
HAL Id: tel-04911253
https://hal.science/tel-04911253v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Provable Security of Cryptographic Primitives: from
Algorithms to Assembly

Benjamin Grégoire

To cite this version:
Benjamin Grégoire. Provable Security of Cryptographic Primitives: from Algorithms to Assembly.
Computer Science [cs]. Université Côte D’Azur, 2024. �tel-04911253�

https://hal.science/tel-04911253v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ CÔTE D’AZUR

ÉCOLE DOCTORALE STIC

Provable Security of
Cryptographic Primitives: from

Algorithms to Assembly

Mémoire de synthése pour l’obtention d’une

Habilitation à Diriger les Recherches

par

Benjamin Gregoire
soutenue le 09 12 2024

HDR Jury

Rapporteurs: Prof. Aurélien Francillon - EURECOM
Prof. Peter Müller - ETH Zürich
Prof. Frank Piessens - KU Leuven

Examinateurs: Prof. Bruno Martin - Université Côte d’Azur
Prof. Christine Paulin-Mohring - Université Paris Saclay

b

Résumé

Les primitives cryptographiques constituent les briques fondamentales de la sécurité
informatique. Dans cette Habilitation à Diriger des Recherches, je propose des
fondements théoriques et pratiques visant à établir la sécurité de ces primitives.

Dans un premier temps, je me suis concentré sur le développement de méthodes
théoriques permettant de démontrer leur sécurité au niveau algorithmique. Cela a
conduit à l’élaboration de la logique de Hoare relationnelle probabiliste (pRHL) et
à la conception de l’assistant de preuve EasyCrypt.

Dans un second temps, mon travail s’est orienté vers l’étude des implémentations
des primitives cryptographiques. Cette étape soulève de nouveaux défis, notamment
en raison de la nécessité d’avoir des implémentations très efficaces. Cela incite
souvent les développeurs à écrire du code en assembleur, un langage peu adapté
à la vérification formelle de la correction des implémentations. Pour répondre à
ce problème, nous avons introduit Jasmin, un langage dédié à l’écriture de code
bas niveau hautement optimisé. Jasmin offre un haut niveau d’abstraction, ce qui
simplifie la vérification formelle des implémentations et facilite le développement
d’analyses statiques. De plus, afin de garantir la sécurité au niveau assembleur, le
compilateur Jasmin a été formellement vérifié dans l’assistant de preuve Coq (projet
Rocq).

Enfin, dans la dernière partie de mes travaux, je me suis intéressé à la résistance
des implémentations face à diverses attaques par canaux cachés, telles que les at-
taques par cache, les attaques basées sur l’exécution spéculative (comme Spectre),
et les attaques par analyse de puissance (Differential Power Analysis).

Ces travaux adoptent une approche à la fois théorique et pratique, en fournissant
systématiquement des outils concrets permettant leur mise en œuvre.

i

ii

Abstract

Cryptographic primitives are the fundamental building blocks of computer security.
In this Habilitation to Direct Research (HDR), I present the theoretical and practical
foundations required to establish the security of these primitives.

In the first part, I focused on developing theoretical methods to prove their secu-
rity at the algorithmic level. This work led to the development of the probabilistic
Relational Hoare Logic (pRHL) and the creation of the proof assistant EasyCrypt.

In the second part, my work shifted to studying the implementation of crypto-
graphic primitives. This stage introduces new challenges, particularly because the
need for highly efficient implementations often drives developers to write code in
assembly language; a language ill-suited for formal verification of implementation
correctness. To address this issue, we have introduced Jasmin, a language specifi-
cally designed for writing low-level, highly optimized code. Jasmin provides a high
level of abstraction, simplifying formal verification of implementations and enabling
the development of static analysis tools. Moreover, to ensure guarantees at the as-
sembly level, the Jasmin compiler has been formally verified using the Coq proof
assistant (project Rocq).

Finally, in the last part of my work, I tackled the challenge of making imple-
mentations resistant to various side-channel attacks, such as cache-based attacks,
speculative execution attacks (e.g., Spectre), and power analysis attacks (Differential
Power Analysis).

These contributions adopt both theoretical and practical perspectives, system-
atically providing tools to facilitate their implementation.

iii

iv

Acknowledgments

Comme on me l’a souvent fait remarquer, j’aurais dû écrire cette Habilitation à
Diriger des Recherches il y a des années. Cela aurait réduit le risque d’oublier de
remercier quelqu’un.

Je tiens à remercier les rapporteurs et les membres du jury, qui ont accepté très
rapidement d’évaluer ce travail et ont su se libérer pour permettre la soutenance de
cette HDR.

Je remercie toute l’équipe Marelle/Stamp qui m’a chaleureusement accueilli pen-
dant de nombreuses années. J’ai particulièrement apprécié travailler avec Laurent.
Même si c’est moins le cas aujourd’hui, j’ai bon espoir que nous aurons de nouvelles
occasions de collaborer à nouveau. Je tiens aussi à remercier Enrico, avec qui nous
avons écrit quelques articles, beaucoup discuté et également grimpé. Une dédicace
spéciale à Yves, qui m’a toujours encouragé à écrire cette HDR. J’espère que tu ne
m’en voudras pas trop de l’avoir rédigée maintenant que j’ai rejoint l’équipe SPLiTS.

Il est clairement impossible de citer toutes les personnes qui m’ont encouragé
à écrire cette HDR, mais je tiens au moins à mentionner Nataliia, qui, je ne sais
pourquoi, a su trouver les mots pour me convaincre lors de la remise des prix de
l’université de Nice, où elle et Swarn ont reçu une distinction.

Proche de moi, il y a aussi ma nouvelle équipe SPLiTS avec Illaria, Manuel,
Tamara, Davide et Martin (qui n’est pas officiellement dans l’équipe, mais on fait
comme si). Je tiens à tous les remercier. Je trouve très excitant de commencer cette
nouvelle aventure avec vous, et je suis sûr qu’elle sera fructueuse. Ces derniers temps,
j’ai particulièrement travaillé avec Martin sur de nouvelles versions des différentes
logiques d’EasyCrypt, ce qui a permis d’établir des résultats de complétude très
intéressants (je sais, Gilles, je vieillis).

Je dois remercier Tamara, qui a énormément contribué à la rédaction de cette
HDR en fournissant motivation, encouragements et de nombreuses relectures. De
plus, j’apprécie ton écoute et ton attention.

Merci à Christine et Nathalie, sans qui mon travail serait un calvaire. Votre
abnégation est incroyable. Je pense qu’il n’est pas toujours facile de travailler avec
quelqu’un capable de réserver un billet d’avion pour le mois de juillet alors qu’il doit
partir en juin. Vous avez toujours su me soutenir, me décharger et m’aider dans la

v

vi

bonne humeur, malgré toutes mes incompétences. Parfois même dans des domaines
inattendus : je me souviens encore de Nathalie faisant du lobbying au sein de l’Inria
pour que je sois recruté.

Je remercie également tous les ingénieurs avec qui j’ai eu la chance de travailler.
Je pense que votre travail est essentiel et devrait occuper une place beaucoup plus im-
portante au sein de l’institut. Commençons par Anne, qui a lancé le développement
d’EasyCrypt, puis Maxime, avec qui les discussions ont toujours été intéressantes
et éclairantes. Plus récemment, j’ai collaboré avec l’équipe du SED, composée de
Thibaut, Romain, Côme et Jean-Christophe. J’apprécie particulièrement l’énergie
que vous apportez aux projets ainsi que les questions pertinentes que vous soulevez.

Je tiens également à remercier les différents étudiants que j’ai encadrés ou avec
qui j’ai collaboré : Assia, Maxime, Santiago, César, Fernando, Jorge-Luis, Michael,
Julien, Sylvain, Cécile, Swarn, Basavesh, Santiago (le second) et Lucas.

Naturellement, il y a aussi de nombreux chercheurs à remercier. Commençons par
la période EasyCrypt/Zoocrypt, avec Benedict, ainsi que François et Pierre-Yves,
avec qui nous avons peut-être bu un peu trop de mojitos en Espagne – je crains que
le code d’EasyCrypt porte encore les stigmates de cette période! La collaboration ne
s’est pas limitée à EasyCrypt : il y a eu également tous nos travaux sur le masking,
auxquels Sonia et Pierre-Alain ont également contribué. À chaque fois, ces projets
ont été réalisés dans la bonne humeur et avec beaucoup d’enthousiasme.

En Espagne, il y avait aussi Vincent, qui est ensuite venu à Sophia pour une
année. Cela a marqué le lancement de Jasmin et des travaux sur la préservation
du constant-time. Il n’est pas toujours facile d’être compris par les autres, surtout
pour un dyslexique capable d’écrire “b” tout en prononçant α, mais Vincent possède
cette incroyable capacité de traduction automatique.

Actuellement, il y a tout le groupe Formosa, avec Andreas, Bacelar, Lionel,
Manuel, Peter, Tiago, et beaucoup d’autres déjà cités plus haut. Ce groupe est
une formidable source de motivation et d’inspiration. C’est incroyable d’avoir la
chance de travailler avec un groupe aussi large de personnes exceptionnelles, qui ont
chacune des compétences différentes et qui permettent d’avancer ensemble dans une
direction commune.

Il suffit de regarder ma liste de publications pour constater que Gilles occupe
une place plus qu’importante dans ma carrière. Il a commencé par être membre de
mon jury de thèse, et il en a profité pour faire des blagues à ma grand-mère. Il a
permis mon recrutement en tant que chercheur et a su croire en moi pour ce qu’il
voyait, et non en fonction de mes diplômes – chose remarquable dans le pays des
grandes écoles.

Gilles, tu es un chercheur exceptionnel, une source d’inspiration, de motivation
et de bonne humeur. Tu m’as toujours soutenu, notamment dans les moments où
ma motivation pour le travail faiblissait. Merci pour tout.

vii

En écrivant ces remerciements, je prends conscience de l’importance que l’amitié
a pour moi. Merci à vous tous pour cela.

Finalement, je tiens à remercier ma compagne Nathalie et mes enfants, Jasmin
et Gaspard. J’espère que mes enfants réaliseront bientôt que leur père n’est pas un
super-héros, même si le super-héros est nain dans Le Seigneur des Anneaux. Vous
arrivez à l’âge de prendre votre envol : croyez en vous !

Ma p’tite Nat, merci pour ta patience, ta compréhension et la liberté que tu me
laisses. Quand on est jeune, on rêve de coups de foudre et d’amours passionnés.
Après bientôt 20 ans de mariage, je réalise à quel point un amour qui grandit et se
consolide jour après jour est plus magnifique encore. Je te dois tous nos succès.

Trente-un ans après le décès de mon père, il me manque toujours autant. Merci,
Papa, pour tout ce que tu as su m’apporter dans cette période trop courte.

viii

Contents

1 Introduction 1

2 Formal proofs of cryptographic primitives 3
2.1 Formal method to reason about cryptographic proofs 4
2.2 Main contributions . 14

3 Cryptographic implementations 15
3.1 Problem with cryptographic implementation 15
3.2 Proposed solutions . 17

3.2.1 Efficiency . 17
3.2.2 The certified Jasmin compiler 18
3.2.3 Type checking and safety analysis 21
3.2.4 Proving Jasmin programs . 24

3.3 Main contribution . 27

4 Side Channels 29
4.1 Problem with side channel attacks . 29
4.2 Preservation of Constant Time . 30

4.2.1 Establishing Constant time 33
4.3 Speculative Constant Time . 34
4.4 Masking . 39
4.5 Main contribution . 43

5 Perspectives 45

i

ii CONTENTS

Chapter 1

Introduction

I defended my PhD entitled Compilation de termes de preuves : un (nouveau)
mariage entre Coq et OCaml in December 2003. My thesis work established the
theoretical and practical foundations of computational proofs in the Coq tool, and
was also an important step towards certified compilers. This work [89, vm compute]
was a major element in the evolution of Coq by providing the infrastructure for re-
flexive proofs or computational proofs, which are now widely used. After that, I did
a post-doc at Inria Sophia Antipolis, where I worked on the proof of the C compiler
: CompCert, with Yves Bertot. I also took advantage of this period to continue
my work on reflexive proofs. My work in this area is founded on the methodology
I developed, with Assia Mahboubi, for the ring tactic [87, Ring/Field]: decision of
ring equalities. This work has been extended to field equalities and comparison in
linear and non-linear arithmetic by Laurent Théry and Frédéric Besson, respectively.
Those tactics are used extensively in Coq today. With Laurent, I have also devel-
oped a library for large integers [78, bignums], for primality proofs [78, 79, coqprime]
and in geometry [70].

With Maxime Dénes, I’ve continued to improve Coq’s computational capacity
by developing compilation to assembler [59], but also by integrating in Coq two
essential components for efficient programs: machine integers and arrays [63]. The
addition of primitive integer and array has enabled the integration in Coq of proofs
generated by the SAT solvers [63] and SMT solvers [58]. This work initiated the
integration of automatic provers into Coq (now taken over by Chantal Keller).

But this work was carried out after I joined Gilles Barthe’s team at Inria Sophia-
Antipolis in 2004 for a post-doc. I was recruited as a researcher in the Everest team
in September 2005, shortly after the birth of my first son Jasmin. It was the start
of a particularly fruitful collaboration, that continues to this day, and I hope, that
will continue for a long time to come.

It was during this post-doc that I began to study much more theoretical aspects of
Coq’s foundations: type theory. In particular with type systems for the termination

1

2 CHAPTER 1. INTRODUCTION

of recursive functions [86, 81, 74, 72, 65], type erasure in conversion [85] and improved
dependent filtering [75] in the Calculus of Inductive Constructions.

In 2007, I began to focus on the proof of probabilistic programs, and more
specifically on proofs of cryptographic primitives. This was during Santiago Zanella-
Béguelin’s thesis. I started at a relatively abstract level: that of algorithms. This
work evolved more and more towards concrete proofs of implementation. Fifteen
years later we are now able to provide very strong guarantees at assembly level and
even at hardware level.

This mémoire d’habilitation summarises those 16 years of research in the topic of
provable security of cryptographic primitives from 2007 to 2023. It focuses on three
complementary topics: security proofs, functional correctness proofs, and protection
against side-channel attacks.

The complete list of my publications since my PhD is listed at the end of the
summary. In the text, citations to my own work between 2007 and 2023 appear in
plain style as in [68] whereas citations to other works appear in alpha style as in
[AP13].

During my research I have always attached great importance to providing new
theoretical results but also, and I’m particularly proud of this, to developing tools
that enable these results to be put into practice. This has given rise to different
tools, some of which are more exploratory research prototypes and some others
which are much more perennial. They are cited after the bibliography in this style:
[EasyCrypt].

As you can see in the publication list, all my publications are done with co-
authors, sometimes with many co-authors. It is always hard to say what is the
exact contribution of each authors in a publication or in a development. Hence, I
have decided to use we everywhere in this mémoire d’habilitation.

Chapter 2

Formal proofs of cryptographic
primitives

Cryptography plays a key role in the security of modern communication and com-
puter infrastructures; therefore, it is of paramount importance to design crypto-
graphic systems that provide strong security guarantees. To achieve this goal, cryp-
tographic systems are supported by security proofs that establish an upper bound
on the probability that a resource-constrained adversary could break the system.
In most cases, security proofs are reductionist; that is, they construct from an (ar-
bitrary but computationally bounded) adversary that would break the security of
the cryptographic construction with some reasonable probability, another computa-
tionally bounded adversary that would break a hardness assumption with a similar
probability.

This approach, known as provable security, is theoretically capable of delivering
rigorous and detailed mathematical proofs. However, new cryptographic designs
(and consequently their security analyses) are becoming increasingly complex. There
is a growing emphasis on shifting from algorithmic descriptions to implementation-
level descriptions that account for practical details, such as recommendations from
standards (where available) and the potential impact of side channels. As a result,
cryptographic proofs are becoming increasingly error-prone and difficult to verify.

In this chapter, we present our efforts to address these concerns through the
development of machine-checked frameworks that support the construction and au-
tomated verification of cryptographic systems. Figure 2.1 provides an overview of
my research in this area.

3

4 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

pRHL
Tool: CertiCrypt
Papers: [68], [61]
Examples: FDH, OAEP

Foundation

module
Tool: EasyCrypt
Papers: [60]
Examples: Cramer Shoup,
Merkle Damg̊ard, SHA3

Usability

Optimistic sampling
Tool: ZooCrypt
Papers: [47][39]
Examples: million of schemes

Automatisation

EasyPQC Jasmin Masking

Figure 2.1: Organisation of the research

2.1 Formal method to reason about crypto-

graphic proofs

In 2007, we began exploring methods for formalizing proofs of cryptographic primi-
tives in Coq. Cryptographers felt that their field was facing a crisis of rigor and were
seeking a tool to address this issue. The approach that seemed most reasonable to
us was the game-playing technique [BR06], or proofs by reductions.

