steganography
was established at the 1996 Information Hiding Workshop [32]: an original, unaltered message (such as
an image or software binary code) is called a cover object; the sender tries to hide an embedded message
called a stego object by transforming the cover object using a secret key, and the resulting encrypted object
is sent to the receiver. In addition, according to Kerckhoff’s principle [30] which states that the security
of a cryptographic system shouldn’t rely on the secrecy of the algorithm, the eavesdropper is assumed
to have full knowledge of the steganographic system and the distributions of the cover objects, except
for the knowledge of the secret key. The communication-theoretic definition of steganographic capacity is
reminiscent of the channel capacity definition: steganographic capacity is the maximal amount of hidden
information in any cover object in the limit when its size goes to infinity [32] or in several finite-alphabet
objects in the limit when the number of objects goes to infinity [48]. It has been shown that the amount
of information that can be hidden in an object, such that the object appears unchanged, is proportional
to the square root of the size of the object itself [48, 30], which is sometimes called the square root law
of steganography.

Covert communication in information theory Our work addresses the problem of covert com-
munication over noisy communication channels and adopts a theoretical approach in the spirit of Shannon.
This study builds on the first studies on the limits of covert communication through the lens of information
theory in [1, 77, 7]. Generally, the setup of covert communication involves two legitimate users and an
eavesdropper who can either share the same channel as the legitimate receiver [77] or potentially face a
different level of noise [7]. This framework is somewhat similar to that of spread-spectrum technology
and steganography, but the approach to the problem is more fundamental.

Square root law In the framework of covert communication, Bash, Goeckel, and Towsley [1] first
determined the order of magnitude of the message length which the legitimate users can reliably com-
municate over a noisy channel while ensuring a low probability of detection by an eavesdropper. This
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work showed that the capacity (in nats per channel use) of the channel under a covertness constraint is
zero because the maximum message length that can be transmitted reliably and covertly scales like the
square root of the total number of channel uses. This phenomenon is sometimes called the square root law
and is reminiscent of the square root law of steganography. While [1] considered additive white Gaussian
noise (AWGN) channels, the square root law was also established for binary symmetric channels by Che,
Bakshi, and Jaggi [16]. The exact asymptotic throughput and the corresponding scaling constant for the
square root law—which we shall formally define later on—were characterized for discrete memoryless
channels (DMCs) and AWGN channels in Wang, Wornell, Zheng [77] and Bloch [7]. The square root
law does not hold if the transmitter is not required to be switched off when it is not transmitting a
message. Hou and Kramer [41] considered a different scenario where the sender can transmit random
signals to confuse the eavesdropper when it is not transmitting a message, and showed that in this case
the square root law may be beaten. Other works have identified situations in which the square root law
may be beaten when the channel statistics are not known e.g. when there is noise uncertainty for the
eavesdropper channel [15, 50] or when the number of transmit antennas scales up with the blocklength
[4].

Information-theoretic metrics for covertness Choosing covertness conditions in information
theory [77, 7] is similar to choosing conditions in steganography [13] and should allow to control the
error probability of the best possible test the eavesdropper could design to detect a hidden message.
More precisely, the chosen condition should guarantee a lower bound on the sum of the probability of
false alarm and missed detection. Leveraging hypothesis testing theory [18, Section 11.7], we want to
make sure that the eavesdropper cannot do much better than random guessing which ensures a low
probability of detection. For this purpose, the difference between the output statistics of the channel
when there is communication and pure noise should be controlled in terms of total variation distance [7]
or Kullback-Leibler divergence [77] (see Section 2.3).

Key length Some studies on covert communication assume that a secret key is shared between
the legitimate users, which gives the legitimate receiver the advantage needed in order to detect the
communication and decode the message reliably [77, 7]. In particular, Bloch [7] investigated the conditions
for needing a key and its size when needed over DMCs and AWGN channels. This work showed that the
key length is also proportional to the square root of the number of channel uses when communicating
at maximum message size. The square root scaling of the key also applies with any message size in the
context of DMCs and was characterized in [12, Corollary 3]. The requirement for a key arises from the
necessity of approximating the output of the channel when no communication is taking place with the
actual output statistics of the code. Code design criteria for covert communication were revisited in [7]
through the concept of channel resolvability [37]: the full set of codewords (corresponding to different
values of keys and confidential messages) should be a resolvability code for the eavesdropper’s channel,
which approximates the covert output, while the subcodebook corresponding to a fixed key should be a
good channel code for the legitimate receiver’s channel.

Motivation of this thesis While it is widely used, the Gaussian noise model does not capture all
practical scenarios of interest for wireless communications. For instance, experimental evidence suggests
that dense wireless networks with interference are actually characterized by heavy-tailed noise [17]. The
Laplace distribution is useful for modeling noise spikes due to rare events [46, Chapter 10]; generalized
Gaussian distributions [55, 25] have been considered to model multiple-user interference in ultrawideband
systems [2] and atmospheric noise [44]; α-stable distributions [22, 14] and in particular the Cauchy
distribution [35] are used for modeling interference in wireless ad hoc networks. In the non-covert setting,
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a general formula for the capacity of continuous channels is still an open problem but the capacity has
been characterized or bounded in several special cases including exponential noise [72], Cauchy noise
[26], generalized Gaussian noise [25], and α-stable noise [22]. In contrast, we will show that surprisingly
covert communications are easier to study and we are able to derive a simple expression for the scaling
constant of the square root law over rather general additive-noise channels.

1.2 Main contributions

The present work fits into the classic framework where the sender is turned off when there is no com-
munication and the square root law holds. Furthermore, we assume that the legitimate receiver and the
eavesdropper face exactly the same noise distribution. In this scenario, the legitimate receiver shares a
key with the sender to provide the necessary advantage for detecting and decoding the communication.
We extend the computation of the scaling constant for the square root law from AWGN channels to
general memoryless additive noise channels including non-Gaussian additive noise, as well as Gaussian
channels with memory.
We show that the scaling constant of covert communication remains the same between a Gaussian channel
with memory and an AWGN channel. This contrasts with the classical channel coding scenario, where
the presence of memory may allow an increase in transmission rates.
In the case of general additive noise, under mild integrability assumptions, we show that the square root
scaling constant is upper-bounded by a simple expression that depends solely on the class of the noise
distribution, namely on the probability density function (PDF) of the noise. For example when the noise
is generalized Gaussian [55, 25], we show that the scaling constant depends only on one parameter p:
where the smaller p is, the heavier the tail of the distribution is, and the more information can be sent
covertly and reliably. We then show that, under some additional assumptions on the noise PDF, the said
upper bound is tight, i.e., there exists a covert code that can asymptotically achieve it. We find that
the optimal asymptotic throughput has a similar form to the one found in [77, Theorem 3] for discrete
memoryless channels and remains unchanged if the noise varies in scale. We further provide (sometimes
loose) upper bounds on the key length that is needed to achieve the optimal scaling constant.
Furthermore, we study covert communication in the finite blocklength regime. Under a maximal error
probability criterion, we upper bound the second-order asymptotics of covert communication over an
AWGN channel. Then we show that allowing a positive average probability of decoding error enhances
the asymptotic amount of covert information that can be shared over an AWGN channel. Additionally,
we provide upper and lower bounds on the first-order asymptotics.

1.3 Organization of this thesis

The remainder of the document is organized as follows:
Chapter 2 introduces the notation and the information-theoretic framework of covert communication.
We define the scaling constant of the square root law of covert communication and review known results
on its characterization in the case of discrete memoryless channels and the AWGN channel. Furthermore,
we present the first original contribution of this thesis, which is to characterize the scaling constant for
Gaussian channels with memory.
Chapter 3 considers the general case of memoryless additive noise, computes a general formula for an
upper bound of the amount of information that can be sent reliably and covertly, and states sufficient
conditions under which this upper bound is achievable. We explicitly compute this square root law bound
in several special cases including generalized Gaussian, exponential, gamma noise, and Cauchy noise.
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Chapter 4 considers covert communication over AWGN channels in the finite blocklength regime under
two different constraints on the probability of decoding error. For a fixed maximal probability of error,
we prove an upper bound on the first and second-order asymptotics. Under a fixed average probability
of error, we show that the first-order asymptotics of covert communication depend on the probability of
error and establish upper and lower bounds.
Chapter 5 examines the implications of our results and proposes some ideas for further development.

Some complementary material is provided in the Appendices, including definitions, and classical infor-
mation theory results. More precisely:
Appendix A details mathematical definitions and theorems useful throughout the reading of this thesis.
Appendix B outlines the Neyman-Pearson lemma.
Appendix C consists of a summary of useful information-theoretic definitions, properties, and proofs
of preliminary results.
Appendix D elaborates on covert communication in the more general case where the eavesdropper and
the legitimate receiver do not face the same noise.

1.4 My publications

This work was presented in part in the following publications:

Journal paper

[J1] C. Bouette, L. Luzzi, and L. Wang, “Covert Communication Over Additive-Noise Channels,” to
appear in IEEE Transactions on Information Theory, 2025. [IEEE early access] [arXiv]

International conferences

[C1] C. Bouette, L. Luzzi, and L. Wang, “Covert communication over two types of additive noise
channels,” in IEEE Information Theory Workshop (ITW), 2023. [arXiv] [IEEExplore]

[C2] C. Bouette, L. Luzzi, and M. Bloch, “Covert Capacity of AWGN Channels under Average Pro-
bability of Error,” submitted to IEEE International Symposium on Information Theory (ISIT),
2025.

Poster

C. Bouette, L. Luzzi, and L. Wang, “Covert Communication Over Additive-Noise Channels,” recent
results poster session, in IEEE International Symposium on Information Theory, 2024. [ETIS]
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2 Fundamental limits of covert commu-
nication

2.1 Notations and preliminaries

We usually use upper-case letters like X to denote (real) random variables and lower-case letters like x to
denote their realizations. A length-n random vector (X1, . . . , Xn) is denoted Xn. We use PX to denote
the law (also called distribution) of the random variable X and PXn that of the random vector Xn.
We denote the Lebesgue-Stieltjes associated measure of PX by dPX [80, Section 3.11]. When it exists,
the probability density function (PDF) corresponding to PX is denoted pX . We denote the product of
measures by ⊗.
The entropy of a discrete random variable X is denoted H(X) [18], the differential entropy of a continuous
random variable X is denoted h(X) [18], and the mutual information between X and Y is denoted
I(X;Y ); all of these are measured in nats.
We denote a deterministic code by C and a random code by C.
We denote ∥ · ∥2 and ∥ · ∥1 respectively the Euclidean norm and the absolute-value norm.
Let P1 and P2 be two real distributions on the same measurable space (Ω, T ). The total variation distance
[75] between P1 and P2 is

dT V (P1, P2) = 2 sup
ω∈Ω

|P1(ω) − P2(ω)| . (2.1)

Suppose that P1 is absolutely continuous with respect to P2 (denoted P1 ≪ P2) which means that for
any ω ∈ T , P2(ω) = 0 =⇒ P1(ω) = 0, then the Kullback-Leibler divergence [49, 75] between P1 and P2

is

D(P1∥P2) =
∫

Ω
ln
(

dP1

dP2
(w)
)

dP1, (2.2)

where dP1
dP2

is the Radon–Nikodym derivative [36, p. 128] of P1 with respect to P2.
We denote by Q the Gaussian tail function:

Q : R → R+

x 7→
∫ +∞

x

1√
2π
e− t2

2 dt. (2.3)

The Lebesgue measure is denoted by λ. Let δ denote the Dirac distribution

δ(w) =

0, 0 /∈ w

1, 0 ∈ w
(2.4)

with φ0 denoting its characteristic function, so

φ0(t) = 1, t ∈ R. (2.5)

Throughout the manuscript, vectors of length n are denoted with a superscript n. A random variable Z
following a Gaussian distribution with mean µ and standard deviation σ > 0 is denoted Z ∼ N (0, σ).
A multivariate Gaussian random vector Zn of length n with any mean vector denoted µn of length n

and the n×n symmetric positive definite covariance matrix Σ is denoted Zn ∼ N (µn,Σ). In denotes the
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n× n identity matrix.
We denote an exponential distribution of mean Λ > 0 by E(Λ).
We denote Γ(·) the gamma function and ψ(·) the digamma function [21]. We denote the exponential
function indiscriminately as x 7→ ex or x 7→ exp(x).

2.2 System model and problem statement

key k

sender f channel g receiver

eavesdropper

m Xn Y n m̂

Fig. 2: General setup for covert communication.

We now define the general setup for covert communication, illustrated in Figure 2. The sender communi-
cates with the legitimate receiver through a noisy channel and uses the channel n times. The input and
output random variables Xn and Y n take values in the alphabets X n and Yn respectively. We assume
that the input alphabet X includes an “off” symbol denoted by 0, i.e. when the transmitter is not sending
a message, it always transmits 0. PY n|Xn denotes the transition probability of the channel, modeling the
noise added to a transmission.
The sender and the receiver are assumed to share a sufficiently long secret key k ∈ K. A code C = (f, g)
of length n for message set M and key set K consists of an encoder f : M × K → X n, (m, k) 7→ xn

and a decoder g : Yn × K → M, (yn, k) 7→ m̂. We denote the input distribution random vector Xn
C and

the codewords are the different possible input vectors xn
C = (x1,C , . . . , xn,C). The key and the message

are assumed to be uniformly distributed and independent of each other. Unless explicitly stated, we will
assume that the eavesdropper observes the same output as the legitimate receiver. We will assume that
the eavesdropper knows the encoding and decoding functions f and g, but not the value of the secret
key k.
Covertness requires that the eavesdropper should not be able to detect whether transmission is ongoing
or not. Specifically, we consider the following covertness condition: for a chosen code C, for some given
∆ > 0, the output distribution induced by the code must satisfy

D(PY n
C

∥PY n|Xn=0n) ≤ ∆, (2.6)

where PY n
C

denotes the distribution of the output sequence averaged over the messages and over the key:

PY n
C

(·) = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

PY n|Xn(·|f(m, k)) (2.7)

and PY n|Xn=0n the output distribution corresponding to no-input i.e. the distribution of the noise induced
by the channel.
Observing the output Y n, the eavesdropper attempts to decide between two hypotheses: either no
communication is happening, or there is an ongoing communication using the code C.
For a chosen key k, the average probability of decoding error (or average probability of error) εk of the
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legitimate receiver is

εk = 1
|M|

|M|∑
m=1

P [g(yn, k) ̸= m | xn = f(m, k)] (2.8)

and the average probability of decoding error ε of the code is

ε = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

P [g(yn, k) ̸= m | xn = f(m, k)] . (2.9)

2.3 Relation to hypothesis testing

The eavesdropper should not be able to determine whether a communication is happening or not. To
this end, the eavesdropper’s error is ensured to be very likely by requiring the covertness condition (2.6).
Indeed hypothesis testing theory ensures that a small Kullback-Leibler divergence between the output
distribution when there is communication and the noise distribution indicates that the eavesdropper can
not do much better than random guessing when trying to identify whether the output he observes comes
from the code output distribution or noise. We denote the two hypotheses that the eavesdropper aims
to infer as

H0 : Y n ∼ PY n|Xn=0n

H1 : Y n ∼ PY n
C
. (2.10)

We suppose further that PY n
C

≪ PY n|Xn=0n . This hypothesis makes sense because if the sender generates
an output that could not have been inherently produced by pure noise, then the communication will be
automatically detected. From the Neyman-Pearson lemma (see Appendix B.1), we know that the optimal
test to distinguish between the two hypotheses is a maximum likelihood test, involving the threshold of
the Radon-Nikodym derivative of PY n

C
with respect to PY n|Xn=0n . Accordingly, we consider the following

family of maximum likelihood tests indexed by γ > 0:

Tγ : Yn → {0, 1}

yn 7→ 1{ dPY n
C

dPY n|Xn=0n

(yn)≥γ

} (2.11)

where the output 0 indicates that the test chooses H0 and the output 1, the test chooses H1. The
probability of false positive error (false alarm), meaning the probability of deciding for PY n

C
i.e. H1 when

in fact Y n ∼ PY n|Xn=0n , is

β =
∫

Yn

Tγ(yn) dPY n|Xn=0n (2.12)

and the probability of false negative error (missed detection), meaning the probability of deciding for H0

when actually Y n ∼ PY n
C

is

κ = 1 −
∫

Yn

Tγ(yn) dPY n
C
. (2.13)

Furthermore, the minimum error probability of the optimal hypothesis test conducted by an eavesdropper
is in fact determined by the total variation distance dT V (·, ·) between the two distributions; see Lemma
B.2:

min
γ

(β + κ) = 1 − 1
2dT V

(
PY n

C
, PY n|Xn=0n

)
. (2.14)

Recall Pinsker’s inequality, historically first written in the form [57, p. 16] and well-known in the form:
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Lemma 2.1 (Pinsker’s inequality [47, Theorem 6.1]) Let P1 and P2 be probability measures on the
same measurable space (Ω, T ) such that P1 ≪ P2, then

dT V (P1, P2) ≤
√

2
√
D (P1∥P2). (2.15)

Equations (2.14) and (2.15) imply that the sum of the probabilities of false alarm and missed detection
can also be bounded in terms of the Kullback-Leibler divergence:

min
γ

(β + κ) ≥ 1 − 1√
2

√
D
(
PY n

C
∥PY n|Xn=0n

)
. (2.16)

In this light, the covertness condition (2.6) finally ensures that for any test chosen by the eavesdropper,
its probability of error will be greater than 1 − 1√

2

√
∆. We note that because of the relation (2.14), an

alternative (and less strict) notion of covertness can be defined by directly requiring the total variation
distance dT V

(
PY n

C
, PY n|Xn=0n

)
to be bounded by a constant. In this thesis, we prefer to use Kullback-

Leibler divergence because it is easier to handle for theoretical analysis.

2.4 Relation to channel resolvability

Recall that the covertness condition (2.6) requires that the output of the chosen code C should approxi-
mate the output of the all-zero symbol in Kullback-Leibler divergence.

Xn ∼ PXn channel PY |X Y n ∼ PY n

m f channel PY |X Y n
C ∼ PY n

C

Fig. 3: Channel output approximation over a noisy channel.

Channel resolvability The problem of designing codes that approximate the output of a given
source through a noisy channel was first studied by Han and Verdù [37], who defined the resolvability as
the minimum code size per channel use required in order to generate an input that achieves an arbitrarily
accurate approximation of the output statistics for any given input process. Such an approximation is
sometimes also referred to as soft covering [20]. Although [37] considered the approximation of output
statistics in terms of variational distance and normalized Kullback-Leibler divergence, the concept of
resolvability can be extended to other metrics. In this thesis, we focus on the approximation in terms
of unnormalized Kullback-Leibler divergence [38]. Although this notion can be defined for very general
channel models, in this section we focus on memoryless channels and i.i.d. sources PXn for simplicity
(see Figure 3).

Definition 2.1 (M-type [37, Definition 4]) Let M be a positive integer. A probability distribution P on
the measurable space (Ω, T ) is said to be M − type if

P (ω) ∈
{

0, 1
M
,

2
M
, . . . , 1

}
, for all ω ∈ Ω. (2.17)

Definition 2.2 (Resolvability code [38, Section III]) Consider a code C = (f, g) for a message set
M which has been generated i.i.d. from a distribution PXn . Let PY n be the distribution induced by PXn

through the channel PY n|Xn ; let PY n
C

the output distribution through the channel PY n|Xn for the code C
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with equiprobable messages:

PY n
C

(·) = 1
|M|

|M|∑
m=1

PY n|Xn(·|f(m)). (2.18)

For a chosen η > 0, we call a resolvability code of size M , an M − type code such that

D(PY n
C

∥PY n) < η. (2.19)

A general non-asymptotic bound for approximation of output statistics using random codes was given
by Hayashi:

Theorem 2.1 (Random coding for approximation of output statistics [39, Theorem 14])
Consider an input distribution PXn and a noisy channel PY n|Xn . Let PY n be the output distribution
induced by PXn through the channel PY n|Xn and let C be a random code with codewords generated i.i.d.
from the input distribution PXn . Then for all ρ ∈ (0, 1],

EC

[
D
(
PY n

C
∥PY n

)]
≤ 1
ρ

ln
(

1 + e−ρ ln|M|+Ψ(ρ|PY n|Xn ,PXn )
)

(2.20)

where

Ψ(ρ|PY n|Xn , PXn) = ln
(
E
[(

pY n|Xn(Y n|Xn)
pY n(Y n)

)ρ])
, (2.21)

PY n
C

(·) = 1
|M|

|M|∑
m=1

PY n|Xn(·|Xn), (2.22)

and the expectation in (2.20) is computed with respect to the random code C.

Remark 2.1 Note that Theorem 2.1 was stated in [39] for discrete memoryless channels, but can be
generalized to continuous outputs [39, Appendix D].

Application to covert communication Note that covert communication fits within the previous
framework, where the input Xn is constant and equal to the all-zero codeword, and the set of messages
is the set M × K of message / key pairs. We should ensure that the whole code C of size |M| × |K| is a
resolvability code for the eavesdropper i.e. the induced output distribution approximates the output of
the all-zero input, while for a fixed key k, the corresponding subcode C(k) of size |M| is a good code for
the legitimate receiver. In the case of random codes, for a given message size |M|, Theorem 2.1 allows
us to derive sufficient bounds for the key length to ensure covertness.

2.5 Square root law

Given ε > 0, we denote by M∗(n, ε,∆) the maximum of |M| for which there exists a code C of length n

that satisfies the covertness condition (2.6), and whose average probability of decoding error is at most
ε. Except for special cases1, covert communications are subject to the square root law, meaning that the
amount of information that can be sent reliably and covertly scales like the square root of the number
of channel uses. When the square root law holds, the capacity is therefore zero, and following [77], we
can define a square root scaling constant as follows:

L ≜ lim
ε→0

lim inf
n→∞

ln (M∗(n, ε,∆))√
n∆

. (2.23)

1See Section 2.7.1.
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In the remainder of this chapter, we will present known results about the characterization of L for some
simple channel models, such as discrete memoryless channels and AWGN channels. In addition, we will
provide new results on the characterization of L for the Gaussian channel with memory (Section 2.9).
Furthermore, in Chapter 3, we will compute L for more general additive memoryless channels.

2.6 Information spectrum techniques

In the covert setup, the involved input and output distributions depend on the blocklength and the
classical channel coding theorem [18, Section 7.7] does not hold. The basis to prove desired lower bounds
for the scaling constant is a result by Shannon [66] who showed the existence of a code with a given
average error probability as a function of its blocklength2. First, we introduce a definition:

Definition 2.3 (Information density and information spectrum [37]) Given a joint distribution
PXn,Y n on X n × Yn, the information density is given by:

iXn,Y n(xn, yn) = ln
(
dPY n|Xn(yn|xn)

dPY n(yn)

)
(2.24)

The distribution of the random variable iX
n,Y n(Xn, Y n)

n
where Xn and Y n have joint distribution PXn,Y n

is referred to as the information spectrum.

A general proof for the existence of codes depending on the information spectrum derives from the
following.

