
HAL Id: tel-04908277
https://hal.science/tel-04908277v1

Submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Network Traffic Generation for Evaluation of Intrusion
Detection Tools

Adrien Schoen

To cite this version:
Adrien Schoen. Network Traffic Generation for Evaluation of Intrusion Detection Tools. Networking
and Internet Architecture [cs.NI]. Centrale Supélec, 2024. English. �NNT : 2024CSUP0020�. �tel-
04908277�

https://hal.science/tel-04908277v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

CENTRALESUPÉLEC

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique,
Signal, Systèmes, Électronique
Spécialité : Informatique

Network Traffic Generation for Evaluation of
Intrusion Detection Tools

Machine learning based generation of synthetic network flows

Par

Adrien SCHOEN

Thèse présentée et soutenue à Rennes, France, le December 18th, 2024
Unité de recherche : IRISA
˙Numéro de thèse: 2024CSUP0020

Rapporteurs avant soutenance :

Jilles VREEKEN tenured faculty, CISPA Helmholtz Center for Information Security
Herve DEBAR Professeur, Telecom SudParis

Composition du Jury :
Président : Maryline LAURENT Professeur, Telecom SudParis
Examinateurs : Pierre-Henri WUILLEMIN Maitre de conference, Sorbonne Université

Ludovic ME Chercheur Contractuel Sénior, INRIA
Gregory BLANC Maitre de conference, Telecom SudParis
Frederic MAJORCZYK Ingénieur, DGA-MI
Yufei HAN Chercheur Contractuel Sénior, INRIA

Dir. de thèse : Ludovic ME Chercheur Contractuel Sénior, INRIA

Invité(s) :

Pierre-Francois GIMENEZ Chercheur contractuel, INRIA

Acknowledgements

First and foremost, profound gratitude is extended to God, Creator and Sustainer of all things,

for theworldHe has forged—aworld that sparks humanity’s scientific curiosity and drives our

pursuit of understanding. Scientific research, in my view, is rooted in reverence for this vast

and wondrous universe, whose beauty and coherence provide endless inspiration.

I am deeply grateful to my thesis supervisor, Ludovic Mé, whose unwavering support, pa-

tience, and invaluable guidancehave been central throughout these three years of research. His

insightful feedback and encouragement to pursue rigor have been instrumental in shapingmy

approach to this work, providing skills that will no doubt serve me well in my career.

Sincere appreciation is also extended to my thesis committee, Pierre-François Gimenez,

Gregory Blanc, Frédéric Majorczyk, and Yufei Han, whose expertise and ongoing support en-

riched this project tremendously. Their feedback, illuminating insights, and encouragement

significantly enhanced the quality of this thesis.

Thanks go as well to the PIRAT research team for their warm welcome and to Dr. Vreeken

and his team at CISPA, in particular Mr. Joscha Cueppers, for making my two-month stay in

Saarbrücken a deeply rewarding experience. The collaborative environment, openness, and

shared knowledge within these teams played a major role in advancing this work.

Heartfelt gratitude goes to my family, who have remained a steadfast source of support

throughout this demanding journey. Despite the distance and long hours, their encourage-

ment and patience have been a vital pillar of strength. This achievement is as much theirs as it

is mine.

Appreciation is also extended to theDiscordgroupKrak,whose camaraderie andbarbecues

brought invaluable moments of relief and laughter along the way.

Finally, a special mention goes to onche.org, which provided three years of laughter and

levity. Warm thanks to @GrosMalin, @Ulrich-Amalric, @Orteils, @Leakytap, @Johndoe2424,

@Orgetorix, @Aghar, @123pk, @Mao, @CleaMolette and@samlaitbrize for making this jour-

ney all the more memorable.

3

Résumé

1 Introduction

La cybersécurité est un domaine crucial en raison de la dépendance croissante de la société aux

infrastructures numériques interconnectées, fréquemment ciblées par des cybermenaces so-

phistiquées. Les systèmes de détection d’intrusion réseau (NIDS, pour Network Intrusion De-

tection Systems) jouent un rôle clé dans la défense contre cesmenaces en surveillant et en ana-

lysant le trafic réseau pour détecter des activités suspectes. Parmi ces systèmes, ceux basés sur

ladétectiond’anomalies sontparticulièrement adaptéspour identifier lesmenaces émergentes

en détectant les écarts par rapport au comportement réseau normal. Cette thèse se concentre

sur ces approches, et plus particulièrement sur celles qui s’appuient sur l’apprentissage au-

tomatique pour la détection d’anomalies. Ces méthodes reposent sur des jeux de données de

haute qualité, indispensables à l’entraînement des modèles et à l’évaluation de leurs perfor-

mances.

Cependant, obtenir de tels jeux de données présente plusieurs défis. Le trafic réseau réel est

difficile à exploiter en raison de réglementations strictes sur la confidentialité, comme leRGPD

(pour Règlement Général sur la Protection des Données), qui limitent l’accès aux données sen-

sibles. Même lorsqu’il est disponible, l’étiquetage du trafic réel est fastidieux et sujet à des er-

reurs. De plus, ces données peinent souvent à refléter la diversité nécessaire pour modéliser

fidèlement les comportements réseau, qu’ils soient normaux ou liés à des scénarios d’attaque.

La nature dynamique des réseaux modernes complique davantage la tâche de constituer des

jeux de données exhaustifs et représentatifs.

Pour pallier ces limitations, les simulations constituent une solution couramment utili-

sée. Elles permettent de modéliser des scénarios spécifiques en définissant des paramètres

comme la topologie du réseau, les types de trafic, et les comportements des hôtes. Cette flexi-

bilité explique leur popularité dans les domaines académiques et industriels, notamment pour

l’évaluation des NIDS. Cependant, les simulations présentent également des limites impor-

tantes. Elles sont souvent fortement contraintes par les hypothèses initiales et les configura-

tions définies, ce qui réduit leur capacité à s’adapter à des scénarios complexes ou évolutifs.

De plus, à mesure que la taille et la complexité du réseau simulé augmentent, les besoins en

ressources computationnelles croissent proportionnellement, chaque nouveau comportement

4

simulé nécessitant unemachine supplémentaire. Par ailleurs, le temps de simulation est direc-

tement lié à la duréedes jeuxdedonnées àproduire, ce qui peut entraînerdesdélais importants

pour générer des volumes de trafic exploitables. Cette double contrainte rend les simulations à

grande échelle difficilement viables.

Face à ces limites, la génération de trafic réseau synthétique émerge commeune alternative

prometteuse. Cette approche repose sur l’apprentissage demodèles à partir de données réelles,

permettantd’extraire leurs caractéristiquesessentielles, tellesque lesdistributions statistiques

et les relations entre variables. Une fois ces modèles entrainés, ils sont capables de générer di-

rectement un nouveau trafic complètement synthétique, contournant de ce fait les contraintes

liées à la confidentialité des données sensibles.

Cependant, bien que la génération de trafic synthétique présente des avantages théoriques

prometteurs par rapport aux simulations, son applicabilité pratique reste encore peu explorée.

Cette thèseapourobjectif principal de vérifier si ces avantages se traduisent effectivementdans

des contextes réels ou si la génération synthétique introduit des limitations ou des problèmes

supplémentaires. Dans ce cadre, nous avons développé une méthode pratique et nous avons

analysé son potentiel à remplacer les simulations dans l’évaluation des NIDS. Nos travaux se

sont concentrés sur la générationdeflux réseaubénins, en écartant volontairement les activités

malveillantes.

2 Limitations des solutions existantes pour la génération de flux
bénins synthétiques

2.1 Approches basées sur les GAN

Les réseaux antagonistes génératifs (GAN, pour Generative Adversarial Networks) se sont

largement imposés pour leur capacité à générer des données synthétiques réalistes en

apprenant les schémas complexes présents dans le trafic réel. Bien qu’ils soient prometteurs

dans la reproduction des distributions statistiques, les GAN sont extrêmement coûteux en

terme de calcul, rendant leur application à grande échelle difficile. En outre, ils rencontrent

des difficultés pour modéliser les dépendances entre différentes variables, un élément crucial

pour produire un trafic réseau fidèle et cohérent.

Plusieurs travaux ont tenté d’améliorer ces limites des GAN, notamment en introduisant

des mécanismes pour capturer les dépendances temporelles dans le trafic réseau. Cependant,

malgré ces efforts, ces approches échouent souvent à modéliser pleinement les dépendances

5

temporelles inhérentes au trafic réseau. Ces dépendances représentent les relations

chronologiques entre événements, comme l’ordre des flux, et sont essentielles pour refléter

la nature dynamique des réseauxmodernes. Par exemple, une requête DNS précédant une re-

quête HTTP vers un serveur externe est une séquence typique qui illustre l’importance des dé-

pendances temporelles pour modéliser le trafic réseau. Sans une prise en compte adéquate de

ces relations, le trafic synthétique manquera de cohérence et de réalisme.

2.2 Problèmes dans l’évaluation du trafic synthétique

Un obstacle majeur dans l’adoption du trafic synthétique comme alternative aux simulations

est lié à son évaluation. Les benchmarks actuels s’appuient souvent sur des métriques liées à

l’utilité pratique, comme l’amélioration des performances des NIDS. Si ces indicateurs sont

utiles, ils tendent à dépendre fortement des scénarios pour lesquels ils sont conçus, limitant

ainsi leur portée générale. Cette approche réduite empêche une évaluation complète et

rigoureuse de la qualité des jeux de données.

Un autre aspect souvent négligé dans l’évaluation du trafic synthétique est la capacité des

modèles génératifs à produire desmotifs novateurs, c’est-à-dire des schémas qui ne se limitent

pas à reproduire simplement les données d’entraînement. Ne pas évaluer cet aspect augmente

le risque de surapprentissage, une situation où les données générées par lemodèle ne sont que

des copies de ses données d’entrainement.

Enfin, laplupart des frameworksd’évaluationn’intègrentpasunemesurede lapréservation

des dépendances temporelles. Or, le trafic réseau est par essence temporel, avec des flux et des

événements structurés selondes chronologies précises. En l’absencede telles analyses,mêmesi

le trafic généré peut paraître cohérent, il peut échouer à reproduire fidèlement les dynamiques

temporelles caractéristiques des réseaux réels.

3 Contributions de cette thèse

3.1 Un cadre d’évaluation unifié

Cette thèse propose un benchmark complet permettant d’évaluer la qualité du trafic synthé-

tique selon quatre critères principaux : le réalisme, la diversité, la nouveauté et la conformité

aux spécifications des protocoles.

Le réalisme garantit que les propriétés statistiques du trafic généré correspondent étroi-

tement à celles du trafic réseau réel, en termes de distributions de variables comme les tailles

6

de paquets ou les intervalles entre les flux. La diversité mesure l’étendue des comportements

capturés dans les données synthétiques, reflétant la capacité à représenter une grande variété

de scénarios et d’environnements réseau. La nouveauté évalue si le trafic généré est capable

d’introduire des schémas nouveaux qui ne reproduisent pas simplement les données d’entraî-

nement. Enfin, la conformité vérifie que le trafic respecte les normes des protocoles réseau et

les spécifications du domaine, garantissant son utilité dans des contextes réels.

Chacun de ces critères est évalué à l’aide de plusieurs métriques spécifiques. Par exemple,

pour le réalisme, la distance de Wasserstein a été utilisée pour comparer les distributions des

tailles de paquets et des intervalles entre paquets générés à celles des données réelles. Pour la

diversité, plusieurs métriques sont utilisées pour mesurer la part de la base de données réelles

recouverte par la base des données générées, comme la couverture. La conformité est évaluée

par une succession de tests de validité vis-à-vis de différents protocoles réseaux. Enfin, la nou-

veauté est mesurée en analysant la résistance du jeu de données généré à des attaques par in-

férence d’appartenance.

Ce benchmark offre également desméthodes spécifiques pour analyser la préservation des

dépendances temporelles, un aspect essentiel souvent sous-estimé dans les approches exis-

tantes. Pour les dépendances temporelles, une des métriques utilisées est la différence entre

les fonctions d’autocorrélation des jeux de données réels et générés. Cette approche permet

d’évaluer dans quelle mesure les relations temporelles entre événements sont préservées dans

le trafic synthétique. En garantissant que le trafic généré reproduit fidèlement les séquences et

les dynamiques des scénarios réels, ce benchmark fournit un outil essentiel pour comparer les

différentes méthodes de génération de trafic.

3.2 Utilisation des réseaux bayésiens

Afin de résoudre les problèmes liés à la modélisation des dépendances entre variables, cette

thèse propose d’utiliser les réseaux bayésiens (BN, pour Bayesian Networks) pour la généra-

tion de flux individuels. Les BN permettent de représenter efficacement les relations condi-

tionnelles entre variables, offrant ainsi une solution adaptée pour générer un trafic réaliste tout

en réduisant les coûts computationnels par rapport aux GAN.

Une attention particulière a été accordée à la gestion des variables à forte cardinalité et à

la discrétisation des variables continues. Pour les variables à forte cardinalité, les adresses IP

et les ports éphémères sont regroupés en catégories pertinentes afin de préserver les relations

essentielles tout en simplifiant la modélisation. Pour la discrétisation des variables continues,

deux méthodes ont été utilisées : une approche basée sur les quantiles, qui divise la plage de

7

valeurs de chaque variable en intervalles égaux en fonction de leur distribution, et une autre

utilisant des modèles de mélange gaussien (Gaussian Mixture Models) qui partitionnent cette

plage en plusieurs noyaux de gaussiennes aux paramètres ajustables.

Les résultats expérimentaux, menés à l’aide du benchmark présenté précédemment,

montrent que les réseaux bayésiens surpassent les GAN en termes de réalisme et de diversité

des flux générés. Ces comparaisons ont été réalisées sur les jeux de donnéesUGR’16 et CIC-IDS

2017. Toutefois, leur performance peut varier en fonction de la complexité des jeux de données,

avec un avantage plus prononcé sur des jeux de données composés de peu de variables.

3.3 FlowChronicle : Capture des dépendances temporelles

Pour étendre l’utilisationdesBNà la capturedesdépendances temporelles, cette thèseprésente

FlowChronicle, un cadre combinant les BN avec uneméthode d’extraction demotifs basée sur le
principe de la Longueur Minimum de Description (MDL pour MinimumDescription Length).

Cette approche identifie et encode les schémas récurrents dans les flux réseau, permettant de

générer des séquences cohérentes qui reproduisent les dynamiques temporelles des réseaux.

Concrètement, FlowChronicledécompose les flux en tableaux compacts comprenant des cel-
lules fixes (valeurs constantes), des cellules réutilisées (relations entre flux) et des cellules libres

(valeurs à générer). Par exemple, unmotif peut représenter une requête DNS suivie d’un accès

à un serveur externe, tout en intégrant une variabilité dans les tailles des paquets.

Des experiences menées sur le jeu de données CIDDS-001 montrent que FlowChronicle
préserve efficacement les dépendances temporelles tout en surpassant significativement les

autres méthodes de génération synthétique, montrant sa supériorité pour produire un trafic

qui reflète fidèlement la dynamique des réseaux réels. Ici aussi, la comparaison a été rendue

possible par notre benchmark, assurant une évaluation rigoureuse des performances. De plus,

les motifs détectés par FlowChronicle sont analisables par un expert réseau, rendant notre gé-
nération en partie explicable.

4 Conclusion

Cette thèse a permis de combler plusieurs lacunes des approches existantes en génération de

trafic synthétique. En introduisant les réseaux bayésiens pour la modélisation des flux et

FlowChronicle pour capturer les dépendances temporelles, ces travaux ont jeté les bases d’une
génération de trafic plus réaliste et utilisable dans des contextes réels. Le framework

8

d’évaluation unifié présenté ici constitue un outil essentiel pour comparer objectivement les

différentes méthodes de génération, tout en mettant en avant des critères cruciaux comme la

préservation des dépendances temporelles. Toutes ces avancées ouvrent de nouvelles perspec-

tives pour une meilleure évaluation des NIDS, en réduisant leur dépendance aux simulations

traditionnelles.

Les recherches futures devraient explorer l’applicationde cesméthodes à des scénarios plus

complexes et étendre leur utilisabilité à des environnements réels. Ces avancées pourraient être

directement utilisées pour évaluer des NIDS dans des environnements de production, en par-

ticulier dans des secteurs comme les réseaux industriels ou les systèmes IoT, où les contraintes

de ressources et les risques liés à la confidentialité sont particulièrement élevés. L’intégration

de modèles de langage de grande taille (LLM pour Large Language Model) pourrait enrichir la

qualité et la diversité du trafic généré. Enfin, des travaux devront également être menés pour

garantir que les méthodes respectent les exigences en matière de confidentialité, notamment

en réponse à des régulations comme le RGPD.

9

Table of Contents

1 Introduction 15
1.1 Global Context . 15

1.2 The need for synthetic network traffic . 16

1.2.1 Challenges with real network traffic . 17

1.2.2 Simulation as a possible solution . 17

1.2.3 Synthetic Traffic Generation . 18

1.3 Problem statement . 19

1.3.1 Research objectives . 20

1.3.2 Assumptions and Scope of Our Study 20

1.4 Contributions . 21

1.5 Plan of the Study . 22

2 Background 24
2.1 Network Basics . 24

2.1.1 Users on a Network . 24

2.1.2 Network Packets . 25

2.1.3 Analyzing Packet Exchanges . 27

2.1.4 Network Flow Format . 28

2.2 Introduction to Machine Learning . 30

2.2.1 Machine Learning Pipeline . 30

2.2.2 Neural Networks . 31

2.3 Unsupervised Learning for Data Generation . 31

2.3.1 Generative Adversarial Networks (GAN) 31

2.3.2 Variational Autoencoders (VAE) . 33

2.3.3 Bayesian Networks for Data Generation 34

2.4 Challenges in Generating Synthetic Tabular Data 36

2.5 Summary . 37

3 State of the art 39
3.1 Synthetic network flow generation using AI . 39

10

Table of Contents

3.1.1 Generating Network Flows in the Context of Training an NIDS 40

3.1.2 Generating Network Flows for General Purposes 42

3.1.3 Generating Network Traffic in Other Data Format 48

3.1.4 Limitations of current synthetic network traffic generation 53

3.2 Quality evaluation of generated traffic . 55

3.2.1 Evaluating Tabular Data Generation . 55

3.2.2 Evaluating Network Traffic Generation 65

3.2.3 Limitations of current synthetic traffic evaluation 68

3.3 Summary . 69

4 Individual Network Flows Generation With Bayesian Networks 71
4.1 Motivations . 71

4.1.1 Individual Network Flow Generation . 72

4.1.2 Rationale for Using Bayesian Networks for Synthetic Network Flow Gener-
ation . 72

4.2 Research Objectives and Contributions . 73

4.3 Bayesian Networks for Network Flow Generation 74

4.3.1 Addressing Challenges for BN on Network Flows 74

4.3.2 Implementation with the bnlearn Python Library 75

4.4 Evaluation Methodology and Metrics . 77

4.4.1 Comparing Marginal Distributions . 78

4.4.2 Comparing Conditional Distributions 79

4.4.3 Comparing Joint Distributions . 80

4.4.4 Novelty Evaluation . 81

4.4.5 Compliance Evaluation . 81

4.5 Experimental Setup . 82

4.5.1 Datasets for Training and Evaluation . 82

4.5.2 Bayesian Networks . 85

4.5.3 Competing Methods and Baselines . 87

4.6 Results of our experiments . 90

4.6.1 Experiment on CICSmallFeatureSet . 91

4.6.2 Experiment on CICLongFeatureSet . 96

4.6.3 UGR . 99

4.6.4 Computing Cost . 103

11

Table of Contents

4.6.5 Global Observation . 104

4.7 Limitations of the study: Handling of the Discrete Feature Cardinality 106

4.8 Summary . 106

4.8.1 Potential Improvements . 107

5 FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining 109
5.1 Introduction . 109

5.2 Dataset Encoding . 110

5.2.1 Pattern-Based Encoding: An Intuition 111

5.2.2 Formalizing the Concept of Patterns . 111

5.2.3 Using Patterns to Encode the Dataset 112

5.3 Minimum Description Length . 114

5.3.1 Length of a Model . 114

5.3.2 Length of the Dataset Given the Model 116

5.4 FlowChronicle: A Model for Network Flow Generation 118

5.4.1 Preprocessing Network Flows . 118

5.4.2 Pattern Mining . 119

5.4.3 Generating Synthetic Network Flows . 122

5.5 Experimental Setup . 123

5.5.1 Dataset . 123

5.5.2 Competing Methods . 126

5.5.3 Evaluation of Synthetic Traffic Quality 127

5.6 Results of the Experiment . 130

5.6.1 Independent Flows . 132

5.6.2 Preservation of Temporal Correlation 134

5.6.3 Explainable Multi-Flow Patterns Discovered by FlowChronicle for an
Adaptable Generation . 135

5.6.4 Computational Cost . 137

5.6.5 Response to the research questions . 139

5.7 Limitations and Future Work . 140

5.7.1 Limitations of FlowChronicle . 140

5.7.2 Experimental Limitations . 140

5.7.3 Future Work . 141

12

Table of Contents

6 Conclusion 143
6.1 Contributions of this thesis . 144

6.1.1 Review of Synthetic Traffic Generation Methods 144

6.1.2 Bayesian Networks as an Alternative . 144

6.1.3 Development of a Unified Benchmark for Evaluation 144

6.1.4 Preserving Temporal Dependencies in Synthetic Network Flows 145

6.2 Future Work . 146

6.2.1 Addressing Current Limitations . 146

6.2.2 Broadening the Research Scope . 148

Bibliography 151

13

Chapter 1

Introduction

1.1 Global Context

As the world becomes increasingly interconnected through digital infrastructures, the impor-

tance of cybersecurity has grown substantially. The global digital economy heavily relies on se-

cure communication channels, making cybersecurity a critical concern for governments, busi-

nesses, and individuals. This is reflected in the projected economic impact of cybercrime,

which is expected to cost the world 10.5 trillion dollars annually by 2025, up from 3 trillion dol-

lars in 2015
1
.

Cyber threats are becoming increasingly sophisticated, with attackers employing advanced

techniques to breach security defenses. These threats encompass many activities, including

data breaches, ransomware attacks, and Denial of Service attacks. For instance, according to

Verizon, ransomware attacks have doubled in frequency over the past two years, underscoring

the evolving nature of these threats
2
.

In this evolving threat landscape, protecting network communications has become critical.

