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Résumé 

La	 capacité	 à	 comprendre	 et	 à	 produire	 un	 nombre	 apparemment	 infini	 d'énoncés	

nouveaux	 a	 longtemps	 été	 considérée	 comme	 une	 spécificité	 du	 langage	 humain.	

Traditionnellement,	les	mots	simples	et	les	règles	grammaticales	innées	sont	considérés	

comme	les	éléments	de	base	du	langage.	Cependant,	des	découvertes	récentes	ont	conduit	

à	adopter	une	autre	perspective,	connue	sous	le	nom	de	théories	basées	sur	l'usage,	qui	

suggère	 que	 les	 règles	 grammaticales	 ne	 sont	 pas	 indépendantes	 de	 l'utilisation	 de	 la	

langue	et	que	les	séquences	multi-mots	constituent	le	cœur	du	langage.	Ainsi,	la	capacité	

à	 traiter	 et	 à	 apprendre	 des	 séquences	 multi-mots	 semble	 être	 cruciale	 pour	 la	

compréhension	 et	 la	 production	 du	 langage.	 De	 nombreuses	 études	 expérimentales	

soutiennent	 cette	 proposition,	mais	 les	mécanismes	 qui	 sous-tendent	 l'acquisition	 des	

séquences	multi-mots	restent	relativement	inexplorés.	

L'objectif	de	cette	thèse	est	d'étudier	comment	les	séquences	multi-mots	sont	acquises	

en	temps	réel	et	de	décrire	les	mécanismes	qui	façonnent	leur	traitement.	Pour	ce	faire,	

nous	 avons	 étudié	 l'influence	 de	 la	 répétition,	 de	 la	 nature	 de	 la	 séquence	 et	 de	

l'espacement	des	répétitions	lors	de	l'apprentissage	des	séquences.	Dans	notre	première	

étude,	 nous	 avons	 démontré	 que	 les	 séquences	multi-mots	 sont	 rapidement	 acquises	

après	 seulement	quatre	à	 cinq	 répétitions,	 et	que	 chaque	mot	de	 la	 séquence	 suit	une	

trajectoire	d'apprentissage	distincte.	En	outre,	l'apprentissage	est	influencé	par	le	type	de	

séquence,	les	mots	sémantiquement	reliés	et	les	expressions	idiomatiques	sont	traitées	

plus	rapidement	et	mieux	mémorisées	que	les	mots	non	reliés	et	les	pseudo-mots.	Dans	

notre	 seconde	 étude,	 nous	 avons	montré	 que	 l'espacement	 des	 répétitions	 affectait	 le	

traitement	des	séquences	multi-mots,	l'apprentissage	diminuant	avec	l'augmentation	de	
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l'espacement,	mais	restant	observé	pour	l'espacement	le	plus	large.	La	troisième	étude,	

conduite	chez	des	babouins,	a	confirmé	ces	résultats	et	a	montré	que	l'apprentissage	de	

séquences	 repose	 sur	 des	 mécanismes	 associatifs	 fondamentaux	 et	 que	 les	 traces	

mnésiques	des	 informations	séquentielles	ont	une	 longue	durée	de	vie.	Enfin,	dans	un	

chapitre	 théorique,	 nous	 soutenons	 que	 les	modèles	 actuels	 basés	 sur	 le	 chunking	 ne	

peuvent	 pas	 rendre	 compte	 de	 ces	 résultats	 et	 que	 les	 modèles	 neuro-informatiques	

récents	basés	sur	l'apprentissage	associatif	et	Hebbien	peuvent	être	plus	appropriés	pour	

décrire	et	comprendre	la	nature	des	mécanismes	de	chunking.	

Dans	l'ensemble,	cette	thèse	a	permis	de	montrer	que	les	informations	séquentielles	

sont	 acquises	 rapidement,	 développant	 une	 trace	 mémorielle	 transitoire,	 et	 que	 la	

répétition	joue	un	rôle	clé	dans	leur	consolidation.	Les	résultats	de	cette	thèse	soulèvent	

de	nouvelles	questions	importantes	pour	le	domaine	de	l'acquisition	du	langage	et,	plus	

largement,	pour	le	domaine	de	l'apprentissage	statistique	et	du	chunking.	

	

Mots	clés	 :	 traitement	du	 langage,	 séquences	multi-mots,	 apprentissage	de	séquences,	
apprentissage	statistique,	chunking	
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Abstract 

The	ability	to	understand	and	produce	a	seemingly	infinite	number	of	novel	utterances	

has	long	been	considered	a	hallmark	of	human	language.	Traditionally,	single	words	and	

innate	grammatical	rules	have	been	thought	to	be	the	basic	building	blocks	of	language.	

However,	 recent	 findings	 have	 led	 to	 an	 alternative	 perspective,	 known	 as	 the	 usage-

based	approach,	which	suggests	that	grammatical	rules	are	not	independent	of	language	

use	and	that	multiword	sequences	form	the	core	of	language.	Thus,	the	ability	to	process	

and	learn	multiword	sequences	appears	to	be	crucial	 for	 language	comprehension	and	

production.	 Numerous	 experimental	 studies	 support	 this	 claim,	 but	 the	 mechanisms	

underlying	the	acquisition	of	multiword	sequences	remain	relatively	unexplored.		

The	objective	of	this	thesis	is	to	investigate	how	multiword	sequences	are	acquired	in	

real-time	and	to	characterise	the	mechanisms	that	shape	their	processing.	To	this	end,	we	

investigated	the	influence	of	repetition,	the	nature	of	the	sequence,	and	repetition	spacing	

during	sequence	learning.	In	our	first	study,	we	demonstrated	that	multiword	sequences	

are	rapidly	acquired	after	about	four	to	five	repetitions,	and	that	each	word	within	the	

sequence	 followed	a	distinct	 learning	trajectory.	Moreover,	 learning	was	 influenced	by	

the	type	of	sequence,	with	semantically	related	words	and	idioms	being	processed	faster	

and	remembered	better	than	unrelated	words	and	pseudowords.	In	our	second	study,	we	

showed	 that	 repetition	 spacing	 affected	 the	 processing	 of	 multiword	 sequences,	 with	

learning	decreasing	with	wider	 spacing,	 but	 still	 observed	 for	 the	widest	 spacing.	The	

third	study,	conducted	with	baboons,	confirmed	these	findings	and	showed	that	sequence	

learning	 relies	 on	 fundamental	 associative	 mechanisms	 and	 that	 memory	 traces	 of	

sequential	 information	 are	 long-lived.	 Finally,	 in	 a	 theoretical	 chapter,	 we	 argue	 that	
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current	 chunk-based	 models	 cannot	 account	 for	 these	 findings	 and	 that	 recent	

neurocomputational	models	 based	 on	 associative	 and	 Hebbian	 learning	may	 be	more	

appropriate	for	describing	and	understanding	the	nature	of	chunking	mechanisms.		

Taken	 together,	 this	 thesis	 shows	 that	 sequential	 information	 is	 acquired	 rapidly,	

developing	 a	 transient	 memory	 trace,	 and	 that	 repetition	 plays	 a	 key	 role	 in	 its	

consolidation.	The	findings	of	this	thesis	raise	important	new	questions	for	the	field	of	

language	acquisition,	and	for	the	field	of	statistical	learning	and	chunking	more	broadly.	

	
Keywords:	 language	 processing,	 multiword	 sequences,	 sequence	 learning,	 statistical	
learning,	chunking	
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toi,	 cela	 aurait	 été	bien	plus	difficile.	 Il	 ne	 reste	qu’à	planifier	notre	 voyage	 à	Londres	

amigo	mio.	Le	J	c’est	le	S.		

Elisa,	it’s	been	one	hell	of	a	ride.	Cela	fait	déjà	6	ans	que	nous	avons	commencé	cette	

aventure	 ensemble.	 Je	me	 souviendrai	 toujours	 de	 nos	 journées	 de	 révisions	 pour	 les	
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examens	en	M1	et	de	notre	premier	voyage	à	Londres.	Ces	moments	où	nous	songions	à	

devenir	 des	 chercheurs	 hors-norme,	 des	 chevaliers	 de	 l’ordre	 national	 du	 Mérite,	 à	

reprendre	PNPC.	Notre	 histoire	 est	 une	 histoire	 de	 symbiose	 dans	 laquelle	 nous	 nous	

encourageons	mutuellement	 à	 aller	 plus	 loin.	Nous	 sommes	 toujours	 l'un	 pour	 l'autre	

dans	 les	moments	difficiles,	et	 surtout,	nous	sommes	 là	pour	partager	nos	 joies	et	nos	

accomplissements.	Au	risque	de	te	copier,	tu	es	ma	meilleure	amie	ma	Elisa.	Cette	thèse	

n’aurait	pas	été	la	même	sans	ton	soutien	indéfectible,	et	ma	vie	ne	serait	pas	la	même	si	

tu	 n’en	 faisais	 pas	 partie.	 A	 nos	 cappus	 noisette,	 à	 nos	 moments	 de	 doute,	 à	 nos	

conférences	 incroyables	(surtout	 la	cidrerie),	à	nos	apéros	aixois,	au	 fait	d’être	voisins	

prochainement,	 à	 nos	 conversations	 sur	 les	 stats,	 à	 notre	 futur	 papier,	mais	 surtout	 à	

notre	amitié	sans	faille.	Je	t’aime	fort	mon	amie.	

Je	 tiens	 à	 remercier	 tous	 mes	 amis	 et	 amies	 que	 j’ai	 rencontrés	 en	 dehors	 du	

laboratoire,	et	qui	m’ont	accompagné	tout	au	long	de	ces	années	en	France.	Je	pense	fort	

à	Alex,	Adélie,	 Josh,	Herbert,	Léa,	Tony,	Virgile,	Valentin,	Tarek,	Thomas,	Yannis,	

Maïté.	 Une	pensée	 spéciale	pour	mes	 amis	 et	 amies	du	 laboratoire	de	Gent	qui	m’ont	

accueilli	comme	si	j’étais	l’un	des	leurs	:	Nicolas,	Evelyne,	Leslie,	Victoria,	Yulong,	Rita,	

Anh	Le.	

Este	párrafo	se	lo	dedico	a	mis	amigos	chilenos	que	nunca	dudaron	de	mí,	y	siempre	

estuvieron	ahí	para	apoyarme.	Javier,	nunca	pensé	que	seríamos	tan	buenos	amigos	y	que	

el	día	de	mi	defensa	estarías	ahí	para	apoyarme.	Pensar	que	todo	comenzó	con	una	partida	
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de	 lolaco	 cuando	 estábamos	 en	 electivo.	 Desde	 ese	 día,	 nuestra	 amistad	 solo	 ha	 ido	

creciendo	hasta	el	punto	en	que	te	volviste	uno	de	mis	mejores	amigos.	Yo	creo	que	no	

tengo	 palabras	 para	 decirte	 lo	 importante	 que	 eres	 para	 mí	 y	 lo	 mucho	 que	 aprecio	

nuestras	conversaciones,	nuestros	cappus	en	el	café	del	 tiempo	y	nuestras	sesiones	de	

malding	para	quedar	bien	calvos.	Se	le	quiere	amiguito.	Santiago,	amiguito	desde	la	media	

que	 estás	 a	mi	 lado,	 en	 las	 buenas	 y	 en	 las	malas.	 Te	 estoy	 agradecido	 por	 haberme	

apoyado	siempre	a	pesar	de	mis	decisiones	a	veces	dudosas.	No	puedo	esperar	a	vernos	

de	nuevo.	Patricio,	meu	pana,	usted	ha	sido	mi	mejor	amigo	durante	años,	desde	que	nos	

jugamos	unos	lolcitos	en	la	media.	Cómo	olvidar	esos	Matías	pollo,	esos	burgerazos	y	esas	

sesiones	de	tarreo	en	mi	casa	hasta	las	6	de	la	mañana.	Tú	has	sido	un	pilar	fundamental	

en	mi	vida,	siempre	has	estado	ahí	para	acompañarme	a	lo	largo	de	esta	aventura.	Nunca	

podré	agradecerte	lo	suficiente	por	darme	tu	amistad,	por	siempre	estar	ahí	esperándome	

cuando	vuelvo	a	Chile,	por	siempre	escucharme	cuando	lo	necesito.	Tu	eres	el	amigo	que	

toda	persona	desearía	tener.		Usted	no	sabe	cuánto	se	le	quiere	por	estos	lares	mi	rey.	

Merci	 à	ma	 famille	 française,	 tonton	 René,	 tía	 Paty,	Caro,	Thomas,	René	 et	Lucie	

d’être	 toujours	à	mes	côtés	et	de	veiller	 sur	moi.	Gracias	a	mi	 familia	 chilena,	 a	mi	 tía	

Viviana,	mi	tío	Raimond,	mis	primos	Sebastián,	Vicente	y	Sofía,	mi	abuela	Mirella,	mi	

abuelo	Humberto,	mi	tía	Quena,	mi	tía	Paulina,	a	mi	hermana	Tamara	y	mis	hermanos	

Enzo,	Sebastián	y	Felipe	por	siempre	estar	a	mi	lado.	Tamara,	ñaña,	gracias	por	todas	

las	anécdotas	habidas	y	por	haber,	gracias	por	darme	siempre	la	motivación	que	necesito	
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cuando	las	cosas	se	ponen	difíciles.	Enzo,	nano,	gracias	por	haberme	enseñado	todo	lo	que	

sé	del	computador,	gracias	por	ser	un	apoyo	incondicional	en	mi	vida.	No	importa	cuántas	

páginas	escriba,	nunca	serán	suficientes	para	agradecerle	a	mi	madre,	Claudia,	 y	a	mi	

padre,	 Carlos,	 por	 su	 apoyo	 incondicional.	 Gracias	 por	 nunca	 haber	 cuestionado	 mis	

decisiones	de	vida	y	por	haberme	motivado	siempre	a	ser	la	mejor	versión	de	mí	mismo,	

sin	importar	lo	que	quisiese	hacer.	Gracias	por	haberme	apoyado	desde	el	inicio	de	esta	

aventura	 y	 por	 haberme	 permitido	 venir	 a	 Francia	 a	 estudiar,	 a	 pesar	 de	 las	

probabilidades	bastante	aleatorias	de	lograrlo.	Ojalá	todas	las	personas	pudiesen	tener	

padres	como	ustedes.	Como	diría	Claudio	Capéo	«	Je	suis	riche	d’un	père	et	d’une	mère	».	

Ustedes	son	mi	todo,	los	amo	de	lo	más	profundo	de	mi	ser.	Esta	tesis	es	por	ustedes.					

Enfin,	ce	dernier	paragraphe	s’adresse	à	celle	qui	partage	ma	vie	et	qui	m’a	accompagné	

tout	au	long	de	ce	périple.	Eva,	la	vie	est	belle	à	tes	côtés.	Merci	pour	tous	ces	cafés,	ces	

verres	de	vin,	 ces	 fous	 rires,	 ces	voyages	 (London	calling,	 of	 course),	 ces	 concerts,	 ces	

câlins	réconfortants,	ces	échanges	scientifiques	qui	me	donnent	un	milliard	d’idées.	Tu	es	

la	 chercheuse	 la	 plus	 incroyable	 que	 je	 connaisse,	 tu	 es	 une	 source	 d’inspiration	 et	

d'admiration	pour	moi.	Tu	es	 la	théorie	qui	donne	du	sens	à	mon	quotidien.	40	ans	de	

recherche	et	plus,	mon	amour.	Te	amo	lo	inimaginable.	

	

J'ai	débuté	cette	thèse	en	terre	inconnue,	

Je	la	termine,	cœur	et	âme	français.	

Merci	à	la	France	pour	tout.	
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Preface 

“For	a	large	class	of	cases—though	not	for	all—in	which	we	employ	the	word	'meaning'	it	

can	be	defined	thus:	the	meaning	of	a	word	is	its	use	in	the	language”	

Wittgenstein,	L.	(1953)	

	

Have	you	ever	wondered	what	your	life	would	be	like	without	language?	Could	you	do	

all	your	daily	activities	without	it?	Chances	are	that	many	of	the	ordinary	things	we	do	

would	be	more	difficult,	if	not	impossible.	In	fact,	we	use	it	everyday	for	a	wide	range	of	

actions,	such	as	communicating	with	our	peers,	expressing	our	mental	states,	referring	to	

abstract	 concepts,	 talking	 to	 ourselves	 or	 describing	 the	 world	 around	 us.	 Most	

impressively,	 we	 produce	 language	 so	 effortlessly	 all	 the	 time,	 from	 simple	 words	 to	

complex	sentences	that	can	be	combined	into	meaningful	objects	such	as	jokes,	tongue	

twisters,	letters,	essays,	books,	and	doctoral	theses.		

The	 ability	 to	 comprehend	 and	 produce	 a	 seemingly	 unlimited	 number	 of	 novel	

utterances	has	long	been	considered	a	hallmark	of	human	language,	and		the	question	of	

how	infants	acquire	such	a	generative	ability	has	been	the	subject	of	extensive	empirical	

research	in	psychology.	To	no	one’s	surprise,	except	perhaps	Noam	Chomsky’s,	we	are	not	

born	with	language.	Instead,	we	have	to	develop	the	ability	to	speak	and	understand	our	

native	language	during	childhood,	without	any	formal	instruction.	Even	as	adults,	we	need	

to	process	and	learn	word	sequences	we	have	never	heard	before	in	order	to	adapt,	and	

modify	our	language	to	keep	pace	with	our	rapidly	changing	linguistic	environment.	But	

how	exactly	is	this	achieved?		
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The	goal	of	my	Ph.D.	research	is	to	investigate	how	multiword	sequences	are	acquired	

and	to	gain	a	better	understanding	of	the	cognitive	constraints	that	shape	their	acquisition	

and	 development	 in	 real-time	 language	 processing.	 The	 first	 chapter	 of	 this	 thesis	

provides	an	overview	of	the	background	literature	that	served	as	the	foundation	for	the	

three	experimental	studies	that	will	be	presented	in	this	manuscript.	I	start	by	presenting	

two	 competing	 theoretical	 approaches	 to	 language	 acquisition,	 the	nativist/generative	

proposal	and	 the	constructivist/usage-based	proposal.	 I	 then	define	what	a	multiword	

sequence	is.	Next,	I	discuss	three	underlying	mechanisms	involved	in	language	learning	

and	 processing,	 namely	 statistical	 learning	 and	 chunking,	 an	 associative	 learning	

mechanism.	I	then	present	relevant	computational	models	of	language	learning	based	on	

these	mechanisms.	Finally,	I	present	a	novel	task,	the	Hebb	lexical	decision	task,	that	my	

collaborators	and	I	have	designed	to	study	multiword	sequence	learning.	

Chapter	2	presents	the	first	experimental	study	(Study	1),	in	which	I	investigated	the	

extraction	and	learning	dynamics	of	multiword	sequences.	Using	the	Hebb	lexical	decision	

task,	I	studied	and	compared	the	learning	of	multiword	sequences	composed	of:	unrelated	

words,	 pseudowords,	 semantically	 related	 words,	 or	 idioms.	 Chapter	 3	 presents	 the	

second	experimental	study	(Study	2).	It	focuses	on	the	influence	of	repetition-spacing	on	

the	acquisition	of	multiword	sequences.	In	a	modified	version	of	the	Hebb	lexical	decision	

task,	participants	were	presented	with	a	multiword	sequence	 that	was	repeated	every	

4th,	7th,	10th,	20th,	30th	or	60th	trial,	depending	on	the	spacing	condition.	In	Chapter	4,	

I	 present	 an	 experimental	 study	 (Study	 3)	 that	 examined	 the	 influence	 of	 repetition-

spacing	on	sequence	learning	in	baboons.	The	aim	of	this	study	was	to	isolate	the	chunking	

mechanisms	 from	 the	 influence	 of	 individuals’	 preexisting	 linguistic	 knowledge	 and	

expectations	of	regularities	during	sequence	learning.		



	 20	

In	 Chapter	 5,	 I	 discuss	 the	 results	 of	 these	 three	 studies,	 as	 well	 as	 other	 studies	

conducted	 by	 our	 research	 team,	 and	 consider	 their	 implications	 for	 chunking	 as	 a	

domain-general	mechanism	 in	 sequence	 learning.	 I	 then	 consider	 the	 extent	 to	which	

chunking	can	account	for	the	results	of	the	experiments.	

Finally,	in	Chapter	6,	I	provide	a	general	discussion	of	the	experimental	results	I	have	

obtained	 and	 of	 the	 limitations	 of	 the	 present	work.	 I	 also	 identify	 key	 questions	 and	

directions	for	future	research.		  
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Part I 

Theoretical background 
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Chapter 1: Introduction 

As	the	story	goes,	 the	first	recorded	psychological	experiment	to	study	the	origin	of	

language	was	conducted	by	the	Egyptian	Pharaoh	Psammetichus	I	in	around	429	BC.	In	

an	 attempt	 to	 find	 the	 root	 of	 human	 language,	 the	 original	 language,	 he	 ordered	 two	

newborn	children	to	be	given	to	a	shepherd	with	the	strict	instruction	that	no	one	speak	

to	 them.	 The	 Pharaoh	 believed	 that	 by	 raising	 the	 children	 in	 complete	 isolation	 and	

depriving	them	of	any	linguistic	input,	the	first	word	they	uttered	would	reveal	the	root	

language.	The	experiment	culminated	in	one	of	the	children	saying	βεκός,	 the	Phrygian	

word	for	bread,	leading	the	Pharaoh	to	conclude	that	the	original	language	was	Phrygian.	

Although	the	Pharaoh's	experiment	obviously	lacked	scientific	rigour,	it	clearly	illustrates	

the	fact	that	research	into	language	acquisition	has	been	a	subject	of	great	interest	since	

the	earliest	days	of	human	history.	

Over	 the	 years,	 various	 theories	 have	 been	 put	 forward	 to	 explain	 how	 individuals	

acquire	and	produce	language.	However,	it	was	not	until	the	middle	of	the	20th	century	

that	research	into	language	acquisition	in	the	fields	of	linguistics	and	psychology	reached	

a	 turning	 point	 with	 the	 publication	 of	 Noam	 Chomsky’s	 book	 “Syntactic	 Structures”	

(1957)	and	his	 landmark	paper	“A	Review	of	BF	Skinner's	Verbal	Behavior”	(1959),	 in	

which	 he	 introduced	 the	 theory	 of	 generative	 grammar	 to	 account	 for	 language	

acquisition.	The	 impact	of	Chomsky’s	theory	was	such	that	 it	 is	regarded	as	one	of	 the	

pivotal	events	in	the	cognitive	revolution,	shaping	the	development	of	the	field	for	almost	

50	years.	It	was	not	until	the	late	1980s	that	a	novel	theory	succeeded	in	challenging	the	

generative	approach.	In	the	two	following	sections,	I	will	briefly	describe	both	theories	of	

language	acquisition.	
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1. Theory of generative grammar: Language as an innate ability 
	
Generative	grammar	encompasses	the	linguistic	theories	of	syntax	that	postulate	the	

existence	of	a	set	of	 innate	abstract	grammatical	 rules	 that	operate	over	word	classes,	

allowing	humans	to	produce	and	understand	an	infinite	number	of	grammatically	correct	

sentences	 using	 a	 finite	 set	 of	 formal	 rules	 and	 vocabulary.	 In	 this	 view,	 language	

proficiency	results	from	an	innate	capacity	for	language	processing	shared	by	all	human	

languages,	known	as	Universal	Grammar	(UG).	UG	is	defined	as	the	“system	of	categories,	

mechanisms	and	contraints	shared	by	all	human	languages	and	considered	to	be	innate”	

(O’Grady	et	al.,	1997,	p.	195).	It	includes	universal	principles,	which	are	presumed	to	be	

the	common	aspects	and	constraints	of	all	natural	 languages,	 and	parameters,	 a	 set	of	

“switches”	 that	can	be	either	turned	on	or	off	and	are	responsible	 for	 the	grammatical	

variation	between	languages.	These	principles	are	assumed	to	be	arbitrary	and	cannot	be	

explained	in	terms	of	learning	or	cognitive	constraints	(Dąbrowska,	2015).			

Over	the	years,	this	theory	has	evolved	into	different	frameworks,	such	as	the	Principles	

and	Parameters	Theory	and	the	Minimalist	Program	 (Chomsky,	2014),	with	 the	words-

and-rules	approach	being	one	of	the	most	influential	 in	psychology.	Following	the	core	

ideas	 of	 generative	 grammar,	 Pinker	 (1994,	 1998)	 proposed	 that	 not	 every	 linguistic	

construction	can	be	explained	in	terms	of	rules.	This	is	particularly	the	case	with	the	past	

tense	 of	 irregular	 verbs	 in	 English,	 as	well	 as	 some	 idiomatic	multiword	 expressions.	

Instead,	language	acquisition	would	be	based	on	an	interplay	between	a	mental	lexicon	

acquired	 through	 experience	 and	 innate	 grammatical	 rules,	 both	 of	 which	 depend	 on	

distinct	neural	systems	(Pinker	&	Ullman,	2002;	Ullman,	2001).	Thus,	learners	memorise	

single	words	and	morphemes	that	they	encounter,	which	are	then	stored	in	the	mental	

lexicon.	These	lexical	units	are	combined	into	complex	words,	phrases	and	sentences	by	

applying	a	set	of	rules.	
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	Regardless	of	the	framework	adopted,	the	fundamental	tenet	common	to	all	generative	

approaches	is	the	so-called	poverty	of	stimulus,	which	posits	that	natural	language	lacks	

the	necessary	information	for	learners	to	acquire	it	from	the	input	alone	(Chomsky,	1980).	

Interestingly,	 this	 idea	was	challenged	around	the	same	time	that	Pinker	proposed	the	

words-and-rules	 theory.	 In	 fact,	 analysis	 of	 corpora	 of	 child-directed	 speech	 and	 a	

growing	body	of	empirical	work	revealed	that	the	information	contained	in	the	input	is	

much	richer	than	previously	thought	(e.g.,	Brent	&	Cartwright,	1996;	Cameron-Faulkner	

et	al.,	2003;	Christiansen	et	al.,	1998;	Morgan	&	Newport,	1981;	Redington	et	al.,	1998;	

Redington	&	Chater,	1997;	Saffran,	Aslin,	et	al.,	1996;	Saffran,	Newport,	et	al.,	1996).	These	

new	findings	gave	rise	to	an	alternative	theoretical	perspective	on	language	acquisition	

known	as	usage-based	approach.	

2. Usage-based approaches: Language acquisition as a combination 
of usage and domain-general mechanisms 
	
In	contrast	 to	the	generative	theory,	usage-based	approaches	reject	 the	existence	of	

any	innate	linguistic	knowledge	and	argue	that	language	knowledge	emerges	gradually	

through	 language	 use	 and	 generalisation.	 Grammatical	 rules	 are	 no	 longer	 seen	 as	

independent	 of	 language	 use,	 but	 rather	 as	 having	 been	 inferred	 at	 some	 point	 from	

linguistic	experience	(Behrens,	2009).		Moreover,	language	acquisition	is	considered	to	be	

driven	by	children’s	desire	to	communicate	with	others,	rather	than	simply	developing	

according	to	a	hard-wired	cognitive	blueprint.		

According	 to	 this	 view,	 language	 acquisition	 is	 based	 on	 three	 cognitive	 processes:	

entrenchment,	categorisation	and	generalisation.	First,	learners	create	memory	traces	of	

frequently	repeated	items	and	reinforce	them	with	each	new	repetition	of	the	same	item.	

Secondly,	 they	 categorise	 similar	 items	 by	 comparing	 stored	 items	 with	 new	 items.	
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Finally,	once	enough	items	have	been	stored	within	the	same	category,	they	generalise	

across	them	to	generate	knowledge	about	the	abstract	properties	of	language,	including	

syntax,	grammatical	categories	and	semantics	(Abbot-Smith	&	Tomasello,	2006;	Behrens,	

2009).	Contrary	to	the	words-and-rules	approach,	the	stored	items	are	no	longer	limited	

to	 morphemes	 and	 single	 words,	 but	 also	 include	 constructions	 of	 a	 varying	 level	 of	

complexity	(Goldberg,	2006;	Ibbotson,	2013).	

Constructions	 are	 defined	 as	 a	 learned	 pairing	 of	 (written	 or	 phonetic)	 form	 and	

function-meaning	 (Goldberg,	 1995;	 Goldberg	 &	 Herbst,	 2021).	 As	 their	 definition	

suggests,	 constructions	contain	 information	about	 their	use	at	different	 levels,	 such	as	

structural	properties,	semantic	properties	and	pragmatic	properties	(Goldberg	&	Suttle,	

2010).	They	can	range	 from	simple	 linguistic	 forms	(e.g.	morphemes,	 single	words)	 to	

more	complex	structures	such	as	complex	words	and	multiword	sequences	(e.g.	phrases,	

formulaic	language,	idioms,	comparative	conditional	constructions).	

Importantly,	constructions	are	not	fixed	patterns	once	acquired,	but	can	evolve	over	

time	to	adapt	 to	 language	use.	Although	some	constructions	may	be	stored	as	a	whole	

because	of	their	high	frequency	or	non-compositional	nature	(Bybee,	2006;	Tomasello,	

2003).	The	objective	of	 this	 thesis	 is	 to	examine	 the	acquisition	of	a	particular	 type	of	

construction,	multiword	sequences.	In	the	following	subsection	I	will	provide	a	definition	

of	a	multiword	sequence	and	also	present	experimental	research	that	supports	the	claim	

that	multiword	sequences	are	building	blocks	of	language.	

2.1. Multiword sequences: A building block of language 
	
Multiword	 sequences	are	often	defined	as	 a	number	of	 consecutive	words	 that	 are	

stored	and	retrieved	from	memory	as	a	whole	(Wray,	2002),	thus	acting	as	a	single	unit	

and	 resulting	 in	 a	 processing	 advantage	 over	 a	 sentence	 generated	 on	 the	 fly.	 These	
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include	a	wide	range	of	linguistic	phenomena	such	as	collocations	(e.g.,	strong	coffee;	café	

corsé;	café	fuerte),	binomials	(e.g.,	black	and	white;	noir	et	blanc;	blanco	y	negro),	phrasal	

verbs	(e.g.,	pick	up;	there	seem	to	be	no	phrasal	verbs	in	French	or	Spanish),	idioms	(e.g.,	

kick	the	bucket;	casser	sa	pipe;	estirar	la	pata),	proverbs	(e.g.,	walls	have	ears;	les	murs	ont	

des	oreilles;	las	paredes	oyen)	and	frequent	compositional	phrases	(e.g.,	I	don’t	know;	je	ne	

sais	pas;	no	sé).	 It	 is	worth	noting	 that	 this	processing	advantage	may	also	result	 from	

simultaneous	access	to	each	component	or	multiple	combinations	of	the	sequence,	rather	

than	from	access	to	the	sequence	as	a	whole	(Wray,	2012).	

Before	the	advent	of	usage-based	approaches,	single	words	and	rules	were	seen	as	the	

building	blocks	of	language,	and	multiword	sequences	as	the	product	of	the	combination	

of	these	elements.	Since	then,	extensive	work	on	corpus	analysis	has	shown	that	language	

is	highly	repetitive	and	consists	largely	of	multiword	sequences.	For	instance,	Lieven	et	

al.	(2003)	recorded	the	speech	of	a	two-year-old	infant	for	six	weeks	and	found	that	about	

half	of	their	discourse	consisted	of	multiword	sequences,	54%	of	which	had	been	used	

previously	 during	 the	 recording.	 Similarly,	 Bannard	 and	Matthews	 (2008)	 analysed	 a	

corpus	of	one	mother’s	speech	to	her	child	and	showed	that	many	multiword	sequences	

were	 as	 frequent	 or	 more	 frequent	 than	 single	 English	 words	 (see	 Figure	 1).	 More	

recently,	Xu	et	 al.	 (2023)	 found	 that	 infants	begin	 to	produce	multiword	 sequences	of	

varying	lengths,	from	two	to	five	words,	as	early	as	14	months	of	age,	and	that	their	use	

increases	with	age.	Interestingly,	this	pattern	is	not	unique	to	spoken	language	and	has	

also	 been	 observed	 in	 written	 language,	 where	 multiword	 sequences	 account	 for	

approximately	50%	of	written	discourse	(e.g.,	Erman	&	Warren,	2000;	Y.	Wang,	2019).		
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Figure	1.	Frequency	of	n-grams	plotted	against	their	rank	order,	on	logarithmic	scales.	

Comparison	of	four-word	sequences	and	single	words.	Figure	adapted	from	Bannard	and	

Matthews	(2008).	

In	 addition	 to	 corpus	 analyses,	 a	 number	 of	 developmental	 studies	 have	 provided	

further	 evidence	 that	 children	 and	 adults	 are	 sensitive	 to	 the	 statistical	 properties	 of	

multiword	sequences	and	actively	use	them	in	language	comprehension	and	production	

(Abu-Zhaya	et	al.,	2022;	Christiansen	&	Arnon,	2017).	For	instance,	11-	and	12-month-

olds	 are	 already	 able	 to	 discriminate	 between	 frequent	 (e.g.,	 clap	 your	 hands)	 and	

infrequent	multiword	sequences	(e.g.,	take	your	hands,	Skarabela	et	al.,	2021),	whereas	2-	

and	3-year-olds	are	more	likely	to	correctly	repeat	frequent	four-word	phrases	(e.g,	you	

want	to	play)	than	less	frequent	ones	(e.g.,	you	want	to	work,	Bannard	&	Matthews,	2008;	

Matthews	&	Bannard,	2010),	 and	4-year-olds	are	better	at	producing	 irregular	plurals	

when	 presented	 in	 a	 familiar	 context	 (e.g.,	 On	 your	 –	 feet;	 Arnon	 &	 Clark,	 2011).	
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Furthermore,	multiword	sequences	acquired	 in	early	childhood	have	been	found	to	be	

processed	faster	in	adulthood	(Arnon	et	al.,	2017;	Elsherif	et	al.,	2020).		

Similar	to	children,	adult	speakers	are	faster	at	recognising	and	producing	frequent	

multiword	sequences	(Arnon	&	Snider,	2010;	Janssen	&	Barber,	2012;	Jeong	et	al.,	2021),	

with	 high-frequency	multiword	 sequences	 being	 better	 remembered	 (Tremblay	 et	 al.,	

2011;	Tremblay	&	Baayen,	2010)	and	shorter	to	produce	in	both	elicited	and	spontaneous	

speech	(Arnon	&	Cohen	Priva,	2013,	2014;	Siyanova-Chanturia	&	Janssen,	2018).		

Like	spoken	language,	reading	behaviour	has	been	shown	to	be	influenced	by	a	variety	

of	multiword	sequences.	For	instance,	frequent	binomials	(e.g.,	knife	and	fork)	are	read	

faster	 than	 their	 reversed	 forms	 (e.g.,	 fork	 and	 knife,	 Arcara	 et	 al.,	 2012;	 Siyanova-

Chanturia,	Conklin,	&	van	Heuven,	2011),		idioms	(e.g.,	at	the	end	of	the	day	–	“ultimately”)	

are	 read	 faster	 and	 elicit	 fewer	 and	 shorter	 fixations	 than	 non-idiomatic	 structurally	

equivalent	control	phrases	(e.g.,	at	the	end	of	the	war,	Conklin	&	Schmitt,	2008;	Siyanova-

Chanturia,	 Conklin,	 &	 Schmitt,	 2011;	 Yaneva	 et	 al.,	 2017),	 and	 collocations	 (e.g.,	 fatal	

mistake)	 are	 processed	 faster	 than	 control	 phrases	 (e.g.,	 extreme	 mistake,	 Jiang	 &	

Siyanova–Chanturia,	2023;	Sonbul,	2015;	Vilkaitė-Lozdienė,	2022),	even	when	they	are	

non-adjacent	or	reversed	(Vilkaitė,	2016;	Vilkaitė-Lozdienė	&	Conklin,	2021).	Note	that	

sensitivity	 to	multiword	sequences	during	reading	does	not	develop	 immediately	after	

the	acquisition	of	reading	skills.	Instead,	it	seems	to	emerge	around	the	age	of	ten	(Jiang	

et	al.,	2020).	

Neuroimaging	 studies	 have	 also	 provided	 evidence	 that	 the	 processing	 of	 high-

frequency	multiword	sequences	differs	from	that	of	infrequent	or	new	ones.	For	example,	

using	MEG,	Cappelle	et	al.	(2010)	found	that	listening	to	existent	phrasal	verbs	(e.g.,	rise	

up)	elicited	stronger	mismatch	negativity	than	nonexistent	ones	(e.g.,	fall	up),	suggesting	

that	existent	phrasal	verbs	are	stored	and	accessed	as	single	lexical	units	(see	also	Hanna	
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et	al.,	2017,	for	similar	results	in	EEG).	Similarly,	using	a	reading	task	coupled	with	EEG,	

Siyanova-Chanturia	 et	 al.	 (2017)	 found	 that	 frequent	 binomials	 (e.g.,	 knife	 and	 fork)	

elicited	 larger	 P300s	 and	 smaller	 N400s	 compared	 to	 infrequent	 strongly	 associated	

phrases	(e.g.,	spoon	and	fork)	and	semantic	violations	(e.g.,	theme	and	fork),	reflecting	the	

preactivation	 of	 frequent	 binomials	 in	 memory	 and	 their	 easier	 processing	 during	

reading.		

Interestingly,	 the	 effect	 of	 frequency	 on	multiword	 sequence	 processing	 has	 been	

shown	to	follow	a	continuum,	rather	than	being	an	all-or-none	phenomenon	with	either	

high-	 or	 low-frequency	 multiword	 sequences.	 Thus,	 the	 magnitude	 of	 the	 processing	

advantage	varies	across	the	continuum	from	low-	to	high-frequency	multiword	sequences	

(Arnon	&	Snider,	2010;	Hernández	et	al.,	2016;	Jiang	et	al.,	2020).	Moreover,	consistent	

with	usage-based	approaches,	the	processing	of	multiword	sequences	is	also	influenced	

by	other	linguistic	and	distributional	properties	such	as	meaningfulness	(e.g.,	Jolsvai	et	al.,	

2020),	familiarity	(e.g.,	Carrol	&	Littlemore,	2020),	flexibility	(e.g.,	Kyriacou	et	al.,	2020,	

2021,	2022),	association	strength	(e.g.,	Ellis	&	Ogden,	2017;	Li	et	al.,	2021;	Yi,	2018;	Yi	et	

al.,	2017),	and	predictability	(e.g.,	Chantavarin	et	al.,	2022;	Tremblay	&	Tucker,	2011).	

Despite	extensive	research	on	the	processing	of	multiword	sequences,	the	question	of	

how	they	are	acquired	in	real	time	has	been	largely	overlooked.	To	date,	only	two	studies	

addressed	this	issue	in	the	context	of	first-language	acquisition.	In	an	eye-tracking	study,	

Conklin	and	Carrol	(2020)	presented	participants	with	short	stories	containing	existing	

English	binomials	in	their	canonical	form	(e.g.,	brother	and	sister),	which	were	seen	once,	

and	novel	binomials	(e.g.,	grass	and	leaves),	which	were	seen	one	to	five	times	during	the	

task.	Participants	were	then	presented	with	the	existing	and	novel	binomials	in	reverse	

order	 (e.g.,	 sister	 and	 brother,	 leaves	 and	 grass).	 They	 found	 that	 participants	 were	

sensitive	to	the	co-occurrence	of	the	novel	binomials,	resulting	in	faster	reading	times	for	
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the	novel	binomials	 as	 the	number	of	 co-occurrences	 increased.	Moreover,	 the	 results	

revealed	a	processing	advantage	 for	 forward	novel	binomials	over	 their	reverse	 forms	

after	 only	 four	 to	 five	 exposures,	 indicating	 that	 participants	 rapidly	 detected	 and	

encoded	the	structure	of	 the	repeated	pattern.	Similarly,	Pellicer-Sánchez	et	al.	 (2022)	

investigated	 the	 learning	 and	 processing	 of	 novel	 collocations.	 Participants	 were	

presented	with	 short	 stories	 containing	 existing	 adjective-noun	 collocations	 (e.g.,	 loud	

noise)	and	novel	adjective-pseudoword	collocations	(e.g.,	trobe	noise),	which	were	seen	

either	 four	 or	 eight	 times	 depending	 on	 the	 experimental	 condition.	 They	 found	 that	

reading	 times	decreased	with	 exposure,	 and	 that	 reading	 times	 for	 existing	 and	novel	

collocations	were	comparable	by	the	fourth	exposure.	

Taken	 together,	 these	 findings	highlight	 the	 importance	of	multiword	sequences	 in	

language	processing	and	their	role	as	building	blocks	of	language.	Most	importantly,	they	

highlight	a	number	of	key	properties	that	affect	their	processing,	in	particular	the	key	role	

of	the	frequency	of	occurrence.	In	the	following	section,	I	will	review	some	of	the	cognitive	

mechanisms	that	have	been	proposed	to	underlie	the	acquisition	of	multiword	sequences,	

which	also	serve	as	the	theoretical	basis	for	the	work	presented	in	this	thesis.					

3. Learning mechanisms in usage-based approaches 

3.1. Statistical learning 
	
In	 contrast	 with	 the	 generative	 assumption	 that	 language	 acquisition	 can	 only	 be	

explained	 by	 innate	 grammatical	 knowledge,	 usage-based	 approaches	 assume	 that	

language	 acquisition	 relies	 on	 domain-general	mechanisms	 that	 allow	 us	 to	 learn	 the	

information	contained	in	the	input.	One	of	these	key	mechanisms	is	the	ability	to	track	

repeated	 sequential	 patterns	 in	 the	 language	 stream,	 known	 as	 statistical	 learning	

(Goldberg	&	Suttle,	2010;	Tomasello,	2003).		
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Statistical	learning	refers	to	the	sensitivity	and	ability	of	the	cognitive	system	to	exploit	

the	statistical	properties	of	the	input,	such	as	frequency,	variability	and	probability	of	co-

occurrence,	to	learn	repeated	patterns	and	regularities	from	the	environment	(Erickson	

&	Thiessen,	2015).	It	is	regarded	as	an	incidental	learning	process	that	occurs	by	mere	

exposure	(Aslin,	2018),	without	any	intention	to	learn	and	without	explicit	knowledge	of	

what	has	been	learnt,	or	at	least	without	full	conscious	awareness	(Christiansen,	2019;	

Cleeremans	et	al.,	1998;	Smalle	&	Möttönen,	2023).	

Statistical	 learning	was	 first	described	by	Saffran,	Aslin	et	 al.	 (1996)	 to	address	 the	

problem	of	language	acquisition,	namely	how	infants	are	able	to	segment	natural	speech	

into	words	in	the	absence	of	clear	acoustic	cues.	In	this	study,	8-month-old	infants	were	

exposed	for	2	minutes	to	a	continuous	speech	stream	consisting	of	four	nonsense	words	

of	 three	 randomly	concatenated	syllables	 (e.g.	bidaku-padoti-golabu-tupiro),	 for	which	

the	statistical	relationship	between	the	syllables	was	the	only	exploitable	cue	for	correct	

segmentation.	Indeed,	two	syllables	forming	a	word,	such	as	'bi'	and	'da',	always	appeared	

together,	with	the	appearance	of	one	predicting	the	appearance	of	the	other.	On	the	other	

hand,	'ku'	and	'pa'	were	not	fully	predictive	of	each	other	(see	Figure	2).	Therefore,	the	

transition	probabilities	(TPs)	of	the	intra-word	syllables	(e.g.	'bida')	were	higher	than	the	

TPs	 of	 the	 inter-word	 syllables	 (e.g.	 'ku-pa').	 After	 exposure,	 infants	 successfully	

discriminated	 familiar	words	 from	novel	words	 (e.g.,	 kudabi,	 Experiment	 1)	 and	 from	

part-words	 (e.g.,	 dakupa,	 Experiment	 2).	 These	 results,	 together	with	 a	 replication	 of	

these	findings	in	adults	(Saffran,	Newport,	et	al.,	1996),	marked	a	major	turning	point	in	

the	nature-nurture	debate	by	demonstrating	 that	 language	 can	 indeed	be	 acquired	by	

relying	on	environmental	cues	extracted	via	domain-general	learning	mechanisms.	
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Figure	 2.	 Illustration	 of	 the	 stimuli	 used	 by	 Saffran	 et	 al.	 (1996)	 to	 study	 statistical	

learning	in	8-month-old	infants.	(a)	The	list	of	syllables	and	three-syllable	words.	(b)	The	

statistical	structure	of	the	words	and	part-words.	Figure	adapted	from	Aslin	(2018).	

Since	the	foundational	studies	by	Saffran	and	colleagues,	a	substantial	body	of	research	

has	demonstrated	that	statistical	learning	is	a	more	powerful	mechanism	than	previously	

thought,	 capable	 of	 accounting	 for	 a	 wide	 range	 of	 aspects	 of	 language	 acquisition,	

including	word	segmentation	(e.g.,	Aslin	et	al.,	1998;	Johnson	&	Tyler,	2010;	Pelucchi	et	

al.,	 2009b,	 2009a;	 Saffran,	 2001),	 phonetical	 learning	 (e.g.,	 Maye	 et	 al.,	 2002,	 2008;	

Thiessen	&	Saffran,	2003,	2007;	Weiss	et	al.,	2010),	word	mapping	(e.g.,	Estes	et	al.,	2007;	

Smith	&	Yu,	2008;	Suanda	et	al.,	2014;	Vlach	&	DeBrock,	2019;	Vouloumanos	&	Werker,	

2009),	syntax	learning	(e.g.,	Kidd,	2012;	Saffran,	2002;	Saffran	&	Wilson,	2003;	Thompson	

&	Newport,	 2007),	 and	 non-adjacent	 pattern	 learning	 (e.g.,	 Frost	 et	 al.,	 2020;	 Frost	&	

Monaghan,	2016;	Gómez,	2002;	Newport	&	Aslin,	2004;	Romberg	&	Saffran,	2010;	F.	H.	

Wang	et	al.,	2019).	The	latter	is	particularly	important	for	language	acquisition,	given	that	

the	early	multiword	sequences	acquired	by	children	are	frames	(Tomasello,	2001),	a	type	

of	 construction	 that	 has	 open	 slots	 and	 can	 contain	 both	 adjacent	 and	 non-adjacent	

elements	 (e.g.,	 	 I	wanna	X,	 I'm	X-ing	 it,	The	Xer,	 the	 Yer).	 Recent	 behavioural	 evidence	

bi	da	ku pa do	ti	go	la	bu	tu	pi	ro
Word	1 Word	2 Word	3 Word	4

Test	Word Test	Part-word

P(da|bi)	=	1
P(ku|da)	=	1

P(go|ti)	=	0.5
P(la|go)	=	1

(a)

(b)

.	.	. .	.	.
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suggests	 that	 the	 acquisition	 and	 production	 of	 multiword	 sequences	 may	 also	 be	

underpinned	by	basic	statistical	learning	mechanisms	(Isbilen,	McCauley,	et	al.,	2022).	

Although	statistical	learning	is	often	referred	to	as	a	learning	mechanism,	it	is	primarily	

an	 umbrella	 term	 used	 to	 describe	 the	 ability	 to	 exploit	 statistical	 regularities	 in	 the	

environment	 (Thiessen,	 2017).	 Indeed,	 the	 specific	 underlying	 mechanisms	 remain	 a	

matter	of	debate.	Among	all	the	proposals	that	have	been	put	forward,	we	can	distinguish	

between	the	TP	approach	and	the	chunking	approach	(Perruchet,	2019).	The	TP	approach	

assumes	 that	 we	 compute	 and	 encode	 transitional	 probabilities	 between	 successive	

elements	 of	 repeated	 sequences,	 whereas	 the	 chunking	 approach	 assumes	 that	 we	

segment	 and	 group	 repeated	 sequences	 into	 chunks.	 In	 this	 thesis,	 I	will	 focus	 on	 the	

chunking	 approach	 because	 usage-based	 approaches	 have	 identified	 it	 as	 a	 crucial	

process	 in	 in	 the	 formation	 and	 use	 of	multiword	 sequences	 (Bybee,	 2010;	 Ibbotson,	

2013).	 Furthermore,	 converging	 experimental	 and	 computational	 evidence	 has	 also	

shown	that	it	provides	a	better	fit	to	human	sequence	learning	data	compared	to	the	TP	

approach	(Emerson	&	Conway,	2023;	Isbilen	et	al.,	2020;	Perruchet,	2019;	Perruchet	&	

Pacton,	2006).	

3.2. Chunking 
	
Chunking	 refers	 to	 the	 process	 of	 associating	 and	 grouping	 together	 co-occurring	

sequences	of	items	into	single	processing	units	called	chunks	(Gobet	et	al.,	2001).	It	allows	

our	cognitive	system	to	rapidly	compress	information	to	overcome	memory	limitations	

and	increase	short-term	memory	capacity	(Cowan,	2001;	Mathy	&	Feldman,	2012;	Miller,	

1956),	as	well	as	to	retrieve	and	use	encoded	information	faster,	thus	facilitating	several	

cognitive	processes	(Christiansen	&	Chater,	2016;	Fonollosa	et	al.,	2015).	This	process	can	

be	either	deliberate	(explicit)	or	automatic	(implicit),	depending	on	how	and	when	it	
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occurs	(Gobet	et	al.,	2016).	In	either	case,	the	main	idea	behind	chunking	is	that	grouping	

items	together	into	larger	units	results	in	the	creation	of	a	single	memory	trace,	creating	

a	unified	representation	of	previously	separate	pieces	of	information.	In	this	thesis,	I	will	

focus	on	automatic	chunking	as	 it	 is	considered	to	be	the	main	mechanism	involved	in	

statistical	learning.		