Theorem 2.2 (Shannon’s achievability bound [66, Theorem 1][61, Theorem 18.5]) For a given chan-
nel with transition law PY n|Xn , for any input distribution PXn and induced output distribution PY n , for
any τ > 0, the expectation of the average probability of error for a random code C with independent
codewords generated i.i.d. from PXn is bounded as

EC[ε(C)] ≤ P
[
iXn,Y n(Xn, Y n)

n
≤ ln |M|

n
+ τ

]
+ exp(−nτ). (2.25)

In particular, there exists a code of blocklength n and size |M| whose codewords has been sampled from
PXn with average probability of error ε such that:

ε ≤ P
[
iXn,Y n(Xn, Y n)

n
≤ ln |M|

n
+ τ

]
+ exp(−nτ). (2.26)

Later Verdù and Han [73] derived the corresponding converse:

Theorem 2.3 [73, Theorem 4] For any code with average probability of error ε, size |M| and blocklength
n

ε ≥ P
[
iXn,Y n(Xn, Y n)

n
≤ ln |M|

n
− τ

]
− exp(−nτ), (2.27)

where PXn places probability mass 1
M on each codeword (i.e. PXn is the uniform distribution on the set

of codewords) and PY n is the output distribution induced by PXn through PY n|Xn .

Remark 2.2 Feinstein’s lemma [28] gives a similar achievability bound to Theorem 2.2, this time for
maximal error probability. In this work, we prefer to use Shannon’s achievability bound (2.26) because
Feinstein uses a greedy construction for his code whereas Shannon’s idea is to use a random coding
argument allowing us to follow the resolvability approach of Section 2.4.

2As we will see in Chapter 4, information spectrum techniques also allow to characterize the first and second order
asymptotics of covert communication.
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2.7 Discrete memoryless channel

In this section, we consider the problem of covert communication over a discrete memoryless channel
with finite input alphabet X and finite output alphabet Y. We assume that the input alphabet contains
an “off” symbol 0, which corresponds to the absence of transmission. It was shown in [77, 7] that the
square root law holds on discrete memoryless channels at the exception of the case where the input
0 is redundant [77], namely where the off symbol output can be written as a mixture of other output
distributions resulting from the transmission of meaningful symbols. This special case is considered in
the following section.

2.7.1 Special case where the input 0 is redundant

Suppose that the output distribution of the channel, when there is no transmission, is a mixture of the
output distributions of meaningful symbols. In that case, the square root law does not hold and the
maximum amount of information that can be transmitted reliably under the covertness condition (2.6)
scales like the blocklength n. Thus the capacity of the channel is positive:

Proposition 2.1 [77, Proposition 1] We consider a channel with transition probability PY |X where there
exists an input distribution PX on X such that

PX(0) = 0 (2.28)

and ∑
x∈X

PX(x)PY |X(·|x) = PY |X(·|0). (2.29)

Then, for all ∆ > 0:

lim
ε→0

lim inf
n→∞

ln (M∗(n, ε,∆))
n

= max
PX

I(X;Y ), (2.30)

where the maximum is taken over distributions satisfying (2.28) and (2.29).

Proof: The fact that we can achieve this rate follows from the standard typicality argument of Shannon’s
channel coding theorem [18]: when the rate of the code is below I(X;Y ), the average probability of
decoding error goes to 0 as n goes to infinity.
Furthermore, a random code generated by choosing the components of each codeword i.i.d. according to
the distribution PX , independently of the other codewords satisfies

E
[
D(PY n

C
∥PY n|Xn=0n)

]
= E

[
D(PY n

C
∥PY n|Xn=0n)

]
+D(PY n∥PY n|Xn=0n), (2.31)

where the expectation is computed with respect to PX . We notice that a sufficiently long key ensures
that the first term on the right-hand side of (2.31) is close to zero. The fact that PX satisfies (2.29)
implies that the second term on the right-hand side vanishes:

D(PY n∥PY n|Xn=0n) = n D(PY ∥PZ)

= n
∑
y∈Y

PY (y) ln
(

PY (y)
PY |X=0(y|0)

)
(2.32)

= n
∑
y∈Y

PY (y) ln
(

PY (y)∑
x∈X P (x)PY |X(y|x)

)
(2.33)

= 0, (2.34)

satisfying automatically the covertness condition (2.6).
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We now show that it is not possible to achieve a rate greater than (2.30). We denote XC,i the ith random
component of the input distribution random vector Xn

C . Suppose that the codebook’s average input
distribution

PX̄(·) = 1
n

n∑
i=1

PXC,i
(·) (2.35)

does not asymptotically satisfy (2.29): then

lim
n→+∞

D
(
PȲ ∥PY |X=0

)
= lim

n→+∞
D

(∑
x∈X

PX̄(x)PY |X(·|x)∥PY |X=0

)
> 0, (2.36)

where PȲ is the output induced by PX̄ through PY |X . Consequently, the code does not satisfy the
covertness constraint (2.6) since

D
(
PY n

C
∥PY n|Xn=0n

)
≥ n D

(
PȲ ∥PY |X=0

)
(2.37)

where (2.37) holds because of the convexity of the Kullback-Leibler divergence and (2.37) is hence
unbounded as n goes to infinity. Moreover, the concavity of the mutual information ensures that

1
n
I(Xn;Y n) ≤ I(X̄; Ȳ ) (2.38)

hence asymptotically the channel coding theorem [18] ensures that the maximum in the right hand-side
of (2.30) is taken from input distribution that satisfies (2.29). Finally, any distribution PX that satisfies
(2.29) but not (2.28) is sub-optimal because

I(X;Y ) =
∑
x∈X

∑
y∈Y

PY |X(y|x)PX(x) ln
(
PY |X(y|x)
PY (y)

)
=
∑
x∈X

∑
y∈Y

PY |X(y|x)PX(x) ln
(

PY |X(y|x)
PY |X=0(y|0)

)
=
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX(x) ln
(

PY |X(y|x)
PY |X=0(y|0)

)

=
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX(x)
(

ln
(
PY |X(y|x)
PY ′(y)

)
+ ln

(
PY ′(y)
PY (y)

))

=
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX(x) ln
(
PY |X(y|x)
PY ′(y)

)
−D (PY ∥PY ′)

−
∑
y∈Y

PY |X(y|0)PX(0) ln
(
PY ′(y)
PY (y)

)
=
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX(x) ln
(
PY |X(y|x)
PY ′(y)

)
−D (PY ∥PY ′)

− PX(0)
∑
y∈Y

PY (y) ln
(
PY ′(y)
PY (y)

)
=
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX(x) ln
(
PY |X(y|x)
PY ′(y)

)
− (1 − PX(0))D (PY ∥PY ′)

≤
∑

x∈X \0

∑
y∈Y

PY |X(y|x)PX′(x) ln
(
PY |X(y|x)
PY ′(y)

)
= I(X ′;Y ′), (2.39)

where PX′ is PX conditioned to X ̸= 0 and Y ′ the output induced by X ′ through PY |X .
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2.7.2 Case when the input 0 is not redundant

If the output distribution of the DMC, when there is no transmission, is not a mixture of the output
distributions of meaningful symbols and there is at least one input symbol other than 0, then the square
root law holds. The corresponding scaling constant L defined in (2.23) was computed in [77].

Theorem 2.4 [77, Theorem 3] For a discrete memoryless channel whose capacity-achieving input dis-
tribution support is equal to the set of all possible input symbols, if we denote its capacity-achieving output
distribution by P ∗

Y , then

L ≤
√

2

√
VarPY |X=0

(
ln
(
PY |X=0(Y )
P ∗

Y (Y )

))
. (2.40)

Remark 2.3 We notice that if the capacity-achieving output distribution is the uniform distribution over
Y, then

L ≤
√

2
√

VarPY |X=0

(
ln
(
PY |X=0(Y )

))
. (2.41)

2.8 Additive White Gaussian Noise channel

Covert communication on an additive white Gaussian noise (AWGN) channel satisfies the square root
law [1, 77, 7]. The corresponding scaling constant L (2.23) has been characterized in [77]. We briefly
present the key results for this setting. We consider an additive channel with i.i.d. Gaussian noise:

Yi = Xi + Zi, Zi ∼ N (0, σ2), σ > 0, i = 1, 2, . . . , n. (2.42)

We assume that the eavesdropper and the legitimate receiver see the same outputs (Figure 4).

key k

sender f + g receiver

Zn ∼ N (0, σ2In) eavesdropper

m Xn Y n m̂

Fig. 4: Covert communication over an AWGN channel.

In the case of an additive channel, the covertness condition (2.6) can be rewritten as follows:

D
(
PY n

C
∥PZn

)
≤ ∆. (2.43)

Theorem 2.5 [77, Theorem 5] For the channel (2.42) under the constraint (2.43),

L = 1, (2.44)

irrespectively of the noise power σ2.

In particular [77] showed that (2.44) is achievable with random coding using i.i.d. Gaussian inputs3 with
average power constraint O

(
1√
n

)
and [76] showed that (2.44) is also achievable with random coding

using i.i.d. binary phase-shift keying (BPSK) inputs with amplitude
√

2σ∆
1
4

n
1
4

. In addition [7] considered
again the setting in Figure 4 but under a total variation distance covertness constraint and recovered

3In Chapter 3, we will consider a more general class of continuous channels and will recover Theorem 2.5 as a special case.
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the square root law for this setting [7, Theorem 6]. Moreover [7] showed that the minimum key length
required to achieve covertness scales like o(

√
n).

key k

sender f Z ∼ N (0, σ2
r) g receiver

Ze ∼ N (0, σ2
e) eavesdropper

m Xn Y n m̂

Y n
e

Fig. 5: Covert communication over the degraded AWGN channel.

Degraded AWGN channel We notice that in the special case where the eavesdropper and the
legitimate receiver do not see the same outputs, the value for L changes. Consider an i.i.d. additive
Gaussian noise channel with noise power σ2

e for the eavesdropper and σ2 for the legitimate receiver (see
Figure 5):

Yi = Xi + Zi, Zi ∼ N (0, σ2), σ > 0, i = 1, 2, . . . , n,

Ye,i = Xe,i + Ze,i, Ze,i ∼ N (0, σ2
e), σe > 0, i = 1, 2, . . . , n. (2.45)

The covertness constraint (2.6) can now be written in the form

D(PY n
e,C

∥PZn
e

) ≤ ∆ (2.46)

where PZn
e

denotes the distribution of the noise vector Zn
e , and PY n

e,C
that of the output sequence averaged

over the messages and the key:

pY n
e,C

(yn) = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

pY n
e |Xn(yn|f(m, k))

= 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

1
(2π) n

2 σn
e

e
−

∥yn−f(m,k)∥2
2

2σ2
e . (2.47)

Theorem 2.6 [78, Theorem 2] The scaling constant for the maximum amount of information that can be
sent covertly and reliably to the legitimate receiver on the channel (2.45) satisfying the covertness condition
(2.46) is

L = σ2
e

σ2 . (2.48)

For completeness, we include the proof of Theorem 2.6 in Appendix D.

Remark 2.4 We notice that no key is needed when σe > σ (see Appendix D.1) which is a similar result
to [7, Theorem 6].

Remark 2.5 One can recover Theorem 2.5 as a special case of Theorem 2.6 where the eavesdropper and
the legitimate receiver listen on the same AWGN channel.
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2.9 New result: Gaussian channel with memory

In this section, we present the first original contribution of this thesis, which was presented in [C1].
We consider an extension of the setting of Figure 4 where the noise is Gaussian but not i.i.d. We assume
that the legitimate receiver and the eavesdropper observe the same outputs and consider the channel
with colored noise depicted in Figure 6:

Yi = Xi + Zi, i = 1, 2, . . . , n, (2.49)

where the noise sequence is modeled by a Gaussian process

Zn ∼ N (µn,Σn), (2.50)

with the mean vector µn and symmetric positive definite covariance matrix Σn. Note that Σn being
positive definite implies that it is invertible (i.e., non-singular).

key k

sender f + g receiver

Zn ∼ N (µn,Σn) eavesdropper

m Xn Y n m̂

Fig. 6: Covert communication over the Gaussian channel with memory.

We shall show that the fundamental limit for covert communication over the additive Gaussian noise
channel with memory in Figure 6 is the same as over the AWGN channel in Figure 4: not only does
ln (M∗(n, ε,∆)) grow like

√
n, but we also have L = 1 as in Theorem 2.5. This result contrasts with the

standard (non-covert) capacity of the Gaussian noise channel under an average power constraint, which
in general will change if AWGN is replaced by colored Gaussian noise [18, Section 9.5].

Theorem 2.7 For the channel (2.49) with Gaussian noise (2.50), under the covertness requirement
(2.43),

L = 1 (2.51)

irrespectively of µn and Σn.

Proof: We prove the theorem operationally by showing a one-to-one correspondence between codes for
the colored Gaussian channel (2.49) and for the i.i.d. Gaussian channel (2.42).
Since Σn is invertible, there exists an invertible n× n matrix A such that

Zn = AZ̃n + µn, (2.52)

where Z̃n is a standard Gaussian vector, i.e., it consists of i.i.d. entries N (0, 1). Now consider the AWGN
channel:

Ỹi = X̃i + Z̃i, i = 1, . . . , n. (2.53)

with time-i input X̃i and output Ỹi, respectively. Given any code C = (f, g) for the channel (2.49) with
colored Gaussian noise (2.50), there is a corresponding code C̃ = (f̃ , g̃) for the AWGN channel (2.53),
and vice versa. Indeed, given C, we construct C̃ via the following mappings:

• for all m ∈ M,
f̃(m) = A−1f(m); (2.54)
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• for all ỹn ∈ Rn,
g̃ (ỹn) = g (Aỹn + µn) . (2.55)

Reversely, given C̃, we construct C via:
• for all m ∈ M,

f(m) = Af̃(m); (2.56)

• for all yn ∈ Rn,
g (yn) = g̃

(
A−1(yn − µn)

)
. (2.57)

By this construction, a decoding error occurs with code C on the channel (2.49) with colored noise (2.50)
if, and only if, a decoding error occurs with code C̃ on the i.i.d. channel (2.53). Consequently, the error
probabilities of the two codes (when used on their corresponding channels) are equal.
The one-to-one correspondence applies to any ensemble of random codes on the two channels as well.
Furthermore, averaged over the random codes,

D(PY n∥PZn) = D(PỸ n∥PZ̃n), (2.58)

because the same invertible mapping—subtraction by µn and then multiplication by A−1—maps Y n to
Ỹ n and Zn to Z̃n, hence the data-processing inequality for the Kullback-Leibler divergence (Appendix
C.1) holds in both directions.
We have now shown that the corresponding random codes on the two channels have exactly the same
error probability and covertness property. The theorem then follows because, by Theorem 2.5, L = 1 for
the AWGN channel.

Remark 2.6 Because of the one-to-one correspondence between the codes C and C̃, the key length required
for the Gaussian channel with memory is the same as for the i.i.d. Gaussian case. We will provide upper
bounds for the key length requirements for general continuous channels in Section 3.5.
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3 Covert communication over general
memoryless additive-noise channels

In this chapter, we present the second original contribution of this thesis, which was presented in part
in [J1].
We consider covert communication over general additive channels with memoryless noise. As in Chapter
2, we focus on the asymptotic regime where the blocklength tends to infinity. First, we introduce technical
assumptions about the noise probability density function (PDF) in Section 3.1. Under these assumptions,
we establish a general upper bound for L in Section 3.2. Furthermore, in Section 3.3 we show that this
bound is achievable if some additional conditions are satisfied. In Section 3.4 we derive an explicit formula
for the scaling constant L (or an upper bound) for some particular channels. In Section 3.5, we present
some upper bounds on the key length required for the achievability result.

3.1 Problem setup and technical assumptions

key k

sender f + g receiver

Zn eavesdropper

m Xn Y n m̂

Fig. 7: General setup for covert communication over a memoryless additive channel.

We consider the setup illustrated in Fig. 7, where a transmitter and a receiver communicate in the
presence of an eavesdropper over an additive noise channel described by

Yi = Xi + Zi, i = 1, 2, . . . , n. (3.1)

We assume that the noise stochastic process {Zi}i∈{1,2,...,n} is independent of the message and the secret
key. We further assume that {Zi}i∈{1,2,...,n} is independent and identically distributed (i.i.d.) according
to a PDF pZ(z), z ∈ R. A fortiori, pZ is Lebesgue-measurable and

∫
R pZ(z)dz = 1.

We make the following technical assumptions on pZ : there exists some ζ ∈ (0, 1) such that∫
R
pZ(z) (ln(pZ(z)))4 dz < ∞ (3.2)∫

R
pZ(z)ζdz < ∞ (3.3)∫

R
pZ(z)ζ (ln(pZ(z)))4 dz < ∞. (3.4)

Remark 3.1 An example of a distribution that fails to meet these integrability assumptions is given by
probability density functions of the form pZ(z) = 1/z · 1/(ln(z))s, z ∈ (exp((s− 1)

1
1−s ),+∞), s > 1.

These imply some further integrability properties:
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Lemma 3.1 If pZ satisfies (3.2)–(3.4), then, for every k ∈ {0, 1, 2, 3, 4}, the integrals∫
R
pZ(z)ν(z)∣∣ln(pZ(z))

∣∣kdz (3.5)

are uniformly bounded over ν : R → [ζ, 1], z 7→ ν(z).

Proof: For any k ∈ {0, 1, 2, 3, 4}, ν : R → [ζ, 1], and z ∈ R,

pZ(z)ν(z)∣∣ln(pZ(z))
∣∣k ≤

(
pZ(z) + pZ(z)ζ

) (
1 + (ln(pZ(z)))4) , (3.6)

where the right-hand side does not depend on ν and is integrable due to (3.2)–(3.4).
We recall that in the case of an additive channel, the covertness condition (2.6) can be rewritten as
follows:

D
(
PY n

C
∥PZn

)
≤ ∆. (3.7)

3.2 A general upper bound (Converse)

The following theorem provides a general upper bound on L. We shall later show that, under some
additional assumptions on pZ , this bound is tight.

Theorem 3.1 For the memoryless additive-noise channel (3.1) with pZ satisfying (3.2)–(3.4),

L ≤
√

2
√

Var [ln(pZ(Z))]. (3.8)

The following lemma will be used in the proof of Theorem 3.1.

Lemma 3.2 Consider pZ satisfying (3.2)–(3.4). For any γ ∈ [0, 1 − ζ), let the random variable Z̃ have
PDF

pZ̃(z̃) = α · pZ(z̃)1−γ , z̃ ∈ R, (3.9)

where
α =

(∫
R
pZ(z)1−γdz

)−1
. (3.10)

Then the following hold:
1) For γ ∈ [0, 1 − ζ),

h(Z̃) = − ln(α)
γ

+ 1 − γ

γ
D(PZ̃∥PZ). (3.11)

2) For any random variable Y satisfying

D(PY ∥PZ) ≤ D(PZ̃∥PZ), (3.12)

we have
h(Y ) ≤ h(Z̃). (3.13)

That is, pZ̃ as in (3.9) maximizes the differential entropy for a given Kullback-Leibler divergence to
PZ .

3) For γ ↓ 0,

D(PZ̃∥PZ) = γ2

2 Var [ln(pZ(Z))] +O(γ3) (3.14)

h(Z̃) − h(Z) = γVar [ln(pZ(Z))] +O(γ2). (3.15)

4) The function γ 7→ D(PZ̃∥PZ) is continuous on [0, 1 − ζ).
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Proof: We first prove 1) as follows:

D(PZ̃∥PZ) =
∫
R
pZ̃(z) ln

(
pZ̃(z)
pZ(z)

)
dz

= −h(Z̃) −
∫
R
pZ̃(z) ln(pZ(z))dz

= −h(Z̃) − 1
1 − γ

∫
R
pZ̃(z) ln(αpZ(z)1−γ)dz + ln(α)

1 − γ

= −h(Z̃) + 1
1 − γ

h(Z̃) + ln(α)
1 − γ

= γ

1 − γ
h(Z̃) + ln(α)

1 − γ
(3.16)

which implies (3.11).
We next show 2). For any random variable Y satisfying (3.12), we have

0 ≤ D(PY ∥PZ̃)

= −h(Y ) −
∫
R
pY (y) ln (pZ̃(y)) dy

= −h(Y ) −
∫
R
pY (y) ln

(
αpZ(y)1−γ

)
dy

= −h(Y ) − ln(α) − (1 − γ)
∫
R
pY (y) ln (pZ(y)) dy

= −h(Y ) − ln(α) + (1 − γ)D(PY ∥PZ) + (1 − γ)h(Y )

≤ −γ h(Y ) − ln(α) + (1 − γ)D(PZ̃∥PZ) (3.17)

= γ
(
h(Z̃) − h(Y )

)
, (3.18)

where (3.17) follows from (3.12); and (3.18) from (3.16). Inequality (3.18) implies (3.13).
We next show 3). There exists θ : R → (0, γ) such that the Taylor expansion of pZ(z)−γ with the Lagrange
form of the remainder is

pZ(z)−γ = 1 − γ ln(pZ(z)) + γ2

2 (ln(pZ(z)))2 − γ3

6 (ln(pZ(z)))3
pZ(z)−θ(z) ∀z ∈ R. (3.19)

The normalization factor α is then

α =
(∫

R
pZ(z)

(
1 − γ ln(pZ(z)) + γ2

2 (ln(pZ(z)))2 − γ3

6 (ln(pZ(z)))3
pZ(z)−θ(z)

)
dz
)−1

=
(

1 + γh(Z) + γ2

2 E
[
(ln(pZ(Z)))2

]
+O(γ3)

)−1

(3.20)

= 1 − γh(Z) − γ2

2 E
[
(ln(pZ(Z)))2

]
+ γ2h(Z)2 +O(γ3), (3.21)

where (3.20) follows by Lemma 3.1 and (3.21) follows by the Taylor expansion of x 7→ (1 + x)−1. Note
that

lnα = − ln
(

1 + γh(Z) + γ2

2 E
[
(ln(pZ(Z)))2

]
+O(γ3)

)
= −γh(Z) − γ2

2 E
[
(ln(pZ(Z)))2

]
+ γ2

2 h(Z)2 +O(γ3)

= −γh(Z) − γ2

2 Var [ln(pZ(Z))] +O(γ3). (3.22)
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We also have∫
R
pZ(z)1−γ ln(pZ(z))dz

=
∫
R
pZ(z)

(
1 − γ ln(pZ(z)) + γ2

2 (ln(pZ(z)))2 − γ3

6 (ln(pZ(z)))3
pZ(z)−θ(z)

)
ln(pZ(z))dz

= −h(Z) − γE
[
(ln(pZ(Z)))2

]
+ γ2

2 E
[
(ln(pZ(Z)))3

]
+O(γ3). (3.23)

(The expectations above are finite by Lemma 3.1.) We can now compute the Taylor expansion of
D(PZ̃∥PZ) in γ:

D(PZ̃∥PZ) =
∫
R
pZ̃(z) ln

(
α
pZ(z)1−γ

pZ(z)

)
dz

= ln(α) − γα

∫
R
pZ(z)1−γ ln(pZ(z))dz

= −γh(Z) − γ2

2 E
[
(ln(pZ(Z)))2

]
+ γ2

2 h(Z)2 +O(γ3)

− γ

(
1 − γh(Z) − γ2

2 E
[
(ln(pZ(Z)))2

]
+ γ2h(Z)2 +O(γ3)

)
×
(

−h(Z) − γE
[
(ln(pZ(Z)))2

]
+ γ2

2 E
[
(ln(pZ(Z)))3

]
+O(γ3)

)
(3.24)

= −γh(Z) − γ2

2 E
[
(ln(pZ(Z)))2

]
+ γ2

2 h(Z)2 + γh(Z) + γ2E
[
(ln(pZ(Z)))2

]
− γ2h(Z)2 +O(γ3)

= γ2

2 E
[
(ln(pZ(Z)))2

]
− γ2

2 h(Z)2 +O(γ3)

= γ2

2 Var [ln(pZ(Z))] +O(γ3), (3.25)

where (3.24) follows by (3.20), (3.21), (3.22) and (3.23). Similarly we compute the Taylor expansion of
h(Z̃) − h(Z): using (3.11) we find

h(Z̃) − h(Z) = − ln(α)
γ

+ 1 − γ

γ
D(PZ̃∥PZ) − h(Z)

=
γh(Z) + γ2

2 Var [ln(pZ(Z))] +O(γ3)
γ

+ 1 − γ

γ

(
γ2

2 Var [ln(pZ(Z))] +O(γ3)
)

− h(Z)(3.26)

= γVar [ln(pZ(Z))] +O(γ2) (3.27)

where (3.26) follows by (3.22) and (3.25).
Finally, we show 4). Continuity at γ = 0 follows by (3.25), because the latter implies

lim
γ↓0

D(PZ̃∥PZ) = 0. (3.28)

We next write

D(PZ̃∥PZ) =
∫
R
αpZ(z)1−γ ln

(
αpZ(z)1−γ

pZ(z)

)
dz

= −γα
∫
R
pZ(z)1−γ ln(pZ(z))dz + ln(α). (3.29)

To prove the desired continuity, it suffices to show that both α and∫
R
pZ(z)1−γ ln(pZ(z))dz (3.30)

are continuous in γ ∈ (0, 1 − ζ). The statement for α follows by (3.21). For k = 0, 1 the function

γ 7→ pZ(z)1−γ ln(pZ(z))k (3.31)
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is clearly continuous for every z ∈ R. For all γ ∈ (0, 1 − ζ), the function

z 7→ pZ(z)1−γ ln(pZ(z))k (3.32)

is integrable by Lemma 3.1. Furthermore,∣∣∣pZ(z)1−γ (ln(pZ(z)))k
∣∣∣ ≤ pZ(z) |ln(pZ(z))|k + pZ(z)ζ |ln(pZ(z))|k , (3.33)

where the right-hand side is again integrable by Lemma 3.1. By the lemma of continuity under integrals
(see Lemma A.1), we conclude that both α and (3.30) are continuous in γ ∈ (0, 1 − ζ), hence so is
D (PZ̃∥PZ).