Network-based attacks have the potential to compromise sensitive data, disrupt essential ser-

vices, and cause significant financial and reputational damage. As a result, securing network

communications has become one of the top priorities for organizations worldwide, especially

in critical infrastructure sectors such as finance, healthcare, and energy
3
.

To detect and mitigate threats in network communications, Network Intrusion Detection
Systems (NIDS) have been developed as critical tools for cybersecurity. NIDSmonitor network
traffic in real time, analyzing data packets to identify suspicious activities that may indicate a

security breach. These systems inspect the traffic to detect known attack signatures or abnor-

mal behaviors that deviate from established baselines [1]. A well-known example of an NIDS

1
Cybersecurity Ventures, “Cybercrime To CostTheWorld 10.5 Trillion Dollars Annually By 2025”, 2020. Avail-

able: https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
2
Verizon, “2023 Data Breach Investigations Report (DBIR)”, 2023. Available: https://www.verizon.com/

business/resources/reports/dbir/
3
World Economic Forum “Global Cybersecurity Outlook 2023” 2023. Available: https://www.weforum.org/

reports/global-cybersecurity-outlook-2023/

15

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://www.weforum.org/reports/global-cybersecurity-outlook-2023/
https://www.weforum.org/reports/global-cybersecurity-outlook-2023/

Chapter 1 – Introduction

is Snort
4
, an open-source tool that detects a wide range of attacks by analyzing network traffic

in real-time. In [2], Martin Roesch, the creator of Snort, describes it as a lightweight and flexi-

ble NIDS capable of detecting various types of attacks, such as buffer overflows or stealth port

scans.

While NIDS are effective at detecting some attacks, they often generate a large number

of alerts, including a significant proportion of false positives—benign activities being incor-
rectly flagged asmalicious. Thisfloodof alerts contributes to alert fatigue,making it harder for
security teams to distinguish genuine attacks from benign activities. The growing volume of

alerts and a shortage of skilled cybersecurity professionals exacerbate these challenges, leading

to inefficiencies in attack detection and response. Both researchers and industry experts have

recognized this issue. For instance, Axelsson details the trade-offs between false positives and

detection accuracy in NIDS [3]. Similarly, France’s national cybersecurity strategy highlights

the urgent need for more skilled professionals to address these inefficiencies
5
. At the same

time, the European Union, through the European Union Agency for Cybersecurity (ENISA),

has launched initiatives aimed at enhancing the skills of cybersecurity personnel across mem-

ber states
6
.

1.2 The need for synthetic network traffic

Evaluating NIDS’ effectiveness is increasingly important due to the growing emphasis on data

sovereignty inEurope,whichdemands locally developed and certified cybersecurity solutions
7
.

This evaluation requires large datasets containing both benign and malicious network traffic

to ensure accurate threat detection while minimizing false positives.

However, acquiring benign traffic—a key element for evaluating the false positive rate of
NIDS—poses significant challenges. There are three primary ways to obtain network traffic

for NIDS evaluation: recording it directly from network communications, simulating it in a

controlled testbedenvironment, or generating it usingmodeling techniques. Real traffic refers
to data recorded from actual network communications, whereas simulated traffic is created
through controlled experiments in a testbed. Synthetic traffic, on the other hand, is generated

4https://www.snort.org/
5
Ministère de l’Économie, “Stratégie nationale pour l’accélérationde la cybersécurité”, 2021. Available: https:

//www.economie.gouv.fr/strategie-nationale-acceleration-cybersecurite
6
ENISA, “Education”, 2023. Available: https://www.enisa.europa.eu/topics/education
7
European Commission, “A European strategy for data”, 2020. Available: https://ec.europa.eu/

commission/presscorner/detail/en/fs_20_283

16

https://www.snort.org/
https://www.economie.gouv.fr/strategie-nationale-acceleration-cybersecurite
https://www.economie.gouv.fr/strategie-nationale-acceleration-cybersecurite
https://www.enisa.europa.eu/topics/education
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_283
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_283

1.2. The need for synthetic network traffic

using algorithms that replicate the characteristics of real traffic. In the following Subsections,

we will examine these three methods in detail.

1.2.1 Challenges with real network traffic

Acquiring real-world benign traffic for NIDS evaluation often involves capturing sensitive and

personal information, raising significant ethical and legal concerns. Privacy laws, such as the

General Data Protection Regulation (GDPR) in Europe, impose strict guidelines on collecting,

storing, and sharing personal data. This makes it challenging to use real traffic for testing

NIDS without violating privacy rights [4].

Moreover, accurately labeling real network traffic is a complex and time-consuming task.

Expert knowledge is required to identify and categorize different network activities as benign

ormalicious. Mislabeling can result in flawed evaluations ofNIDS,where benign trafficmay be

mistakenly classified asmalicious or vice versa. The difficulty of obtaining reliably labeled data

adds further complexity to the use of real network traffic for developing and testing NIDS [5].

1.2.2 Simulation as a possible solution

Researchers have turned to simulating traffic in controlled environments to overcome the chal-

lenges of using real network traffic. This involves generating traffic that mimics network ac-

tivity without involving real human users. Instead, traffic is generated by network automata,

such asweb crawlers [6], email generators [7], or bots simulatinguser behavior based onprede-

finedprofiles [8]. This approach allows researchers to produce and share large datasetswithout

the privacy concerns linked to real human traffic, as the virtual users involved are not real peo-

ple. Additionally, because the behavior of simulated users is predefined, labeling the traffic is

easier, which is a significant advantage over manually labeling real traffic [8].

However, traffic simulation still has limitations, particularly in terms of adaptability and
scalability. Simulated traffic is tied to the specific behaviors and conditions set at the begin-
ningof the simulation. Once the simulation starts, it follows thesepredefinedconditions,mak-

ing it challenging to adapt the traffic to new requirements, such as changes in the number of

hosts, types of activities, or network topology [9]. This is a lack of adaptability. Furthermore,
network simulation requires the actual execution of processes within the simulation environ-

ment, which becomes increasingly complex and costly as the number of hosts and the diversity

of applications expand. This escalation in resource demands restricts the simulation’s ability to

model the full scope of network complexity and variability, thus limiting its utility in evaluating

17

Chapter 1 – Introduction

NIDS under realistic conditions [6]. This is a lack of scalability.
In response to these limitations, researchers are increasingly turning to synthetic traffic

generation as a more adaptable and scalable alternative to simulation.

1.2.3 Synthetic Traffic Generation

To address the limitations of both actual and simulated traffic, the research community has

increasingly resorted to synthetic traffic generation, which leverages modeling algorithms to
learn the characteristics of existing traffic and reproduce them [9]–[11]. These algorithms, of-

ten based on techniques such as machine learning or statistical models, enable the creation

of synthetic traffic that closely mirrors real-world network activities without containing any

much user information. Moreover, synthetic traffic can be generated with precise labeling,
eliminating the need for the labor-intensive and error-prone process of manually labeling real

traffic data.

Synthetic traffic generation addresses the adaptability limitations of traditional simulation
by allowing for targeted data augmentation. Generative algorithms can produce additional

samples of specific traffic classes, enriching datasets to improve NIDS performance without

extensive manual intervention or rerunning entire simulation [11]. This adaptability is partic-

ularly valuable when dealing with imbalanced datasets, where certain types of network traffic

are underrepresented.

Additionally, synthetic traffic generation overcomes the scalability limitations of simulation
by decoupling the generation process from specific network components and configurations.

Because it is based on an underlying modeling of the traffic itself, synthetic generation can

scale easily withminimal computational cost, regardless of the number of hosts, network size,

or activity diversity. This scalability could allow researchers to produce high volumes of com-
plex traffic, reflecting real-world variability, without the prohibitive resource demands of tra-

ditional simulations[12].

Synthetic traffic generation also offers a significant advantage in terms of speed, enabling
researchers to produce large datasets quickly without the constraints of real-time data cap-

ture or lengthy simulations. Unlike simulations, which are bound by the actual time required

to replicate network activities, synthetic generation can create an hour’s worth of traffic in a

fraction of that time. This rapid generation process allows for swift adaptation of datasets to

new testing requirements, making it particularly well-suited for NIDS evaluations in dynamic

environments where conditions and security challenges frequently change [12].

However, despite the promising advantages of synthetic data generation, these expecta-

18

1.3. Problem statement

tions remain largely unproven in the context of network traffic data. While synthetic data gen-

eration has gained significant traction in other domains, such as image synthesis [13] and nat-

ural language generation [14], its application in the field of network security, particularly in the

evaluation of NIDS, is still in its infancy. Since 2015, following the introduction of the PU-IDS

dataset [15], there have been no significant advancements or widespread adoption of synthetic

network traffic for NIDS evaluation or the creation of network datasets.

In the case of the PU-IDS dataset, Singh et al. try to replicate the NSL-KDD dataset’s sta-

tistical characteristics by generating new traffic instances through a process that randomly

samples from these statistical distributions. This approach, which seeks to construct a dataset

based solely on abstracted statistical properties rather than on actual or simulated network ac-

tivities, represents, to the best of our knowledge, the only known effort to employ synthetic

traffic generation for creating and sharing a dataset.

Despite its potential, synthetic traffic generation comes with significant limitations. First,

access to real traffic data is still required to build the initial model, which can be sensitive and

restricted. The process of modeling itself can be time-consuming, especially for complex net-

works, and there is always a risk of overfitting or replicating the training data too closely, re-

ducing the diversity of the generated traffic.

As a result, while synthetic traffic generation shows promise for faster, more adaptable,

and scalable data production compared to traditional simulation methods, these advantages

remain largely untested. More research and practical implementations are necessary to fully

assess whether synthetic traffic can reliably replace simulated traffic to create comprehensive

network datasets.

1.3 Problem statement

Our thesis contributes to the ongoing effort to replace simulation with synthetic traffic gen-

eration to create datasets of benign traffic. To this end, multiple generative models are being

proposed. With the rise of generative AI, several network traffic generation methods emerge,

utilizing Generative Adversarial Networks (GAN) [16], Variational Autoencoders [17], and Dif-

fusionModels [18] amongothers [19]. Despite these advancements, synthetic trafficgeneration

has not yet produced any widely adopted datasets for NIDS evaluation.

Furthermore, no standard benchmark is established for evaluating the quality of generated

traffic, making any comparison between different models—or even between synthetic traffic

generation and simulation—difficult. This lack of standardized evaluation metrics represents

19

Chapter 1 – Introduction

a significant issue in current research.

1.3.1 Research objectives

In this thesis, we aim to develop a synthetic traffic generation system with the potential to

replace simulation as the primary method for generating network traffic datasets for NIDS

evaluation. To achieve this, we undertake several key steps.

First, we identify the limitations and challenges present in current synthetic traffic gener-

ationmethods. While these methods show promise in other fields, they have not yet been able

to supplant simulation in network traffic dataset creation. Understanding why these models

cannot currently replace simulation is a critical step in our research.

Second, we propose a solution that addresses these identified limitations. Our synthetic

traffic generation method overcomes the specific challenges that have hindered previous at-

tempts, ensuring that it generates traffic with the accuracy, diversity, and scalability required

for NIDS evaluation.

Third, after developing our solution, we evaluate and compare it against existing state-of-

the-art synthetic traffic generation methods. The goal is not necessarily to outperform these

models but to address the fundamental limitations that have hindered their adoption in place

of simulation. By resolving these issues, we aim to make synthetic traffic generation methods

as reliable as traditional simulation approaches. To facilitate this comparison, we introduce

a benchmarking framework that provides standardized metrics and criteria for assessing the

quality of generated traffic. Establishing this benchmark serves as a crucial contribution of this

thesis, enabling consistent and reliable evaluation across different generation methods.

Fourth, to establish the viability of our synthetic traffic generation system as a replacement

for simulation, we compare its performance directly against traditional simulation methods.

This comparison is essential for assessing whether synthetic generation can produce datasets

more efficiently while achieving the quality needed for accurate NIDS evaluation.

1.3.2 Assumptions and Scope of Our Study

Tomake our researchmore focused andmanageable, wemake several reasonable assumptions

that help narrow the scope while allowing us to address the core challenges of network traffic

generation.

First,we choose to focus specifically on thegenerationof networkflows8, as this represents
8
Records of communication between two terminals in a network, see Section 2.1 for further details

20

1.4. Contributions

a manageable and widely studied subset of network traffic. Network flow data is commonly

used in NIDS because it balances granularity and scalability, making it suitable for large-scale

networkmonitoring. For example, Sommer and Paxson (2010) highlight thewidespread use of

network flow data in NIDS research, noting that it is often preferred due to its ability to sum-

marize communication between endpoints efficiently, enabling effective intrusion detection

across large networks [20]. Additionally, as network traffic becomes increasingly encrypted,

NIDS are often limited to analyzing flow data rather than the content of the traffic itself. This

restrictionmakes networkflows evenmore critical formodern intrusion detection systems. By

concentrating on network flows, we can delve deeper into the specific challenges of generating

this data type, providing more meaningful insights that directly benefit NIDS evaluation.

Next, we concentrate on GAN as the primary approach for synthetic traffic generation be-
cause they are by far the most widely used method in this field, as will be discussed in Sec-

tion 3.1. By doing so, we can leverage the extensive research already available on GAN in other

domains while addressing the specific obstacles related to their application in network traffic

generation.

Finally, our study focuses solely on the generation of benign traffic, as our primary ob-
jective is to evaluate the false positive rate of NIDS. Generating malicious traffic is outside the

scope of thiswork, as it presents its own set of challenges and is actively being explored in other

research [21], [22]. Furthermore, combining generated benign traffic with malicious traffic

presents its own set of challenges [23]. By restricting our study to benign traffic, we can more

effectively address the core challenges of generating and evaluating traffic for false-positive

rate assessment.

1.4 Contributions

This thesis makes several key contributions to the field of network traffic generation for NIDS

evaluation:

• Comprehensive Survey of Synthetic TrafficGenerationMethods:Thefirst contribution

of this thesis is a thorough survey of methods used for synthetic traffic generation pre-

sented in Section 3.1. This survey highlights the emerging trends and uncovers the lim-

itations of existing approaches, offering a clear understanding of the current state of

research and identifying gaps that need to be addressed.

• Network FlowGeneration using BayesianNetworks:The second contribution is the in-

21

Chapter 1 – Introduction

troduction of a novel synthetic network flow generationmethod based on Bayesian Net-

works. This method synthesizes individual network flows and demonstrates superior

performance compared to the current state-of-the-art GAN-based methods. The pro-

posed approach provides amore accurate and efficientway of generating realistic traffic,

addressing the limitations of existingmodels. It is explained in Section 4.3 and evaluated

using our benchmark (see below) in Section 4.6.

• Evaluation Benchmark for Synthetic Network Flows: The third contribution is the de-

velopment of a comprehensive evaluation benchmark designed to assess the quality of

synthetic network flows. This benchmark covers multiple dimensions of traffic genera-

tion, including realism, diversity, novelty, and compliance, providing standardizedmet-

rics that can be used to compare various generative models. It serves as a critical tool

for the community, enabling consistent andmeaningful comparisons between different

approaches. It is presented in Section 4.4.

• Pattern Mining-based Network Traffic Generation: The fourth and final contribution

is the development of a generation method based on pattern mining techniques, which

builds upon the BayesianNetwork-based approach introduced in the third contribution.

This method produces high-quality synthetic network flows with greater diversity and

fidelity, making it a potential first substitute for traditional simulations. By leveraging

recurring patterns in network behavior, this approach offers a newdirection for network

traffic generation, opening up possibilities for more realistic and adaptable synthetic

datasets. It is presented in Section 5.4 and evaluated using our benchmark (see above)

in Section 5.6.

1.5 Plan of the Study

Webegin by introducing foundational concepts to ensure that readers unfamiliarwith the field

can follow the research presented. This foundational section covers the theoretical background

on network traffic, intrusion detection systems, and the role of synthetic data generation, pro-

viding essential context for the following discussions.

Next, we review the state of the art in synthetic network traffic generation. This overview

covers various generative models proposed for this task, such as GAN, Variational Autoen-

coders, andDiffusionModels. We also outline the different criteria used to evaluate generated

traffic quality, highlighting the strengths and limitations of existing approaches.

22

1.5. Plan of the Study

Following this, we introduce a novelmethod for generating individual network flows based

on Bayesian Networks. Evaluated using a benchmark developed specifically for this research,

this method is compared against state-of-the-art GAN-based models to assess the quality of

the generated flows with respect to a source dataset. We emphasize the advantages of using

BayesianNetworks for network flow generation, presenting evidence that this approach yields

more accurate and scalable results.

In contrast to theBayesianNetwork-basedmethod, thefinal contributionpresents an inno-

vativemethod forgeneratingnetwork trafficbasedonPatternMining,whichnotonlyproduces

realistic and diverse traffic but also preserves temporal dependencies between flows. This abil-

ity to capture sequential relationships among flowsmakes it particularly valuable for scenarios

where these temporal dynamics are essential. We also discuss how thismethod can potentially

replace traditional network traffic simulations, especially in scenarios where scalability and

adaptability are crucial.

23

Chapter 2

Background

This chapter provides a comprehensive foundation for understanding the fundamental con-

cepts relevant to the research presented in this thesis.

This chapter begins with an overview of network basics, including the fundamental princi-

ples of data exchange over computer networks, the role of users and network packets, and the

various methods for analyzing packet exchanges. The chapter then delves into machine learn-

ing, outlining its significance and workflow. Furthermore, it explores advanced unsupervised

learning techniques for data generation, such asGenerative AdversarialNetworks (GAN), Vari-

ationalAutoencoders (VAE), andBayesianNetworks (BN),highlighting their trainingprocesses

and challenges. Lastly, the chapter addresses common pitfalls in tabular data generation.

2.1 Network Basics

Network traffic refers to the data exchanged over a computer network, encompassing all dig-

ital communications between connected devices. To effectively analyze network traffic, it is

essential to understand how data flows across various layers of a network. The structure and

behavior of this flow can be explained using the Open Systems Interconnection (OSI) model,

which provides a framework for conceptualizing network communication. The OSI model di-

vides network communication into seven distinct layers: Physical, Data Link, Network, Trans-

port, Session, Presentation, and Application [24]. This layered approach allows for a clearer

understanding of where and how data is exchanged between devices.

Before delving into traffic analysis, it is crucial to define two key concepts: what consti-

tutes a user and a packet. After introducing these concepts, we will explain how packets are

exchanged in a network and how their exchange can be analyzed to study network traffic.

2.1.1 Users on a Network

Auser on a network is any entity (person, device, or software) that sends or receives data across

that network. In the context of network communication, particularly at the Internet layer

24

2.1. Network Basics

(Layer 3) and the Transport layer (Layer 4) of the TCP/IP model, these users are identified by

their IP addresses, which are unique to each device on the network.

There are twomain types of IP addresses: IPv4 and IPv6. IPv4 uses a 32-bit address scheme,

allowing for around 4.3 billion unique addresses [25], while IPv6, developed to address the ex-

haustion of IPv4, uses a 128-bit address scheme, offering a much larger address space [26],

[27]. However, this thesis focuses solely on IPv4 addresses, as they remain prevalent in many

existing networks. Unless mentioned otherwise, an IP address in this thesis refers to an IPv4

address.

IP addresses can be classified into public and private addresses. Public IP addresses are

unique across the entire internet, allowing devices to communicate globally. Private IP ad-

dresses, such as 192.168.0.1, are used within local networks and are not routable on the public

internet. These private addresses are often used in conjunction with Network Address Trans-

lation (NAT) to allowmultiple devices on a local network to share a single public IP address. It’s

also important to note that a single network interface with a uniqueMAC address can support

multiple IP addresses, allowing a device to participate in multiple networks simultaneously.

2.1.1.1 Application Ports

At the Transport layer (Layer 4), port numbers can further distinguish users. Ports identify

specific processes or services on a device, enabling multiple applications to use the network

simultaneously. For example, web traffic typically uses port 80 forHTTP or port 443 forHTTPS,

while email traffic might use port 25 for SMTP. This distinction allows the same IP address to

support different types of communication for various applications on the same device.

In addition to suchwell-known ports, there are ephemeral ports, which are temporary port

numbers used by clients for short-lived connections. When a client initiates a connection (such

as opening a web page or sending an email), it is assigned an ephemeral port. This allows the

client to uniquely identify its connection to the server, afterwhich the port is relinquished once

the communication ends [28].

2.1.2 Network Packets

Network traffic consists of packets, which are structured units of data containing both the

transmitted content and essential metadata, such as sender, recipient, and the application or

service in use. The book by Tanenbaum et al. [29] provides a detailed breakdown of these pack-

ets across different network layers:

25

Chapter 2 – Background

• Layer 3 (Internet Layer):This layer is responsible for packet forwarding, including rout-

ing through different routers. The data unit at this layer is called a packet. The header of a

Layer 3 packet includes fields such as the source and destination IP addresses, which are

crucial for routing the packet across networks.

• Layer 4 (Transport Layer): This layer ensures that data is transferred from one point to

another reliably and in the correct order. The data unit at this layer is called a segment
(in TCP) or a datagram (in UDP). The header at this layer includes information such as

port numbers, which identify the specific process or service that the data is associated

with, as well as sequence numbers in TCP to ensure that segments are reassembled in

the correct order.

• Layer 5 (Application Layer): This is where the actual user data resides. It includes the

application-specific data to be transmitted, such as a piece of an email, a file segment,

or part of a web page. When a packet reaches this layer on the receiving end, the data is

extracted and processed by the appropriate application.

In summary, a network packet typically consists of a header and a payload. The header

containsmetadata required by the lower layers for routing, delivery, and reassembly, while the

payload carries the actual data being transmitted. This structure, aligned with the encapsula-

tion process in the TCP/IP model, is illustrated in Figure 2.1.

This concept of encapsulation is crucial to understanding how data is transmitted across

networks, as it allows different layers of the network stack to operate independently and flexi-

bly. [29]

Data Application Layer (Layer 5)

TCP Header Data Transport Layer (Layer 4)

IP Header TCP Header Data Network Layer (Layer 3)

Figure 2.1: Encapsulation concept. The IP Header and TCP Header are called the header of the
packet, while the Data are called the payload

26

2.1. Network Basics

2.1.3 Analyzing Packet Exchanges

The exchange of packets can be analyzed to diagnose network issues, identify security threats,

andunderstand thenature of the traffic [29]. This analysis involves various techniques focusing

on different objects of interest, such as packets, flows, and specific network features.

Each techniqueprovidesunique insights andhelpsunderstanduser activities onanetwork.