From a formalization perspective, the main advantage of this approach is that
everything can be expressed in terms of probabilistic programs:

• Cryptographic schemes are represented as probabilistic programs;

• Attackers are higher-order (second-order) probabilistic programs, parameter-
ized by oracles (procedures). These oracles can be, for example, a random
oracle, a decryption oracle for IND-CCA, or a sign oracle for EUF-CMA;

2.1. FORMAL METHOD TO REASON ABOUT CRYPTOGRAPHIC PROOFS 5

• Security notions are expressed in the form of a game between an attacker and
the cryptographic scheme. Again, this is a program that represents the inter-
actions between the cryptographic scheme and the adversary, making security
notions third-order programs.

The proofs in this model involve bounding the advantage of the adversary, i.e.,
their winning probability:

Pr[EUF-CMAAS : W] ≤ ϵ

where EUF-CMA represents existential unforgeability under a chosen message attack
game, A is the adversary, S is the signature scheme, W is the winning event, and ϵ
is the exact security bound.

In this game, the adversary’s goal is to generate a valid signature without know-
ing the secret key used in the signature. To achieve this, the adversary has access
to the sign oracle (which depends on the secret key) and to random oracles when
the proof is conducted in the random oracle model (ROM).

To establish this type of inequality, a sequence of transformation steps is applied
to the games. We can distinguish two main categories of transformations:

• Bridging step The game and the event are transformed without changing
the winning probability:

Pr[G1 : E1] = Pr[G2 : E2]

• Splitting step The probability is split into two parts:

Pr[G : E] ≤ Pr[G1 : E1] + Pr[G2 : E2]

An example of this kind of step is the upto-bad step, where we have to prove
that G and G1 are equivalent up to the point where a bad event is triggered.
In this case, we need to bound both the winning probability in G1 and the
probability that the bad event occurs.

After a sequence of transformations, we need to close the proof. This can be done
in two ways: either by directly calculating the probability of the event (for example,
when the event is a fresh random value equals a particular constant), or by showing
that the current game is an instance of a cryptographic assumption, such as the
Computational Diffie-Hellman (CDH) problem. The latter case is called a reduction
because it reduces the original problem to a specific instance of a cryptographic
assumption.

Formalizing this type of proof requires the ability to reason about probabilistic
programs and their semantics. We also need methods for proving program equiv-
alence exactly (bridging step) or approximately (upto-bad). Finally, we need a
method to bound the probability of an event occurring in a game.

6 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

CertiCrypt: In 2009, we published the paper [68] and introduced the Coq library:
CertiCrypt [CertiCrypt]. This work presents the theoretical foundations for proving
cryptographic primitives. A key contribution of this work is the introduction of
probabilistic relational Hoare logic (pRHL), a logic that allows proving the equiv-
alence of programs. This logic forms the foundation of CertiCrypt and all the work
presented in this chapter (see Figure 2.1).

The pRHL logic was formally verified in Coq. To achieve this, we developed a
library in Coq that defines the semantics of pWhile, a simple while-language with
procedure calls and random sampling.

A pRHL judgment has the following form:

{ϕ} G1 ∼ G2 {ψ}

where G1 and G2 are probabilistic programs, ϕ is the pre-condition, and ψ is the
post-condition. The pre- and post-conditions are relations over memories (the state
of the programs). The logic allows for relating the execution of two probabilistic
programs.

The interpretation of a traditional Hoare judgment over a non-probabilistic pro-
gram is typically defined as follows:

{ϕ} G {ψ} ::= ∀m, ϕ m⇒ ψ [[G]]m

In other words, for all initial memories m satisfying the pre-condition, the final
memory [[G]]m (the memory obtained after evaluating G starting from m) should
satisfy the post-condition. The same idea applies to the interpretation of a pRHL
judgment, except that the pre- and post-conditions are relations over memories
rather than predicates, and the semantics of a probabilistic program is a distribution
of memories rather than a single memory. Since the post-condition is a relation over
memories, we need a method to lift it to a relation over distributions.

An appropriate method to do this is probabilistic coupling [Lin02]. Let d1 be a
distribution over A and d2 be a distribution over B and ψ a relation over A × B,
the lifting of ψ to a relation over Distr(A) × Distr(B) is defined by

d1 ⇓ψ d2 ::= ∃ d : Distr(A×B),

π1(d) = d1

π2(d) = d2

∀a b, (a, b) ∈ d⇒ a ψ b

d is a distribution of A×B statisfying three properties. The first condition ensures
that the projection of d onto its first component follows the same distribution as
d1. The second condition ensures that the projection onto the second component
follows the same distribution as d2. The last condition ensures that all pairs (a, b)
in d (i.e., those with non-zero probability) satisfy ψ.

2.1. FORMAL METHOD TO REASON ABOUT CRYPTOGRAPHIC PROOFS 7

Using this definition, the interpretation of a pRHL judgment is:

{ϕ} G1 ∼ G2 {ψ} ::= ∀ m1 m2, m1 ϕ m2 ⇒ [[G1]]m1 ⇓ψ [[G2]]m2

Recall that since G1 and G2 are probabilistic programs, their denotations [[G1]]m1

and [[G2]]m2 are distributions over memories.
It is important to understand the consequences of establishing such a judgment

with respect to probabilities. Assume we can prove {ϕ} G1 ∼ G2 {E⟨1⟩ ⇒ F ⟨2⟩}
where the notation E⟨1⟩ (resp. F ⟨2⟩) means that the predicate E is evaluated in
the first memory (resp. second memory). Then, for all memories m1 and m2 such
that m1 ϕ m2, we have Pr[G1,m1 : E] ≤ Pr[G2,m2 : F]. This follows form the
interpretation of the judgment and form monotonisity of the expectation:

Pr[G1,m1 : E] = Pr[d : E⟨1⟩] ≤ Pr[d : E⟨2⟩] = Pr[G2,m2 : F]

Similarly, the judgment {ϕ} G1 ∼ G2 {E⟨1⟩ ⇔ F ⟨2⟩} allows us to conclude that
Pr[G1 : E] = Pr[G2 : F].

While it is possible to define a syntactic criterion to decide if two programs are
equivalent up to a bad event, it is also possible to define it using the logic. For
example:

bad⟨1⟩ ⇔ bad⟨2⟩ ∧ (¬bad⟨1⟩ ⇒ E⟨1⟩ ⇔ F ⟨2⟩)
is a suffisiant post-condition to prove that

|Pr[G1 : E] − Pr[G2 : F]| ≤ Pr[Gi : bad]

While a syntactic criterion is very convenient from a proof/automation point of
view, this logical criterion provides much more expressivity in defining bad events.

I believe a key feature of the logic is that pre- and post-conditions are relations
over memories, rather than distributions. While the judgment allows us to relate
the probabilities of events in two programs, most of the reasoning steps do not
involve distributions. Naturally, distributions arise from time to time, particularly
in the rule relating two random samplings. This rule provides sufficient conditions
to demonstrate the existence of a coupling.

Adversaries In cryptography, security properties are universally quantified over
adversaries. In CertiCrypt/EasyCrypt, adversaries are represented by abstract pro-
grams, i.e., programs for which the code is unknown. From the perspective of the
logic, this has significant implications: the logic needs to provide rules to reason
about unknown code. Without restrictions on the unknown code, this would be
impossible. The typical restriction on adversaries in cryptographic proofs is usu-
ally on their complexity; specifically, adversaries are assumed to be probabilistic

8 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

polynomial-time (PPT). While this is important for cryptographic assumptions, it
is irrelevant from the logic’s point of view. For the logic, the critical information is
which parts of the memory can be read and written by the adversary. Reading is
important because it influences the adversary’s behavior, while writing is important
because it affects the behavior of other parts of the program.

To provide intuition on how we can have logical rules for adversaries, let’s start
with Hoare logic. Since the adversary can call oracles, we can view it as a loop that
executes its code and, from time to time, executes the code of the oracles. Similar
to logical rules for while loops, a natural idea is to prove that the oracle preserves
an invariant, i.e., if the invariant is true at the beginning of the oracle’s execution, it
remains true at the end. Since the adversary executes some code between two calls
to oracles, it is important to show that it cannot break the invariant. A sufficient
condition to ensure this is to make sure that the invariant does not depend on the
part of the memory that can be modified by the adversary, or, symmetrically, that
the adversary cannot write to the part of memory read by the invariant.

For relational logic, a trivial rule is that if the two programs are identical and
the pre-condition ensures the equality of the state (at least the parts of the state
that the program depends on), then the final states will be equal (at least the parts
that have been written). The advantage of this rule is that it is independent of the
code of the program. The disadvantage is that it requires exactly the same code on
both sides, so it does not allow modifications to the oracles passed to the adversary.
Our solution is to blend this trivial approach with the Hoare logic rule presented
earlier.

The rule for adversaries starts by requiring that both sides involve calls to the
same adversary (i.e., the same abstract program), although the oracles on both sides
can differ. The precondition ensures that the part of the memory readable by the
adversary is the same on both sides and that the relational invariant is initially
true. It ensures that the part of the memory writable by the adversary will be equal
after its execution and that the invariant remains valid. The rule requires that the
relational invariant is preserved by oracle pairs, and assuming equality of oracle
arguments, that the results will be equal. This allows maintaining the equality of
the adversary’s state on both sides. The rule can be proved by simple induction on
the adversary’s code, using the rules of the logic.

A more intricate rule is provided for equivalence up to-bad (with adversary).
This rule ensures that the relational invariant is preserved up to the point where
a bad event is triggered, that the bad event remains stable once it is set, and that
the code terminates with probability one. This last condition is required by the
interpretation of the logic, as the notion of coupling implies that the probability of
termination, i.e of true, is equal in both distributions.

2.1. FORMAL METHOD TO REASON ABOUT CRYPTOGRAPHIC PROOFS 9

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ

Figure 2.2: OAEP history

OAEP One of the major achievements of CertiCrypt is the proof of IND-CCA se-
mantic security for Optimal Asymmetric Encryption Padding (OAEP) [61]. This is
because this proof had a history of failures and patches (see Figure 2.2) and the fact
of having a machine-checked proof convinced the cryptographers that our tool had
the sufficient maturity level to succeed in providing proofs that cryptographers had
difficulty doing by hand.

The history of OAEP security is fraught with difficulties. The original 1994
paper by Bellare and Rogaway [BKR94] proved that, under the assumption that the
underlying trapdoor permutation family is one-way, OAEP is semantically secure
against chosen-ciphertext attacks. However, in 2001, Shoup [Sho01] discovered that
this proof only established security against non-adaptive chosen-ciphertext attacks,
rather than the stronger version of IND-CCA, which allows an adversary to adaptively
obtain the decryption of ciphertexts of its choice. Shoup proposed a modified scheme,
OAEP+, which is secure against adaptive attacks under the one-wayness of the
underlying permutation, and provided a proof of the adaptive IND-CCA security of
the original scheme when used with RSA with public exponent e = 3.

At the same time, Fujisaki, Okamoto, Pointcheval, and Stern [FOPS04] proved
that the original formulation of OAEP is secure against adaptive attacks under
the assumption that the underlying permutation family is partial-domain one-way.
Since, in the particular case of RSA, this assumption is no stronger than (full-
domain) one-wayness, this result established the adaptive IND-CCA security of RSA-
OAEP. In 2004, Pointcheval [Poi05] provided a different proof of the same result,
filling several gaps in the reduction from [FOPS04], which led to a weaker bound than
originally stated. Nonetheless, the inaccurate bound from [FOPS04] has remained
the reference bound in practical analyses of OAEP, as noted in [Bol09].

Finally, Bellare, Hofheinz, and Kiltz [BHK09, BHK15] pointed out ambiguities
in the definition of IND-CCA, leading to four possible formulations (all used in the
literature), and questioned which definition is employed in the statements and proofs
concerning OAEP.

Achiving this proof in CertiCrypt was a challenging task. One key point was to

10 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

devellope method to capture the informal notion used by cryptographer: “the value
is uniformly distributed and independent from the adversary’s view”. To capture
this notion, we have devellopped a logic for Eager/Lazy sampling [64]. The logic
allows interprocedural code motion, in which sampling statements are moved from
an oracle to the main command of the game or, conversely, from the main command
to an oracle.

EasyCrypt The paper on OAEP [61] is both an achievement and an admission of
failure. It was an achievement because it was the first important proof performed
using tools like this.

It was a failure because it became clear that the amount of work and expertise
in formal proofs required to produce this type of proof using CertiCrypt was a major
obstacle that would prevent cryptographers from using our tools. So we had to come
up with something else. This led us to develop EasyCrypt [EasyCrypt], which we
are still developing today. The idea was to develop a prover independent of Coq,
completely dedicated to the proof of probabilistic programs.

There were 4 main difficulties in developing the tool within Coq:

• Error messages: When building a tool on top of Coq, it is hard to provide
good error messages with proper localization. This is relatively simple if the
tool is implemented in a language like OCaml.

• Reduction rules and differences between Prop and bool: Coq distinguishes
between the set of Propositions (Prop) and the set of decidable propositions
(bool). For a non-expert, this is very surprising. Furthermore, most predicates
in Coq do not reduce, so True ∧ P is not convertible with P—they are only
provably equivalent. This is the case for the boolean version true && b but
not for b && true. While it is possible to provide a good automatic Coq tactic
to solve this (as SSReflect shows), it creates significant overhead.

• Lack of integration with SAT/SMT solvers: The proof obligations obtained
using pRHL are very different from what you usually obtain in Coq. They are
large, but most can be trivially proven. Thus, it is important to be able to
solve them mostly automatically.

• Proved logical rules versus usable rules: While it is nice to have a sound and
possibly complete Hoare logic, this doesn’t make it usable. Moving from a
sound logic to a user-friendly one represents a lot of work. Coq is very useful
for proving that the logic is correct, but it is less convenient for making it
user-friendly.

After 10 years of development, I am not completely sure it was the right choice,
in the sense that the trusted base of EasyCrypt is much larger than that of CertiCrypt.

2.1. FORMAL METHOD TO REASON ABOUT CRYPTOGRAPHIC PROOFS 11

However, we are still developing and using EasyCrypt, and I’m not sure that would
have been the case if we had continued with CertiCrypt.

The initial idea of EasyCrypt was to have a strong connection with SMT provers.
The objective was to discharge most of the side conditions of the logic rules us-
ing SMT. Furthermore, the idea was to derandomize the programs, i.e., to split
programs into two parts. The first part would start by sampling the randomness,
while the second part was deterministic. Naturally, this derandomization is done
through automatic program transformation. Thus, a weakest precondition calculus
can be used to compute the precondition of the deterministic part. Finally, the
relational logic can be used to build the coupling between the random parts of each
program. This is the high-level pitch. In practice, things are more complex because
derandomizing a loop is not always possible, and the same challenge arises with
adversaries.

The second idea was to use a module system to structure games. In that setting,
adversaries are just abstract functors. Giving oracles to adversaries corresponds to
functor application, and performing a cryptographic reduction simply corresponds
to functor abstraction and application.

The result of this work was published in [60] and received the Best Paper Award.
I think this was a very important step. First of all, it was our first publication in
a cryptography conference—previous publications had been either in programming
language or security conferences. But above all, we were able to convince cryp-
tographers that our work could solve their rigor problem and make a meaningful
contribution to their field.

Zoocrypt [ZooCrypt]: The CertiCrypt and EasyCrypt languages are very expres-
sive; there are no real restrictions on the programs and security properties that
can be expressed. The only limitation is that they apply to probabilistic programs
but not to quantum programs. The downside is the degree of automation we can
provide.

The paper [47] therefore follows a different approach: we consider a very re-
stricted language and security properties. Programs are restricted to encryption
schemes that can be described using bitstrings, concatenation, exclusive-or, random
sampling, hash functions (random oracle), and trapdoor permutations. Security
properties are limited to IND-CPA and IND-CCA2. The upside is a fully automatic
proof strategy based on a simple logic.

The judgments for the IND-CPA logic have the following form:

|=p c : ϕ

Where event ϕ can be Guess, Ask(H, e), or a conjunction of events. Guess corre-
sponds to the adversary correctly guessing the hidden bit b in the CPA game, and

12 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

Ask(H, e) corresponds to the adversary querying the random oracle H(e). p is the
winning probability of the adversary.

The objective here is not to provide a full description of the logic; interested
readers can refer to the paper directly. What I would like to emphasize is a simple
rule called optimistic sampling. The rule is as follows:

|=p c : ϕ r /∈ R(e)
|=p c{e⊕ r/r} : ϕ{e⊕ r/r}

Here, r is a random value, e is an expression in the language, and R(e) is the set of
random values used in e. The validity of the rule follows from the fact that r and
e⊕ r follow the same distribution.

Assume that we would like to prove |=p c
∗ : ϕ∗ using the rule. The difficulty is

to find r, e, c, and ϕ such that c∗ = ce⊕ r/r and ϕ∗ = ϕe⊕ r/r with r /∈ R(e). One
way to achieve this is to find two contexts, C and Φ, along with r and e, such that
r /∈ R(C) ∪ R(Φ), c∗ = C[e⊕ r], ϕ∗ = Φ[e⊕ r], and r /∈ R(e). In this case, we can
take c = C[r] and ϕ = Φ[r].