Remark 3.2 Lemma 3.2 can also be seen as an entropy maximization problem subject to a E[ln(pZ(·))]
constraint which, in turn, arises from the Kullback-Leibler divergence constraint.

Proof of Theorem 3.1: Take any code C of length n. Let X̄ denote a random variable such that PX̄ is
the average input distribution over the secret key, a uniformly drawn message, and the n channel uses,
and let Ȳ denote the channel output random variable when the input is X̄, so PȲ is the average output
distribution in the same sense as PX̄ :

PX̄(·) = 1
n

n∑
i=1

PXC,i
(·), (3.34)

PȲ (·) = 1
n

n∑
i=1

PYC,i
(·), (3.35)

where XC,i and YC,i are the ith random components of respectively the input and output random vector
Xn

C and Y n
C .

Starting with the covertness condition (3.7), similarly to [77] we have:

∆ ≥ D(PY n
C

∥PZn)

= −h(Y n
C ) − E[ln (pZn(Y n

C ))]

=
n∑

i=1

(
−h(YC,i|Y i−1

C ) − E[ln(pZ(YC,i))]
)

≥
n∑

i=1
(−h(YC,i) − E[ln(pZ(YC,i))])

=
n∑

i=1
D(PYC,i

∥PZ)

≥ nD(PȲ ∥PZ), (3.36)

where the last step follows because the Kullback-Leibler divergence is convex.
We next derive a bound on M∗(n, ε,∆) in terms of X̄ and Ȳ . For each realization K = k of the secret
key, we denote by εk the average probability of error of the code C with K = k. For each k ∈ K, we have
by Fano’s inequality (see Appendix C.2):

1 + εk ln |M| ≥ H(Xn
C |Y n

C ,K = k), (3.37)

where the joint distribution on (Xn
C , Y

n
C ) is computed according to a uniformly drawn message. Since the

message was uniformly selected, H(Xn
C |K = k) = ln |M| and (3.37) is rewritten as

ln |M| (1 − εk) − 1 ≤ I(Xn
C ;Y n

C |K = k). (3.38)
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Let ε be the probability of error averaged over the key. By averaging over the key, we obtain

ln |M| (1 − ε) − 1 ≤ I(Xn
C ;Y n

C |K)

≤ I(Xn
C ,K;Y n

C )

= I(Xn
C ;Y n

C ) (3.39)

=
n∑

i=1
I(Xn

C ;YC,i|Y i−1)

=
n∑

i=1

(
h(YC,i|Y i−1

C ) − h(YC,i|Xn
C , Y

i−1
C )

)
=

n∑
i=1

(
h(YC,i|Y i−1

C ) − h(YC,i|XC,i)
)

≤
n∑

i=1
I(XC,i;YC,i)

≤ nI(X̄; Ȳ ) (3.40)

= n(h(Ȳ ) − h(Z)), (3.41)

where (3.39) holds by the Markov chain:

K → Xn
C → Y n

C ; (3.42)

and (3.40) because mutual information is concave in the input distribution. By the definition ofM∗(n, ε,∆),
(3.41) implies

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n(h(Ȳ ) − h(Z)). (3.43)

We shall complete the proof using (3.36), (3.43), and Lemma 3.2. We first treat the special case where
Z has the uniform distribution over a subset of R; let us denote this subset by S, so

pZ(z) =

 1
λ(S) , z ∈ S

0, otherwise,
(3.44)

where λ denotes the Lebesgue measure. In this case, one can show that covert communication is not
possible at all, so L = 0; we provide a proof in Section 3.4.1. It then follows that (3.8) trivially holds
in this case. In the rest of this proof, we shall assume that pZ does not have the form (3.44). Then,
given any γ > 0, PZ̃ defined by (3.9) differs from PZ , therefore D(PZ̃∥PZ) > 0. Recall that the function
γ 7→ D(PZ̃∥PZ) is continuous on [0, 1 − ζ); see Lemma 3.2, part 4). Therefore, there exists a sequence
{γn} such that

lim
n→∞

γn = 0, (3.45)

and, for large enough n, the PDFs defined as

pZ̃n
(z̃) = αn · pZ(z̃)1−γn , z̃ ∈ R, (3.46)

with
αn =

(∫
R
pZ(z)1−γndz

)−1
, (3.47)

satisfy
D(PZ̃n

∥PZ) = ∆
n
. (3.48)

Using (3.14) we then have
∆
n

= γ2
n

2 Var [ln(pZ(Z))] +O(γ3
n), (3.49)
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which implies

γn =

√
2

Var [ln(pZ(Z))]

√
∆
n

+ o

(
1√
n

)
. (3.50)

We now continue from (3.43) as follows:

ln (M∗(n, ε,∆)) (1 − ε) − 1
n

≤ h(Ȳ ) − h(Z)

≤ h(Z̃n) − h(Z) (3.51)

= γnVar [ln(pZ(Z))] +O(γ2
n) (3.52)

=
√

2
√

Var [ln(pZ(Z))]
√

∆
n

+ o

(
1√
n

)
, (3.53)

where (3.51) follows by (3.13), (3.36), and (3.48); (3.52) by (3.15); and (3.53) by (3.50). Recalling the
definition (2.23) and taking n → ∞ and ε → 0 in (3.53) complete the proof.

Remark 3.3 The upper bound in Theorem 3.1 has a similar form to Theorem 2.4, which provides an
upper bound on L for DMCs in terms of the output distribution induced by the “off” input symbol, and the
capacity-achieving output distribution in the special case where the capacity-achieving output distribution
is the uniform distribution (see (2.41) in Remark 2.3).

Remark 3.4 Clearly, the right-hand side of (3.8) does not change when the noise Z is scaled by a constant
factor c:

Var [ln(pcZ(cZ))] = Var
[
ln
(
pZ(Z)
c

)]
= Var [ln(pZ(Z))] . (3.54)

This is true in general: for the additive memoryless channel (3.1), scaling the noise by a constant factor c
does not affect L, because this effect can be canceled out by multiplying the input X by c at the transmitter.
Then, for both the receiver and the eavesdropper, there is no loss in optimality in scaling the output by
1/c to recover the same Y as in the original channel.

3.3 Tightness of the upper bound (Achievability)

Under some additional assumptions on the noise PDF pZ , one can show that the upper bound of
Theorem 3.1 is tight.

Assumption 3.1 Assume that pZ satisfies the following:
1) pZ is bounded, i.e., there exists some b > 0 such that

pZ(z) ≤ b, z ∈ R; (3.55)

2) z 7→ pZ(z) ln (pZ(z)) is uniformly continuous on its support supp(pZ), i.e., for all ε > 0, there exists
η > 0 such that, for any z1, z2 ∈ supp(pZ), |z1 − z2| ≤ η, we have∣∣pZ(z1) ln(pZ(z1)) − pZ(z2) ln(pZ(z2))

∣∣ ≤ ε; (3.56)

3) there exists some ξ ∈ (0, 1) such that, for all γ ∈ [0, ξ), there exists a random variable X independent
of Z ∼ pZ such that the PDF of X + Z is pZ̃ given by (3.9).
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Theorem 3.2 For the memoryless additive-noise channel (3.1), if pZ satisfies (3.2)–(3.4) as well as
Assumption 3.1, then

L =
√

2
√

Var [ln(pZ(Z))]. (3.57)

Before proving Theorem 3.2, we recall Lévy’s convergence theorem concerning weak convergence of real-
valued random variables4 (Theorem A.1), and prove a lemma.

Lemma 3.3 Consider any pZ satisfying (3.2)–(3.4) and Assumption 3.1. For every n, let γn ∈ (0, ξ),
and let Xn be independent of Z and be such that

Z̃n = Xn + Z (3.58)

has density
pZ̃n

(z̃) = αnpZ(z̃)1−γn , z̃ ∈ R, (3.59)

where
αn =

(∫
R
pZ(z)1−γndz

)−1
. (3.60)

If γn → 0 as n → ∞, then, as n → ∞, PZ̃n
converges weakly to PZ , and PXn converges weakly to δ.

Proof: We first show that PZ̃n
converges weakly to PZ . To this end, note that for any bounded continuous

function f on R, we have∣∣E [f(Z̃n)
]

− E[f(Z)]
∣∣ =

∣∣∣∣∫
R
f(z)pZ̃n

(z)dz −
∫
R
f(z)pZ(z)dz

∣∣∣∣
≤ ∥f∥∞

∫
R

∣∣pZ̃n
(z) − pZ(z)

∣∣ dz
= ∥f∥∞

∥∥PZ̃n
− PZ

∥∥
1

≤ ∥f∥∞

√
2 D

(
PZ̃n

∥PZ

)
, (3.61)

where (3.61) follows by Pinsker’s inequality (2.15). The right-hand side of (3.61) tends to 0 as n → ∞,
because γn → 0 and by Lemma 3.2. It follows that E[f(Z̃n)] tends to E[f(Z)] as n → ∞, therefore, by
definition, PZ̃n

converges weakly to PZ .
The above implies

lim
n→∞

φZ̃n
(t) = φZ(t), t ∈ R. (3.62)

For any n, since Xn is independent of Z, we have [80, Section 16.4]

φZ̃n
(t) = φZ(t)φXn

(t), t ∈ R, (3.63)

where φXn
is the characteristic function of Xn. By properties of characteristic functions [80, Section

16.2], φZ is continuous and φZ(0) = 1, hence there exists an interval around 0 on which φZ(t) ̸= 0. By
(3.62) and (3.63), for any t in this interval,

lim
n→∞

φXn
(t) = 1. (3.64)

By Theorem A.2 on the extension of characteristic functions, we know that (3.64) must hold for all t ∈ R.
This and Levy’s convergence theorem (Theorem A.1) imply that PXn

converges weakly to δ as n → ∞.

Proof of Theorem 3.2: The converse part follows immediately from Theorem 3.1. We shall prove the
direct part using techniques similar to [10, Theorem 3], [77, Section V-B], together with Lemma 3.3.

4Weak convergence can also be defined for general probability measures, but that is not needed in the present work.
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Fix χ ∈ (1, 3
2 ). For sufficiently large n, let Z̃n have the PDF (3.59), with the choice

γn =

√
2

Var [ln(pZ(Z))]

(
∆
n

− 1
nχ

)
. (3.65)

(It will become clear later on that this choice of γn is to satisfy the covertness condition.) Further, let
X be independent of Z and have the distribution of Xn satisfying (3.58); the existence of such X (for
sufficiently large n) is guaranteed by Assumption 3.1.
We generate a random codebook C by picking every codeword i.i.d. according to P⊗n

X and independently
of the other codewords. Let PY n

C
denote the corresponding random output distribution:

PY n
C

(·) = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

PY n|Xn(·|Xn
m,k). (3.66)

Recall that the whole code of size |K| × |M| should be a resolvability code for the eavesdropper (see
Section 2.4) i.e. ensuring covertness, while for a fixed key k, the corresponding subcode of size |M|
should be a good code for the legitimate receiver. We notice that we can decompose the expectation of
the Kullback-Leibler divergence with regard to the random codebook as

EC[D(PY n
C

∥PZn)] = EC

[
D
(
PY n

C

∥∥∥PY n

)
+ E

[
ln
(
pY n(Y n

C )
pZn(Y n

C )

)]]
= EC

[
D
(
PY n

C

∥∥∥PY n

)]
+D (PY n∥PZn) (3.67)

where PY n is the output distribution induced by the input distribution PXn through the channel transition
law PY n|Xn and the expectation in (3.67) is computed with respect to PXn . We notice that the first term
on the right-hand side of (3.67) goes to 0 with the key length going to infinity (see Theorem 2.1). For
the time being, we assume the key to be sufficiently long and therefore allow the first term in (3.67) to
be arbitrarily close to zero. We admit that assuming an infinitely long key is unrealistic, but we shall
show in Section 3.5 bounds on a sufficient key length. To show that with high probability there exist
good realizations of C satisfying the covertness condition (3.7), it now suffices to show that the second
term on the right-hand side of (3.67) is less than ∆ for sufficiently large n:

D (PY n∥PZn) ≤ ∆. (3.68)

Recalling that Y n ∼ Z̃n
n , this can be shown as follows:

D
(
P⊗n

Z̃n

∥∥∥PZn

)
= nD

(
PZ̃n

∥∥PZ

)
(3.69)

= n
γ2

n

2 Var [ln(pZ(Z))] +O(nγ3
n) (3.70)

= ∆ − n1−χ +O

(
1√
n

)
, (3.71)

where (3.70) follows by (3.14); and (3.71) by (3.65). From (3.71) it is clear that D(P⊗n
Z̃n

∥PZn) < ∆ for
sufficiently large n.
We next look at the mutual information corresponding to this code construction. To simplify notation,
we henceforth use Y to denote the single-letter channel output, i.e., Y = X +Z; recall that Y ∼ Z̃n and
that the distributions of X and Y both depend on n. Since the inputs are i.i.d., we have

lim
n→∞

1√
n
I(Xn;Y n) = lim

n→∞

√
n I(X;Y )

= lim
n→∞

√
n
(
h(Y ) − h(Z)

)
= lim

n→∞

√
n
(
h(Z̃n) − h(Z)

)
=

√
2
√

Var[ln(pZ(Z))] ·
√

∆, (3.72)
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where the last step follows by (3.15) and (3.65).
It now remains to show that this limit of mutual information is operationally achievable. Since the
distribution PX depends on n, we cannot use a standard random coding argument, but we will use an
information spectrum approach. Namely, we wish to show

lim
ε→0

lim inf
n→∞

ln (M∗(n, ε,∆))√
n

≥ lim
n→∞

1√
n
I(Xn;Y n). (3.73)

From Shannon’s achievability bound (Theorem 2.2) we know that, for any τ > 0 the expectation of the
average error probability ε of the above random code is bounded as

EC[ε(C)] ≤ P [iXn,Y n(Xn, Y n) ≤ ln |M| + nτ ] + e−nτ , (3.74)

where iXn,Y n(xn, yn) is the information density; see Definition 2.3. Choosing τ = n− 3
4 , we rewrite (3.74)

as
EC[ε(C)] ≤ P

[
iXn,Y n(Xn, Y n)√

n
≤ ln |M|√

n
+ n− 1

4

]
+ e−n

1
4 . (3.75)

We note that showing EC[ε(C)] → 0 while EC

[
D
(
PY n

C

∥∥∥PY n

)]
→ 0 in (3.67) when n → +∞ establishes

by the Selection lemma (see Lemma A.3) the existence of a code that is both reliable and covert. Letting
n → ∞ in (3.75), we know that the expectation of the average probability of error ε will tend to zero
provided

lim
n→∞

ln |M|√
n

< P- lim inf
n→∞

1√
n
iXn,Y n(Xn, Y n), (3.76)

where P- lim inf denotes the limit inferior in probability; see Definition A.1. We shall show that the term
inside the P- lim inf converges in probability to its expectation

E
[

1√
n
iXn,Y n(Xn, Y n)

]
= 1√

n
I(Xn;Y n), (3.77)

which, combined with (3.72), will yield the desired achievability result. By Chebyshev’s inequality (Lemma
A.4), for any a > 0,

P
[∣∣∣∣ 1√

n
iXn,Y n(Xn, Y n) − E

[
1√
n
iXn,Y n(Xn, Y n)

]∣∣∣∣ ≥ a

]
≤

Var
(

1√
n
iXn,Y n(Xn, Y n)

)
a2 . (3.78)

Hence, to prove the desired convergence in probability and thereby the desired achievability result, it
now only remains to show that the variance on the right-hand side of (3.78) converges to 0 as n → ∞.
Recall that Y has the same PDF as Z̃n, which has the following Taylor expansion

pY (y) = pZ̃n
(y) = αnpZ(y)

(
1 − γn ln(pZ(y))pZ(y)−θn(y)

)
, (3.79)

where θn(y) ∈ (0, γn) for all y ∈ R. We now bound the variance in (3.78) as follows:

Var
(

1√
n
iXn,Y n(Xn, Y n)

)
= Var

(
1√
n

ln
(
pY n|Xn(Y n|Xn)

pY n(Y n)

))
= Var

(
ln
(
pY |X(Y |X)
pY (Y )

))
(3.80)

= Var
(

ln
(
pZ(Z)
pY (Y )

))
= Var

(
ln
(

pZ(Z)
αnpZ(Y )(1 − γn ln(pZ(Y ))pZ(Y )−θn(Y ))

))
(3.81)
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= Var
(

ln
(
pZ(Z)
pZ(Y )

)
− ln

(
1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )

)
− ln(αn)

)
≤ E

[(
ln
(
pZ(Z)
pZ(Y )

)
− ln

(
1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )

))2
]

≤ 2E
[(

ln
(
pZ(Z)
pZ(Y )

))2
]

+ 2E
[(

ln
(

1 − γn ln (pZ(Y )) pZ(Y )−θn(Y )
))2

]
, (3.82)

where (3.80) follows because (Xn, Y n) are i.i.d.; (3.81) by (3.79); and (3.82) by adding the nonnegative
term

E

[(
ln
(
pZ(Z)
pZ(Y )

)
+ ln

(
1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )

))2
]
.

To prove that the variance of the information density approaches zero, it thus suffices to prove that both
expectations on the right-hand side of (3.82) approach zero. We start with the second expectation and
write it as the sum of two parts:

E
[(

ln
(

1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )
))2

]
= P [pZ(Y ) ≤ 1]E

[(
ln
(

1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )
))2

∣∣∣∣ pZ(Y ) ≤ 1
]

+ P [pZ(Y ) ≥ 1]E
[(

ln
(

1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )
))2

∣∣∣∣ pZ(Y ) ≥ 1
]
. (3.83)

For the second part, we notice that, for any y such that pZ(y) ≥ 1 (if such y exists), by (3.55),

ln(pZ(y))pZ(y)−θn(y) ≤ ln(pZ(y)) ≤ max{0, ln(b)}, (3.84)

therefore

E
[(

ln
(

1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )
))2

∣∣∣∣ pZ(Y ) ≥ 1
]

≤
(

ln
(
1 − γn max {0, ln(b)}

))2
, (3.85)

which clearly tends to zero as n → ∞. We now bound the first term on the right-hand side of (3.83) as
follows:

P [pZ(Y ) ≤ 1]E
[(

ln
(

1 − γn ln(pZ(Y ))pZ(Y )−θn(Y )
))2

∣∣∣∣ pZ(Y ) ≤ 1
]

≤ P [pZ(Y ) ≤ 1]E
[(
γn ln(pZ(Y ))pZ(Y )−θn(Y )

)2
∣∣∣∣ pZ(Y ) ≤ 1

]
= γ2

n

∫
R
1{pZ (y)≤1} (ln(pZ(y)))2

pZ(y)−2θn(y)pY (y)dy

≤ γ2
n

∫
R

(ln(pZ(y)))2
pZ(y)−2θn(y)pY (y)dy

= γ2
n

∫
R

(ln(pZ(y)))2
pZ(y)−2θn(y)αn(pZ(y))1−γndy

= γ2
nαn

∫
R

(ln(pZ(y)))2
pZ(y)1−γn−2θn(y)dy. (3.86)

By Lemma 3.1, for large enough n, the integral in the above expression is finite. Since αn → 1 and
γn → 0 as n → ∞, we conclude that the right-hand side of (3.86) tends to zero. We have thus shown
that both terms on the right-hand side of (3.83) tend to zero and, therefore, the second expectation on
the right-hand side of (3.82) tends to zero as n → ∞.
We now consider the first expectation on the right-hand side of (3.82), which can be written as

E

[(
ln
(
pZ(Z)
pZ(Y )

))2
]

= E
[
(ln(pZ(Z)))2

]
− 2E [ln(pZ(Z)) ln(pZ(Y ))] + E

[
(ln(pZ(Y )))2

]
. (3.87)
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We first consider the third term on the right-hand side:

E
[
(ln(pZ(Y )))2

]
=
∫
R
pY (y) (ln(pZ(y)))2 dy

=
∫
R
αnpZ(y)(1 − γn ln(pZ(y))pZ(y)−θn(y))(ln(pZ(y)))2dy. (3.88)

By Lemma 3.1 and the fact that αn → 1 as n → ∞, we have

lim
n→∞

E
[
(ln(pZ(Y )))2

]
= E

[
(ln(pZ(Z)))2

]
. (3.89)

We next consider the second term on the right-hand side of (3.87). We can write this expectation as a
double Lebesgue integral:

E [ln(pZ(Z)) ln(pZ(Y ))] =
∫
R

∫
R
pZ(y − x) ln(pZ(y − x)) ln(pZ(y))dy dPX(x). (3.90)

Since, by Assumption 3.1, t 7→ pZ(t) ln(pZ(t)) is uniformly continuous on supp(pZ), we have that the
family of functions {t 7→ pZ(y− t) ln(pZ(y− t))}y is pointwise equicontinuous wherever y− t ∈ supp(pZ).
Again by Assumption 3.1, they are also uniformly bounded. By Lemma 3.3 and Theorem A.3, the
following limit holds uniformly over y ∈ R:

lim
n→∞

∫
R
pZ(y − x) ln(pZ(y − x))dPX(x) = pZ(y) ln(pZ(y)). (3.91)

Therefore,

lim
n→∞

∫
R

∫
R
pZ(y − x) ln(pZ(y − x)) ln(pZ(y))dPX(x) dy

=
∫
R

ln(pZ(y)) lim
n→∞

∫
R
pZ(y − x) ln(pZ(y − x))dPX(x) dy

=
∫
R

ln(pZ(y))pZ(y) ln(pZ(y)) dy

= E
[
(ln(pZ(Z)))2

]
. (3.92)

Combining (3.87), (3.89), and (3.92), we obtain

lim
n→∞

E

[(
ln
(
pZ(Z)
pZ(Y )

))2
]

= 0. (3.93)

We have now shown that both expectations on the right-hand side of (3.82) tend to zero as n → ∞.
Hence the variance in (3.78) tends to zero as n → ∞, establishing (3.73) and completing the proof.

