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Prieur, Clémentine Professeur, Université Grenoble Alpes, France Présidente
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Maurizio Filippone, Associate Professor, EURECOM, France

Opponent
Andrés F. López-Lopera
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Génie Mathématique et Industriel
Institut Fayol, Mines Saint-Étienne
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Introduction

Les processus gaussiens (PG) représentent un des processus stochastiques les plus com-
muns utilisés dans les cadres bayésiens non paramétriques. Les modèles par PG peu-
vent être vus comme des distributions sur des espaces de fonctions où des hypothèses
(par exemple, la régularité, la stationnarité, et/ou la parcimonie) sont encodées dans
des fonctions de covariance (Paciorek and Schervish, 2004; Rasmussen and Williams,
2005; Snelson and Ghahramani, 2006). Le propriétés des PG ont été explorées dans de
nombreux processus de décision lié s à des problèmes de régression et de classification
(Nickisch and Rasmussen, 2008; Rasmussen and Williams, 2005). La science des données,
l’ingénierie, la physique, la biologie et les neurosciences sont des domaines dans lesquels
les PG ont été appliqués avec succès (Murphy, 2012; Rasmussen and Williams, 2005).

Cependant, malgré la fiabilité des PG, ces derniers offrent des incertitudes moins
réalistes lorsque les systèmes physiques satisfont des contraintes d’inégalité (e.g.
conditions de positivité, de monotonie ou de convexité) (Da Veiga and Marrel, 2012;
Golchi et al., 2015; Maatouk and Bay, 2017; Zhou et al., 2019). Quantifier proprement
ces incertitudes est crucial pour comprendre des phénomènes concrets. Par exemple,
dans l’évaluation de la sûreté nucléaire, les environnements expérimentaux exigent
généralement des procédures coûteuses et risquées pour évaluer la production de
neutrons. Par conséquent, les émulateurs sont nécessaires pour l’inférence de ces
productions et doivent intégrer les contraintes d’une sortie à la fois positive et
monotone par rapport à un ensemble de paramètres d’entrée. Pour obtenir des
prévisions plus précises, ces deux conditions doivent être prises en compte dans la
quantification de l’incertitude. D’autres cas de test où les données montrent des
contraintes d’inégalité spécifiques se rencontrent dans les réseaux informatiques
(monotonie) (Golchi et al., 2015), l’analyse du système social (monotonie) (Riihimäki
and Vehtari, 2010), l’économétrie (monotonie ou positivité) (Cousin et al., 2016), et la
physique nucléaire (monotonie et/ou convexité) (Zhou et al., 2019).

Plusieurs études ont montré que l’inclusion de contraintes d’inégalité dans les cadres de
PG peut conduire à une quantification plus réaliste de l’incertitude lors de l’apprentissage
de données réelles (Da Veiga and Marrel, 2012; Golchi et al., 2015; Riihimäki and Vehtari,

vii



viii

2010; Zhang and Lin, 2018). Dans la plupart des cas, on suppose que les inégalités
sont satisfaites sur un ensemble fini d’emplacements en entrée. Ensuite, la distribution
postérieure est approchée compte tenu de ces entrées contraintes (voir, par exemple,
Golchi et al., 2015; Riihimäki and Vehtari, 2010). En pratique, une alternative pour
traiter les contraintes de positivité, de monotonie ou de convexité consiste à utiliser des
intégrales (itérées) de processus positifs (par exemple, échelle logarithmique des PG,
Vanhatalo and Vehtari, 2007). Cependant, ces approches ont une densité avec une masse
nulle à zéro et sont limitées à des conditions d’inégalité spécifiques. Dans (Zhang and
Lin, 2018), une nouvelle projection de PG est développée afin d’incorporer des conditions
de borne sur tout le domaine d’entrée. Bien qu’une solution de forme fermée pour la
projection y soit fournie, leur cadre est limité à la prise en compte des contraintes de
borne. A la connaissance générale, l’approche de Maatouk and Bay (2017) est la seule
approche gaussienne proposée dans la littérature qui satisfait des inégalités spécifiques
et en particulier l’espace d’entrée. Là, les échantillons par GP sont approximés dans des
espaces de dimensions finies telles que des fonctions linéaires par morceaux. Bay et al.
(2016) ont montré que le mode postérieur du processus sous les contraintes converge vers
celui fourni par l’interpolation par splines. Cette approche a été appliquée à plusieurs
types de données réelles : l’économétrie (Cousin et al., 2016), la géostatistique (Maatouk
and Bay, 2017), et la physique nucléaire (Zhou et al., 2019).

Le cadre proposé par Maatouk and Bay (2017) présente cependant quelques limitations.
Premièrement, même s’il s’agit d’un ensemble convexe général d’inégalités linéaires,
il est concentré sur l’interpolation des données sous conditions de bornes, monotonie
ou convexité. Deuxièmement, la méthode d’échantillonnage de rejet proposée dans
(Maatouk and Bay, 2016) pour estimer la distribution postérieure entrâıne un taux
de rejet élevé lorsque l’ordre d’approximation finie augmente, ou que les contraintes
d’inégalité deviennent plus complexes. De plus, leur modèle permet des implémentations
allant jusqu’à des domaines d’entrée bidimensionnels (en conséquence de l’inconvénient
précédent). Enfin, la technique de validation croisée proposée par Maatouk et al. (2015)
pour l’estimation des paramètres, limite les valeurs optimales à une grille finie de valeurs
possibles et fournit la même estimation des paramètres de corrélation que pour les PG
sans contrainte. Afin de remédier à ces limitations, les contributions de cette thèse
sont les suivantes. Premièrement, nous étudions plus en détail une approximation en
dimension finie pouvant prendre en compte des contraintes générales d’inégalité linéaires.
Deuxièmement, nous étudions l’emploi de méthodes de Monte Carlo et Monte Carlo
par châınes de Markov pour l’approximation de la distribution postérieure du modèle.
Troisièmement, en ce qui concerne l’extension pour de grandes dimensions (impliquant
des dizaines ou centaines de variables d’entrée, par exemple), nous explorons différentes
constructions de l’approximation finie proposée. Nous remarquons que l’introduction
d’un bruit d’observation permet de monter à la dimension cinq. Nous proposons un
algorithme d’insertion des nœuds, qui concentre le budget de calcul sur les dimensions
les plus actives. Nous explorons aussi la triangulation de Delaunay comme alternative
à la tensorisation. Enfin, nous étudions l’utilisation de modèles additifs dans ce con-
texte, théoriquement et expérimentalement sur des problèmes de plusieurs centaines de
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variables. Quatrièmement, nous donnons des résultats théoriques sur l’inférence sous con-
traintes d’inégalité. La consistance et la normalité asymptotique d’estimateurs par maxi-
mum de vraisemblance sont établies. Finalement, nous montrons que les implémentations
de ce manuscrit peuvent être couplées à d’autres types de processus modulés par PG,
où des priors gaussiens sous contraintes d’inégalité sont nécessaires pour obtenir des
modèles aussi précis que possible avec des incertitudes plus réalistes (e.g. dans le cadre
des processus de Cox et des processus de renouvellement).

Il faut noter que des contributions récentes fondées sur le cadre proposé par Maatouk
(2015) ont été suggérées lors de la préparation de ce manuscrit (voir, par exemple, Maa-
touk, 2017; Ray et al., 2019; Zhou et al., 2019). Dans (Maatouk, 2017), le modèle par PG
dans (Maatouk, 2015) a été adapté pour rendre compte de l’observation bruitée sous des
contraintes de borne, monotonie ou convexité. D’autres travaux de Zhou et al. (2019) et
Ray et al. (2019) ont permis la combinaison de contraintes (par exemple, monotonicité et
convexité). Contrairement à ces contributions, les développements effectués durant cette
thèse tiennent compte des contraintes générales d’inégalité linéaires et ils ne nécessitent
pas de calcul des dérivées des fonctions de covariance. Ceci implique qu’il n’y a aucune
restriction sur le choix de la fonction de covariance (e.g. en ce qui concerne la monotonie
ou la convexité). Nous n’avons pas été en mesure de comparer notre cadre à ceux proposés
dans (Ray et al., 2019; Zhou et al., 2019) au cours de la rédaction de ce manuscrit.
Cependant, nous savons que ces approches existent et, par conséquent, les comparaisons
numériques présentent un intérêt pour les perspectives à venir.

Résumé des Chapitres

Dans la Partie II, un aperçu des bases des modèles de régression par PG est exposé. Dans
le Chapitre 2, nous commençons par le point de vue classique, définissant les termes clés
des PG (fonction de covariance et estimateur de vraisemblance maximale, par exemple).
Ensuite, nous expliquerons brièvement comment adapter les modèles par PG lorsque des
fonctions additives sont considérées.

Dans la Partie III, le cadre proposé par Maatouk (2015) est étudié plus en détail
afin de prendre en compte des contraintes générales d’inégalité linéaires (Chapitre 3).
Cela conduit à des modèles plus polyvalents pouvant être utilisés pour une large gamme
d’applications. En outre, l’approche de cette thèse ne comporte aucune restriction quant
au choix de la fonction de covariance (par exemple, par rapport à la monotonie ou la
convexité). Le cadre résulte en une distribution postérieure gaussienne tronquée qui peut
être approximée par des méthodes de Monte Carlo (MC) et Monte Carlo par châınes de
Markov (MCCM). Ainsi, pour rendre le modèle développé applicable aux implémentations
concrètes, des échantillonneurs par MC et MCCM ont été explorés. Cette approche a
ensuite finalement été testée sur une application nucléaire en dimension deux, où les
contraintes de borne et monotonicité sont satisfaites.

Les observations bruitées sont prises en compte dans le Chapitre 4. La relaxation des
contraintes d’interpolation par un effet de bruit entrâıne des espaces d’échantillonnage
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moins restrictifs dans lesquels sont effectués des échantillonneurs par MC et MCCM. Cela
conduit à des implémentations plus rapides tout en préservant des taux d’échantillonnage
effectifs élevés. Il a été démontré sur divers exemples synthétiques, et sans hypothèses
supplémentaires, que le cadre établi pendant la thèse est applicable en dimension cinq,
et ce, pour des milliers d’observations. Pour finir, le modèle développé a été évalué sur
des applications d’inondations côtières en dimension un et cinq.

Dans la Partie IV, en ce qui concerne l’extension en grandes dimensions, des con-
structions alternatives du cadre proposé dans la Partie III sont explorées. Premièrement,
en raison de la construction du tenseur dans les Chapitres 3 et 4, les implémentations
deviennent coûteuses avec une résolution plus fine dans l’approximation. Par conséquent,
il est préférable d’augmenter la qualité de la représentation uniquement dans les régions
plus variables. Pour ce faire, dans le Chapitre 5, un algorithme séquentiel a été exploré
pour la construction automatique de grilles rectangulaires (non équidistantes) des nœuds
utilisés dans la tensorisation. Les performances de l’algorithme proposé ont été testées
sur des exemples synthétiques allant jusqu’à la dimension cinq.

Dans le Chapitre 6, le cadre par PG est adapté aux grandes dimensions en étudiant
le cas où des fonctions satisfont des conditions additives ou additives par blocs. Puisque
les contraintes sont supposées être imposées sur un sous-ensemble prédéfini de variables
d’entrée, les développements proposés dans les Chapitres 3, 4 et 5 peuvent être appliqués
efficacement à des sous-espaces (généralement) de dimension faible. Cela conduit à des
modèles par PG sous contraintes qui peuvent facilement être mis à l’échelle dans des
grandes dimensions impliquant des centaines de variables d’entrée.

La Partie V s’intéresse à l’inférence sous contraintes d’inégalité. La vraisemblance
sous contraintes est obtenue en conditionnant celle qui n’est pas des contraintes au fait
que les inégalités sont satisfaites (Chapitre 7). Il est montré que, de manière générale,
tout résultat de consistance pour MV avec des PG sans contraintes est préservé lors de
l’ajout de contraintes de borne, monotonie et convexité. Ce chapitre présente également
l’étude de certains cas où les estimateurs non-contraints et contraints sont distribués
asymptotiquement gaussiens, à condition que le PG réponde aux contraintes. De plus,
il a également été montré que l’estimateur MV sous contraintes, appliqué à différents
exemples, est généralement plus précis sur des échantillons finis.

Les implémentations décrites dans les chapitres précédents peuvent également être
couplées à d’autres types de processus stochastiques modulés par des priors gaussiens :
e.g. les processus de Cox (Partie VI). Dans les processus de Cox, la fonction d’intensité
est modélisée comme un PG positif. Ainsi, le Chapitre 8 est marqué par l’introduction
d’une nouvelle approximation en dimension finie des processus de Cox modulés par
PG, dans laquelle des contraintes de positivité peuvent être imposées directement sur
le prior gaussien. La polyvalence du cadre résultant pour prendre en compte tout type
de contrainte d’inégalité conduit à des modèles pouvant être utilisés pour d’autres classes
de processus ponctuels : e.g. pour les processus de renouvellement. Il a été démontré à
la fois sur des données synthétiques et réelles, que le cadre développé durant cette thèse
donne des résultats d’inférence précis qui sont compétitifs par rapport à ceux fournis par
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d’autres méthodes de la littérature.

Les principaux développements de ce manuscrit sont implémentés dans le langage de
programmation R et font partie du package lineqGPR: modèles de régression par proces-
sus gaussiens avec contraintes d’inégalité (Partie VII). Nous y voyons une contribution
importante pour une utilisation pratique ainsi qu’un outil de valeur pour la recherche.
Dans le Chapitre 9, une brève description de certaines de ses principales fonctionnalités
est donnée sous diverses illustrations numériques.

Enfin, dans la Partie VIII, un aperçu des perspectives et un résumé des conclusions
sont exposés. En particulier, dans le Chapitre 10, une discussion d’une représentation
alternative par PG basée sur d’une triangulation de Delaunay. Le nombre de termes dans
ce PG de dimension fini n’augmentons pas de manière exponentielle avec les dimensions,
nous conforte dans l’idée que ces implémentations peuvent être appliquées de manière
plus efficace en grandes dimensions.

Conclusions

Les développements de ce manuscrit sont en phase avec trois directions principales : 1)
l’améliorer de l’applicabilité d’un modèle de type PG sous contraintes sous contraintes
d’inégalité en fournissant un échantillonneur rapide, 2) rendre les modèles capables de
monter à de grandes dimensions et/ou à un grand nombre d’observations, et 3) l’étudier
de l’inférence sous contraintes d’inégalité.

De manière générale, il a été montré que l’inclusion de contraintes d’inégalité dans
les cadre de PG permet d’obtenir des modèles plus réalistes. Cette thèse s’est intéressée
au modèle de type PG proposé par Maatouk (2015), obtenu par approximation finie,
qui garantit que les contraintes sont satisfaites dans tout l’espace. Plus concrètement,
plusieurs contributions ont été apportées. Premièrement, nous avons étudié l’emploi
de méthodes de Monte Carlo et Monte Carlo par châınes de Markov pour des lois
multinormales tronquées. Elles ont fourni un échantillonnage efficace pour des contraintes
d’inégalité linéaires. Deuxièmement, nous avons exploré l’extension du modèle, jusque-
là limité à la dimension trois, à de plus grandes dimensions. Il a été remarqué que
l’introduction d’un bruit d’observations permet de monter à la dimension cinq. Nous
avons proposé un algorithme d’insertion des nœuds, qui concentre le budget de calcul sur
les dimensions les plus actives. La triangulation de Delaunay a aussi été explorée comme
alternative à la tensorisation. Enfin, nous avons étudié l’utilisation de modèles additifs
dans ce contexte, théoriquement et expérimentalement sur des problèmes de plusieurs
centaines de variables. Troisièmement, nous avons donné des résultats théoriques sur
l’inférence sous contraintes d’inégalité. La consistance et la normalité asymptotique
d’estimateurs par maximum de vraisemblance ont été établis. L’ensemble des travaux a
fait l’objet d’un développement logiciel en R. Ils ont été appliqués à des problèmes de
gestion des risques en sûreté nucléaire et inondations côtières, avec des contraintes de
positivité et monotonie. En ouverture, nous avons montré que la méthodologie fournit
un cadre original pour l’étude de processus de Poisson d’intensité stochastique.
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8 Processus de Cox sous contraintes d’inégalité 117
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Mines Saint-Étienne Andrés F. López-Lopera



List of Figures

2.1 Effect of different kernels from Table 2.1 on unconditional GP samples . . 16
2.2 Effect of different covariance parameters on unconditional GP samples with

SE kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Samples of conditional GPs using various types of kernels . . . . . . . . . 18
2.4 Conditional GP of Figure 2.3(a) . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Conditional GP of Figure 2.4. Figure 2.5(b) shows the conditional process

when the covariance parameters θ are estimated via ML . . . . . . . . . 19
2.6 Examples of 2D unconditional trajectories from additive GPs . . . . . . . 21
2.7 2D conditional additive GPs . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Illustration of the finite-dimensional approximation in (3.1) . . . . . . . . 29
3.2 Example of Gaussian models satisfying different types of inequality cons-

traints for interpolating the function x 7→ Φ(x−0.5
0.2

) . . . . . . . . . . . . . 31
3.3 Gaussian models satisfying one or several types of inequality constraints

for interpolating a quadratic function . . . . . . . . . . . . . . . . . . . . 36
3.4 Gaussian models with different types of constraints for the example 3 from

subsection 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Examples of 2D Gaussian models with boundedness or monotonicity cons-

traints for interpolating the toy examples from subsection 3.3.3.3 . . . . . 39
3.6 Nuclear criticality safety assessment . . . . . . . . . . . . . . . . . . . . . 40
3.7 2D Gaussian models for interpolating the Godiva’s dataset . . . . . . . . 41
3.8 2D and 3D visualisations of equispaced tensor designs . . . . . . . . . . . 42

4.1 GP models under different inequality constraints. Samples of the priors
and resulting GP emulators are shown . . . . . . . . . . . . . . . . . . . 47

4.2 GP emulators under boundedness constraints. Results are shown consider-
ing noise-free and noisy observations . . . . . . . . . . . . . . . . . . . . 49

4.3 Efficiency of the HMC sampler in terms of its mixing performance . . . . 51
4.4 GP emulators under boundedness and monotonicity constraints. Results

are shown for different amounts of knots . . . . . . . . . . . . . . . . . . 52
4.5 GP emulators under monotonicity constraints in 5D . . . . . . . . . . . . 54
4.6 Quality of predictions from Figure 4.5 . . . . . . . . . . . . . . . . . . . . 55
4.7 2D coastal flooding application . . . . . . . . . . . . . . . . . . . . . . . 56

xxi



xxii List of Figures

4.8 2D GP emulators for modelling the coastal flooding data in (Rohmer and
Idier, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 5D GP emulators for modelling the coastal flooding data in (Azzimonti
et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Illustration of the finite-dimensional approximation in Figure 3.1 using the
asymmetric hat basis functions from (5.1) . . . . . . . . . . . . . . . . . 65

5.2 MAP evolution of the 1D toy example in subsection 5.2.3 after i iterations
of the sequential algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Conditional sample-path evolution of the example in Figure 5.2 . . . . . 70

5.4 MAP estimate of the 2D examples in (5.20) after convergence of the
sequential algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Representation of the old basis functions in the vector space spanned by
the new basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Conditional additive GPs under inequality constraints in 2D . . . . . . . 87

6.2 Additive GP model under monotonicity constraints in 5D . . . . . . . . . 88

6.3 Examples of an additive GP under monotonicity constraints in 1000 di-
mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 5D additive GP emulators for modelling the coastal flooding data in (Azzi-
monti et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1 Assessment of the likelihood and conditional likelihood estimators for 100
samples drawn from a GP . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Assessment of the cMLE using different number of knots for the example
in Figure 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Asymptotic conditional distribution of the variance parameter estimators
under boundedness constraints . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Asymptotic conditional distribution of the variance parameter estimators
under monotonicity constraints . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Asymptotic distribution of the microergodic parameter estimators for the
isotropic Matérn 5/2 model under boundedness constraints . . . . . . . . 111

7.6 Assessment of GP models for interpolating the dataset from Figure 3.6 . 112

8.1 Samples from the prior Λ under (a) no constraints, (b) non-negativeness
constraints, (c) both non-negativeness and non-increasing constraints . . 122

8.2 Inference results with multiple observations using the toy examples from
(Adams et al., 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 Inference results on a 2D spatial toy example . . . . . . . . . . . . . . . . 128

8.4 Renewal inference examples under inequality constraints. Inference results
are shown for a Weibull renewal process and a Gamma renewal process . 129

8.5 Inference results of the redwoods data from (Baddeley et al., 2015) . . . 130

10.1 2D visualisations of a tensor (left) and a triangular (right) design of knots 151
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Chapter 1

General Aspects

Contents
1.1 Preliminary context . . . . . . . . . . . . . . . . . . . 3

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the manuscript . . . . . . . . . . . . . . 5

1.4 Scientific contributions . . . . . . . . . . . . . . . . . 7

1.1 Preliminary context

This thesis is conducted within the frame of the Chair in Applied Mathematics
OQUAIDO, gathering partners in technological research (BRGM, CEA, IFPEN, IRSN,
Safran, Storengy) and academia (CNRS, École Centrale de Lyon, Mines Saint-Étienne,
Université Grenoble, Université Nice, Université de Toulouse) around advanced
methods for the design and analysis of computer experiments. Its research domain is
devoted to investigating industrial computer codes that are costly-to-evaluate. Such
computer codes typically aim at modelling complex physical phenomena such as
encountered in the development of new technologies or risk studies. They are used by
the partners of the Chair in different research fields such as energy, environment and
transport problems.

This thesis is inspired by previous scientific contributions associated with the ReDICE
consortium. More precisely, it continues the research line investigated by Maatouk
(2015) in the thesis entitled: Correspondence between Gaussian Process Regression and
Interpolation Splines under Linear Inequality Constraints: Theory and Applications.
As in (Maatouk, 2015), this work is dedicated to study stochastic interpolation and
regression models based on Gaussian processes (GPs) under inequality constraints (e.g.
boundedness, monotonicity, convexity). Throughout this manuscript, we overcome some
limitations from (Maatouk, 2015) and introduce novel GP developments in three main
directions: 1) to improve the applicability of GPs accounting for inequality constraints by
providing a fast sampler, 2) to make the constrained GP models scalable to higher dimen-
sions and/or number of observations, and 3) to investigate estimation under inequality
constraints.
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4 1 General Aspects

1.2 Introduction

GPs are one of the most famous stochastic processes used in non-parametric Bayesian
frameworks. GP models place prior distributions over function spaces, and prior assump-
tions (e.g. smoothness, stationarity, sparsity) are encoded in the covariance function
(Paciorek and Schervish, 2004; Rasmussen and Williams, 2005; Snelson and Ghahramani,
2006). The properties of GPs have been explored in many decision tasks in both regression
and classification problems (Nickisch and Rasmussen, 2008; Rasmussen and Williams,
2005). Computer science, physics, biology, and neuroscience are some fields where GPs
have been applied successfully (Murphy, 2012; Rasmussen and Williams, 2005).

Despite the reliable performance of GPs, they are likely to provide unrealistic uncer-
tainty estimates when physical systems satisfy inequality constraints (e.g. boundedness,
monotonicity or convexity) (Da Veiga and Marrel, 2012; Golchi et al., 2015; Maatouk
and Bay, 2017; Zhou et al., 2019). Quantifying properly those uncertainties is crucial for
understanding real-world phenomena. For example, in nuclear safety criticality assess-
ment, experimental settings typically require expensive and risky procedures to evaluate
neutron productions. Hence, emulators are required to infer these production rates and
should encode the constraint that the output is positive and monotonic with respect
to a given set of input parameters. In this sense, in order to obtain more accurate
predictions, both conditions have to be considered in the uncertainty quantification.
Other test cases where data exhibit specific inequality constraints are given in computer
networking (monotonicity) (Golchi et al., 2015), social system analysis (monotonicity)
(Riihimäki and Vehtari, 2010), econometrics (monotonicity or positivity) (Cousin et al.,
2016), and nuclear physics (monotonicity and/or convexity) (Zhou et al., 2019).

Several studies have shown that including inequality constraints in GP frameworks can
lead to more realistic uncertainty quantifications in learning from real data (Da Veiga
and Marrel, 2012; Golchi et al., 2015; Riihimäki and Vehtari, 2010; Zhang and Lin,
2018). In most cases, it is assumed that the inequalities are satisfied on a finite set of
input locations. Then, the posterior distribution is approximated given those constrained
inputs (see, e.g., Golchi et al., 2015; Riihimäki and Vehtari, 2010). In practice, an
alternative to deal either with positiveness, monotonicity, or convexity constraints is
to use (iterated) integrals of positive processes (e.g. log-GPs, Vanhatalo and Vehtari,
2007). However, those approaches have a density with zero mass in zero and are limited
to specific inequality conditions. In (Zhang and Lin, 2018), a novel GP projection is
developed aiming at incorporating bound information along the input domain. Although
a closed-formed solution for the projection is provided there, their framework is limited to
account only for boundedness constraints. In (Maatouk and Bay, 2017), GP samples are
approximated in finite-dimensional spaces of functions such as piecewise linear functions.
It is shown by Bay et al. (2016) that the posterior mode of the resulting constrained
process converges to the one provided by spline interpolation. Such GP-based framework
in (Maatouk and Bay, 2017) has been applied on several real-data (e.g. econometrics,
Cousin et al. (2016), geostatistics, Maatouk and Bay (2017), nuclear physics Zhou et al.
(2019)), resulting in more realistic uncertainties than unconstrained GP models.
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The framework proposed by Maatouk and Bay (2017) still presents some limitations.
First, even if it was written for a general convex set of linear inequalities, the focus
was on data interpolation with investigations for either boundedness, monotonicity or
convexity conditions. Second, the proposed rejection sampling method in (Maatouk and
Bay, 2016) for estimating the posterior results in a high rejection rate when either the
order of the finite approximation increases or the inequality constraints become more
complex. Third, their model leads to tractable implementations up to two-dimensional
input domains as a consequence of the previous drawback. Fourth, the proposed leave-
one-out technique for parameter estimation in (Maatouk et al., 2015) restricts the optimal
values to be on a finite grid of possible values, and provides the same estimation of
correlation parameters as for unconstrained GP parameters. In order to address these
limitations, the contributions of this thesis are fivefold. First, we extend the framework
to deal with general sets of linear inequality constraints. Second, we evaluate efficient
Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) algorithms that can be used
to approximate the posterior distribution. Third, we explore alternative constructions of
finite-dimensional GP models and/or consider additional assumptions (e.g. noise effect,
additive structures) aiming at scaling models to higher dimensions (i.e. involving tens or
hundreds of inputs variables). Fourth, we investigate theoretical and numerical properties
of a conditional likelihood for covariance parameter estimation accounting for inequality
constraints. Finally, we demonstrate that implementations throughout this manuscript
can be coupled to other types of GP-modulated processes where constrained Gaussian
priors are crucial to get accurate models with more realistic uncertainties (e.g. Cox
processes, renewal processes).

One must note that recent contributions based on the framework proposed by Maatouk
(2015) have been suggested during the preparation of this manuscript (see, e.g., Maatouk,
2017; Ray et al., 2019; Zhou et al., 2019). In (Maatouk, 2017), the GP-based model
in (Maatouk, 2015) was adapted to account for noisy observation under boundedness,
monotonicity or convexity constraints. Further works by Zhou et al. (2019) and (Ray
et al., 2019) allowed the combination of constraints (e.g. monotonicity and convexity).
In contrast to those contributions, our developments account for general sets of linear
inequality constraints and do not require to compute kernel derivatives. The latter
attribute implies that there is no restrictions on the choice of the covariance function
(e.g. as for monotonicity or convexity). We were not able to compare our framework
with respect to the ones proposed in (Ray et al., 2019; Zhou et al., 2019) during the
writing process of this manuscript. However, we know that those approaches exist, and
therefore, numerical comparisons are of interest in future implementations.

1.3 Structure of the manuscript

The developments throughout this manuscript are in phase with three main directions: 1)
to improve the applicability of GPs accounting for inequality constraints by providing a
fast sampler, 2) to make the constrained GP models scalable to higher dimensions and/or
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number of observations, and 3) to investigate estimation under inequality constraints.

In Part II, we give an overview of the basics on GP regression models. In Chapter 2,
we start from the classical point of view, defining key terms of GPs (e.g. covariance
function and maximum likelihood estimator). Then, we briefly explain how to adapt GP
implementations when additive functions are considered.

In Part III, we further investigate the framework proposed by Maatouk (2015) to
account for general linear inequality constraints (see Chapter 3). This leads to more
versatile models that can be used for a broad range of applications. Furthermore, our
approach does not have restrictions on the choice of the covariance function (e.g. as
for monotonicity or convexity). The computations involve truncated Gaussian posterior
distributions, that can be approximated via MC and MCMC algorithms. Thus, we
explore efficient MC/MCMC samplers to make the model applicable in practice. Finally,
we test the proposed approach on a 2D nuclear application where both boundedness and
monotonicity constraints are satisfied.

Noisy observations are considered in Chapter 4. The relaxation of the interpola-
tion constraints through a noise effect results in less restrictive sample spaces where
MC/MCMC samplers are performed. This leads to faster implementations while pre-
serving high effective sampling rates. We demonstrate on various synthetic examples,
and without further assumptions, that the framework is applicable up to 5D and for
thousands of observations. Finally, we assess the proposed model on 2D and 5D coastal
flooding applications.

In Part IV, regarding the extension in high dimensions, we explore alternative con-
structions of the framework in Part III. First, due to the tensor construction in Chap-
ters 3 and 4, implementations become costly with finer resolution in the approximation.
Therefore, it is worth preferentially increasing the quality of representation only in
highly variable regions. To do so, in Chapter 5, we explore a sequential algorithm
for the automatic construction of (non-equispaced) rectangular grids of the knots used
in the tensorisation. The algorithm is inspired from the free-knots paradigm in spline
constructions. We test the performance of the proposed algorithm on synthetic examples
up to 5D.

In Chapter 6, we adapt the framework to deal with high dimensions by studying
the case where functions satisfy additive or block-additive conditions. Since constraints
are assumed to be imposed on a predefined subset of input variables, developments in
Chapters 3 to 5 can be efficiently applied on (usually) low-dimensional subspaces. This
leads to constrained GP models that can be easily scaled in high dimensions involving
hundreds of input variables.

In Part V, we focus on inference under inequality constraints. The constrained likeli-
hood is obtained by conditioning the unconstrained one to the fact that the inequalities
are satisfied (see Chapter 7). We show that, loosely speaking, any consistency result for
the maximum likelihood estimator (MLE) with unconstrained GPs, is preserved when
adding boundedness, monotonicity and convexity constraints. We also study some cases
where both the unconstrained and constrained estimators are asymptotically Gaussian
distributed, conditionally to the fact that the GP satisfies the constraints. We show in
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simulations that the constrained MLE is generally more accurate on finite samples.
The GP implementations in previous chapters can also be coupled to other types of

stochastic processes which are modulated by Gaussian priors: e.g. Cox processes (see
Part VI). In Cox processes, the intensity function is modelled as a positive GP. Thus,
in Chapter 8, we introduce a novel finite-dimensional approximation of GP-modulated
Cox processes where positivity constraints can be imposed directly on the GP prior. The
versatility of the resulting framework to account for any type of inequality constraints
leads to models that can be used for other classes of point processes: e.g. renewal
processes. We demonstrate on both synthetic and real-world data that the proposed
framework gives accurate inference results that are competitive with those provided by
other methods from the state-of-the-art.

The main GP developments throughout this manuscript are implemented in the R
programming language, and they are part of the package lineqGPR: Gaussian process
regression models with inequality constraints (see Part VII). We see it as an important
contribution for practical usage as well as a valuable tool for research. In Chapter 9, we
briefly describe some of its main functionalities on various numerical illustrations.

Finally, in Part VIII, we give an insight of the perspectives and summarise the con-
clusions. In particular, in Chapter 10, we discuss an alternative representation of GPs
based on Delaunay triangulations. We believe that, since the number of terms in this
new finite-dimensional GP does not increase exponentially with the dimensions, GP
implementations can be scaled more efficiently to high dimensions.

1.4 Scientific contributions

Results throughout this thesis are based on diverse scientific contributions including
publications in international journals, proceedings in international conferences, preprints,
conferences, R packages, etc. Next, we list the main scientific contributions.

Publications in international journals

1. López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018).
Finite-dimensional Gaussian approximation with linear inequality constraints.
SIAM/ASA Journal on Uncertainty Quantification, 6(3):1224–1255.

2. Bachoc, F., Lagnoux, A., and López-Lopera, A. F. (2019). Maximum likelihood
estimation for Gaussian processes under inequality constraints. Electronic Journal
of Statistics , 13(2):2921–2969.

Proceedings in international conferences

3. López-Lopera, A. F., John, S., and Durrande, N. (2019). Gaussian process modu-
lated Cox processes under linear inequality constraints. In International Conference
on Artificial Intelligence and Statistics (AISTATS), Naha, Okinawa, Japan.
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4. López-Lopera, A. F., Bachoc, F., Durrande, N., Rohmer, J., Idier, D., and Rous-
tant, O. (2018). Approximating Gaussian process emulators with linear inequality
constraints and noisy observations via MC and MCMC. In Monte Carlo and Quasi-
Monte Carlo Methods (MCQMC), Rennes, France.

Conferences & workshops

5. (Poster) López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018).
Gaussian process regression models under linear inequality conditions. In Mascot-
Num,1 Nantes, France.

6. López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018). Finite
dimensional Gaussian approximation with linear inequality constraints. In SIAM
Conference on Uncertainty Quantification (SIAM-UQ), California, USA.

7. López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2019). Gaussian
process regression models under linear inequality conditions. In Mascot-Num,
Rueil-Malmaison, France.

8. (Poster) López-Lopera, A. F. (2019). lineqGPR: an R package for Gaussian process
regression modelling with linear inequality constraints. In International Conference
for Users of R (UseR!), Toulouse, France.

R packages

9. López-Lopera, A. F. (2019). lineqGPR: Gaussian Process Regression Models with
Inequality Constraints. R package version 0.0.4.

International scientific exchanges

- Scientific visit at PROWLER.io,2 Cambridge, UK, February, 2018.

Participations to the Chair OQUAIDO

- GP modelling under Inequality Constraints I – Progress on Chapter 3, in Chair
OQUAIDO Scientific Days, Université de Nice, France, May 10–11, 2017.

- GP modelling under Inequality Constraints II – Progress on Chapters 3 and 7, in
Chair OQUAIDO Scientific Days, BRGM, Orléans, France, Nov. 22–23, 2017.

- Package lineqGPR – Progress on Chapter 9, in Chair OQUAIDO Software Training,
Mines Saint-Étienne, France, Jan. 30, 2018.

1“Méthodes d’Analyse Stochastique pour les Codes et Traitements Numériques” (in French).
2PROWLER.io is a research led, Cambridge based startup focusing on behavioural learning and

simulation in virtual environments.
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- GP modelling under Inequality Constraints III – Progress on Chapters 7, 8 and 10,
in Chair OQUAIDO Scientific Days, Centrale Lyon, France, Jan. 22–24, 2018.

- GP modelling under Inequality Constraints IV – Progress on Chapters 5 and 6, in
Chair OQUAIDO Scientific Days, CEA, Cadarache, France, Nov. 22–23, 2018.

- GP modelling under Inequality Constraints V – Coastal flooding applications in
Chapter 4, in Chair OQUAIDO Scientific Days, IMT, Toulouse, France, May 14–
16, 2019.
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Chapter 2

Basics on Gaussian Process
Regression Models

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Gaussian process regression modelling . . . . . . . . 14

2.2.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Gaussian process regression . . . . . . . . . . . . . . . 17

2.2.3 Covariance parameter estimation . . . . . . . . . . . . 17

2.2.4 Curse of dimensionality . . . . . . . . . . . . . . . . . 18

2.3 Additive models . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Additive Gaussian processes . . . . . . . . . . . . . . . 20

2.3.2 Conditioning to interpolation constraints . . . . . . . 21

2.3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction

Since developments along this manuscript are built on standard GP models, this chapter
contains a collection of notations and definitions needed in later parts. In Section 2.2, we
start from the classical point of view, defining key terms of GP regression models (e.g.
covariance function and maximum likelihood estimator). Then, in Section 2.3, we briefly
explain how to adapt GP models when additive functions are considered. In contrast to
standard GP regression models, the main benefit of considering additivity relies in the
fact that an exponentially increasing number of observations is not required to cover the
input space.
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2.2 Gaussian process regression modelling

In this manuscript, we consider latent functions f : D → R defined on a compact
input space D. The definition of D may vary among the different types of models and
applications. It may vary from unit intervals in one-dimensional problems, i.e. D = [0, 1];
to d-dimensional unit hypercubes in high dimensions, i.e. D = [0, 1]d. We assume that
a finite number of observations n are available at points x1, · · · ,xn ∈ D, leading to a
vector of observations f defined as:

f =
[
f(x1), · · · , f(xn)

]>
.

We consider stochastic processes given by

Y : (Ω,A)→ (C(D,R),B),

where (Ω,A) is a measurable space, C(D,R) is the set of continuous functions from D to
R, and B is the Borel sigma algebra on C(D,R) corresponding to the L∞ norm (Stein,
1999).

Before introducing the definition of a GP, concepts of symmetry and positive semi-
definiteness are required since they play an important role for the construction of covari-
ance functions (Genton, 2001; Rasmussen and Williams, 2005).

Definition 2.1 (Symmetry) Let X be a non-empty set. A function k : X ×X → R is
symmetric if ∀x,x′ ∈ X ,

k(x,x′) = k(x′,x).

Definition 2.2 (Positive semi-definiteness) A function k : X × X → R is positive
semidefinite (p.s.d.) if for all n ∈ N, and for all a1, · · · , an ∈ R,∀ x1, · · · ,xn ∈ X ,

n∑

i=1

n∑

j=1

aiajk(xi,xj) ≥ 0.

Definition 2.3 (Covariance function) Consider a symmetric and p.s.d. function k :
X × X → R. Then, k is said to be a valid covariance function (or kernel) on X .

Thus, the function k is p.s.d. if for every choice of design points x1, · · · ,xn, the matrix
(k(xi,xj))1≤i,j,≤n is p.s.d.

2.2.1 Gaussian process

A GP is a collection of random variables, such that any finite subset of them have a joint
Gaussian distribution (Rasmussen and Williams, 2005). Let {Y (x);x ∈ D} be a GP.
Then, Y is completely defined by its mean function µ and covariance function k:

Y ∼ GP(µ, k), (2.1)
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Table 2.1: Common stationary kernel functions used in GP regression models in 1D.

Type of kernel Expression for k(x, x′) Class

Squared Exponential (SE) σ2 exp
{
− (x−x′)2

2`2

}
C∞

Matérn 5/2 σ2
(

1 +
√

5|x−x′|
`

+ 5(x−x′)2
3`2

)
exp

{
−
√

5|x−x′|
`

}
C2

Matérn 3/2 σ2
(

1 +
√

3|x−x′|
`

)
exp

{
−
√

3|x−x′|
`

}
C1

Exponential σ2 exp
{
− |x−x′|

`

}
C

where µ(x) = E {Y (x)} and k(x,x′) = cov {Y (x), Y (x′)} for x,x′ ∈ D. The operator
E denotes the expectation of random variables, and the covariance operator is given by

cov {Y (x), Y (x′)} = E {[Y (x)− µ(x)][Y (x′)− µ(x′)]} .

For ease of notation, we focus on centred GP prior assumptions, i.e. Y has mean function
µ equal to zero.1 For a given finite number of points (x1, · · · ,xn), then the vector with

random variables (r.v.’s) Yn =
[
Y (x1), · · · , Y (xn)

]>
, satisfies

Yn ∼ N (0,K) , (2.2)

with covariance matrix K = (cov {Y (xi), Y (xj)})1≤i,j≤n.

2.2.1.1 Kernel functions

Let {Y (x);x ∈ D} be a centred GP. Since Y has a mean function equal to zero, it can
be fully described by its kernel function,

k(x,x′) = cov {Y (x), Y (x′)} .

Different choices of prior assumptions can be encoded in Y depending on the choice
of the kernel k (e.g. smoothness, stationary). For simplicity and ease of notation, we
assume stationarity in the next chapters. However, GP implementations proposed along
the manuscript are not restricted to stationarity, and further developments can be made
for non-stationary kernels.

Definition 2.4 (Stationary kernel functions) A kernel function k : X × X → R,
with X ⊂ Rd, is stationary if, for all x,x′ ∈ X , k(x,x′) only depends on x− x′.

Table 2.1 shows the most common stationary kernels used in GP regression models in
1D. They are shown in decreasing order of regularity in mean square sense (Santner et al.,
2003a; Stein, 1999), where the class C∞ corresponds to the space of infinitely differentiable

1A GP Z with mean function µ and kernel k can be expressed in terms of a centred GP Y with same
kernel function: Z(x) = µ(x) + Y (x).
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Figure 2.1: Effect of different kernels from Table 2.1 on unconditional GP samples with
fixed covariance parameters θ = (σ2 = 1, ` = 0.1).
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Figure 2.2: Effect of different covariance parameters θ = (σ2, `) on unconditional GP
samples with SE kernel functions.

functions. Contrarily to the class C∞, the class Cκ corresponds to the space of κ-times
differentiable functions and the class C corresponds to the space of continuous functions.
Notice that the kernels from Table 2.1 depend only on two covariance parameters θ =
(σ2, `) with variance parameter σ2 and length-scale parameter `. For instance, σ2 can
be viewed as a scale parameter for the output; and ` as a scale parameter for the input.
The effect of different kernels and covariance parameters on unconditional GP samples
can be seen in Figures 2.1 and 2.2, respectively.

For the multidimensional case (i.e. d ≥ 2), valid kernel functions can be obtained by
the tensor product of one-dimensional ones:

k(x,x′) =
d∏

i=1

ki(xi, xi
′),

where x,x′ ∈ D, and ki corresponds to the kernel associated to the i-th dimension. Note
that the expression above is valid for any class of kernel ki. We refer to (Genton, 2001;
Rasmussen and Williams, 2005) for a further discussion about the construction of valid
kernel functions (e.g. locally stationary kernels, non-stationary kernels).
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2.2.2 Gaussian process regression

Now, we focus on conditioning a GP Y to a finite number of observations (conditioning

points). Consider the notation in subsection 2.2.1. Let Yn =
[
Y (x1), · · · , Y (xn)

]>
and

Y∗ =
[
Y (x∗1), · · · , Y (x∗m)

]>
be Gaussian vectors extracted from Y . Then, the joint vector

(Yn,Y∗) is also Gaussian:

[
Yn

Y∗

]
= N

([
0
0

]
,

[
KYn,Yn KYn,Y∗

KY∗,Yn KY∗,Y∗

])
, (2.3)

with covariance matrices K·,· = cov {·, ·} satisfying KY∗,Yn = K>Yn,Y∗ . Finally, according
to the properties on GPs (see, e.g., Rasmussen and Williams, 2005, appendix A.2),
the conditional distribution of the Gaussian vector Y∗, knowing Yn = y for a given
observation vector y = [y1, · · · , yn]>, is given by

Y∗|{Yn = y} ∼ N (µ, Σ) . (2.4)

with conditional parameters,

µ = KY∗,YnK
−1
Yn,Yn

y, Σ = KY∗,Y∗ −KY∗,YnK
−1
Yn,Yn

K>Y∗,Yn
. (2.5)

Furthermore, one can compute the q% conditional confidence intervals (Hyndman and
Fan, 1996):

CIq% =
[
µ− zq%σ,µ+ zq%σ

]
, (2.6)

with the vector of standard deviations σ =
√

diag(Σ), and zq% the value from the
standard normal distribution for the selected confidence level. For 90%, 95% and 99%
conditional confidence intervals, we have the z-values z90% = 1.645, z95% = 1.96 and
z99% = 2.576.

