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Introduction

Context

This thesis was carried out within the doctoral school ED-AA (École Doctorale Aéronautique et
Astronautique) and directly follows the work of a previous doctoral student [Berthelin, 2022].
Financing for this thesis was provided by ONERA (Office National d’Études et de Recherche
Aérospatiale) and ISAE-SUPAERO (Institut Supérieur de l’Aéronautique et de l’Espace) in the
context of the Féderation de recherche ONERA-ISAE-ENAC. At ONERA the work was developed
as part of the research activities of the M2CI (Méthodes Multidisciplinaires, Concepts Intégrés)
team. The supervision of the thesis was assured by Christian Gogu, professor at ISAE-SUPAERO,
and Sylvain Dubreuil, research scientist at ONERA. Nathalie Bartoli, senior researcher at ONERA,
and Michel Salaün, professor at ISAE-SUPAERO, equally participated in the supervision of this
work.

Problem formulation

Overall aircraft design is the conceptual or preliminary stage of the design process of an aircraft.
As the global effort to limit climate changes increases, there is a need to significantly reduce
carbon emissions in the aviation industry. To achieve this reduction, different studies point to
the transition to sustainable energy sources or to increased aircraft efficiency. These solutions
translate into new aircraft configurations, presenting changes in propulsion technologies (such
as hybrid-electric [Sgueglia et al., 2018] or hydrogen powered aircraft [Onorato et al., 2022, Adler
and Martins, 2024]) or more efficient lifting devices (such as blended wing bodies [Brown and
Vos, 2018] or high aspect ratio wings [Brooks et al., 2019]). Overall aircraft design provides a
framework to explore these new configurations for which little to no experimental data is avail-
able. To do so, the inherent multidisciplinary behavior of the aircraft needs to be appropriately
modelled. Indeed, different interacting disciplines are used to model the different physical phe-
nomena that ultimately determine aircraft performance. For instance, one discipline may be
used to describe the aerodynamics of the wing, while another may be used to describe its struc-
tural deformation. To allow the disciplines to exchange information with one another, a non-
linear system of equations is defined. This system, often called Multidisciplinary Design Analysis
(MDA), is illustrated in Figure 1.

Aerodynamics
fa =Ma(us )

fa

Structures
us =Ms (fa)

us

Figure 1: Illustration of an MDA problem involving the aerodynamics and structural disciplines
which interact with one another via the coupling variables fa and us , respectively the aerody-
namic loads and the structural displacement.
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In MDA, the quantities exchanged between the participating disciplines are called coupling
variables. Moreover, the coupling variable values for which the feedback loop is verified de-
fine the solution of the MDA. Most commonly, this solution is found using iterative approaches,
where the values of the coupling variables are updated iteratively until the relative error be-
tween two successive updates is within some small tolerance. In overall aircraft design, when
coupling the structural and aerodynamics disciplines, the coupling variables are typically the
aerodynamic loads fa and the structural displacements us . A precise evaluation of these quan-
tities requires the resolution of partial differential equations using expensive numerical solvers.
However, due to the multiple iterations, the use of such numerical solvers directly in the MDA
framework can become computationally prohibitive.

This computational cost is further increased during the preliminary design studies, where a
large number of different aircraft configurations needs to be assessed. Indeed, if either aerody-
namic or structural conditions are altered (for example, through changes in flight conditions or
wing geometry), the whole resolution of the MDA must be repeated. Moreover, the choice of
one aircraft configuration over another is based on certain quantities of interest, such as the fuel
burnt or the maximum take-off weight. Because these performance functions depend on the
solution of the MDA, overall aircraft design is typically formulated as a Multidisciplinary Design
Optimization (MDO) problem. In MDO design variables which control the disciplinary solver
conditions are varied in order to find the best possible value of the chosen performance func-
tion. A possible way to do this, is by solving the MDA at each optimizer iteration, and to compute
the objective function value at the MDA solution, as illustrated in Figure 2. However, other MDO
formulations which do not solve the MDA at each iteration can also be used.

Aerodynamics
fa =Ma(x,us )

fa

Structures
us =Ms (x,fa)

us

Optimization
algorithm

Performance
fobj(x,u∗

s ,f∗
a )

fobj

x

x,u∗
s ,f∗

a

Figure 2: Illustration of an MDO problem involving the aerodynamics and structural disciplines.
The set of design variables x determine the disciplinary solver conditions. The performance
function to optimize is fobj. To evaluate fobj the solution of the MDA (u∗

s ,f∗
a ) is required.

Due to the high computational cost associated with the MDO, most preliminary design stud-
ies are carried out using empirical formulas or low-fidelity disciplinary solvers. Although these
solvers allow for a rapid exploration of the design space, they lack the accuracy offered by their
high-fidelity counterparts. When attempting to design new aircraft configurations, for which
experimental data is scarce, optimization algorithms take advantage of the lack of accuracy of
these low-fidelity solvers to produce unrealistic optimal designs [Knill et al., 1996]. As a result,
using empirical formulas fine-tuned for existing aircraft configurations is no longer a feasible
option and one must rely on high-fidelity solvers.
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The initial efforts to use high-fidelity disciplinary solvers in the context of MDO date back to
the early 2000s [Giunta, 2000,Maute et al., 2001]. At the time, the use of high-fidelity disciplinary
solvers was motivated by the lack of accuracy obtained when designing supersonic transport
aircraft using simpler, low-fidelity models. Indeed, at such high speeds, non-linear phenom-
ena such as wave drag become of relative importance and dedicated high-fidelity disciplinary
solvers must be used to properly account for them. As the need for more accurate disciplinary
solvers was identified, research to allow for the use of expensive high-fidelity solvers directly in
the MDO framework was increased. An important step in this direction was the coupled-adjoint
method, initially developed for the calculation of aero-structural sensitivities [Martins et al.,
2005]. The coupled-adjoint method allows to efficiently perform gradient-based optimization
of tightly coupled multidisciplinary systems and continues to be extensively used in this con-
text [Jasa et al., 2018, Gray et al., 2019, Bons and Martins, 2020]. But even though the coupled-
adjoint method is compatible with the use of high-fidelity disciplinary solvers, it requires that the
disciplinary solver functions be differentiable. Besides that, it needs to compute gradient infor-
mation at a disciplinary solver level, which is not cost free. Most high-fidelity solvers, however,
are commercial codes for which only inputs and outputs are known. Moreover, gradient-based
optimizers are designed to converge to local optima. When designing new aircraft configura-
tions, little is known about the performance function and the existence of multiple local minima
cannot, a priori, be discarded. For example, in [Bons et al., 2019] multiple local optima are found
when design variables are allowed to take values outside their conventional bounds. To address
this challenge, gradient-based optimizers must thus resort to multi-start strategies, greatly in-
creasing the computational cost.

Bayesian optimization algorithms [Močkus, 1975] provide an alternative to gradient-based
optimization which may be more fit for the preliminary design studies of new aircraft config-
urations. These algorithms typically replace expensive to evaluate functions by approximated
models which they use to directly search for the global optimum. Among others, the Efficient
Global Optimization (EGO) algorithm [Jones et al., 1998] stands out as one of the first Bayesian
optimization algorithms. In EGO, the objective function is approximated by a Gaussian Process
(GP) [Krige, 1951, Rasmussen and Williams, 2005] built from an initial Design of Experiments
(DoE) [Sacks et al., 1989]. The global optimum of the function is then found by adaptively sam-
pling the design space through a combination of exploration of the domain and exploitation of
the regions where the global optimum is likely to be. And although the original EGO algorithm
was developed for single discipline optimization, variants of this algorithm have been used in
recent literature to perform MDO [Priem et al., 2020b, Needels and Alonso, 2023].

It is not astonishing that the reduced number of objective function calls makes Bayesian opti-
mization algorithms appealing for problems involving expensive disciplinary solvers. However,
in an MDO context, both the initial DoE as well as each newly sampled point require a new
resolution of the MDA. This means that algorithms like EGO do not exploit the fact that the so-
lution of the MDA is itself the result of a partitioned system. A more interesting idea is thus to re-
place the costly disciplinary solvers themselves by surrogate models. This approach is applied in
an MDO context in [Zhang et al., 2017, Wang et al., 2017], where disciplinary surrogates are used
to perform global optimization using an evolutionary algorithm. More recently, in [Scholten and
Hartl, 2021], disciplinary surrogates were also used to perform the static aeroelastic analysis of
an aircraft wing. Despite the observed reduced computational cost, the proposed approaches
present the shortcoming of requiring sufficiently accurate surrogates throughout the entire de-
sign space. For the purpose of overall aircraft design, where interest lies primarily in promising
regions of the design space, the construction of globally accurate surrogates may represent a
waste of computational effort.

One should thus look for an optimization framework that combines the reduced computa-
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tional cost of disciplinary surrogates with the adaptive sampling of Bayesian algorithms. Ef-
forts to develop such an optimization framework have recently been started in [Berthelin, 2022],
where an MDA strategy called Disciplinary Proper Orthogonal Decomposition and Interpola-
tion (DPOD+I) was developed. The DPOD+I strategy proposes to approximate the disciplinary
solver outputs using a combination of Proper Orthogonal Decomposition (POD) with GP inter-
polation. By adaptively enriching the resulting disciplinary surrogates during the resolution of
the MDA, the DPOD+I strategy significantly reduces the number of disciplinary solver calls re-
quired. Application of the DPOD+I strategy in an MDO context further confirmed the interest of
this strategy for applications requiring the use of expensive numerical solvers. Particularly, the
reduction of computational cost was shown to be most significant when combined with the Effi-
cient Global Multidisciplinary Design Optimization (EGMDO) algorithm proposed in [Dubreuil
et al., 2020]. EGMDO is a global optimization algorithm which relies on the use of disciplinary GP
approximations to obtain a surrogate model of the performance function. Through a dedicated
uncertainty reduction strategy, the EGMDO algorithm is capable of enriching the disciplinary
surrogates only in promising regions of the design space.

One of the limitations of the DPOD+I strategy, however, is that the obtained reduced coupling
variable space must remain of relatively low dimension. This is because classical GP approxima-
tions do not perform well in high dimensions (typically over 20). However, due to the spatial
discretization performed by the numerical solvers, the coupling variables involved in the MDA
are often high-dimensional vectors, representing for example pressure or displacement fields.
The POD step of the DPOD+I strategy is thus specifically thought to reduce the dimension of the
coupling variable space and allow for the constructions of the disciplinary surrogates. Never-
theless, the chosen Model Order Reduction (MOR) strategy was shown to lead, in some cases, to
a large dimension of the coupling variable space, notably when changes in the design variables
contributed with significantly new information to the disciplinary POD bases. As a consequence,
both accuracy and performance of the DPOD+I strategy were impacted.

A possible lead to address this challenge may rely on the choice of a different MOR strategy.
Indeed, the linear approximation obtained by a global POD basis may not be the most fit for the
combined use with GP interpolation, as the number of coefficients required to obtain a small
projection error is often large. In the context of MOR, some authors propose to replace the use
of a global POD basis by the interpolation of a database of local reduced order bases [Amsallem
and Farhat, 2008, Amsallem et al., 2009], while other works propose to abandon POD altogether
in favor of quadratic approximations [Barnett and Farhat, 2022, Geelen et al., 2023]. Since, for
the same level of accuracy, these strategies result in a lower dimension than that obtained by a
global POD basis, they may be more fit for the combined use with GP interpolation.

The EGMDO algorithm also presents some limitations that must be addressed before it can
be used for preliminary design studies. Indeed, despite its computational efficiency, the EGMDO
algorithm lacks a proper constraint handling strategy. Constraints are used in overall aircraft de-
sign to ensure the feasibility of the optimal solution found. Without them, the designed aircraft
may, for example, not respect air travel regulations or, in more serious cases, incur structural fail-
ure. Development of a constraint handling strategy that does not deteriorate the performance
of the algorithm is particularly desirable. Fortunately, several works have been dedicated to ex-
tending the Bayesian optimization framework to constrained problems [Sasena et al., 2002, Parr
et al., 2012, Picheny, 2014] and could serve as a foundation for possible developments.

Finally, another lead to reduce the computational cost of the MDO problem is to combine
the DPOD+I strategy for the resolution of the MDA with a gradient-based optimization algo-
rithm. We have previously discarded the use of gradient-based algorithms due to the black-box
nature of most commercial codes. However, when using the DPOD+I strategy, the derivatives
of the disciplinary GPs can be obtained analytically. This allows for the use of gradient-based
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optimizers while still retaining a non-intrusive approach. Additionally, when using adaptively
enriched disciplinary surrogates, the multi-start techniques required to find the global optimum
do not necessarily translate into a significant increase of the computational cost.

Objectives

The objective of this thesis is to address the shortcomings of existing analysis and optimiza-
tion frameworks that use disciplinary surrogates to reduce the computational cost of prelimi-
nary design studies of multidisciplinary systems. The previously described DPOD+I strategy and
EGMDO algorithm serve as main foundation for the work developed. The main shortcomings
of each of these frameworks are described in the following:

1. The DPOD+I strategy loses both performance and accuracy when the dimension of the
reduced coupling variable space is large.

2. The EGMDO algorithm lacks a dedicated constraint handling strategy and thus is unfit for
most preliminary design studies.

3. Gradient-based optimization is too costly when the derivatives of the disciplinary solvers
are not available and must be approximated.

To address the first shortcoming presented above, it is necessary to adapt the dimension reduc-
tion strategy of the DPOD+I strategy. As a result, one of the main objectives of this thesis is to
explore other dimension reduction strategies and to adapt their formulation to the context of
multidisciplinary analysis. Moreover, we propose to apply the developed framework to a test
case involving a non-linear aerodynamics solver, for which the original DPOD+I strategy per-
formed poorly. It is equally necessary to extend the EGMDO algorithm to constrained problems,
so that it can be used in preliminary design studies. Another main objective of this thesis is
thus to develop a dedicated constraint handling strategy for the EGMDO algorithm that retains
the cost saving approach of the original formulation. Finally, when the derivatives of the dis-
ciplinary solvers are not available and must be approximated, gradient-based optimization is
too costly. However, the use of disciplinary surrogates allows for an analytical approximation
of the disciplinary solver derivatives. Thus, the third main objective of this work is to develop a
gradient-based optimization framework that uses the derivatives of the disciplinary surrogates
to drive the search. The outline for this thesis is provided in the following.

Thesis outline

This thesis is divided into five main chapters. The first two chapters describe the state of the
art, while the remaining three chapters contain the contributions of this work. Each chapter is
briefly described in the following.

In Chapter 1 the concepts and numerical tools for the optimization of multidisciplinary sys-
tems are introduced. To do so, the chapter is divided into two main sections. The first section
introduces numerical optimization, with special focus given to gradient-based optimization and
surrogate-based optimization algorithms. Constrained optimization algorithms are equally in-
troduced in this section. The second section is dedicated to multidisciplinary design analysis
and optimization. The main algorithms used to find the solution of the MDA are described and a
review of the existing MDO formulations is provided. Then, the EGMDO algorithm is presented.

In Chapter 2 the concepts or tools to obtain computationally cheaper approximations of the
disciplinary solvers are presented. To do so, an introduction to the numerical resolution of the
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parameterized Partial Differential Equations (PDEs) that describe the physical behavior of the
considered disciplines is given. Next, we introduce projection-based Model Order Reduction as
a method for reducing the computational burden associated with the resolution of the parame-
terized PDEs in a multi-query context. Finally, the DPOD+I strategy is described.

In Chapter 3 we address the challenges encountered by the DPOD+I strategy, by proposing
to replace the use of a global POD basis with the interpolation of a database of pointwise local
POD bases. The use of pointwise local POD bases has most often been used in the literature in
the context of single-discipline analysis where one of the parameters was time. In this chapter,
we propose to use this strategy in an MDA context. We thus adapt the training and enrichment
strategies of the DPOD+I approach to accommodate the use of local POD bases. Numerical test
cases are used to confirm the interest of the proposed approach.

In Chapter 4 we propose to use the disciplinary surrogates obtained via the adapted DPOD+I
strategy to solve MDO problems using a gradient-based optimizer. To that end, we propose to
use the derivatives of the built disciplinary surrogates, which can be obtained analytically, to
drive the search for a local optimum. Application to both an analytical and engineering test
cases confirms the interest of the proposed approach.

In Chapter 5 we develop a dedicated constraint handling strategy for the EGMDO algorithm.
In it is shown through numerical tests that the reformulated algorithm, named Constrained
EGMDO (C-EGMDO), is capable of handling both equality and inequality constraints. Moreover,
thanks to the use of disciplinary surrogates, the developed algorithm results in fewer disciplinary
solver calls than other existing approaches.

Other activities

One of the main goals during this thesis was that any developed algorithm could be easily used
for other research activities at ONERA and namely for those carrying out preliminary aircraft de-
sign studies. As a result, an effort has been made to produce computer code that was compatible
for integration within the in-house web application WhatsOpt [Lafage et al., 2019]. Additionally,
this thesis gave place to an internship where the goal was to implement some of the developed
approximation methods within the python package Surrogate Modeling Toolbox [Bouhlel et al.,
2019,Saves et al., 2024]. This package is developed and used both at ONERA and ISAE-SUPAERO.
Finally, during these last three years I have actively participated in teaching activities at ISAE-
SUPAERO. Among others, I have supervised practical courses in the fields of optimization, air-
craft design and solid mechanics.
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In this chapter we will:

• Introduce gradient-based and global optimization algorithms.

• Introduce constrained optimization.

• Introduce multidisciplinary design analysis and optimization.

• Introduce the EGMDO algorithm.

• Introduce existing tools for numerical optimization.

In this chapter we introduce the concepts and numerical tools for the optimization of multi-
disciplinary systems. To do so, the chapter is divided into three main sections. The first section
introduces numerical optimization, with special focus given to gradient-based optimization and
surrogate-based optimization algorithms. Constrained optimization algorithms are equally in-
troduced in this section. The second section is dedicated to multidisciplinary design analysis
and optimization. The main algorithms used to find the solution of the MDA are described and
a review of the existing MDO formulations is provided. Then, the EGMDO algorithm is presented
in detail. Finally, a third section introduces some of the existing tools to perform numerical op-
timization.

1.1 Numerical optimization

In this first part, we will forget the multidisciplinary nature of the system and address the nu-
merical tools that exist in the literature for the optimization of a given performance function.
Constraint functions will equally be put momentarily aside and will be addressed later on in this
section. The unconstrained optimization problem to treat is thus defined as:

x∗ = argmin
x∈X

fobj(x) (1.1)

where fobj : X ⊂Rn →R is the objective or performance function, X is the design space and x ∈X

is the vector of design variables which influence the value of fobj. Note that, for simplification,
in Eq. (1.1) x is presumed to be made of n continuous design variables. Discrete or categorical
design variables often require dedicated algorithms, not considered in this work. We also note
that, although x could take any value, it is more computationally efficient to limit the design
space based on problem specifications or on the physical limitations of the system. As a result,
X is typically not equal to Rn but is defined as a subset of it. Some assumptions are also made
for the objective function. Namely, we assume that:

1. Evaluating fobj is computationally expensive; calls to the objective function should be kept
to a minimum.

2. The function fobj is treated as a black-box; only its inputs and outputs are known.

3. The gradient of fobj is presumably not available; when required, it must be numerically
approximated.

4. The function fobj may have multiple local minima; it is our goal to find the global optimum.

The role of optimization algorithms is to solve the problem defined in Eq. (1.1) within reason-
able computational times. However, not all existing optimization algorithms are well suited un-
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der the above described assumptions. Indeed, stochastic algorithms such as Simulated Anneal-
ing [Kirkpatrick et al., 1983], Genetic Algorithms [Katoch et al., 2021] or Particle Swarm Opti-
mization [Kennedy and Eberhart, 1995] require, by default, a large number of objective function
evaluations and thus go against assumption 1. Of the remaining classes of algorithms, we will
distinguish between two categories: algorithms that perform local optimization and algorithms
that use surrogate approximations to directly look for the global optimum.

Optimality conditions. Before presenting the different algorithms used to solve Eq. (1.1), we
introduce the optimality conditions which ensure that x∗ is a local minimum of fobj [Nocedal
and Wright, 1999]. By definition, x∗ is a local minimum of fobj if, for all points lying in the neigh-
borhood of x∗:

fobj(x
∗) ≤ fobj(x) (1.2)

Assuming fobj is smooth and twice continuously differentiable, Eq. (1.2) can be verified by look-
ing at the gradient ∇ fobj and the Hessian H fobj

at x∗. Indeed, Eq. (1.2) is true if:

∇ fobj(x
∗) = 0 (1.3)

Equation (1.3) is called the first-order optimality condition. And while it is a necessary condition,
it is not sufficient to ensure optimality. A second-order optimality condition is thus required,
which states that H fobj

(x∗) must be at least positive semidefinite. If both conditions are verified,
then x∗ is a local minimum of fobj. Local optimization algorithms, introduced in the following,
attempt to find x∗ such that first and second order optimality conditions are verified.

1.1.1 Local optimization algorithms

Local optimization algorithms rely on a search direction which advances the optimization pro-
cess towards a local optimum. These algorithms typically require a starting point and move
through the design space by iteratively searching the direction which is most likely to reduce the
objective function value. When a new descent direction can no longer be found, the search is
ended. Different strategies can be used to find the search direction, but the most popular way is
to use gradient information.

1.1.1.1 Gradient-based algorithms

As the name implies, gradient-based algorithms use gradient information to drive the search
for the optimal solution. Namely, they build a local approximation of the objective function by
means of a Taylor expansion, which is then used to predict the objective function value around
an initial point x0 ∈ X ⊂ Rn . For any given objective function fobj(x), the second-order Taylor
expansion around x0 is given by:

f̂obj(x) ≈ fobj(x0)+∇ fobj(x0)⊺(x−x0)+ 1

2
(x−x0)⊺H fobj

(x0)(x−x0) (1.4)

where ∇ fobj(x0) and H fobj
(x0) are, respectively, the gradient and Hessian matrix of the objective

function at x0. When either gradient or Hessian are not available, they may be approximated via
finite differences. The forward finite-difference approximation of the first derivative is:

∂ fobj(x0)

∂xi
≈

fobj(x0 +hei )− fobj(x0)

h
, i = 1, ...,n (1.5)

where h is the step size (h ≪ 1) and {e1, ...,en} are the vectors of the canonical basis of Rn . While
finite-difference approximations are easy to implement, they are very sensitive to the choice
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of step-size h. A more robust approach is the complex step approximation [Lyness and Moler,
1967, Squire and Trapp, 1998], written as:

∂ fobj(x0)

∂x j
≈

Im[ fobj(x0 + i he j )]

h
, j = 1, ...,n (1.6)

where i =p−1. It should be noted, however, that while the finite-difference approximation can
be easily used in a black-box approach, the complex-step approximation requires the objective
function code to be able to handle complex numbers.

Gradient-based algorithms are considered to be rather efficient as, once the gradient and
Hessian matrix are available, these algorithms are able to start from an initial point x0 ∈ X

and generate a series of points x1, ...,xk ∈ X that converge to a local optimum. The different
gradient-based algorithms thus differ in the manner in which they generate this converging se-
ries of points. Among the most common methods are the gradient descent method, which uses
only gradient information and therefore is called a first-order method and Newton’s method
which uses Hessian information and therefore is considered a second-order method. Because
the latter usually performs better, only Newton’s method is described in the following.

Newton’s method. Second order methods, such as Newton’s method, perform better than first
order methods because they use curvature information to get a better estimate of the search
direction. Indeed, when using the curvature information it is possible to predict a descent di-
rection and step length which will bring the function derivative close to zero (recall that this a
necessary optimality condition). Denoting dk ∈ Rn the descent direction, the Taylor series ex-
pansion around any point xk can be written as:

f̂obj(xk +dk ) ≈ fobj(xk )+dk∇ fobj(xk )+ 1

2
dk

⊺H fobj
(xk )dk (1.7)

Differentiating Eq. (1.7) with respect to dk and setting the derivative to zero yields the following
linear system of equations:

H fobj
(xk )dk =−∇ fobj(xk ) (1.8)

which can be used to determine dk at iteration k. The step length sk ∈ R is then determined by
performing a 1-D line search in the descent direction [Grippo et al., 1989]. Note that, in Eq. (1.8),
if the Hessian matrix is not positive definite, dk may not be a valid descent direction. To help mit-
igate this issue, Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[Broyden, 1970,Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] algorithm, replace the real Hessian
by an approximation of it which is positive definite by construction. Quasi-Newton approaches
are also more fit for combined use with commercial codes, for which Hessian information is
usually not available. Algorithm 1 summarizes the main steps of the Quasi-Newton method.

Newton methods, like other gradient based algorithms, are stopped when a new search di-
rection can no longer be found. In practice, this is decided based on the relative progress of the
algorithm at the most recent iteration. Typical stopping criteria include a minimum change in
the gradient norm, step size or objective function value. A limit on the number of iterations is
also typically set to prevent the algorithm from running indefinitely.

1.1.1.2 Trust-region algorithms

Trust region methods [Powell, 1970, Conn et al., 2000] were first developed to address the con-
vergence issues that occur for gradient-based algorithms whenever the point xk+1 is far from the
current point xk . These issues arise because the built approximation for the objective function
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Algorithm 1 Quasi-Newton method

Input: x0,kmax ▷ Starting point and max. number of iterations
k = 0 ▷ Initialize iteration count
conv = False
while conv == False and k < kmax do

Compute or approximate ∇ fobj(xk )

Approximate H̃ fobj
(xk ) ▷ Quasi-Newton approximation

Obtain descent direction dk ▷ Newton step (Eq. (1.8))
Compute step length sk ▷ 1D line search
xk+1 = xk + sk dk ▷ Update design variable values
if stopping criteria then

conv = True ▷ Stop if convergence criteria are met
end if
k = k +1 ▷ Increase iteration count

end while
Output: xk

(Eq. (1.7)) is only locally accurate. To address this challenge, trust-region approaches propose
to iteratively minimize the objective function within a restricted region where the local model is
expected to be sufficiently good. This restricted region, called trust-region, is typically defined
as a sphere Sk of radius ρk centered around the current point xk . Saying that the next point xk+1

should belong to Sk is thus equivalent to solving the following optimization problem:

xk+1 = arg min
x∈Sk

fobj(x) (1.9)

According to Eq. (1.9), two consecutive points xk and xk+1 cannot be farther away from one
another than the radius ρk . As a result, if too small a radius is chosen, the algorithm can take
a long time to converge. Contrarily, if the radius is too large, the local model is not sufficiently
accurate within the entire trust-region and convergence issues may arise. For this reason, most
trust-regions approaches propose to update the size of the trust-region at each iteration. One
metric that can be used to decide if the trust-region size should be updated is the ratio of actual
function decrease over the expected function decrease:

rk =
fobj(xk )− fobj(xk+1)

f̂obj(xk )− f̂obj(xk+1)
(1.10)

In practice, if rk is too small, the model does not accurately represent the actual function, the
new point should be rejected and the trust-region should be shrunk. Contrarily, if rk is close to
unity it means the actual function is well represented, the new point should be accepted and the
trust-region can be expanded. If rk is neither too small nor close to unity, the new point can be
accepted but the size of the trust-region is kept. Algorithm 2 summarizes the main steps of the
trust-region method.

1.1.1.3 Gradient-free algorithms

Local, gradient-free algorithms are also present in the literature. For instance the Constrained
Optimization by Linear Approximation (COBYLA) algorithm [Powell, 1994] is a type of trust-
region algorithm which builds a linear approximation of the objective function in each iteration
by using only objective function evaluations. Other popular gradient-free methods include the
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Algorithm 2 Trust-region method

Input: x0,ρ0,kmax ▷ Starting point, initial radius and max. iterations
k = 0 ▷ Initialize iteration count
conv = False
while conv == False and k < kmax do

Compute or approximate ∇ fobj(xk )

Compute or approximate H̃ fobj
(xk )

Find xk+1 within the trust-region ▷ New point found using Eq. (1.9)
Compute metric rk ▷ Performance evaluation (Eq. (1.10))
if rk < η1 then

xk+1 =xk ▷ Reject new point
Compute ρk+1 such that ρk+1 < ρk ▷ Shrink trust-region

else if rk > η2 then
Compute ρk+1 such that ρk+1 > ρk ▷ Expand trust-region

end if
if stopping criteria then

conv = True ▷ Stop if convergence criteria are met
end if
k = k +1 ▷ Increase iteration count

end while
Output: xk

simplex-based Nelder-Mead algorithm [Nelder and Mead, 1965] and generalized pattern search
approaches [Torczon, 1997, Audet and Dennis, 2006]. Compared to gradient-based approaches,
gradient-free algorithms are more suitable for the optimization of noisy or discontinuous func-
tions. However, because they do not use gradient information, these methods typically require
more iterations than their gradient-based counterparts.

1.1.1.4 Disadvantages of local optimization algorithms

Local optimization algorithms which use gradient information are particularly attractive be-
cause they efficiently find a search direction which is likely to improve the objective function
value. Thus, even if the algorithm is stopped due to budget limitations, the obtained solution will
still be better than the initial starting point. Like all other methods, however, local optimization
algorithms also present some downsides. Namely, they are not appropriate for the optimization
of multi-modal functions, as, depending on the starting point, they may get stuck on local min-
ima. In this case, a multi-start technique [Betro and Schoen, 1992], where the optimization is
run for different initial points, is required. The global optimum is then taken as the best within
all optima found. If gradient information is not available and needs to be approximated using fi-
nite differences, multi-start techniques might be computationally unfeasible. Indeed, for x ∈Rn ,
each gradient evaluation requires at least n +1 objective function evaluations (see Eq. (1.5)). If
the objective function is costly to evaluate or n is large, the computational cost may even become
prohibitive. In the next section, surrogate-based optimization, which attempts to preserve com-
putational cost by directly searching for the global optimum, is presented.

1.1.2 Surrogate-based optimization

Global optimization algorithms, as the name implies, attempt to explore the regions of the de-
sign space where the global optimum is likely to be. Of the existing types of optimization al-
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gorithms, surrogate-based optimization algorithms are of particular interest due to their cost-
saving approach. These algorithms typically build a model of the objective function which they
exploit in order to solve the optimization problem. By adaptively enriching the surrogate in
regions of the design space where the global optimum is expected to lie, surrogate-based algo-
rithms are able to keep objective function calls to a minimum. In the following, an overview of
surrogate-based optimization algorithms is provided.

1.1.2.1 The Design of Experiments (DoE)

Surrogate-based algorithms typically begin by generating a DoE [Sacks et al., 1989] composed of
a set of d selected points xDoE = {x1, ...,xd } and their corresponding outputs fDoE = { f 1

obj, ..., f d
obj},

with f i
obj = fobj(xi ). Typically, space-filling sampling strategies which attempt to cover the entire

design space are preferred for the generation of the DoE. Several space-filling strategies exist in
the literature but not all are appropriate for use with expensive numerical solvers. For instance,
an intuitive space-filling method is full factorial sampling. For an n-dimensional input space,
full factorial sampling builds, in each dimension, a grid of p evenly spaced points. However, if a
fine grid is used or if the input space is high-dimensional, this results in many objective function
calls (pn points). Simple random sampling or Monte Carlo methods could also be used. These
methods draw random samples from a probability distribution over the design space. By fixing
the number of drawn samples to a maximum number of objective function calls, the compu-
tational cost can be reduced compared to full factorial sampling. Regardless, even if a uniform
probability distribution is used, Monte Carlo methods will not necessarily result in a DoE which
is well spread throughout the design space. Stratified sampling strategies, such as the Latin Hy-
percube Sampling (LHS) strategy [Mckay et al., 1979], typically result in DoEs which are more
space-filling than the ones obtained using Monte Carlo methods. To do so, the LHS strategy
partitions the range of each input variable into d equally probable intervals. Then, by drawing
random permutations, it places a point per interval. Figure 1.1 illustrates the generated DoEs
obtained using full factorial sampling (Figure 1.1(a)), Monte Carlo sampling (Figure 1.1(b)) and
LHS (Figure 1.1(c)) for a two-dimensional input space. It is worth noting that Figure 1.1 is merely
representative and that, in practice, the training points are not necessarily placed at cell centers.

(a) Full factorial (b) Monte Carlo (c) LHS

Figure 1.1: Generation of the DoE for a two-dimensional input space. Illustration of the DoEs
obtained via (a) full factorial sampling with n = 2 and p = 4, (b) Monte Carlo sampling using a
uniform probability distribution and (c) LHS with d = 4.

1.1.2.2 Gaussian Process (GP) approximation

Once the initial DoE is generated, it can be used as training data to build a surrogate model
of the objective function. Different types of surrogates exist in the literature which are used to
approximate scalar functions. Among the most popular methods are linear least squares regres-
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sion [Hastie et al., 2001], Radial Basis Function (RBF) [Broomhead and Lowe, 1988], GP inter-
polation [Krige, 1951, Rasmussen and Williams, 2005] (also called kriging ), Support Vector Ma-
chines [Vapnik, 1999] and Artificial Neural Networks [McCulloch and Pitts, 1943]. Of the existing
types of surrogate methods, GP interpolation is particularly appealing since it allows not only to
predict the value of the surrogate function, but also provides an idea for the corresponding un-
certainty. The next paragraphs detail the construction of a surrogate model via GP interpolation.

A GP G is an infinite set of random variables, of which any finite subset follows a joint Gaus-
sian distribution. It is characterized by its mean function:

µ(G (x)) = E[G (x)] (1.11)

and by its covariance function:

k(x,x′) =CoVar(G (x),G (x′)) (1.12)

where µ : X 7→R, k : X ×X 7→R and CoVar(·, ·) denotes the covariance between two random vari-
ables. Interpolation by GP assumes that the function we want to approximate is the realization of
a GP. The goal is thus to parameterize the functions µ(G (x)) and k(x,x′) so that the obtained GP,
when conditioned to the sampling data, best describes the objective function behavior. One
way to do this is by using a Universal Kriging Model [Matheron, 1969, Rasmussen and Williams,
2005, Forrester et al., 2008, Picheny et al., 2010], where the GP is written as:

G =µ(G (x))+Z (x) with Z (x) ∼N (0,k(x,x′)) (1.13)

Assuming linear mean and stationary covariance function (k(x, x ′) = k(∥x−x′∥)), then G may be
rewritten as:

G = e(x)⊺β+σ2
Zrθ(x,x′) (1.14)

where e(x) are linearly independent basis functions, β are the associated coefficients, σ2
Z is the

variance of Z and rθ is a correlation function (also called kernel) which depends on the set of
hyperparameters θ. To build the GP G it is thus necessary to make an assumption for the basis
functions as well as the correlation function. This assumption typically considers the basis func-
tions to be polynomial functions, whereas the correlation function is typically chosen as either
an exponential kernel, a Gaussian kernel or a Matérn kernel. They are defined as follows:

−Exponential kernel: rθ(x,x′) = exp

[
−∥x−x′∥2

θ

]
(1.15)

−Gaussian kernel: rθ(x,x′) = exp

[
−∥x−x′∥2

2

2θ2

]
(1.16)

−Matérn 3/2 kernel: rθ(x,x′) =
(

1+
p

3∥x−x′∥2

θ

)
exp

[
−
p

3∥x−x′∥2

θ

]
(1.17)

−Matérn 5/2 kernel: rθ(x,x′) =
(

1+
p

5∥x−x′∥2

θ
+ 5∥x−x′∥2

2

3θ2

)
exp

[
−
p

5∥x−x′∥2

θ

]
(1.18)

Based on these assumptions for the mean and covariance functions, the initial GP G (also called
prior) can be built. An illustration of the obtained prior GP G for a constant zero mean and
Gaussian correlation function is given in Figure 1.2(a). As is shown, realizations drawn from the
prior do not necessarily pass through the d DoE points. We can however exclude all realizations
of G that do not interpolate the training points by conditioning G to the DoE:

Ĝc =G |{x1, ...,xd }, { f 1
obj, ..., f d

obj} (1.19)
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(a) Prior GP G (b) Posterior GP Ĝ∗
c

Figure 1.2: Prior and posterior GP realizations. For the prior, a constant zero mean and Gaussian
correlation function were assumed. The dotted black line depicts the true objective function
while the four black dots are the DoE points. An illustration of the 99% confidence intervals
(obtained at three times the standard deviation) for the posterior GP are equally drawn.

The result is a conditioned GP Ĝc (also called posterior) defined by its mean and variance
functions, respectively µ̂c (x) and σ̂2

c (x). The mean and variance functions are defined at any
point x ∈X thanks to the correlation matrix R of G at the DoE points:

R =

rθ(x1,x1) . . . rθ(x1,xd )
...

. . .
...

rθ(xd ,x1) . . . rθ(xd ,xd )

 (1.20)

and the correlation vector r(x) between x and the DoE points:

r(x) = {rθ(x,x1), ...,rθ(x,xd )} (1.21)

The mean and variance of the posterior GP Ĝc for any point x ∈X are thus given by:

µ̂c (x) = e(x)⊺β+r(x)⊺R−1(fDoE −Eβ) (1.22)

σ̂2
c (x) =σ2

Z[1−r(x)⊺R−1r(x)+ (e(x)−r(x)⊺R−1E)(E⊺R−1E)−1(e(x)−r(x)⊺R−1E)⊺] (1.23)

where E = {e(x1), ...,e(xd )}. In addition to defining the mean and variance functions of Ĝc it is
equally necessary to estimate the coefficients β and σ2

Z, as well as the hyperparameters θ that
ensure that Ĝc is likely to represent the objective function. This is done by maximizing the like-
lihood function L (β,σ2

Z), written as:

L (β,σ2
Z) = 1

(2πσ2
Z)d/2|R|1/2

exp

[
− (fDoE −Eβ)⊺R−1(fDoE −Eβ)

2σ2
Z

]
(1.24)

The coefficients β∗ and {σ2
Z}∗ that maximize this likelihood can be obtained analytically [Jones,

2001, Rasmussen and Williams, 2005] as follows:

β∗ = (E⊺R−1E)−1(E⊺R−1fDoE)

{σ2
Z}∗ = 1

d
(fDoE −Eβ∗)⊺R−1(fDoE −Eβ∗)

(1.25)
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The optimal hyperparameters θ∗, however, cannot be found analytically so we typically rely on
local optimization methods. Alternatively, other authors propose to find the optimal hyperpa-
rameters using the leave-one-out mean-square error criterion [Bachoc, 2013]. Figure 1.2(b) il-
lustrates the posterior GP Ĝ∗

c obtained after optimization of the hyperparameters. As shown,
realizations of Ĝ∗

c interpolate the objective function at the DoE points. Moreover, thanks to the
information provided by the variance σ̂2

c (x), it is possible to define a confidence interval of where
the true objective function is likely to belong. In the figure, the confidence intervals obtained at
three times the standard deviation (µ̂c (x)±3σ̂c (x)) are denoted 99% confidence intervals. How-
ever, in practice, the actual probability is unknown as the value of 99% relies on the hypothesis
that fobj is the realization of a GP whose mean and covariance function are known. In the fol-
lowing we describe how surrogate-based algorithms exploit the obtained model of the objective
function to solve the optimization problem.