While relatively simple, this rule is key to our work on masking, presented in
Chapter 4. Being able to find these contexts efficiently was not critical because the
expressions we manipulated were relatively small. However, efficiency is crucial for
the work in Chapter 4.

The paper also proposes fully automated methods for finding attacks against
chosen-plaintext and chosen-ciphertext security. Our methods are inspired by static
equivalence [AF01] and exploit the algebraic properties of trapdoor permutations
to find attacks against realizations of schemes that are consistent with computa-
tional assumptions. We demonstrated the strengths of our methods by implement-
ing a toolset for fully automatic analysis of a set of user-given or machine-generated
schemes. We generated more than one million examples and used the toolset to
analyze their (in)security. The output of the analysis is a database that records, for
each scheme and set of assumptions, either an adversary that breaks the scheme’s
security or a formal derivation that proves its security.

The smallest scheme found through this method is ZAEP: our tool was able
to automatically prove that it is IND-CPA but not that it is IND-CCA. Using
stronger hypotheses on the trapdoor permutation, the scheme was proven IND-CCA
in [BPB12].

EasyPQC: The area of post-quantum cryptography (PQC) focuses on classical
cryptosystems that are provably secure against quantum adversaries. PQC is based
on computational problems that are conjectured to be hard for quantum computers,
e.g., the learning with errors problem [Reg05]. Simply relying on such assumptions,
however, is insufficient to ensure security against quantum attackers; one must also
verify that a security reduction holds in the quantum setting.

2.1. FORMAL METHOD TO REASON ABOUT CRYPTOGRAPHIC PROOFS 13

A natural question to ask is whether we need a fundamentally different approach
to the design of formal verification tools to capture these results, which seem tan-
talizingly close to the classical setting. For example, Unruh [Unr19] suggests that
EasyCrypt is not sound for quantum adversaries. Concretely, [Unr19] claims that
the CHSH protocol, which is secure in the classical setting but not in the quantum
setting, can be proved secure in EasyCrypt. While this point is moot because the
EasyCrypt logics were not designed (or claimed) to be sound for the quantum setting,
it does raise an important question that we address in the paper [12]:

1. Can we adapt the EasyCrypt program logic and libraries in a way that guar-
antees their soundness for PQC proofs?

2. Is the resulting framework expressive and practical to use?

In the paper, we affirmatively answer both questions. For the first, we provide a
post-quantum relational Hoare logic (pqRHL), a mild variant of EasyCrypt’s proba-
bilistic relational Hoare logic (pRHL), and prove that pqRHL is sound for reasoning
about quantum adversaries.

To answer the second question, we have developed a new implementation of
EasyCrypt for verifying post-quantum security proofs. The advantage of the new
version is its compatibility with the original EasyCrypt. We have used the new
tool to provide mechanized proofs of PRF-based MAC [BZ13], full domain hash
signatures [BR96, BDF+11], as well as the GPV08 identity-based encryption scheme
[GPV08, Zha12].

For the moment, I have not merged this version into the main branch of Easy-
Crypt for mainly two reasons:

1. While I am very confident in the theoretical part of the paper, the implemen-
tation does not exactly match the theory. In fact, the implementation uses
an encoding of the EasyCrypt language. This encoding has never been fully
formalized, so the possibility of encountering a bug exists.

2. The language provided in the implementation is more restrictive than the one
provided in the theory. This is too restrictive to express some fundamental
lemmas like the O2H one [Unr15]. This is a severe restriction that needs to be
removed.

To address these issues, we have started a collaboration with Dominique Unruh
to develop a logic that is sufficiently expressive and closer to the implementation.
This will be one of my main subjects in the coming years.

14 CHAPTER 2. FORMAL PROOFS OF CRYPTOGRAPHIC PRIMITIVES

2.2 Main contributions

We developed the pRHL logic [68], which is a relational Hoare logic for verifying
the equivalence of probabilistic programs [53, 64]. We implemented this logic in
Coq, with the CertiCrypt library [68], which made it possible to verify numerous
cryptographic constructions [73, 69, 62, 61, 54, 46]. One of the keys to success
has been the intensive use of reflective evidence and the certification of program
transformations. To facilitate the adoption of formal proofs by cryptographers, we
have then developed the EasyCrypt proof assistant [60, 52, 55]. It is based on on
a combination of proof assistants and SMT. EasyCrypt has been used for many
applications [60, 51, 50, 49, 44, 31, 26, 19], with in particular the proof [19] of the
SHA3 standard (partly funded by NIST) and the proof of the AWS KMS protocol
[18].

Another aspect of my work is proof automation. We have implemented the first
automatic synthesis tool for cryptographic primitive constructions [50, 47, 39, 24]
and I helped develop variants of EasyCrypt with a more limited but automatic scope
[39, 44].

The main theoretical contribution of this chapter is clearly the probabilistic
Relational Hoare Logic. From the point of view of the tools the CertiCrypt library was
a major step allowing us to formally define the semantic of probabilistic programs,
to prove the rules of the logic, and to capture most of the notions needed to formalize
cryptographic proofs. The second and most famous milestone is EasyCrypt, it has
been used to develop mainly examples but it has also been used to develop a variant
of the logic like apRHL. It is the key milestone of the verification tool chain that we
use for the formal verification of Jasmin program in the Formosa project.

There are four major publications on that domain:

• In [68], we presented pRHL. It was also my first POPL paper.

• In [60] we presented the EasyCrypt tool, and the technique that can be used
to simplify cryptographic proofs, the paper got the Best Paper Award.

• In [47], we presented ZooCrypt. This paper was an important step for my
work on masking.

• In [12], we present a first extension of EasyCrypt allowing to perform proofs
in the post-quantum setting.

Chapter 3

Cryptographic implementations

3.1 Problem with cryptographic implementation

Cryptographic software is pervasive in software systems. Although it represents a
relatively small part of their code base, cryptographic software is often their most
critical part, since it forms the backbone of their security mechanisms. Unfortu-
nately, developing high-assurance cryptographic software is an extremely difficult
task. Indeed, good cryptographic software must satisfy multiple properties, includ-
ing efficiency, protection against side-channel attacks, and functional correctness,
each of which is challenging to achieve:

• Efficiency. Cryptographic software must imply minimal overhead for system
performance, both in terms of computational and bandwidth/storage costs.
These are first-class efficiency requirements during development: a few clock
cycles in a small cryptographic routine may have a huge impact when executed
repeatedly per connection established by a modern service provider.

• Functional correctness. Specifications of cryptographic components are often
expressed using advanced mathematical concepts, and being able to bridge
the enormous semantic gap to an efficient implementation is a prerequisite for
the implementor of a cryptographic component. Moreover, implementations
may involve unconventional tasks, such as domain-specific error handling tech-
niques. Guaranteeing functional correctness in these circumstances is harder
than for other software domains, but it is critical that it is guaranteed from
day one—contrary to the usual detect-and-patch approach—as implementa-
tion bugs in cryptographic components can lead to attacks[BBPV12, GK13].

• Protection against side-channel attacks. In-depth knowledge of real-world at-
tack models, including side-channel attacks, is fundamental to ensure that the

15

16 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

implementation includes adequate mitigation. I will explain this in more detail
in the next section.

Efficiency considerations rule out using high-level languages, since the code must
be optimized to an extent that goes far beyond what is achievable by modern, highly
optimizing compilers. Furthermore, there are concerns that highly optimizing com-
pilers may introduce security flaws [DPS15, KPVV16]. As a consequence, the devel-
opment of cryptographic software must be carried out at the assembly level and is
entrusted to a few select programmers. Moreover, these programmers rely on rudi-
mentary tooling that is often co-developed with the implementations themselves.
For instance, security- and performance-critical parts of the OpenSSL library re-
sult from an ad hoc combination of pseudo-assembly programming and scripting,
known as “perlasm”. Another alternative is to use the qhasm language [Ber], which
simultaneously elides low-level details that are inessential for fine-grained perfor-
mance tuning and retains all performance- and security-critical aspects of assembly
programming. qhasm achieves an excellent balance between programmability and
efficiency, as evidenced by a long series of speed-record-breaking cryptographic im-
plementations. Due to their nature, these approaches do not lend themselves to
being supported by formal verification.

Functional correctness and side-channel security requirements for high-assurance
cryptography impose going significantly beyond the current practices used for val-
idating implementations, namely code inspection, code testing (and in particular,
fuzzing), and even static analysis. Code inspection is time-consuming and requires
a high level of expertise. Testing is particularly effective for excluding errors that
manifest themselves frequently but performs poorly at detecting bugs that occur
with very low probability. Static analysis is useful for detecting programming errors
but does not discover functionality bugs. A better alternative is to create machine-
assisted verification frameworks that can be used for building rigorous proofs of
functional correctness and side-channel security. However, these frameworks are not
easily applicable to assembly languages, which is the level at which guarantees need
to be provided.

In the realm of cryptographic primitives, especially with the emergence of new
post-quantum primitives, proving functional correctness is not an end in itself. When
the specification involves a relatively simple operation like exponentiation, it may be
convincing that it accurately represents the intended mathematical concept. How-
ever, it is preferable to go beyond conviction and prove that the specified operation
indeed satisfies the expected properties. The challenge arises when the specifica-
tion becomes more intricate, as observed in cases like Kyber and Dilithium. How
can one trust a complex specification? More importantly, how can we establish the
correctness of the specification itself?

For cryptographic primitives, like encryption schemes or signature schemes, there

3.2. PROPOSED SOLUTIONS 17

is a well-established setting to describe the properties that should be satisfied. So
my claim is that we should prove functional correctness against a specification that
has been itself proved to be cryptographic secure, as can be done using a tool like
EasyCrypt.

3.2 Proposed solutions

We have pioneered the development of the Jasmin infrastructure, aimed at facilitat-
ing the creation of efficient, correct, and secure cryptographic code. Our primary
objective is to deliver formally verified implementations capable of supplanting un-
verified cryptographic routines present in conventional libraries. The idea is to have
a programming language designed to serve both the programmer—by providing ex-
pressiveness and control—and the tools for analyzing and transforming programs.
The Jasmin programming language combines high-level functionality with instruc-
tions similar to those in assembly languages (in particular, vectorized instructions).

3.2.1 Efficiency

Rather than relying on a compiler that aggressively optimizes code generation for
efficiency, our approach is to craft a language enabling programmers to write code
that can be seamlessly compiled into efficient assembly programs. This approach
offers two distinct advantages: firstly, it simplifies the compiler development process
(including its formal verification), and secondly, it empowers programmers with
greater control over the resulting compiled code. This latter aspect is particularly
crucial in scenarios where efficiency isn’t the sole objective, and considerations for
security assurances are paramount.

To this end, the Jasmin language provides access to the low-level functionalities
of assembly. In particular, the programmer has access to most assembly instructions
and flags (such as the carry flag). The programmer exercises strong control over how
the code is generated:

• They can specify whether a variable should be stored on the stack or in a
register.

• They can determine which functions should be inlined, which loops should be
fully unrolled, etc.

• Direct access to most assembly instructions is available, providing similar func-
tionality to C intrinsics. Notably, X86-64 AVX and AVX2 instructions are
directly usable from Jasmin source programs.

18 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

In this sense, Jasmin can be viewed as a macro language for assembly.
Jasmin also provides higher-level structures like arrays. Again, the programmer

can decide whether the array should be stored on the stack or in registers (in which
case, the compiler will allocate each cell of the array into registers). While compi-
lation of arrays corresponds to in-place memory access, their source semantics are
functional; i.e., updating an array t returns a fresh t′ while the original array t re-
mains unmodified. It is the role of the compiler to ensure that all memory operations
can be performed in place. This complicates the compiler, but it offers significant
advantages when the goal is to prove the functional correctness of Jasmin programs
or to build static analyses for Jasmin: there is no alias.

3.2.2 The certified Jasmin compiler

The compiler is predictable and produces efficient code. However, ensuring the
correctness of the resulting assembly code is paramount. How can we confidently
assert that the compiler doesn’t inadvertently introduce bugs during the translation
process? Our answer is to prove the functional correctness of the compiler using the
Coq proof assistant, like it has been done with the CompCert compiler [Ler06].

An overview of the Jasmin compiler is depicted in Figure 3.1. Nearly all compo-
nents of the Jasmin compiler are directly written and verified in Coq (highlighted in
green). The remaining components (highlighted in blue) are implemented in OCaml,
with a Coq-verified checker ensuring the correctness of their transformations. Ulti-
mately, the Coq code representing the compiler is extracted to OCaml, yielding an
executable compiler.

An intriguing aspect to note is the minimal use of intermediate representations
(Jasmin, Stack, Linear, ASM) in the compilation chain. Both Jasmin and Stack share
identical code representations, with only the semantics differing. This streamlined
approach is made possible by Jasmin ’s capacity to address low-level features directly
at the source level.

The unverified passes, depicted in brown, include the initial parsing pass followed
by the Preprocess pass. The latter constructs the data structure (the Abstract
Syntax Tree - AST) employed by the certified compiler. Additionally, it elaborates
on the implicit information not present in the Jasmin syntax (.jazz) and potentially
conducts sanity checks on the resultant Jasmin program.

The third pass entails type checking, which doesn’t alter the program. Although
this phase remains unverified currently, its certification holds significance, as elabo-
rated in Section 3.2.3.

After completing these initial stages, one can proceed with compilation using the
certified compiler or choose to conduct various verifications on the resulting Jasmin
program. The first verification step is a safety analysis, aiming to ensure the pro-
gram’s well-defined semantics (refer to Section 3.2.3). The second step involves type

3.2. PROPOSED SOLUTIONS 19

.jazz Parse Preprocess Type-check Jasmin

EasyCryptSafety Analysis

(S)CT Checker

Array copyAdd initInlining
Function
pruning

Constant
prop.

DCEUnrolling

Live-range
splitting

Remove
init

Reference
arguments

Reg. array
expansion

Live-range
splitting

Globals
Instruction
selection

Inline
prop.

Stack
allocation

Stack
Remove
ret. ptr.

Register
allocation

DCE
One

varmap

Linearize Linear Tunnel. Asm. gen. ASM
Pretty-
printing

.s

Trusted step

Proved step

Validated step

Intermediate representation

Checker

Transformation

Figure 3.1: Overview of the Jasmin compiler

20 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

checkers to verify that the program is (speculatively) constant time (see Sections 4.2
and 4.3). The last step involves translating Jasmin programs into EasyCrypt, enabling
verification of properties such as functional correctness (Section 3.2.4), constant-time
behavior (Section 4.2), and security (Section 3.2.4). Importantly, these verifications
and translations occur just before the fully verified compiler phases.

Finally, the last pass (Pretty-printing) is unverified. It prints assembly code and
outputs it to a file. While proving its correctness is important, it poses challenges
in Coq due to the inability of Coq functions to include side effects. Fortunately,
manual inspection of this pass is relatively straightforward1.

Let’s take a look at the general form of the functional correctness of the compiler:

Theorem 1 (Correctness). For all source programs P , target programs P ′, source
states s and s′, and target state t, such that:

1. The compilation of P succeeds and generates P ′.

2. The evaluation of P starting from s leads to the final state s′: s
P−→ s′.

3. The state s is in relation with the target state t: s ≈ t.

Then there exists a target state t′ such that:

• The evaluation of P ′ starting from the target state t leads to a state t′: t
P ′
⇝ t′.

• The state s′ is in relation with the target state t′: s′ ≈ t′.

I will not describe the exact definition of ≈ here. What is important to remember
is that this relation allows us to lift functional properties of Jasmin programs from
source to assembly. This is because the relation ensures equality of the results
between the source and target programs (i.e., return values and memory). Note
that this theorem guarantees only the existence of a target derivation that satisfies
the relation with the source. The generalization to all target executions follows
from the safety of the source program and the determinism of the target language.

Assume we have a target derivation t
P ′
⇝ t′ By the safety of the source, there exists

a source state s′ such that s
P−→ s′. According to Theorem 1, there exists t′′ such

that t
P ′
⇝ t′′ and s′ ≈ t′′. Given the determinism of the target language, it follows

that t′ = t′′.
Unfortunately, this theorem is not sufficient to prove the preservation of relational

properties, such as cryptographic constant time (see Section 4.2 and Section 4.3).

1We can certainly improve the code for better readability.

3.2. PROPOSED SOLUTIONS 21

3.2.3 Type checking and safety analysis

It is important to note that Theorem 1 guarantees correctness only for well-defined
programs (condition 2), meaning those with clearly defined semantics. In strongly
typed programming languages such as OCaml or Rust, safety is enforced by the type
system, although certain primitive operations may still require runtime checks to
prevent violations. For instance, array access necessitates dynamic verification to
avoid buffer overflow, while division operations must ensure that the divisor is not
zero.