3.4 Examples

In this section, we apply Theorems 3.1 and 3.2 to characterize the scaling constant L for some well-known
noise distributions. As before, we consider an additive memoryless channel of the form (3.1) with the
noise sequence being i.i.d.

3.4.1 Uniform noise

Suppose that the noise Z is of the form (3.44) for some subset S of R. We will show that in this case,
L = 0. Suppose there exists an input distribution that yields an output distribution PY such that

D(PY ∥PZ) < ∞. (3.94)
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For this to hold, PY needs to be absolutely continuous with respect to PZ , i.e., PY ≪ PZ , and we have

D(PY ∥PZ) = −h(Y ) −
∫

S
pY (y) ln(pZ(y))dy

= −h(Y ) − ln
(

1
λ (S)

)
= h(Z) − h(Y ). (3.95)

On the other hand, since Y = X + Z, we must have

I(X;Y ) = h(Y ) − h(Z)

= −D(PY ∥PZ) (3.96)

where the last step follows by (3.95). Since I(X;Y ) ≥ 0, the only way this can happen is to have PZ = PY .
That is, the only way to satisfy (3.94) is to have X = 0 with probability one. It thus follows that covert
communication is not possible and therefore, by definition, L = 0.

3.4.2 Exponential noise

Let the noise random variable Z ∼ E
( 1

Λ
)

with exponential distribution of mean 1
Λ > 0:

pZ(z) = Λe−Λz, z ∈ R+. (3.97)

This distribution satisfies both (3.2)–(3.4) and Assumption 3.1. Verifying (3.2)–(3.4) and Assumption 3.1
part 1) is straightforward. For part 2), we note that z 7→ pZ(z) ln(pZ(z)) has a bounded derivative,
therefore, by the mean value theorem, it is uniformly continuous. To check part 3), for any γ > 0, we
notice that Z̃ defined in (3.9) has the exponential distribution E

(
1

(1−γ)Λ

)
. It was shown in [72] that

there exists X independent of Z such that Z̃ = X + Z; see Appendix C.3.
We can hence apply Theorem 3.2 to obtain

L =
√

2
√

Var [ln(pZ(Z))]

=
√

2
√

Var [ln(Λ) − ΛZ]

=
√

2
√

Var [ΛZ]

=
√

2. (3.98)

3.4.3 Generalized Gaussian noise

Consider Z having the generalized Gaussian distribution [55, 24, 25] of parameters p > 0 and σ > 0 (see
Figure 8) with probability density function

pZ(z) = cp

σ
e− |z|p

2σp , z ∈ R, (3.99)

where
cp = p

2
p+1

p Γ( 1
p )
. (3.100)

Some known properties of additive channels with generalized Gaussian noise (without covertness con-
straints) are summarized in Appendix C.4.
The problem of characterizing the scaling constant L for this noise distribution was studied in our previous
work [C1]; here we shall obtain the same results by directly applying Theorems 3.1 and 3.2.
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Fig. 8: PDF of generalized Gaussian distributions for σ = 1.

First we notice that (3.2)–(3.4) are satisfied for all σ > 0 and p > 0. Therefore, we can apply Theorem
3.1 to obtain

L ≤
√

2

√
Var

[
|Z|p
2σp

]
=
√

2
p
, (3.101)

recovering [10, Theorem 2].
When p = 2, (3.99) becomes the Gaussian distribution, which satisfies Assumption 3.1. Theorem 3.2
then implies L = 1, recovering Theorem 2.5.
When p ∈ (0, 1], we know that Assumption 3.1 part 3) is satisfied. Indeed, Z̃ defined in (3.9) is also
generalized Gaussian with the same p but a different σ; it was shown in [25] that the generalized Gaussian
distribution is self-decomposable when 0 < p ≤ 1, meaning that there exists X independent of Z with
Z̃ = X +Z; see Appendix C.4. The remaining parts of Assumption 3.1 are straightforward to verify. We
can therefore apply Theorem 3.2 to obtain

L =
√

2
p
, 0 < p ≤ 1, (3.102)

recovering [10, Theorem 3].

3.4.4 Generalized gamma noise

Consider Z following the generalized gamma distribution [70, Appendix A.3], [69] of parameters r, σ, β > 0
(see Figure 9):

pZ(z) = β

Γ(r)σβr
zβr−1e−( z

σ )β

z ∈ R+. (3.103)

One can easily verify that pZ satisfies (3.2)–(3.4), therefore, by Theorem 3.1, we have

L ≤
√

2

√(
r − 1

β

)2
ψ(1)(r) − r + 2

β
, (3.104)

with ψ(1) denoting the first derivative of the digamma function.
Proof: By Theorem 3.1,

L ≤
√

2
√

Var[ln(pZ(Z))] =
√

2
√

E[ln(pZ(Z))2] −
(
h(Z)

)2
, (3.105)
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Fig. 9: PDF of generalized gamma distributions for σ = 1.

where

h(Z) = ln
(

Γ(r)σ
β

)
+ r +

(
1
β

− r

)
ψ(r). (3.106)

The other term on the right-hand side of (3.105) can be written as

E[ln(pZ(Z))2] =
∫ ∞

0
pZ(z)

(
ln
(

β

Γ(r)σβr

)
+ (βr − 1) ln(z) −

( z
σ

)β
)2

dz

=
(

ln
(

β

Γ(r)σβr

))2
+
∫ ∞

0
pZ(z)

(
2 ln

(
β

Γ(r)σβr

)(
(βr − 1) ln(z) −

( z
σ

)β
)

+ (βr − 1)2 ln(z)2 − 2(βr − 1) ln(z)
( z
σ

)β

+
( z
σ

)2β
)

dz

=
(

ln
(

β

Γ(r)σβr

))2
+ 2 ln

(
β

Γ(r)σβr

)(
(βr − 1)E [ln(Z)] − E

[(
Z

σ

)β
])

+ (βr − 1)2E
[
ln(Z)2]− 2(βr − 1)E

[
ln(Z)

(
Z

σ

)β
]

+ E

[(
Z

σ

)2β
]
. (3.107)

Recalling the derivatives of the gamma function

Γ(n)(k) =
∫ ∞

0
ln(t)ne−ttk−1dt, ∀n ∈ N,∀k > 0, (3.108)

we now proceed to compute all the terms in (3.107):

E

[(
Z

σ

)β
]

= r, (3.109)

E

[(
Z

σ

)2β
]

= (r + 1)r, (3.110)

E[ln(Z)] =
∫ ∞

0

β

Γ(r)σβr
zβr−1e−( z

σ )β

ln(z)dz

= 1
σ

∫ ∞

0

β

Γ(r)

( z
σ

)βr−1
e−( z

σ )β

ln
( z
σ

)
dz + ln(σ)

= 1
βΓ(r)

∫ ∞

0
zr−1e−z ln(z)dz + ln(σ)
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= Γ(1)(r)
βΓ(r) + ln(σ)

= 1
β
ψ(r) + ln(σ), (3.111)

E[ln(Z)2] =
∫ ∞

0

β

Γ(r)σβr
zβr−1e−( z

σ )β

ln(z)2dz

= 1
σ

∫ ∞

0

β

Γ(r)

( z
σ

)βr−1
e−( z

σ )β

ln
( z
σ

)2
dz + 2 ln(σ)E[ln(Z)] − ln(σ)2

= 1
β2Γ(r)

∫ ∞

0
zr−1e−z ln(z)2dz + 2 ln(σ)E[ln(Z)] − ln(σ)2

= Γ(2)(r)
β2Γ(r) + 2 ln(σ)E[ln(Z)] − ln(σ)2

= 1
β2ψ

(1)(r) + 1
β2ψ(r)2 + 2ln(σ)

β
ψ(r) + ln(σ)2, (3.112)

E

[
ln(Z)

(
Z

σ

)β
]

=
∫ ∞

0

β

Γ(r)σβr
zβr−1e−( z

σ )β

ln(z)
( z
σ

)β

dz

= 1
σ

∫ ∞

0

β

Γ(r)

( z
σ

)βr−1
e−( z

σ )β

ln
( z
σ

)( z
σ

)β

dz + ln(σ)E
[(

Z

σ

)β
]

= 1
βΓ(r)

∫ ∞

0
zre−z ln(z)dz + r ln(σ)

= Γ(1)(r + 1)
βΓ(r) + r ln(σ)

= 1
β
r

Γ(1)(r)
Γ(r) + 1

β
+ r ln(σ)

= r

β
ψ(r) + 1

β
+ r ln(σ). (3.113)

Combining all numbered equations above yields (3.104).

Remark 3.5 When β = 1, (3.103) reduces to the gamma distribution. When r = 1
β , (3.103) reduces to the

generalized Gaussian distribution (3.99) with p = β, but restricted to R+, and (3.104) becomes the same
as (3.101). We cannot apply Theorem 3.2 to obtain an exact characterization of L because the generalized
gamma distribution is not known to satisfy Assumption 3.1, in particular, its part 3).

3.4.5 Cauchy noise

Consider Z following the Cauchy distribution [18, table 17.1] of parameters σ > 0:

pZ(z) = 1
πσ
(

1 +
(

z
σ

)2
) z ∈ R. (3.114)

One can easily verify that pZ satisfies (3.2)–(3.4), therefore, by Theorem 3.1, we have

L ≤
√

2
3π. (3.115)

Proof: By Theorem 3.1,

L ≤
√

2
√

Var[ln(pZ(Z))] =
√

2
√

E[ln(pZ(Z))2] −
(
h(Z)

)2
, (3.116)

where the differential entropy is given in [18, table 17.1]:

h(Z) = ln (4πσ) . (3.117)
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The other term on the right-hand side of (3.116) can be computed as

E
[
ln (pZ(Z))2

]
=
∫ +∞

−∞

1
πσ
(

1 +
(

z
σ

)2
) (ln

(
πσ

(
1 +

( z
σ

)2
)))2

dz

=
∫ π

2

− π
2

(
ln
(
πσ
(
1 + tan(θ)2)))2

π
dθ (3.118)

=
∫ π

2

− π
2

(ln (πσ) − 2 ln (cos(θ)))2

π
dθ

= (ln (πσ))2 − 4 ln (πσ)
∫ π

2

− π
2

ln (cos(θ))
π

dθ + 4
∫ π

2

− π
2

(ln (cos(θ)))2

π
dθ

= ln(πσ)2 + 4 ln(2) ln(πσ) + π2

3 + 4 ln(2)2 (3.119)

where (3.118) follows by the variable change z
σ = tan(θ) and (3.119) by [34, Section 4.224 eq. 6 and 8].

3.5 Bounds on the key length

In Section 3.3, we assumed that an arbitrarily long key was shared between the transmitter and the
receiver. In this section, we provide an upper bound in terms of n on the required key length to achieve
the optimal L given in Theorem 3.2 and refine this upper bound when the noise has a Gaussian or
exponential distribution. Our proofs use channel resolvability techniques (see Section 2.4) to ensure that,
on average, the output distribution of the code approaches the “covert process” {Z̃n}5.

Proposition 3.1 For the memoryless additive-noise channel (3.1), if pZ satisfies (3.2)–(3.4) as well as
Assumption 3.1, then there exists a sequence of codes that asymptotically achieves the optimal scaling
factor L of Theorem 3.2 with key lengths satisfying

ln |K| = O(n). (3.120)

Proposition 3.2 For PZ being a Gaussian or exponential distribution, (3.120) can be strengthened to

ln |K| = o(
√
n). (3.121)

Remark 3.6 For Gaussian noise, the result of Proposition 3.2 is essentially known, albeit in settings with
several technical differences from ours; for example, apply [7, Theorem 6] to the special case where (in the
notation therein) P0 = Q0 and P1 = Q1. There are mainly two differences: [7, Theorem 6] assumes that
the channel input can only take two different values, whereas we allow any input value in R, furthermore
the covertness constraint is different in [7], requiring that the variational distance goes to 0 when n goes
to infinity. If we only require the total variation distance to be upper bounded by a constant rather than
vanishing, as in [7, Section VII.A] then (also in the notation therein) ωn = O(1) and the key length is
o(

√
n) since ξ can be chosen to be arbitrarily small. Moreover, if the eavesdropper and legitimate receiver

observe two different AWGN channels and the eavesdropper’s channel is noisier than the receiver’s channel,
then one can show that no key is needed (see Appendix D.1). This would be similar to [7, Theorem 6] with
D(Q1∥Q0) < D(P1∥P0). Some other related results on the key length in Gaussian covert communication
can be found in [86, 87, 78].

In order to prove Propositions 3.1 and 3.2, we consider the same random code construction as in the
proof of Theorem 3.2 in Section 3.3, where the codewords are generated i.i.d. according to P⊗n

X such

5See discussion in [7, Section III.A].
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that X ∼ PX satisfies (3.58). (As before, to avoid cumbersome notation, we do not explicitly write the
distributions of X and Y as functions of n.) We denote by C the random codebook and by PY n

C
the

output distribution conditional on C. Recalling (3.68) and choosing Y ∼ Z̃n where Z̃n has PDF (3.59),
we shall find sufficient conditions on ln |K| such that

lim
n→∞

EC

[
D
(
PY n

C
∥PY n

)]
= 0, (3.122)

which will ensure that C has the desired covertness property with high probability. (The existence with
high probability comes from Markov’s inequality; Lemma A.2.) By Lemma A.3, this further guarantees
the existence of a good deterministic code C that is covert while achieving L when Theorem 3.2 is
applicable.
To establish (3.122), we apply the channel resolvability bound for the Kullback-Leibler divergence by
Hayashi and Matsumoto (Theorem 2.1), which asserts that, for ρ ∈ (0, 1],

EC

[
D
(
PY n

C
∥PY n

)]
≤ 1
ρ

ln
(

1 + e−ρ ln(|K|×|M|)+nΨ(ρ|PY |X ,PX )
)

(3.123)

where

Ψ(ρ|PY |X , PX) = ln
(
E
[(

pY |X(Y |X)
pY (Y )

)ρ])
(3.124)

and PY n
C

is defined as in (3.66). (A similar resolvability technique based on Theorem 2.1 was proposed
in [87, Lemma 13].)
Proof of Proposition 3.1: For sufficiently small ρ, the expectation in (3.124) can be upper-bounded as

E
[(

pY |X(Y |X)
pY (Y )

)ρ]
= E

[(
pZ(Y −X)
pY (Y )

)ρ]
≤ E

[(
b

pY (Y )

)ρ]
(3.125)

= bρ

∫
R
pY (y)1−ρdy

= bρ

∫
R
α1−ρ

n pZ(y)1−γn(1−ρ)−ρdy

= α1−ρ
n bρ

∫
R
pZ(y)1−ρ

(
1 − γn(1 − ρ) ln(pZ(y))pZ(y)−θn(y)

)
dy (3.126)

= bρ

∫
R
pZ(y)1−ρdy +O

(
1√
n

)
(3.127)

where (3.125) follows by (3.55); (3.126) by the Taylor expansion of pY (y) with the Lagrange form of the re-
mainder (3.79); and (3.127) by (3.21), (3.65), and Lemma 3.1. For sufficiently small ρ, Lemma 3.1 ensures
that the integral in (3.127) is finite, which in turn implies that (3.124) is bounded. Therefore choosing
ln |K| = O(n) ensures that the right-hand side of (3.123) goes to 0 as n → ∞, establishing (3.122).
Proof of Proposition 3.2:

Gaussian noise Let Z ∼ N (0, σ2) with σ > 0. It is easy to check that the input and output
distributions are X ∼ N

(
0, σ2γn

1−γn

)
and Y ∼ N

(
0, σ2

1−γn

)
, respectively, and

Ψ(ρ|PY |X , PX) = ln
(∫

R

∫
R
pX,Y (x, y)

(
pY |X(y|x)
pY (y)

)ρ

dxdy
)

= ln
(∫

R

∫
R
pZ(y − x)pX(x)

(
pZ(y − x)
pY (y)

)ρ

dxdy
)

= ln
(∫

R

∫
R

(
1√
2πσ

)2√1 − γn

γn
e− (y−x)2

2σ2 e
− x2

2σ2 γn
1−γn
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×

 1√
1 − γn

e− (y−x)2

2σ2

e
− y2

2σ2 1
1−γn

ρ

dxdy
)

= ln
(∫

R

∫
R

(
1√
2πσ

)2 (1 − γn) 1
2 − ρ

2

√
γn

e
−

(y− 1+ρ
1+ργn

x)2

2σ2 1
1+ργn

×e− x2
2σ2

(1−γn)(1−ρ2γn)
γn(1+ργn) dy dx

)
(3.128)

= ln
(

(1 − γn) 1
2 − ρ

2

√
γn

1√
1 + ργn

√
γn(1 + ργn)

(1 − γn)(1 − ρ2γn)

)

= ln
(

(1 − γn)− ρ
2√

1 − ρ2γn

)
, (3.129)

where (3.128) follows by Fubini’s theorem.
If the message rate scales according to the optimal scaling constant L as in Theorem 3.2, i.e., lim

n→∞
ln|M|√

∆
√

n
=

1, then there exists a positive sequence {ξn} such that ξn = o(
√
n) and ln |M| ≥

√
∆

√
n − ξn. Let

{ρn}, ρn ∈ (0, 1) for any n, be such that ρn → 0 and ρnξn → ∞ when n → ∞. Continuing from (3.129),
we obtain

Ψ(ρn|PY |X , PX) = −ρn

2 ln (1 − γn) − 1
2 ln

(
1 − ρ2

nγn

)
= −ρn

2
(
−γn +O(γ2

n)
)

− 1
2
(
−ρ2

nγn +O(ρ4
nγ

2
n)
)

=
(
ρn

2 + ρ2
n

2

)
γn +O

(
ρnγ

2
n

)
= ρn (1 + ρn)

√
∆
n

+O
(ρn

n

)
, (3.130)

where (3.130) follows by recalling the expression of γn in (3.65). We have now established the upper
bound

EC

[
D
(
PY n

C
∥PY n

)]
≤ 1
ρn

ln
(

1 + e−ρn(ln|K|+ln|M|)+ρn(1+ρn)
√

∆
√

n+O(ρn)
)

≤ 1
ρn
e−ρn(ln|K|−ρn

√
∆

√
n−ξn+O(1)). (3.131)

A key length ln |K| = ρn

√
∆

√
n+2ξn would be sufficient to ensure (3.122). Since ρn → 0 and ξn = o (

√
n),

it follows that ln |K| = o (
√
n).

Exponential noise For Z having the exponential distribution (3.97) of mean 1
Λ > 0, the target

output distribution PY is an exponential distribution of mean 1
(1−γn)Λ . The input distribution that

induces this output distribution is a mixture of a point mass at 0 and an exponential distribution [72];
see Appendix C.11:

P [X = 0] = 1 − γn, (3.132)

P [X > x|X > 0] = e−(1−γn)Λx. (3.133)

We compute Ψ(ρ|PY |X , PX) as follows:

Ψ(ρ|PY |X , PX) = ln
(∫

R

∫
R
pZ(y − x)

(
pZ(y − x)
pY (y)

)ρ

dPX(x) dy
)

= ln
(

(1 − γn)
∫
R+

Λe−Λy

(
1

1 − γn

e−Λy

e−Λ(1−γn)y

)ρ

dy
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+ γn

∫
R+

∫ y

0
Λ2(1 − γn)e−Λ(y−x)e−Λ(1−γn)x

(
1

1 − γn

e−Λ(y−x)

e−Λ(1−γn)y

)ρ

dxdy
)

= ln
(

(1 − γn)1−ρ

∫
R+

Λe−Λ(1+ργn)ydy

+ γn

∫
R+

∫ y

0
Λ2(1 − γn)1−ρe−Λ(1+γnρ)yeΛ(γn+ρ)xdxdy

)
= ln

(
(1 − γn)1−ρ

1 + ργn
+ γn

∫
R+

Λ(1 − γn)1−ρ

γn + ρ
e−Λ(1+γnρ)y

(
eΛ(γn+ρ)y − 1

)
dy
)

= ln
(

1 − γn + γn
(1 − γn)1−ρ

γn + ρ

(
1

1 + γnρ− γn − ρ
− 1

1 + γnρ

)
+ o(γn)

)
= ρ

1 − ρ
γn + o(γn)

=
√

2ρ
1 − ρ

√
∆
n

+ o

(
1√
n

)
, (3.134)

where (3.134) follows by recalling the expression of γn in (3.65). By a similar reasoning to the Gaussian
case, it follows that ln |K| = o (

√
n) suffices to ensure (3.122).

Remark 3.7 The proof of Proposition 3.2 requires the characterization of the optimal input PX , which
can be challenging for more general noise distributions.

3.6 Concluding Remarks

There are not many examples of additive-noise channels whose capacity under a certain input cost
constraint [33, 74] admits a closed-form expression, notably the AWGN channel with a second-moment
constraint, the exponential-noise channel with a first-moment constraint [72], the channel with Cauchy
noise and logarithmic constraint [26], and some generalized Gaussian-noise channels [24]. Some works
provide bounds on the capacity or show properties of optimal input distributions, e.g., [22, 27].
In contrast, we were able to derive a simple expression for the scaling constant L for covert communication
over rather general additive-noise channels. This is because, in a sense, the covertness condition (2.6)
translates to a constraint on the output that is naturally “fitted” to the noise distribution6, which in
turn allows for a precise characterization of (or an elegant upper bound on) L.
It is not clear to us how to generalize Theorems 3.1 and 3.2 to scenarios where the receiver and the
eavesdropper face different noise distributions, because the cost constraint would now be fitted to the
eavesdropper’s noise, not the receiver’s. A special case where such generalization is straightforward is the
Gaussian channel where the receiver and the eavesdropper are corrupted by Gaussian noise with different
variances σ2 and σ2

e , respectively. In this case, it is well known that L = σ2
e/σ

2. This example is presented
in detail in Appendix D.1. See also [78, Theorem 2]. We can not derive such a simple computation of L
for other types of noise but are able to derive an upper bound for exponential channels, involving only
the ratio between the two means of the noise; see Appendix D.2.
Validity of the formula (3.57) is limited by Assumption 3.1, notably its part 3). For example, 3) is not
known to be true for some generalized Gaussian distributions [25]. However, 3) being false (or not known
to be true or false) for a certain noise PDF does not necessarily imply that the formula (3.57) cannot
hold for such noise. This is because the input distribution to achieve L does not need to be unique,
i.e., we do not need the PDF of X + Z to be exactly (3.9). For example, for the AWGN channel, (3.9)
is a Gaussian distribution, and X should also be Gaussian in order to induce this output distribution.
However, choosing X to take only two values, ±a for some a approaching zero as n → ∞, can also attain
L [76]. If one can show that similar input distributions can attain L on other additive-noise channels, in

6For example, for Gaussian noise, it translates into a second-moment constraint, and for exponential noise into a first-
moment constraint.
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particular, those that do not satisfy Assumption 3.1, then one may be able to further extend the validity
of (3.57).
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4 Second-order asymptotics of covert
communication

In this section, we present the original contribution presented in part in [C2].
Up to now, we have considered covert communication in the asymptotic regime where the number of
channel uses tends to infinity. In this chapter, we will consider the finite blocklength regime and provide
some bounds for the first and second-order asymptotics of covert communication over additive memoryless
Gaussian channels.