Below, we introduce the primary methods of analysis: packet inspection, network flow analy-

sis, and feature analysis.

2.1.3.1 Packet Inspection

Packet inspection involves examining individual packets to extract information from their

headers and payloads. Common tools for packet inspection includeWireshark
1
and tcpdump

2
.

Packet inspection can reveal detailed information about protocols, communication patterns,

and potential anomalies [30].

2.1.3.2 Network Flow Analysis

A network flow is a sequence of packets sent from a source to a destination that share common

attributes such as IP source, IP destination, Source Port, Destination Port, and protocol. Flows

can be unidirectional or bidirectional. A unidirectional flow is a sequence of packets flowing

in one direction only, while a bidirectional flow includes packets flowing in both directions

between a source and destination [31].

Figure 2.2 shows the packet exchange between two hosts and the different flow groupings

based on whether it is unidirectional or bidirectional. By grouping and analyzing packets at

the flow level, one can provide a higher-level view of network activity than individual packet

inspection [31]. Standard tools for network flow analysis include nfdump [32], CICFlowme-

ter [7], and nProbe [33].

2.1.3.3 Feature Analysis

Feature analysis involves examining specific characteristics of network traffic. These features

include throughput (the rate of successful data transfer), latency (the time taken for data to

travel from source to destination), and jitter (the variation in packet arrival times). Such fea-

tures help detect networkmisuse and security breaches and optimize trafficmanagement [30].

1https://www.wireshark.org/
2https://www.tcpdump.org/

27

https://www.wireshark.org/
https://www.tcpdump.org/

Chapter 2 – Background

Figure 2.2: Exchange of packets between two hosts, with the direction of each packet indicated

by the arrow inside it. A unidirectional flow groups the packets in the same direction, and a

bidirectional flow group groups packets regardless of direction. The host is identified by their

IP and Port in the format IP: Source Port

2.1.4 Network Flow Format

Network flow analysis stands out among the different analysis techniques presented above, es-

pecially in the context ofNIDS.Unlikepacket inspection,which canbeoverlydetailedandcum-

bersome, or feature analysis, which might overlook critical interactions between packets [34],

network flow analysis provides the right level of granularity to effectively monitor and analyze

network traffic [35]–[37].

As saidpreviously, packets aregroupedbya set of commonattributes innetworkflowanaly-

sis. A typical example is the five-tuple: IP source, IP destination, Source Port, Destination Port,

and Protocol (this is the set of characteristics used to group packets in IPFIX [38] and Biflows

[7]). Other grouping strategies can exist, such as aggregating the packets per seven key charac-

teristics (NetFlow v9): IP source, IP destination, Source Port, Destination Port, Protocol, Type

of Service (ToS), and Input Interface. However, these grouping strategies can be adapted de-

pending on the use. In the rest of the thesis, we only consider one level of granularity and refer

to network flow as grouping by the five characteristics.

The grouping of packets based on shared characteristics results in a new network flow ob-

ject, which aggregates information from the packet level, such as the total number of bytes

across all packets, the time difference between the emission of the first packet and the recep-

tion of the last packet, and other network attributes. Therefore, a network flow can be defined

by the combination of (IP source, IP destination, Source Port, Destination Port, Protocol) and

a set of additional aggregated features. The specific features considered in describing a flow

can vary, leading to different flow formats [38]–[42]. Table 2.1 shows the various feature sets

of some of the most popular network flow analysis protocols with their descriptions. It shows

28

2.1. Network Basics

that all the different network flow tools define a flow by at least the 5-tuple (IP source, IP des-

tination, Source Port, Destination Port, Protocol). Some also include the ToS and the input

interface. However, most of these tools are, however, configurable, allowing for amodification

of the set on which the aggregation is made or the set of features extracted.

Feature NetFlowv9 [39] IPFIX [38] Biflows [7] J-Flow [41] NetStream [42]

Source IP Address ✓ ✓ ✓ ✓ ✓
Destination IP Address ✓ ✓ ✓ ✓ ✓
Source Port ✓ ✓ ✓ ✓ ✓
Destination Port ✓ ✓ ✓ ✓ ✓
Protocol ✓ ✓ ✓ ✓ ✓
Flow Start Time ✓ ✓ ✓ ✓ ✓
Flow End Time ✓ ✓ ✓ ✓
Packet Count ✓ ✓ ✓ ✓ ✓
Byte Count ✓ ✓ ✓ ✓ ✓
Flow Duration ✓ ✓ ✓ ✓ ✓
Next Hop IP Address ✓ ✓ ✓ ✓
Src Autonomous SystemNumber ✓ ✓ ✓ ✓
Dst Autonomous SystemNumber ✓ ✓ ✓ ✓
Source MAC Address ✓ ✓ ✓ ✓
DestinationMAC Address ✓ ✓ ✓
VLAN ID ✓ ✓ ✓ ✓
Type of Service (ToS) ✓ ✓ ✓ ✓
TCP Flags ✓ ✓ ✓ ✓ ✓
Input Interface ✓ ✓ ✓
Output Interface ✓ ✓ ✓ ✓
Application ID ✓
URL and HTTP Host Information ✓
Flow Sampling Interval ✓
BGP Next Hop IP Address ✓
Packet Inter Arrival time ✓
Header length ✓

Table 2.1: Comparison of Network Flow Features across different formats. A✓indicates that,
in this format, this feature is used for defining the scope of the flow

2.1.4.1 Similarity with Tabular Data

This network flow abstraction allows us to treat a set of recorded network flows as tabular data.

In this framework, each network flow corresponds to a row in a table, and the network features

correspond to the columns. This similarity, noted in various studies [11], [19], [43]–[47], enables

the use of tabular data analysis tools for network flow analysis, leveraging established tech-

niques formore effective analysis. Regarding network flowgeneration, we canmainly leverage

tabular data generation tools to generate synthetic network flows.

29

Chapter 2 – Background

2.2 Introduction to Machine Learning

Machine learning is a field of artificial intelligence that enables computers to learn from data

andmake decisions. It involves training amodel using specific algorithms to identify patterns

and relationships within data [48]–[50]. Machine learning applications span diverse fields

such as healthcare and finance, where they improve decision-making and automate complex

tasks [49], [51].

2.2.1 Machine Learning Pipeline

Asystematic pipeline is typically followed tobuild effectivemachine learningmodels, including

critical steps like data collection, model class identification, data preparation, model training,

and model evaluation [52], [53]. This pipeline ensures that models are created efficiently and

can generalize well to unseen data.

• Data Collection: Gathering relevant, high-quality data is foundational for learning pat-
terns accurately. This step often involves extracting data from databases, online sources,

or sensors and ensuring it is representative of the problem domain [53].

• Model Class Identification: In this step, we identify a class of models (such as neural
networks, see below) that fits the task’s requirements for accuracy, interpretability, and

computational efficiency [52]. This initial choice helps narrow down models suited for

the learning problem.

• Data Preparation: Preparing data to be model-ready involves cleaning and structuring
it by handling missing values, normalizing ranges, and organizing it into a suitable for-

mat [52]. Well-prepared data enhances model performance.

• Model Training: The model learns from the data in this step by adjusting parameters

through methods like gradient descent, a process critical for learning meaningful pat-

terns and relationships [54].

• Model Evaluation: Testing trainedmodels on new data helps verify their predictive abil-
ity and determine how well they generalize to new, unseen scenarios [52].

30

2.3. Unsupervised Learning for Data Generation

2.2.2 Neural Networks

Based on the insights presented in the book by Yann LeCun et al. [55], neural networks are

a foundational framework in machine learning, particularly for tasks involving complex data

patterns. They consist of interconnected layers of nodes (neurons) that process input data and

learn to make predictions or decisions.

A neural network typically consists of an input layer, one ormore hidden layers, and an out-

put layer. Each neuron receives inputs, processes them using weights and biases, and passes

the output through an activation function. Specifically, each input is multiplied by a corre-

sponding weight, and then a bias is added to this weighted sum. The activation function is

then applied to this result. An activation function is a mathematical function that determines

whether a neuron should be activated or not. It introduces non-linearity into the model, al-

lowing the network to learn and represent complex patterns. Common activation functions

include the sigmoid function, which outputs values between 0 and 1, the hyperbolic tangent

(tanh) function, which outputs values between -1 and 1, and the rectified linear unit (ReLU),

which outputs the input directly if it is positive; otherwise, it outputs zero.

Training neural networks involves optimizing theweights and biases tominimize the error

between thepredicted andactual outputs. Thisprocess uses algorithms like stochastic gradient

descent, which iteratively adjusts the parameters to reduce the error.

2.3 Unsupervised Learning for Data Generation

Unsupervised learning is a class of machine learning techniques that relies on unlabeled data,

aiming to uncover underlying structures or patterns within the dataset without any prede-

fined target outcomes [56]. Data generation is a form of unsupervised learning that consists

of creating synthetic datasets. This approach is essential in fields where privacy concerns or

data scarcity limit access to real datasets, as it enables the creation of data that closely mimics

real-world characteristics. In this work, we focus on three widely used methods for synthetic

data generation: Generative AdversarialNetworks (GAN), Variational Autoencoders (VAE), and

Bayesian Networks.

2.3.1 Generative Adversarial Networks (GAN)

GAN consist of two neural networks: the generator and the discriminator. The generator takes

randomnoise as input andgenerates synthetic data,while thediscriminator evaluateswhether

31

Chapter 2 – Background

the input data is real or fake [13].

2.3.1.1 Training Process

The training process of GAN involves an adversarial process where the generator and discrim-

inator are trained simultaneously. The generator tries to fool the discriminator by producing

realistic data, while the discriminator tries to distinguish between real and fake data correctly.

This competition drives both networks to improve. Figure 2.3 illustrates the training process of

a GAN.

2.3.1.2 Generation Process

After being trained, the generator can turn a random vector into new samples indistinguish-

able from proper original data. This is the operation that allows GAN to generate new data

samples.

Figure 2.3: Training process of a GAN.The generator creates data samples from randomnoise,

which are then evaluated by the discriminator against real data samples. The discriminator’s

feedback helps improve both the generator and itself.

2.3.1.3 Challenges

Training GAN can be challenging due to the delicate balance between the generator and dis-

criminator, often resulting in training instability [13], [57]. This process requires careful tuning

of hyperparameters and network architectures to achieve stable training. Mode collapse is an-

32

2.3. Unsupervised Learning for Data Generation

other common challenge, where the generator produces a limited variety of outputs and fails

to capture the diversity of the real data [58].

2.3.2 Variational Autoencoders (VAE)

Variational Autoencoders (VAE) consist of two neural networks: the encoder and the decoder.

Theencoder transforms input data into a probability distribution in a lower-dimensional latent

space, and the decoder generates synthetic data from this distribution [59].

2.3.2.1 Training Process

The training process of VAE involves a variational approach, encouraging the latent space to

follow a known distribution, typically a standard Normal distribution. The encoder learns to

produce the parameters µ (mean) and σ (standard deviation) of this distribution for any given

input. The loss function for the encoder and decoder includes the reconstruction loss (measur-

ing how well the encoder/decoder structure reconstructs a given input) and the KL divergence

(calculating the difference between the learned latent distribution and a predefined prior dis-

tribution, usually a standard Normal distribution). Figure 2.4 illustrates the training of a VAE.

Figure 2.4: The training process of a VAE. The encoder learns to represent the training sam-

ples in a latent distribution characterized by amean µ and a standard deviation σ. The learned

latent distribution is encouraged to be close to a standard Normal distribution (the prior dis-

tribution). From this learneddistribution,we can sample a latent variable z, which the decoder
uses to generate a reconstruction of the input.

2.3.2.2 Generation Process

After training, the generation process in a VAE involves sampling a latent variable z from the

reference prior distribution. This reference prior distribution is typically a standard Normal

33

Chapter 2 – Background

distribution, which is a Gaussian distribution with a mean of 0 and a variance of 1 (like in Fig-

ure 2.4). In simpler terms, we generate random values for z that follow this standard Gaussian

distribution. The decoder then transforms this z back into the data space, generating new syn-

thetic samples that resemble the original training data.

2.3.2.3 Challenges

Training VAE presents challenges, such as balancing reconstruction and regularization. The

trade-off between reconstruction loss and KL divergence can be challenging to manage, re-

quiring careful tuning [60]. Posterior collapse, where the decoder ignores the latent space and

relies solely on its internal weights, is another issue, leading to less meaningful latent repre-

sentations [61].

2.3.3 Bayesian Networks for Data Generation

UnlikeGANandVAE, BayesianNetworks do not rely on deep learning. ABayesianNetwork is a

statistical model that explicitly encodes the conditional probabilities between variables within

a learning problem. It is presented as a probabilistic graphical model, where nodes represent

each randomvariable in the problem, and the links between themdenote the conditional prob-

abilistic dependencies between pairs of variables [62].

2.3.3.1 Training Process

Training Bayesian Networks involves twomain steps: structure learning and parameter learn-

ing.

Structure learning involves determining the network’s structure, which can be done using

various algorithms that fall into two broad categories: constraint-based methods and score-

based methods. Constraint-based methods use statistical tests to identify dependencies and

independencies between variables, constructing the network structure by ensuring that the

resultingnetwork satisfies these constraints. On theotherhand, score-basedmethodsevaluate

different possible structures based on a scoring function (such as the Bayesian Information

Criterion or BIC[63]) and select the structure that best fits the data according to this score.

Parameter learning calculates the conditional probability distributions for eachnode, given

its parents in the network. This involves estimating the probabilities that define how each node

depends on its parents. This typically means calculating conditional probability tables (CPTs)

for discrete variables. For continuous variables, parameter learning might involve estimating

34

2.3. Unsupervised Learning for Data Generation

parameters for a specific distribution, such as the mean and variance for a Gaussian distribu-

tion. Figure 2.5 illustrates a Bayesian Network.

Figure 2.5: BayesianNetwork representing the dependencies between five discrete variables A,

B, C, D, and E.The arrows indicate dependency relationships, while nodes are associated with

conditional probability tables.

2.3.3.2 Generation Process

To generate data using a BayesianNetwork, we sample from the conditional probability distri-

butions defined by the network structure. The process begins with the root node(s) (A in Fig-

ure 2.5), where we sample values directly from their marginal distributions because they have

noparents. For each subsequent node,we sample values based on the conditional distributions

given their parent nodes’ sampled value using the Bayes rule.

35

Chapter 2 – Background

For discrete variables, the conditional probability distributions are typically represented

by conditional probability tables (CPTs). Each entry in a CPT specifies the probability of the

discrete variable taking on a particular value given the values of its parent nodes. This process

continues until values have been sampled for all nodes in the network, resulting in a complete

synthetic data instance.

For continuous variables, the conditional distributions might be represented by specific

parametric forms, such as Gaussian distributions. In this case, the distribution parameters

(e.g., mean and variance) are functions of the parent nodes’ values. Sampling for continuous

variables involves generating values from these conditional distributions using the estimated

parameters.

2.3.3.3 Challenges

Challenges in training BayesianNetworks include scalability, complex dependencies, and data

sparsity. Large numbers of variables can make the computations expensive, and accurately

capturing dependencies requires careful consideration of the network structure [64].

2.4 Challenges in Generating Synthetic Tabular Data

As mentioned in Subsection 2.1.4, network flows can be viewed as a specific type of tabular

data. Consequently, generating synthetic network flows is essentially an application of tabular

data generation. Therefore, it is pertinent to highlight some of the challenges associated with

generating synthetic tabular data in this context.

2.4.0.1 Mix of Categorical and Numerical Data

Tabular records often contain mixed data types (discrete and continuous). GAN and VAE,

designed for continuous data, struggle with discrete data due to gradient descent issues [65].

While Bayesian Networks can theoretically handle both discrete and continuous variables,

practical implementations in Python often fall short. Libraries like pgmpy
3
and bnlearn

4
have

limited support for hybrid models. As a result, fully leveraging Bayesian Networks for mixed

data types often requires manual intervention or specialized software not readily available

in popular Python libraries.

3https://pgmpy.org/
4https://erdogant.github.io/bnlearn/

36

https://pgmpy.org/
https://erdogant.github.io/bnlearn/

2.5. Summary

2.4.0.2 Sparse Distribution

Tabular data often exhibit sparse distributions, especially when dealing with high-cardinality

categorical variables. When using one-hot encoding—a process that converts categorical vari-

ables into a binary vector with a single high (1) value corresponding to the category and the

rest low (0)—for discrete features in neural networks, this results in high-dimensional and

sparse input spaces. This can lead to issues like mode collapse in GAN or posterior collapse

in VAE [57], [66]. For Bayesian Networks, sparse distributions and high-cardinality features

pose challenges due to the complexity of CPTs. As the number of categories increases, theCPTs

become large and sparse, making the computations more complex [67].

2.4.0.3 Dependencies Between Features

Tabular data often have complex dependencies between variables that need accuratemodeling.

For example, in network data, the Source Ports and Destination ports depend on each other

and rely on the Transport Protocol. GAN and VAE have limited capacity to capture these de-

pendencies [65], while Bayesian Networks are better suited for handling interdependent data

structures [67].

2.5 Summary

This chapter provides a comprehensive foundation for understanding the fundamental con-

cepts relevant to the research presented in this thesis. We begin with an overview of network

traffic basics, detailing the fundamental principles of data exchange over computer networks,

the role of users, and the nature of network packets. We then delve into the realm of machine

learning, highlighting its significance and workflow.

Further, we explore advanced unsupervised learning techniques for data generation, such

asGenerative Adversarial Networks (GAN), Variational Autoencoders (VAE), andBayesianNet-

works (BN).We discuss their training processes, the generation of synthetic data, and the spe-

cific challenges each method faces, particularly when handling tabular data. GAN and VAE,

designed primarily for continuous data, encounter difficulties with discrete data. In contrast,

BayesianNetworks, although capable of handling both data types, often strugglewith practical

implementation in commonly used Python libraries.

Lastly, we address commonpitfalls in data evaluationmethods for tabular data generation,

including issues arising frommixed data types, sparse distributions, and complex dependen-

37

Chapter 2 – Background

cies between features. These challenges highlight the need for robust methodologies and tools

to generate and evaluate synthetic data effectively.

The insights gained from this chapter set the stage for the subsequent analysis and discus-

sions in this thesis, providing the necessary background to understand and address the com-

plexities of synthetic data generation and network traffic analysis.

38

Chapter 3

State of the art

Obtaining real network traffic for cybersecurity evaluation is impractical due to privacy con-

cerns and the difficulty of labeling data accurately, making it unsuitable for testing network

intrusion detection systems (NIDS) [68]. While simulations offer a solution by generating la-

beled traffic in controlled environments, they are limited by their static, predefined config-

urations, which restrict their adaptability and increase their cost as the number of hosts or

activities grows [9], [69].

Synthetic trafficgenerationoffers apotential solutionby replicating real-worldnetworkbe-

haviors without leaking sensitive data or requiringmanual labeling. These techniques provide

valuable scalability and adaptability. However, their ability to fully overcome the challenges

posed by real and simulated traffic remains largely hypothetical and is an area of ongoing re-

search.

As already mentioned in Section 1.3, we reduce the scope of our study to the generation of

synthetic benign network flows. Indeed, our goal is to generate traffic for evaluating NIDS,

and most NIDS are operating at the network flow level [70]. Similarly, we are only concerned

about the availability of benign traffic, leaving aside the generation of malicious events.

Therefore, this state-of-the-art review explores the key AI models and methodologies em-

ployed for generating synthetic benign network flow and evaluates such generation. In Sec-

tion 3.1, we first explain how current research manages the generation of network flow by AI

methods, and then, in Section 3.2, we endeavor to definewhat constitutes a good network flow

generation and how to assess its quality.

3.1 Synthetic network flow generation using AI

The generation of synthetic network flows has emerged as a crucial area of research for im-

proving the performance of NIDS [9]. By replicating the characteristics of real network traffic,

synthetic flows provide diverse and comprehensive datasets that help train NIDS.

Artificial intelligence (AI) plays a pivotal role in this process by enabling the creation of syn-

39

Chapter 3 – State of the art

thetic flows that closely mirror real-world traffic patterns. Generative models learn from net-

work data and can replicate intricate patterns and generate realistic traffic scenarios. Tech-

niques like Generative Adversarial Networks (GAN) are mainly used for this task, as they gen-

erate data that mimics actual network behavior. These AI-driven approaches not only enhance

the diversity of training datasets but also improve the accuracy of NIDS by simulating a wide

range of traffic conditions.

This sectionpresents twomain applications ofAI-driven synthetic flowgeneration: thefirst

focuses on producing flows specifically tailored to improve a specific NIDS, ensuring the sys-

tem is exposed to diverse benign behaviors. The second involves generating general-purpose

synthetic benign network flows that can be used for broader research purposes without being

tied to any specific NIDS.

3.1.1 Generating Network Flows in the Context of Training an NIDS

In this Subsection, we explore approaches that focus on generating synthetic network flows to

enhance the training of anNIDS.Thesemethods aim to augment the training datasetwith syn-

theticflows that resemble real traffic, thereby improving theNIDS’s ability todetect anomalies.

This enhancement is particularly critical as it allows the NIDS to cover the patterns of regular

trafficbetter anddifferentiate themfrommalicious activities. Themodels discussedhere lever-

age generative techniques to create diverse and realistic network flows, which are then used to

train the NIDS, ensuring it is exposed to a wide range of scenarios during training.

Zenati et al. [71] make the first attempt to enhance NIDS performance by generating syn-

thetic network flows. They propose a GAN-basedmethod that creates synthetic network flows

to expand the training dataset for an NIDS. In their approach, the NIDS is an autoencoder

trained to reconstruct regular network flows. After training, the autoencoder flags poorly re-

constructed network flows as potential anomalies, assuming they are unseen during training

and thus abnormal. The goal is to generate synthetic network flows that closely resemble the

input flows, thereby improving theNIDS’s training process. To achieve this, the authors utilize

a BiGAN structure. In BiGAN, two discriminators are employed: one to distinguish between

real and synthetic network flows, and the other to differentiate the latent representations of

these flows produced by the NIDS’s encoder [72]. This process is illustrated in Figure 3.1. This

dual-discriminator setup helps stabilize the training process and ensures that the generated

flows effectively enhance NIDS performance.

40

3.1. Synthetic network flow generation using AI

Figure 3.1: BiGan structure used in ALAD. R are the real network flows, and G is the network

flows generated by the generator. The encoder is the encoder part of the NIDS; it is used to get

the projection of both R andG in its latent space, and two discriminators, D andD’, are trained

to differentiate both R from G and R’ from G’. The loss of the two discriminators becomes the

loss of G.

