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Résumé étendu

La fusion de l’hydrogène
La fusion de l’hydrogène représente, depuis les années 1930, l’espoir d’une source d’énergie
abondante et peu dangereuse. Lors des premières grandes expériences de fusion comme Scylla
I aux Etats-Unis ou Zeta au Royaume-Uni la réussite de la fusion paraissait accessible. Pour-
tant, d’importantes difficultés se sont présentées, dont certaines ne sont toujours pas résolues
à ce jour. Maintenir un plasma stable à des températures très élevées, tout en protégeant les
parois, représente un défi considérable. Les enjeux liés au changement climatique ont remis la
production d’énergie au centre des préoccupations. A ce titre, la fusion bénéficie d’un regain
d’intérêt notable.

Aujourd’hui, la réaction de fusion privilégiée est la fusion d’un atome de deutérium et de
tritium afin de former un atome d’hélium et un neutron. Cette réaction permet, en principe, de
libérer une très grande quantité d’énergie (≈ 17.5 MeV ). Pour cela, il est nécessaire de franchir
la barrière de potentiel produite par répulsion électrostatique. Cette réaction se produit essen-
tiellement dans des milieux très denses, comme le Soleil, ou à des températures très élevées,
de l’ordre de 150 millions de degrés. À ces températures, les électrons et les noyaux légers
sont entièrement séparés dans un état appelé “plasma”. Le plasma réagit aux champs magné-
tique, ce qui présente un avantage important pour son confinement dans des machines appelées
“tokamaks”.

Les conditions extrêmes du plasma ainsi que la qualité du confinement par la machine sont
directement responsables de l’efficacité d’un réacteur et de son bilan énergétique. Le critère de
Lawson, donne la valeur minimale pour que ce bilan énergétique soit positif, autrement dit pour
que la production d’énergie soit supérieure à celle introduite effectivement pour la génération
du plasma. Il dépend de la densité, température et du temps de confinement de l’énergie.

nT τE ≥ 3×1021m−3.keV.s (1)

La réaction de fusion est plus efficace dans une certaine plage de température, ce qui contraint T .
Ainsi, il reste deux paramètres sur lesquels jouer pour atteindre le critère de Lawson. Ou bien
augmenter la densité, c’est le principe du confinement inertiel. Ou bien augmenter le temps de
confinement, c’est le principe du confinement magnétique dans des tokamaks ou des stellarators
notamment. Nous nous intéressons dans cette thèse au confinement dans les tokamaks.

Le confinement dans les tokamaks
Le tokamak est une machine en forme de donut comportant un important champ magnétique
dans la direction dite toroïdale c’est-à-dire le long du grand rayon du donut. Les particules
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chargées du plasma suivent les lignes du champ magnétique de telle sorte qu’elles sont amenées
à effectuer des tours dans la direction toroïdale. Cependant, les propriétés du plasma impliquent
des effets de dérive. C’est le cas de la dérive électrique vE = E×B/B2. Le champ magnétique
étant courbé par la géométrie du tokamak, les particules proches du cœur ne sont pas sujettes au
même champ magnétique que celles du bord. Il en résulte une dérive dite “verticale” qui crée
une séparation des charges dans la direction verticale, produisant ensuite un déplacement radial
du plasma par la dérive électrique. Ce phénomène conduit à la perte très rapide du plasma.
Afin de résoudre ce problème, un deuxième champ magnétique plus faible est ajouté dans la
direction poloïdale, créant des lignes de champ torsadées. Ainsi, les particules explorent à la
fois les régions internes et externes de la machine : leur dérive verticale est compensée.

Dans un tokamak, nous pouvons définir trois régions principales. D’abord, la zone de con-
finement du plasma, où les surfaces magnétiques sont fermées. Ensuite, la zone externe où le
plasma interagit avec les matériaux. Enfin, une zone de transition, dite « de bord », entre la
zone confinée et la zone externe.

Transport radial
En principe une machine parfaitement axisymétrique dont les champs d’équilibre ne varient pas
dans le temps permet le confinement du plasma. Pourtant, plusieurs phénomènes physiques
viennent perturber cette configuration d’équilibre. C’est le cas des collisions entre les particules
qui génèrent un transport radial à travers les surfaces du champ magnétique. C’est également le
cas de la turbulence, qui produit la majorité du transport radial.

La turbulence est générée par les forts gradients thermodynamiques présents entre le cœur
chaud et dense du plasma et le bord froid. Ces gradients, qui stockent une importante quantité
d’énergie, peuvent atteindre un seuil d’instabilité. Ils commencent alors à donner une partie de
leur énergie aux fluctuations. Lorsque ces fluctuations deviennent importantes, elles commen-
cent à interagir entre elles et atteignent en général une saturation non-linéaire. C’est ce que l’on
considère comme le régime turbulent.

Turbulence
Mieux comprendre la turbulence et sa saturation est essentiel pour le développement de futurs
réacteurs. Il s’agit aussi d’un sujet fondamental, partagé avec de nombreux domaines physiques.
La turbulence est caractérisée par une dynamique complexe et chaotique dans laquelle de nom-
breuses échelles sont couplées. On considère souvent la turbulence sous la forme de «vortex »
qui représentent une partie du fluide se comportant de façon cohérente. La turbulence implique
l’interaction de multiples vortex à des échelles de tailles variées. Dans l’espace de Fourier, on
considère ces échelles sous la forme de leurs nombre d’onde k, où k = 2π/λ et λ représente la
taille du vortex.

La turbulence s’auto-organise également en structures complexes. Tout d’abord elle génère
du transport sous forme d’évènements balistiques. Ces évènements de transport peuvent être
assimilés à une avalanche dans un tas de sable : un évènement de transport aplati le profil
de pression localement, ce qui engendre deux zones de plus fort gradient de chaque côté. Dans
chacune de ces zones, le fort gradient produit un important transport et amène à un aplatissement
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du profil local. Ainsi, l’avalanche se déplace dans les deux sens : une anomalie négative vers le
haut du profil, une anomalie positive vers le bas. De plus, la turbulence génère des écoulements
à travers le tenseur de Reynolds qui consiste en un couplage des fluctuations de vitesses radiale
et poloïdale. Plusieurs vitesses peuvent ainsi participer au tenseur de Reynolds. Historiquement,
on a principalement considéré la dérive électrique. Plus récemment, il a été démontré que
la dérive diamagnétique est également importante dans certains régimes de turbulence. Les
écoulements poloïdaux ainsi générés sont appelés « écoulements zonaux (ZF) » car ils sont
symétriques dans la direction toroïdale et poloïdale. Les ZF sont considérés comme des facteurs
clés dans la saturation de la turbulence dans la mesure où ils permettent de stocker l’énergie de
la turbulence sans générer eux-mêmes du transport. De plus, leur structure radiale permet de
participer au cisaillement généré par les écoulements dans la direction poloïdale : les structures
turbulentes sont allongées et parfois même déstructurées par l’effet de cisaillement.

Il est prédit dans certaines simulations que les zones de cisaillement provoquées par les
écoulements pourraient amener à une réduction du transport turbulent local et donc à une aug-
mentation locale du gradient de pression. Le profil prend ainsi une forme en marches d’escalier
où les zones de fort gradient correspondent aux écoulements et les zones de faible gradient aux
avalanches. Cette structure globale est appelée staircase.

Contexte et objectifs de la thèse
Les paramètres du plasma dans la zone de bord sont considérés comme des facteurs clés dans
la compréhension de la turbulence et du transport. Ils permettent d’identifier des zones de fonc-
tionnement du tokamak : certaines sont des limites et ne permettent pas l’opération, d’autres
permettent l’accès à des modes de « haut confinement » (mode-H). Un exemple de limite est
donné par une trop forte densité dans laquelle le plasma atteint un régime de très fort transport
turbulent, ne permettant pas de continuer l’opération. Si cette limite est bien prédite, les mé-
canismes physiques sous-jacents sont encore débattus. Certaines contributions mettent en avant
le rôle des ZF puisque lorsque la densité augmente, des simulations observent l’écroulement
de l’activité zonale et un transport, en conséquence, très important. De plus, des questions
demeurent quant aux mécanismes physiques de l’auto-organisation de la turbulence. La généra-
tion des staircases ainsi que l’interaction entre les ZF et les avalanches sont encore discutées.

Dans cette thèse, nous proposons de revenir sur le domaine de fonctionnement du tokamak
en se focalisant sur les effets d’auto-organisation du plasma. Ce travail demande une formula-
tion du modèle dite “conduite par le flux": il n’y a pas de séparation d’échelle supposée a priori
entre les quantités moyennes (profil de pression, écoulements moyen) et les fluctuations. Le sys-
tème évolue librement à l’aide d’une source et en fonction de la turbulence générée. Pour cela,
et dans l’objectif de cartographier le comportement du plasma dans l’espace des paramètres,
nous développons un modèle réduit en description fluide pour l’étude de la turbulence et des
écoulements. Ce modèle doit comporter des éléments essentiels : être conduit par le flux, ne
pas supposer de séparation d’échelle, inclure plusieurs instabilités du plasma de bord et pouvoir
réaliser des simulations dans des temps raisonnables tout en atteignant le temps de confinement
des particules et l’équilibre statistique des profils moyens.

De plus, les observations expérimentales de l’auto-organisation du plasma sont très peu nom-
breuses dans les grandes machines. Il est, en effet, difficile de mesurer ces quantités dans la
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zone confinée d’un plasma chaud de tokamak. Pour identifier un ZF, il faudrait pouvoir mesurer
le potentiel électrique (ou à défaut la vitesse), et vérifier la structure symétrique du mode :
m = n = 0 avec m le nombre d’onde poloïdale et n le nombre d’onde toroïdal. Une solution
consiste à faire des mesures de corrélation à longue distance séparées poloïdalement et toroï-
dalement. Cependant, les sondes permettant de mesurer le potentiel ne peuvent pas atteindre la
zone confinée du plasma car celle-ci est trop chaude. A la place, nous utilisons des systèmes de
réflectométrie comme la réflectométrie Doppler (DBS) qui permet de mesurer les fluctuations de
densité du plasma à un nombre d’onde k donné. Un DBS permet également d’obtenir la vitesse
d’advection de ces fluctuations par le décalage en fréquence Doppler. De même, les avalanches
nécessitent une très bonne résolution spatiale et temporelle, pour pouvoir suivre le déplacement
de la structure. Récemment, il a été démontré, à l’aide d’un DBS, que les avalanches peuvent
être observées sous la forme d’une deuxième pente dans la fonction de corrélation radiale de la
turbulence. Ainsi, dans cette thèse nous nous intéressons à trois questions principales :

• Quels sont les paramètres plasma permettant l’auto-organisation du plasma en écoule-
ments zonaux, avalanches et staircases ?

• Quels en sont les mécanismes d’interaction et de génération sous-jacent ?
• Pouvons-nous mieux observer ces structures à l’aide de la réflectométrie Doppler ?

Tokam1D : un modèle réduit pour l’étude de l’interaction en-
tre la turbulence et les écoulements
Tout d’abord un modèle, nommé « Tokam1D » est développé. Celui-ci inclut plusieurs paramètres
jugés importants. Il est conduit par le flux et ne suppose pas de séparation d’échelles entre les
quantités dites « d’équilibre », i.e. moyennées dans la direction toroïdale et poloïdale et les
quantités fluctuantes. Ensuite, deux instabilités considérées dominantes dans les plasmas de
bord sont incluses : les ondes de dérive collisionnelles et l’interchange. La première insta-
bilité dépend d’un déphasage parallèle fini entre les fluctuations de densité, contrôlé par le
paramètre C. La deuxième est liée à l’inhomogénéité du champ magnétique. Le modèle est
considéré dans une géométrie simple, dans l’optique de le réduire à une seule dimension en-
suite. L’inhomogénéité du champ magnétique est donc seulement considérée sous la forme
d’un paramètre scalaire : g. Le modèle est isotherme avec une température ionique finie afin
que la composante diamagnétique du tenseur de Reynolds soit incluse. Enfin, le modèle est ré-
duit à une seule dimension en considérant un unique mode pour les fluctuations dans la direction
parallèle au champ magnétique et dans la direction poloïdale. Avec cette hypothèse, le modèle
repose sur le transport turbulent (relaxation des profils) et sur le stockage dans les écoulements
zonaux pour saturer l’énergie turbulente. La saturation sous la forme de cascades, n’est ainsi
pas prise en compte per se, mais celle-ci peut être considérée par l’ajout d’un terme heuristique
de saturation non-linéaire.

La dérivation du modèle est d’abord effectuée dans le cadre d’un plasma en mode L (« de
faible confinement »), pour lesquelles l’approche électrostatique est envisagée. Le modèle est
constitué de deux équations : la continuité de la densité et la continuité de la charge. Il décrit
ainsi deux variables : la densité et la vorticité. L’inversion de la vorticité permet d’obtenir
le potentiel électrique. Le modèle est fermé en considérant une loi d’Ohm collisionnelle qui
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permet de relier le courant parallèle à la densité et au potentiel électrique.

L’analyse linéaire est réalisée à la fois pour la version à trois dimensions et pour la version
à un seul mode correspondant aux simulations de Tokam1D. Il est montré que le paramètre
d’adiabaticité C, stabilise l’instabilité d’interchange. Lorsque C est très grand, les deux insta-
bilités sont stables et aucun transport n’est attendu. Pour des paramètres plasmas similaires,
lorsque les deux instabilités sont présentes, l’interchange montre un taux de croissance et
un sinus de déphasage plus élevé. Le déphasage est important pour le transport turbulent :
Γturb = |ñ||φ̃ |sin∆ϕ , avec ñ les fluctuations de densité, φ̃ celles du potentiel électrique et ϕ le
déphasage entre les fluctuations.

Des ajouts au modèle sont réalisés pour inclure une physique plus riche. Tout d’abord, le
rôle des écoulements moyens provenant de l’équilibre général du plasma est ajouté. Ces écoule-
ments, ajoutés aux ZFs, permettent une description plus générale de la rotation dans le plasma
de bord. Ils sont globalement négatifs dans la zone confinée, et les ZF apparaissent comme
des ondulations par-dessus ces écoulements. Ils participent également à l’effet de cisaillement
énoncé plus haut. De plus, le modèle est étendu pour décrire à la fois la partie confinée et la par-
tie externe. Ainsi, le modèle décrit toute la zone de transition considérée comme cruciale. Dans
la zone externe, les écoulements sont globalement positifs, de sorte que le changement de signe
dans la zone de la transition implique un cisaillement qui peut être important. Cet effet de ci-
saillement à la transition est considéré comme clé dans l’atteinte de régimes à haut confinement.
Enfin, des effets électromagnétiques sont ajoutés. Ceux-ci dépendent du paramètre β (ratio de
la pression plasma par la pression magnétique). Dans les régimes à forts gradients, tel que le
mode H, il est montré que les effets électromagnétiques peuvent jouer un rôle crucial pour la
turbulence et le transport. Dans le cas du modèle électromagnétique, une troisième équation est
ajoutée au modèle : la loi d’Ohm généralisée. Cette fois-ci, le potentiel vecteur est obtenu, en
considérant les effets d’inertie des électrons, de variation parallèle des lignes de champ magné-
tique (« flutter ») et d’induction : le champ électrique ne dérive plus seulement du gradient du
potentiel électrique mais également de la variation temporelle du potentiel vecteur. L’analyse
linéaire du modèle électromagnétique montre une augmentation du taux de croissance avec β

pour l’instabilité d’interchange et une stabilisation de l’instabilité de dérive. A très grand β ,
l’instabilité électromagnétique idéale est retrouvée, comme attendue. Son développement non-
linéaire permettra une description du plasma et de son auto-organisation dans des régimes plus
étendus.

Génération des écoulements zonaux selon les regimes de tur-
bulence
Le modèle électrostatique décrivant la zone confinée sans l’équilibre des forces est ensuite util-
isé pour étudier l’espace des paramètres en régime non-linéaire. Un total de 120 simulations
ayant atteint le temps de confinement des particules et l’équilibre statistique du système est
étudié. Les simulations sont faites à source constante ainsi qu’à distance constante au seuil
d’instabilité. Cinq résultats principaux peuvent être mis en lumière.

Tout d’abord, en étudiant la répartition d’énergie entre les écoulements et la turbulence, il
est montré que ceux-ci sont importants lorsque le paramètre C est grand. Lorsque C décroît,
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les écoulements stockent moins d’énergie et la turbulence devient plus importante. Cependant,
l’effondrement de l’activité zonale, observée dans d’autres contributions, n’est pas retrouvée
ici. Une explication est que les simulations sont contrôlées par le flux : le profil de densité peut
ainsi s’adapter plus librement à la turbulence. Un second régime dominé par les écoulements est
trouvé à fort g. Dans celui-ci, dominé par l’instabilité d’interchange, les écoulements apparais-
sent radialement structurés et stables dans le temps. Si les simulations proches du seuil amènent
toujours à un certain degré de structuration radiale, les simulations loin du seuil (forçage très
important) sont les plus structurées et les plus stables.

Une compréhension plus fine de ces deux régimes est apportée par l’analyse des tenseurs
de Reynolds. Le régime à fort g faible C, dominé par l’interchange, montre les contributions
électrique et diamagnétique en opposition de phase mais avec la première largement dominante.
Lorsque C augmente, la contribution diamagnétique devient de plus en plus importante, jusqu’à
être dominante. Enfin à très fort C, les deux contributions sont en phase et de la même amplitude.
Le comportement du tenseur de Reynolds est directement lié aux propriétés sous-jacentes de
la turbulence. Le rapport d’amplitude entre les contributions au tenseur dépend du rapport
d’amplitude entre fluctuations de densité et de potentiel électrique. Leur corrélation, en phase
ou en opposition, dépend de l’alignement des fluctuations de densité et de potentiel électrique.

Lorsqu’ils sont structurés, les écoulements conduisent toujours à l’apparition de marches
dans le profil de densité. Les avalanches apparaissent également principalement en régime
d’interchange, lorsque les ZF sont structurés. Cependant, il est montré que la formulation par
le flux est essentielle à la dynamique des staircases. Lorsque les profils ne sont plus autorisés
à fluctuer sur de petites échelles, alors toute la structure se perd. Autrement dit, il apparaît
essentiel pour les staircases de pouvoir stocker de l’énergie dans le profil de densité et dans
les écoulements. La disparition de l’un de ces deux mécanismes amène à la disparition de la
structure.

Finalement, le rôle des écoulements sur le confinement est étudié. Il est montré que ceux-ci
permettent une réduction du transport turbulent, d’autant plus importante lorsqu’ils sont struc-
turés radialement. Ainsi, dans les simulations réalisées, les staircases permettent un meilleur
confinement du plasma.

Pour terminer, l’objectif est également de mesurer expérimentalement ces structures. A l’aide
du modèle, leurs régimes d’existence ont été mieux identifiés. De plus, certaines signatures
pouvant être observées à l’aide d’un DBS sont mises en lumière. En particulier, les avalanches
sont caractérisées par une fonction de corrélation radiale à deux pentes : la première pente
est attribuée à la taille des structures turbulentes à petite échelle, la seconde pente est liée à la
longueur typique des avalanches.

Mesures expérimentales de l’auto-organisation de la turbulence
Enfin, le dernier objectif de la thèse est de chercher des signatures de l’auto-organisation de
la turbulence dans les plasmas de tokamak. Pour cela nous utilisons un double système de
réflectométrie Doppler (DBS) sous deux configurations différentes.

Premièrement, nous utilisons des données expérimentales ayant été récoltées précédemment
sur le tokamak Tore Supra lorsque le double système DBS était installé. Comme les deux sys-
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tèmes sont séparés poloïdalement et toroïdalement, il est possible de réaliser des corrélations
à longue distance. Initialement, ce système a été utilisé pour l’étude des modes géodésiques
acoustiques (GAM), une branche à plus haute fréquence des écoulements zonaux. Dans notre
cas, nous l’utilisons pour observer les ZF à basse fréquence. Pour ce faire, le signal est
tout d’abord décomposé à l’aide d’une méthode temps-fréquence appelée MUSIC qui per-
met d’estimer la fréquence Doppler instantanée. Ainsi, la vitesse des écoulements, liée à la
fréquence Doppler, peut être obtenue avec une importante résolution temporelle. En corrélant
les deux signaux de vitesse instantanée, une importante corrélation à longue distance est ob-
servée à la fréquence attendue pour le GAM. Afin de mieux observer les basses fréquences,
nous isolons le GAM à l’aide d’une « décomposition en mode empirique » (EMD). Cette méth-
ode permet d’identifier et d’isoler des signaux dont la fréquence et l’amplitude varient dans le
temps. En isolant les GAM et les hautes fréquences, il est possible de corréler uniquement les
signaux à basses fréquences. Ainsi, une corrélation à longue distance bien supérieure au bruit
est obtenue pour les basses fréquences indiquant une possible activité zonale. Le nombre de
données expérimentales disponibles avec cette configuration ne permet pas de caractériser la
méthode en détail. Celle-ci reste cependant prometteuse pour de futures applications ou expéri-
ences.

Deuxièmement, des expériences sont réalisées sur le tokamak TCV à l’EPFL. Dans cette con-
figuration, les deux systèmes DBS sont à la même position. Ainsi, il est possible de mesurer
des fonctions de corrélation radiale de la turbulence. Un grand nombre d’expériences est réalisé
avec différents chauffages (par résonance cyclotronique électronique et par injection de neutre)
pour tenter de modifier les profils et les régimes de turbulence sous-jacents. Dans la configura-
tion choisie, une forme en point-X haute à bas confinement, les différents types de chauffage
n’ont pas permis de modifier les instabilités. Le plasma est dominé par une instabilité dite «
d’électrons piégés ». Dans la majorité des régimes observés, une double pente est observée sur
la fonction de corrélation radiale de la turbulence. Par analogie avec les travaux précédents et
avec les simulations, la deuxième pente est attribuée à l’extension spatiale des avalanches. Les
longueurs de la turbulence et des avalanches sont caractérisées avec les différents chauffages.
Une comparaison est réalisée avec le réflectomètre à impulsion rapide (SPR) et montre un très
bon accord pour la mesure de la taille des structures turbulentes. De plus, des expériences ont
été réalisées en accordant les profils de densité, température et vitesse toroïdale en hydrogène
et en deutérium. Celles-ci permettront dans un futur proche, de caractériser les variations des
longueurs de turbulence et d’avalanche en fonction du paramètre normalisé ρ⋆.
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Subject of many promises, nuclear fusion has long offered the potential for clean and abun-
dant energy. The journey began about a century ago in the stars, when Jean Perrin and Arthur
Eddington first suggested that the Sun’s power came from the fusion of hydrogen into helium.
With the experimental demonstration of nuclear fusion reactions in a particle accelerator by
Rutherford and Oliphant, it rapidly followed that this reaction could be sustained to produce
energy. A quest then began to reproduce this energy on Earth. As it happens sometimes with
science, the first progress came with the development of a weapon: the Hydrogen-bomb in the
early 50s. The first machines claiming to achieve controlled thermonuclear fusion were pinch
devices in the late 50’s: Scylla I in the US, Zeta in the UK. When these projects were made
public, it was believed that the completion of fusion was near, and that a new and free energy
source would soon be at our disposal. This is evidenced by British newspapers headlines from
1958, illustrated in Figure 1.1.
"Britain unveils her Sun", "the good side of the H-bomb", "Too cheap to charge", no superlative
is strong enough to capture the potential of fusion. It turned out a little later, that Zeta had not
achieved fusion. And, 66 years later, as this thesis is being written, commercially viable fusion
is still under development.

The research did move forward during all these years. First with the concept of tokamak:
"Toroidal’naya kamera s magnitnymi katushkami" (toroidal chamber with magnetic coils) de-
veloped by Sakharov and Tamm and the concept of Stellarator by Spitzer in the early 50’s.
Then with the many machines developed in the 80s and the ITER project now under construc-
tion. Many time throughout this century of research, fusion seemed within reach, only for a
new challenge to emerge that needed solving - each time bringing us closer to the realisation of
fusion.
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Figure 1.1 – Selection of articles from The Birmingham Post, The Chronicle and News
Chronicle. Dated from January and February 1958.

With the energy crisis and climatic change the world faces as of 2024, fusion energy research
sees a growing interest. The production of energy is one of the main sources of released green-
house gases, leading to a warming of the Earth’s atmosphere. Among other effects this induces
an increase in the frequency of extreme weather events as well as the loss of biodiversity1. It
is one of the major challenges faced by Humanity in the 21st century. The research activity on
climate is compiled by the intergovernmental panel on climate change (IPCC) from which the
most recent report can be found here: IPCC reports. For some, fusion energy appears as a solu-
tion to meet growing energy demands, while being carbon free, less dangerous than fission and
generating less long-lived nuclear waste. However, everything suggests that the development of
fusion will take too long to have a real impact on climate change. Its contribution will still be
valuable, in the longer term.

Fusion research also represents a ground for scientific and technological developments, push-
ing the boundaries of our understanding in areas such as materials, superconducting magnets,
and high temperature plasmas. As such, it represents a fantastic playground for physicists. Hot
plasmas involve complex and nonlinear physics. Fusion devices represent one of the only place
on Earth where fundamental and experimental studies can be carried out together on hot plas-
mas. Among them, turbulence and spontaneous structure formations are of particular interest.
They will be the focus of this thesis.

1Multiple causes can be identified for the loss of biodiversity, with Earth’s warming and extreme events being
just one facet of a much broader issue that encompasses the destruction of ecosystems, pollution, spread of invasive
species etc.
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1.1 Towards a D-T fusion power plant

1.1.1 The fusion reaction

There are two ways to produce energy – more exactly to convert mass energy into kinetic energy
– from a nuclei: fission and fusion. The first consists in splitting a heavy nucleus into two lighter
elements. The second is the opposite, it consists in fusing two light elements to get a heavier
one.

The nucleus of an atom is composed of nucleons that are held close by the strong interaction.
This force manifests as a binding potential energy between nucleons: B(A,Z) for a nucleus
composed of Z protons, N neutrons and A = N +Z. This binding energy translates into a mass
defect: the mass of the nucleus is not equal to the sum of the individual masses of its nucleons.
From Einstein’s relation, there is a direct equivalence between mass and energy:

B(A,Z) = ∆m c2 = (Zmp +Nmn)c2 −M(A,Z)c2

Where c is the speed of light, mp, mn and M(A,Z) are the rest mass of proton, neutron and the
nucleus composed of Z protons and A−Z neutrons, respectively. Stable nuclei have a positive
B(A,Z). The ratio of binding energy per nucleons B/A is illustrated with the Aston curve,
displayed in Figure 1.2.

Figure 1.2 – Binding energy per nucleus as a function of the number of nucleons in the nucleus.

Any reaction leading to a higher binding energy per nucleons can release energy. Then, there
are two ways to get to the top of the curve: by fusing small elements and by splitting heavy ones.
The maximum is given by iron, F56

e , the most stable element. Fission reactors mainly use the
fission of Uranium 235 (right of Figure 1.2) with an energy release of the order of 1 MeV per
nucleon. At the other end of the Aston curve, the fusion reactions of light materials can reach
4−5 MeV per nucleon. An example is the fusion of deuterium and tritium into an Helium and
a neutron:

2
1D+3

1 T −→ 4
2He (3.52 MeV )+1

0 n (14.1 MeV )
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Which has the potential to free ≈ 17.5 MeV of energy. Fusion energy then appears more dense
than fission and other chemical energy sources. To give an order of magnitude, the combustion
of one ton of coal releases the same energy as the fission of ≈ 0.4 gram of Uranium 235 or the
fusion of ≈ 0.1 gram of deuterium and tritium.

However, the energy yield is not the only parameter to look at. The reaction rate is also
important. Indeed, during the fusion of two nuclei, two forces are competing: the repulsive
electrostatic force and the attractive strong interaction. Conversely to fission, fusion is only
accessible by providing enough energy to cross the electrostatic barrier. The cross-section is
representative of the interaction probability. It is defined as the ratio of the number of reacting
nuclei per time unit on the number of impacting nuclei per time unit and surface unit. It is
expressed in barns (1 barn 10−28 m2) and depends on the sole relative velocity of the interacting
nuclei. Typical values for fission and fusion reactions are shown in Figure 1.3.

Figure 1.3 – Cross-section for some fission and fusion reactions. On the right are indicated the
’easiest’ fusion reactions to achieve.

Fusion reactions peak at about 5 barns while fission is two orders of magnitude above. This
ratio accounts for the larger size of the fission nuclei, typically composed of about 100 times
more nucleons than deuterium. Also, fission probability is maximum with thermal neutrons at
around ∼ 10−2 eV or lower, while fusion is more likely to occur above ∼ 104 eV . Note here
and in the following of the thesis that the temperature T is to be understood as a thermal energy
Eth. Usually expressed in electron-Volt, the correspondence is the following: Eth = kBT/e with
kB ≈ 1.38× 10−23 the Boltzmann constant, T the temperature in Kelvin and e ≈ 1.6× 10−19

C the elementary Coulomb charge. One electron-volt then corresponds to about 11600 K and
required temperatures for fusion are of the order of > 100 million degrees. On the right hand
side of Figure 1.3 are plotted the cross-sections for some of the easiest fusion reactions to
achieve. Deuterium-Tritium is the easiest in the sense that it features the largest cross-section at
the smallest temperature. In Figure 1.3, the D-T reaction peaks at 65 keV . In practice, the goal
is to have the minimum T/σv, where σv is the reaction cross-section (see the Lawson criterion
in the next section). This minimum is obtained for T ≈ 26 keV . Additionally, one aims at
maximizing the fusion power that is proportional to σv/T 2 and peaks at 13 keV . One way to
estimate the maximal energy gain is to calculate the ratio between the fusion energy EDT and
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the thermal energy Eth,DT , the latter being the minimum energy required to maintain the fuel
at the optimum temperature. One finds EDT/Eth,DT ∼ 17.5× 103/6T[keV ] ≈ 3× 103/T[keV ], so
a maximum gain of about 300 for a 10 keV D-T plasma2. This leaves, a priori, a comfortable
margin to achieve economic viability in a DT fusion reactor.

At such temperatures, electrons and light nuclei are totally separated, forming a gas of
charged particles called a plasma. Plasma is relatively rare on Earth where its natural occur-
rences can be seen for example in fires and auroras. However, it is the most common state of
matter in the universe accounting for more than 99 % of its constituents.
The plasma states yields interesting properties. It is composed of charged particles, such that
we can use a magnetic field to confine it, for example in a tokamak (cf. Section 1.2). It is also
quasi-neutral at distance larger than the Debye length. This length is the characteristic distance
at which the electric charge es of a given particle of species ’s’ can be considered screened by
the charges of its neighbours. It is defined as:

λD,s =

√
ε0Ts

e2
s ns

With, ε0 the permeability of free space, Ts and ns the temperature and particle density of the
species ’s’. It ranges typically from 10−5m for a density and temperature equal to (n,T ) =
(1019 m−3,300 eV ) to 10−4m for (n,T ) = (1020 m−3,15 keV ) in a confined plasma. Above the
Debye length, the plasma can be considered as quasi-neutral. Note that quasi-neutrality does
not preclude the development of an electric potential and electric field in the plasma. It simply
states that such a field exhibits large scale variations only.

1.1.2 Amplification factor and Lawson criterion

Ultimately, the objective is to produce energy: the energy balance of the plasma has to be
positive. We briefly introduce the notion of the amplification factor Q – ratio of fusion energy
to the auxiliary energy coupled to the plasma – and the Lawson criterion, derived in 1957 [1],
which gives an estimation of Q ∼ 1.

The time evolution of the Plasma internal energy W is governed by the heating Pheat and loss
Ploss powers. In a reactor, heating comes from al pha particles produced by the nuclear reactions
and auxiliary heating systems (radio frequency waves, energetic neutral beams, ohmic heating):
Pheat = Pα + Paux. Losses come from radiation Prad and cross-field transport Ptransp due to
collisions and – mainly – turbulence. At this level of description, assuming Prad is small, we
account for all the losses via the so-called energy confinement time τE such that Ptransp =W/τE .
The confinement time relates to the reactor efficiency to confine the energy: it measures the
characteristic e-folding time of the stored energy in the absence of an external heating.
Additionally, one can define the Lawson time τL: it represents the confinement time needed to
reach ignition – when the entire plasma heating is provided by α-particles – in the absence of
additional heating: τL =W/Pα .

2The thermal energy is 3Ts/2 per species (electrons and ions), so 3T assuming the same electron and ion
temperature.
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The fusion gain of the D-T reaction is defined as the ratio of the fusion power, Pf us ≈ 5Pα
3

to the auxiliary power. The amplification factor Q is defined as follows:

Q =
Pf us

Paux
=

5
τL
τE

−1
(1.1)

Where we have assumed steady-state and negligible radiation. Break-even is reached for Q =

1 when the fusion power compensates the auxiliary power. It corresponds to a state where
the reaction – not the power plant – achieve a net energy gain. Q diverges when the entire
plasma heating is provided by α-particles: τE = τL, the ignition. Such plasmas are also called
burning plasmas, or self-heated plasmas. However, it should be highlighted that Q corresponds
to the energy balance of the plasma itself. If one wants to estimate the energy production of a
nuclear reactor, it is necessary to take into account the energy required to power the rest of the
systems. This includes the energy to cool the superconducting magnets, to pump the coolant
which circulates in the blankets etc. This global Q is sometimes called Qengineering and is much
smaller than Q. For a fusion reactor to be economically viable, it is generally admitted that a
Q-factor of the order of 30−40 needs to be achieved. As a comparison, target values for ITER
plasmas are Q = 5 for long duration discharges and Q = 10 for the most performing ones.

The break-even is estimated with the Lawson criterion. It is often recast in the form of a triple
product4:

nT τE ≥ 3×1021 m−3 keV s (1.2)

Exceeding this criterion is a necessary but insufficient condition to produce energy. For how
long this criterion can be sustained or having large repetition rates matters as well. For the D-T
reaction, it appears that the minimal threshold for nτE is found for T ∼ 26 keV . One is then left
with two solutions to reach break-even:

• Maximizing the density: for example by compressing a target of fuel with lasers. This
method is called inertial confinement fusion and holds the record for the largest Q ever
achieved. However, the engineering constraint are huge and the currently achieved repe-
tition rates are very low.

• Maximizing the energy confinement time: this is done by confining the plasma with
magnetic fields. This is called magnetic confinement fusion and is the basis of many
designs: Z-pinch, tokamak, stellarator etc.

As stated in the introduction, fusion devices have made progress from the early days of the
Zeta pinch device to the most recent experiments. In Figure 1.4 is shown the product nτE as a
function of the ion temperature for various inertial and magnetic confinement experiments. On
the right hand side is indicated the amplification factor Q.
Note that only the national ignition facility (NIF) based on inertial confinement, has achieved
Q ≳ 1 [3]. Despite the achievement, inertial confinement programs are far from being viable
fusion reactors. Currently, the most advanced projects are tokamaks, with ITER and SPARC

3The 5 comes from the neutrons energy being about 4 times the α-particle energy.
4this expression is valid for plasma temperatures in between 10 and 18 keV , for which the reactivity ⟨σv⟩ of

D-T fusion reactions scales like T 2
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Figure 1.4 – Double product nτE as a function of the ion temperature Ti for many different
fusion experiments. The amplification factor Q is indicated on the right hand side. Figure

taken from [2].

expecting to reach Q ∼ 10. The tokamak that reached the largest amplification factor as of 2024
is JET with a peak Q = 0.64 achieved in 1997 and Q = 0.25 for a 5s discharge in 2021 leading
to a record released energy of ∼ 60 MJ. Comparatively, the inertial confinement experiments
leading to Q ≳ 1 were of the order of 0.2 MJ of released fusion energy.

1.1.3 Challenges faced for the achievement of fusion

The challenges to be addressed in moving from the above principle to energy production are
many. Here, we briefly outline some of the main obstacles to achieving a DT-fusion reactor, in
no particular order:

• Producing the deuterium and tritium fuel.
• Handling the heat flux and energetic neutrons.
• Prevent or mitigate disruptions and runaway electrons.
• Confine the hot plasma well-enough for the energy gain to be positive.

A fusion reactor plant delivering 1 GW of electric power is expected to require about 100 kg
of deuterium and 150 kg of tritium per year. Deuterium is present in sea water (about 32 mg
of deuterium per kg of sea water) and is abundant on Earth. Conversely, tritium is a radioactive
element with a half-life of 12.3 years. As such, it does not exist in nature and needs to be
produced. As of 2024 a few dozens of kg of Tritium are produced annually, mainly through
CANDU-type nuclear reactors that use heavy water D2O as the neutron moderator such that
neutron captures can lead to the formation of tritiated water T2O. For the longer term, the
plan is to use the neutrons created by the D-T reaction to trigger reactions with Lithium 6 and
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Lithium 7 in the tritium breeding blankets:

6
3Li +

1
0 n −→ 4

2He +
3
1 T + (4.78 MeV )

7
3Li +

1
0 n −→ 4

2He +
3
1 T +1

0 n− (2.47 MeV )

The first reaction, with the low abundant (≈ 7%) light isotope, is exo-energetic and exhibits a
large cross-section for thermal neutrons. The second reaction requires energy and is character-
ized by a much smaller cross-section. As of now, it appears essential to rely on 6

3Li to produce
the required Tritium. The technologies behind the breeding of tritium represent an important
field of research for fusion, and commercially viable solutions are yet to be tested.

The second point is linked to the high temperatures involved with fusion reactions. One needs
to protect the walls of the tokamak from the important heat flux coming from the reactions. The
confinement is obtained with the help of strong magnetic fields. Since the development of
diverted shapes for the plasma, the heat flux is mainly located on the divertor that needs to
resist heat fluxes a few times more than the one faced by a space shuttle entering back into
the atmosphere, although for much longer periods of time. Additionally, a fusion machine
needs to resist energetic neutrons that, being neutral, are not confined by the magnetic field.
First because they cause damage to the wall of the tokamak. Second, because they activate the
materials. Dedicated efforts are undertaken to develop materials capable of resisting those hard
conditions and neutron irradiation.

The third point corresponds to a sudden loss of the magnetic confinement that can occur
as a result of large scale instabilities: the disruption. The energy stored inside the plasma is
violently released which stops the fusion reaction and can damage the divertor and walls of the
confinement vessel. The runaway electrons – highly energetic beams – can be generated as a
result of a disruption and create irremediable damages to wall elements. To avoid the deleterious
effect of disruptions and runaway electrons, plasma scenario are developed to remain in the
stable zones of those instabilities. This defines the so-called operational regime. More details
on the large scale MHD instabilities are given in Section 1.4.1.

The last point, which is the focus of this thesis, is the confinement of the plasma energy. As
stated, the plasma is confined with the help of strong magnetic fields. The behaviour of charged
particles and the specific magnetic configuration of a tokamak are detailed in the following
section.

1.2 Magnetic configuration of a tokamak

1.2.1 Motion of charged particles in a magnetic field

A charged particle in a uniform and constant magnetic field follows a cyclotron motion, repre-
sented in Figure 1.5. It corresponds to a helical trajectory along magnetic field lines of charac-
teristic width and frequency defined by the Larmor radius ρs and the gyro-frequency frequency
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ωc,s:

ωc,s =
eB
ms

(1.3)

ρs =
vth,s

ωc,s
=

√
msTs

eB
(1.4)

Where B is the magnetic field strength, e is the absolute charge of the particle and vth,s =√
Ts/ms is the thermal speed of species "s" with a temperature Ts and a mass ms.

Figure 1.5 – Helical trajectory of an ion along a uniform and constant magnetic field. Adapted
from [4].

If the magnetic field B = Bb is not constant - either in magnitude, direction or time - particle
trajectories deviate from magnetic field lines. In tokamaks, the electromagnetic fields vary on
small timescales as compared to the cyclotron frequency: ω = |∂t logB| ∼ |∂t logE| ≪ ωc

5.
Additionally, the magnetic field is considered to vary on large scales as compared to the Larmor
radius: ρs ≪|∂r logB|. As a result, one can approach this problem with a perturbative treatment,
known as the adiabatic theory, by ordering with ε = ω/ωc ≪ 1. Within the framework of the
adiabatic theory, the particle motion can be decomposed in a slow and fast dynamics as follows:

v = ⟨v⟩+ ṽ

The equilibrium quantity is obtained by averaging over a cyclotron motion: ⟨v⟩ =
∫

v dϕc/2π ,
where ϕc stands for the cyclotron phase. Consistently, as we shall see in the following, fast
variables represent only the cyclotron motion and have zero mean. The equilibrium magnetic
field is approximated by its value at the guiding center: ⟨B⟩ ≈ BGb. The cyclotron average of a
charged particle dynamics immersed in an electromagnetic field then obeys Newton’s equation:

ms
d⟨v⟩
dt

= es

[
⟨E⟩+ ⟨v⟩×BG + ⟨ṽ× B̃⟩

]
(1.5)

The last term on the right hand side can be recast in the form of:

⟨ṽ× B̃⟩=−µs

es
∇∇∇BG

5This assumption can be challenged when cyclotron heating is used. However, it can be shown that the change
in the frequency stays relatively small as compared to the wave frequency.
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Where, µs ≡ esωcρ2
c /2 is the adiabatic invariant that depends on the charge es, the cyclotron

frequency ωc and the Larmor radius ρc. Equation 1.5 then depends on averaged quantities only:

ms
d⟨v⟩
dt

= es (⟨E⟩+ ⟨v⟩×BG)−µs∇∇∇BG (1.6)

The last term on the right hand side represents the drag force felt by the guiding center in
response to the inhomogeneity of the magnetic field at the Larmor radius scale. Considering
that the cyclotron-averaged velocity represents the guiding-center velocity, we can decompose
it into two components: parallel and perpendicular to the magnetic field: ⟨v⟩ ∼ vG ≡ v∥b+vG⊥.
The transverse drift is then obtained by projecting Equation 1.6 on the perpendicular direction.
The projection of the parallel velocity onto the perpendicular direction generates a centrifugal
force which lead to the so-called curvature drift, the gradient of B leads to the grad-B drift and
the electric field to the electric drift. The transverse drifts can be recast as follows:

vG⊥ = vE +vg,s

With vE the electric drift and vg,s the sum of the grad-B and curvature drifts. They read,

vE =
⟨E⟩×B

B2 (1.7)

vg,s =
msv2

∥+µsB

esB3 B×∇∇∇B+
msv2

∥
esB2 ∇∇∇×B|⊥ . (1.8)

The second term on the right hand side of vg is negligible in the low-β limit, β = 2µ0 p/B2

being the ratio of plasma to magnetic pressure. The electric drift is weakly dependent (through
the gyro-average operator) on the particle species. The second drift, vg is essentially along
the vertical direction in tokamaks, because the equilibrium magnetic field is mainly toroidal
and because ∇B points horizontally towards the symmetry axis, this drift leads to a vertical
charge separation. It is also called vertical drift. For a tokamak to properly confine the charged
particles, this drift has to be compensated, as detailed in the next section.

Another set of drifts can be derived, this time using the fluid description of the plasma. This
second approach recovers the electric drift, and also defines the diamagnetic and polarization
drifts. They are also derived here as they will be important in the derivation of the fluid model
in chapter 3. The plasma is described by the conservation of its momentum:

nsms

(
∂

∂ t
+us ·∇∇∇

)
us = nses(E+us ×B)−∇∇∇ps −∇∇∇ ·πs (1.9)

With ns and ms the density and mass of the species ’s’. The pressure is split between the
scalar pressure ps and πs which contains the anisotropic part of the pressure tensor and the
gyro-viscous tensor (that derives from finite Larmor radius effects). Still proceeding within the
adiabatic theory, we expand the perpendicular fluid velocity u⊥ according to the same small
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parameter ε = ω/ωc: u⊥ = εu(1)
⊥ + ε2u(2)

⊥ +O(ε3). At the first order, one finds:

u(1)
⊥ ≡ uE +u⋆,s =

E×B
B2 +

B×∇∇∇ps

neesB2 . (1.10)

The first component corresponds to the electric drift, already derived in the particle-based ap-
proach. The second is a fluid quantity only and is known as the diamagnetic drift. Since it
depends on the charge, it also leads to a transverse current. The drift is sketched in Figure 1.6,
it results from the gyromotions and pressure gradient. Consider the particle motion transverse
to the magnetic field. In the left column, there are more particles than in the right column due
to the density gradient. It follows that in a fluid picture where one integrates over several indi-
vidual particles (statistical approach) as illustrated by the black rectangle, the gyro-motion of
the ions (resp. electrons) lead to a collective downwards (resp. upwards) motion.

Figure 1.6 – Illustration of the diamagnetic drift.

The second order drift results from the incomplete balance between du(1)
⊥ /dt and the diver-

gence of the stress tensor. Its derivation can be found in [5]. It is called the polarization drift
and reads,

u(2)
⊥ ≡ upol,s =− ms

esB2

[
∂t +(uE +u∥) ·∇∇∇

](
∇∇∇⊥φ +

∇∇∇ps

esns

)
(1.11)

In this drift, the advection by the diamagnetic flow cancels with the gyro-viscous pressure tensor
in a process known as the diamagnetic cancellation [5, 6].

The particle-based and fluid approaches are complementary. In the first approach, one is
interested in the motion of the guiding center while in the second approach, collective fluid
effects are retained. One can reconcile the two approaches and in particular the vertical and
diamagnetic drifts by considering their induced current. It can be shown that the same current
arise from both drifts when one includes the magnetic moment of the gyromotion in the vertical
drift.

The drifts have to be considered when designing a magnetic confinement device. If only a
toroidal field is present, a vertical charge separation will inevitably appear as a result of the field
curvature, leading to a vertical electric field and an outward radial electric drift of the entire
plasma. The tokamak configuration, described in the following section, provides a solution to
this issue.
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1.2.2 Tokamak magnetic geometry

The principle of a magnetic confinement device is to confine the plasma with strong magnetic
fields in a donut-shaped vessel. The principal magnetic field is the toroidal magnetic field Bξ .
Since the field lines are curved, a vertical drift develops leading to a charge separation and a
quick loss of the magnetic confinement. So as to compensate the vertical drift, the idea is to
add a second field in the poloidal direction: Bθ . The sum of the two fields produces a helical
field such that, in first approximation, particles following the field lines travel on the inner and
outer side of the magnetic surface during a toroidal turn. The tokamak magnetic configuration
is presented in Figure 1.7, for the simplified case of a circular geometry.

Mag. Field 
lines

Mag. surface

R

Z

Low field side High field side

Figure 1.7 – Circular tokamak magnetic configuration.

On this figure, the machine geometry is defined by its major radius R0, its minor radius a. We
define the inverse aspect ratio as ε = a/R0. By solving the Grad-Shafranov equation, one can
resolve the location and the shape of the magnetic flux surfaces that delimit surfaces of constant
magnetic flux. An example of a circular magnetic surface is shown in pink in Figure 1.7. The
poloidal – or toroidal – magnetic flux can be used to label the magnetic surfaces. The normalized
radius is then defined with the help of the magnetic flux,

ρ =

√
ψ −ψa

ψ0 −ψa
. (1.12)

With, ψa the value at the separatrix - last closed flux-surface (i.e. not touching the wall) - and ψ0
the value on the magnetic axis. The coordinates of the magnetic surfaces in circular geometry
can be written as R = R(ρ)+ r(ρ)cosθ , Z = r(ρ)sinθ , with (r,θ) the polar coordinate in the
poloidal plane, where θ = 0 corresponds to the mid plane.

The toroidal component of the magnetic field, Bξ , is typically one order of magnitude larger
than the poloidal component Bθ . Their sum leads to helical field lines characterized by a dimen-
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sionless number called the safety factor, written q(r) and defined as follows:

q(ψ) =
1

2π

∮ B ·∇ξ

B ·∇θ
dθ ≈

rBξ

R0Bθ

(1.13)

Where the last expression assumes a large aspect ratio ε ≪ 1. The safety factor measures the
number of toroidal turns made by a field line makes while completing a single poloidal turn. The
poloidal magnetic field can be produced by a toroidal plasma current Ip, this is the principle of
a tokamak, or by additional external coils such as performed in stellarators.

When a particle moves along the field line, it explores the magnetic field B = B0R0/R. Here
the subscript ’0’ is referring to quantities on the magnetic axis. A certain number of particles
can be trapped in magnetic wells and undergo a bouncing motion along the field lines. In the
poloidal plane, the trajectories have a banana shape. Additionally, the trapped particles undergo
a precessional toroidal drift. The motion of trapped particles is represented in Figure 1.8.

Figure 1.8 – Trajectory of trapped particles in a tokamak magnetic configuration. The particles
undergo a bouncing motion along the field lines and a precessional toroidal drift. The

projection of the trajectory in the poloidal plane is banana shaped. Courtesy of Y.Sarazin and
R.Varennes.

The fraction ft ∝
√

2ε of trapped particles bounce with a bouncing frequency defined as ωb ≈
vT ε1/2/(qR), where vT =

√
2T/m is the thermal speed of the particle. A detailed derivation of

trapped particles characteristics can be found in refs.[7, 8].

1.2.3 Plasma-wall interaction: Divertor and scrape-off layer

We described above the confined part of a circular plasma. The magnetic configuration is usually
diverted, such that the last-closed flux surface forms an X-point close to the divertor: the part
of the material vessel intersecting the open field lines. The region of the plasma outside of the
last-closed flux surface, called the scrape-off layer is governed by the plasma-wall interaction.

In this section the SOL is described for the sheath-limited regime, where the collisionality is
low and the physics is governed by the sheath (interaction with the wall). This regime will be
retained for the derivation of the SOL model in chapter 3. In practice, the physics of the SOL is
much more complex and involves kinetic effects, plasma-wall interaction and neutrals physics.
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Other contributions focused on the SOL physics and neutrals can be found in the form of PhD
theses [9, 10, 11], or in books [12, 13].

In the SOL, field lines are connected to the target plates of the divertor. A schematic is shown
in Figure 1.9 with a diverted plasma on the left hand side and an unfolded SOL field line on the
right hand side. The SOL can be split into two regions: the sheath that governs the plasma-wall
interaction itself, typically of a few Debye’s lengths (∼ 10−4 m). And the pre-sheath of typical
length given by the connection between the two divertor plates L∥ = 2πqR which is of the order
of 10− 100m. The plasma sheath is a non-neutral layer that forms near surfaces in order to
ensure a proper balance between the flux of electrons and ions reaching the material. A large
parallel electric field develops in the sheath to accelerate the ions and slow down the electrons
due to the species mass ratio: electrons being much lighter than ions, they have low inertia and
tend to move much faster.

Figure 1.9 – Illustration of a scrape-off layer magnetic field line. (left) On the poloidal plane.
(right) Unfolded field line.

In the SOL, the plasma motion along the magnetic field lines is bounded by its interaction
with the wall. As it can flow on both target plates (both sides of Figure 1.9 (right)), there is
a point where the parallel Mach number M∥ = u∥/cs is equal to zero. This is defined as the
stagnation point. Here, it is shown at the center of the field line for simplicity, but note that
finding its location requires solving the parallel momentum equation. In practice, it is usually
closer to the outer mid plane on the low field side [12].

In the following, the transition from pre-sheath to sheath is considered when the ion speed is
equal to the sound speed Mi

∥±1, known as the Bohm criterion. It is challenging in practice to
define the entry of the sheath with Bohm’s criterion because defining the sound speed is difficult
in low collisional SOL plasmas. It depends on the assumption made for the closure: isothermal,
Maxwellian, polytropic etc. [14]. Additionally, the density at the sheath entrance is assumed
to equal half the density at the stagnation point: nsh = ns/2. See [12] (section 1.8) for more
details.

1.2.4 Prediction of the potential drop in the sheath
We derive the potential drop ∆φsh in the sheath along with the value of the ion and electron
fluxes at the sheath entrance. The derivation is based on [12, 14]. The fluxes then will be used
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in the derivation of the SOL model Section 3.3.

The typical profiles of electric potential, ion and electron densities are represented Figure 1.10.

Figure 1.10 – Schematic of electron, ion and electric potential profiles in the pre-sheath and
sheath.

We consider a grounded wall, that does not emit any secondary particles. As the Bohm criterion
dictates, we consider the entrance of the sheath when the ion parallel Mach number equals 1.
Therefore, the flux of ions at the sheath entrance reads,

Γ
sh
i = nsh

i cs (1.14)

With cs =

√
T sh

e +T sh
i

mi
the sound speed and nsh

i = nsh
e = nsh the particle density taken at the sheath

entrance. Neglecting collisions in the Debye sheath, one can write the Hamiltonian for electrons
along the parallel direction (i.e. along a magnetic field line), He =

1
2mev2−eφ . Since it does not

depend explicitly on time, it is conserved along electrons trajectories. Writing the conservation
on a trajectory connecting the sheath entrance to the wall leads to,

1
2

mev(xsh)
2 − eφ(xsh) =

1
2

mev(xw)
2 − eφ(xw)

With xsh the sheath entrance and xw the wall. As a result of the potential drop, only electrons
that have a large enough velocity are able to reach the wall. The cut-off velocity vc discriminates
slow electrons that get reflected back into the plasma and fast electrons which cross the barrier
of the electric potential and are absorbed in the wall. It reads:

vc =

√
−2e

∆φsh

me
(1.15)

Since we consider a perfectly absorbing wall with no recycling6 (emission of neutral particles
from the wall as a result of the impact of ions and electrons from the plasma) nor any secondary
emission, there are no electrons with velocities v(xsh)<−vc at the sheath entrance. The electron

6This assumption is not fulfilled with present day materials used in tokamaks, where the particle recycling
coefficient is larger than 99%.
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distribution function at the sheath entrance is then expected to be a truncated Maxwellian of
density nsh

e and temperature T sh
e ,

fe(xsh,v) = nsh
e

√
me

2πT sh
e

exp
(
−mev2

2T sh
e

)
H (v+ vc) (1.16)

where H (v+ vc) is the Heaviside function that is equal to unity when v ≥ −vc and zero oth-
erwise. Note that since the Maxwellian is truncated, nsh

e and T sh
e , does not exactly correspond

to the density and temperature at the sheath entrance. Using this, the expression of the electron
flux at the sheath entrance is,

Γ
sh
e = nsh

e

√
me

2πT sh
e

∫ +∞

−vc

dv vexp
(
−mev2

2T sh
e

)

= nsh
e

√
T sh

e
2πme

exp
(

e∆φsh

T sh
e

)
(1.17)

By equating the electron and ion fluxes we retrieve the prediction of the sheath potential drop,

Λ ≡ ∆φsh =
T sh

e
e

log

√
2π

me

mi

(
1+

T sh
i

T sh
e

) (1.18)

Note that Λ depends on the radial direction mainly as a result of the electron temperature. Its
radial dependence has implications on the radial electric field that arises in the scrape-off layer,
see Section 3.3.

1.3 Example of Tokamaks and main dimensionless
parameters

In this section, we briefly present the two tokamaks on which experiments have been conducted
and used in this work. Then, we summarize the main dimensionless parameters in a tokamak.
The Typical length and time scales involved in fusion plasmas are summarized in Section A.2.

To give an idea about what a tokamak looks like, the outside of the WEST tokamak (left) and
the inside of the "Tokamak à configuration variable (TCV)" (right) are displayed in Figure 1.11.
The first is located at CEA, Cadarache and the second at the SPC in Lausanne.7

Tore Supra (TS), now WEST, is a super-conducting tokamak of major radius 2.4 m and minor
radius 0.7 m with a nominal on-axis magnetic field of BT ≈ 4.5 T (usually operated at 3.8 T ). It
has been designed for long plasma operations in limiter configurations. TCV is a tokamak three
times more high than large. It has a large number of magnetic coils enabling large flexibility in
terms of shapes and divertor configurations. It has a major radius of R = 0.88 m, a minor radius
of a = 0.25 m and an on-axis toroidal magnetic field of Btor < 1.4 T . In chapter 5, we use data
collected in Tore Supra and we perform experiments in TCV.

Several dimensionless numbers can be linked to the plasma geometry and dynamics. Some

7A picture of this thesis author in front of TCV can be found in Section A.1.
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(a) (b)

Figure 1.11 – (a) WEST torus hall, credits: C. Roux. (b) Inside of TCV vessel, credits: A.
Herzog.

of them, deemed important for the present work are defined in the following.

• The inverse aspect ratio: ε = a/R, ratio of the minor to major radii.
• The safety factor: q = (rBξ )/(R0Bθ ).
• The plasma beta: defined by the ratio of the plasma to magnetic pressure: β = 2µ0 p/B2.

This parameter is usually of the order of a few % in a tokamak. For large values of β ,
electro-magnetic effects greatly influence the behaviour of the plasma.

• The collisionality: can be expressed in multiple ways. A popular choice uses the ratio
between the detraping and bounce frequencies [8]. It reads,

ν⋆ ∼ ε
−3/2 qR

vT
νi (1.19)

With νi the ion collision frequency and vT,i =
√

2Ti/mi the thermal speed of the ions.
Alternatively, for plasma dominated by electron dynamics (in terms of turbulence, trans-
port), one can define nu-star with the electron-ion collision frequency. The collisionality
parameter defines the neoclassical transport regimes briefly described in Section 1.4.2.

• The normalized Larmor radius: ρ⋆ = ρs/a, with ρs =
√

miTe/(eB) the sound Larmor
radius. Alternatively, rho-star can be defined with the normalized electron or ion Larmor
radii.

• The parallel Mach number: ratio of the sound speed, cs =
√

Te +Timi to the parallel
velocity M∥ = vξ/cs. Note that the sound speed is a definition, often considered for
normalization purposes but does not correspond to the velocity of sound waves in the
plasma per se.

1.4 Plasma confinement: the key players
In a tokamak, the confinement of the particles is ensured under the triple condition that:

1. The system is axisymmetric, i.e. the Lagrangian associated with the particle motion is
independent of the toroidal direction.
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2. The scalar and vector potential of the electromagnetic field does not depend explicitly on
time.

3. The adiabatic assumption is verified, i.e. the magnetic field evolves slowly (in space and
time) in comparison to the cyclotron motion.

Each of the above condition is linked to a motion invariant. Respectively, the toroidal kinetic
momentum, the energy and magnetic moment (adiabatic invariant). The invariants are associ-
ated to three periodic directions: the toroidal ξ , the poloidal θ and the cyclotronic phase ϕc. In
turn, the particles motion are integrable in the confined region. Any phenomenon breaking one
of the invariant leads to a cross-field – across the magnetic field – transport. The MHD modes
and the turbulence break condition 1 and 2. The Coulomb collisions break the condition 3.

1.4.1 MHD modes

The first fusion devices such as Z-pinch configurations and early tokamaks were prone to the
development of large scale modes – of kra ∼ 1 with kr the radial wavenumber and a the minor
radius – leading to a quick confinement loss. In those categories entered principally the current-
driven instabilities and magneto-hydrodynamic (MHD) modes. The zoology of MHD modes is
wide: tearing, sausage, fishbone, sawtooth etc. [7]. To give an idea we illustrate here one of the
most problematic: the kink instability.

The kink is a m = 1 mode (m being the poloidal wavenumber), characterized by a transverse
displacement of a plasma column from its center of mass. It is illustrated in Figure 1.12. On
one side of the plasma column there is an area of large curvature leading to a strong magnetic
pressure, while the small curvature region leads to a weak magnetic pressure. As a result, the
perturbation continue to grow. Eventually, the plasma column touches the confinement vessel
walls giving rise to a violent disruption.

Strongmag. 

Weak mag. 
pressure

pressure

(a) (b)

Figure 1.12 – (a) Illustration of the kink instability on a plasma column, adapted from
energyencyclopedia.com . (b) Photo of the kink instability on a Z-pinch device (early 50s),

taken from Wikipedia.

It can be shown that the kink instability develops with a characteristic wavelength of Lkink =

2πrBξ/Bθ . If Lkink is larger than the perimeter of the machine, 2πR, then the kink cannot form.
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This is the so-called Kruskal-Shafranov limit, that gives the condition rBξ/(RBθ ) ≡ q > 1. It
results that in present-day tokamak, the safety factor profile is constrained by the development
of these MHD modes. Their thresholds have been largely investigated [15], such that modern-
day tokamaks operate mostly free from these large scale MHD modes.

1.4.2 Neoclassical and turbulent transport

Consider now a MHD-stable configuration. Non-vanishing fluxes of particles and energy still
exist across the magnetic surfaces. Those fluxes are caused by the collisions, generating the
neoclassical transport (enhanced collisional transport due to the effect of particle trajectories
in the magnetic configuration of controlled fusion devices), and by turbulence which used to
be called "anomalous transport" before its true origin was clarified. The first led to intensive
research as soon as machines started to be MHD-stable. However, it rapidly appeared that the
fluxes were one order of magnitude above the prediction of neoclassical theory. This discrep-
ancy has been named "anomalous" transport until the difference has been understood as coming
from turbulence.

