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CHAPTER 1

Introduction

1.1. Foreword

The goal of this document is to draw a coherent picture of multiple contributions
to mathematics over the past 10 years.

Indeed, since my PhD defense in January 2013, I engaged in multiple questions
with the desire to learn as much mathematics as possible. From various remarks from
colleagues, it was more or less clear that my choices in mathematics were perceived
as incoherent, which I do not really mind. I had decided that this habilitation thesis
would be the occasion to lift such misunderstandings.

Beyond this rather serious goal, I also decided I wanted to have fun in writing this
document. As such, I will detail amusing numerical experiments and write amusing
proofs that I accumulated over the years, yet that never made into in papers. And I
hope that a habilitation thesis with novel proofs is not too strange, as the underlying
intention never was to be original. Perhaps the perspective of telling old stories felt
unbearably boring. In fact, after finishing writing this thesis, I realized I spent
more time writing down and polishing these proofs that never made it in papers.
Hopefully these will be basis of subsequent work.

Finally, unlike mathematical papers where one avoids the using the pronoun “I”,
a habilitation thesis is more personal. Therefore I will not shy away from making
personal statements using that pronoun. All such opinions are entirely mine, and
it does not reflect what my co-authors think for example. That should not detract
from the fact that I am immensely indebted to them, for the commitment, the hard
work and the passion in sharing mathematics.

1.2. Structure of the document

In Chapter 2, we discuss our interests in Random Matrix Theory (RMT). The
guiding principle has always been to understand the couplings for growing families of
groups or homogenous spaces. Since these groups or homogenous spaces are realized
as matrices or act on matrix spaces, understanding their geometry and how they
are nested is essential for RMT. If n is the index growing to infinity, the coupling
method gives particularly tractable descriptions of the large n limits. The main
results are follow the contributions of [CNN17, CHN+19, CMN18, CN19].

In Chapter 3, we discuss the Toda integrable system and its relationship to RMT.
More specifically we explain how its scattering unveils the logarithmic interaction
of Coulomb gases.

In Chapter 4, I go back to Pitman-type theorems and the Representation Theory
(RT) of Lie groups, which was my “madeleine de Proust" during the PhD years. The
relationship to RMT is actually straightforward for mathematicians familiar with

9



10 1. INTRODUCTION

Kirillov’s orbit method. It says that in a very precise sense, RT of Lie groups is the
quantization of RMT.

Because that fact is often treated as folklore by the community, I chose to give an
explicit exposition of that in Section 4.2. There we start from the spherical integrals
often used in RMT to integrate out any unitary symmetry. And finishing with two
precise statements about semi-classical limits of representations.

Then in Section 4.3, I explain the contributions of the paper [CC21]. It focuses
on the groupG = SL2(C), arguably the simplest, or rather it focuses on the quantum
group version. I wanted to fully understand how the representation theory of the
quantum group Uq(sl2) and its semi-classical limit, while keeping track of a certain
curvature limit.

Finally, in Section 4.4, I explain how the aforementioned representation the-
ory allows to bridge RMT and certain integrable models in mathematical physics:
directed last Passage percolation and directed polymers. In fact, a landmark re-
sult in that area due to Johannson [Joh00, Proposition 1.4] is reinterpreted as a
Pitman-type theorem.

In the Chapter 5, we leave the topic of quantization while remaining the topic of
quantum mechanics, this time with the problem of measurement and wavefunction
collapse. More precisely we present work on the strong noise limits of SDEs fol-
lowing [BCC+23, BBC+21, BCNP22]. The community is in fact motivated by
quantum mechanics and more precisely quantum open systems. In terms of personal
motivation, I feel that this topic nicely complements the previous chapter. Indeed,
we move from the quantization of (very algebraic) Hamiltonian systems, to the the
mathematical challenges behind the measurement axiom. That was also a very nat-
ural endeavor as the required tool is the theory of stochastic processes – perhaps
even more probabilistic than I initially thought!

Finally, I conclude with perspectives in Chapter 6. There I explain current and
future projects. First, there is the use of the Toda integrable system in RMT and
in order to start dabbling with hydrodynamical limits, following recent work of
mathematical physicist Spohn. Second, there is some musing on the semi-classical
limits of quantum groups at roots of unity. Third, I describe an ongoing project
in Optimal Transport. Fourth, I detail ongoing projects in statistics and learning
theory.

For convenience, the selection of papers treated in this habilitation is reproduced
at the end of this introduction chapter. They are nevertheless present in the bib-
liography just like the other references as [CNN17, CMN18, CHN+19, CN19,
CC21, BCC+23, BBC+21, BCNP22, CDK22]

1.3. What is new and what is not.

For the sake of full disclosure and transparency, I would like to make clear what
is new and what is not in this document. By new, I mean what is not already
published in a peer-reviewed journal nor available on the arxiv as preprints. The
following content is new in that sense, and everything else appears in papers.

First, all of Chapter 3 is extracted from various notes that I accumulated over
the years. While the RMT result it contains is well-established thanks to Dumitriu-
Edelman [DE02], one could argue that the proof is original. Yet I never even posted
this on the arxiv, as I had a different goal in mind – which does not work.
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Second, there is the semi-classical limit form of Theorem 4.2.4 for one orbit and
Theorem 4.2.5 for the convolution of two orbits. These are definitely known to spe-
cialists, at least in the form when observables F belong to the maximal commutative
algebra. Yet they are the theorems I would have liked to see written and proved with
care 10 years ago. To me they embody Kirillov’s orbit method in a language that is
both probabilistic and geometric. These theorems correspond to the flat curvature
setting of my paper [CC21].

Third, Subsection 4.3.3 and Section 4.4 give a self-contained proof of Johansson’s
result entirely based on spherical transforms and our curvature deformation point of
view. That is perhaps the proof I had the most fun writing. Parts of it did surprise
me.

Finally, let me mention that the Chapter 6 of perspectives is mandatory for
a habilitation thesis, by rules of the doctoral school in Toulouse. It contains a
summary of ongoing projects, including works done with two of my PhD students:

• Anirban BOSE who is working on computational aspects of optimal tran-
port.
• Alexey LAZAREV who is working on the use of Ricci-type flows for the
regularization of latent spaces in machines learning.

1.4. Ariane’s threads

In order to flesh out some coherence in this body of research, it is fair to say that
while my interest is always inherently probabilistic, I find probability all the more
interesting that it has something to say about:

• Quantum mechanics: Quantization and the measurement problem in quan-
tum mechanics.
• Harmonic analysis: Representation theory is nothing but the study of non-
commutative Fourier transforms. Spherical transforms are exactly Fourier
transforms under additionnal symmetries.
• Couplings of random variables: Whether it is the coupling of permuta-
tions, unitary matrices or stochastic processes, or the systematic study of
couplings via optimal transport.

In Fig. 1.4.1 is a tentative graph of the topics I have been interested in, and how
they relate to each other.
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Figure 1.4.1. Sketch of my research interests and their interactions.
In pink are large topics, which often correspond to chapters of this
thesis. In green are relevant subtopics, which tend to interact with
other fields.
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CHAPTER 2

Random Matrix Theory (RMT)

Random Matrix Theory (RMT) was pioneered by Wigner in his seminal work
[Wig58] proving the semi-circle law.

2.1. Introduction

Classical matrix ensembles with unitary symmetry: For Λ ∈ Rn, we
write the Vandermonde determinant as

∆(Λ) :=
∏

1≤j<k≤n

(Λj − Λk) .

We define the Wishart ensemble first: Consider a matrix of complex i.i.d. Gaus-
sians (EN C = 0, E|N C|2 = 1):

GM,N :=
(
N C
i,j

)
1≤i≤N

1≤j≤M
= [ξ1, . . . , ξM ] ,

where the ξj’s are the column vectors. A Wishart matrix is the sample covariance
matrix of the ξj’s:

WM,N := GM,NG∗M,N =
M∑
j=1

ξjξ
∗
j .

Notice that (WM,N ; M ≥ 0) is a random walk in M , with i.i.d. isotropic incre-
ments.

Second, we have the GUE (Gaussian Unitary Ensemble). A matrix from this en-
semble GUE(N) has Gaussian entries, following the Hermitian symmetry. In particu-
lar, a process with GUEmarginals is the Hermitian Brownian motion

(
GUE

(N)
t ; t ≥ 0

)
.

By Donkser’s invariance principle, it can be for example obtained by rescaling the
Wishart random walk

∀t ≥ 0, GUE
(N)
t = lim

M→∞

WbMtc,N − bMtcIN√
M

.

The spectrum of WM,N and GUE
(N)
t is given by [AGZ10, Proposition 4.1.3 and

Theorem 2.5.2]

P (Spec(WM,N) ∈ dΛ) =
1Rn+(Λ)

ZM,N

∆(Λ)2e−
1
2

∑N
j=1 Λj

N∏
j=1

ΛM−N
j dΛ ,(2.1.1)

P
(

Spec(GUE
(N)
t ) ∈ dΛ

)
=

1

Z
(N)
t

∆(Λ)2e−
‖Λ‖2

2t dΛ .(2.1.2)

Remark 2.1.1 (These models have independent diagonals). In the Wishart
ensemble diag(ξjξ

∗
j ) is a vector of i.i.d. exponential random variables (Box–Muller).

The GUE also has independent diagonals in the form of real Gaussians.

15



16 2. RANDOM MATRIX THEORY (RMT)

Fluctuations at the edge:

Definition 2.1.2 (Definition-Theorem). The Tracy-Widom distribution is the
only law whose cumulative distribution function F (s) = P (TW2 ≤ s) is equivalently
given by

• a solution to a Painlevé II equation by setting F to be as follows.

F (s) := exp

(
−
∫ ∞
s

(x− s)u(x)2dx

)
,

with {
u′′ = 2u3 + xu

u(x) ∼x→∞ Ai(x) .

• a Fredholm determinant

F (s) = det (Id− Ai)L2([s,∞))

:=
∞∑
k=1

(−1)k

k!

∫
[s,∞)k

det
k×k

(Ai(xi, xj))
k∏
j=1

dxj ,

where the Airy kernel is Ai(x, y) = Ai(x)Ai′(y)−Ai(y)Ai′(y)
x−y .

A landmark result which envigorated RMT among mathematicians was the proof
that fluctuations of the largest eigenvalue is the Tracy-Widom distribution. More
precisely, let us write λ1(M) as the largest eigenvalue of a normal matrix M . Then
as stated in [Joh00, Theorem 1.2] and [AGZ10, Theorem 3.1.4]

Theorem 2.1.3 (Johansson [Joh00], Tracy-Widom [TW94] ). We have the
following limits in law:

(NM)
1
6

(√
N +

√
M
) 2

3

 λ1(WM,N)(√
N +

√
M
)2 − 1

 N,M→∞−→ TW2 ,

N
2
3

(
1√
Nt

λ1(GUE
(N)
t )− 2

)
N→∞−→ TW2 .

In the first limit, one requires the ratio N/M to remain bounded away from zero
and infinity.

2.2. Projective measures and couplings

The coupling argument is one of the most powerful methods in probability theory,
to the point that there is an entire book devoted to it [Lin02]. In our case of interest,
consider a sequence of homogenous spaces or groups Gn increasing in size, along with
a natural inclusions Gn ↪→ Gn+1. This allows the definition of the inductive limit

G∞ = lim−→Gn .

This is also called the direct limit or the injective limit, as the object where all the
Gn’s can be injected in.

More interesting is the projective limit

G∞ = lim←−Gn
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provided we have a sequence of projections from the larger objects to the smaller
ones. If the Gn’s are endowed with natural measures, this naturally gives rise to
couplings.

Here are three examples, the first two being guiding examples, while the last one
being the one of interest in this Chapter.

2.2.1. The infinite symmetric group S∞. Any σn ∈ Sn can also be seen as
an element of Sm for m > n by considering the elements beyond n as fixed. This
simple fact defines the inclusion maps ιm,n : Sm → Sn. This way, any permutation
σn ∈ Sn can be seen as belonging to the "inductive limit" i.e. elements in

S∞ := lim−→Sm .

The projective limit S∞ on the other hand is different. These are called virtual
permutations in [BNN13] and (σn ; n ≥ 1) ∈ S∞ can naturally be constructed by
the so-called Chinese restaurant process (see e.g. [Pit06]), as follows:

• σ1 is the unique permutation in S1 ;
• for n ≥ 1, σn+1 is obtained from σn either by adding n+ 1 as a fixed point,
or by inserting n+ 1 inside a cycle of σn.

More precisely the coupling between Haar measures is given by

Theorem 2.2.1. Given a Haar distributed element σn+1 ∈ Sn+1, it decomposes
uniquely as the product of σn is Haar distributed in Sn and a transposition:

σn+1 = σn ◦ (kn+1 (n+ 1)) ,

where kn+1 is uniform in {1, 2, . . . , n+ 1}.

Elements of proof. The decomposition requires kn+1 = σ−1
n+1(n + 1). The

fact that this decomposition induces the correct distribution is a simple couting
argument. �

Notice that the mere fact of writing this coupling leaves implicit the inclusions
ιn,n+1, as strictly speaking one should write

σn+1 = ιn,n+1 (σn) ◦ (kn+1 (n+ 1)) .

2.2.2. Infinite Hermitian matrices H∞. The vector space of Hermitian ma-
trices is written Hn := {m ∈ Mn(C) | m = m∗}. There is natural inclusion
Hn ↪→ Hn+1 which consists in identifying an n× n matrix with the top-left block of
an (n + 1) × (n + 1) matrix. The inductive limit H∞ = lim−→Hn consists of infinite
Hermitian matrices with finitely many non-zero coefficients.

The projective limit H∞ = lim←−Hn, on the other hand, consists of infinite Her-
mitian matrices indexed by N. The projection to Hn consists in simply cutting a
top-left corner of size n. Notice that Un acts by conjugation on Hn and it is possible
to make sense of measures on H∞ whose all restrictions are invariant under the uni-
tary group. Restrictions are naturally to the top-left corners. Among the examples,
we have classical ensembles:

• the infinite GUE i.e. the infinite matrix with i.i.d. complex Gaussian entries

[GUE∞]i,j =
Gi,j +Gj,i√

2
.

• the rank one matrix ξξ∗ where ξ ∈ MN,1(C) is an infinite vector of i.i.d.
Gaussian entries.
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A beautiful result by Olshanski and Vershik [OV96] consists in the classification
of the ergodic (extremal) measures on H∞ invariant by unitary conjugation.

Theorem 2.2.2 ( [OV96] ). The unitary invariant ergodic measures on H∞ are
exactly of the form

γGUE +
∑
i

αiξiξ
∗
i

for a sequence of positive real numbers γ > 0, αi > 0 such that

γ2 +
∑
i

α2
i <∞ .

Notice that the diagonal of such measures are necessarily exchangeable, because
of the invariance under conjugation by the permutation group. Because De Finetti’s
theorem, such ergodic measures necessarily have i.i.d. diagonals. Actually this is
sufficient.

2.2.3. The infinite unitary group U∞. The unitary group Un. This is the
case that will interest us the most. We shall explain in this chapter that the cou-
pling method is virtually at the core of the three contributions [CNN17, CMN18,
CN19].

Bourgade, Najnudel and Nikeghbali introduced in [BNN13] the concept of vir-
tual isometry. Following the idea explained above, for every integers m ≤ n, we
have a natural inclusion map ιm,n : Um ↪→ Un which maps a matrix um ∈ Um to the
block matrix

ιm,n(um) :=

(
um 0m×(n−m)

0(n−m)×m In−m

)
This map depends on the choice of basis Bn = (e1, e2, . . . , en). In order to define
the dual operation and projective measures, we need to consider a natural way of
coupling the Haar measure between the group Un and Un+1. The proposed solution
in [BNN13] takes the form of the so-called virtual isometries. A virtual isometry
u ∈ U∞ is a sequence of unitary matrices u = (un ∈ Un ;n ≥ 1) with a coupling of
the form:

un = un−1 ◦ rn ,
and rn ∈ Un is a complex reflection sending the canonical basis vector en to a vector
on the sphere vn. By complex reflection, we mean a unitary map with rank(rn−In) =
1. By setting vn = rn(en), one finds the expression:

rn = In − 2
1−<〈vn, en〉
1− 〈vn, en〉

(vn − en) (vn − en)∗

‖vn − en‖2
.(2.2.1)

The analogous decomposition to Theorem 2.2.1 is:

Theorem 2.2.3. Given a Haar distributed element un ∈ Un, it decomposes
uniquely as a product of a Haar distributed un−1 ∈ Un−1 and a complex reflection
rn:

un = un−1 ◦ rn .
The complex reflection rn has the form in Eq. (2.2.1) with vn being uniform on the
sphere {v ∈ Cn | ‖v‖2 = 1}.
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Now define the following two version of characteristic polynomials of a unitary
matrix via

Φ∗n(z) := det(In − zu−1
n ) =

n∏
j=1

(
1− ze−iθ

(n)
j

)
,(2.2.2)

Φn(z) := det(z − un) =
n∏
j=1

(
z − eiθ

(n)
j

)
.(2.2.3)

The
(
θ

(n)
j ; 1 ≤ j ≤ n

)
are the eigenvalues of un.

Clearly we have the relationship

Φn(z) = znΦn(1/z̄) .(2.2.4)

The matrix determinant Lemma states that for a matrix A ∈ Cn×n and (u, v) ∈
Cn×1 × Cn×1 column vectors, we have:

det (A+ uv∗) = det(A)
(
1 + v∗A−1u

)
.

Let us now apply this identity to A = In − zιn−1,n (un−1)−1 and

A+ uv∗ = In − zu−1
n = In − zu−1

n−1r
−1
n = In − zu−1

n−1 − z
(
r−1
n − In

)
.

Notice that in the above computation, we identified ιn−1,n (un−1) to un−1 to the cost
of adding an eigenvalue equal to one. As such detA = Φ∗n−1(z)(1 − z). Moreover,
from Eq. (2.2.1) we have

r−1
n = In − 2

1−<〈vn, en〉
1− 〈vn, en〉

(vn − en) (vn − en)∗

‖vn − en‖2
,(2.2.5)

which is can be deduced without computation from reversing the roles of en and vn.
As such

uv∗ = 2z
1−<〈vn, en〉
1− 〈vn, en〉

(vn − en) (vn − en)∗

‖vn − en‖2
= z

(vn − en) (vn − en)∗

1− 〈vn, en〉
.

In the end, we have

Φ∗n(z) = det
(
In − zu−1

n

)
= det (A+ uv∗)

= detA
(
1 + v∗A−1u

)
= Φ∗n−1(z)(1− z)

(
1 + v∗A−1u

)
= Φ∗n−1(z)(1− z)

(
1 + z

(vn − en)∗
(
In − zu−1

n−1

)−1
(vn − en)

1− 〈vn, en〉

)
.

The above equation yields a coupling between characteristic polynomials. It is
the basis of a strong control on eigenvalues of unitary matrices, which leads to strong
almost sure convergence results. For example, upon extending the eigenvalue indices
to all of Z by 2π periodicity on the circle, we have the following.

Theorem 2.2.4 ([MNN20]). Almost surely, the point process(
y

(n)
k :=

n

2π
θ

(n)
k , k ∈ Z

)
converges pointwise to a determinantal sine-kernel point process (yk, k ∈ Z).
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And moreover, almost surely, the following estimate holds for all ε > 0:

∀k ∈ [−n
1
4 , n

1
4 ], y

(n)
k = yk +Oε

(
(1 + k2)n−

1
3

+ε
)

Such estimates have been improved in [VV22].

2.3. The Stochastic Zeta function

Following a philosophy due to Keating-Snaith on the one hand and to Sarnak on
the other hand, the characteristic polynomials of random matrices are models for
the Riemann function ζ on the critical line <s = 1

2
. This has led to a large number

of predictions, and some theorems, which would probably have remained out of
reach without the direction given by random matrix theory. A conjecture raised by
Virag at an AIM conference was the construction of a random zeta function as a
limit of characteristic polynomials of random matrices. In [CNN17], we construct
such a universal function through a fine control of the eigenvalues of distributed
Haar matrices. This control is made possible by the virtual isometries described
in the previous sections. Although we never named that object, more recent work
by Valko and Virag [VV22] uses the name of "Stochastic Zeta Function". This
random function allows to refine the correspondence between random matrices and
number theory from a functional point of view. In [CHN+19], we construct the
same function for sets of classical random matrices other than the unitary case, and
where we have weaker controls on the eigenvalues.

Let us now give a precise statement. Consider the microscopic rescaling of the
characteristic polynomial Xn of a Haar distributed matrix in Un:

ξn(z) =
Xn(e2izπ/n)

Xn(1)
.(2.3.1)

The first main theorem of [CNN17] is the following:

Theorem 2.3.1 ([CNN17]). Almost surely and uniformly on compact subsets
of C, we have the convergence:

ξn (z)
n→∞−→ ξ∞(z) := eiπz

∏
k∈Z

(
1− z

yk

)
Here, the infinite product is not absolutely convergent. It has to be understood as
the limit of the following product, obtained by regrouping the factors two by two:(

1− z

y0

)∏
k≥1

[(
1− z

yk

)(
1− z

y−k

)]
,

which is absolutely convergent.

The second main result consists in giving new compact formulas for moments of
ratios, and a credible conjecture for the Riemann zeta function ζ.

Theorem 2.3.2 ([CNN17]). The following results on ratios hold:
(1) For any p > 0 and any compact set K ⊂ C\R, we have:

sup
n∈Nt{∞}

E

(
sup

(z,z′)∈K2

∣∣∣∣ξn(z′)

ξn(z)

∣∣∣∣p
)
<∞.
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(2) For z1, . . . , zk, z
′
1, . . . , z

′
k ∈ C\R, and for all n ∈ N t {∞},

E

(
k∏
j=1

∣∣∣∣ξn(z′j)

ξn(zj)

∣∣∣∣
)
<∞

Moreover, for every compact set K in C\R, we have the following conver-
gence, uniformly in z1, z2, . . . , zk, z

′
1, . . . , z

′
k ∈ K:

E

(
k∏
j=1

ξn(z′j)

ξn(zj)

)
−→
n→∞

E

(
k∏
j=1

ξ∞(z′j)

ξ∞(zj)

)
.

(3) For all z1, . . . , zk, z
′
1, . . . , z

′
k ∈ C\R such that zi 6= z′j for 1 ≤ i, j ≤ n, we

have

det

(
1

zi − z′j

)k
i,j=1

E

(
k∏
j=1

ξ∞(z′j)

ξ∞(zj)

)
= det

(
1

zi − z′j
E
(
ξ∞(z′j)

ξ∞(zi)

))k
i,j=1

and moreover:

E
(
ξ∞(z′)

ξ∞(z)

)
=

{
1 if =(z) > 0

ei2π(z′−z) if =(z) < 0

And we conjecture that if ω is a uniform random variable on [0, 1] and T > 0 a
real parameter going to infinity, then, for all z1, . . . , zk, z

′
1, . . . , z

′
k ∈ C\R, such that

zi 6= z′j for all i, j,

E

 k∏
j=1

ζ
(

1
2

+ iTω − i2πz′j
log T

)
ζ
(

1
2

+ iTω − i2πzj
log T

)


T→∞−→ det

(
1

zi − z′j

)−1

det

(
1=(zi)>0 + e2iπ(z′j−zi)1=(zi)<0

zi − z′j

)k

i,j=1

,

where the last expression is well-defined where the zi and the z′j are all distinct, and
is extended by continuity to the case where some of the zi or some of the z′j are equal.

2.4. Realization of couplings from OPUC

A different coupling can be realized for a model of random matrices more general
than the CUE.

2.4.1. Orthogonal Polynomials on the Unit Circle (OPUC). Consider a
probability measure µ on the unit circle ∂D, D being the unit disc. By applying the
Gram-Schmidt orthogonalization procedure to monomials {1, z, z2, . . .}, one obtains
a sequence (Φn)n≥0 of OPUC which satisfies the Szegö recurrence:(

Φk+1(z)
Φ∗k+1(z)

)
=

(
z −αk
−αkz 1

)(
Φk(z)
Φ∗k(z)

)
,(2.4.1)

where
Φ∗n(z) := znΦn(1/z̄).

The Szegö recurrence is the analogue of the three term recurrence for orthogonal
polynomials on the line R. The coefficients αj belong to the closed disc, D, and are



22 2. RANDOM MATRIX THEORY (RMT)

called Verblunsky coefficients. If a measure µ determines the Verblunsky coefficients,
the converse is also true (see [Sim05a, Theorem 1.7.11 p.97]):

Theorem 2.4.1 (Verblunsky’s theorem). Let M1(∂D) be the simplex of proba-
bility measures on the circle, endowed with the weak topology, and let

D := DN t
(
tn∈Z+Dn × ∂D

)
be endowed with the topology related to the following notion of convergence: a se-
quence (Ap)p≥1 in D converges to an element A∞ = (αj)0≤j<K with finitely many or
infinitely many components (K finite or infinite) if and only if for all j < K, the
coefficient of order j of Ap is well-defined for p large enough and converges to αj.
Then, the map

V : M1(∂D) → D
given by the sequence of Verblunsky coefficients is a homeomorphism. Atomic mea-
sures with n atoms have n Verblunsky coefficients, the last one being of modulus one,
other measures have infinitely many Verblunsky coefficients.

If Leb is the Lebesgue measure on ∂D, then V(Leb) = (0, 0, . . . ). In fact, the
tangent map of the Verblunsky map, at the point Leb, gives exactly the Fourier
coefficients of the perturbation. Hence the Verblunsky map is inherently spectral in
nature and Verblunsky coefficients can be seen as non-linear Fourier coefficients.

Now let us introduce the random matrix model of interest.

2.4.2. The Circular Beta Ensemble (CβE). For this paragraph, β > 0
plays the role of a coupling constant. Consider n points on the unit circle whose
probability distribution is:

(CβEn)
1

Zn,β

∏
1≤k<l≤n

∣∣eiθk − eiθl∣∣β dθ.(2.4.2)

For β = 2, we recognize Weyl’s integration formula for central functions on
the unitary group U(n). In this case the CβEn reduces to an ensemble known as
the Circular Unitary Ensemble (CUEn). It is nothing but the distribution of the
eigenvalues of a Haar distributed random matrix. Naturally, the study of this case is
very rich in the representation theory of unitary groups. See for example Diaconis-
Shahshahani [DS94] and Bump-Gamburd [BG06], which are some of my favorite
papers mixing RMT and representation theory.

For general β > 0, the representation-theoretic picture is more complicated.
CβEn is the orthogonality measure for Jack polynomials in n variables [Mac98].
In turn, Jack polynomials are also intimately related to representation theory via
rational Cherednik algebras [DG10]. Our point of view will be more direct. From
the work of Killip and Nenciu [KN04a], the characteristic polynomial

Xn(z) := det (id−zU∗n) =
∏

1≤j≤n

(
1− ze−iθ

(n)
j

)
can be realized as the last term of the Szegö recurrence, whose distribution of the
Verblunsky coefficients is explicitly given. This distribution is described as follows:
the coefficients are independent, the last one is uniform on the unit circle, and for
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0 ≤ j ≤ n− 2, αj is rotationally invariant and |αj|2 is a Beta random variable with
parameters 1 and βj := β(j+1)

2
:

P
(
|αj|2 ∈ dx

)
= βj (1− x)βj−1

1{0<x<1}dx .(2.4.3)

In passing, let us record the following basic properties:
• Rotation invariance: if |λ| = 1, then

(Φ∗n(λz))z∈C
L
= (Φ∗n(z))z∈C

• The equalities:

E
(
|αj|2

)
=

1

1 + βj
(2.4.4)

and

E
[
− log

(
1− |αj|2

)]
=

1

βj
(2.4.5)

hold.

Remark 2.4.2. In fact, Killip and Nenciu first prove in their [KN04a, Theorem
1] and [KN04a, Proposition 4.2] that

V−1 (αn−2, . . . , α1, α0, η) =
n∑
j=1

π̃jδθ(n)
j

(dθ) ,

where the weights (π̃j)1≤j≤n have a β-Dirichlet distribution and the support is inde-
pendently distributed according to the CβEn given in (2.4.2).

Moreover, thanks to [KN04a, Proposition B.2], reversing the order of Verblunsky
coefficients, except the last one η, changes the weights but preserves the support.

Having in mind the previous remark, a fruitful idea consists in using the reversed
order of Verblunksy coefficients and incorporating the weights in the definition of
the CβEn. Therefore, we redefine the Circular β Ensemble with n points as the
random probability measure:

CβEn :=V−1 (α0, α1, . . . , αn−2, η) =
n∑
j=1

πjδθ(n)
j

(dθ) .(2.4.6)

The support points
(
θ

(n)
j

)
1≤j≤n

are the zeroes of Xn and are still distributed as

in (2.4.2). Nevertheless, the distribution of the weights (πj)1≤j≤n is not known
explicitly, with a tractable form.

From Eq. (2.4.6) a remarkable fact is that the sequence of Verblunsky coefficients
is consistent : CβEn and CβEn+1 have a priori no reason for living on the same
probability space. However, it is possible to couple them in such a way that the
n − 1 first Verblunsky coefficients are exactly the same. This provides a way to
couple the characteristic polynomial of CβEn for all values of n ≥ 1: if (αj)j≥0 is an
infinite sequence of independent variables whose distribution is given as above, and
if η is an independent variable, uniform on the unit circle, then the last orthogonal
polynomial given by the sequence of Verblunsky coefficients (α0, . . . , αn−2, η) has the
same law as the CβEn for all n ≥ 1.
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2.5. Maxima of characteristic polynomials

Still combining number theory and random matrices, Fyodoroff-Hiary-Keating
formulate a very precise conjecture on the maximum of the function ζ on short
intervals and on the maximum of the characteristic polynomial of a random matrix.
This conjecture is informed by an analogy between branching models and the log-
correlated nature of the random fields considered.

For shorter notation, the unit disc will sometimes be denoted U := ∂D. A
standard result in RMT says that the log-characteristic polynomial of CβE converges
to a Gaussian field. More precisely, the following holds:

(log |Xn(z)| ; z ∈ D)
n→∞−→

(√
2

β
G(z) ; z ∈ D

)
,

where for z ∈ D,

G(z) := 2<
∞∑
k=1

zk√
k
N C
k .(2.5.1)

Extremal statistics. Let us formulate and explain the intuition of the Fyodoroff-
Hiary-Keating conjecture by restricting ourselves to β = 2 for now. By an explicit
computation [FHK12], it is possible to prove that

Var (log |Xn(z)|) ∼ 1

2
log n

and that the correlation saturates at the scale |θ−θ′| ∼ 1
n
. By correlation saturation,

we simply mean that the order of magnitude of the correlation remains the same
for θ − θ′ going to zero and for |θ − θ′| ∼ 1/n. Thus, the naive analogy consists in
approximating the function log |Xn(z)| on the circle by its values at O(n) points.
Each point would be assigned an independent copy of a Gaussian with variance
1
2

log n. It is classical that the maximum of such independent Gaussians is of order
log n, which intuitively explains the leading order. One hopes to show that the proof
of this first order does not depend on the correlation structure. The story is different
for the second order term. If not for the correlations, the asymptotic expansion would
be log n− 1

4
log log n by approximating the field by O(n) independent Gaussians.