Zenati et al.’s method, ALAD, is tested on the KDD99 dataset
1
by evaluating the precision,

recall, and F1-score of their NIDS. Their auto-encoder NIDS outperforms the state-of-the-art

ML anomaly detection method, DAGMM. Their BiGAN training approach is also adopted by

Xu et al. [73] using the CIC-DDoS2019 dataset
2
, and by Zixu et al. [74] with the UNSWBot-IoT

dataset
3
. Both studies demonstrate substantial performance improvements when comparing

training without generated data to training with generated data. In both papers, the focus of

the generation is on the performance gain in NIDS and not the quality of the generated traffic.

Therefore, no evaluation is conducted on the generated traffic.

Han et al. [75] also explore using GAN to train a Gated Recurrent Unit with an attention

mechanism for traffic classification. They employ aWassersteinGAN [76] to generate synthetic

flows, which were used in training their classifier. Their method is tested on the ISCX-2012
4

and ISCX-2017
5
datasets, demonstrating enhanced classifier performance with the inclusion

of generated traffic during training, but here again, there is no evaluation of the quality of the

traffic that is used to improve the classifier.

Theapplication of generativemethods in the studies discussed is inherently limited by their

focus on enhancing a single specific NIDS.These methods are designed and optimized to im-

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2https://www.unb.ca/cic/datasets/ddos-2019.html
3https://research.unsw.edu.au/projects/bot-iot-dataset
4https://www.unb.ca/cic/datasets/ids.html
5https://www.unb.ca/cic/datasets/dos-dataset.html

41

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://research.unsw.edu.au/projects/bot-iot-dataset
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/dos-dataset.html

Chapter 3 – State of the art

prove the performance of theNIDS forwhich they are developed, often leading to tight integra-

tion between the generativemodels and the specific characteristics of theNIDS.Consequently,

it can be inferred that these approachesmay not generalizewell beyond their intended context,

making them less suitable for broader purposes, such as general network traffic generation.

To our knowledge, no existing studies provide a framework ormethodology that enables these

generative models to produce synthetic network flows independently of specific NIDS.

3.1.2 Generating Network Flows for General Purposes

In the previous Subsection, we highlighted the limitations of application-specific generative

methodsdesigned for enhancingNIDS. In contrast, this Subsection focuses ongeneratingnet-

workflowswithout assuming anyparticular deployment context for the synthetic traffic. These

research projects aim to replicate the characteristics of the training network closely, targeting

the broader applicability of synthetic traffic generation (like IoT network optimization [77]).

Two main challenges have emerged in the state of the art: generating network flow features

and including temporal dependencies in the generated network flows.

3.1.2.1 Individual Network flow Generation

Ring et al. [16] are the first to tackle the individual generation of network flows using WGAN-

GP. We refer to their process as individual generation because it focuses on creating network

flows independently, without considering the temporal relationships between them. Theymo-

del network flows as tabular data, reducing the problem of generating new synthetic rows in

a table without considering previous rows. As discussed in Section 2.4, handling mixed data

types is one challenge in using GAN for tabular data. They, therefore, convert categorical fea-

tures into continuous representations using IP2Vec embeddings [78] to address this issue.

An embedding is a representation of a discrete value in a continuous vector space. An

IP2Vec embedding specifically encodes the discrete attributes of a network flow, such as IP ad-

dresses, applicationports, or transportprotocols, into continuous representations. Thecontin-

uous representation for a given discrete value is based on patterns and relationshipswith other

discrete values in the dataset, which are learned by a simple Dense layer of a neural network.

To do so, the embedding model needs to be trained to predict a discrete value based on the

discrete values of its context (see Figure 3.3). Once learned, the embedding model enables the

encodingof adiscrete value into a continuous representationby taking theweights of thedense

layer that are activated by the discrete value as an embedding vector for that discrete value (see

42

3.1. Synthetic network flow generation using AI

Figure 3.2). Themixing of data types during GAN training is thus avoided.

Figure 3.2: Architecture of the neural network used by IP2Vec. Image taken from [78]. For clar-

ity, only the weights of one input and one output neuron are drawn. IP2Vec comprises a dense

layer between the input and the output layer of the vocabulary size. In this example, the neural

network is trained with the sample (4.4.4.4, 21). During the training, the one-hot encoding of

the port ‘21’ value should be predicted based on the input of the one-hot encoding of ‘4.4.4.4’.

After the training step, the vector with the components w1, w2, w3 and w4 (the weights acti-
vated by the input ‘4.4.4.4’) is the continuous representation of the IP Address 4.4.4.4.

Ring et al. trained their WGAN-GP model using the Two Time-Scale Update Rule

(TTUR) [79], where the discriminator and generator are updated with different learning rates.

This method helps achieve more stable and effective training. The approach was evaluated on

the CIDDS-001 dataset
6
by examining protocol compliance and attribute distributions. The

generated traffic had attribute distributions similar to the training traffic, particularly when

using the IP2Vec embeddings, compared to representing discrete values by binary or numeri-

6https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/
informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html

43

https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html

Chapter 3 – State of the art

Figure 3.3: Generation of training samples for IP2Vec. Image taken from [78]. Theupper part of

the figure shows the general process of training sample generation. Inputwords are highlighted
in blue, and context words are highlighted in black frames with a white background. The right

side of the figure shows the generated training samples for the corresponding combinations

of input word and context words. The lower part of the figure provides an example and shows the

generated training samples. Theobjective of the training is for the embeddingmodel to predict

the Input word based on each context word

44

3.1. Synthetic network flow generation using AI

cal representations.

Manocchio et al. [80] address the other major issue of GAN for tabular data mentioned in

Section 2.3: mode collapse. They adapt a Wasserstein GAN [76] to mimic traffic from an Aus-

tralian ISP backbone dataset, implementing a BiGAN like Zenati et al. [71]. Their model, Flow-

GAN, features twodiscriminators: one discriminating the networkflows generated by the gen-

erator and another discriminating their latent representations given by a pre-trained encoder.

They utilize IP2Vec embeddings to encode discrete features. This work can be seen as an ad-

vancement from the work of Ring et al. [16], specifically focusing on reducing mode collapse.

The generated flows are evaluated based on their duration and packet size distributions,

demonstrating reduced mode collapse. However, one issue not addressed is the learning of

dependencies among features. As discussed in Section 2.4, GAN strugglewith learning depen-

dencies in tabular data. In the results shown in Table 3.1, there appear to be some unrealistic

correlations in the generated data. For instance, somegeneratedflows exhibit ephemeral ports

(see Section 2.1) as both source and destination, which is highly unlikely in real datasets. This

anomaly could be specific to the dataset used; however, verifying this would require access to

the original data, which is unfortunately not possible since they used a private Australian ISP

dataset. Thequestionofwhether ornot theirmodel learns the correlationbetween thedifferent

features correctly remains open.

Bourou et al. [46] specifically target this question of learning correlations across features.

In their paper, they explore the possibility of adapting GAN that are initially designed for gen-

eral tabular data, to the domain of network flow data. They specifically investigate the imple-

mentation of three GAN models: TableGAN [81], CTGAN, and CopulaGAN (those last two are

presented in the reference [82]).

TableGAN utilizes a generator and discriminator based on a CNN architecture. It also in-

cludes an additional discriminator network, termed the classifierC, which is trained on the real

data to predict the value of one feature based on the values of others. By training a separate

classifier for each feature, this setup enforces that the generated data respects the dependency

relationships present in the training data.

CTGAN focusesmore on avoidingmode collapse. It achieves this using a Variational Gaus-

sian Mixture Model to normalize continuous features rather than a simple min-max normal-

ization. To further reducemode collapse in categorical features, the discriminator is designed

to consider all categories of a given feature. The training process is modified to ensure that all

categories in discrete columns occur evenly, making the generator a conditional generator.

CopulaGAN is a variation of CTGAN that emphasizes learning the dependencies among

45

Chapter 3 – State of the art

variables. Copulas are utilized to describe the intercorrelations between features. During

training, CopulaGANnot only learns the probability distributions of each table columnbut also

the correlations between these columns. These three models are compared on the task of re-

producing the NSL-KDD dataset
7
, assessing their effectiveness in capturing the complex de-

pendencies in the data.

The three studies mentioned above focus exclusively on using GAN, even though, as high-

lighted by Bourou et al. [46], the specific task of network flowgeneration closely resembles tab-

ular data generation. However, other methods for generating tabular data exist. For instance,

as discussed in the background, Bayesian Networks have already demonstrated superior per-

formance compared to GAN in specific contexts, such as medical patient data synthesis [83].

Consequently, there is anoticeable gap in the literature regardinga comprehensive comparison

between GAN and Bayesian Networks for network flow generation.

Table 3.1: Network flow generated by FlowGAN. The table is directly extracted from [80]. On

the last five flows, both the Source Port and the Destination Port are within the ephemeral port

range,which is highlyunlikely unless the trainingdata containsnetworkactivity fromacustom

protocol implemented on port 53213, which is unverifiable.

3.1.2.2 Time Dependent Network Flow Generation

Most network flow generation methods proposed in the state-of-the-art treat flows indepen-

dently, without considering correlations among them. We consider this a major limitation in

generating realistic network activities, as certain network activities result inmultiple network

flows. For example, before establishing an HTTP connection, a client may need to contact a

DNS server to resolve the domain name of the requested website. Thus, a single action by the

client can generate two flows, one to the DNS server and another to the website host. This area

of improvement is noted by the survey study of Anande et al. [10], which summarizes the usage

7https://www.unb.ca/cic/datasets/nsl.html

46

https://www.unb.ca/cic/datasets/nsl.html

3.1. Synthetic network flow generation using AI

of GAN for generating network traffic.

Xu et al. [19] are the first to address this issue with STAN (Synthetic network Traffic gen-

eration with Autoregressive Neural models), an autoregressive model predicting network flow

features based on previous flows. An autoregressive model is a statistical model used in time

series analysis that forecasts future values based on past observations. In the case of STAN, it

uses past network flow data to predict future features, capturing temporal dependencies and

patterns within the data. The model is trained using a CNN-based autoregressive neural net-

work, which processes a slidingwindow of past data points with convolutional layers to extract

relevant features, creating a context for predicting subsequent data points.

STAN predicts the distribution of network flow attributes for each data point. Continu-

ous attributes aremodeled usingmixture density networks, which output a Gaussianmixture

model, while discrete attributes are handledby softmax layers predicting theprobability distri-

bution over possible categories. Once trained, STAN generates new network flows by sequen-

tially predicting each attribute, starting from the initial data points sampled from the learned

marginal distribution and using the context of the previous k data points for subsequent pre-

dictions. Although the authors compare theirmethod against BayesianNetworkswith impres-

sive results, the lack ofmaintenance on their GitHub repository
8
hinders the reproducibility of

their work.

Yin et al. [47] critic the independent generation approach as a “strawman”method and pro-

pose NetShare, a model based on a sequential generation method called DoppelGANger [84].

NetShare generated sequences of network flows and packet headers. In this context, we are

only interested in their proposal for generating network flow sequences. DoppelGANger is

a GAN that generates a multivariate time series conditioned on metadata, consisting of two

GAN: one generating the metadata and another, based on an RNN structure, generating the

time series of network features conditioned on the generated metadata. For NetShare, the

metadata included five-tuple - source and destination IP addresses, ports, and transport pro-

tocol - while the time series encompassed elements like packet size, number of packets, and

timestamps.

Being trained on the UGR’16
9
, TON_IoT

10
, and CIDDS

11
datasets, NetShare’s generated

flows are assessed using statisticalmeasures and their impact on anomaly detector training. It

8https://github.com/ShengzheXu/stan
9https://nesg.ugr.es/nesg-ugr16/
10https://research.unsw.edu.au/projects/toniot-datasets
11https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/

informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html

47

https://github.com/ShengzheXu/stan
https://nesg.ugr.es/nesg-ugr16/
https://research.unsw.edu.au/projects/toniot-datasets
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html

Chapter 3 – State of the art

is currently the most up-to-date and well-maintained solution for generating network flows.

However, some examples provided by the authors suggest that the overall quality of the gen-

erated traffic requires significant improvement (see Table 3.2). Therefore, generating realistic

network flows with temporal dependencies remains an open challenge.

Src. IP Dst. IP Src. Port Dst. Port Protocol Dur. pkt byt

42.220.247.236 42.219.159.106 31737 53018 TCP 0.02 1 80

37.192.66.96 42.219.153.89 46143 45255 UDP 0.01 1 155

58.167.198.248 42.219.153.155 35689 48250 TCP 0.10 2 137

194.199.153.251 42.219.146.48 45821 53 UDP 0.06 1 38

47.48.160.82 42.219.151.40 6000 20623 TCP 0.02 1 36

241.54.187.197 42.219.145.218 48005 80 TCP 0.10 1 39

Table 3.2: NetShare generated network flows. Those samples are extracted from the artifact

given by the authors [47]. pkt: Packets, but: Bytes, Dur.:Duration. We can see that the first tree

flows have ephemeral ports for both Source Port and Destination Port, which is highly unreal-

istic

3.1.2.3 Identified Gaps and Improvements

We, therefore, identify two potential avenues for contributing to state-of-the-art in the

general-purpose generation of network flows:

• The first avenue involves challenging the dominance of GAN, which are used in four out

of five studies on this topic. This can be achieved by exploring alternative methods, as

has been successfully done in other fields, such asmedical data generation [83]. The goal

would be to determine whether more straightforward methods can outperform GAN in

generating network flows.

• The second avenue focuses on developing methods for generating time-dependent net-

work flowswhilemaintaining realism at the level of individual flows. Thiswould address

a significant limitation in currentmethodologies, which often overlook the temporal de-

pendencies between flows.

3.1.3 Generating Network Traffic in Other Data Format

While our thesis focuses solely on generating synthetic network flows, other formats of net-

work traffic data have been generated usingmachine learning. We do not present these exten-

sively here but give a brief overview that helps highlight the challenges associated with using

48

3.1. Synthetic network flow generation using AI

AI to generate data types other than tabular data. The two other relevant formats of traffic gen-

erated in the state of the art are packet payloads and sequences of headers. Although our study

does not directly compare to these methods, we include them for general knowledge.

3.1.3.1 Generation of Packet Payloads

Networkpacket generationaims toproduce the contentof individual packets. Wearenot aware

of any method tackling this issue differently than using neural networks. The main challenge

lies in accurately representing the bytes of a packet for generation by neural networks. A criti-

cal aspect is transforming the binary content of a payload into a continuous input suitable for

neural networks. Two methods of encoding the payload are currently being used. We present

them here briefly, and we illustrate them in Figure 3.4:

• Encoding Packet Data as Images: Chen et al. [85] represent the packet payload as a
grayscale image, leveraging the pattern recognition capabilities of Convolutional Neu-

ral Networks (CNNs) to generate realistic packets with their model, PAC-GAN. Initially,

packet bytes were represented as grayscale levels in an image. However, this method

failed to capture the necessary details for generation, prompting the authors to repeat

each byte multiple times within the image, creating regional patterns that exploited the

CNN’s ability to capture local spatial dependencies. Compared to image generation, the

challengewith packet generation lies in the precision required: slight variations in a byte

cansignificantly alter itsmeaning, unlike small changes inapixel of agrayscale image. To

mitigate this, PAC-GAN generates ranges of values instead of precise byte values, split-

ting each byte into half-bytes (nibbles) and assigning them to specific sub-ranges. This

ensured that the generated pixel values corresponded to the correct nibble subrange.

Packets are encoded in 28x28 grayscale images, padded, or truncated as necessary. Med-

dahi et al. [86] apply a similar encoding scheme to generate SIP traffic with SIP-GAN, a

modified DCGAN, incorporating the average byte error rate in the SIP Request Line as a

part of the training loss of the generator.

• Encoding Packet Data as Sequences of Discrete Values and TransformingThemUsing
One-Hot Encoding: Nukavarapu et al. [87] proposeMiragePckt, a DNS packet generator
using a sequence-based model. The generator comprises a 1D CNN and softmax func-

tion, reproducing sequences of one-hot encoded vectors, which are thenmapped back to

their byte values. This approach simplifies the encoding process and enhances the scala-

bility for large byte streams.

49

Chapter 3 – State of the art

Figure 3.4: Difference of encoding-scheme between PAC-GAN/SIP-GAN and MiragePkt. In

both cases, the goal is to transform a sequence of bytes into amatrix that can be given as input

to a neural network. The option on the left is to transform the sequence in an image with a

local region encoding nibble. Each byte is separated into two nibbles, and each nibble becomes

a byte by adding 0x8 at the end, and this byte is repeated in a square region of the resulting

image. The option on the right is to consider the bytes as discrete values in an alphabet and

then encode their one-hot representation as a matrix column.

50

3.1. Synthetic network flow generation using AI

Overall, the difficulty of packet generation using AImethods revolves around the encoding

problem: how to transform the binary content of a payload into a continuous input suitable for

neural network-based methods. The complexity of this challenge has led authors to generate

only a tiny fraction of the potential traffic.

3.1.3.2 Generation of sequences of headers

Unlike PAC-GAN, SIP-GAN, and MiragePkt, which focus on generating packet payloads and

individual packet content, the models discussed in this Subsection address the generation of

sequences of packet headers.

Dowoo Baik et al. [88] aims to generate the sequence and timing of packet headers in the

communication stream with their model, PcapGAN. This model recreates header sequences

by training three GAN on traffic extracted from pcap files. The communication is represented

by directed graphs, where nodes correspond to IP addresses and edges to packets exchanged

between hosts. Inter-arrival times are encoded as grayscale images, and header fields are en-

coded as sequences of discrete tokens. These three elements represent traffic and are generated

by three different GAN.

The first step of generation involves using an encoder to create a style vector representing

the traffic graph. This style vector conditions the generation of the three GAN.GraphGANgen-

erates new communication graphs, SeqGAN generates new header sequences, and StyleGAN

generates new inter-arrival grayscale images. The generated elements are then recombined to

produce synthetic pcap files. The different processes of generation of PcapGAN are illustrated

in Figure 3.5. Quality is assessed using Wireshark and Principal Component Analysis to com-

pare generated and real network flows, with no significant discrepancies found between the

two.

Meslet-Millet et al. [89] propose NeCSTGen, which uses Variational Autoencoders (VAE) to

encode header features into a latent space. Once the VAE well represents the header features

in this latent space, they identify the cluster header characteristics using a Gaussian Mixture

Model (GMM). From there, the authors can generate new sets of header features, but the prob-

lem of sequencing such headers remains open. To find a way to order their different headers

in traffic, they train a Recurrent Neural Network (RNN) to generate the sequence of ordering

based on the headers sampled in the previous step. The authors include a GitHub link to their

tool
12
. Still, they only compare it to traditional and older network traffic generators such as

HARPOON [90] and LitGen [91], and not against other MLmethods.

12https://github.com/fmeslet/NeCSTGen

51

https://github.com/fmeslet/NeCSTGen

Chapter 3 – State of the art

Figure 3.5: Data generation pipeline of PcapGAN. Three objects represent the traffic: 1) A se-

quence of discrete tokens for the header fields, 2) A grey-scale image for the inter-arrival times,

and 3) A directed graph for the connections. The first step is to encode the graph in a style vec-

tor. This style vector conditions the generation of the GAN of the different elements.

52

3.1. Synthetic network flow generation using AI

In contrast, Jiang et al. [18] encode entire sequences of headers as images using nPrint,

converting traffic into standardized bits. Each bit is color-coded (green for set, red for unset,

gray for vacant) to represent traffic visually. Grouping packets into sets of 1024, each row rep-

resented a packet header. TheNetDiffusionmodel, a U-net
13
based diffusionmodel, generates

new traffic images. Comparisons with other synthetic traffic generation methods like Net-

Share [47] and DoppelGANger [84] show statistical similarities and comparable performance

in anomaly-detection models trained on both authentic and generated data.

Moving beyond the network flow format presents unique challenges, especially in howdata

is represented and encoded. We face twomain issues at the packet level: generating the packet

content and determining their correct ordering. The complexity of solving these two tasks, let

alone combining them in a single-generation process, remains largely unsolved. In addition

to the reasons mentioned in Section 1.3 for focusing on network flow generation, we decide to

concentrate on network flows due to the larger body of work in this format and the relatively

early stage of synthetic network generation at the packet level.

3.1.4 Limitations of current synthetic network traffic generation

Despite significant advancements in generating synthetic network traffic flows usingAI-based

methods, several limitations hinder these techniques’ broader applicability and effectiveness.

3.1.4.1 Model Specialization and Lack of Generalization

The generative methods discussed, particularly those that enhance the performance of a spe-

cific NIDS, are highly specialized. These methods are typically tailored to specific NIDS, re-

sulting in poor generalization beyond their intended application. The close coupling between

the generative models and the particular characteristics of the NIDS complicates the applica-

tion of these techniques to the broader goal of general network traffic generation. This greatly

reduces their utility in our objective of constituting a synthetic evaluation dataset for general

NIDS evaluation.

3.1.4.2 Handling Temporal Dependencies

Most existingmodels treat flows independentlywithout considering their temporal dependen-

cies. This oversight is a significant limitation because network activities often generate mul-

13
A U-Net is a convolutional neural network with a U-shaped architecture, combining downsampling and up-

sampling paths with skip connections, allowing for detailed pixel-level predictions

53

Chapter 3 – State of the art

tiple correlated flows, such as DNS queries followed by HTTP requests. The inability to model

these dependencies accurately reduces the realism of the synthetic traffic, which could impact

its effectiveness in our objective of NIDS evaluation.

3.1.4.3 Mode Collapse and Feature Dependency Learning in GAN

Although GAN have shown promising capabilities in generating synthetic network flows, they

suffer from joint issues like mode collapse, where the generator produces limited diversity in

the synthetic data. Furthermore, GAN struggle with learning dependencies between different

features in tabular data, leading to unrealistic correlations in the generated traffic. For exam-

ple, anomalies like ephemeral ports appearing as both source and destination ports, which are

highly unlikely in real datasets, highlight the limitations in the current generativemodels’ abil-

ity to capture feature dependencies accurately.

3.1.4.4 Challenges in Packet Payload Generation

Generating packet payloads using AImethods faces significant challenges due to the complex-

ity of encoding binary content into formats suitable for neural networks. Existing approaches,

such as encoding packet data as images or sequences of discrete values, often result in sim-

plifications that do not allow traffic generation from a wide range of applications. On top of

that, generating a payload based on the ordering of its packet in the communication remains

unsolved.