Automatic	 chunking	 is	 defined	 as	 a	 non-controlled,	 unconscious	 and	 implicit	

continuous	 process	 in	 which	 co-occurring	 items	 are	 grouped	 together	 merely	 by	

repetition,	without	any	intention	to	learn.	It	usually	involves	processes	that	occur	in	long-

term	memory.	Automatic	chunking	is	thought	to	be	essential	for	language	acquisition,	as	

children	do	not	initially	store	linguistic	information	using	explicit	strategies,	but	rather	

learn	 linguistic	 regularities	 implicitly	 (Gobet,	 2017).	 Given	 the	 hierarchical	 nature	 of	

language,	this	type	of	chunking	is	also	crucial	for	its	processing	at	different	levels.	Indeed,	

our	system	encodes	incoming	information	into	chunks	that	are	progressively	reencoded	

into	larger	chunks,	thereby	forming	a	hierarchical	representation	of	the	input	consisting	

of	 chunks	 of	 different	 sizes	 and	 levels	 of	 abstraction	 (Chater	 et	 al.,	 2016;	 Isbilen	 &	

Christiansen,	2018).	For	instance,	at	the	word-level,	letters	are	grouped	together	to	form	

larger	processing	units,	such	as	graphemes	and	syllable	constituents	like	onsets	or	rimes	

(e.g.,	Brand	et	al.,	2007;	LaBerge	&	Samuels,	1974;	Perry,	2023;	Rey	et	al.,	1998,	2000;	Rey	

&	Schiller,	2005;	Ziegler	&	Goswami,	2005),	while	at	the	phrase-level,	words	are	grouped	

together	into	multiword	sequences	and	constructions	(e.g.,	Bannard	&	Matthews,	2008;	

Bybee,	 2010;	 Carrol	 &	 Conklin,	 2020;	 Havron	 &	 Arnon,	 2020;	 Pulido,	 2021).	 Recent	

studies	have	also	shown	that	chunking	can	account	for	the	learning	and	generalisation	of	

non-adjacent	regularities	(Isbilen	et	al.,	2020;	Isbilen,	Frost,	et	al.,	2022).	

Over	the	past	two	decades,	the	chunking	approach	has	been	implemented	in	several	

computational	models	of	language	acquisition	and	processing,	ranging	from	single-word	
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segmentation	to	multiword	sequence	acquisition,	showing	that	chunking	can	successfully	

account	for	them.	In	the	following	subsection,	I	will	briefly	introduce	some	of	the	most	

prominent	models	in	the	literature.	Although	this	thesis	does	not	focus	on	computational	

modelling,	 these	 models	 will	 be	 used	 to	 compare	 their	 predictions	 with	 the	 results	

presented	in	the	experimental	chapters.	A	more	detailed	discussion	of	the	extent	to	which	

chunk-based	models	can	simulate	current	empirical	findings	will	be	presented	in	Chapter	

5.		

3.2.1. PARSER  
	
PARSER	 is	 probably	 one	 of	 the	 best-known	 chunk-based	 models	 to	 date.	 It	 was	

developed	 by	 Perruchet	 and	 Vinter	 (1998)	 to	 account	 for	 word	 segmentation	

using	psychologically	plausible	processes	of	memory,	attention,	and	associative	learning.		

Based	on	the	observation	that	humans	tend	to	segment	incoming	information	into	small	

pieces	of	variable	length,	PARSER	randomly	extracts	groups	of	components	(consisting	of	

1	to	3	components)	and	temporarily	stores	them	in	the	percept	shaper,	a	sort	of	mental	

lexicon.	Each	unit	is	initially	assigned	a	weight.	If	the	same	unit	is	encountered	again	in	

the	input,	its	weight	increases,	otherwise	it	decreases	as	a	result	of	decay	or	interference	

when	processing	similar	units	(see	Figure	3).	On	the	one	hand,	decay	eliminates	units	that	

do	not	occur	often	enough	 in	 the	 input.	On	 the	other	hand,	when	 the	weight	of	 a	unit	

reaches	 a	 certain	 threshold,	 the	model	 uses	 it	 to	 guide	 the	 perception	 of	 novel	 units,	

allowing	it	to	create	longer	units	from	smaller	components.	As	PARSER	selects	the	longest	

unit	 to	 guide	 perception,	 shorter	 units	 tend	 to	 disappear	 from	 memory	 due	 to	

interference.		
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Figure	3.	Operations	performed	by	PARSER	at	each	processing	step.	Figure	adapted	from	

Perruchet	and	Vinter	(1998).	

3.2.2. TRACX  
	

The	TRACX	model	is	a	connectionist	autoassociator	developed	by	French	et	al.	(2011)	

that	relies	on	the	recognition	of	previously	encountered	chunks	to	account	for	sequence	

learning.	Unlike	PARSER,	TRACX	has	no	explicit	storage	of	chunks,	instead	the	information	

is	stored	in	the	synaptic	weights	of	the	network.	To	recognise	repeated	chunks,	the	model	

incorporates	a	hidden	layer	that	acts	as	an	internal	memory	that	evolves	over	time	as	the	

model	 encounters	 new	 input.	 In	 this	 model,	 each	 successive	 item	 in	 a	 sequence	 is	

compared	to	the	previous	one,	and	the	combination	of	the	two	is	compared	to	the	internal	

memory.	Each	time	the	system	encounters	a	pair	of	items,	the	output	error	is	reduced	by	

back-propagation.	 If	 the	 error	 is	 below	 a	 predefined	 threshold,	 the	 pair	 of	 items	 is	

recognised	as	a	chunk	and	compared	with	the	next	item	in	the	sequence.	This	process	then	

continues,	with	each	input	item	being	added	to	the	growing	chunk	until	the	threshold	is	
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no	longer	met.	However,	if	the	threshold	is	not	met,	the	system	moves	on	to	the	next	pair	

of	 items.	More	recently,	Marechal	and	French	presented	TRACX2,	a	new	version	of	 the	

model	in	which	recognition	is	no	longer	an	all-or-nothing	process,	but	a	gradual	process	

based	on	output	error.	

3.2.3. Chunk-Based Learner   
	
A	more	recent	model	is	the	Chunk-Based	Learner	(CBL),	developed	by	McCauley	and	

Christiansen	(2019a).	In	contrast	to	PARSER	and	TRACX,	which	were	developed	to	model	

word	 segmentation,	 the	 CBL	 aims	 to	 model	 language	 comprehension	 and	 production	

through	the	discovery	and	online	use	of	multiword	sequences.	Indeed,	the	model	assumes	

that	language	acquisition	occurs	in	an	incremental	fashion,	on	a	word-by-word	basis,	by	

assembling	words	into	multiword	chunks	using	their	distributional	information,	namely	

backward	transitional	probabilities	(BTPs).	The	core	unit	in	this	model	is	therefore	the	

word	rather	than	the	syllable.		

To	simulate	language	comprehension,	the	model	first	compares	successive	incoming	

words	based	on	their	BTPs.	The	BTP	refers	to	the	probability	that	an	item	is	preceded	by	

another	item.	For	instance,	in	the	phrase	“the	dog”,	the	BTP	would	reflect	how	often	“the”	

precedes	“dog”	in	previously	encountered	language.	If	the	BTPs	between	them	reach	or	

surpass	 an	 average	 BTP,	 which	 is	 dynamically	 computed	 based	 on	 previously	

encountered	words,	the	model	considers	these	words	to	belong	to	the	same	chunk	and	

compares	them	with	the	next	word	in	the	sequence.	Conversely,	if	the	BTPs	are	below	the	

threshold,	a	boundary	is	inserted	between	the	words	and	a	chunk	consisting	of	the	word	

or	words	preceding	 the	 boundary	 is	 created	 and	 stored	 in	 the	 “chunkatory”,	 a	 sort	 of	

lexicon.	These	chunks	are	then	used	to	make	online	predictions	about	incoming	words	

and	to	determine	whether	they	should	be	chunked	together.	For	instance,	when	the	model	
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processes	a	pair	of	words,	it	immediately	chunks	them	together	if	the	pair	has	occurred	

more	than	twice	before,	either	as	a	complete	chunk	or	as	part	of	a	longer	chunk	in	the	

chunkatory.	 Otherwise,	 chunking	 is	 made	 based	 on	 the	 BTP	 between	 the	 words	 (see	

Figure	4	for	an	illustration	of	the	process).	Importantly,	since	there	is	no	decay,	the	words	

and	chunks	stored	in	the	chunkatory	never	disappear.		

	

Figure	4.	Online	processing	of	the	utterance	“the	dog	chased	the	cat”.	At	each	time	step,	

the	model	 calculates	 the	 backward	 transitional	 probabilities	 between	 adjacent	 words	

(indicated	by	the	backward	arrow’s	position	above	the	words).	If	they	exceed	the	average	

TP	threshold,	both	words	or	chunks	are	grouped	together.	If	they	are	below	the	running	

average,	they	are	not	grouped	and	are	added	to	the	chunkatory	as	separate	chunks.	Figure	

adapted	from	McCauley	and	Christiansen	(2019a).	

When	it	comes	to	simulate	language	production,	each	time	the	model	encounters	a	new	

utterance,	 it	 tries	 to	 reproduce	 it	 using	 only	 its	 chunkatory	 and	 the	 distributional	

information	it	acquired	while	processing	the	input.	To	achieve	this,	it	first	compares	the	

parts	of	the	utterance	with	the	chunks	present	in	the	chunkatory,	starting	with	the	longest	

chunk	in	the	chunkatory,	and	then	places	the	corresponding	chunks	in	a	bag-of-words	in	
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a	random	order.	The	model	then	attempts	to	place	them	in	the	correct	order	to	reproduce	

the	target	utterance	by	removing	from	the	bag-of-words	the	chunk	with	the	highest	BTP	

given	the	start	of	utterance	marker.	Once	the	initial	chunk	has	been	placed,	the	chunk	with	

the	highest	BTP	given	the	previously	produced	chunk	is	removed	and	placed	next.	This	

process	is	repeated	until	the	bag-of-words	is	empty.	Since	language	comprehension	and	

production	are	seen	as	intertwined	processes	in	this	model,	the	distributional	information	

and	the	chunkatory	are	also	updated	after	the	reproduction	of	an	utterance.		

Finally,	 it	 is	worth	noting	that	the	CBL	model	is	the	first	usage-based	model	to	have	

successfully	modelled	a	substantial	number	of	natural	 language	corpora	(i.e.	79	single-

child	corpora	for	perception	and	200	for	production	evaluation,	representing	a	total	of	29	

languages).	Furthermore,	an	adapted	version	of	the	CBL	model	has	been	shown	to	be	able	

to	track	and	generalise	over	non-adjacent	dependencies	to	create	lexical	frames	with	an	

open	slot	(e.g.,	on	X	own	->	on	your	own,	on	my	own;	McCauley	&	Christiansen,	2019b)	

3.2.4. CLASSIC and CLASSIC Utterance Boundary 
	
CLASSIC	(Jones	&	Rowland,	2017),	like	the	CBL,	simulates	language	acquisition	at	the	

multiword	level,	but	uses	phonetic	information	instead	of	words	as	input.	Thus,	the	basic	

units	here	are	phonemes	(e.g.,	aɪ/	n	i	d/	k	ɔ	f	i/	for	“I	need	coffee”).	From	this	input,	the	

model	gradually	acquires	longer	sequences	of	phonetic	information,	initially	combining	

co-occurring	phonemes	 into	 sublexical	 units	 (e.g.,	 syllables),	 then	 sublexical	 units	 into	

words,	 and	 finally,	 with	 sufficient	 exposure,	 words	 into	 multiword	 sequences.	 To	

illustrate	 this	 process,	 I	will	 use	 the	 utterance	 “I	 need	 coffee”.	 The	 first	 time	 CLASSIC	

encounters	this	utterance,	it	would	encode	it	into	eight	chunks	(e.g.,	aɪ/	n	i	d/	k	ɔ	f	i/),	one	

for	each	phoneme,	and	then	group	them	into	6	chunks	of	adjacent	phonemes	in	memory	

(i.e.,	aɪ,	ni,	id,	kɔ,	ɔf,	fi).	Importantly,	CLASSIC	does	not	cross	word	boundaries	to	chunk	
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adjacent	 items	 unless	 the	 chunks	 in	 the	 input	 correspond	 to	 words	 or	 multiword	

sequences.	On	a	second	presentation	of	the	same	utterance,	it	would	encode	it	in	5	chunks	

(e.g.,	/aɪ,	/ni,	d,	/	kɔ,	fi/),	and	then	learn	new	chunks	by	grouping	adjacent	items	(e.g.,	nid,	

kɔfi)	 proceeding	 from	 left	 to	 right,	 using	 the	 longest	 available	 chunk.	 In	 the	 third	

presentation,	the	utterance	would	be	encoded	into	chunks	corresponding	to	actual	words	

(e.g.,	 /aɪ,	 /nid,	 /kɔfi/),	 allowing	 CLASSIC	 to	 cross	 boundaries	 and	 chunk	 it	 into	 2	

multiword	sequences	(e.g.,	aɪ	nid,	nid	kɔfi).	Finally,	in	a	fourth	iteration,	the	model	would	

represent	the	entire	utterance	as	a	single	multiword	chunk	(e.g.,	/aɪ	nid	kɔfi/).	In	addition	

to	naturalistic	speech	acquisition,	CLASSIC	has	also	been	shown	to	be	able	 to	simulate	

children's	 performance	 on	 nonword	 repetition	 tasks,	 which	 are	 closely	 related	 to	

vocabulary	 learning	 (Jones	 &	 Rowland,	 2017).	 More	 recently,	 Cabiddu	 et	 al.	 (2023)	

proposed	 CLASSIC	Utterance	Boundary,	 an	 extended	 version	 of	 CLASSIC	 that	 can	 also	

perform	word	segmentation.	This	is	implemented	by	removing	the	initial	word	boundary	

information	in	the	input	and	adding	utterance	boundary	information	at	the	beginning	and	

end	of	the	utterance.	

4. Summary of previous literature and the objectives of this thesis  
	
In	this	first	chapter,	I	presented	the	two	main	theories	that	have	been	put	forward	to	

explain	language	acquisition,	focusing	specifically	on	the	usage-based	theory	that	serves	

as	the	theoretical	foundation	for	this	thesis.	I	then	reviewed	the	experimental	evidence	

supporting	 the	 claim	 that	multiword	 sequences	 form	 part	 of	 the	 backbone	 of	 human	

language	comprehension	and	production.	Finally,	I	reviewed	the	cognitive	processes	that	

have	 been	 proposed	 to	 underpin	 language	 acquisition,	 and	 by	 extension	 multiword	

sequence	 acquisition,	 and	 presented	 the	 main	 chunk-based	 models	 that	 have	 been	

developed	to	simulate	language	acquisition.	
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As	I	mentioned	in	the	introduction,	since	the	2000s	a	growing	number	of	studies	have	

focused	on	demonstrating	that	multiword	sequences	have	a	special	status	in	memory	and	

play	a	key	role	in	language	acquisition.	Much	of	this	literature	has	focused	on	investigating	

the	differential	processing	of	high-frequency	multiword	sequences	compared	to	matched	

control	 sequences.	 In	 addition,	 several	 other	 studies,	 primarily	 using	 eye-tracking	

techniques,	 have	 focused	 on	 what	 properties	 of	 these	 sequences	 influence	 their	

processing	in	real	time.	However,	the	question	of	how	they	are	acquired	has	been	largely	

overlooked.	To	date,	only	two	studies	have	addressed	this	question	(e.g.,	Conklin	&	Carrol,	

2020;	 Pellicer-Sánchez	 et	 al.,	 2022),	 focusing	 exclusively	 on	 the	 acquisition	 of	 novel	

binomials	and	collocations,	and	thus	leaving	aside	other	types	of	sequences.	Furthermore,	

in	 both	 studies,	 participants	 were	 exposed	 to	 a	 limited	 number	 of	 repetitions	 of	 the	

sequence,	making	it	difficult	to	know	whether	their	processing	would	be	the	same	with	

more	 exposure	 (i.e.,	 5	 repetitions	 for	 binomials	 and	 8	 repetitions	 for	 collocations).	

Therefore,	the	first	objective	of	this	thesis,	addressed	in	Chapter	2,	is	to	investigate	the	

extraction	and	learning	dynamics	of	different	types	of	multiword	sequences,	ranging	from	

relatively	 simple	 multiword	 sequences	 (i.e.,	 unrelated	 words)	 to	 already	 encoded	

sequences	(i.e.,	idioms),	and	to	examine	how	these	dynamics	evolve	with	further	exposure	

(up	to	45	repetitions).		

While	 the	 two	studies	mentioned	above	have	shown	that	only	a	 few	repetitions	are	

necessary	to	learn	a	new	sequence,	less	is	known	about	how	long	this	new	sequence	can	

survive	 in	memory	without	 being	 reinforced.	 According	 to	 the	 associative	 hypothesis	

implemented	in	PARSER,	sequences	that	are	not	sufficiently	reinforced	should	eventually	

disappear	 from	 memory.	 To	 bridge	 the	 gap,	 Chapter	 3	 focuses	 on	 the	 influence	 of	

repetition-spacing	(i.e.,	the	distance	between	each	repetition	of	a	repeated	sequence)	on	

the	acquisition	of	multiword	sequences.	
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The	 third	 objective	 of	 this	 thesis	 is	 to	 isolate	 and	 characterise	 the	memory-specific	

component	of	chunking	during	sequence	learning.	Given	the	difficulty	in	isolating	explicit	

and	implicit	processes	in	humans,	this	question	is	addressed	in	Chapter	4	by	examining	

the	influence	of	repetition-spacing	during	sequence	learning	in	baboons.	Indeed,	humans	

and	non-human	primates,	are	believed	to	share	common	associative	learning	mechanisms	

necessary	for	sequence	learning	(Malassis	et	al.,	2018;	Rey	et	al.,	2019,	2022).	

Finally,	in	Chapter	5,	I	summarise	the	results	of	this	thesis	as	well	as	previous	findings	

on	chunking	in	sequence	learning	in	various	domains.	

Before	proceeding	to	a	presentation	of	 the	experimental	work	(where	each	study	 is	

presented	as	a	stand-alone	empirical	article,	Chapters	2	to	4),	 in	the	next	section	I	will	

briefly	introduce	a	novel	task	that	my	collaborators	and	I	designed	to	study	multiword	

sequence	acquisition,	and	that	will	be	used	in	the	next	two	chapters	of	the	thesis	to	study	

the	extraction	and	acquisition	of	multiword	sequences.	

5. Hebb lexical decision task 
	

When	studying	sequence	extraction,	there	are	several	ways	to	assess	learning.	On	the	

one	hand,	there	are	offline	measures,	which	consist	in	evaluating	the	representations	of	

repeated	patterns	that	are	formed	after	learning,	without	looking	at	the	learning	process	

as	 it	 unfolds	 (e.g.,	 2AFC	 tasks).	 This	 type	 of	 measure	 is	 useful	 for	 assessing	 whether	

learning	has	occurred	or	for	quantifying	the	overall	extent	of	learning,	but	it	is	unsuitable	

for	 tracking	 the	 learning	 dynamics	 of	 a	 repeated	 pattern	 because	 it	 involves	 other	

cognitive	processes	unrelated	to	sequence	extraction,	such	as	decision	making	(Siegelman	

et	al.,	2018).	On	the	other	hand,	online	measures	provide	information	about	the	learning	

trajectories	of	repeated	patterns	and	how	their	representations	are	formed	during	task	

execution	(van	Witteloostuijn	et	al.,	2019).		
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Multiword	 sequence	 processing	 has	 been	 studied	 for	 the	 most	 part	 using	 online	

measures,	such	as	phrase	elicitation	tasks,	self-reading	tasks	and	eye-tracking	measures.	

While	 these	methods	offer	valuable	 insights	 into	multiword	sequence	processing,	 they	

usually	do	not	allow	us	to	measure	the	processing	of	each	item	in	the	sequence	accurately,	

with	the	exception	of	eye-tracking.	However,	eye-trackers	require	training	to	use	them	

correctly,	 and	 the	 cost	 of	 high-end	 eye-trackers	 can	 be	 prohibitive	 (Ivanchenko	 et	 al.,	

2021).	

Based	on	this	observation,	my	collaborators	and	I	propose	a	novel	task	that	is	easy	to	

implement	 on	 any	 computer	 and	 that	 allows	 us	 to	 study	 in	 detail	 how	 associations	

between	multiword	constituents	are	established	over	time:	the	Hebb	lexical	decision	task.	

This	task	is	an	adaptation	of	the	Hebb	letter	naming	task	developed	by	Rey	et	al.	(2020),	

which	combines	the	Hebb	repetition	task	with	a	classical	regularity	repetition	task.		

The	original	Hebb	repetition	task	requires	participants	to	recall	sequences	of	digits,	

with	 one	 sequence	 repeated	 every	 third	 trial.	 Hebb	 (1961)	 found	 that	 participants'	

performance	 gradually	 improved	 on	 the	 repeated	 sequences	 compared	 to	 the	 non-

repeated	 sequences.	 In	Rey	 et	 al.’s	 (2020)	 task,	 participants	have	 to	 read	 aloud	 single	

letters	 that	 are	 presented	 one	 at	 a	 time	 on	 a	 computer	 screen.	 Unbeknownst	 to	 the	

participants,	a	triplet	of	letters	(i.e.,	the	Hebb	sequence)	is	repeated	with	its	constituent	

letters	systematically	presented	in	the	same	order.	Similar	to	the	Hebb	repetition	task,	

random	 letters	 (i.e.,	 fillers)	 are	 inserted	 between	 two	 repetitions	 of	 the	 target	 letter	

triplets.	 The	 learning	 dynamics	 of	 the	 repeated	 triplet	 are	 tracked	 by	 looking	 at	 the	

evolution	of	response	times	(RTs)	to	the	letters	of	the	triplet.		

To	 study	 the	 dynamics	 of	 multiword	 sequence	 acquisition,	 the	 triplet	 of	 letters	 is	

replaced	by	a	triplet	of	words	in	the	Hebb	lexical	decision	task.	In	this	task,	participants	

are	asked	to	decide	as	quickly	as	possible	whether	a	sequence	of	letters	displayed	on	the	
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screen	 constitutes	 a	 real	 word	 or	 not,	 using	 their	 keyboard.	 For	 instance,	 on	 French	

AZERTY	keyboards,	participants	press	"M"	(for	words)	or	"Q"	(for	pseudowords).	RTs	and	

accuracy	are	recorded	for	each	word	and	pseudoword.	Each	target	remains	on	the	screen	

until	 the	 participant	 responds.	 The	 next	 target	 then	 appears	 immediately	 after	 the	

participant's	response	(see	Figure	5	for	an	illustration	of	the	task).	

	

Figure	5.	Experimental	procedure	of	the	Hebb	lexical	decision	task.	Panel	A:	 items	are	

presented	one	at	a	time	in	the	centre	of	the	screen.	Participants	have	to	classify	each	string	

as	a	word	or	a	pseudoword.	A	repeated	sequence	of	three	words	(e.g.,	W1:	“évier”	–	sink	;	

W2:	 “raisin”	 –	 grape	 ;	 W3:	 “flacon”	 –	 flask),	 always	 appearing	 in	 the	 same	 order,	 is	

interspersed	with	random	filler	words	(WR)	or	random	filler	pseudowords	(PWR).	Words	

in	blue	belong	to	the	repeated	triplet.	Panel	B:	one	triplet	of	words	(W1W2W3)	is	repeated	

several	times	and	a	variable	number	of	random	words	or	pseudowords	(WR	or	PWR)	are	

presented	between	two	repetitions	of	the	triplet.		

We	chose	to	replace	the	naming	task	with	a	lexical	decision	task	because	1)	it	simplifies	

data	 collection	 and	 can	 be	 easily	 implemented	 on	 crowdsourcing	 platforms	 such	 as	

Amazon	Mechanical	Turk	or	Prolific;	2)	subjects	must	consciously	process	each	item	to	

perform	 the	 task	 correctly;	 and	 3)	 unlike	 self-paced	 or	 eye-tracking	 tasks,	 it	 is	
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unambiguous	 when	 a	 subject	 makes	 an	 error	 during	 the	 task,	 providing	 us	 with	

complementary	information	about	the	processing	of	the	sequence.		
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Chapter 2: The dynamics of multiword 
sequence extraction 

Being	able	to	process	multiword	sequences	is	central	for	both	language	comprehension	

and	production.	Numerous	studies	support	this	claim,	but	less	is	known	about	the	way	

multiword	sequences	are	acquired,	and	more	specifically	how	associations	between	their	

constituents	are	established	over	time.	Here	we	adapted	Rey	et	al.’s	(2020)	Hebb	naming	

task	 into	 a	 Hebb	 lexical	 decision	 task	 to	 study	 the	 dynamics	 of	 multiword	 sequence	

extraction.	Participants	had	 to	read	 letter	strings	presented	on	a	computer	screen	and	

were	required	to	classify	them	as	words	or	pseudowords.	Unknown	to	the	participants,	a	

triplet	of	words	or	pseudowords	systematically	appeared	in	the	same	order	and	random	

words	or	pseudowords	were	inserted	between	two	repetitions	of	the	triplet.	We	found	

that	RTs	for	the	unpredictable	first	position	in	the	triplet	decreased	over	repetitions	(i.e.,	

indicating	 the	 presence	 of	 a	 repetition	 effect)	 but	 more	 slowly	 and	 with	 a	 different	

dynamic	compared	to	items	appearing	at	the	predictable	second	and	third	positions	in	the	

repeated	triplet	(i.e.,	showing	a	slightly	different	predictability	effect).	Implicit	and	explicit	

learning	 also	 varied	 as	 a	 function	 of	 the	 nature	 of	 the	 triplet	 (i.e.,	 unrelated	 words,	

pseudowords,	semantically	related	words,	or	idioms).	Overall,	these	results	provide	new	

empirical	 evidence	 about	 the	 dynamics	 of	 multiword	 sequence	 extraction,	 and	 more	

generally	about	the	role	of	statistical	learning	in	language	acquisition1.	

	

	
1	 This	 experimental	 chapter	 is	 an	 adapted	 version	 of	 the	 published	 manuscript	 in	 thesis	 format.	 The	
published	version	can	be	found	here:	Pinto	Arata,	L.,	Ordonez	Magro,	L.,	Ramisch,	C.,	Grainger,	J.,	&	Rey,	A.	
(2024).	The	dynamics	of	multiword	sequence	extraction.	Quarterly	 Journal	of	Experimental	Psychology.	
Doi:	10.1177/17470218241228548	



	 48	

Introduction	

Humans	 are	 constantly	 exposed	 to	 and	 produce	 an	 unlimited	 number	 of	 novel	

utterances	and	this	generative	ability	has	long	been	considered	as	a	hallmark	of	human	

language.	 For	 decades,	 generative	 linguists	 have	 argued	 that	 this	 phenomenon	 is	

explained	 by	 an	 innate	 system	 of	 abstract	 grammatical	 rules	 known	 as	 the	 “universal	

grammar	 hypothesis”	 (e.g.,	 Chomsky,	 1957).	 Distinct	 cognitive	 abilities	 supported	 by	

different	neural	systems	may	allow	people	to	generate	complex	utterances	(Ullman	et	al.,	

2005).	For	example,	a	mental	 lexicon	 including	simple	 linguistic	 forms	(e.g.,	 individual	

words,	 morphemes)	 combined	 with	 a	 mental	 grammar	 including	 combinatorial	 rules	

would	enable	the	formation	of	an	infinite	number	of	sentences	(Pinker,	1991;	Pinker	&	

Ullman,	2002).	

More	recently,	usage-based	approaches	to	language	have	provided	an	alternative	view	

to	 account	 for	 the	 mechanisms	 involved	 in	 language	 acquisition	 (e.g.,	 Croft,	 2001;	

Goldberg,	2006;	Tomasello,	2003).	According	to	 this	view,	 language	gradually	emerges	

through	 the	 interaction	 between	 general	 cognitive	 mechanisms	 and	 the	 repeated	

exposure	 to	 concrete	 items	 (Ibbotson,	 2013).	 Learners	 are	 thought	 to	 store	 incoming	

utterances	 and	 to	 generate	 knowledge	 about	 the	 properties	 of	 these	 utterances	 (e.g.,	

grammatical	 categories,	 semantics)	 by	 generalising	 over	 these	 stored	 multiword	

sequences	(Abbot-Smith	&	Tomasello,	2006).		

Over	 the	 last	 two	 decades,	 this	 approach	 has	 received	 multiple	 computational	

implementations	to	illustrate	this	learning	and	generalisation	process.	For	instance,	Solan	

et	 al.	 (2005)	 developed	 an	 algorithm	 (ADIOS	 for	 automatic	 distillation	 of	 structure)	

capable	of	generalising	over	different	kinds	of	sentences	from	a	given	corpus	using	the	

statistical	information	present	in	the	same	data.	In	the	same	vein,	Borensztajn	et	al.	(2009)	

used	an	automatic	data-oriented	parsing	procedure	to	identify	the	most	likely	multiword	
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sequences	used	in	child	speech	and	model	the	evolution	of	their	abstractness	over	time.	

Similarly,	 Meylan	 et	 al.	 (2017)	 developed	 a	 Bayesian	 statistical	 model	 to	 study	 the	

contribution	of	language	productivity	and	abstractness	to	children’s	linguistic	knowledge	

by	focusing	on	their	early	capacity	to	use	the	determiners	“a”	and	“the”	along	with	a	noun.	

Whilst	these	computational	modelling	studies	have	successfully	captured	multiword	

learning	process,	the	emergence	of	grammatical	knowledge	and	different	developmental	

patterns	more	 broadly,	 their	 reliance	 on	mathematical	 algorithms	 and	 comprehensive	

corpus	analysis	undermines	their	psychological	plausibility,	as	they	lack	realistic	learning	

mechanisms	 and	 memory	 constraints	 inherent	 to	 the	 real-time	 nature	 of	 language	

processing	(e.g.,	Christiansen	&	Chater,	2016).	Chunk-based	models,	on	the	other	hand,	

rely	on	a	simple	but	a	powerful	mechanism	(i.e.,	associative	learning)	that	can	account	for	

both	 memory	 constraints	 and	 language	 processing,	 ranging	 from	 single	 word	

segmentation	 (e.g.,	 Perruchet	&	Vinter,	 1998)	 to	multiword	 sequence	 acquisition	 (e.g.,	

Jones	&	Rowland,	2017).	 	For	instance,	McCauley	and	Christiansen	(2019)	developed	a	

computational	 model	 of	 language	 perception	 and	 production	 that	 assumes	 language	

acquisition	takes	place	in	an	incremental	fashion,	through	local	shallow	processes	based	

on	chunking	and	statistical	learning	mechanisms.	Processing	occurs	on	a	word-by-word	

basis	by	assembling	words	into	chunks	(i.e.,	sequences	of	words),	rather	than	via	a	full	

syntactic	analysis	as	assumed	by	generativist	 theories.	Given	 that	 language	perception	

and	production	are	thought	to	be	interwoven	processes	in	this	model,	both	are	assumed	

to	rely	on	the	same	chunks	and	distributional	statistics	learnt	during	language	acquisition.	

Thereby,	 this	 model	 relies	 on	 a	 chunk-by-chunk	 process	 instead	 of	 whole-sentence	

optimization.	Note	that	McCauley	and	Christiansen’s	model	is	the	first	usage-based	model	

having	used	a	large	number	of	natural	language	corpora	(i.e.,	79	single-child	corpora	for	

perception	and	200	for	production	evaluation,	representing	a	total	of	29	languages).		
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In	line	with	McCauley	and	Christiansen’s	(2019)	model,	numerous	studies	suggest	that	

language	users	are	sensitive	to	distributional	properties	at	different	levels	of	the	linguistic	

input,	 and	 that	 statistical	 learning	 plays	 a	 key	 role	 in	 language	 acquisition	 (e.g.,	 Aslin,	

2018;	Conway	et	al.,	2010;	Saffran	et	al.,	1996).	For	instance,	word	frequency	is	known	to	

affect	word	recognition	(e.g.,	Grainger,	1990)	and	speech	production	(e.g.,	Jescheniak	&	

Levelt,	1994).	There	is	also	evidence	that	linguistic	processing	is	not	only	affected	by	word	

frequency	 but	 also	 by	multiword	 frequency	 (Ambridge	 et	 al.,	 2015;	 Carrol	 &	 Conklin,	

2020).	In	these	studies,	a	multiword	sequence	is	often	defined	as	a	number	of	consecutive	

words	stored	and	retrieved	from	memory	as	a	whole	(Wray,	2002),	acting	as	a	single	unit	

and	resulting	in	a	processing	advantage	(e.g.,	“How	are	you	doing?”).	It	is	worth	noting,	

however,	that	it	has	also	been	suggested	that	this	processing	advantage	could	arise	from	

either	the	simultaneous	access	to	the	component	parts	of	a	sequence,	or	from	the	priming	

of	multiple	combinations	via	the	base	components,	rather	than	from	storing	the	sequence	

as	a	whole	(Wray,	2012,	p.234).	

Many	developmental	studies	have	also	tested	this	hypothesis.	For	instance,	Bannard	

and	Matthews	(2008)	used	a	sentence	repetition	task	and	found	that	2-	and	3-year-old	

children	are	more	 likely	 to	repeat	 frequent	sentences	correctly	 (e.g.,	you	want	 to	play)	

compared	to	less	frequent	ones	(e.g.,	you	want	to	work).	Arnon	and	Clark	(2011),	showed	

that	4-year-olds	are	better	at	producing	 irregular	plurals	when	presented	 in	a	 familiar	

context	(e.g.,	On	your	feet).	In	the	same	vein,	Janssen	and	Barber	(2012)	found	multiword	

frequency	effects	in	adults’	production	latencies	during	a	task	where	participants	had	to	

name	drawings	of	noun	and	adjective	pairs.	Arnon	and	Snider	(2010)	also	showed	that	

comprehension	 is	 affected	 by	multiword	 frequency.	 In	 a	 grammatical	 judgement	 task,	

adults	processed	frequent	four-word	phrases	faster	than	less	frequent	ones,	even	when	

the	frequency	of	the	individual	final	words,	bigrams	and	trigrams	were	controlled	for.	It	
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is	worth	noting	that	sensitivity	to	statistical	properties	of	multiword	sequences	seems	to	

be	present	early	on.	Indeed,	it	has	been	shown	that	eleven-	and	12-month-olds	can	already	

discriminate	frequent	multiword	sequences	from	infrequent	ones	(e.g.,	take	it	off	vs.	shake	

it	 of,	 Skarabela	 et	 al.,	 2021).	 Moreover,	 it	 has	 been	 demonstrated	 that	 multiword	

sequences	acquired	early	 in	childhood	are	processed	 faster	 in	adulthood	(Arnon	et	al.,	

2017).	

Similarly,	written	language	abounds	with	distributional	cues	(Arciuli	&	Simpson,	2012;	

Snell	&	Theeuwes,	2020;	Treiman	et	al.,	2014).	Reading	behaviour,	for	example,	has	also	

been	shown	to	be	influenced	by	the	frequency	and	predictability	of	multiword	phrases.	

For	instance,	frequent	three-word	binomial	phrases	(e.g.,	black	and	white)	are	read	faster	

than	 their	 reversed	 forms	 (i.e.,	white	 and	 black)	 (Siyanova-Chanturia,	 Conklin,	 &	 van	

Heuven,	2011)	and	idioms	(e.g.,	at	the	end	of	the	day	–	‘ultimately’)	are	read	faster	than	

non-idiomatic	structurally	equivalent	counterparts	(e.g.,	at	the	end	of	the	war)	(Conklin	&	

Schmitt,	2008;	Siyanova-Chanturia,	Conklin,	&	Schmitt,	2011).		

In	 the	 past	 decades,	 research	 has	 mainly	 focused	 on	 isolated	 word	 learning	 (e.g.,	

Pelucchi	et	al.,	2009;	Perruchet	&	Vinter,	1998;	Saffran	et	al.,	1996,	1997),	leaving	aside	

the	question	of	how	multiword	sequences	are	acquired	 in	real-time.	To	date,	only	one	

study	 has	 addressed	 this	 issue	 in	 the	 context	 of	 first	 language	 acquisition.	 In	 an	 eye-

tracking	 study,	 Conklin	 and	 Carrol	 (2020)	 presented	 participants	 with	 short	 stories	

containing	existing	English	binomials	in	their	canonical	form	(e.g.,	boys	and	girls),	which	

were	seen	once,	and	novel	binomials	(e.g.,	goats	and	pigs),	which	were	seen	one	to	five	

times	 during	 the	 task.	 Participants	 were	 then	 presented	 with	 the	 existing	 and	 novel	

binomials	 in	reverse	(e.g.,	girls	and	boys,	pigs	and	goats).	They	found	that	participants	

were	sensitive	to	the	co-occurrences	of	the	novel	binomials,	which	translated	into	faster	

reading	 times	 for	 the	 novel	 binomials	 as	 the	 number	 of	 co-occurrences	 increased.	 In	
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addition,	the	results	showed	an	advantage	for	forward	novel	binomials	over	their	reverse	

forms	after	only	four	to	five	exposures,	suggesting	that	participants	very	quickly	detected	

and	encoded	the	structure	of	the	repeated	pattern	(see	Sonbul	et	al.,	2022,	for	a	replication	

in	second	language	acquisition).	

Here,	 we	 propose	 to	 investigate	 how	 associations	 between	multiword	 constituents	

other	 than	binomials	 are	 established	over	 time	by	using	 a	 visual	 lexical	 decision	 task.	

Based	 on	 the	 assumption	 that	 vocabulary	 acquisition	 and	 performance	 on	 the	 Hebb	

repetition	learning	paradigm	(Hebb,	1961)	are	subserved	by	the	same	processes	(Mosse	

&	Jarrold,	2008;	Norris	et	al.,	2018;	Page	&	Norris,	2009;	Page	et	al.,	2013;	Smalle	et	al.,	

2016;	 Szmalec	 et	 al.,	 2009),	we	 used	 an	 adaptation	 of	 Rey	 et	 al.’s	 (2020)	 Hebb	 letter	

naming	task	to	study	the	learning	dynamics	of	repeated	words	triplets.		

In	the	original	Hebb	repetition	task,	participants	had	to	recall	sequences	of	digits	where	

one	 particular	 sequence	 was	 repeated	 every	 third	 trial.	 Hebb	 (1961)	 found	 that	

participants’	performance	gradually	improved	for	the	repeated	sequences	compared	to	

the	non-repeated	ones.	In	Rey	et	al.	(2020),	participants	had	to	read	aloud	the	names	of	

single	letters	that	were	presented	one	at	a	time	on	a	computer	screen.	Unknown	to	the	

participants,	a	triplet	of	letters	(i.e.,	the	Hebb	sequence)	was	repeated	with	its	constituent	

letters	 systematically	 presented	 in	 the	 same	 order.	 As	 in	 the	 standard	 Hebb	 learning	

paradigm,	 random	 letters	 (i.e.,	 fillers)	 were	 inserted	 between	 two	 repetitions	 of	 the	

critical	 letter	 triplets.	 The	 extraction	 dynamics	 of	 the	 repeated	 triplet	was	 tracked	 by	

looking	at	 the	evolution	of	response	 times	(RTs)	 to	 the	second	and	third	 letters	of	 the	

triplet.	RTs	for	these	two	letters	decreased	with	repetition	as	they	progressively	became	

predictable	 when	 learning	 occurred.	 To	 study	 the	 extraction	 dynamics	 of	 multiword	

sequences	in	the	present	experiment,	we	replaced	the	triplet	of	letters	used	in	Rey	et	al.	

(2020)	by	a	triplet	of	words	and	instead	of	using	a	naming	task,	we	used	a	lexical	decision	
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task	hence	simplifying	online	data	collection	and	providing	a	better	proxy	for	the	silent	

reading	that	occupies	the	vast	majority	of	skilled	reading	behaviour.	

The	reasons	for	using	the	Hebb	paradigm	to	investigate	multiword	acquisition	are	two-

fold.	First,	as	the	Hebb	paradigm	is	an	implicit	learning	measure,	it	allowed	us	to	study	the	

extraction	dynamics	of	multiword	sequences	in	conditions	where	participants	were	not	

necessarily	 aware	 of	 the	 repetitions.	 Indeed,	 as	 participants	 are	 asked	 to	 read	words	

without	 further	 instructions,	 knowledge	 of	 patterns	 of	 sequences	 can	 be	 attributed	 to	

implicit	learning	through	regularity	extraction.	Second,	it	allowed	us	to	study	the	online	

learning	trajectory	of	multiword	sequences	rather	than	solely	the	“offline”	end-product	of	

what	has	been	learned.	Indeed,	participants’	knowledge	can	be	the	same	at	the	end	of	the	

task	 (offline	 knowledge),	 but	 their	 learning	 trajectories	 may	 differ	 (Siegelman	 et	 al.,	

2017).	 By	 using	 an	 online	 learning	 task,	 we	 sought	 to	 provide	 a	 comprehensive	

characterization	of	the	process	of	word-to-word	associative	learning.	

Measuring	the	evolution	of	response	times	for	a	repeated	triplet	of	items	also	allowed	

us	to	study	separately	the	repetition	effect	from	the	predictability	effect.	Indeed,	because	

a	random	number	of	filler	items	occurred	between	two	repetitions	of	the	triplet,	the	first	

item	 in	 the	 triplet	 was	 not	 predictable	 and	 the	 evolution	 of	 RTs	 for	 this	 item	 can	 be	

considered	 as	 providing	 a	 good	 estimate	 of	 the	 repetition	 effect.	 In	 contrast,	 items	

occurring	at	Positions	2	and	3	of	the	triplet	benefit	from	the	immediately	preceding	item	

that	systematically	occurs	before	them	and	that	should	help	participants	anticipating	and	

predicting	the	next	item.	Previous	studies	in	sequence	learning	(e.g.,	Minier	et	al.,	2016;	

Rey	et	al.,	2019,	2020,	2022)	even	reported	a	stronger	predictability	effect	on	the	third	

item	of	the	triplet	(i.e.,	a	greater	decrease	in	RTs)	due	to	the	richer	contextual	information	

provided	by	the	two	previous	items.	This	experimental	paradigm	therefore	allowed	us	to	

study	the	differential	effect	of	repetition	and	predictability	on	the	memory	trace	of	each	
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item	 belonging	 to	 a	 repeated	 triplet	 and	 on	 the	 processing	 gains	 generated	 by	 these	

effects.	

Note	 that	 the	predictability	effect	 is	 closely	 linked	 to	 chunking	mechanisms	since	 it	

reflects	 the	 emergent	 association	 between	 several	 words	 that	 appear	 repeatedly	 in	 a	

sequence.	As	previously	mentioned,	chunking	mechanisms	are	also	considered	central	to	

several	models	of	sequence	learning	and	language	acquisition	(e.g.,	French	et	al.,	2011;	

Jones	 &	 Rowland,	 2017;	 McCauley	 &	 Christiansen,	 2019;	 Perruchet	 &	 Vinter,	 1998;	

Robinet	et	al.,	2011).	However,	less	is	known	about	the	precise	dynamics	related	to	the	

repeated	 presentation	 of	 a	 sequence	 of	 words	 and	 empirical	 evidence	 is	 needed	 to	

constrain	models	that	assume	a	central	role	for	chunking	mechanisms	in	the	development	

of	language	processing	skills.	The	present	set	of	experiments	has	been	designed	to	provide	

such	empirical	evidence	about	 the	dynamics	of	 these	 fundamental	associative	 learning	

mechanisms.	

In	 the	 present	 study,	 the	 learning	 and	 chunking	 dynamics	 of	 repeated	 triplets	was	

studied	in	four	Hebb	lexical	decision	experiments.	 In	Experiment	1,	 the	repeated	word	

triplet	was	composed	of	three	unrelated	words.	In	Experiment	2,	the	repeated	triplet	was	

composed	of	three	pseudowords	in	order	to	test	if	lexicality	had	an	effect	on	the	learning	

dynamics	 of	 the	 triplet.	 In	 Experiment	 3,	 the	 repeated	 triplet	was	 composed	 of	 three	

semantically	related	words	 in	order	to	test	 if	semantic	relatedness	would	facilitate	the	

development	of	word	associations.	In	Experiment	4,	the	repeated	triplet	corresponded	to	

an	existing	idiomatic	expression	to	test	if	the	learning	trajectory	of	the	repeated	triplet	

would	be	facilitated	by	activating	the	pre-existing	long-term	memory	representation	of	

the	triplet.	These	experiments	were	conducted	remotely	by	using	a	platform	for	online	

experimentation	 that	has	been	 frequently	used	 in	experimental	psychology	 to	conduct	

experiments	during	the	COVID-19	pandemic	(e.g.,	Fournet	et	al.,	2022;	Isbilen	et	al.,	2022;	
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Ordonez	 Magro	 et	 al.,	 2022).	 It	 is	 worth	 noting	 that	 recent	 research	 has	 shown	 that	

JavaScript-based	online	 experiment	platforms,	 such	as	LabVanced	and	PsychoJS,	 allow	

researchers	to	collect	reliable	data	that	replicate	the	findings	of	in-lab	studies	(e.g.,	Angele	

et	al.,	2022;	Mirault	et	al.,	2018).		

Experiment	1	

Methods		

Participants	

Forty-two	participants	(20	females;	Mage	=	24	years,	SD	=	3)	were	paid	for	taking	part	

in	 the	 experiment	 via	 Prolific	 (www.prolific.co).	 All	 participants	 reported	 to	 be	native	

French	 speakers,	 having	 no	 history	 of	 neurological	 or	 language	 impairment.	 Before	

starting	the	experiment,	participants	accepted	an	online	informed-consent	form.	Ethics	

approval	 was	 obtained	 from	 the	 “Comité	 de	 Protection	 des	 Personnes	 SUD-EST	 IV”	

(17/051).	

Given	 that	 participants	 were	 recruited	 online,	 their	 proficiency	 in	 French	 was	

measured	with	the	LexTALE	language	proficiency	test	(Brysbaert,	2013)	before	starting	

the	main	task.	This	test	consists	of	a	lexical	decision	task	with	no	time	pressure	where	

participants	are	presented	with	84	single-item	trials	(56	real	French	words,	28	French-

looking	 pseudowords),	 and	 are	 instructed	 to	 decide	 whether	 each	 presented	 letter	

sequence	 is	 a	 real	 French	word	 or	 not.	 Their	 average	 LexTALE	 vocabulary	 score	was	

86.53%	(SD	=	5.76).	Any	participant	whose	score	was	below	2.5	standard	deviations	from	

the	average	LexTALE	vocabulary	score	was	excluded	 from	the	analysis.	No	participant	

was	excluded	based	on	this	criterion.	The	final	dataset	consisted	of	1890	data	points	per	

condition,	 meeting	 the	 1600	 measurements	 per	 condition	 recommendation	 from	

Brysbaert	 and	 Stevens	 (2018).	 A	 summary	 of	 the	 participants’	 scores	 and	 standard	

deviations	on	the	LexTALE	task	for	each	experiment	is	provided	in	Appendix	A.	
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Materials	

We	adapted	Rey	et	al.	(2020)’s	naming	task	into	a	lexical	decision	task.	The	task	was	

composed	of	3	blocks	of	120	trials,	each	trial	corresponding	to	the	presentation	of	a	single	

item	 (word	 or	 pseudoword)	 in	 the	middle	 of	 the	 screen.	 A	 set	 of	 66	 words	 and	 180	

pseudowords	were	 used	 as	 items	 in	 this	 experiment.	 All	words	were	monosyllabic	 or	

disyllabic	singular	nouns.	They	were	composed	of	four-to-six	letters	and	were	selected	

from	the	French	database	Lexique	3.83	(New	&	Pallier,	2020).	Each	word	of	the	triplet	had	

a	freqfilms2	frequency	ranging	from	2	to	10	occurrences	per	million.	We	decided	to	use	

low-frequency	 words	 to	 maximise	 repetitions	 effects	 and	 increase	 the	 chances	 of	

revealing	any	processing	differences	between	positions	within	the	triplet.	 Indeed,	 low-

frequency	words	 elicit	 larger	 repetition	 effects	 compared	 to	 high-frequency	words	 in	

lexical	decision	tasks	(e.g.,	Scarborough	et	al.,	1977).		Filler	words	had	a	frequency	ranging	

from	 10	 to	 100	 occurrences	 per	 million.	 Pseudowords	 were	 drawn	 from	 the	 French	

Lexicon	Project	(Ferrand	et	al.,	2010).	They	were	monosyllabic	or	disyllabic	and	had	a	

length	from	four	to	six	letters.		

A	Latin-square	design	was	used	such	that	each	word	of	the	triplet	appeared	in	every	

possible	 position	 within	 the	 triplet	 across	 participants,	 leading	 to	 six	 possible	

combinations	of	the	same	triplet	of	words	(ABC,	ACB,	BAC,	BCA,	CAB,	CBA).	Seven	triplets	

of	words	were	used	and	were	seen	in	one	of	the	six	possible	combinations	(for	a	total	of	

7*3	=	21	words).	Each	participant	saw	one	triplet	in	a	specific	combination,	leading	to	7*6	

=	 42	 participants	 (e.g.,	 Participant	 1	 saw	 ABC	 while	 Participant	 2	 saw	 ACB	 instead	

throughout	the	task).	Each	triplet	appeared	15	times	per	experimental	block	(resulting	in	

a	total	of	45	repetitions	across	the	3	blocks)	and	was	separated	by	three	to	six	filler	words	

or	 filler	pseudowords	 (75	per	block).	Every	block	was	 composed	of	60	words	 (the	15	

repeated	 triplets,	 i.e.,	 45	words,	 and	15	 filler	words)	 and	60	pseudowords.	 Therefore,	
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there	were	an	equal	number	of	 ‘yes’	and	‘no’	responses	in	the	experiment	(i.e.,	180	for	

each	type	of	response).	Among	the	66	selected	words,	21	served	to	construct	the	7	triplets	

and	45	served	as	filler	words	during	the	experiment.	The	set	of	word	triplets	and	fillers	

are	listed	in	Appendix	B.		