Neoclassical transport

Coulomb collisions, which lead to particle transport in the velocity space, also result in a
random-walk in the configuration space with a typical step proportional to the Larmor radius
and a typical time of the inverse collision frequency. Since this frequency scales like n/T 3/2,
the collisional transport tends to be very small in the hot core plasma of fusion devices. The
effective transport increases when one takes into account the particle trajectories (trapped, pass-
ing). This is called the neoclassical transport. The details of this theory is out of the scope of
this thesis, only some of the main aspects will be discussed here. The interested reader can refer
to ref.[8] for a comprehensive review on neoclassical theory.

It has been stated in the previous section that due to the magnetic configuration, some par-
ticles were trapped in magnetic wells. Those undergo a bouncing banana motion. Depending
on the collisionality, the dynamics of trapped and passing particles is modified. Three regimes
of transport can be distinguished as a function of the collisionality ν⋆. They are summarized in
Figure 1.13.
The first corresponds to low collisionality regimes ν⋆ ≪ 1. In this setup, trapped particles have
the time to bounce back and forth in between the turning points before getting detrapped. This
is called the banana regime. The second corresponds to intermediate collisionality regimes
1 < ν⋆ < ε−3/2. In this case, the trapped particles do not have the time to explore the entire
banana trajectory. The diffusion in this regime is independent of the collisionality, it is called
the Plateau regime. The third and last regime corresponds to high collisionality ν⋆ ≫ ε−3/2.
Trapped particles still do not have the time to explore a banana trajectory. Additionally, passing
particles also encounter a collision before exploring a full poloidal section. This is called the
Pfirsch-Schlüter regime.

In practice, many refinements can be considered to this simplified view. For example taking
into account nonaxisymmetric equilibria, such as performed in ref.[16].
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Figure 1.13 – Schematic of the diffusion coefficient as a function of collisionality for the three
main neoclassical transport regimes. The diffusion is normalized to D0 = qρ2

c vT/R with q the
safety factor, R the major radius, vT the thermal velocity of the particle and ρc the Larmor

radius. Courtesy of Y. Sarazin.

Turbulent transport

Tokamak plasmas are also subject to a turbulent transport. Turbulence arises due to the strong
thermodynamic gradients from the hot and dense core to the cold edge of the plasma. Those
gradients, storing an important amount of energy, can reach an instability threshold and will start
feeding energy to fluctuations. When those fluctuations become large enough, they interact with
each other and usually saturate nonlinearly. This is the onset of turbulence, detailed in chapter 2.

Turbulence develops into vortices correlated over a typical size of lc. An example of electric
potential fluctuation is illustrated in Figure 1.14 (left) for a full-tokamak circular simulation
performed with the GYSELA code.

Figure 1.14 – (left) Fluctuation of the electric potential from a GYSELA simulation. Taken
from [17]. (b) Physical intuition of the radial diffusion induced by turbulent vortices.

The fluctuations appear as small structures, in red φ̃ > 0 while φ̃ < 0 in blue. We can convince
ourselves that those fluctuations lead to a transport of heat and particles. Considering the situ-
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ation sketched in Figure 1.14 (right), the turbulent vortices mix the plasma on a typical vortex
size of lc with a velocity given by ṽE = B×∇φ̃/B2, akin to the mixing-length considered by
Prandtl [18]. The particles undergo a random walk for which the diffusive coefficient reads:
χturb ≈ ⟨|ṽE |⟩lc. In this view, the transport is proportional to the mean velocity fluctuation and
to the typical size of the turbulent structure.

In practice, for electrostatic turbulence, one has to consider the phase shift between the den-
sity (or temperature) and the electric potential fluctuations. The radial flux of particles is mostly
governed by the radial electric drift ũE,r ≈ −∂θ φ̃/(rB). The flux surface average of the radial
flux reads,

Γ = ⟨ñũE,r⟩

Consider now the Fourier transform of the density and electric potential in the poloidal direc-
tion:

ñ = ∑
m
|n̂m| ei(mθ+ϕn

m)

φ̃ = ∑
m
|φ̂m| ei(mθ+ϕ

φ
m)

The Fourier coefficients, n̂m, φ̂m, still depends on time and on the radial and toroidal directions
(r,ξ , t). The flux can then be recast as:

Γ =− ∑
m>0

2
m
rB

|n̂m| |φ̂m| sin(ϕn
m −ϕ

φ
m) (1.20)

Where we have used, |n̂−m| = |n̂m| and ϕn
−m = −ϕn

m since ñ is a real quantity. The same holds
for φ̃ . Hence, for the turbulent particle flux to be non-zero, the density and electric potential
fluctuations need to be out of phase.

Turbulence is the main contributor to cross-field transport in tokamaks. It appears crucial
to understand and control it, for example by reducing the size of the structures or the fluctu-
ations amplitude. Regimes with a reduced cross-phase between density and electric potential
fluctuations also have a reduced transport.

1.4.3 Role of the shear and improved confinement regimes

In this section, we introduce the role of the velocity shear and of the magnetic shear. Both act
on the turbulent structures but are generated by very different processes. The magnetic shear
arises from the magnetic configuration through the helicity of the field lines. The velocity shear
arises mainly through the action of the radial electric field (perpendicular velocity due to the
E ×B drift). The radial electric drift itself is generated through several processes. In the core,
considering by convention a negative magnetic field, the radial force balance can be recast as:

v⊥ =
⟨Er⟩

B
=+

∇pi

ne
+ vφ Bθ − vθ Bφ . (1.21)
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It is typically negative in at the edge of the confined plasma due to the pressure profile, but
can become positive further inside. An example is provided in Figure 5.28 for a TCV plasma
where the radial electric field becomes positive in the core due to the action of the toroidal
velocity. In the scrape-off layer, the radial dependence of Λ can lead to the generation of a
positive electric field. An example is displayed in Figure 3.5 using the Tokam1D SOL model
derived in Section 3.3. Additionally, turbulence can also generate perpendicular flows through
the action of the Reynolds stress, those are detailed in Section 2.3.

Velocity shear

The velocity shear – both induced by the equilibrium and turbulence generated flows – play
a role in mitigating turbulence. The role of the velocity shear on plasma turbulence has been
elucidated by Biglary, Diamond and Terry (BDT model) in ref.[19]. In the following is provided
a brief description of the shear mechanism illustrated in Figure 1.15.

In a tokamak, one is interested in reducing the cross-field transport in the radial direction.
Turbulence vortices stir the plasma on a length characteristic of their size (fig at time t1). Intro-
ducing a shear in the poloidal direction elongates the turbulence poloidally (time t2). In turn,
the characteristic mixing length in the radial direction is reduced, and so is the corresponding
transport. Provided that the velocity shear is strong enough, it can decorrelate the turbulent
vortices, leading to smaller structures (time t3).

Radial dir. Radial dir. Radial dir.
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Figure 1.15 – Role of velocity shear on turbulent vortices.

It results from this mechanisms that zones of strong shear lead to barrier of transport by greatly
reducing the local turbulent transport.

Magnetic shear

In tokamaks, there is also an intrinsic shear imposed by the magnetic field configuration through
the helicity of the field lines. The magnetic shear depends on the safety factor profile q(r),

s =
r
q

dq
dr

(1.22)

The magnetic shear induces a continuous stretching of flux tubes along the parallel direction.
Since the turbulent structures are elongated in the parallel direction (k∥ ≈ 0), their transverse
cross sections are non-uniform along flux surfaces [20]. The mechanism is illustrated Fig-
ure 1.16.
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Figure 1.16 – Role of the magnetic shear on a turbulent vortex in the poloidal plane. Extracted
from ref.[20].

The magnetic shear is also expected to lead to transport barriers, in particular in the case of
magnetic shear reversal. It also plays a role in breaking radially extended streamers [21].

Note that in tokamaks both shears are synergistic. Ref.[22] provides a revue on the two
combined effects. In neutral fluids, we could expect the velocity shear to be less effective
because it is subject to Kelvin-Helmholtz (KH) instability. In tokamaks, the magnetic shear
stabilizes KH instability thus enhancing the role of the velocity shear [23, 19].

Improved confinement regimes: the example of the H-mode

The shear, in particular due to the velocity, is considered crucial to access improved confinement
regimes. Several improved confinement regimes have been discovered, with the most emblem-
atic being the high-confinement mode (H-mode), discovered on ASDEX in 1982 [24]. Upon
the L-H transition, one observes a large increase of the radial electric field close to the separa-
trix. This region, labelled the Er well, is considered instrumental in forming an edge transport
barrier. The bifurcation of turbulence into a reduced saturated regime leads to the generation of
an edge transport barrier. As a result, the plasma builds a steep pressure gradient - a pedestal - to
evacuate the particle and heat fluxes. Both the pedestal and Er well are illustrated in Figure 1.17.

Core

SOL

Core

SOL

Figure 1.17 – (left) Pressure pedestal in H-mode. (right) Associated radial electric field.
Adapted from [25].
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The radial electric field well is observed routinely on experimental measurements in tokamaks.
However, the reasons for its generation and its dependence regarding various plasma parameters
(especially the prediction of its power threshold) are still not clearly understood and remain an
active research field. A recent experimental contribution on WEST reviews some of the main
results [26]. Gyro-kinetic simulations have also been performed, in particular by looking at the
role of the safety factor see ref.[27].

Operating in H-mode leads to a better confinement time of the energy and is one of the solu-
tion considered for ITER to reach Q > 1. However, H-mode usually comes with the existence
of edge localized modes (ELMs): quasi-periodic relaxations of the transport barrier. ELMs
are problematic because they release a large fraction (up to 10%) of the energy content of the
plasma in a few milliseconds. Their existence can damage the divertor, which is not viable for
the long term operation of a fusion power plant. A part of the research has then turned to the
mitigation of those modes, for example using resonant magnetic perturbations. Additionally,
other improved regimes have been found, some being ELM-free.

Finally, plasma shaping can also greatly increase the confinement. This is the case of negative
triangularity, experimentally assessed on TCV in 1997 [28]. Negative triangularity leads to a
confinement similar to H-mode, without an edge transport barrier. As such, they may constitute
a good alternative to other ELM-free improved confinement regimes.

1.5 Conclusion
With the presentation of the D-T fusion reaction and the tokamak configuration, this chapter has
set the scene for the rest of this thesis. The problem of interest is the confinement of the plasma,
mainly governed by the turbulent transport. Turbulence being at the heart of the problem, it
is introduced in details in the following chapter. The focus will be primarily on turbulence
self-organization aspects and on the turbulent regimes.
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Turbulence is crucial for tokamaks as it governs the transport of heat and energy from the
core to the walls. It is also a fundamental subject, for which there is still much to discover.
In this chapter, a short introduction to turbulence is proposed. The focus is then made on the
turbulence self-organization and the current state of the art in simulations and experiments.

2.1 Basics on turbulence: from neutral fluids to fusion plas-
mas

In the following, the basics on turbulence are provided for the already complex case of an
incompressible fluid with constant viscosity. Plasmas can be described as fluids, as such, they
are also subject to turbulence. Some of the differences between neutral fluid and fusion plasmas
are provided in Section 2.1.3. The incompressible assumption is used here to simplify the
description. However, it is frequently acknowledged that fluid with low Mach numbers can be
assumed incompressible.

The fluid is described by the conservation of its momentum through Navier-Stokes equation,

∇∇∇ ·u = 0 (2.1)

∂tu+(u ·∇∇∇)u =−∇∇∇p
ρ

+ν∇
2u+g (2.2)

Where u is the velocity of the fluid element in 3d, p its pressure, ρ its mass, ν its kinetic
viscosity and g the gravity.
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2.1.1 What is turbulence?

Turbulence describes a chaotic states of fluids where many temporal and spatial scales are cou-
pled and nonlinearities are important. It usually appears above an instability threshold which
depends on thermodynamic gradients.

The first depiction of a turbulent flow, along with the word "turbulence", is attributed to L.
Da Vinci in the Codex Atlanticus and in the "Study of water" (c.1510− 12). In the latter, he
represents flows coming out of a dam into a pool as a set of coexisting vortices of different sizes.
This concept was formalized mathematically 400 years later by Kolmogorov (see Section 2.1.2)
and remains an active area of research. One of his drawings along with a recent simulation
trying to reproduce the experiments are displayed in Figure 2.1.

(a) (b)

Figure 2.1 – (a) Leonardo Da Vinci’s Studies of water (c.1510−12), the fall of a stream of
water into a pool. Sheet RCIN 912660. Royal Collection Trust, copyright His Majesty King

Charles III 2022. (b) Recent air-water simulation attempting to reproduce the left figure.
Adapted from ref.[29].

The "vortices" (or eddies) themselves are not well defined objects. Loosely speaking, they
correspond to a region of the fluid behaving coherently. Turbulence have some key aspects that
will be detailed in the following sections:

• Irregularity. Turbulence flows are often chaotic and difficult to assess with a predictive
theory. They have a large number of degrees of freedom and are often treated statistically
instead.

• Mode coupling. Turbulence is composed of vortices of many sizes interacting together.
Their scales can be considered in Fourier space as modes k = 2π/λ with k the mode
number and λ the spatial scale. This notion is usually associated with Nonlinearities in
the equations. The modes are coupled both with the mean – in time and space – gradients
(linear interaction) and between themselves (nonlinearities). Turbulence onset is often
considered when the second interaction becomes important.

• Diffusivity. Turbulent flows tend to accelerate the mixing of fluids and lead to higher
diffusivity. In tokamaks, turbulence leads to a larger transport of heat and particles.

The threshold of turbulence in hydrodynamics, when irregularity becomes important, can be
evaluated with the Reynolds number: Re = ρUL/η , with ρ the fluid density, U its velocity,
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L the characteristic length of the system and η the dynamic viscosity. It measures the ratio
between inertial and viscous forces. At low Re the flow is dominated by viscosity and is de-
scribed as laminar. It means that the fluid moves roughly in the same direction with little lateral
mixing. At larger Re, the flow becomes turbulent. In this case, fluid recirculation occurs with
parts going upstream forming vortices and chaotic motions.

2.1.2 Forward and inverse energy cascades

As stated in the previous section, turbulence is a matter of scale coupling. In the classic turbu-
lence picture, there is a transfer of energy from large scales of motion to smaller scales. This is
called a direct energy cascade, poetically summarized by L.F. Richardson in 1922,

Big whirls have little whirls that feed on their velocity,
And little whirls have lesser whirls and so on to viscosity.

Lewis Fry Richardson, 1922

This idea has been developed mathematically by A.Kolmogorov in 1941 [30] for the case of
incompressible, isotropic, homogeneous 3d turbulence. It is schematized in Figure 2.2. Energy
is injected at large forcing scales (small kF ). The largest vortices contain most of the kinetic
energy. Then, the energy is distributed following a k−5/3 law through local-in-k transfers to
smaller scales (large k) without dissipation. This represents the inertial subrange. At very small
scale, vortices reach the dissipation scale where the energy gets dissipated through heat.

Figure 2.2 – Direct cascade of energy in 3d incompressible isotropic homogeneous turbulence
as described in K41 theory [30].

The transfer of energy in the inertial subrange can be looked at from a vortex stretching point
of view. Let us consider a 3d vortex defined by its vorticity ω = ∇∇∇× u, the rotational of its
velocity. Due to the volume conservation, when this incompressible fluid element gets stretched
in one direction, it reduces in the direction perpendicular to the stretching. Stretching different
vortices in all sorts of directions, forms a complex figure as represented in Figure 2.3 for a direct
numerical simulation of Navier-Stokes equation. Statistically, as there is more vortex stretching
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Figure 2.3 – Vortices in an isotropic 3d direct numerical simulation of Navier-Stokes. Red
curves identify largest scales vortices, from ref.[31].

to vortex squeezing, the energy tends to flow down the cascade to smaller scales.
Vortex stretching works in 3d turbulence. Then, the energy can be transferred directly from one
mode k1 to a larger k2 mode. Even though it requires an incompressible flow, one can speculate
that compressible flows with low Mach numbers should behave similarly. Actually, K41 inertial
subrange properties have been observed in a large number of simulations and experiments.

In highly anisotropic systems – especially the ones featuring strong stratification – turbulence
can be considered as a 2-dimensional problem. This is known for planets atmospheres where
turbulence eddies exhibit a small vertical scale as compared to the planetary scale. It is also the
case of tokamak plasmas, that have a privileged direction due to the strong toroidal magnetic
field. In those systems, vortex stretching cannot occur as the vortices are stuck onto a 2d plane.
As a result, there is a new conserved quantity in the Navier-Stokes equation: the enstrophy,
defined as the square of the vorticity Ω ≡ |ω|2. The enstrophy spectrum is linked to the energy
spectrum by Ωk ≈ k2Ek. The simplification made in 3d turbulence where the energy is trans-
ferred from one mode to another does not work anymore since it is not possible to transfer both
energy and enstrophy in a conservative way using two modes. The transfers now occur between
three modes k3 = k1 + k2, in a process called a triad interaction. The problem of energy and
enstrophy transfer has been studied by Fjortoft in ref.[32]. To give an idea of the change of
behaviour between 3d and 2d we give here the simpler demonstration of Lesieur [33].

We consider the following triadic interaction: k2 = 2k1 and k3 = 3k1. The conservation of
energy implies that between two times t1 and t2, the energy variation δEi ≡ E(ki, t2)−E(ki, t1)
satisfies:

δE1 +δE2 +δE3 = 0

Similarly, the enstrophy conservation reads,

k2
1δE1 + k2

2δE2 + k2
3δE3 = 0

These two conservation equations lead to the following relationships between the energy and
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enstrophy transfers:

δE1 =−5
8

δE2 ; δE3 =−3
8

δE2

δΩ1 ≡ k2
1δE1 =− 5

32
k2

2δE2 ; δΩ3 ≡ k2
3δE3 =−27

32
k2

2δE2

Hence, if energy is transferred from a central mode k2 towards k1 and k3, the energy received
by k1 is larger than the energy received by k3. The energy is transferred to lower k (i.e. higher
scales). Conversely, the enstrophy received by k3 is larger than the one obtained by k1. The
enstrophy is transferred to higher k (smaller scales). Note that from the above expression, if
the mode k2 receives energy instead of giving it away, the process reverses. However, from the
second law of Thermodynamics we can expect the energy to spread more than concentrate of a
single mode so that the system reaches a state of minimum entropy. Then, statistically, the first
situation is favoured.
By injecting the energy at scale 1/kF , Fjortoft theorem states that more energy is transferred
towards larger scales (k < kF ) than smaller scales. Similarly, the transfer of enstrophy is per-
formed principally towards smaller scales. This phenomenon is called the dual or inverse cas-
cade of energy and enstrophy. Performing a similar dimensional analysis to Kolmogorov’s
theory, Kraichnan has established the scaling of the energy and enstrophy transfer in 2d [34].
The dual cascade behaviour is shown in Figure 2.4.

Figure 2.4 – Dual cascade of energy and enstrophy in 2d turbulence. S(k) refers to the energy
and the enstrophy spectra.

In turn, turbulence in 2d tends to present a self-organization at large scales into states of mini-
mum enstrophy. In planetary atmospheres, the generation of those structures impacts the large
scale circulation [35].

The transition from 3d to 2d turbulence, for example increasing the rotation of a fluid disk,
is a complex process and represents a research field on its own. In that case, it is possible to
decompose the velocity fields into helical modes. Depending on the modes, one can find that
some triad interactions lead to a direct energy cascade, while others imply an inverse cascade.
The interested reader can refer to ref.[36, 37] for more details about the helical decomposition.
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Here we have presented the phenomenology of 3d and 2d turbulence in a simplified picture
where the fluid is forced at a single scale and the transfers of energy and enstrophy are local in
Fourier space. Note that the locality of the transfers implies a scale separation since each scale
interacts only with its neighbours. It will appear in the following sections that locality and scale
separation do not necessarily hold in magnetized plasmas.

2.1.3 Analogies & differences in plasmas

Plasmas can be described as fluid systems that are also subject to turbulence. However, the
underlying mechanisms are different than for neutral fluids. In plasmas one needs to take into
account magnetic and electric fields together with the behaviour of electrons and ions. The
coupled dynamics of the fields with multi-fluid turbulence leads to a more complex situation
than the one described previously.

In particular, it is challenging to define the inertial subrange and the dissipation scales. First,
there are many instabilities leading to the injection of energy at many separate scales. Second,
one needs to take into account Landau resonance that emerges as a result of resonant particle-
wave interactions in tokamak plasmas. Finally, non-local interactions also become important.
The Reynolds stress, resulting mainly from "non-local in k" interactions of velocity fluctuations
that involve disparate scales (anisotropic triadic interactions with e.g. k1 ≪ k2,k3), is crucial
for the self-organization of turbulence. It is detailed along with aspects of self-organization in
Section 2.3.

Even though the universality of K41 theory is challenged for plasmas, some attempts have
been made at measuring the k-spectrum of energy in tokamak plasmas. First, with microwave
[38] and light [39, 40, 41] scattering diagnostics. Then, using Doppler backscattering (DBS)
[42, 43]. The latter diagnostic will be detailed in Section 5.1 and used for experiments. An
example of a density fluctuations spectrum measured with DBS in the Tore Supra tokamak is
given in Figure 2.5.

Figure 2.5 – Wavenumber spectra Pdi f f of density fluctuations in discharge #45511 of Tore
Supra at ρ ∼ 0.8±0.08. The region scaled by k−3 corresponds to energy injection while the
one scaled by k−3/(1+ k2)2 to corresponds to an energy transfer region. Figure taken from

[44].
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The behaviour of the spectra in Figure 2.5, has also been investigated using a shell-model ap-
plied to drift-wave turbulence, see ref.[45]. The spectrum for density fluctuations is predicted
to scale like k−3/(1+ k2)2 when disparate interactions are dominant.

2.2 Main micro-instabilities in tokamak plasmas

A vast number of micro-instabilities has been identified already from the mid 80s, see ref.[46]
table III for example. Even though some instabilities have changed names since then, it provides
a pretty good overview of the large number of modes considered relevant for tokamaks. Some
of the modes and instability relevant for the present work are introduced.

2.2.1 Classes of micro-instabilities: Drift waves & interchange

In the present work, we focus on electrostatic instabilities that belong to two groups, or classes.
Namely modes originating from the drift wave instability and those originating from an interchange-
like instability. The first relies on the particle response to parallel perturbations: it is essentially
three dimensional and, as such, depends on a finite parallel wavenumber k∥. The second relies
on the curvature of the magnetic field.

Drift wave instability

First the stable drift waves are described. Then, by inducing a phase shift between density and
electric potential fluctuations, the drift wave instability is detailed. We consider an electric per-
turbation in an homogeneous magnetic field B = Bez made of a plane wave in the perpendicular
direction (y in slab geometry): exp[i(kyy−ωt)], drawn in Figure 2.6 (center). Due to their low
inertia, electrons adjust instantaneously to any perturbation whose frequency ω is small with
regard to their parallel dynamics, k∥vth,e. The electron response in that case is called adiabatic.
Meaning that the electron follows a Boltzmann response ne = n0 exp(eφ/Te) so that,

δne

neq
≈ eδφ

Te
. (2.3)

In this framework, electron density and electric potential perturbations are in phase. Note that
the response of the electron to the electric potential perturbation depends on the parallel direc-
tion. Therefore, only modes that exhibit a structure in the parallel direction (i.e. k∥ ̸= 0) are
subject to an adiabatic response of the electrons.
The electric potential perturbation leads to an electric field in the perpendicular direction from
super-density regions (+) to sub-density regions (-), that reverses sign at the extrema of the po-
tential wave. As a result, the electric drift governs an inward (resp. outward) radial motion of
half the super-density (resp. sub-) lobe, and an outward (resp. inward) in the other half. The net
result is an oscillation of the wave with a phase velocity along the y-direction, directed upwards.

It is possible to derive the drift wave frequency by considering the continuity equation of the
electron density fluctuation: ∂tδne + uE,rdneq/dr = 0 with ũE,r the radial component of the
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Figure 2.6 – Physical mechanism of the drift wave instability in tokamaks.

fluctuating E ×B drift velocity. Performing the Fourier transform leads to:

ω =−
ky

B
dneq

dr
δφ

δne
. (2.4)

Considering the adiabatic relation Equation 2.3, one is left with the electron drift frequency:

ω = ω
⋆
e =−(kyρs)cs

d logneq

dr
(2.5)

Where cs =
√

Te/mi is the sound speed and ρs =
√

miTe/(eB) the sound Larmor radius.

Consider now the case when the electron density and electric potential perturbations are out
of phase, drawn on Figure 2.6 (right). The shape of the electric field is still the same as it is
governed by the electric potential perturbation. What changes is the location of the super and
sub-density regions. Let’s focus on the super-density region (on top). This region experiences
a net outward motion on average. In other terms, the blue curve is not split in half between
the super and sub-density regions. Consequently, the perturbation gets amplified by the electric
drift. Applying the same reasoning to the sub-density region leads to a net inward motion of
this region. Notice that reversing the sign of the phase shift removes the instability. It turns out
that this instability only develops for modes k such that:

δnk

neq
= (1− iδk)

eδφk

Te
; with δk > 0 (2.6)

Where k is the wave vector in the direction transverse to the density gradient and the magnetic
field (perpendicular direction here). The modes with δk < 0 are damped.

The remaining question, then, is what causes the density and electric potential perturbations
to become out of phase? Many mechanisms can induce a phase shift, with the two principal
being the plasma resistivity and wave-particle resonances. The first breaks up the assumption
of an adiabatic response of the electrons (cf.Equation 2.3), it is the mechanism retained for
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Tokam1D model derived in chapter 3.

Interchange instability

The interchange instability depends on the relative signs between the pressure gradient and the
magnetic field gradient. It is responsible for the "ballooned" form of the turbulence in tokamaks.
The idea is illustrated in Figure 2.7.
Let us assume that a perturbation induces a set of vertically aligned charged structures near the
equatorial plane, represented as red and blue circles for positive and negative charges respec-
tively. The electric field induced by the cells leads to an outward (resp. inward) radial electric
drift vE (in black) for the upper (resp. lower) dipole. Additionally, the particles undergo the ver-
tical magnetic drift (Equation 1.8): vD ∝ B×∇∇∇B/e which depends on the particle charge. The
vertical drift is indicated as red and blue arrows for the ions and electrons respectively. Let’s
first focus on the upper dipole. The sum of the electric and vertical drifts implies that ions (resp.
electrons) coming from the left (i.e. up-gradient) are channeled towards the positively (resp.
negatively) charged cell. Doing the same reasoning for the bottom cell leads to ions (resp. elec-
trons) coming from the right (i.e. down-gradient) channeled into the negative (resp. positive)
cell. The two dipoles tend to oppose each other. However, the upper-dipole takes particles from
a high pressure region, whereas the bottom dipole finds its source in a low pressure region. It
results that there is an imbalance of charges: the positive cell receives more ions than electrons
and grows over time.

Figure 2.7 – Physical mechanism of the interchange instability in tokamaks.

This instability mechanism works when the pressure and magnetic field gradients are pointing
in the same direction. Performing the same analysis on the high field side region leads to a
stable situation.

In tokamaks, due to the helicity of the magnetic field lines, particles explore both of these
regions. Thus, the plasma parallel current, which carries electric charges between stable and
unstable regions has a stabilizing effect. It will appear later on when performing the linear
analysis of the drift-waves - interchange Tokam1D system (Section 3.4), that a low resistivity
leads to the stabilization of the interchange instability.
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Note also that the instability ultimately depends on both the inhomogeneity and curvature of
the magnetic field through the vertical drift. The curvature parameter, controlling the instability,
is further detailed in the next chapter (Section 3.1).

2.2.2 More specific modes: CDW, ITG/RBM, TEM

In practice, the literature involves modes that describe more specifically the physics at hand. In
the following is described the classification used in the rest of this thesis. Note that this view is
not shared by every authors. The term ’drift waves’ stems from the adiabatic framework char-
acterised by transverse drifts. As such, in some contributions, drift waves instabilities represent
any micro-instability leading to a net outward transport and interchange as the MHD global
scale mode. Here we separate micro-instabilities between interchange-like and drift-waves-like
as it will come in handy in the following chapters. Most of the following instabilities are better
detailed in review papers [46], or in books [47]. Note that two things have to be distinguished.
First, the class of instability to which the mode belongs. Second, the class of particles from
which the instability draws its energy. The latter defines turbulence that is ion or electron driven.
Typically, ion (resp. electron) driven turbulence has a phase velocity of the sign of the ion (resp.
electron) diamagnetic frequency. Usually, drift-wave instabilities are understood to be electron
driven, while interchange can be ion or electron driven.

Let us first focus on the drift wave instability class. In this work we are mostly interested
with the collisional drift waves (CDW). It corresponds to a phase shift induced by the paral-
lel collisions (resistivity) of the plasma. This mode has been made popular by Hasegawa and
Wakatani in 1983 [48]. The resulting model, which bears their name, consists of an equation on
the electric potential - sufficient to describe stable drift waves, see Hasegawa-Mima model [49]
- and an added equation for density. The phase shift between density and electric potential is
induced by a collisional closure using Ohm’s law. CDW have been used extensively in simula-
tions owing to the simplicity of their numerical treatment and to the relevance of their governing
nonlinearities for magnetized plasma turbulence. They can be expected in tokamaks for some
plasma parameters, see for example ref.[50]. One can also note the existence of slab ITG / ETG,
which has a different drive from toroidal ITG although sharing the same energy source. In this
case the phase shift is induced by parallel Landau damping.

As interchange-like instability, one can note the toroidal ion temperature gradient mode (ITG)
[51, 52, 53], linked to the ion scales k⊥ρi ∼ 0.1−1. It involves specifically the ion temperature
as the source of its energy. It was first named ηi-mode, ηi = d logTi/d logn being the ratio of
the ion temperature gradient to density gradient, because it is destabilized by the temperature
gradient and stabilized by the density gradient [54]. An identical mode exists for electrons,
labelled ETG, but is involved with electron scales: k⊥ρi > 10. Using a similar interchange
drive is the resistive ballooning mode (RBM). It is similar to ITG although mostly considered
in the pedestal [55, 56, 57]. RBM is usually considered as the resistive analogue of the global
interchange MHD mode, sometimes called the ideal ballooning mode.

Finally, one can consider trapped electron modes (TEM). They can also be considered interchange-
type, as their existence relies on the presence of a curved magnetic field. TEM are waves that
can become unstable due to the resonant interaction between an electrostatic perturbation and
the toroidal precessional drift of trapped electrons. They were first described by Kadomtsev and
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Pogutse in 1966, for reference we provide their review paper as the original one is in Russian
[58]. One considers two groups of particles, passing electrons responding adiabatically to low
frequency perturbations (ω < k∥vth,e), and trapped electrons. The latter are forced to bounce
back and forth in magnetic mirrors induced by the machine’s magnetic field. Because of the
combination of parallel motion and vertical drifts, they drift in the parallel direction. Conversely
to passing electrons, they do not average out the effect of a perturbation but may act resonantly
with it, giving rise to an instability. Despite being driven by the electrons, TEM develop at the
ion scales and are efficiently stabilized by the collisions.

2.2.3 Mode localization on resonant surfaces

Fluctuations in tokamaks tend to localize on resonant surfaces. One can distinguish the coordi-
nates linked to the machine itself: toroidal eξ and poloidal eθ , and those linked to the helical
magnetic field: along the magnetic field e∥ and perpendicular to it e⊥.

As stated in the previous sections, turbulence in a tokamak is highly anisotropic due to the
strong toroidal magnetic field. As a result a mode tends to be extended in the parallel direction.
One can define a perturbation ψ by its poloidal and toroidal mode number m and n such that
ψ = ψ̂(r)exp(i(mθ + nξ )). Using the definition of the safety factor, the parallel wavenumber
then reads1,

k∥ =
1
R

(
n+

m
q

)
(2.7)

Magnetic surfaces, labelled rmn, characterized by a rational q = −m/n then correspond to a
vanishing parallel wavenumber. In a tokamak, an electrostatic wave interact resonantly with
particles. It can be shown that at a distance r− rmn from the resonant surface, the wave looses
energy to passing particles. The result is that waves tend to localize on so called resonant
surfaces characterized by a rational q(rmn) =−m/n.

2.2.4 Electromagnetic fluctuations & fast particles

Electromagnetic (EM) effects are suspected to play a key role in driving plasma turbulence in
the pedestal region, especially when approaching the L-H transition. They lead to drift Alfvén
turbulence and greatly influence cross-field transport [59, 60, 61]. It can be shown that the key
parameter is an effective beta parameter, with β = 2µ0 p/B2,

βe f f = β

(
qR
Lp

)2

(2.8)

With q the safety factor, R the major radius and Lp the pressure gradient length [62]. It results
that in high gradient zones, such as the pedestal, Lp can reach very small values (Lp ≪ a) and
βe f f can become of order unity. In certain regimes of beta, EM effects have also been reported
to play some role in the SOL, especially regarding the filamentary structures and blob transport
[63]. Finally, they are crucial to describe L-H transition and H mode regimes. First because

1The derivation is based on ∇∥ ≡ B−1B ·∇∇∇ ≈ R−1(∂ξ +q−1∂θ )
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this particular regime leads to large gradients, hence small Lp. Second because, H-mode edge-
localized-modes (ELMs) require electromagnetism to be described [64]. Some instabilities are
also primarily electromagnetic. Examples of this are the micro-tearing modes (MTM) and the
large scale MHD tearing modes [65, 66]. Also of interest are the kinetic ballooning modes and,
at very large β , the ideal ballooning modes, electromagnetic version of the interchange-like
RBM [67].

EM effects are mainly twofold: magnetic flutter and magnetic induction. The first leads to
a sort of magnetic inertia for the electrons. Indeed, magnetic flutter corresponds to as small
perturbations on a field line in the parallel direction, see schematic in Figure 2.8. As a result,
particles following the field line now have to follow the corrugations: their parallel dynamics is
slowed by the flutter.

Figure 2.8 – Schematic of a field line magnetic flutter in a tokamak.

In practice, it modifies the parallel gradient operator by adding a component depending on the
parallel vector potential. The magnetic induction modifies the electric field which now depends
on both the gradient of the electric potential and the time derivative of the vector potential.
Details about both effects are given in Section 3.5 in the framework of the Tokam1D model.

Fast particle physics will be crucial in next generation D-T operation machines where heating
will primarily come from fast particles. Fast particles also trigger instabilities: some of them
are linked to the pressure gradient of the fast particle population. Others are linked to a gradient
in the velocity phase space – similarly to a thermodynamic gradient in real space – reaching an
instability threshold. This is the case of the bump on tail instability. Considering an equilibrium
distribution function feq as a function of velocity, displayed Figure 2.9. Fast particles, of distri-
bution ftail , interact with the bulk plasma at rest. The bump on tail instability develops when
the slope of the distribution function is positive with respect to the velocity.
Fast particles lead to a whole zoology of other instabilities that are outside the scope of the
present work. Comprehensive topical reviews can be found in refs.[68, 69].

It is important to note that fast ions are also likely to improve the overall confinement. Re-
cently, a study has been conducted where fast ions are shown to excite Alfvénic instabilities
which, in turn, lead to the generation of zonal flows and improve confinement [70]. The physics
of zonal flows, in the electrostatic framework, is detailed in Section 2.3.

2.3 Turbulence self-organization
Once developed, turbulence can, in turn, give rise to secondary structures. Some of them are
beneficial to the overall confinement while others are expected to be detrimental. In this work,
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Figure 2.9 – Example of a non-monotonic distribution function in the velocity space leading to
a bump on tail instability.

we are interested in avalanches and zonal flows. Both are generated through the underlying
turbulence and impact the plasma performance.

2.3.1 From scale separation to scale interplay
In the previous sections, the following simple picture has been laid out. When thermodynamic
gradients exceed a certain threshold, an instability is triggered. The fluctuations grow and satu-
rate when mode coupling becomes important. The turbulence now has two ways to evacuate its
energy. The first is through the energy cascades described in the previous sections. The second
is by producing a transport. This may flatten the gradient below the threshold and stabilize
the instability. It follows that the overall confinement is largely dependent on the threshold -
linear and nonlinear - loosely defined as marginality. The larger the threshold is, the larger the
confinement will be [71, 72]. The confinement also depends on the system’s stiffness: i.e. the
instability growth rate as a function of the local driving gradient. If stiffness is important, a
small departure from marginality will lead to a large transport. The characteristic time associ-
ated with transport is of the order of the confinement time, τE . The one associated to cascades
is typically of the order of the vortex turnover time τ ≪ τE . In the above description, the in-
teraction between turbulence and profiles through cascades and transport is considered as local:
respectively in terms of scale and space.

Based on these premises, most transport codes also used to be local. Meaning that the trans-
port properties only depend on local thermodynamic gradients. This inherently assumes a scale
separation between large scale gradients evolving on long timescales and small scales fluc-
tuations. In this framework, turbulence roughly evolves in a frozen-equilibrium, such that
non-linear simulations can be performed at "fixed gradient", namely without considering the
back-reaction of turbulent transport on the equilibrium profile. Such simulations are called
gradient-driven (GD).

However, it was argued that the scale separation could break down. Non-locality has been
tested experimentally by sending carbon impurities in the plasma of the TEXT tokamak. The
large variation of temperatures in the machine could not be explained by transport coefficients
being functions only of local thermodynamic variables [73]2. As a matter of fact, the local

2This view has been challenged by refs [74, 75]. However, while the temperature variation is explained through
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assumption is challenged in tokamaks where the gradient lengths of flux-surface averaged
profiles may become commensurable to the fluctuations lengths. Additionally, tokamaks are
open systems where fluxes (heat, particles) are prescribed, not gradients. The system then
self-consistently finds the balance between gradients and turbulence to overcome the imposed
driving fluxes. New models, labelled flux-driven (FD), then appeared to deal with this issue.
First for fluids [76, 77, 78, 21], then for gyro-kinetics [79, 80, 81, 82]. Those models have
shown the existence of intermittent and large scale transport events, called avalanches. They
are described in the following section.
Finally, another secondary structure, called zonal flows can also be generated. This time non lo-
cally in Fourier space: small scale turbulence can generate large scale flows, in a way by-passing
the turbulent cascades. They are detailed in Section 2.3.3.

2.3.2 Streamers and avalanches

In tokamaks, most of the instabilities tend to develop for the lowest value of radial wavenumber
kr accessible to the system. As a result, turbulence develops into radially-extended vortices,
called streamers. Those are deemed problematic because they tend to mix large portions of
the plasma. They have been extensively studied using GD simulations. When, FD simulations
started to emerge, avalanches have been identified. Avalanches are a form of turbulence and
transport self-organization. They consist in ballistic transport events of heat and particles that
propagate over long distances as compared to the correlation length of turbulent eddies. Con-
versely to a streamer, an avalanche does not necessarily result from a radially extended vortex.
It can be composed of several small size cells. The important point is that the avalanche causes
the means of its own propagation.

A comparison of GD and FD simulations is displayed in Figure 2.10 taken from [83]. Avalanche-
like events are shown to appear in the FD turbulence. This provides one of the first evidence for
avalanche-like transport in simulations relevant for fusion plasmas.

Figure 2.10 – Contour plot of the particle flux in the gradient-driven case (left) and in the
flux-driven case (right). Simulations of 2d interchange in the scrape-off layer. Taken from

ref.[83].

local parameters, the authors do not provide an explanation for the fast modification of the density at the edge,
which could in principle be nonlocal.
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They are often understood, by analogy with a sand pile, as resulting from a domino-like effect
[72], illustrated in Figure 2.11. A local relaxation flattens the profile locally and steepens it on
both sides due to conservation laws. The strong gradients on both sides then lead to local strong
fluxes, further leading to local flattening. The process can repeat over long distances, resulting
in the formation of voids and bumps that propagate radially up and down hill, respectively.
Actually, we show in the present work that avalanches can exist even when this mechanism is
artificially removed, see Section 4.4.3.

Figure 2.11 – Schematic view of an avalanche-like event. Taken from ref.[84].

Local profile relaxation then appears to be key to the whole dynamics. In that situation, scale
separation can no longer be assumed.

Some evidence of avalanches has also been found experimentally using electron cyclotron
emission (ECE) diagnostic [85] and more recently with correlation Doppler backscattering
(CDBS) [86]. In chapter 5, we study avalanche-like events in TCV using CDBS.

2.3.3 Generation of zonal flows and geodesic acoustic modes

Zonal flows (ZFs) are large scale symmetric flows generated by turbulence. They have been
known for a long time in atmospheric sciences where they are contributors to the large scale
atmospheric circulation [35]. They also appear in the solar tachocline were they have impli-
cations for angular momentum transport [87]. In the case of spherically symmetric systems,
they form longitudinally symmetric band like flows. A few examples consist of jet streams on
Earth or band-like flows in the atmosphere of Jupiter. In magnetic confinement devices, a ZF
corresponds to an electric field perturbation which is constant on a magnetic surface but varies
in the radial direction.
One can distinguish several classes of such flows discriminated on the basis of their frequency: a
high frequency branch called geodesic acoustic modes and a low frequency residual zonal flow,
sometimes called "low frequency zonal flow (LFZF)". This latter branch LFZF is sometimes
split itself in two sub-categories by comparing with the turbulence broad-band frequency, one
with finite frequency ωZF < ωturb, the other with almost vanishing frequency ωZF ≪ ωturb –
sometimes called mean flows in this case (cf. e.g. [88]). In this work, we refer to low frequency
zonal flows by ’zonal flows’ (ZFs) and call the high frequency component GAM. The denomi-
nation ’low frequency zonal flows’ (LFZF) is only used in Section 5.2 to avoid any confusion.
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ZFs are of significant interest as they provide an additional mechanism for turbulence to
saturate in addition to cascades and transport. For magnetic fusion devices, the more energy is
stored into flows, the less is available for turbulence to produce transport. In this section, we
introduce the physics of ZFs, their generation through Reynolds stress, saturation and impact
on turbulence. The GAMs are also briefly introduced.

Zonal flow structure

Consider the situation of an axisymmetric tokamak with a toroidal magnetic field B = −Beξ .
The ZF electric potential φz f verifies vanishing toroidal and poloidal wavenumbers: kξ = kθ = 0
and a finite radial wavenumber kr. The flow symmetries are illustrated in Figure 2.12 in poloidal,
toroidal and bird’s eye views.

(a) (b) (c)

Figure 2.12 – Schematic representation of the zonal flows. (a) Poloidal plane. (b) Toroidal
plane. (c) Bird’s eye view. (b) and (c) are inspired from 2005 P.Diamond’s review on ZF [89].

The flow induces a poloidal rotation through the action of the electric drift: vz f = ∂rφz f /B.
There is also a return toroidal flow associated with the zonal flows. Indeed, the magnetic field
lines are curved due to toroidicity. As a result of geodesic curvature, plasma volume elements
on the high field side are less spaced apart than on the low field side. In turn, when a flow arises
in the poloidal direction, it induces a plasma compression. To maintain incompressibility, the
flow in the poloidal direction is compensated by a return flow along the field lines [89].

Founding contributions on ZFs have been made in the late 70s by Hasegawa [90]. ZF gener-
ation theory in fusion plasmas has then been extensively developed by Diamond [91], who also
authored a review on the subject [89].

Generation mechanism of ZFs: Reynolds stress

To give an idea of the generation of zonal flows by the Reynolds stress we perform a simple
demonstration of the Reynolds decomposition in a neutral fluid. A more complete derivation of
the Reynolds stress, using current conservation is performed in chapter 3.

Let us consider an incompressible fluid characterized by the velocity u in a Cartesian geom-
etry (x,y,z). For simplicity, y and z are assumed as periodic directions, reminiscent of poloidal
and toroidal directions in a tokamak. The flow u = (ux,uy,uz) is described with its momentum
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equation:

∂tu+(u ·∇∇∇)u = RHS (2.9)

Where RHS stands for the right-hand side of the equation, not described. The flow is split
between a "flux-surface average" (understood here as an average over y and z) and fluctuating
components following a Reynolds decomposition:

u = ⟨u⟩+ ũ (2.10)

With ⟨u⟩= (1/2π)2 ∫ u dydz the flux-surface average. Injecting this and projecting the momen-
tum equation on the y direction leads to,

∂t(⟨uy⟩+ ũy)+∇∇∇ · ((⟨u⟩+ ũ)(⟨uy⟩+ ũy)) = RHSy (2.11)

Taking the flux-surface average of the above equation and noticing that ⟨ũ⟩= 0 by construction,

∂t⟨uy⟩+∇∇∇ · (⟨u⟩⟨uy⟩)+ ⟨∇∇∇ · (ũũy)⟩= ⟨RHSy⟩ (2.12)

Since, y and z are periodic directions, the average of any derivative along their direction vanishes.
The last term on the left-hand side then reduces to,

⟨∇∇∇ · (ũũy)⟩= ∂x (⟨ũxũy⟩) (2.13)

This force corresponds to the divergence of the Reynolds stress: Πxy = ⟨ũxũy⟩. The Reynolds
stress consists in the cross-correlation of the fluctuations of the poloidal and radial components
of the plasma velocity. Now remains the question of what the velocity u consists of. The electric
component, ΠE = ⟨ũE,xũE,y⟩, generated with the E ×B velocity (Equation 1.7), has long been
deemed central in the generation process [91]. Often overlooked at, the diamagnetic compo-
nent Π⋆ = ⟨ũ⋆,xũE,y⟩ through the diamagnetic velocity (Equation 1.10) now also appears as an
important mechanism for the poloidal flow generation [92, 93, 94, 95].
Note also that symmetric terms of the form of ⟨u⋆,y(uE,x + u⋆x)⟩ do not exists. They are com-
pensated by terms of the RHS that originate from the gyro-viscous tensor. This process is
called the diamagnetic cancellation [5], it has already been introduced for the polarization drift
(Equation 1.11).

Taking into account the decomposition of the electric potential and the pressure into Fourier
modes along the z and y directions, the electric and diamagnetic components of the Reynolds
stress read [95],

ΠE =−2∑
n

∑
m>0

mℑ(φ∗
mn∂xφmn) (2.14)

Π⋆ =−2∑
n

∑
m>0

mℑ(p∗mn∂xφmn) (2.15)

With m and n the y and z modes respectively such that φ = ∑m,n φmn exp(i(my+nz)). A deriva-
tion of the Reynolds stress in a more complete geometry can be found in ref.[95]. From this
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decomposition, it appears that the Reynolds stress can be both local or non-local. It can possible
couple small scales to produce a large scale zonal flow.

It is difficult to have a physical understanding of the Reynolds stress as it is defined as a
non-zero statistical average of velocity fluctuations. Note that the Reynolds force can be recast
as a vorticity flux, this is called the Taylor identity. The equivalence is derived considering the
velocity in the form of stream functions, u = ∇∇∇× (ψez). We perform the demonstration in the
simplified case where uz = 0, such that u = (∂yψ,−∂xψ,0). The vorticity reads, ω = −∇2

⊥ψ ,
with ∇⊥ = (∂ 2

x +∂ 2
y ). Then, the Reynolds force reads,

⟨∂x(uxuy)⟩= ⟨∂x(−∂yψ∂xψ)⟩=−⟨1
2

∂y(∂xψ)2 +∂yψ∂
2
x ψ⟩

Noticing that the average of the first term on the right hand side is zero, one can recast the
Reynolds force as a radial vorticity flux:

⟨∂x(uxuy)⟩= ⟨uxωx⟩

Damping mechanisms

Naively, three principal mechanisms can be considered for the damping of ZFs: Landau damp-
ing, tertiary instabilities such as Kelvin-Helmholtz (KH) and collisions. Landau damping re-
quires a non-zero k∥ and therefore does not affect the low frequency zonal flows. Kelvin-
Helmholtz is stabilized by the magnetic shear in tokamaks. Therefore, the KH instability is
not expected to strongly limit the extension of ZFs. Finally, only collisional friction remains
[96].

Hence, in its simplest form the governing equation of ZF can be written as the balance of the
turbulent drive and frictional damping,

∂tvz f =−∂xΠRS −µvz f (2.16)

Geodesic acoustic modes

GAMs represent the high frequency branch of zonal flows. Based on ref.[97], we provide a very
short introduction to their rationale. Let us consider a poloidal flow. Due to the compressibility,
the poloidal pressure disturbance p̃θ is compensated by the return toroidal flow vξ . This is the
situation for the classic zero-frequency ZF which takes an m = n = 0 flow structure, m being
the poloidal and n the toroidal mode numbers. When the variation of the perturbation vz f is
too fast, the parallel flow is not sufficient to compensate the pressure disturbance. It results in
an m = ±1, n = 0 pressure mode, called a side band. It is linearly coupled to the m = 0 flow.
In that situation, the pressure buildup eventually leads to the inversion of the flow which then
becomes oscillatory. In the limit of circular flux-surfaces, the compression is maximum at the
top and bottom of the plasma, resulting in a sinθ pressure sideband.

GAMs have been identified in the late 60s by Winsor [98] who derived the GAM frequency
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using an MHD model:

ωGAM =
cs

R0

√
2γ

(
1+

1
2q2

)
(2.17)

With, cs the sound speed, R0 the major radius, γ the adiabatic index and q the safety factor. Since
then, many contributions focused on their characterization in terms of frequency, amplitude and
damping in a variety of magnetic systems and configurations. In contrast to zonal flows, because
they are oscillatory, GAMs are linearly damped through Landau resonance. As such, they exist
in tokamaks only by being continuously forced.

Back-reaction on turbulence

ZFs being linearly stable, they efficiently feed on turbulence and deplete it from its energy.
In turn, the turbulent drive decreases and so does the generation mechanism. The turbulence-
ZF coupling is often seen in the form of a predator-prey mechanism, ZF being the predator
[99, 100, 101]. An example of the predator-prey behaviour is provided in the next chapter, see
Figure 3.3. Note that ZFs can, in principle, also exchange energy with GAM. The predator-prey
relation then occurs between three components: background turbulence, GAMs and ZFs [102].
In practice, it can be even more complex as there are possibly interactions with pressure profiles
and with avalanche dynamics.

Second, ZFs can also develop extremely low frequency components (already mentioned ear-
lier) that contribute to the mean velocity shear. Accounting for them in numerical simulations
reduces the size of turbulent structures. See for example Figure 2.13 adapted from ref.[103].

Figure 2.13 – Poloidal contour plots of fluctuation potential. (A) With E×B flows. (B)
Without flows. Adapted from ref.[103].

The structures are extended in the radial direction for the case without flows. That is reminis-
cent of streamers that develop in the absence of velocity shear. Additionally, the turbulence
is shown to be ballooned, as expected from the interchange drive detailed in the previous sec-
tions. The same trial has been performed using the Tokam1D code presented in the next chapter.
Artificially removing ZFs also lead to a turbulence blow-up, see Section C.1.

2.3.4 The particular case of staircases

The shear associated with ZF structures can also generate small transport barriers in the core
of the tokamak. It has been shown, in simulations, that plasmas can naturally evolve towards
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a state of spatially separated micro transport barriers and sectors of strong avalanche-like trans-
port. This global pattern has been named the E×B staircase. It has been predicted first numer-
ically in in ref.[104], then developed in subsequent papers [105, 106] and indirectly hinted at in
experiments [107].

The schematic of staircase’s properties is shown in Figure 2.14. Staircases yield the following
properties:

• Radially structured zonal mean flows.
• Pressure profile corrugations - steps - co-located with ZF shear regions.
• Avalanches in between pressure corrugations, occurring on a size larger than the steps

themselves.

(a) (b)

Figure 2.14 – (a) Schematic view of the E×B staircase. (b) E ×B shear as a function of time
and normalised radius. Adapted from ref.[106].

Note that the pressure profile evolves together with the flows. Therefore, scale separation is
likely irrelevant to address the physics involved in the generation and possibly sustainment
mechanism (this point receives dedicated attention with the Tokam1D code, see Section 4.4.3).
In fact, staircases are shown to have a weak amplitude in gradient-driven simulations [106].
The underlying mechanisms leading to the formation of such layered structures is not entirely
understood. Additionally, the interplay between zonal flows structures and avalanches is not yet
elucidated. Some of these questions will be approached in the present work, they are presented
in Section 2.4.3.

The layering is a mechanism shared with many other areas of the physics. In particular when
structured zonal flows can be generated, such as the solar tachocline, atmospheres and oceans.
In neutral fluids, the staircase step size is often estimated using the Rhines scale [108]. However,
the parameter is based on inertial effect which assumes that local interactions are dominant. In
fusion plasmas, the phenomena at hand are largely non-local, in particular due to avalanching
processes, and such estimation is not necessarily accurate.
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2.4 Modelling tools

We review here the hierarchy of models involved in the studies of transport and turbulence.
Then, to introduce the work performed in the rest of the thesis, we focus on model reduction
and quasi-linear approximation. Some of the current challenges regarding turbulence regimes
and self-organization simulations are highlighted.

2.4.1 Hierarchy of models: from first principle to heuristic

A large arsenal of models is available to study turbulence and its self-organization. Each with
its own advantages and drawbacks. The different models are discriminated on the basis of their
plasma description.

• The particle description: consists of solving Newton’s equations of motion for each
particle in each direction. The equation of motion reads msdtvs = es(E+vs ×B)+Fdeb,
with ms, vs, es the mass, velocity and charge of the ion or electron. Here one needs to
take the interaction both with the mean fields (at distances larger than the Debye’s length)
and with the particles inside the Debye’s sphere. Then the fields have to be evolved
considering Maxwell’s equations. Despite being very precise in terms of information,
this description requires a formidable amount of computation. A typical fusion plasma
of ∼ 1022 particles would imply solving as many equations. Even when solving for a
very small local part of the machine (hence discarding non local effects), this is too much
for current high-performance-computing (HPC) platforms. Additionally, this amount of
details is not necessary for the problem at hand where one needs statistical values, such
as the mean density, velocity etc.

• The kinetic description: consists of a statistical approach. One relies on the distribution
function of plasma species, Fs, which gives the probability of finding a particle within a
6-dimensional elementary volume in the vicinity of the position x and velocity v. The
distribution function is evolved using the Fokker-Planck equation:

∂tFs +v ·∂xFs +a ·∂vFs = C (Fs) (2.18)

With a = dv/dt the derivative of the velocity v and C (Fs) a collision operator. This
formalism is tractable for turbulence studies in a fusion plasma environment. However it
is time-consuming and resource expensive as one needs to solve the distribution functions
in a 6d phase-space grid.

• Gyro-kinetics: describes a strongly magnetized plasma for which typical frequencies are
small in front of the cyclotron frequency. It consists in a phase space reduction from
6-dimensions to 4-dimensions plus the invariant associated to the symmetry of the prob-
lem, namely the gyrophase of the cyclotron motion of the particles. This invariant is
the magnetic moment µs = msv2

⊥/2B, ratio of the transverse kinetic energy of the par-
ticles divided by the magnetic field. In essence, the gyrokinetic approach is therefore
5-dimensional. The constitutive equation is formed by the gyro-kinetic Fokker-Planck
equation. It evolves the gyro-kinetic distribution function, Fs, in (xG,vG∥,µ), where xG is
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the gyrocenter position, vG∥ the gyrocenter parallel velocity and µ the magnetic moment:

∂tFs +
dxG

dt
·∇∇∇F̂s +

dvG∥
dt

∂Fs

∂vG∥
= C (Fs) (2.19)

Additionally, the quasi-neutrality equation is solved along with the Ampère equation if
electromagnetic effects needs to be taken into account. The interested reader is referred
to ref.[109] for details on gyro-kinetics.

• The fluid description: considers the moments of the distribution function. The mo-
ment of order k is computed from the integral of the distribution function as follows:
Mk =

∫
v⊗kFsd3v, where ⊗k represents a tensor product of order k. The advantage of this

method is that the first moments are related to meaningful quantities. The zero order mo-
ment relates to the plasma density, the first to the mean velocity, the trace of the second
to the pressure etc. The drawback is that the time evolution of each moment Mk involves
the next moment Mk+1. That means a closure needs to be considered, such as Braginskii
[110] or Zhdanov for multi-species plasmas [111] in the collisional case. In the colli-
sionless – or weakly collisional – case, it is important to capture kinetic effects such as
Landau-damping and particles trapping. A few attemps have been done in this direction,
which often reveal model dependent, see for example ref.[112, 113] for Landau-damping
or [114] for TEM.

5-dimensional gyro-kinetic and 3-dimensional fluid models are the state-of-the-art in terms
of plasma turbulence modelling and simulations. The former is principally used in the core.
The second is widely used for the edge and the scrape-off layer where the collisionality is larger.
See for example gyrokinetic code GYSELA [115] and the Soledge3X fluid code [116]. In both
cases however, the simulations are very expensive. They often require months of computation,
often without reaching the particle and/or energy confinement time. Additionally, they include
so many physics that it is sometimes difficult to infer the underlying mechanisms. In a way,
performing those large scale simulations is akin to performing a real tokamak experiment. As
complementary tools in this hierarchy of models, reduced models are also widely used. They
have the advantage of running much faster, thus allowing large parameter scans. Additionally,
by focusing on a reduced number of parameters and by involving dedicated physical corner-
stones, they allow one to decipher key nonlinear mechanisms that may be somewhat hidden in
more complex simulations. Despite not giving quantitative comparison with experiments and
first principle simulations, they help to set up trends and mechanisms that can then be verified
using more complex tools.

The reduced models can be separated in two groups. The first group starts from first principle
considerations. Assumptions are made allowing to reduce the dimensions of the problem. The
game consists in finding the right assumptions to reduce the problem without impacting the
physics of interest. The second group consists of heuristic models. The problem is now opposite.
One considers a piece of physics of interest. Then, a model is built upon it and compared with
first principle simulations or experiments.

In the next chapter, we build a reduced fluid model from first principle considerations. It will
be further reduced by considering a single wave vector in the parallel and poloidal directions. It
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bears some analogy to a quasi-linear approach, described in the following section.

2.4.2 Basics on the quasi-linear approach

In the Quasi-linear theory (QLT), one is interested in the slow evolution of mean (in a sense to
be defined) variables as a result of the fast fluctuation dynamics. By neglecting non-equilibrium
mode-mode interactions, all fluctuations are considered as eigenmodes of the system [117].
QLT is usually considered valid in the low Kubo number limit. The idea behind the Kubo num-
ber is to compare the amount of time required for a particle to be transported across or between
turbulent structures to the duration a particle remains trapped within a turbulent structure. Kubo
numbers can have several definitions [118],

Ku1 =
τ jump,⋆

τturnover

Ku2 =
τlag

τdi f f ,ExB

The first relates to the ratio of the jumping time due to the diamagnetic velocity to the eddy
turnover time. The second stems from the ratio of the Lagrangian correlation time to the particle
diffusion time as a result of the E×B velocity (in radial or poloidal directions). In the low Kubo
number limit, a particle cannot sample the totality of the correlated regions it resides in before
the landscape – given by the evolutions of the fields – has evolved. Therefore, nonlinearities
only result in a modest perturbation of the system. The transport of the particle across the
turbulent structures is to some extent comparable to a random walk – diffusive – process.

The following derivation is largely inspired from ref.[119]. Consider a state vector q(x,y, t)
defined on a 2d plane (x,y), y being a periodic direction. This can correspond to the poloidal
cross-section of a tokamak where x stands for the radial direction and y the poloidal. The
evolution of q is described by a set of partial differential equations (PDE) that can be written as,

∂tq = L [q]+N [q,q] (2.20)

Where L represents a linear operator and N is a non-linear operator. For simplicity, the non-
linear operator includes only quadratic interactions. The state vector is separated between a
slow and a fast dynamics following a Reynolds decomposition:

q = ⟨q⟩+ q̃ (2.21)

In practice, in tokamak plasmas, the brackets usually correspond to a flux-surface average
(called a zonal average) as well as an average over mesoscopic time durations, intermediate
between the energy (or particle) confinement time and the caracteristic time of the fluctuations.
Note that performing this decomposition does not imply a scale separation between the two
quantities. Injecting the decomposition into Equation 2.20 leads to,

∂t⟨q⟩+∂t q̃ = L [⟨q⟩]+L [q̃]+N [⟨q⟩,⟨q⟩]+N [⟨q⟩, q̃]+N [q̃,⟨q⟩]+N [q̃, q̃] (2.22)
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Taking into account the following relationships:

⟨⟨q⟩⟩= ⟨q⟩ ; ⟨q̃⟩= 0 (2.23)

⟨N [⟨q⟩, q̃]⟩= ⟨N [q̃,⟨q⟩⟩= 0 (2.24)

One can separate the equations into equilibrium and fluctuations. The first is obtained by taking
the zonal average of the set of PDE. We assume that the zonal average commutes with the time
derivative and the various operator, the equation then reads:

∂t⟨q⟩= L [⟨q⟩]+N [⟨q⟩,⟨q⟩]+ ⟨N [q̃, q̃]⟩ (2.25)

Where the last term accounts for every triad interaction resulting in the zonal mode. The re-
maining equation provides the time evolution of the fluctuations:

∂t q̃ = L [q̃]+N [⟨q⟩, q̃]+N [q̃,⟨q⟩]+N [q̃, q̃]−⟨N [q̃, q̃]⟩ (2.26)

Now let us consider the Fourier decomposition of the state vector along the periodic direction:

q = ∑
m

qmeimy (2.27)

One can then project onto each mode qk:

qk =
∫

qe−ikydy (2.28)

This means that one has to solve the triad interactions such that p+m = k:

∂tqk = L [qk]+N [⟨q⟩,qk]+N [qk,⟨q⟩]+ (N [q̃p, q̃m]−⟨N [q̃p, q̃m]⟩)
∣∣
k (2.29)

The last term on the right hand side can be recast as:

(N [q̃p, q̃m]−⟨N [q̃p, q̃m]⟩)
∣∣
k = ∑

p ̸=0
qpqk−p (2.30)

Excluding p = 0 in the sum avoids counting twice the coupling to the mean quantity ⟨q⟩. Solv-
ing the system then requires to solve the sum for each mode k. This comes with an important
computational cost, and involving more dimensions further complicates the system. Quasi-
linear approach consists in neglecting the mode-mode interactions, greatly simplifying the res-
olution. In essence, this amounts to consider that the mode-mode interactions are negligible in
comparison to the equilibrium. It works well in small fluctuations amplitude regimes: q̃ ≪ ⟨q⟩.
Alternatively, one could develop a closure to account for some of the effects of the mode-mode
interaction without resolving them. One can impose a turbulent cascade, informed from K41
theory for example, to account for those interactions.

