
HAL Id: tel-04933669
https://hal.science/tel-04933669v1

Submitted on 6 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Wall Models for Aerodynamic Simulations
Michele Romanelli

To cite this version:
Michele Romanelli. Deep Wall Models for Aerodynamic Simulations. Mathematics [math]. Université
de Bordeaux, 2024. English. �NNT : 2024BORD0358�. �tel-04933669�

https://hal.science/tel-04933669v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE

MATHÉMATIQUES ET INFORMATIQUE

MATHÉMATIQUES APPLIQUÉES ET CALCUL SCIENTIFIQUE

Par Michele ROMANELLI

Deep learning wall laws for aerodynamic simulations

Sous la direction de : Héloïse BEAUGENDRE
Co-directeur : Michel BERGMANN

Soutenue le 12 décembre 2024

Membres du jury :

Mme. Héloïse BEAUGENDRE Professeur des Universités Bordeaux INP Directrice
M. Michel BERGMANN Directeur de Recherche Université de Bordeaux IMB Co-directeur
M. Raphaël LOUBÈRE Directeur de Recherche Université de Bordeaux IMB President
M. Pierre SAGAUT Professeur des Universités Université d’Aix-Marseille Rapporteur
M. Lars DAVIDSON Professeur des Universités Université de technologie Chalmers Rapporteur
Mme. Camilla FIORINI Maîtresse de conférences CNAM Examinatrice
M. Denis SIPP Directeur de Recherche ONERA Encadrant
M. Samir BENEDDINE Ingénieur de Recherche ONERA Encadrant
M. Ivan MARY Ingénieur de Recherche ONERA Encadrant

Acknowledgments

This PhD research was conducted within the framework of Chaire PROVE, co-funded by
the Nouvelle-Aquitaine region.

The journey of a PhD is a challenging one, requiring the collaboration of many people,
and it certainly wouldn’t have been possible without their support. This process demands
perseverance, continuous encouragement, insightful feedback, and, of course, an endless
supply of caffeine. I am deeply grateful to everyone who helped make this work possible.
Although it’s impossible to name everyone who contributed over the past three years, I
apologize for any unintentional omissions.

First and foremost, I would like to thank the reviewers, Pierre Sagaut and Lars
Davidson, for their thorough evaluation of my thesis and their valuable feedback. I
sincerely appreciate their willingness to read the entire manuscript.

I am also grateful to the examiners, Raphaël Loubère and Camilla Fiorini, for their
expertise and thoughtful questions. Their feedback provided new perspectives and
invaluable guidance for future research.

A special thank you goes to Samir for proposing this PhD topic and for sharing countless
ideas and insights throughout this journey. His invaluable feedback and unwavering
encouragement during our weekly meetings kept me motivated, especially during my most
challenging moments.

I must apologize to Ivan for all the times I unexpectedly knocked on his office door
with coding problems. I truly appreciate his patience and willingness to help, even when
my visits were frequent and unannounced. Thank you, Ivan!

Thanks are also due to Denis for his endless flow of innovative ideas, often accompanied
by formulas I didn’t always understand. More importantly, his enthusiasm and passion for
research made our discussions both inspiring and thought-provoking.

I would like to thank my PhD director, Héloïse, for her guidance and valuable insights
throughout this work. Her expertise and feedback have been greatly appreciated.

I am also grateful to my co-director, Michel, for his advice and perspective, which have
contributed to shaping this research.

I am sincerely grateful to the MASH team at ONERA and the Memphis team at Inria
for welcoming me warmly and providing a supportive and stimulating research environment
throughout my PhD.

I would also like to thank Angelo Iollo and everyone involved in the Chaire PROVE
for the insightful discussions during our meetings. Presenting my work there was excellent
training for my defense and I truly appreciate the experience, as well as the enjoyable
moments shared afterward.

A huge thank you goes to Tanya for expertly navigating the maze of administrative
paperwork over these past three years.

I want to extend my heartfelt gratitude to those I spent the most time with during
my years at ONERA, who have become true friends. Thank you, Romain and Mathieu

1

2 ACKNOWLEDGMENTS

L., for welcoming me into your office during my first days and for sharing invaluable tips
that helped me navigate the early, confusing stages of being a newly started PhD student.
Your support and patience made all the difference.

I would also like to thank all my colleagues at ONERA and my fellow PhD students,
Bartolomeo, Pierre, Loïc, Hugo, Vianney, Alessandro, Mathieu S., Kevin, Julian, Arthur
P., Arthur V., Raphael, Riccardo, Carmen, Laura P., Stefan, Jaime, Julien and Camille. I
apologize if I have inadvertently forgotten anyone’s name. Thank you for the countless
moments shared over coffee breaks, ping-pong games or baby-foot matches. You all made
this journey more enjoyable and helped me face its ups and downs with a smile.

Finally, I express my deepest gratitude to my family for their unwavering support,
even when I made the bold and self-sacrificing decision to pursue a PhD. Thank you for
always being there, even when I doubted myself.

And last but not least, I want to thank my girlfriend, Laura. Your support, patience
and presence have made all the difference throughout this journey. I apologize for my bad
moods, especially towards the end of my PhD, I know it wasn’t easy.

Thank you all.

Contents

Acknowledgments 1

Contents 6

Acronyms 8

Introduction 9
Objectives . 10
Structure of the thesis . 11

1 State of the art 13
1.1 Introduction . 14
1.2 Numerical methods for computational fluid dynamics 14

1.2.1 Reynolds Averaged Navier-Stokes Equations 14
1.2.2 Spalart-Allmaras turbulence model 16
1.2.3 Finite volume method . 17

1.2.3.1 Convective flux discretization 18
1.2.3.1.1 Roe scheme . 18
1.2.3.1.2 Third order MUSCL reconstruction 19

1.2.3.2 Viscous flux discretization 20
1.2.3.3 Numerical stencil . 20

1.3 Boundary layer . 21
1.3.1 Boundary layers . 21

1.3.1.1 Types of boundary layer 22
1.3.1.2 Boundary layer separation 23

1.3.2 Turbulent boundary layer . 23
1.3.2.1 Turbulent boundary layer equations 23
1.3.2.2 Self-similar solution of the velocity distribution 24

1.3.2.2.1 Inner layer . 25
1.3.2.2.2 Outer layer . 26
1.3.2.2.3 Overlap layer . 26

1.3.2.3 Turbulent boundary layer structure 27
1.4 Wall modeling . 28

1.4.1 Standard wall models . 29
1.4.1.1 Differential wall models 30
1.4.1.2 Shear stress models . 31

1.4.1.2.1 Analytical wall models 31
1.4.1.2.2 Integral wall models 32

1.4.2 Data-driven wall models . 33
1.5 Neural Networks . 34

3

4 CONTENTS

1.5.1 Fully Connected Neural Networks 34
1.5.1.1 Activation functions . 35

1.5.2 Training a neural network . 36
1.5.2.1 Gradient back-propagation 36
1.5.2.2 Update of neural network parameters 39
1.5.2.3 Common gradient-based optimizers for neural networks . . 39
1.5.2.4 Neural network accuracy and architecture 40
1.5.2.5 Training techniques and issues 41

2 Methods and tools 45
2.1 Methodology and tools for data-driven wall models 45

2.1.1 Workflow of the data-driven wall model 46
2.1.2 Machine Learning Framework . 46

2.1.2.1 Data Preprocessing . 47
2.1.2.1.1 Non-dimensionalization 47
2.1.2.1.2 Normalization . 47
2.1.2.1.3 Transformation 48

2.1.2.2 Neural network training 48
2.1.2.2.1 Neural network architecture 49
2.1.2.2.2 Loss function . 49
2.1.2.2.3 Sample weighting 50
2.1.2.2.4 Optimizer and training strategy 51

2.1.3 CFD solver . 53
2.1.3.1 Numerical approach . 53
2.1.3.2 Neural network integration 53

2.2 Wall model strategy . 54
2.2.1 Wall model strategy in a finite volume framework 54
2.2.2 Ghost cells approach . 55
2.2.3 Model components . 56

2.3 Main test cases . 56
2.3.1 2D Bump case . 56

2.3.1.1 Domain discretization . 58
2.3.2 Airfoil case . 58

2.3.2.1 Domain discretization . 59

3 Data-driven wall models for RANS 63
3.1 Wall law formulation . 64

3.1.1 Formulation for the wall tangent velocity evolution 65
3.1.2 Physical model for thermodynamic state and wall normal velocity field 65

3.1.2.1 Wall normal velocity . 66
3.1.3 Near-wall Spalart-Allmaras modeling 66

3.2 Numerical implementation of the wall model 66
3.2.1 Iterative estimation of local wall shear stress 67
3.2.2 Wall model application . 67

3.3 Flow configurations . 68
3.4 Neural network implementation and training 71

3.4.1 Loss function definition . 71
3.4.2 Neural network architecture and optimization 72

3.4.2.1 Optimization of the neural network architecture 73

CONTENTS 5

3.4.2.2 Neural network architecture 74
3.4.3 Training and a priori results . 75

3.5 Results . 77
3.5.1 Test procedure . 77
3.5.2 Global errors . 78
3.5.3 Interpolation test results . 78
3.5.4 Extrapolation cases . 82

3.5.4.1 Flat plate case . 83
3.5.4.2 Near separation case . 83
3.5.4.3 Influence of dimensionless pressure gradient 83

3.5.5 Mass conservation . 84
3.6 Conclusion . 86

4 Efficient data-driven wall models for RANS 89
4.1 Wall law formulation . 91

4.1.1 Dirichlet-To-Neumann formulation for the wall tangent velocity
evolution . 91
4.1.1.1 Additional parameters for Dirichlet-To-Neumann map . . 92

4.1.2 Physical model for thermodynamic state and wall normal velocity field 92
4.1.3 Near-wall Spalart-Allmaras modeling 93

4.2 Numerical implementation of the wall model 94
4.2.1 Wall model discretization . 94
4.2.2 Wall model application . 94
4.2.3 Numerical effect of Dirichlet-To-Neumann approach 95

4.3 Flow configurations . 97
4.3.1 Bump flow case . 97

4.3.1.1 Training and testing datasets 97
4.3.2 Airfoil case . 98

4.4 Data-driven modeling . 98
4.4.1 Neural networks . 98
4.4.2 Neural network architecture . 99
4.4.3 Dataset treatment . 99
4.4.4 Loss function selection . 101
4.4.5 Training strategy . 102
4.4.6 Discussion on direct estimation and derivative computation 102
4.4.7 Discussion on single and multiple neural networks approach 103

4.5 Results . 105
4.5.1 Results on bump geometry . 105

4.5.1.1 Test procedure . 105
4.5.1.2 Assessment of Spalart-Allmaras modeling strategy 107
4.5.1.3 Discussion on the additional parameters for DtN-map . . . 108
4.5.1.4 Model validation and comparison with iterative approach . 109
4.5.1.5 Interpolation in Reynolds number 112
4.5.1.6 Interpolation in bump height 112
4.5.1.7 Interpolation in bump height and Reynolds number 113

4.5.2 Test on the airfoil geometry . 114
4.5.2.1 Test setup and procedure 115
4.5.2.2 Results . 115

4.5.3 Numerical performances assessment 117

6 CONTENTS

4.5.3.1 Model computational time assessment 117
4.5.3.2 Total convergence time assessment 120

4.6 Conclusion . 121

5 Current development and future works 125
5.1 Optimization of computational performance 125
5.2 Detection of extrapolation conditions . 126

5.2.1 Density-based outliers detection . 127
5.2.2 Outliers detection Gilbert–Johnson–Keerthi algorithm 127
5.2.3 Discussion of application . 129

5.3 Extension of validity domain to complex flow configurations 130
5.4 Immersed Boundary Method application 131

Conclusion 133

French summary / Résumé en français 137

Bibliography 151

Acronyms

Adam Adaptive Moment Estimation. 40

BL boundary layer. 11, 14, 21–24, 27, 29, 47

CFD computational fluid dynamics. 9, 11, 14, 20, 28, 45–47, 49, 53, 64, 73, 83, 86, 87,
125, 133, 135, 137, 138, 140

CNN Convolutional Neural Network. 34

CPU Central Processing Unit. 125

DES Detached Eddy Simulation. 30

DL Deep Learning. 11, 14, 33

DtN Dirichlet-To-Neumann. 11, 90–92, 95, 98, 99, 122, 139

ELU Exponential Linear Unit. 35, 37, 42

FastS FAST Structured. 53, 138

FCNN Fully Connected Neural Network. 34–37, 40, 53

FNN Feedforward Neural Network. 34

FVM Finite Volume Method. 17, 18

GJK Gilbert–Johnson–Keerthi. 126–130, 135, 141

GPU Graphics Processing Unit. 125, 135, 141

IBM Immersed Boundary Method. 9, 10, 12, 29, 122, 125, 131, 132, 135, 137, 141

KDE kernel density estimation. 51, 102, 127

Leaky ReLU Leaky Rectified Linear Unit. 35, 37, 42

LES Large Eddy Simulation. 9, 30, 33, 135

LSTM Long Short-Term Memory Network. 34

MAE Mean Absolute Error. 36

7

8 Acronyms

MAPE Mean Absolute Percentage Error. 36, 52, 74, 75, 103–105

ML Machine Learning. 11, 14, 33, 34, 53

MLP Multilayer Perceptron. 34

MSE Mean Squared Error. 36, 72

MSRE Mean Squared Relative Error. 72

NN neural network. 10–12, 14, 33–36, 38–43, 47, 49–54, 64, 71–78, 83, 84, 86, 87, 102,
125–131, 133–135, 141

NS Navier-Stokes. 14, 23, 24, 30

ODE ordinary differential equation. 31

PDE partial differential equation. 31

R-WM I. RANS - Wall model interface. 54–56, 67, 77, 78, 80, 81, 86, 94, 107, 109, 110,
119, 122

RANS Reynolds Averaged Navier-Stokes. 9–12, 14, 16, 17, 24, 30–32, 46, 49, 53–55,
66–68, 70, 71, 73, 76–78, 80–83, 86, 90, 94, 97, 105–108, 110, 112–118, 120–122, 131,
133–135, 137–141

ReLU Rectified Linear Unit. 35, 37, 39, 42

RL Reinforcement Learning. 33

RMSprop Root Mean Square Propagation. 40

RNN Recurrent Neural Network. 34

S.-A. Spalart-Allmaras turbulence model. 16, 66, 80–83, 131, 134, 139, 140

SGD Stochastic Gradient Descent. 39, 40

SGS Sub-Grid Scale. 33

TBL turbulent boundary layer. 21, 23, 24, 27, 28, 31, 133, 135

WM wall model. 28–31, 125, 130–135

ZPG zero-pressure gradient. 32, 33

Introduction

In computational fluid dynamics (CFD), accurately predicting turbulent flows near solid
boundaries is critical for a variety of industrial applications, including aerospace, automotive
engineering, energy and manufacturing. The ability to carry out precise and rapid
CFD simulations is vital for optimizing designs, evaluating performance and addressing
conception challenges. These simulations are commonly used in industrial domain, however,
their accuracy heavily depends on resolving near-wall flows, which play a crucial role in
predicting phenomena such as drag, heat transfer, and flow separation [87]. This near-wall
accuracy is essential for ensuring the reliability of results in critical engineering decisions.

Accurately capturing wall-bounded turbulent flows typically requires a dense mesh
to resolve boundary layer profiles and steep gradients in the wall-normal direction. This
significantly increases the computational load, strongly impacting the time and resources
required for simulations. For instance, a wall-resolved Large Eddy Simulation (LES) of
complex representative aeronautical application still remains far out-of-reach even for
modern supercomputers [85]. Therefore, wall models become essential for applying LES in
aeronautical and other high-Reynolds-number applications, where resolving all scales in
the boundary layers is not affordable.

Therefore, Reynolds Averaged Navier-Stokes (RANS) simulations remain the standard
in industrial applications due to their reduced computational cost. Current progresses
in computational power make RANS able to handle complex industrial configurations.
Nonetheless, further reducing the computational cost remains crucial for unsteady RANS
simulations in many cases, for instance to study systems involving both very slow and very
fast time scales (which may happen when a flow involves multiple instability phenomenon
for instance, requiring to perform a high number of solver iterations) or for scenarios that
require numerous simulations, such as parametric studies, optimization problems, flow
control by reinforcement learning, etc. In these cases, wall models help alleviate grid
resolution constraints by modeling the near-wall region instead of fully resolving it, thus
lowering the associated computational cost without sacrificing significant accuracy.

Additionally, near-wall modeling is crucial for RANS simulations that utilize Immersed
Boundary Methods (IBMs), where the interaction between the physical boundaries and
the fluid within Cartesian computational grids is entirely represented by wall models. IBM
is particularly advantageous in industrial design processes, offering a more straightforward
meshing process of computational domains compared to body-fitted methods, allowing for
efficient handling of complex geometries and evolving designs. This makes wall modeling
indispensable in competitive environments where timely and accurate results are essential
for innovation and optimization [75].

Therefore, the development and refinement of wall models remain a central focus in
CFD research, as they are key to improving both accuracy and efficiency across a range of
different turbulent flow simulations.

Wall modeling can be broadly categorized into two types: wall shear stress models and
differential models. Wall shear stress models rely on simplified empirical formulations based

9

10 INTRODUCTION

on the self-similar solution of the turbulent boundary layer’s inner region or on the integral
form of simplified transport equations. These models assume that the velocity profile in
the near-wall region follows a predefined distribution and enforce the viscous constraint at
the wall surface. They significantly reduce computational costs by bypassing the need to
fully resolve the near-wall region’s complex turbulence dynamics. However, these models
may struggle to capture flow phenomena like separation, reattachment, or the effects
of strong pressure gradients, where the standard assumptions break down. Differential
wall models, on the other hand, solve simplified transport equations for quantities like
velocity or turbulent kinetic energy near the wall. These models offer more flexibility
and accuracy in capturing complex flow behaviors, such as those seen in adverse pressure
gradient regions or separated flows, but they come with increased computational cost.

Over the past decade, advances in computational power and the exponential growth of
high-quality flow data have led to the emergence of neural networks and data-driven
techniques as a promising approach in wall modeling for turbulent flows. Unlike
traditional empirical models, NN-based wall models may capture complex, non-linear
interactions within the near-wall region by learning from large datasets generated from
fully resolved simulations or experimental data. These models can potentially adapt to a
wide range of flow conditions, including those involving separation, reattachment, and
strong adverse pressure gradients, which are challenging for conventional models. By
leveraging data-driven techniques, deep neural networks offer the potential to significantly
improve accuracy in predicting wall shear stress and other key quantities, while also
maintaining computational efficiency [30].

However, challenges remain in ensuring the generality and robustness of these models
across different flow regimes and configurations. Despite significant research efforts, a
standardized methodology for developing these neural network-based wall models has
yet to be established, particularly when it comes to the selection of input and output
features for the neural networks. Current approaches vary widely, with some models using
local flow quantities such as velocity gradients, wall distances or Reynolds stresses, while
others incorporate global or integrated flow characteristics. This lack of consensus hinders
the development of a universally applicable framework that can handle a broad range of
turbulent flow scenarios.

Objectives

The present thesis aims to develop a wall law using deep learning algorithms capable of
fully reconstructing all flow quantities in the near-wall region, providing greater accuracy
and generality than traditional models. This wanted model is therefore highly flexible,
allowing for various applications such as imposing shear stress either at the wall or higher
in the computational domain, or modeling the entire near-wall flow, making it ideal for
use in methods like the Immersed Boundary Method (IBM).

Given the methodological nature of this work, it has been chosen to develop the
proposed wall model for steady body-fitted RANS simulations, enabling rapid, lightweight
simulations that facilitate testing of different modeling approaches. The goal is to closely
replicate a wall-resolved RANS simulation by replacing the full boundary layer resolution
through a data-driven approach.

Representative academic cases have been selected for training and evaluation, offering
a range of flow configurations and boundary layer evolutions while ensuring ease of
implementation.

11

Furthermore, the exploratory nature of this study aims to identify the input variables
that would enable a more reliable modeling of boundary layer development. The input
parameters used in this model are mainly inspired by the classical variables from the
self-similar solution of the inner region of the boundary layer, made dimensionless using
the wall shear stress.

Structure of the thesis

The structure of this work is organized as it follows:

Chapter 1: State of the art

Chapter 1 provides a thorough overview of important topics related to the study. It
begins by detailing the numerical methods used in computational fluid dynamics (CFD),
particularly focusing on the applications of the Reynolds Averaged Navier-Stokes (RANS)
equations. Next, it introduces the concept of boundary layer (BL), examining traditional
modeling techniques and highlighting the increasing influence of Machine Learning (ML)
in modeling wall-bounded flows. The chapter wraps up with an introduction to the core
principles of Deep Learning (DL) and neural networks (NNs).

Chapter 2: Methods and tools

Chapter 2 presents the key tools employed in this study and elaborates on the methodology
for developing the proposed wall model and its numerical integration into the CFD solver.
It concludes by discussing the flow configurations analyzed, detailing their geometry, the
finite volume discretization used in the computations and the boundary conditions applied
during the computation of the steady state solution.

Chapter 3: Data-driven wall models for RANS

Chapter 3 outlines a data-driven methodology for developing RANS wall models for low
Mach number aerodynamic simulations. It first details the wall modeling approach, based
on a fully-connected neural network trained to approximate the relationship between
nondimensional wall distance, pressure gradient, and velocity. It then presents the
flow configurations considered for training and testing. The chapter then covers the
implementation of the neural network, including the presentation of methods to optimize
its architecture, and the training procedure. The final section shows the results obtained
with the model on both training and unseen configurations.

This chapter is derived from the article published in Romanelli et al. [92].

Chapter 4: Efficient data-driven wall models for RANS

Chapter 4 addresses key issues identified in the methodology proposed in Chapter 3, with
the goal of enhancing the model’s accuracy and reducing computational costs. It first
introduces a new data-driven approach for wall models in RANS simulations, reformulating
the wall laws as a Dirichlet-To-Neumann (DtN) map. Additionally, the accuracy of the
wall law is enhanced through improved modeling of turbulent variables and the inclusion
of additional input parameters to better characterize the boundary layer state. Then, the
flow configurations considered for training and testing are presented. The performances

12 INTRODUCTION

in terms of accuracy and computational cost are evaluated and compared to reference
fully resolved RANS simulations on seen and unseen configurations. Finally, the model’s
robustness is tested on a completely different configuration, considering the flow around of
an airfoil.

The content of this chapter, presented at the ECCOMAS 2024 conference, has been
submitted to the journal "Journal of Computational Physics" and is currently under
review.

Chapter 5: Current development and future works

In the last chapter, before concluding, the latest developments and outlines potential
future research directions are presented. First, it discusses a methodological approach
to detect extrapolation conditions for the neural network, enhancing model robustness
and providing valuable feedback for troubleshooting. Next, it explores the application of
the model within an IBM framework, addressing key challenges and considerations for
successful implementation in such simulations. Finally, the chapter examines extending
the model’s validity to more complex flow configurations by identifying current limitations
and proposing necessary actions to enable its application in cases where the current model
would otherwise fail.

Chapter 1

State of the art

1.1 Introduction . 14
1.2 Numerical methods for computational fluid dynamics 14

1.2.1 Reynolds Averaged Navier-Stokes Equations 14
1.2.2 Spalart-Allmaras turbulence model 16
1.2.3 Finite volume method . 17

1.2.3.1 Convective flux discretization 18
1.2.3.1.1 Roe scheme . 18
1.2.3.1.2 Third order MUSCL reconstruction 19

1.2.3.2 Viscous flux discretization 20
1.2.3.3 Numerical stencil . 20

1.3 Boundary layer . 21
1.3.1 Boundary layers . 21

1.3.1.1 Types of boundary layer 22
1.3.1.2 Boundary layer separation 23

1.3.2 Turbulent boundary layer . 23
1.3.2.1 Turbulent boundary layer equations 23
1.3.2.2 Self-similar solution of the velocity distribution 24

1.3.2.2.1 Inner layer . 25
1.3.2.2.2 Outer layer . 26
1.3.2.2.3 Overlap layer . 26

1.3.2.3 Turbulent boundary layer structure 27
1.4 Wall modeling . 28

1.4.1 Standard wall models . 29
1.4.1.1 Differential wall models 30
1.4.1.2 Shear stress models . 31

1.4.1.2.1 Analytical wall models 31
1.4.1.2.2 Integral wall models 32

1.4.2 Data-driven wall models . 33
1.5 Neural Networks . 34

1.5.1 Fully Connected Neural Networks 34
1.5.1.1 Activation functions . 35

1.5.2 Training a neural network . 36
1.5.2.1 Gradient back-propagation 36
1.5.2.2 Update of neural network parameters 39
1.5.2.3 Common gradient-based optimizers for neural networks . . 39
1.5.2.4 Neural network accuracy and architecture 40
1.5.2.5 Training techniques and issues 41

13

14 CHAPTER 1. STATE OF THE ART

1.1 Introduction

This chapter offers a comprehensive overview of key areas relevant to the present study.
First, it outlines the numerical methods employed in computational fluid dynamics (CFD),
with a specific emphasis on applications of the Reynolds Averaged Navier-Stokes (RANS)
equations. It then focuses on the boundary layer (BL), discussing conventional modeling
approaches and offering an overview on the growing role of Machine Learning (ML) in this
context. The chapter concludes with an introduction to some of the fundamental concepts
in Deep Learning (DL) and neural networks (NNs).

1.2 Numerical methods for computational fluid
dynamics

To introduce the key numerical aspects relevant to this thesis, this section starts from
the governing RANS equations (Spalart-Allmaras turbulent model), then introduces the
finite volume discretization technique, detailing the essential steps required to iteratively
solve the given set of governing equations. Special emphasis is placed on the spatial
discretization techniques, as they significantly influence parts of the work that follows.

1.2.1 Reynolds Averaged Navier-Stokes Equations

The compressible RANS equations for a Cartesian reference frame read:

∂ρ

∂t
+

∂ρuk

∂xk

= 0,

∂ρui

∂t
+

∂ρuiuj

∂xj

= − ∂p

∂xj

δij +
∂τij
∂xj

,

∂ρE

∂t
+

∂ρEuj

∂xj

= −∂puj

∂xj

− ∂qj
∂xj

+
∂τkjuj

∂xj

,

(1.1)

where ρ is the density, u = (u1, u2, u3) is the velocity vector, whose component are
respectively defined along the axis x1, x2 and x3 respectively, p is the pressure, τ is
the stress tensor, E is the total energy and q is the heat flux vector. The equations
are expressed using the Einstein summation convention along k and j indexes and the
Kronecker delta δij. The first equation describes the mass conservation, the second one
express the momentum conservation equation along the i direction, while the latter is the
energy conservation equation.

The system of equations (1.1) is obtained by time-averaging the Navier-Stokes (NS)
equations, decomposed through the Reynolds decomposition [87]. The generic flow quantity
Φ = ϕ+ ϕ′ is thus composed by a mean quantity ϕ and a fluctuating component ϕ′. Here,
the quantity ϕ refers to mean quantity for the sake of brevity.

The stress tensor τ in equations (1.1) consists of two main components: the viscous
stress and the Reynolds stress. The viscous stress relates to the molecular viscosity µ,
while the Reynolds stress originates from the turbulent fluctuations u′

i in the velocity field
and represents the turbulent transport of momentum.

1.2. NUMERICAL METHODS FOR COMPUTATIONAL FLUID DYNAMICS 15

Following the Stokes hypothesis [81], the stress tensor is defined as

τij = µ

Å
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

ã
︸ ︷︷ ︸

Viscous stress

− ρu′
iu

′
j︸ ︷︷ ︸

Reynolds stress

, (1.2)

using again the Einstein summation convention along k index and the Kronecker delta δij .
To effectively solve the equations, it is crucial to model these turbulent fluctuations.

Turbulence models are used for this purpose, providing predictions of how the Reynolds
stresses contribute to the mean flow.

Following the Boussinesq approximation, the stress tensor τ is defined as

τij = µ

Å
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

ã
︸ ︷︷ ︸

Viscous stress

+µt

Å
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

ã
︸ ︷︷ ︸

Reynolds stress

, (1.3)

in which µt is the turbulent viscosity, defined by a turbulent model and discussed in the
following section.

In equation (1.3), the dynamic viscosity is function of the temperature T and it can be
estimated by using the Sutherland law:

µ(T) = µ0

Å
T

T0

ã 3
2 T0 + C

T + C
, (1.4)

where the quantifies µ0, T0 and C0 are constants defined by the fluid. For the air, they
are, respectively, 1.711 · 10−5 kg

ms
, 273.16K and 110.4K. Moreover, it can be useful to

introduce the cinematic viscosity of the fluid, defined by

ν =
µ

ρ
. (1.5)

Considering the air as a perfect gas, the following relationship holds between pressure,
density and temperature:

p = RρT, (1.6)

where R is the perfect gas constant, equal to 287 J
kgK

for the air. The total energy of the
flow is defined as

E = e+
1

2
uiui, (1.7)

using the Einstein summation convention along the i index. Here, e is the internal energy
given by

e = CvT, (1.8)

where Cv specific heat capacity at constant volume. The heat flux is defined through the
Fourier law as below:

qi =

Å
−λ ∂T

∂xi

ã
︸ ︷︷ ︸

Laminar heat flux

+

Å
−λt

∂T

∂xi

ã
︸ ︷︷ ︸

Turbulent heat flux

. (1.9)

As for the stress tensor, it is possible to identify the laminar contribution and the turbulent
one, given the thermal conductivities

16 CHAPTER 1. STATE OF THE ART

λ =
µCp

Pr
and λt =

µtCp

Prt
, (1.10)

where Cp is the specific heat capacity at constant pressure, Pr = 0.72 and Prt = 0.9 are
respectively the laminar and turbulent Prandtl number for the air.

1.2.2 Spalart-Allmaras turbulence model

Solving the unclosed system of equations in (1.1) requires a turbulence model to estimate
the turbulent viscosity in equations (1.3) and (1.10). Over the years, many approaches
have been proposed, but the most common turbulence models usually add additional
transport equations to the system of RANS equations to model the required turbulent
quantities. The present work will focus on the Spalart-Allmaras turbulence model (S.-A.)
[102]. Unlike more complex models such as k − ϵ [55] or k − ω [124] models which solve
for multiple equations, the S.-A. model simplifies the computational effort by focusing on
the transport of a single variable, which is a pseudo-viscosity, defined as ν̃, and linked to
the turbulent viscosity by:

µt = ρν̃fv1. (1.11)

It is then possible to define the eddy viscosity as:

νt =
µt

ρ
. (1.12)

Although more sophisticated turbulence models exist, the SA model remains widely
employed as a standard in aerospace applications due to its simplicity and robustness.
Various versions of the S.-A. model have been developed, such as S.-A.-neg [3], S.-A.-RC
[98] and S.-A.-LRe [103], among others. This work focuses specifically on the compressible
formulation of the original S.-A. model, as proposed by Deck [27]. The transport equation
for the S.-A. variable ν̃ in given by:

∂ρν̃

∂t
+

∂ρuj ν̃

∂xj

=

ρcb1(1− ft2)S̃ν̃︸ ︷︷ ︸
Production

− ρ
[
cw1fw −

cb1
κ2

ft2

]Å ν̃
d

ã2
︸ ︷︷ ︸

Destruction

+
1

α

ï
∂

∂xj

Å
ρ(ν + ν̃)

∂ν̃

∂xj

ã
+ cb2

∂ρν̃

xi

∂ν̃

xi

ò
︸ ︷︷ ︸

Diffusion

,

(1.13)

where d defines the wall distance, and the other quantities are defined as:

S̃ = S +
ν̃

κ2d2
fv2, S =

√
2ΩijΩij

fv2 = 1− χ

1 + χfv1
, fv1 =

χ3

χ3 + c3v1
, χ =

ρṽ

µ

fw = g

ï
1 + c6w3

g6 + c6w3

ò1/6
, g = r + cw2(r

6 − r), r =
ν̃

S̃κ2d2
,

ft2 = ct3 exp
(
−ct4χ2

)
,

(1.14)

1.2. NUMERICAL METHODS FOR COMPUTATIONAL FLUID DYNAMICS 17

in which the vorticity Ω is given by

Ωij =
1

2

Å
∂ui

∂xj

− ∂uj

∂xi

ã
. (1.15)

The model constants are:

cb1 = 0.1355, cb2 = 0.622, σ =
2

3
, κ = 0.41,

cw1 =
cb1
κ2

+
1 + cb2

σ
, cw2 = 0.3, cw3 = 2,

cv1 = 7.1, ct3 = 1.1, ct4 = 0.5.

(1.16)

1.2.3 Finite volume method

The RANS equations system in (1.1) can be written in compact form as:

∂Q

∂t
+∇ · Fc(Q)−∇ · Fv(Q) = 0, (1.17)

where Fc and Fv are respectively the convective and viscous flux vectors, Q is the
conservative variable vector.These quantities are defined as

Fc(Q) =

Ñ
ρuj

ρuiuj + p
(ρE + p)uj

é
, Fv(Q) =

Ñ
0
τij

τijuj − qj

é
, with Q =

Ñ
ρ
ρui

ρE

é
. (1.18)

Finally, let us also define the primitive variables vector P as

P =

Ñ
ρ
ui

T

é
. (1.19)

The numerical method used to solve equation (1.17) is based on the Finite Volume
Method (FVM) [34]. First, a domain Ω ⊂ Rn is considered, where n represents the
dimensionality of the domain. This domain Ω is divided into a grid composed of a finite
number of control volumes Ωi, each having boundary edges Γi,k. Integrating (1.17) over
the volume of a cell Ωi, the following expression is obtained:

∂

∂t

∫
Ωi

QdΩ +

∫
Ωi

∇ · Fc(Q)dΩ−
∫
Ωi

∇ · Fv(Q)dΩ = 0. (1.20)

Using the Green-Ostrogradski theorem, the following integral form is obtained:

∂

∂t

∫
Ω

QdΩ +

∫
∂Ω

Fc(Q) · ndΓ−
∫
∂Ω

Fv(Q) · ndΓ = 0, (1.21)

where ∂Ω is the boundary of the cell and n is the outward unit vector normal to the
surface. From equations (1.21), the semi-discrete formulation of the RANS equations for
an elementary volume Ωi can be written as

∂Q̄i

∂t
+

1

|Ωi|

(∑
k∈∂Ωi

(Fc)
⊥
i,k |Γi,k| −

∑
k∈∂Ωi

(Fv)
⊥
i,k |Γi,k|

)
= 0, (1.22)

18 CHAPTER 1. STATE OF THE ART

where |Ωi| is the volume of the i-th grid cell and |Γi,k| is the surface of the k-th interface
belonging to the i-th cell, while ∂Ωi is the whole boundary surface of the i-th cell. The
FVM considers a constant flow solution inside any elementary volume of the domain.
These quantities Q̄i in equation (1.22) are defined as

Q̄i =
1

|Ωi|

∫
Ω

QdΩ. (1.23)

The quantities (Fc)
⊥
i,k and (Fv)

⊥
i,k, in (1.22), respectively denote the convective and the

viscous flux through a boundary face Γi,k. These are defined as follows

(Fc)
⊥
i,k =

1

|Γi,k|

∫
Γi,k

Fc(Q) · ndΓ and (Fv)
⊥
i,k =

1

|Γi,k|

∫
Γi,k

Fv(Q) · ndΓ. (1.24)

The next sections focus on the adopted strategy to discretize both the convective and
the viscous fluxes.

1.2.3.1 Convective flux discretization

Convective fluxes represent the physical transport of quantities such as mass and momentum
within a fluid. However, directly using convective fluxes in numerical simulations can
lead to issues like numerical instability and oscillations, particularly in regions with
sharp gradients or discontinuities [35]. In order to ensure the stability, accuracy, and
convergence of the numerical solution, instead of directly using convective fluxes, numerical
fluxes are usually employed. These incorporate advanced computational schemes designed
to mitigate these issues and provide a stable and accurate solution, usually by adding
necessary dissipation terms into the system [119].

The conventional numerical convective flux is given by:

(Hc)
⊥
i,k = Hc

(
QL

i,k,Q
R
i,k

)
· ni,k (1.25)

where the function (Hc)i,k depends on the chosen scheme to approximate the physical
flux (Fv)i,k. The conservative variable vectors QL

i,k and QR
i,k are calculated respectively on

the left and on the right side of the k-th interface of i-th cell, which outward normal is
denoted by the ni,k.

Multiple numerical flux schemes exist to address various challenges and requirements
in simulating fluid flows, designed to handle different flow conditions, such as shocks,
rarefactions, and discontinuities, while balancing between accuracy and stability. Roe [91],
AUSM+ [69], HLLC [115] are just an example of the most used ones. The Roe’s schemes
being mainly used in this work, the next section is devoted to briefly introduce it.

1.2.3.1.1 Roe scheme

The Roe’s scheme [91] is a numerical scheme to solve hyperbolic partial differential
equations, particularly those that arise in the study of compressible fluid flow. This
finite volume method is designed to accurately capture shock waves and discontinuities
in the flow, leveraging the concept of flux difference splitting (FDS). The Roe’s scheme
approximates the solution of the Riemann problem by linearizing the Jacobian matrix of
the convective fluxes defined as

1.2. NUMERICAL METHODS FOR COMPUTATIONAL FLUID DYNAMICS 19

Jc(Q) =
∂Fc(Q)

∂Q
. (1.26)

The Roe’s schemes is defined as:

(Hc)i,k =
1

2

(
Fc(Q

L
i,k) + Fc(Q

R
i,k)
)
− 1

2
J̃c

(
QL

i,k,Q
R
i,k

) (
QR

i,k −QL
i,k

)
, (1.27)

where J̃c

(
QL

i,k,Q
R
i,k

)
is the linearized Jacobian matrix computed at the k-th boundary of

the i-th cell, using respectively the left and right states of the interface.
The estimation of the left and right states, denoted as QL

i,k and QR
i,k, is essential

for determining the discretization order of the scheme. By using the mean state of the
i-th cell, Q̄i, as the left state, and the mean state of the neighboring cell at the k-th
interface as the right state, a first-order accurate discretization is obtained for convective
schemes. However, employing reconstruction techniques yields more accurate estimates of
the conservative variable vector at the interface, enabling higher accuracy schemes. One
method for this is the MUSCL reconstruction [117]. In this work, a third-order MUSCL
reconstruction is utilized, and the following sections provide a brief overview of it.

1.2.3.1.2 Third order MUSCL reconstruction

To reconstruct the left and right state of the conservative variables at the interface, the
primitive variables are interpolated for the left and right state. To simplify the presentation,
the particular case of a one-dimensional structured mesh is considered, with the curvilinear
direction described by the grid index i. The primitive variables at the i-th cell are denoted
as Pi. The considered mesh is shown in figure 1.1.

Ωi−3 Ωi−2 Ωi−1 Ωi+1 Ωi+2 Ωi+3Ωi

PR
i− 1

2

PL
i+ 1

2

Figure 1.1: Stencil for the third order MUSCL reconstruction. Subpart of a mesh with
respect to the direction i. For a cell i, denoted Ωi, primitive variables Pi are known at the
center of the cell. The values PR

1− 1
2

and PL
1+ 1

2

are computed from five known values Pi−2,
Pi−1, Pi, Pi+1 and Pi+2. The stencil of the scheme is represented in red.

The left and right state of primitive variables for the cell interface at i± 1
2

is obtained
as follows PR

i− 1
2

= −1
6
Pi+1 +

5
6
Pi +

1
3
Pi−1

PL
i+ 1

2

= 1
3
Pi+1 +

5
6
Pi − 1

6
Pi−1,

(1.28)

which results in a parabolic reconstruction scheme that is third-order accurate in space.

20 CHAPTER 1. STATE OF THE ART

1.2.3.2 Viscous flux discretization

Viscous fluxes are crucial for accurately representing the behavior of fluids in CFD
simulations, affecting shear and heat transfer driven effects in the computed flows. Unlike
the convective fluxes, the dissipate nature of viscous ones makes them intrinsically stables,
not requiring particular numerical scheme for their computation [42].

In the present work, a second-order centered discretization of the viscous flux is
employed, involving two successive operations. The first operation evaluates the velocity
gradient, temperature gradient, and potentially the gradient of turbulent quantities. Once
these flux densities are determined, the second operation discretizes the diffusion fluxes
and calculates their balance.

The gradient evaluation of the physical quantity ϕ at the cell center i along the direction
j is obtained from the average cell value using the Green-Ostrogradski theorem :

∂ϕ

∂xj

=
1

|Ωi|

∫
Ω

ϕdΩ =
1

|Ωi|

∫
∂Ω

ϕ · ndΓ, (1.29)

which can be discretized as it follows

∂ϕ

∂xj

=
1

|Ωi|
∑
k∈∂Ωi

1

2
|Γi,k|

(
ϕi + ϕn(i,k)

)
· ni,k, (1.30)

where n(i,k) identifies the Ωn(i,k)
elementary cells sharing the k-th interface with the Ωi cell.

For a bi-dimensional application, the computational stencil for the gradient estimation
of a quantity ϕ at the cell center C(i,j) is shown in figure 1.2.

Ω(i,j)

•
Ω(i,j−1)

•
Ω(i,j+1)

•
Ω(i−1,j)

•
Ω(i+1,j)

Figure 1.2: Stencil for gradient computation. The gradient at the cell Ω(i,j) in red is
computed using adjacent cells in black.