In	order	to	obtain	more	detailed	information	about	participants’	explicit	knowledge	of	

the	 task,	 all	 participants	 responded	 to	 a	 short	 questionnaire	 after	 the	 experiment	

(similarly	to	Rey	et	al.,	2020;	Tosatto	et	al.,	2022).	The	first	question	was:	“Did	you	notice	

anything	 particular	 in	 this	 experiment?”,	 in	 case	 of	 a	 “Yes”	 response,	 the	 follow-up	

question	was	“Can	you	explain	what	you	noticed?”	If	participants	reported	noticing	the	

presentation	of	a	repeated	sequence	of	words,	they	were	asked	“Can	you	recall	the	words	

in	their	correct	serial	order?”.	If	the	answer	to	the	first	question	was	“No”,	the	following	

questions	were	displayed	“Did	you	notice	that	a	sequence	of	words	was	systematically	

repeated?”	and	“Can	you	recall	the	words	in	their	correct	serial	order?”.		

Apparatus	

The	experiment	was	implemented	in	LabVanced,	an	online	experiment	builder	(Finger	

et	al.,	2017)	and	participants	were	recruited	via	the	Prolific	platform	(www.prolific.co).	

Participants	 participated	 via	 their	 personal	 computer	 and	 we	 made	 sure	 that	 the	

experiment	 would	 not	 work	 on	 smartphones	 or	 tablets	 in	 order	 to	 keep	 the	 testing	

conditions	as	similar	as	possible	across	participants.	All	words	and	pseudowords	were	

presented	in	the	centre	of	the	computer	screen	using	a	20-point	Lato	black	font	on	a	white	

background.	

Procedure	

Before	the	experiment,	written	instructions	were	displayed	on	the	screen.	Participants	

were	instructed	to	decide	as	fast	as	possible	whether	the	letter	sequence	displayed	on	the	

screen	formed	or	not	a	French	word.	They	were	required	to	press	“M”	(for	words)	or	“Q”	
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(for	pseudowords)	on	their	keyboards	(which	are	at	extreme	positions	on	the	 left	and	

right	of	French	AZERTY	keyboards).	RTs	and	accuracy	were	recorded	for	each	word	and	

pseudoword.	 Each	 target	 stayed	 on	 the	 screen	 until	 the	 participant’s	 response.	

Subsequently,	the	next	target	appeared	immediately	after	the	participant’s	response.	To	

encourage	the	participants,	the	number	of	remaining	trials	was	displayed	at	the	end	of	

each	 block.	 The	 experiment	 lasted	 approximately	 10	 minutes.	 Figure	 1	 provides	 a	

schematic	description	of	this	experimental	paradigm.	

	

Figure	1.	Experimental	procedure	 for	 the	Hebb	 lexical	decision	paradigm.	Upper	part:	

items	are	presented	one	at	a	time	at	the	centre	of	the	computer	screen.	Participants	had	

to	classify	each	string	as	a	word	or	a	pseudoword.	A	repeated	triplet	of	three	words	(e.g.,	

W1:	“mule”	–	mule	;	W2:	“proie”	–	prey	;	W3:	“noeud”	–	knot)	always	appearing		in	the	same	

order	 was	 intermixed	 with	 random	 filler	 words	 (WR)	 or	 random	 filler	 pseudowords	

(PWR).	Words	 in	 blue	belong	 to	 the	 repeated	 triplet.	 Lower	part:	 one	 triplet	 of	words	

(W1W2W3)	 is	 repeated	 several	 times	 and	 a	 variable	 number	 of	 random	 words	 or	

pseudowords	(WR	or	PWR)	are	presented	between	two	repetitions	of	the	triplet.	
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Results	

Only	correct	trials	were	analysed	(97.06	%	of	the	data),	and	we	excluded	RTs	exceeding	

1500	ms	(0.98	%	of	data)	as	well	as	RTs	greater	 than	2.5	standard	deviations	above	a	

participant’s	mean	per	block	and	for	each	of	the	three	possible	positions	within	the	triplet	

(2.47	%).	The	mean	RTs	and	standard	deviations	computed	over	the	entire	sample	and	

for	each	block	are	presented	in	Table	1.	Data	analysis	was	performed	with	the	R	software	

(version	4.2.1)	using	linear	mixed-effects	models	(LMEs)	fitted	with	the	lmerTest	(version	

3.1-3;	Kuznetsova	et	al.,	2017)	and	the	lme4	packages	(version	1.1-29;	Bates	et	al.,	2015).	

The	model	 included	 the	maximum	 random	 structure	 that	 allowed	 convergence	 (Barr,	

2013;	Barr	et	al.,	2013),	that	is,	Position	(1	to	3),	Repetition	(1	to	45)	and	their	two-way	

interaction	as	fixed	effects,	participant	and	Item	sets	were	used	as	random	effects.	It	is	

worth	noting	that	Position	was	coded	using	repeated	contrast	coding	(i.e.,	Position	1:	-0.7	

-0.3;	Position	2:	0.3	-0.3;	Position	3:	0.3	0.7)	in	order	to	perform	pairwise	comparisons	

(Schad	et	al.,	2020),	and	Repetition	was	mean	centred	here	and	in	the	following	analyses.	

Word	 length	 and	 log-transformed	 word	 frequency	 for	 each	 word	 in	 the	 triplet	 were	

included	 as	 covariates	 to	 control	 for	 any	 word-level	 differences.	 Given	 that	 the	

distribution	of	RTs	was	close	to	normal	and	provided	good	fit	(established	through	visual	

inspection	of	QQ	plots	and	histograms),	no	data	transformation	was	performed	prior	to	

the	analysis.	The	results	of	the	model	are	shown	in	Table	2.	

Table	1		

Mean	response	times	(in	milliseconds)	and	standard	deviations	(in	parentheses)	for	each	

block	and	each	position	in	Experiment	1.	

	 Block	1	 Block	2	 Block	3	
Position	1	 617	(100)	 572	(95)	 581	(120)	
Position	2	 530	(153)	 410	(146)	 358	(136)	
Position	3	 523	(148)	 401	(126)	 374	(135)	
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Table	2		

Fixed	effects	of	the	mixed	model	for	Experiment	1.	

Predictors	 Estimate	 SE	 95%	CI	 p	
(Intercept)	 450.75	 74.30	 [305.12,	596.37]	 <.001	
Position	2	-	1	 -156.54	 3.69	 [-163.78,	-149.31]	 <.001	
Position	3	-	2	 -1.29	 3.67	 [-8.48,	5.90]	 .725	
Repetition	 -3.95	 0.12	 [-4.17,	-3.72]	 <.001	
Position	2	-	1	x	Repetition	 -4.63	 0.28	 [-5.19,	-4.07]	 <.001	
Position	3	-	2	x	Repetition	 0.87	 0.28	 [0.32,	1.43]	 .002	
Word	length	 4.38	 11.48	 [-18.11,	26.88]	 0.707	
Word	frequency	(log)	 5.58	 15.90	 [-25.58,	36.75]	 0.730	

Note.	CI:	confidence	interval;	SE:	standard	error.	

We	found	a	significant	effect	of	Repetition	with	an	overall	decrease	of	RTs	across	the	

experiment.	 As	 predicted,	 response	 times	 for	 Position	 2	were	 significantly	 faster	 than	

those	 for	 Position	 1,	 but	 they	 did	 not	 differ	 from	 Position	 3.	 Moreover,	 there	 was	 a	

significant	 negative	 interaction	 coefficient	 for	 the	 difference	 between	 Position	 2	 and	

Position	 1,	 and	 Repetition,	 and	 a	 significant	 positive	 interaction	 coefficient	 for	 the	

difference	between	Position	3	and	Position	2,	 and	Repetition,	 indicating	 that	 response	

time	differences	increased	across	repetitions.	No	significant	effects	were	found	for	word	

length	 and	 word	 frequency.	 To	 investigate	 where	 the	 significant	 difference	 between	

Position	1	compared	to	Positions	2	and	3	emerges,	we	ran	a	series	of	paired	sample	t-tests	

on	the	RTs	for	Position	1	and	the	average	RTs	for	Positions	2	and	3	on	each	repetition	of	

the	triplet.	We	found	that	a	significant	difference	emerged	on	the	fifth	trial,	t(38)	=	5.26,	

Bonferroni-adjusted	p	<	.001.	

To	 get	 a	 clearer	 picture	 of	 the	 learning	dynamics	 for	 each	position	 in	 the	 triplet	 of	

words,	Figure	2	represents	the	evolution	of	the	mean	response	times	for	each	position	in	

the	triplet	and	for	the	successive	45	repetitions	of	the	triplet.	Given	that	linear	regression	

only	captures	the	overall	change	of	Position	across	repetitions,	we	conducted	a	broken-
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stick	 linear	regression,	using	the	segmented	package	(version	1.6-0;	Muggeo,	2008),	 in	

order	to	account	for	the	evolution	of	the	learning	pattern	across	the	task.	In	broken-stick	

regression,	 multiple	 linear	 regressions	 are	 fitted	 and	 connected	 at	 certain	 estimated	

values	referred	as	breakpoints.	At	the	breakpoint	the	relationship	between	the	variables	

changes	 to	model	non-linear	 relationships	between	 two	variables.	Thus,	 each	position	

was	regressed	onto	Repetition	separately.	To	estimate	the	number	of	breakpoints	for	each	

position,	 a	 broken-stick	 regression	 model	 was	 built	 incrementally	 (i.e.,	 we	 added	 a	

breakpoint	estimate	to	each	successive	model).	For	each	model,	an	initial	guess	for	the	

breakpoint	was	provided,	and	then	the	optimal	breakpoints	were	calculated	by	the	model	

using	 an	 iterative	 fitting	 procedure	 with	 the	 default	 package	 parametrization	 (see	

Muggeo,	2008,	for	technical	details).	We	compared	each	new	model	with	the	previous	one	

(based	on	chi-squared	analysis)	and	selected	the	most	parsimonious	as	the	final	model.	

For	 Position	 1,	 the	 analysis	 revealed	 a	 breakpoint	 at	 repetition	 18.46,	 95%	CI	 [14.26,	

22.67],	with	RTs	decreasing	from	repetitions	1	to	18.46,	b	=	-4.22,	95%	CI	[-5.70,	-0.29],	

followed	by	a	slow	increase,	b	=	0.52,	95%	CI	[-0.29,	1.33].	For	Position	2,	we	estimated	

two	breakpoints	at	repetitions	5.35,	95%	CI	[3.54,	7.16]	and	19.81,	95%	CI	[13.63,	25.98],	

with	RTs	rapidly	decreasing	from	repetitions	1	to	5.35,	b	=	-32.40,	95%	CI	[-46.24,	-18.57],	

continuing	to	decrease,	but	at	a	slower	rate,	from	repetitions	5.35	to	19.81,	b	=	-7.92,	95%	

CI	[-10.78,	-5.07],	followed	by	a	slower	decrease	until	the	end	of	the	task,	b	=	-3.20,	95%	

CI	[-4.34,	-2.07].	For	Position	3,	we	also	estimated	two	breakpoints	at	repetitions	5.88,	

95%	CI	[3.52,	8.24]	and	19.54,	95%	CI	[15.36,	23.71],	with	a	fast	decrease	in	RTs	from	

repetitions	 1	 to	 5.88,	 b	 =	 -27.92,	 95%	CI	 [-41.01,	 -14.85],	 continuing	 to	 decrease	 at	 a	

slower	rate	from	repetitions	5.88	to	19.54,	b	=	-8.18,	95%	CI	[-10.86,	-5.50],	and	with	an	

even	slower	decrease	 from	repetition	19.54	until	 the	end	of	 the	experiment,	b	=	 -1.72,	

95%	CI	[-2.78,	-0.65].		
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Figure	 2.	 Upper	 panel:	 mean	 response	 times	 in	 Experiment	 1	 as	 a	 function	 of	 word	

position	and	number	of	repetitions	of	the	triplet.	The	vertical	dashed	line	indicates	the	

first	repetition	at	which	there	was	a	significant	difference	between	Position	1	vs.	Positions	

2	 and	 3.	 Error	 bars	 indicate	 95%	 confidence	 intervals.	 Lower	 panel:	 results	 from	 the	

broken-stick	 regressions	 for	 each	 Position	 in	 the	 triplet.	 Vertical	 bars	 indicate	 the	

breakpoints.	
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Questionnaire	

Forty-one	of	the	42	participants	reported	noticing	a	recurrent	word	sequence;	16	were	

able	to	recall	the	whole	triplet,	12	correctly	recalled	one	sub-sequence	(words	1	and	2	or	

words	2	and	3),	four	could	recall	non-adjacent	words	(words	1	and	3),	seven	only	recalled	

one	word,	and	the	three	remaining	participants	did	not	recall	any	word.	

Discussion	

As	expected,	the	results	from	Experiment	1	showed	faster	RTs	for	predictable	words	

(i.e.,	words	2	and	3)	within	the	repeated	triplet,	and	the	difference	between	unpredictable	

(word	 1)	 and	 predictable	 items	 increased	 as	 the	 task	 progressed.	 Furthermore,	 this	

difference	between	unpredictable	 and	predictable	 items	emerges	early	on,	 around	 the	

fifth	 repetition	 of	 the	 triplet.	 The	 analysis	 of	 the	 mean	 response	 times	 over	 the	 45	

repetitions	of	the	triplet	further	indicated	that	learning	occurred	also	for	words	appearing	

in	Position	1	of	the	triplet.	Although	unpredictable,	these	words	were	repeated	and	their	

processing	 was	 facilitated	 by	 this	 repetition.	 The	 broken-stick	 regression	 analysis	

suggested	that	learning	occurred	during	the	first	18	repetitions	and	subsequently	reached	

a	plateau	performance.	While	the	mean	RT	for	the	first	occurrence	of	these	words	was	

682	ms,	the	mean	RT	was	561	ms	after	18	repetitions,	and	592	ms	at	the	45th	repetition,	

indicating	a	processing	speed	up	of	90	ms	between	the	first	and	last	occurrence	of	the	

word.	These	data	therefore	provide	an	estimate	of	the	dynamics	of	the	repetition	effect	

for	words	that	are	not	predictable.	

In	 contrast,	RTs	 for	predictable	words	 (i.e.,	 on	Positions	2	and	3)	 followed	a	 totally	

different	 dynamic.	 According	 to	 the	 broken-stick	 regression	 analysis,	 they	 indeed	

decreased	very	rapidly	during	the	first	5	repetitions	(640	ms	at	the	first	repetition,	and	

523	ms	at	the	5th	repetition	-	RTs	are	averaged	over	Position	2	and	3)	and	the	decrease	

was	slower	between	repetition	5	and	18	(419	ms	at	the	18th	repetition).	After	the	18th	
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repetition,	 RTs	 continued	 to	 decrease	 but	 at	 an	 even	 slower	 rate	 (347	ms	 at	 the	 45th	

repetition).	 Clearly,	 compared	 to	 the	 results	 obtained	 for	 words	 at	 Position	 1	 of	 the	

repeated	 triplet,	 we	 found	 that	 the	 predictability	 effect	 was	 much	 larger	 than	 the	

repetition	 effect	 and	 followed	 different	 learning	 dynamics.	 For	 example,	 for	 the	 3rd	

position	of	the	triplet,	the	mean	response	times	were	624	ms	for	the	first	occurrence	of	

the	word	and	349	ms	 for	 the	45th	 repetition,	 resulting	 in	 a	processing	gain	of	275	ms	

between	the	first	and	last	occurrence	of	these	words.	

Interestingly,	there	was	no	evidence	for	an	advantage	of	the	third	over	the	second	word	

in	the	triplet,	contrary	to	what	was	observed	by	previous	studies.	Indeed,	prior	findings	

indicated	 faster	RTs	 for	 the	 final	 stimulus	 in	a	 repeated	 triplet,	 as	 it	benefits	 from	 the	

cumulative	information	provided	by	the	two	preceding	stimuli	(e.g.,	Minier	et	al.,	2016;	

Rey	et	al.,	2019,	2020,	2022).	Regarding	our	study,	although	the	words	clearly	benefited	

from	 immediate	 contextual	 information	 (i.e.,	 the	 preceding	 word	 in	 the	 triplet	 that	

systematically	appeared	before	them),	we	did	not	observe	any	additional	predictability	

effect	regarding	the	final	word	of	the	triplet	when	the	context	was	richer	(i.e.,	words	in	

Position	3	of	 the	 triplet	benefit	 from	the	contextual	 information	provided	by	words	 in	

Position	1	and	2).	This	intriguing	result	likely	reflects	some	limitations	of	associative	and	

Hebbian	learning	mechanisms	due	to	the	specific	time-scale	of	the	present	experimental	

paradigm.	We	will	return	to	this	issue	in	the	general	discussion.		

Despite	a	clear	decrease	in	RTs	for	the	predictable	positions	in	the	triplet,	indicating	

that	 learning	 of	 this	 repeated	 sequence	 occurred,	 most	 participants	 were	 unable	 to	

correctly	 recall	 the	whole	 triplet,	 even	 though	most	of	 them	noticed	 the	presence	of	a	

repeated	sequence.	This	result	suggests	that	part	of	the	triplet	learning	was	explicit	but	

that	most	of	 the	 learning	was	probably	 implicit.	Participants	did	not	have	 to	explicitly	
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encode	 the	 triplet	 repetition	 to	 anticipate	 the	 occurrence	 of	 words	 appearing	 on	

predictable	positions.		

In	contrast	 to	Experiment	1,	which	was	conducted	with	triplets	of	unrelated	words,	

Experiment	 2	 was	 conducted	 with	 triplets	 of	 pseudowords.	 We	 decided	 to	 use	

pseudowords	 because	 tasks	 consisting	 of	 the	 repetition	 and	 encoding	 of	 pseudoword	

sequences	have	been	shown	to	mimic	novel	word	learning	(Norris	et	al.,	2018;	Schimke	

et	al.,	2021).	Indeed,	whereas	words	are	likely	to	have	long-term	memory	representations,	

pseudowords	 cannot	 benefit	 from	 such	 representations	 as	 they	 have	 not	 yet	 been	

encountered	by	participants.	 It	 is	worth	noting	 that	 the	Hebb	paradigm	has	 also	been	

described	as	a	laboratory	analogue	of	novel	word	learning	(Szmalec	et	al.,	2009,	2012).	

Therefore,	 studying	 triplets	 of	 pseudowords	 will	 allow	 us	 to	 compare	 the	 learning	

dynamics	 of	 completely	 novel	 multiword	 sequences	 with	 those	 obtained	 for	 already	

known	words	in	Experiment	1.	

Experiment	2	

Methods		

Participants	

Forty-six	participants	(22	females;	Mage	=	25	years,	SD	=	3)	were	recruited	from	Prolific	

(www.prolific.co)	 for	 the	 experiment.	 All	 participants	 indicated	 that	 French	was	 their	

native	language	and	declared	no	neurological	or	language	impairment.	Four	participants	

were	excluded	from	the	analyses	due	to	chance-level	performance	on	the	main	task.		

As	in	Experiment	1,	participants’	French	proficiency	was	measured	with	the	LexTALE	

test	 (Brysbaert,	 2013).	 Participants’	 average	 scores	 were	 85.13%	 (SD	 =	 7.08).	 No	

participant	was	 excluded	 from	 the	 analysis.	 The	 final	 number	 of	 participants	was	 42,	

which	corresponds	to	a	dataset	of	1890	data	points	per	condition.	

	



	 66	

Materials	

In	 contrast	 to	 the	 previous	 experiment,	 here	 the	 target	 triplets	 were	 composed	 of	

pseudowords	whereas	the	words	served	only	as	fillers	items.	We	selected	180	words	from	

the	French	database	Lexique	3.83	(New	&	Pallier,	2020).		All	words	were	monosyllabic	or	

disyllabic	 singular	 nouns	 and	 had	 a	 length	 from	 four	 to	 six	 letters.	 Their	 freqfilms2	

frequency	was	between	10	and	100	occurrences	per	million.	A	set	of	66	pseudowords	was	

selected	from	the	French	Lexicon	Project	(Ferrand	et	al.,	2010).	Twenty-one	were	drawn	

therefrom	to	construct	triplets	and	the	remaining	45	were	used	as	filler	pseudowords.	All	

pseudowords	were	four-to-six	letter	long	and	monosyllabic.	

Seven	triplets	were	generated	and	counterbalanced	across	participants	using	a	Latin-

squared	 design.	 Every	 triplet	 repetition	 of	 pseudowords	 (15	 per	 block)	 was	 always	

separated	 by	 three	 to	 six	 filler	 words	 or	 filler	 pseudowords	 (75	 per	 block).	 As	 in	

Experiment	1,	each	block	was	composed	of	60	words	and	60	pseudowords.	There	were	

an	equal	number	of	‘yes’	and	‘no’	responses	in	the	experiment	(i.e.,	180	for	each	type	of	

response).	The	sets	of	pseudoword	triplets	and	fillers	are	listed	in	Appendix	C.		

Apparatus	and	procedure	

The	apparatus	and	procedure	were	identical	to	the	one	used	in	Experiment	1.		

Results	

As	the	target	triplets	were	made	up	of	pseudowords,	only	correct	“no”	responses	were	

analysed	(95.87%	of	the	data),	and	RTs	exceeding	1500	ms	(1.43%	of	data),	as	well	as	RTs	

beyond	2.5	standard	deviations	from	a	participant’s	mean	per	block	and	for	each	of	the	

three	possible	positions	within	the	triplet	(2.01%)	were	excluded.	Means	and	standard	

deviations	per	block	are	shown	in	Table	3.	The	linear	mixed	model	we	fitted	included	the	

maximum	random	effect	structure	allowing	convergence	(Barr,	2013;	Barr	et	al.,	2013).	

This	model	included	Position,	Repetition,	and	the	interaction	term	as	fixed	effects.	Item	
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and	participant	were	used	as	crossed	random	effects,	with	by-participant	random	slopes	

for	Position.	The	results	of	the	mixed	model	are	summarised	in	Table	4.	Figure	3	provides	

the	 evolution	 of	 mean	 response	 times	 for	 each	 position	 in	 the	 triplet	 and	 for	 the	 45	

repetitions	of	the	triplet.	

Table	3		

Mean	response	times	(in	milliseconds)	and	standard	deviations	(in	parentheses)	for	each	

block	in	Experiment	2.	

	 Block	1	 Block	2	 Block	3	
Position	1	 719	(134)	 670	(125)	 641	(112)	
Position	2	 633	(220)	 457	(177)	 425	(187)	
Position	3	 595	(190)	 439	(161)	 401	(169)	

	

Table	4		

Fixed	effects	of	the	mixed	model	for	Experiment	2	

Predictors	 Estimate	 SE	 95%	CI	 p	
(Intercept)	 554.71	 12.50	 [530.21,	579.21]	 <.001	
Position	2	-	1	 -171.02	 18.51	 [-207.30,	-134.73]	 <.001	
Position	3	-	2	 -28.43	 7.81	 [-43.73,	-13.13]	 <.001	
Repetition	 -5.39	 0.15	 [-5.68,	-5.10]	 <.001	
Position	2	-	1	x	Repetition	 -4.85	 0.37	 [-5.58,	-4.12]	 <.001	
Position	3	-	2	x	Repetition	 0.91	 0.36	 [0.21,	1.62]	 .01	

Note.	CI:	confidence	interval;	SE:	standard	error.	

Results	indicated	a	significant	effect	of	Repetition	and	faster	RTs	for	pseudowords	in	

Position	2	compared	to	those	in	Position	1,	as	well	as	for	Position	3	compared	to	Position	

2.	Moreover,	 there	was	 a	 significant	 negative	 interaction	 coefficient	 for	 the	 difference	

between	Position	2	and	Position	1,	and	Repetition,	and	a	significant	positive	interaction	

coefficient	for	the	difference	between	Position	3	and	Position	2,	and	Repetition.	Similarly	

to	 Experiment	 1,	 paired	 sample	 t-tests	 comparisons	 showed	 a	 significant	 difference	
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between	 Position	 1	 compared	 to	 Positions	 2	 and	 3	 on	 the	 sixth	 trial,	 t(36)	 =	 3.12,	

Bonferroni-adjusted	p	=	.021.	

As	 for	 the	 first	 experiment,	 we	 conducted	 a	 broken-stick	 regression	 to	 study	 the	

evolution	 of	 the	 learning	 pattern	 of	 Position	 across	 the	 task.	 The	 analysis	 revealed	 a	

breakpoint	at	repetition	5.18,	95%	CI	[3.58,	6.78]	for	Position	1,	with	RTs	decreasing	from	

repetitions	1	to	5.18,	b	=	-23.81,	95%	CI	[-36.78,	-10.86],	followed	by	a	slower	decreasing	

rate,	b	=	-1.82,	95%	CI	[-2.38,	-1.26].	For	Position	2,	two	breakpoints	were	estimated	at	

repetitions	7.44,	95%	CI	[5.59,	9.29]	and	22.00,	95%	CI	[17.56,	26.44],	with	RTs	rapidly	

decreasing	from	repetitions	1	to	7.44,	b	=	-39.33,	95%	CI	[-50.61,	-28.05],	continuing	to	

decrease,	but	at	a	slower	rate	from	repetitions	7.44	to	22.00,	b	=	-10.16,	95%	CI	[-14.00,	-

6.32],	 followed	by	a	slower	decrease	until	 the	 last	 repetition,	b	=	 -1.16,	95%	CI	 [-2.87,	

0.56].	Regarding	Position	3,	we	estimated	 two	breakpoints	at	 repetitions	6.07,	95%	CI	

[4.40,	7.74]	and	18.37,	95%	CI	[14.74,	21.99],	with	RTs	decreasing	fast	from	repetitions	1	

to	 6.07,	 b	 =	 -41.73,	 95%	CI	 [-54.71,	 -28.74],	 steadily	 decreasing	 at	 a	 slower	 rate	 from	

repetitions	6.07	to	18.37,	b	=	-11.66,	95%	CI	[-16.00,	-7.33],	followed	by	a	slower	decrease	

until	the	end	of	the	task,	b	=	-1.86,	95%	CI	[-3.13,	-0.59].	

Given	that	usage-based	theories	postulate	that	novel	items	become	lexicalised	when	

they	are	encountered	sufficiently	often	(e.g.,	Bybee,	2006;	Zang	et	al.,	2023),	one	might	

expect	 that	 after	 enough	 repetitions	 participants	 would	 begin	 to	 consider	 the	 target	

pseudowords	to	be	almost	as	real	words,	resulting	in	more	false	“yes”	judgments	as	the	

experiment	 progressed.	 Therefore,	 we	 conducted	 an	 additional	 analysis	 using	 a	

generalised	 (logistic)	 linear	 mixed	 model	 to	 compare	 the	 mean	 accuracy	 between	

positions	across	blocks	(see	Figure	4).	The	model	was	fitted	with	Position	and	Block,	and	

the	interaction	term	as	fixed	effects.	The	maximal	random	effects	structure	that	converged	

was	 one	 that	 included	 by-participant	 and	 by-item	 random	 intercepts.	 To	 explore	
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differences	between	positions	within	each	block,	we	used	the	R	package	emmeans	(Lenth,	

2023).	Helmert	 contrasts	were	used	 to	 compare	Position	1	 to	 both	Positions	2	 and	3,	

simultaneously,	and	to	compare	Position	2	to	Position	3.	The	results	of	the	contrasts	are	

summarised	in	Table	5.	The	analysis	showed	that,	systematically	across	the	three	blocks,	

participants	made	more	 false	 “yes”	 judgments	 for	pseudowords	 in	Position	1	 than	 for	

those	 in	Positions	2	 and	3.	 In	 addition,	 in	Block	3,	 participants	made	more	 false	 “yes”	

judgments	for	pseudowords	in	Position	2	compared	to	those	in	Position	3.	Finally,	false	

“yes”	judgments	for	pseudowords	in	Position	1	increased	across	the	blocks,	in	contrast	to	

those	in	Positions	2	and	3.	

Table	5		

Summary	of	Helmert	contrasts	between	positions	across	blocks	for	Experiment	2	

Note.	P:	Position;	SE:	standard	error.	

Questionnaire	

Thirty-nine	participants	reported	noticing	a	recurrent	pseudoword	sequence;	12	were	

able	to	recall	the	whole	triplet,	one	could	recall	one	subsequence	(words	2	and	3),	eight	

correctly	 recalled	non-adjacent	pseudowords	 (words	1	and	3),	 eight	only	 recalled	one	

pseudoword,	and	the	13	remaining	could	not	recall	any	pseudoword.	

	 	 Block	1	 	 	 	 Block	2	 	 	 	 Block	3	 	  
Predictors	 b	 SE	 p	 	 b	 SE	 p	 	 b	 SE	 p	  
P1	vs	P2-P3	 -0.76	 0.22	 <.001	 	 -2.15	 0.25	 <.001	 	 -2.48	 0.25	 <.001	  

P2	vs	P3	 -0.24	 0.30	 .42	 	 -0.22	 0.43	 .60	 	 -1.40	 0.44	 .002	  
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Figure	3.	Upper	panel:	Mean	response	times	in	Experiment	2	as	a	function	of	pseudoword	

position	 in	 the	 repeated	 triplet	 and	 number	 of	 repetitions.	 The	 vertical	 dashed	 line	

indicates	the	first	repetition	at	which	there	was	a	significant	difference	between	Position	

1	vs.	Positions	2	and	3.	Error	bars	indicate	95%	confidence	intervals.	Lower	panel:	Results	

from	the	broken-stick	regressions	for	each	Position	in	the	triplet.	Vertical	bars	indicate	

the	breakpoints.	
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Figure	4.	Mean	accuracy	 in	Experiment	2	as	a	 function	of	pseudoword	position	 in	 the	

repeated	triplet	and	block	number.	Error	bars	indicate	95%	confidence	intervals.	

Discussion	

The	 results	 of	 Experiment	 2	 partly	 replicated	 those	 of	 Experiment	 1.	 A	 first	 main	

difference	between	 the	 two	experiments	concerns	 the	overall	 slower	RTs	obtained	 for	

pseudowords	compared	to	words:	when	averaging	the	RTs	of	all	three	positions,	the	mean	

RTs	on	their	first	occurrence	was	654	ms	for	words	and	810	ms	for	pseudowords;	on	their	

last	occurrence	(i.e.,	at	the	45th	repetition),	the	mean	RTs	for	words	was	429	ms	and	470	

ms	for	pseudowords.	Apart	from	these	longer	RTs,	the	learning	dynamics	also	produced	

noticeable	differences	compared	with	the	one	observed	for	words.		
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Regarding	 the	 repetition	 effect	 that	 is	 measured	 by	 the	 evolution	 of	 RTs	 for	

pseudowords	occurring	at	Position	1	of	 the	 triplet,	 the	dynamics	was	 clearly	different	

compared	to	words	with	a	fast	decrease	of	response	times	during	the	first	5	repetitions	

(with	a	mean	RT	of	798	ms	for	the	first	occurrence	and	of	704	ms	for	the	5th	repetition),	

followed	by	a	smoother	decrease	until	the	last	repetition	(with	a	mean	RT	of	638	ms	for	

the	45th	 repetition).	While	the	beta	coefficient	of	 the	 first	regression	 line	was	-4.22	for	

words,	 it	 was	 much	 larger	 for	 pseudowords	 (-23.81).	 The	 processing	 gain	 for	

pseudowords	at	Position	1	(i.e.,	the	difference	between	mean	RTs	for	the	last	repetition	

and	 the	 first	occurrence)	was	160	ms,	which	 is	much	 larger	 than	 the	one	obtained	 for	

words	 (90	 ms).	 Pseudowords	 seem	 therefore	 to	 benefit	 to	 a	 larger	 extent	 from	 the	

repetition	 effect	 indicating	 that	 repetitions	 produced	 a	 fast	 change	 in	 the	 way	 these	

pseudowords	were	processed	and	in	the	way	their	trace	developed	in	memory.	

For	predictable	pseudowords	(i.e.,	in	Position	2	and	3	of	the	triplet),	the	broken-stick	

regression	analysis	also	identified	two	break	points	that	were	slightly	different	from	those	

obtained	with	words	(for	pseudowords,	7.44	and	22	at	Position	2,	and	6.07	and	18.37	at	

Position	3;	for	words,	5.35	and	19.81	at	Position	2,	and	5.88	and	19.54	at	Position	3).	Apart	

from	these	differences,	the	learning	dynamics	were	similar	with	a	fast	decrease	in	RTs	

during	 the	 initial	 repetitions	 followed	 by	 an	 intermediate	 decrease	 and	 a	 slower	 one	

during	the	last	repetitions.	Compared	to	the	repetition	effect,	the	predictability	effect	was	

again	much	larger	and	produced	a	much	stronger	processing	gain	(i.e.,	for	the	3rd	Position,	

when	subtracting	the	mean	RTs	for	the	45th	repetition,	390	ms,	from	the	mean	RT	for	the	

first	occurrence,	779	ms,	the	processing	gain	was	779-390	=	389	ms).		

Contrary	to	Experiment	1,	the	data	revealed	a	significant	difference	between	Position	

2	 and	3,	with	 faster	RTs	 on	Position	3	 of	 the	 triplet.	 This	 difference	 seems	 to	 emerge	

around	the	same	time	as	in	Experiment	1,	namely	on	the	sixth	repetition	of	the	triplet.		
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Although	this	result	is	consistent	with	previous	finding	in	sequence	learning,	here	it	might	

be	an	artifact	due	to	the	fact	that	participants	were	slower	to	classify	the	pseudowords	in	

Position	2	at	the	beginning	of	the	task,	resulting	in	a	higher	estimation	of	the	regression	

intercept	compared	to	the	one	of	Position	3.	Due	to	this	unexpected	initial	difference	(that	

should	have	been	cancelled	by	the	Latin	square	design),	this	difference	between	Position	

2	and	3	is	difficult	to	interpret.		

Additionally,	 we	 found	 that	 as	 the	 task	 progressed,	 it	 became	 more	 difficult	 for	

participants	to	classify	the	first	item	of	the	triplet	as	being	a	pseudoword.	Indeed,	they	

systematically	made	more	false	“yes”	judgments	for	pseudowords	in	Position	1	than	for	

those	 in	 Positions	 2	 and	 3.	 Interestingly,	 false	 “yes”	 judgments	 for	 pseudowords	 in	

Position	1	increased	over	the	course	of	the	task,	in	contrast	to	those	for	pseudowords	in	

Positions	 2	 and	 3.	 This	 finding,	 consistent	 with	 usage-based	 theories,	 suggests	 that	

participants	gradually	became	familiar	with	the	first	pseudoword	of	the	repeated	triplet,	

which	presumably	became	lexicalised	over	time.	As	a	result,	participants	were	more	likely	

to	respond	incorrectly	to	the	first	pseudoword	in	the	triplet.	Once	they	recognised	the	first	

pseudoword,	they	simply	had	to	respond	correctly	to	the	rest	of	the	triplet.	 It	 is	worth	

noting	 that	 in	 Block	 3,	 participants	 were	 also	 more	 likely	 to	 consider	 the	 second	

pseudoword	in	the	triplet	to	be	a	word	compared	to	the	third,	suggesting	that	the	triplet	

was	becoming	progressively	lexicalised	as	well.	

As	for	Experiment	1,	the	number	of	participants	who	reported	detecting	a	recurring	

sequence	was	high	(93%)	but	the	number	of	participants	who	were	able	to	fully	recall	the	

triplet	was	much	lower	(29%	in	Experiment	2	compared	to	38%	in	Experiment	1).	Here	

again,	the	data	suggest	that	learning	occurred	both	implicitly	and	explicitly,	and	the	rate	

of	explicit	learning	(i.e.,	with	a	full	recall	of	the	triplet)	was	lower	for	pseudowords	(29%)	

than	for	words	(38%).		
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Overall,	Experiment	1	and	Experiment	2	yielded	similar	results	regarding	the	learning	

dynamics	of	the	repeated	triplet,	that	is,	a	slower	learning	rate	on	the	first	unpredictable	

position	 due	 to	 a	 simple	 repetition	 effect,	 and	 a	 much	 larger	 learning	 rate	 for	 the	

predictable	positions	(i.e.,	the	2nd	and	the	3rd)	due	to	the	predictability	effect.	However,	in	

both	experiments	and	contrary	to	natural	language,	words	and	pseudowords	were	totally	

unrelated	and	apart	from	systematically	occurring	one	after	the	other,	there	was	no	other	

reason	to	associate	these	items.	In	Experiment	3,	we	tested	whether	the	use	of	a	triplet	

composed	of	semantically	related	words	(e.g.,	belonging	to	the	same	word	category,	like	

for	example,	the	fruit	category:	strawberry,	banana,	cherry)	could	have	an	effect	on	the	

learning	dynamics	of	the	triplet.	We	expected	semantic	relatedness	to	facilitate	learning	

both	at	the	 implicit	 level	(i.e.,	on	RTs)	and	at	the	explicit	 level	(i.e.,	on	the	recall	of	 the	

triplet).		

Experiment	3	

Methods		

Participants	

Forty-two	participants	(22	females;	Mage	=	23	years,	SD	=	4)	were	paid	and	recruited	

via	Prolific	(www.prolific.co).	All	participants	were	native	French	speaker	and	reported	

having	 no	neurological	 or	 language	 disorders.	 The	 average	 LexTALE	 vocabulary	 score	

(Brysbaert,	2013)	was	85.08%	(SD	=	6.37),	and	no	participant	was	excluded.		

Materials	

To	construct	seven	semantically	related	triplets,	we	selected	21	low-frequency	words	

from	the	database	Lexique	3.83	(New	&	Pallier,	2020).	All	words	were	four-to-six	letters	

monosyllabic	or	disyllabic	singular	nouns	and	had	a	freqfilms2	frequency	ranged	from	2	

to	10	occurrence	per	million.	 	Forty-five	additional	words	and	180	pseudowords	were	

selected	and	used	as	 filler	 items	between	two	repetitions	of	 the	target	 triplet.	All	 filler	
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words	were	monosyllabic	or	disyllabic	singular	nouns	and	were	composed	of	four	to	six	

letters.	 	 Their	 freqfilms2	 frequency	 ranged	 from	 10	 to	 100	 occurrences	 per	 million.	

Pseudowords	 were	 retrieved	 from	 the	 Lexicon	 Project	 (Ferrand	 et	 al.,	 2010),	 were	

monosyllabic	or	disyllabic,	and	were	composed	of	four	to	six	letters.	

A	Latin-square	design	was	used,	leading	to	the	generation	of	seven	triplets	for	the	42	

participants	(i.e.,	6	participants	per	triplet).	Every	triplet	repetition	(15	per	block)	was	

separated	by	three	to	six	filler	words	or	filler	pseudowords	(75	per	block).	Sixty	words	

and	60	pseudowords	were	presented	in	each	block.	There	were	an	equal	number	of	‘yes’	

and	‘no’	responses	in	the	experiment	(i.e.,	180	for	each	type	of	response).	Stimuli	are	listed	

in	Appendix	D.		

Apparatus	and	procedure	

The	apparatus	and	procedure	were	identical	to	that	used	in	Experiments	1	and	2.		

Results	

Only	correct	responses	were	analysed	(96.86%	of	the	data).	RTs	exceeding	1500	ms	

(1.32%	of	data)	and	RTs	greater	than	2.5	standard	deviations	from	a	participant’s	mean	

per	block	and	 for	each	of	 the	 three	possible	positions	within	 the	 triplet	 (2.26%)	were	

removed.	Means	and	standard	deviations	per	block	are	shown	in	Table	6.	We	constructed	

a	 linear	 mixed-effects	 model	 with	 the	 maximum	 random	 effect	 structure	 allowing	

convergence	(Barr,	2013;	Barr	et	al.,	2013).	This	model	included	Position,	Repetition	and	

the	interaction	term	as	fixed	effects,	participant	and	Item	were	used	as	random	intercepts	

with	 by-participant	 random	 slopes	 for	 Position.	 We	 included	 word	 length	 and	 log-

transformed	word	frequency	for	each	word	in	the	triplet	as	covariates.	Given	that	word	

associations	have	been	shown	to	influence	processing	times	in	multiword	sequences	(e.g.,	

Carrol	and	Conklin,	2020),	and	that	the	order	of	presentation	of	the	words	in	the	triplets	

varied	 across	 participants	 (because	 of	 the	 Latin-squared	 design),	 potentially	 affecting	
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processing	 times	 as	 some	words	were	more	 strongly	 associated	 than	 others,	 we	 also	

included	 a	 measure	 of	 association	 strength	 between	 triplet	 words	 as	 a	 covariate.	 As	

existing	 free-association	 databases	 in	 French	 don’t	 contain	 all	 the	 items	we	 used,	 we	

decided	 to	 calculate	 the	 indirect	 association	 strength	 between	 the	 words	 using	 the	

JeuxDeMots	 database	 (Lafourcade	 &	 Joubert,	 2008).	 This	 database	 is	 based	 on	 a	

collaborative	online	project	where	participants	see	a	word	and	provide	an	association,	

which	 is	 only	 validated	 if	 other	 peers	 have	 suggested	 the	 same	 association.	 These	

associations	 are	 then	weighted	 according	 to	 the	 number	 of	 associations	 given	 by	 the	

participants	 to	 obtain	 the	 association	 strength.	 To	 calculate	 the	 indirect	 association	

strength	between	two	target	words,	we	generated	a	list	of	the	most	frequently	associated	

words	with	the	target	word,	then	selected	the	most	frequent	common	word	between	two	

target	words	and	averaged	 the	association	strengths	 to	obtain	 the	 indirect	association	

strength	measure.	For	instance,	both	banana	and	strawberry	were	associated	with	fruit	

(i.e.,	 526	 and	 480,	 respectively).	 To	 obtain	 the	 indirect	 association	 strength,	 we	 then	

averaged	the	two	values,	resulting	in	an	indirect	association	strength	of	503.	The	results	

of	the	model	are	summarised	in	Table	7.	Figure	5	provides	the	evolution	of	mean	response	

times	for	each	position	in	the	triplet	and	for	the	45	repetitions	of	the	triplet.		

Table	6		

Mean	response	times	(in	milliseconds)	and	standard	deviations	(in	parentheses)	for	each	

block	in	Experiment	3.	

	 Block	1	 Block	2	 Block	3	
Position	1	 613	(115)	 581	(110)	 576	(103)	
Position	2	 496	(162)	 369	(143)	 344	(147)	
Position	3	 475	(162)	 366	(130)	 354	(142)	
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Table	7		

Fixed	effects	of	the	mixed	model	for	Experiment	3.	

Predictors	 Estimate	 SE	 95%	CI	 p	
(Intercept)	 377.62	 68.40	 [243.57,	511.68]	 <.001	
Position	2	-	1	 -184.91	 13.72	 [-211.79,	-158.03]	 <.001	
Position	3	-	2	 -6.73	 7.38	 [-21.19,	7.73]	 .368	
Repetition	 -3.56	 0.11	 [-3.77,	-3.35]	 <.001	
Position	2	-	1	x	Repetition	 -4.02	 0.26	 [-4.53,	-3.50]	 <.001	
Position	3	-	2	x	Repetition	 0.87	 0.26	 [0.36,	1.38]	 <.001	
Word	length	 8.79	 10.43	 [-11.65,	29.22]	 0.411	
Word	frequency	(log)	 2.83	 10.78	 [-18.31,	23.96]	 0.798	
Association	strength	bigram	1	 0.04	 0.08	 [-0.11,	0.19]	 0.612	
Association	strength	bigram	2	 0.08	 0.08	 [-0.07,	0.23]	 0.294	
Note.	CI:	confidence	interval;	SE:	standard	error.	

The	results	showed	a	significant	negative	effect	of	Repetition	reflecting	a	decrease	in	

RTs.	We	also	found	faster	RTs	for	words	in	Position	2	compared	to	those	in	Position	1,	but	

not	to	those	in	Position	3.	Finally,	there	was	a	significant	negative	interaction	coefficient	

for	 the	difference	between	Position	2	and	Position	1,	 and	Repetition,	 and	a	 significant	

positive	interaction	coefficient	for	the	difference	between	Position	3	and	Position	2,	and	

Repetition.	 No	 significant	 effects	 were	 found	 for	 Word	 length,	 Word	 frequency	 and	

Association	strength	for	both	bigrams.	Paired	sample	t-tests	comparisons	showed	that	a	

significant	difference	between	Position	1	compared	to	Positions	2	and	3	emerged	on	the	

third	trial,	t(39)	=	3.39,	Bonferroni-adjusted	p	=	.005.	

Following	the	same	procedure	as	in	Experiments	1	and	2,	we	performed	a	broken-stick	

regression	on	each	Position	of	the	repeated	triplet.	For	Position	1,	the	analysis	revealed	a	

breakpoint	 at	 repetition	 16.72,	 95%	 CI	 [11.34,	 22.10],	 with	 RTs	 decreasing	 from	

repetitions	1	to	16.72,	b	=	-3.96,	95%	CI	[-5.80,	-2.11],	followed	by	an	almost	flat	slope,	b	

=	 0.01,	 95%	 CI	 [-0.76,	 0.77].	 Concerning	 Position	 2,	we	 estimated	 two	 breakpoints	 at	

repetitions	 4.64,	 95%	CI	 [3.08,	 6.20]	 and	 20,	 95%	CI	 [16.20,	 23.80],	with	 RTs	 rapidly	
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decreasing	from	repetitions	1	to	4.64,	b	=	-43.01,	95%	CI	[-63.16,	-22.86],	continuing	to	

decrease,	but	at	a	slower	rate	from	repetitions	4.64	to	20,	b	=	-8.85,	95%	CI	[-11.27,	-6.42],	

followed	by	a	slower	decrease	until	the	end	of	the	task,	b	=	-1.37,	95%	CI	[-2.62,	-0.11].	

For	Position	3,	we	also	estimated	two	breakpoints	at	repetitions	5.57,	95%	CI	[3.89,	7.24]	

and	18.85,	95%	CI	[14.49,	23.22],	with	a	fast	decrease	in	RTs	from	repetitions	1	to	5.57,	b	

=	-35.23,	95%	CI	[-49.00,	-21.47],	continuing	to	decrease	at	a	slower	rate	from	repetitions	

5.57	to	18.85,	b	=	-7.62,	95%	CI	[-10.77,	-4.46],	followed	by	a	slower	decreasing	until	the	

last	repetition,	b	=	-0.85,	95%	CI	[-1.92,	0.21].	

Questionnaire	

Forty-one	of	the	42	participants	reported	noticing	a	recurrent	word	sequence;	29	were	

able	to	recall	the	whole	triplet,	one	recalled	one	subsequence	(words	2	and	3),	four	could	

recall	non-adjacent	words	(words	1	and	3),	five	recalled	all	the	words	but	in	the	wrong	

order,	and	the	three	remaining	could	not	recall	any	word.	
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Figure	 5.	 Upper	 panel:	 mean	 response	 times	 in	 Experiment	 3	 as	 a	 function	 of	 word	

position	and	number	of	repetitions.	The	vertical	dashed	line	indicates	the	first	repetition	

at	which	there	was	a	significant	difference	between	Position	1	vs.	Positions	2	and	3.	Error	

bars	 indicate	 95%	 confidence	 intervals.	 Lower	 panel:	 results	 from	 the	 broken-stick	

regressions	for	each	Position	in	the	triplet.	Vertical	bars	indicate	the	breakpoints.	

Discussion	

Experiment	3	produced	similar	results	as	in	Experiment	1.	Concerning	the	repetition	

effect,	we	did	not	expect	any	advantage	of	the	semantic	relatedness	because	there	is	no	
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reason	to	observe	any	effect	of	this	variable	on	the	first	word	of	the	triplet.	And	indeed,	

the	dynamics	of	the	repetition	effect	was	very	similar	to	the	one	obtained	in	Experiment	

1.		

For	predictable	items	(in	Position	2	and	3	of	the	triplet),	the	beta	coefficient	of	the	first	

regression	line	(from	the	broken-stick	regression	analysis)	was	larger	(-43.01	for	related	

words	compared	to	-32.4	for	unrelated	words)	and	the	first	breakpoint	occurred	earlier	

(4.64	compared	to	5.35),	suggesting	that	the	initial	learning	phase	was	much	steeper	in	

the	semantically	related	condition	compared	to	the	unrelated	words	from	Experiment	1.	

The	semantical	relatedness	between	these	words	helped	producing	a	larger	predictability	

effect	 that	 certainly	 took	 advantage	of	 the	pre-existing	 semantic	 associations	between	

these	words.	This	was	also	confirmed	by	the	fact	that	a	difference	between	unpredictable	

and	predictable	items	emerges	earlier	than	in	Experiment	1	(i.e.,	around	the	third	rather	

than	the	fifth	repetition	of	the	triplet).	Note	that	this	advantage	was	only	present	at	the	

early	phase	of	learning	because	the	processing	gain	for	words	in	Experiment	1	is	similar	

to	the	one	obtained	in	Experiment	3.	Indeed,	the	difference	between	the	mean	response	

times	on	Position	3	for	the	first	and	last	occurrence	of	these	items	was	624	ms	–	349	ms	

=	275	ms	in	Experiment	1	and	624	ms	–	360	ms	=	264	ms	in	Experiment	3.	Finally,	as	for	

Experiment	1,	there	was	no	additional	advantage	for	items	occurring	in	Position	3	of	the	

triplet	compared	to	those	being	in	Position	2.	