A generalization of the QLT consists in retaining NL interactions not only between the fluc-
tuations and the zonal mode (term N (q̃,⟨q⟩) in Equation 2.26) but also between some of the
fluctuating modes. This is called the generalized quasilinear (GQL) approximation, described
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in ref.[119]. Instead of separating between a mean and fluctuating component, one separates
the state vector between large and small scales with a spectral filter. It means the equilibrium
and fluctuating component now read,

⟨q⟩= ∑
|k|≤Λ

qkeiky (2.31)

q̃ = ∑
|k|>Λ

qkeiky (2.32)

The full interactions are retained for the equilibrium modes while the standard quasilinear ap-
proach remains for the fluctuating modes. A summary of the conserved triad interaction is
illustrated in Figure 2.15.

Figure 2.15 – Triad interactions in the generalized quasilinear approximation. Triads (a)-(c)
are retained while (d)-(f) are omitted. Taken from [119].

The quasilinear approximation is a particular case of the GQL where Λ = 0. Conversely, the
full non-linear system is obtained when Λ =+∞.

To develop the reduced model in the next chapter, the variables are decomposed into an equi-
librium and fluctuation equation following a Reynolds decomposition, similarly to QLT. How-
ever, in the present case the decomposition is performed with a flux surface average: meaning
between zonal and non-zonal modes. A priori there is no assumption of timescale separation
between zonal and non zonal modes, they are both evolved on an equal footing.

2.4.3 Challenges

Challenges regarding models and simulations are twofold. The first is computational. Perform-
ing large scale, first principle simulations is very expensive and time demanding. As a result, a
few numbers of simulations are performed. That means we do not have a large knowledge in
terms of parameter space. Reduced modelling is less demanding in terms of computation and
comes as a possible solution to this. However, it is difficult to account for all the physics, ge-
ometry and non-locality in a reduced model. Determining which physics is the most important
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then constitutes the second challenge. Below, we detail some key challenges in simulations that
are directly relevant to this work.

The first deals with the characterization of turbulence and transport in terms of parameter
space. The plasma properties close to the separatrix have been identified as crucial for the over-
all behaviour of the plasma. It is in this zone that the radial electric field well develops, that the
pedestal forms and that the connection with the scrape-off layer is made. The question then is,
which density, temperature and magnetic fields favour better confinement? Which parameters
lead to operational limits?
On this topic, one can note the early work of Rogers, Drake and Zeiler (RDZ) [60]. In Fig-
ure 2.16 is displayed the transport as a function of the "MHD ballooning parameter" α =

Rq2β/Lp with Lp the typical pressure gradient length, and as a function of the "diamagnetic
parameter" αd which involves the inverse of the collisionality. Both parameters depend on the
density n and temperature T , such that a large range of α and αd values can be expected in
the edge of tokamaks. The resulting phase space illustrated in Figure 2.16 identifies 4 zones of
which two are operational limits. At large β , one reaches the electromagnetic ideal ballooning
modes. On the left, at high density, the plasma reaches a thermal collapse. The density limit
has been acknowledged since the late 80s in tokamaks, it is also called Greenwald density in
the literature [120]. Both the density and ideal MHD limits lead to a dramatically increased
transport such that those regimes are not operable. The two remaining zones are the low (L)
and high (H) confinement modes. The latter yields a reduced transport.

Figure 2.16 – Edge plasma phase space. Adapted from ref.[60].

A complementary work has been performed by Scott [121], where the phase space is considered
in terms of competing drift waves and interchange in the electromagnetic regime. The more re-
cent contribution from Eich and Manz [122] manages to close the gap between experiments and
simulations. They identify the same 4 regions of the phase space and show remarkable agree-
ment between model prediction and experiments. The phase space is displayed in Figure 2.17.
The bottom left (green circles) of the figure corresponds to L-mode discharges, the blue squares
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Figure 2.17 – Edge plasma phase space of ASDEX Upgrade in terms of electron density and
temperature. Extracted from ref.[122].

in the middle to H-mode shots. The density limit is indicated with the red curve and red trian-
gles, while the ideal ballooning limit is displayed in black. The lines are derived from a set of
dimensionless parameters estimated from the complex drift-Alfvén (DALF) model equations.

For both RDZ and Eich/Manz contributions, some parameters are identified as crucial to iden-
tify the phase-space. Of particular interest are the electron-ion collisions, leading to the parallel
resistivity. The interchange instability develops a charge separation in the vertical direction.
Since particles explore both stable and unstable region, the parallel transit, which carries elec-
tric charges between the two regions, can be expected to have a stabilizing effect. The parallel
conductivity parameter is sometimes recast in form of the adiabatic parameter which depends
on the inverse of the collision frequency: C ∝ 1/νei. Naively, we could consider the adiabatic
parameter as stabilizing. However it also controls the collisional drift wave instability which
can lead to turbulence and transport. The second parameter is linked to the magnetic curvature.
Discarding shaping effect it can be estimated as the strength of the magnetic field inhomogene-
ity. This parameter controls the interchange instability and is often considered as destabilizing:
the larger the curvature, the larger the ballooning instabilities. Finally, when electromagnetic
effects are included, those add a new control parameter, the plasma β . The electromagnetic
parameter has a dual role depending on the other parameters. Above the ideal MHD limit, it
leads to ideal ballooning modes which dramatically increase the transport. Below, it modifies
the existing instabilities and can be destabilizing (resp. stabilizing) for low (resp. large) values
of the adiabatic parameter, see for example the figure 2 of ref.[60]. The authors then choose
either some of these parameters or a combination of them. For the two examples above, αd and
αt describe to some extent the stabilizing effect of parallel conductivity on interchange.

Despite the good agreement with experiments, it is difficult to infer the physical mecha-
nisms at play behind the phase space. The density limit for example is well predicted in terms
of the parameter space [123]. However, the mechanisms at play are not entirely elucidated.
Refs.[60, 122] put forward the increase of transport due to a turbulent regime transition and non-
linear electromagnetic fluctuations. Other contributions, such as performed by Numata [124],
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observe a zonal flow collapse when decreasing the adiabatic parameter at constant density gra-
dient – the critical adiabatic parameter for this collapse increasing strongly with the density
gradient. Building on this, a few works propose the density limit to be related to this ZF col-
lapse, see ref.[125]. Since the critical adiabatic parameter depends on the density gradient, one
might reasonably ask what would happen if the density gradient were free to adjust and evolve?
Approaching this question requires a flux-driven formulation of the problem, so that the profiles
(pressure, flows) can be evolved self-consistently with the turbulence.

To further the analysis on the phase space presented in Figure 2.16 and 2.17, we propose to
evolve towards a flux-driven formulation of this problem so that the profiles can evolve self-
consistently. Relaxing the scale separation assumption enables the study of the flow and profile
corrugations along with the generation of avalanches and the generation of staircases. This
ultimately requires simulations on the confinement time of the particles – so that the profiles
can evolve towards a steady state – while still resolving the small scale turbulence. To this aim,
we develop a reduced model in chapter 3. The objective is not to have a quantitative agreement
with experiments but to see whether trends exist in the generation of zonal flows, avalanches
and staircases depending on the plasma parameters.

Turbulence self-organization itself also bears unanswered question. Previous contribution,
in particular by Dif-Pradalier [104, 105] investigated the generation of staircases. The radially
organized structures are found mainly in near-marginal ITG turbulence regime and expected
beneficial to limit the radial extension of avalanches [106]. Mitigation of avalanches by shear
flows has also been hinted at in experiments [126]. In the meantime, some contributions also
point out the possible generation of staircases by the avalanches themselves [127]. Staircases
and their induced shear could also play a role on the L-H transition itself, as pointed out by
ref.[128].

We are convinced that the flux-driven reduced model Tokam1D represents a valuable tool to
perform parameter scans and explore which turbulence regime leads to the radial structuring of
ZFs and avalanche processes. In a self-consistent manner – thanks to the absence of any implicit
scale separation, it can investigate whether radially structured flows always lead to corrugation
in the pressure profile. Finally, the interaction between zonal structures and passing avalanches
can be approached. Knowing the parameter space leading to the apparition of avalanches and
staircases also helps guiding the experiments. Challenges regarding experimental work are
presented in the next section.

2.5 Experimental measurements of turbulence self-organization

Plasma self-organization, in particular zonal flow generation, is crucial for simulations. How-
ever, those dynamics are difficult to unravel experimentally. In this section, we review some of
the past experimental works and challenges regarding the identification of zonal flows, avalanches
and staircases. A review on zonal flows experiments by Fujisawa can be found ref.[129]. Addi-
tional considerations regarding geodesic acoustic modes (GAM) can be found ref.[97].
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2.5.1 Diagnostics and methods

Zonal flows are separated between their low and high frequency branches: low frequency zonal
flows (LFZF) and geodesic acoustic modes (GAM). While both are linked to a flow structure
m = n = 0, with m,n the poloidal and toroidal mode numbers, the GAM is easier to detect
because of its pressure sidebands (modes m = ±1). For zonal flows, one needs to rely on
electric potential or velocity measurements. Ideally, the process to clearly identify zonal flows
would encompass several of their properties:

1. m = n = 0 zonal structure of the velocity or electric potential.
2. Finite radial wavenumber (small kr) of the fluctuations, thus assess the radial structure.
3. Turbulent drive, i.e. the Reynolds stress.
4. Investigate the coupling between ZF and turbulence: transfer of energy, predator-prey

relation.
5. Damping and its dependence on collisionality and other plasma parameters.

In practice, all these points are challenging. Verifying the mode structure requires a multi-point
measurement: two measures separated poloidally and toroidally but located at the same exact
radial location. This method is called long range correlation (LRC), its principle is sketched in
Figure 2.18.

Figure 2.18 – Principle of long range correlation measurement. (A) and (B) are separated
poloidally and toroidally but not radially. (A) and (C) are only separated radially.

To verify the zonal structure, one needs to correlate point (A) with point (B). To verify the radial
structure, one needs to vary the radial location or add a third measurement point in the radial
direction and perform a radial correlation between (A) and (C).
The measure of the Reynolds stress requires an estimation of the radial and poloidal velocity
fluctuations and often relies on local multi-point measurements. For example by using a set
of Langmuir probes separated radially and poloidally one can infer fluctuating velocities in
both directions. Using a probe in a confined plasma requires a low temperature typically not
achievable in large scale tokamaks. As such, measurements are mainly performed in small
devices, see next section.
Investigating the interaction between low frequency modes such as ZFs and GAMs and the
broad-band turbulence requires advanced numerical methods such as spectral, coherence and
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bicoherence analysis. Additionally one can rely on signal decomposition methods, such as
empirical mode decomposition, detailed in Section 5.2.

To perform those measurements, one needs to rely on the electric potential or on the plasma
perpendicular velocity. Not many diagnostics are able to measure those quantities. Langmuir
probes have been extensively used, but require relatively cold plasma. Alternatively, imaging
techniques and reflectometry methods are able to extract poloidal and/or radial velocities in
the confined region. The measurement of the perpendicular velocity is principally made using
Doppler backscattering. It consists in sending an electromagnetic wave into the plasma at an
angle with the cut-off layer. If the plasma is subject to a finite poloidal mean flow, the backscat-
tered wave is modulated with a Doppler frequency used to infer the perpendicular velocity
advecting the underlying density fluctuations. The diagnostic is presented in details Section 5.1.
Beam-emission spectroscopy (BES) is also widely used to measure 2d maps of the density fluc-
tuations. It consists in measuring the emitted light from the excitation of a probing neutral beam
sent into the plasma. Provided that enough channels are present, BES can resolve the radial and
poloidal velocity of the density fluctuations.
Alternatively to the plasma velocity one can use the electric potential fluctuations. If cold
enough, Langmuir probes can reach the edge of the confined plasma and provide reliable mea-
surements of the plasma electric potential.

Avalanches are ballistic events travelling on large portions of the machine in a short time.
Their measurements necessitate a wide spatial coverage and a very good temporal resolution.
Interesting results have been obtained using electron cyclotron emission (ECE) and correlation
Doppler backscattering (CDBS). They are detailed in the following.

Finally, staircases include both zonal flows and avalanches. Additionally, staircases should
be observable directly on the pressure profiles in the form of steps. This can be done using
fast-sweep reflectometry to measure density profiles. Ideally, one should verify the step on
the pressure profile along with the radially structured perpendicular velocity. If possible, a
measurement of the avalanches in between the step would provide a more complete picture of
the staircase structure.

2.5.2 Experimental measurements and challenges
The list of references being very long, we cannot be exhaustive on the subject. The references
discussed here represent contributions on this topic related to the present work, but the list is
inevitably partial.

Zonal flows and geodesic acoustic modes

The GAM are much easier to measure than ZFs: they have a larger frequency and have been
studied for decades in all sorts of configurations. Using DBS, GAMs have been measured on
many tokamaks such as DIII-D [130], ASDEX Upgrade [131, 132] and Tore Supra [133, 134].
Note that coupling several DBS separated poloidally and/or toroidally can resolve their spatial
structure. GAMs are routinely observed in both simulations and experiments. As such, they
present a nice ground for testing and to compare codes and diagnostics.

Conversely, zonal flows are much more difficult to assess. They have a vanishing frequency
and are not linked to pressure sidebands which make them particularly elusive in experiments.

– 72 –



2.5. Experimental measurements of turbulence self-organization

When the plasma is cold enough, usually on small machines, physical probes can reach the
confined part of the plasma. Doing this, LRC have been used to investigate zonal structures.
Notably on TJ-II heliac [135, 136]. LRC have also been performed on medium size tokamaks,
such as HL-2A [137] and HT-7 [138]. LRC has also been performed with heavy ion beam
probes on CHS [139].
However, measurements of ZFs on large machines are scarce. It is not possible to rely on probes
due to prohibitive heat loads. One can note the contribution of Gupta ref.[140], who used BES
on the DIII-D tokamak. On the left hand side of Figure 2.19 is displayed the BES channel
location. The resulting poloidal correlation is shown on the right.

Figure 2.19 – (Left) Beam-emission spectroscopy line of sight location. (Right) Poloidal
correlation of velocity fluctuations. Adapted from [140].

The correlation found at low frequency is reminiscent of the expected zonal flow. However, note
that the channels here have no toroidal separation and are only separated by a few centimeters
poloidally. Even though a few cm is usually larger than the turbulent structures size, it is not
a ’long range’ correlation per se. Recently, three correlated DBS have been used on W7-X
stellarator to perform long range correlation [141]. Two of them are separated toroidally and
poloidally. The third channel is separated radially, it is used to infer the radial structure.

Reynolds stress measurements are also very scarce. One can note the work of Tynan ref.[142]
and collaborators who report measurements of the flows, Reynolds stress and particle flux in a
linear device. The Reynolds stress has also been measured on TJ-K stellarator using a poloidal
array of Langmuir probes [143].

In chapter 5, using two DBS channels separated poloidally and toroidally, we perform the
LRC on a discharge of the Tore Supra tokamak. The signal is shown to be dominated by GAMs
which perturbs the low frequency signal. It will appear that removing the GAM helps retrieving
a long range correlation at low frequencies.
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Avalanches

Ideally, measuring avalanches requires the measure of the turbulent flux of particles or heat. In
practice, these fluxes are difficult to measure because it would require the measure of the density
/ temperature and electric potential fluctuations along with their cross-phase. Alternatively, one
can use the temperature or density fluctuations as a proxy for the propagation of the avalanche.
In 2000, Politzer [85] observed avalanches in the temperature fluctuations using ECE on the
DIII-D tokamak. In Figure 2.20 is shown the avalanche propagation in the electron temperature
fluctuations signals.

Figure 2.20 – Electron temperature fluctuations for ECE channels between ρ = 0.25 and ρ ≈ 1
as a function of time. The avalanches are indicated in the grey areas. Extracted from [85].

Temperature fluctuations can be tracked when propagating across a large part of the machine.
The perturbation moves outwards as the time increases. Indirect evidences of avalanches can
also be found by performing the radial correlation using two DBS channels. This time, the
density fluctuations are measured. Typically, this setup is used to measure the radial correlation
length of turbulence. If events are travelling on large radial parts of the plasma, they should also
lead to a correlation of the DBS signals. In ref.[86], the radial correlation is performed on large
radial distances, the resulting radial correlation function is displayed in Figure 2.21.
The radial correlation function is not monotonic and displays two slopes. The short scale is
expected to be linked to the size of the turbulent structures. The second slope of correlation is a
possible sign of avalanches events.

In chapter 4, we report in Tokam1D simulations that the radial correlation of the density
fluctuations lead to a second slope of correlation when avalanche transport is present. Then, in
chapter 5, we use a double channel DBS on TCV to measure experimentally the radial correla-
tion functions. Two slopes of correlations are found in various configurations and are identified
as avalanches signatures by analogy with simulations and ref.[86].

Staircases

At last, the experimental measure of staircases has recently gained interest. Staircases should
be observable on the perpendicular velocity signals in the form of radially structured flow. Mea-
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Figure 2.21 – Density fluctuations correlation as a function of the radial separation, from [86].

surements on JET tokamak have shown stable in time corrugations in the radial electric field
[128]. Radial electric field profiles are displayed in Figure 2.22. On the left, from [128], six
profiles present corrugation in the bottom of the Er well. On the right, from [144], radial electric
field profiles present no corrugations. Both are performed in L-mode discharges.

Figure 2.22 – Radial electric field and density profiles from the JET tokamak. (left) With
staircases-like corrugations, taken from [128]. (right) Without corrugations, from [144].

The principal issue is that the observations of Er corrugated profiles have never been repro-
duced, neither on JET nor on other machines. In most cases, the radial electric field profiles
(or v⊥) present no corrugations as exemplified on the right hand side of Figure 2.22. Addition-
ally, the density profile presents no corrugation which could advocate in favour of the staircase
presence. Finally, the staircases steps are close to each other, which is different to first principle
simulations where staircases are separated by zones mediated by avalanche-like transport (see
Figure 2.14).
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Another attempt at measuring staircases signatures made use of fast-sweeping reflectometry
[107]. The staircases signatures appear in "the local contraction of the coherence of adjacent
plasma layers", which indicates a change in the size of the turbulent structures. The modulation
of the coherence length is displayed in Figure 2.23.

Figure 2.23 – Local contraction of the coherence as a signature of staircases. (a) Spectrally
averaged. (b) Displayed as a radial profile. (c) Asymmetry of the cross-correlation functions

along the radial profile, indicative of the structures spatial tilt. Adapted from [107].

The results are promising but are difficult to perform and require a certain amount of post-
processing. They have to be reproduced in other machines and with different plasma parameters
to be reliable.

All in all, staircases such as described by simulations should be observable in experimental
signals. DBS and reflectometry systems have the required spatial resolution to observe the
corrugations in the velocity and pressure profiles. However, the lifetime of staircase structures
might be too short as compared to the required diagnostic measurement time. Also, staircases
are sometimes found to be meandering, such that they are moving radially. Their stability – in
time and space – might depend on plasma parameters and on the type of turbulence present in
the plasma. Some regimes might favour very stable structures while other might favour flows
that are moving radially, disappearing, merging and splitting. With the reduced model presented
in the following chapter, the type of turbulence (interchange, drift waves) leading to stable radial
structures is investigated.

2.6 Conclusion and scope of the thesis
Understanding the properties of turbulence in fusion plasmas is crucial as it governs the tur-
bulent transport. Turbulence can saturate through turbulent cascades, profile relaxation and
generation of mesoscale structures such as zonal flows. Turbulence self-organization then ap-
pears essential: while generation of zonal flows mitigate turbulent transport, the formation of
avalanches can be detrimental for the overall confinement. Staircases, coupling both avalanches
and radially structured flows remain largely unexplored and elusive in experiments.
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Among the key remaining questions, turbulent regimes leading to the formation of zonal flows,
avalanches and staircases have to be better characterized. Doing this will give a better under-
standing of the mechanisms leading to the formation of such structures. It will also help guiding
future experiments. By better understanding the plasma self-organization, some insights regard-
ing turbulent transport and the access to better confinement modes can be obtained. Finally, it
is also a fundamental topic that touches on many areas of turbulence and layering physics.

We list here the main questions of interest for the present work:

• What turbulence regimes favour the generation of zonal flows? Of avalanches?
• Which regimes lead to the radial structuring of zonal flows? Do structured flows always

lead to staircases?
• Do zonal flows mitigate avalanches? Or do they interact in a more complex way?
• What is the impact of turbulence self-organization on transport?
• Using simulations as a guide, can we better characterize zonal flows and avalanches ex-

perimentally?

To approach these questions, we develop a flux-driven reduced model aimed at the study of
turbulence and flows. The model includes two fundamental instabilities: collisional drift waves
and interchange. It is reduced to one dimension, such that one can perform parameter scans on
particle confinement timescales while still resolving small turbulence scales. Using this model,
the generation of zonal flows, avalanches and staircases are studied depending on turbulence
parameters. The model being flux-driven, it is possible to assess the role of such structures on
the turbulent transport and confinement. Finally, using simulations both as a guide for turbulent
regimes and as a tool to seek signatures of self-organization, experiments are performed using
Doppler backscattering. Having two DBS channels enables long range correlation and radial
correlation measurements.

The reduced model is derived chapter 3. Some extensions, by including the physics of the
scrape-off layer and electromagnetic effects are included. The characterization of turbulence
self-organization and their impact on transport is characterized chapter 4. Finally, experiments
on Tore Supra and TCV tokamaks are performed chapter 5. Signatures of zonal flows and
avalanches are reported.
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Tokam1D: a reduced flux-driven model for
turbulence-flows interaction
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In the previous chapter, we underlined the important role of turbulence in the edge region
for the global confinement. It is in this region that the radial electric field well develops and
that the transition from close to open field lines is made. As such, the parameters at the last
closed flux surface are particularly studied [60, 122]. It is also a region where collisionality, ν⋆

(Equation 1.19), is large. The large collisionality makes a fluid approach relevant and one is not
forced to rely on kinetic or gyrokinetics. Additionally, in order to understand the generation of
flows and their radial structure together with their impact on turbulent transport, it is necessary
to scan different turbulence regimes.

The choice is made to study the turbulence self-organization with a reduced fluid model, so
that a large number of simulations can be performed with different parameters. The model
needs to include several crucial elements:

• Treat both mean (flux surface averaged) profiles and fluctuations on an equal footing,
without any scale separation assumption (in time and in space).

• Self-consistently account for nonlinear terms that govern the dynamics of the mean pro-
files, namely fluxes (of particles, energy, etc.) and the various components of the Reynolds
stress. As will be discussed in Section 4.3.2, the latter point requires a finite ion tempera-
ture.

In this framework, the system needs to be flux driven so that an equilibrium can be achieved
where sources are balanced by turbulent transport processes.
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The model includes two instabilities expected dominant in the edge [50]: collisional drift
waves (CDW) and interchange instability (akin to resistive-ballooning or ion temperature gra-
dient modes). The first, detailed in Section 2.2.1, relates to drift-wave class of instabilities that
stems from a finite phase shift between density and electric potential fluctuations. The second,
introduced in Section 2.2.1, derives from the plasma magnetic inhomogeneity, either caused
by curvature or by spatial gradient. Simulations are run until reaching not only the statistical
steady-state of turbulence, but also the steady-states of the flux-surface averaged profiles. The
latter objective requires runs of several energy and particle confinement times. So as to fasten
numerical resolution, the model is reduced to one dimension. This makes possible large con-
finement time scans on turbulence parameters while still resolving the small turbulence scales.

The model, labelled Tokam1D-ES core, is first derived for an electrostatic plasma in the edge
of the confined region. Its derivation along with considerations on the flux-driven regime can
be found in a submitted article [145]. Then, additions are performed. First with the transition
towards the scrape-off layer (Tokam1D-ES SOL). Second, by adding electromagnetic effects
(Tokam1D-EM). For easy access, the different versions of Tokam1D are referenced Table 3.1.
The label −ES stands for electrostatic and −EM for electromagnetic. Note that Tokam1D-ES
SOL encompasses both the core and the scrape-off layer.

Model name 3d version 1d reduction

Tokam1D-ES core Equations 3.12 – 3.13 Equations 3.32 – 3.35

Tokam1D-ES SOL Equations 3.55 – 3.56 Equations 3.64 – 3.67

Tokam1D-EM Equations 3.100 – 3.102 Equations 3.116 – 3.121

Table 3.1 – Easy access for Tokam1D versions

3.1 Considered geometry and magnetic field curvature pa-
rameter

The interchange instability depends on the inhomogeneity of the magnetic field through a pa-
rameter first named the effective gravity parameter by Furth, Killeen and Rosenbluth [15] who
derived it in a slab geometry. This effective gravity parameter, also called curvature parameter,
is largely dependent on the considered geometry. We can derive it from terms that are linked to
the magnetic inhomogeneity such as the divergence of the electric drift and diamagnetic flux:

∇∇∇ ·
(

BBB×∇∇∇h
B2

)
=∇∇∇h ·

(
∇∇∇×BBB

B2 +
2BBB×∇∇∇B

B3

)
(3.1)

With h = n the density or h = Φ the electric potential. Note that both the curvature and the
amplitude variation lead to the magnetic inhomogeneity. The first term on the right hand side
relates to Ampère-Maxwell’s law. In tokamaks, at low β , it leads to the current density and
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can be neglected. The second term comes from the magnetic field amplitude variation along
the major radius of the tokamak and should be kept. Considering a circular geometry where the
magnetic field decreases as the inverse of the major radius, B(R) = B0R0/Re∥, with B0, R0 the
magnetic field on axis and R0 the major radius, it reads at leading order in the inverse aspect
ratio ε = r/R0:

∇∇∇h ·
(

2BBB×∇∇∇B
B3

)
=− 2

RB

(
sinθ∂rh+

cosθ

r
∂θ h

)
+O(ε)

Thereby defining the following operator:

G (·) =− 2
RB

(
sinθ∂r +

cosθ

r
∂θ

)
(3.2)

The Tokam1D model is quasi-one dimensional. It retains equilibrium quantities (flux surface
average) and one poloidal and parallel mode for fluctuations. As such, the curvature operator
is also reduced and does not take into account variations along θ . Doing this simplification
removes the following properties from the dynamics:

1. The ballooning structure of the modes. While the interchange instability still occurs only
on the low field side, the 2d structure in the poloidal plane is not resolved.

2. The physics of geodesic acoustic modes (GAM). Those modes lead to flows that are con-
stant on magnetic surfaces but that oscillate at the GAM frequency ωGAM ∼ cs/R. The
inclusion of GAMs can be an interesting addition to the model as those modes could
exchange energy with both ZFs and turbulence [89, 102], more details are given in Sec-
tion 3.6.2.

Considering the reduction of Equation 3.2 in the 1d radial direction leads to the following
curvature operator:

∇∇∇h ·
(

2BBB×∇∇∇B
B3

)
≈− 2

RB
∂yh

With the corresponding dimensionless curvature parameter:

g = 2
ρs

R
(3.3)

To give a visual representation, this amounts to consider the torus as a cylinder, with the
poloidal direction extended vertically and labelled ey. The other directions being the toroidal eφ

such that B =−Beφ and eR the radial direction. The geometry is illustrated in Figure 3.1.
The modelled region is sketched in blue and is located at the edge of the confined plasma, both
sides of the separatrix (indicated in red). The cylindrical coordinates are approximated with
cartesian coordinates, such as if the blue section was unwrapped onto a cartesian plane (right
side of Figure 3.1). The unit vectors read (ex,ey,e∥), where x is the radial, y is the poloidal
(now vertical) and z is the parallel (along the field lines) directions. Note that in a tokamak, the
toroidal direction is not exactly equal to the parallel direction due to magnetic helicity. There-
fore, the coordinates are not exactly orthogonal since the parallel direction is the projection of
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Figure 3.1 – (left) Z-pinch magnetic geometry considered for Tokam1D with the modelled
region indicated in blue. (right) Cartesian approximation of the modelled region and its system

of coordinates (ex,ey,e∥).

the toroidal direction onto the magnetic field line. However, the edge q-factor is large and this
effect is deemed small.

3.2 Describing the core: Tokam1D-electrostatic
The model is derived from two continuity equations: the density and charge equations. A
generalized Ohm’s law closes the system by relating the parallel current to the electric field
and the electron pressure gradient. The governing fluid equations rely on a certain number of
simplifications that are detailed below. Their derivation proceeds from the adiabatic regime
already detailed in Section 1.2.1 and in refs.[62, 21, 146]. The main assumption is to consider
that the time and spatial scales of the plasma dynamics are much larger than the ones of the
cyclotron motion, namely the gyrofrequency and the sound Larmor radius ρs. In this framework,
velocity drifts are retained up to the second order in the small expanding parameter, typically
the ratio between ρs and the gradient length R (also the tokamak major radius) of the magnetic
field ρ⋆ ∼ ρs/R ≪ 1. These velocities are the electric and diamagnetic drifts at first order, and
the ion polarization drift at second order. Other finite Larmor radius effects than the polarization
drift are not retained.

We consider a magnetized plasma of constant ion (Ti) and electron (Te) temperatures (with
τ = Ti/Te) in a static magnetic field B. We focus on the tokamak edge, just inside the last
closed flux surface (LCFS). The plasma is assumed to be in L-mode so that one can neglect
electromagnetic effects. Indeed, when approaching the H-mode, the pressure gradient length Lp
decreases strongly, so that the effective beta parameter βe f f = (qR/Lp)

2β - with β = 2µ0 p/B2

the ratio of plasma pressure to magnetic pressure, q the safety factor and R the major radius -
can exceed unity. In this case, as early noticed in [147] and further detailed in [62], magnetic
induction can no longer be ignored since it controls the linear response of the parallel current to
parallel gradients in the three state variables (electric field, density and electron temperature).

The model for the core (closed flux surfaces) is first derived in 3d, then is further reduced
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to 1d by keeping only one fluctuating mode for the poloidal (ey) and parallel (e∥) directions.
An energy principle is calculated and energy channels for the profile, flows and turbulence are
clarified. Finally, a heuristic equilibrium velocity is added to the model, to account for the radial
force balance equation.

3.2.1 Electron density continuity equation

The particle conservation equation, Eq 3.4, solves the electron density n taking into account the
E ×B and diamagnetic drifts, vE and v⋆ (defined Equation 1.10), the electron parallel current
j∥,e and the source of particle Sn. The polarization drift, vpol (Equation 1.11), is neglected for
the electrons as it scales with the mass of the species.

∂tn+vE ·∇∇∇n+n∇∇∇ ·vE +∇∇∇ · (nv⋆e)−∇∥( j∥e/e) = Sn (3.4)

Owing to the large inertia of the ions, the total parallel current is approximated by the electron
parallel current: j∥e = −env∥e ≈ j∥. The compressibility terms, ∇∇∇ · vE and ∇∇∇ · (nv⋆e) are kept
in the equations. They account for the inhomogeneity of the magnetic field and are crucial in
the model. They are necessary to close the energy balance of the system that involves both
linear and nonlinear terms, see Section 3.2.7. Additionally, they prove to stabilize the inter-
change instability at large scale. This is no small effect: at large magnetic inhomogeneity the
interchange instability is strongly suppressed, see Section 3.4. The advection of density due to
the electric drift can be written in Poisson brackets {Φ,n} = (∇Φ×∇n) ·B, or in slab geome-
try, {Φ,n}= ∂xΦ∂yn−∂yΦ∂xn = ∂y(n∂xΦ)−∂x(n∂yΦ). Developing the compressibility terms
derived in Section 3.1, the above equation reads as follows,

∂tn+
1
B
{Φ,n}− 2nTe

eRB

[
∂y

(
eΦ

Te

)
−∂y ln

n
n0

]
− 1

e
∇∥ j∥ = Sn (3.5)

With n0 a constant density of normalization and Φ the electric potential.

3.2.2 Charge continuity equation

With the quasi-neutrality assumption, charge conservation reduces to ∇∇∇ · j = 0. Taking both
the diamagnetic current j⋆ = (env⋆i − env⋆e) and the polarization current, jpol = envpol , into
account, it takes the form:

∇⊥ · j⋆+∇⊥ · jpol +∇∥ j∥ = 0. (3.6)

In the isothermal regime (i.e. constant Te and Ti), the divergence of the diamagnetic current can
be written directly as:

∇∇∇⊥ · j⋆ = ∇⊥ · (−env⋆e + env⋆i) =−(1+ τ)
2Te

RB
∂yn,

with τ = Ti/Te the temperature ratio. The polarization current is computed from the ion polariza-
tion drift (Equation 1.11). We further neglect the parallel advection assuming that the parallel
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gradient length remains small as compared to the transverse ones:

∇⊥ · jpol =−∇⊥ ·
(

enmi

eB2 [∂t +vE ·∇]

(
∇⊥Φ+

τTe

e
∇⊥n

n

))
The above expression is challenging to solve numerically as it leads to two time derivatives:
n∂t∇... and ∇n∂t ... . Instead, the difficulty is often bypassed by considering the Boussinesq
approximation. It states that the density can commute with the divergence, thus leading to,

∇∇∇⊥ · jpol ≈− nΩmi

B2 ∂t∇
2
⊥

(
Φ+

τTe

e
ln

n
n0

)
− nΩmi

B2

[
vE ·∇∇

2
⊥Φ+∇ ·

(
vE ·∇

[
τTe

e
∇⊥ ln

n
n0

])]
.

Where nΩ is the commuted density, the subscript Ω is added to keep track of its origin in the
rest of the derivation.

We take the time here to discuss this assumption and its implications. First of all, Boussi-
nesq assumption is routinely used in many fluid models to simplify computation. It is usually
considered valid whenever density gradient length is large with respect to that of the electric
potential. Although it is usually considered correct in the core, its validity is debated for simula-
tions including the scrape-off layer as the density fluctuations tend to be larger relatively to the
background density, see dedicated contributions [148, 149, 150]. Depending on the model, two
variations of the Boussinesq assumption are used. Weak Boussinesq where a constant density is
commuted nΩ = n0 such as in [116, 151, 152]. Strong Boussinesq where the choice is made to
commute the full density nΩ = n [148, 153]. Ultimately, one has to verify that the Boussinesq
assumption does not break the conservative form of ∇∇∇ · j = 0 and that the model still conserve
energy. The breakdown of conservation is discussed for the electromagnetic model derived
in Section 3.5. For now, we simply consider that the commuted density is nΩ, without stating
whether this should be n or n0. The validity of the strong Boussinesq assumption can be checked
at the end of the simulation by comparing ∇⊥n ·∇⊥(Φ+ τ ln(n/n0)) and n∇2

⊥(Φ+ τ ln(n/n0)).
In the simulations performed, the mismatch proved to be of a few percent.

Additionally, the magnetic field is assumed to commute with the ∇ operator. It is acceptable
as the B field decays as 1/R which is on much larger scales than the density and electric potential
inhomogeneities. Eq. 3.6 then reads as follows,

−nΩmiTe

eB2 ∂tΩ =
nΩmi

B3
T 2

e
e2 ∇⊥,i

{
eΦ

Te
,∇⊥,i

(
eΦ

Te
+ τ ln

n
n0

)}
+

2Te

RB
(1+ τ)∂yn−∇∥ j∥ (3.7)

Where ∇⊥,i{.,∇⊥,i(.)} represents Poisson brackets that can be developed using Einstein’s nota-
tion, ∂x{.,∂x(.)}+∂y{.,∂y(.)}. Here, the generalized vorticity is defined as follows,

Ω = ∇
2
⊥

(
eΦ

Te
+ τ ln

n
n0

)
. (3.8)

With ∇2
⊥ = (∂ 2

x +∂ 2
y ) the perpendicular Laplacian.
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3.2.3 System closed through Ohm’s law

In order to close the system, one has to evaluate the parallel current present in both Equation 3.5
and 3.7. This is done using Ohm’s law, that derives from the electron parallel momentum
conservation equation,

nme[∂t +(vE +v⋆e +v∥e) ·∇]v∥e +Te∇∥n = en∇∥Φ+
meνei

e
j∥ . (3.9)

Due to the small electron inertia, the first term proportional to me can be dropped. In this case,
the generalized Ohm’s law reduces to a balance between parallel current, parallel Coulomb
force and parallel pressure. One is left with an explicit relationship between the parallel current
on the one hand, and density and electric potential on the other,

j∥ =
enTe

meνei
∇∥

(
ln

n
n0

− eΦ

Te

)
(3.10)

One has to remember that the parallel current depends on the electron-ion collision frequency,
that depends itself on the density and temperature νei ∝ n/T 3/2

e . The temperature is constant
in this model, but the density has to be made explicit so that we can treat the pre-factor as a
constant. Then, we define νei,0 = νei

n0
nν

, the electron-ion collision frequency taken at reference
density n0. The density is labelled nν to keep track of its origin in the following calculations.
This density originates from the electron-ion collision frequency. As such it should be under-
stood as a flux-surface averaged density, possibly further coarse grained in time on timescales
intermediate between fluctuations and collisions. Also, the energy conservation equation in
Section 3.2.7, directly results in the possibility to perform integration by part in the parallel
direction. This requires nν to be independent of the parallel direction.

∇∥ j∥ =
en0Te

meνei,0

n
nν

∇
2
∥

(
ln

n
n0

− eΦ

Te

)
=

σ0

nν

n0Te

B
n ∇

2
∥

(
ln

n
n0

− eΦ

Te

)
(3.11)

With, σ0 = eB/(meνei,0) = ωce/νei,0, the parallel conductivity taken at reference density n0.

3.2.4 3d-model of core Tokam1D-ES

The 3d system of equations is obtained by dividing the density continuity equation by n and the
charge continuity equation by nΩ. It involves the logarithm of the electron density N = lnn/n0
and the generalized vorticity Ω = ∇2

⊥(eΦ/Te + τN). The system reads,

∂tN +
1
B
{Φ,N}= 2Te

eRB

[
∂y

(
eΦ

Te

)
−∂yN

]
+

1
e

∇∥ j∥
n

+
Sn

n
−miTe

eB2 ∂tΩ =
mi

B3
T 2

e
e2 ∇⊥,i

{
eΦ

Te
,∇⊥,i

(
eΦ

Te
+ τN

)}
+

2Te

RB
(1+ τ)

n
nΩ

∂yN −
∇∥ j∥
nΩ
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The terms related to the parallel current read,

∇∥ j∥
n

=
σ0

nν

n0Te

B
∇

2
∥

(
N − eΦ

Te

)
∇∥ j∥
nΩ

=
σ0

nν

n0Te

B
n

nΩ

∇
2
∥

(
N − eΦ

Te

)
To move forward, we set nν = 1 and n/nΩ = 1. The first amounts to considering a constant
collision frequency and adiabatic parameter Equation 3.16 taken at the reference density n0.
The second corresponds to the strong Boussinesq assumption. It is made here for simplicity,
one can then deal only with the logarithm of the density in the following. This will be discussed
further in Section 3.5.

The dimensionless 3d system can then be recast as follows,

∂tN +{φ ,N}= g∂y(φ −N)+σ0∇
2
∥(N −φ)+D∇

2
⊥N +SN

∂tΩ+∇⊥,i
{

φ ,∇⊥,i(φ + τN)
}
=−(1+ τ)g∂yN +σ0∇

2
∥(N −φ)+ν∇

2
⊥Ω

(3.12)

(3.13)

The time is normalized to the ion cyclotron frequency ωcs = (eB)/mi and the lengths to the
sound larmor radius ρs = (mics)/(eB) with cs =

√
Te/mi. The magnetic curvature parameter

is defined as g = (2ρs)/R, with R the major radius of the tokamak. The parallel conductivity
is considered constant and is defined as the electron cyclotron frequency to the electron-ion
collision frequency taken at n0, σ0 = ωce/νei,0. The system is flux-driven with a source of
particles SN . The damping of small scales is ensured by the diffusive terms D and ν . The
normalizations are recalled in Table 3.2.

Dimensionless variables Dimensionless fields

(x̂, ŷ) = (x,y)
ρs

n̂ = n/n0

t̂ = ωcst φ = eΦ/Te

∇̂ = ρs∇ v̂ = v/cs

{..., ...}= ρ2
s {..., ...}

Table 3.2 – Tokam1d-ES normalizations

Where the following constants have been introduced,

ρs =
mics

eB
=

cs

ωcs
; cs =

√
Te

mi
; ωci =

eB
mi

(3.14)

respectively the sound Larmor radius, the sound speed, and the ion gyro-frequency. Finally, n0
and B0 ≈ B are constant density and magnetic field.
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3.2.5 Semi-spectral formulation: from 3d to 1d

In order to keep track of nonlinear dynamics while dealing with a more tractable system, each
field is decomposed into a flux-surface average and a fluctuating component (Eq 3.15). In
the spirit of previous similar models [154, 155, 156], the fluctuating components are Fourier
transformed and projected onto

• A single parallel wave vector k∥, so that ∇∥ −→ ik∥.
• A single poloidal wave vector ky, so that ∂y −→ iky.

Consequently, each field (N,φ) is split into an equilibrium and a fluctuating component as
follows, (

N
φ

)
=

(
Neq
φeq

)
(x, t)+

(
Nk
φk

)
(x, t)exp[i(kyy+ k∥z)]+ cc (3.15)

where cc stands for the complex conjugate. Notice that (Neq,φeq) are real variables, whereas
(Nk,φk) are complex. The implications of this decomposition call for further discussion. In
particular, retaining a single poloidal wavenumber ky implies that, in the time evolution of the
fluctuating modes Nk and φk, the model cannot consider the nonlinear terms that arise due to
mode-mode coupling. Indeed, these terms involve other modes k′y ̸= ky which are by essence
excluded by the model. One of the consequences is that possible energy (and enstrophy) cascade
processes cannot be accounted for. Three important remarks can be done at this point:

• A refinement of the model would consist in adding a nonlinear saturation mechanism to
the fluctuations of the form ∂tNk = · · ·−DNL|Nk|2Nk with DNL some positive coefficient
[154]. It would account for part of the physics contained in the missing nonlinear in-
teractions, namely nonlinear energy dissipation as one of the routes towards turbulence
saturation.

• Even with DNL = 0, the model still retains important nonlinearities. The main ones are the
turbulent flux and the Reynolds stresses that govern respectively the time evolution of the
equilibrium density Neq and poloidal flow Veq profiles (see eqs.(3.32-3.33) and eqs.(3.18-
3.25)). Note also that, since these radial profiles enter the time dynamics of fluctuating
modes, they result in nonlinear couplings between different radial wave vectors kx (cf.
all terms in eqs.(3.34-3.35) of the form F(Aeq)G(Bk), where F and G stand for linear
operators and A,B ∈ {N,V,Ω}). This latter point is not explicit in the equations since
they are not written in the Fourier space in kx but in the configuration space x.

• In the absence of ad-hoc nonlinear term in the dynamics of fluctuating fields (i.e. when
taking DNL = 0), turbulence saturation in Tokam1D therefore relies on two mechanisms:
(i) nonlinear transfer of turbulent energy to large scale flows (ZFs) that do not contribute
to transport and (ii) the relaxation of mean profiles - as a result of turbulent fluxes - lead-
ing to a reduction of the turbulence drive (lower gradients, i.e. thermodynamical forces).
The last one is often overlooked since absent from gradient-driven models. We argue
these two mechanisms play a key role close to marginal stability. As a matter of fact,
this regime is likely to be relevant in fusion reactor plasmas. Indeed, given the expected
large volume of reactor devices, they will likely be weakly driven - low power density -
so that the strong efficiency of turbulent transport - as attested by the stiffness of the ex-
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perimental temperature profiles in tokamak plasmas (see e.g. [157]) - should maintain the
gradients close to marginality [72]. RE Waltz, in ref. [158], also hints that the drift waves
(turbulence) to radial (equilibrium) mode coupling "dominates the nonlinear saturation".
Which leads to "two-mode" simulations giving close to correct transport provided that the
turbulence wavenumber is correctly chosen.

The model bears similarity with the quasi-linear approach of turbulent transport. Yet, it departs
from the quasi-linear framework in two ways: no scale separation is a priori assumed in the
radial direction regarding equilibrium and fluctuations quantities, and fluxes are not assumed to
be diffusive in nature. Using the decomposition Equation 3.15, The adiabaticity parameter C is
defined as:

C = σ0k2
∥ (3.16)

It is equivalent to the C1 parameter initially derived by Hasegawa and Wakatani [48].

The variable associated to the density field is defined as N = lnn/n0. In the model, we retain
Neq and Ñ. It should be noted that the interpretation of the equilibrium and fluctuation parts
is quite tricky in this context. Indeed, splitting the density field itself in its equilibrium and
fluctuating components, n = neq + ñ, leads to: Neq = lnneq and Ñ = ln(1+ ñ/neq). One cannot
relate one single Fourier mode (ky,k∥) of ñ to that of Ñ because of the logarithmic function. Note
that the two definitions can be reconciled if one considers ñ/neq ≪ 1. Then, the logarithm can
then be expanded into ñ/neq. An other possibility is to alleviate the Boussinesq approximation.
One would then deal directly with the density field instead of its logarithm.

As will appear in the following, one needs to carefully choose the poloidal ky and parallel
k∥ wavenumber. The first can be estimated using linear analysis, see Section 3.4: we choose
ky for which the growth rate is maximal. It depends slightly on the turbulence parameters and
will be fixed to ky = 0.3 in the next chapter. This corresponds to typical ion-scale turbulence
measured in experiments. The parallel wavenumber is trickier to estimate experimentally. In
ref.[159], an attempt have been made on the torsatron TJ-K. In practice, it can also be estimated
considering a connection length, see Section 3.2.6. In the following, the parallel wavenumber
is only considered as part of the adiabaticity parameter C.

Density equation

The equilibrium density equation is obtained by taking the flux-surface average of Equation 3.12.
The advection term is determined from Equation B.5 derived in Section B.2. Remembering that
any exact differential differential operator on y and / or z vanishes when taking the average, one
is left with,

∂tNeq =−∂xΓturb +D∂
2
x Neq +SN . (3.17)

Where Γturb is reminiscent of the particle flux that results from the advection of density by the
radial electric drift: Γturb ∼ ⟨nvEx⟩. It reads,

Γturb =−2kyℑ(Nkφ
∗
k ) =−2ky|φk||Nk|sin∆ϕk (3.18)
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With ∗ denoting the complex conjugate and ∆ϕk = ϕN
k −ϕ

φ

k the cross-phase between density
and electric potential fluctuations defined as the difference between the phases of the density,
Nk = |Nk|eiϕN

k and of the electric potential. The fluctuation equation is obtained by subtracting
the equilibrium to the global equation,

∂tÑ +{φ ,N}−⟨{φ ,N}⟩= g∂y(φ̃ − Ñ)+σ0∇
2
∥(Ñ − φ̃)+D∇

2
⊥Ñ (3.19)

The Poisson bracket involves both linear and nonlinear terms, it is derived Equation B.7. When
taking the Fourier transform and projecting on the single ky and k∥ wave vectors (cf. Equa-
tion 3.15), the contribution of the nonlinear Poisson bracket then disappears. As already dis-
cussed, this term, which would account for nonlinear couplings between different Fourier modes
in y and z, is responsible for energy transfers along these directions. Ultimately, Nk is governed
by the following equation:

∂tNk =iky(φk∂xNeq −VeqNk)+ igky(φk −Nk)+C(φk −Nk)+D1∇
2
⊥Nk −DNLN2

k N∗
k (3.20)

The terms proportional to g are defined as compressibility terms because they originate from the
divergence of the electric and diamagnetic drifts.

Vorticity equation

The same method is applied to the charge continuity equation in order to obtain the dynamical
equations for the equilibrium and the fluctuations of the vorticity field. Using decomposition
Equation 3.15, the general vorticity takes the form Ω = Ωeq +Ωk exp

[
i
(
kyy+ k∥z

)]
+ cc, with:

Ωeq(x, t) = ∂
2
x (φeq + τNeq) (3.21)

Ωk(x, t) = (∂ 2
x − k2

y)(φk + τNk). (3.22)

The equation governing Ωeq derives from the flux surface average of Equation 3.13. Using
Equation B.6 and integrating once in x leads to,

∂t(Veq + τ∂xNeq) = ∂x⟨∂yφ̃∂x(φ̃ + τÑ)⟩+ν∂
2
x (Veq + τ∂xNeq)

Where we have introduced the equilibrium velocity equal, when normalized, to the opposite of
the normalized equilibrium radial electric field,

Veq ≡ ∂xφeq =−⟨Er⟩ (3.23)

The equation on the mean flow Veq is then derived by subtracting the dynamical equation of
τ∂xNeq, obtained by taking the radial derivative of Equation 3.17. This leads to,

∂tVeq = ∂x⟨∂yφ̃ ∂x(φ̃ + τÑ)⟩− τ∂
2
x ⟨Ñ∂yφ̃⟩+ν∂

2
x Veq +(ν −D)τ∂

3
x Neq − τ∂xSN

In the following, one considers the case D = ν , so that the term proportional to ∂ 3
x Neq vanishes.

The two first terms on the right hand side can be integrated along x and recast in the following
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way:

⟨∂yφ̃ ∂x(φ̃ + τÑ)⟩− τ∂x⟨Ñ∂yφ̃⟩= ⟨∂yφ̃ ∂xφ̃⟩+ τ⟨∂yÑ∂xφ̃⟩= ⟨∂xφ̃ ∂y(φ̃ + τÑ)⟩

where we have used the equivalence ⟨Ñ∂xyφ̃⟩ = −⟨∂yÑ∂xφ̃⟩. The final equation governing the
dynamics of Veq then reads as follows:

∂tVeq =−∂xΠRS +ν∂
2
x Veq −∂xΠneo (3.24)

Here, the additional ∂xΠneo accounts for collisions and neoclassical effects. It is discussed in
the next section. Also, we have precluded any source of poloidal flow, hence discarding the
∂xSN term. This corresponds to assuming that particles are injected into the system without
momentum. Finally, the flux surface average of the (x,y) component of the Reynolds stress
tensor ΠRS is given by:

ΠRS =−⟨∂xφ̃ ∂y(φ̃ + τÑ)⟩

It corresponds to the cross correlation of the fluctuations of the poloidal component of the E×B
velocity and of the radial component of the E ×B and ion diamagnetic velocities: ⟨ṽEy(ṽEx +

ṽ⋆ix)⟩. Using Equation B.6, with single ky and k∥ wave vectors, it reduces to:

ΠRS =−2kyℑ [(φ∗
k + τN∗

k )∂xφk] (3.25)

The fluctuation dynamics is derived by subtracting the equilibrium from Equation 3.13. Simi-
larly to the analysis done for the density continuity equation, the poisson bracket contains both
linear and nonlinear contributions. The latter one, involving products of fluctuating quantities,
disappears in the framework of the present model. Using Equation B.8 leads to,

∂tΩk =− ikyg(1+ τ)Nk − ikyVeqΩk + iky∂x[φk∂x(Veq + τ∂xNeq)] (3.26)

− iky∂xVeq∂x(φk + τNk)+C(φk −Nk)+ν1(∂
2
x − k2

y)Ωk

Accounting for collisions and neoclassical effects on the flow

The equilibrium flow is not only a result of the turbulence induced Reynolds stress. Actually, a
substantial part derives from the radial force balance equation. The equilibrium force balance
flow is considered crucial in the saturation of turbulence at the edge of tokamaks. It results in an
velocity shear important for the turbulence saturation. In particular, it is considered instrumental
to access improved confinement modes such as the H-mode [160, 26]. In this section, we show
how this additional physics can be accounted for in the framework of the model.

First, a friction µ is added to the equilibrium velocity equation so as to account for neoclassi-
cal damping of the flows. Following the work of [161], it can be estimated through neoclassical
assumptions. It reads,

µ(x) =
(q

ε

)2 0.452 fT νi0neq(
1+1.03

√
ν⋆i0neq +0.31ν⋆i0neq

)(
1+0.66ν⋆i0neqε3/2

) (3.27)

With q the safety factor, ε the inverse aspect ratio, fT ≈ 1.46
√

ε the trapped particle fraction.
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Note that once again, the density dependence has been made explicit from the collision fre-
quency. Following Section 3.2.3, the ion collision frequency reads νi = νi0

neq
n0

and the colli-
sionality reads, ν⋆ = ν⋆i0

neq
n0

. Remember that for the adiabaticity parameter, the collisionality
has been chosen constant. To preserve the consistency of the present version of the model, the
friction µ is kept constant whenever C is constant. The above refinement will be considered for
tests and future extensions of the model.

Second, the velocity is forced to relax towards the radial force balance equilibrium, ∂tVeq =

...− µ(Veq −V FB
eq ) as prescribed in [162]. The force balance velocity can be derived from the

radial momentum conservation equation,

nmi

(
∂vx

∂t
+v ·∇∇∇vx

)
=−ne∂xφ −∂x(nTi)+ne(vθ Bϕ − vϕBθ ) (3.28)

with vϕ and vθ the poloidal and toroidal velocities of the plasma ions. In the absence of toroidal
momentum injection, vϕ is assumed small and neglected in the following. At equilibrium, the
poloidal velocity can be written as,

vθ =
1
B

∂xφ + τ
Te

eB
∂xn
n

. (3.29)

The first term on the right hand side is the poloidal component of the E×B velocity. The second
derives from the pressure gradient. It relates to the density gradient for isothermal Tokam1D.
Applying the normalization defined in Table 3.2 it reads,

V FB
eq = vθ − τ∂xN (3.30)

The poloidal velocity is then considered in the neoclassical theory framework [8],

vθ = K(ν⋆,ε)
∇rTi

eB
(3.31)

with K a constant that depends on the collisionality ν⋆ and the inverse aspect ratio ε . Due to the
isothermal assumption of the present model, this term is equal to zero. As a result, the force-
balance velocity only depends on τ and the density gradient: V FB

eq =−τ∂xN. Provided that the
friction µ is large enough, the equilibrium velocity will relax towards V FB

eq .

The effect of V FB
eq on the equilibrium radial electric field profile ⟨Er⟩ is shown in Figure 3.2.

On the left hand side, a test case using (g,C,τ) = (5× 10−4, 10−3, 1) is shown. On the right
hand side, the force balance velocity is added with a constant friction µ = 10−3. In both cases
the system is driven with a source of particles SN = 10−4 starting from an unstable density
profile LN = 80 and constant diffusion coefficients D0,1 = ν0,1 = 10−2.

In both cases, the system develops spatial corrugations in the equilibrium radial electric field
as a result of turbulence-induced Reynolds stress. In Figure 3.2b, the radial electric field re-
mains globally negative due to the contribution from ∂xNeq. Since the density gradient is roughly
constant in the radial direction, there is no significant variation in the force balance Er. Con-
sequently, no strong equilibrium shear is generated, and the impact on the dynamics is limited.
However, as will be shown later, this situation changes when SOL physics is taken into account
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Figure 3.2 – Equilibrium electric field profile averaged over 200 dt. (a) Without force balance
velocity V FB

eq = 0. (b) With force balance. The vertical red dotted line corresponds to a fictive
separatrix location to emphasize the model region of interest. Simulation parameters:

(g,C,τ) = (5×10−4, 10−3, 1), D0,1 = ν0,1 = 10−2, SN = 10−4, µ = 10−3. Initial condition:
LN = 80.

(Figure 3.5).

3.2.6 1d semi-spectral model of core Tokam1D

Building on the previous considerations, the 1d semi-spectral system of equations involves 4
fields: two real fields for the equilibrium components (Eq 3.32, 3.33), and two complex fields
for the fluctuating parts (Eq 3.34, 3.35). Different values for the diffusion and viscosity can be
chosen for the equilibrium (D0,ν0) and for the fluctuations (D1,ν1,DNL,νNL). The nonlinear
saturation terms DNL and νNL have to be chosen after careful comparison with 2D similar mod-
els to infer the necessary level of saturation. They are included for the sake of completeness but
will not be used in the remainder of this work1.

∂tNeq =−∂xΓturb +D0∂
2
x Neq +SN

∂tVeq =−∂xΠRS +ν0∂
2
x Veq −µ(Veq −V FB

eq )

∂tNk = + iky(φk∂xNeq −VeqNk)+ igky(φk −Nk)+C(φk −Nk)

+D1∇
2
⊥Nk −DNL|Nk|2Nk

∂tΩk = − ikyg(1+ τ)Nk − ikyVeqΩk + iky∂x[φk∂x(Veq + τ∂xNeq)]

− iky∂xVeq∂x(φk + τNk)+C(φk −Nk)+ν1∇
2
⊥Ωk −νNL|Ωk|2Ωk

(3.32)

(3.33)

(3.34)

(3.35)

The system of equations includes the logarithm of the density N = lnn/n0, the equilibrium
velocity Veq ≡ ∂xφeq and the fluctuations of the generalized vorticity (Equation 3.22). The
particle flux and Reynolds stress can be found in Equation 3.18 and Equation 3.25 respectively.
The details of the numerical implementation of the model can be found in Section B.1.

The system is controlled through 4 main physical parameters: the magnetic curvature g =

1Note that if the nonlinear saturation is considered, the turbulent flux of particles should also be adjusted.
Specifically, the present Γturb is a lower bound, as the 2D formulation sums over the whole poloidal spectrum.

– 92 –



3.2. Describing the core: Tokam1D-electrostatic

(2ρs)/R, with R the major radius of the tokamak, the adiabatic parameter C = σ0k2
∥, the tem-

perature ratio τ = Ti/Te and the source SN . The Tokam1D system is not well-suited to study
the ion to electron temperature ratio, see Section B.4. It is included for the diamagnetic com-
ponent of the Reynolds stress, but will stay constant at τ = 1 during the analysis. The order
of magnitude of the other two parameters can be estimated from plasma parameters. Typically,
the parallel wavenumber is estimated considering a connection length, Lq = 2πqR, which gives
k∥ = 2π/Lq = 1/(qR). Estimations of the main parameters are given for standard edge values of
WEST, TCV and MAST-U tokamaks Table 3.3. The values are computed considering a major
radius R = 2.5 m and minor radius a = 0.5 m for WEST, (R,a) = (0.87,0.25) m for TCV and
(R,a) = (0.9,0.6) m for MAST-U.

Model parameters Plasma parameters

g ≡ 2ρs
R C ≡ (k∥ρs)

2σ0 nsep [1019] Tsep [eV ] Bsep [T ] q95

Dependencies ∝
T 1/2

e
RB ∝ k2

∥
T 5/2

e
n0B

WEST 2−3×10−4 1−10×10−4 1−2 50−100 3 5.5

TCV 8−12×10−4 1.5−15×10−3 0.5−1 25−50 1.4 3.5

MAST-U 3×10−3 3×10−3 1.5 40 0.43 6

Table 3.3 – Main model parameters and their range for typical values of WEST,
TCV and MAST-U tokamaks. Parameters are computed assuming Te = Tsep,
n0 = nsep and B = Bsep. The parallel wavenumber is computed assuming a

connection length k∥ = 1/(q95R).

It appears from the parameter dependencies that the strong variation of density and temper-
ature profiles at the edge of tokamak plasmas translates into a wide range of g and C values.
Nevertheless, one has to keep in mind that Eq.3.10 assumes a large electron-ion collision fre-
quency as compared to the electron inertial term. Therefore, the model loses its validity if Te
is too large or n too small. It is interesting to note that C decreases if the density increases. It
has implication on the interpretation of the nonlinear simulations: a high density (resp. low C)
leads to a decrease in the zonal flows energy, see Section 4.3.1.

3.2.7 Energetics

In this section is considered the energetics of the model. Partitioning the energy into distinct
channels gives insight into the energy transfer between turbulence, flows and profiles in the
nonlinear regime. Also, it provides a consistency check in order to prevent the appearance of
spurious instabilities. As it should, the model obeys an energy conservation principle, which
states that energy is conserved in the absence of source (particle source SN) and sinks (dissipa-
tive and viscous terms). The details of the derivation are provided in Section B.3.