From this discussion, one sees that (log |Xn(z)|)z∈U is a complicated (yet in-
tegrable) regularization of a log-correlated Gaussian field (G(z))z∈U. In terms of
global features, it is in every way similar to the “cone construction” (see Arguin,
Zindy [AZ14, Fig. 1]): correlation is of logarithmic nature and saturates at the
scale 1

n
. In that universality class, one expects:

max
z∈U

log |Xn(z)| ∼ log n− 3

4
log log n,

which is an established result in many cases. In the case of tree models such as
branching Brownian motion and branching random walks, the result holds at fairly
large level of generality (See [HS09, AS10, Aïd13]). By “tree model”, we mean
a model where a tree structure is apparent and explicit. Among non-tree models,
where one needs to identify an approximate branching structure, the result holds
for log-correlated Gaussian fields [Mad15, DRZ15], discrete GFF (Gaussian Free
Fields) as described in [BZ12, BDZ16], and cover times [BK14]. The constant 3

4
is strongly related to such an underlying hierarchical structure.
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It is also worth mentioning that the field
(
<G

(
eiθ
))
θ∈[0,2π)

can be regularized
into a Gaussian field by evaluating the random field z 7→ <G(z) in the interior of the
unit disk. The existing technology for Gaussian log-correlated fields is applicable to
θ 7→ <G

(
e−

1
n

+iθ
)
, with mild modifications. It yields the expected results for this

simple regularization where all the Random Matrix Theory is lost.
In two very insightful papers [FK14, FHK12], Fyodorov, Hiary and Keating

formulate the following conjecture.

Conjecture 2.5.1 (The Fyodoroff-Hiary-Keating conjecture). When β = 2, the
following convergence in law holds:

sup
z∈U

log |Xn(z)| −
(

log n− 3

4
log log n

)
−→
n→∞

1

2
(K1 +K2)

where K1 and K2 are two independent Gumbel random variables.

Indeed, in the notations of these papers, − (K1 +K2) is a random variable with
density

p(x) = 2exK0(2e
x
2 ) = ex

∫
R
dye−e

x/2 cosh(y) .

Here K0 is the modified Bessel function of the second kind. A quick computation
of moment generating functions allows us to realize that we are dealing indeed with
minus the sum of two independent Gumbel random variables.

It is a very challenging problem to prove (or disprove) such a precise conjecture.
However, progress has recently been made in this direction. In a first breakthrough
[ABB16], Arguin, Belius and Bourgade have proven that

supz∈U log |Xn(z)|
log n

−→
n→∞

1

in probability, and shortly afterwards, using different methods, Paquette and Zeitouni
[PZ16] have refined this result by showing:

supz∈U log |Xn(z)| − log n

log log n
−→
n→∞

−3

4

in probability. The refinement given by Paquette and Zeitouni is an important
progress as the constant 3

4
morally confirms the existence of hierarchical structures.

Our result. The main theorem of [CMN18] answers Conjecture 2.5.1 up to
the third order, and in the setting of the Circular Beta Ensemble where β > 0 is not
necessarily equal to 2.

For β 6= 2, the point process of the eigenvalue is not determinantal, and then
it is more difficult to get exact formulas for this model. The tool we will use to
deal with this problem is the theory of orthogonal polynomials on the unit circle,
described for example in the book by Simon [Sim05b]. In [KN04b], Killip and
Nenciu give the construction of an ensemble of random matrices whose eigenvalue
distribution follows the CβE, and prove that the characteristic polynomial can be
written as the last term of a sequence of orthogonal polynomials whose parameters,
called Verblunsky coefficients, have a distribution which is explicitly given. In the
beautiful paper [KS09], Killip and Stoiciu use this model in order to deduce the
existence of a limiting point process for the microscopic behavior of the CβE. More
details are given in the next section, along with the notions we will need.
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The precise statement of our main result is the following.

Theorem 2.5.2 (Main result of [CMN18] ). If U′ := U\{λ1, . . . , λn}, the fol-
lowing family of random variables:√

β

2

(
sup
z∈U′
< logXn(z)−

(
log n− 3

4
log log n

))
n≥2

and for σ ∈ {−1, 1},√
β

2

(
sup
z∈U′

(σ= logXn(z))−
(

log n− 3

4
log log n

))
n≥2

are tight.

It seems reasonable to expect that these families of random variables have a
limiting distribution, however, we are not sure about what this distribution should
be. It is interesting to state the previous result with the imaginary part of the
characteristic polynomial, since this gives some information about the number of
points among (λj)1≤j≤n which lie in a given arc of circle. In particular, we get the
following corollary:

Corollary 2.5.3. For z1, z2 ∈ U, let Nn(z1, z2) be the number of points of the
CβE lying in the arc coming counterclockwise from z1 to z2, and let N (0)

n (z1, z2) be
the expectation of Nn(z1, z2), which is equal to the length of the arc multiplied by
n/2π. Then, the following family of random variables is tight:(

π

√
β

8
sup

z1,z2∈U
|Nn(z1, z2)−N (0)

n (z1, z2)| −
(

log n− 3

4
log log n

))
n≥2

.

The values of z1 and z2 maximizing |Nn(z1, z2)−N (0)
n (z1, z2)| correspond to the

extreme values of the imaginary part of logXn on U.
Let us conclude this section by mentioning the latest refinement of Theorem 2.5.2

given in [PZ22]. There, Paquette and Zeitouni refine our method to prove that the
fluctuations are indeed given by a sum of two independent random variables. First
there is a Gumbel random variable which appears when aggregating decorrelated
locations on the circle. The second random variable captures the extremal landscape
and is the analogue of the derivative martingale in the branching Brownian motion
case. The paper [PZ22] does not identify the limiting distribution of the second
random variable, but it is conjectured to be a Gumbel random variable as well.

The limit is in fact expected to match (the log of) the total mass of a critical
Gaussian Multiplicative Chaos (GMC) on the circle. It was when studying this
object that we unveiled a stronger connection with RMT, which we will discuss in
the next section.

2.6. From RMT to the Gaussian Multiplicative Chaos

The starting point is revisiting Eq. (2.4.6), which we look at through the lens
of Verblunsky’s Theorem 2.4.1. With this particular coupling, the Verblunsky co-
efficients provide a sequence of random measures indexed by n, supported by the
points of the CβEn, and tending to a limiting random measure µβ, whose Verblunsky
coefficients are (αj)j≥0.

In light of Verblunsky’s Theorem 2.4.1, this remark begs the question:
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Question 2.6.1. Is there anything remarkable or canonical about the projective
limit

lim←−CβEn := V−1 (α0, α1, α2, . . . ) = µβ ,

obtained from using all Verblunsky coefficients? Does this measure arise in other
circumstances?

Before discussing this question, it is worth explaining why the points CβEn can
be seen as quadrature points of the infinite random measure lim←−CβEn = µβ. Any
sequence of measures, indexed by n, whose n− 1 first Verblunsky coefficients match
the n−1 first elements of the sequence (α0, α1, . . . ) will converge to µβ, in the topol-
ogy of weak convergence. Moreover, if we assume that the Verblunsky coefficients
are (α0, . . . , αn−2, η) with |η| = 1, then the approximating measure is atomic, sup-
ported by n points. The general theory of orthogonal polynomials dictates that for
all polynomials P of degree degP ≤ n− 1:∫

∂D
P µβ =

n∑
j=1

πjP (eiθ
(n)
j ) .

In the language of approximation theory, that is exactly to say that (πj)1≤j≤n are
(random) quadrature weights and that the n of points CβEn can be seen as the n
(random) quadrature points for the (random) measure µβ = lim←−CβEn.

It is in our paper [CN19] that we tackle Question 2.6.1. There we clarify the
links between random matrices and log-correlated fields by proving a surprising
connection. We show that, in a precise sense, the n-point CβE is the quadrature of
the circle-invariant GMC (Gaussian Multiplicative Chaos). In a certain sense, these
two models are in fact equal and not simply similar as suggested in a conjecture of
Virag on the equality of the multifractal spectrum of the GMC and of the measure
associated to the CβE. This of course solves Virag’s question. But as a corollary we
also obtain a new proof of the Fyodoroff-Bouchaud conjecture on the total mass of
the GMC on the circle, proved one year before by Rémy by conformal field theory
techniques. Our method also gives the law of the other trigonometric moments.
For me, emphasizing the integrability of the GMC thanks to the CβE model of
random matrices still corresponds to the philosophy of integrable probability. An
attractive idea, still vague, would be to link the integrability of the conformal field
theory, where the GMC is a central object which should be related to the (higher)
representation theory associated to the CβE.

The Gaussian Multiplicative Chaos (GMCγ). In this paragraph, γ > 0
plays the role of coupling constant in an a priori different context. Recall from Eq.
(2.5.1) the Gaussian field on the unit disc:

G(z) := 2<
∞∑
k=1

zk√
k
N C
k

where (N C
k )k≥0 denote i.i.d complex Gaussian variables, such that

E
[
(N C

k )2
]

= E
[
N C
k

]
= 0, E

[
|N C

k |2
]

= 1 .

One can establish that:
• Cov(G(w), G(z)) = −2 log |1− wz̄| .



28 2. RANDOM MATRIX THEORY (RMT)

• The field can be extended to the closed unit disc D but its restriction to the
circle is not a function. In fact, G|∂D is almost surely a random Schwartz
distribution in ∩ε>0H

−ε(∂D) where the Sobolev spaces are given for all
s ∈ R by:

Hs(∂D) :=

{
f
∣∣∣ ∑
n∈Z

|n|s|f̂(n)|2 <∞

}
.

• Because G is harmonic, G(reiθ) = (G|∂D ∗ Pr)
(
eiθ
)
where ∗ denotes convo-

lution and Pr is the Poisson kernel.
We can define the measure

GMCγ
r (f) :=

∫
∂D

dθ

2π
f(eiθ) exp

(
γG(reiθ)− 1

2
γ2 Var(G(reiθ))

)
(2.6.1)

=

∫
∂D

dθ

2π
f(eiθ)eγG(reiθ)

(
1− r2

)γ2

.

The Gaussian Multiplicative Chaos with coupling constant γ > 0 is the weak
limit:

GMCγ := lim
r→1

GMCγ
r .(2.6.2)

To be exact, the above limit holds in probability, upon integrating against contin-
uous functions. The existence of such a limit for all γ > 0 is well-established via
standard regularization techniques such as convolution or Karhunen-Loeve expan-
sions of Gaussian processes [RV13, B+17]. The literature treats higher dimensions
and different geometries as well. Of course, this includes our particular case of con-
volution by the Poisson kernel. However, there are different regimes regarding the
limit (2.6.2):

• γ < 1, Sub-critical phase. GMCγ is a non-degenerate random measure,
which can be seen from the following L1 convergence.

Theorem 2.6.2 (Theorem 1.2 in [B+17]). For all nonnegative, smooth
functions f , and for γ < 1, i.e. in the sub-critical regime:

GMCγ
r (f)

r→1−→ GMCγ(f) ,

the convergence being in probability and in L1 (Ω,B,P).

• γ = 1, Critical phase. The limit in (2.6.2) is the trivial zero measure,
however one can perform different normalizations in order to obtain the so-
called critical GMC. A random renormalization via the so-called derivative
martingale has been implemented in [DRS+14], while the Seneta-Heyde
renormalization has been implemented in [JS+17]. Both constructions
agree [Pow18]. Moreover, Aru, Powell and Sepulveda [APS18, Section
4.1] have proven that the critical GMC can be written as the limit of the
subcritical GMC when the parameter tends to 1 from below. This allows
us to bootstrap the construction of the sub-critical GMC and obtain the
critical GMC via the limit in probability:

GMCγ=1 = lim
γ→1−

GMCγ

1− γ
,(2.6.3)
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when the random measures GMCγ are constructed from the same field G
for all values of γ ∈ (0, 1). The critical GMC is known to be non-atomic
and it is conjectured to assign full measure to a random set of Hausdorff
dimension zero (see the overview section of [DRS+14]).

As a corollary of our main result, we shall see that this latter conjecture
holds, in the context of the circle.
• γ > 1, Supercritical phase. In this case, there are two constructions result-
ing in different measures.

A first point of view consists in noticing that the renormalization of Eq.
(2.6.1) by a factor (1− r2)γ

2 is too strong, and the limit (2.6.2) is the zero
measure. One needs a different renormalization procedure so that a non-
trivial limit holds. The correct normalization at the exponential scale is
given by the precise asymptotic behavior of the maximum maxθ∈RG(reiθ)
as r → 1−. As such, one naturally expects the limit to be atomic, giving
mass to the Gaussian field’s maxima. This was done in [MRV+16]. With
such a construction, the γ > 1 regime is called the glassy phase and the
transition is referred to as a freezing transition. The term "freezing" comes
from the fact that the logarithm of the total mass of the measure behaves
linearly in γ because of the new renormalization. All in all, the result
is that the limiting measure can be described as follows: one starts with
the critical GMC, and conditionally on the corresponding random measure
GMCγ=1, one takes a strictly positive stable noise of scaling exponent 1

γ

and intensity GMCγ=1. In loose terms, in the supercritical regime, one only
sees Dirac masses corresponding to the extrema of the underlying Gaussian
field, and which are “sprinkled” on the circle with an intensity depending
on the critical measure.

Another version of the supercritical Gaussian multiplicative chaos has
been previously constructed in [BJRV13] by taking a subcritical GMC
with coupling constant γ′ = 1

γ
, as the intensity of a stable noise of scal-

ing exponent 1
γ2 . We use a different normalization, hence extra factors

2 in [BJRV13]. The constructed measure is named the KPZ dual mea-
sure. As explained in that paper, the name stems from the relationship to
the KPZ formula and its symmetry with respect to the transform γ 7→ 1

γ
.

This last construction cannot be naturally recovered from a logarithmically
correlated Gaussian field on the circle without adding some extra random-
ness, contrarily to the construction of [MRV+16] with a freezing transition.
Nevertheless, the KPZ dual measure seems to have better analyticity prop-
erties than the construction with a freezing transition. We will make further
remarks on the topic at the end of the next section.

The result. The Main Theorem of [CN19] provides a direct link between the
a priori unrelated objects introduced in the previous section: namely, it shows that
up to a suitable normalization, the random measure lim←−CβEn and the Gaussian

multiplicative chaos of parameter γ :=
√

2
β
have the same distribution in the sub-

critical and the critical cases, i.e. for β ≥ 2.
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Notice that the construction of lim←−CβEn bypasses the phase transition involved
in the definition of the GMC, since the description in terms of Verblunsky coeffi-
cients is uniform for all values of β > 0. However, we do not exactly know how the
two random measures CβE∞ and GMCγ are related in the supercritical case.

The precise statement is the following:

Theorem 2.6.3 (Main Theorem of [CN19] - GMCγ = lim←−CβEn). For β ≥
2, let (αj)j≥0 be a sequence of independent, rotationally invariant complex-valued
random variables, such that |αj|2 is Beta-distributed with parameters 1 and βj =
β
2
(j + 1). Let µβ be the random probability measure whose Verblunsky coefficients

are given by the sequence (αj)j≥0, and let

C0 :=


∏∞

j=0

(
1− |αj|2

)−1
(

1− 2
β(j+1)

)
if β > 2

2
(
1− |α0|2

)−1∏∞
j=1

(
1− |αj|2

)−1
(

1− 2
β(j+1)

)
if β = 2 .

Then, the product of C0 by the measure µβ has the same law as the measure corre-
sponding to the Gaussian multiplicative chaos GMCγ, with parameter γ =

√
2
β
≤ 1.

In particular, µβ has the same law as GMCγ, renormalized into a probability mea-
sure, and the total mass of GMCγ has the same law as C0.



CHAPTER 3

The Toda system, its scattering and tridiagonal models

If the previous chapter was focused on couplings for circular ensembles. Of
course, one might wonder what are the analogues of the previous sections on the
real line. Here we will revisit the matrix model of Dumitriu-Edelman [DE02], which
yields a coupling which is arguably the oldest and the most well-known.

The goal of this chapter is to present an original description of tridiaonal models
in terms of the Toda integrable system. The classical Toda flow is a well-known
integrable Hamiltonian system that diagonalizes matrices. By keeping track of the
distribution of entries and precise scattering asymptotics, one can exhibit matrix
models for log-gases on the real line. These types of scattering asymptotics date
back to fundamental work of Moser.

More precisely, using the classical Toda flow acting on symmetric real tridiago-
nal matrices, we give a "symplectic" proof of the fact that the Dumitriu-Edelman
tridiagonal model has a spectrum following the Gaussian β-ensemble.

3.1. Gaussian β-ensembles and the Macdonald-Mehta-Opdam formula

The Gaussian β-ensemble is the probability distribution for an n-point configu-
rations in the real line:

(GβEn) P (Λ ∈ dx) :=
1

Zβ
n

|∆(x)|β e−
1
2

∑n
j=1 x

2
i

n∏
j=1

dxi ,(3.1.1)

with Zβ
n being the normalization constant. It is a particular case of β-ensembles

with general confining potential V :

P (Λ ∈ dx) :=
1

Zβ
n

|∆(x)|β e−
∑n
j=1 V (xi)

n∏
j=1

dxi .(3.1.2)

From [DE02], the GβEnis conveniently obtained as the spectrum of the tridi-
agonal matrix:

Tβ =


N1 χ 1

2
(n−1)β 0 . . . 0 0

χ 1
2

(n−1)β N2 χ 1
2

(n−2)β . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . Nn−1 χ 1

2
β

0 0 0 . . . χ 1
2
β Nn

(3.1.3)

where the variables with different symbols are independent. χk stands for a χ-
distributed random variable with k degrees of freedom and Ni stands for a standard
Gaussian random variable. We record this fact for future reference as

Theorem 3.1.1 (Dumitriu and Edelman, [DE02]). The spectrum of Tβ, as given
in Eq. (3.1.3), is the β-ensemble on the line, with quadratic confinement potential.

31
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Moreover, the Macdonald-Mehta-Opdam identity holds true:

Zβ(Rn) =

∫
Rn
dx |∆(x)|β e−

1
2

∑n
j=1 x

2
i = (2π)

1
2
n

n∏
j=1

Γ
(
1 + β

2
j
)

Γ
(
1 + β

2

) .

Thanks to this tridiagonal model, the spectra of GβEn and GβEn+1 are naturally
coupled. This is again the same coupling in β = 2 of the projective measures of
Olshanki-Vershik 2.2.2, after the so-called Trotter reduction.

From a physical perspective, the spectrum gives a log-gas with quadratic con-
finement potential. The fact that Dumitriu and Edelman’s model has independent
entries is miraculous and shows that β-ensembles are integrable in a sense.

The present work provides another proof that Dumitriu and Edelman’s triadi-
agonal model has a spectrum distributed according to the β-ensemble on the line.
While there is no new result per se, it is the approach that is novel. This deriva-
tion uses a Hamiltonian technique based on the scattering for the Toda flow. It is
perhaps “the symplectic proof” that Dumitriu and Edelman mention in their paper
[DE02] in the form of their Remark 2.10. Also, since this geometric proof splits
the space into independent entries, it gives the change of variables which produces
a proof of the Macdonald-Mehta-Opdam (MMO) integral.

The general approach goes as follows. We consider a random matrix with fixed
distribution as starting point for the Toda flow. As the Toda flow is an integrable
dynamical system that diagonalizes matrices, we are able to keep track of the matrix
distribution throughout the flow.

Another interesting point regards the nature of the integrability of such models
and we shed some light on the matter. Indeed, with initial measures expressed in
terms of Casimirs, i.e. invariants of motion, the spectral distribution has a tractable
and closed form expression. The particularity of quadratic potentials is that they are
expressed using the first Casimir only, whose special structure leads to independence
in the entries of the matrix model.

Summary. We start by developing the necessary results from the theory of
the Toda lattice in Section 3.2.

Then we explicitly compute the scattering asymptotics, using orthogonal polyno-
mials techniques. We will be particularly interested in precise scattering asymptotics
which are originally due to Moser [Mos75] and which show the appearance of a log-
arithmic interaction via a Vandermonde. This allows to construct a scattering map
between the generalised Toda flow and a free dynamic.

Before proving the main result, we find invariant volume forms under the Toda
flow. These will play the role of reference measures. Putting everything together in
Section 3.4 shows that, indeed, the spectrum is distributed as (3.1.1). The MMO
formula is obtained by keeping track of the normalizing constant.

3.2. Definition of the Toda flow

Notations. Let k, a and n be respectively the subspaces in Mn (C) of anti-
Hermitian matrices, diagonal real matrices and upper triangular matrices. We have
the direct sum decomposition:

Mn (C) = k⊕ a⊕ n(3.2.1)
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Any matrix X ∈Mn (C) has a unique triangular decomposition into:

X = [X]− + [X]0 + [X]+(3.2.2)

where [X]− (resp. [X]+) are respectively lower triangular and upper triangular. [X]0
is diagonal. For each subspace E in the direct sum decomposition (3.2.1), we denote
the projection onto E by ΠE. These projection are given for X ∈ Mn(C) by the
expressions:

Πk(X) = [X]− − [X]∗− + i= [X]0 ; Πa(X) = < [X]0 ; Πn(X) = [X +X∗]+ .

Indeed, one can easily check that Πk + Πa + Πn = idMn(C).

3.2.1. Flow definition. Let T be the space of symmetric tridiagonal matrix
form:

X =


a1 b1 0 . . . 0 0
b1 a2 b2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . an−1 bn−1

0 0 0 . . . bn−1 an

 ,

with bj > 0.
The Toda flow acts on T via the differential equation:

Ẋ = [X,Πk(X)] .(3.2.3)

Formally, define the vector field V at x ∈ T by:

Vx = [x,Πk(x)] .

And the Toda flow is obtained by exponentiating the vector field V . In fact the flow
is equivalent to the pair of equations:{

Xt = QtΛQ
∗
t

Q̇ = −Πk (X)Q

by noticing that equation (3.2.3) can be rewritten:

Ẋ =
[
Q̇Q−1, X

]
Thanks to this Lax-pair formulation, we see that the flow acts by isospectral

transformations.

Remark 3.2.1 (The Toda flow preserves T ). Positivity of the extra-diagonal is
preserved because equation (3.2.3) implies:

ḃi = bi (ai − ai+1)(3.2.4)

3.2.2. Long time behavior: the sorting property. We assume that X0 is
diagonalizable with distinct eigenvalues (Λ1, . . . ,Λn) with

Λ1 > Λ2 > · · · > Λn .

The diagonalized form of the initial data is given by:

X0 = Q0ΛQ∗0 .

It is known in numerical analysis that flow performs continuously the QR algorithm
and thus gives the spectrum in long time. Similar results hold for other families of
isospectral transformations (see the survey [Wat84]).
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Theorem 3.2.2 (Symes [Sym82] in tridiagonal case, [Chu84] in complex case).
The Toda flow diagonalizes matrices in the following sense:

• The Toda flow interpolates in continuous time the Arnoldi-Lanczos-QR al-
gorithm used in numerical analysis – See Chapter 6 for more information.
• We have the following long time behavior:

lim
t→∞

Xt = Λ

lim
t→−∞

Xt = w0Λw0

where w0 is the permutation matrix reversing the order of the canonical
basis. In the context of reflection groups, w0 is the longest element in the
symmetric group Sn when written as a product of transpositions (i i+ 1).

From this result arises the idea of keeping track of the distribution of the matrix
Tβ in Eq. (3.1.3), continuously throughout the flow.

Remark 3.2.3. A classical remark in eigenvalue problems is that Q has a special
structure because it conjugates a diagonal matrix to tridiagonal matrix. In fact, Qt

can be entirely recovered from the first row of the matrix. See Theorem 7.2.1 in
Partlett [Par98]. This first row u is important because it plays the role of angle
coordinates in the integrable Toda flow.

3.2.3. Flow on tridiagonal matrices. Let us now explain how the specialisa-
tion to tridiagonal matrices gives the original Toda Hamiltonian flow. Let n identical
particles, seen as point masses with mass normalized to 1. The configuration space
is then R2n. A configuration is a pair (p, q) ∈ R2n where p are momenta and q are
positions.

The dynamical system defined by Toda [Tod89] is the Hamiltonian system as-
sociated to

H =
‖p‖2

2
+ V (q) ,(3.2.5)

with V the Toda potential:

V (q) =
n−1∑
i=1

2e−(qi−qi+1) .

Therefore, the equations of motion are given by:

q̇j =
∂H

∂pj
= pj ,(3.2.6)

ṗj =− ∂H

∂qj
= 2e−(qj−qj+1) − 2e−(qj−1−qj) .(3.2.7)

The previous equations are valid for all indices 1 ≤ j ≤ n by by considering q0 = −∞
and qn+1 =∞.

Because the center of mass has a uniform dynamic, we can assume that it is fixed
and reduce the configuration space to R2(n−1). Now, if one introduces the Flaschka
variables

ai = pi

bi = 2e−
1
2

(qi−qi+1)
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and forms the tridiagonal matrix

X =


a1 b1 0 . . . 0 0
b1 a2 b2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . an−1 bn−1

0 0 0 . . . bn−1 an

 ,

then the Hamiltonian dynamic (3.2.6) (3.2.7) is exactly equivalent to the Toda flow
3.2.3 acting on real tridiagonal matrices. Note that in the Flaschka variables, the
Hamiltonian takes the form

H =
1

2

n∑
i=1

a2
i +

n∑
i=1

b2
i =

1

2
TrX2 .

From the diagonalisation property in Theorem 3.2.2, we easily deduce the crude
scattering behavior as t→∞:

pi(t) = Λi + o(1) , qi(t) = Λit+ o(t) ,(3.2.8)

and as t→ −∞:

pi(t) = Λn−i+1 + o(1) , qi(t) = Λn−i+1t+ o(t) .(3.2.9)

If one is interested in the scattering map for momenta i.e the relation between the
behaviors as t→ ±∞, it is given by reordering eigenvalues in opposite order. This
tantamounts to the multiplication by the permutation matrix w0. The result holds
in fact more generally from the works of Goodman and Wallach for Toda lattices in
other Lie types [GW84, Subsection 2.3].

3.3. Moser’s scattering

For our purposes, we are much more interested in the scattering of positions. In
a really beautiful paper [Mos75], Moser refines the o(t) error in Eq. (3.2.8) and
Eq. (3.2.9). He finds there exists a δ > 0, depending on eigenvalue gaps, such that
t→∞:

qi(t) = Λit+ β+
i + o(e−δ|t|)

and as t→ −∞:
qi(t) = Λn−i+1t+ β−i + o(e−δ|t|)

and the differences β+
n−i+1 − β−i are related to a logarithmic interaction potential.

The exact expression is given in [Mos75] eq. (4.3) and (4.4):

β+
n−i+1 − β−i = 2

∑
j<i

log |Λi − Λj| − 2
∑
i<j

log |Λi − Λj|

Hence, the second order of the scattering in position variables reveals the loga-
rithmic interaction potential for eigenvalues. That was the starting point of our
investigations.

Solution by inverse scattering. In order to completely solve the Toda flow,
at the theoretical level, one starts by computing the diagonalization of the initial
data X0. Since Λ is given by the infinite time behavior of the system, it is called
the scattering data. Inverse scattering consists in using Λ in order to compute the
finite time solution, which is given by the computation of Q.
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Nevertheless, due to the special structure of Q discussed in Remark 3.2.3, there
is no need to compute the entire matrix. It suffices to keep track of the vector:

u := Q−1e

where e = e1 is the first vector in Cn.

Proposition 3.3.1. The vector u follows the dynamic:

ut =
eΛtu0

‖eΛtu0‖
Proof. Since

Q̇ = −ΠkXQ = −
(
X − [X]0 − [X]∗− − [X]+

)
Q = −QΛ +

(
[X]0 + [X∗ +X]+

)
Q ,

we have that:
d

dt

(
Qte

Λt
)

=
(
[X]0 + [X∗ +X]+

)
Qte

Λt

The previous equation is a right-invariant autonomous equation, with upper trian-
gular increments. As a consequence, there exists an upper triangular matrix Tt with
positive diagonal such that:

Qte
Λt = TtQ0 ,

and hence:

ut = Q−1
t e = eΛtQ−1

0 T−1
t e =

eΛtu0

[Tt]11

.

The proof is finished as ut needs to be of norm 1. �

3.3.1. Precise scattering asymptotics. As mentioned before, one sees the
appearance of the Vandermonde in the second order scattering asymptotics for po-
sitions, in the real tridiagonal case, thanks to Moser’s result [Mos75]. His approach
relied on real analyticity of the flow and seems difficult to adapt or to generalize.
We will rather use an orthogonal polynomial technique that expresses the action
variable in a form more amenable to asymptotics. The technique is used on real
tridiagonal matrices to express orthogonal polynomials thanks to the coefficients in
the three term recurrence (See Chapter II in [Sze75]). Its application to the tridi-
agonal Toda has been implemented in handwritten lecture notes of Deift, the author
managed to get his hands on.

Let us introduce the Gram determinant, using the unit vector e = e1 again:

∆k = det
(
〈X i−1e,Xj−1e〉

)k
i,j=1

.

The scattering of positions can be observed from the convergence of the bi to zero,
and the analogue of Moser’s scattering result comes from the asymptotic analysis of
∆k as:

∆k =
k∏
i=1

b
2(k−i)
i .(3.3.1)

Indeed, notice that, for all k ≤ n:

Xke =

(
k∏
i=1

bi

)
ek+1 + hk
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where hk ∈ SpanC (e1, . . . , ek). Hence:

e ∧Xe ∧X2e ∧ · · · ∧Xk−1e =

(
k−1∏
l=1

l∏
i=1

bi

)
e1 ∧ e2 ∧ e3 ∧ · · · ∧ ek

and

∆k = det
(
〈X i−1e,Xj−1e〉

)k
i,j=1

= ‖e ∧Xe ∧X2e ∧ · · · ∧Xk−1e‖2 =
k∏
i=1

b
2(k−i)
i

Theorem 3.3.2 (Precise scattering asymptotics). As t→∞:

∆k(t) = e2(
∑k
l=1 Λ1−Λl)t |∆ (Λ1, . . . ,Λk)|2

k∏
l=1

∣∣∣∣ u0(l)

u0(1)

∣∣∣∣2 (1 + o(1))

In particular, the initial angle coordinates can be read from asymptotics:∣∣∣∣ u0(l)

u0(1)

∣∣∣∣ ∼ e(Λ1−Λk)t |∆ (Λ1, . . . ,Λk−1)|
|∆ (Λ1, . . . ,Λk)|

√
∆k(t)

∆k−1(t)

This is nothing but Moser’s result with a different proof. Our proof (actually
Deift’s) is proved by introducing the probability measure on R - often called the
"spectral measure" in the literature devoted to Jacobi operators:

µt (dλ) =
n∑
k=1

|〈ek, ut〉|2 δΛk(dλ),

thanks to which the Gram determinant has a nice formula:

Proposition 3.3.3.

∆k(t) =

∫
λ1>λ2>···>λk

|∆ (λ1, . . . , λk)|2
k∏
l=1

µt (dλl)

In particular, we have the exact result:

∆n(t) = |∆ (Λ1, . . . ,Λn)|2
n∏
l=1

|〈el, ut〉|2 .

Proof. We have:

〈X i−1
t e,Xj−1

t e〉 =〈QtΛ
i−1Q∗t e,QtΛ

j−1Q∗t e〉
=〈Λi−1ut,Λ

j−1ut〉

=
∑
k

Λi−1+j−1
k |〈ek, ut〉|2

=

∫
R
λi−1+j−1µt (dλ) .