After the evaluation of the gradient in the first stage, which has just been described, it
is then possible to carry out the balance of the diffusion fluxes for the cell Ωi. As for the
calculation of the gradients, each surface integral is evaluated by assuming that the flux
density is uniform along the cell boundary Γi,k. The viscous flux balance is thus:

(Fv)
⊥
i,k =

1

2

(
Fv(Q̄i) + Fv(Q̄n(i,k))

)
· ni,k. (1.31)

1.2.3.3 Numerical stencil

This work presents bi-dimensional applications of the above discretized method. It is thus
important to define the numerical stencil useful for a given bi-dimensional cell Ω(i,j) for
the convective and numerical flux. Considering a third order MUSCL reconstruction and a
second-order centered discretization of the viscous flux, the involved cells are respectively
shown in figures 1.3a and 1.3b.

1.3. BOUNDARY LAYER 21

Ω(i,j)

•
Ω(i,j−2)

•
Ω(i,j−1)

•
Ω(i,j+1)

•
Ω(i,j+2)

•
Ω(i−2,j)

•
Ω(i−1,j)

•
Ω(i+1,j)

•
Ω(i+2,j)

(a) Numerical stencil for convective flux
computation using third order MUSCL
reconstruction

Ω(i,j)

•
Ω(i,j−1)

•
Ω(i,j+1)

•
Ω(i−1,j)

•
Ω(i+1,j)

•
Ω(i−1,j−1)

•
Ω(i+1,j+1)

•
Ω(i−1,j+1)

•
Ω(i+1,j−1)

(b) Numerical stencil for viscous flux
computation

Figure 1.3: Numerical stencil for convective and viscous flux computation in a 2D case. The
fluxes for the cell Ω(i,j) in red are computed using adjacent cells in black. The numerical
stencil for the cell Ω(i,j) is given by the superposition of convective and viscous stencils.

1.3 Boundary layer

This section aims to introduce the fundamentals of boundary layer (BL) theory, providing a
comprehensive exploration of its formation, characteristics, and behavior, with a particular
focus on turbulent boundary layers.

1.3.1 Boundary layers

As a fluid flows past a stationary object, the molecules in direct contact with the object
surface adhere to it due to the fluid viscosity. The molecules just above this layer are
decelerated by collisions with these stationary molecules, exchanging their momentum
with them. These slowed molecules, in turn, reduce the speed of the molecules in the layers
above them. As the distance from the surface increases, the influence of these collisions
diminishes, and the momentum exchange decreases. This creates a thin layer of fluid near
the surface, where the velocity transitions from zero at the surface to the free stream value
farther away. This thin layer of fluid is known as the boundary layer (BL) [88].

From a continuum perspective, molecules can be considered as grouped into fluid layers.
When molecules exchange momentum, a force is generated between two layers of fluid,
representing the rate of change of momentum. This force per unit area is known as shear
stress and is directly proportional to the velocity gradient [97], and it is defined as

τ = µ
∂u∥
∂y

, (1.32)

where u∥ is the tangential velocity with respect to the wall surface. The thickness of the
boundary layer (BL) increases along the downstream direction as shown in figure 1.4,
which sketches the velocity distribution in the BL over a flat plate. In front of the leading
edge, the velocity distribution is uniform. With increasing distance from the leading edge
in the downstream direction, the thickness δ of the retarded layer increases continuously,
as increasing quantities of fluid become affected.

22 CHAPTER 1. STATE OF THE ART

One common way to define the boundary layer thickness δ is the distance to the wall
where the flow velocity inside the boundary layer reaches 99% of the external velocity
magnitude or asymptotic velocity, i.e. U(δ) = 0.99Ue.

1.3.1.1 Types of boundary layer

As firstly shown by Reynolds [90], boundary layers (BLs) can be categorized into two
primary types: laminar and turbulent. The laminar BL is characterized by smooth, orderly
fluid flow with minimal mixing. However, under certain conditions, this laminar layer can
transition to a turbulent one, where the fluid exhibits chaotic flow patterns with significant
mixing and a sudden and large increase in the BL thickness, as illustrated in figure 1.4.
The transition process is complex and remains not fully understood today. However, three
main categories of turbulent transition have been identified. Natural transition occurs
at relatively low levels of free-stream turbulence and is driven by the growth of small
disturbances within the laminar flow. These disturbances amplify and eventually lead to
turbulence, due to viscous effects, eventually breaking down into smaller vortices that
form turbulent spots [97]. Bypass transition, as described by Morkovin [77], is triggered
by large disturbances in the external flow [123] and, lastly, forced transition involves the
deliberate introduction of disturbances, such as tripping devices like rough patches or
surface protrusions [36].

Laminar

Turbulent

Outer Layer

Inner Layer

Transition region

Figure 1.4: Representative scheme of the boundary layer structure

In the case of natural transition, the nature of the boundary layer (BL) can be
determined through the Reynolds number [90], firstly introduced by Stokes [108]

Re =
µu∞L

ρ
=

u∞L

ν
, (1.33)

in which L represents a characteristic length of the flow, typically selected based on
convention. For example, the diameter is often used to describe flow around spheres or
circles. In the case of flow within a pipe, the internal diameter is commonly adopted, while
for flows around objects, either the length or width may be chosen.

The Reynolds number provides a criterion for determining the nature of the flow,
whether laminar or turbulent. It essentially quantifies the ratio of inertial forces to viscous
forces within the fluid. Laminar flow, characterized by smooth and orderly movement,
typically occurs at low Reynolds numbers where viscous forces are predominant. In
contrast, turbulent flow, which is marked by chaotic eddies, vortices, and flow instabilities,
arises at high Reynolds numbers, where inertial forces dominate [44].

1.3. BOUNDARY LAYER 23

The Reynolds number can be expressed locally, Rex being thus the local Reynolds
number and it is defined as

Rex =
µu∞x

ρ
, (1.34)

in which x defines the streamwise location where the Reynolds number is computed. In
case of a flat plate flow, showing a natural transition from laminar boundary layer to
turbulent boundary layer, the local Reynolds number can be used to identify the transition
location, which arises at Rex ≈ 3− 5 · 105 [100].

1.3.1.2 Boundary layer separation

The decelerated fluid particles in the BL do not, in all cases, remain in the thin layer
which adheres to the body along the whole wetted length of the wall. In some cases,
especially when a strong adverse pressure gradient is present in the upstream direction, the
decelerated particles are forced outwards. This causes the boundary layer (BL) to separate
from the wall. This phenomenon is described as separation and it is always associated
with the formation of vortices and a sudden thickening of the decelerated layer of particles.
The point of separation is classically identified by the following condition:

∂u∥
∂y

∣∣∣∣
y=0

= 0. (1.35)

Figure 1.5: Representative scheme of the boundary separation under adverse pressure
gradient

1.3.2 Turbulent boundary layer

This section highlights the key characteristics of the turbulent boundary layer (TBL). First,
the governing equations describing its behavior are presented. These are then simplified
to derive the self-similar solution for the velocity evolution within the boundary layer.
Finally, the structure of the TBL is discussed.

1.3.2.1 Turbulent boundary layer equations

First, the mass conservation and momentum equations from the NS equations are
considered, focusing on the bi-dimensional incompressible case for simplicity. The equations

24 CHAPTER 1. STATE OF THE ART

are expressed in a reference frame where the x-direction is aligned with the wall surface,
and y represents the Cartesian coordinate in the wall-normal direction. For the velocity
vector u = (u1, u2) = (u∥, u⊥), the velocity component tangent to the wall is defined as u∥,
while u⊥ represents the normal component to the wall. As for the RANS equations, both
mean and turbulent flow quantities are accounted for. A generic flow variable Φ = ϕ+ ϕ′

consists of the sum of a mean ϕ and a fluctuating component ϕ′. By time-averaging the
NS equations, the following set of equations is obtained

∂ui

∂xi

= 0

ρ

Å
uj

∂ui

∂xj

ã
= − ∂p

∂xi

+ µ
∂2ui

∂x2
j

− ρ
∂u′

iu
′
j

∂xj

.

(1.36)

This set of equations is then simplified using the boundary layer approximation, which
assumes that u⊥ ≪ |u| and ∂

∂x
≪ ∂

∂y
, leading to the following simplified form:

∂u∥
∂x

+
∂u⊥
∂y

= 0

ρ

Å
u∥

∂u∥
∂x

+ u⊥
∂u∥
∂y

ã
≈ −∂pe

∂x
+ µ

∂2u∥
∂y2

− ρ
∂u′

∥u
′
⊥

∂y

0 ≈ −∂p

∂y
− ρ

∂u′2
⊥

∂y
,

(1.37)

in which pe is the pressure outside of the BL. The simplification below

pe ≈ p+ ρu′2
⊥ (1.38)

is in fact given by the TBL momentum equation in the wall normal direction.
In the following, the overline · is omitted and any quantity ϕ refers to mean quantity

for the sake of brevity.

1.3.2.2 Self-similar solution of the velocity distribution

From equations (1.37), assuming a simple shear stress flow with no external pressure
gradients, such as in a flat-plate boundary layer or a fully-developed pipe or channel flow,
the momentum equation in the streamwise direction x simplify to

0 = µ
∂2u∥
∂y2

− ρ
∂u′

∥u
′
⊥

∂y
(1.39)

It results that in this configuration the shear stress remains constant in the wall normal
direction

τ = µ
∂u∥
∂y︸ ︷︷ ︸
τv

− ρu′
∥u

′
⊥︸ ︷︷ ︸

τt

=
∂u∥
∂y

∣∣∣∣
y=0

= τw = constant. (1.40)

There are two different mechanisms by which the momentum component can be carried
over through the flow: the molecular momentum transfer due to the viscosity τv and the
momentum transfer due to turbulent fluctuations τt.

1.3. BOUNDARY LAYER 25

Very close to the wall, the most important scaling parameters are the kinematic viscosity
ν and wall shear stress τw. This allows to introduce the characteristics velocity and length
scales for near wall flows:

uτ =

…
τw
ρ

and δv =
ν

uτ

, (1.41)

respectively defined as friction velocity and viscous length scale [87]. Additionally, using
the velocity and length scales introduced above, it is possible to define the friction Reynolds
number

Reτ =
uτδ

ν
=

δ

δv
. (1.42)

Using the flow scaling parameters, the velocity and the wall distance can be expressed
in wall units as

u+ =
u∥
uτ

and y+ =
y

δv
=

uτy

ν
, (1.43)

where u+ is the dimensionless wall velocity and y+ is the dimensionless wall distance and
represents a measure of the relative importance of viscous and turbulent transport at
different distances from the wall.

Moreover, the distance from the wall can be scaled using the boundary layer thickness
δ as

η =
y

δ
. (1.44)

Adimensioning equation (1.40) through the characteristics scales of the flow, the
equations

1

Reτ

∂u+

∂η
+ τ+t = 1 (1.45)

is obtained, in which τ+t = τt
ρu2

τ
. For large Reynolds numbers, Reτ →∞, the momentum

transfer due to molecular viscosity becomes negligible in comparison to the turbulent
momentum transfer. This approximation holds well throughout most of the boundary
layer but breaks down near the wall, where velocity fluctuations diminish to zero. At
the wall, in fact, τ+t vanishes. It is thus clear that for large Reynolds numbers, two main
zones can be identified in the boundary layer structure. The first far from the wall, where
viscous effects are negligible. Since this condition holds over most of the boundary layer,
the thickness of this layer is of the order of magnitude of δ. The second region is closer to
the wall, where τ+t approaches zero. Here, both molecular momentum transfer through
viscosity and turbulent momentum transfer are significant. The thickness of this viscous
layer is in the order of δv = δ

Reτ
, making it much smaller than the overall boundary layer

thickness δ and independent of it at large Reynolds numbers.
Since fully-developed boundary-layer flow is completely specified by the six parameters

u∥, y, ρ, ν, δ and uτ on the three independent dimensions, dimensional analysis and
the Pi-theorem [16] yield a functional relationship between three dimensionless groups,
conveniently taken as

u∥
uτ

= f

Å
y

δv
,
y

δ

ã
= f

(
y+, η

)
. (1.46)

1.3.2.2.1 Inner layer

The near wall viscous layer, as previously stated, present a length scale much smaller than
the entire boundary layer thickness, thus resulting independent of it. For this reason it is

26 CHAPTER 1. STATE OF THE ART

useful to scale the equation (1.40) through near wall scaling parameters, uτ and δv, which
yields

∂u+

∂y+
+ τ+t = 1. (1.47)

Equation (1.47) then reduces to

u+ = fw(y
+). (1.48)

Moreover, knowing that at the wall τ+t = 0, in proximity of the wall equation (1.48)
simplifies to

u+ ≈ y+. (1.49)

Since the inner layer is independent of the outer layer, the solution is expected to be
universal or self-similar, meaning that, through appropriate scaling, the velocity profiles
for different boundary layers converge to this common solution.

1.3.2.2.2 Outer layer

As introduced before, in the outer layer, the effects of viscosity are negligible for high
Reynolds number. For this reason, a solution of the velocity is searched in the form of

u+ = fo(η). (1.50)

Since the outer layer is independent from near wall viscous flow, the main influence
here is found in the external flow of the boundary layer. The velocity profile evolution is
thus often described as a velocity-defect law, with reference to outer flow velocity ue. The
form of the velocity evolution is

ue − u∥
uτ

=
u+
e − u+

uτ

= fo(η). (1.51)

1.3.2.2.3 Overlap layer

The inner layer and the outer layer, driven respectively by viscous and turbulent momentum
transfer, meet in an overlap zone in which turbulent and viscous effect coexist. Looking
for a solution for the velocity evolution u+ = fw(y

+, η), one may enforce a smooth overlap
between inner and outer layer velocity profiles. This is obtained by summing equation
(1.48) and (1.51):

u+
e (Reτ) = fo(η) + fw(y

+). (1.52)

where y+ = ηReτ , leading to the expression

u+
e (Reτ) = fo(η) + fw(ηReτ). (1.53)

Differentiating with reference to Reτ , it gives

u′+
e (Reτ) = 0 + ηf ′

w(ηReτ), (1.54)

and further differentiating with respect to η yields:

0 = f ′
w(ηReτ) + ηReτf

′′
w(ηReτ), (1.55)

1.3. BOUNDARY LAYER 27

which can be rewritten as:

0 = f ′
w(y

+) + y+f ′′
w(y

+) (1.56)

=
∂

∂y+

Å
y+

∂fw(y
+)

∂y+

ã
. (1.57)

Hence,

y+
∂fw(y

+)

∂y+
= constant, (1.58)

in which the constant is conventionally written as 1
κ
, where κ ≈ 0.41 is Von Kármán’s

constant:

∂fw(y
+)

∂y+
=

1

κy+
. (1.59)

As noted by Millikan [74], the inner and outer layers can only overlap smoothly if the
overlap region velocity profile is logarithmic. Integrating equation (1.58), the following
expression is obtained

fw(y
+) =

1

κ
ln(y+) + C+, (1.60)

in which the constant C+ ≈ 5 is experimentally determined.
As for the viscous layer, this solution is expected to be a universal self-similar solution,

generally referred to as law of the wall.

1.3.2.3 Turbulent boundary layer structure

The two layer structure of the TBL sees, as stated before, an outer layer, in which the
viscous effects are negligible and an inner layer, closer to the wall where the momentum
transfers is a combination of viscous effects and turbulent fluctuation. These two layers
meet on an overlap region, being respectively the upper and lower boundary for inner and
outer layers.

However, a finer description of the TBL structure exists. A turbulent boundary
layer (TBL) can be divided into four regions: the viscous sublayer, the buffer layer, the
logarithmic layer or overlap region and the wake region [87].

The inner layer, encompassing the viscous sublayer, buffer layer, and logarithmic layer
ends at approximately y

δ
≈ 0.15, where δ represents the boundary layer (BL) thickness [97].

In the viscous sublayer, the viscous shear stress is dominant, overshadowing the turbulent
shear stress, as turbulent fluctuations are suppressed in this thin layer close to the wall
[58]. Conversely, in the logarithmic layer, turbulent shear stress predominates, allowing
the viscous shear stress to be neglected [87]. Between these two layers lies the buffer layer,
where viscous and turbulent shear stresses are of comparable magnitude, making both
significant [97]. Pope [87] gives the following delimitation of the zones and self-similar
solution applicability:

u+ = y+ y+ ≤ 5 (Viscous sublayer)
5 < y+ ≤ 30 (Buffer layer)

u+ = 1
κ
log(y+) + C+ y+ > 30 (Logarithmic layer)

(1.61)

The wake region, belonging to the outer layer, also known as the velocity-defect layer,
is where the velocity profile deviates from the logarithmic law, a deviation that becomes
more pronounced in non-equilibrium BL with adverse pressure gradients [22].

28 CHAPTER 1. STATE OF THE ART

A schematic representation of the evolution of the velocity profile and the shear stress
along the TBL structure layers are given in figures 1.6 and 1.7.

100 101 102 103

5

10

15

20

25

y+

u
+

Viscous
Sub-layer

Buffer
Layer

Logarithmic Layer

Wake

Outer Layer

Inner Layer

u+ = y+

u+ = 1
κ
ln(y+) + C+

Figure 1.6: Scheme of the turbulent boundary layer structure

100 101 102 103
0

0.2

0.4

0.6

0.8

1

y+

τ
+

τ+

τ+v
τ+t

Viscous
Sub-layer

Buffer
Layer

Logarithmic Layer

Wake

Outer Layer

Inner Layer

Figure 1.7: Shear stress evolution in a turbulent boundary layer.

1.4 Wall modeling

This section introduces the concept of wall modeling. It starts by explaining the general
reasoning for using a wall model in CFD simulations, building on the boundary layer
concepts covered in previous sections. Then, it provides an overview of different wall
modeling approaches found in the literature, along with their main applications.

1.4. WALL MODELING 29

The main purpose of wall modeling, especially for turbulent boundary layer flows,
is to avoid solving the complete set of boundary layer equations near the wall, where
turbulence scales become extremely small, and flow state gradients, particularly in the
wall-normal direction, are very steep, as previously discussed. In high Reynolds number
flows, this near-wall region is characterized by complex interactions between viscous forces
and turbulence, and resolving it directly would require an extremely fine mesh, increasing
computational costs [86]. A schematic example of this is shown in figure 1.8.

u

y

(a) Fully resolved BL

u

y

(b) Underesolved BL

Figure 1.8: Representation of boundary layer (BL) capturing with different mesh
refinements

Furthermore, since ∂
∂x
≪ ∂

∂y
in the boundary layer, accurately capturing the near-wall

gradients requires a high aspect ratio in the mesh discretization, which negatively affects
the overall mesh quality [112].

Moreover, in the case of Immersed Boundary Method (IBM), the necessity of wall
models is even more pronounced. Since IBM does not explicitly represent the wall within
the domain discretization, with the mesh not being body-fitted. This means that there is
not any direct resolution of the physical wall. Instead, the interaction between the flow
and the boundary is imposed through a forcing term [75]. As a result, accurately resolving
the near-wall behavior is particularly challenging, and a wall model becomes necessary to
reproduce the effects of the wall.

The wall laws allow to solve the mentioned issues by replacing the direct solution of
the boundary layer flow with a model that approximates the behavior of the flow close to
the wall, while the flow far from the wall is solved [86]. Generally, the wall model needs
input data from the flow field at a certain height above the wall. This height, called the
matching point or sampling point [57], is a critical interface between the resolved flow
(further from the wall) and the modeled flow (closer to the wall) [128]. At this sampling
point, the flow state is extracted and these quantities are used to drive the wall model,
providing the necessary boundary conditions for the resolved flow in the near-wall region,
by modeling the shear stress, the velocity evolution and, usually, the thermodynamic state
of the flow [62]. This data exchange allows the solution to maintain consistency between
the near-wall model and the fully resolved outer flow [9].

This approach allows complex flows to be simulated with reduced computational effort,
making it suitable for industrial applications such as aerodynamic surfaces, turbines, and
heat exchangers [86, 62].

1.4.1 Standard wall models

In the literature, different approaches to wall modeling are proposed. As Larsson et al. [62]
suggest, the wall model methodology can mainly be split in two categories: the differential
methods and the wall-stress models.

30 CHAPTER 1. STATE OF THE ART

1.4.1.1 Differential wall models

In differential methods, the resolved region of the flow is separated from the approximated
region by an interface. This approach allows for reduced grid refinement in the
computationally expensive near-wall region by either modeling or partially resolving the
fine-scale turbulent structures and steep velocity gradients through less resource-intensive
techniques. The key advantage of differential methods is their ability to lower
computational costs by relaxing fine grids requirements, while still accurately capturing
the essential physics of turbulent boundary layers. This makes them especially useful
for complex flows, featuring separations, reattachment or shock-wave boundary layer
interactions, which are often challenging for pure modeling techniques [105].

A representative scheme of the application of a differential wall model is given in figure
1.9.

Wall Model
τ , u, ...

u, ρ, µ, ...

Figure 1.9: Representative scheme of a differential wall model (WM) application

This approach is widely adopted for Large Eddy Simulations (LESs), which are coupled
with RANS equations in Hybrid RANS/LES approaches. The core concept is to adopt the
RANS turbulence models to solve the flow state where the grid resolution is not fine enough
for LES approaches to capture turbulent structures. This allows the method to transition
between RANS, which models the averaged behavior of the flow, and LES, which resolves
larger turbulent eddies, depending on the local grid density and flow characteristics.

Hybrid RANS/LES approaches can be categorized into two main types: zonal methods
and seamless methods [11]. In zonal methods, the interface between the RANS and
LES regions is predefined at a certain distance from the wall. The LES computation
is performed in the region above this interface, where it provides Dirichlet boundary
conditions for the RANS calculations below the interface. In return, the RANS region
supplies Neumann boundary conditions to the coarse LES grid above the interface [83].
In seamless methods, the RANS/LES interface is not fixed but depends both on the grid
and on the solution. It is the case of the approach Detached Eddy Simulation (DES),
specifically designed to address high Reynolds number, massively separated flows. In DES,
a RANS closure is used for boundary layers while the massively separated regions are
computed with LES [104].

Therefore, it is evident that differential wall models tend to be complex and costly to
implement, as they require solving systems of ordinary or partial differential equations in
space [9]. This set of equations are generally obtained through boundary layer simplification
of NS equations, as in (1.37), adopting RANS closure terms to model the Reynolds stress
tensor [6].

1.4. WALL MODELING 31

1.4.1.2 Shear stress models

Unlike differential approaches, wall shear stress models extend the resolved region up to
the wall surface, where the simple no-slip condition is replaced by the enforcement of wall
shear stress. Since mesh refinement near the wall is relaxed, applying the standard no-slip
boundary condition becomes impractical. As previously mentioned, coarse grids lead to
inaccuracies in estimating the velocity gradient, as shown in figure 1.8b, which affects the
prediction of the velocity profile and the growth of the boundary layer. To address this,
the wall model must provide appropriate boundary conditions for the wall shear stress.
This shear stress is determined at the wall by utilizing information from the outer flow
and properly modeling the inner flow region [11].

A representative scheme of the application of a shear stress wall model is given in
figure 1.10.

Wall Model

τw

u, ρ, µ, ...

Figure 1.10: Representative scheme of a shear stress wall model (WM) application

Shear stress models are generally less computationally demanding than differential
models, as they do not require solving ODEs or PDEs in space. The two main types of
wall models are analytical and integral wall models, both heavily reliant on the self-similar
solution of the turbulent boundary layer inner layer, discussed in section 1.3.2.2.

1.4.1.2.1 Analytical wall models

The analytical models allow for the direct calculation of wall shear stress based on the
velocity at a specific wall-normal position, referred to as the sampling point. The wall
shear stress is determined by identifying the value that satisfies the modeled velocity profile
at this point. Due to the two-layer structure of the self-similar solution of the TBL, a
smoothing or blending procedure between the viscous sublayer and the logarithmic region
is necessary to ensure the law’s validity across the entire inner boundary layer. Several
authors have proposed blending approaches between the linear and logarithmic layers,
such as Spalding [106] and Musker [78], who introduced the following

u+ = 5.424 tan−1

ï
2y+ − 8.15

16.7

ò
+ log10

ñ
(y+ + 10.6)

9.6

(y+2 − 8.15y+ + 86)2

ô
− 3.52. (1.62)

Additionally, wall models can be derived from the analytical solution of RANS
turbulence closure models by making certain simplifying assumptions about the flow
configuration. For example, the Spalart-Allmaras wall law [110] establishes a relationship
between the dimensionless wall velocity u+ and the dimensionless wall distance y+, defined
as follows:

32 CHAPTER 1. STATE OF THE ART

u+
(
y+
)
= B + c1 log

î(
y+ + a1

)2
+ b21
ó
− c2 log

î(
y+ + a2

)2
+ b22
ó

−c3 arctan
[
y+ + a1, b1

]
− c4 arctan

[
y+ + a2, b2

]
,

(1.63)

where the coefficients are

B = 5.03339088, a1 = 8.14822158, a2 = −6.92870938,
b1 = 7.46008761, b2 = 7.46814579,

c1 = 2.54967735, c2 = 1.33016516,

c3 = 3.59945911, c4 = 3.63975319.

(1.64)

This wall model is derived from the analytical solution of the Spalart-Allmaras turbulence
model, applied to a zero-pressure gradient (ZPG) boundary layer developing over a flat
plate.

Moreover, some wall models aim to overcome the limitation of the self-similar solution,
which is restricted to ZPG conditions, by adapting existing models to account for streamwise
pressure gradients. This adaptation introduces a new non-dimensional parameter, the
streamwise wall pressure gradient p+. These laws are thus defined as

u+ = f(y+, p+), with p+ =
µw

ρ2wu
3
τ

∂p

∂x
. (1.65)

The streamwise wall pressure gradient p+ has been introduced by Afzal [1], who gave
an analytical expression for the evolution of the dimensionless streamwise velocity

u+ = κ−1

ï
log(y+)− 2log

Å√
1 + p+y+

2

ã
+ 2
Ä√

1 + p+y+ − 1
ä
+ κC+

ò
. (1.66)

Although Afzal’s wall law incorporates the effects of pressure gradients on boundary
layer evolution, equation (1.66) is only valid in the logarithmic region of the boundary
layer and it is applicable exclusively for adverse (i.e., positive) pressure gradients due to
the square root in the expression. In practice, this restriction may lead to implementation
difficulties and potential convergence issues when applying the wall model.

1.4.1.2.2 Integral wall models

On the other hand, integral wall models are derived from the simplification of RANS
equations with the boundary layer hypothesis. Especially from the momentum equation
along the streamwise direction and integrated from the wall up to a sampling point far
from the wall. The wall shear stress is then obtained as a function of the external pressure
gradient

τw = (µ+ µt)
∂u∥
∂y

∣∣∣∣
y=yS

− ∂pe
∂x

yS − ∂Lx

∂x
+ ρu∥u⊥

∣∣
y=yS

, (1.67)

where yS defines the wall distance of the sampling point and Lx =
∫ yS

0
ρu2

∥dy is unknown
and it is usually defined by approximating the inner layer velocity evolution through
analytical expressions [126].

1.4. WALL MODELING 33

1.4.2 Data-driven wall models

Over the past decade, the fluid mechanics community has progressively adopted Machine
Learning (ML) and Deep Learning (DL) techniques for various applications, including
dimensionality reduction, turbulence modeling, flow control, uncertainty quantification,
and optimization [31, 14, 120, 82, 131].

With recent advances in computational power and the exponential accumulation of
high-quality data, the use of deep neural networks in wall modeling has emerged as a
promising approach. Notably, data-driven wall models have been particularly developed
and applied in the context of Large Eddy Simulation simulations.

One of the earliest efforts to apply supervised learning to wall modeling is found in Yang
et al. [127]. The authors observed that a model trained on turbulent channel flow data at
a single Reynolds number could be extrapolated to higher Reynolds numbers within the
same configuration. Huang, Yang, and Kunz [51] focused on spanwise rotating turbulent
channels, comparing a fully data-driven approach with an enhanced physics-based method.
They improved the neural networks by reorganizing the dimensionless input and output
variables, simplifying the functional relationship between them.

These wall shear stress models target the channel flow configurations and attempt
to equal or outperform the standard wall models. More recent studies have focused on
overcoming the limitations of conventional wall models, particularly in handling strong
adverse pressure gradients and flow separation, by employing ML and DL techniques.

Zhou, He, and Yang [131] addresses turbulent separation by training a feed-forward
neural network using DNS data from various periodic hill geometries. In this study, a
wall law is developed using deep learning approaches, distinguishing itself from previous
works by not relying on the traditional friction-based scaling of model inputs and outputs.
While the model produced satisfactory a priori results, the a posteriori tests revealed
discrepancies between the predictions and the reference case for the periodic hill case.

Lozano-Durán and Bae [70] proposed that complex flows can be represented as a
nonlinear combination of simpler building-block flows. Based on this idea, they developed
a wall-flux-based model using a self-critical machine learning approach, successfully training
it on DNS data from various flow cases (e.g., flat plate, channel, turbulent duct, and
separated flows at different Reynolds numbers). However, when applied to the NASA
Juncture Flow [96], the model failed to accurately predict the flow separation. Better
results are obtained in a later work by combining the wall modeling with the Sub-Grid
Scale (SGS) model for LES [4].

Zhou et al. [132] trained a neural network mixing DNS data from a two-dimensional
periodic hill and synthetic data to predict the two wall-parallel components of wall shear
stress. The synthetic data, derived from the law of the wall, covers a wide range of friction
Reynolds numbers and wall-normal heights. The a priori tests demonstrated a clear
improvement in wall shear stress predictions when using the combined dataset, compared
to training solely on periodic hill data.

Another approach in machine learning is Reinforcement Learning (RL). Bae and
Koumoutsakos [5] applied RL, originally designed for flow control, to develop a wall
model for ZPG turbulent boundary layers, specifically in channels and flat plates. In this
approach, the neural network is trained within the simulation framework directly. Inputs
and outputs are non-dimensionalized using viscosity and the modeled friction velocity from
the previous time step, with the reward function based on the presence of a logarithmic
layer near the wall. Reinforcement Learning has also been utilized to create new wall
models for separated flows, as shown in Zhou et al. [130]. Rather than directly predicting

34 CHAPTER 1. STATE OF THE ART

wall shear stress, which the authors found problematic due to inconsistencies between the
actual near-wall flow direction and the flow velocity at distant sampling points, this model
focuses on predicting eddy viscosity as a boundary condition.

Recent literature has shown growing interest in data-driven wall modeling, particularly
in the context of wall shear stress modeling. These models mainly seek to address the
limitations of traditional approaches by leveraging neural networks to improve accuracy
and handle complex flow phenomena. Although various ML and data selection strategies
have been explored, a standardized approach for defining model inputs and outputs is
still lacking. Nevertheless, the flexibility of NNs in modeling intricate and nonlinear
behaviors presents immense potential for advancing wall flow simulations. This potential
for improved precision and wider applicability suggests a promising path for future research
and development in wall modeling.

1.5 Neural Networks

Nowadays, neural networks are pivotal in a wide range of scientific and industrial domains,
including image analysis [60], data mining [45], natural language processing [118], robotics
and autonomous vehicle control [67], cybersecurity [68], chemistry and drug discovery [66],
finance [54], and physics [17]. Their ability to process complex data and recognize patterns
has led to breakthroughs in these fields, revolutionizing how tasks such as automated
image classification, predictive analytics and language translation are approached.

The development of neural networks begins with the conceptual foundation laid by
McCulloch and Pitts in the 1940s, who introduced a mathematical model of a neuron [73].
This early work inspired subsequent research, leading to the creation of the perceptron
by Rosenblatt in the 1950s, a basic type of neural network capable of learning binary
classifications [93]. The 1980s saw the advent of Convolutional Neural Networks (CNNs)
by LeCun, which were designed to process and analyze spatial data such as images
[64]. Meanwhile, Recurrent Neural Networks (RNNs), developed to handle sequential
data, were enhanced in the 1990s by Hochreiter and Schmidhuber with Long Short-Term
Memory Networks (LSTMs), addressing limitations in retaining long-term dependencies [50].
Autoencoders, introduced for data compression and feature learning [49] and Transformers,
which revolutionized natural language processing with self-attention mechanisms [118],
further advanced the field. These innovations collectively paved the way for the widespread
and impactful use of neural networks (NNs) in various modern applications.

1.5.1 Fully Connected Neural Networks

Even if multiple architectures of neural networks have been proposed, regression problems
see a widespread application of Fully Connected Neural Networks (FCNNs). This kind of
NN, also called Multilayer Perceptron (MLP), is adopted through this work. This section
focuses on introducing their main characteristics about architecture and training.

A FCNN consists of a series of dense node layers, with each of the nodes fully connected
with the ones on the previous and following layer. Every node of a single layer receives
information from all nodes belonging to the previous layer and passes information to all
nodes of the next layer. Since the node layers cascade into one another, the FCNNs are
classified as a Feedforward Neural Networks (FNNs), meaning that the flow of information
is uni-directional along the neural network.

In a FCNN, the first layer is defined as input layer and its dimension, i.e. the number of

1.5. NEURAL NETWORKS 35

nodes of which it is composed, matches the dimension of the input space. The dimension
of the last layer, called output layer, is constrained by the dimension of the output space.
Input and output layer are separated by multiple hidden layers, which are not constrained
in number and dimension.

Since Fully Connected Neural Network (FCNN) is the only type of neural network
employed in the current work, by default, the NN abbreviation will refer to a FCNN in
the following.

Each layer l of the NL in the NN, each composed by n(l) neurons, transforms a given
input vector I(l) ∈ Rn(l) into an output vector O(l) ∈ Rn(l+1) . The superscript (·)(l) denotes
quantities associated with the l-th layer, while (·)(l±1) referring respectively to the previous
and the following layer. Each layer thus performs the following transformation

O(l) = L(l)
Ä
O(l−1)

ä
∀l ∈ {0, ... NL − 1}. (1.68)

Starting from the input vector I = I(0), the output O = O(NL−1) of the FCNN is
computed in a forward pass of the network as:

O = L(NL−1) ◦ L(NL−2) L(1) ◦ L(0) (I) , (1.69)

approximating a continuous function g : Rn(0) → Rn(NL−1) .
Considering individually any single neuron, the output O(l)

i of the i-th neuron is given
by:

O
(l)
i = f

(l)
i (W

(l)
i + b

(l)
i), (1.70)

where f
(l)
i is the so-called activation function of the layer (more information are given in

the following), b(l)i is a scalar value, called also bias, and W
(l)
i is the weighted inputs to the

node i of layer l, obtained from a linear combination of the outputs of the previous layers:

W
(l)
i =

n(l−1)∑
j=1

w
(l)
i,jO

(l−1)
j , (1.71)

where w
(l)
i,j is the weight coefficient linking the j-th neuron from layer l − 1 to the i-th

neuron of layer l. The weights coefficients and biases are the trainable scalar parameters
that are optimized during the training phase of a neural network.

1.5.1.1 Activation functions

The activation functions add non-linearity to the network, allowing it to fit complex
non-linear patterns. This enables the NN to be trained on more complex tasks and perform
better than a simple linear regression on data. Cybenko [26] proved that a two-layer neural
network is a universal function approximator. Moreover, activation functions can highly
influence the training of the neural network. More information is given in the following.

In the literature, multiples types of activation function exist. The most common
activation functions can be divided into three categories: ridge functions, radial functions
and fold functions. However, for FCNN, the most common ones are the ridge activation
functions. Examples are Rectified Linear Unit (ReLU) [79], Exponential Linear Unit
(ELU) [20], Leaky Rectified Linear Unit (Leaky ReLU) [71], Softplus [40], the hyperbolic
tangent or Sigmoid. They are shown in table 1.1.

36 CHAPTER 1. STATE OF THE ART

I1

I2

I3

O1

O2

Input Layer Hidden layers Output Layer

Figure 1.11: Schematic representation of a Fully Connected Neural Network (FCNN)

1.5.2 Training a neural network

The accuracy of a neural network approximating the relation O = g(I) is generally
quantified by a scalar metric of the approximation error between the ground truth Ô and
the estimated quantity O by the NN. This metric is called as loss or cost function and
it is defined in the following by ϵ. The most common loss function are Mean Squared
Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE),
defined respectively as

ϵMSE =
1

NS

NS∑
i=1

Ä
Oi − Ôi

ä2
, (1.72)

ϵMAE =
1

NS

NS∑
i=1

∣∣∣Oi − Ôi

∣∣∣ , (1.73)

and

ϵMAPE =
1

NS

NS∑
i=1

∣∣∣∣∣Oi − Ôi

Oi

∣∣∣∣∣× 100, (1.74)

in which NS indicates the number of samples in the dataset.
Training a NN means modifying its parameters θ = {w(l)

i,j , b
(l)
i } in order to minimize

the loss function over a given data-set. This procedure of comparing the estimation of the
NN and to a training dataset is defined as supervised learning [76]. The parameter set θ∗

which minimize the loss function are thus given by:

θ∗ = arg min
θ

∥∥∥ϵ(Ô,O)
∥∥∥. (1.75)

1.5.2.1 Gradient back-propagation

Equation (1.75) is generally iteratively solved through a gradient descent optimization
process [41]. This requires the gradient computation of the loss function ϵ with respect to
each of the parameter θ, written as

1.5. NEURAL NETWORKS 37

Activation Function f
(l)
i (x) Visualization

ReLU f
(l)
i (x) = max(0, x)

x

f
(l)
i

ELU f
(l)
i (x) =

®
x if x > 0

α(ex − 1) if x ≤ 0 x

f
(l)
i

Leaky ReLU f
(l)
i (x) =

®
x if x > 0

αx if x ≤ 0
x

f
(l)
i

Softplus f
(l)
i (x) = log(1 + ex)

x

f
(l)
i

Hyperbolic tangent f
(l)
i (x) = tanh(x) x

f
(l)
i

Sigmoid σ(x) = 1
1+e−x

x

f
(l)
i

Table 1.1: Most common activation functions for Fully Connected Neural Network (FCNN)

∇θϵ =

(
∂ϵ

∂w
(l)
i,j

, ...
∂ϵ

∂b
(l)
i

, ...

)
. (1.76)

Backpropagation [15] by automatic differentiation provides an efficient way to compute
the gradient of a loss function by applying the chain rule to neural networks, working
backward from the final layer.

From equation (1.76), the gradient of ϵ with respect to a weight w
(l)
i,j is computed

applying the chain rule as

38 CHAPTER 1. STATE OF THE ART

∂ϵ

∂w
(l)
i,j

=
∂ϵ

∂O
(l)
i

∂O
(l)
i

∂w
(l)
i,j

=
∂ϵ

∂O
(l)
i

∂

∂w
(l)
i,j

f
(l)
i

Ñ
n(l−1)∑
j=1

w
(l)
i,jO

(l−1)
j + b

(l)
i

é
=

∂ϵ

∂O
(l)
i

f
′(l)
i

Ñ
n(l−1)∑
j=1

w
(l)
i,jO

(l−1)
j + b

(l)
i

é
O

(l−1)
j .

(1.77)

Introducing the activation a
(l)
i of the i-th node of the layer l

a
(l)
i =

n(l−1)∑
j=1

w
(l)
i,jO

(l−1)
j + b

(l)
i , (1.78)

and the sensitivity δ
(l)
i of the cost function to the i-th neuron output O

(l)
i of the layer l

δ
(l)
i =

∂ϵ

∂O
(l)
i

, (1.79)

it is possible to obtain the gradient of ϵ with respect to a weight w
(l)
i,j

∂ϵ

∂w
(l)
i,j

= δ
(l)
i f

′(l)
i

Ä
a
(l)
i

ä
O

(l−1)
j . (1.80)

Similarly, the gradient of ϵ with respect to a bias b
(l)
i is computed, giving

∂ϵ

∂b
(l)
i

= δ
(l)
i f

′(l)
i

Ä
a
(l)
i

ä
. (1.81)

The sensitivity δ
(l)
i is simply computed as the derivative of the loss function ϵ with respect

to the output O
(NL−1)
i of the NN for the output layer NL − 1:

δ
(NL−1)
i =

∂ϵ

∂O
(NL−1)
i

. (1.82)

On the other hand, for the hidden layers, the chain rule can be applied again

δ
(l)
i =

∂ϵ

∂O
(l)
i

=
n(l+1)∑
k=1

∂ϵ

∂O
(l+1)
k

∂O
(l+1)
k

∂O
(l)
i

=
n(l+1)∑
k=1

δ
(l+1)
k

∂O
(l+1)
k

∂O
(l)
i

=
n(l+1)∑
k=1

δ
(l+1)
k

∂

∂O
(l)
i

f
(l+1)
k

Ñ
n(l)∑
i=1

w
(l+1)
k,i O

(l)
i + b

(l+1)
k

é
=

n(l+1)∑
k=1

δ
(l+1)
k f

′(l+1)
k

Ä
a
(l+1)
k

ä
w

(l+1)
k,i ,

(1.83)

1.5. NEURAL NETWORKS 39

considering the sensitivity of the loss function ϵ with respect to the output O
(l+1)
k of the

k-th node of the following layer l + 1, as well as the sensitivity of the output O(l+1)
k of the

following layer nodes with respect to O
(l)
i .

Once the forward pass of the neural network is completed for a given input I, knowing
the activations a

(l)
i and the outputs O

(l)
i of every neuron in the NN, it is possible to

compute the sensitivities δ
(l)
i in a backward pass, from the output layer to the input layer,

in order to compute the gradient ∇θ∥ϵ∥. Here, the sensitivity δ
(NL−1)
i of the output layer

is generally computed to algorithmic differentiation of the loss ϵ.