1.1.2.3 Exploitation of the surrogate model

Different approaches can be used to exploit the obtained objective function model. A first, seem-
ingly logical option is to replace the real objective function by its surrogate directly in the opti-
mization problem:

x̂∗ = argmin
x∈X

µ̂c (x) (1.26)

Because calls to the surrogate are inexpensive, Eq. (1.26) can be solved using local optimization
methods combined with multi-start strategies. However, to find the true objective function op-
timum, µ̂c (x) must be sufficiently accurate throughout the entire design space. Thus, even when
space-filling strategies are used for the generation of the initial DoE, many points may be re-
quired to obtain a globally accurate surrogate. When the objective function is costly to evaluate
or the input space is high-dimensional, this may not be a feasible option. As a result, µ̂(x) is
typically built using only a few points, hoping that the solution obtained based on the surrogate
approximation will lie not too far from the global optimum. An illustration of this approach is
given in Figure 1.3.

Figure 1.3: Illustration of the direct optimization of the objective function surrogate µ̂c (x), ob-
tained from a DoE of four points. Comparison of the optimum found (red star) with the global
optimum of the true objective function (black star).

Figure 1.3 shows that, when replacing the objective function by its surrogate, it is possible to
find an optimal point which lies close to the true global optimum, but typically does not coin-
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cide with it. To address this issue, other approaches propose to enrich the objective function
surrogate by adaptively adding selected points to the DoE.

Surrogate Based Optimization (SBO). Surrogate based optimization proposes to add the cur-
rent optimum, i.e. the solution to Eq. (1.26), to the DoE. By successively adding new points, this
approach can be expected to converge to the true global optimum. Although SBO performs bet-
ter than the direct optimization of the surrogate, it still requires an initial approximation that
accurately captures the overall behavior of the objective function. Otherwise, SBO can get stuck
placing new points around local optima, rather than exploring the regions around the global op-
timum. Figure 1.4 illustrates this scenario, which occurs due to a poorly distributed initial DoE.

Figure 1.4: Illustration of the SBO approach using a poor initial DoE of four points. Comparison
of the optimum found after two surrogate enrichments (red star) with the global optimum of the
true objective function (black star).

Efficient Global Optimization (EGO). To attenuate the influence of the initial surrogate on the
solution found, the EGO approach [Jones et al., 1998] proposes to account for the uncertainty
of the surrogate approximation when selecting new points to add to the DoE. To do so, EGO
replaces the optimization problem defined in Eq. (1.26) by the optimization of the Expected
Improvement (EI) function. The EI is an acquisition function which attempts to maximize the
improvement of the current best objective function value by making a compromise between the
exploitation of the current minimum of the surrogate and the exploration of the regions of the
design space where the uncertainty is high. The improvement is defined as:

I (x) = max( fmin − Ĝ∗
c (x),0) (1.27)

where fmin denotes the current objective function minimum, chosen from within the DoE points.
Note that I (x) is a random variable because Ĝ∗

c (x) is a Gaussian random variable characterized
by its mean and variance: Ĝ∗

c (x) ∼ N (µ̂c (x), σ̂2
c (x)). The likelihood of achieving a positive im-

provement is given by the normal probability density function, accordingly:

L (I (x) > 0) = 1p
2πσ̂c (x)

exp

[
− ( fmin −I (x)− µ̂c (x))2

2σ̂2
c (x)

]
(1.28)
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Integrating over this density allows to obtain the EI as the the expected value of I (x), at any
point x ∈X . The EI is written as:

E[I (x)] =
{

( fmin − µ̂c (x))Φ
(

fmin−µ̂c (x)
σ̂c (x)

)
+ σ̂c (x)φ

(
fmin−µ̂c (x)
σ̂c (x)

)
if σ̂c (x) > 0

0 if σ̂c (x) = 0
(1.29)

where Φ(·) and φ(·) are, respectively, the Cumulative Distribution Function (CDF) and the Prob-
ability Density Function (PDF) of the standard normal distribution N (0,1).

Because the analytical derivative of the EI function is available, Eq. (1.29) can be maximized
using both gradient-based or gradient-free approaches, combined with multi-start strategies to
find the new point to add to the DoE. By iteratively adding new points, the EGO algorithm can
be expected to converge to the global optimum even if the initial DoE is poorly distributed. An
illustration of the EGO algorithm is provided in Figure 1.5 where the initial DoE is the one used
in Figure 1.4. The main steps of the EGO approach are summarized in Algorithm 3.

Algorithm 3 Efficient Global Optimization (EGO)

Input: xDoE, fDoE,kmax ▷ Initial DoE and max. number of iterations
k = 0 ▷ Initialize iteration count
while k < kmax do

Build f̂obj(x) ▷ Objective function surrogate
Find xnew ▷ Optimize acquisition function
Add xnew and fobj(xnew) to the DoE
fmin = min fDoE ▷ Update current best point
k = k +1 ▷ Increase iteration count

end while
xmin = arg fmin

Output: xmin, fmin

1.1.2.4 The acquisition function

Although the EI function performs rather well in the provided example, having successfully con-
verged to the global optimum after five iterations, some remarks should still be made. Namely,
it should be noted that the maximization of the EI function often presents a challenge. Indeed,
from Eq. (1.29) we can see that the EI is zero at the DoE points and positive elsewhere, result-
ing in several local maxima. Local optimizers struggle to optimize functions with this type of
behavior and, even when combined with multi-start strategies, they may fail to find the global
optimum. To address this issue other acquisition functions have been proposed in the literature.

The Upper Confidence Bound (UCB) acquisition function. Like the EI function, the UCB ac-
quisition function [Auer, 2002, Auer et al., 2002] attempts to find a compromise between the
exploitation of the current surrogate and the exploration of the design space. It directly balances
the surrogate mean and standard deviation accordingly:

UCB(x) =−µ̂c (x)+λσ̂c (x) (1.30)

where λ ∈R+ is chosen depending on the level of exploration allowed.
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

Figure 1.5: Illustration of the EGO approach, starting from a poor initial DoE of four points. In
each iteration, the DoE is enriched at the point that maximizes the EI function, shown in blue.
The best value found (red star) is compared with the true objective function optimum (black
star) at each iteration.
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The Watson and Barnes 2 (WB2) acquisition function. The WB2 acquisition function [Wat-
son and Barnes, 1995] was specifically developed to get rid of the near-zero flat zones of the EI
function and thus ease the optimization problem. It is written as:

WB2(x) = E[I (x)]− µ̂c (x) (1.31)

By subtracting the posterior mean µ̂c (x) to the EI, the WB2 function essentially follows the mean
surrogate behavior where the EI would otherwise be a near-zero plateau. The result is a less
multimodal criterion, easier to optimize. Regardless, the WB2 function does not come without
its disadvantages. Indeed, the WB2 criterion can significantly favor the exploitation of the surro-
gate if the order of magnitude of µ̂c (x) is much greater than that of the EI. Note that this is bound
to occur since the EI tends to zero as the iterations progress (see Figure 1.5(f)). An illustration of
the WB2 criterion at the third iteration of the EGO algorithm is provided in Figure 1.6(a).

The Watson and Barnes 2 scaled (WB2S) acquisition function. The WB2S acquisition func-
tion [Bartoli et al., 2019] avoids the excessive exploitation that can occur for the WB2 function by
applying a non-negative scaling factor to the EI, as follows:

WB2S(x) = sE[I (x)]− µ̂c (x) (1.32)

where s is the scaling factor, defined as:

s =
{
β

|µ̂c (xmaxEI)|
E[I (xmaxEI)] if E[I (xmaxEI)] > 0

1 if E[I (xmaxEI)] = 0
(1.33)

where β> 1 is chosen as a sufficiently large coefficient (typically β= 100) and xmaxEI is the value
that maximizes the EI within the design space. In practice, xmaxEI is approximated by sampling
in the design space (for example via LHS) and choosing xmaxEI as the sampled point with the
highest EI value. The sampled points are then used as starting points for the multi-start strategy
employed during the optimization of the WB2S criterion. An illustration of the WB2S criterion
at the third iteration of the EGO algorithm is provided in Figure 1.6(b).

1.1.2.5 Disadvantages of surrogate-based optimization

Global optimization algorithms are more fit for the optimization of multimodal functions as
they attempt to search directly for the global optimum. Moreover, the presented global opti-
mization algorithms rely on a surrogate of the objective function to perform the search. This
reduces the cost of the optimization problem by limiting expensive function calls to interesting
regions of the design space. Nevertheless, global optimization algorithms present some limi-
tations. Namely, the choice of an appropriate stopping criterion for global optimization algo-
rithms is not straightforward. One idea might be to stop the algorithm when the maximum of
the EI function is below a given threshold. However, due to the numerous near-zero flat zones,
this criterion is typically not very reliable. As a result, it is usually preferred to fix a computa-
tional budget and to stop the algorithm once all the budget has been spent. Another idea is to
combine the global search with local steps, which can be used to check for convergence [Regis,
2016, Diouane et al., 2023].

Surrogate modeling also suffers from the curse of dimensionality. Indeed, the computational
cost required to invert the covariance matrix increases significantly with the increase in the num-
ber of sampled points. Moreover, the number of hyperparameters to optimize scales with the
dimension of the input space. Some works address this challenge by looking for a lower dimen-
sional representation of the input space [Garnett et al., 2013, Bouhlel et al., 2016, Zhang et al.,
2019, Gaudrie et al., 2020]. By building the covariance matrix in this lower dimensional space,
the computational cost can be reduced.
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(a) WB2 criterion. (b) WB2S criterion.

Figure 1.6: Illustration of (a) the WB2 and (b) the WB2S acquisition functions for the third iter-
ation of the EGO algorithm. Note the excessive exploitation given by the WB2 criterion, which
does not occur for the WB2S criterion.

1.1.3 Constrained optimization

The previous sections described the existing methods to perform unconstrained minimization.
However, optimization problems are often subject to constraints. This section briefly addresses
some of the existing methods to handle constraints in optimization problems. To do so, we
define a general constrained optimization problem as:

min
x∈X

fobj(x)

s.t. hi (x) = 0, i = 1, ...,nh

g j (x) ≤ 0, j = 1, ...,ng

(1.34)

where hi : Rn 7→ R denotes the i th equality constraint and g j : Rn 7→ R denotes the j th inequality
constraint. If the problem is well posed, there exists a feasible region X f ⊂ X where, for all x ∈
X f , both equality and inequality constraints are verified. It is the job of constrained optimization
algorithms to find the minimum attainable value of the objective function within the feasible
region. A brief review of these algorithms is presented in this section.

Optimality conditions. As for the unconstrained case, we first present the optimality condi-
tions which ensure that x∗ is a constrained local optimum. To do so, we define the Lagrangian
function L :Rn 7→R, as:

L (x,λ,σ) = fobj(x)+
nh∑
i=1

λi hi (x)+
ng∑
j=1

σ j g j (x) (1.35)

where λ ∈ Rnh is the vector of Lagrange multipliers associated with the equality constraints and
σ ∈ (R+

0 )ng is the vector of Lagrange multipliers associated with the inequality constraints. If
the objective and constraint functions are continuously differentiable, x∗ is a constrained local
optimum, if:

∇L (x∗,λ∗,σ∗) = 0 (1.36)
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In addition, x∗ should belong to X f , which means:

hi (x∗) = 0, i = 1, ...,nh (1.37)

g j (x∗) ≤ 0, j = 1, ...,ng (1.38)

To ensure that there is no feasible descent direction, we impose:

σ∗
j ≥ 0, j = 1, ...,ng (1.39)

Finally, if a given inequality constraint is active at x∗, then g j (x∗) = 0, otherwise the constraint is
not active and σ∗

j = 0. This is written as:

σ∗
j g j (x∗) = 0, j = 1, ...,ng (1.40)

Equations (1.36) through (1.40) are known as the Karush-Kuhn-Tucker (KKT) optimality condi-
tions [Boyd and Vandenberghe, 2004]. Local constrained optimization algorithms attempt to
find the constrained local optimum such that the KKT conditions are verified. Some of these
algorithms are presented in the following.

1.1.3.1 Penalty methods

A first class of algorithms uses penalty methods. These methods approximate the constrained
problem of Eq. (1.34) as an unconstrained problem by adding a penalty to the objective function
if any of the constraints are violated. The resulting unconstrained minimization problem is of
the form:

x̂∗ = argmin
x∈X

fobj(x)+λh

nh∑
i=1

hi (x)2 +λg

ng∑
j=1

max(0, g j (x))2 (1.41)

where λh ∈ R+ and λg ∈ R+ are scalar parameters defining the severity of the penalization, nh is
the number of equality constraints and ng is the number of inequality constraints. In theory, as
λh and λg tend to infinity, the solution to Eq. (1.41) tends to the true solution of the constrained
problem. However, using large values of λh and λg can lead to significant curvature changes
close to the borders of the feasible region, making it harder to find the true optimum. Due to
this issue, other methods are typically preferred for the optimization of continuous functions.
Regardless, penalty methods are easy to implement and can be solved using any of the previ-
ously described approaches.

1.1.3.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) [Boggs and Tolle, 2000, Gill and Wong, 2012] methods
are an extension of the Newton method, described in Section 1.1.1.1, to constrained optimiza-
tion. They build a local quadratic approximation of the objective function and a linear approx-
imation of the constraints. Then, starting from an initial guess x0,λ0,σ0 and by attempting to
bring ∇L (x,λ,σ) close to zero, SQP methods are able to find a search direction and step size used
to generate a series of points x1, ...,xk that converge to a constrained local optimum. Examples
of SQP methods include the Sequential Least Squares Programming (SLSQP) algorithm [Kraft,
1988] as well as the Sparse Nonlinear Optimizer (SNOPT) algorithm [Gill et al., 2002].

Limitations of SQP methods. SQP methods present the same disadvantages of gradient-based
optimizers. Namely, if multiple constrained minima exist, it is necessary to combine these meth-
ods with multi-start strategies to find the constrained global optimum. Moreover, if in addition
to the objective function, hi (x) and g j (x) are also computed using expensive numerical solvers,
for which derivative information is unavailable, the computational burden required to approxi-
mate ∇L (x,λ,σ) using finite differences can quickly become intractable.
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1.1.3.3 Constrained Bayesian optimization

Constrained Bayesian optimization methods are extensions of the surrogate-based optimization
algorithms presented in Section 1.1.2 to constrained problems. These methods build GP approx-
imations of the constraint functions which are accounted for when selecting new points to add
to the DoE. Typically, this means adapting the acquisition function, so that computational effort
is mostly spent on feasible points or close to the borders of the feasible region. Some works
propose to combine the EI criterion with feasibility indicators [Schonlau et al., 1998, Sasena
et al., 2002,Parr et al., 2012], while others propose the use of new acquisition functions [Picheny,
2014, Hernández-Lobato et al., 2015].

Limitations of constrained Bayesian optimization. Constrained Bayesian optimization algo-
rithms present the same disadvantages listed for global optimization algorithms. Namely, it re-
mains difficult to establish an appropriate stopping criterion and a maximum number of itera-
tions is typically used. Because they rely on surrogate models, constrained Bayesian optimiza-
tion algorithms also suffer from the curse of dimensionality. Extending the constrained Bayesian
framework to high-dimensional input spaces has been the focus of several recent works [Bouhlel
et al., 2018, Eriksson and Poloczek, 2021]. Another disadvantage of constrained Bayesian opti-
mization algorithms is that they can perform poorly if the initial constraint surrogates are too
inaccurate. Indeed, this can lead to an initial constraint surrogate where there is no feasible set.
Some works overcome this issue by considering the uncertainty of the constraint functions when
sampling new points [Feliot et al., 2017,Priem et al., 2020a,Eriksson and Poloczek, 2021]. Finally,
constraint handling strategies have also been developed in the context of robust Bayesian opti-
mization (i.e. where some input parameters defining the objective or constraint functions are
uncertain) [El Amri et al., 2023, Pelamatti et al., 2024].

1.1.4 Summary of numerical optimization

In this section we introduced the main tools to perform the optimization of a given performance
function. Local optimization algorithms which use gradient information to drive the search for
the local optimum were introduced first. Despite their efficiency, however, these algorithms are
not always appropriate for the optimization of multimodal functions as they tend to get stuck
on local minima. Moreover, these algorithms can lead to a significant number of function calls
if gradient information is not available. This is typically undesirable if the evaluation of the per-
formance function makes use of expensive numerical solvers. Global optimization algorithms,
which make use of surrogate models to search directly for the global optimum were introduced
next. These algorithms attempt to limit function calls to relevant regions of the design space,
making them more appropriate for handling costly, multimodal performance functions. Finally,
extension of both local and global optimization algorithms to constrained optimization prob-
lems was briefly discussed. In the next section we will focus on the multidisciplinary nature of
the system and address the existing strategies to find the solution of the MDA and solve MDO
problems.

1.2 Multidisciplinary design analysis and optimization

In the previous section we introduced the existing methods for the single discipline optimization
of a given objective function, subject or not to constraints. Multidisciplinary Design Optimiza-
tion (MDO) differs from single discipline optimization, because it accounts for the interactions
between the different disciplines of the system. As a result, objective and constraint functions
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depend not only on the design variables, but also on the quantities exchanged between the dis-
ciplinary solvers, called coupling variables. The MDO problem can then be written as:

x∗ = argmin
x∈X

{ fobj(x,y∗
c (x)) s.t. g(x,y∗

c (x)) ≤ 0 and h(x,y∗
c (x)) = 0} (1.42)

where y∗
c (x) is the vector of converged coupling variables, found by solving the following non-

linear system of equations (also called MDA):

yi = fi (x,yci ), i = 1, ...,nd ∀x ∈X (1.43)

where yi ∈ C i ⊂ Rd i
is the output of a given numerical solver fi modeling discipline i , yci is the

vector of coupling variables that influence the value of yi and ci is a subset of {1, ...,nd } \ {i }. It
is assumed in this work that Eq. (1.43) has a unique solution for all x in X . Depending on the
choice of MDO formulation, direct resolution of the MDA may be required. In this section we
first introduce the existing approaches to find the solution of the MDA. Then, an overview of the
different formulations to solve the MDO problem is provided. Finally, the EGMDO algorithm for
the global optimization of multidisciplinary systems is described.

The eXtended Design Structure Matrix (XDSM). In this section, XDSM [Lambe and Martins,
2012] diagrams are used to illustrate some of the presented approaches. The XDSM is a visu-
alization tool which describes data exchanges between the different system components and
provides an overview of the underlying process. To do so, disciplines and drivers are placed on
the main diagonal, while inputs and outputs are placed off-diagonal, such that inputs of a given
component are placed in the same column, while outputs are placed in the same row. Moreover,
user inputs, initial guesses and process outputs are placed on the outer edges of the diagram. Fi-
nally, gray lines are used to identify connections between the different components. An example
of an XDSM for the optimization of an aircraft wing is provided in Figure 1.7.

0,5 → 1:
Optimizer

0,3 → 1:
MDA

1: Displ.

1:
Aerodynamics 2: Loads

2:
Structures 4: Mass

4: L,D

4:
Performance

3: Loads

3: Displ.

5: R, fb

x0 Loads0, Displ.0

x x x

Loads∗

Displ.∗

R∗, f ∗
b

x∗

Figure 1.7: Example of an XDSM diagram for the optimization of an aircraft wing.
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1.2.1 Illustrative 1-D analytical MDO problem

To aid in the visualization of the different approaches introduced in this section, an uncon-
strained analytical MDO problem will be used. It considers one scalar design variable x ∈ X =
[−5,5] and two scalar coupling variables y1, y2 ∈R. The objective function is defined as:

fobj(x, y1, y2) = cos

(
y1 +exp(−y2)

π

)
+ x

20
(1.44)

where y1 and y2 are the solution of the following non-linear system of equations:{
y1(x, y2) = x2 −cos( y2

2 )

y2(x, y1) = x + y1
(1.45)

Figure 1.8(a) plots the objective function and identifies the unconstrained global optimum, while
Figure 1.8(b) shows the MDA solution at the identified global optimum, obtained for x∗ ≈−3.

(a) Objective function. (b) MDA solution at x∗ ≈−3.

Figure 1.8: 1-D analytical MDO problem. (a) Objective function and corresponding global opti-
mum (black star). (b) Disciplinary solvers and MDA solution (yellow star) at x∗ =−3.

1.2.2 Monolithic approaches

One option to solve the MDA is to use monolithic approaches [Hübner et al., 2004, Bathe and
Zhang, 2004]. In this type of approach, a single system of equations describing all disciplinary
behaviors is solved by the same numerical solver, capable of modeling the interactions between
the different physical phenomena. The main advantage of using such monolithic solvers is that
the interface between the different physical models is directly included in the analysis. Never-
theless, these approaches show little flexibility, making it difficult to account for additional dis-
ciplines or to replace the physical model of a given discipline (for instance to change between
different fidelity levels). As a result, modular or partitioned approaches are more often used
in MDA. They are described in the following.

1.2.3 Partitioned approaches

Partitioned approaches [Quarteroni and Valli, 1999, Felippa et al., 2001, Degroote, 2013, Gerva-
sio and Quarteroni, 2018] rely on the fact that specialized disciplinary solvers which efficiently
solve the corresponding physical equations already exist. They thus partition the system into
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subdomains, each handled by a dedicated disciplinary solver. The different disciplinary solvers
are then allowed to interact by exchanging information at a common interface. To illustrate this
concept, we introduce the domain Ω ∈ Rd , with d ∈ {2,3}, the two non-overlapping subdomains
Ω1,Ω2, such that Ω =Ω1 ∪Ω2, and their common interface Γ = ∂Ω1 ∩∂Ω2. The resulting coupled
system is of the form:

y1 =M1(x,y2) inΩ1 (1.46)

y2 =M2(x,y1) inΩ2 (1.47)

Φ1(y1) =Φ2(y2) on Γ (1.48)

Ψ1(y1)+Ψ2(y2) = 0 on Γ (1.49)

Boundary conditions on ∂Ω (1.50)

where M1,M2 denote the disciplinary models, Φ1,Φ2 are functions used to model Dirichlet-like
conditions and Ψ1,Ψ2 are functions used to model Neumann-like conditions. For instance,
in Fluid-Structure Interaction (FSI) problems it is common to partition the system into a fluid
domain and a structural domain. In that case, M1 and M2 denote the fluid and structural govern-
ing equations, Φ1,Φ2 define the no-slip condition across the fluid-structure interface and Ψ1,Ψ2

denote the continuity of normal fluxes across the fluid-structure interface.
The main advantage of partitioned approaches is that they can be easily used in the con-

text of black-box disciplinary solvers. However, because they do not directly model the interface
between the defined subdomains, a coupling algorithm is required to iteratively propagate infor-
mation between the disciplinary solvers until convergence is achieved. Moreover, if the different
disciplines use different spatial or temporal discretizations of the corresponding subdomains,
an additional operation to interpolate across Γ is needed. For instance, in FSI problems, the
aerodynamics discipline will typically use a finer grid at the fluid-structure interface than the
structural discipline. As a result, an additional operation, which allows the transfer of loads and
displacements between the non-coincidental grids is required. Different strategies exist in the
literature to perform interpolation across the common interface, including nearest-neighbor in-
terpolation, projection methods [Cebral and Lohner, 1997, Farhat et al., 1998] and Radial Basis
Function (RBF) interpolation [Rendall and Allen, 2008].

1.2.3.1 Fixed-point methods for MDA

In the previous section we defined the coupled system arising from the decomposition of the
system domain into several subdomains. In this section we assume that appropriate disciplinary
solvers have been chosen to model the physical phenomena associated with each subdomain
and instead focus on the available means to find the solution of the MDA. Typically, fixed-point
iterative methods are used, the simplest of which is the nonlinear Jacobi method.

Convergence of fixed-point algorithms. Fixed-point methods obtain new solutions based on
previously computed ones. The value of the coupling variable yk+1

i at iteration k+1 is written as:

yk+1
i =G(yk

i ), i = 1, ...,nd (1.51)

If G defines a contraction on D ⊂∏nd
i=1 C i , i.e. if:

∥G(yk+1
i )−G(yk

i )∥ ≤α∥yk+1
i −yk

i ∥, α ∈ [0,1[ (1.52)

then there exists a unique fixed-point y∗
i ∈ D, such that y∗

i = G(y∗
i ), i = 1, ...,nd and any series of

points y0
i ,y1

i , ... converges to this point, for any initial guess y0
i ∈D. In this work, we suppose that

the fixed-point algorithms used to solve the MDA always verify Eq. (1.52).
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The nonlinear Jacobi method. The nonlinear Jacobi method, illustrated in Figure 1.9, takes as
input an initial guess for the values of each coupling variable. Then, it computes the solution
of each discipline using the provided initial guesses and updates the coupling variables to the
newly obtained values. By iteratively repeating this process until the coupling variable values
do not significantly change throughout the iterations, the solution of the MDA can be found.
The main advantage of the Jacobi method is that computations are made using values from the
previous iteration, thus allowing to run the different disciplinary solvers in parallel. Moreover,
it is a non-intrusive approach as it uses only inputs and outputs of the disciplinary solvers. The
main steps of the nonlinear Jacobi method are presented in Algorithm 4, where ϵMDA denotes a
chosen tolerance for the relative change in the coupling variable values between two successive
iterations.

0,2 → 1:
MDA

1: y2

1:
Discipline 1

1: y1

1:
Discipline 2

2: y1

2: y2

y0
c1

, y0
c2

x x

y∗
1

y∗
2

Figure 1.9: XDSM diagram for the resolution of a two-discipline MDA using a Jacobi solver.

Algorithm 4 Nonlinear Jacobi method

Input: x,y0
i , i = 1, ...,nd ,kmax ▷ Design point, initial guess for yi and max. iterations

k = 0 ▷ Initialize iteration count
error= 1 ▷ Initialize relative error
while error> ϵMDA and k < kmax do

for i = 1, ...,nd do
yk+1

i = fi (x,yk
ci

) ▷ Evaluate all disciplinary solvers
end for
error= max

{i=1,...,nd }

∥yk+1
i −yk

i ∥2

∥yk+1
i ∥2

▷ Update relative error

k = k +1 ▷ Increase iteration count
end while

Output: yk
i , i = 1, ...,nd

The nonlinear Gauss-Seidel method. The nonlinear Gauss-Seidel method, illustrated in Fig-
ure 1.10, is similar to the Jacobi method, except that it uses the last computed value of the cou-
pling variables, which may have been obtained in the current iteration. Thanks to these cou-
pling variable updates, Gauss-Seidel solvers typically converge faster than Jacobi solvers. This
is illustrated in Figure 1.11 where three iterations of the Jacobi and Gauss-Seidel algorithms are
performed to solve the MDA problem defined in Eq. (1.45). In both figures, the same initial guess
for the coupling variable values is used. After three iterations, the Jacobi method (Figure 1.11(a))
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is still somewhat far from the MDA solution while the Gauss-Seidel solver (Figure 1.11(b)) has
nearly converged.

0,3 → 1:
MDA

1: y2

1:
Discipline 1

2: y1

2:
Discipline 2

3: y1

3: y2

y0
c1

x x

y∗
1

y∗
2

Figure 1.10: XDSM diagram for the resolution of a two-discipline MDA using a Gauss-Seidel
solver.

(a) Jacobi method. (b) Gauss-Seidel method.

Figure 1.11: Illustration of the Jacobi and Gauss-Seidel fixed-point algorithms. (a) Three itera-
tions of the Jacobi algorithm. (b) Three iterations of the Gauss-Seidel algorithm.

Despite its faster convergence rates, the Gauss-Seidel solver is not necessarily computationally
faster than the Jacobi method. Indeed, for the Gauss-Seidel method it is no longer possible to run
the disciplinary solvers in parallel. Thus, if all disciplinary solvers require long computational
times, the Jacobi method may be preferred. The main steps of the Gauss-Seidel method are
summarized in Algorithm 5. Note that, in practice, this method only requires an initial guess for
the coupling variables which influence the value of the first disciplinary solver output.

Gauss-Seidel solvers are sometimes used in combination with relaxation methods to dampen
oscillations and avoid divergence. In these methods, a relaxation factor θk is introduced when
updating the value of the coupling variables, as follows:

yk+1 =yk +θk∆yk (1.53)

where ∆yk is the change in the coupling variable values obtained when no relaxation is used.
In Eq. (1.53), the relaxation factor can be fixed throughout the iterations or adapted as the algo-
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rithm progresses. The Aitken method [Irons and Tuck, 1969] is a popular a relaxation method
where the relaxation factor is updated in each iteration.

Algorithm 5 Nonlinear Gauss-Seidel method

Input: x,y0
c1

,kmax ▷ Design point, initial guess for yi and max. iterations
k = 0 ▷ Initialize iteration count
error= 1 ▷ Initialize relative error
while error> ϵMDA and k < kmax do

for i = 1, ...,nd do

yk+1
i = fi (x,yGS

ci
) with yGS

ci
=

{
yk+1

j if j < i

yk
j otherwise

▷ Call disciplinary solvers in order

end for
error= max

{i=1,...,nd }

∥yk+1
i −yk

i ∥2

∥yk+1
i ∥2

▷ Update relative error

k = k +1 ▷ Increase iteration count
end while

Output: yk
i , i = 1, ...,nd

Newton’s method. Another way to look at the fixed-point problem is by considering the follow-
ing residual:

ri =yi − fi (yci ), i = 1, ...,nd (1.54)

whose norm should be zero at the solution of the fixed-point problem (∥r∗
i ∥2 = 0, i = 1, ...,nd ). The

fixed-point problem may then be reformulated as a residual minimization problem, which can
be solved using any of the optimization algorithms introduced in Section 1.1. In fact, Newton’s
method has often been used to solve the MDA. The Newton step at each iteration of the MDA is
written as:

JF(x,yk )(yk+1 −yk ) =−F(x,yk ) (1.55)

where F = { f1(x,yc1 ), ..., fnd (x,ycnd
)} and JF is the Jacobian of F. If derivative information is not

available, Broyden’s method [Broyden, 1965] can be used to approximate the Jacobian matrix or
its inverse. The use of derivative information allows the Newton method to converge faster than
the Jacobi or Newton methods. However, Newton’s method may fail to converge if a poor initial
guess is provided. As a result, in this work, Gauss-Seidel methods will be favored when solving
the MDA.

1.2.3.2 Efficient global multidisciplinary design analysis

In the previous section we introduced different methods to solve the MDA (Eq. (1.43)). The pre-
sented algorithms solve the non-linear coupled system of equations by iteratively calling the dis-
ciplinary solvers until a given convergence criterion is achieved. When the disciplinary solvers
are expensive numerical solvers, however, the resolution of the MDA can result in a significant
computational burden. This computational burden becomes prohibitive when the MDA must
be solved several times, for different design space points. To ease this computational burden,
it is proposed in [Dubreuil et al., 2020, Berthelin et al., 2022] to replace the disciplinary solvers
by GP approximations, adaptively enriched throughout the resolution of the MDA. In this work
we will refer to this strategy as Efficient Global Multidisciplinary Design Analysis (EGMDA). The
main steps of EGMDA are described in the following.
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Disciplinary surrogates. The EGMDA strategy, illustrated in Figure 1.12, proposes to solve an
approximated version of the MDA, obtained by replacing each disciplinary solver by a GP surro-
gate. To build the disciplinary surrogates, a DoE for each discipline is first obtained, by sampling
over the space X ×∏

j∈ci
C j . Then, the disciplinary surrogates are trained using the correspond-

ing disciplinary DoEs. The obtained disciplinary GP approximations are written as:

f̂i (x,yci ) =µi (x,yci )+ϵi (x,yci ) (1.56)

where µi (x,yci ) is the mean function of the GP and ϵi (x,yci ) is a GP of zero mean conditioned on
the respective disciplinary DoE. We note that, for the construction of the disciplinary DoEs, often
no information is available concerning C i and an initial guess of its bounds must be provided.
While this is a drawback associated with the use of disciplinary surrogates, in practice we may
rely on expert judgment to estimate the bounds of C i . Moreover, even if a poor initial guess is
provided, by enriching the disciplinary surrogates outside the initial bounds, the definition of
the coupling variable spaces is updated.

Surrogate of
discipline 1

ŷ1

Surrogate of
discipline 2

ŷ2

Figure 1.12: Illustration of the EGMDA strategy for the resolution of the MDA. An approximated
version of the MDA is obtained by replacing each disciplinary solver by a GP surrogate.

By replacing the disciplinary solvers by their corresponding surrogates in Eq. (1.43), an ap-
proximated version of the MDA is obtained:

ŷi (x, ŷci ) =µi (x, ŷci )+ϵi (x, ŷci ), i = 1, ...,nd ∀x ∈X (1.57)

An illustration of this approximation on the 1-D example is provided in Figure 1.13, where the
dotted lines represent the exact disciplinary solvers, the continuous lines display the mean val-
ues of the corresponding disciplinary surrogates and the shaded regions are the confidence in-
tervals. To obtain the GP approximations, the following initial guess for the coupling variable
space was provided: C 1 = [0,25] and C 2 = [0,25].

As is shown, for the current GP approximations, the intersection of the surrogate mean so-
lution does not correspond to the real MDA solution. To find the true MDA solution it is thus
necessary to enrich the disciplinary GPs. In the following we describe how the uncertainty of
the disciplinary surrogates is evaluated and how it may be reduced via an adaptive sampling
strategy.

Solving the approximated MDA. A consequence of replacing the disciplinary solvers by GP
surrogates is that the solution of the approximated MDA (Eq. (1.57)) is no longer deterministic.
The first step in the resolution of the approximated MDA is thus to obtain random solutions to
model the uncertainty of the disciplinary GPs. It is proposed in [Dubreuil et al., 2020] to model
this uncertainty by considering perfectly dependent GPs, i.e., by considering conditioned GPs
whose correlation function is constant and equal to one. The approximated MDA becomes:

ŷ′
i (x,y′

ci
) =µi (x,y′

ci
)+σi (x,y′

ci
)ξi , i = 1, ...,nd ∀x ∈X (1.58)

where σi (x,yci ) is the standard deviation and ξi is a standard Gaussian random variable. It is
worth noting that, at any given design space point x ∈ X , the solution to Eq. (1.58) depends on
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Figure 1.13: Illustration of the approximated MDA, obtained when replacing the disciplinary
solvers by their GP surrogates. Comparison of true MDA solution (yellow star) with the surrogate
mean solution at x∗ ≈−3 (gray star).

the sample Ξ = {ξi , i = 1, ...,nd } drawn. Thus, for different drawn samples, different MDA solu-
tions are obtained. Figure 1.14 illustrates different realizations of the disciplinary GPs (dashed
lines) obtained from different samples of Ξ. For each sample Ξ(k) = {ξ(k)

1 ,ξ(k)
2 } drawn, the corre-

sponding MDA solution is found by solving Eq. (1.58) using the fixed-point methods described in
the Section 1.2.3.1. The random MDA solutions obtained from the drawn samples are identified
in Figure 1.14 with black crosses.

Figure 1.14: Illustration of three random realizations of the disciplinary GPs (dashed lines). Iden-
tification of the corresponding random MDA solutions (black crosses).

To characterize the variability of the solution of the approximated MDA, a sufficiently large
number of samples should be drawn. Nonetheless, because the disciplinary surrogates are cheap
to evaluate, a direct Monte Carlo method can be used. Figure 1.15 illustrates the random MDA
solutions obtained when 200 samples of Ξ are drawn.

To decide if the surrogate approximations are sufficiently accurate, a portion τ of the random
MDA solutions should be sufficiently close to the mean solution (in other words, the dispersion
of the random MDA solutions should be small). The mean value of each coupling variable can
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Figure 1.15: Illustration of the random MDA solutions (black crosses) obtained when 200 sam-
ples of Ξ are drawn. Comparison with the true MDA solution (yellow star).

be estimated from the random MDA solutions as:

ȳ∗
i = 1

nMC

nMC∑
j=1

ŷ∗
i (ξ(k)

i ), ∀i = 1, ...,nd (1.59)

where nMC is the number of samples of Ξ drawn. The relative distance between the coupling
variable values at a given random MDA solution and the mean solution is:

Q̂oIi (Ξ(k)) = ∥ŷ∗
i (Ξ(k))− ȳ∗

i ∥2

∥ȳ∗
i ∥2

, ∀k = 1, ...,nMC, ∀i = 1, ...,nd (1.60)

When the surrogate approximations are sufficiently accurate, the τ-quantile of Q̂oIi (Ξ), ∀i =
1, ...,nd is less than a small threshold. If this condition is not met, the disciplinary surrogates are
not sufficiently accurate and should be locally enriched. To avoid waste of computational effort,
however, it is proposed in [Berthelin, 2022, Berthelin et al., 2022] to enrich only the least accu-
rate disciplinary surrogate. This least accurate surrogate is chosen based on the Sobol sensitivity
indices [Sobol’, 2001] which can be estimated from the random MDA solutions, as follows:

Si = V[E[Q̂oI | ξi ]]

V[Q̂oI]
, i = 1, ...,nd (1.61)

where Q̂oI= Q̂oI1(Ξ)+ ...+ Q̂oInd
(Ξ). The Sobol sensitivity indices presented above are estimated

thanks to a Polynomial Chaos Expansion (PCE) approximation, as proposed in [Sudret, 2008].
The discipline with the highest first order Sobol index is then enriched by adding fi (x, ȳ∗

ci
) to

the corresponding disciplinary DoE. Figure 1.16 illustrates the obtained random MDA solutions
after two iterations of disciplinary surrogate enrichments. As shown, after only two surrogate
enrichments, the dispersion of the random MDA solutions has been significantly reduced and
the surrogate mean solution nearly coincides with the true MDA solution. The main steps of
the EGMDA algorithm are summarized in Algorithm 6.

Comparison between EGMDA and other strategies. Although EGMDA is a recent strategy, it
should be noted that the idea of iteratively building approximations of the disciplinary func-
tions is not new. Indeed, EGMDA can be compared with Newton’s method, which iteratively
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Figure 1.16: Illustration of the random MDA solutions (black crosses) obtained for two iterations
of disciplinary surrogate enrichments.

builds linear approximations of the disciplinary functions. The intersection between the linear
approximations is then found via the Newton step, introduced in Eq. (1.55). Figure 1.17 presents
two iterations of Newton’s method for the 1-D example. In the figure, the linear approxima-
tion for the first disciplinary solver is identified with a dashed blue line. Because the second
disciplinary solver arises from a linear equation, the true function and its linear approximation
coincide. As a result, the approximation ŷ2(x, y1) is omitted for the sake of clarity.

Figure 1.17: Two iterations of the Newton method for the 1-D illustrative example at x∗ =−3. For
the sake of clarity, the approximation ŷ2(x, y1) is omitted.