4.1 Introduction

Channel coding in the finite blocklength regime (without covertness constraint) In the
context of channel coding, the seminal paper of Polyanskiy, Poor, and Verdù [59] characterized the
maximal channel coding rate achievable for a given average or maximal probability of error ε and
blocklength n. A code C of blocklength n, message size M = |M| and average (respectively maximal)
error probability ε is called an (n,M, ε)-code. We denote

M∗(n, ε) = max
{
M | ∃(n,M, ε)-code

}
. (4.1)

In particular [59] showed that for discrete memoryless channels, both for average and maximal probability
of error, the maximum code size asymptotically scales like [59, eq. (223)]

ln (M∗(n, ε)) = nC −
√
nV Q−1(ε) +O (ln(n)) (4.2)

where C is the capacity and V is a characteristic of the channel referred to as channel dispersion. The
capacity C is known as the first-order asymptotics and

√
V
nQ

−1(ε) as the second-order asymptotic. An
expression of the form (4.2) also holds for Gaussian channels for maximal probability of error under
maximal, equal, and average power constraint. However, for the average probability of error, it holds
only under an equal and maximal power constraint. In fact, for average probability of error and average
power constraint, it turns out that the strong converse does not hold, i.e. the ε-capacity [61, Definition
19.3]

Cε = lim inf
n→+∞

ln (M∗(n, ε))
n

(4.3)

is not equal to the capacity for ε > 0. In this setting, the ε-capacity has been characterized as follows:

Theorem 4.1 [58, Theorem 77] For the AWGN channel with average power constraint, for SNR P and
average probability of error 0 < ε < 1 we have

ln (M∗(n, ε)) = n

2 ln
(

1 + P

1 − ε

)
+O(n 2

3 ). (4.4)

Covert communication in the finite blocklength regime We define the maximal probability
of decoding error as

εmax = max
m∈M,k∈K

P [g(yn, k) ̸= m | xn = f(m, k)] (4.5)
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and the average probability of decoding error

ε = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

P [g(yn, k) ̸= m | xn = f(m, k)] . (4.6)

A code C of blocklength n, message size M = |M|, average (respectively maximal) error probability ε

which satisfies the covertness constraint (2.6) is called an (n,M, ε,∆)avg-code (respectively an
(n,M, ε,∆)max-code). We denote

M∗ (n, ε,∆) = max
{
M | ∃(n,M, ε,∆)avg-code

}
, (4.7)

M̄∗ (n, ε,∆) = max
{
M | ∃(n,M, ε,∆)max-code

}
. (4.8)

Covert communication in finite blocklength was first investigated by Tahmasbi and Bloch [71] who
characterized the first and second-order asymptotics for discrete memoryless channels with a given
maximal probability of error ε and found that the first-order asymptotics scale like the square root of the
blocklength while the second-order asymptotics scale like the fourth root of the blocklength. Furthermore,
under a maximal error probability constraint, the first-order asymptotics do not depend on ε [71].
However, under an average error probability constraint, the strong converse does not hold and the first-
order asymptotics of covert communication depend on the error probability ε. In fact, as explained in
[71, Appendix A], assuming that ln(M∗(n, ε,∆)) = f(∆)

√
n+o(

√
n) for some function f which is strictly

increasing in ∆ and does not depend on ε leads to a contradiction. Essentially, this follows from the fact
that one can add a certain amount of all zero-codewords which increases the size of the codebook without
affecting the covertness constraint.
In this chapter, we show that for an AWGN channel, the covertness constraint (2.43) implies an average
power constraint. This allows us to establish an upper bound for the second-order asymptotics of covert
communication over an AWGN channel when considering a maximal error probability constraint. A
similar upper bound and matching lower bound were stated in [84, 83]; however, no rigorous proof of
covertness is given for the lower bound and the upper bound’s proof relies on a maximal power constraint
in [84] and on a second-moment constraint in [83].
When considering an average error probability constraint, we show that similarly to the case of DMCs,
the strong converse does not hold and the first-order asymptotics depend on ε. Similarly to the notion of
ε-capacity, we can define an ε-scaling constant Lε for the first-order asymptotics, for which we establish
a straightforward upper bound derived directly from Fano’s inequality and new lower bounds.

Notation and preliminaries Channel inputs can be subjected to one of three types of constraints:
• equal power constraint: M∗

e (n, ε, P ) denotes the maximal size of the message set M, for n uses of the
channel, and average probability of error ε such that each input f(m) ∈ X n, for all m ∈ M satisfies

∥f(m)∥2
2 = nP, (4.9)

• maximal power constraint: M∗
m(n, ε, P ) denotes the maximal size of the message set M, for n uses

of the channel, and average probability of error ε such that each input f(m) ∈ X n, for all m ∈ M
satisfies

∥f(m)∥2
2 ≤ nP, (4.10)

• average power constraint: M∗
a (n, ε, P ) denotes the maximal size of the message set M, for n uses of
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the channel, and average probability of error ε such the codebook satisfies

1
|M|

|M|∑
m=1

∥f(m)∥2
2 ≤ nP. (4.11)

Similarly, for a maximal probability of error ε, we denote by M̄∗
e (n, ε, P ), M̄∗

m(n, ε, P ), and M̄∗
a (n, ε, P )

the maximum cardinalities of a code of blocklength n under the constraints (4.9), (4.10) and (4.11)
respectively.

Lemma 4.1 [58, Lemma 65][67, Section XIII] For any P ′ > P > 0, given the maximal probability of
decoding error 0 ≤ ε ≤ 1, the inequalities

M̄∗
e (n, ε, P ) ≤ M̄∗

m(n, ε, P ) ≤ M̄∗
e (n+ 1, ε, P ) (4.12)

and

M̄∗
m(n, ε, P ) ≤ M̄∗

a (n, ε, P ) ≤ 1
1 − P

P ′

M̄∗
m (n, ε, P ′) (4.13)

hold. Moreover, in the average probability of error formalism (4.12) holds without change, while (4.13)
becomes

M∗
m(n, ε, P ) ≤ M∗

a (n, ε, P ) ≤ 1
1 − P

P ′

M∗
m

(
n,

ε

1 − P
P ′

, P ′

)
(4.14)

which holds provided that ε
1− P

P ′
≤ 1.

Proof:
1) The left-hand sides of (4.12), (4.13) and (4.14) are trivial since a code satisfying the equal power

constraint (4.9) also satisfies the maximal power constraint (4.10), and a code satisfying the maximal
power constraint (4.10) also satisfies the average power constraint (4.11).

2) The right-hand side of (4.12) is shown with the following argument: given an (n,M, ε)-code under
the maximal power constraint P , we can construct a new code with blocklength n + 1, same
error probability ε and equality constraint P by adding to each codeword a further coordinate.
Furthermore, the probability of error for the new code is at most as great as that of the first code,
since the added coordinate can only improve the decoding process; e.g. the decoder could ignore
the last coordinate and then recover the same probability of error.

3) The right-hand side of (4.13) is shown with the following: consider an (n,M, ε)-code under average
power constraint P and with maximal probability of decoding error ε. We can construct from the
(n,M, ε)-code a new code under a maximal power constraint P ′ with the same maximal probability
of error ε by removing any codeword c such that ∥c∥2

2 > nP ′. The probability to find a codeword
such that ∥c∥2

2 > nP ′ is bounded through Markov’s inequality (Lemma A.2) as

P
[
∥c∥2

2 > nP ′] ≤
E
[
∥c∥2

2

]
nP ′

= P

P ′ . (4.15)

Furthermore removing codewords will not increase the maximal probability of error, allowing us to
conclude.

4) Finally the right-hand side of (4.14) is shown with the following. Let P ′ > P > 0, consider an
(n,M, ε)-code C under average power constraint P and average probability of error ε. As previously
we can construct a new code under maximal power constraint P ′ by removing any codeword c ∈ C
such that ∥c∥2

2 > nP ′. We denote C1 =
{
c ∈ C : ∥c∥2

2 > nP ′} and C2 =
{
c ∈ C : ∥c∥2

2 ≤ nP ′}. The
cardinality of the code C2 after expurgation is greater or equal to M(1 − P/P ′). Let ε1 be the
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average error for the codewords in C1, and ε2 the average error for codewords in C2. We now bound
the average probability of error ε2 of the new code after expurgation. By definition,

ε = ε1
|C1|
|C|

+ ε2
|C2|
|C|

. (4.16)

Thus, the new error probability ε2 is upper bounded as

ε2 ≤ ε
|C|
|C2|

= ε

1 − P
P ′

. (4.17)

This concludes the proof.

Lemma 4.2 [61, Theorem 19.4] For any 0 < τ < 1, P > 0, the following inequalities hold:

τM∗
m(n, ε(1 − τ), P ) ≤ M̄∗

m(n, ε, P ) ≤ M∗
m(n, ε, P ) (4.18)

τM∗
e (n, ε(1 − τ), P ) ≤ M̄∗

e (n, ε, P ) ≤ M∗
e (n, ε, P ). (4.19)

Proof: The right-hand side inequalities are obvious. To prove the inequalities on the left-hand side,
consider an (n,M, ε)-code, and define the error probability for the ith codeword as

λi = P [m̂ ̸= mi|m = mi] . (4.20)

Then by Markov’s inequality (Lemma A.2), we have∣∣∣{i s.t. λi >
ε

1−τ

}∣∣∣
M

= P
[
λi >

ε

1 − τ

]
≤ 1 − τ. (4.21)

Now by removing those codewords whose λi exceeds ε
1−τ , we can extract from the (n,M, ε)-code a new

(n,M ′, ε
1−τ )max-code. Note that removing codewords does not affect equal power constraint or maximal

power constraint. Furthermore, the constructed code has size satisfying

τM ≤ M ′, (4.22)

completing the proof.

4.2 Upper bound on the first and second-order asymptotics for
maximal probability of error

We prove the following upper bound for the first and second-order asymptotics of covert communication
over an AWGN channel for a maximal probability of error ε. Note that due to the square root law, the
convergence to L is slow (see Figure 10).

Theorem 4.2 Consider the AWGN channel (2.42) subject to the covertness constraint (2.43). For the
maximal probability of error 0 < ε < 1, the maximum code size admits the following upper bound:

ln(M̄∗(n, ε,∆)) ≤
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O (ln (n)) . (4.23)

First, we show that for the Gaussian channel, the covertness condition (2.43) induces an average power
constraint.
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Fig. 10: Upper bound on the first and second-order asymptotics for ∆ = 10−2 and maximal error
probability ε = 10−3 as a function of the blocklength n.

Lemma 4.3 For the AWGN channel (2.42), the covertness constraint (2.43) implies the average power
constraint:

ρn ≤ 2σ2
√

∆
n

+O

(
1
n

)
, (4.24)

where

ρn = 1
n

1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

∥f(m, k)∥2
2 (4.25)

is the average power of the code.

Proof: Take any code C of length n satisfying the covertness constraint (2.43). As in equation (3.34), let
X̄ denote a random variable such that PX̄ is the average input distribution of the code over the secret
key, a uniformly drawn message, and the n channel uses. Let Ȳ denote the corresponding channel output
as in equation (3.35) so that PȲ is the average output distribution of the code. We notice that

E
[
Ȳ 2] =

∫
R
y2pȲ (y)dy

= 1
n

n∑
i=1

∫
R
y2pYi

(y)dy

= 1
n

n∑
i=1

1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

∫
R
y2pY |X(y|(f(m, k)i)dy

= 1
n

n∑
i=1

1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

(σ2 + (f(m, k)2
i )

= ρn + σ2, (4.26)

where f(m, k)i is the ith component of the input vector f(m, k). Starting with the covertness condition
(2.43), similarly to [77, eq (13)] we have:

∆ ≥ D(PY n∥PZn)

≥ nD(PȲ ∥PZ) (4.27)

= n
(
−h(Ȳ ) − E

[
ln(pZ(Ȳ ))

])
≥ n

(
−1

2 ln(2π(ρn + σ2)e) − E
[
ln(pZ(Ȳ ))

])
(4.28)
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= n

(
−1

2 ln(2π(ρn + σ2)e) + 1
2 ln(2πσ2) + 1

2σ2 (ρn + σ2)
)

= n

(
−1

2 ln
(
ρn + σ2

σ2

)
+ 1

2
ρn

σ2

)
≥ n

(
−1

2

(
ρn

σ2 − 1
2
ρ2

n

σ4 + 1
3
ρ3

n

σ6

)
+ 1

2
ρn

σ2

)
= n

(
1
4
ρ2

n

σ4 − 1
6
ρ3

n

σ6

)
(4.29)

where (4.27) follows from the same steps as (3.36); (4.28) holds since the Gaussian maximizes entropy
among all distributions with the same second moments. Finally, we conclude that covertness imposes the
average power constraint on the code (4.24) by noticing that in order to satisfy (4.28) ρn needs to vanish
with the blocklength n and computing a Taylor series.
Second, we characterize an upper bound for the first and second-order asymptotics under a maximal
probability of error and with an equal power constraint which is vanishing in n. This intermediate result
will be used to prove Theorem 4.2.

Lemma 4.4 Consider a code for message set M over the AWGN channel (2.42) subject to the equality
power constraint

∥f(m)∥2
2 = nP, ∀m ∈ M, (4.30)

where

P = 2σ2
√

∆
n

(1 + ηn) , ηn = ln(n)√
n
. (4.31)

For the maximal probability of error 0 < ε < 1, the maximum code size admits the following upper bound:

ln(M̄∗
e (n, ε, P )) ≤

√
∆

√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O (ln (n)) . (4.32)

Proof: We consider an (n,M, ε)-code C for message set M under the maximal probability of error ε and
the equal power constraint (4.30). We fix QYn

to be a centered Gaussian distribution with variance σ2+P .
We now consider hypothesis testing between the output distributions PY n|Xn=xn and QY n . Recall that
by the Neyman-Pearson Lemma B.1, given ε ∈ [0, 1], there exists γ ∈ R such that the hypothesis test

Tγ : Yn → {0, 1}

yn 7→ 1{ dPY n|Xn=xn

dQY n
(yn)≥γ

} (4.33)

(where 1 means the test chooses PY n|Xn=xn) achieves the minimal false positive error under QY n

β1−ε(PY n|Xn=xn , QY n) = min∫
Yn

Tγ (yn) dPY n|Xn=xn ≥1−ε

∫
Yn

Tγ(y) dQY n (4.34)

such that the probability of false negative error under PY n|Xn=xn is not larger than ε.
Developing the expression for β1−ε, we find that for any xn ∈ Rn satisfying the equal power constraint
(4.65),

β1−ε(PY n|Xn=xn , QY n)

= QY n

ln


1

(2π)
n
2 σn

∏n
i=1 e

− (Yi−xi)2

2σ2

1
(2π)

n
2 (σ2+P )

n
2

∏n
i=1 e

−
Y 2

i
2(σ2+P )

 ≥ ln(γ)


= QY n

[
n

2 ln
(

1 + P

σ2

)
− P

2σ2(σ2 + P )

n∑
i=1

Y 2
i +

n∑
i=1

1
σ2Yixi −

n∑
i=1

1
2σ2x

2
i ≥ ln(γ)

]
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= QY n

[
n

2 ln
(

1 + P

σ2

)
+ n

2 − P

2σ2(σ2 + P )

n∑
i=1

(
Yi − σ2 + P

P
xi

)2

≥ ln(γ)
]
, (4.35)

where

1 − ε ≤ PY n|Xn=xn

[
n

2 ln
(

1 + P

σ2

)
+ n

2 − P

2σ2(σ2 + P )

n∑
i=1

(
Yi − σ2 + P

P
xi

)2

≥ ln(γ)
]

= P

[
n

2 ln
(

1 + P

σ2

)
+ n

2 − P

2σ2(σ2 + P )

n∑
i=1

(
Zi − σ2

P
xi

)2

≥ ln(γ)
]
. (4.36)

Recalling that the cumulative distributive function of a non-central chi-squared random variable depends
only on the norm ∥ · ∥2 of the means (see Appendix A.6); we notice that

β1−ε(PY n|Xn=xn , QY n) = β1−ε (4.37)

does not depend on xn. Therefore by Theorem B.2 we know that

|M| ≤ 1
β1−ε

(4.38)

and without loss of generality, we can choose xn = (
√
P ,

√
P , . . . ,

√
P ). éass Furthermore, as a consequence

of (B.16) we have: for any γ > 0,

β1−ε ≥ sup
γ>0

1
γ

(
1 − ε− PY n|Xn=xn

[dPY n|Xn=xn

dQY n

(Y n|xn) ≥ γ

])
. (4.39)

Consider any ξn ∈ R and

γ = exp
(
n

2 ln
(

1 + P

σ2

)
− ξn

)
, (4.40)

then (4.39) can be rewritten as

β1−ε ≥ exp
(

−n

2 ln
(

1 + P

σ2

)
+ ξn

)
×
(

1 − ε− PY n|Xn=xn

[
ln
(dPY n|Xn=xn

dQY n

(Y n|xn)
)

≥ n

2 ln
(

1 + P

σ2

)
− ξn

])
. (4.41)

We can lower bound the right-hand side of (4.41) noticing that

PY n|Xn=xn

[
ln
(dPY n|Xn=xn

dQY n

(Y n|xn)
)

≥ n

2 ln
(

1 + P

σ2

)
− ξn

]

= PY n|Xn=xn

ln


1

(2π)
n
2 σn

∏n
i=1 e

− (Yi−
√

P )2

2σ2

1
(2π)

n
2 (σ2+P )

n
2

∏n
i=1 e

−
Y 2

i
2(σ2+P )

 ≥ n

2 ln
(

1 + P

σ2

)
− ξn


= PY n|Xn=xn

[
1

2σ2

n∑
i=1

(
−P

σ2 + P
Y 2

i + 2Yi

√
P − P

)
≥ −ξn

]

= P

[
1

2σ2

n∑
i=1

(
−P

σ2 + P
(
√
P + Zi)2 + 2

√
PZi + P

)
≥ −ξn

]
(4.42)

= P

[
1

2σ2(σ2 + P )

n∑
i=1

(
−PZ2

i + 2σ2
√
PZi + σ2P

)
≥ −ξn

]
, (4.43)

where (4.42) follows by (4.65). Then we upper bound (4.43) and lower bound (4.41) with the following
steps. For simplicity, we denote the random expression inside (4.43) by

Wi = 1
2σ2(σ2 + P )

(
−PZ2

i + 2σ2
√
PZi + σ2P

)
∀i = 1, . . . , n. (4.44)
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We notice that for all i = 1, . . . , n,

E [Wi] = 0 (4.45)

and

Var [Wi] = 1
4σ4(σ2 + P )2E

[(
−PZ2

i + 2σ2
√
PZi + σ2P

)2
]

= 1
4σ4(σ2 + P )2E

[
P 2Z4

i − 4σ2
√
PPZ3

i + (4σ4P − 2σ2P 2)Z2
i + 4σ4

√
PPZi + σ4P 2

]
= (2σ2 + P )P

2(σ2 + P )2 . (4.46)

To simplify notation, we set

V (P ) = (2σ2 + P )P
2(σ2 + P )2 . (4.47)

We apply the Berry-Esseen Theorem A.5 to the random variables Wi then take out the absolute values,
and find that for any λ ∈ R,

P

[
n∑

i=1
Wi ≥ λ

√
nV (P )

]
≤ B(P )

√
nV (P ) 3

2
+Q(λ) (4.48)

where

B(P ) = 6E
[
|Wi|3

]
. (4.49)

Let αn > 0 such that ξn = −
√
nV (P )Q−1(αn). Starting from (4.41) and combining (4.43) with (4.48),

we obtain:

β1−ε ≥ exp
(

−n

2 ln
(

1 + P

σ2

)
−
√
nV (P )Q−1(αn)

)(
1 − ε− B(P )

√
nV (P ) 3

2
− αn

)
, (4.50)

where we chose λ in (4.48) such that λ = Q−1(αn). Moreover, we can choose αn = 1 − ε − 2 B(P )
√

nV (P )
3
2

and (4.50) becomes

β1−ε ≥ exp
(

−n

2 ln
(

1 + P

σ2

)
−
√
nV (P )Q−1

(
1 − ε− 2 B(P )

√
nV (P ) 3

2

))
B(P )

√
nV (P ) 3

2
. (4.51)

Combining (4.38) and (4.51) we deduce that

ln |M| ≤ n

2 ln
(

1 + P

σ2

)
+
√
nV (P )Q−1

(
1 − ε− 2 B(P )

√
nV (P ) 3

2

)
− ln

(
B(P )

√
nV (P ) 3

2

)
. (4.52)

Recalling (4.49) with (4.47) and (4.44), we compute

B(P )
V (P ) 3

2
= 12

√
2
π

+ o(1), (4.53)

by noticing that we have the upper bound

E
[
|Wi|3

]
= 1

8σ6(σ2 + P )3E
[∣∣∣−PZ2

i + 2σ2
√
PZi + σ2P

∣∣∣3]
≤ 1

8σ6(σ2 + P )3E
[(
PZ2

i + 2σ2
√
P |Zi| + σ2P

)3
]

= 1
8σ6(σ2 + P )3E

[
P 3Z6

i + 6σ2
√
PP 2 |Zi|5 + (3σ2P 3 + 12σ4P 2)Z4

i

+ (12σ4
√
PP 2 + 8σ6

√
PP ) |Zi|3 + (3σ4P 3 + 12σ6P 2)Z2

i + 6σ6
√
PP 2 |Zi|

+ σ6P 3
]
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=
P

3
2 E
[
|Zi|3

]
+ o(P 3

2 )

(σ2 + P )3

=
2
√

2
πσ

3P
3
2 + o(P 3

2 )
(σ2 + P )3

= 2
√

2
π

P
3
2

σ3 + o(P 3
2 ). (4.54)

and similarly, we have the lower bound

E
[
|Wi|3

]
≥ 1

8σ6(σ2 + P )3E
[(

−PZ2
i +

∣∣∣2σ2
√
PZi + σ2P

∣∣∣)3
]

≥ 1
8σ6(σ2 + P )3E

[(
−PZ2

i + 2σ2
√
P |Zi| − σ2P

)3
]

= 1
8σ6(σ2 + P )3E

[
− P 3Z6

i + 6σ2
√
PP 2 |Zi|5 − (3σ2P 3 + 12σ4P 2)Z4

i

+ (12σ4
√
PP 2 + 8σ6

√
PP ) |Zi|3 − (3σ4P 3 + 12σ6P 2)Z2

i + 6σ6
√
PP 2 |Zi|

− σ6P 3
]