1.5.2.2 Update of neural network parameters

Once de gradient of the loss ϵ with respect to the NN parameters is computed, the latter
are updated iteratively following

θt+1 = θt − α∇θ∥ϵ∥, (1.84)

where t indicates the current iteration, commonly called epoch and α is an update
parameter defined as learning rate, which can be both constant or adaptively computed by
an optimization algorithm to improve convergence speed and accuracy. A brief overview
of the most common optimization algorithm is given in the following.

As clear from equations (1.80) and (1.81), SGD algorithms through backpropagation
needs to compute the first order derivative of the activation function f

(l)
i . Being

continuous differentiable for an activation function is thus an advantageous property
for gradient-based optimization methods. Even, if optimization is still possible for non
continuously differentiable activation functions, it is the case of the ReLU for instance,
presents some challenges for optimization [101]. Moreover, some activation functions,
which present a saturation

lim
x→±∞

f
(l)
i (x) = 0, (1.85)

like in the case of hyperbolic tangent, present the problem of vanishing gradients [61]. This
leads to a vanishingly small derivatives, preventing parameter update and thus possibly
freezing training.

1.5.2.3 Common gradient-based optimizers for neural networks

Since the NN embodies a non-linear function and the gradient descent optimization is a
local optimization algorithm [25], the training process could lead to convergence to local
minima of the loss function ϵ. Moreover, the computation of the gradient ∇θ∥ϵ∥ along all
the training dataset can be computattionnaly expensive. In order to tackle these problems,
a common practice consists in computing the loss and the relative gradient ∇θ∥ϵ∥ only
for a reduced portion of the training dateset T . Any of this portion B ⊂ T is defined as
batch.

During a training epoch, the training dateset T is thus divided in smaller subsets and
the update of parameters θ takes places after the evaluation of the loss function over each
of the considered batches, multiple times for a single epoch.

Here, the gradients ∇θ∥ϵ∥, computed only on a portion of the training dataset, provide
an approximation of the real update directions for parameters θ given by the totality of T .
However, this cheaper estimation reveals more robust to local minima convergence, avoiding
it or allowing to escape from them. This concept is the foundation of the Stochastic
Gradient Descent (SGD) algorithms [10]. However, SGD often suffers from noisy updates

40 CHAPTER 1. STATE OF THE ART

and may struggle with convergence, especially when the constant learning rate is not
properly tuned. To address these issues, Momentum optimizers enhance the SGD algorithm
by incorporating a memory of past gradients. This helps smooth out updates, accelerates
convergence, and reduces oscillations, resulting in a more consistent descent path [109].
Further amelioration is provided by the selection of an adaptive learning rate specific for
each parameter. It is the case of Root Mean Square Propagation (RMSprop) algorithm.
The idea is to adapt the per-parameter learning rate by considering a running average of the
recent update magnitudes for that parameter [48]. Lastly, Adaptive Moment Estimation
(Adam) algorithm, which will be widely employed in the following of this work, is one of
the most popular optimizers due to its robustness and adaptability. It effectively integrates
the advantages of both Momentum and RMSprop by calculating an adaptive learning
rate for each parameter [89]. The updates are derived from a running average of both the
per-parameter gradient and its second moment, determined through an L2-norm of ∇θ∥ϵ∥.
This approach enables larger updates in regions with high gradient without necessitating
fine-tuning of the learning rate.

Even training a basic Fully Connected Neural Network involves a considerable number
of parameters that control various aspects of the model’s learning process and performances,
i.e. accuracy and computational cost. The next sections focus the main aspects to consider
when configure and train a NN.

1.5.2.4 Neural network accuracy and architecture

The first aspect to consider is the architecture of the neural network. While the input and
output layers are primarily determined by the dimensions of their respective spaces, the
design of the hidden layers remains flexible and can be freely customized. The number
of hidden layers and their widths, i.e. the number of neurons composing them, are
typically adjusted through experimentation and observation, rather than being derived
from theoretical principles.

Generally, deeper and wider networks are capable of capturing more complex patterns,
but they also demand more data and computational resources, especially during inference.
The size of the training dataset significantly influences the choice of architecture: smaller
datasets often necessitate the use of more compact neural networks, whereas larger networks
may be required to handle more extensive datasets.

Moreover, smaller networks tend to learn more slowly than larger ones [82]. Therefore,
when inference costs are not a significant constraint, it is common to choose oversized
neural networks, regardless of the expected complexity of the function to be fitted, as long
as there is enough data to train them effectively. An example of the training of different
sizes NNs is given in figure 1.12.

An effective way to reduce the size of a NN and/or its computational cost is pruning
[12]. Pruning can be performed in either a structured or unstructured manner. Structured
pruning involves removing the least influential neurons from the network based on the norm
of their output O(l)

i , which effectively reduces the network’s size and the amount of memory
required for a forward pass. Unstructured pruning, on the other hand, involves setting the
least influential weights and biases to zero. Although this does not directly reduce the size
of the network, since the total number of neurons and operations required for a forward
pass remain unchanged, unstructured pruning can still reduce computational load during
inference through the use of sparse matrix computation. A schematic representation of
pruning is given in figure 1.13.

1.5. NEURAL NETWORKS 41

Figure 1.12: Example of accuracy performance over training for different size neural
network

I1

I2

O1

O2

(a) Structured pruning

I1

I2

O1

O2

(b) Unstructured pruning

Figure 1.13: Schematic representation of pruning strategy on neural network (NN)

1.5.2.5 Training techniques and issues

Unlike model parameters, which are learned during training, hyperparameters must be
set prior to the start of training. They are usually tuned using empirical methods, often
relying on previous experience and experimental testing. This process involves trying out
different hyperparameter combinations, evaluating the model’s performance, and selecting
the set of values that produces the best results.

This section outlines the common training techniques employed to set these
hyperparameters effectively, as well as the main training related issues.

The first aspect to consider during the training is the initialization of the parameters θ.
Using a uniform initialization scheme leads to poor performance because, when an input
is propagated through the network, the output of hidden neurons in each layer will have
identical effects on the cost function. This results in identical gradients for all neurons
within the layer. Consequently, all neurons update in the same manner during training,
which hinders their ability to learn different and distinct features. Consequently, an uneven
initialization is required, this is generally accomplished through a random initialization.
However, attention has still to be paid in order to avoid the first output values from
exploding, due to a too high values initialization or from leading to a low convergence
rate due to small values initialization and vanishing gradients. A common practice is to

42 CHAPTER 1. STATE OF THE ART

choice random initialization, ensuring that the mean of the activations a
(l)
i is zero and

that their variance across every layer is constant. It is the case of the He [47] and Xavier
Glorot [39] initialization, both of them especially designed to cope with the non-linearity
of specific activation functions, respectively for rectifiers, i.e. ELU, ReLU or Leaky ReLU,
and sigmoid.

A common issue in neural network training through supervised learning is represented
by over-fitting [113], which means that the neural network not only learns the main patterns
of the input-output relation but also the noise and biases of the training dataset. As a result,
the network performs exceptionally on the training data but fails to generalize to new,
unseen data, leading to poor performance through application cases. This phenomenon is
more likely to appear when employing complex models, which consist in a large number of
parameters θ, thus presenting a high capacity to memorize the training data rather than
generalizing main patterns from them. The main causes of over-fitting can be identified in
a training on a relatively small dataset or if the training is led for too many epochs.

To detect and prevent overfitting, a common approach is to allocate a portion of the
dataset for validation during training. This involves training the model on one part of the
dataset (the training set) while using the other part (the validation set) to assess the model
performance after each epoch. Overfitting is identified when the model’s accuracy on
the validation set begins to decline, indicating that the model is memorizing the training
data rather than generalizing to new data. Thus, training should be stopped as soon a
validation accuracy deterioration or an increase in validation loss is observed.

Another common training strategy consists in adding a penalty or regularization to
the training loss ϵ′

ϵ′ = ϵ+
λ

NS

∥∥θ(l)
∥∥, (1.86)

in which λ is a hyperparameter that controls the weight of the penalization during training,
NS represents the number of samples in the training dataset and, finally,

∥∥θ(l)
∥∥ denotes the

norm of the parameters in a given layer l. The norm is typically the absolute value norm
or the quadratic norm, corresponding to L1 or L2 penalization, respectively. Penalization
acts by discouraging overly complex models, limiting predominant weights and biases
in the NN. An example of detecting and mitigating overfitting through regularization is
provided in figure 1.14.

Moreover, overfitting can be mitigated by using the Dropout strategy during training.
This technique involves randomly deactivating a fraction of the neurons in the neural
network during each training epoch. While this may slightly prolong the training process,
the goal is to prevent the model from relying too heavily on any particular pathway of
information flow through the network, thereby encouraging the development of more robust
and generalized representations.

All these methods and techniques rely on hyperparameters that are generally tuned
empirically.

1.5. NEURAL NETWORKS 43

Figure 1.14: Example of overfitting. Comparison between reference neural network (NN)
and same NN trained with L2 regularization.

44 CHAPTER 1. STATE OF THE ART

Chapter 2

Methods and tools

2.1 Methodology and tools for data-driven wall models 45
2.1.1 Workflow of the data-driven wall model 46
2.1.2 Machine Learning Framework . 46

2.1.2.1 Data Preprocessing . 47
2.1.2.1.1 Non-dimensionalization 47
2.1.2.1.2 Normalization . 47
2.1.2.1.3 Transformation 48

2.1.2.2 Neural network training 48
2.1.2.2.1 Neural network architecture 49
2.1.2.2.2 Loss function . 49
2.1.2.2.3 Sample weighting 50
2.1.2.2.4 Optimizer and training strategy 51

2.1.3 CFD solver . 53
2.1.3.1 Numerical approach . 53
2.1.3.2 Neural network integration 53

2.2 Wall model strategy . 54
2.2.1 Wall model strategy in a finite volume framework 54
2.2.2 Ghost cells approach . 55
2.2.3 Model components . 56

2.3 Main test cases . 56
2.3.1 2D Bump case . 56

2.3.1.1 Domain discretization . 58
2.3.2 Airfoil case . 58

2.3.2.1 Domain discretization . 59

This chapter introduces the primary tools used in this study and details the methodology
for developing the proposed wall model and its numerical integration into the CFD solver.
Finally, it presents the flow configurations considered, including their geometry, the finite
volume discretization employed in the computations and the boundary conditions.

2.1 Methodology and tools for data-driven wall models

This section outlines the methodology required to develop and utilize a data-driven wall
model. It provides an overview of each step involved and highlights the tools used for
proposing and applying these models. Particular attention is then given to the most
critical aspects of this methodology.

45

46 CHAPTER 2. METHODS AND TOOLS

2.1.1 Workflow of the data-driven wall model

The process of developing and applying a data-driven wall model in a CFD solver involves
two main phases: the offline phase and the online phase. The offline phase focuses on
building and training the model, while the online phase deals with its real-time application.

The offline phase begins with constructing the dataset. In this work, the goal is to
closely replicate a wall-resolved RANS simulation. This is achieved by deriving the training
dataset from a series of RANS simulations that cover a variety of flow configurations. Using
a CFD solver, these simulations are conducted to generate the necessary data. Further
details about the dataset and the corresponding training dataset are provided in sections
3.3 and 4.3, which are addressed to the specific formulation of the data-driven wall model
outlined in their respective chapters. The evolution of the inner region of the boundary
layer is then extracted to create data tuples that characterize the boundary layer across
different flow conditions.

This data is then fed into a machine learning framework. Initially, the data undergoes
preprocessing to enable effective training of the neural network and ensure it accurately
captures the dynamics of wall-bounded flows. The preprocessing involves scaling,
normalizing, and weighting the importance of each sample. Further details are provided
in section 2.1.2.1. After preparing the features, a suitable machine learning model is
selected and trained on the data, as described in section 2.1.2.2. Once trained, the
model is integrated into the CFD solver by saving its hyperparameters, architecture, and
parameters, which are then transferred to the solver for use in the online phase. The
integration of neural networks in the solver is described in section 2.1.3.2.

In the online phase, the neural network is loaded into the CFD solver to leverage its
capabilities during computations. This integration occurs during the simulation warm-up
phase, when the case configuration, including mesh and boundary conditions are provided
to the solver. The model configuration is then stored in the solver memory, ready for
application. During the computation, the model is used to enforce boundary conditions
along the wall surface.

A schematic representation of the workflow for building and applying a data-driven
wall model is illustrated in Figure 2.1.

Offline phase Online phase

CFD Solver ML Framework CFD Solver

Data Collection
Data

Preprocessing

Neural Network
Training

Simulation
Warm-Up

Wall Model
Application

Figure 2.1: Workflow of the data-driven wall model

2.1.2 Machine Learning Framework

Neural networks and machine learning tasks are handled through the TensorFlow library
[28], which, like other frameworks, provides automatic differentiation for seamless
back-propagation of training gradients and includes a broad range of mathematical

2.1. METHODOLOGY AND TOOLS FOR DATA-DRIVEN WALL MODELS 47

operators, such has activation functions or optimizers. Models are built as computational
graphs and persistence functions allow for the serialization and saving of both model
architecture and parameters. To facilitate the integration of neural networks into CFD
workflows, the TensorFlow saving process has been modified to generate a custom
configuration file. This modification organizes NN parameters and architectural details in
a readable and structured format, simplifying the integration of the neural network into
CFD code.

The following of this section details the essential steps for data preprocessing
and model training, including data preparation, selecting the model architecture,
configuring hyperparameters, and establishing the training loop with back-propagation
and optimization techniques.

2.1.2.1 Data Preprocessing

As introduced in section 2.1.1, a series of CFD simulations across various boundary
layer configurations are used to generate the training dataset for the regression NN.
However, before being fed to the neural network for the training process, this raw data
undergoes preprocessing to enhance the learning capabilities and improve the overall model
performance.

2.1.2.1.1 Non-dimensionalization

To ensure the consistency of the functions learned by the regression models, each input
and output of the neural networks is non-dimensionalized. Whenever applicable, classical
wall scaling based on wall shear stress is employed. Further details regarding this approach
and the model formulation are provided in the subsequent chapters.

2.1.2.1.2 Normalization

The non-dimensionalized input feature are normalized. Normalization of the input data
of neural network is a crucial preprocessing step that improves model performance and
training efficiency. Neural networks, particularly those using gradient-based optimization,
are sensitive to the scale of input features. When input data vary significantly in magnitude,
the training process can become unstable, leading to slow convergence or poor results.

Normalization typically involves scaling the data so that the dataset range or its
statistical properties, such as the standard deviation, are adjusted to a specific scale. Most
used techniques are standardization, in which each input features is scaled so that their
mean is zero and their standard deviation is unitary, which ensures that the data are
centered and scaled consistently [65]. Alternatively, min-max normalization transforms
the input features to lie within a specific range, often between 0 and 1 [7]. The min-max
normalization and the standardization are defined respectively as

I ′n =
In − InMIN

InMAX − InMIN
and I ′n =

In − In
σm

, (2.1)

in which InMIN, InMAX, In and σn are respectively the minimum and maximum values,
the average and the standard deviation of the n-th input feature of the dataset.

Both techniques help neural networks learn faster by ensuring that gradients propagate
more uniformly through the layers, reducing the likelihood of vanishing or exploding
gradients [38]. Additionally, normalization can prevent the network from favoring certain

48 CHAPTER 2. METHODS AND TOOLS

features simply because they have larger numerical values, thereby improving the overall
generalization of the model.

In this work, both techniques were tested. However, min-max normalization consistently
produced better results and has therefore been chosen as the normalization method for
this study.

2.1.2.1.3 Transformation

Certain input features of a neural network may exhibit highly non-linear behavior, where
a small subset of relevant samples have values that deviate substantially from the average,
leading to an uneven distribution across the dataset. This uneven distribution of input
feature value within the dataset can hinder the training process and compromise its accuracy.
To address this imbalance and facilitate the training process, various transformation
functions can be applied to the input features prior to normalization. One common
approach is power scaling, defined as:

s(In) = sgn(In) (|In|)p , (2.2)

where p exponent can be selected based on what is deemed most suitable for the specific
input feature In. However, this scaling function has the drawback of zero or infinite slope
for zero valued input feature (if exponent p ̸= 1). This leads to a grouped or spaced
distribution of samples in the near-zero region, which could results in poor performance.
More advanced approaches have also been explored, including the Yeo-Johnson power
transformation [129]

s(In, λ) =

(In+1)λ−1

λ
for λ ̸= 0, In ≥ 0

log(In + 1) for λ = 0, In ≥ 0

− (1−In)2−λ−1
2−λ

forλ ̸= 2, In < 0

− log(1− In) for λ = 2, In < 0

. (2.3)

This transformation scales the dataset in order to obtain a sample distribution close
to a normal distribution, with the transformation hyperparameter λ determined by an
optimization problem. However, this scaling can excessively clip the transformed input
features for the rarest samples, potentially leading to poor model performance when such
conditions occur in real-time applications.

The last tested scaling function is

s(In) = sgn(In) log (p |In|+ 1) , (2.4)

where the coefficient p can be chosen according to what is most appropriate for the
particular dataset. It expands the range of values for near-zero samples while maintaining
a satisfactory distribution for the rarest samples.

An example of the application of the different scaling functions to the input feature
In is presented in figure 2.2. This figure shows the input feature and its scaled version
plotted. To ease comparison, all plotted values are normalized through min-max scaling.

2.1.2.2 Neural network training

This section outlines the general neural network architecture, introduces the selection of
the loss function, presents a weighting strategy to tackle the challenges of imbalanced

2.1. METHODOLOGY AND TOOLS FOR DATA-DRIVEN WALL MODELS 49

Figure 2.2: Example of input feature transformation. Comparison between scaled and
unscaled input feature In.

datasets, and discusses the optimizer choice and training methodology. All these elements
are then employed along the following of the work.

2.1.2.2.1 Neural network architecture

All the neural networks employed in the work process a set of input features and generate
a single output. The neural network comprises an input layer, where the input features
are fed; multiple hidden layers; and an output layer, which yields the estimated quantity.
The number of nodes in the input and output layers is determined by the dimensionality
of the input feature set and the number of quantities to be estimated, respectively.

Moreover, to account for the varying value ranges across the input features in the
datasets, a normalization layer is added between the input and hidden layers. This layer
integrates the min-max normalization, as described in equation (2.1) and used during
training, into the neural network inference, simplifying the integration of the neural network
into the CFD solver.

These normalization nodes are connected to their respective input features and are fully
connected to the subsequent hidden layer. Prior to neural network training, the weights
and biases of the normalization layer are determined to normalize each input feature (i.e.,
scaling to a range from 0 to 1) based on the training dataset.

A schematic representation of the general architecture of the employed NN employed
in the work is given in figure2.3.

2.1.2.2.2 Loss function

The proposed wall models are data-driven, meaning the neural network is built upon
training by data extracted from wall-resolved RANS simulations. The NN training
optimizes weights w

(L)
i,j and bias b

(L)
i for all neurons by minimizing a loss function ϵ that

evaluates the error between the CFD dataset and NN predictions. The choice of the
loss function is thus fundamental, as it directly influences how the model learns and
optimizes its parameters. A well-suited loss function can accelerate convergence and
improve accuracy, while an inappropriate one may lead to poor performance or slow

50 CHAPTER 2. METHODS AND TOOLS

Input Normalization layer Hidden layers Output

f1

f2

fn

O1

Figure 2.3: Schematic representation of the general architecture of the employed NN

training. Consequently, during the work, multiple loss functions are tested to determine
the best option, ensuring the selected one yields the most accurate results compared to
the desired outcomes. Throughout the work, all tested loss function options are presented,
showcasing the process of selecting the one that provides the best results in comparison to
the desired outcomes.

2.1.2.2.3 Sample weighting

To optimize training, data imbalance in the regression dataset is considered. Data
imbalance occurs when certain samples values dominate the dataset, leading to biased
model performance. This can result in the NN focusing on predictions near the dominant
range, reducing its ability to generalize to underrepresented ranges. Consequently, the
model may struggle to accurately predict values from these less frequent ranges due to
insufficient training examples.

To address imbalance issues, techniques like stratified sampling [121] or weighted loss
functions [125] can be applied. In this case, the latter approach is chosen. The loss function
is thus defined as

ϵ =
1

NS

wρi

NS∑
i=1

f
Ä
Oi, Ôi

ä
, (2.5)

in which, the coefficient wρi is a weighting scalar that accounts for the sample distribution
in the training dataset. This term corrects learning issues that appear when the training
samples are unevenly distributed: without the scaling wρ, subsets of the dataset where the
sample distribution is dense are artificially favored since the network attempts to minimize
an average error over all samples. A lower sample coefficient is computed for common
samples across the training dataset, while rarer ones get higher values of the weighting
coefficient.

Throughout this work, two main approaches were tested, respectively, in chapters 3 and
4. The first approach follows a method similar to that of Zhou, He, and Yang [131], where
the weighting coefficient wρ is calculated as inversely proportional to the local sample
density (i.e. the probability density function of the sample distribution) ρi within the
dataset:

2.1. METHODOLOGY AND TOOLS FOR DATA-DRIVEN WALL MODELS 51

wρ i =
1

ρi
. (2.6)

The second approach, proposed by Steininger et al. [107] sees the weighting coefficient
computed as

wρ i =
max(1− αρρ̂i, ϵρ)

1
NS

∑NS

k=1 max(1− αρρ̂k, ϵρ)
, (2.7)

where ρ̂ denotes the min-max normalized local density of the training dataset. The
hyperparameters αρ and ϵρ allow to tune the weighting scheme. They are selected
respectively equal to 1 and 10−16 for this work. The parameter αρ allows for the tuning
of the importance of the weighting scheme. When αρ = 0, uniform sample weights
are obtained, whereas higher values of αρ accentuate the effects of the weighting scheme.
Meanwhile, the hyperparameter ϵρ sets a lower bound for the weighting coefficient, ensuring
that no data points are weighted negatively, since models would try to maximize the
difference between estimate and reference value for these data points during the training
process. Additionally, it is imperative to prevent any weight from reaching zero in order
to avoid models ignoring parts of the dataset. Moreover, as it is explicitly designed for
gradient-based optimization, the weighting scheme ensures that the mean of all weights
across the dataset remains unity, thereby preventing any undue influence of the learning
rates of gradient descent optimizers throughout the training process.

Both proposed approaches rely on the local sample density ρi of the dataset, which is
computed using a kernel density estimation (KDE) technique [99]. This involves estimating
the dataset distribution by placing a kernel at each data point and summing these kernels
to generate a smooth estimate. Consequently, the local density at the i-th sample is
estimated as the superposition of kernels, each of them centered on the k-th sample:

ρ(xi) =
1

NS

NS∑
k=1

Kσ (xi − xk) . (2.8)

Here, the Kσ represents the chosen kernel functions. While x denotes any sample from the
dataset, consisting of vectors with a length of n+ 1, considering n input features I along
with the output value. The density calculation is performed using Gaussian distributions
with unitary standard deviation as kernel on standardized training dataset (i.e. zero mean
and unitary standard deviation).

An example of imbalanced training is given in figure 2.4, in which a neural network
is trained to reproduce the functional fNN (I1, I2) = I21 − I22 . The post-training results
illustrate significantly better accuracy in regions where data samples are concentrated
when the weighted loss approach is not applied, whereas the accuracy is more uniform
across the dataset when sample weighting is used.

2.1.2.2.4 Optimizer and training strategy

This section outlines the training process for the neural network employed in this work.
The training is conducted using the Adam algorithm, introduced in section 1.5.2.3, to
minimize the neural network loss.

In order to evaluate the possibility of overfitting, the dataset is split in training dataset
and validation dataset. The training dataset comprises 85% of the available data, while
the validation dataset consists of the remaining 15%. During each epoch, the NN and the

52 CHAPTER 2. METHODS AND TOOLS

(a) Target function and samples of the
training dataset.

(b) Sample weighting coefficient wρ and
samples of the training dataset.

(c) Mean Absolute Percentage Error
(MAPE) of the learned function without
sample weighting.

(d) Mean Absolute Percentage Error
(MAPE) of the learned function with sample
weighting.

Figure 2.4: Representation of the sample weighting during neural network (NN) training.
NN trained to reproduce the functional fNN (I1, I2) = I21 − I22 on an imbalance dateset.
Comparison between the weighted loss function and the unweighted one.

descent algorithm are supplied with the entire training dataset, divided into mini-batches
of 16 samples. Every epoch, the samples contained in any of the mini-batches are shuffled.

The weights and biases of the neural networks are initialized using the He normal
initialization [47].

The initial learning rate for the Adam algorithm is set at 0.001 and, during the neural
network training, the convergence of the optimization algorithm benefits of a gradual
reduction in the learning rate as epochs progress. The learning rate reduction is guided by
the loss value. Specifically, the learning rate is reduced by 20% until it reaches a minimum
of 10−8. Each reduction occurs if the minimum loss value achieved over the previous 40
epochs remains unchanged.

A validation stopping criterion is used to stop training if the validation loss does not
decrease by 10−4 over the last 400 iterations. At the end of the training process, the
weights and biases that resulted in the lowest validation loss are selected for the final
neural networks model.

2.1. METHODOLOGY AND TOOLS FOR DATA-DRIVEN WALL MODELS 53

2.1.3 CFD solver

The choice of the CFD solver was primarily driven by the need for easy access to the
underlying source code to effectively integrate neural network utilization. Consequently,
the experimental solver FAST Structured (FastS) [72], which has been under development
at ONERA since 2015, was favored over other in-house solvers. FastS is a finite-volume
solver dedicated to the numerical simulation of compressible turbulent flows. It is developed
in Fortran and C++ for low- and mid-level functions, respectively, and wrapped in Python
to facilitate user interactions. FastS is a cell centered solver based on a second-order
finite volume approach for block-structured meshes. A key feature of this solver is its
ability to efficiently handle various steady and unsteady simulations, enabling the update
of 10 million cells per second on a single Intel Broadwell processor. These impressive
performance metrics are achieved through a hybrid MPI/OpenMP parallelization, combined
with various innovative HPC approaches, such as memory access optimization techniques
(cache blocking) and vectorization [2]. FastS also features a dedicated Cartesian solver.
Additionally, it integrates closely with the Cassiopée Python tool [8], enabling seamless
pre- and post-processing via the CGNS standard [114, 94].

2.1.3.1 Numerical approach

This section outlines the numerical approach employed to solve the RANS equations for
wall-resolved simulations used to generate the training datasets, as well as the simulations
for validation and testing purposes, which are necessary to assess the performance of the
wall model.

For both data collection and testing, the convective fluxes are discretized using the
Roe flux scheme [91], extended to third order through a MUSCL strategy, as showed in
section 1.2. The steady-state solution of the RANS equations is computed using an implicit
temporal integration scheme, with a local time-stepping method and a CFL number set to
20.

All flow computations in this work, unless stated otherwise, are initialized with a
constant field corresponding to free-stream conditions and are considered converged when
the residual norms decrease by at least six orders of magnitude.

2.1.3.2 Neural network integration

The CFD solver has been enhanced to support online NNs inference during the solution
process. Initially, an interface between the Python ML framework and the Fortran routine
for the boundary layer application was considered. However, this approach is generally less
computationally efficient than a direct Fortran implementation [29], which was ultimately
adopted.

The capability for NN inference is now integrated within the Fortran source code
of the CFD solver, FASTS. As shown by equations (1.70) and (1.71), Fully Connected
Neural Network are a chain of matrix operations followed by a nonlinear vector function
performed between the inputs and outputs of each NN layer. Therefore, generating a
code that reproduces the learned functional is straightforward for given set of network
parameter. Consequently, in the code a routine capable of reproducing a generic NN has
been implemented. Moreover, the CFD solver has been modified to read the NN parameters
(architecture, weights, biases, and activation functions), fed during the configuration of
the simulation case, and configure the Fortran routine to replicate the required model. To
improve computational performance in NN inference, matrix operations were intended to

54 CHAPTER 2. METHODS AND TOOLS

be implemented using the Intel Math Kernel Library, which is expected to offer a more
efficient computation than basic Fortran matrix operations. However, this approach turned
out to be less efficient, particularly for relatively small models. As a result, built-in Fortran
operations are utilized instead. The NN data is stored within the solver’s data structures,
and the weight and bias matrices are assembled prior to apply the wall model.

As discussed in chapter 3, the derivatives of the neural network with respect to its
inputs are required. These derivatives are computed using the back-propagation algorithm,
described in section 1.5.2.1, starting the backward pass from the outputs nodes of the
NN.The development of the differentiation routine in Fortran was facilitated by Tapenade
[53], a source-to-source automatic differentiation tool.

2.2 Wall model strategy

This section aims to introduce the overall strategy of the wall model and explain its
implementation within a finite volume framework. In the following chapters, this general
strategy is tailored to the specific formulation of the model, with additional details provided
on its formulation and implementation.

Given a wall surface ΓW that forms the boundary of the domain Ω, let us introduce
an interface ΓI within the domain. As shown in figure 2.5, the present wall law aims at
reconstructing the flow state in the portion of the domain ΩM and transfer the boundary
condition from the surface ΓW at a point P to an equivalent boundary condition on the
surface ΓI at a point I, moving along the wall normal direction from P .

Ω

ΩM

ΓI

ΓW

n

I

P

Figure 2.5: Scheme of wall model strategy

2.2.1 Wall model strategy in a finite volume framework

In a numerical framework, the model involves replacing the computation of the near-wall
solution with a modeled evolution in ΩW which shifts the boundary condition at the wall to
the boundary ΓI of the modeled region. The simulation domain is split into the near-wall
region ΩW , where the wall model is employed, and the rest, where conventional RANS
integration occurs. These regions are separated by the interface ΓI , called as RANS - Wall
model interface (R-WM I.) in the following, which acts as a shifted domain boundary with
special boundary conditions defined by the wall model. A common choice is to define the
region ΩW as a defined number of cell layers in the near wall region. This sets the R-WM I.

2.2. WALL MODEL STRATEGY 55

along the upper edge of the furthest cell layers belonging to the modeled region, as shown
in figure 2.6. Consequently, in the considered cell-centered framework, a ghost cell method
is applied to set the boundary condition at point I, located at the edge of the first layer of
RANS-integrated cells. This method is introduced in the following section. Additionally,
the application of the wall model requires knowledge of the local flow state at a point
along the wall-normal direction from point P . This is accomplished by using a sampling
point S within the RANS-integrated region above the interface. This point is positioned
at a cell center along the wall-normal direction from point P , as illustrated in figure 2.6.

Ω

ΩM

ΓI

ΓW

n

S

I

P

Figure 2.6: Scheme of wall model strategy in a discrete cell centered framework

2.2.2 Ghost cells approach

In a finite volume framework, the boundary conditions for RANS integration may be set
by modeling the flow values at ghost cells, which are cells within the numerical stencil
of the RANS region located across the interface (i.e. in the modeled ΩW portion of the
domain). The number of ghost cells required depends on the numerical scheme: in this
study, two layers of ghost cells are required to set the boundary conditions across the
interface. See section 2.1.3 for more details about the numerical scheme adopted.

This is illustrated in figures 2.7 and 2.8, where the modeled ghost cells are highlighted.
A representative resolved cell, denoted by a black dot, and its numerical stencil represented
by a dashed line are shown. Cells below the ghost cells can be ignored, since they do
not affect the RANS computation: they lie beyond the numerical scheme’s influence on
the RANS region. During simulations, these cells are discarded to save computational
time. However, post-convergence, they are nonetheless computed using the wall model to
reconstruct the near-wall flow (for post-processing purpose).

Two situations exist for the R-WM I.. In the first configuration, illustrated in figure
2.8a, the interface aligns with the wall direction, and the model determines the value of
the layers directly beneath the interface. The second configuration is depicted in figure
2.8b. This scenario occurs when the model is applied to a segment of the wall surface or
when an edge of the wall surface is present. In this configuration, to fully populate the
ghost cells, the model extends from the wall to the upper R-WM I. for the two adjacent
cell columns.

56 CHAPTER 2. METHODS AND TOOLS

Wall Model

RANS

RANS RANS

Ghost cells

(a)
(b)

Figure 2.7: Schematic representation of modeled zone and RANS resolved ones. The
RANS-Wall model interface is in red. The modeled cells (ghost cells) are shown in gray.
Details given in figure 2.8.

RANS

Wall
Model

j + 2

j + 1

j

j − 1

j − 2

(a) Upper R-WM I.

RANSWall Model

(b) Side R-WM I.

Figure 2.8: Grid structure used for RANS simulations coupled with wall modeling. The
RANS - Wall model interface (R-WM I.) is in red. The modeled cells (ghost cells) are
shown in gray. The numerical stencil of a representative RANS resolved cell nearby the
modeled area is delimited by dashed lines.

2.2.3 Model components

The wall law models the flow state in the subdomain ΩM . It comprises three distinct
components: a functional model of the wall tangent velocity evolution, based on a
data-driven approach; a physical model governing the thermodynamic state and the wall
normal velocity field; a model for the turbulent viscosity in the near-wall region. These
components are presented in the following chapters.

2.3 Main test cases

This section introduces the flow configurations used for training and testing the model.
It begins by detailing the geometry of the cases, followed by a description of the domain
setup and flow characteristics. Finally, the numerical discretization of the domain for each
case is outlined.

The main flows discussed here include a two-dimensional bump and an airfoil case,
which are described in the following sections.

2.3.1 2D Bump case

The main flow configuration used for the data-based wall model training and evaluation is
inspired by a documented test case from NASA [95]. In the following, (X, Y) designates

2.3. MAIN TEST CASES 57

the Cartesian coordinate system associated with computational domain configuration,
while (x, y) refers to the local wall-tangent and wall-normal system.

The geometry is defined as

Y (X) =

h · sin
(π

0.9
X − π

3

)4
0.3 ≤ X ≤ 1.2

0 0 < X < 0.3 and 1.2 < X < 1.5
, (2.9)

where h is the height of the bump. Equation (2.9) is applied for X ∈ [0, 1.5], which
corresponds to the wall extent. The resulting shape is shown in figure 2.9b. The simulation
domain spans X ∈ [−5, 6.5] and Y ∈ [0, 5], as shown in figure 2.9a, where the chosen
boundary conditions are also depicted. For the reference simulation, used to build the
training dataset, the adiabatic wall condition is applied along all the wall surface, while,
for testing configurations, the wall model boundary condition replace the adiabatic wall
condition for X ∈ [0.3, 1.5], as shown in 2.9b. Slip boundary conditions are applied
upstream and downstream from the adiabatic wall, and on the upper boundary of the
simulation domain. An inlet and an outlet boundary condition is respectively chosen for
the upstream and downstream boundaries.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5

Coordinate X

C
oo

rd
in

at
e

Y

Slip Slip

Slip

Adiabatic wall / Wall Model

In
le

t

O
ut

le
t

U

(a) Domain and boundary conditions for the 2D bump case.

0 0.5 1 1.5

0

0.02

0.04

0.06

0.08

Coordinate X

C
oo

rd
in

at
e

Y

Slip Slip

Adiabatic wall / Wall Model

Adiabatic wall

(b) Details of the 2D bump case setup and its boundary conditions at walls.

Figure 2.9: Bump case: Simulation domain, boundary conditions and geometry details.

Several flow configurations are utilized for training and testing the wall model. These
configurations are primarily generated by adjusting the Reynolds number Re of the flow
and bump height h, the latter affecting the streamwise pressure gradient.

58 CHAPTER 2. METHODS AND TOOLS

Each flow configuration has the same free-stream Mach number (M = 0.2) and
free-stream static temperature (T∞ = 300K). The Reynolds number Re is calculated using
free-stream quantities and a reference length L = 1m . Since the free-stream Mach number
and temperature are fixed, changes in the flow Reynolds number are achieved by adjusting
the free-stream density. All quantities presented in the following are non-dimensionalized
using the reference length L, the free-stream velocity U∞, temperature T∞, and density
ρ∞.

2.3.1.1 Domain discretization

A fine-structured grid is used to obtain reference data for both training and testing cases.
From X = 0.3 to X = 1.2, the grid is uniform along the curvilinear coordinate x. Over
the bump, 100 computational points are placed, giving a ∆x ≈ 0.01. Upstream of the
bump, in the zone ranging between X = 0 and X = 0.3, the mesh is refined following
an exponential distribution in the streamwise direction: the smallest cells located at the
leading edge start with a spacing ∆x ≈ 0.001, which progressively increases to conform to
the bump region at X = 0.3. The downstream part of the mesh (i.e., in the zone from
X = 1.2 and X = 1.5) mirrors the upstream one such that the full grid is symmetrical with
respect to the bump geometry. Finally, the streamwise structure of the mesh is completed
from the bump geometry to the edges of the simulation domain, with a growing mesh
spacing characterized by a growth ratio of 10%. In the wall-normal direction, the grid
develops normally to the wall surfaces. The first computational point is placed at the same
distance from the wall for all streamwise locations, giving a dimensionless wall distance
between y+ = 0.01 and y+ = 0.6 along the bump for all the studied flow configurations. A
5% growing ratio for the cell size is used in the wall-normal direction.

Figure 2.10 presents various perspectives of the meshes of the 2D bump case, including
a detailed close-up near the bump surface.

2.3.2 Airfoil case

In order to assess the robustness of the proposed wall models, we will also use in this
work a completely different geometry from the bump used during the training procedure.
Specifically, the model will be tested on the Wortmann airfoil FX60-100.

The computational domain, depicted in figure 2.11a, encompasses the airfoil with a
unitary chord length (c = 1m) serving as the reference. The airfoil leading edge is placed
at (X, Y) = (0, 0), with the simulation domain composed of a semicircle of radius equal
to 10 times the chord centered at the leading edge. This is followed, in the streamline
direction, by a rectangular shape spanning to X = 15.

The outer boundaries are defined by a characteristics-based far field boundary condition.
Along the airfoil surface, an adiabatic wall condition is applied for reference cases. For
testing cases, adiabatic wall condition is applied at the leading edge, then the wall model is
applied downstream, as illustrated in figure 2.11b. More information about wall boundary
conditions and model application are given in the results section 4.5.2.

Each flow configuration is characterized by a free-stream Mach number of M = 0.2
and temperature of T∞ = 300K. As for the bump case, the different Reynolds numbers
Re, which are computed through free-stream quantities and a reference chord c = 1m, are
obtained by modulating the free-stream density ρ∞. Reynolds numbers of Re = 6 · 106
and 107 are set for the presented cases, with an angle of attack fixed at α = 0◦.

2.3. MAIN TEST CASES 59

(a) Domain and boundary conditions for the 2D bump case

(b) Details of the near wall domain discretization for the 2D bump case

Figure 2.10: 2D Bump case: Domain discretization.

2.3.2.1 Domain discretization

The computational domain is discretized by a structured grid. The airfoil surface is defined
by a bi-geometric distribution of computational points. The smallest cells are located at
the leading and trailing edges of the airfoil and present a spacing of ∆x ≈ 0.001 which
progressively increases with a growth ratio of 5%. A total of 163 computational points are
considered on the airfoil. In the wall-normal direction, the initial computational points
maintain a consistent distance from the wall across all streamwise positions, resulting in
a dimensionless wall distance below y+ = 0.8 along the airfoil for both cases. A growth
ratio of 2% is applied to the cell size in the wall-normal direction.

An overview of the domain discretization of the Wortmann airfoil case is given in figure
2.12, including a close-up of the near wall mesh around the airfoil.

60 CHAPTER 2. METHODS AND TOOLS

-10 -5 0 5 10 15
Coordinate X

-10
-8
-6
-4
-2
0
2
4
6
8

10

C
oo

rd
in

at
e

Y

Farfield

Airfoil

α
U

(a) Domain and boundary conditions for
turbulent flow over the Wortmann FX60-100
airfoil.

-0.25 0 0.25 0.5 0.75 1

Coordinate X

-0.5

-0.25

0

0.25

C
oo

rd
in

at
e

Y Adiabatic wall Wall Model

Wall Model

(b) Details of the Wortmann FX60-100
airfoil case setup and its boundary
conditions at walls.

Figure 2.11: Wortmann FX60-100 airfoil case: Simulation domain, boundary conditions
and geometry details.

2.3. MAIN TEST CASES 61

(a) Domain discretization for the Wortmann FX60-100
airfoil case.

(b) Details of the near wall domain discretization for the
Wortmann FX60-100 airfoil case.

Figure 2.12: Wortmann FX60-100 airfoil case: Domain discretization.