The treatment of uncertain coupling variables is also not new. Indeed, Uncertainty Multi-
disciplinary Design Optimization (UMDO) methods account for the uncertainties introduced in
the coupling variable values, for example due to the use of low fidelity models [Brevault et al.,
2016]. As in the EGMDA approach, early UMDO methods solved the disciplinary coupling for
each realization of the uncertain coupling variables [Oakley et al., 1998, Koch et al., 2002]. While
more recent UMDO strategies have abandoned this approach due to the inherent computational
cost, in EGMDA using direct Monte Carlo sampling remains computationally feasible, since the
disciplinary solvers have been replaced by their corresponding surrogates.
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Algorithm 6 Efficient Global Multidisciplinary Design Analysis (EGMDA)

Input: x, jmax ▷ Design space point and max. iterations
j = 0 ▷ Initialize iteration count
conv = False
while conv == False and j < jmax do

Compute ŷ∗
i (Ξ(k)), ∀k = 1, ...,nMC ▷ Solve Eq. (1.58) for nMC samples of Ξ

Compute Q̂oIi (Ξ), ∀i = 1, ...,nd ▷ Quantity of interest (Eq. (1.60))
if τ-quantile of Q̂oIi < ϵMDA ∀i = 1, ...,nd then

conv = True
else

Compute Si , ∀i = 1, ...,nd ▷ Estimate Sobol indices by PCE
Enrich disciplinary GP associated with highest Si

end if
j = j +1 ▷ Increase iteration count

end while
Output: ŷ∗

i , ∀i = 1, ...,nd

1.2.4 MDO formulations

Most of the methods introduced for the resolution of the MDA rely on iterative approaches,
which require many calls to the disciplinary solvers. When the disciplinary solvers are expen-
sive numerical solvers, the cost of solving one MDA becomes important. To optimize the multi-
disciplinary system, not one, but several MDAs may need to be solved at different design space
points. Thus, we might try to reduce the computational cost by avoiding the resolution of the
MDA altogether. Indeed, we could try to iteratively optimize each discipline of the system in-
dividually. This approach is referred to as sequential design optimization and it was shown
in [Grossman et al., 1988, Chittick and Martins, 2009] that it does not necessarily lead to the
optimal solution of the coupled system. Several other MDO formulations have been proposed
in the literature which attempt to efficiently solve the MDO problem. In this section we provide
only a brief overview of some of these formulations, but a more thorough review can be found
in [Martins and Lambe, 2013, Martins and Ning, 2021].

1.2.4.1 The Multidisciplinary Feasible approach

In the Multidisciplinary Feasible (MDF) approach [Cramer et al., 1994] the MDA is treated as if
it were a single discipline. As a result, to compute objective or constraint functions, the MDA
must be solved at each iteration of the optimizer. Although this can be computationally costly,
the MDF approach will always return a consistent system design, even if the optimization pro-
cess is terminated early. This can be advantageous if the goal is simply to improve the initial
design, rather than finding the true optimum. We note, however, that if constraint functions
exist, stopping the optimization prematurely may result in a design which violates some or all
constraint functions. The XDSM diagram for the resolution of the MDO using an MDF approach
is depicted in Figure 1.18. The provided example is for an unconstrained optimization problem
of a two-discipline system.

1.2.4.2 The Individual Discipline Feasible approach

In the Individual Disciplinary Feasible (IDF) approach [Cramer et al., 1994], the coupling vari-
ables are added to the set of design variables and constraints are defined to assure the consis-
tency of the optimal solution. The optimization problem is thus no longer given by Eq. (1.42)
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Figure 1.18: XDSM diagram for the resolution of the MDO using an MDF approach. Example for
an unconstrained optimization of a two-discipline system. Note the numbering system which
implies that the MDA is solved before evaluating the objective function.

but is instead written as:

x∗ = arg min
x,y1,...,ynd

fobj(x,y1, ...,ynd )

s.t. ri =yi − fi (x,yci ) = 0, ∀i = 1, ...,nd

g (x,y1, ...,ynd ) ≤ 0

h(x,y1, ...,ynd ) = 0

(1.62)

where ri , i = 1, ...,nd are the consistency constraints. This formulation allows to search for the
optimal set of design parameters without having to solve the MDA at each optimizer iteration.
This typically results in less disciplinary solver calls, making the IDF approach less costly than
the MDF approach. Moreover, because only coupling variable values computed in the previ-
ous iteration are used, the disciplinary solvers can be run in parallel. The IDF approach also
presents some disadvantages. Namely, should the optimization fail or be terminated early, an
inconsistent solution may be returned. In addition, in this formulation, the number of design
variables and constraints scales with the number of coupling variables. As a result, if the num-
ber of coupling variables is too large, the optimization problem may become too hard to solve
efficiently. An XDSM of the IDF approach is provided in Figure 1.19. The provided example is for
an unconstrained problem, where the disciplinary solvers are run in parallel.

Simultaneous Analysis and Design. Variations of the IDF approach also exist in the literature,
one of which is the Simultaneous Analysis and Design (SAND) formulation [Haftka, 1985]. In
the SAND approach, the optimizer handles not only the multidisciplinary consistency but also
the consistency of the disciplinary residual equations. Although this approach can be compu-
tationally faster than the IDF approach, it is an intrusive approach which requires access to the
underlying numerical implementation of the disciplinary solvers.
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Figure 1.19: XDSM diagram for the resolution of the MDO using an IDF approach.

1.2.4.3 Distributed MDO formulations

Both MDF and IDF approaches solve a single optimization problem. However, other approaches
have been proposed in the literature where disciplinary optimization subproblems are solved in
addition to the main system-level optimization problem. These are called distributed MDO for-
mulations. Distributed MDO formulations attempt to mimic the structure of large engineering
design projects, where dedicated disciplinary design teams work separately and do not commu-
nicate frequently. Although they represent the industrial setting, distributed MDO formulations
typically converge slower than their single-level equivalents and thus have received less atten-
tion in the academic setting. For this reason we do not present these formulations in detail but
provide only a summary of the existing formulations.

Some distributed MDO formulations enforce multidisciplinary consistency by directly solv-
ing the MDA and thus are called distributed MDF approaches, while others enforce the consis-
tency of multidisciplinary system through constraint or penalty functions and thus are called
distributed IDF approaches. Examples of distributed MDF approaches include the Concur-
rent Subspace Optimization (CSSO) [Sobieszczanski-Sobieski, 1988, Bloebaum et al., 1992] and
the Bilevel Integrated System Synthesis (BLISS) [Sobieszczanski-Sobieski et al., 2003] formula-
tions whereas examples of distributed IDF approaches include the Collaborative Optimization
(CO) [Braun, 1996] and the Analytical Target Cascading (ATC) [Kim et al., 2003, Tosserams et al.,
2006] formulations.

1.2.5 Optimization algorithms for MDO

1.2.5.1 Gradient-based MDO

In practice, the MDO formulations presented above can be used with any of the optimization al-
gorithms described in Section 1.1. However, some remarks should be made concerning gradient-
based MDO. Indeed, even if gradient information is available at a disciplinary solver level, we
still need to compute objective and constraint function derivatives. To obtain these derivatives,
the chain rule can be applied. However, the computation is not straightforward, as the solution
of the MDA is required. To address this issue, the coupled-adjoint method, proposed in [Mar-
tins, 2002, Martins et al., 2005], provides a strategy to compute analytically the derivatives of the
coupled system via the chain rule. A brief overview of this approach is given in the following.

Analytical derivatives of coupled systems. To perform gradient-based optimization, the total
derivatives of the quantities of interest (objective or constraint functions) with respect to the
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design variables are needed. These total derivatives can be obtained using the chain rule. For
the objective function, they are written as:

d fobj

dxk
=
∂ fobj

∂xk
+
∂ fobj

∂y

dy

dxk
(1.63)

with k = 1, ...,n and y = {y1, ...,ynd }. We note the importance of distinguishing between total and
partial derivatives in this equation. Indeed, while partial derivatives can be evaluated directly,
the total derivatives require the solution of the MDA. Thus, in Eq. (1.63) all terms are known,
except for dy

dxk
. In [Martins, 2002, Martins et al., 2005] it is proposed to use the residual of the

governing equations of the disciplinary solvers to find this term. Because the disciplinary solvers
typically work by driving the residuals of the respective governing equations to zero, we can
write:

R(x,y1(x), ...,ynd (x)) = 0 (1.64)

where R denotes the residuals of all governing equations of the different disciplines. Since the
governing equations must always be satisfied, the total derivatives of the residuals with respect
to any design variable must also be equal to zero:

dR

dxk
= ∂R

∂xk
+ ∂R

∂y

dy

dxk
= 0 (1.65)

Rewriting the above equation allows to obtain the total derivatives of the coupling variables with
respect to the design variables as the solution of the following linear system of equations:

∂R

∂y

dy

dxk
=− ∂R

∂xk
(1.66)

Solving Eq. (1.66) for dy
dxk

and replacing the result into Eq. (1.63) is the direct method of obtain-
ing the total derivatives of the objective function with respect to the design variables. Because
Eq. (1.66) does not depend on the quantity of interest, the direct mode is useful when the num-
ber of objectives or constraints is large. However, when the number of design variables is sig-
nificantly greater than the amount of quantities of interest, the adjoint method can be more
efficient. When using the adjoint method, we substitute the term dy

dxk
into the total derivative

equation (Eq. (1.63)), as follows:

d fobj

dxk
=
∂ fobj

∂xk
−
∂ fobj

∂y

[
∂R

∂y

]−1

︸ ︷︷ ︸
−Ψ

∂R

∂xk
(1.67)

The auxiliary vector Ψ, also called adjoint vector, can be obtained by solving the adjoint equa-
tions, given by:

∂R

∂y
Ψ=−

∂ fobj

∂y
(1.68)

The result is then substituted into Eq. (1.67) to obtain the total derivatives. As opposed to the
direct method, Eq. (1.68) does not depend on xk , but depends on the quantity of interest. As a
result, the adjoint method is preferred when dealing with a large number of design variables, but
a small number of quantities of interest.
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Limitations of gradient-based MDO. If the derivatives at a disciplinary solver level are not
available, it is not possible to use the direct or adjoint methods and the objective and constraint
function derivatives must be approximated using finite-differences or complex step. However,
this remains a computationally expensive task, more so if we need to solve the MDA for each
step of the approximations. Additionally, if multiple minima exist, a multi-start strategy is still
required to find the global optimum of the MDO problem.

1.2.5.2 Surrogate-based MDO

Surrogate-based approaches, like the EGO algorithm presented in Section 1.1.2 can also be used
to solve MDO problems. In an MDO context, however, both the initial DoE as well as each
newly sampled point require a new resolution of the MDA. Thus, the use of the EGO algo-
rithm combined with an MDF approach can remain computationally costly. This computa-
tional cost can be decreased by building disciplinary surrogates and using the EGMDA strat-
egy (see Section 1.2.3.2) to solve the MDA at each queried design space point. Despite the re-
duced computational cost, however, the combined EGMDA and EGO strategy will still seek to
enrich the disciplinary surrogates at points which are unlikely to be the global optimum. To ad-
dress this issue, another strategy, called Efficient Global Multidisciplinary Design Optimization
(EGMDO) [Dubreuil et al., 2020], has been specifically developed for the global optimization of
multidisciplinary systems. EGMDO is introduced in the following.

1.2.5.3 Efficient Global Multidisciplinary Design Optimization

In EGMDO, like in the EGMDA strategy, we replace each disciplinary solver by a GP surrogate.
Rather than solving the MDA at each queried point, however, in EGMDO the uncertainty of the
disciplinary GPs is propagated onto an objective function approximation. Based on this approx-
imation, the disciplinary surrogates are enriched only at design space points which are likely
to be the global optimum. Like in the EGO approach, new points can also be sampled into the
objective function DoE with the aid of a dedicated acquisition function. Thanks to the adaptive
enrichment of the disciplinary and objective function surrogates, the EGMDO is able to reduce
the computational cost required for the resolution of the MDO problem. The construction of the
objective function approximation from the random MDA solutions is detailed in the following.

Objective function approximation. As a consequence of having random MDA solutions, the
objective function, which depends on the set of random coupling variables Θy∗

c (x,Ξ), becomes
itself a random variable:

f̂obj(x,Ξ) = fobj(x,Θy∗
c (x,Ξ)), ∀x ∈X (1.69)

where Ξ = {Ξ(k), k = 1, ...,nMC}. One of the key features of the EGMDO algorithm lies in the con-
struction of a continuous objective function approximation which takes into account the un-
certainty induced by the disciplinary GPs in f̂obj(x,Ξ). The proposed approximation is divided
into two steps. First, a pointwise PCE approximation of the objective function is obtained for
an initial DoEUQ = {x1, ...,xnUQ }. Then, to extend the existing PCE approximation to the remain-
der of the design space X , a combination of a Karhunen-Loève (KL) decomposition with GP
interpolation is proposed.

The PCE approximation step allows us to write the random objective function as a series
expansion, instead of a random output. Assuming that f̂obj(x,Ξ) is square integrable, i.e. that
E[( f̂obj(x,Ξ))2] <∞, then f̂obj(x,Ξ) can be approximated as [Ghanem and Spanos, 2003]:

f̂obj(x,Ξ) ≈ f̂ (N )
obj (x,Ξ) =

N∑
j=1

a j (x)H j (Ξ), ∀x ∈DoEUQ (1.70)
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where a j (x) are the PCE coefficients and H j (Ξ) are the nd -variate Hermite polynomials. The PCE
approximation of Eq. (1.70) converges in the mean-square sense when N →+∞, that is:

lim
N→+∞

E[( f̂ (N )
obj (x,Ξ)− f̂obj(x,Ξ))2] = 0 (1.71)

In practice, however, Eq. (1.70) is truncated to the first P terms, with P chosen so that only the
polynomials with a degree less or equal to d are kept:

P = (nd +d)!

nd !d !
(1.72)

where nd is the stochastic dimension of the problem, here assumed to be the number of coupling
variables (see Eq. (1.58)). The PCE approximation becomes:

f̂ PCE
obj (x,Ξ) =

P∑
j=1

a j (x)H j (Ξ), ∀x ∈DoEUQ (1.73)

Figure 1.20 compares the PDF of the obtained PCE approximation (left) with the PDF of the
corresponding Monte Carlo approximation (right) for the 1-D illustrative problem. Box plots
representing the random solutions used to obtain the drawn PDFs are equally shown.

Figure 1.20: Comparison of the PDFs of the obtained PCE approximation (left) with the corre-
sponding Monte Carlo approximation (right) at four different points x ∈DoEUQ. The coefficients
for the PCE approximation are obtained by regression over 200 random MDA solutions.

As illustrated, the PCE provides a reasonable approximation of the random variable f̂obj(x,Ξ)
for all points x ∈ DoEUQ = {−3.6,−2,1.2,3.8}. It is then possible to extend this approximation to
the remainder of the design space via a combined KL-GP interpolation, as proposed in [Dubreuil
et al., 2018]. The KL decomposition allows us to reduce the number of quantities to interpolate
in order to extend the PCE approximation to the whole domain. Considering the random vector
f̂PCE

obj (Ξ) = { f̂ PCE
obj (x1,Ξ), ..., f̂ PCE

obj (xnUQ ,Ξ)}, its KL decomposition may be written as:

f̂PCE
obj (Ξ) =µ f̂ PCE

obj
+

nUQ∑
k=1

γk (Ξ)
√
λkφk (1.74)

where µ f̂ PCE
obj

denotes the mean of the vector f̂PCE
obj (Ξ), γk (Ξ) are zero-mean, uncorrelated, random

variables, such that:

γk = 1√
λk

(
f̂PCE

obj (Ξ)−µ f̂ PCE
obj

)⊺
φk (1.75)
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and λk and φk are, respectively, the eigenvalues and eigenvectors of the covariance matrix KPCE
of f̂PCE

obj (Ξ). It is shown in [Arnst et al., 2012] that, for the particular case where the random vector

is obtained by PCE, the KL decomposition may be obtained from the PCE coefficients, according
to:

f̂PCE
obj (Ξ) =µ f̂ PCE

obj
+

nUQ∑
k=1

(
P∑

j=2
a⊺

j φk H j (Ξ)

)
φk (1.76)

where µ f̂ PCE
obj

=a1, a j = {a j (x1), ..., a j (xnUQ )}, j = 2, ...,P are the coefficients of the PCE at each point

x ∈ DoEUQ and φk are the eigenvectors of the covariance matrix, defined as KPCE = ∑P
l=2 a j a

⊺
j .

Equation (1.76) may be further simplified by truncating it so that only the M eigenvectors corre-
sponding to the M non-negligible eigenvalues are retained. The KL decomposition becomes:

f̂PCE
obj (Ξ) ≈ f̂KL

obj(Ξ) =µ f̂ PCE
obj

+
M∑

k=1

(
P∑

l=2
a⊺

l φk Hl (Ξ)

)
φk (1.77)

Interpolation by GP of the mean and eigenvectors can then be used to extend the approximation
to the whole domain. The obtained random field reads:

f̂ PCE
obj (x,Ξ) ≈ f̃obj(x,Ξ,η) = µ̃ f̂obj

(x,η)+
M∑

k=1

(
P∑

l=2
a⊺

l φk Hl (Ξ)

)
φ̃k (x,η) (1.78)

where µ̃ f̂obj
(x,η) and φ̃k (x,η) denote, respectively, the GP interpolation of the mean and eigen-

vectors and η is a vector of independent normal random variables. Figure 1.21 plots the obtained
GP approximation for the term µ̃ f̂obj

(x,η).

Figure 1.21: Illustration of the KL-GP approximation of the mean value µ̃ f̂obj
(x,η), obtained from

four DoE points.

Note that the GP approximation µ̃ f̂obj
(x,η), illustrated in Figure 1.21, corresponds to the con-

ditional expectation of f̃obj(x,Ξ,η) with respect to the random variable Ξ. As a consequence,
the presented confidence intervals only depict the uncertainty due to the GP interpolation of
µ̃ f̂obj

(x,η) and do not take into account uncertainty due to the use of disciplinary GPs. This is

evidenced by the fact that, although the confidence intervals state that no uncertainty exists at
the DoEUQ points, the obtained approximation for µ̃ f̂obj

(x,η) does not interpolate the determin-

istic objective function at these points. This uncertainty is introduced in the model by the term
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∑M
k=1

(∑P
l=2 aT

l φk Hl (Ξ)
)
φ̃k (x,η) of Eq. (1.78), not represented in Figure 1.21. Like in the EGO ap-

proach, the idea now is to sample new points into the disciplinary and objective function DoEs
to improve the objective function approximation and find the global optimum. In EGMDO this
is achieved thanks to a two-step uncertainty reduction strategy, detailed in the following.

Two-step uncertainty reduction strategy. The first step of the uncertainty reduction strategy
consists on sampling new points to add to DoEUQ, with the aid of an acquisition function.
In EGMDO, the chosen acquisition function is a modified EI criterion [Dubreuil et al., 2018]
inspired by the one proposed in the EGO algorithm. Similarly to the original EI criterion, the
modified EI takes into account the uncertainty of the objective function model when choosing
the next point to add to the DoEUQ, thus promoting a good trade-off between the exploration of
the design space and the exploitation of the surrogate function. It is defined as follows:

EI(x) = E
[(

f̂min(Ξ)− f̃obj(x,Ξ,η)
)
×1 f̃obj(x,Ξ,η) ≤ f̂min(Ξ)

]
(1.79)

where f̂min(Ξ) is the current minimum, given by:

f̂min(Ξ) = min
x∈DoEUQ

f̂objPCE (Ξ) (1.80)

and:

1 f̃obj(x,Ξ,η) ≤ f̂min(Ξ) =
{

0 if f̃obj(x,Ξ,η) > f̂min(Ξ)

1 if f̃obj(x,Ξ,η) ≤ f̂min(Ξ)
(1.81)

We remark that the EI criterion presented in Eq. (1.79) takes into account both sources of uncer-
tainty: the one due to the use of disciplinary GPs and the one due to the combined KL-GP inter-
polation. Moreover, we note that, contrarily to the EI criterion proposed in the EGO algorithm,
this modified EI cannot be computed analytically because the approximation given in Eq. (1.78)
is not a GP. Instead, Eq. (1.79) is estimated by Monte Carlo sampling. The new point to add to
DoEUQ is then the solution of the optimization problem:

xnew
UQ = argmax

x∈X
EI(x) (1.82)

At this new point, uncertainty quantification by PCE is performed and a new approximation of
the random field f̃obj(x,Ξ,η) is obtained. Figure 1.22 presents the modified EI criterion (Fig-
ure 1.22(a)) as well as the resulting approximation for µ̃ f̂obj

(x,η) after adding xnew
UQ to DoEUQ

(Figure 1.22(b)). As is shown, by adding a new point to DoEUQ, the uncertainty due to the KL-GP
approximation of µ̃ f̂obj

(x,η) is reduced in the vicinity of this point. However, the uncertainty in-

duced by the use of disciplinary GPs remains unchanged, as no points have been added to the
disciplinary DoEs. The second step of the uncertainty reduction strategy addresses this issue by
proposing a criterion for the improvement of the disciplinary GPs.

Enrichment of the disciplinary DoEs. According to the proposed criterion, two conditions
must be met so that a given point xi ∈ DoEUQ is selected for improvement. First, the point must
have some likelihood of being solution to Eq. (1.44). This likelihood is given by the probability
Pmin(xi ) that xi is the minimum, written as:

Pmin(xi ) =P
(
min f̂ PCE

obj (Ξ) = f̂ PCE
obj (xi ,Ξ)

)
∀xi ∈DoEUQ (1.83)

Note that, in practice, Pmin(xi ) is estimated by Monte Carlo method, using the Ξ samples drawn
from the PCE approximations. Pmin(xi ) is then required to be greater than 1

nUQ
for xi to be chosen
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(a) Iteration 0. (b) Iteration 1.

Figure 1.22: Illustration of (a) the modified EI criterion and (b) the resulting approximation for
µ̃ f̂obj

(x,η) after adding xnew
UQ to DoEUQ.

for enrichment. A second condition that must be met is that the coefficient of variation of the
random objective function at xi should be greater than a given threshold. This coefficient of
variation is estimated as:

CV( f̂ PCE
obj (xi ,Ξ)) =

√
V( f̂ PCE

obj (xi ,Ξ))

E( f̂ PCE
obj (xi ,Ξ))

(1.84)

If both conditions are met, the disciplinary GPs are enriched until the coefficient of variation
is less than the defined threshold for all xi that verify Pmin(xi ) ≥ 1

nUQ
. Figure 1.23 illustrates the

impact of this second enrichment criterion on the PCE approximation of the objective function
at the DoEUQ points. As shown, by successively enriching the disciplinary solvers, we reduce
the uncertainty due to the random variable Ξ at points which have high probability of being the
minimum. Consequently, the KL-GP approximation is also improved. Additionally, we note that,
although in the original EGMDO framework is it proposed to enrich all disciplinary surrogates,
the Sobol sensitivity indices could also be used to determine the least accurate surrogate, as
done in the EGMDA strategy.

Stopping criterion. The previous section showed how the accuracy of the random field of
Eq. (1.78) can be improved both by adding points to DoEUQ and by reducing the uncertainty
due to the use of disciplinary GPs. By iteratively performing these operations, the precision of
the approximation increases around the relevant zones of the design space and the EGMDO
algorithm is capable of identifying the global optimum. Nevertheless, like in the global opti-
mization algorithms presented in Section 1.1.2, it remains difficult to define a stopping criterion
for this type of approach. As a result, in EGMDO it is assumed that a fixed budget exists and that
the algorithm is stopped when the entire budget has been spent. Figure 1.24 shows the obtained
objective function approximation after respectively 5 and 10 iterations of the EGMDO algorithm.
Realizations of f̃obj(x,Ξ,η) are equally drawn to illustrate the corresponding uncertainty.

As illustrated, as the algorithm progresses, the uncertainty of the objective function surrogate
around the global optimum (x∗ ≈ −3) is reduced. Moreover, the presented objective function
realizations show that in other areas of the design space, where the global minimum is unlikely
to be found, the uncertainty has not been reduced. This implies that little computational effort
has been spent trying to improve the disciplinary surrogate approximations in these regions.
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Figure 1.23: Enrichment of the disciplinary GPs in the EGMDO algorithm. The disciplinary sur-
rogates are enriched at the point xi ∈ DoEUQ that maximizes Pmin(xi ) in each iteration (in blue).
Note that, even if the same design space point was chosen for enrichment multiple times, the
coupling variable values added to the disciplinary DoEs were not the same.
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(a) Iteration 5. (b) Iteration 10.

Figure 1.24: Illustration of the obtained objective function approximation of after (a) 5 iterations
and (b) 10 iterations of the EGMDO algorithm. The design of experiments DoEUQ is represented
in black dots and the last point added is identified with a white dot. Realizations of f̃obj(x,Ξ,η)
are drawn to illustrate the corresponding uncertainty.

Indeed, during the 10 iterations performed, calls to the disciplinary solvers were only made at
three points (three times at point x ≈−3.6, two times at point x ≈−3.2 and three times at point x ≈
−3). At other points, where the probability of being minimum is low, the disciplinary solvers were
never enriched. As a consequence, µ̃ f̂obj

(x,η) at these points is very far from the real objective

function value (in the figure, this is particularly evident at points x ≈−2.5 and x ≈ 4.5). The main
steps of the EGMDO algorithm are summarized in Algorithm 7.

Algorithm 7 Efficient Global Multidisciplinary Design Optimization (EGMDO)

Input: DoEUQ, f̂i , i = 1, ...,nd ▷ Initial disciplinary GPs
Compute PCE approximation at DoEUQ points ▷ From Eq. (1.70)
j = 0 ▷ Initialize iteration count
while j < jmax do

Compute KL-GP approximation ▷ From Eq. (1.74)
Find xnew ▷ Maximize modified EI (Eq. (1.79))
Add xnew to DoEUQ
Enrich disciplinary GPs if needed
j = j +1 ▷ Increase iteration count

end while
fmin = min

x∈DoEUQ
µ f̂ PCE

obj
(x)

xmin = arg fmin

Output: xmin, fmin

Comparison with other MDO formulations. Although EGMDO solves the approximated MDA
to obtain random MDA solutions, EGMDO cannot be called an MDF approach. Indeed, because
EGMDO does not seek to accurately find the set of converged coupling variables in regions of
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the design space where the global optimum is unlikely to be, the EGMDO formulation is actu-
ally closer to the IDF approach. Moreover, in EGMDO the disciplinary surrogates are built over
the design and coupling variable spaces and uncertainty of the coupling variables is accounted
for in the optimization of the acquisition function. This is similar to the IDF approach where
the coupling variables are added to the set of design variables and the residual of the coupling
variables is accounted for when computing the step at each optimizer iteration. Working in both
design and coupling variable spaces ultimately allows both the IDF and EGMDO formulations
to save computational cost.

Limitations of the EGMDO strategy. Like other approaches, the EGMDO strategy also presents
some limitations. Indeed, in the original framework, no constraint handling strategy is pro-
posed. However, if the constraint functions depend on any set of the coupling variables, the use
of disciplinary surrogates will result in uncertain constraint functions. It can then be expected
that EGMDO will encounter issues if the initial constraint approximations are not sufficiently
accurate or if they lead to an empty feasible set. Another limitation is that the uncertainty re-
duction strategy relies on the fact that the objective function depends on a subset of the coupling
variables. If only the constraint functions depend on the coupling variable values, the presented
uncertainty reduction strategy is not applicable. Finally, because it is based on surrogate ap-
proximations, EGMDO also suffers from the curse of dimensionality.

1.2.6 Summary of MDAO

In this section we introduced the main tools to solve the MDA and MDO problems. Monolithic
and partitioned approaches for the resolution of the MDA were first introduced. In monolithic
approaches, a single system of equations is solved by the same numerical solver. Contrarily,
in partitioned approaches, the system is split into subdomains, each handled by a dedicated
disciplinary solver. Due to their offered flexibility in adding or replacing disciplinary solvers,
partitioned approaches are often preferred over monolithic approaches. To solve the parti-
tioned coupled system of equations, fixed-point methods, like the Jacobi, Gauss-Seidel or New-
ton’s methods can be used. These methods, however, typically require many calls to the disci-
plinary solvers, which may be expensive numerical solvers. To reduce the computational bur-
den, the EGMDA strategy replaces the disciplinary solvers involved in the MDA by GP approxi-
mations. By adaptively enriching the disciplinary surrogates, the EGMDA strategy is capable of
finding the MDA solution at a reduced computational cost.

The existing formulations to solve the MDO problem were introduced next. The MDF ap-
proach solves the MDA at each iteration of the optimizer and thus always returns a consis-
tent system design, even if the optimization is terminated early. Contrarily, the IDF approach
adds the coupling variables to the set of design variables and uses consistency constraints to
assure the multidisciplinary consistency at the optimal solution. Although this results in less
disciplinary solver calls, the resulting optimization problem is harder to solve, due to the in-
creased number of design variables and constraint functions. Gradient-based and surrogate-
based MDO were equally discussed. When disciplinary gradients are available, the coupled-
adjoint method can be used to obtain the objective and constraint function derivatives. How-
ever, when gradient information is not available, approximating the derivatives of the coupled
system using approximation methods can become computationally challenging. Surrogate-
based optimization, which does not require derivative information, becomes an appealing al-
ternative. However, most surrogate-based approaches do not take advantage of the partitioned
nature of the multidisciplinary system. An exception is the EGMDO algorithm which uses adap-
tively enriched disciplinary surrogates to reduce the computational cost of the MDO problem.
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1.3 Tools for numerical optimization

Most of the approaches presented in this chapter are already implemented in different program-
ming languages. Although it is out of the scope of this thesis to provide a detailed overview of all
existing implementations, we do find it relevant to present a few tools due to their extensive use
during our numerical tests.

The Surrogate Modeling Toolbox (SMT). SMT is an open-source Python package that contains
a collection of surrogate models, sampling techniques, and benchmarking functions [Bouhlel
et al., 2019]. SMT stands apart from other surrogate modeling libraries due to its focus on deriva-
tives and, more recently, its capability to handle hierarchical and mixed inputs as well as multi-
fidelity data [Saves et al., 2024]. A version of the EGO algorithm is equally available in SMT. In
this work, SMT is used in sampling tasks and for the construction of GP approximations.

The OpenMDAO framework. OpenMDAO is an open-source MDO framework [Gray et al., 2019]
which facilitates derivative computation of coupled systems. One of the main features of Open-
MDAO is that it enables a modular implementation of computational models through units of
code called components. Data transfer between the different components is then performed
by OpenMDAO to solve the MDA. Implementations of the Jacobi, Gauss-Seidel (with or with-
out acceleration) and Newton solvers are available. Additionally, provided that derivatives at a
disciplinary solver level are given, OpenMDAO efficiently computes total derivatives of the mul-
tidisciplinary system to perform gradient-based optimization. In this work, OpenMDAO is used
to set up our numerical tests involving MDA or MDO problems.

The WhatsOpt collaborative environment. WhatsOpt is a web application developed to sup-
port overall vehicle design activities at ONERA. It allows users to define MDA problems in terms
of disciplines and data exchanges [Lafage et al., 2019]. Once the problem has been defined,
WhatsOpt is capable of generating the OpenMDAO skeleton code where implementations of the
disciplinary solvers can be plugged into. In this work, WhatsOpt is used to generate the skeleton
code for our numerical tests.

The OpenTURNS software. OpenTURNS is an open-source software platform dedicated to un-
certainty propagation by probabilistic methods [Baudin et al., 2015]. It includes a set of efficient
mathematical methods for uncertainty quantification and is easily used with external black box
solvers. In this work, OpenTURNS is used to perform tasks such as uncertainty quantification,
uncertainty propagation and sensitivity analysis.

Chapter summary:

In this chapter we discussed the optimization of multidisciplinary systems. To do so,
we first introduced the following concepts or tools for the numerical optimization of
a given performance function (with or without constraints):

• Gradient-based optimizers, which use derivative information to find a descent
direction, but may get stuck on local optima.

• Surrogate-based optimizers, which use an approximation of the objective func-
tion to search directly for the global optimum.
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To solve the coupling between the different disciplines of the system, typically defined
as a fixed-point problem, the following algorithms were then presented:

• The Jacobi and Gauss-Seidel algorithms, which call the disciplinary solvers iter-
atively until the solution of the MDA is found.

• The EGMDA algorithm which uses adaptively enriched disciplinary GPs to re-
duce the computational cost of solving the MDA.

Finally, to handle the MDO problem, different formulations were introduced:

• The MDF approach, which solves the MDA at each optimizer iteration and
therefore always returns a consistent system design.

• The IDF approach, which adds the coupling variables to set of design variables
and uses consistency constraints to ensure multidisciplinary consistency at the
optimal solution.

• The EGMDO algorithm, a global optimization algorithm, specifically developed
for the optimization of partitioned multidisciplinary systems.
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In this chapter we will:

• Introduce parameterized PDEs.

• Introduce projection-based Model Order Reduction (pMOR).

• Introduce the interpolation of local reduced-order bases.

• Introduce MOR for multidisciplinary systems.

• Introduce the DPOD+I algorithm.

In this chapter we introduce the concepts or tools to obtain computationally cheaper ap-
proximations of the disciplinary solvers whose governing equations are PDEs. To do so, we first
introduce the numerical resolution of the parameterized PDEs that describe the physical behav-
ior of the aerodynamics and structural disciplines. Next, we introduce projection-based Model
Order Reduction (pMOR) as a method for reducing the computational burden associated with
the resolution of the parameterized PDEs in a multi-query context. Finally, the DPOD+I strat-
egy that combines MOR with GP interpolation is presented. This strategy aims at reducing the
computational cost of multi-query problems requiring several resolutions of an MDA involving
disciplinary solvers whose governing equations are PDEs.

2.1 Parameterized partial differential equations

Physical phenomena are described by relevant quantities, called state variables, that depend on
their position in the spatial or temporal domains. For example, in fluid dynamics, the state vari-
ables can be the speed and pressure of the moving fluid. Similarly, in structural mechanics, we
often wish to find the displacement field of an object subject to a load. These physical phenom-
ena can be modeled using PDEs that are solved for the state variables, for given a set of initial
and boundary conditions. Certain changes in design parameters, however, lead to changes in
the boundary conditions, in the shape of the physical domain or in the material properties. For
multi-query applications, such as optimization or uncertainty quantification, the PDEs must
be solved for every different set of design parameters, leading to an important computational
burden. Model order reduction (MOR) methods have become a popular tool to reduce the com-
putational cost of solving PDEs [Lieu et al., 2006, Lassila et al., 2014]. These methods work by
building low-dimensional models of the governing equations, which are cheaper to evaluate
than their high-dimensional counterparts. In this section, we address the numerical resolution
of the PDEs and introduce the governing equations used to model the aerodynamics and struc-
tural disciplines. In practice, these PDEs represent the high-dimensional or full-order models
whose cheaper, lower-dimensional approximation we will seek later on in this chapter.

2.1.1 Numerical resolution of PDEs

The solution of the PDEs used to model different physical phenomena usually cannot be ob-
tained analytically and we often resort to numerical methods. These methods first discretize the
differential equations over the entire domain, and then solve for the state variables. Different
numerical methods exist including finite-difference, finite-volume or finite-element methods.
In finite-difference methods, the derivatives of the PDEs on each nodal point are replaced by
an approximation. Rewriting the original equations using the approximated derivatives yields a
discrete system of equations which can be used to obtain the state variables at the nodal points.
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In finite-volume methods, the domain is discretized into control volumes, called cells, within
which the conservation laws apply. Solving the integral form of the governing equations for
each cell allows to obtain the state variables at the cell centroids or at the cell vertices. Lastly, in
finite-element methods the domain is divided into elements, within which the solution of the
governing equations is approximated by simple functions (also called shape functions). Thanks
to the shape functions, a continuous representation of the state variables can be obtained.

Finite-difference, finite-volume and finite-element methods have historically been used to
solve problems arising from different disciplines. Indeed, finite-difference and finite-volume
methods have more often been used to solve fluid dynamics problems, whereas finite-element
methods are usually employed to solve structural analysis or heat transfer problems. In this
work both fluid dynamics and structural analysis applications are considered, thus both finite-
element and finite-volume methods are used. In the following, we present the partial differential
equations modeling the aerodynamics and structural disciplines.

2.1.2 Disciplinary models

2.1.2.1 Compressible Euler equations

To obtain the aerodynamic loads, the compressible Euler equations can be used. These equa-
tions enforce the conservation of mass (Eq. (2.1a)), momentum (Eq. (2.1b)) and energy (Eq. (2.1c)),
but neglect viscous effects and thermal conductivity. They are written as:

∂ρ

∂t
+ ∂

∂xi
(ρvi ) = 0, i = {1,2,3} (2.1a)

∂

∂t
(ρvi )+ ∂

∂xi
(ρvi v j +p) = 0, i , j = {1,2,3} (2.1b)

∂

∂t
(ρE)+ ∂

∂xi
(v j (ρE +p)) = 0, i , j = {1,2,3} (2.1c)

where ρ is the fluid density, v ∈ R3 is the fluid velocity, p is the pressure and E is the total energy
per unit mass. To solve the Euler equations we use a finite-volume method, which discretizes
the spatial domain into N control volumes. Denoting, U = (ρ,ρv,ρE) the state vector and F(U) =
(ρv,ρv⊗v+pI,ρEv+pv) the flux vector, where I is the identity matrix, we can write the volume
integral over Ωi as: ∫

Ωi

∂U
∂t

dΩi +
∫
Γi

F(U) ·ni dΓi = 0, i = 1, ..., N (2.2)

where Ωi is i th the control volume, Γi = ∂Ωi is the surface of the control volume and ni is the
normal vector to the surface. Solving the Euler equations for the state variables allows the com-
putation of certain quantities of interest, such as aerodynamic lift or drag. However, due to
their nonlinear nature, the numerical resolution of the Euler equations can often represent an
important computational burden, especially in a multi-query context. As a result, simpler aero-
dynamics models are often preferred, despite their reduced accuracy. One such model, is the
Vortex Lattice method, introduced in the following.

2.1.2.2 Vortex Lattice method

The Vortex Lattice Method (VLM) [Katz and Plotkin, 2001, Anderson, 2016] is derived from po-
tential flow theory, which assumes the flow to be incompressible, inviscid and irrotational. In
the VLM, the lifting surface is modeled as a thin plate, discretized into a structured mesh made
of N elements or panels. At a quarter of the length of each panel, a horseshoe vortex is placed,
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Figure 2.1: Illustration of the VLM. A horseshoe vortex is placed at a quarter length of each ele-
ment of the surface mesh.

as illustrated in Figure 2.1. Each horseshoe vortex has a strength (or circulation) Γi , which can
be obtained thanks to the conservation of flux. It allows to write the total velocity as:

v = v∞+∇φ (2.3)

where v∞ is the freestream velocity and φ is the velocity potential. This velocity potential is ob-
tained at any control point i by summing the contribution of all horseshoe vortices, accordingly:

∇φi =
N∑

j=1
ai jΓ j (2.4)

where ai j are the aerodynamic influence coefficients, representing the induced velocity pertur-
bation on the control point i due to the horseshoe vortex on panel j . To determine the strength
of each vortex, the VLM imposes that the velocity component normal to the panel surface must
be zero at the control points. Combining this condition with Eq. (2.3) and Eq. (2.4) results in
following linear system of equations:

vi ·ni =
(

v∞+
N∑

j=1
ai jΓ j

)
·ni = 0, i = 1, ..., N (2.5)

where ni is the vector normal to the panel at point i . Once the strength of each vortex is known,
it is possible to obtain the aerodynamic forces acting upon the wing surface. Because the VLM
solves a linear system of equations, it typically does not require as much computational effort as
solving the Euler equations. Regardless, due to the simplifications made, the range of applica-
tion of the VLM is limited to the analysis of low speed flows around thin surfaces.