=
P

3
2 E
[
|Zi|3

]
+ o(P 3

2 )

(σ2 + P )3

= 2
√

2
π

P
3
2

σ3 + o(P 3
2 ). (4.55)

In addition, the Taylor expansion of Q−1 at 1 − ε with the Lagrange form of the remainder ensures there
exists θ in

(
1 − ε− 2 B(P )

√
nV (P )

3
2
, 1 − ε

)
such that

Q−1(αn) = Q−1(1 − ε) − 2 B(P )
√
nV (P ) 3

2

dQ−1

dx

∣∣∣∣
x=θ

. (4.56)

Injecting (4.53) and (4.56) in (4.52), we obtain

ln |M| ≤
√

∆
√
n(1 + ηn) +

√
nV (P )

(
Q−1(1 − ε) − 2 B(P )

√
nV (P ) 3

2

dQ−1

dx

∣∣∣∣
x=θ

)
+O(ln(n))

≤
√

∆
√
n(1 + ηn) +

√
nV (P )Q−1(1 − ε) − 2B(P )

V (P ) min
θ∈( 1−ε

2 ,1−ε)
dQ−1

dx

∣∣∣∣
x=θ

+O(ln(n)) (4.57)

=
√

∆
√
n+

√
nV (P )Q−1(1 − ε) − 2B(P )

V (P ) min
θ∈( 1−ε

2 ,1−ε)
dQ−1

dx

∣∣∣∣
x=θ

+O(ln(n)) (4.58)

=
√

∆
√
n+

√
n

√
2
√

∆
n

+ o

(
1√
n

)
Q−1(1 − ε) +O(ln(n)) (4.59)

=
√

∆
√
n+

√
2∆ 1

4n
1
4Q−1(1 − ε) +O(ln(n))

=
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O(ln(n)) (4.60)

where (4.57) follows for large enough n because dQ−1

dx is continuous on (0, 1); (4.58) follows by recalling
the expression of ηn in (4.65); (4.59) follows by (4.47) and (4.61).
Proof of Theorem 4.2: We consider an (n,M, ε,∆)max code C for message set M and key set K. Due
to Lemma 4.3 this codebook must satisfy the average power constraint (4.24). As in equation (4.31), we
denote

P = 2σ2
√

∆
n

(1 + ηn) , ηn = ln(n)√
n

(4.61)

and we omit the dependence of P from n for readability. Notice that for large enough n, P > ρn with
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ρn defined in (4.24). We denote by D the subset of all codewords from C such that

∥c∥2
2 ≤ nP. (4.62)

As in (4.15), we know that the cardinality of D is bounded as

(M ×K)
(

1 − ρn

P

)
≤ |D| , (4.63)

where K = |K|. By the pigeonhole principle, there must be at least one sub-codebook Ck ⊂ C of size M
containing the codewords from C indexed by the key k ∈ K, such that

M
(

1 − ρn

P

)
≤ |D ∩ Ck|. (4.64)

As in the proof of Lemma 4.1 part 2), by adding an extra coordinate to each codeword of D ∩ Ck, we can
obtain a new code of dimension n + 1 with size |D ∩ Ck|, maximal probability of decoding error ε and
satisfying the equal power constraint

∥c∥2
2 = (n+ 1)P, ∀c ∈ D ∩ Ck. (4.65)

By Lemma 4.4 and Lemma 4.1 we deduce that

ln |D ∩ Ck| ≤ ln
(
M̄∗

e (n+ 1, ε, P )
)

≤
√

∆
√
n+ 1 −

√
2∆ 1

4 (n+ 1) 1
4Q−1(ε) +O(ln(n))

=
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O(ln(n)). (4.66)

Recalling (4.64) we deduce that the maximum size of the message set M under the average power
constraint (4.24) is

ln(M̄∗
a (n, ε, ρn)) ≤

√
∆

√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O (ln (n)) − ln

(
1 − ρn

P

)
=

√
∆

√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O (ln (n)) (4.67)

where (4.67) follows by the definition of ρn in (4.24) and P in (4.61). Recalling that the covertness
constraint (2.43) implies the average power constraint (4.24) we deduce that

ln(M̄∗(n, ε,∆)) ≤
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1(ε) +O (ln (n)) . (4.68)

4.3 Lower bound on the first-order asymptotics for average pro-
bability of error

As shown in [71], even for DMCs, if we consider covert communication under an average error probability
constraint ε, the strong converse does not hold and the first-order asymptotics depend on ε. We will show
that this is also true for Gaussian channels.
We define the corresponding scaling constant by

Lε = lim inf
n→+∞

ln (M∗(n, ε,∆))√
n∆

. (4.69)

First we notice that Fano’s inequality (Appendix C.2) averaged over the keys as in (3.41), implies that

Lε ≤ L

1 − ε

≤
√

2
√

Var [ln(pZ(Z))]
1 − ε

(4.70)
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for all additive noise channels such that Theorem 3.1 holds. In particular, for the AWGN channel, we
have

Lε ≤ 1
1 − ε

. (4.71)

In the following theorem, we establish a lower bound for Lε in the case of an AWGN channel. Then in
Figure 11, we show the different possible values for Lε.

Theorem 4.3 Consider the AWGN channel (2.42) subject to the covertness constraint (2.43). For an
average probability of error 0 < ε < 1, there exists an (n,M, ε,∆)avg-code with

ln (M) ≥
√

∆
1 − ε

√
n+O

(
n

1
3

)
. (4.72)

In particular

Lε ≥ 1√
1 − ε

. (4.73)
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Fig. 11: Upper and lower bounds on Lε.

Recall that at the first order, when we require vanishing average probability of error, BPSK inputs with
amplitude

√
2σ∆

1
4

n
1
4

are optimal over the AWGN channel; see Section 2.8. We now consider random coding
with BPSK inputs under an average probability of error ε. First, we prove an achievability result using
BPSK inputs under average probability of error. Then by adding all zero-codewords to this code, we
construct a new code achieving the first-order asymptotics of Theorem 4.3.

Lemma 4.5 Over the AWGN channel (2.42) under the covertness constraint (2.43), given 0 < ε < 1
there exists an (n,M, ε,∆)avg-code with average probability of error ε such that

ln(M) ≥
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1

(ε
2

)
+O(ln(n)). (4.74)

Proof: We denote

P = 2σ2
√

∆
n
, (4.75)

and consider the uniform distribution PX on {−
√
P ,

√
P}. We denote PY the corresponding output

distribution through PY |X :

pY (y) = 1
2

1√
2πσ

e− (y−
√

P )2

2σ2 + 1
2

1√
2πσ

e− (y+
√

P )2

2σ2 . (4.76)

53



We use the notation PXn = P⊗n
X and PY n = P⊗n

Y for the corresponding i.i.d. product distributions.
We generate a random code C by picking every codeword i.i.d. from P⊗n

X . We denote by Xn
m,k for

m = 1, . . . , |M|, k = 1, . . . , |K| the random codewords, by Xm,k,i the ith component of Xn
m,k, and by PY n

C

the output statistics of the random code:

PY n
C

(·) = 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

PY n|Xn(·|Xn
m,k). (4.77)

We want to show that this code is covert with high probability. First, we notice that

P
[
D
(
PY n

C
∥PZn

)
> ∆

]
= P

[
D
(
PY n

C
∥PY n

)
+ EPY n

C

[
ln
(
pY n(Y n

C )
pZn(Y n

C )

)]
> ∆

]
. (4.78)

We compute

EPY n
C

[
ln
(
pY n(Y n

C )
pZn(Y n

C )

)]

=
∫

Yn

pY n
C

(yn) ln

 n∏
i=1

1√
2πσ

1
2

(
e− (yi−

√
P )2

2σ2 + e− (yi+
√

P )2

2σ2

)
1√
2πσ

e−
y2

i
2

 dyn

=
∫

Yn

pY n
C

(yn)
(

n∑
i=1

ln
(

1
2

(
e+ yi

√
P

σ2 + e− yi
√

P

σ2

))
− nP

2σ2

)
dyn

≤
∫

Yn

pY n
C

(yn)
n∑

i=1

(
y2

i P

2σ4 − y4
i P

2

12σ8 + y6
i P

3

45σ12

)
− nP

2σ2 dyn (4.79)

= 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

∫
Yn

n∏
i=1

1√
2πσ

e−
(yi−Xm,k,i)2

2

n∑
i=1

[
y2

i P

2σ4 − y4
i P

2

12σ8 + y6
i P

3

45σ12

]
dyn − nP

2σ2

= 1
|K| × |M|

|K|∑
k=1

|M|∑
m=1

n∑
i=1

((
σ2 +X2

m,k,i

) P

2σ4 −
(
3σ4 + 6σ2X2

m,k,i +X4
m,k,i

) P 2

12σ8

+
(
15σ6 + 45σ4X2

m,k,i + 15σ2X4
m,k,i +X6

m,k,i

) P 3

45σ12

)
− nP

2σ2 (4.80)

where (4.79) follows by the inequality ln (cosh(x)) ≤ x2

2 − x4

12 + x6

45 . Thus

P
[
D
(
PY n

C
∥PZn

)
> ∆

]
= P

[
D
(
PY n

C
∥PY n

)
+ n

((
σ2 + P

) P

2σ4 −
(
3σ4 + 6σ2P + P 2) P 2

12σ8

+
(
15σ6 + 45σ4P + 15σ2P 2 + P 3) P 3

45σ12

)
− nP

2σ2 > ∆
]

(4.81)

= P
[
D
(
PY n

C
∥PY n

)
>
nP 3

6σ6 − 11
12
nP 4

σ8 − nP 5

3σ10 − nP 6

45σ12

]
(4.82)

≤
E
[
D
(
PY n

C
∥PY n

)]
4∆

3
2

3
√

n
+O

( 1
n

) (4.83)

= O
(√
ne−n

)
, (4.84)

where (4.81) stands because P
[
X2

m,k,i = P
]

= 1 for any i,m, k; (4.82) by (4.75); (4.83) follows by the
Markov’s inequality (Lemma A.2) and (4.75); (4.84) by Hayashi’s bound (Theorem 2.1) which ensures
that choosing ln |K| = O(n) implies that (4.84) tends to 0 when n → +∞.
We now prove the existence of a code achieving (4.74). From Shannon’s achievability bound (Theorem
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2.2), we know that for all γ > 0,

EC[Pe(C)] ≤ P [iXn,Y n(Xn, Y n) ≤ ln |M| + nγ] + exp(−nγ), (4.85)

where Pe(C) is the average error probability of the random code C. We now assume that ln |M| is chosen
so that

EC[Pe(C)] ≤ ε

2 . (4.86)

A sufficient condition for this will be derived later. Then, by Markov’s inequality (Lemma A.2),

P [Pe(C) ≤ ε] ≥ 1
2 (4.87)

and it follows that there exists a code C with average error probability Pe ≤ ε which satisfies the covertness
condition (2.43), since

P
[
{Pe(C) ≤ ε} ∩

{
D
(
PY n

C
∥PZn

)
≤ ∆

}]
≥ 1 − P [Pe(C) > ε] − P

[
D
(
PY n

C
∥PZn

)
> ∆

]
≥ 1

2 − P
[
D
(
PY n

C
∥PZn

)
> ∆

]
> 0, (4.88)

where (4.88) follows by (4.84) for large enough n.
We now find a sufficient condition for (4.86) to hold. We notice that for any xn ∈ X n, yn ∈ Yn,

iXn,Y n(xn, yn) = ln
(
pY n|Xn(yn|xn)

pY n(yn)

)

= ln


∏n

i=1
1√
2πσ

e− (yi−xi)2

2σ2∏n
i=1

1√
2πσ

1
2

(
e− (yi−

√
P )2

2σ2 + e− (yi+
√

P )2

2σ2

)


=
n∑

i=1

ln

 e
xiyi

σ2

1
2

(
e

√
P yi
σ2 + e−

√
P yi
σ2

)
+ P − x2

i

2σ2


=

n∑
i=1

(
xiyi

σ2 − ln
(

cosh
(√

Pyi

σ2

))
+ P − x2

i

2σ2

)

≥
n∑

i=1

(
xiyi

σ2 − Py2
i

2σ4 + P − x2
i

2σ2

)
, (4.89)

where (4.89) follows by the inequality ln (cosh(x)) ≤ x2

2 . Therefore

P [iXn,Y n(Xn, Y n) ≤ ln |M| + nγ]

≤ P

[
n∑

i=1

(
XiYi

σ2 − PY 2
i

2σ4

)
≤ ln |M| + nγ

]
(4.90)

= P

[
n∑

i=1

(
X2

i +XiZi

σ2 − P (X2
i + Z2

i + 2XiZi)
2σ4

)
≤ ln |M| + nγ

]

= P

[
n∑

i=1

(
XiZi

σ2 − P (Z2
i + 2XiZi)

2σ4

)
+ nP

σ2 − nP 2

2σ4 ≤ ln |M| + nγ

]

= P

[
n∑

i=1

((
1
σ2 − P

σ4

)
XiZi − P

2σ4Z
2
i

)
+ nP

σ2 − nP 2

2σ4 ≤ ln |M| + nγ

]
, (4.91)

where (4.90) follows because P
[
X2

i = P
]

= 1. For simplicity, we denote the random expression inside
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(4.91) by

Wi =
(

1
σ2 − P

σ4

)
XiZi − P

2σ4Z
2
i ∀i = 1, . . . , n. (4.92)

We notice that for any i = 1, . . . , n,

E [Wi|Xi] = − P

2σ2 (4.93)

and

Var [Wi|Xi] = E

[(
1
σ2 − P

σ4

)2
X2

i Z
2
i + 2

(
1
σ2 − P

σ4

)
P

2σ4XiZ
3
i +

(
P

2σ4

)2
Z4

i

∣∣∣∣Xi

]
−
(
P

2σ2

)2

= σ2X2
i

(
1
σ2 − P

σ4

)2
+ 3σ4

(
P

2σ4

)2
−
(
P

2σ2

)2

= X2
i

σ2 − 2PX2
i

σ4 + P 2X2
i

σ6 + 3P 2

4σ4 − P 2

4σ4 , (4.94)

with

P
[
Var [Wi|Xi] = P

σ2 − 3P 2

2σ4 + P 3

σ6

]
= 1. (4.95)

We denote

V (P ) = P

σ2 − 3P 2

2σ4 + P 3

σ6 (4.96)

and similarly

B(P ) = 6E
[
|Wi − E [Wi|Xi]|3

∣∣∣∣Xi

]
= O

(
P

3
2

)
. (4.97)

Injecting (4.91) in (4.85), we obtain

EC[Pe(C)] ≤ P

[
n∑

i=1

(
Wi − E [Wi|Xi] + P

2σ2 − P 2

2σ4

)
≤ ln |M| + nγ

]
+ e−nγ

= E

[
P

[
n∑

i=1
(Wi − E [Wi|Xi]) ≤ ln |M| + nγ − nP

2σ2 + nP 2

2σ4

∣∣∣∣Xn

]]
+ e−nγ (4.98)

= 1 − E

[
P

[
n∑

i=1
(Wi − E [Wi|Xi]) ≥ ln |M| + nγ − nP

2σ2 + nP 2

2σ4

∣∣∣∣Xn

]]
+e−nγ . (4.99)

Then choosing

ln |M| = −nγ + nP

2σ2 − nP 2

2σ4 +Q−1
(

1 − ε

2 + 1
n

3
8

)√
n
√
V (P ) (4.100)

and applying the Berry-Esseen Theorem A.5 to the random variables Wi ensures that the right-hand
side of (4.99) hence EC[Pe(C)] is upper-bounded as follows

EC[Pe(C)] ≤ 1 −
(

1 − ε

2 + 1
n

3
8

− B(P )
√
nV (P ) 3

2

)
+ e−nγ

= ε

2 − 1
n

3
8

+ B(P )
√
nV (P ) 3

2
+ e−nγ (4.101)

Choosing,

γ = ln(n)
n

(4.102)
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in (4.101), we deduce that (4.100) ensures

EC[Pe(C)] ≤ ε

2 − 1
n

3
8

+O

(
1√
n

)
, (4.103)

where (4.103) follows by recalling (4.75), (4.96) and (4.97). Therefore (4.100) guarantees (4.86) for n
large enough. Then injecting (4.75) and (4.96) in (4.100), we deduce that there exists a code of average
probability of error ε and such that the covertness condition holds, satisfying

ln |M| =
√

∆
√
n+

√
2∆ 1

4n
1
4Q−1

(
1 − ε

2 + 1
n

3
8

)
+O (ln(n))

=
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1

(
ε

2 − 1
n

3
8

)
+O (ln(n)) (4.104)

In addition, the Taylor expansion of Q−1 at ε
2 with the Lagrange form of the remainder ensures there

exists θ in
(

ε
2 − 1

n
1
4
, ε

2

)
such that

ln |M| =
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1

(ε
2

)
+

√
2∆ 1

4
1
n

1
8

dQ−1

dx

∣∣∣∣
x=θ

+O (ln(n))

=
√

∆
√
n−

√
2∆ 1

4n
1
4Q−1

(ε
2

)
+O (ln(n)) (4.105)

where (4.105) follows because
∣∣∣dQ−1

dx

∣∣∣ is bounded on
(

ε
2 − 1

n
1
4
, ε

2

)
by e.g.

∣∣∣dQ−1

dx

∣∣∣ ∣∣∣∣
x= ε

4

for n large enough.

Proof of Theorem 4.3: The proof follows the ideas of [71, Appendix A] and [58, Theorem 77]. Let
ε > ε′ > 0 and

∆′ = 1 − ε′

1 − ε
∆. (4.106)

Lemma 4.5 shows the existence of an (n,M, ε′,∆′)avg-code C′ such that

ln(M) ≥
√

∆′
√
n−

√
2∆′ 1

4n
1
4Q−1

(
ε′

2

)
+O(ln(n)). (4.107)

We now consider a new code C of size M 1−ε′

1−ε obtained by adding αM all-zero codewords (independently
of the value of the key), where α = ε−ε′

1−ε . Then given than ε > ε′ the average probability of error of this
new code Pe admits ε as an upper bound:

Pe ≤ 1
1 + α

ε′ + α

1 + α
≤ ε. (4.108)

Furthermore by convexity of the Kullback-Leibler divergence,

D(PY n
C

∥PZn) ≤ 1
1 + α

D(PY n
C′

∥PZn) + α

1 + α
D(PZn∥PZn)

= 1
1 + α

∆′

≤ 1 − ε

1 − ε′ ∆′

= ∆, (4.109)

and C is an (n,M 1−ε′

1−ε , ε,∆)avg-code such that
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M

1 − ε′

1 − ε

)
≥

√
∆′

√
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√
2∆′ 1
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)
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1
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)
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)
. (4.110)
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Finally, note that (4.110) still holds if we take

ε′ = n−1/6 : (4.111)

the proof follows the same step as the proof of Lemma 4.5 until (4.98). Then we check that (4.98) can
be upper bounded by n− 1

6
2 when choosing

ln |M| = −nγ + nP ′

2σ2 − nP ′2

2σ4 − n
1
3 , (4.112)

with

P ′ = 2σ2
√

∆′

n
, (4.113)

and

γ = ln(4n 1
6 )

n
. (4.114)

First, we prove that

E

[
P

[
n∑

i=1
(Wi − E [Wi|Xi]) ≤ −n 1

3

∣∣∣∣Xn

]]
≤ 1

4n
− 1

6 . (4.115)

This follows from a result in large deviation theory (Theorem A.4). We check that the hypotheses of
Theorem A.4 are verified. We recall from (4.92) that for any i = 1, . . . , n, Wi is equal to

W ′
i =

(
1
σ2 − P ′

σ4

)√
P ′Zi − P ′

2σ4Z
2
i ∀i = 1, . . . , n, (4.116)

with probability 1/2 and to

W ′′
i = −

(
1
σ2 − P ′

σ4

)√
P ′Zi − P ′

2σ4Z
2
i ∀i = 1, . . . , n (4.117)

with probability 1/2. Furthermore Zi ∼ N (0, σ2) follows the same distribution as −Zi, so W ′
i ∼ W ′′

i .
Therefore we can restrict ourselves to the case

Wi = −
(

1
σ2 − P ′

σ4

)√
P ′Zi − P ′

2σ4Z
2
i ∀i = 1, . . . , n. (4.118)

We compute

f(λ) = ln
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= λ

(
1
2 − P ′

2σ2 + P ′2

2σ4
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− 1

2 ln
(

1 + P ′

σ4λ

)
−
λ
(

1
2 − P ′

σ2 + P ′2

2σ4

)
1 + P ′

σ4λ
, (4.120)

where (4.119) follows by the moment generating function of a non-central chi-squared random variable
[42, eq. (29.6)’]. We deduce that (4.120) is < ∞ in a ball around the origin. Let Γ = (−∞,−1], and
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an = n
1
3 , then by Theorem A.4,
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≤ O

(
e

−
√

1−ε

4
√
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1
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= o(n− 1
6 ), (4.122)

where (4.121) follows by (4.96), (4.113) and (4.106). (4.122) implies (4.115), then combining (4.115) and
(4.98) ensures

EC [Pe(C)] ≤ E

[
P

[
n∑

i=1
(Wi − E [Wi]) ≤ −n 1

3

∣∣∣∣Xn

]]
+ e−nγ

≤ 1
2n

− 1
6 (4.123)

and (4.110) with (4.111). Finally, (4.110) can be rewritten as

ln
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≥
√
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1 − ε

√
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√
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3
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=
√

∆
1 − ε

√
n+O

(
n

1
3

)
, (4.125)

where (4.124) follows by (4.106); (4.125) follows by (4.111).

4.4 Concluding remarks

In this section, we showed that for the memoryless Gaussian channel, the covertness constraint implies an
average power constraint. Using converse bounds for channel coding under a maximal error probability
constraint in [59], we derived upper bounds on the first and second asymptotics for covert communication
over an AWGN channel under the maximal error probability criterion. In the covert setup, we observe
different scaling behaviors for the first and second-order asymptotics compared to the classical non-covert
setup. We recall that the difference in the first asymptotics follows from the square root law of covert
communication.
In order to establish an achievability result for maximal error, one would need to show the existence of a
code that is simultaneously reliable and covert. Note that Feinstein’s Lemma (Remark 3.74) ensures the
existence of a reliable code, but such a code may not be covert. In the case of DMCs, Tahmasbi and Bloch
[71] prove the existence of a covert and reliable code with a random coding argument. The probability
that this code is reliable with respect to maximal error is actually vanishingly small, but the authors
show that the probability that the code is covert tends to 1 very fast, thanks to a double-exponential
concentration result for the Kullback-Leibler divergence [71, Lemma 2]. Unfortunately, [71, Lemma 2]
relies on the hypothesis of finite alphabets and generalizing it to continuous alphabets is a non-trivial
problem7.

7For the variational distance, such a concentration result can be established as a corollary of [52, Theorem 31].
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For covert communication with an average probability of error ε, the first-order asymptotics depend on ε.
Since an average error probability constraint allows more freedom in the code construction compared to
a maximum error probability constraint, we introduced the quantity Lε which serves as the counterpart
to the ε-capacity in the context of covert communication. Fano’s inequality gives an immediate upper
bound for Lε and we derived a lower bound in the case of an AWGN channel. Finally, we conclude that
allowing a positive average probability of error increases the amount of covert information that can be
asymptotically shared over an AWGN channel.
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5 Conclusions and perspectives

In this thesis, we have considered the problem of covert communication over continuous channels. We
highlight our main contributions as well as some open problems and perspectives for future work.