Like	 Experiment	 1,	 the	 number	 of	 participants	who	 reported	 detecting	 a	 recurring	

sequence	was	high	(98%)	but	the	number	of	participants	who	were	able	to	fully	recall	the	

triplet	was	much	larger	(69%	compared	to	38%	in	Experiment	1).	Clearly,	the	semantic	

relatedness	may	have	helped	participants	encoding	the	triplet	in	an	explicit	way	which	

probably	also	explains	the	stronger	predictability	effect	observed	during	the	early	phase	

of	learning.		



	 81	

As	expected,	semantic	relatedness	had	a	facilitatory	effect	on	the	predictability	effect	

but	also	on	the	ability	of	participants	to	explicitly	memorize	the	repeated	triplet	and	to	

recall	it.	However,	this	situation	is	rather	artificial	given	that	words	belonging	to	the	same	

semantic	 category	 rarely	 appear	 in	 a	 sequence	when	 reading	 texts,	 apart	 from	special	

cases	such	as	binomials	(e.g.,	salt	and	pepper,	boys	and	girls,	knife	and	 fork),	which	are	

often	composed	of	words	belonging	to	the	same	semantic	category.	It	has	been	shown	that	

the	association	strength	of	the	component	words	in	binomials	influences	reading	times	in	

a	natural	reading	task	(Carrol	&	Conklin,	2020).	We	therefore	tested	whether	the	learning	

dynamics	of	a	triplet	would	be	improved	by	using	words	that	often	cooccur,	like	idioms.	

A	recent	study	has	indeed	shown	that	meaningful	three-word	sequences	(e.g.,	idioms:	on	

my	mind;	phrase:	is	really	nice)	are	easier	to	process	and	lead	to	faster	RTs	compared	to	

fragment	sequences	(e.g.,	because	it	lets)	in	a	phrasal	decision	task	(Jolsvai	et	al.,	2020).	

Similarly,	Northbrook	et	al.	(2022)	presented	Japanese	English	speakers	with	a	series	of	

short	 stories	 containing	 repeated	 three-word	 lexical	 bundles,	 each	 seen	 three	 times,	

followed	by	a	phrasal	decision	task.	They	found	that	repeated	lexical	bundles	(e.g.,	set	off	

home,	tired	and	hungry)	were	processed	faster	than	non-repeated	bundles	in	the	phrasal	

decision	task,	with	faster	RTs	at	each	subsequent	repetition.	This	advantage	for	repeated	

lexical	bundles	emerged	from	the	first	repetition	and	was	still	present	a	week	 later.	 In	

Experiment	4,	we	therefore	used	three-word	idioms	as	repeated	triplets	to	study	whether	

the	 presence	 of	 frequently	 cooccurring	 words	 increases	 the	 predictability	 effect.	 We	

expected	idioms	to	facilitate	learning	as	they	have	already	been	encountered	and	encoded	

in	memory	as	whole	sequences	by	the	participants.	
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Experiment	4	

Methods		

Participants		

Forty-two	participants	(21	females;	Mage	=	24	years,	SD	=	4)	were	recruited	and	paid	to	

take	part	in	the	study	via	Prolific	(www.prolific.co).	All	participants	were	native	French	

speakers	and	reported	having	no	neurological	or	 language	 impairments.	Their	average	

LexTALE	vocabulary	score	(Brysbaert,	2013)	was	86.18%	(SD	=	6.19),	no	participant	was	

excluded	from	the	analysis.		

Materials	

We	constructed	the	triplets	by	selecting	seven	three-word	idiomatic	expressions	from	

two	databases	of	French	idioms	rated	by	native	speakers	(Bonin	et	al.,	2013,	2018).	Filler	

items	that	were	inserted	between	two	repetitions	of	the	triplet	were	45	words	and	180	

pseudowords.	Words	were	monosyllabic	or	disyllabic	singular	nouns	and	were	chosen	

from	the	database	Lexique	3.83	(New	&	Pallier,	2020).	All	words	were	four	to	six	letters	

long	 and	 had	 a	 freqfilms2	 frequency	 between	 10	 and	 100	 occurrences	 per	 million.	

Pseudowords	were	selected	from	the	French	Lexicon	Project	(Ferrand	et	al.,	2010).	All	

pseudowords	were	monosyllabic	or	disyllabic	and	were	composed	of	four	to	six	letters.	

In	contrast	to	previous	experiments	in	which	we	used	a	Latin-square	design,	here	the	

triplets	were	not	scrambled,	and	therefore	participants	saw	the	idioms	in	their	canonical	

form.	Indeed,	reversing	the	word	order	of	existing	idiomatic	expressions	has	been	shown	

to	 result	 in	 a	 processing	 penalty	 (Conklin	 &	 Carrol,	 2020).	 Each	 of	 the	 7	 idiomatic	

expressions	was	presented	to	six	participants	(6*7=42).	Every	triplet	repetition	(15	per	

block)	was	separated	by	three	to	six	filler	words	or	pseudowords	(75	per	block).	As	in	the	

previous	 experiments,	 every	 block	 was	 composed	 of	 60	 words	 and	 60	 pseudowords.	
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Therefore,	there	were	an	equal	number	of	‘yes’	and	‘no’	responses	in	the	experiment	(i.e.,	

180	for	each	type	of	response).	Stimuli	are	listed	in	Appendix	E.		

Apparatus	and	procedure	

The	apparatus	and	procedure	were	identical	to	the	one	used	in	Experiments	1,	2	and	3.		

Results	

Only	correct	responses	were	analysed	(96.34%	of	the	data).	RTs	exceeding	1500	ms	

(1.54%	of	data),	and	RTs	beyond	than	2.5	standard	deviations	from	a	participant’s	mean	

per	block	and	 for	each	of	 the	 three	possible	positions	within	 the	 triplet	 (2.19%)	were	

removed.	Mean	response	times	and	standard	deviations	per	Block	and	Position	are	shown	

in	Table	8.		

We	 constructed	 a	 linear	 mixed-effects	 model	 with	 the	 maximum	 random	 effect	

structure	 allowing	 convergence	 (Barr,	 2013;	 Barr	 et	 al.,	 2013).	 This	 model	 included	

Position,	Repetition	and	the	interaction	term	as	fixed	effects.	Item	and	participant	were	

used	 as	 crossed	 random	 effects,	 with	 by-participant	 random	 slopes	 for	 Position.	 In	

addition	 to	Word	 length	 and	Word	 frequency,	 we	 also	 included	 Idiom	 frequency	 and	

Bigram	 and	 Trigram	 mutual	 information2	 (MI)	 scores	 as	 covariates	 in	 our	 analysis.	

Indeed,	 previous	 research	 on	 idioms	 has	 shown	 that	 these	 factors	 can	 influence	 the	

processing	of	multiword	sequences	(e.g.,	Carrol	&	Conklin,	2020).	Idiom	frequency	and	MI	

scores	were	 calculated	based	on	 the	 French	web	 corpus	 frTenTen20	 (Jakubíček	 et	 al.,	

2013),	which	consists	of	20.9	billion	words.	All	frequencies	were	log-transformed	prior	to	

analysis.	 The	 results	 of	 the	 model	 are	 summarised	 in	 Table	 9.	 Figure	 6	 provides	 the	

evolution	of	mean	response	times	for	each	position	in	the	triplet	and	for	the	45	repetitions	

of	the	triplet.	

	
2	MI	estimates	the	predictability	of	observing	a	word	given	the	preceding	words	in	the	sequence	(Ramisch,	
2015,	p.	66).	
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Table	8		

Mean	response	times	(in	milliseconds)	and	standard	deviations	(in	parentheses)	for	each	

block	and	position	in	Experiment	4.	

	 Block	1	 Block	2	 Block	3	
Position	1	 607	(126)	 582	(121)	 570	(108)	
Position	2	 478	(179)	 337	(156)	 309	(136)	
Position	3	 464	(166)	 347	(147)	 315	(120)	

	

Table	9		

Fixed	effects	of	the	mixed	model	for	Experiment	4.	 	

Predictors	 Estimate	 SE	 95%	CI	 p	
(Intercept)	 509.16	 84.82	 [342.91,	675.42]	 <.001	
Position	2	-	1	 -219.80	 33.53	 [-285.52,	-154.07]	 <.001	
Position	3	-	2	 3.65	 12.23	 [-20.32,	27.63]	 .774	
Repetition	 -4.09	 0.12	 [-4.32,	-3.87]	 <.001	
Position	2	-	1	x	Repetition	 -4.66	 0.28	 [-5.21,	-4.10]	 <.001	
Position	3	-	2	x	Repetition	 0.82	 0.28	 [0.27,	1.38]	 .003	
Word	length	 9.43	 6.19	 [-2.70,	21.56]	 .157	
Word	frequency	(log)	 -0.01	 6.48	 [-12.71,	12.69]	 .999	
Idiom	frequency	(log)	 20.24	 9.19	 [2.23,	38.25]	 .033	
Bigram	MI	 -16.12	 4.68	 [-25.28,	-6.95]	 .002	
Trigram	MI	 0.47	 4.41	 [-8.17,	9.11]	 .916	

Note.	CI:	confidence	interval;	SE:	standard	error.	

The	results	showed	a	significant	negative	effect	of	Repetition	reflecting	a	decrease	in	

response	 times	 with	 repetitions.	 We	 also	 found	 faster	 response	 times	 for	 words	 in	

Position	2	compared	to	those	in	Position	1,	but	there	was	no	difference	between	Position	

3	 and	 2.	 There	 were	 a	 significant	 interaction	 coefficient	 for	 the	 difference	 between	

Position	2	and	Position	1,	and	Repetition,	as	well	as	for	the	difference	between	Position	3	

and	Position	2,	and	Repetition.	Finally,	there	was	a	significant	effect	of	Idiom	frequency,	

with	 less	 frequent	 idioms	 eliciting	 faster	 responses,	 and	 of	 Bigram	 MI,	 with	 faster	

response	times	for	bigrams	with	stronger	MI.	This	unusual	pattern	is	most	likely	due	to	
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the	fact	that	one	of	our	less	frequent	idioms	in	the	experiment	(i.e.,	qui	dort	dîne)	has	a	

high	bigram	MI	score	(i.e.,	4.72),	which	may	have	speeded	up	participants’	responses	even	

though	the	 idiom	frequency	was	 low.	 In	 fact,	any	collocation	above	an	MI	score	of	3	 is	

considered	to	be	strong.	When	this	idiom	is	excluded	from	the	analysis,	the	effect	of	Idiom	

frequency	is	no	longer	significant,	b	=	16.65,	SE	=	11.22,	95%	CI	=	[-5.33,	38.64],		p	=	.147.	

Similarly	 to	 Experiment	 3,	 paired	 sample	 t-tests	 comparisons	 showed	 a	 significant	

difference	between	Position	1	compared	to	Positions	2	and	3	on	the	fourth	trial,	t(40)	=	

2.70,	Bonferroni-adjusted	p	=	.04.	
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Figure	 6.	 Upper	 panel:	 mean	 response	 times	 in	 Experiment	 4	 as	 a	 function	 of	 word	

position	and	number	of	repetitions.	The	vertical	dashed	line	indicates	the	first	repetition	

at	which	there	was	a	significant	difference	between	Position	1	vs.	Positions	2	and	3.	Error	

bars	 indicate	 95%	 confidence	 intervals.	 Lower	 panel:	 results	 from	 the	 broken-stick	

regressions	for	each	Position	in	the	triplet.	Vertical	bars	indicate	the	breakpoints.	

We	then	performed	a	broken-stick	regression	to	better	account	for	the	evolution	of	the	

learning	pattern	throughout	the	task.	A	breakpoint	was	estimated	at	repetition	15,	95%	

CI	[6.51,	23.49]	for	Position	1,	with	RTs	decreasing	from	repetitions	1	to	15,	b	=	-3.38,	95%	
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CI	 [-5.81,	 -0.95],	 followed	by	a	slower	decrease	 in	RTs,	b	=	 -0.51,	95%	CI	 [-1.25,	0.23].	

Regarding	Position	2,	we	estimated	 two	breakpoints	at	 repetitions	6.72,	95%	CI	 [4.88,	

8.57]	and	19,	95%	CI	[15.37,	22.63],	with	a	fast	decrease	in	RTs	from	repetitions	1	to	6.72,	

b	 =	 -35.45,	 95%	CI	 [-46.72,	 -24.17],	 continuing	 to	 decrease	 but	 at	 a	 slower	 rate	 from	

repetitions	6.72	to	19,	b	=	-9.87,	95%	CI	[-13.27,	-6.47],	 followed	by	a	slower	decrease	

until	the	end	of	the	task,	b	=	-1.51,	95%	CI	[-2.72,	-0.31].	For	Position	3,	two	breakpoints	

were	estimated	at	repetitions	5.17,	95%	CI	[3.92,	6.41]	and	17,	95%	CI	[13.50,	20.50],	with	

a	strong	decrease	in	RTs	from	repetitions	1	to	5.17,	b	=	-44.36,	95%	CI	[-58.21,	-30.51],	

continuing	with	a	slower	decrease	from	repetitions	5.17	to	17,	b	=	-9.79,	95%	CI	[-13.31,	

-6.28],	followed	by	an	even	slower	decrease	until	the	end	of	the	task,	b	=	-1.74,	95%	CI	[-

2.73,	-0.75].	

Questionnaire	

All	participants	reported	noticing	a	recurrent	word	sequence;	37	were	able	to	recall	

the	whole	triplet,	two	recalled	one	subsequence	(words	2	and	3),	one	could	recall	non-

adjacent	words	(words	1	and	3),	one	recalled	all	the	words	but	in	the	wrong	order,	and	

the	last	one	could	not	recall	any	word.	

Additional	analysis	

To	compare	the	predictability	effects	observed	in	Experiment	1,	3	and	4,	we	computed	

a	 predictability	 score	 for	 these	 experiments	 by	 calculating	 a	 difference	 between	 log-

transformed	RTs	for	unpredictable	words	(Position	1)	versus	the	log-transformed	mean	

RT	 for	predictable	words	 (Position	2	and	3)	 for	each	repetition.	Here,	a	positive	score	

reflects	a	predictability	effect.	We	decided	to	use	 log-transformed	values	to	control	 for	

baseline	differences	in	the	participants’	responses	(see	Siegelman,	Bogaerts,	Kronenfeld,	

et	al.,	2018).	For	instance,	let	us	consider	two	participants	with	a	mean	difference	of	100	

ms	between	predictable	and	unpredictable	words,	but	with	a	different	baseline	RT:	P1	
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unpredictable	=	600	ms,	predictable	=	500	ms;	P2	unpredictable	=	400	ms,	predictable	=	

300	ms.	Without	this	transformation,	these	participants	would	have	the	same	difference	

score,	even	if	the	relative	acceleration	of	P2	to	predictable	words	is	much	higher.	After	

log-transformation,	the	difference	between	predictable	and	unpredictable	words	reflects	

better	this	acceleration:	log	difference	of	P1	=	0.18,	P2	=	0.29.		

We	 then	 ran	 a	 linear	 mixed-effects	 model	 on	 the	 predictability	 scores,	 using	

Experiment,	 Repetition	 and	 the	 interaction	 term	 as	 fixed	 effects,	 and	 participant	 as	

random	effect.	Experiment	was	coded	using	repeated	contrast	coding	(Experiment	1:	-0.7	

-0.3;	Experiment	3:	0.3	 -0.3;	Experiment	4:	0.3	0.7).	We	observed	higher	predictability	

scores	in	Experiment	4	(idioms)	compared	to	Experiment	3	(semantically	related	words),	

b	=	0.07,	SE	=	0.01,	p	<	.001,	and	higher	scores	in	Experiment	3	compared	to	Experiment	

1	(non-related	words),	b	=	0.09,	SE	=	0.01,	p	<	.001.	In	addition,	there	was	a	main	effect	of	

Repetition,	b	=	0.01,	SE	=	0.00,	p	<	.001,	and	a	significant	interaction	between	Experiment	

4	-	Experiment	3	and	Repetition,	b	=	0.002,	SE	=	0.001,	p	=	.008,	indicating	an	increasing	

difference	of	predictability	scores	between	both	experiments	(see	Figure	7).	
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Figure	7.	Predictability	scores	across	repetitions	for	word	triplets	in	Experiments	1,	3	and	

4.	Continuous	lines	represent	loess	fit	for	the	predictability	scores.	Dashed	lines	represent	

the	best	linear	fit	and	grey-shaded	areas	indicate	95%	confidence	intervals	around	linear	

regression	lines.		

Discussion	

Experiment	 4	 produced	 results	 similar	 to	 Experiment	 3.	 However,	 two	 notable	

differences	suggest	that	idioms	have	benefited	to	a	larger	extent	from	triplet	repetition	

compared	 to	 semantically	 related	words.	 First,	 the	 predictability	 score	 represented	 in	

Figure	7	indeed	shows	that	when	the	repetition	effect	is	subtracted	from	the	predictability	

effect	on	each	repetition	trial,	 the	remaining	predictability	score	is	stronger	for	 idioms	
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compared	to	semantically	related	words,	which	is	also	stronger	than	the	score	obtained	

for	unrelated	words	from	Experiment	1.	Idioms,	which	are	supposedly	already	coded	in	

the	brain	as	semantically	coherent	and	frequent	sequences	of	words,	appear	to	derive	a	

greater	 processing	 advantage	 from	 repetition.	 Second,	 while	 69%	 of	 participants	 in	

Experiment	3	were	able	 to	recall	 the	 full	 triplet	of	semantically	related	words,	88%	of	

participants	in	Experiment	4	managed	to	recall	the	full	idiom.	This	improved	performance	

for	 explicit	 correct	 recall	 of	 idioms	 is	 probably	 due	 to	 their	 pre-existing	 encoding	 as	

relevant	linguistic	sequences,	or	at	least	to	a	facilitated	access	to	them	in	memory,	and	it	

suggests	more	generally	that	frequent	multiword	sequences	(apart	from	idioms)	do	result	

in	 a	 different	 learning	 dynamic	 in	 this	 Hebb	 lexical	 decision	 task	 compared	 to	 less	

frequent	multiword	sequences.		

General	discussion	

The	goal	of	the	present	set	of	experiments	was	to	provide	empirical	evidence	about	the	

dynamics	of	multiword	sequence	extraction	by	studying	the	evolution	of	response	times	

(RTs)	for	a	repeated	triplet	of	items	in	a	task	where	participants	were	not	informed	about	

the	 presence	 of	 this	 regularity.	 Using	 a	 Hebb	 lexical	 decision	 task,	 where	 a	 word	

(Experiments	 1,	 3	 and	 4)	 or	 a	 pseudoword	 (Experiment	 2)	 triplet	 was	 repeated	

throughout	a	noisy	stream	of	random	words	and	pseudowords,	we	found	that	RTs	for	the	

unpredictable	first	position	in	the	triplet	decreased	over	repetitions	(i.e.,	the	repetition	

effect)	but	more	slowly	and	with	a	different	dynamic	compared	to	items	appearing	at	the	

predictable	 second	 and	 third	 positions	 in	 the	 repeated	 triplet	 (i.e.,	 the	 predictability	

effect).	The	learning	dynamic	also	varied	as	a	function	of	triplet	type	(i.e.,	unrelated	words,	

pseudowords,	 semantically	 related	words,	 or	 idioms)	 and	 there	was	 no	 evidence	 of	 a	

difference	 between	 items	 appearing	 at	 Position	 2	 and	 3	 of	 the	 triplets.	 Finally,	 these	

results,	 supported	 by	 implicit	 associative	 learning	mechanisms,	were	 accompanied	 by	
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evidence	 of	 an	 explicit	 learning	 of	 the	 sequence	 that	 also	 varied	 as	 a	 function	 of	 the	

triplet’s	type.		

Repetition	is	a	key	mechanism	for	the	development	of	memory	traces	for	words	and	

sequences	of	words.	There	 is	much	 recent	evidence	 showing	 that	we	acquire	not	only	

memory	traces	for	words	but	also	for	multiword	sequences	(e.g., Arnon	&	Snider,	2010;	

Bannard	&	Matthews,	2008;	Conklin	&	Carrol,	2020;	Conklin	&	Schmitt,	2008;	Janssen	&	

Barber,	 2012;	 Siyanova-Chanturia,	 Conklin,	 &	 Schmitt,	 2011;	 Siyanova-Chanturia,	

Conklin,	&	van	Heuven,	2011).	The	development	of	these	memory	traces	may	facilitate	

their	processing	and	this	phenomenon	is	now	considered	by	several	models	of	language	

acquisition	 (e.g.,	 Abbot-Smith	&	Tomasello,	 2006;	Ambridge,	 2020;	Bannard	&	Lieven,	

2012;	McCauley	&	Christiansen,	2019;	Perruchet	&	Vinter,	1998)	as	being	central	for	the	

processing	of	multiword	sequences.		

The	present	 set	of	experiments	provides	new	empirical	 evidence	allowing	 to	better	

understand	the	effect	of	repetitions	on	the	creation	of	memory	traces	in	the	processing	of	

multiword	sequences	and	notably,	to	differentiate	the	dynamics	of	the	repetition	effect	

and	the	predictability	effect.	The	different	dynamics	of	these	effects	were	notably	revealed	

by	 the	 broken-stick	 regression	 analyses	 that	 we	 conducted	 on	 mean	 response	 times	

overall	repetitions	and	for	all	positions	in	the	repeated	triplet.	A	summary	of	the	main	

results	from	these	analyses	is	provided	in	Table	10.		
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Table	10	

Broken-stick	regressions	results:	breakpoints	(BP)	and	beta	coefficients	(b)	of	the	

regression	lines	for	each	position	in	the	repeated	triplet	and	for	each	experiment.	 	

Experiment	 Position	 BP1	 BP2	 b1	 b2	 b3	
	 1	 18.46	 	 -4.22	 0.52	 	

Unrelated	words	(1)	 2	 5.35	 19.81	 -32.40	 -7.92	 -3.20	
	 3	 5.88	 19.54	 -27.92	 -8.18	 -1.72	
	 	 	 	 	 	 	
	 1	 5.18	 	 -23.81	 -1.82	 	

Pseudowords	(2)	 2	 7.44	 22.00	 -39.33	 -10.16	 -1.16	
	 3	 6.07	 18.37	 -41.73	 -11.66	 -1.86	
	 	 	 	 	 	 	
	 1	 16.72	 	 -3.96	 0.01	 	

Semantically	related	words	(3)	 2	 4.64	 20.00	 -43.01	 -8.85	 -1.37	
	 3	 5.57	 18.85	 -35.23	 -7.62	 -0.85	
	 	 	 	 	 	 	
	 1	 15.00	 	 -3.38	 -0.52	 	

Idioms	(4)	 2	 6.72	 19.00	 -35.45	 -9.87	 -1.51	
	 3	 5.17	 17.00	 -44.36	 -9.79	 -1.74	

 

Regarding	 the	 repetition	 effect	 (indexed	 by	 the	 evolution	 of	 RTs	 on	 the	 first	

unpredictable	 position	 of	 the	 triplet)	 for	 words	 in	 Experiment	 1,	 3,	 and	 4,	 it	 was	

characterized	by	a	late	breakpoint	(i.e.,	BP1)	and	a	relatively	slow	decrease	in	RTs	indexed	

by	a	small	beta	coefficient	(i.e.,	b1).	The	dynamic	was	very	different	for	pseudowords	in	

Experiment	 2	 since	 it	 produced	 an	 earlier	 breakpoint	 (5.18)	 and	 a	 much	 larger	 beta	

coefficient	(-23.81).	Similarly,	the	processing	gain	(indexed	by	the	difference	in	mean	RTs	

between	the	45th	repetition	and	the	first	occurrence	of	the	item)	was	smaller	for	words	

(i.e.,	 90	 ms,	 67	 ms,	 and	 90	 ms,	 for	 Experiment	 1,	 3,	 and	 4,	 respectively)	 than	 for	

pseudowords	(160	ms).	These	results	suggest	that	repetition	will	differentially	affect	the	

processing	of	items	that	are	already	encoded	in	memory	(i.e.,	words)	compared	to	novel	

items	(i.e.,	pseudowords).	Thus,	in	the	present	study,	we	observe	that	the	processing	of	
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novel	 items	 benefits	 very	 rapidly	 from	 repetition	 and	 certainly	 from	 the	 transitory	

development	of	a	memory	trace	representing	these	items.		

The	dynamics	of	the	predictability	effect,	that	is	indexed	by	the	evolution	of	RTs	on	the	

second	and	third	predictable	positions	of	the	triplet,	was	characterized,	for	all	items,	by	a	

fast	decrease	in	RTs	with	an	early	breakpoint	(around	4-7	repetitions	of	the	triplet)	for	

the	first	regression	line	and	a	 large	beta	coefficient.	The	processing	gain,	which	can	be	

computed	by	 subtracting	 the	mean	RTs	 (averaged	over	Positions	2	and	3)	 for	 the	 last	

occurrence	of	the	triplet	(i.e.,	45th	repetition)	from	the	mean	RTs	obtained	for	the	first	

occurrence	of	the	same	items	(e.g.,	640	ms	–	347	ms	=	293	ms,	for	Experiment	1),	indicates	

that	the	predictability	effect	was	much	larger	than	the	repetition	effect	(i.e.,	it	was	293	ms,	

417	ms,	285	ms,	and	332	ms,	for	Experiment	1-4	respectively).	The	emergence	of	these	

early	 breakpoints	 for	 predictable	 items,	 as	 well	 as	 of	 the	 difference	 between	

unpredictable	and	predictable	items	(around	3	to	5	repetitions	for	words),	is	consistent	

with	 the	 findings	 of	 Conklin	 and	 Carrol	 (2020).	 Indeed,	 they	 found	 a	 rapid	 change	 in	

participants’	reading	behaviour	after	only	4	to	5	repetitions	of	the	repeated	pattern.	These	

results	 clearly	 illustrate	 that	 encoding	 multiword	 sequences	 in	 memory	 drastically	

accelerates	the	processing	of	these	items	and	that	the	predictability	effect	goes	far	beyond	

the	repetition	effect.		

We	note	that	an	alternative	interpretation	to	the	predictability	effect	described	above	

can	also	be	provided	by	the	multiconstituent	unit	(MCU)	hypothesis	(Zang	et	al.,	2023),	

which	 is	 very	 close	 to	 the	 assumptions	 made	 in	 McCauley	 and	 Christiansen's	 (2019)	

computational	 model.	 According	 to	 this	 hypothesis,	 frequently	 encountered	 linguistic	

units	consisting	of	more	than	a	single	word	can	be	lexically	represented	in	memory	and	

identified	 as	 single	 representations	 during	 reading.	 In	 McCauley	 and	 Christiansen's	

(2019)	model,	this	lexicalization	process	is	driven	by	the	central	mechanism	of	chunking	
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(see	 also,	 Perruchet	 &	 Vinter,	 1998;	 Jessop	 et	 al.,	 2023).	 Therefore,	 multiword	 and	

pseudoword	 sequences	 that	 co-occur	 repeatedly	 and	 frequently,	 as	 in	 our	 study,	may	

gradually	become	lexicalised	and	represented	as	single	units	 in	the	individual’s	mental	

lexicon.	 Note	 that	 several	 studies	 by	 Liang	 et	 al.	 (2015,	 2017,	 2021,	 2023)	 provide	

empirical	data	in	favour	of	this	hypothesis	in	the	field	of	Chinese	word	reading.		

In	addition,	it	is	worth	noting	that	the	different	learning	dynamics	that	we	observed	for	

pseudowords	can	be	explained	not	only	by	the	development	of	a	new	memory	trace,	but	

also	by	the	lexical	decision	task	itself	and	the	cognitive	processes	underlying	it.	Indeed,	

while	in	Experiment	2	participants	had	to	give	a	“no”	response	to	the	triplet	consisting	of	

pseudowords,	 it	 has	 been	 shown	 that	 producing	 a	 “yes”	 response	 involves	 different	

processes	 than	 producing	 a	 "no"	 response.	 For	 instance,	 based	 on	 McClelland	 and	

Rumelhart's	 (1981)	 interactive	 activation	model,	 Grainger	 and	 Jacobs	 (1996)	 propose	

that	the	generation	of	a	"yes"	response	occurs	when	a	word	is	recognised	as	a	result	of	

surpassing	a	certain	activation	threshold.	In	contrast,	a	"no"	response	is	generated	on	the	

basis	 of	 global	 lexical	 activation,	which	 varies	 as	 a	 function	 of	 the	 likelihood	 that	 the	

stimulus	is	a	word	(see	also	Dufau	et	al.,	2012).	Experiment	2	is	therefore	not	comparable	

to	the	other	experiments	in	this	regard.	Nevertheless,	like	other	studies	of	novel	words	

and	multiword	sequences	using	pseudowords	(e.g.,	Norris	et	al.,	2018;	Pellicer-Sánchez,	

2017;	 Pellicer-Sánchez	 et	 al.,	 2022;	 Szmalec	 et	 al.,	 2012),	 it	 allows	 us	 to	 study	 the	

dynamics	of	the	development	of	a	trace	in	memory	and	its	influence,	in	this	case,	on	lexical	

decision	 processes.	 This	 data	 may	 also	 have	 direct	 consequences	 for	 computational	

models	of	language	acquisition	like,	for	example,	the	Parser	model	(Perruchet	&	Vinter,	

1998).	In	this	model,	each	time	a	unit	is	processed	again	(i.e.,	its	processing	is	repeated),	

it	receives	a	linear	increase	of	its	memory	trace	(indexed	by	a	weight	value).	The	present	

results	suggest	that	this	increase	may	not	be	linear	but	rather	non-linear	depending	on	
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the	weight	of	the	item’s	memory	trace.	For	new	memory	traces,	the	increase	seems	to	be	

stronger	and	more	rapid	than	for	memory	traces	that	are	more	strongly	encoded	in	lexical	

memory	(called	“perceptual	shaper”	in	this	model).		

Likewise,	 and	 beyond	 the	 repetition	 effect,	 the	 repeated	 temporal	 co-occurrence	 of	

items	provides	a	strong	and	non-linear	processing	advantage	for	the	predictable	items.	

Following	Hebbian	learning	principles	(e.g.,	Brunel	&	Lavigne,	2009;	Endress	&	Johnson,	

2021;	Tovar	et	al.,	2018),	the	coactivation	of	populations	of	neurons	coding	for	each	item	

may	result	in	the	strengthening	of	the	connection	weights	between	these	two	populations,	

leading	to	the	creation	of	a	chunk.	Another	possibility	is	to	assume	that	both	populations	

of	neurons	are	activating	a	third	population	of	pair-coding	neurons	(Miyashita,	2004)	that	

would	 code	 for	 the	 pairing	 of	 these	 items.	 Irrespective	 of	 these	 two	 possible	

implementations,	the	present	data	suggest	that	these	learning	dynamics	are	non-linear,	

with	a	fast	development	of	the	memory	trace	of	the	chunk	followed	by	a	slower	regime	of	

memory	consolidation.		

Although	 the	broken-stick	 analyses	did	not	 permit	 differentiation	of	 the	processing	

dynamics	of	the	three	types	of	words	used	in	Experiment	1,	3,	and	4	(i.e.,	unrelated	words,	

semantically	related	words,	and	idioms,	respectively),	the	predictability	scores	reported	

in	Figure	6	indicate	that	the	processing	of	idioms	benefited	more	from	the	predictability	

effect	than	the	processing	of	semantically	related	words,	which	also	benefited	more	from	

the	predictability	effect	 than	 the	unrelated	words	of	Experiment	1.	This	 is	 in	 line	with	

previous	 studies	 showing	 that	 prior	 linguistic	 knowledge	 influences	 and	 facilitates	

regularity	extraction	(e.g.,	Elazar	et	al.,	2022;	Siegelman,	Bogaerts,	Elazar,	et	al.,	2018).	

Pre-existing	associations	between	words	would	then	support	the	predictability	effect	and	

notably	 for	 idioms	which	 are	 sequences	 that	 are	 supposedly	 already	 represented	 and	

supported	by	memory	traces.		
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It	 is	 difficult	 however	 to	 determine	 whether	 the	 advantage	 for	 idioms	was	mainly	

supported	 by	 implicit	 associative	 learning	 or	 by	 the	 participants’	 prior	 knowledge	 of	

idioms.	 Table	 11	 provides	 a	 summary	 of	 the	 participants’	 responses	 to	 the	 final	

questionnaire,	 and	 it	 clearly	 suggests	 that	 participants’	 explicit	 knowledge	 resulted	 in	

stronger	 learning	 for	 idioms	 compared	 to	 semantically	 related	 words,	 which	 only	

benefited	 from	 implicit	 learning.	 	 Therefore,	 participants’	 explicit	 knowledge	 of	 the	

sequence	may	 have	 interacted	with	 implicit	 associative	 learning	mechanisms	 and	 the	

stronger	predictability	score	obtained	for	idioms	may	be	a	product	of	both	factors.		

Table	11		

Participants’	 responses	 to	 the	 questionnaire	 expressed	 in	 percentages	 for	 each	

experiment.	

Experiment	

Participants	
who	noticed	
a	repeated	
sequence	

Participants	who	
correctly	
recalled	the	
sequence	

Participants	who	
did	not	recall	

any	words	of	the	
sequence	

Unrelated	words	(1)	 98	 38	 7	
Pseudowords	(2)	 93	 29	 31	

Semantically	related	words	(3)	 98	 69	 7	
Idioms	(4)	 100	 88	 2	

	

Finally,	the	present	data	did	not	reveal	a	processing	advantage	for	the	third	position	

over	the	second,	contrary	to	previous	findings	on	regularity	extraction	in	naming	(Rey	et	

al.,	2020)	and	visuomotor	tasks	(Minier	et	al.,	2016;	Rey	et	al.,	2019,	2022).	This	is	likely	

due	to	the	specific	time-scale	of	the	present	experimental	paradigm	that	does	not	allow	

chunking	to	occur	beyond	two	items.	Indeed,	for	Hebbian	learning	to	occur	between	the	

first	and	third	items	in	the	repeated	triplet,	it	certainly	requires	maintaining	the	activation	

of	the	neural	population	coding	for	the	first	item	long	enough	to	be	coactivated	with	the	

neural	population	coding	for	the	last	item.	However,	contrary	to	previous	experimental	
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paradigms	 that	 have	 reported	 a	 learning	 advantage	 on	 the	 last	 position	 of	 a	 triplet	

sequence,	lexical	decision	takes	a	longer	processing	time	and	requires	greater	attentional	

load.	Both	of	these	factors	may	lead	to	a	fast	deactivation	of	items	that	were	processed	

two	steps	before,	avoiding	any	possible	association	to	occur	between	item	one	and	three	

of	 the	 repeated	 triplets.	 This	 is	 consistent	 with	 recent	 findings	 suggesting	 that	 long-

distance	associations	are	harder	to	establish	and	only	occur	under	very	specific	conditions	

(Tosatto	et	al.,	2022;	Wilson	et	al.,	2018).		

The	 absence	 of	 effect	 on	 the	 third	 position	 of	 the	 triplets	may	 also	 be	 related	 to	 a	

limitation	 of	 the	 present	 study.	 Indeed,	 participants	 may	 have	 learnt	 two-item	

associations	during	the	task	because	stimulus	presentation	was	sequential.	 It	has	been	

argued	 that	 parallel	 presentation	 is	 essential	 for	 determining	 the	 creation	 of	 co-word	

dependencies	 (Snell	 et	 al.,	 2018).	 Therefore,	 sequential	 presentation	 might	 have	

influenced	word	extraction	and	hindered	the	formation	of	a	3-word	chunk.		

In	addition,	a	number	of	 factors	are	 likely	 to	have	 influenced	the	 learning	dynamics	

during	the	task,	and	thus	constitute	limitations	to	our	study.	First,	one	third	of	the	words	

forming	the	triplets	in	Experiments	1	and	3	can	be	considered	as	being	part	of	existing	

multiword	sequences	in	French	(e.g.,	collocations:	“noyau	dur”,	“tronc	commun”;	idioms:	

“ramener	sa	 fraise”,	 “battre	 le	rappel”).	When	presented	with	these	words,	participants	

may	have	already	made	predictions	about	the	upcoming	words	in	the	sequence	on	the	

basis	 of	 these	 pre-existing	 multiword	 sequences.	 However,	 thanks	 to	 the	

counterbalancing	on	participants,	the	effect	of	these	pre-existing	co-occurrences	should	

be	minimized.	 In	 addition,	most	 of	 these	 existing	multiword	 sequences	 contain	words	

from	parts	 of	 speech	 other	 than	 a	 noun	 in	 the	 first	 and	 second	 positions,	making	 the	

prediction	of	the	last	word	in	the	triplet	nearly	impossible	given	the	preceding	words.		
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Second,	the	fact	that	the	triplets	in	Experiment	4	consisted	of	different	parts	of	speech	

(i.e.,	noun,	verb	and	adjective)	compared	to	those	in	Experiments	1	and	3	(i.e.,	nouns)	may	

also	have	influenced	their	processing	during	the	task.	Indeed,	reaction	times	have	been	

shown	to	differ	across	parts	of	speech	(e.g.,	Kauschke	&	Stenneken,	2008;	Kostić	&	Katz,	

1987;	Monaghan	et	al.,	2003;	Sereno,	1999;	Tyler	et	al.,	2001).	Similarly,	since	the	triplets	

were	not	matched	in	terms	of	MI	across	the	experiments,	certain	words	in	some	triplets	

are	much	less	predictive	of	the	following	words	in	the	sequence.	This	is	particularly	the	

case	 in	Experiment	4,	where	 the	 verb	 faire	 (to	 do	 in	English)	 is	 the	 first	word	 in	 four	

triplets.	Hence,	it	may	be	difficult	to	directly	compare	the	learning	dynamics	observed	in	

Experiment	4	with	those	of	the	other	experiments.	Future	studies	that	control	for	these	

confounding	factors	are	therefore	needed.		

Third,	 given	 the	 large	 number	 of	 triplet	 repetitions	 (i.e.,	 45),	 this	 task	 is	 far	 from	

mimicking	a	real	reading	situation	in	which	multiword	sequences	are	widely	spaced	from	

one	another	and	occur	much	less	frequently.	Nevertheless,	the	use	of	a	well-controlled	

environment	allowed	us	to	characterise	the	acquisition	of	multiword	sequences	in	real-

time	 and	 to	 investigate	 in	 depth	 the	 process	 of	 word-to-word	 associative	 learning	 in	

different	 linguistic	 settings	 (i.e.,	 unrelated	 words,	 novel	 words	 using	 pseudowords,	

semantically	 related	 words	 and	 idioms).	 To	 gain	 a	 fuller	 picture	 of	 how	 multiword	

sequences	are	acquired,	studies	employing	more	ecological	presentation	conditions,	such	

as	those	of	Conklin	and	Carrol	(2020)	and	Sonbul	et	al.	(2022),	and	using	different	types	

and	larger	multiword	sequences	are	needed.	
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Conclusion	

The	 current	 study	 provides	 novel	 information	 about	 the	 learning	 dynamic	 of	

multiword	sequences	when	presented	in	a	noisy	environment,	as	is	the	case	in	natural	

language.	Our	data	suggests	that	multiword	learning	is	carried	out	through	chunking	of	

local	 information	and	shows	how	repetition	affects	the	development	of	memory	traces	

and	improves	processing.	To	further	explore	and	understand	the	dynamic	of	multiword	

sequences	 extraction,	 future	 research	 could	manipulate	different	parameters	 from	 the	

present	experimental	Hebb	lexical	decision	task,	 like	for	example,	the	spacing	between	

two	repetitions	of	the	repeated	sequence	or	the	size	of	the	sequence,	to	determine	the	

limits	of	the	conditions	under	which	associative	learning	can	occur	between	a	sequence	

of	words.		
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Appendix	A.	Participants’	scores	and	standard	deviations	on	the	LexTALE	task	for	
each	experiment.	

	
Experiment	 Vocabulary	score	 SD	

Unrelated	words	(1)	 86.53%	 5.76	
Pseudowords	(2)	 85.13%	 7.08	

Semantically	related	words	(3)	 85.08%	 6.37	
Idioms	(4)	 86.18%	 6.19	
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Appendix	B.	List	of	triplets	per	participant	and	fillers	in	Experiment	1	

Participant	 	 Triplet	
1		 	 armure	gilet	nectar	
2	 	 armure	nectar	gilet	
3	 	 gilet	armure	nectar	
4	 	 gilet	nectar	armure	
5	 	 nectar	armure	gilet	
6	 	 nectar	gilet	armure	

7	…	12	 	 mule	proie	noeud	
13	…	18	 	 virage	rasoir	festin	
19	…	24	 	 livret	tirage	cloche	
25	…	30	 	 graine	tronc	berger	
31	…	36	 	 rappel	noyau	palace	
37	…	42	 	 calcul	balai	volcan	

	
Filler	words	

	
	

angle	armée	assaut	bague	balle	base	câble	canard	chute	cible	
coton	dent	doute	fuite	grève	hasard	jardin	lion	moteur	musée	
neige	nuage	offre	orage	ours	papier	parole	pause	perte	pilote	
pluie	porc	prince	rideau	roue	signe	site	soupe	tarte	tenue	tigre	
trafic	valise	violon	voisin	
	

Filler	pseudowords		
abréne	acogne	acrule	acun	agarte	ainte	alire	alme	altace	anet	
anide	 antôt	 appome	 arine	 artal	 arti	 arut	 arêle	 asode	 atinle	
augard	 ausi	 autoce	 blose	 boce	 borté	 buge	 bune	 carc	 caruce	
catail	catire	cepame	cerson	cetir	chamir	charde	charon	chefet	
cheler	 choui	 chroid	 chume	 ciroir	 claint	 cluise	 coble	 cocère	
colmel	counai	crupe	cumite	cuse	damade	danfum	degite	derler	
ditrer	doble	drugue	dévede	 elsir	 engade	 ensime	 falber	 farbe	
fauf	 flerse	 folde	 forni	 frone	 fube	 fule	 garsu	 gitre	 glac	 granal	
gretro	 grode	 grort	 grupe	 gumble	hatour	heudit	 hoire	hontôt	
hougue	humice	inssir	iple	ipéth	iseau	jada	japite	jutand	laitôt	
latace	 lavec	 lieune	 lipin	 léble	 léfile	 lémece	 mevail	 miman	
molome	moléce	monner	mèlui	môvec	naille	natéme	noil	nomsi	
nopore	noxe	omante	oufage	ounite	pachet	paseau	pecran	pertif	
piale	plaze	pleité	pordée	preper	preur	preuro	psat	puif	pérée	
ranu	relle	renchi	renre	renume	rerile	rerise	retave	ricit	rocèle	
roulip	sabe	sarie	satu	sepoce	sesin	soite	sona	soral	sounir	spho	
spile	 suine	 sule	 supe	 taivec	 taute	 touet	 touge	 toutôt	 trounu	
tulque	 tyle	 uant	 ucun	 unate	 vecote	 ventin	 visise	 vosé	 voule	
vrande	vêpel	âleur	ésale	êder	îcun	
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Appendix	C.	List	of	triplets	per	participant	and	fillers	in	Experiment	2	

Participant	 	 Triplet	
1		 	 acré	mouffe	brague	
2	 	 acré	brague	mouffe	
3	 	 mouffe	acré	brague	
4	 	 mouffe	brague	acré	
5	 	 brague	acré	mouffe	
6	 	 brague	mouffe	acré	

7	…	12	 	 étrin	rompte	flais	
13	…	18	 	 charpe	crêle	joine	
19	…	24	 	 souffe	prompe	dige	
25	…	30	 	 bloue	sprère	vauve	
31	…	36	 	 fitre	plou	boge	
37	…	42	 	 relet	harte	loude	

	
Filler	words	

	
	

acier	 acteur	 adieu	 agence	 aile	 angle	 anneau	 armée	 assaut	
auteur	 bague	 balle	 ballon	 banque	 barbe	 base	 beurre	 bible	
bière	blague	bombe	bonté	bourse	bouton	bruit	canard	carte	
cesse	change	chat	chaîne	choc	chute	cible	cirque	client	code	
coffre	copain	corde	coton	course	crème	cuir	câble	dent	destin	
dette	 devoir	 disque	 douche	 doute	 drôle	 défi	 départ	 dîner	
empire	 emploi	 ennui	 ferme	 fleuve	 forme	 forêt	 four	 fuite	
fumée	genou	golf	grâce	grève	gâteau	génie	hasard	herbe	hiver	
huile	 humour	 image	 indice	 jardin	 joie	 lame	 ligne	 lion	 loup	
lycée	 magie	 mairie	 mardi	 milieu	 moteur	 mouche	 musée	
nature	navire	neige	neveu	nuage	objet	offre	ombre	orage	ours	
page	pain	papier	parfum	pari	parole	pause	perte	pilote	plage	
pluie	poche	poil	pomme	porc	port	poste	potion	pouce	poème	
presse	preuve	prince	prénom	prêtre	pêche	radio	rideau	robe	
rocher	 rose	 roue	 rythme	 régime	 salade	 salon	 sauce	 savon	
scène	 signe	 site	 siège	 soirée	 souci	 soupe	 sport	 statue	 style	
tabac	 tante	 tarte	 tasse	 temple	 tenue	 texte	 tigre	 toile	 tombe	
trafic	 trou	 troupe	 trésor	 tuyau	 vague	 valise	 vallée	 ventre	
veste	violon	vitre	voeu	voie	voisin	vote	vélo	écoute	épée	
	
Filler	pseudowords		
ainte	alire	altace	antôt	arut	atinle	bune	charon	chefet	choui	
ciroir	 cocère	 counai	 cuse	 engade	 ensime	 falber	 farbe	 fauf	
flerse	 fube	 gretro	 iple	 iseau	 jada	 latace	 lieune	mèlui	 naille	
ounite	 paseau	 puif	 renre	 retave	 rocèle	 sepoce	 sesin	 soral	
suine	trounu	vecote	voule	vrande	âleur	ésale	
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Appendix	D.	List	of	triplets	per	participant	and	fillers	in	Experiment	3	

Participant	 	 Triplet	
1	 	 banane	cerise	fraise	
2			 	 banane	fraise	cerise	
3	 	 cerise	banane	fraise	
4	 	 cerise	fraise	banane	
5	 	 fraise	banane	cerise	
6	 	 fraise	cerise	banane		

7	…	12	 	 coco	figue	poire	
13	…	18	 	 citron	tomate	oignon	
19	…	24	 	 saumon	truite	requin	
25	…	30	 	 pigeon	dinde	hibou	
31	…	36	 	 coyote	renard	lièvre	
37	…	42	 	 cobaye	tortue	taupe	

	
Filler	words	

	
	

angle	armée	assaut	bague	balle	base	câble	canard	chute	cible	
coton	dent	doute	fuite	grève	hasard	jardin	lion	moteur	musée	
neige	nuage	offre	orage	ours	papier	parole	pause	perte	pilote	
pluie	porc	prince	rideau	roue	signe	site	soupe	tarte	tenue	tigre	
trafic	valise	violon	voisin	
	

Filler	pseudowords	
abréne	acogne	acrule	acun	agarte	ainte	alire	alme	altace	anet	
anide	 antôt	 appome	 arine	 artal	 arti	 arut	 arêle	 asode	 atinle	
augard	 ausi	 autoce	 blose	 boce	 borté	 buge	 bune	 carc	 caruce	
catail	catire	cepame	cerson	cetir	chamir	charde	charon	chefet	
cheler	 choui	 chroid	 chume	 ciroir	 claint	 cluise	 coble	 cocère	
colmel	counai	crupe	cumite	cuse	damade	danfum	degite	derler	
ditrer	doble	drugue	dévede	 elsir	 engade	 ensime	 falber	 farbe	
fauf	 flerse	 folde	 forni	 frone	 fube	 fule	 garsu	 gitre	 glac	 granal	
gretro	 grode	 grort	 grupe	 gumble	hatour	heudit	 hoire	hontôt	
hougue	humice	inssir	iple	ipéth	iseau	jada	japite	jutand	laitôt	
latace	 lavec	 lieune	 lipin	 léble	 léfile	 lémece	 mevail	 miman	
molome	moléce	monner	mèlui	môvec	naille	natéme	noil	nomsi	
nopore	noxe	omante	oufage	ounite	pachet	paseau	pecran	pertif	
piale	plaze	pleité	pordée	preper	preur	preuro	psat	puif	pérée	
ranu	relle	renchi	renre	renume	rerile	rerise	retave	ricit	rocèle	
roulip	sabe	sarie	satu	sepoce	sesin	soite	sona	soral	sounir	spho	
spile	 suine	 sule	 supe	 taivec	 taute	 touet	 touge	 toutôt	 trounu	
tulque	 tyle	 uant	 ucun	 unate	 vecote	 ventin	 visise	 vosé	 voule	
vrande	vêpel	âleur	ésale	êder	îcun	
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Appendix	E.	List	of	triplets	per	participant	and	fillers	in	Experiment	4	

Participant	 	 Triplet	
1	…	6			 	 être	mauvais	joueur	
7	…	12		 	 faire	fausse	route	
13	…	18		 	 qui	dort	dîne	
19	…	24			 	 faire	chou	blanc	
25	…	30		 	 faire	profil	bas	
31	…	36	 	 faire	grise	mine	
37	…	42	 	 montrer	patte	blanche	

	
Fillers	

	
	

angle	 armée	 assaut	 bague	 balle	 base	 câble	 canard	 chute	 cible	
coton	dent	doute	 fuite	grève	hasard	 jardin	 lion	moteur	musée	
neige	nuage	offre	orage	ours	papier	parole	pause	perte	pilote	
pluie	porc	prince	rideau	roue	signe	site	soupe	tarte	tenue	tigre	
trafic	valise	violon	voisin	
	

Filler	pseudowords	
abréne	 acogne	 acrule	 acun	 agarte	 ainte	 alire	 alme	 altace	 anet	
anide	 antôt	 appome	 arine	 artal	 arti	 arut	 arêle	 asode	 atinle	
augard	ausi	autoce	blose	boce	borté	buge	bune	carc	caruce	catail	
catire	cepame	cerson	cetir	chamir	charde	charon	chefet	cheler	
choui	 chroid	 chume	 ciroir	 claint	 cluise	 coble	 cocère	 colmel	
counai	crupe	cumite	cuse	damade	danfum	degite	derler	ditrer	
doble	drugue	dévede	elsir	engade	ensime	falber	farbe	fauf	flerse	
folde	 forni	 frone	 fube	 fule	garsu	gitre	glac	granal	gretro	grode	
grort	grupe	gumble	hatour	heudit	hoire	hontôt	hougue	humice	
inssir	iple	ipéth	iseau	jada	japite	jutand	laitôt	latace	lavec	lieune	
lipin	léble	léfile	lémece	mevail	miman	molome	moléce	monner	
mèlui	 môvec	 naille	 natéme	 noil	 nomsi	 nopore	 noxe	 omante	
oufage	 ounite	 pachet	 paseau	 pecran	 pertif	 piale	 plaze	 pleité	
pordée	 preper	 preur	 preuro	 psat	 puif	 pérée	 ranu	 relle	 renchi	
renre	renume	rerile	rerise	retave	ricit	rocèle	roulip	sabe	sarie	
satu	sepoce	sesin	soite	sona	soral	sounir	spho	spile	suine	sule	
supe	taivec	taute	touet	touge	toutôt	trounu	tulque	tyle	uant	ucun	
unate	vecote	ventin	visise	vosé	voule	vrande	vêpel	âleur	ésale	
êder	îcun	
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Chapter 3: Language sequence learning and 
repetition-spacing 

Recent	research	has	shown	that	a	new	sequence	of	words	can	be	learned	after	only	a	

few	repetitions,	but	little	is	known	about	how	long	this	sequence	can	survive	in	memory	

without	being	reinforced.	In	the	present	study,	we	investigated	the	influence	of	repetition	

spacing	on	the	acquisition	of	word	sequences	under	incidental	 learning	conditions.	We	

used	a	Hebb	lexical	decision	task	in	which	a	triplet	of	words	was	systematically	repeated	

every	4th,	7th,	10th,	20th,	30th	or	60th	 trial,	depending	on	 the	spacing	condition.	Our	

results	 showed	 that	 learning	 was	 still	 possible	 at	 large	 repetition	 spacing	 (60-apart	

spacing)	and	that	the	forgetting	curve	appeared	to	follow	a	power	law.	Furthermore,	the	

processing	 speed	of	 the	words	was	differentially	 affected	by	 repetition	 spacing.	These	

results	 are	 discussed	 in	 relation	 to	 recent	 statistical	 learning	 models	 of	 language	

development3.	