3.1.4.5 Reproducibility and Lack of Comprehensive Comparisons

Someproposedmethods, like STAN, face issues related to reproducibility due to a lack ofmain-

tenance and updates in their implementation repositories. Moreover, there is a noticeable

gap in the literature concerning comprehensive comparisons between different generative ap-

proaches. While GAN are widely used, other methods like Bayesian Networks have shown po-

tential in similar contexts (e.g., medical data generation [83]). Still, little has been explored of

their effectiveness in network traffic generation. This lack of comparative analysis limits the

ability to identify the most effective techniques for specific use cases.

54

3.2. Quality evaluation of generated traffic

3.2 Quality evaluation of generated traffic

To develop amethodology for comparing network flow generationmethods and validating the

quality of any proposed model, it is essential to establish a systematic approach for evaluat-

ing the generated data. The aim is to transition from subjective, qualitative assessments to

objective, quantitative measurements that answer the question, “How good is the quality of

the generated traffic?” Achieving this requires addressing two core questions: What defines

high-quality network flow generation, and how can it be effectively measured?

As stated inSection2.1, thegenerationofnetworkflowdata canbe considered close to tabu-

lar data generation. Consequently, we can draw inspiration from how tabular data generation

is evaluated in other contexts to identify common properties and metrics. This section first

presents themethods used to assess tabular data generation, and afterward presentsmethods

used for evaluating network flow generation.

3.2.1 Evaluating Tabular Data Generation

Based on the problem formulation by Livieris et al. [92], tabular data generation involveswork-

ing with tables consisting of multiple variables, denoted as (X1, X2, . . . , Xn). The task of gen-

erating synthetic data entails creating new samples, which are new combinations of these vari-

ables, essentially forming new rows in the table.

After a tabular data generation process, we have two tables of data: (X1, X2, . . . , Xn)real,
representing the real data table, and (X1, X2, . . . , Xn)generated, representing the synthetic data
table. A synthetic sample is defined as a row in the synthetic table, i.e., a specific combination

of the variables (X1, X2, . . . , Xn)generated.
Evaluating the quality of synthetic data generation involves comparing the distributions of

the actual variables with those of the generated variables. This comparison helps determine

how well the synthetic data replicates the properties and patterns of the real data.

3.2.1.1 Primary criteria of quality evaluation

Hernandez et al. [93] propose three primary criteria for evaluating the quality of synthetic data

generation: resemblance, utility, and generalization. Ressemblance assesses howwell the dis-
tribution of the synthetic data aligns with the actual data distribution. Utility measures the
usefulness of the synthetic data for various analytical tasks, including trainingmachine learn-

ing models. Generalization evaluates the model’s capability to produce new, unseen samples

55

Chapter 3 – State of the art

rather thanmerely replicating the training data.

Meanwhile, Dankar et al. [94] categorize resemblance and utility under the broader term

“Utility” further divided into two sub-criteria: application fidelity (similar to Hernandez et al.’s
concept of utility) and broad fidelity (similar to resemblance). Dankar et al. do not address gen-
eralization; however, this is done by Gonçalves et al. [83] while keeping the broad “Utility” cri-

terion of Dankar et al.

An interesting point in the work of Dankar et al. is their approach to evaluate broad fidelity

(resemblance) on three levels: attribute, bivariate, and population. This involves assessing the

resemblance of the marginal distributions, the conditional distributions, and the joint distri-

butions between the real and synthetic data (X1, . . . , Xn)generated and (X1, . . . , Xn)real.
Integrating insights from these papers, we see three core criteria for evaluating the quality

of tabular data generation: resemblance, utility, and generalization. Resemblance, however,

is nuanced and evaluated at three levels: marginal distribution, conditional distribution, and

joint distribution.

Two key issues arise in evaluating synthetic data quality. First, utility often overlaps with

resemblance; when synthetic data closely mirrors the real data distribution, machine learn-

ing models trained on it are likely to perform similarly to those trained on real data. Sec-

ond, as Naeem et al. [95] observe, resemblance metrics frequently struggle to distinguish be-

tweenwhether synthetic samples appear realistic andwhether the generation captures the full

variability of real data. They suggest refining resemblance into two distinct criteria: realism
(termed fidelity in their paper but renamed here for consistency with Dankar et al.’s termi-

nology) and diversity. Realism assesses whether synthetic samples are drawn from the same

distribution as the real data, while diversity examineswhether the synthetic datasetmaintains

a similar level of variability as the real data.

These criteria, realism and diversity, are not distinguishable when evaluating similarity at

the marginal distribution level. However, distinguishing them at the joint distribution level

helps diagnose generativemodel issues such asmode collapse (low diversity, where only a frac-

tion of the actual distribution is captured in the synthetic data) andmode invention (low Real-

ism, where generated data do not align with the real data distribution). This realism/diversity

duality has been adopted in several works [95]–[97].

Table 3.3 summarizes the different criteria names used across various papers. Ultimately,

we identify four essential criteria: realism, diversity, utility, and novelty. This naming of the

four criteria—realism, diversity, utility, novelty—is purely from our own, but the same criteria

are nameddifferently in the literature. Once those criteria are namedanddefined, it’s essential

56

3.2. Quality evaluation of generated traffic

Realism Diversity Utility Novelty
[93] Ressemblance Utility Privacy

Utility
[94]

(broad fidelity) (application fidelity)
None

[83] Utility Information Disclosure

[98] None None None Generalization

[95], [96] Fidelity Diversity None None
[99] Fidelity diversity None Generalization

[97] Fidelity fairness None Generalization/Bias

Table 3.3: Different naming of the various criteria. There are basically four criteria that we

named realism, diversity, utility, and novelty. This table refers to all the different names that

have been given to those four criteria across the bibliography.

to delve deeper into the evaluation of each one of them. One key aspect of both realism and

diversity is that they can be evaluated at marginal, conditional, and joint levels. We, therefore,

introduce tools to evaluate these criteria in those three levels before enumerating tools to asses

the two other criteria: utility and novelty.

3.2.1.2 Evaluation of Realism and Diversity

Thegoal of this evaluation is to assess the similarity between the distributions (X1, . . . , Xn)real
and (X1, . . . , Xn)generated. We group the evaluation of realism and diversity together because

many metrics used in tabular data evaluation measure both (see Table 3.4). However, where

possible, we indicate when ametric allows us to differentiate between these two criteria.

Evaluation of Marginal Distributions Thefirst step in evaluating the resemblance between the

real and generated data distributions is to assess the marginal distributions of each variable

Xi for the real and generated data across all i. This approach indicates how well the generated

data matches the real data but does not fully differentiate between realism (how closely the

generated data resembles real data) and diversity (whether the generated data covers the total

variability of the real data).

Given that tabular data typically includes both categorical andnumerical features, different

methods are often used to evaluate these types of data:

• Categorical Data: The Kullback–Leibler divergence (KLD) is commonly used to measure

the similaritybetween the real andgenerateddistributions for categorical data [83], [94]–

[97]. TheKLD, denoted asDKL(P∥Q), quantifies the divergence bethat enhance the per-

57

Chapter 3 – State of the art

formance of a specific NIDStween two probability distributions P (real) and Q (gener-

ated). It is calculated as:

DKL(P∥Q) =
∑

x

P (Xi = x) log
(

P (Xi = x)
Q(Xi = x)

)

wherex represents the different categories of the categorical variableXi, andP (Xi = x)
and Q(Xi = x) are the probabilities of category x under the distributions P and Q,

respectively.

Some studies [19], [47] prefer using the symmetrized and smoothed version, Jensen-

Shannon Divergence (JSD), or the square root of the JSD, known as the Jensen-Shannon

distance [93]. The JSD is defined for two probability distributions P and Q and a mid-

point distributionM = 1
2(P + Q). The JSD is calculated as:

JSD(P∥Q) = 1
2DKL(P∥M) + 1

2DKL(Q∥M)

where M is the average of the distributions P and Q. The JSD is particularly useful for

measuring similarity because it is always finite and symmetric.

• Numerical Data: TheWasserstein Distance (WD), also known as the Earth Mover’s Dis-

tance, is the most frequently used metric for numerical data [92], [93], [96]. It measures

the distance between two one-dimensional numerical distributions P (Xi) and Q(Xi).
TheWD is defined as:

W (P, Q) =
∫ ∞

−∞
|FP (x)− FQ(x)| dx

whereFP andFQ are the cumulative distribution functions (CDFs) ofP (Xi) andQ(Xi),
respectively. TheWDprovides ameaningfulmeasure of the difference between distribu-

tions, especially for numerical data.

An alternative for evaluating numerical features is the Kolmogorov-Smirnov (KS) test,

utilized by some papers [94], [100]. The KS test is a non-parametric test that compares

the CDFs of two distributions, FP for the real data and FQ for the generated data. For a

numerical featureXi, the KS statistic is defined as:

D = sup
x
|FP (x)− FQ(x)|

58

3.2. Quality evaluation of generated traffic

where supx denotes the upper bound over all values x of the feature Xi. This test mea-

sures the maximum absolute difference between the CDFs, providing an evaluation of

how well the generated data matches the real data for the featureXi.

However, evaluating only the marginal distributions is insufficient for establishing the

overall resemblance between the generated and real data. In addition to the marginal distri-

bution, evaluating howwell the generated data captures the relationships between variables is

essential, which requires examining the conditional distributions.

Evaluation of Conditional Distributions The objective of evaluating the conditional distribu-

tion is to ensure that the synthetic distribution (X1, X2, . . . , Xn)generated captures the statisti-
cal dependency structure of the original data. Aswith the evaluation ofmarginal distributions,

different techniques are used for categorical and numerical features [93].

For numerical features, the primarymetric used in the state of the art is the PairwiseCorre-

lationDifference (PCD) [83], [94], also referred to as Pairwise PearsonCorrelation (PPC) in [93].

PCDmeasures theL2 norm of the difference between the real data’s correlationmatrix and the

generated data’s correlationmatrix. The Pearson correlation coefficient is utilized to construct

these correlation matrices. The PCD is calculated as follows:

PCD = ∥Corrreal − Corrgenerated∥2

Where Corrreal and Corrgenerated are the correlation matrices of the real and generated data,

respectively.

For categorical features, Hernandez et al. [93] suggest evaluating the dependency structure

by examining the contingency matrices for each pair of categorical features in both the real

and generated data. The metric used is the Contingency Matrix Difference (CMD), which is

calculated by summing the differences between the real and generated contingency matrices.

CMD is defined as:

CMD =
∑
i,j

|Creal(i, j)− Cgenerated(i, j)|

Where Creal(i, j) and Cgenerated(i, j) represent the contingency matrices of the real and
generated data for categories i and j.

These metrics help assess how well the synthetic data preserves the relationships and de-

pendencies present in the original data, which is crucial for maintaining the integrity and us-

ability of the synthetic data.

59

Chapter 3 – State of the art

Evaluation of Joint Distributions Beyond evaluating marginal and conditional distributions,

it is essential to assess the joint distribution to capture the relationship between all variables

fully. The goal here is to evaluate whether the joint distribution of (X1, X2, . . . , Xn)generated is
similar to that of (X1, X2, . . . , Xn)real, i.e.,

∀(ω1, ω2, . . . , ωn) ∈ Ω,

P
(
(X1, X2, . . . , Xn)generated = (ω1, ω2, . . . , ωn)

)
= P ((X1, X2, . . . , Xn)real = (ω1, ω2, . . . , ωn)) .

(3.1)

Amethod toassess this similarity isLogCluster [83], [94]. LogClustermeasures the similarity
of the underlying latent structure of the real and synthetic datasets in terms of clustering. The

real and synthetic datasets are first merged into a single dataset to compute this metric. Then,

a cluster analysis is performed on themerged dataset using the k-means algorithmwith afixed

number of clustersG. Themetric is calculated as:

Uc((X1, . . . , Xn)real, (X1, . . . , Xn)generated) = log
 1

G

G∑
j=1

[
nR

j

nj

− c

]2 ,

Where nj is the number of samples in the j-th cluster, nR
j is the number of samples from

the real dataset in the j-th cluster, and c = nR

nR+nS with nR
and nS

being the total number

of real and synthetic samples, respectively. Large values of Uc indicate disparities in cluster

memberships, suggesting differences in the distribution of real and synthetic data.

An alternative to LogCluster is the Propensity Score, as utilized by Dankar et al. [94]. The real

and synthetic datasets are combined to calculate the propensity score, and a binary indicator

is assigned to each record (1 for synthetic rows and 0 for original rows). A binary classification

model is trained to discriminate between real and synthetic records. The model’s predicted

values (propensity scores p̂i) are then used to compute the metric:

pMSE = 1
N

∑
i

(p̂i − 0.5)2 ,

WhereN is the size of the combineddataset. Propensity scores range from0 to 0.25, with 0

indicating nodistinguishability between the twodatasets, suggesting perfect overfitting by the

generator, while 0.25 indicates complete distinguishability. Likemarginal evaluation, propen-

sity score and LogCluster do not allow us to differentiate between realism and diversity.

On the other hand, Precision and Recall-based methods uniquely differentiate between the
criteria of realismanddiversity. Theymeasure the similarity of generated instances to real ones

60

3.2. Quality evaluation of generated traffic

(precision) and the ability of a generator to synthesize all cases found in the real set (recall) [97].

Similarly to Precision and Recall, Naeem et al. [95] propose Density and Coverage to address
outliers in evaluation. Realism is assessed by Density, which counts how many real-sample

neighborhood spheres contain each synthetic sample, calculated using k-nearest neighbors.

A low Density score indicates a lack of proximity between real and synthetic data. Coverage

assesses diversity by counting the number of synthetic neighborhood spheres that include each

real sample. A lowCoverage score suggests that several real samples lack synthetic counterparts

in their vicinity, indicating insufficient variance capture in the synthetic distribution.

Finally, Alaa et al. [99] introduce α-Precision and β-Recall, which characterize the realism
and diversity power of generative models. These metrics assume that a fraction 1 − α and

1 − β of the real and synthetic data, respectively, are “outliers”, while α and β are “typical”.

α-Precision is the fraction of synthetic samples that resemble the “most typical” α real sam-

ples, whereas β-Recall is the fraction of real samples covered by the most typical β synthetic

samples. These metrics are evaluated across all α, β ∈ [0, 1]. Data points are embedded into
hyperspheres, with most samples concentrated around the centers, typical samples near the

centers, and outliers near the boundaries.

3.2.1.3 Evaluation of Utility

Theutility criterion for evaluating synthetic data focuses on the performance ofmodels trained

on synthetic data in real-world tasks. It assesses whether synthetic data can effectively capture

essential features and patterns, making it a viable substitute for real data in various applica-

tions.

To evaluate utility, both synthetic and real data are used in specificmachine learning tasks,

andanydiscrepancies inperformance are analyzed. Themostwidelyusedmethodology for this

evaluation is Train on Synthetic, Test on Real (TSTR) [92], [93], [101]. In TSTR, a machine learning
model is trained on a specific task using the synthetic dataset and evaluated on a held-out real

test set. Thismodel’s performancemetrics (such as accuracy, precision, and F1 score) are com-

pared to those of a similar model (with the same structure) trained on real data. The TSTR

metric provides insights into howwell the synthetic data captures the underlying patterns and

distributions of the real data. Suppose a model trained on synthetic data performs compara-

bly to one trained on real data when tested on a real dataset. In that case, it indicates a high

resemblance between the synthetic and real data.

Another approach involves evaluating the impact of injecting synthetic data into the train-

ing set of a machine learning classifier [71], [73]. In this method, one classifier is trained solely

61

Chapter 3 – State of the art

on real data, while the other classifier of the same model architecture is trained on a mixture

of real and synthetic data. The performances of these classifiers are then compared. A negli-

gible or irrelevant drop in performance due to the inclusion of synthetic data suggests that the

synthetic data closely resembles the real data.

A challenge highlighted byHernandez et al. [93] is that the effectiveness of utilitymeasures

for synthetic data can depend on the type of machine learning model used. Different models

vary in their ability to capture dependencies and nuances within the data. A more sophisti-

cated model might detect subtle discrepancies between synthetic and real data that a simpler

modelmight overlook. Therefore, the choice ofmodel can significantly influence the evaluation

outcome, as it determines the model’s sensitivity to differences between training on synthetic

versus real data.

3.2.1.4 Evaluation of Novelty

Evaluating the novelty of a generative model involves assessing whether the model produces

unique samples rather than simply replicating the training data. The goal is to determine if the

generated samples reflect the data distribution’s full range rather than mere reproductions or

slight modifications of training examples.

Meehan et al. [98] evaluate the novelty of a generativemodel by examiningwhether the gen-

erated samples are systematically closer to the training data than independently drawn sam-

ples from the same distribution. They apply a non-parametric test that measures the distance

between generated samples and their nearest training samples, comparing it to the distances

between test samples and the training set. If the generated samples are found tobe closer to the

training samples than the test samples, it indicates that the model may be overfitting, mem-

orizing the training data instead of capturing the broader diversity of the data distribution.

To gain deeper insights into the model’s behavior, they divide the data space into smaller re-

gions or cells and conduct the novelty tests within each region. This allows them to detect if

overfitting or data-copying occurs in specific areas rather than across the entire dataset. By

combining the results from all regions, they obtain a comprehensive assessment of howmuch

the model is memorizing training data, providing a detailed evaluation of the model’s ability

to generate truly novel samples.

Similarly to this approach, which assess the proximity of generated samples to both train-

ing and test data, Gonçalves et al. [83] propose theMembership Disclosure (MD) method to eval-
uate novelty by identifying whether synthetic samples closely replicate real data samples. The

MD method operates by analyzing the Hamming distances between each real sample (from

62

3.2. Quality evaluation of generated traffic

both the training and testing sets) and all synthetic samples.

For each real sample, its Hamming distance to synthetic samples is used to classify it as

either training or testing data. If a synthetic sample is found to have a very lowHamming dis-

tance to a real sample, there is a plausible indication that this real sample, if from the training

set,may have been “leaked” into the synthetic data, suggesting overfitting. Gonçalves et al. use

various thresholds of Hamming distance as classifiers: if the distance between a real sample

and a synthetic sample falls below a given threshold, the real sample is classified as belonging

to the training set. The outcomes of this classification (true positives, false positives, true neg-

atives, and false negatives) allow for calculating precision and recall. High precision and recall

indicate that themethod effectively distinguishes between synthetic and real training samples.

If multiple classifiers consistently detect training data with high accuracy, it suggests that the

synthetic samples are closely alignedwith the training data, highlighting potential overfitting.

While the non-parametric test provides an overall view of distance distributions, theMem-

bership Disclosure method offers an instance-level assessment, giving a more granular evalu-

ation of potential overfitting and direct replication in synthetic data generation.

In addition to these methods, Alaa et al. [99] propose an authenticity score to quantify how
muchagenerativemodel creates novel samples. The score is derived fromamixturemodel rep-

resenting the generative process as a combination of truly new synthetic samples and slightly

varied versions of the training data. An authenticity classifier is employed to assess whether

a sample is memorized or novel, using a likelihood-ratio test that compares the distance of

synthetic samples to their nearest training counterparts. The classifier evaluates if a synthetic

sample is closer to the nearest training data point than to other points, thus identifying over-

fitting and lack of generalization. This approach provides a comprehensive framework for dis-

tinguishing between genuine generalization and simple data memorization.

Gonçalves et al. [83] used anAttributeDisclosuremetric to assess how easily a specific feature
in the real data can be inferred by examining similar synthetic data. This metric is primarily

designed to preserve privacy in the training data. It is particularly useful when the goal is to

prevent individualswith access to certain network features from reconstructing private or sen-

sitive information. However, this privacy-focusedmetric is unrelated to the task of generating

synthetic data that closely mimics real data for the purpose of evaluating novelty.

In Table 3.4, we reference all the metrics used to evaluate tabular data generation as well

as the criteria they assess, the data type they are working with, and the distribution on which

they apply.

63

Chapter 3 – State of the art

Score
Criteria

D
escription

ofthescore
R
e
a
l.

D
i
v
.

U
t
i
l.

N
o
v
.

D
i
s
t
r
i
b
u
t
i
o
n

I
n
p
u
t

D
e
s
c
r
i
p
t
i
o
n

R
e
f
.
(
s
)

N
um
.

Cat.

K
L
D

✓
✓

M
a
r
g
.
D
i
s
t
r
.

✓
C
o
m
p
u
t
e
t
h
e
K
L
D
b
e
t
w
e
e
n

g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
f
e
a
t
u
r
e

[
8
3
]
,
[
9
4
]
–
[
9
7
]

J
S
D

✓
✓

M
a
r
g
.
D
i
s
t
r
.

✓
C
o
m
p
u
t
e
t
h
e
J
S
D
b
e
t
w
e
e
n

g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
f
e
a
t
u
r
e

[
1
9
]
,
[
4
7
]

W
D

✓
✓

M
a
r
g
.
D
i
s
t
r
.

✓
C
o
m
p
u
t
e
t
h
e
W
D
b
e
t
w
e
e
n

g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
f
e
a
t
u
r
e
s

[
9
2
]
,
[
9
3
]
,
[
9
6
]

K
S
t
e
s
t

✓
✓

M
a
r
g
.
D
i
s
t
r
.

✓
N
o
n
-
p
a
r
a
m
e
t
r
i
c
t
e
s
t
t
h
a
t
c
o
m
p
a
r
e
s

t
h
e
C
D
F
s
o
f
g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
d
i
s
t
r
i
b
u
t
i
o
n
s

[
9
4
]
,
[
1
0
0
]

P
C
D

✓
C
o
n
d
.
D
i
s
t
r
.

✓
C
o
m
p
a
r
e
t
h
e
p
a
i
r
w
i
s
e
c
o
r
r
e
la
t
i
o
n

m
a
t
r
i
x
o
f
t
h
e
g
e
n
e
r
a
t
e
d
d
a
t
a
w
i
t
h
t
h
e
r
e
a
l
o
n
e

[
8
3
]
,
[
9
3
]
,
[
9
4
]

C
M
D

✓
C
o
n
d
.
D
i
s
t
r
.