The effect of adding conditioning points into the GPs in Figure 2.1 can be seen in
Figure 2.3. Figure 2.4 shows the conditional mean and conditional variances obtained by
the resulting GP with a SE kernel.

Finally, noise effects can also be added in GP frameworks. Consider the Gaussian
vector Y∗, conditioned to Yn + ε = y for a given observation vector y and an additive
Gaussian white noise ε ∼ N (0, τ 2I) with noise variance τ 2. Note that ε1, · · · , εn were
assumed to be independent, and independent of Y . Then, the conditional distribution
Y∗|{Yn + ε = y} is as in (2.4), where the covariance matrix KYn,Yn in (2.5) is replaced
by KYn,Yn + τ 2I.

2.2.3 Covariance parameter estimation

The covariance functions of GP models are usually unknown and have to be estimated.
Let {kθ;θ ∈ Θ}, with Θ ⊂ Rp, be a parametric family of covariance functions. Here, we
assume that Y is a centred GP with covariance function kθ∗ for an unknown θ∗ ∈ Θ, and
we consider the problem of estimating θ∗. We denote θ and θ∗ as covariance parameters.
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Figure 2.3: Samples of conditional GPs using various types of kernels. Conditioning
observations at x1 = 0.2, x2 = 0.5, and x3 = 0.8 are shown in black dots. The covariance
parameters are fixed to θ = (σ2 = 1, ` = 0.1).
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Figure 2.4: Conditional GP
of Figure 2.3(a). The panel
shows: the conditional mean
function (blue solid line),
two standard deviation condi-
tional intervals (grey region),
and conditional GP realisa-
tions (dashed lines).

Commonly, the parameters θ∗ are estimated by maximising the Gaussian likelihood
Pθ(Yn) with respect to (w.r.t.) θ ∈ Θ. Let Ln(θ) be the log-likelihood of θ:

Ln(θ) = logPθ(Yn) = −1

2
log(det(Kθ))−

1

2
Y>nK−1

θ Yn −
n

2
log 2π, (2.7)

with Kθ = (kθ(xi,xj))1≤i,j≤n. Then, the maximum likelihood estimator (MLE) is given
by

θ̂MLE ∈ arg maxθ∈Θ Ln(θ). (2.8)

By maximising (2.7), we are looking for a set of parameters θ that improves the ability of
the model to explain the data. Figure 2.5 shows the resulting conditional GPs when the
covariance parameters are: (a) manually fixed to θ = (σ2 = 1, ` = 0.1), or (b) estimated
via maximum likelihood (ML).

Note that other approaches based on cross-validation can also be used for the covariance
parameter estimation of GPs (see, e.g. Bachoc, 2013; Rasmussen and Williams, 2005;
Stein, 1999), but we focus on ML estimators in the later chapters (see Chapter 7).

2.2.4 Curse of dimensionality

The main drawback of standard GP implementations is related to the curse of dimen-
sionality: it typically scales in O(n2) in space and O(n3) in time with n the number
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Figure 2.5: Conditional GP
from Figure 2.4. Figure 2.5(b)
shows the conditional process
when the covariance param-
eters θ are estimated via
ML. On both models, an
additive Gaussian white noise
was added with a fixed noise
variance τ 2 = 0.03.

of observations (Rasmussen and Williams, 2005; Titsias, 2009). The computational cost
results mainly from the inversion of the covariance matrix Kθ when training GP models
using (2.8). More sophisticated GP developments have been proposed to deal with the
intractability when n is large. First, one may consider further assumptions on the process
looking for computational simplifications. An example can be seen when considering
additive processes (Durrande et al., 2012; Duvenaud et al., 2011; Van der Wilk et al.,
2017). In that case, the computational gain is in the fact that an exponentially increasing
number of design points x1, · · · ,xn ∈ Rd is not required to cover the input space when
d increases. Second, most common GP frameworks are based on sparse representations
using inducing points (Hensman et al., 2017, 2013; Quiñonero Candela and Rasmussen,
2005; Snelson and Ghahramani, 2006; Titsias, 2009). There, approximations based
on a small set of m inducing variables are constructed allowing to reduce the time
complexity from O(n3) to O(nm2) for m << n. The main difference between those
sparse approaches relies in the strategy used to choose the inducing variables. Finally,
specific covariance structures leading to more efficient computations can be exploited:
e.g., in state space models (Särkkä, 2013), Gaussian Markov models (Durrande et al.,
2019), etc. In Chapter 6, we focus on the class of models accounting for both additive
structures and inequality constraints.

2.3 Additive models

Nowadays, many statistical regression models are based on additive structures of the
form:

f(x1, · · · , xd) = f1(x1) + · · ·+ fd(xd). (2.9)

Although having such structure may lead to more “rigid” models compared to non-
additive ones, it results in simple frameworks that can be easily scaled in high dimensions
(Buja et al., 1989; Hastie and Tibshirani, 1986). Generalised additive models (GAMs)
(Hastie and Tibshirani, 1986), and additive GPs (Durrande et al., 2012; Duvenaud et al.,
2011), are the most common models successfully applied in a wide range of applications.
Furthermore, the latter can also be seen as a generalisation of GAMs that allow to
quantify uncertainties. As shown by Duvenaud et al. (2011) and Durrande et al. (2012),
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additive GPs can significantly improve modelling efficiency and has major advantages
for interpretability. As our general framework is about GPs, we focus on additive GP
models.

2.3.1 Additive Gaussian processes

First, we consider the additive GP {Y (x);x ∈ D} given by

Y (x) = Y1(x1) + · · ·+ Yd(xd), (2.10)

where x1, · · · , xd ∈ [0, 1]. We assume that Y1, · · · , Yd are independent GPs with mean zero
and covariance functions k1, · · · , kd, respectively. Then, cross-covariance terms are equal
to zero, i.e. cov {Yp(xp), Yq(xq)} = 0 for p, q = 1, · · · , d, and p 6= q. Thus, the covariance
function k of Y is given by

k(x,x′) =
d∑

p=1

kp(xp, x
′
p), (2.11)

with x,x′ ∈ D. Notice that the extension of (2.10) to dependent sub-processes Yp is
straightforward. In that case, cross-covariance terms kp,q(·, ·) = cov {Yp(·), Yq(·)} 6= 0
will appear in (2.11). Furthermore, developments considering block-additivity can also
be considered leading to minor changes. For example, consider a block-additive process
Y (x1, x2, x3) = Y1(x1) + Y2,3(x2, x3) with independent GPs Y1 and Y2,3 on R and R2,
respectively. Denote k1 and k2,3 the covariance functions of Y1, Y2,3, respectively. Then,
(2.11) is given by the sum of kernels k(x,x′) = k1(x1, x

′
1) + k2,3(x2, x3;x′2, x

′
3). We refer

to (Durrande et al., 2012; Duvenaud et al., 2011; Fruth, 2015; Muehlenstaedt et al., 2012;
Van der Wilk et al., 2017) for further details on the selection of groups for additive GPs
per blocks.

As in (Durrande et al., 2012), here we consider covariance functions of the form
kp(xp, x

′
p) = σ2

pcp,`p(xp, x
′
p) for p = 1, · · · , d, with cp,`p the p-th correlation function with

length-scale `p. Thus, (2.11) can be written as

k(x,x′) =
d∑

p=1

σ2
pcp,`p(xp, x

′
p), (2.12)

Note that, unlike standard GP models, the additivity allows us to consider different values
of variance parameters along each input coordinate. This implies that, for d dimensional
input spaces, 2 × d covariance parameters (d variances and d length-scales parameters)
have to be estimated rather than the required d+ 1 parameters for non-additive models
(a single variance term and d length-scales). Figure 2.6 shows 2D simulations from the
additive GP Y (x1, x2) = Y1(x1) + Y2(x2). We used an additive SE kernel,

k(x1, x2;x′1, x
′
2) = σ2

1 exp

{
−(x1 − x′1)2

2`2
1

}
+ σ2

2 exp

{
−(x2 − x′2)2

2`2
2

}
,

with covariance parameters θ = ((σ2
1, `1), (σ2

2, `2)).
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Figure 2.6: Examples of 2D trajectories from additive GPs Y (x1, x2) = Y1(x1) + Y2(x2)
with covariance parameters θ = ((σ2

1, `1), (σ2
2, `2)).

2.3.2 Conditioning to interpolation constraints

Consider the model in (2.10). Here, we aim at satisfying the interpolations conditions:

Y (xi) = yi,

with x1, · · · ,xn ∈ D and observations yi ∈ R for i = 1, · · · , n. As in subsection 2.2.2,

let Yn =
[
Y (x1), · · · , Y (xn)

]>
and Y∗ =

[
Y (x∗1), · · · , Y (x∗m)

]>
be Gaussian vectors

extracted from Y . Then, according to Section 2.2, and using (2.11), the distribution of
Y∗|{Yn = y} is also Gaussian with conditional parameters given by,

µ =

( d∑

p=1

K
(p)
Y∗,Yn

)( d∑

p=1

K
(p)
Yn,Yn

)−1

y, (2.13)

Σ =

( d∑

p=1

K
(p)
Y∗,Y∗

)
−
( d∑

p=1

K
(p)
Y∗,Yn

)( d∑

p=1

K
(p)
Yn,Yn

)−1( d∑

p=1

K
(p)
Y∗,Yn

)>
,

with covariance matrices K
(p)
Yn,Yn

= (kp(xi,xj))1≤i,j≤n, K
(p)
Yn,Y∗

= (kp(xi,x
∗
j))1≤i≤n,1≤j≤m

and K
(p)
Y∗,Y∗

= (kp(x
∗
i ,x

∗
j))1≤i,j≤m for p = 1, · · · , d. Note that the expressions in (2.13) are

exactly equal to the ones in (2.5) with KYn,Yn =
∑d

p=1 K
(p)
Yn,Yn

, KY∗,Yn =
∑d

p=1 K
(p)
Y∗,Yn

and KY∗,Y∗ =
∑d

p=1 K
(p)
Y∗,Y∗

. One must note that the matrix KYn,Yn can be non-invertible
for some choices of x1, · · · ,xn. However, a solution to this drawback is to consider noisy
observations (see subsection 2.3.3 for more details).

From (2.13), we have that the mean predictor µ can also be expressed as the sum of
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22 2 Basics on Gaussian Process Regression Models

x1

x
2

µ
(x

1 , x
2 )

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00
x1

Y
1
(x

1
)

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00
x2

Y
2
(x

2
)

x1

x
2

µ
(x

1 , x
2 )

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00
x1

Y
1
(x

1
)

-1

0

1

2

3

0.00 0.25 0.50 0.75 1.00
x2

Y
2
(x

2
)

Figure 2.7: 2D conditional additive GPs. Results are shown either (top) with fixed
covariance parameters θ = ((σ2

1 = 1, `1 = 0.2), (σ2
2 = 1, `2 = 0.2)), or (bottom) with

the estimated ones via ML: θ̂MLE = ((σ̂2
1 = 0.34, ̂̀1 = 0.12), (σ̂2

2 = 3.04, ̂̀2 = 1)). Each
row shows: (left) the conditional mean function µ(x1, x2) = µ1(x1) + µ2(x2), and the
sub-models (centre) µ1 and (right) µ2. For the conditional mean, black dots represent
the interpolation points. For the sub-models, the conditional mean functions µ1, µ2 (blue
solid lines) and the 90% conditional interval (grey region) are shown.

mean terms:

µ = KY∗,YnK
−1
Yn,Yn

y = K
(1)
Y∗,Yn

K−1
Yn,Yn

y + · · ·+ K
(d)
Y∗,Yn

K−1
Yn,Yn

y = µ1 + · · ·+ µd,

with sub-models µp = K
(p)
Y∗,Yn

K−1
Yn,Yn

y for p = 1, · · · , d (Durrande et al., 2012). On the
other hand, the conditional covariance matrix Σ is not the sum of covariance matrices of
individual models. But we have:

Σ = KY∗,Y∗ −KY∗,YnK
−1
Yn,Yn

KYn,Y∗ =
d∑

p=1

Σp,

where Σp = K
(p)
Y∗,Y∗

−K
(p)
Y∗,Yn

(
∑d

ν=1 K
(ν)
Yn,Yn

)−1(K
(p)
Y∗,Yn

)> is the conditional covariance

matrix of the p-th sub-model. Note that the novelty here lies in the term (
∑d

p=1 K
(p)
Yn,Yn

)−1

instead of (K
(p)
Yn,Yn

)−1. The two above expressions mean that Y1, · · · , Yd are independent
conditionally to the observation data.

Figure 2.7 shows a 2D example of a conditional additive GP model. As interpolation
conditions, we evaluate the function (x1, x2) 7→ 4(x1 − 0.5)2 + 2x2 at points (xi, yi)1≤i≤5:
(0.5, 0), (0.5, 0.5), (0.5, 1), (0, 0.5), and (1, 0.5). We fix a noise variance τ 2 = 10−5 and
use an additive SE kernel. Results are shown either with fixed covariance parameters
θ = ((σ2

1, `1), (σ2
2, `2)), or with the estimated ones via ML.
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2.3.3 Remarks

• The parameters θ = ((σ2
1, `1), · · · , (σ2

d, `d)) of additive GPs can be estimated via
ML as in (2.7) with covariance Kθ = (k(xi,xj))1≤i,j≤n, for xi,xj ∈ D, and kernel
k as in (2.12). In that case, the gradients of Kθ w.r.t. θ are equal to:

∂Kθ

∂θ
=
∂K

(1)
θ

∂θ
+ · · ·+ ∂K

(d)
θ

∂θ
,

with K
(p)
θ = (kp(x

i
p, x

j
p))1≤i,j≤n for p = 1, · · · , d. Since K

(p)
θ depends only on θp =

(σ2
p, `p), then we only need to compute partial derivatives of the form ∂

∂θp
K

(p)
θ and

stack them in a vector of gradients. Then, θ̂MLE can be estimated via a gradient-
based optimisation.

• Noise effects can also be considered. Consider the Gaussian vector Y∗, conditional
on Yn + ε = y for a given observation vector y and an additive Gaussian white
noise ε ∼ N (0, τ 2I) with noise variance τ 2. Assume ε1, · · · , εn to be independent,
and independent of Y . Thus, the conditional parameters µ and Σ follow (2.13) but

replacing
∑d

p=1 K
(p)
Yn,Yn

by
∑d

p=1 K
(p)
Yn,Yn

+ τ 2I.

2.4 Conclusions

In this chapter, we introduced the notations and definitions used along the manuscript.
We started from the classical point of view, defining key terms of standard GP regression
models. We then briefly explained how to adapt GP models for additive functions. As
shown in different illustrations, the versatility of GPs relies mainly on the choice of
the covariance function used for the prior distribution. Different assumptions can be
considered depending on previous experiences or beliefs about the types of functions we
expect to observe (e.g. smoothness, stationarity).

The main limitation of GP models relies in the intractability for large datasets because
the time complexity scales as O(n3) and the storage as O(n2). This drawback is more
sensitive in high dimensions where an exponentially increasing number of observations is
required to cover the input space and for the covariance parameter estimation (Durrande
et al., 2012; Rasmussen and Williams, 2005). Recent GP developments have been pro-
posed in order to mitigate this limitation, allowing implementations in high dimensions
and thousands of observations (e.g. additive GPs, Durrande et al. (2012); Van der Wilk
et al. (2017); sparse GPs, Hensman et al. (2013); Titsias (2009)).
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Chapter 3

Gaussian Process Regression under
Linear Inequality Constraints
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3.1 Introduction

Despite the reliable performance of GPs, they provide less realistic uncertainties when
physical systems satisfy inequality constraints (Da Veiga and Marrel, 2012; Maatouk
and Bay, 2017; Riihimäki and Vehtari, 2010). Quantifying properly those uncertainties is
crucial for understanding real-world phenomena. For example, in nuclear safety criticality
assessment, experimental settings typically demand expensive and risky procedures to
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evaluate neutron productions. Hence, emulators are required to infer these production
rates and should assume a priori that the output is positive (and usually monotonic) w.r.t.
a given set of input parameters (see Section 3.4). Therefore, both conditions have to be
considered in uncertainty quantification in order to obtain more accurate predictions.

In this chapter, the main contributions are twofold. First, we further investigate the
finite-dimensional approximation of GPs in (Maatouk and Bay, 2017) to account for
general linear inequality constraints. This leads to versatile models that can be used for
a broad range of applications. Furthermore, in contrast to (Maatouk and Bay, 2017),
our framework does not require to compute kernel derivatives, which implies there is no
restrictions on the choice of the kernel function (e.g. as for monotonicity or convexity).
Second, we show that using the Hamiltonian Monte Carlo (HMC) sampler suggested in
subsection 3.3.2 results in high effective sample rates with reasonable running times. On
numerical experiments, the proposed framework together with the HMC sampler provides
accurate and efficient results in the order of seconds (compared to tens of minutes using
Maatouk and Bay, 2017), leading to models that can be easily used in practice.

The ability of the model to account for multiple constraints (e.g. boundedness and
monotonicity) or more complex ones (see, e.g., Figure 3.4) is tested on various examples.
We also assess its performance on both data fitting and uncertainty quantification on a
2D nuclear application where both boundedness and monotonicity are taken into account.

This chapter is based on the journal paper:

- López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018).
Finite-dimensional Gaussian approximation with linear inequality constraints.
SIAM/ASA Journal on Uncertainty Quantification, 6(3):1224–1255.

3.2 Finite-dimensional approximation of Gaussian

processes

We first briefly describe the framework proposed by Maatouk and Bay (2017) that account
for inequality conditions (either boundedness, monotonicity or convexity). We start from
the finite-dimensional approximation of GPs in 1D, summarising some key properties.
Then, we finish with the extension of the model to higher dimensions by tensorisation.

3.2.1 Finite-dimensional approximation in 1D

Let {Y (x);x ∈ D} be a centred GP with covariance function k. Consider a compact
input space D = [0, 1], and a set of knots t1, · · · , tm ∈ R. For simplicity, we consider
equispaced knots tj = (j − 1)∆m with ∆m = 1/(m − 1), but this assumption can be
relaxed (see, e.g., Chapter 5). Then, define a finite-dimensional GP, denoted by Ym, as
the piecewise linear interpolation of Y at knots t1, · · · , tm:

Ym(x) =
m∑

j=1

Y (tj)φj(x), (3.1)
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Figure 3.1: Illustration of the finite-dimensional approximation in (3.1). (Left) Hat
functions φj for j = 1, · · · , 6. (Right) Approximation of the function y(x) = Φ(x−0.5

0.2
),

where Φ is the standard normal cumulative distribution function. Red solid and blue
dashed lines are the function y, and its finite approximation with six knots given by blue
crosses, respectively. Horizontal black dashed lines denote the bounds.

where φ1, · · · , φm are hat basis functions given by

φj(x) :=

{
1−

∣∣∣x−tj∆m

∣∣∣ if
∣∣∣x−tj∆m

∣∣∣ ≤ 1,

0 otherwise.
(3.2)

Note that quality of resolution of the approximation in (3.1) depends on the number of
knots m. For larger values of m, better is the resolution of Ym. Figure 3.1 illustrates
the finite-dimensional approach in (3.1) for a deterministic function that satisfies both
boundedness and monotonicity constraints.

We aim at computing the distribution of Ym, conditionally on Ym ∈ E , where E is a
convex set of functions defined by some inequality constraints. For instance, according
to (Maatouk and Bay, 2017), we may have

E = Eκ :=





{f ∈ C(D,R) s.t. l ≤ f(x) ≤ u, ∀x ∈ D} if κ = 0,

{f ∈ C(D,R) s.t. f is non-decreasing} if κ = 1,

{f ∈ C(D,R) s.t. f is convex} if κ = 2,

(3.3)

which corresponds to boundedness, monotonicity, and convexity constraints, respectively.
Now, let ξj := Y (tj) for j = 1, · · · ,m. As discussed in (Maatouk, 2015), the main

benefit of using the hat functions in (3.2) and the finite-dimensional approximation Ym,
is that satisfying the inequality conditions Ym ∈ E , is equivalent to satisfying only a finite
number of inequality constraints.

Proposition 3.1 (Maatouk (2015)) Define a finite-dimensional GP, denoted by Ym,
as the piecewise linear interpolation of a centred GP Y at knots t1, · · · , tm ∈ R. For many
natural choices of E (such as E = Eκ, for κ = 0, 1, 2), we have

Ym ∈ E ⇔ ξ ∈ C, (3.4)

where C is a convex set of Rm, and ξ = [ξ1, · · · , ξm]>.
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For instance, for the convex set Eκ in (3.3), we have

C = Cκ :=





{c ∈ Rm; ∀ j = 1, · · · ,m : l ≤ cj ≤ u} if κ = 0,

{c ∈ Rm; ∀ j = 2, · · · ,m : cj ≥ cj−1} if κ = 1,

{c ∈ Rm; ∀ j = 3, · · · ,m : cj − cj−1 ≥ cj−1 − cj−2} if κ = 2.

(3.5)

3.2.2 Conditioning to interpolation and inequality constraints

Consider the finite-dimensional representation of GPs as in (3.1), given the interpolation
and inequality constraints:

Ym(x) =
m∑

j=1

ξjφj(x), s.t.

{
Ym(xi) = yi (interpolation conditions),

Ym ∈ E (inequality conditions),
(3.6)

where xi ∈ D and yi ∈ R for i = 1, · · · , n. Note from (3.6) that noise-free observations
are considered but a noise effect can be included assuming Ym(xi)+εi = yi with Gaussian
noise εi ∼ N (0, τ 2). We refer to Chapter 4 for further details on how to incorporate noise
effects in constrained GP models.

Given a design of experiment (DoE) x = [x1, · · · , xn]>, we have matricially:

Ym =
[
Ym(x1), · · · , Ym(xn)

]>
= Φξ,

where Φ is the n × m matrix defined by Φi,j = φj(xi). From (3.4), the conditional
distribution of Ym, given Ym ∈ E and Ym(xi) = yi for i = 1, · · · , n, can be obtained from
the conditional distribution of ξ given ξ ∈ C and Φξ = y.

Observe that the vector ξ of the values at the knots is a centred Gaussian vector
with covariance matrix Γ = (k(ti, tj))1≤i,j≤m. Then, the distribution of ξ given both
interpolation and inequality conditions is truncated multinormal:

ξ ∼ N (0,Γ) s.t.

{
Φξ = y (interpolation conditions),

ξ ∈ C (inequality conditions).
(3.7)

Figure 3.2 shows different Gaussian models for the example of Figure 3.1. We use a SE
kernel with parameters (σ2 = 1, ` = 0.2) and fix m = 100. The posterior distribution is
approximated via HMC (Pakman and Paninski, 2014). From Figures 3.2(b) and 3.2(c), we
observe that including the inequality constraints in the conditional distribution provides
smaller confidence intervals compared to the ones given by the unconstrained GP. How-
ever, they do not satisfy both the boundedness and monotonicity conditions exhibited
by the function y. On the other hand, from Figure 3.2(d), imposing both conditions
leads to a more accurate prediction and more realistic confidence intervals. Later in
subsection 3.3.3, we detail how to obtain the results of Figure 3.2(d).
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(a) Unconstrained GP.
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(b) GP with boundedness.
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(c) GP with monotonicity.
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(d) GP with boundedness & monotonicity.

Figure 3.2: Example of Gaussian models satisfying different types of inequality
constraints for interpolating the function x 7→ Φ(x−0.5

0.2
). Each panel shows: both training

and test points (black dots and red crosses, respectively), the conditional mean function
(blue solid line), the 90% confidence interval (grey region), and conditional realisations
(dashed lines). For boundedness constraints, horizontal dashed lines denote the bounds.

3.2.3 Connexion between the maximum a posteriori estimate
and spline interpolation

In practice, the posterior mode (maximum a posteriori estimate, MAP) of (3.7) can
be used as a point estimate of unobserved quantities (Maatouk, 2015; Rasmussen and
Williams, 2005). Let µ∗ be the posterior mode that maximises the probability density
function (pdf) of ξ conditioned on Φξ = y and ξ ∈ C. Then, maximising the pdf of
ξ|{Φξ = y, ξ ∈ C} is equivalent to maximise the quadratic problem:

µ∗ = arg max
ξ s.t. ξ∈C

Φξ=y

{−ξ>Γ−1ξ}, (3.8)

By maximising (3.8), we are looking for the most likely vector ξ satisfying both inter-
polation and inequality constraints. The mode in (3.8) has the property that, loosely
speaking, it converges to the one provided by spline interpolation (Bay et al., 2016).
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32 3 Gaussian Process Regression under Linear Inequality Constraints

Theorem 3.1 (Bay et al. (2016)) Consider the finite-dimensional representation Ym
in (3.6). Let Y MAP

m (x) bet the MAP estimate given by

Y MAP
m (x) =

m∑

j=1

µ∗jφj(x),

with posterior mode µ∗ = [µ∗1, · · · , µ∗m]> defined in (3.8). Then, Y MAP
m uniformly con-

verges to the spline interpolation under the inequality constraints in E as m→∞.

3.2.4 Extension to higher dimensions

The finite-dimensional representation in (3.6) can be extended to d dimensional input
spaces by tensorisation. Consider x = (x1, · · · , xd) ∈ D with compact input space D =
[0, 1]d, and a set of knots per dimension (t11, · · · , t1m1

), · · · , (td1, · · · , tdmd). Then, the finite
representation Ym1,···,md is given by

Ym1,···,md(x) =

m1,···,md∑

j1,···,jd=1

[ ∏

k=1,···,d

φkjk(xk)

]
ξj1,···,jd , s.t.

{
Ym1,···,md (xi) = yi,

ξ ∈ C, (3.9)

where xi ∈ D and yi ∈ R, for i = 1, · · · , n, ξj1,···,jd := Y (tj1 , · · · , tjd) and φiji are the hat
basis functions defined in (3.2). Following a similar procedure as in subsection 3.2.1, we
observe that ξ = [ξ1,···,1, · · · , ξm1,···,md ]

> is a centred Gaussian vector with covariance
matrix Γ as in (3.7).1

3.3 Improvements on the finite-dimensional approxi-

mation of Gaussian processes

Now, we extend the framework in Section 3.2 to account for general linear inequality
constraints. We also study various efficient Monte Carlo (MC) and Markov Chain Monte
Carlo (MCMC) for approximating the posterior distribution of the model.

3.3.1 Extension to general sets of linear inequalities

Here, we continue with the same notation as in Section 3.2. We consider the case where
C is composed by a set of q linear inequalities of the form:

C =

{
c ∈ Rm; ∀ k = 1, . . . , q : lk ≤

m∑

j=1

λk,jcj ≤ uk

}
, (3.10)

1The tensor form of (3.9) has been used in (Maatouk and Bay, 2017) to account only for monotonicity
constraints in 2D due to numerical intractability.
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where the λk,j’s encode the linear operations, the lk’s and uk’s represent the lower and
upper bounds. Notice that the sets Cκ in (3.5) are particular cases of C. Denote Λ =
(λk,j)1≤k≤q,1≤j≤m, l = (lk)1≤k≤q, and u = (uk)1≤k≤q. Hence, (3.7) is written

ξ ∼ N (0,Γ) s.t.

{
Φξ = y (interpolation conditions),

l ≤ Λξ ≤ u (inequality conditions).
(3.11)

We further assume that q ≥ m and that Λ has rank m. By the rank-nullity theorem
(Meyer, 2000), this implies that Λ is injective. In particular, a linear system of the form
Λξ = η admits a unique solution ξ when η is in the image space of Λ. This assumption is
verified in many practical situations, up to adding inactive constraints. For instance, the
monotonicity condition ξ1 ≤ · · · ≤ ξm, which involves only m− 1 (linearly independent)
conditions, can be made compatible by adding the condition −∞ ≤ ξ1 (and/or ξm ≤ ∞).

We now explain how to sample ξ from (3.11). First, we compute the conditional
distribution given the interpolation constraints ξ|{Φξ = y}. Since ξ ∼ N (0,Γ), then
Φξ ∼ N

(
0,ΦΓΦ>

)
and the conditional distribution ξ|{Φξ = y} is also Gaussian

N (µ,Σ), with conditional parameters given by

µ = ΓΦ>[ΦΓΦ>]−1y, and Σ = Γ− ΓΦ>[ΦΓΦ>]−1ΦΓ. (3.12)

Therefore, we have Λξ|{Φξ = y} ∼ N
(
Λµ,ΛΣΛ>

)
. Let T N (m,C, a,b) be the

truncated multinormal distribution with mean vector m, covariance matrix C, and the
bound vectors (a,b) such that a ≤ b. Thus, the posterior of (3.11) is obtained from

Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N
(
Λµ, ΛΣΛ>, l, u

)
. (3.13)

Notice that the inequality conditions are encoded in the posterior mean Λµ, the posterior
covariance ΛΣΛ>, and the bounds (l,u). The truncated multinormal in (3.13) can be
approximated using the MC/MCMC algorithms described in subsection 3.3.2. Denoting
η = Λξ, notice that samples for ξ can be obtained by sampling from η and solving
a linear system. Indeed, as mentioned above, we assumed that Λ has rank m, which
implies that the solution of Λξ = η exists and is unique. The whole sampling scheme is
summarised in Algorithm 1.

From Algorithm 1, note that the computation of the posterior mode is required for
sampling purposes. Using (3.13), the quadratic problem in (3.8) can be written as

µ∗ = arg max
ξ s.t. l≤Λξ≤u

{−[ξ − µ]>Σ−1[ξ − µ]}, (3.14)

with parameters µ and Σ as in (3.12). In contrast to (3.8), here the interpolation
constraints are directly encoded in µ and Σ. Then, the optimisation problem in (3.14)
is equivalent to

µ∗ = arg min
ξ s.t. l≤Λξ≤u

{ξ>Σ−1ξ − 2µ>Σ−1ξ}, (3.15)

which can be solved via quadratic programming (Goldfarb and Idnani, 1982). Finally,
the posterior mode of (3.13) is given by ν∗ = Λµ∗ with µ∗ as in (3.15).
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34 3 Gaussian Process Regression under Linear Inequality Constraints

Algorithm 1 Sampling from the finite-dimensional GP with linear inequality constraints.
1: Procedure: Sampling from ξ|{Φξ = y, l ≤ Λξ ≤ u}, where ξ ∼ N (0,Γ)
2: Input: y, Γ ∈ Rm×m, Φ ∈ Rn×m, Λ, l, u.
3: Compute the conditional mean and covariance of ξ|{Φξ = y}:
4: µ = ΓΦ>(ΦΓΦ>)−1y,
5: Σ = Γ− ΓΦ>(ΦΓΦ>)−1ΦΓ.
6: Solve the quadratic problem in Rm: µ∗ = min ξ∈Rm{ξ>Γ−1ξ| Φξ = y, l ≤ Λξ ≤ u}.
7: Sample from the truncated multinormal distribution according to subsection 3.3.2:
8: Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N

(
Λµ, ΛΣΛ>, l, u

)
.

9: Define η = Λξ, and solve the linear system to obtain the sample ξ.
10: Remark: use the posterior mode ν∗ = Λµ∗ as a starting state for MCMC samplers.

3.3.2 Efficient sampling from the posterior distribution

As shown in (3.13), the posterior distribution Λξ|{Φξ = y, l ≤ Λξ ≤ u} is truncated
multinormal. It is supported on Rq, where q ≥ m is defined in (3.10). Notice that m
should be chosen large enough to get good approximations. An MC algorithm based
on rejection sampling was proposed in (Maatouk and Bay, 2016) using the posterior
mode. This method, called rejection sampling from the mode (RSM), is an exact sampler
that provides independent and identically distributed (iid) sample paths. However, the
acceptance rate from RSM decreases whenm gets larger, providing a poor performance for
high dimensional spaces. Recently, another MC-based exact sampler using the separation-
of-variables technique from (Genz, 1992) was introduced by Botev (2017) to deal with
truncated multinormals in high dimensions. As in (Genz, 1992), the approach in (Botev,
2017) can both sample Gaussian random variables under linear inequality constraints, and
estimate the probabilities that these constraints are satisfied, via minimax exponential
tilting (ET). Since RSM and ET are exact methods, we use them as gold standards to
evaluate the performance of the MCMC techniques that we describe now.

MCMC approaches use a Markov chain to sample the posterior distribution, providing
correlated samples but with potentially higher acceptance rates. Efficient algorithms
have been proposed for truncated multinormal distributions such as Gibbs sampling
(Taylor and Benjamini, 2016), Metropolis-Hastings (Murphy, 2012), and Hamiltonian
Monte Carlo (HMC) (Pakman and Paninski, 2014). In this section, we apply them to
sample from the distribution of (3.13).

Gibbs sampling. Algorithms based on Gibbs sampling are widely used to sample from
truncated multinormals due to their easy implementation and their reliable performances
(Brooks et al., 2011; Murphy, 2012). They sample each variable in turn conditional on the
values of the other ones. Therefore, sampling from a truncated multinormal is reduced
to sampling sequentially from conditional truncated (univariate) normals. Unlike RSM,
there is no rejection step. However, the “single site updating” property may produce
strong correlations, requiring to discard intermediate samples (thinning effect). In this
chapter, we use the fast Gibbs sampler proposed in (Taylor and Benjamini, 2016).
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Metropolis Hastings (MH). MH-based algorithms propose to move all the coordi-
nates at a time in each step to obtain less correlated simulations. For multinormal distri-
butions, a symmetric Gaussian proposal is commonly used, i.e. q(x′|x) = N

(
x, ηΣx′|x

)

where η is a scale factor. The proposed state x′ is either accepted or rejected according
to a given acceptance rule (Murphy, 2012). If the proposal is accepted, the new state is
x′, otherwise the new state remains at the previous state x. This approach is known as
the random walk Metropolis algorithm. One can increase the acceptance rate by tuning
properly the value of η. Here, we assume that Σx′|x is given by the covariance function
of the posterior we want to approximate, i.e. Σx′|x = ΛΣΛ> with Σ defined as in (3.12).

Hamiltonian Monte Carlo (HMC). Hybrid methods have been subject to great
attention from the statistical community due to the inclusion of physical interpretation
that may provide useful intuitions (Brooks et al., 2011). In (Duane et al., 1987), an
efficient hybrid approach was introduced using the properties of Hamiltonian dynamics.
Later in (Neal, 1996), the hybrid approach from (Duane et al., 1987) was extended to
statistical applications, and was introduced formally as HMC. The Hamiltonian dynamics
provide distant proposal distributions producing less correlated sample paths without
diminishing the acceptance rate. In this manuscript, we use the HMC-based approach
for truncated multinormals introduced in (Pakman and Paninski, 2014), which follows the
same dynamics as a classical HMC sampler, but the particle “bounces” on the boundaries
if its trajectory reaches one of the inequality constraints.

3.3.3 Numerical illustrations

We now show on synthetic examples that the proposed framework enables us to address
different types of constraints in 1D and 2D. For instance, the number of knots m are
manually fixed aiming a trade-off between high quality of resolution and computational
cost. We refer to Chapter 5 for a discussion on a sequential algorithm for the automatic
knot insertion in regions requiring a high quality of resolution (e.g., in highly variable
regions).

3.3.3.1 Illustration on 1D examples

Here, we fix m = 100 and approximate the posterior distribution of (3.13) via HMC. In
the three toy examples, we use a SE kernel with parameters (σ2 = 1.0, ` = 0.2).

Example 1. We continue with the example in Figure 3.1. As we can fix the structure
of the linear inequalities (Λ, l,u), we can impose both boundedness and monotonicity
conditions in the constrained GP. To do so, one way is to encode them individually. Let
l1 ≤ Λ1ξ ≤ u1 and l2 ≤ Λ2ξ ≤ u2 be the sets of conditions to satisfy boundedness and
monotonicity constraints, respectively. Then, we can build an extended set of inequalities
l ≤ Λξ ≤ u by stacking the constraints (i.e. Λ = [Λ>1 ,Λ

>
2 ]>, l = [l>1 , l

>
2 ]>,u =

[u>1 ,u
>
2 ]>). Notice that one can encode the same information in a reduced set of linear

inequalities. Instead of encoding independently both constraints, which requires q =
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(a) GP under boundedness constraints.
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(b) Adding monotonicity to GP in (a).
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(c) Adding convexity to GP in (b).

Figure 3.3: Gaussian models satisfying one or several types of inequality constraints for
interpolating the square function x 7→ x2. Panel description is the same as in Figure 3.2.

2m−1 inequalities, one can impose boundedness conditions only for the first and last knot,
and monotonicity conditions for all the knots except the first one. Due to monotonicity,
the intermediate knots will also satisfy the boundaries. In this case, we only need to
impose q = m+ 1 conditions. In many other cases, the size of specific sets of constraints
can be reduced. However for general discussions, we use the full extended set and apply
efficient samplers to approximate the posterior.

Example 2. Note from the previous example that the extension to more than two sets
of inequalities is straightforward. Consider for instance Q different sets of conditions. We
can build the posterior distribution in (3.13) with Λ = [Λ>1 , · · · ,Λ>Q]>, l = [l>1 , · · · , l>Q]>,
and u = [u>1 , · · · ,u>Q]>, and apply Algorithm 1. Figure 3.3 shows an example with the
target function y(x) = x2, satisfying three types of inequality constraints: boundedness,
monotonicity and convexity. We proposed different models satisfying one or more in-
equality constraints. Observe that, by imposing the three conditions, we obtain samples
that also satisfy the three types of constraints.

Example 3. Since the bounds (l,u) are not forced to be the same everywhere,
it is possible to fix specific constraints over non-overlapping intervals. For instance if
the interval is partitioned into G subintervals, we consider the corresponding partition
ξ = [ξ1, · · · , ξG]>. Then, we can impose different types of inequality conditions in each
group by considering the same structure used in the previous example. Figure 3.4 shows
an example where the function y satisfies different behaviours in two non-overlapping
intervals. The output increases monotonically and peaks at y(0.4) = 1.0. This kind
of profile is met in different applications (e.g. step responses in control theory, protein
profiles in biology, Kocijan, 2016; Murphy, 2012). We trained three types of models
satisfying different conditions. For the case of multiple constraints, we imposed both
boundedness and monotonicity. For the case of sequential conditions, we divided the
profile in two non-overlapping intervals satisfying different types of constraints. Note
that, by imposing sequentially the constraints, we obtain less restricted uncertainties and
more accurate models for data fitting.
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3.3 Improvements on the finite-dimensional approximation of Gaussian processes 37

0.0

0.3

0.6

0.9

1.2

0.00 0.25 0.50 0.75 1.00
x

y
(x
)

(a) Unconstrained GP.
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(b) GP with multiple constraints.
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(c) GP with sequential constraints.

Figure 3.4: Gaussian models with different types of constraints for the example 3 from
subsection 3.3.3. (a) Unconstrained GP. (b) Boundedness and monotonicity constraints
are imposed. (c) The two non-overlapping intervals are divided by a vertical dashed line
at 0.4. In the first interval, boundedness and monotonicity constraints are taken into
account. In the second interval, only boundedness is imposed.

3.3.3.2 Performance of MC and MCMC samplers

In Table 3.1, we evaluate the efficiency of the MC and MCMC approaches described in
subsection 3.3.2 on the examples in Figure 3.2. In order to reduce the sampling cost, we
used m = 30 hat basis functions. Hence, the problem is to sample a vector of length 30
from a truncated multinormal distribution. Note from Algorithm 1 that the posterior
mode is used as the starting state for the MCMC samplers. This results in chains that
are initialised into high probability regions, and only a small amount of simulations have
to be “burned” in order to obtain samples that are appear to be independent of the
initialisation location. Therefore, we only burned the first 100 simulations from all the
MCMC samplers. We set the tuning hyperparameters such that the effective sample size
(ESS) is within the ranges produced by both RSM and ET (grey columns). The ESS
is a heuristic used commonly to evaluate the quality of correlated sample paths, and it
gives an intuition on how many samples from the path can be considered independent
(Gong and Flegal, 2016). A standard ESS is given by ESS = ns/(1 + 2

∑ns
k=1 ρk)

where ns is the size of the sample path and ρk is the sample autocorrelation with lag
k. However, the drawback of this indicator is that it accepts negative correlations to
evaluate the quality of mean estimators (e.g. for variance reduction). Thus, we suggest
to use the initial convex sequence estimator proposed by Geyer (1992) in order to obtain
non-negative, non-increasing and convex sample autocorrelations ρ̂k. Then, we obtain
ESS = ns/(1 + 2

∑ns
k=1 ρ̂k). We compute the ESS indicator for each coordinate of ξ, i.e.

ESSj = ESS(ξ1
j , · · · , ξnsj ) for the j-th component of ξ with j = 1, · · · ,m. We then compute

quantiles (q10%, q50%, q90%) over the 30 resulting ESS values. To take into account cross-
correlations from multivariate MCMC, we also compute the multivariate ESS (mvESS)
proposed by Vats et al. (2017). For the mvESS, values higher than ns indicate the
presence of negative correlations. In our case, we are interested in being around ns. The
size ns = 104 is chosen to be larger than the minimum ESS required to obtain a proper
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Table 3.1: Efficiency of MC and MCMC samplers in subsection 3.3.2 (by rows) in terms
of ESS-based indicators (by columns).

Toy Example Sampler
CPU Time ESS [×104] mvESS TN-ESS

Hyperparameter
[s] (q10%, q50%, q90%) [×104s−1] [×104s−1]

RSM 99.06 (0.93, 0.98, 1.00) 1.22 0.01 -
Toy ET 0.44 (0.94, 0.97, 1.00) 1.17 2.14 -

Figure 3.2(b) Gibbs 3.54 (0.95, 0.98, 1.00) 1.16 0.27 thinning = 200
(Boundedness) MH 52.21 (0.98, 1.00, 1.00) 1.21 0.02 η = 1

HMC 0.44 (0.90, 0.93, 1.00) 1.26 2.04 -

RSM 190.62 (1.00, 1.00, 1.00) 1.21 0.01 -
Toy ET 0.77 (0.95, 0.98, 1.00) 1.18 1.23 -

Figure 3.2(c) Gibbs 3.04 (1.00, 1.00, 1.00) 1.15 0.33 thinning = 200
(Monotonicity) MH 96.64 (0.98, 1.00, 1.00) 1.23 0.01 η = 1

HMC 0.33 (0.89, 0.94, 0.98) 1.28 2.70 -

RSM - - - - -
Toy ET 41.16 (0.99, 1.00, 1.00) 1.23 0.02 -

Figure 3.2(d) Gibbs 40.28 (0.37, 0.60, 0.91) 1.09 0.01 thinning = 1000
(Bounded Monotonicity) MH - - - - -

HMC 12.92 (0.85, 0.93, 1.00) 1.26 0.07 -

estimation of the vector ξ ∈ R30: minESS(30) = 8563 (Gong and Flegal, 2016; Vats
et al., 2017). Finally, using the procedure proposed in (Lan and Shahbaba, 2016), we
test the efficiency of each method by computing the time normalised ESS (TN-ESS) at
q10% (worst case) using the CPU time in seconds, i.e. TN-ESS = q10%(ESS)/(CPU Time).

Note from Table 3.1 that, for both examples in Figures 3.2(b) and 3.2(c), the
MC/MCMC techniques tend to produce similar ESS intervals, but RSM and MH are
the most expensive procedures due to their high rejection rates. Although the Gibbs
sampler requires to discard a large amount of simulations in order to be within
reasonable ESS ranges, it also yields accurate results in both efficiency and CPU time.
In general, both ET and HMC methods yield more efficient results than the other
samplers in the first two examples. For more complex constraints as in the example of
Figure 3.2(d), the efficiency is reduced dramatically for all the methods. For example,
the acceptance rates of both RSM and MH are so small that sampling was not feasible.
For the other methods, the TN-ESS rates are smaller but HMC still gives a reasonable
value (three times larger than for ET), which leads us to conclude that HMC is an
efficient sampler for the proposed framework.

3.3.3.3 Illustration on 2D examples

Let the 2D finite approximation be given by

Ym1,m2(x1, x2) :=

m1∑

j1=1

m2∑

j2=1

φ1
j1

(x1)φ2
j2

(x2)ξj1,j2 , s.t.