In the context of Jasmin, we strive to avoid these runtime checks for efficiency
purposes. However, the basic type system of Jasmin is insufficient for this task,
necessitating a more complex static analysis known as safety analysis. Its goal is
to ensure there are no occurrences of buffer overflow, division by zero, or the use of
uninitialized variables (or accessing unallocated memory).

To address this need, Adrien Koutsos and Vincent Laporte have developed a
safety analysis tool in OCaml specifically for Jasmin programs. This tool assumes
that the input program is well-typed. The output of the analysis consists of safety
preconditions that must be verified by the initial state of the program. These precon-
ditions may specify requirements such as memory regions being readable/writable
by the program, with regions defined in terms of the program’s arguments (e.g., a
pointer p and length n defining a memory region between p and p+ n)

However, the current state of the safety checker presents several challenges:

• Certification/Validation: While Theorem 1 relies on safety, neither the
safety checker nor the type system are certified. While proving the type sys-
tem’s correctness may be relatively straightforward, certifying the safety anal-
ysis is likely beyond the current capabilities of program verification technology.
In particular, this will require a certified version of the Apron [JM09] static
analysis library. However, validating the analysis results may be feasible using
techniques similar to those used in [BJPT10, BCJP09, FMP13].

• Consistency with Formal Semantics: The conditions verified by the safety
analysis are strongly tied to the formal semantics of Jasmin, yet its imple-
mentation only considers Jasmin’s AST. Maintaining consistency between the
analysis and semantics requires manual inspection, which is a tedious and
error-prone process.

• Genericity: Although Jasmin supports back-ends for X86-64 and ARM-v7,
the current safety analysis only works for X86-64. This limitation stems from
the analysis’s development predating the introduction of the ARM back-end.
Achieving a more backend-independent analysis approach is challenging due
to the direct usability of low-level assembly instructions at the Jasmin source
level.

22 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

• Completeness/Efficiency: The tool’s completeness is limited, and its ex-
ecution can be prohibitively costly. Addressing this issue involves improving
the tool itself or relaxing Jasmin’s semantics to simplify the conditions required
for verification. However, this reintroduces the challenge of maintaining con-
sistency with the formal semantics.

In summary, while the safety analysis tool is a crucial component for ensuring
program safety in Jasmin, several challenges remain in terms of certification, consis-
tency, genericity, and efficiency. Now, let’s delve into potential strategies to address
these diverse hurdles.

Refining Jasmin’s semantics From a safety perspective, a notable challenge with
the current semantics lies in its reliance on big-step semantics. This approach brings
forth two significant implications. Firstly, only terminating programs are considered
safe, and so safety analysis must ensure program termination. Determining termi-
nation is notoriously difficult, and furthermore, the termination condition imposed
is overly restrictive for Jasmin programs. For instance, cryptographic primitives like
Kyber and Dilithium employ a rejection sampling algorithm, i.e., repetitive sam-
pling until a specific condition is met to ensure adherence to a desired distribution2.
Secondly, our big-step semantics fail to differentiate between non-terminating pro-
grams and those that raise runtime errors (such as type errors or buffer overflows,
for example). In both scenarios, the program lacks a formal semantic representation.
Consequently, expressing the correctness of the type system is not possible because
we cannot express that no runtime error occurs. In fact, it is possible to address
this for the semantics of the expressions of the language; their semantics is defined
by a function that can return an error, but not for the instructions of the language.

Hence, the objective is to revise the Jasmin semantics to eliminate the termi-
nation constraint and accommodate runtime errors. The conventional approach
involves transitioning to a small-step semantics, albeit at the cost of rewriting the
compiler proofs entirely, which will be more complex since big-step semantics offer a
straightforward induction principle. Certainly, leveraging interaction trees [XZH+19]
presents a promising solution. This framework facilitates capturing non-terminating
semantics while preserving an induction principle akin to our current methodology.
This alignment is crucial for retaining the extensive 80k lines of proofs associated
with the Jasmin compiler.

Partial certification of safety analysis To advance towards the formal veri-
fication and validation of safety analysis, a promising approach involves dividing

2For example, to uniformly sample a number between 1 and 4, one might roll a six-sided die
until a result of 4 or lower is obtained, yielding a uniform distribution within the range [1..4].

3.2. PROPOSED SOLUTIONS 23

the safety analysis into two distinct components. Initially, this entails developing a
safety condition generator—a tool that computes, for each program point, a set of
conditions that need to be satisfied to ensure overall program safety.

Assuming that the termination problem is solved, verifying the correctness of
both the type checker and the safety condition generator becomes straightforward:
If the program is well-typed, then it undergoes evaluation without encountering type
errors. Moreover, if it is well-typed and the generated safety conditions are satisfied
at each program point, then instructions can be evaluated without triggering runtime
errors.

It would be advantageous not only to prove the correctness of the safety condition
generator but also its completeness. This will ensure that the unsatisfiability of a
safety condition leads to a runtime error. Moreover, this division introduces greater
generality into safety analysis. Rather than needing to know every instruction to
determine which conditions must be met, the analysis simply needs to interpret and
validate conditions generated by the generator.

In the long term, a significant project involves validating the outcomes of safety
analysis using techniques akin to those outlined in [BJPT10, BCJP09, FMP13].

Genericity The lack of generality in safety analysis primarily stems from two
factors, both related to the direct access to target-dependent low-level instructions
in Jasmin. Firstly, for all low-level instructions, the analysis must ascertain which
conditions must be satisfied. This challenge can be addressed through the use of
a generator, as detailed in the preceding paragraph. Secondly, the analysis must
understand the semantics of instructions to monitor the values of certain variables3,
typically those involved in array access to ensure they remain within bounds.

In the context of Jasmin, the number of low-level instructions that are acces-
sible is relatively large and, furthermore, regularly increases because users request
the addition of some specific instructions required to implement their algorithms
efficiently.

A potential solution to this issue involves defining a concise language to describe
instruction semantics, comprising a small set of primitive operations. Consequently,
the safety analysis would only need to understand and handle this compact language,
eliminating the need for constant extension or patching whenever new instructions
or backends are introduced. Note that defining such a language would be very useful
in other parts of the Jasmin infrastructure. The semantics of the instructions are
defined in Coq (for the formal definition of the semantics), and they are also defined
in EasyCrypt (which is needed to prove properties on Jasmin programs), and partially
in the safety analysis (for the previous reasons). This language would allow them to

3For most variables, it is not necessary to precisely keep track of their value because they are
not involved in any safety conditions.

24 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

Assembly

Scalar/Ref

SIMD/Opt

Jasmin
[30, 17, 1]

Scalar/Ref

SIMD/Opt

Jasmin
[30, 17, 1]

EasyCrypt
[19, 3]

Scalar/Ref EC Specifications

SIMD/Opt Security proofs

EasyCrypt
[19, 3]

CT models CT proofs

[7]

Trusted
Extraction

Certified
Compilation

Checkers:
Basic types

Safety
CT[27, 10, 7]
SCT[13, 6]

Figure 3.2: The Jasmin/EasyCrypt framework

be defined only once and then automatically define the Coq and EasyCrypt semantics
from it.

3.2.4 Proving Jasmin programs

Our initial approach to verifying Jasmin programs involved the development and
proof using Coq of a Hoare logic or weakest precondition calculus tailored to Jas-
min programs. This method offered the significant advantage of maintaining a small
trusted computing base, primarily consisting of Coq and our formalization of the as-
sembly language. Integration of tools like Iris [JSS+15] would have further bolstered
this approach.

However, we have opted for a different strategy: translating Jasmin programs
into EasyCrypt programs. While this approach does introduce EasyCrypt and the
translation process into our trusted computing base, it offers several compelling
advantages. This enables us to verify properties of interest using various EasyCrypt
logics. Additionally, this approach empowers us to verify the cryptographic security
of our Jasmin implementations, further enhancing the reliability and integrity of our
system.

We now have various methods for specifying and verifying our implementations.
The first approach is to utilize traditional Hoare logic, a method adopted by many
tools4 such as Why3 [BFMP11], Dafny [Lei10], and F* [SHK+16]. To utilize this
approach, we begin by crafting a functional or mathematical description of the

4Not all the tools are based on Hoare logic, but they all share the requirement of having a
functional specification.

3.2. PROPOSED SOLUTIONS 25

computation our program is intended to perform. This description allows us to
express both the post-condition, defining what needs to be satisfied at the end of
the program, and the precondition, specifying what must be satisfied before the
program’s evaluation. Subsequently, we can employ Hoare logic or any equivalent
method to demonstrate that our program meets its specification.

The second method involves employing program equivalence. In this scenario,
the specification itself takes the form of an imperative program, as commonly seen in
Request for Comments (RFC). Functional correctness is then equated with program
equivalence between the implementation and its specification. Here, equivalence
implies that if inputs are related, the outputs will be as well. Fortunately, EasyCrypt
shines in proving program equivalence, leveraging the robust pRHL logic.

These approaches lead to intriguing possibilities. Firstly, since the specification
is now an EasyCrypt program, we can verify its semantic security. This is particularly
crucial for complex algorithms like Kyber and Dilithium, where manually verifying
that the formal specification aligns with the RFC can be as challenging as verifying
the code of a reference implementation. Moreover, how can we be sure that the
RFC makes sense? By proving the semantic security of our specification, we do not
establish that it corresponds to the RFC but a stronger result: our specification is
secure. Then, by proving program equivalence between the specification and imple-
mentation, we ensure the semantic security of the implementation. Thus, even if the
implementation deviates from the RFC, we have assurance of its semantic security.
Furthermore, passing test vectors provides informal assurance of its interoperability
with other implementations.

Secondly, leveraging program equivalence offers a novel approach to validating
optimized implementations. Often, optimization entails utilizing a vectorized version
of the program, where independent computations are executed in parallel. This is
facilitated by SIMD instructions, enabling multiple data values to be processed with
a single instruction. A prime illustration of this concept is ChaCha20, a block cipher
employed in counter mode.

In the encryption process of ChaCha20, each message block is encrypted using
a secret key, a nonce, and a counter (unique for each block) passed to the block
cipher. The encrypted block results from XORing the message block with the output
of the block cipher. Notably, each iteration of the loop in this process operates
independently, allowing for potential parallelization.

Validating the correctness of an optimized implementation can be achieved
through incremental steps. Initially, the program is transformed to execute eight
iterations of the loop body at each iteration of the main loop; since this transforma-
tion can be justified in a generic way (independent of the body). This restructuring
results in two nested loops. While the control flow of the program alters, the un-
derlying data structure and computation order remain consistent.

26 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

Let us now focus on the internal eight iterations of the loop body. Subsequently,
this inner loop is unrolled, and since each iteration is independent, intermediate vari-
ables used for computation can be renamed, yielding eight variables for each original
variable. Proving program equivalence at this stage is straightforward. With each
loop iteration operating on disjoint variables, it becomes feasible to reorder instruc-
tions to interleave the eight iterations of the loop body. Finally, it can be demon-
strated that performing eight consecutive operations on independent variables is
equivalent to executing the corresponding single SIMD instruction. Through transi-
tive reasoning, equivalence between the reference implementation and its optimized
vectorized counterpart is established.

While this technique proves effective in many cases, there are instances where
it is impractical to employ. Particularly, when the algorithm for exploiting SIMD
instructions diverges significantly from the reference implementation, it may be more
straightforward to directly verify functional correctness using techniques like Hoare
logic.

Figure 3.2 illustrates the structure of the Jasmin/EasyCrypt framework. At its
core lies the Jasmin language, which accommodates both reference/scalar implemen-
tations and optimized/SIMD implementations for each primitive. These implemen-
tations undergo scrutiny through the type system and the safety checker. Addition-
ally, there’s the option to utilize either the constant-time type checker (detailed in
Section 4.2) or the speculative constant-time checker (expounded in Section 4.3) to
fortify resilience against (speculative) side-channel attacks.

Thus, implementations are translated into assembly and extracted into EasyCrypt
for verification of both functional correctness and semantic security. The safety,
along with the compiler’s correctness, guarantees that both the source code and its
assembly counterpart produce identical results. Furthermore, safety ensures that
the source code and the extracted EasyCrypt program share congruent semantics.
On the EasyCrypt side, a specification is crafted specifically tailored for semantic
security proofs. This often involves abstracting certain implementation details; for
example, in verifying the semantic security of a scheme like Elgamal, the focus is
on ensuring that the underlying structure adheres to properties expected by cyclic
groups, while the specific implementation details of the cyclic group are deemed
irrelevant.

Subsequently, the functional correctness of the reference implementation is
proven against the EasyCrypt specifications. The functional correctness of the op-
timized version is proved either through establishing program equivalence with the
reference implementation or directly against the EasyCrypt specification.

This comprehensive chain of validation allows for the assertion that the assembly
codes are not only functionally correct but also semantically secure.

3.3. MAIN CONTRIBUTION 27

3.3 Main contribution

A important contribution of this work is the design of the language itself. It allows
to reconciliate highly optimized programs at assembly level and formal proofs. The
associated verification tools ensure that Jasmin programs are safe, functionally cor-
rect and resistant to attacks by auxiliary channels (see Sections 4.2 and 4.3). The
formal proof of the Jasmin compiler ensures that those properties are preserved at
the assembly level.

The verification tool chain is based on EasyCrypt, which makes it possible to
prove semantics security of the algorithms.

The first implementations [30, 19, 17] of the ChaCha20, Poly1305, curve25519,
SHA3 primitives show that the code issued by the Jasmin compiler is as efficient as
the assembly code written by hand in the OpenSSL library. The most emblematic
implementations are that of SHA3 and Kyber: implementations for which the four
properties have been established [19, 3]. Coq certification of the compiler ensures
that functional correctness is preserved.

The final result of this work is the libjade developed in the Formossa project.
libjade is a formally verified cryptographic library written in the Jasmin program-
ming language with computer-verified proofs in EasyCrypt. The primary focus is on
offering high-assurance implementations of post-quantum cryptographic primitives
to support the migration to the next generation of asymmetric cryptography.

28 CHAPTER 3. CRYPTOGRAPHIC IMPLEMENTATIONS

Chapter 4

Side Channels

4.1 Problem with side channel attacks

Being able to establish proofs of security at the algorithmic level of cryptographic
primitives, and to link these algorithms with their implementations, is already a
major step forward and provides guarantees that are unrivaled. However, this is
still not enough. The main problem lies in the discrepancy between the adversary
model used in the security proof and the real power or capability of adversaries
attempting to attack the code in practice.

Security proofs are generally conducted in a black-box model, where the adver-
sary can see or control some of the inputs provided to the primitive and observe
outputs (essentially everything that passes through the network). However, the
adversary has no information about how the primitive is evaluated.

While there are scenarios where this black-box model is reasonable, in most
cases, the adversary can gather significant information through hidden channels.
The amount of information they can access often depends on their ability to interact
with the machine executing the code.

For example, if the adversary is able to run code on the same computer as the
one executing the cryptographic primitive, it is crucial to ensure that the observable
timing behavior of the compiled program does not leak sensitive information. Failing
to address these concerns creates a significant attack vector against cryptographic
implementations [Ber05, AP13].

Indeed, one prevailing view is that critical code must adhere to the crypto-
graphic constant-time (CCT or simply CT) discipline, meaning its control flow and
sequence of memory accesses should not depend on secrets [Ber05]. High-assurance
cryptographic software must be guaranteed to follow this discipline correctly. Un-
fortunately, compiler optimizations can break CCT.

While necessary, this countermeasure is not sufficient. At the abstraction level

29

30 CHAPTER 4. SIDE CHANNELS

provided by hardware architecture, programs are assumed to execute sequentially
in the order dictated by the control flow. However, at the hardware implementation
level, program execution is much more complex, involving out-of-order and specu-
lative execution. This complexity at the microarchitectural level was meant to be
transparent to developers, who should only need to reason about programs using
the abstractions provided by the architecture.

Yet, Spectre attacks (soon followed by many others, e.g., [BMW+19, BMS+20,
SSL+19, RMR+21, RBBG21]) revealed how attackers could exploit speculative ex-
ecution to exfiltrate secrets that were otherwise well-protected at the architectural
level. The consequences of such speculative attacks can be devastating. While
Meltdown is often viewed as a hardware bug and can be fixed in future generations
of processors, Spectre is not a hardware bug—it’s a feature. Therefore, we must
develop software countermeasures to defend against it.

When the adversary has physical access to the machine, he can measure power
consumption [KJJ99], electromagnetic radiation [GMO01], or even the noise pro-
duced by the computer’s fan [GSE20]. These sources of information can be ex-
ploited to mount side-channel attacks, such as Differential Power Analysis (DPA).
Protecting against such attacks is more challenging, as any intermediate result can
potentially leak sensitive information, not just conditional branching or memory
accesses.

The most widely deployed countermeasure against these physical side-channel
attacks is called masking or secret sharing. The concept involves splitting a secret
into several shares, often using random data, such that the sum of the shares corre-
sponds to the original secret. This forces the adversary to gather all the shares to
recover the secret value.