2.1.2.3 Linear elastic model

To model the structural displacement, a linear elastic model can be used under the assumption
of small deformations. In this case, the governing equations are:

div σ+f = 0 (2.6)

where σ is the stress tensor, f is the vector of forces per unit volume and div denotes the diver-
gence operator:

div σ = ∂σi j

∂xi
, i , j = {1,2,3} (2.7)

In the case of linear elasticity, the stress tensor can be related to the structural displacement
u ∈R3 through Hooke’s law:

σ =Cε(u) (2.8)
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where C is the elasticity tensor and ε is the strain tensor, defined as:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i , j = {1,2,3} (2.9)

If the material is homogeneous and isotropic, the elasticity tensor depends on only two coeffi-
cients: the Young’s modulus E and the Poisson coefficient ν. Using these coefficients, Hooke’s
law can be rewritten as:

σi j = E

1+ν
(
εi j (u)+ ν

1−2ν
(ε11(u)+ε22(u)+ε33(u))δi j

)
, i , j = {1,2,3} (2.10)

where δi j is the Kronecker delta. Equation (2.6) is typically solved via a finite-element method.
To do so, we first write the variational form, as follows:∫

Ω
σvdΩ−

∫
Ω

f vdΩ−
∫
Γ

σ ·nvdΓ= 0 (2.11)

where Ω ⊂ R3 is the considered spatial domain, Γ = ∂Ω denotes the bounds of Ω, n is the vector
normal to Γ and v ∈ V is any test function which satisfies the boundary conditions. Discretiz-
ing Eq. (2.11) into N finite elements and integrating over each element leads to following linear
system of equations:

Ku= F (2.12)

where K ∈RN×N is the rigidity matrix and F ∈RN is the vector of external loads. As for the aerody-
namics discipline, other structural models also exist in the literature which can be used to model
the structural displacement of the wing. However, in this work, only the linear elastic model is
considered.

2.1.3 Numerical tools

Several numerical tools exist to solve the PDEs presented above. While it is out of the scope of
this work to provide a comprehensive overview for all existing tools, we do find it relevant to
present a select few, due to their extensive use during our numerical tests.

The SU2 numerical solver. SU2 [Palacios et al., 2013,Economon et al., 2016] is an open-source
tool for solving PDEs. SU2 has been mostly developed to address fluid dynamics problems, in-
cluding those dealing with compressible, turbulent flows. SU2 is also capable of providing gradi-
ent information, through the use of an adjoint method, making this tool useful for a wide range
of applications, including optimization and uncertainty quantification. In this work, SU2 is used
to solve the compressible Euler equations modeling the external flow around a wing.

The VLM solver. Implementations of the VLM method have also been made available through
open-source software, including the Athena Vortex Lattice (AVL) [Drela and Youngren, 2004] and
NASA’s VSPAERO [McDonald and Gloudemans, 2022]. For simplification, in this work, an in-
house implementation is used during our numerical tests.

The Code Aster numerical solver. Code Aster [EDF, 2017] is an open-source code which uses
the finite-element method to solve different types of structural mechanics problems, including
those dealing with static, dynamic or thermal analysis. In this work, Code Aster is used to model
the linear elastic behavior of the wing subject to the aerodynamic loads.
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2.2 Projection-based Model Order Reduction

Projection-based model order reduction has proven itself as method to reduce the computa-
tional cost of solving PDEs while retaining a relatively high level of accuracy. It relies on the idea
that although the solution of the discretized PDEs is in general a high-dimensional vector, it can
often be represented in a low-dimensional subspace. Let w(µ) ∈W ⊂RN denote the state vector,
solution of a parameterized partial differential equation, with N the number of degrees of free-
dom resulting from the discretization of the PDEs and µ the vector of parameters µ ∈ P ⊂ Rp .
Projection-based reduced order models approximate the state vector in a subspace of dimen-
sion n ≪ N , as follows:

w̃(µ) ≈wref +Φα(µ) (2.13)

where wref is an element of W , Φ = [φ1, ...,φn] ∈ RN×n is a given reduced-order basis and α(µ) =
{α1(µ), ...,αn(µ)} ∈ Rn is the vector of reduced (or generalized) coordinates. Different methods
exist for constructing the reduced-order basis and for obtaining the generalized coordinates.
Some of these methods are presented in the following.

2.2.1 The generalized coordinates

Projection-based MOR is typically a data-driven (or simulation-driven) approach. This means
that we first build a reduced-order model based on a collection of state vectors, corresponding
to the input parameters {µi }d

i=1 ∈P t ⊂P . Then, we use the built reduced-order model to predict
the state vector at a new point µ∗ ∉P t . In this section we presume that the reduced order basis
is readily available and present two methods for predicting the state vector at the new point µ∗.
The first method relies on the representation of the governing equations in the low-dimensional
space and therefore is considered an intrusive approach. The second method relies on the inter-
polation of the generalized coordinates and therefore is considered a non-intrusive approach.

2.2.1.1 Galerkin or Petrov-Galerkin projection

Consider the following linear parameterized system of equations, representing either the linear
full-order model of a given discipline or a linearization step in the resolution of a given non-
linear model:

A(µ)w(µ) = b(µ) (2.14)

where A ∈ RN×N , b ∈ RN×1 and where time-dependency is not considered for simplicity. An ap-
proximation of the full-order model can be obtained in the low-dimensional space by replacing
Eq. (2.13) into Eq. (2.14) and projecting the resulting overdetermined system of equations onto
the subspace defined by the left reduced-order basis Ψ ∈RN×n , accordingly:(

Ψ⊺A(µ)Φ
)︸ ︷︷ ︸

Ar (µ)

α(µ) =Ψ⊺ (
b(µ)−A(µ)wref

)︸ ︷︷ ︸
br (µ)

(2.15)

In the general case, the left and right reduced-order bases may differ (Ψ ̸= Φ) and the obtained
projection is denoted a Petrov-Galerkin projection. When the left reduced-order basis is chosen
to be the same as the right reduced-order basis (Ψ = Φ), the obtained projection is denoted a
Galerkin projection. The choice between a Petrov-Galerkin or a Galerkin projection is typically
related to the minimization of the residual term that arises due to the fact that w̃(µ) is not a so-
lution to the full-order model [Grimberg et al., 2020]. Regardless of the choice, however, both
Galerkin and Petrov-Galerkin projections are intrusive approaches that require the construc-
tion of the high-dimensional matrices A(µ∗) and b(µ∗) for every new queried point µ∗. More-
over, although solving the projected equations is computationally less intensive than solving the
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full-order model, assembling these matrices in a multi-query context can represent significant
computational burden. To ease this computational burden, hyperreduction methods have been
proposed. They are only briefly introduced in the following, but a more thorough review can be
found in [Farhat et al., 2020].

Hyperreduction. Hyperreduction methods work by either building an approximation of the
full-order matrices A(µ) and b(µ) or building an approximation of their low-dimensional equiv-
alents Ar (µ) and br (µ) and thus avoiding the construction of the full-order matrices altogether.
When the approximation is built for the full-order matrices, the hyperreduction methods are
called approximate-then-project methods. Contrarily, when the approximation is built for the
reduced matrices, the hyperreduction methods are called project-then-approximate methods.
Examples of approximate-then-project methods include the gappy POD method [Everson and
Sirovich, 1995], the Empirical Interpolation Method (EIM) [Barrault et al., 2004, Grepl et al.,
2007], as well as its discrete version (DEIM) [Chaturantabut and Sorensen, 2010], and the Gauss-
Newton with Approximated Tensors (GNAT) [Carlberg et al., 2011, Carlberg et al., 2013] method.
Project-then-approximate methods were developed more recently. They include the Empirical
Curbature Method (ECM) [Hernandez et al., 2017] and the Energy-Conserving Sampling and
Weighting (ECSW) [Farhat et al., 2014, Grimberg et al., 2021] methods.

2.2.1.2 Interpolation of the generalized coordinates

Instead of seeking to reconstruct the full-order matrices for every new parameter µ∗, other au-
thors propose to interpolate the generalized coordinates αi (µ), i = 1, ...,n [Coelho et al., 2009,
Hesthaven and Ubbiali, 2018]. To do so, a set of state vectors is first projected onto the corre-
sponding reduced-order basis, as follows:

αi (µ j ) = 〈w(µ j )−wref,φi 〉, i = 1, ...,n, µ j ∈P t (2.16)

where 〈·, ·〉 denotes the scalar product between two vectors. Then, a surrogate model is built for
each of the generalized coordinates. Using the surrogate approximations, the full-order state
vector can be obtained at any new point µ∗, accordingly:

w̃(µ∗) ≈wref +
n∑

i=1
φi α̂i (µ∗) (2.17)

where α̂i denotes the surrogate model associated with the generalized coordinate αi . Because
this approach does not require access to the full-order matrices, it is considered a non-intrusive
approach. Moreover, there is no restriction on the choice of interpolation method; any method
capable of approximating scalar functions can be used (for instance the GP approximations,
introduced Section 1.1.2.2, can be used). In this work, interpolation of the generalized coordi-
nates is preferred over Galerkin or Petrov-Galerkin projections. This choice is motivated by the
assumption of the black-box nature of the disciplinary solvers.

2.2.2 The reduced-order basis

Now that it has become clear how to obtain the generalized coordinates at new queried points,
we address the construction of the reduced-order basis. Although many approaches exist in
the literature, in this section only a select few are presented. They are the Proper Orthogonal
Decomposition (POD) method of snapshots, the greedy procedure and the Proper Generalized
Decomposition (PGD).
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2.2.2.1 Proper Orthogonal Decomposition

One of the most popular methods for building the reduced-order basis is through the POD
method of snapshots [Sirovich, 1987, Chatterjee, 2000]. In the POD method, the reduced or-
der basis is trained from a set of precomputed state vectors w(µi ), i = 1, ...,d , called snapshots.
The idea is then to look for the orthonormal basis Φ = [φ1, ...,φn] that minimizes the projection
error in the least-squares sense, as follows:

φ1, ...,φn = arg min
φ1,...,φn∈RN

d∑
i=1

∥∥∥w(µi )−ΠΦ(w(µi ))
∥∥∥2

2
(2.18)

where:

ΠΦ(w(µi )) =wref +
n∑

j=0
〈(w(µi )−wref),φ j 〉φ j such that 〈φi ,φ j 〉 = δi j (2.19)

It turns out that solving Eq. (2.18) is equivalent to finding the first n left singular vectors of the
snapshot matrix S ∈RN×d , defined as:

S = [w(µ1)−wref, ...,w(µd )−wref] (2.20)

where wref is typically chosen as the mean of the snapshots, i.e. wref = 1
d

∑d
i=1 w(µi ). The Singular

Value Decomposition (SVD) of S can then be written as:

S =UΣV (2.21)

where U = [u1, ...,uN ] ∈ RN×N and V = [v1, ...,vd ] ∈ Rd×d are, respectively, the matrices of the left
and right singular vectors of S and Σ is a matrix containing the singular values of S in its main
diagonal, i.e. Σi j =σ j , if i = j , and σ1 ≥ ... ≥σd ≥ 0. The number of columns of U to retain can be
determined by finding the minimum integer value of n ≤ d for which:∑n

j=1σ
2
j∑d

j=1σ
2
j

> η, 0 < η< 1 (2.22)

In practice, Eq. (2.22) defines a threshold for the projection error in the least-squares sense (see
Eq. (2.18)). The reduced-order basis can then be written as:

Φ= [u1, ...,un] (2.23)

where u j is the left singular vector associated with the singular value σ j . Algorithm 8 summa-
rizes the main steps of the POD method.

Algorithm 8 Proper Orthogonal Decomposition (POD) method of snapshots

Input: w(µi ), i = 1, ...,d ,η ▷ Precomputed snapshots and error threshold
Build S = [w(µ1)−wref, ...,w(µd )−wref] ▷ Assemble snapshot matrix
Compute S =UΣV with U = [u1, ...,uN ] ▷ Singular Value Decomposition
Choose n that satisfies Eq. (2.22) ▷ Error criterion

Output: Φ= [u1, ...,un]

Equivalence between POD and other methods. POD is also known under other names, no-
tably as Principal Component Analysis (PCA) [Hotelling, 1933] in the field of statistical analy-
sis and as Karhunen-Loève (KL) decomposition [Karhunen, 1947, Loève, 1955] in the theory of
stochastic processes. Equivalence between these three methods is discussed in detail in [Liang
et al., 2002, Wu et al., 2003].



2.2. PROJECTION-BASED MODEL ORDER REDUCTION 73

A priori versus adaptive sampling. The POD method provides a reduced-order basis that opti-
mally represents the sampled snapshots in the least-squares sense. However, the error criterion
in Eq. (2.22) does not provide any information concerning the regions of the parameter space
where no snapshots exist. As a result, the precomputed snapshots should be sampled evenly
throughout the design space to ensure the quality of the obtained reduced-order basis. How-
ever, if the dimension of the parameter space is important, this a priori sampling can represent
a heavy computational burden. An adaptive sampling approach, where the parameter space is
sampled iteratively has been proposed to address this issue. This approach, introduced in the
following, is typically referred to as greedy procedure.

2.2.2.2 Greedy procedure

Rather than attempting to cover the entire parameter space, the greedy procedure [Veroy et al.,
2003,Bui-Thanh et al., 2008] builds an initial reduced-order basis using only one or a small num-
ber of snapshots. Then, by maximizing the projection error, it iteratively adds new snapshots to
the training database. The projection error at any point µ ∈P is given as:

e(µ) = ∥w(µ)−w̃(µ)∥ (2.24)

where w̃(µ) is the state vector approximation obtained using the current reduced-order basis.
Due to the term w(µ), maximizing the projection error is, in practice, too expensive a problem.
As a result, error estimators, which allow to bound the value of e(µ) within a given range, are typi-
cally used [Prud’homme et al., 2001,Grepl, M. and Patera, A., 2005]. Regardless, computing these
estimators requires assembling the high-dimensional matrices for every point µ ∈ P . To avoid
the computational burden associated with this task, rather than searching the parameter space
using an optimization algorithm, most applications of the greedy procedure obtain the error es-
timation at randomly sampled points. Then, they select the candidate point with the highest
error estimation to add to the training database. By iteratively repeating this process, the greedy
procedure is able to produce a reduced-order basis that is sufficiently accurate throughout the
whole parameter space.

2.2.2.3 Proper Generalized Decomposition

Both the POD method and the greedy procedure rely on an offline-online strategy. In other
words, they begin with an offline phase where the reduced-order basis is built and then switch
to an online phase where the state vector can be computed for new parameter values. The main
issue with this strategy is the computational cost required during the offline phase to ensure a
reduced-order basis that is sufficiently accurate throughout the parametric space. To address
this issue, another method called PGD [Ladevèze, 1985, Néron and Ladevèze, 2010, Ammar,
2010,Chevreuil and Nouy, 2012] has been developed. PGD directly tries to compute the reduced-
order basis that minimizes an error indicator over the whole parametric space. It relies on the
variable separation hypothesis, which allows to approximate the state vector w(µ1,µ2) as:

w̃(µ1, ...,µ j ) =
n∑

i=1

m∏
j=1

γ
j
i (µ j )wi (2.25)

where µ j ∈ P j , j = 1, ...,m are parameters assumed to be independent of each other and γ
j
i (µ j ),

i = 1, ...n, j = 1, ...,m are unknown shape functions and wi is an element of W . The idea is then
to start with an initial guess for w1, γ j

1, j = 1, ...,m (typically originating from initial or boundary

conditions) and then to iteratively find wi , γ j
i , i = 1, ...,n, j = 1, ...,m, that minimize the residual
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r (w̃) of the governing equations over the whole parametric domain:

w∗
i , {γ∗i }m

j=1 = arg min
wi ,γ1

i ,...,γm
i

∫
P 1

...
∫
P m

r (w̃) dµ1...dµm (2.26)

where r (w̃) = 0 if the approximation is exact in P 1 × ...×P m . In practice, Eq. (2.26) is solved
alternatively for wi and γ

j
i , j = 1, ...,m using a fixed-point algorithm. Moreover, the number of

modes n can be set a priori to a maximum number of modes, or the search for new modes can be
stopped once the residual r (w̃) is below a defined threshold. Once all modes have been obtained,
the approximated state vector w̃(µ1, ...,µ j ) can be obtained for any point using Eq. (2.25).

Although the PGD method avoids the offline computational effort needed to obtain the snap-
shot matrix, it remains a highly intrusive approach. Some recent efforts have attempted to ren-
der this approach non-intrusive [Courard et al., 2016, Zou et al., 2018, Tsiolakis et al., 2020], but
they often still require significant knowledge of the underlying model.

2.2.2.4 Summary of reduced-order basis

In this section, three methods for obtaining the reduced order basis were discussed. The POD
method uses precomputed solution snapshots to train an orthonormal basis which minimizes
the projection error of the sampled snapshots in the least-squares sense. The greedy procedure
also uses snapshots to train the reduced order basis, but iteratively places new snapshots in re-
gions of the parametric space where the projection error is high, allowing to obtain a globally
accurate reduced-order basis. The greedy procedure is, however, an intrusive method, which
requires assembling the full-order matrices to compute the error estimation. Finally, the PGD
method avoids the offline computation of the snapshot matrix, by directly attempting to mini-
mize the projection error over the entire parametric space. This is possible thanks to a variable
separation hypothesis. Nevertheless, the PGD is an intrusive approach which requires integra-
tion over the parametric domain. Because POD is the only method among all three that enables
a fully non-intrusive approach, it is the preferred method in this work for obtaining a reduced-
order basis.

2.2.3 The problem of slow decaying Kolmogorov n-width

The main assumption that drove the development of the reduced-order models presented in the
previous section was that any element w in W can be accurately approximated by an element wn

belonging to a linear subspace of dimension n, where n is sufficiently small. The measure that
determines how well a reduced-order basis of dimension n can approximate the elements of W

is the Kolmogorov n-width of W [Pinkus, 1985], defined as:

dn(W ) = inf
Yn⊂Y

dim(Yn )≤n

[
sup
w∈W

(
inf

wn∈Yn
∥w−wn∥Y

)]
(2.27)

where Y is some normed linear space. In practice, the faster dn(W ) decays as n increases,
the more likely we are to obtain a low-dimensional approximation that accurately represents
the full-order solution. Contrarily, if dn(W ) decays slowly as n increases, the dimension of the
reduced-order basis required to obtain an accurate approximation remains important.

In general, there is no analytic way to compute dn(W ), but an heuristic way to assess its de-
cay with n is to check the cumulative sum of the eigenvalues of the SVD of the snapshot matrix.
Figure 2.2 illustrates the normalized cumulative sum for two different rates of decay of the Kol-
mogorov n-width. As is shown, when there is a rapid decay of dn(W ) with n, the normalized
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cumulative sum of the eigenvalues quickly approaches one. Contrarily, when there is a slow de-
cay of dn(W ) with n, a large number of modes is required for the normalized cumulative sum to
be close to one.

(a) Rapid decay of dn(W ) with n. (b) Slow decay of dn(W ) with n.

Figure 2.2: Illustration of different rates of decay of the Kolmogorov n-width. (a) Rapid decay
of the Kolmogorov n-width. (b) Slow decay of the Kolmogorov n-width. For the two cases, the
value of n at which the normalized cumulative sum of the eigenvalues reaches the threshold of
99.9% is indicated.

Slow decays of the Kolmogorov n-width often lead to reduced-order models which lack ro-
bustness with respect to certain parameter changes. For example, one can imagine the flow
around an aircraft flying in transonic regime, which is highly sensitive to variations in the angle
of attack and freestream Mach number. The resulting reduced-order model will then require a
large number of basis vectors to be able to accurately represent the different solutions across
the parametric space. To address the lack of robustness of the global reduced-order models,
some authors propose the use of local POD bases [Amsallem and Farhat, 2008, Amsallem et al.,
2009, Boncoraglio and Farhat, 2022, Geelen and Willcox, 2022]. Notably, earlier works propose
to construct several POD bases, each obtained for a given set of parameter values. More recent
works propose to partition the parameter space into subdomains and to obtain a database of
piecewise-global POD bases, each trained within the respective subdomain. The common idea
behind these approaches is that the obtained local POD bases are of lower dimension than their
global counterparts. Some other authors propose to abandon POD altogether in favor of non-
linear approximations [Lee and Carlberg, 2020, Touzé et al., 2021, Barnett and Farhat, 2022, Gee-
len et al., 2023]. The idea is that, for the same level of accuracy, the non-linear approximation
requires a lower number of reduced variables compared to the linear approximation. This prop-
erty is observed recently in [Barnett and Farhat, 2022, Geelen et al., 2023] where a quadratic ap-
proximation manifold is used for projection-based MOR. In this work, only the use of a database
of pointwise local POD bases will be considered as an alternative to the use of a global POD basis.
Note that, in this section, and throughout the rest of this work, the term "global basis" is used to
indicate a reduced-order basis whose vectors remain constant in the parametric space.

2.2.3.1 Using a database of pointwise local POD bases

Up until now we addressed reduced-order models which approximate the state vector w(µ) ac-
cording to Eq. (2.13). When using pointwise local POD bases, the dependence of the reduced-
order basis Φ on the parameter µ must be considered and the approximation of the state vector
becomes:

w̃(µ) ≈wref +Φ(µ)α(µ) (2.28)
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The remaining discussions, however, still stand. That is, from Section 2.2.1 we know how to ob-
tain the generalized coordinates α(µ∗), at any queried point µ∗, if Φ(µ∗) is available. Moreover,
from Section 2.2.2.1, we know how to train a POD basisΦ(µDoE) if a collection of full-order snap-
shots w(µDoE, t1),...,w(µDoE, td ) is available, where t is some parameter on which the local POD
bases do not depend (t is often chosen as the time parameter). The only issue left to address
is then how to obtain a new reduced order basis Φ̂(µ∗) by interpolating a database of pointwise
local POD bases Φ(µi ) ∈RN×n , each associated with a parameter point µi , with i = 1, ...,nDoE.

Illustration of the approach. The following section describes how a new reduced-order ba-
sis Φ̂(µ∗) associated with the parameter point µ∗ can be constructed by interpolating a set of
precomputed POD bases. To aid in the comprehension of the described methodology, some il-
lustrations are provided. We remark, however, that said illustrations are merely used as a visual
aid and do not arise from any physical model.

2.2.3.2 Interpolation in a tangent space to the Grassmann manifold

We briefly introduce the Grassmann manifoldG(p,n) [Wong, 1967,Edelman et al., 1998,Boothby,
2003, Absil et al., 2004], of dimension p(n −p), which is the set of all p-dimensional subspaces of
Rn . In practice, one point X on G(p,n) is a linear subspace, represented by the orthogonal basis
X ∈ Rn×p , whose columns span X . Accordingly, the subspaces {Yi }nDoE

i=1 defined, respectively, by
the columns of {Φ(µi )}nDoE

i=1 are points on the Grassmann manifold G(n, N ). Figure 2.3 illustrates
the Grassmann manifold G (1,3), the points {Yi }nDoE

i=1 as colored dots lying on this 2-D manifold
and the mapping to be interpolated (Eq. (2.29)) as a blue line.

P 7→G(n, N )

µ 7→Y (µ)
(2.29)

At each point X ∈G(p,n) there exists a tangent space TX of the same dimension as G(p,n).
This tangent space is an Euclidean vector space with origin at point X and where classical inter-
polation can be performed. It is thus proposed in [Amsallem and Farhat, 2008, Amsallem et al.,
2009] to first transport the set of precomputed reduced-order bases to the tangent space TP to
G(n, N ) at a chosen point of tangency P, according to:

Z(µi ) = logP(Φ(µi )), i = 1, ...,nDoE (2.30)

where Z(µi ) ∈RN×n is the mapping ofΦ(µi ) onto the tangent space toG(n, N ) at P and logP(Φ(µi ))

Figure 2.3: Illustration of the initial DoE of subspaces {Yi }nDoE
i=1 on the Grassmann manifold G (1,3).

The mapping to be interpolated is represented by a blue line.
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denotes the logarithmic map given by:

(I−PP⊺)Φi (µi )(P⊺Φ(µi ))−1 = UiΣi V⊺
i (SV D) (2.31)

Z(µi ) = Ui tan−1(Σi )V⊺
i (2.32)

The subspaces {Zi }nDoE
i=1 spanned by the columns of Z(µi ), respectively, can themselves be seen

as points in the tangent space TP. Figure 2.4 illustrates the points {Zi }nDoE
i=1 , obtained from the

mapping of {Yi }nDoE
i=1 onto the tangent space to the simplified 2-D manifold at point P. In the

figure, the point identified with a white star is chosen as point of tangency P.

Remark 2.1 In Figure 2.4, P is chosen as the Fréchet mean [Fréchet, 1948] of the set of points
{Yi }nDoE

i=1 , obtained by solving the following minimization problem:

P = arg min
P∈G(n,N )

nDoE∑
i=1

d 2(P,Yi ) (2.33)

where d denotes the geodesic distance inG(n, N ). However, in practice, P can be taken as any other
point in G(n, N ). Namely, one of the points {Yi }nDoE

i=1 could be used as point of tangency. It is shown
in [Amsallem and Farhat, 2008] that, as long as P lies in the neighborhood of {Yi }nDoE

i=1 , the proposed
matrix interpolation strategy remains robust with respect to the choice of P.

Figure 2.4: Illustration of the mapping {Zi }nDoE
i=1 of each point {Yi }nDoE

i=1 onto the tangent space to
the simplified 2-D manifold at point P.

Since {Zi }nDoE
i=1 lie in a linear space, the matrices Z(µi ), i = 1, ...,nDoE can be interpolated to

obtain Ẑ(µ∗) at any new queried point µ∗. In [Amsallem and Farhat, 2008,Amsallem et al., 2009],
interpolation using Lagrange polynomials is used, as follows:

Ẑ(µ∗) =
nDoE∑
i=1

∏
i ̸= j

µ∗−µ j

µi −µ j
Z(µi ) (2.34)

Once the interpolated matrix Ẑ(µ∗) has been computed, it suffices to transport it from the tan-
gent space back to G(n, N ), to obtain Φ̂(µ∗). This is done by performing the inverse operation of
Eq. (2.30):

Φ̂(µ∗) =ExpP(Ẑ(µ∗)) (2.35)
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where ExpP(Ẑ(µ∗)) denotes the exponential mapping [Wong, 1967] given by:

Ẑ(µ∗) = U∗Σ∗V∗ (SVD) (2.36)

Φ̂(µ∗) = PV∗ cos(Σ∗)+U∗ sin(Σ∗) (2.37)

Figure 2.5 illustrates the points Z∗ and Y∗, obtained after the interpolation of the matrices Z(µi ),
i = 1, ...,nDoE. As is shown, when the chosen interpolation strategy is sufficiently accurate, the
point Y∗ falls back on the blue line. Algorithm 9 summarizes the main steps required for the
interpolation of a database of local POD bases.

Figure 2.5: Illustration of the points Z∗ and Y∗, obtained after interpolation in the tangent space.
We note that, when the interpolation is sufficiently accurate, the point Y∗ lies on the blue line.

Algorithm 9 Interpolation of a database of local POD bases

Input: Φ(µi ), i = 1, ...,nDoE, µ∗ ▷ Precomputed local POD bases
Choose P in G(n, N ) ▷ Point of tangency
Compute Z(µi ), i = 1, ...,nDoE ▷ Logarithmic mapping (Eq. (2.30))
Compute Ẑ(µ∗) from Z(µi ), i = 1, ...,nDoE ▷ Interpolation in the tangent space
Compute Φ̂(µ∗) ▷ Exponential mapping (Eq. (2.35))

Output: Φ̂(µ∗)

Interpolation strategy. In practice, interpolation in the tangent space can be carried out using
other strategies, including RBF [Choi et al., 2020] or GP regression [Mallasto and Feragen, 2018].
Another strategy, which performs interpolation via Inverse Distance Weighting (IDW) has also
been developed in [Mosquera et al., 2019]. The main advantage of this strategy is that it does not
require mapping onto the tangent space, and therefore provides results which are independent
on the choice of P. Finally, recent developments propose to interpolate the local POD bases
directly, rather than the corresponding linear subspaces [Goutaudier et al., 2023]. The main
idea behind this approach is to conserve the order of the singular values in the interpolated
matrix to achieve greater accuracy. In this work, only interpolation of the linear subspaces using
GP regression will be considered, albeit using a different strategy from the one introduced in
[Mallasto and Feragen, 2018].

Stability of POD basis interpolation. Although not discussed in this section, necessary sta-
bility conditions for POD basis interpolation on Grassmann manifolds have been established
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in [Friderikos et al., 2022]. Indeed, for the logarithmic mapping (Eq. (2.30)) to be well defined,
the matrix P⊺Φ(µi ) must be non-singular for all i = 1, ...,nDoE. Moreover, the exponential mapping
(Eq. (2.35)) is only injective if σ∗

1 <π/2, with σ∗
1 the maximum singular value Ẑ(µ∗). Finally, to en-

sure that the accuracy of the interpolation increases with the number of modes in the local POD
bases, then the subspace Y (n), spanned by the columns ofΦ(µ∗) = [φ1(µ∗), ...,φn(µ∗)], must verify
Y (n) ⊂Y (n′), with n′ > n. In [Friderikos et al., 2022], this condition is checked by considering the
geometric distance δ

(
Y (n),Y (n′)

)
between Y (n) and Y (n′), defined as:

δ(Y (n),Y (n′)) =
(

n∑
i=1

arccos2(σi )

)1/2

(2.38)

where σi , i = 1, ...,n are the singular values of Φ(µ∗)⊺Φ′(µ∗), also known as the principal angles
between Y (n) and Y (n′) [Ye and Lim, 2016].

2.2.4 Summary of projection-based MOR

Projection-based MOR provides a means to reduce the computational cost of solving PDEs,
while retaining a relatively high level of accuracy. Through pMOR, a low-dimensional repre-
sentation of the full-order model is obtained by projecting the discretized governing equations
onto a reduced-order basis. This reduced-order basis is usually trained using solution snapshots
sampled over the entire parametric space. For some disciplines, however, certain parameter
changes can contribute with significantly new information to the global approximation, leading
to a large number of basis vectors. To address this issue, the interpolation of a database of local
reduced-order bases has been developed. The main idea behind this approach is that, for the
same order of accuracy, the local reduced-order approximations require fewer basis vectors than
the global counterpart. In the following, the use of pMOR for multi-query applications involving
multidisciplinary systems is discussed.

2.3 Model order reduction for MDA

Designing multidisciplinary systems often requires coupling several disciplines, each involving
the resolution of PDEs. To reduce the computational cost of solving the MDA, we may thus want
to build a reduced-order model for each discipline and solve an approximated version of the
MDA. The reduced-space MDA is written as:

yr
i = f r

i (x,yr
ci

), i = 1, ...,nd ∀x ∈X (2.39)

where yr
i is the approximated coupling variable, given by:

yr
i =φ0

i +
ni∑

j=0
α

j
i (x,yr

ci
)φ j

i (2.40)

where Φi = {φ1, ...,φni ] denotes the POD basis associated with discipline i and α = {α1
i , ...,αni

i } are
the corresponding generalized coordinates. Building the reduced-order bases in the case of a
multidisciplinary system, however, entails some additional difficulties. Indeed, to build the dis-
ciplinary POD basis Φi , it is necessary to obtain snapshots of yi by sampling in X ×C ci , where
C ci = ∏nd

j ̸=i C j . And while sampling in X is trivial, sampling in C ci can be more difficult, as C ci

is a high-dimensional space, whose bounds are unknown. To address this issue it is proposed
in [Coelho et al., 2009] to obtain snapshots of the coupling variables by solving the MDA for
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a collection of sampled design space points x1, ...,xd . Then, using the obtained snapshots, the
disciplinary POD bases can be built and interpolation of the generalized coordinates can be used
to compute the solution of the MDA at new queried design space points.

Although the above described strategy alleviates the computational burden of a multi-query
problem requiring many MDA resolutions, it is not computationally efficient, in the sense that
it requires globally accurate disciplinary POD bases as well as globally accurate interpolations
of the generalized coordinates. Indeed, an adaptive sampling strategy, which allows the enrich-
ment of the disciplinary surrogates during the resolution of the MDA should be envisioned to
minimize the training costs. Such a strategy has been recently developed in [Berthelin, 2022,
Berthelin et al., 2022] and is introduced in the following.

2.3.1 Disciplinary Proper Orthogonal Decomposition and Interpolation

The Disciplinary Proper Orthogonal Decomposition and Interpolation (DPOD+I) strategy solves
the MDA by combining disciplinary POD bases with adaptively enriched GP approximations of
the generalized coordinates. An evaluation of the projection error when calls to the disciplinary
solvers are made, further allows the DPOD+I strategy to enrich the disciplinary POD bases dur-
ing the resolution of the MDA. Because it uses the uncertainty of the generalized coordinates in-
terpolations to solve the MDA, the DPOD+I strategy can be seen as the extension of the EGMDA
strategy to high-dimensional coupling variables.

2.3.1.1 Disciplinary GPs for high-dimensional coupling variables

The main idea behind the DPOD+I strategy is to obtain an approximated version of the MDA,
written in terms of the GP approximations of the generalized coordinates. Let Ψi denote the
projection application allowing to obtain the generalized coordinates associated with discipline
i :

Ψi : C i ⊂Rd i → C̃ i ⊂Rni

yi 7→ {α1
i , ...,αni

i } = {φ1
i (yi −φ0

i ), ...,φni

i (yi −φ0
i )}

(2.41)

and {Ψi }−1 denote its inverse operation, allowing to reconstruct the high-dimensional vector yi :

{Ψi }−1 : C̃ i →C i

α1
i , ...,αni

i 7→ {Ψi }−1(α1
i , ...,αni

i ) =φ0
i +

∑ni

j=1α
j
i φ

j
i

(2.42)

Then, it is possible to rewrite the MDA in the reduced space, as follows:

α1
i (x,αci ), ...,αni

i (x,αci ) =Ψi
(
yi

(
x, {Ψi }−1(αci )

))
, i = 1, ...,nd (2.43)

To obtain the disciplinary surrogates, it is then proposed in the DPOD+I strategy to replace each
coefficient α j

i by a GP approximation α̂
j
i , according to:

α̂
j
i =µ

j
i (x,αci )+ϵ j

i (x,αci ) i = 1, ...,nd , j = 1, ...,ni (2.44)

where µ j
i (x,αci ) are the means of the disciplinary GPs and ϵ

j
i (x,αci ) are GPs of zero mean con-

ditioned on the respective disciplinary DoEs. The GP approximations can then be plugged back
onto Eq. (2.43), to obtain an approximated reduced MDA. This approximated MDA can, in turn,
be solved by adaptively enriching the disciplinary GPs as proposed in the EGMDA strategy, pre-
sented in Section 1.2.3.2. The only challenge left to address is thus the construction of the initial
disciplinary DoEs, allowing to obtain the disciplinary reduced-order basis, as well as the initial
surrogate approximations. The sampling strategy proposed in [Berthelin, 2022, Berthelin et al.,
2022] is presented in the following.
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2.3.1.2 Training the disciplinary POD+I surrogates

In the DPOD+I approach, a sampling strategy which exploits the structure of the MDA, but does
not solve it, is used. The idea is that, rather than keeping the design variables fixed through the
iterates, they are randomly changed at each MDA iteration. This allows to obtain disciplinary
DoEs which are evenly spread throughout the design and coupling variable spaces. To simplify,
we describe the proposed training strategy for a two-discipline system, but the proposed ap-
proach can be easily extended to include more disciplines.

We begin by generating a 1-D manifold made of r initial guesses of the first coupling variable:

Y0
1 = {λi y

0
1 ,λi ∈ [λ−,λ+] ⊂R, i = 1, ...,r } (2.45)

where Y0
1 is the generated manifold, y0

1 is the initial guess of the MDA solver for the first coupling
variable, and [λ−,λ+] are the bounds that define the range of variation of the r initial guesses.

Remark 2.2 In practice, [λ−,λ+] may be obtained by expert judgment so that every element of Y0
1

is likely to belong to C 1. Moreover, even if the initial guess for [λ−,λ+] is poor, its influence on the
sampled snapshots will decrease as the training algorithm progresses.

Once the initial guesses (y1)0
i =λi y

0
1 , i = 1, ...,r are obtained, they can be used to generate a set

of r initial guesses for the second coupling variable, as follows:

(y2)0
i = f2(xi , (y1)0

i ), i = 1, ...,r (2.46)

where the design variable points xi ∈X are sampled using a space filling strategy. Note that, al-
though the samples (y2)0

i , i = 1, ...,r are obtained through calls to the real disciplinary solver, they
do not constitute valid MDA snapshots because the inputs (y1)0

i , i = 1, ...,r were artificially gen-
erated. As a result these samples are used to initialize the training procedure, but are excluded
from the corresponding training sets.

The objective is then to successively generate batches of disciplinary solver solutions, us-
ing as inputs the r solutions of the previous batch. For each newly generated batch, the mean
relative projection error ēb

j is computed, as follows:

(e j )b
i = ∥(y j )b

i − {Ψ j }−1(Ψ j (y j )b
i ))∥

∥(y j )b
i ∥2

, i = 1, ...,r, j = 1,2 (2.47)

ēb
j =

1

r

∑r
i=1(e j )b

i , j = 1,2 (2.48)

where b is the batch number. If the projection error is too large, the batch is added to the train-
ing set of the respective disciplinary POD basis and a new batch is used to calculate the pro-
jection error. This iterative procedure continues until the mean relative projection error is less
than a given tolerance ϵPOD for both disciplines. Algorithm 10 summarizes the main steps of the
DPOD+I training strategy for a two-discipline system. Note that the proposed training strategy
not only provides the disciplinary POD bases, but also two sets of DoEs which can be used to
train the disciplinary GPs. Moreover, the proposed approach can be compared to the greedy
procedure introduced in Section 2.2.2.2, in the sense that it monitors the projection error to de-
termine when the computed disciplinary POD bases are sufficiently accurate.