	

	 	

	
3	This	experimental	chapter	is	an	adapted	version	of	the	submitted	manuscript	in	thesis	format.	Pinto	Arata,	
L.,	Ramisch,	Carlos.,	&	Rey,	A.	(Submitted).	Language	sequence	learning	and	repetition-spacing.	
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Introduction	

When	language	learners	encounter	a	novel	word	or	sequence	of	words,	they	gradually	

develop	a	memory	trace	of	this	linguistic	event.	To	prevent	this	memory	trace	from	fading,	

it	needs	to	be	consolidated	over	time	through	repetition.	Repetition	facilitates	children’s	

word	learning	(Mather	&	Plunkett,	2009;	Schwab	&	Lew-Williams,	2016;	Vihman	et	al.,	

2014),	and	learners	are	more	likely	to	acquire	an	unfamiliar	word	when	it	is	frequently	

repeated	 (e.g.,	 Elley,	 1989;	 Uchihara	 et	 al.,	 2019;	 Webb,	 2007).	 Similarly,	 better	

performance	 in	 comprehension	 and	 production	 is	 observed	 for	 frequent	 multiword	

sequences	 in	 both	 children	 (e.g.,	 Arnon	 &	 Clark,	 2011;	 Bannard	 &	 Matthews,	 2008;	

McCauley	et	al.,	2021)	and	adults	 (e.g.,	Arnon	&	Snider,	2010;	Carrol	&	Conklin,	2020;	

Jolsvai	et	al.,	2020).	

From	 an	 early	 age,	 infants	 can	 learn	 several	 words	 very	 rapidly	 (Pinker,	 1994;	

Swingley,	2008).	For	instance,	Kay-Raining	Bird	and	Chapman	(1998)	found	that	13-	to	

16-month-old	infants	were	able	to	quickly	associate	novel	words	with	an	object	after	only	

four	 repetitions.	 Similarly,	 Tamura	 et	 al.	 (2017)	 exposed	9-	 to	11-year-old	 children	 to	

written	unfamiliar	words	that	were	embedded	in	short	stories.	They	showed	that	children	

were	 able	 to	 learn	 new	word	 forms	 correctly	 after	 just	 four	 repetitions,	 although	 the	

learning	of	 their	meaning	 required	more	 repetitions.	Recent	 research	 further	 suggests	

that	four	to	five	repetitions	of	a	repeated	multiword	sequence	are	sufficient	to	observe	a	

change	 in	 participants’	 reading	 behaviour	 (Conklin	 &	 Carrol,	 2020;	 Pinto	 Arata	 et	 al.,	

2024;	Sonbul	et	al.,	2022).		

While	most	research	suggests	that	approximately	4	repetitions	are	sufficient	to	learn	a	

novel	word	or	word	sequence,	less	is	known	about	the	influence	of	repetition	spacing	(i.e.,	

the	 distance	 between	 each	 repetition	 of	 a	 repeated	 sequence).	 Page	 et	 al.	 (2013)	

conducted	one	of	the	few	studies	that	examines	the	effect	of	repetition	spacing	on	word	
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sequence	learning.	They	used	a	variant	of	the	Hebb	repetition	task	(Hebb,	1961)	in	which	

participants	were	presented	with	word	sequences	for	immediate	serial	recall.	Unlike	the	

original	task,	in	which	each	target	sequence	(the	Hebb	sequence)	is	repeated	every	third	

trial	 and	 interspersed	with	 random	 filler	 sequences,	 the	 target	 sequence	 occurrences	

were	separated	by	6,	9,	and	12	random	fillers.	They	showed	that	the	learning	rate	for	the	

repeated	target	sequence	was	substantial	in	all	spacing	conditions.	Furthermore,	St-Louis	

et	al.	(2019)	extended	on	this	study	and	found	that	irregular	spacing	of	repetitions	had	no	

impact	on	the	learning	rate.	Thus,	these	results	indicate	that	learning	is	still	possible	when	

repetitions	are	relatively	spaced,	and	that	memory	traces	can	survive	without	constant	

refreshing.		

However,	in	contrast	to	the	Hebb	repetition	task,	language	learning	is	often	incidental,	

and	word	 sequences	 are	not	 explicitly	 rehearsed	 after	 each	 repetition.	 This	 raises	 the	

question	of	whether	the	influence	of	repetition	spacing	on	word	sequence	learning	is	the	

same	 under	 incidental	 learning	 conditions.	 To	 address	 this	 question,	we	 used	 a	Hebb	

lexical	decision	task	in	which	participants	had	to	read	letter	strings	presented	one	at	a	

time	on	a	computer	screen	and	classify	them	as	either	words	or	pseudowords.	Unknown	

to	them,	a	triplet	of	words	(hereafter	referred	to	as	ABC)	appeared	systematically	in	the	

same	order.	Between	two	repetitions	of	the	ABC	triplet,	a	variable	number	of	random	filler	

words	 and	 pseudowords	 were	 presented,	 depending	 on	 the	 spacing	 condition.	 We	

inserted	either	4±1	filler	items	(4F-Condition),	7±1	filler	items	(7F-Condition),	10±1	filler	

items	 (10F-Condition),	 20±1	 filler	 items	 (20F-Condition),	 30±1	 filler	 items	 (30F-

Condition),	or	60±1	filler	items	(60F-Condition).		Response	times	(RTs)	for	each	word	in	

the	 triplet	 and	 their	 evolution	 over	 repetitions	 provide	 behavioural	 indicators	 of	 the	

efficiency	of	their	processing	and	memorisation.	
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More	precisely,	the	evolution	of	response	times	for	the	first	item	of	the	triplet	(i.e.,	A)	

can	be	used	to	study	the	mere	repetition	effect,	as	this	word	is	unpredictable	due	to	the	

random	number	of	 filler	 items	occurring	between	 two	 repetitions	of	 the	 triplet	 (Pinto	

Arata	 et	 al.,	 2024).	 Similarly,	 the	 evolution	of	 response	 times	on	 the	 second	and	 third	

positions	of	the	triplet	(i.e.,	B	and	C)	makes	it	possible	to	study	the	predictability	effect,	i.e.	

the	 even	 greater	 reduction	 in	 response	 times	 on	 predictable	 positions	 after	 several	

repetitions	 of	 the	 ABC	 triplet	 (Rey	 et	 al.,	 2020).	 The	 goal	 of	 the	 present	 study	 is	 to	

investigate	how	the	repetition	and	predictability	effects	vary	as	a	function	of	repetition	

spacing,	and	whether	these	effects	are	still	observed	when	repetition	spacing	is	relatively	

large.	To	our	knowledge,	this	is	the	first	study	to	test	such	a	large	repetition	spacing	(i.e.,	

up	to	60	items).	

Experiment	

Methods		

Participants	

Five	 hundred	 and	 thirty-five	 participants	 were	 initially	 recruited	 via	 Prolific	

(https://www.prolific.com).	 Out	 of	 the	 535	 participants,	 we	 excluded	 31:	 one	 due	 to	

experimental	 errors,	 and	 30	 due	 to	 low	 performance	 in	 the	 language	 proficiency	 test	

described	below.	Hence,	the	final	sample	consisted	of	504	participants	(279	females;	Mage	

=	26.6	years,	SDage	=	5.6)	that	were	randomly	assigned	to	one	of	the	six	spacing	conditions	

(4F,	 7F,	 10F,	 20F,	 30F,	 and	 60F),	 leading	 to	 84	 participants	 per	 spacing	 condition.	 All	

participants	 reported	being	native	French	 speakers	with	no	history	of	 neurological	 or	

language	 impairment.	 Before	 starting	 the	 experiment,	 participants	 signed	 an	 online	

informed	consent	form.	

As	participants	were	recruited	online,	their	proficiency	in	French	was	checked	using	

the	LexTALE	language	proficiency	test	before	starting	the	main	task	(Brysbaert,	2013).	
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This	test	consists	of	a	lexical	decision	task	in	which	participants	are	presented	with	84	

single-item	 trials	 (56	 real	 French	 words,	 28	 French-looking	 pseudowords),	 and	 are	

instructed	to	decide	whether	each	presented	letter	string	is	a	real	French	word	or	not.	

Any	 participant	 whose	 score	 was	 below	 2.5	 standard	 deviations	 from	 the	 average	

LexTALE	vocabulary	score	was	excluded	from	the	experiment	and	replaced.	Based	on	this	

criterion,	thirty	participants	were	excluded	and	replaced.	A	summary	of	the	participants’	

scores	and	standard	deviations	on	 the	LexTALE	 task	 for	each	condition	 is	provided	 in	

Appendix	A.		

Materials	

A	set	of	813	words	and	882	pseudowords	were	used	as	items	in	this	experiment.	All	

words	were	monosyllabic	or	disyllabic	nouns.	They	were	composed	of	four	to	six	letters	

and	were	selected	 from	the	French	database	Lexique	3.83	(New	&	Pallier,	2020).	Each	

word	 of	 the	 triplet	 had	 a	 freqfilms2	 frequency	 ranging	 from	 2	 to	 10	 occurrences	 per	

million.	Filler	words	had	a	 frequency	ranging	 from	10	 to	100	occurrences	per	million.	

Pseudowords	were	obtained	from	the	French	Lexicon	Project	(Ferrand	et	al.,	2010).	They	

were	monosyllabic	or	disyllabic	and	had	a	length	ranging	from	four	to	six	letters.		

To	 prevent	 any	 order	 effect,	 a	 Latin-square	 design	 was	 used	 so	 that	 each	 word	

appeared	 in	 every	 possible	 position	 within	 the	 triplet,	 resulting	 in	 six	 possible	

permutations	of	each	word	triplet	(ABC,	ACB,	BAC,	BCA,	CAB,	CBA).	Seven	triplets	were	

used	 (for	a	 total	of	7*3	=	21	different	words),	and	each	of	 these	 triplets	generated	six	

possible	permutations,	yielding	a	total	of	7*6	=	42	ordered	three-word	sequences.	Each	

participant	saw	a	single	repeated	triplet,	with	the	three	words	always	in	the	same	order.	

To	 ensure	 that	 participants	 were	 presented	 with	 an	 equal	 number	 of	 words	 and	

pseudowords,	they	completed	400	trials	in	the	4F,	7F	and	10F	conditions,	with	57,	40	and	

30	 repetitions	of	 the	 triplet,	 respectively,	whereas	 they	 completed	690,	990	and	1764	
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trials	in	the	20F,	30F	and	60F	conditions,	with	30	repetitions	of	the	triplet.	Due	to	the	large	

number	of	trials	in	the	60F-Condition,	this	condition	was	divided	into	two	experimental	

blocks	with	a	break	in	between.		

To	obtain	the	recommended	1,600	measurements	per	level	of	a	variable	for	sufficient	

statistical	power	(Brysbaert	&	Stevens,	2018),	we	collected	the	double	of	the	data	for	each	

level,	 that	 is,	 each	 triplet	 was	 seen	 by	 two	 participants,	 resulting	 in	 a	 total	 of	 84	

participants	per	spacing	condition.	The	set	of	word	triplets	and	fillers	is	listed	in	Appendix	

B.		

At	 the	 end	 of	 the	 task,	 all	 participants	 answered	 a	 short	 questionnaire.	 The	 first	

question	was:	“Did	you	notice	anything	particular	in	this	experiment?”	If	the	answer	was	

"yes",	the	follow-up	question	was	“Can	you	explain	what	you	noticed?”.	They	were	then	

asked	“Did	you	notice	that	a	sequence	of	words	was	systematically	repeated?”	and	“Can	

you	recall	the	words	in	their	correct	serial	order?”.	If	the	response	to	the	first	question	

was	“No”,	participants	were	only	presented	with	the	last	two	questions.	

Apparatus	

The	experiment	was	created	using	LabVanced	(Finger	et	al.,	2017)	and	participants	

were	 recruited	 via	 the	 Prolific	 platform.	 Participants	 participated	 via	 their	 personal	

computer,	with	only	PC-Windows,	PC-Linux,	and	MacOS	operating	systems	allowed,	 to	

keep	the	experimental	conditions	as	similar	as	possible	across	participants.	All	words	and	

pseudowords	were	presented	in	lowercase	in	the	centre	of	the	screen	using	a	20-point	

Lato	black	font	on	a	white	background.	

Procedure	

Before	starting	the	experiment,	instructions	were	displayed	on	the	screen.	Participants	

were	instructed	to	decide	as	fast	as	possible	whether	the	sequence	of	letters	displayed	on	

the	screen	formed	a	French	word	or	not.	They	had	to	press	“M”	(for	words)	or	“Q”	(for	
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pseudowords)	on	their	keyboards,	 located	at	the	left	and	right	ends	of	French	AZERTY	

keyboards4.	RTs	and	accuracy	were	recorded	for	each	word	and	pseudoword.	Each	target	

remained	on	the	screen	until	the	participant	responded.	The	next	target	then	appeared	

immediately	after	the	participant’s	response.	Each	spacing	condition,	as	well	as	each	block	

in	the	60F-Condition,	began	and	ended	with	three	filler	items	to	ensure	that	participants	

were	 presented	 with	 the	 triplet	 at	 the	 same	 time.	 4F,	 7F	 and	 10F	 conditions	 lasted	

approximately	10	minutes,	while	20F,	30F	and	60F	lasted	approximately	12,	16	and	30	

minutes,	 respectively.	 Figure	 1	 provides	 a	 schematic	 description	 of	 the	 experimental	

paradigm.	

	

Figure	 1.	 Experimental	 procedure	 for	 the	 lexical	 decision	 task.	 Panel	 A:	 items	 were	

presented	one	at	a	time	in	the	centre	of	the	screen.	Participants	had	to	classify	each	string	

as	a	word	or	a	pseudoword.	A	repeated	sequence	of	three	words	(e.g.,	W1:	“évier”	–	sink	;	

W2:	 “raisin”	 –	 grape	 ;	W3:	 “flacon”	 –	 flask),	 always	 appearing	 in	 the	 same	 order,	 was	

interspersed	with	random	filler	words	(WR)	or	random	filler	pseudowords	(PWR).	Words	

in	blue	belong	to	the	repeated	triplet.	Panel	B:	one	triplet	of	words	(W1W2W3)	is	repeated	

	
4	On	QWERTY	keyboards,	this	would	be	“A”	for	words	and	“L”	for	pseudowords.	
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several	times	and	a	variable	number	of	random	words	or	pseudowords	(WR	or	PWR)	are	

presented	between	 two	repetitions	of	 the	 triplet.	The	number	of	 random	 items	varied	

depending	on	the	spacing	conditions.	

Results	

Participants’	mean	accuracy	level	was	98.68%	in	the	4F-Condition,	98.92%	in	the	7F-

Condition,	99.13%	in	the	10F-Condition,	99.22%	in	the	20F-Condition,	99.02%	in	the	30F-

Condition,	 and	 98.94%	 in	 the	 60F-Condition.	 Incorrect	 trials	 were	 removed	 from	 the	

analysis.	We	excluded	RTs	exceeding	1500	ms	(0.42%,	0.98%,	0.71%,	0.58%,	0.71%,	and	

1.19%	of	the	data	for	conditions	4F,	7F,	10F,	20F,	30F	and	60F).	To	make	the	conditions	

comparable,	only	the	first	30	repetitions	of	the	triplet	for	each	condition	were	included	in	

the	analysis.	Thus,	the	final	data	set	consisted	of	30	repetitions	*	84	participants	=	2,520	

data	points	per	 level.	The	mean	RTs	and	standard	deviations	 for	each	position	 in	each	

condition	are	presented	in	Table	1.		

To	 examine	 the	 learning	 dynamics	 of	 the	 repeated	 multiword	 sequences,	 we	 first	

compared	the	evolution	of	RTs	at	each	of	the	three	positions	in	the	sequence.	Data	analysis	

was	 performed	with	 the	 R	 software	 (version	 4.3.2)	 using	 linear	mixed-effects	models	

(LMEs)	 fitted	 with	 the	 lme4	 package	 (version	 1.1-35.1;	 Bates	 et	 al.,	 2015)	 and	 the	

lmerTest	(version	3.1-3;	Kuznetsova	et	al.,	2017).	Separate	models	were	fitted	for	each	

spacing	 condition.	 Each	model	 included	 the	maximum	 random	 structure	 that	 allowed	

convergence	(Barr,	2013;	Barr	et	al.,	2013),	that	is,	Position	(1	to	3),	Repetition	(1	to	30)	

and	their	 two-way	 interaction	as	 fixed	effects,	participants	and	 item	sets	were	used	as	

random	effects5.	Position	was	coded	using	Helmert	contrasts	(i.e.,	P1:	0.7	0.0;	P2:	-0.3	0.5;	

P3:	 -0.3	 -0.5)	 to	 compare	Position	1	with	 both	Positions	 2	 and	3,	 simultaneously,	 and	

	
5	The	model	structure,	as	denoted	in	R	syntax,	was	as	follows	for	each	model:	log(RT)	~	Position*Repetition	
+	(Repetition	+	Position|Subject)	+	(1|Item).	
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Position	2	with	Position	3.	Repetition	was	mean	centred	to	reduce	collinearity.	RTs	were	

log-transformed	to	reduce	skewing	and	to	control	for	baseline	differences	between	the	

participants’	 responses	 (see	 Siegelman	 et	 al.,	 2018).	 The	 results	 of	 the	 comparison	

between	the	positions	of	the	triplet	are	shown	in	Table	2.		

Table	1		

Mean	response	times	in	milliseconds	(rounded)	and	standard	deviations	(in	parentheses,	

rounded)	for	each	position	in	the	triplet	and	in	each	spacing	condition.	

	 4F	 7F	 10F	 20F	 30F	 60F	
Position	1	 628	(143)	 635	(153)	 598	(145)	 607	(147)	 601	(137)	 606	(151)	
Position	2	 468	(183)	 534	(195)	 491	(173)	 506	(167)	 533	(152)	 531	(167)	
Position	3	 473	(173)	 512	(182)	 471	(174)	 485	(181)	 499	(167)	 491	(171)	
	

Table	2	

Fixed	effect	values	of	each	mixed	model	for	all	spacing	conditions.	

	 	 4F	 	 	 	 7F	 	 	 	 10F	 	
Predictors	 β	 SE	 p	 	 β	 SE	 p	 	 β	 SE	 p	
Intercept	 6.20	 0.02	 <.001	 	 6.27	 0.02	 <.001	 	 6.20	 0.02	 <.001	
P1	vs	P2-P3	 0.33	 0.02	 <.001	 	 0.23	 0.02	 <.001	 	 0.26	 0.02	 <.001	
P2	vs	P3	 -0.02	 0.01	 .082	 	 0.05	 0.01	 <.001	 	 0.05	 0.01	 <.001	
Repetition	 -0.01	 0.00	 <.001	 	 -0.01	 0.00	 <.001	 	 -0.01	 0.00	 <.001	
P1	vs	P2-
P3:Repetition	 0.01	 0.00	 <.001	 	 0.01	 0.00	 <.001	 	 0.01	 0.00	 <.001	

P2	vs	
P3:Repetition	 0.00	 0.00	 <.001	 	 0.00	 0.00	 .995	 	 0.00	 0.00	 .747	

	

Table	2	(continued)	

	 	 20F	 	 	 	 30F	 	 	 	 60F	 	
Predictors	 β	 SE	 p	 	 β	 SE	 p	 	 β	 SE	 p	
Intercept	 6.22	 0.02	 <.001	 	 6.26	 0.01	 <.001	 	 6.25	 0.01	 <.001	
P1	vs	P2-P3	 0.24	 0.02	 <.001	 	 0.18	 0.02	 <.001	 	 0.20	 0.02	 <.001	
P2	vs	P3	 0.05	 0.01	 <.001	 	 0.08	 0.01	 <.001	 	 0.09	 0.01	 <.001	
Repetition	 -0.01	 0.00	 <.001	 	 -0.01	 0.00	 <.001	 	 -0.01	 0.00	 <.001	
P1	vs	P2-
P3:Repetition	 0.01	 0.00	 <.001	 	 0.01	 0.00	 <.001	 	 0.01	 0.00	 <.001	

P2	vs	
P3:Repetition	 0.00	 0.00	 .031	 	 0.00	 0.00	 .609	 	 0.00	 0.00	 .005	

Note.	P:	position,	SE:	standard	error.	
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Results	 for	 all	 spacing	 conditions	 are	presented	 in	 Figure	2.	We	 found	 a	 significant	

effect	 of	 Repetition	 with	 an	 overall	 decrease	 of	 RTs	 across	 all	 spacing	 conditions.	 As	

expected,	RTs	for	predictable	words	(i.e.,	on	Positions	2	and	3)	were	significantly	faster	

than	those	for	unpredictable	words	(i.e.,	Position	1)	in	all	spacing	conditions.	In	addition,	

there	was	a	significant	positive	interaction	coefficient	for	the	difference	between	Position	

1	 and	 the	 average	 of	 Positions	 2	 and	 3,	 and	 Repetition,	 indicating	 that	 the	 difference	

between	 predictable	 and	 unpredictable	 words	 increased	 across	 repetitions.	 We	 also	

found	faster	RTs	for	words	in	Position	3	compared	to	those	in	Position	2	in	all	the	spacing	

conditions,	except	for	the	4F	condition	where	there	was	no	difference	(see	Figure	3).		
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Figure	2.	Mean	response	times	in	all	six	spacing	conditions	as	a	function	of	word	position	

and	number	of	repetitions.	Error	bars	indicate	95%	confidence	intervals.	
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Figure	3.	Estimated	difference	in	response	times	(in	log)	for	words	in	Positions	2	and	3	

from	the	mixed-effects	model,	 for	all	 six	spacing	conditions.	Error	bars	represent	95%	

confidence	intervals.		

To	examine	the	influence	of	repetition	spacing	on	the	repetition	effect	more	precisely,	

we	ran	a	model	on	the	RTs	for	Position	1	with	Condition,	Repetition,	and	the	interaction	

term	 as	 fixed	 effects,	 and	 participants	 as	 random	 effect.	 Condition	 was	 coded	 using	

repeated	contrast	coding	to	perform	pairwise	comparisons	between	spacing	conditions	

(Schad	et	al.,	2020).	We	found	no	difference	between	the	4F-	and	7F-Conditions,	slower	

RTs	for	the	7F-Condition	compared	to	the	10F-Condition	(b	=	-0.06,	SE	=	0.02,	p	=	<.001),	

and	no	differences	between	the	10F-	and	subsequent	spacing	conditions.	This	suggests	

that	the	repetition	effect	increases	with	larger	spacing	but	remains	stable	after	10-apart	

spacing.	

Next,	 to	 examine	 the	 effect	 of	 repetition	 spacing	 on	 the	 predictability	 effect,	 we	

computed	a	predictability	score	for	each	spacing	condition	by	calculating	the	difference	
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between	 the	 log-transformed	 RTs	 for	 unpredictable	 words	 (Position	 1	 of	 the	 triplet)	

versus	 the	 log-transformed	mean	 RT	 for	 predictable	words	 (Positions	 2	 and	 3	 of	 the	

triplet).	Therefore,	a	positive	score	reflects	learning	of	the	predictable	positions.	We	then	

ran	a	 linear	mixed-effects	model	on	 the	predictability	scores	using	 the	same	 fixed	and	

random	effects	as	for	the	repetition	effect.	The	results	showed	higher	predictability	scores	

in	the	4F-Condition	compared	to	7F-Condition,	b	=	-0.10,	SE	=	0.03,	p	<.001,	and	higher	

scores	in	the	20F-Condition	compared	to	the	30F-Condition,	b	=	-0.06,	SE	=	0.03,	p	=	.04.	

There	 was	 no	 difference	 in	 terms	 of	 predictability	 between	 the	 7F-,10F-	 and	 20F-

Condition,	nor	between	the	30F-	and	60F-Condition.		

The	predictability	effect	is	particularly	important	since	it	informs	us	about	the	process	

of	word	sequence	learning.	To	get	a	broader	picture	of	the	evolution	of	the	predictability	

effect	over	repetition	spacing,	we	extracted	the	beta	coefficients	of	each	linear	regression	

calculated	in	the	mixed	model	of	the	predictability	effect,	and	we	performed	an	analysis	

to	determine	which	regression	model	best	fits	the	trend	observed	for	the	predictability	

effect.	 The	 results	 showed	 that	 the	 evolution	 of	 the	 predictability	 effect	 was	 better	

captured	by	a	power	law	than	by	a	linear,	logistic,	or	exponential	regression,	R2	=	0.85,	

F(1,	4)	=	9.68,	p	=	.036.	It	should	be	noted,	however,	that	this	power-law	shape	is	based	

on	a	 limited	number	of	points,	 and	 that	 the	60F-Condition	 significantly	 influenced	 the	

regression	fit.	Figure	4	shows	the	results	of	the	linear	mixed	model	for	the	predictability	

score	 across	 the	 six	 spacing	 conditions	 along	 with	 the	 power	 regression	 for	 the	

distribution	of	the	beta	coefficients.	A	summary	of	the	other	regression	models	that	were	

fitted	is	provided	in	Appendix	C.		
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Figure	4.	Panel	A:	Comparison	of	predictability	scores	across	repetitions	for	word	triplets	

in	all	 the	spacing	conditions.	Continuous	 lines	represent	 the	best	 linear	 fit	and	colour-

shaded	areas	indicate	95%	confidence	intervals	around	linear	regression	lines.	Panel	B:	

Beta	coefficients	for	all	six	spacing	conditions.	The	continuous	line	represents	the	best	fit	

to	the	data	(i.e.,	a	power	law).	Error	bars	indicate	95%	confidence	intervals	for	each	beta	

coefficient	based	on	the	linear	mixed	model	used	to	compare	spacing	conditions.	

Questionnaire	

Among	 the	 84	 participants,	 48	 accurately	 remembered	 the	 entire	 triplet	 in	 the	 4F-

Condition,	28	in	the	7F-Condition,	35	in	the	10F-Condition,	32	in	the	20F-Condition,	16	in	

the	30F-Condition,	and	20	in	the	60F-Condition.	

General	discussion	

In	 the	present	study,	our	primary	aim	was	 to	 investigate	 the	 influence	of	 repetition	

spacing	on	the	incidental	learning	of	multiword	sequences.	More	specifically,	we	focused	

on	its	influence	on	the	repetition	and	predictability	effects,	both	of	which	are	related	to	

the	development	of	novel	memory	traces.	To	this	end,	we	used	a	Hebb	lexical	decision	

task	 in	which	 a	 repeated	 ABC	word-triplet	was	 embedded	 in	 a	 random	noisy	 stream.	
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Unknown	to	the	participants,	the	ABC	word	triplet	appeared	systematically	every	4,	7,	10,	

20,	30,	or	60	trials,	depending	on	the	spacing	condition.	First,	we	found	that	the	repetition	

effect	was	influenced	by	repetition	spacing,	with	RTs	for	the	unpredictable	first	position	

in	 the	 triplet	 decreasing	 faster	 across	 repetitions	 for	 spacings	 longer	 than	 10	 items.	

Second,	RTs	for	the	predictable	second	and	third	positions	in	the	triplet	also	decreased	

across	repetitions,	and	the	magnitude	of	the	predictability	effect	decreased	as	repetition	

spacing	increased.	Finally,	based	on	our	regression	analysis,	we	found	that	the	evolution	

of	the	predictability	effect	appeared	to	best	fit	a	power	law.		

Regarding	the	repetition	effect,	which	is	associated	with	enhanced	processing	due	to	

mere	exposure	to	a	word,	our	findings	are	consistent	with	related	studies	showing	that	

frequently	 encountered	words	 are	 processed	more	 efficiently	 (Brysbaert	 et	 al.,	 2018).	

Indeed,	participants	responded	faster	to	the	unpredictable	first	word	in	the	triplet	as	the	

number	of	repetitions	increased.	Interestingly,	this	processing	advantage	was	greater	for	

spacings	wider	than	10	items,	which	was	unexpected.	One	possible	explanation	for	this	

finding	is	that	participants’	expectations	about	the	occurrence	of	the	repeated	sequence	

may	have	influenced	their	performance.	In	fact,	it	has	been	shown	that	participants	who	

tend	to	increasingly	expect	the	occurrence	of	a	given	stimulus	produce	faster	responses	

(Destrebecqz	et	al.,	2019).	Therefore,	as	soon	as	participants	noticed	that	a	multiword	

sequence	was	repeated,	they	may	have	started	to	anticipate	the	next	occurrence	of	the	

sequence,	and	it	is	likely	that	this	anticipatory	effect	had	more	time	to	build	up	in	the	more	

spaced	conditions,	as	the	time	elapsed	between	sequence	repetitions	was	longer.	

Concerning	the	predictability	effect,	our	results	are	in	line	with	previous	findings	on	

regularity	 extraction,	 which	 have	 consistently	 shown	 a	 processing	 advantage	 for	

predictable	items	embedded	in	a	repeated	sequence	(e.g.,	Pinto	Arata	et	al.,	2024;	Rey	et	

al.,	2020;	Wang	et	al.,	2023).	 Indeed,	participants	were	faster	overall	to	respond	to	the	
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predictable	 second	and	 third	words	 than	 to	 the	unpredictable	 first	word	 in	 the	 triplet	

across	spacing	conditions.	Crucially,	our	results	showed	that	this	processing	advantage	

was	modulated	 by	 repetition	 spacing,	 specifically	 decreasing	when	 repetition	 spacing	

increased.	It	is	worth	noting,	however,	that	learning	was	still	substantial	even	in	the	60-

Condition.	This	novel	 result	 shows	 that,	with	 the	 largest	 spacing	we	were	able	 to	 test,	

participants	 are	 still	 able	 to	 encode	 the	 word	 sequence	 and	 extract	 the	 statistical	

relationships	between	the	words	in	the	ABC	triplet.	

Furthermore,	we	 found	a	greater	processing	advantage	 for	 the	 third	word	over	 the	

second,	suggesting	that	the	last	word	in	the	triplet	benefited	from	the	richer	contextual	

information	 provided	 by	 the	 two	 preceding	 words.	 Surprisingly,	 this	 processing	

advantage	for	the	third	word	emerged	in	the	7F-Condition	and	increased	with	repetition	

spacing.	One	potential	explanation	for	this	intriguing	phenomenon	could	come	from	the	

evolution	of	the	repetition	effect	(measured	from	the	evolution	of	response	times	on	the	

first	position).	Since	processing	times	for	the	first	word	of	the	triplet	tend	to	be	faster	as	

spacing	increases,	potentially	due	to	higher	expectations,	the	influence	of	the	first	word	A	

on	the	predictability	of	words	B	and	C	increases.	Thus,	B's	processing	time	benefits	from	

the	improvement	in	A's	processing	time,	and	C's	processing	time	would	benefit	from	the	

cumulative	 improvement	 in	A	and	B's	processing	 times.	Further	 research	 is	needed	 to	

better	understand	this	unexpected	phenomenon.	

Our	findings	also	suggest	that	the	evolution	of	the	predictability	effect	follows	a	power	

law	with	a	small	initial	forgetting	rate,	which	increases	as	spacing	increases.	Interestingly,	

while	the	effect	of	time	on	retention	has	been	shown	extensively	(e.g.,	Averell	&	Heathcote,	

2011;	Murre	&	Dros,	2015;	Nickl	&	Bäuml,	2023),	forgetting	has	been	largely	overlooked	

in	 chunking	models	 of	 language	 acquisition.	 Several	 recent	 chunk-based	models	 even	

assume	that	there	is	no	forgetting	during	learning	(e.g.,	Cabiddu	et	al.,	2023;	Jessop	et	al.,	
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2023;	McCauley	&	Christiansen,	2019;	Monaghan	&	Christiansen,	2010),	resulting	in	each	

item	 being	 permanently	 stored	 in	 the	 model.	 One	 of	 the	 few	 models	 that	 includes	 a	

forgetting	parameter	 is	PARSER	(Perruchet	&	Vinter,	1998).	 In	this	model,	each	time	a	

unit	is	processed,	it	receives	a	fixed	increase	of	its	memory	trace	(represented	by	a	weight	

value).	Conversely,	each	 time	a	unit	 remains	unprocessed,	 its	memory	 trace	decreases	

according	to	a	linear	trend,	leading	to	complete	forgetting	of	an	item	after	20	processing	

steps	(corresponding	 to	a	20-apart	spacing).	Consequently,	PARSER	simulations	are	 in	

contradiction	with	our	results,	since	we	observed	substantial	learning	even	in	the	60F-

Condition.	

It	 is	 also	 unclear	 how	 chunk-based	 models	 could	 account	 for	 the	 repetition	 and	

predictability	effects.	For	instance,	PARSER	(Perruchet	&	Vinter,	1998)	and	the	CBL	model	

(McCauley	&	Christiansen,	2019)	can	extract	chunks	of	different	sizes	over	time,	yet	there	

is	 nothing	 in	 their	 parameters	 to	 indicate	 whether	 differential	 processing	 should	 be	

assumed	 for	each	word	embedded	 in	a	chunk.	On	the	other	hand,	CIPAL	(Jessop	et	al.,	

2023)	 implements	 right-to-left	 learning,	 leading	 to	a	processing	advantage	 for	 the	 last	

word	in	the	chunk,	thereby	replicating	the	predictability	effect.	Finally,	TRACX	(French	et	

al.,	2011)	assumes	a	left-to-right	learning	of	the	regularities	which	is	inconsistent	with	the	

present	results	showing	faster	learning	for	words	in	Position	3	of	the	triplet	relative	to	

words	in	Position	2	(see	Minier	et	al.,	2016).	

In	summary,	our	study	showed	that	the	incidental	learning	of	multiword	sequences	is	

still	possible	at	large	repetition	spacing.	Furthermore,	we	found	that	the	repetition	and	

predictability	effects	were	influenced	by	repetition	spacing,	with	a	larger	repetition	effect	

and	 a	 smaller	 predictability	 effect	 at	 larger	 spacings.	 More	 importantly,	 our	 results	

suggest	that,	contrary	to	recent	computational	models,	forgetting	plays	a	critical	role	in	

sequence	learning	and	is	best	fitted	by	a	power	law.	Finally,	participants’	performance	on	
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the	different	positions	of	a	repeated	sequence	of	words	seems	to	be	affected	differently	as	

the	spacing	between	repetitions	 increases.	Taken	together,	 these	 findings	provide	new	

empirical	constraints	for	statistical	learning	models	of	language	acquisition.		
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Appendix	A.	Participants’	scores	and	standard	deviations	on	the	LexTALE	task	for	each	

condition.	

Condition	 Vocabulary	score	 SD	
4F-Condition	 87.91%	 4.68	
7F-Condition	 83.04%	 6.79	
10F-Condition	 84.92%	 6.74	
20F-Condition	 88.17%	 5.06	
30F-Condition	 87.03%	 5.89	
60F-Condition	 84.45%	 7.44	
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Appendix	B.	List	of	triplets	per	participant	and	fillers	in	all	the	conditions	

Participant	 	 Triplet	
1		 	 olive	laine	flèche	
2	 	 olive	flèche	laine	
3	 	 laine	olive	flèche	
4	 	 laine	flèche	olive	
5	 	 flèche	olive	laine	
6	 	 flèche	laine	olive	

7	…	12	 	 melon	préfet	mythe	
13	…	18	 	 évier	raisin	flacon	
19	…	24	 	 lièvre	trèfle	croûte	
25	…	30	 	 grotte	truite	brosse	
31	…	36	 	 reflet	mouton	poêle	
37	…	42	 	 castor	brume	vapeur	
43	…	48	 	 olive	laine	flèche	
49	…	54	 	 melon	préfet	mythe	
55	…	60	 	 évier	raisin	flacon	
61	…	66	 	 lièvre	trèfle	croûte	
67	…	72	 	 grotte	truite	brosse	
73	…	78	 	 reflet	mouton	poêle	
79	…	84	 	 castor	brume	vapeur	

	
Filler	words	

	
	

abri	accent	accès	acier	acte	acteur	action	adieu	agence	agent	
agneau	aile	aise	alarme	alcool	alerte	aller	allure	amant	âmes	
ange	angle	anneau	août	appart	appel	arbre	armée	arrêt	asile	
assaut	 aube	 aura	 auteur	 auto	 avance	 avions	 avril	 bague	 bail	
bain	baiser	baisse	balle	ballon	bande	banque	barbe	baron	barre	
base	basket	bâton	beau	beauté	belle	bête	bêtise	beurre	bible	
bien	 bière	 bijoux	 billet	 bisou	 blague	 blanc	 bleu	 bloc	 blonde	
boîte	 bombe	 bonne	 bonté	 bord	 bordel	 bottes	 bouche	 boue	
bouffe	bouge	boule	bourse	bouton	bruit	budget	cabane	cabine	
câble	 cadeau	 cadre	 cage	 caisse	 camion	 canal	 canard	 cancer	
canne	canon	carnet	carte	carton	casier	casque	casse	cave	cent	
centre	 cercle	 cesse	 chaîne	 chair	 chaise	 champ	 change	 chant	
chaos	 charge	 charme	 chasse	 chat	 chaud	 chefs	 chèque	 chère	
chéri	 chérie	 cheval	 choc	 chou	 chute	 cible	 cieux	 cigare	 ciné	
cirque	cité	clair	classe	clef	clés	client	club	cochon	code	cœurs	
coffre	cognac	coin	colère	coma	combat	commun	comte	comté	
congé	 copain	 copie	 copine	 corde	 côte	 coton	 couche	 coucou	
coupe	couple	coups	cour	course	cousin	cran	crâne	crédit	crème	
crétin	crime	cris	crise	croix	cuir	curé	dalle	dame	danger	danse	
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date	décès	déesse	défaut	défi	dégâts	degrés	dehors	délire	délit	
demain	démon	dent	départ	dépôt	désert	désir	dessin	dessus	
destin	détail	dette	deuil	devoir	diable	dieux	dîner	dire	direct	
disque	doigt	dollar	donne	dose	double	douche	doute	dragon	
drame	draps	drogue	droite	droits	drôle	eaux	écart	échec	écoute	
écran	effet	effort	église	élève	empire	emploi	enfer	ennui	entrée	
envers	épaule	épée	époque	épouse	époux	espace	espion	espoir	
essai	 étage	étape	étoile	être	étude	excuse	expert	 façons	 faits	
faveur	ferme	fêtes	feux	fiancé	fierté	fièvre	figure	file	filet	films	
fils	 fiston	 flamme	 fleur	 fleuve	 flic	 flotte	 foie	 foire	 folie	 folle	
fonds	foot	forces	forêt	forme	fort	foudre	foule	four	fous	foyer	
frais	 francs	 frappe	 frères	 frigo	 froid	 front	 fruit	 fuite	 fumée	
fumier	fusil	futur	gaffe	gamin	gamine	gang	gants	garage	garde	
gare	gâteau	gauche	génie	genou	geste	glace	gloire	golf	gorge	
gosse	goût	goutte	grâce	grain	grand	grande	grève	gros	groupe	
guide	 habits	 haine	 hasard	 hâte	 haut	 herbe	 héros	 hiver	 hôte	
huile	humain	humeur	humour	idées	idiot	idiote	image	impôts	
indice	infos	issue	jambe	jambes	jardin	jeudi	jeune	jeux	joie	joue	
jouet	joueur	juge	juif	juin	jungle	jupe	jury	juste	lâche	laisse	lait	
lame	lampe	lance	langue	lapin	larmes	leader	leçon	lèvres	lien	
lieux	ligne	limite	linge	lion	lires	liste	livres	loge	lois	long	loup	
loyer	 lundi	 lune	 lutte	 luxe	 lycée	 machin	 mafia	 magie	 maire	
mairie	major	malade	malin	mamie	manche	mandat	manque	
marche	marché	mardi	marge	mariée	marque	masque	masse	
match	membre	menace	ménage	messe	mesure	métal	métier	
mètres	métro	mets	micro	midi	miel	mieux	milieu	mille	mine	
minuit	miroir	mise	misère	mode	modèle	moins	moitié	môme	
montre	moral	morale	moteur	motif	moto	mouche	moyen	murs	
musée	 nation	 nature	 navire	 neige	 nerfs	 neveu	 niveau	 noces	
noir	noix	nombre	noms	nord	note	nuage	nuits	objet	odeur	œil	
œuf	 œuvre	 offre	 oiseau	 ombre	 ongles	 orage	 orange	 ordres	
ordure	 otage	 oublie	 ouest	 ours	 outils	 page	 pain	 paire	 palais	
panier	panne	papier	paquet	parc	pardon	parent	parfum	pari	
parler	parole	parti	passe	passé	patrie	pattes	pause	pauvre	peau	
péché	 pêche	 pensée	 permis	 perte	 peste	 pétrin	 phase	 photos	
phrase	piano	pièces	piège	pierre	pile	pilote	pipe	pire	piste	pitié	
pizza	 places	 plage	 plaie	 plans	 plaque	 plat	 plomb	 pluie	 plus	
poche	 poème	 poète	 pognon	 poids	 poil	 poing	 pointe	 points	
poison	poker	pomme	pompe	pont	porc	port	portée	portes	pose	
poste	 pote	 potion	 pouce	 poudre	 poule	 poulet	 pouls	 poupée	
pour	 prénom	 prés	 presse	 prêt	 prêtre	 preuve	 prière	 prime	
prince	prise	privé	procès	profil	profit	projet	promis	public	puce	
puits	pull	quai	quart	queue	race	 radio	 rage	 rançon	rang	 rats	
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rayon	 record	 reçu	 regard	 régime	 région	 règle	 reine	 remède	
repas	repos	réseau	restes	rêve	réveil	riches	rideau	rire	risque	
robe	robot	rocher	rois	rôle	roman	rond	rose	roue	rouge	routes	
rues	rumeur	russe	rythme	sable	sacs	saint	sainte	saison	salade	
salon	santé	sauce	saut	saute	savoir	savon	scène	séance	second	
secret	sein	séjour	série	seul	seule	sexe	shérif	siècle	siège	signal	
signe	 singe	 site	 sœurs	 soif	 soin	 soirée	 soirs	 soldat	 somme	
sommet	sort	sorte	sortie	souci	soupe	source	souris	sous	sport	
stade	 star	 statue	 stop	 stress	 studio	 style	 stylo	 succès	 sucre	
sueur	sujets	super	survie	tabac	tache	tâche	taille	talent	tante	
tapis	tard	tarte	tasse	taule	taux	taxi	témoin	temple	tennis	tente	
tenue	terme	test	texte	thème	thèse	ticket	tigre	tire	tireur	tiroir	
titre	 toile	 toit	 tombe	 tonnes	 tonton	 tort	 touche	 trace	 trafic	
trains	 trésor	 trône	 trou	 troupe	 tsar	 tube	 tueur	 tunnel	 tuyau	
types	union	usage	usine	vache	vague	valeur	valise	vallée	veille	
veine	vélo	vent	vente	ventre	vers	vert	vertu	veste	veuve	viande	
vide	vierge	villa	violon	virus	vision	visite	vitre	vodka	vœu	voie	
voile	voisin	volant	voleur	vote	voyou	whisky	zéro	zone	vrai	
	

Filler	pseudowords		
abréne	acogne	acrule	acun	âder	adide	adit	adute	aflare	afres	
agarte	 agnoir	 ainte	 alaud	 âleur	 alire	 alme	 aloux	 altace	 ande	
anels	anet	anide	antise	antôt	anuche	apile	apoux	appome	apsé	
aqué	aquise	arais	arcime	arcin	arder	arêle	aret	argu	arile	arine	
arplet	arron	artal	arti	arut	asale	asode	asor	asure	atinle	atôt	
augard	aure	ausi	autoce	auvé	avit	avoie	balbe	balge	balve	barer	
barmal	barme	batel	berbe	berpe	bexe	bibe	bifait	bime	blache	
blaie	 blait	 blan	 blave	 bleine	 bligne	 bligue	 bloin	 bloir	 blone	
blose	bloue	blourd	blous	boce	bocle	boge	bogre	boine	bolde	
bonge	boque	borté	bouce	boult	bralle	brappe	brare	bril	brire	
brix	 brone	 brouge	 buge	 buin	 buit	 bune	 buve	 caint	 cair	 cait	
carate	 carc	 caruce	 catail	 catire	 catote	 cauret	 cavu	 cédain	
cepame	 cèque	 cercha	 cerque	 cerson	 cetir	 chague	 chamir	
charde	charon	chassi	chaune	chefet	cheler	chens	cheur	cheve	
chigue	chlouc	chobe	chol	chor	chote	chotit	choui	chrite	chroid	
chume	 chuse	 cide	 cieu	 ciffe	 cigna	 cila	 cile	 cine	 cique	 ciroir	
cisque	claint	clapte	clar	clare	clas	clat	clie	clipt	cloîte	clor	cluise	
coble	cocère	colmel	colte	conlé	conpé	corsai	cosin	couce	coué	
counai	 crambe	 crat	 crec	 cres	 cribe	 criche	 crill	 crobe	 crogue	
croile	crolle	croue	crupe	crute	cuche	cuif	cumite	cuse	dade	daie	
daire	 dalte	 dalve	 damade	danfum	dange	daud	déceau	degite	
délide	delte	démote	denate	dentre	dérain	derce	derler	dertes	
deste	dets	deur	dévede	deveu	dirie	ditige	ditrer	doble	dogne	
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dondu	 dornel	 doste	 doupe	 dousus	 douval	 drait	 drie	 droût	
drugue	druie	duri	dute	duve	échace	échile	écue	êder	égave	eint	
éjoins	êlait	 élice	elsir	 émin	engade	ensime	entase	entat	 entif	
êpit	éple	éques	erche	éreute	erne	ertre	ésale	ésame	étade	êtele	
étie	étive	euve	fainé	falber	fanche	fande	fanet	fanflé	farbe	farc	
farie	 fasque	 faté	 fauf	 fave	 favec	 fecore	 feine	 fenre	 fenu	 ferbe	
feure	 feuve	 ficoce	 ficule	 fiège	 finel	 flaud	 fler	 flerse	 fles	 flette	
flide	flie	flir	floie	florve	fluie	foche	folde	fope	forbi	forni	forse	
fouce	foude	fousse	frade	frieux	frigle	frone	frore	fube	fuche	fule	
fune	furvis	fuste	garsu	gasse	gaune	gerte	gervec	gève	gict	gide	
gippe	gitre	glac	gles	glie	gliffe	glin	glique	glur	glyste	gnai	goir	
goire	 gois	 gomda	gonc	 gose	 gouée	 gourte	 grage	 graie	 granal	
granut	 grard	 grare	 grêche	 grer	 grère	 gretrő	 greu	 grez	 gride	
grivec	groc	grode	groie	grond	grort	grupe	grut	guche	gumble	
gure	gutte	guve	haite	haites	hange	hatour	hente	hèque	herde	
hette	heudit	heute	hiltre	hince	hoire	hombri	hôme	hontôt	hore	
hôtu	 hougue	 huide	 hule	 humi	 humice	 iant	 iceaux	 îcun	 ideau	
iesse	 igre	 imple	 ince	 inge	 inris	 insare	 inssir	 intrie	 intute	 iole	
ipéth	iple	ique	irare	irleme	iseau	iveau	jabe	jabon	jâche	jacun	
jada	jadin	jalle	japite	jarcit	jarque	jarvu	jaut	jauve	jave	jers	jerse	
jexe	 joite	 jolée	 joque	 jort	 jouc	 juie	 june	 juse	 jusé	 jutand	 juve	
juxe	kert	kigne	lage	lagne	lainté	laitôt	lâle	lanche	lanque	larais	
lasque	 latace	 laine	 lave	 laxe	 léble	 léfile	 lémece	 lèpe	 lèpu	 lère	
lette	leul	liba	lieune	linée	lingt	lipin	lique	lisard	loce	loine	loite	
loqua	lorque	louque	luche	luie	luve	macte	maile	mance	matif	
mave	médin	mélé	mêlu	mèlui	mendit	menté	mertes	mesque	
metsa	mevail	miant	miman	minte	moif	moléce	molome	mone	
monner	morge	morif	mosse	môvec	muche	muis	mulé	munte	
mûras	 musé	 musoin	 mype	 myssez	 naille	 naise	 nance	 nans	
narte	natéme	nauffe	nelte	nertin	nieux	nigue	nime	nire	noda	
nogle	noil	noint	nomsi	nopore	noxe	nuce	nure	ofice	ofsa	ogne	
oile	 oire	 oisse	 olde	 omante	 ombe	 ondre	 onge	 onstre	 ontro	
oques	ôques	orcin	orde	orite	orlus	ornal	ornet	orral	orse	oste	
ouble	oudain	oude	oufage	oufre	oulais	oulu	ounite	ouve	pachet	
padure	panis	panque	paseau	passi	pateur	pauve	pavoi	pecran	
pècun	pelte	pérée	pertif	pesque	phère	phonie	phosi	phre	piale	
piant	pite	plache	plaze	pleité	plide	ploir	plote	plou	pluc	plule	
pode	poge	poif	poifet	poinré	pompte	porce	pordée	portin	portu	
poute	 prade	 pras	 preffe	 premit	 preper	 preser	 preur	 preuro	
proce	procre	proile	proir	proite	prolai	prure	pruve	psat	puif	
punte	 racare	 racis	 ragne	 raisi	 raisse	 raite	 rande	 ranu	 reche	
refie	 rèfle	 règre	 rèle	 rêle	 relle	 rencan	 renchi	 renre	 renume	
repis	 rerile	 rerise	 rese	 resse	 rétal	 retave	 reur	 reux	 revate	
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revote	rhague	ricit	riers	rigne	rigue	rille	rils	ritel	rivete	robire	
rocèle	rodi	roge	roite	rong	rort	rotte	roulip	ruite	rusque	sabe	
sagot	 salgue	 salté	 sarie	 sarve	 satron	 satu	 scur	 selte	 sençon	
sensin	 sepoce	 serte	 sesin	 setuce	 shode	 sinque	 siveau	 sobe	
soche	sodote	sofans	soile	soite	solt	sona	soral	sorus	sotain	souf	
soumi	soumon	sounir	sousse	spel	sper	spho	spile	strour	suine	
suir	 suire	 sule	 sunie	 sunte	 supe	surre	 suve	 tabre	 tade	 taivec	
tanse	tarche	tarme	tause	taute	tecte	tèle	tenti	tervec	tese	tess	
têtour	teuil	teur	tiant	tiche	tiège	tieux	tince	tiplu	tipt	tise	tite	
tobe	 toives	 tole	 tompe	 tongle	 torgue	 torne	 touet	 touge	 toule	
toupe	toutin	toutôt	tradit	trale	trare	trât	trate	traz	trent	trict	
trif	trile	trit	triz	troce	trome	tronse	trosse	trote	troule	trounu	
truile	trulle	trupe	tuce	tuche	tuelle	tuille	tuis	tulque	tuste	tute	
tyle	 uage	uant	 ucun	uise	 unate	 uque	uques	 urtes	 uteur	 vace	
vadrit	vage	vaise	vala	valon	vanse	vare	varte	vate	vatin	vauve	
vece	vecote	venne	ventin	vêpel	vesse	vets	veur	vicle	vige	vigée	
villon	vilume	vinde	vinge	vipole	visise	vitile	vitin	voeurs	voine	
voluce	vonque	voque	vore	vorie	vorve	vose	vosé	voucle	voule	
vouls	vrande	vroste	vuie	vule	vure	wadu	zague	zitre	zoque	zote	
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Appendix	C.	Parameter	estimates	for	each	regression	model	fitted	using	beta	

coefficients	as	a	function	of	repetition	spacing	

Model	 a	 b	 SE	a	 SE	b	 R2	 F	 p	
Linear	 0.01	 0.00	 0.00	 0.00	 0.40	 2.62	 .181	
Power	 0.02	 -0.22	 0.00	 0.06	 0.85	 0.63	 .036	

Exponential	 0.01	 -0.01	 0.13	 0.00	 0.38	 2.43	 .194	
Logistic	 -3.23	 0.06	 1.51	 0.05	 0.27	 1.48	 .290	

Note.	SE:	standard	error.	
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Chapter 4: The lifetime of sequential memory 
traces in the absence of language 

Sequential	statistical	learning	(SSL),	the	ability	to	detect	sequential	regularities	in	the	

environment,	 is	 a	 fundamental	 building	 block	 of	 the	 development	 of	 many	 cognitive	

functions,	from	motor	planning	to	language	acquisition.	Repetition	is	a	major	ingredient	

in	this	type	of	implicit	learning,	and	here	we	study	the	effect	of	repetition	spacing	on	the	

development	 of	 a	 sequential	memory	 trace.	 To	 control	 for	 the	 use	 of	 verbal	 recoding	

strategies	in	sequence	learning	that	may	influence	the	learning	process,	we	test	a	group	

of	Guinea	baboons	in	a	Hebb	visuo-motor	pointing	task.	This	task	is	a	combination	of	the	

Serial	Reaction	Time	task	and	the	Hebb	repetition	paradigm,	in	which	a	target	sequence	

is	 repeated	 with	 random	 sequences	 inserted	 between	 repetitions.	 In	 this	 study,	 we	

systematically	manipulate	the	interval	between	two	repetitions	of	a	target	sequence	by	

varying	the	number	of	interposed	random	sequences	(i.e.,	repetition	spacing).	We	found	

that	baboons	can	learn	repeated	visuo-motor	sequences,	even	when	the	repetitions	are	

spaced	by	six	random	sequences.	Our	results	also	suggest	that	the	learning	curve	best	fit	

a	logarithmic	function.	The	present	study	therefore	provides	a	quantified	estimate	of	the	

lifetime	of	a	sequential	memory	trace	as	a	function	of	repetition	spacing	and	without	the	

benefit	of	language-related	refreshing	and	recoding	strategies6.	