In this chapter, I will provide an overview of the steps we have taken to ensure
that cryptographic implementations are resistant to these various types of attacks.

4.2 Preservation of Constant Time

One approach to protecting cryptographic libraries from cache attacks is by adhering
to the constant-time (CT) discipline. In theory, this discipline is straightforward: a
program is considered constant-time if its control flow and memory accesses do not
depend on secret values. However, writing efficient constant-time code is notoriously
error-prone.

Moreover, most tools designed to verify compliance with the CT discipline oper-
ate at the source code level, whereas this property ultimately needs to be guaranteed
at the assembly level. This raises a critical question: Does the compiler preserve the
constant-time property during the translation from source code to assembly?

The answer is not simple. While one might assume that compilers are extensively

4.2. PRESERVATION OF CONSTANT TIME 31

tested for correctness, such testing does not necessarily ensure that the generated
code adheres to the constant-time discipline. Furthermore, generating constant-time
code is generally beyond the scope of general-purpose compilers like clang and gcc.

When we aim to formally establish that a compiler preserves the CT discipline,
a second question arises: How can the CT discipline be formally defined?

A common methodology involves using instrumented semantics, where each step
of execution is modeled to potentially generate some form of leakage. For instance,
the rule governing conditional instructions1 might be represented as follows:

{if e then c1 else c2, ρ} b→ {cb, ρ}
where b = [[e]]ρ corresponds to the evaluation of the conditional expression e in the
state ρ. Similarly, the evaluation of load and store instructions leaks the accessed
address, while other instructions may leak nothing2.

The notion of CT is generally parameterized by a relation ϕ between initial
states, which usually describes which parts of the state contain public data (in that
case, the relation ensures equality in both states) and which contain secret data.
We say that a program p is ϕ-CT if, for any pair of initial states (ρ1, ρ2) in relation
ϕ, and for any number of execution steps n:

{p, ρ1}
L1−→n {c1, ρ}

{p, ρ2}
L2−→n {c2, ρ}

 ⇒ L1 = L2

In other words, the generated leakages after n steps of execution are equal3.
Proving the preservation of CT requires establishing that if the source program

is CT with respect to ϕ, then its compiled version is also CT. Figure 4.1 illustrates
the core idea of the method introduced in [27] to establish that a compilation step
preserves constant time. Figure 4.1a recalls the standard notion of simulation from
compiler verification. In the simplest (lockstep) setting, one requires that the simu-
lation relation relates one step of execution of a source program S with one step of
execution of its compiled version C, where black represents the hypotheses and red
represents the conclusions. The horizontal arrows represent one step of execution of
S from state a to state b, and one step of execution of C from state α to state β.
The relation · ≈ · relates the execution states of the source and target programs.

While traditional simulations are established through 2-dimensional diagram
chasing, constant-time simulations require 3-dimensional diagram chasing. Fig-
ure 4.1b illustrates the concept of constant-time simulation in the lockstep case,

1A while loop is a particular case of a conditional instruction.
2Some models also take into account timing-dependent instructions like division.
3Remark: Defined this way, this notion makes sense only for safe programs, i.e., programs that

cannot get stuck before the end of execution. For simplicity, I will only consider safe programs
here.

32 CHAPTER 4. SIDE CHANNELS

a

α

b

β

≈ ≈

(a) Simulation

a

α

b

β

a′

α′

b′

β ′≈ ≈
≈ ≈

t

t

τ

τ

(b) Constant-time simulation

Figure 4.1: Lockstep simulations

introducing the relations · ≡S · and · ≡C · between source and target states, depicted
by triple lines in the diagram. Horizontal arrows represent single-step executions as
before, but now we consider two executions at the source level and two at the target
level.

To construct this 3-dimensional diagram, one can assume all relations depicted in
black (e.g., equality of the source leakages) and must establish all relations depicted
in red (e.g., equality of the target leakages, and preservation of the relations (· ≡S ·
and · ≡C ·). The relations ≡S and ≡C serve a similar role to ϕ for the initial state
but must be invariant throughout the execution.

Extending this diagram to multiple steps of execution is straightforward. The
major advantage of this technique is that it does not require modifications to the
existing functional correctness proof (the simulation) of the compiler. However,
proving constant-time simulations can be tedious due to the 3-dimensional nature,
where four executions must be related.

Moreover, many compilation steps cannot be proven using a lockstep simulation
diagram, where one source step corresponds directly to one target step. Fortunately,
our methodology can be extended to handle multiple steps of execution.

While the proofs presented in [27] were formally verified using Coq, they were
conducted for a toy compiler. In [15], we extended this work and demonstrated that
the methodology can scale to a realistic C compiler: CompCert. Furthermore, in [10]
and in the thesis of Swarn Priya, we applied a different methodology to prove that
the Jasmin compiler preserves constant-time (CT) properties.

The key innovation in this approach is the removal of the overhead associated
with the 3-dimensional diagram4 by demonstrating that the target leakage is a func-
tion of the source leakage.

Figure 4.2 illustrates the core concept of the technique: we must demonstrate the

4Initially, we were quite excited by this elegant cube structure, reminiscent of Henk Barendregt’s
λ cube, but we soon realized it was not as convenient to use as we had hoped.

4.2. PRESERVATION OF CONSTANT TIME 33

a

α

b

β

L

F (L)

≈ ≈

Figure 4.2: Lockstep simulations with leak transformer F

existence of a leak transformer F that allows us to establish the usual simulation
diagram, this time accounting for leakage. It’s important to note that the leak
transformer depends solely on the leakage and not on the initial source and target
states (a, α). As a result, proving the preservation of constant-time properties
becomes straightforward since the target leakage is determined only by the source
leakage5.

To apply this technique to a realistic compiler, the leak transformer may some-
times need to depend on more information than just the source leakage. For instance,
in the case of Jasmin, the leak transformer also depends on the value of the stack
pointer. Fortunately, the stack pointer’s value is determined solely by its initial
value and the control flow followed by the program, which is uniquely defined by
the prior leakage. Therefore, the leak transformer must take into account the initial
value of the stack pointer. This requirement forces us to modify the initial state
relation ϕ to ensure that the stack pointer’s value is consistent in both states.

The main challenge in defining the leak transformer F is to accurately map each
part of the leakage to the corresponding part of the evaluation. This is particularly
challenging when the leakage is represented as a flat list. We addressed this issue by
adopting a structured representation of the leakage that mirrors the tree structure
of the evaluation.

4.2.1 Establishing Constant time

Having established that the compiler preserves constant-time properties, the next
question is how to verify that a source program itself adheres to constant-time
principles. We have developed two distinct methods to address this.

The first method is a generalization of the Volpano and Smith type system
for non-interference [VIS96]. This type system, implemented in OCaml, supports
type inference and allows us to determine whether a program respects constant-
time constraints. As usual, it is not complete but actually all the code of libjade is

5Ensuring the safety of the source program is necessary, but this is standard practice when
using forward simulation diagrams.

34 CHAPTER 4. SIDE CHANNELS

typable6.

The second method leverages the fact that the constant-time property is a re-
lational property between a program and itself. Since EasyCrypt is particularly
well-suited for proving relational properties between programs, it forms the basis
of this approach. We have defined an instrumented version of the extraction from
Jasmin to EasyCrypt, which accumulates generated leakage in a data structure. This
allows users to employ pRHL to prove that the leakage is independent of any secrets.

The primary advantage of this second technique is its flexibility compared to
using a type system. For example, the leakage model can be easily adjusted to
assume that memory accesses leak only the cache line rather than the full address,
or that certain operators, like division, leak only the logarithm of their arguments.
This flexibility was particularly useful in our work presented in [7].

Another key advantage is that this method allows for the concept of probabilis-
tic constant-time, where we can prove that the resulting distribution of leakage is
independent of the secret.

4.3 Speculative Constant Time

As explained earlier, while programs are assumed to execute sequentially, the hard-
ware implementation often involves complex mechanisms such as out-of-order exe-
cution and speculative execution. These complexities can give rise to Spectre-like
attacks, which are constant-time attacks occurring in contexts where the original
code was not designed to be executed.

There are several variants of Spectre vulnerabilities:

• Spectre V1, or Spectre-PHT (Pattern History Table): This is the original
Spectre attack, triggered by the branch predictor, which allows the speculative
execution of a branch of a conditional instruction (i.e., a conditional direct
jump).

• Spectre V2, or Spectre-BTB (Branch Target Buffer): This variant involves
speculation induced by the prediction of indirect jumps. Spectre-RSB (Return
Stack Buffer) is a related variant based on speculation over indirect jumps
caused by return instructions.

• Spectre V4, or Spectre-STL (Store-to-Load) and Spectre-SSB (Speculative
Store Bypass): These variants involve speculation on dependencies between
stores and loads, where certain loads can speculatively ignore preceding stores.

6Some declassifies are needed due to rejection sampling algorithm.

4.3. SPECULATIVE CONSTANT TIME 35

While these mechanisms allow the processor to backtrack once it realizes that it made
an incorrect speculative choice, some microarchitectural states (such as the cache)
are not restored for efficiency reasons. This oversight enables cache attacks based
on speculative execution. Notably, Spectre-BTB and Spectre-RSB are particularly
powerful, as they potentially allow the speculative execution of any code crafted by
an attacker.

The initial approach to protecting against Spectre attacks was to block specula-
tive execution. Although processors do not offer a direct flag to disable speculative
execution, most provide a FENCE instruction that halts the speculative execution of
subsequent instructions until all previous instructions have been fully fetched, exe-
cuted, and retired. While this method can protect against Spectre V1 and V4, it is
ineffective against Spectre V2, which requires a different mitigation strategy, such
as retpolines. However, this original approach comes with significant performance
costs.

It is crucial to recognize that speculative execution is a vital feature of modern
processors and will not be eliminated in the future. Therefore, understanding how
to write code that is protected against Spectre attacks without severely impacting
performance is essential.

In the context of Jasmin, Spectre-BTB does not need to be considered, as the
language does not allow indirect jumps. However, Spectre-RSB remains a possi-
bility. In the paper [13], we introduced a type system designed to protect against
Spectre V1 and V4. This protection relies on the use of the FENCE instruction to
block speculative execution, but the type system is designed to apply it only when
necessary—specifically, to prevent speculative leakage of secret data. This approach
yielded relatively good performance results for the cryptographic code in libjade.
However, it has two significant drawbacks.

First, accurately benchmarking the cost of using FENCE is challenging. Bench-
marks are typically conducted in a highly controlled and stable environment, but
in a scenario where multiple processes are running in parallel, the cost of a FENCE

instruction could be significantly higher. Second, the correctness of the type system
depends on the assumption that the program is speculatively safe, meaning that
array accesses must be within bounds even during speculative execution. This in-
troduces two additional costs. For users, programs must be instrumented to ensure
speculative safety. For Jasmin developers, a mechanism is needed to verify that
programs are indeed speculatively safe.

In the paper [6], we adopted a similar approach to protecting against speculative
leakage of secret data but employed a different protection mechanism instead of
FENCE. This mechanism was initially introduced in llvm, and is known as Speculative
Load Hardening (SLH) [Car]. The fundamental idea behind SLH is to mask any
data that could potentially leak during misspeculative execution. Our approach was

36 CHAPTER 4. SIDE CHANNELS

Unprotected Protected Low level
1 mask = init msf(); FENCE; mask = -1; //i.e all bits set to 1
2 if e then if e then
3 mask = upd msf(e); mask = CMOV(!e, 0, mask);
4 x = protect(x, mask); x = x & mask;
5 leak(x) leak(x)
6 else else
7 mask = upd msf(!e); mask = CMOV(e, 0, mask);

.

Figure 4.3: Core idea of selSLH

to apply SLH selectively—only in situations where speculative leakage might depend
on secret data. We refer to this approach as selSLH.

But how do we obtain and maintain such a mask? Initially, we can use a FENCE

instruction to ensure that the processor is in a normal state at that point and set
the mask to −1 (i.e., it will mask nothing during normal execution). To detect if the
processor is about to execute a mispredicted branch, we can leverage the conditional
move instruction, which is not subject to speculation.

To provide an abstraction layer for developers and to simplify the definition of
the type system, we introduced three new primitives in Jasmin. Figure 4.3 provides
an overview of how these primitives are implemented and used.

The first primitive is init msf (initialize the misprediction flag), which is imple-
mented by using a FENCE instruction followed by setting the mask to -1. The second
primitive, upd msf (update the misprediction flag), is used to track the mask during
the execution of conditional instructions. For example, if the processor mispredicts
the value of the test e on line 2 and starts executing the true branch, the instruction
on line 3 will set the mask to 0. The third primitive, protect, is used to mask data
(as seen on line 4). In this case, the leaked value on line 5 will be 0, ensuring it does
not depend on any secret. If the processor correctly predicts the true branch, then
the instruction on line 3 (resp. line 4) will not alter the mask (resp. the value of x),
and execution will proceed normally.

This protection mechanism is highly efficient because it avoids the need for sys-
tematically blocking execution. Instead, it only delays the execution of protected
data until the test e has been fully evaluated. By doing so, SLH mitigates Spectre
V1 by converting control flow dependencies into data dependencies.

Notably, only data that may leak during speculative execution needs protection,
and even then, only if this data could depend on a secret when a branch is mispre-
dicted. This leads to the key idea of applying SLH selectively, targeting protection

4.3. SPECULATIVE CONSTANT TIME 37

where it is truly needed.

The type system must ensure that the mask used as the argument of protect
accurately reflects the status of any misprediction. Additionally, it must track values
that depend on secrets during both normal and speculative execution. Crucially,
the system also needs to monitor out-of-bound array accesses (read/write) that may
occur during mispredicted execution, as these could lead to loading a secret (while a
public value is expected) or storing secret data in positions that should only contain
public data.

To address these concerns, the type system maintains two distinct security types
for each variable, one for normal execution and another for speculative execution.
This approach generalizes the Volpano and Smith type system, enabling a more
comprehensive tracking of speculative and non-speculative security concerns.

The implementation of the type system relies on polymorphic type variables and
constraints, similar to the approach used by François Pottier [Pot01]. This design
enables type inference and allows the required fixpoint for the static analysis to be
determined in a single pass.

One might argue that studying the security of countermeasures against specu-
lative attacks at the source level is questionable. One reason for this is that source
languages typically don’t provide developers with access to the low-level details of
the generated code. For instance, in C, a variable might be stored in the stack (i.e.,
in memory) or simply in a register, but this detail is crucial for writing speculative
constant-time code. This is because speculative execution of operations on registers
is fully rolled back at the microarchitectural level, whereas memory operations are
not. Fortunately, Jasmin allows developers to specify such details and guarantees
that they will be respected in the generated code. Nevertheless, the issue of pre-
serving speculative constant-time properties through compilation is both important
and challenging.

Another important point to discuss is the speculation mechanisms addressed
by Jasmin. As previously mentioned, Spectre V1 is already efficiently handled.
Unfortunately, there is currently no software extension of SLH that protects against
Spectre V4. However, many modern processors now provide a flag, such as SSBD
for x86, that allows V4 to be disabled. While disabling V4 does incur a performance
cost, our testing on libjade code suggests that this cost is acceptable. Spectre V2 can
be divided into two different mechanisms. Jasmin is not vulnerable to the first one
(Spectre-BTB) because the compiler does not generate any indirect jumps. However,
it is potentially susceptible to Spectre-RSB since return instructions are used. To
address this, we are working on a solution that replaces return instructions with
a jump table. The jump table is implemented using conditional jumps, which we
know how to protect using SLH, and direct jumps.

In conclusion, Figure 4.1 presents the benchmarks. These results demonstrate

38 CHAPTER 4. SIDE CHANNELS

Table 4.1: libjade benchmarks on Intel Core i7 11700K (most optimized implementa-
tion of each primitive). “plain”: cycles without any Spectre protections; “+SSBD”:
with SSBD CPU flag set; “+SSBD+v1”: with SSBD CPU flag set and v1 counter-
measures from [6]; “+SSBD+v1+RSB”: with full Spectre protection as described
in this paper; “increase”: relative increase in CPU cycles between unprotected
(“plain”) and fully protected (+SSBD+v1+RSB).