Alternative training strategies. The DPOD+I strategy is not the only one proposing a training
of the reduced-order models which does not rely on MDA resolutions. Indeed, in [Discacciati
and Hesthaven, 2023, Discacciati and Hesthaven, 2024] an artificial parameterization of the in-
terface of the non-overlapping disciplinary domains is proposed. Using this artificial parame-
terization, it is possible to generate physically-relevant boundary conditions to obtain snapshots
and train the disciplinary reduced-order models.
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Algorithm 10 DPOD+I training strategy for a two-discipline system

Input: (y2)0
i , i = 1, ...,r , ϵPOD ▷ Initial samples and error tolerance

Φ1 = [y0
1] ▷ Initialize POD basis 1

Φ2 = [y0
2] ▷ Initialize POD basis 2

ēb
1 , ēb

2 = 1
b = 1 ▷ Initialize batch count
while ēb

1 , ēb
2 > ϵPOD do

Sample (x)b,1
i , i = 1, ...,r in X

for i = 1, ...,r do
Compute (y1)b

i = f1(xi , (y2)b−1
i ) ▷ Obtain new snapshots

end for
Sample (x)b,2

i , i = 1, ...,r in X

for i = 1, ...,r do
Compute (y2)b

i = f2(xi , (y1)b
i ) ▷ Obtain new snapshots

end for
Compute ēb

1 , ēb
2 ▷ Projection error (Eq. (2.48))

Compute Φ1 using (y1) j
i , i = 1, ...,r, j = 1, ...,b ▷ Update POD basis 1

Compute Φ2 using (y2) j
i , i = 1, ...,r, j = 1, ...,b ▷ Update POD basis 2

b = b +1 ▷ Increase batch count
end while

Output: Φ1, Φ2, (xi ) j ,1, (y1) j
i , (xi ) j ,2, (y2) j

i , i = 1, ...,r , j = 1, ...b

2.3.1.3 Online enrichment of the disciplinary POD bases

Once the disciplinary POD bases have been obtained and the disciplinary surrogates for each of
the generalized coordinates have been built, it is possible to solve the MDA in any point of the
design space using the EGMDA strategy. As discussed in Section 1.2.3.2, this strategy adaptively
enriches the disciplinary GPs based on the dispersion of the random MDA solutions. This not
only allows to solve the MDA at a reduced computational cost, but also allows monitoring the
projection error each time a disciplinary surrogate is selected for enrichment. Indeed, because
enriching the disciplinary GPs requires one call to the corresponding disciplinary solver, the
obtained snapshot can be used to compute the projection error on the current disciplinary POD
basis. If the projection error is above the previously defined tolerance ϵPOD, the reduced-order
basis can be updated as follows:

Φi =
[
φ1

i , ...,φni

i ,
yi (x, ŷci )− {Ψi }−1(Ψi (yi (x, ŷci ))

∥yi (x, ŷci )− {Ψi }−1(Ψi (yi (x, ŷci ))∥2

]
, ∀i = 1, ...,nd (2.49)

This allows to maintain a desired level of accuracy, even in regions of the design space that were
not well represented by the initial POD bases. Furthermore, for applications which explore only
certain regions of the design space (such as MDO problems), the error tolerance ϵPOD can be
relaxed during the training stage to reduce the computational cost and made stricter during
the online stage to improve accuracy. This enrichment strategy is similar to the one employed
in [Gogu and Passieux, 2013,Gogu, 2015] where the new snapshot is orthogonalized, normalized,
and added to the basis.

2.3.2 Shortcomings of the DPOD+I strategy

The DPOD+I strategy allows to obtain disciplinary surrogates by combining disciplinary POD
bases with GP approximations of the generalized coordinates. The built disciplinary surrogates
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can then be used with the EGMDA strategy to reduce the computational cost of solving the MDA.
This approach was shown in [Berthelin, 2022] to work well when the number of POD basis vec-
tors remained small (typically less than 10). Regardless, some of the considered test cases pre-
sented POD basis with a significant number of basis vectors for at least one of the disciplinary
solvers. This resulted in large input spaces for the remaining disciplines, which were unfit for
the construction of the corresponding GP approximations of the generalized coordinates. Addi-
tionally, there was a large number of random variables in the approximated MDA, which made
it difficult to attain the convergence criterion of the EGMDA approach.

In light of the obtained results, it became clear that the use of global POD bases as a di-
mension reduction strategy can sometimes be detrimental to the performance of the DPOD+I
approach. To address this issue, a dimension reduction strategy which relies on the interpola-
tion of a database of pointwise local POD bases was introduced in Section 2.2.3. The main idea
behind this approach is that the number of basis vectors in each local POD basis is smaller than
the one obtained for the equivalent global POD basis. By building the disciplinary surrogates
in these lower dimensional spaces, the issues encountered in [Berthelin, 2022] may be resolved.
Adaptation of the DPOD+I training and enrichment strategies to allow for the construction of
the pointwise local POD bases should thus be envisioned.

Chapter summary:

In this chapter we were interested in reduced-order models to obtain low dimensional
approximations of disciplinary solvers whose governing equations are partial differ-
ential equations (PDEs). We thus first introduced the following disciplinary models:

• The compressible Euler equations and the Vortex Lattice method, used to model
the flow around the wing.

• The linear elastic model, used to model the structural displacement of the wing.

Projection-based model order reduction (MOR) was introduced next as a popular
method to obtain the low-dimensional approximations of the disciplinary models.
To obtain the generalized coordinates, the following methods were introduced:

• The Petrov and Petrov-Galerkin projections, which obtain the state vector at new
queried points by solving the governing equations in the low dimensional space,
and therefore constitute an intrusive approach.

• Interpolation of the generalized coordinates, which uses surrogate models to
obtain the state vector at new queried points, and therefore constitutes a non-
intrusive approach.

To obtain the reduced-order basis, the following approaches were introduced:

• The Proper Orthogonal Decomposition (POD), which uses a collection of pre-
computed snapshots to train the reduced order basis, in an non-intrusive man-
ner.

• The greedy procedure, which iteratively samples new snapshots in regions on the
parametric space where the error estimator is large, to obtain a globally accurate
reduced-order model.
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• The Proper Generalized Decomposition, which relies on the variable separation
hypothesis to directly attempt to minimize the projection error over the entire
parametric space.

The issue of slow decaying Kolmogorov n-width was discussed next and interpolation
of a database of pointwise local POD bases was introduced as an alternative to the
use of global POD bases.

Finally, model order reduction for MDA was discussed. The DPOD+I strategy which
combines disciplinary POD bases with GP approximations of the generalized coor-
dinates was introduced as a model order reduction strategy which efficiently reduces
the computational cost of multi-query problems requiring the resolution of several
MDAs.
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In this chapter we will:

• Introduce the interpolation of local POD bases using GPs.

• Introduce the use of pointwise local POD bases for single-discipline analysis.

• Introduce the use of pointwise local POD bases in MDA.

• Present numerical results for the static aeroelastic analysis of an aircraft wing.

3.1 Chapter contributions

In Chapter 2 we introduced the DPOD+I strategy for the reduction of the computational cost
required to solve MDA problems in a multi-query context. One of the main shortcomings of this
strategy, however, is the decreased accuracy that occurs when there is a large number of basis
vectors in the disciplinary POD bases. In this chapter we attempt to address this challenge by
replacing the use of a global POD basis with the interpolation of a database of pointwise local
POD bases. The use of pointwise local POD bases has most often been used in the literature in
the context of single-discipline analysis where one of the parameters was time. In this chapter,
we propose to use this strategy in an MDA context. We thus adapt the training and enrichment
strategies of the DPOD+I approach to accommodate the use of local POD bases. Numerical test
cases are used to confirm the interest of the proposed approach.

3.2 Interpolation of local POD bases using GPs

The use of pointwise local POD bases allows to obtain reduced-order models which, for the same
level of accuracy, present fewer modes than the corresponding global POD basis. To obtain the
reduced-order basis at a new queried point, interpolation in the tangent space to the Grassmann
manifold can be used, as described in Section 2.2.3.2. The original interpolation strategy, how-
ever, relied on interpolation using Lagrange polynomials, which does not provide any indication
of the committed interpolation error. In this work, we instead propose to use an interpolation
strategy which uses GPs. We note that, although we rely on the definition of a basis of the tan-
gent plane to the Grassmann manifold to perform interpolation, the proposed approach is an
adaptation of the strategy introduced in [Mallasto and Feragen, 2018].

3.2.1 Obtaining a basis of the tangent plane to the Grassmann manifold

We recall that, in order to interpolate a database of pointwise local POD bases, the points {Yi }nDoE
i=1

are first mapped onto the tangent space TP to the Grassmann manifoldG(n, N ) at a chosen point
of tangency P, thanks to the logarithmic mapping of Eq. (2.30). The result of this mapping are
the subspaces {Zi }nDoE

i=1 , spanned by the columns of Z(µi ), respectively. We also recall that the
dimension of the Grassmann manifold is n(N −n), which means that Z(µi ) are high-dimensional
matrices (n ≪ N ). However, because the subspaces {Zi }nDoE

i=1 are points in the tangent space, they
can be used to define a basis of the tangent plane TP , subspace of TP . In this work, the vectors
(⃗e j ), j = 1, ...,nTP , defining a basis of TP , are given by the left singular vectors of the following SVD:

Z = UΣV (3.1)

where Z is the matrix whose columns are Z(µi ), i = 1, ...,nDoE flattened to a vector form. Figure 3.1
illustrates the vectors (⃗e1, e⃗2), used to define a basis of the tangent plane to G(n, N ) at P.
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Figure 3.1: Illustration of the vectors (⃗e1, e⃗2), used to define a basis of the tangent plane TP to
G(n, N ) at P.

3.2.2 Interpolation of the coordinates of the tangent space basis

Having established the basis (⃗e j ), j = 1, ...,nTP , each point {Zi }nDoE
i=1 can then be described by a set

of coordinates β j , j = 1, ...,nTP , each associated with a vector in the tangent plane basis:

{Zi }nDoE
i=1 =

nTP∑
j=1

β j (µi )⃗e j , i = 1, ...,nDoE (3.2)

Moreover, since the points {Zi }nDoE
i=1 are each associated with a parameter value µi , their coor-

dinates on the tangent plane basis are themselves each associated with a parameter value µi .
Figure 3.2 illustrates the coordinates of each point {Zi }nDoE

i=1 in the corresponding basis (⃗e1, e⃗2).

(a) Coordinate associated with e⃗1. (b) Coordinate associated with e⃗2.

Figure 3.2: Coordinates of each point {Zi }nDoE
i=1 on the basis (⃗e1, e⃗2) as a function of the associated

parameter value µi .

The obtained coordinates can be interpolated independently to obtain Ẑ(µ∗) at a new queried
point µ∗. The result can then be mapped back onto the Grassmann manifold to construct a new
local POD basis Φ̂(µ∗). In this work, a GP for each tangent space coordinate is obtained, by
taking as training data the parameter values µi , i = 1, ...,nDoE and the associated tangent space
coordinates β j (µi ), i = 1, ...,nDoE. The resulting approximation reads:

β̂ j (µ) = m j (µ)+ϵ j (µ) j = 1, ...,nTP (3.3)

where m j denotes the mean and ϵ j is a GP of zero mean conditioned on β j (µi ), i = 1, ...,nDoE.
Figure 3.3 illustrates the obtained GP approximations for β̂1(µ) and β̂2(µ).
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(a) Coordinate associated with e⃗1. (b) Coordinate associated with e⃗2.

Figure 3.3: GP approximations of the tangent plane coordinates. The coordinate values at a new
queried point µ∗ are identified with a white triangle.

Using the interpolated coordinates β̂1(µ∗) and β̂2(µ∗), it is possible to obtain the interpolated
point Z∗ through Eq. (3.2). Then it suffices to apply the exponential mapping of Eq. (2.35) to ob-
tain Y∗. We here recall that our goal is to obtain the best possible approximation of the mapping:

P 7→G(n, N )

µ 7→Y (µ)
(3.4)

represented by a blue line in Figure 3.1. Thus, if the interpolation of the coordinates of the tan-
gent plane basis is sufficiently accurate, the point Y∗ will lie on the blue line. However, if the
initial database does not include enough points, or if they are poorly distributed in the paramet-
ric space, the interpolation error may become significant and the point Y∗ might lie far from the
blue line. An illustration of this situation is provided in Figure 3.4, where a poorly distributed
DoE leads to an interpolated point Y∗ that does not lie on the blue line.

Figure 3.4: Interpolation of the local POD bases using a poorly distributed initial DoE, which
results in an interpolated point Y∗ that does not lie on the blue line. The interpolated point Z∗ is
identified with a white triangle, while its mapping to the Grassmann manifold is identified with
a white dot.

Poorly distributed DoEs, like the one presented in Figure 3.4 can be avoided by using a space-
filling strategy to select the parameters µi , i = 1, ...,nd at which the local POD bases are built.
Nevertheless, the situation depicted in Figure 3.4 raises the important question of how to esti-
mate the quality of the interpolated matrix Φ̂(µ∗). We recall that, in this work, we wish to use
pointwise local POD bases to reduce the computational cost of solving the MDA problem in a
multi-query context. This means that, in an initial offline phase we build a database of pointwise
local POD bases for one, or several of the disciplinary solvers. Then, when the MDA is queried at
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a new point, a new matrix Φ̂(µ∗) is obtained by interpolating online the existing database of lo-
cal POD bases. Being able to estimate the quality of the interpolation can help us decide where
new local bases should be trained, provided that there is still computational cost available for
the sampling of the initial DoE.

3.2.3 Estimating the quality of the interpolation

The most direct way to compute the error committed due to the interpolation of the reduced-
order basis Φ̂(µ∗) is to obtain new snapshots at point µ∗, build a "true" reduced-order basis
Φ(µ∗) from the obtained snapshots and compute the geometric distance (Eq. (2.38)) between
the subspaces Ŷ∗ and Y∗ spanned by the columns of Φ̂(µ∗) and Φ(µ∗), respectively. If the cal-
culated distance is too large, at any point µ∗ ∈ P , then the basis Φ(µ∗) should be added to the
initial database of reduced-order bases. In practice, however, the computational burden asso-
ciated with this method is too significant for it to be used as an error indicator. Indeed, many
snapshots may be required to build the reduced-order basis Φ(µ∗). Moreover, to ensure that the
interpolation error is small at any queried point µ∗ ∈ P , the process would have to be repeated
throughout the parametric space.

Another idea is thus to use realizations of the GP approximations of the coordinates of the
tangent plane basis to estimate the quality of the interpolation. Indeed, by drawing different
realizations of β̂(k)

1 (µ∗) and β̂(k)
2 (µ∗), different bases Φ̂(k)(µ∗) can be obtained, with k = 1, ...,nMC.

When there is a lot of uncertainty in the interpolation, the corresponding points Y (k)
∗ in the

Grassmann manifold are significantly dispersed, and the basis Φ(µ∗) should be added to the
database of local POD bases. Figure 3.5, illustrates the confidence intervals of the GP interpola-
tions of β̂1(µ) and β̂2(µ) for the poorly distributed DoE of Figure 3.4, while Figure 3.6 shows the
points Y (k)

∗ , k = 1, ...,nMC on the 2-D simplified manifold. Note that obtaining Y (k)
∗ , k = 1, ...,nMC

by drawing different realizations of β̂1(µ∗) and β̂2(µ∗) is essentially cost-free, as no new snap-
shots need to be computed.

(a) Coordinate associated with e⃗1. (b) Coordinate associated with e⃗2.

Figure 3.5: Uncertainty of the GP approximations of the tangent plane coordinates. The 99%
confidence intervals of the approximation are shaded in gray and the mean coordinate values at
the queried point µ∗ are identified with a white triangle.

A similar approach to the above described is proposed in [Porrello et al., 2024], where the un-
certainty of the interpolation of the local reduced-order bases is accounted for in the objective
function model of a Bayesian optimization algorithm. In the next section, we discuss how an
approximation of the state vector w̃(µ∗) is obtained when using local reduced-order bases and
study how the uncertainty of the interpolation of local POD bases affects the obtained approxi-
mation for the state vector.
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Figure 3.6: Dispersion of the interpolated points Y (k)
∗ , k = 1, ...,nMC. Note that, although there

seems to be little uncertainty in the GP approximations of β̂1(µ) and, especially, β̂2(µ), the ob-
tained points Y (k)

∗ , k = 1, ...,nMC are rather dispersed.

3.3 Local POD bases for single-discipline analysis

Having established a procedure to obtain the matrix Φ̂(µ∗), we can now write the state vector at
any queried point µ∗ as:

w̃(µ∗, t ) =wref + α̂(µ∗, t )Φ̂(µ∗) (3.5)

where α̂(µ∗, t ) = {α̂1(µ∗, t ), ..., α̂n(µ∗, t )} are GP interpolations of the generalized coordinates in
the local POD basis Φ̂(µ∗) and t denotes a parameter on which the local POD bases do not de-
pend (usually t is the time parameter). To obtain these interpolations, all previously computed
snapshots (namely those used to train the set of local POD bases Φ(µi ), i = 1, ...,nDoE) are first
projected on the interpolated basis Φ̂(µ∗). Then a GP approximation is built for each of the
generalized coordinates independently. Application of this approach to the case of a wing in
transonic flight is presented in the following.

3.3.1 The case of a wing in transonic flight

In this section we consider the steady flow around an aircraft wing, whose governing equations
are the compressible Euler equations, introduced in Section 2.1.2.1. Due the compressible ef-
fects, when flying at transonic speeds, shock waves may appear on the upper surface of the wing.
Increasing or decreasing the angle of attack or the freestream Mach number tends to move the
shock wave back and forth. As a result, global POD bases struggle to efficiently represent the
transonic flow around the wing when both angle of attack and freestream Mach number are al-
lowed to vary. Figure 3.7 presents the obtained coefficient of pressure distribution on the wing
upper surface, for two different values of angle of attack (AoA) and freestream Mach number.

State vector approximation. To compare the use of a global POD basis with the interpolation
of a database of local POD bases, we compute the following approximations for the vector fa ∈
RNa of aerodynamic loads acting upon the wing surface:

fa(AoA, M∞) ≈
na∑

i=1
α̂i

a(AoA, M∞)φ̂i
a(M∞) (3.6)

fa(AoA, M∞) ≈
na∑

i=1
α̂i

a(AoA, M∞)φi
a (3.7)

where Eq. (3.6) is the approximation obtained via the local POD bases and Eq. (3.7) is the ap-
proximation obtained via the global basis. Note that here we have chosen to build the local
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Figure 3.7: Obtained coefficient of pressure distributions for two different values of angle of at-
tack (AoA) and freestream Mach number. On the left, no shock wave is formed. On the right, a
shock wave appears close to the trailing edge of the wing.

POD bases at fixed values of freestream Mach number (µ= M∞). However, this was an arbitrary
choice and we could have equally chosen to train the local POD bases for fixed values of the AoA.

Range of variation of the input parameters. The vector of aerodynamic loads depends on two
parameters: the wing angle of attack (AoA) and the freestream Mach number (M∞). The con-
sidered range of variation for each parameter is AoA ∈ [1,12.5] and M∞ ∈ [0.65,0.85]. However, to
account for physical constraints, the parametric space is limited for points that present simulta-
neously high values of AoA and M∞. To do so, points are first sampled in the space [0,1]×[0,1] ∈R2

and then mapped onto the defined input space using the following parametric transformation:

M∗
∞ = 0.2M∞+0.65 (3.8a)

AoA∗ = (−22.2M∗
∞+25.9)AoA+1 (3.8b)

where M∞ and AoA denote the values sampled in the normalized input space and M∗∞ and AoA∗

denote, respectively, the freestream Mach number and angle of attack at which the governing
equations are actually solved. Figure 3.8 illustrates five sampled points in the initial sampling
space and their corresponding values in the transformed input space.

3.3.2 Approximation of the state vector via an interpolated local POD basis

To train the local POD bases it is necessary to generate snapshots at fixed values of M∞ (see
Eq. (3.6)). As a result, we choose to sample 5 values of AoA, at 6 different values of M∞, for a total
training cost of 30 calls to the aerodynamics solver. Both samplings are performed using LHS.
Figure 3.9(a) illustrates the location of the training snapshots in the transformed input space.

Using the obtained snapshots, a local POD basis is then trained at each sampled value M (1)∞ , ...,
M (6)∞ , with the criterion η for the projection error set to 99.99% (see Eq. (2.22)). This leads to a
different number of basis vectors na in each of the local POD bases. To have the same number
of basis vectors in all bases and thus enable interpolation, we set n∗

a = max{n(1)
a , ...,n(6)

a }. For the
present test case, na ∈ {3,4}, which leads to a choice of 4 vectors in each of the local POD bases.

Projection error. To assess the quality of the interpolated local POD basis Φ̂(M∗∞), we construct
a grid of 100 design space points at which we compute the corresponding solution vector. For
each point, the relative projection error on the corresponding interpolated local POD basis is
computed. The obtained results are presented in Figure 3.9(b). As shown, the relative projection
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error remains small for the majority of the tested points (91 out of 100 points show less than
5% of projection error), which validates the proposed interpolation strategy. Moreover, we see
that the maximum projection error is obtained for M∗∞ ≈ 0.828, where the relative projection
error is around 7.39%. This means that, if we still had computational cost to spare in the offline
stage, we might want to train a new local POD basis at this value of M∗∞. A similar conclusion
can be drawn by computing the geometric distance between the subspaces defined by Φ(M∗∞)
and Φ̂(M∗∞), respectively, the "true" and approximate local POD bases at M∗∞. Figure 3.10 plots
the computed distances as a function of M∗∞. As expected, the maximum computed distance
occurs for M∗∞ ≈ 0.828, respectively the value of M∗∞ that presented the largest projection error.
Moreover, we see that, the farther the values of M∗∞ are from the training points, the larger the
computed distances.

Finally, although the relative projection error presented above allows us to decide where to
train new local POD bases, its computation is rather expensive, as we resort to 100 additional
solution vectors. In the following, we attempt to obtain a cost-free error indicator.

Interpolation error and adaptive sampling criterion. Using the GP approximations of the
generalized coordinates, we first predict new load vectors for the grid of 100 test points. At each
point, we compute the relative interpolation error by comparing the predicted and true load
vectors. The obtained results are shown on Figure 3.11(a).

The interpolation error presented above includes both the error due to the interpolation of
the basis Φ̂(M∗∞) and the error due to interpolation of the generalized coordinates α̂1

a , ..., α̂4
a . Nev-

ertheless, the obtained relative interpolation error is only slightly higher than the relative pro-
jection error presented in Figure 3.9(b), indicating that most of the committed error is due to the
interpolation of Φ̂(M∗∞). Moreover, the overall trend of the interpolation and projection errors
is similar throughout the parametric space, with a maximum interpolation error also found at
M∗∞ ≈ 0.828. This suggests that we can use predicted solution vectors to decide where a new local
POD basis should be trained.

To test this hypothesis, we draw 100 random realizations of the interpolated basis Φ̂(M∗∞)
and, for each realization, we predict a solution vector at the mean value of the generalized co-
ordinates. We then compute the standard deviation of the norm of the load vector from the

(a) Sampling space. (b) Transformed input space.

Figure 3.8: Illustration of (a) five sampled points in the initial sampling space and (b) their cor-
responding values in the transformed input space.
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(a) Training points. (b) Relative projection error.

Figure 3.9: Training and testing of a database of local POD bases. (a) Location of the training
snapshots. (b) Grid of tested points and corresponding relative projection error on the interpo-
lated local POD basis. The maximum relative projection error is obtained for M∗∞ ≈ 0.828.

Figure 3.10: Distance between the subspaces defined by the "true" and approximate local
reduced-order bases as a function of M∗∞. The training points are given as reference and the
maximum distance is obtained for M∗∞ ≈ 0.828, respectively the value of M∗∞ that presented the
largest projection error.

100 random realizations. The obtained results are shown on Figure 3.11(b). We can observe
that the computed standard deviation correlates well with both projection and interpolation er-
rors, and therefore constitutes an appropriate criterion for the adaptive sampling of local POD
bases. Additionally, this criterion can be evaluated without any additional calls to the aerody-
namics solver. Finally, the main difference observed between the standard deviation and error
plots occurs close to the border of the parametric space where the freestream Mach number is
at its maximum value. This is due to the position of the training snapshots (see Figure 3.9(a)),
which leads to a predicted matrix Φ̂(M∗∞) at M∗∞ = 0.85 that is obtained via extrapolation. In the
following, we compare the obtained results with those given by a global POD basis.

3.3.3 Approximation of the state vector via a global POD basis

Training of the global POD basis is made by sampling over the entire parametric space. To ensure
a space-filling DoE, an LHS strategy is used. Moreover, to ensure a fair comparison, we allow the
same computational cost spent during the training of the local POD bases. As a result, 30 points
are sampled. Figure 3.12(a) shows the obtained DoE in the transformed input space.



96 CHAPTER 3. LOCAL POD BASES FOR DISCIPLINARY SURROGATES IN MDA

(a) Relative interpolation error. (b) Standard deviation.

Figure 3.11: Adaptive sampling criterion for the training of new local POD bases. (a) Relative
interpolation error between the true state vector and its prediction obtained via the GP approx-
imations of the generalized coordinates in the interpolated local POD basis, for the grid of 100
test points. (b) Standard deviation of the load vector norm obtained from 100 realizations of the
interpolated basis Φ̂(M∗∞).

(a) Training points. (b) Relative projection error.

Figure 3.12: Training and testing of a global POD basis. (a) Location of the training snapshots.
(b) Relative projection error on the obtained global POD basis for the grid of 100 test points.

Using the obtained snapshots, a global POD basis is trained, with the criterion η for the pro-
jection error set to 99.99%. This leads to na = 18 basis vectors, significantly more than the 4
vectors used in each of the local POD bases.

Projection error. As was done for the local POD bases, we calculate the projection error on the
same grid of 100 test points. The obtained results are given in Figure 3.12(b), where it is shown
that the considered global POD basis presents a projection error of less than 1% for the ma-
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jority of the tested points, thus outperforming the use of local POD bases. While this result may
seem discouraging, it is not unexpected. Indeed, it has been previously discussed in [Goutaudier
et al., 2023] that interpolation in the tangent space to Grassmann manifold will always result in
a projection error that is greater (or at best the same) as the one given by the a global POD basis
trained from the concatenation of the local POD bases snapshots.

We recall, however, that we do not simply want to build a reduced-order basis that accurately
represents the solution space. Indeed, our goal is to use approximations of the generalized coor-
dinates to reduce the computational cost of solving the MDA problem. As discussed in [Berthe-
lin, 2022], the DPOD+I strategy struggles when there is a large number of basis vectors because
the training inputs of one disciplinary surrogate are the generalized coordinates of the other dis-
cipline. In this context, using an aerodynamics POD basis made of 18 vectors is not a feasible
option. In the following, we instead consider a global POD basis truncated to the same number
of modes as the one used in the local POD bases (i.e. na = 4). The four modes associated with
the four largest eigenvalues are kept.

Truncation to the four most relevant modes. We use the same 30 snapshots of Figure 3.12(a)
to train a global POD basis, but this time truncate the approximation to the four modes associ-
ated with the four largest eigenvalues. We then compute the projection error on the grid of 100
test points. The obtained results are shown on Figure 3.13(a). As expected, when using only four
basis vectors, the projection error increases compared to when 18 vectors were used. Neverthe-
less, the projection error remains small, with the majority of the test points presenting a relative
projection error of less than 5%. Compared with the local POD bases, the maximum relative
projection error is smaller when using the truncated global POD basis. However, comparing the
mean projection error over the 100 tested points, the interpolated local POD basis performs bet-
ter than the truncated global POD basis. This is shown on Table 3.1, where the maximum and
mean relative projection errors for each of the considered reduced-basis methods are compared.

(a) Relative projection error. (b) Relative interpolation error.

Figure 3.13: Testing of a global POD basis truncated to the four most relevant modes. (a) Relative
projection error and (b) relative interpolation error obtained for the grid of 100 test points.
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Method Local (n∗
a = 4) Global (na = 18) Global (na = 4)

max(ϵr
p ) 7.39% 1.36% 5.63%

E(ϵr
p ) 2.09% 0.28% 2.65%

Table 3.1: Maximum and mean relative projection errors for the different reduced-order basis
methods considered. Values obtained based on the grid of 100 test points.

Next we compute the interpolation error, by predicting new load vectors via interpolation
of the generalized coordinates of the truncated global POD basis. The obtained results are pre-
sented on Figure 3.13(b) and compared against the other reduced-basis methods in Table 3.2.
Comparing with the local POD basis (see Figure 3.11(a)) the interpolation error is more impor-
tant overall when using the truncated global POD basis. Indeed, both mean and maximum in-
terpolation errors are nearly twice as large for the truncated global POD basis than for the in-
terpolated local POD basis. The global POD basis using 18 vectors performs slightly better than
the truncated global POD basis, having obtained a mean relative interpolation error of 3.65% for
the 100 tested points. Regardless, the local POD basis method performs the best among all three
methods, with a mean relative interpolation error of 2.43%.

Method Local (n∗
a = 4) Global (na = 18) Global (na = 4)

max(ϵr
i ) 7.71% 14.93% 14.80%

E(ϵr
i ) 2.43% 3.65% 4.60%

Table 3.2: Maximum and mean relative interpolation errors for the different reduced-order basis
methods considered. Values obtained based on the grid of 100 tested points.

3.3.4 Summary of local POD bases for single-discipline analysis

In this section we proposed to use the interpolation of a database of local POD bases to ob-
tain a surrogate approximation for single-discipline analysis. To assess the performance of the
proposed approach, we compared the projection and interpolation errors obtained when us-
ing local POD bases with those obtained when using a global POD basis truncated to the same
number of vectors and with those obtained using a global POD basis with a larger number of
vectors. The obtained results showed that, although the global POD basis with a larger number
vectors outperforms the remaining approaches in terms of relative projection error, the use of
local POD bases leads to a smaller error in the obtained state vector approximation, for the cho-
sen variable separation strategy. This suggests that when using a global POD basis, the value of
the generalized coordinates changes significantly when the design variables change, leading to
significant interpolation errors. Contrarily, when using local POD bases, the value of the gener-
alized coordinates does not change as much, making the interpolation easier, and reducing the
error committed on the obtained approximation of the state vector.

3.3.5 Implementation of the proposed approach in SMT

The implementation of the interpolation of the generalized coordinates using GP approxima-
tions, in the context of global POD bases, has been made available in SMT (version 2.6.0) in a
class called POD+I. The interpolation of a database of local POD bases using approximations
of the coordinates of the tangent plane basis has equally been implemented in SMT (version
2.6.3). All integrations with SMT were carried out by Hugo Reimeringer (Master student at ISAE-
SUPAERO) during his five month internship at ONERA. During his time at ONERA, Hugo worked,
in part, under my supervision.
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3.4 Static aeroelastic analysis of an aircraft wing

In the previous section we saw that, for a single-discipline analysis, the use of local POD bases
leads to a less important error on the approximation of the state vector, compared to when a
global POD basis is used. Moreover, the obtained local reduced-order basis typically consists of
only a few basis vectors (less than 10), which makes this approach appropriate for the construc-
tion of disciplinary GPs. In this section we thus explore the use of pointwise local POD bases for
disciplinary surrogates in MDA.

3.4.1 Problem formulation

A fluid-structure interaction problem describing the static aeroelastic analysis of an aircraft wing
is used to test the proposed approach. This problem couples the aerodynamics and structural
disciplines through the following coupled system of equations:

us =Ms(x,fs) inΩs (3.9a)

fa =Ma(x,ua) inΩa (3.9b)

Hus,Γ =ua,Γ on Γ (3.9c)

where us ∈Rd s
and ua ∈Rd a

denote, respectively, the structural and aerodynamic mesh motions,
fs ∈Rd s

and fa ∈Rd a
denote the aerodynamic forces acting upon the wing structure in the struc-

tural and aerodynamic nodal coordinates; Ωs and Ωa denote the structural and aerodynamic
domains; Ms and Ma are the chosen structural and aerodynamic models; H is a transfer matrix
allowing to express the structural mesh motion on the fluid mesh at the fluid-structure interface
Γ; and x ∈ X ∈ Rn is a set of design variables which influences the aerodynamic behavior, the
structural behavior, or both. In the following we assume that us and fa are high-dimensional
vectors of dimensions d s and d a , arising from the discretization of the corresponding PDEs. In-
terpolation across the fluid-structure interface is described next.

Interpolation across the fluid-structure interface. In this work we choose to use RBF to per-
form interpolation across the fluid-structure interface, however, as discussed in Section 1.2.3,
other approaches could have been used. Interpolation across the fluid-structure interface seeks
to ensure the conservation of energy through the use of the principal of virtual work:

δW = (δus,Γ)⊺fs,Γ = (δua,Γ)⊺fa,Γ (3.10)

where δW is the virtual work, δu are the virtual displacements and f are the load vectors. Using
the nodal coordinates, an interpolation matrix H ∈ Rd a,Γ×d s,Γ

may be built using RBF interpo-
lation, as proposed in [Rendall and Allen, 2008]. Note that d a,Γ and d s,Γ denote the number of
nodes of the aerodynamics load vector and structural displacement vector on the fluid-structure
interface, respectively. Using the defined interpolation matrix, the structural displacement can
then be written at the aerodynamic nodes as ua,Γ = Hus,Γ and the aerodynamic loads can be
written at the structural nodal points via fs,Γ = H⊺fa,Γ.

3.4.1.1 Disciplinary models

To obtain the structural displacement, the finite element solver Code Aster [EDF, 2017] is used,
assuming linear elastic behavior. The built structural finite element model is displayed in Fig-
ure 3.14(a). As shown, the model is made of shell elements used to represent the wing ribs, skins
and spars. The dimension of structural displacement vector is d s = 25524, respectively the num-
ber of translation degrees of freedom. To obtain the aerodynamic loads, the compressible Euler
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equations are solved using the finite volume solver SU2 [Palacios et al., 2013, Economon et al.,
2016]. The aerodynamic mesh is a three-dimensional mesh containing over 1 million elements,
used to model the air flow around the wing. However, only the wing surface mesh, illustrated
on Figure 3.14(b), is used in the disciplinary coupling. The total number of nodes on the wing
surface mesh is 15697, leading to d a,Γ = 47091.

(a) Structural mesh. (b) Aerodynamic surface mesh.

Figure 3.14: Example of (a) structural mesh and (b) aerodynamic surface mesh from which the
displacement and load vectors are obtained. For the structural mesh, the upper skin was re-
moved to allow for the visualization of the wing internal structure.

3.4.1.2 Choice of design variables

For the design variables, the angle of attack and freestream Mach number are chosen, with the
same range of variation defined in Section 3.3.1. As was done before, the design space is lim-
ited for points that present simultaneously high values of AoA and M∞ to account for physical
constraints. As a result, the transformed input space of Figure 3.8 is used.

3.4.2 Global DPOD+I strategy

To reduce the computational cost of solving the MDA, disciplinary surrogates combining global
reduced-order bases and interpolation of the generalized coordinates can be used to approxi-
mate the vectors of structural displacement and aerodynamic loads at the fluid-structural inter-
face, as proposed in [Berthelin, 2022]. The obtained disciplinary surrogates are written as:

Λus(α̂a) =
ns∑

i=1
α̂i

s(α̂a)φi
s (3.11)

Λfa,Γ(AoA, M∞,α̂s) =
na∑

i=1
α̂i

a(AoA, M∞,α̂s)φi
a (3.12)

where α̂a = {α̂1, ..., α̂na } and α̂s = {α̂1, ..., α̂ns } are GP interpolations of the generalized coordinates
of the aerodynamics and structural POD bases, respectively, and φ1

a , ...,φna
a and φ1

s , ...,φns
s are the

corresponding reduced-basis vectors. It should be noted that the design parameters are only
used directly by the aerodynamics solver. As a result, the structural surrogate will be trained
over an input space of dimension na , while the aerodynamics surrogate will be trained over an
input space of dimension ns +2 (respectively, ns +AoA+M∞).

To obtain the disciplinary global POD bases we use the training strategy defined in Algorithm
10, with the following parameters. The vector of structural displacements is chosen as the first
coupling variable, with initial bounds λ− and λ+ set to lie between 0 and 3.6 meters. The num-
ber r of initial samples is set to 10 and the tolerance for the mean relative projection error is set
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to 1%. Since the training of the POD bases uses randomly generated DoEs, three runs are per-
formed using three different initial DoEs. Table 3.3 shows the number of vectors obtained for
the structural and aerodynamic POD bases, respectively, ns and na , as well as the mean relative
projection error, ϵp

s and ϵ
p
a , obtained for each of the bases. The number of disciplinary solver

calls made to each discipline during the training is equally noted.

ns ϵ
p
s [%] na ϵ

p
a [%] neval

s neval
a

Run #1 2 0.51 30 0.39 56 66
Run #2 3 0.09 28 0.79 46 56
Run #3 3 0.28 31 0.59 56 66

Avg. 2.7 0.29 29.7 0.59 52.7 62.7

Table 3.3: Number of vectors, maximum relative projection error and number of disciplinary
solver calls obtained during the training of the disciplinary global POD bases.

Table 3.3 shows that, while the number of vectors obtained in the structural POD basis is
small, the number of vectors obtained for the aerodynamics discipline is rather large, with an
average of na = 29.7 modes obtained in the aerodynamics global POD basis. As a result, despite
the achieved reduction in the dimension of the coupling variable space, the dimension of the
input space for the structural discipline still presents a challenge for the accurate construction
of the respective GP approximations of the generalized coordinates. Moreover, due to the differ-
ence in the number of modes obtained in each disciplinary POD basis, the sensitivity analysis is
rendered useless, as only the aerodynamics discipline is selected for enrichment. For all these
reasons, we can conclude that the use of global POD bases, as proposed in the original DPOD+I
strategy, is not compatible with the use of disciplinary GP approximations for the treated MDA
problem. In the following, we propose to adapt the DPOD+I strategy to accommodate the use of
local reduced-order bases.

3.4.3 Local DPOD+I strategy

The previous section showed that the DPOD+I training strategy, while efficient in reducing the
dimension of the coupling variable space, leads to a significant number of vectors in the aerody-
namics global POD basis. To address this challenge, we propose to instead use pointwise local
POD bases in the approximation of the aerodynamics load vector. To approximate the structural
displacement vector, a global POD basis is kept. The new surrogate for the aerodynamics load
vector reads:

Λfa,Γ(AoA, M∞,α̂s) =
n∗

a∑
i=1

α̂i
a(AoA, M∞,α̂s)φ̂i

a(AoA, M∞) (3.13)

where Φ̂a(AoA, M∞) = φ̂1
a(AoA, M∞), ..., φ̂

n∗
a

a (AoA, M∞) is the interpolated local POD basis, obtained
as described in Section 3.2. Note that, in this case, we chose to train the local POD bases at fixed
design variable values. However, we could have equally chosen to keep only of of the design vari-
ables fixed, as we did in Section 3.3.2. Training of the initial database of local POD bases in the
context of MDA is discussed in the following. A strategy for the enrichment of the interpolated
local POD basis Φ̂a(AoA, M∞) during the online stage is equally proposed.

3.4.3.1 Offline training of local POD bases for MDA

To train a database of local POD bases for the aerodynamics discipline, it is necessary to gen-
erate snapshots of the load vector fa,Γ for fixed values of xa = {AoA, M∞}. Here, we obtain these
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snapshots by solving the exact MDA at a set of sampled points x1
a , ...,xnDoE

a . We recall that, to
solve the MDA, a Gauss-Seidel solver is used which calls the disciplinary solvers iteratively. This
means that, at each iteration of the algorithm, a snapshot of fa,Γ is computed. The obtained
snapshots can then be used to train a local POD basis Φ(xi

a), i = 1, ...,nDoE. Note that, in practice,
the Gauss-Seidel solver does not need to be run until convergence is achieved, but rather it can
be stopped once a sufficient number of snapshots has been computed. Here, 10 iterations of the
Gauss-Seidel solver are performed at five different design space points, sampled using an LHS
strategy. The number of basis vectors kept in each of the local POD bases, as well as the number
of disciplinary solver calls made during the training are presented in Table 3.4. Once more, since
the number of basis vectors depends on the tested DoE, three different runs are performed.

n∗
a neval

s neval
a

Run #1 6 50 50
Run #2 6 50 50
Run #3 6 50 50

Avg. 6 50 50

Table 3.4: Number of aerodynamics basis vectors and number of disciplinary solver calls made
during the training of the local POD bases for the aerodynamics discipline.