And therefore, by multilinearity of the determinant with respect to columns:

∆k(t) = det
(
〈X i−1

t e,Xj−1
t e〉

)k
i,j=1

= det

(∫
R
λi−1+j−1
j µt (dλj)

)k
i,j=1
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=

∫
Rk

det
(
λi−1
j λj−1

j

)k
i,j=1

k∏
l=1

µt (dλl)

=

∫
Rk

det
(
λi−1
j

)k
i,j=1

k∏
j=1

λj−1
j

k∏
l=1

µt (dλl)

=

∫
Rk

∆(λ1, . . . , λk)
k∏
l=1

λl−1
l

k∏
l=1

µt (dλl) .

Using a standard anti-symmetrization trick:

∆k(t) =
1

k!

∑
σ∈W

∫
Rk
ε(σ)∆ (λ1, . . . , λk)

k∏
l=1

λl−1
σ(l)

k∏
l=1

µt (dλl)

=
1

k!

∫
Rk
|∆ (λ1, . . . , λk)|2

k∏
l=1

µt (dλl) .

And by symmetry, we can order the integration variables:

∆k(t) =

∫
λ1>λ2>···>λk

|∆ (λ1, . . . , λk)|2
k∏
l=1

µt (dλl) .

�

Moreover, µt has a simple dynamic:

Proposition 3.3.4.

µt (dλ) =
e2λt

‖eΛtu0‖2µ0(dλ)

Proof. From the the dynamic of u in Proposition 3.3.1, we obtain:

µt (dλ) =
∑
k

|〈ek, ut〉|2 δΛk(dλ)

=
1

‖eΛtu0‖2

∑
k

e2Λkt |〈ek, u0〉|2 δΛk(dλ)

=
1

‖eΛtu0‖2 e
2λtµ0(dλ)

�

The Gram determinant has a nice formula in terms of the previous measure:

Proof of theorem 3.3.2. The combination of the two previous propositions
gives:

∆k(t) = ‖eΛtu0‖−2k

∫
λ1>λ2>···>λk

e2(
∑k
l=1 λl)t |∆ (λ1, . . . , λk)|2

k∏
l=1

µ0 (dλl)

As t → ∞, the integral’s dominant terms are obtained by picking up only the k
largest eigenvalues Λ1 > Λ2 > · · · > Λk. Hence the asymptotics:

∆k(t) =‖eΛtu0‖−2k

∫
λ1>λ2>···>λk

e2(
∑k
l=1 λl)t |∆ (λ1, . . . , λk)|2

k∏
l=1

µ0 (dλl)
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=‖eΛtu0‖−2ke2(
∑k
l=1 Λl)t |∆ (Λ1, . . . ,Λk)|2

k∏
l=1

|〈el, u0〉|2 (1 + o(1))

Combining that fact with the asymptotics for ‖eΛtu0‖ yields the result. �

In particular, Moser’s result appears explicitly in:

b2
k(t)

=
∆k∆k−2

∆2
k−1

=e2(Λk−Λk−1)t |∆ (Λ1, . . . ,Λk)|2 |∆ (Λ1, . . . ,Λk−1)|2

|∆ (Λ1, . . . ,Λk−2)|4
|u0(k)|2 |u0(k − 1)|2

|u0(k − 2)|4
(1 + o(1))

3.3.2. Scattering map. Consider the vector field on T :

∀x ∈ T , V free
x := −

n−1∑
i=1

Ei+1,ibi (ai − ai+1)

whose flow gives:
etV

free · bi = bie
−(ai−ai+1)t

In the scattering regime, diagonals are constant and the dynamic of position is
linear in time. Therefore, the “free” dynamic corresponding to isolated particles is
given by the flow etV

free . The question at hand is the behavior of the sequence of
diffeomorphisms:

e−tV · etV free

as t→∞. Clearly, the flow generated by V free is not isospectral, but in the regime
where the extra-diagonals are small, it almost is.

Theorem 3.3.5. Let ∆ be the set of matrices with increasing diagonal entries.
There exists a map S : T ∩∆→ T such that:

S = lim
t→∞

e−tV · etV free

We have:
Sx = Q[x]0Q

∗

where the first row of Q, u0 satisfies:

〈ek, u0〉 =

∏k−1
i=1 bi(0)∏k−1

i=1 |Λk − Λi|
〈e1, u0〉 .

Proof. Let x be a matrix in T ∩∆. Then:

etV
free · x = [x]0 +

∑
i

xi+1,ie
−(xi,i−xi+1,i+1)t (Ei+1,i + Ei,i+1)

Therefore, etV free ·x converges exponentially fast to a diagonal matrix, for which the
sorted eigenvalues lie on the diagonal. The conserved quantities by the flow e−tV

are therefore exponentially close to [x]0.
Now consider an asymptotic behavior, obtained after a free evolution:

bk(t) = bk(0)e(Λk+1−Λk)t (1 + o(1))
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Thanks to Theorem 3.3.2, this corresponds to a scattering state at time t for the
Toda evolution which had at time 0 the angle coordinates:

|v0(k)|
|v0(1)|

= e(Λ1−Λk)t

√
∆k(t)

∆k−1(t)

|∆(Λ1, . . . ,Λk−1)|
|∆(Λ1, . . . ,Λk)|

(1 + o(1))

= e(Λ1−Λk)t

(
k−1∏
i=1

bi(t)

)
|∆(Λ1, . . . ,Λk−1)|
|∆(Λ1, . . . ,Λk)|

(1 + o(1))

=

∏k−1
i=1 bi(0)∏k−1

i=1 |Λk − Λi|
(1 + o(1))

Therefore e−tV · etV free · x converges to the element with action variables [x]0 and
angle coordinates v0. �

From the previous proof and from Proposition 3.3.3, we notice that:

∆n (Sx) = |∆ (Λ1, . . . ,Λn)|2
n∏
k=1

|v0(k)|2 = |v0(1)|2n
n−1∏
i=1

b
2(n−i)
i(3.3.2)

3.3.3. Invariant differential forms. Define the volume form on T :

ωT := ∧n−1
i=1

dbi
bi
∧ ωa(3.3.3)

where
ωa = ∧ni=1dai .

As we will use these forms as reference integration measures, it is crucial that are
invariant under the flow.

Proposition 3.3.6 (Form invariance). The Toda flow preserves the volume form
ωT :

LV ωT = 0

In particular: (
etV
)
∗ ωT = 0

Proof. In the positions and momenta coordinates of the classical Toda Hamil-
tonian, the form i∗ωT can be written as:

i∗ωT = (∧ni=1dpi) ∧
(
∧n−1
i=1 dqi − dqi+1

)
which is the Liouville form of the Toda system. In this case, not only i∗ωT is
preserved but there is an underlying symplectic form that is preserved. �

3.4. Novel proof of Theorem 3.1.1 via scattering

Consider a random matrix X0 ∈ T distributed as in (3.1.3). We are interested in
the distribution of eigenvalues Λ as well as the distribution of the vector u0. Clearly,
from the properties of the Toda flow, for every bounded continuous function:

E (f(Λ, u0)) = lim
t→∞

E (f ([Xt]0, u0))

Now, from the explicit expression of χ and Gaussian distributions, we have:

E (f ([Xt]0, u0))



3.4. NOVEL PROOF OF THEOREM ?? VIA SCATTERING 41

=Cn,β

∫
T
f
(
[etV ·X0]0, v0 (X0)

) n−1∏
i=1

bi(X0)2β(n−i)e−
1
2
‖X0‖2ωT (dX0)

where
Cn,β =

1

(2π)n(n+1)
∏n−1

j=1 Γ(1
2
jβ)

.

Thanks to Equation (3.3.1):

E (f ([Xt]0, u0))

=Cn,β

∫
T
f
(
[etV ·X0]0, u0 (X0)

)
∆n(X0)βe−

1
2
‖X0‖2ωT (dX0)

Then, we make successively the change of variable by the flow etV and etV
free .

Thanks to the invariance of measures:

E (f ([Xt]0, u0))

=Cn,β

∫
T
f
(
[etV ·X0]0, u0

(
e−tV · etV ·X0

))
∆n(e−tV · etV ·X0)βe−

1
2
‖X0‖2ωT (dX0)

=Cn,β

∫
T
f
(
[X0]0, u0

(
e−tV ·X0

))
∆n(e−tV ·X0)βe−

1
2
‖X0‖2ωT (dX0)

=Cn,β

∫
T
f
(

[X0]0, u0

(
e−tV · etV free ·X0

))
∆n(e−tV · etV free ·X0)βe−

1
2
‖etV free ·X0‖2ωT (dX0) .

Now, as t → ∞, we have the appearance of the scattering map S = limt→∞ e
−tV ·

etV
free . By assuming f supported on T ∩ ∆ in the first variable, there is no need

to bother about the initial data X0 having its eigenvalues ordered. Moreover, the
coefficients of the extra-diagonal in etV free ·X0 asymptotically vanish. Hence:

E (f(Λ, u0))

=Cn,β

∫
T
f ([X0]0, u0 (SX0)) ∆n(SX0)βe−

1
2
‖[X0]0‖2ωT (dX0)

=Cn,β

∫
λ1>λ2>···>λn

dΛ e−
1
2

∑
|Λi|2∫

(R+)n−1
∧n−1
i=1

dbi
bi

f (Λ, u0 (SX0)) ∆n(SX0)β .

Finally, we conclude thanks to the identity (3.3.2) that:

E (f(Λ, u0))

=Cn,β

∫
λ1>λ2>···>λn

dΛe−
1
2

∑
|Λi|2

∫
(R+)n−1

∧n−1
i=1

dbi
bi

(
n−1∏
i=1

b
2β(n−i)
i

)
|u0(1)|2βnf (Λ, u0 (SX0)) .
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Moreover, by changing the integration variables to ck:

|u0(k + 1)|
|u0(1)|

=

∏k−1
i=1 bi∏k−1

i=1 |Λk − Λi|
= ck ,

and knowing that:
n−1∏
i=1

b
(n−i)
i = |∆ (Λ1, . . . ,Λn)|

n−1∏
i=1

ci ,

we obtain:
E (f(Λ, u0))

=Cn,β

∫
λ1>λ2>···>λn

dΛ |∆ (Λ1, . . . ,Λn)|2β e−
1
2

∑
|Λi|2

∫
(R+)n−1

∧n−1
i=1

dci
ci

(
n−1∏
i=1

c2β
i

)
|u0(1)|2βnf (Λ, |u0(1)| (1, c1, c2 . . . )) .

We recognize the distribution of the Gaussian β-ensemble for the spectrum Λ. More-
over, the distribution of the vector u0 is given by the β-Dirichlet distribution.

This concludes the proof of Theorem 3.1.1.



CHAPTER 4

Pitman-type theorems and representation theory

4.1. Quick representation-theoretic survey of Pitman’s theorem

Let us discuss the classical Pitman theorem with a focus on its relationship to
representation theory. To me, it is always very amusing that Pitman’s theorem from
probability theory [Pit75], while simple in its statement, can take us all the way to
the representation theory of Lie groups and quantum groups, with the associated
non-commutative geometry.

Theorem 4.1.1 (Pitman’s 2M-X Theorem, Discrete version).
Let (Xn;n ∈ N) be a simple random walk in Z, i.e. increments are independent

and
∀n ∈ Z+, P (Xn+1 −Xn = 1) = 1− P (Xn+1 −Xn = −1) =

1

2
.

Then the process (Λ∞n ;n ∈ N) defined as

Λ∞n := Xn − 2 inf
0≤k≤n

Xk

is a Markov chain on N with transition kernel given by Q:

Q (λ, λ+ 1) =
λ+ 2

2(λ+ 1)
, Q (λ, λ− 1) =

λ

2(λ+ 1)
.(4.1.1)

Moreover, the missing information is stationary and equidistributed in law in the
sense that for all n ∈ N:

L
(
Xn | FΛ∞

n , Λ∞n = λ
)

=
1

λ+ 1

∑
−λ≤k≤λ
λ−k even

δk .

Pitman’s original proof uses the combinatorics of random walks and is formu-
lated in terms of the running maximum instead of the running infimum. Both are
equivalent upon replacing X by −X, hence the common name of “Pitman’s 2M−X
Theorem", where the capital letter M stands for “Maximum".

From the discrete version, one obtains a Brownian version thanks to a simple
application of Donsker’s invariance principle and by computing the diffusive rescaling
of the Markov kernel Q.

Theorem 4.1.2 (Pitman’s 2M-X Theorem, Continuous version). Let (Xt ; t ∈ R+)
be a standard Brownian motion. Then the process (Λ∞t ; t ∈ R+) defined as

Λ∞t := Xt − 2 inf
0≤s≤t

Xs

is a Bessel 3 process, that is to say it has the same distribution as

Λ0
t :=

√
X2
t + Y 2

t + Z2
t ,

where (X, Y, Z) is a Euclidean Brownian motion on R3.

43
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Moreover, the missing information is stationary and equidistributed in law in the
sense that:

L
(
Xt | FΛ∞

t , Λ∞t = λ
)

=
1

2λ
1[−λ,λ](x)dx .

Remark 4.1.3. The reader trained in probability theory knows that the Markov
property is very fragile and can be easily broken, while(

− inf
0≤s≤t

Xs ; t ∈ R+

)
is the archetype of non-Markovian behavior. As such, Pitman’s theorem is rather
peculiar. It is also very rigid, as(

Xt − k inf
0≤s≤t

Xs ; t ∈ R+

)
enjoys the Markov property only for k = 0, 1, and 2 [MO04] ; the latter case being
by far the most interesting in our opinion.

Remark 4.1.4. The reader trained in Lie theory might appreciate the follow-
ing comment. Recall that for every λ ∈ N, there is a unique irreducible repre-
sentation V (λ) of SL2(C) with dimension dimV (λ) = λ + 1. This representation
V (λ) ≈ Sym(n=λ)(C2) is the n-th symmetric power of the fundamental representation
of SL2(C). Furthermore, the Clebsch-Gordan rule:

V (λ)⊗ C2 = V (λ+ 1) + V (λ− 1)

translates to the following identity, upon computing the dimensions:

(λ+ 1)2 = (λ+ 2) + λ .

Upon normalizing the previous equality, one finds the transition probabilities of Eq.
(4.1.1). As such, the process Λ appears to be respecting the structure constants of
the tensor product, for representations of SL2(C). Also, the factor 2 is the same as
α(α∨) = 2, where α is a root and α∨ is the associated coroot in a root system.

In fact, direct proofs of Theorem 4.1.2 at the level of continuous-time stochastic
processes are available. Jeulin [RY13] has an approach that uses filtration enlarge-
ment techniques and [RP81] makes use of intertwinings of Markov kernels. These
two proofs led to a flurry of very interesting probabilistic developments.

If other proofs and generalizations abound, we want to focus on two specific
approaches where the complex group SL2(C) plays an important role. The ap-
proach by Bougerol and Jeulin [BJ02] is based on a geometric construction while
the approach by Biane [Bia06, Bia09] is based on the representation theory of that
group. The goal of this chapter is to exhibit a direct relationship between the two,
via semi-classical limits.

The Lie algebra of SU2 is

su2 := TeSU2 ,(4.1.2)

which coincides with anti-Hermitian matrices. The complexification of su2 is the Lie
algebra of SL2(C):

sl2 := TeSL2(C) = su2 ⊗ C = SpanC (E,F,H) ,(4.1.3)
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where:

H =

(
1 0
0 −1

)
;E =

(
0 1
0 0

)
;F =

(
0 0
1 0

)
.(4.1.4)

Bougerol and Jeulin’s approach via curvature deformation. In the paper
[BJ02], Bougerol and Jeulin take a parameter r > 0 and consider a left-invariant
process gr = (grt ; t ≥ 0) on the symmetric space H3 = SL2(C)/SU2. Because of the
Gram-Schmidt decomposition, we make the identification H3 = SL2(C)/SU2 ≈ NA,
where NA is the subgroup of lower triangular matrices with positive diagonals. More
precisely:

A :=

{(
a 0
0 a−1

)
| a ∈ R∗+

}
, and N :=

{(
1 0
b 1

)
| b ∈ C

}
.

The corresponding Lie algebras are denoted by a := TeA = RH and n := TeN =
RF ⊕ RiF .

In that identification, the process gr satisfies the left-invariant stochastic differ-
ential equation (SDE for short)

∀t ≥ 0, grt =

(
1
2
rdXt 0

r(dYt + iZt) −1
2
rdXt

)
◦ grt ,

where (X, Y, Z) is a standard Euclidean Brownian motion on R3. Here, the symbol ◦
refers to the Stratonovich integration convention. Solving explicitly the SDE yields
for all t ≥ 0:

grt =

(
e

1
2
rXt 0

re
1
2
rXt
∫ t

0
e−rXsd(Ys + iZs) e−

1
2
rXt

)
.(4.1.5)

The reader unfamiliar with stochastic integration should see the above equation
as a definition for the process gr. More importantly, the parameter r > 0 should be
seen as a curvature parameter. The full explanation is given in the paper [CC21]
where we see that we are considering the hyperbolic space H3 as the space with
constant sectional curvature −1

2
r2. As such, there is no harm in loosely referring to

r as curvature. At this stage, let us only mention the following. We have, as r → 0:

grt = Id +r

(
1
2
Xt 0

Yt + iZt −1
2
Xt

)
+ o(r) =: Id +rx0

t + o(r) ,

and thus appears a three dimensional Brownian motion
(
x0
t =

∂grt
∂r
|r=0 ; t ≥ 0

)
on

a ⊕ n ≈ R3, which is a flat space. Because of Brownian motion’s time-scaling
properties, rescaling r amounts to speeding up the Brownian motion and hence the
associated vector fields. As the process gr moves more erratically as r > 0 grows
larger, the non-commutativity of the underlying space NA becomes more apparent.
One could say that the space increases in curvature, which is a key element in the
following result by Bougerol and Jeulin.

Their result holds for all complex semi-simple groups G, but in the context of
G = SL2(C), we have:

Theorem 4.1.5 (Bougerol-Jeulin, [BJ02]). Let 1
2
rΛr

t be the radial part of grt ,
i.e. exp (rΛr

t ) is the largest singular value of grt or equivalently that Λr ≥ 0 and
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there exists (k1, k2) : R+ → SU2 × SU2 such that

grt = k1(t)

(
e

1
2
rΛrt 0

0 e−
1
2
rΛrt

)
k2(t) .

Then, Λr is a process whose distribution does not depend on r > 0. It is explicitly
given by:

Λr
t =

1

r
Argcosh

[
1

2
r2

∣∣∣∣e 1
2
rXt

∫ t

0

e−rXs(dYs + idZs)

∣∣∣∣2 + cosh(rXt)

]
,(4.1.6)

where Argcosh(x) = log
(
x+
√
x2 − 1

)
is the inverse of cosh : R+ → [1,∞). More-

over, for all t > 0, we have the limits in probability:{
Λr=0
t := P− limr→0 Λr

t =
√
X2
t + Y 2

t + Z2
t ,

Λr=∞
t := P− limr→∞ Λr

t = Xt − 2 inf0≤s≤tXs .
(4.1.7)

In particular, these processes are both Bessel processes of dimension 3.

Because Bougerol and Jeulin treat the general case, for a general complex semi-
simple Lie group G, extracting the above statement is not a trivial task. As part of
our unifying picture, we shall provide a complete proof in the case of SL2(C), where
the key arguments are simplified while giving a few illuminating computations. The
only novelty in our treatment of Theorem 4.1.5 is in the proof that the law L(Λr)
does not depend on r > 0. This fact is rather subtle and so is the argument of
Bougerol and Jeulin. In [CC21] we give a short argument based on the rigidity of
quantum groups and the results developed there. We also reinterpret the argument
of Bougerol and Jeulin through the lens of spherical harmonic analysis, thereby
showing where the curvature and the rigidity of quantum groups are hidden. By
rigidity of quantum groups, we simply mean that key features of the representation
theory such as characters and structure constants do not depend on the deformation
parameter.

In fact, this same argument is at the heart of our approach to aimed at bridging
directed last passage percolation and RMT in Section 4.4.

In any case, the important remark is that the Pitman transform on paths

P : X 7→
(
Xt − 2 inf

0≤s≤t
Xs ; t ≥ 0

)
shows up in infinite (negative) curvature, while the norm process in R3 appears in
flat curvature. The interpretation of the parameter r as curvature is mainly absent
from the literature except in the very astute remark in the final paragraphs of [BJ02,
Section 1].

4.2. Representation theory as the quantization of RMT

The standard framework for classical mechanics is to consider a symplectic man-
ifold (M,ω) which, thanks to the Darboux theorem is locally isomorphic to the
standard symplectic space (R2n, ωR2n) with n position coordinates and n momenta.
More generally, one considers a Poisson manifold (M, {·, ·}). The algebra of classical
observables is C∞(M) and M is referred as the “phase space”. Given a Hamilonian
H ∈ C∞(M), its generates a flow via Hamilton’s equations

ḟ = {f,H} ,(4.2.1)
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which implicitly defines the dynamic (x(t) ; t ∈ R) with

∀f ∈ C∞(M), f(t) = f(x(t)) .

Notice that in this framework, a Hamiltonian H is basically any function in phase
space, making this seem void of physical meaning.

Recall quantization is the (non-functorial) process which consists in replacing
the classical objects of Hamiltonian mechanics by the quantum objects of quantum
mechanics. This correspondence is not one-to-one but it is fair to say that

• Points in phase space M become vectors in a Hilbert space H, called quan-
tum states or wave-functions.
• Classical observables in the commutative algebra C∞(M) become operators
in a non-commutative algebra Op~(M) acting on H. Elements in Op~(M)
are called quantum observables or measurement operators.
• Here ~ > 0 is the Planck constant and formally we should have

“Op~(M)
~→0−→ C∞(M)′′ .

We will see an instance of this in the form of a map mod ~ and statements
about semi-classical limits which formalize this.
• The commutator in the algebra Op~ retrieves up to first order the Poisson
bracket i.e. if F1,F2 ∈ Op~ and fi = Fi mod ~ then

[F1,F2] = ~{f1, f2}+ o(~) .

We remain elusive on the meaning of the o(~) term, but it is a key ingredient
in semi-classical limits. It does not make sense until we have considered
representations and states allowing us to evaluate magnitudes of objects.

There are finer subtleties when dealing with geometric quantization theory, and
we refer to excellent book [Woo92].

Elements of Kirillov’s orbit method. Only in these few paragraphs, we
shall give definitions in the general Lie type before very quickly specializing to
GLn(C). Given a Lie group G, its Lie algebra is written g, and the space of linear
forms on g is the dual g∗. The dual Lie algebra g∗ is naturally endowed with a
Poisson structure which foliates the space into orbits [CP95, Definition-Proposition
1.1.2]

g∗ =
⊔
λ

O (λ) ,(4.2.2)

where O(λ) is the orbit of λ ∈ g∗ under the co-adjoint action of G. Each orbit is
symplectic and endowed with a symplectic form ωKKS called the Kirillov-Kostant-
Souriau (KKS) form. The group G naturally acts on g∗ via the co-adjoint action
which is Poisson.

Following [Kir99, Kir04], the representation theory of a group G should be
seen as the quantization of the Hamilonian mechanics taking place on C [g∗].

On the one hand, let C∞(g∗) be the algebra of smooth functions on g∗ and we have
the inclusion of sub-algebras C [g∗] ↪→ C∞(g∗), C [g∗] being polynomial functions. As
a semi-classical limit, C∞(g∗) becomes a Poisson algebra once endowed with the KKS
bracket {·, ·}0 : C∞(g∗) × C∞(g∗) → C∞(g∗). By definition, a Poisson bracket is a
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derivation in both variables. Therefore, because of the Leibniz rule, the Poisson
bracket is entirely determined by its values on linear functions:

∀X ∈ g ≈ (g∗)∗, fX(·) := 〈X, ·〉 .
On linear forms, the KKS bracket is defined as:

{fX , fY }0 := f[X,Y ] = 〈[X, Y ], ·〉 .(4.2.3)

On the other hand, recall that if (G, ∗G) is a group, then the group law ∗G can be
encoded thanks to a coproduct on algebras of functions. By definition, the coproduct
∆ associated to (G, ∗G) is the map:

∆ : C∞ (G) → C∞ (G × G)
f 7→ ((g1, g2) 7→ f(g1 ∗G g2))

.(4.2.4)

Since ∆ is a morphism of algebras, it needs to be specified on generators only. If
A ⊂ C∞(G) is a dense sub-algebra such that for all f ∈ A, ∆(f) is a separable
function, which is written in Sweedler’s notation:

∆(f)(g1, g2) =
∑
(f)

f1(g1)f2(g2) ,

then we can actually write ∆ : A → A⊗A. This is the customary choice in order
to work algebraically. Here, consider (g∗,+) to be an Abelian group, which amounts
to the trivial coproduct ∆0 defined on linear functions X ∈ g ≈ (g∗)∗ via:

∆0 : C[g∗] → C[g∗]⊗ C[g∗]
X 7→ X ⊗ 1 + 1⊗X .(4.2.5)

Here we shall be interested in the linear space u∗n, dual to the Lie algebra of Un
which is given by anti-Hermitian matrices. On the other hand, gln = Mn(C) is the
Lie algebra of GLn(C). In the jargon of Lie theory, un is a real form associated to
gln = un ⊗ C, and we will work with gln for the sake of pedagogy. However all the
content of the following section generalizes seemlessly to any complex semi-simple
Lie algebra g and its compact real form k.

4.2.1. Spherical functions as limit of characters. The following fact is
classical and is the simplest illustration of the Kirillov orbit method. On the one
hand, we have the characters of the unitary group Un are the Schur polynomials

sλ(x) = TrV (λ) (diag(x1, x2, . . . , xn)) =
detxλi+N−ij

detxN−ij

.(4.2.6)

the second equality being the Weyl character formula. On the other hand, we have
the spherical integral

HCIZ(λ, a) =

∫
Un

dk e〈a,[kλk
∗]0〉 =

det
(
eaiλj

)
∆(a)∆(λ)

,(4.2.7)

where ∆ denotes the Vandermonde determinant. This spherical integral is also
known as the Harish-Chandra-Itzykson-Zuber function in the RMT community and
the Kirillov orbital in the representation theory community. It is my opinion that it
should rather be called the Kirillov-Itzykson-Zuber since the Harish-Chandra spheri-
cal function actually appears in a multiplicative context for the bi-invariant harmonic
analysis on GLn(C). There is more to say about that which we leave for Subsection
4.3.3.
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The following proposition says that spherical integrals are basically characters of
very large representations. We use a Planck constant ~ for the rescaling parameter
as that will be shown later in Theorem 4.2.4, proving that this limit is in fact a
semi-classical limit.

Proposition 4.2.1. For λ ∈ Rn with λ1 > λ2 > · · · > λn, we have:

lim
~→0

sλ/~(e
~a) = ∆(λ) HCIZ(λ, a) .

Proof. This is a straightforward computation putting together the Weyl char-
acter formula (4.2.6) and the determinantal formula for the spherical function (4.2.7).

In spite of this simple proof which relies on existing formulae, this is actually
a rather deep statement. Interestingly the determinantal formula has been proven
by Itzykson-Zuber using Dyson’s Brownian motion [IZ80]. On the other hand, this
can also be obtained using the Duistermaat-Heckman localisation theorem [DH82,
BV85]. �

4.2.2. Universal enveloping algebra with Planck constant. Consider the
universal enveloping algebra with the explicit adjunction of the Planck constant
~ > 0:

U~ (gln) := T (gln) / {x⊗ y − y ⊗ x− ~[x, y]} .(4.2.8)

As such the algebra U~ (gln) can be seen as a non-commutative algebra generated by
the Ei,j. The non-commutative polynomials in the Ei,j’s have commutation relations
that respect the Lie bracket [·, ·]. Then

(
U~ (gln) , †

)
is a real form with † being the

involutive anti-morphism defined by E†i,j = Ej,i. In the spirit of quantum mechanics,
where self-adjoint operators quantize real functions on phase space, a self-adjoint
element is an x ∈ U~ (gln) such that x† = x.

Going commutative, define the map “ mod ~” : U~ (gln) → Sym[gln] = C [gl∗n]
as the operation consisting in seeing non-commutative polynomials as commutative.
The Ei,j’s in this case become coordinate functions on gl∗n. The presence of the
anti-involution † tells us that self-adjoint elements are of the form

Ej,j, Ej,k + Ek,j, iEj,k − iEk,j ,

for 1 ≤ j, k ≤ n. If we make the identification gl∗n ≈ gln = Mn(C), this tells us
that we are looking at complex matrices that are actually Hermitian. The foliation
given in Eq. (4.2.2) is nothing but the one given by the eigenvalues of the matrix.
In other words, the orbits are the Hermitian conjugacy classes by the unitary group.

Let h := SpanC (Ei,i ; 1 ≤ i ≤ n) be the Lie subalgebra of diagonal matrices in
gln. Because the Lie bracket vanishes on h, we have

U~ (h) ≈ C [h∗] ↪→ U~ (gln) .

Remark 4.2.2 (On the use of the ~-adic topology, and field of scalars). Many
sources make sense of the semi-classical limit ~ → 0 by endowing U~ (gln) with the
~-adic topology, or the degree. The same goes for quantum groups. Another choice
is to consider ~ as a distinguished variable and work with a field of scalars that is
C(~), i.e. rational functions in ~.

I shall refrain from doing that and prefer remaining loose in discussing the limit
~ → 0, until we take representations. It is my point of view that it does not make
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sense to say that an abstract operator in an algebra is small until it has been repre-
sented as an operator acting on a Hilbert space H, and with a norm dictated by the
natural state – here the trace on H.

In any case, I do not like the abstract non-sense of formal power series.

Remark 4.2.3 (On bad identifications leading to abstract non-sense, following a
discussion with Stephan de Bièvre). As a side comment, let us describe a situation
similar in spirit to the tedious effort of figuring out where the Plank constant ~ needs
to be inserted in quantum groups.

Consider a physical system which we model by a chain of quantum harmonic
oscillators. These oscillators have physical characterics such as mass m and fre-
quency ω. The so-called ground state, also known as the vacuum state, is a product
of Gaussians with variance proportional to ~

mω
. Yet the algebraic Fock space descrip-

tion always identifies the vacuum state as the scalar 1. This identification yields the
wrong impression that all vacuum states are the same – especially that the name
“vacuum state” hints to the the idea that nothing is there. Nevertheless, the physical
vacuum state is clearly not the same for chains of oscillators with different masses
and frequencies.

Representation theory: In this paragraph, we record the unessential changes
in the representation theory of

(
U~ (gln) , †

)
= U~ (un) caused by adding an ~ > 0

constant.
Recall from the classical references [FH13, Sim96] that representations of the

unitary group Un are essentially equivalent to the representation of the envelop-
ing algebra U~=1 (un), which itself is equivalent to the algebraic representations of
U~=1 (gln). In order to see how the representation theory changes upon explicitly
adding the Planck constant ~ > 0, we can introduce the isomorphism of algebras

Φ : U~=1 (gln) → U~ (gln)

defined on gln via ∀X ∈ gln,Φ(X) = X/~, before being extended via the morphism
property.

By definition, the weight lattice is the union of possible spectra for the commut-
ing operators in U~ (h), in all possible representations. Upon rescaling thanks to the
isomorphism Φ, the weight lattice is rescaled from Zn to ~Zn. Highest weights are
therefore of the form Λ~ = ~bΛ/~c ∈ ~Zn for Λ ∈ Rn, and Λ1 ≥ Λ2 ≥ · · · ≥ Λn.
Here, the floor operation b·c is understood as pointwise. We write V (Λ~) for
the module with highest weight Λ~. The orbit method tells as that the modules(
V (Λ~); Λ ∈ Rn

)
should be the quantization of the foliation (4.2.2) into orbits.