Primitive Impl. Op. plain +SSBD +SSBD+v1 +SSBD+v1+RSB increase %

ChaCha20

ref 128B 768 794 822 820 6.77
ref 1KiB 5932 6098 6140 6130 3.34
ref 16KiB 94420 96926 97220 97228 2.97
avx2 128B 344 344 398 398 15.70
avx2 1KiB 1198 1202 1244 1246 4.01
avx2 16KiB 19040 19052 19066 19068 0.15

Poly1305

ref 128B 138 142 180 178 28.99
ref 1KiB 1126 1130 1154 1154 2.49
ref 16KiB 17542 17548 17568 17570 0.16
avx2 128B 138 142 182 180 30.43
avx2 1KiB 670 672 720 718 7.16
avx2 16KiB 8942 8948 8990 8986 0.49

XSalsa20Poly1305

ref 128B 1626 1648 1680 1678 3.20
ref 1KiB 7860 7916 7926 7926 0.84
ref 16KiB 113852 114990 114892 114880 0.90
avx2 128B 1206 1212 1250 1246 3.32
avx2 1KiB 3140 3142 3190 3188 1.53
avx2 16KiB 32598 32574 32604 32602 0.01

SHAKE256

ref 128B ← 128B 1176 1226 1242 1230 4.59
ref 256B ← 128B 2274 2368 2386 2370 4.22
ref 512B ← 128B 4454 4654 4670 4746 6.56
ref 1KiB ← 128B 8824 9214 9238 9284 5.21
avx2 128B ← 128B 1206 1324 1390 1390 15.26
avx2 256B ← 128B 2334 2450 2534 2546 9.08
avx2 512B ← 128B 4588 4700 4796 4826 5.19
avx2 1KiB ← 128B 9102 9216 9400 9384 3.10

X25519 ref smult 121300 125798 126252 126286 4.11
mulx smult 102848 104150 104424 104428 1.54

Kyber512
avx2 keypair 27676 28106 28040 28090 1.50
avx2 enc 37050 38332 38876 38792 4.70
avx2 dec 29302 30444 30590 30714 4.82

Kyber768
avx2 keypair 43432 45708 45860 46548 7.17
avx2 enc 57006 59316 60028 60674 6.43
avx2 dec 46138 48418 48532 49294 6.84

4.4. MASKING 39

that the performance overhead is relatively low, particularly for AVX2 implemen-
tations. This is because AVX2 implementations store most private data in large
registers (xmm), leaving scalar registers free and avoiding the need to spill them to
the stack. As a result, public data (such as pointers and loop counters) can remain
in registers and don’t need to be protected.

Regarding the cost of each countermeasure, the largest overhead arises from
the need to use SSBD. It’s also worth noting that some examples show a large
overhead, which occurs in cases requiring only a small number of cycles to execute.
In these cases, most of the overhead comes from the initial FENCE instruction, which
is required to initialize the mask.

It’s important to emphasize that, unlike the work on preserving constant-time
properties, most of this work has not been formally verified in Coq.

4.4 Masking

The models for CT (Constant-Time) and SCT (Speculative Constant-Time) assume
a scenario where the attacker can run a process on the target machine. However,
an even stronger model exists where the attacker has direct physical access to the
target hardware. In this scenario, the attacker can launch attacks by measuring
power consumption or using electromagnetic probes. These types of attacks are
commonly referred to as Differential Power Analysis (DPA).

Various models exist to characterize this type of attacker, ranging from more
realistic to those better suited for formal verification. Our work primarily focuses
on the t-probing model, which, while not the most realistic, is the most suitable
for formal verification. In this model, the attacker can place up to t probes during
the program’s execution, with each probe capturing the value of an intermediate
computation.

A common countermeasure against this type of attacker is to split secret data
into t + 1 shares. Since the adversary can only recover up to t of these shares,
they will be unable to reconstruct the secret. To split a secret s into t + 1 shares,
we sample t independent random values, r0, . . . , rt−1, and set the final share as
rt = s+

∑
i∈[0,t) ri , where the + operator corresponds to the XOR operation7. This

results in s =
∑

i∈[0,t] ri, meaning that r0, . . . , rt−1 together form a sharing of s.
Importantly, the distribution of any t-tuple of ri is independent of s.

Each basic operation involving secret data must be transformed into a corre-
sponding ”gadget” that operates on the shares. For linear operations, such as ad-
dition (or XOR), this transformation is straightforward. Suppose a0, . . . , at is a
sharing of a, and b0, . . . , bt is a sharing of b. Define ci = ai + bi for each i. Then

7This technique can be generalized to any cyclic ring by setting rt = s−∑
i∈[0,t) ri.

40 CHAPTER 4. SIDE CHANNELS

c0, . . . , ct forms a sharing of a+ b, since a+ b =
∑

i∈[0,t] ci.

Implementing multiplication (AND) is more complex. The basic approach in-
volves first computing the matrix of cross products, which results in (t + 1)2 inter-
mediate values, and then summing them to construct t+ 1 shares of the result. For
this last step, one can define ci = ai ∗ b0 + . . .+ ai ∗ bt. This gives:

ci = ai ∗
∑
i∈[0,t]

bi = ai ∗ b

However, directly observing ci and ai could reveal information about b. Furthermore,
the distribution followed by ci when executing this gadget on fresh sharings of a and
b is not independent of b. To address this issue, the idea is to use fresh intermediate
randomness.

For simplicity, let’s look of multiplication gadget introduced in [ISW03] for the
case of two shares (i.e, t = 1):

c0 = (a0b0 + r) + a0b1
c1 = (a1b1 + r) + a1b1

Using this, the distribution of any single observation depends at most of one share
of each input.

Proving the functional correctness of these algorithms is relatively straightfor-
ward, as it mainly involves verifying Boolean ring equalities. However, the real
challenge lies in proving their security.

The initial security notion was defined as follows: First, an initial sharing of
the secrets is performed, during which the adversary cannot observe any values.
Afterward, the masked implementation is executed, and all intermediate values are
recorded. Finally, the attacker can select up to t of these intermediate values, but
their view must remain independent of the original secrets.

A major drawback of this security notion is its lack of composability. Even if
two programs are individually secure under this model, their composition may not
be secure. Additionally, ensuring that any selection of t intermediate values remains
independent of the secrets leads to an exponential increase in the number of t-tuples
that need to be considered as t and the program size grow. This complexity is
further compounded by the quadratic nature of multiplication gadgets. Therefore,
having a security notion that supports composability is crucial.

In [40] and later in [21], we were the first to develop a formal method for the
automatic formal verification of masked implementations, leading to the creation of
the tool [maskVerif]. The first key idea is to observe that successive applications of
the optimistic sampling rule, as presented in Section 2.1, are sufficient to prove that
a t-tuple is independent of certain secret values (by repeatedly applying the rule

4.4. MASKING 41

until the secret values no longer appear). Although this approach is incomplete, it
works surprisingly well in practice.

The second key insight is that if a k-tuple is independent of secret values, then
any of its sub-tuples is also independent. This observation leads to an efficient divide-
and-conquer algorithm. Suppose we want to prove that any t-tuple of expressions
drawn from a set E is independent of some secret values. First, we try to find a
subset A of E, as large as possible, such that its corresponding tuple is independent
of the secret. This ensures that all t-tuples from A are independent of the secret.
Next, we need to prove that all tuples from E \ A are also independent, as well as
any mixed tuples containing elements from both A and E \A. This can be done by
selecting one element from A and t− 1 from E \A, then two from A and t− 2 from
E \ A, and so on.

To extend this into a practical algorithm, a generalization is required. The
algorithm takes as input a list of pairs, where the first element of each pair is a set,
and the second element is a number indicating the minimum number of elements
that should be taken from the set to build a tuple. For example, (A1, n1); (A2, n2)
indicates that we want to check whether all t-tuples composed of n1 elements from
A1 and n2 elements from A2 are independent of the secret, where t = n1 + n2.

Although the complexity of the algorithm remains high, this approach allows
verification of multiplication gadgets up to order 10, and even a full AES S-box for
smaller orders. Unfortunately, this method does not scale to full implementations,
where a compositional approach is required.

As previously mentioned, the primary challenge with composition arises from
the definition of t-probing security itself- specifically, the requirement for an initial
perfect sharing of secrets. This condition can be relaxed by requiring that any t-
tuple of observations can be simulated using only t shares of each input, regardless
of how the input sharing is performed. We have termed this new security notion
non-interference (t-NI).

It is important to note that t-NI implies t-probing security. If an algorithm
satisfies t-NI, then only t shares of each input are required to simulate the result, and
the perfect sharing of the secret allows these shares to be simulated independently of
the secret input itself. A significant advantage is that adapting maskVerif to verify
this new security notion was straightforward. While t-NI is satisfied by the ISW
multiplication gadget, it unfortunately still faces challenges with composition.

The issue arises with the multiplication x ∗ x. While t-NI ensures that there
exist sets I1 and I2 of input shares for the arguments that are sufficient to simulate
t observations in the multiplication, with |I1| ≤ t and |I2| ≤ t, the complication
occurs when both arguments are the same. In this case, we need I1 ∪ I2 shares of x
to perform the simulation, and the cardinality of I1 ∪ I2 can exceed t.

This problem was known, and the proposed solution for implementing such a

42 CHAPTER 4. SIDE CHANNELS

program was to refresh one of the inputs to the multiplication gadget. A refresh
gadget aims to securely recompute a sharing of its input. The initial refresh gadget
was proposed by Rivain and Prouff [RP10]. We discovered through maskVerif that
while its composition with multiplication was insecure, it became secure when the
refresh gadget was implemented using an ISW multiplication by a sharing of 1, i.e.,
the tuple (1, 0, . . . , 0).

So we have tried to understand which property verify the ISW multiplication
and not the initial refresh gadget of Rivain and Prouff. We observed that the ISW
multiplication gadget satisfies a useful property, which we have termed strong non-
interference (t-SNI):

To simulate n1 internal observations and n2 observations from the output shares,
only n1 shares of each inputs are needed, as long as n1 + n2 ≤ t.

Now consider x ∗ refresh(x), where both the multiplication and the refresh are
assumed to be t-SNI. Assume that n1 observations are made during the multiplica-
tion and n2 during the refresh, with the total number of observations bounded by t,
i.e., n1 + n2 ≤ t.

To simulate the observations made during the multiplication, we only need n1

shares from the first occurrence of x and n1 shares from the output of refresh(x).
Since the refresh gadget is SNI, only n2 input shares of x are required to simulate
the necessary n1 outputs of refresh(x) and its n2 internal observations. In the end,
all observations can be simulated using only n1 + n2 shares.

In [36], we introduced the notions of Non-Interference (NI) and Strong Non-
Interference (SNI), along with a type system that ensures the correct composition
of gadgets. This type system tracks the minimal number of shares needed to sim-
ulate any t-tuple of observations by using symbolic sets and constraints on their
cardinality. It take into account that addition gadget follow a particular property
due to the fact that they are linear. The type system guarantees that whenever a
multiplication gadget is encountered, the number of internal observations and out-
put shares required to simulate the observations made in the gadget’s continuation
is less than t. It also ensures that the composition of all gadgets requires fewer than
t shares of each input, which ensure NI and so the t-probing security.

Additionally, the system can automatically patch an implementation by adding
refresh gadgets when necessary. This led to the development of the compiler
maskComp [maskComp], which takes a C implementation and automatically trans-
forms it into a masked implementation, replacing additions and multiplications with
the corresponding gadgets and adding refresh gadgets where required.

Finally, I extended the maskVerif tool to support the notions of Non-Interference
(NI) and Strong Non-Interference (SNI), enabling it to account for stronger leakage
models (closer to the hardware) that consider transitions and glitches. We leveraged

4.5. MAIN CONTRIBUTION 43

maskVerif to verify the security of new multiplication and refresh gadgets, which
reduce the amount of required randomness.

4.5 Main contribution

In [27, 15, 10, 7], we provide methods for guaranteeing the preservation of constant
time by a compiler, we also provide different techniques to ensure that a program
is CT, either based on type systems or via program equivalence using the EasyCrypt
proof assistant. In [22, 6] we provide different techniques to protect against Spectre
attacks.

We established a strong connection between the notions of security used by the
masking community and the notion of probabilistic non-interference in the program-
ming language community. This connection made it possible to establish new theo-
retical foundations for masking and to break through two technological barriers. We
developed an automatic algorithm for checking the probabilistic non-interference of
a masked implementation. This algorithm verifies the security of an implementation
against a particular attack strategy. However, the security notions used in masking
require the implementation to be protected against all the attacker’s strategies. This
number of strategies is exponential depending on the size of the program and the
desired level of protection (up to billions of cases for a multiplication algorithm). We
developed new algorithms to factorise the verification effort and make it practical
for basic implementations. We then proposed the first correct method for analysing
complete implementations. This method is based on a new security notion, called
SNI (Strong Non Interference), which enables compositional reasoning. This notion
of SNI has become the de facto standard for masked implementations. We then
used this notion of SNI to develop the first compiler to generate guaranteed masked
implementations for arbitrary levels of protection (maskComp).

44 CHAPTER 4. SIDE CHANNELS

Chapter 5

Perspectives

My overarching goal for the next few years is to promote the adoption of high-
assurance cryptographic software, through foundational and applied work to (i)
lower the entry bar for high-assurance methods; and (ii) keep the scope of the high-
assurance approach aligned with the state-of-the-art in cryptographic research.

Jasmin Language and its compiler A key area for improvement is extending
the Jasmin compiler to support more architectures, which is essential for broaden-
ing the deployment of cryptographic libraries. Over the last two years, we made
substantial progress by adding support for the ARM-v7 backend. This required
significant effort, as most compiler passes had to be rewritten to be parametric, ac-
commodating architectural variations such as pointer sizes and low-level instruction
constraints.

Building on this, our next priority is to support two additional architectures:
RISC-V and ARM-v8. The rationale for ARM-v8 is clear, given its widespread use
in servers like Amazon’s cloud infrastructure. While RISC-V is less common, its
open architecture offers an exciting opportunity for future research and develop-
ment. Integrating RISC-V into Jasmin not only opens new research avenues but
also positions us to take advantage of its potential growth in the industry.

In parallel, we should eliminate some unnecessary restrictions in the Jasmin lan-
guage. For instance, the current calling convention for exported functions limits
them to a maximum of five arguments, which hampers the implementation of cer-
tain interfaces and the integration of Jasmin code into existing libraries. Another
limitation is the requirement that array sizes must be statically known at compile
time. Currently, the work around is to generate multiple instances of the same
function, thereby increasing code size. This restriction originates from the stack-
allocation algorithm used in Jasmin.

The stack-allocation algorithm is particularly complex because it must ensure
that persistent arrays, (which are convenient for proofs and program analysis) can

45

46 CHAPTER 5. PERSPECTIVES

be replaced by in-place arrays (which are efficient). Improving this algorithm would
lead to significant advancements in the language. Allowing to improve the efficiancy
and to reduce the size of the code of the post-quantum cryptographic library libjade.
It would also be valuable to explore whether this challenge is related to Rust’s
ownership model, which guarantees that every value has a single owner, as there
may be similar underlying concepts.

Ensuring (speculative) constant time in the post-quantum setting On one
front, I aim to extend our work on preserving constant-time to speculative constant-
time (SCT). One motivation of this work is theoretical, the other is practical. It
requires us to develop a leakage model at the source level that is strong enough to
ensure the preservation of SCT, allowing us to adapte our type system for SCT to
fit the leakage model. Having the type system at the source level is important from
the user perspective, since reporting of error is much more accurate.

On an other front, I think it is not reasonnable to maintain the proof of preser-
vation of CT in a realistic and evolving compiler like Jasmin. Each new compilation
pass requires a new proof that the pass preserves constant-time execution. The sit-
uation becomes even more complex with speculative constant-time, as speculative
semantics must be incorporated at the source level and to all intermediate semantics
used during compilation. I plan to follow a more pragmatique approach consisting
of devellopping a type system (for CT and SCT) at the assembly level. For that the
main difficulty is to a solid pointer analysis at the assembly level. I believe that the
analysis can be provided by the Jasmin stack allocation pass of the compiler, then
we can proof preservation of the analysis down to assembly.

Another open question involves justifying the use of the declassify construct,
which is often used in type systems for constant-time to bypass their incomplete-
ness. declassify are necessary to type check the random sampling algorithm used in
Kyber and Dilithium or Falcom, since this algorithm branch on secret dependant
datas. However, the core of their security proof demonstrates that rejection sam-
pling (and consequently the number of loop iterations) is probabilistic independent
of the secret. I think we should introduce the new security notion of approximate
probabilistic constant-time, meaning that an adversary has a negligible probability
of distinguishing two distribution of leakage.

Ideally we should perform the security proof in a model where the adversary has
access to the full leakage. Unfortunatelly, this will pollute a lot the security proofs
with detail related to the notion of constant time. I think it is possible to restrict
the leakage to the declassified values, by providing a proof that the full leakage is
in fact a deterministic function of the declassifier values (and the public part of the
memory).

47

Provable security in the QROM Ongoing efforts to formally verify the security
of NIST PQC finalist schemes in EasyCrypt show that it is possible and generally
beneficial to eschew quantum reasoning using carefully selected QROM lemmas.
This is the approch we have followed in [12]. However, this approach has shortcom-
ings. First, several QROM proof tools, for instance (some variants of) the one-way to
hiding lemma and the compressed oracle techniques, expose quantum computations.
Second, these QROM lemmas have multiple variants, all of which form part of the
Trusted Computing Base. This creates the risk of building formally verified proofs
based on incorrect axioms. We plan to overcome these limitations by strengthening
the foundations of EasyCrypt, and developing libraries for all QROM techniques. In
the first case, we intend to develop better relational Hoare logics for quantum com-
putations. In the second case, we intend to justify QROM lemmas formally within
a general-purpose proof assistant, for instance using the denotational semantics of
quantum programs provided by the CoqQ framework[ZBS+23] or the qrhl [Unr19]
tool.