62 CHAPTER 2. METHODS AND TOOLS

Chapter 3

Data-driven wall models for RANS

3.1 Wall law formulation . 64
3.1.1 Formulation for the wall tangent velocity evolution 65
3.1.2 Physical model for thermodynamic state and wall normal velocity field 65

3.1.2.1 Wall normal velocity . 66
3.1.3 Near-wall Spalart-Allmaras modeling 66

3.2 Numerical implementation of the wall model 66
3.2.1 Iterative estimation of local wall shear stress 67
3.2.2 Wall model application . 67

3.3 Flow configurations . 68
3.4 Neural network implementation and training 71

3.4.1 Loss function definition . 71
3.4.2 Neural network architecture and optimization 72

3.4.2.1 Optimization of the neural network architecture 73
3.4.2.2 Neural network architecture 74

3.4.3 Training and a priori results . 75
3.5 Results . 77

3.5.1 Test procedure . 77
3.5.2 Global errors . 78
3.5.3 Interpolation test results . 78
3.5.4 Extrapolation cases . 82

3.5.4.1 Flat plate case . 83
3.5.4.2 Near separation case . 83
3.5.4.3 Influence of dimensionless pressure gradient 83

3.5.5 Mass conservation . 84
3.6 Conclusion . 86

The existence of universal wall laws for turbulent boundary layers relies on boundary
layer theory, scaling arguments, and dimensional analysis, introduced in section 1.3.2.2.
When the flow quantities vary slowly in the streamwise direction, as compared to the
wall-normal direction, the shape of the streamwise velocity profile u∥(y) becomes invariant
in the inner region of the boundary layer when scaled with appropriate quantities, here
the wall viscosity µw, the density ρw and the friction velocity uτ , computed using the skin
friction τw:

uτ =

…
τw
ρw

with τw = µw

∂u∥
∂y

∣∣∣∣
y=0

. (3.1)

63

64 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

In the absence of streamwise pressure gradient, it is straightforward to show that:

u+ = f(y+), u+ =
u∥
uτ

y+ =
ρwuτ

µw

y, (3.2)

where y+ is the dimensionless wall distance and u+ the dimensionless streamwise velocity.
From dimensional analysis, it is then possible to show that u+ = y+ close to the wall and
that u+ follows a logarithmic profile for large y+ in the inner region. In the presence of
streamwise pressure gradients, these wall laws need to be adapted. A new non-dimensional
parameter steps in, the streamwise wall pressure gradient:

u+ = f(y+, p+), p+ =
µw

ρ2wu
3
τ

∂p

∂x
, (3.3)

where x is the streamwise coordinate. This additional parameter has been introduced
by Afzal [1], who gave an analytical expression for the evolution of the nondimensional
streamwise velocity, as shown in equation (1.66). Even if Afzal’s wall law includes the
effects of the pressure gradient on the boundary layer evolution, equation (1.66) is valid
only in the logarithmic region of the boundary layer. Additionally, it can only be applied
for adverse (i.e., positive) pressure gradients due to the square root in the expression. In
practice, this may cause implementation issues and possible convergence problems when
trying to impose the wall model.

In the present chapter, contrary to Zhou, He, and Yang [131], we choose the
dimensionless quantities (y+, p+) and u+ for the input and output of our data-driven
model, respectively. Neural networks are then used as universal interpolators on
physically-scaled data to find a relation u+ = f(y+, p+). This straightforward approach is
bound to provide more general results than a direct estimation of dimensional quantities.
Given that there would exist a universal law u+ = f(y+, p+) for the near-wall region, once
learned with enough data, this law could be used for any unseen geometry or unseen flow
conditions.

The chapter describes in detail the practical implementation of such an approach and
quantifies its performance in several test cases. It is organized as follows. First, the wall
modeling approach is detailed in section 3.1, along with the numerical implementation
in the CFD solver. Then, the flow configurations considered are presented is in section
3.3. After, the implementation of the neural network employed is discussed in section 3.4,
considering also an optimization strategy to define its architecture. The last section presents
the results obtained with the data-based model on training and unseen configurations
(interpolation and extrapolation conditions) before concluding.

This chapter is derived from the article published in Romanelli et al. [92].

3.1 Wall law formulation

As firstly introduced in section 2.2, the proposed wall model aims to reconstruct the flow
state in the portion of the domain ΩM , close to the wall, in order to transfer the no-slip
boundary condition at a point P on the wall surface to an equivalent boundary condition
at a point I far from wall and located on the wall normal direction from P . See figure 2.5.

This section introduce the main relations that are used to reconstruct the flow state in
the portion of the domain ΩM .

3.1. WALL LAW FORMULATION 65

3.1.1 Formulation for the wall tangent velocity evolution

In the presence of streamwise pressure gradients, it is shown that a functional relation
between u+, p+, and y+ exist, as in equation (3.3). In developed form, it reads:

u∥(y)

uτ

= f

Å
ρwuτ

µw

y,
µw

ρ2wu
3
τ

∂p

∂x

ã
. (3.4)

Consequently, the tangential velocity u∥(y) evolution can be easily determined as

u∥(y) = uτ · f
Å
ρwuτ

µw

y,
µw

ρ2wu
3
τ

∂p

∂x

ã
, (3.5)

The quantities ρw, µw, and ∂p/∂x are estimated through a physical model presented in
the following section. The skin friction velocity uτ , directly linked to the wall shear stress,
is obtained by solving the non-linear equation

g(uτ) = 0, (3.6)

where
g(uτ) = f

Å
ρwuτ

µw

yI ,
µw

ρ2wu
3
τ

∂p

∂x

ã
− u∥(yI)

uτ

, (3.7)

is obtained from equation (3.4). In the equation, the point marked as I indicates the
point on ΓI along the wall normal direction from the wall point P in figure 2.5.

3.1.2 Physical model for thermodynamic state and wall normal
velocity field

The wall-normal temperature profiles in the ΩM portion of the domain and along the ΓI

boundary (see figure 2.5) are modeled using the Crocco-Busemann’s relation [80] adapted
for adiabatic wall conditions:

T (y) = Tw − AU(y)2, with A =
Tw − Te

U2
e

, (3.8)

which sets the relation between the velocity magnitude U =
√

u∥(y)2 + u⊥(y)2 and the
flow temperature T in the near-wall region. In equation (3.8), Tw is the wall temperature,
Te and Ue =

√
u∥(δ)2 + u⊥(δ)2 are the flow temperature and velocity magnitude outside

the boundary layer of thickness δ (u∥ and u⊥ being respectively the tangential and normal
velocity components with respect to the wall). As both A and Tw are unknown, they are
determined enforcing the continuity condition of temperature profiles across the interface
ΓI . This is done differentiating (3.8) and solving the linear equation systemT (yI) = Tw − AU2(yI)

∂T
∂y

∣∣∣
y=yI

= −2AU(yI)
∂U
∂y

∣∣∣
y=yI

(3.9)

for the given unknowns. The Crocco-Busemann temperature profile can be extended to
estimate the temperature across the region ΓW .

In the boundary layer, the wall-normal pressure gradient ∂p/∂y is close to zero. The
density profile can thus be obtained using the perfect gas law with the temperature profile
obtained from Crocco-Busemann’s law combined with the reconstructed pressure field.

66 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

Additionally, since the temperature T and density ρ evolution are known, the wall
density ρw and wall molecular viscosity µw can be determined through the chosen viscosity
model (in our case, Sutherland’s law).

Finally, the pressure p being constant in the wall-normal direction, the pressure gradient
∂p/∂x in the modeled region may be obtained by projecting the pressure gradient evaluated
at the ΓI interface along the tangent direction x.

3.1.2.1 Wall normal velocity

The wall normal velocity u⊥ is assumed to behave linearly in the ΩM region, so that:

u⊥(y) = Cy, with C =
u⊥(yI)

yI
. (3.10)

This approximation for u⊥ is non-conservative, and more elaborated handling of this
component may be considered in future works. However, it does not represent an issue
for the boundary layers configurations that are involved in the present work. The error
introduced in the wall-normal direction u⊥ has been found to be negligible, since the main
velocity component is tangential to the wall surface (see section 3.5.5 for the study of mass
conservation issues).

3.1.3 Near-wall Spalart-Allmaras modeling

Kalitzin et al. [56] studied the Spalart-Allmaras variable ν̃ in the near wall region of a
quasi-equilibrium boundary layer. They showed that the behavior of the dimensionless
S.-A. variable was defined as:

ν̃+ =
ρν̃

µ
(3.11)

can be modeled as
ν̃+ = κy+, (3.12)

in the inner region of the boundary layer (viscous sublayer and logarithmic layer). Here,
κ = 0.41 is the Von Kármán constant. The presented wall models set the S.-A. variable ν̃
to respect equation (3.12) in the ΩM region. The accuracy of this model and its impact
on the results are discussed in section 3.5.3.

3.2 Numerical implementation of the wall model

As seen in section 2.2.1, the model replaces the near-wall solution with a modeled evolution
in the near-wall region ΩW and shifts the boundary condition to the interface ΓI , separating
the modeled region from the rest of the domain, where conventional RANS integration
occurs. In a discrete environment, ΩW is typically defined as a fixed number of cell layers
near the wall, with the interface ΓI at the top of this region. The state of the flow at the
interface (and at the point I) is unknown in a cell-centered framework and interpolation
between the closest cells states is required. Alternatively, a sampling point S can be used
above the interface, in the RANS region to obtain the local flow state useful to drive the
model. Consequently, the point I at the interface location is replaced by the sampling
point S in the wall model formulation presented above, in section 3.1. The adaptation of
the wall model strategy in a discrete cell-centered framework is illustrated in figure 2.6.

3.2. NUMERICAL IMPLEMENTATION OF THE WALL MODEL 67

The boundary conditions for RANS integration along the RANS - Wall model interface
(R-WM I.) are set by modeling the flow values at ghost cells, which are cells within ΩW

region, but belonging to the numerical stencil of the RANS region located across the
interface. The number of ghost cells required depends on the numerical scheme: in this
work, two layers of ghost cells are required. The ghost cell configuration is illustrated in
figures 2.7 and 2.8.

3.2.1 Iterative estimation of local wall shear stress

The skin friction velocity uτ is obtained by solving the non-linear equation (3.7) applied
to a sampling point S. Specifically, the tangential velocity u∥(yS) and corresponding wall
distance yS at S are needed.

The solution to this nonlinear equation is numerically obtained by an iterative
Newton-Raphson method that reads

un
τ = un−1

τ − g(un−1
τ)

g′(un−1
τ)

. (3.13)

The derivative g′ is obtained analytically:

g′(uτ) =
ρw
µw

yS · ∂f
∂y+
− 3µw

ρ2wu
4
τ

∂p

∂x
· ∂f
∂p+

+
u∥(yS)

u2
τ

. (3.14)

A guess for the skin friction velocity uτ is required to initialize the Newton-Raphson
procedure. For this, the simpler Werner and Wengle’s wall law [122] is used, which can be
reformulated as follows:

uτ

(
u∥(y

S)
)
=

µwu∥(yS)

ρwyS
if u∥ ≤

µw

4ρwyS
A

2
1−Bñ

1 +B

A

Å
µw

2ρwyS

ãB
u∥(y

S) +
1−B

2
A

1+B
1−B

Å
µw

2ρwyS

ã1+B
ô 1

1+B

otherwise
,

(3.15)

with A = 8.3 and B = 1
7
.

The iterative process is applied until the residual value of g approaches zero within
a given tolerance (set in the following to 10−9). Once the skin friction uτ is obtained,
equation (3.4) can be used to determine the wall tangent velocity u∥(y) at any height y
in the modeled region: The Newton-Raphson procedure to compute uτ is summarized in
algorithm 1.

3.2.2 Wall model application

The section explains the methodology adopted to apply the wall model and determine the
evolution of tangential velocity u∥ in the near-wall region of the boundary layer.

The process begins by determining the thermodynamic state within the near-wall
modeled region and the evolution of the pressure field along the streamwise direction, as
outlined in section 3.1.2. Next, the model estimates the local wall shear stress by solving,

68 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

Algorithm 1: Computation of uτ

Inputs : uS
∥ , y

S, ρw, µw, ∂p/∂x

Initialize uτ with equation (3.15)

Compute g ← f
Ä
ρwuτ

µw
yS, µw

ρ2wu3
τ

∂p
∂x

ä
− uS

∥
uτ

(equation(3.6))
while |g| > 10−9 do

Compute g′ ← ρw
µw

yS · ∂f
∂y+
− 3µw

ρ2wu4
τ

∂p
∂x
· ∂f
∂p+

+
uS
∥

u2
τ

(equation (3.14))
Update uτ ← uτ − g/g′

Compute g ← f
Ä
ρwuτ

µw
yS, µw

ρ2wu3
τ

∂p
∂x

ä
− uS

∥
uτ

(equation(3.6))
end

through the iterative algorithm in 1, the non-linear equation (3.7) applied at the sampling
point S.

Once the local shear stress has been determined, the tangential velocity u∥ in the
near-wall region can be easily estimated through the equation (3.5) by just knowing the
wall distance y of the modeled location. The figure 3.1 resumes the general methodology
to compute u∥(y) within the modeled region.

RANS

Modeled region

Physical model µw, ρw, ∂p/∂x

uS
∥ , yS

Newton Raphson loop

y Adimensionalization
p+

y+

Wall model u+ = f(y+, p+) × u(y)

uτ

uτ computation

ghost cell filling

Figure 3.1: Schematic representation of wall model methodology to determine the tangential
velocity profile within the modeled region through iterative approach.

3.3 Flow configurations

Reference and training data are obtained from a set of fine wall-resolved RANS simulations.
The flow configuration adopted to train and test the current model is the 2D bump case,
introduced in section 2.3.1.

Training and evaluation data are extracted for a well-established, fully turbulent
boundary layer. Thus, the extraction zone for the datasets is restricted to the range
X = 0.3 to X = 1.2 (corresponding to the bump region, see figure 2.9b. Various Reynolds
numbers and bump heights h are considered to build the training and test datasets. The
considered Reynolds numbers are Re = 106, Re = 3 · 106, Re = 6 · 106 and Re = 107, while
the considered bump heights h are 0.05, 0.06, 0.07, and 0.08. They are selected to yield a
weak to moderate pressure gradient along the geometry without inducing flow separation.
A flow configuration with h = 0 (flat plate geometry) is also used as a test case.

The figure 3.2 shows the (Re, h)-combinations considered for the present chapter. The
complete dataset, training and test sets, consists in 14 simulations. The training dataset
(red dots) includes cases with moderate adverse pressure gradient p+ (for instance, h = 0.05
and Re = 6 ·106), but also a case with higher dimensionless pressure gradients approaching

3.3. FLOW CONFIGURATIONS 69

flow separation (h = 0.07 and Re = 106). This may be seen in figures 3.3 and 3.4, which
show respectively the skin friction coefficient Cf (almost reaching zero for one of the cases)
and the non-dimensional pressure gradient p+ (exhibiting a very strong value for vanishing
Cf) of the training cases.

0 5 6 7 8
1

3

6

8

10

Height h

R
ey

no
ld

s
N

um
be

r
R
e

×106

×10−2

(Flat plate)

: Training dataset
: Test cases (interpolation)
: Test cases (extrapolation)

Figure 3.2: Training and test datasets obtained from different combinations of Reynolds
number and bump height h.

The other configurations are used for testing. The test dataset contains five
configurations that combine h and Re values within the range used for training (testing
interpolation capabilities of the model in the (h,Re)-space), and five configurations that
go beyond this range (testing extrapolation capabilities).

Figure 3.3: Streamwise evolution of the skin friction coefficient Cf for the four cases used
for training.

The ratio between the bump height h and the boundary layer thickness δ at X = 0.3
for all the flow configurations is shown in table 3.1. Due to the presence of strong pressure
gradients which affects the velocity profiles, the standard δ99 definition commonly used for
flat plates cannot be applied here. Instead, the boundary layer edge and the associated
boundary layer thickness δ are estimated through the vanishing of the shear stress and
flow vorticity following the work of Cliquet, Houdeville, and Arnal [21]. The boundary
layer edge can thus be estimated through an empirical estimation method, which relies on
the boundary layer definition. At the boundary layer edge, the shear stress τ and the flow
vorticity Ω must become small. The total shear stress can be defined as

70 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

Figure 3.4: Streamwise evolution of the dimensionless pressure gradient p+ for the four
cases used for training.

τ = τl + τv = µ |Ω|+ µt |Ω| , (3.16)

where the laminar component of shear stress τl and the turbulent shear stress τl are
computed through the laminar and turbulent viscosity, respectively µ and µt.

The boundary layer thickness δ is defined such as

δ = min (δΩ, δτ) , (3.17)

where δΩ and δτ are the wall normal distances where ϵΩ and ϵτ reach respectively small
empirical values as 0.001 and 0.015. The two parameters ϵΩ and ϵτ are defined as it follows

ϵΩ =
|Ω|
|Ω|max

ϵτ =
|τ |
|τ |max

. (3.18)

As an example, the estimated boundary layer thickness for the wall-resolved RANS
case with h = 0.06 and Re = 3 · 106 is represented over velocity magnitude contours in
figure 3.5.

Table 3.2 shows the strongest non-dimensional pressure gradient for all flow
configurations. It reveals that the case (h = 0.08, Re = 3 · 106) involves p+ values that
exceed by two orders of magnitude the training values (thus explaining some convergence
problems discussed later for this case).

h/δ at X = 0.3
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 1 · 107 11.76 15.69
Re = 8 · 106 11.54
Re = 6 · 106 9.26 11.11 12.96
Re = 3 · 106 0.0 8.62 10.16 11.86 13.56
Re = 1 · 106 7.04 8.57 9.85

Table 3.1: Ratio between bump height h and boundary layer thickness δ at X = 0.3 for
all flow configurations

The inner region of the boundary layer, which is modeled by the present wall law,
extends approximately up to y

δ
≤ 0.15. Consequently, training data, as well as the location

3.4. NEURAL NETWORK IMPLEMENTATION AND TRAINING 71

Figure 3.5: Velocity magnitude contours for the wall-resolved RANS case with h = 0.06
and Re = 3 · 106. Boundary layer thickness represented with dashed line.

Strongest non-dimensional adverse pressure gradient p+

h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08
Re = 1 · 107 0.014 0.099
Re = 8 · 106 0.017
Re = 6 · 106 0.013 0.023 0.051
Re = 3 · 106 0.0 0.025 0.048 0.137 258.2
Re = 1 · 106 0.076 0.187 1.997

Table 3.2: Strongest non-dimensional adverse pressure gradient for all flow configurations

of the interface for the wall model during testing, need to be located within this inner region.
The learning process is focused on samples satisfying y+ ≤ 100. This limit corresponds to
the largest range of y+ that is entirely contained within the 15% of the boundary layer
thickness at each streamwise station.

3.4 Neural network implementation and training

A neural network is trained to estimate, from the dimensionless wall distance y+ and the
dimensionless pressure gradient p+, the dimensionless velocity u+ as in equation (3.3).
Moreover, the derivatives of the neural network, with respect to the inputs y+ and p+, are
needed for the Newton algorithm, as shown in equation (3.14).

This section outlines the steps involved in building the model, including the selection
of the loss function, the choice of the model architecture, and the training results.

3.4.1 Loss function definition

The proposed wall model is data-driven, meaning the neural network is built upon training
by data extracted from wall-resolved RANS simulations. The NN training optimizes w

(L)
i,j

and b
(L)
i for all neurons by minimizing a loss function ϵ that evaluates the error between

RANS data and NN predictions.

72 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

A first approach would be to consider the Mean Squared Error (MSE) for the loss
function:

ϵMSE =
1

NS

NS∑
i=1

Ä
fNN(y

+
i , p

+
i)− u+

i,ref

ä2
, (3.19)

where NS is the number of samples. Yet, it puts more emphasis on the high u+ values,
since reducing the relative error of a given percentage becomes more advantageous for
high u+ values. Using the Mean Squared Relative Error (MSRE):

ϵMSRE =
1

NS

NS∑
i=1

Ç
fNN(y

+
i , p

+
i)− u+

i,ref

u+
i,ref

å2

, (3.20)

yields also difficulties for u+ values close to zero, since it may diverge even for very small
absolute errors. Additionally, the relation u+ = f(y+, p+) learned with the MSRE loss
function was found to be wavy, which was problematic for the determination of the friction
velocity within the Newton-Raphson algorithm.

The present approach followed the work of Park [84] to address the issues mentioned
above, with a loss function based on a logarithmic expression of the error:

ϵ =
1

NS

NS∑
i=1

wρ i

∣∣∣∣∣log
Ç
fNN(y

+
i , p

+
i) + 1

u+
i,ref + 1

å∣∣∣∣∣+ λ2

NS

∥∥wL
∥∥
2
. (3.21)

The first term in (3.21) is the mean absolute logarithmic error between the NN output
fNN(y

+
i , p

+
i) and the corresponding reference value u+

i,ref from the training dataset. This
error function does not present the problems mentioned above. The coefficient wρi is
a weighting scalar that accounts for the sample distribution in the training dataset, as
introduced in section 2.1.2.2.3. As in the work of Zhou, He, and Yang [131], the samples
weights are considered to be inversely proportional to the sample density, as in equation
(2.6).

This term corrects learning issues that appear when the training samples are unevenly
distributed: without the scaling wρ, regions in the (y+, p+) plane where the sample
distribution is dense are artificially favored since the network attempts to minimize an
average error over all samples. In our case, using wρ has shown improved results for high
p+ values, where there is a limited number of samples in the training dataset. Without
this regularization, the network focuses on reducing the error for low p+ values since it
corresponds to most training samples.

Figure 3.6 shows both the sample density ρi of the dataset and the resulting coefficients
wρi.

The second term in the loss function ϵ is an L2 regularization that avoids dominance
of certain weights wL

i,n by penalizing high valued ones. It is a common strategy in deep
learning to help train and avoid over-fitting by forcing a homogeneous weights distribution.
It is weighted by the parameter λ2, which has been empirically set to λ2 = 0.001 through
trial-and-error. But the sensitivity to λ2 is rather weak: different values have been tested,
and when λ2 is in the range [0.01, 0.001], the results are nearly identical to those presented.

3.4.2 Neural network architecture and optimization

The neural network requires the dimensionless wall distance y+ and the dimensionless
pressure gradient p+ as input, producing the dimensionless velocity u+ as output. This
fixes the structure of input and output layers in the neural network, which are respectively

3.4. NEURAL NETWORK IMPLEMENTATION AND TRAINING 73

(a) Probability density function ρi of the
sample density.

(b) the loss weighting coefficient wρi = 1/ρi
used during neural network training.

Figure 3.6: Scatter of the training samples for iterative data-driven model. Probability
density function ρi of the sample density and the loss weighting coefficient wρi = 1/ρi used
during neural network training.

composed by two and one neurons. Since the dynamical range of each input strongly
differs (e.g., y+ ∈ [0, 102] and p+ ∈ [−0.02, 2]), an additional hidden layer is added after
the input layer to allow the NN to normalize the input values, as introduced in section
2.1.2.2.1.

In the context of wall-modeled RANS simulations, the neural network architecture
(number of nodes and hidden layers) strongly impacts the CFD solver’s CPU cost. For
this reason, the neural network structure has been optimized to minimize the number of
operations without compromising the accuracy of the prediction.

3.4.2.1 Optimization of the neural network architecture

An optimization process has been carried out to find optimal network architectures with
respect to the accuracy/cost trade-off, in order to identify the optimal depth of the network
and the ideal width of each layer.

A given network architecture with Lh hidden layers containing each a rather large
number of neurons NL is considered as starting point, and an optimization process which
deactivates the least useful neurons is defined, which effectively consist in a structured
pruning optimization, introduced in section 1.5.2.4. This yields a network architecture
where the layer width is not constant anymore and has been reduced with minimal impact
on the accuracy. The process has been repeated for several numbers of layers Lh, and is
described below.

An optimization network is created by adding a gate directly after every hidden layer
neuron. These additional nodes multiplies their input by a scalar (no activation function
and no bias) which is a trainable parameter of the network. These gates are then densely
connected to the downstream hidden layer. Therefore, suppressing a neuron from the
network is equivalent to setting its gate’s weight to zero. A schematic diagram of such a
gated neural network is given in figure 3.7.

The initial network, composed of Lh layers and 16 neurons each, is first trained without
gates, following the procedure described in 2.1.2.2.4 to minimize the loss ϵ defined in
equation (3.21). Then, gates are added after all hidden-layer neurons and their weight
is initialized to 1. The training is launched again (by keeping the same optimization

74 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

InputNormalization layer Hidden layers Output

y+

p+

u+

Figure 3.7: Schematic diagram of the feedforward neural network with multiple hidden
layers used for structure optimization process.

parameters) with the following modified loss ϵ′:

ϵ′ = ϵ+
λ1

NS

∥∥wL
o

∥∥
1
, (3.22)

where wL
o is a vector containing all the weights of the gates and NS the number of

training samples. In the equation, ϵ refers to the loss function in (3.21). The extra
L1 regularization term promotes sparsity and pushes toward setting some gates to zero.
During the optimization, when a gate’s weight drops below 0.01, it is permanently set to
zero. Other threshold values, ranging from 0.01 to 0.1 have been tested. The highest values
have been found to significantly affect the NN’s accuracy. The penalization coefficient λ1

controls the cost/accuracy trade-off by balancing the sparsity penalization with the rest of
the loss (that promotes accuracy). Different values between 0.001 and 1 have been tested
(the higher λ1, the more deactivated neurons) for different network depths Lh (2, 3, and
4). Once the optimization is converged, one gets the width of each layer. The resulting
architecture is then evaluated through the Mean Absolute Percentage Error (MAPE).

The error is thus monitored against the number of remaining hidden layer neurons
and the number of operations in hidden layers (an operation here is considered as a link
between two neurons, which corresponds to computing a quantity of the form w

(L)
i,j O

(L−1)
j ,

see equation (1.71). This provides Pareto fronts, which are shown in figure 3.8.
Overall, the three and four hidden layers neural networks showed similar levels of

accuracy, while two hidden layer networks displayed significantly lower performances. As
expected, a too low number of remaining nodes results in a steep drop of accuracy.

The four hidden layer neural network trained with an L1 penalization coefficient of
λ1 = 0.001 (green circle) is retained as final architecture, motivated by a willing to favor
accuracy over cost for this first methodological application. This neural network, composed
by 10, 10, 10 and 7 nodes in the hidden layers, allows to more than halve the number of
operations performed by the starting network given by four hidden layers of 16 nodes each
while maintaining the similar level of accuracy (all lighter architectures yield a decreased
accuracy).

3.4.2.2 Neural network architecture

The resulting optimized structure of the neural network consist in four main hidden layers,
made of by 10, 10, 10 and 7 neurons, respectively. A schematic diagram of the NN

3.4. NEURAL NETWORK IMPLEMENTATION AND TRAINING 75

(a) MAPE as function of hidden layers
nodes.

(b) MAPE as function of hidden layers
operations

Figure 3.8: Results of structure optimization process. Mean Absolute Percentage Error
(MAPE) given by neural networks with reference to the whole dataset.

architecture is given in figure 3.9.

y+

p+

u+

Figure 3.9: Schematic diagram of the resulting optimized feedforward neural network.
Iterative data-driven model.

3.4.3 Training and a priori results

The training of the neural network is then carried out using a gradient-based algorithm,
in our case, the Adam algorithm [59]. Overfitting is monitored by splitting data into a
training and a validation dataset. The training dataset is used to update the parameters
of the network during the optimization. The validation dataset is only used to evaluate
the so-called validation loss. Overfitting can then be diagnosed if the validation loss
significantly departs from the training loss. The training dataset is obtained through a
random selection of 85% of data, while the validation data consist of the remaining 15%.
The training of the neural network required 2004 epochs. More details on the neural

76 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

(a) Representation of samples with the inner
region of the boundary layer (yδ ≤ 0.15).
The vertical dashed-line indicates the limit
of the learning dataset y+ ≤ 100.

(b) Learned approximation of dimensionless
wall velocity u+ = f(y+, p+). Comparison
with training dataset.

Figure 3.10: Wall distance and pressure gradient informed neural network. Selected
training data and learned wall normal evolution of the dimensionless velocity u+.

network training strategy are given in 2.1.2.2.4. The evolution of training and validation
loss during the training process is given in figure 3.11.

Figure 3.11: Training and validation loss evolution during training process.

The resulting learned relation u+ = f(y+, p+) is shown in figure 3.10, which also
displays the training RANS dataset (only values below y+ ≤ 100 have been considered).
An additional representation in the (y+, p+)-space may be seen in figure 3.12. The learned
evolution of the dimensionless velocity u+ expressed by the NN well reproduces the training
dataset for the considered pressure gradients. Note that due to the geometric symmetry of
the bump and its low height, the value range of the (dimensional) pressure gradient ∂p/∂x
obtained in a given simulation is approximately symmetric (same maximal amplitude for
positive and negative values). However, since the boundary layer flow is not symmetric with
respect to the geometry (the friction velocity uτ in particular), the range of dimensionless
values p+ is not symmetric, explaining why training data contains larger positive p+ values
than negative ones.

3.5. RESULTS 77

Figure 3.12: Contours of learned relation u+ = f(y+, p+) (colored iso-lines) and training
dataset points (filled colored circles). The relation beyond y+ ≈ 100 and p+ ≈ 2 is obtained
through linear extrapolation.

As seen in figure 3.12, the learning samples roughly cover p+ ∈ [−0.02, 2] and y+ ∈
[0, 100]. To extend the capabilities of the model, if values beyond this range are encountered,
then the neural network is replaced by a simple linear extrapolation based on ∂fNN/∂y

+

and ∂fNN/∂p
+ evaluated on the borders of the training domain, i.e., y+ ≈ 100 and p+ ≈ 2.

This extrapolation is visible in figure 3.12.

3.5 Results

3.5.1 Test procedure

This section presents the results obtained using the neural network as a wall model, tested
on various flow configurations and geometries defined in section 3.3. The results are
compared with the wall-resolved RANS simulation for the same parameters.

The wall model is only applied to established turbulent boundary layers. For this
reason, the complete simulation domain for the wall-modeled computation is limited
to X ∈ [0.3, 1.5], with an inflow condition that injects the fully developed boundary
layer computed from the reference simulation at X = 0.3. Wall model performances are
evaluated on the bump geometry only, from X = 0.3 to X = 1.2, which corresponds to
the extraction zone for the training data.

The wall model is applied to structured grids, as explained in section 2.2. The numerical
stencil of the spatial scheme in the solver includes two cell layers below the RANS - Wall
model interface (R-WM I.), placed to a chosen value of y+. Therefore, two layers of
cells below the interface are modeled. Figure 2.8a illustrate the encountered modeling
configuration, while the case of model application illustrated in figure 2.8b is not found
here, since the simulation domain is limited to X ∈ [0.3, 1.5]. The neglected cells are
beyond the numerical stencil of the RANS region and are consequently unused during
the RANS computation. The standard RANS integration takes over above the R-WM I.
and the sampling point is taken at the second cell in the RANS integrated zone from the
interface.

For each configuration, three y+ values are considered for the R-WM I.: y+ ≈ 10, 30, 50.
The first RANS-integrated cell is thus placed in the buffer layer, between the buffer layer
and the logarithmic region, and in the logarithmic region, respectively.

78 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

The following subsections show first the global error for all the covered configurations,
then more detailed results are presented and discussed for some selected cases.

3.5.2 Global errors

To evaluate the capabilities of the model, the wall model is tested on the ten test
configurations proposed in figure 3.2, but also on the four training flows to obtain
reference errors. The evaluation is thus performed both on seen and unseen configurations.
Evaluating the model on all configurations allows comparing the error due to the
approximate learned relation for u+ and the impact of the assumptions made on other
variables (temperature, density, and eddy viscosity, see section 3.1).

The evaluation of the global performances of the wall model is based on the estimation
of the skin friction coefficient Cf on under-resolved grids compared to fully-resolved RANS
simulations. A 2-norm error is computed between the reference RANS results and the
simulation with the wall model. The global 2-norm error e2 is obtained as

e2 =

∥∥Cf (Xi)− Cf,ref (Xi)
∥∥
2∥∥Cf,ref (Xi)

∥∥
2

=

√∑
i[Cf (Xi)− Cf,ref (Xi)]2√∑

i[Cf,ref (Xi)]2
(3.23)

where Xi are all the streamwise locations for X between 0.3 and 1.2.
Table 3.3 shows the global error e2 computed for all the flow configurations and the

three interface positions considered. The model shows good performances overall, with an
error of 6.84% at most.

The global error for the training configurations (i.e. h = 0.05 − Re = 106, h =
0.05 − Re = 6 · 106, h = 0.07 − Re = 106 and h = 0.07 − Re = 6 · 106) is close to the
error for unseen configurations. This shows that the learned relation does not suffer from
interpolation or extrapolation issues in the range of flow conditions considered. However,
the error increases as the RANS - Wall model interface is further away from the wall, and
it appears to reduce when lower p+ values are encountered, both for a lower bump height
and an increase in the Reynolds number. This observation provides information on the
main source of error in the present model, and it is further developed in section 3.5.3.

The simulation case (h = 0.08, Re = 3 · 106) fails to converge when the RANS - Wall
model interface is close to the wall (i.e. y+ ≈ 10). This configuration requires very high
values of p+, well beyond the extrapolation capabilities of the proposed neural network
(two orders of magnitude higher than the highest value encountered during training). Yet,
the problem does not persist for cases with a higher interface (i.e., y+ = 30 and y+ = 50).
This is due to an overestimate of the skin friction coefficient Cf and skin friction velocity
uτ , drastically reducing the sensed value of p+ fed to the neural network. The cause of
this overestimation of friction in high p+ valued areas is addressed in section 3.5.4.

Nonetheless, this unconverged case is interesting because it bounds the extrapolation
capabilities of the model. It appears that it may be unable to treat (quasi)separated
boundary layers due to the attached nature of the flows considered for training. This
limitation, as well as possible solutions, are further discussed in conclusion.

3.5.3 Interpolation test results

Interpolation capabilities of the model (evaluated on the interpolation test configurations
defined in section 3.3) are presented in more detail in this section. The following results
compare the obtained profiles for different flow variables from the wall models. It provides
a more detailed view of the modeling errors. For conciseness, let us focus on the case

3.5. RESULTS 79

RANS interface at y+ ≈ 10
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 1 · 107 0.72% 0.88%
Re = 8 · 106 0.75%
Re = 6 · 106 0.77% 0.8% 0.85%
Re = 3 · 106 0.61% 0.84% 0.93% 0.92% *
Re = 1 · 106 1.26% 1.35% 1.54%

RANS interface at y+ ≈ 30
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 1 · 107 1.68% 2.09%
Re = 8 · 106 1.92%
Re = 6 · 106 1.94% 2.27% 2.53%
Re = 3 · 106 1.21% 2.94% 3.41% 3.76% 3.98%
Re = 1 · 106 5.54% 6.28% 6.84%

RANS interface at y+ ≈ 50
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 1 · 107 2.9% 2.63%
Re = 8 · 106 3.06%
Re = 6 · 106 3.05% 3.36% 3.54%
Re = 3 · 106 1.91% 3.57% 4.0% 4.34% 4.58%
Re = 1 · 106 4.59% 5.1% 5.63%

Table 3.3: 2-norm global error of the wall-modeled simulation on the skin friction coefficient
Cf with respect to the reference wall-resolved RANS simulation for three different RANS
interface positions and different combinations of bump height h and Reynolds number Re.
The symbol * indicates that the computation failed to converge (non-convergence of the
Newton-Raphson loop from algorithm 1)

h = 0.06 and Re = 3 · 106 (results on the other interpolation cases are similar). It is
referred to as an interpolation case because it involves a combination of Reynolds number
and bump height inside the training range values.

Figure 3.13 shows the skin friction coefficient Cf along the wall and its error with
respect to the wall-resolved simulation. The error e is normalized by the mean Cf value of
the reference simulation over the wall, such that

e(Xi) =
Cf (Xi)− Cf,ref (Xi)

Cf,ref

, (3.24)

with Xi referring to the equally spaced solution points in X−coordinate direction along
the considered portion of the wall, Cf the estimation of friction coefficient from the wall
model, Cf,ref the estimation of friction coefficient from the wall-resolved simulation and
Cf,ref its mean value over the wall (the local value is not used for normalization to avoid
artificial divergence of the error when Cf becomes too close to zero). Note that this error
is purposely defined as a signed value (to evaluate potential model under/overestimation).

Globally, the wall model accurately estimates the skin friction evolution along the bump
geometry, with the error increasing as the height of the interface increases. A maximum
local error of 2%, 8.5% and 8.6% is found for respective y+ values of 10, 30 and 50. The
maximum error is found near the top of the bump or near its downstream bottom area
(where high p+ values are expected). Note that since the average value of Cf is used to
normalize the error, it is expected to find larger errors where Cf reaches its maximal value.

80 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

(a) Skin friction coefficient Cf

(b) Normalized error e of skin friction coefficient Cf

Figure 3.13: Bump interpolation case (h = 0.06 and Re = 3 · 106). Skin friction
coefficient Cf along the X−coordinate direction and its normalized error with respect to
the wall-resolved RANS simulation. Wall distance at first RANS computed cell: y+ ≈ 10,
y+ ≈ 30, y+ ≈ 50.

Figure 3.14 shows tangential velocity profiles obtained at X = 0.75 (top of the bump)
and at X = 0.95 (downstream bottom area). The curves present the results of the wall
model for the three considered RANS - Wall model interface positions to the reference
wall-resolved RANS simulation. At the top of the bump, the model closely matches fully
resolved RANS results. In the downstream bottom area, the model still fits the RANS
simulation when the R-WM I. is located at y+ ≈ 10. The error increases for simulations
with higher interfaces with a tendency to overestimate the velocity. Simulation with an
interface at y+ ≈ 30 and y+ ≈ 50 show a very similar error and behavior.

The temperature evolution from the wall at X = 0.75 and X = 0.95 are shown in
figure 3.15. For brevity, density profiles are omitted here since their behavior closely
reproduces those of the temperature. Again, the profiles depart further from the reference
as the interface height increases. Nonetheless, for all simulations, the relative error on the
temperature is very limited (below 1%) compared to the wall-resolved simulation.

Figure 3.16 shows the evolution of the dimensionless velocity u+ with the wall distance
y+ obtained from the wall model at X = 0.75 and X = 0.95. The lower end of the curve
(near-wall region) is fixed by the wall model, while the upper behavior is driven by the S.-A.
RANS integration based on the values of the modeled region. The near-wall area shows

3.5. RESULTS 81

(a) X = 0.75 (top of the bump) (b) X = 0.95

Figure 3.14: Bump interpolation case (h = 0.06 and Re = 3 · 106). Wall normal evolution
of tangential velocity at X = 0.75 (top of the bump) and at X = 0.95. Wall distance at
first RANS computed cell: y+ ≈ 10, y+ ≈ 30, y+ ≈ 50.

(a) X = 0.75 (top of the bump) (b) X = 0.95

Figure 3.15: Bump interpolation case (h = 0.06 and Re = 3 · 106). Wall normal evolution
of temperature at X = 0.75 (top of the bump) and at X = 0.95. Wall distance at first
RANS computed cell: y+ ≈ 10, y+ ≈ 30, y+ ≈ 50.

a close match with respect to the reference RANS simulation. However, the integration
in the RANS region yields a more significant error that increases with the wall distance.
Overall, the profiles display a good agreement with the reference solution at X = 0.75,
while only the wall model with an interface at y+ ≈ 10 well agrees with the RANS results
in the downstream bottom area (X = 0.95). Again, models with y+ ≈ 30 and y+ ≈ 50
interfaces show similar behavior.

Figure 3.17 shows the dimensionless S.-A. variable ν̃+ at X = 0.75 and X = 0.95. Again,
the errors increase with higher wall distances at the first cell. The overall discrepancy
appears limited at the top of the bump, while differences are found more relevant in
the downstream bottom area of the bump. These differences explain the error behavior
linked to the wall model strategy. The downstream bottom part of the bump displays a
high p+ value, which appears to strongly influence the dimensionless S.-A. variable ν̃+

compared to the modeled one (dashed line). The S.-A. variable in the presence of strong
adverse pressure gradients tends to depart from a linear behavior for lower y+ values,
which explains the growing error observed for higher RANS - Wall model interface (other

82 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

(a) X = 0.75 (top of the bump) (b) X = 0.95

Figure 3.16: Bump interpolation case (h = 0.06 and Re = 3 · 106). Wall normal evolution
of dimensionless velocity at X = 0.75 (top of the bump) and at X = 0.95. Wall distance
at first RANS computed cell: y+ ≈ 10, y+ ≈ 30, y+ ≈ 50.

(a) X = 0.75 (top of the bump) (b) X = 0.95

Figure 3.17: Bump interpolation case (h = 0.06 and Re = 3 · 106). Wall normal evolution
of dimensionless dimensionless S.-A. variable ν̃+ at X = 0.75 (top of the bump) and at
X = 0.95. Wall distance at first RANS computed cell: y+ ≈ 10, y+ ≈ 30, y+ ≈ 50.

modeling assumptions or approximations do not have an increasing error for higher y+).
This also explains why the global error from table 3.3 tends to increase for lower Re and
higher h: higher p+ values are expected with lower Reynolds numbers and higher bump
heights, leading to more significant errors on ν̃+.

The error on the S.-A. variable impacts the RANS integration above the model interface.
It strongly affects flow quantities sensed at the sample point. For this reason, a high
error on ν̃+ leads to underestimated p+ values at the sample point. Thus, the wall
model converges toward overestimated solutions for the skin friction coefficient. The
opposite situation happens at the top of the bump, where the poor modeling of ν̃+ for
higher interface height yields underestimated Cf . Additionally, for lower Reynolds number
configurations, the dimensionless S.-A. ν̃+ variable departs more rapidly from a linear
behavior, which explains the observed error differences for different values of Re in Table
3.3 as the interface is moved upward.

3.5.4 Extrapolation cases

Extrapolation capabilities of the model have been tested on unseen configurations during
the training process with Reynolds number Re and a bump height h combinations beyond

3.5. RESULTS 83

the range of values met in the training dataset. For almost all tested configurations, the
error and conclusions are similar to those from the interpolation cases: the error on the
Cf evolution, velocity, temperature, density, and eddy viscosity profiles is the highest
near the top of the bump and its downstream bottom area, with the same tendencies to
over/underestimate the flow variables as previously. The performance assessment on the
particular case of a zero-pressure flat plate (h = 0) is covered in section 3.5.4.1. For h ̸= 0,
the error becomes significant and may lead to convergence problems when the flow is close
to separation. This is discussed in more detail in section 3.5.4.2.