{
Ym1,m2 (xi1, x

i
2) = yi,

ξ ∈ C, (3.16)

where ξj1,j2 = Y (tj1 , tj2), φ
1
j1

and φ2
j2

are hat basis functions given by (3.2), and (xi1, x
i
2),

for i = 1, · · · , n, denote a DoE. Consider the centred Gaussian vector
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Figure 3.5: Examples of 2D Gaussian models with boundedness or monotonicity
constraints for interpolating the toy examples from subsection 3.3.3.3. Boundedness
and monotonicity results are shown in the first and second row, respectively. Each row
shows: training points (black dots), the conditional mean function (on the left), and
some conditional samples (last two columns on the right). For boundedness constraints,
(horizontal) grey surfaces denote the bounds.

ξ = [ξ1,1, · · · , ξ1,m2 , · · · , ξm1,1, · · · , ξm1,m2 ]
> with covariance matrix Γ. Notice that

each row of the matrix Φ is given by

Φi,: =
[
φ1

1(xi1)φ2
1(xi2) · · · φ1

1(xi1)φ2
m2

(xi2) · · · φ1
m1

(xi1)φ2
1(xi2) · · · φ1

m1
(xi1)φ2

m2
(xi2)

]
,

for i = 1, · · · , n. Finally, the posterior distribution of (3.16) can be computed, and the
routine follows Algorithm 1.

Figure 3.5 shows 2D examples with boundedness or monotonicity constraints. We use
a 2D SE kernel and estimate the covariance parameters via ML.2 The training points are
generated with a maximin Latin hypercube DoE over [0, 1]2.3 The functions are: 3.5(a)
y(x1, x2) = −1

2
[sin(9x1) − cos(9x2)], and 3.5(d) y(x1, x2) = arctan(5x1) + arctan(x2).

22D SE kernel: kθ(x− x′) = σ2 exp
{
− (x1−x′1)2

2`21
− (x2−x′2)2

2`22

}
with θ = (σ2, `1, `2).

3A maximin Latin hypercube DoE is a space-filling design consisting in the iterative maximisation of
the distance between two closest design points from a random Latin hypercube design. Here, we used
the simulated annealing routine (maximinSA LHS) from the R package DiceDesign (Dupuy et al., 2015).
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Figure 3.6: Nuclear criticality safety assessment. (Left) 2D visualisation of the keff values
measured over a regular grid. (Right) 3D visualisation of the keff data.

For the case of monotonicity in 2D, the constraints to be satisfied are: ξi+1,j ≥ ξi,j and
ξi,j+1 ≥ ξi,j, for i = 1, · · · ,m1 − 1 and j = 1, · · · ,m2 − 1. This means that the function
is non-decreasing w.r.t. its two input variables.

3.4 2D application: nuclear safety criticality

For assessing the stability of neutron production in nuclear reactors, safety criteria based
on the effective neutron multiplication factor keff are commonly used (IAE, 2014; Fernex
et al., 2005). This factor is defined as the ratio of the total number of neutrons produced
by a fission chain reaction to the total number of neutrons lost by absorption and leakage.
Besides the geometry and composition of fissile materials (e.g. mass, density), the keff

is sensitive to other types of parameters like the structure materials characteristics (e.g.
concrete), and the presence of specific materials (e.g. moderators). Since the optimal
control of an individual parameter or a combination of them can lead to safe conditions,
the understanding of their influence in criticality safety assessment is crucial.

Here, we applied the proposed framework to a dataset provided by the IRSN (“Institut
de Radioprotection et de Sûreté Nucléaire”, in French). The keff factor was obtained from
a nuclear reactor called “Lady Godiva device” originally situated at “Los Alamos National
Laboratory”, New Mexico, U.S. Two parameters of uranium spheres are considered: the
radius r and density d. The dataset contains 121 observations in a 11 × 11 grid (see
Figure 3.6). Notice that, on the domain considered for the input variables, the keff

increases as the radius and density of the uranium sphere increase.
We trained different Gaussian models whether the inequality constraints are considered

or not. For all the models, the input space was normalised to [0, 1]2, and we used the
same 2D SE kernels as for the example from Figure 3.5. We estimated the covariance
parameters via ML in the ranges σ2 ∈ [0.2, 1] and `1, `2 ∈ [0.1, 0.9]. For the constrained
model, since the keff factor indicates the production rate of neutron population, the
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Figure 3.7: 2D Gaussian models for interpolating the Godiva’s dataset. Unconstrained
GP models are trained using MLE (left column) and using (a) four, or (c) eight training
points n from the proposed maximin Latin hypercube DoE. Constrained GP (cGP)
models are also trained using MLE (middle column). Each panel shows: training and test
points (black dots and red crosses), and the conditional mean function (solid surface).
(e) Q2 assessment of the Gaussian models using various number of training points n
and using twenty different random Latin hypercube designs. Results are shown for the
unconstrained GP (red) and cGP (blue).

output of the constrained process has to be positive. In order to take into account
non-decreasing behaviours, we also consider monotonicity constraints. We trained both
unconstrained and constrained models with a fixed maximin Latin hypercube DoE at
eight locations extracted from the unit grid. We used the remaining data to assess the
quality of prediction tasks.

Figure 3.7 shows the performance of the proposed models using four or eight points from
the proposed fixed DoE. For the unconstrained model, we observe that the quality of the
predictions depends strongly on both the amount of training data and their distribution
in the input space. Notice from Figure 3.7(a) that if only few training points are available,
predictions are poor and they do not satisfy positive and non-decreasing behaviours. In
Figure 3.7(c), we observe that if there are enough training data that cover the input
space, the unconstrained model behaves well and provides reliable predictions. On the
other hand, we observe that the constrained model produce accurate prediction results
also when the training set is small.
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Figure 3.8: 2D and 3D visualisations of equispaced designs using ten knots per dimension.

Because the prediction accuracy depends on the training set, we repeated the procedure
with twenty different random Latin hypercube DoEs using several values of n. We used
the Q2 criterion to evaluate the quality of the predictions. Denoting by nt the number
of test points, z1, · · · , znt and ẑ1, · · · , ẑnt the sets of test and predicted observations
(respectively), then

Q2 = 1−
∑nt

i=1(ẑi − zi)2

∑nt
i=1(z − zi)2

, (3.17)

where z is the average of the test data. For noise-free observations, the Q2 is equal to
one if the predictors ẑ1, · · · , ẑnt are exactly equal to the test data (ideal case), zero if
they are equal to the constant prediction z, and negative if they perform worse than z.
Figure 3.7(e) shows that the constrained GP often outperformed the unconstrained one.

3.5 Curse of dimensionality

The number of terms in the tensor construction in (3.9) increases exponentially with
the dimension d (see, e.g., Figure 3.8). The computational intractability is led by the
approximation of the posterior of (3.9) via MC/MCMC. Since satisfying the interpolation
conditions requires having more knots than observations, then MC/MCMC samplers are
commonly performed in high dimensions with potential highly restricted sample spaces.
More precisely, the computational complexity of the exact HMC sampler in (Pakman
and Paninski, 2014) scales linearly with the number of inequality conditions if iterations
do not require any reflection, but also increases with each bounce. Hence, in the best
case, and assuming m1 = · · · = md = m, the computational complexity is O(md) (e.g.
positiveness constraints).

This drawback could be mitigated in different ways. First, one may relax the inter-
polation of observations through a noise effect. In that case, we can have less knots
than observations, and MC/MCMC methods can be applied in lower dimensional spaces.
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Then, the proposed framework would lead to less expensive procedures since the cost of
the MC and MCMC procedures grows with the number of knots (see Chapter 4). Second,
the knots can be placed preferentially in highly variable regions while preserving the
tensor-based structure. This is shown in Chapter 5 using an algorithm for the sequential
knot insertion in rectangular designs. Third, supplementary assumptions on the nature
of the target function can also be made to reduce the dimensionality of the sample spaces
where samplers are performed (e.g. considering inactive input variables or additivity).
We refer to Chapter 6 for a discussion when additive functions are considered. Finally,
we believe that using other types of designs for the knots, that scale better to high
dimensions, could have a great impact in the efficiency of the proposed model. To do so,
in Chapter 10, we explore basis functions based on Delaunay triangulations that alleviate
the grid constraint for the knots.

3.6 Conclusions

We have investigated the extension of the GP-based framework in (Maatouk and Bay,
2017) for general linear inequality constraints. The proposed finite-dimensional approxi-
mation takes into account the inequalities for both data interpolation and uncertainty
quantification. Since the posterior distribution, conditioned to both interpolation and
inequality constraints, is expressed as a truncated multinormal distribution, the exact
HMC proposed by Pakman and Paninski (2014) adapts to our needs for sampling pur-
poses. In contrast to previous attempts in (Maatouk and Bay, 2017), we demonstrate
on various experimental results that the proposed framework together with the HMC
sampler can be easily applied in practice. We refer to Chapter 9 for further details on
numerical implementations in R programming language (R Core Team, 2018).

We tested the model on both synthetic and real-world data in 1D and 2D. According
to experimental results under different types of inequalities, the proposed framework fits
properly the observations, and it provides more realistic confidence intervals compared
to unconstrained approaches. It is also flexible to account for multiple sets of inequality
conditions (e.g. both positivity and monotonicity) or more complex linear constraints.
Moreover, as shown in a 2D nuclear application, the framework provides reliable predic-
tions satisfying both positivity and monotonicity constraints exhibited by the effective
neutron multiplication factor.

As discussed throughout this chapter, the proposed framework still presents some
limitations in high dimensions due to the tensor-based structure of (3.9). Its efficiency
depends on the number of knots used in the finite approximation. For higher values of m,
the quality of resolution is better but at the cost of more expensive sampling procedures
(see Section 3.5 for a further discussion). Moreover, having robust GP-based models when
the number of observations is large is also of interest. In Chapters 4 to 6, we focus on
addressing these limitations in order to scale the approach when the input space involves
hundreds of input variables and/or thousands of observations.
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Chapter 4

Constrained Gaussian Processes
with Noisy Observations
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4.1 Introduction

As discussed in Chapter 3, the resulting posterior conditioned to both interpolation and
inequality constraints is a truncated GP, therefore, its distribution cannot be computed
in closed-form. We demonstrated on both synthetic and real-world examples that the
proposed framework together with a HMC sampler provides efficient results on both data
fitting and uncertainty quantification. However, strictly interpolating the observations
may entail expensive computations due to highly restrictive sample spaces. Moreover,
since the condition of having more knots than observations is required (i.e. m ≥ n), the
computational complexity of the HMC sampler becomes more expensive as n increases.

Starting from the claim that allowing noisy observations could yield less constrained
sample spaces for MC/MCMC samplers, in this chapter we develop the corresponding
approximation of constrained GP models when adding a noise effect. Since we can have
less knots than observations, both MC and MCMC algorithms can be applied in lower di-
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mensional spaces. Thus, the proposed framework would lead to less expensive procedures
since the cost of samplers grows with the number of knots. Moreover, constrained models
for observations that are truly noisy are also of interest for practical implementations.

We test the efficiency of various MC and MCMC samplers under 1D toy examples where
models without observation noise yield impractical sampling routines. We also show that,
on a 5D monotonic example, the framework can be used for thousands of observations,
providing high-quality effective sample sizes within reasonable running times. Finally, on
2D and 5D coastal flooding applications, we demonstrate that more flexible and realistic
GP implementations can be obtained by considering noise effects and by enforcing the
(linear) inequality constraints.

This chapter is based on the preprint:

- López-Lopera, A. F., Bachoc, F., Durrande, N., Rohmer, J., Idier, D., and Rous-
tant O. (2018). Approximating Gaussian process emulators with linear inequality
constraints and noisy observations via MC and MCMC. ArXiv: https://arxiv.

org/abs/1901.04827v2.

4.2 Finite-dimensional approximation of Gaussian

processes with noisy observations

4.2.1 Finite-dimensional approximation in 1D

Here, we aim at imposing inequality constraints on GPs when observations are considered
noisy. As an example, Figure 4.1 shows three types of GPs Y with training points at
x1 = 0.2, x2 = 0.5, x3 = 0.8, and different inequality conditions. We use a SE kernel with
covariance parameters θ = (σ2 = 0.52, ` = 0.2). We set a noise variance to be equal to
0.5% of the variance parameters σ2. One can observe that different types of (constrained)
Gaussian priors (top) yield different GP emulators (bottom) for the same training data.
Note that the interpolation constraints are relaxed due to the noise effect, and that the
inequality constraints are still satisfied everywhere.

Let {Y (x);x ∈ D} be a centred GP with arbitrary covariance function k and compact
space D = [0, 1]. As in Chapter 3, we consider a spline decomposition with an equispaced
set of knots t1, · · · , tm ∈ D such that tj = (j − 1)/(m − 1) for j = 1, · · · ,m. In contrast
to Chapter 3, here we consider noisy observations yi ∈ R for i = 1, · · · , n.

Define Ym as a the finite-dimensional GP consisting of the piecewise-linear interpolation
of Y at knots (t1, · · · , tm):

Ym(x) =
m∑

j=1

ξjφj(x), s.t. Ym(xi) + εi = yi (interpolation constraints), (4.1)

where xi ∈ D, εi ∼ N (0, τ 2) for i = 1, · · · , n, with noise variance τ 2, ξj = Y (tj) for
j = 1, · · · ,m, and φ1, · · · , φm are hat basis functions given by (3.2). As in many classical
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Figure 4.1: GP models under no constraints (left), boundedness constraints Y ∈ [0, 1]
(centre), boundedness and non-increasing constraints (right). Samples from the different
types of (constrained) Gaussian priors and resulting GP emulators are shown in the first
and second row, respectively. Each panel shows: the conditional emulations (dashed
lines), and the 95% prediction interval (grey region). For boundedness constraints,
bounds at l = 0 and u = 1 correspond to horizontal dashed lines. For the GP emulators,
the conditional mean (blue solid line) and interpolation points (dots) are shown.

GP implementations (Rasmussen and Williams, 2005), we assume that ε1, · · · , εn are
independent, and independent of Y . However, since the framework proposed here does
not have any restriction on the type of the covariance function, the extension to other
noise distributions and/or noise with autocorrelation can be done as in standard GP
implementations (Murphy, 2012; Rasmussen and Williams, 2005).

Note that the benefit of considering noisy observations in (4.1) is that, due to the
“relaxation” of the interpolation conditions, the number of knots m does not have to be
larger than the number of interpolation points n (assumption required in Chapter 3 for
the interpolation of noise-free observations). Then, for m � n, the finite representation
in (4.1) would lead to less expensive procedures since the cost of the MC and MCMC
samplers grow with the value of m rather than n (see subsection 4.2.2).

4.2.2 Conditioning to linear inequality constraints

Now, assume that Ym also satisfies inequality constraints everywhere in the input space
(e.g. boundedness, monotonicity, convexity), i.e. Ym ∈ E where E is a convex set of
functions defined by some inequality conditions as in (3.3). As discussed in Chapter 3, the
benefit of using (4.1) is that, for many constraint sets E , satisfying Ym ∈ E is equivalent
to satisfying only a finite number of constraints at the knots, i.e. Ym ∈ E ⇔ ξ ∈ C. Here,
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we consider the case where C is composed by a set of q linear inequalities given by (3.10).
We now aim at computing the distribution of Ym conditionally on both the observations

and inequality constraints. Let the vector ξ be a centred Gaussian vector with covariance
matrix Γ = (k(ti, tj))1≤i,j≤m. Denote Φ the n × m matrix defined by Φi,j = φj(xi),
and y = [y1, · · · , yn]> the vector of noisy observations at points x1, · · · , xn. Then, the
distribution of ξ conditioned on Φξ + ε = y, with ε ∼ N (0, τ 2I), is given by1

ξ|{Φξ + ε = y} ∼ N (µ,Σ), (4.2)

where

µ = ΓΦ>[ΦΓΦ> + τ 2I]−1y, and Σ = Γ− ΓΦ>[ΦΓΦ> + τ 2I]−1ΦΓ. (4.3)

One can note that, in the limit as the noise variance τ 2 →∞, then µ→ 0 and Σ→ Γ,
and therefore the distribution in (4.2) ignores the observations y. In that case, MC
and MCMC samplers are performed in the sample space of the prior of ξ, which is less
restrictive than the one of ξ|{Φξ + ε = y}.

As in Chapter 3, denote Λ = (λk,j)1≤k≤q,1≤j≤m, l = (`k)1≤k≤q, and u = (uk)1≤k≤q. Since
the inequality constraints are on Λξ, one can first show that the posterior distribution of
Λξ conditioned on Φξ + ε = y and l ≤ Λξ ≤ u is truncated Gaussian-distributed (see
Chapter 3 for further discussion when noise-free observations are considered), i.e.

Λξ|{Φξ + ε = y, l ≤ Λξ ≤ u} ∼ T N
(
Λµ, ΛΣΛ>, l, u

)
. (4.4)

Notice that the inequalities are encoded in the posterior mean Λµ, the posterior covari-
ance ΛΣΛ>, and the bounds (l,u). Moreover, one must highlight that by considering
noisy observations, due to the “relaxation” of the interpolation conditions, inequality
constraints can be imposed also when the observations y1, · · · , yn do not fulfil the in-
equalities. Note that the mode of (4.4) is given by (3.15) but with parameters µ and Σ
as in (4.3). Finally, Algorithm 1 can be applied using (4.3) and (4.4).

Remark. The extension to d dimensions is given by tensorisation as in subsection 3.2.4.
We only need to write the interpolation conditions of the form Ym1,···,md (xi) + εi = yi
with xi ∈ D, yi ∈ R and εi ∼ N (0, τ 2) for i = 1, · · · , n. Then, Algorithm 1 can be used.
Notice that having less knots than observations can have a great impact since the MC and
MCMC samplers will then be performed in low dimensional spaces when m = m1×· · ·×
md � n. Furthermore, in that case, the inversion of the matrix (ΦΓΦ> + τ 2I) ∈ Rn×n

can be computed more efficiently through the matrix inversion lemma (Press et al., 1992),
reducing the computational complexity to the inversion of an m × m full-rank matrix.
Therefore, the computation of the conditional distribution in (4.2) and the estimation
of the covariance parameter can be speeded up. Moreover, due to the relaxation of the
interpolation conditions through a noise effect, MC and MCMC samplers are performed
in less restrictive sample spaces, and this leads to faster emulators.

1Further developments can be generalised for a vector of noise ε ∼ N (0,Ω) with noise covariance
matrix Ω = (knoise(xi, xj))1≤i,j≤n. In that case, we only need to replace the noise term τ2I by Ω.
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Figure 4.2: GP emulators under boundedness constraints. Results are shown considering
(top) noise-free and (bottom) noisy observations: (left) Ym ∈ [−1, 1], (centre) Ym ∈
[−0.6, 0.6], and (right) Ym ∈ [−0.5, 0.5]. Each panel shows: the observations (dots), the
conditional mean (blue solid line), the conditional mode (green dot-dash line), the 95%
prediction interval (grey region), and the bounds (dashed lines).

4.2.3 Numerical illustrations

4.2.3.1 1D toy example under boundedness constraints

Here, we use the GP framework introduced in Section 4.2 for emulating bounded tra-
jectories Ym ∈ [−α, α] with constant α ∈ R+. We aim at analysing the constrained GP
emulator when noise-free or noisy observations are considered. The dataset is (xi, yi)1≤i≤5:
(0, 0), (0.2,−0.5), (0.5,−0.3), (0.75, 0.5), and (1, 0.4). We use a Matérn 5/2 covariance
function with fixed variance parameter σ2 = 10, leading to highly variable trajectories.
The length-scale parameter ` and the noise variance τ 2 are estimated via ML.

The effect of different bounds [−α, α] on the constrained GPs can be seen in Figure 4.2.
We set m = 100 for having emulations with high-quality of resolution, and we generate
104 constrained emulations via RSM (Maatouk and Bay, 2016). Observe that, since
interpolation conditions are relaxed due to the influence of the noise variance τ 2, the
prediction intervals are wider when bounds become closer to the observations. When
α = 0.5, the noise-free GP emulator yields costly procedures due to a small acceptance
rate equal to 0.1%. In contrast, when noisy observations are assumed, emulations are
more likely to be accepted leading to an acceptance rate equal to 16.92%.

Now, we assess both MC and MCMC methods from subsection 3.3.2 for the approxi-
mation of the truncated Gaussian posterior distribution in (4.4). We consider the exam-
ples in Figure 4.2. For the MCMC samplers, we use the posterior mode solution from
(3.14) as the starting state of the Markov chains. This initialises the chains in a high
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probability region. Therefore, only few emulations have been “burned” in order to have
samples that appeared to be independent of the starting state. Here, we burn the first
100 emulations. As in subsection 3.3.2, we evaluate the performance of both MC and
MCMC samplers in terms of the ESS. One must remember that the ESS indicator gives
an intuition on how many emulations of the sample path can be considered independent
(Gong and Flegal, 2016). We compute the ESS of each coordinate of ξ ∈ Rm, i.e.
ESSj = ESS(ξ1

j , · · · , ξnsj ) for j = 1, · · · ,m, and we evaluate the quantiles (q10%, q50%, q90%)
over the m resulting ESS values. The sample size ns = 104 has been chosen to be larger
than the minimum ESS required to obtain a proper estimation of the vector ξ ∈ Rm

(Gong and Flegal, 2016). Finally, we test the efficiency of each sampler by computing
the TN-ESS at q10%: TN-ESS = q10%(ESS)/(CPU Time).

Table 4.1 displays the performance indicators obtained for each MC and MCMC sam-
plers. Firstly, one can observe that RSM yielded the most expensive procedures due to its
high rejection rate when sampling the constrained trajectories from the posterior mode.
In particular, for α = 0.5, and assuming noise-free observations, the prohibitively small
acceptance rate of RSM led to costly procedures (about 7 hours) making it impractical.
Secondly, although the Gibbs sampler needs to discard intermediate samples (thinning
effect), it provided accurate ESS values within a moderate running time (with effective
sampling rates of 400 s−1). Thirdly, due to the high acceptance rates obtained by ExpT,
and good exploratory behaviour of the exact HMC, both samplers provided much more
efficient TN-ESS values compared to their competitors, generating thousands of effective
emulations per second. Finally, as we expected, the performance of some samplers
were improved when adding noise. For RSM, due to the relaxation of the interpolation
conditions, we noted that emulations were more likely to be accepted leading to quicker
routines: more than 150 times faster with noise (see Table 4.1, for α = 0.5).

Finally, we assess the efficiency of the HMC sampler in terms of its mixing performance
(see Figure 4.3). We analyse the example in Figure 4.2 using the noisy GP emulator with
α = 0.5. From both the trace and autocorrelation plots at Ym(0.01), one can conclude
that the HMC sampler mixes well with small correlations.

4.2.3.2 1D Toy example under multiple constraints

In Chapter 3, numerical implementations were limited to noise-free observations that
fulfilled the inequality constraints. Here, we test the case when noisy observations do not
necessarily satisfy the inequalities.

Consider the sigmoid function given by

x 7→ 1

1 + exp { − 10(x− 1
2
)} , for x ∈ [0, 1]. (4.5)

We evaluate (4.5) at n = 300 random values of x, and we contaminate the function
evaluations with an additive Gaussian white noise with a standard deviation equal to
10% of the sigmoid range. Since (4.5) exhibits both boundedness and non-decreasing
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Table 4.1: Efficiency of MC and MCMC for emulating bounded samples Ym ∈ [−α, α].
Best results are shown in bold. For the Gibbs sampler, we set the thinning parameter to
200 emulations in order to obtain competitive ESS values w.r.t. other samplers. †Results
could not be obtained due to numerical instabilities.

Bounds Method
Without noise variance With noise variance

CPU Time ESS [×104] TN-ESS CPU Time ESS [×104] TN-ESS
[s] (q10%, q50%, q90%) [×104s−1] [s] (q10%, q50%, q90%) [×104s−1]

α = 1

RSM 61.30 (0.97, 1.00, 1.00) 0.02 57.64 (0.91, 1.00, 1.00) 0.02
ExpT 2.30 (0.98, 1.00, 1.00) 0.43 2.83 (0.96, 1.00, 1.00) 0.34
Gibbs 19.70 (0.84, 0.86, 0.91) 0.04 21.18 (0.75, 0.84, 0.91) 0.04
HMC 1.89 (0.95, 0.99, 1.00) 0.50 1.92 (0.94, 0.99, 1.00) 0.49

α = 0.75

RSM 63.59 (1.00, 1.00, 1.00) 0.02 48.66 (0.95, 0.99, 1.00) 0.02
ExpT 3.22 (0.96, 0.99, 1.00) 0.30 3.24 (0.98, 1.00, 1.00) 0.30
Gibbs 20.20 (0.83, 0.86, 0.91) 0.04 18.23 (0.74, 0.84, 0.93) 0.04
HMC 1.46 (0.94, 1.00, 1.00) 0.64 1.28 (0.94, 0.97, 1.00) 0.73

α = 0.6

RSM 242.34 (0.94, 0.97, 1.00) 0 101.20 (0.96, 1.00, 1.00) 0.01
ExpT 2.94 (0.94, 1.00, 1.00) 0.32 2.80 (0.98, 1.00, 1.00) 0.35
Gibbs 18.89 (0.80, 0.83, 0.94) 0.04 18.90 (0.77, 0.84, 0.92) 0.04
HMC 1.72 (0.92, 0.99, 1.00) 0.53 1.68 (0.93, 0.96, 1.00) 0.55

α = 0.5

RSM 25512.77 (0.98, 1.00, 1.00) 0 157.06 (0.96, 0.99, 1.00) 0.01
ExpT 2.50 (0.99, 1.00, 1.00) 0.40 2.69 (0.97, 1.00, 1.00) 0.36
Gibbs† — — — — — —
HMC 6.20 (0.86, 0.90, 0.98) 0.14 2.14 (0.52, 0.85, 0.97) 0.24
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Figure 4.3: Efficiency of the HMC sampler in terms of its mixing performance. Results
are shown for the (left) trace and (right) autocorrelation plots at Ym(0.01).

conditions, we add those constraints into the GP emulator Ym using the convex set:

C↑[0,1] =

{
c ∈ Rm; ∀j = 2, · · · ,m : cj ≥ cj−1, c1 ≥ 0, cm ≤ 1

}
.

Hence, MC/MCMC samplers are performed on Rm+1. As a covariance function, we use
a SE kernel with parameters (σ2, `, τ 2) estimated via ML.

Unlike Chapter 3, there is no need here to satisfy the condition m ≥ n, due to the
noise. Therefore, the finite approximation in Section 4.2 can be seen as a surrogate
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Figure 4.4: GP emulators under boundedness and monotonicity constraints. Results
are shown for different amounts of knots m. Each panel shows: the target function
(dashed lines), the noisy training points (dots), the conditional mean (solid line), the
95% prediction interval (grey region), and the bounds (horizontal dashed lines).

model of standard GP emulators for m � n. Figure 4.4 shows the performance of the
constrained emulators via HMC for m = 5, 10, 25, 50, 100, 150. For smaller values of m,
the GP emulator runs fast but with a low quality of resolution of the approximation. For
example, for m = 5 and m = 10, because of the linearity assumption between knots, the
predictive mean presents breakpoints at the knots. On the other hand, the GP emulator
yields smoother (constrained) emulations as m increases (m ≥ 25). In particular, one
can observe that for m = 25, the emulator leads to a good trade-off between quality of
resolution and running time (6.5 times faster than for m = 100).

Finally, we test the performance of the proposed framework under different regularity
assumptions, noise levels and inequality constraints. For the example in Figure 4.4, we
fixed m = 200 and used different choices of covariance functions. Given a fixed noise level,
the covariance parameters of each GP model, i.e. θ = (σ2, `), were estimated via ML. The
noise levels were chosen using different proportions of the sigmoid range. We assessed
the proposed GP emulator accounting for either boundedness constraints, monotonicity
constraints or both. We computed the CPU time and the Q2 criterion in (3.17). We
used the 300 noise-free function evaluations from (4.5) as test data. Results are shown in
Table 4.2. One can note that the introduction of noise let us also have constrained GP
emulations in the cases where the regularity of the GP prior is not in agreement with
the regularity of data and the inequality conditions. In particular, expensive procedures
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Table 4.2: Performance of the GP emulators from Figure 4.4 under different regularity
assumptions, noise levels and inequality constraints. The noise levels are chosen using
different proportions of the range of the sigmoid function in (4.5). CPU Time [s] and Q2

[%] results are shown for various covariance function (i.e. Matérn 3/2 kernel, Matérn 5/2
kernel and SE kernel), and different inequality constraints.

Noise
Boundedness Constraints

level
Matérn 3

2
Matérn 5

2
SE

Time Q2 Time Q2 Time Q2

0% — — — — — —
0.5% 1.0 99.4 0.8 99.6 0.6 99.7
1.0% 1.1 99.4 0.7 99.6 0.6 99.7
5.0% 1.0 98.9 0.8 99.3 0.6 99.5
10.0% 0.9 98.2 0.8 98.9 0.6 99.2

Noise
Monotonicity Constraints

level
Matérn 3

2
Matérn 5

2
SE

Time Q2 Time Q2 Time Q2

0% — — — — — —
0.5% 117.0 99.5 1.4 99.8 1.2 99.8
1.0% 14.5 99.1 1.2 99.8 1.0 99.8
5.0% 7.4 95.6 1.0 99.3 0.8 99.3
10.0% 6.3 91.9 1.0 98.7 0.6 98.9

Noise
Boundedness & Monotonicity Constraints

level
Matérn 3

2
Matérn 5

2
SE

Time Q2 Time Q2 Time Q2

0% — — — — — —
0.5% — — 17.3 99.7 13.9 99.8
1.0% > 104 99.4 15.2 99.6 10.4 99.6
5.0% 251.8 96.7 13.3 98.6 8.6 98.3
10.0% 246.1 94.6 13.3 97.5 8.6 97.0

were obtained for the Matérn 3/2 kernel when considering monotonicity. In those cases,
the high irregularity of the (unconstrained) GP prior yielded more restrictive sample
spaces that fulfil the monotonicity conditions. Furthermore, one may observe that the
computational cost of emulators can be attenuated by increasing the noise level but at
the cost of the accuracy of predictions.

4.2.3.3 Illustration on a 5D monotonic example

In Chapter 3, since the approximation of GPs was introduced to interpolate a given
number of (noise-free) observations, it was strictly necessary to have more knots than
observations, i.e. m ≥ n. Moreover, the interpolation conditions yielded more restricted
domains where samplers could not be performed efficiently. Therefore, the extension
to high dimensions was challenging there (limited to d = 2). Here, we show that,
by considering noisy observations, constrained GP models can be performed in higher
dimensions and for a high number of observations within a reasonable running time.

Consider the 5D target function given by

y(x) = arctan(5x1) + arctan(2x2) + x3 + 2x2
4 +

2

1 + exp{−10(x5 − 1
2
)} , (4.6)

with x ∈ [0, 1]5. One can observe that y is non-decreasing w.r.t. all its input variables
xi for i = 1, · · · , 5. Although some computations could be potentially simplified given
that y is additive, we do not take advantage of that aiming at testing the framework on
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Figure 4.5: GP emulators under monotonicity constraints in 5D. True and predictive
mean profiles are shown in the first and second row, respectively.

a fully 5D example. We evaluate y on a maximin Latin-hypercube DoE over [0, 1]5 at
2000 locations using (Dupuy et al., 2015).

As in subsection 4.2.3, we contaminate the resulting observations with an additive
Gaussian white noise with a standard deviation equal to 1% of the range of y. As
covariance function, we use a 5D SE kernel and estimate the parameters (θ, τ 2) via ML.2

We set the number of knots as a trade-off between high-quality of resolution in the
approximation and CPU running time. Thus, we fix the number of knots per dimension
to five, except for the third and fifth dimensions, i.e. mκ = 5 for κ = 1, 2, 4. For the third
dimension, we let m3 = 2 due to the linearity of the target function y w.r.t. x3. For the
fifth dimension, we fix m5 = 7 since y varies more through this dimension compared to
the other ones. This leads to a total number of 1750 knots.

Figure 4.5 shows the predictions obtained by the constrained GP emulator under
monotonicity conditions. The proposed emulator is obtained via HMC, leading to a CPU
running time of 44.8 minutes for generating 104 monotonic trajectories. The ESS values
are equal to (92.9%, 98.1%, 100%) at quantiles (q10%, q50%, q90%), providing an effective
sample rate of 3.5 s−1 at quantile q10%. Besides the efficient and fast performance of
HMC, one can observe from Figure 4.5 that the GP emulator was able to capture the
non-decreasing dynamics of the target function everywhere.

25D SE kernel: kθ(x,x′) = σ2 exp
{
−

5∑
i=1

(xi−x′i)2
2`2i

}
with θ = (σ2, `1, · · · , `5).
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Figure 4.6: Quality of predictions from Figure 4.5: predictive mean vs true observations
(left), predictive mode vs true observations (centre), and predictive mode vs predictive
mean (right).

Finally, we evaluate the quality of predictions using the Q2 criterion. We test both
the predictive mean and mode, obtaining Q2 values equal to 99.57% and 99.56% (re-
spectively). Figure 4.6 plots the predictive mean and the predictive mode vs the true
(noise-free) observations. Note that, since the predictive mode of (3.14) can be obtained
much faster than the predictive mean (requiring only a couple of seconds), one may
suggest it as an accurate point prediction of the conditional process.

4.3 Coastal flooding applications

Coastal flooding models based on GP emulators have taken great attention regarding
computational simplifications for estimating flooding indicators (like the maximum water
level at the coast, discharge, flood spatial extend, etc.) (see, e.g., Azzimonti et al., 2019;
Rohmer and Idier, 2012). However, since standard GP emulators do not take into account
the nature of many coastal flooding events satisfying positivity and/or monotonicity
constraints, those approaches often require a large number of observations (commonly
costly to obtain) in order to obtain reliable predictions. In those cases, GP emulators
yield expensive procedures. Here we show that, by enforcing GP emulators to those
inequality constraints, the GP framework can lead to more reliable prediction also when
a small amount of data is available.

We test the performance of the emulator in Section 4.2 on two coastal flooding datasets
provided by the BRGM (which is the French Geological Survey, “Bureau de Recherches
Géologiques et Minières”, in French). The first dataset corresponds to a 2D coastal
flooding application located on the Mediterranean coast, focusing on the water level
at the coast (Rohmer and Idier, 2012). The second one describes a 5D coastal flooding
example induced by overflow on the Atlantic coast, focusing on the inland flooded surface
(Azzimonti et al., 2019). We trained different GP emulators whether the inequality
constraints are considered or not. For the unconstrained emulators, we use the GP-based
scheme provided by the R package DiceKriging (Roustant et al., 2012).
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Figure 4.7: 2D coastal flooding application. (Left) 2D visualisation of the ξm values
measured over a regular grid. (Right) 3D visualisation of the ξm data.

4.3.1 2D coastal flooding on the Mediterranean coast

The coastal study site is located on a lido, which has faced two flood events in the
past (Rohmer and Idier, 2012). The dataset used here contains 900 observations of the
maximum water level at the coast ξm depending on two input parameters: the offshore
water level (ξo) and the wave height (Hs), both in metre units. The observations are
taken within the domains ξo ∈ [0.25, 1.50] and Hs ∈ [0.5, 7] (with each dimension being
discretised in 30 elements). One must note that, on the domain considered for the input
variables, ξm increases as ξo and Hs increase (see Figure 4.7).

Here, we normalised the input space to be in [0, 1]2. As covariance function, we used
2D SE kernels with parameters θ = (σ2, `1, `2). Both θ and the noise variance τ 2 were
estimated via ML. For the constrained model, we proposed emulators accounting for both
positivity and monotonicity, and we manually fixed the number of knots m1 = m2 = 25.

For illustrative purposes, we first trained both unconstrained and constrained GP
emulators using 5% of the data (equivalent to 45 training points chosen by a maximin
Latin hypercube DoE), and we aimed at predicting the remaining 95%. Results are
in Figures 4.8(a) and 4.8(b). In particular, one can observe that the constrained GP
emulator slightly outperformed the prediction around the extreme values of ξm, leading
to an absolute improvement of 4% of the Q2 indicator. Then, we repeated the exper-
iment using twenty different sets of training data and different proportions of training
sets. According to Figure 4.8(c), one can observe that the constrained emulator often
outperforms the unconstrained one, with significant Q2 improvements for small training
sets. As coastal flooding simulators are commonly costly-to-evaluate, the benefit of
having accurate prediction with lesser number of observations becomes useful for practical
implementations.
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Figure 4.8: 2D GP emulators for modelling the
coastal flooding data in (Rohmer and Idier, 2012).
(Left) Prediction results using 5% of the dataset via
maximin Latin hypercube DoE. Each panel shows:
training and test points (black dots and red crosses),
the conditional mean function (solid surface), and
the Q2 criterion (subcaptions). (c) Q2 assessment
using different proportions of training points (x-
axis) and using twenty different random training
sets. Results are shown for the unconstrained (red)
and constrained (blue) GP emulators.

4.3.2 5D coastal flooding on the Atlantic coast

As in (Azzimonti et al., 2019), here we focus on the coastal flooding induced by overflow.
We consider the “Boucholeurs” area located close to “La Rochelle”, France. This area
was flooded during the 2010 Xynthia storm, an event characterised by a high storm surge
in phase with a high spring tide. We focus on those primary drivers, and on how they
affect the resulting flooded surface.

The dataset contains 200 observations of the flooded area Y in m2 depending on five
input parameters x = (T, S, φ, t+, t−) detailing the offshore forcing conditions:

• The tide is simplified by a sinusoidal signal parametrised by its high tide level
T ∈ [0.95, 3.70] (m).

• The surge signal is described by a triangular model using four parameters: the
peak amplitude S ∈ [0.65, 2.50] (m), the phase difference φ ∈ [−6, 6] (hours),
between the surge peak and the high tide, the time duration of the raising part
t− ∈ [−12.0,−0.5] (hours), and the falling part t+ ∈ [0.5, 12.0] (hours).

The dataset is freely available in the R package profExtrema (Azzimonti, 2018). One
must note that the flooded area Y increases as T and S increase.
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58 4 Constrained Gaussian Processes with Noisy Observations

Before implementing the corresponding GP emulators, we first analysed the structure of
the dataset. We tested various standard linear regression models in order to understand
the influence of each input variable x = (T, S, φ, t+, t−). We assessed the quality of
the linear models using the adjusted R2 criterion. Similarly to the Q2 criterion, the R2

indicator evaluates the quality of predictions over all the observation points rather than
only over the training data. Therefore, for noise-free observations, the R2 indicator is
equal to one if predictors are exactly equal to the data. We also tested various models
considering different input variables (e.g. transformation of variables, or inclusion of
interaction terms). After testing different linear models, we observed that they were
more sensitive to the inputs T and S rather than to other ones. We also noted that,
by transforming the phase coordinate φ 7→ cos(2πφ), an absolute improvement about
26% of the R2 indicator was obtained, and the influence of both t− and t+ became more
significant. Finally, we used these settings for the GP implementations.

We normalised the input space to be in [0, 1]5, and we used a 5D Matérn 5/2 kernel. The
covariance parameters θ = (σ2, `1, · · · , `5) and the noise variance τ 2 were estimated via
ML. We also tested other types of kernel structures, including SE and Matérn 3/2 kernels,
but smaller Q2 values were obtained. For the constrained model, we proposed GP emu-
lators accounting for positivity constraints everywhere. We also imposed monotonicity
constraints along the T and S input dimensions. Since the computational complexity of
the constrained GP emulator increases with the number of knots m used in the piecewise-
linear representation, we strategically fixed them in coordinates requiring high quality of
resolution. Since we observed that the contribution of the inputs T , S, t− and t+ was
almost linear (result in agreement with Azzimonti et al., 2019), we placed fewer number
of knots over those entries. In particular, we fixed as number of knots per dimension:
m1 = m2 = 4, m3 = 5 and m4 = m5 = 3.

As in subsection 4.3.1, we trained GP emulators using twenty different sets of training
data and different proportions of training data. According to Figure 4.9, one can observe
once again that the constrained GP emulator often outperforms the unconstrained one,
with significant Q2 improvements for small training sets. In particular, one can note
that, by enforcing the GP emulators with both positivity and monotonicity constraints,
accurate predictions were also provided by using only 10% of the observations as training
points (equivalent to 20 observations).

4.4 Conclusions

We have introduced a constrained GP emulator with linear inequality conditions and
noisy observations. By relaxing the interpolation of observations through a noise effect,
MC/MCMC samplers are performed in less restrictive sample spaces. This leads to faster
emulators while preserving high effective sampling rates. As seen in the experiments, the
HMC sampler from (Pakman and Paninski, 2014) usually outperformed its competitors,
providing much more efficient effective sample rates in high dimensional sample spaces.

Since there is no need of having more knots than observations (m ≥ n), the computa-
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Figure 4.9: 5D GP emulators
for modelling the coastal flooding
data in (Azzimonti et al., 2019).
The boxplots show the Q2 re-
sults using different proportions
of training points (x-axis) and
using twenty different random
training sets. Results are shown
for the unconstrained (red) and
constrained (blue) GP emulators.

tional complexity of MC and MCMC samplers is independent of n. Therefore, since the
samplers are performed on Rm, they can be used for large values of n by letting m� n.
As shown in the 5D monotonic example, effective monotone emulations can be obtained
within reasonable running times (about tens of minutes). On 2D and 5D coastal flooding
applications, we also show that more flexible and realistic GP emulators can be obtained
by considering noise effects and by enforcing the (linear) inequality constraints.

Despite the improvements obtained here for scaling GP emulators for d > 2, its tensor
structure makes it impractical for tens of input variables. We believe that this limitation
could be partially mitigated by considering supplementary assumptions on the nature
of the target function in order to reduce the dimensionality of the sample spaces where
MC/MCMC samplers are performed (e.g. additivity – see Chapter 6). In addition, other
types of designs of the knots that scale better to high dimensions could be explored (e.g.
triangular designs – see Chapter 10).
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Chapter 5

Constrained Gaussian Processes
using Free-Knot Designs
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5.1 Introduction

Due to the tensor structure of the finite-dimensional GP in Chapter 3, it becomes costly
as the number of knots m increases. Therefore, it is worth preferentially placing knots
only in regions requiring a high quality of resolution (e.g., in highly variable regions).
In that case, aiming a trade-off between quality of representation and computational
complexity, one may expect that the model in (3.9) could be potentially performed in
higher dimensions, e.g. when d ≥ 3.
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64 5 Constrained Gaussian Processes using Free-Knot Designs

Here, we suggest the use of an alternative construction of asymmetric hat basis functions
rather than the equispaced ones proposed in (3.2). The main benefits of using the new
basis are twofold. First, since the piecewise linearity of the approximation is preserved,
the property of satisfying the inequality constraints everywhere in the space holds for the
new representation. Second, as the design of the knots is not restricted to be equispaced,
one may prefer adding knots only in places where a higher quality of representation is
required while preserving the tensor structure. For the latter, we introduce a sequential
algorithm for the automatic knot insertion using an evolution criterion based on the
maximisation of the integrated squared error of the MAP estimate (iMAP-SE criterion).
We test the performance of the proposed sequential algorithm on various synthetic
examples up to 5D.

5.2 Approximation of Gaussian processes with

asymmetric hat basis functions

For ease of reading, we first consider the 1D finite-dimensional representation discussed
in Chapter 3. We adapt the model in (3.1) for the case of non-equispaced design of the
knots. We then introduce a sequential algorithm for placing knots preferentially in regions
requiring a higher quality of representation. However, the extension to higher dimensions
(i.e. d ≥ 2) can be achieved by tensorisation (see Section 5.3 for more details).

5.2.1 1D construction of the asymmetric hat basis functions

Consider the 1D finite-dimensional representation Ym from (3.1). Unlike Section 3.2, we
consider a (sorted) non-equispaced set of knots 0 = t1 < · · · < tm = 1 and inter-spaces
∆m,j = tj+1−tj for j = 1, · · · ,m−1. Then, for a given x ∈ [tj−1, tj+1] for j = 2, · · · ,m−1,
the asymmetric hat basis function φj(x) can be written as

φj(x) :=





x−tj−1

tj−tj−1
if tj−1 ≤ x < tj,

tj+1−x
tj+1−tj if tj ≤ x ≤ tj+1,

0 otherwise.