48 CHAPTER 5. PERSPECTIVES

List of my publications 2002-2023

[1] Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire,
Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, and Peter
Schwabe. High-assurance zeroization. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2024(1):375–397, 2024.

[2] Benjamin Grégoire, Jean-Christophe Léchenet, and Enrico Tassi. Practical and
sound equality tests, automatically: Deriving eqtype instances for jasmin’s data
types with coq-elpi. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka,
and Steve Zdancewic, editors, Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2023, Boston, MA,
USA, January 16-17, 2023, pages 167–181. ACM, 2023.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Vin-
cent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel
Quaresma, Peter Schwabe, Antoine Séré, and Pierre-Yves Strub. Formally ver-
ifying kyber episode IV: implementation correctness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2023(3):164–193, 2023.

[4] Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr,
Benjamin Grégoire, Yu-Hsuan Huang, Andreas Hülsing, Yi Lee, and Xiaodi
Wu. Fixing and mechanizing the security proof of fiat-shamir with aborts and
dilithium. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Con-
ference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part V, volume 14085 of Lecture Notes in Computer Science, pages
358–389. Springer, 2023.

[5] Manuel Barbosa, François Dupressoir, Benjamin Grégoire, Andreas Hülsing,
Matthias Meijers, and Pierre-Yves Strub. Machine-checked security for rmxmss
as in RFC 8391 and $\mathrm {SPHINCSˆ{+}} $. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,

49

50 LIST OF MY PUBLICATIONS 2002-2023

CA, USA, August 20-24, 2023, Proceedings, Part V, volume 14085 of Lecture
Notes in Computer Science, pages 421–454. Springer, 2023.

[6] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vin-
cent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-
Maujean. Typing high-speed cryptography against spectre v1. In 44th IEEE
Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May
21-25, 2023, pages 1094–1111. IEEE, 2023.

[7] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vin-
cent Laporte, and Swarn Priya. Enforcing fine-grained constant-time policies.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 83–
96. ACM, 2022.

[8] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021.

[9] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara
Paglialonga, and Lars Porth. Masking in fine-grained leakage models: Con-
struction, implementation and verification. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(2):189–228, 2021.

[10] Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. Struc-
tured leakage and applications to cryptographic constant-time and cost. In
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
2021 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021, pages 462–476.
ACM, 2021.

[11] Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and
Pierre-Yves Strub. Mechanized proofs of adversarial complexity and application
to universal composability. In Yongdae Kim, Jong Kim, Giovanni Vigna, and
Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, pages 2541–2563. ACM, 2021.

[12] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han
Hung, Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. Easypqc:
Verifying post-quantum cryptography. In Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on

LIST OF MY PUBLICATIONS 2002-2023 51

Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pages 2564–2586. ACM, 2021.

[13] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,
Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-assurance
cryptography in the spectre era. In 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1884–
1901. IEEE, 2021.

[14] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, François-Xavier Standaert, and Pierre-Yves Strub. Improved
parallel mask refreshing algorithms: generic solutions with parametrized non-
interference and automated optimizations. J. Cryptogr. Eng., 10(1):17–26,
2020.

[15] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent La-
porte, David Pichardie, and Alix Trieu. Formal verification of a constant-time
preserving C compiler. Proc. ACM Program. Lang., 4(POPL):7:1–7:30, 2020.

[16] Mohamad El Laz, Benjamin Grégoire, and Tamara Rezk. Security analysis
of elgamal implementations. In Pierangela Samarati, Sabrina De Capitani
di Vimercati, Mohammad S. Obaidat, and Jalel Ben-Othman, editors, Proceed-
ings of the 17th International Joint Conference on e-Business and Telecommu-
nications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris, France, July
8-10, 2020, pages 310–321. ScitePress, 2020.

[17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. The
last mile: High-assurance and high-speed cryptographic implementations. In
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 965–982. IEEE, 2020.

[18] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna,
Ernie Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-Yves
Strub, and Serdar Tasiran. A machine-checked proof of security for AWS key
management service. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, Novem-
ber 11-15, 2019, pages 63–78. ACM, 2019.

[19] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,
François Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Alley
Stoughton, and Pierre-Yves Strub. Machine-checked proofs for cryptographic

52 LIST OF MY PUBLICATIONS 2002-2023

standards: Indifferentiability of sponge and secure high-assurance implementa-
tions of SHA-3. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019, pages 1607–1622. ACM, 2019.

[20] Gilles Barthe, Benjamin Grégoire, Charlie Jacomme, Steve Kremer, and Pierre-
Yves Strub. Symbolic methods in computational cryptography proofs. In 32nd
IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, pages 136–151. IEEE, 2019.

[21] Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification of
higher-order masking in presence of physical defaults. In Kazue Sako, Steve A.
Schneider, and Peter Y. A. Ryan, editors, Computer Security - ESORICS 2019
- 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume 11735 of Lecture Notes in
Computer Science, pages 300–318. Springer, 2019.

[22] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S.
Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and
Deian Stefan. Fact: a DSL for timing-sensitive computation. In Kathryn S.
McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 174–189. ACM, 2019.

[23] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. Proving expected sensitivity of probabilistic programs. Proc. ACM
Program. Lang., 2(POPL):57:1–57:29, 2018.

[24] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Ja-
comme, and Elaine Shi. Symbolic proofs for lattice-based cryptography. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
538–555. ACM, 2018.

[25] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko Stoffe-
len. Vectorizing higher-order masking. In Junfeng Fan and Benedikt Gierlichs,
editors, Constructive Side-Channel Analysis and Secure Design - 9th Interna-
tional Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings,
volume 10815 of Lecture Notes in Computer Science, pages 23–43. Springer,
2018.

LIST OF MY PUBLICATIONS 2002-2023 53

[26] Cécile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque, and Benjamin
Grégoire. Formal security proof of CMAC and its variants. In 31st IEEE Com-
puter Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 91–104. IEEE Computer Society, 2018.

[27] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation
of side-channel countermeasures: The case of cryptographic ”constant-time”.
In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford,
United Kingdom, July 9-12, 2018, pages 328–343. IEEE Computer Society,
2018.

[28] Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin
Hsu, and Pierre-Yves Strub. An assertion-based program logic for probabilistic
programs. In Amal Ahmed, editor, Programming Languages and Systems -
27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10801 of Lecture
Notes in Computer Science, pages 117–144. Springer, 2018.

[29] Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of
Lecture Notes in Computer Science, pages 354–384. Springer, 2018.

[30] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography.
In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1807–1823. ACM, 2017.

[31] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir,
Benjamin Grégoire, Vincent Laporte, and Vitor Pereira. A fast and verified
software stack for secure function evaluation. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 1989–2006. ACM,
2017.

54 LIST OF MY PUBLICATIONS 2002-2023

[32] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science, pages
535–566, 2017.

[33] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. Proving uniformity and independence by self-composition and cou-
pling. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017, volume 46 of EPiC Series in Computing,
pages 385–403. EasyChair, 2017.

[34] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Cou-
pling proofs are probabilistic product programs. In Giuseppe Castagna and
Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 161–174. ACM, 2017.

[35] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,
and Pierre-Yves Strub. Advanced probabilistic couplings for differential privacy.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, pages 55–67. ACM, 2016.

[36] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl, Ste-
fan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 116–
129. ACM, 2016.

[37] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. A program logic for union bounds. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd In-
ternational Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 107:1–107:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

LIST OF MY PUBLICATIONS 2002-2023 55

[38] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. Proving differential privacy via probabilistic couplings. In Martin
Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016, pages 749–758. ACM, 2016.

[39] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. Automated proofs
of pairing-based cryptography. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, Denver, CO, USA, October 12-16, 2015,
pages 1156–1168. ACM, 2015.

[40] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order mask-
ing. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
457–485. Springer, 2015.

[41] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco,
and Pierre-Yves Strub. Relational reasoning via probabilistic coupling. In Mar-
tin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - 20th Interna-
tional Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Pro-
ceedings, volume 9450 of Lecture Notes in Computer Science, pages 387–401.
Springer, 2015.

[42] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
and Jean-Christophe Zapalowicz. Synthesis of fault attacks on cryptographic
implementations. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 1016–1027.
ACM, 2014.

[43] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz. Making RSA-PSS provably
secure against non-random faults. In Lejla Batina and Matthew Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th
International Workshop, Busan, South Korea, September 23-26, 2014. Pro-
ceedings, volume 8731 of Lecture Notes in Computer Science, pages 206–222.
Springer, 2014.

56 LIST OF MY PUBLICATIONS 2002-2023

[44] Joseph A. Akinyele, Gilles Barthe, Benjamin Grégoire, Benedikt Schmidt, and
Pierre-Yves Strub. Certified synthesis of efficient batch verifiers. In IEEE 27th
Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22
July, 2014, pages 153–165. IEEE Computer Society, 2014.

[45] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella Béguelin. Probabilistic relational verification
for cryptographic implementations. In Suresh Jagannathan and Peter Sewell,
editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, pages 193–206. ACM, 2014.

[46] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, Federico Olmedo, and San-
tiago Zanella Béguelin. Verified indifferentiable hashing into elliptic curves. J.
Comput. Secur., 21(6):881–917, 2013.

[47] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine
Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. Fully automated
analysis of padding-based encryption in the computational model. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 1247–1260. ACM, 2013.

[48] Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santi-
ago Zanella Béguelin. Verified computational differential privacy with applica-
tions to smart metering. In 2013 IEEE 26th Computer Security Foundations
Symposium, New Orleans, LA, USA, June 26-28, 2013, pages 287–301. IEEE
Computer Society, 2013.

[49] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Alessandro Aldini,
Javier López, and Fabio Martinelli, editors, Foundations of Security Analysis
and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of Lecture
Notes in Computer Science, pages 146–166. Springer, 2013.

[50] Gilles Barthe, Benjamin Grégoire, César Kunz, Yassine Lakhnech, and San-
tiago Zanella Béguelin. Automation in computer-aided cryptography: Proofs,
attacks and designs. In Chris Hawblitzel and Dale Miller, editors, Certified Pro-
grams and Proofs - Second International Conference, CPP 2012, Kyoto, Japan,
December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer
Science, pages 7–8. Springer, 2012.

LIST OF MY PUBLICATIONS 2002-2023 57

[51] Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, César Kunz,
Malte Skoruppa, and Santiago Zanella Béguelin. Verified security of merkle-
damg̊ard. In Stephen Chong, editor, 25th IEEE Computer Security Foundations
Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, pages 354–
368. IEEE Computer Society, 2012.

[52] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, and San-
tiago Zanella Béguelin. Computer-aided cryptographic proofs. In Lennart
Beringer and Amy P. Felty, editors, Interactive Theorem Proving - Third In-
ternational Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012.
Proceedings, volume 7406 of Lecture Notes in Computer Science, pages 11–27.
Springer, 2012.

[53] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Probabilistic
relational hoare logics for computer-aided security proofs. In Jeremy Gibbons
and Pablo Nogueira, editors, Mathematics of Program Construction - 11th In-
ternational Conference, MPC 2012, Madrid, Spain, June 25-27, 2012. Proceed-
ings, volume 7342 of Lecture Notes in Computer Science, pages 1–6. Springer,
2012.

[54] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, Federico Olmedo, and San-
tiago Zanella Béguelin. Verified indifferentiable hashing into elliptic curves. In
Pierpaolo Degano and Joshua D. Guttman, editors, Principles of Security and
Trust - First International Conference, POST 2012, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2012,
Tallinn, Estonia, March 24 - April 1, 2012, Proceedings, volume 7215 of Lecture
Notes in Computer Science, pages 209–228. Springer, 2012.

[55] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Computer-
aided cryptographic proofs. In Antoine Miné and David Schmidt, editors,
Static Analysis - 19th International Symposium, SAS 2012, Deauville, France,
September 11-13, 2012. Proceedings, volume 7460 of Lecture Notes in Computer
Science, pages 1–2. Springer, 2012.

[56] Benjamin Grégoire. Recent advances in the formal verification of cryptographic
systems: Turing’s legacy. ERCIM News, 2012(91), 2012.

[57] Jan Olaf Blech and Benjamin Grégoire. Certifying compilers using higher-order
theorem provers as certificate checkers. Formal Methods Syst. Des., 38(1):33–61,
2011.

[58] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. A modular integration of SAT/SMT solvers

58 LIST OF MY PUBLICATIONS 2002-2023

to coq through proof witnesses. In Jean-Pierre Jouannaud and Zhong Shao,
editors, Certified Programs and Proofs - First International Conference, CPP
2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lec-
ture Notes in Computer Science, pages 135–150. Springer, 2011.

[59] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full reduction
at full throttle. In Jean-Pierre Jouannaud and Zhong Shao, editors, Certified
Programs and Proofs - First International Conference, CPP 2011, Kenting,
Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture Notes in
Computer Science, pages 362–377. Springer, 2011.

[60] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 71–90.
Springer, 2011.

[61] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security verifiable IND-CCA security of OAEP. In
Aggelos Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The Cryptogra-
phers’ Track at the RSA Conference 2011, San Francisco, CA, USA, February
14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer Science,
pages 180–196. Springer, 2011.

[62] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire,
and Sylvain Heraud. A machine-checked formalization of sigma-protocols. In
Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 246–260. IEEE
Computer Society, 2010.

[63] Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry.
Extending coq with imperative features and its application to SAT verification.
In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem
Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-
14, 2010. Proceedings, volume 6172 of Lecture Notes in Computer Science, pages
83–98. Springer, 2010.

[64] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Program-
ming language techniques for cryptographic proofs. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume
6172 of Lecture Notes in Computer Science, pages 115–130. Springer, 2010.

LIST OF MY PUBLICATIONS 2002-2023 59

[65] Benjamin Grégoire and Jorge Luis Sacchini. On strong normalization of the cal-
culus of constructions with type-based termination. In Christian G. Fermüller
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indone-
sia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in Com-
puter Science, pages 333–347. Springer, 2010.

[66] Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk. Certifi-
cate translation for optimizing compilers. ACM Trans. Program. Lang. Syst.,
31(5):18:1–18:45, 2009.

[67] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, César Kunz, and Anne
Pacalet. Implementing a direct method for certificate translation. In Karin K.
Breitman and Ana Cavalcanti, editors, Formal Methods and Software Engineer-
ing, 11th International Conference on Formal Engineering Methods, ICFEM
2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings, volume 5885
of Lecture Notes in Computer Science, pages 541–560. Springer, 2009.

[68] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal cer-
tification of code-based cryptographic proofs. In Zhong Shao and Benjamin C.
Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 90–101. ACM, 2009.

[69] Santiago Zanella Béguelin, Gilles Barthe, Benjamin Grégoire, and Federico
Olmedo. Formally certifying the security of digital signature schemes. In 30th
IEEE Symposium on Security and Privacy (S&P 2009), 17-20 May 2009, Oak-
land, California, USA, pages 237–250. IEEE Computer Society, 2009.

[70] Benjamin Grégoire, Löıc Pottier, and Laurent Théry. Proof certificates for alge-
bra and their application to automatic geometry theorem proving. In Thomas
Sturm and Christoph Zengler, editors, Automated Deduction in Geometry - 7th
International Workshop, ADG 2008, Shanghai, China, September 22-24, 2008.
Revised Papers, volume 6301 of Lecture Notes in Computer Science, pages 42–
59. Springer, 2008.

[71] Gilles Barthe, Benjamin Grégoire, and Mariela Pavlova. Preservation of proof
obligations from java to the java virtual machine. In Alessandro Armando,
Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th In-
ternational Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, volume 5195 of Lecture Notes in Computer Science, pages
83–99. Springer, 2008.

60 LIST OF MY PUBLICATIONS 2002-2023

[72] Gilles Barthe, Benjamin Grégoire, and Colin Riba. Type-based termination
with sized products. In Michael Kaminski and Simone Martini, editors, Com-
puter Science Logic, 22nd International Workshop, CSL 2008, 17th Annual
Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceed-
ings, volume 5213 of Lecture Notes in Computer Science, pages 493–507.
Springer, 2008.

[73] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Formal certification of elgamal encryption. In Pierpaolo Degano,
Joshua D. Guttman, and Fabio Martinelli, editors, Formal Aspects in Security
and Trust, 5th International Workshop, FAST 2008, Malaga, Spain, October
9-10, 2008, Revised Selected Papers, volume 5491 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2008.