To derive an energy balance equation, we multiply Eq. 3.12 and Eq. 3.13 by (1+ τ)N and
(φ +τN), respectively. The equations are integrated by parts over the whole domain, leading to
surface terms that need to be considered carefully. We neglect the surface terms hereafter, their
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form can be found in Section B.3. After integrating by parts, and summing the two equations,
the interchange terms, proportional to the g parameter, are found to vanish. Such a cancellation
requires to keep the compressibility term originating from the divergence of the electric drift.
This compressibility term being of same order as the diamagnetic flux, there is no reason to
include divergence of the electric drift and not the divergence of the diamagnetic flux. Therefore,
both terms are kept in the equations. The drift wave terms can be reorganized in the form of a
parallel current j∥ = σn∇∥(N −φ). The conservation of energy then takes the following form,

dEtot

dt
= PE −DE (3.36)

With Etot the total energy, PE the production term and DE the dissipation term.

Etot =
∫

Etot dV =
∫ 1

2

{
(1+ τ)N2 +[∇⊥(φ + τN)]2

}
dV (3.37)

PE = (1+ τ)
∫

NSN dV (3.38)

DE =
∫ j2

∥
σ0

dV +D(1+ τ)
∫
(∇⊥N)2 dV +ν

∫ [
∇

2
⊥(φ + τN)

]2
dV (3.39)

With
∫

dV being the integration on the whole volume (x,y,z). It is shown in Section B.3 that
the advection terms, linked to Poisson brackets, vanish upon integration. The production term
reduces to the source of particles injected in the system. The dissipation terms involve the
parallel plasma resistivity, the dissipation and the viscosity.

The total energy Etot is made of two terms. The second one scales like the kinetic energy
associated to both electric and diamagnetic drifts, while the first one involves both electron and
ion pressures. Notice the somewhat peculiar structure of the latter term, already found in [62],
neither proportional to (1+ τ2)N2 nor to (1+ τ)2N2 as one may have expected. Note that the
final result, ensuring that the first term on the right hand side of Equation 3.39 is positive definite,
requires that the conductivity σ only depends on the radial direction and time. Therefore, if one
chooses to include a non-constant electron-ion collision frequency in the model, it is necessary
to consider a flux-surface averaged quantity.

The energy conservation terms can be decomposed in equilibrium and fluctuating compo-
nents, following the same method used to derive Eqs.3.32 − 3.35. Noticing that linear terms
vanish after the volume integration, the pressure energy turns out to be restricted to:

(1+ τ)N2 → (1+ τ)(N2
eq +2|Nk|2). (3.40)

The factor 2 in front of |Nk|2 comes from the complex conjugate in (Eq.3.15). The kinetic
energy term, associated to the ExB and ion diamagnetic drift velocities, reads:

(∇⊥(φ + τN))2 →
{(

Veq + τ∂xNeq
)2

+2|∂xφk|2 +4τℜ(∂xφk∂xN∗
k )

+2|τ∂xNk|2 +2k2
y
[
|φk|2 + |τNk|2 +2τℜ(φkN∗

k )
]

(3.41)

−2kyℑ
[
φk∂xφ

∗
k + τNk∂xφ

∗
k + τφk∂xN∗

k + τ
2Nk∂xN∗

k
]}
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The total energy can then be organized into different channels: the equilibrium profiles of den-
sity (Eq. 3.42) and velocity (Eq. 3.43) on the one hand, and in between fluctuating components
on the other hand. The latter can be split into electron and ion (terms proportional to τ) com-
ponents but for the sake of simplicity, only a turbulent energy that takes all the fluctuations into
account (Eq. 3.44) is considered. Finally, a term corresponding to the interaction between the
density and the flows is also obtained (Eq. 3.45). Its role is still unclear; it remains small in all
simulations.

ENeq = (1+ τ)N2
eq +

(
τ∂xNeq

)2 (3.42)

EVeq =V 2
eq (3.43)

Eturb = 2(1+ τ)|Nk|2 +2|∂xφk|2 +2|τ∂xNk|2 +4τℜ(∂xφk∂xN∗
k )

+2k2
y
[
|φk|2 + |τNk|2 +2τℜ(φkN∗

k )
]

−2kyℑ
[
(φk∂xφ

∗
k )+ τNk∂xφ

∗
k + τφk∂xN∗

k + τ
2Nk∂xN∗

k
]

(3.44)

ENeq−Veq = 2τVeqNeq (3.45)

The total energy Etot , whose volume integral evolves according to Equation 3.36, can then be
recast as

Etot = ENeq +EVeq +Eturb +ENeq−Veq. (3.46)

It allows one to study the transfer of energy between the density, flows and turbulence. The
dynamics between the flow and turbulence energies typically follows a predator-prey behaviour.
First the energy of turbulence increases, until ZFs are created and pump out energy from turbu-
lence. This well-established behaviour – where ZFs behave as a predator for the turbulence-prey
– has been studied in specific models such as in [163] and in experiments [99]. An example of
this regime is shown in Figure 3.3 for the test case: (g,C,τ) = (5×10−4, 10−3, 1).
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Figure 3.3 – (a) Example of a predator-prey behaviour on turbulent and flow energies. Eturb
and EVeq are averaged over the radial axis and plotted as a function of time. (b) Semi-log
version of (a): exponential growth of the turbulence and flows. Simulation parameters:

(g,C,τ) = (5×10−4, 10−3,1), D0,1 = ν0,1 = 10−2, SN = 10−4, µ = 10−3, no force balance.
Initial condition: LN = 80.
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The presented simulation starts with no fluctuation or flows but with an unstable profile. It
follows that fluctuations (Eturb) grow exponentially from start to T = 7×103 during the linear
phase. After a small delay, turbulence generated flows (EVeq) start to increase as well. Doing
so, they pump out turbulent energy that reaches a maximum at T = 7×103. The prey-like tur-
bulent source for the predator-like ZFs then decreases and flow energy declines subsequently.
This increase-decrease of prey and predator population then leads to quasi-periodic oscillations
throughout the simulation.
Note that for these parameters the turbulent energy is about a two order of magnitude larger than
the flows energy. It will be shown that the ratio between flows and turbulence energies greatly
changes when scanning the (g,C) parameters of the model: some domains in the parameter
space are characterized by larger flows to turbulence energy ratio.

3.3 From close to open field lines - describing the SOL
In this section, the model is extended from the core to the Scrape-off layer (SOL hereafter). First,
because it enables the core-turbulence to interact with the SOL-turbulence. For example, one
can expect SOL conditions to influence the core, or the core turbulence to spread into the SOL.
Second, nonlinear dynamics and transport are largely dependent on conditions at the last-closed
flux-surface (LCFS) [60, 164, 122]. In particular, the equilibrium radial electric field ⟨Er⟩ is
expected to change sign when crossing the LCFS. It results in a velocity shear important for the
turbulence saturation. It is considered instrumental to access – or at least to sustain – improved
confinement modes such as the H-mode [160, 26]. Therefore, the separatrix region should be
incorporated into the model itself, rather than treated as an imposed boundary condition.

The goal here is not to describe in details the dynamics of the scrape-off-layer nor the transi-
tion from close to open field lines, but to include some relevant effects such that the boundary
condition of the Tokam1D model is outside the separatrix. That way, the inversion of Er is in-
cluded and the role of equilibrium shear together with the shear induced by ZFs can be studied.
The underlying idea is to couple two models, one for the core and one for the SOL. Then, a
mask in a form of a hyperbolic tangent is used to transition from one to the other. As will be
shown, the SOL model is very close to the model previously derived in the core. The differences
are mainly twofold:

• The system of equations is closed using the Debye sheath condition instead of the Ohm’s
law.

• The parallel dynamics depends on the parallel connection length instead of the parallel
wavenumber: ∇∥ = ik∥

SOL−−→ ∇∥ = 1/L∥.

This results in a different estimation of the adiabatic coefficient and in slight modifications of
the equations. Those will lead to linear and nonlinear differences for the two regions. First,
the physics retained for the SOL region is described. Then, its implementation into the code is
detailed.

3.3.1 Tokam1D-ES SOL

The density and vorticity equations of Tokam1D, Equation 3.4 and Equation 3.6, are similar in
the SOL. However, one needs to estimate the parallel current in order to close the system of
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equations. A number of assumptions are necessary to complete the derivation. More details can
be found in the introduction of the SOL region, in Section 1.2.3.

• Sheath-limited regime: the physics of the SOL is governed by the plasma wall interac-
tion and parallel gradients in the quasi-neutral plasma – away from the Debye sheath –
assumed to be small.

• We consider the limit of a vanishing width of the Debye sheath. Of the order of a few
Debye length, it is indeed very small as compared to the parallel connection length.

• Density at the entry of the sheath is equal to half the density at the stagnation point.

The first assumption implies that the electric potential in the pre-sheath is very close to the
potential at the sheath entrance. Since we consider a grounded wall, one has φsol ≈ Λ. This
stands in contrast to the conduction-limited regime where the transport is dominated by colli-
sional processes rather than by direct interaction with the sheath. Typically one can consider
the sheath-limited regime at low collisionality, with a low amount of neutrals. Since it is not
the objective to describe plasma-neutral interactions we stay in the easiest configuration. Also,
the physics of the sheath itself would require a kinetic treatment of the plasma species, out of
the scope of the present Tokam1D model. Therefore, even though the physics is determined
by the parameter at the sheath entrance, we consider the sheath width to be approximately zero.
Finally, we consider the density at the entrance of the sheath to be equal to half the density at
the stagnation point [12]. Note that this does not have strong implication on the physics and
only enters through the free parameter Csol , Equation 3.54, as a 1/2 factor.

To estimate the parallel current, we make use of the derivation performed in Section 1.2.3.
The equilibrium electron flux is given Equation 1.17, at the sheath entrance it is equal to the
equilibrium ion flux Equation 1.14. It is recalled here:

⟨Γsh
e ⟩eq = ⟨Γsh

i ⟩eq = nsh
e

√
T sh

e
2πme

exp
(

e∆φsh

T sh
e

)
(3.47)

On the basis of previous models [78, 165], since the system at hand is turbulent, we allow
heuristically the electron flux to move slightly around its equilibrium. This is done in the form
of,

Γ
sh
e = ⟨Γsh

e ⟩eq exp(e(Λ−φ)/Te) (3.48)

Such a formulation ensures that, when the electric potential φ is equal to Λ, the parallel fluxes of
electrons and ions falling on the wall are equal, consistent with the assumption that the wall is
grounded. However, Equation 3.48 allows the potential to deviate from Λ, which relates to the
fact that local current loops can develop transiently in the wall. It is important to note that the
system is expected to remain close to its steady state, so that |Λ−φ | ≪ 1, the reason being that
these fluctuations around Λ are strongly stabilized. If φ >Λ: the electron flux at sheath entrance
is larger than the equilibrium. The sheath electric field is then larger than the equilibrium and
more electrons are being repelled (vc increases, Equation 1.15). Consequently, the electron
flux decreases towards equilibrium. From this and approximating the ion and electron parallel
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current in the pre-sheath to their values at the sheath entrance, we write:

j∥i ≈ jsat (3.49)

j∥e ≈− jsat exp
(

e(Λ−φ)

Te

)
. (3.50)

With jsat = en
2cs, the ion saturation current. When both currents add up, one gets the parallel

current at the entry of the sheath,

jsheath
∥ = jsat

(
1− exp

(
e(Λ−φ)

Te

))
(3.51)

The parallel gradient is approximated using the parallel connection length L∥ = πqR. Therefore,
the parallel velocity term of Equation 3.4 reads,

∇∥(nv∥e) =−1
e

∇∥ j∥e =
ncs

2L∥
exp

(
e(Λ−φ)

Te

)
(3.52)

Using the normalizations from Table 3.2 and with Λ̂ = (eΛ)/Te one gets,

−1
e

∇̂∥ ĵ∥e =
ρs

2L∥
n̂exp(Λ̂− φ̂)≈ ρs

2L∥
n̂(1+ Λ̂− φ̂) (3.53)

Where the exponential has been developed, thus assuming Λ̂− φ̂ small, consistently with the dis-
cussion above. Hereafter, the hats are removed for clarity and each quantity must be understood
as normalized. One defines the SOL conductivity parameter as,

Csol =
ρs

2L∥
(3.54)

The SOL conductivity parameter plays a similar role as the adiabaticity parameter in the core.
Note that Csol shares the plasma parameter dependencies of the interchange dimensionless pa-
rameter g but is expected to be smaller: Csol = ρs/2L∥ = gR/(4L∥)≈ g/4πq. With the closure
and the definition of the gradient, one can rewrite the system of equations (3.12, 3.13) as,

∂tN +{φ ,N}= g∂y(φ −N)−Csol(1+Λ−φ)+Dsol∇
2
⊥N

∂tΩ+∇⊥,i
{

φ ,∇⊥,i(φ + τN)
}
=−(1+ τ)g∂yN −Csol(Λ−φ)+νsol∇

2
⊥Ω

(3.55)

(3.56)

The model is then further reduced from three to one dimension applying the same method as in
Section 3.2.5. The steps in the calculations are identical and will not be detailed at the exception
of the SOL specific components.

3.3.2 Reduction from 3d to 1d

The SOL model is further reduced from 3 to 1 dimensions applying the same method as in
Section 3.2.5. The right hand side of Eq. (3.55, 3.56) is the same as the core version at the
exception of terms related to the parallel current. Therefore the derivation details are given only
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for terms related to Csol . The equilibrium of Equation 3.55 and Equation 3.56 reads respectively,

∂tNeq = RHSNeq −Csol
(
1+Λ−φeq

)
(3.57)

∂tΩeq = RHSΩeq −Csol
(
Λ−φeq

)
(3.58)

With RHSNeq the right hand side of Equation 3.17. Similarly, RHSΩeq corresponds to the right
hand side of the core equilibrium vorticity equation. The fluctuating parts read,

∂tÑ = RHSÑ +Csol φ̃ (3.59)

∂tΩ̃ = RHS
Ω̃
+Csol φ̃ (3.60)

Here, RHSÑ and RHS
Ω̃

relate to the right hand side of Equation 3.19 and Equation 3.26, at the
exception of terms related to C that are written explicitly in the above expressions.

The difference between the above equations and the core version is first that the divertor acts
as a sink of particles. It corresponds to the Csol term for the density equilibrium Equation 3.57
which is new. Note that this term should always be negative (hence act as a sink: the wall is
a perfect charge absorber in the model) because φeq should remain close to Λ. Indeed, Equa-
tion 3.58 enforces φeq =Λ in the limit of Csol →+∞. In any case, this property can be diagnosed
when post-processing the simulation data. Second, the parallel current terms in the fluctuation
equations now only relate to the electric potential fluctuations instead of being the difference
with density fluctuations. It will appear later on during the linear analysis that this leads to the
stabilisation of the drift wave instability in the SOL region.

The equilibrium vorticity equation is further integrated resulting in the equilibrium velocity
equation,

∂tVeq = RHSVeq −Csol

[∫ xmax

xsep

(Λ−φeq)dx′+ τ(Veq −∂xΛ)

]
(3.61)

The two terms on the right-hand side have a similar role: they ensure that both the equilibrium
potential and velocity tend towards Λ and its derivative respectively. The integration should
be performed only in the SOL region from xsep the separatrix to xmax the boundary. The outer
radial boundary condition on φeq should be adapted accordingly and set to Λ(xmax).

3.3.3 Treatment of the mask and Λ

The mask Msol is chosen in the form of an hyperbolic tangent that varies from 0 to 1. Defining
ρsep = xsep/Lx the separatrix location and ρ = x/Lx the normalized radius, it reads,

Msol(x) =
1
2

(
1+ tanh

ρ −ρsep

∆ρM

)
(3.62)

One can control the stiffness of the transition with the parameter ∆ρM . The separatrix location,
ρsep, is a free input parameter between 0 and 1 such that it corresponds to the middle of the
transition mask.

Λ depends on the electron temperature in the radial direction. In Tokam1D-ES, the isothermal
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condition would impose a constant Λ and the electric field would not be positive in the SOL.
So as to have a non-zero radial electric field in the SOL without alleviating the isothermal
condition, the choice is made to impose an exponential decrease of Λ towards the wall. That
corresponds to an imposed radial profile of Te inside the SOL. In this framework, the radial
electric field in the SOL tends towards a positive value Ex,SOL = −∂xφeq → −dΛ/dx > 0, as
expected. Conversely, in the confined region x < xsep, the radial force balance tends to force Ex
to be negative to balance the radial pressure gradient. In the code, Λ is defined as follows,

Λ(ρ) = Λ0 (1−Msol)+Λ0 exp
(
−

ρ −ρsep

Λq

)
Msol (3.63)

Λq corresponds to the steepness of the exponential decay of Λ, the smaller it is, the larger the
radial electric field will be. Since the equilibrium velocity depends on the radial derivative of
Λ, it is important to ensure that Λ stays C1 in the transition between the two regions. This is
done using the SOL mask, that smooths the transition from the constant Λ0 in the core to the
decreasing Λ in the SOL. If Λq is very small, the exponential decrease can be very steep. As a
result, there can be a small overshoot of Λ close to ρsep. To avoid this problem, we slightly slide
the SOL mask for Λ such that the transition does not occur at ρsep but at ρsep + 2∆ρM . This
small adjustment ensures that there is no overshoot for reasonable values of Λq.

The mask and Λ are shown in Figure 3.4 for the test case. For this example, the separatrix is
located at ρ = 0.7, LM = δ = 0.05. Λ0 = 3 and decreases with Λq = 0.3. The corresponding
radial electric field is shown in Figure 3.5.
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Figure 3.4 – Mask and Λ designed to transition from core to scrape-off layer in Tokam1D.

3.3.4 Semi-spectral formulation of Tokam1D-ES with SOL

Making use of the last developments, one can write the full system of equations for Tokam1D-
ES encompassing both the core and the SOL. All in all, the equations are similar for both
domains at the exception of terms related to C and Csol that depend on the SOL transition mask
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Msol .

∂tNeq =−∂xΓturb −MsolCsol|1+Λ−φeq|+D0∂
2
x Neq +SN

∂tVeq = −∂xΠRS +ν0∂
2
x Veq −MsolCsol

[∫ xmax

xsep

|Λ−φeq|dx′+ τ(Veq −∂xΛ)

]
− (1−Msol)µ(Veq −V FB

eq )

∂tNk = + iky(φk∂xNeq −VeqNk)+ igky(φk −Nk)+MsolCsolφk

+(1−Msol)C(φk −Nk)+D1∇
2
⊥Nk −DNLN2

k N∗
k

∂tΩk = − ikyg(1+ τ)Nk − ikyVeqΩk + iky∂x[φk∂x(Veq + τ∂xNeq)]

− iky∂xVeq∂x(φk + τNk)+MsolCsolφk

+(1−Msol)C(φk −Nk)+ν1(∂
2
x − k2

y)Ωk

(3.64)

(3.65)

(3.66)

(3.67)

The system of equations includes the logarithm of the density N = lnn/n0, the equilibrium
velocity Veq ≡ ∂xφeq and the fluctuations of the generalized vorticity (Equation 3.22). The
particle flux and Reynolds stress can be found in Equation 3.18 and Equation 3.25 respectively.

Using this model on the test case, the equilibrium radial electric field is shown in Figure 3.5.
It can be compared to the case without SOL but with force balance velocity presented in Fig-
ure 3.2b and without force balance velocity (Figure 3.2a). The simulation parameters are the
same, with (g,C,τ) = (5×10−4, 10−3, 1) for the core and Csol = 10−4 for the SOL.
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Figure 3.5 – Equilibrium electric field profile averaged over 200 dt with force balance velocity
and SOL physics. The vertical red dotted line corresponds to the separatrix location.

Simulation parameters: (g,C,τ,Csol) = (5×10−4, 10−3, 1, 10−4), D0,1 = ν0,1 = 10−2,
SN = 10−4, µ = 10−3, no force balance. Initial condition: LN = 80.

As expected, one observes that the radial electric field (⟨Er⟩ ∼ −Veq) changes sign close to the
separatrix region. It is globally negative in the confined region as a result of the force balance
velocity and becomes positive in the scrape-off layer as a consequence of the Λ radial depen-
dence. The maximum of the radial electric field is located somewhere inside the SOL but its
exact location depends on turbulence and equilibrium force balance effect.
Corrugations in the core are caused by the turbulence generated ZFs. Conversely, no such strong
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corrugations are observed in the SOL region. In the simulations performed so far, it appeared
difficult to destabilize the SOL region. Instead, the turbulence is found to spread from the core
into the SOL and to vanish. A first explanation could be that CDW are linearly stable in this
region (see Section 3.4.4). It is also possible that the instability threshold for the above set of
parameter is above the typical gradient involved in the SOL region.

3.4 Tokam1D-ES linear analysis
The linear analysis serves three main purposes. First, it is used to identify the linear instabilities
present in the model. The key parameters governing the instabilities can be identified. Second, it
serves as a validation step for the numerical model by checking the agreement between the code
and the linear analysis in the linear phase of the fluctuations exponential growth. Third, it guides
the nonlinear analysis. Some linear properties, such as the linear cross phase between physical
quantities, can be retrieved in the turbulent regime [166]. Also, tokamak plasma turbulence is
often considered near-marginal and weakly forced. If follows that, one can often approximate
parts of the dynamics with quasi-linear effects [118].

The section is separated in four parts. In the first part the linear analysis of the Tokam1D-ES
core model is derived. The second part focuses on the code validation. We will show that the
numerical simulation indeed follows the linear prediction during the mode exponential growth
part before reaching nonlinear saturation. In the third part the parameter domains of instability
existence are studied. The compressibility terms are shown to stabilize the interchange insta-
bility at large scales. Finally, the last part takes into account the physics of the SOL. With the
assumptions chosen for Tokam1D-ES SOL, the drift waves instability is shown absent in this
region.
Additionally, the effect of the ion to electron temperature ratios τ is studied in Section B.4.
It is shown that having a single poloidal mode is detrimental to the study of this τ parameter.
Therefore, we set τ = 1 in the rest of the thesis.

As an introduction, let us first explain what a linear stability analysis is:

1. We start from a steady-state equilibrium of the system which is then disturbed by infinites-
imal perturbations of small amplitude ε ≪ 1.

2. In this framework, non-linear terms – quadratic in the present case – can be neglected.
The system becomes linear.

3. With a scale separation between large equilibrium and small fluctuations scales, we project
the fluctuations on the Fourier space. Each mode then becomes an eigenmode of the linear
system.

4. Studying the eigenmodes growth characterizes the instabilities: growth rate, real fre-
quency, instability threshold, cross-phase.

By analysing small disturbances to the equilibrium, two interesting cases can occur. First, if
the disturbances decay over time, the system comes back to its original equilibrium state and is
considered linearly stable. Second, if the disturbances grow over time, the system is considered
linearly unstable. In this latter case, disturbances will grow exponentially in time up to a point
where they will become large enough so that nonlinear effects will not be negligible anymore. If
a broad spectrum of unstable modes exist and couple nonlinearly to each other, the system may

– 102 –



3.4. Tokam1D-ES linear analysis

then transition to turbulence. In that case, the linear analysis gives information on the growth
rate before reaching saturation. By scanning the equilibrium parameters, one can identify those
cases where the system is unstable, thus defining a linear threshold.

To perform a linear analysis of a dynamical system, it is required to write the equations gov-
erning the time evolution of the fluctuations. These are given by Eqs. (3.34-3.35) for Tokam1D.
In this case, the linearization step is trivial since we have already discarded mode-mode cou-
pling terms in the model. The only nonlinear terms that remain - and that are neglected in the
linear analysis - are the ones proportional to DNL and νNL. The dynamics of the linearized sys-
tem is described by the eigenmodes of the linear system. In other words, we consider solutions
in the form of plane waves (or Fourier modes). Calculations are performed in Fourier space,
taking

(Nk,φk) = (N̂k, φ̂k)exp[i(kxx−ωt)]. (3.68)

Those solutions are then injected in the system of equations that can be solved numerically. The
solutions of the dispersion relation are given in the form of complex frequencies ω that depend
on wave-numbers and equilibrium quantities. The imaginary part of the frequency determines
the growth (or damping) rate, while the real part gives the wave frequency. The cross-phase
between density and electric potential fluctuations is determined by calculating the phase of the
complex response function of Nk/φk.

3.4.1 Derivation of the linear analysis

The linear properties of the Tokam1D-ES core system are obtained by solving Eqs. (3.34-3.35)
at prescribed steady state equilibrium fields. In the following, the analysis is restricted to the
case ∂ 3

x Neq = 0. This amounts to considering that the equilibrium profile is sufficiently smooth
so that high order derivatives can be neglected. The velocity terms, Veq, V ′

eq and V ′′
eq are kept

in order to study the possible roles of flow shear and Kelvin-Helmholtz instability in the linear
regime, with the prime denoting the derivative along x. The electron diamagnetic frequency is
introduced ω⋆e =−kyN′

eq for simplicity. The equilibrium velocity only leads to a Doppler shift
on the frequency, therefore we solve for ω = ω − kyVeq. The determinant then reads

D(k,ω) =
∣∣∣∣ ω+A B
ωk2

⊥τ +C ωk2
⊥+D

∣∣∣∣ (3.69)

With the following notations:

A =−gky + i
(
C+ k2

⊥D1
)

(3.70)

B =−ω⋆e +gky − iC (3.71)

C = (1+ τ)gky + i
(
−C+ kykxτV ′

eq +ν1τk4
⊥
)

(3.72)

D =−kyV ′′
eq + i

(
C− kykxτN′′

eq +ν1k4
⊥
)

(3.73)
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The non trivial solutions providing the linear growth rate and frequency are given by the disper-
sion relation D(k,ω) = 0. This leads to the corresponding polynomial equation,

ω
2 +ω

(
D

k2
⊥
+A − τB

)
+

A D −C B

k2
⊥

= 0 (3.74)

The linear phase shift between density and electric potential fluctuations corresponds to the
phase of the complex response function F(k,ω) = Nk/φk:

F(k,ω) =
∣∣∣∣Nk

φk

∣∣∣∣ei(ϕN
k −ϕ

φ

k ) =
−B

ω+A
=

ω⋆e −gky + iC
ω−gky + i

(
C+ k2

⊥D1
) . (3.75)

The turbulent particle flux scales like the sine of the cross phase ∆ϕk. Its linear expression is
given by

sin(∆ϕk) = sin(ϕN
k −ϕ

φ

k ) =
ℑ(F(k,ω))
|F(k,ω)|

(3.76)

With the determinant and linear cross phase equation, one can study the growth rate, frequency
and phase as a function of equilibrium parameters. In particular, we are interested in the role of
g, C and τ , as those parameters control the instabilities at play.

3.4.2 Validation of the numerical model using linear analysis

The simulation is initialized with a bath of modes. If some of them are unstable, they will grow
linearly and the system might reach turbulence. We expect the system to follow linear prediction
in the early stage of the simulation. An example of the growth of different modes is shown in
Figure 3.6 for a test simulation. In this case, we launched the mode ky = 0.3 and kx = 2π m/Lx,
with m = 10 and Lx the radial size of the simulation, in a gradient driven configuration to
measure its evolution in time and compare with the analytically predicted growth rate. Note
that due to the boundary conditions, m = 10 has no reason to be an eigenmode of the system.
Therefore, there is a leakage towards the other modes, such that they do not start from noise
level. As an example, we also display modes m = 1 and m = 5. In any case, the launched mode
m = 10 is 2 orders of magnitude above the others, which is enough to study its evolution during
the linear growth part.
The first part, shaded in green, corresponds to the linear growth of the modes. The logarithmic
slope of the modes gives their growth rate. At a certain point, the modes become large enough
so that nonlinear interactions cannot be neglected anymore. This saturated regime corresponds
to the onset of turbulence. In the case of Tokam1D, there is no interaction between the different
modes. Therefore, the saturation is obtained when the modes interact with the equilibrium. In
the case of a gradient driven simulation, the equilibrium density profile is imposed constant
but the equilibrium velocity can be generated through the action of the Reynolds stress. This
equilibrium velocity is crucial to have a transfer of energy between modes of different kx in the
absence of a turbulence cascade.

The linear analysis verification consists in launching several simulations at different mode
numbers m. The linear growth rate is compared to the simulation growth rate of the density
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Figure 3.6 – Mode linear growth at the early stage of a test simulation.

fluctuations Nk at the same kx. The simulation frequency is obtained by performing the time
Fourier transform of the density fluctuations. Finally, the sinus of the cross phase sin∆ϕ =

ℑ(Nk/φk)/|Nk/φk| is computed in the simulation and compared to its linear prediction. The
three linear attributes are verified for a test simulation and shown in Figure 3.7. The choice is
made to use values that can be quite extreme for the code, in order to check its validity.
For the simulations tested, the agreement between the linear analysis and simulation in the linear
regime is very good with relative errors of the order of 0.1 %. One might notice that simulation
frequencies at larger kx are not plotted in Figure 3.7b. In these ranges, ωlin becomes very small.
Consequently, one needs a long time window to perform the Fourier analysis. Ultimately, the
mode period might exceed the length of the linear part of the simulation and the frequency
cannot be estimated. We do not investigate these modes further at this point, considering that
the two other plots provide enough comparison.

3.4.3 Core Tokam1D-ES: competition between CDW and interchange
instabilities

The model contains two intrinsic instabilities. In this section we first perform the linear analysis
of each instability separately. Then, we study the coupled system. Finally, we highlight the
role of the compressibility terms. It will appear that the linear behaviour of the system is not a
simple linear combination of the two instabilities. Instead, the two instabilities are coupled and
their interaction can lead to stabilization or destabilization of the whole system.

Specific cases: interchange or CDW only

Setting τ =C = 0 eliminates the drift instability, leaving only the interchange. Consider V ′
eq =

V ′′
eq = N′′

eq = 0 and no dissipation D1 = ν1 = 0 for simplicity. We make explicit the compress-
ibility terms originating from the divergence of the electric velocity and of the diamagnetic
flux in the particle balance equation (Equation 3.4). Those terms involve the magnetic curva-
ture through the term: g∂y(φ −N). To distinguish them from the other terms, the interchange
parameters originating from the diamagnetic flux and the electric velocity are written g⋆ and
gE , respectively. They should both be understood as equal to g as they come from the same
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Figure 3.7 – Linear analysis verification of a test simulation. (a) Growth rate γlin. (b)
Frequency ωlin. (c) Sinus of the cross phase sin∆ϕ . The gradient driven simulations are

performed using a constant density gradient 1/LN = 50 and vanishing velocity Veq = 0. Other
parameters are set to D0,1 = ν0,1 = 10−2, Lx = 100, C = 3×10−2, g = 10−2 and τ = 10.

magnetic field inhomogeneity.

With the above assumptions, the dispersion relation, Equation 3.74, reduces to,

ω
2 −ωg⋆ky −

gky

k2
⊥
[gEky −ω⋆e] = 0. (3.77)

The instability develops above the following critical density gradient that defines the linear
threshold:

−N′crit
eq = gE

[
1+

g2
⋆k2

⊥
4ggE

]
, (3.78)

A few remark can be made at this point. First, the instability disappears if −N′
eq changes signs.

In Section 2.2, we sketched how the interchange instability was occurring only when the mag-
netic field and the pressure gradients were of the same sign. This is recovered here in the
Tokam1D model. Second, the largest scales (small k⊥) are found to be the most unstable since
they have the lowest threshold (lowest critical gradient). Third, the compressibility terms in-
crease the instability linear threshold. The threshold disappears if one removes compressibility
by setting gE = g⋆ = 0. The stabilization by compressibility will be further discussed in Sec-

– 106 –



3.4. Tokam1D-ES linear analysis

tion 3.4.3. Finally, note that when we neglect compressibility, the solution reads,

ω = i
(

gkyω⋆e

k2
⊥

)1/2

(3.79)

The instability is maximal for low radial wavenumber kx. It increases with g and the density
gradient. Note also that the real frequency is equal to zero: ℜ(ω) = 0. As mentioned in Sec-
tion 2.2, the interchange instability phase velocity is neither of the ion nor electron diamagnetic
frequency sign.

Then, let us consider the purely drift instability case, with finite C and τ but with g = 0,
assuming the same simplifications. The dispersion relation then reads as follows:

ω
2 +ω

[
iC(1+ τ + k−2

⊥ )+ τω⋆e
]
− i

ω⋆eC
k2
⊥

= 0. (3.80)

In the cold ion limit, τ = 0, one is left with the Hasegawa-Wakatani system [167], for which
two limits can be distinguished. The case C → 0 corresponds to the hydrodynamic, highly
collisional, regime while C → +∞, corresponds to the adiabatic regime. Keeping only the
leading order terms, the solution in the hydrodynamic case reads

ω± ≈±1+ i√
2

(
Cω⋆e

k2
⊥

)1/2

. (3.81)

Thus one recovers the resistive drift instability, mostly unstable at large radial scales (kx ≈ 0),
with the instability growth rate increasing with both the density gradient and the adiabaticity
parameter. It exhibits no threshold in the absence of dissipation coefficients, and the instability
develops whatever the sign of the density gradient. In the asymptotic limit C −→ +∞, the
system reduces to the Hasegawa-Mima equation and one is left with stable drift waves,

ω+ =
ω⋆e

1+ k2
⊥
, (3.82)

where ω+ corresponds to the drift waves frequency as given in [49]. The system is stable and
oscillates at the drift frequency. CDW instability then appears to be stable at both small and
large C.

Also, the two cases of separated instabilities (C = 0 and g= 0) can be distinguished from their
linear cross phase. On the one hand interchange displays a much larger sine of the cross phase,
typically close to ∆ϕk ≈ π/2. This is verified taking C = 0 and neglecting the compressibility
terms in both Eq.3.77 and Eq.3.75. One is left with,

F(k,ω) =
ω

ω⋆e

with, ω = i
(

gkyω⋆e

k2
⊥

)1/2

The phase relation is purely imaginary and the corresponding cross phase reads sin∆ϕk =−1.
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On the other hand, the drift waves instability exhibits a lower cross-phase which decreases as
C increases. At C −→ +∞, the adiabatic regime forces Nk ∼ φk. It leads to a vanishing phase
shift sin∆ϕ = 0 implying a vanishing quasi-linear transport. Taking the limit at large C one
can replace ω with the drift waves solution in Eq.3.75. This leads to ℑF(k,ω) = 0 and thus
sin∆ϕk = 0. At low C using Eq.3.81, the phase relation at leading order reads,

F(k,ω)≈−(1+ i)
(

C
2k2

⊥ω⋆e

)1/2

(3.83)

which implies sin∆ϕk =−1/
√

2.

General case: coupling CDW and interchange instabilities

Both CDW and interchange instabilities are expected to coexist in the edge of tokamak plasmas
[50]. Understanding their coupling is therefore essential. Drift waves are linearly stable at
both small and large C. We show here that the interchange instability does not take over in
the high C regime: it is also stabilized as the adiabaticity parameter is increased. Note that the
linear analysis can be solved for the 2d system by scanning both kx and ky and for the specific
Tokam1D case by fixing ky = 0.3.
In the following, the dispersion relation is solved for different cases with fixed equilibrium
parameters. Whenever used, the density gradient is fixed to −N′

eq = ρs/LN = 1/100, LN being
the gradient length. The diffusion parameters are set to D1 = ν1 = 10−2. The size of the radial
domain is Lx = 400 (this constrains min(kx)).

The growth rate is plotted as a function of kx and ky for C = 10−3 and g = 2 × 10−3 in
Figure 3.8a. The white contour corresponds to the linear threshold γ(kx,ky) = 0 with these
parameters. The white crosses note the position of the maxima for positive and negative poloidal
wavenumbers. In Figure 3.8b, the effect of C and g on the growth rate is explored. Here, the
wavenumbers are fixed: (kx,ky) = (0.06,0.3). Three cases are shown: a CDW only case with
g = 0, an interchange only with C = 0 and a case ’both’ with g =C.
In Figure 3.8a, the growth rate is maximum for the largest radial scale, kx = 2π/Lx, and finite
poloidal scale ky ∼ 0.35. Note that in practice the solution kx = 0, although given by the linear
analysis, would corresponds to a constant fluctuation along x direction which is imposed to zero
by the Dirichlet boundary condition on both boundaries. The growth rate displays a symmetric
pattern for positive and negative poloidal and radial wavenumbers. Also, it decays like −k2

⊥ due
to small scale dissipation governed by the D and ν coefficients. In Figure 3.8b, the growth rate
of the (kx = 2π/400,ky = 0.3) mode is plotted as a function of g and C parameters. The case
interchange only leads to a larger growth rate, with γ increasing rapidly with g. It is abruptly
stabilized at g = 10−2 due to compressibility terms. CDW are found to be stable, as expected,
in both small and large C limits. For the chosen equilibrium parameters, the CDW only case
(g = 0) exhibits a smaller growth rate as compared to interchange. When both instabilities are
taken into account, the growth rate stays relatively small. CDW then proves to have a stabilizing
effect on the interchange instability when C = g with the growth rate being barely above the pure
drift wave case.

A more thorough analysis is provided by studying the full parameter space (C,g) while scan-
ning the values of kx and ky. The radial and poloidal wavenumbers of interest here are those that
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Figure 3.8 – (a) Growth rate without equilibrium flows as a function of kx and ky for
g = 2×10−3, C = 10−3. White crosses correspond to maxima in positive and negative ky.
White contour denotes the threshold γ(kx,ky) = 0. (b) Growth rate for the case drift waves

(CDW) g = 0, interchange (inter) C = 0 and coupled CDW-inter C = g, as a function of C and
g for kx = 2π/400 and ky = 0.3. Both figures are computed considering: 1/LN = 1/100,

D1 = ν1 = 10−2 and Veq =V ′
eq = N′′

eq = 0

maximize the growth rate. The result is shown in Figure 3.9 as a function of C and g. The black
contour corresponds to the threshold γ(g,C) = 0. This figure displays the growth rate γ , the fre-
quency ω , the absolute value of the sine of the cross phase |sin∆ϕ| and ky corresponding to the
maximum growth rate. The radial wavenumber that maximizes γ is always equal to kx = 2π/Lx.

The growth rate governed by the two coupled instabilities, in Figure 3.9a, is maximal at large g
and small C: the interchange instability alone leads to a larger growth rate. The drift C param-
eter acts as a stabilization to the interchange instability. At large g, the growth rate is always
negative whatever the value of C. This is due to the compressibility terms as stated in the previ-
ous section.
The frequency, is positive (electron direction) for large values of C until g = 4×10−3. As stated
in Section 2.2, the collisional drift wave instability arises due to a phase shift between the den-
sity and electric potential fluctuations that is governed by the parallel dynamics of the electrons.
As such, we expect the CDW instability phase velocity to be in the electron direction. Con-
versely, the interchange instability arises due to the charge separation of electrons and ions in
the vertical motion. There is no well defined sign of the linear frequency. This is demonstrated
analytically for the case without compressibility in Equation 3.79. Here, the parts at small C
and large g are understood to be dominated by the interchange, with ω that can be positive
or negative. In agreement with the analytical developments, the sign reversal disappears when
compressibility terms are neglected.
In Figure 3.9c, the sine of the cross-phase is maximal for interchange dominated cases, at large g
for a fixed C, consistently with the analytical developments performed in Section 3.4.3. Indeed,
the case interchange only is expected to yield sin∆ϕ =−1 when the compressibility terms are
neglected. In the case of Figure 3.9c, the compressibility terms do not seem to change this be-
havior. The cross-phase decreases with C at fixed g. That is also expected from the asymptotic
analysis performed earlier. The growth rate is negative at high C whatever the value of g. In
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Figure 3.9 – Linear analysis of the system without equilibrium flows as a function of C and g
for a fixed density gradient. (a) Growth rate γ . (b) Frequency ω (c) Sine of the cross-phase

between density and electric potential fluctuations. (c) Poloidal wavenumber ky corresponding
to the maximum growth rate. The radial and poloidal wavenumbers (kx,ky) are chosen such

that the growth rate is maximal. Other parameters: 1/LN = 1/100, D1 = ν1 = 10−2 and
Veq =V ′

eq = N′′
eq = 0

other word, drift waves dominate at large C while interchange takes over at low C. Finally, the
most unstable poloidal wavenumber varies from 0.15 to 0.4 in the studied parameter domain.
The variation remains marginal considering g and C are changed over two decades each.

Remember that Tokam1D considers a constant and unique poloidal wavenumber ky (ky =

0.3 in the simulations). In turn, this can lead to spurious effects such as the stabilisation of
interchange instability at very large gradients (the instability shifts towards higher values of ky
as the gradient increases). For physics-relevant parameters the stabilization does not occur as
the density profile stays close to the instability threshold. Moreover, the density starts from
a flat profile and slowly builds up with the source. Therefore, there is little chance that the
profile suddenly stiffens to reach stabilisation. Also, we note that taking a single ky leads to a
stabilisation of the interchange instability at very low values of C and g, C < 10−7 and g < 10−5,
which is out of the scanned parameter space. Other than these specific cases, we expect the
role of ky to be marginal on the linear results, and no strong qualitative changes have been
observed. A possible upgrade of the reduced Tokam1D would consist in considering a non
constant poloidal wave vector ky, that would depend on the equilibrium gradients. Such a
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refinement has not been retained in the present study.

Finally, the critical equilibrium density gradient threshold is analysed as a function of C and
g. The result is displayed in Figure 3.10.
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Figure 3.10 – Linear instability threshold as a function of C and g. The radial and poloidal
wavenumbers (kx,ky) are chosen such that the growth rate is maximal. Other parameters:

1/LN = 1/100, D1 = ν1 = 10−2 and Veq =V ′
eq = N′′

eq = 0.

The instability threshold follows the same trend as the growth rate: it increases at large C due
to the stabilisation of the instabilities and at large g due to compressibility terms.

Compressibility terms stabilize the interchange instability

Taking the same case as in Figure 3.9 and turning off the compressibility terms (terms propor-
tional to g in Equation 3.12), one obtains the growth rate presented inFigure 3.11a. In that
case the interchange instability is not stabilized and the growth rate continues to increase with
g. Additionally, one can look for the minimum gradient needed to destabilize the system, in
Figure 3.11b. Similarly, due to compressibility terms, the critical gradient (ρs/LN)

crit increases
at large magnetic curvature. Note that there is a threshold for both cases at low g due to the
dissipation terms D1 and ν1.
Consistently with the derivation performed earlier, the compressibility terms lead to a threshold
for the interchange instability at large g. Adding dissipation, finite temperature τ and non-zero
C does not change this conclusion.

Compressibility terms, in particular the one originating from the divergence of the E×B drift
reveal important and, as such, should be kept in reduced models. This is even more important
when one wants to explore large magnetic curvature as the stabilization becomes important.
However, note that this is for an interchange instability linked to the density gradient. The same
work should be done considering a temperature driven instability.

3.4.4 SOL Tokam1D-ES: no CDW instability
In this section, we show that although the SOL model shares similarities with the core model,
it exhibits some key differences. First of all, the CDW instability disappears due to the assump-
tions of the sheath-limited regime. As a result, the Csol parameter only results in the stabilization
of the interchange instability. Let us first derive the dispersion relation for the SOL model. Then
we will compare the core to the SOL.
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Figure 3.11 – (a) Growth rate computed using parameters of Figure 3.9 without the
compressibility terms. (b) First density gradient (1/LN)

crit to destabilize the system as a
function of g for C = 10−4. The red and blue shaded regions corresponds the stable parts of the

no compress and compress curves respectively. Other parameters: D1 = ν1 = 10−2,
Veq =V ′

eq = N′′
eq = 0.

From, Equation 3.66-3.67, the determinant reads,

D(k,ω) =
∣∣∣∣ ω+A B
ωk2

⊥τ +C ωk2
⊥+D

∣∣∣∣ (3.84)

With the following notations:

A =−gky + i
(
k2
⊥D1

)
(3.85)

B =−ω⋆e +gky − iCsol (3.86)

C = (1+ τ)gky + i
(
kykxτV ′

eq +ν1τk4
⊥
)

(3.87)

D =−kyV ′′
eq + i

(
Csol − kykxτN′′

eq +ν1k4
⊥
)

(3.88)

The determinant is similar to Equation 3.70 - 3.73, except that the C parameter is absent from
A and C . The linear growth rate and frequency are solutions of D(k,ω) = 0.

The case interchange only (C = 0) is left unchanged as compared to the core plasma. How-
ever, the CDW instability disappears. Taking the CDW case g = 0 and removing dissipation
D1 = ν1 = 0 together with velocity and higher order effects V ′

eq = V ′′
eq = N′′

eq = 0, one is left
with,

ω
2 +ω

(
iCsol(τ + k−2

⊥ )+ τω⋆e
)
= 0 (3.89)

The solution is either ω = 0 or:

ω =−τω⋆e − iCsol(τ + k−2
⊥ ) (3.90)

As a result, under the chosen assumptions, the SOL plasma is driven only by the interchange
instability.
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The role of Csol on the interchange instability can be studied by taking the same parameters
as in Figure 3.9a. The growth rate and frequency for the SOL plasma are shown in Figure 3.12.
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Figure 3.12 – (a) Growth rate γ . (b) Frequency ω . Both as a function of C and g for a fixed
density gradient 1/LN = 1/100 in the SOL plasma. (kx,ky) are chosen such that the growth

rate is maximal. Other parameters: D1 = ν1 = 10−2 and Veq =V ′
eq = N′′

eq = 0

For a SOL plasma, the instability at very low g is lost and Csol is still stabilizing at large g.
The instability displays a negative frequency, as expected since CDW is stabilized and only
interchange remains.

The stabilisation of the CDW instability in the SOL region is the result of sheath-limited as-
sumption made in Section 3.3. This assumption imposes the coefficients for the parallel current
(eqs 3.66 and 3.67). More details can be found in refs.[153, 168]. In these two contributions, a
similar model is considered with: ∂tn = ...σn,nn+σn,φ φ and ∂φ = ...σφ ,nn+σφ ,φ φ . It is shown
that in the sheath-limited case,σφ ,n = 0 and the CDW instability is ruled out. With a conduction-
limited assumption, one could assume varying currents in the pre-sheath and solve the Ohm’s
equation instead of relying on the sheath condition.

3.5 Tokam1D-electromagnetic
It has been shown previously that electromagnetic effects were important to describe regimes
with conditions closer to H-mode [62]. Indeed, it can be shown that the key parameter is not
the solely β = 2µ0 p/B2, but:

βe f f = β

(
qR
Lp

)2

(3.91)

With q the safety factor, R the major radius and Lp the pressure gradient length [62]. It results
that in high gradient zones, such as the pedestal, Lp reduces and βe f f becomes large.

In this section is derived an electromagnetic (EM) version of Tokam1D, dubbed Tokam1D-
EM. The principal difference with the core electrostatic model is that the parallel current is not
solved using a collisional closure but computed from the parallel momentum conservation equa-
tion of the electrons: the generalized Ohm’s law. It results in similar equations for the density
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and vorticity but an equation is added to solve the parallel vector potential. First, we derive
the electromagnetic model Tokam1D-EM. Then, we perform its linear analysis. It is shown
that β is stabilizing in CDW dominated plasmas and destabilizing for interchange dominated
plasma. At large β , the growth rate dramatically increases leading to an ideal electromagnetic
interchange instability akin to ideal ballooning modes.

As a preamble to the derivation of the model itself, we derive some useful expressions for the
following. The magnetic field Bt is the sum of the equilibrium Beq = Bb and the fluctuations
B̃ = −∇∇∇×ψb, with ψ the opposite of the parallel vector potential ψ = −A∥. In the regime
of small fluctuations considered herafter: Bt ≈ B. Note that with this form A⊥ = 0 and the
magnetic compression is neglected.
Three effects will be added in the EM version: the electron inertia, the magnetic flutter and
the magnetic induction. Magnetic flutter adds a perturbation to the parallel gradient that slows
the electron parallel dynamics (see schematic Figure 2.8). In the regime of small fluctuations
amplitude, the parallel gradient reads as follows:

∇∥ ≡
Bt

Bt
·∇∇∇ =

Beq

Bt
·∇∇∇− ∇∇∇× (ψb)

Bt
·∇∇∇

= b ·∇∇∇+
1
B
{ψ, ·}− ψ

B2{B, ·}− µ0

B2 j ·∇∇∇

≈ b ·∇∇∇+
1
B
{ψ, ·} (3.92)

Magnetic induction modifies the parallel electric field. From the induction law, the electric field
now derives from both the electric potential and the vector potential,

E∥ =−∇∥φ +∂tψ (3.93)

Finally, Ampère’s law provides the relation between the parallel current j∥ and ψ . It reads:

∇∇∇× B̃ =−∇∇∇× [∇∇∇× (ψb)]

=−∇∇∇[∇∇∇ · (ψb)]+∇
2(ψb)

=−∇∇∇[ψ∇∇∇ ·b+b ·∇∇∇ψ]+∇
2(ψb)

≈ ∇
2
⊥ψb−∇⊥∇∥0ψ (3.94)

Where we have neglected terms originating from B inhomogeneity. Further neglecting the
second term on the right hand side leads to,

µ0 j∥b = ∇
2
⊥ψb (3.95)

And the gradient of the parallel current reads,

∇∥ j∥ =
(

∇∥0 +
1
B
{ψ, ·}

)
∇2
⊥ψ

µ0
(3.96)

– 114 –



3.5. Tokam1D-electromagnetic

3.5.1 Model equations

One considers a magnetized plasma of constant ion Ti and electron Te temperatures. The density
and vorticity equations are similar to the electrostatic version Equation 3.5 and 3.7 with the
parallel current derived from Ampere’s law. Their dimensional forms are recalled:

∂tn+
1
B
{φ ,n}− 2nTe

eRB
∂y

(
eφ

Te
− ln

n
n0

)
− 1

e

(
∇∥0 +

1
B
{ψ, ·}

)
∇2
⊥ψ

µ0
= SN

nmiTe

eB2 ∂tΩ =
−nmi

B3
T 2

e
e2 ∇⊥,i

{
eΦ

Te
,∇⊥,i

(
eΦ

Te
+ τ ln

n
n0

)}
− 2Te

RB
(1+ τ)∂yn

+

(
∇∥0 +

1
B
{ψ, ·}

)
∇2
⊥ψ

µ0

The generalized Ohm’s law derives from the parallel electron momentum equation without
source:

nme [∂t +(vE +v⋆e) ·∇∇∇]v∥e +Te∇∥n =−en(∇∥φ +∂tψ)+
meνei

e
j∥ (3.97)

Similarly to the electrostatic version, we neglect the parallel advection assuming that the parallel
gradient length remains small as compared to transverse ones. Replacing v∥e by the parallel cur-
rent v∥e =− j∥e/en ≈− j∥/en and using the expression of the parallel gradient (Equation 3.92)
leads to:

nme

(
∂t +

Te

eB

{
eφ

Te
− lnn, ·

})
j∥
en

=−nTe∇∥

(
eφ

Te
− lnn

)
+ en∂tψ − meνei

e
j∥ (3.98)

Finally, using Ampère’s law (Equation 3.96) and the parallel gradient definition, one is left with
the following relation:

e
Te

∂t

(
ψ − me

e2nµ0
∇

2
⊥ψ

)
+

1
B

{
eφ

Te
− lnn,ψ − me

e2nµ0
∇

2
⊥ψ

}
= ∇∥0

(
eφ

Te
− lnn

)
+

meνei

neTeµ0
∇

2
⊥ψ

(3.99)

The system of equations is normalized using Table 3.2 and ψ̂ = ecs/(β0Te)ψ . The following
constants are introduced:

β0 =
µ0n0Te

B2 ; µ =
me

mi
; η0 =

νei,0

ωce

These constants correspond to the plasma to magnetic pressure ratio β , the mass ratio and the
normalized electron-ion collision frequency taken at the reference density n0. The density is
made explicit in the electron-ion collision frequency, similarly to the parallel conductivity in
the electrostatic version,(Section 3.2.3): η0 = ηn0/n. Dropping the hats and considering each
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quantity as normalized, the dimensionless 3d system of equations reads,

∂tn+{φ ,n}= gn∂y(φ − lnn)+
(
∇∥0 +β0{ψ, · }

)
∇

2
⊥ψ +Sn

∂tΩ+∇⊥i{φ ,∇⊥i(φ + τ lnn)}= − (1+ τ)g∂y lnn

+
1
n

(
∇∥0 +β0{ψ, · }

)
∇

2
⊥ψ

(∂t +{φ − lnn, · })
(

β0ψ − µ

n
∇

2
⊥ψ

)
= ∇∥0 (φ − lnn)+η0∇

2
⊥ψ

(3.100)

(3.101)

(3.102)

This set of equations solves the density n, the generalized vorticity Ω = ∇2
⊥(φ + τ lnn/n0) and

the inverse of the vector potential ψ . The model is equivalent to the one derived by B.D. Scott
when taking the isothermal limit [62] albeit with different normalizations. The electrostatic
limit is recovered by neglecting electron inertia (proportional to µ) and β0 terms. The case
µ = β0 = 0 leads to the Tokam1D-ES core model (eqs. 3.12 − 3.13).

3.5.2 Reduction to 1d

The system of equations is further reduced using the method described in Section 3.2.5. This
time, the density is separated between equilibrium and fluctuations, not its logarithm. Addition-
ally, the parallel vector potential is split as follows,n

φ

ψ

=

neq
φeq
ψeq

(x, t)+

nk
φk
ψk

(x, t)exp[i(kyy+ k∥z)]+ cc (3.103)

The derivation is the same as for the core Tokam1D-ES model. Details are only provided where
deemed necessary. Radial derivatives of the equilibrium quantities are written as: ∂xneq = n′eq.
In order to develop the 1/n and density logarithms originating from the Boussinesq assumption,
ñ/neq is assumed small in the remainder of this section. Consistently, the following considera-
tions hold:

1
n
≈ 1

neq
(3.104)

∂y lnn ≈
∂yñ
neq

(3.105)

Note that we do not perform the Taylor expansion in the small parameter ñ/neq. It would
otherwise breaks the conservative form of the equilibrium charge conservation. The assumption
is acceptable in the core but can be challenged when approaching the separatrix. A possible
solution to this would be to alleviate the Boussinesq assumption, it is further discussed in the
following sections.

Density

The equilibrium density equation reads,

∂tneq + ⟨{φ̃ , ñ}⟩= g⟨ñ∂yφ̃⟩+β0⟨{ψ,∇2
⊥ψ}⟩= Sn
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Which reduces to,

∂tneq =−(∂x +g)ΓES −β0∂
2
x ΠEM +Sn (3.106)

Where ΓES = −2kyℑ(nkφ∗
k ) is the electrostatic turbulent flux derived before (Equation 3.18),

and ΠEM = ⟨∂xψ̃∂yψ̃⟩ = 2kyℑ(ψ∗
k ∂xψk) is an electromagnetic tensor. The fluctuation density

equation is obtained by subtracting the equilibrium from the density equation. By linearizing
the equation on ñ and projecting onto the single mode (ky,k∥), one gets the equation in the
framework of Tokam1D:

∂tnk =− iky(Veq +g)nk + iky(n′eq +gneq)φk + ik∥∇
2
⊥ψk + ikyβ0(ψ

′
eq∇

2
⊥ψk −ψ

′′′
eqψk) (3.107)

Vorticity

The equilibrium vorticity equation involves Ωeq ≈ ∂ 2
x (φeq + τ lnneq) = ∂x(Veq + τn′eq/neq), the

equilibrium generalized vorticity. It reads,

∂tΩeq +∂x⟨{φ ,∂x(φ + τ lnn)}⟩=
〈

1
n

∇∥0∇
2
⊥ψ

〉
+β0

〈
1
n
{ψ,∇2

⊥ψ}
〉

The second term on the left hand side is developed using Equation B.6 and Equation B.5. It
reads,

∂x⟨{φ ,∂x(φ + τ lnn)}⟩=−2ky∂
2
x

[
ℑ

(
φ
∗
k

(
∂xφk + τ

∂xnk

neq

))]
(3.108)

The first term on the right hand side vanishes due to the assumption, 1/n ≈ 1/neq. Finally, the
second term on the right hand side reads,〈

1
n
{ψ,∇2

⊥ψ}
〉
≈

⟨{ψ,∇2
⊥ψ}⟩

neq
=− 1

neq
∂

2
x ΠEM

and the equilibrium vorticity can be written as,

∂tΩeq =2ky∂
2
x

[
ℑ

(
φ
∗
k

(
∂xφk + τ

∂xnk

neq

))]
− β0

neq
∂

2
x ΠEM

If the density was developed using a Taylor expansion in the form: 1/n ≈ (1/neq)(1+ ñ/neq),
the second term on the right hand side would have resulted in 1/n2

eq terms outside of the deriva-
tives. In turn, conservation would have broken down. Even though, the equation on Ωeq is still
not satisfactory. Indeed, the term (β0/neq)∂

2
x ΠEM also breaks conservation. Two options are

possible: replace neq by a reference n0 or consider β0∂x(∂xΠEM/neq). The second option is
preferred for the following. The conservative form of the equilibrium vorticity equation then
reads,

∂tΩeq =−∂
2
x ΠES −β0∂x

(
∂xΠEM

neq

)
(3.109)
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Where ΠES is the electrostatic Reynolds stress defined as:

ΠES =−2kyℑ

[
φ
∗
k

(
∂xφk + τ

nk

neq

)]
(3.110)

Remembering that Ωeq = ∂x(Veq + τ∂x lnneq), we get the equation on the equilibrium velocity
by first integrating once in x,

∂t(Veq + τ∂x lnneq) =−∂xΠES −
β0

neq
∂xΠEM (3.111)

One then has to remove the density contribution to the generalized vorticity (Equation 3.106).
It reads,

∂t
n′eq

neq
=

∂ 2
xtneq

neq
−

n′eq∂tneq

n2
eq

=
∂xSn

neq
− 1

neq

(
∂

2
x ΓES +g∂xΓES +β0∂

3
x ΠEM

)
+

n′eq

n2
eq

(
∂xΓES +gΓES +β0∂

2
x ΠEM −Sn

)
So that one finally obtains an equation on the equilibrium velocity:

∂tVeq =−∂xΠES −
β0

neq

[
∂xΠEM +

n′eq

neq
τ∂

2
x ΠEM − τ∂

3
x ΠEM

]
(3.112)

+
τ

neq

[
(∂x +g)

(
∂xΓES −

n′eq

neq
ΓES

)]
We neglect the terms linked to the particle source, considering that the source is only fueling in
particles and not in momentum. The vorticity fluctuation equation is written on Ω̃ = ∇2

⊥(φ̃ +

τ l̃nn). Its equation reads,

∂tΩ̃ =−∇⊥i{φeq,∇⊥i(φ̃ + τ l̃nn)}−∂x{φ̃ ,Veq + τ∂x lnneq}

− (1+ τ)g
∂yñ
neq

+
1

neq
∇∥0∇

2
⊥ψ̃ +

β0

neq

[
{ψeq,∇

2
⊥ψ̃}+{ψ̃,ψ ′′

eq}
]

The fluctuations on the mode k then reads,

∂tΩk =− iky

[
Veq∇

2
⊥

(
φk + τ

nk

neq

)
+V ′

eq∂x

(
φk + τ

nk

neq

)]
(3.113)

+ iky

[
∂xφk

(
V ′

eq + τ∂x

(
n′eq

neq

))
+φk

(
V ′′

eq + τ∂
2
x

(
n′eq

neq

))]
− i(1+ τ)gky

nk

neq
+ i

k∥
neq

∇
2
⊥ψk + i

ky

neq
β0

(
ψ

′
eq∇

2
⊥ψk −ψ

′′′
eqψk

)
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Ohm’s law

Following the same assumptions as for the density and vorticity, the equation on the equilibrium
vector potential is obtained by taking the flux-surface average of Equation 3.102 and by using
Equation B.5. It reads,

∂t

[
β0ψeq −

µ

neq
∂

2
x ψeq

]
=−⟨{φ̃ − l̃nn,β0ψ̃ − µ

neq
∇

2
⊥ψ̃}⟩+η0ψ

′′
eq

=−2ky∂xℑ

[(
φk −

nk

neq

)(
β0ψ

∗
k −

µ

neq
∇

2
⊥ψ

∗
k

)]
+η0ψ

′′
eq (3.114)

The linearized equation on ψ̃ reads,

∂t

[
β0ψ̃ − µ

neq
∇

2
⊥ψ̃

]
=−

{
φeq − lnneq,β0ψ̃ − µ

neq
∇

2
⊥ψ̃

}
−
{

φ̃ − l̃nn,β0ψeq −
µ

neq
∇

2
⊥ψeq

}
+∇∥0(φ̃ − l̃nn)+η0∇

2
⊥ψ̃

Projecting the equation onto ky and k∥ leads to,

∂t

[
β0ψk −

µ

neq
∇

2
⊥ψk

]
=− iky

(
Veq −

n′eq

neq

)(
β0ψk −

µ

neq
∇

2
⊥ψk

)
+ iky

(
φk −

nk

neq

)(
β0ψ

′
eq −µ∂x

(
ψ ′′

eq

neq

))
+ ik∥

(
φk −

nk

neq

)
+η0∇

2
⊥ψk (3.115)

Semi-spectral formulation of Tokam1D-EM

The semi-spectral system of equations involves 6 fields: 3 real fields for the equilibrium compo-
nents, and 3 complex fields for the fluctuating parts. A diffusive term is added to each equation
to prevent small scale instabilities. The equations for the equilibrium density neq, velocity
Veq ≡ ∂xφeq and vector potential ψeq read:

∂tneq =−(∂x +g)ΓES −β0∂
2
x ΠEM +Sn +D0n′′eq

∂tVeq = −∂xΠES −
β0

neq

(
∂xΠEM +

n′eq

neq
τ∂

2
x ΠEM − τ∂

3
x ΠEM

)
+

τ

neq

[
(∂x +g)(∂xΓES −

n′eq

neq
ΓES)

]
+ν0V ′′

eq

∂t

[
β0ψeq −

µ

neq
∂

2
x ψeq

]
=−2ky∂xℑ

[(
φk −

nk

neq

)(
β0ψ

∗
k −

µ

neq
∇

2
⊥ψ

∗
k

)]
+η0ψ

′′
eq

(3.116)

(3.117)

(3.118)
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The equations for the fluctuations of density nk, vorticity Ωk = ∇2
⊥(φk + τnk/neq) and vector

potential ψk are defined for the mode k as follows:
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Where we have defined the electrostatic flux of particles ΓES in Equation 3.18, the electromag-
netic tensor ΠEM = ⟨∂xψ̃∂yψ̃⟩ = 2kyℑ(ψ∗

k ∂xψk) and the electrostatic Reynolds stress ΠES in
Equation 3.110.