The usual quadratic Casimir of U~ (gln) belongs to the center and is written:

C2 :=
∑
i,j

E†i,jEi,j =
∑
i

E2
i,i + 2

∑
i<j

E†i,jEi,j + ~ρ∨ ,

where ρ∨ =
∑n

j=1(n− j)Ej,j. It acts on V (Λ~) as the constant:

(C2)|V (Λ~) := 〈Λ~,Λ~ + ~ρ〉 =
n∑
i=1

[(
Λ~
i

)2
+ ~(n− i)Λ~

i

]
.(4.2.9)

Co-product: The co-product ∆0 : U~ (gln)→ U~ (gln)⊗U~ (gln) is defined on
gln as

∀X ∈ gln, ∆0 (X) = 1⊗X +X ⊗ 1 ,
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then it is extended as a morphism of algebras. Sweedler’s notation consists in writing
the image of F as

∆0(F) =
∑
(F)

F1 ⊗F2 .(4.2.10)

∆0 is used to define the tensor product of two modules V , W as the vector space
V ⊗W endowed with the action

∀F ∈ U~ (gln) , F · (v ⊗ w) :=
∑
(F)

F1 · v ⊗F2 · w .

Notice that ∆0 has nothing inherently quantum or representation-theoretic. In-
deed, it coincides with the coproduct on C [gl∗n] given in Eq. (4.2.5). When applied to
commutative polynomials, ∆0 is nothing but a tool to encode additive convolution:

∆0 : C [gl∗n] → C [gl∗n]⊗ C [gl∗n] ≈ C [gl∗n × gl∗n]
f 7→ ((x, y) 7→ f(x+ y))

(4.2.11)

Identifications: If one is eager to adopt the point of view of RMT, one makes
the identification of the dual Lie algebra to Hermitian matrices, u∗n ≈ Hn, via the
non-degenerate linear form:

∀(u, h) ∈ un ×Hn, 〈u, h〉 = −Tr (uh) .

In this identification, the aforementioned coadjoint action on u∗n is nothing but the
conjugation action on Hn. Althought simpler to work with, this identification is
misleading. Or rather, this identification has misled me over the years. And we
will revisit that when discussing quantum groups in Section 4.3 where u∗n will be
identified with the Lie algebra of lower triangular matrices n⊕ a = TeNA.

4.2.3. Geometry of orbits, Hamiltonian orbits. A classical fact is that the
orbits of Hamiltonian flows using the KKS symplectic structure are exactly coadjoint
orbits. See for example [CP95, Example 1.1.3 p.19 ]. In the above identification
u∗n ≈ Hn, coadjoint orbits are conjugation orbits. By virtue of the Spectral Theorem,
orbits are indexed by their spectra i.e. vectors Λ ∈ Rn such that Λ1 ≥ Λ2 ≥ · · · ≥ Λn.
We denote orbits by

O (Λ) := { k diag(Λ)k∗ | k ∈ Un} .(4.2.12)

4.2.4. Semi-classical limits. These results are often considered folklore in
literature. And over the years, I must admit I never found good references containing
them. Nevertheless I think these statements truly capture the essence of Kirillov’s
orbit method, that representation theory is truly the quantization of coadjoint orbits.

Here we present proofs which seamlessly generalize to any complex semi-simple
Lie algebra g. Our setup is that of gln for the same of readability. Given a finite-
dimensional vector space V , the trace is denoted TrV and the normalized trace is
trV := 1

dimV
TrV .

Theorem 4.2.4. Let F ∈ U~ (gln) and Λ ∈ Rn dominant, we have

lim
~→0

trV (Λ~)F =

∫
O(Λ)

(F mod ~) (x)
ωNKKS
N !

(dx)

=

∫
Un

(F mod ~) (kΛk∗) dk .
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Here ωKKS is the Kirillov-Kostant-Souriau symplectic form and ωNKKS
N !

is the induced
volume form. N is half the dimension of the orbit.

Proof. Step 1: For F ∈ U~ (h). In that case F is a polynomial in the
variables Ej,j. Rather than treating separately each monomial, it is better to treat
directly the exponential generating series exp

(∑
j ajEj,j

)
, which belongs to a com-

pletion of U~ (h). We can write:

trV (Λ~) e
∑
j ajEj,j = trV (Λ~) diag (ea1 , ea2 , . . . , ea1) = sΛ~/~ (ea1 , . . . , ean) .

This is exactly the quantity appearing in Proposition 4.2.1 and which rescales to
the Kirillov-Itzykson-Zuber integral:

lim
~→0

trV (Λ~) exp

(∑
j

ajEj,j

)
= HCIZ(λ, a) =

∫
Un

dk e〈λ,[kak
∗]0〉 .

By seeing the trace as an integral against weight multiplicities, we can use dom-
inated convergence in order to differentiate using the operator

∏
j
∂nj

∂a
nj
j

. We obtain:

lim
~→0

trV (Λ~)

(∏
j

E
nj
j,j

)
= lim

~→0

(∏
j

∂nj

∂a
nj
j

trV (Λ~) exp

(∑
j

ajEj,j

))
|a=0

=

(∏
j

∂nj

∂a
nj
j

∫
Un

dk e〈λ,[kak
∗]0〉

)
|a=0

=

∫
Un

dk
∏
j

Ej,j(kΛk∗)ni,j .

This is the required result for F ∈ U~ (h).

Step 2: A compactness argument.
Let us prove in this step that for any F , the quantity TrV (Λ~)F is bounded

as ~ → 0. By linearity, it suffices to prove that for F being a non-commutative
mononomial. This is reduced further using non-commutative Hölder inequalities
[PX97, PX03] to F = Ei,j.

Then ∣∣trV (Λ~) Ei,j
∣∣ ≤√trV (Λ~) Ei,jE

∗
i,j

≤
√

trV (Λ~)

∑
i,j

Ei,jE∗i,j .

This quantity is (almost) constant as it is equal to the quadratic Casimir constant
given Eq. (4.2.9). As such:

∣∣trV (Λ~) Ei,j
∣∣ ≤√(C2)|V (Λ~) ,

which remains bounded as ~→ 0.

Step 3: Existence of limits up to extraction.
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First notice that the value of any limiting point only depends on F mod ~.
Indeed if F1 −F2 = ~F , with F being polynomial in ~, then∣∣trV (Λ~)F1 − trV (Λ~)F2

∣∣ −→ 0 ,

because trV (Λ~)F remains bounded. Therefore, for any F , trV (Λ~)F has a non-empty
set of limit points, which depend only on f = F mod ~.

Step 4: Uniquess and identification of the limit. Exactly like in the proof
of the classical Prokhorov theorem, we can use the diagonal extraction argument in
order to assume that there a limit point for all of(

trV (Λ~n )F ; F ∈ U~ (gln)
)
.

As such, we obtain that there is linear form µ : C [gl∗n] → C and a subsequence ~n
such that

∀F ∈ U~ (gln) , lim
n→∞

trV (Λ~n )F = µ (f) .

By the Riesz representation theorem, this linear form is represented by a measure.
All in all, we are trying to identify the measure µ. Notice that for any two

elements F1, F2 in U~ (gln), we have by the circular property of the trace:

0 =
1

~
trV (Λ~) [F1F2 −F2F1]

Now upon writing fi = Fi mod ~, and the basic fundamental property:

F1F2 −F2F1 = ~{f1, f2}+O(~) ,

we find µ ({f1, f2}) = 0. By launching a Hamiltonian flow as in Eq. (4.2.1) with a
fixed Hamiltonian H ∈ C [gl∗n], we have

d

dt
(µ(f)) = µ(ḟ) = µ({f,H}0) = 0 .

As such, t 7→ µ(ft) is constant. Because Hamiltonian orbits are exactly conjugation
orbits (See Subsection 4.2.3), there is a function kH : R→ Un such that∫

Hn

µ(dx)f (x) =

∫
Hn

µ(dx)ft (x) =

∫
Hn

µ(dx)f (kH(t)xkH(t)∗) .

The exact coincidence between the entire orbits yields that for any f and any k ∈ Un,
we have:

µ(f) =

∫
Hn

µ(dx) f (kxk∗) .

Upon averaging over the unitary group:

µ(f) =

∫
Hn

µ(dx)

∫
Un

dk f (k Spec(x)k∗) .

In the end, there exists a measure ν = Spec∗ µ such that:

µ(f) =

∫
λ1≥···≥λn

ν(dλ)

∫
Un

dk f (kλk∗) .

We are done upon proving that ν = δΛ, i.e. that the measure µ is concentrated
on the orbit O(Λ). This is true by virtue of computing the Casimir invariants or
using the central characters.
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Another argument that does not yield a self-contained proof is to invoke Step 1
or equivalently Proposition 4.2.1: the limit of characters is a spherical integral on
the appropriate orbit. �

Now, for the semi-classical limit of a tensor product, which actually reflects the
additive convolution of two unitarily invariant matrices.

Theorem 4.2.5. Let F ∈ U~ (gln), we have

lim
~→0

trV (Λ~
1)⊗V (Λ~

2)
F

=

∫
O(Λ1)×O(Λ2)

(F mod ~) (x+ y)

(
ωN

N !
⊗ ωN

N !

)
(dxdy)

=

∫
Un×Un

(F mod ~) (k1Λ1k
∗
1 + k2Λ2k

∗
2) dk1dk2 .

Proof. This is a shadow of the co-product given on U~ (gln). In Sweedler’s
notation, we write:

∆ (F) =
∑
(F)

F1 ⊗F2 .

Upon considering (eik)k as the basis of V (Λ~
i ), for i = 1, 2, this gives:

TrV (Λ~
1)⊗V (Λ~

2) (F) =
∑
i,j

〈∆F · e1
i ⊗ e2

j ,
(
e1
i ⊗ e2

j

)∗〉
=
∑
(F)

∑
i,j

〈F1e
1
i ,
(
e1
i

)∗〉〈F2 · e2
j ,
(
e2
j

)∗〉
=
∑
(F)

TrV (Λ~
1)(F1) TrV (Λ~

2)(F2) .

Now, for the dimension, we have:

dimV (Λ~
1)⊗ V (Λ~

2) = dimV (Λ~
1) dimV (Λ~

2) ,

and upon dividing by that quantity, we obtain the equality:

trV (Λ~
1)⊗V (Λ~

2) (F) =
TrV (Λ~

1)⊗V (Λ~
2) (F)

dimV (Λ~
1)⊗ V (Λ~

2)

=
∑
(F)

TrV (Λ~
1) (F1)

dimV (Λ~
1)

TrV (Λ~
2) (F2)

dimV (Λ~
2)

=
∑
(F)

trV (Λ~
1) (F1) trV (Λ~

2) (F2) .

We are ready to invoke the semi-classical for one orbit given in Theorem 4.2.4. Let
fj := Fj mod ~ for j = 1, 2. Also consider a random variable x uniformly distributed
on O(Λ1) and an independent random variable y uniformly distributed on O(Λ2).
We have, as ~→ 0:

trV (Λ~
1)⊗V (Λ~

2) (F) =
TrV (Λ~

1)⊗V (Λ~
2) (F)

TrV (Λ~
1)⊗V (Λ~

2)(1)

= o(1) +
∑
(F)

E (f1(x))E (f2(y))
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= o(1) + E

∑
(F)

f1(x)f2(y)

 .

Now, recall from the Eq. (4.2.11) that the coproduct ∆ on U~ (gln) has nothing
inherently quantum! It is the coproduct encoding the addivitive convolution. And
as such, by definition: ∑

(F)

f1(x)f2(y) = f (x+ y) ,

where f = F mod ~. The result follows. �

Although simple, this statement explains why Littlewood-Richardson coefficients
have semi-classical limits being given by the Horn problem.

4.3. Semi-classical limits of quantum groups

We conclude this subsection by stating that Pitman’s theorem, in its discrete
version, has to do with quantum random walks on Uq (sl2) and taking q from q = 1
to q = 0, where crystals do appear. In fact, everything can be conveniently recast
in terms of the Littelmann path model [Lit95a, Lit95b], which is a combinatorial
model for crystals. The random walks at hand are readily identified with crystal
elements. For an overview, see the introduction of my PhD thesis [Chh13].

We are ready to state the problem that is addressed in the Section:

Question 4.3.1. If the Pitman transform P is intimately related to crystals,
appearing at the level of the representation theory of Uq(sl2) at q = 0, why does it
also appear in the geometric context of Bougerol and Jeulin?

Why would there be crystal-like phenomenons by taking curvature to infinity (r →
∞) in a symmetric space H3 = SL2(C)/SU2 ≈ NA?

It is certainly desirable to have single global picture, with an interplay between
both the representation theory of Uq(sl2), as q > 0 varies, and the geometry of the
symmetric space H3 = SL2(C)/SU2 with varying curvatures r > 0. Such a unifying
point of view should also extend to dynamics, by relating Biane’s quantum random
walks and the dynamic of Bougerol-Jeulin on H3.

At this point, let us summarize the landscape:
• On the one hand, at q = 1, there is Biane’s construction of quantum random
walks [Bia91]. The diffusive limit is Brownian motion on the space su∗2,
which can be seen as a flat space with zero curvature (r = 0).
• On the other hand, at q = 0, using Kashiwara crystals, for example in
the path model form, one recovers Pitman’s theorem. The latter is also
recovered upon taking a Brownian motion on the symmetric space H3 =
SL2(C)/SU2 and taking the curvature to infinity (r →∞).

Thus, we want to interpolate the two different regimes, and perhaps reinterpret
the parameter q in quantum groups as a curvature parameter. The most fruitful idea
in trying to answer Question 4.3.1 is to discard the idea that q = eh in the Drinfeld-
Jimbo quantum group Uq (sl2), with h being a Planck constant. The following
conversation will take us back to the genesis of quantum groups, which we feel is
necessary in order to really distinguish what is quantum and what is not. We begin
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by introducing two important ingredients U~
q (sl2) and C [(SU∗2 )r]. These are tailored

so that the formal diagram in Figure 4.3.1 commutes.

U~
q (sl2) C [(SU∗2 )r]

U~(sl2) C [su∗2]

~→ 0

r → 0

~→ 0

r → 0

Quantum mechanics,
Representation theory

Semiclassical limit,
Poisson geometry

Curved setting

Flat setting

Figure 4.3.1. A formal commutative diagram

Quoting Kirillov [Pra05, p.305], who attributes the statement to Drinfeld, the
first approximation to quantum groups as classical objects are Poisson-Lie groups.
This leads us to the first ingredient, that is a family of Poisson-Lie groups (SU∗2 )r
with varying curvatures r > 0. C [(SU∗2 )r] will denote the coordinate algebra. In
order for such an object to appear as a semi-classical limit, we have to revisit the
usual presentation of quantum groups. We require a different presentation U~

q (sl2)
of the Jimbo-Drinfeld quantum group with two parameters ~ > 0 and q = e−r.

4.3.1. Definitions.
4.3.1.1. Revisiting the Drinfeld-Jimbo quantum group. We define U~

q (sl2) with
q = e−r as follows. As explained before, r > 0 has to be understood as curvature
and ~ > 0 is the actual Planck constant. We set

U~
q (sl2) := 〈K

1
2 , K−

1
2 , E, F 〉/R(4.3.1)

where this time K
1
2 = q

1
2
H = e−

1
2
rH and R is the two-sided ideal generated by the

relations:
(4.3.2)

K
1
2EK−

1
2 = q~E , K

1
2FK−

1
2 = q−~F , EF−FE = ~

K−1 −K
2r

= ~
erH − e−rH

2r
.

Furthermore, U~
q (sl2) is a Hopf algebra. The co-product is ∆r : U~

q (sl2) →
U~
q (sl2)⊗ U~

q (sl2): 
∆r

(
e

1
2
rH
)

= e
1
2
rH ⊗ e 1

2
rH ,

∆r (F ) = F ⊗ e 1
2
rH + e−

1
2
rH ⊗ F ,

∆r (E) = E ⊗ e 1
2
rH + e−

1
2
rH ⊗ E ,

(4.3.3)

while the antipode and counit maps S~
r , εr : U~

q (sl2)→ U~
q (sl2) are given by:

S~
r

(
e±

1
2
rH
)

= e∓
1
2
rH , S~

r (E) = −q~E, S~
r (F ) = −q−~F,(4.3.4)

εr

(
e±

1
2
rH
)

= 1, εr(E) = εr(F ) = 0 .(4.3.5)
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It is easy to check that, over C, there is a Hopf algebra isomorphism Φ: Uq~ (sl2)→
U~
q (sl2), between the classical presentation of Drinfeld-Jimbo that can be found in

the literature [CP95] and ours (4.3.1), such that:

Φ(H) =
H

~
, Φ(E) = E

√
2r

~(q−~ − q~)
, Φ(F ) = F

√
2r

~(q−~ − q~)
.(4.3.6)

Strictly speaking, the first equation holds upon continuously extending Φ to a
completion so that K = q~H ∈ Uq~ (sl2) maps to:

Φ(K) = Φ(e−r~H) = e−rH = K .

As such, the usual Casimir element:

Cq := EF +
q−1K + qK−1

(q − q−1)2
∈ Uq (sl2)(4.3.7)

is changed to

Cq~ := EF +
q−~K + q~K−1

(q~ − q−~)2
∈ Uq~ (sl2) ,

which maps via the isomorphism Φ and a rescaling to

Cr,~ := r~
(
q−~ − q~

)
Φ
(
Cq~
)

=
1

2

(
4r2EF +

(
q−~K + q~K−1

) 2r~
(q−~ − q~)

)(4.3.8)

=
1

2

(
4r2EF +

(
er~K + e−r~K−1

) 2r~
(er~ − e−r~)

)
.

Naturally, Cr,~ generates the center of U~
q (sl2) by [Kas12, Theorem VI.4.8]. We

also define the element Λr,~ belonging to a completion of U~
q (sl2) as

(4.3.9) Λr,~ :=
1

r
Argcosh

(
er~ − e−r~

2r~
Cr,~

)
− ~ .

As explained in [CC21], the definition of Λr,~ has been tailored so that Λr,~ acts as
the appropriate constant in any fixed irreducible representation of U~

q (sl2).
Finally, the analogue of choosing a real form for a Lie algebra in the context

of Hopf algebras is exactly the choice of an anti-involution †. We recommend the
discussion in [KS12, Section 1.2.7] regarding that matter. Here, the compact real
form of U~

q (sl2) is defined as the pair
(
U~
q (sl2) , †

)
where † is the algebra anti-

involution given by [KS12, p.59]:

K† = K, E† = F, F † = E.(4.3.10)
This real form is compatible with the real form we shall choose for Poisson-Lie
groups.

4.3.1.2. Poisson-Lie groups with varying curvatures r > 0. ConsiderB ⊂ SL2(C)
as the Borel subgroup:

B :=

{(
a 0
b a−1

)
| a ∈ C∗, b ∈ C

}
,

while B+ is the transpose. If b ∈ B ∪B+, then [b]0 denotes the projection onto the
diagonal. The following complex group will play an important role:

SL∗2 :=
{

(b, b+) ∈ B ×B+ | [b]0 = [b+]−1
0

}
,(4.3.11)
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which is called the Poisson-Lie group dual to SL2(C), equipped with the standard
structure (see [CP95] or [KS97]). The group law is the pair-wise matrix multipli-
cation. Its Lie algebra

sl∗2 :=TeSL
∗
2 = b⊕h b

+ ,(4.3.12)

is made of the two triangular subalgebras b = TeB and b+ = TeB
+, with the

diagonal parts in h being opposite. Here h := a + ia ⊂ sl2 is simply the Abelian
subalgebra of complex diagonal matrices.

In order to have varying curvatures r > 0 and interpolate with the trivial Poisson-
Lie group sl∗2, we define (SL∗2)r as the Lie group with Lie algebra

(
sl∗2, r[·, ·]sl∗2

)
.

This is nothing more than SL∗2 as a space but with a different group law. We define
C [(SL∗2)r] as the polynomial algebra generated by the variables e

1
2
rH , e−

1
2
rH =(

e
1
2
rH
)−1

, E and F :

C [(SL∗2)r] := C
[
e

1
2
rH , e−

1
2
rH , E, F

]
.(4.3.13)

In turn, these variables are seen as coordinate functions by writing:

∀g ∈ (SL∗2)r , g =

((
e

1
2
rH(g) 0

2r F (g) e−
1
2
rH(g)

)
,

(
e−

1
2
rH(g) 2r E(g)

0 e
1
2
rH(g)

))
.(4.3.14)

When convenient, we will drop the dependence in g for f(g) = f ∈ {H,E, F}, as in
the definition of the coordinate algebra C [(SL∗2)r].

Now define:

(SU∗2 )r :=
{
g ∈ (SL∗2)r | H(g) ∈ R, E(g) = F (g)

}
.(4.3.15)

This is clearly a subgroup of (SL∗2)r and we will see in the next section that it is the
Poisson-Lie group dual to SU2, via an involution † which respects the duality at the
level of Hopf algebras. Its curvature will also be shown to vary with r > 0. In view
of the definition of the elements of (SU∗2 )r, all the information is contained in the
lower Borel subgroup with positive diagonals, leading to a natural identification

(SU∗2 )r ≈ NA .

The corresponding coordinate algebra is naturally denoted C[(SU∗2 )r].
There is also the following, more analytic, presentation of (SU∗2 )r. Notice that

the exponential map is a diffeomorphism exp : su∗2 ≈ n ⊕ a
∼−→ NA ≈ (SU∗2 )r. As

such, we can identify su∗2 and (SU∗2 )r as topological spaces. Then we define a group
law with a parameter r > 0 via:

∀(X, Y ) ∈ su∗2 × su∗2, X ∗r Y :=
1

r
log
(
erXerY

)
.(4.3.16)

The new group is denoted by ((SU∗2 )r , ∗r) and its Lie bracket is naturally r [·, ·]sl∗2 ,
i.e. the rescaling of the original bracket by a factor r > 0. Clearly, as r → 0, the
group ((SU∗2 )r , ∗r) becomes the Abelian group (su∗2,+).

4.3.2. Main result. In order to construct the quantum walk on U~
q (sl2), this

latter algebra is taken as the algebra of observables for one increment. Our algebra
of non-commutative random variables is the inductive limit

Ar,~ := lim−→
n

(
U~
q (sl2)

)⊗n
.(4.3.17)
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This is exactly as the algebra of functions for an i.i.d. product of random variables.
Given that U~

q (sl2) is isomorphic to the usual Jimbo-Drinfeld quantum group,
the representations are essentially the same. The specifics are not needed for now.
The state τ is the product state using the standard representation C2. The pair(
Ar,~, τ

)
will be our working non-commutative probability space.

In the definition of our measurement operators we have to use the coproduct ∆r.
As such, the morphism of algebras Mn : U~

q (sl2) → Ar,~ defined for discrete times
n ∈ N are as follows. M0 = εr is given by the counit, and{

M1 = 1 ,

Mn = (Mn−1 ⊗ 1) ◦∆r , for n ≥ 2.
(4.3.18)

Since we want the random walk to classically start from the identity, and the quan-
tum version consists in expressing everything dually at the level of measurement
operators, one sees that M0 has to be taken as the counit.

We make the convention that ∀t ≥ 0, Mt := Mbtc. As a random walk on U~
q (sl2),

we define three non-commutative processes via:

∀t ∈ R+, S
r,~
t := Mt/~2 (S)

for each generator S ∈ {H,E, F} of the quantum group U~
q (sl2). This three-

dimensional non-commutative process is neatly repackaged in matrices of (SU∗2 )r
with non-commutative entries:

∀t ∈ R+, g
r,~
t(4.3.19)

:=

((
e

1
2
rHr,~

t 0

2r F r,~
t e−

1
2
rHr,~

t

)
,

(
e−

1
2
rHr,~

t 2r Er,~
t

0 e
1
2
rHr,~

t

))
∈ (SU∗2 )r ⊗A

r,~ .(4.3.20)

By stating that the above quantity is in (SU∗2 )r⊗Ar,~, we are implicitly saying that
the lower and upper triangular parts are †-conjugate. Therefore gr,~t can be seen as an
element in NA with operator-valued entries. The quantum dynamic

(
Λr,~
t ; t ≥ 0

)
is defined from the measurement of the Casimir element (4.3.8) thanks to the explicit
expression:

∀t ∈ R+,
2r~

er~ − e−r~
cosh

(
r~ + rΛr,~

t

)
:= Mt/~2

(
Cr,~) .(4.3.21)

This is equivalent to directly setting Λr,~
t := Mt/~2

(
Λr,~
)
after continuously extending

the measurement operators to the completion where Λr,~ lives (see Eq. (4.3.9)).

We are ready to state the main result of [CC21], which unifies the results of
Biane on the one hand and Bougerol-Jeulin on the other hand. Since the crystal
regime q = e−r → 0 is tractable in both quantum and semi-classical settings, it
explains why crystal-like phenomena appear upon taking infinite curvature limits.
This recovers indeed Pitman’s 2M − X Theorem in the discrete and continuous
versions.

Theorem 4.3.2 (Main Theorem of [CC21]). In the sense of (possibly non-
commutative) moments, we have the following convergences in law between processes
indexed by t ∈ R+:
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Λ∞,~t = X~
t − 2 inf0≤s≤tX

~
t

Pitman’s Theorem 4.1.1
(discrete case)

Λ∞t = Xt − 2 inf0≤s≤tXs

Pitman’s Theorem 4.1.2
(continuous case)

gr,~t ∈ (SU∗2 )r ⊗Ar,~
Λr,~
t

Quantum random walks
on U~

q (sl2) as in Eq. (4.3.19)

grt ∈ (SU∗2 )r ⊗ L∞−(Ω)

Λr
t = 1

r
Argcosh ◦ tr

(
grt (grt )

†
)

Bougerol-Jeulin’s convolution dynamic
and its radial part as in Theorem 4.1.5

x0,~
t =

(
1
2
X~
t 0

Y ~
t + iZ~

t −1
2
X~
t

)
∈ su∗2 ⊗A0,~

Λ0,~
t =

√
1
2
~2 + (X~

t )
2

+ (Y ~
t )

2
+ (Z~

t )
2

Biane’s quantum random walks
on U~(sl2) as in [Bia09]

x0
t =

(
1
2
Xt 0

Yt + iZt −1
2
Xt

)
∈ su∗2 ⊗ L∞−(Ω)

Λ0
t =

√
X2
t + Y 2

t + Z2
t

Flat Brownian Motion on su∗2 ≈ R3

and its radial part

~→0

r→∞

r→0

~→0

r→∞

r→0

~→0

Moreover, on both quantum and semi-classical pictures, i.e. for ~ > 0 and ~ = 0,
the dynamic of Λr,~ does not depend on r.

The paper [CC21] also describes measures on orbits with a curvature parameter
r > 0 such that analogous theorems to 4.2.4 and 4.2.5 hold.

In those theorems, the algebra of non-commutative variables is the quantum
group U~

q (sl2) and the limiting orbits are dressing action orbits in a curved space
with curvature parameter r > 0.

4.3.3. Elements of generalization beyond quantum sl2. An interesting
project is to write down the full proofs of the semiclassical limits for general type
U~
q (g) or at least for g = gln. It would also be desirable to explicit the relationship

to the Robinson-Schensted correspondence and crystals. However this would take
us too far in the realm of representation theory.

Leaving the quantum world, let us now conclude this Section 4.3 with some
elements on the geometry of semiclassical orbits, in the case of gln. This will allow
us to describe the potential generalization of Theorem 4.3.2 to gln, when dealing only
with the semi-classical aspects which are on the RHS of the commutative diagram.

Dressing orbits. As in the rank one case SL2(C), consider the subgroup
NA ⊂ GLn(C) of lower triangular matrices with positive diagonal. Of course
NA ≈ GLn(C)/Un is the symmetric space where Bougerol-Jeulin [BJ02] construct
a Brownian motion which they study in the infinite curvature regime. The group
Un acts on the left of NA by the so-called dressing orbit

∀k ∈ Un,∀na ∈ NA, ∃!k · na ∈ NA, kna ∈ (k · na)Un .

This is nothing but the NA part in the Gram-Schmidt decomposition of kna. For
future use, define the map

a(r) : GLn(C) → Rn

g 7→ a(g)
(4.3.22)
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by saying that a(r)(g) ∈ Rn is the unique vector such that

g ∈ N exp

(
1

2
ra(r)(g)

)
Un .

Equivalently, exp
(
ra(r)(g)

)
is the diagonal part in the Cholesky decomposition of

gg∗.
As a space define for any Λ ∈ Rn, the curved orbit Or(Λ) as the dressing orbit

passing through e
1
2
r diagΛ:

Or(Λ) :=
{
k · e

1
2
rdiagΛ | k ∈ Un

}
.(4.3.23)

Of course, we have a foliation of the curved space NA analogous to Eq. (4.2.2):

NA =
⊔
Λ

Or(Λ) .(4.3.24)

Another of seeing Or(Λ) is as a space of positive definite matrices with given singular
values through the map:

Or (Λ) → {M ∈Mn(C) |M = M∗, M positive definite}
g 7→ gg∗ .

Notice that as r → 0, we can identify Or=0 (Λ) with Hermitian matrices and a(r=0) =
diag is the map which selects the diagonal. We will simply prefer the NA picture
because it has a natural group law.

Harish-Chandra’s spherical integral. From now on, let us drop the notation
of the spherical integral as (z,Λ) 7→ HCIZ(z,Λ). For reasons that will soon be clear,
we shall now denote it by:

ϕ(r=0)
z (Λ) := HCIZ(z,Λ).

Recall that

ϕ(r=0)
z (Λ) = Ek∼Haar

(
e〈z,diag(kΛk∗)〉) =

det
(
eziΛj

)
∆(z)∆(Λ)

.

Now, the definition of the Harish-Chandra spherical integral for GLn(C) is
[Hel22, Chapter IV, Theorem 4.3]:

φz(Λ) :=

∫
Un

dk exp
(
〈z + ρ, a(r=1)(ke

1
2

Λ)〉
)
.

Here ρ = (n − 1, . . . , 2, 1, 0) is again the Weyl vector. And from Harish-Chandra
formula for the complex group GLn(C) [Hel22, Chapter IV, Theorem 5.7], which
is much more simple than for general real Lie groups, we have

φz(Λ) = c(z)
det
(
eziΛj

)
∆(eΛ)

,

where the c-function is c(z) =
∏

1≤i<j≤n
j−i
zj−zi = ∆(ρ)

∆(z)
. Notice the following relation-

ship with the Kirillov-Itzykson-Zuber integral:

φz(Λ) =
∆(Λ)∆(ρ)

∆(eΛ)
ϕ(r=0)
z (Λ) .
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This motivates the following definition of spherical function with curvature pa-
rameter r:

ϕ(r)
z (Λ) :=

∫
Un

dk exp
(
〈z + rρ, a(r)(ke

1
2
rΛ)〉

)
.(4.3.25)

We have

ϕ(r)
z (Λ) =

∫
Un

dk exp

(
〈z + rρ,

1

r
a(r=1)(ke

1
2
rΛ)〉

)
=

∫
Un

dk exp
(
〈z
r

+ ρ, a(r=1)(ke
1
2
rΛ)〉

)
= ϕ

(r=1)
z
r

(rΛ)

=c(z/r)
det
(
eziΛj

)
∆(erΛ)

=
∆(rρ)

∆(z)

det
(
eziΛj

)
∆(erΛ)

=
∆(rρ)∆(Λ)

∆(erΛ)
ϕ(r=0)
z (Λ) .