General formula for the scaling constant over additive memoryless channels We have
derived a general formula for the scaling constant L of the square root law for covert communication over
general additive memoryless channels. The three technical assumptions (3.2)–(3.4) are mild requirements
that ensure an upper bound on L for a wide range of noise distributions. In particular, one can show that
all α-stable distributions verify these integrability assumptions8. However, ensuring the achievability of
the general formula for L is a hard problem since we only know a few self-decomposable distributions
that satisfy Assumption 3.1. Nevertheless, we notice that this self-decomposable property is not always
necessary as there could exist other input distributions that achieve L, as we have seen for BPSK inputs
in the case of the Gaussian channel.

General noise with memory We have shown that for an additive Gaussian channel the presence
of memory does not improve the quantity of information that can be sent reliably and covertly; see
Section 2.9. We have shown that the covertness constraint induces an average power constraint on the
input for an AWGN channel (see eq (3.50) in Section 3.2). For the sake of comparison, if we consider
a Gaussian channel with memory with no covert constraint under an average power constraint on the
input, then memory can be exploited by water-filling [18, Section 9.5] hence the capacity is larger than
without memory. On the contrary, we showed that covert communications do not improve with noise
memory. Intuitively, in the context of covert communication, any advantage the legitimate receiver can
exploit is also accessible to the eavesdropper. The generalization of this finding to non-Gaussian noise is
still an open problem.

Second-order asymptotics We also considered covert communication over AWGN channels in
the finite blocklength regime under both a maximal error probability constraint and an average error
probability constraint. For maximal error, we derived an upper bound on the second-order asymptotics
of covert communication. Furthermore, allowing a positive average error probability increases the first-
order asymptotic of covert communication. For average error ϵ, we showed that the strong converse does
not hold, and the scaling constant Lϵ is larger than L. The exact characterization of Lϵ is still an open
question.

Possible extensions of this work One could extend this work to the case where the eavesdropper
and the legitimate receiver do not see the same channel outputs. Although the self-decomposability
condition in Assumption 3.1 makes it hard to study, the special case where the eavesdropper and the
legitimate receiver’s channels are both AWGN is easily obtained because we know the optimal input
minimizing the Kullback-Leibler divergence of the covertness constraint on the eavesdropper’s channel
while maximizing the entropy on the legitimate receiver’s channel; see Appendix D.1. Moreover, we can
show that no key is needed if the eavesdropper’s channel is noisier than the legitimate receiver’s; see
Appendix D.1.2. Nevertheless, in the general case such an optimization would be difficult, as illustrated
for the exponential degraded channel where we are only able to derive an upper bound on L; see Appendix

8Malcolm Egan, personal communication.
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D.2. Another avenue for extension would be a multi-user scenario with multiple continuous channels along
the lines of [11].
An alternative research direction could be the challenging problem of code design for covert communi-
cation. Over DMCs, several code designs have been proposed, such as polar codes [31] which have low
complexity but are suboptimal due to the low speed of polarization, pulse position modulation [8] or
the concatenated coding scheme [85] which has polynomial complexity. Over the AWGN, a new scheme
combining pulse position modulation, multilevel coding, and amplitude scaling [43] was shown to achieve
optimal scaling.

62



A Measure theory tools
In this section, we recall basic definitions and theorems of measure theory that will be used throughout
this thesis.

A.1 Limit inferior in probability

Definition A.1 (Limit inferior in probability [73]) If {Xn} is a sequence of random variables, its
limit inferior in probability is the supremum of all the reals α for which P[Xn ≤ α] → 0 as n → +∞.
Similarly, its limit superior in probability is the infimum of all the reals β for which P[Xn ≥ β] → 0 as
n → +∞.

A.2 Continuity under integral sign

Lemma A.1 (Continuity under integral sign [64, Section 11.4]) Let t0 ∈ R, a measured space
(Ω, T , µ), a function f : Ω × R → R such that f(·, t) is T -measurable and L1(µ) for all t ∈ R. If

1) for all ω ∈ Ω, f(ω, ·) is continuous at t0,
2) there exists ε > 0 and g : Ω → R a T -measurable function such that |f(ω, t)| ≤ g(ω) for any

t ∈ (t0 − ε, t0 + ε) and g is L1(µ),
then the function

t →
∫

Ω
f(ω, t) dµ (A.1)

is continuous at t0.

A.3 Weak convergence and Lévy’s theorem

Definition A.2 (Characteristic function [80, Section 16.1]) Let X be a real-valued random variable.
The characteristic function of X, φX : R → C, t 7→ φX(t), is given by

φX(t) = E
[
eitX

]
, t ∈ R. (A.2)

Definition A.3 (Weak convergence [80, Section 17.1]) Let {Xn} be a sequence of random variables
and X be another random variable. The probability distributions {PXn} converge weakly to PX as n → ∞
if, for every bounded continuous function f on R,

lim
n→∞

E [f(Xn)] = E [f(X)] . (A.3)

Since both the real and the imaginary parts of the function x 7→ eitx are bounded and continuous for
every t ∈ R, if {PXn

} converge weakly to PX as n → ∞, then the characteristic functions of {Xn} must
converge pointwise to the characteristic function of X. The reverse is also true:

Theorem A.1 (Lévy’s convergence theorem [80, Section 18.1]) Consider a sequence of random vari-
ables {Xn} with respective characteristic functions {φXn}. If, as n → ∞, φXn converges pointwise to some
function φ that is continuous at 0, then φ is the characteristic function of some random variable X, and
PXn converges weakly to PX .

Theorem A.2 (Extension of characteristic function [45, Theorem 9.6.4]) Let φn, n = 1, 2, . . . , be
the characteristic functions of the distribution functions {Fn}. Suppose that φn converges when n → +∞
in an interval (−η, η) to a function φ.
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1) If z 7→ φ(z) is analytic and bounded in |t| ≤ η where z = t+ iτ with 0 < τ ≤ r for a chosen r > 0
and

2) if φ is continuous at t = 0, or more generally, the Fourier series of φ is summable to 1 at t = 0,
then Fn converges to a distribution function F and φ is uniquely extended to the characteristic function
of F on (−∞,+∞).

A.4 Uniform convergence of measures

Definition A.4 (Equicontinuity) Let X and Y be two metric spaces. We shall denote by dX and dY

the respective metrics of these spaces. A class of functions a from X to Y is said pointwise equicontinuous
or equicontinuous if for any x ∈ X , for any ε > 0, there exists δ > 0 for which dY(f(x), f(y)) < ε for all
y ∈ Y such that dX (x, y) < δ and all f ∈ a .

Theorem A.3 (Uniform convergence of measures [63, Theorem 3.1][9, Theorem 8.2.18]) Let a be
a class of continuous functions on the separable metric space X possessing the following properties:

1) a is uniformly bounded i.e. there exists a constant M such that |f(x)| ≤ M for all f ∈ a and x ∈ X ,
2) a is equicontinuous,

then for any sequences of measures {µn}, {µn} converges weakly to the measure µ if and only if for each
family a satisfying the two previous conditions, we have

lim
n→+∞

sup
f∈a

∣∣∣∣∫
X
fdµn −

∫
X
fdµ

∣∣∣∣ = 0. (A.4)

A.5 Concentration inequalities

Lemma A.2 (Markov’s inequality [80, Section 6.4]) Consider a real and positive random variable X.
For any ε > 0,

P [X > ε] ≤ E[X]
ε

. (A.5)

Lemma A.3 (Selection lemma [6, Lemma 2.2]) Let Xn be a random variable taking values in Xn, let
F be a finite set of functions f : Xn 7→ R+ such that the cardinality of F does not depend on n and

EXn
[f(Xn)] → 0, n → +∞, ∀f ∈ F . (A.6)

Then for any ε > 0, for large enough n, there exists a specific realization xn of Xn such that

f(xn) ≤ ε, ∀f ∈ F . (A.7)

Proof: Let ε > 0. Consider n large enough such that E [f(Xn)] < ε|F|, for any f ∈ F . Using the union
bound and Markov’s inequality, we obtain

P [∪f∈F {f(Xn) ≥ ε}] ≤
∑
f∈F

P [f(Xn) ≥ ε]

≤
∑
f∈F

E [f(Xn)]
ε

< 1. (A.8)

Lemma A.4 (Chebyshev’s inequality [80, Section 7.3]) Consider a random variable X of non-zero
finite variance and any a > 0, then

P [|X − E[X]| > a] ≤ Var[X]
a2 . (A.9)
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Theorem A.4 (Moderate Deviations [23, Theorem 3.7.1]) Let X1, . . . , Xn be a sequence of R-valued
i.i.d. random variables with variance σ2 such that for any i = 1, . . . , n, f(λ) = ln(E[eλXi ]) < ∞ in
some ball around the origin and E[Xi] = 0. Fix an → 0 such that n × an → +∞ as n → +∞, and let
Zn =

√
an

n

∑n
i=1 Xi. Then, for every measurable set Γ,

lim sup
n→+∞

an ln (P [Zn ∈ Γ]) ≤ −1
2 inf

x∈Γ̄

x2

σ2 , (A.10)

where Γ̄ is the closure of the set Γ.

We recall here the Berry-Esseen theorem, which can be seen as a quantitative version of the Central
Limit Theorem.

Theorem A.5 (Berry-Esseen Theorem [29, Theorem 2, Ch. XVI.5]) Consider {Xk} a sequence of
independent random variables, with non-zero variance and finite third moment. For all λ ∈ R,∣∣∣∣∣∣P

 n∑
k=1

(Xk − E [Xk]) ≥ λ

√√√√ n∑
k=1

Var(Xk)

−Q(λ)

∣∣∣∣∣∣ ≤
6
∑n

i=1 E
[
|Xk − E [Xk]|3

]
(
∑n

k=1 Var(Xk))
3
2

. (A.11)

A.6 Tail bounds for non-central chi-squared random variables

A non-central chi-squared random variable X with n degrees of freedom is the sum of the squares of n
independent standard Gaussian random variables with means respectively µ1, . . . , µn:

X =
n∑

i=1
N2

i (A.12)

where Ni ∼ N (µi, 1) for all i.
We denote µ = (µ1, . . . , µn), then the tail of X [40, Section VII, eq 2.17] is characterized as follows:

P [X ≥ t] = Qn
2

(√
∥µ∥2,

√
t
)

(A.13)

where Qn
2

is the Marcum Q-function of order n
2 [40, Section VII, eq 2.18].

65



B Hypothesis testing
In this appendix, we state the Neyman-Pearson lemma and recall some known bounds for the probability
of missed detection and false alarm in hypothesis testing. We consider the general problem of hypoth-
esis testing between two possible distributions P and Q associated with a random variable Y on the
measurable space (Y, T ) such that P ≪ Q and define their associated hypotheses:

H0 : Y ∼ Q

H1 : Y ∼ P. (B.1)

We consider the following test with output 0 or 1 when choosing respectively hypothesis H0 or H1:

Z : Y → {0, 1}. (B.2)

The probability of false positive error (false alarm), meaning the probability of deciding for P i.e. H1

when in fact Y ∼ Q, is

β =
∫

Y
Z(y) dQ (B.3)

and the probability of false negative error (missed detection), meaning the probability of deciding for H0

when actually Y ∼ P is

κ = 1 −
∫

Y
Z(y) dP. (B.4)

B.1 Neyman-Pearson lemma

We know that the optimal test to distinguish between the two hypotheses is a maximum likelihood test
involving the threshold of the Radon-Nikodym derivative [36, p. 128] of P with respect to Q:

Lemma B.1 (Neyman-Pearson lemma [59, 62]) For any α ∈ [0, 1] there exists γ∗ > 0 such that the
test

Tγ∗ : Y → {0, 1}

y 7→ 1{ dP
dQ (y)≥γ∗} (B.5)

achieves the optimal performance

βα(P,Q) =
∫

Y
Tγ∗(y) dQ = min∫

Y
Z(y) dP ≥ α

∫
Y
Z(y) dQ (B.6)

where Z : Y → {0, 1} stands for any test deciding on H1 with output 1 and H0 with output 0. The
constant γ∗ is uniquely determined by solving the equation (B.6). Moreover, any other test Z satisfying∫

Y Z(y) dP ≥ α either differs from Tγ∗ only on the set
{

dP
dQ (y) = γ∗

}
or is strictly larger with respect to

Q i.e.
∫

Y Z(y) dQ >
∫

Y Tγ∗(y) dQ.

Thus the Neyman-Pearson lemma B.1 allows to restrict the set of tests to the maximum likelihood tests.
In particular the Neyman-Pearson optimal test (B.5) achieves the following minimum error:

Lemma B.2 ([51, Theorem 13.1.1]) We consider the following family of maximum likelihood tests in-
dexed by γ > 0:

Tγ : Y → {0, 1}

y 7→ 1{ dP
dQ (y)≥γ} (B.7)
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where the output 0 indicates that the test chooses H0 and the output 1, H1. We denote the probability of
detecting H1 when in fact Y ∼ Q by

β =
∫

Y
Tγ(y) dQ (B.8)

and the probability of missing H1 when actually Y ∼ P by

κ = 1 −
∫

Y
Tγ(y) dP. (B.9)

Then

min
γ

(β + κ) = 1 − 1
2dT V (P,Q) . (B.10)

Proof: We notice that combining (B.8) and (B.9), we obtain

β + κ = 1 +
∫

Y
Tγ(y) (dQ− dP ) , (B.11)

therefore the minimum of (B.11) is obtained by setting Tγ(y) = 1 when dP
dQ (y) > 1 and Tγ(y) = 0 when

dP
dQ < 1. On the set

{
dP
dQ (y) = 1

}
, it does not matter how T is defined as the corresponding integral is

equal to zero. Then we can write

min
γ

(β + κ) = 1 +
∫

Y
1{ dP

dQ (y)>1} (dQ− dP ) (B.12)

By symmetry, we have

min
γ

(β + κ) = 1 +
∫

Y
1{ dP

dQ (y)<1} (dP − dQ) . (B.13)

The equality can be obtained by noticing that

dT V (P,Q) = 2 sup
y∈Y

|P (y) −Q(y)|

=
∫

Y
1{ dP

dQ (y)>1} (dP − dQ) +
∫

Y
1{ dP

dQ (y)<1} (dQ− dP ) . (B.14)

B.2 General properties of βα

The optimal false positive error βα in (B.6) given by the Neyman-Pearson Lemma B.1 satisfies the two
following properties [59, p. 2316][61, Theorem 14.10].

1) For any γ > 0, τ ∈ R,

P

[
dP
dQ (Y ) ≥ τ

]
− γQ

[
dP
dQ (Y ) ≥ τ

]
=
∫

Y
1{ dP

dQ (y)≥τ} (dP − γ dQ)

≤
∫

Y
1{ dP

dQ (y)≥τ}1{ dP
dQ (y)≥γ} (dP − γ dQ)

≤ P

[
dP
dQ (Y ) ≥ τ,

dP
dQ (Y ) ≥ γ

]
≤ P

[
dP
dQ (Y ) ≥ γ

]
. (B.15)

In particular, for any α ≥ 0 and γ > 0, we obtain

α ≤ P
[

dP
dQ (Y ) ≥ γ

]
+ γβα(P,Q); (B.16)
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where we chose τ = γ∗ given by the Neyman Pearson Lemma B.1 in (B.15) such that it forms the
Neyman-Pearson test achieving

P

[
dP
dQ (Y ) ≥ γ∗

]
≥ α (B.17)

and

Q

[
dP
dQ (Y ) ≥ γ∗

]
= βα(P,Q). (B.18)

2) For any 0 ≤ α ≤ 1 and γ > 0 satisfying∫
Y
1{ dP

dQ (y)≥γ}dP ≥ α, (B.19)

we have

βα (P,Q) = min
T :Y7→[0,1] s.t.

∫
Y

Tγ (y) dP ≥α

∫
Y
Tγ(y) dQ

≤
∫

Y
1{ dP

dQ (y)≥γ}dQ

≤ 1
γ

∫
Y
1{ dP

dQ (y)≥γ}dP

≤ 1
γ
. (B.20)

Furthermore, βα satisfies the following data processing inequality.

Theorem B.1 (Data processing inequality for βα [60, Section V]) We consider two input distribu-
tions PX and QX on X of the same channel with law PY |X and the respective output distributions PY

and QY on Y. The data-processing inequality for βα states that for any α ≥ 0

βα (PX , QX) ≤ βα (PY , QY ) . (B.21)

Proof:

βα (PY , QY ) = min
T :Y7→[0,1] s.t.

∫
Y

T (y) dPY ≥α

∫
Y
T (y) dQY

= min
T :Y7→[0,1] s.t.

∫
X

∫
Y

T (y) dPY |X dPX ≥α

∫
X

∫
Y
T (y) dPY |X dQX

≥ min
T ′:X 7→[0,1] s.t.

∫
X

T ′(x) dPX ≥α

∫
X
T ′(x) dQX (B.22)

where (B.22) follows by the theorem of Fubini-Tonelli for measure product [5, Section 7.3.6] and (B.22)
follows because all T ′ are not necessarily of the form

∫
Y T (y)dPY |X .

B.3 Converse bounds in the finite blocklength regime

A general upper bound on the maximum size of the message set for the maximal probability of decoding
error ε was first derived in [59]:

Theorem B.2 [59, Theorem 31] Consider a channel PY |X and any code for message set M with the
maximal probability of error ε ∈ (0, 1), subject to the constraint f(m) ∈ F , for all m ∈ M. Fix a probability
measure QY on Y. Suppose that for any 0 < α < 1, βα

(
PY |X=x, QY

)
= βα has the same value for any

x ∈ F . Then

|M| ≤ 1
β1−ε

. (B.23)
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A similar converse bound holds for the average probability of error:

Theorem B.3 [59, Theorem 28] Consider a channel PY |X and any code for message set M with the
average probability of error ε ∈ (0, 1), subject to the constraint f(m) ∈ F , for all m ∈ M. Fix a probability
measure QY on Y. Suppose that for any 0 < α < 1, βα

(
PY |X=x, QY

)
= βα has the same value for any

x ∈ F . Then

|M| ≤ 1
β1−ε

. (B.24)

69



C Information theory tools
In this section, we recall some well-known results in information theory that are used in this thesis.

C.1 Data-processing inequality for the Kullback-Leibler divergence

Theorem C.1 [61, Theorem 2.16] Consider two input distributions PX and QX for the same channel
with law PY |X and the respective output distributions PY and QY . The data-processing inequality for the
Kullback-Leibler divergence states that

D (PY ||QY ) ≤ D (PX ||QX) . (C.1)

C.2 Fano’s inequality

Theorem C.2 [18, Theorem 2.10.1] For any estimator X̂ such that X → Y → X̂, with probability of
error Pe = P

{
X̂ ̸= X

}
, we have

H(Pe) + Pe ln |X | ≥ H(X|X̂) ≥ H(X|Y ). (C.2)

This inequality can be weakened to

1 + Pe ln |X | ≥ H(X|X̂) ≥ H(X|Y ). (C.3)

C.3 Channels with exponential noise

This section outlines some known results about the exponential noise channel. First, we notice that under
a mean constraint, an exponential distribution maximizes the entropy [18, Section 12], which implies the
following.

Theorem C.3 [72, Theorem 1] Consider P,Λ > 0. Let Z be exponentially distributed with mean Λ.
Consider the following mixture of a point mass and an exponential distribution:

P [X = 0] = Λ
Λ + P

, (C.4)

P [X > x | X > 0] = e− x
Λ+P (C.5)

Assuming X and Z are independent, then Y = X +Z follows an exponential distribution E (Λ + P ) with
mean Λ + P and in particular

I(X;Y ) = ln
(

1 + P

Λ

)
. (C.6)

Furthermore for any nonnegative random variable X̃, independent of Z, with mean P ,

I(X̃; X̃ + Z) ≤ I(X;Y ), (C.7)

with equality only if X̃ = X.

Proof: We check that Y = X+Z follows an exponential output with mean Λ+P using Laplace transforms.
The Laplace transform of Z is

t 7→
∫ +∞

0
e−tz 1

Λe
− z

Λ dz = 1
1 + Λt (C.8)
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and the Laplace transform of X is

t 7→ Λ
Λ + P

+ P

Λ + P

1
1 + (Λ + P )t . (C.9)

We recover the Laplace transform of Y as

E[e−tY ] = E[e−tX ] × E[e−tZ ] = 1
1 + (Λ + P )t . (C.10)

Consider the following channel

Yi = Xi + Zi, i = 1, . . . , n, (C.11)

where all Zi are i.i.d. exponential random variables with mean Λ; and any codeword (X1, . . . , Xn) is
constrained to satisfy

Xi ≥ 0, i = 1, . . . , n, and 1
n

n∑
i=1

Xi ≤ P. (C.12)

Recalling Theorem C.3, the following theorem presents the optimal rate for the channel (C.11) achieved
by the well-defined input distribution (C.4).

Theorem C.4 [72, Theorem 3] The capacity of the additive memoryless exponential noise channel (C.11)
under the constraint (C.12) is equal to

ln
(

1 + P

Λ

)
. (C.13)

C.4 Channels with generalized Gaussian noise

This section outlines some known results about the additive channel with generalized Gaussian noise. A
generalized Gaussian random variable X [55, 24, 25] of parameters p, µ, σ > 0 is denoted X ∼ Np(0, σp)
and has the PDF:

pX(x) = cp

σ
e− |x−µ|p

2σp , x ∈ R, (C.14)

where

cp = p

2
p+1

p Γ( 1
p )
. (C.15)

Note that

E [|X|p] = 2σp

p
and h(X) = ln

(
σ

cp

)
+ 1
p
. (C.16)

First, we notice that under an absolute p-moment constraint, a generalized Gaussian distribution of
parameter p maximizes the entropy [18, Section 12]: let a > 0, any variable X̃ such that E

[∣∣X̃∣∣p] ≤ a

satisfies

h(X̃) ≤ 1
p

ln
(
a× p

2

)
− ln (cp) + 1

p
, (C.17)

where the right-hand side of (C.17) is the entropy of X ∼ Np

(
0, ap

2
)
.

Definition C.1 (Self-decomposability [25, Definition 8]) Consider a random variable Y ∼ Np(0, 1).
Y is self-decomposable if for every α ≥ 1 there exists a random variable Xα independent of Z ∼ Np(0, 1)
such that

αY = Xα + Z. (C.18)
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Theorem C.5 [25, Theorem 6] Consider Y ∼ Np(0, 1). Y is self-decomposable for p ∈ (0, 1] ∪ {2}.

Consider the following channel

Yi = Xi + Zi, i = 1, . . . , n, (C.19)

where all Zi are i.i.d. ∼ Np(0, 1), p > 0. The capacity is not known except for special cases (p = 2
corresponding to Gaussian noise and p = 1 corresponding to Laplace noise) but an upper bound was
given in [24, Proposition 7].