This set of equations has been derived under the strong Boussinesq assumption, where the
full density n is commuted with the divergence (details on this assumption can be found in
Section 3.2.2). In turn, the assumptions leads to 1/n terms that limit the Taylor expansion in
the small parameter ñ/neq so as to not break the conservative form of the system. Some more
work is needed to explore either the implications of the weak Boussinesq assumption, or the
relaxation of the assumption.

3.5.3 Linear analysis

As a first step towards the analysis of Tokam1D-EM, we perform the linear analysis under the
following simplifying assumptions:

1. No compressibility terms.
2. No flows and high order derivatives: Veq =V (n)

eq = ψ
(n)
eq = 0.

3. Cold ion approximation: τ = 0.
4. No electron inertia: µ = 0.
5. Simplified density profile: neq = 1, n′eq = cte.
6. Collisionality is set to η0 = 0.1.

Under those assumptions, the determinant of the system reads,

D(k,ω) =

∣∣∣∣∣∣
ω + iDk2

⊥ −ω⋆e −k∥k2
⊥

kyg ωk2
⊥+ iνk4

⊥ k∥k2
⊥

−k∥ k∥ ωβ0 −ω⋆eβ0 + iη0k2
⊥

∣∣∣∣∣∣ (3.122)
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The non trivial solutions are given by solving D(k,ω) = 0 numerically. The growth rate is first
obtained as a function of (kx,ky) for a constant density gradient neq = −0.5. The turbulence
parameters are set to k∥ = 1, β0 = 50 and g = 0.1. The resulting growth rate is shown in
Figure 3.13
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Figure 3.13 – Growth rate as a function of kx and ky. Maxima are located for the lowest value
of kx accessible and ky ≈±0.8. Dissipation and viscosity D = ν = 10−2.

Large growth rate, γ > 10−1, in comparison to the electrostatic cases (γ ≈ 10−3 in Figure 3.9)
are obtained when β0 is large. The maximum of the instability is located at the smallest kx
available for the system and ky =±0.8.

The parameter β0 is shown to have a different role depending on the dominant instability. In
Figure 3.14 is shown the growth rate as a function of β0 for three different configurations: large
g = 0.1, small g = 0.01, and small g with a reversed gradient.
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Figure 3.14 – Growth rate as a function of β for large g = 0.1 (blue circles), small g = 0.01
(green triangles). The dotted line curve indicate a case with a reversed gradient n′eq > 0. Other

parameters: (kx,ky,k∥) = (0.02,0.8,1), n′eq =±0.2, D = ν = 0.

When the density gradient is negative (i.e. of the same sign as the magnetic amplitude gradient),
the growth rate greatly increases at large β0. This instability is similar to the ideal ballooning
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instability described in ref.[60]. The instability is shown absent when the density gradient is
reversed which further emphasizes that the instability is of interchange-type.
When β0 is small, it is shown to stabilize collisional drift wave (CDW) instability and to desta-
bilize interchange.

All in all, an electromagnetic model has been developed in the framework of Tokam1D. The
preliminary linear analysis unveiled a mode at large β0 akin to the ideal ballooning instability.
The role of β on RBM and CDW is coherent with results reported in [60]. More work have
to be performed to identify the role of the other parameters: electron inertia µ , collisions η0
should be investigated first. Then, nonlinear electromagnetic simulations have to be performed.
A possible next step would then consist in alleviating the Boussinesq assumption. This assump-
tion can break the conservative form of the current continuity equation. As such, it imposes
ñ/neq ≪ 1 and greatly limit the option for a Taylor expansion.

3.6 Strengths & limitations of the model: ways forward
In this section, we revisit the strengths of the Tokam1D, as well as some of the underlying
assumptions on which it is based. We remind the model objectives:

• Study the generation and structure of ZFs in competing turbulence.
• Investigate interplay between ZFs and avalanches.
• Assess the influence of ZFs radial structure on the turbulent transport.
• Identify experimental signatures of ZFs and avalanches.

First, to allow the turbulence to self-organize and interact with the equilibrium profiles, we made
the system flux-driven. This means that the density profile is a balance between the source of
particles and the turbulent flux of particles. No scale separation assumption is involved. As
such, the density profile can develop small scale corrugations and form staircase-like pattern.
Second, to perform large parameter scans and get an idea of the instability landscape, the model
has to run fast. Given its flux-driven formulation, the simulations are run until the equilibrium
profiles reach a statistical steady-state. In order to reach that goal, we made the system 1d by
selecting a single poloidal and parallel mode for the fluctuating components.
Third, three extensions to the model have already been detailed: adding the force balance flow,
the SOL region and electromagnetic effects.

In the following, we discuss briefly three possible ways forward. The first is trivial. Adding
more equations, such as the ion and electron temperature equations could lead to a more com-
plex turbulence. The second discusses the possibility to include the geodesic acoustic modes
without having to develop a 2d model. Finally, the lack of magnetic shear and mode localization
is addressed.

3.6.1 Type of turbulence included & isothermal assumption

Tokam1D-ES, contains two equations: density and vorticity. Only instabilities linked to those
dynamical variables are included. The first is the CDW instability, linked to the finite parallel
phase shift between density and electric potential fluctuations. The second is interchange. It is
linked to the magnetic inhomogeneity through an effective gravity parameter g.
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As already discussed, the interchange instability represents a ’broad’ class of instabilities.
It encompasses many different modes at different scales, such as ITG, RBM, ideal ballooning
modes etc. An obvious and immediate extension to the model is to alleviate the isothermal
assumption. Doing this would enable ion and / or electron temperature dynamics, possibly
leading to ITG and ETG turbulence. Also, it would uncouple the density and temperature
dynamics, leading to different turbulent fluxes for heat and particles. A work has been started
going into this direction by developing a 5-fields model. The model consists in Tokam1D-ES
(core version) with added equations for ion and electron temperatures and ion parallel velocity.
It could be extended to include electromagnetic effects such as described in Section 3.5.

However, we emphasize that interchange such as included in the present model still contains
enough interesting properties. First, it is stabilized by the positive magnetic curvature. Second,
it does not require a finite k∥ to exist (flute modes). Additionally, we showed in Section 3.5,
that the ideal electromagnetic interchange limit was also recovered in the framework of the
model. For all these reasons, we consider that it contains enough physics to be considered as
the abstract class of interchange instabilities, sharing properties with both RBM and ITG.

A more significant addition would consist in the physics of the trapped electron modes (TEM).
However, it appears difficult to add the TEM physics, essentially kinetic, in a reduced fluid
model. Some attempts have been made in developing fluid TEM models, refs.[169, 170, 171,
114] provide possible ways forward in this direction.

3.6.2 Reduction to 1d
One of the central assumptions is the reduction from 3d to 1d by selecting a single poloidal
and parallel wave vector. By doing so, nonlinear mode coupling is not accounted for. The con-
sequence is that energy and enstrophy cascades are missing from the analysis. Effectively this
removes a saturation mechanism for the turbulence, thus considering that saturation of fluctua-
tions is primarily from profile relaxation and zonal flow self-regulation, respectively governed
by particle flux and Reynolds stresses.

A refinement of the model has been proposed by adding a nonlinear saturation mechanism
to the fluctuations, mimicking the missing nonlinear interactions. The resulting term is of the
form ∂tNk = ...−DNL|Nk|2Nk [154]. A number of simulations have been performed with such a
term present. The resulting dynamics was qualitatively analogous to simulations with stronger
diffusion but a more extensive study would be required to assess the impact of such terms in the
various regimes of turbulence. The Reynolds stress is still crucial to have a spectral transfer in
kx and enable complex dynamics.

A second important shortcoming of 1d models is the absence of geodesic acoustic modes
(GAMs). These pressure sidebands modes result from the toroidal compression of ZFs [172].
GAMs also extract energy from ZFs. They act as a sink and limit their development [173, 174].
They should be included in the model if one wants to study interaction between turbulence
and ZFs. An alternative to a 2d model would consist in adding equations for the GAM modes
(m,n) = (±1,0) with m the poloidal and n the toroidal mode numbers. This extension is similar
to the extension from quasi-linear to generalized quasi-linear described in Section 2.4.2 and in
ref.[119]. With this addition, the energy could be exchanged between the zonal mode, the GAM
mode and the turbulence represented by the mode ky = cte.
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Finally, discarding 2d effects removes the geometry contribution. Deliberately removing
these lead to the absence of shaping effect, such as negative triangularity [175], on the tur-
bulence. However, no easy way to include shaping effects has been found without evolving
towards a 2d model. For now, this physics is discarded.

3.6.3 Lack of magnetic shear and mode localization

The model assumes a simple magnetic geometry further reduced into 1 dimension. Also, there
is no q-profile or magnetic shear included. The latter is particularly important for turbulence
as it plays a similar role to the perpendicular velocity shear induced by the radial electric field
[22] and can lead to transport barriers [176]. In essence, the magnetic shear leads to an "equi-
librium" shear fixed by the magnetic topology. Having this shear effectively reduces the linear
drive and contributes to the decorrelation of turbulent eddies. To include it, for example fol-
lowing ref.[177], one would need to include a 2d geometry. However, by considering a static
equilibrium magnetic field, the magnetic shear is not a dynamical variable and interacts less
with the underlying turbulence. For this reason and since the goal, for now, is to stay in 1d,
such improvement is not retained.

More importantly, turbulent modes (m,n) tend to localize on rational q-surfaces such that
q = −m/n [7, 84]. For Tokam1D, this is the case of interchange instability but not of CDW
that requires a finite k∥ to exist. The principal effect for modes that are radially localized is that
they rapidly lose energy when they are moved away from their rational surface. The presence
of sheared poloidal and parallel flows shift the modes away from their resonant surface thus
leading to their decrease [84]. For now, no easy way has been found to add a sort of radial
localization while keeping a 1d model.

3.7 Conclusion
In conclusion, this chapter has provided a set of tools to analyse turbulence-flows interaction.
The reduced model Tokam1D has been derived for three different configurations: a core electro-
static plasma, a transitional core to scrape-off layer electrostatic plasma and a core electromag-
netic plasma. In each case, reduction to 1d is done by selecting a single poloidal and parallel
wavenumber. So far, the model is isothermal and contains two intrinsic instabilities: collisional
drift-wave (CDW) controlled by the adiabatic parameter C = σ0k2

∥ and interchange (akin to
RBM) driven by g = 2ρs/R. The linear analysis of the Tokam1D model and its variants has
been performed. The competition between CDW and RBM appears clearly in the core plasma:
CDW dominates at low magnetic inhomogeneity or large adiabatic parameter (small collision-
ality). Whatever the value of g, the interchange instability is stabilized when C becomes very
large. In the edge of tokamaks, various temperatures and densities can be achieved, leading to a
broad range of accessible C and g with the former being often larger than the latter. That stands
in exception to spherical tokamaks such as MAST-U that have a larger magnetic inhomogeneity
and thus a greater g. In the SOL plasma, CDW is shown to be stable whatever the plasma param-
eters. It results in a SOL driven by interchange instability and stabilized by a larger conductivity.
Finally, adding electromagnetism results in the modification of the already existing instabilities:
CDW is stabilized by β , interchange is destabilized. Furthermore, it adds an electromagnetic
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instability at large β leading to a very large growth rate. This latter instability is akin to ideal
ballooning modes.

The derived model fulfills the objective of running fast on particle confinement timescales
while resolving turbulence-equilibrium interactions self-consistently. This has been done thanks
to a flux-driven formulation. The numerical speed has been met at the cost of losing mode-
mode interactions: this limitation will be discussed while analysing nonlinear results in the
next chapter. The model contains the minimal physics to include the role of the diamagnetic
component of the Reynolds stress. With all these effects, the generation of ZFs in competing
turbulence becomes possible.

Possible ways forward have been discussed. The first and most important consists in merging
the three derived models into one. The resulting electromagnetic model would then encompass
both the core and the SOL. Second, a possible way to include GAM physics has been discussed.
This could enable the transfer of energy between the three players: zonal flows, GAMs and
turbulence. Finally, a model has already been written with 5 fields: density, vorticity, ion tem-
perature, electron temperature and ion parallel velocity. It is however not the main focus for the
moment as we consider having enough physics with the isothermal assumption.

The developments performed here set the stage for the next chapter where we will perform
nonlinear simulations with different parameters C and g. The questions of ZFs generation de-
pending on turbulent regime and their impact on transport will be a central part of the analysis.
In particular, regimes leading to the emergence of staircases will be pointed out.
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In this chapter, we propose to come back on the turbulence parameter space by focusing
on the turbulence self-organization: which parameters lead to zonal flows and to their radial
structure? Which parameters lead to avalanche-like transport? Additionally, we approach the
question of ZFs - avalanches interaction, staircase generation and of their impact on confine-
ment.

For this analysis, we scan the turbulence parameter space using the reduced model derived
in chapter 3. Note that we use the model Tokam1D-ES core without force balance velocity:
Equation 3.32 − 3.35. This is done first because some simulations were performed before the
model extensions were developed and implemented and also to simplify the problem at hand.
Since the goal is mainly the generation in ZFs at the edge of the confined plasma, we expect
that contribution from the force balance or the scrape-off layer is not yet crucial.
The model includes two instabilities present at the edge of tokamaks: collisional drift waves
(CDW) driven by the non-adiabatic response of electron density fluctuations [48], and inter-
change caused by the inhomogeneity of the magnetic field [78]. They are respectively con-
trolled by 2 non-dimensional parameters: C = σ0k2

∥ with σ0 = ωce/νei the conductivity, and
g = 2ρs/R the inhomogeneity of the magnetic field. The typical range of their experimental
values is computed in Table 3.3 for WEST, TCV and MAST-U devices.

Results presented in this chapter constitute the backbone of two papers, the first one being in
the review process, the other one almost completed and to be submitted in the coming months.
The first describes the model and the importance of the flux-driven regime [145], the second
focuses on the flows dynamics in the full (C,g) parameter space [178].
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4.1 Simulations performed & distance to threshold
A total of 120 flux-driven simulations are performed on a box size Lx = 400 using a grid of
Nx = 1024 radial points. The cases are run using the time step ωcsdt = 0.1 with constant
dissipation D0,1 = ν0,1 = 10−2 and friction µ = 10−4 coefficients. The choice of dt is discussed
in Section B.1. The poloidal wavenumber and ion to electron temperature ratio are chosen
constant at ky = 0.3 and τ = 1. Neumann boundary conditions with vanishing gradients are
used for the density at x = 0 and for the velocity at both ends. Dirichlet is used for the density
imposed to Neq = 0.1 at x = Lx and the fluctuations set to zero at both boundaries. Note that,
since we have decided not to take into account the density dependence of the parallel resistivity
for the sake of simplicity (cf. Section 3.2.3), the absolute value of Neq does not play a role in the
equations. Therefore, the value imposed at the edge only translates vertically the whole density
profile without impacting the dynamics.

The simulations are conducted until the particle confinement time τp reaches statistical steady-
state. It is computed from the density profile and the source,

τp =

∫
Neqdx∫
SNdx

(4.1)

It can be understood as the total number of particles divided by the inflowing particle flux.
The source is Gaussian, with the maximum located at the innermost boundary, SN(x = 0). An
example of the resulting steady-state density profile along with the source is shown Figure 4.1a.
The density profile is taken after the simulation has reached steady state (t > 15×106 iterations
here). The method to compute quantities at the steady-state will be used throughout the whole
chapter, it is detailed here for convenience. One first computes the root-mean-square (rms)
radial profiles:

(∂xNeq)
rms(x) =

√
⟨(∂xNeq)2(x, t)⟩t (4.2)

With ⟨...⟩t a time average performed on ωcst = 3× 104. To get a single value per simulation,
the radial average of (∂xNeq)

rms is then performed on 20 < x < 380 to exclude boundary effects.
An example of the resulting rms density gradient is shown in Figure 4.1b.

Small scale corrugations are visible on the density gradient due to the action of shear flows.
So as to have a single value per simulation we consider the profile as roughly linear and we
take its mean radial value. A few things should however be noticed. First, the density profile
is defined as the logarithm of the density N = lnn/n0. It results in the ’real’ density profile to
behave exponentially. Second, the density profile goes up to very large unrealistic values for a
fusion reactor. This is the result of having a fixed density at x = Lx, a fixed large source and a
large simulation box. In practice, large gradients such as this one may exist but on small radial
portion of the machine. These simulations should be looked at as if we stretched the radial
axis to better observe the high gradient zone. A solution to this problem is to use Neumann
boundary condition on the right hand side for density. In this case, a large source would result
in a large value of density at the separatrix. This situation is achieved in simulations including
the scrape-off layer.
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Figure 4.1 – (a) Steady-state (t > tp) rms density profile averaged over 3×104 ω−1
cs (blue

circles). The source (green squares) is set to SN(0)≈ 10−5. (b) Corresponding rms density
gradient. Simulation parameters: (C,g) = (10−3,5×10−3).

The equilibrium density profile is a result of the balance between the imposed source and the
transport: diffusive and turbulent. While the former is imposed through numerical dissipation
parameters (D0,1 ; ν0,1), the latter depends on turbulence characteristics. Depending on the
source amplitude and plasma parameters (C,g), the steady-state density profile sits at a certain
distance from its linear threshold. This distance to marginality has an influence on the nonlinear
dynamics and impacts in particular staircases which are expected to exist close to the threshold
[106]. So as to control the distance to marginality, two sets of simulations are performed using
different sources. The first set is performed at constant source amplitude, SN(0) = 10−4 such
that every simulation is above its linear threshold. As a result, some simulations at the edge of
the scanned parameters space exhibit very large gradients, much above their linear threshold.
The second set, as reported in [145], ensures that each simulation is above, but close to its linear
threshold. To do so, we define the diffusive gradient |∂xNdi f f

eq | =
∫

SN/D0. It is the necessary
gradient for the diffusive flux of particles to balance the driving flux imposed by the source.
This gradient corresponds to the equilibrium state of the system without turbulence. The source
is then chosen such that the diffusive gradient is above the linear instability threshold defined
by the critical gradient. Depending on the instabilities parameters, the critical gradient is modi-
fied. We can then choose the corresponding source such that the system is ’forced’ similarly for
different values of C and g. An example of this kind of simulations is presented in Figure 4.2
for the scan CDW only (g = 0). The method using a constant source for all simulations is called
constant source while the second is called adapted source.
In Figure 4.2, the critical gradient corresponds to the linear threshold. It is obtained from the
linear analysis using the values of (C,g) and considering no flow shear. The objective is then
to adjust the source so that the resulting diffusive equilibrium gradient (the one obtained in the
absence of turbulent transport) is "slightly" above this critical gradient. In practice, we choose
|∂xNdi f f

eq |= 6|∂xNcrit
eq |. The source is chosen so that the equilibrium state of the equilibrium den-

sity equation (Equation 3.32) with Γturb = 0 is equal to the diffusive profile: ∂xNdi f f
eq =

∫
SN/D0.

Provided that the shape of the source is not modified, the relation between the source amplitude
and the diffusive gradient is linear. Therefore, we choose a source amplitude 6 times the one
needed to reach the critical gradient.
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Figure 4.2 – Absolute critical density gradient indicating the instability threshold,
corresponding diffusive gradient (|∂xNdi f f

eq |= 6 |∂xNcrit
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function of the adiabatic parameter. Scan of C at g = 0, adapted source.

Choosing a diffusive gradient equal to 6 times the critical gradient can seem large. However,
one must remember that the system will develop turbulence as soon as the critical gradient is
reached. Then, turbulent transport will develop and constrain the system to stay close to the
linear threshold. The present choice have been made so that each simulation in the scanned
parameter space develops a significant turbulent flux of particles Γturb, at least larger than the
diffusive flux Γdi f f . Both fluxes are compared in Figure 4.23. Other trials have been performed
with a smaller forcing resulting in a transport dominated by diffusion. In principle, the marginal-
ity is defined as the proximity to the critical flux. Meaning one should scan the source until the
change of the equilibrium density gradient stops (or slows down) due to the action of the tur-
bulent flux. In practice, performing this work for 120 simulations would take too much time.
Therefore, the choice is made to compare the steady-state gradient to the critical gradient in-
stead of using the fluxes.
The resulting density gradient at the steady-state is shown with the colour indicating the value of
the gradient. One can notice that the steady-state profile obtained in the simulations gets closer
to the diffusive one as C is increased. It is a direct consequence of the system linear properties:
as C increases, both the linear growth rate and sine of the cross-phase decrease. It results in
a system that is less stiff : meaning that an increased gradient leads to only a small change in
transport.

Giving the system the freedom to adapt freely its gradient to the injected source is one of the
strengths of a flux-driven model. The model now evolves in a 3d parameter plane delimited by
(C,g,∂xNeq). Bearing this in mind, we scan the adiabaticity parameter from C = 2× 10−4 to
8×10−2 for three different values of g: 10−4, 10−3 and 5×10−3. The curvature parameter is
scanned from g = 10−4 to 3×10−2 for C = 10−3. The scanned parameter space in terms of C
and g for a constant source is presented in Figure 4.3. The colour indicates the radially averaged
gradient at the steady-state computed for 15 < x < 385 to exclude boundary regions.
The figure features a total of 52 simulations, performed at constant source. Including simu-
lations performed with an adapted source (and test case at g = 0), the number of analysed
steady-state simulations is 120. Simulations with an adapted source are not shown here as the
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Figure 4.3 – Scanned parameter space: each point corresponds to a simulation that reached
steady-state. (circle) scan of C at small g = 10−4. (triangle) scan of C at medium g = 10−3.

(square) scan of C at large g = 5.10−3. (diamond) scan of g at medium C = 10−3. The colour
indicates the absolute value of the mean gradient at steady state.

trend is similar although with different steady-state density gradients. Large gradients at high
C result from the stabilization of the instabilities when getting closer to the adiabatic regime.
As a matter of fact, simulations at large C > 6× 10−2 correspond to low turbulence regimes
where the turbulent flux is comparable to the diffusive flux. For the case at small g, the gradient
decreases at C ≈ 10−3 then increases again. This is typical of CDW instability, stabilized at
both small and large C (already discussed in the linear analysis: Figure 3.8b). Scans at medium
and large g display no stabilization at small C due to the interchange instability taking over.

It should be emphasized that the variation of C only is not enough to conclude on the transi-
tion from an hydrodynamic to an adiabatic regime. Instead, some authors consider the transition
to the adiabatic regime when C/∂xNeq is large [179]. For flux-driven simulations, the density
gradient evolves together with the adiabaticity parameter. In particular, the density gradient in-
creases with C resulting in a more gradual evolution of C/∂xNeq. However, computing C/∂xNeq
is not straightforward in a flux-driven system. Indeed, it is not obvious whether one should take
into account only the large scale gradients or also include small scale structures in the adiabatic-
ity estimation. Therefore, our choice of primary parameters are C and g, the density gradient
being indicated wherever deemed necessary.
The different scans performed are summed up in Table 4.1.

4.2 Transition from CDW to interchange dominated plasma

As a first step to study the landscape of instabilities we characterize the turbulence in terms of
phase velocity, amplitude, and cross-phase. The characterization of drift wave - interchange
turbulence has been studied for a long time in particular by B.D. Scott [121, 172, 180] for a
gradient driven core plasma and more recently by P. Ghendrih [153] for a flux-driven scrape-off
layer plasma. The fluctuation characteristics, in turn, influence the turbulence self-organization
that will be studied in Section 4.3 and 4.4.
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Source
type

Scanned
parameter

Fixed
parameter

Number of
simulations

Constant
C g = 10−4 14
C g = 10−3 14
C g = 5×10−3 14
g C = 10−3 10

Adapted
C g = 0 16
C g = 10−4 14
C g = 10−3 14
C g = 5×10−3 14
g C = 10−3 10

Table 4.1 – Summary of conducted scans using Tokam1D-ES core without force balance
effects, D0,1 = ν0,1 = 10−2, µ = 10−4. Constant source: SN(0) = 10−4. Adapted source

imposed such that |∂xNdi f f
eq |= 6 |∂xNcrit

eq |. C is scanned from 2×10−4 to 8×10−2, except
for g = 0 where it is scanned from C = 3×10−3 to 8×10−1. g is scanned from 10−4 to

3×10−2.

4.2.1 Turbulence structure in Tokam1D
First, let us look at the space-time structure of the turbulence in Tokam1D. Since the model is
reduced to 1d, the turbulence is not fully described in the 2d (x,y) plane. Instead, the choice
has been made to keep a single poloidal wave vector ky = 0.3. Figure 4.4a displays an example
of the density fluctuations for the Fourier component Nk as a function of time and space. In
Figure 4.4b, the corresponding fluctuating density field, Ñ(x,y, t) = Nk(x, t)exp(ikyy)+ cc (cf
eq.3.15 at z = 0), is shown in the (x,y) plane for a given time. On top of the density fluctuations,
is shown the equilibrium velocity coarse-grained on a few time and radial points.
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Figure 4.4 – Density fluctuation for case C = 10−2. (a) Amplitude of the Fourier component
Nk as a function of time and space, the white line notes the snapshot for which is plotted the
fluctuation field. (b) Two-dimensional fluctuating density field for t = 6.03×106. The black

line shows the equilibrium velocity around the same time snapshot.

In Figure 4.4a, density fluctuations are propagating both inward and outward at similar speed.
The associated turbulent particle flux is always positive, resulting in an outward transport. In
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Figure 4.4b the turbulent structures are displayed in their 2d form. As a single ky is chosen, they
are periodic in the y-direction. The tilt of the turbulent structures in the (x,y) plane appears to
be governed by the equilibrium velocity direction, indicating that the flows elongate turbulent
structures in the poloidal direction. Even though the code is reduced to 1d and is periodic in
the y-direction, one observes a complex dynamics due to the interaction with equilibrium flows.
Transfer to higher kx leads to various sizes of structures depending on the underlying flow shear
and transport. Noticeably, the phase of the fluctuations can exhibit quasi discontinuities along
the radial direction, as visible e.g. at x ∼ 160.

4.2.2 Method to assess the dominant instability

Estimating the dominant instability in specific plasma condition will reveal helpful for the inter-
pretation. The main purpose is to understand the underlying physical character of the turbulence:
drive, saturation mechanisms etc. As a word of caution, it should be noted that the analysis of
turbulent systems based on linear properties assumes that those properties still matter in the
nonlinear regime. This analysis should only be seen as a guide for the nonlinear and not as a
concrete result.1

To identify whether the system is dominated by CDW instability, one can verify the turbu-
lence phase velocity. We expect CDW to be electron driven, i.e. its frequency of the sign of
the electron drift frequency: ω⋆e −ky∂xNeq. Conversely, we do not have prediction for the inter-
change instability frequency. As it appeared in Figure 3.9, it can leads to both ion and electron
type frequencies. Note that in the absence of the temperature dynamics, hence of modes such
as ITG, there is no reason a priori for the interchange to be driven by the ions more than the
electrons.
As an additional information to estimate whether the instability is of ’interchange’ or ’drift wave’
type, one can compute the cross-correlation between density and electric potential fluctuations
[121, 181]. Based on the linear analysis performed Section 3.4.1, one expects interchange type
of instabilities to have a much larger cross-phase: sin∆ϕ ≈ 1 as compared to drift waves.
Ultimately to differenciate between instabilities that are driven by the same species and that are
of the same ’class’ (drift waves, interchange), one needs to perform scans of plasma parame-
ters: density, temperatures and compare the behaviour with theoretical predictions. In that case,
one can rely on simulations such as local gyrokinetics to estimate linear parameters from local
plasma parameters: pressure gradient, plasma shape etc. [180, 182, 50].

Bearing this in mind, one can compute the linear analysis of the Tokam1D system using the
density gradient at steady-state and considering no flows: Veq = ∂xVeq = ∂ 2

x Veq = 0. The den-
sity profile is taken as linear ∂xNeq = cst and computed from Equation 4.2. For simplicity, one
neglects the possible effects of the equilibrium profile corrugations, hence considering vanish-
ing higher order derivatives of Neq. Doing this makes sense since the most unstable mode is
large scale (kx ≈ 0) so that it is expected to be mostly sensitive to the large scale gradient. The

1Consider for example the case of a system including two instabilities: the first with a low gradient threshold
(grad1) and a low stiffness, the second with a large threshold (grad2 ≫ grad1) and a very large stiffness. The
stiffness here relates to the importance of the turbulent flux as one gets above the threshold. For a large source,
the system’s profile can reach the second threshold (grad2). Based on the linear we might deduce that the first
instability is dominant: far away from its threshold, hence very large growth rate. But it is actually the second,
stiff, instability that governs the final gradient.

– 133 –



Chapter 4. Flow generation & structure in competing drift-wave - interchange turbulence

linear frequency computed this way is displayed Figure 4.5 for the 4 scans performed using a
constant source. Note that the three scans in blue (circles), red (triangle) and green (square) are
performed as a function of C for fixed values of g, while the purple (diamond) is performed as
a function of g for a fixed C.
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Figure 4.5 – Frequency from linear analysis using equilibrium parameters at the steady state as
a function of C and g. The source is imposed for all simulations at SN = 10−4. Other

parameters: Veq = ∂xVeq = ∂ 2
x Veq = 0, D0,1 = ν0,1 = 10−2.

Scans of C at constant g, leads to a negative frequency at low C even more so when g is large.
For the g-scan, the frequency is negative at large g. In both cases, we understand the system to
be interchange dominated whenever ωlin ≲ 0, which was expected at small C and large g.

4.2.3 CDW dominated by density fluctuations & low cross-phase

In this section, the regimes are characterized in terms of fluctuation amplitude and cross-phase.
Those two quantities govern the turbulent transport, Γturb = −2ky|Nk||φk|sin∆ϕ . They are
also crucial for the ZFs generation because of their critical role on the two components of
the Reynolds stress. In particular, the density to electric potential fluctuation amplitude ratio
impacts the relative amplitude of the two tensors.

The rms-values of the fluctuations of density and electric potential are shown in Figure 4.6a,
the sine of the cross phase is displayed in Figure 4.6b for two cases: the g-scan at fixed C = 10−3

and a C-scan at fixed g = 5× 10−3. Both are shown as a function of C/g, the last section
highlighted that an interchange driven regime is reached at both very small C or very large g.
The linear estimates of the ratio of the fluctuation amplitudes and cross-phases are shown in
dotted line.
Three regimes can be identified. The first, at low C/g, bears the characteristics of interchange.
It has the large sin∆ϕ predicted in Section 3.4.1. This regime is dominated by electric-potential
fluctuations and both cases at fixed C or fixed g display a similar behaviour at low C/g. The
second and third regimes, at large C/g, depend on whether C is large or g is small. Large C for
finite g, displayed in green (squares), is characterized by Nrms

k ≈ φ rms
k and a very low cross-phase.

It corresponds to a regime getting close to the adiabatic state. The other, in purple (diamond),
leads to a large Nrms

k /φ rms
k and an almost constant cross-phase. It is close to the CDW case

detailed Section 3.4.3, with a sine of the cross-phase close to 1/
√

2. In the end, these results
show that the ratio C/g is not a good parameter to discriminate turbulent regimes in Tokam1D:

– 134 –



4.2. Transition from CDW to interchange dominated plasma

10 1 100 101

C or g (C/g)

0.5

1.0

1.5

2.0

2.5
N

rm
s

k
/

rm
s

k
Ratio of fluctuation amplitudes

non linear
linear estimate
C = 10 3

g = 5.10 3

(a)

10 1 100 101

C or g (C/g)
0.0

0.2

0.4

0.6

0.8

1.0

|s
in

|

Sine of the cross-phase

(b)

Figure 4.6 – Nonlinear fluctuation amplitude and cross-phase as a function of C/g for cases
g-scan at fixed C = 10−3 and a C-scan at fixed g = 5×10−3. Both for a constant source

SN(0) = 10−4. The linear estimates computed from the steady-state density gradient are shown
in dotted lines.

one needs to scan the full 2d (C,g) plane. This stands in contrast to ref. [122] where the
parameter αt , proportional to the ratio of C and g is found instrumental in discriminating L- and
H-mode regimes in Asdex-Upgrade plasma discharges. One of the key differences comes from
the isothermal assumption in Tokam1D; in particular, this results in the fact that large C values
are characterized by stable CDW and interchange.

In all cases, the linear estimate follows the same trend as nonlinear calculations. However
there is a constant offset of the cross-phase and of the fluctuation amplitude ratio at low C/g. At
large C/g the offset changes sign for the amplitude ratio in the g-scan and for the cross-phase
in the C-scan. This can be a result of the absence of sheared flows in the linear analysis. Indeed,
a finite V ′

eq impacts both linear and nonlinear properties. Taking it into account could close the
gap. However, since V ′

eq is hardly accessible to experimental measurements, we have decided
not to take it into account in the linear analysis. Additionally, a radially-constant rms-density
gradient is considered for the linear analysis, discarding corrugations.

As a conclusion, let us sum up the turbulence parameters as a function of C and g.

• Large C: low cross-phase and Nk ≈ φk (≈ adiabatic).
• Large g: large cross-phase and φk > Nk (≈ interchange).
• Low g: Nk > φk (≈ CDW).

4.2.4 Auto-correlation time and correlation length reduced in interchange
driven plasmas

In this section, the auto-correlation time of the turbulence τturb is computed together with the
radial correlation length Lturb. They will be used to differentiate turbulent regimes, but also to
serve as a reference for the different scans. Indeed, the size and time duration of the simulations
are constant even though the underlying dynamics is not. For the average and coarse-graining to
be consistent, they have to be adapted for each simulation. In the rest of the chapter, the coarse-
graining will then be done on a number of τturb and Lturb to ensure similar statistics between
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simulations.

Considering two discrete complex signals x and y, their correlation reads,

Cxy[k] =
N

∑
i

y[i]x∗[i+ k] (4.3)

With N the number of points in the signal and k the delay (in time or space) given in a number of
points. Then, the coherence is obtained by normalizing the correlation by the auto-correlation
of each signal at zero-delay,

Cxy[k] =
Cxy[k]

(Cxx[0]Cyy[0])
1/2 (4.4)

From the Wiener-Khinchin theorem [183, 184], Cxy[k] can also be obtained in Fourier space.
Using cross-spectral density Sxy and power spectral densities Sxx, Syy, the spectral coherence
reads, Sxy( f ) = Sxy/(SxxSyy)

1/2. Note that the spectral coherence is given as a function of
frequencies instead of time delays.

The auto-correlation function at position x0 is computed on the steady-state density fluctua-
tions by splitting the time arrays in 39 independent samples of 750 ω−1

cs each that are then aver-
aged out to produce a single estimate. The time length of the samples needs to be sufficiently
large so that a full correlation function can be computed. The radial correlation is performed by
taking a reference time signal of the density fluctuations at x0, |Nk(x0, t)| and correlating with
the neighbouring time signals at positions x0 ±∆x. Examples of averaged time auto-correlation
and radial correlation functions are shown in Figure 4.7.
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Figure 4.7 – (a) Time auto-correlation functions. (b) Radial correlation functions. Both for
g-scan simulations at constant source computed at position x0 = 197.

The auto-correlation functions are symmetric around ∆t = 0, where they reach their maximum
equal to 1. Two groups of simulations can be identified. The first one, g < 3.10−3, exhibits a
Gaussian shape. The second group, at large g, displays a much more narrow auto-correlation
function further reducing as g increases. The same behaviour is observed on the radial corre-
lation function. It gets more narrow for the second group of simulations. Interestingly, a tail
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appears for simulations at large g. These tails are understood as the signature of avalanches and
will be thoroughly analysed in Section 4.5.

From the correlation functions, we compute the turbulence auto-correlation time τturb and
radial correlation length Lturb. τturb is obtained when the correlation has dropped below 1/e.
The operation is repeated at several radial locations x0 to get a global average for the simulation.
Estimating, Lturb is slightly more sublte. In regimes where the correlation function exhibits
different short and long scale behaviours, only the short scale part is filled by a Gaussian, hence
ignoring the tail. Then, Lturb corresponds to the radial lag where this Gaussian fit is equal to
1/e. Both the τturb and Lturb are displayed in Figure 4.8.
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Figure 4.8 – (a) Auto-correlation time τturb defined as the delay for which correlation has
dropped to 1/e. (b) Radial correlation length Lturb. Both are radial average estimate for g-scan

simulations at constant source. Radial standard deviation is indicated as a shaded area.

Once again, the transition from CDW to interchange dominated turbulence is made clear. At
low g, the auto-correlation time is roughly equal to ωcsτturb ≈ 230. Similarly, Lturb is constant
at roughly 7 ρs. At larger values of g the auto-correlation time quickly drops to ωcsτturb ≈ 50
indicating a shorter lifetime for the turbulent structures. The auto-correlation length drops to
Lturb ≈ 4ρs.

The auto-correlation time of the turbulence provides a measure of the time required for the
turbulence eddies to become statistically uncorrelated. A faster dynamics leads to a smaller
τturb. Here, the first group corresponds to CDW dominated turbulence while the second is likely
mainly driven by interchange instability. The latter is characterized by larger linear growth rates
which lead to a fast dynamics and a low τturb. Also, the velocity shear is expected to elongate
and decorrelate turbulent structures if it persists on timescales larger than a few τturb. The
reduction of Lturb can well be linked to the presence of flow shear, as will be investigated in the
following sections.

4.3 Zonal flows generation in competing turbulence
In this section, the generation of ZFs in the competing drift waves - interchange turbulence
is studied. First, we use the energy channel analysis derived Section 3.2.7. Some regimes, in
particular at large g and large C are characterized by a large flow to turbulence energy ratio. The
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flux-driven characteristics of the system proves crucial for the energy partition. Then, we delve
deeper into the generation of ZFs by looking at the Reynolds stress itself and its decomposition
into electric and diamagnetic components. The role of the diamagnetic component is essential as
it reinforces the electric component in CDW turbulence and opposes to it in interchange-driven
regimes. Advancing one step further, the components of the Reynolds stress are decomposed
into quantities that involve the fluctuation amplitude, cross-phase and turbulent flux of particles.
In the last section, the impact of the distance to marginality is discussed.

4.3.1 Flow dominated regimes at large C and g

ZFs act as a repository for the energy of the system. The more energy is stored by the ZFs, the
less is available for turbulence, hence the lower the transport. Numata et al. have shown in a
gradient-driven Hasegawa-Wakatani type of model that there was a collapse of relative energy
stored into the flows at low C [124]. Remember that C ∝ 1/νei, therefore a large collisionality
is expected to lead to a strong decrease of ZFs activity. First, we show that in flux-driven
regimes, the density gradient also adapts to the presence of flows and turbulence. Therefore, the
transition from turbulence dominated to flow dominated regimes is much less abrupt. This is in
agreement with the work done by Numata, provided one accounts for the fact that the density
gradient evolves together with the flows. A flux-driven regime then appears crucial to the study
of turbulence-flows interaction. Second, the role of the curvature parameter g is made explicit:
even at low C the system can exhibit important flow to turbulence energy ratios provided that g
is sufficiently large.

Case CDW only: the importance of the density gradient

Using the energy channels defined, Equation 3.42 - 3.45, we evaluate whether the free energy is
captured by turbulence or is stored in the flows. Flows and turbulence energy EVeq and Eturb are
coarse-grained on a few turbulence auto-correlation times. Then the rms values are computed
following Equation 4.2. To account for the possible spatial structure of the flow, we perform the
radial average on the ratio: ⟨Erms

Veq/(E
rms
Veq +Erms

turb)⟩x. The flow and turbulence energy channels
are shown in Figure 4.9b as a function of C for the case g = 0. Their energy is normalized to
the total energy of the system Etot = ENeq +EVeq +Eturb +ENeq−Veq. The flow to turbulence
energy partition ratio is displayed in Figure 4.9a. The colour of the points corresponds to the
steady-state density gradient, already shown in Figure 4.2.
The flow to turbulence energy partition ratio increases with the adiabaticity parameter, Fig-
ure 4.9a. At low C the system is dominated by turbulence with about 0.001% of the energy
stored in the flows. In the adiabatic regime, at large C, flows account for 80 % of the flow
and turbulence energy. Consistently, the density gradient increases with C. It is illuminating
to look at each channel separately. In Figure 4.9b, most of the energy variation is carried by
turbulence: it decreases by nearly two decades as C increases. Also, one can notice that the
case C = 2× 10−4 is missing on both figures. This case displays a total collapse of the flows
energy. However, it should be considered with care because the ky corresponding to the maxi-
mum growth rate is different from the one used by the simulation. It stands at the limit of the
model validity and we choose not to consider it in the following.

On the basis of these observations, we focus on the expected impact of the equilibrium den-
sity on ZF and turbulence dynamics. Although taken constant in the present simulations, the
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Figure 4.9 – Energy channels as a function of C for g = 0, case with adapted sources. (a) Flow
to turbulence energy partition ratio as a function of C with the colour indicating the absolute

value of the density gradient in log scale. Error bars represent the standard deviation of the rms
profiles. (b) Flow and turbulence energies normalized to Etot = ENeq+EVeq+Eturb+ENeq−Veq.

adiabaticity parameter C = (k∥ρs)
2ωcs/νei should actually scale like 1/Neq. High density plas-

mas are then characterized by small C values (assuming constant k∥ρs). In this case, on the
basis of Figure 4.9a, one expects a low zonal flow to turbulence energy ratio. This suggests that
the turbulent transport should increase when density increases or respectively when C decreases.
The trend is qualitatively similar to the results reported in ref.[124] but not quantitatively. More
precisely, the ZF magnitude decreases rather monotonously at large density (collisionality) and
does not exhibit the collapse reported in [124]. The reason for the difference comes from the
self-consistent evolution of Neq in flux-driven simulations. In the absence of mode-mode cou-
pling, the system has two ways to saturate turbulence: by profile relaxation (transport) and ZFs
generation. At vanishing g, the energy stored in ZFs in low C cases is minimal and the profile
relaxation is favoured. The richness of the saturation channels permitted by flux-driven simu-
lations thus leads to a less abrupt transition of the system. It should be noted that Figure 4.9a
is consistent with the ZF collapse reported in [124] provided one also moves from one density
gradient to another when decreasing C (green and red curves in fig.5 of [124]). A steep increase
of ZFs energy has also been found in gyrofluid modified Hasegawa-Wakatani simulations when
including warm ions [185]. In this latter contribution, mode-mode interactions are retained
leading to a self-consistent turbulent cascade, but the background density gradient is imposed,
limiting the liberty of the system to explore the (C,∂xNeq) parameter space.
The energy partition is modified when the interchange instability is added to the system, as
detailed in the next section.

Energy partition as a function of the dominant instability

Exploring now the full parameter space in terms of C and g one can redo the previous compu-
tation with simulations performed at fixed and adapted sources. The results are summarized in
Figure 4.10 for the cases g = 10−4, g = 10−3 and g = 5×10−3 as a function of C. Cases with
an adapted source (’fixed’ distance to marginality) are displayed with dotted lines.
The behaviour at large C is qualitatively similar to Figure 4.9 whatever the value of g. However,
the trend at low C is different. The low g case is analogous to the previous result: although
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Figure 4.10 – Energy partition between turbulence and flows as a function of C for three scans
at different values of g. Cases at constant source SN(0) = 10−4 are indicated with full lines,

those with an adapted source are shown with dotted lines.

not collapsing, the ZF energy is very low as compared to that of turbulence. When g increases,
more energy is stored in the flows up to the point of rivaling simulations at large C with about
30 % of the free energy captured. Although both large g and large C simulations share a large
flow to turbulence energy ratio, the system properties are very different. At high g, flows are
stable in time and present a clear radial structure, see Section 4.4. The cross-phase between
density and electric potential fluctuations is large leading to an important transport. At large C,
flows tend to be less stable in time. Also, the turbulence intensity is relatively low in the latter
regime, leading to a low amount of turbulent transport (comparable to the diffusive flux).
At low C, simulations with an adapted source always display a larger flow to turbulence energy
ratio. ZFs appear to efficiently store energy near marginality. We demonstrate this point further
in Section 4.3.3.
Once again it should be noted that the friction exerted on the flows −µVeq is set constant in
those simulations. However, increasing density also increases the friction coefficient. The large
amount of energy captured by the flows at large g small C, may be less pronounced if the friction
to the flows increases with density (low C). Reference [161] provides a heuristic expression for
this neoclassical coefficient. Simulations taking into account the dependence of C and µ with
density would be desirable. This density dependency has also been proven key to the modelling
of L-H like bifurcations in flux-driven simulations of resistive ballooning turbulence [146, 162].

In conclusion, a few experiments have reported the strong reduction of ZFs - or proxies for
ZFs - when approaching the density limit in L-mode tokamak plasmas [186, 187, 188]. In this
context, the ZF collapse at large density in gradient-driven simulations of Hasegawa-Wakatani
turbulence [124] has recently been put forward as a possible explanation to these observations
[125, 189]. Our simulations suggest however that, in the flux-driven regime relevant to tokamak
plasmas, this reduction of ZF could be much more gradual or even absent if g is large enough
(high magnetic field inhomogeneity experiments). Although not discarding the physics as a
possible explanation to the issue of density limit in L-mode, these new results advocate for
a renewed exploration of the link between ZF reduction and density limit in a self-consistent
flux-driven regime.
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4.3.2 Electric and diamagnetic Reynolds stress: synergy or competition
The generation of ZFs and the associated velocity shear ultimately depends on the total Reynolds
stress Πtot being the sum of two contributions: electric ΠE and diamagnetic Π⋆. While the for-
mer has been considered crucial for years [91, 89], the latter is much less studied [92, 95, 190].
Πtot being the sum of two contributions, it ultimately depends on their relative amplitude and
whether they are in phase. In this section, we study both contributions to the Reynolds stress,
with the objective to understand the two regimes leading to a large flow to turbulence energy
ratio, namely at high C and high g.
To clarify the following discussion, remember that in the Tokam1D framework, the electric con-
tribution reads ΠE = −2kyℑ(φ∗

k ∂xφk) and the diamagnetic is written as Π⋆ = −2kyℑ(N∗
k ∂xφk)

(see Section 3.2.5).

First, let us take a look at the general behaviour of Πtot through the correlation and relative
amplitude of its two contributions. In Figure 4.11, the rms-value of the total Reynolds stress is
shown as a function of C for three different values of g in cases with a constant source (left) and
with a adapted sources (right).
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Figure 4.11 – Radial average of the rms profile of Πtot as a function of C for three values of g.
(left) Simulations with constant source SN(0) = 10−4. (right) Simulations with adapted

sources.

The total Reynolds stress increases with C in most of the parameter domain. At low C, the case
at large g stands out with a large Reynolds stress that stays roughly constant until the CDW
instability takes over at C ≈ 4× 10−3. The simulations sitting closer to their linear threshold
and displayed on the right of Figure 4.11, depart from the results on the left. First, the total
Reynolds stress is smaller for the same equilibrium parameter. That is understood linearly: as
the gradient keeps increasing so does the growth rate, leading to a stronger turbulence and a
larger resulting Reynolds stress. At large C, simulations at large g display a slightly lower total
Πtot . Although the difference is small, that could indicate that g is detrimental to the generation
of flows at large C. However this effect is not recovered on the energy partition between flows
and turbulence Figure 4.10. Also note that the total Reynolds stress reduces for the three largest
values of C in the constant source cases. The reduction is linked to a decreased turbulence
intensity in those regimes (Γturb ∼ Γdi f f ).
Overall the behaviour of the Reynolds stress is in agreement with the energy partition presented
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Figure 4.10. Interestingly, the cases at fixed source present a larger total Reynolds stress, but a
smaller flow to turbulence energy ratio as compared to adapted source ones. This indicates that
turbulence intensity keeps increasing with the gradient, thus leading to larger Πtot but that flows
are not able to capture all the added energy. More details on the flow generation as a function of
the distance to marginality is given Section 4.3.3. The maximum of energy captured by the flows
most likely also depends on the imposed friction and viscosity. In particular the dissipation due
to friction increases together with the flow amplitude hence limiting their development.

To get more insight on the behaviour of Πtot , the correlation between the electric and dia-
magnetic contributions to the total Reynolds stress is shown in Figure 4.12 together with their
relative amplitude. The correlation is computed on flattened arrays (transforming a multi-
dimensional array into 1D) after a coarse-grain of 4 τturb and one Lturb, respectively the tur-
bulence auto-correlation time and correlation length. To take into account the possible radial
structure of the Reynolds stress, the radial average of the rms-values is computed after having
performed the amplitude ratio.
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Figure 4.12 – (top) Correlation between electric and diamagnetic contributions to the Reynolds
stress. (bottom) Amplitude ratio ⟨Πrms

⋆ /Πrms
E ⟩x. (left) Simulations with constant source

SN(0) = 10−4. (right) Simulations with adapted sources.

Three different behaviours are visible in Figure 4.12. The first at large C, displays the two
contributions correlated and in phase, independently of g. The second, at small C, shows the
contributions in phase opposition all the more so when g is large. Finally, the third at medium
C ≳ g, indicates that the diamagnetic contribution is dominant for CDW-driven simulations.
The amplitude ratio reaches its maximum at a value that depends on both C and the distance
to marginality. It decreases towards 1 at large C. At low C, for cases at medium and large g,
the electric contribution is dominant, even more so when the simulation is close to the linear
threshold (Figure 4.12b). The resulting behaviour of Πtot as a function of C can be summarized
as follows:

• Small C: ΠE > Π⋆, contributions in phase-opposition.
• Medium C: Π⋆ > ΠE , contributions weakly correlated.
• Large C: ΠE ∼ Π⋆, contributions in phase.
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The cases at small C and large g display a large total Reynolds stress even though the contribu-
tions are in phase-opposition because ΠE is largely dominant.

The behaviour of Πtot is consistent with the turbulence regimes elucidated in Section 4.2.3.
On the one hand, getting closer to the adiabatic regime at very large C leads to Nk ∼ φk, leading
to in-phase and roughly equal Reynolds stress contributions. On the other hand, at low C inter-
change turbulence is characterized by electric potential fluctuations being greater than density
fluctuations. This directly impacts the resulting tensors with |ΠE |> |Π⋆|.
The anti-correlation between the electric and diamagnetic components of the Reynolds stress at
low C depends on the turbulence frequency. Consider the simpler case of the density equation
3.12 at low C with no compressibility, source or diffusion:

∂tN +{φ ,N}= 0

The density equation reduces to the advection of the density by the electric drift, meaning that
the density now behaves as a passive scalar. Then, the Fourier transform on the fluctuations
reads,

N̂kω =
ω⋆e

ω
φ̂kω (4.5)

In the absence of compressibility terms, whenever C is negligible, the density and electric po-
tential are always correlated and either in phase or in phase-opposition depending on the sign
of the frequency. In Section 4.2.2, we have seen that high C cases were characterized by a posi-
tive ω⋆e/ω while interchange cases were characterized by a low or negative ω⋆e/ω . The above
calculation, implies – at least in this simplified situation – that a negative frequency leads to the
Nk and φk being in phase-opposition which then leads to the phase-opposition of ΠE and Π⋆.
From the present result, we deduce that including compressibility does not significantly change
this behaviour. Note that in ref. [95] using the gyrokinetic code Gysela for ITG turbulence, the
diamagnetic contribution is found roughly two times larger than the electric contribution with
adiabatic electrons. Also, both contributions are found in phase. The dependency on the type
of turbulence (ITG, TEM, interchange, CDW etc.) of both the respective weight of the two
components of the Reynolds stress – ΠE and Π⋆ – and of their relative phase is still a matter of
debate and active research.

One can gain some insight regarding the correlation between ΠE and Π⋆ analytically. Bearing
in mind that fluctuations can be decomposed into amplitude and phase, φk = |φk|eiϕφ

k , the electric
component of the Reynolds stress can be recast as:

ΠE =−2ky|φk|2∂xϕ
φ

k (4.6)

The diamagnetic component can be decomposed in the same way. Considering the conjugate of
density fluctuations as N∗

k = |Nk|e−iϕN
k , the tensor reads,

Π⋆ =−2kyτ|Nk||φk|
[

∂xϕ
φ

k cos∆ϕk +
∂x|φk|
|φk|

sin∆ϕk

]
(4.7)
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With ∆ϕk = ϕ
φ

k −ϕN
k the cross-phase between density and electric potential fluctuations (cf.

Equation 3.76). The first term on the right hand side is proportional to the electrostatic compo-
nent ΠE of the Reynolds stress while the second relates to the amplitude of the electric potential
fluctuations and the turbulent flux of particles. The diamagnetic tensor then reads as follows,

Π⋆ = τ
|Nk|
|φk|

cos∆ϕkΠE + τ∂x(log|φk|)Γturb (4.8)

The degree of correlation between the two components of the total Reynolds stress ultimately
depends on the relative weight of the second term with respect to the first. If it is negligible,
then the two tensors are well correlated. In this situation, cos∆ϕk then determines the sign of
the phase coupling, i.e. whether Π⋆ and ΠE are in or out of phase.
The real and imaginary parts of τNk/φk which correspond respectively to cos∆ϕk|φk|/|Nk| and
sin∆ϕk|φk|/|Nk|, are shown in Figure 4.13 for the constant source case. The linear estimate of
these quantities obtained by considering no flows or density profile curvature is shown in dotted
lines.
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Figure 4.13 – Real (a) and imaginary (b) part of ratio τNk/φk for three scans as a function of C.
Simulations performed with a fixed source SN(0) = 10−4.

Once more, the linear analysis estimate is close to the nonlinear fluctuation ratio even though the
analysis is performed without including flow or shear. Consistently with Equation 4.7, the real
part of the fluctuation ratio is negative at low C, indicating the two tensors in phase opposition.
It becomes positive when C increases and roughly equals unity for large C values in agreement
with ΠE ∼ Π⋆. Similarly, Figure 4.13b displays a low value of ℑ(τNk/φk) at both low and
large C leading to a good correlation between the two contributions. The case (C,g) = (2×
10−4,10−4) stands out for its very low level at ℑ(τNkφk) ≈ −8. This case is peculiar: as
previously mentioned it yields very small levels of turbulence and the poloidal wavenumber
leading to the maximum wavenumber is shifted (ky(γmax) ≈ 0.15 instead of ky = 0.3). It is
possible that this case is beyond the limit of the model validity.

From the linear analysis in the general 2d case, we identified a small region at large g where
it is possible to have a positive frequency (electron direction) even though the turbulence is
interchange-driven. In practice, this case did not occur in our simulations. This region of the
parameter space would lead to the correlation of the two contributions to the Reynolds stress
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even in the interchange regime. This phenomena can also occur in ITG-driven turbulence, where
a small growth rate can exist such that the phase velocity is in the electron direction [53].
One can also remark that the results bear some similarities with recent work of P. Ivanov [190].
In the developed ’ITG’ model, C = 0 and the compressibility terms are neglected such that
the temperature behaves as a passive scalar. In turn, ΠE and Π⋆ can either be in phase or in
phase-opposition (cf. Equation 4.5). In [190], ℜ(Tk/φk)< 0 is observed for all unstable modes,
consistently with Tokam1D at low C. The sudden transition from phase opposition to in-phase
observed in [190], is understandable in this framework.

In this section some characteristics of the total Reynolds stress Πtot have been unraveled. It
has been shown that it ultimately depends on the turbulence regime through the correlation and
relative amplitude of its two contributions: electric and diamagnetic. Let us summarize the
lessons learned on the synergy and competition between the electric and diamagnetic compo-
nents of the Reynolds stress.

1. Πtot = ΠE +Π⋆, is important at both large g and C. The first case yields more intense
turbulence.

2. ΠE and Π⋆ anti-correlate at low C and correlate at large C. ΠE and Π⋆ are in phase
opposition at low C (interchange dominated) whereas they are in phase at large C. This
behaviour is directly linked to the density and electric potential fluctuations that start to
align in phase as C increases.

3. Π⋆ dominates for a large part of the parameter space: especially when the interchange
drive is low.

4.3.3 Distance to linear and nonlinear threshold

Here, the objective is to compare two simulations that share the same flows to turbulence energy
partition but have different control parameters and hence different linear properties. The first,
standing at large C = 2×10−2 and small g = 10−4, is dominated by drift waves. The second, at
large g= 5×10−3 small C = 4×10−4, is driven by interchange instability. Their relative energy
partition are shown in Figure 4.10: both have around 35 % of their free energy stored in the
flows. They differ in their radial structure: the latter is highly structured with very stable flows.
The former is an intermediate case with meandering staircases where merging and splitting
events occur.

To vary the distance to threshold, the source is slowly lowered ensuring that the simulation
reaches a steady state at each step. When reducing the source, the simulation comes closer to
its nonlinear threshold, until turbulence is lost. So as to monitor the amount of ’turbulence’, the
ratio between the turbulent and diffusive fluxes is computed together with the flow-turbulence
energy partition. The result is shown in Figure 4.14, as a function of the distance to the linear
threshold ∆lin defined as:

∆lin =

∣∣∣∣∣∂xNeq −∂xNcrit
eq

∂xNcrit
eq

∣∣∣∣∣ (4.9)
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The horizontal errorbars account for the corrugation of the equilibrium density gradient, the
vertical errorbars indicate the standard deviation for each dataset.
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Figure 4.14 – Relative turbulent flux Γturb/Γtot , energy partition EVeq/(EVeq +Eturb) and
distance to linear threshold as a function of the source Sn. (a) For a case without staircases,

g = 10−4, C = 2.10−2. (b) For a case strongly structured, g = 5.10−3, C = 4.10−4.

As the simulations get closer to the linear threshold, the turbulence intensity decreases and
so does Γturb/Γdi f f : turbulence accounts for a lower part of the total transport. There is a
difference in stiffness for drift wave and interchange turbulence, the latter leading to a much
larger turbulent flux of particles just above its threshold. In both figures, the nonlinear threshold
is very close to the linear critical gradient. No significant upshift is found [191, 190]. However,
the simulations being flux-driven it is very difficult to define properly the gradient and the
threshold [192]. Since the profile can be corrugated, larger gradients can occur locally and
produce turbulence even though the averaged profile is below the linear threshold.

Interestingly, the case at large g in Figure 4.14b presents an increased flow to turbulence en-
ergy ratio as the threshold is approached. That is in agreement with Figure 4.10: in interchange
turbulence the flows are better at keeping the energy close to the threshold.

To sum up, in this section the flow generation has been studied as a function of parameters
C and g leading to drift wave and interchange turbulence. Conversely to previous results, zonal
flows are not found to collapse at very large density (small C). Instead, the flux-driven system
allows the density gradient to adapt to the source leading to a more gradual transition from flow
dominated (large C) to turbulence dominated regimes (small C). Additionally, another flow
dominated regime has been found for large values of the curvature parameter g. The two regimes
have been further analysed in terms of Reynolds stress. The role of the diamagnetic contribution
has been shown crucial and even dominant in the drift wave regime. Also, the correlation
between the electric and diamagnetic contribution appears more clearly, in part thanks to the
linear analysis. Large C regimes lead to a correlation of the two tensors and thus to very large
values of Πtot . In the interchange dominated regime (small C large g), the two contributions are
in phase opposition but the electric contribution is highly dominant. As a consequence, the total
Reynolds stress stays at a high level. Finally, the distance to linear threshold has been shown to
matter. In particular in interchange dominated turbulence: when getting closer to the threshold,
the flow to turbulence energy ratio increases. The interchange also appears to be more stiff: a
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slight departure from the critical gradient leads to large amount of turbulent flux.