	 	

	
6	This	experimental	chapter	is	an	adapted	version	of	the	submitted	manuscript	in	thesis	format.	Ordonez	
Magro,	L.,	Pinto	Arata,	L.,	Fagot,	J.,	Grainger,	J.,	&	Rey,	A.	(Submitted).	The	lifetime	of	sequential	memory	
traces	in	the	absence	of	language.	
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Introduction	

Sequential	statistical	learning	(SSL)	is	the	ability	to	detect	sequential	regularities	in	the	

environment.	It	is	assumed	to	be	a	critical	building	block	for	the	development	of	a	wide	

range	of	cognitive	abilities	in	humans	and	non-human	primates,	such	as	motor	planning,	

spoken	and	written	language	acquisition,	and	social	cognition	(Frost	et	al.,	2019).	Since	

this	phenomenon	is	involved	in	the	perception	and	learning	of	many	forms	of	knowledge,	

understanding	its	underlying	mechanisms	is	of	utmost	importance	for	advancing	general	

theories	of	learning	in	cognitive	science	(Bogaerts	et	al.,	2020).	

The	ability	to	learn	repeated	and	frequent	co-occurrences	has	been	observed	not	only	

in	 humans,	 but	 also	 in	 non-human	 primates	 such	 as	 tamarins	 (Hauser	 et	 al.,	 2001),	

macaques	(Wilson	et	al.,	2015),	and	baboons	(Malassis	et	al.,	2018;	Minier	et	al.,	2016;	Rey	

et	 al.,	 2012,	 2019),	 indicating	 that	 regularity	 extraction	 can	 occur	 in	 the	 absence	 of	

language	and	verbal	consolidation	strategies	such	as	phonological	rehearsal	and	verbal	

recoding,	two	verbal	processes	that	facilitate	storage	in	memory	(Baddeley,	2003).	These	

studies	 in	 non-human	primates	 therefore	 suggest	 that	 sequential	 learning	 is	 probably	

based	on	domain-general	associative	learning	mechanisms.	

Over	the	past	two	decades,	 in	parallel	with	the	growing	number	of	studies	aimed	at	

understanding	the	mechanisms	supporting	regularity	extraction	in	the	environment	(see	

Christiansen,	2019,	for	a	review),	several	computational	models	have	been	developed	to	

account	for	these	processes	(e.g.,	Boucher	&	Dienes,	2003;	Cabiddu	et	al.,	2023;	Elman,	

1990;	Frank	et	al.,	2010;	French	et	al.,	2011;	Jessop	et	al.,	2023;	McCauley	&	Christiansen,	

2019;	Monaghan	&	Christiansen,	2010;	Perruchet	&	Vinter,	1998;	Robinet	et	al.,	2011;	

Servan-Schreiber	&	Anderson,	1990).	For	instance,	the	Simple	Recurrent	Network	(SRN;	

Elman,	 1990),	 a	 connectionist	 neural	 network	 trained	 to	 predict	 a	 given	 item	 of	 a	

sequence	based	on	previous	items	in	the	sequence,	suggests	that	a	sequence	is	learned	
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through	the	adjustment	of	weights	in	the	network	after	each	repetition.	As	a	result,	items	

that	are	frequently	encountered	together	develop	stronger	connections	with	each	other.	

PARSER	(Perruchet	&	Vinter,	1998),	another	influential	model	of	SSL,	assumes	that	such	

frequently	 associated	 components	 are	 grouped	 together	 and	 temporarily	 encoded	 as	

chunks	in	memory.	Importantly,	each	time	a	chunk	is	reencountered,	its	memory	trace	is	

strengthened,	and	conversely,	it	progressively	decays	if	it	is	not	encountered	again,	until	

it	entirely	vanishes.	

While	there	is	a	growing	body	of	evidence	that	sheds	light	on	the	mechanisms	that	are	

involved	in	SSL,	evidence	regarding	the	memory	limits	of	SSL	is	scarce.	Indeed,	 little	 is	

known	about	when	exactly	a	sequential	memory	trace,	that	is	not	repeatedly	processed,	

vanishes.	In	everyday	life,	most	sequential	information	that	is	learned,	is	not	necessarily	

frequently	 encountered	 in	 the	 environment.	 For	 instance,	 infants	 are	 able	 to	 learn	

multiple	words	very	quickly	even	when	they	are	not	constantly	exposed	to	them	(Pinker,	

1994;	Swingley,	2008).	Based	on	this	idea,	Page	et	al.	(2013)	conducted	one	of	the	rare	

studies	 that	 investigate	 the	 effect	 of	 repetition	 spacing	 (i.e.,	 the	 role	 of	 the	 number	 of	

random	sequences	that	intervene	between	two	repetitions	of	a	target	sequence)	in	the	

learning	of	sequential	material.	They	used	a	variant	of	Hebb's	repetition	paradigm	(Hebb,	

1961)	 in	 which	 adult	 humans	 are	 presented	 with	 sequences	 of	 digits	 to	 be	 recalled	

immediately.	 A	 given	 sequence	 (the	Hebb	 sequence)	 is	 repeated	 every	 third	 trial	 and	

interposed	 by	 random	 (filler)	 sequences.	 In	 their	 study,	 Page	 et	 al.	 presented	 their	

participants	with	sequences	of	syllables	in	which	repetitions	were	spaced	at	every	6th,	

9th,	and	12th	trial.	They	observed	that	the	learning	rate	for	the	repeated	sequence	was	

substantial	 and	 essentially	 equivalent	 for	 all	 three	 spacing	 conditions.	 These	 findings	
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suggest	that	learning	is	still	possible	when	repetitions	are	widely	spaced	and	that	memory	

traces	that	are	not	constantly	refreshed	do	not	vanish	rapidly.	

Note,	however,	that	unlike	in	other	species,	SSL	in	humans	can	be	based	on	the	ability	

to	 verbally	 recode	 non-verbal	 material	 (Baddeley,	 2003)	 and	 to	 internally	 repeat	

sequences,	for	instance	by	using	the	phonological	loop	(Aboitiz	et	al.,	2010).	These	verbal	

consolidation	 strategies	 are	 known	 to	 play	 a	 key	 role	 in	 maintaining	 and	 refreshing	

information	 in	memory	and	 thus	have	an	undeniable	 impact	on	memory	performance	

(Barrouillet	&	Camos,	2014).	Given	 the	close	 link	between	memory	and	 language,	 it	 is	

difficult	to	disentangle	memory-specific	from	language-related	mechanisms.	One	possible	

way	 to	 avoid	 the	 presence	 of	 any	 language	 bias	 when	 examining	 fundamental	 SSL	

mechanisms	is	to	test	species	that	 lack	 language.	Thus,	 in	the	present	study,	we	tested	

baboons	using	an	adaptation	of	the	Serial	Reaction	Time	task	(Nissen	&	Bullemer,	1987)	

combined	with	the	advantage	of	the	Hebb	repetition	paradigm,	which	allows	to	control	

for	 the	 spacing	 between	 repetitions	 by	 inserting	 a	 varying	 number	 of	 random	 filler	

sequences	between	each	repetition	of	the	target	sequence.		

In	this	task,	baboons	had	to	touch	a	red	circle	that	moved	on	a	touchscreen	in	a	fixed	

sequence	of	three	target	locations	(selected	from	a	3x3	matrix	of	9	locations).	Between	

two	 repetitions	 of	 the	 repeated	 sequence,	we	 inserted	 either	 one	 filler	 sequence	 (1F-

Condition),	three	filler	sequences	(3F-Condition),	six	filler	sequences	(6F-Condition),	or	

no	 filler	 sequence	 (0F-Condition).	 This	 study	 involving	 non-human	 primates	 was	

designed	to	provide	a	more	accurate	estimate	of	the	time	a	trace	can	survive	in	memory	

without	being	influenced	by	language-specific	mechanisms,	and	thus,	to	inform	current	

SSL	models	about	the	properties	of	natural	forgetting	in	sequence	learning.	
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Experiment	

Method	

Participants	

We	tested	25	Guinea	baboons	(Papio	papio,	16	females,	age	range	2.33	–	24.41	years)	

living	in	a	social	group	at	the	CNRS	primate	facility	in	Rousset	(France).	The	baboons	were	

housed	in	a	700	m²	outdoor	enclosure	with	access	to	indoor	housing.	Water	was	provided	

ad	libitum	during	the	test,	and	the	monkeys	received	their	normal	food	ration	of	fruits	

every	day	at	5	PM.	

Apparatus	

Baboons	had	free	access	to	fourteen	Automated	Learning	Devices	for	Monkeys	(ALDM,	

Fagot	&	Bonté,	2010;	Fagot	&	Paleressompoulle,	2009)	equipped	with	touch	screens	and	

a	 food	 dispenser.	 When	 entering	 the	 ALDM	 test	 box,	 baboons	 were	 identified	 by	

microchips	 implanted	 in	 each	 arm.	 The	 system	 saved	 the	 last	 trial	 the	 baboon	 had	

achieved	before	 leaving	the	box,	allowing	them	to	continue	the	task	 later	where	 it	had	

stopped.	The	experiment	was	controlled	by	E-Prime	2.0	software	(Psychology	Software	

Tools,	Pittsburgh,	PA).	All	the	baboons	were	familiar	with	touch	screen	experimentation.	

Materials	and	procedure	

To	begin	a	trial,	baboons	had	to	press	the	yellow	fixation	cross	centered	at	the	bottom	

of	the	screen.	After	pressing	the	cross,	they	saw	a	black	screen	that	was	divided	into	an	

invisible	matrix	of	(3x3)	cells,	each	containing	a	white	cross	in	their	center	(see	Figure	1).	
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Figure	1.	Representation	of	the	touch	screen	with	the	nine	locations	(above)	and	example	

of	 the	 experimental	 display	 and	 stimuli	 presentation	 for	 repeated	 and	 random	 (filler)	

sequences	in	the	1F-Condition	(below).	

In	the	task,	baboons	must	touch	sequentially	one	red	circle	that	moved	on	the	screen	

in	sequences	of	three	target	locations.	When	the	baboon	touched	the	first	target	position,	

it	disappeared	and	was	replaced	by	the	white	cross.	The	red	circle	then	appeared	at	the	

second	position	and	had	again	to	be	touched	before	being	presented	with	the	last	position	

of	 the	 sequence,	where	 a	 last	 touch	was	 required.	 Reward	 (grains	 of	 dry	wheat)	was	

delivered	at	the	end	of	each	sequence	of	three	correct	touches.	In	case	of	an	error	(i.e.,	the	

participant	 touched	 another	 location	 than	 the	 target	 one	or	 failed	 to	 touch	 the	 screen	

within	a	time	period	of	5,000	ms),	a	green	screen	was	displayed	for	3,000	ms	as	a	marker	

of	failure	(see	the	OSF	repository	for	a	video	of	the	procedure).	

The	 task	began	with	 a	 familiarization	phase	during	which	baboons	were	presented	

with	 random	 sequences	 of	 three	 positions.	 The	 test	 phase	 began	 when	 the	 baboon	

achieved	a	performance	higher	than	80%	correct	within	three	consecutive	blocks	of	100	

trials.	 Response	 times	 (RTs)	 between	 the	 appearance	 of	 the	 red	 circle	 and	 the	
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participant’s	touch	of	each	of	the	three	positions	for	each	sequence	were	recorded	and	

served	as	the	main	dependent	variable.	The	task	was	composed	of	four	conditions	which	

differed	in	the	number	of	filler	random	sequences	introduced	between	the	repeated	target	

sequence.	Participants	first	carried	out	the	1F-Condition,	followed	by	the	3F-Condition,	

then	 the	 6F-Condition,	 and	 the	 0F-Condition.	 To	 be	 presented	 with	 a	 total	 of	 1,000	

repetitions	of	the	repeated	sequence	in	each	condition,	baboons	performed	10	blocks	of	

200	trials	in	the	1F-Condition,	10	blocks	of	400	trials	in	the	3F-Condition,	10	blocks	of	700	

trials	 in	 the	 6F-Condition,	 and	 10	 blocks	 of	 100	 trials	 in	 the	 0F-Condition.	 To	 avoid	

learning	 effects	 across	 conditions,	 baboons	 were	 presented	 with	 a	 different	 repeated	

sequence	 in	each	condition	(see	Table	1	 for	an	example).	Note	 that	repeated	and	 filler	

sequences	 were	 non-overlapping	 sequences,	 because	 the	 two	 sequence	 types	 used	

different	locations	(i.e.,	when	the	repeated	sequence	was	composed	of	the	locations	5-2-

4,	these	locations	were	never	used	in	the	filler	sequences;	see	also	Ordonez	Magro	et	al.,	

2022).	

In	 this	 paradigm,	 learning	 is	 measured	 by	 comparing	 the	 RTs	 between	 the	 three	

positions	of	the	sequence.	In	a	repeating	three-position	sequence	such	as	5-2-4,	location	

5	is	always	followed	by	location	2	and	location	2	is	always	followed	by	location	4.	Thus,	

location	 5	 (Position	 1)	 should	 remain	 unpredictable	 over	 trials	 due	 to	 the	 previously	

presented	random	sequences.	Location	2	(Position	2)	should	benefit	from	the	systematic	

presence	of	5	presented	just	before,	while	location	4	(Position	3)	should	further	benefit	

from	 the	 cumulative	 contextual	 information	 provided	 by	 the	 two	 preceding	 positions	

(Elman,	1990;	Minier	et	al.,	2015).	If	learning	occurs,	we	should	observe	a	predictability	

effect	(Pinto	Arata	et	al.,	2024;	Rey	et	al.,	2020),	reflected	in	faster	RTs	for	Position	2	over	
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Position	1	and	even	faster	RTs	for	Position	3	compared	to	2	(Pinto	Arata	et	al.,	2024;	Rey	

et	al.,	2020).		

Design	of	the	sequences	

To	control	for	the	motor	difficulty	of	the	transitions	between	positions	of	the	triplet	

sequence	to	be	produced,	we	used	data	from	a	prior	study	conducted	on	thirteen	baboons.	

In	this	study,	baboons	had	to	produce	1,000	trials	each	composed	of	a	random	sequence	

of	six	positions.	Based	on	these	random	trials,	a	baseline	measure	was	computed	for	all	

possible	transitions	from	one	location	to	another	by	calculating	the	mean	RTs	for	each	

transition	(e.g.,	from	position	1	to	9)	over	all	13	baboons,	resulting	in	a	9x9	matrix	of	mean	

RTs	(see	Appendix	A).	This	baseline	measure	corresponds	to	the	mean	time	it	takes	the	

baboons	 to	 move	 their	 hand	 from	 one	 location	 to	 another,	 when	 the	 transition	 is	

unpredictable	(i.e.,	random).	It	thus	provides	a	good	estimate	of	the	motor	difficulty	of	

moving	from	one	position	to	another.		

Importantly,	 to	accurately	assess	 learning,	 the	mean	RTs	of	 the	 first	and	the	second	

transition	 of	 the	 repeated	 sequences	 must	 be	 similar	 before	 any	 exposition	 to	 the	

repeated	sequence	(i.e.,	the	first	Transition	Time,	TT1,	from	Position	1	to	Position	2,	and	

the	second	Transition	Time,	TT2,	from	Position	2	to	3).	Therefore,	using	these	baseline	

measures,	we	computed	TT1	and	TT2	for	all	possible	504	triplets	and	we	selected	a	set	of	

four	triplets	(serving	as	repeated	sequences)	with	the	smallest	difference	between	TT1	

and	TT2	(see	Appendix	B).	For	each	monkey,	each	of	the	four	triplets	was	used	in	random	

order	in	each	of	the	four	spacing	conditions.		 	
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Table	1.	Example	of	sequences	presented	in	the	four	conditions	for	a	given	participant.	

Digits	correspond	to	the	nine	screen	locations.	Repeated	sequences	are	bolded.	

Participant	 1F-Condition	 3F-Condition	 6F-Condition	 0F-Condition	
Subject	1	 7-8-1	

6-9-2	
4-5-1	
6-9-2	
…	

3-9-6	
9-6-7	
6-9-8	
5-2-4	
3-1-7	
3-8-6	
7-9-1	
5-2-4	
…	

4-9-2	
1-8-5	
9-1-8	
5-2-8	
5-8-9	
8-2-4	
7-6-3	
9-2-1	
2-5-1	
5-1-8	
8-4-9	
4-5-2	
1-4-8	
7-6-3	
…	

2-7-6	
2-7-6	
2-7-6	
2-7-6	
…	

	

Results	

To	ensure	that	all	the	spacing	conditions	were	comparable,	the	analysis	focused	only	

on	the	baboons	that	completed	all	the	conditions.	Based	on	this	criterion,	we	retained	the	

twelve	 baboons	 (7	 females,	 age	 range	 4.33	 -	 22.66	 years)	 that	 completed	 all	 four	

conditions.	Baboons	obtained	a	mean	accuracy	 level	of	97.34%	 in	 the	1F-Condition,	of	

97.86%	 in	 the	3F-Condition,	 of	 97.62%	 in	 the	6F-Condition,	 and	of	 96.76%	 in	 the	0F-

Condition.	 Incorrect	 trials	were	 removed	 from	 the	 data	 set.	 RTs	 for	 each	 of	 the	 three	

possible	positions	and	for	the	1,000	trials	were	divided	into	10	blocks	of	100	trials.	We	

normalized	 the	 data	 by	 removing	 RTs	 greater	 than	 800	 ms	 and	 then	 performed	 a	

recursive	trimming	procedure	to	exclude	RTs	greater	than	2	standard	deviations	from	the	
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mean	for	each	of	the	three	possible	positions	in	a	block	for	each	baboon	(13.34%,	14.06%,	

13.79%,	and	13.24%	of	the	data	for	conditions	1F,	3F,	6F,	and	0F)7.		

To	measure	learning	of	the	repeated	sequence,	we	looked	at	the	evolution	of	RTs	at	

each	of	the	three	positions	in	the	sequence.	To	adjust	for	the	differences	that	may	appear	

between	positions	at	the	very	start	of	the	experiment,	we	systematically	calculated	the	

difference	between	mean	RTs	obtained	at	each	block	and	that	obtained	at	the	first	block,	

for	every	monkey	and	every	position.	Data	analysis	was	performed	with	the	R	software	

(version	4.4.1)	using	 linear	mixed-effects	models	 (LMEs)	 fitted	with	 the	 lme4	package	

(version	 1.1-35.5;	 Bates	 et	 al.,	 2015).	 Separate	 models	 were	 fitted	 for	 each	 spacing	

condition.	 Each	model	 included	 Position	 (1	 to	 3),	 Block	 (1	 to	 10)	 and	 their	 two-way	

interaction	 as	 fixed	 effects,	 and	 participants	 as	 random	 effects.	We	 used	 the	maximal	

random-effect	 structure	 that	 allowed	 convergence.	 Position	was	 coded	 using	 Helmert	

contrasts	 (i.e.,	 P1:	0.7	0.0;	P2:	 -0.3	0.5;	P3:	 -0.3	 -0.5)	 to	 compare	Position	1	with	both	

Positions	 2	 and	 3,	 simultaneously,	 and	 Position	 2	 with	 Position	 3.	 Block	 was	 mean	

centered	to	reduce	collinearity.	RTs	were	log-transformed	prior	to	each	analysis	to	reduce	

skewing.	Fixed	effects	were	deemed	reliable	if	|t|	>	1.96	(Baayen,	2008).	The	results	of	the	

LMEs	are	summarized	in	Table	2.	

Table	2.	Summary	of	each	mixed	model	for	all	spacing	conditions.	

	 	 0F	 	 	 	 1F	 	
Predictors	 β	 95%	CI	 t	 	 β	 95%	CI	 t	
Intercept	 -53.34	 [-61.46,	-45.21]	 -12.91	 	 -35.94	 [-46.07,	-25.82]	 -6.98	
P1	vs	P2-P3	 35.60	 [21.98,	49.22]	 5.14	 	 35.20	 [24.98,	45.42]	 6.77	
P2	vs	P3	 38.83	 [10.63,	67.03]	 2.71	 	 33.22	 [15.76,	50.68]	 3.74	
Block	 -8.14	 [-9.04,	-7.23]	 -17.70	 	 -7.11	 [-8.65,	-5.58]	 -9.11	
P1	vs	P2-P3:Block	 6.52	 [4.60,	8.43]	 6.68	 	 5.63	 [4.11,	7.15]	 7.27	
P2	vs	P3:Block	 4.86	 [2.65,	7.08]	 4.32	 	 2.42	 [0.66,	4.18]	 2.70	

	
7	 Inspection	of	 the	response	times	distribution	revealed	that	a	majority	of	responses	were	produced	

around	500ms.	A	smaller	group	of	RTs	appeared	around	1,000	ms	and	was	likely	due	to	situations	in	which	
baboon’s	response	was	not	recorded	by	the	computer,	because	their	hands	were	dirty.	In	this	situation,	they	
had	to	touch	the	screen	again,	and	longer	RTs	were	recorded	(that	are	on	average	twice	longer	compared	
to	the	first	responses).	This	is	why	we	have	adopted	this	two-step	trimming	procedure.	
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Table	2	(continued)	

	 	 3F	 	 	 	 6F	 	
Predictors	 β	 95%	CI	 t	 	 β	 95%	CI	 t	
Intercept	 -28.41	 [-36.88,	-19.93]	 -6.59	 	 -19.91	 [-27.82,	-12.01]	 -4.96	
P1	vs	P2-P3	 20.25	 [10.72,	29.77]	 4.18	 	 20.46	 [5.01,	35.91]	 2.61	
P2	vs	P3	 17.88	 [1.14,	34.63]	 2.10	 	 9.77	 [-6.23,	25.78]	 1.20	
Block	 -6.14	 [-7.45,	-4.84]	 -9.26	 	 -4.30	 [-6.16,	-2.45]	 -4.56	
P1	vs	P2-P3:Block	 5.47	 [4.19,	6.74]	 8.44	 	 4.29	 [3.14,	5.43]	 7.35	
P2	vs	P3:Block	 3.66	 [2.19,	5.13]	 4.89	 	 2.53	 [1.21,	3.86]	 3.76	
Note.	P:	position.	Effects	are	considered	significant	when	t	>	|1.96|	and	are	highlighted	in	
bold	
	
The	evolution	of	 the	difference	between	mean	RTs	 for	all	Blocks	and	mean	RTs	 for	

Block	1	for	all	spacing	conditions	(i.e.,	0F,	1F,	3F,	and	6F)	and	all	positions	in	the	repeated	

sequence	 (i.e.,	 from	 Position	 1	 to	 3)	 is	 presented	 in	 Figure	 2.	 Our	 results	 showed	 a	

significant	effect	of	Block,	with	RTs	decreasing	across	blocks	 in	all	 spacing	 conditions.	

Consistent	 with	 previous	 findings,	 we	 found	 that	 baboons	 produced	 faster	 RTs	 for	

predictable	positions	(i.e.,	Positions	2	and	3)	compared	to	unpredictable	positions	(i.e.,	

Position	1)	in	all	spacing	conditions.	Moreover,	the	difference	in	RTs	between	predictable	

positions	and	unpredictable	positions	increased	throughout	the	blocks,	as	 indicated	by	

the	significant	positive	interaction	between	Position	1	and	the	average	of	Positions	2	and	

3,	and	Block.	Our	results	also	showed	a	processing	advantage	for	items	in	Position	3	over	

those	in	Position	2	and	a	significant	increase	of	this	difference	across	blocks	for	all	spacing	

conditions.	
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Figure	2.	Mean	reaction	 times	differences	over	all	baboons	between	each	Block	(from	

Block	1	to	10)	and	Block	1	for	all	positions	in	the	sequence	(from	Position	1	to	3)	in	all	

four	spacing	conditions	(0F,	1F,	3F,	and	6F).	Error	bars	indicate	95%	confidence	intervals.	

To	examine	the	influence	of	repetition	spacing	on	sequence	learning,	we	computed	a	

predictability	score	for	each	spacing	condition	by	calculating	the	difference	between	the	

RTs	for	the	unpredictable	position	(i.e.,	Position	1)	and	the	mean	RT	for	the	predictable	

positions	of	the	triplet	for	each	block	(i.e.,	Positions	2	and	3).	Here,	a	positive	score	reflects	

learning	of	the	predictable	positions	and	therefore,	learning	of	the	sequence	(Pinto	Arata	

et	al.,	2024).	We	performed	an	LME	on	these	predictability	scores,	using	spacing	condition	

and	block	as	 fixed	effects,	 along	with	 the	 interaction	between	 these	variables,	 and	by-

subject	 random	 intercepts,	 as	 well	 as	 by-subject	 random	 slopes	 for	 block.	 Spacing	

condition	was	coded	using	repeated	contrast	coding	to	perform	pairwise	comparisons.	
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We	found	higher	predictability	scores	in	the	0F-Condition	compared	to	the	1F-Condition,	

b	=	-0.04,	95%	CI	[-0.06,	-0.02],	t	=	-4.44,	and	higher	scores	in	the	1F-Condition	compared	

to	the	3F-Condition,	b	=	-0.05,	95%	CI	[-0.07,	-0.03],	t	=	-4.91.	There	was	no	difference	

between	the	3F-	and	6F-Condition.	We	also	observed	a	significant	effect	of	Block,	b	=	0.02,	

95%	CI	[0.01,	0.02],	t	=	8.24,	indicating	an	increase	of	predictability	scores	across	blocks.			

To	obtain	an	estimate	of	the	time	that	a	sequential	memory	trace	can	survive	without	

being	reinforced,	we	examined	the	evolution	of	the	predictability	score	over	the	different	

repetition	 spacing.	When	 the	 predictability	 score	 becomes	 null	 (i.e.,	 when	 there	 is	 no	

longer	any	difference	between	unpredictable	Position	1	and	predictable	Positions	2	and	

3),	 then	we	 can	 assume	 that	 the	 spacing	 between	 two	 repetitions	 is	 too	 important	 to	

consolidate	 the	 sequence's	 memory	 trace.	 We	 ran	 a	 regression	 analysis	 on	 the	 beta	

coefficients	of	each	linear	regression	of	the	mixed	model	described	above	to	determine	

which	function	best	fit	the	dynamics	we	observed	for	the	predictability	scores	(the	greater	

the	beta	coefficient,	the	greater	the	learning	of	the	sequence).	The	models	were	compared	

using	AIC,	BIC,	and	the	R2	scores	(see	Table	3).	Lower	AIC	and	BIC	scores	and	higher	R2	

values	indicate	a	better	model	fit.	Results	revealed	that	the	evolution	of	the	predictability	

scores	was	better	captured	by	a	logarithmic	function	more	than	by	a	power,	exponential	

or	linear	function.	Figure	3	shows	the	results	of	the	LME	for	the	predictability	score	across	

the	four	spacing	conditions	together	with	the	logarithmic	function	for	the	distribution	of	

the	beta	coefficients.	 	
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Table	3.	Model	comparison	with	parameter	estimates	for	each	model	

Model	 a	 b	 AIC	 BIC	 R2	
Logarithmic	 0.015	 0.001	 -39.542	 -41.383	 0.937	
Power	 0.015	 -0.071	 -38.537	 -40.378	 0.901	
Exponential	 0.019	 -0.088	 -36.292	 -38.133	 0.889	
Linear	 0.019	 -0.001	 -35.487	 -37.328	 0.825	

Note.	AIC:	Akaike’s	information	criterion;	BIC:	Bayesian	information	criterion.	

	

Figure	 3.	 Panel	 a:	 Comparison	 of	 predictability	 scores	 across	 blocks	 for	 repeated	

sequences	in	all	the	spacing	conditions.	Continuous	lines	represent	the	best	linear	fit	and	

color-shaded	 areas	 indicate	 95%	 confidence	 intervals	 around	 linear	 regression	 lines.	

Panel	b:	Beta	coefficients	for	all	four	spacing	conditions.	The	continuous	line	represents	

the	best	fit	to	the	data	(i.e.,	a	logarithmic	function).	Error	bars	indicate	95%	confidence	

intervals	 for	 each	 beta	 coefficient	 based	 on	 the	 linear	mixed	model	 used	 to	 compare	

spacing	conditions.	

Discussion	

In	the	present	study,	we	used	a	combination	of	the	Serial	Reaction	Time	task	(Nissen	&	

Bullemer,	1987)	and	of	the	Hebb	repetition	paradigm	(Hebb,	1961),	in	which	a	variable	

number	of	random	sequences	were	inserted	between	two	repetitions	of	a	target	sequence	
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to	test	the	limit	at	which	a	sequential	memory	trace	vanishes.	To	do	this,	we	systematically	

manipulated	the	spacing	between	two	repetitions	of	the	target	sequence	by	inserting	zero	

to	six	 random	filler	sequences.	Consistent	with	previous	studies	 (Malassis	et	al.,	2018;	

Minier	et	al.,	2016;	Rey	et	al.,	2019,	2022),	we	observed	that	baboons	were	able	to	learn	

sequences	 of	 three	 locations,	 as	 indicated	 by	 the	 decrease	 in	 RTs	 for	 the	 predictable	

second	and	third	positions	in	the	sequence	across	repetitions,	even	for	the	largest	spacing.	

The	 observation	 of	 faster	 RTs	 for	 the	 third	 compared	 to	 the	 second	 position	 is	 also	

consistent	with	previous	findings	showing	that	the	third	position	benefits	from	stronger	

contextual	 information	 during	 learning	 compared	 to	 the	 second	 (Elman,	 1990).	 This	

advantage	suggests	that	the	occurrence	of	the	third	position	is	progressively	predicted	by	

the	co-occurrence	of	the	first	and	second	positions.	

To	our	knowledge,	the	present	study	is	the	first	to	provide	quantitative	evidence	on	the	

role	 of	 repetition	 spacing	 in	 the	 formation	 of	 stable	 sequential	 memory	 traces	 by	

controlling	for	the	influence	of	verbal	consolidation	strategies	and	by	testing	a	non-human	

primate	 species	 (here,	 Guinea	 baboons	 papio	 papio).	 More	 importantly,	 our	 results	

showed	that	learning	of	the	sequence	(measured	by	a	predictability	score)	decreased	as	

spacing	increased,	and	that	the	relationship	between	spacing	and	sequence	learning	best	

fitted	a	 logarithmic	 function.	This	result	suggests	 that	 the	memory	trace	of	a	sequence	

survives	by	following	the	non-linear	dynamics	of	a	logarithmic	function,	and	that	even	if	

we	were	to	further	increase	the	spacing	between	two	repetitions	of	the	target	sequence,	

we	 should	 still	 observe	 learning	 of	 the	 sequence	 (manifested	 here	 by	 an	 increasing	

difference	in	response	time	between	predictable	and	non-predictable	positions).	This	has	

important	implications	for	current	models	of	statistical	learning.		

The	idea	that	sequence	learning	is	based	on	the	creation	and	consolidation	of	chunks	

is	 supported	 by	 several	 influential	 chunking	models	 (Frank	 et	 al.,	 2010;	 French	 et	 al.,	
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2011;	McCauley	&	Christiansen,	2019;	Perruchet	&	Vinter,	1998;	Robinet	et	al.,	2011)	and,	

to	our	knowledge,	the	results	observed	in	the	current	study	provide	the	first	quantitative	

estimate	of	the	lifetime	of	chunk	representations.	For	one	of	the	most	influential	models	

in	this	field,	i.e.,	the	Parser	model,	each	time	a	new	chunk	is	created	in	perceptual	memory,	

this	 new	 unit	 receives	 a	 certain	 weight	 that	 materializes	 the	 strength	 of	 its	 trace	 in	

memory.	 This	 weight	 then	 decreases	 linearly	 if	 the	 chunk	 is	 not	 encountered	 and	

processed	again.	So,	after	a	relatively	short	time	(20	processing	cycles),	the	memory	trace	

of	this	chunk	may	disappear	if	it	has	not	been	processed	again.	Our	data	suggest	that	each	

new	sequence	that	is	transiently	memorized	seems	to	survive	much	longer	than	predicted	

by	the	Parser	model.	 It	would	thus	be	 important	 to	see	to	what	extent	a	much	greater	

spacing	 of	 a	 repeated	 sequence	 (e.g.,	 20)	 would	 lead	 to	 learning	 of	 this	 sequence.	

Unfortunately,	 this	 type	of	 experiment	 is	 too	 costly	with	 the	paradigm	used	here	with	

baboons,	 because	 as	 Figure	 2	 shows,	 we	 only	 start	 to	 observe	 a	 difference	 between	

predictable	and	non-predictable	positions	from	the	third	Block	onwards	in	the	maximum	

spacing	 condition	 (i.e.,	 6F).	 However,	 recent	 human	 data	 obtained	 in	 a	 Hebb	 lexical	

decision	task	(i.e.,	Pinto	Arata	et	al.,	2024)	indicate	that	learning	is	possible	after	a	spacing	

of	60	(Pinto	Arata,	Ramisch	et	al.,	submitted).	Whereas	in	the	present	study	a	logarithmic	

function	provided	the	best	fit	to	our	results,	Pinto	Arata,	Ramisch	et	al.	found	that	learning	

was	best	 fitted	by	a	power	 law.	This	 is	not	 surprising,	 since	both	 functions	have	been	

shown	to	be	highly	correlated	across	different	 learning	 tasks	(Radvansky	et	al.,	2024).	

Indeed,	if	one	fits	well,	the	other	is	likely	to	do	so	as	well.	This	result	validates	the	idea	of	

a	very	slow	disappearance	of	the	sequence's	memory	trace,	which	appears	to	be	captured	

by	the	dynamics	of	either	a	logarithmic	or	a	power	function.		

Similarly,	McCauley	and	Christiansen's	(2019)	recent	model	also	assumes	a	mechanism	

for	 chunk	 creation	 as	words	 and	word	 sequences	 are	 processed,	 but	 unlike	 Parser,	 it	
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assumes	that	these	new	chunks	are	never	forgotten	once	they	have	been	created.	Even	if	

there	is	no	empirical	data	to	validate	this	strong	hypothesis,	we	can	nevertheless	consider	

that	if	the	dynamics	of	forgetting	the	memory	trace	of	a	sequence	follows	a	logarithmic	

function,	 then	 the	 trace	 decreases	 asymptotically	 and,	 as	 a	 result,	 its	 survival	 time	 is	

potentially	very	long.	Our	data	therefore	seem	to	be	fairly	consistent	with	the	hypothesis	

formulated	 by	 this	 model	 concerning	 the	 extremely	 long	 survival	 of	 chunks	 that	 are	

created	over	time	and	exposure	to	language	sequences.		

The	idea	that	these	sequential	memories	have	a	very	long	lifetime	can	also	certainly	

help	to	resolve	the	question	of	how	infants	are	able	to	learn	relatively	infrequent	words	

(Pinker,	 1994;	 Swingley,	 2008).	 Indeed,	 representations	 of	 words,	 even	 when	 being	

encountered	relatively	infrequently,	can	remain	in	long-term	memory	for	years	once	they	

are	part	of	the	mental	lexicon.	This	would	be	linked	to	the	undoubtedly	general	property	

of	non-linear	decay	of	sequential	memory	traces,	which	follow	a	logarithmic	function.	The	

present	 study	 suggests	 that	 this	 general	 property	 is	 probably	 also	 present	 in	 other	

primate	species,	such	as	the	Guinea	baboon.		

Beyond	 the	 long	 survival	 of	 sequential	 memory	 traces,	 it	 should	 be	 noted	 that	 in	

humans,	with	the	development	of	motor	control	of	the	oral-phonatory	apparatus	during	

the	 first	 year	 of	 life,	 young	 children	 are	 then	 able	 to	 generate	 verbal	 sequences	

themselves,	producing	repetitions	 that	can	compensate	 for	 the	poverty	of	surrounding	

linguistic	stimuli.	By	means	of	inner	language,	they	can	thus	self-refresh	verbal	sequential	

memory	traces,	increasing	the	strength	of	these	memory	trace	and	the	efficiency	of	the	
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processing	of	this	information	within	their	language	perception	and	production	systems	

(Chater	et	al.,	2016).	

Conclusion	

The	present	study	demonstrates	that	a	non-human	primate	species	lacking	language	

can	maintain	and	consolidate	a	sequence	of	elements	even	when	they	are	interleaved	with	

a	 relatively	 large	number	of	 random	sequences.	These	 findings	 suggest	 that	 regularity	

extraction	is	possible	in	the	absence	of	language	and	may	rely	on	language-independent	

associative	 learning	 mechanisms	 alongside	 language-related	 refreshing	 mechanisms.	

Most	 importantly,	 the	 current	 study	 is	 the	 first	 to	 provide	 an	 estimate	 of	 the	 natural	

impact	 of	 forgetting	 on	 a	 sequential	 memory	 trace	 that	 does	 not	 benefit	 from	 verbal	

consolidation	 strategies.	 It	 indicates	 that	 the	memory	 traces	of	 sequential	 information	

certainly	have	a	much	longer	lifetime	than	previously	assumed.
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Appendix	A.	Mean	response	times	over	a	group	of	13	baboons	for	each	of	the	72	

possible	transitions	calculated	from	1,000	random	trials.	

1st	position	
in	Transition	 	 2nd	position	in	Transition	

	 	 1	 2	 3	 4	 5	 6	 7	 8	 9	

1	 	 	 426	 421	 438	 365	 360	 447	 359	 371	

2	 	 506	 	 457	 411	 377	 393	 391	 365	 393	

3	 	 502	 435	 	 443	 368	 353	 439	 372	 365	

4	 	 486	 423	 448	 	 366	 374	 434	 339	 358	

5	 	 485	 408	 378	 444	 	 345	 449	 392	 380	

6	 	 477	 383	 379	 426	 344	 	 448	 384	 418	

7	 	 472	 424	 435	 423	 370	 381	 	 374	 371	

8	 	 445	 388	 401	 396	 342	 367	 443	 	 396	

9	 	 487	 403	 410	 425	 334	 361	 437	 362	 	

	

Appendix	B.	The	four	selected	repeated	sequences	and	their	respective	mean	TT1	and	

TT2	values.	

Triplet	 TT1	 TT2	

524	 408	 411	

692	 418	 403	

276	 391	 381	

763	 381	 379	

Note.	TT	=	transition	time.	
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Chapter 5: Chunking mechanisms in language 
and other domains 

The	 ability	 to	 track	 the	 statistical	 structure	 of	 language	 and	 more	 broadly,	 of	 our	

environment,	is	a	key	feature	of	our	cognitive	system.	This	process,	known	as	statistical	

learning,	 is	 thought	 to	 rely	 on	 associative	mechanisms,	 and	 notably	 chunking.	 In	 this	

review,	we	summarize	recent	empirical	work	on	three	main	phenomena	that	have	been	

consistently	reported	in	the	literature	about	chunking	mechanisms:	predictability	effects,	

repetition	 spacing	 effects,	 and	 chunk	 size	 limits.	 To	 illustrate	 the	 generality	 and	

robustness	of	these	phenomena,	we	show	that	they	have	been	observed	for	the	processing	

of	both	linguistic	and	visuo-motor	sequences,	in	human	and	non-human	primate	studies.	

We	discuss	how	current	chunk-based	models	of	statistical	learning	can	account	for	these	

effects	 and	 highlight	 some	 of	 their	 limitations.	 Finally,	 we	 argue	 that	 recent	

neurocomputational	models	based	on	associative	and	Hebbian	learning	may	provide	new	

theoretical	 approaches	 to	 describe	 and	 better	 understand	 the	 nature	 of	 chunking	

mechanisms8.	

	 	

	
8	This	chapter	is	an	adapted	version	of	the	manuscript	in	thesis	format.	The	published	version	can	be	found	
here:	Pinto	Arata,	L.,	Tosatto,	L.,	&	Rey,	A.	(2024).	Chunking	mechanisms	in	language	and	other	domains.	
L’Année	Psychologique/Topics	in	Cognitive	Psychology.	
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Introduction	

Our	world	is	full	of	statistical	regularities	that	humans	can	exploit	to	build	coherent	

representations	of	their	environment.	This	ability	to	detect	and	extract	these	regularities,	

known	as	statistical	learning,	is	considered	to	be	a	key	feature	of	our	cognitive	systems.	

Such	statistical	sensitivity	is	thought	to	rely	on	associative	learning	mechanisms,	and	one	

in	particular,	chunking	(Isbilen	et	al.,	2020;	Perruchet	&	Vinter,	2002;	Rey	et	al.,	2019).	

Chunking	refers	to	the	process	of	combining	and	grouping	co-occurring	sequences	of	

items	 into	 single	 processing	 units	 called	 chunks	 (Gobet	 et	 al.,	 2001,	 2016).	 This	

mechanism	has	been	studied	in	a	wide	range	of	domains,	such	as	language	learning	(e.g.,	

Isbilen	&	Christiansen,	2018;	Perruchet	et	al.,	2014;	Pulido,	2021),	expertise	(e.g.,	Chase	

&	 Simon,	 1973;	 Gobet	 &	 Simon,	 1998;	 Hu	 &	 Ericsson,	 2012),	 social	 cognition	 (e.g.,	

Basyouni	&	Parkinson,	 2022;	 Stahl	&	Feigenson,	 2014),	 visual	 sequence	 learning	 (e.g.,	

Avarguès-Weber	et	al.,	2020;	Daltrozzo	et	al.,	2017;	Emerson	&	Conway,	2023),	and	motor	

sequence	learning	(e.g.,	Minier	et	al.,	2016;	Rey	et	al.,	2019;	Tosatto,	Fagot,	et	al.,	2022).	In	

addition,	chunking	 is	at	 the	heart	of	many	computational	models	of	statistical	 learning	

(e.g.,	Fonollosa	et	al.,	2015;	Gobet	et	al.,	2001;	Mareschal	&	French,	2017;	Orbán	et	al.,	

2008;	 Robinet	 et	 al.,	 2011),	 particularly	 in	 language	 processing	 at	 various	 levels	 of	

granularity	(e.g.,	Cabiddu	et	al.,	2023;	French	et	al.,	2011;	McCauley	&	Christiansen,	2019a;	

Perruchet	&	Vinter,	1998).	