3.5.4.1 Flat plate case

The extrapolation capabilities of the model have been tested on the flat plate flow at
Re = 3 · 106. Figure 3.18 shows respectively the predicted skin friction coefficient Cf

and its relative error e with respect to wall-resolved RANS (the normalizing value is the
averaged value of Cf)

The model appears to be well adapted to quasi-equilibrium boundary layer, since the
skin friction coefficient is well reproduced by the neural network. The local normalized
error does not exceed 3% even when the model interface is located at y+ ≈ 50; yet, better
performances are achieved when the interface is located closer to the wall.

3.5.4.2 Near separation case

This section focuses on the case h = 0.08 and Re = 3 · 106. This is the test case with the
strongest adverse pressure gradient, the flow being on the verge of separation. Thus, it is
the most challenging case for our wall model, which was not designed to handle separated
regions. Convergence problems appeared when the RANS interface was close to the wall,
as reported in table 3.3. Figure 3.19 shows the results obtained for the cases that were able
to converge (interface at y+ ≈ 30 and y+ ≈ 50). One may see that the evolution of Cf is
qualitatively good. However, the error curve shows that the behavior is slightly erratic near
the point where Cf approaches zero. Additionally, the figure shows the model’s tendency
to overestimate Cf in this region. As in section 3.5.3, this overestimation becomes less
significant when the interface is closer to the wall. That explains why only the case with
the interface at y+ ≈ 10 failed to converge: the modeling error on ν̃+ is smaller. Thus
the encountered values of p+ become closer to the reference, i.e., too high to be handled
properly by the model. These results show that the wall model may handle reasonably
large values of p+ (such as those encountered when the interface is higher, underestimated
due to the S.-A. variable modeling), but it reaches its limit for the case y+ = 10.

3.5.4.3 Influence of dimensionless pressure gradient

To assess the importance of including or not the dimensionless pressure gradient p+ as
an input parameter to the wall law u+ = f(y+, p+), the selected interpolation case of the
bump flow with h = 0.06 and Re = 3 · 106 has been evaluated by imposing p+ = 0 in
the previously learned wall law during the CFD computation, i.e., u+ = f(y+, p+ = 0).
Figure 3.20 shows the normalized error on skin friction coefficient Cf comparing the
neural network fed with the wall distance y+ and the dimensionless pressure gradient p+

and the same neural network solely fed with the wall distance y+. Overall, the pressure
gradient-informed wall model manages to reproduce wall-resolved RANS simulation better.
Significant differences between neural networks are detected at the top of the bump (i.e.,

84 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

(a) Skin friction coefficient Cf

(b) Normalized error of skin friction coefficient Cf

Figure 3.18: Bump interpolation case (h = 0.06 and Re = 3 · 106). Wall normal evolution
of temperature at X = 0.75 (top of the bump) and at X = 0.95. Wall distance at first
RANS computed cell: y+ ≈ 10, y+ ≈ 30, y+ ≈ 50.

X = 0.75) and downstream of the bump geometry (i.e., X = 0.95), where the highest
pressure gradients are expected.

Table 3.4 shows 2-norm global errors on the skin friction coefficient Cf computed
with wall distance and pressure gradient informed neural network u+ = f(y+, p+), and
solely wall distance-informed neural network u+ = f(y+, p+ = 0). The 2-norm error of
wall distance and pressure gradient informed neural network is extracted from table 3.3.
The capabilities of the pressure gradient-fed neural network to estimate better local skin
friction coefficient Cf is also confirmed on global 2-norm errors.

3.5.5 Mass conservation

As mentioned earlier, the present wall model strategy does not enforce the conservation
of mass, which may be problematic for internal flow simulations. The mass loss in our
configurations is evaluated by integrating the mass flux over the limits of the computational
domain Ω (i.e., X = 0.3, X = 1.2 and Y = 5) by excluding the lower wall where the wall
law is applied (since no mass flux exists there):∮

Ω

ρu · ndΩ, (3.25)

3.5. RESULTS 85

(a) Skin friction coefficient Cf

(b) Normalized error e of skin friction coefficient Cf

Figure 3.19: Near separation case (h = 0.08 and Re = 3 · 106). Skin friction coefficient
Cf along X−coordinate direction and its normalized error with reference to wall-resolved
RANS simulation. Wall distance at first RANS computed cell: y+ ≈ 50.

h = 0.06 - Re = 3 · 106
u+ = f(y+, p+) u+ = f(y+, p+ = 0)

y+ ≈ 10 2.4% 3.04%
y+ ≈ 30 3.69% 4.57%
y+ ≈ 50 4.0% 6.41%

Table 3.4: Relative 2-norm global error on the skin friction coefficient Cf of the wall
modeled simulation with respect to the reference wall-resolved RANS simulation. Bump
interpolation case (h = 0.06 and Re = 3 · 106) for three different RANS interface positions.
Comparison between the wall distance and pressure gradient informed neural network
u+ = f(y+, p+) and solely wall distance informed neural network u+ = f(y+). 2-norm
error of wall distance and pressure gradient informed neural network is extracted from
table 3.3

with n the exterior normal to the contour. This quantity is supposed to be null, and mass
non-conservativity is characterized by the ratio∮

Ω
ρu · ndΩ
ρ∞U∞δ

. (3.26)

86 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

(a) y+ ≈ 10 (b) y+ ≈ 30 (c) y+ ≈ 50

Figure 3.20: Bump interpolation case (h = 0.06 and Re = 3 · 106). Normalized error e
of skin friction coefficient Cf obtained by solely wall distance informed neural network
(u+ = f(y+, p+ = 0)). Wall distance at first RANS computed cell: y+ ≈ 10, y+ ≈ 30,
y+ ≈ 50.

The lost mass rate is normalized with respect to the free-stream flow rate entering a section
of height δ, which corresponds to the boundary layer thickness at the beginning of the
evaluation zone (i.e., X = 0.3). The maximum loss equals 0.44% for the case h = 0.07 and
Re = 107 with the RANS - Wall model interface at y+ ≈ 50. For external aerodynamics,
such an error may be acceptable; for internal flows, where the mass-flow rate may be an
important quantity, such an error might become problematic.

3.6 Conclusion

This chapter presents a new deep learning-based approach to wall models for RANS
simulations inspired by classical wall laws. The proposed wall models rely on wall
dimensionless quantities, here the wall distance y+ and the wall pressure gradient p+, to
reconstruct the dimensionless wall velocity u+ profiles in wall-bounded region.

The model provides embedded neural networks to the CFD solver code, which forces
the primitive variables in modeled cells at a given interface near the wall, below which the
RANS computation is disabled. It is equivalent to a Dirichlet boundary condition applied
to the conventional RANS region.

The deep learning-based approach consists of a wall distance and pressure
gradient-informed neural network trained on a dataset extracted from a fine wall-resolved
RANS simulation of the flow over a bump. The training process has been performed with
different Reynolds number conditions and pressure gradient levels based on the bump
height.

The neural network has been tested and compared with a fully resolved RANS
simulation. The test cases were selected both from the training dataset and unseen
configurations of the bump flow, characterized by a different combination of Reynolds
number and bump height. The particular case of a flat plate was also included for testing.
The benchmark cases have been run with varying interface heights to test the proposed
wall model with various wall distances of the RANS interface.

One test case was particularly challenging. Convergence issues were found for
nearly-separated cases with a strong adverse pressure gradient. This was expected, since
no particular treatment has been designed to enable the network to handle such cases.
This may be addressed in the future by including a significant number of nearly-separated
and separated cases in the training database.

3.6. CONCLUSION 87

The wall distance and pressure gradient informed network yields accurate results for
almost all the test cases and modeling distances. However, the model underestimates
the skin friction coefficient, with an error that increases as the interface height becomes
higher. This is mainly due to the increasing deviation of the Spalart-Allmaras variable
behavior from the linear modeling approach as the distance from the wall and pressure
gradients increase. Consequently, further considerations are needed to extend the validity
domain of the wall model to greater modeling distances. For instance, more advanced
treatments to impose the near wall behavior of the turbulence model. The modeling of
the Spalart-Allmaras variable in the present case or the wall normal velocity component
could be explored.

Another known shortcoming is that the proposed methodology could lead to
conservativity problems, even though it was found to be negligible in the present
applications.

Even though relatively simple geometries characterize the test cases, this chapter
highlights the potential of neural networks for wall-bounded region modeling. In particular,
searching a relation between non-dimensional quantities mechanically gives the network
some extrapolation capabilities, enabling, for instance, simulation for Reynolds number
beyond the range considered for training. This would not be possible if one tries to
estimate dimensional quantities.

Moreover, even if a methodology has been proposed to optimize the computational cost
of the network, the iterative estimation of wall shear stress is not well adapted to reducing
computational cost, as it requires multiple neural network inferences. This question may
require more extensive attention and future work, since it is a critical point in the context
of wall models for CFD.

The present results are the starting point for further studies and investigations required
to overcome the issues encountered during this chapter.

88 CHAPTER 3. DATA-DRIVEN WALL MODELS FOR RANS

Chapter 4

Efficient data-driven wall models for
RANS

4.1 Wall law formulation . 91
4.1.1 Dirichlet-To-Neumann formulation for the wall tangent velocity

evolution . 91
4.1.1.1 Additional parameters for Dirichlet-To-Neumann map . . 92

4.1.2 Physical model for thermodynamic state and wall normal velocity field 92
4.1.3 Near-wall Spalart-Allmaras modeling 93

4.2 Numerical implementation of the wall model 94
4.2.1 Wall model discretization . 94
4.2.2 Wall model application . 94
4.2.3 Numerical effect of Dirichlet-To-Neumann approach 95

4.3 Flow configurations . 97
4.3.1 Bump flow case . 97

4.3.1.1 Training and testing datasets 97
4.3.2 Airfoil case . 98

4.4 Data-driven modeling . 98
4.4.1 Neural networks . 98
4.4.2 Neural network architecture . 99
4.4.3 Dataset treatment . 99
4.4.4 Loss function selection . 101
4.4.5 Training strategy . 102
4.4.6 Discussion on direct estimation and derivative computation 102
4.4.7 Discussion on single and multiple neural networks approach 103

4.5 Results . 105
4.5.1 Results on bump geometry . 105

4.5.1.1 Test procedure . 105
4.5.1.2 Assessment of Spalart-Allmaras modeling strategy 107
4.5.1.3 Discussion on the additional parameters for DtN-map . . . 108
4.5.1.4 Model validation and comparison with iterative approach . 109
4.5.1.5 Interpolation in Reynolds number 112
4.5.1.6 Interpolation in bump height 112
4.5.1.7 Interpolation in bump height and Reynolds number 113

4.5.2 Test on the airfoil geometry . 114
4.5.2.1 Test setup and procedure 115
4.5.2.2 Results . 115

4.5.3 Numerical performances assessment 117

89

90 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

4.5.3.1 Model computational time assessment 117
4.5.3.2 Total convergence time assessment 120

4.6 Conclusion . 121

In the previous chapter, it is demonstrated that the dependency of the wall-law with
respect to the streamwise pressure gradient along the streamwise direction x could be
learned from data by considering the additional non-dimensional parameter p+ [1] in the
wall-law:

u+ = f(y+, p+), with u+ =
u∥
uτ

, y+ =
uτ

νw
y and p+ =

νw
ρwu3

τ

∂p

∂x
. (4.1)

This generalized wall-law can be modeled by a neural network optimized to fit data
obtained from wall-resolved simulations. The resulting data-based model has then been
implemented within a RANS code and showed fairly good accuracy for close to wall
modeling distances (i.e., below y+ ≈ 50).

Yet, their first approach displays several weaknesses. Firstly, the resulting model is
computationally expensive due to the many neural network evaluations required for the
iterative solution of the local skin friction, which is obtained by solving

uS
∥

uτ

= f

Å
uτ

νw
yS,

νw
ρwu3

τ

∂p

∂x

ã
, (4.2)

given by equation (4.1) when applied to a sampling point S
Secondly, the model shows poor accuracy when applied in the log-layer at large distances

y+ from the wall. In the approach of Romanelli et al. [92], presented in chapter 3, the
turbulent variable behavior is approximated by a linear evolution of the dimensionless
Spalart-Allmaras variable, defined as

ν̃+ =
ρν̃

µ
. (4.3)

Following the study of Kalitzin et al. [56], the evolution of the dimensionless
Spalart-Allmaras variable in the near-wall can be modeled as

ν̃+ = κy+, (4.4)

where κ = 0.41 is the Von Kármán constant. This model is applicable for the inner
region of low-pressure boundary layers, in the viscous and logarithmic layer. However,
experiences documented in chapter 3 indicate that the model accuracy diminishes rapidly
when encountering non-negligible pressure gradients, and the loss of accuracy increases
with the modeling distance from the wall.

Lastly, the parameter p+ is not sufficient to fully characterize the internal state of the
boundary layer (the wall-resolved RANS simulations showed that multiple values of skin
friction could arise for a given p+, see figure 3.4).

In the present chapter, to address the computationally expensive estimation of the
iterative solution of the local skin friction, the wall-law is reformulated in the general
framework of a Dirichlet-To-Neumann (DtN) map, which assumes the existence of a
relation (a map) between the value of the streamwise velocity at some height of the
boundary layer and its wall-normal derivative. This framework is very natural and elegant
for the implementation of boundary conditions. This strategy avoids solving the implicit

4.1. WALL LAW FORMULATION 91

equation determining the skin-friction, rendering the computation much faster. Then, the
turbulence modeling is improved by removing the linear constraint of the pseudo eddy
viscosity (which is only true very close to the wall). Overall, as shown below, the model is
much faster and accurate over the considered parameter space. Finally, to reduce model
inaccuracies, especially at large distances from the wall, additional input features are
considered to better characterize the internal state of the boundary layer.

The content of this chapter, presented at the ECCOMAS 2024 conference, has been
submitted to the journal "Journal of Computational Physics" and is currently under
review.

4.1 Wall law formulation

As introduced in section 2.2, the proposed wall model aims to reconstruct the flow state
in the near-wall subdomain ΩM to transfer the no-slip boundary condition from a point P
on the wall surface to an equivalent boundary condition at point I, located further from
the wall along the normal direction from P . Refer to figure 2.5.

This section introduces the key relations used to reconstruct the flow state within the
subdomain ΩM .

4.1.1 Dirichlet-To-Neumann formulation for the wall tangent
velocity evolution

The wall law in (4.1) may be differentiated to obtain the DtN formulation: let us introduce
g(y+, p+) such that

∂u+

∂y+
= g(y+, p+), (4.5)

where g(y+, p+) = ∂
∂y+

f(y+, p+). Then, the explicit definition of the variables u+, y+ and
p+ in equation (4.1) shows that uτ is an implicit function of the dimensional variables(
u, y, νw, ρw,

∂p
∂x

)
. By dimensional analysis, considering the velocity scale LT−1 = νw/y

and length-scale L = y, there exists a function h such that:

y+ = h(η, β) with η =
u∥y

νw
, β =

y3

ρwν2
w

∂p

∂x
. (4.6)

The DtN map u∥ → ∂u∥
∂y

may then be obtained from the knowledge of g and h. Knowing
that

∂u∥
∂y

=
u2
τ

νw

∂u+

∂y+
with uτ =

νw
y
y+, (4.7)

the map can be formulated as follows

∂u∥
∂y

=
νw
y2

h2(η, β)g

Å
h(η, β),

β

h3(η, β)

ã
=

νw
y2

F (η, β). (4.8)

Considering the figure 2.5, the formulation in equation (4.8) can be used to replace the
wall boundary condition at a point P by a Neumann boundary condition on the surface
ΓI at a point I. Moreover, integrating equation (4.8) in the wall normal direction, starting
from the interface point I allows to reconstruct the velocity profile entirely through ΩM .

The next section introduce two additional parameters to characterize the state of the
internal boundary layer and improving its modeling.

92 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

4.1.1.1 Additional parameters for Dirichlet-To-Neumann map

Section 4.1.1 introduced the methodology for a DtN strategy derived from the relation
∂u+

∂y+
= g(y+, p+). However, for a better modeling of the wall tangent velocity profile, the

proposed wall model includes two additional parameters to characterize the state of the
internal boundary layer. These parameters are based on the streamwise second derivative
of the pressure ∂2p

∂x2 and the Spalart-Allmaras variable ν̃. They follow the same non
dimensionalization process detailed in section 4.1.1. Further discussion on the additional
parameters and the motivation for their selection is provided in 4.5.1.3.

Considering the additional parameters, the DtN map reads:

y+ = h(η, β, θ, ζ) and
∂u+

∂y+
= g(y+, p+, ∂p+, ν̃+) (4.9)

respectively with

η =
u∥y

νw
, β =

y3

ρwν2
w

∂p

∂x
, θ =

y4

ρwν2
w

∂2p

∂x2
, ζ =

ν̃

νw
(4.10)

and
y+ =

uτy

νw
, p+ =

νw
ρwu3

τ

∂p

∂x
, ∂p+ =

ν2
w

ρwu4
τ

∂2p

∂x2
, ν̃+ =

ν̃

νw
, (4.11)

which are obtained by re-scaling the parameters set in equation (4.10), using the wall
shear stress non dimensionalization, as shown below

y+ = h(η, β, θ, ζ), p+ =
β

h3(η, β, θ, ζ)
, ∂p+ =

θ

h4(η, β, θ, ζ)
and ν̃+ = ζ . (4.12)

4.1.2 Physical model for thermodynamic state and wall normal
velocity field

The wall-normal temperature profiles in the ΩW portion of the domain and along the
ΓI boundary (see figure 2.5) are again modeled using the Crocco-Busemann’s relation,
introduced in equation (3.8). The continuity of the temperature profile across ΓI is ensured
by estimating the unknown quantities in equation (3.8), solving the linear system in (3.9).

The pressure evolution is modeled by enforcing both a zero wall-normal pressure
gradient (∂p/∂y) at the wall and the continuity condition at the interface pointI. This
leads to a polynomial modeling of the pressure

p(y) = P2(y) =
2∑

k=0

ak y
k. (4.13)

The coefficients ak are obtained by solving the system below:
∂
∂y
P2(0) = 0

P2(yI) = pI

∂
∂y
P2(yI) =

∂p

∂y

∣∣∣∣
y=yI

 p(y) ∈ C1.
(4.14)

where I relates to the interface point.

4.1. WALL LAW FORMULATION 93

The density ρ can thus be obtained using the perfect gas law, knowing the temperature
and pressure evolution. Furthermore, with knowledge of the temperature T , the molecular
viscosity µ is computed using the selected viscosity model. Sutherland’s law is used in our
case.

Moreover, the first and the second derivatives of the pressure field along the streamwise
direction, respectively ∂p

∂x
and ∂2p

∂x2 are computed at the sampling point S and are considered
constant along the wall normal direction linking point P and S in figure 2.5.

Finally, as for the pressure evolution, the wall normal velocity u⊥ is obtained through a
polynomial modeling. Specifically, a third-degree polynomial is employed, with coefficients
chosen to ensure C1 continuity of the velocity profile at the interface point I, as well as
a zero velocity and a zero gradient in the wall-normal direction at the wall. The latter
condition is given by the continuity equation for incompressible flows

∂u∥
∂x

+
∂u⊥
∂y

= 0, (4.15)

knowing that ∂u∥
∂x

∣∣∣
y=0

= 0.

4.1.3 Near-wall Spalart-Allmaras modeling

This section illustrates the approach used to reproduce the near-wall behavior of the
turbulence model in the ΩW portion of the domain and along the ΓI boundary. Since
the turbulence model employed is the Spalart-Allmaras model, the near-wall modeling is
based on the evolution of the Spalart-Allmaras variable ν̃.

The inaccuracy of the linear evolution model is addressed by replacing the modeling
strategy. The behavior of the dimensionless Spalart-Allmaras viscosity is now reproduced
by a polynomial regression. A third degree polynomial

ν̃+(y+) = P3(y
+) =

3∑
k=0

ak y
+ k (4.16)

is employed in the near-wall zone to estimate ν̃+ as function of the dimensionless wall
distance y+. The coefficients ak are obtained by solving the system below

P3(0) = 0
∂

∂y+
P3(0) = κ

P3(y
+
I) = ν̃+

I

∂
∂y+

P3(y
+
I) =

∂ν̃+

∂y+

∣∣∣∣
y+=y+I

 ν̃+(y+) ∈ C1.

(4.17)

In the system (4.17), the first two equations set respectively the value and the wall normal
derivative of the dimensionless Spalart-Allmaras variable at the wall. Here, the slope
proposed by the linear evolution model is imposed, since the model demonstrated sufficient
accuracy for low wall distance modeling, i.e. y+ ≤ 10, even in the presence of moderate
pressure gradients. The last two equations are instead addressed to ensure the turbulence
model continuity at the interface point I.

Results on the impact of the Spalart-Allmaras modeling strategy on the accuracy of
the model are given in section 4.5.1.2.

94 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

4.2 Numerical implementation of the wall model

This section focuses on the numerical implementation of the wall model in the framework
of a cell-centered finite volume discretization.

4.2.1 Wall model discretization

As detailed in Section 2.2.1, the model substitutes the near-wall solution with a modeled
evolution in the near-wall region, ΩW , while shifting the boundary condition to the interface
ΓI . This interface demarcates the modeled region from the rest of the domain, where
conventional RANS integration occurs. In a discrete setting, ΩW is typically defined as a
fixed number of cell layers adjacent to the wall, with the interface ΓI located at the top of
this region. Within a cell-centered framework, the flow state at the interface (point I) is
unknown, necessitating interpolation between the states of the nearest cells. Alternatively,
a sampling point S can be established above the interface in the RANS region to derive the
local flow state necessary for model input. Thus, in the wall model formulation presented in
Section 3.1, point I at the interface is replaced by sampling point S. Figure 2.6 illustrates
the adaptation of this wall model strategy in a discrete cell-centered framework.

The boundary conditions for RANS integration along the R-WM I. are determined
by modeling flow values at ghost cells, which reside within the ΩW region but belong to
the numerical stencil of the RANS region across the interface. The number of ghost cells
required depends on the numerical scheme utilized; in this work, two layers of ghost cells
are implemented. The ghost cell configuration is depicted in figures 2.7 and 2.8.

4.2.2 Wall model application

uτ computation

ghost cell filling

RANS

Modeled
region

Physical model µw, ρw, ∂xp, ∂xxp

uS∥ , yS , ν̃S
η, β, θ, ζ h(·) y+ × uτ

y+, p+, ∂p+, ν̃+ g(·) ∂u+

∂y+ × ∂u∥
∂y

S.-A. model
y

ν̃

Figure 4.1: Schematic representation of wall model methodology to determine skin friction
velocity and wall normal derivative of tangential velocity at the RANS-wall model interface.

The section explains the methodology adopted to apply the wall model and determine
the evolution of tangential velocity u∥ in the near-wall region of the boundary layer.
The cell index notation used is explained in figure 2.8a. The model fills the ghost cells
belonging to the numerical stencil of the first computed cell in the resolved zone (j) to set
the boundary condition at the RANS - Wall model interface, which is located at j − 1

2
.

The first step is to determine the thermodynamic state in the near-wall modeled region
and the evolution of the pressure field along the streamwise direction. This is done as shown
in section 4.1.2. Then, the model proceeds to the estimate of the local wall shear stress by

4.2. NUMERICAL IMPLEMENTATION OF THE WALL MODEL 95

determining the skin friction velocity uτ , which exploits the values at the sampling point,
fixed at the first computed cell (j). The required set of data are the tangential velocity
u∥, the wall normal distance y and the Spalart-Allmaras variable ν̃. These data as well
as the pressure derivatives and the thermodynamic state are then combined to compute
the dimensionless input features of the functional h, which yields the dimensionless wall
distance y+ at the sampling point j. This allows for the straightforward estimation of the
skin friction velocity, given the wall distance of the sampling point.

Once the local shear stress has been determined, the boundary condition can be
enforced by modeling the tangential velocity in the ghost cells, placed respectively at j − 1
and j− 2. In order to ensure the continuity of the modeled velocity profile, the model fixes
the wall normal derivative of tangential velocity at the interface which can be expressed as

∂u∥
∂y

∣∣∣∣
j− 1

2

=
u∥ j − u∥ j−1

yj − yj−1

. (4.18)

The estimation of this quantity is performed using the second functional g. The set of its
input feature are obtained through the thermodynamic variables, the wall distance and
the reconstructed Spalart-Allmaras variable, as explained in section 4.1.3. The value of
the tangential velocity in the first ghost cell j − 1 is given by

u∥ j−1 = u∥ j −
∂u∥
∂y

∣∣∣∣
j− 1

2

(yj − yj−1) , (4.19)

which enforces the wall normal derivative of the tangential velocity at the interface. Then,
the operation is repeated in order to fill the ghost cells located one step closer to the wall
(j − 2). In this case, the functional g is used to estimate the derivative at j − 3

2
. In the

configuration shown in figure 2.8b, the algorithm is repeated until the tangent velocity u∥
at the closest cell to the wall is determined.

Algorithm 2 summarizes the modeling procedure for the evolution of the tangential
velocity profile u∥.

4.2.3 Numerical effect of Dirichlet-To-Neumann approach

The proposed method replaces the Dirichlet boundary condition at the interface with
a Neumann boundary condition, thereby fixing the derivative of the wall’s tangential
velocity. Some may argue that DtN formalism is unnecessary, as the Dirichlet method
(i.e., imposing directly the tangential velocity) could still be utilized by just replacing the
iterative estimation of the wall shear stress with a direct estimation applying the functional
h. This reduces to

uτ =
νw
y
h(η, β), (4.20)

followed by the modeling of the wall tangent velocity profile

u∥ = uτu
+ =

νw
y
h(η, β)f(y+, p+). (4.21)

as in Romanelli et al. [92] and showed in chapter 3. However, this method results in
instabilities and convergence difficulties. Since, unlike the iterative estimation of wall shear
stress, this approach does not guarantee the continuity of the velocity profile between the
modeled and resolved zone.

Figure 4.2 illustrates a qualitative example in which the same function f is used to
model the near-wall evolution of the tangential velocity u∥ for two different approaches to

96 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Algorithm 2: Modeling of tangential velocity u∥. Sampling point S placed at j
cell.
Inputs : uS

∥ , y
S, ν̃S, ∂p

∂x
, ∂2p

∂x2

Estimate ρw, µw through physical model in section 4.1.2
Compute η, β, θ, ζ ← uS

∥ y
S

νw
, yS 3

ρwν2w

∂p
∂x
, yS 4

ρwν2w

∂2p
∂x2 ,

ν̃S

νw
(equation (4.10))

Estimate y+S ← h (η, β, θ, ζ)
Compute uτ ← νw

yS
y+S (equation 4.7)

if configuration in figure 2.8a then
N = 2 (2 ghost cells are modeled)

else
N equal to the number of cells below the RANS-wall model interface

end
for n← 1 to N do

Inputs : yj+ 1−2n
2

, yj+n

Compute y+
j+ 1−2n

2

, p+, ∂p+ ←
uτyj+1−2n

2

νw
, νw

ρwu3
τ

∂p
∂x
, ν2w

ρwu4
τ

∂2p
∂x2 (equation 4.11)

Estimate ν̃+
j+ 1−2n

2

←∑3
k=0 ak y

+ k
j+ 1−2n

2

(equation 4.16)

Estimate ∂u+

∂y+

∣∣∣
j+ 1−2n

2

← f
(
y+
j+ 1−2n

2

, p+, ∂p+, ν̃+
j+ 1−2n

2

)
Compute ∂u∥

∂y

∣∣∣
j+ 1−2n

2

← u2
τ

νw
∂u+

∂y+

∣∣∣
j+ 1−2n

2

Integrate for u∥ j−n ← u∥ j−n+1 − ∂u∥
∂y

∣∣∣
j+ 1−2n

2

(yj − yj−n) (equation 4.19)

end

estimate skin friction velocity. The iterative algorithm ensures that the resulting velocity
profile is consistent with the data at the sampling point. This is achieved by iteratively
adjusting the estimated skin friction velocity uτ until the modeled velocity profile closely
matches the observed data. This ensures near continuity at the interface between the
modeled and resolved velocity profile. In contrast, the direct estimation through the
application of the functional h does not observe any constraints on the modeled velocity
profile at the sampling point S. As a consequence, the velocity profiles generated by
direct estimation method may deviate from the observed data at the sampling point,
potentially leading to a significant discrepancy between the modeled and resolved velocity
profiles. This discrepancy can lead to numerical issues and instabilities. In such cases, an
nonphysical shear stress is calculated across the interface, particularly during the initial
stages of computation. This affects the viscous flux between the modeled and resolved
zones, hindering the simulation’s ability to converge.

The DtN approach, instead of the modeling strategy in equation 4.21, fixes a physical
constraint on the viscous stress across the wall model interface, through a Neumann
boundary condition by imposing the shear stress

τ(y) = µ
∂u∥
∂y

(y). (4.22)

which integrated for the wall tangent velocity allows to ensure continuity across the
interface.

4.3. FLOW CONFIGURATIONS 97

RANS-WM
INTERFACE

u∥

y
Resolved velocity profile

Iterative Estimation
Direct Estimation

S

Figure 4.2: Scheme of wall tangential velocity u∥ modeling. Comparison of iterative
estimation for skin friction velocity uτ of the previous approach [92] and the direct
approach through functional h.

4.3 Flow configurations

This section introduces the primary flow configurations used for training and evaluating
the data-driven wall model. Reference and training data come from a series of fine
wall-resolved RANS simulations. The model’s performance is assessed by comparing
wall-modeled simulations with wall-resolved reference simulations.

The configurations used for this purpose are the 2D bump case and the airfoil case,
both discussed in section 2.3.

4.3.1 Bump flow case

The flow configuration used for training and first evaluation of performances of the current
model is the bi-dimensional bump case, as described in section 2.3.1.

4.3.1.1 Training and testing datasets

Various flow configurations are employed for training and testing the wall model, primarily
generated by varying the bump height and the Reynolds number of the flow.

These flow configurations and definitions are similar to those from chapter 3, which
allows for a close comparison of their results with the novel strategy proposed in this
chapter. However, the present study considers a larger data set, including near-separation
cases for higher Reynolds numbers, ranging from Re = 106 to Re = 107. The bump
heights h considered vary from 0.02 to 0.08. Additionally, a degenerated bump (h = 0),
representing a flat plate geometry, is included as a training case. Figure 4.3 shows the
(Re, h)-combinations considered in this work.

A total of 50 (Re, h)-combinations are considered, with 23 allocated for training and
27 for evaluating model performance. The training configurations cover a broad range of
boundary layer conditions, from zero-pressure gradient to near separation boundary layers,
with an emphasis on near-stall scenarios and configurations close to the flow separation
limit.

98 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

0 2 4 5 6 7 8
1

3

6

8

10

Height h

R
ey

no
ld

s
N

um
be

r
R
e

×106

×10−2

: Training dataset
: Test cases - Interpolation on Re

: Test cases - Interpolation on h

: Test cases - Interpolation on Re and h

: Flow separation limit

Figure 4.3: Training and test datasets obtained from different combinations of Reynolds
number Re and bump height h.

As noted in Romanelli et al. [92], accuracy and convergence issues arise when neural
network models operate beyond their training limits (a well-known limitation of most
data-based approaches). Therefore, the test cases are restricted to interpolation conditions
to ensure that the neural networks operate within the boundaries set by the training
dataset in terms of the selected input features. Three distinct sets of evaluation cases are
identified: (i) flow configurations with intermediate bump heights h = 0.02 and h = 0.04,
matched with Reynolds numbers from the training dataset, (ii) A bump height of h = 0.07
and intermediate Reynolds numbers existing in the training dataset, (iii) configurations
with both unseen bump heights and unseen Reynolds numbers.

The data extraction zone used for building the dataset is limited to X ∈ [0.3, 1.2], as
shown in figure 2.9b. Thus, the wall model performances are evaluated within this range.

4.3.2 Airfoil case

To evaluate the robustness of the proposed wall model, it is tested on a geometry entirely
different from the one used during training, specifically the Wortmann airfoil FX60-100,
previously introduced in section 2.3.2.

Similar to the bump case, different flow conditions are employed for testing. Each
configuration is defined by a free-stream Mach number of M = 0.2 and a temperature
of T∞ = 300K. The varying Reynolds numbers Re, computed using the unitary length
of the airfoil, are obtained by adjusting the free-stream density ρ∞. For the presented
cases, Reynolds numbers of Re = 6 · 106 and 107 are used, with the angle of attack fixed
at α = 0◦.

4.4 Data-driven modeling

This section focuses on the neural networks used in the model, their training procedure
and the data treatment.

4.4.1 Neural networks

As shown in section 4.1.1.1, DtN approaches requires the knowledge of h and g. In this
work, two neural networks are trained to model these functions, each of them receiving a

4.4. DATA-DRIVEN MODELING 99

set of four dimensionless input features and outputting dimensionless quantities, as shown
in equations (4.9), (4.10) and (4.11). A first neural network h is trained to predict the
dimensionless wall distance y+. It allows to estimate the local wall shear stress through the
skin friction velocity uτ , as shown in equation (4.7). The second neural network g is trained
to estimate the wall normal derivative of the dimensionless wall velocity u+ as a function
of the selected input features following classical wall shear stress scaling. An alternative
approach is to train a neural network f to reproduce the evolution of the dimensionless
velocity profile u+, as it was done in the previous approach from Romanelli et al. [92] in
the chapter 3. The derivative with respect to the dimensionless wall distance y+ can then
be computed through algorithmic differentiation of the neural network. However, this
strategy is not followed due to a lower accuracy of the model and higher computational
cost. This point is further discussed in section 4.4.6.

Moreover, one may argue that a single function F (η, β, θ, ζ) may be defined to describe
the DtN map. From equation (4.8) and considering the additional parameters in section
4.1.1.1, it is possible to write

∂u∥
∂y

=
ν

y2
F (η, β, θ, ζ). (4.23)

However, for the sake of interpretability, accuracy, and especially to ease the integration of
the Spalart-Allmaras modeling in the near-wall region, this unified strategy is not followed.
This choice is further discussed in section 4.4.7.

4.4.2 Neural network architecture

The model employs two feedforward neural networks (FNNs), each processing a set of
input features and generating a single output. The neural network comprises an input
layer, where the input features are fed; multiple hidden layers; and an output layer, which
yields the estimated quantity. The number of nodes in the input and output layers is
determined by the dimensionality of the input feature set and the number of quantities to
be estimated, respectively. In this case, both neural networks, g and h, possess four nodes
within the input layer and a single node within the output layer.

The architecture of the neural networks, including the number of nodes and the number
of hidden layers, significantly affects the CPU cost of the CFD solver. Therefore, relatively
small neural networks are employed. Both the g and h networks have architectures
consisting of 4 hidden layers with 16 nodes each. Each node is fully connected to nodes
in the preceding and succeeding layers. The weights and biases of these connections are
determined through the learning process.

Furthermore, in consideration of the varying dynamic ranges of the input features
a normalization layer is included between the input and hidden layers, as introduced
in section 2.1.2.2.1. These normalization nodes are connected to their respective input
features and are fully connected to the subsequent hidden layer. Prior to neural network
training, the weights and biases of the normalization layer are determined to normalize
each input feature (i.e., scaling to a range from 0 to 1) based on the training dataset. The
figure 2.3 provides a schematic representation of the structure.

4.4.3 Dataset treatment

The training samples were drawn from the inner region of the boundary layer in the
selected cases of flows over the bump geometry. These samples extended from the wall up

100 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

to y
δ
≤ 0.15, where δ is the boundary layer thickness. To facilitate the training process,

the applicability range of the wall model was limited to a maximum y+ = 300, which
represents the highest dimensionless distance within the training samples.

Some of the input features of the g neural network present a highly non-linear behavior,
especially in the near-separation case. This is evident in the cases of

p+ ∝ 1

u3
τ

and ∂p+ ∝ 1

u4
τ

, (4.24)

where both features increase rapidly as the skin friction coefficient, Cf , and consequently
the skin friction velocity uτ approaches zero. This results in a highly uneven distribution
of these input features across the dataset, with the majority of samples having near-zero
values, while few of them presenting large values. To assist the training process, different
scaling functions have been proposed, which are introduced in section 2.1.2.1.3.

For the power scaling in equation 2.2, the p exponent has been selected to be equal to
1
3

and 1
4

for p+ and ∂p+, respectively. However, this scaling function, having the drawback
of an infinite slope at zero, leads to a spaced distribution of samples in the near-zero
region, which results in poor performance for near zero-pressure gradient applications. On
the contrary, the Yeo-Johnson transformation [129], scaling the dataset in order to obtain
a sample distribution close to a normal distribution, has the disadvantage of excessively
clipping the evolution of the scaled input features for near-separation cases. This can cause
poor performance of the model, when these conditions are met. Finally, the logarithmic
scaling function in (2.4) is selected, setting the coefficient p to unity. This transformation
function allows in fact to expand the range of values spanned for near-zero pressure gradient
boundary layer samples, while keeping a satisfactory distribution of samples for the near
separation samples.

An example of the application of the different scaling functions to the input feature
p+ is presented in figure 4.4. This figure shows the input feature and its scaled version
plotted along the bump geometry for a flow configuration with h = 0.08 and Re = 8 · 106.
To ease comparison, all plotted values are normalized through min-max scaling.

Figure 4.4: Comparison between the scaled and unscaled input feature p+ for a flow over
a bump geometry (h = 0.08 and Re = 8 · 106).

The remaining input features of the neural network g as well as the input features of h
are directly fed to the training process without needing a scaling technique.

4.4. DATA-DRIVEN MODELING 101

4.4.4 Loss function selection

The neural networks are trained by minimizing a loss function, denoted as ϵ, which
measures the discrepancy between the training data and the predictions made by the
neural networks. This loss function is structured around the relative error, enabling
equitable consideration of output values spanning various orders of magnitude. Specifically,
for neural network g, the relative error, ϵ′g, is calculated by comparing the dimensionless
wall-normal derivative of the tangential velocity, ∂u+

∂y+
, with the corresponding reference

values:

ϵ′g =

∂u+

∂y+ i
− ∂u+

∂y+ i, ref
∂u+

∂y+ i, ref

. (4.25)

Similarly, for neural network h, the relative error, ϵ′h, is determined based on the predicted
dimensionless wall distance, y+, relative to the reference values:

ϵ′h =
y+i − y+i, ref

y+i, ref
. (4.26)

The loss function is thus computed as

ϵ =
1

NS

NS∑
i=1

wρ iB(ϵ′), (4.27)

where B is the BerHu function [63] computed on the relative error and the coefficient wρ i

is a weighting scalar that accounts for the uneven sample distribution in the dataset. The
BerHu function is defined as

B(ϵ) =
®
|ϵ′| |ϵ′| ≤ L
ϵ′2+L2

2L
|ϵ′| > L

(4.28)

where the coefficient L is adopted equal to 1. This loss function is essentially the reverse
form of the Huber loss [52]. The BerHu loss allows in fact to heavily punish relevant errors
through its quadratic evolution, wile maintaining sensitivity to small errors through a
linear evolution for near-zero errors. Figure 4.5 depicts a qualitative representation of
the BerHu loss function, which is compared to both a quadratic and a linear evolution of
relative errors.

ϵ′

B(ϵ′)

Figure 4.5: Qualitative representation of BerHu function (red) and comparison with linear
(blue) and quadratic (green) evolution.

The weighting coefficient wρ i is computed to address the uneven distribution of samples
in the regression dataset [107]. A lower sample coefficient is computed for common samples

102 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

across the training dataset, while rarer ones get higher values of the weighting coefficient.
It is computed as in equation (2.7), based on the min-max normalized local density of the
training dataset. The latter is computed on a standardized training dataset (i.e. zero mean
and unitary standard deviation), using a KDE technique through Gaussian kernels with
unitary standard deviation as introduced in section 2.1.2.2.3. In figure 4.6, an overview of
the obtained sample weight is shown respectively for the neural network g and h. Most
common samples are respectively found for near zero-pressure gradient boundary layers
present in the dataset.

(a) Sample weights for neural network g (b) Sample weights for neural network h

Figure 4.6: Overview of obtained sample weights used during neural network training to
compute the loss function.

4.4.5 Training strategy

The neural networks are trained using the gradient-based Adam algorithm [59], implemented
in the TensorFlow deep learning library [28]. The training process utilized 85% of the
available data, reserving the remaining 15% for validation to monitor over-fitting. More
details on the neural network training strategy are given in 2.1.2.2.4. The evolution of
training and validation loss during the training process is given in figure 4.7. The trained
neural networks are then selected at epochs 1507 and 3475 for h and g respectively.

4.4.6 Discussion on direct estimation and derivative computation

The proposed wall model uses a neural network g to estimate the wall-normal derivative
of the dimensionless velocity ∂u+/∂y+. There are two potential approaches for this
estimation. The first, more straightforward approach, involves directly training the neural
network to estimate ∂u+/∂y+, which is the chosen method in this study. The second
approach trains the neural network f to predict the dimensionless velocity u+ itself, and
then differentiates the output with respect to the wall-normal direction to be used in
the model. This latter approach is more conventional, as the neural network focuses on
estimating the dimensionless velocity rather than its derivative.

This section compares these two approaches to justify the chosen method. First,
the training methodology for the alternative approach is outlined. Then, the accuracy
at the end of training is assessed and compared to the selected approach. Finally, the
computational cost of neural network inferences for both methods is evaluated.