Now that regimes leading to important zonal flows have been elucidated, some questions
remain. In particular, the conditions leading to their radial structure is still an open question.
In the following section, we study the radial structure and staircase formation in the parameter
space of C and g.

4.4 Radial structure & staircase formation
Zonal flows are generated nonlinearly by the two components of the Reynolds stress [91]. These
sheared flows then regulate turbulence and the underlying transport. The determining factor is
not only the amplitude of the flows, but whether or not they are organized into well defined
sheared layers [106, 127]. A strong shear is expected to tilt and elongate turbulent structures,
leading to their decorrelation, provided that the shear persists longer than the lifetime of the
turbulent eddies [19].

In Figure 4.15 are presented four different velocity patterns as a function of time and radial
coordinate for different values of C and g. Each case is taken when profiles have reached steady
state. The two top cases are computed for simulations with a fixed source. The bottom cases
(c) and (d) have a ’fixed’ distance to marginality and therefore an adapted source. Remember
that the radial electric field presented here oscillates around zero. This is a result of neglecting
radial force balance equilibrium that would otherwise add a contribution due to the ion pressure
gradient. Adding this for a negative density gradient would lead to a globally negative ⟨Er⟩ such
as observed in experiments.
In all simulations, ZFs are active and prove crucial to mitigate turbulence. When the flows
are artificially switched off by removing the Reynolds stress drive (ΠRS = 0 in Equation 3.33),
a large, system-size radial mode develops. In those cases, the system enters a quasi-periodic
regime where a large density gradient builds up and relaxes through a strong transport event.
An example of this dynamics is presented in Section C.1. When flows are present, they can
be radially structured and stable, as in Figure 4.15b and Figure 4.15d, or intermittent as in
Figure 4.15c. For the other cases, such as Figure 4.15a, the system exhibits an intermediate
level of structuring characterized by meandering, splitting and merging events. An example of
splitting appears in case (a) at x = 175 with a fork-like pattern. Merging also occurs on case (a)
at x = 50.
The dynamics depends on both the adiabatic and the curvature parameters. At low C and g,
the system develops smooth structures that evolve slowly. At large C or g, the dynamics of
turbulence and flows get faster. In Figure 4.15c, diagonal stripes are visible. They are associated
to avalanche-like ballistic transport events of particles (cf. Section 4.5.1). It was reported
that staircases can act as micro-barriers for these avalanches, efficiently limiting their radial
extension [127]. In general, the flows can either stop the avalanches or, if the avalanches are
strong enough, they can cross the shear layer, perturbing it in the process. In the observed cases,
when the flows are radially structured, they always manage to recover their radial structure
after an avalanche. In some cases, avalanches may even reinforce the staircase structures, see
Section 4.5.2.
Importantly, it is found that the radial size of the zonal flow is an emergent property independent
of the box size Lx. For simulations performed at very low Lx ≈ 10, a single zonal flow can fill
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(a) (b)

(c) (d)

Figure 4.15 – Examples of equilibrium (zonal) velocity Veq =−⟨Er⟩ at steady state. (a)
(C,g) = (10−3,3×10−4). (b) (C,g) = (10−3,10−2). (c) (C,g) = (5×10−2,0). (d)

(C,g) = (5×10−1,0). Cases (a) and (b) are computed with a fixed source SN(0) = 10−4. (c)
and (d) are computed with an adapted source, respectively SN(0) = 1.1×10−4 and

SN(0) = 4.35×10−4.

up all the simulation domain.

Why some cases yield structured flows and some others do not is still an open question. Some
trends however emerge. Very large values of C lead to a structured flow pattern, in particular
when the density profile is close to marginality: that is the case of Figure 4.15d displaying wide
structures. Large values of g also lead to a structured flow pattern with narrower structures. The
stabilization and localization of flow patterns at large g is a salient feature in Tokam1D simula-
tions. The next section is dedicated to it.
Additionally, the role of two quantities should be noticed. First, the distance to marginality:
close to the linear threshold, some degree of radial structuring is observed in most of the param-
eter space. This is developed in the next section. That should be nuanced given that the most
structured flows are obtained for cases such as Figure 4.15b, far from threshold. The distance
to marginality has already been deemed important for staircase formation [106, 107]. Second,
the turbulence and flow damping: a greater stability in time of the flow pattern is obtained when
the dissipation coefficients on fluctuations (D1,ν1) are large. An example of a simulation with
different values for (D0,ν0) and (D1,ν1) is detailed in Section C.2. Finally, the interaction with
the avalanches is often sometimes put forward as a possible mechanism for staircase generation
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[127]. It will be shown in Section 4.5.2, that passing avalanches can actually reactivate the
standing ZFs structures by transferring them energy.

4.4.1 Zonal flows structure into staircases in interchange dominated
plasmas

In order to study the spatial structure of the velocity, one can use their energy spectral density,
SV (kx), computed from the radial Fourier transform of the equilibrium velocity. As presented in
Figure 4.16, it provides a good proxy to identify the flows radial structure and size. The radial
Fourier transform V̂eq(kx, t) is computed for N = 100 independent time samples that are then
averaged: SV (kx) = ∑|V̂eq|2/N. The spectra are shown in Figure 4.16 for different values of g.
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Figure 4.16 – Energy spectral density of the equilibrium velocity as a function of kx for
different values of interchange parameter g. Each spectrum is the average of 100 independent
spectra. (a) Simulations using constant source SN(0) = 10−4. (b) Simulations using adapted

sources.

Two groups of simulations can be distinguished in Figure 4.16 similarly to already shown in
Figure 4.5. The group at low g, dominated by CDW instability and the group at large g domi-
nated by interchange instability.
The first one, from g = 10−4 to 10−3 exhibits a broad extremum around kx ≈ 0.015. There is
little contrast among the different curves: their amplitude and decay are qualitatively similar.
The second group, for g > 10−3, exhibits a larger spectral density than the first one. In this
group, the spectrum amplitude now varies with g and gets larger at both low and large kx. For
fixed source, Figure 4.16a, a peak appears and the maximum slightly shifts from kx ≈ 0.02 to
kx ≈ 0.032 as g increases. The simulations at adapted source always display a peak, although
slightly less prominent.
The first group corresponds to unstructured flows. The peak is relatively low and broad, mean-
ing that the size of the velocity structures is roughly of the order of 60 ρs. The second group
yields a higher spectral density, indicating that the amplitude of the flows is larger as g increases.
Moreover, the appearance of a peak in the spectrum indicates a clear structuring of the velocity
pattern for g > 10−3. Structures have a size between 50 and 30 ρs and are slightly thinner at
large g. However the change in width is small, with only about 70 % change on kx when g is
increased by a factor 30. Simulations closer to marginality (adapted source), always display
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some degree of radial structuring. In most cases the flows are very stable at the exception of
very small g where some merging and splitting events occur.

Simulations presenting a radial structure in ZFs lead to staircases in the form of steps in the
density profile. This is illustrated in Figure 4.17 for case (C,g) = (10−3,10−2). The equilibrium
density and velocity are plotted as a function of X for t = 1.985×106. The effective diffusivity
De f f = −Γturb/∂xNeq is shown Figure 4.17b. To remove small scale effects, both profiles are
coarse grained on ωcst = 3×104.
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Figure 4.17 – Equilibrium velocity shear ∂xVeq and equilibrium density gradient |∂xNeq. (b)
Equilibrium velocity shear and effective diffusivity De f f =−Γturb/∂xNeq. Both are averaged

on ωcs∆t = 3×104 around time ωcst = 1.985×106 and taken from the case
(C,g) = (10−3,10−2) with constant source.

The velocity shear oscillates around zero in an almost symmetric pattern. The density gradient,
in red (squares), is always negative, as a result of the particle source located at x = 0. When
the velocity pattern is stable in time, the density profile is modulated by the shear so that large
(in absolute value) density gradients are located at velocity shear extrema, independently of the
sign of the shear. This corresponds to ’steps’ in the density profile commonly described in stair-
case regimes [106, 107]. Also, the local effective diffusivity De f f exhibits local minima where
the flow shear is maximum, although in a less systematic way. Seemingly, micro-barriers of
transport are generated in location of large shear.
From these results only, we expect that the micro-barriers observed in the presence of staircases
lead to a better overall confinement. However, it will appear in Section 4.5 that properly renor-
malizing simulations to unveil the effect of flows on the global confinement is a difficult task
and one should refrain from making hasty conclusions.

It is interesting to note that in reduced models, such as Tokam1D or Hasegawa-Wakatani, the
generated zonal flows have a sinusoidal pattern see for example refs.[124, 193, 194, 185]. There-
fore, the distance between the staircase steps is similar to the size of the velocity structures. In
more complex models, including flux-driven 5D gyrokinetic codes such as Gysela, the distance
between staircase steps is larger than the steps themselves and closer to the avalanche size ≈ 40
ρs [106]. A possible explanation is the lack of q-profile and mode localization effects such as
discussed in Section 3.6. Including this, one could expect the turbulence, when dominated by
instabilities favouring k∥ ≈ 0, to localize on rational surfaces and then to generate zonal flow
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structures accordingly. This has been hinted at experimentally on the TJ-II stellarator [136].
Finally, one can mention the interesting model – based on the wave kinetic equation accounting
for the dynamics of drift waves coupled to an equation governing the zonal flow dynamics – pro-
posed by Garbet et al.[195] where different shapes of staircase patterns can be obtained. There,
it is found that staircases result "from the interaction between propagating wave packets (un-
derstood as avalanches) and waves that are trapped in zonal flow velocity wells". The detailed
characteristics of the staircases (amplitude, shape and periodicity) are determined by those of
the background fluctuations, notably their spectra and growth rates. In particular, structured
zonal flows appear to exhibit non-sinusoidal radial profiles, peaked at their maxima (located at
the O-points of the islands that trap the drift waves in their phase space), when the growth rate
of the drift waves is maximum at vanishing radial wavenumber.

To sum up, zonal flows are found to be radially structured in near-marginal, interchange
driven plasmas. For all studied cases, a stable and radially localized flow shear always leads
to staircase steps in the density profile. The sign of the zonal shear does not matter in this and
the density steps follow the flow sinusoidal pattern. Usually, although not systematically, this is
associated with the formation of a micro-barrier of transport in the form of a reduced effective
diffusivity.

4.4.2 Staircase nucleation: critical role of the cross-phase

Staircases are robust structures. We have found that they always manage to recover after a
perturbation. Here, we look at the nucleation of a staircase when restarting a steady-state simu-
lation after having smoothed out the corrugation in Neq and Veq and damped out the fluctuations
Nk, Ωk. The system then has no memory of the past structures. The nucleation of the flow pat-
tern is shown in Figure 4.18 for simulation (C,g) = (5×10−4,0). The steady-state turbulence
case continues until t = 3×104 where the structures are removed. The black rectangle indicates
the time window of the nucleation process which is studied in the following.
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Figure 4.18 – (a) Equilibrium velocity after being smoothed out at t = 3×104. The nucleation
part is indicated with dotted lines. (b) Evolution of the equilibrium density as compared to its

value at the restart: Neq −Neq(t = 3×104).

Upon restart, at t = 3×104 in Figure 4.18, the equilibrium density gradient is above the linear
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threshold. Therefore, instability and flows appear directly on the whole domain after a short
growth time. Qualitatively, a similar staircase structure is recovered. However, there is about 7
structures in Figure 4.18, as compared to the initial 9 structures.

Focusing on the nucleation of a particular staircase step located at x = 123, indicated with a
vertical dashed line on Figure 4.18, the time evolution of the flows and Reynolds stress at this
location are shown in Figure 4.19 as a function of time.
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Figure 4.19 – Energy of the equilibrium flow, total Reynolds stress and its components as a
function of time for x = 123.

An exponential growth of both electric and diamagnetic components of the Reynolds stress is
observed. The flow results from a secondary instability [89] and is governed by the Reynolds
stress components. For this simulation, both components of the Reynolds stress are important
for the generation of the flows, with the diamagnetic one being slightly larger at initial times.

The dynamics of the phase is essential in the generation of both components. Bearing in
mind that fluctuations can be decomposed into amplitude and phase, φk = |φk|eiϕφ

k , the electric
component of the Reynolds stress can be recast as:

ΠE = ⟨ṽExṽEy⟩=−2ky|φk|2∂xϕ
φ

k (4.10)

The divergence of the Reynolds stress, ∂xΠE is understood as a Reynolds force. Using the above
decomposition one looks at the logarithmic derivative of ΠE ,

∂xΠE

ΠE
=−2ky

2∂x|φk|
|φk|

+
∂ 2

x ϕ
φ

k

∂xϕ
φ

k

(4.11)

ΠE is displayed in Figure 4.20a together with its decomposition. The Reynolds force is detailed
in Figure 4.20b.
In Figure 4.20a, it appears that both the amplitude and the phase are important for the growth
of ΠE . When computing the Reynolds force, Figure 4.20b, the phase itself dominates the
dynamics. The key role of the phase was already pointed out in [196] and in [95]. It shows that
it is essential for a reduced model to self-consistently compute the amplitude and phase as they
both play a role in the generation of flows.
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Figure 4.20 – Electric Reynolds stress decomposition as a function of time for x = 123. (a)
Reynolds stress. (b) Logarithmic derivative of the Reynolds stress, relating to the Reynolds

force. The phase jumps have been removed by "unwrapping" the phase in the post-processing.

4.4.3 Importance of the flux-driven regime for staircase dynamics

The energy transfer between equilibrium density and flows associated with profile relaxation
appears to be a crucial mechanism for the staircase formation and sustainment. In this section,
to assess the importance of these mechanisms, we artificially prevent any profile relaxation by
fixing the density gradient. We perform a restart of a steady-state flux-driven (FD) simulation
in a gradient-driven (GD) framework. It should be emphasized that it is a ’hard’ GD framework,
meaning that the equilibrium profile is completely frozen in time and not just its two end values.
The second option would allow for corrugations while maintaining a constant ’mean’ profile.

We choose the case (C,g) = (5× 10−4,0) and continue the simulation while fixing the gra-
dient. The equilibrium density profile at restart is smoothed so that corrugations are mainly
absent. In Figure 4.21, the equilibrium velocity Veq is shown as a function of space and time.
The smoothed density profile and its radial derivative are displayed on the right side of Fig-
ure 4.21. The first half of the simulation is the steady state FD simulation. At t = 3×104, Neq
is smoothed using a Savitzky-Golay filter of order 3 on a 301 points window size. The second
half of the simulation corresponds to the GD regime using the smoothed density profile.
Figure 4.21 shows that the flows exhibit roughly the same amplitude in both FD and GD set-
tings. However, their radial structure is very different. The chosen case is radially structured
in the steady-state FD case, while the GD regime is characterized by the absence of layering.
The flow layers are still present just after the restart but this configuration cannot be sustained
in the GD regime. These observations suggest that the system – at least in the regimes explored
– must be able to store energy in the density (pressure) profile in addition to the flows in order to
develop well-localized flow layers. In other words, the staircase structure requires two critical
ingredients: localized shear flow layers in association with large density (pressure) gradients,
which appear to reinforce each other. The loss of one of these ingredients seems to prevent the
appearance of the whole structure. In the GD regime, the density gradient is frozen in time so
that this mechanism is absent. This symbiotic relationship between flow layers and pressure
corrugations appears to be instrumental in the staircase dynamics.

The electrostatic potential fluctuations, plotted in Figure 4.22a, exhibit a slightly larger mag-
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Figure 4.21 – (a) Equilibrium velocity from gradient driven restart of steady-state simulation at
C = 5×10−4: switch from FD to GD is made at t = 3×104. (b) Density gradient and its
radial derivative before and after the gradient driven restart. The density profile before the

restart is taken at t = 2.9×104.

nitude in the GD regime as compared to the FD regime. Also, their dynamics looks similar to
the one of the equilibrium flow in the GD regime, from t = 3.104 onwards. In particular, the
radial distance of avalanche propagation is much larger in the GD regime, sometimes reaching
almost the system size.
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Figure 4.22 – (a) Electric potential fluctuations for the gradient driven restart of the steady-state
simulation C = 8 10−4. (b) Radial derivative of electric potential fluctuations phase.

The presence of avalanches itself may appear surprising. Indeed, avalanches are often under-
stood, by analogy with sandpiles, as resulting from a domino-like effect [72]: a localized strong
flux tends to flatten the profile locally and steepens it on both sides due to conservation laws.
The strong gradients on both sides then lead to strong local fluxes, further leading to local flat-
tening. The process can repeat over long distances, resulting in the formation of voids and
bumps that propagate radially up and down hill, respectively. Local profile relaxation then ap-
pears to be key to the whole dynamics. In GD simulations where the density gradient is frozen
in time, this mechanism is absent and cannot therefore explain the existence of avalanches on
Veq. Interestingly, it appears that the magnitude of the electric potential fluctuations |φk| and its
phase gradient ∂xϕ

φ

k exhibit an avalanche dynamics, as can be seen in Figure 4.22b. They both
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govern the electric component of the Reynolds stress, Eq. 4.10. It is so far unclear whether
one or the other – or both – is the main drive for the dynamics of Veq, the other quantity being
slaved to it via the back-reaction of the flow shear. Note that both terms, the phase gradient and
the fluctuation magnitude, are contributors to the turbulent energy. Therefore, discriminating
one scenario with respect to the other is not obvious solely from an energetics standpoint. This
remains an open issue for future works.

One could argue that flow structure formation also occurs in some GD models. That is true
for ’soft’ GD where the pressure profile can corrugate. However, as it already appeared in the
previous sections, the full FD description is crucial for the system’s energy partition. Indeed,
the system adapts its density gradient when the values of C and g are scanned.

4.5 Impact of turbulence & flows on transport and confine-
ment

Ultimately, the generation of zonal flows is crucial for a fusion machine because they mitigate
the turbulent transport [103]. Two mechanisms are at play: being a sink of energy for the
turbulence [21] and inducing a shearing [19, 91]. In particular, the existence of radially localized
time stable shear layers of flows is expected to lead to a better confinement [106]. However, the
transport itself is also complex and self-organizes into various structures. For Tokam1D in the
confined region, we know from the linear analysis that the growth rate is maximum for the
lowest values of kx accessible by the system. As a result, turbulence tends to develop into
radially-extended vortices, often called streamers, that mix large portions of the plasma [18].
The flow shear is instrumental in breaking those extended structures into smaller cells.
Transport also exhibits complex structures in the form of avalanches: almost ballistic transport
events of heat and particles. A transport barrier resulting from a large shear could possibly stop
the transport event [197] but the role of micro-barriers in the form of staircases is still debated.
In this section, the transport is analysed in the drift wave and interchange regimes. It is shown
that the confinement largely depends on the control parameters C and g. Then, the role of
avalanches is analysed. They prove to be of importance both as a mean to carry particles and as
a quantity that interacts with the dynamical zonal structures. Finally, the influence of staircases
on transport is assessed.

First, let us analyse the confinement in a statistical sense by looking at the confinement time
of particles (Equation 4.1) and the ratio of turbulent to diffusive fluxes of particles. Both quanti-
ties yield a similar information since a better confinement is obtained when the diffusive flux of
particles accounts for a larger part of the transport. Actually, the theoretical ’maximum’ of con-
finement achievable is the one with no turbulence, hence Γturb ≈ 0 and ∂xNeq ≈ ∂xNdi f f

eq . Both
τp and ⟨Γturb/Γdi f f ⟩x provide complementary information, as well as simulations performed
with constant or adapted sources.
The confinement time τp is related to the steady-state density profile and the source. If the latter
is constant, τp is mostly governed by the distance to the linear threshold [72]. If the source
is adapted, then the simulation is renormalized and the ability of the system to depart from
marginality, i.e. whether it is stiff or not, plays a key role. The turbulent to diffusive flux ratio
and confinement time are displayed in Figure 4.23.
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Figure 4.23 – Confinement properties of the system as a function of C for three values of g. (a)
Radial average of the rms turbulent to diffusive flux ratio. (b) Confinement time of the

particles τp. Simulations with a constant source are shown using full lines, those with an
adapted source are displayed with dotted lines.

Three elements are key for the confinement: the linear threshold, the stiffness and the forcing.
The forcing is not exactly equal to the source itself, it also depends on the critical gradient.
Indeed, the source sets the diffusive gradient (profile in the absence of turbulence). Then, the
forcing can be considered as the difference between the critical and the diffusive gradient. If
the diffusive is below the critical, no instability arises and the forcing vanishes.2 Therefore,
simulations at constant source have a forcing that varies with the control parameters whereas
simulations with an adapted source have a constant forcing. The difference in the confinement
time for simulations at constant and adapted source is understood by a difference in forcing,
mainly for the cases at low C that have a lower critical equilibrium density gradient. Also, as
the distance to threshold is increased, the growth rate increases leading to larger turbulence and
transport. It follows that simulations that are more ’forced’ or further from threshold exhibit a
lower confinement and larger normalized turbulent flux.

In Figure 4.23b, the confinement time increases with C for two main reasons: the critical
gradient increases with C (cf. Figure 3.10) and the stiffness reduces with C. The threshold is
also larger at small C, small g, leading to an increased confinement.
The same behaviour is recovered on the turbulent flux. It depends on the amplitude and cross-
phase of the density and electric potential fluctuations. A large growth rate tends to produce
higher fluctuation amplitudes which increases the turbulent flux. At large C, the growth rate
(Figure 3.8b) and cross-phase becomes small (Figure 3.9c), such that the turbulent transport is
largely reduced Γturb ∼ Γdi f f .

In the following sections, we will unveil some of the physical mechanisms behind the be-
haviour of Figure 4.23 and attempt to look past the linear to delve deeper into the nonlinear
behaviour. In the next section, the transition from mixing-like to avalanche-like transport will
be explicited. Then, one will show how these avalanches interact with zonal flows. Finally, we

2Consider two simulations with different critical density gradients, the first threshold being much lower than
the second. If the source used for both simulations is the same, then the first simulation will tend to be more forced.
Consequently, if both systems have a similar stiffness, the first may exhibit a larger confinement.
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normalize the confinement time to understand whether staircases lead to a better confinement.

4.5.1 Transition to avalanche-like transport at large g

The turbulent transport displays different dynamics when instability parameters are varied. In
particular it is shown to transit towards avalanche-like transport when increasing g at fixed C.

Choosing the cases (a) and (b) of Figure 4.15, we plot the turbulent flux of particles as a
function of X and T Figure 4.24 with a low g = 3× 10−4 on the left and a large g = 10−2 on
the right.
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Figure 4.24 – Examples of turbulent flux of particles Γturb =−2kyℑ(Nkφ∗
k ) at steady state. (a)

(C,g) = (10−3,3×10−4). (b) (C,g) = (10−3,10−2). Both are computed with a fixed source at
SN(0) = 10−4.

At larger g, the turbulent flux of particles displays diagonal stripes across large portions
of the simulation domain. Those correspond to ballistic transport events of particles resem-
bling avalanches. Note that as stated in the introduction of the section, the information of the
avalanche travels both in and outwards while the flux is always positive, i.e. the transport of par-
ticles is always outwards of the domain. Actually, it is possible to check on the density profile
whether there is a propagation of voids and bumps by plotting Neq(x, t)−⟨Neq⟩t(x), this is done
in Figure 4.25 for the case (C,g) = (10−3,10−2).
The diagonal stripes still appear clearly. This time, events travelling to the right hand side are
positive perturbations (bumps) while events travelling to the left are negative (voids). The basic
mechanism of avalanche propagation presented in Figure 2.11 is recovered.

The avalanche-like pattern presented above occurs in the simulation presenting a highly struc-
tured flow (Figure 4.15 (a and b)). In the observed simulations, when the zonal flows are struc-
tured, there is always an avalanche-like dominated transport. The avalanches are also visible
directly on the flow pattern, as they perturb it when propagating across. more details regarding
the interaction with flows are given in the next section.
Note also that the two cases presented Figure 4.24 are at both ends of the g-scan. The inter-
mediate values of g lead to intermediate behaviours with avalanches that propagate on smaller
parts of the domain. Avalanches can also be studied statistically by computing the skewness and
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Figure 4.25 – Propagating avalanches on the density profile, case (C,g) = (10−3,10−2) with
constant source SN(0) = 10−4.

kurtosis: respectively third and fourth moments of their probability distribution function (pdf):

S(X) = E

[(
X −µ

σ

)3
]

; K(X) = E

[(
X −µ

σ

)4
]
. (4.12)

These functions measure respectively the pdf asymmetry and width (weight of the tails). For a
Gaussian statistics, S = 0 and K = 3. In the present case, avalanches are radially extended and
’rare’ events. Therefore, we expect them to lead to important values for skewness and kurtosis.
Both pdf quantities are plotted against each other in Figure 4.26 for the g-scans. Simulations
with a constant source are indicated in red (left), the ones with adapted sources are in blue
(right).
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Figure 4.26 – Probability distribution function of the turbulent flux for simulations at constant
(a) and adapted (b) sources as a function of g. All the simulations are computed for C = 10−3.

Statistics are computed at each radial position.

The kurtosis increases with the skewness in an almost polynomial way. Interestingly, the rela-
tion between kurtosis and skewness is similar to the one reported in experiments [198]. Also,
both the skewness and the kurtosis are shown to increase with larger values of g, displaying
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a more skewed and deviated pdf. Note that this behaviour is not universal, see for example
ref.[154]. Overall, the avalanches account for a larger part of the statistics as g is increased and
as the system is far from the linear threshold.

4.5.2 Reactivation of zonal flows by passing avalanches
As stated in the previous sections, staircases are observed at large g together with avalanches.
When large enough, the avalanches rip through the standing zonal flow structures perturbing
them in the process. To get more insight on the interaction between flows and avalanches,
we use Figure 4.15 and plot on top of it the 90 % quantile of the turbulent flux presented in
Figure 4.24. In other words, we add the largest events of the turbulent flux of particles. The
result is shown in Figure 4.27.
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Figure 4.27 – Example of flows as a function of X and T with super-imposed 90 % quantile of
the particle flux. (a) (C,g) = (10−3,3×10−4). (b) (C,g) = (10−3,10−2). Both with constant

source SN(0) = 10−4.

On the left hand side, their size is comparable or smaller to the structures themselves. They are
sometimes associated with the modification of the topology of the staircases, including splitting
(X ∼ 340, T ∼ 3.586×106) and merging (X ∼ 70, T ∼ 3.585×106). On the right hand side the
events are powerful enough to travel through zonal structures.

More importantly, ZFs interact with passing avalanches. Taking the right hand side case, we
plot both the turbulent flux and the equilibrium velocity at position X = 305 as a function of
time. The result is shown in Figure 4.28.
The established flow decays exponentially due to the imposed collisional friction. Whenever
an avalanche passes through the layer, it reactivates the structure by giving it energy. On this
example, the flow is maintained solely due to the passing avalanches event. This generation
mechanism has been considered in ref.[199] for a Hasegawa-Wakatani model and in ref.[127]
for a different model. In the latter contribution, the key element is to consider a delay between
the instantaneous and the mean heat flux thus leading to "jams" of heat flux waves.

4.5.3 Do staircases improve confinement?
In this section we normalize both the turbulent flux and the confinement time of particles in
order to find whether the radial structure of ZFs, namely staircases, play a role in improving the
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Figure 4.28 – Reactivation of an existing zonal flow structure by passing avalanche. Spatial
slice of case (C,g) = (10−3,3×10−4) with constant source taken at X = 305.

global confinement. Since the confinement properties of the system largely rely on its linear
properties, cf. Figure 4.23, the issue ultimately involves finding the proper normalizations so as
to extract information on the role of nonlinear structures of the flows on confinement.

Normalizing the particle confinement time

The particle confinement time is normalized using a linear estimate so as to remove the role of
the linear growth rate and cross-phase. In the framework of the mixing length theory, simula-
tions with a large growth rate lead to a large turbulent transport. The linear cross-phase is also
used in the estimate to account for the efficiency of the turbulent transport. The linear estimate
then reads,

τML =
k2

yL2
x

−γk sin∆ϕk
(4.13)

With Lx the radial size of the simulation, γk the growth rate and ∆ϕk the cross-phase between
density and electric potential fluctuations. The minus sign comes from the fact that a negative
sin∆ϕlin leads to an outwards turbulent flux Γturb.
Remember that the linear quantities γk and sin∆ϕk are computed without taking into account
profiles corrugations. Corrugations might be important for simulations that include staircases.
If corrugations were considered, it would lead to a larger estimation of γk – large gradient zones
leading to large growth rate – and would reduce the mixing-length estimate.

In the situation where the growth rate or the cross-phase vanishes, the mixing length es-
timate for the confinement time diverges as no transport is expected. Instead, we choose
τL = min(τML,τdi f f ) with τdi f f =

∫
Ndi f f

eq dx/
∫

SNdx the maximum confinement achievable in
a Tokam1D simulation. The particle confinement time normalized by the linear estimate is
shown in Figure 4.29 as a function of C and g. The normalization is performed on cases with
an adapted source so that the forcing is the same across the parameter space.
The trend is different from the non-normalized τp (Figure 4.23b). Simulations leading to the
largest τp/τL are those at large values of g. The normalized confinement time also increases
with C at low and medium g but then reaches a plateau. The normalized confinement time is
consistent with the flows energy and radial structure analysed in the rest of the chapter. Flow
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Figure 4.29 – Normalized particle confinement time τp/τL. (a) As a function of C. (b) As a
function of g for C = 10−3. Both for simulations with an adapted source SN(0) = 10−4.

dominated regimes are found at both large C and large g, with the latter favouring radially struc-
tured flows. This normalization supports the conclusion that flows, and in particular radially
structured flows, lead to a better overall confinement. It should be kept in mind that the values
explored for the g parameter are large and hardly reached in experiments (Table 3.3). Therefore,
we do not expect quantitative agreement with experiments. However, qualitative trends should
be recovered.

We also made an attempt at normalizing the quasi-linear flux of particles in Section C.3. The
method consists in estimating the flux of particles with the electric potential fluctuations and the
linear relation between density and electric potential fluctuations, Equation 3.75. The electric
potential fluctuations are Fourier transformed in both time and space. A turbulence broadening
is considered in the form of a Lorentzian when integrating the electric potential fluctuations on
the frequencies. However, the method proves unsatisfactory because it largely depends on the
choice made for the frequency broadening parameter.

To summarize this section, the confinement time of the particles in Tokam1D depends on
three main parameters: the linear threshold, the stiffness and the forcing. Performing simula-
tions at an adapted source allows us to compare the parameter space while forcing the simula-
tion similarly. The confinement is shown to decrease for low values of C and large values of g.
This is understandable in a linear framework: low C leads to a larger sinus of the cross-phase,
hence a more efficient transport. Large values of g usually imply large growth rates. Addi-
tionally, the transport is shown to be dominated by avalanche-like events when g is increased.
Although those ballistic transport events are considered detrimental for the confinement, they
also reactivate zonal flows by giving them energy while crossing the radial domain. Finally, by
normalizing the confinement time, we manage to remove the role of the growth rate and the sine
of the cross-phase. By doing so, staircases are observed to improve the confinement.
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4.6 Possible experimental signatures of turbulence
self-organization

This last section aims at identifying signatures of the turbulent self-organization that would be
accessible to experimental identification and characterization. The measurements will be done
principally using a two-channel Doppler backscattering (DBS). Its physical and working prin-
ciple are detailed in the next chapter. The DBS measures the density fluctuations at a specific
wavenumber k⊥. When several DBS are used together, one can measure the correlation – radial
or long-range – between the fluctuations.

The objective of this section is to use the model to guide the experiments but also to test
some diagnostics that could then be applied to the DBS data. The final aim is to characterize
experimentally the turbulence self-organization. First, we briefly review regimes where the
self-organization is most likely to occur according to the many simulations performed. Then,
a section is devoted to the observation of avalanches using a correlation analysis. Finally, we
focus on the observation of radially structured zonal flows.

As a foreword, given the many assumptions of the Tokam1D model, we acknowledge that
it cannot be used for quantitative comparisons. Yet, we argue that the general trends that
are observed in the parameter scans keep some relevance, especially regarding turbulent self-
organization issues.

4.6.1 Turbulent regimes where self-organization occurs

It has been highlighted in the previous sections that ZF-dominated regimes occur mostly at large
C and g. The first regime leads to meandering flows, unless reaching the adiabatic regime C −→
+∞ where flows are structured. A meandering flow is likely difficult to measure. Indeed, DBS
typically estimates the perpendicular velocity of the plasma with a 5 ms time resolution. For a
TCV plasma, this corresponds to roughly ωcst = 6×104 using a magnetic field at the separatrix
of the order of 1.4 T . Then, one needs about 20 measures at different probing frequencies
to infer an edge perpendicular velocity profile. That means the flow radial structure have to
stay stable on ωcst ∼ 106. To give an idea, the examples of flows presented in Figure 4.15 are
shown for ωcst = 3×104. Therefore, meandering cases, such as (a) and (c) might be difficult to
characterize on such long time scales. It is therefore crucial to be in a regime where flows are
stable on time scales larger than the time resolution of the diagnostic.

For this reason, cases at large g should be preferred since they produce large amplitude ra-
dially structured and time stable flows. However, having a large g/C typically corresponds to
high-density scenarios which brings two issues - on top of the already operational constraint of
the tokamak at large densities. The first one is that the collisional friction will be large, hence
reducing the flow amplitude. The second one is that the localization of DBS measurements
largely depends on the density profile and on the frequencies achievable by the DBS systems.
At large densities, measuring far inside the plasma is difficult. Another option would be to mea-
sure in high magnetic curvature tokamaks such as low-aspect ratio machines (MAST-U) that
could perform at large g >C with accessible density. In measurements done on TCV, regimes
that favour interchange characteristics should be considered. This means looking at ITG/RBM
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types of turbulence yielding large stiffness and important growth rates. As it will appear later
on, TCV is often dominated by TEM instability which might not be the ideal ground for the
observation of staircases [107].

The simulation results suggest that the measurements should be performed when the plasma
is close to its linear threshold. Plasmas are expected to be near-marginal [71, 72, 200]. The dis-
tance to marginality can be slightly modified by injecting power. However, the transport being
usually stiff, this is difficult. Previous experimental observations also highlight that staircases
are observed in near-marginal ion-driven turbulence [107].

Finally, the measurement location is of importance for several reasons. Measuring too close
to the separatrix is difficult because the plasma has a large collisionality and may be governed
by neoclassical and force balance effects. Far in the core (after the pedestal) is also difficult
because the turbulence intensity is lower resulting in a decreased ZF drive. Finally, the DBS
requires sufficiently high turbulence levels to obtain a decent signal to noise ratio. The best
option is then to measure just after the radial electric field well (see Figure 1.17), typically from
ρ = 0.7 to 0.9.

At last, it should be noted that we did not take into account the geodesic acoustic modes
(GAM) in the analysis. Since ZFs and GAMs are expected to exchange energy, there is a
possibility that a large GAM activity hinders the generation and subsequent measurement of
the ZFs. Actually, this point will be thoroughly investigated in Section 5.2, we show that by
removing the GAM component, we can better observe the low frequency zonal flows.

4.6.2 Two correlation lengths as an indication of avalanche-like transport
In this section, avalanches are studied using a correlation analysis with the objective to apply
the same method to experimental data. In the experiments, data are more scarce than in simula-
tions and the direct observation of ballistic traveling events is unlikely. A contribution by P.A.
Politzer [85] stands out with the measurement of avalanches using the electron cyclotron emis-
sion diagnostic. Using DBS with two channels, the avalanche measurement will be indirect.
Using the code helps to identify whether the measurements can be identified as avalanches.

We look for signatures of avalanches on the correlation function of density fluctuations am-
plitude. An example of this measurement is shown in Figure 4.30, for the two test cases of the
chapter at low and large g (see flows Figure 4.15 (a)-(b) and turbulent flux Figure 4.24). The
colour represents the coherence, the black crosses note the time delays at which the coherence
is maximal. Two contour lines, delimit C = 0.75 (red) and C = 1/e (white).
The radial structure of turbulence changes with the dominant instability. For a low interchange
drive, turbulent structures exhibit broad and circular shapes. Their typical size of a few ρs is
labelled lc. In interchange-dominated plasmas, two characteristic lengths appear. The smaller,
which is similar to the first regime, shows up without any time delay. The larger is tilted di-
agonally, indicating a travelling event. The size and tilt of La are comparable to the observed
avalanches in the turbulent flux (Figure 4.24). Also, one can observe a second, small length in
the opposite direction. As the radial correlation is a statistical measurement, it captures events
travelling outward and inward therefore displaying both directions on the resulting function.
Note that the preferred direction (in or out) depends on the measurement location and particu-
larly on the underlying velocity shear. In Figure 4.30, the measurement is performed roughly at
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Figure 4.30 – Radial correlation function of density fluctuations amplitude for cases: (a)
g = 3×10−4 and (b) g = 10−2. Both at C = 10−3 using constant source SN(0) = 10−4.

a ZF maximum. When done at a ZF minimum, the travelling events tend to form a ’V’ shape
because a similar number of inward and outward events occur.

The interchange dominated case thus displays 2 slopes for the correlation function. This is
best seen when plotting the maximum of coherence at each position, see Figure 4.31.
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Figure 4.31 – Radial correlation function: maximum of coherence. (a) g = 3×10−4 and (b)
g = 10−2. Both at C = 10−3 using constant source SN(0) = 10−4.

The double slope of correlation appears clearly in the case at large g only. The fits are performed
on the logarithm of the radial correlation, therefore assuming an e-folding decay e−x/lc . The two
small correlation lengths are of roughly the same amplitude at lc ≈ 5.5 ρs. The second slope
for the case g = 10−2 is roughly equal to La ≈ 32 ρs, which is consistent with Figure 4.30. In
the next chapter, we show that these two slopes of correlation are accessible with the Doppler
measurements. Based on the present results, we assume that the length of the avalanche (in a
statistical sense) is comparable to the inverse of the exponential decay. Doing so, the study of
the turbulence structure in various regimes of turbulence is made possible.

4.6.3 Possible experimental signatures of ZFs and staircases
ZFs are notoriously difficult to measure. They are low amplitude and depending on the turbulent
regime, the flows may be meandering or with no well defined radial structure. In these cases,

– 164 –



4.7. Conclusion

there is little chance for a diagnostic to have a sufficient radial and time resolution for a direct
observation of their velocity. Ideally, several key aspects needs to be verified on the fluctuations
themselves, they are summarized in Section 2.5.1.

Here, we use the correlation analysis made available by the DBS to observe staircases foot-
prints. The shear induced by staircases is expected to decorrelate turbulent structures, see for
example ref.[107]. Additionally, turbulent structures are observed to localize in velocity wells.
These two effects are expected to modify the local estimation of the radial turbulence correlation
length (lc), the avalanche correlation length (La) and the turbulence auto-correlation time (τturb).
The modulation of the radial correlation length by flows does not appear clearly in Tokam1D
simulations. The two other effects are observable, and plotted Figure 4.32.
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Figure 4.32 – Possible signatures of radially structured ZFs. (a) On the turbulence
auto-correlation time τturb. (b) On the turbulence radial correlation length. Both are shown for

case (C,g) = (10−3,10−2) at fixed source.

On the left hand side, the turbulence auto-correlation time is shown to depend on the underly-
ing velocity. In particular, since density fluctuations are localized on both velocity minima and
maxima, the turbulence correlation time appear larger at these locations. It has been observed
that density fluctuations can localize on both minima and maxima of Veq or only in minima
depending on the chosen turbulence parameters. The electric potential fluctuations are always
located on both minima and maxima. On the right hand side, the radial correlation of the den-
sity fluctuation is shown together with the flows. It is the same case as the one studied in the
previous section. The radial correlation in the avalanche section is shown to be modulated by
the underlying flow. In particular, it increases again when approaching the ZF minima. Both
effects have been observed on several simulations where structured flows are present and have
been shown lacking in simulations displaying unstructured flows.

Those two estimations do not provide a strong argument for a radially structured flows by
themselves. However, they can support the conclusion if a low amplitude corrugation is ob-
served on the perpendicular velocity measurement performed by the DBS.

4.7 Conclusion
In this chapter zonal flows generation and structure have been studied using the reduced model
Tokam1D in its electrostatic version. The model is driven by two instabilities: collisional drift
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waves (CDW) controlled through the adiabatic parameter C, and interchange driven by the
magnetic inhomogeneity g.
A total of 120 simulations have been performed at varying C and g to cover the experimentally
relevant parameter space. The distance to marginality is key in the nonlinear properties of the
system. Therefore, two types of simulations have been performed. The first set, closer to the
experimental set up, uses a constant source. That means, the system is sometimes driven far
beyond its linear threshold. As a result, the forcing itself is not so constant since it depends
on the distance between the diffusive profile (maximum profile achievable with a given source)
and the instability threshold. So as to force each simulation similarly, all cases have also been
run using an adapted source for each case. This time, the source is chosen depending on the
linear instability threshold, such that the diffusive gradient is 6 times the critical gradient. The
second set of simulations is mostly adapted for a ’theoretical’ view of the simulations behaviour.
However, it is insightful since it takes into account the role of marginality which then impacts
the nonlinear results.

Depending on the values for C and g, turbulence has been shown to exhibit different prop-
erties. In the collisional drift wave (CDW) regime, at medium C and low g, the plasma is
dominated by density fluctuations and a yields a low density-electric potential fluctuations cross-
phase. The interchange dominated regime, at large g, is driven by electric potential fluctuations.
While the first instability leads to low growth rate and cross-phase, the second is stiff and dis-
plays large turbulent fluxes even close to marginality. At very large C, one reaches the adiabatic
regime. In this particular regime, both instabilities are stabilized, the system displays a low
cross-phase together with density and electric potential fluctuations roughly equal. These three
regimes directly impact the generation of ZFs since their characteristics govern the two compo-
nents of the Reynolds stress.
In regimes with dominant interchange turbulence, where density and electric potential fluctu-
ations exhibit the same order of magnitude (cf. Figure 4.6), the electric component of the
Reynolds stress – driven by electric potential fluctuations – is dominant. The diamagnetic
component dominates in CDW turbulence regime where density fluctuations are larger. The
correlation between the two components of the Reynolds stress also depends on the turbulent
regimes. While they are in phase opposition in interchange driven turbulence, they align in
phase in CDW turbulence.

Two regions of the parameter space exhibit a large flow to turbulence energy ratio. The
simulations at large g, low C – driven by interchange – and the simulations at very large values
of C, whatever g. In both cases, the flow accounts for more than 30% of the turbulence-flow
energy partition. The system displays an even larger flow to turbulence energy ratio when closer
to marginality.
The two regimes are however different in terms of the ZFs radial structure. Interchange cases
lead to strongly structured flows whereas large C simulations display intermediate structures
where meandering, splitting and merging events occur. It is not clear why the former leads to
such radially structured flows. However, these simulations also correspond to cases where a
large amount of avalanche-like transport is found. These ballistic transport events of particles
can propagate over a large part of the simulation domain greatly increasing the average turbulent
transport. Structured zonal flows are also found in the limit C −→+∞. In those cases, the flows
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are broader than their interchange counterparts. In the performed simulations, structured ZFs
always lead to staircases – corrugations in the density gradient – often resulting in micro-barriers
of transport.

The transport is then studied as a function of C and g and some attempts at unveiling the in-
terplay with ZFs are made. The linear properties of the systems are key: at fixed forcing source,
large instability thresholds lead to a good confinement. That is not the case for simulations per-
formed with an adapted source, since the distance to the threshold is kept close to constant by
the adapted forcing. On those adapted cases, the stiffness is better observed. Regimes character-
ized by low growth rate or cross-phase exhibit low levels of transport. They can therefore depart
from their instability threshold. That is typically the case at large C when both instabilities van-
ish. Finally, comes the role of the flows and of their radial structure. To quantify their effect,
the confinement time is normalized to a mixing-length estimate taking into account the growth
rate and the cross-phase. When the confinement is normalized to remove the role of the growth
rate, cross-phase and forcing, simulations displaying large flow to turbulence energy ratios are
found to perform better. Staircases dominated simulations display an even better confinement.

Finally, possible experimental signatures of turbulence self-organization are explored. These
features will reveal particularly when analysing experimental data in the next chapter. Focusing
on data available from a two-channel Doppler backscattering (DBS), the results are analysed in
terms of correlation. When avalanches are present, the radial correlation function displays two
distinct slopes. The first one appears to be linked to the size of the underlying turbulent eddies
while the second carries information on avalanche propagation lengths. The effect of velocity
shear is visible on the radial correlation function and on the auto-correlation time. It may not
give additional information with respect to the velocity directly accessible from the DBS, but it
can be helpful when the evidence for staircases is weak.

The time spent (i) on the derivation of the model, (ii) on its numerical implementation and
verification, and ultimately (iii) on the characterization of its linear properties has not allowed us
to (iv) explore exhaustively the parameter space in the nonlinear regime. Key additional physics
should be included to go beyond the results presented in this chapter. In particular, considering
the equilibrium radial electric field arising from the radial force balance on the one hand, and the
one governed by the parallel physics of plasma-wall interaction in the SOL on the other hand,
should likely be the two next priorities. We have also discussed on possible ways to account
for the physics of GAMs, which can reveal important at the edge by competing with the zonal
flows. However, it should be emphasized that this physics enrichment of the model comes at
the price of an increase of the number of parameters to scan – such as the e.g. the collisionality
or the density and electron temperature e-folding lengths in the SOL. Extending the model to
alleviate the isothermal closure and to include electromagnetic effects – likely important when
bifurcating towards improved confinement regimes – would then be the natural way forward.
We have shown how to proceed in this direction.
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This chapter aims at measuring zonal flows and avalanches. As already stated in Section 2.5,
measuring those aspects of plasma self-organization is particularly difficult. For zonal flows,
one needs to verify the mode structure m = n = 0, m being the poloidal and n the toroidal mode
number and one would need to resolve the radial structure. For avalanches, one needs to iden-
tify ballistic like transport events which requires a diagnostic with important time and spatial
resolutions.
In the previous chapter, using Tokam1D, we identified the turbulence regimes most likely to
generate zonal flows, avalanches and staircases. Those are found mainly in near-marginal inter-
change driven turbulence. Furthermore, we have seen that the avalanches were characterized by
a second slope in the radial correlation function of the density fluctuations.

In the present chapter, we use a Doppler backscattering (DBS) in two different configura-
tions. First, using two channels separated both poloidally and toroidally, we aim at measuring
zonal flows by using long range correlation (LRC). The LRC is performed on the perpendicular
velocity extracted using a time-frequency analysis called MUSIC adapted for the DBS data by
the LPP team [42, 134]. To better observe the low frequency zonal flows, we isolate and re-
move the high frequency noise and the GAM component using empirical mode decomposition
(EMD). This method decomposes the signal into a set of intrinsic mode functions of narrow
band fluctuating frequencies. Its main advantage is its capacity to identify non-stationary – in
both amplitude and frequency – signals. Second, we aim at measuring avalanches by their sig-
nature in the radial correlation function using two co-located DBS channels. This method has
been already presented on Tokam1D simulations and previously used in ASDEX-Upgrade [86]
by the LPP team. Several heating schemes have been used in an attempt to modify the pro-
files and underlying turbulent regimes. The DBS also gives access to the perpendicular velocity
profile. Measuring both avalanches and the velocity enables, in principle, the measurement of
staircases.
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5.1 Measuring with Doppler backscattering (DBS)
As a first step towards the description of the Doppler backscattering, we briefly introduce reflec-
tometry diagnostics that are used to characterize density profiles and fluctuations in magnetic
confinement devices. Using an electro-magnetic wave sent into the plasma, reflectometry and
its variants provide local measurements at locations inaccessible for material probes. A review
on microwave reflectometry for magnetically confined plasmas is available ref.[201].

In standard reflectometry, a probing micro-wave is sent at normal incidence to the plasma sur-
face. It propagates into the plasma until it reaches the cut-off layer where the beam is reflected
towards the receiving antenna. The cut-off layer position depends on the probing frequency, the
local plasma density and in general also on the local B-field magnitude. Therefore, by ramping
the probing frequency, the plasma density profile can be reconstructed. Details on the cut-off
frequencies for the case of a non-turbulent plasma are provided in Section D.1. In the case of
short-pulse reflectometry (SPR), singular pulses are sent to the plasma at various probing (car-
rier) frequencies. The time-of-flight is detected for each pulse, leading to the reconstruction of
the profile. Standard reflectometry performs a continuous frequency sweep. The density profile
is then computed from the received frequency spectrum.
In both cases, measurements are affected by turbulent density perturbations. Therefore, some
approaches to turbulence measurement have been developed using fast sweeping reflectometry
(FSR) [107] and SPR [202].

5.1.1 Doppler backscattering principle: collective scattering
Doppler backscattering (DBS) - also called Doppler reflectometry - consists in sending the
probing wave at an angle θ with respect to the cut-off surface. It is not the reflected but the
backscattered wave that is measured. This has the advantage to select the probing wavenum-
ber and to allow for an estimation of the perpendicular velocity from the Doppler shift. DBS
have been introduced in the early 2000 on W7AS [203], ASDEX [204] and Tore supra [205].
The diagnostic enables the measurement of multiple turbulence related properties, making it
particularly popular in fusion plasmas despite its complexity. Those measurements include:

1. The perpendicular velocity of the plasma (radial electric field).
2. The density fluctuations at a selected wavenumber: n(k, t).
3. The k-spectrum of the density fluctuations: by varying the wavenumber in a broad range

k ∈ [3−20] cm−1 (≈ kρi ∈ [0.3−3] at the edge of TCV plasmas).
4. The spatial structure of the turbulence (requires several DBS).

The diagnostic relies on the collective scattering of a wave by turbulent structures. With a lower
inertia, electrons are mostly responsible for the scattered field. If those electrons are organized
into structures, the sum of the scattered field by each electrons lead to a significant form factor
at the typical wavenumber of the structures.

To delve deeper into the details, we consider the general case of a wave scattering on fluctua-
tions. Let us consider an incident monochromatic plane wave, Ei(r, t) = Ei,0 exp(i(ki · r−ωt))
of incident wave vector ki and frequency ω . Electrons act as local emitters of spherical waves
at the same frequency ω . The receiving antenna receives the superposition of the emitted waves.
In the far-field approximation at a distance, distance R ≫ r j, where r j is the position of the j
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scatterer, and considering that the wavenumber modulus is conserved, the collective scattered
electric field is the sum over all scatterers j [206]:

Es = r0
eikiR

R
e−iωt(n×n×Ei0)∑

j
eik f ·r j (5.1)

Where r0 = µ0e2/(4πme) ≈ 2.8× 10−15 m is the classical electron radius and n the scattering
direction. The phase term involves the analysis wave vector k f linked to the incident wave
vector ki and the scattered wave vector ks by the Bragg’s rule: k f = ks −ki. In the continuous
medium approximation, we assume that the collective behaviour of the electrons is represented
by the electron density n(r, t). The sum is replaced by an integral over the scattering volume V
as follows:

Es = r0
eikiR

R
e−iωt(n×n×Ei0)

∫
V

n(r, t)eik f ·r j d3r (5.2)

The scattering volume is defined by the superposition of the probing and the ’receiving’ beams
(the area visible to the receiving antenna). This measurement then gives access to the Fourier
transform of the density fluctuations n(r, t) at a specific wavenumber k f . Consequently, by
varying k f , a k-spectrum of the density fluctuations can be inferred.

The particular case of Doppler back-scattering is sketched in Figure 5.1. On the left is pre-
sented the orientation of the diagnostics main quantities in the poloidal plane. On the right,
a zoom on the cut-off layer is performed. The slab geometry is considered at short scale for
simplicity. A wave is sent into the plasma at an angle θ from the cut-off layer. It scatters on
the turbulent structures, indicated as blue and red pebbles in the figure. Then the backscattered
wave is received by the DBS antenna.

Figure 5.1 – Beam orientation in comparison to magnetic field lines. k0 is the vacuum wave
vector, ki is the local incident probing wave vector. k f is the selected wave vector through the

Bragg’s rule.

In that case, the selected wavenumber that matches the Bragg’s rule is given by: k f = −2ki.
The probing wave vector is determined by the angle θ of the incident beam to the normal of the
cut-off surface. In the particular case of a linear density profile in O-mode the incident wave
vector reduces to ki = k0 sinθ in the y direction, since kr vanishes at the cutoff. Since there is
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no analytical formula for the general case, the local ki is computed using a beamtracing code
that takes into account the geometry of the beam and of the plasma [207]. By adding a small
toroidal angle (≈ 5◦) to take into account the helicity of the field lines, we can match as best as
possible the Bragg’s condition so that the analysis wave vector is roughly perpendicular to the
magnetic field, thus adapted to the fluctuations known to be aligned along the magnetic field
(k∥ ≪ k⊥).

All in all, the analysis wave vector k f ≈ k⊥ is selected by adjusting the antenna of the launcher.
The power of the received signal relates to the amplitude of the density fluctuations of wavenum-
ber k⊥. By varying the angle of the launcher, thus scanning the selected scattering wavenumber,
a k-spectrum of the turbulence can be measured [42, 43]. If the density fluctuations are advected,
the perpendicular velocity can be computed from the Doppler shift of the received spectra, see
Section 5.1.3.

5.1.2 Measurement localization and resolution
In the previous paragraph we have assumed that the location of the measurement is close to the
cutoff. However, in a back-scattering experiment, the signal can originate from the substantial
part of the beam trajectory, the scattered beam being superposed to the probing beam. Never-
theless, both the beam propagation and the turbulence properties imply that the measured signal
mostly comes from the cut-off region.

First, it can be shown by solving the Maxwell equations of the wave propagation in a homoge-
neous medium that the field is amplified closed to the cutoff [201]. Second, since the fluctuation
k-spectrum peaks at low wavenumbers (kr −→ 0 and k⊥ρi ≲ 0.3), these will be selected mainly
close to the cutoff and weight heavier in the signal. Conversely, far from the cutoff, where k f is
essentially radial and remains large close to k0, the corresponding selected fluctuations have a
low level and contribute much less to the signal.
Forward diffusion can still occur along the beam propagation path. Mostly the large structures
contribute, such that the amplitude can be important. However, since the radial velocity is very
small in front of the perpendicular velocity, the back-scattered field from the edge of the plasma
(where k⊥ < kr) is centered on the spectrum zero-frequency component whereas the contribu-
tion from the cut-off region (where kr ≪ k⊥) is Doppler shifted. Forward diffusion can widen
the received spectrum, such that the interpretation of small Doppler shifts is made more difficult.

The scattered field amplitude depends in the end on the fluctuation amplitude (proportional
in the linear regime). The measurement range is then limited to regions that yield enough
turbulence. In the core, or in H-mode, the relative density fluctuation level tends to be very
low δn/n < 1% which makes the signal to noise ratio (SNR) low. Conversely, for ρ > 0.8,
the relative fluctuation amplitude can be of a few % up to about 30 % close to the separatrix.
Henceforth, we mostly measure in the region ρ ∈ [0.8−1].

The spatial resolution depends on the beam localization close to the cutoff. It depends on the
beam waist which can be of the order of a few mm to the cm depending on the refractive index
gradient. In X-mode polarization, the refractive index profile is more steep, such that the spatial
resolution tends to be larger as compared to O-mode polarization. The radial sensitivity is
larger than the resolution as the probing frequency can be varied very precisely. The sensitivity
is typically close or below the Larmor radius (≲ ρs).
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The signals delivered by the LPP DBS systems are digitized at a high sampling rate (5 to 25
MHz, depending on the plasma conditions) which allows to resolve the fluctuation dynamics
(typical auto-correlation time from ≲ 1 to 10µs). This high sampling rate is also necessary
to avoid spectrum aliasing when the Doppler shift associated with high fluctuation velocities
reaches several MHz (H mode).

As stated above, to have a sufficient SNR, one needs to gather enough statistics on the ad-
vected turbulent structures. In principle, only a few number of probed advected structures is
sufficient to infer a Doppler shift. In practice, due to the RF noise and the various structures that
are probed at slightly different locations the received spectrum represent a distribution of veloc-
ities (see next section). In practice, to have enough statistics, the measurement of the density
fluctuations and velocity is made on longer time scales. To be confident in the measure of the
velocity the computation is typically done on 5 ms signals. Other methods such as sliding FFT
or MUSIC algorithm can estimate the Doppler shift on 16 to 128 points, greatly increasing the
instantaneous velocity measurements (see Section 5.2). Using the standard method, a velocity
profile can be obtained in ≈ 100 ms, less when several DBS are coupled together.

5.1.3 Perpendicular velocity measurements

If the measured fluctuation propagates with a velocity v⊥, the frequency of the scattered signal
is Doppler shifted by ∆ω = v⊥k⊥. By computing k⊥ with the beam-tracing code, the velocity
is inferred. Provided that B is roughly constant on the scattering volume, one can also infer the
radial electric field:

v⊥ =
∆ω

k⊥
≈ Er/B . (5.3)

The measured perpendicular velocity is the sum of two components: the fluctuations phase
velocity that could potentially depend on k⊥ (but in general also on other parameters: heating,
turbulence regime, ...) and the plasma background velocity given by E ×B drift:

v⊥ = vϕ + vE . (5.4)

At the edge of the plasma, it is usually considered that vϕ ≪ vE such that the Doppler shift gives
a measure of the perpendicular E ×B drift [208, 203, 204].

Estimating the perpendicular velocity then requires to infer the Doppler shift in the received
signal spectrum. In practice, the complex signal is reconstructed from the received signal and
demodulated using a process called heterodyne detection. Details on the hardware and hetero-
dyne detection are provided in Section D.2.

The power spectral density (PSD) computed from the complex signal with a direct Fourier
analysis gives a high frequency resolution δ f ∼ 1/T but also presents an important variance
which can be detrimental in the interpretation of the spectra. Instead, we prefer to use an aver-
aged spectral estimator such as Welch [209]. The method consists in splitting the signal into m
segments of nFFT points, overlapping by 50 %. Each segment is multiplied by an apodization
window such as a Hanning window. The PSD is computed for each segment that are then aver-
aged to produce a single estimate. The variance of the estimate decreases in a 1/

√
m fashion.
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Welch’s method is then a balance between losing frequency resolution and reducing the vari-
ance. For a 5 ms signal of 50000 points, we typically take nFFT = 1024 points which leads to
δ f ∼ 10kHz. The estimator is then an average over m ∼ 48 segments.

The resulting PSD is the sum of the Doppler shift component and diverse other contributions
such as forwards diffusion (linked to large scale structures), beam reflection over machine el-
ements or backwards diffusion (small scale structures) (cf. Section 5.1.2). Those often result
in a noise that makes the interpretation of the Doppler shift more difficult. Generally, we only
exploit data where the Doppler peak is well above the rest of the contributions.

Several methods exist to evaluate the Doppler frequency by analysing the PSD. The first is
to identify the position of the maximum in the spectrum either directly or by considering the
weighted average – also called center of gravity (cog) – of the Doppler spectrum. Those two
methods work fine when the Doppler shift is large and the SNR is important but the interpreta-
tion can become tricky when the velocity is closer to zero or the SNR is low. Another option is to
fit the spectrum. The spectrum can be associated with the distribution function of the turbulent
structures velocities. It can be shown that depending on the structures dynamics, the spectrum
will exhibit more of a Gaussian or a Lorentzian shape [42]. One can compare the characteristic
size of the measure – that depends on the wavenumber 1/k⊥ – to the characteristic size of the
structures motion uτL, where u is the characteristic velocity and τL the Lagrangian correlation
time of the velocity. Two limits can be identified:

• If kuτL ≫ 1: the structure moves nearly ballistically across the measurement region. In
that case it can be shown that the spectrum is closer to a Gaussian.

• If kuτL ≲ 1: the structure moves slowly across the measurement region. Then, the charac-
teristic displacement is closer to a random-walk across the detector area. In this situation,
the spectrum is closer to a Lorentzian.

Depending on the dynamics, the best option can be the Gaussian fit, the Lorentzian fit or, most
likely, something intermediate between the two. In practice, we use a Taylor fit which takes
into account this underlying dynamics [210] and exhibits the two limits detailed above. As such
it often matches best the signal in the various situations. Finally, it is also necessary to give
an initial guess for the fits. Routinely, the first guess is estimated by fitting the odd part of the
spectrum with a Gaussian fit. This assumes that there is indeed a Doppler shift, so that the
relevant information is in the asymmetric part of the spectrum [211]. In Figure 5.2, a typical
spectrum obtained through Welch and its corresponding fits are displayed.
In practice, the Doppler shift is given by the median of the fits performed. Note that on the given
example, the fits do not match very well the tail of the distribution. This asymmetric noise at
large frequency is caused by spurious components. Routinely, we remove these tails by hand
before performing the fits.

The sign of the perpendicular velocity is given by the convention displayed in Figure 5.3.
Note that due to the negative magnetic field, v⊥ is of the same sign as Er.