✓
D
i
f
f
e
r
e
n
c
e
s
b
e
t
w
e
e
n
t
h
e
r
e
a
l
a
n
d

g
e
n
e
r
a
t
e
d
c
o
n
t
i
n
g
e
n
c
y
m
a
t
r
i
c
e
s

[
9
3
]

L
o
g
C
lu
s
t
e
r

✓
✓

J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
x
i
m
i
t
y
o
f
r
e
a
l
a
n
d
g
e
n
e
r
a
t
e
d
s
a
m
p
le
s
,

e
v
a
lu
a
t
e
d
t
h
r
o
u
g
h
c
lu
s
t
e
r
i
z
a
t
i
o
n

[
8
3
]
,
[
9
4
]

P
r
o
p
e
n
s
i
t
y

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
b
a
b
i
li
t
y
t
h
a
t
a
d
a
t
a
r
e
c
o
r
d
i
s

s
y
n
t
h
e
t
i
c
r
a
t
h
e
r
t
h
a
n
r
e
a
l

[
9
4
]

P
r
e
c
i
s
i
o
n

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
b
a
b
i
li
t
y
t
h
a
t
a
g
e
n
e
r
a
t
e
d
s
a
m
p
le

b
e
lo
n
g
s
t
o
t
h
e
r
e
a
l
d
i
s
t
r
i
b
u
t
i
o
n

[
9
7
]

R
e
c
a
ll

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
b
a
b
i
li
t
y
t
h
a
t
a
r
e
a
l
s
a
m
p
le

b
e
lo
n
g
s
t
o
t
h
e
g
e
n
e
r
a
t
e
d
d
i
s
t
r
i
b
u
t
i
o
n

[
9
7
]

D
e
n
s
i
t
y

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
b
a
b
i
li
t
y
m
a
s
s
o
f
t
h
e
g
e
n
e
r
a
t
e
d

d
i
s
t
r
i
b
u
t
i
o
n
c
o
v
e
r
e
d
b
y
t
h
e
r
e
a
l
d
i
s
t
r
i
b
u
t
i
o
n

[
9
5
]

C
o
v
e
r
a
g
e

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

P
r
o
b
a
b
i
li
t
y
m
a
s
s
o
f
t
h
e
r
e
a
l
d
i
s
t
r
i
b
u
t
i
o
n

c
o
v
e
r
e
d
b
y
t
h
e
g
e
n
e
r
a
t
e
d
d
i
s
t
r
i
b
u
t
i
o
n

[
9
5
]

α
-
p
r
e
c
i
s
i
o
n

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

D
e
n
s
i
t
y
s
c
o
r
e
a
p
p
li
e
d
t
o
a
n
h
y
p
e
r
s
p
h
e
r
e
e
m
b
e
d
d
i
n
g
o
f
t
h
e
d
a
t
a
m
a
n
i
f
o
ld

[
9
9
]

β
-
r
e
c
a
ll

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

C
o
v
e
r
a
g
e
s
c
o
r
e
a
p
p
li
e
d
t
o
a
n
h
y
p
e
r
s
p
h
e
r
e
e
m
b
e
d
d
i
n
g
o
f
t
h
e
d
a
t
a
m
a
n
i
f
o
ld

[
9
9
]

T
S
T
R

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

C
o
m
p
a
r
i
s
o
n
o
f
a
m
o
d
e
l
t
r
a
i
n
e
d
o
n
r
e
a
l
d
a
t
a

t
o
o
n
e
t
r
a
i
n
e
d
o
n
s
y
n
t
h
e
t
i
c
d
a
t
a

[
9
2
]
,
[
9
3
]
,
[
1
0
1
]

M
L
t
r
a
i
n
i
n
g

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

I
m
p
a
c
t
o
f
i
n
je
c
t
i
n
g
s
y
n
t
h
e
t
i
c
d
a
t
a

i
n
t
o
t
h
e
t
r
a
i
n
i
n
g
s
e
t
o
f
a
M
L
c
la
s
s
i
fi
e
r

[
7
1
]
,
[
7
3
]

T
e
s
t
f
o
r
c
o
p
y

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

N
o
n
-
p
a
r
a
m
e
t
r
i
c
t
e
s
t
t
h
a
t
c
o
m
p
a
r
e
s

d
i
s
t
a
n
c
e
s
b
e
t
w
e
e
n
g
e
n
e
r
a
t
e
d
a
n
d
t
r
a
i
n
i
n
g
d
a
t
a

[
9
8
]

A
u
t
h
e
n
t
i
c
i
t
y

✓
J
o
i
n
t
D
i
s
t
r
.

✓
✓

M
o
d
i
fi
c
a
t
i
o
n
o
f
T
e
s
t
f
o
r
c
o
p
y

b
u
t
w
i
t
h
a
li
k
e
li
h
o
o
d
-
r
a
t
i
o
t
e
s
t

[
9
9
]

M
D

✓
J
o
i
n
t
D
i
s
t
r
.

✓
D
e
t
e
c
t
i
o
n
o
f
t
r
a
i
n
i
n
g
s
a
m
p
le
c
o
p
i
e
d

i
n
s
i
d
e
t
h
e
g
e
n
e
r
a
t
e
d
s
e
t

[
8
3
]

T
a
b
le
3
.
4
:
S
u
m
m
a
r
y
o
f
t
h
e
m
a
i
n
e
v
a
lu
a
t
i
o
n
m
e
t
h
o
d
s
u
s
e
d
t
o
a
s
s
e
s
s
t
h
e
q
u
a
li
t
y
o
f
s
y
n
t
h
e
t
i
c
t
a
b
u
la
r
d
a
t
a
a
n
d
t
h
e
c
r
i
t
e
r
i
a
t
h
e
y

a
s
s
e
s
s
.

64

3.2. Quality evaluation of generated traffic

3.2.2 Evaluating Network Traffic Generation

The previous Subsection expanded on the evaluation of tabular data generation. This Subsec-

tion specifically focuses on the evaluation of network traffic generation. We discuss how tab-

ular metrics are adapted for this context, the current network traffic generation evaluation is-

sues, and the specific criteria for assessing it. Table 3.5 summarizes the different metrics used

by Network Flow generation research.

3.2.2.1 Application of Tabular Data Evaluation

Many papers apply metrics commonly used for tabular data generation to evaluate network

traffic generation [19], [46], [47], [80], [84]. This is particularly relevant when the generated

network data is in a network flow format [19], [46], [47], [80]. For instance, Jensen-Shannon

Divergence (JSD) has been used to evaluate the realism, and diversity of generated traffic [19],

[47]. The Wasserstein Distance (WD) is another frequently used metric [46], [47], [80], [84].

Additionally, a χ2
test was utilized by Bourou et al. [46] to assess the goodness-of-fit for cate-

gorical distributions. Correlation studies have also compared the correlation structures in the

generated and real data. For example, [46], [84] usedPCD to ensure that the generatednetwork

flows preserve the correlation structure of the real network flows.

3.2.2.2 Abuse of the Utility Metric

Many studies evaluate synthetic data by examining its impact on the performance ofNIDS [19],

[46], [47], [73], [84], underscoring the popularity of utility evaluation for comparing synthetic

network flow generationmethods. Zingo et al. [101] introduced the Train on Synthetic, Test on

Real (TSTR) approach to measure how well-generated traffic serves specific applications, like

NIDS enhancement. While TSTR and similar methods provide insights into utility for specific

tasks, they may not fully capture synthetic data’s general quality or its applicability across di-

verse models and use cases.

For example, Xu et al. [73] evaluate traffic generated by WGAN-GP based solely on perfor-

mance improvements in a custom classifier, which, while useful, may not generalize to other

models or scenarios. As Hernandez et al. [93] observe, utility evaluations tied to particular

models can obscure synthetic data’s overall quality. While utility metrics are essential for un-

derstanding data effectiveness in particular contexts, they alonemay not indicate broader data

quality or its usability across varied applications.

65

Chapter 3 – State of the art

3.2.2.3 Lack of Novelty Awareness

Most papers on synthetic traffic generation do not address the potential for models to memo-

rize and replicate training data. This concern is highlighted by Yien et al. [47], who noted that

neither their work nor other previous studies [84] provided methods to evaluate the potential

privacy leakage of generative models. Instead, they explored the fidelity-privacy tradeoff by

assessing the impact of Differential Privacy (DP) on model training. While this approach fo-

cuses on privacy guarantees, it does not directly address the issue of novelty, which involves

assessing whether generated samples are mere copies of the training data. The evaluation of

novelty is crucial for avoiding overfitting and ensuring that the model can generalize beyond

the training set. This aspect remains largely unexplored in the state-of-the-art synthetic traffic

generation approaches.

3.2.2.4 Compliance: A Network-Specific Criterion

Besides the above factors of data quality evaluation, another critical aspect of evaluating gener-

ated network traffic is ensuring that the data adheres to network protocol specifications. Ring

et al. [16], who generate traffic through network flows, assess each newflowby verifying its ad-

herence to network rules. For example, they ensured that flows using the UDP protocol did not

include TCP flags, referring to this evaluation as passing network flows through a series of Do-

main Knowledge Tests. This approach is also utilized in evaluating STAN, themodel presented

by Xu et al. [19].

In the context of packet traffic generation,models like PAC-GAN [85] and SIP-GAN [86] are

evaluated by broadcasting the generated packets in a network and observing if the targets re-

sponded correctly according to protocol specifications. Additionally, the number of incorrectly

generated field values in packets (i.e., non-compliance with network standards) are counted.

These evaluations reflect the importance of compliance as a criterion for goodnetwork traf-

fic generation. Compliancemeasures howwell the generated samples align with network pro-

tocol specifications. As Ring et al. [16] noted, while compliance and realism are related, they

are distinct criteria. Realism evaluates how closely synthetic samples resemble actual data dis-

tributions, whereas compliance checks whether samples conform to network protocol specifi-

cations. A synthetic sample can appear highly realistic, resembling real data, yet fail to meet

compliance standards. For instance, a packet might have a payload nearly identical to a real

one but contains slight variations in critical bytes, which could invalidate the entire packet.

66

3.2. Quality evaluation of generated traffic

Sc
or
e

Cr
ite
ri
a

D
es
cr
ip
tio
n

R
e
a
l.

D
i
v
.

U
t
i
l.

N
o
v
.

C
o
m
p
.

D
e
s
c
r
i
p
t
i
o
n

R
e
f
.
(
s
)

J
S
D

✓
✓

C
o
m
p
u
t
e
t
h
e
J
S
D
b
e
t
w
e
e
n

g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
f
e
a
t
u
r
e

[
1
9
]
,
[
4
6
]
,
[
4
7
]
,
[
8
0
]
,
[
8
4
]

W
D

✓
✓

C
o
m
p
u
t
e
t
h
e
W
D
b
e
t
w
e
e
n

g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
f
e
a
t
u
r
e

[
4
6
]
,
[
4
7
]
,
[
8
0
]
,
[
8
4
]

K
S
T
e
s
t

✓
✓

N
o
n
-
p
a
r
a
m
e
t
r
i
c
t
e
s
t
t
h
a
t
c
o
m
p
a
r
e
s

t
h
e
C
D
F
s
o
f
g
e
n
e
r
a
t
e
d
a
n
d
r
e
a
l
d
i
s
t
r
i
b
u
t
i
o
n
s

[
4
6
]

χ
2
T
e
s
t

✓
✓

P
r
o
b
a
b
i
li
t
y
t
h
a
t
r
e
a
l
a
n
d
g
e
n
e
r
a
t
e
d
f
e
a
t
u
r
e
s

a
r
e
s
a
m
p
le
d
f
r
o
m
t
h
e
s
a
m
e
d
i
s
t
r
i
b
u
t
i
o
n
s

[
4
6
]

P
C
D

✓
C
o
m
p
a
r
e
t
h
e
p
a
i
r
w
i
s
e
c
o
r
r
e
la
t
i
o
n

m
a
t
r
i
x
o
f
t
h
e
g
e
n
e
r
a
t
e
d
d
a
t
a

w
i
t
h
t
h
e
r
e
a
l
o
n
e

[
4
6
]
,
[
8
4
]

M
L
t
r
a
i
n
i
n
g

✓
I
m
p
a
c
t
o
f
i
n
je
c
t
i
n
g
s
y
n
t
h
e
t
i
c
d
a
t
a

i
n
t
o
t
h
e
t
r
a
i
n
i
n
g
s
e
t
o
f

a
M
L
c
la
s
s
i
fi
e
r

[
1
9
]
,
[
4
6
]
,
[
4
7
]
,
[
7
3
]
,
[
8
4
]

T
S
T
R

✓
C
o
m
p
a
r
i
s
o
n
o
f
a
m
o
d
e
l
t
r
a
i
n
e
d

o
n
r
e
a
l
d
a
t
a
t
o
o
n
e
t
r
a
i
n
e
d

o
n
s
y
n
t
h
e
t
i
c
d
a
t
a

[
1
0
1
]

D
K
C

✓
T
e
s
t
t
h
e
c
o
n
f
o
r
m
i
t
y
o
f
s
y
n
t
h
e
t
i
c

d
a
t
a
t
o
n
e
t
w
o
r
k
s
p
e
c
i
fi
c
a
t
i
o
n
s

[
1
6
]
,
[
1
9
]

N
e
t
w
o
r
k
r
e
s
p
o
n
s
e

✓
T
e
s
t
t
h
e
r
e
s
p
o
n
s
e
o
f
t
h
e
n
e
t
w
o
r
k

w
h
e
n
s
y
n
t
h
e
t
i
c
d
a
t
a
i
s
b
r
o
a
d
c
a
s
t
e
d

[
8
5
]
,
[
8
6
]

B
y
t
e
E
r
r
o
r
R
a
t
e

✓
N
u
m
b
e
r
o
f
b
y
t
e
s
i
n
c
o
r
r
e
c
t
ly
g
e
n
e
r
a
t
e
d

[
8
5
]
,
[
8
6
]

T
a
b
le
3
.
5
:
S
u
m
m
a
r
y
o
f
t
h
e
f
u
n
c
t
i
o
n
u
s
e
d
t
o
e
v
a
lu
a
t
e
g
e
n
e
r
a
t
e
d
N
e
t
w
o
r
k
T
r
a
f
fi
c
.

67

Chapter 3 – State of the art

3.2.2.5 Evaluating the Preservation of Temporal Dependencies

As discussed in Subsection 3.1.2, several studies [19], [47], [84] emphasize the importance of

generating network flows that preserve the dependencies between them over time. To evalu-

ate whether their DoppelGANgermodel preserves these temporal dependencies, Lin et al. [84]

compare the autocorrelation of the real-time series with that of the generated time series, av-

eraging the differences across all time lags. Autocorrelationmeasures how the current value of

a time series is related to its past values at various time intervals.

However, there are twomain issues with Lin et al.’s evaluation approach. First, it only con-

siders the preservation of temporal dependencies in the numerical features of the time series,

such as the number of Bytes or Packets exchanged. It ignores the temporal dependencies in
categorical features, such as Port or Protocol. In the context of network flows, this means that
essential sequences, like an HTTPS connection being preceded by a DNS request, might be

overlooked by this evaluationmethod. Second, by averaging the differences in autocorrelation

across all possible time lags, themethod risks smoothing out significant differences that occur

at specific, relevant time lags. In time series analysis, not all time lags are equally important,

and averaging canmask the preservation (or lack thereof) of dependencies at critical intervals.

STAN, on the other hand, is only evaluated by comparing the correlation of numerical fea-

tures at time t with those at time t − 1, which corresponds to an autocorrelation with a lag of
1. This approach is insufficient for detecting more distant dependencies, which is particularly

problematic in network traffic analysis, where different interactions might produce flows that

are not directly sequential. NetShare,meanwhile, does not assess the preservation of temporal

dependencies at all, although the preservation of temporal dependencies is a vital problem of

the paper.

In summary, the currentmethods for evaluating the consistency of temporal dependencies

in numerical features are underdeveloped, and no existing work has proposed a solution to

assess temporal dependencies in categorical features within the network domain.

3.2.3 Limitations of current synthetic traffic evaluation

Despite the advancements in evaluating network traffic generation, several limitations persist

in the current methodologies.

68

3.3. Summary

3.2.3.1 Utility Metric Limitations

Thewidespread use of utilitymetrics, particularly in the context of trainingNIDS, highlights a

significant limitation. Utility evaluations, such as Train on Synthetic and Test on Real (TSTR),

depend highly on the specific machine learning models used in the assessment. This depen-

dence makes it difficult to generalize the quality of synthetic data beyond the particular use

case. As a result, while these evaluations can provide insights into the data’s applicability for

specific tasks, they may not comprehensively evaluate its overall quality or suitability for

broader applications.

3.2.3.2 Lack of Comprehensive benchmarks for All Aspects of Tabular Data Generation

Independent network flow generation is a specialized form of tabular data generation, yet

many studies fail to incorporate the recent advancements in evaluating tabular data genera-

tion comprehensively. For instance, novelty—the ability to generate original data rather than

replicating the training set—is seldom assessed. A valuable contribution would be the devel-

opment of a comprehensive benchmark that evaluatesmultiple facets of effective network flow

generation. This benchmark could be significantly enriched by the methodologies and criteria

established in the broader field of tabular data generation.

3.2.3.3 Inadequate Evaluation of Temporal Dependencies

Theevaluation of temporal dependencies in generated network traffic is still in its early stages.

Current methods often focus on numerical features, neglecting the temporal relationships in

categorical features, which are crucial for accurately simulating network behavior. Addition-

ally, averaging autocorrelation differences across all time lags can obscure necessary depen-

dencies at specific intervals, leading to evaluations thatmay not fully reflect the proper tempo-

ral structure of the data. More sophisticated techniques are needed to assess whether gener-

ated traffic accurately preserves the temporal dependencies betweennumerical and categorical

network traffic attributes.

3.3 Summary

In our pursuit of generating network flows for evaluating NIDS performance, several promis-

ing avenues for advancing the state of the art are emerging:

69

Chapter 3 – State of the art

• Developmethods that challenge thedominanceofGANbyexploring thepotential of non-

neural network statistical approaches, such as Bayesian networks, to address the prob-

lem. This direction is supported by recent successes of classical statistical methods in

similar contexts, such as medical data generation [83].

• Introduce a generative method capable of producing time-dependent network flows

without compromising the quality of independent network flows, addressing the short-

comings observed in approaches like NetShare.

• Establish a standardized framework for evaluating the quality of generated networkflow

datasets that minimizes assumptions about the dataset’s intended use. This approach

would help avoid the pitfalls associated with the overreliance on utility metrics.

We deal with those three points in the rest of this thesis.

70

Chapter 4

Individual Network Flows Generation With
Bayesian Networks

4.1 Motivations

There is a pressing need to augment the volume of legitimate network traffic data, and given

the privacy concerns and logistical challenges of collecting benign real-world network traffic,

synthetic data generation has emerged as a viable solution. Asmany recent approaches rely on

Generative Adversarial Networks (GAN) to generate synthetic network flows (see Section 3.1),

we choose to focus on this method. Furthermore, since network flow is a commonly used data

format in NIDS, we center our efforts on generating synthetic network flows specifically.

Despite their popularity, using GAN to generate network flows brings significant

challenges, as detailed in Section 2.4. These challenges include difficulty in modeling depen-

dencies among features, handling themix of categorical and numerical data, and dealing with

sparse distributions in high-dimensional spaces. These issues complicate the generation pro-

cess, often resulting in less realistic synthetic network flows. Additionally, training GAN is

resource-intensive and time-consuming, requiring substantial computational power, which

we define here as a lack of efficiency. In this context, efficiency refers to minimizing computa-
tional power while achieving high-quality output.

Given these challenges, a key question arises: Does the quality of the traffic generated by GAN
justify their high computational cost? While GAN are known for their ability to capture complex

dependencies in data, their performance may not always outweigh the resource costs. This

leads us to explore Bayesian Networks as an alternative method that may offer a more quali-

tative and efficient approach to generating individual network flows. Bayesian Networks, as

we argue, provide comparable—or even superior—results while requiring less computational

power, potentially offering a better solution than existing GAN-basedmethods.

71

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

4.1.1 Individual Network Flow Generation

Despite the interdependencies between network flows in real-world traffic, generating indi-

vidual network flows independently is a necessary first step in our approach. This step allows

us to ensure that each generated flow is realistic on its own, focusing on capturing the fun-

damental characteristics of individual flowswithout the added complexity of temporal depen-

dencies. If we were to generate time-dependent flows directly, we would face the challenge of

ensuring both the realism of the individual flows and their temporal relationships at the same

time, which could result in errors in both aspects. By firstmastering the generation of accurate

individual flows, we create a strong foundation that simplifies the incorporation of temporal

dependencies later.

Additionally, as highlighted in Section 3.2, GAN that incorporate temporal dependencies,

such as NetShare, encounter significant difficulties in modeling the inter-feature dependen-

cies even at the flow level. Therefore, our approach aims to produce more realistic individual

networkflowswith fewer computational requirements, avoiding these issues in theearly stages

of development. Once we are confident in the quality of the individual flows, we can then ex-

tend our work to integrate temporal dependencies in Section 5.4, ensuring that we address

both aspects (flow realism and temporal patterns) sequentially and effectively.

4.1.2 Rationale for Using Bayesian Networks for Synthetic Network Flow Gen-
eration

Our objective is to explore whether a more efficient and higher-quality alternative to GAN for

generating individual network flows exists. As discussed in Section 2.4, this task is similar to

generating synthetic tabular data. Bayesian Networks (BN) have demonstrated advantages in

similar tabular data generation tasks, particularly in capturing relationships between features

and learning marginal distributions more accurately, as evidenced in domains like synthetic

patient data generation (see Section 3.1). These strengths arise from the ability of BN tomodel

conditional dependencies, which is critical when generating realistic tabular data.

In the context of network flow generation, where certain features may be conditionally de-

pendent on others, this advantage becomes particularly relevant. The ability of BN to model

thesedependenciesoffers apotentially effective solution forgenerating syntheticnetworkflows,

a challenge that has been under-explored. However, network flow datasets may contain more

numerical variables compared to datasets in other domains like medical data, which can pose

difficulties for BN. This presents an opportunity to investigate whether BN can still provide a

72

4.2. Research Objectives and Contributions

robust and accurate solution for generating synthetic network flows despite these challenges.

An additional advantage of Bayesian Networks (BN) is their explainability. BN are inher-

ently interpretable, representing conditional dependencies between features through a

directed acyclic graph (DAG), which clarifies how each feature influences or is influenced by

others in the dataset. This transparency is especially beneficial in network flow generation,

where specific traffic types can be generated or omitted to match network scenarios, support-

ing the adaptability discussed in Section 1.2.

However, it is also essential to acknowledge the limitations of BN. As mentioned in Sec-

tion 2.4, these models face challenges with scalability and are less effective when dealing with

continuous features or datasets with many features or categories. Despite these obstacles, the

potential benefits of BNmake them a compelling candidate for this investigation.