[74] Gilles Barthe, Benjamin Grégoire, and Colin Riba. A tutorial on type-based ter-
mination. In Ana Bove, Lúıs Soares Barbosa, Alberto Pardo, and Jorge Sousa
Pinto, editors, Language Engineering and Rigorous Software Development, In-
ternational LerNet ALFA Summer School 2008, Piriapolis, Uruguay, February
24 - March 1, 2008, Revised Tutorial Lectures, volume 5520 of Lecture Notes
in Computer Science, pages 100–152. Springer, 2008.

[75] Bruno Barras, Pierre Corbineau, Benjamin Grégoire, Hugo Herbelin, and
Jorge Luis Sacchini. A new elimination rule for the calculus of inductive con-
structions. In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, edi-
tors, Types for Proofs and Programs, International Conference, TYPES 2008,
Torino, Italy, March 26-29, 2008, Revised Selected Papers, volume 5497 of Lec-
ture Notes in Computer Science, pages 32–48. Springer, 2008.

[76] Gilles Barthe, Pierre Crégut, Benjamin Grégoire, Thomas P. Jensen, and David
Pichardie. The MOBIUS proof carrying code infrastructure. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, 6th International Sym-
posium, FMCO 2007, Amsterdam, The Netherlands, October 24-26, 2007, Re-
vised Lectures, volume 5382 of Lecture Notes in Computer Science, pages 1–24.
Springer, 2007.

[77] Benjamin Grégoire and Jorge Luis Sacchini. Combining a verification condi-
tion generator for a bytecode language with static analyses. In Gilles Barthe
and Cédric Fournet, editors, Trustworthy Global Computing, Third Symposium,
TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Pa-
pers, volume 4912 of Lecture Notes in Computer Science, pages 23–40. Springer,
2007.

LIST OF MY PUBLICATIONS 2002-2023 61

[78] Benjamin Grégoire and Laurent Théry. A purely functional library for modu-
lar arithmetic and its application to certifying large prime numbers. In Ulrich
Furbach and Natarajan Shankar, editors, Automated Reasoning, Third Interna-
tional Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4130 of Lecture Notes in Computer Science, pages 423–437.
Springer, 2006.

[79] Benjamin Grégoire, Laurent Théry, and Benjamin Werner. A computational
approach to pocklington certificates in type theory. In Masami Hagiya and
Philip Wadler, editors, Functional and Logic Programming, 8th International
Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26, 2006, Proceedings,
volume 3945 of Lecture Notes in Computer Science, pages 97–113. Springer,
2006.

[80] Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin Grégoire, Marieke Huis-
man, Jean-Louis Lanet, Mariela Pavlova, and Antoine Requet. JACK - A
tool for validation of security and behaviour of java applications. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, 5th International Sym-
posium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006,
Revised Lectures, volume 4709 of Lecture Notes in Computer Science, pages
152–174. Springer, 2006.

[81] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Cic[ˆ()]: type-
based termination of recursive definitions in the calculus of inductive construc-
tions. In Miki Hermann and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, 13th International Conference, LPAR
2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings, volume
4246 of Lecture Notes in Computer Science, pages 257–271. Springer, 2006.

[82] Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk. Certificate
translation for optimizing compilers. In Kwangkeun Yi, editor, Static Analysis,
13th International Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006,
Proceedings, volume 4134 of Lecture Notes in Computer Science, pages 301–317.
Springer, 2006.

[83] Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin Hof-
mann, Peter Müller, Erik Poll, Germán Puebla, Ian Stark, and Eric Vétillard.
MOBIUS: mobility, ubiquity, security. In Ugo Montanari, Donald Sannella, and
Roberto Bruni, editors, Trustworthy Global Computing, Second Symposium,
TGC 2006, Lucca, Italy, November 7-9, 2006, Revised Selected Papers, volume
4661 of Lecture Notes in Computer Science, pages 10–29. Springer, 2006.

62 LIST OF MY PUBLICATIONS 2002-2023

[84] Gilles Barthe, Benjamin Grégoire, Marieke Huisman, and Jean-Louis Lanet,
editors. Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, Second International Workshop, CASSIS 2005, Nice, France, March
8-11, 2005, Revised Selected Papers, volume 3956 of Lecture Notes in Computer
Science. Springer, 2006.

[85] Bruno Barras and Benjamin Grégoire. On the role of type decorations in the
calculus of inductive constructions. In C.-H. Luke Ong, editor, Computer Sci-
ence Logic, 19th International Workshop, CSL 2005, 14th Annual Conference
of the EACSL, Oxford, UK, August 22-25, 2005, Proceedings, volume 3634 of
Lecture Notes in Computer Science, pages 151–166. Springer, 2005.

[86] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Practical inference
for type-based termination in a polymorphic setting. In Pawel Urzyczyn, editor,
Typed Lambda Calculi and Applications, 7th International Conference, TLCA
2005, Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture
Notes in Computer Science, pages 71–85. Springer, 2005.

[87] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative
ring done right in coq. In Joe Hurd and Thomas F. Melham, editors, Theorem
Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005,
Oxford, UK, August 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in
Computer Science, pages 98–113. Springer, 2005.

[88] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured approach to
proving compiler optimizations based on dataflow analysis. In Jean-Christophe
Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for
Proofs and Programs, International Workshop, TYPES 2004, Jouy-en-Josas,
France, December 15-18, 2004, Revised Selected Papers, volume 3839 of Lecture
Notes in Computer Science, pages 66–81. Springer, 2004.

[89] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong
reduction. In Mitchell Wand and Simon L. Peyton Jones, editors, Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional
Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002,
pages 235–246. ACM, 2002.

Software related to my research
2002-2023

[bignums] A coq library provides bign, bigz, and bigq that used to be part of the
standard library. https://github.com/coq-community/bignums.

[CertiCrypt] A framework that enables the machine-checked construction and
verification of code-based proofs in coq. https://github.com/EasyCrypt/

certicrypt.

[coqprime] Primality proofs using pocklington certificate and elliptic curve certifi-
cate. https://github.com/thery/coqprime.

[EasyCrypt] Computer-aided cryptographic proofs. https://github.com/

EasyCrypt/easycrypt.

[Jasmin] A language and a compiler designed for writing high-assurance and high-
speed cryptography. https://github.com/jasmin-lang/jasmin.

[maskComp] A compiler for automatic generation of masked implementation.
https://sites.google.com/site/maskingcompiler/home.

[maskVerif] A automatic checker for verifying masked implementation. https:

//gitlab.com/benjgregoire/maskverif.

[Ring/Field] The ring and field Coq tactics. https://coq.inria.fr/refman/

addendum/ring.html.

[vm compute] The native/vm compute mecanism/tactic. https://coq.inria.fr/
refman/proofs/writing-proofs/equality.html#coq:tacn.vm_compute.

[ZooCrypt] Automatic proofs and synthesis of cryptographic primitives. https:

//github.com/ZooCrypt/AutoGnP.

63

https://github.com/coq-community/bignums
https://github.com/EasyCrypt/certicrypt
https://github.com/EasyCrypt/certicrypt
https://github.com/thery/coqprime
https://github.com/EasyCrypt/easycrypt
https://github.com/EasyCrypt/easycrypt
https://github.com/jasmin-lang/jasmin
https://sites.google.com/site/maskingcompiler/home
https://gitlab.com/benjgregoire/maskverif
https://gitlab.com/benjgregoire/maskverif
https://coq.inria.fr/refman/addendum/ring.html
https://coq.inria.fr/refman/addendum/ring.html
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#coq:tacn.vm_compute
https://coq.inria.fr/refman/proofs/writing-proofs/equality.html#coq:tacn.vm_compute
https://github.com/ZooCrypt/AutoGnP
https://github.com/ZooCrypt/AutoGnP

64 SOFTWARE RELATED TO MY RESEARCH 2002-2023

Bibliography

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Chris Hankin and Dave Schmidt, editors, Conference
Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, London, UK, January 17-19,
2001, pages 104–115. ACM, 2001.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In IEEE Symposium on Se-
curity and Privacy, SP 2013, pages 526–540. IEEE Computer Society,
2013.

[BBPV12] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Ver-
cauteren. Practical realisation and elimination of an ecc-related software
bug attack. In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA
2012 - The Cryptographers’ Track at the RSA Conference 2012, San
Francisco, CA, USA, February 27 - March 2, 2012. Proceedings, volume
7178 of Lecture Notes in Computer Science, pages 171–186. Springer,
2012.

[BCJP09] Frédéric Besson, David Cachera, Thomas P. Jensen, and David
Pichardie. Certified static analysis by abstract interpretation. In
Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, Foun-
dations of Security Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science,
pages 223–257. Springer, 2009.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South
Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes
in Computer Science, pages 41–69. Springer, 2011.

65

66 BIBLIOGRAPHY

[Ber] Dan Bernstein. Writing high-speed software.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on aes, 2005. http://cr.

yp.to/antiforgery/cachetiming-20050414.pdf.

[BFMP11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011:
First International Workshop on Intermediate Verification Languages,
pages 53–64, Wroc law, Poland, August 2011. https://hal.inria.fr/
hal-00790310.

[BHK09] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the defi-
nition of IND-CCA: when and how should challenge-decryption be dis-
allowed? IACR Cryptol. ePrint Arch., page 418, 2009.

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the defi-
nition of IND-CCA: when and how should challenge decryption be dis-
allowed? J. Cryptol., 28(1):29–48, 2015.

[BJPT10] Frédéric Besson, Thomas P. Jensen, David Pichardie, and Tiphaine
Turpin. Certified result checking for polyhedral analysis of bytecode
programs. In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer,
editors, Trustworthly Global Computing - 5th International Symposium,
TGC 2010, Munich, Germany, February 24-26, 2010, Revised Selected
Papers, volume 6084 of Lecture Notes in Computer Science, pages 253–
267. Springer, 2010.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of ci-
pher block chaining. In Yvo Desmedt, editor, Advances in Cryptology -
CRYPTO ’94, 14th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839
of Lecture Notes in Computer Science, pages 341–358. Springer, 1994.

[BMS+20] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: hijacking transient execution through microarchi-
tectural load value injection. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages
54–72. IEEE, 2020.

[BMW+19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Breaking virtual memory protection and
the SGX ecosystem with foreshadow. IEEE Micro, 39(3):66–74, 2019.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310

BIBLIOGRAPHY 67

[Bol09] Alexandra Boldyreva. Strengthening security of RSA-OAEP. In Marc
Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryptogra-
phers’ Track at the RSA Conference 2009, San Francisco, CA, USA,
April 20-24, 2009. Proceedings, volume 5473 of Lecture Notes in Com-
puter Science, pages 399–413. Springer, 2009.

[BPB12] Gilles Barthe, David Pointcheval, and Santiago Zanella Béguelin. Ver-
ified security of redundancy-free encryption from rabin and RSA. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Con-
ference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 724–735. ACM, 2012.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital sig-
natures - how to sign with RSA and rabin. In Ueli M. Maurer, editor,
Advances in Cryptology - EUROCRYPT ’96, International Conference
on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in
Computer Science, pages 399–416. Springer, 1996.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In Serge Vaude-
nay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006.

[BZ13] Dan Boneh and Mark Zhandry. Quantum-secure message authentication
codes. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 592–608. Springer, 2013.

[Car] Chandler Carruth. Speculative load hardening – a Spectre variant
#1 mitigation technique. LLVM documentation. https://llvm.org/

docs/SpeculativeLoadHardening.html.

[DPS15] Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song. The
correctness-security gap in compiler optimization. In 2015 IEEE Sym-
posium on Security and Privacy Workshops, SPW 2015, San Jose, CA,
USA, May 21-22, 2015, pages 73–87. IEEE Computer Society, 2015.

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

68 BIBLIOGRAPHY

[FMP13] Alexis Fouilhé, David Monniaux, and Michaël Périn. Efficient gener-
ation of correctness certificates for the abstract domain of polyhedra.
In Francesco Logozzo and Manuel Fähndrich, editors, Static Analysis
- 20th International Symposium, SAS 2013, Seattle, WA, USA, June
20-22, 2013. Proceedings, volume 7935 of Lecture Notes in Computer
Science, pages 345–365. Springer, 2013.

[FOPS04] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques
Stern. RSA-OAEP is secure under the RSA assumption. J. Cryptol.,
17(2):81–104, 2004.

[GK13] Shay Gueron and Vlad Krasnov. The fragility of AES-GCM authenti-
cation algorithm. Cryptology ePrint Archive, Report 2013/157, 2013.
http://eprint.iacr.org/2013/157.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2001, Third International Workshop, Paris, France, May
14-16, 2001, Proceedings, volume 2162 of Lecture Notes in Computer
Science, pages 251–261. Springer, 2001.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Cynthia Dwork,
editor, Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 197–206. ACM, 2008.

[GSE20] Mordechai Guri, Yosef A. Solewicz, and Yuval Elovici. Fansmitter:
Acoustic data exfiltration from air-gapped computers via fans noise.
Comput. Secur., 91:101721, 2020.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Secur-
ing hardware against probing attacks. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings, volume 2729 of Lecture Notes in Computer Science, pages 463–
481. Springer, 2003.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical
abstract domains for static analysis. In Ahmed Bouajjani and Oded

http://eprint.iacr.org/2013/157

BIBLIOGRAPHY 69

Maler, editors, Computer Aided Verification, 21st International Con-
ference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceed-
ings, volume 5643 of Lecture Notes in Computer Science, pages 661–667.
Springer, 2009.

[JSS+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invari-
ants as an orthogonal basis for concurrent reasoning. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
637–650. ACM, 2015.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer,
1999.

[KPVV16] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Ville-
gas. When constant-time source yields variable-time binary: Exploiting
curve25519-donna built with MSVC 2015. In Sara Foresti and Giuseppe
Persiano, editors, Cryptology and Network Security - 15th International
Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceed-
ings, volume 10052 of Lecture Notes in Computer Science, pages 573–
582, 2016.

[Lei10] K. Rustan M. Leino. Dafny: An automatic program verifier for func-
tional correctness. In Edmund M. Clarke and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, volume 6355 of Lecture Notes in Com-
puter Science, pages 348–370. Springer, 2010.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In 33rd ACM symposium on
Principles of Programming Languages, pages 42–54. ACM Press, 2006.

[Lin02] Torgny Lindvall. Lectures on the coupling method. Courier Corporation,
2002.

70 BIBLIOGRAPHY

[Poi05] David Pointcheval. OAEP: optimal asymmetric encryption padding.
In Henk C. A. van Tilborg, editor, Encyclopedia of Cryptography and
Security. Springer, 2005.

[Pot01] François Pottier. Simplifying subtyping constraints: A theory. Inf.
Comput., 170(2):153–183, 2001.

[RBBG21] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine clears
and their implications for transient execution attacks. In Michael D. Bai-
ley and Rachel Greenstadt, editors, 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, pages 1451–1468. USENIX
Association, 2021.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[RMR+21] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. Crosstalk: Speculative data leaks across cores are real.
In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Fran-
cisco, CA, USA, 24-27 May 2021, pages 1852–1867. IEEE, 2021.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In Stefan Mangard and François-Xavier Standaert,
editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 413–427. Springer, 2010.

[SHK+16] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Four-
net, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue,
and Santiago Zanella Béguelin. Dependent types and multi-monadic
effects in F. In Rastislav Bod́ık and Rupak Majumdar, editors, Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 256–270. ACM, 2016.

[Sho01] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology

BIBLIOGRAPHY 71

Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-
ceedings, volume 2139 of Lecture Notes in Computer Science, pages 239–
259. Springer, 2001.

[SSL+19] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. Netspectre: Read arbitrary memory over network. In
Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan, editors, Com-
puter Security - ESORICS 2019 - 24th European Symposium on Re-
search in Computer Security, Luxembourg, September 23-27, 2019, Pro-
ceedings, Part I, volume 11735 of Lecture Notes in Computer Science,
pages 279–299. Springer, 2019.

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. J.
ACM, 62(6):49:1–49:76, 2015.

[Unr19] Dominique Unruh. Quantum relational hoare logic. Proc. ACM Pro-
gram. Lang., 3(POPL):33:1–33:31, 2019.

[VIS96] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound
type system for secure flow analysis. J. Comput. Secur., 4(2/3):167–188,
1996.

[XZH+19] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. Interaction trees:
Representing recursive and impure programs in coq (work in progress).
CoRR, abs/1906.00046, 2019.

[ZBS+23] Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng
Ying. Coqq: Foundational verification of quantum programs. Proc.
ACM Program. Lang., 7(POPL):833–865, 2023.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum ran-
dom oracle model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-
ings, volume 7417 of Lecture Notes in Computer Science, pages 758–775.
Springer, 2012.

	Introduction
	Formal proofs of cryptographic primitives
	Formal method to reason about cryptographic proofs
	Main contributions

	Cryptographic implementations
	Problem with cryptographic implementation
	Proposed solutions
	Efficiency
	The certified Jasmin compiler
	Type checking and safety analysis
	Proving Jasmin programs

	Main contribution

	Side Channels
	Problem with side channel attacks
	Preservation of Constant Time
	Establishing Constant time

	Speculative Constant Time
	Masking
	Main contribution

	Perspectives