This confirms that we have chosen the correct interpolation between the classical
Harish-Chandra spherical integral ϕ(r=1)

z = φz and the Kirillov-Itzykson-Zuber in-
tegral limr→0 ϕ

(r)
z = ϕ

(r=0)
z . Our choice uses a curvature parameter r to interpolate

between the symmetric space NA ≈ GLn(C)/Un and the flat space n⊕ a ≈ Hn.

Remark 4.3.3. Notice that the following quantity does not depend on r:

ϕ(r)
z (Λ)/ϕ

(r)
0 (Λ) ,

which hints to the existence of harmonic analysis that does not depend on the curva-
ture parameter r. More precisely spherical additive convolution and spherical multi-
plicative convolution have the same harmonic analysis.

Quasi-invariant measures on orbits Or(Λ). On the orbits, we have the
natural left-Haar invariant measure, which is the law of

gHaar = k · e
1
2
rΛ ,

with k Haar distributed on Un. Rather, we shall prefer the following quasi-invariant
measure, which is a tilting of the left-Haar invariant measure. Our quasi-invariant
measure with curvature parameter r is the law of g ∈ Or(Λ) ⊂ NA and

E (f(g)) =
1

ϕ
(r)
0 (Λ)

∫
Un

dk exp
(
〈rρ, a(r)(k · e

1
2
rΛ)〉

)
f(k · e

1
2
rΛ) .

Remark 4.3.4. By picking f = exp
(
〈z, a(r)(·)〉

)
, we see that elements g sampled

according to this canonical measure satisfy

E
(
exp

(
〈z, a(r)(g)〉

))
=
ϕ

(r)
z (Λ)

ϕ
(r)
0 (Λ)

.

Remark 4.3.3 basically says that the law of a(r)(g) does not depend on the curvature
parameter r ∈ R.
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4.4. Relationship to some integrable models in mathematical physics

4.4.1. Zoo of models: Directed percolation, Polymers, TASEP.

DLPP. The acronym DLPP stands for "Directed Last Passage Percolation".
It is a percolation model in random environment. We consider the grid Z2 and the
environment is the collection

ω := (ωi,j ; (i, j) ∈ N× N)

of i.i.d. random variables with light tails.
Consider the set of directed paths ΠM,N from (0, 0) to (M,N). We restrict the set

of possible π to paths with only right and up steps, hence the adjective "directed",
see Fig. 4.4.1. The quantity of interest is the last passage time

LM,N := max
π∈ΠM,N

E(π) ,

with energy of a path being E(π) =
∑

(i,j)∈π ωi,j.

(0, 0)

(M,N)(0, N)

(M, 0)

Environment ωi,j

Figure 4.4.1. Directed path π in red from (0, 0) to (M,N)

Brownian DLPP.

(0, 0)

(M,N)(0, N)

(M, 0)

Donsker
M→∞−→

0 t
W 1

W 2

W 3

W 4

W 5

Figure 4.4.2. Rescaling the usual DLPP to the Brownian DLPP

By centering and diffusive rescaling, LM,N becomes

Lt,N = lim
M→∞

LbMtc,N − (M +N)Eω√
M Var(ω)

= max
0=t0<t1<···<tN=t

N∑
i=1

W i
ti
−W i

ti−1
.
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Remark 4.4.1. If N = 2, there are independent Brownian motions X = W 2−W 1
√

2
,

Y = W 2+W 1
√

2
such that:

Lt,N=2 = max
0≤s≤t

W 1
s +W 2

t −W 2
s =

1√
2
Yt +

1√
2

(
Xt − 2 min

0≤s≤t
Xs

)
.

Directed polymers. Let β = 1
kBT

> 0 be a positive inverse temperature
parameter. It is natural to consider the Gibbs measure associated to the energy
functional of DLPP. This yields a measure on directed paths π ∈ ΠM,N :

Qβ,ω(π) :=
exp (βE(π))

Zβ
M,N

.

This measure depends on the environment ω as indicated in superscript. The same
goes for the normalization constant, which is called the partition function following
the jargon of statistical physics and it is the random variable

Zβ
M,N =

∑
π∈ΠM,N

eβE(π) .(4.4.1)

In the zero temperature regime, β → ∞, the measure Qβ,ω naturally concentrates
on the path with largest energy, hence yielding the optimizer of DLPP functional.
The last passage time, on the other hand, is the limit of the free energy:

LM,N = lim
β→∞

1

β
logZβ

M,N .

O’Connell-Yor directed polymer. Exactly as in Fig. 4.4.2, one can rescale
the partition function Zβ

M,N to a model which does not depend on the fine features
of the environment, in order to obtain the so-called O’Connell-Yor semi-directed
polymer. One has to rescale the inverse temperature parameter as

βM =
β√

M Varω
,

in order to obtain

Zβ
t,N

= lim
M→∞

ZβM
bMtc,N

=

∫
. . .

∫
0=s0<s1<···<sN=t

exp

(
β

(
N∑
i=1

W i
si
−W i

si−1

))
ds1ds2 . . . dsN−1

Again, the zero temperature limit of O’Connell-Yor is nothing but the Brownian
percolation.

Connection to particle systems.
When the environment is made of exponential random variables, i.e. ωi,j

L
= e

with P(e ∈ dx) = 1R+(x)e−xdx, there are natural correspondences

TASEP ≈ Corner growth ≈ DLPP .

TASEP stands for “Totally Asymmetric Exclusion Process”, and it is a particle
system X with state space {0, 1}Z. The initial condition is X0 = (1k≤0)k∈Z. And
the dynamic is so that particles jump to the right, at a neighboring site, if the site
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Figure 4.4.3. Coupling TASEP & Corner growth

(M,N)

Figure 4.4.4. Transition above box (M,N)

unoccupied. In order to have a continuous time Markovian dynamic, each site in
Z has a Poisson clock giving the times of jumps. As such, the waiting times are
necessarily exponential random variables in order to preserve the Markov property.

The first correspondence between TASEP and corner growth models is given
in Fig. 4.4.3 and is rather self explanatory. On the bottom one sees a particle
configuration η ∈ {0, 1}Z defined by

∀x ∈ Z, η(x) =
∑
k

1Xk=x ,

where X1, X2, . . . are the positions of particles. The correspondence consists in
mapping a particle configuration η ∈ {0, 1}Z to a piece-wise affine function which is
interpreted as a growing interface. Slope is respectively −1 at an occupied site and
+1 at an unoccupied site. A particle jumping from left to right becomes a corner
growth event as in Fig. 4.4.4. Notice that this correspondence works for any particle
system on the line with nearest neighbor interaction for example, as in the ASEP
where particles are allowed to jump from right to left. A particle jump from right
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to left becomes a corner deflation in the corner growth model. In turn, the height
function h encodes the current of the particle system η.

The second correspondence only works in the case of TASEP. The last passage
time LM,N in DLPP is just the total time necessary for the interface h(t, ·) to go
above box (M,N). This is a correspondence in law and it requires the memoryless
property of the exponential waiting times. As such, the only conclusion that be
drawn is the equality

∀t ≥ 0,∀N ∈ N, P (h(t, 0) ≤ N) = P (LN,N ≤ t) ,

in the case of TASEP. For ASEP, one can only obtain upper bounds on the current
in this fashion.

4.4.2. Pitman-type theorems as a bridge between RMT and DLPP.
In the case N = 2, Remark 4.4.1 tells us that DLPP contains the Pitman transform.
The relationship to RMT appears in the following remark.

Remark 4.4.2. Consider a standard Hermitian Brownian motion on 2× 2 ma-
trices. This is the process GUE

(N=2)
t as defined in the introduction Section 2.1. It

is easy to see that there are independent standard Brownian motions such that:

GUE
(N=2)
t =

1√
2

( √
2B1

t B12
t + iB21

t

B12
t − iB21

t

√
2B2

t

)
=
B1
t +B2

t

2
+

1√
2

(
Wt B12

t + iB21
t

B12
t − iB21

t −Wt

)
.

Hence

λ1

(
GUE

(N=2)
t

)
=
B1
t +B2

t

2
+

1√
2

√
W 2
t + (B12

t )2 + (B21
t )2

=
Yt√

2
+

1√
2

BES3
t .

As such the Pitman’s Theorem 4.1.2 says exactly that the largest eigenvalue of
an 2× 2 GUE equals in law the last passage time with two rows, for the Brownian
directed percolation.

From GUE to Brownian percolation. In order to move from N = 2 to
general N , one needs higher rank generalizations of Pitman’s theorem.

Theorem 4.4.3 (Baryshnikov [Bar01], Tracy-Widom [GTW01], Bougerol–
Jeulin [BJ02]). We have equality in law as processes Assuming exponential weights
ω for DLPP:

(Lt,N ; t ≥ 0)
L
=
(
λ1(GUE(N)) ; t ≥ 0

)
.

Notice that this equality is between non-Markovian processes. The full equal-
ity in law is between the Spec

(
GUE(N)

)
and a generalized Pitman transform for

which the last passage time is only the first coordinate. As implicit in this body of
work, this generalized Pitman transform encodes a continuous Robinson-Schensted
correspondence.

The generalization to any Lie type is done in [BBO05, BBO09] using the ma-
chinery of crystals, which generalizes the Robinson-Schented correspondence. This
is beyond the scope of this document and does not seem that relevant in relationship
to DLPP or polymer models.
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Johansson’s Proposition 1.4.

Theorem 4.4.4 (Johansson [Joh00] for fixed M , Warren-Dieker [DW09]). As-
suming exponential weights ω for DLPP:

(LM,N ; M ≥ 1)
L
= (λ1(WM,N) ; M ≥ 1) .

Let us mention that the process version of was conjectured first by Borodin-Péché
[BP08]. And this yields Tracy-Widom fluctuations effortlessly by simply invoking
the classical Theorem 2.1.3. In any case, it is my opinion that such correspondences
are precious given how difficult it is to prove Tracy-Widom fluctuations.

4.4.3. Novel proof of Johansson’s Proposition 1.4. using curvature
deformation. Let us now present a proof which goes through harmonic analysis.
More precisely, this proof exploits the rigidity of harmonic analysis as curvature
varies – à la “Bougerol-Jeulin". As a prerequisite to this proof, we require the setup
detailed in Subsection 4.3.3, where we give the definition of (additive) invariant
ensembles and introduce our definition of (multiplicative) quasi-invariant ensembles.

The starting point is the following somewhat trivial yet very key lemma.

Lemma 4.4.5 (Laws of diagonals, laws of spectra).
Zero curvature statement r = 0.
Consider an invariant ensemble in the space of Hermitian matrices Hn. Let

a(r=0) be its diagonal part, and Λ(r=0) be its spectrum. Then the law of the ensemble
is equivalently determined by the law of the spectrum L

(
Λ(r=0)

)
or the law of the

diagonal L
(
a(r=0)

)
.

Statement with curvature parameter r.
Consider a quasi-invariant ensemble in the space NA ⊂ GLn(C). If g is in that

ensemble, g ∈ Or
(
Λ(r)

)
defines the spectrum Λ(r). And g ∈ Ne 1

2
ra(r)

Un defines the
diagonal a(r). Then the law of a quasi-invariant ensemble invariant is equivalently
determined by the law of singular values L

(
Λ(r)

)
or the law of the diagonal L

(
a(r)
)
.

Moreover, the injective map L
(
Λ(r)

)
7→ L

(
a(r)
)
does not depend on the param-

eter r.

Proof. We will simply refer to Λ(r) as the spectrum and refer to a(r) as the
diagonal, irrespective of the curvature parameter r.

Step 0: Fixing spectra fixes everything.
If Mn is Hermitian and invariant, then Mn = unΛnu

∗
n with un Haar distributed

and independent. Therefore specifying the law of Λn fixes everything.
Likewise, if g ∈ NA, and we write g = un · e

1
2
rΛn , then conditionally to Λn = λ,

the law of un is specified by virtue of saying that g is quasi-invariant.

Step 1: Fixing the diagonal with r = 0.
Now reciprocally, suppose Mn is invariant and that diagMn has a fixed given

law. That means that we are given a function h : Rn → C such that

h(z) = E
(
ei〈z,diag(Mn)〉) .

By virtue ofMn being invariant, we can force the appearance of the spherical integral
in the following way

h(z) = E
(
ei〈z,diag(unΛnu∗n)〉)



68 4. PITMAN-TYPE THEOREMS AND REPRESENTATION THEORY

=

∫
P (Λn ∈ dλ)E

(
ei〈z,diag(unλu∗n)〉)

=

∫
P (Λn ∈ dλ)ϕ

(r=0)
iz (λ) .

This relation can be inverted via the spherical transform, which hinges on the iden-
tity: ∫

Rn
dz ϕ

(r=0)
iz (λ)ϕ

(r=0)
−iz (µ) |∆(z)|2 = n! |∆(µ)|2 δλ=µ .

This formula makes sense in the sense of distributions and requires λ, µ in the Weyl
chamber C = {Λ ∈ Rn , Λi > Λi+1}. For a quick proof, one can recover this either
from the orthogonality properties of Schur polynomials and Proposition 4.2.1, or
from the Fourier transform.

Step 2: Fixing the diagonal with r non-vanishing.
Now, if Mn ∈ NA is quasi-invariant, then Mn = un · e

1
2
rΛ

(r)
n ∈ Nne

1
2
ra

(r)
n Un.

Suppose that we are given the law of an, so that the characteristic function

h(z) = E
(
ei〈z,a

(r)
n 〉
)

is known. Let us show that the law of Λn can be recovered. By hypothesis, Mn is
quasi-invariant so that

h(z) = E
(
ei〈z,a

(r)(Mn)〉
)

=

∫
P
(
Λ(r)
n ∈ dλ

)
E
(

exp
(
i〈z, a(r)(un · e

1
2
rλ)〉
))

=

∫
P
(
Λ(r)
n ∈ dλ

) ϕ(r)
iz (λ)

ϕ
(r)
0 (λ)

.

Because of the Remarks 4.3.3 and 4.3.4, we find exactly the same relationship
between h and P (Λn ∈ dλ) as in the flat case:

h(z) =

∫
P
(
Λ(r)
n ∈ dλ

)
ϕ

(r=0)
iz (λ) .

Along the way, we have proven that the map L(Λ
(r)
n ) 7→ L(a

(r)
n ) is invertible and

does not depend on r. �

Remark 4.4.6 (Important notational change). So far, N denoted the space of
lower unipotent matrices as a subgroup of NA ⊂ GLN(C). In order to fit with the
notations of our integrable models, N will now denote the number of rows in the
environment.

We apologize to our reader for this egregious offense. We have not found a way
to do this at a reasonable cost.

Constructing a curvature-independent dynamic. Recall from Section 2.1
that the Wishart matrices (WM,N ; M ≥ 1) constitute a random walk with inde-
pendent and invariant increments. An increment is of the form ξξ∗ with ξ Gaussian
standard vector.

As a corollary of the proof, a great idea is to do the following.



4.4. RELATIONSHIP TO SOME INTEGRABLE MODELS IN MATHEMATICAL PHYSICS 69

• Let b(r)
1 , b

(r)
2 , . . . as i.i.d. random variables in the space of lower triangular

matrices in GLN(C) with common quasi-invariant distribution L
(
b(r)
)
.

• By writing b(r) ∈ Or
(
λ

(r)
N

)
and a(r)

N = a(r)(g(r)), we can equivalently choose

the law of a(r)
n or the law of λ(r)

N .
• We choose these laws to correspond to the Wishart case, i.e. we need these
to correspond to the law of diagonal and spectrum of ξξ∗. That is to say that
λ

(r)
N = χNe1 where χN is distributed as a χ distribution with N degrees of

freedom. Or equivalently a(r)
N vector of i.i.d. exponential standard random

variables.
Then form the product:

B
(r)
M,N := b

(r)
M . . . b

(r)
2 b

(r)
1 .(4.4.2)

We look at the singular values Λ
(r)
M,N . Since B(r)

M,N belongs to a quasi-invariant
ensemble, and a(r)(B

(r)
M,N) matches the flat case, we have the equality in law

Λ
(r)
M,N

L
= Spec (WM,N) .

By repeating this reasoning from a step to the next, we upgrade this equality to
an equality in law between processes(

Λ
(r)
M,N ; M ≥ 1

)
L
= (Spec (WM,N) ; M ≥ 1) .(4.4.3)

This is the discrete time analogue of Theorem 4.1.5 by Bougerol-Jeulin, highlighting
an equality in law independently of the curvature parameter r. All we need to do
now is understand the infinite curvature regime r →∞.

Semi-explicit form of Eq. (4.4.2) as r → ∞. The content of a generic
element b(r) is not very explicit for finite r. However, in the limit r → ∞, the
content of b(r) is very explicit.

Let us denote the diagonal part of b(r) as a(r) =
(
e

1
2
rω1 , e

1
2
rω2 , . . . , e

1
2
rωN

)
.

Lemma 4.4.7. There are uniform i.i.d. random variables Θ1,Θ2, . . . on the circle
such that

b(r) =
∑

1≤i≤j≤N

Ej,i
∏
i≤k≤j

Θke
1
2
rωk (1 + oP(1)) .

Here oP(1) denotes a quantity which converges to 0 in probability as r →∞.

Proof. Notice that we have now added phases on the diagonal of b(r). This is
of no issue as, technically, b(r) is a lower triangular representative of an equivalence
class in GLN(C)/UN . As such, it is determined up to multiplication by a diagonal
unitary matrix.

Moreover, quasi-invariance implies that b(r) L= b(r)t for t diagonal and unitary,
hence the uniform phases.

Now, we have

b(r)
(
b(r)
)∗

= kerχNE1,1k∗ = IN + (erχN − 1) kE1,1k
∗ ,

where k is unitary. As such, we have a vector v ∈ CN such that

b(r)
(
b(r)
)∗

=IN + vv∗ .(4.4.4)
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As such, we need to compute the Cholesky decomposition of matrices of the form
IN + vv∗.

If Li is the top-left i× i minor of b(r), we have:

e
1
2
rωi =

∣∣∣∣ detLi
detLi−1

∣∣∣∣ =

√
detLiL∗i

detLi−1Li−1

=

√
1 + ‖v[1:i]‖2

1 + ‖v[1:(i−1)]‖2
,

where v[1:i] is the vector of the first i coordinates of v.
As such, as r →∞, we have

‖v[1:i]‖ = (1 + oP(1)) e
1
2
rωi‖v[1:(i−1)]‖ .

Therefore, a similar relation exists between the coordinates of v. We find that there
are phases Θi’s such that

vi = (1 + oP(1)) e
1
2
rωiΘivi−1 .

In the end, we find that Eq. (4.4.4) becomes

b(r)
(
b(r)
)∗

= IN + (1 + oP(1))

(∏
k≤i

Θke
1
2
rωk
∏
k≤j

Θke
1
2
rωk

)
1≤i,j≤N

.

This asymptotic form has an easy Cholesky decomposition to compute, which yields
the desired result. �

As such, we have the following corollary upon making matrix products.

Corollary 4.4.8. If b(r)
i as a(r) =

(
e

1
2
rωi,1 , e

1
2
rωi,2 , . . . , e

1
2
rωi,N

)
, then the matrix

coefficients of B(r)
M,N are asymptotically given by:[

B
(r)
M,N

]
i,j

= (1 + oP(1))
∑

π∈ΠM,i−j+1

e
1
2
rE(π)Θπ ,

where
E(π) =

∑
(i,j)∈π

ωi,j, Θπ =
∏

(i,j)∈π

Θi,j .

Notice that this asymptotic form is exactly the partition function encountered
in Subsection 4.4 as Eq. (4.4.1), but with random phases.

Conclusion. We finish the proof by noticing that the infinite curvature regime
r →∞ is exactly the same as the zero temperature regime β = 1

kBT
→∞, modulo

the details of handling phases. Notice that the variance of
[
B

(r)
M,N

]
i,j

conditionally

to the environment is

Var

([
B

(r)
M,N

]
i,j
| ω
)

=
∑

π∈ΠM,i−j+1

erE(π) = Zβ=r
M,i−j+1 .

As r → ∞, the largest coefficient is Zβ=r
M,N . This corresponds to the coefficient

(i, j) = (N, 1). Therefore, the largest singular value of B(r)
M,N is asymptotically given

by (
Λ

(r)
M,N

)
1
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=
1

r
log λ1

(
B

(r)
M,N

(
B

(r)
M,N

)∗)
=

1

r
log sup

‖x‖=1

∥∥∥B(r)
M,Nx

∥∥∥2

=oP(1) +
1

r
log

∣∣∣∣[B(r)
M,N

]
N,1

∣∣∣∣2

=oP(1) +
1

r
logZβ=r

M,N +
1

r
log

∣∣∣∣[B(r)
M,N

]
N,1

∣∣∣∣2
Var

([
B

(r)
M,N

]
N,1
| ω
)

=oP(1) + LM,N .

On this last step, we have used the fact that the zero limit temperature of parti-
tion function is the last passage time, and the fact that the last term vanishes in
probability.

This computation combined with Eq. (4.4.3) yields the desired result. Notice
we have proven Johansson’s equality in law, without ever actually computing this
law!





CHAPTER 5

Strong noise limits in classical and quantum filtering

My work on classical and quantum filtering is part of a long term collaboration
with Benoist, Bernardin, Chetrite, Najnudel and Pellegrini [BCC+23, BBC+21,
BCNP22]. Quantum trajectories are SDEs giving the state of a quantum system
perturbed by a measurement process. In fact, these SDEs result from the filtering
of this state: in short, it is the result of a "quantum filtering" theory very similar to
the classical filtering equations of Kushner-Stratonovich-Zakai. The more intense a
measurement is, the greater the noise of the SDE. And it is in this high noise regime
that theoretical physicists Bauer, Bernard and Tilloy have described an interest-
ing metastability phenomenon: in the high noise regime, our (continuous) quantum
trajectory looks like a jump process, decorated with very fine spikes. From a prob-
abilistic point of view, it is the proof of convergence and the rigorous description of
such processes that interests us. Solving this open question also requires the use of
exotic topologies.

The first paper [BCC+23] largely solves the question in dimension 1, by invoking
the tools of stochastic calculus and the theory of Itô excursions.

In the second paper [BCNP22], we take as a starting point the fact that the
SDEs of classical filtering are the same as the quantum versions. As such, we can
apply our technology to that case and prove a peculiar phase transition: in the study
of smoothed filters, there is a sharp transition in the large noise regime, between
perfect filtering and the spiking regime.

The third paper [BBC+21] tackles the higher dimensional. It only demonstrates
the convergence to a jump process, in any dimension, after a smoothing procedure
encapsulated in the Meyer-Zheng topology.

We start by Section 5.1 of motivations and setup, which explains classical and
quantum filtering. Then Sections 5.2, 5.3 and 5.4 present the results of the afore-
mentioned papers, in order.

5.1. Motivations and setup

5.1.1. The Shiryaev-Wonham filter from classical filtering. Let us start
by presenting the Shiryaev-Wonham filter and refer to [Won64, Lip01, VH07] for
more extensive material.

The most simple setup, called the “signal plus noise” model, is the one where we
observe a process yγ = (yγt ; t ≥ 0) of the form

dyγt = xtdt+
1
√
γ
dBt(5.1.1)

where B = (Bt ; t ≥ 0) is a standard Wiener process, γ > 0 is the noise level and x
is a hidden process of interest. This continuous analogue of Hidden Markov Chains,
is known as the Wonham filter when x ∈ {0, 1} is a continuous–time Markov chain.
And the goal is naturally to estimate x.

73
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General setup with n states. More generally, consider a Markov process
x = (xt ; t ≥ 0) on a finite state space E = {x1, x2, . . . , xn} and a continuous
observation process yγ of the usual additive form “signal plus noise”:

dyγt := G (xt) dt+
1
√
γ
dBt .(5.1.2)

Here G : E → R is a function taking distinct values for identifiability purposes. The
filtered state is given by:

ργt (xi) := P
(
xt = xi | (yγs )s≤t

)
.

The generator of x is denoted by L. The claim of the Shiryaev-Wonham filter is
that the filtering equation becomes:

dργt (xi) =
∑
j

(ργt (xj)L(xj, xi)− ργt (xi)L(xi, xj)) dt(5.1.3)

+
√
γργt (xi) (G(xi)− 〈ργt , G〉) dWt .

Here W is the innovation process, and is a Fy-standard Brownian motion. The
quantity 〈ργt , G〉 denotes the expectation ofG with respect to the probability measure
ργt . Throughout the paper, we only consider E = {0, 1}, i.e. the two state regime.

Two states. In this case, all the information is contained in

πγt := ργt (1) = P
(
xt = 1 | (yγs )s≤t

)
.

Using the notation

L =

(
−λ0,1 λ0,1

λ1,0 −λ1,0

)
.

we have indeed that Eq. (5.1.3) can be rewritten as

dπγt = −λ (πγt − p) dt+
√
γσπγt (1− πγt ) dWt ,

where

λ = λ0,1 + λ1,0 , p = λ1,0/λ , σ = G1 −G0 .(5.1.4)

Without loss of generality, we shall assume σ = 1 in the rest of the paper. Also
(G0, G1) = (0, 1). In the end, our setup is indeed given by the previously given,
which we repeat for convenience and further reference:

dyγt = xtdt+
1
√
γ
dBt ,(5.1.5)

dπγt =− λ (πγt − p) dt+
√
γπγt (1− πγt ) dWt .(5.1.6)

Remark 5.1.1. The invariant probability measure µ of the Markov process x
solves

L∗µ = 0⇐⇒ µ =

[
p

1− p

]
.

Without any computation, this is intuitively clear, as setting γ → 0 yields an ex-
tremely strong observation noise and no noise in the filtering equation:

dπγ=0
t = −λ(πγ=0

t − p)dt
whose asymptotic value is p. Informally, this says that, in the absence of infor-
mation, the best estimation of the law L(xt) in long time is the invariant measure.
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This is essentially the content of [Chi06, Theorem 4], which holds for a Shiryaev-
Wonham filter with any finite number of states.

5.1.2. Quantum filtering for quantum open systems. Consider a quan-
tum system with a finite dimensional Hilbert space Cn. Its state is described by a
density matrix belonging to

S+ :=
{
ρ ∈Mn(C) | ρ = ρ†,Tr(ρ) = 1, ρ ≥ 0

}
.

The matrix ρ ∈ S+ is also called the density of states for a quantum system with n
states.

Measurements correspond to self-adjoint operators A, and an experiment yields
a random output with mean value following the Born rule:

〈A〉 = Tr (ρA) .(5.1.7)

More precisely, upon diagonalizing the operator in a orthonormal basis as A =∑
iEi|ψi〉〈ψi|, we have

P (A = Ei) = 〈ψi|ρ|ψi〉 .
When dealing with a pure state ρ = |ψ〉〈ψ|, i.e. a rank projector in the direction of
|ψ〉 ∈ Cn the Born rule (5.1.7) takes the usual form for isolated systems

〈A〉 = 〈ψ|A|ψ〉 .
The description with a density of states is more suitable for quantum open systems.

Haroche’s experiment. Let us comment the famous experiment of Haroche
and his group [Har13]. The setup is described in Figure 5.1.1. Although there are
many aspects that are beyond my understanding, the idea is to nuance the axiom
of wave-function collapse.

Haroche’s experiment is an engineering “tour de force” that allows to observe
the distinction between direct and indirect measurement. Recall that after a direct
measurement yielding an energy level Ei, the state ρ collapses to ρCollapse = |ψi〉〈ψi|.
An indirect measurement occurs when the system is not directly measured, but
rather interacts with another system which is measured.

In Haroche’s experiment, the quantum system of interest is light (photons)
trapped inside of a reflecting cavity at 0.8 Kelvin. The cavity’s mirrors are of
sufficiently good quality that light can bounce a few zillion times without being
absorbed, and thus remain trapped for macroscopic amounts of time. Then one
sends Rydberg atoms which interact with the trapped photons. At the exit of the
system, the Rydberg atoms are directly measured. In fact one can deduce this way
how many photons are in the cavity, and hence measuring light without directly
measuring it. More precisely, one can deduce the density of states ρ of the light.

During the experiment, the state of light is described by a stochastic process
(ρt ; t ≥ 0) which evolves depending on the flux of Rydberg atoms. And in fact,
limt→∞ ρt = ρCollapse. In the end, the indirect measurement yields the same result
as a direct measurement. But the process (ρt ; t ≥ 0) is a stochastic process, and
the collapse is not instantaneous.

General stochastic Linblad equations. A quantum trajectory is a sto-
chastic process (ρt ; t ≥ 0) in S+ describing state evolution of the quantum system.
If such this quantum system is simultaneously subject to continuous measurements
and to other interactions, for example free Hamiltonian evolution or contact with
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Figure 5.1.1. Haroche’s experiment from [Har13]. The cavity is
(C), where photons are trapped by super-reflecting mirrors. The
source (O) sends in Rydberg atoms. The microwave resonators R1

and R2 with the Rydberg atoms. R1 prepares the Rydberg atoms in
a very specific superposition of two states. R2 measures the state of
the Rydberg atoms after their have interacted with light.

some other system, then its density matrix ρt ∈ S+ is expected to follow a stochastic
Lindblad equation, also called a Belavkin equation:

dρt =− i [H, ρt] dt+
n∑

k,l=1

L[Mk,l](ρt)dt(5.1.8)

+ γL[N ](ρt)dt+
√
γD[N ](ρt)dWt ,

with {
L [O] (ρ) ≡ OρO† − 1

2

(
ρO†O +O†Oρ

)
,

D [O] (ρ) ≡ Oρ+ ρO† − Tr
[(
O +O†

)
ρ
]
ρ

and (Wt; t ≥ 0) a standard Brownian motion.
Here O ∈ Mn(C) is called a measurement operator and the application L is

called a Lindbladian. It is a super operator i.e an application mapping a matrix
M ∈Mn(C) to a linear operator L[M ] : Mn(C)→Mn(C). There are n2 Lindbladian
indexed by k, l but some of them may vanish. The first term involving H in (5.1.8)
is due to the free Hamiltonian evolution, the terms

∑n
k,l=1 L[Mk,l] are due to the

interaction with some environment (thermal bath for example) while the two last
terms are result from the measurement process. In particular, the two last terms
depend on some parameter γ > 0 which represents the intensity of the measurement
process. The Belavkin equation (5.1.8) is driven by a single Wiener process but
in a more general setting, it makes sense to consider Belavkin equations driven by
several Wiener processes.
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It is a computational exercice to show that Tr [ρ0] = 1 implies Tr [ρt] = 1 and
that ρ0 = ρ†0 implies ρt = ρ†t at any time t ≥ 0. The positivity property, i.e. the fact
that (ρt; t ≥ 0) lives in S+, is obvious.

Guiding example with two energy levels. For n = 2, we use the parame-
terization:

(5.1.9) ρt =

(
qt pt
pt 1− qt

)
.

Under certain hypotheses, we obtain decoherence pt = 0. And all the information is
in the scalar process Xγ

t = qt.
Following [BB14, BBT15a, TBB15, BBT16a] by Bauer, Bernard and Tilloy,

we consider a quantum system with two energy levels {E0, E1}, a.k.a. a “qubit”, in a
thermal bath at temperature β−1 and subject to continuous indirect measurements
[HR06, WM10a] of the energy with intensity γ > 0. The indirect nature of these
measurements prevents the complete wave-function collapse which occurs in a direct
measurement, according to the principles of quantum mechanics [Hal13, Section 3.6,
Axiom 4]. Let us then denote by Xγ

t the probability of measuring the energy E0

at time t, upon a hypothetical direct measurement. The process Xγ = (Xγ
t ; t ≥ 0)

solves the following SDE obtained from simplifying the Belavkin equation:

dXγ
t =− λ(Xγ

t − p)dt+
√
γXγ

t (1−Xγ
t ) dWt .(5.1.10)

In this context, the large γ limit corresponds to the strong measurement regime. Fur-
thermore, λ > 0 is the coupling strength with the thermal bath and p = e−βE0

e−βE0+e−βE1

is the probability of being at the energy level E0 according to a Gibbs measure.
Heuristically, Eq. (5.1.10) expresses a competition between the drift term favoring
a convergence towards p and the stochastic term favoring an absorption in {0, 1}.
In physical jargon, one says that there is a competition between thermalization and
collapsing.