Remark C.1 In [C1], we showed that for the additive generalized Gaussian channel the covertness
constraint implies an output constraint on the p-th moment [10, eq (24)].
If we consider a p-th moment constraint on the output, then for p ∈ (0, 1] ∪ {2} the self-decomposability
property shows that it is possible to obtain an output with generalized Gaussian distribution, which
maximizes the entropy and thus the mutual information; and the channel capacity is equal to

C = 1
p

ln
(
E[|Y |p] × p

2

)
. (C.20)
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D Special cases of degraded channels
In this appendix, we consider covert communication scenarios where the eavesdropper’s channel is not
the same as the channel of the legitimate receiver. We compute the exact value of the scaling constant L
in the case of degraded AWGN channels and recover the result previously shown in [78, Theorem 2] of
the scaling constant L using different techniques. Then we provide bounds for the key length and show
how no key is needed when the noise variance for the eavesdropper’s channel is strictly greater than
that of the main channel. This last finding is similar to [7, Theorem 6] with the exception that [7] only
considers binary discrete input distributions. Finally, we present an upper bound for L in the case of
degraded exponential channels.

D.1 Gaussian degraded channel

We consider here scenario in equation (2.45) where the eavesdropper and the legitimate receiver observe
the outputs of two different AWGN channels with noise power σ2

e for the eavesdropper and σ2 for the
legitimate receiver; see Figure 5. In this setup, the covertness constraint (2.6) can be written in the form
(2.46).

D.1.1 Proof of Theorem 2.6

First, we introduce the following lemma.

Lemma D.1 For any centered Gaussian random variable Z ∼ N (0, σ2), for any random variable Y , we
have the two following inequalities

h(Y ) ≤ 1
2 ln(2πE[Y 2]) + 1

2 , (D.1)

D(PY ||PZ) ≥ 1
2 ln

(
σ2

E[Y 2]

)
+ 1

2

(
E[Y 2]
σ2 − 1

)
. (D.2)

Furthermore, the inequalities (D.1) and (D.2) hold as equalities when Y follows a centered Gaussian
distribution.

Proof: First, we notice that (D.1) comes directly from the maximization of the entropy for a fixed second
moment: the maximization is achieved by a Gaussian distribution.
We then show (D.2) via the following:

D(PY ||PZ) = −h(Y ) −
∫
R
pY (y) ln(pZ(y))dy

= −h(Y ) +
∫
R
pY (y)

(
ln
(√

2πσ
)

+ y2

2σ

)
dy

= −h(Y ) + ln
(√

2πσ
)

+ E[Y 2]
2σ2

≥ −1
2 ln

(
2πE[Y 2]

)
− 1

2 + ln
(√

2πσ
)

+ E[Y 2]
2σ2

= 1
2 ln

(
σ2

E[Y 2]

)
+ 1

2

(
E[Y 2]
σ2 − 1

)
(D.3)

which is the desired inequality. Note that (D.3) follows from (D.1), and that it holds with equality when
Y follows a centered Gaussian distribution.
Proof of Theorem 2.6, converse part: Take any code C of length n. Let X̄ denote a random variable
such that PX̄ is the average input distribution over the secret key, a uniformly drawn message, and the n
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channel uses. Let Ȳ and Ȳe denote the corresponding outputs through the legitimate receiver’s channel
and the eavesdropper’s channel respectively:

PX̄(·) = 1
n

n∑
i=1

PXC,i
(·), (D.4)

PȲ (·) = 1
n

n∑
i=1

PYC,i
(·), (D.5)

PȲe
(·) = 1

n

n∑
i=1

PYe,C,i
(·), (D.6)

where XC,i, Ye,C,i, and YC,i are the ith components of respectively Xn
C , Y n

e,C , and Y n
C . Note that PȲ and

PȲe
are the average output distributions respectively for the legitimate receiver and the eavesdropper.

Starting with the condition (2.46), we have:

∆ ≥ D(PY n
e,C

||PZn
e

)

≥ nD(PȲe
||PZe

) (D.7)

≥ n

(
1
2 ln

(
σ2

e

E[Ȳ 2
e ]

)
+ 1

2

(
E[Ȳ 2

e ]
σ2

e

− 1
))

≥ n

(
−1

2 ln
(

1 + Var[X̄]
σ2

e

)
+ 1

2
Var[X̄]
σ2

e

)
, (D.8)

where (D.7) follows from the same steps as (3.36), and (D.8) follows from inequality (D.2) in Lemma
D.1.
From (D.8), we notice that as n → +∞, Var[X̄] must approach zero, and:

Var[X̄] = O

(
1√
n

)
; (D.9)

then from (D.8), we have

∆
n

≥ −1
2

(
Var[X̄]
σ2

e

− 1
2

(
Var[X̄]
σ2

e

)2

+ o

(
1√
n

))
+ 1

2
Var[X̄]
σ2

e

≥ 1
4

(
Var[X̄]
σ2

e

)2

+ o

(
1√
n

)
(D.10)

i.e.

Var[X̄] ≤ 2
√

∆
n
σ2

e + o

(
1√
n

)
. (D.11)

We next derive a bound on M∗(n, ε,∆) in terms of X̄ and Ȳ . For each realization k of the key K, we
denote by εk its probability of error. Let ε be the average probability of error over the random codebook.
For each k, we have by Fano’s inequality:

ln |M| (1 − εk) − 1 ≤ I(Xn
C ;Y n

C |K = k). (D.12)

By averaging over the random code, we obtain

ln |M| (1 − ε) − 1 ≤ I(Xn
C ;Y n

C |K)

≤ n(h(Ȳ ) − h(Z)), (D.13)

where (D.13) follows from the same step as (3.41). By the definition of M∗(n, ε,∆), (D.13) implies

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n(h(Ȳ ) − h(Z)). (D.14)
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By the inequality (D.1) in Lemma D.1, we know that:

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n

(
1
2 ln

(
2πE[Ȳ 2]

)
+ 1

2 −
(

1
2 ln(2πσ2) + 1

2

))
= n

2 ln
(
E[Ȳ 2]
σ2

)
= n

2 ln
(

1 + Var[X̄]
σ2

)
≤ n

2
Var[X̄]
σ2 . (D.15)

Then by injecting (D.11) in (D.15) we obtain

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ σ2
e

σ2
n

2

√
4∆
n

+ o

(
1√
n

)
=

√
n
σ2

e

σ2

√
∆ + o

(√
n
)
. (D.16)

Finally recalling the definition (2.23) of L, taking n → ∞ and ε → 0 in (D.16), we obtain the desired
upper bound:

L ≤ σ2
e

σ2 . (D.17)

Proof of Theorem 2.6, achievability part: We consider a random code C for n channel uses in which
every codeword is i.i.d. according to P⊗n

X , with PX a normal centered distribution:

X ∼ N

(
0, 2
√

∆
n
σ2

e

)
(D.18)

and X is independent of Z ∼ N (0, σ2) and Ze ∼ Np(0, σ2
e). We denote by Xn = (X1, . . . , Xn) the

associated i.i.d. input sequence; by Y n = (Y1, . . . , Yn) the associated i.i.d. output sequence for the receiver
with Yi ∼ N

(
0, σ2 + 2

√
∆
n σ

2
e

)
for all 1 ≤ i ≤ n; and by Y n

e = (Ye,1, . . . , Ye,n) the associated i.i.d.

output sequence for the eavesdropper with Ye,i ∼ N
(

0, σ2
e + 2

√
∆
n σ

2
e

)
for all 1 ≤ i ≤ n. Note that the

distributions of every input and output symbol depend on n.
We check that the random code C satisfies the covertness condition (2.46). Similarly to the proof for
Theorem 3.2 (eq (3.67)), we notice that

EC
[
D(PY n

e |C||PZn
e

)
]

= D(PY n
e

||PZn
e

) + EC
[
D(PY n

e |C||PY n
e

)
]

(D.19)

We assume that the key length is large enough so that EC
[
D(PY n

e |C||PY n
e

)
]

is arbitrarily small. (The
actual sufficient key length will be characterized in Section D.1.2.) Therefore, ensuring the covertness
condition (2.46) on the eavesdropper’s channel amounts to checking the following:

D(PY n
e

||PZn
e

) = n D(PYe
||PZe

) (D.20)

= n

(
1
2 ln

(
σ2

e

E[Y 2
e ]

)
+ 1

2

(
E[Y 2

e ]
σ2

e

− 1
))

(D.21)

= n

(
−1

2 ln
(

1 + E[X2]
σ2

e

)
+ 1

2
E[X2]
σ2

e

)
≤ n

1
4

(
E[X2]
σ2

e

)2

(D.22)

= ∆, (D.23)
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where Y ∼ N
(

0, σ2 + 2
√

∆
n σ

2
e

)
and Ye ∼ N

(
0, σ2

e + 2
√

∆
n σ

2
e

)
; (D.20) follows because both Y n

e and

Zn
e are i.i.d.; (D.21) because we have equality in (D.2); and (D.22) because ln(1 + a) ≥ a− a2

2 , a > −1.
It now remains to show that this limit of mutual information is operationally achievable. Namely, we
have

lim
ε→0

lim inf
n→∞

ln (M∗(n, ε,∆))√
n

≥ lim
n→∞

1√
n
I(Xn;Y n), (D.24)

following the same steps (3.74)–(3.78) of the proof of Theorem 3.2 by showing

Var
(

1√
n
iXn,Y n(Xn, Y n)

)
→ 0, n → +∞. (D.25)

We show (D.25) by computing

Var
(

1√
n
iXn,Y n(Xn, Y n)

)
= Var

(
1√
n

ln
(
pY n|Xn(Y n|Xn)

pY n(Y n)

))

= Var


1√
n

ln


∏n

i=1
1√
2πσ

e−
Z2

i
2σ2

∏n
i=1

1
√

2π
√

σ2+2
√

∆
n σ2

e

e
−

Y 2
i

2
(

σ2+2
√

∆
n

σ2
e

)




= 1
n

Var

−
n∑

i=1

Z2
i

2σ2 +
n∑

i=1

Y 2
i

2
(
σ2 + 2

√
∆
n σ

2
e

)


= 1
n

n∑
i=1

Var

 Y 2
i

2
(
σ2 + 2

√
∆
n σ

2
e

) − Z2
i

2σ2



= Var

 Y 2

2
(
σ2 + 2

√
∆
n σ

2
e

) − Z2

2σ2


≤ 1

4
(
σ2 + 2

√
∆
n σ

2
e

)2
σ4

E

[(
σ2Y 2 −

(
σ2 + 2

√
∆
n
σ2

e

)
Z2

)2 ]

= 1

4
(
σ2 + 2

√
∆
n σ

2
e

)2
σ4

(
σ4E

[
Y 4]− 2σ2

(
σ2 + 2

√
∆
n
σ2

e

)
E
[
Y 2Z2]

+
(
σ2 + 2

√
∆
n
σ2

e

)2

E
[
Z4])

= 1

4
(
σ2 + 2

√
∆
n σ

2
e

)2
σ4

(
σ4 (3σ4 + 6σ2E

[
X2]+ E

[
X4])

−2σ2

(
σ2 + 2

√
∆
n
σ2

e

)(
σ2E

[
X2]+ 3σ4)+ 3σ4

(
σ2 + 2

√
∆
n
σ2

e

)2 )

= o

(
1√
n

)
. (D.26)
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This establishes (D.25) and (D.24). We continue from (D.24) to complete the proof:

lim
ε→0

lim inf
n→∞

ln (M∗(n, ε,∆))
√
n

√
∆

≥ lim inf
n→∞

I(Xn, Y n)
√
n

√
∆

= lim inf
n→∞

√
n√
∆
I(X,Y )

= lim inf
n→∞

√
n√
∆

(h(Y ) − h(Z))

= lim
n→∞

√
n√
∆

(
1
2 ln(2πE[Y 2]) + 1

2 −
(

1
2 ln(2πσ2) + 1

2

))
= lim

n→∞

√
n√
∆

1
2 ln

(
E[Y 2]
σ2

)
= lim

n→∞

√
n√
∆

1
2 ln

(
1 + E[X2]

σ2

)
= σ2

e

σ2 , (D.27)

where (D.27) follows by recalling (D.18); which is the desired lower bound.

D.1.2 Bounds on the key length

Proposition D.1 In the degraded AWGN setting of equation (2.45), if σ2
e > σ2, no key is needed.

Otherwise a sufficient key length is ln |K| = O(
√
n).

Proof: We proceed in a similar way to the proof of Proposition 3.2. We consider the same random
code construction as in the proof of Theorem 2.6 where the codewords are generated i.i.d. according to
P⊗n

X such that (D.18) holds. (As before, we omit the dependence in n of the distributions of X and
Ye.) We denote by C the random codebook and by PY n

e |C the corresponding output distribution for the
eavesdropper. Referring back to the expression (D.19), we find sufficient conditions for ln |K| such that
EC
[
D
(
PY n

e |C||PY n

)]
vanishes, which ensures the existence of at least one good deterministic code. To

establish this result, we apply the channel resolvability bounds of Theorem 2.1. Let ρ ∈ (0, 1], Theorem
2.1 states that

EC
[
D
(
PY n

e |C||PY n
e

)]
≤ 1
ρ

ln
(

1 + e−ρ ln(|K|×|M|)+nΨ(ρ|PYe|X ,PX )
)

(D.28)

where Ψ(ρ|PYe|X , PX) is defined as in (2.21). Therefore studying Ψ(ρ|PYe|X , PX) will allow us to derive
a sufficient condition on the key length to ensure that (D.28) vanishes.
The direct computation of Ψ gives a bound for the key length. We recall that Ze ∼ N (0, σ2

e), X ∼
N
(

0, 2
√

∆
n σ

2
e

)
, Ye ∼ N

(
0,
(

1 + 2
√

∆
n

)
σ2

e

)
. If the message rate scales according to the optimal scaling

constant L as in Theorem 2.6, i.e., lim
n→∞

ln|M|√
∆

√
n

= σ2
e

σ2 , then there exists a positive sequence {ξn} such

that ξn = o(
√
n) and ln |M| ≥ σ2

e

σ2

√
∆

√
n− ξn. Let {ρn}, ρn ∈ (0, 1) for any n, be such that ρn → 0 and

ρnξn → ∞ when n → ∞. We compute
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We have now established the upper bound

EC
[
D
(
PY n

e |C||PY n
e

)]
≤ 1
ρn

ln
(

1 + e−ρn(ln|K|+ln|M|)+ρn(1+ρn)
√
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√

n+O(ρn)
)

≤ 1
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e

−ρn
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e
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√
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. (D.31)

We notice that setting ln |K| =
(

2 − σ2
e

σ2

)√
∆

√
n ensures that (D.31) hence (D.28) goes to 0. Furthermore,

we notice that if σe > σ, (D.31) hence (D.28) goes to 0 without the need of a key. This is in agreement
with [7] which showed that if the noise variance of the eavesdropper is worse than the one of the legitimate
receiver, no key is needed for covert communication. In the special case where σe = σ, we obtain o(

√
n)

as stated in Proposition D.1.

D.2 Exponential degraded channel

We consider the exponential channel (illustrated in Figure 12) with i.i.d. exponential noise with mean Λe

denoted Ze for the eavesdropper and i.i.d. exponential noise with mean Λ denoted Z for the legitimate
receiver:

Yi = Xi + Zi, Zi ∼ E(Λ), Λ > 0, i = 1, 2, . . . , n,

Ye,i = Xe,i + Ze,i, Ze,i ∼ E(Λe), Λe > 0, i = 1, 2, . . . , n. (D.32)

In this setup, the covertness constraint (2.6) can be written in the form (2.46), where PZn
e

denotes the
distribution of the noise vector Zn

e , and PY n
e,C

that of the output sequence averaged over the messages
and the key:

pY n
e,C

(yn) = 1
|K| × |M|

|M|∑
m=1

|K|∑
k=1

1
Λn

e

e
−

∥yn − f(m, k)∥1

Λe . (D.33)

78



key

sender f Z ∼ E(Λ) g receiver

Ze ∼ E(Λe) eavesdropper

m Xn Y n m̂

Y n
e

Fig. 12: Covert communication over the degraded exponential channel.

D.2.1 A loose upper bound on L

Theorem D.1 The maximum amount of information that can be sent covertly and reliably to the legiti-
mate receiver on the channel (D.32) satisfying the covertness condition (2.46) is upper bounded as

L ≤
√

2 Λe

Λ . (D.34)

In order to show Theorem D.1 we first need to introduce the following lemma.

Lemma D.2 For any exponential random variable Z with mean Λ, for any non negative random variable
Y , we have the two following inequalities

h(Y ) ≤ 1 + ln(E[Y ]), (D.35)

D(PY ||PZ) ≥ ln
(

Λ
E[Y ]

)
+ E[Y ]

Λ − 1. (D.36)

Furthermore, the inequalities (D.35) and (D.36) hold as equalities when Y follows an exponential distri-
bution.

Proof: First, we notice that (D.35) comes directly from the maximization of the entropy for a non-negative
random variable and for a fixed first moment: the maximization is achieved by an exponential distribution
[18, Section 12].
We then show (D.36) via the following:

D(PY ||PZ) = −h(Y ) −
∫
R+
pY (y) ln(pZ(y))dy

= −h(Y ) +
∫
R+
pY (y)

(
ln (Λ) + y

Λ

)
dy

= −h(Y ) + ln (Λ) + E[Y ]
Λ

≥ −1 − ln(E[Y ]) + ln (Λ) + E[Y ]
Λ

= ln
(

Λ
E[Y ]

)
+ E[Y ]

Λ − 1 (D.37)

which is the desired inequality. Note that (D.37) follows from (D.35), and that it holds with equality
when Y follows an exponential distribution.
Proof of Theorem D.1: Take any code C of length n. As in the previous section, let X̄ denote a random
variable such that PX̄ is the average input distribution over the secret key, a uniformly drawn message,
and the n channel uses. Let Ȳ denote the channel output random variable through the legitimate receiver’s
channel, and let Ȳe denote the channel output random variable through the eavesdropper’s channel. We
denote PX̄ , PȲ and PȲe

as in (D.4),(D.5) and (D.6).
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Starting from the condition (2.46), we have:

∆ ≥ D(PY n
C,e

||PZn
e

)

≥ nD(PȲe
||PZe

) (D.38)

≥ n

(
ln
(

Λe

E[Ȳe]

)
+ E[Ȳe]

Λe
− 1
)

(D.39)

= n

(
− ln

(
1 + E[X̄]

Λe

)
+ E[X̄]

Λe

)
, (D.40)

where (D.38) follows from the same steps as (3.36), and (D.39) from inequality (D.36) in Lemma D.2.
From (D.40), we notice that as n → +∞, E[X̄] must approach zero, and:

E[X̄] = O

(
1√
n

)
. (D.41)

Then from (D.40), we have

∆
n

≥ E[X̄]2

2Λ2
e

+O

(
1
n

3
2

)
(D.42)

i.e.

E[X̄] ≤
√

2
√

∆
n

Λe +O

(
1
n

)
. (D.43)

We next derive a bound on M∗(n, ε,∆) in terms of X̄ and Ȳ . As in (D.14), we have by Fano’s inequality

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n(h(Ȳ ) − h(Z)). (D.44)

By (D.35) in Lemma D.2, we know that:

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n
(
1 + ln(E[Ȳ ]) − (1 + ln(Λ))

)
= n ln

(
E[Ȳ ]

Λ

)
= n ln

(
1 + E[X̄]

Λ

)
≤ n

E[X̄]
Λ ; (D.45)

then by injecting (D.43) in (D.45) we obtain

ln (M∗(n, ε,∆)) (1 − ε) − 1 ≤ n
Λe

Λ
√

2
√

∆
n

+O (1)

=
√

2Λe

Λ
√

∆
√
n+O (1)

(D.46)

Finally recalling the definition (2.23) of L, taking n → ∞ and ε → 0 in (D.46), we obtain the desired
result.
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Information-theoretic limits of covert communication over additive-noise channels

Abstract: Physical-layer security aims to exploit the randomness inherent in communication channels in order to guar-
antee confidentiality even against computationally unlimited attackers. In this thesis, we focus on covert communication,
also known as “communication with low probability of detection”. This is a scenario where a transmitter and receiver
try to prevent an eavesdropper from making a good guess on whether a communication is ongoing or not. We assume
that the receiver and the eavesdropper share the same channel and therefore see the same outputs. In this scenario, the
transmitter shares a key with the legitimate receiver to provide the necessary advantage to detect the communication
and reliably decode the message. Asymptotically, the amount of information that can be sent reliably and covertly scales
like the square root of the number of channel uses; this is known as the square root law of covert communication.
We study the corresponding scaling constant of the square root law for general memoryless channels including non-
Gaussian additive noise, as well as Gaussian channels with memory. In the latter case, we show that the scaling constant
is the same as over the memoryless Gaussian channel. For continuous memoryless channels, under mild integrability
conditions, we show that the scaling constant is upper bounded by a simple expression which only involves the variance of
the logarithm of the probability density function of the noise. Moreover, we show that under some additional assumptions,
this upper bound is tight. Furthermore, we provide upper bounds on the length of the secret key required to achieve
covertness.
The second objective of this work is to investigate the limits of covert communication over continuous memoryless channels
in the finite blocklength regime. We provide bounds for the first and second-order asymptotics for covert communication
over an AWGN channel under a maximal error probability criterion and for the first-order asymptotics under an average
error probability criterion.

Limites fondamentales des communications dissimulées sur canaux à bruit additif

Résumé : La sécurité de la couche physique vise à exploiter le caractère aléatoire inhérent aux canaux de communication
afin de garantir la confidentialité même contre des attaquants avec une capacité de calcul illimitée. Dans cette thèse,
nous nous concentrons sur les communications dissimulées, également appelées “communications à faible probabilité
de détection”. Il s’agit d’un scénario où l’émetteur et le récepteur tentent d’empêcher un espion de deviner si une
communication est en cours ou non. Nous supposons que le récepteur et l’espion observent les mêmes sorties de canal.
Dans ce scénario, l’émetteur partage une clé avec le récepteur légitime afin de lui donner l’avantage nécessaire pour
détecter la communication et décoder le message. Asymptotiquement, la quantité d’informations qui peut être envoyée
de manière fiable et dissimulée est proportionnelle à la racine carrée du nombre d’utilisations du canal de communication;
ce phénomène est connu comme la square root law des communications dissimulées.
Nous étudions la constante de proportionnalité correspondant à la square root law pour une classe générale de canaux de
communication avec bruit additif non gaussien, ainsi que des canaux gaussiens avec mémoire. Dans ce dernier cas, nous
montrons que la constante de proportionnalité est la même que pour le canal gaussien sans mémoire. Pour les canaux
continus sans mémoire, sous certaines conditions d’intégrabilité, nous montrons que la constante de proportionnalité
admet comme borne supérieure une expression simple qui dépend seulement de la variance du logarithme de la densité
de probabilité du bruit. De plus, nous montrons que sous certaines hypothèses supplémentaires, cette borne supérieure
devient une égalité. Nous prouvons également des bornes supérieures sur la longueur de la clé secrète nécessaire pour
communiquer de manière dissimulée.
Le deuxième objectif de ce travail est d’étudier les limites fondamentales des communications dissimulées pour des canaux
continus sans mémoire en longueur finie. Nous fournissons des bornes pour les asymptotiques de premier et de second
ordre des communications dissimulées sur un canal AWGN selon un critère de probabilité d’erreur maximale, ainsi que
pour l’asymptotique de premier ordre selon un critère de probabilité d’erreur moyenne.
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