(5.1)

Figure 5.1 illustrates the effect of the asymmetric hat basis functions for the example in
Figure 3.1. In contrast to Figure 3.1, here one can observe that the new asymmetric basis
gives a non-equispaced design of the knots leading to a more flexible approximation Ym.
One must also note that, since the piecewise linearity holds using (5.1), the properties
of the finite-dimensional approximation from Chapter 3 are preserved (e.g. ensuring the
inequality constraints everywhere).
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Figure 5.1: Illustration of the finite-dimensional approximation in Figure 3.1 using the
asymmetric hat basis functions from (5.1). (Left) Asymmetric hat functions φj for j =
1, · · · , 6. (Right) Approximation of the function y(x). Red solid and blue dashed lines
are the function y, and its finite approximation with six knots given by blue crosses,
respectively. Horizontal black dashed lines denote the bounds.

5.2.2 Sequential algorithm for the knot insertion via integrated
MAP squared error criterion

Note that it is worth preferentially placing knots only in regions requiring high quality of
resolution since the complexity of the approximation in (3.1) increases as m gets larger.
This problem is strongly related to free-knot spline approximations where only the most
“influential” knots are used (Creutzig et al., 2007; De Boor, 2001, 2002; Goldman, 2003;
Hu, 1993; Jupp, 1978; Kobbelt, 2002; Slassi, 2014). Those sets of knots are chosen given
diverse criteria. Many of those approaches consider a fixed value of m, and according
to an optimal decision rule, sequential algorithms are applied aiming at removing the
“less important” knots. In practice, decision rules are based on the minimisation of the
linearised bending energy (De Boor, 2001):

E(f) :=

∫ b

a

|f(x)− fm(x)|2dx, (5.2)

where x ∈ [a, b], and fm is the spline approximation of an arbitrary continuous function
f on R at a given set of knots t1, · · · , tm. By minimising (5.2), we aim at removing
knots such that fm is able to accurately approximate f . Note that it is assumed in
(5.2) that f(x) can be evaluated for any x ∈ [a, b]. However, evaluations of f are not
always feasible or involve expensive procedures. When the approximation fm becomes
costly-to-evaluate for large values of m, one would prefer adding “influential” knots
rather than removing the less important ones from predefined sets. We refer to, e.g.,
(Creutzig et al., 2007; De Boor, 2002; Goldman, 2003; Jupp, 1978; Kobbelt, 2002) for
a further discussion on knot insertion techniques in spline interpolation, their numerical
and asymptotic convergences. In our case, since the proposed finite-dimensional GP Ym
in (3.1) becomes costly-to-evaluate for large values of m, we focus on a free-knot approach
based on knot insertions. One must also note that our target function f is assumed to
be unknown but evaluations f(x1), · · · , f(xn) are available.
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We now make use of the property in Theorem 3.1. As the MAP estimate Y MAP
m

of the truncated process in (3.6) converges to the spline interpolation, one may think
on adding knots regarding this convergence. Note also that the posterior mean could
also be considered but it results in costly (or if not intractable) procedures since the
approximation of the entire posterior distribution is required.

Consider the notation in Chapters 3 and 4. Let YSi be the piecewise linear interpolation
of the GP Y at a set of knots, Si = {(t1, · · · , tmi) s.t. 0 = t1 < · · · < tmi = 1}:

YSi(x) =

mi∑

j=1

ξjφi,j(x), (5.3)

where ξi = [ξ1, · · · , ξmi ]> is a centred Gaussian vector with covariance matrix Γi =
(k(tj, tj′))1≤j,j′≤mi , and φi,1 · · · , φi,mi are asymmetric hat basis functions given by (5.1).
Consider adding a new knot t∗ to the representation in (5.3), such that tν < t∗ < tν+1 for
ν = 1, · · · ,mi − 1. This leads to a finer approximation YSi+1

given by

YSi+1
(x) =

mi∑

j=1

ξjφi+1,j(x) + ξ∗φi+1,ν∗(x), (5.4)

with mi+1 = mi + 1, ξ∗ := Y (t∗), Si+1 the new set of knots after adding t∗, ν∗ the index
in Si+1 corresponding to t∗, and φi+1,· the new set of basis functions after adding t∗.

In order to properly place the knot t∗, we consider the integrated MAP squared error
(iMAP-SE) between the approximations YSi and YSi+1

:

iMAP-SE(t∗) =

∫ 1

0

[Y MAP
Si+1

(x)− Y MAP
Si (x)]2dx. (5.5)

Then, t∗ can be chosen regarding the maximisation of the iMAP-SE criterion, i.e.

topt
∗ ∈ arg max

t∗

iMAP-SE(t∗). (5.6)

Note that, in contrast to the optimisation problem in (5.2), by maximising (5.5) we aim
at adding a knot t∗ such that the finer MAP estimate Y MAP

Si+1
differs as much as possible

from Y MAP
Si . This means that we are looking for convergence of Y MAP

m after having no
variations when adding new knots. Then, one can stop the knot insertion algorithm until
convergence of the MAP estimate or if the iMAP-SE criterion is smaller than a fixed
tolerance ε ∈ R+.

We now focus on the computation of (5.5). Let µM
i be the posterior mode given by

minimising the quadratic problem,

µMi = min{ξ>i Γ−1
i ξi, Φiξi = y, ξi ∈ Ci}, for i ∈ N,

with Φi the n × mi matrix defined by (Φi)l,j = φi,j(xl), and Ci a convex set of Rmi

corresponding to the inequality constraints. Then,

Y MAP
Si (x) =

mi∑

j=1

µMi,jφi,j(x), (5.7)
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with µMi,j the j-th component of µMi . Using (5.4) and (5.7), we have

Y MAP
Si+1

(x)− Y MAP
Si (x) =

mi∑

j=1

µMi+1,jφi+1,j(x) + µMi+1,ν∗φi+1,ν∗(x)−
mi∑

j=1

µMi,jφi,j(x), (5.8)

Let the vectors of coefficients βi = [µMi,1, · · · , µMi,ν , µMi,ν+1, · · · , µMi,mi ]> ∈ Rmi and
βi+1 = [µMi+1,1, · · · , µMi+1,ν , µ

M
i+1,ν∗ , µ

M
i+1,ν+1, · · · , µMi+1,mi

]> ∈ Rmi+1 . Then, (5.8) can be
matricially written as

Y MAP
Si+1

(x)− Y MAP
Si (x) = β>i+1φi+1(x)− β>i φi(x), (5.9)

where φi+1(x) = [φi+1,1(x), · · · , φi+1,ν(x), φi+1,ν∗(x), φi+1,ν+1(x), · · · , φi+1,mi(x)]> and
φi(x) = [φi,1(x), · · · , φi,ν(x), φi,ν+1(x), · · · , φi,mi(x)]>. One can note that many of the
hat basis functions φi,· are exactly equal to the new basis φi+1,·, except for those related
to tν and tν+1. Furthermore, φi+1 correspond to a finer space of affine functions than φi,
since there is one additional knot (t∗). Hence, it is possible to write the MAP estimate
Y MAP
Si (x) = β>i φi(x) in terms of the new basis φi+1. More precisely, we have:

β>i φi(x) = β′i
>
φi+1(x), (5.10)

with

β′i = [µMi,1, · · · , µMi,ν , µMi,νφi,ν(t∗) + µMi,ν+1φi,ν+1(t∗), µ
M
i,ν+1, · · · , µMi,mi ]>. (5.11)

We refer to the proofs in subsection 5.5.1 for further details. Notice that the vector β′i is
similar to βi but with the additional term µMi,νφi,ν(t∗) + µMi,ν+1φi,ν+1(t∗) corresponding to
value of Y MAP

Si at t∗.
Thus, (5.9) can be rewritten as

Y MAP
Si+1

(x)− Y MAP
Si (x) = [βi+1 − β′i]>φi+1(x), (5.12)

and the iMAP-SE criterion can be efficiently computed as detailed in the following
proposition.

Proposition 5.1 The iMAP-SE criterion in (5.5) is given by

iMAP-SE(t∗) = ζ>i+1Ψi+1ζi+1,

where ζi+1 = βi+1 − β′i with β′i is given by (5.11), and Ψi+1 =
∫ 1

0
φi+1(x)φ>i+1(x)dx is

the symmetric 3-banded matrix given by

(ψi+1)j,j′ =





tj+1−tj
3

if j = j′ = 1,
tj−tj−1

3
if j = j′ = mi,

tj+1−tj−1

3
if j = j′ = 2, · · · ,mi − 1,

tj+1−tj
6

if j′ = j + 1, j = 1, · · · ,mi − 1,

0 if |j − j′|> 1.
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Algorithm 2 1D sequential algorithm for the automatic knot insertion based on the
iMAP-SE evolution criterion.
1: Input: Initial set of knots m0 ∈ N and tolerance parameter ε ∈ R+.
2: Define YS0 =

∑m0
j=1 ξjφ0,j(x), with asymmetric hat basis functions φ0,· from (5.1).

3: Compute Y MAP
S0 subject to both interpolation and inequality constraints as in (5.7).

4: for i = 1, 2, · · · do
5: Add a new knot t∗ such that the iMAP-SE criterion in (5.5) is maximised, i.e.

topt
∗ ∈ arg max

t∗

∫ 1

0
[Y MAP
Si+1

(x)− Y MAP
Si (x)]2dx,

with YSi+1 as in (5.4).

6: if iMAP-SE(topt
∗ ) < ε then stop.

Without considering the complexity required for the computation of the vectors βi and
βi+1 (that are obtained by solving strictly convex quadratic programs), then computing
the iMAP-SE criterion in (5.5) has a complexity of O(mi+1). Finally, a sequential routine
for the automatic knot insertion can be performed (see Algorithm 2). Note that, as
stopping rule, we check the iMAP-SE criterion at topt

∗ until having a value smaller than
a given tolerance parameter ε ∈ R+.

5.2.3 Numerical illustration

We illustrate the performance of Algorithm 2 using the 1D toy example in Figure 3.2(d).
We initialise the sequential algorithm with knots only at the boundaries, i.e. at t1 = 0
and t2 = 1. This leads to a model with linear trajectories in [0, 1]. One must note
that this initial representation is not of interest for practical implementations but is
helpful for illustrations. As in Figure 3.2(d), we use a SE kernel with fixed parameters
(σ2 = 1, ` = 0.2), and consider an additive Gaussian white noise with variance τ 2 = 10−5.
Here, we fix a tolerance parameter ε = 10−3

Figures 5.2 and 5.3 show the evolution of the MAP estimate and the conditional sample-
path under both boundedness and monotonicity constraints. Note that the knots are
placed in regions where the target function is more likely to exhibit high variations. In
particular, the algorithm focused on the insertion of knots around x = 0.25 due to the
influence of the lower bound l = 0. After the first 10 iterations, one can observe that
the algorithm starts to exhibit convergence of the MAP estimate Y MAP

m , with smoother
predictions after the 15th iteration. Compared to Figure 3.2(d), one can note that a
similar profile is obtained in Figure 5.3 using only m = 20 rather than using the 100
(equispaced) knots suggested in Figure 3.2(d). We used the Q2 and coverage accuracy
(CA) criteria to assess the quality of predictions over the 50 new values. We refer to
(3.17) for the definition of the Q2 criterion. Denoting by nt the number of test points, and
ẑ1, · · · , ẑnt the sets of predicted observations, then the CA assesses the quality of predictive
variances σ̂2

i for i = 1, · · · , nt. Here, we use one standard deviation intervals (ẑi ± σ̂i)
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(e) i = 15, iMAP-SE = 7.6× 10−3
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(f) i = 20, iMAP-SE = 4.7× 10−5

Figure 5.2: MAP evolution of the 1D toy example from subsection 5.2.3 after i iterations
of the sequential algorithm. Each panel shows: training points and knots (black dots
and red crosses), the MAP estimate (green solid line), and the resulting iMAP-SE values
(subcaption). Horizontal black dashed lines denote the bounds.

which should provide a pointwise coverage of the test data around 68%. Departure from
CA±σ = 0.68 may indicate that the confidence intervals are too large (respectively small)
for coverage values of CA±σ > 0.68 (resp. CA±σ < 0.68) of the predictive variances.
We obtained Q2 = 0.998 and CA±σ = 0.661 values which are competitive with the ones
obtained in Figure 3.2(d) (around Q2 = 0.999 and CA±σ = 0.670).

5.3 Extension to high dimensions

The construction of the asymmetric hat basis functions in (5.1) and the iMAP-SE crite-
rion in (5.5) can be extended to higher dimensions (i.e. d ≥ 2) by tensorisation. Next,
we focus on the computation of the iMAP-SE in dimension d.

5.3.1 Integrated MAP squared error in dimension d

Let the set of (ordered) knots per dimension (t11, · · · , t1m1
), · · · , (td1, · · · , tdmd). Consider the

initial finite representation YSi given by

YSi(x) =

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

ξj1,···,jd

d∏

κ=1

φκi,jκ(xκ), (5.13)
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(e) i = 15, iMAP-SE = 7.6× 10−3
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(f) i = 20, iMAP-SE = 4.7× 10−5

Figure 5.3: Conditional sample-path evolution of the example in Figure 5.2. Each panel
shows: training points and knot locations (black dots and red crosses), the conditional
mean function (blue solid line), the 90% confidence intervals (grey region), and conditional
realisations (dashed lines). Horizontal black dashed lines denote the bounds.

with x = (x1, · · · , xd) ∈ [0, 1]d. Observe that the vector ξi = [ξ1,···,1, · · · , ξmi,1,···,mi,d ]> ∈
Rmi,1×···×mi,d of the values at the knots is a centred Gaussian vector with covariance matrix
Γi. Without loss of generality, we consider adding a new row of knots at t1ν < t1∗ < t1ν+1

to the initial approximation in (5.13) along the first input dimension x1. This leads to a
finer approximation YSi+1

given by

YSi+1
(x) =

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

ξj1,···,jd

d∏

κ=1

φκi+1,jκ(xκ) +

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

ξν∗1 ,···,jdφ
1
i+1,ν∗1

(x1)
d∏

κ=2

φκi+1,jκ(xκ),

(5.14)

where mi+1 = mi + 1, ξν∗1 ,···,jd := Y (t1∗, · · · , tdjd), ν∗1 the index in Si+1 corresponding to t1∗,
and the φ1

i+1,· correspond to the new set of asymmetric hat basis functions after adding
the row of knots at t1∗.

Then, the iMAP-SE criterion can be written as

iMAP-SE(t1∗) =

∫ 1

0

· · ·
∫ 1

0

[Y MAP
Si+1

(x)− Y MAP
Si (x)]2dx1 · · · dxd, (5.15)

and

t1,opt
∗ ∈ arg max

t1∗

iMAP-SE(t1∗). (5.16)
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As in subsection 5.2.2, that criterion can be computed efficiently. Let
µM
i ∈ Rmi,1×···×mi,d and µM

i+1 ∈ Rmi+1,1×···×mi,d be the posterior modes of (5.13) and
(5.14), respectively. Then, we have

Y MAP
Si (x) =

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

µMi,j1,···,jd

d∏

κ=1

φκi,jκ(xκ) = β>i Φi(x), (5.17)

with βi = [µMi,1,···,1, · · · , µMi,mi,1,···mi,d ] ∈ Rmi,1×···×mi,d , Φi(x) =
∏d

κ=1φi,κ(xκ) and

φi,κ(xκ) = [φκi,1(xκ), · · · , φκi,mi,κ(xκ)]
>.

Similarly for Y MAP
Si+1

, we have

(5.18)

Y MAP
Si+1

(x) =

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

µMi+1,j1,···,jd

d∏

κ=1

φκi+1,jκ(xκ)

+

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

µMi+1,j1=ν∗1 ,···,jd
φ1
i+1,j1=ν∗1

(x1)
d∏

κ=2

φκi+1,jκ(xκ)

= β>i+1Φi+1(x),

where Φi+1(x) =
∏d

κ=1φi+1,κ(xκ), and the vector βi+1 ∈ R(mi,1+1)×···×mi,d is given by
βi+1 = [µMi+1,1,···,1, · · · , µMi+1,ν∗1 ,···,1

, · · · , µMi+1,ν∗1 ,···,mi,d
, · · · , µMi+1,mi,1,···,mi,d ]. As discussed

in subsection 5.2.2 for 1D implementations, it is possible to write the hat basis functions
φi,· in terms of the new basis φi+1,·:

β>i Φi(x) = β′i
>
Φi+1(x), (5.19)

with the vector β′i ∈ R(mi,1+1)×···×mi,d defined as in (5.31) in the proofs from subsec-
tion 5.5.2. Thus, the difference of the MAP estimates is given by

Y MAP
Si+1

(x)− Y MAP
Si (x) = [βi+1 − β′i]>Φi+1(x),

with Φi+1(x) =
∏d

κ=1φi+1,κ(xκ).

Proposition 5.2 The iMAP-SE criterion of (5.15) is given by

iMAP-SE(t1∗) = ζ>i+1Ψi+1ζi+1,

with ζi+1 = βi+1 − β′i where β′i is given by (5.31), Ψi+1 =
⊗d

κ=1 Ψ̃i+1,κ, and Ψ̃i+1,·
symmetric 3-banded matrices per dimension as in Proposition 5.1.

Finally, the sequential scheme in Algorithm 2 can be used by checking (5.16) for each
dimension and choosing the one leading the highest iMAP-SE value.
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(c) Toy example y3(x1, x2)

Figure 5.4: MAP estimate of the 2D examples in (5.20) after convergence of the sequential
algorithm. Each panel shows: training points and knots (black dots and red crosses),
and the MAP estimate (solid surface).

Table 5.1: iMAP-SE results for the examples in Figure 5.4. The number of iterations
Niter and number of knots (m1,m2) are also shown.

Example Niter iMAP-SE m1 m2

Figure 5.4(a) 3 3.06× 10−2 2 5
Figure 5.4(b) 4 8.24× 10−3 6 2
Figure 5.4(c) 14 5.24× 10−3 11 7

5.3.2 Numerical illustration in 2D

Here, we test the performance of the sequential algorithm on various 2D toy examples.
We analyse two cases: target functions exhibiting inactive dimensions and full variable
functions. As target functions, we consider:

y1(x1, x2) = x2
2,

y2(x1, x2) = arctan(10x1), (5.20)

y3(x1, x2) = arctan(5x1) + arctan(x2),

with (x1, x2) ∈ [0, 1]2. We train GP models with monotonicity constraints using 2D SE
kernels with parameters θ = (σ2, `1, `2) estimated via ML. We initialise the sequential
algorithm using knots at the corners of the unit square. We train the GP models using
fixed maximin Latin hypercube DoEs at 30 locations.

Figure 5.4 shows the MAP estimates for target functions in (5.20) under monotonicity
constraints. Observe that the algorithm can properly identify which input dimensions are
more active, and it adds knots over those ones requiring higher resolution of representa-
tion. In Table 5.1, we show the total number of iterations required for having convergence
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Table 5.2: iMAP-SE evolution results for the monotonic example in Figure 4.5.

Iteration Knots’ evolution iMAP-SE topt
∗ CPU Time [min]

0 2 2 2 2 2 — — —
1 1 0 0 0 0 4.28× 10−2 t1,opt

∗ = 0.233 2.67
2 0 0 0 0 1 1.19× 10−2 t5,opt

∗ = 0.229 4.51
3 0 0 0 0 1 1.66× 10−2 t5,opt

∗ = 0.741 4.23
4 0 0 0 1 0 8.96× 10−3 t4,opt

∗ = 0.442 4.20
5 1 0 0 0 0 9.18× 10−3 t1,opt

∗ = 0.550 4.21
6 0 1 0 0 0 1.16× 10−3 t2,opt

∗ = 0.400 4.03
7 0 0 0 1 0 5.60× 10−4 t4,opt

∗ = 0.661 3.82
8 0 0 0 1 0 5.12× 10−4 t4,opt

∗ = 0.250 3.84
9 0 0 0 0 1 3.60× 10−4 t5,opt

∗ = 0.345 4.34
10 0 0 0 0 1 2.08× 10−4 t5,opt

∗ = 0.615 4.73
11 1 0 0 0 0 1.56× 10−4 t1,opt

∗ = 0.382 5.06
12 1 0 0 0 0 4.84× 10−4 t1,opt

∗ = 0.870 6.02
13 0 1 0 0 0 1.73× 10−4 t2,opt

∗ = 0.686 7.81
14 0 0 1 0 0 1.16× 10−4 t3,opt

∗ = 0.481 11.34
15 1 0 0 0 0 4.22× 10−5 t1,opt

∗ = 0.691 21.40

Number of knots 7 4 3 5 6 92.21

of the sequential algorithm, and we also display the resulting iMAP-SE values and knot
insertion per dimension.

5.3.3 5D toy example under monotonicity constraints

We consider the 5D toy example in subsection 4.2.3 under monotonicity constraints.
There, noisy evaluations from (4.6) have been taken on a maximin Latin-hypercube DoE
over [0, 1]5 at 102 locations. We here assume that there is no prior information above
the behaviour of the target function in (4.6). We initialise the sequential algorithm using
knots at the corners of the unit hyper-square [0, 1]5, leading to an initial number of 10
knots. Aiming at testing only the computational cost of the algorithm, we assume that
the covariance parameters were known and equal to the ones obtained in subsection 4.2.3.
The tolerance parameter is fixed to ε = 10−4.

The evolution of the sequential construction is displayed in Table 5.2. One can observe
that, as suggested in subsection 4.2.3, less knots were required along the third dimension
due to the linearity of the target function y w.r.t. x3. Furthermore, the algorithm
focused on the first and fifth dimensions since y varies more across this dimension
compared to the other ones. After convergence of the algorithm, we obtained the
set of knots per dimension: (0, 0.23, 0.38, 0.55, 0.69, 0.87, 1), (0, 0.4, 0.69, 1), (0, 0.48, 1),
(0, 0.25, 0.44, 0.66, 1) and (0, 0.23, 0.35, 0.62, 0.74, 1).
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Results in Table 5.2 were obtained after a lapse of 1.5 hours on five cores of an Intel R©

CoreTM i7-6700HQ CPU, i.e. a single core for solving (5.16) for each dimension. This
execution time can be reduced by adding more knots per iteration rather than adding a
single one. Notice also that, for illustrative purposes, the sequential algorithm has been
initialised with knots at the corners of the compact space [0, 1]5. In practice, it is worth
to properly initialise the sets of knots by taking into account the dynamics of functions.

5.4 Conclusions

We explored an alternative construction of asymmetric hat basis functions for the finite-
dimensional approximation in Chapters 3 and 4. The main benefit of using such asym-
metric construction is that they allow us to preferentially insert knots only in regions
requiring high quality of representation (typically in highly variable regions), while pre-
serving the properties of the approximation in Chapter 3 (e.g. satisfying the inequality
constraints everywhere).

We also introduced a dedicated sequential algorithm for the automatic knot insertion
regarding convergence of the MAP estimate of the constrained process. We proposed an
evolution criterion based on the integrated MAP squared error (iMAP-SE) in order to
preferentially adding knots in regions yielding the maximum variation between consecu-
tive MAP estimates. We derived closed-form formulas for the iMAP-SE, corresponding
to a small computational cost. As shown on various synthetic examples up to 5D,
the proposed sequential algorithm allowed to refine the grid of knots only across those
dimensions demanding a better quality of resolution.

The efficiency of the sequential algorithm based on the iMAP-SE criterion has been
tested on various numerical illustrations. We believe that, as the number of knots goes
to infinity, the rectangular design of knots provided by the algorithm will be dense on
the input domain. From the fixed domain asymptotics’ point of view, this assumption
implies that the asymptotic properties of the finite-dimensional approximation obtained
by the symmetric hat basis functions hold for the asymmetric ones (e.g. convergence of
the MAP estimate to the spline interpolation as shown by Bay et al., 2016). We could
not provide this proof at the moment of writing this manuscript, but it is of our interest
as a future work. Furthermore, alternative MAP-based criteria (e.g. integrated MAP
absolute error) can be further investigated in future contributions.

5.5 Proof – Integrated MAP squared error criterion

In this section, we write down all the expression required for the computation of the
iMAP-SE criterion in 1D and in high dimensions. For the case when d ≥ 2, due to the
tensor structure of the iMAP-SE, we refer to expressions obtained in 1D.
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φi,νφi+1,ν φi+1,ν∗

tν−1 tν t∗ tν+1

φi,ν(t
∗)

Figure 5.5: Representation of the
hat basis function φi,ν (red dashed
line) in the vector space spanned by
φi+1,ν and φi+1,ν∗ (blue and green
dotted lines, respectively).

5.5.1 Proof in 1D

5.5.1.A. Link between φi,· and φi+1,·

As the discretisation corresponding to the hat basis function φi+1 is finer than for φi,
we can express the latter basis as a function of the former ones. Consider the hat
basis functions φi(x) = [φi,1(x), · · · , φi,ν(x), φi,ν+1(x), · · · , φi,mi(x)]> and the vector
βi = [µMi,1, · · · , µMi,ν , µMi,ν+1, · · · , µMi,mi ]> ∈ Rmi . Consider also the new set of basis
φi+1(x) = [φi+1,1(x), · · · , φi+1,ν(x), φi+1,ν∗(x), φi+1,ν+1(x), · · · , φi+1,mi(x)]>. Here, we
aim at expressing the product β>i φi(x) in terms of φi+1(x).

As discussed in subsection 5.2.2, many of the hat basis functions φi,· are equal to the
new basis φi+1,·, except the ones associated to the knots tν and tν+1, i.e.

φi,j = φi+1,j for j 6= ν, ν + 1. (5.21)

For the cases when j = ν and j = ν + 1, φi,j can be expressed as a linear combinations
of the new basis functions φi+1,j and φi+1,ν∗ . Consider first the basis function φi,ν . As a
piecewise linear function with knots tν−1, tν+1, it can be expressed in the vector space
spanned by φi+1,ν and φi+1,ν∗ (see Figure 5.5):

φi,ν(x) = φi+1,ν(x) + φi,ν(t∗)φi+1,ν∗(x), (5.22)

which correspond to the piecewise linear function with knots tν−1, t∗, tν+1, hence a larger
space of functions. Notice that (5.22) can be obtained by evaluating φi,ν(x) at x = tν
and x = t∗. Since tν < t∗ < tν+1 is fixed, then the constant φi,ν(t∗) is known and is given
by φi,ν(t∗) = tν+1−t∗

tν+1−tν according to the definition in (5.1).

Similarly, for the hat basis function φi,ν+1, we obtain

φi,ν+1(x) = φi+1,ν+1(x) + φi,ν+1(t∗)φi+1,ν∗(x), (5.23)
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with φi,ν+1(t∗) = t∗−tν
tν+1−tν . Finally, replacing (5.22) and (5.23) in (5.7), we have

Y MAP
Si (x) =

mi∑

j=1
j 6=ν,ν+1

µMi,jφi+1,j(x) + µMi,ν [φi+1,ν(x) + φi,ν(t∗)φi+1,ν∗(x)]

+ µMi,ν+1[φi+1,ν+1(x) + φi,ν+1(t∗)φi+1,ν∗(x)]

=

mi∑

j=1
j 6=ν,ν+1

µMi,jφi+1,j(x) + µMi,νφi+1,ν(x)

+ [µMi,νφi,ν(t∗) + µMi,ν+1φi,ν+1(t∗)]φi+1,ν∗(x) + µMi,ν+1φi+1,ν+1(x)

= β′i
>
φi+1(x),

where β′i
>

= [µMi,1, · · · , µMi,ν , µMi,νφi,ν(t∗) + µMi,ν+1φi,ν+1(t∗), µ
M
i,ν+1, · · · , µMi,mi ]>.

5.5.1.B. Computing the matrix Ψ

Let Ψi be the mi×mi symmetric matrix with entries Ψi = (
∫ 1

0
φi,j(x)φi,j′(x)dx)1≤j,j′≤mi .

Since only consecutive hat basis functions show overlaps, then, for a given value of j ∈
{1, · · · ,mi}, we have

∫ 1

0

φi,j(x)φi,j′(x)dx =





∫ 1

0
φ2
i,j(x)dx if j′ = j,∫ 1

0
φi,j(x)φi,j−1(x)dx if j′ = j − 1 (j ≥ 2),∫ 1

0
φi,j(x)φi,j+1(x)dx if j′ = j + 1 (j ≤ mi − 1),

0 otherwise.

Then, due to the symmetry of the integrals, Ψi is the symmetric 3-banded matrix:

(5.24)Ψi =




ψi1,1 ψi1,2 0 · · · 0 0 0
ψi1,2 ψi2,2 ψi2,3 · · · 0 0 0

0 ψi2,3 ψi3,3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ψimi−2,mi−2 ψimi−2,mi−1 0
0 0 0 · · · ψimi−2,mi−1 ψimi−1,mi−1 ψimi−1,mi

0 0 0 · · · 0 ψimi−1,mi
ψimi,mi




.

Computing the terms from the diagonal of Ψ. For the first and the last basis,
i.e. for j = 1 and j = mi, the integrals of the form ψij,j =

∫ 1

0
φ2
i,j(x)dx correspond to the

area of the square of right-angled triangles. Consider a right-angled triangle with height
h = 1 and base b. Then, the area of the square of this triangle is given by,

∫ b

0

[
x

b

]2

dx =
1

b2

∫ b

0

x2dx =
b

3
. (5.25)
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In our case, we have values of b depending on the inter-spaces between knots. Then,
using (5.25), we have

ψi1,1 =

∫ 1

0

φ2
i,1(x)dx =

t2 − t1
3

, and ψimi,mi =

∫ 1

0

φ2
i,mi

(x)dx =
tmi − tmi−1

3
. (5.26)

For j = 2, · · · ,mi− 1, one can note that ψij,j =
∫ 1

0
φ2
i,j(x)dx correspond to the sum of the

areas of the square of two right-angled triangles:

ψij,j =

∫ tj

tj−1

φ2
i,j(x)dx+

∫ tj+1

tj

φ2
i,j(x)dx =

tj − tj−1

3
+
tj+1 − tj

3
=
tj+1 − tj−1

3
. (5.27)

Computing the terms outside the diagonal of Ψ. We now aim at computing
integrals of the form ψij,j+1 =

∫ 1

0
φi,j(x)φi,j+1(x)dx, for j = 1, · · · ,m − 1, for the upper

bandwidth of (5.24). Since φi,j(x)φi,j+1(x) has support [tj, tj+1], then we have

∫ 1

0

φi,j(x)φi,j+1(x)dx =

∫ tj+1

tj

φi,j(x)φi,j+1(x)dx.

This integral corresponds to the area of the product of two right-angled triangles where
one of those is the “flipped” version of the other one w.r.t. the x-axis. Hence, we have
to solve integrals of the form:

∫ b

0

[
x

b

][
1− x

b

]
dx =

1

b

∫ b

0

[
x− 1

b
x2

]
dx =

b

6
. (5.28)

Using (5.28), we obtain

ψij,j+1 =

∫ 1

0

φi,j(x)φi,j+1(x)dx =
tj+1 − tj

6
, for j = 1, · · · ,mi − 1. (5.29)

Then, (5.24) is computed using (5.26), (5.27), and (5.29), and Algorithm 2 can be used.

5.5.2 Proof in dimension d

5.5.2.A. Link between φi,· and φi+1,·

Let βi = [µMi,1,···,1, · · · , µMi,mi,1,···,mi,d ] ∈ Rmi,1×···×mi,d , and Φi(x) =
∏d

κ=1φi,κ(xκ) with

φi,κ(xκ) = [φκi,1(xκ), · · · , φκi,mi,κ(xκ)]
>.

Let the new hat basis functions Φi+1(x) =
∏d

κ=1φi+1,κ(xκ) with

φi+1,κ(xκ) = [φκi+1,1(xκ), · · · , φκi+1,mi+1,κ
(xκ)]

>.
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Here, we aim to express the inner product β>i Φi(x) in terms of Φi+1(x).
For instance, consider adding only one knot in the first dimension t1∗ such that t1ν <

t1∗ < t1ν+1 for ν = 1, · · · ,mi,1−1. Then, since the basis functions for the others dimensions
remain equal, we have

Φi(x) = φi,1(x1)×
[ d∏

κ=2

φi,κ(xκ)

]
= φi,1(x1)×

[ d∏

κ=2

φi+1,κ(xκ)

]
.

Hence, we only need to express φi,1 in terms of φi+1,1. This can be done as is subsec-
tion 5.5.1, leading to expressions:

φ1
i,j(x1) =





φ1
i+1,j(x1), for j 6= ν, ν + 1,

φ1
i+1,ν(x1) + φ1

i,ν(t
1
∗)φ

1
i+1,ν∗1

(x1), for j = ν,

φ1
i+1,ν+1(x1) + φ1

i,ν+1(t1∗)φ
1
i+1,ν∗1

(x1), for j = ν + 1,

(5.30)

where φ1
i,ν(t

1
∗) = tν+1−t∗

tν+1−tν and φ1
i,ν+1(t1∗) = t∗−tν

tν+1−tν . Replacing (5.30) in (5.17), we have

Y MAP
Si (x) =

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

µMi,j1,···,jd

d∏

κ=1

φκi,jκ(xκ)

=

mi,1∑

j1=1
j1 6=ν,ν+1

· · ·
mi,d∑

jd=1

µMi,j1,···,jd

d∏

κ=1

φκi,jκ(xκ) +

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

µMi,j1=ν,···,jdφ
1
i,j1=ν(x1)

d∏

κ=2

φκi,jκ(xκ)

+

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

µMi,j1=ν+1,···,jdφ
1
i,j1=ν+1(x1)

d∏

κ=2

φκi,jκ(xκ)

=

mi,1∑

j1=1
j1 6=ν,ν+1

· · ·
mi,d∑

jd=1

µMi,j1,···,jd

d∏

κ=1

φκi+1,jκ(xκ)

+

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

µMi,j1=ν,···,jd [φ1i+1,j1=ν(x1) + φ1i,j1=ν(t1∗)φ
1
i+1,ν∗1

(x1)]

d∏

κ=2

φκi+1,jκ(xκ)

+

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

µMi,j1=ν+1,···,jd [φ1i+1,j1=ν+1(x1) + φ1i,j1=ν+1(t1∗)φ
1
i+1,ν∗1

(x1)]

d∏

κ=2

φκi+1,jκ(xκ)

=

mi,1∑

j1=1

· · ·
mi,d∑

jd=1

µMi,j1,···,jd

d∏

κ=1

φκi+1,jκ(xκ)

+

mi,2∑

j2=1

· · ·
mi,d∑

jd=1

[µMi,j1=ν,···,jdφ
1
i,j1=ν(t1∗)+µMi,j1=ν+1,···,jdφ

1
i,j1=ν+1(t1∗)]φ

1
i+1,ν∗1

(x1)

d∏

κ=2

φκi+1,jκ(xκ)

= β′i
>

Φi+1(x),

with

β′i
>

= [µMi,1,···,1, · · · , µMi,ν,···,1φ1
i,ν(t

1
∗) + µMi,ν+1,···,1φ

1
i,ν+1(t1∗), · · · ,

µMi,ν,···,mi,dφ
1
i,ν(t

1
∗) + µMi,ν+1,···,mi,dφ

1
i,ν+1(t1∗), · · · , µMi,mi,1,···mi,d ]. (5.31)
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5.5.2.A. Computing the matrix Ψ

Let Ψi be the matrix given by

Ψi+1 =

∫ 1

0

· · ·
∫ 1

0

Φi+1(x)Φ>i+1(x)dx,

with Φi+1(x) =
∏d

κ=1φi+1,κ(xκ). Then, by using some properties on tensor products,
one can show that

Ψi+1 =

∫ 1

0
. . .

∫ 1

0
[φi+1,1(x1)× · · · × φi+1,d(xd)][φ

>
i+1,1(x1)× · · · × φ>i+1,d(xd)]dx1 · · · dxd

=

∫ 1

0
φi+1,1(x1)φ>i+1,1(x1)dx1 × · · · ×

∫ 1

0
φi+1,d(xd)φ

>
i+1,d(xd)dxd

=

d⊗

κ=1

Ψ̃i+1,κ,

where Ψ̃i+1,κ =
∫ 1

0
φi+1,κ(xκ)φ

>
i+1,κ(xκ)dxκ has the same structure as the one obtained

in subsection 5.2.2. Hence, (5.15) can be computed and (5.16) can be optimised.
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80 5 Constrained Gaussian Processes using Free-Knot Designs
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6.1 Introduction

As discussed in Chapters 3 to 5, the main drawback of the tensor construction in (3.9)
relies in its intractability in high dimensions. Since the number of terms in (3.9) increases
exponentially with the dimension d, it results in costly (if not intractable) procedures for
approximating the posterior of (3.9) via MC/MCMC algorithms. Experimental results in
Chapters 4 and 5 have been restricted up to 5D examples and under certain computational
simplifications (i.e. considering inactive inputs).

In this chapter, we adapt the framework of previous chapters to functions with an addi-
tive structure. We consider the additive GP Y in (2.10) satisfying inequality constraints
everywhere. Since constraints are assumed to be imposed on a predefined subset of input
variables due to additivity, developments proposed in Chapters 3 to 5 can be efficiently
applied on (usually) low-dimensional subspaces. This leads to constrained (additive) GP
models that can be easily scaled in dimensions involving hundreds of input variables.

81



82 6 Additive Gaussian Processes under Inequality Constraints

Due to the additive form, the computations still involve truncated multinormals. How-
ever, a main difficulty is that the inequality constraints are not necessarily ensured
everywhere if they are verified only at knots, in general. Favourable situations where
this remains true are for monotonicity and convexity constraints. This results in a huge
reduction of the complexity.

On various synthetic examples, we test the versatility and scalability of the proposed
additive GP model to account for linear inequality constraints in high dimensions. We also
assess its performance on the 5D coastal flooding application in subsection 4.3.2. Since
MC and MCMC samplers are performed in low dimensions, numerical implementations
are much faster compared to the ones proposed in Chapters 3 to 5. More precisely, while
experimental results in previous chapters took tens of minutes, results here are obtained
after a couple of seconds.

6.2 Finite-dimensional approximation of additive

Gaussian processes

6.2.1 Approximation of additive Gaussian processes

Consider the centred additive GP {Y (x);x ∈ D} as in (2.10) with covariance function
k in (2.12) and compact space D ∈ [0, 1]d. Here, we aim at imposing some inequality
constraints (e.g. boundedness, monotonicity, convexity) over Y . Consider Yp,mp for p =

1, · · · , d, as the piecewise linear approximation of Yp at knots t
(p)
1 , · · · , t(p)mp :

Yp,mp(xp) =

mp∑

jp=1

ξ
(p)
jp
φ

(p)
jp

(xp), (6.1)

where x1, · · · , xd ∈ [0, 1], ξ
(p)
jp

:= Yp(t
(p)
jp

), and φ
(p)
1 · · · , φ(p)

mp are hat basis functions given
by (3.2). Thus, the finite-dimensional approximation of (2.10) can be written as

(6.2)Ym(x) =
d∑

p=1

mp∑

jp=1

ξ
(p)
jp
φ

(p)
jp

(xp).

As in Chapter 3, we define ξp = [ξ
(p)
1 , · · · , ξ(p)

mp ]
>, for p = 1, · · · , d, as centred Gaussian

vectors with covariance matrices Γp = (kp,mp(t
(p)
i , t

(p)
j ))1≤i,j≤mp . We assume that the

vectors ξp’s are independent. Then, the covariance function in (2.11) can be written as:

k(x,x′) =
d∑

p=1

( mp∑

ip=1

mp∑

jp=1

φ
(p)
ip

(xp)kp,mp(t
(p)
ip
, t

(p)
jp

)φ
(p)
jp

(x′p)

)
, (6.3)

with x,x′ ∈ D. The model in (6.2) can be extended to partially dependent sub-processes
Yp,mp by adding additional cross-covariance terms in (6.3).
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6.2.2 Conditioning to interpolation and inequality constraints

Consider the finite-dimensional representation of additive GPs as in (6.2). Following a
similar procedure as in Chapter 3, the approximation Ym given both interpolation and
inequality constraints, can be written as

Ym(x) =
d∑

p=1

mp∑

jp=1

ξ
(p)
jp
φ

(p)
jp

(xp) s.t.

{
Ym(xi) + εi = yi,

ξp ∈ C(p),
(6.4)

where xi ∈ D, yi ∈ R for i = 1, · · · , n, and C(p) a convex set as in (3.10). As in
Chapter 4, we consider an additive Gaussian noise εi ∼ N (0, τ 2) with noise variance τ 2,
and we assume that ε1, · · · , εn are independent, and independent of Ym. Given a DoE
X = [x1, · · · ,xn]>, we have matricially:

Ym =
[
Ym(x1), · · · , Ym(xn)

]>
=

d∑

p=1

Φpξp,

with Φp an n×mp matrix defined by (Φp)i,j = φ
(p)
jp

(xip). Denote Λp = (λ
(p)
i,j )1≤i≤q,1≤j≤m,

lp = (l
(p)
i )1≤i≤q, and up = (u

(p)
i )1≤i≤q the set of linear inequality conditions of ξp. Then,

the distribution of ξp, for p = 1, · · · , d, given both interpolation and inequality conditions
is truncated multinormal:

ξp ∼ N (0,Γp)∀ p = 1, · · · , d s.t.





d∑
p=1

Φpξp + τ 2I = y

lp ≤ Λpξp ≤ up.
(6.5)

Finally, as shown in subsection 3.3.1, and using (2.13), the posterior distribution of (6.5)
is obtained from

Λpξp

∣∣∣∣
{ d∑

p=1

Φpξp + τ 2I = y, lp≤ Λpξp≤ up
}
∼ T N

(
Λpµp, ΛpΣpΛ

>
p , lp, up

)
, (6.6)

where

µp = ΓpΦ
>
p C−1y, Σp = Γp − ΓpΦ

>
p C−1ΦpΓp, (6.7)

with C =
∑d

p=1 ΦpΓpΦ
>
p + τ 2I. Note that the computation of C−1 can be consider-

able speeded-up using the matrix inversion lemma (Press et al., 1992; Rasmussen and
Williams, 2005). Consider the extended matrix of basis functions Ψ = [Φ1, · · · ,Φd]

>

and the block diagonal matrix Υ = bdiag(Γ1, · · · ,Γd). Thus, using the matrix inversion
lemma (see, e.g., Rasmussen and Williams, 2005, appendix A.3), we have

C−1 = (ΨΥΨ> + τ 2I)−1 = τ−2I− τ−4Ψ(Υ−1 + τ−2Ψ>Ψ)−1Ψ>,
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84 6 Additive Gaussian Processes under Inequality Constraints

with Υ−1 = bdiag(Γ−1
1 , · · · ,Γ−1

d ). Furthermore, a similar equation exists for the deter-
minant of C:

det(C) = det(ΨΥΨ> + τ 2I) = τ 2n det(Υ) det(Υ−1 + τ−2Ψ>Ψ),

with det(Υ) = det(Γ1) × · · · × det(Γd). The computation of det(C) is required for the
covariance parameter estimation via ML. Observe that, for m = m1 × · · · × md � n,
both C−1 and det(C) can be efficiently computed since (highly parallelizable) inversion
and determinant operations are applied over m×m full-rank matrices.

Finally, (6.6) can be approximated via MC/MCMC. Denoting ηp = Λpξp, notice that
samples for ξp can be obtained by sampling from ηp and solving a linear system (we refer
to Chapter 3 for a further discussion). Furthermore, the MAP estimates µ∗1, · · · ,µ∗d are
obtained by solving d quadratic optimisation problems as in (3.15) using the conditional
parameters in (6.7). Observe also that, since the inequality constraints are imposed in
1D sub-processes Yp,mp , for p = 1, · · · , d, MC and MCMC samplers can be efficiently
performed as shown in Chapter 3. Furthermore, the approximation of the posteriors of
the d sub-models in (6.6) and the corresponding MAP estimates can be parallelised in
order to reduce the computational cost (i.e. execution time).