The	main	idea	behind	chunking	is	that	grouping	items	together	into	larger	units	will	

lead	 to	 the	 creation	 of	 a	 single	memory	 trace,	 resulting	 in	 a	 unified	 representation	 of	

previously	 separate	 pieces	 of	 information.	 This	 allows	our	 cognitive	 system,	 firstly,	 to	

compress	information	to	overcome	memory	limitations	and	increase	short-term	memory	

capacity	(Cowan,	2001;	Mathy	&	Feldman,	2012;	Miller,	1956),	and	secondly,	to	retrieve	
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and	 use	 encoded	 information	 faster,	 thus	 facilitating	 several	 cognitive	 processes	

(Christiansen	&	Chater,	2016;	Fonollosa	et	al.,	2015).	

Deliberate	versus	automatic	chunking	

According	 to	 Gobet	 et	 al.	 (2001),	 chunking	 can	 be	 classified	 as	 either	deliberate	 or	

automatic,	depending	on	how	and	when	it	occurs.	On	the	one	hand,	deliberate	chunking	

is	thought	to	be	controlled,	goal-oriented,	conscious	and	explicit	(Mathy	et	al.,	2016).	For	

instance,	one	might	use	a	strategy	to	remember	a	phone	number	by	grouping	adjacent	

digits	into	bundles	(i.e.,	06.19.39.19.45)	or	by	recoding	it	from	information	stored	in	long-

term	memory	(i.e.,	06	+	beginning	and	end	of	WWII).	Automatic	chunking,	on	the	other	

hand,	 is	 defined	 as	 a	 non-controlled,	 unconscious	 and	 implicit	 continuous	 process	 in	

which	 co-occurring	 items	 are	 grouped	 together	 merely	 by	 repetition,	 without	 any	

intention	to	learn	(Gobet,	2017;	Perruchet	&	Pacton,	2006).	While	the	former	is	usually	

related	 to	 short-term	memory,	 the	 latter	 deals	with	 processes	 occurring	 in	 long-term	

memory	(Gobet	et	al.,	2016).	

Here	we	focus	on	automatic	chunking	as	 it	 is	considered	to	be	the	main	mechanism	

involved	 in	 statistical	 learning.	 Indeed,	 statistical	 learning	 has	 been	 described	 as	

occurring	 automatically,	 incidentally	 and	 without	 awareness	 (Batterink	 et	 al.,	 2017,	

2019).	Note	that	statistical	learning	is	also	referred	to	as	implicit	statistical	learning	in	the	

literature	(see	Christiansen,	2019	for	a	review).	

Automatic	chunking:	a	fundamental	mechanism	in	sequence	learning	

As	 noted	 previously,	 chunking	 has	 been	 widely	 recognized	 as	 a	 domain-general	

learning	mechanism	in	a	number	of	different	areas.	In	particular,	automatic	chunking	is	

thought	to	be	essential	for	language	learning,	as	children	do	not	initially	store	linguistic	

information	by	explicit	and	rote	learning,	but	learn	implicitly	(Gobet,	2017).	This	type	of	

chunking	 is	 also	 crucial	 for	 sequence	 processing	 in	 language	 at	 different	 levels.	 For	
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instance,	at	the	word-level,	it	has	been	suggested	that	humans	group	letters	together	to	

develop	larger	processing	units,	such	as	graphemes	and	syllable	constituents	like	onsets	

or	rimes	(Brand	et	al.,	2007;	LaBerge	&	Samuels,	1974;	Perry,	2023;	Rey	et	al.,	1998,	2000;	

Rey	&	Schiller,	2005;	Ziegler	&	Goswami,	2005).	Similarly,	at	the	phrase-level,	it	has	been	

shown	that	infants	and	adults	tend	to	group	words	together	into	multiword	units	and	use	

them	during	language	comprehension	(e.g.,	Arnon	&	Clark,	2011;	Carrol	&	Conklin,	2020;	

Havron	&	Arnon,	2020)	and	production	(e.g.,	Arnon	&	Priva,	2013;	Bannard	&	Matthews,	

2008).	

However,	 when	 it	 comes	 to	 studying	 automatic	 chunking,	 individuals’	 preexisting	

linguistic	 knowledge	 and	 expectations	 of	 regularities	 in	 language	 make	 it	 difficult	 to	

isolate	the	influence	of	explicit	and	implicit	processes	on	learning.	It	has	been	suggested	

that	one	way	to	overcome	this	issue	is	to	study	this	mechanism	in	species	that	do	not	use	

language	to	avoid	any	explicit	recoding	process	(Minier	et	al.,	2016),	thus	allowing	these	

factors	 to	 be	 disentangled	 by	 directly	 comparing	 human	 and	 animal	 performance	

(Tosatto,	 Fagot,	&	Rey,	 2023b).	 Indeed,	 humans	 and	 some	other	 species,	 such	 as	non-

human	 primates,	 are	 believed	 to	 share	 common	 associative	 learning	 mechanisms	

necessary	for	sequence	learning	(Malassis	et	al.,	2018;	Rey	et	al.,	2019,	2022).	

Even	though	the	notions	of	chunk	and	chunking	have	been	well	described	theoretically	

(e.g.,	 Gobet	 et	 al.,	 2001,	 2016),	 and	 demonstrated	 experimentally	 (e.g.,	 Emerson	 &	

Conway,	 2023;	 Perruchet,	 2019;	 Slone	 &	 Johnson,	 2018),	 the	 exact	 nature	 of	 the	

associative	mechanisms	involved	has	remained	elusive.	In	particular,	it	is	unclear	how	the	

processing	of	regular	sequences	longer	than	two	items	occurs	at	the	neurobiological	level,	

and	how	the	development	of	a	chunk	translates	into	neurobiological	mechanisms.	While	

some	studies	have	 investigated	which	brain	regions	are	 involved	 in	statistical	 learning	

(e.g.,	Batterink	et	al.,	2019;	Conway,	2020;	Conway	et	al.,	2020;	R.	Frost	et	al.,	2015),	these	
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fundamental	questions	have	been	surprisingly	overlooked	in	the	literature.	We	therefore	

still	need	to	understand	how	we	segment	a	repetitively	processed	sequence	of	more	than	

two	elements	into	chunks,	and	the	nature	of	the	associative	mechanisms	that	enable	such	

segmentation.		

In	 the	 present	 article,	 we	 review	 three	 recent	 key	 empirical	 phenomena	 that	 are	

present	 in	 the	 sequential	 learning	 of	 linguistic	 and	 non-linguistic	 regularities:	

predictability	 effect,	 repetition-spacing	 and	 chunk	 size.	 Our	 main	 goal	 is	 to	 further	

characterize	automatic	chunking	and	its	fundamental	associative	learning	properties.	To	

this	end,	we	examine	recent	studies	investigating	chunking	in	both	multiword	sequence	

extraction	in	humans	and	visuo-motor	sequence	learning	involving	non-human	primates	

(and	more	specifically,	Guinea	baboons,	Papio	papio).	For	each	empirical	phenomenon,	

we	present	results	from	linguistic	tasks	and	baboon	data,	and	then	we	discuss	the	extent	

to	which	current	chunk-based	models	of	statistical	 learning	can	effectively	account	 for	

these	phenomena.	

Predictability	effects		

Predictability	effects	in	language	

Many	 recent	 studies	 have	 focused	 on	 learning	 sequences	 composed	 of	 three	 ABC	

elements.	 By	 presenting	 ABC	 repeatedly	 and	 using	 experimental	 protocols	 that	 allow	

implicit	 statistical	 learning	 to	 be	 studied	 in	 real	 time	 (and	 not	 following	 the	 offline	

protocols	that	first	appeared	in	this	literature,	such	as	Saffran	et	al.’s,	1996),	it	is	possible	

to	study	the	evolution	of	learning	on	each	element	of	the	ABC	sequence.	While	a	simple	

associative	model	predicts	that	the	association	between	A	and	B	will	develop	as	quickly	

as	 the	 association	 between	 B	 and	 C,	 numerous	 studies	 show	 that	 BC	 is	 learned	more	

quickly	than	AB.	One	way	of	explaining	this	result	is	to	consider	that,	unlike	B,	C	benefits	

from	richer	contextual	information	that	include	not	only	B,	but	also	A.	Indeed,	both	A	and	
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B,	 which	 systematically	 appear	 before	 C,	 predict	 C,	 while	 only	 A	 predicts	 B.	 This	

processing	advantage	for	C	due	to	the	richer	context	is	also	known	as	the	predictability	

effect	(Pinto	Arata,	Ordonez	Magro,	et	al.,	in	press).	

In	the	field	of	language	processing,	a	number	of	recent	studies	have	investigated	these	

predictability	 effects	 with	 implicit	 exposure	 protocols	 to	 repetitions	 of	 linguistic	

regularities	composed	of	three	ABC	elements	and	real-time	measures	of	learning	of	these	

regularities.		For	instance,	Rey	et	al.	(2020)	used	a	letter-naming	task	where	participants	

had	to	read	aloud	letters	presented	one	by	one	in	the	center	of	the	screen.	Unbeknownst	

to	the	participants,	a	triplet	of	three	letters	(e.g.,	AOU)	was	systematically	repeated	in	the	

same	order,	and	3	to	5	filler	letters	were	inserted	between	two	repetitions	of	the	target	

triplet.	They	observed	that	participants	named	the	second	and	third	letters	of	the	triplet	

increasingly	faster	as	the	task	progressed,	and	that	these	letters	gradually	became	more	

predictable	for	the	participants.	Most	notably,	they	found	faster	reaction	times	(RTs)	for	

the	third	letter	over	the	second,	indicating	that	the	last	item	of	the	triplet	benefited	from	

richer	contextual	information	(i.e.,	AO	in	AOU	provides	larger	contextual	information	to	

predict	U).	

More	recently,	Pinto	Arata,	Ordonez	Magro	et	al.	(in	press)	adapted	Rey	et	al’s	(2020)	

into	a	lexical	decision	task	to	study	multi-word	sequence	acquisition	across	four	different	

conditions.	 Here,	 the	 target	 triplet	 of	 letters	 was	 replaced	 by	 a	 triplet	 composed	 of	

unrelated	words	(e.g.,	mule	proie	noeud	–	“mule	prey	knot”),	pseudowords	(e.g.,	fitre	plou	

boge),	semantically	related	words	(e.g.,	banane	cerise	fraise	–	“banana	cherry	strawberry”)	

and	 idioms	 (e.g.,	 faire	 profil	 bas	 –	 “lie	 low”),	 respectively	 in	 the	 four	 experimental	

conditions.	They	observed	faster	processing	for	the	second	and	third	items	of	the	triplet	

throughout	the	repetitions.	Furthermore,	the	learning	dynamic	also	varied	as	a	function	

of	 the	nature	of	 the	 triplet,	with	 semantically	 related	words	and	 idioms	being	 learned	
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faster.	 However,	 no	 processing	 advantage	 for	 the	 third	 position	 over	 the	 second	was	

found.	This	was	explained	by	the	nature	of	the	task	as	lexical	decision	demands	longer	

processing	 time	 and	 produces	 a	 greater	 attentional	 load	 than	 naming	 tasks,	 thus	

hindering	 the	establishment	of	 an	association	between	 the	 first	 and	 third	 items	of	 the	

triplet.	

These	 empirical	 results	 therefore	 show	 that,	 in	 the	 language	 domain,	 contextual	

information	influences	sequence	processing.	The	richer	and	more	predictable	the	context,	

the	more	 likely	 it	 is	 that	associations	will	be	established	between	 the	 items	of	a	given	

sequence.	 However,	 the	 nature	 of	 the	 task	 may	 favor	 or	 hinder	 the	 creation	 of	 an	

association,	depending	on	the	cognitive	load	required	to	achieve	it.	Furthermore,	results	

from	corpus	analyses	of	child	directed	speech	also	show	a	learning	advantage	for	the	last	

words	 in	 an	 utterance.	 Indeed,	 children	 tend	 to	 understand	 these	 words	 better	 and	

produce	them	more	often	(Braginsky	et	al.,	2019).	

Predictability	effect	in	other	domains	

The	effect	of	predictability	–	as	evidenced	by	an	advantage	of	the	last	element(s)	in	the	

learning	of	an	ABC	sequence	–	has	been	observed	in	nonverbal	and	nonlinguistic	tasks	as	

well,	 especially	 in	 visuo-motor	 tasks,	which	 allow	 for	 testing	 different	 species	 and	 for	

evaluating	the	generality	of	this	learning	property.	In	non-human	animals,	this	effect	of	

predictability	 has	 indeed	 been	 repeatedly	 observed	 with	 studies	 involving	 Guinea	

baboons.	For	example,	Minier	et	al.	(2016)	studied	the	learning	of	a	repeated	sequential	

triplet	 ABC	 and	 the	 dynamics	 of	 learning	 for	 each	 item	 composing	 this	 triplet.	 This	

experiment	uses	 a	 serial	 response	 time	 (SRT,	Nissen	&	Bullemer,	 1987)	 task	 in	which	

baboons	have	to	track	and	touch	a	moving	target	on	a	touch	screen.	In	this	task,	baboons	

are	 placed	 in	 front	 of	 a	 touch	 screen	 that	 is	 divided	 into	 nine	 equidistant	 locations	

represented	by	white	crosses	on	a	black	background,	one	of	them	being	replaced	by	the	
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target,	a	red	circle	(see	Figure	1,	Panels	A	and	B).	When	the	target	is	touched,	it	disappears	

and	it	is	replaced	by	the	cross.	The	next	cross/location	in	the	sequence	is	then	replaced	

by	the	red	circle	until	the	end	of	the	sequence.	Baboons	are	exposed	to	9-item	sequences	

composed	of	three	independent	ABC	triplets	of	fixed	locations/items	and	perform	2,000	

trials	each,	one	trial	being	composed	of	a	random	combination	of	the	three	triplets.	RTs	

are	recorded	for	each	touch	of	the	target	throughout	the	task	and	allow	to	observe	how	

each	item	is	learned.	Indeed,	as	each	triplet	can	be	positioned	first,	second	or	third	in	the	

sequence,	the	appearance	of	the	first	item	of	a	triplet	is	not	predictable	and	no	significant	

decrease	in	RT	should	be	observed	for	this	item.	But	the	next	two	items	are	predictable	

based	on	the	presentation	of	the	first	one.	Thus,	results	show	a	decrease	in	RT	for	the	last	

two	items	but	crucially,	this	decrease	is	significantly	stronger	for	the	third	item	than	for	

the	 second	 one.	 This	 advantage	 for	 final	 over	 initial	 items	 appears	 very	 early	 during	

learning,	and	it	persists	during	the	whole	experiment.	More	recently,	Ordonez	Magro	et	

al.	(2022)	have	replicated	this	effect	using	a	modified	version	of	this	experimental	task	

(these	results	are	discussed	further	in	Section	3.2).	

	

Figure	 1.	 (A)	 Representation	 of	 the	 touch	 screen	 with	 the	 nine	 possible	 locations.	

Numbers	are	shown	for	illustrative	purposes	but	were	not	displayed.	(B)	Example	of	a	

single	trial.	After	an	initial	touch	of	the	fixation	cross,	the	subject	had	to	touch	the	red	dot	

when	it	appeared	at	each	location.		
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Interestingly,	 similar	 results	 are	 observed	 with	 human	 participants	 in	 a	 strictly	

identical	SRT	task	(Rey	et	al.,	2019).	For	both	humans	and	baboons,	the	advantage	for	final	

over	initial	items	in	a	pattern	can	be	easily	interpreted	again	as	the	last	item	in	the	triplet	

benefiting	from	a	richer	contextual	information	(i.e.,	the	two	previous	items)	compared	to	

the	 second	 item,	which	only	benefits	 from	only	one	previous	 item.	The	 similar	 results	

obtained	in	SRT	tasks	in	both	human	and	non-human	primates	suggest	that	this	beneficial	

effect	 of	 context	 is	 a	 general	 feature	 of	 the	 chunking	 mechanisms	 operating	 during	

sequence	learning	and	that	it	relies	on	shared	fundamental	associative	mechanisms	for	

both	species.		

Similarly,	 in	 visual	 statistical	 learning	 tasks	with	 human	 participants,	 some	 studies	

have	also	 isolated	a	better	performance	on	 the	 third	 item	of	a	 triplet	compared	 to	 the	

second	item.	For	instance,	Turk-Browne	et	al.	(2005)	observe	a	predictability	effect	on	a	

visual	 target	 detection	 task.	 Here,	 participants	 are	 shown	 four	 sequential	 recurring	

triplets	of	 shapes	during	an	exposition	phase.	 In	a	 subsequent	 test	phase,	participants	

view	sequences	of	24	items	composed	of	two	repetitions	of	the	four	triplets	in	a	random	

order	and	have	to	press	a	key	as	fast	as	possible	when	they	detect	the	target	stimulus	-	

one	of	the	shapes,	defined	at	the	beginning	of	each	trial.	Results	show	that	detection	RTs	

are	significantly	faster	in	trials	where	the	target	is	the	third	item	of	the	triplet	compared	

to	the	second	item.	Likewise,	Kim	et	al.	(2009)	observe	the	same	results	in	a	similar	target	

detection	 task	 and	 show	 the	 long-lasting	 effects	 of	 predictability	 provided	 by	 a	 richer	

context,	as	this	advantage	of	the	third	item	in	the	triplet	over	the	second	is	present	even	

when	the	exposition	and	test	phases	are	conducted	24	hours	apart.		

This	series	of	experiments	on	the	extraction	of	repeated	triplets	raises	the	question	of	

the	impact	of	the	number	of	co-occurring	elements	on	this	predictability	effect.	Indeed,	

what	happens	if	the	chain	of	co-occurring	items	increases?	Would	an	additional	decrease	
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of	RT	be	observed	on	a	fourth	item	in	a	repeated	quadruplet?	As	we	will	see	in	Section	4	

on	chunk	size,	other	experiments	involving	the	learning	of	longer	sequences	show	that	

this	 predictability	 effect	 is	 modulated	 by	 sequence	 size	 and	 what	 appears	 to	 be	 a	

fundamental	limitation	in	our	ability	to	extract	chunks	larger	than	3	or	4	in	size	(Tosatto,	

Fagot,	&	Rey,	2023b;	Tosatto,	Fagot,	et	al.,	2022,	these	studies	are	further	discussed	in	

Section	4).		

Taken	together,	these	studies	on	the	implicit	learning	of	triplet	sequences	that	reveal	a	

predictability	 effect	 shed	 light	on	 the	architecture	of	 the	associations	 formed	between	

units	 of	 a	 chunk	 and	 provide	 information	 for	 constructing	 computational	 models	 of	

chunking.	These	theoretical	implications	will	be	discussed	in	Section	5.		

Repetition	spacing		

Repetition	spacing	in	language	

It	 is	 possible	 to	 study	 the	 effect	 of	 repetition	 spacing	 by	manipulating	 the	 distance	

between	each	occurrence	of	a	repeated	sequence.	These	spacing	effects	thus	inform	us	

about	the	dynamics	of	the	development	of	a	memory	trace	of	this	repeated	sequence.	The	

question	 is	whether	these	repetition	spacing	effects	 function	as	simple	repetitions	of	a	

single	piece	of	information,	or	whether	there	are	phenomena	specific	to	the	repetition	of	

sequences,	such	as	ABC	triplets.	

Although	the	effect	of	repetition	spacing	on	learning	has	been	investigated	for	over	a	

century	(see	Cepeda	et	al.,	2006,	for	a	review),	only	a	handful	of	studies	have	since	focused	

on	its	effect	on	sequence	learning.	For	instance,	Melton	(1963)	used	the	Hebb	repetition	

task	 (Hebb,	 1961)	 where	 participants	 were	 presented	 with	 sequences	 of	 digits	 for	

immediate	serial	recall.	Unlike	the	original	task,	in	which	each	target	sequence	(the	Hebb	

sequence)	is	repeated	every	third	trial	and	interspersed	by	random	(filler)	sequences,	the	

number	of	sequences	between	each	Hebb	sequence	varied.	Melton	(1963)	observed	that	
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beyond	six	filler	sequences	no	learning	could	be	observed.	Similarly,	Page	et	al.	(2013)	

presented	participants	with	sequences	of	words	in	three	different	spacing	conditions:	on	

every	sixth,	ninth	and	twelfth	trial.	However,	in	contrast	to	Melton’s	(1963)	findings,	the	

authors	 found	 that	 learning	 was	 substantial	 and	 equivalent	 across	 all	 conditions.	

Furthermore,	 it	 has	 also	 been	 shown	 that	 sequence	 learning	 can	 occur	 even	 when	

repetition	spacing	is	irregular	(St-Louis	et	al.,	2019).	

These	findings	demonstrate	that	memory	traces	can	survive	wide	and	irregular	spacing	

between	repetitions,	yet	the	repetition	of	sequences	of	items	we	encounter	in	everyday	

life	are	usually	much	more	spaced	than	in	current	experiments.	Based	on	this	observation,	

Pinto	Arata,	Ramisch	et	al.	(2024)	went	beyond	these	results	to	investigate	the	effect	of	

longer	 spacing	 on	 the	 acquisition	 of	 word	 sequences	 in	 real-time.	 Using	 the	 lexical	

decision	task	described	in	Section	2.1.,	they	presented	their	participants	with	a	triplet	of	

words	which	repetitions	were	spaced	between:	4,	7,	10,	20,	30,	and	60	filler	items.	In	line	

with	previous	studies	(e.g.,	Pinto	Arata,	Ordonez	Magro,	et	al.,	in	press;	Rey	et	al.,	2020),	

they	observed	faster	RTs	for	the	predictable	positions	(i.e.,	the	2nd	and	the	3rd)	in	the	

triplet	as	repetitions	progressed	(i.e.,	the	predictability	effect).	It	is	worth	noting	that	the	

learning	rate	differed	across	different	spacing	conditions.	In	fact,	the	overall	decrease	in	

RTs	 was	 greater	 when	 the	 spacing	 was	 4	 fillers	 and	 slower	 when	 it	 was	 60	 fillers.	

Furthermore,	they	also	found	that	RTs	for	the	unpredictable	first	position	decreased	with	

repetition	(i.e.,	the	classical	repetition	effect),	but	significantly	less	and	at	a	slower	rate	

than	for	words	appearing	in	the	predictable	positions,	which	processing	not	only	benefits	

from	repetition	but	also	from	the	richer	context,	as	discussed	in	Section	2.1.	Such	findings	

suggest	 that	 although	 the	 learning	 rate	 is	 affected	 by	 the	 spacing,	 sequence	 learning	

remains	possible	even	when	the	repetition	spacing	between	repetitions	is	relatively	large.	

In	addition,	these	results	also	indicate	that	the	dynamics	of	the	development	of	a	memory	
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trace	are	differentially	 affected	by	 the	 repetition	and	predictability	of	 the	 items	 in	 the	

repeated	sequence.	

Repetition	spacing	in	baboons	

Experimental	 evidence	 about	 the	 effect	 of	 repetition	 spacing	 with	 nonverbal	 tasks	

and/or	 in	 nonhuman	 animals	 is	 very	 scarce.	 However,	 Ordonez	 Magro	 et	 al.	 (2022)	

recently	 conducted	 a	 study	 in	 Guinea	 baboons	 using	 a	 combination	 of	 the	 SRT	 task	

described	in	Section	2.2.	and	the	Hebb	learning	paradigm	(Hebb,	1961;	Page	et	al.,	2013)	

to	understand	how	the	memory	trace	of	a	repeated	triplet	consolidates	with	repetition	

but	also,	how	spacing	affects	the	trace	development	dynamics.	Here,	baboons	still	have	to	

touch	 a	 red	 target	 on	 a	 touch	 screen	which	 appears	 sequentially	 and	 have	 to	 process	

sequences	of	three	touches	(see	Figure	1).	On	each	trial,	the	sequences	can	be	of	two	types:	

either	a	repeated	triplet	of	touches	(i.e.,	the	Hebb	sequence)	or	a	triplet	of	random	touches	

(i.e.,	filler	sequences	composed	of	positions	that	are	different	from	the	positions	defining	

the	Hebb	sequence).	The	learning	of	the	repeated	triplets	is	assessed	in	baboons	under	

four	conditions:	between	two	repetitions	of	 the	repeated	sequence,	 there	 is	either	one	

filler	sequence	(1F-Condition),	three	filler	sequences	(3F-Condition),	six	filler	sequences	

(6F-Condition),	or	no	 filler	 sequence	 (0F-Condition).	As	 for	Pinto	Arata,	Ramisch	et	al.	

(2024),	a	 first	result	of	 this	experiment	 is	 the	replication	of	 the	predictability	effect	as	

evidenced	by	the	decrease	in	their	RTs	for	the	second	item	and	an	even	more	pronounced	

decrease	for	the	third	item.	The	second	main	result	concerns	the	repetition	effect,	with	

RTs	for	the	unpredictable	first	item	of	the	sequence	also	decreasing	with	repetition.	

Furthermore,	regarding	the	speed	at	which	the	memory	trace	 is	 formed,	 the	results	

show	that	the	learning	slopes	for	all	items	decrease	as	the	number	of	interspersed	filler	

sequences	increases,	indicating	that	learning	is	stronger	when	spacing	is	shorter.	Finally,	

the	most	interesting	feature	of	this	study	is	that,	by	measuring	the	learning	of	the	triplet	
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under	increasing	spacing	conditions,	authors	are	able	to	estimate	the	maximum	spacing	

at	which	learning	should	still	occur.	They	conclude	that	learning	of	the	triplet	can	occur	

with	spacing	up	to	approximately	18	filler	sequences,	but	is	very	unlikely	to	occur	beyond	

that	 point.	 This	 rather	 precise	 prediction	 not	 only	 informs	 us	 about	 the	 survival	 of	 a	

transitory	 trace	 in	 memory,	 but	 can	 also	 be	 compared	 with	 predictions	 made	 by	

computational	models.		

Chunk	size	

Chunk	size	in	the	domain	of	language	

Despite	the	fact	that	chunking	helps	to	overcome	the	inherent	limitations	of	memory	

storage	and	short-term	working	memory	processing,	it	seems	that	the	storage	capacity	of	

individual	 chunks	 themselves	 appears	 to	 be	 limited,	 with	 an	 average	 size	 of	

approximately	3-4	items	(Allen	&	Coyne,	1988;	Chase	&	Simon,	1973).	Indeed,	studies	on	

deliberate	 chunking	 have	 shown	 that	 individuals	 tend	 to	 spontaneously	 form	 3-item	

chunks	(Johnson,	1970),	and	exhibit	 improved	recall	 for	clusters	consisting	of	 three	to	

four	items	(e.g.,	Farrell,	2008;	Parmentier	&	Maybery,	2008;	Wickelgren,	1967).		

In	the	linguistic	domain,	chunk	size	has	also	been	studied	mainly	from	the	perspective	

of	deliberate	chunking,	using	tasks	such	as	serial	recall	and	immediate	recall,	especially	

with	lists	of	words.	For	instance,	Smalle	et	al.	(2016)	presented	participants	with	either	a	

list	of	isolated	syllables	or	with	a	list	where	syllables	were	grouped	into	pairs	by	inserting	

a	1000	ms	interstimulus	interval	every	two	syllables	(i.e.,	an	interstimulus	interval	was	

inserted	after	the	2nd,	4th,	6th,	and	8th	syllable).	They	found	that	participants	showed	better	

recall	 and	 faster	 learning	 for	 small	 chunks	 compared	 to	 larger	 chunks.	 In	 the	 case	 of	

automatic	chunking,	however,	no	experimental	study	to	date	has	investigated	the	average	
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chunk	size	and	the	associated	chunking	dynamics	and	segmentation	constraints	during	

sequence	learning.		

Nevertheless,	 evidence	 from	corpus	analyses	has	 shed	new	 light	on	 the	question	of	

chunk	size	in	the	case	of	natural	language.	For	instance,	Bannard	and	Matthews	(2008)	

showed	that	there	are	many	multiword	sequences	that	occur	almost	as	frequently	or	more	

frequently	 than	 single	 words	 in	 English,	 particularly	multiword	 sequences	 of	 up	 to	 4	

words,	suggesting	that	these	sequences	may	be	encoded	in	memory	just	like	single	words.	

Similarly,	 an	 analysis	 of	 the	 ORFÉO	 database	 (Benzitoun	 et	 al.,	 2016)	 -	 a	 French	

conversation	corpus	of	3	million	words	-	carried	out	for	this	review,	reveals	the	existence	

of	relatively	frequent	multiword	sequences	composed	of	up	to	9	words,	but	also	shows	

that	several	multiword	sequences	longer	than	four	words	are	much	more	frequent	than	

smaller	ones	(see	Figure	2).	It	is	worth	noting	that	the	frequency	of	multiword	sequences,	

like	that	of	words,	also	appears	to	follow	a	Zipfian	distribution	(Ryland	Williams	et	al.,	

2015).	Thus,	 there	are	very	 few	high-frequency	multiword	 sequences	 that	 account	 for	

most	of	the	utterances	in	conversation	(e.g.,	in	French:	“parce	que”,	“Il	y	a”,	“je	ne	sais	pas”;	

in	English:	 “such	as”,	 “a	 lot	of”,	 “I	would	 like	 to”),	 and	many	 low-frequency	multiword	

sequences	(e.g.,	in	French:	“comme	beaucoup”,	“pour	ce	qui”,	“je	ne	veux	pas”;	in	English:	

“make	out”,	“how	much	more”,	“	I	had	no	idea”).	This	type	of	analysis	suggests	that	for	

relatively	 long	multi-word	 sequences	 of	 very	 high	 frequency,	 the	 language	 processing	

system	could	develop	representations	of	these	sequences	in	the	same	way	as	word	units	

of	 equivalent	 frequency.	 However,	 it	 remains	 to	 be	 shown	 that	 this	 hypothesis	 is	

empirically	 valid	 because,	 as	we	will	 see	 in	 the	 next	 section,	 the	 data	we	have	 on	 the	
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maximum	size	of	a	chunk	in	the	field	of	visual-motor	sequence	learning	indicates	that,	on	

average,	there	seems	to	be	an	intrinsic	limit	to	the	maximum	size	of	a	chunk.	

	

	

Figure	2.	Frequency	of	n-grams	plotted	against	their	rank	order,	on	logarithmic	scales.	

Each	 line	 shows	 results	 for	 n-grams	 of	 a	 different	 length	 (one	 through	 nine	 words).	

Examples	of	multiword	sequences	of	different	length	and	single	words	are	also	plotted.	

The	data	were	derived	from	the	ORFÉO	database.	

Chunk	size	is	generally	limited	and	depends	on	several	factors	

In	contrast	to	studies	in	the	linguistic	domain,	the	question	of	chunk	size	has	already	

been	investigated	in	visuo-motor	sequence	learning	tasks.	Evidence	from	this	literature	

converges	on	a	chunk	size	of	about	3	to	4	items	when	testing	humans	(e.g.,	Abrahamse	et	
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al.,	2013;	Verwey,	2001),	but	also	non-human	primates	(Scarf	et	al.,	2018).	Some	studies,	

however,	sometimes	report	larger	chunk	sizes	(e.g.,	Kennerley	et	al.,	2004	observe	chunks	

with	a	mean	size	of	8	items).	While	it	has	been	shown	that	age	differences	can	influence	

chunk	size	(Allen	&	Coyne,	1988;	Allen	&	Crozier,	1992;	Verwey	et	al.,	2011),	we	argue	

here	that	chunk	size	tends	to	increase	with	practice,	but	there	also	seems	to	be	an	average	

limit	to	the	size	chunks	can	reach.		

A	first	crucial	factor	to	consider	when	measuring	chunk	size	is	the	amount	of	expertise	

of	 the	 individual.	 Studying	 how	 expertise	 influences	 chunk	 size	 can	 be	 achieved	 by	

studying	experts	in	their	field,	as	in	Gobet	and	Clarkson	(2004),	but	also	by	measuring	

performance	throughout	extended	practice	of	a	sequence.	Thus,	a	number	of	studies	show	

that	the	chunking	pattern	evolves	with	practice	and	that	chunks	can	be	grouped	together	

and	become	larger	and	fewer	with	a	large	number	of	repetitions	(Acuna	et	al.,	2014;	Bera	

et	al.,	2021;	Ramkumar	et	al.,	2016;	Tosatto,	Fagot,	et	al.,	2022;	Tosatto,	Fagot,	Nemeth,	et	

al.,	in	press;	Tosatto,	Fagot,	&	Rey,	2023b,	2023a;	Wymbs	et	al.,	2012).	Tosatto	et	al.	(2022,	

2023b)	recently	replicated	these	results	 in	a	comparative	approach	conducted	on	both	

humans	and	Guinea	baboons	using	the	SRT	paradigm	from	Minier	et	al.	(2016),	where	the	

same	9-item	sequence	was	repeatedly	presented	for	1,000	trials	to	their	participants.	The	

results	showed	that	the	chunks	became	larger	and	fewer	over	repetitions,	but	also	that	

the	average	size	of	the	chunks	was	between	2	and	3	for	humans,	and	3	and	4	for	baboons,	

even	after	a	very	large	number	of	repetitions.	The	difference	obtained	between	humans	

and	non-human	primates	seems	to	be	related	to	the	speed-accuracy	trade-off,	which	is	

not	the	same	depending	on	the	species,	with	humans	achieving	very	fast	execution	speeds	

compared	 to	monkeys	(probably	 thanks	 to	 their	 language	skills,	which	enable	 them	to	

understand	the	structure	of	the	experiment	and	adjust	their	performance	accordingly).	In	

fact,	unlike	monkeys,	humans	are	likely	to	quickly	realize	that	they	are	observing	the	same	



	 193	

repeated	pattern	throughout	the	task,	leading	to	a	change	in	the	way	the	information	is	

processed	and	the	task	is	done.	Once	humans	have	noticed	the	repeated	pattern,	they	will	

likely	spend	less	time	looking	for	the	target	on	the	screen	and	more	time	memorizing	the	

execution	 of	 the	 motor	 sequence.	 This	 explicit	 awareness	 does	 not	 seem	 to	 occur	 in	

baboons,	whose	average	execution	times	decrease	more	slowly	and	linearly	(see	Tosatto,	

Fagot,	&	Rey,	2023b,	Figure	2),	as	if	the	visual	target	search	stage	were	still	unavoidable.	

In	humans,	explicit	detection	of	the	repetition	seems	to	eliminate	the	visual	search	for	the	

target	 in	 favor	of	 an	 automated	execution	of	 the	motor	 sequence,	which	 is	 learned	by	

heart.	However,	a	potential	consequence	of	this	trade-off	is	that	humans	seem	to	create	

shorter	chunks	as	they	cannot	respond	any	faster	(i.e.,	floor	effect)	due	to	biomechanical	

constraints	inherent	in	the	task	itself.	Nevertheless,	these	data	suggest	that	for	these	two	

species,	the	average	size	of	the	chunks	reaches	limits	that	cannot	be	exceeded,	or	only	in	

exceptional	cases.		

Note	that	these	studies	also	observed	that	the	growth	of	chunks	is	governed	by	two	

reorganization	mechanisms,	 observed	 in	 both	 species.	 Indeed,	 they	 found	 that	 chunks	

became	 larger	 via	 concatenations	 (i.e.,	 two	 distinct	 chunks	 being	 grouped	 into	 one,	

Abrahamse	et	al.,	2013;	Wymbs	et	al.,	2012)	but	may	also	evolve	over	repetitions	through	

recombinations	(i.e.,	a	new	segmentation	pattern	emerging,	such	as	two	chunks	of	3	items	

becoming	a	chunk	of	4	 items	and	a	chunk	of	2	 items).	These	 identical	dynamics	being	

shared	by	the	two	species	reinforces	the	idea	that	these	reorganizations	rely	on	the	same	

elementary	associative	learning	mechanisms.		

Secondly,	chunks	do	not	only	grow	with	practice,	but	it	seems	that	their	size	limit	is	not	

dependent	on	sequence	size.	Tosatto,	Fagot,	Nemeth,	et	al.	(in	press)	recently	expanded	

on	the	study	cited	above	that	tested	baboons	on	a	9-item	sequence	(i.e.,	Tosatto,	Fagot,	et	

al.,	2022)	and	observe	the	evolution	of	chunks	size	during	the	extended	learning	of	4-item	
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or	5-item	sequences.	The	results	show	that,	even	though	chunks	can	hold	3	to	4	items	in	

the	case	of	long	sequences	of	9-items,	shorter	sequences	of	4	or	5	items	lead	to	similar	

size	 limits,	 even	 if	 the	 dynamics	 to	 reach	 this	 limit	were	 not	 the	 same.	 These	 results	

therefore	 confirm	 that	 there	 is,	 on	 average,	 a	 limit	 to	 the	 size	 that	 chunks	 can	 reach,	

revealing	a	fundamental	limit	to	chunk	formation	that	should	inform	us	about	chunking	

mechanisms	and	their	computational	modeling.		

Computational	models	of	chunking	

The	three	empirical	phenomena	described	 in	Sections	2-4,	 i.e.,	predictability	effects,	

the	 effect	 of	 repetition	 spacing,	 and	 the	 evolution	of	 chunk	 size	 and	 chunk	 size	 limits,	

provide	 empirical	 data	 to	 constrain	 our	 understanding	 and	 modeling	 of	 chunking	

mechanisms.	 We	 will	 now	 see	 what	 current	 models	 of	 statistical	 learning,	 and	 more	

specifically,	computational	models	of	chunking,	tell	us	about	these	three	phenomena.		

The	theoretical	proposals	put	forward	to	date	attempt	to	explain	how,	within	the	flow	

of	information	we	receive	and	process,	the	repetition	of	certain	information	is	encoded	by	

the	brain	and	influences	our	subsequent	performance	on	this	information.	Among	all	the	

proposals	 made,	 Swingley	 (2005)	 suggested	 distinguishing	 between	 bracketing	 and	

clustering	 approaches.	 Bracketing	 approaches	 assume	 that	 we	 learn	 the	 boundaries	

between	the	sequences	we	learn	by	repetition.	The	Simple	Recurrent	Network	model	(i.e.,	

SRN,	Elman,	1990)	provides	a	computational	 implementation	of	 this	approach,	using	a	

relatively	simple	neural	network	that	 learns	to	predict	outputs	 from	inputs.	When	this	

type	of	network	fails	to	clearly	predict	an	output,	we	can	then	assume	that	we	are	at	a	

boundary	and	that	we	need	to	segment	processing	at	this	point.	Clustering	approaches	

assume	that	we	group	the	 information	that	corresponds	to	a	repeated	sequence	 into	a	

unit,	also	known	as	a	chunk.	The	PARSER	model	(Perruchet	&	Vinter,	1998)	is	often	cited	

as	one	of	the	models	that	implements	this	type	of	approach	but	today	there	exists	several	
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variants	of	chunking	models	(e.g.,	Frank	et	al.,	2010;	French	et	al.,	2011;	Jessop	et	al.,	2023;	

McCauley	&	Christiansen,	2019a;	Monaghan	&	Christiansen,	2010).		

The	interest	of	such	computational	models	is	to	eventually	find	situations	where	these	

models	make	orthogonal	predictions	which,	in	principle,	should	make	it	possible	to	falsify	

either	 approach.	 For	 example,	 Giroux	 and	 Rey	 (2009)	 noted	 that	 learning	 an	 ABC	

sequence	 leads	 the	 PARSER	 model	 to	 extract	 the	 ABC	 chunk	 and	 later	 process	 the	

sequence	at	chunk	level,	thus	neglecting	the	processing	of	smaller	units	such	as	AB	or	BC.	

Conversely,	SRN	predicted	that	while	learning	ABC,	this	model	continues	to	predict	B	well	

when	A	 is	 presented	 as	 input	 and	 to	 predict	 C	well	when	B	 is	 input.	 Results	 from	 an	

experiment	with	artificial	languages	showed	instead	that	PARSER	was	right	and	that	the	

smaller	 units	 that	 are	 included	 in	 the	 ABC	 chunk	 are	 processed	 less	 well	 over	 time.	

However,	 Plaut	 and	Vande	Velde	 (2017)	 demonstrated	 that	 testing	 the	 SRN	model	 by	

taking	into	account	whether	the	AB	subunit	is	followed	by	a	silence	or	the	BC	subunit	is	

preceded	by	a	silence,	allowed	Giroux	and	Rey's	(2009)	data	 to	be	accounted	 for,	 thus	

negating	PARSER's	advantage.		

Converging	evidence	has	shown	that	chunk-based	models	provide	a	better	fit	to	human	

sequence	learning	data	than	alternative	models	in	the	statistical	learning	literature,	such	

as	 those	based	on	statistical	 computations	using	 transitional	probabilities	 (Emerson	&	

Conway,	2023;	Isbilen	et	al.,	2020;	Perruchet,	2019;	Perruchet	et	al.,	2014).	The	aim	of	this	

section	is	to	examine	the	extent	to	which	chunk-based	models	can	simulate	the	findings	

presented	in	this	review.		

Predictability	effect	

Concerning	the	predictability	effect	(i.e.,	the	faster	decrease	in	response	times	on	C	than	

on	B	during	repeated	exposure	to	the	ABC	triplet),	Minier	et	al.	(2016)	suggested	that	SRN	

better	accounts	for	this	result	due	to	the	existence	of	a	layer	of	contextual	units	within	this	



	 196	

neural	network.	These	units	contain	the	copy	of	the	activity	of	the	hidden	units	at	time	t-

1	 and	 thus	make	 it	 possible	 to	 take	 into	 account	more	distant	 contextual	 information.	

When	processing	an	ABC	triplet,	when	B	is	an	input	of	the	network	and	C	is	the	expected	

output,	context	units	will	take	into	account	the	activity	of	the	hidden	layer	at	time	t-1,	i.e.,	

when	A	was	an	input	and	B	was	the	expected	output.	Therefore,	the	output	C	is	predicted	

both	by	input	activity	produced	by	B	and	by	the	additional	contextual	information	coming	

from	 A	 which	 is	 coded	 by	 the	 layer	 of	 contextual	 units.	 SRN	 thus	 seems	 to	 capture	

predictability	effects	in	the	processing	of	repeated	ABC	triplets.			

In	this	situation,	it	is	hard	to	know	what	PARSER	predicts,	as	it	is	relatively	difficult	to	

interrogate	 this	 model	 in	 a	 task	 where	 learning	 is	 measured	 online	 by	 studying	 the	

evolution	of	response	times	at	each	position	of	the	triplet.	Assuming	that	PARSER	extracts	

chunks	of	different	sizes	over	time	and	that	these	chunks	help	predict	the	next	elements	

of	a	sequence,	we	can	assume	that	a	chunk	corresponding	to	the	target	triplet	ABC	will	be	

quickly	extracted.	However,	there's	nothing	in	PARSER	to	indicate	whether	differential	

processing	 should	 be	 assumed	 for	 items	 B	 and	 C	 of	 the	 ABC	 triplet.	 So	 it's	 not	 clear	

whether	PARSER	can	account	for	this	predictability	effect.		

On	 the	 other	 hand,	 a	 chunking	model	 such	 as	TRACX	 (French	 et	 al.,	 2011)	 is	much	

clearer	in	its	predictions,	since	it	assumes	a	left-to-right	learning	mechanism	where	AB	

will	systematically	be	learned	before	BC,	thus	predicting	faster	learning	on	B	than	C,	which	

unfortunately	 is	at	odds	with	the	experimental	data	and	thus	seems	to	falsify	a	central	

assumption	of	 this	model.	 Similarly,	 chunking	models	 from	 the	EPAM/CHREST	 family,	

such	as	MOSAIC	(Freudenthal	et	al.,	2007,	2009,	2023)	and	CLASSIC	(Cabiddu	et	al.,	2023),	

process	sequences	from	left	to	right	but	predict	faster	learning	on	C	because	they	learn	

from	the	right	edge	of	the	sequence.	However,	 these	models	have	mainly	been	used	to	

account	for	syntax	acquisition	and	early	word	segmentation.	It	is	unclear	how	they	would	
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behave	with	other	types	of	stimuli,	hence	further	research	is	needed	to	test	these	models	

in	other	learning	situations.	

More	 generally,	 like	 PARSER,	 all	 the	models	 that	 assume	 the	 creation	 of	 chunks	 as	

traces	 in	 long-term	memories	 do	 not	 seem	 to	 explain	 the	 predictability	 effect	 easily,	

because	they	do	not	say	anything	very	precise	about	the	processing	of	the	elements	that	

make	up	the	chunk.	Connectionist	models	of	chunking	such	as	TRACX	could	give	more	

precise	 information,	 but	 unfortunately,	 they	 predict	 the	 opposite	 effect	 to	 what	 is	

observed	in	the	data.		

Recent	theoretical	proposals	based	on	the	principles	of	Hebbian	learning	could	provide	

more	precise	explanations	of	chunking	mechanisms,	which	can	be	thought	of	as	resulting	

from	elementary	associative	mechanisms	(Brunel	&	Lavigne,	2009;	Endress	&	Johnson,	

2021;	 Köksal	 Ersöz	 et	 al.,	 2020;	 Lavigne	 et	 al.,	 2014;	 Tovar	 et	 al.,	 2018;	 Tovar	 &	

Westermann,	2017,	2023).	In	these	models,	each	element	of	a	sequence	is	encoded	by	a	

population	of	neurons,	and	connections	between	populations	of	neurons	evolve	according	

to	 the	 principles	 of	 Hebbian	 learning.	 Basically,	 if	 two	 populations	 are	 frequently	 co-

active,	 their	 connections	strengthen,	otherwise	 they	weaken.	 If	we	assume	 that	 such	a	

Hebbian	network	allows	us	to	associate	the	population	coding	for	A	with	that	coding	for	

B,	but	also	that	coding	for	B	with	that	coding	for	C,	we	cannot	account	for	the	predictability	

effect	because	connections	between	populations	of	neurons	will	increase	with	the	same	

strength.	On	the	other	hand,	if	we	assume	that	the	population	coding	for	A	still	remains	

sufficiently	 active	 when	 the	 population	 coding	 for	 C	 is	 active,	 then	 we	 can	 imagine	

Hebbian	learning	between	the	A	and	C	populations.	In	this	way,	such	a	network	would	
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predict	 an	 advantage	 of	 C	 over	 B	 due	 to	 a	 greater	 amount	 of	 contextual	 information	

predicting	C	than	B.		

Furthermore,	Hebbian	networks	could	also	be	used	to	model	different	experimental	

factors	that	may	influence	the	predictability	effect,	such	as	the	elapsed	time	between	the	

presentation	 of	 the	 repeated	 sequence.	 For	 instance,	 the	 elapsed	 time	 between	 the	

presentation	of	A	and	C	was	shorter	in	Rey	et	al.’s	(2020)	task	than	in	Pinto	Arata,	Ordonez	

Magro	et	al.’s	(in	press)	task.	In	fact,	the	repeated	triplets	in	Pinto	Arata,	Ordonez	Magro	

et	 al.	 (in	 press)	 consisted	 of	 words	 rather	 than	 letters,	 which	 may	 have	 resulted	 in	

participants	spending	more	time	processing	each	element	of	the	triplet,	leading	to	a	lower	

co-activation	 between	 A	 and	 C.	 Hebbian	 networks,	 such	 as	 Tovar	 and	Westermann’s	

(2023)	model,	can	easily	model	these	different	results	by	using	different	activation	decay	

parameters	to	capture	the	elapsed	time	between	stimuli.	Clearly,	unlike	chunking	models	

such	 as	 PARSER,	 this	 type	 of	 formalism	 could	 provide	 a	 better	 description	 of	 the	 fine	

dynamics	of	these	associative	chunking	mechanisms.		

Spacing	effect	

The	 spacing	 effect	 is	 an	 excellent	 way	 of	 studying	 the	 development	 of	 a	 chunk's	

memory	 trace	 in	 long-term	memory.	 The	 experiments	 described	 in	 Section	 3	 help	 to	

constrain	the	way	in	which	chunking	models	account	for	the	progressive	development	of	

a	chunk	as	the	information	that	characterizes	it	is	repeated.	In	such	studies,	where,	for	

example,	an	ABC	sequence	is	repeated	a	certain	number	of	times,	it	is	possible	to	study	

the	dynamics	of	the	simple	repetition	effect	by	tracking	the	evolution	of	response	times	

(RTs)	 on	 position	 A	 of	 the	 triplet	 whose	 occurrence	 is	 not	 predictable.	 Similarly,	 by	
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studying	 RTs	 on	 predictable	 positions	 of	 the	 triplet	 (i.e.,	 B	 and	 C),	 it	 is	 possible	 to	

characterize	precisely	how	the	repetition	effect	interacts	with	the	predictability	effect.		

What's	clear	from	these	empirical	studies	is	that	the	smaller	the	spacing,	the	stronger	

the	 chunk's	 memory	 trace.	 This	 suggests	 that	 the	 reinforcement	 of	 a	 memory	 trace	

depends	on	the	frequency	with	which	it	is	repeated.	If	the	spacing	is	too	great,	the	trace	

benefits	less	from	repetition,	probably	because	between	two	repetitions,	the	chunk	trace	

has	lost	its	strength	and	undergone	a	form	of	erosion	or	forgetting.	Chunking	models	like	

PARSER	 assume	 forgetting	 processes	 by	 decay	 or	 interference.	 For	 example,	 decay	 is	

implemented	 by	 a	 linear	 decrease	 in	 the	 strength	 of	 a	 chunk	 unit,	 which	 is	 probably	

implausible	as	chunks	are	quickly	forgotten	in	this	way.	Similarly,	models	such	as	PUDDLE	

(Monaghan	&	Christiansen,	2010)	and	CIPAL	(Jessop	et	al.,	2023)	assume	no	forgetting	

and	state	that	when	a	chunk	is	created,	its	trace	in	memory	can	only	increase	and	never	

decrease	or	disappear.	Here	 too,	 this	 type	of	assumption	seems	 incompatible	with	 the	

effects	of	repetition	spacing,	which	seem	to	indicate	that	the	increase	in	the	strength	of	a	

chunk's	trace	is	linked	to	the	spacing	between	two	repetitions	of	the	chunk.		Experiments	

on	 repetition	 spacing	 are	 therefore	 crucial	 to	 help	 us	 parameterize	 and	 characterize	

forgetting	in	computational	models.		