By scanning the probing frequencies, one can measure at different radial location inside the
plasma. Then, performing the above analysis on obtains the Doppler shift for each programmed
frequency. By using the beam-tracing code, frequency steps are matched with their localization
inside the plasma and their local k⊥. Combining those information, one produces a profile of
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Figure 5.2 – Power spectral density estimated using Welch’s method with the different fits used
for the estimation of Fdop. Shot #TCV81069, sweep 5, Fre f = 60 GHz.

Figure 5.3 – Convention for radial, poloidal and toroidal orientation. Here, BT ,Ip < 0. The
radial electric field is considered positive outside the separatrix and negative inside the plasma.

Figure taken from [212].

perpendicular velocity, such as presented in Figure 5.4 for shot #80328.
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Figure 5.4 – Example of a v⊥ profile estimated using DBS channel 1 on shot #TCV80328 at
time 1.3 - 1.4 s.
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Remark that the perpendicular velocity tends to be negative in the confined region close to
the separatrix and becomes positive in the scrape-off layer. This behaviour has already been
introduced fro Tokam1D (eg. Figure 3.5). The core perpendicular velocity is shown to depends
on the force balance equation:

v⊥ =
⟨Er⟩

B
=+

∇pi

ne
+ vφ Bθ − vθ Bφ . (5.5)

The action of the pressure gradient generally leads to a negative perpendicular velocity. An
example highlights the role of the force balance equation in Figure 5.28 where different heating
schemes are used in TCV for the same magnetic configuration configuration. The Er well shape
in the transition region is not easy to predict. It might depend on several factors, possibly related
to turbulence and neoclassical effects. See for example the experimental study on the role of
the magnetic configuration and q-factor ref.[26] and a gyrokinetic study aimed at reproducing
similar trends [27].

5.2 Long range correlation measurements in Tore Supra
A ZF is an electric potential mode that verifies m = n = 0, m being the toroidal wavenumber and
n the poloidal wavenumber. Measuring the degree of correlation of signals from two similar but
distant diagnostics, located at different poloidal and toroidal ports for instance, is one way to
verify the zonal activity on the electric potential. Alternatively, this method can be applied to
the velocity fluctuations (linked to the potential through the electric drift).

In Tore Supra, a second V band DBS system was installed viewing vertically, separated
toroidally and poloidally from the former equatorial DBS system. This system has been used
to characterize GAMs [133]. Unfortunately, the diagnostic operated only during one campaign
before the breakdown of the general power supply which has ended Tore Supra operation before
WEST took over some years later. It was not possible to reinstall the vertical diagnostic in the
WEST configuration.

The idea in this section is to take advantage of the shots performed at the time to perform
LRC with the aim of observing low frequency zonal flows. We only have a few numbers of dis-
charges where the diagnostic is set to probe simultaneously fluctuations using the same probing
frequency (same radial location) at similar or close wavenumbers, with a sufficient acquisition
length in stable plasma conditions. We show that the correlation at long distance is dominated
by the GAM feature. However, after removing them along with the high frequency noise using
empirical mode decomposition, a low frequency zonal flow signal is recovered.

5.2.1 DBS systems installed on Tore Supra

A first DBS system (DIFDOP) was installed on Tore Supra using O mode V band [205], soon
completed by an X mode W band to probe across the separatrix. The second system (DREVE),
viewing vertically from the top in O mode V band, was designed beginning of 2010 to study
the structure of the flows, their poloidal asymmetries as well as the GAMs [134, 133]. It was
operated during two short campaigns before being stopped by the major breakdown of Tore
Supra power supplies (2012). Therefore, the available data in a configuration suitable to study
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the long range correlation (synchronous, long enough time sequences, similar probed locations
and wavenumbers) are scarce. We focus here on two shots obtained during dedicated experi-
ments (ν⋆ scan and GAMs studies): #45510 and #47500. The location of the two systems in
comparison to TS is indicated in Figure 5.5, together with an example of beamtracing.

Figure 5.5 – Location of DIFDOP (left) and DREVE (right) in comparison to Tore Supra. The
channels are separated by 120◦ toroidally and more than 90◦ poloidally. Examples of

beamtracing are indicated for each channel. Red circles correspond to iso-index surfaces, the
blue line corresponds to machine elements (limiter, antennas...).

Discharge #45510 was performed with a scan of the wavenumber k on the equatorial (DIF-
DOP) but not on the vertical (DREVE) leading to a mismatch in k making it difficult to seek
for long range correlations (see Figure 5.8). The main analysis will then be focused on #47500.
The discharge scenario is presented in Figure 5.6. On the upper panel the integrated density is
displayed in blue together with the ICRH heating constant at 2 MW . The bottom panel features
the DBS parameters: motor angle (red), rms values of each DBS channel. The DBS data are
acquired for both DIFDOP and DREVE at four triggers indicated by vertical lines. For each
of those triggers, five different frequencies are used (F = (49,51.8,54.5,57.2,60)), each repre-
senting 12 ms of data. The first two sequences were still in a non stationary phase of the radio
frequency coupling but the last two, especially the 4th one are in steady state, allowing for the
study of the correlation.
In the following sections the use of MUSIC algorithm and empirical mode decomposition
(EMD) are detailed for #47500 trigger 4 frequency 4 corresponding to ρ = 0.85.

5.2.2 Long range correlation on the instantaneous velocity
The DBS delivers a complex signal featuring n(k, t), whose phase carries information on the
Doppler frequency ∝ k.v . One then needs to compute the instantaneous velocity before per-
forming the LRC. However, standard techniques like Welch, such as described in Section 5.1.3,
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Figure 5.6 – Details of shot #47500. (Upper panel) Integrated density (blue) and heating
scheme (red). (Lower panel) DBS configuration: angle of DIFDOP is indicated in black and
red lines and the RMS values of DIFDOP and DREVE signals are shown in green and blue.

computed on long time series, gives only an average estimate of the velocity. Alternatively, one
can use sliding Fourier transform or time frequency methods such as the multiple signal classifi-
cation analysis (MUSIC) algorithm. Here, the latter will be used. It has been introduced already
by the LPP group in ref.[42, 134]. The details of the algorithm, its implementation for GAMs
study and its comparison with Welch and sliding Fourier transform can be found in ref.[134].

The MUSIC algorithm is a parametric method for the pseudo-spectral analysis of signals with
a reduced spectral content. The algorithm is based on the idea that the signal can be represented
by a finite number n f of frequency components plus an incoherent noise part:

x(t) = x(s)(t)+n(t) =
n f

∑
k=1

Bke−i2π fkt +n(t) (5.6)

Where x(s)(t) is the relevant part of the signal, Bk the amplitude of the frequency components
and n(t) the time dependent noise. This algorithm is suited when one frequency is particularly
present in the signal. This is the case for DBS data where spectra are dominated by the Doppler
frequency. The algorithm can go to windows as small as nw = 16 pts. As a result, MUSIC
algorithm manages to identify the instantaneous fluctuations of frequency around the Doppler
peak, with a better time resolution than sliding FFT. Since the goal is the identification of
low frequency ZFs, the window size choice is a tradeoff between better characterizing low
frequency instantaneous velocity while still resolving the GAMs. Tests using nw = (64,32,16)
have been performed resulting in poorer results, with a GAM feature less traceable. Therefore,
the choice have been made to use nw = 128 for the rest of this analysis. Here, we use the MUSIC
algorithm with windows of size nw = 128 pts overlapping over noverlap = 64 pts, leading to a
time resolution of dt = 6.4 µs for the Doppler frequency time sequence (1806 points long).

As a first step, the spectral coherence analysis is performed on the instant velocity extracted
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from DIFDOP and DREVE and displayed in Figure 5.7. On the left is indicated the power
spectral density of each channel along with their cross-spectral density computed using Welch’s
method. On the right is shown the spectral coherence C:

C 2 =
|csd|2

psddi f dop × psddreve
(5.7)
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Figure 5.7 – Spectral analysis of DIFDOP and DREVE using Welch’s method. (left) Power
spectral density and cross-spectral density. (right) Spectral coherence. Performed on #47500,

trigger 4, frequency 4.

In both DIFDOP and DREVE, a peak at roughly 15 kHz dominates the spectrum. Moreover, a
significative cross-spectral density also appears at this frequency. This results in a large long
range spectral coherence for this mode indicating poloidal and toroidal coupling. This peak is
close to GAM frequencies observed on similar discharges in Tore Supra [133, 4]. On this sig-
nal, no coherence at very low frequency emerges from the noise. In order to better identify this
region, empirical mode decomposition (EMD) is used. With the EMD analysis, the GAM com-
ponent is identified and isolated. It is then removed from the signal along with high frequency
noise.

The above analysis has also been performed on shot #45510. The GAM feature is recovered
on DREVE but not on DIFDOP: see the spectral densities and coherence in Figure 5.8.
In this shot, the level of LRC is vanishing (maxC ≈ 4× 10−2). The low level of the GAM in
the DIFDOP signal and of the coherence possibly comes from the wavenumber scan performed
on DREVE which leads to different location and / or structures probed for both diagnostics.
Therefore, only #47500 is analysed in this section.

5.2.3 Isolating the GAM component with empirical mode decomposition

Empirical mode decomposition is a method to split a signal into a sum of components called
intrinsic mode functions (IMF). It has been developed by N.E. Huang in the early 2000 [213] and
already tested on DBS data [4]. The particularity of EMD is that the decomposition depends on
the properties of the signal itself and not on a well-defined mathematical object. EMD presents
many advantages in comparison to other decomposition methods such as Fourier and Wavelets.
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Figure 5.8 – (a) PSD and CSD of DIFDOP and DREVE. (b) Spectral coherence. Analysis
done on instantaneous velocity of TS45510, trigger 4, frequency 1.

The method can work on non-stationary signals and identify modes that appear sporadically
or with a varying frequency [133]. Also, by coupling the results of the EMD with an Hilbert
transform, one can produce a Hilbert-Huang transform (HHT) and get instantaneous frequency
data. In the following, the EMD and HHT are detailed and applied to the identification of the
GAM and other less dominant components in DIFDOP data.

The EMD is performed iteratively through a process called sifting. The decomposition uses
the following steps:

1. Identification of extrema: emin and emax on signal y(t).
2. Upper and lower envelopes are computed through cubic spline interpolation of the max-

ima and minima. It results in a continuous envelope defined by emin(t) and emax(t).
3. The mean of the envelope m(t)= (emin(t)+emax(t))/2 is removed from the signal: I[y](t)=

y(t)−m(t).

These three steps are repeated a certain number of times until the algorithm converges to a
function I[x](t) that fulfills the IMF conditions:

1. In the whole data set, the number of extrema and the number of zero crossings must be
either equal or differ at most by one.

2. At any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.

The first is a narrow-band selection criteria. It ensures that the IMF has a frequency content
concentrated around a particular frequency. The second is here to ensure that the local (in time)
frequency selected by the IMF does not have unwanted fluctuations induced by asymmetric
wave forms. Other authors have proposed alternatives for the second condition. For example,
ref.[214] proposes to consider an IMF when maxima are all positive, minima all negative and
for which the envelope (positive and negative) is symmetric in comparison to zero.
From the first sift, one is left with the first IMF, I1[x](t) that represents the high frequency part
of the signal and R1(t) = y(t)− I1(t) the low frequency residual. The sifting is then applied
on the residual until the second IMF I2[R1](t) and second residual R2(t) = R1(t)− I2(t) are
obtained. This is done several time, each time identifying an IMF with a smaller frequency
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until a stopping criteria is met. Depending on the cases, or algorithm, different stopping criteria
can be used: standard-deviation, energy, amplitude. In all cases, one needs to ensure that the
last residual is negligible either in terms of frequency or amplitude as compared to the other
IMFs.

The sifting process relies on local information in the signal. Therefore, even if the first IMF
manages to extract the fastest component from the signal, the definition of ’fastest’ can depend
on the different segments inside the signal. This is especially true for a transient fast signal that
disappears in some segments of the signal. If one wants to extract its component, the standard
sift process cannot be used because the fast and slower components will be mixed. This problem
is identified in EMD as mode mixing [214].
One possible solution is provided by performing masked sifting [215]. It consists in adding a
masking signal of known frequency to the analysed signal. Any component which are lower in
frequency than this mask are ignored by the sift in favour of the known masking signal. After
the sifting process is completed, the known mask is removed and the desired IMF is obtained.
However, it is important to have mask frequencies that correspond to the components that need
to be isolated. A rule of thumb based on ref.[216], is to consider that a mask with a frequency
F can be expected to remove frequencies below 0.7×F . Choosing the masks then becomes
the primary concern, as it is crucial to avoid projecting preconceived expectations onto the data
itself which may lead to biased interpretations.

In the case of GAM analysis the selection of the mask frequency is informed by the under-
lying physics. Based on Figure 5.7, the GAM is shown well localized around 15 kHz. An
example of EMD using masked sifting with mask frequencies Fmask = (30,17,10,3) kHz is
shown in Figure 5.9 for DIFDOP instantaneous velocity signal, #47500, trigger 4, frequency 4.
The stopping criteria is determined by a maximum of 4 IMFs. IMF-5 represents the residuals
such that the sum of all 5 IMFs is equal to the input signal.
As it will appear in the following, IMF-1 contains high frequency noise, IMF-2 contains the
GAM component, IMF-3 is an intermediate mode in between GAM and low frequencies but
present no long range correlation. Finally, IMF-4 and -5 contains low frequency information.
To identify each mode, instead of relying on Fourier, we make use of the Hilbert-Huang trans-
form (HHT) directly linked to the IMF. HHT provides a description of how the energy within a
signal is distributed across frequency. The distribution is based on the instantaneous frequency
and amplitude of the IMFs.

Using the IMFs and Hilbert transform, one reconstruct the signal as a complex sum of the
IMF analytic representations: X(t) = ∑

N
k [Ik(t) + iH Ik(t)], with Ik the IMF-k. H [Ik] is the

Hilbert transform of IMF-k given by the Cauchy principal value of the convolution with the
function h(t) = 1/(πt):

H [s](t) = (h⋆ s)(t) = p.v.
{∫ +∞

−∞

s(τ)h(t − τ)dτ

}
Where ⋆ is the convolution operation and p.v the Cauchy principal value (it removes singular
values from the integral). In summary, the Hilbert transform gives the instantaneous phase of a
given signal at the same time resolution. However, in case of signals with multiple components
(many frequencies) the Hilbert transform leads to distorted phases. Since IMFs contain a singu-
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Figure 5.9 – Empirical mode decomposition of DIFDOP instantaneous velocity for shot
TS47500, trigger 4, frequency 4. IMF-1 represent the largest frequency component identified

by the EMD. The isolated components are of smaller frequency until IMF-5 that represents the
residuals and is not an IMF-component per se.

lar frequency component (narrow band condition), they are well suited for the Hilbert transform.
The use of EMD coupled to a Hilbert transform has been renamed Hilbert-Huang transform.

Applying the HHT to each IMF of the above decomposition gives the instantaneous frequency
that can be presented in a 2d (time - frequency) plot, such as in Figure 5.10 for the GAM
component.
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Figure 5.10 – Instantaneous frequency of IMF-2 weighted by its amplitude.

This method thus provides the instantaneous GAM frequency and its amplitude evolution. It
has already been applied for the characterization of GAMs [134, 133]. See that the isolated
GAM feature frequency varies in a broad range 5−20 kHz despite using a mask at F = 17 kHz.
However, the amplitude of the signal is maximum around 13−15 kHz.

Summing the HHT over time for each IMF leads to a spectra weighted by the relative ampli-
tude of each signal. The result is displayed in Figure 5.11.
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Figure 5.11 – 1D Hilbert-Huang spectra of decomposed IMFs. Instantaneous velocity of
DIFDOP shot TS47500, trigger 4, frequency 4.

As expected, the distribution of the frequency content of each IMF is centered on the mask. The
first IMF, contains all the high frequency information. Since the signal is the instantaneous ve-
locity we discard this IMF afterwards considering that it contains mostly noise. The second IMF
peaks at the GAM frequency, we will show later on that it is well-correlated at long distance.
Thus we consider that this contains most of the information regarding the GAM identified in
Figure 5.7. The third IMF is a sub-GAM mode. It is important for the analysis because it helps
to separate more clearly the GAM from the low frequencies. It probably contains couplings of
the intermittent GAM signal and the high frequency part of higher order IMFs. It is discarded
in the following, but should be the focus on more development in the future. Finally, IMF-4 and
5 are linked to LFZFs, they are summed. A trial has been performed with a separate analysis on
IMF-4 and IMF-5 and no qualitative change in the results has been observed.

5.2.4 Separate analysis on GAM and low frequency zonal flow
Now that the GAM component has been isolated we perform again the long range correlation.
This time, we use the GAM (IMF-2) and the LFZF (IMF-4+5) signals. First, the PSD and CSD
are shown for each IMF in Figure 5.12. In blue is indicated DIFDOP values, in red DREVE
and in green their cross-spectral density.
Comparing these two figures to the whole signal spectral analysis in Figure 5.7, we notice that
IMF-2 peaks at around 15 kHz as expected from the GAM feature. Also, the low frequency
IMFs leads to a significant CSD signal as compared to the amplitude of each PSD.

Normalizing each CSD by their respective PSD yields the coherence presented in Figure 5.13.

IMF-2 appears correlated further supporting that the GAM has been well isolated. More in-
terestingly, IMF-4+5 now emerges from the noise. In this case, removing higher frequency
components and GAMs enables a better visualization of low frequencies. The coherence spec-
tra is now similar to other contributions showing both LFZF and GAM such as ref.[140] for
DIII-D and ref.[137] for HL-2A.

To conclude on this section, let us sum up the principal results:

1. Two similar but distant V-band DBS channels were used on a Tore Supra ICRH heated
plasma.
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Figure 5.12 – Power spectral densities and cross spectral density for IMF-2 (left) and IMF-4
(right). Analysis done on instantaneous velocity of #47500, trigger 4, frequency 4.
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Figure 5.13 – Spectral coherence for IMF-2 (empty diamonds) and IMF-4 (diamonds).
Analysis done on instantaneous velocity of TS47500, trigger 4, frequency 4.

2. Instantaneous fluctuation velocity is obtained through the MUSIC algorithm.
3. Long range correlation is performed on the velocity signal and shown to be dominated by

a component at the GAM frequency.
4. The GAM component is isolated using empirical mode decomposition and its instanta-

neous frequency is obtained through Hilbert-Huang transform.
5. Low frequency zonal flows are isolated with the same method and appear with a signifi-

cant correlation when the GAM feature is removed.

However, considering the amount of post-processing used, this method requires more statis-
tics to be validated in different conditions. Unfortunately this configuration (top / equatorial
DBS) couldn’t be reinstalled in WEST so that these studies can be continued. It pushes towards
jumping on any opportunity to install a second DBS system at any distant toroidal location (if
not poloidal and toroidal) on any machine.

5.3 Avalanche-like transport characterization in TCV
In this section, the turbulence radial structure is studied in TCV plasmas using two radially cou-
pled DBS channels in a configuration often called correlation Doppler backscattering (CDBS).
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Both the short scales (turbulent structure) and large scales (avalanches) are identified. While the
short scale ’structure size’ has been studied using various diagnostics [217, 218, 219], including
CDBS [220], the second is more difficult to assess. One can note the work of P.A. Politzer [85]
who observed avalanches propagation using the ECE diagnostic and the recent contribution of
the LPP group [86] using CDBS.

The aim here is to modify the heating schemes so that the profiles and turbulent regimes are
varied. By doing this, one can study the turbulence regimes most likely to generate avalanches
and possible radial structures in the perpendicular flow.

5.3.1 The "Tokamak à Configuration Variable" (TCV)
The experiments are performed in TCV. The Ohmic heating is completed by an extended elec-
tron cyclotron resonance heating (ECH) system and two NBI beams providing up to 4.5 MW
of additional heating power. The NBI system is composed of a co-current and counter-current
beams (NBI-1 and 2). They are represented in Figure 5.14a. They are completed by a DNBI
beam used for the charge exchange recombination spectroscopy (CXRS) diagnostic. The ECH
system comprises several gyrotrons and launchers, indicated in Figure 5.14b by their line of
sight, that can deposit power from equatorial and upper ports. Additionally, the lateral launchers
poloidal and toroidal angles can be modified leading to a precise control of the power deposi-
tion.

(a) (b)

Figure 5.14 – Auxiliary heating systems at TCV. (a) NBI system, figure adapted from [221].
(b) ECH launcher system, from SPC wiki.

The two NBI beams being opposite in direction, it enables the control of toroidal rotation. Dur-
ing the experiments conducted for this study NBI-2 was not fully operational. Therefore, there
is only a little number of shots with both NBIs.

To characterize the turbulent regimes we need to measure the profiles of density and elec-
tron / ion temperatures. Additionally, we are interested by the toroidal velocity as it plays a
role on the radial electric field. Knowing the velocity, one can better interpret the behaviour
of the perpendicular velocity in the region dominated by the force balance equilibrium. For
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these measurements, we rely on the Thomson scattering and charge exchange recombination
spectroscopy (CXRS) systems.
The Thomson scattering system is the main diagnostic used for the measurement of electron
density and temperature. The principle is to send a laser beam through the plasma that accel-
erate the electrons which will re-emit radiation. The electron temperature is then determined
from the broadening of the scattered radiation spectra. The density is proportional to the total
scattered power. In the present setup, 117 spectrometers are installed, covering various radial
locations [222]. The Thomson scattering system is used in the following for the analysis of
electron temperature and density profiles with the latter used for the beamtracing code of the
DBS system.
The diagnostic is completed by a CXRS system used for the measure of toroidal velocity and
temperature of carbon impurities. The principle is to send a neutral atom in the plasma that
will collide with an ion. It results in the transfer of one of the neutral atom’s electron to an
excited state of the target ion. The charge exchanged excited state then decays to its ground
state through a cascade of transitions that emit multiple characteristic lines. The integral of the
obtained line is proportional to the density, the width to the temperature and the shift to the ve-
locity in the line of sight (LoS) direction. In TCV, the measurements are optimized for carbon
ions which is the principal impurity (≈ 1 %) due to carbon walls. Considering that ions and
main plasma impurities are in thermal equilibrium, the measure of impurity properties gives a
good proxy for the behaviour of main ions. In the present setup, the CXRS system makes use of
the diagnostic neutral beam (DNBI) and comprises three optical observation systems: low and
high field side (toroidal view) and a vertical view [223]. Specific information for the CXRS at
TCV are indicated in ref.[224].

Access to TCV data is achieved in Python using a homemade code to navigate the MDSplus
trees. Alternatively, jScope (java-based) can be used to access quickly TCV signals during the
experiments. An example of a shot summary is shown in Figure 5.15 for #81069.
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Figure 5.15 – Shot summary plot used for quick post-shot analysis. Example for #81069.
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The summary contains basic time series information such as the plasma current Ip and heating
scheme (left column). The electron density ne and temperature Te are estimated from Thom-
son measurements. The FIR ne is taken from the far infrared interferometer and represents the
line-integrated density for a central chord taken in the vertical direction together with the ref-
erence value for the gas injection. Finally, the data for Ti and vtor are evaluated from CXRS
measurements.

For turbulence measurements, we will rely on CDBS introduced in Section 5.1 to perform
radial correlations. A brief comparison is also performed with short-pulse reflectometry (SPR)
and thermal ion beam (THB), detailed in Section 5.3.6.

5.3.2 Designed experiments
As stated previously, the objective is to use the same equilibrium configuration with different
heating schemes so that the profiles and consequently the underlying dominant instability are
modified. Even if the instability stays the same, modifying the profiles enables the control
the ion / electron temperature and the distance to threshold. The analysis is done for L-mode
Deuterium plasmas. To be sure not to transit in H-mode even at larger NBI power, the chosen
configuration is an unfavourable upper single null (USN) with a slight positive triangularity.
The magnetic equilibrium is shown in Figure 5.16 for the shot #81084 along with the DBS
launcher system. Examples of beamtracing are displayed in blue and pink. The last mirror is
tiltable to adapt for different configurations and measurements at different k⊥. Details on the
launcher can be found in ref.[225]. The main shaping parameters are indicated on the right hand
side.
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Figure 5.16 – Magnetic equilibrium of #81084
along with launcher system for DBS and SPR.

Courtesy of S.Rienäcker.

Magnetic equilibrium

Ip =−177 kA
B0 =−1.44 T
q95 = 4
βt = 0.355 %
βN = 0.674

vol = 1.269
area = 0.231
Rax = 0.898
Zax = 0.034
a = 0.233

κ = 1.535
δ = 0.123
δtop = 0.233
δbot = 0.014

Table 5.1 – Magnetic pa-
rameters, using matlab
routine ’liuqeplot’.

This shape has proven very stable in terms of MHD activity and plasma breakdown and has
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been preferred to the equivalent unfavourable lower single null. Note that in this configuration,
NBI-1 is co-current while NBI-2 is counter-current. Additionally, the DBS system probes the
plasma from the top. It is comfortable to have an upper single null so that the diagnostic can
probe as close as possible to the low field side to take advantage of the ballooned form of the
turbulence. As such, the angle at which the DBS is used is also constrained from the plasma
geometry. In the following we use an angle of −50◦, which corresponds to the blue lines in
Figure 5.16.

To maximize the use of the shots, since one correlation measurement takes only around
100ms, two heating steps are used, such as shown in Figure 5.15. Note that the density is
difficult to control in NBI heated plasmas at TCV, especially for the chosen configuration (see
FIR ne > re f in Figure 5.15). Therefore, the recipe has been to separate the two heating steps
with a central ohmic phase so that the density stays roughly constant throughout the discharge.
The density control is particularly important for DBS since it imposes the location of the mea-
surement through the cut-off frequency. The difficult density control also makes the coupling
between NBI and ECH tricky. Indeed, ECH heating largely depends on the plasma density, and
if it is too large the ECH power can be reflected anywhere in the vaccuum chamber and in the
launcher. In the performed experiments, it proved very difficult to use both at the same time and
ultimately the choice have been made to use them separately. The summary of the performed
discharges is indicated in Table 5.2. Each row correspond to a heating plateau (usually two per
shot). Since the SPR shares the antenna with the DBS, some discharges are repeated a second
time to have correlation measurements with both diagnostics.

Shot Time window [s] ECH [kW] NBI-1 (ref) [kW ] NBI-2 [kW ] SPR
82607 [1.2−1.8] 0 140 (170) 0 no
81069 [1.4−1.8] 0 167 (200) 0 81100
82607 [0.6−1.2] 0 250 (300) 0 no
81084 [0.6−1] 0 250 (300) 0 no
81065 [0.6−1] 0 260 (315) 0 no
81084 [1.4−1.8] 0 300 (355) 0 no
82615 [1.2−1.8] 0 300 (390) 0 82619
81065 [1.4−1.8] 0 355 (420) 0 no
82615 [0.6−1.2] 0 406 (480) 0 82619
81069 [0.6−1] 0 500 (590) 0 81100

82609 [0.6−1.2] 0 304 (360) 240 no
82609 [1.2−1.8] 0 358 (420) 280 no

81087 [0.6−1] 590 0 0 no
82611 [0.6−1.2] 590 0 0 no
82611 [1.2−1.8] 810 0 0 no
82612 [0.6−1.2] 890 0 0 no
82612 [1.2−1.8] 1180 0 0 no

81087 [1−1.4] 590 173 (210) 0 no

Table 5.2 – Deuterium unfavourable USN shots for correlation measurements. Each row
corresponds to a heating step plateau. ECH, NBI-1 and NBI-2 represent the total injected

power. The reference value is also indicated for NBI-1 (about 15% mismatch).
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The resulting profiles are analysed using linear gyrokinetics to infer what type of instability
is dominant. Six heating plateaus have been chosen at PNBH = 167,260,355,500 kW and at
PECH = 590,1180 kW . The profiles of electron temperature Te, ion temperature Ti, electron
density ne and toroidal velocity vtor are displayed in Figure 5.17.
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Figure 5.17 – Kinetic profiles used for the linear analysis. The NBH heated plasma profiles are
taken at: t = [1.65−1.75]; [0.85−0.95]; [1.45−1.55]; [0.65−0.75] for

NBH= 167,260,355,500 kW respectively. ECH heated plasma profiles are taken at
t = [0.8−1.1]; [1.3−1.7] for ECH=590,1180 kW .

As expected, ECH and NBH scenarios lead to different profiles. The former leads to a large
electron temperature and a comparatively low ion temperature. The electron density is lower
in ECH plasmas so as to better couple the cyclotron wave. The NBH scenario leads to τ =

Ti/Te ≈ 1 and an important toroidal velocity. Note that the velocity in the core is negative
because we used NBI-1 which is co-current (Ip < 0). While the different heating power leads to
a slight modification of the ion temperature, no strong modification is observed for the electron
temperature. Furthermore, the profiles are modified in the core, but edge ( ρ ≈ 0.8−1) gradients
are similar in the selected shots. The main difference at the edge comes from the density profile,
difficult to control as stated, and the toroidal velocity which increases with the NBH power.

Based on the above profiles, linear estimation of the growth rate and frequency are obtained
with GENE by taking values of the gradient at ρ = 0.95. They are displayed in Figure 5.18.
The simulations have been performed by A.Balestri.
In every tested cases, the dominant instability is in the electron direction. It is assumed that
trapped electron modes (TEM) are the main instability as it is often the case for TCV plasmas
[226, 227]. Some shots have been performed at different NBI powers and various densities to
attempt modifying the dominant instability, without success. Indeed, part of the objective was
to transit into regimes dominated by ITG/RBM like instabilities and / or collisional drift waves
for a better comparison with simulations described chapter 4.
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Figure 5.18 – Growth rate (a) and frequency (b) for four heating plateaus. Performed with
linear gyrokinetic (GENE) by A. Balestri.

To compare the turbulence correlation length to characteristic scales we compute the Lar-
mor radius ρs =

√
miTe)/(eB) for each measurement using the local electron temperature and

toroidal magnetic field. Note that here we compute it with the electron temperature because
Thomson data are often more reliable than CXRS data. The Larmor radius is evaluated at the
position of the reference DBS measurement for each heating plateau. The results are shown in
Figure 5.19 as a function of ρ . The colour indicates the NBH and ECH heating power.

0.75 0.80 0.85 0.90 0.95 1.00
1.0

1.5

2.0

2.5

3.0

s [
m

m
]

Larmor radius
NBI
ECH

NB1ECH

Figure 5.19 – Larmor radius ρs =
√

miTe)/(eB) as a function of ρ and heating for discharges
in Table 5.2. ECH ranges from 590 to 1180 kW and NBI from 140 to 500 kW .
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Consistently with the above profiles, ρs only vary slightly of about 10− 20% as a function of
the heating power. In ECH cases, it is mainly the electrons that are heated, so ρs also tends to
be larger. The small variation of ρs is a direct consequence of the profiles being very stiff in
the experiments. The local value of ρs will be used to normalize the correlation and avalanche
lengths.

The DBS is configured as described in Figure 5.20: sweeps are repeated with the same
frequency pattern. Each plateau indicated Table 5.2 corresponds to two sweeps. For shots
< #82607, a sweep represents two reference frequencies (200 ms). From #82607 onwards, the
choice have been made to use three reference frequencies (300ms) to cover a larger part of the
plasma radius.

5.3.3 Radial correlation measurement using a CDBS
In this section, we detail the method used to evaluate the radial correlation length (short scale
and avalanches). CDBS was first been introduced by coupling two DBS such that microwave
beams are launched from the same antenna with a small frequency difference resulting in each
DBS probing a slightly different radial location [25]. It enabled the measure of the instantaneous
velocity shear [25] (δEr/δ r). Additionally, this method led to the measure of the turbulence
radial correlation length [220] and turbulent structures tilt angle [228, 229]. At last, more DBS
can be coupled together, increasing spatial resolution and improving correlation measurements,
for example with the comb-frequency DBS [230, 225].

In order to probe the turbulence radial structure, one DBS channel is used with a reference
fixed frequency while the other channel scans the frequencies around the reference. A typical
frequency scheme used at TCV for radial correlation is shown in Figure 5.20 for the example
shot #81069.
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Figure 5.20 – Frequency pattern sweep used for correlation. Reference channel is indicated in
blue (circles), hopping channel is in red (triangles). Shot #TCV81069, sweep 5.

Two reference locations are probed, at 60 and 69 GHz. Each point represents 5 ms of acquisition.
Using the density profile and equilibrium magnetic field we compute the measurement locations
using the beamtracing code. The result is displayed in Figure 5.21 for reference frequency 60
GHz. The poloidal section of the diverted upper single null plasma is shown on the left and
a zoom on the turning points is indicated in the inset. The blue line (circle) corresponds to
reference, the reds (triangles) to the hopping channel.
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Figure 5.21 – Beamtracing for #TCV81069, sweep 5, angle θ =−50◦, Fre f = 60 GHz.

Here the diagnostic is located on the upper part of the machine. Since the measurement depends
on the turbulent activity, it is better to probe as close as possible to the outer mid plane to take
advantage of the ballooned form of the turbulence.

We review briefly the method to perform the radial correlation using the example: #81069 ;
sweep 5. The reference signal is taken at Fre f = 60 GHz, the hopping signal is taken at 60.15
GHz. Two methods can be used to compute the correlation function: in direct or in Fourier
space. The first consists in computing directly the amount of correlation at a time delay ∆t by
delaying one of the data time sequence by ∆t . This gives a correlation function that depends
on the time delay C (∆t), sometimes called Pearson correlation. The second, preferred in this
work, consists in using Fourier space since the Wiener-Khintchine theorem states that the cross-
power spectral density is the Fourier transform of the cross-correlation function. Using the same
method as for evaluating the Doppler shift from the power spectral density of the signal, each
signal is split in m segments of nFFT = 1024 points with an overlap of 512 points. The PSD
and CSD are displayed in Figure 5.22a. The spectral coherence is obtained by normalizing the
CPSD by the PSD:

C 2 =
|csd|2

psdre f × psdhop
(5.8)

It provides a value of coherence between zero and one as a function of frequency, shown in
Figure 5.22b.
Each spectrum is shifted with respect to zero due to the Doppler shift. Note that the zero
frequency component is not plotted as it is at numerical noise level (≈ 10−30). In this example
both signals are obtained with close probing frequencies, hence the two beams probe close to
each other and the Doppler shift is roughly similar. In case of larger distance, PSD maxima
can be at different frequencies leading to a lower CSD signal. In those cases, the amplitude

– 192 –



5.3. Avalanche-like transport characterization in TCV

4000 3000 2000 1000 0 1000 2000 3000 4000
f [MHz]

10 11

10 10

10 9

10 8

10 7

10 6

PS
D 

; C
SD

Spectral densities
ref
hop
abs(csd)

(a)

4000 3000 2000 1000 0 1000 2000 3000 4000
f [MHz]

0.0

0.2

0.4

0.6

0.8

Sp
ec

tra
l c

oh
er

en
ce

 

Spectral coherence

(b)

Figure 5.22 – (a) Power spectral density and cross-spectral density (psd, csd) of reference and
hopping signals. (b) Spectral coherence evaluated from csd and psd. Taken from #TCV 81069 ;

sweep 5 ; (Fre f ,Fhop) = (60,60.15) GHz.

of the complex signals zre f and zhop can be used so as to center each spectrum around zero.
Both signals being spatially close to each other, the maximum of spectral coherence is large
(maxC ≈ 0.9). The time correlation function is then obtained by performing the inverse Fourier
transform of the CPSD. The correlation function as a function of time is shown in Figure 5.23.
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Figure 5.23 – Correlation function as a function of time delay, evaluated from the
cross-spectral density. #TCV 81069 ; sweep 5 ; (Fre f ,Fhop) = (60,60.15) GHz.

Both the correlation function and its amplitude are indicated. The radial correlation function is
then obtained by performing the correlation analysis and computing the maximum of correlation
/ coherence for each hopping frequency. Note that for signal with a large signal to noise ratio
(SNR), both the Pearson and the Fourier methods lead to the same correlation as a function of
time.

It should be emphasized that the correlation function which depends on time delay and the
spectral coherence that depends on the frequencies bear different information. While the former
measures the degree of similarity between two signals, the second considers the distribution of
this correlation between the different frequencies. For the estimation of the maximum of corre-
lation this is of upmost importance. Indeed, for noisy signals, the maximum of the correlation
function collapses much faster than the spectral coherence. Conversely, for signals with good
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signal to noise ratio, the correlation function gives a better estimation since it tends to have a
lower variance.

When the signal to noise ratio is lower, a possible solution is to use the coherence spectrum
instead of the correlation. However, due to the spectrum variance, the estimation of the maxi-
mum can be tricky. To solve this, we perform a fit of the coherence function. Depending on the
nature of the signal we use a Gaussian or a Lorentzian fit so that the maximum of the spectral
coherence is better fitted. The details on the methods used to perform the fits together with
synthetic signals are provided in Section D.3.

The radial correlation function is estimated by performing the above analysis for each of
the hopping frequencies (Figure 5.20). Since, the DBS does not probe from the midplane, the
distance between the reference and the hopping locations is not estimated as a function of ρ but
as a function of R and Z:

∆ =
√
(Rre f −Rhop)2 +(Zre f −Zhop)2 (5.9)

With X and Z the probed location of the reference and hopping channels given by the beamtrac-
ing code.

Two radial correlation functions are displayed in Figure 5.24, one with a large signal to
noise ratio (SNR): 81069 sweep 5 at ρ = 0.96, and a second with low SNR: 82607 sweep 5
at ρ = 0.83. For both cases, the different methods to estimate the maximum of correlation
are shown: ’corr’ corresponds to the maximum of the correlation function,’raw spec’ to the
maximum of the coherence function and ’fit spec’ to the fit of the coherence function.
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Figure 5.24 – Radial correlation function evaluated from the maximum of correlation as a
function of the distance between the two DBS channels ∆. The distance is estimated as a

function of ρs the sound Larmor radius computed at the reference location. The red star notes
the theoretical maximum of correlation at ∆ = 0.

On the left hand side, the signal is good. At small ∆ each method provides a similar estimation
of the maximum of correlation. At larger ∆ the maximum of correlation estimated from the fit is
below the rest of the estimates but exhibits less oscillations than its ’raw’ estimate counterpart.
On the right hand side, the DBS probes closer to the core at ρre f = 0.83 and the signal to noise
ratio is lower. In that case, the maximum of the correlation function saturates at 0.6 due to the
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noise. All in all, it is necessary to keep the same estimate when comparing between different
shots. So as to have a good signal even in the core, the choice is made to use the ’fit’ method in
the following.

There is some debate over the best type of reflectometer signal to determine radial correlation
length. In the above example, we used the full complex signal: z(t) = x+ iy(t) = Aeiϕ with
x = Acosϕ and y = Asinϕ the results of the heterodyne detection. Therefore, one can perform
the correlation measurements on the full signal z, its real and imaginary parts x,y, the amplitude
A or on the phase eiϕ . In refs.[231, 220], the choice is made to use the full complex signal z
to study the radial correlation length of the turbulence. However, as stated previously, when
performing correlation at large radial distance, the Doppler shift of the two signals can be very
different (depending on the local velocity shear). Conversely, if one takes the amplitude signal,
the PSD maximum is located at the zero frequency component (the Doppler shift is removed).
It results in a larger CSD signal and a better estimation of the density perturbation extension.

In Figure 5.25, radial correlation functions evaluated with z, A and eiϕ are displayed. It
shows that despite the short length correlation being similar in the full and amplitude signals,
the second correlation slope only appears in the amplitude signal.
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Figure 5.25 – Radial correlation function obtained from the max. of the fit performed on the
spectral coherence. The computation is applied to the full complex signal (blue circles), the

amplitude signal (red triangles) and the phase (green squares).

Ultimately, we aim at observing avalanches. Therefore, the amplitude is used in the following.

At last, the minimum level of correlation considered significant is estimated using the mixed
files technique, detailed in Section D.4: random pairs of DBS reference and hopping signals are
correlated. Using the fit of the coherence function, random pairs of signals are shown correlated
at roughly C = 0.02. In the following, no correlation below 0.05 will be considered significant.
The mixed file technique has also been performed at specific frequencies and locations in the
plasma to check whether probing further in the core leads to a larger correlation noise. No
significative difference has been found. Thus, signals that are noisy lead to a lower overall
correlation but do not modify the minimum of correlation considered significant.
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5.3.4 Identification of avalanches using CDBS
In Figure 5.26, 4 typical examples of radial correlation functions are shown. Figure 5.26a and
5.26b are NBI-heated plasmas whereas Figure 5.26c and 5.26d are ECH-driven. The computa-
tion is made on the amplitude signal, using the maximum of the fit estimation. The errorbar is
evaluated from the difference between the fit and the maximum of the raw spectral coherence.
3 different fits are performed on the logarithm of the signal. At short scale, for positive and
negative ∆, the red and blue fits indicate the first slope of correlation. When the maximum of
the radial correlation is not too low, this fit is imposed to 1 at ∆ = 0. The second slope, in
green, corresponds to the avalanche signature. The structure size lc and avalanche length La are
evaluated from the inverse of the slopes. This amounts to consider that the correlation decreases
like: maxC ∝ exp(−∆/lc,a), at short and large scale.
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Figure 5.26 – Examples of semi-log radial correlation function evaluated from the amplitude
signal through the maximum of the fit of the spectral coherence. Fits of the radial correlation

function are performed at short scale (blue, red) and large scale (green). The correlation length
is inferred from the inverse of the slope. The two upper cases correspond to NBH plasmas,

bottom cases to ECH plasmas.

In some cases, such as (a) and (c), the radial correlation function clearly displays two slopes at
small and large scale. It can even be difficult to assess the small scale correlation length as the
avalanche can take up most of the signal. In other cases, such as (d), there is simply no evidence
for a second slope of correlation. Finally, the most difficult cases to consider are the ones further
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inside the plasma such as (b). Here, the signal is less good, data is noisy, and the maximum
of correlation saturates at C = 0.75. Additionally, the fits are more difficult to perform and no
clear slope is present. In the presented case, an avalanche-like length is still observable but the
short correlation length is difficult to infer. Moreover, the correlation function is not symmetric
and the two estimates for lc are different.

5.3.5 Smaller turbulent structures & avalanches near the separatrix

The size of turbulent structures and avalanches are analysed for every ECH and NBI-1 heated
shots from Table 5.2. They are shown as a function of ρre f in Figure 5.27. Each point corre-
spond to a DBS measurement (2 or 3 DBS measurements per heating plateau). The triangles
indicate the small scale turbulence correlation length lc, the empty circles display the spatial
extension of the avalanches. Note that not every triangle is associated with a circle because
avalanches have not been found in every correlation measurement.
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Figure 5.27 – Radial correlation length of the turbulent structures lc and avalanches La for
every ECH and NBH plasmas as a function of ρ . The errorbar of lc is given by the difference

between the two estimates of lc (both side of C = 1) plus their standard deviation. The errorbar
of La is given by the quality of the fit performed on the radial correlation function.

The turbulent structures are found to have a variable size between 2 and 4 ρs in most of the
measured range. Close to the edge, lc strongly decreases for the ECH plasmas to reach values
of the order of unity. This area corresponds to the Er well and will be described with more
details in the following. Unfortunately, the measurements were not located in the Er well for
NBI cases and there is no comparison of the radial electric field and radial correlation length
between ECH and NBI in this region.
Avalanches are found in both ECH and NBI plasmas. Their measured extension is mostly below
10 ρs. In NBI plasmas they are found mostly at the edge at ρ > 0.92, but it is also where the
best DBS data is found so it is possible that the diagnostic misses some avalanches further in
the core. They are of various size, with no dependence on ρ . In ECH plasma, the avalanches
are also found to decrease strongly at the edge.
Interestingly, avalanches are found smaller than in simulations and earlier experiments. First,
in the last chapter using Tokam1D, avalanches were found with a size of roughly 30 ρs. In
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gyro-kinetic simulations, they are measured of the order of (Lsim
a ∼ 20−40 ρi) [104]. In AUG

they have been found at LAUG
a ∼ 20−30 ρi with a turbulence correlation length of lc ≈ 6−8ρi

[86]. Note that those contributions use the ion Larmor radius and not the Larmor radius evalu-
ated with Te. In the case of TCV, electron temperature measurements are more reliable so the
latter is preferred. Actually, both AUG and TCV data display avalanches of a few turbulence
correlation length (La ∼ 2−5lc). The turbulence correlation and avalanche lengths normalized
to the ion Larmor radius can be found in Section D.5. Why AUG and TCV have different tur-
bulence correlation lengths could be due to different magnetic / velocity shear or to different
turbulence regimes in those experiments. Additionally, TCV has a larger ρ⋆ = ρi/a since it has
a comparatively low magnetic field with the same edge temperature as AUG. At this stage, the
cause for the difference in lc remains unresolved.

It is reasonable to ask the question of the role of the perpendicular velocity shear on the radial
correlation measurements. Indeed, from the BDT model [19] we expect the velocity shear to
reduce the radial correlation length of the turbulence. In the experiments performed, the core
(ρ < 0.9) perpendicular velocity is largely dependent on the chosen heating power as shown in
Figure 5.28.
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Figure 5.28 – Perpendicular velocity profile from the hopping channel as a function of heating.
From top to bottom the cases are taken from: #82615 sweep 4, #82607 sweep 5, #82611 sweep

3 and #81065 sweep 6.

The perpendicular velocity profile is found to be articulated in two parts probably the sign of
different physics. Close to the separatrix, in the Er well zone, a similar profile is found whatever
the chosen heating. This is not always the case obviously, especially in favourable configuration
or with NBI at high power. Here, the experiments are performed in unfavourable configuration
and far from L-H transition threshold. If one would approach the threshold, the v⊥ well would
deepen with the increased power. Interestingly a "bump" is observed between the Er well region
and the core region where the perpendicular velocity is larger (more positive) between the well
and the core. In Figure 5.28 it can be seen on the Ohmic profile. It also occurs in some ECH
and NBI discharges without a clear trend in heating scheme or power. Further inside the core,
v⊥ behaviour is in agreement with the radial force balance. The role of the toroidal rotation is
particularly noticeable. Considering that Bθ , Bφ are negative and the convention displayed in
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Figure 5.3, we recall the radial force balance:

v⊥ =
⟨Er⟩

B
=+

∇pi

ne
+ vφ Bθ − vθ Bφ . (5.10)

In the present scenario, NBI-1 is co-current and Ip < 0. That means a large NBI-1 power leads
to a negative vφ . In turn, provided that ∇pi and vθ do not vary too much, this results in a positive
v⊥ in the core. Note also, that increasing NBI-1, tends to increase the ion temperature which
impacts v⊥ through ∇pi in the opposite way. The profiles of density ne, electron temperature
Te, ion temperature Ti and toroidal velocity vφ are displayed in Figure 5.29 for the same cases
as in Figure 5.28. The electron density and temperature are taken from Thomson measurement.
The toroidal velocity and ion temperature are inferred from CXRS data. The CXRS data is
more noisy, in particular for the toroidal velocity. Therefore, in some cases, the errorbars are
not assessed, but note that our primary focus here is the qualitative trends of the profiles.
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Figure 5.29 – Profiles of electron temperature Te, ion temperature Ti, density ne and toroidal
velocity vφ averaged over 100ms as a function of ρ and heating. The data is taken from

Thomson (top row) and CXRS (bottom row) for discharges: #82615 sweep 4 (red), #82607
sweep 5 (blue), #82611 sweep 3 (purple) and #81065 sweep 6 (green).

Despite increasing the perpendicular velocity shear in the core, no effect of NBI-1 power is
observable on the avalanches or correlation lengths, see Figure 5.30 (left). However, a slight
effect of the heating might be observable on the ’importance’ of the avalanche signal as com-
pared to the rest of the statistic. To compute the importance of the avalanche, we measure the
value of the correlation at which the second slope, thought linked to avalanche signal, begins
on the correlation function. This gives a proxy bounded by 0 where no avalanche occurs and 1
which describes a signal with only avalanches. The increase of the avalanche ’importance’ can
be linked to either an increased frequency or increased amplitude of the avalanche-like events.
The lengths lc and La and the correlation at the beginning of the avalanche slopes are displayed
in Figure 5.30. The colour indicates NBI-1 power.
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Figure 5.30 – (a) Radial correlation length lc and avalanche length La. (b) Beginning of the
avalanche slope on the radial correlation function. The colour is set by the NBI-1 power.

The size of the turbulent structures lc slightly increases at the edge of the plasma but no dis-
cernible impact of the heating power is observable. Similarly, the avalanches are shown scat-
tered at different sizes without a clear dependence on the heating power. It is possible that the
induced shear rate in the core is not large enough as compared to the growth rate of the underly-
ing structures to decorrelate them. The proxy for the importance of the avalanche does not set a
clear trend either. However, for ρ < 0.92, increasing the power at a given radial location leads
to a more important avalanche. This observation also stands for the edge-most values measured
in those simulations. We lack the necessary statistics to draw conclusions on the role of the
NBI-1 power but this should be looked at in future experiments.

For ECH experiments, some measurements are inside the Er well close to the separatrix. At
these locations, the radial correlation length and the avalanche length are shown to decrease.
The perpendicular velocity and radial correlation length of the turbulence lc are shown in Fig-
ure 5.31 for the ECH cases.
The correlation length of the turbulence reduces from lc ∼ 3 ρs before the well to lc ∼ 1.5 ρs in
the well. Interestingly, the avalanches lengths are also reduced in the Er well but less than the
radial correlation length. As a result, the normalized avalanche length La/lc still increases.

5.3.6 Comparison of correlation lengths with SPR and THB

The characterization of the turbulence structure is compared with two other diagnostics: the
short pulse reflectometry (SPR) already mentioned in the previous sections, and the thermal he-
lium beam (THB). The first can measure density fluctuations by sending pulses into the plasma.
As such, it measures locally and can be expected to measure larger structures as compared to
the DBS. The second provides an estimate of the electron density and temperature while also
enabling fluctuation measurements. The physical principle of THB consists in measuring the
ratio between the intensity of different neutral helium lines puffed into the plasma edge. Further
details on this diagnostic along with its specific application to TCV can be found in ref.[232].
SPR shares the launcher system with the DBS, it provides measurement from the same upper
lateral port although at a different angle regarding the plasma surface. The THB consists in 8
lines of sight located at the outer mid-plane close to the separatrix. Their localization is shown
in Figure 5.32 for the upper-single null shape used for this study.
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Figure 5.32 – Location of THB measurements courtesy for the magnetic equilibrium of shot
#81084. Courtesy of M. Ugoletti.

For this scenario, the THB takes measurements in the scrape-off layer, from ρ = 0.99 to
ρ = 1.05.

We compare the three diagnostics for the case NBH = 300kW corresponding to shot #82615
for DBS and THB and #82619 for SPR. The radial correlation function computed with the SPR
is plotted along with the DBS radial correlation function in Figure 5.33 against the absolute

– 201 –



Chapter 5. Experimental characterization of the turbulence structure using Doppler
backscattering

distance normalized to the local Larmor radius ∆/ρs. For this heating plateau, one can infer one
radial correlation function for the SPR and two for the DBS (sweep 5 and sweep 6). The DBS
reference is located at ρ = 0.92 for sweep 5 and ρ = 0.94 for sweep 6. The SPR measurement
is around ρ ≈ 0.93. Here, ρs ≈ 1.4mm.
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Figure 5.33 – Comparison of the radial correlation length obtained from SPR and DBS on two
repeated shots as a function of the absolute distance normalized to the local sound Larmor

radius. SPR analysis performed by U.Kumar and O.Krutkin.

On one side of the maximum of correlation, at short scale, both SPR and DBS are in very good
agreement. They estimate a similar short scale turbulence correlation length lc ≈ 3ρs. At larger
distance, the DBS amplitude signal stays better correlated than the SPR. However, note that no
second slope is noticeable on the DBS signal. The result is preliminary and should be further
investigated along with other discharges. However, it is encouraging and shows that a joint
study between DBS and SPR can be carried out.

The THB is a complementary diagnostic relative to the other two. Indeed, in this configura-
tion it measures in the scrape-off layer. 8 radial correlation functions are obtained by correlating
one line of sight with the others. They are shown in Figure 5.34 (left) for discharge #82615 at
t = 1.42s. Each color indicate the correlation of one LoS with the others. The width of each
radial correlation function is evaluated, the result is shown on the right.
In the scrape-off layer (ρ = 1− 1.04), the local hybrid Larmor radius is comprised between
ρs = 0.6− 0.9mm depending on taking the measurement from the THB or the Thomson scat-
tering system. The radial correlation length is of the order of the centimer, which corresponds
to lc ≈ 10−20 ρs. In the confined region, the radial correlation length is much smaller, of the
order of 3ρs ≈ 4−5mm. It is expected that the filamentary structures in the SOL are bigger than
those in the confined region. Actually, past experiments on ASDEX [233] and TCV [234], have
characterized the blobs – filamentary structures in the SOL – of the order of the cm.

In this section, avalanche-like events have been observed on the radial correlation measure-
ments done with CDBS. Those occured for USN unfavourable TCV plasmas driven by ECH
and NBI. In every tested cases the plasma is dominated by an instability of electron type, likely
TEM. The avalanches are observed at various heating power without clear scaling on the heating
power. The avalanches are of the order of 5 to 14 ρs which is smaller than previously measured
on AUG and predicted by gyrokinetic simulations. The chosen heating scheme is shown to
modify the perpendicular velocity profile, especially through the role of the toroidal velocity.
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(a) (b)

Figure 5.34 – (a) Radial correlation function of each THB line of sight with the others at time
t = 1.42s. (b) Width of the correlation functions as a function of ρ for two snapshots at

t = 1.42s and t = 1.74s. Analysis performed by M.Ugoletti.

In the core plasma, radial force balance effects are shown important to set the perpendicular
velocity profile. Finally, only large shears such as found in the Er well are found to reduce the
size of the turbulent structure and avalanches.

5.4 Conclusion
In conclusion, the Doppler backscattering (DBS) has been used coupling two channels to anal-
yse turbulence self-organization into flows and avalanches. DBS enables the measurement of
the plasma perpendicular velocity from ρ = 0.7 to ρ ≳ 1, together with the measurement of the
density fluctuations at a specific k⊥. Correlating signals from two channels allows for additional
insight on fluctuations and flow spatial structure

First, we utilize data collected from Tore Supra during the period when two DBS were in-
stalled. The two channels are separated poloidally and toroidally enabling long range cor-
relation measurements. In order to observe low frequency zonal flows (LFZF), the density
fluctuations signal is first processed using the MUSIC algorithm. This gives an estimate of the
instantaneous Doppler frequency, thus of the perpendicular velocity fluctuations. By correlating
at long distance the two velocity fluctuations signals, the velocity mode (m,n) = (0,0), m being
the poloidal and n the toroidal wavenumbers, is observed to oscillate at the GAM frequency.
To better observe the low frequencies, the high frequencies and GAM feature are isolated and
removed from the signal using empirical mode decomposition (EMD). The EMD proves effi-
cient to identify and extract a signal of varying frequency and amplitude. The correlation of the
"cleaned" signal is shown to be better correlated at small frequencies, possibly as a sign of a
LFZF activity. Although being only performed on one discharge, this method is promising for
the study of LFZF. Ideally, this method should be applied to longer time sequences on a stable
plasma to better observe the low frequencies. Then, one would need to repeat this operation
at various densities and with different heating schemes to compare the properties of the LFZF
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with theories and simulations.

Then, using two co-located DBS channels in TCV, radial correlation length measurements
are performed. A large number of discharges are analysed in L-mode, unfavourable, USN con-
figuration, where the plasma is shown dominated by trapped electron modes. In addition to
the usual decay of the radial correlation function at small scale, a second slope (larger scale)
is observed in most of the discharges, principally at the edge of the confined plasma. By anal-
ogy with Tokam1D, the second slope of correlation is understood as a signature of avalanches.
The avalanche-like events are observed at various heating power – both ECH and NBH – with
lengths ranging from 5 to 14 ρs. In the core, no relation between the size of the turbulent struc-
tures and the velocity shear is observed, though the perpendicular velocity profile (and its shear)
could be changed by momentum injection through the heating beams. In regions of large veloc-
ity shear, such as the Er well, the radial correlation length is shown to decrease along with the
avalanche length.
The same analysis at larger power – approaching the L-H transition – should be performed to
see if the increased velocity shear further impacts the avalanches and turbulent structure sizes.
For future analysis, discharges in Deuterium and Hydrogen with matched profiles of electron
and ion temperatures, density and toroidal velocity have already been performed. The scaling
of the avalanches with the characteristic Larmor radius size can be studied. Additionally, the
radial correlation between velocity fluctuations obtained with the MUSIC algorithm should be
performed to measure the scaling of the velocity structures. Hydrogen plasmas tend to be more
stiff – about 30% more heating required in NBI to get the same profiles – so we can expect
stronger avalanche activity. This increased avalanche activity could manifest as a break in the
slope of the radial correlation function. It is expected that the break in the slope will occur at
higher correlation values in hydrogen. Avalanche extents could also be larger in Hydrogen as
compared to Deuterium.

Finally, it should be noted that no corrugated perpendicular flows have been observed in
the performed experiments. It is possible that the turbulent regime does not favour the appear-
ance of radially structured flows or that the time needed for a velocity profile (∼ 100− 200
ms) is too long for their relative stability. In the previous chapter simulations, structured flows
were found mostly in interchange driven plasmas close to the threshold whereas in the experi-
ments, the plasma is driven by trapped electron modes. Developing a scenario dominated by an
interchange-like instability such as RBM or ITG at TCV should be the focus of a future work.
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This thesis work focuses on the study of turbulence and its self-organization in fusion plasmas.
Understanding turbulence is key for present and future fusion experiments. It governs the trans-
port of heat and particles from the hot core to the edge of the tokamak. As such, it controls the
energy confinement time which is a size-determining factor for future machines. The physics of
turbulence itself is also a fundamental subject, for which there is still much to discover. Turbu-
lence in magnetized plasmas is predicted and sometimes observed to lead to complex dynamics
such as avalanching processes and mesoscale structures called zonal flows. While the first leads
to an important transport of heat and particles, the second is beneficial for the confinement as it
produces no transport while constituting a well for the turbulence energy. The combination of
avalanches and radially localized stable zonal flows - called an E ×B staircase - can possibly
lead to micro-barriers beneficial for the overall confinement.

The thesis first objective is to study turbulence regimes leading to the appearance of such
mesoscale structures. Can we better identify regimes favouring the generation of zonal flows,
avalanches and staircases? Additionally, the work aims at giving insight on the self-organization
itself: what kind of interplay characterizes avalanching processes and zonal flows? Finally,
while these aspects of self-organization are crucial in turbulence simulations, their experimen-
tal characterization is challenging. Can we better predict turbulence self-organization and its
impact on measurable signals, possibly in various turbulence regimes?

The results of this work can be summarized on two levels. At a general level, we devel-
oped a reduced fluid model aimed at the turbulence and flows interaction study. We used the
model extensively to characterize both the linear and the nonlinear behaviours in the turbulence
parameter space. Various ways forward have been explored by introducing further elements
of physics to account for more complex effects regarding turbulence and flows. The model is
not made to reproduce quantitatively experimental result but (i) to identify some underlying
physical mechanisms of turbulence self-organization and (ii) to explore the behaviour in a vast
parameter space. As such, the model is also a guide for experiments: it provides possible signa-
tures of turbulence self-organization that could be observed in experiments and suggest regimes
in which these structures are most likely to emerge. Based on this, experiments are performed
with a Doppler backscattering (DBS) to measure density fluctuations at a specific wavenumber.
On a more detailed level, each chapter has addressed a specific problem. The key findings along
with future perspectives are detailed in the following.

In chapter 3 we develop a reduced model aimed at the turbulence and flow interaction for
which several key elements have to be included. First and foremost, the equilibrium profiles
have to be evolved self-consistently. Turbulence self-organization is tightly linked to equilib-
rium profiles. Indeed, profiles can develop small scale corrugations, crucial for the onset of
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avalanches and staircases. This physics is included by making the model flux-driven: the equi-
librium profiles can evolve consistently as a balance between a source and a turbulent transport
generated by the fluctuations themselves. Second, the model needs to involve several relevant in-
stabilities. This is done by including two instabilities expected important at the edge: collisional
drift waves (CDW), linked to the parallel phase shift between density and electric potential fluc-
tuations, and interchange, driven by the inhomogeneity of the magnetic field. Third, the edge
region - both sides of the last closed flux surface - has already been identified as key. In this
region occurs the transition from close to open flux surfaces and the development of the edge
transport barrier leading to improved confinement regimes. It is characterized by an important
collisionality making the fluid approach possible. Fourth, the model needs to run fast, on con-
finement timescales. This is necessary to perform turbulence parameter scans where profiles
have the time to adapt to turbulence and reach statistical steady-state. To this aim, the model is
reduced to one dimension by keeping a single poloidal and parallel wavenumber for the fluctua-
tions. As such, the primary saturation mechanisms for turbulence are due to the density profile
relaxation - in the spirit of quasilinear theory - and the storage of turbulent energy into equilib-
rium flows. These two mechanisms play important roles in weakly forced systems that remain
close to marginality. The model is derived first for an electrostatic, L-mode, isothermal plasma.
Some extensions are discussed by including scrape-off layer physics and electromagnetic ef-
fects.