Hence, as we have just shown, computations with additive GPs under inequality
constraints are done in the same way as in Chapter 3 and involve truncated multinormals.
A new issue is that certain component-wise inequality conditions over the sub-processes
Yp,mp do not imply that they will be globally satisfied everywhere. Intuitively, considering
a function of class f ∈ C∞ such that f(x) = f1(x1) + · · · + fd(xd). One may note that
any inequality conditions over the derivatives of f holds for f1, · · · , fd. For example,
for non-decreasing constraints, we have that ∂

∂xf(x) = [ ∂f
∂x1
, · · · , ∂f

∂xd
]> = [ ∂f1

∂x1
, · · · , ∂fd

∂xd
]>.

Thus, ∂
∂xf(x) ≥ 0 ⇔ ∂

∂xp
f(xp) ≥ 0 for p = 1, · · · , d. A similar analysis can be done for

convexity but considering the Hessian of f :

Hf =




∂2f
∂x21

· · · 0
...

. . .
...

0 · · · ∂2f
∂x2d


 =




∂2f1
∂x21

· · · 0
...

. . .
...

0 · · · ∂2fd
∂x2d




Then, having p.s.d. condition on Hf implies that ∂2

∂x2p
f(x) ≥ 0 ⇔ ∂2

∂x2p
f(xp) ≥ 0 for

p = 1, · · · , d.
In the next propositions, we study the cases where either boundedness, monotonicity

or convexity constraints are ensured everywhere on the finite-dimensional GP Ym.

Proposition 6.1 Consider a finite-dimensional additive (centred) GP Ym(x1, · · · , xd) =
Y1,m1(x1) + · · ·+ Yd,md(xd). Then,

Ym ∈ [l, u] ��⇔ Yp,mp ∈ [l, u] ∀ p = 1, · · · , d,

for −∞ < l < u <∞
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Proof. Without loss of generality, we consider a 2D additive (centred) GP Ym(x1, x2) =
Y1,m1(x1) + Y2,m2(x2).

⇒ Assume that Ym ∈ [l, u = 2l] for 0 < l <∞. Then, by definition, we have

l ≤ Y1,m1 + Y2,m2 ≤ 2l.

Assume now that Y2,m2 ∈ [l, 2l]. For the case when Y2,m2 = l, we have that Y1,m1 ∈ [0, l].
Hence, for 0 ≤ Y1,m1 < l, we deduce that the equivalence Ym ∈ [l, 2l] ⇒ Yp,mp ∈ [l, 2l],
for p = 1, 2, does not holds.

⇐ Assume that Yp,mp ∈ [l, u] for p = 1, 2. Then, for the case Y1,m1 = Y2,m2 = u, we
have that Ym = 2u, for u > 0, and hence Ym /∈ [l, u]. 2

For the case of globally accounting for Ym ∈ [l, u], we need to impose those constraints
as in Chapter 3.

Proposition 6.2 Consider the additive GP in Proposition 6.1. Then,

Ym ∈ E1,d ⇔ Yp,mp ∈ E1 ∀ p = 1, · · · , d,

where E1,d and E1 are the convex sets of functions satisfying monotonicity conditions in
Rd and R, respectively.

Proof. As in Proposition 6.1, we assume a 2D additive GP Ym(x1, x2) = Y1,m1(x1) +
Y2,m2(x2). Let (x1, x2) and (x′1, x

′
2) be two points such that x1 ≤ x′1 and x2 ≤ x′2.

⇒ Assume that Ym ∈ E1,d. By definition, we have

Ym(x1, x2) = Y1,m1(x1) + Y2,m2(x2) ≤ Y1,m1(x
′
1) + Y2,m2(x

′
2) = Ym(x′1, x

′
2).

Then, assuming that x1 < x′1 and x2 = x′2, we deduce that Y1,m1(x1) ≤ Y1,m1(x
′
1). The

same conclusion can be reached when x1 = x′1 and x2 < x′2.

⇐ Assume that Yp,mp ∈ E1 for p = 1, 2. This implies that Y1,m1(x1) ≤ Y1,m1(x
′
1) and

Y2,m2(x2) ≤ Y2,m2(x
′
2). Hence, Y1,m1(x1) + Y2,m2(x2) ≤ Y1,m1(x

′
1) + Y2,m2(x

′
2), and the

proposition holds. 2

Proposition 6.3 Consider the additive GP in Proposition 6.1. Then,

Ym ∈ E2,d ⇔ Yp,mp ∈ E2 ∀ p = 1, · · · , d,

where E2,d and E2 are the sets of functions satisfying convexity conditions in Rd and R,
respectively.

Proof. As in Proposition 6.1, we assume a 2D additive GP Ym(x1, x2). Let us first
define the convexity in R2. Remind that Ym is called convex if and only if:

Ym(λx+ (1− λ)x′) ≤ λYm(x) + (1− λ)Ym(x′), ∀ λ ∈ [0, 1], x,x′ ∈ R2. (6.8)
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⇒ Assume that Ym ∈ E2,d. For a fixed value x2 = a, for a ∈ R, we have

Y1,m1(x1) = Ym(x1, a)− Y2,m2(a).

Then, since Ym ∈ E2,d, we have that Ym(x1, a) satisfies,

Ym

(
λ

[
x1

a

]
+ (1− λ)

[
x′1
a

])
≤ λYm

([
x1

a

])
+ (1− λ)Ym

([
x′1
a

])
.

Thus, since Ym(x1, a) ∈ E2, with Y2,m2(a) being constant, we deduce that Y1,m1(x1) ∈ E2.
The same conclusion can be reached considering x1 = a and x2.

⇐ Assume that Yp,mp ∈ E2 for p = 1, 2. By the definition of convexity, we have

Y1,m1(λx1 + (1− λ)x′1) ≤ λY1,m1(x1) + (1− λ)Y1,m1(x
′
1),

Y2,m2(λx2 + (1− λ)x′2) ≤ λY2,m2(x2) + (1− λ)Y2,m2(x
′
2),

for λ ∈ [0, 1]. Then, since Ym(x1, x2) = Y1,m1(x1) + Y2,m2(x2), condition in (6.8) holds. 2

6.2.3 Numerical illustrations

We now show on synthetic examples that the framework enables us to address different
types of constraints. For instance, the value of m is manually fixed aiming a high quality
of resolution along each dimension. However, one must note that the sequential algorithm
suggested in Chapter 5 can be combined in order to reduce the computational cost.

6.2.3.1 2D toy example under monotonicity and convexity constraints

We continue with the toy example in Figure 2.7 where interpolation conditions have
been obtained from function (x1, x2) 7→ 4(x1− 0.5)2 + 2x2 at points (xi, yi)1≤i≤5: (0.5, 0),
(0.5, 0.5), (0.5, 1), (0, 0.5), and (1, 0.5). For this example, the target function satisfies
component-wise convexity and non-decreasing constraints along the first and second di-
mension, respectively. From Figure 2.7, one could observe that these conditions were not
fulfilled by the unconstrained GP. We now suggest an additive GP model accounting for
both constraints and with the same parametrisation as the one used to obtain Figure 2.7.1

From Figure 6.1, one can observe that the quality of predictions are significantly
improved by enforcing the model to both monotonicity and convexity constraints. More
precisely, we obtain an absolute improvement about 9% of the Q2 indicator, resulting in
a Q2 = 98.5% (compared to the 89.6% obtained in Figure 2.7).

1Consider an additive function f(x1, x2) = f1(x1) + f2(x2). Then, similarly to Propositions 6.2
and 6.3, it can be shown that f is convex w.r.t. x1 and non-decreasing w.r.t. x2 if and only if f1 is
convex and f2 is non-decreasing.
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Figure 6.1: Conditional additive GPs under inequality constraints in 2D. Results are
shown (top) without constraints and (bottom) with component-wise convexity and
monotonicity constraints. Each row shows: the conditional mean function µ(x1, x2) =
µ1(x1) +µ2(x2) (left), and the sub-models Y1,m1 (centre) and Y2,m2 (right). For µ(x1, x2),
black dots represent the interpolation points. For the sub-models, the mean functions
µ1, µ2 (blue solid lines) and 90% of the conditional interval (grey region) are shown.

6.2.3.2 5D toy example under monotonicity constraints

We continue with the 5D toy example of Figure 4.5 under monotonicity constraints.
There, noisy evaluations of (4.6) on a maximin Latin-hypercube DoE over [0, 1]5 at 2000
locations have been taken. Here, we exploit the fact that the function in (4.6) is additive.

We use an additive 5D SE covariance function and estimate the parameters θ =
((σ2

1, `1), · · · , (σ2
5, `5), τ) via ML. Note that, contrarily to the (non-additive) GP model

suggested in subsection 4.2.3, we now have five variance parameters σ2
1, · · · , σ2

5 to estimate
(instead of the single one used there). Since the additive GP model scales better w.r.t.
the number of dimensions due to its non-tensorised structure, here we are able to increase
the quality of resolution in the approximation. Thus, we fixed the number of knots per
dimension to twenty, i.e. m1 = · · · = m5 = 20.

Figure 6.2 shows the predictions obtained by the additive GP model under monotonicity
conditions. As in subsection 4.2.3, 104 monotonic trajectories were sampled via HMC in
order to approximate the posterior distribution. In contrast to the CPU running time of
44.8 minutes obtained there, samples here were obtained after a lapse of 5 seconds on a
single core of the same machine. One must note that faster sampling implementations
could be obtained by computing the sub-model Y1,m1 , · · · , Y5,m5 as independent processes
on a multiple core processor.
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(f) Ŷm(x1, 0, x3, 0, 0)

x1

x
4

Ŷ
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Figure 6.2: Additive GP model under monotonicity constraints in 5D. True and predictive
mean profiles are shown in the first and second row, respectively.

6.2.3.3 Monotonicity in hundreds of dimensions

In order to test the proposed framework in high dimensions, we consider the additive
function:

y(x) =
d∑

p=1

arctan

(
5

[
1− p

d

]
xp

)
, (6.9)

with x = (x1, · · · , xd) ∈ [0, 1]d. Note that (6.9) is completely monotone with different
growth rates along each dimension. Small values of p leads to high growth rates.

We train GP models under monotonicity constraints considering various values of d.
Then, (6.9) is evaluated at 10 × d locations on a maximim Latin-hypercube DoE over
[0, 1]d. The number of knots m1 = · · · = md = 5 are set aiming a trade-off between
high-quality of approximation and computational time. We use additive SE kernels with
fixed covariance parameters (σ2

p, `p) = (1, 2) for p = 1, · · · , d. Those parameters can be
estimated via ML but here we aim at testing the computational cost of both prediction
and HMC sampling steps.

Running times for both the prediction and 103 HMC samples are shown in Table 6.1.
We observe that, while simulations are fast, the main cost relies in the prediction step.
One must note that the latter step involves the computation of d sets of inequality
conditions, conditional parameters in (6.7) and d MAP estimates. However, as discussed
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Table 6.1: Computational cost of predictions and HMC samples of an additive GP under
monotonicity constraints in dimension d. CPU times are computed for sampling 103

monotonic trajectories using the HMC sampler from (Pakman and Paninski, 2014).

CPU Time [s]
d

2 5 10 20 50 100 200 500 1000

Prediction 0.01 0.01 0.02 0.03 0.25 1.37 10.48 165.85 1364.54
HMC Sampling 0.05 0.11 0.22 0.72 1.14 2.91 2.73 5.28 10.83

in subsection 6.2.3.2, those calculations can be parallelised for faster implementations.
Finally, predictions in 103 dimensions are shown in Figure 6.3. One can observe that the
constrained GP model is able to capture the monotonic behaviour of (6.9).

6.2.3.4 5D coastal flooding application

We continue with the 5D coastal flooding example in subsection 4.3.2. Here, we assess
the performance of an additive GP model under monotonicity conditions along the
first and the second input dimensions. We use the same parametrisation proposed in
subsection 4.3.2. We normalise the input space to be in [0, 1]5, and use a 5D additive
Matérn 5/2 kernel. The parameters ((σ2

1, `1), · · · , · · · , (σ2
5, `5), τ 2) are estimated via ML.

As the additive construction in (6.4) allows us to have a higher resolution of representation
compared to the tensor approach in Chapter 4, here we fix twenty knots per dimension.

As in subsection 4.3.2, we trained GP models using twenty different sets of training
data and different proportions of training sets. According to Figure 6.4, one can observe
that the additive model could not properly learn the behaviour of data. This results
from the fact that the 5D coastal data is not fully additive. However, one must note that
numerical experiments here were much more faster: in the order of seconds compared to
the dozens of minutes required in subsection 4.3.2.

6.3 Future works: block additivity

As shown in subsection 6.2.3, the finite-dimensional GP in (6.4) leads to accurate pre-
dictions if additive functions are considered. However, the main drawback of the model
in (6.1) is that it does not take into account interactions between input variables. Real-
world applications satisfying the additive structure in (6.1) are not common but a wide
range exhibits block-additivity (see, e.g., Duvenaud et al., 2011; Macdonald, 1998). In
this section, we give an insight to extend the approximation in (6.4) to account for block-
additive functions.
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Ŷ
m
(x

1 , · · · , x
d )

(c) y1(x1) + y400(x400)

x1

x
5
0
0

y
(x

1 , · · · , x
d )

x1

x
5
0
0

Ŷ
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Figure 6.3: Examples of an additive GP under monotonicity constraints in 103

dimensions. Each panel shows: the true (left) and predictive (right) mean profiles.
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Figure 6.4: 5D additive GP emu-
lators for modelling the coastal
flooding data in (Azzimonti et al.,
2019). The boxplots show the Q2
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of training points (x-axis) and
using twenty different random
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additive (green) constrained GP
emulators.

6.3.1 Additivity per blocks in 3D

Without lost of generality, consider an additive GP {Y (x);x ∈ [0, 1]3},

Y (x) = Y1(x1) + Y2,3(x2, x3), (6.10)

with sub-models Y1, Y2,3. Here, we assume that Y1 and Y2,3 are independent centred GPs
with covariance functions k1 and k1,2. Since the cross-covariance function between Y1 and
Y2,3 is equal to zero, the covariance function k of the GP in (6.10) is given by

k(x,x′) = k1(x1, x
′
1) + k2,3(x2, x3;x′2, x

′
3). (6.11)

We aim at imposing constraints over the partitions Y1, Y2,3. Define a finite-dimensional

GP, denoted by Y1,m1 , as the piecewise linear interpolation of Y1 at knots (t
(1)
1 , · · · , t(1)

m1) as
in (3.1). Define also a 2D finite-dimensional GP, denoted by Y(2,3),m2,3 , as the piecewise

linear interpolation of Y2,3 at a set of knots per dimension (t
(2)
1 , · · · , t(2)

m2), · · · , (t(3)
1 , · · · , t(3)

m3)
as in (3.16). Thus, the finite-dimensional GP of (6.10) is given by

Ym(x) =

m1∑

j1=1

φ
(1)
j1

(x1)ξ
(1)
j1

+

m2∑

j2=1

m3∑

j3=1

φ
(2)
j2

(x2)φ
(3)
j3

(x3)ξ
(2,3)
j2,j3

, (6.12)

where ξ
(1)
j1

:= Y1(t
(1)
j1

), ξ
(2,3)
j2,j3

:= Y2,3(t
(2)
j2
, t

(3)
j3

) and φ
(1)
j1
, φ

(2)
j2
, φ

(3)
j3

are hat basis functions as in

(3.2). Consider the centred Gaussian vectors ξ1 = [ξ
(1)
1 , · · · , ξ(1)

m1 ]
>, with covariance ma-

trix Γ1 = (k1,m1(t
(1)
i , t

(1)
j ))1≤i,j≤m1 , and ξ2,3 = [ξ

(2,3)
1,1 , · · · , ξ(2,3)

1,m3
, · · · , ξ(2,3)

m2,1
, · · · , ξ(2,3)

m2,m3 ]
>,

with covariance matrix Γ2,3 = (k(2,3),m2,3(t
(2)
i , t

(3)
j ; t

(2)
i′ , t

(3)
j′ ))1≤i,i′≤m2,1≤j,j′≤m3 . Assume that

vectors ξ1 and ξ2,3 are independent. Thus, the covariance function of (6.12) is given by

k(x,x′) = k1(x1, x
′
1) + k2,3(x2, x3;x′2, x

′
3), (6.13)
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with

k1(x1, x
′
1) =

m1∑

i=1

m1∑

j=1

φ
(1)
i (x1)k1,m1(t

(1)
i , t

(1)
j )φ

(1)
j (x′1),

k2,3(x2, x3;x′2, x
′
3) =

m2∑

i,i′=1

m3∑

j,j′=1

φ
(2)
i (x2)φ

(3)
j (x3)k(2,3),m2,3(t

(2)
i , t

(3)
j ; t

(2)
i′ , t

(3)
j′ )φ

(2)
i′ (x′2)φ

(3)
j′ (x′3).

Following a similar procedure as the one in Chapter 3, then the approximation Ym
given both interpolation and inequality constraints is given by

Ym(x) =

m1∑

j1=1

φ
(1)
j1

(x1)ξ
(1)
j1

+

m2∑

j2=1

m3∑

j3=1

φ
(2)
j2

(x2)φ
(3)
j3

(x3)ξ
(2,3)
j2,j3

s.t.





Ym(xi) + εi = yi,

ξ1 ∈ C(1),

ξ2,3 ∈ C(2,3),

with xi = (xi1, x
i
2, x

i
3) ∈ [0, 1]3, yi ∈ R for i = 1, · · · , n, and convex sets C(1), C(2,3) defined

in (3.3). We consider an additive Gaussian noise εi ∼ N (0, τ 2) with noise variance τ 2,
and assume that ε1, · · · , εn are independent, and independent of Ym. Note that, since
constraints are enforced up to two-dimensional spaces, the HMC sampler in (Pakman and
Paninski, 2014) can be efficiently applied as shown in Chapters 3 to 5. Furthermore, sub-
models Y1,m1 and Y(2,3),m2,3 can be computed in parallel in order to reduce the execution
time.

6.3.2 Remarks on implementations in high dimensions

Developments in subsection 6.3.1 can be generalised to d > 3 but at the cost of more
cumbersome expressions. In that case, one should rewrite first (6.10) according to the
block-additive structure of Y . Then, one can follow a similar procedure to the one
previously discussed, and enforce the inequality constraints over each group as discussed
throughout Chapters 3 to 5. Note that the computational complexity of the block-
additive model will depend on the sizes of the blocks.

In subsection 6.3.1, we assumed that the additive structure of Y was known. In practice,
this is not always the case and that structure has to be properly inferred. In that case,
dedicate statistical approaches can be coupled here in order to define first the additive
partitions (see, e.g., Fruth et al., 2014; Muehlenstaedt et al., 2012; Pan and Zhu, 2017),
and then the procedure in subsection 6.3.1 can be established.

6.4 Conclusions

In this chapter, we adapted the GP model with inequality constraints to additive func-
tions. Since constraints are assumed to be imposed on a (predefined) subset of input
variables, MC/MCMC samplers in subsection 3.3.2 are then applied on one-dimensional
subspaces. This leads to models that can be easily scaled in high dimensions involving
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tens or hundreds of input variables. Furthermore, many of the computations can be
efficiently computed and are highly parallelizable. However, a main difficulty is that the
inequality constraints are not necessarily ensured everywhere if there are verified only
at knots, in general. Favourable situations where this remains true are for monotonicity
and convexity constraints. Finally, we also gave an insight of its extension to account for
block-additive functions. In that case, enforcing the constraints over each block can be
considered as in Chapters 3 to 5. Although this extension can be theoretically formalised
for an arbitrary dimension d and arbitrary sets of additive blocks, its practical and general
implementations is challenging. This could be of interest in future work.

The proposed additive GP model was tested on both synthetic and real-world data.
On synthetic examples involving up to hundreds of input variables, we demonstrated
its versatility and scalability under various inequality conditions. We also tested its
performance on the 5D coastal flooding application in subsection 4.3.2. In contrast to
experiments in Chapters 4 and 5, the additive model led to faster numerical results with
a computational time limited to only dozens of seconds.
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Chapter 7

Maximum Likelihood Estimation
under Inequality Constraints
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7.1 Introduction

Parts III and IV have been dedicated to the study of GP regression models under
inequality constraints. There, in many of the toy examples, the covariance parameters
have been either manually fixed or estimated neglecting the influence of the inequality
conditions. As claimed by Maatouk et al. (2015), accounting for the constraints could
lead to more reasonable estimated parameters, therefore, to models that can explain
better the data. Despite the effort made in (Maatouk et al., 2015), their approach is
impractical as it is based on a time-consuming cross-validation scheme. Moreover, the
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98 7 Maximum Likelihood Estimation under Inequality Constraints

optimal solution is restricted to be on a finite grid of possible values, with the same
estimation of correlation parameters as for unconstrained GP parameters.

In this chapter, we aim at further investigating a maximum likelihood estimator (MLE)
that accounts for inequality constraints. The main contributions are threefold. First, we
suggest a constrained MLE (cMLE) under inequality conditions. Second, we show that,
loosely speaking, any consistency result for ML with unconstrained GPs, is preserved
when adding boundedness, monotonicity and convexity constraints. Third, we study
some cases where both the MLE and cMLE are asymptotically Gaussian distributed,
conditionally to the fact that the GP satisfies the constraints.

This chapter is based on the papers:

- López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant O. (2018).
Finite-dimensional Gaussian approximation with linear inequality constraints.
SIAM/ASA Journal on Uncertainty Quantification, 6(3):1224–1255.

- Bachoc, F., Lagnoux, A., and López-Lopera, A. F. (2019). Maximum likelihood
estimation for Gaussian processes under inequality constraints. Electronic Journal
of Statistics , 13(2):2921–2969.

7.2 Covariance parameter estimation under inequal-

ity constraints

Here, we continue with the same notation as in subsection 2.2.3. Let Ln(θ) and θ̂MLE

be the (unconstrained) log-likelihood function and the MLE given by (2.7) and (2.8),
respectively. Since Ln(θ) itself does not take into account the inequality constraints,

the estimated θ̂MLE may produce less realistic models. This claim is also supported
by previous works where the need of incorporating those constraints in the covariance
parameter estimation is key to properly describe data (see, e.g., Maatouk et al., 2015).
Therefore, here we further investigate a constrained likelihood function that accounts for
the inequality conditions.

Without loss of generality, we assume one dimensional input spaces, i.e. x ∈ [0, 1],
and we consider the model of (3.1). Let Pθ(Ym|ξ ∈ C) be the conditional pdf of Ym =[
Ym(x1), · · · , Ym(xn)

]>
given ξ ∈ C, when Y has covariance function kθ. By using

Bayes’ theorem, the constrained log-likelihood Lm,n,c(θ) = logPθ(Ym|ξ ∈ C) is

Lm,n,c(θ) = logPθ(Ym) + logPθ(ξ ∈ C|Φξ = Ym)− logPθ(ξ ∈ C), (7.1)

where the first term is the unconstrained log-likelihood, and the last two terms depend
on the inequality constraints. Then, the cMLE is given by

θ̂cMLE = arg maxθ∈Θ Lm,n,c(θ). (7.2)

Notice that Pθ(ξ ∈ C|Φξ = Ym) and Pθ(ξ ∈ C) are Gaussian orthant probabilities.
As they have no explicit expressions, numerical procedures have been investigated (see,
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e.g., Botev, 2017; Genz, 1992). The estimator proposed in (Genz, 1992) is based on a
separation-of-variables transformation which reduces the problem to standard numerical
multiple integration algorithms. On the other hand, as briefly described in subsec-
tion 3.3.2, the estimator from (Botev, 2017) efficiently deals with hitherto intractable
Gaussian integrals in high dimensions via minimax exponential tilting. Due to numerical
stabilities, we use (Botev, 2017) in further experiments. Hence, the likelihood evaluation
and optimisation of (7.1) and (7.2) have to be done numerically.

Next, we study some asymptotic properties of the MLEs for constrained GPs, For
readability and concision, we refer to Appendix A, and references (Bachoc et al., 2019;
López-Lopera et al., 2018), for the proofs of the propositions, lemmas and theorems
discussed in Sections 7.3 and 7.4. Furthermore, we illustrate the asymptotic properties
on 1D synthetic examples.

7.3 Asymptotic consistency of maximum likelihood

estimators

Now, we consider the fixed-domain asymptotic setting (Stein, 1999), with a dense se-
quence of observation points in a bounded domain. It should be noted that, when the GP
is not constrained, significant contributions have been provided to study the consistency
or asymptotic normality of the MLE (Du et al., 2009; Loh, 2005; Loh and Lam, 2000;
Ying, 1993; Zhang, 2004).

For κ ∈ {0, 1, 2}, let Y be a GP with Cκ trajectories on a bounded set X ⊂ Rd. Let Eκ
be one of the following convex sets of functions

Eκ =





f : X→ R, f is C0 and ∀x ∈ X, ` ≤ f(x) ≤ u if κ = 0,

f : X→ R, f is C1 and ∀x ∈ X, ∀i = 1, · · · , d, ∂
∂xi
f(x) ≥ 0 if κ = 1,

f : X→ R, f is C2 and ∀x ∈ X, ∂2

∂x2 f(x) is a non-negative definite matrix if κ = 2.

(7.3)

For the purpose of asymptotic analysis, we do not consider the hat basis functions
anymore, and we focus on the GP Y and the observation vector

Yn =
[
Y (x1), · · · , Y (xn)

]>
.

We study the (unconstrained) log-likelihood function based on logPθ(Yn) and the con-
strained log-likelihood function based on

logPθ(Yn|Y ∈ Eκ) = logPθ(Yn) + Pθ(Y ∈ Eκ|Yn)− logPθ(Y ∈ Eκ).
These quantities are more challenging to evaluate in practice than for Section 7.2, but
the purpose is a theoretical analysis.

7.3.1 Asymptotic consistency of the MLE and cMLE

In Proposition 7.1, we prove that if the MLE is consistent, when considering the (uncon-
ditional) distribution of Y , then it remains consistent when conditioning to Y ∈ Eκ.
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In Proposition 7.2, we prove that, under mild conditions (such as Y being κ times
continuously differentiable, Adler, 1990), implying the consistency of MLE with the (un-
conditional) distribution of Y , the cMLE remains consistent when adding the constraint
Y ∈ Eκ.

Condition 7.1 Let x,x′ ∈ X. For a fixed κ ∈ {0, 1, 2}, assume one of the following
conditions:

- If κ = 0. Assume that Y has continuous trajectories. Let k be the covariance function
of Y . Let

dk(x,x
′) =

√
k(x,x) + k(x′,x′)− 2k(x,x′).

Let N(X, dk, `) be the minimum number of balls with radius ` (w.r.t. the distance dk),
required to cover X. Assume that

∫ ∞

0

√
log(N(X, dk, `)) d` <∞. (7.4)

Assume also that the Fourier transform k̂ of k satisfies

∃ P <∞ so that as ‖w‖→ ∞, k̂(w)‖w‖P→∞. (7.5)

- If κ = 1. Assume that Y has C1 trajectories. Let k
[1]
i be the covariance function of

∂
∂xi
Y . Let d

k
[1]
i

and N(X, d
k
[1]
i
, `) be defined as dk and N(X, dk, `) for κ = 0. Assume that

∫ ∞

0

√
log(N(X, d

k
[1]
i
, `)) d` <∞, ∀i = 1, · · · , d. (7.6)

Assume also that the Fourier transform k̂
[1]
i of k

[1]
i satisfies the same conditions as for

κ = 0.
- If κ = 2. Assume that Y has C2 trajectories. Let k

[2]
i,j be the covariance function of

∂2

∂xi∂xj
Y . Let d

k
[2]
i,j

and N(X, d
k
[2]
i,j
, `) be defined as dk and N(X, dk, `) for κ = 0. Assume

that ∫ ∞

0

√
log(N(X, d

k
[2]
i,j
, `)) d` <∞, ∀i, j = 1, · · · , d. (7.7)

Assume also that the Fourier transform k̂
[2]
i,j of k

[2]
i,j satisfies the same conditions as for

κ = 0.

Let us discuss Condition 7.1. For κ = 0, it is assumed that Y has continuous tra-
jectories, which implies that the covariance function k of Y is continuous (see, e.g.,
Theorem 1.6 in Adler (1990) or Lemma 1 in Ibragimov and Rozanov (1978)). Hence,
Condition 7.1 implies that Y is mean square continuous (Stein, 1999). Mean square
continuity is perhaps a more commonly used notion than trajectory continuity in the
statistical literature (Rasmussen and Williams, 2005; Santner et al., 2003a). Nevertheless,
in the context of this appendix, trajectory continuity is needed to define the event Eκ.
We also remark that (7.4), for κ = 0, is not significantly stronger than assuming that k
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is continuous. In particular this condition holds if k is α-Hölder continuous with α > 0
(since then one can show that in this case N(X, dk, `) is a O(`−2d/α) as `→ 0), which is
the case for the Matérn covariance function with any smoothness parameter ν > 0 (Stein,
1999). Hence, Condition 7.1 holds for the Matérn covariance function with ν > 0, since
then also (7.5) holds (see e.g. Stein, 1999, for the expression of the Fourier transform of
the Matérn covariance function). We remark however that (7.5) does not hold for the
squared exponential covariance function which Fourier transformp vanishes too fast as
w →∞ (Stein, 1999).

The discussion is similar for κ = 1, 2. In these cases, Condition 7.1 implies that Y is κ
times mean square differentiable and that k has partial derivatives of order 2κ. Having
derivatives of order 2κ is arguably a minimal condition for mean square differentiability of
order κ (Santner et al., 2003a; Stein, 1999). Furthermore, if the derivatives of order 2κ of
k are Hölder continuous then (7.6) or (7.7) hold. Hence, Condition 7.1 is not significantly
stronger than mean square differentiability, and holds for the Matérn covariance function
with ν > κ.

Proposition 7.1 Let Y be a zero-mean GP on a bounded set X ⊂ Rd with covariance
function k satisfying Condition 7.1. Let Θ be a compact set on (0,∞)d+1. Let kθ be
the covariance function of x → σY (`1x1, · · · , `dxd) for θ = (σ2, `1, · · · , `d) ∈ Θ. Let
θ∗ = (1, · · · , 1). Remark that k = kθ∗ and assume that θ∗ ∈ Θ. Let (xi)i∈N be a dense

sequence in X. Let Yn =
[
Y (x1), · · · , Y (xn)

]>
. Let the log-likelihood function Ln(θ)

be defined as in (2.7). Let θ̂ ∈ arg maxθ∈Θ Ln(θ). Assume that ∀ε > 0,

P (‖θ̂ − θ∗‖≥ ε) −−−→
n→∞

0.

Let κ ∈ {0, 1, 2}. Let Eκ be as in (7.3). Then, we have P (Y ∈ Eκ) > 0, and thus

P (‖θ̂ − θ∗‖≥ ε | Y ∈ Eκ) −−−→
n→∞

0.

Proposition 7.2 We use the same notation and assumptions as in Proposition 7.1. Let
κ ∈ {0, 1, 2} be fixed. Let Pθ be the distribution of Y with covariance function kθ. Let

Ln,c(θ) = Ln(θ) + logPθ(Y ∈ Eκ|Yn)− logPθ(Y ∈ Eκ).

Assume that ∀ε > 0 and ∀M <∞,

P

(
sup

‖θ−θ∗‖≥ε
(Ln(θ)− Ln(θ∗)) ≥ −M

)
−−−→
n→∞

0.

Then,

P

(
sup

‖θ−θ∗‖≥ε
(Ln,c(θ)− Ln,c(θ∗)) ≥ −M

∣∣∣∣ Y ∈ Eκ
)
−−−→
n→∞

0.

Consequently

arg maxθ∈Θ Ln(θ)
P−−−→

n→∞
θ∗, and arg maxθ∈Θ Ln,c(θ)

P |Y ∈Eκ−−−−→
n→∞

θ∗,
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where P−−−−→
n→∞

denotes the convergence in probability under the distribution of Y , and
P |Y ∈Eκ−−−−−→
n→∞

denotes the convergence in probability under the distribution of Y given Y ∈ Eκ.

Remark 7.1 Propositions 7.1 and 7.2 can be extended to the case of noisy observations
of GPs (or to the case of a nugget effect). More precisely, these propositions would still
hold if Yn was replaced by Yn+zn, with zn = (z1, ..., zn)T where z1, ..., zn are independent,
independent of Y and follow the N (0, τ 2) distribution with τ > 0 fixed, known, and does
not depend on n. Naturally, Yn should also be Yn + zn in the definition of the ML and
cML functions. The proofs of these adaptations of Propositions 7.1 and 7.2 would be
identical to those of the original propositions. In particular, the results of (Bect et al.,
2016; Kallenberg, 2002) that are used in the proofs (see Lemmas A.1 and A.2 in López-
Lopera et al., 2018) still hold if Yn is replaced by Yn + zn. Similarly, we believe that
Propositions 7.1 and 7.2 can also be adapted if τ 2 is estimated by ML or cML.

Remark 7.2 We refer to Appendix B in (López-Lopera et al., 2018) for additional results
that account for the hat basis functions in (3.1).

7.3.2 Numerical illustration

To assess the performance of the estimator of (7.2), we simulated sample paths from a
centred constrained GP Y using a Matérn 5/2 covariance function with θ∗ = (1, 0.2) (see
Table 2.1). We sampled 100 realisations of Y on D = [0, 1] such that Y ∈ [−1, 1]. Then,
for each realisation, we trained a constrained model assuming boundedness conditions
with bounds [−1, 1]. We used 10 training points regularly spaced in D and m =
50 hat basis functions.1 For both (unconstrained) ML and constrained ML (cML)
optimisations, we used multistart with ten initial vectors of covariance parameters located
on a maximin Latin hypercube DoE with σ2 ∈ [0, 2] and ` ∈ [0.04, 0.40]. We used the
NLopt optimisation tools from (Johnson), and we tested the different gradient-based
optimisers. After some tests, we concluded that the globally-convergent method of
moving asymptotes (MMA) (Svanberg, 2002) yielded more stable results for estimating
the covariance parameters. For cMLE, gradients were computed numerically. As the
parameters of the Matérn 5/2 kernel are non-microergodic for one-dimensional input
spaces, they cannot be estimated consistently (Zhang, 2004). Therefore, we evaluated
the quality of the likelihood estimators using the consistently estimable ratio ρ = σ2/`5.
In Figure 7.1(a), we show the boxplots of the estimated ratios obtained with the 100
simulations drawn from the GP. Notice that the estimated logged ratios log ρ̂MLE and
log ρ̂cMLE are reasonably close to the true value log ρ∗ = log(12/0.25), but the one using
cMLE is slightly better in terms of variance and bias.

We also evaluate the efficiency of the two estimators in terms of prediction accuracy.
For each realisation, we estimated the covariance parameters θ∗ by MLE and cMLE. We
then simulated the posterior at 50 new regularly spaced locations using the estimated

1In this experiment, we manually tuned the number of basis function m. We used different values of
m = 25, 50, 100, 150, 200, and we observed that results of Figure 7.1 remained stable after m = 50.
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Figure 7.1: Assessment of the likelihood (ML) and conditional likelihood (cML)
estimators for 100 samples drawn from a GP with true parameters θ∗ = (1, 0.2), and
satisfying the bounds [−1, 1]. (a) Estimated values of the log-ratio log ρ∗ = log(12/0.25)
(dashed green line) using MLE and cMLE. Predictive accuracies are evaluated using the
(b) Q2 and (c) CA±σ criteria. In Figure (c), the horizontal dashed green line represents

the 68% pointwise coverage. Predictions are shown for one sample using (d) θ̂MLE, (e)

θ̂cMLE, and (f) θ∗. For the predictions, panel description is the same as Figure 3.2.

covariance parameter θ̂. The conditional sample paths were simulated via HMC. We
used the Q2 and CA±σ criteria to assess the quality of predictions over the 50 new values.

Figure 7.1 shows the inferred sample paths for one realisation using either θ̂MLE,
θ̂cMLE, or θ∗ (Figures 7.1(d) to 7.1(f), respectively). We observe that, in the three
cases, the models tend to fit properly the test data with accurate confidence intervals.
According to Figures 7.1(b) and 7.1(c), we see that they provide Q2 and CA±σ median
values close to the ones obtained when the true θ∗ is used. Although the predictive
accuracies obtained using cMLE are better than for MLE in terms of bias, we observe
larger variances in the CA±σ criterion for cMLE. We also compute the lengths of the one
standard deviation intervals and we observed that cMLE provides smaller intervals than
the ones by MLE. This is consistent with Figure 7.1(c). Since the Gaussian orthant
terms from the conditional likelihood of (7.1) have to be approximated, we believe
that this affects the effectiveness of cMLE. Furthermore, existing estimators of Gaussian
orthant probabilities present some numerical instabilities limiting the cML optimisation
routine and providing suboptimal results. Finally, notice that MLE also provides reliable
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Figure 7.2: Assessment of the cMLE using different number of knots m for the example
in Figure 7.1. Results are shown for (a) the consistently estimable ratio ρ = σ2/`5, (b)
the Q2 criterion, and (c) CA±σ criterion.

predictions. This suggests that, if we properly take into account the inequality constraints
in the posterior distribution, the unconstrained ML optimisation can be used for practical
implementation.

Finally, we test the quality of cMLE using different number of knots m. The experiment
of Figure 7.1 has been repeated for m = 15, 25, 50, 100, 150, 200. Figure 7.2 shows the
results of the consistently estimable ratio ρ = σ2/`5, the Q2 and CA±σ criteria. One can
observe that results become stable for m ≥ 50.

7.4 Asymptotic normality of maximum likelihood es-

timators

Here, we use the same notation as in Sections 7.2 and 7.3. We consider a parametric set
of covariance functions {kθ;θ ∈ Θ} defined on [0, 1]d, where Θ is compact in Rp. We
also assume that, for each θ ∈ Θ, there exists a centred GP with continuous realisations
having a covariance function kθ. We refer to, e.g., (Adler, 1990) for mild smoothness
conditions on kθ ensuring this. We assume that the information Y ∈ Eκ is available
where Eκ is a convex set of functions defined in (7.3).

We consider a triangular array (x
(n)
i )n∈N,i=1,...,n of observation points in [0, 1]d, where

we write for concision (x1, . . . ,xn) = (x
(n)
1 , . . . ,x

(n)
n ). We assume that (x

(n)
i ) is dense,

that is supx∈[0,1]d infi=1,...,n |x − x(n)
i |→ 0 as n → ∞. In some cases, we need to assume

that as n → ∞, the triangular array contains finer and finer tensorised grids. In some
other cases, we only need to assume that the observation points constitute a sequence.

Condition 7.2 There exist d sequences (v
(j)
i )i∈N for j = 1, . . . , d that are dense in

[0, 1] and so that for all N ∈ N, there exists n0 ∈ N such that for n ≥ n0 we have

{(v(1)
i1
, . . . , v

(d)
id

), 1 ≤ i1, . . . , id ≤ N} ⊂ (xi)i=1,...,n.
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In our opinion, Condition 7.2 is reasonable and natural. Its purpose is to guarantee that
the partial derivatives of Y are consistently estimable from Yn everywhere on [0, 1]d (see,
for instance, the proof of Theorems 7.1 and 7.2 for κ = 1 in Bachoc et al., 2019). We
believe that, for the results for which Condition 7.2 is assumed, one could replace it by a
milder condition and prove similar results. Then the proofs would be based on essentially
the same ideas as the current ones, but could be more cumbersome.

Condition 7.3 For all n ∈ N and i ≤ n, we have x
(n)
i = x

(i)
i .

Condition 7.3 implies that sequences of conditional expectations w.r.t. the observations
are martingales. This is necessary in some of the proofs (for instance, that of Theorem 7.2)
where convergence results for martingales are used.

Next, we study the asymptotic conditional distributions of MLE and cMLE, given
that the GP satisfies the constraint Y ∈ Eκ. We consider the estimation of a single
variance parameter and the estimation of the microergodic parameter in the isotropic
Matérn family of covariance functions. In both cases, we show that the asymptotic
conditional distributions of both estimators are identical to the unconditional asymptotic
distribution of MLE. Hence, it turns out that the impact of the constraints on covariance
parameter estimation is asymptotically negligible. In simulations, we confirm that for
large sample sizes, the estimators have very similar empirical distributions, that are close
to the asymptotic Gaussian distribution.

7.4.1 Variance parameter estimation

Here, we focus on the estimation of a single variance parameter when the correlation
function is known. Hence, we let p = 1, θ = σ2, and for x,x′ ∈ [0, 1]d,

kσ2(x,x′) = σ2k1(x,x′), (7.8)

where k1 is a fixed known correlation function. We make the following assumption.

Condition 7.4 Let κ be fixed in {0, 1, 2}.
- k1 is stationary, that is k1(x,x′) = k1(x− x′) for x and x′ in [0, 1]d.

- If κ = 0, k1 is α-Hölder, which means that there exist nonnegative constants C and
α such that

|k1(t)− k1(t′)|≤ C||t− t′||α

for all t and t′ in [0, 1]d, where ||·|| is the Euclidean norm. Furthermore, the Fourier

transform k̂1 of k1 satisfies, for some fixed P <∞,

k̂1(ω)||ω||P −→
ω→∞
∞. (7.9)

- If κ = 1, the GP Y is differentiable in quadratic mean. For i = 1, . . . , d, let k1,i be
the covariance function of ∂Y/∂xi. Then k1,i is α-Hölder for a fixed α > 0. Also,

(7.9) holds with k̂1 replaced by the Fourier transform k̂1,i of k1,i for i = 1, . . . , d.
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- If κ = 2, the GP Y is twice differentiable in quadratic mean. For i, j = 1, . . . , d, let
k2,i,j be the covariance function of ∂2Y/(∂xi∂xj). Then k2,i,j is α-Hölder for a fixed

α > 0. Also, (7.9) holds with k̂1 replaced by the Fourier transform k̂1,i,j of k1,i,j for
i, j = 1, . . . , d.

These conditions make the conditioning by Y ∈ Eκ valid for κ = 0, 1, 2 as established in
the following lemma.

Lemma 7.1 Assume that Condition 7.4 holds. Then for all κ ∈ {0, 1, 2} and for any
compact K in (0,+∞), we have

infσ2∈K Pσ2 (Y ∈ Eκ) > 0.

Now, we first study the conditional asymptotic distribution of the (unconstrained) MLE
conditionally to Y ∈ Eκ. Then we study the cMLE of Proposition 7.2

Asymptotic conditional distribution of the maximum likelihood estimator:
the log-likelihood function in Proposition 7.1 for σ2 can be written as

Ln(σ2) = −n
2

log(σ2)− 1

2
log(det(R1))− 1

2σ2
Y>nR

−1
1 Yn −

n

2
log(2π), (7.10)

where R1 = (k1(xi, xj))1≤i,j≤n. Then the standard MLE is given by

σ̂2
n ∈ arg maxσ2>0 Ln(σ2). (7.11)

According to (Bachoc et al., 2019), one can show that, for κ = 0, 1, 2,
√
n (σ̂2

n − σ2
0) is

asymptotically Gaussian distributed conditionally to Y ∈ Eκ.

Theorem 7.1 For κ = 1, 2, we assume that Condition 7.2 holds. Under Condition 7.4,
the MLE σ̂2

n of σ2
0 defined by (7.11) conditioned on Y ∈ Eκ is asymptotically Gaussian

distributed. More precisely, for κ = 0, 1, 2,

√
n
(
σ̂2
n − σ2

0

) L|Y ∈Eκ−−−−→
n→+∞

N (0, 2σ4
0).

It is well known that
√
n (σ̂2

n − σ2
0) converges (unconditionally) to the N (0, 2σ4

0) distri-
bution (Stein, 1999). Hence, conditioning by Y ∈ Eκ has no impact on the asymptotic
distribution of the MLE.