Chunk	size	

The	data	we	have	to	date	suggests	that	there	is	an	intrinsic	limit	to	the	size	of	a	chunk.	

Numerous	studies	agree	that	automatic	chunking	can	group	an	average	of	3	to	4	elements	

within	a	chunk	(e.g.,	Tosatto,	Fagot,	Nemeth,	et	al.,	in	press).	However,	no	chunking	model	

sets	such	a	limit.	For	example,	PARSER	in	no	way	limits	the	possibility	of	concatenating	

multiple	long	elements	already	stored	in	long-term	memory,	and	this	model	even	allows	

to	create	chunks	of	chunks	of	chunks	despite	their	size.	Statistical	learning	models	such	

as	 SRN	 could	 perhaps	 account	 for	 such	 a	 limit,	 as	 the	 information	 copied	 into	 the	
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contextual	layers	of	the	network	does	not	a	priori	allow	infinite	consideration	of	previous	

contextual	information.		

On	the	other	hand,	recent	statistical	learning	models	based	on	the	principles	of	Hebbian	

learning	could	perhaps	provide	the	beginnings	of	an	answer	to	this	fundamental	problem	

(e.g.,	 Tovar	 &	Westermann,	 2023).	 Indeed,	 assuming	 that	 each	 element	 of	 a	 five-item	

sequence	ABCDE	is	encoded	by	a	specific	population	of	neurons,	we	can	foresee	that	the	

population	encoding	A	will	probably	no	longer	be	active	when	the	population	encoding	E	

becomes	active	in	turn.	In	this	way,	populations	A	and	E	might	never	be	associated,	as	the	

principles	of	Hebbian	learning,	which	presuppose	coactivation	of	these	two	populations,	

would	 not	 apply	 in	 this	 scenario.	 This	would	 provide	 an	 explanation	 for	 the	 intrinsic	

limitation	that	chunks	seem	to	have.		

Discussion	

Statistical	 learning	 has	 been	 proposed	 to	 rely	 on	 general	 memory	 processes	 and	

associative	 learning	 mechanisms,	 particularly	 chunking.	 In	 the	 current	 paper,	 we	

examined	 three	 empirical	 phenomena	 present	 during	 sequence	 learning,	 namely	

predictability	effect,	repetition	spacing	and	chunk	size	(see	Figure	3	for	an	overview	of	

the	studies	reviewed).	The	goal	of	this	review	was	to	provide	a	thorough	characterization	

of	chunking	as	a	domain-general	learning	mechanism	and	to	shed	light	on	its	associative	

properties.	 To	 this	 end,	we	 compared	 humans	 to	 non-human	 primates’	 performances	

across	 different	 experimental	 tasks.	 Furthermore,	 we	 discussed	 the	 extent	 to	 which	

chunk-based	 models	 of	 statistical	 learning	 account	 for	 these	 three	 phenomena.	
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Figure	3.	Summary	of	experiments	reviewed.	The	table	shows	each	effect	reviewed	along	

with	tasks	specificities,	the	experimental	procedure	used,	and	the	population	tested.	Each	

experimental	procedure	is	presented	with	the	corresponding	paper.	

In	 the	 past	 two	 decades,	 research	 has	 consistently	 shown	 that	 chunking	 can	

successfully	account	for	sequence	learning	across	a	wide	range	of	domains	and	stimuli.	
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Nevertheless,	our	results	somewhat	challenge	the	explanatory	power	of	this	mechanism,	

as	certain	learning	dynamics	and	chunk	reorganization	mechanisms	cannot	be	simulated	

by	existing	chunk-based	models.	Similarly,	chunking	has	been	found	to	exhibit	limitations	

in	more	complex	learning	situations,	such	as	the	learning	of	non-adjacent	dependencies	

(e.g.,	Bonatti	et	al.,	2006;	Endress	&	Bonatti,	2007).	In	fact,	most	research	on	chunking	has	

primarily	focused	on	the	processing	of	adjacent	regularities,	where	co-occurring	elements	

appear	systematically	one	after	the	other	in	the	environment	(e.g.,	A	and	B	in	the	sequence	

AB).	 However,	 real-world	 regularities	 can	 also	 exhibit	 non-adjacent	 patterns,	 where	

elements	do	not	directly	follow	each	other	in	a	sequence	(e.g.,	the	sequence	AXB,	where	A	

and	B	always	co-occur,	but	X	varies).	Crucially,	non-adjacent	dependencies	are	pervasive	

in	 the	 environment	 and	 particularly	 prominent	 in	 natural	 language.	 For	 instance,	 in	

English,	the	auxiliary	and	the	inflectional	morpheme	co-occur	at	a	distance,	whereas	the	

verbal	root	can	vary	(e.g.,	"is	_ing"	=>	is	walking,	is	looking).	The	detection	and	extraction	

of	 non-adjacent	 dependencies	 is	 thought	 to	 be	 essential	 for	 making	 structural	

generalizations	across	regularities	(Frost	et	al.,	2019;	Grama	&	Wijnen,	2018).	

Despite	numerous	studies	showing	that	adults	(e.g.,	Frost	&	Monaghan,	2016;	Isbilen	

et	al.,	2022;	Perruchet	et	al.,	2004;	Romberg	&	Saffran,	2013;	Vilkaitė,	2016),	infants	(e.g.,	

Frost	et	al.,	2020;	Marchetto	&	Bonatti,	2015;	Van	Der	Kant	et	al.,	2020),	and	non-human	

primates	can	successfully	acquire	non-adjacent	dependencies	(e.g.,	Malassis	et	al.,	2018;	

Sonnweber	et	al.,	2015;	Watson	et	al.,	2020),	learning	this	type	of	regularities	has	proven	

to	be	very	challenging	and	dependent	on	a	number	of	facilitating	factors	(Gebhart	et	al.,	

2009;	 Newport	 &	 Aslin,	 2004;	 Tosatto,	 Bonafos,	 et	 al.,	 2022;	Weyers	 et	 al.,	 2022;	 see	

Wilson	et	al.,	2020	for	a	review).	Some	authors	have	highlighted	the	inability	of	chunk-

based	models	to	learn	non-adjacent	dependencies,	as	chunking	relies	on	the	recognition	

of	previously	encountered	sequences.	Indeed,	the	presence	of	variable	elements	between	
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co-occurring	 elements	 would	 hinder	 chunk	 formation	 (Bonatti	 et	 al.,	 2006;	 Kuhn	 &	

Dienes,	 2005).	 Perhaps,	 the	 only	 chunk-based	 model	 capable	 of	 learning	 this	 type	 of	

regularities	 is	 the	 chunk-based	 learner	 (CLB)	 model	 developed	 by	 McCauley	 and	

Christiansen	(2019b),	which	has	been	shown	to	be	able	to	track	and	generalize	over	non-

adjacent	dependencies.	However,	despite	its	name,	it	 is	a	hybrid	model	in	which	initial	

chunk	 formation	 relies	 on	 both	 chunking	 and	 the	 statistical	 computation	 of	 pairwise	

associations	(i.e.,	backward	transitional	probabilities).	Consequently,	the	extent	to	which	

non-adjacent	dependencies	can	be	acquired	solely	through	chunking	remains	a	matter	of	

debate	(Endress	&	Bonatti,	2016).	

However,	as	shown	by	Pacton	and	Perruchet	(2008,	see	also	Pacton	et	al.,	2015),	one	

way	of	reintroducing	the	idea	of	chunking	in	the	case	of	non-adjacent	dependencies	comes	

from	 the	 idea	 that	 even	 far	 away,	 certain	 information	 can	 be	 processed	 adjacently	 by	

paying	attention	to	it	almost	jointly.	This	brings	us	back	to	the	Hebbian	idea	of	assuming	

that	two	pieces	of	information,	encoded	by	two	populations	of	neurons,	will	be	associated	

if	they	are	coactive	at	the	same	time.	So,	if	we	draw	a	parallel	between	the	idea	put	forward	

by	Pacton	and	Perruchet	(2008)	of	simultaneous	attentional	processing	of	non-adjacent	

information,	which	enables	this	information	to	be	chunked,	and	the	Hebbian	idea	of	the	

coactivation	of	this	information	leading	to	a	strengthening	of	their	connections,	we	find	

an	explanation	in	terms	of	the	chunking	of	non-adjacent	dependencies.		

The	empirical	data	on	visuomotor	learning	that	we	have	reviewed	so	far	suggest	that	

the	size	of	chunks	seems	to	be	limited	to	3-4	items.	However,	generalizing	this	limit	to	

language	 is	 not	 as	 straightforward	 as	 it	 might	 seem.	 In	 fact,	 defining	 the	 items	 that	

constitute	a	chunk	can	prove	difficult	and	raises	a	number	of	 issues.	For	starters,	 if	by	

“item”	we	denote	a	smaller	chunk	or	sub-chunk	in	a	sequence	(e.g.,	A	in	an	ABC	chunk),	

then	 what	 should	 be	 considered	 an	 item	 in	 a	 linguistic	 sequence	 becomes	 fuzzy.	 To	
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illustrate	 this	 issue,	 let	 us	 take	 the	multiword	 phrase	 “We	 haven't	 got	 enough”	 as	 an	

example.	When	this	phrase	is	analyzed,	it	can	be	broken	down	into	four	words,	into	six	

syllables,	or	even	into	the	14	phonemes	that	make	up	the	phrase,	making	it	difficult	to	

know	 what	 is	 really	 represented	 in	 memory.	 Second,	 if	 chunking	 is	 viewed	 as	 an	

incremental	process	 in	which	 items	are	 learned	and	progressively	chunked	 into	 larger	

sequences,	such	as	in	PARSER,	the	question	of	chunk	size	becomes	increasingly	difficult	

as	chunks	keep	evolving	over	time.	This	is	especially	the	case	since	many	chunking	models	

assume	 that	 chunks	 form	 a	 hierarchy	 of	 different-sized	 chunks	 that	 interact	 during	

learning	 (e.g.,	 CLASSIC:	 Cabiddu	 et	 al.,	 2023;	 PARSER:	 Perruchet	 &	 Vinter,	 1998;	

MDLChunker:	Robinet	et	al.,	2011).	

Therefore,	a	goal	of	future	research	will	be	to	investigate	which	items	are	used	to	build	

chunk	hierarchies,	how	chunk	size	is	determined	by	our	cognitive	system,	and	whether	

there	is	a	limit	to	chunk	size.	Norris	and	Kalm	(2021)	have	suggested	that	one	possible	

way	to	determine	memory	capacity,	and	hence	chunk	size,	is	to	measure	information	in	

“bits”	and	compressibility.	In	this	account,	memory	capacity	results	from	the	interaction	

of	the	nature	of	the	information	(e.g.,	phonemes,	words)	encoded	in	bits	and	the	efficiency	

of	 data	 compression.	 Thus,	 chunk	 size	 depends	 on	 how	 effectively	 the	 information	 in	

memory	can	be	compressed.	 It	 is	worth	noting	that	there	seems	to	exist	a	bias	toward	

creating	short	rather	than	long	chunks,	even	though	it	has	been	shown	that	learners	can	

create	fairly	long	chunks	(e.g.,	Kennerley	et	al.,	2004).	For	instance,	Frank	et	al.	(2010)	

presented	participants	with	an	artificial	language	that	could	be	segmented	into	disyllabic,	

trisyllabic,	or	hexasyllabic	chunks.	They	found	that	participants	preferred	disyllabic	and	

trisyllabic	 segmentations	over	hexasyllabic	ones.	This	 is	 likely	due	 to	 the	participants'	



	 205	

prior	linguistic	experience,	which	may	shape	segmentation	patterns,	but	also	to	the	fact	

that	short	chunks	may	help	maximize	learnability.		

These	results	on	language	segmentation,	together	with	the	fact	that	our	corpus	analysis	

seems	 to	reveal	 the	existence	of	 relatively	 frequent	 long	multiword	sequences,	 lead	 to	

questions	 about	 how	 the	 nature	 of	 the	 linguistic	 information	 being	 processed	 affects	

chunking,	for	instance:	What	are	the	features	that	can	lead	to	the	formation	of	long	rather	

than	short	multiword	sequences?	Are	these	features	the	same	across	languages?	Or	are	

all	multiword	sequences	composed	of	relatively	short	words?	If	not,	what	are	the	factors	

that	modulate	 their	 composition?	We	believe	 that	addressing	 these	 issues	 is	 crucial	 to	

understanding	how	our	cognitive	system	processes	information	in	real	time,	but	cannot	

be	done	without	developing	models	 that	 take	 into	account	both	 the	psychological	 and	

biological	bases	of	learning.	

From	 a	 theoretical	 perspective,	 the	 concept	 of	 chunking	 principally	 refers	 to	 the	

psychological	 process	 of	 grouping	 information	 in	 order	 to	 bypass	 short-term	memory	

limitations	and	ultimately	 form	high-level	 representations	of	 that	 information	 in	 long-

term	memory.	Even	though	chunking	is	considered	to	rely	on	associative	principles,	no	

biological	 account	 to	 date	 has	 yet	 been	 proposed	 to	 explain	 exactly	 how	 this	 process	

occurs	at	 the	neural	 level.	We	have	seen	that	neurocomputational	models	grounded	 in	

Hebbian	 learning	 principles	may	 bridge	 this	 gap	 and	 offer	 a	 promising	 alternative	 to	

chunking.	Such	models	have	the	potential	to	provide	a	more	plausible	characterization	of	

statistical	 learning	 mechanisms	 and	 shed	 light	 on	 the	 dynamic	 formation	 of	 memory	

traces	in	the	brain	from	a	biological	perspective	(e.g.,	Tovar	&	Westermann,	2023).	Note	

that	the	proposals	we	have	made	to	account	for	the	predictability	effect	or	the	question	of	

the	intrinsic	limit	of	chunk	size	within	this	theoretical	framework	are	open	to	debate,	and	

that	other	computational	solutions	are	undoubtedly	possible.	For	example,	to	account	for	
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the	predictability	effect,	we	can	also	assume	that	the	adjacent	presentation	of	AB	leads	to	

the	emergence	of	a	new	population	of	neurons	that	specifically	encode	AB,	which	establish	

a	synaptic	connection	with	C,	producing	an	AB-C	association	(Bourjaily	&	Miller,	2011;	

Lavigne	 et	 al.,	 2014;	Miyashita,	 2004).	 Similarly,	 reorganization	mechanisms	 could	 be	

explained	by	the	interaction	of	neighboring	populations	of	neurons	that	encode	different	

chunks.	This	interaction	induces	a	modification	of	their	connection	weights,	leading	to	the	

development	of	new	synapses	between	them,	resulting	in	chunk	rearrangements.		

These	neurocomputational	models	are	also	well	suited	for	modeling	repetition	spacing	

effects	 due	 to	 the	 possibility	 to	 modulate	 learning	 rate	 during	 sequence	 learning	 by	

simulating	 long-term	potentiation	 (LTP)	and	 long-term	depression	 (LTD),	 two	 cellular	

mechanisms	that	strengthen	or	weaken	the	synaptic	connection	between	populations	of	

neurons,	 through	co-activation	 thresholds	and	synaptic	weight	decay	parameters	 (e.g.,	

Tovar	et	al.,	2018;	Tovar	&	Westermann,	2023).	

Conclusion	

In	 this	 comprehensive	 review,	 we	 have	 presented	 compelling	 evidence	 that	

predictability	 effect,	 repetition	 spacing,	 and	 chunk	 size	 exert	 similar	 influences	 on	

chunking	in	humans	and	non-human	primates	during	sequence	learning.	These	findings	

provide	 further	 support	 for	 the	 existence	 of	 shared	 associative	 learning	 mechanisms	

between	the	two	species	and	shed	new	light	on	the	associative	properties	of	chunking.	

However,	we	have	also	shown	that	chunk-based	models	are	unable	to	fully	explain	these	

phenomena.	Therefore,	we	argue	for	a	shift	towards	neurocomputational	models	based	

on	Hebbian	learning	principles,	which	may	provide	a	more	comprehensive	understanding	

of	the	underlying	associative	processes	involved	in	statistical	learning.	

We	believe	that	the	main	challenge	for	future	research	is	to	elucidate	how	these	models	

can	effectively	account	not	only	for	the	phenomena	discussed	in	this	paper,	but	also	for	
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other	 key	 findings	 in	 the	 statistical	 learning	 literature.	 For	 instance,	 the	 relationship	

between	forward	transitional	probabilities	and	frequency	(e.g.,	Onnis	&	Huettig,	2021),	

the	 extraction	of	 backward	 transitional	probabilities	 (e.g.,	 Chartier	&	Dautriche,	 2023;	

McCauley	&	Christiansen,	2019a;	Pelucchi	et	al.,	2009;	Perruchet	&	Desaulty,	2008),	the	

extraction	of	high-order	transitional	probabilities	(e.g.,	Lazartigues	et	al.,	2021,	2022;	Rey	

et	al.,	2022),	and	the	development	of	stimulus	equivalence	in	humans	and	animals	(e.g.,	

Chartier	&	Fagot,	2022a,	2022b).	Together,	these	empirical	data	and	new	computational	

approaches	should	enable	us	to	better	understand	the	essential	associative	mechanisms	

of	chunking	 that	structure	our	mental	 life,	and	more	specifically	 the	 implicit	 statistical	

learning	of	sequences.	
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Chapter 6: General discussion 

“Words	used	together	fuse	together”	

Bybee,	Joan	(2003)	

	

As	mentioned	in	the	introduction	to	this	thesis,	language	acquisition	has	been	a	subject	

of	great	interest	 in	the	field	of	psychology	over	the	years.	Contrary	to	the	classical	and	

long-standing	idea	that	the	building	blocks	of	language	are	words	and	rules,	usage-based	

approaches	 suggest	 that	 constructions	 are	 the	 backbone	 of	 language,	 in	 particular	

multiword	 sequences.	 Since	 the	 2000s,	 corpus	 analyses	 have	 revealed	 that	multiword	

sequences	 are	 ubiquitous	 in	 language	 and	 constitute	 a	 large	 part	 of	 natural	 speech.	

Furthermore,	a	 large	body	of	empirical	 research	has	shown	 that	multiword	sequences	

play	a	key	role	in	language	processing.	While	most	of	these	studies	have	focused	on	their	

processing,	only	a	limited	number	have	investigated	how	these	sequences	are	acquired	in	

real	time.	Therefore,	the	overall	objective	of	this	thesis	was	to	investigate	the	extraction	

and	 learning	 dynamics	 of	multiword	 sequences,	 as	well	 as	 to	 examine	 the	 underlying	

learning	mechanisms.		

To	bridge	this	gap	we	conducted	three	independent	series	of	experimental	studies.	We	

first	 investigated	the	 learning	dynamics	of	different	 types	of	multiword	sequences	and	

how	repetition	affects	each	word	within	the	repeated	sequence	(Chapter	2).	Secondly,	we	

investigated	the	influence	of	repetition	spacing	on	their	acquisition	(Chapter	3).	In	these	

two	chapters,	we	also	examined	the	associative	mechanism	underlying	sequence	learning,	

namely	chunking.	We	then	aimed	to	disentangle	memory-specific	from	language-related	

components	of	chunking	by	investigating	the	influence	of	repetition-spacing	on	sequence	
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learning	 in	 baboons	 (Chapter	 4).	 Finally,	we	 discussed	 how	 chunking	 (Chapter	 5)	 can	

account	for	sequence	learning	and	for	the	experimental	effects	that	I	have	uncovered	in	

this	thesis.	

6. Summary of findings 
	
Study	 1	 (Chapter	 2)	 employed	 the	 newly	 developed	 Hebb	 lexical	 decision	 task,	 in	

which	 a	 word	 (Experiments	 1,	 3	 and	 4)	 or	 pseudoword	 (Experiment	 2)	 triplet	 was	

repeated	 in	 a	 noisy	 stream	 of	 random	 words	 and	 pseudowords.	 We	 found	 that	

participants	were	 able	 to	 learn	 the	novel	multiword	 sequence	 after	 about	 four	 to	 five	

repetitions.	We	also	found	that	response	times	(RTs)	for	the	three	words	in	the	sequence	

followed	a	distinct	trajectory.	Indeed,	RTs	for	the	unpredictable	first	position	in	the	triplet	

decreased	over	repetitions,	which	we	termed	the	repetition	effect,	but	more	slowly	than	

for	words	appearing	in	the	predictable	second	and	third	positions	in	the	repeated	triplet	

(i.e.,	 the	predictability	 effect).	 Interestingly,	 learning,	 both	 implicit	 and	 explicit,	 also	

varied	 as	 a	 function	 of	 the	 type	 of	 sequence	 (i.e.,	 unrelated	 words,	 pseudowords,	

semantically	related	words,	or	idioms),	with	semantically	related	words	and	idioms	being	

processed	faster	and	recalled	better.	

In	Study	2	(Chapter	3),	we	sought	to	investigate	the	influence	of	repetition	spacing	on	

the	acquisition	of	multiword	sequences	and	on	the	development	of	their	memory	trace.	

To	this	end,	we	used	the	Hebb	 lexical	decision	task,	but,	unlike	Study	1,	 in	which	each	

repetition	 of	 the	 triplet	 was	 separated	 by	 three	 to	 six	 fillers,	 here,	 the	 triplet	 was	

systematically	repeated	every	4th,	7th,	10th,	20th,	30th	or	60th	trial,	depending	on	the	

spacing	condition.	Our	 results	 showed	 that	 learning	was	still	possible	when	 the	 target	

triplets	were	separated	by	as	many	as	60	fillers,	and	that	the	forgetting	curve	appeared	to	

follow	a	power	 law.	 In	addition,	we	 replicated	 the	 repetition	and	predictability	effects	
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observed	 in	 Study	 1,	 both	 of	 which	 were	 affected	 by	 repetition	 spacing.	 In	 fact,	 the	

repetition	effect	increased	while	the	predictability	effect	decreased	as	spacing	increased.		

In	Study	3	(Chapter	4),	we	tested	a	group	of	Guinea	baboons	in	a	visuo-motor	pointing	

task	which	combined	the	Serial	Reaction	Time	task	and	the	Hebb	repetition	paradigm.	

The	aim	of	this	study	was	to	test	the	development	of	a	sequential	memory	trace	in	the	

absence	of	the	use	of	verbal	recoding	strategies.	As	in	the	human	task,	we	systematically	

manipulated	 the	 interval	between	 two	 repetitions	of	 a	 target	 sequence	by	varying	 the	

number	of	random	sequences	in	between.	Thus,	a	sequence	consisting	of	three	points	was	

systematically	repeated	every	1,	3,	6	or	every	trial,	depending	on	the	spacing	condition.		

We	 found	 that	 baboons	 can	 learn	 repeated	 visuomotor	 sequences,	 even	 when	 the	

repetitions	 are	 separated	 by	 six	 random	 sequences.	 Similar	 to	 human	 results,	 these	

findings	 showed	 that	 learning	 decreased	 with	 increasing	 spacing	 and	 that	 forgetting	

followed	a	non-linear	trajectory,	which	was	best	fitted	by	a	logarithmic	function.	Taken	

together,	Studies	2	and	3	suggest	that	memory	traces	of	sequential	information	are	long-

lived.	

Finally,	in	Chapter	5,	we	summarised	the	results	of	the	present	thesis	and	of	recent	

empirical	 work	 on	 the	 main	 phenomena	 that	 have	 been	 consistently	 reported	 in	 the	

literature	 on	 chunking	 mechanisms	 in	 both	 humans	 and	 non-human	 primates:	 the	

predictability	 effect,	 the	 influence	 of	 repetition	 spacing,	 and	 chunk	 size	 limits.	

Importantly,	 we	 showed	 that	 current	 chunk-based	 models	 cannot	 account	 for	 these	

effects	 and	 argued	 that	 recent	 neurocomputational	 models	 based	 on	 associative	 and	

Hebbian	learning	may	be	more	appropriate	for	describing	and	understanding	the	nature	

of	chunking	mechanisms.	

	



	 231	

6.1. The effect of repetition in language acquisition 
	
Over	the	last	few	decades,	psycholinguistic	research	has	demonstrated	that	learners	

are	highly	sensitive	to	event	frequency	at	different	levels	of	language	such	as	phonology,	

language	comprehension	and	production,	reading,	and	syntax.	In	fact,	people	learn	and	

process	 high-frequency	 sequences	 and	 regular	 linguistic	 patterns	 more	 easily.	

Accordingly,	 usage-based	 approaches	 emphasise	 the	 importance	 of	 language	 use	 and	

repetition	 in	 language	 acquisition.	 As	 Bybee	 (2010)	 notes,	 repetition	 is	 what	 triggers	

chunking,	which	 allows	 learners	who	 encounter	 a	 new	word	or	 sequence	of	words	 to	

develop	a	memory	trace	and,	after	a	sufficient	number	of	repetitions,	to	consolidate	it	in	

memory.	The	more	 times	we	process	an	 item,	 the	stronger	our	memory	 for	 it	 and	 the	

easier	 it	 is	 to	 access.	 Frequency	 is	 therefore	 thought	 to	 play	 a	 key	 role	 in	 language	

acquisition	(Ellis,	2002).		

As	 research	with	 infants	 shows,	word	 learning	occurs	very	 rapidly	 after	only	 a	 few	

repetitions.	For	instance,	13-	to	16-month-old	infants	are	able	to	perform	word	mapping	

after	only	 four	repetitions	(Kay-Raining	Bird	&	Chapman,	1998),	and	9-	 to	11-year-old	

children	are	also	able	to	learn	new	words	after	only	four	repetitions	(Tamura	et	al.,	2017).	

Similarly,	 it	 has	been	 suggested	 that	 the	acquisition	of	multiword	 sequences	 follows	a	

similar	trajectory,	with	four	to	five	repetitions	of	a	multiword	sequence	being	sufficient	

to	observe	a	change	in	participants’	reading	behaviour		(Conklin	&	Carrol,	2020;	Pellicer-

Sánchez	et	al.,	2022).	Consistent	with	these	findings,	our	results	from	Study	1	also	suggest	

that	 approximately	 four	 repetitions	 are	 sufficient	 to	 acquire	 a	 novel	 three-word	

multiword	 sequence	 (hereafter	 triplet).	 Indeed,	 our	 broken-stick	 analyses	 revealed	 a	

rapid	decrease	in	RTs	for	the	second	and	third	predictable	words	in	the	triplet	up	to	the	

fourth	 repetition.	 Additionally,	 the	 emergence	 of	 a	 difference	 between	 the	 first	

unpredictable	and	predictable	words	also	occurred	after	approximately	four	repetitions.	
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The	learning	trajectories	of	the	multiword	sequences	in	Study	2	seem	to	follow	a	similar	

dynamic.	

Interestingly,	the	learning	dynamics	for	the	triplets	of	pseudowords	were	very	similar	

to	those	of	words,	although	when	we	looked	in	detail	at	the	evolution	of	RTs	for	each	item	

within	 the	 triplet,	we	observed	 that	 repetition	differentially	 affected	 the	processing	of	

items	 already	 encoded	 in	 memory	 (i.e.,	 words)	 compared	 to	 novel	 items	 (i.e.,	

pseudowords),	with	pseudowords	benefiting	much	more	from	repetition.	This	is	probably	

related	to	the	fact	that	previously	encoded	words	are	already	familiar	to	participants	and	

therefore	benefit	 less	 from	recent	exposure,	unlike	pseudowords	that	have	never	been	

seen	before.	Such	a	phenomenon	is	particularly	evident	when	comparing	high-frequency	

to	low-frequency	words	in	lexical	decision	tasks,	where	low-frequency	words	have	been	

shown	 to	 benefit	 more	 from	 repetition	 than	 high-frequency	 words,	 for	 which	

performance	 is	 closer	 to	 a	 ceiling	 (Duchek	 &	 Neely,	 1989;	 Ober	 &	 Shenaut,	 2014;	

Scarborough	et	al.,	1977).		

While	our	findings	show	that	repetition	is	essential	 for	the	development	of	memory	

traces,	they	also	suggest	that	a	high	frequency	of	exposure	does	not	necessarily	imply	a	

gain	in	processing	speed.	Indeed,	our	results	from	Study	1	show	that	the	processing	of	

the	 target	 multiword	 sequence	 benefits	 greatly	 from	 repetition	 during	 the	 first	 few	

exposures,	but	 the	amount	of	processing	gain	decreases	as	a	 function	of	 frequency,	 as	

illustrated	by	the	different	regimes	of	the	broken-stick	analyses,	almost	reaching	a	ceiling	

around	 the	 twentieth	 repetition.	 These	 results	 are	 consistent	 with	 the	 power	 law	 of	

learning	(Anderson,	1982;	Ellis	&	Schmidt,	1997),	which	states	that	the	effects	of	learning	

are	strongest	in	the	early	stages	of	learning,	but	decrease	with	practice	until	an	asymptote	

is	 reached	 (Ellis,	 2002;	 Logan,	 1990).	 Note	 that	 chunking	 has	 also	 been	 shown	 to	 be	

subject	to	the	power	law	of	practice	(Bybee,	2010;	Newell	&	Rosenbloom,	1981).	
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6.2. Repetition and predictability effects 
	
Our	results	from	Studies	1	and	2	also	shed	light	on	the	different	 learning	dynamics	

that	each	word	in	the	repeated	triplet	follows	throughout	the	task.	On	the	one	hand,	we	

showed	 that	participants	 tended	 to	process	 the	 first	 unpredictable	word	 in	 the	 triplet	

faster	as	the	task	progressed	(i.e.,	the	repetition	effect).	However,	this	mere	repetition	

effect	was	rather	limited,	with	a	processing	gain	of	about	80	ms	after	45	repetitions.	On	

the	other	hand,	participants	responded	much	faster	to	the	second	and	third	predictable	

words	in	the	triplet	than	to	the	first	unpredictable	word	(i.e.,	the	predictability	effect).	

In	fact,	the	processing	advantage	for	predictable	words	was	about	300	ms.	This	processing	

advantage	can	be	attributed	to	the	fact	that	the	second	and	third	predictable	words	benefit	

from	the	preceding	word,	which	systematically	occurs	before	them	and	helps	participants	

to	 anticipate	 and	 predict	 the	 next	 item.	 Thus,	 the	 second	 word	 benefits	 from	 the	

systematic	 occurrence	 of	 the	 first	 word,	 whereas	 the	 third	 word	 benefits	 from	 the	

occurrence	of	both	the	first	and	second	words	in	the	triplet.			

These	findings	are	in	line	with	previous	studies	showing	that	frequently	encountered	

words	are	processed	more	efficiently	(Brysbaert	et	al.,	2018;	Stark	&	McClelland,	2000),	

as	well	as	studies	showing	a	processing	advantage	for	predictable	items	embedded	in	a	

repeated	sequence	(Rey	et	al.,	2020;	H.	S.	Wang	et	al.,	2023).	Although	similar	results	have	

been	reported	previously,	the	originality	of	this	work	lies	in	the	fact	that	we	were	able	to	

study	the	evolution	of	these	two	effects	simultaneously,	thus	providing	an	overview	of	the	

learning	dynamics	involved	in	the	acquisition	of	multiword	sequences.	

Furthermore,	our	results	from	Study	3,	in	which	we	test	a	group	of	Guinea	baboons	in	

a	 Hebb	 visuo-motor	 pointing	 task,	 together	 with	 the	 review	 presented	 in	 Chapter	 5,	

suggest	that	these	effects	are	not	specific	to	language.	Rather,	they	are	a	common	feature	
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of	the	chunking	mechanisms	operating	in	sequence	learning	and	rely	on	basic	associative	

processes	shared	by	both	species	(Conway,	2020;	Wilson	et	al.,	2017).	

6.3. The influence of repetition spacing in sequence learning 
	
One	of	the	aims	of	this	thesis	was	to	investigate	the	influence	of	repetition	spacing	on	

the	 learning	dynamics	of	multiword	sequences.	Our	results	 from	Study	2	 indicate	that	

multiword	sequence	learning	is	still	possible	at	large	repetition	spacing	(i.e.,	60),	and	that	

the	overall	learning	rate	of	a	repeated	sequence	slows	with	increasing	spacing.	However,	

the	 influence	 of	 repetition	 spacing	 differed	 between	 the	 repetition	 and	 predictability	

effects.	On	the	one	hand,	words	in	the	first	unpredictable	positions	seemed	to	benefit	from	

spacing,	with	the	repetition	effect	being	greater	for	wider	spacings.	Our	interpretation	of	

this	finding	was	that	participants	increasingly	expected	and	anticipated	the	occurrence	of	

the	 repeated	 triplet,	 resulting	 in	 faster	 responses.	 On	 the	 other	 hand,	 the	 processing	

advantage	associated	with	the	predictability	effect	decreased	with	increasing	spacing.	A	

potential	twofold	explanation	for	this	finding	is	that,	with	greater	spacing,	the	associations	

between	the	words	of	the	triplet	take	longer	to	consolidate	in	memory,	and	concurrently,	

the	 same	 memory	 trace	 gradually	 disappears	 from	 memory	 as	 the	 sequence	 is	 not	

encountered	repeatedly	enough	(Perruchet	&	Vinter,	1998).	Evidence	for	this	is	provided	

by	the	fact	that	participants	recalled	the	repeated	triplet	 less	accurately	as	the	spacing	

increased.	Furthermore,	 the	decrease	 in	the	predictability	effect	 followed	a	power	 law,	

which	 is	 classically	 associated	 with	 a	 weakening	 of	 memory	 traces	 and	 hence	 lower	

memory	performance	(Kahana	&	Adler,	2017;	Wixted,	2022).	

Similarly,	results	from	Study	3	showed	that	baboons	were	able	to	learn	sequences	of	

three	locations	even	at	the	largest	spacing,	and	that	the	learning	rate	also	decreased	as	a	

function	of	spacing.	Like	 in	humans,	 the	predictability	effect	decreased	with	 increasing	
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spacing,	 but	 its	 course	 was	 better	 fitted	 by	 a	 logarithmic	 function.	 As	 mentioned	 in	

Chapter	 4,	 this	 is	 not	 surprising	 as	 both	 functions	 have	 been	 shown	 to	 be	 highly	

correlated	and	are	usually	observed	during	implicit	learning	(Radvansky	et	al.,	2024).	It	

is	worth	noting,	however,	that	recent	studies	suggest	that	the	memory	performance	is	not	

systematically	captured	by	these	functions.	Instead,	the	best-fitting	function	varies	with	

the	complexity	and	meaningfulness	of	the	material,	the	degree	of	learning,	and	the	phase	

of	retention	at	which	the	trace	 is	 located	(Fisher	&	Radvansky,	2019;	Radvansky	et	al.,	

2022).	

6.4. Does repetition always result in the same trajectory for the 
development of memory traces? 

	
Thus	far,	I	have	mainly	emphasised	the	role	of	repetition	in	the	learning	of	multiword	

sequences.	 However,	 according	 to	 usage-based	 approaches,	 other	 distributional	

information	contained	in	the	input,	as	well	as	the	meaning	of	the	constructions,	should	

also	influence	their	acquisition	and	processing.	In	line	with	this	assumption,	our	findings	

from	 Study	 1	 revealed	 that	 idioms	 were	 processed	 faster	 than	 semantically	 related	

words,	which	 in	 turn	were	processed	 faster	 than	the	unrelated	words.	As	discussed	 in	

Chapter	 2,	 this	 can	 be	 attributed	 to	 pre-existing	 associations	 between	 words	 that	

facilitated	 the	processing	of	both	 semantically	 related	words	and	 idioms.	Additionally,	

idioms	 may	 have	 benefitted	 from	 their	 meaningfulness.	 Indeed,	 prior	 research	 have	

demonstrated	 that	 multiword	 sequences	 with	 a	 higher	 degree	 of	 meaningfulness	 are	

easier	 to	 process	 and	 result	 in	 lower	 RTs	 and	 reading	 times	 compared	 to	 control	

sequences	(Chantavarin	et	al.,	2022;	Jolsvai	et	al.,	2020).		

It	 is	noteworthy	 that	 the	participants’	 ability	 to	 recall	 the	 repeated	 triplet	was	 also	

likely	 influenced	 by	 these	 factors,	 with	 idioms	 being	 recalled	 more	 accurately	 than	
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semantically	 related	 words,	 which	 were	 also	 recalled	 better	 than	 unrelated	 words.	

Interestingly,	the	recall	performance	seemed	to	be	related	to	the	processing	speed	of	the	

sequence,	but	not	to	the	probability	of	learning	the	sequence,	as	the	predictability	effect	

was	substantial	across	conditions.	This	suggests	that	a	memory	trace	for	the	triplet	has	

been	 created,	 albeit	 only	 partially	 retrievable.	 The	 results	 of	 Study	 2	 provide	 further	

evidence	for	this,	as	both	recall	performance	and	predictability	decreased	with	spacing,	

yet	learning	was	still	observed	across	all	spacing	conditions.	Furthermore,	an	examination	

of	the	recall	of	each	triplet	at	the	word	level	reveals	that	recall	performance	of	the	third	

word	appears	 to	be	 relatively	preserved,	whereas	 recall	of	 the	second	and	 first	words	

appears	to	decline	with	increasing	spacing	(see	Table	1).	

Table	1	

Number	of	words	correctly	recalled	for	each	position	in	the	triplet	and	for	each	spacing	

condition.	

	 Position	1	 Position	2	 Position	3	
4F	 69	 61	 73	
7F	 52	 52	 68	
10F	 54	 57	 69	
20F	 46	 52	 68	
30F	 31	 43	 67	
60F	 35	 42	 62	

	

Taken	 together,	 it	 seems	difficult	 to	 explain	 these	 results	 solely	 on	 the	 basis	 of	 the	

chunk-based	models	 I	 have	 examined	 in	Chapters	1	 and	5,	 which	 are	 the	 traditional	

models	cited	in	the	field	of	language	acquisition.	In	these	models,	learning	depends	only	

on	 the	 frequency	 of	 co-occurrence	 of	 the	 elements	 constituting	 the	 sequence,	without	

taking	into	account	factors	that	have	been	shown	to	influence	this	process,	such	as	the	

semantic	relationship	between	elements,	meaningfulness,	idiomaticity	or	familiarity	(e.g.,	

Carrol	 &	 Conklin,	 2020;	 Fioravanti	 &	 Siyanova-Chanturia,	 2024;	 Jolsvai	 et	 al.,	 2020).	
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Consequently,	two	sequences	with	the	same	frequency	are	always	encoded	and	processed	

in	the	same	way	by	these	models,	despite	the	inherent	differences	in	the	properties	of	the	

words	and	the	sequences	themselves.	Furthermore,	it	is	unclear	how	these	models	could	

account	 for	 the	 reduced	 recall	 performance	 for	 only	 some	 of	 the	words	 in	 the	 triplet.	

Statistical	 learning	models	 based	 on	 the	principles	 of	Hebbian	 learning	 could	perhaps	

provide	clues	to	answer	this	problem.	Since	each	association	between	words	within	the	

sequence	 is	modelled	 independently,	 it	 is	 possible	 to	 assign	 different	weights	 to	 each	

association	to	account	for	the	likely	uneven	encoding	of	each	word.	

6.5. Limitations of the Hebb lexical decision task 
	
The	main	limitation	of	this	research	concerns	the	Hebb	lexical	decision	task	that	we	

developed.		Indeed,	this	task,	which	was	used	throughout	the	thesis,	allowed	us	to	study	

the	 acquisition	 dynamics	 of	 multiword	 sequences	 in	 real	 time,	 with	 very	 fine	

measurements	for	each	word	in	the	sequence.	However,	this	task	is	far	from	mimicking	a	

real	 reading	 situation	 in	 which	 multiword	 sequences	 are	 relatively	 spaced	 from	 one	

another	 and	 occur	much	 less	 frequently.	 Furthermore,	 this	 task	 seems	 unsuitable	 for	

studying	 the	acquisition	of	multiword	sequences	using	naturalistic	stimuli,	as	 it	would	

imply	using	real	sentences	for	the	targets	and	for	the	fillers,	which	is	impossible	given	that	

a	lexical	decision	task	requires	the	presence	of	pseudowords	in	order	to	be	performed.		

A	second	limitation	concerns	the	size	of	the	sequences	we	can	use	in	the	Hebb	lexical	

decision	task.	Virtually,	we	could	use	multiword	sequences	of	any	length,	but	this	might	

lead	 participants	 to	 learn	 that	 there	 are	 a	 certain	 number	 of	words	 that	 are	 repeated	

without	properly	processing	each	word.	Thus,	the	task	would	no	longer	be	assessing	the	

acquisition	 of	 the	 sequence,	 but	 rather	 the	 extraction	 of	 the	 size	 of	 the	 regularity	

presented	in	the	task.	
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A	third	limitation	relates	to	lexical	decision	itself	as	a	proxy	for	the	study	of	language	

acquisition.	 Indeed,	 this	 task	 requires	 the	 involvement	 of	multiple	 components	 of	 the	

language	 processing	 system,	 such	 as	 orthographic,	 phonological	 and	 semantic	

components,	in	order	to	make	a	lexical	decision	(Christiansen,	2019).	This	task	therefore	

involves	many	more	processes	 than	a	normal	reading	situation	or	conversation	where	

individuals	do	not	constantly	analyse	each	word	in	the	sequence	for	comprehension	and	

production	(Ferreira	et	al.,	2002;	Goldberg	&	Ferreira,	2022).		

One	possible	solution	to	these	problems,	it	is	to	adapt	the	Hebb	lexical	decision	task	

into	a	naming	task	to	avoid	decision	making,	but	also	to	ensure	that	participants	process	

each	word.	In	order	to	perform	the	task	correctly,	participants	would	have	to	read	each	

word.	Despite	all	these	shortcomings,	I	strongly	believe	that	the	Hebb	lexical	decision	task	

remains	an	interesting	paradigm	because	of	its	potential	to	be	adapted	into	different	types	

of	 tasks	 that	 may	 permit	 the	 study	 of	 sequence	 learning	 and	 chunking	 in	 different	

modalities.	

6.6. Future perspectives 
	
Our	 first	 perspective	 stems	 from	 the	 fact	 that	 we	 have	 studied	 the	 acquisition	 of	

multiword	sequences	in	a	well-controlled	environment	that	does	not	correspond	to	the	

experience	of	real-life	language	use.	Future	research	should	use	other	tasks	and	methods	

that	 allow	 the	use	 of	more	 ecological	 stimuli,	while	maintaining	 the	 level	 of	 detail	we	

achieved	with	 the	Hebb	 lexical	decision	 task.	One	particularly	 interesting	method	 that	

may	be	suitable	for	this	purpose	is	eye-tracking,	which	allows	the	study	of	participants’	

eye	movements	during	naturalistic	reading,	while	providing	a	range	of	measures	that	tap	

into	different	stages	of	language	processing,	such	as	lexical	access,	initial	integration	of	

information,	 text	 comprehension	 and	 recovery	 from	 processing	 difficulties	 (Siyanova-



	 239	

Chanturia,	2013).	As	mentioned	in	the	introduction,	this	method	has	mostly	been	used	to	

study	the	processing	of	already	encoded	multiword	sequences.	The	idea	would	be	to	use	

protocols	 such	 as	 Conklin	 and	 Carrol's	 (2020)	 with	 different	 types	 of	 multiword	

sequences	to	get	a	more	complete	picture	of	how	they	are	acquired.	

A	 second	 perspective	 relates	 to	 the	 discussion	 of	 chunk	 size	 in	 Chapter	 5.	 In	 that	

chapter,	we	 pointed	 out	 that	 defining	 the	 elements	 that	 form	 a	 chunk	 can	 be	 difficult	

because	 it	 is	 unclear	what	 should	 be	 considered	 as	 its	 basic	 unit.	 For	 instance,	 when	

analysing	the	phrase	“We	haven’t	got	enough”,	we	can	decompose	it	into	four	words,	into	

six	syllables,	or	into	14	phonemes,	making	it	difficult	to	know	what	is	really	represented	

in	memory.	Therefore,	an	essential	issue	for	future	research	will	be	to	develop	a	method	

for	determining	what	the	basic	elements	of	a	chunk	are.	This	would	allow	us	to	answer	

questions	such	as	how	chunk	hierarchies	are	built,	how	chunk	size	is	determined	by	our	

cognitive	system,	and	whether	there	is	a	limit	to	chunk	size.		

Finally,	 as	discussed	 throughout	 this	 thesis	and	 in	more	detail	 in	Chapter	5,	 chunk-

based	models	 cannot	 fully	 account	 for	 all	 current	 findings,	namely	 the	repetition	 and	

predictability	 effects.	 An	 interesting	 avenue	 for	 future	 work	 would	 be	 to	 develop	 a	

computational	 model	 that	 can	 capture	 these	 phenomena.	 My	 collaborators	 and	 I	 are	

currently	working	on	a	new	model	that	combines	the	well-known	Interactive	Activation	

Model	 (IA)	developed	by	McClelland	and	Rumelhart	 (1981)	with	 the	Hebbian	 learning	

principles.	 On	 the	 one	 hand,	 the	 IA	 model	 simulates	 the	 general	 neural	 activation	

underlying	 letter	 and	 word	 recognition	 in	 humans	 by	 relying	 on	 a	 connectionist	

architecture	consisting	of	 three	 levels:	visual	 features,	 letters	and	words.	On	 the	other	

hand,	 Hebbian	 learning	 posits	 that	 repeated	 processing	 of	 two	 items	 leads	 to	 the	

formation	of	a	synaptic	connection	between	the	neuron	populations	encoding	them,	with	

this	connection	strengthening	with	further	coactivation,	and	weakening	otherwise.	Since	
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we	 are	 interested	 in	 modelling	 the	 acquisition	 of	 multiword	 sequences,	 we	 only	

implemented	the	letter	and	word	levels	in	our	model.	Therefore,	the	architecture	of	the	

model	consists	of	a	first	letter	level	where	each	letter	position	in	a	word	is	represented	

by	a	“position”	section	containing	26	letter	nodes.	Depending	on	which	word	is	presented	

to	the	model,	a	letter	node	is	activated	in	each	of	the	position	sections.	Letter	activation	is	

then	propagated	 to	 the	word	 level,	which	consists	of	 all	 the	words	 in	 the	vocabulary.	

Here,	each	word	node	receives	excitation	or	inhibition	from	the	letter	level,	depending	on	

whether	 its	 letter	 nodes	 are	 activated	 or	 not.	 Once	 a	 word	 node	 reaches	 a	 certain	

threshold,	the	word	is	recognised	by	the	model.	The	time	it	takes	for	a	word	node	to	reach	

the	threshold	depends	on	the	interaction	between	the	resting	state	of	the	word	(defined	

by	its	frequency)	and	its	external	activation.	To	simulate	the	repetition	effect,	each	time	

a	word	is	encountered,	its	resting	state	value	increases,	resulting	in	faster	recognition	the	

next	 time	 it	 is	 encountered.	 To	 simulate	 the	 predictability	 effect,	 when	 words	 are	

encountered	together	within	certain	time	windows,	they	send	excitation	to	each	other,	

leading	to	increasingly	faster	recognition	each	time	they	are	encountered	together.	

7. Conclusion 
	
The	three	empirical	studies	and	the	review	article	presented	in	this	thesis	highlight	the	

influence	of	repetition,	of	the	nature	of	multiword	sequences,	and	of	repetition	spacing	on	

the	acquisition	of	multiword	sequences	in	real-time.	Our	results	suggest	that	the	learning	

dynamics	observed	in	these	studies	are	not	language	specific,	but	are	a	common	feature	

of	 the	 chunking	mechanisms	 that	operate	during	 sequence	 learning.	However,	 current	

chunk-based	models	 are	 unable	 to	 fully	 account	 for	 our	 findings.	 Taken	 together,	 this	

research	 demonstrates	 that	 sequential	 information	 is	 acquired	 rapidly,	 developing	 a	

transient	memory	trace,	and	that	repetition	plays	a	key	role	in	its	consolidation.	It	also	
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suggests	that	the	lifetime	of	memory	traces	is	potentially	very	long.	In	sum,	these	results	

raise	important	new	questions	for	the	field	of	 language	acquisition,	and	for	the	field	of	

statistical	learning	and	chunking	more	broadly.	
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they	exceed	the	average	TP	threshold	(indicated	by	the	backward	arrow’s	position	above	

the	words),	both	words	or	chunks	are	grouped	together.	 If	 they	are	below	the	running	

average,	they	are	not	grouped	and	are	added	to	the	chunkatory	as	separate	chunks.	Figure	
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Figure	5.	Experimental	procedure	of	the	Hebb	lexical	decision	task.	Panel	A:	 items	are	

presented	one	at	a	time	in	the	centre	of	the	screen.	Participants	have	to	classify	each	string	

as	a	word	or	a	pseudoword.	A	repeated	sequence	of	three	words	(e.g.,	W1:	“évier”	–	sink	;	

W2:	 “raisin”	 –	 grape	 ;	 W3:	 “flacon”	 –	 flask),	 always	 appearing	 in	 the	 same	 order,	 is	

interspersed	with	random	filler	words	(WR)	or	random	filler	pseudowords	(PWR).	Words	

in	blue	belong	to	the	repeated	triplet.	Panel	B:	one	triplet	of	words	(W1W2W3)	is	repeated	

several	times	and	a	variable	number	of	random	words	or	pseudowords	(WR	or	PWR)	are	
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