4.2 Research Objectives and Contributions

The goal of this research is to determine to what extent Bayesian Networks (BN) can serve as a

viable alternative toGenerative Adversarial Networks (GAN) for generating individual network

flows. Specifically, we aim to explore whether BN can generate high-quality synthetic network

flows while offering reduced computational costs compared to GAN.

To address this, we focus on the following key research questions:

• AreBNpreferable toGAN for generatinghigh-quality synthetic networkflowswith lower

computational overhead?

• How does the effectiveness of BN versus GAN vary when considering different sets of

features?

• Are the conclusions regarding the use of BN versus GAN consistent across different

datasets?

This chapter introduces two key contributions. First, it presents a method that leverages

Bayesian Networks to generate individual network flows, addressing challenges such as re-

ducing the cardinality of categorical features and discretizing numerical features. Second, it

introduces a comprehensive benchmark designed to evaluate the quality of the generated in-

dividual network flows. This benchmark draws on recent advances in the evaluation of tabular

data generation to provide a thorough assessment of synthetic network flows across multiple

criteria.

73

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

4.3 Bayesian Networks for Network Flow Generation

In this section, we present the first contribution of this chapter: a solution to implement

Bayesian Networks (BN) for generating individual network flows.

Network flowdata is a specific subcategory of tabular data. BN can face challenges inmod-

eling such data, especially when it presents a mixture of numerical features and categorical

features with high cardinality. As shown in Table 4.4, our datasets contain a combination of

both numerical features, like bytes, and categorical features, like IP addresses, that can span

up to 2
32
distinct values. Therefore, to effectively implement BN for network flow generation,

we need to address these issues.

4.3.1 Addressing Challenges for BN on Network Flows

4.3.1.1 Reducing the Cardinality of Discrete Features

In a BN, the size of a Conditional Probability Table (CPT) for a node grows polynomially with
the cardinality d, following the formulaO(dk+1), where k is the number of parent nodes [62].

This complexity becomesparticularly relevantwhen considering features innetworkflowswith

potentially high cardinality, such as IP Addresses and Ports.

IP Addresses In network flow data, IP addresses can be categorized as either public or pri-

vate. Public IP addresses typically represent external hosts and are often anonymized in intru-

sion detection system research [6], [8], [102]. Since their specific values are less meaningful in

this context, we can reduce the cardinality by treating all public IPs as a single category. The

actual value of the public IP address is less significant than the fact that it belongs to an exter-

nal host. This approach maintains sufficient detail for evaluating intrusion detection systems

while simplifying the model, making it more manageable for BN.

Ports Likepublic IP addresses, ephemeral ports—temporaryports assignedbyoperating sys-

tems—hold limited informational value. Their actual value is less informative than the fact that

they are ephemeral. Therefore, similar to how public IP addresses are treated, we group all

ephemeral port values into a single category to reduce cardinality. However, certain ports are

non-ephemeral and associated with well-known services (e.g., HTTP on port 80).

Relevance to Intrusion Detection These reductions in cardinality do not negatively impact the

subsequent task of intrusion detection. Ports and IP addresses, while useful as identifiers, are

74

4.3. Bayesian Networks for Network Flow Generation

typically not directly analyzed by Network Intrusion Detection Systems (NIDS).What matters

more is the recognition of targeted services and the origin of an attack (internal or external).

By reducing the cardinality of these features, we maintain model simplicity without compro-

mising the accuracy or effectiveness of NIDS evaluation.

4.3.1.2 Discretizing Numerical Features

BN require all variables to be discrete in order to compute their CPTs. However, network flow

datasets contain several continuous numerical variables, such as the number of bytes or the

average inter-arrival time of packets. A naive approach to discretize these features would be

to treat each unique numerical value as a distinct category. However, this would lead to an

explosion in complexity, similar to what happens with high-cardinality categorical features.

To address this, we discretize numerical variables into a limited number of categories. We

arbitrarily decide that eachnumerical variable should be discretized into atmost 40 categories.

This threshold provides a balance betweenpreserving the granularity of the data andmanaging

the complexity of the BN.We employ two strategies for discretizing numerical features:

• Quantile Discretization: This method divides the values of a numerical feature into in-

tervals such that each interval contains an equal number of values. This ensures that the

categories capture the distribution of the feature.

• VGM Discretization: This method fits a Variational Gaussian Mixture Model (VGMM)

to the distribution of the numerical feature. The continuous values are then clustered

into discrete categories, with each category representing a Gaussian component. This

method allows the discretization to reflect the underlying probabilistic structure of the

data.

4.3.2 Implementation with the bnlearn Python Library

To implement BN for generating network flows, we use the popular Python library for BN on
tabular data called bnlearn1. It is important to note that this library is not equivalent to the R
library that shares the same name

2
, but is instead based on the pgmpy framework3.

1
Taskesen, E. (2020). We are learning Bayesian Networks with the bnlearn Python Package. (Version 0.3.22)

[Computer software]. https://erdogant.github.io/bnlearn

2
https://www.bnlearn.com/

3
https://pgmpy.org/

75

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

As discussed in Section 2.3, training a BN involves two steps: learning the structure of the

network (the dependencies between variables) and learning the parameters of each node (the

CPTs of each feature).

To select the appropriate structure learning algorithm,we test various algorithms available

in the bnlearn library on theUGR’16 dataset (see Subsection 4.5.1) and computed their respec-
tive BIC scores. Our goal was to represent the dependencies among the dataset’s features with

the fewest possible parameters.

Given a collection of data pointsΩ = (xi)i≤n, a model θ, and k, the number of parameters

in θ, BIC is defined by Eq. 4.1:

BIC(θ | Ω) = −2
n∑

i=1
log(P(xi|θ)) + klog(n) (4.1)

Structure LearningMethod BIC Score (Lower is better)
Naive Bayes

4 1.94× 107

Chow-Liu 1.80× 107

Hill Climbing 1.68× 107

Table 4.1: Comparisonofdifferent structure learningalgorithms fromPython’sbnlearn library
on UGR’16.

A lower BIC score indicates a model that balances a good fit with minimal parameters,

thereby avoiding overfitting as shown in Table 4.1; the Hill-Climbing algorithm provided the

best BIC score in this experiment, so we choose this algorithm for our study.

After performing structure learning, we obtain the parents of each variable. We compute

the CPT at each node sincewe only deal with categorical features due to our discretization pro-

cess. Figure 4.1 shows an example of a BN trained onUGR’16 using theHill-Climbing structure
learning algorithm.

4.3.2.1 Sampling of new network flows using the learned model

Once the CPT for each variable is learned, we sample from the root node (td, which is the flow
duration, in Figure 4.1), determine the initial variable’s value, and then deduce the others using

4
Naive Bayes is not technically a structure learning algorithm but a method for constructing a Bayesian Net-

work with a predefined structure where all features are assumed to be conditionally independent given the class

variable. For example, in anetworkflowmodel,NaiveBayesmight assume that features like thenumberofpackets

and the flow duration are conditionally independent given the transport protocol (in some short-lived UDP con-

nections, the number of packets and the duration of the flow may be independent as illustration). It is included

in this table because it is one of the methods proposed by the bnlearn library.

76

4.4. Evaluation Methodology and Metrics

Bayes’ rule. After sampling all the variables, we can revert the discretized variables back to their

original numerical spaces:

• Quantile Discretization: The discretized value represents an interval. To obtain the nu-

merical value back, we sample uniformly fromwithin that interval.

• VGMDiscretization: Here, the discretized value is the index of a Gaussian kernel, from
whichwestore theparameters (meanandvariance). Thenumerical value is sampled from

the normal distribution associated with that kernel.

Figure 4.1: Example of a BN structure trained on UGR’16 with Hill-Climbing. Nodes are fea-

tures; arrows indicate dependencies. The name of the features are explained in Table 4.4

4.4 Evaluation Methodology and Metrics

The goal of this section is to present an evaluation methodology that allows us to compare the

quality of the generation of BN and the different GANmodels and baselines. Based onwhatwe

discuss in Section 3.2, the evaluation of individual network flow generation relies on assessing

four criteria:

• Realism: A generated network flow should appear to be sampled from the distribution

of the training dataset.

• Diversity: The distribution of the generated network flows should exhibit the same level

of variability as the training dataset.

• Novelty: Generated network flows should differ sufficiently from the training ones.

77

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

• Compliance: Generated network flows should conform to protocol specifications.

We aim to present a methodology that allows for evaluating these criteria for the synthetic

network flows generated by each of our methods. To formalize our evaluation benchmark, we

outline the main requirements as follows:

• Exhaustive Evaluation: The benchmark should comprehensively assess the generated data

based on the four predefined criteria: realism, diversity, novelty, and compliance.

• Individual Criterion Assessment: Each of the four criteria should undergo an individual as-
sessment to ensure a comprehensive evaluation.

• Multi-level Evaluation of Realism and Diversity: Recognizing the unique characteristics of
tabular data, RealismandDiversity should be assessed at themarginal distribution, con-

ditional distribution, and joint distribution levels (see Subsection 3.2.1 for an explana-

tion).

• Data Type Specificity (discrete/continuous): To address potential issues related to different
data types, the evaluation protocol should incorporatemetrics tailored to each data type.

These requirements ensure that our evaluation framework is comprehensive and tailored to as-

sess the quality of synthetic network flows across different dimensions. Table 4.2 provides an

overview of the evaluation functions used in our study, outlining the evaluation criteria (real-

ism, diversity, novelty, and compliance), the distributional divergence (marginal, conditional,

or joint distribution), and the type of data (categorical or numerical) that thesemetrics assess.

The “Global” line shows the exhaustive nature of our framework, highlighting that it is the first

to comprehensively cover all evaluation criteria. This comprehensive framework is in itself a

contribution of this chapter.

4.4.1 Comparing Marginal Distributions

To assess both realism and diversity, we compare the distribution of each feature in the gen-
erated network flows with the distribution of each feature in the real network flows. We use

the Jensen-Shannon Divergence (JSD) for discrete attributes of network traffic (such as Protocol)
and Earth Mover’s Distance (EMD) for numerical attributes (like Duration or Bytes). These two

metrics are widely used for quantitative measurements of distribution divergence [19], [47],

[84].

78

4.4. Evaluation Methodology and Metrics

Criterion Distribution Type Data Type
Real. Div. Nov. Comp. Marg. Cond. Joint Cat. Num.

JSD ✓ ✓ ✓ ✓
EMD ✓ ✓ ✓ ✓
CMD ✓ ✓ ✓
PCD ✓ ✓ ✓
Density ✓ ✓ ✓ ✓
Coverage ✓ ✓ ✓ ✓
MD ✓ ✓ ✓ ✓
DKC ✓ ✓ ✓ ✓

Global ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4.2: Summary of the functions used in our evaluation system. Real.: Realism, Div.: Di-

versity, Nov.: Novelty, Marg.: Marginal Distribution, Cond.: Conditional Distribution, Joint:

Joint Distribution, Cat.: Categorical Data, Num.: Numerical Data

An alternative could be statistical tests like the Kolmogorov-Smirnov Test or the χ2-Test. How-
ever, unlike these statistical tests, JSD and EMD do not assume a specific distribution for the
features. Moreover, statistical tests provide only qualitativemeasurements (similar or not sim-

ilar distributions), whereas JSD and EMD offer continuous estimations of distribution close-
ness. Therefore, these functions are more suited to our evaluation of marginal distributions.

Higher JSD and EMD scores indicate greater divergence between the generated and real
network flow data distributions, enabling more accurate comparisons of data quality across

different methods. Formal definitions of JSD and EMD are provided in the Section 3.2.

4.4.2 Comparing Conditional Distributions

Assessing matches in marginal distributions is insufficient; we must also ensure that the gen-

erated network flows retain the feature-wise dependencies of the real network flows. For this,

popular correlationmetrics like theSpearmanorPearson coefficients typically apply to ordered

features. However, we need a different approach for unordered categorical features like Proto-
col.

For numerical features, we analyze their correlations using the Pearson correlation coef-

ficient (PCD), as linear correlations are prevalent among features in network flows, such as

between the number of packets, total size of packets, and network flow duration. Although the

Spearman correlation coefficient can capture more complex correlations, it may not differen-

tiate between linear and nonlinear relationships, making it less suitable for our purposes. We

79

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

use the Pearson correlation coefficient to compare inter-feature correlations between real and

generated numerical features.

For unordered categorical features, we study the difference between contingency matrices

in both the real and generated data. Wepropose using theContingencyMatrixDifferences (CMD),
which measures the difference between the contingency matrices of a pair of features in syn-

thetic and real datasets. Further details are provided in the State of the Art chapter.

A lowCMDorPCDwould indicate that the generateddata closelymirrors thedependencies

and relationships present in the real data. Conversely, a highCMDscore or PCDwould suggest

that the generated network flows fail to accurately replicate the relationships between features

accurately, implying less realistic synthetic data.

4.4.3 Comparing Joint Distributions

Metrics based on PCD and CMD consider only first-order dependencies. However, in network
flowdata, conditional dependencies often includehigher-order information—e.g., theNumber
of Bytes feature may depend on both Number of Packets and Protocol type. To capture these high-
order dependencies, assessing the joint distribution is crucial.

Previous studies often evaluated joint distributions using utility metrics like TSTR or by

measuring the performance improvement of a given ML classifier. However, these methods

depend heavily on the chosen classification task and ML model architecture. Instead, we use

theDensity/Coveragemethod, directly comparing generated and real manifolds. This approach

avoids the bias introduced by specific MLmodels and is specifically designed to evaluate Real-

ismandDiversity independently, thusmeeting the granularity requirement of our benchmark.

As detailed in the Subsection 3.2.1, Coverage and Density rely on a specified number k of

neighbors. According to Naeem et al. [95], the optimal k should be set to 5 when considering

datasetswith 10,000 samples. In our comparative study,weuse this value fork and this sample

size.

A high Coverage score indicates that the generated data captures a wide variety of samples
from the real data distribution, reflecting good diversity. A low Coverage score suggests that
the generated data fails to cover the real data’s range, indicating less diversity. Similarly, a high

Density score implies that the generated data closely matches the real data’s manifold, indicat-
ing high realism. In contrast, a lowDensity score suggests that the generated samples are either
too sparse or concentrated in areas not representative of the real data, indicating less realistic

synthetic samples.

80

4.4. Evaluation Methodology and Metrics

4.4.4 Novelty Evaluation

Inspired by Goncalves et al. [83], we use the Membership Disclosure (MD) score to measure the
Novelty criterion. This score aims to identify synthetic samples thatmayhave been copied from

training instances.

To compute the MD score, we need a generated set, a training set, and a testing set (the
last two being subsets of the real dataset). We calculate theHamming distancematrix between

every pair of generated and real samples. If a synthetic sample has a Hamming distance below

a certain threshold r from a real sample, we flag the corresponding real sample as a potential

leak. Since we know which real samples belong to the training or testing sets, we can use each

r to build a detector of training samples. We then calculate the F1-score of this detector and

integrate the F1-score over r. If the generated data includes copies of training samples, the

classifier’s F1 integral increases with lower r, indicating potential leaks.

A lowMD score is desirable to protect patient privacy inmedical contexts. However, in net-
work contexts, duplication of network flows (e.g., standard DNS or NTP requests) is expected.

Thus, we argue that theMD score in synthetic data should be close to that observed in real data.
Syntheticdatawitha lowMD scoremay fail to capture the inherentduplication innetworkdata.

Moreover, this score relies on hamming distance and is, therefore, mainly adapted for cat-

egorical features. In order to evaluate the Novelty of our generated dataset, we first discretize

both our real and generated features using the quantile strategy of Subsection 4.3.1.

4.4.5 Compliance Evaluation

To evaluate the Compliance of the generated network flows, we adapt the Domain Knowledge
Check (DKC) proposed by Ring et al. [16] to our context by customizing the tests to our dataset.
DKC consists of a set of tests that the generated network flowsmust pass, ensuring they adhere
to standard network rules (e.g., flags only on TCP network flows, etc.). Table 4.3 presents the

specific tests used on the different feature sets described in Subsection 4.5.1.

It is important to note that the set of tests is feature-dependent and should be customized

for each generated feature set. For example, the rule “If one of the ports is 53, then the Proto-
col is UDP” is applied in all feature sets (CICShortFeatureSet, CICLongFeatureSet, and UGR)
because port 53 is used by the DNS service, which operates over the UDP protocol. This rule

ensures that flowswith DNS traffic adhere to the correct protocol assignment. In contrast, the

rule “If one IPAddress is public, thenDestinationPort is not 137/138” is not applied in theUGR
dataset because the UGR dataset does not have IP addresses. For further details on the nature

81

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

of the datasets used, refer to Subsection 4.5.1.

Likewise, as network technologies evolve, some of these tests will likely become outdated.

For example,while traditional testsmightflagHTTPoverUDPas invalid,modernprotocols like

HTTP/3 over QUIC do indeed operate over UDP.Therefore, future datasets may need updated

compliance tests to accommodate new networking standards.

For rules 1, 2, 3, 4, and 6, we borrow them directly from the DKC version of Ring et al. [16].

Rule 5 is explained by the fact that DNS is a service for discovering public IPs linked to specific

domain names, making it unlikely to originate from outside our internet network. In CIC-

IDS, external requests are handled by a specific external server with a public IP [8], which is

also the rationale behind rule 7. Rule 8 is justified by the unidirectional nature of our datasets

(see Subsection 4.5.1), while rules 9 to 11 result from the definition of the features.

4.5 Experimental Setup

This section presents the experimental setup we used to address the research questions out-

lined in Subsection 4.2.

4.5.1 Datasets for Training and Evaluation

To compare the performance of BNandGAN in generating synthetic network flows, weneed to

use a dataset to train both models. This enables the models to learn how to represent network

flowseffectively. Our researchquestionsalso requireus to investigate the impactof the training

dataset on both BN and GAN.Therefore, it is essential to select multiple datasets for training.

A survey by Ring et al. [45] categorizes network datasets into three types:

• Real traffic captured in a production network. environment

• Emulated traffic captured within a testbed or an emulated network environment (that we
call simulated in this thesis).

• Synthetic traffic that was created artificially.

Since we aim to generate synthetic network flows ourselves, we are not interested in syn-

thetic datasets. Therefore, we should compare GAN and BN using both real and emulated

datasets to examine how the type of training traffic influences our observations. Additionally,

since we focus on generating network flow datasets, wemust use datasets specifically contain-

ing network flow data.

82

4.5. Experimental Setup

Rule Features Experiments
CICShortFeatureSet CICLongFeatureSet UGR

1
If the flow has flags, then

the Protocol is TCP

Flags,

Protocol
✓ ✓

2
At least one IP Address of

the flowmust be private

Src IP Addr,

Dst IP Addr
✓ ✓

3

If one of the ports is 80,

443, or 8080, then the

Protocol is TCP

Dst Port,

Src Port,

Protocol

✓ ✓ ✓

4
If one of the ports is 53,

then the Protocol is UDP

Dst Port,

Src Port,

Protocol

✓ ✓ ✓

5

If Source Port is 53,

then the Destination

IP Address is private

Dst IP Addr,

Source Port
✓ ✓

6

If one IP Address is pub-

lic,

then Destination Port

is not 137/138

Src IP Addr,

Dst IP Addr,

Dst Port

✓ ✓

7

If Destination IP Address

is public, then Source

Port is not 80/443/8080

Src Port,

Dst IP Addr
✓ ✓

8

If one port is ephemeral,

then the other is an

application port

Src Port,

Dst Port
✓ ✓ ✓

9
UDP or TCP flows are not

empty

Protocol,

Bytes
✓ ✓ ✓

10 An ICMP flow has 0 bytes
Protocol,

Bytes
✓ ✓

11

If the number of Packets

is

greater than 1, then

Duration is greater than 0

Packets,

Duration
✓ ✓ ✓

12

The Duration is not

greater

than the sum of the

inter-arrival times

Packets,

IATs,

Duration

✓

Table 4.3: Sample list of tests carried out by themetricDKC, with the network rules they assess
and the experiments they are associated with.

83

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Moreover, as highlighted by Sarhan et al. [103], different network flow datasets might have

different sets of features (see also Section 2.1). This is why one of our research questions inves-

tigates the impact of the feature set on our comparison. Thus, at least two feature sets should

be investigated. That brings us to at least three datasets, where we should compare one pair of

datasets with different types of traffic and another with different feature sets. We propose that

the datasets with varying feature sets should be of the same traffic type. This approach allows

us to study the impact of these two variables—traffic type and feature set—independently.

Here, we describe the datasets used to train and evaluate BN and GAN. These include the

simulatedCICIDS2017dataset, used to explore the impact ofdifferent feature sets, and the real

UGR 16 dataset, selected to investigate how real-world traffic influences model performance.

4.5.1.1 Simulated Dataset: CICIDS 2017

For the simulated dataset, we select CICIDS 2017 [8], based on the survey conducted by Ring

et al. [45]. Our selection criteria include a simulated dataset containing more than 24 hours

of traffic, created from 2017 onwards, and containing pcap files, allowing us to use a custom

feature extractor to construct our network flows. To the best of our knowledge, CICIDS 2017 is

the only dataset matching these prerequisites.

From CICIDS 2017, we consider the pcap files and use a custom feature extraction tool
5
to

create two different feature sets:

• CICSmallFeatureSet: Thisdataset contains benignnetworkflows fromfivedays of traffic

simulated in a testbed environment of 12 computers. 11 features describe the network

flows.

• CICLongFeatureSet: This dataset contains network flows from the same traffic as the

CICSmallFeatureSet dataset but with 30 features instead of 11.

These two datasets allow us to compare the impact of the number of features in the training

dataset on the results of comparing GAN and BN.The features of the different sets are listed in

Table 4.4.

It is worth noting that while CICIDS 2017 initially consisted of bidirectional flows, it allows

for the reconstruction of unidirectional flows (See Section 2.1 for the difference between unidi-

rectional and bidirectional flow). Since both NetShare and E-WGAN-GP— themodels selected

5
While it is possible to use the network flows provided directly by the authors of the dataset [8], several studies

have identified issueswith theseflows [104], [105]. Consequently, weopt to use one of the tools proposedbyLanvin

et al. [105] in their corrective study. This tool is available athttps://gitlab.inria.fr/mlanvin/crisis2022.