5.1.3. Phenomenology.

Duality between weak and strong noise. Notice that the observation equa-
tion (5.1.5) has a factor 1√

γ
, while the filtering equation (5.1.6) has a factor √γ.

This is a well-known duality between the weak noise limit in the observation process
and the strong noise limit in the filtered state.

In fact, when analyzing the derivation of the Wonham-Shiryaev filter, this is
simply due to writing:

dyγt =
1
√
γ

(dBt +
√
γxtdt) =:

1
√
γ
dWQ

t ,

and using the Girsanov transform to construct a new measure Q, for the Kallianpur-
Streibel formula, under which WQ is a Brownian motion – [VH07, Chapter 7].

Comparing classical and quantum. Notice that the filtering equations
(5.1.6) and (5.1.10) are rigorously identical in their formulation as SDEs. Nev-
ertheless, the physical meaning of their parameters cannot be more different. In the
classical filering problem, p and λ parametrize the law of the hidden process x.

Simulations. An effective simulation at large γ of the solution Xγ to the two-
state SDE (5.1.10) is given in Figure 5.1.2. From the figure, one observes:
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(1) what amounts to a jump process on {0, 1}. Most of the time, Xγ lives on
a thin layer around these points where the noise vanishes.

(2) there is a decoration by spikes. These spikes are very thin since smoothing
via convolution blurs them completely.

For the higher dimensional case, we consider n states. By picking initial con-
ditions that insure decohence, the density matrix ργt is diagonal. If we call Xγ the
diagonal of ργ, then Xγ belongs to the simplex of probability measures ∆n = {π ∈
Rn

+ |
∑

i πi = 1}. The extremal states are identified with the vertices of the simplex.
A simulation for n = 3 is given in Fig. 5.1.3.

Figure 5.1.2. Numerical simulation of the process (Xγ
t ; t ≥ 0) and

its smoothing for γ = 104. Parameters are λ = 1.0 and p = 0.5. There
are 106 time steps. Smoothing is via averaging over 1000 steps. The
code is available at the online repository
https://github.com/redachhaibi/quantumCollapse

Further remarks: Regarding the first aspect, the convergence of Xγ to a
Markov jump process has been addressed during the last years [BB14, BBT15a,
BCF+19] and holds at the level of semi-groups. We refer to this phenomenon
as a local collapse. From a physical point of view, this is a metastable situation
caused by the aforementioned competition between thermalization and collapsing.

https://github.com/redachhaibi/quantumCollapse
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Figure 5.1.3. The full process Xγ on the (projected) simplex of
probability measures ∆3 = {π ∈ R3

+ |
∑

i πi = 1}. Same realization
as the previous figures. The three corners of the simplex are the often
visited points. For better readability, color evolves from red to blue
with time.
Like the previous figure, the code is available at the repository
https://github.com/redachhaibi/quantumCollapse

Let us also mention the paper [KL19], where the authors prove for specific SDEs
the approximation by a Markov jump process via the study of hitting times and
their asymptotics in γ →∞.

The second aspect is more surprising and much less understood. It was first
described in [TBB15, BBT16a] and then studied in greater depth in [BB18]. In
fact, fluctuations around the local collapse do persist in the strong noise limit and
take the form of “spikes” decorating the Markov jump process. So far, there is only
a limited understanding of the convergence topology and the precise statistics of
these spikes.

A general approach developed in [BBT16a, BB18] concerns a change of time (a
zooming) which allows to consider the presence of spikes. More precisely, the spikes
are explained in terms of excursions of a reflected Brownian motion which appears
in the strong noise limit. In particular, in order to obtain their result, the authors
of [BB18] prove an effective approximate version of the Skorohod Lemma.

From this body of literature arise the following questions:

Question 5.1.2.

https://github.com/redachhaibi/quantumCollapse
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• How to formalize the limiting phenomena? At this point, the precise math-
ematical nature of the “spike process” is unclear. Even the name “process”
is unwarranted for now.
• Is there a limit theorem for the process Xγ as γ →∞? A satisfying answer
should be two-fold. On the one hand, we need the convergence to a Markov
jump process, which holds only upon smoothing. On the other hand, the
convergence to the spike process needs to happen in a non-standard topology,
which we need to describe.

A reasonable answer to these questions should have the following features.
• One would require a precise statement for the convergence of the process
Xγ, so that both a Markov jump process x and a spike process X are
obtained in the limit. We discuss the choice of appropriate topologies in
the next Subsection 5.1.4.
• One would require a parsimonious description of the law of the limiting
processes.

5.1.4. A key ingredient: the choice of topologies. An important aspect
is indeed the choice of topology in order to reflect what we see on the figures 5.1.2
and 5.1.3. For the convergence towards a Markov process, this should only hold
up to smoothing. And thus we would require a “Lebesgue-type” topology. In order
to capture the spikes, one would need a “uniform-type” topology at the level of
geometric shapes, since the limiting phenomenon does not appear to be a function.

Let us start by defining and motivating our choice of “Lebesgue-type”, and
“uniform-type” topologies.

The Meyer-Zheng topology: This is our weak “Lebesgue-type” topology.

Definition 5.1.3 (Meyer-Zheng topology). Consider a Euclidean space (E, ‖·‖)
and denote by L0 := L0(R+;E) the space of E-valued Borel functions on R+

1. Given
a sequence (wn)n≥0 of elements of L0, the following assertions are equivalent and
define the convergence in Meyer-Zheng topology of (wn)n to w ∈ L0:

• For all bounded continuous functions f : R+ × E → R,

lim
n→∞

∫ ∞
0

f (t, wn(t)) e−tdt =

∫ ∞
0

f (t, w(t)) e−tdt .

• For λ(dt) = e−tdt, we have that for all ε > 0,

lim
n→∞

λ ({s ∈ R+ | ‖wn(s)− w(s)‖ ≥ ε}) = 0 ,

• limn→∞ d (wn, w) = 0 where d is defined by

d(w,w′) :=

∫ ∞
0

{
1 ∧ ‖w(t)− w′(t)‖

}
e−t dt .

The distance d metrizes the Meyer-Zheng topology on L0 and (L0, d) is a Polish
space.

1To be more precise L0 is a quotient space where two functions are considered as equal if they
coincide almost everywhere with respect to the Lebesgue measure.
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Throughout the text, the reader only needs to have in mind the first character-
ization of the Meyer-Zheng topology with E = R or E = Rn. Nevertheless, it is
reassuring to know that it is nothing but the convergence in (Lebesgue) measure in
an L0 space.

The Hausdorff topology: In this case, we explicitly take E to be a finite
dimensional Euclidean space. Let H > 0 be a finite time horizon. The Hausdorff
metric induces a complete topology on the collection of closed sets of [0, H] × E –
see [Mun00, Ex. 7, p.280]. It is defined on closed sets A ⊂ R× E and B ⊂ E via:

dH(A,B) := inf {ε > 0 | A ⊂ B + εB , B ⊂ A+ εB} ,(5.1.11)

where B ⊂ R × E is the unit ball. In order to motivate this choice, let us consider
the restriction of the Hausdorff distance to the graphs of two important classes of
functions, C and D. C (resp. D) is the space of continuous (resp. càdlàg) maps
f : [0, H]→ R.

• Either one can restrict the Hausdorff distance to the graphs of maps in
C. In this case, it gives exactly the topology of uniform convergence on C.
Indeed, this is a consequence of the following inequality. If fn is a sequence
in C, δn := dH (G(fn),G(f)), G(g) is the graph of g ∈ C and ωf (δ) is the
(uniform) modulus continuity of f , then

δn ≤ ‖fn − f‖∞ ≤ δn + ωf (δn) .

• Or one can restrict to the (completed) graphs of càdlàg maps in D. In
this case, Hausdorff convergence of completed graphs is the Skhorohod M2

topology. See [Whi02, Section 11.5] for a definition and the relationship
to the other Skorohod topologies on D.

In the end, the spaces C and D endowed with the Hausdorff topology are nothing
but the canonical Polish spaces for stochastic processes (see the standard probability
textbook [Bil13a]). Therefore, it is natural to analyze the accumulation points of
G(Xγ) for the Hausdorff metric on graphs. As an example of observables which are
continuous with respect to this topology, we have the hitting times of open sets.

Furthermore, the spike phenomenon is captured by neither the uniform topology
nor the Skorohod topology. Otherwise, since these spaces are complete and therefore
closed, any accumulation point of the graphs G(Xγ), which is the graph of a function,
would be the graph of a continuous or càdlàg function. And as one can guess from
Fig. 5.1.2, the limiting spike process X will not be a bona fide function.

Finally, letting aside all the mathematical abstract non-sense, graphs encode
functions as we actually see them. Nothing is more natural than the uniform topol-
ogy on the shapes we see, hence the choice of the Hausdorff topology.

5.2. Strong noise limits in one-dimensional diffusions

In this Section, we follow [BCC+23] and study one-dimensional diffusions{
Xγ

0 = x0 ,
dXγ

t = b(Xγ
t )dt+

√
γσ(Xγ

t )dWt .
(5.2.1)

where W is a standard Wiener process and b, σ are smooth functions. Throughout
the paper, we assume the Itô convention. Contrary to the usual weak noise limit
(γ → 0), developed in the so-called Freidlin-Wentzell theory [FW12], we are inter-
ested in the regime where the parameter γ goes to infinity. Our initial motivation
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comes from continuous quantum measurements and, as such, let us start by the
guiding example which inspired us. Only then we will present the more general
setting.

Previous papers [BB18, KL19] perform a rigorous study only after an uncon-
trolled perturbative analysis around one of the stable points i.e. points where the
noise vanishes. Thus such papers restrict themselves to SDEs living in [0,∞) with
particular coefficients which satisfy

σ(x) > 0 for all x ∈ (0,∞), σ(0) = 0, b(0) > 0.

This does not cover the two-boundary case such as Eq. (5.1.10), relevant for quan-
tum mechanics. Moreover, a precise statement describing the spikes has been miss-
ing.

In the paper [BCC+23], we do not perform any approximation, treat generic
coefficients and give a precise description of the spike process. We provide a general
technique to study the strong noise limit γ → ∞ of one-dimensional SDEs with
two possible setups. In the first half of the paper, we have the following working
hypotheses:

Assumption 5.2.1. We assume that the drift term b and the diffusion coefficient
σ are Lipschitz continuous so that the SDE (5.2.1) admits strong solutions. Moreover

σ(x) > 0 for all x ∈ (0, 1), σ(0) = σ(1) = 0 ,

b(0) > 0, b(1) < 0 .

Recalling that x0 denotes the initial position, we naturally consider x0 ∈ (0, 1):
the starting point needs to be between points where the noise vanishes.

Our main results in this setup are provided in Theorem 5.2.2. It shows first the
convergence of the process (Xγ

t ; t ≥ 0) to a jump Markov process (xt ; t ≥ 0) as
γ →∞. A reader used to problems of weak convergence of stochastic processes will
notice that the previous convergence cannot hold in the usual Skorohod topology
since (Xγ

t ; t ≥ 0) has continuous paths while (xt ; t ≥ 0) has only càdlàg trajectories.
The statement holds only upon smoothing, which is equivalent to the convergence
of semi-groups. Hence the precise statement is that for every compactly supported
continuous function f of time and space

lim
γ→∞

∫ ∞
0

f(t,Xγ
t ) dt =

∫ ∞
0

f(t,xt) dt P− a.s.

Almost sure convergence is due to a particular coupling of Xγ for different γ.
The previous convergence does not detect the spikes that are observed in the

numerical simulation given in Fig. 5.1.2. Therefore, in order to mathematically
capture them, we need to find a strong “uniform-type” topology. Our solution uses
the Hausdorff metric on the graphs of functions. And the second part of our theorem
establishes the convergence of (Xγ

t ; t ≥ 0) to a spike process X defined thanks to
a decoration of the Markov jump process. Within this approach, we obtain the
complete picture with the spikes and we make precise the statistics of the involved
processes.

5.2.1. Two limiting processes. We start by defining the two processes which
shall appear in the main theorem.
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On the one hand, we define (xt ; t ≥ 0) as the continuous time (càdlàg) Markov
process with state space {0, 1} and jump rates W :

W 0,1 = |b(0)| , W 1,0 = |b(1)| .
Here, we wroteW i,j for the jumping rate from state i to state j. The initial position
is sampled according to

P (x0 = 1) = 1− P (x0 = 0) = x0 .

0

1

t

xt 𝕏t

Intensity ! |b(0) |dt ⊗ dm
m2 10<m<1

Intensity 
! |b(1) |dt ⊗ dm

m2 10<m<1

Figure 5.2.1. Sketch of the two limiting processes. The Markov pure
jump process x is in red, and the set-valued spike process X is in blue.

On the other hand, we define the spike process as a set-valued random path
X : R+ → P ([0, 1]), where P ([0, 1]) is the power set of the segment [0, 1]. For a
comprehensive sketch, see Figure 5.2.1. It is formally obtained as follows:

• Sample a random initial segment X0 as

X0 =

{
[Y, 1] when x0 = 1, P (Y ∈ dy | x0 = 1) = 1−x0

x0
1{0<y<x0}

dy
(1−y)2 ,

[0, Y ] when x0 = 0, P (Y ∈ dy | x0 = 0) = x0

1−x0
1{x0<y<1}

dy
y2 .

• Sample
(
t, M̃t

)
following a Poisson point process on R+× [0, 1] with inten-

sity (
dt⊗ dm

m2
1{0≤m<1}

)
.

Then, by progressively rescaling time for
(
t, M̃t

)
by{

|b(0)|−1 when xt = 0 ,

|b(1)|−1 when xt = 1 ,

we obtain a Poisson point process with random intensity which we denote
by (t,Mt).
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Equivalently, one can sample two independent Poisson point processes
on R+ × [0, 1] with the above intensity, and then rescale them in time by
|b(0)|−1 and |b(1)|−1 respectively. The process (t,Mt) can also obtained by
picking either the first or the second one, depending on the current value
of x.
• Finally

Xt =

 [0,Mt] if xt = xt− = 0 ,
[1−Mt, 1] if xt = xt− = 1 ,

[0, 1] if xt 6= xt− .

Notice that by virtue of (t,Mt) being a Poisson point process with finite intensity
away from zero, there are no points with the same abscissa and only countably many
t ∈ R+ with Mt > 0. If there is no point with abscissa t ∈ R+, then it is natural to
set Mt = 0 and thus Xt = {xt}. This convention accounts for the infinite measure
at zero.

5.2.2. Main result. We can now state:

Theorem 5.2.2 (Main Theorem of [BCC+23]). Under Assumptions 5.2.1, it is
possible to couple the processes (x,X) and Xγ for all values of γ > 0 on the same
probability space, so that the following limits hold almost surely.

• Upon smoothing via a continuous function with compact support f : R+ ×
R→ R, we have the almost sure convergence:

lim
γ→∞

∫ ∞
0

f(t,Xγ
t ) dt =

∫ ∞
0

f(t,xt) dt .(5.2.2)

• In the sense of Hausdorff convergence of closed sets, for all H > 0, we have
the almost sure convergence of graphs:

lim
γ→∞

(Xγ
t ; 0 ≤ t ≤ H) = (Xt; 0 ≤ t ≤ H) .(5.2.3)

Remark 5.2.3 (Explanations). The first part of the theorem can be loosely re-
formulated by saying that the convergence of Xγ to x holds upon smoothing, which
amounts to deleting the spikes. This smoothing is provided by the Meyer-Zheng
topology. Nevertheless, one needs an appropriate notion of convergence in order to
capture the spikes, which are infinitely thin in the limit. The second part of theorem
says that dH(Aγ, B)→ 0 where Aγ = G (Xγ) is the graph of Xγ:

Aγ := {(t,Xγ
t ) , 0 ≤ t ≤ H} =

⊔
0≤t≤H

{t} × {Xγ
t }

and B is given by

B := {(t, x) , 0 ≤ t ≤ H, x ∈ Xt} =
⊔

0≤t≤H

{t} × Xt .

The set B is seen as the graph of the multi-valued function X. The fact that B is a
closed set comes as a by-product of the proof.

Ideas of the proof of Theorem 5.2.2. The main ideas behind the proof
are very specific to dimension 1:

• Every one-dimensional diffusion is a Brownian motion upon changing space
and time.
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• And when time is parametrized by the inverse of local time, a Brownian
trajectory can be broken into excursions thanks to Itô’s Excursion Theory.

More precisely, the first point is achieved by sucessively composing with the scale
function in order to obtain a martingale and then invoking the Dambis-Dubins-
Schwarz (DDS) Theorem [RY99, Chapter V, Theorem 1.6] to obtain a Brownian
motion β. There, we make explicit the coupling for different γ > 0: the processes
Xγ are coupled thanks to this single DDS Brownian motion β. After computing
the asymptotics of these changes of scale, we are able to force the appearance of the
limiting processes x and X. Only the construction of X will require Itô’s Excursion
Theory [RY99, Chapter XII]. �

Note that the dynamics of the jump process x and of the spike process X depend
on the characteristics (b, σ2) of the initial diffusion (5.2.1) only through the absolute
value of the drift b at 0 and 1. Indeed, as long as Assumption 5.2.1 is satisfied, these
limiting processes are identical no matter the values of the drift b and the diffusivity
σ in the bulk (0, 1). In fact, the only impact of σ is in the selection of the space
where the jump process x will live, i.e. {0, 1} in this case.

This can be contrasted with the jump processes appearing in the weak noise
limits [FW12, Chapter 6]. In this case, with diffusions whose drift is the gradient
of a potential, the limiting jump processes depend on the full landscape given by this
potential. Therefore, it is fair to say that strong noise limits are far more universal
than weak noise limits.

5.2.3. Further remarks.

Beyond Assumptions 5.2.1: Such assumptions can be slightly relaxed, as
long as the SDE (5.2.1) continues to have strong solutions and that the points {0, 1}
are natural boundaries in the sense of Gilman-Skorohod - see [Kle05, Section 6.9]
for a definition and references. As long as that is satisfied, one could adapt the
proofs to a drift b and a volatility σ vanishing at {0, 1}.

Generalizations to multiple zeros of σ and beyond the Rabi setup:
What if {0, 1} is not a natural boundary? The answer is conceptually simple but
difficult to turn into a comprehensive theorem. Consider the case where σ has
multiple zeroes. For the sake of simplicity, assume isolated zeroes of order 1, which
is the generic behavior. As long as the process is Markovian, the residual drift will
always give a unique direction. Indeed, if σ(x0) = 0, then this direction is given by
the sign of b(x0). If the process jumps in random direction, then it is not a one-
dimensional diffusion. Thus it is natural to think of a process successively crossing
the segments between two zeros of σ, if the sign of the drift b allows it.

Let us call a domain a region between two zeroes. There are only the two
following cases which we deem interesting. (1) Either the diffusion is trapped in
a single domain as treated in the main theorem (unattainable boundaries on both
sides) (2) Or the diffusion goes from domain to domain as in the Rabi case (attainable
boundary which becomes entrance boundary on the other side).

Regarding the other cases, we believe that a general theorem can be written.
However, if one aims for treating all possible cases, one would need to discuss the
36 cases (6 cases for each boundary) in the classification of boundaries – see Table
6.2 in [KT81]. Instead, we settled for two extremal cases rather than discussing the
general combinatorics of domain change. An important example such as the Rabi
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setup, treated in the second half of the paper [BCC+23], is rich enough to illustrate
the robustness of our approach. And a complete description of large noise limits for
all one-dimensional diffusions might not be very useful.

Limitations: Our approach uses crucially scale functions and the Dambis-
Dubins-Schwarz Theorem, which are one-dimensional tools. In particular, exten-
sions to a multi-dimensional setting are absolutely not straightforward. This is a
current subject of investigations.

Coupling: On a side note, the coupling of the processes (x,X) with Xγ for
different γ > 0 is nothing but a convenient device. Exactly like Skorohod’s Rep-
resentation Theorem [Bil13a, Theorem 6.7], it allows to recast weak convergence
to an almost sure convergence. Such a coupling is particularly convenient in order
to avoid formalizing the weak convergence of random closed sets in the Hausdorff
topology, or the weak convergence in the Meyer-Zheng topology. In fact, the paper
[BBC+21] uses this latter aspect, invoking a powerful tightness criterion authored
by Meyer and Zheng.

5.3. Filtering

Let us go back to the classical setup of filtering, as it naturally complements
the previous Section. Filtering Theory adresses the problem of estimating a hidden
process x = (xt ; t ≥ 0) which can not be directly observed. At hand, one has
access to an observation process which is naturally correlated to x. The most simple
setup, called the “signal plus noise” model, is the one where the observation process
yγ = (yγt ; t ≥ 0) is of the form (5.1.1).

Moreover it is natural to assume that the noise is intrinsic to the observation
system, so that the Brownian motion B = Bγ has no reason of being the same for
different values of γ. See Figure 5.3.1 for an illustration which visually highlights
the difficulty of recognizing a drift despite Brownian motion fluctuations. In this
paper we shall focus on the case where (xt ; t ≥ 0) is a pure jump Markov process
on {0, 1} with càdlàg trajectories. We denote λp (resp. λ(1 − p)) the jump rate
between 0 and 1 (resp. between 1 and 0), with p ∈ (0, 1) and λ > 0. This is the
historical setting of the celebrated Wonham filter [Won64, Eq. (19)].

In the mean square sense, the best estimator taking value in {0, 1} at time t of
xt, given the observation (yγs )s≤t, is equal to

x̂γt = 1{πγt > 1
2}(5.3.1)

where πγt is the conditional probability

πγt := P
(
xt = 1 | (yγs )s≤t

)
.(5.3.2)

Our interest lies in the situation where the intensity 1/
√
γ of the observation

noise is small, i.e. γ is large. At first glance, one could argue that weak noise limits
for the observation process are not that interesting because we are dealing with
extremely reliable systems since they are subject to very little noise. This paper
aims at demonstrating that this regime is interesting from both a theoretical and a
practical point of view.

A motivating example. Let us describe a simple situation that falls into
that scope and motivates our study. Consider for example a single classical bit –
say, inside of a DRAM chip. The value of the bit is subject to changes, some of
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Figure 5.3.1. Numerical simulation of the hidden process x and the
observation process yγ for γ = 102. The challenge is to infer the
drift of yγ, in spite of Brownian noise and in a very short window.
Parameters are λ = 1.3 and p = 0.4. There are 106 time steps
to discretize [0, 10]. The code is available at the online repository
https://github.com/redachhaibi/Spikes-in-Classical-Filtering

which are caused by CPU instructions and computations, some of which are due
to errors. The literature points to spontaneous errors due to radiation, heat and
various conditions [SPW09]. The value of that process is modeled by the Markov
process x as defined above. Here, the process yγ is the electric current received by a
sensor on the chip, which monitors any changes. Any retroaction, for example code
correction in ECC memory [KLK+14, PKHM19], requires the observation during
a finite window δ > 0. And the reaction is at best instantaneous. For anything
meaningful to happen, everything depends thus on the behavior of:

πδ,γt := P
(
xt−δ = 1 | (yγs )s≤t

)
,(5.3.3)

and instead to consider the estimator x̂γt given by Eq. (5.3.1), we are left with the
estimator

x̂δ,γt = 1{πδ,γt > 1
2} .

https://github.com/redachhaibi/Spikes-in-Classical-Filtering
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From an engineering point of view, it is the interplay between different time scales
which is important in order to design a system with high performance: if the noise is
weak, how fast can a feed-back response be? For a given process z = (zt ; t ≥ 0) with
values in [0, 1] we denote the hitting time of (1

2
, 1) by T (z) := inf

{
t ≥ 0 ; zt >

1
2

}
.

Assume for example that initially x0 = 0. For a given time t > 0, a natural problem
is to estimate, as γ →∞, the probability to predict a false value of the bit given its
value remains equal to 0 during the time interval [0, t], i.e.

(5.3.4) P
(
T (x̂δ,γ) ≤ t | T (x) > t

)
.

Informal statement of the result. A consequence of the results of this paper
is the precise identification of the regimes δ := δ(γ) for which the probability in
(5.3.4) vanishes or not as γ →∞:

• If lim supγ→∞ δ(γ) γ
log γ

< 2, i.e. δ is too small, the retroaction/control
system can be surprised by a so–called spike, causing a misfire in detecting
the regime change and the limiting error probability in Eq. (5.3.4) is equal
to 1− exp (−λpt);
• If lim infγ→∞ δ(γ) γ

log γ
> 2, i.e. δ is sufficiently large, the estimator will

be very good at detecting jumps of the Markov process x, the limiting
error probability in Eq. (5.3.4) vanishing. However the reaction time will
deteriorate.

While the literature usually focuses on L2 considerations for filtering processes,
we focus on this article on pathwise properties of the filtering process under inves-
tigation when γ → ∞. Indeed, it is clear that the question addressed just above
cannot be answered in an L2 framework only.

Let us now present in some informal way the reasons for which we have this
difference of behavior. As it will be recalled later the process πγ = (πγt ; t ≥ 0)
satisfies in law

(5.3.5) dπγt = −λ (πγt − p) dt+
√
γπγt (1− πγt ) dWt ,

where W = (Wt ; t ≥ 0) is a Brownian motion with a now strong parameter √γ
in front of it. This is the so called Shiryaev-Wonham filtering theory which was
presented in the beginning of this chapter. As shown in the previous Section, when
γ goes to infinity the process πγ converges in law to an unusual and singular process
in a suitable topology (see Figure 5.3.2). Indeed as exhibited in the figure, the
limiting process is the Markov jump process (xt ; t ≥ 0) but decorated with vertical
lines, called spikes, whose extremities are distributed according an inhomogeneous
point Poisson process. As we can observe on Figure 5.3.3, if δ is sufficiently large,
the spikes in the process πγ,δ are suppressed while if δ is sufficiently small they
survive. The spikes are responsible of the non vanishing error probability in Eq.
(5.3.4) since they are interpreted by the estimator x̂δ,γ as a jump from 0 to 1 of the
process x. The fact that the transition between the two regimes is precisely 2 log γ

γ
is

more complicated to explain without going into computational details. Building on
our earlier results, we examine hence in this paper the effect of smoothing and the
relevance of various time scales required for filtering, smoothing and control in the
design of a system with feedback.
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Figure 5.3.2. “The whims of the Wonham filter”: Informally, on a
very short time interval, it is difficult to distinguish between a change
in the drift of yγ and an exceptionnal time of Brownian motion. The
figure shows a numerical simulation of the process (πγt ; t ≥ 0) for the
same realization of x as Fig. 5.3.1. Same time discretization. This
time we chose the larger γ = 104 to highlight spikes.

5.3.1. Literature review of filtering theory in the γ → ∞ regime. The
understanding of the behavior of the classical filter for jump Markov processes with
small Brownian observation noise has attracted some attention in the 90’s. Most
of the work is focused on the long time regime [Won64, KL92, KZ96, AZ97b,
AZ97a, Ass97], by studying for example stationary measures, asymptotic stability
or transmission rates. In the case where the jump Markov process is replaced by
a diffusion process with a signal noise, possibly small, [Pic86, AZ98] study the
efficiency (in the L2 sense and at fixed time) of some asymptotically optimal filters.
In [PZ05] are obtained quenched large deviations principles for the distribution of
the optimal filter at a fixed time for one dimensional nonlinear filtering in the small
observation noise regime – see also [RBA22]. In a similar context Atar obtains in
[Ata98] some non-optimal upper bounds for the asymptotic rate of stability of the
filter.

Going through the aforementioned literature one can observe that the term
log γ/γ already appears in those references. Indeed the quantities of interest in-
clude the (average) long time error rate [Ass97, Eq. (1.4)]

α∗ = lim
t→∞

1

t

∫ t

0

min(πγs , 1− πγs )ds

or the probability of error in long time ([Won64] and [KZ96, Theorem 1’])

Perr(γ) = lim
t→∞

inf
ζ∈L∞(Fy

t )
P(ζ 6= xt) = lim

t→∞
P(x̂t 6= xt)

or the long time mean squared error [Gol00]

Emse(γ) = lim
t→∞

inf
ζ∈L∞(Fy

t )
E(ζ − xt)

2 = lim
t→∞

E(πγt − xt)
2 .

Here Fy denotes the natural filtration of y = yγ. These quantities are shown to be
of order log γ

γ
up to a constant which is related to the invariant measure of x and
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Figure 5.3.3. Numerical simulation of the process
(
πδ,γt ; t ≥ 0

)
for

the same realization of x as Fig. 5.3.1. Same time discretisation. We
have γ = 104 and δγ = C log γ

γ
, with C ∈ {1

2
, 1, 2, 4, 8}.

some relative entropy but which is definitively not 2 – see [Gol00, Eq. (3)]. Note
that all these quantities are of asymptotic nature and their analysis goes through the
invariant measure. Beyond the appearance of the quantity log γ

γ
, which is fortuitous,

our results are of a completely different nature since we want to obtain a sharp
result on a fixed finite time interval. Also, due to the spiking phenomenon and
the singularity of the involved processes, there is no chance that the limits can be
exchanged.

To the best of the authors’ knowledge, this paper is the first of its kind to aim
for a trajectorial description of the limit, in the context of classical filtering theory.
However, the spiking phenomenon has first been identified in the context of quantum
filtering [Mab09, Fig. 2] and more specifically, for the control and error correction of
qubits. The spiking phenomenon is already seen as a possible source of error where
correction can be made while no error has occurred. To quote [Mab09, Section
4], when discussing the relevance of the optimal Wonham filter in the strong noise
regime, it “is not a good measure of the information content of the system, as it is
very sensitive to the whims of the filter”.



5.3. FILTERING 91

5.3.2. Statement of the problem and Main Theorem about a phase
transition. Recall that the observation equation and the filtering equation are re-
spectively (5.1.5) and (5.1.6). And Eq. (5.3.5) falls in the scope of Theorem 5.2.2
which treats the strong noise limits of a large class of one-dimensional SDEs.

A mathematical statement: The convergences were established thanks to a
convenient (but fictitious) coupling of the processes (πγ ; γ > 0) for different γ > 0.
In contrast, the filtering problem has a natural coupling for different γ > 0 which
is given by the observation equation (5.1.1). In this context, let us state a small
adaptation of an already established result.

Theorem 5.3.1 (Variant of the Main Theorem 5.2.2). There is a two-faceted
convergence.

(1) In the L0 topology and in probability, we have the following conver-
gence :

(πγt ; 0 ≤ t ≤ H)
γ→∞−→ (xt ; 0 ≤ t ≤ H) .

Equivalently, that is to say

∀ε > 0, lim
γ→∞

P (dL(πγ,x) > ε) = 0 .

Here x0 ∈ {0, 1} is Bernoulli distributed with parameter πγ0 the initial con-
dition2 of πγ.