Asymptotic conditional distribution of the constrained maximum likelihood
estimator: we assume that the compact set Θ is [σ2

l , σ
2
u] with 0 < σ2

l < σ2
0 < σ2

u < +∞,
and we consider the cMLE σ̂2

n,c of σ2
0 derived by maximizing on the compact set Θ the

constrained log-likelihood in Proposition 7.2:

σ̂2
n,c ∈ arg maxσ2∈Θ Ln,c(σ2). (7.12)

Then, one can show that the conditional asymptotic distribution of the cMLE is the same
as that of the MLE (see, e.g., Bachoc et al., 2019, for further discussion).
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Theorem 7.2 For κ = 1, 2, we assume that Condition 7.2 holds. Under Condition 7.3
and 7.4, the cMLE σ̂2

n,c of σ2
0 defined in (7.12) is asymptotically Gaussian distributed.

More precisely, for κ = 0, 1, 2,

√
n
(
σ̂2
n,c − σ2

0

) L|Y ∈Eκ−−−−→
n→+∞

N (0, 2σ4
0).

7.4.2 Microergodic parameter estimation for the isotropic
Matérn model

In this section, we let d = 1, 2 or 3, and we consider the isotropic Matérn family of
covariance functions on [0, 1]d. We refer to, e.g., Stein (1999) for more details. Here
kθ = kθ,ν is given by, for x,x′ ∈ [0, 1]d,

kθ,ν(x,x
′) = σ2Kν

( ||x− x′||
`

)
=

σ2

Γ(ν)2ν−1

( ||x− x′||
`

)ν
κν

( ||x− x′||
`

)
.

The parameter σ2 > 0 is the variance of the process, ` > 0 is the length-scale parameter
that controls how fast the covariance function decays with the distance, and ν > 0 is the
regularity parameter of the process. The function κν is the modified Bessel function of
the second kind of order ν (see Abramowitz and Stegun, 1964). We assume in the sequel
that the smoothness parameter ν is known. Then θ = (σ2, `) and p = 2.

Condition 7.5 For κ = 0 (respectively κ = 1 and κ = 2), we assume that ν > 0 (resp.
ν > 1 and ν > 2).

We remark that Condition 7.5 naturally implies Condition 7.4 so that the conditioning
by Y ∈ Eκ is valid for any κ = 0, 1, 2 as established in the next lemma.

Lemma 7.2 Assume that Condition 7.5 holds. Then for all κ ∈ {0, 1, 2} and for any
compact K of (0,∞)2, we have

inf(σ2,`)∈K Pσ2,` (Y ∈ Eκ) > 0.

We refer to (Stein, 1999) for a reference on the impact of ν on the smoothness of the
Matérn covariance function and on its Fourier transform.

Asymptotic conditional distribution of the maximum likelihood estimator:
the log-likelihood function in Proposition 7.1 for σ2 and ` under the Matérn model with
fixed parameter ν can be written as

Ln(σ2, `) = −1

2
n log(σ2)− 1

2
log(det(R`,ν))−

1

2σ2
Y>nR

−1
`,νYn −

n

2
log 2π, (7.13)

where R`,ν = (Kν(||xi − xj||/`))1≤i,j≤n. Let Θ = [σ2
l , σ

2
u] × [`l, `u] with fixed 0 < σ2

l <
σ2
u <∞ and fixed 0 < `l < `u <∞. Assume moreover that the true parameters are such

that σ2
l /(`

2ν
l ) < σ2

0/(`
2ν
0 ) < σ2

u/(`
2ν
u ). Then, the MLE is given by

(σ̂2
n,
̂̀
n) ∈ arg max(σ2,`)∈Θ Ln(σ2, `). (7.14)
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It has been shown in (Zhang, 2004) that the parameters σ2
0 and `0 cannot be estimated

consistently but that the microergodic parameter σ2
0/`

2ν
0 can. Furthermore, it is shown

in (Kaufman and Shaby, 2013) that
√
n(σ̂2

n/
̂̀2ν
n −σ2

0/`
2ν
0 ) converges to a N (0, 2 (σ2

0/`
2ν
0 )

2
)

distribution. In the next theorem, we show that this asymptotic normality also holds
conditionally to Y ∈ Eκ.

Theorem 7.3 For κ = 1, 2, we assume that Condition 7.2 holds. Under Condition 7.5,
the estimator σ̂2

n/
̂̀2ν
n of the microergodic parameter σ2

0/`
2ν
0 defined by (7.14) and condi-

tioned on Y ∈ Eκ is asymptotically Gaussian distributed. More precisely, for κ = 0, 1, 2,

√
n

(
σ̂2
n

̂̀2ν
n

− σ2
0

`2ν
0

)
L|Y ∈Eκ−−−−→
n→+∞

N
(

0, 2

(
σ2

0

`2ν
0

)2)
.

Asymptotic conditional distribution of the constrained maximum likelihood
estimator: we turn to the constrained log-likelihood and its maximizer. We consider
two types of estimation settings obtained by maximizing the constrained log-likelihood
Ln,c(θ) in Proposition 7.2 under the Matérn model. In the first setting, ` = `1 is fixed and
Proposition 7.2 is maximised over σ2 (in the case `1 = `0 this setting is already covered
by Theorem 7.2). In the second setting, Proposition 7.2 is maximised over both σ2 and
`. Under the two settings, we show that the cMLE has the same asymptotic distribution
as the MLE, conditionally to Y ∈ Eκ.

Theorem 7.4 (Fixed length-scale parameter) For κ = 1, 2, we assume that Condi-
tion 7.2 holds. Assume that Condition 7.3 and 7.5 hold. Let for ` ∈ [`l, `u],

σ̂2
n,c(`) ∈ arg maxσ2∈[σ2

l ,σ
2
u] Ln,c(σ2, `). (7.15)

Let `1 ∈ [`l, `u] be fixed. Then σ̂2
n,c(`1) is asymptotically Gaussian distributed. More

precisely, for κ = 0, 1, 2,

√
n

(
σ̂2
n,c(`1)

`2ν
1

− σ2
0

`2ν
0

)
L|Y ∈Eκ−−−−→
n→+∞

N
(

0, 2

(
σ2

0

`2ν
0

)2)
.

Theorem 7.5 (Estimated length-scale parameter) Assume that Condition 7.5

holds. Let σ̂2
n,c(`) be defined as in (7.15) and let (σ̂2

n,c,
̂̀
n,c) be defined by

(σ̂2
n,c,
̂̀
n,c) ∈ arg max(σ2,`)∈Θ Ln,c(σ2, `).

Notice that σ̂2
n,c = σ̂2

n,c(
̂̀
n,c).

(i) For κ = 0, assume that one of the following two conditions hold.

a) We have ν > 1, d = 1 and maxx∈[0,1] mini=1,...,n |x− xi|= o(1/
√
n).
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b) We have ν > 2 and there exists a sequence (an)n∈N with an = o(1/n1/4) as
n → ∞, so that, for all x ∈ [0, 1]d, there exists d + 1 points v1, . . . , vd+1

with {v1, . . . , vd+1} ⊂ {x1, . . . , xn}, so that x belongs to the convex hull of
v1, . . . , vd+1 and maxj=1,...,d+1 ||x− vj||≤ an.

(ii) For κ = 1, 2, assume that one of the following two conditions hold.

a) We have ν > κ+ 1, d = 1 and maxx∈[0,1] mini=1,...,n |x− xi|= o(1/
√
n).

b) We have ν > κ+ 2 and the observation points {x1, . . . , xn} are so that, for all
n ≥ 2d, with N = bn1/dc,

{x1, . . . , xn} ⊃
{(

i1
N − 1

, . . . ,
id

N − 1

)
, 0 ≤ i1, . . . , id ≤ N − 1

}
.

Then, σ̂2
n,c/
̂̀2ν
n,c is asymptotically Gaussian distributed. More precisely, for κ = 0, 1, 2,

√
n

(
σ̂2
n,c

̂̀2ν
n,c

− σ2
0

`2ν
0

)
L|Y ∈Eκ−−−−→
n→+∞

N
(

0, 2

(
σ2

0

`2ν
0

)2)
.

In Theorem 7.5, we assume that ν is larger than in Condition 7.5, and we assume that
the observation points have specific quantitative space filling properties. The condition
i) b) also implies that a portion of the observation points are located in the corners
and borders of [0, 1]d. Furthermore, the condition ii) b) implies that the majority of the
observation points are located on regular grids. We believe that these two last conditions
could be replaced by milder ones, at the cost of proofs similar to but more cumbersome
than the present ones.

We make stronger assumptions in Theorem 7.5 than in Theorem 7.4 because the former
is more challenging than the latter. Indeed, since ` = `1 is fixed in Theorem 7.4, we
can use the equivalence of two fixed Gaussian measures in order to obtain asymptotic
properties of the conditional mean function of Y under k1,`1,ν (see the developments in
the proofs in Bachoc et al., 2019). This is not possible anymore when considering the

conditional mean function of Y under k1,̂̀n,c,ν , where ̂̀n,c is random. Hence, we use
other proof techniques, based on reproducing kernel Hilbert spaces, for studying this
conditional mean function, for which the above additional conditions are needed. We
refer for instance to the developments in the supplementary material in (Bachoc et al.,
2019) for more details.

7.4.3 Numerical illustration

Now, we illustrate numerically the conditional asymptotic normality of the MLE and
cMLE of the microergodic parameter for the Matérn 5/2 covariance function. We let
d = 1, m = 300, and x1, ..., xn be equispaced in [0, 1] in the rest of subsection. Since the
event Y ∈ Eκ cannot be simulated exactly in practice, we consider the piecewise affine
interpolation Ym of Y at t1, . . . , tm ∈ [0, 1], with m > n (see Sections 3.2 and 7.2). Then,
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the event Y ∈ Eκ is approximated by the event Ym ∈ E ′κ, where E ′0 (respectively E ′1, E ′2)
is the set of continuous bounded between l and u (resp. increasing, convex) functions.
We can efficiently sample Ym conditionally to Ym ∈ E ′κ via HMC (Pakman and Paninski,
2014).

We consider the Matérn 5/2 covariance function kθ,5/2 with θ = (σ2, `). Here, use the
parametrisation of Table 2.1 rather than that of subsection 7.4.2. For an easy reading,
we keep the same notation.

Numerical results when `0 is known: for κ = 0, 1, we generate N = 1, 000 trajecto-
ries of Ym given Ym ∈ E ′κ. For each trajectory, we compute the estimators of the variance
parameter σ̂2

m,n and σ̂2
m,n,c resulting by ML and cML, respectively.

In Figure 7.3, we report the results for κ = 0 (boundedness constraints) with (σ2
0, `0) =

(2, 0.2) and n = 20, 50, 80. We show the probability density functions obtained from
the samples

{
n1/2(σ̂2

m,n(`0)i − σ2
0)
}
i=1,···,N and

{
n1/2(σ̂2

m,n,c(`0)i − σ2
0)
}
i=1,···,N obtained as

discussed above. We also plot the probability density function of the limit N (0, 2σ4
0)

distribution. We observe that for a small number of observations, e.g. n = 20, the
distribution of the cMLE is closer to the limit distribution than that of the MLE in
terms of median value. We also observe that, as n increases, both distributions become
more similar to the limit one. Nevertheless, the cMLE exhibits faster convergence.

In Figure 7.4, we report the same quantities for κ = 1 (monotonicity constraints) and
for (σ2

0, `0) = (0.52, 1). In this case, we observe that the distributions of both the MLE
and the cMLE are close to the limit one even for small values of n (n = 5, 20).

Numerical results when `0 is unknown: we let κ = 0, (σ2
0, `0) = (2, 0.2) and

n = 20, 50, 80. We proceed similarly as in the case where `0 is known, and we estimate
the covariance parameters (σ̂2

m,n,
̂̀
m,n) and (σ̂2

m,n,c,
̂̀
m,n,c) via ML and cML, respectively.

In Figure 7.5, we show the probability density functions obtained from the samples
{n1/2(σ̂2

m,n,i/
̂̀5
m,n,i − σ2

0/`
5
0)}i=1,...,N and {n1/2(σ̂2

m,n,c,i/
̂̀5
m,n,c,i − σ2

0/`
5
0)}i=1,...,N , with N =

1, 000. One can observe that the distribution of the cMLE tends to be closer to the limit
one, than that of the MLE. Moreover, the convergence with the cMLE is faster than with
the MLE in terms of median value.

7.5 2D application: nuclear safety criticality

Here, we revisit the 2D nuclear example of Section 3.4. We repeat the experiment
proposed there for the constrained GP model accounting both positive and non-decreasing
conditions, but estimating the covariance parameters via cML. We test both uncon-
strained and constrained models with twenty different random Latin hypercube DoEs
using several values of n. We used the Q2 and CA±σ criteria to evaluate the quality of
the predictions.

Figure 7.6 shows that the constrained models often outperform the unconstrained
ones. Notice that although the Q2 results obtained by the unconstrained model are
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Figure 7.3: Asymptotic conditional distribution of the variance parameter estimators
under boundedness constraints. Here (σ2

0, `0) = (2, 0.2). Each panel shows: the limit
conditional distribution N (0, 2σ4

0) (solid), the distributions of the MLE (dashed) and of
the cMLE (dotted). Vertical lines represent the median values of the distributions. Each
subcaption shows the number of observations n used for the estimations.
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Figure 7.4: Asymptotic conditional distribution of the variance parameter estimators
under monotonicity constraints. Here (σ2

0, `0) = (0.52, 1). Panel description is the same
as in Figure 7.3.
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Figure 7.5: Asymptotic conditional distribution of the microergodic parameter estimators
for the isotropic Matérn 5/2 model under boundedness constraints. Panel description is
the same as in Figure 7.3, with N (0, 2σ4

0) replaced by N (0, 2(σ2
0/`

5
0)2).
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Figure 7.6: Assessment of the Gaussian models for interpolating the dataset from
Figure 3.6 using various number of training points n and using twenty different random
Latin hypercube designs. Predictive accuracy is evaluated using the (left) Q2 and
(right) CA±σ criteria. Results are shown for the unconstrained GP using MLE, and
the constrained GPs (cGPs) using either MLE or cMLE.

comparable with the constrained ones when the number of training points is large enough,
we observe, according to the CA±σ criterion, that the constrained model using cMLE
provides more reliable confidence intervals. This means that, if we consider both positivity
and monotonicity conditions to take into account the physics of the keff factor, we can
obtain more informative and robust models. Furthermore, we have to note that the
unconstrained MLE achieves a good tradeoff between prediction accuracy/reliability and
computational cost.

7.6 Conclusions

We have further investigated a constrained likelihood that account the inequality con-
ditions. On a 1D simulation example with known covariance parameters, we observed
that the cMLE provided more consistent estimations of the consistently estimable ratio
of Matérn 5/2 kernels compared to the unconstrained one. Moreover, constrained models
together with the cMLE leaded to improvements of the prediction accuracy in both the
predictive mean and predictive variances. In particular, the full constrained framework
provided thinner confidence intervals while ensuring reliable coverage accuracies of data.
The latter conclusion was also observed on the 2D nuclear application of Section 3.4.
Finally, we noted that MLE can also be used yielding a good tradeoff between prediction
accuracy/reliability and computational cost.

We showed that, loosely speaking, any consistency result for ML with unconstrained
GPs, is preserved when adding boundedness, monotonicity and convexity constraints.
Furthermore, this consistency occurs for both the unconditional and conditional like-
lihood functions. We remark that, under the fixed domain asymptotic framework we
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consider, some covariance parameters (for instance σ2 and ` in subsection 7.3.2) cannot
be estimated consistently and do not have an asymptotic impact on prediction and con-
ditional distributions. These results appear in the literature for unconstrained Gaussian
processes (Stein, 1999; Zhang, 2004). We believe that it can be shown that, roughly
speaking, these results also hold for constrained GPs. Hence, from an asymptotic point of
view, covariance parameters that cannot be estimated consistently have an asymptotically
negligible impact on prediction, also for constrained GPs.

We also showed that both the MLE and cMLE are asymptotically Gaussian distributed,
conditionally to the fact that the GP satisfies either boundedness, monotonicity or
convexity constraints. Their asymptotic distributions are identical to the unconditional
asymptotic distribution of the MLE. In simulations, we demonstrated that the estimators
have very similar performances when the number n of observations becomes large enough.
We also observed that the cMLE is more accurate for small or moderate values of n.

As discussed throughout this chapter, the constrained estimator suffers from certain
drawbacks that limit its practical implementations. First, since there is no a closed form
of the constrained likelihood, the evaluation and optimisation of cMLE have to be done
numerically. Second, it requires the computation of Gaussian orthant probabilities in
high dimensions. To the best of our knowledge, existing methods for approximating
those probabilities are time-consuming and present unstable results. Hence, a further
investigation is needed for addressing these limitations.
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Cox Processes under Inequality
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8.1 Introduction

In previous chapters, we studied a full GP-based model where inequality constraints
are taken into account for data interpolation, uncertainty quantification and covariance
parameter estimation. On both synthetic and real-world examples, we showed that the
proposed framework can be successfully used as a stochastic emulator leading to more
realistic models guided by the physics of data. Moreover, it can be coupled to other types
of GP-modulated stochastic processes where constrained Gaussian priors are necessary
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118 8 Cox Processes under Inequality Constraints

to get accurate models with more realistic uncertainties.
In this chapter, we adapt our approach to modelling Poisson-based point processes

under inequality constraints. More precisely, we introduce a novel finite-dimensional
approximation of GP-modulated Cox processes where positiveness conditions can be
imposed directly on the GP, with no restrictions on the covariance function. The pro-
posed approach can also ensure other types of inequality constraints (e.g. monotonicity,
convexity), resulting in more versatile models that can be used for other classes of point
processes (e.g. renewal processes). We demonstrate on both synthetic and real-world data
that the proposed framework leads to accurate inference results that are competitive with
those provided by other methods from the state-of-the-art.

This chapter is based on a joint work with PROWLER.io:

- López-Lopera, A. F., John, S., and Durrande, N. (2019). Gaussian process modu-
lated Cox processes under linear inequality constraints. In AISTATS , 22:1997–2006.

8.2 Point Poisson processes

Poisson processes are the foundation for modelling point patterns (Kingman, 1992). They
have been used in a great variety of real-world problems for modelling temporal and
spatiotemporal point patterns in diverse fields such as astronomy, biology, and ecology
(Baddeley et al., 2015; Møller and Waagepetersen, 2004). In reliability analysis, they are
used as renewal processes to model the lifetime of items or failure (hazard) rates (Cha
and Finkelstein, 2018).

Let us first summarise some concepts of spatial point processes before introducing
formally the definition of a (spatial) point Poisson process. Consider a random number
of events NB := N(B) occurring in a subset B ⊆ S with S ⊆ Rd. Then NB is Poisson-
distributed if for all n ∈ N,

P (NB = n) = exp(−µB)
µnB
n!
, (8.1)

with average number of events µB. Then, we can write

NB ∼ Pois(µB).

One property of Poisson-distributed random variables is that both the expected value and
variance are equal to the rate µB, i.e. E {NB} = var {NB} = µB. Here, the constant µB
is the average number of events, however it can also be an intensity measure parameter.

Definition 8.1 (Intensity measure) Consider the space S ⊆ Rd and an intensity
function λ : S → [0,∞] that is locally integrable

∫
B
λ(x)dx <∞ for all bounded B ⊆ S.

One defines an intensity measure µB by

µB =

∫

B

λ(x)dx, (8.2)

and furthermore, one assume that this measure is locally finite, i.e. µB <∞ for B ⊆ S.
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A spatial Poisson process is a special case of point processes where there is no interaction
between the point patterns (or events), i.e. “complete spatial randomness”.

Definition 8.2 (Binomial point process) Let f be a probability density function on
a set B ⊆ S and let n ∈ N. A point process X consisting of n iid points with common
density f is called a binomial point process of n points in B with density f :

X ∼ binomial (B, n, f) .

Definition 8.3 (Spatial Poisson process) A point process X on S ⊆ Rd is a Poisson
(point) process with intensity function λ, and intensity measure µ as in Definition 8.1, if
the two following properties hold:

1. for any B ⊆ S with µB <∞, the number of events NB is Poisson-distributed with
mean µB, i.e. NB ∼ Pois(µB). Hence, µB determines the expected number of points
in B, i.e. E {NB} = µB;

2. for any n ∈ N and B ⊆ S with 0 < µB <∞, conditionally on N(B) = n, then

X|{NB = n} ∼ binomial

(
B, n,

λ

µB

)
.

Then, we can write (unconditionally)

X ∼ Poisson(S, λ).

Then, we can define a Poisson process X as a random countable subset of S ⊆ Rd

where point patterns occur independently (Baddeley et al., 2006).
Now, let N ∈ N be a r.v. denoting the number of points in X. Let X1, · · · ,Xn be a

set of n i.i.d. random vectors on S with density f(·) = λ(·)/µ, non-negative intensity λ
and intensity measure (overall intensity) given by

µ =

∫

S
λ(s)ds. (8.3)

The joint conditional likelihood of (X1 = x1, · · · ,Xn = xn) given NB = n under an
inhomogeneous Poisson process is given by (Møller and Waagepetersen, 2004)

f(X1,···,Xn)|NB=n(x1, · · · ,xn) =
n∏

i=1

f(xi) =
1

µn

n∏

i=1

λ(xi), (8.4)

with xi ∈ Rd. Now, let N ∼ Pois(µ) for any S such that µ < ∞. Hence, according to
(8.1) and (8.4), the unconditional likelihood f(N,X1,···,Xn)(n,x1, · · · ,xn) is given by

f(N,X1,···,Xn)(n,x1, · · · ,xn) =
exp(−µ)

n!

n∏

i=1

λ(xi), (8.5)
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8.3 Gaussian process modulated Cox processes

The extension of Poisson processes to stochastic intensity functions, known as doubly
stochastic Poisson processes or Cox processes (Cox, 1955), enables non-parametric
inference on the intensity function and allows expressing uncertainties (Møller and
Waagepetersen, 2004). Previous studies have shown that other classes of point
processes may also be seen as Cox processes. For example, Yannaros (1988) proved that
Gamma renewal processes are Cox processes under non-increasing conditions. A similar
analysis was made later for Weibull processes (Yannaros, 1994).

Definition 8.4 (Spatial Cox process) Suppose that the intensity Λ = {Λ(s) : s ∈ S}
is a non-negative random field such that s → Λ(s) is a locally integrable function. If
X|{Λ = λ} ∼ Poisson(S, λ), then X is said to be a Cox process driven by Λ.

Then, one can define a Cox process as a natural extension of an inhomogeneous Poisson
process where λ is sampled from a non-negative stochastic process Λ.

Gaussian processes (GPs) form a flexible prior over functions, and are widely used to
model the intensity process Λ (Adams et al., 2009; Donner and Opper, 2018; Fernandez
et al., 2016; Gunter et al., 2014; Lasko, 2014; Lloyd et al., 2015; Møller et al., 2001;
Teh and Rao, 2011). However, to ensure positive intensities, this commonly requires link
functions between the intensity process and the GP Y . Typical examples of mappings are
Λ(x) = exp(Y (x)) (Diggle et al., 2013; Flaxman et al., 2015; Møller et al., 2001) or Λ(x) =
Y (x)2 (Kozachenko et al., 2016; Lloyd et al., 2015). The exponential transformation
has the drawback that there is no closed-form expression for some of the integrals
required to compute the likelihood. Although the square inverse link function allows
closed-form expressions for certain kernels, it leads to models exhibiting “nodal lines”
with zero intensity due to the non-monotonicity of the transformation (see John and
Hensman, 2018, for a discussion). Furthermore, current approaches to Cox process
inference cannot be used in applications such as renewal processes that require both
positivity and monotonicity constraints.

Here, we introduce a novel approximation of GP-modulated Cox processes that does not
rely on a mapping to obtain the intensity. In this approach we impose the constraints
(e.g. non-negativeness or monotonicity) directly on Λ by sampling from a truncated
Gaussian vector. This has the advantage that the likelihood in (8.5) can be computed in
closed form. Moreover, the proposed approach can ensure any type of linear inequality
constraint everywhere, which allows modelling of a broader range of point processes.

8.3.1 Approximation of Gaussian processes in 1D

Let {Λ(x);x ∈ S} be a centred GP on R with arbitrary covariance function k and
compact space S = [0, 1]. Consider a set of knots t1, · · · , tm ∈ S. Here we consider
equispaced knots tj = (j − 1)∆m with ∆m = 1/(m − 1). We define Λm as the finite-
dimensional approximation of Λ consisting of its piecewise-linear interpolation at knots
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8.3 Gaussian process modulated Cox processes 121

t1, · · · , tm, i.e.,

Λm(x) =
m∑

j=1

φj(x)ξj, (8.6)

where ξj := Λ(tj) for j = 1, · · · ,m, and φ1, · · · , φm are hat basis functions as in (3.2).
Similarly to spline-based approaches (e.g., Sleeper and Harrington, 1990), we assume that
Λ is piecewise defined by (first-order) polynomials. As discussed in Chapter 3, the striking
property of this basis is that satisfying the inequality constraints (e.g. boundedness,
monotonicity, convexity) at the knots implies that the constraints are satisfied everywhere
in the input space (Maatouk and Bay, 2017). Although it is tempting to generalise the
above construction to smoother basis functions, it makes this property difficult to enforce.

We aim at computing the distribution of Λm under the condition that it belongs to
a convex set of functions E defined by some inequality constraints (e.g. positivity). As
discussed in Chapter 3, the representation in (8.6) has the benefit that satisfying Λm ∈ E
is equivalent to satisfying only the finite number of inequality constraints ξ ∈ C where
ξ = [ξ1, · · · , ξm]>, and C is a convex set on Rm. For non-negativeness conditions E+, C is
given by

C+ := {c ∈ Rm; ∀ j = 1, · · · ,m : cj ≥ 0}, (8.7)

and for non-increasing conditions E↓, C is given by

C↓ := {c ∈ Rm; ∀ j = 2, · · · ,m : cj−1 ≥ cj}. (8.8)

Notice the that constraints can also be composed, e.g. the convex set of non-negativeness
and non-increasing conditions is given by C↓+ = C+ ∩ C↓.

As in Chapter 3, assuming that ξ is centred Gaussian-distributed with covariance
matrix Γ = (k(ti, tj))1≤i,j≤m, then the distribution of ξ conditioned on ξ ∈ C is a
truncated Gaussian distribution, and quantifying uncertainty on Λm relies on sampling
ξ ∈ C. We refer to Chapter 3 for a further discussion.

The effect of different inequality constraints on samples from the prior Λm can be seen
in Figure 8.1. Here we set m = 100 and use a SE kernel with covariance parameters
σ2 = 1, ` = 0.2 (see Table 2.1). The samples were generated via HMC (Pakman and
Paninski, 2014).

8.3.2 Application to Cox processes

The key challenge in building GP-modulated Cox processes is the evaluation of the
integral in the intensity measure. By considering Λm as the intensity of the Cox process,
the intensity measure in (8.3) becomes

µm =

∫ 1

0

Λm(x)dx =

∫ 1

0

m∑

j=1

φj(x)ξjdx =
m∑

j=1

cjξj,
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Figure 8.1: Samples from the prior Λm under (a) no constraints, (b) non-negativeness
constraints, (c) both non-negativeness and non-increasing constraints. The grey region
shows the 95% confidence interval.

where c1 = cm = ∆m

2
and cj = ∆m for 1 < j < m. Thus, the unconditional likelihood of

(N = n,X1 = x1, · · · , Xn = xn) is

f(N,X1,···,Xn)|{ξ1,···,ξm}(n, x1, · · · , xn) =
1

n!
exp

(
−

m∑

j=1

cjξj

) n∏

i=1

m∑

j=1

φj(xi)ξj. (8.9)

Since (8.9) depends on r.v.’s ξ1, · · · , ξm, it can be approximated using samples of the
truncated Gaussian vector ξ|{ξ ∈ C}. To estimate the covariance parameters θ of the
vector ξ, one can maximise the unconditional likelihood in (8.9) via stochastic global
optimisation (Jones et al., 1998).

8.3.3 Extension to high dimensions

The approximation in (8.6) can be extended to grids in d dimensions by tensorisation.
For ease of notation, we assume the same number of knots m and knot-spacing ∆m

in each dimension, but the generalisation to different m1, · · · ,md or ∆m1 , · · · ,∆md is
straightforward. Consider x = (x1, · · · , xd) ∈ [0, 1]d, and a set of knots per dimension
(t11, · · · , t1m), · · · , (td1, · · · , tdm). Then Λm is given by

Λm(x) =
m∑

j1,···,jd=1

[ ∏

i=1,···,d

φiji(xi)

]
ξj1,···,jd , (8.10)

where ξj1,···,jd := Λ(tj1 , · · · , tjd) and φiji are the hat basis functions defined in (3.2). By
substituting (8.3) and (8.10), we obtain

µm =

∫ 1

0

Λm(x)dx =
m∑

j1,···,jd=1

[ ∏

i=1,···,d

cji

]
ξj1,···,jd ,
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with cji defined as in 1D, and the likelihood is

f (N,X1,···,Xn)|ξ(n,x1, · · · ,xn) (8.11)

=
1

n!
exp

(
−

m∑

j1,···,jd=1

[ ∏

i=1,···,d

cji

]
ξj1,···,jd

)
×

n∏

i=1

m∑

j1,···,jd=1

[ ∏

k=1,···,d

φji(xi,k)

]
ξj1,···,jd ,

where xi,k is the k-th component of the point xi.
As discussed in Section 3.5, due to the tensor structure of the finite-dimensional repre-

sentation, it becomes costly as the dimension d increases. The computational complexity
of the HMC sampler each iteration scales with the number of inequality conditions and
the number of times the HMC particles violate a constraint. This drawback could be
mitigated by using sparse representations of the constraints (Pakman and Paninski,
2014), or using other types of designs of the knots (see Chapters 3, 5 and 10 for a
further discussion).

8.4 Cox process inference

Having introduced the model, we now establish an inference procedure for Λ using the
approximation Λm. For readability, we only assume non-negativeness constraints, i.e.
ξ ≥ 0, but the extension to other types of constraints can be made by constructing a set
of linear inequalities of the form l ≤ Aξ ≤ u, where A is a full-rank matrix encoding
the linear operations, and l and u are the lower and upper bounds (see Chapter 3). In
that case, results for Aξ|{l ≤ Aξ ≤ u} are similar as for ξ|{0 ≤ ξ < ∞}, and samples
of ξ can be recovered from samples of Aξ, by solving a linear system.

Consider the non-negative Gaussian vector ξ. The posterior distribution of ξ condi-
tioned on a point pattern (N = n,X1 = x1, · · · , Xn = xn) is

fξ|{N=n,X1=x1,···,Xn=xn}(χ) ∝ f(N,X1,···,Xn)|{ξ=χ}(n, x1, · · · , xn) fξ(χ), (8.12)

where the likelihood is defined in (8.9) and fξ(χ) is the (truncated) Gaussian density
given by

fξ(χ) =
exp

{
−1

2
χ>Γ−1χ

}
∫∞

0
exp

{
−1

2
s>Γ−1s

}
ds
, for χ ≥ 0. (8.13)

Since the posterior distribution (8.12) can be approximated using samples of ξ, it is
possible to infer Λm via Metropolis-Hastings.

8.4.1 Metropolis-Hastings algorithm with truncated Gaussian
proposals

The implementation of the Metropolis-Hastings algorithm requires a proposal distribution
q for the next step in the Markov chain. In practice, Gaussian proposals are often used,
leading to the famous random-walk Metropolis algorithm (Murphy, 2012). However,
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since inequality constraints are not necessarily satisfied using (non-truncated) Gaussian
proposals, the standard random walk can suffer from small acceptance rates due to con-
straint violations. We propose as an alternative a constrained version of the random-walk
Metropolis algorithm where inequality conditions are ensured when sampling from the
proposal q. As ξ is (non-negative) truncated Gaussian-distributed (with prior covariance
matrix Γ), we suggest the truncated Gaussian proposal q given by

q(χk+1|χk) =
exp

{
−1

2
[χk+1 − χk]>Σ−1[χk+1 − χk]

}
∫∞

0
exp

{
−1

2
[s− χk]>Σ−1[s− χk]

}
ds

,

where χk+1,χk ≥ 0 are samples of ξ and Σ is the covariance matrix. Sampling from q
can then be performed via MCMC (Pakman and Paninski, 2014). We use Σ = ηΓ, where
η is a scale factor. This has the benefit that we are sampling from a distribution with
similar structure to the true one, while η controls the step size of the Metropolis-Hastings
procedure and can be manually tuned to obtain a trade-off between mixing speed and
acceptance rate of the algorithm. The acceptance probability is given by

αk =
f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ

k+1)

f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ
k)
× βk, (8.14)

where βk = q(χk|χk+1)/q(χk+1|χk), and

f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ) = exp
(
− 1

2
χ>Γ−1χ− c>χ

) n∏

i=1

φ>(xi)χ (8.15)

is the (unnormalised) posterior distribution. φ(·) = [φ1(·), · · · , φm(·)]> and
c = [c1, · · · , cm]> are defined in (3.2) and (8.9). We now focus on the term βk. Since the
truncated Gaussian pdf has the same functional form as the non-truncated one, apart
from the differing support and normalising constants, this yields

βk =

∫∞
0

exp
{
−1

2
[s− χk]>Σ−1[s− χk]

}
ds∫∞

0
exp

{
−1

2
[s− χk+1]>Σ−1[s− χk+1]

}
ds
. (8.16)

The orthants
∫∞

0
exp

{
−1

2
[x− µ]>Σ−1[x− µ]

}
dx cannot be computed in closed form,

but they can be estimated via MC (Botev, 2017; Genz, 1992). Algorithm 3 summarises
the implementation of the Metropolis-Hastings algorithm for the Cox process inference
using the proposed finite-dimensional approximation.

8.4.2 Inference with multiple observations

For No independent observations (Xν,1, · · · , Xν,nν ) with ν = 1, · · · , No, the acceptance
probability follows

αk =

∏No
ν=1 fξ|{Nν=nν ,Xν,1=xν,1,···,Xν,nν=xν,nν }(χ

k+1)
∏No

ν=1 fξ|{Nν=nν ,Xν,1=xν,1,···,Xν,nν=xν,nν }(χ
k)

βk, (8.17)

with posterior fξ|{Nν=nν ,Xν,1=xν,1,···,Xν,nν=xν,nν } and βk given by (8.12) and (8.16). Then,
Algorithm 3 can be used with (8.17).
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Algorithm 3 Metropolis-Hastings algorithm for Cox process inference with truncated
Gaussian proposals

1: Input: χ(0) ∈ (Rm)+, Γ (covariance matrix of ξ), η (scale factor).
2: for k = 0, 1, 2, · · · do
3: Sample χ′ ∼ N

(
χ(k), ηΓ

)
such that χ′ ∈ C+.

4: Compute αk as in (8.14).
5: Sample uk ∼ uniform(0, 1).
6: Set new sample to

7: χ(k+1) =

{
χ′, if αk ≥ uk

χ(k), if αk < uk
.

8: Compute λ
(k)
m (x) =

∑m
j=1 φj(x)χ

(k)
j at location x with φj defined in (3.2).

8.4.3 Numerical illustrations

8.4.3.1 Illustrations on 1D

We test the performance of the finite approximation of GP-modulated Cox process on
1D and 2D applications. In the following, we use the squared-exponential covariance
for the Gaussian vector ξ so that we can compare to Lloyd et al. (2015). We estimate
the covariance parameters θ = (σ2, `) by maximising the likelihood in (8.9). For all
numerical experiments, we fix m such that we obtain accurate resolutions of the finite
representations while minimising the cost of MCMC (see Bay et al., 2016; Maatouk and
Bay, 2017, for discussion about the convergence of the finite-dimensional approximation
of GPs).1 For sampling ξ, we use the HMC sampler proposed by Pakman and Paninski
(2014). To approximate the Gaussian orthant probabilities from (8.16), we use the
estimator proposed by Botev (2017) using 200 MC samples. We run Algorithm 3 with a
scale factor η between 10−3 and 10−4 for a good trade-off between the mixing speed and
the acceptance rate for each experiment. The number of discarded burn-in samples until
the Markov chains became stationary varied between 103 and 104 samples. Codes were
implemented based on the R package lineqGPR (López-Lopera, 2019).

Here, we test the approach using the toy examples proposed by Adams et al. (2009):

λ1(x) = 2 exp{−x/15}+ exp{−[(x− 25)/10]2},
λ2(x) = 5 sin(x2) + 6,

λ3(x) = piecewise linear through (0, 2), (25, 3), (50, 1), (75, 2.5) and (100, 3).

The domains for λ1, λ2 and λ3 are S1 = [0, 50], S2 = [0, 5] and S3 = [0, 100], respectively.
Figure 8.2 shows the inference results using No = 1, 10, 100 observations sampled from

the ground truth. With increasing number of observations the inferred intensity converges
to the ground truth. Here, we fixed m = 100 and η = 10−3.

1We tested the model for various values of m, observing that, after a certain value, inference results are
unchanged. As a rule of thumb, the number of knots per dimension can be set to mi = 10 · range(Si)/`i
for i = 1, · · · , d.
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Figure 8.2: Inference results with multiple observations (No = 1, 10, 100) using the toy
examples from (Adams et al., 2009). Each panel shows the point patterns (crosses), the
true intensity λ (dashed lines) and the intensity inferred by the finite approximation of
GP-modulated Cox processes (solid lines). The estimated 90% confidence intervals of the
finite approximation are shown in grey.

In Table 8.1, we assess the performance of the proposed GP-based approach under non-
negativeness constraints (cGP-C+). We compare our inference results to the ones obtained
with a log-Gaussian process (log-GP) modulated Cox process (Møller et al., 2001) and
Variational Bayes for Point Processes (VBPP) (Lloyd et al., 2015) using the Q2 criterion

in (3.17). Here, Q2 is equal to one if the inferred λ̂ is exactly equal to the true λ, zero
if it is equal to the average intensity λ, and negative if it performs worse than λ. We
compute the Q2 indicator on a regular grid of 1000 locations in S. Then, we compute
the mean µ and one standard deviation σ of the Q2 results across 20 different replicates.
Table 8.1 shows that our approach outperforms its competitors, with consistently higher
means of the Q2 results and lesser dispersion σ.

We assess the computational cost of the proposed approach using the third toy example
λ3 for No = 100 (which has the largest number of events with on average 22500 events in
total). Obtaining one sample using our approach takes around 60 milliseconds, and
generating all 104 samples takes 10 minutes in total (in contrast to the 18 minutes
required by VBPP).2 The multivariate effective sample size (ESS) (Flegal et al., 2017)
was estimated at 322, corresponding to an effective sampling rate of 0.536 s−1.

8.4.3.2 Illustrations on 2D

In this toy example, we test the framework on a 2D spatial toy example. We sample 2D
random point patterns from three Gaussian distributions with same covariance matrix

2These experiments were executed on a single core of an Intel R© CoreTM i7-6700HQ CPU.
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Table 8.1: Q2 results for the toy examples in Figure 8.2, averaged over 20 (†10) replicates.
Our results (cGP-C+) are compared to results for Møller et al. (2001) (log-GP) and Lloyd
et al. (2015) (VBPP).

Toy No
Q2 (µ± σ) [%]

log-GP VBPP cGP-C+

λ1

1 51.2±30.1 51.9±26.1 65.7±14.3
10 95.1± 3.9 94.6± 3.7 95.4± 2.3
100 99.5±0.2 99.5± 0.3 99.5± 0.3

λ2

1 -35.2±43.4 -1.1±28.8 0.7±24.0
10 72.6± 9.1 71.7±10.4 81.9± 7.4
100 95.4± 0.7 92.1± 3.9 97.8± 0.6

λ3

1 49.2±22.6 49.5±29.9 58.1±21.4
10 91.7± 4.4 93.8± 2.8 94.3± 2.5
100 98.4± 0.4 98.9±0.3† 98.8± 0.3

but at different locations on S ∈ [0, 1]2. The centres of the distributions are placed
at (0.2, 0.2), (0.2, 0.8) and (0.8, 0.6). We used isotropic 2D SE kernels as covariance
functions, with the same variance parameter σ2 = 1 × 10−3. We randomly simulate 10
events from each Gaussian distribution for a total of 30 (spatial) point patterns.

Figure 8.3 shows the performance of the proposed framework with different length-
scale parameters (`1, `2). One can observe the capability of the model to find a trade-off
between regularity and fidelity by properly controlling the values of the length-scales.

8.5 Applications

8.5.1 Renewal point processes

Poisson processes have been extended to model renewal processes where intensity func-
tions are seen as hazard rates defining the probability that an operating object fails
(Cha and Finkelstein, 2018; Serfozo, 2009). However, in many application, e.g. reliability
engineering and survival analysis, hazard rates exhibit monotonic behaviours describing
the degradation of items or lifetime of organisms. For example, the hazard functions
for the failure of many mechanistic devices and the mortality of adult humans tend to
exhibit monotonic behaviours. Thus, taking monotonicity constraints into account in
renewal processes is crucial for the study of many applications. Moreover, it is known
that introducing monotonicity information in GPs can lead to more realistic uncertainties
(Maatouk and Bay, 2017; Riihimäki and Vehtari, 2010).

As discussed in Section 8.3, some renewal processes can be seen as Cox processes under
certain conditions. In order to demonstrate that we can model other types of point
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(d) ̂̀1 = 0.11, ̂̀2 = 0.17

Figure 8.3: Inference results on a 2D spatial toy example with different length-scale
parameters (`1, `2). Each panel shows the point patterns (white dots) and the intensity
inferred by the finite approximation of GP-modulated Cox processes.

patterns, here we use two toy examples where hazard rates are known to be monotonic.
Both examples are inspired by two classical renewal processes: Weibull process and
Gamma process.

For the first class, the Weibull hazard function is

λW (x) = αβxβ−1 for x ≥ 0, (8.18)

where α and β are the scale parameter and shape parameter, respectively. Depending
on β, λW can be either non-increasing (0 < β < 1), constant (β = 1), or non-decreasing
(β > 1). Moreover, for β ∈ (0, 1], the Weibull renewal process can be seen as a Cox process
(Yannaros, 1988). For numerical experiments, we consider the case of non-increasing
conditions in the domain S = [0, 100] by fixing α = 1 and β = 0.7 (see Figure 8.4).
We test the framework using No = 100 observations from λW , and we consider non-
negativeness conditions, with (cGP-C↓+) or without (cGP-C+) taking into account the non-
increasing constraint. We also consider the case where λW is non-increasing and convex
(cGP-C ↓̂+ ).
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8.5 Applications 129

cGP-C+ cGP-C↓+ cGP-C ↓̂+

0.2

0.4

0.6

0 25 50 75 100

λ
W

(a) Q2 = 0.812

0.2

0.4

0.6

0 25 50 75 100

λ
W

(b) Q2 = 0.817

0.2

0.4

0.6

0 25 50 75 100

λ
W

(c) Q2 = 0.744

cGP-C+ cGP-C↑+ cGP-C ↑_+

0

1

2

3

4

5

0 1 2 3 4 5

λ
G

(d) Q2 = 0.939

0

1

2

3

4

5

0 1 2 3 4 5

λ
G

(e) Q2 = 0.947

0

1

2

3

4

5

0 1 2 3 4 5

λ
G

(f) Q2 = 0.975

Figure 8.4: Renewal inference examples under different inequality constraints using No =
100 and m = 100. Inference results are shown for (top) a Weibull renewal process with
α = 1 and β = 0.7, and (bottom) a Gamma renewal process with α = 5 and β = 1.7.
The panel description is the same as in Figure 8.2.