4.4. DATA-DRIVEN MODELING 103

(a) y+ = h(·) (b) ∂u+

∂y+
+
= f(·)

Figure 4.7: Training and validation loss evolution during training process of h and g neural
networks.

For the approach where the neural network is trained to estimate the dimensionless
velocity u+, the loss function minimized during the learning process is

ϵ =
1

NS

NS∑
i=1

wρ i
1

2

Å
B(ϵu+) + B(ϵ ∂u+

∂y+
)

ã
. (4.29)

This loss function comprises the sum of BerHu functions applied to the absolute
percentage error of both the dimensionless velocity u+ and its wall-normal derivative. The
relative errors are calculated as follows:

ϵu+ =
u+
i − u+

i, ref

u+
i, ref

and ϵ ∂u+

∂y+
=

∂u+

∂y+ i
− ∂u+

∂y+ i, ref
∂u+

∂y+ i, ref

. (4.30)

Both neural networks share the same architecture presented in the paper. The
approaches are evaluated using the Mean Absolute Percentage Error (MAPE) and
the Pearson correlation coefficient, computed on the dimensionless velocity u+ and its
wall-normal derivative, with reference to the training dataset. In the ∂u+/∂y+ = g(·)
approach, the dimensionless velocity is obtained by integrating the estimated wall-normal
derivative starting from the zero value at the wall. In contrast, the u+ = f(·) approach
requires algorithmic differentiation of the neural network to estimate the value of the
derivatives.

Table 4.1 presents the computed accuracy of both methods, while figure 4.8 shows the
correlation of the obtained neural networks.

The ∂u+/∂y+ = g(·) approach demonstrates greater accuracy for both the dimensionless
velocity u+ and its derivative compared to the alternative approach. Additionally,
computing the wall-normal derivative of the dimensionless velocity u+ is approximately
80% more computationally expensive using the u+ = f(·) approach.

4.4.7 Discussion on single and multiple neural networks approach

The definition of the methodology for the fully data-driven wall model involves directly
modeling the wall-normal derivative of the tangential velocity, ∂u∥/∂y, using either a

104 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Test of u+ = fNN and ∂y+u
+ = gNN on training dataset

u+ = fNN ∂y+u
+ = gNN

u+ ∂y+u
+ u+ ∂y+u

+

MAPE [%] 0.499 1.617 0.334 1.357
Correlation [%] 99.966 99.992 99.992 99.992

Table 4.1: Errors and correlation between neural networks output and training dataset.
Comparison between the neural network u+ = fNN and ∂y+u

+ = gNN .

(a) Correlation between predicted dimensionless
velocity u+ with training dataset.

(b) Correlation between predicted wall normal
derivative of dimensionless velocity ∂u+

∂y+
with

training dataset.

Figure 4.8: Correlation between predicted dimensionless velocity u+ and wall normal
derivative of dimensionless velocity ∂u+

∂y+
with training dataset. Comparison between the

neural network u+ = fNN(·) and ∂y+u
+ = gNN(·).

single neural network or a modular approach with two neural networks, as shown in the
following equation:

y2

ν

∂u∥
∂y

= F (η, β, θ, ζ) or
y2

ν

∂u∥
∂y

= h2(η, β, θ, ζ)g(p+, y+, ∂p+, ν̃+), (4.31)

where the latter is the chosen option.
To justify the chosen strategy, the accuracy of the different approaches is evaluated by

comparing the modular approach to the single neural network approach. A new neural
network is thus trained to directly estimate the wall-normal derivative of the tangential
velocity ∂u∥/∂y as shown in equation 4.31. The F neural network uses the same input
features as the h neural network. To ensure a fair accuracy comparison, the architecture of
F is designed by summing the hidden layer sizes of the h and g neural networks, thereby
maintaining comparable computational costs for both approaches. Consequently, the
neural network F consists of eight hidden layers with 16 nodes each.

Before comparing the accuracy of the single and multiple neural networks approaches,
the post-training accuracy of the h neural network is evaluated. Figure 4.9 displays the
Mean Absolute Percentage Error (MAPE) and the Pearson correlation coefficient relative
to the training dataset.

4.5. RESULTS 105

Training results of y+ = hNN(·)
MAPE [%] 0.458
Correlation [%] 99.998

(a) Errors and correlation of the
predicted y+ = hNN (·) with reference
to the training dataset

(b) Correlation between predicted
dimensionless velocity y+ = hNN (·)
with training dataset.

Figure 4.9: Errors and correlation of neural networks y+ = hNN(·) and training dataset.

The Mean Absolute Percentage Error (MAPE) and the Pearson correlation coefficient
for both the single neural network and multiple neural networks approaches, with reference
to the training dataset, are presented in table 4.2. Additionally, figure 4.10 illustrates the
correlation for both approaches.

Test of training strategy y2∂yu

ν
= FNN(·) and y2∂yu

ν
= h2

NN(·)gNN(·) on training dataset

FNN(·) h2
NN(·)gNN(·)

MAPE [%] 1.792 1.444
Correlation [%] 99.962 99.914

Table 4.2: Errors and correlation between neural networks output and training dataset.
Comparison between the single neural network strategy, where y2∂yu

ν
= FNN(·); and the

modular neural network strategy where y2∂yu

ν
= h2

NN(·)gNN(·).

The results indicate that both approaches exhibit very close accuracy performance.
The modular approach, composed by the two neural networks h and g, is chosen to enhance
the interpretability of the model and facilitate the integration of its different components.
For the near-wall reproduction of the Spalart-Allmaras model, the estimation the local
skin friction velocity uτ is required. The single neural network approach does not directly
provide this information, necessitating additional techniques to determine it when needed.
Therefore, the modular approach is preferred for its practical benefits in model integration
and interpretability.

4.5 Results

4.5.1 Results on bump geometry

4.5.1.1 Test procedure

This section presents the results obtained using the proposed wall model on the various
flow configurations and geometries defined in section 4.3.1.1. These results are compared
with the wall-resolved RANS simulation.

106 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Figure 4.10: Correlation between predicted dimensionless wall normal velocity derivative
y2∂yu

ν
with training dataset. Comparison between the single neural network strategy, where

y2∂yu

ν
= FNN(·); and the modular neural network strategy where y2∂yu

ν
= h2

NN(·)gNN(·).

The wall model is applied only to established turbulent boundary layers. Consequently,
the wall-modeled computation is confined to the bump geometry area and downstream,
specifically for X ∈ [0.3, 1.5]. The upstream section of the wall, i.e. X ∈ [0, 0.3], is fully
resolved. The wall model is applied on a structured grid as detailed in section 4.2. The
numerical stencil of the spatial scheme in the solver includes two cell layers below the
RANS interface, set at a constant distance from the wall surface. Thus, two layers of cells
below the interface are modeled; lower cells along the wall-normal direction are unaffected
by the modeling approach during the RANS computation. For X = 0.3, the configuration
in 2.8b is applicable, where the fully resolved section meets the modeled one. Here, the
modeled cells reach the wall, in order to act as ghost-cell in the streamwise direction for
the fully resolved area. The sampling point is set at the first RANS-computed cell above
the interface.

For each simulation, a target maximum y+MAX is set for the interface. If the target
y+MAX exceeds the inner region of the boundary layer (i.e., y

δ
≤ 0.15), the interface is

adjusted to meet this condition, resulting in a lower effective value of y+. Table 4.3 shows
the cases where the interface is limited by the condition y

δ
≤ 0.15.

y+MAX at RANS interface for configuration limited at y
δMAX

≈ 0.15

h = 0 h = 0.02 h = 0.04 h = 0.05 h = 0.06 h = 0.07 h = 0.08
Re = 106 50 60 60 70 70 80
Re = 2 · 106 90 110 130
Re = 3 · 106 110 130 150 160 170 180

Table 4.3: Values of the maximum dimensionless wall distance y+MAX encountered at the
RANS-wall model interface for all the configuration of flows over the bump which are
limited by y/δ ≤ 0.15 condition.

In order to ease the convergence of the computation and avoid neural network
extrapolation, the simulations are initialized with a constant flow field and 10’000 solver
iterations are performed using the Spalart-Allmaras wall law [110] to model the wall
tangential velocity u∥ before switching to the data-based models. More information about
the Spalart-Allmaras wall law are given in section 1.4.1.2.1.

4.5. RESULTS 107

Wall model performance is evaluated on the bump geometry only, from X = 0.3 to
X = 1.2, which corresponds to the training data extraction zone.

First, the impact of the modeling strategy for the near-wall behavior of the
Spalart-Allmaras model is assessed. Then, the following subsections present the model
results on the training configurations as validation cases and a comparison with the
iterative approach. Subsequently, the interpolation test cases are addressed for both
Reynolds number and bump height interpolation.

A performance evaluation is conducted using both the 2-norm global error and the local
normalized error on the skin friction coefficient Cf when compared to the fully-resolved
RANS simulation. The global 2-norm error e2 is obtained as follows

e2 =

∥∥Cf (Xi)− Cf,ref (Xi)
∥∥
2∥∥Cf,ref (Xi)

∥∥
2

=

√∑
i[Cf (Xi)− Cf,ref (Xi)]2√∑

i[Cf,ref (Xi)]2
, (4.32)

where Xi refers to the equally spaced solution points in the X-coordinate direction along
the portion of the wall under consideration, Cf is the friction coefficient estimation derived
from the wall model, while Cf,ref is the friction coefficient estimation derived from the
wall-resolved simulation.

Meanwhile, the local normalized error is computed as

e(Xi) =
Cf (Xi)− Cf,ref (Xi)

Cf,ref

, (4.33)

in which Cf,ref is the mean value of the friction coefficient estimation from the wall-resolved
simulation along the evaluated area of the wall, i.e. X ∈ [0.3, 1.2]. The local value is not
used for normalization purposes, as this would result in an artificial divergence of the error
when Cf is close to zero.

4.5.1.2 Assessment of Spalart-Allmaras modeling strategy

In order to evaluate the impact of the modeling strategy for the near-wall behavior for the
Spalart-Allmaras turbulence model, the proposed wall law is tested using both the linear
evolution and the polynomial regression for the dimensionless Spalart-Allmaras variable
ν̃+ as described in section 4.1.3.

The test is performed on the bump case with configuration h = 0.06 and Re = 6 · 106.
The RANS - Wall model interface is set at different distances from the wall, resulting in a
maximum dimensionless wall distance of respectively y+MAX ≈ 10, 50, 100, 150, 200 along
the bump geometry.

Figure 4.11 presents a comparison between the linear evolution and polynomial
regression methods for the dimensionless Spalart-Allmaras variable, compared with a
reference solution obtained from a fully resolved RANS simulation. The figure depicts
the near-wall evolution of the dimensionless Spalart-Allmaras model for these approaches.
The behavior of the Spalart-Allmaras variable is shown at X ≈ 0.9. At this point, the
RANS - Wall model interface is set locally at y+ ≈ 4, 14, 23, 47, 98. As anticipated,
the linear evolution model exhibits accuracy only near the wall, rapidly losing accuracy
as the wall distance increases. Furthermore, an abrupt discontinuity is evident at the
interface between the modeled and computed Spalart-Allmaras variable. In contrast,
the polynomial regression approach demonstrates a significantly better behavior. It not
only accommodates higher modeling distances more effectively, but also resolves the
discontinuity issue between the model and the RANS computation.

108 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Figure 4.11: Comparison of the dimensionless Spalart-Allmaras variable ν̃+ for the classical
linear model (left) and the polynomial regression approach (right). Bump case (h = 0.06
and Re = 6 · 106) at X ≈ 0.9. Maximum dimensionless distance of the first RANS
computed cell: y+MAX ≈ 10, 50, 100, 150, 200. Locally, the RANS-Wall model interface is
set at y+ ≈ 4, 14, 23, 47, 98.

The evaluation also includes the estimation of the friction coefficient Cf in comparison
to the fully-resolved RANS simulation, which is achieved through the computation of
a 2-norm error along the entire length of the bump surface (i.e., X coordinate ranging
from 0.3 to 1.2 of the simulation domain). The results obtained are shown in figure 4.12.
The table presents the values of the 2-norm global error on Cf , for different maximum
dimensionless wall distances y+MAX of the first RANS resolved cell, obtained using both
the Spalart-Allmaras variable modeling approach. In the figure, the evolution of the e2
error is plotted for the different modeling distances. The polynomial regression approach
shows a near constant behavior across all tested modeling distances. On the contrary, the
linear evolution model, despite exhibiting similar accuracy than the polynomial evolution
model at low modeling distances (i.e., y+ ≈ 10), loses its accuracy at higher distances.

Given the previous results, the polynomial regression model is used in the following to
evaluate the performances of the model using the fully data-driven approximation of the
near-wall velocity evolution.

4.5.1.3 Discussion on the additional parameters for DtN-map

The data from the bump configuration reveal that considering only two input parameters
(y+, p+) is actually not enough. This is seen along the downward slope of the bump
geometry, where the dimensionless pressure gradient reaches its peak due to significant
adverse pressure gradients. In this region, a certain number of stations along the bump
geometry have the same local dimensionless pressure gradient (p+), respectively upstream
and downstream of the maximum value of the dimensionless pressure gradient. In these
points, the boundary layer evolution presents slight differences. This is illustrated in figure
4.13, which depicts the variations in the evolution of the dimensionless tangential velocity,
u+, and its wall-normal derivative ∂u+

∂y+
at two locations downstream of the top of the bump.

These locations exhibit identical adverse pressure gradient values (p+), but opposite signs
of ∂p+. Extra variables are thus needed. The second derivative of the pressure field allows
the model to identify differences in boundary layer evolution, even when the dimensionless
pressure gradients (p+) are the same but their second derivatives differ.

4.5. RESULTS 109

Relative 2-norm global error on Cf .

Linear ν̃+ ν̃+ ∈ C1

y+MAX ≈ 10 0.38% 0.42%
y+MAX ≈ 30 1.82% 1.24%
y+MAX ≈ 50 1.63% 0.92%
y+MAX ≈ 100 2.5% 0.98%
y+MAX ≈ 200 5.28% 1.08%

(a) Relative 2-norm global error on the skin
friction coefficient Cf .

(b) Evolution of relative 2-norm
global error on the skin
friction coefficient Cf based
on dimensionless wall distance of
the modeled region.

Figure 4.12: Relative 2-norm global error on the skin friction coefficient Cf of the
wall-modeled simulation with respect to reference wall-resolved RANS simulation and
its evolution based on the dimensionless wall distance of RANS-Wall model interface.
Comparison of classical linear model and the polynomial regression approach for the
modeling of the dimensionless Spalart-Allmaras variable ν̃+. Bump case (h = 0.06
and Re = 6 · 106). Maximum dimensionless distance of the first RANS computed cell:
y+MAX ≈ 10, 50, 100, 150, 200.

Similarly, the boundary layer evolution varies depending on the local Reynolds number.
The dimensionless Spalart-Allmaras variable ν̃+ is useful for correctly identifying these
differences. An example is given in figure 4.14, which illustrates the dimensionless wall
velocity u+ and its wall normal derivative within a zero pressure gradient at two distinct
locations characterized by different local Reynolds numbers. These locations exhibit
slight variations in the velocity profiles, as well as in the behavior of the dimensionless
Spalart-Allmaras variable.

As a result, the proposed wall model incorporates the two additional parameters
mentioned above to characterize the state of the internal boundary layer. These
parameters are thus based on the streamwise second derivative of the pressure, ∂2p

∂x2 ,
and the Spalart-Allmaras variable, ν̃. They are non dimensioned and integrated in the
DtN-map operator as shown in section 4.1.1.1.

4.5.1.4 Model validation and comparison with iterative approach

The validation is carried out by comparing the results obtained with the model over
flow configurations that belong to the training dataset to define a baseline for the model
capabilities. Table 4.4 shows the 2-norm global error for the training dataset configurations,
shown in figure 4.3. For the sake of conciseness, the table only displays the results obtained
with the interface at the extreme values y+MAX ≈ 50 and 200, but the validation was also
performed for y+MAX ≈ 100 (not shown), yielding similar results and exhibiting consistent
behavior. In cases where the target y+ condition was not reachable due to the limitation
of the inner region of the boundary layer (i.e., y

δ
≤ 0.15), the RANS - Wall model interface

was positioned closer to the wall. The actual achieved y+MAX on the bump geometry is
given in table 4.3.

The table illustrates the global consistency of the model throughout the training
dataset, thereby validating the methodology and its training procedure. The errors range

110 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Figure 4.13: Evolution of dimensionless wall velocity u+ and its derivative ∂u+

∂y+
for boundary

layer locations showing the same dimensionless pressure gradient p+ and different values
of dimensionless derivative of pressure gradient ∂p+.

Figure 4.14: Evolution of dimensionless wall velocity u+ and its derivative ∂u+

∂y+
for

zero-pressure gradient boundary layer for different local Reynolds numbers and ν̃+ profiles.

from 0.6% to 2.89%. Despite the observed consistency in the errors across varying bump
heights, which affect the pressure gradient along the bump, a marginal increase in error is
observed for the lowest Reynolds number configurations (Re = 106). This error increase
may be attributed to the larger range of dimensionless pressure gradient, p+, and its
relative derivative, ∂p+, encountered along the bump geometry.

The proposed model is compared to the iterative approach from [92]. To facilitate this
comparison, the neural network within the model was retrained using the same dataset as
the fully data-driven approach, following the methodology outlined in section 4.4. The
model was then applied to the bump simulation with parameters h = 0.06 and Re = 6 ·106,
following the same strategy introduced in the previous section. The RANS - Wall model
interface is placed at y+MAX ≈ 10, 50 and 200.

Figure 4.15 shows the local error in the skin friction coefficient, Cf , with respect to
the RANS resolved case, obtained through both the fully data-driven approach and the
iterative approach for the three distinct modeling distances.

The fully data-driven approach appears to be largely unaffected by the increase in
modeling distance, whereas the iterative approach exhibits a significantly different behavior
depending on the wall distance. For y+MAX ≈ 10, both models demonstrate good accuracy,
with a local error not exceeding 3%. However, our novel approach maintains far more
consistent accuracy compared to the iterative approach, which shows oscillating accuracy
along the streamwise direction. At other wall distances, the present strategy outperforms
the iterative approach. The former maintains errors below 3%, whereas the latter errors rise

4.5. RESULTS 111

RANS interface at y+MAX ≈ 50
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 106 2.84% 2.17% 2.5% 2.89%
Re = 3 · 106 0.7% 0.91% 0.95% 0.97%
Re = 6 · 106 0.67% 0.89% 0.92% 0.9% 0.97%
Re = 8 · 106 0.59% 1.16% 1.18% 1.16% 1.39%
Re = 107 0.84% 0.77% 0.77% 0.73% 0.7%

RANS interface at y+MAX ≈ 200
h = 0 h = 0.05 h = 0.06 h = 0.07 h = 0.08

Re = 106 2.84%* 2.71%* 2.08%* 2.35%*

Re = 3 · 106 0.6%* 1.61%* 1.42%* 1.39%*

Re = 6 · 106 0.84% 0.94% 1.08% 1.17% 1.2%
Re = 8 · 106 0.87% 1.35% 1.37% 1.41% 1.48%
Re = 107 1.42% 1.21% 1.11% 1.06% 1.04%

Table 4.4: 2-norm global error on the skin friction coefficient Cf between wall-modeled
simulations and reference wall-resolved RANS for two different RANS-Wall model interface
positions and different combinations of bump height and Reynolds number Re. Training
cases on figure 4.3. The simulations where the interface is located for y+MAX lower than
target value to satisfy y/δ ≤ 0.15 are marked by ∗. The actual interface height is shown in
table 4.3.

to approximately 10% and 14% for y+MAX ≈ 50 and 200, respectively. This improvement is
primarily due to the treatment of the near-wall behavior of the Spalart-Allmaras model, as
well as the additional input features considered in the approach presented in this chapter.

Table 4.5 presents the 2-norm global error for both models across varying modeling
distances for the same case. The accuracy comparison aligns with previous findings. At
the lowest modeling distance, both models exhibit similar performance. However, as the
modeling distance increases, the iterative approach becomes less accurate, while our novel
approach remains only slightly affected by the changes in modeling distance. The new
strategy is therefore, on average, three times more accurate than the previous iterative
approach.

Relative 2-norm global error on Cf .

Iterative approach D2N-like

y+MAX ≈ 10 0.55% 0.42%
y+MAX ≈ 30 4.14% 1.24%
y+MAX ≈ 50 3.67% 0.92%
y+MAX ≈ 100 3.34% 0.98%
y+MAX ≈ 200 5.2% 1.08%

Table 4.5: Relative 2-norm global error on the skin friction coefficient Cf of the wall-modeled
simulation with respect to reference wall-resolved RANS simulation. Bump case (h = 0.06
and Re = 6·106). RANS-wall model interface placed at target y+MAX ≈ 10, 30, 50, 100, 200.
Comparison between iterative approach and the new fully data-driven approach.

112 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

(a) y+MAX ≈ 10 (b) y+MAX ≈ 50 (c) y+MAX ≈ 200

Figure 4.15: Relative local error on skin friction coefficient Cf between the reference wall
resolved simulation and wall modeled ones. Bump case (h = 0.06 and Re = 6 · 106).
RANS-wall model interface placed at target y+MAX ≈ 10, 50, 200. Comparison between
iterative approach and the new fully data-driven approach.

4.5.1.5 Interpolation in Reynolds number

This section examines the model interpolation capability. The performance is evaluated
by testing the model on configurations not included in the training dataset (interpolation
condition in Reynolds numbers). For this purpose, wall-modeled simulations are conducted
with a bump height of h = 0.07 and varying Reynolds numbers Re. The Reynolds numbers
considered are Re = 2 · 106, 4.5 · 106, 7 · 106, and 9 · 106, representing intermediate values
between those present in the training dataset.

Table 4.6 presents the 2-norm global error obtained by applying the model under
interpolation conditions for the Reynolds number. The results are presented for a RANS
interface at y+ ≈ 50 and 200, with the intermediate modeling height of 100 excluded for
the sake of brevity, given that no significant differences were observed for that height. For
Re = 2 · 106, the modeling height is limited to achieve y+MAX ≈ 130 to confine modeling to
the inner region of the boundary layer.

Overall, the computed errors are low, ranging from 0.93% to 1.6%, and are only slightly
affected by increasing the modeling height. These global error levels are comparable
to those observed in the training dataset, thereby validating the model’s generalization
capabilities in interpolation conditions across different Reynolds numbers.

Figure 4.16 illustrates the skin friction coefficient, Cf , and its normalized local error,
as defined in equation (4.33), for two interpolation cases: h = 0.07 with Re = 2 · 106 and
Re = 9 · 106. These represent the lowest and highest Reynolds numbers tested. In both
configurations, the model accurately predicts the skin friction coefficient, matching the
RANS-resolved values along the bump geometry. The local error remains around 2-3%
along the geometry, with a peak at X ≈ 0.75 (the top of the bump), reaching 7% for
Re = 2 · 106 and 5% for Re = 9 · 106.

4.5.1.6 Interpolation in bump height

After assessing the interpolation capabilities for unseen Reynolds number, the model is
tested in interpolation conditions over different bump heights. The model is thus tested
on bump flow conditions with a Reynolds numbers existing in the training dataset, such
as Re = 106, 3 · 106, 6 · 106, 8 · 106 and 107 and two distinct bump heights, h = 0.02 and
h = 0.04, which were unseen during the training process.

Table 4.7 presents the 2-norm global error obtained for these configurations. As in the
previous case, the results are shown for a RANS interface at y+ ≈ 50 and 200, excluding

4.5. RESULTS 113

RANS interface at y+MAX ≈ 50
h = 0.07

Re = 2 · 106 0.93%
Re = 4.5 · 106 1.01%
Re = 7 · 106 1.04%
Re = 9 · 106 1.26%
RANS interface at y+MAX ≈ 200

h = 0.07
Re = 2 · 106 1.62%*

Re = 4.5 · 106 1.44%
Re = 7 · 106 1.25%
Re = 9 · 106 1.6%

Table 4.6: 2-norm global error on the skin friction coefficient Cf between wall-modeled
simulations and reference wall-resolved RANS for two different RANS-Wall model interface
positions and different combinations of bump height and Reynolds number Re. Test case
simulations representing interpolation conditions on Reynolds number (Re = 2 · 106, 4.5 ·
106, 7 · 106 and 9 · 106). The simulations where the interface is located for y+MAX lower than
target value to satisfy y/δ ≤ 0.15 are marked by ∗. The actual interface height is shown in
table 4.3.

the intermediate modeling height 100 for the sake of brevity. The cases presenting the
two lowest Reynolds number configurations (Re = 106 and 3 · 106) required to limit the
RANS interface to restrict the modeling to the inner region of the boundary layer. In the
case of a bump presenting a height of h = 0.02, the maximum dimensionless wall distance
available is set to y+MAX ≈ 60 and 150 respectively, while a bump height of h = 0.04 allows
a modeling distance y+MAX ≈ 60 and 130 respectively. The computed 2-norm error values
are consistent with those of the validation test, ranging between 0.47% and 2.71%. As for
the validation tests, the errors for the lower Reynolds are found to be quite more relevant,
since in these configurations larger values of dimensionless pressure gradient, p+, (adverse
pressure gradient) and its relative derivative, ∂p+, are encountered.

Figure 4.17 illustrates the skin friction coefficient Cf and its normalized local error,
as defined in equation (4.33), for the interpolation cases along the unseen bump heights:
h = 0.02 and h = 0.04. The configurations are characterized by Reynolds numbers
seen during training, ranging from Re = 106 to 107. Two cases are shown: h = 0.02 at
Re = 106 and h = 0.04 at Re = 107. These two cases present very different behaviors.
The first one presents the highest error among the test dataset, indicating the challenging
conditions encountered at the lowest considered Reynolds number. But one may notice
that the accuracy remains high nonetheless. In this case, the local error reaches only 4%
at most, but almost never descends below 2%. In contrast, the latter case demonstrates a
remarkably better estimation of the skin friction coefficient. Even though the local error
also peaks at 4% at the top of the bump (X ≈ 0.75), it goes well below 2% for a significant
portion of the bump geometry, thus explaining the significant difference in global error.

4.5.1.7 Interpolation in bump height and Reynolds number

Finally, this section tests the model accuracy in interpolation condition, both in Reynolds
number and bump height. The model is tested for combinations of unseen bump height
(h = 0.02 and h = 0.04) and Reynolds number (Re = 2 · 106, 4.5 · 106, 7 · 106, and 9 · 106).

114 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

(a) Bump case h = 0.04 and Re = 2 · 107

(b) Bump case h = 0.07 and Re = 9 · 106

Figure 4.16: Skin friction coefficient Cf (left) and the relative local error (right) between
the reference wall resolved simulation and wall modeled ones. Selected sample cases
illustrating interpolation conditions across various Reynolds number with reference to
training dataset. Fixed bump height h = 0.07. RANS-wall model interface placed at target
y+MAX ≈ 50, 100, 200. When the target interface height does not respect y/δ < 0.15, the
interface is fixed at y/δMAX ≈ 0.15 and the obtained y+MAX is shown in the legend.

Table 4.8 presents the 2-norm global error obtained by applying the fully data-driven
model to the eight combinations considered. The computations were performed with the
RANS interface at y+MAX ≈ 50, 100 and 200. The results align with previous findings, with
errors ranging from 0.54% to 1.76% and exhibiting a remarkably low dependency on the
modeling distance.

Figure 4.18 illustrates the skin friction coefficient Cf and its normalized local error for
two cases in interpolation condition in bump height and Reynolds number. The model
shows good accuracy by closely reproducing the reference friction coefficient for both cases.
The local error reaches a maximum of 3%.

4.5.2 Test on the airfoil geometry

This section presents the results of the proposed model applied to the Wortmann airfoil
case. It starts by motivating the choice of the test case and the modeled region, and then
presents the results.

4.5. RESULTS 115

RANS interface at y+MAX ≈ 50
h = 0.02 h = 0.04

Re = 106 2.44% 2.01%
Re = 3 · 106 0.87% 0.86%
Re = 6 · 106 0.47% 0.83%
Re = 8 · 106 0.73% 1.08%
Re = 107 1% 1.32%
RANS interface at y+MAX ≈ 200

h = 0.02 h = 0.04
Re = 106 2.71%* 2.05%*

Re = 3 · 106 1.25%* 1.61%*

Re = 6 · 106 0.99% 0.92%
Re = 8 · 106 1.43% 1.35%
Re = 107 2.14% 1.98%

Table 4.7: 2-norm global error on the skin friction coefficient Cf between wall-modeled
simulations and reference wall-resolved RANS for two different RANS-Wall model interface
positions and different combinations of bump height and Reynolds number Re. Test case
simulations representing interpolation condition on bump height (h = 0.02 and h = 0.04).
The simulations where the interface is located for y+MAX lower than target value to satisfy
y/δ ≤ 0.15 are marked by ∗. The actual interface height is shown in table 4.3.

4.5.2.1 Test setup and procedure

The Wortmann airfoil FX60-100 geometry is considered to evaluate the robustness of the
proposed wall model. A particular attention was required for the airfoil leading edge,
where the development of the boundary layer is at an early stage under conditions of
pressure gradients at low local Reynolds numbers Rex. Indeed, our data-based model
was not trained for such conditions (the model is designed for well established turbulent
boundary layers at a relatively high Reynolds number). Consequently, the model must
be applied at a sufficient distance downstream from the leading edge, as shown in figure
2.11b. This point was considered in the airfoil selection process, as employing airfoils with
large leading edge radii, such as NACA airfoils, would require to apply the model quite far
downstream. The selected airfoil has a relatively small leading-edge radii, which helps to
minimize significant pressure gradients near the leading edge.

The results obtained by the application of the model are compared to reference RANS
simulation and to the analytical wall model by Spalart-Allmaras [110]. It is chosen
as a reference because, by definition, it provides the most accurate approximation of
the RANS-resolved boundary layer using the Spalart-Allmaras turbulence model, thus
mitigating the potential errors arising from a mismatch of the adopted turbulence modeling
through test simulations. However, this straightforward analytical approach neglects
pressure gradients and is anticipated to be outperformed by the proposed model.

The evaluations are performed by evaluating the skin fiction coefficient Cf and its
normalized error introduced in equation (4.33).

4.5.2.2 Results

Figure 4.19 presents the results for the Wortmann FX60-100 airfoil at a 0◦ angle of attack,
considering Reynolds numbers of Re = 6 · 106 and 107. For the sake of brevity, only

116 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

(a) Bump case h = 0.02 and Re = 106

(b) Bump case h = 0.04 and Re = 107

Figure 4.17: Skin friction coefficient Cf (left) and the relative local error (right) between
the reference wall resolved simulation and wall modeled ones. Selected sample cases
illustrating interpolation conditions across various bump heights with reference to training
dataset. RANS-wall model interface placed at target y+MAX ≈ 50, 100, 200. When the
target interface height does not respect y/δ < 0.15, the interface is fixed at y/δMAX ≈ 0.15
and the obtained y+MAX is shown in the legend.

the results along the suction side are presented, as the pressure side exhibits similar
behavior. The figure displays the skin friction coefficient and its normalized error for both
the wall-modeled simulation and the reference RANS simulation. The fully data-driven
approach is compared with the analytical Spalart-Allmaras wall model. Both neural
networks were applied for a local Reynolds number, Rex, above 5 · 105 which sets the
application point for the wall model at approximately the 8% and 5% of the chord,
respectively, for the case at Re = 6 · 106 and 107.

The results demonstrate significantly higher accuracy with the fully data-driven wall
model, which estimates the skin friction coefficient Cf for both flow configurations with an
error consistently below 2% and maintaining near-constant behavior along the streamwise
direction. Conversely, the Spalart-Allmaras wall law exhibits an error peaking at nearly
16% near the model application point, which gradually decreases along the airfoil, with a
slight increase near the trailing edge. This behavior is well-explained by the evolution of
the dimensionless pressure gradient on the airfoil: a strong favorable pressure gradient
near the leading edge affects the boundary layer, the pressure gradient reaches near-zero
values in the central portion of the airfoil and an adverse pressure gradient develops

4.5. RESULTS 117

RANS interface at y+MAX ≈ 50
h = 0.02 h = 0.04

Re = 2 · 106 1.17% 0.96%
Re = 4.5 · 106 0.54% 0.98%
Re = 7 · 106 0.61% 1.03%
Re = 9 · 106 0.88% 1.25%

RANS interface at y+MAX ≈ 200
h = 0.02 h = 0.04

Re = 2 · 106 1.1%* 1.54%*

Re = 4.5 · 106 0.95%* 1.17%
Re = 7 · 106 1.07% 1.03%
Re = 9 · 106 1.76% 1.66%

Table 4.8: 2-norm global error on the skin friction coefficient Cf between wall-modeled
simulations and reference wall-resolved RANS for two different RANS-Wall model interface
positions and different combinations of bump height and Reynolds number Re. Test case
simulations representing interpolation condition on bump height (h = 0.02 and h = 0.04)
and Reynolds number (Re = 2 · 106, 4.5 · 106, 7 · 106 and 9 · 106). The simulations where
the interface is located for y+MAX lower than target value to satisfy y/δ ≤ 0.15 are marked
by ∗. The actual interface height is shown in table 4.3.

approaching the trailing edge. This also explains the discrepancy in performance between
the Re = 6 · 106 and Re = 107 cases, with the former experiencing stronger dimensionless
pressure gradients along the airfoil.

4.5.3 Numerical performances assessment

This section evaluates the numerical performance of the model. First, the computational
cost of the fully data-based model is compared to that of the previous iterative approach
from [92], using the analytical Spalart-Allmaras wall model as a reference. Then, the total
convergence time for a flow over a flat plate is assessed by comparing a fully resolved
RANS simulation to wall-modeled ones, using both the data-driven wall model and the
Spalart-Allmaras wall law.

It should be noted that the computational performance is highly dependent on the
solver configuration. The CFD solver used was not designed to efficiently integrate neural
networks, and achieving optimal performance would require substantial modifications to
the code structure that goes beyond the scope of the work. Therefore, the present results
may be seen as an upper bound of computational costs. With appropriate optimizations
and enhancements to the code, the computational time may surely be significantly reduced.

4.5.3.1 Model computational time assessment

The computational time of the proposed fully data-driven approach is compared with
that of the iterative approach from [92]. For a fair comparison that is not biased by the
reduced feature set of the iterative approach, both strategies are evaluated using the input
features described in chapter 3 and the set from the current one. The network architecture
considered are designed to be similar. In the first case, the dimensionless velocity u+ is
modeled as f(y+, p+), with the near-wall Spalart-Allmaras model represented through
linear evolution. In the second case, the dimensionless velocity u+ is modeled using a wider

118 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

(a) Bump case h = 0.04 and Re = 2 · 106

(b) Bump case h = 0.02 and Re = 9 · 106

Figure 4.18: Skin friction coefficient Cf (left) and the relative local error (right) between the
reference wall resolved simulation and wall modeled ones. Selected sample cases illustrating
interpolation conditions across various bump heights and Reynolds numbers with reference
to training dataset. RANS-wall model interface placed at target y+MAX ≈ 50, 100, 200.
When the target interface height does not respect y/δ < 0.15, the interface is fixed at
y/δMAX ≈ 0.15 and the obtained y+MAX is shown in the legend.

neural network that includes additional input features, such as y+, p+, ∂p+, ν̃+, matching
the fully data-driven approach presented. Here, the near-wall Spalart-Allmaras model is
based on a polynomial regression for all cases and all strategies.

The evaluation is performed on the bump case, characterized by h = 0.06 and Re =
6 · 106, considering different modeling distances of y+MAX ≈ 10, 30, 50, 100 and 200. The
modeled region consists of 7, 18, 25, 36 and 48 layers of cells in the wall normal direction,
respectively. The evaluated modeling strategy conforms to that of figure 2.7. Only
ghost cells are effectively modeled, which allows for a reduction in computational time by
neglecting useless cells during the simulation process. Two layers of cells are modeled for
the upper RANS-Wall model boundary, and two layers of cells are modeled for the side
boundary, with the modeling extending from the wall to the upper interface.

Figure 4.20 shows the CPU times required for a single application of the wall model
with reference to the average computational cost of the Spalart-Allmaras wall law. The
time per iteration is averaged over 1000 iterations and across all wall-modeled points in
the simulation. Accordingly, the computational time of iterative processes is averaged

4.5. RESULTS 119

(a) Re = 6 · 106

(b) Re = 107

Figure 4.19: Flow over a Wortmann FX60-100 airfoil at α = 0◦. Pressure side at Re = 6·106
and Re = 107. Comparison between data-driven wall model and Spalart-Allmaras wall
model. Skin friction coefficient Cf (left) and the relative local error (right) between the
reference wall resolved simulation and wall modeled ones. The wall models are applied
starting from the local Reynolds number ReWM

x = 5 · 105, which gives X ≈ 0.08 and
X ≈ 0.05, respectively (dashed line). The RANS-wall model interface is placed at the wall
distance giving y/δMAX ≈ 0.15 along the modeled section of the flow. The obtained y+MAX

is shown in the legend.

across all different RANS - Wall model interface distances.

Overall, the novel fully-data driven model is approximately 26 times more
computationally expensive than the Spalart-Allmaras law. Furthermore, data driven
approaches based on the strategy from [92] (that rely on iterative determination of local
skin friction coefficients) are shown to be, on average, respectively 55 and 62 times more
expensive than the analytical model. Even if all the deep-learning based approaches
are sensibly more expensive than the analytical model, the present fully data-driven
approach requires, on average, 26% less computational time than the iterative method
from Romanelli et al. [92], presented in chapter 3, and 30% less than the iterative
approach using the extended input feature set. It is important to remark that the three
data-driven approaches show similar trends with different total computing time. This
means that the primary difference in the required time is not due to the ghost cell filling
process, requiring almost the same amount of computational time, but rather due to the
determination of the local friction coefficient, which effectively is the main focus of the
current work. On that aspect, our novel fully data-driven strategy is, on average, 5 times
more computationally effective than the iterative method from [92].

120 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Figure 4.20: Average CPU time required by a single wall model application. Relative CPU
time with reference to the mean computational cost of the Spalart-Allmaras law. Only
the ghost cell are modeled. Comparison between iterative approach and full data-driven
one. RANS-wall model interface placed at target y+MAX ≈ 10, 30, 50, 100, 200, giving
respectively 7, 18, 25, 36 and 48 modeled layers.

4.5.3.2 Total convergence time assessment

Here, the total convergence time for the fully data-driven method is compared both
to a reference RANS simulation and a wall modeled simulation using the analytical
Spalart-Allmaras wall law [110].

The selected case is that of a flow over a flat plate. The Reynolds number, based
on a unitary length, is 5 · 106, and the Mach number is fixed at 0.2, with a free stream
temperature fixed at T∞ = 300K. In order to strictly evaluate the convergence of the
wall modeled flow, the domain does not include the leading edge of the flat plate. A
zero-pressure boundary layer at a local Reynolds number of Rex = 2.5 · 106 is injected at
the inlet of the domain, which extends to Rex = 107 while a uniform flow field is used to
initialize the simulation.

The computational domain is discretized by a uniform distribution of points in the
streamwise direction, with 100 computational points used. In the wall normal direction,
the first computational point is placed at a constant distance from the wall across all
streamwise locations, ensuring a dimensionless wall distance below y+ = 0.2 along the
entire simulation domain. A growth ratio of 5% is applied to the cell size in the wall-normal
direction to the maximum thickness of the boundary layer, expected for a δ = 0.03, then a
growth ratio of 15% is used outside the boundary layer. A computational grid of 100× 172
is thus used.

Figure 4.21 shows the convergence of the momentum residuals along the streamwise
direction for the reference fully resolved RANS simulation and the wall modeled ones, using
both the Spalart-Allmaras analytical model and the fully data-driven model. Additionally,
a wall-modeled simulation using the fully data-driven approach, initialized by 10’000
iterations using the Spalart-Allmaras wall law, as for the bump cases, is included.

The results demonstrate that, as expected, the Spalart-Allmaras law yields faster
convergence, since the required computational time by the model is significantly reduced
when compared to the data-driven approach. The latter, however, allows to reduce
the computational time of more than 40% with 30% fewer iterations than the reference
fully-resolved RANS simulation. It is important to highlight the slow convergence of
the fully data-driven approach at the early stages of convergence. This is due to the

4.6. CONCLUSION 121

(a) Evolution of residual on the
momentum equation in streamwise
direction against the number of
iteration.

(b) Evolution of residual on the
momentum equation in streamwise
direction against total CPU time.

Figure 4.21: Numerical performance assessment of wall modeled simulations. Comparison
between convergence rate of analytical wall model and fully data-driven model compared to
a reference fully resolved RANS simulation. Convergence evaluated through the evolution
of residual on the momentum equation in streamwise direction.

uniform flow initialization of the solution, which causes the neural networks to work
in extrapolation condition. This could also lead to divergence issues for uniform flow
initialization for cases presenting strong pressure gradients. This may be easily solved by
applying the data-driven model in a second stage after some preliminary iterations with
the Spalart-Allmaras law. This approach yields even faster convergence, with a reduction
of computational time of about 60% in 50% of iterations.

4.6 Conclusion

This chapter introduced a new data-based wall model strategy for RANS simulations. The
proposed model is inspired by the work discussed in chapter 3, but includes several new
ideas that correct weaknesses of their previous approach. Both models aim to replace the
resolution of the near-wall region by forcing the evolution of the primitive variables at the
interface separating the RANS resolved region and the modeled region of the computational
domain. In this approach, the modeled cells act as ghost cells for the resolved region,
belonging to the numerical stencil of the first RANS resolved cell layers.