(2) In the Hausdorff topology for graphs and in law, we have that the
graph of (πγt ; 0 ≤ t ≤ H) converges to a spike process X =

⊔
t∈[0,H]({t}×Xt)

described by Fig. 5.2.1.
(3) In the Hausdorff topology for graphs and in law, we have that the

graph of x̂γ = (x̂γt ; 0 ≤ t ≤ H), defined by Eq. (5.3.1), converges to another
singular random closed set X̂ =

⊔
t∈[0,H]({t} × X̂t) where

X̂t = {0, 1}1{Xt∩[0, 1
2

) 6=∅,Xt∩( 1
2
,1]6=∅} + {0}1{Xt⊂[0, 1

2
)} + {1}1{Xt⊂( 1

2
,1]} .

Notice that the first convergence is in the weaker Lebesgue-type topology and
holds in probability i.e. on the same probability space. The second and third
convergences are in the stronger uniform-type topology, however they only hold in
law.

Pointers to the proof. The second point is indeed a direct corollary of
[BCC+23] since almost sure convergence after a coupling implies convergence in
law, regardless of the coupling.

The third point is also immediate modulo certain subtleties. Recalling that
x̂γt = 1{πγt >

1
2
} and that the graph of πγ converges to the random closed set X, it

suffices to apply the Mapping Theorem [Bil13b, Theorem 2.7]. Indeed, a spike
Xt ⊂ [0, 1] is mapped to either {0}, {1} or {0, 1} when examining the range of the
indicator 1{·> 1

2
} on Xt. However, when invoking the Mapping Theorem, one needs

to check that discontinuity points of the map 1{·> 1
2
} have measure zero for the law

of X. This is indeed true since there are no spikes of height 1
2
almost surely – recall

that the spike process X is described in terms of Poisson processes.
The first point, although simpler and intuitive, does not come Theorem 5.2.2.

In the case of filtering, the process x is intrinsically defined, and we require the use
2We assume πγ0 independent of γ.
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of the speficic coupling given by the additive model (5.1.1). Let us show how the
result is reduced to a single claim. The result is readily obtained from the Markov
inequality and the L1(Ω) convergence:

lim
γ→∞

E dL (πγ,x) = 0 .

The above convergence itself only requires the definition of dL in Definition 5.1.3,
Lebesgue’s dominated convergence theorem and the claim

∀t > 0, lim
γ→∞

E |πγt − xt|2 = 0 .(5.3.6)

In order to prove Claim (5.3.6), recall that by definition πγt is a conditional expec-
tation:

πγt = P
(
xt = 1 | (yγs )s≤t

)
= argminc∈Fy

t
E(1xt=1 − c)2

= argminc∈Fy
t
E(xt − c)2 .

At this stage, let ε > 0 and let us introduce the process zε = (zεt ; t ≥ ε) defined
for all t ≥ ε by

zεt =
1

ε

∫ t

t−ε
dyγs .

This process is clearly (Fy
t )t≥ε adapted, so for all t ≥ ε, by definition of πγt

E |πγt − xt|2 ≤ E |zεt − xt|2

= E
∣∣∣∣1ε
∫ t

t−ε
dyγs − xt

∣∣∣∣2
= E

∣∣∣∣1ε
∫ t

t−ε
xsds− xt +

1

ε
√
γ

∫ t

t−ε
dBs

∣∣∣∣2
≤ 2E

∣∣∣∣1ε
∫ t

t−ε
xsds− xt

∣∣∣∣2 + 2E
∣∣∣∣ 1

ε
√
γ

∫ t

t−ε
dBs

∣∣∣∣2
= 2E

∣∣∣∣1ε
∫ t

t−ε
(xs − xt)ds

∣∣∣∣2 +
2

εγ

≤ 2E
∣∣∣∣1ε
∫ t

t−ε
1{xs 6=xt}ds

∣∣∣∣2 +
2

εγ

≤ 2P (x jumps at least one time during [t− ε, t]) +
2

εγ
.

Note that we have used that for ε ≤ s ≤ t,

{xs 6= xt} ⊂ {x jumps at least one time during [t− ε, t]}.

Taking γ →∞ then ε→ 0 proves Claim (5.3.6). �

We can now formally state the question of interest:

Question 5.3.2. For different regimes of δ = δγ and γ, how do the spikes behave
in the stochastic process (5.3.3)? Basically, we need an understanding of the tradeoff
between spiking and smoothing. The intuition is that there are two regimes:
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• The slow feedback regime: the smoothing window δ is large enough so that
the optimal estimator πδ,γ correctly estimates the hidden process x.
• The fast feedback regime: the smoothing window δ is too small so that πδ,γ
does not correctly estimate the hidden process x. One does observe the effect
of spikes.

Our finding is that there is sharp transition between the slow feedback regime
and the fast feedback regime:

Theorem 5.3.3 (Main theorem of [BCNP22]). As long as δγ → 0, we have the
convergence in the L0 topology and in probability, as in the first item of Theorem
5.3.1: (

π
δγ ,γ
t ; 0 ≤ t ≤ H

)
γ→∞−→ (xt ; 0 ≤ t ≤ H) .(5.3.7)

However, in the stronger topologies, there exists a sharp transition when writing:

δγ = C
log γ

γ
.

There are two constants 0 < C− < 2 < C+ such that following convergences hold in
the Hausdorff topology on graphs in [0, H]× [0, 1].

• (Fast feedback regime) If C < C−, smoothing does not occur and we have
convergence in law to the spike process:

lim
γ→∞

πδγ ,γ = X .

• (Slow feedback regime) If C > C+, smoothing occurs and we have conver-
gence:

lim
γ→∞

πδγ ,γ = x .

This convergence holds equivalently for the usual M2 Skorohod topology and
for the Hausdorf topology on graphs.

Remark 5.3.4 ( On the transition ). Without much change in the proof, one
can consider C = Cγ depending on γ. In that setting, the fast feed-back regime and
the slow feed-back regime correspond respectively to

lim sup
γ→∞

Cγ < C− and lim inf
γ→∞

Cγ > C+ .

Furthermore, we strongly believe that the transition happens at exactly C = 2, but
there are technical issues to prove that.

5.4. Homogeneization in multiple dimensions

Let us start by considerations from quantum mechanics which motivate the sto-
chastic differential equations (SDEs) studied in this paper, as well as their strong
noise limits.
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5.4.1. Physical motivations.

Semigroups associated to open quantum systems: In quantum optics, the
evolution of a d-level atom is often described using a Markov approximation. Then
the system state, encoded into a d × d density matrix (i.e. a positive semidefinite
matrix of trace 1), evolves by the action of a semigroup of completely positive3 trace
preserving linear maps whose generator L is called a Lindbladian. More precisely, the
evolution of the system’s density matrix is solution of the linear ordinary differential
equation (ODE)

(5.4.1) dρ̄t = L(ρ̄t)dt, ρ̄0 ∈ {ρ ∈Md(C) : ρ ≥ 0, tr ρ = 1}.
Such equations are known as quantum master equations. In a typical quantum optics
experiment, one may identify three different contributions to the evolution of the
atom. A first contribution is the Hamiltonian dynamic that an experimenter would
like to realize. A second one is the unavoidable environment perturbation that often
leads the atom to a steady state. The third one is the effect of any instrument that
the experimenter may put in contact with the atom to track its state. For more
details, we refer the reader to [BP02].

In this article we are interested in situations where the dynamics generator,
L ≡ Lγ, is associated to three well separated time scales. The separation is done
through some parameter γ > 0:

Lγ = L(0) + γL(1) + γ2L(2) .

To motivate such a setting, let us consider experiments similar to the famous one
realized by Haroche’s group [GBD+07]. In such experiments the aim is to track the
unitary dynamic of a d-energy level quantum system when it is well-isolated from
its environment. The dynamic induced by the environment is modeled by L(0), the
unitary dynamic by L(1) and the effect of the instrument by L(2). Here the large
γ limit corresponds to a fast decoherence, at speed γ2, induced by the instrument
compared to the slower steady state relaxation induced by the environment, with
speed γ0 = 1. To counteract the Zeno effect, the relevant scale of the unitary
dynamic is the intermediary speed γ1 = γ.

This choice of scaling of the Lindbladian is not limited to such experimental
situations. For different examples of dynamics verifying our choice of scales, see
[Per98, Section 4.3].

Stochastic semigroups in the presence of measurements: Equation (5.4.1)
only describes the evolution of a quantum system without reading measurement out-
comes coming from the instruments. Taking them into account leads to a stochastic
process ργ = (ργt ; t ≥ 0) called a quantum trajectory and which takes values in
density matrices. This process is solution to an SDE called a stochastic quantum
master equation. The drift part of this SDE is given by Lγ(ργt ). The noise part
results from conditioning upon the measurement outcomes. Such models are often
used to describe experiments in quantum optics – see [WM10b, BP02]. In the
present article we limit ourselves to diffusive quantum trajectories. In that case the
SDE takes the form, in the Itô convention,

(5.4.2) dργt = Lγ(ργt ) + σγ(ρ
γ
t )dWt,

3Completely positive maps Φ : Md(C) → Md(C) are linear maps such that for any n ∈ N,
Φ⊗ IdMn(C) : Md(C)⊗Mn(C)→Md(C)⊗Mn(C) is positive.
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where the volatility σγ is a quadratic function of density matrices and W is a stan-
dard Brownian motion. The average evolution of ργ solution of (5.4.2) is given by
the solution ργ of (5.4.1).

SDEs such as (5.4.2) where first introduced as effective stochastic models for wave
function collapse – see [Gis84, Pea84, Dio88] and references therein. Their Poisson
noise version was defined as a numerical tool to compute the average evolution ργ
in [DCM92]. Since then, different justifications were given for the fact that they
model quantum systems which are subject to continuous indirect measurements.
Historically, the first one is based on quantum stochastic calculus and quantum
filtering [Bel89]. In that setting, the interaction of the measurement apparatus
and the environment with the open system is unitary and described by a quantum
SDE [Par92]. We refer the reader to [BVHJ07] for an accessible introduction to
quantum filtering.

A second, more phenomenological, approach [BH95, BG09] starts with a lin-
ear SDE extending the deterministic linear equation (5.4.1). By normalizing the
resulting process in the set of positive semidefinite operators, and after a Girsanov
transform, one obtains the SDE (5.4.4) for density matrices.

Another approach is based on the continuous-time limit of fast quantum repeated
measurements. Introducing proper scaling, discrete time quantum trajectories con-
verge weakly, in the continuous time limit, towards processes solution of SDEs such
as (5.4.4) – see [Pel10, BBB12] and references therein.

5.4.2. Our contribution. In [BBC+21], we generalize to arbitrary finite di-
mensions the first half of the aforementioned Theorem 5.2.2, that is to say the
convergence towards the jump process between pointer states. In order to have an
intrinsic proof, it is desirable to invoke the classical machinery of weak convergence
of stochastic processes and to avoid using any coupling. Also, since we focus only
on the jumps between the states, the spikes need to be discarded. As shown in
[BBT16b, BCC+23], only countably many spikes appear in the limit, each being
infinitely thin. As such, spikes are of zero Lebesgue measure and disappear upon
averaging. Therefore, an ideal candidate for this task is the topology of convergence
in (Lebesgue) measure as explained in Subsection 5.1.4.

The study of the convergence in law of stochastic processes in this topology was
pioneered by Meyer and Zheng in [MZ84] – see [Kur91] for further developments
and [Reb87] for an application to weak noise limits. This topology is also called
pseudo-paths topology and is much weaker than the usual Skorokhod topology.

Our main result is stated in Theorem 5.4.3. It shows that in the Meyer-Zheng
topology, in the limit of large γ, the quantum trajectory we study converges in law to
a Markov process on the pointer states with explicit rates. Not only this provides an
extension but also a mathematically complete and rigorous proof of the pioneering
works of [BBT15b].

We also establish a general homogeneization result for semigroups on finite-
dimensional Hilbert spaces that is instrumental to the proof of Theorem 5.4.3. In the
usual homogeneization references such as [Pap78, CD99, PS08, BLP11], there is
a trivial distinction between a slow and a fast variable and it is then assumed that by
fixing the slow variable the fast process is ergodic. The novelty of our homogenization
result is that it holds for abstract semigroups and moreover the state space is not a
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priori the direct product of slow and fast variables. In particular, we show that it
applies to semigroups generated by Lindbladians Lγ.

5.4.3. Definitions.
5.4.3.1. Notation. We denote by 〈·, ·〉 the standard scalar product on Cd and ‖·‖

the corresponding norm; Md(C) the set of d×d complex matrices, X∗ the conjugate
transpose of X ∈ Md(C). The Hilbert-Schmidt inner product (X, Y ) ∈ Md(C)2 7→
〈X, Y 〉 := tr(X∗Y ) transformsMd(C) into a Hilbert space and the associated norm is
also denoted by ‖·‖. The set S = {ρ ∈Md(C) | ρ ≥ 0, tr ρ = 1} is a compact convex
set whose elements are called density matrices. For any two matrices X, Y ofMd(C),
[X, Y ] := XY − Y X is the commutator while {X, Y } := XY + Y X is the anti-
commutator. An endomorphism L on Md(C) is sometimes called a super-operator
while a matrix X ∈ Md(C) is called an operator. The algebra of super-operators
(End(Md(C)),+, ◦) is equipped with the operator norm (with respect to the Hilbert-
Schmidt norm on Md(C)) and denoted also by ‖ · ‖. We usually reserve the notation
◦ for super-operators to emphasize the distinction with operators. The adjoint
w.r.t the Hilbert-Schmit scalar product of a linear operator L : Md(C)→ Md(C) is
denoted by L∗. For x ∈ C` and A := (Ak)

`
k=1 ∈Md(C)`, we denote A·x =

∑`
k=1Akxk

and the action of L ∈ End(Md(C)) on such A is understood component-wise, i.e.
L(A) = (L(Ak))

`
k=1.

5.4.3.2. Lindbladians. By definition a Lindbladian L : Md(C) → Md(C) is the
generator of a continuous semigroup of completely positive trace-preserving maps,
which describes the Markovian evolution of a quantum open system. Following
[GKS76, Lin76], a Lindblad super-operator admits a GKSL4 decomposition i.e.
for all X ∈Md(C):

L(X) = − ı[H,X] +
∑̀
k=1

(
LkXL

∗
k − 1

2
{L∗kLk, X}

)
,(5.4.3)

where (H, (Lk)
`
k=1) are matrices of Md(C) such that H∗ = H. We call the first

matrix, H, the Hamiltonian and the operators (Lk)
`
k=1, Kraus operators.

Diffusive quantum trajectories with three time scales In this paper, for
any γ > 0, we consider diffusive quantum trajectories given by the Itô SDE

dργt = Lγ(ργt )dt+
∑

α=0,1,2

γ
α
2 σ(α)(ργt ) · dWα

t(5.4.4)

= Lγ(ργt )dt+ σ(0)(ργt ) · dW 0
t + γ

1
2σ(1)(ργt ) · dW 1

t + γσ(2)(ργt ) · dW 2
t

with initial condition ργ0 = % ∈ S. Throughout the paper, the Itô convention for
SDEs is in place. The drift Lγ(ργt ) of this equation is given by the Lindblad super-
operator Lγ having the form

(5.4.5) Lγ := L(0) + γL(1) + γ2L(2) .

We denote by (H(0), (L
(0)
k )`0k=1), (H(1), (L

(1)
k )`1k=1) and (H(2), (L

(2)
k )`2k=1) the GKSL

decompositions of the Lindbladians L(0), L(1) and L(2) respectively.
In the noise part

∑
α=0,1,2 γ

α
2 σ(α)(ργt ) · dWα

t , the processes (Wα, α = 0, 1, 2) are
independent `α-dimensional (standard) Wiener processes and the maps σ(α) : ρ ∈

4The acronym GKSL stands for Gorini-Kossakowski-Sudarshan-Lindblad.
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S 7→
(
σ

(α)
k (ρ)

)`α
k=1
∈Md(C)`α are the three quadratic maps defined component-wise

by

σ
(α)
k (ρ) = ηα(k)

(
L

(α)
k ρ+ ρL

(α) ∗
k − tr[(L

(α) ∗
k + L

(α)
k )ρ] ρ

)
,(5.4.6)

for α = 0, 1, 2 and k = 1, . . . , `α. Here (ηα(k))`αk=1 ∈ [0, 1]`α are given numbers. We
refer the reader to the notations in Section 5.4.3.1 for the meaning of σ(α)(ργt ) ·dWα

t .
The proof of existence and uniqueness of the strong solution to Eq. (5.4.4) can

be found in [BH95, Pel08, BG09, Pel10]. In these references, it is also proven
that ργ ∈ C (R+ ; S) almost surely.

Since the SDE (5.4.4) has a linear drift, it follows that the average evolution of
ργ is expressed in terms of the semigroup generated by Lγ:

∀t ≥ 0, E(ργt ) = etLγ% .(5.4.7)

The asymptotic analysis of this average semigroup in fact plays a crucial role in the
proof of the main result.

In terms of interpretation of indirect measurement, the Wiener process Wα re-
sults from the output signal of measurements. The numbers ηα(k) are introduced in
order to encapsulate in a single form the measurement and thermalization aspects.
More precisely ηα(k) = 1 corresponds to perfectly read measurements, ηα(k) ∈ (0, 1)
to imperfectly read measurements and ηα(k) = 0 to unread measurements or to
model contributions from a thermal bath.

Assumptions. Let us now state and discuss our working assumptions for the
main result.

Assumption 5.4.1 (Quantum Non-Demolition (QND) assumption). The oper-
ators H(2), (L

(2)
k )`2k=1 and (L

(1)
k )`1k=1 are all diagonalizable in a common orthonormal

basis (ei)
d
i=1 of Cd, called the pointer basis.

Observe that no assumption is made on the Hamiltonian H(1) nor on the Kraus
operators and Hamiltonian involved in L(0). Also, Assumption 5.4.1 is equivalent
to requiring that the ∗-algebra generated by the Kraus operators (L

(2)
k )`2k=1, the

Hamiltonian H(2) as well as the Kraus operators (L
(1)
k )`1k=1 is commutative.5

From a physical perspective, the QND assumption is standard. It is at the
cornerstone of the experiment [GBD+07] where QND measurements are used to
count the number of photons in a cavity without destroying them. It is shown
that it reproduces the wave function collapse in long time – see [BB11, BBB13,
BP14] and references therein. This condition is tailored to preserve the pointer
states during the quantum measurement process. More precisely, under the QND
Assumption 5.4.1, in the case L(0) = L(1) = 0, if the initial state is a pointer state,
i.e. % ∈ {Ei,i := eie

∗
i }di=1, then it is not affected by the indirect measurement in the

sense that the state remains unchanged by the stochastic evolution (5.4.4). Note
that this behavior is very specific to such models since measurement usually induces
a feedback on the quantum system.

A simple yet crucial computation detailed in a separate Lemma in [BBC+21]
shows then that under the QND Assumption 5.4.1 the super-operator L(2) : Md(C)→

5In other words a C∗ commutative subalgebra of Md(C).
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Md(C) is diagonalizable with eigenvectors
(
Ei,j := eie

∗
j

)d
i,j=1

and associated eigen-
values:

τi,j = − 1

2

∑̀
k=1

∣∣∣(L(2)
k )i,i − (L

(2)
k )j,j

∣∣∣2(5.4.8)

− ı

(
H

(2)
i,i −H

(2)
j,j +

∑̀
k=1

=
(

(L
(2)
k )i,i(L

(2)
k )j,j

))
.

Here and in the following, if X ∈ Md(C), the notation Xi,j always refer to the
coordinates of X in the pointer basis (ei)

d
i=1. Observe also that the family (Ei,j)

d
i,j=1

forms an orthonormal basis of Md(C).

Assumption 5.4.2 (Identifiability condition). For any i, j ∈ {1, . . . , d} such that
i 6= j, there exists k ∈ {1, . . . , `2} such that η2(k) > 0 and

<(L
(2)
k )i,i 6= <(L

(2)
k )j,j .

In fact, from Eq. (5.4.8), this assumption together with the QND assumption
imply the non-existence of purely imaginary eigenvalues τi,j for the super-operator
L(2). We shall see that this will play an important role.

Our motivation to qualify this assumption as identifiability originates again from
the theory of non-demolition measurements. Indeed, following [BBB13, BP14], if
the QND Assumption 5.4.1 and the identifiability condition of Assumption 5.4.2
hold, for any γ > 0, the quantum trajectory obtained when setting L(0) = L(1) = 0
converges almost surely, as t grows, to a random pointer state, reproducing a non-
degenerate projective measurement along the pointer basis. If the identifiability
Assumption 5.4.2 does not hold, the limiting random state may exist but will cor-
respond to a degenerate measurement.

Statement:

Theorem 5.4.3 (Main theorem of [BBC+21]). For any γ > 0 let ργ be the
continuous processes on S solution of Eq. (5.4.4) starting from %. Under the QND
Assumption 5.4.1 and the identifiability condition in Assumption 5.4.2, we have6:

lim
γ→∞

ργ = xx∗, weakly in
(
L0(R+;Md(C)), d

)
,

where x := (xt ; t ≥ 0) is a pure jump continuous-time Markov process on the
pointer basis (ei)

d
i=1 with initial distribution µ% defined by

µ% : ei 7→ 〈ei, %ei〉 .
Furthermore, the generator T of the Markov process x is explicit. The transition

rate from ei to ej, i 6= j, is given by

(5.4.9) Ti,j =

`0∑
k=1

|(L(0)
k )j,i|2 +

∣∣∣(H(1)
)
i,j

∣∣∣2
|τi,j|2

`2∑
k=1

∣∣∣(L(2)
k )i,i − (L

(2)
k )j,j

∣∣∣2 .

6We recall that if χ is a topological space and (Xn)n is a sequence of χ-valued random variables,
we say it converges weakly (or in law) to the χ-valued random variable X if and only if for any
bounded continuous function f : χ→ R, limn→∞ E

[
f(Xn)

]
= E

[
f(X)

]
.
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Here τi,j is the eigenvalue of L(2) corresponding to the eigenvector Ei,j = eie
∗
j given

in Eq. (5.4.8).

Strategy of proof. The approach is structured as follows.
In a first step, we gave a general homogeneization result for semigroups in the

form of Theorem 3.1 in [BBC+21]. The proof follows the philosophy pioneered by
Nakajima-Zwanzig. Then we apply it to the case of Lindblad super-operators. Let
us mention [BCF+17, Theorem 2.2] as an inspiration for the proof and that our
result is consistent with [MGLG16, ABFJ16]. There, we show that in the large
γ limit, the dynamic of the semigroup etLγ reduces to a dynamic generated by an
operator L∞ whose expression is explicitly given in terms of L(0), L(1) and L(2).
Thanks to Eq. (5.4.7), this leads to the convergence of the mean E (ργt ). Although
this may seem to be very partial information, it is sufficient to identify the generator
T .

Only then, we tackled the proof which follows the usual approach for the weak
convergence of stochastic processes: we used a tightness criterion in the Meyer-
Zheng topology and then identify the limit via its finite-dimensional distributions.
Interestingly, the convergence of the mean is bootstrapped to the convergence of
finite-dimensional distributions thanks to the Markov property and the collapsing
on pointer states (Ei,i)

d
i=1. �

5.4.4. Further remarks.

Convention on L and T : The Markov generator T defined in Eq. (5.4.9) follows
the usual probabilistic convention in the sense that T1 = 0. On the contrary, to
simplify notations, for the various Lindblad generators L, we use the convention that
they generate trace-preserving maps, thus their duals with respect to the Hilbert–
Schmidt inner product verify L∗(id) = 0, which is equivalent to tr ◦L = 0.

Generalizations: Let us mention two possible extensions of the setting of this
paper. In principle, our results and methods of proof carry to these cases mutatis
mutandis. However, such extensions are not included as this would considerably
decrease the readability of the paper.

In Eq. (5.4.5), one could consider a further dependence in γ by replacing L(0) by
L(0)
γ such that a limit holds as γ goes to infinity.
Also, throughout the paper, we limit ourselves to diffusive noises. But the setting

can be extended to include Poisson noises in the SDE (5.4.4). In passing, let us
mention an interesting result in this direction using a completely different method.
In the particular case L(0) = 0 and for Poisson noises only, instead of Wiener ones,
an analogous result to the Main Theorem 5.4.3 is possible, building on [BCF+17,
Theorem 2.3 item (b)]. Indeed, in that article, it is obtained that there exists C > 0

such that for any t > 0, E(‖ργt − Y
γ
t ‖) ≤ Cγ−

1
2

√
| log γ| with (Y γ)γ>0 converging in

law to xx∗, in Skorokhod’s topology, as γ → ∞. Since S is compact, integrating
both side of the inequality with respect to the probability measure λ(dt) = e−tdt on
R+, the result follows from L1 (R+, λ) convergence.

The noise vanishes on pointer states: The following intuition dictates that
the noise vanishing on pointer states is crucial in order to have emergence of jump
processes from strong noise limits as in Theorem 5.4.3. The idea is that, as γ grows
larger, the process ργ will spend more time in a thin layer around the points where
the noise vanishes. Because of the QND Assumption 5.4.1 and the structure of the
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maps σα given in Eq. (5.4.6), the noise in the SDE (5.4.4) vanishes exactly on the
pointer states (Ei,i)

d
i=1, hence the intuition of a limiting process taking values in

(Ei,i)
d
i=1.

Reversibility properties of the limit generator T : In the context of dy-
namics where there is a clear distinction between slow variables and fast variables,
consider the reduced dynamic in slow variables, obtained by the elimination of
fast variables by homogeneization. A common belief in statistical physics is that
such a reduced dynamic is in general “more irreversible” than the initial dynamic
[Mac89, Leb99, GK04, Lav04, Bal05] – and regardless of the reversibility of this
initial dynamic. The seminal example is provided by the (irreversible) Boltzmann
equation which is derived by a kinetic limit from a (reversible) microscopic dynamic
ruled by Newton’s equations of motion [Cer88].

In our context, from both mathematical and physical perspectives, this leads
naturally to ask the question of the links between the reversibility properties of the
SDE (5.4.4) and the reversibility properties of our effective Markov process x :=
(xt ; t ≥ 0). This SDE is generically non-reversible but it may happen, in various
situations, that the effective Markov process however is, highlighting a possible
moderation to the aforementioned popular belief, at least in this particular quantum
context. Indeed, it is for example easy to check that if H(1) = 0 and there exists a
probability p := (pi)

d
i=1 such that for any 1 ≤ k ≤ `0, pi|

(
L

(0)
k

)
j,i
|2 = pj|

(
L

(0)
k

)
i,j
|2,

then T is reversible with respect to the probability p, while the SDE is not. Therefore
it would be interesting to understand what are the conditions to impose on the Kraus
and Hamiltonian operators, and more importantly their physical meaning, in order
to obtain a reversible T . In the previously mentioned example, the condition is
reminiscent of the one resulting from a weak coupling limit [Ali76, Dav76, AL07]
of a quantum system interacting with a heat bath at thermal equilibrium, showing
this condition has probably some deeper physical interpretation.



CHAPTER 6

Perspectives

Now that we have presented some of the main results since I have settled down
in Toulouse, it is time to turn to the future. In this chapter, I will present some of
the perspectives that I have in mind.

6.1. Perspectives about the Toda system

In this section, we draw perspectives that naturally follow after the content of
Chapter 3.

6.1.1. Towards hydrodynamics following Deift and Spohn. Let us start
by making more precise the first statement of Theorem 3.2.2. When asking a com-
puter to diagonalize a real symmetric matrix, the standard algorithm is Arnoldi-
Lanczos-QR.scheme, which performs as follows.

• Input: M = (mi,j)1≤i,j≤n symmetric real.
• Step 1: Trotter reduction

M  J = QMQ∗

with Q orthogonal, J Jacobi with identical spectrum as M . Recall that a
Jacobi matrix is a tridiagonal matrix with non-negative off-diagonal entries.
• Step 2: Recall that the QR decomposition is the Gram-Schmidt orthogo-
nalization of the columns of a matrix, yielding an orthogonal matrix Q and
an upper triangular matrix R. The Arnoldi-Lanczos-QR iterative scheme
consists in applying the QR decomposition to the matrix J at each step:

 J0 = J = Q0R0

 J1 = Q∗0J0Q0 = Q1R1

 J2 = Q∗1J1Q1 = Q2R2

. . .

 Jk = Q∗k−1Jk−1Qk−1 .

Now, for a formal statement:

Theorem 6.1.1. • (Arnoldi/Lanczos) If eigenvalues are simple, the algo-
rithm performs diagonalization:

Jk
k→∞−→ Diag(Λ1,Λ2, . . . ,Λn) .

• (Symes 1982) The Arnoldi-Lanczos-QR iteration scheme is exactly the Toda
flow at integer times:

∀k ∈ N , Jk = J (n),T oda(t = k) .

101
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This latter striking fact has been nicknamed “the stroboscopic effect” by the
mathematician Deift: Advancing the Toda flow on a Jacobi matrix by one unit of
time is equivalent to one step of the Arnoldi-Lanczos-QR scheme. Therefore, the
Toda lattice is exactly the Arnoldi-Lanczos-QR scheme which powers some of the
most useful algorithms. Hence this natural question, which was asked by Deift.

Question 6.1.2 (Problem 4 in [D+17]). Starting from a random initial condition
for the Toda lattice, is there a description of the (large time) limiting dynamic for
large matrices?

Of course, the same question at integer times amounts to analyzing the Arnoldi-
Lanczos-QR. If answered properly, this question would shed light on the behavior
of the diagonalization algorithm for large matrices. This is part of a larger program
aimed at understanding RMT universality in algorithms [DMOT14].

In fact, virtually the same question was asked by theoretical physicist Spohn
[Spo20], while motivated by the question of hydrodynamical limits. More generaly,
he is recently interested in the hydrodynamical limits of Hamiltonian systems with
infinitely many conserved quantities. But what is a hydrodynamical limit? That is
a macroscopic description, usually a PDE, derived from the microscopic behavior
of particles. For example, rather than describing the individual positions of a large
number of particles, one derives an evolution equation for the particle density. For a
recent panorama of the state of the art, we recommend [QY] for an account focused
on Varadhan’s work, and [SR09] for a point of view focused on the analysis of PDEs
and on the legacy of Boltzmann.

Although Spohn derived the equations for the densities of conserved quantities
in the Toda lattice, in terms of the current’s local average, that was only at the
physical level of rigor. A crucial ingredient which was assumed is the persistence of
the local equilibrium property, which is a non-trivial mathematical question – see
the more extensive review [Spo21] for details.

Question 6.1.3. Prove the local equilibrium property for the Toda lattice and
thus complete Spohn’s hydrodynamical description.

When comparing the two questions 6.1.2 and 6.1.3, we see that Spohn’s formu-
lation is formulated in the language of statistical physics. Moreover, the technical
issue is clearly identified. Nevertheless, it is essentially the same question. And
I think this question is an excellent candidate for a first step in hydrodynamical
limits. Indeed, the main objects are close to my historical research interests: RMT
and stochastic integrability.

6.1.2. General Lie type tridiagonal models and MMO intergrals. The
definition in general Lie type requires a few definitions: let a be the Cartan Lie
algebra of a complex Lie group with rank r, the Weyl group W acts on a, the norm
‖ · ‖ is given by the Killing form and dj are the degrees of the generators of the
algebra of invariants C[a]W . With these notations, the Macdonald-Mehta-Opdam
(MMO) integral states that:∫

a

dx |∆(x)|β e−
1
2
‖x‖2 = (2π)

1
2
r

r∏
j=1

Γ
(
1 + β

2
dj
)

Γ
(
1 + β

2

) ,(6.1.1)

where the Vandermonde is replaced by the Weyl denominator ∆(x) =
∏

β∈Φ+〈β, x〉.
Here Φ+ are the positive roots of the root system Φ associated to W .
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Remark 6.1.4. The MMO formula is valid more generally forW a finite Coxeter
group, i.e., also for the non-crystallographic Coxeter groups H3, H4 and I2(n) for
n 6= 3, 4, 6. These are the symmetry groups of the dodecahedron, the 120-cell, and
regular polygons respectively.