For the Gamma class, the hazard function is given by

λG(x) =
α xβ−1e−x

Γ(β)− Γx(β)
, for x ≥ 0, (8.19)

where Γ and Γx are the Gamma function and the incomplete Gamma function, respec-
tively (Cha and Finkelstein, 2018), and α and β are the scale parameter and shape
parameter. As for the Weibull process, different behaviours can be obtained using
different values of β. Since similar profiles are obtained for β ∈ (0, 1], here we are
interested in the case where λG exhibits non-decreasing constraints (β > 1). We fix
S = [0, 5], α = 5 and β = 1.7 obtaining a non-decreasing profile as shown in Figure 8.4.
Here, we consider non-decreasing (cGP-C↑+), and non-decreasing and concave (cGP-C ↑_+ )
constraints. Since λG(x) < α for x ∈ S, we add the constraint λG ∈ [0, α].

Figure 8.4 shows the inferred intensities of λW and λG under the different conditions
previously discussed. In both experiments, we fixed m = 100 and η = 10−4. For the
Weibull class λW , the performance of all three models, cGP-C+, cGP-C↓+ and cGP-C ↓̂+ , tends
to be similar. However, the model without monotonicity constraint exhibits undesired
oscillations, whereas the other two approaches provide more realistic decreasing profiles
and more accurate inference results for x > 50. We can also observe that the three
models cannot learn the singularity at x = 0. Note that the proposed methodology does
not make any assumption on the kernel, and it would be possible to consider a covariance
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(c) ̂̀1 = 0.055, ̂̀2 = 0.084

Figure 8.5: Inference results of the redwoods data in (Baddeley et al., 2015; Ripley, 1977).
Each panel shows the point patterns (white dots) and the estimated intensity λ.

function such as k(x, y)/(xy) in order to improve the model behaviour for small and large
values of x. For the Gamma hazard function λG, one may clearly observe the benefits
of adding the non-decreasing and concave constraints, obtaining absolute improvements
between 0.8% and 3.6% of the Q2 indicator. Both examples of Figure 8.4 show that the
monotonicity and convexity conditions found in certain point processes can be difficult
to learn directly from the data. This suggests that including those constraints in the GP
prior is necessary to get accurate models with more realistic uncertainties.

8.5.2 Locations of redwood trees

We now assess the performance of the proposed approach for a 2D spatial problem.
We use the dataset provided by Ripley (1977) which describes the locations of redwood
trees. The dataset contains n = 195 events scaled to the unit square (see Figure 8.5).
Here we choose m = 15, obtaining 225 knots in total, to obtain a good trade-off between
resolution and computational cost. We use the product of two SE kernels with covariance
parameters θ = (σ2, `1, `2) as the covariance function of the Gaussian vector ξ, and we
choose η = 10−4 in Algorithm 3. Following the burn-in step, we keep 105 samples for
the inference of λ, yielding a total running time of 7.6 hours (i.e. a sampling rate of
approximately 4 s−1).

Figure 8.5 shows the normalised inference results for the redwood dataset for different
values of the length-scale parameters. Since in the proposed approach we directly impose
the inequality conditions on the Gaussian vector ξ instead of using a link function, the
interpretation of the length-scale parameters (`1, `2) are the same as for standard GPs:
one can find a trade-off between fidelity and regularity by tuning `. One can note, from
Figures 8.5(a) and 8.5(b), that both profiles tend to properly learn the point patterns
but more regularity is exhibited when `1 = `2 = 10−1. For the case `1 = `2 = 10−2,
although the model follows the point patterns, one may observe noisy behaviour in regions
without points, e.g. around (x1, x2) = (0.30, 0.85), as small values of ` lead to more
oscillatory Gaussian random fields. Finally, we infer λ when the covariance parameters θ
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are estimated via maximum likelihood using (8.11). According to the estimated length-

scales (̂̀1 = 0.055, ̂̀2 = 0.084), one can conclude that the estimated intensity λ is
smoother along the second dimension x2. This is in agreement with the inference results
by Adams et al. (2009), where more variations of λ were exhibited across x1.

8.6 Conclusions

The proposed model for GP-modulated Cox processes is based on a finite-dimensional
approximation of a GP that is constrained to be positive. This approach shows several
advantages. First of all, it is based on general linear inequality constraints so it allows
us to incorporate more information, such as monotonicity and convexity, in the prior.
As seen in the experiments, this appears to be particularly helpful when few data are
available. Second, imposing directly the positivity constraint on the GP makes the use
of a link function unnecessary. Both the likelihood and the intensity measure can be
computed analytically, which is not always the case when using a link function. Finally,
the fact that the proposed model is based on a finite-dimensional representation ensures
that the computational burden grows linearly with the number of observations.

There are two key elements that make the method work: (a) the finite-dimensional
representation of the GP that ensures that the constraints are satisfied everywhere, and
(b) the dedicated MCMC proposal distribution based on a truncated normal distribution
which allows us to have high acceptance rates compared to a naive multivariate Gaussian
proposal.

The main limitation regarding the scaling of the proposed method lies in the dimension
of the input space. This is due to the construction by tensorisation of the basis functions
used to obtain the finite-dimensional representation. Moreover, the proposed model is
also sensitive to three parameters: the dimensionality of the space in which we perform
HMC, the number of constraints, and the number of times the HMC particles violate a
constraint. However, we believe that these limitations are not inherent to the proposed
model and that other types of designs of the knots (e.g. sparse designs) could be used in
high dimensions.
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Chapter 9

lineqGPR Package (v.0.0.4)
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9.1 Introduction

As shown in previous chapters, introducing inequality constraints in GP models can
lead to more accurate uncertainty quantification in a great variety of applications. Based
mainly on the framework detailed in Chapter 3, lineqGPR is an R1 package for GP regres-
sion modelling with inequality constraints (López-Lopera, 2019). It can be used to create
GP models under boundedness, monotonicity, convexity constraints or a combination of
these. Furthermore, it also allows users to design their own sets of linear inequalities (see
Chapter 3). lineqGPR contains all the typical features of classic GP libraries, e.g. the
parameter estimation via maximum likelihood (see Chapters 2 and 7), support for noisy
observations (see Chapter 4). Finally, recent developments allow the implementation of
additive GP models under linear inequality constraints, leading to models that can be
used for thousands of observations and for high dimensions (see Chapter 6).

lineqGPR is available on CRAN2 as an open-source software licensed under GNU GPL-
3. It is based on previous R packages produced by the Deep Inside Computer Experiments
(Dice) and ReDice Consortiums (e.g. DiceKriging, Roustant et al. (2012); DiceDesign,
Dupuy et al. (2015); kergp, Deville et al. (2015)), but incorporating structures of classic

1R is a freely available language and environment for statistical computing and graphics which
provides a wide variety of statistical and graphical techniques (R Core Team, 2018).

2The Comprehensive R Archive Network (CRAN) is a network of file transfer protocol (FTP) and
web servers around the world that store identical, up-to-date, versions of code and documentation for R.
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GP libraries from other platforms (e.g. the GPmat toolbox from MATLAB, and the GPy

library from Python).
The main functionalities of lineqGPR are implemented as S3 methods.

Method Name Description

create Creation function of GP models under linear inequality constraints.
lineqGPOptim Covariance parameter estimation under linear inequality constraints.
predict Prediction of the objective function at new points using a GP model.
simulate Simulation of GP models under linear inequality constraints.
plot, ggplot Plot for a constrained GP models.

It also contains implementations of various MC and MCMC samplers for the approxi-
mation of truncated multinormals. The samplers are based on recent contributions on
efficient inference methods: rejection sampling from the mode (RSM, Maatouk and Bay,
2016), rejection sampling via exponential tilting (ExpT, Botev, 2017), Gibbs sampling
(Gibbs, Taylor and Benjamini, 2016), and Hamiltonian Monte Carlo (HMC, Pakman and
Paninski, 2014).

We refer to the documentation of the lineqGPR package available on CRAN for further
details on additional functions, utilities and demos:

- López-Lopera, A. F. (2019). lineqGPR: Gaussian Process Regression Models with
Inequality Constraints. R package version 0.0.4. Link: https://cran.r-project.
org/web/packages/lineqGPR/.

9.2 Demos

Here, we illustrate how lineqGPR works on 1D and 2D examples. The codes are based on
a Jupyter notebook3 provided by the Chair OQUAIDO in order to reproduce results from
previous chapters. They were executed on a single core of an Intel R© CoreTM i7-6700HQ
CPU. We refer to the instruction manual in (López-Lopera, 2019) for further examples:

1. See: help("lineqGPR-package").
2. See: demo(package="lineqGPR").
3. See also the examples of the inner functions of the package.

In [1]:

library(lineqGPR) # package GPs under inequality constraints

library(ggplot2) # package for graphics and visualisation

3Jupyter Notebook is an open-source web application that allows you to create and share documents
that contain live code, equations, visualisations and narrative text.
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9.2.1 1D Gaussian processes with inequality constraints

First, we aim at reproducing similar 1D toy examples as the ones in Figures 3.1 and 3.2.
In that case, we use the model in (3.1) under different types of inequality constraints.

Let the target Sigmoid function be given by

x 7→ 1

1 + exp(−7[x− 0.5])
, for x ∈ [0, 1]. (9.1)

Now, we implement GP models with different types of constraints: either without
constraints, or with boundedness or monotonicity constraints. We fixed the number of
knots m = 100, and we simulated samples via HMC (see subsection 3.3.2). In that case,
we need first to pass some arguments to create the model:

• The class of the model: "lineqGP".
• The interpolation points: (xi, yi) for i = 1, · · · , n.
• The type of constraints: e.g. "boundedness", "monotonicity" or "convexity". If
constrType == "boundedness", we can define the bounds: bounds <- c(0,1).

After creating the model, one can then modify the default parameters:

• The type of sampler (HMC by default): model$localParam$sampler <- "HMC".
• The number of knots m from the object: model$localParam$m <- 100.

In this cartoon example, we evaluated (9.1) at x1 = 0.2, x2 = 0.5 and x3 = 0.8, and we
used those evaluations as a DoE for the interpolation conditions.

In [3]: #### Generating the synthetic dataset ####

sigfun <- function(x) return(1/(1+exp(-7*(x-0.5))))

x <- seq(0, 1, 0.001); y <- sigfun(x)

DoE <- splitDoE(x, y, DoE.idx = c(201, 501, 801))

#### GP with nearly inactive boundedness constraints [-10,10] ####

# creating the "lineqGP" model

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = "boundedness")

model$localParam$m <- 100 # changing the (default) number of knots

model$bounds <- c(-10,10) # changing the (default) bounds

# sampling from the model

sim.model <- simulate(model, nsim = 1e3, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model)

#### GP with active boundedness constraints [0,1] ####

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = "boundedness")

model$localParam$m <- 100 # changing the (default) number of knots

model$bounds <- c(0,1) # changing the (default) bounds
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# sampling from the model

sim.model <- simulate(model, nsim = 1e3, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model)

#### GP with monotonicity constraints ####

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = "monotonicity")

model$localParam$m <- 100 # changing the (default) number of knots

# sampling from the model

sim.model <- simulate(model, nsim = 1e2, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model)

x

Y
(x
)

x

Y
(x
)

x

Y
(x
)

One can also impose multiple constraints by concatenating predefined ones, e.g.,

• model$constrType = c("boundedness", "monotonicity")

Next, we show an example of a GP model with both boundedness and monotonicity
constraints for the Sigmoid example in (9.1).

In [4]: #### GP with both boundedness and monotonicity constraints ####

# creating the "lineqGP" model

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = c("boundedness", "monotonicity"))

model$localParam$m <- 100 # changing the (default) number of knots

# modifying bounds for first arg of "constrType" (boundedness)

model$bounds[1,] <- c(0,1)

# sampling from the model

sim.model <- simulate(model, nsim = 1e2, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model, bounds = c(model$bounds[1,]))
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x
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Moreover, we can design our own linear inequality constraints by building the set of linear
inequalities

l ≤ Λξ ≤ u,
where Λ encodes the linear operations between the knots, the l and u represent the lower
and upper bounds (respectively). We refer to Section 3.2 for a further discussion.

Now, we show an example where we aim at imposing monotonicity constraint in the
first 50 knots, and boundedness constraints Ym ∈ [0.5, 1] over the last 50 knots. Then,
the set of inequalities are given by

Λ =

[
ΛM 0
0 ΛB

]
, l =

[
lM
lB

]
, u =

[
uM
uB

]
,

where



−∞
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0
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1 0 · · · 0 0
−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1




︸ ︷︷ ︸
ΛM

≤




∞
∞
...
∞




︸ ︷︷ ︸
uM

, and




0.5
0.5
...

0.5




︸ ︷︷ ︸
lB

≤




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1




︸ ︷︷ ︸
ΛB

≤




1
1
...
1




︸︷︷︸
uB

.

In [5]: #### GP with linear constraints ####

# creating the "lineqGP" model

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = "linear")

m <- model$localParam$m <- 100 # changing the number of knots

## building the linear inequality constraints

# imposing monotonicity constraints for 50 knots

lsys1 <- lineqGPSys(m = 50, constrType = "monotonicity",

l = 0, u = Inf, rmInf = FALSE) # rm inactive constr.

# imposing boundedness constraints Y_m in (0.5,1) for 50 knots

lsys2 <- lineqGPSys(m = 50, constrType = "boundedness",

l = 0.5, u = 1, rmInf = FALSE) # rm inactive constr.
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# stacking the constraints such that monotonocity conditions are imposed

# for the first 50 knots and boundedness conditions for the last 50 knots

A <- matrix(0, m, m)

A[1:(m/2), 1:(m/2)] <- lsys1$A

A[(m/2+1):m, (m/2+1):m] <- lsys2$A

# passing the inequalities to the model

model$Lambda <- A

model$lb <- c(lsys1$l, lsys2$l)

model$ub <- c(lsys1$u, lsys2$u)

# sampling from the model

sim.model <- simulate(model, nsim = 1e3, seed = 1, xtest = DoE$xtest)

# plotting samples

ggplotLineqGPModel <- ggplot(sim.model, bounds = c(-Inf, 1)) +

geom_hline(yintercept = c(0,1), linetype = "dashed")

x

Y
(x
)

Finally, one must note that the constraints can be imposed if and only if they are
satisfied at the interpolation points yi for i = 1, · · · , n. However, one can add a noise
effect in order to relax the interpolation constraints: model$varnoise. For the Sigmoid
example, one can observe that the interpolation points do not meet convexity constraints.
We then introduce a noise term in the GP model for the relaxation of the interpolation
constraints letting the GP trajectories to be convex.

In [6]: #### GP with convexity constraints ####

# creating the "lineqGP" model

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = "convexity")

model$localParam$m <- 100 # changing the (default) number of knots

model$varnoise <- 5e-3 # adding the noise variance

# sampling from the model

sim.model <- simulate(model, nsim = 1e3, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model, bounds = c(model$bounds[1,]))
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x

Y
(x
)

9.2.2 Covariance parameter estimation

As discussed in Chapters 2 and 7, the covariance parameters are usually estimated via
ML. This can be achieved by the lineqGPOptim function. Continuing with the Sigmoid
example proposed above, we estimate the covariance parameters of the constrained GP
model via (unconstrained) ML.

In [7]: set.seed(7)

#### GP with both boundedness and monotonicity constraints ####

model <- create(class = "lineqGP", x = DoE$xdesign, y = DoE$ydesign,

constrType = c("boundedness", "monotonicity"))

model$localParam$m <- 100 # changing the (default) number of knots

# modifying the bounds for first arg of "constrType" (boundedness)

model$bounds[1, ] <- c(0,1)

# sampling from the model

sim.model <- simulate(model, nsim = 1e2, seed = 1, xtest = DoE$xtest)

message("Initial covariance parameters: ", model$kernParam$par[1],

", ", model$kernParam$par[2])

ggplotLineqGPModel <- ggplot(sim.model, bounds = c(model$bounds[1,]))

# estimating the covariance parameter via MLE

model2 <- lineqGPOptim(model,

opts = list(algorithm = "NLOPT_LD_MMA",

print_level = 0,

ftol_abs = 1e-3, maxeval = 20,

check_derivatives = TRUE,

parfixed = c(FALSE, FALSE)),

lb = c(0.1, 0.01), ub = c(2, 0.3))

message("Estimated covariance parameters via MLE: ",

model2$kernParam$par[1], ", ", model2$kernParam$par[2])

# evaluating the "optimal" model

sim.model2 <- simulate(model2, nsim = 1e2, seed = 1, xtest = DoE$xtest)

ggplotLineqGPModel <- ggplot(sim.model2, bounds = c(model$bounds[1,]))
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Initial covariance parameters: 1, 0.2

Checking gradients of objective function.

Derivative checker results: 0 error(s) detected.

eval grad f[ 1 ] = 1.077893e+00 ~ 1.077893e+00 [6.146900e-09]

eval grad f[ 2 ] = -3.606823e+00 ~ -3.606824e+00 [5.225424e-08]

Estimated covariance parameters via MLE: 0.27, 0.3

x

Y
(x
)

x
Y
(x
)

Note that the constraints can be taken into account in the covariance parameter estima-
tion by using add.constr = TRUE. However, in that case, experiments become more
expensive and unstable since the Gaussian orthant probabilities in (7.1) have to be
estimated via MC. As shown in Chapter 7, when the number of observations is large
enough, the (unconstrained) ML provides a fair trade-off between speed and estimation
accuracy. For a small number of observations, maximising the constrained ML could
provide more accurate estimators (see numerical illustrations from Chapter 7).

9.3 2D application: nuclear safety criticality

Finally, we aim at reproducing part of the results showed in Section 3.4 on the 2D nuclear
application. We refer to that section for more details about the context of the problem.

In [10]:

library("lineqGPR")

library("DiceDesign")

library("viridis")

library("plot3D")

colormap <- rev(viridis(1e2))

#### Loading nuclear dataset from a local folder ####

data<-read.csv("lineqGPR_FullDemo_Docs/godiva.calculations.csv", sep=";")

data <- data[-1,] # removing the first line with data description

xgrid <- matrix(as.numeric(as.matrix(data[,c(1,2)])), ncol = 2)

ygrid <- data$mean_keff; x1 <- unique(xgrid[,1]); x2 <- unique(xgrid[,2])
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## Plotting data ##

par(mfrow = c(1,2))

image2D(matrix(ygrid, nrow = length(x1)), x1, x2, xlab = "d", ylab = "r",

main = "keff", resfac = 5, col = colormap)

points(xgrid[,1], xgrid[,2], col= "red", pch = 4, cex = 1.5, lwd = 2)

p <- persp3D(x = x1, y = x2, z = matrix(ygrid, nrow = length(x1)),

xlab = "d", ylab = "r", zlab = "keff", phi = 20, theta = -30,

col = colormap, colkey = FALSE, image = TRUE, contour = TRUE)

points3D(x = xgrid[,1], y = xgrid[,2], z = ygrid, col = "red", pch = 4,

cex = 1.5, add = TRUE)

Here, we fit two types of GP models: (a) unconstrained constraints, and (b) accounting
for both non-negativeness and monotonicity constraints. The covariance parameters of
both models are estimated via ML.

In [11]:

## scaling input space to the unit square [0,1]^2

xgrid[,1] <- (xgrid[,1] - min(xgrid[,1]))/max(xgrid[,1] - min(xgrid[,1]))

xgrid[,2] <- (xgrid[,2] - min(xgrid[,2]))/max(xgrid[,2] - min(xgrid[,2]))

## fixing points for training and test the models

idx_train <- matrix(c(c(3,7), c(9,5), c(9,2), c(6,4), c(1,10),

c(2,2), c(10,7), c(7,10)), ncol = 2, byrow = TRUE)

idx_train <- length(x1)*(idx_train[,2]-1) + idx_train[,1]

xtrain <- xgrid[idx_train, ]; ytrain <- ygrid[idx_train]

xtest <- xgrid[-idx_train, ]; ytest <- ygrid[-idx_train]

#### Unconstrained GP ####

modelU <- create(class = "lineqGP", x = xtrain, y = ytrain,

constrType = "boundedness")

modelU$localParam$m <- 10 # number of knots per dimension

modelU$bounds <- c(lower = -10, upper = 10) # changing the bounds

modelU$kernParam$par <- c(sigma2 = 1^2, theta1 = 0.3, theta2 = 0.3)
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# simulating samples from the model

sim.modelU <- simulate(modelU, nsim = 1e2, seed = 7, xtest = xgrid)

#### GP with boundedness and monotonicity constraints ####

modelC <- create(class = "lineqGP", x = xtrain, y = ytrain,

constrType = c("boundedness", "monotonicity"))

modelC$localParam$m <- 10 # number of knots per dimension

# modifying the bounds for first arg of "constrType" (boundedness)

modelC$bounds[1,] <- c(lower = 0, upper = Inf)

# changing the (default) covariance parameters

modelC$kernParam$par <- c(sigma2 = 1^2, theta1 = 0.3, theta2 = 0.3)

# simulating samples from the model

sim.modelC <- simulate(modelC, nsim = 1e2, seed = 7, xtest = xgrid)

In [12]:

#### Unconstrained GP ####

message("Initial covariance parameters: ", modelU$kernParam$par[1],

", ", modelU$kernParam$par[2], ", ", modelU$kernParam$par[3])

# estimating the covariance parameter via MLE for the unconstrained model

modelU2 <- lineqGPOptim(modelU, eval_f = "logLik", add.constr = FALSE,

lb = c(0.1, 0.01, 0.01), ub = c(2, 0.5, 0.5))

message("Estimated covariance parameters via MLE: ",

modelU2$kernParam$par[1], ", ", modelU2$kernParam$par[2], ", ",

modelU2$kernParam$par[3])

# simulating samples from the model

sim.modelU2 <- simulate(modelU2, nsim = 1e2, seed = 7, xtest = xgrid)

# plotting the mean of these 100 simulations

par(mfrow = c(1,2))

p <- persp3D(x = x1, y = x2,

z = matrix(rowMeans(sim.modelU2$ysim), nrow = length(x1)),

xlab = "d", ylab = "r", zlab = "keff",

main = "unconstrained GP", zlim = c(0, max(ygrid)), phi = 20,

theta = -30, col = colormap, colkey = FALSE, image = TRUE,

contour = TRUE)

points(trans3D(x = modelU2$x[,1], y = modelU2$x[,2], z = modelU2$y,

pmat = p), pch = 19)

points(trans3D(x = xtest[,1], y = xtest[,2], z = ytest, pmat = p),

col = "red", pch = 4)

#### GP with boundedness and monotonicity constraints ####

# estimating the covariance parameter via MLE for the constrained model

modelC2 <- lineqGPOptim(modelC, eval_f = "logLik", add.constr = FALSE,

lb = c(0.1, 0.01, 0.01), ub = c(2, 0.5, 0.5))
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# simulating samples from the model

sim.modelC2 <- simulate(modelC2, nsim = 1e2, seed = 7, xtest = xgrid)

# plotting the mean of these 100 simulations

p <- persp3D(x = x1, y = x2,

z = matrix(rowMeans(sim.modelC2$ysim), nrow = length(x1)),

xlab = "d", ylab = "r", zlab = "keff",

main = "GP with boundedness and monotonicity constraints",

zlim = c(0, max(ygrid)), phi = 20, theta = -30,

col = colormap, colkey = FALSE, image = TRUE, contour = TRUE)

points(trans3D(x = modelC2$x[,1], y = modelC2$x[,2], z = modelC2$y,

pmat = p), pch = 19)

points(trans3D(x = xtest[,1], y = xtest[,2], z = ytest, pmat = p),

col = "red", pch = 4)

Initial covariance parameters: 1, 0.3, 0.3

Estimated covariance parameters via MLE: 0.61, 0.5, 0.5
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Chapter 10

Coping with Dimensions: Basis
Functions using Triangulations
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10.1 Introduction

As discussed in Chapters 3 to 5, the tensor construction in (3.9) suffers of the curse of the
dimensionality. Since the number of terms of that construction increases exponentially
with the dimension d, numerical implementations in high dimensions becomes intractable
(i.e. problems involving tens of input variables). As shown in Chapter 6, considering ad-
ditivity in (constrained) GP developments allows us to easily scale the finite-dimensional
representation in (3.1) to hundreds of input variables. Although the improvements of the
additive GP model, and its fast implementation, it may fail in real-world applications
dealing with non-additive behaviours (see, e.g., subsection 6.2.3). This drawback can be
mitigated by considering block-additivity as discussed in Section 6.3. However, in that
case, the tractability of the model will depend on the sizes of the partitions. According
to experiments in Chapters 3 to 5, one could consider up to 5D blocks using the tensor
structure in (3.9).

It is worth studying an alternative design of the knots that allows us to approximate
functions in high dimensions without relying on tensor constructions. This paradigm is
commonly dealt with in finite element methods (Brenner and Scott, 2007; Zienkiewicz
et al., 2013). As an example, one may consider designs of the knots based on Delaunay
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triangulations (De Loera et al., 2010; Delaunay, 1934; Okabe et al., 1992). In that case,
since the number of terms in the triangulation does not increase exponentially with d,
constructions based on triangular designs of the knots can be performed more efficiently
for d ≥ 2 compared to crude tensor constructions. Triangular structures have been further
investigated in finite element methods in order to approximate functions involving tens
of input variables (Barber et al., 1996; De Loera et al., 2010; Lee and Schachter, 1980).

In this chapter, the main contributions are twofold. First, we introduced a finite-
dimensional approximation of GPs where functions are projected into piecewise affine
triangles. Observations are mapped into the space of the Delaunay triangulation through
a barycentric coordinate system (Munkres, 2018). Second, we establish the procedure
to ensure inequality constraints everywhere (e.g. boundedness or monotonicity). As in
Chapters 3 to 6, the posterior distribution is truncated Gaussian-distributed and can be
approximated via MC/MCMC algorithms.

We demonstrate on 2D synthetic examples that the proposed framework together
with the HMC sampler results in a promising approach that enjoys better scalability
in high dimensions. Furthermore, since the distribution of the knots is not restricted to
rectangular designs, one can consider freely placing knots in regions requiring a higher
quality of resolution. Although numerical illustrations in this chapter are limited to 2D
examples, one must note that it can be potentially extended to higher dimensions since
the barycentric coordinate system and the Delaunay triangulation are general concepts
that can be applied for d > 2.

10.2 Approximation of Gaussian processes using De-

launay triangulations

In chapters 3 to 5, a GP was approximated by a finite-dimensional GP consisting in
its piecewise linear interpolation at a set of knots as in (3.1). The piecewise linearity
is reached through the use of the hat basis functions in (3.2). Then main benefit of
such representation is that ensuring inequality constraints over the knots is a sufficient
condition to satisfy them everywhere in the input space. We now explore an alternative
construction of basis functions that also preserves such piecewise linearity. Unlike the
tensor construction in (3.9), the new representation allows us to consider triangular
designs of the knots as shown in Figure 10.1. Since the number of terms in the triangular
construction does not increase exponentially with d, this alternative approach could be
performed more efficiently for d ≥ 2 compared to the tensor construction in (3.9).

10.2.1 Finite-dimensional representation in 2D

Let {Y (x);x ∈ D} be a centred GP with covariance function k and compact input space
D = [0, 1]2. Consider a design of knots (t11, t

1
2), · · · , (tm1 , tm2 ) ∈ R2. Then, define a finite-

dimensional approximation GP, denoted by Ym, as the piecewise linear interpolation of
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x1

x
2

x1

x
2

Figure 10.1: 2D visualisations of a tensor (left) and a triangular (right) design of knots.

Y at knots (t11, t
1
2), · · · , (tm1 , tm2 ):

Ym(x1, x2) =
m∑

j=1

ξjβj(x1, x2), (10.1)

where ξj = Y (tj1, t
j
2), and β1, · · · , βm are basis functions mapping Ym into the space of the

piecewise affine triangles constituted by a Delaunay triangulation (see Figure 10.2). To
do so, we need to write Ym in terms of its barycentric coordinates (De Loera et al., 2010;
Munkres, 2018).

Definition 10.1 (Barycentric coordinate system.) Let x = (x1, · · · , xd) ∈ Rd.
Consider v1, · · · , vν the vertexes of a simplex in an affine space Rν. Assume the
condition d = ν − 1. Then, the barycentric coordinates β = [β1, · · · , βν ]> of the point x,
subject to

∑ν
j=1 βj = 1, are unique and can be obtained by solving the system of the

(d+ 1)-coupled equalities:




x1
...
xd
1


 =




v1
1 · · · vν1
...

. . .
...

v1
d · · · vνd
1 · · · 1







β1
...

βν−1

βν


 , (10.2)

where vji is the i-th component of the vertex vi. Furthermore, it is said that x is in the
simplex formed by the vertexes v1, · · · , vν if and only if all the components of β are strictly
non-negatives, i.e. 0 ≤ βj ≤ 1 for j = 1, · · · , ν.

2D Illustration of the barycentric coordinate system. Let x1,x2,x3 ∈ [0, 1]2 be
three arbitrary points placed as in Figure 10.3. Consider v1 = (0, 0),v2 = (1, 0),v3 =
(1, 1) te vertexes of a 2-simplex. Thus, the barycentric coordinates βj = (βj1, β

j
2, β

j
3)

of the j-th point xj, for j = 1, 2, 3, can be obtained by solving the linear system in
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Figure 10.2: Examples of basis functions mapping to the space of the piecewise affine
triangles constituted by a Delaunay triangulation.

(10.2). For the first point x1 = (1, 0), we have the vector of barycentric coordinates
β1 = (0, 1, 0). This implies that there is only one predominant vertex and it corresponds
to v2. Furthermore, due to the components of β1 being positive, one can conclude that x1

is inside the simplex. For the second point x2 = (2
3
, 1

3
), we have that β2 = (1

3
, 1

3
, 1

3
). Note

that the barycentric components are equals when a point x corresponds to the centre of
mass of a simplex. Finally, for the third point x3 = (0, 1), the barycentric coordinates
are β3 = (1,−1, 1). Due to the second barycentric component of β3 is negative, one can
confirm that x3 does not belong to the simplex.

2D Illustration of the construction of the barycentric basis functions. As
shown in Figure 10.4, consider a DoE x1 = (0.2, 0.3),x2 = (0.5, 0.8),x3 = (0.6, 0.3), and
a design of knots t1 = (0, 0), t2 = (0, 1), t3 = (0.6, 0.3), t4 = (1, 0), t5 = (1, 1). Using the
barycentric decomposition in (10.2), then the representation in (10.1), evaluated at xi,
for i = 1, 2, 3, follows the linear system of equalities:



Ym(x1)
Ym(x2)
Ym(x3)


 =




7
15

1
5

1
3

0 0
0 27

70
2
7

0 23
70

0 0 1 0 0







ξ1

ξ2

ξ3

ξ4

ξ5



.
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x3 Figure 10.3: 2D Illustration of the
barycentric coordinate system of three
arbitrary points. Black solid lines
represent the 2-simplex constituted by
the vertexes v1 = (0, 0),v2 = (1, 0) and
v3 = (1, 1) (black dots). Multicolour
crosses represent the points x1 = (1, 0)
(blue), x2 = (2/3, 1/3) (green), and
x3 = (0, 1) (red).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T1

T2

T3

T4

x1

x2

x3

t1

t2

t3

t4

t5
Figure 10.4: 2D Illustration of the
Delaunay triangulation. Black solid
lines represent the Delaunay triangula-
tion of the knots tj = (tj1, t

j
2) for j =

1, · · · , 5 (black dots). The DoE x1 =
(0.2, 0.3),x2 = (0.5, 0.8),x3 = (0.6, 0.3)
are shown by crosses and are associated
to the triangles where they belong by
colours.

Note that the barycentric coordinates of Ym(xi), for i = 1, 2, are non-zeros only over the
knots forming the triangle that contains the point xi. For example, from Figure 10.4,
one can observe that x1 belongs to the triangle T 1 constituted by the knots at t1, t2, t3.
Thus, Ym(x1) depends only on the values at the knots ξ1 = Y (t1), ξ2 = Y (t2), ξ3 = Y (t3).
Note also that, since x3 = t3, then the values of Ym(x3) has to be exactly equal to Y (t3).

10.2.2 Conditioning to interpolation and inequality constraints

We now consider the finite-dimensional representation of GPs as in (10.1), given the
interpolation and inequality constraints:

Ym(x1, x2) =
m∑

j=1

ξjβj(x1, x2), s.t.

{
Ym(xi1, x

i
2) = yi (interpolation conditions),

ξ ∈ C (inequality conditions),
(10.3)

where (xi1, x
i
2) ∈ D and yi ∈ R for i = 1, · · · , n. As discussed in Chapters 4 and 6, a noise

effect can be included assuming Ym(xi1, x
i
2) + εi = yi with Gaussian noise εi ∼ N (0, τ 2).

Given a DoE (x1
1, x

1
2), · · · , (xn1 , xn2 ), we have matricially:

Ym =
[
Ym(x1

1, x
1
2), · · · , Ym(xn1 , x

n
2 )
]>

= βξ,
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where β is the n×m matrix defined by βi,j = βj(x
i
1, x

i
2).

As in subsection 3.3.1, we aim at imposing linear inequality constraints defined in (3.10).
Observe that the vector ξ = [ξ1, · · · , ξm]> is a centred Gaussian vector with covariance
matrix Γ = (k(ti1, t

i
2; tj1, t

j
2))1≤i,j≤m. Then, the distribution of ξ given both interpolation

and inequality conditions is truncated multinormal:

ξ ∼ N (0,Γ) s.t.

{
βξ = y (interpolation conditions),

l ≤ Λξ ≤ u (inequality conditions),
(10.4)

where the matrix Λ ∈ Rq×m encodes the linear operations, the vectors l and u repre-
sent the lower and upper bounds. As in subsection 3.3.1, one can show here that the
posterior of (10.4) is truncated Gaussian-distributed: Λξ|{βξ = y, l ≤ Λξ ≤ u} ∼
T N

(
Λµ, ΛΣΛ>, l, u

)
with parameters µ and Σ as in (3.12) but replacing the hat

basis functions Φ by the new basis β.
Finally, Algorithm 1 can be applied. Note that the knots and their triangulation have

to be provided first in order to use Algorithm 1. Those knots can be strategically placed
in the input domain according to diverse criteria. In our case, it is worth preferentially
placing them in regions requiring a higher quality of resolution. Thus, as discussed in
Chapter 5, an optimal criterion for free-knot and/or knot insertion algorithms is crucial.
For instance, we consider minimax nearest-neighbour designs in order to cover all the
input domain (see, e.g., Pronzato, 2017; Santner et al., 2003b). We refer to the theory
behind finite-element methods for a further discussion on optimal space-filling algorithms
(De Loera et al., 2010; Lee and Schachter, 1980; Pronzato and Müller, 2012).

We now discuss how to impose the constraints defined in (3.3). The case under
boundedness constraints is straightforward since the piecewise linearity holds everywhere.
We only need the condition of having knots at the corners of the input domain. The case
under convexity conditions is more challenging and we let it as part of the future works.

Conditioning to monotonicity constraints. We consider the normal vectors gen-
erated by the affine simplexes constituted by the design of the knots. Let ηi,j,k =
(η1, η2, η3)i,j,k be the normal vector associated to the simplex with vertexes vi = (ti1, t

i
2, ξi),

vj = (tj1, t
j
2, ξj) and vk = (tk1, t

k
2, ξk):

ηi,j,k = vij × vik = (vj − vi)× (vk − vi),
that is equivalent to the linear system of equalities,

ηi,j,k1 = t
2
jkξi − t

2
ikξj + t

2
ijξk,

ηi,j,k2 = −t1jkξi + t
1
ikξj − t

1
ijξk, (10.5)

ηi,j,k3 = t
1
ijt

2
ik − t

2
ijt

1
ik,

with t
r
ij = (tjr − tir) for r = 1, 2. For non-decreasing constraints, we need to ensure that

the first two components of ηi,j,k satisfy the conditions,

− sign(ηi,j,k3 )ηi,j,k1 ≥ 0, (10.6)

− sign(ηi,j,k3 )ηi,j,k2 ≥ 0.
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Observe that each inequality condition corresponds to non-decreasing assumptions along
each dimension. Thus, monotonicity conditions can be assumed only w.r.t. one of the
input coordinate by considering one of those conditions.

Using (10.5) and (10.6), we obtain the following linear system of inequalities for the
affine triangle associated to the knots (ti, tj, tk):

[
λ2
jk −λ2

ik λ2
ij

−λ1
jk λ1

ik −λ1
ij

]

ξi
ξj
ξk


 ≥




0
0
0


 , (10.7)

where λrjk = − sign(t
1
ijt

2
ik − t

2
ijt

1
ik)t

r
jk for r = 1, 2. Let N = 2m−mc−2 be the total number

of triangles with m the number of knots and mc the number of knots at the boundaries.
Thus, ensuring monotonicity conditions leads to a total number of inequalities q = 2N =
4m− 2mc − 4 for m ≥ 4. Finally, after defining all the sub-systems of inequalities as in
(10.7) for the N triangles, one can establish the full linear system of inequalities Λξ ≥ 0:

C1 =

{
c ∈ Rm; ∀ k = 1, . . . , 2N :

m∑

j=1

λk,jcj ≥ 0

}
,

where Λ ∈ R2N×m contains the 2N inequality conditions defined in (10.7). Since 2N > m,
and assuming that Λ has rank m, then Λ is injective (see, e.g., rank-nullity theorem in
Meyer, 2000). Therefore, there exists a unique solution of Λξ = η, and therefore, samples
of ξ can be obtained using samples of Λξ.

10.2.3 Numerical illustrations

We revisit the 2D examples in Figure 3.5. We propose GP models under boundedness
or monotonicity constraints with the same parametrisation suggested in subsection 3.3.3.
For both examples, covariance parameters are fixed to θ = (σ2 = 1, `1 = 0.2, `2 = 0.2).
We initialise the designs of knots using a random Latin hypercube DoE at 49 locations
over [0, 1]2, i.e. m = 49. We use a maximin nearest-neighbour space-filling technique in
order to cover the input space. Then, we fit a Delaunay triangulation of the knots using
the R package deldir (Turner, 2018). Results are shown in Figure 10.5 using the HMC
sampler proposed in (Pakman and Paninski, 2014).

10.3 Conclusions

We have introduced a new finite-dimensional approximation of GPs using Delaunay tri-
angulation of the knots. Here, the piecewise linear representation relies on the projection
of functions into the space of affine simplexes through the barycentric coordinate system.
In contrast to the tensor construction in (3.9), this alternative representation allows to
freely place knots in the input space. Thus, one may allocate knots in regions requiring a
higher quality of representation. Since the number of terms in the triangulation does not
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Figure 10.5: Examples of 2D GP models for interpolating the toy examples in Figure 3.5.
Boundedness and monotonicity results are shown in the first and second row, respectively.
Each row shows: the values at knots of the posterior mode provided by either the tensor
construction (left) or triangular construction (centre), and the conditional mean function
using the Delaunay design (right). Black dots represent the interpolation points. For
boundedness constraints, (horizontal) grey surfaces denote the bounds.

increase exponentially with d, we believe that this new construction could be performed
more efficiently for d > 2.

We demonstrated on 2D synthetic examples that the framework can satisfy bound-
edness and/or monotonicity constraints. We also believe that other types of inequality
conditions can also be ensured (e.g. convexity constraints). Although numerical imple-
mentations were limited to two-dimensional input domains, the barycentric representa-
tion and the Delaunay triangulation are general concepts that can be used for d > 2.

As discussed throughout this chapter, the proposed framework still presents some
limitations. First, the number of knots m was fixed aiming a trade-off between high
resolution of representation and computational cost. As made for tensor-based construc-
tions in Chapter 5, it is of interest having a sequential algorithm for knot insertion
in highly variable regions. Second, we suggested a minimax nearest-neighbour space-
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filling designs for the knots as a naive approach in order to cover the input domain.
However, more dedicate constructions of triangular designs can be explored using the
theory that has been developed for finite element methods. Finally, developments and
numerical implementations for d > 2 are necessary in order to deal with a wider range of
applications.
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Chapter 11

Conclusions and Perspectives

11.1 Conclusions

This thesis was dedicated to the study of stochastic interpolation and regression models
based on Gaussian processes (GPs) under inequality constraints (e.g. boundedness,
monotonicity, convexity). The developments throughout this manuscript were in phase
with three main directions: 1) to improve the applicability of GPs accounting for in-
equality constraints everywhere in the input space, 2) to make the constrained GP
models scalable to higher dimensions and/or number of observations, and 3) to investigate
parameter estimation under inequality constraints.

In Part III, we first gave answers to limitations of the framework proposed by Maatouk
(2015). In Chapter 3, we extended the framework to deal with general sets of linear
inequality constraints. This led to more versatile models that can be used for a broad
range of real-world problems. As in (Maatouk, 2015), our framework resulted in a
truncated Gaussian posterior distribution that can be sampled from with Monte Carlo
(MC) and Markov Chain Monte Carlo (MCMC) algorithms. Thus, we explored efficient
MC/MCMC samplers to make the model applicable on various numerical implementa-
tions. Finally, in Chapter 4, we also considered noisy observations. We concluded that
adding an observation noise relaxed the interpolation conditions and resulted in a sample
space with softer constraints. These improvements yielded a constrained framework that
can be easily applicable on real-world problems up to 5D and to thousands of observations
(e.g. nuclear safety criticality, coastal flooding)

In Part IV, we explored alternative constructions of finite-dimensional approximations
of GPs to account for functions involving tens or hundreds of input variables. First, in
Chapter 5, we investigated an alternative tensor construction that does not rely on equi-
spaced designs of the knots. To do so, asymmetric hat basis functions were considered.
Since the piecewise linearity holds in the new representation, all the properties of the
framework in (Maatouk, 2015) were straightforwardly inherited. Furthermore, the non-
equispaced construction allowed us to preferentially place knots only in regions requiring
high quality of representation (typically in highly variable regions). For the knot location,
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we introduced a sequential algorithm for the automatic knot insertion using an evolution
criterion based on the maximisation of the integrated squared error of the MAP estimate.
In Chapter 6, we considered additive (and block-additive) structures. In that case, we
introduced a novel framework that enjoys the benefits of considering additive functions
and that fulfills inequality constraints. Since constraints were assumed to be imposed on
a predefined subset of input variables, developments proposed in Chapters 3 to 5 can be
efficiently applied on (usually) low-dimensional subspaces. This led to constrained GP
models that can be easily scaled in high dimensions involving hundreds of input variables.

Regarding inference under inequality constraints, Part V investigates a maximum
likelihood (ML) estimator that accounts for inequality constraints. We showed that,
loosely speaking, any consistency result for ML with unconstrained GPs is preserved
when adding boundedness, monotonicity and convexity constraints. Furthermore, this
consistency holds for both the unconditional and conditional likelihood functions. We
also showed that both the unconstrained and constrained ML estimators (MLEs) are
asymptotically Gaussian distributed if the GP satisfies either boundedness, monotonicity
or convexity constraints. Their asymptotic distributions are identical to the unconditional
asymptotic distribution of the MLE. This is not surprising since the model accurately
“learns” the constraints when the number of observations n is large. In simulations, we
observed that the constrained MLE is more accurate for small or moderate values of n.

In Part VI, we showed that developments of the previous chapters can be used for
Cox processes, when the intensity function is modelled as a positive GP. The proposed
approach can also ensure other types of inequality constraints (e.g. monotonicity, con-
vexity), resulting in more versatile models that can be used for other classes of point
processes (e.g. renewal processes).

Finally, Part VII presents the R package lineqGPR, which gathers the main methods
that have been implemented throughout this manuscript. This is an important contribu-
tion for practical usage as well as a valuable tool for research. It is based on previous R
packages (e.g. DiceKriging, kergp), but incorporating structures of classic GP libraries
from other platforms (e.g. the GPmat toolbox from MATLAB, and the GPy library from
Python). The current version on CRAN, lineqGPR v.0.0.4, contains implementations
of Chapters 3, 4 and 7. Developments in Chapters 5, 6 and 10 have been added to a
private beta version lineqGPR v.0.1.0.

11.2 Perspectives

As discussed throughout this manuscript, the GP developments proposed here can be
improved in diverse aspects.