The proposed model is composed of three main components, modeling the near-wall
thermodynamic state, the evolution of the velocity profile, and the near-wall behavior of the
turbulent variable (the turbulence model considered for the article is the Spalart-Allmaras
model).

The previous approach, from Romanelli et al. [92] and presented in the previous chapter,
relies on a neural network to reconstruct the near-wall evolution of the dimensionless
velocity u+ as a function of the dimensionless wall distance y+ and the dimensionless
pressure gradient p+. The model employs an iterative approach to determine the local shear
stress, involving, during the iterations, multiple inferences of the neural network. This is
responsible for the high computational cost of the model. The chapter is thus devoted to
propose a new fully data-driven approach, where a first neural network determines the local
skin friction, effectively replacing the computationally expensive iterative process, and
a second one models the velocity profile. However, without careful treatment, replacing

122 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

the iterative estimation of the wall shear stress with a direct data-based approach yields
computational instabilities, potentially leading to convergence issues. The direct fully
data-driven method does not ensure the continuity of the velocity profile as well as
the previous iterative approach. To solve this problem, instead of reconstructing the
dimensionless velocity profile, the second neural network is trained to estimate the wall
normal derivative of the velocity, which effectively eliminates the discontinuity between
the modeled and the resolved region of the wall-bounded region. The model can thus
be formulated as a Dirichlet-To-Neumann map, which defines a function estimating the
normal derivative of the velocity at the boundary between the RANS region and the
near-wall modeled one.

Additional improvements have been proposed in the article. A new set of dimensionless
features is introduced to improve the accuracy of the approach. Furthermore, the linear
evolution assumed for the near-wall behavior of the Spalart-Allmaras variable from [92]
proved to be inaccurate when the RANS - Wall model interface was far from the wall.
The new approach introduces a polynomial regression model to enhance the accuracy of
the Spalart-Allmaras variable at greater distances from the wall.

The data-driven approach of the proposed model consists of two neural networks
trained on a dataset extracted from finely resolved RANS simulations of flow over a
bump, under various Reynolds numbers and pressure gradient levels based on bump height.
The model was tested and compared with fully resolved RANS simulations, using both
training dataset cases and unseen configurations characterized by different combinations
of Reynolds numbers and bump heights. The model demonstrated accurate results for
all test cases, allowing for greater modeling distances from the wall and outperforming
the previous approach both in terms of accuracy and required computational load. The
new fully data-driven approach revealed to be approximately 26% less computationally
expensive than the previous strategy, despite the more complex set of input features and
modeling strategy for the Spalart-Allmaras near-wall behavior, and 30% less costly than
the iterative approach fed with an equivalent set of input features. These results are due
to the computationally more efficient estimation of the local skin friction, which is around
five times less expensive than the iterative one. Finally, the robustness of the model was
tested on a completely different flow configuration: the wall-bounded flow around an airfoil.
The data-based model significantly outperformed an analytical wall model in terms of
accuracy.

The data-driven wall model introduced in this study has demonstrated significant
accuracy and cost-effectiveness compared to the previous approach. Furthermore, the
inherent flexibility of the data-driven DtN framework, along with its ability to incorporate
non-locality into the model, offers a compelling direction for future research. This could
involve using multiple flow states, distributed along the streamwise direction, as inputs
to reconstruct the boundary layer evolution over an extended portion of the near-wall
region. Additionally, this framework could be extended to enhance data-driven modeling
capabilities incorporating multiple components such as streamwise and wall-normal
velocities, energy, density, or eddy-viscosity.

Additionally, the computational performance assessment has been done here with a
rather preliminary, non-optimized implementation of the wall model in the solver. Further
studies may be needed to evaluate more precisely and improve the computational cost of
the present approach.

Finally, integrating this model into an Immersed Boundary Method framework could
offer a promising opportunity to further test its robustness by tackling complex geometries,
inspired by real-world industrial scenarios, in which traditional modeling techniques

4.6. CONCLUSION 123

struggle.
In conclusion, the proposed model provides an accurate and cost-effective alternative to

conventional wall models, while also paving the way for future advancements in predictive
tools for wall modeling.

124 CHAPTER 4. EFFICIENT DATA-DRIVEN WALL MODELS FOR RANS

Chapter 5

Current development and future works

5.1 Optimization of computational performance 125
5.2 Detection of extrapolation conditions . 126

5.2.1 Density-based outliers detection . 127
5.2.2 Outliers detection Gilbert–Johnson–Keerthi algorithm 127
5.2.3 Discussion of application . 129

5.3 Extension of validity domain to complex flow configurations 130
5.4 Immersed Boundary Method application 131

This chapter focuses on the current research direction and future work perspectives.
First, it introduces a pathway for improving the computational performance of the current
model. Then, it discusses a method for detecting extrapolation conditions during model
application. Moreover, potential improvements to the model are presented, in order
to extend its applicability to complex flows, including flow separation, highlighting the
approach to be followed to enhance the model’s capabilities. Finally, an overview of the
challenges and issues encountered in a preliminary application of the model in an Immersed
Boundary Method simulation is presented, presenting the actions and considerations
needed to fully adapt the presented model to Cartesian solvers.

5.1 Optimization of computational performance

The computational performance assessment in this work was conducted using a
non-optimized implementation of the wall model within the CFD solver. Although
functional, the current setup may not fully capture the model’s potential efficiency, as
bottlenecks could arise, especially in data handling, memory management or inference
speed within the solver. Further investigations are recommended to refine this integration,
focusing on optimizing data pipelines for neural network parameters, deeply modifying
the data structures of the CFD code to more efficiently store neural network parameters
and potentially allowing for a more streamlined integration.

Another promising avenue for enhancing the model’s performance is to utilize
GPU-based inference. GPUs, designed for parallel processing, can significantly speed up
neural network inference compared to traditional CPU computations. This approach
would facilitate faster evaluations of the wall model during simulations, enabling the
integration of more complex and larger neural networks without adversely affecting the
overall computational time of the CFD analysis. Consequently, this would allow for the
implementation of more sophisticated and refined models, thereby better addressing
intricate flow configurations.

125

126 CHAPTER 5. CURRENT DEVELOPMENT AND FUTURE WORKS

5.2 Detection of extrapolation conditions

The results have shown that the models are generally not able to extrapolate to input
quantities that go beyond what was seen during training. While the trained model works
well in interpolation conditions, it tends to fail when extrapolating. It is therefore crucial
to be able to evaluate a priori if the model is used or not in its validity domain. In the
following, two approaches to detect extrapolation conditions are explored and presented.
Both the presented approaches are grounded in the concept of outlier detection, which is
widely used in machine learning to identify data points that deviate significantly from the
training distribution [46]. First, an outlier detection algorithm [111] based on the density
of the training dateset is presented, then, it is followed by a more unconventional approach
based on the Gilbert–Johnson–Keerthi (GJK) algorithm. These strategies can enable the
detection of input features that lie outside the combination of parameters encountered
during training, providing a safeguard against the neural network being forced to operate
in extrapolation conditions, which can lead to simulation failures or non-convergence, as
highlighted in chapter 3.

In order to provide a case of study, the algorithms are applied to the dataset of the
neural network h presented in chapter 4. To enhance readability and interpretation of
the results, the complete set of input features, initially consisting of four parameters, is
reduced to two. Consequently, only the features η and β are considered. The evaluation of
extrapolation condition are then performed on a grid of 100× 100 evaluation points, built
within the range defined by the minimum and maximum values of each considered input
feature. The figure 5.1 show the dataset and the grid of evaluation points built around it.

.

Figure 5.1: Dataset and evaluation points for outliers detection algorithms testing. Input
features η and β are extracted from the simplified training dataset of neural network h,
presented in chapter 4

It is important to note that detecting extrapolation conditions is straightforward when
the desired input features fall outside the range given by the minimum and maximum value
of each considered input feature in the training dataset. However, it can be possible, even
inside this range, to have unseen combination of variables since due to a distribution of the
training data not uniformly distributed, resulting in extrapolation conditions occurring
between the minimum and maximum values of all the considered input feature.

5.2. DETECTION OF EXTRAPOLATION CONDITIONS 127

5.2.1 Density-based outliers detection

The first approach to detect potential extrapolation condition is attempted through
density-based outliers detection, as shown by Breunig et al. [13].

The approach aims to compute an outlier factor F as the ratio of the local dataset
density, computed at the evaluation point and the average local density, computed among
the dataset samples. In order to address the uneven distribution of training samples in
the dataset, the computation of the outlier factor F is conducted locally, considering only
the neighboring samples to the evaluation point. Consequently, given the set of evaluation
samples x̂, for which the extrapolation or interpolation condition is to be estimated, and
the Nk neighboring training samples x̃, the outlier factor F for the i-th evaluation sample
is computed as follows:

F (x̂i, x̃) =
ρ(x̂i; x̃)

1
Nk

∑Nk

j=0 ρ(x̃j; x̃)
, (5.1)

in which ρ is the local density of samples. It is computed as

ρ(xi,xk) =
1

Nkh

Nk∑
j=0

K
(xi − xj

h

)
, (5.2)

using a KDE technique, already presented in section 2.1.2.2.3. Here, Gaussian kernels of
bandwidth h are employed for the density estimation. The evaluation of the outlier factor
F and the local density is performed on standardized dataset obtained trough equation
(2.1).

An example of outlier factor F is presented in figure 5.2, obtained considering the
reduced dataset, presented in chapter 4, using the grid of 100 × 100 evaluations points
introduced before. In the evaluation, 10 neighboring samples to the evaluation point are
considered and a bandwidth h = 0.5 is used. An outlier factor F close to unity indicates
that the sample density at the evaluation point is similar to that of neighboring samples
in the dataset. As a result, interpolation conditions are more likely when the combination
of input features at the evaluation point is fed to a NN trained on this dataset. On the
contrary, lower outlier factors indicated possibles extrapolation conditions.

To identify the estimated outliers, a threshold for the outlier factor F must be
established. In this case, a threshold of 0.99 is used.

This approach demonstrated promising results in terms of outlier detection accuracy;
however, it was found to be highly dependent on both the number of neighbors considered
and the kernel bandwidth, as illustrated in the figure 5.3.

5.2.2 Outliers detection Gilbert–Johnson–Keerthi algorithm

The Gilbert–Johnson–Keerthi (GJK) algorithm is a widely used method in computational
geometry for detecting collisions or determining the minimum distance between two convex
shapes [37], widely adopted in real-time applications like physics simulations, robotics or
computer graphics due to its efficiency [116, 33].

The objective is to detect whether the evaluation point lies within the convex shape
defined by the sample points in the training dataset. If the point is located inside this shape,
the neural network trained on the dataset will operate under interpolation conditions
when it encounters the input feature combination represented by the evaluation point.
Conversely, if the evaluation point lies outside this convex shape, the neural network will
be operating under extrapolation conditions.

128 CHAPTER 5. CURRENT DEVELOPMENT AND FUTURE WORKS

Figure 5.2: Outlier factor F for outlier detection considering 10 neighbors and a bandwidth
h = 0.5 for the Gaussian kernels.

The GJK algorithm is based on the Minkowski difference operation [43], which is
defined as an operation on subsets of a vector space:

A−B := {a− b|a ∈ A, b ∈ B}, (5.3)

where A and B are position vectors representing points on the respective convex shapes
under analysis for collision. In our case, one set is represented by the ensemble of sample
points in the training dataset, while the other consists solely of the evaluation point.

The Minkowski difference defines, in Euclidean space, a shape that, in the event of
a collision between the two sets of points, will contain the origin of the space under
consideration. The algorithm thus evaluates whether the resulting Minkowski shape
contains the origin. However, its efficiency comes from the fact that it does not compute
the entire shape at once. Instead, it iteratively constructs and evaluates the simplex shapes
[32] that compose the Minkowski difference, allowing for a more computationally efficient
determination of collision or proximity.

These simplices are constructed by first selecting an arbitrary search direction and then
choosing the point in each set that maximizes the dot product with that direction, effectively
identifying the farthest point in that direction from the sample sets. Subsequently, the
following search directions are chosen to ensure that the constructed simplices are as close
as possible to the origin. If the initial simplex does not contain the origin, the search
proceeds by constructing adjacent simplices in the direction of the origin of the Euclidean
space, continuing until the origin is enclosed or the search concludes.

As introduced before, the GJK algorithm is adapted to convex sets of points. However,
the dataset of samples can possibly not satisfy this condition, being enclosed in concave
shape. To limit this problem, the algorithm is applied on portions of the dataset. Each
portion is selected by considering the k neighboring samples to the evaluated point,
minimizing local error. However, more sophisticated methods for dividing the dataset into
overlapping convex shapes, as demonstrated by Chazelle [19], offer potential improvements.
These alternative approaches, though promising, are left for future exploration.

In the figure 5.4, the application of the GJK algorithm is shown on the reduced dataset
of the neural network h presented in chapter 4, using the grid of 100 × 100 evaluation

5.2. DETECTION OF EXTRAPOLATION CONDITIONS 129

h = 0.1 h = 0.5 h = 1

k = 5

k = 10

k = 20

Figure 5.3: Application of density based algorithm for outlier detection. Comparison
between different number of k neighbors (k = 5, 10, 20) and bandwidth of the Gaussian
kernels (h = 0.1, 0.5, 1). The training dataset is shown in black. The region in the input
feature space where interpolation condition are expected are in red, while extrapolation
region are in blue.

points introduced before. The partition of the training dataset is done by considering the
20 closest neighboring samples of the dataset.

The GJK algorithm demonstrates promising accuracy in detecting the boundaries of
the training dataset. However, some local imprecision remains. This issue could likely
be addressed by improving the treatment of concave shapes through a more suitable
partitioning of the dataset into convex ensembles, as discussed earlier.

5.2.3 Discussion of application

These two presented approaches allow to identify a set of input parameters outside the
explored dataset during training. In order to use this analysis during the application
of the model, the most straightforward approach would be to train a neural network to
classify, as interpolation or extrapolation sample, the grid of samples, built within the
range defined by the minimum and maximum values of each considered input feature.

In this way, these new predictive capabilities can be applied in two different ways.
Firstly, during the application, they can provide feedback highlighting where extrapolation
occurs for assessing the reliability of the results and managing the extrapolation in a
more controlled manner, such as by applying an analytical extrapolation method (e.g.,
linear extrapolation) from neural network estimation at the closest sample configuration
seen during training. Secondly, identifying extrapolation conditions can provide crucial

130 CHAPTER 5. CURRENT DEVELOPMENT AND FUTURE WORKS

Figure 5.4: Application of Gilbert–Johnson–Keerthi (GJK) algorithm for outlier detection.
The training dataset is shown in black. The region in the input feature space where
interpolation condition are expected are in red, while extrapolation region are in blue.

information during the expansion of the training dataset. For instance, it allows for the
selection of only the unseen configurations, enabling continuous retraining of the neural
network and extending its domain of validity.

5.3 Extension of validity domain to complex flow
configurations

The present work adapted and tested a data-driven wall model applied to quasi-equilibrium
boundary layer, with moderate streamwise pressure gradient. A straightforward research
direction for the presented methodology is to adapt and evaluate its performances on more
complex flow configurations, such as boundary layer separation and reattachment flow.

In order to achieve this objective, an expansion of the training dataset is the first
necessary step. Incorporating data from flows with strong adverse pressure gradients and
separation will allow the model to generalize its predictions to more challenging scenarios.
However, beyond merely expanding the dataset, a thorough study of this complex flows
will help to eventually identify new input features capable to better capture key flow
phenomena, which could be difficult to predict with the presented approach. This analysis
would involve identifying the most critical flow variables and their interactions, ensuring
that the neural network can accurately learn the underlying physics.

Moreover, careful consideration must be given to the numerical implementation of
the wall model. In cases of flow separation, the placement of sampling points, used to
recover data from the flow and drive the modeling, can significantly influence the results.
Sampling points located within the recirculation bubble may respond differently than
those placed above it, potentially leading to varied outcomes in the model’s predictions.
This can highlight the need for adaptive sampling strategies that take into account the
local flow characteristics to ensure accurate data representation.

Finally, modeling complex flow dynamics may require coupling the evolution of velocity
in the near-wall region with the behavior of other primitive variables, essential for fully
recovering the flow state and turbulence model response. The current approach couples the

5.4. IMMERSED BOUNDARY METHOD APPLICATION 131

data-driven velocity model with physical and regression-based analytical models for the
thermodynamic state and the Spalart-Allmaras turbulence model variable. However, in
the case of more complex flows, these analytical models may lack the generality needed to
accurately capture near-wall behavior. A potential solution is to integrate the modeling of
these variables directly into the neural networks used in the model. This fully data-driven
approach could unlock the full potential of neural networks to capture intricate flow
dynamics more effectively.

5.4 Immersed Boundary Method application

The methodology of the proposed model, designed to fully reconstruct the flow in the
near-wall region and replace the resolution of the RANS equations, makes it particularly
well-suited for use in Immersed Boundary Method (IBM) simulations. In IBM approach, in
fact, the interaction between the flow and the boundary is imposed through forcing terms,
since the physical wall is not represented in the computational domain. Wall models are
therefore employed to impose the boundary layer development by replicating the effects of
the wall on the flow.

However, the domain discretization in IBM simulations makes them less suitable for
wall model development, as the Cartesian grids require a large number of cells due to
uniform discretization in all spatial directions, resulting in longer computational times.
Consequently, the development of the current wall model is carried out in body-fitted
cases. Nevertheless, preliminary work has been undertaken to implement the proposed
data-driven model within an IBM framework. In the detail, the data-driven approach in
chapter 3 has been tested in an IBM simulation of the flow around the bi-dimensional
bump.

Even though the results are encouraging, the performance in terms of accuracy of
the model are far from what showed in body-fitted cases. This aspect arises from the
additional numerical strategies needed to effectively address the IBM framework, as showed
by Constant et al. [24].

An important consideration is the selection of force and forcing points. In IBM
simulations, the wall model is employed to reconstruct the flow state in the wall-bounded
region at a set of forcing points I, in order to replace the no-slip boundary condition at
points P , located on the wall surface along the wall normal direction passing through
the forced point. The forced points I, located at cell centers, are selected in order to
completely fill the numerical stencil of resolved cells in the near wall region. In order to
feed the employed model with required flow state data, forcing points S are needed farther
from wall and they are located along the wall normal direction intersecting points I and P .
A representative scheme of the application of wall model in an IBM is shown in figure 5.5.

This means that the location of forcing points is not guaranteed at cell centers and,
consequently, interpolation techniques from adjacent computational cells are required in
order to reconstruct the flow state fed to the model. It is thus clear that the choice of
force and forcing points, as well as the interpolation technique and its stencil can have
a huge impact on the wall model accuracy. As Capizzano [18] showed, inaccuracies in
the numerical treatment of the boundary condition can lead to spurious oscillations in
wall quantities. These oscillations can affect the accuracy and stability of the simulation,
making it challenging to precisely capture key flow characteristics such as the shear stress
at the wall. Methods to reduce these oscillations are thus needed. On this subject, methods
for filtering out spurious fluctuations or averaging the flow state between multiple forcing

132 CHAPTER 5. CURRENT DEVELOPMENT AND FUTURE WORKS

n
P

S

I
ΓI

Figure 5.5: Representative scheme of a wall model (WM) application in an Immersed
Boundary Method (IBM) framework.

points along the wall-normal direction have been introduced, as demonstrated by Constant
[23].

An interesting direction for future research could be to adapt the presented wall
model for applications within the IBM framework, incorporating the mentioned techniques
to bridge the accuracy gap between the body-fitted applications shown in this work
and the preliminary tests of the data-driven WM on Cartesian grids. This presents a
promising opportunity to further assess the model’s robustness by addressing complex
geometries inspired by real-world industrial scenarios, where conventional modeling
techniques encounter limitations.

Conclusion

The objective of this work was to develop a data-based wall model capable of fully
reconstructing flow quantities in the near-wall region, providing greater accuracy and
generality than traditional models. The present work is mainly methodological, and we have
focused on body-fitted Reynolds Averaged Navier-Stokes (RANS) simulations, enabling
rapid and lightweight simulations for testing different modeling strategies. Additionally,
academic cases featuring diverse flow configurations and boundary layer evolutions were
selected for the model’s training and evaluation, ensuring a broad range of flow scenarios.
The neural networks (NNs) used in this study are trained on fully resolved RANS
simulations of turbulent flows over different two-dimensional bump geometries, considering
various flow conditions through variations in Reynolds number and bump height. The
performance of wall modeling strategies in terms of accuracy and computational cost has
then been compared to fully resolved reference calculations for bump flow configurations
not included in the training data, as well as an airfoil configuration.

In this work, a structured workflow was developed to construct a data-driven wall
model, detailing each step from dataset extraction to model integration within the CFD
solver. The process begins by extracting a dataset from RANS simulations. The data
then undergoes through a preprocessing, consisting in scaling, normalizing and weighting
the training samples. After selecting an optimal neural network architecture, the model
is trained to replicate the development of the turbulent boundary layer. Once trained,
the model’s architecture and parameters are integrated into the CFD solver, enabling
real-time boundary condition enforcement during simulations through embedded neural
network inference. This workflow serves as a robust foundation for developing the presented
data-driven wall models and offers a flexible tool for future advancements.

The proposed model aims to reconstruct the flow state in the region between the
wall and a distant interface in the domain, transferring the wall boundary condition to
an equivalent condition at the interface. The simulation domain is thus divided into a
near-wall region, defined by a number of cell layers near the wall where the wall model is
applied, and the rest, where RANS equations are solved. These two regions are separated
by an interface that acts as a displaced boundary, with boundary conditions provided by
the wall model. A ghost cell method is used to impose the boundary condition across this
interface, modeling the flow in a series of ghost cells within the modeled domain region.
Finally, applying the model requires knowing the local flow state, obtained through a
sampling point located in the resolved region above the interface.

The presented wall law consists of three distinct components: a functional model
describing the evolution of tangential velocity at the wall, based on a deep learning
approach, a physical model governing the thermodynamic state and normal velocity at
the wall and a model for turbulent viscosity in the near-wall region.

The initial approach developed in the thesis involves training a neural network on
data resolved down to the wall to reconstruct dimensionless velocity profiles and model
boundary layer evolution in the near-wall region. In line with analytical wall laws, velocity

133

134 CONCLUSION

is a function of distance from the wall and the pressure gradient, dimensioned by wall shear
stress via a characteristic friction velocity, iteratively estimated using a Newton-Raphson
algorithm. This method identifies the wall shear stress that ensures proper scaling of the
relevant quantities at the sampling point to satisfy the functional provided by the neural
network, ensuring the continuity of the modeled velocity profile across the interface. This
method imposes a Dirichlet boundary condition for the RANS calculation. The modeling
of the velocity profile is then sided by a physical model which fix the temperature through
the Crocco-Busemann relation, linking velocity and temperature in the near-wall region. In
the boundary layer, the pressure gradient in the wall-normal direction is neglected, allowing
the density profile to be deduced using the ideal gas law by combining the reconstructed
temperature and the pressure. Additionally, the wall-normal velocity is assumed to behave
linearly in the modeled region. Finally, the Spalart-Allmaras turbulence model (S.-A.)
model variable is reconstructed using a linear law based on the wall-normal distance
dimensioned in the viscous sublayer and logarithmic layer.

This modeling approach produced promising results for almost all test cases. However,
the model underestimated the wall friction coefficient, with increasing error as the interface
height increased. This error was mainly due to growing deviation of the Spalart-Allmaras
turbulence model from its modeling approach, as its linear behavior becomes increasingly
erroneous as the distance from the wall and pressure gradients increase. Additionally, the
iterative estimation of wall friction required multiple neural network inferences, leading to
a high computational cost associated with model application.

To address the highlighted issues, an improved deep learning-based approach was
developed. Inspired by the concept of the Dirichlet-to-Neumann (DtN) map, it directly
imposes friction at the interface between the modeled region and the RANS calculation,
thus fixing the normal velocity gradient at this interface and replacing the Dirichlet
condition with a Neumann condition. The tangential velocity profile is then obtained by
integrating the normal velocity gradient from its value at the interface to the wall. This
method ensures the continuity of the velocity profile, even after replacing the iterative wall
friction estimation. This is achieved using two interconnected neural networks: one predicts
the wall shear from the friction velocity, and the other evaluates the near-wall normal
velocity gradient. Changes were also made to the thermodynamic variables modeling.
The Crocco-Busemann equation is still used, but pressure, wall-normal velocity, and the
Spalart-Allmaras turbulence model variable are modeled via a polynomial regression. This
approach ensures field continuity at the interface between the model and the resolved
region while respecting the expected boundary conditions at the wall.

Overall, this approach demonstrated excellent robustness and accuracy, reproducing
the reference friction coefficient with only a few percent errors for all studied cases, even
with larger modeling distances, outperforming the previous approach in terms of both
accuracy and computational cost. The new velocity profile modeling method, entirely
based on deep learning, proved to be significantly less computationally expensive than
the iterative strategy, allowing for a substantial reduction in computation time and the
number of iterations compared to a fully resolved RANS simulation. This new approach
was approximately 26% less computationally costly than the previous strategy, due to a
more efficient calculation of local wall friction that was approximately five times less costly
than the iterative approach.

The current results could serve as a starting point for further studies and investigations
needed to overcome the challenges encountered in this work and extend the applicability
of these deep learning-based wall models to more complex problems.

Firstly, the computational efficiency of the model can be improved. The computational

135

performance assessment was conducted with a non-optimized wall model implementation
within the CFD solver, since it was not the priority of this work. Potential improvements
include optimizing data pipelines and restructuring the data storage for NNs in the CFD
solver, and exploring GPU-based inference for faster neural network evaluations. These
refinements could significantly reduce computational time, enabling the integration of
more complex models to address intricate flow configurations effectively.

Then, two promising approaches for detecting extrapolation conditions for NNs were
explored: a density-based outlier detection algorithm and an unconventional approach
using the Gilbert–Johnson–Keerthi (GJK) algorithm. Although these methods have
already been implemented, further developed and assessment are needed to ensure that
input features outside the training data’s parameter space are reliably and efficiently
identified, preventing issues like non-convergence and improving the robustness of neural
networks in complex simulations.

For future work, a first direction of research is to broaden the model’s applicability.
This could involve more complex flow configurations, with stronger pressure gradients and
flow separations. To achieve this, the training datasets should be expanded to include a
wider range of such complex configurations. Additionally, a review of the neural network
input variables might be required to better capture new complexities with more suitable
input parameters.

Finally, a second research direction is to integrate this model into an Immersed
Boundary Method (IBM) framework. The proposed modeling strategy, which provides a
full representation of near-wall flow, thermodynamic state, and turbulence model required
to close the RANS equations, is well-suited for IBM simulations. In this context, the
interaction between the flow and the boundary is imposed through forcing terms, simulating
the fluid-surface interaction within a Cartesian grid. Implementing this model for IBM
simulations could offer a promising opportunity to further test the model’s robustness
by tackling complex geometries inspired by real industrial scenarios, where traditional
modeling techniques face limitations.

While these future research directions appear exciting, several crucial challenges remain.
An important one is the balance between model complexity and accuracy, particularly in
the intricate dynamics of boundary layers. The nonlinearity and fine-scale interactions in
the near-wall region necessitate a careful architecture and hyperparameters optimization,
as even minor prediction errors can magnify and lead to discrepancies from fully resolved
simulation due to the high sensibility of turbulent boundary layers. Additionally, integrating
the neural networks into the solver introduces stability challenges. Initial oscillations or
nonphysical predictions may for instance disrupt convergence. To mitigate these issues, a
focus on robust data preprocessing, targeted training strategies and a careful numerical
implementation has to be considered.

Additionally, traditional RANS turbulence models frequently struggle to accurately
capture specific physical phenomena within the resolved flow, such as junction or free
shear flows. This limitation highlights the potential of NN-enhanced RANS closure models
as a promising avenue for continued research. Although this work focuses on the near-wall
region, data-driven wall models and NN-enhanced RANS models could complement each
other effectively. Data-based wall models may significantly enhance the overall accuracy
of RANS simulations when combined with NN-enhanced RANS closure models.

Finally, a similar work dedicated to LES simulations is definitively an important future
research direction. The computational cost of neural network inference is less of an issue
for data-driven wall models in high-fidelity simulations such as Large Eddy Simulation
compared to the more cost-effective framework of body-fitted RANS. However, in the LES

136 CONCLUSION

environment, the modeling requirements are inherently more complex due to insufficient
wall-normal resolution of the domain discretization and the coexistence with subgrid
viscosity models. These aspects introduce additional challenges and issues that must be
addressed for such applications.

French summary / Résumé en français

En mécanique des fluides numérique (CFD), la prédiction précise des écoulements turbulents
en proche paroi est cruciale pour de nombreuses applications. La capacité à effectuer
des simulations CFD rapides et précises est essentielle pour l’optimisation, l’évaluation
des performances et les études paramétriques. Les simulations Reynolds Averaged
Navier-Stokes (RANS) sont largement utilisées dans le secteur industriel en raison de
leur faible coût de calcul. Toutefois, leur précision repose fortement sur la solution des
écoulements en proche paroi nécessitant généralement un maillage très fin afin de saisir
correctement les gradients importants présents dans la couche limite. Cela entraîne un
impact significatif sur le coût de calcul de la simulation. Les lois de paroi permettent
d’alléger ces calculs en substituant la résolution détaillée de la couche limite par une
modélisation, ce qui permet de réduire les contraintes sur le maillage et de diminuer les
temps de calcul.

De plus, dans le cas de la méthode des frontières immergées (IBM), l’utilisation des
modèles de paroi devient essentielle, car cette méthode ne représente pas explicitement la
paroi dans le maillage, représente par une grille cartésienne. L’interaction entre l’écoulement
et la frontière est imposée par un terme de forçage, ce qui rend les modèles de paroi
nécessaires pour reproduire correctement les effets de la paroi.

Les modèles de paroi nécessitent des données provenant d’écoulement à une certaine
hauteur au-dessus de la paroi, appelée point d’échantillonnage. Ce point constitue une
interface entre l’écoulement résolu, éloigné de la paroi et l’écoulement modélisé, plus
proche. À ce point, l’état de l’écoulement est extrait pour fournir les conditions aux limites
nécessaires à la modélisation des contraintes de cisaillement, de l’évolution de la vitesse et
de l’état thermodynamique dans la région en proche paroi, garantissant ainsi la cohérence
entre le modèle de paroi et l’écoulement extérieur résolu.

Les approches de modélisation de paroi se divisent principalement en deux catégories :
les méthodes hybrides et les modèles de contrainte de cisaillement.

Les méthodes hybrides séparent la région de l’écoulement résolu de celle modélisée
par une interface, permettant ainsi de réduire le raffinement du maillage près de la paroi
tout en maintenant la capture des phénomènes physiques essentiels. Les modèles de paroi
hybrides sont souvent complexes et coûteux à mettre en œuvre, car ils nécessitent la
résolution d’équations différentielles dans l’espace, généralement dérivées des équations de
Navier-Stokes simplifiées.

En revanche, les modèles de contrainte de cisaillement étendent la région résolue jusqu’à
la surface de la paroi, remplaçant la condition classique de non-glissement par une contrainte
de cisaillement imposée. Les modèles de contrainte de cisaillement, moins exigeants en
calcul, se divisent en deux types : les modèles analytiques, qui calculent directement
la contrainte de cisaillement à partir de la vitesse à un point d’échantillonnage, et les
modèles intégrales, qui dérivent des équations RANS simplifiées en intégrant l’équation de
la quantité de mouvement de la paroi jusqu’au point d’échantillonnage.

137

138 FRENCH SUMMARY / RÉSUMÉ EN FRANÇAIS

Dans le contexte des lois de paroi, les approches basées sur l’apprentissage profond
commencent à être explorées. La littérature récente a montré un intérêt croissant pour
la modélisation de paroi basée sur les données, en particulier pour ce qui concerne les
approches modélisant la contrainte de cisaillement à la paroi. Ces modèles cherchent
principalement à pallier les limitations des approches traditionnelles en exploitant les
réseaux de neurones pour améliorer la précision et gérer des phénomènes d’écoulement
complexes. Bien que diverses stratégies d’apprentissage automatique et de sélection des
données aient été explorées, les recherches sont encore incomplètes et une méthodologie
commune n’est pas encore établie. Néanmoins, la flexibilité des réseaux de neurones offre
un potentiel indéniable dans la modélisation des écoulements en proche paroi.

Ce travail a pour objectif de développer et évaluer une loi paroi basée sur l’apprentissage
profond, capable de reproduire avec précision l’évolution de la région interne de la couche
limite, fournissant ainsi les conditions aux limites pour le calcul RANS qui se déroule loin
de la paroi.

Le modèle a pour objectif de reconstruire l’état de l’écoulement dans la région située
entre la paroi et une interface distante dans le domaine, afin de transférer la condition
limite de la paroi vers une condition équivalente sur l’interface. Dans un cadre numérique,
ce modèle remplace le calcul de la solution proche de la paroi par une évolution modélisée.
Le domaine de simulation est ainsi divisé en une région proche de la paroi, étant définie
par un certain nombre de couches de cellules près de la paroi, où le modèle de paroi est
utilisé, et le reste, où la résolution des équations RANS est requise. Ces deux zones sont
séparées par une interface qui agit comme une frontière déplacée, avec des conditions
limites définies par le modèle de paroi. Une méthode de cellules fantômes est utilisée
pour imposer la condition limite à travers cette interface. Cela implique la modélisation
de l’écoulement dans une série de cellules fantômes situées dans la région modélisée du
domaine. Le nombre de cellules fantômes dépend du schéma numérique adopté, avec deux
couches requises dans cette étude. De plus, l’application du modèle nécessite de connaître
l’état local de l’écoulement, obtenu à travers un point d’échantillonnage situé dans la
région résolue au-dessus de l’interface.

La loi de paroi se décompose en trois éléments distincts : un modèle fonctionnel
décrivant l’évolution de la vitesse tangentielle au mur, basé sur une approche fondée sur
les données ; un modèle physique qui gouverne l’état thermodynamique et le champ de
vitesse normal au mur ; et un modèle pour la viscosité turbulente dans la région proche de
la paroi.

Le développement et l’application d’un modèle de paroi basé sur les données dans
un solveur CFD se déroulent en deux phases. Une première phase consiste à construire
et entraîner le modèle, en commençant par la création d’un jeu de données dérivé de
simulations RANS comprenant l’évolution de la couche limite sous différentes conditions
d’écoulement. Ces données sont ensuite prétraitées pour préparer l’apprentissage
automatique, incluant normalisation et la pondération de chaque échantillon. Un modèle
d’apprentissage approprié est ensuite sélectionné et entraîné à reproduire la dynamique
de la couche limite. La deuxième phase consiste à intégrer le modèle, donc le ou les
réseaux de neurones dans le solveur CFD, afin de pouvoir l’appliquer lors des calculs. Les
réseaux de neurones et les tâches d’apprentissage automatique sont pris en charge par
la bibliothèque TensorFlow, tandis que le solveur de CFD utilisé est FAST Structured
(FastS), développé par l’ONERA. Ce dernier a été modifié pour permettre l’exécution
d’applications de réseaux de neurones pendant le calcul CFD.

Les réseaux neuronaux utilisés au cours de l’étude sont entraînés à partir de simulations
RANS entièrement résolues d’écoulements turbulents sur différentes géométries de bosses

139

bidimensionnelles, prenant en compte diverses conditions d’écoulement à travers la variation
du nombre de Reynolds et la hauteur de la bosse.

Les performances en termes de précision et coût computationnel des stratégies de
modélisation pariétale sont ensuite comparés à des calculs de référence résolus jusqu’à la
paroi pour des configurations d’écoulement sur une bosse non incluses dans les données
d’entraînement, ainsi que sur une configuration de profil d’aile.

Une approche préliminaire consiste à entraîner un réseau neuronal sur des données
résolues jusqu’à la paroi, afin de reconstruire des profils de vitesse adimensionnés et de
modéliser l’évolution de la couche limite en proche paroi. Conformément aux lois de paroi
analytiques, la vitesse est fonction de la distance à la paroi et du gradient de pression,
ces variables étant adimensionnées par rapport au cisaillement visqueux pariétal via une
vitesse de frottement caractéristique, estimée itérativement à l’aide d’un algorithme de
Newton-Raphson. Cela permet d’identifier la contrainte pariétale qui garantit le correct
adimensionnement des grandeurs concernées au point d’échantillonnage, afin de satisfaire
le fonctionnel fourni par le réseau neuronal, ce qui garantit la continuité du profil de vitesse
modélisé à travers l’interface. Cette méthode impose une condition aux limites de type
Dirichlet pour le calcul RANS.

Les profils de température dans la portion modélisée du domaine et le long de la frontière
sont modélisés à l’aide de la relation de Crocco-Busemann, adaptée aux conditions de
paroi adiabatique. Cette relation établit un lien entre la vitesse et la température dans la
région proche de la paroi. Dans la couche limite, le gradient de pression dans la direction
normale à la paroi est négligé. Cela permet de déduire le profil de densité via la loi des gaz
parfaits, en combinant la température reconstruite avec la loi de Crocco-Busemann et la
pression estimée constante. De plus, la vitesse normale à la paroi est supposée se comporter
de manière linéaire dans la région modélisée. Enfin, le comportement de la variable du
modèle Spalart-Allmaras turbulence model (S.-A.) dans la région proche de la paroi est
reconstruite à travers une loi linéaire, fonction de la distance à la paroi adimensionnée
dans la sous-couche visqueuse et la couche logarithmique.

Le modèle a été testé et comparé à des simulations RANS entièrement résolues. Les
cas tests ont été sélectionnés à la fois à partir du jeu de données d’entraînement et de
configurations inédites de l’écoulement autour de la bosse, caractérisées par une combinaison
différente du nombre de Reynolds et de hauteur. Cette approche de modélisation produit
des résultats précis pour presque tous les cas tests et distance de modélisation testés.
Cependant, le modèle sous-estime le coefficient de frottement de paroi, avec une erreur qui
augmente à mesure que la hauteur de l’interface augmente. Cette erreur est principalement
due à une déviation croissante dans le comportement du modèle de turbulence et de la
variable de Spalart-Allmaras turbulence model. En effet, son comportement linéaire devient
de plus en plus incorrect à mesure que l’on s’éloigne de la paroi et en présence de gradients
de pression significatifs. De plus, l’estimation itérative du frottement pariétal nécessite
plusieurs inférences du réseau de neurones, ce qui entraîne un coût computationnel élevé
lié à l’application du modèle.

Pour réduire le coût associé à l’estimation itérative du cisaillement visqueux, une
nouvelle approche basée sur l’apprentissage profond a été développée. Inspirée du concept
de la Dirichlet-To-Neumann (DtN) map, elle impose directement le frottement à l’interface
entre la région modélisée et le calcul RANS, fixant ainsi la dérivée normale du champ
de vitesse à cette interface, en remplaçant la condition de Dirichlet par une condition
de Neumann. Le profil de vitesse tangentielle est ensuite obtenu en intégrant la dérivée
de la vitesse dans la direction normale, depuis sa valeur à l’interface jusqu’à la paroi.
Cette méthode garantit la continuité du profil de vitesse, même après le remplacement de

140 FRENCH SUMMARY / RÉSUMÉ EN FRANÇAIS

l’estimation itérative du frottement pariétal.
La dérivée du champ de vitesse est estimée à l’aide de deux réseaux neuronaux

interconnectés: l’un estime le cisaillement visqueux pariétal à partir de la vitesse de
frottement, et l’autre évalue la dérivée normale du champ de vitesse proche de la paroi.
Plus précisément, le premier réseau est entraîné pour prédire la distance adimensionnée
de la paroi en fonction d’un ensemble de paramètres d’entrée issus de combinaisons
adimensionnées de grandeurs physiques locales de l’écoulement. Cela permet par la suite
d’estimer la vitesse caractéristique de frottement en connaissant la distance de la paroi du
point d’échantillonnage. Le deuxième réseau permet l’évaluation de la dérivée normale
à la paroi du champ de vitesse à travers un jeu de paramètres d’entrée qui reprend
l’adimensionnement classique basé sur la contrainte visqueuse pariétale.

Des changements ont également été effectués au niveau de la modélisation des variables
thermodynamiques de l’écoulement. L’équation de Crocco-Busemann est toujours utilisée,
mais la modélisation de la pression, de la vitesse normale à la paroi et de la variable du
modèle Spalart-Allmaras turbulence model est réalisée par une régression polynomiale.
Cette approche garantit la continuité du champ au niveau de l’interface entre le modèle et
la zone résolue, tout en respectant les conditions limites attendues à la paroi. Concernant la
pression, un gradient nul est imposé à la paroi, tandis que pour la vitesse normale, à la fois
le gradient normal et la vitesse sont nuls. Pour la variable de Spalart-Allmaras turbulence
model, une valeur nulle est imposée à la paroi, et la pente de l’ancienne approche linéaire
est conservée dans la région proche de la paroi.

Ce dernier modèle est testé sur des configurations différentes de bosse bidimensionnelle.
Globalement, cette approche démontre une excellente robustesse et précision, reproduisant
le coefficient de frottement de référence avec une erreur de seulement quelques pourcents
pour tous les cas étudiés même avec des distances de modélisations plus grandes, en
surpassant l’approche précédente à la fois en termes de précision et de coût computationnel.