To train the structural global POD basis, snapshots of us obtained during the MDA resolu-
tions of Table 3.4 could be used. Unfortunately, this strategy leads to a structural DoE which is
not optimal for the construction of the corresponding GPs approximations, as the corresponding
points in the reduced space lie close to one another. This issue could be attenuated by randomly
changing the structural design variables in each iteration of the Gauss-Seidel solver, as proposed
in the DPOD+I training strategy. However, since, for the present test case, no structural design
variables exist (the only variables are AoA and M∞), we instead propose to train the structural
POD basis separately by running the DPOD+I training strategy until the structural projection er-
ror is below 1% (see Algorithm 10). Table 3.5 notes the number of basis vectors obtained in the
structural global POD basis, as well as the number of disciplinary solver calls made during the
training, for three different runs.

ns neval
s neval

a

Run #1 3 36 36
Run #2 3 26 26
Run #3 3 26 26

Avg. 3 29.3 29.3

Table 3.5: Number of structural basis vectors and number of disciplinary solver calls made dur-
ing the training of the global POD basis for the structural discipline.

Comparing the results of Tables 3.4 and 3.5 with those of Table 3.3, we can see that the num-
ber of vectors ns in the structural reduced-order basis does not change. This is expected as, in
both cases, a global POD basis is used. Contrarily, the number of vectors na in the aerodynamics
reduced-order basis has been drastically reduced from nearly 30 vectors, obtained when using a
global POD basis, to only 6 vectors, obtained when using local POD bases.
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3.4.3.2 Online enrichment of the interpolated local POD basis

Once both disciplinary POD bases have been trained, the approximated MDA can be solved at
any point x∗

a using the EGMDA strategy (see Section 1.2.3.2). A remark should nonetheless be
made concerning the cases when the interpolated local POD basis Φ̂a(x∗

a) does not accurately
represent the load vector at a given design space point. Indeed, sometimes, while enriching the
aerodynamics surrogate, it can happen that the relative projection error of a given snapshot fa,Γ

on the corresponding interpolated local POD basis is greater than an allowed threshold. When
this is the case, Φ̂a(x∗

a) is also enriched, as follows:

Φ̂a(x∗
a) =

[
φ̂1

a , ..., φ̂na

a ,
fa,Γ(x∗

a ,α̂s)− {Ψ̂a}−1(Ψ̂a(fa,Γx∗
a ,α̂s))

∥fa,Γx∗
a ,α̂s)− {Ψ̂a}−1(Ψ̂a(fa,Γx∗

a ,α̂s))∥2

]
(3.14)

where Ψ̂a and {Ψ̂a}−1 denote, respectively, the operations of projection and reconstruction asso-
ciated with the interpolated local POD basis Φ̂a(x∗

a) before enrichment. Note that this criterion
is similar to the enrichment criterion already used for the global POD bases (see Eq. (2.49)), with
the sole difference being that now the new vector only affects the current MDA resolution. Dur-
ing our numerical tests, we saw that the number of vectors added to Φ̂a(x∗

a) was never such that
it negatively affected the construction of the disciplinary GPs. In other words, even when adding
new vectors to Φ̂a(x∗

a), n∗
a usually remains small (typically below 10).

3.4.4 Numerical results

3.4.4.1 Resolution of the true MDA

To study the performance of the proposed approach, the true MDA is first solved at 10 different
design space points, sampled using an LHS strategy. Figure 3.15(a) shows the location of the
tested points as well as the location of the initial database of local POD bases on the transformed
input space.

(a) LHS of tested points. (b) Points 2, 6 and 10.

Figure 3.15: Tested points for the static aeroelastic analysis of an aircraft wing using local POD
bases. (a) LHS of tested points. (b) Points #2, #6 and #10.

The problem is then set up within the OpenMDAO framework and a non-linear Gauss-Seidel
solver is chosen to solve the MDA, with stopping criterion set to 1% of relative change on the
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coupling variable values between two consecutive iterations. The number of disciplinary solver
calls made at each of the tested points is noted in Table 3.6. As shown, when solving the true
MDA, the number of disciplinary solver calls needed varies between 3 and 13 calls to each solver,
with an average of 7.3 calls obtained from all 10 runs. For the used aerodynamics solver, one
solver call can take as long as 15 minutes of computational time, while for the structural solver,
one solver call takes around 2 minutes. This means that the average MDA takes almost 2 hours to
run while the longest MDA requires over 3 hours of computational time. While these times can
be reduced by restarting the aerodynamic computations from previously converged solutions or
by employing relaxation strategies (e.g. Aitken acceleration), the resolution of the true MDA in a
multi-query context quickly becomes prohibitively expensive.

Point #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg.

neval
s 13 9 7 7 5 3 4 11 7 7 7.3

neval
a 13 9 7 7 5 3 4 11 7 7 7.3

Table 3.6: Number of disciplinary solver calls made during the resolution of the true MDA at 10
tested design space points.

3.4.4.2 Resolution of the approximated MDA

The approximated MDA is now solved at the same 10 points of Table 3.6, using the following
settings. All GP approximations are built using the SMT package, with constant mean trend and
squared-exponential correlation function. For the random MDA, the number of Monte Carlo
samples drawn for each random variable is set to 1500 and the convergence criterion is chosen
so that the 0.9-quantile of the random MDA solutions is less than 1% away from the surrogate
mean solution. The maximum projection error allowed is equally set to 1%. If this threshold is
surpassed, the respective disciplinary POD basis is enriched. Table 3.7 displays the number of
disciplinary solver calls, as well as the number of vectors added to the disciplinary POD bases at
each of the tested points. We recall that the vectors added to Φ̂a(x∗

a) are only used locally and are
not kept when solving the approximated MDA at other points of the design space.

Point #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg.

neval
s 3 4 5 4 2 2 4 3 1 2 3

neval
a 3 2 2 3 2 2 2 2 1 2 2.1

nnew
s 0 0 0 0 0 0 0 0 0 0 0

nnew
a 1 1 1 1 1 1 1 1 1 1 1

Table 3.7: Number of disciplinary solver calls made during the resolution of the approximated
MDA and number of vectors added to each disciplinary POD basis for the same 10 design space
points where the true MDA was solved.

Table 3.7 shows that, on average, the number of disciplinary solver calls required to solve one
approximated MDA is half of that needed to solve one true MDA. Notably, the average number of
calls made to the structural solver was 3 while the average number of aerodynamics solver calls
was 2.1. In terms of computational time, these results translate into less than one hour for the
resolution of one MDA. And although the computational time spent during the training of the
disciplinary POD bases is non-negligible, it is quickly compensated for applications where the
MDA must be solved several times, such as design optimization or reliability analysis. Table 3.8
compares the total computational cost spent when using the real disciplinary solvers with the
total computational cost spent when using the disciplinary surrogates.
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True MDA Approximated MDA
Training Resolution Total Training Resolution Total

neval
s 0 73 73 79.3 30 109.3

neval
a 0 73 73 79.3 21 100.3

Table 3.8: Comparison of the total number of disciplinary solver calls made when solving the
true MDA and when solving the approximated MDA at the 10 tested design space points.

Table 3.8 shows that, for the true MDA, solver calls are exclusively made during the online
stage, and thus the total computational cost is the sum of all solver calls for all queried points.
Contrarily, for the approximated MDA, an important number of solver calls are made during the
offline training of the disciplinary POD bases. These calls must be accounted for in the total
computational cost of the approach. Based on the obtained results, it can then be said that
solving 10 true MDAs is computationally less expensive than solving 10 approximated MDAs.
However, it can be expected that the approximated MDA will become computationally cheaper
once the number of required MDA resolutions (nMDA) verifies 3nMDA+79.3 < 7.3nMDA. Taking into
account that the number resolutions must be an integer, this condition is true when nMDA ≥ 19.

Concerning the enrichment of the disciplinary POD bases, Table 3.7 shows that the obtained
global POD basis for the structural discipline was never enriched (nnew

s = 0, for all tested points).
Contrarily, for the aerodynamics discipline it was always necessary to add one vector to the in-
terpolated POD basis Φ̂a(x∗

a) (nnew
a = 1, for all tested points). This led to a maximum number of

aerodynamics coefficients to interpolate of n∗
a +1 = 7. We do remark however that, although we

use the term "enrichment", adding a new vector to the disciplinary POD bases is essentially cost-
free, as the used snapshot had already been previously computed to enrich the corresponding
GP approximations of the generalized coordinates.

Finally, to assess the quality of the results given by the proposed approach, we compare the
relative error between the coupling variable values at the solution of the true MDA and those
given by the surrogate mean solution of the approximated MDA. For each tested point, the ob-
tained relative error is shown in Table 3.9.

Point #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg.

ϵrel
s [%] 1.86 0.65 1.00 0.37 0.73 0.79 0.62 0.33 1.21 0.62 0.82
ϵrel

a [%] 0.87 0.41 0.11 0.16 0.28 0.28 0.18 0.11 0.88 0.16 0.34

Table 3.9: Relative error ϵrel of the obtained coupling variable values obtained at the surrogate
mean solution of the approximated MDA with those given by the true MDA for the 10 tested
design space points.

As is shown, the proposed approach is capable of providing accurate results, with average
values of the relative error remaining under 1% for both disciplines. The maximum relative error
obtained occurred for the displacement vector of the first tested point, where the obtained rela-
tive error was of 1.86%. The accuracy of the obtained solutions is also reflected in the obtained
coefficient of pressure distributions, presented in Figure 3.16 for three design space points. The
position of the chosen points in the transformed input space is shown in Figure 3.15(b). The
corresponding coefficient of pressure distributions are given using the same color code.

Figure 3.16 shows that the coefficient of pressure distributions obtained via the approxi-
mated MDA are very close to those obtained via the true MDA. This is in agreement with the
small relative error obtained in Table 3.9. We further remark the absence of shock wave for tested



106 CHAPTER 3. LOCAL POD BASES FOR DISCIPLINARY SURROGATES IN MDA

(a) AoA= 3.92°. M∞ = 0.70. (b) AoA= 11.1°. M∞ = 0.67. (c) AoA= 6.38°. M∞ = 0.81.

Figure 3.16: Comparison of the coefficient of pressure distribution at the wing half span, for
three of the tested points. (a) Point #10. (b) Point #6. (c) Point #2.

point #10 (in green), and the two different shock wave positions for tested points #6 and #2 (in
red and yellow, respectively). The existence of such different solutions justifies the large number
of basis vectors obtained when using a global POD basis in the approximation of the aerodynam-
ics load vector. Finally, we note that, although the coefficient of pressure distributions presented
in Figure 3.16 only compare the obtained results at the wing half span, the good agreement be-
tween the true and approximated MDAs is present throughout the rest of the wing. This is ev-
idenced in Figure 3.17, where the true and approximated pressure distributions over the wing
upper surface are compared for Point #2 (identified in yellow in Figure 3.15(b)).

Figure 3.17: Comparison of the obtained pressure distribution over the wing upper surface when
solving the true MDA with that obtained when using the disciplinary surrogates. The provided
example is for AoA= 6.38° and M∞ = 0.81 (Point #2).

3.4.5 Summary of local POD bases for MDA

In this chapter we proposed the use of local POD bases for building disciplinary surrogates in
MDA. In this context, the use of global POD basis has been shown to require a significant number
of basis vectors for cases where the disciplinary outputs are very sensitive to certain parameter
changes. This, in turn, leads to a large interpolation error for the built GP approximations of
the generalized coordinates. The use of pointwise local POD bases, on the other hand, allows to
keep a small number of basis vectors and retain a small interpolation error in the approximation
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of the generalized coordinates. Application to a static aeroelastic analysis of a wing in transonic
flight confirmed the interest of the proposed approach for applications requiring several MDA
resolutions. Not only was the computational cost linked to the resolution of one MDA reduced,
but also very little compromise is made in terms of accuracy of the obtained solution.

In terms of future perspectives, a more in-depth study of the variable separation strategy
used in the local POD basis approximation of Eq. (3.13) should be considered. Indeed, it may
have been more interesting to train the local POD basis in terms of either angle of attack or
freestream Mach number, rather than both. Application to systems where both aerodynamics
and structural disciplines require the use of pointwise local POD bases could equally be envi-
sioned as future work, in order to properly assess the robustness of the proposed approach.

Chapter summary:

In this chapter we proposed the use of local POD bases for building disciplinary sur-
rogates in MDA. To that end, we first introduced a strategy for the interpolation of
local POD bases using GPs. The main steps were:

• Obtain a basis of the tangent plane to the Grassmann manifold at a point of
tangency P ;

• Interpolate the coordinates of the tangent plane basis using GPs.

A strategy for estimating the quality of the POD basis interpolation was equally pro-
posed, by generating random realizations of the interpolated matrix and looking at
the dispersion of the corresponding points in the Grassmann manifold.

The use of local POD bases for single-discipline analysis was introduced next. Using
as illustrative example the case of a wing in transonic flight, we showed that:

• The number of basis vectors in the interpolated local POD basis is less than the
one obtained for a global POD basis, trained over the entire parametric space;

• The projection error is greater for the interpolated local POD basis than for the
global POD basis. However, the projection error is smaller for the interpolated
local POD basis, than for a global POD basis truncated to the same number of
vectors as the interpolated local POD basis;

• The interpolation error is smaller when using local POD bases, compared to
when a global POD basis is used, for all tested truncation choices.

Testing the proposed approach in the static aerolastic analysis of an aircraft wing,
subject to different flight conditions in terms of angle of attack and freestream Mach
number further confirmed the interest of the proposed approach for applications re-
quiring many MDA resolutions. Indeed, the use of local POD bases allowed for:

• The reduction of the average computational cost of one MDA resolution;

• Almost no compromise in terms of accuracy of the obtained solution, with av-
erage relative errors remaining below 1% compared to when the real solvers are
used.
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The developments presented in this chapter led to the following conference paper, which was
presented at the AeroBest conference in July 2023:
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gradient based optimization of multidisciplinary systems, in proceedings of II ECCOMAS The-
matic Conference on Multidisciplinary Design Optimization of Aerospace Systems. ISBN: 978-
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Another communication was made on the ECCOMAS congress in June 2024, which included
more recent developments, namely those involving the use of pointwise local POD bases.
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In this chapter we will:

• Introduce the analytical derivatives of the disciplinary GPs.

• Introduce the derivatives of the DPOD+I surrogates.

• Present numerical results for an analytical test case.

• Present numerical results for a wing structural sizing problem using local POD
bases to reduce the dimension of the aerodynamics load vector.

4.1 Chapter contributions

In Chapter 3 we introduced disciplinary surrogates which combine pointwise local POD bases
with GP interpolation of the generalized coordinates to reduce the computational cost of solv-
ing the MDA in a multi-query context. Adaptive enrichment of the disciplinary surrogates at
queried points allowed to keep the training cost to a minimum while still achieving a desired
level of accuracy in the obtained MDA solution. In this chapter we propose to use these same
disciplinary surrogates to solve MDO problems. Moreover, we propose to use the derivatives of
the built disciplinary surrogates, which can be obtained analytically, to drive the search for a lo-
cal optimum. Application to both an analytical and engineering test cases confirms the interest
of the proposed approach in terms of computational cost.

4.2 Analytical derivatives of the disciplinary surrogates

An advantage of using disciplinary GPs is that, although the derivatives of the true disciplinary
solvers are assumed to be unavailable, these can be approximated analytically from the built
disciplinary surrogates. Through the chain rule, it is then possible to obtain the total derivatives
of any objective or constraint function which depend on the solution of the MDA, using either
the direct or adjoint methods, as described in Section 1.2.5.1. In the following, we detail the
computation of the derivatives of the disciplinary GPs with respect to the design variables in
the case of scalar coupling variables. We then extend this concept to disciplinary surrogates
combining global or local POD bases with GP interpolation.

4.2.1 Derivative computation for scalar coupling variables

When the coupling variables are scalars, the partial derivative of the GP approximation ŷi (x,yci )
with respect to the design variable xk is given by:

∂ŷi (x,yci )

∂xk
= ∂µi (x,yci )

∂xk
+ ∂σi (x,yci )

∂xk
ξi , ∀x ∉xDoEi , i=1,...,nd , (4.1)

where µi denotes the mean of the disciplinary GP, σi its standard deviation and ξi is a standard
Gaussian random variable. The obtained derivative is thus a random variable whose mean value
is given by the first term of Eq. (4.1) and whose uncertainty is described by the second term
of the same equation. Because the uncertainty on the value of the derivative stems from the
uncertainty of the corresponding disciplinary GP, we can reduce it at any queried point, by first
enriching the disciplinary surrogates via the EGMDA strategy. This allows to neglect the second
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term of Eq. (4.1) and rewrite the derivative of ŷi (x,yci ) with respect to the design variable xk as:

∂ŷi (x,yci )

∂xk
≈ ∂µi (x,yci )

∂xk
, i = 1, ...,nd (4.2)

Illustration of the proposed derivative approximation. To illustrate the proposed derivative
approximation, we consider the 1-D illustrative example of Chapter 1, whose multidisciplinary
analysis is given by the following non-linear system of equations:{

y1(x, y2) = x2 −cos( y2
2 )

y2(x, y1) = x + y1
(4.3)

Figure 4.1 compares the true derivatives of the disciplinary solvers of Eq. (4.3) with the deriva-
tives of the corresponding disciplinary surrogates, before any surrogate enrichment. In both
plots, the input coupling variable values are fixed to their respective value at the MDA solution
for x∗ =−3.

(a) Discipline 1. (b) Discipline 2.

Figure 4.1: Derivative of the disciplinary surrogates of the 1-D illustrative example before en-
richment. Confidence intervals are given to illustrate the associated uncertainty and the true
derivative is given as reference.

Figure 4.1 shows that, before enrichment of the disciplinary surrogates, the value of the dis-
ciplinary surrogate derivatives on the queried point x∗ = −3 does not match that of the true
derivatives. For the first disciplinary surrogate, the derivative uncertainty hints at the fact that
the computed derivative value may be false. However, for the second disciplinary surrogate,
there seems to be almost no uncertainty, even though the value of the approximate derivative
does not match the true value. This illustrates the importance of enriching the disciplinary sur-
rogates before computing the corresponding derivatives. Figure 4.2 illustrates the same deriva-
tives after the disciplinary surrogates have been enriched at point x∗ =−3.

As shown, after enrichment, the mean value of the derivatives at x∗ =−3 is close to their true
value for both disciplinary surrogates, which justifies the proposed simplification (Eq. (4.2)). We
can remark, however, that around the queried point, a large error is committed on the value of
the derivative for the first disciplinary surrogate. In the following we will show that, as gradient-
based optimizers tend to query the MDA at points around the local optimum, the quality of the
disciplinary derivative approximations will also improve around the local optimum.
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(a) Discipline 1. (b) Discipline 2.

Figure 4.2: Derivative of the disciplinary surrogates of the 1-D illustrative example after enrich-
ment. For both disciplinary surrogates, the mean derivative is close to the true derivative at the
enrichment point.

Improvement of the derivative approximation during the resolution of the MDO problem.
When solving the optimization problem, gradient-based optimizers tend to query the MDA at
points around the local optimum. In our approach, for each queried point, we enrich the dis-
ciplinary surrogates via the EGMDA strategy. As a consequence, the quality of the disciplinary
derivative approximations is also improved around the local optimum. This is illustrated in Fig-
ure 4.3, where the derivative of the first disciplinary surrogate is obtained, after having solved
the MDO problem using the proposed approach.

(a) Predicted derivative for discipline 1. (b) Derivative standard deviation.

Figure 4.3: Improvement of the predicted derivative thanks to the enrichments made during the
resolution of the MDO. (a) Predicted derivative for discipline 1 at a fixed value of y2. (b) Standard
deviation of the predicted derivative for discipline 1. The initial DoE for discipline 1 as well as
the added points are identified in blue and green dots, respectively.
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Figure 4.3(a) shows that, thanks to the enrichments made during the resolution of the MDO
problem, the prediction of the derivative of the first disciplinary surrogate around the global
optimum has been significantly improved. Moreover, Figure 4.3(b) further confirms that the en-
richments made during the resolution of the MDA lead to a reduction of the uncertainty on the
value of the derivative around the global optimum, at x∗ = −3. Indeed, the derivative standard
deviation is close to zero in this region. Finally, we remark that for the presented example, the
problem was run from starting point x =−1.5. Using a different starting point, the region around
the local optimum might have been improved instead.

4.2.2 Derivative computation for vector-valued coupling variables

When the coupling variables are high-dimensional vectors, we first reduce the dimension of
the coupling variable space, either by means of a global POD basis, or via the interpolation of
a database of pointwise local POD bases, as proposed in Chapter 3. Whichever the case, the
derivative of the disciplinary surrogates is no longer given by Eq. (4.2). In the following, we dis-
cuss how the derivatives of the disciplinary surrogates are obtained depending on the chosen
dimension reduction strategy.

Using global POD bases. When using a disciplinary global POD basis as dimension reduction
strategy, only the generalized coordinates depend on the set of design variables. As a result, the
derivative of ŷi (x,αci ) with respect to the design variable xk can be obtained analytically from
the GP approximations of the generalized coordinates, as follows:

∂ŷi (x,α̂ci )

∂xk
=

ni∑
j=0

(
∂µ

j
i (x,α̂ci )

∂xk
+ ∂σ

j
i (x,α̂ci )

∂xk
ξi

)
φ

j
i , i = 1, ...,nd (4.4)

As for the scalar coupling variables, we assume that uncertainty has been previously reduced
thanks to the enrichment of the disciplinary surrogates, and thus Eq. (4.4) can be approximated
as:

∂ŷi (x,α̂ci )

∂xk
≈

ni∑
j=0

∂µ
j
i (x,α̂ci )

∂xk
φ

j
i , i = 1, ...,nd (4.5)

Using pointwise local POD bases. When using the interpolation of a database of pointwise
local POD bases as dimension reduction strategy, not only the generalized coordinates, but also
the basis vectors are a function of the set of design variables (or a subset of it, depending on the
variable separation strategy employed). In this case, the derivative of ŷi (x,αci ) with respect to
the design variable xk is given by:

∂ŷi (x,α̂ci )

∂xk
=

ni∑
j=0

∂

∂xk

(
α̂i (x,α̂ci )φ̂ j

i (x)
)

, i = 1, ...,nd (4.6)

To obtain the derivative of the state vector with respect to the design variables it is thus necessary
to differentiate the interpolation of the coordinates in the tangent plane basis. Unfortunately,
differentiation across the exponential map is not trivial due to the singular value decomposition
(see Eq. (2.35)). As a result, in this work we simplify the derivative calculation when using point-
wise local POD bases, by assuming that the basis vectors can be considered constant in a small
neighborhood of the queried point. The approximated derivative reads:

∂ŷi (x,α̂ci )

∂xk
≈

ni∑
j=0

(
∂µ

j
i (x,α̂ci )

∂xk
+ ∂σ

j
i (x,α̂ci )

∂xk
ξi

)
φ̂

j
i (x), i = 1, ...,nd (4.7)
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Finally, assuming that uncertainty has been previously reduced thanks to the enrichment of the
disciplinary surrogates, Eq. (4.7) can be further simplified to:

∂ŷi (x,α̂ci )

∂xk
≈

ni∑
j=0

∂µ
j
i (x,α̂ci )

∂xk
φ̂

j
i (x), i = 1, ...,nd (4.8)

In the following, numerical tests are used to assess the performance of the proposed approach.

4.3 Numerical tests

To test the use of disciplinary GPs for gradient-based MDO, we first solve a benchmark analyt-
ical problem using scalar coupling variables. Then we apply the proposed approach to a wing
structural sizing problem, where the coupling variables are the structural displacement vector
and the aerodynamics load vector. The obtained results are presented in the following.

4.3.1 Application to an analytical test case

The Sellar benchmark test case [Sellar et al., 1996] is a constrained MDO problem using analyti-
cal disciplinary solvers. It is defined as:

argmin
z∈Z

z3
3 + z2 + y∗

1 +exp(−y∗
2 )

s.t. 3.16− y∗
1 ≤ 0

y∗
2 −24 ≤ 0

(4.9)

where z = {z1, z2, z3} is the set of design variables, Z is the design space defined as Z = [−10,10]×
[0,10]× [0,10] and y∗ = {y∗

1 , y∗
2 } is the solution of the following non-linear system of equations:{

y1 = z2
1 + z2 + z3 −0.2y2

y2 =p
y1 + z1 + z2

(4.10)

The Sellar problem presents both a global and local optima. The design variable, objective and
constraint function values at each optima are summarized in Table 4.1.

Optimum z1 z2 z3 f ∗
obj 3.16− y1 y2 −24

Global 1.9776 0.0 0.0 3.1834 0 -20.2472
Local -1.7171 0.1384 0.1128 4.1307 0 -23.8145

Table 4.1: Global and local optima for the Sellar test case. Objective and constraint function
values at each optima are given. Note that the second constraint function is not active for either
global nor local optima.

In the following, we solve the Sellar problem using a local optimization algorithm, ran from
different starting points. Depending on the chosen starting point, the optimizer will be expected
to converge to either global or local optima. A run will thus be considered successful if either of
the two points is found.
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4.3.1.1 Reference results

We first solve the MDO problem of Eq. (4.9) using the real disciplinary solvers. To that end, the
problem is set up in OpenMDAO, using the following settings. As MDO formulation we use an
MDF approach, where we solve the MDA at each iteration using a Gauss-Seidel solver. The con-
vergence criterion for the Gauss-Seidel solver is chosen as 0.1% of relative change in the coupling
variable values between two successive iterations. For the optimizer, the gradient-based SLSQP
is chosen with convergence criterion set to 10−4. Under the assumption of black-box disciplinary
solvers, we obtain the derivatives of the objective and constraint functions via finite-difference
approximation. The problem is then run from five different starting points, sampled using an
LHS strategy. The optima found as well as the number of disciplinary solver calls made are given
in Table 4.2.

z0 z∗
1 z∗

2 z∗
3 f ∗

obj neval
1 neval

2

#1 1.9776 0.0 0.0 3.1834 127 127
#2 1.9776 0.0 0.0 3.1834 125 125
#3 -1.7171 0.1384 0.1128 4.1307 188 188
#4 -1.7171 0.1384 0.1128 4.1307 142 142
#5 1.9776 0.0 0.0 3.1834 110 110

Total number of solver calls 692 692

Table 4.2: Optima found and number of disciplinary solver calls obtained when solving the Sellar
MDO problem using the real disciplinary solvers in an MDF approach. Optimization results
obtained from five different starting points.

The obtained results show that the optimizer successfully converged to the local optimum
for runs #3 and #4 and to the global optimum for runs #1, #2 and #5. However, due to the finite-
difference approximation of the derivatives, a significant number of solver calls is required. To
ease this computational burden, an IDF approach may be used. We recall that, in the IDF ap-
proach, the MDA is not solved at each queried point, but instead consistency constraints are
added to ensure the feasibility of the optimal solution. In this manner, the IDF spares com-
putational cost not only in each iteration of the optimizer, but also during the finite-difference
computation of the derivatives. Table 4.3 shows the optima found as well as the number of disci-
plinary solver calls made when using an IDF approach to solve the Sellar MDO problem. To allow
for a fair comparison, we choose as starting points the same points used for the MDF approach.

Comparing the results of Table 4.3 with those obtained using the MDF approach we see that,
by employing an IDF formulation, the computational cost is significantly reduced (less than half
of the solver calls made using the MDF approach). Nevertheless, for starting point #3 the IDF
approach returned a point that is neither global nor local optimum.

4.3.1.2 Proposed approach

We now solve the Sellar problem using the disciplinary surrogates. To that end, we build initial
disciplinary DoEs of four points each, using as guess for the coupling variable space bounds y1 ∈
[0,25] and y2 ∈ [0,25]. For the optimizer, the gradient-based SLSQP is kept, with the derivatives
calculated at the mean of the disciplinary GPs, as proposed in Eq. (4.2). To solve the MDA, the
EGMDA strategy is used with convergence criterion set to ϵCV = 0.001. The optima found as well
as the number of disciplinary solver calls made when using the disciplinary surrogates are shown
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z0 z∗
1 z∗

2 z∗
3 f ∗

obj neval
1 neval

2

#1 1.9776 0.0 0.0 3.1834 56 56
#2 1.9776 0.0 0.0 3.1834 50 50
#3 -1.5655 0.7879 0.1210 4.3304 61 61
#4 1.9776 0.0 0.0 3.1834 67 67
#5 1.9776 0.0 0.0 3.1834 62 62

Total number of solver calls 296 296

Table 4.3: Optima found and number of disciplinary solver calls obtained when solving the Sel-
lar MDO problem using the real disciplinary solvers in an IDF approach. Optimization results
obtained from the same starting points used for the MDF approach.

in Table 4.4, for the same five starting points used in the MDF and IDF approaches. The relative
errors committed on the solution points found and corresponding objective function value are
equally presented. These were calculated with respect to the closest optimum.

z0 ẑ∗
1 ẑ∗

2 ẑ∗
3 ϵrel(ẑ

∗)[%] f̂ ∗
obj ϵrel( f̂ ∗

obj)[%] neval
1 neval

2

#1 1.9776 0.0 0.0 ≤ 10−2 3.1834 ≤ 10−2 15 14
#2 1.9783 0.0 0.0 0.04 3.1828 0.02 10 10
#3 -1.7089 0.1287 0.1492 2.23 4.1223 0.2 13 11
#4 -1.7157 0.1407 0.1153 0.21 4.1306 ≤ 10−2 13 9
#5 1.9776 0.0 0.0 ≤ 10−2 3.1834 ≤ 10−2 12 10

Number of disciplinary DoE points 4 4
Total number of solver calls 67 58

Table 4.4: Optima found and number of disciplinary solver calls obtained when solving the Sellar
MDO problem using the disciplinary surrogates, with stopping criterion chosen as ϵCV = 0.001.
Optimization results obtained from the same five starting points used for the MDF and IDF ap-
proaches.

The results of Table 4.4 show that, when using the disciplinary surrogates, the optima found
depend not only on the starting point, but also on the quality of the disciplinary surrogate ap-
proximations. Indeed, for starting points number #1 and #5 the global optimum was found with
a relative error of less than 0.01%. However, for starting point #2 the quality of the disciplinary
GP approximations led the optimizer to a slightly more optimistic solution. Similarly, points #3
and #4 did not converge to the local optimum, but to a point in a neighborhood of it. Despite
the small differences in the points found, the obtained results still present a good accuracy, with
a maximum relative error in the design variable values of 2.23%, committed for starting point
number #3. This led to an objective function value that is 0.2% more optimistic. In terms of com-
putational cost, we remark that using the disciplinary surrogates allows to significantly reduce
the number of disciplinary solver calls made compared to when the real disciplinary solvers are
used. Comparing the obtained results with those of Tables 4.2 and 4.3, we see that the disci-
plinary surrogates required 10 times less solver calls than the MDF approach and 4 times less
solver calls than the IDF approach.

Influence of EGMDA stopping criterion. Because the quality of the computed derivative ap-
proximations depends on the quality of the obtained disciplinary surrogates, we can expect that
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the chosen value for ϵCV will play an important role on the obtained results. To test this hypothe-
sis, we solve the MDO problem using the proposed approach, but this time we relax the EGMDA
stopping criterion to ϵCV = 0.1. The obtained results are presented on Table 4.5.

z0 ẑ∗
1 ẑ∗

2 ẑ∗
3 ϵrel(ẑ

∗)[%] f̂ ∗
obj ϵrel( f̂ ∗

obj)[%] neval
1 neval

2

#1 1.9489 0.0037 0.1051 5.51 3.1986 0.47 6 5
#2 2.4623 0.0 0.0 24.51 3.1600 0.73 4 0
#3 1.9784 0.0 0.0 0.4 3.1830 0.01 8 4
#4 -1.7176 0.1113 0.1375 2.12 4.1291 0.04 9 4
#5 1.9773 0.0 0.0 0.02 3.1833 ≤ 10−2 5 4

Number of disciplinary DoE points 4 4
Total number of solver calls 36 21

Table 4.5: Optima found and number of disciplinary solver calls obtained when using a relaxed
stopping criterion (ϵCV) in the EGMDA strategy.

Table 4.5 shows that, by using a more relaxed stopping criterion, we allow some uncertainty
to exist in the random MDA solutions. As a consequence, the obtained MDO solutions lie farther
away from either global or local optima, with only runs #3 and #5 presenting a relative error of
less than 1% in design variable values obtained. For run #2, the quality of the disciplinary sur-
rogates led the optimizer to converge to neither local or global optima, which had not occurred
when a stricter stopping criterion was used. Despite the committed error on the design variable
values, the obtained objective function values remain close to the their true optimal value, sug-
gesting that the use of a relaxed criterion can nonetheless be used to quickly explore the design
space and obtain an idea of the best objective function value attainable. Indeed, because the
imposed stopping criterion does not require the disciplinary surrogate approximations to be as
accurate, the number of calls to the disciplinary solvers has been drastically reduced from 67 to
36 calls for the first disciplinary solver and from 58 to 21 calls for the second disciplinary solver.

Quality of the computed derivatives. To assess the quality of the computed derivatives, we
compare the approximate derivatives with the true derivatives of the Sellar problem, for both
strict (ϵCV = 0.001) and relaxed (ϵCV = 0.1) stopping criteria. The relative error committed on the
norm of the total derivatives of the objective and constraint functions at the global optimum is
presented in Table 4.6.

f
ϵCV=0.001

obj g
ϵCV=0.001
1 g

ϵCV=0.001
2 f

ϵCV=0.1
obj g

ϵCV=0.1
1 g

ϵCV=0.1
2

ϵrel

(
d

dx

)
0.35% 0.50% 1.61% 3.54% 3.32% 43.3%

Table 4.6: Relative error committed on the total derivatives of the objective and constraint func-
tions. Values computed for both strict (ϵCV = 0.001) and relaxed (ϵCV = 0.1) stopping criteria.

The results of Table 4.6 show that the chosen stopping criterion for the EGMDA strategy
greatly impacts the quality of the computed the derivatives. Indeed, when using a stricter stop-
ping criterion, the relative error committed on the total derivatives remains small for all quanti-
ties of interest. Contrarily, when using a relaxed criterion, the relative error becomes more im-
portant, having obtained as much as 43.3% of relative error on the total derivative for the second
constraint function. We do note, however, that this constraint is not active at the global opti-
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mum, which explains why the proposed approach is still capable of finding the global optimum,
despite the committed error.

4.3.2 Application to a wing structural sizing problem

We now apply the proposed approach to solve a wing structural sizing problem, whose MDA is
the one defined in Section 3.4. The disciplinary solvers used to obtain the aerodynamic loads
and structural displacements are also kept unchanged, and the same disciplinary models are
considered. The MDO problem is then defined as a mass minimization problem under failure
constraints, accordingly:

argmin
x∈X

mw(x)

s.t.
vMIS(x,us ,fa,Γ)

σy /2
−1 ≤ 0

L(x,us ,fa,Γ)

2.5W
−1 = 0

(4.11)

where x is the set design variables, X the corresponding design space, mw is the wing mass, vMIS
denotes the maximum value of the von Mises stress and σy is the material yield stress. In prac-
tice, to avoid discontinuities in the constraint function, the actual maximum of the von Mises
stress is not calculated at each iteration, but is evaluated at a same structural mesh node, where
the maximum stress occurs for the chosen design variable bounds. Moreover, the stress con-
straint is evaluated for a 2.5g pull-up maneuver condition at an altitude of 0ft and a freestream
Mach number of 0.64. To that end, an additional constraint is added to the problem which im-
poses the generated lift L to be 2.5 times the aircraft weight W . An illustration of the wing internal
structure is given in Figure 4.4, where the main structural components (ribs, skins and spars) are
identified.

Figure 4.4: Wing internal structure. Identification of the structural components considered in
the mass minimization problem.

Choice of design variables. To size the wing internal structure, the thicknesses of the wing ribs,
skins and spars are chosen as design variables. The range of variation of each variable is scaled to
take values in [0,1], however, the actual thickness bounds are chosen so that a sufficient variation
of the MDA outputs is obtained. Moreover, to be able to satisfy the lift constraint, the angle of
attack (AoA) must be added to the set of design variables, leading to x = {AoA, tr, tsk, tsp}. The
angle of attack is also scaled to take values in [0,1], but a sufficient range of variation is allowed
to ensure that the L = 2.5W condition can be met. Figure 4.5 illustrates the deformation of the
structural mesh, obtained for the L = 2.5W condition, when all scaled thickness are set to either
zero or one. As is shown, for the same flight condition, the vertical wing tip displacement is



4.3. NUMERICAL TESTS 119

significantly larger when all thickness parameters are set to zero (in this condition, the vertical
wing tip displacement was of 2.32 meters).

Figure 4.5: Deformation of the wing structural mesh when the scaled thicknesses are all set to
either zero or one. The undeformed shape of the wing is given as reference.

4.3.2.1 Training the disciplinary surrogates

As dimension reduction strategy we choose to use a global POD basis for the structural discipline
and the interpolation of a database of local POD bases for the aerodynamics discipline. The
obtained disciplinary surrogates for the structural displacement and aerodynamic loads at the
fluid-structure interface are written as:

Λus(tr, tsk, tsp,α̂a) =
ns∑

i=1
α̂i

s(tr, tsk, tsp,α̂a)φi
s (4.12)

Λfa,Γ(AoA,α̂s) =
na∑

i=1
α̂i

a(AoA,α̂s)φi
a(AoA) (4.13)

where tr, tsk, tsp denote the thicknesses of the wing ribs, skins and spars, respectively. To train the
aerodynamics local POD bases (φi

a(AoA)), it is necessary to generate snapshots at fixed values of
angle of attack. On the other hand, to obtain a global POD basis (φi

s) for the structural discipline
that accurately represents the whole solution space, some variation in the training snapshots is
desired. We thus propose to use a training strategy similar to the one employed in the DPOD+I
strategy, where we solve the MDA for fixed values of angle of attack, but change the thickness
values at each iteration. In total, five MDAs are run, for five different values of angle of attack.
Each MDA is allowed to run for 8 iterations, leading to a total computational cost for the training
of the disciplinary surrogates of 40 solver calls to each discipline. In terms of the dimension of
the reduced coupling variable space, the training of the disciplinary POD bases led to 4 vectors
in the structural global POD basis and to 4 vectors in each of the aerodynamics local POD bases.

4.3.2.2 Computation of the approximate derivatives

To test the accuracy of the built disciplinary surrogates, we first solve the MDA and compute the
derivatives at three different design space points. For the real disciplinary solvers, for which the
derivatives are not available, finite-difference approximation is used. To solve the true MDA a
Gauss-Seidel solver is used with convergence criterion set to 1% of relative change in the cou-
pling variable values between two successive iterations. To solve the approximated MDA, the
EGMDA strategy is employed, with convergence criterion set to ϵCV = 0.01. Enrichment of the



120 CHAPTER 4. DISCIPLINARY SURROGATES FOR GRADIENT-BASED MDO

disciplinary POD bases is performed, when necessary, as described in Section 3.4.3.2. Table 4.7
presents the obtained values for the objective and inequality constraint functions at the solu-
tion of the true and approximated MDAs. The number of disciplinary solver calls required for
the resolution of the MDA and computation of the total derivatives for each of the approaches is
equally given.