First, regarding the tensor representation in Chapters 3 to 5, the efficiency of the
sequential algorithm based on the iMAP-SE criterion has been tested on various numerical
illustrations. We believe that, as the number of knots goes to infinity, the rectangular
design of knots provided by the algorithm will be dense in the input domain. From the
fixed domain asymptotics’ point of view, this assumption implies that the asymptotic
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properties of the finite-dimensional approximation obtained by the symmetric hat basis
functions hold for the asymmetric ones (i.e. convergence of the MAP estimate to the
spline solution as shown in Bay et al., 2016). Moreover, alternative MAP-based criteria
(e.g. integrated MAP absolute error) can be further investigated in future contributions.

Second, as discussed in Chapter 6, developments can be generalised to account for
block-additivity. Since experiments there have been limited to additive structures without
taking into account interactions between input variables, it is worth testing the proposed
framework on block-additive applications. In that case, developments in Chapters 5
and 10 can be coupled.

Third, regarding the covariance parameter estimation, the constrained estimator suffers
from certain drawbacks that limit its practical implementations (see Chapter 7 for a
further discussion). First, since there is no closed form of the constrained likelihood, the
evaluation and optimisation of constrained MLE have to be done numerically. Second, it
requires the computation of Gaussian orthant probabilities in high dimensions. Existing
methods for approximating those probabilities are time-consuming and present unstable
results. Hence, further investigations are needed.

Fourth, as discussed in Chapter 8, one may also consider to couple the GP implementa-
tions along this manuscript to other types of GP-modulated processes satisfying certain
inequality conditions (e.g. Gamma processes).
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Chapter A

Maximum Likelihood Estimation
under Inequality Constraints

In this appendix, we give the proof of the propositions and theorems from Chapter 7. For
a self-containing reading, we write both the statements and proofs of the propositions
and theorems. The proofs here have been obtained with the collaboration of F. Bachoc
(IMT, Université Paul Sabatier, France) and A. Lagnoux (IMT, Université Toulouse Jean
Jaurès, France).

A.1 Asymptotic consistency of ML estimators

Proposition A.1 Let Y be a zero-mean GP on a bounded set X ⊂ Rd with covariance
function k satisfying Condition 7.1. Let Θ be a compact set on (0,∞)d+1. Let kθ be
the covariance function of x → σY (α1x1, · · · , αdxd) for θ = (σ2, α1, · · · , αd) ∈ Θ. Let
θ∗ = (1, · · · , 1). Remark that k = kθ∗ and assume that θ∗ ∈ Θ. Let (xi)i∈N be a dense
sequence in X. Let Yn = [ Y (x1), ···, Y (xn) ]>. Let

Ln(θ) = −1

2
log(det(Rθ))−

1

2
Y>nR

−1
θ Yn −

n

2
log 2π,

with Rθ = (kθ(xi, xj))1≤i,j≤n. Let θ̂ ∈ arg maxθ∈Θ Ln(θ). Assume that ∀ε > 0,

P (‖θ̂ − θ∗‖≥ ε) −−−→
n→∞

0.

Let κ ∈ {0, 1, 2}. Let Eκ be as in (7.3). Then, we have P (Y ∈ Eκ) > 0 from Lemmas A.3
to A.5, and thus

P (‖θ̂ − θ∗‖≥ ε | Y ∈ Eκ) −−−→
n→∞

0.

Proof. We have

P (‖θ̂ − θ∗‖≥ ε| Y ∈ Eκ) =
P (‖θ̂ − θ∗‖≥ ε, Y ∈ Eκ)

P (Y ∈ Eκ)
≤ P (‖θ̂ − θ∗‖≥ ε)

P (Y ∈ Eκ)
.
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Since P (Y ∈ Eκ) > 0 is fixed, and P (‖θ̂ − θ∗‖≥ ε) −−−→
n→∞

0, the result follows. 2

Proposition A.2 We use the same notations and assumptions as in Proposition 7.1.
Let κ ∈ {0, 1, 2} be fixed. Let Pθ be the distribution of Y with covariance function kθ.
Let

LC,n(θ) = Ln(θ) + logPθ(Y ∈ Eκ|Yn)− logPθ(Y ∈ Eκ).
Assume that ∀ε > 0 and ∀M <∞,

P

(
sup

‖θ−θ∗‖≥ε
(Ln(θ)− Ln(θ∗)) ≥ −M

)
−−−→
n→∞

0.

Then,

P

(
sup

‖θ−θ∗‖≥ε
(LC,n(θ)− LC,n(θ∗)) ≥ −M

∣∣∣∣ Y ∈ Eκ
)
−−−→
n→∞

0.

Consequently

arg maxθ∈Θ Ln(θ)
P−−−→

n→∞
θ∗, and arg maxθ∈Θ LC,n(θ)

P |Y ∈Eκ−−−−→
n→∞

θ∗,

where
P−−−→

n→∞
denotes the convergence in probability under the distribution of Y , and

P |Y ∈Eκ−−−−→
n→∞

denotes the convergence in probability under the distribution of Y given Y ∈ Eκ.

Proof. For any fixed δ > 0, since log(Pθ(Y ∈ Eκ | Yn)) ≤ 0 for all θ ∈ Θ, the quantity
P = P{sup‖θ−θ∗‖≥ε log(Pθ(Y ∈ Eκ | Yn)) − log(Pθ∗(Y ∈ Eκ | Yn)) ≥ δ | Y ∈ Eκ}
satisfies

P ≤P
{
− log(Pθ∗(Y ∈ Eκ | Yn)) ≥ δ

∣∣∣∣ Y ∈ Eκ
}

=P

{
Pθ∗(Y ∈ Eκ | Yn) ≤ exp(−δ)

∣∣∣∣ Y ∈ Eκ
}
−−−→
n→∞

0,

from Lemmas A.1 and A.2. Also, from Lemma A.6, there exists ∆ > 0 so that we have

inf
‖θ−θ∗‖≥ε

Pθ(Y ∈ Eκ) ≥ ∆ > 0,

so that
sup

‖θ−θ∗‖≥ε
− log(Pθ(Y ∈ Eκ)) + log(Pθ∗(Y ∈ Eκ)) ≤ − log(∆) <∞.

Hence, the proposition follows. 2

Lemma A.1 Let 0 ≤ ` < u ≤ ∞. Let

Pn,`,u(Yn) = Pθ∗(Y ∈ E0| Yn).

Then, ∀ε ≥ 0, we have

P (Pn,`,u(Yn) ≤ 1− ε | Y ∈ E0) −−−→
n→∞

0.
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Proof. From Lemma A.3 we have P (Y ∈ E0) > 0. Hence, it is sufficient to show

P (Pn,`,u(Yn) ≤ 1− ε, Y ∈ E0) −−−→
n→∞

0.

The term Pn,`,u(Yn), being a conditional expectation, is a martingale w.r.t. the σ-algebra
generated by Y (x1), · · · , Y (xn). Furthermore, 0 ≤ Pn,`,u(Yn) ≤ 1. Hence

Pn,`,u(Yn)
a.s.−−−→
n→∞

P (Y ∈ E0 | F∞),

where F∞ is the σ-algebra generated by [Y (xi)]i∈N using Theorem 6.2.3 from (Kallenberg,
2002). Let µn and kn be the mean and the covariance function (respectively) of Y given
Yn. From proposition 2.8 in (Bect et al., 2016), the conditional distribution of Y given
F∞ is the distribution of a GP with mean function µ∞ and covariance function k∞.
Furthermore, a.s., µn and kn converge uniformly to µ∞ and k∞, respectively. Hence we
can show simply that, because (xi)i∈N is dense in X, we have a.s. µ∞ = Y and k∞ is the
zero function. Hence a.s. if Y ∈ E0 holds, then

P (Y ∈ E0 | F∞) = 1, so that Pn,`,u(Yn) −−−→
n→∞

1.

Hence by the dominated convergence theorem

P (Pn,`,u(Yn) ≤ 1− ε, Y ∈ E0) −−−→
n→∞

0.

2

Lemma A.2 Let κ = {1, 2}. Let

Pn(Yn) = Pθ∗(Y ∈ Eκ| Yn).

Then, ∀ε > 0, we have

P (Pn(Yn) ≤ 1− ε | Y ∈ Eκ) −−−→
n→∞

0.

Proof. The proof is the same as that of Lemma A.1. In particular, we remark that
1Y ∈Eκ is a measurable random variable, as Y has Cκ trajectories. 2

Lemma A.3 Let κ = 0. Assume that Condition 7.1 is satisfied. Then

P (Y ∈ E0) > 0, for −∞ ≤ ` < u ≤ ∞.

Proof. We first prove that for any δ > 0

P (∀x ∈ X : |Y (x)|≤ δ) > 0.

This result is true and appears implicitly in the literature about small ball estimates for
GP (Li and Linde, 1999). We nevertheless provide a proof of it for self-consistency. Let
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(vi)i∈N be a dense sequence in X. Let Yv = [ Y (v1), ···, Y (vn) ]>. Let µn and kn be the mean
and the covariance function of Y given Yv. Then we let

d2
kn(x,x′) = var {(Y (x)− Y (x′))|Fn} ,

where Fn = σ(Y (v1), · · · , Y (vn)). Note that, for a Gaussian vector, the conditional
variance is deterministic, i.e. var {(Y (x)− Y (x′))|Fn} = E {var {(Y (x)− Y (x′))|Fn}}.
Thus

d2
kn(x,x′) = E {var {(Y (x)− Y (x′))|Fn}} ≤ var {(Y (x)− Y (x′))} = d2

k(x,x
′),

from the law of total variance. Hence N(X, dkn , ρ) ≤ N(X, dk, ρ) ∀ρ. Also, from Theo-
rem 2.10 in (Azäıs and Wschebor, 2009) (together with a union bound and using that
maxx∈X Y (x) and maxx∈X [−Y (x)] have the same law) we have, with C a universal
constant,

E

{
max
x∈X

|Y (x)− µn(x)|
}
≤ C

∫ ∞

0

√
log(N(X, dkn , ρ)) dρ

= C

∫ 2
√

sup
x∈X

kn(x,x)

0

√
log(N(X, dkn , ρ)) dρ

≤ C

∫ 2
√

sup
x∈X

kn(x,x)

0

√
log(N(X, dk, ρ)) dρ.

This last integral goes to 0 as n → ∞ because supx∈X kn(x,x) → 0 (see the proof of
Lemma A.1), and because of Condition 7.1. Hence maxx∈X |Y (x)− µn(x)| goes to 0 in
probability. Furthermore, P = P (∀x ∈ X, −δ ≤ Y (x) ≤ δ) satisfies

P ≥ P

(
∀x ∈ X, −δ

2
≤ µn(x) ≤ δ

2
, −δ

2
≤ Y (x)− µn(x) ≤ δ

2

)

= P

(
∀x ∈ X, −δ

2
≤ µn(x) ≤ δ

2

)
P

(
∀x ∈ X, −δ

2
≤ Y (x)− µn(x) ≤ δ

2

)
,

since the distribution of Y −µn does not depend on Yv. We now fix n ∈ N for which the
second probability is non-zero (the existence is guaranteed from above). Then, the first
probability is non-zero by continuity since, when Yv = 0, then µn is the zero function.
Hence we have

P (∀x ∈ X : |Y (x)|≤ δ) > 0.

Let f be a C∞ function on Rd, square integrable, satisfying

∀x ∈ X, `+ δ ≤ f(x) ≤ u− δ,

for δ > 0. (f exists for δ > 0 small enough, and can be taken for instance as f(x) =
exp{−τ‖x − x0‖2}

[
u+`

2

]
with τ > 0 small enough, and for any x0 ∈ X). Let Z be a
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GP with covariance function k and mean function f . Then, from what we have shown
before, we have

P (∀x ∈ X : |Z(x)− f(x)|≤ δ) > 0,

so that

P (∀x ∈ X : ` ≤ Z(x) ≤ u) > 0.

From (Yadrenko, 1983) (p.138), as discussed by Stein (1999) (p.121), the Gaussian
measures of Y and Z are equivalent. Thus

P (Y ∈ E0) = P (∀x ∈ X : ` ≤ Y (x) ≤ u) > 0.

2

Lemma A.4 Let κ = 1. Assume that Condition 7.1 is satisfied. Then

P (Y ∈ E1) > 0.

Proof. We first prove that for any δ > 0

P

(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣∣
∂

∂xi
Y (x)

∣∣∣∣ ≤ δ

)
> 0.

We let (vi)i∈N and Yv be defined as in the proof of Lemma A.3. Then, as in this proof
we can show that for i = 1, · · · , d

max
x∈X

∣∣∣∣
∂

∂xi
Y (x)− E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}∣∣∣∣
P−−−→

n→∞
0.

Furthermore, P = P
(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣ ∂∂xiY (x)
∣∣∣ ≤ δ

)
satisfies

P ≥ P

(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2
,

∀i = 1, · · · , d, ∀x ∈ X, −δ
2
≤ ∂

∂xi
Y (x)− E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)

= P

(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)

× P
(
∀i = 1, · · · , d, ∀x ∈ X, −δ

2
≤ ∂

∂xi
Y (x)− E

{
∂

∂xi
Y (x)

∣∣∣∣Yv

}
≤ δ

2

)
.

Notice that the last equality holds because the distribution of the process x→ ∂
∂xi
Y (x)−

E
{

∂
∂xi
Y (x)|Yv

}
does not depend on Yv. We now fix n ∈ N so that the second proba-

bility is non-zero (the existence is guaranteed from above). Then, the first probability is
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non-zero by continuity since, when Yv = 0, then for i = 1, · · · , d, E
{

∂
∂xi
Y |Yv

}
is the

zero function. Hence, we have obtained

P

(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣∣
∂

∂xi
Y (x)

∣∣∣∣ ≤ δ

)
.

We now conclude the proof in the same way as for Lemma A.3. We consider the mean
function

f(x) =

[
d∑

i=1

xi

]
exp{−τ‖x− x0‖2},

with x0 ∈ X and τ > 0. For τ small enough, f is C∞, square integrable, and satisfies

∀i = 1, · · · , d, ∀x ∈ X,
∂

∂xi
f(x) ≥ 1

2
.

Then, we conclude the proof as in the proof of Lemma A.3. 2

Lemma A.5 Let κ = 2. Assume that Condition 7.1 is satisfied. Then,

P (Y ∈ E2) > 0.

Proof. We first prove that for any δ > 0

P

(
∀i, j = 1, · · · , d, ∀x ∈ X :

∣∣∣∣
∂2

∂xi∂xj
Y (x)

∣∣∣∣ ≤ δ

)
> 0.

This is done in a similar way as for showing P
(
∀i = 1, · · · , d, ∀x ∈ X :

∣∣∣ ∂∂xiY (x)
∣∣∣ ≤ δ

)
>

0 in the proof of Lemma A.4. We then conclude similarly as the rest of the proof this
Lemma. In particular, we consider the mean function

f(x) =

[
d∑

i=1

x2
i

]
exp{−τ‖x− x0‖2},

with x0 ∈ X and τ > 0. Let λinf(M) be the smallest eigenvalue of a symmetric matrix
M . Then, for τ small enough, f is C∞, square integrable, and satisfies

∀x ∈ X, λinf

(
∂2

∂x2
f(x)

)
≥ 1.

2

Lemma A.6 Let κ ∈ {0, 1, 2}. Assume that Condition 7.1 holds. Let Yθ be the GP
defined by

Yθ(t) = σY (α1t1, · · · , αdtd).
Let P κ

θ = P (Yθ ∈ Eκ) (see (7.3)). Then,

inf
θ∈Θ

P κ
θ > 0.
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Proof. We do the proof for κ = 2. The proof for κ = 0, 1 is similar. Let ε > 0 and let

P κ
θ,ε = E

{
1I(Yθ)≥ε +

I(Yθ)

ε
10≤I(Yθ)≤ε

}
,

with I(Yθ) = infx∈X λinf

(
∂2

∂x2Yθ(x)
)

. We have P κ
θ,ε ≤ P κ

θ for any ε > 0. With the proof

of Lemma A.5, we also obtain for ε > 0 small enough

∀θ ∈ Θ P κ
θ,ε > 0.

Hence, the proof is concluded, by compacity, if we show that θ → P κ
θ,ε is a continuous

function on Θ. Let us show this. Let θ = (σ2
1, α1, · · · , αd) ∈ (0,∞)d+1 and θn =

(σ2
n, αn1, · · · , αnd)→ θ. We have

∂2

∂xixj
Yθn(x) = σn

(
(αn)i(αn)j

∂2

∂xixj
Y (αn1x1, · · · , αndxd)

)
.

Hence, because Y is C2, we have a.s.

sup
x∈X

∣∣∣∣
∣∣∣∣
∂2

∂x2
Yθn(x)− ∂2

∂x2
Yθ(x)

∣∣∣∣
∣∣∣∣ −−−→n→∞

0,

for any matrix norm ‖·‖. Hence also since Y is C2, we can show, a.s.

(
inf
x∈X

λinf

(
∂2

∂x2
Yθn(x)

)
− inf
x∈X

λinf

(
∂2

∂x2
Yθ(x)

))
−−−→
n→∞

0.

Hence, we conclude by dominated convergence observing that t → (1t≥ε + t
ε
10≤t≤ε) is a

continuous function on R. 2

A.2 Asymptotic normality of ML estimators

A.2.1 Notation

Here, 0 < c < +∞ stands for a generic constant that may differ from one line to
another. It is convenient to have short expressions for terms that converge in probability
to zero. Following (Van der Vaart, 1998), the notation oP(1) (respectively OP(1)) stands
for a sequence of random variables (r.v.’s) that converges to zero in probability (resp. is
bounded in probability) as n→∞. More generally, for a sequence of r.v.’s Rn,

Xn = oP(Rn) means Xn = YnRn with Yn
P→ 0,

Xn = OP(Rn) means Xn = YnRn with Yn = OP(1).
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For deterministic sequences Xn and Rn, the stochastic notation reduce to the usual o
and O. For a sequence of random vectors or variables (Xn)n∈N on Rl, that are functions
of Y , and for a probability distribution µ on Rl, we write

Xn
L|Y ∈Eκ−−−−→
n→∞

µ

when, for any bounded continuous function g : Rl → R, we have

E [g(Xn)|Y ∈ Eκ] −→
n→∞

∫

Rl
g(x)µ(dx).

We also write Xn = oP|Y ∈Eκ(1) when for all ε > 0 we have P(|Xn|> ε|Y ∈ Eκ) → 0 as
n→∞.

For any two functions f(Y ) and g(Y ), let Eθ[f(Y )] (respectively Eθ[f(Y )|g(Y )]) be the
expectation (resp. the conditional expectation) w.r.t. the measure Pθ on Ω. We define
similarly Pθ(A(Y )) and Pθ(A(Y )|g(Y )) when A(Y ) is an event w.r.t. Y . Let θ0 ∈ Θ be
fixed. We consider θ0 as the true unknown covariance parameter and we let E[·], E[·|·],
P(·), and P(·|·) be shorthands for Eθ0 [·], Eθ0 [·|·], Pθ0(·), and Pθ0(·|·). When a quantity is
said to converge, say, in probability or almost surely, it is also implicit that we consider
the measure Pθ0 on Ω.

For a > 0, let fa : (0,∞)→ R be defined by fa(t) = − log(t)− a/t. We will repeatedly
use the fact that fa has a unique global maximum at a and f ′′a (t) = 1/t2 − 2a/t3.

Finally, let ξ∗ = inf
x∈[0,1]d

ξ(x), ξ∗ = sup
x∈[0,1]d

ξ(x), and ξ∗∗ = sup
x∈[0,1]d

|ξ(x)| for any stochastic

process ξ : [0, 1]d → R.

A.2.2 Intermediate results
Lemma A.7 Let (Xn)n∈N be a sequence of r.v.’s and (mk,n)n,k∈N, k6n and (Mk,n)n,k∈N, k6n
be two triangular arrays of r.v.’s. We consider a random vector (m,M)> such that
m 6 mk,n 6 Mk,n 6 M for all k 6 n. We assume that P(m = `) = P(M = u) = 0 and
P(` 6 m 6 M 6 u) > 0 for some fixed ` and u ∈ R. Moreover, we consider a sequence
(kn)n∈N so that, kn 6 n, kn →n→∞ ∞ and

(mkn,n,Mkn,n)>
a.s.−−−−→
n→+∞

(m,M)>. (A.1)

Then for any a ∈ R,

lim
n→+∞

∣∣∣P(Xn 6 a|` 6 mkn,n 6Mkn,n 6 u)− P(Xn 6 a|` 6 m 6M 6 u)
∣∣∣ = 0. (A.2)

Proof. For the sake of simplicity, we denote by Ek,n (respectively E) the event {` 6
mk,n 6Mk,n 6 u} (resp. {` 6 m 6M 6 u}). Then

|P(Xn 6 a|Ekn,n)− P(Xn 6 a|E)| 6 |P(Xn 6 a, Ekn,n)− P(Xn 6 a, E)|
P(Ekn,n)

+

∣∣∣∣
1

P(Ekn,n)
− 1

P(E)

∣∣∣∣P(Xn 6 a, E). (A.3)
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(i) By (A.1), P(Ekn,n) goes to P(E) = P(` 6 m 6M 6 u) > 0 as n goes to +∞. Thus
1/P(Ekn,n) is well-defined for large values of n and bounded as n → ∞. Moreover, by
trivial arguments of set theory, one gets

|P(Xn 6 a, Ekn,n)− P(Xn 6 a, E)| 6 P(Ekn,n∆E) = P(Ekn,n \ E)

since P(E \ Ekn,n) = 0. Now let ε > 0. One has

P(Ekn,n \ E) = P(` 6 mkn,n 6Mkn,n 6 u, (m,M) /∈ [`, u]2)

6 P(` 6 mkn,n 6Mkn,n 6 u, m < `) + P(` 6 mkn,n 6Mkn,n 6 u, M > u)

6 P(` 6 mkn,n, m < `) + P(Mkn,n 6 u, M > u).

One may decompose P(` 6 mkn,n, m < `) into

P(`+ ε 6 mkn,n, m < l) + P(` 6 mkn,n 6 `+ ε, m < l)

6 P(|mkn,n −m|> ε) + P(` 6 mkn,n 6 `+ ε).

The first term in the right hand-side goes to 0 as n goes to infinity. By Portemanteau’s
lemma and (A.1),

lim sup
n→+∞

P(` 6 mkn,n 6 `+ ε) 6 P(` 6 m 6 `+ ε)−→
ε→0

0.

We handle similarly the term P(Mkn,n 6 u, M > u). Hence, in the r.h.s. of (A.3), the
first term goes to 0 as n→∞.

(ii) Now we turn to the control of the second term in (A.3). Upper bounding P(Xn 6

a, E) by 1, it remains to control
∣∣∣ 1
P(Ekn,n)

− 1
P(E)

∣∣∣ which is immediate by the convergence

in distribution of (mkn,n,Mkn,n)> as n goes to infinity (implied by the a.s. convergence)
and the fact that P(E) > 0 and P(m = `) = P(M = u) = 0. The proof is now complete.
2

Lemma A.8 Consider three sequences of random functions fn, gn, hn : [xinf , xsup]→ R,
with 0 < xinf < xsup < ∞ fixed. Consider that for all x ∈ [xinf , xsup], fn(x), gn(x), and
hn(x) are functions of Y and x only. Let

x̂n ∈ arg max
x∈[xinf ,xsup]

fn(x).

Assume the following properties.

(i) There exists A > 0, B > 0 and δ > 0 such that

sup
|x−x̂n|6δ

x∈[xinf ,xsup]

fn(x)− fn(x̂n) 6 −An(x− x̂n)2 (A.4)

and

sup
|x−x̂n|>δ

x∈[xinf ,xsup]

fn(x)− fn(x̂n) 6 −Bn, (A.5)

with probability going to 1 as n→∞.
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(ii) There exists C > 0 such that for all x1, x2 ∈ [xinf , xsup]

|gn(x1)− gn(x2)| 6 C|x1 − x2|, (A.6)

with probability going to 1 as n→∞.

(iii) One has, for κ = 0, 1, 2,

sup
x1,x2∈[xinf ,xsup]

|hn(x1)− hn(x2)| = oP|Y ∈Eκ(1). (A.7)

Then, with

̂̂xn ∈ arg max
x∈[xinf ,xsup]

{fn(x) + gn(x) + hn(x)}

we have
√
n|̂̂xn − x̂n|= oP|Y ∈Eκ (1) . (A.8)

Proof. Let ε > 0. First, we have, with probability (conditionally to {Y ∈ Eκ}) going
to 1 as n→∞, from (A.4), (A.6), and (A.7)

sup
|x−x̂n|>ε/

√
n

|x−x̂n|61/n1/4

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

6 −An
(

ε√
n

)2

+
C

n1/4
+ oPY ∈Eκ(1) = −Aε2 + oP|Y ∈Eκ(1).

Second, from (A.4), (A.6), and (A.7), we have, with probability (conditionally to {Y ∈
Eκ}) going to 1 as n→∞,

sup
|x−x̂n|>1/n1/4

|x−x̂n|6δ

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

6 −An
(

1

n1/4

)2

+ Cδ + oP|Y ∈Eκ(1)−→
n→∞

−∞.

Third, from (A.5)–(A.7), we have, with probability (conditionally to {Y ∈ Eκ}) going
to 1 as n→∞,

sup
|x−x̂n|>δ

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

6 −Bn+ C(xsup − xinf ) + oP|Y ∈Eκ(1)−→
n→∞

−∞.

Finally, for all ε > 0 there exists c > 0 so that, with probability (conditionally to
{Y ∈ Eκ}) going to 1 as n→∞,

sup
|x−x̂n|>ε/

√
n

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n)) 6 −c.
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Hence, we have, by definition of ̂̂xn
√
n|̂̂xn − x̂n|= oP|Y ∈Eκ (1) .

2

Lemma A.9 Let {kθ; θ ∈ Θ} be the set of covariance functions in subsection 2.2.3 where
Θ is compact. Assume that kθ satisfies Condition 7.4 in the case κ = 0, where C and
α can be chosen independently of θ. Let Zn,θ be a Gaussian process with mean function
zero and covariance function (x1, x2) 7→ Covθ(Y (x1), Y (x2)|y). Then, we have

sup
θ∈Θ

E

[
sup

x∈[0,1]d
|Zn,θ(x)|

]
−→
n→∞

0.

Proof. This result is proved as an intermediate result in the proof of Lemma A.3 in
(López-Lopera et al., 2018). There, the result was for fixed θ, but it can be made uniform
over θ ∈ Θ with no additional difficulties. 2

A.2.3 Variance parameter estimation

Here, we display the proof of the theorems proposed in Section 7.4. For the sake of
compaction, we write only the proofs for results in subsection 7.4.1 under boundedness
constraints, i.e. we let κ = 0. We refer to (Bachoc et al., 2019) for additional proofs
for mototonicity (κ = 1) and convexity (κ = 2) constraints, and for the microergodic
parameter estimation for the isotropic Matérn model (see subsection 7.4.2).

Lemma A.10 Assume that Condition 7.4 holds. Then for all κ ∈ {0, 1, 2} and for any
compact K in (0,+∞), we have

inf
σ2∈K

Pσ2 (Y ∈ Eκ) > 0.

Proof. It suffices to follow the same lines as in the proof of Lemma A.6. 2

Theorem A.1 For κ = 1, 2, we assume that Condition 7.2 holds. Under Condition 7.4,
the MLE σ̄2

n of σ2
0 defined by (7.11) conditioned on {Y ∈ Eκ} is asymptotically Gaussian

distributed. More precisely, for κ = 0, 1, 2,

√
n
(
σ̄2
n − σ2

0

) L|Y ∈Eκ−−−−→
n→+∞

N (0, 2σ4
0).

Proof.

(1) Let mk,n = min
i=1,...,k

yi, Mk,n = max
i=1,...,k

yi, and (m,M)> = (Y∗, Y
∗)>, where Y∗ and Y ∗

have been defined in Appendix A.2.1. We clearly have m 6 mkn,n 6 Mk,n 6 M . Since
(xi)i∈N is dense, for any sequence (kn)n∈N so that kn → ∞ as n → ∞ and kn 6 n, we
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have (mkn,n,Mkn,n)> → (m,M) a.s. as n→∞ (up to reindexing x1, . . . , xn).

2) Let k ∈ N be fixed. We have

√
n
(
σ̄2
n − σ2

0

)
=

1√
n

(
y>R−1

1 y − nσ2
0

)
.

Writing the Gaussian probability density function of y as the product of the conditional
probability density functions of yi given y1, . . . , yi−1 leads to

1√
n

(
y>R−1

1 y − nσ2
0

)
=

σ2
0√
n

n∑

i=1

(
(yi − E[yi|y1, . . . , yi−1])2

Var(yi|y1, . . . , yi−1)
− 1

)
.

The terms in the sum above are independent. Indeed,

Cov(yl, yi − E[yi|y1, . . . , yi−1]) = 0, for any l 6 i− 1

and the Gaussianity then leads to independence. Therefore,

1√
n

(
y>R−1

1 y − nσ2
0

)
=
σ2

0√
n

k∑

i=1

(
(yi − E[yi|y1, . . . , yi−1])2

Var(yi|y1, . . . , yi−1)
− 1

)

+
σ2

0√
n

n∑

i=k+1

(
(yi − E[yi|y1, . . . , yi−1])2

Var(yi|y1, . . . , yi−1)
− 1

)
.

The first term is oP(1) being the sum of k r.v.’s (whose variances are all equal to 2)
divided by the square root of n. Because Pσ2(` 6 min

i=1,...,k
yi 6 max

i=1,...,k
yi 6 u) > 0, the

first term is also oP(1) conditionally to
{
` 6 min

i=1,...,k
yi 6 max

i=1,...,k
yi 6 u

}
. The second term

is equal to σ2
0/
√
n times the sum of n − k independent variables with zero mean and

variance 2 and is also independent of y1, . . . , yk. Hence, from the central limit theorem
and Slutsky’s lemma (Van der Vaart, 1998, Lemma 2.8), we obtain that

1√
n

(
y>R−1

1 y − nσ2
0

) L|y∈E0,k−−−−−→
n→∞

N (0, 2σ4
0),

where E0,k :=
{
y : ` 6 min

i=1,...,k
yi 6 max

i=1,...,k
yi 6 u

}
and

L|y∈E0,k−−−−−→
n→∞

is defined similarly as

L|Y ∈E0−−−−→
n→∞

.

3) Hence, for x ∈ R, there exists a sequence kn−→
n→∞
∞ satisfying kn = o(n) as n → ∞

so that:

P
(√

n
(
σ̄2
n − σ2

0

)
6 x

∣∣∣` 6 min
i=1,...,kn

yi 6 max
i=1,...,kn

yi 6 u

)
−→
n→∞

P (V 6 x)
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with V ∼ N (0, 2σ4
0). Therefore, from Lemma A.7,

P
(√

n
(
σ̄2
n − σ2

0

)
6 x

∣∣ ` 6 Y (x) 6 u, ∀x ∈ [0, 1]d
)
−→
n→∞

P (V 6 x) .

This concludes the proof. 2

Theorem A.2 For κ = 1, 2, we assume that Condition 7.2 holds. Under Condition 7.4
and Condition 7.3, the cMLE σ̂2

n,c of σ2
0 defined in (7.12) is asymptotically Gaussian

distributed. More precisely, for κ = 0, 1, 2,

√
n
(
σ̂2
n,c − σ2

0

) L|Y ∈Eκ−−−−→
n→+∞

N (0, 2σ4
0).

Proof. We apply Lemma A.8 to the sequences of functions fn, gn and hn defined by
fn(σ2) = Ln(σ2), gn(x) = An(σ2), and hn(σ2) = Bn(σ2). Here we recall that for σ2 ∈ Θ,

An(σ2) = − logPσ2 (Y ∈ E0) and Bn(σ2) = logPσ2 (Y ∈ E0| y) .

In order to apply Lemma A.8, we need to check that the conditions (A.4) to (A.7) hold.
1) By (7.10), one has

Ln(σ2) = −n
2

log 2π − n

2
ln(σ2)− 1

2
ln(|R1|)−

1

2σ2
y>R−1

1 y.

Now y>R−1
1 y is the square of the norm of a Gaussian vector with variance-covariance

matrix σ2
0In, where In stands for the identity matrix of dimension n. Thus one way write

y>R−1
1 y as the sum of the squares of n iid r.v.’s εi, where εi is Gaussian distributed with

mean 0 and variance σ2
0. We prove that (A.4) is satisfied. One may rewrite Ln(σ2) as

Ln(σ2) = −n
2

log(2π)− 1

2
log(|R1|) +

n

2
fσ2

0+oP(1)(σ
2), (A.9)

where the oP(1) above does not depend on σ2 and fa has been introduced in Ap-
pendix A.2.1. By a Taylor expansion and the definition of σ̄2

n, we have, with probability
going to 1 as n→∞,

Ln(σ2)− Ln(σ̄2
n) = (σ2 − σ̄2

n)L′n(σ̄2
n) +

1

2
(σ2 − σ̄2

n)2L′′n(σ̃2)

=
n

4
f ′′σ2

0+oP(1)(σ̃
2)(σ2 − σ̄2

n)2

=
n

4

(
1

σ̃4
− 2

σ2
0 + oP(1)

σ̃6

)
(σ2 − σ̄2

n)2,

with σ̃2 in the interval with endpoints σ2 and σ̄2
n. Hence, non-random constants A > 0

and δ > 0 exist for which (A.4) is satisfied.
2) Second, let us prove that (A.5) holds with the previous δ > 0 and for some B > 0.

From (A.9), 2Ln/n+ log(2π) + (1/n) log(|R1|) converges uniformly on [σ2
l , σ

2
u] as n goes
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to infinity to fσ2
0
. The function fσ2

0
attains its unique maximum at σ2

0, which implies the

result since σ̄2
n converges to σ2

0 in probability. Hence (A.5) hods.
3) Now we consider (A.6). Let us introduce the Gaussian process Yr with mean function

zero and covariance function k1. Let σ2
1 6 σ2

2. Then, one has:

∣∣∣ exp
{
−An(σ2

1)
}
− exp

{
−An(σ2

2)
} ∣∣∣ =

∣∣∣P(σ1Yr ∈ E0)− P(σ2Yr ∈ E0)
∣∣∣

6 P
(
u

σ2

6 Yr(x) 6
u

σ1

, ∀x ∈ [0, 1]d
)

+ P
(
`

σ2

6 Yr(x) 6
`

σ1

, ∀x ∈ [0, 1]d
)

6 c

∣∣∣∣
1

σ1

− 1

σ2

∣∣∣∣
6 c|σ2

2 − σ2
1|

by Tsirelson theorem in (Azäıs and Wschebor, 2009). Then, from Lemma 7.1, (A.6)
holds.

4) We turn to

Bn(σ2) = logPσ2(Y ∈ E0|y) = logPσ2(` 6 Y (x) 6 u, ∀x ∈ [0, 1]d|y).

Let mn,y and σ2kn be the conditional mean and covariance functions of Y given y, under
the probability measure Pσ2 . Using Borell-TIS inequality (Adler and Taylor, 2007), with
Zn,σ2 a Gaussian process with mean function zero and covariance function σ2kn, we obtain

Pσ2(Y ∗ > u|y) 6 Pσ2

(
Z∗n,σ2 > u− sup

x∈[0,1]d
mn,y(x)|y

)

6 Pσ2

(
Z∗∗n,σ2 > u− sup

x∈[0,1]d
mn,y(x)|y

)

6 exp




−

((
u− sup

x∈[0,1]d
mn,y(x)− E[Z∗∗n,σ2 ]

)

+

)2

2 sup
x∈[0,1]d

E[Zn,σ2(x)2]




. (A.10)

But by Lemma A.9, sup
σ2∈[σ2

l ,σ
2
u]

E[Z∗∗n,σ2 ] → 0 as n → +∞. Additionally, one can simply

show that sup
x∈[0,1]d

E[Zn,σ2(x)2] = sup
x∈[0,1]d

σ2kn(x, x) goes to zero uniformly in σ2 ∈ [σ2
l , σ

2
u] as

n→∞. By (Bect et al., 2016, Proposition 2.8) and because the sequence of observation
points is dense,

sup
x∈[0,1]d

|mn,y(x)− Y (x)| a.s.−−−−→
n→+∞

0
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from which we deduce that on {Y ∗ < u− δ}, a.s.

lim sup
n→+∞

(
u− sup

x∈[0,1]d
mn,y(x)

)
> δ.

Consequently, (A.10) leads to

1{Y ∗<u−δ} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y ∗ > u|y)
a.s.−−−−→

n→+∞
0. (A.11)

Similarly, taking −Y instead of Y , one may prove easily that

1{Y∗>l+δ} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y∗ < l|y)
a.s.−−−−→

n→+∞
0. (A.12)

Then, we deduce that

1{`+δ<Y (x)<u−δ, ∀x∈[0,1]d} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y ∗ > u or Y∗ < `|y)
a.s.−−−−→

n→+∞
0. (A.13)

Now let ε > 0, ε′ = 2|log(1 − ε)| and E0,δ := {f ∈ C([0, 1]d,R) s.t. ` + δ 6 f(x) 6
u− δ, ∀x ∈ [0, 1]d}. We have:

P
(

sup
σ2∈[σ2

l ,σ
2
u]

Pσ2 (Y ∗ > u or Y∗ < `|y) > ε, Y ∈ E0,δ

)
−→
n→+∞

0

= P
(

inf
σ2∈[σ2

l ,σ
2
u]

Bn(σ2) 6 −ε′/2, Y ∈ E0,δ

)

= P
(

sup
σ2∈[σ2

l ,σ
2
u]

|Bn(σ2)|> ε′/2, Y ∈ E0,δ

)

> P
(

sup
σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ2
1)−Bn(σ2

2)|> ε′, Y ∈ E0,δ

)

by the triangular inequality and (A.13). Therefore,

P
(

sup
σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ2
1)−Bn(σ2

2)|> ε′, Y ∈ E0

)

=P
(

sup
σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ2
1)−Bn(σ2

2)|> ε′, Y ∈ E0,δ

)
(A.14)

+ P
(

sup
σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ2
1)−Bn(σ2

2)|> ε′, Y ∈ E0 \ E0,δ

)
. (A.15)

As already shown, the term (A.14) converges to 0 as n → +∞ for any fixed δ > 0. For
(A.15), we have

sup
t1,t2∈R
t1 6=t2

|Pσ2
0
(Y ∗ 6 t1)− Pσ2

0
(Y ∗ 6 t2)|

|t1 − t2|
< +∞.
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This follows from Tsirelson theorem in (Azäıs and Wschebor, 2009). Hence for all ε > 0,
there exists δ∗ > 0 such that,

Pσ2
0
(Y ∗ ∈ [u− δ∗, u]) 6 ε. (A.16)

Similarly, for all ε > 0, there exists δ∗ > 0 such that,

Pσ2
0
(Y∗ ∈ [`+ δ∗, `]) 6 ε. (A.17)

Taking δ = min(δ∗, δ
∗), we conclude the proof of (A.7).

5) Finally, we remark that with probabiliy going to one as n → ∞,
σ̄2
n = arg maxσ2∈[σ2

l ,σ
2
u]Ln(σ2). Hence, one may apply Lemma A.8 to obtain

√
n|σ̂2

n,c − σ̄2
n|= oP|Y ∈E0 (1) .

By Theorem 7.1 and Slutsky’s lemma, we conclude the proof. 2
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184 References

Flaxman, S., Wilson, A., Neill, D., Nickisch, H., and Smola, A. (2015). Fast Kronecker
inference in Gaussian processes with non-Gaussian likelihoods. In Proceedings of
Machine Learning Research, pages 607–616.

Flegal, J. M., Hughes, J., Vats, D., and Dai, N. (2017). mcmcse: Monte Carlo Standard
Errors for MCMC. R package version 1.3-2.

Fruth, J. (2015). Sensitivy analysis and graph-based methods for black-box functions with
on application to sheet metal forming. Theses, École Nationale Supérieure des Mines
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References 187

Maatouk, H., Roustant, O., and Richet, Y. (2015). Cross-validation estimations of hyper-
parameters of Gaussian processes with inequality constraints. Procedia Environmental
Sciences, 27:38–44.

Macdonald, I. (1998). Symmetric Functions and Hall Polynomials. Oxford University
Press. USA.

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (2001). Log Gaussian Cox
processes. Scandinavian Journal of Statistics, 25(3):451–482.

Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for
Spatial Point Processes. Chapman & Hall/CRC Monographs on Statistics and Applied
Probability. CRC Press, Boca Raton, FL.

Muehlenstaedt, T., Roustant, O., Carraro, L., and Kuhnt, S. (2012). Data-driven Kriging
models based on FANOVA-decomposition. Statistics and Computing, 22(3):723–738.

Munkres, J. (2018). Elements Of Algebraic Topology. CRC Press, Boca Raton, FL.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective (Adaptive
Computation and Machine Learning Series). The MIT Press, Cambridge, MA.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer, New York.

Nickisch, H. and Rasmussen, C. E. (2008). Approximations for binary Gaussian process
classification. Journal of Machine Learning Research, 9:2035–2078.

Okabe, A., Boots, B., and Sugihara, K. (1992). Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. Wiley & Sons, New York.

Paciorek, C. J. and Schervish, M. J. (2004). Nonstationary covariance functions for
Gaussian process regression. In Conference on Neural Information Processing Systems,
pages 273–280.

Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo for truncated
multivariate Gaussians. Journal of Computational and Graphical Statistics, 23(2):518–
542.

Pan, C. and Zhu, M. (2017). Group additive structure identification for kernel
nonparametric regression. In Advances in Neural Information Processing Systems,
pages 4907–4916.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge.
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proposed by Maatouk (2015), which satisfies the constraints everywhere in the input
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Monte Carlo methods for truncated multinormals. They result in efficient sampling for
linear inequality constraints. Second, we explore the extension of the model, previously
limited up to three-dimensional spaces, to higher dimensions. The introduction of a
noise effect allows us to go up to dimension five. We propose a sequential algorithm
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active dimensions. We also explore the Delaunay triangulation as an alternative to
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on inference under inequality constraints. The asymptotic consistency and normality of
maximum likelihood estimators are established. The main methods throughout this
manuscript are implemented in R language programming. They are applied to risk
assessment problems in nuclear safety and coastal flooding, accounting for positivity
and monotonicity constraints. As a by-product, we also show that the proposed GP
approach provides an original framework for modelling Poisson processes with stochastic
intensities.
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sous Contraintes d’Inégalité, Méthodes de Monte Carlo et Monte Carlo par châınes de
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Résumé :

Le conditionnement de Processus Gaussiens (PG) par des contraintes d’inégalité permet
d’obtenir des modèles plus réalistes. Cette thèse s’intéresse au modèle de type PG proposé
par Maatouk (2015), obtenu par approximation finie, qui garantit que les contraintes sont
satisfaites dans tout l’espace. Plusieurs contributions sont apportées. Premièrement,
nous étudions l’emploi de méthodes de Monte Carlo par châınes de Markov pour des
lois multinormales tronquées. Elles fournissent un échantillonnage efficace pour des
contraintes d’inégalité linéaires. Deuxièmement, nous explorons l’extension du modèle,
jusque-là limité à la dimension trois, à de plus grandes dimensions. Nous remarquons
que l’introduction d’un bruit d’observations permet de monter à la dimension cinq. Nous
proposons un algorithme d’insertion des nœuds, qui concentre le budget de calcul sur
les dimensions les plus actives. Nous explorons aussi la triangulation de Delaunay
comme alternative à la tensorisation. Enfin, nous étudions l’utilisation de modèles
additifs dans ce contexte, théoriquement et sur des problèmes de plusieurs centaines
de variables. Troisièmement, nous donnons des résultats théoriques sur l’inférence sous
contraintes d’inégalité. La consistance et la normalité asymptotique d’estimateurs par
maximum de vraisemblance sont établies. L’ensemble des travaux a fait l’objet d’un
développement logiciel en R. Ils sont appliqués à des problèmes de gestion des risques en
sûreté nucléaire et inondations côtières, avec des contraintes de positivité et monotonie.
Comme ouverture, nous montrons que la méthodologie fournit un cadre original pour
l’étude de processus de Poisson d’intensité stochastique.