Howeever, our method does not directly apply since the Toda lattice is a Lie-
theoretic construction which makes use of the associated group and there are no
Lie groups associated to non-crystallographic root systems. See [FK06] for some
constructions related to Toda lattices in the non-crystallographic case, using the re-
duction method.

Entirely analogously to Eq. (3.2.5), one defines the generalized Toda lattice for
abitrary root systems:

HG =
‖p‖2

a

2
+
∑
α∈∆

‖α‖2

2
e−α(q) ,(6.1.2)

where ‖ · ‖a is the norm induced by the Killing form and ∆ ⊂ Φ is a choice of
simple roots, such that Φ ⊂ SpanZ∆. In this setup, the generalized Toda lattice
plays an important role in representation theory as shown for example in Kostant’s
work [Kos79] and the author’s [Chh13]. The previous sentence deserves more
explanations. The claim from Kostant’s work is that integrating the classical Toda
system i.e. knowing exactly all possible evolutions is equivalent to knowing the
representation theory of the underlying group. Afterall, solving the evolution needs
matrix coefficients in all representations. A similar claim is made in [Chh13], where
the harmonic analysis of the quantum Toda lattice encodes geometric crystals. And
geometric crystals are algebro-geometric objects reflecting finer information on the
representation theory.

We can now state the question:

Question 6.1.5. Is it possible to build matrix models like Dumitriu and Edel-
man’s for general root systems? There, the analogue Λ of the spectrum should have
a distribution:

P (Λ ∈ dx) =
1

Zβ(a)
|∆(x)|β e−

β
2
‖x‖2a dx .

It is similar to the Gaussian β-ensemble of Eq. 3.1.1 except that, once again, now
the Vandermonde means ∆(x) :=

∏
α∈Φ+〈α, x〉, where Φ+ are the positive roots.

An interesting goal would be to describe a “tridiagonal" model in the spirit
of Theorem 3.1.1. In fact, I believe this would probably not interest the RMT
community very much. However, the hope is that it would give a new proof of the
MMO integrals (6.1.1).

This takes us to one of the very influencial Macdonald conjectures. The identity
(6.1.1) is in fact given as [Mac82, Conjecture 6.1]. It is now settled by Opdam
[O+89, § 6] using his technology of hypergeometric shift operators, which until now
seemed unrelated to the Toda system. In the same fashion as Dumitriu-Edelman,
answering Question 6.1.5 would provide a geometric proof of the Macdonald-Mehta-
Opdam-Selberg integrals for general root systems and a strong relationship to the
ubiquitous Toda system.

It is our belief that the correct proof of the MMO integrals should be a simple
book-keeping exercise by keeping track of a normalization constant for the tridi-
agonal model of Question 6.1.5. And the change of variables which correspond to
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diagonalization in general Lie type is better encoded in the scattering of the Toda
flow.

In passing let us mention that many of the ingredients are available.
• The scattering of positions as in Theorem 3.2.2 is available from the works
of Goodman and Wallach [GW84, Subsection 2.3].
• More importantly, in the general Lie type, Jacobi matrices are replaced by
slices of coadjoint orbits, and Moser’s scattering asymptotics for generalized
Toda chain are due to Kostant [Kos79].

In my opinion, the main difficulty is to understand the geometry of Kostant’s coad-
joint slices and to choose good coordinates to describe the scattering.

6.2. Perspectives on quantum groups at roots of unity

In this section, we draw perspectives that naturally follow after the content of
Chapter 4. While the generalization to higher rank of the paper [CC21] is a natural
continuation, we do not detail that aspect here. Indeed, I feel that Section 4.4 shows
very clearly where that leads – at least on the semi-classical level. Instead, we now
focus on another aspect: the quantum group at roots of unity and the positive
curvature.

Following [CP95, Chapter 11], the representation theory of Uq(sl2) changes dras-
tically when q is a root of unity. In particular, the category of finite dimensional
representations is no longer semisimple. This is a very interesting phenomenon,
which I not fully understand. In any case, I do understand that representations
at roots of unity are at the basis of the construction of the famous Jones polyno-
mial, which is a knot invariant. Also, its computation requires the class restricted
representations of [CP95, §11.2].

In the future, I would like to understand what is the proper semi-classical limit,
in the spirit of Kirillov’s orbit method. Our construction of a semi-classical limit
for the quantum group uses the space H3 = SL2(C)/SU2 = NA and normalizes
the curvature to κ = −1

2
r2. In the quantum picture q = e−r is the deformation

parameter in our presentation of the quantum group U~
q (sl2). Loosely speaking,

the exotic representation theory at roots of unity reflects what should happen upon
taking q = eir.

One is tempted to perform the “Wick rotation” of the curvature parameter r  
ir. And it strangely makes sense on multiple levels.

• It forces the curvature to becomes positive via κ = 1
2
r2 ≥ 0.

• The model space of constant positive curvature, in dimension 3, is now the
sphere S3 ≈ SU2.
• The radial part of Brownian motion has generator which changes from

LH3 =
1

2
∂2
x + (∂x log sinh(rx)) ∂x

in negative curvature to

LS3 =
1

2
∂2
x + (∂x log sin(rx)) ∂x

in positive curvature. It is indeed common to see trigonometric functions
in positive curvature, replaced by their hyperbolic counterparts in negative
curvature.
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Nevertheless, so far, I am failing to see how generators of the quantum group at
roots of unity are related to S3.

6.3. Optimal transport (OT)

Beyond the fact that optimal transport is a popular topic in mathematics, my
interest lies specifically in spectral and numerical aspects of the Sinkhorn formula-
tion. As we will see, this shares many similarities with the content of Subsection
4.4.

This is the PhD topic of Anirban BOSE, who is supervised jointly with Serge
GRATTON.

6.3.1. Elements of OT. Optimal transport is the general problem of moving
one distribution of mass to another as efficiently as possible. See Fig. 6.3.1 for an
illustrative drawing and Fig. 6.3.2 for an effective solution on an example.

Figure 6.3.1. Transport of a mass from one place to another.

Figure 6.3.2. Transport between empirical measures, uniform on an
annulus (red) and uniform on a square (blue).

Kantorovich primal and dual formulation. Let X and Y be two reference
Polish spaces with measures α ∈M1(X ), β ∈M1(Y) respectively. Let C : X ×Y →
R be the cost function.

The primal formulation is

WC(α, β) := min
π∈Π(α,β)

∫
X×Y

C(x, y)π(dxdy),(6.3.1)
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where Π(α, β) := {π ∈ M1(X × Y) : PX#π = α, PY#π = β}, PX# and PY# are the
push forwards w.r.t first and second marginals.

The dual formulation is

WC(α, β) = sup
(f,g)∈R(C)

∫
X
f(x)α(dx) +

∫
Y
g(y)β(dy)(6.3.2)

where R(C) := {(f, g) ∈ X × Y : f(x) + g(y) ≤ C(x, y)} . For an account of the
equivalence between primal and dual formulation, under mild assumptions on the
cost function C, we refer to [Vil21]. The pair of functions (f, g) are commonly
referred to as Kantorovich potentials.

Sinkhorn formulation or the Entropic regularization of OT.
The OT problems given in Eq. (6.3.1) and Eq. (6.3.2) are linear problems under

convex contrains. For better properties, the idea is to add a convex penalization
term weighted by a penalization parameter ε > 0, for example an entropy term via
the Kullback-Leibler divergence. In this case, the primal problem becomes:

WC
ε (α, β) := min

π∈Π(α,β)

∫
X×Y

C(x, y)π(dxdy) + εKL (π‖α⊗ β) ,(6.3.3)

where KL(π‖α⊗ β) :=
∫
X×Y log

(
dπ

dα⊗β (x, y)
)
π(dxdy).

The dual formulation is:

WC
ε (α, β) = sup

f∈L1(α),g∈L1(β)

∫
X
f(x)α(dx) +

∫
Y
g(y)β(dy)(6.3.4)

− ε
∫
X×Y

(
e
f(x)+g(y)−C(x,y)

ε α(dx)β(dy)− 1
)
.

For fixed (small) ε > 0, these are respectively a strongly convex minimization prob-
lem and a strongly concave maximization problem.

6.3.2. Spectral and numerical aspects. All the illustrations in this Subsec-
tion will use the dataset of Fig. 6.3.2: 400 points sampled uniformly on the square
and 500 points sampled on an annulus.

In order to numerically solve the OT problems (6.3.3) and (6.3.4), one needs to
consider discrete spaces X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}. In this setting,
the cost function comes a cost matrix

C = (C(xi, yj) = Ci,j)1≤i≤m
1≤j≤n

.

Also, the two problems become finite dimensional optimization problems. Notice
that the convex set of couplings Π(α, β) is identified to a subspace of the matrices
Rn×m, while the Kantorovich potentials f and g are respectively identified to vectors
in Rn and Rm. In this form, it is clear that one should prefer the dual formulation
to the primal one for dimensionality reason (n + m ≤ nm for all positive integers
m,n ).

The objective function for the dual formulation in this discrete setup is

Q(f, g) = 〈f, α〉+ 〈g, β〉 − ε

(∑
i,j

e
fi+gj−Cij

ε − 1

)
,

f ∈ Rm, g ∈ Rn, α ∈M+(X ) ∼= Rm
+ , β ∈M+(Y) ∼= Rn

+ .
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Figure 6.3.3. Convergence quality of the Sinkhorn algorithm for
varying ε > 0.

Then the Hessian at the optimum potentials (f ∗, g∗) is given by:

∇2Q(f ∗, g∗) = −1

ε

(
∆(α) πε
πTε ∆(β)

)
,

where (πε)ij = e
f∗i +g∗j−Cij

ε , ∆ = diag : Rn →Mn(R) and ε > 0.

6.3.2.1. The Problem. The Sinkhorn algorithm, aka the proportional fitting al-
gorithm, is the go to method for computing the solution, in the dual formulation
6.3.4. We recommend Cuturi [Cut13] for an illustration motivated by machine
learning, and the book by Cuturi-Peyré [PC+19] for an extensive review.

It is a fixed-point algorithm with a contraction coefficient q∗ = q∗(ε). Following
Vialard [Via19, Proposition 19], there is a constant κ > 0, depending only on the
measures and the cost, such that for all ε > 0,

q∗(ε) ≤ 1− exp
(
−κ
ε

)
,

and actually this bound seems sharp from numerical experiments – see Fig. 6.3.3.
One can also try implementing other algorithms, e.g. simple gradient ascent without
line search, gradient ascent with line search and Armijo condition and L-BGFS, see
Fig. 6.3.6.

In the end, all these algorithms display poor convergence when ε becomes small.
And that is the problem we aim at adressing.

6.3.2.2. A partial solution in the form of damped Newton. In [MT21, KMT19],
Kitagawa, Merigot and Thibert advocate for the use of damped Newton in a semi-
discrete context, meaning that one of the measures is continuous. We propose to
follow their lead, while focusing on the numerical stability and performance of the
algorithm.

Damped Newton. Let us recall how the algorithm works. Denote Q as the
objective function in the dual formulation of the regularized OT problem. The
algorithm aims at finding the unique x∗ = (f ∗, g∗) such that ∇Q(x∗) = 0.

• At iteration k, let the current point be xk = (fk, gk) ∈ Rn+m.
• Find the Newton ascent direction pk ∈ Rn+m: If the current point is xk, pk
is obtained by solving the linear system

∇2Q(xk)pk = ∇Q(xk) .(6.3.5)
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Figure 6.3.4. Gradient ascent without line search.
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Figure 6.3.5. Gradient ascent with line search with learning rate= 0.001.
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Figure 6.3.6. L-BFGS.

• Line search: For parameters ρ ∈ (0, 1), c ∈ (0, 1), we set an initial step size
αk = 1. If pk does not satisfy the Armijo condition:

Q(xk + αkpk) ≥ Q(xk) + cαk〈pk,∇Q(xk)〉 ,(6.3.6)

we update the step size αk ← ραk until condition is met.
• When the condition is met, we update the current point:

xk+1 ← xk + αkpk .

Why going for the damped Newton algorithm? The following pros are
illustrated in Fig. (6.3.7).

• Damped Newton is one of the preferred algorithm for solving convex opti-
mization problems due to less iterations for convergence.
• Damped Newton is rather insensitive to ε.

And there is one major inconvenience: The inversion of the Hessian in Eq. (6.3.5)
is computationally very expensive. As such each step can be costly, especially if the
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Figure 6.3.7. Convergence speed of damped Newton. This illus-
tration shows that the algorithm converges with much fewer steps, in
a way that is insensitive to ε > 0.

Hessian is inverted exactly. As such, it is natural to invoke approximate methods
rather than exact solvers of linear systems. The inversion of the Hessian can be done
faster using iterative solvers, for example CG (Conjugate Gradient) and GMRES
(Generalized Minimal Residuals) – see [NW99]. To do so, we will need a better
understanding of the structure of the Hessian ∇2Q(xk).

6.3.2.3. Theoretical and empirical analysis of the Hessian. Let us have a look at
the Hessian of the objective function. The following proposition gives us structural
information about it.

Proposition 6.3.1 (Work in progress, as part of the PhD thesis of Anirban
BOSE). Let us consider the setting of general measures α ∈M1(X ) and β ∈M1(Y).
Define the Banach spaces of continuous bounded functions E := Cb(X ) and F :=
Cb(Y). At the optimum potentials x∗ = (f ∗, g∗), the Hessian can be written as

∇2Q(f ∗, g∗) = −1

ε
(I +K)(6.3.7)

where I ∈ L(E,E) is the identity operator and K is a compact operator with sym-
metric spectrum in [−1, 1].

Here K is a block form operator given by

K =

(
0 πσ
πTσ 0

)
,

where for (f1, g1) ∈ E ⊕ F , πσ ∈ L(F,E) and πTσ ∈ L(E,F ) are given by

(πσg1) (x) =

∫
Rd
e
f∗(x)+g∗(y)−C(x,y)

2σ2 g1(y)β(dy)

(
πTσ f1

)
(y) =

∫
Rd
e
f∗(x)+g∗(y)−C(x,y)

2σ2 f1(x)α(dx)

and 〈πTσ f1, g1〉L2(β) = 〈f1, πσg1〉L2(α).

Interestingly, the previous Proposition 6.3.1 tells us that the normalized Hessian
−ε∇Q(x∗) = I + K has spectrum in [0, 2]. Given that the stability of inversion
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of linear systems such as Eq. (6.3.5) is given by the condition number, we now
understand that the spectral gap of I +K, at zero, is at the heart of the problem.
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Figure 6.3.8. Dispersion of the spectrum of the normalized Hessian
−ε∇Q(x∗) = (I + K) as ε → 0. This causes numerical instability in
performing the inversion of the Hessian.
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Figure 6.3.9. Heatmap of eigenvectors

This is corroborated numerically in Fig. 6.3.8, where one sees the spectral gap
at zero closing up as ε→ 0.
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6.3.2.4. The idea: Leveraging the stability of eigenvectors. As not much can be
gained from the eigenvalues, the next idea which proves to be fruitful is to examine
eigenvectors.

Conjecture 6.3.2 (Verified empirically). As ε→ 0:
• The spectrum is unstable as shown in Fig. 6.3.8.
• The eigenvectors on the other hand are stable as shown in Fig. 6.3.9.

This phenomenon is very reminiscent of the behavior of eigenvalues of Schrödinger
operators at low temperature [Mic95]. And it can be leveraged as follows:

• Use eigenvectors of the Hessian obtained from execution of the algorithm
for larger values ε to form a preconditioning matrix.
• Use preconditioning to move eigenvalues that are dangerously close to the
boundaries of [0,2] to the center and consequently reduce the instability and
cost of iterative inversion.
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Direct inversion
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Figure 6.3.10. Benchmarking inversions methods after precondi-
tioning. Illustration of time in milliseconds to invert matrix using
different inversion methods with a data with square of size 1000 and
annulus of size 1100.

But what is preconditioning? Preconditioning is the idea of solving an
equivalent for more numerically stable linear system. Let A ∈Mm,n(R) and b ∈ Rm.
Consider the linear system in x ∈ Rn

Ax = b .

Let Q ∈ GL(m,R) and P ∈ GL(n,R) be matrices such that we can write

Ax = b ⇐⇒ QAP−1(Px) = Qb ⇐⇒ A
′
x
′
= b

′
.

Hence one can change the linear system of equations so that the iterative methods
for inversion converge faster. Fig. 6.3.10 illustrates that effect.
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6.3.2.5. Conjecture 6.3.2 is true in the Gaussian case. As a first step towards
understanding the phenomenon described in Conjecture 6.3.2, it is natural to at-
tempt a proof in a particular case. Here, we consider α and β as Gaussian measures
on Rd. Also the cost is taken as the square of the Euclidean norm. We write

α = N (a,A), β = N (b, B) ,

so that a and b are the means, while A and B are positive definite matrices. Let us
give the following theorem which an explicit diagonalization of the operator K using
this data. This diagonalization is in term of the normalized Hermite (multivatiate)
polynomials

∀x ∈ Rd,∀n ∈ Nd, hen(x) :=
∏
i

heni(xi) ,

which are themselves products of the univariate normalized Hermite polynomials
hen.

Theorem 6.3.3 (Conjecture 6.3.2 is true in the Gaussian case). Consider the
kernel defining the operator K given by

k(x, y) = exp

(
f ∗(x) + g∗(y)− ‖x− y‖2

ε

)
.

This kernel has a series expansion:

k(x, y) =
∑
n∈Nd

λn(ε)Pn(x)Qn(y) ,

where A
1
2B

1
2 = UDV T the SVD decomposition of A

1
2B

1
2 , ε = 2σ2 and

λn(ε) =
d∏
i=1

ρni
i , ρi =

((
1 +

σ4

4D2
ii

) 1
2

− σ2

2Dii

)
,

Pn(x) = hen(UTA−
1
2 (x− a)) , Qn(y) = hen(V TB−

1
2 (y − a)) .

As a consequence the operator K has eigenvalues
{
±λn(ε)2 ;n ∈ Nd

}
and eigen-

vectors that do not depend on ε > 0.
In particular, the spectrum of K is unstable converging to ±1, while the eigen-

vectors of K are stable – in fact constant in this case.

Let us say a few words on the proof. The entropic regularized optimal transport
problem (6.3.4) as in fact closed-form solutions detailed in a paper by Janati et al.
[JMPC20]. The Kantorovich potentials (f ∗, g∗) happen to be quadratic forms, so
that k is a Gaussian kernel. The series is then performed by adapting the Mehler
kernel expansion formula.

6.3.2.6. Openings. So far, we presented a theoretical and empirical analysis of
the Hessian of Q. We propose to leverage the stability of eigenvectors to accelerate
the damped Newton algorithm.

Among the work that remains, we need to
• Incorporate log-domain computations ([PC+19, § 4.4]) that are aimed at
stabilizing the algorithm. Indeed, such numerical instabilities are inevitable
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when computing sums of the form∑
i

exp
(ai
ε

)
for small ε.
• Properly benchmark against Sinkhorn and other algorithms for very small
ε, which also need stabilization.

6.4. Statistics and Learning Theory

6.4.1. Deep learning with Free Probability. The stability of a neural net-
work is driven by the spectrum of singular values of the Jacobian. By the Jacobian,
we really mean the matrix of differentials with respect to all the neural networks’
weights. In the line of Pennington et al.’s work [PSG18, BKP+20], the natural
tool is Free Probability Theory (FPT) in order to describe these spectra at the ini-
tialization of the training. Indeed FPT is the machinery to theoretically compute
the law of large numbers for the spectra of large random matrices.

The issue is that computational methods were lacking for an abstract topic such
as free probability. In fact, it was even considered that numerically computing
free convolutions is very difficult. Thus in [CDK22], we propose a computational
solution to the inversion of Voiculescu’s S-transforms. Our method is based on the
chaining of basins of attraction for the Newton-Raphson algorithm. Not only is
the result guaranteed to be correct – unlike the solution previously proposed by
Pennington et al., but the method is also very fast.

The contribution of [CDK22] this paper are:
• theoretical: as we extend the framework of Free Probability to the necessary
rectangular operators.
• numerical: we provide a computational solution to the inversion of Voiculescu’s
S-transforms. Our method is based on the chaining of basins of attraction
for the Newton-Raphson algorithm. Not only is the result guaranteed to be
correct – unlike the solution previously proposed by Pennington et al., but
the method is also very fast.
• empirical: we prove that FPT indicators correlate to the accuracy of real
life neural networks, after training

In the future, we want to generalize this work to neural networks with more
general architectures. In order to incorporate skip-connections, it seems that we
will need to come up with a similar solution for operator-valued FPT.

6.4.2. High dimensional statistics with free deconvolution. Currently,
in collaboration with Gamboa, Kammoun and Velasco, we are revisiting the ideas
of computational FPT from a statistical perspective. A preliminary draft of this
work is available in [CGKV23]. More precisely, we are interested in the estimation
of spectra of covariance matrices in high dimension. Again, the natural framework
is free probability thanks to free deconvolution. The importance of that problem
stems from the fact that all basic statistical procedures such as Principal Component
Analysis (PCA) start with the estimation of the spectrum, which is blurred by a high
dimensional phenomenon well-known and well-studied in Random Matrix Theory.
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6.4.3. Deep learning with Riemannian Geometry. A common technique
in machine learning is dimension reduction. If PCA is the archetype, it is common
nowadays to train a neural network to create a parsimonious representation of a
dataset. The network architecture of autoencoders is basically a non-linear method
for dimension reduction.

Latent spaces and autoencoders : Consider an autoencoder architecture as
in Fig. 6.4.1 that is to say an approximate factorization of the identity through a
space M of small dimension:

Φ = Φθe : RD →M, Ψ = Ψθd : M → RD

such that for all the data samples X1, X2, . . . we have

∀i, X̂i = Ψ ◦ Φ(Xi) ≈ Xi .

The map Φ is called an encoder, while the map Ψ is called a decoder. The
underlying parameters of the neural network are denoted θe and θd. These are
nothing but very large real tensors. As such, training is formulated as the usual
minimizing problem

Argmin(θe,θd)L(θe, θd)

during training, we minimize the loss using a distance d on RD:

L = L(θe, θd) =
∑
i

d(Xi, X̂i) .

In typical vision applications, the input space is images and as such D can be
32×32 = 1024. In genomics, the input is a space of gene expressions with D ≈ 2000.
The latent space is of low dimension as small as 2 but almost never larger than a
100. The middle manifold M is called a latent space, since one the decoder can be
used in inference to generate images.

Network, Parameters Modules

Input / output

X =Data in X Encoder Φ, θe m ∈M
Latent variable

Decoder Ψ, θd X̂ =

Figure 6.4.1. Network architecture of an autoencoder.

In Fig. 6.4.2, one can see how the dataset is encoded into the latent space. And
Fig. 6.4.3 gives the so-called "manifold plot" which amounts to choosing a grid in
the latent space and generating the corresponding images thanks to the decoder.
The reader can indeed check that both images echo each other.

Natural measure and natural metric: The data space RD is endowed with
a natural metric, which can be taken as the Euclidean ‖ · ‖2 when thinking about
images. By pullback, the latent space is endowed with the metric

g := Φ∗‖ · ‖2 .
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Figure 6.4.2. Latent space for an AE on the classical MNIST dataset.

Figure 6.4.3. Manifold plot for AE.

Moreover, the natural measure induced by the dataset is clearly

µ :=
1

n

n∑
i=1

δΦ(Xi) .

A first contribution: In [DCTV20], we study the manifold (M, g) and
formalize a machine learning problem using Riemannian geometry. In this work,
we formalize the creation of correspondences as a computation of geodesics between
fibers of a fibered manifold M = B × F . Here B is a base space where embeddings
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for classes are. F is a fiber space encoding the variability of MNIST images within
each class. For more details see [DCTV20].

Then, we show that the problem is generically well-posed because of the geomet-
ric properties of the cut-locus. Finally, we give a modern computational technique
that takes advantage of frameworks like PyTorch or Tensorflow.

However, we did notice that the Riemannian manifold (M, g) can be quite dis-
organised. For example, the geodesics can be very wild. This is illustrated in Fig.
6.4.5 and 6.4.6. There the fibers Fi corresponds to the fiber associated to the class
i ∈ {0, 1, . . . , 9}, which correspond to the digits of MNIST.

Metric regularization via Ricci-type flows: As continuation of that work,
there is now the PhD thesis of Alexey LAZAREV, jointly supervised with Francesco
COSTANTINO.

Figure 6.4.4. Manifold plot for VAE. The reference measure on the
latent space is forced to be standard Gaussian in two dimensions.

Second, how to regularize the metric? Is there a natural entropy to minimize?
As the question has been formulated, it is natural to think about the only functional
which plays the role of entropy in the realm of Riemannian geometry: Perelman’s
entropy whose gradient flow is the Ricci flow. Its stationary points are usually of
constant curvature and thus very simple model spaces.

Therefore the idea is to launch the Ricci flow on the metric g. One can surmise
that the finite difference PDE evolution will be very poorly behaved. Machine
learning is powered by automatic differentiation and will prefer the gradient flow
formulation. The fact that the Ricci flow can be formulated as the gradient flow on
a functional is the main statement of Perelman’s paper [Per02]. In fact, there are
multiple functionals and we are working on simplified versions.

6.4.4. Kernel learning with RMT. Consider the classical regression problem
where we want to estimate a function f : Rd → R from observed data. The dataset
is composed of n observables (x1, y1), . . . , (xn, yn) where yj = f(xj).

Kernel regression. A classical approach is to look for an estimator f̂n ∈ H
with H a Reproducing Kernel Hilbert Space (RKHS) of functions from Rd to R.
Our setup will be through the regularized Kernel regression problem

f̂n := argminh∈H

n∑
i=1

` (yi, f(xi)) + λΩ(‖f‖H) .(6.4.1)
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Figure 6.4.5. Visualization of geodesic curves between two fibers
isomorphic to [−1, 1]2. Top: From F4 to F9. Bottom: From F1 to F0.
With z being the height coordinate, the z = 0 plane represents the
starting fiber, while the z = 1 plane represents the destination fiber.

Here ` is a loss function and Ω is a regularization function.
In order to obtain a tractable formulation, we restrict to Mean Square Error

(MSE) for loss and Ridge regularization, meaning:

f̂n := argminh∈H ‖Y− f(X)‖2
Rn + λ‖f‖2

H .(6.4.2)
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Figure 6.4.6. Geodesics from F4 to F9. The x axis displays time
t ∈ [0, 1]. The two left panels display coordinates in fiber space F =
[−1, 1]2 and the two right panels display coordinates on B = R2.

Here Y ∈ Rn is the vector of outputs. X ∈ Rd×n is the matrix of inputs. The map
f is understood as acting pointwise on columns.

Recall that the RKHS representation theorem states that for all functions ϕ ∈ H:
∀x ∈ Rd, ϕ(x) = 〈ϕ, k(x, ·)〉H ,

where k is the kernel. In particular, we have k(xi, xj) = 〈k(xi, ·), k(xj, ·)〉H and we
write K := (k(xi, xj))1≤i,j≤n. By looking for f as a linear combination of kernel
functions, we assume:

f =
n∑
j=1

αjk(xj, ·) .

As such, the regression problem boils down to estimating a finite dimensional
parameter α via:

α̂n := argminα∈Rn ‖Y−Kα‖2
Rn + λ〈α,Kα〉Rn(6.4.3)

= (λIn + K)−1 Y.(6.4.4)

Features learning. Postulating the existence of a matrix factorization K =
Φ(X)TΦ(X) for a certain Φ(X) ∈ Rp×n is equivalent to the existence of a feature
map Φ : Rd → Rp. The data Φ(xi) ∈ Rp is called the feature associated to xi , p is
the dimension of features and Φ(X) = [Φ(x1), . . . ,Φ(xn)].

Assumption 6.4.1. The natural setup of interest is:

d� p� n .

That is to say that the number of samples n is much larger than the dimension of
features p, which is itself much larger than the dimension of inputs d.

By setting w = Φ(X)α, the optimization problem of interest takes the form:

ŵn := argminw∈Rp ‖Y− Φ(X)Tw‖2
Rn + λ‖w‖2

Rp(6.4.5)

= argminw∈Rp〈w,
(
λIp + Φ(X)Φ(X)T

)
w〉Rp − 2〈Φ(X)Y, w〉Rp(6.4.6)

=
(
λIp + Φ(X)Φ(X)T

)−1
Φ(X)Y.(6.4.7)
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Notice that the equality ŵn = Φ(X)α̂n is equivalent to(
λIp + Φ(X)Φ(X)T

)−1
Φ(X)Y = Φ(X)

(
λIn + Φ(X)TΦ(X)

)−1 Y ,

which is an instance of the Woodbury-Sherman-Morrison identity. Equating the
solutions of the two problems is basically a variational proof of that fact.

Example 6.4.2 (Random Fourier Features).

ΦRFF (x) :=


cos (〈W1, x〉Rd)

. . .
cos (〈Wp, x〉Rd)
sin (〈W1, x〉Rd)

. . .
sin (〈Wp, x〉Rd)


with W ∈ Rd×p is a random matrix and the Wj’s are the columns of W . In the RFF
model, entries of W are all i.i.d. Gaussian N (0, σ2). Average kernel and variances:

EW [〈ΦRFF (x),ΦRFF (y)〉] = exp

(
−‖x− y‖

2

2σ2

)
,

VarW [〈ΦRFF (x),ΦRFF (y)〉] =
1

p

(
1− exp

(
−‖x− y‖

2

σ2

))2

.

Here the computation complexity for computing ŵn is decomposed as follows:
• Creating Φ(X): O(npd).
• Forming Φ(X)Φ(X)T : O(np2), which is however not needed if iterative in-
version.
• Inversion O(p3).

Fast features. In the context of random Fourier features, and if evaluation
algorithms only make use of matrix-vector multiplication, an excellent idea is to use
matrices W which are structured.

The full model is for example the Gaussian RFF, where one takes

W = (Wi,j)1≤i≤d
1≤j≤p

with Wi,j
L
=N (0, σ2) .

We can use the SVD to decompose this matrix as:

W = O1

√(
D 0d×(p−d)

)
O2 ,

with O1 ∈ Od(R), O2 ∈ Op(R) are orthogonal and D ∈ Rd×d is a diagonal matrix.
Recall that classically in random matrix theoy (RMT), we know that O1 and O2

are Haar distributed, while D has entries distributed according to the real Wishart
(or Laguerre) Ensemble. This gives multiple ways to approximate this law via
simpler matrices.

We can now formulate the question at hand, which is the topic of a collaboration
with Hachem KADRI and Nizar DEMNI.

Question 6.4.3. By decomposing the matrix W as above, can we approximate
the Gaussian RFF model by simpler models? A natural idea is to approximate:

• the Haar distributed O1 and O2 via only a few products in the virtual isom-
etry decomposition of Chapter 2.
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• the diagonal matrix D by deterministic equivalents of the Wishart distribu-
tion.

These approximations should be to be faster to compute than the original model,
while keeping the same statistical properties. In particular, this should not affect
the kernel learning once the features are computed.
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