Real solvers Disciplinary GPs
Point m∗

w [kg] g∗
vMIS neval

s neval
a m∗

w [kg] ĝ∗
vMIS ϵvMIS[%] neval

s neval
a

#1 16396.6 -0.3516 32 32 16396.6 -0.3458 1.65 2 1
#2 8651.1 -0.2324 32 32 8651.1 -0.2268 2.41 2 1
#3 22402.3 -0.5144 24 24 22402.3 -0.5113 0.60 1 0

Training −− −− 0 0 −− −− −− 40 40
Total −− −− 88 88 −− −− −− 45 42

Table 4.7: Obtained MDA solutions using the real disciplinary solvers and the disciplinary surro-
gates for three different design space points. The number of disciplinary solver calls required to
solve the MDA and compute the derivatives is equally noted and the error ϵvMIS committed on
the constraint function value when using the disciplinary surrogates is given.

Table 4.7 shows that solving the true MDA and computing the total derivatives for the real
disciplinary solvers requires an important number of solver calls. Contrarily, when using the
disciplinary surrogates, the computational cost can be significantly reduced. Even when ac-
counting for the training of the disciplinary surrogates, the use of the disciplinary GPs repre-
sents about half the computation effort than that spent using the real disciplinary solvers. This
ratio can be expected to further decrease in favor of the disciplinary surrogate approach, as the
number of queried points increases. Moreover, we see that almost no error is committed on the
approximated constraint function value, with maximum relative error obtained for test point
#2, where the relative error was 2.41%. Note that the objective function does not depend on the
disciplinary outputs and therefore it has the same value, regardless of the approach used.

Quality of the computed derivatives. To assess the quality of the computed derivatives, we
compare the total derivatives of the approximated MDA (computed analytically from the disci-
plinary surrogates), with the derivatives of the true MDA (approximated via finite-differences) at
the three design space points of Table 4.7. The obtained results are presented in Table 4.8.

Real solvers Disciplinary GPs

x∗ dg 0
vMIS

dtr

dg 0
vMIS

dtsk

dg 0
vMIS

dtsp

dĝ 0
vMIS

dtr

dĝ 0
vMIS

dtsk

dĝ 0
vMIS

dtsp
ϵrel

(
dĝ 0

vMIS
dx

)
#1 -0.0567 -0.4084 -0.0736 -0.0697 -0.4558 -0.0985 13.2%
#2 -0.1563 -0.5807 -0.1000 -0.0882 -0.5490 -0.1696 16.8%
#3 -0.0461 -0.2338 -0.0521 -0.0303 -0.1585 -0.0876 34.7%

Table 4.8: Total derivatives of the inequality constraint function with respect to the design vari-
ables at three different design space points. Comparison between the true and approximated
MDAs.

The results of Table 4.8 show that, despite the small error committed on the constraint func-
tion value at the different MDA solutions computed, the approximated derivatives do not quite
match the true derivative. Indeed, for points number #1 and #2, the error on the constraint func-
tion derivative is of around 15%, while for point #3 the same error was twice as large. We note
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that, for the same point, only one disciplinary solver enrichment was made, which might explain
the obtained error. Despite the committed error, the approximated derivatives seem to correctly
explain the overall behavior of ĝvMIS with respect to variations in the design variables (same sign
and same order of magnitude are obtained). In the following a mass minimization problem at
fixed angle of attack is presented.

4.3.2.3 Mass minimization at fixed angle of attack

By fixing the angle of attack we are left with only structural design variables. This means that
we can compute the derivatives at the mean of the disciplinary surrogates analytically, without
any simplifications (we recall that a global POD basis is used for the structural discipline). The
chosen value for the angle of attack is such that, at the optimal solution, the generated lift is
close but not equal to 2.5 times the aircraft weight. The obtained optima, as well as the number
of disciplinary solver calls made are given in Table 4.9 for three different starting points. We note
that the three runs are performed sequentially, and thus runs #2 and #3 benefit from previous
enrichments of the disciplinary surrogates.

x0 m0
w [kg] t∗r t∗sk t∗sp ϵrel(x) m∗

w [kg] ϵrel(m∗
w ) ĝ∗

vMIS neval
s neval

a

#1 16396.6 0 0.1435 0.1096 6.8% 4201.7 1.65% ≈ 10−4 12 6
#2 8651.1 0 0.1302 0.1505 17.6% 4225.7 2.24% ≈ 10−4 6 1
#3 22402.3 0 0.1329 0.1468 15.6% 4183.0 1.20% ≈ 10−5 6 1

Training of the disciplinary surrogates 40 40
Total number of solver calls 64 48

Table 4.9: Optima found and number of disciplinary solver calls made for the mass minimiza-
tion problem at fixed angle of attack. The error committed on the design variable and objective
function values with respect to the reference solution is equally given. Problem ran from three
different starting points, with chosen optimizer the gradient based SLSQP and convergence cri-
terion set to 10−3.

Looking at the results of Table 4.9 we remark that, for all three runs, the optimizer was able to
converge to a solution which respects the approximate failure constraint (denoted ĝ∗

vMIS). More-
over, regardless of the starting point, the solution found lied in the same region of the design
space, suggesting that there is only one local optimum and that the small differences obtained
are likely due to the quality of the disciplinary GP approximations. To find the real local opti-
mum, we then solved the MDO problem using as starting point the design space point found
for run #1. A reference solution was then established at x∗ = {0,0.1358,0.1192} for which the wing
mass was 4131.3kg. Comparing this result with the optima obtained via the disciplinary surro-
gates, we note that all solutions found lie close to the reference solution, with maximum relative
error in the design variable values of 17.6%, obtained for starting point #2. Despite the error
committed on the design variable values, however, this result translated into only 2.24% of error
in the obtained objective function value.

In terms of disciplinary solver calls, Table 4.9 shows the advantage of using disciplinary sur-
rogates in a multi-start context. Indeed, because the angle of attack was kept fixed, the aerody-
namics load vector did not significantly change with respect to the design variables. As a result,
runs #2 and #3 required significantly less calls to the aerodynamics solver than run #1, as they
benefited from the several enrichments of the aerodynamics surrogate made during the first run.
Moreover, we see that the overall computational cost of solving the MDO problem using the dis-
ciplinary surrogates (accounting for all three runs) required a total of 64 calls to the structural
solver and 48 calls to the aerodynamics solver. This represents less solver calls than that spent
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when querying the true MDA at only three different points (see Table 4.7). Finally, to illustrate
the progression of the optimization process, we plot in Figure 4.6 the objective and constraint
function values as well as the number of disciplinary solver calls throughout the iterations, for
the three performed runs. As shown, for all runs, most disciplinary solver calls happen during
the first few iterations. Indeed, in the last few iterations, the optimizer is mostly querying points
around the local optimum for which the disciplinary surrogates are already sufficiently accurate
(according to the chosen MDA stopping criterion). Comparing all three runs, it is also noticeable
that run #2 struggled more to converge than the remaining runs, despite not having significantly
changed the values of either objective or constraint function after iteration 5. This is likely due
to some existing uncertainty in the constraint function approximation, which makes it difficult
for the algorithm to properly establish the edge of the feasible region.

Quality of the computed derivatives. To assess the quality of the computed derivatives at the
optimal solution, we compare the total derivatives of the approximated MDA (computed ana-
lytically from the GP approximations of the generalized coordinates), with the derivatives of the
true MDA (approximated via finite-differences) at the three solution points of Table 4.9. The
obtained results are presented in Table 4.10.

Real solvers Disciplinary GPs

x∗ dg∗
vMIS

dtr

dg∗
vMIS

dtsk

dg∗
vMIS

dtsp

dĝ∗
vMIS

dtr

dĝ∗
vMIS

dtsk

dĝ∗
vMIS

dtsp
ϵrel

(
dĝ∗

vMIS
dx

)
#1 -0.4859 -1.0407 -0.2719 -0.1815 -1.0588 -0.3000 25.9%
#2 -0.4341 -1.0748 -0.2304 -0.1562 -1.3263 -0.3727 33.9%
#3 -0.4762 -1.0711 -0.2348 -0.2139 -1.0983 -0.2707 22.3%

Table 4.10: Total derivatives of the inequality constraint function with respect to the design vari-
ables at the three solution points found for the mass minimization problem at fixed angle of
attack. Comparison between the true and approximated MDAs.

Comparing the derivatives of the true and approximated MDAs, we notice that we obtain very
different results for the derivative of the inequality constraint function with respect to the first
design variable (dg∗

vMIS/dtr) for all tested points. This can be explained by the fact that all optimal
points found lied on the edge of the design space for this variable (see Table 4.9). Because the
disciplinary surrogates cannot be enriched outside the provided design variable bounds, an im-
portant error is committed when computing the derivative of the disciplinary surrogates at the
edges of the design space. We also note that for starting point #2 the obtained disciplinary ap-
proximations led to an error on the total derivative that is more important than the one obtained
for the remaining points. Once more, this suggests that there may still be some uncertainty on
the constraint function approximation at this design space point. This eventually led the opti-
mizer towards a solution point that is less optimal than the ones obtained for runs #1 and #3. In
the following we solve the MDO problem considering the pull-up maneuver condition.

4.3.2.4 Structural sizing at pull-up maneuver conditions

In this section we solve the structural sizing problem at pull-up maneuver conditions, as defined
in Eq. (4.11). Because the angle of attack is now allowed to vary, the computed derivatives for
the aerodynamics surrogate with respect to the design variables are no longer exact, but are
instead an approximation obtained by assuming that the basis vectors are constant in a small
neighborhood of the queried point (see Eq. (4.7)). Table 4.11 presents the optima found, the
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(a) Run #1. Quantities of interest. (b) Run #1. Disciplinary solver calls.

(c) Run #2. Quantities of interest. (d) Run #2. Disciplinary solver calls.

(e) Run #3. Quantities of interest. (f) Run #3. Disciplinary solver calls.

Figure 4.6: Illustration of the progression of the gradient-based optimization using the deriva-
tives of the disciplinary surrogates, for the three runs performed. The objective (blue) and con-
straint (red) function values are shown on the left while the number of aerodynamics (blue) and
structural (red) disciplinary solver calls are shown on the right. We remark the number of itera-
tions for run #2, which was significantly greater than that made in the remaining runs.
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corresponding objective and constraint function values, as well as the number of disciplinary
solver calls made when solving the structural sizing problem for three different starting points.

x0 m0
w [kg] AoA∗ t∗r t∗sk t∗sp m∗

w [kg] ĝ∗
vMIS ĥ∗

L=2.5W neval
s neval

a

#1 16396.6 0.2930 0.0 0.1816 0.2356 5117.6 ≈ 10−5 ≈ 10−5 12 7
#2 8651.1 0.2928 0.0 0.1882 0.2043 5103.2 ≈ 10−3 ≈ 10−4 13 6
#3 22402.4 0.2928 0.0 0.1979 0.1706 5122.4 ≈ 10−3 ≈ 10−4 10 6

Training of the disciplinary surrogates 40 40
Total solver calls 75 59

Table 4.11: Structural sizing problem at pull-up maneuver condition. Optima found and num-
ber of disciplinary solver calls obtained when solving the MDO using the disciplinary surro-
gates. Problem ran from three different starting points, with chosen optimizer the gradient
based SLSQP and convergence criterion set to 10−3.

The results of Table 4.11 show that, despite the simplification made on the derivative of the
aerodynamics disciplinary surrogate, the optimizer successfully converges to a feasible solution
for all tested starting points. Moreover, the optima found are similar, once more suggesting that
there is only one local optimum and that the small differences occur due to the quality of the
surrogate approximations. Finally, we see that solving the MDO problem using three different
starting points required a total of 75 calls to the structural solver and 59 calls to the aerodynamics
solver. On our machine, equipped with an Intel Xeon CPU E5-2650 v4 @ 2.20 GHz core and 128
GB of memory, this translated to around 16 hours of computations.

Progression of the optimizer. To illustrate the optimization process, we show in Figure 4.7 the
objective and constraint function values, as well as the total number of disciplinary solver calls,
at each iteration of the three runs performed. As for the mass minimization problem at fixed
angle of attack, we see that fewer disciplinary solver calls are made during the last few iterations,
as the disciplinary surrogates have become sufficiently accurate around the local optima. We
also note that, although nearly twice as many enrichments are made for the structural discipline
than for the aerodynamics discipline, this was not detrimental for the considered problem, as
structural solver calls are significantly less expensive than aerodynamic solver calls.

Cost comparison. To estimate how much computational cost is saved by using the disciplinary
surrogates, we let the optimization run using the real disciplinary solvers for 120 hours (five
days), leading to over 600 solver calls to each discipline, 8 times more than the total number
of solver calls made when using the disciplinary surrogates. Unfortunately, the optimization
process was terminated before convergence, but the best point found lied in the neighborhood
of the optima of Table 4.11 and presented a wing mass of around 5110kg. This suggests that the
results obtained using the disciplinary surrogates are close to the true optimum.

Quality of the computed derivatives. To assess the impact of the proposed simplification on
the derivative of the aerodynamics surrogate with respect to variations in the angle of attack,
we first compare the derivatives of the constraint functions obtained via the proposed simpli-
fication and via finite-difference approximation at the three solution points of Table 4.11. The
obtained results are presented on Table 4.12. When using finite-difference approximation, the
computed derivatives take into account the variation of the local POD basis with variations in
the angle of attack. Contrarily, the proposed simplification assumes that the local POD basis
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(a) Run #1. Quantities of interest. (b) Run #1. Disciplinary solver calls.

(c) Run #2. Quantities of interest. (d) Run #2. Disciplinary solver calls.

(e) Run #3. Quantities of interest. (f) Run #3. Disciplinary solver calls.

Figure 4.7: Optimization results for the structural sizing problem, for the three runs performed.
The objective and constraint function values are shown on the left while the number of disci-
plinary solver calls are shown on the right.
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Finite-difference Proposed simplification

x∗ dĝ∗
vMIS

dAoA
dĥ∗

L=2.5W
dAoA

dĝ∗
vMIS

dAoA
dĥ∗

L=2.5W
dAoA ϵrel

(
dĝ∗

vMIS
dAoA

)
ϵrel

(
dĥ∗

L=2.5W
dAoA

)
#1 1.6202 1.4449 1.6675 1.4441 2.92% 0.06%
#2 1.5814 1.4444 1.5924 1.4463 0.70% 0.13%
#3 1.5714 1.4460 1.5806 1.4487 0.59% 0.19%

Table 4.12: Total derivatives of the aerodynamics surrogate with respect to variations in the an-
gle of attack at three different design space points. Comparison between the finite-difference
approximation and proposed simplification.

remains constant in a small neighborhood of the queried point. As a result, a small error is com-
mitted on the total derivative of the constraint functions with respect to the angle of attack. Still,
the computed relative error remains small, having obtained under 5% of relative error for the in-
equality constraint function and under of relative error 1% for the equality constraint function,
for all considered points. These results confirm that the proposed simplification is a reasonable
one. In Table 4.13 we now compare the derivatives of the inequality constraint function for the
real disciplinary solvers (computed via finite-difference approximation) with the approximated
derivatives at the same three solution points of Table 4.11.

Real solvers Disciplinary GPs

x∗ dg∗
vMIS

dAoA
dg∗

vMIS
dtr

dg∗
vMIS

dtsk

dg∗
vMIS

dtsp

dĝ∗
vMIS

dAoA
dĝ∗

vMIS
dtr

dĝ∗
vMIS

dtsk

dĝ∗
vMIS

dtsp
ϵrel

(
dĝ∗

vMIS
dx

)
#1 1.6896 -0.4392 -0.9762 -0.2222 1.6675 -0.2449 -1.0028 -0.2455 9.87%
#2 1.7052 -0.4407 -0.9489 -0.2215 1.5924 -0.1936 -1.0047 -0.2670 14.0%
#3 1.4688 -0.4540 -1.0925 -0.2488 1.5806 -0.1881 -0.9792 -0.2830 16.4%

Table 4.13: Total derivatives of the inequality constraint function with respect to the design vari-
ables at the three solution points found for the mass minimization problem at fixed angle of
attack. Comparison between the true and approximated MDAs.

The obtained results show that the order of magnitude of the committed relative error on the
inequality constraint function derivatives is similar to that obtained when the angle of attack was
fixed, despite the simplifications made. Moreover, we see that the greatest error is committed for
the total derivative with respect to the thickness of the ribs (tr). Once more, this can be justified
by the fact that the optima found lied on the edge of the design space for this design variable.

4.4 Using the proposed approach via WhatsOpt

An important objective envisioned for the developments presented in this chapter were their
easy implementation and compatibility with any disciplinary solvers. To that end, the proposed
approach has been integrated within ONERA’s WhatsOpt collaborative environment, in collabo-
ration with Sylvain Dubreuil and Rémi Lafage. The details on how to use disciplinary surrogates
for gradient-based optimization via WhatsOpt are given on the Appendix.

4.5 Summary of disciplinary GPs for gradient-based MDO

In this chapter we proposed to use the derivatives of the disciplinary surrogates to perform
gradient-based MDO, under the assumption that, as the disciplinary surrogates are enriched,
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the uncertainty of the corresponding derivatives with respect to the design variables is reduced.
We then used the disciplinary surrogate derivatives to solve both analytical and engineering
MDO problems. The obtained results confirmed the interest of the proposed approach in terms
of computational cost. In terms of accuracy of the obtained solution we observed that the op-
tima found using the disciplinary surrogates often lie close to the true solution, but do not ex-
actly match it. This suggests that, despite having attained the converge criterion on the coef-
ficient of variation of the random MDA solution, some uncertainty may still be present in the
computed derivatives. To improve this result, future work could focus on the development of a
surrogate enrichment strategy which aims at learning the derivative of the disciplinary solvers
with respect the design variables, rather than learning solution of the MDA itself.

Finally, we note that although in this work we assume that the disciplinary solvers behave as
black-boxes, the proposed approach still has value in other contexts. Indeed, even if the deriva-
tives of the real disciplinary solvers are available, the use of disciplinary surrogates derivatives
remains an interesting option to quickly explore the design space, via a multi-start strategy. To
refine the obtained solution, an optimization using the real solvers may then be run using as
starting point the best point found by the disciplinary surrogates.

Chapter summary:

In this chapter we proposed to use the derivatives of the disciplinary surrogates to
perform gradient-based MDO. To that end we discussed how to obtain the surrogate
derivatives when:

• The coupling variables are scalars;

• The coupling variables are vectors whose dimension is reduced via a global POD
basis or via the interpolation of a database of pointwise local POD bases.

We then applied the proposed strategy to solve both an analytical and engineering
MDO problems. The obtained results showed that:

• Using the disciplinary surrogates allows to save a significant amount of compu-
tational cost when the derivatives of the real solver are not available;

• The approximate MDO problem often converges to a point that lies close to the
true optimum but does not exactly match it. This solution could be refined by
solving the real MDO problem with starting point the best solution found using
the disciplinary surrogates.

Finally, we presented the implementation of the proposed approach in the WhatsOpt
collaborative environment (see Appendix). This implementation allows users to em-
ploy the proposed approach with minimal implementation effort.
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In this chapter we will:

• Extend the EGMDO algorithm to constrained problems.

• Compare the proposed constrained optimization algorithm against existing ap-
proaches.

• Apply the constrained EGMDO algorithm to both analytical and engineering
test cases.

5.1 Chapter contributions

In Chapter 4 we proposed to use the derivatives of the disciplinary GPs to perform gradient-
based MDO, which resulted in important cost reductions when dealing with black-box disci-
plinary solvers. However, to find the global optimum, gradient-based optimizers need to re-
sort to multi-start strategies, where the optimization is run several times from different start-
ing points. For complex functions, with multiple local minima, these strategies can represent
a heavy computational cost. An alternative strategy is thus to combine the built disciplinary
surrogates with a Bayesian optimization algorithm. This is exactly the strategy proposed in the
EGMDO algorithm, introduced in Section 1.2.5.3. The interest of the EGMDO has been previ-
ously confirmed for unconstrained problems in [Dubreuil et al., 2020] and was shown to perform
well in combination with the DPOD+I approach in [Berthelin, 2022], once more in the context of
unconstrained optimization. Many industrial problems, however, are subject to constraints, as
their inclusion in the optimization problem allows to ensure that a physically relevant solution
is attained. In this chapter we extend the existing EGMDO framework to be able to handle both
equality and inequality constraints.

5.2 Illustrative 1-D constrained MDO problem

We recall that a generic constrained optimization problem can be defined as:

min
x∈X

fobj(x)

s.t. hi (x) = 0, i = 1, ...,nh

g j (x) ≤ 0, j = 1, ...,ng

(5.1)

where hi : Rn 7→ R denotes the i th equality constraint and g j : Rn 7→ R denotes the j th inequality
constraint. In the following, we propose a constraint handling strategy for the EGMDO algo-
rithm, which allows to solve constrained MDO problems, such as the one defined in Eq. (5.1). To
illustrate the proposed developments, we consider a 1-D constrained MDO problem defined as:

argmin
x∈X

cos

(
y∗

1 (x)+exp(−y∗
2 (x))

π

)
+ x

20

s.t. g1(x) ≥ 0

(5.2)

where y∗(x) = {y∗
1 (x), y∗

2 (x)} is the solution of the following non-linear system of equations:{
y1(x, y2) = x2 −cos( y2

2 )

y2(x, y1) = x + y1
(5.3)
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and:
g1(x) =−0.15y∗

1 (x)+0.9 (5.4)

is an inequality constraint which depends on the solution of the MDA. Figure 5.1(a) plots the
constraint g1 as a function of x, while Figure 5.1(b) displays the obtained infeasible region, after
imposing g1 ≥ 0. As is shown, due to the imposed constraint, the global optimum is found for
x∗ ≈−2.42.

(a) Inequality constraint g1(x). (b) Infeasible region.

Figure 5.1: Inequality constraint and resulting infeasible region for the 1-D illustrative MDO
problem. (a) Inequality constraint g1(x). (b) Objective function fobj(x) with the shaded infeasible
region. The global minimum of the constrained problem is identified with a black star.

5.3 Random constraint function

When constraints are present, Bayesian optimization approaches often build approximate mod-
els of the constraint functions which are then used to limit the maximization of the acquisition
function. In other words, these models ensure that any point proposed by the acquisition func-
tion is both feasible (according to the current constraint approximation) and provides an im-
provement with respect to the current best point. The purpose of this section is to describe how
continuous models of the constraint functions may be obtained when the disciplinary solvers
are replaced by GPs. To that end we recall that, when replacing the disciplinary solvers by their
corresponding GP approximations, all functions which depend on any subset of the converged
coupling variables become themselves random variables, of non-Gaussian distribution. For
these variables, uncertainty quantification by PCE may be performed (see Eq. (1.73)), resulting
in the following set of random variables, obtained for all x ∈DoEUQ:

Q̂oI(x,Ξ) = { f̂ PCE
obj (x,Ξ), ĝ PCE

m (x,Ξ), ĥPCE
r (x,Ξ)}, m = 1, ...,ng , r = 1, ...nh (5.5)

For the objective function, the PCE approximation is extended to the remainder of the design
space according to the KL-GP interpolation of Eq. (1.76). This approach results in an objective
function model which allows to take into account the uncertainty due to the use of disciplinary
GPs during the maximization of the acquisition function. For the constraint functions, however,
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a simplification is made by directly interpolating the mean value of the respective PCE approx-
imations. This approach is similar to the one used in the Super Efficient Global Optimization
(SEGO) algorithm [Sasena et al., 2002], where only the mean value µg̃ and µh̃ of the GP interpo-
lation of the constraint functions is used in the maximization of the acquisition function.

Other, less conservative approaches could also be used. For instance, in [Priem et al., 2020a]
it is shown that using only the mean values of the GPs can lead to an increased infeasible region
and, consequently, prevent the exploration of interesting regions of the design space. As an
alternative, the authors of [Priem et al., 2020a] propose the use of upper trust bounds, where the
uncertainty of the constraint approximations is used to obtain a more relaxed feasible domain.
The idea is that this relaxation is more important during the first iterations of the algorithm,
when the uncertainty is high. Then, as the knowledge of the constraint functions is improved,
the relaxation is reduced and the algorithm converges to the constrained global optimum.

For the remainder of this section we will consider that a GP interpolation of the mean value of
the PCE approximation is used to model the constraint functions. However, during the numer-
ical tests of Section 5.5, the use of a more relaxed criterion will be studied. Figure 5.2 illustrates
the obtained PCE and GP approximations of g1(x).

(a) ĝ PCE
1 (x,Ξ) at DoEUQ points. (b) GP approximation g̃1(x).

Figure 5.2: Constraint function approximations. (a) Obtained PCE approximation for the con-
straint function g1(x) at four different points. (b) GP approximation of the constraint function
g1(x) and resulting infeasible region.

Figure 5.2 shows that, in light of the current GP approximation, the obtained infeasible re-
gion does not correspond to the real one (see Figure 5.1(b)). It will be shown in the following
that, as we reduce the uncertainty of both objective and constraint functions, the approximated
infeasible region begins to resemble the real one.

5.4 Adapted uncertainty reduction strategy

In EGMDO, the proposed uncertainty reduction strategy allows us to spend most of the com-
putational effort in relevant zones of the design space with respect to the minimization of the
objective function. This is possible thanks to the use of enrichment criteria. In this section we
describe how these enrichment criteria can be adapted to handle constrained problems.
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5.4.1 Constrained EI

The first step of the uncertainty reduction strategy involves the maximization of an acquisition
function, which is used in the adaptive sampling of the design space by determining the new
points to add to DoEUQ. In the original EGMDO framework the chosen acquisition function is a
modified EI criterion [Dubreuil et al., 2018], inspired by the one proposed in the EGO algorithm.
Here, we extend this criterion to constrained problems by defining a Constrained Expected Im-
provement (CEI) criterion as follows:

CEI(x) = E
[(

f̂ ′
min(Ξ)− f̃obj(x,Ξ,η)

)
×1 f̃obj(x,Ξ,η) ≤ f̂ ′

min(Ξ)

]
(5.6)

where f̂ ′
min(Ξ) is the current minimum, given by:

f̂ ′
min(Ξ) = min

x∈DoEUQ
f̂ PCE
obj (Ξ) |ĝ PCE

m (Ξ)≥0, ĥPCE
r (Ξ)=0, m = 1, ...,ng , r = 1, ...,nh (5.7)

1 f̃obj(,Ξ,η) ≤ f̂min(Ξ) =
{

0 if f̃obj(x,Ξ,η) > f̂min(Ξ)

1 if f̃obj(x,Ξ,η) ≤ f̂min(Ξ)
(5.8)

We note that the expressions above imply that, for each Ξ(k) ∈Ξ, the minimum will be chosen
among feasible points. However, a scenario might occur where, for all Ξ(k) ∈Ξ, no point respects
the constraints. This is often linked to the presence of equality constraints. When this is the case,
the chosen f̂ ′

min(Ξ) is that which violates the least the constraints for eachΞ(k) ∈Ξ. The constraint
violation θ(Ξ(k)) is calculated for all x ∈DoEUQ as follows:

θ(Ξ(k)) =
ng∑

m=1
| min(ĝ PCE

m (Ξ(k)),0) | +
nh∑

r=1
| ĥPCE

r (Ξ(k)) | (5.9)

Once f̂ ′
min(Ξ) has been determined, the new point to add to DoEUQ is found by solving the fol-

lowing optimization problem:

argmax
x∈X

CEI(x)

s.t. µg̃m (x) ≥ 0, m = 1, ...,ng

µh̃r
(x) = 0, r = 1, ...,nh

(5.10)

where µg̃m (x) and µh̃r
(x) are the mean values of the constraint GP approximations. At this new

point, uncertainty quantification by PCE is performed and new approximations for the objective
and constraint functions are obtained.

Remark 5.1 The optimization of the acquisition function is performed using a gradient based
solver, combined with a multi-start strategy. During our tests, a point that already exists in DoEUQ
is sometimes proposed, leading to numerical issues in the KL-GP interpolation step. To prevent
these numerical issues, when a point that already exists in DoEUQ is proposed, we add the next
best point, found via the multi-start strategy. In practice, to determine if the point already exists
in DoEUQ, the euclidean distance between the new point and the remaining points is calculated. If
this distance is lower than a defined threshold, the point is considered to already exist in the DoE.

Figure 5.3 illustrates the obtained CEI criterion as a function of x as well as the resulting KL-
GP approximation of f̃obj(x,Ξ,η) after the new point is added to DoEUQ. By solving Eq. (5.10),
a point that lies on the edge of the approximated feasible region is proposed. This is a relevant
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point for the constrained problem, as it promotes learning the constraint function where it is
likely to be active. Moreover, we see that by adding this point to DoEUQ, the objective function
value in the same region becomes closer to its true value. However, the uncertainty induced
by the use of disciplinary GPs remains unchanged, as no points have been added to the disci-
plinary DoEs. This uncertainty will be reduced with the aid of the second step of the uncertainty
reduction strategy, presented in the next section.

Finally, we recall that, while the EI is the only acquisition function used in the original EGMDO
algorithm, other acquisition functions exist in the literature. For the purpose of this work we will
consider one other, namely, the WB2 [Watson and Barnes, 1995] acquisition function. It is ob-
tained by subtracting the mean value of the objective function model from the CEI, as follows:

WB2(x) =CEI(x)− µ̃ f̃obj
(x,Ξ,η) (5.11)

As shown in Section 1.1.2.4, the WB2 acquisition function is less multimodal than the EI func-
tion, making it easier to maximize. In the numerical tests of Section 5.5, the use of the WB2
criterion in the constrained EGMDO algorithm will be considered and its performance will be
compared against that of the CEI criterion.

(a) CEI criterion. (b) Initial approximation. (c) New approximation.

Figure 5.3: Enrichment of DoEUQ at the points proposed by the acquisition function. (a) CEI
acquisition function and corresponding constrained maximum, found for x ≈−2.5. The shaded
gray area represents the approximated infeasible region. (b) Initial objective function approxi-
mation. (c) Objective function approximation after adding the new point to DoEUQ. Realizations
of f̃obj(x,Ξ,η) are drawn to illustrate the corresponding uncertainty.

5.4.2 Constrained enrichment of the disciplinary GPs

The second criterion used in the uncertainty reduction strategy involves adding new points to
the disciplinary DoEs. In EGMDO, the point selected for disciplinary solver enrichment is the
point among all DoEUQ points which is the most likely to be a solution to the unconstrained
problem. When extending this criterion to a constrained problem, this is equivalent to saying
that we will enrich the point which is most likely of being the minimum, among feasible points.
This likelihood is given by the probability Psol defined as follows:

Psol(xi ) =P
(

f ′
min(Ξ) = f̂ PCE

obj (xi ,Ξ)
)
∀xi ∈DoEUQ , (5.12)

where f ′
min(Ξ) is the discrete random variable defined in Eq. (5.7). Note that, for different drawn

samples Ξ(k) of Ξ, the same point xi may be feasible or unfeasible. As a consequence, Psol takes
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into account not only the uncertainty of the objective function approximation, but also the un-
certainty of the constraint approximations, due the use of disciplinary GPs.

In addition to presenting a high likelihood of being a solution to the constrained problem, a
second condition must be met for the disciplinary surrogates to be enriched at a given design
space point. Namely, the Coefficient of Variation (CV) of at least one quantity of interest Q̂oI
(see Eq. (5.5)) must be greater than a given threshold ϵCV. For any quantity Q̂oI j in Q̂oI, this
coefficient of variation is given by:

CV(Q̂oI j (xi ,Ξ)) =
√
V(Q̂oI j (xi ,Ξ))

E(Q̂oI j (xi ,Ξ))
, (5.13)

where E is the expected value and V is the variance. If both conditions are met, the disciplinary
solvers are enriched until the CV of both objective and constraint functions are sufficiently small
for all points x ∈DoEUQ that verify Psol(xi ) ≥ ϵP, where ϵP is some defined threshold.

Some remarks should, nonetheless, be made concerning equality constraints for this uncer-
tainty reduction step. When equality constraints are present, it is likely that all DoEUQ points
will present values of Psol(xi ) that are very close to zero, especially during the first few iterations
of the algorithm. When this is the case, we calculate the constraint violation of Eq. (5.9) for all
points xi ∈DoEUQ and we enrich the disciplinary solvers for the point that is most likely to min-
imize θ(Ξ) until the CV of all Q̂oI is sufficiently small. This strategy prioritizes increasing our
knowledge of the equality constraint functions, before seeking to minimize the objective func-
tion. Since equality constraints are always active constraints, we considered that this option is
not detrimental to the overall computational cost of the algorithm.

Figure 5.4 illustrates the PCE approximations of the objective and constraint functions of the
1-D constrained problem, before and after enriching the disciplinary GPs. The obtained Psol(xi )
criterion for the initial and final iterations is equally plotted. As is shown, in the initial iteration
(see Figure 5.4(a)), both points x = −2.5 and x = −2 have a high value of Psol. This is because
point x =−2.5 is more likely to minimize the objective function, but point x =−2 is more likely to
respect the constraint. Contrarily, once the uncertainties have been reduced (see Figure 5.4(b)),
we become sure that point x =−2.5 does not respect the constraint and, as a consequence, only
point x = −2 presents a high value of Psol. Algorithm 11 summarizes the proposed approach
for the reduction of the uncertainty associated with the random variable Ξ, for the constrained
problem.

Note that the proposed strategy to handle constraint functions is easily integrated within the
original EGMDO formulation defined in Algorithm 7. Indeed, Algorithm 11 corresponds to the
step "Enrich disciplinary GPs if needed" of Algorithm 7, while the maximization of the CEI cri-
terion subject to the current approximation of the constraint functions, corresponds to the step
"Find xnew" of the same algorithm. Finally, we remark that while Algorithm 11 concludes the
proposed developments in order to solve constrained problems when the disciplinary solvers
are replaced by GPs, it does not explicitly state how to handle constraint functions which do not
depend on the coupling variable values. The following paragraph briefly addresses this question.

Constraint functions which do not depend on the coupling variable values. Some MDO prob-
lems deal with constraint functions which do not depend on the coupling variable values. To
account for this type of constraint functions in the proposed uncertainty reduction strategy, we
distinguish between two situations, depending on how costly the constraint functions are to
evaluate. If we can consider that they are free to evaluate, the real constraint function can be
used directly in the maximization of the CEI criterion. Otherwise, if the constraint is costly to
evaluate, a surrogate may be required. This last can be built over the initial DoEUQ, and en-
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(a) Iteration 0. (b) Iteration 4.

Figure 5.4: Enrichment of the disciplinary GPs at the points that maximize the Psol criterion. (a)
Initial iteration, before any enrichment is performed. (b) Last iteration, after all points which
verify Psol > ϵP have been enriched until a sufficiently small CV is obtained for both objective
and constraint functions. The threshold ϵP was set to 0.1, while the threshold for the coefficient
of variation was ϵCV = 0.001. The blue PDFs refer to pointwise PCE approximations of the random
objective function while the red PDFs refer to the pointwise PCE approximations of the random
constraint function. The shaded gray areas represent the approximated infeasible region.
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Algorithm 11 Constrained-EGMDO: reduction of the uncertainty due to the random variable Ξ

Input: ϵCV,ϵP ▷ Threshold for CV and Psol
Compute Q̂oI(xi ,Ξ), ∀xi ∈DoEUQ ▷ PCE approximations (Eq. (5.5))
Compute Psol(xi ), ∀xi ∈DoEUQ ▷ Probability of being solution (Eq. (5.12))
if Psol(xi ) < ϵP, ∀x ∈DoEUQ then

Psol(xi ) =P (minθ(Ξ) = θ(xi ,Ξ)) , ∀xi ∈DoEUQ ▷ Minimum constraint violation
end if
Compute CV(Q̂oI(xi ,Ξ), ∀xi ∈DoEUQ ▷ Coefficient of variation (Eq. (5.13))
while ∃xi ∈DoEUQ such that Psol(xi ) ≥ ϵP and CV(xi ) ≥ ϵCV do

Xenrich = {xi | Psol(xi ) ≥ ϵP}
Sort Xenrich in decreasing order with respect to Psol(xi )
Set k = 0 and pts_added=False
while k ≤ #(Xenrich) and pts_added==False do

x= Xenrich[k] ▷ Loop through candidate points
if CV(x) > ϵCV then

Enrich disciplinary surrogates
Recompute Q̂oI(xi ,Ξ), Psol(xi ), CV(Q̂oI(xi ,Ξ)
pts_added==True

else
k = k +1

end if
end while

end while

riched at points proposed by the CEI criterion. Whichever the case, these functions will never
depend on the random variableΞ. Therefore, during the disciplinary surrogate enrichments, the
probability of violating these constraints, at any xi ∈ DoEUQ is either zero or one, for all Ξ(k) ∈Ξ.
Similarly, their contribution to the constraint violation θ(Ξ) is the same for all Ξ(k) ∈Ξ. With this
in mind, it is considered that the implementations proposed in this section are sufficient to han-
dle all types of constraint functions, including those that do not depend on the coupling variable
values.

5.4.3 Stopping criterion

The previous section showed how the accuracy of both objective and constraint function ap-
proximations can be improved both by reducing the uncertainty due to the disciplinary GPs and
by adding new points to DoEUQ. By iteratively performing these operations, the precision of the
approximations increases around the relevant zones of the design space and the Constrained-
EGMDO (C-EGMDO) algorithm is capable of identifying the constrained global optimum. Nev-
ertheless, it remains difficult to define a stopping criterion for this type of approach, and thus
we consider that a fixed budget exists and that the algorithm is stopped when the entire budget
has been spent. Figure 5.5 illustrates the progression of the C-EGMDO algorithm when the max-
imum number of iterations is set to 5 (note that one iteration consists on adding a new point to
DoEUQ and enriching the disciplinary surrogates, if needed).

As is shown, for the illustrative 1-D constrained MDO problem, the algorithm quickly finds
the constrained global optimum to be at x ≈ −2.42. In fact, the first three points proposed by
the CEI criterion were in this region (see Figure 5.5(a)), leading to a decrease of the uncertainty
around the constrained global optimum. In the iterations that came after, the points proposed
by the CEI were driven by the exploration of the design space where the uncertainty was high
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(a) Iteration 3. (b) Iteration 5.

Figure 5.5: Progression of the C-EGMDO algorithm. Illustration of the objective function ap-
proximation after (a) 3 iterations and (b) 5 iterations. The last point added is identified with
white dot and the constrained global optimum is marked with a yellow star. The approximate
infeasible region is shaded in gray.

(see Figure 5.5(b)). Regardless, the presented objective function realizations show that in areas
of the design space where the global minimum is unlikely to be found the uncertainty has not
been reduced. This implies that little computational effort has been spent trying to improve dis-
ciplinary surrogate approximations in these regions. Indeed, during the 5 iterations performed,
calls to the disciplinary solvers were only made at points x = −2, x = −2.5 and x = −2.4. At other
points in DoEUQ, where the probability of being solution to the constrained problem is low, the
disciplinary solvers were never enriched. As a consequence, the objective function approxima-
tion at these points does not correspond to its real value.

5.5 Numerical tests

To test the performance of the proposed constraint handling strategy, we use the C-EGMDO
algorithm to solve an analytical benchmark MDO problem as well as an engineering test case.
The obtained results are presented in the following.