La nouvelle méthode de modélisation du profil de vitesse, entièrement fondée sur
l’apprentissage profond, s’est avérée nettement moins coûteuse que la stratégie itérative,
tout en permettant une réduction significative du temps de calcul et une diminution
du nombre d’itérations par rapport à une simulation RANS entièrement résolue. Cette
nouvelle approche s’est révélée environ 26% moins coûteuse en calcul que la stratégie
précédente, malgré un ensemble d’entrées et une stratégie de modélisation plus complexes
pour le comportement proche de la paroi du modèle de Spalart-Allmaras turbulence model,
et 30% moins coûteuse que l’approche itérative avec un ensemble d’entrées équivalent. Ces
résultats s’expliquent par une estimation plus efficace en calcul du frottement pariétal
local, environ cinq fois moins coûteuse que l’approche itérative.

Enfin, la robustesse du modèle a été testée sur une configuration d’écoulement
complètement différente : l’écoulement autour d’un profil d’aile. Le modèle basé sur
l’apprentissage profond a surpassé de manière significative un modèle de paroi analytique
en termes de précision.

Les résultats actuels peuvent constituer un point de départ pour des études et
investigations supplémentaires nécessaires afin de surmonter les problèmes rencontrés
dans ce travail et d’étendre le domaine de validité de ces modèles de paroi basés sur
l’apprentissage profond à des problèmes plus complexes.

Premièrement, l’efficacité computationnelle du modèle pourrait être améliorée.
L’évaluation des performances en termes de cout computationnel a été réalisée avec
une implémentation non optimisée du modèle de paroi dans le solveur CFD. Parmi les
améliorations potentielles figurent l’optimisation des flux de données et la restructuration
du stockage des données concernant les réseaux neuronaux au sein du solveur CFD, ainsi

141

que l’exploration de l’inférence basée sur GPU pour accélérer les évaluations du réseau
de neurones. Ces ajustements pourraient réduire considérablement le temps de calcul,
permettant ainsi l’intégration de modèles plus sophistiqués pour traiter efficacement des
configurations d’écoulement plus complexes.

De plus, deux approches prometteuses pour détecter les conditions d’extrapolation
des réseaux neuronaux ont été explorées : un algorithme de détection d’outliers
basé sur la densité et une approche non conventionnelle utilisant l’algorithme
Gilbert–Johnson–Keerthi (GJK). Bien que ces méthodes aient déjà été implémentées,
un développement supplémentaire est nécessaire pour s’assurer que les paramètres
d’entrée situés en dehors de l’espace des paramètres des données d’entraînement soient
identifiées de manière fiable, afin de prévenir des problèmes tels que la non-convergence et
d’améliorer la robustesse des neural networks dans des simulations complexes.

Pour des travaux futurs, une première direction d’étude consiste à élargir le domaine
d’applicabilité du modèle. Cela pourrait inclure des configurations d’écoulement plus
complexes, avec des gradients de pression plus importants et des séparations d’écoulement.
Pour cela, une extension des ensembles de données d’entraînement devrait être prévue afin
d’inclure un large éventail de ces configurations complexes. En second lieu, une étude des
variables d’entrée des réseaux neuronaux pourrait être nécessaire pour mieux capturer les
nouvelles complexités avec des paramètres d’entrée mieux adaptés.

Enfin, une deuxième direction d’étude consiste à intégrer ce modèle dans un cadre de
méthode des frontières immergées (IBM). La stratégie de modélisation proposée, qui prévoit
une modélisation complète de l’écoulement proche des parois, de son état thermodynamique,
ainsi que du modèle de turbulence nécessaire à la fermeture des équations RANS, s’adapte
bien aux calculs IBM. Dans ce cadre, l’interaction entre l’écoulement et la frontière
est imposée par des termes de forçage, reproduisant les interactions du fluide avec la
surface solide au sein d’un maillage cartésien. Une implémentation pour simulations
IBM pourrait offrir une opportunité prometteuse pour tester davantage la robustesse du
modèle en abordant des géométries complexes, inspirées de scénarios industriels réels, où
les techniques de modélisation traditionnelles montrent leurs limites.

142 FRENCH SUMMARY / RÉSUMÉ EN FRANÇAIS

Bibliography

[1] N. Afzal. “Power law and log law velocity profiles in fully developed turbulent pipe
flow: Equivalent relations at large Reynolds numbers”. In: Acta Mechanica 151.3-4
(2001), pp. 171–183 (cit. on pp. 32, 64, 90).

[2] N. Alferez et al. “Intel Xeon and Xeon Phi Optimizations of an Industry-Oriented
Computational Fluid Dynamics Solver”. In: Proceedings of the Intel HPC Developer
Conference. 2017, pp. 12, 16, 30, 45 (cit. on p. 53).

[3] S. R. Allmaras, F. T. Johnson, and P. R. Spalart. “Modifications and Clarifications
for the Implementation of the Spalart-Allmaras Turbulence Model”. In: 7th
International Conference on Computational Fluid Dynamics (ICCFD7). Big Island,
Hawaii, 2012 (cit. on p. 16).

[4] Gonzalo Arranz et al. “Building-block-flow computational model for large-eddy
simulation of external aerodynamic applications”. In: Communications Engineering
3.1 (2024), p. 127. url: https://doi.org/10.1038/s44172-024-00278-1 (cit. on
p. 33).

[5] Hyunseut J. Bae and Petros Koumoutsakos. “Scientific multi-agent reinforcement
learning for wall-models of turbulent flows”. In: Nature Communications 13.1 (2022),
p. 1443 (cit. on p. 33).

[6] Elias Balaras, Carlo Benocci, and Ugo Piomelli. “A two-layer approximate boundary
condition for large-eddy simulations”. In: AIAA Journal 34.6 (1996), pp. 1111–1119
(cit. on p. 30).

[7] Yoshua Bengio. “Practical recommendations for gradient-based training of deep
architectures”. In: CoRR abs/1206.5533 (2012). url: http://arxiv.org/abs/
1206.5533 (cit. on p. 47).

[8] Christophe Benoit et al. Cassiopée (CFD Adsvanced Set of Services In an Open
Python EnvironmEnt): A CFD pre and post-processing python package. 2023. url:
https://cassiopee.onera.fr/ (cit. on p. 53).

[9] Sanjeeb T Bose and George I Park. “Wall-modeled large-eddy simulation for complex
turbulent flows”. In: Annual Review of Fluid Mechanics 50 (2018), pp. 535–561
(cit. on pp. 29, 30).

[10] Léon Bottou and Olivier Bousquet. “The Tradeoffs of Large Scale Learning”. In:
Optimization for Machine Learning. Ed. by Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright. Cambridge: MIT Press, 2012, pp. 351–368 (cit. on p. 39).

[11] Margaux Boxho. “Development of machine learning-based wall shear stress models
for LES in the presence of adverse pressure gradients and separation”. PhD thesis.
Université de Liège, 2021. url: https://orbi.uliege.be/handle/2268/262621
(cit. on pp. 30, 31).

143

https://doi.org/10.1038/s44172-024-00278-1
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
https://cassiopee.onera.fr/
https://orbi.uliege.be/handle/2268/262621

144 BIBLIOGRAPHY

[12] Lori A. Breslow and David W. Aha. “Simplifying Decision Trees: A Survey”. In:
The Knowledge Engineering Review 12.1 (1997), pp. 1–47 (cit. on p. 40).

[13] Markus M. Breunig et al. “LOF: identifying density-based local outliers”. In:
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’00. Dallas, Texas, USA: Association for Computing Machinery,
2000, pp. 93–104. url: https://doi.org/10.1145/342009.335388 (cit. on
p. 127).

[14] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine learning for fluid
mechanics”. In: Annual Review of Fluid Mechanics 52 (2020), pp. 477–508 (cit. on
p. 33).

[15] Arthur E. Bryson. “A Gradient Method for Optimizing Multi-Stage Allocation
Processes”. In: Proceedings of the Harvard Univ. Symposium on Digital Computers
and Their Applications. Cambridge: Harvard University Press, 1962, pp. 3–6 (cit. on
p. 37).

[16] E. Buckingham. “On physically similar systems; illustrations of the use of
dimensional equations”. In: Physical Review 4.4 (1914), pp. 345–376 (cit. on p. 25).

[17] Yao Cai, Zhongkui Li, and Jieping Ye. “Physics-Informed Neural Networks for Fluid
Dynamics”. In: Physical Review Letters 124 (2020), p. 078001 (cit. on p. 34).

[18] Francesco Capizzano. “Turbulent Wall Model for Immersed Boundary Methods”.
In: AIAA Journal 49.11 (2011), pp. 2367–2381. url: https://doi.org/10.2514/
1.J050466 (cit. on p. 131).

[19] Bernard Chazelle. “Convex partitions of polyhedra: A lower bound and worst-case
optimal algorithm”. In: SIAM Journal on Computing 13.3 (1983), pp. 488–507
(cit. on p. 128).

[20] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate
deep network learning by exponential linear units (ELUs)”. In: arXiv preprint
arXiv:1511.07289 (2015). url: https://arxiv.org/abs/1511.07289 (cit. on
p. 35).

[21] J. Cliquet, R. Houdeville, and D. Arnal. “Application of Laminar-Turbulent
Transition Criteria in Navier-Stokes Computations”. In: AIAA Journal 46.5 (2008),
pp. 1182–1190. url: https://doi.org/10.2514/1.30215 (cit. on p. 69).

[22] Donald Coles. “The law of the wake in the turbulent boundary layer”. In: Journal
of Fluid Mechanics 1.2 (1956), pp. 191–226 (cit. on p. 27).

[23] Benjamin Constant. “Amélioration d’une méthode de frontières immergées pour
la simulation d’écoulements turbulents autour de géométries complexes”. Theses.
Université de Bordeaux, 2023. url: https://theses.hal.science/tel-04146884
(cit. on p. 132).

[24] Benjamin Constant et al. “An improved Immersed Boundary Method for turbulent
flow simulations on Cartesian grids”. In: Journal of Computational Physics 435
(2021), p. 110240. url: https://hal.archives-ouvertes.fr/hal-03182402
(cit. on p. 131).

[25] Haskell B. Curry. “The Method of Steepest Descent for Non-linear Minimization
Problems”. In: Quarterly of Applied Mathematics 2.3 (1944), pp. 258–261 (cit. on
p. 39).

https://doi.org/10.1145/342009.335388
https://doi.org/10.2514/1.J050466
https://doi.org/10.2514/1.J050466
https://arxiv.org/abs/1511.07289
https://doi.org/10.2514/1.30215
https://theses.hal.science/tel-04146884
https://hal.archives-ouvertes.fr/hal-03182402

BIBLIOGRAPHY 145

[26] George Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In:
Mathematics of Control, Signals, and Systems 2.4 (1989), pp. 303–314 (cit. on
p. 35).

[27] S. Deck. “Simulation numérique des charges latérales instationnaires sur des
configurations de lanceur”. PhD thesis. Université d’Orléans, 2002 (cit. on p. 16).

[28] TensorFlow Developers. TensorFlow. Version v2.15.1. 2024. url: https://doi.
org/10.5281/zenodo.10798587 (cit. on pp. 46, 102).

[29] Daniel Di Domenico, João V. F. Lima, and Gerson G. H. Cavalheiro. “NAS Parallel
Benchmarks with Python: a performance and programming effort analysis focusing
on GPUs”. In: The Journal of Supercomputing 79.8 (2023), pp. 8890–8911. url:
https://doi.org/10.1007/s11227-022-04932-3 (cit. on p. 53).

[30] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. “Perspectives on machine
learning-augmented Reynolds-averaged and large eddy simulation models of
turbulence”. In: Physical Review Fluids 6.5 (2021), p. 050504 (cit. on p. 10).

[31] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. “Turbulence Modeling in
the Age of Data”. In: Annual Review of Fluid Mechanics 51.1 (2019), pp. 357–377.
url: http://dx.doi.org/10.1146/annurev-fluid-010518-040547 (cit. on
p. 33).

[32] E. L. Elte. IV. Five Dimensional Semiregular Polytope. Simon & Schuster, 1912
(cit. on p. 128).

[33] Christer Ericson. Real-Time Collision Detection. Elsevier, 2005 (cit. on p. 127).

[34] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. “Finite volume methods”.
In: Solution of Equation in R HNA (Part 3), Techniques of Scientific Computing
(Part 3). Vol. 7. Handbook of Numerical Analysis. Elsevier, 2000, pp. 713–1018. url:
https://www.sciencedirect.com/science/article/pii/S1570865900070058
(cit. on p. 17).

[35] Joel H. Ferziger and Milovan Perić. Computational Methods for Fluid Dynamics.
3rd. Berlin, Heidelberg: Springer, 2002 (cit. on p. 18).

[36] Robert W. Fox, Alan T. McDonald, and Philip J. Pritchard. Introduction to Fluid
Mechanics. 8th. John Wiley & Sons, 2015 (cit. on p. 22).

[37] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional space”. In:
IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–203 (cit. on p. 127).

[38] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS). 2010, pp. 249–256. url: https:
//proceedings.mlr.press/v9/glorot10a.html (cit. on p. 47).

[39] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS 2010). Vol. 9. 2010, pp. 249–256.
url: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf (cit. on
p. 42).

[40] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS). JMLR.org. 2011, pp. 315–323 (cit. on p. 35).

https://doi.org/10.5281/zenodo.10798587
https://doi.org/10.5281/zenodo.10798587
https://doi.org/10.1007/s11227-022-04932-3
http://dx.doi.org/10.1146/annurev-fluid-010518-040547
https://www.sciencedirect.com/science/article/pii/S1570865900070058
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

146 BIBLIOGRAPHY

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016 (cit. on p. 36).

[42] Philip M. Gresho. “The Finite Element Method in Viscous Incompressible Flows”. In:
Recent Advances in Computational Fluid Dynamics. Ed. by C. C. Chao, S. A. Orszag,
and W. Shyy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 148–190
(cit. on p. 20).

[43] Hugo Hadwiger. “Minkowskische Addition und Subtraktion beliebiger Punktmengen
und die Theoreme von Erhard Schmidt”. In: Mathematische Zeitschrift 53.3 (1950),
pp. 210–218 (cit. on p. 128).

[44] Nancy Hall. Boundary Layer. 2015 (cit. on p. 22).

[45] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.
3rd. Morgan Kaufmann, 2011 (cit. on p. 34).

[46] Douglas M Hawkins. Identification of Outliers. Vol. 11. Springer, 1980 (cit. on
p. 126).

[47] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: arXiv preprint arXiv:1502.01852
(2015). url: https://arxiv.org/abs/1502.01852 (cit. on pp. 42, 52).

[48] Geoffrey Hinton. Lecture RMSprop: Divide the gradient by a running average of its
recent magnitude (cit. on p. 40).

[49] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning
Algorithm for Deep Belief Nets”. In: Neural Computation 18 (2006), pp. 1527–1554
(cit. on p. 34).

[50] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9 (1997), pp. 1735–1780 (cit. on p. 34).

[51] X. L. D. Huang, X. I. A. Yang, and R. F. Kunz. “Wall-modeled large-eddy simulations
of spanwise rotating turbulent channels–Comparing a physics-based approach and a
data-based approach”. In: Physics of Fluids 31.12 (2019), p. 125105 (cit. on p. 33).

[52] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: The Annals of
Mathematical Statistics 35.1 (1964), pp. 73–101. url: https://doi.org/10.1214/
aoms/1177703732 (cit. on p. 101).

[53] INRIA Tropics team and INRIA Ecuador team. TAPENADE: An Automatic
Differentiation Engine. 2021. url: https : / / team . inria . fr / ecuador / en /
tapenade/ (cit. on p. 54).

[54] Xiaodong Jin et al. “Deep Learning for Financial Market Prediction”. In: Finance
Research Letters 27 (2018), pp. 132–138 (cit. on p. 34).

[55] W. P. Jones and B. E. Launder. “The Prediction of Laminarization with a
Two-Equation Model of Turbulence”. In: International Journal of Heat and Mass
Transfer 15.2 (1972), pp. 301–314 (cit. on p. 16).

[56] Georgi Kalitzin et al. “Near-wall behavior of RANS turbulence models and
implications for wall functions”. In: Journal of Computational Physics 204.1 (2005),
pp. 265–291. url: https://www.sciencedirect.com/science/article/pii/
S0021999104004164 (cit. on pp. 66, 90).

https://arxiv.org/abs/1502.01852
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://team.inria.fr/ecuador/en/tapenade/
https://team.inria.fr/ecuador/en/tapenade/
https://www.sciencedirect.com/science/article/pii/S0021999104004164
https://www.sciencedirect.com/science/article/pii/S0021999104004164

BIBLIOGRAPHY 147

[57] Soshi Kawai and Johan Larsson. “Wall-modeled large-eddy simulation: Recent
applications and guidelines”. In: Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering 226.5 (2012), pp. 732–742
(cit. on p. 29).

[58] John Kim, Parviz Moin, and Robert Moser. “Turbulence statistics in fully developed
channel flow at low Reynolds number”. In: Journal of Fluid Mechanics 177 (1987),
pp. 133–166 (cit. on p. 27).

[59] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. url: https://arxiv.org/abs/1412.6980 (cit. on pp. 75, 102).

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25 (2012), pp. 1097–1105 (cit. on p. 34).

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification
with deep convolutional neural networks”. In: Communications of the ACM 60.6
(2017), pp. 84–90 (cit. on p. 39).

[62] Johan Larsson et al. “Large eddy simulation with modeled wall-stress: Recent
progress and future directions”. In: Mechanical Engineering Reviews 3.1 (2016),
pp. 15–25 (cit. on p. 29).

[63] Zwald Laurent and Lambert-Lacroix Sophie. The BerHu penalty and the grouped
effect. 2012 (cit. on p. 101).

[64] Yann LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”.
In: Neural Computation 1 (1989), pp. 541–551 (cit. on p. 34).

[65] Yann LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks of the Trade
(1998), pp. 9–50. url: https://doi.org/10.1007/3-540-49430-8_2 (cit. on
p. 47).

[66] James Z. Lee and Katherine L. Garman. “DeepChem: A Deep Learning Framework
for Drug Discovery”. In: Journal of Computational Chemistry 38 (2017),
pp. 1474–1484 (cit. on p. 34).

[67] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: Journal
of Machine Learning Research 17 (2016), pp. 1–40 (cit. on p. 34).

[68] Xiaoyang Li et al. “A Survey on Deep Learning for Cybersecurity”. In: IEEE Access
9 (2021), pp. 58028–58050 (cit. on p. 34).

[69] Ming-Shan Liou. “A Sequel to AUSM: AUSM+”. In: Journal of Computational
Physics 129.2 (1996), pp. 364–382 (cit. on p. 18).

[70] Adrián Lozano-Durán and Hyunseut Bae. “Framework for machine-learning–assisted
turbulence modeling in large-eddy simulations”. In: Physical Review Fluids 6.5
(2021), p. 054602 (cit. on p. 33).

[71] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proceedings of the 30th International
Conference on Machine Learning (ICML). Vol. 30. 1. PMLR, 2013, pp. 6–11 (cit. on
p. 35).

[72] Ivan Mary et al. FAST (Flexible Aerodynamic Solver Technology): A compressible
flow solver python package. 2022. url: https://w3.onera.fr/FAST/ (cit. on
p. 53).

https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/3-540-49430-8_2
https://w3.onera.fr/FAST/

148 BIBLIOGRAPHY

[73] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent
in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133
(cit. on p. 34).

[74] Clark B. Millikan. “A critical discussion of turbulent flows in channels and circular
tubes”. In: Proceedings of the Fifth International Congress for Applied Mechanics
(1937), pp. 386–392 (cit. on p. 27).

[75] Rajat Mittal and Gianluca Iaccarino. “Immersed boundary methods”. In: Annual
Review of Fluid Mechanics 37 (2005), pp. 239–261 (cit. on pp. 9, 29).

[76] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2012 (cit. on p. 36).

[77] M. V. Morkovin. “Boundary Layer Transition and Turbulence”. In: Journal of Fluid
Mechanics 37.1 (1969), pp. 1–37 (cit. on p. 22).

[78] A. J. Musker. “Explicit expression for the smooth wall velocity distribution in a
turbulent boundary layer”. In: AIAA Journal 17.6 (1979), pp. 655–657 (cit. on
p. 31).

[79] Vinod Nair and Geoffrey E Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML). USA: Omnipress, 2010, pp. 807–814 (cit. on p. 35).

[80] B. W. van Oudheusden. “Some Classic Thermal Boundary Layer Concepts
Reconsidered (and their Relation to Compressible Couette Flow)”. In: IUTAM
Symposium on One Hundred Years of Boundary Layer Research. Ed. by G. E. A.
Meier, K. R. Sreenivasan, and H.-J. Heinemann. Dordrecht: Springer Netherlands,
2006, pp. 425–434 (cit. on p. 65).

[81] Miltiadis V. Papalexandris. “On the applicability of Stokes’ hypothesis to
low-Mach-number flows”. In: Continuum Mechanics and Thermodynamics 32
(2020), pp. 1245–1249. url: https://doi.org/10.1007/s00161-019-00785-z
(cit. on p. 15).

[82] Romain Paris. “Potential and challenges of reinforcement learning for flow control”.
English. Fluid mechanics [physics.class-ph]. Institut Polytechnique de Paris, 2022.
url: https://tel.archives-ouvertes.fr/tel-04117830v2 (cit. on pp. 33, 40).

[83] George I. Park and Parviz Moin. “An improved dynamic non-equilibrium wall-model
for large eddy simulation”. In: Physics of Fluids 28.4 (2016), p. 045103 (cit. on
p. 30).

[84] YeongHyeon Park. “Concise Logarithmic Loss Function for Robust Training of
Anomaly Detection Model”. In: (2022). url: https://arxiv.org/abs/2201.05748
(cit. on p. 72).

[85] Ugo Piomelli. “Wall-layer models for large-eddy simulations”. In: Progress in
Aerospace Sciences 44.6 (2008), pp. 437–446 (cit. on p. 9).

[86] Ugo Piomelli and Elias Balaras. “Wall-layer models for large-eddy simulations”. In:
Annual Review of Fluid Mechanics 34.1 (2002), pp. 349–374 (cit. on p. 29).

[87] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000 (cit. on pp. 9,
14, 25, 27).

[88] Ludwig Prandtl. “Über Flüssigkeitsbewegung bei sehr kleiner Reibung”. In:
Verhandlungen des III. Internationalen Mathematiker-Kongresses. Heidelberg,
Germany, 1904, pp. 484–491 (cit. on p. 21).

https://doi.org/10.1007/s00161-019-00785-z
https://tel.archives-ouvertes.fr/tel-04117830v2
https://arxiv.org/abs/2201.05748

BIBLIOGRAPHY 149

[89] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Convergence of Adam
and Beyond”. In: Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018). 2018. url: https://arxiv.org/abs/1904.09237
(cit. on p. 40).

[90] Osborne Reynolds. “An Experimental Investigation of the Circumstances which
Determine Whether the Motion of Water Shall be Direct or Sinuous, and of the
Law of Resistance in Parallel Channels”. In: Philosophical Transactions of the Royal
Society of London 174 (1883), pp. 935–982. url: https://archive.org/details/
philtrans02197454 (cit. on p. 22).

[91] P.L Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: Journal of Computational Physics 43.2 (1981), pp. 357–372. url: https :
//www.sciencedirect.com/science/article/pii/0021999181901285 (cit. on
pp. 18, 53).

[92] M. Romanelli et al. “Data-driven wall models for Reynolds Averaged Navier–Stokes
simulations”. In: International Journal of Heat and Fluid Flow Volume 99 (2023),
p. 109097 (cit. on pp. 11, 64, 90, 95, 97, 98, 99, 110, 117, 119, 121, 122).

[93] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain”. In: Psychological Review 65 (1958), pp. 386–408
(cit. on p. 34).

[94] C. Rumsey et al. “Recent Updates to the CFD General Notation System (CGNS)”.
In: 50th AIAA Aerospace Sciences Meeting. Nashville, TN: American Institute of
Aeronautics and Astronautics, 2012 (cit. on p. 53).

[95] Christopher Rumsey. 2D Bump-in-channel Verification Case. 2021. url: https:
//turbmodels.larc.nasa.gov/bump.html (cit. on p. 56).

[96] Christopher L. Rumsey, Dan H. Neuhart, and Michael A. Kegerise. “The NASA
Juncture Flow Experiment: Goals, Progress, and Preliminary Testing”. In: AIAA
Scitech 2019 Forum. American Institute of Aeronautics and Astronautics (AIAA).
2019 (cit. on p. 33).

[97] Hermann Schlichting and Klaus Gersten. Boundary-Layer Theory. 8th ed. Berlin,
Heidelberg: Springer, 2000 (cit. on pp. 21, 22, 27).

[98] M. L. Shur et al. “Turbulence Modeling in Rotating and Curved Channels: Assessing
the Spalart-Shur Correction”. In: AIAA Journal 38.5 (2000), pp. 784–792 (cit. on
p. 16).

[99] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall/CRC, 1986 (cit. on p. 51).

[100] Arthur M.O. Smith and Norman Gamberoni. “Laminar Boundary Layer Oscillations
and Transition on a Flat Plate”. In: Journal of the Aeronautical Sciences 20.11
(1953), pp. 793–800 (cit. on p. 23).

[101] Jan Snyman. Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory and Classical and New Gradient-Based Algorithms. Springer
Science & Business Media, 2005 (cit. on p. 39).

[102] P. Spalart and S. Allmaras. “A one-equation turbulence model for aerodynamic
flows”. In: 30th Aerospace Sciences Meeting and Exhibit. url: https://arc.aiaa.
org/doi/abs/10.2514/6.1992-439 (cit. on p. 16).

https://arxiv.org/abs/1904.09237
https://archive.org/details/philtrans02197454
https://archive.org/details/philtrans02197454
https://www.sciencedirect.com/science/article/pii/0021999181901285
https://www.sciencedirect.com/science/article/pii/0021999181901285
https://turbmodels.larc.nasa.gov/bump.html
https://turbmodels.larc.nasa.gov/bump.html
https://arc.aiaa.org/doi/abs/10.2514/6.1992-439
https://arc.aiaa.org/doi/abs/10.2514/6.1992-439

150 BIBLIOGRAPHY

[103] P. R. Spalart and A. V. Garbaruk. “Correction to the Spalart-Allmaras Turbulence
Model, Providing More Accurate Skin Friction”. In: AIAA Journal 58.5 (2020),
pp. 1903–1905 (cit. on p. 16).

[104] P. R. Spalart et al. “Comments on the feasibility of LES for wings and on a
hybrid RANS/LES approach”. In: Proceedings of the First AFOSR International
Conference on DNS/LES. 1997, pp. 137–147 (cit. on p. 30).

[105] Philippe R Spalart. “Detached-eddy simulation”. In: Annual Review of Fluid
Mechanics 41 (2009), pp. 181–202 (cit. on p. 30).

[106] D.B. Spalding. “A single formula for the law of the wall”. In: Journal of Applied
Mechanics 28.3 (1961), pp. 455–458 (cit. on p. 31).

[107] Michael Steininger et al. “Density-based weighting for imbalanced regression”. In:
Machine Learning 110 (2021), pp. 2187–2211 (cit. on pp. 51, 101).

[108] George Stokes. “On the Effect of the Internal Friction of Fluids on the Motion
of Pendulums”. In: Transactions of the Cambridge Philosophical Society 9 (1851),
pp. 8–106 (cit. on p. 22).

[109] Ilya Sutskever et al. “On the importance of initialization and momentum in deep
learning”. In: Proceedings of the 30th international conference on machine learning
(ICML-13). Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Atlanta, GA,
2013, pp. 1139–1147. url: http://proceedings.mlr.press/v28/sutskever13.
pdf (cit. on p. 40).

[110] Yoshiharu Tamaki, Motoshi Harada, and Taro Imamura. “Near-Wall Modification
of Spalart–Allmaras Turbulence Model for Immersed Boundary Method”. In: AIAA
Journal 55.9 (2017), pp. 3027–3039. url: https://doi.org/10.2514/1.J055824
(cit. on pp. 31, 106, 115, 120).

[111] Bo Tang and Haibo He. “A local density-based approach for outlier detection”.
In: Neurocomputing 241 (2017), pp. 171–180. url: https://www.sciencedirect.
com/science/article/pii/S0925231217303302 (cit. on p. 126).

[112] L. Temmerman and M.A. Leschziner. “Large eddy simulation of separated flow in a
streamwise periodic channel constriction: Influence of grid resolution and subgrid
model”. In: International Journal of Heat and Fluid Flow 24.2 (2003), pp. 157–180
(cit. on p. 29).

[113] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. “Neural network studies.
1. Comparison of Overfitting and Overtraining”. In: Journal of Chemical Information
and Modeling 35.5 (1995), pp. 826–833. url: https://pubs.acs.org/doi/pdf/
10.1021/ci00027a006 (cit. on p. 42).

[114] The Official CGNS Home Page. url: https://cgns.github.io/cgns-modern.
github.io/index.html (cit. on p. 53).

[115] Eleuterio F. Toro, Michael Spruce, and W. Speares. “Restoration of the contact
surface in the HLL-Riemann solver”. In: Shock Waves 4.1 (1994), pp. 25–34 (cit. on
p. 18).

[116] Gino Van Den Bergen. “A fast and robust GJK implementation for collision detection
of convex objects”. In: Journal of Graphics Tools 4.2 (1999), pp. 7–25 (cit. on p. 127).

http://proceedings.mlr.press/v28/sutskever13.pdf
http://proceedings.mlr.press/v28/sutskever13.pdf
https://doi.org/10.2514/1.J055824
https://www.sciencedirect.com/science/article/pii/S0925231217303302
https://www.sciencedirect.com/science/article/pii/S0925231217303302
https://pubs.acs.org/doi/pdf/10.1021/ci00027a006
https://pubs.acs.org/doi/pdf/10.1021/ci00027a006
https://cgns.github.io/cgns-modern.github.io/index.html
https://cgns.github.io/cgns-modern.github.io/index.html

BIBLIOGRAPHY 151

[117] Bram van Leer. “Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method”. In: Journal of Computational Physics
32.1 (1979), pp. 101–136. url: https://www.sciencedirect.com/science/
article/pii/0021999179901451 (cit. on p. 19).

[118] Ashish Vaswani et al. “Attention is All You Need”. In: Advances in Neural
Information Processing Systems. Vol. 30. 2017, pp. 5998–6008 (cit. on p. 34).

[119] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. 2nd. Harlow: Pearson, 2007 (cit. on p. 18).

[120] Pedro S. Volpiani et al. “Data-driven compressibility transformation for turbulent
wall layers”. In: Physical Review Fluids 5.5 (2020), 052602(R) (cit. on p. 33).

[121] Shumin Wang and Zhaohong Deng. “Stratified sampling for feature subspace
selection in random forests for high-dimensional data”. In: Pattern Recognition 45.9
(2012), pp. 3239–3247 (cit. on p. 50).

[122] H. Werner and H. Wengle. “Large-Eddy Simulation of Turbulent Flow Over and
Around a Cube in a Plate Channel”. In: Turbulent Shear Flows 8. Ed. by Franz
Durst et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 155–168
(cit. on p. 67).

[123] Frank M. White. Viscous Fluid Flow. 3rd. McGraw-Hill Education, 2006 (cit. on
p. 22).

[124] David C. Wilcox. “Reassessment of the scale-determining equation for advanced
turbulence models”. In: AIAA Journal 26.11 (1988), pp. 1299–1310. url: https:
//doi.org/10.2514/3.10041 (cit. on p. 16).

[125] Saining Xie and Zhuowen Tu. “Holistically-nested edge detection”. In: Proceedings
of the IEEE International Conference on Computer Vision (ICCV). 2015,
pp. 1395–1403 (cit. on p. 50).

[126] X. I. A. Yang et al. “Integral wall model for large eddy simulations of wall-bounded
turbulent flows”. In: Physics of Fluids 27.2 (2015), p. 025112 (cit. on p. 32).

[127] X. I. A. Yang et al. “Predictive large-eddy-simulation wall modeling via
physics-informed neural networks”. In: Physical Review Fluids 4 (2019), p. 034602
(cit. on p. 33).

[128] Xiang I A Yang et al. “Integral wall model for large eddy simulations of wall-bounded
flows”. In: Physics of Fluids 29.9 (2017), p. 091701 (cit. on p. 29).

[129] In-Kwon Yeo and Richard A. Johnson. “A new family of power transformations to
improve normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954–959. url:
https://doi.org/10.1093/biomet/87.4.954 (cit. on pp. 48, 100).

[130] D. Zhou et al. “Multi-agent reinforcement learning for wall modeling in LES of flow
over periodic hills”. In: Physical Review Fluids 7.2 (2022), p. 024604 (cit. on p. 33).

[131] Zhideng Zhou, Guowei He, and Xiaolei Yang. “Wall model based on neural networks
for les of turbulent flows over periodic hills”. In: Physical Review Fluids 6.5 (2021),
pp. 1–30 (cit. on pp. 33, 50, 64, 72).

[132] Zhideng Zhou et al. “A wall model learned from the periodic hill data and the law
of the wall”. In: Physics of Fluids 35.5, 055108 (2023), p. 055108 (cit. on p. 33).

https://www.sciencedirect.com/science/article/pii/0021999179901451
https://www.sciencedirect.com/science/article/pii/0021999179901451
https://doi.org/10.2514/3.10041
https://doi.org/10.2514/3.10041
https://doi.org/10.1093/biomet/87.4.954

152 BIBLIOGRAPHY

Lois de paroi à apprentissage profond pour simulations aérodynamiques

Résumé : Les simulations aux équations de Navier-Stokes moyennées (RANS) sont largement utilisées
dans le domaine industriel. Cependant, leur précision dépend fortement de la solution des écoulements en
proche paroi, nécessitant typiquement un maillage très fin pour capturer correctement les forts gradients se
développant dans la couche limite. Cela entraîne un impact considérable sur le coût de calcul de la simulation.
Les lois de paroi permettent d’alléger ces calculs en remplaçant la résolution coûteuse de la couche limite
par une modélisation. Dans ce contexte, des approches basées sur l’apprentissage profond sont explorées
et la flexibilité des réseaux de neurones offre un potentiel indéniable dans la modélisation des écoulements
pariétaux. Ce travail vise à développer une loi de paroi basée sur l’apprentissage profond qui peut reproduire
avec précision l’évolution de la région interne de la couche limite, fournissant ainsi des conditions aux limites
valables pour les calculs RANS se déroulant loin de la paroi. Une approche préliminaire consiste à entraîner
un réseau de neurones sur des données résolues jusqu’à la paroi pour reconstruire des profils de vitesse
adimensionnelle et modéliser l’évolution de la couche limite. Conformément aux lois de paroi analytiques, la
vitesse est fonction de la distance à la paroi et du gradient de pression. Ces variables sont adimensionnalisées à
l’aide d’une vitesse de frottement caractéristique, qui est estimée de manière itérative à l’aide d’un algorithme
de Newton-Raphson. Pour réduire le coût associé à l’estimation itérative de la contrainte visqueuse à la
paroi, une nouvelle approche entièrement basée sur l’apprentissage profond a été développée. Elle impose
directement le frottement à l’interface entre la région modélisée et le calcul RANS, fixant la dérivée normale
du champ de vitesse, qui est estimée à l’aide de deux réseaux de neurones interconnectés : l’un estimant la
contrainte de cisaillement à la paroi et l’autre évaluant la dérivée adimensionnelle de la vitesse. Les réseaux de
neurones sont entraînés sur des simulations RANS entièrement résolues d’écoulements turbulents sur diverses
géométries de bosses bidimensionnelles. Les performances, en termes de précision et coût computationnel, de
ce modèle sont ensuite comparées à des calculs résolus jusqu’à la paroi pour des configurations d’écoulements
non incluses dans le jeu de données d’entraînement.

Mots-clés : Dynamique des fluides numérique, simulations RANS, Loi de paroi, Apprentissage profond

Deep Wall Models for Aerodynamic Simulations

Abstract: Reynolds-Averaged Navier-Stokes (RANS) simulations are widely used in the industrial domain.
However, their accuracy heavily relies on the solution of near-wall flows, typically requiring a very fine mesh
to properly capture the steep gradients developing in the boundary layer. This results in a substantial
impact on the computational cost of the simulation. Wall laws allow to speed up of these calculations by
replacing the costly resolution of the boundary layer with modeling. In this context, deep learning-based
approaches are being explored and the flexibility of neural networks offers undeniable potential in modeling
near-wall flows. This work aims to develop a wall law based on deep learning that can accurately reproduce
the evolution of the internal region of the boundary layer, thereby providing boundary conditions for the
RANS calculations occurring far from the wall. A preliminary approach involves training a neural network
on wall-resolved data to reconstruct dimensionless velocity profiles and model the evolution of the boundary
layer near the wall. In accordance with analytical wall laws, velocity is a function of the distance to the
wall and the pressure gradient, with these variables being non-dimensionalized using a characteristic friction
velocity, which is iteratively estimated using a Newton-Raphson algorithm. To reduce the cost associated
with the iterative estimation of the wall shear stress, a new approach entirely based on deep learning has
been developed. It directly imposes the friction at the interface between the modeled region and the RANS
calculation, fixing the normal derivative of the velocity field, which is estimated using two interconnected
neural networks: one estimating the wall shear stress and the other evaluating the dimensionless normal
derivative of the velocity. The neural networks are trained on fully resolved RANS simulations of turbulent
flows over various two-dimensional bump geometries. The performance of this wall model, in term of accuracy
and computational cost, is then compared to wall-resolved calculations for flow configurations not included
in the training dataset.

Keywords: Computational fluid dynamics, RANS simulations, Wall model, Deep learning

Unité de recherche / Research Unit
Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex

	Acknowledgments
	Contents
	Acronyms
	Introduction
	Objectives
	Structure of the thesis

	State of the art
	Introduction
	Numerical methods for computational fluid dynamics
	Reynolds Averaged Navier-Stokes Equations
	Spalart-Allmaras turbulence model
	Finite volume method
	Convective flux discretization
	Roe scheme
	Third order MUSCL reconstruction

	Viscous flux discretization
	Numerical stencil

	Boundary layer
	Boundary layers
	Types of boundary layer
	Boundary layer separation

	Turbulent boundary layer
	Turbulent boundary layer equations
	Self-similar solution of the velocity distribution
	Inner layer
	Outer layer
	Overlap layer

	Turbulent boundary layer structure

	Wall modeling
	Standard wall models
	Differential wall models
	Shear stress models
	Analytical wall models
	Integral wall models

	Data-driven wall models

	Neural Networks
	Fully Connected Neural Networks
	Activation functions

	Training a neural network
	Gradient back-propagation
	Update of neural network parameters
	Common gradient-based optimizers for neural networks
	Neural network accuracy and architecture
	Training techniques and issues

	Methods and tools
	Methodology and tools for data-driven wall models
	Workflow of the data-driven wall model
	Machine Learning Framework
	Data Preprocessing
	Non-dimensionalization
	Normalization
	Transformation

	Neural network training
	Neural network architecture
	Loss function
	Sample weighting
	Optimizer and training strategy

	CFD solver
	Numerical approach
	Neural network integration

	Wall model strategy
	Wall model strategy in a finite volume framework
	Ghost cells approach
	Model components

	Main test cases
	2D Bump case
	Domain discretization

	Airfoil case
	Domain discretization

	Data-driven wall models for RANS
	Wall law formulation
	Formulation for the wall tangent velocity evolution
	Physical model for thermodynamic state and wall normal velocity field
	Wall normal velocity

	Near-wall Spalart-Allmaras modeling

	Numerical implementation of the wall model
	Iterative estimation of local wall shear stress
	Wall model application

	Flow configurations
	Neural network implementation and training
	Loss function definition
	Neural network architecture and optimization
	Optimization of the neural network architecture
	Neural network architecture

	Training and a priori results

	Results
	Test procedure
	Global errors
	Interpolation test results
	Extrapolation cases
	Flat plate case
	Near separation case
	Influence of dimensionless pressure gradient

	Mass conservation

	Conclusion

	Efficient data-driven wall models for RANS
	Wall law formulation
	Dirichlet-To-Neumann formulation for the wall tangent velocity evolution
	Additional parameters for Dirichlet-To-Neumann map

	Physical model for thermodynamic state and wall normal velocity field
	Near-wall Spalart-Allmaras modeling

	Numerical implementation of the wall model
	Wall model discretization
	Wall model application
	Numerical effect of Dirichlet-To-Neumann approach

	Flow configurations
	Bump flow case
	Training and testing datasets

	Airfoil case

	Data-driven modeling
	Neural networks
	Neural network architecture
	Dataset treatment
	Loss function selection
	Training strategy
	Discussion on direct estimation and derivative computation
	Discussion on single and multiple neural networks approach

	Results
	Results on bump geometry
	Test procedure
	Assessment of Spalart-Allmaras modeling strategy
	Discussion on the additional parameters for DtN-map
	Model validation and comparison with iterative approach
	Interpolation in Reynolds number
	Interpolation in bump height
	Interpolation in bump height and Reynolds number

	Test on the airfoil geometry
	Test setup and procedure
	Results

	Numerical performances assessment
	Model computational time assessment
	Total convergence time assessment

	Conclusion

	Current development and future works
	Optimization of computational performance
	Detection of extrapolation conditions
	Density-based outliers detection
	Outliers detection Gilbert–Johnson–Keerthi algorithm
	Discussion of application

	Extension of validity domain to complex flow configurations
	Immersed Boundary Method application

	Conclusion
	French summary / Résumé en français
	Bibliography