The linear study of the derived model is conducted in the different configurations: electro-
static confined region, electrostatic scrape-off layer and electromagnetic. Both interchange and
CDW are observed with the former leading to a larger growth rate and sine of the cross-phase
than the second. The adiabatic parameter is shown stabilizing for the interchange. The com-
pressibility terms, originating from the divergence of the velocity, are also shown stabilizing
when the magnetic curvature g becomes large. Under the assumptions of the model, the SOL
is stable to CDW and driven only by interchange. Finally, the electromagnetic linear analysis
is conducted. The parameter β stabilizes the CDW instability and destabilizes the interchange
instability. In the large β limit, the ideal MHD instability is recovered.

Using the so-called Tokam1D in the electrostatic core version, the turbulence parameter space
in scanned in chapter 4.
First, zonal flows are found to emerge principally at large parallel conductivity, in CDW domi-
nated plasmas. A reduction of the ZF activity is found when lowering the conductivity but no
collapse of the ZF energy is observed. This stands in contrast to previous contributions and is
found to result from the nature of the forcing, flux-driven instead of gradient-driven. The system
has more freedom to adapt, leading to a smoother transition from turbulence to flow dominated
regimes.
Second, a flow dominated regime is also found in interchange driven plasmas, at high magnetic
inhomogeneity. This second regime leads to stable in time, radially localized ZF layers. Overall,
radially structured flows are mainly found in interchange turbulence, close to marginality. In
the performed simulations, radially localized flows always lead to staircase-like corrugations of
the density profile.
Third, both the electric and the diamagnetic contributions to the Reynolds stress appear crucial
for the generation of ZFs although their effect can be synergistic or competitive depending on
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the turbulent regime. In interchange driven plasmas, both components are in phase opposition
but the electric contribution is much larger than the diamagnetic. In CDW driven plasmas, the
diamagnetic contribution is dominant. Finally, at large C, both components are in phase and of
the same magnitude. The Reynolds stress behaviour is consistent with the quasi-linear dynamics
of the underlying instabilities. The density, electric potential fluctuations and their cross-phase
are found in qualitative agreement with the linear predictions.
Fourth, avalanches are also found in interchange driven plasmas. They can propagate on small
or large fraction of the simulation domain depending on the interchange parameter. When large,
they are not found to be bounded by shear flows. Conversely, they are shown to reactivate the
flow structures, giving energy to the shear layers while travelling through them.
Finally, the simulations confinement time is assessed. While being principally governed by lin-
ear properties such as the instability threshold and stiffness, simulations exhibiting larger flow to
turbulence energy ratio yield a larger particle confinement time. When normalizing the confine-
ment time with a mixing-length estimate, it is found that simulations displaying staircase-like
structures perform better.

At last, these characteristics of the spatial structure of turbulence and ZFs have been seeked
in experiments. Two configurations of a multi-channel Doppler backscattering (DBS) system
have been used. The DBS enables the measurements of the density fluctuations at a selected
wavenumber and their advection velocity in the edge region of tokamaks.
On Tore Supra, the zonal structure was studied through correlations between two distant chan-
nels poloidally and toroidally separated, while measuring the same radial location. A de-
tailed analysis of existing data showed that the long range correlation signal is dominated by a
geodesic acoustic mode (GAM) component. To better identify low frequency zonal flows, the
high frequency noise is removed along with the GAM using empirical mode decomposition.
This method enables the identification of time-varying frequency components inside a signal.
When the signal is cleaned from its high frequencies, a long-range correlation signal is obtained
at low frequency, reminiscent of zonal flows.
On TCV the radial structure was investigated from correlation of two co-located channels in
L-mode trapped electron mode dominated turbulence. Two slopes are identified on the radial
correlation function of the density fluctuations. By analogy with the reduced model simulations,
the first slope is identified with small scale turbulence correlation length and the second slope
with avalanches. Both lengths are robustly found at various heating powers using electron cy-
clotron resonance heating (ECH) and neutral beam heating (NBH).
Although no staircases have been identified in those experiments, the methods tested pave the
way towards other experiments, in different turbulent regimes and closer to H-mode.

The present work opens perspectives. First, on the derived model itself. A few model addi-
tions have already been implemented and need to be tested thoroughly in nonlinear simulations:

1. Include an equilibrium force balance velocity. This velocity depends on the density profile
and plays a role in setting an edge transport barrier through a positive retroaction loop:
increased gradient leading to a larger velocity shear.

2. Add the transition from the confined core plasma to the outer scrape-off layer (SOL).
First, the radial electric field is shown to changes sign in the SOL thus impacting the
equilibrium flow and shear. Second, the interaction with the wall and neutrals is key in
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the whole dynamics. Including the SOL opens possibility for studying plasma-wall and
plasma-neutral interactions.

3. Evolve towards an electromagnetic nonlinear turbulence model. Those effects are key
in cases of large gradient zones such as the pedestal during the L-H transition. Having
an electromagnetic model enables the study of turbulence-flow interaction when getting
closer to H-mode conditions.

Additionally, two pieces of physics can be included at lower cost while providing significant
value. First, taking into account the density dependence of the adiabaticity parameter. The
parameter controls the amount of energy stored into the flows, and more insight on the devel-
opment of flows close to the edge could be gained if their development would depend on the
underlying density value. Second, the GAM physics. They represent an interesting third party
possibly able to exchange energy with both the zero-frequency flows and the turbulence.

On the experimental point of view, we have shown the interest of having distant DBS chan-
nels for identifying ZFs. The analysis method used to clean the long range correlation signal
from high frequency noise and GAM is promising. Unfortunately, only limited data were avail-
able in this configuration. Although tokamaks often lack the space to accomodate these systems,
these findings push towards further experiments in such configurations with long range coupled
Doppler backscattering systems. Based on the model, they should be performed in interchange-
driven plasmas at intermediate density. To characterize whether the observed low frequency
signal is reminiscent of zonal flows, its dependence on density can be assessed. From the simu-
lations, we expect a higher density to lead to a decrease turbulence drive (lower adiabatic param-
eter) and stronger collisional damping. Additionally, avalanche measurements are robust and
should be performed in other turbulence regimes. Experiments have already been performed
using matched profiles between Hydrogen and Deuterium plasmas, their analysis will provide
more knowledge on the scaling of turbulence structures with the normalized Larmor radius ρ⋆.

Interestingly, turbulence self-organization is a generic enough problem to be shared with
other plasma and neutral fluid systems. This spans from large-scale atmosphere circulation and
ocean staircases to solar tachocline stability and planetary formation. Much can be gained by
integrating insight from these different fields and engaging in cross-field collaboration.
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Appendix A: Introduction

A.1 The author & TCV

Figure A.1 – The author in front of the DBS launcher system at TCV.

A.2 Hot and magnetized plasma: typical length and time
scales

The various processes taking place in a tokamak develop at different length and time scales
which span a large number of orders of magnitudes. They are summarized in Figure A.2.
The spatial scale from smaller to larger:

• The nucleus scale (∼ 10−15 m): scale of the nuclear interaction, binding nuclei together.
• The Landau distance (ΛLs ∼ 10−13 m): shortest distance of approach of thermal particles

(in a plasma at about 10keV) that interact frontally.
• The Debye length (λD ∼ 10−4 m): characteristic distance at which the electric charge

es of a given particle of species ’s’ can be considered screened by the charges of its
neighbours. It is defined as:

λD,s =

√
ε0Ts

e2
s ns
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Figure A.2 – Typical length (top) and time (bottom) scales in a hot magnetized plasma.

With, ε0 the permeability of free space, Ts and ns the temperature and particle density of
the species ’s’. It ranges typically from 10−5m for (n,T ) = (1019 m−3,300 eV ) to 10−4m
for (n,T ) = (1020 m−3,15 keV ) in a confined plasma. Above the Debye length, the
plasma can be considered as quasi-neutral. Note that quasi-neutrality does not preclude
the development of an electric potential and electric field in the plasma. It simply states
that such a field exhibits large scale variations only.

• The Larmor radii (ρe ∼ 10−4m for electrons and ρi ∼ 10−3m for ions): it corresponds to
the charged particle gyro-motion around a magnetic field line, detailed in Section 1.2.1.
For single charged thermal particles, it is defined as,

ρs =
vth,s

ωc,s
=

√
msTs

eB

Where vth,s =
√

Ts/ms is the thermal speed of species "s", ωc the gyro-frequency and B
the magnetic field strength.

• The micro-turbulence correlation length (lturb ∼ 10 ρi): corresponds to the typical size
of micro-turbulent structures responsible for the majority of cross-field transport.

• The thermodynamic gradient lengths (LP ∼ 10−2 −1): typically of the order of a frac-
tion of the machine minor radius. In practice, much smaller gradient lengths can develop
in cases of staircases or High-confinement modes. Those situations are detailed in the
following.

• The particles mean-free path (≳ 1 km): typical distance between two collisions for
electrons and ions.

The temporal scales:

• The inverse plasma frequency (ω−1
p ∼ 10−9 s): characteristic time of plasma response
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to a charge displacement. Defined as follows:

ωp =

√
ne2

ε0m

• The cyclotron-period (ω−1
ce ∼ 10−11s;ω

−1
ci ∼ 10−7s for electrons and ions respectively):

corresponds to the time associated with the gyro-motion and the Larmor radius.
• The micro-turbulence auto-correlation time (τturb ∼ 1−100 µs): typical lifetime of a

micro-turbulence structure.
• The Coulomb collision time or inverse collision frequency (ν−1 ∼ 10−3 − 10−4s). It is

defined as the time necessary for a particle to have its velocity vector deflected by about
90◦.

• The Energy confinement time (τE ∼ 0.1−1 s): time for which the energy stays confined
in the plasma when external heating is removed.

s From this rapid overview, it appears that hot magnetized plasmas experience a large range
of different lengths and time scales. The hierarchy has long advocated to address those pro-
cesses on the basis of scale separation. Growing evidence shows, however, that plasma self-
organization develops at intermediate - or meso - scales which fill the gap between micro-
phenomena and the large machine scale.
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B.1 Tokam1D numerical implementation details

B.1.1 Tokam1D workflow and numerical stability

The 1D-radial system of equations is written in FORTRAN90 and solved using a fourth order
Runge-Kutta scheme in time and centered fourth order finite differences in space. The dissipa-
tion terms are treated to the second order using the semi-implicit Crank-Nicolson scheme [235].
A basic sketch of the workflow used in Tokam1D is given in Figure B.1. Details on the Runge-
Kutta scheme and implementation of the diffusion can be found in the following sections.

Figure B.1 – Tokam1D numerical workflow.

The numerical scheme is symmetric. Dissipation is applied 2 times on ∆t/2, before and after
the equation evolution. The arrays are saved every Xd = 2 dx and Td = 100 dt points into HDF5
files. Neumann boundary conditions with vanishing gradients are used for the density at x = 0
and for the velocity at both ends. Dirichlet is used for the density imposed to Neq = 0.1 at
x = Lx and the fluctuations set to zero at both boundaries. Finally, at the end of a restart, a file
is written containing arrays, parameters and boundary conditions to the maximum accuracy. A
subsequent simulation can then restart from this file.

The time step, dt, needs to be small with respect to the typical time involved in the system.
In the case of Tokam1D, it should be compared to the growth rate γ and the real frequency ω of
the instabilities. One needs to ensure that γdt ≪ 1 and ωdt ≪ 1. As shown in Figure 3.9, these
inequalities are well fulfilled since the growth rate and frequencies are respectively of the order
of 10−3 and 10−2 for typical values of the parameters. When the equilibrium density profile is
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corrugated, it can locally develop large gradients, leading to larger values of γ . In most of the
simulation performed, we used the conservative choice dt = 0.1. It leaves a comfortable margin
to ensure proper convergence even in these large γ regions.

In addition, one can compute the Courant-Friedrichs-Lewy (CFL) condition of numerical
stability:

vmax ≤
dx
dt

Here vmax is the maximum characteristic speed of waves or information propagation in the
simulation. In the reported simulations, the grid step size is dx = 400/1024 ρs and the time
step is ωcsdt = 0.1, where ρs is the sound Larmor radius and ωcs the ion cyclotron pulsation.
The condition leads to vmax < 4 ρcsωcs ≈ 4vth, where vth is the thermal velocity of the particles.
In the framework of this reduced fluid model, we deal with drift velocities of the order of
ρ⋆vth ≪ vth where ρ⋆ = ρs/a ≪ 1 is the sound Larmor radius normalized by the minor radius of
the tokamak. Consequently, the CFL condition is well fulfilled with this time step ωcsdt = 0.1.
Tests with smaller and larger time steps have shown that the simulations were actually well
converged. For post-processing purposes, data are saved every 100 dt. The compromise is to
have a sufficiently small diagnostic time step so that physical quantities exhibit a continuous
dynamics, while not saving an unnecessary too large amount of data. The actual retained value
ensures that the physical processes of interest are well captured even after this coarse-graining
in time.

B.1.2 Fourth order Runge-Kutta scheme
The Runge-Kutta (RK) methods are a family of numerical methods used to solve differential
equations with temporal discretization [236]. In this section, only explicit methods are de-
scribed, as these are the ones used for Tokam1D. The first order, RK1 method is often known
as "Euler scheme" is the simplest method to solve differential equation. Let us consider the
following problem: ∂ty = f (t,y) with y the solved quantity and f the known fight-hand side
equation. RK1 scheme then reads,

yn+1 = yn +h f (tn,yn)

With yn the solved quantity at time n and h the time step. It appears that taking more intermediate
steps in between tn and tn+1 leads to a higher order of accuracy. Fourth order RK4 schemes are
particularly popular. The principle is similar to the first order but it makes use of estimations
performed at the midpoint tn+1/2. Its principle is detailed in Figure B.2, for an iteration. The
resulting yn+1 is then a linear combination of the fourth intermediate steps k1,k2,k3,k4. The
local truncation error is of the order of O(h5) while the total accumulated error is of the order
of O(h4). Also note that the boundary conditions are applied in between each k1, k2 etc.

B.1.3 Second order dissipation
In fluid models, an ad-hoc dissipation is added to dissipate energy at small scales. These can be
excited by non-linear coupling but cannot be solved due to the model finite spatial resolution.
The introduction of a dissipation then prevents spurious numerical instabilities. The dissipation
usually takes the form ∂tn = ...+D∇α

⊥n, with D a constant dissipation coefficient and α the
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Figure B.2 – Iteration step detail of the 4th order Runge-Kutta numerical scheme.

dissipation order. Performing the spatial Fourier transform on the quantity n leads to ∂tnk =

...+D((ik)α +∂ α
x )nk. For a dissipation to be an energy sink α has to be even so that (ik)α < 0.

Often the choice is to take the standard α = 2 dissipation. However, it can be wise to choose a
hyper-dissipation α = (4,6), to focus the dissipation on the smaller scales and avoid interaction
with physics at larger scales. A slightly more difficult task is to derive the dissipation when the
coefficient D is not constant. In that case, the problem reads: ∂tn = ...+∇

α/2
⊥

(
D∇

α/2
⊥ n

)
.

Tokam1D provides options for second-order and fourth-order dissipation both treated with
second order derivatives. It is also possible to use non-uniform second order dissipation. In this
section is detailed the implementation of second-order dissipation treated to the second order.
As a toy model, let us consider the diffusion-equation:

∂tu = ∂x(D(x)∂xu)

The equation is discretized using finite differences at second order,

∂x(D(x)∂xu) =
1

∆x

[
Di+1/2

ui+1 −ui

∆x
−Di−1/2

ui −ui−1

∆x

]
With ∆x the spatial step and i the current location. Since there is no information at location
i±1/2, the dissipation coefficient can be written as,

Di+1/2 =
Di +Di+1

2∆x

The global equation is discretized using the Crank-Nicolson scheme,

un+1
i −un

i
∆t

=
1
2
[
[∂x(D(x)∂xu)]n+1

i +[∂x(D(x)∂xu)]ni
]

Putting everything together and gathering the n+ 1 terms on the left hand side, one can write
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the equation with a tri-diagonal matrix such that,

AUn+1 = RUn (B.1)

With U = (u0,u1, ...,ui,ui+1, ...) the discretized quantity and A the tridiagonal coefficient matrix.
RUn is the known right hand side at time n. By inverting the matrix A, one estimate the quantity
at time n+1. The coefficients of A write,

sub-diagonal =
∆t

2∆x2 (Di−1 +Di) (B.2)

diagonal =

(
1+

∆t
2∆x2 (2Di +Di+1 +Di−1)

)
(B.3)

sur-diagonal =
∆t

2∆x2 (Di+1 +Di) (B.4)

Those coefficient can be readily implemented in an algorithm that inverse tri-diagonal matrices.

In the particular case of Tokam1D, the dissipation is applied both before and after the evo-
lution of the system, each time using ∆t/2. The case of a second-order dissipation treated at
the fourth order and the case of a fourth-order dissipation treated to the second order lead to a
penta-diagonal matrices that also need to be inverted.

B.2 Derivation of equilibrium and fluctuating Poisson brack-
ets

This section derives useful mathematical expressions related to Poisson brackets. Those expres-
sion will be mainly used in chapter 3 to derive Tokam1D. The derivation is performed in a more
general two dimensional case. The case of Tokam1D is then found by restricting the analysis to
a single poloidal mode in the spirit of Equation 3.15. The problem at hand does not depend on
the parallel direction, therefore we will consider a 2d problem in the radial (x) and poloidal (y)
directions.

Let us consider two real quantities A and B that are decomposed into equilibrium and fluc-
tuation parts: A = Aeq + Ã. The equilibrium part is the average along the poloidal direction:
Aeq = ⟨A⟩y. The fluctuating component is Fourier transformed in the poloidal direction such
that Ã = ∑k Âkeiky, with Âk the complex magnitude of the Fourier component k.

Remembering that Poisson brackets are defined as,

{A,B}= ∂xA∂yB−∂yA∂xB = ∂y(B∂xA)−∂x(B∂yA),

let us derive the flux-surface average:

⟨{A,B}⟩= ⟨∂y(B∂xA)−∂x(B∂yA)⟩
=−∂x⟨B∂yA⟩
=−∂x(Beq⟨∂yA⟩)−∂x⟨B̃∂yÃ⟩
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The first term is equal to zero since it is the flux-surface average of a poloidal derivative. The
second term, labelled ∂xΓ, is further decomposed in Fourier:

Γ ≡−⟨B̃∂yÃ⟩=−∑
k

∑
k′

B̂kik′Âk′⟨ei(k+k′)y⟩

=−∑
k

ik′B̂kÂk′δ (k+ k′)

= ∑
k

ikB̂kÂ∗
k

A physicist knows that the manipulated flux-surface averaged quantities are real numbers. There-
fore it directly results that ∑k ℜ(kB̂kÂ∗

k) = 0 and Γ = ∑k(kℑ(BkA∗
k)). For the sake of scientific

rigor we demonstrate it mathematically:

∑
k

kℜ(B̂kÂ∗
k) = ∑

k>0
kℜ(B̂kÂ∗

k)+ ∑
k<0

kℜ(B̂kÂ∗
k)

= ∑
k>0

kℜ(B̂kÂ∗
k)− ∑

k′>0
k′ℜ(B̂∗

k′Âk′)

= 0

∑
k

kℑ(B̂kÂ∗
k) = ∑

k>0
kℑ(B̂kÂ∗

k)− ∑
k′>0

k′ℑ(B̂∗
k′Âk′)

= 2 ∑
k>0

kℑ(kB̂kÂ∗
k)

Therefore one have,

⟨{A,B}⟩= ∂xΓ = 2∂x ∑
k>0

kℑ(BkA∗
k) (B.5)

The particular case of Tokam1D is found by choosing a single k mode. A slightly more
complicated case can be derived using the same methods by noticing that ⟨∇⊥i{A,∇⊥iB}⟩ =
∂x ⟨{A,∂xB}⟩. Then one have,

∂x ⟨{A,∂xB}⟩=−∂
2
x ⟨∂xB∂yA⟩= 2 ∑

k>0
k∂

2
x [ℑ(A

∗
k∂xBk)] (B.6)

The two expressions Equation B.5 and B.6 are used to derive the equilibrium equations of the
Tokam1D model.

The Poisson bracket fluctuating component is found by subtracting its equilibrium,

{A,B}−⟨{A,B}⟩= {Ã,Beq}+{Aeq, B̃}+{Ã, B̃}−⟨{Ã, B̃}⟩

In the general case, the third and last terms need to be computed fully. We define FTk(A) =
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A−⟨A⟩ the fluctuation term of the quantity A. Then, the third and fourth term can be written as:

FTk

(
{Ã, B̃}

)
≡ {Ã, B̃}−⟨{Ã, B̃}⟩= ∂xÃ∂yB̃−∂yÃ∂xB̃

= ∑
k

∑
k′

(
∂xÂkik′B̂k′ − ikÂk∂xB̂k′

)
ei(k+k′)y

And the sum needs to be considered for every k+k′ = k0, with k0 the Fourier mode that we want
to solve. In the case of Tokam1D, since only a single k mode is retained, this term vanishes. As
a result, one is left with,

FTk ({A,B}) = iky(Bk∂xAeq −Ak∂xBeq) (B.7)

And similarly,

FTk [∇⊥i{A,∇⊥iB}] = iky[
(
∂

2
x − k2

y
)

Bk∂xAeq +∂xBk∂
2
x Aeq

−∂xAk∂
2
x Beq −Ak∂

3
x Beq]

(B.8)

B.3 Derivation of Tokam1D energy balance equation

To formulate the energy balance equation, we multiply Equation 3.12 and Equation 3.13 by (1+
τ)N and (φ + τN) respectively. We then integrate by parts over the whole domain. Integration
by parts leads to surface terms labelled ST that need to be considered carefully. The integration
over the whole volume is written as ⟨...⟩ =

∫
...dV , with V = (x,y,z) the whole integration

domain. The density energy equation can be written as,〈
1
2

∂tEdens

〉
=g(1+ τ)

〈
N∂y(φ −N)

〉
+(1+ τ)

〈
N

σ0

nν

∇
2
∥(N −φ)

〉
+(1+ τ)D

〈
N∇

2
⊥N

〉
+(1+ τ)⟨NSN⟩

With Edens = (1+ τ)N2. The integration of the nonlinear advection term ⟨N{φ ,N}⟩ is equal to
zero:

⟨N{φ ,N}⟩=
〈
N [∂y(N∂xφ)−∂x(N∂yφ)]

〉
=

〈
1
2
[
∂y(N2)∂xφ −∂x(N2)∂yφ

]〉
=

〈
1
2
{

φ ,N2}〉
The Poisson bracket can be recast as

{
φ ,N2}= ∂y(N2∂xφ)−∂x(N2∂yφ). The first term vanishes

upon integration in the periodic direction. The second could possibly leads to surface terms due
to the integration along x. In practice, the electric potential fluctuations are imposed at zero on
both boundaries. It follows that ∂yφ(Lx) = ∂yφ(0) = 0 and the average of the Poisson bracket
vanishes.
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Integrating the density energy equation by parts leads to,〈
1
2

∂tEdens

〉
=g(1+ τ)⟨N∂yφ⟩+(1+ τ)

〈
N

σ0

nν

∇
2
∥(N −φ)

〉
(B.9)

+STD − (1+ τ)D
〈
(∇⊥N)2〉+(1+ τ)⟨NSN⟩

With, STD = [N∇⊥N]Lx
0 the surface term linked to the integration by part of the diffusion term.

The same work is done for the vorticity equation. First, we show that its nonlinear advection
term vanishes. Writing S ≡

∫
(φ + τN)∇⊥,i{φ ,∇⊥,i(φ + τN)}dV ,

S =
∫

∇⊥,i
[
(φ + τN){φ ,∇⊥,i(φ + τN)}

]
−∇⊥,i(φ + τN){φ ,∇⊥,i(φ + τN)}dV

=−
∫

∇⊥,i(φ + τN){φ ,∇⊥,i(φ + τN)}dV

Which is of the same form as ⟨N{φ ,N}⟩ leading to a vanishing integral. As a result, the vorticity
energy equation can be written as,〈

1
2

∂tEvort

〉
= STΩ +g(1+ τ)

〈
φ∂yN

〉
(B.10)

−
〈

σ0

nν

(φ + τN)∇2
∥(N −φ)

〉
+STν −ν

〈(
∇

2
⊥(φ + τN)

)2
〉

With Evort = |∇⊥(φ + τN)|2. The vorticity and viscosity surface terms read respectively:

STΩ = [(φ + τN)∂t∇⊥(φ + τN)]Lx
0

STν =
[
(φ + τN)∇3

⊥(φ + τN)
]Lx

0 −
[
∇⊥(φ + τN)∇2

⊥(φ + τN)
]Lx

0

B.3.1 Global energy conservation equation

The global energy conservation equation is obtained by summing the two equations (B.9, B.10).
First, terms linked to the constant g vanish are found to vanish:

(1+ τ)g
〈
(N∂yφ +φ∂yN)

〉
= (1+ τ)g

〈
∂y(Nφ)

〉
= 0

This is true provided that one keep the term linked to the divergence of the electric drift in the
density equation Equation 3.4. The interchange terms are then only transfer terms in between
density and vorticity energy. They do not lead to any source or sink of energy.

The drift wave terms can be further simplified if one considers that the conductivity σ is
constant on flux surfaces and does not depend on the parallel coordinate. Then, it commutes
with the ∇∥ operator and one can integrate by part on magnetic surfaces. The surface terms
linked to the parallel current are all equal to zero due to the double periodicity of the torus.
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Writting B1 the current term of Equation B.9 and B2 the current term of Equation B.10,

B1 = (1+ τ)σ0

〈
N
nν

∇
2
∥(N −φ)

〉
=−(1+ τ)σ0

〈
1
nν

∇∥N∇∥(N −φ)

〉
B2 =−σ0

〈
φ + τN

nν

∇
2
∥(N −φ)

〉
=+σ0

〈
∇∥(φ + τN)

nν

∇∥(N −φ)

〉
By summing the drift wave terms it readily appears that terms proportional to τ cancel each
other. The others can be reorganized in the form of a parallel current j∥ = σn∇∥(N−φ) (where
we recall that σ = σ0/nν ):

B1 +B2 =−
〈

σ0

nν

[
∇∥(N −φ)

]2
〉
=−

〈
1
σ

(
j∥
n

)2
〉

Notice that this final result, already found in [62], directly results from σ = σ0/nν being only
dependent on the radial direction and time. The global conservation of energy, including surface
terms then takes the following compact form:

d
dt

⟨Edens +Evort⟩=+(1+ τ)⟨NSN⟩−
〈

σ0

nν

[
∇∥(N −φ)

]2
〉

(B.11)

−D(1+ τ)
〈
(∇⊥N)2〉−ν

〈[
∇

2
⊥(φ + τN)

]2
〉

+STΩ +(1+ τ)DSTD +νSTν

Energy injection comes from the density source. All other terms contribute to energy dissi-
pation, either due to the parallel resistivity or to the ad-hoc dissipative coefficients D and ν .
Interestingly, the pressure energy has the form (1+ τ)N2. One could expect the energy to be
under the form of an electron and an ion energy, thus (1+ τ2)N2 or (1+ τ)2N2. This form of
energy is also present in [62]. Also, note that the viscosity has to be written on the general-
ized vorticity instead of the electric potential. If not, the system does not conserve energy and
spurious instabilities can appear.

B.3.2 From 3d to 1d

Replacing N and φ with their decomposition Equation 3.15 the pressure energy can be decom-
posed the following way:

(1+ τ)
〈
N2〉= (1+ τ)

〈(
Neq +Nkei(ky+k∥)+N∗

k e−i(ky+k∥)
)(

Neq +Nkei(ky+k∥)+N∗
k e−i(ky+k∥)

)〉
= (1+ τ)

〈
N2

eq +2Neq

(
Nke(i(ky+k∥))+N∗

k e−(i(ky+k∥))
)
+N2

k e(i2(ky+k∥))

+N∗2
k e(−2i(ky+k∥))+2|Nk|2

〉
= (1+ τ)

〈
N2

eq +2|Nk|2
〉
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Applying the same method to the vorticity yields:〈
(∇⊥(φ + τN))2

〉
=
〈
(∂x (φ + τN))2 +(∂y (φ + τN))2 +2(∂x (φ + τN)∂y (φ + τN))

〉
= ⟨

{(
Veq + τ∂xNeq

)2
+2|∂xφk|2 +4τℜ(∂xφk∂xN∗

k )+2|τ∂xNk|2

+2k2
y
[
|φk|2 + |τNk|2 +2τℜ(φkN∗

k )
]

−2kyℑ
[
φk∂xφ

∗
k + τNk∂xφ

∗
k + τφk∂xN∗

k + τ
2Nk∂xN∗

k
]}
⟩

With this, one can then decompose the total energy into different channels, as indicated Equa-
tion 3.42 - 3.45.

B.4 Linear analysis: dual role of ion to electron temperature
ratio

The role of the ion to electron temperature ratio, τ = Ti/Te, on the linear instabilities is studied
in the framework of Tokam1D. A more complete contribution on the role of τ can be found in
ref.[237] for ITG and TEM instabilities. The case of Tokam1D is peculiar: a single poloidal
wavenumber ky is chosen. Therefore, in the following we will treat both the case ky = cte and
the case where kx and ky are chosen such that they maximize the growth rate, dubbed ky(γmax).
We will show that τ can be either stabilizing or destabilizing depending on the instability at play.
Also, it will appear that fixing a single ky can lead to very different results as compared to the
full 2D case.

First, let us study the case with both CDW and interchange instabilities. In Figure B.3a,
we plot the growth rate as a function of τ for 4 different density gradients. The interchange
parameter is fixed at g = 2× 10−3 and the adiabatic parameter at C = 10−3. The growth rate
is shown for the case ky = 0.3 in full lines and ky(γmax) in dotted lines. In Figure B.3b, the
ky leading to the maximal γ is indicated for each τ and gradient. The horizontal dotted line
indicates ky = 0.3, as chosen for Tokam1D.
For small τ , the effect on the growth rate is limited. The most prominent effect is visible for
small density gradients where the growth rate increases from γ ≈ 0 at τ = 10−3 to γ = 2.5×10−3

at τ ≈ 6. At larger τ , there is a large discrepancy between the cases at fixed ky, and the cases
ky(γmax). When several ky are allowed, τ appears to be destabilizing whereas it is stabilizing
in the fixed ky case. This is a result of the ion to electron temperature ratio shifting the ky
of maximum growth rate from ky ≈ 0.35 to ky ≈ 0.1, see Figure B.3b. This highlights that
Tokam1D is not suited to study the role of large ion to electron temperature ratios on the linear
and non-linear dynamics since it requires several ky to be described. For τ = 1, the growth
rate for the case at fixed ky and ky(γmax) have been observed similar for most of the tested
equilibrium parameters. It is considered relevant.

τ is stabilizing as it tends towards infinity. What happens between τ = 1 and τ −→ +∞

depends on the instability at play. Displaying the same analysis as in Figure B.3, for the case
interchange only and CDW only, one obtains the figures B.4.
For both CDW and interchange instabilities, τ is slightly destabilizing when small. Note that it
can be enough to destabilize the system, see case drift waves at 1/LN = 10−2 which displays
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Figure B.3 – (a) growth rate as a function of τ for different density gradients, C = 10−3,
g = 2×10−3. The case at fixed ky is indicated in full lines. (b) ky corresponding to the

maximum growth rate (dotted lines in (a)). Other parameters: D1 = ν1 = 10−2 and
Veq =V ′

eq = N′′
eq = 0.
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Figure B.4 – (a) growth rate as a function of τ for different density gradients, C = 10−3, g = 0.
(b) Same as (a) with C = 0 and g = 2.10−3. Other parameters: D1 = ν1 = 10−2 and

Veq =V ′
eq = N′′

eq = 0

a positive growth rate at τ = 3. When larger, τ is always stabilizing for the Tokam1D case at
fixed ky but can be stabilizing or destabilizing depending on the instability at play for the general
ky(γmax) case. At large τ , for the CDW case, in Figure B.4a, τ is stabilizing. For interchange, τ

appears as destabilizing for the general case and stabilizing for the fixed ky case. The behaviour
of the general case with coupled instabilities displayed in Figure B.3 then depends on which
instability is dominant.

We can conclude that τ exerts a dual effect on both the instabilities, depending on the dom-
inant instability, density gradient and value of τ . More importantly, it is made clear that
Tokam1D is not suited for the study of large τ since the growth rate exhibits a maximum at
a poloidal wavenumber that significantly evolves with τ .
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C.1 Artificially switching off ZFs
It has been clear that ZFs play a role in stabilizing the turbulence for more than 20 years now,
[103]. Here we show that they are essential, even in the case where they are shown to be
very small. We take a case with a low flows to turbulence energy ratio, at C = 2 10−4 and
g = 10−4. In this simulation the flows account for ≈ 0.1 % of the turbulence energy. We show
that by artificially suppressing them, the simulation diverges and a large radial mode fill in the
simulation box. The results are shown in Figure C.1.

Figure C.1 – Turbulent flux Γturb as a function of time and radius. ZFs are artificially switched
off at T = 3 104.

A large relaxation mode occurs when ZFs are switched off due to the gradient being large.
The profile relaxes until it gets below the linear threshold. Then the system enters a periodic
state where the gradient builds up, a large radial mode appears and the profile gets relaxed.

C.2 Larger dissipation leads to more structured flows
What lead to the radial structure of the flows? In the presented simulations, structured flows
can appear both at low and large C, with no clear dependence on linear properties or turbulence
parameters. Flows are shown to lose their structure when switching from flux driven to gradient
driven simulations. The source and dissipation also appear as key player when it comes to the
radial structure.

We take the case (C,g) = (10−2,0) and we vary the dissipation coefficients on the fluctuation
equations while keeping the source constant. Doing so, the linear threshold is modified as it
depends directly on the dissipation. Since the source is kept constant, the distance to the linear
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threshold is also modified. Two cases are performed, at D1 = ν1 = 2 10−2 and D1 = ν1 = 5
10−3. The results in terms of flows and density fluctuations are shown in Figure C.2.

(a) (b)

(c) (d)

Figure C.2 – Variation of fluctuation dissipation coefficient D1 and ν1. (a,c) D1 = ν1 = 5 10−3.
(b,d) D1 = ν1 = 2 10−2. The equilibrium velocity is displayed in (a) and (b) while the density

fluctuation amplitude is shown in (c) and (d).

In Figure C.2a and C.2b are shown the equilibrium flows for both cases. Both ZFs have
similar amplitude with the latter being more structured and stable in time. In Figure C.2c and
C.2d are displayed the corresponding density fluctuation amplitudes. The low dissipation case
leads to larger fluctuations. The size of the turbulent structures does not seem to vary much in
between the two cases.

It is apparent that a larger dissipation leads to more stable flow structures. Distance to linear
threshold seem to play a role, case D1 = ν1 = 2 10−2 evolves very close to its linear threshold,
with its gradient being only 1.1 times the linear threshold. Case D1 = ν1 = 5 10−3 stands far
from threshold with its gradient being 2.6 times the linear threshold. The underlying linear
characteristics of the system are similar, for high dissipation case ω = 0.02, γ = 0.005 and
sin∆ϕ = −0.35. For the low dissipation case, ω = 0.017, γ = 0.0044 and sin∆ϕ = −0.3.
However it should be noted that these characteristics are computed with the smoothed steady-
state gradient and do not take into account the corrugations. Possibly, the bifurcation occurs as
a result of small scale effects. Link between corrugation, radial structure and stiffness of the
system (in terms of variation of turbulent flux with density gradient) should also be explored.
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C.3 Normalizing the turbulent flux of particles by a quasi-
linear estimate

In this section, we normalize the turbulent flux of particles Γturb =−2kyℑ(Nkφ∗
k ) with its quasi-

linear estimate ΓQL using the linear relation Flin (Equation 3.75). As the procedure contains
several subtleties, it is wiser to approach the problem step by step. The example is provided for
the scan of g (adapted source).

1. The linear relation between density and electric potential fluctuations is computed from
the linear analysis with the steady-state rms gradient (Equation 4.2) at Veq = 0 and N(2)

eq =

0: Flin(kx) = Nk/φk.

2. Since Flin depends on kx, the electric potential fluctuations are Fourier-transformed in
both space and time, φ̂k(ω,kx) and further projected onto the ω corresponding to the
linear estimation ωlin.

3. Similarly to quasi-linear codes, such as QuaLiKiz [238], it is assumed that φ̂k(ω,kx) is
not a dirac centered on ωlin but that there is a frequency broadening in the form of a
Lorentzian [239]. The electric potential results from the integral over frequencies as
follows,

|φk(kx)|2 =
∫ dω

π

αk

α2
k +(ω −ωlin)

2 |φk(ω,kx)|2. (C.1)

With αk the frequency broadening. The final result largely depends on the value taken for
αk as will be shown later on. A common choice is the linear growth rate: αk = γlin [239]
(p.43). It is important to ensure that the Lorentzian integral is close to unity, otherwise
the electric potential fluctuation amplitude is underestimated. In practice, the signals have
a finite time resolution which equally limits the integration bounds. Therefore, too large
frequency broadening should be avoided since they would spread the lorentzian over large
portion of ω . Describing the tails would then require very small time resolution (large
ω).

4. The quasilinear flux is then computed by summing over kx,

ΓQL =−2ky ∑
kx

ℑ(Flin(kx))|φk(kx)|2. (C.2)

In Figure C.3 are shown the electric potential and the quasi-linear flux as a function of kx.
The electric potential fluctuation function amplitude increases with g in agreement with the
observed electric potential fluctuation amplitude Figure 4.6. Both the magnitude and the width
of the function increase with g and two groups are distinguishable. At low g (in blue), the value
of g barely affects the fluctuations or the quasi-linear flux. For g > 10−3 the electric potential
fluctuations are larger and increase with g. The first group corresponds to CDW dominated
cases, while the second group is driven by interchange.
The behaviour of the quasi-linear flux is slightly different, it increases with g and starts to
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Figure C.3 – (a) Quasi-linear estimate of the electric potential fluctuations as a function of kx
computed with a frequency broadening αk = γlin. (b) Corresponding quasi-linear flux of

particles as a function of kx. Both for the scan of the curvature parameter g performed with
adapted sources.

decrease for very large values of g. The reduction of ΓQL at large g is possibly caused by
compressibility terms stabilizing the interchange instability.

Summing those two quantities over kx, one can compare the first one to the rms-value of the
electric potential and the second one to the turbulent flux of particles. The results are displayed
in Figure C.4.
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Figure C.4 – Comparison between quasi-linear estimates and simulation results. (a)
Quasi-linear electric potential fluctuations as a function of g compared with the rms-values of
density and electric potential. (b) Quasi-linear flux compared to the turbulent flux of particles.

The estimate of the electric potential fluctuation amplitude is much larger than the rms-value
of the electric potential. The resulting ΓQL is much larger than the turbulent flux of particles.
However, the quasi-linear computation at large g should be taken with caution because the
frequency broadening is larger and leads to a reduced Lorentzian integral (≈ 0.68 at g = 3×
10−2) and therefore a reduced estimated flux.

The influence of the frequency broadening on ΓQL is illustrated Figure C.5 by choosing val-
ues of αk between 10−4 and 10. The increasing widths are indicated with thin lines from purple
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(small αk) to yellow (large αk). The case αk = γlin is shown in red (squares) for reference.
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Figure C.5 – Dependence of Figure C.4 on the chosen frequency broadening parameter αk.
Small frequency broadening (αk = 10−4) is indicated in purple, large αk = 10−1 is indicated in

yellow. The case using the linear growth rate as the frequency broadening parameter is
indicated in red (squares).

The normalization depends on the choice made for αk in two ways. First, at low αk, the be-
haviour of the electric potential fluctuations amplitude (left) as a function of g is inconsistent.
It does not correspond to the rms-value of the electric potential it is supposed to estimate. Sec-
ond, at large αk both the behaviour of the quasi-linear flux and of the electric potential follow
roughly the values taken from the simulations. However, due to the finite integration on fre-
quencies, large values of αk lead to an under estimation of |φk|2 leading to lower values of the
quasi-linear flux. As a result, the normalization of Γturb by ΓQL depends on αk which is unsatis-
factory. The normalization is shown Figure C.6.
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Figure C.6 – Normalization of Γturb with a quasi-linear estimate ΓQL as a function of g and
chosen frequency broadening αk.

From this, it appears clearly that the normalization of the turbulent flux of particles with the
quasi-linear estimate is not reliable since we lack the necessary time resolution to perform cor-
rectly the integration. Note that this is in terms of ’saved’ points, not the real time resolution
of the simulation. Therefore, we could do a restart and saving every time point but this would
lead to very large arrays that are long to compute (especially for 120 simulations). Moreover,
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the effect of ZFs and their radial structure still enters the estimate through the magnitude of φk.
Consequently, no hasty conclusion will be drawn based on this normalization.
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D.1 Cut-off frequency estimation for reflectometry
The waves used for reflectometry are transverse waves propagating perpendicularly to the toka-
mak magnetic field, k ·B0 = 0. Their properties, and in particular the cut-off layer, depend on
their polarisation: ordinary, O-mode, or extraordinary, X-mode. For the former, the probing
wave electric field is parallel to the macroscopic magnetic field: EO

i ×B0 = 0. As a result, the
wave propagation is similar to a non-magnetized plasma and the refractive index depends only
on the electron density ne and the wave frequency ω:

N2
O =

c2k2

ω2 = 1−
ωp

ω
(D.1)

Where ωp =
√

nee2/meε0 is the plasma frequency. In X-mode, the wave electric field is perpen-
dicular to the magnetic field EX

i ·B0 = 0. Now, the propagation depends also on the magnetic
field. The refractive index reads,

N2
X =

c2k2

ω2 =
ω4 −ω2(ω2

ce +2ω2
p)+ω4

p

ω2(ω2 − (ω2
ce +ω2

p))
(D.2)

With ωce = eB/me the electron cyclotron frequency. The details of this derivation can be found
in ref. [201]. It follows that in O-mode, the iso-index surfaces correspond to magnetic surfaces,
which is not the case in X-mode due to the magnetic field dependence.
The cut-off layer corresponds to the surface where N = 0. This condition gives three cut-off
frequencies.

ω = ωp in O-mode (D.3)

ω =
|ωce ±

√
ω2

ce +4ω2
p|

2
in X-mode (D.4)

Knowing the cut-off frequencies as a function of density and magnetic field is essential because
it will determine the local electron density where the signal will be reflected back from the
plasma to the receiving antenna. Also, if one desires to make a local measurement the fre-
quencies can be adjusted depending on the expected density profile. Two cut-off layers exist in
X-mode but in practice it is the upper cut-off frequency that is mostly used in tokamaks. An
example of the cut-off frequencies is shown Figure D.1 for a standard NBI-heated shot of TCV.
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Figure D.1 – Cut-off frequencies in O and X mode for an example profile of density taken
from #TCV81069 at t = 0.7 s averaged on 200 ms.

From this example note that different radial ranges are covered by O and X-mode. The mode
is then chosen accordingly to the radio-frequency (RF) components capabilities, plasma param-
eters and desired measurement location. Here both O and X mode frequencies have similar
shapes because of TCV low magnetic field (B ≈ 1.4 T ). With strong magnetic field like Tore
Supra the cut-off frequency can be a decreasing function of R, allowing to probe the core and
high field side.

D.2 Hardware and heterodyne detection
The transmitted and received signals are processed by RF components represented in Figure D.2.
The RF components are separated in two parts. The first is used to produce the signal sent into
the plasma, at the right frequency. The second, is used to process the received signal, i.e. to
separate the "plasma" signal from the carrier signal.

F 0 Fm

Fm 1OOMHz

nF0 nFm

nF 0

Fm

nFm

nFm FD

FD

FD
nF 0 F D

I Q

F 0

F 0 12 ...19GHz

Figure D.2 – Schematic of the digital system used to process DBS signals at TCV, courtesy of
P. Hennequin.

The micro-wave source is provided by two synthesizers producing signals of varying frequen-
cies in the range F0 ∈ [12−19] GHz. The first creates a signal at F0 multiplied n times to reach
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the cut-off frequencies appropriate for the given plasma conditions. It then reaches the antenna
where it is polarized in O or X-mode before being sent into the plasma. The received signal
contains the Doppler frequency information FD of the order of 102 kHz. It is multiplied by a
signal with a slight different frequency F0+Fm, with Fm = 100 MHz an added carrier frequency
used for demodulation.
The signal is then demodulated two times to remove components carried by frequencies F0 and
Fm. The goal here is not to lose the phase which contains the Doppler shift information. This is
done through an heterodyne detection with an IQ demodulator.

The principle of IQ demodulation is as follows. Consider a received signal of frequency
nFm +FD:

s(t) = Acos(2π(nFm +FD)t +ϕD) (D.5)

A second signal is created by a local oscillator (LO) at a frequency nFm. The demodulator
multiplies s by two quadrature signals: cos(2πFmt) and sin(2πFmt) resulting in heterodynes
signals:

x(t) =
A
2
[cos(2π(2nFm +FD)t +ϕD)+ cos(FDt +ϕD)] (D.6)

y(t) =
A
2
[sin(2π(2nFm +FD)t +ϕD)+ sin(FDt +ϕD)] (D.7)

Filtering out the high frequencies (hence choosing Fm ≫ FD) leads to a complex signal z(t) =
x(t)+ iy(t) oscillating at the Doppler frequency FD.

An upgrade from analog to digital I/Q demodulation has been performed recently for the
TCV system. The final demodulation step can now be performed numerically. This allows to
bypass the effect of a notch filter associated with the acquisition system. The filter causes the
acquired signal to have a broad spectral gap (∆F ∼ 50 kHz) around F = 0, making small FD
difficult to extract. When done numerically, the method ensures that the filter has no impact on
relevant part of the spectrum. The details of the digital demodulation can be found in ref.[240].

D.3 Estimating the maximum of correlation on noisy signals
The goal of this appendix is to tackle the problem of the estimation of maximum of correlation
when noise in the signal is important. Herafter, coherence refers to the cross-spectral density
(cpsd) normalized by the power spectral densities (psd). It depends on frequencies. Correlation
refers to the inverse Fourier transform (ifft) of the cpsd and depends on time delays. We empha-
size that those two measurements are different even though they are giving an estimation of the
correlation between two signals. The correlation function relates to the correlation between two
signals when they are delayed with respect to each other. It is equivalent to a Pearson correla-
tion estimation: degree of correlation given by plotting one signal as a function of the other and
checking whether the scatter plot is close to a line. The spectral coherence separate this kind of
analysis on different frequencies. Therefore, depending on the noise that affects the data, the
two methods might not give the same result.

An easy way to see this effect is to perform the correlation / coherence on the same signal
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adding synthetic noise. The chosen signal, y(t), is taken from #81069 sweep 5, already assessed
to have a low signal to noise ratio (SNR) in the main part of the thesis. A white noise of am-
plitude namp is added to the signal. The correlation is performed on the amplitude of y(t) and
y(t)+ namp × noise. A noise amplitude of namp = 1 corresponds to a noise of same amplitude
as the signal y(t). Examples of correlation and coherence functions are shown in Figure D.3 for
different amplitudes of noise.
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Figure D.3 – Correlation (a) and coherence (b) functions of a signal y(t) correlated with an
artificial noise y(t)+namp ×noise.

The maximum of correlation drops quickly when noise is increased as opposed to the spectral
coherence which stays relatively important at low frequencies. When probing to the core, the
SNR is less important both because there is less turbulence and there are more perturbating
effects along the beam path. As a result, radial correlation functions tend to flatten when esti-
mated from the correlation function. See for example Figure 5.24. In that case, one can choose
to work instead on the spectral coherence signal. However, this signal is also noisy and the
estimation of the maximum can be tricky to perform in a systematic way.

Through trials and errors it appeared that the best way to estimate the maximum of coherence
on the amplitude signal is with a Lorentzian fit. In some cases, when using the ’full’ complex
signal, it appeared better to use a Gaussian fit, but the difference in the estimation of the maxi-
mum is very small. Examples of fit are given in Figure D.4 for two noisy signals: #82607 sweep
3 at ∆ = 0.25 and 4.7 ρs respectively.
In both cases, the fits does a pretty well job at determining the maximum. This estimation is
still tricky because the zero frequency component is removed from the signals through the nor-
malizations. Therefore, the coherence functions tend to form a local minima at f = 0 with two
peaks on the side. It is unclear, even for the experimentalist, to determine whether the maximum
of correlation of the maximum of the fit is the best estimate. To be conservative, the choice is
to take the fit because it tend to underestimates the maximum of correlation.

D.4 Mixed files technique for correlation noise estimation
In this appendix, we estimate the noise level in the correlation measurements, which is critical
for determining the minimum correlation value considered significant. This is particularly im-
portant for avalanche measurements, where the secondary correlation slope may occur at low
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Figure D.4 – Examples of gaussian and lorentzian fits on the spectral coherence function.

correlation values. In the literature, it is common practice to set the noise threshold at C = 0.1.
Here, we use the mixed files technique to estimate the noise level. The method consists in
choosing two random pairs of signals from the performed Deuterium experiments at TCV (Ta-
ble 5.2) and to perform their correlation. In Figure D.5 is shown an example of the obtained
cross-spectral density together with the different estimations: correlation, spectral coherence
and its Taylor fit. The correlation is obtained both through the inverse Fourier transform of the
csd and through Pearson coefficient (in real space).
Both signals being the amplitude of the density fluctuations, their frequency maximum is not
Doppler shifted and is located at f = 0. Since they are from different signals, their cross-
spectral density (csd) is much lower than their power spectral densities (psd). This results in a
small spectral coherence and in small correlation. Note that the fit is performed on the central
part of the spectral coherence, where the signal have been set to zero for | f | > 1. Imposing a
local maximum is done so that the Lorentzian fit converges towards a maximum close to the
vanishing frequency. This overestimate the noise estimation. If the fit is done on the full fre-
quency array, the maximum is below 10−2.
To have a larger statistics, we repeat the above operation on random pairs of signals taken from
the database Table 5.2. For each pair, we take the maximum of the spectral coherence, the
maximum of correlation (ifft and Pearson) and the maximum of the Lorentzian fit. The result is
shown in Figure D.6 for 100 pairs. The mean and standard deviation is shown for the spectral
coherence as it gives the largest correlation.
For every method the correlation noise level is below C = 0.1 with the worst case being the
raw spectral coherence. This was expected, the spectral coherence being noisy. The Lorentzian
fit of the coherence performs better because when the signal is too noisy, the fit tends to be flat
and exhibits no large maximum. The same method has been applied at specific frequencies, for
specific shots and for specific ρre f . Since the signals become more noisy as one get closer to the
core of the plasma we could expect the correlation noise level to increase in a similar fashion.
However in the cases tested no strong deviation from the above trend has been observed. When
the signals are not correlated it does not matter whether the noise is important or not. This only
reduces the maximum of correlation for signals that should exhibit a larger correlation.
From this estimation, we expect the correlation measurements to yields information below
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Figure D.5 – Correlation analysis of #81069 sweep 5 frequency 1 with #82607 sweep 3
frequency 7. (a) power spectral density (psd) and cross-spectral density (csd). (b) Correlation
from inverse Fourier transform (ifft) and from Pearson. (c) Spectral coherence. (d) Lorentzian

fit of the spectral coherence.
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Figure D.6 – Mixed files technique for noise estimation on a 100 signal pairs taken from
Table 5.2.

C = 0.1 for the maximum of spectral coherence and below C = 0.05 for the other estima-
tion methods (C = 0.02 for the Lorentzian fit). However, to be conservative, correlation below
0.1 are not given much weight.
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D.5 Normalizing turbulence correlation lengths to ion Lar-
mor radius

In this section, the normalization of the turbulence correlation length and avalanche extension
is performed using the ion Larmor radius ρi =

√
miTieB instead of the hybrid Larmor radius

ρs =
√

miTeeB. First, the ion Larmor radius as a function of ρ for the different experiments is
shown in Figure D.7. This figure is to be compared with Figure 5.19.
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Figure D.7 – Larmor radius ρi =
√

miTi)/(eB) as a function of ρ and heating for discharges in
Table 5.2. ECH ranges from 590 to 1180 kW and NBI from 140 to 500 kW .

The ion Larmor radius varies from 1.6 to 2.6 mm with a larger variability as compared to the
hybrid Larmor radius. This is caused by two effects. First, the CXRS diagnostic providing
values for Ti is not as precise has the Thomson scattering system, especially in the edge. Second,
the NBI cases tend to change the value of Ti much more than the value of Te. It results that there
is a heating dependence.

Using this new normalization, and similarly to Figure 5.27, the radial turbulence correlation
length and avalanche extension normalized by ρi are shown in Figure D.8 as a function of ρ .
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Figure D.8 – Radial correlation length of the turbulent structures lc and avalanches La for every
ECH and NBH plasmas as a function of ρi.

The ECH cases, shown on the left hand side, display a constant radial correlation length at

– 251 –



Appendix D: Doppler backscattering

lc ≈ 3.5− 4 ρi for most of the studied domain. The correlation length reduces in the radial
electric field well to lc ≈ 1−1.5 ρi. The avalanche extension also reduces when getting closer
to the edge. The NBI cases display a lower turbulence correlation length and comparatively less
variability than when normalized to the hybrid Larmor radius (see Figure 5.27). However, no
clear trend of the correlation length or avalanche extension has been observed as a function of
the heating power.
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Titre : Auto-Organisation de la turbulence de bord dans les plasmas de fusion
Mots clés : Plasma, Fusion, Turbulence, Tokamak, Ecoulements zonaux, Avalanches
Résumé : Ce travail de doctorat s’intéresse à la caractérisation de
l’auto-organisation de la turbulence au bord des plasmas de toka-
mak, déterminante pour le transport et le confinement. Il a permis
d’obtenir trois résultats principaux : l’identification des régimes de
paramètres plasma propices à l’auto-organisation de la turbulence,
l’élucidation de mécanismes physiques sous-jacents, l’obtention de
preuves expérimentales de l’auto-organisation grâce à des mesures
de rétrodiffusion Doppler (DBS).
Les tokamaks permettent le confinement de plasmas chauds à l’aide
de champs magnétiques. Trois zones s’y distinguent : la zone de confi-
nement du plasma, séparée de la zone externe où celui-ci interagit
avec les matériaux par une zone de transition, dite ”de bord”. Dans
le domaine opérationnel de fonctionnement des tokamaks, le trans-
port perpendiculaire – et donc le confinement – est régi à l’échelle
microscopique par la turbulence. Mieux connaı̂tre les mécanismes de
saturation de la turbulence apparaı̂t ainsi essentiel. Dans la zone de
transition, la turbulence génère à la fois des événements de transport
par avalanches, qui détériorent le confinement, et des écoulements
zonaux (ZF) qui contribuent à la saturation de la turbulence. Ce tra-
vail cherche à comprendre et prédire l’auto-organisation, c’est-à-dire
l’interaction auto-cohérente entre les ZF potentiellement structurés ra-
dialement, les profils moyennés sur les surfaces de flux et le trans-
port turbulent, dans les différents régimes de paramètres des plas-
mas de bord des tokamaks. Pour cela, un modèle réduit non-linéaire
Tokam1D a été développé. Il étudie l’évolution des profils moyens et
des fluctuations de manière auto-cohérente dans un régime contrôlé
par le flux. Pour permettre l’auto-organisation de la turbulence aux
méso-échelles, aucune séparation d’échelle n’est présupposée. Le
modèle inclut deux instabilités considérées comme dominantes : les
ondes de dérive collisionnelles et l’interchange. Leurs paramètres de

contrôle dépendent différemment des paramètres plasma, de sorte
que différents régimes sont attendus dans les plasmas de bord des
tokamaks. Le modèle est réduit à une dimension, en ne conser-
vant qu’un seul mode parallèle et poloı̈dal pour les fluctuations, dans
l’esprit d’une approche quasi-linéaire généralisée. Un large balayage
des paramètres de contrôle des instabilités permet de cartographier
le comportement du plasma de bord. Des régimes dominés par les
écoulements sont prédits à faible collisionnalité ou à grande courbure
magnétique. Cette dernière favorise la turbulence de type interchange,
caractérisée par des événements de transport en avalanches et des
ZF structurés radialement, conduisant à des profils de pression en es-
caliers appelés staircases. Les ZF sont générés par les composantes
électrique et diamagnétique du tenseur de Reynolds. Leur corrélation
et leur amplitude relative varient avec le régime de turbulence. La ca-
pacité du système à conserver de l’énergie dans le profil de pression
comme dans les écoulements d’équilibre détermine l’existence des
staircases, lesquels optimisent le confinement. Les avalanches sont
caractérisées par une fonction de corrélation radiale à deux pentes : la
première est attribuée à la turbulence à petite échelle, la seconde cap-
ture la longueur typique de l’avalanche. Des études expérimentales
ont été réalisées sur Tore Supra (CEA) et TCV (EPFL) en utilisant
deux systèmes DBS. Sur Tore Supra, des corrélations à longue dis-
tance sont observées en utilisant des DBS séparés poloı̈dalement et
toroı̈dalement. En filtrant les modes géodésiques acoustiques, des si-
gnatures des ZF à basse fréquence sont identifiées. Sur TCV, des fonc-
tions de corrélation radiale sont obtenues à l’aide d’un double système
DBS. Deux longueurs typiques sont observées, comme dans les simu-
lations. Ce résultat constitue une preuve indirecte supplémentaire de
l’existence d’événements de type avalanche dans les plasmas de to-
kamaks, notoirement difficiles à observer.

Title : Edge turbulence self-organization in fusion plasmas
Keywords : Plasma, Fusion, Turbulence, Tokamak, Zonal flows, Avalanches
Abstract : This PhD work is a step forward in the characterisation
of turbulence self-organization in edge tokamak plasmas, key player
in transport and confinement. Three main results are obtained: the
plasma parameter regimes prone to turbulence self-organization are
identified, some of the underlying physical mechanisms at work are
unravelled, and some experimental evidence of self-organization is ob-
tained by means of Doppler Back-scattering (DBS) measurements in
tokamak plasmas.
Tokamaks aim at confining hot plasmas by means of large magnetic
fields. The last closed flux surface separates the confined inner region
from the scrape-off layer where the plasma interacts with materials. In
the tokamak operational regime, cross-field transport – hence confi-
nement – is governed by micro-scale turbulence. Understanding the
mechanisms of its saturation would open the route towards its pos-
sible control. Plasma conditions at the edge transition region are key.
In this region, turbulence generates avalanche transport events, which
deteriorates the confinement, and zonal flows that efficiently contribute
to turbulence saturation. Understanding and predicting turbulence self-
organization – i.e. the self-consistent interplay between potentially ra-
dially structured ZFs, flux-surface averaged profiles and turbulent trans-
port – in the various parameter regimes of edge tokamak plasmas
constitutes the backbone of this work. To this aim, the reduced non-
linear model Tokam1D, developed on purpose, evolves the mean pro-
files and the fluctuations in a self-consistent manner in the flux-driven
regime. Importantly, in view of studying turbulence self-organization
at mesoscales, no scale separation is assumed. The model features
two instabilities thought to be dominant at the edge, namely collisional
drift waves CDW, originating from a finite phase shift between density
and electric potential fluctuations, and interchange due to the magnetic
field inhomogeneity (curvature). Their control parameters exhibit dif-

ferent dependencies with respect to plasma parameters, so that dif-
ferent regimes can be expected in edge tokamak plasmas. The model
is reduced to 1-dimension by retaining a single parallel and poloidal
mode for the fluctuations, in the spirit of a generalized quasilinear ap-
proach. A large scan of the instability control parameters, both at fixed
source and fixed distance-to-threshold, allows one to pave the edge
plasma parameter space. Large flow-to-turbulence energy ratios are
predicted at low collisionality or large magnetic curvature. The latter
favours interchange turbulence characterised by avalanche-like trans-
port events and radially-structured ZFs leading to corrugated pressure
profiles known as staircases. ZFs are driven by the electric and dia-
magnetic components of the Reynolds stress, whose phase alignment
and relative amplitude vary with the turbulence regime. The system’s
freedom to store energy both in the pressure profile and mean flows
is shown crucial to the staircase existence. Overall, the confinement is
improved in regimes featuring staircases. Experimentally measurable
signatures of avalanches are found in the form of a two slope radial cor-
relation function, the smallest slope attributed to small-scale turbulent
eddies, the largest capturing the avalanche typical propagation length.
Experimental studies have been carried out on the Tore Supra (CEA
Cadarache) and TCV (EPFL) tokamaks using a two-channel DBS for
correlations. In Tore Supra long range correlations are observed when
using poloidally and toroidally separated channels. When filtering out
dominating geodesic acoustic modes, signatures of the elusive low fre-
quency ZFs are found. In TCV, measurements using two co-located
channels exhibit radial correlation functions with two slopes in certain
regimes similarly to simulations. This result constitutes an additional in-
direct proof of the existence of avalanche events in tokamak plasmas,
notoriously difficult to diagnose.
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