5.5.1 Analytical Sellar benchmark test case

The analytical Sellar benchmark test case, previously introduced in Section 4.3.1, is chosen to
test the proposed constraint handling strategy. We recall that this problem presents a single
objective function ( fobj), two scalar coupling variables (y1, y2), two inequality constraints (g1 ≥
0, g2 ≥ 0) and three design variables (z1, z2, z3).

5.5.1.1 Robustness study

To test the robustness of the proposed approach, 100 initial DoEs (DoE f1 ,DoE f2 ,DoEUQ) are ran-
domly generated. The number of samples in each disciplinary DoE is 5, generated via LHS, and
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using an initial guess for the coupling variable space of C1 = C2 = [0,25]. The size of DoEUQ was
set to 20. The random MDA is solved for 200 points and a third-degree PCE is retained. For all
GP approximations a squared-exponential correlation function is used. The threshold for the
coefficient of variation ϵCV is set to 1%, while the probability threshold ϵP is set to 10−3. The max-
imum number of iterations for the C-EGMDO algorithm is set to 10. Out of the 100 performed
runs, 63 were able to find the constrained global optimum with a relative error of less than 1%
with respect to the reference objective function value. Table 5.1 summarizes the obtained re-
sults for the 63 successful runs and compares them with the reference values. The number of
disciplinary solver calls is also presented.

z∗
1 z∗

2 z∗
3 f ∗

obj neval
1 neval

2

Ref. 1.9776 0 0 3.183 −− −−
E 1.965 ≤ 10−12 5.60×10−2 3.197 5+7.1 5+4.5

CV 7.56×10−3 6.07 0.90 4.23×10−3 0.24 0.31
ϵrel 0.61% −− −− 0.27% −− −−

Table 5.1: Mean values, coefficients of variation and relative errors between the mean and refer-
ence values of z∗ and f ∗

obj obtained during the 63 successful runs when using the CEI criterion.

The number of disciplinary solver calls is equally given.

Out of the remaining 37 runs, 5 presented a relative error of less than 5%, suggesting that they
would benefit from a greater number of iterations. For the other 32 runs, the optimization of the
acquisition function failed to propose points in the vicinity of the global optimum. This problem
arises due to the near-flat zones of the CEI criterion (see Eq. (5.10)) which make its maximization
difficult, despite the use of a multi-start strategy. The use of an alternative acquisition function
can ease this problem and lead to a more robust framework. Indeed, when replacing the CEI
criterion by the WB2 criterion, the C-EGMDO algorithm converged to the constrained global
optimum with less 1% of relative error for 96 out of 100 runs. Table 5.2 summarizes the results
obtained for the 96 successful runs, when the WB2 criterion is used as acquisition function.

z∗
1 z∗

2 z∗
3 f ∗

obj neval
1 neval

2

Ref. 1.9776 0 0 3.183 −− −−
E 1.955 ≤ 10−8 8.72×10−2 3.198 5+8.0 5+4.8

CV 7.95×10−3 3.45 0.65 4.45×10−3 0.17 0.33
ϵrel 1.10% −− −− 0.30% −− −−

Table 5.2: Mean values, coefficients of variation and relative errors between the mean and ref-
erence values of z∗ and f ∗

obj obtained using the WB2 infill criterion. The number of disciplinary

solver calls is equally given.

Table 5.2 shows that the use of the WB2 criterion as acquisition function not only increases
the number of successful runs, but leads to a similar level of accuracy in the obtained results,
and a similar computational cost compared to when the CEI criterion is used. For this reason,
the WB2 infill criterion is used as acquisition function for the remaining tests conducted.

5.5.1.2 Constraint relaxation

The relaxation of inequality constraints is now studied. We recall that a continuous model of
the constraint functions is obtained by interpolating the mean value of the respective PCE ap-
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proximations. Thus, one can relax the inequality constraints by rather interpolating at a given
quantile, leading to an increase of the approximated feasible region, when the uncertainty is
high. The choice of quantile depends on the nature of the constraints, i.e. it depends on whether
they are negative or positive constraints. For the chosen problem, where we deal with positive
constraints (see Eq. (4.9)), we test the 95% and 99% quantiles. Table 5.3 presents the number of
successful runs (n(ϵ≤1%)) as well as the mean number of disciplinary solver calls obtained after
100 runs for each tested quantile.

τ-quantile τ= 0.95 τ= 0.99

n(ϵ≤1%) 88 74

E(neval
1 ) 13.5 13.5

E(neval
2 ) 10.0 10.0

Table 5.3: Number of successful runs and mean number of disciplinary solver calls made when
interpolating the PCE approximations of the constraint functions at different quantiles.

The obtained results show that, on this problem, relaxing the constraints leads to a less ro-
bust framework, compared to the case where interpolation is made at the mean value of the
PCE approximation, where the number of successful runs was 96 out of 100 performed runs.
Moreover, from within the successful runs, the computational cost for the expected number of
disciplinary solver calls was approximately the same for all tested quantiles. Since it leads to a
more robust framework, in the remaining conducted tests, interpolation is made at the mean
value of the PCE approximation.

5.5.1.3 Comparison with other approaches

Comparisons with other MDO frameworks are now provided. For that, we choose a gradient
based optimizer (SLSQP), a gradient free optimizer (COBYLA) and the Bayesian Super Efficient
Global Optimization with Mixture of Experts (SEGOMOE) optimizer [Bartoli et al., 2019]. For
all three frameworks, both MDF and IDF approaches are tested and compared against the C-
EGMDO framework. A total of 100 runs are performed for each framework using different start-
ing points for the SLSQP and COBYLA algorithms and different initial DoEs for the SEGOMOE
framework. For the SLSQP and COBYLA frameworks the problem is implemented in OpenM-
DAO. For the gradient-based optimizer, we use finite-difference approximation of the deriva-
tives, under the assumption of black-box disciplinary solvers. For the SEGOMOE framework,
different sizes of the initial DoEs were considered for the MDF (4 points) and IDF (5 points)
implementations, to account for the increase in the number of design variables in the IDF ap-
proach. Both initial DoEs are generated using LHS. Table 5.4 presents the number of successful
runs as well as the total number of disciplinary solver calls obtained for all tested frameworks
during the 100 performed runs. We recall that a run is considered successful if the global opti-
mum is found with less than 1% or relative error.

The obtained results show that the gradient-based SLSQP optimizer finds the global opti-
mum for about half of the runs (43/100 runs for the MDF approach and 59/100 runs for the IDF
approach). The gradient-free COBYLA optimizer performs a little better, having found the global
optimum for 90/100 runs when employing the IDF approach. Nevertheless, the number of disci-
plinary solver calls is significantly higher for the COBYLA optimizer compared with the remain-
ing frameworks. The Bayesian SEGOMOE algorithm presents the best results among the three
alternative frameworks, having found the global optimum for almost all runs, for both MDF and
IDF approaches. Moreover the IDF-SEGOMOE framework required only an average of 56.6 disci-
plinary solver calls. This number is halved by the proposed C-EGMDO algorithm which required
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MDF-SLSQP MDF-COBYLA MDF-SEGOMOE C-EGMDO

n(ϵ≤1%) 43 55 94 96
E(neval

1 +neval
2 ) 136.2 334.2 259.5 22.8

IDF-SLSQP IDF-COBYLA IDF-SEGOMOE

n(ϵ≤1%) 59 90 95
E(neval

1 +neval
2 ) 103.1 210.9 56.6

Table 5.4: Number of successful runs (n(ϵ≤1%)) and expected value for the total number of disci-
plinary solver calls (E(neval

1 +neval
2 )) obtained after 100 runs of each tested framework.

only an average of 22.8 disciplinary solver calls.

5.5.2 Engineering test case

The C-EGMDO framework is now tested on an engineering test case, where the disciplinary
solvers are low-fidelity solvers, used to perform the static aeroelastic analysis of an aircraft wing.
Two disciplines are considered: a structural solver determines the wing displacement based on
the applied aerodynamic loads while an aerodynamic solver calculates the aerodynamic forces
based on the wing deformed shape. The following non-linear system of equations is then de-
fined: {

us =Ms(x, fa)

fa =Ma(x,us)
(5.14)

where us is the structural displacement of the wing spar, fa are the aerodynamic loads and x
is the set of design variables. Low-fidelity solvers present the advantage of allowing for a rapid
exploration of the design space and have been often used to assess new wing designs [Jansen
et al., 2010, Jasa et al., 2018]. A brief description of the chosen disciplinary solvers is provided in
the following.

5.5.2.1 Disciplinary models

In this work, the wing structure is modeled as a single tubular spar, assumed to be placed at
35% of the wing chord. The deformation of the spar due to the aerodynamic loads is obtained
using a finite-element model made of beam elements. The model is implemented in the finite
element solver Code Aster and a linear elastic behavior is assumed. The aerodynamics model is
described by potential flow theory and is solved using an in-house implementation of the Vortex
Lattice Method, described in Section 2.1.2.2.

5.5.2.2 Load and displacement transfer

To allow for the construction of the disciplinary surrogates, coupling variables should be of low-
dimension. Although model-order reduction could have been employed, in this section, the
transfer of loads and displacements is simplified by parameterizing the distribution of aerody-
namic loads and structural displacements along the span. To that end, the resultant of lift and
torsion moment along the chord are obtained at the spar position. Figure 5.6 illustrates the
panel forces f( j ,i ), obtained from the VLM solver, where j is the panel spanwise index and i is
the panel chordwise index. The chordwise resultant lift (F j ) and torsion moment (M j ) are also
represented.

The calculated resultants give the distribution of aerodynamic loads along the span, for which
we can obtain a parameterized approximation. To simplify the parameterization, an elliptical lift
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Figure 5.6: Illustration of the load transfer scheme. The chordwise resultant of the vertical force
F j and torsion moment M j along the chord is obtained at the spar position.

distribution was considered:

L(y) = Lmax

√
1− y2/b2 , (5.15)

where Lmax is the maximum lift along the span b. For the torsion moment a third-degree poly-
nomial is fitted to the obtained spanwise distribution:

M(y) = m3 y3 +m2 y2 +m1 y +m0. (5.16)

The set of aerodynamic coupling variables is then written as fa = {Lmax,m0,m1,m2,m3}.
For the structural coupling variables, a similar parameterization is used. The wing vertical

displacement δz is assumed to follow a quadratic spanwise distribution, written as:

δz(y) = δztip
y2

b2 , (5.17)

where δztip is the vertical wing tip displacement. The wing is also assumed to deform due to the
torsion of the spar and a third-degree polynomial is used to describe the spanwise rotation of
the wing around its elastic axis:

θ(y) = r3 y3 + r2 y2 + r1 y + r0. (5.18)

The set of structural coupling variables is defined as us = {δztip,r0,r1,r2,r3}.

5.5.2.3 Optimization problem

An inverse design problem is then defined, where the optimizer must find a reference wing con-
figuration, characterized by a given lift-to-drag ratio. To find the reference configuration, the
optimizer is allowed to vary the wing angle of attack (α) and twist at tip (θt ). Constraints are also
applied. They are used to assure that, at the optimal solution, the wing meets the lift-equals-
weight condition (L = W ) and that the vertical wing tip displacement is less than a pre-defined
limit (δztip ≤ δzmax). Figure 5.7(a) illustrates the considered design space, as well as the imposed
constraints. As is shown, in the considered design space, there exist two wing configurations that
simultaneously present the reference lift-to-drag ratio and respect the lift-equals-weight condi-
tion. One of these configurations presents a low angle of attack and an upwards wing tip twist,
while the other presents a high angle of attack and a downwards wing tip twist. Despite their
similar lift-to-drag ratio, however, the two configurations present different wing deformations
due to the differently distributed loads. Because of this, only one of the configurations is feasible
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with respect to the maximum displacement constraint. The optimization problem is defined as
follows:

argmin
x∈X

Ddiff(x) = ∥D(x)−Dref∥2

Dref

s.t. L(x) =W

δztip(x) ≤ δzmax

(5.19)

where x is the set of coupling variables (x= {α,θt }), Ddiff refers to the normalized relative distance
of the evaluated drag with respect to the reference value, D is the evaluated drag for any given
configuration and Dref is the reference drag value. Table 5.5 provides the bounds for the design
variables and constraint functions, where applicable. It should be noted that the design vari-
ables are scaled to take values within [0,1]. The reference solution of the problem, established
using an MDF-SLSQP framework ran from different starting points, is also listed in Table 5.5. An
illustration of the identified global and local optima in the considered design space is given in
Figure 5.7(b).

(a) Constraint functions. (b) Global and local optima.

Figure 5.7: Illustration of the defined engineering test case. (a) Identification of the two design
space points that provide the reference lift-to-drag ratio. (b) Identification of global and local
optima. The defined constraint functions are equally outlined and the infeasible region with
respect to the inequality constraint is shaded in red.

Bounds Optima
Lower Upper Global Local

minimize Ddiff −− −− ≈ 1×10−6 ≈ 8×10−2

w.r.t. α 0 1 0.2287 0.5885
θt 0 1 0.1462 0.8821

subject to L =W 0 0 0 0
δztip −δzmax −− 0 −0.1589 0

Table 5.5: Description of the defined engineering test case. Bounds for design variables and
constraints are provided, where applicable. The global and local optima are also identified.
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5.5.2.4 Running C-EGMDO

In order to set up the C-EGMDO framework, an initial guess for the coupling variable space is
provided, based on some initial runs made for the aerodynamics and structural disciplines. We
recall that even if the initial guess is poor, the coupling variable space may be updated when the
disciplinary solvers are enriched. Tables 5.6 and 5.7 show, respectively, the initial guess for the
aerodynamic and structural coupling variable spaces.

Lmax m0 m1 m2 m3

Lower −75000 −10×105 −5×103 −5×102 −5
Upper 75000 10×105 5×103 5×102 5

Table 5.6: Aerodynamic coupling variable space initial guess.

δzmax r0 r1 r2 r3

Lower −5 −2.5×10−3 −5×10−3 −2.5×10−4 −1×10−5

Upper 5 5×10−3 5×10−3 2.5×10−4 1×10−5

Table 5.7: Structural coupling variable space initial guess.

In terms of sample size, the disciplinary DoEs are made of 10 points each, while the DoEUQ
consists of 15 points (all DoEs are obtained via LHS). The number of random MDAs is set to 500
due to the dimension of the coupling variable space. Uncertainty propagation by PCE is carried
out over the 15 points, and a PCE of degree 3 is retained. The threshold for the coefficient of
variation ϵCV is set to 0.01, while the probability threshold ϵP is set to 10−3 (see Algorithm 11).
The maximum number of iterations is set to 15. The C-EGMDO algorithm is then run for 10
different initial DoEs. Out the 10 performed runs, 8 converged to the global optimum with less
than 5% of relative error with respect to the design variable values at the reference solution. The
results obtained for the 8 successful runs are presented in Table 5.8.

α∗ θ∗t D∗
diff

Ref. 0.2287 0.1462 1×10−6

E 0.2296 0.1474 5.04×10−3

CV 0.0111 0.0299 0.8172
ϵrel 0.40% 0.83% −−

Table 5.8: Engineering test case results. Expected value and coefficient of variation of the design
variables and objective function, obtained from the 8 successful runs.

The results of Table 5.8 show that, for the successful runs, the proposed C-EGMDO frame-
work finds the constrained global optimum with a relatively small error. In the following we
address the failed runs, i.e., the 2 runs where the global optimum was not found.

Failed runs. To analyze the cases where the global optimum was not found, the final design of
experiments DoEUQ obtained for one of the two unsuccessful runs is presented in Figure 5.8(a).
As is shown, for the plotted run, several points that do not respect the equality constraint (L =W )
were added to the DoE. This suggests that the initial constraint function approximation was of
poor quality and that the algorithm could have benefited from a greater number of iterations.
To test this hypothesis, 5 additional iterations are made. Figure 5.8(b) presents the obtained
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DoE, when the maximum number of iterations is set to 20. As is shown, by adding 5 additional
iterations, the algorithm is capable of finding the global optimum. We further note that, after the
initial 15 iterations the algorithm had already found the local optimum. Nonetheless, using the
5 additional iterations, the algorithm managed not only to explore the region around the global
optimum, but also to correctly identify the true optimum.

(a) After 15 iterations. (b) After 20 iterations.

Figure 5.8: Engineering test case generated DoEUQ for an unsuccessful run. (a) DoE obtained
after (a) 15 and (b) 20 iterations. In both figures, the initial DoE is represented in blue dots
while the points proposed by the acquisition function are represented in white dots. The global
optimum is marked with a yellow star and the best point found is identified with a green star.
The imposed constraints are outlined in dotted lines.

The case depicted in Figure 5.8 reflects the importance of choosing an appropriate stopping
criterion for the optimization. While in the proposed C-EGMDO framework we stick to the clas-
sical approach of terminating the algorithm after a fixed number of iterations, some works have
studied this issue more in depth and proposed an alternative stopping criteria. Among these
criteria, some works suggest looking to the maximum value of the EI function [Nguyen et al.,
2017, Lorenz et al., 2015]. The idea is that the EI decreases as the iterations progress. Therefore,
one can decide to stop the search when the maximum value of the EI is below a defined thresh-
old. Although in this work we have not studied the performance of this stopping criterion, we
remark that it can be easily implemented with Algorithm 11.

Computational cost. Lastly, the computational cost of the C-EGMDO framework is studied. To
do so, ten additional runs are performed. The number of successful runs as well as the number of
disciplinary solver calls is obtained after 5, 10, 15, 20 and 25 iterations. The sample sizes as well
as the thresholds ϵCV and ϵP remain unchanged. The obtained results are presented in Table 5.9.
As is shown, as the iterations progress, the number of successful runs increases. Moreover, at
25 iterations, all runs have found the global optimum with less that 5% of relative error. As ex-
pected, however, the increase in the number of iterations is also accompanied by an increase
in the number of disciplinary solver calls. This increase is less significant after the 15 iteration
threshold, suggesting that most disciplinary solver calls are made during the initial iterations,
when the disciplinary GPs are still very uncertain.
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nmax 5 10 15 20 25

n(ϵ≤5%) 2 6 7 9 10
E(neval

a ) 17.5 22.83 25.71 26.33 26.4
E(neval

s ) 13.0 14.17 14.29 14.78 15.0

Table 5.9: Number of successful runs (n(ϵ≤5%)) as a function of the maximum number of iterations
(nmax) of the C-EGMDO algorithm. The mean number of aerodynamic (E(neval

a )) and structural
(E(neval

s )) disciplinary solver calls is equally presented.

5.5.3 Summary of disciplinary GPs for constrained global optimization

In this chapter we extended the EGMDO framework to handle equality and inequality con-
straints. In the extended framework, it is proposed to build approximate models of the con-
straint functions, which are then used to limit the adaptive sampling of the design space. For
this purpose, a constrained Expected Improvement criterion was defined and a procedure for
the enrichment of disciplinary GPs was proposed, for which the uncertainty of the constraint
functions is used to determine the most relevant regions of the design space. Application of
the proposed C-EGMDO framework to an analytical test case showed that the use of a less mul-
timodal acquisition function (namely, the WB2 function) results in a more robust framework.
Constraint relaxation was also studied, however the obtained results showed that interpolation
of the constraint function at the mean value of the PCE approximation leads to a greater success
rate. Finally comparison with other frameworks showed that the proposed C-EGMDO frame-
work outperforms the remaining approaches in terms of disciplinary solvers calls.

Application to an engineering test case further confirmed that the proposed C-EGMDO algo-
rithm can handle different types of constraint functions and is capable of saving computational
cost by preferentially enriching the disciplinary surrogates only in regions of the design space
where the constrained global optimum is likely to be. Finally, in the present chapter we chose
to test the proposed C-EGMDO algorithm without resorting to model-order reduction strategies
to reduce the dimension of the coupling variable space, to simplify the conducted performance
studies. However, future work should be expected to combine the proposed C-EGMDO algo-
rithm with the dimension reduction strategy proposed in Chapter 3, to properly assess both
accuracy and cost reductions of the proposed approach.

Chapter summary:

In this chapter we proposed to extend the EGMDO framework to handle constrained
MDO problems. To that end the following adaptations were made:

• As acquisition function, we proposed the use of a constrained Expected Improve-
ment criterion, which limits the adaptive sampling of the design space to regions
that are likely to be feasible;

• For the enrichment of the disciplinary surrogates, we proposed a criterion which
accounts for constraint function uncertainty.

We then used the resulting C-EGMDO algorithm to solve both an analytical and an
engineering MDO problems. The obtained results showed that:



5.5. NUMERICAL TESTS 147

• The proposed algorithm is capable of handling both equality and inequality
constraints;

• The proposed approach requires significantly less disciplinary solver calls com-
pared to other existing frameworks.

Finally, we studied the performance of the proposed approach as a function of the
maximum number of iterations and showed that, for the considered engineering test
case, when the algorithm is allowed to run for a sufficiently large number of itera-
tions, all runs are able to find the global optimum. Moreover, the computational cost
did not significantly increase with the increase of maximum number of iterations.
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Conclusion and perspectives

Conclusion

In this thesis we contribute to development of an optimization framework that use disciplinary
surrogates to reduce the computational cost of preliminary design studies of multidisciplinary
systems. To that end, we first introduced in Chapter 1 the existing numerical tools to perform nu-
merical optimization of a given performance function, with or without constraints. We equally
discussed the analysis of multidisciplinary systems and introduced the EGMDA strategy, which
uses adaptively enriched disciplinary GPs to reduce the computational cost of solving the MDA.
Finally, we discussed MDO problems and introduced the EGMDO algorithm as a global opti-
mization algorithm, specifically developed for the optimization of partitioned multidisciplinary
systems.

In Chapter 2 we discussed existing reduced-order models that can be used to obtain low di-
mensional approximations of disciplinary solvers whose governing equations are PDEs. Such
solvers allow to accurately compute relevant quantities of interest. However, due to their com-
putational cost, they have seldom been used for preliminary design studies. The methods in-
troduced in Chapter 2 allow to obtain computationally cheaper approximations of the disci-
plinary outputs and thus are appropriate for multi-query contexts, such as the one encountered
in MDO. Finally, the DPOD+I strategy which combines disciplinary POD bases with GP approx-
imations of the generalized coordinates was introduced as a model order reduction strategy,
specifically developed to reduce the computational cost associated with the analysis of multi-
disciplinary systems, whose disciplines are modelled by PDEs.

Having introduced the state of the art, we then proposed three main contributions to effi-
ciently solve MDO problems. First, a dimension reduction strategy which combines local POD
bases with GP interpolation of the generalized coordinates was proposed. Then, we proposed to
use the derivatives of the built disciplinary surrogates to perform gradient-based MDO. Finally,
we devised a constraint handling strategy for the EGMDO algorithm, a Bayesian optimization
algorithm specifically developed for MDO problems. The main conclusions drawn from each
contribution are discussed in the following.

In Chapter 3 we proposed the use of local POD bases for building disciplinary surrogates in
MDA. To that end, we first introduced a strategy for the interpolation of local POD bases us-
ing GPs. A strategy for estimating the quality of the local POD basis interpolation was equally
proposed, by generating random realizations of the interpolated matrix and looking at the dis-
persion of the corresponding points in the Grassmann manifold. The use of local POD bases
for single-discipline analysis was studied next. Application to a wing in transonic flight showed
that, when using local POD bases, the number of basis vectors is less than the one obtained for a
global POD basis, trained over the entire parametric space. Moreover, the interpolation error is
smaller when using local POD bases, compared to when a global POD basis is used, for all tested
truncation choices. Finally, the proposed approach was used in the static aeroelastic analysis of
an aircraft wing, subject to different flight conditions in terms of angle of attack and freestream
Mach number. This test case confirmed the interest of the proposed approach for applications
requiring many MDA resolutions. Indeed, the use of local POD bases allowed for the reduction
of the average computational cost of one MDA resolution, having shown almost no compromise
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in terms of accuracy of the obtained solution.
In Chapter 4 we proposed to use disciplinary surrogates for gradient-based MDO. To that

end, we introduced the analytical derivatives of the disciplinary GPs and showed that by suc-
cessively enriching the disciplinary surrogates at a queried design space point, the quality of the
corresponding derivatives improves. We equally discussed how the derivatives of vector valued
coupling variables can be obtained, both when using global and local POD bases as dimension
reduction strategy. We then applied the proposed approach to solve both an analytical and en-
gineering MDO problems. The obtained results showed that using the disciplinary surrogates
allows to save a significant amount of computational cost when the derivatives of the real solvers
are not available. Moreover, we saw that, despite the errors committed on the computed deriva-
tives, the obtained MDO solutions lied close to the true optimum. Finally, we presented the use
of the proposed approach thanks to the WhatsOpt collaborative environment. This allows users
to employ the proposed approach with minimal implementation effort.

In Chapter 5 we extended the EGMDO framework to handle constraint MDO problems. To
that end, we proposed the following adaptation to the two-step uncertainty reduction strategy.
As acquisition function, we proposed the use of a constrained Expected Improvement criterion
as acquisition function. This criterion limits the adaptive sampling of the design space to region
that are likely to be feasible. For the enrichment of the disciplinary surrogates, we proposed
a criterion which accounts for both objective and constraint function uncertainties, to restrict
computational cost to areas of the design space where the constrained global optimum is likely
to be. We then applied the proposed Constrained-EGMDO (C-EGMDO) algorithm to solve both
an analytical and an engineering MDO problems. The obtained results showed that C-EGMDO is
capable of handling both equality and inequality constraints. Moreover, we saw that it required
significantly less disciplinary solver calls, compared to other existing frameworks. Finally, we
studied the performance of the C-EGMDO algorithm as a function of the maximum number of
iterations. It was shown that, for the considered engineering test case, when the C-EGMDO al-
gorithm is allowed to run for a sufficiently large number of iterations, all runs were able to find
the global optimum. Additionally, the number of disciplinary solver calls did not significantly
increase with the increase of the maximum number of iterations. In the following, some per-
spectives for future work are given.

Future perspectives

The developments made in this thesis also gave rise to some short-term perspectives for future
work. Indeed, in this work the choice of variable separation strategy to train the database of
pointwise local POD bases was made arbitrarily. However, a sensitivity analysis procedure could
be envisioned to allow for an informed decision on the variable separation strategy. Similarly,
in this work, the considered multidisciplinary systems only required the use of local POD bases
for the aerodynamics disciplines. In the future, systems requiring the use of local POD bases
for more than one discipline should be studied. For the gradient-based optimization using dis-
ciplinary surrogate derivatives, we observed that, despite having attained the convergence cri-
terion of the coefficient of variation of the random MDA solution, some error is committed on
the derivatives of the objective and constraint functions with respect to the design variables. To
improve this result, future work could focus on the development of a surrogate enrichment strat-
egy which aims at learning the derivative of the disciplinary solvers with respect to the design
variables, rather than learning the solution of the MDA itself. Finally, concerning the proposed
C-EGMDO algorithm, we chose to test the proposed approach without resorting to model-order
reduction strategies to reduce the dimension of the coupling variable space, to simplify the con-
ducted performance studies. However, future work should be expected to combine the proposed
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C-EGMDO algorithm with the use of local POD bases to reduce the dimension of the coupling
variable space.

Long-term perspectives could also be envisioned. Indeed, only the use of local-reduced or-
der bases was considered in this work to address the issues encountered by the original DPOD+I
strategy. However, the use of quadratic approximations, such as those proposed in [Barnett and
Farhat, 2022, Geelen et al., 2023], is a valid alternative. Integrating these approximations with
the DPOD+I strategy and comparing their performance with that obtained for the proposed ap-
proach should be envisioned as future work. Similarly, in this work it was assumed that disci-
plinary output data used to train the disciplinary GPs come from a single source. However, sev-
eral works have proposed using multiple levels of fidelity to reduce the overall computational
cost of the optimization problem [Lam et al., 2015, Meliani et al., 2019]. Integrating the use of
multi-fidelity GPs [Kennedy and O’Hagan, 2000, Qian and Wu, 2008] within the proposed ap-
proach could equally be envisioned as future work. Lastly, we assumed that we do not have
access to the disciplinary solver derivatives. For some disciplinary solvers, although we do not
have access to the underlying numerical implementations, gradient information is still provided
in addition to the output at any queried point. In such cases, gradient-enhanced kriging [Liu,
2003, Liem et al., 2015, Bouhlel and Martins, 2019] could be used to build the disciplinary surro-
gates.

In terms of applications, we note that, although most applications considered in this work
involved only two disciplines, future work should include the application of the proposed ap-
proach to systems involving three or more disciplines. Indeed, in most preliminary design stud-
ies, not only aerodynamics and structural disciplines are considered, but also propulsion, con-
trol and mission analysis, among others. Problems involving a greater number of design vari-
ables should also be considered in future work. Such problems will increase the dimension of
the input space for the disciplinary surrogates and can therefore be expected to pose a chal-
lenge to the proposed approach. To address this issue, we could consider looking for a lower di-
mensional representation of the input space, as proposed in [Garnett et al., 2013, Bouhlel et al.,
2016, Zhang et al., 2019, Gaudrie et al., 2020]. Finally, some preliminary design studies also deal
with categorical or discrete design variables. For instance, in aircraft design, integer variables
are used to choose the number of engines while categorical variables are used to choose be-
tween different materials. To handle these type of design variables, some works have proposed
the use of mixed-categorical GPs [Halstrup, 2016, Pelamatti et al., 2019, Garrido-Merchán and
Hernández-Lobato, 2020, Saves, 2024]. Integration of these mixed-categorical GPs with the pro-
posed approach should be envisioned as future work to increase the corresponding range of
application.
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Appendix

Basic WhatsOpt usage

WhatsOpt is a web application which allows users to define multidisciplinary analysis problems
in terms of disciplines and data exchanges. Once the problem has been defined, WhatsOpt gen-
erates the OpenMDAO skeleton code where implementations of the disciplinary solvers can be
plugged into. Figure A1 displays the user graphical interface when a generic two-discipline MDO
problem is defined using WhatsOpt. As shown, when implementing an MDO problem in What-
sOpt, an interactive XDSM diagram of the problem is generated automatically, allowing users to
easily control the flow of information between the different disciplines. Additionally, an interac-
tive table allows users to define all disciplinary inputs and outputs as design or state variables,
as well as objective or constraint functions. The bounds for the design variables can equally be
defined in this step.

Figure A1: WhatsOpt user graphical interface. Implementation of a generic two-discipline MDO
problem.

Once users are done with the problem definition, they can request WhatsOpt to generate the
necessary scripts to run the problem in OpenMDAO. For all disciplines, objective and constraint
functions, WhatsOpt will generate a python script where the respective output computations
should be implemented by the user. WhatsOpt will equally generate the required files to solve
the MDA and MDO problems. The latter will use by default OpenMDAO solver options. The list
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of files generated for the generic two-discipline problem of Figure A1 is given below:

• Disc1_base.py, Disc2_base.py, Functions_base.py: these files contain connection in-
formation (inputs and outputs) for all defined components;

• Disc1.py, Disc2.py, Functions.py: these are python class files where output computa-
tions need to be manually implemented by the user;

• MDO_Problem_base.py, MDO_Problem.py: these files contain the definition of the problem;
• mda_init.py, run_mda.py, run_mdo.py: these files allow to solve the MDA and MDO prob-

lems using the real disciplinary solvers.

Some additional files are equally generated by WhatsOpt, but they do not relate to the devel-
opments proposed in this work. As a result, we abstain from providing further details on them.

Disciplinary surrogate option

To replace the true MDA by the approximated one, users must state that they want the disci-
plinary solvers to be replaced by surrogates. This option is available under the OpenMDAO tab
of the WhatsOpt graphical interface. Figure A2 displays the OpenMDAO menu, where the option
’EGMDO surrogate’ has been ticked for the two disciplinary solvers of the generic two-discipline
problem defined in Figure A1.

It should be noted that when ticking the ’EGMDO surrogate’ option, users are required to
provide an initial guess for the coupling variable space. This can be done in the interactive table
shown in Figure A1 or directly in the generated files. Then, all users have left to do is to ask What-
sOpt to generate the code. Since the option ’EGMDO surrogate’ has been selected, WhatsOpt will
automatically generate the necessary scripts to solve the MDO problem using the derivatives of
the disciplinary surrogates (should we choose to use a gradient-based optimizer). The following
additional scripts are generated:

• algorithms.py: this file contains the implementation of the EGMDA strategy;
• doe_factory.py: this file is responsible for the generation of the disciplinary DoEs;
• gp_factory.py: this file creates the disciplinary surrogates and updates them whenever

enrichments are performed;
• random_analysis.py: this file computes random solution of the approximated MDA;
• MDO_Problem_egmda.py: this file contains the problem definition, when the disciplinary

solvers are replaced by their respective surrogates;
• run_egmda.py, run_egmdo.py: these files allow to solve the MDA and MDO problems using

the disciplinary surrogates.

Assuming that the true disciplinary solvers, objective and constraint functions have been
previously implemented in the respective python files, users don’t need to make any additional
implementations in order to solve the MDO problem using the derivatives of the disciplinary
surrogates. Some remarks should nonetheless be made concerning the generated scripts. In-
deed, by default, sampling of the design and coupling variable spaces is made using LHS strat-
egy. Moreover, in WhatsOpt the disciplinary GPs are built using the KRG class of SMT using a
constant mean and squared exponential correlation functions. These options can be changed
manually in the gp_factory.py script. Finally, at present time, WhatsOpt generates the files as-
suming scalar coupling variables. To solve problems involving vector-valued coupling variables,
users need to manually replace the computation of the disciplinary surrogate derivatives so that
it matches the expression given in Eq. (4.4).
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Figure A2: WhatsOpt OpenMDAO menu. Option ’EGMDO surrogate’ selected for both disci-
plinary solvers.
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Résumé

L’analyse et l’optimisation multidisciplinaire (MDAO) est un outil couramment utilisé dans les
études préliminaires de conception d’aéronefs. Cependant, la plupart de ces études sont menées
à l’aide de modèles de basse-fidélité associés aux différentes disciplines du système. Ces mod-
èles, basées sur des données expérimentales, ne sont plus valables lors de l’étude de nouvelles
configurations d’aéronefs pour lesquelles peu d’informations sont disponibles. Il est donc néces-
saire de recourir à des modèles de haute-fidélité. Néanmoins, l’utilisation de solveurs haute-
fidélité dans un contexte MDAO reste rare, du fait de leur coût de calcul et du manque d’informa-
tion concernant les dérivées disciplinaires. Pour résoudre ce problème, les approches d’optimisa-
tion bayésienne, où l’optimisation est effectuée à l’aide des modèles de substitution, sont ap-
parues comme des approches moins coûteuses qui ne nécessitent pas de connaître les dérivées
du système. L’algorithme EGMDO (Efficient Global Multidisciplinary Design Optimization) est
l’une de ces approches. EGMDO réduit le coût de calcul du problème d’optimisation multi-
disciplinaire en remplaçant les solveurs disciplinaires par des modèles de substitution basés
sur les processus gaussiens (GP) enrichis de manière adaptative. Bien qu’EGMDO réduise avec
succès le coût de calcul, il ne possède pas de stratégie de traitement des contraintes et n’est
donc pas directement utilisable pour la plupart des études préliminaires. De plus, l’utilisation
de modèles de substitution dans le cadre de solveurs haute-fidélité peut entraîner des diffi-
cultés supplémentaires. En effet, la sortie de ces solveurs est généralement une quantité dis-
crétisée sur un maillage, pour laquelle des modèles de substitution ne peuvent pas être directe-
ment construits. Les stratégies de réduction d’ordre de modèle constituent une piste possible
pour surpasser cette difficulté, car elles permettent de représenter les sorties disciplinaires à
haute dimension dans un espace de plus faible dimension. La stratégie Disciplinary Proper Or-
thogonal Decomposition and Interpolation (DPOD+I) a développé cette idée en combinant des
bases POD globales avec l’interpolation par GP des coordonnées généralisées. Mais bien que la
stratégie DPOD+I ait permis l’utilisation de méta modèles avec des solveurs de haute fidélité,
sa performance est significativement diminuée pour les problèmes où le nombre de vecteurs
de base requis pour obtenir une petite erreur de projection est important. Cette thèse pro-
pose d’aborder les défis rencontrés par les méthodes EGMDO et DPOD+I en développant une
extension de l’algorithme EGMDO aux problèmes d’optimisation sous contraintes et en pro-
posant une stratégie de réduction de modèle basée sur l’interpolation de bases POD locales.
Nous explorons également l’optimisation basée sur les gradients en exploitant les dérivées an-
alytiques des méta-modèles disciplinaires. L’application des développements proposés au cou-
plage aéroélastique d’une aile d’avion montre que l’approche proposée est capable de réduire le
coût de calcul des problèmes d’analyse et d’optimisation multidisciplinaires souvent rencontrés
lors des études préliminaires de conception d’aéronefs.

Mots-clés: Analyse et optimisation multidisciplinaire, méta-modèle, processus gaussien, ré-
duction d’ordre de modèle, conception avion avant-projet

175



Abstract

Multidisciplinary design analysis and optimization (MDAO) is commonly used in preliminary
aircraft design studies. Nevertheless, most of these studies are conducted using low-fidelity sim-
ulations of the different participating disciplines. With growing interest in new aircraft configu-
rations for which little to no experimental data is available, the need for high-fidelity simulations
increases. However, due to their computational cost and lack of derivative information, the use
of high-fidelity solvers in MDAO remains scarce. To address this issue, Bayesian optimization
approaches, where optimization is carried out using surrogates of some or all of the system’s
functions have risen as cost-saving, derivative-free approaches. One such approach is the Effi-
cient Global Multidisciplinary Design Optimization (EGMDO) algorithm. EGMDO reduces the
cost of the MDO problem by replacing the disciplinary solvers by adaptively enriched Gaussian
Process (GP) surrogates. Although EGMDO successfully reduces the computational burden, it
does not possess a constraint handling strategy and therefore is not directly useful for most pre-
liminary design studies. Moreover, using disciplinary surrogates when dealing with high-fidelity
solvers can lead to additional challenges. Indeed, the output of these solvers is typically some
quantity discretized over a mesh, for which surrogate models cannot be directly built. Model
order reduction strategies provide a possible lead to address this issue, as they allow to repre-
sent the high-dimensional disciplinary outputs in a lower dimensional space. The Disciplinary
Proper Orthogonal Decomposition and Interpolation (DPOD+I) strategy developed this idea by
combining disciplinary global POD bases with GP interpolation. But although the DPOD+I strat-
egy successfully enabled the use of disciplinary surrogates with high-fidelity solvers, its perfor-
mance is significantly decreased for problems where the number of basis vectors required to
obtain a small projection error is large. This thesis proposes to address the shortcomings of
both EGMDO and DPOD+I frameworks by developing an extension of the EGMDO algorithm to
constrained optimization problems and proposing a different model reduction strategy for the
DPOD+I approach, based on the interpolation of local POD bases. We equally explore the pos-
sibility of gradient-based optimization through exploitation of the analytical derivatives of the
disciplinary surrogates. Application of the proposed developments to the aeroelastic coupling
of a wing shows that the proposed approach is capable of reducing the computational cost of the
multidisciplinary analysis and optimization problems often found in preliminary aircraft design
studies.

Keywords: Multidisciplinary design analysis and optimization, surrogate models, Gaussian
Process, model order reduction, preliminary aircraft design
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