84

https://gitlab.inria.fr/mlanvin/crisis2022

4.5. Experimental Setup

for assessment (see Subsection 4.5.3)—were initially designed for unidirectional flows, we opt

to use unidirectional flows for both CICSmallFeatureSet and CICLongFeatureSet.

4.5.1.2 Real Dataset: UGR 16

We choose UGR 16 [102] for the real dataset because one of our baselines, NetShare, has been

trained on this dataset. To ensure the comparison is as relevant as possible, we use the same

subset of UGR 16 as used by NetShare.

The UGR 16 dataset is a real dataset from a Spanish ISP.The specific subset used by the au-

thors of NetShare is the third week of March 2016 from the UGR dataset, which we also decide

to use. In this dataset, the network flows are defined by eight features.

It is important to note the absence of IP addresses as a feature in this dataset. Since this

dataset originates from real-world network usage, all IP addresses are anonymized by the

dataset’s authors. Therefore, we decide not to generate IP addresses in this experiment. We

refer to this dataset in the following sections as UGR.
For all three datasets, 80% of the network flows serve as training data, while the remain-

ing 20% act as a Reference baseline, representing a perfect generation (see Subsection 4.5.3).

This results in approximately 3 million unidirectional flows for CICSmallFeatureSet and CI-
CLongFeatureSet, and around 1 million unidirectional flows for UGR. Table 4.4 presents the
different features.

4.5.2 Bayesian Networks

We detail our implementation of Bayesian Networks (BN) on our three datasets, applying the

solutions to challenges previously resolved in Subsection 4.3.1.

4.5.2.1 Public IP adresses

All public IP addresses can be grouped into a single category in our dataset to reduce feature

cardinality without losingmeaningful information. Before doing this, we ensure that themul-

ticast address, commonly represented as “0.0.0.0”, is not used elsewhere in thedataset to avoid

overlap. After this check, all public IP addresses are assigned the value “0.0.0.0”. This approach

reflects the fact that the specific value of a public IP address is less informative than simply

identifying it as external traffic. By treating all public IPs in thisway,wepreserve the important

distinction between internal and external hosts while significantly reducing the complexity of

the model.

85

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Feature Type Dataset
CICShortFeatureSet CICLongFeatureSet UGR

Source IP Address categorical ✓ ✓
Source Port categorical ✓ ✓ ✓
Destination IP Address categorical ✓ ✓
Destination Port categorical ✓ ✓ ✓
Protocol categorical ✓ ✓ ✓
Timestamp numerical ✓ ✓
Day of the week categorical ✓
Hour of the day numerical ✓
Duration numerical ✓ ✓ ✓
Number of packets numerical ✓ ✓ ✓
Number of bytes numerical ✓ ✓ ✓
Maximum length of a packet numerical ✓
Minimum length of a packet numerical ✓
Average length of a packet numerical ✓
Std of packets lengths numerical ✓
Sum of inter-arrival times numerical ✓
Average inter-arrival time numerical ✓
Std of inter-arrival times numerical ✓
Maximum of the inter-arrival times numerical ✓
Minimum of the inter-arrival times numerical ✓
Flags inside the flow categorical ✓
Number of PUSH flags numerical ✓
Number of URGENT flags numerical ✓
Number of RESET flags numerical ✓
Sum of length of the headers numerical ✓
Average Number of Packets per second numerical ✓
Average of segment sizes numerical ✓
Average of Bytes/Bulk ratios numerical ✓
Average of Packets/Bulk ratios numerical ✓
Average of Bulk Rates numerical ✓
Number of packets inside a Subflow numerical ✓
Number of bytes inside a Subflow numerical ✓
Number of Bytes of the Init Window numerical ✓

Table 4.4: Description of the features of each flow in the three datasets of Subsection 4.5.1

86

4.5. Experimental Setup

4.5.2.2 Ephemeral Ports

Similar to public IP addresses, all ephemeral port values can be grouped into a single category

to reduce feature cardinality without losing meaningful information. To handle variations in

ephemeral port ranges across different devices, we classify the 30 most frequent ports as non-

ephemeral, treating the less frequent ones as ephemeral. These ephemeral ports are assigned

the value “99999”, indicating that their specific values are not important, only that they belong

to the ephemeral port range.

Webase the selection of 30ports on theminimal numbernof themost frequent port values,

such that the set of ports up to then-th covers themajority (more than 50%) ofnetworkflows. In

UGR’16 andCIC-IDS2017, according toTable 4.5,n is 30. Therationalebehind thismethodology

is thatmostof the traffic inourdatasets is either transportedbyTCPorUDP—protocolswherea

typical exchange involves one port being non-ephemeral (usually associatedwith awell-known

service or application) and the other being ephemeral (dynamically assigned by the operating

system). By considering the set of non-ephemeral ports as those covering 50% of the traffic,

we deduce that ephemeral ports likely handle the remaining traffic. This decision is discussed

further in Section 4.7.

4.5.2.3 Two discretization methods

We compare two strategies of discretization of numerical features. For this, we create one BN

per strategy :

• BNbins: aBNthatdiscretizesnumerical featuresbydividing the values into intervals,with

each interval containing an approximately equal number of values.

• BNGM: a BN that uses a VGMM to discretize continuous numerical features. By fitting

the VGMM to the data, each continuous value is assigned to a Gaussian component.

4.5.3 Competing Methods and Baselines

We select a diverse range of GAN implementations to compare the generation quality between

GAN and BN.This approach ensures that our results are robust and not dependent on a single

implementation of GAN.We choose to compare BNwith three GANmodels: E-WGAN-GP [16],

NetShare [47], and CTGAN [82].

87

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Port Numbers Occurrence
1 53 24.193%

2 80 12.427%

3 443 9.601%

4 123 0.944%

5 137 0.502%

6 25 0.434%

7 0 0.224%

8 22 0.185%

9 8080 0.163%

10 21 0.147%

11 110 0.144%

12 389 0.104%

13 6000 0.083%

14 88 0.082%

15 445 0.077%

16 3306 0.075%

17 138 0.062%

18 22001 0.059%

19 8000 0.052%

20 22011 0.049%

21 3268 0.047%

22 5060 0.045%

23 143 0.045%

24 161 0.044%

25 8888 0.044%

26 139 0.044%

27 5353 0.043%

28 465 0.040%

29 5210 0.039%

30 64887 0.038%

Sum 50.036%

Table 4.5: Distribution of the 30 most frequent port numbers in CIC-IDS-2017 and UGR’16

datasets.

88

4.5. Experimental Setup

One missing model in our comparison is STAN [19]. It would have been interesting to in-

clude STAN as it was demonstrated to perform better than BN in preserving the marginal dis-

tribution of network flow attributes. However, we do not include STAN for two reasons:

• Our comparison is focused onGANsince they are themost commonly used type ofmodel

for generating network flows, whereas STAN is an autoregressive model.

• Reproducing STAN’s work was impractical due to issues with its GitHub repository. The

repository is no longer maintained, and key components needed to run the model are

outdated or broken, making it impossible to use the existing code as intended.

Reimplementing their autoregressive solution could be a valuable contribution to future work,

particularly given the strength of autoregressive models in preserving temporal dependencies

(which is out of the scope of this chapter).

In addition to GAN-based competingmethods, we include two baselines for comparison: a

Real Set and a Naive Sample. In the following, we describe each competing method and base-

line, detailing the models’ implementations and their relevance to our evaluation.

4.5.3.1 Competing Methods

E-WGAN-GP We choose this model because it is the best-performing model presented in the

work by Ring et al. [16]. This WGAN model uses IP2Vec to generate new network flows in the

IP2Vec embedding space and then convert them back into the original space. We use the pro-

gram provided by the author to train E-WGAN-GP on our datasets, sample new flow represen-

tations, and convert them back to network flows. We only need to adapt the code so that our

dataset features correspond to the original features in the paper. No parameters are changed

in the program.

CTGAN We choose CTGAN [82] because it is a standard solution used for generating tabular

data [46], [81], providing insight into the expected performance when applying a generic so-

lution to our specific problem. To use CTGAN, we employ the sdv library6, where we specify
which features are categorical andwhicharenumerical. Categorical (discrete) features areone-

hot encoded. In contrast, continuous features are represented in a multidimensional space,

with each coordinate representing the probability that a value comes from a specific kernel,

6
https://docs.sdv.dev/sdv

89

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

determinedby aVariationalGaussianModel. These preprocessing steps are automatically han-

dled before the internal functions of the CTGANmodel train the model, using the default pa-

rameters for configuration and training.

NetShare We select NetShare [47] as it is the most recent solution, allowing us to compare

BN with a more advanced approach. To implement NetShare, we use the GitHub repository

provided by the authors
7
. Regarding the parameters, we only change the “max_flow_len” and

“epoch” values as recommended in the GitHub documentation. The “max_flow_len” represents

themaximumnumber of flows a sequence can contain in one batch during the training phase.

While this parameter does not significantly affect the results, it can severely impact the amount

of GPU memory required for training. Thus, we set it to 10,000 for the CICLongFeatureSet
and 20,000 for the CICShortFeatureSet. We also set the number of epochs to 400 for both
datasets. For the UGR dataset, we do not train the model or sample from an already trained

model; instead, we directly use the generated data provided by the authors in their repository.

4.5.3.2 Baselines

Naive Sampler We include the Naive Sampler baseline to provide a reference for comparing

the competing approaches. TheNaive Sampler generates new data by independently sampling

each feature based on its empirical distribution in the training set. This approach assumes that

the training set captures themarginal distribution of each featurewell but does not account for

dependencies between features, making it the worst-case scenario for generation quality.

Real Set The Real Set baseline consists of 20% of the real dataset that was not used during

training. This represents the best possible generation quality, serving as an objective for our

models to reach. Additionally, as indicated in Subsection 4.4.4, this baseline serves as a refer-

ence for evaluating the Membership Disclosure (MD) value of our generated dataset.

4.6 Results of our experiments

In this section, we present the findings from our experiments that are designed to answer the

key research questions posed in Subsection 4.2:

7
https://github.com/netsharecmu/NetShare

90

4.6. Results of our experiments

• Are BN preferable to GAN for generating high-quality synthetic network flows while reducing com-
putational costs? Subsection 4.6.1 evaluates the quality of traffic generated by BN versus

GAN on CICSmallFeatureSet.

• Howdoes this conclusion changewhen considering different feature sets? Subsection 4.6.2 inves-
tigates whether the results remain consistent on CICLongFeatureSet.

• Does this conclusion persist across different datasets? Subsection 4.6.3 assesses whether the
findings hold when considering the UGR dataset.

For each experiment, we compare the models using the evaluation benchmark defined in

Subsection 4.4 and present the results according to the four criteria: realism, diversity, novelty,

and compliance. In the figures throughout this section, Real refers to data from the real set

(Baseline 2),Naive to data generated by the naive sampler (Baseline 1),BN_bins represents the
BNwith quantile discretization, and BN_GM represents the BNwith VGM discretization.

4.6.1 Experiment on CICSmallFeatureSet

Each metric and model is evaluated on 20 different generated sets for all models, each gener-

ated set containing 10,000 network flows (see Subsection 4.4.3 for the explanation of the num-

ber of network flows).

4.6.1.1 Realism

Results are shown in Figure 4.2. We can see that the two BN learn the distribution of the dis-

crete features very well, whereas GAN have more difficulty with discrete features, as expected

(see Section 2.4). For continuous features,EMD shows that BNbins reproduces themarginal dis-

tributions better than the GAN (except CTGAN), while BNGM does not manage to learn them,

likely due to discretization issues for this dataset.

The PCD does not provide much information about the preservation of dependencies

among numerical features due to the high variability of the different measurements. Still, the

CMD, on the other hand, indicates that BN learn the dependencies among categorical features
better thanGAN. For joint distribution,Density shows that BNproducemore realistic data than
GAN-basedmethods.

Among the GAN, NetShare underperforms significantly, failing to produce realistic data.

Although CTGAN and E-WGAN-GP perform better than NetShare, they do not reach the BN

91

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Figure 4.2: JSD/EMD/PCD/CMD/Density of the different models on CICShortFeatureSet
dataset. Lower is better except for Density, where higher is better.

92

4.6. Results of our experiments

level. Despite achieving similarDensity levels, their poorer performance in JSD and CMD indi-
cates a potential issue with Diversity in the data generated by these models.

4.6.1.2 Diversity

Figure 4.3: Coverage of the different models on CICSmallFeatureSet. Higher is better.

As seen in Figure 4.3, BN cover the entire training distributionwhile CTGANandE-WGAN-

GP underperform in terms of Coverage. This supports the idea that their poorer performance

in JSDandEMD is not due to unrealistically generated data but rather to a lack of diversity (JSD

andEMDevaluate both realism and diversity). This seems to indicate a phenomenon known as

modecollapse,where aGANfails to cover all the variability in thedata. Inaddition toproducing

unrealistic data, NetShare also was unable to cover the training data adequately.

4.6.1.3 Novelty

Figure 4.4 shows the Membership Disclosure score of the different models. This score repre-

sents the ease with which training samples can be recovered from the generated data. In a

typical tabular data generation setup, a lower score would be preferred, but, as explained in

Subsection 4.4.4, duplication of network flows is common. Therefore, we argue that MD in

synthetic data should be close to MD observed in real data.

For example, NetShare has a lownovelty score,meaning it is challenging to recover training

samples from its generated data. While this could be seen as positive in some contexts, it likely

indicates that the data generated byNetShare is not realistic enough. BN do not appear to leak

more data than the test set.

93

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Figure 4.4: Membership Disclosure of the different models on CICSmallFeatureSet. Closer to
the Real value is better.

4.6.1.4 Compliance

Figure 4.5: Domain Knowledge Check of the different models on CICSmallFeatureSet. This

score represents the average number of rules one generated network flow breaks. Lower is

better.

DKC measures compliance in Figure 4.5. Except for NetShare, all generative models have

relatively low DKC scores, indicating that they produce data that is compliant with network

specifications. It is also noteworthy that the DKC of the real data is not zero, implying that

some abnormal network flows are present in the initial dataset. For example, around 4% of

the initial dataset is composed of TCP flows of length 0 bytes, contradicting rule number 9 of

Table 4.3. Similarly, some NetBios flows are directed outside the local network, contradicting

rule number 6 (around 0.3%). Those flows may be an artifact of the feature extrusion tool we

used.

94

4.6. Results of our experiments

4.6.1.5 Overall

Table 4.6 presents the results of the different metrics for each system. The number in each

cell represents the median value for all observations. For every metric, we rank the median of

every model apart from the Real set, with 6 to 1, with one being the best. We also average this

rank overall metrics to provide a global rank value for everymodel. This value provides a rough

indication of which model may generate the most realistic synthetic data, but it should not be

taken as an absolute performance measure.

The analysis of CICSmallFeatureSet data reveals that BN-based methods outperform the

GANmodels in termsof the four criteriaof generationquality,withNetShareunderperforming

even compared to the Naive Sampler. Despite the occasional superiority of GAN models in

specific metrics like EMD, BN demonstrate consistently superior performance across a range
of scoring functions, securing a favorable average ranking across all metrics.

The struggle of GAN-basedmethods tomaintain strong performance inmetrics that evalu-

ate the preservation of variable dependencies, such asCMD and PCD, underscores the ongoing
challenge thesemodels face in accurately capturing correlations among variables—a challenge

BN-based approaches seems better equipped to handle. Therefore, we can conclude that BN

produce better-quality network flows than GAN. In the following experiments, we examine

whether this conclusion holds when changing the feature set or the dataset.

Real Naive BNbins BNGM CTGAN E-WGAN-GP NetShare
JSD 0.017 0.015 0.026 0.031 0.149 0.091 0.273
EMD 0.002 0.002 0.015 0.078 0.016 0.055 0.063

CMD 0.013 0.160 0.021 0.020 0.128 0.071 0.256
PCD 0.483 1.155 0.609 0.783 0.819 1.133 1.115

Density 1.003 0.058 0.843 0.813 0.816 0.710 0.478

Coverage 0.970 0.100 0.902 0.892 0.797 0.347 0.084
MD 7.194 5.846 6.909 7.002 6.929 6.883 5.275
DKC 0.003 0.089 0.004 0.003 0.008 0.002 0.023

Global Rank - 4.25 1.875 2.5 3.25 3.875 4.75

Table 4.6: Comparison between 7 traffic generation methods on CICSmallFeatureSet using all

the quality metrics. Value is the median of the measurement. The Real column serves as a

standard. For eachmetric: Red indicates the worst model,Orange the second-best model, and
Green the best model. (↑): Higher is better, (↓): Lower is better, (=): Closest to the real data is
better. The last line gives the average rank given by all metrics to eachmodel and is here just an

indication of overall performance.

95

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

4.6.2 Experiment on CICLongFeatureSet

This experiment aims to illustrate how the data generation methods behave when more net-

work features are present in the training dataset. CICLongFeatureSet includes 20 additional
numerical features compared to CICSmallFeatureSet (see Subsection 4.5.1). This increase is

expected to challenge the data generation methods, particularly BN, due to the need for the

discretization of numerical features. In contrast, GAN are inherently designed to handle nu-

merical data.

4.6.2.1 Realism

Figure 4.6: JSD/EMD/PCD/CMD/Density of the different models on CICLongFeatureSet
dataset. Lower is better except for Density, where Higher is better.

96

4.6. Results of our experiments

The results are presented in Figure 4.6. The Density score shows that CTGAN effectively

learns the joint distribution of the training data points. When examining PCD, it appears that
BN, E-WGAN-GP, and CTGAN learn the correlation between numerical features quite well.

However, for categorical features, as we can see withCMD, they do not perform better than in-

dependent sampling (except for BNGM). Regarding marginal distributions, JSD indicates that
BN methods, E-WGAN-GP, and CTGAN successfully learned the marginal distributions, but

EMD reveals that BNGM struggles with numerical features, likely due to discretization issues.

Overall, CTGAN appears to produce the most realistic samples, as it remains the most consis-

tent across the different metrics.

4.6.2.2 Diversity

Figure 4.7 shows that the Coverage of both BN and CTGAN is superior to the other models

but is far from covering the entire real distribution. NetShare performs worse than the Naive

Sampler, with E-WGAN-GP only slightly outperforming it.

Figure 4.7: Coverage of the different models on CICLongFeatureSet. Higher is better.

4.6.2.3 Novelty

As shown in Figure 4.8, the models are further from the real set compared to the first experi-

ment (Figure 4.4). This increased distance is likely due to the additional features introducing

more variability into the generation process. E-WGAN-GP is the model with theMD closest to
the reference.

97

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Figure 4.8: Membership Disclosure of the different models on CICLongFeatureSet. Closer to
the Real set is better.

4.6.2.4 Compliance

BNGM and CTGAN are the two models that produce the lowest DKC scores according to Fig-

ure 4.9. It is worth noting that while NetShare did not generate many errors, it also did not

produce realistic traffic. This illustrates that compliance and realism, while related, evaluate

different properties of the generated traffic.

Figure 4.9: Domain Knowledge Check of the different models on CICLongFeatureSet. This

score represents the average number of rules one generated network flow breaks. Lower is

better.

4.6.2.5 Overall

The results on CICLongFeatureSet are more contested. While our two BN remain effective at
generating data with many features per network flow, Table 4.7 shows that CTGAN matches

98

4.6. Results of our experiments

our best BNmodel, BNGM, on several metrics. A case could be made for choosing CTGAN over

BNGM for this feature set, particularly when considering the preservation of marginal distri-

butions of numerical features as measured by EMD. While BN still outperform E-WGAN-GP

and NetShare, certain GAN may perform better when dealing with many features, especially

in a feature set focused more on numerical features. Therefore, the response to the second re-

search question ismore nuanced than the first. The comparison betweenGAN andBN appears

to depend on the specific feature set under consideration, and the superiority of BN does not

hold when we reach a certain number of features in the training set.

Real Naive BNbins BNGM CTGAN E-WGAN-GP NetShare
JSD 0.017 0.018 0.116 0.078 0.138 0.110 0.359
EMD 0.001 0.001 0.014 0.089 0.016 0.065 0.031

CMD 0.011 0.079 0.174 0.032 0.123 0.097 0.383
PCD 1.564 6.842 2.589 3.287 2.963 5.315 8.047
Density 0.999 0.026 0.252 0.292 0.468 0.164 0.013
Coverage 0.969 0.021 0.487 0.485 0.522 0.077 0.002
MD 7.614 5.307 4.240 5.502 5.453 5.836 2.543
DKC 0.003 0.128 0.060 0.051 0.052 0.092 0.055

Global Rank - 3.625 3.125 2.5 2.625 3.5 5.375

Table 4.7: Comparison according to all our metrics of 7 data generation methods using CIC-

LongFeatureSetDat. The Real column serves as a standard. For each metric: Red indicates the
worst model, Orange the second-best model, and Green the best model. (↑): Higher is better,
(↓): Lower is better, (=): Closest to the real data is better. The last line gives the average rank

given by all metrics to each model and is here just an indication of overall performance.

4.6.3 UGR

The training dataset in the two previous experiments consisted of simulated traffic generated

within an emulated testbed. In this experiment,weuse a real-worlddataset to observewhether

the observations made in the first experiment regarding the superiority of BN hold when we

switch to a real-world dataset.

4.6.3.1 Realism

The results are displayed in Figure 4.10. JSD shows that BN outperform all GAN in modeling

themarginal distribution of categorical features. For numerical features,EMD shows thatNet-
Share is the top model for reproducing numerical marginal distributions. Regarding categor-

99

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Figure 4.10: JSD/EMD/PCD/CMD/Density of the different models on UGR dataset. Lower is
better except for Density, where Higher is better.

100

4.6. Results of our experiments

ical dependencies, PCD is inconclusive, while CMD shows that BN and E-WGAN-GP best pre-
serve the dependencies among discrete features. Studying the joint distribution with density

is also inconclusive due to the high variability of the metric.

4.6.3.2 Diversity

Figure 4.11 shows that the model that best covers the training distribution is BNGM, followed

closely by E-WGAN-GP and NetShare. Similar to the first experiment, this may be due to the

simpler distribution, which is easier to cover. BNbins has a low Coverage, and we can link this
to its relatively high EMD (see Figure 4.10) to say that it probably does not manage to produce
diverse numerical features. This discretization process seems unable to capture that dataset’s

entire range of numerical values.

Figure 4.11: Coverage of the different models on UGR. Higher is better.

4.6.3.3 Novelty

Due to the simpler distribution (fewer features and smaller cardinality per discrete feature)

in the UGR data, it is easier for a data generation model to produce synthetic data close to

a training data sample. As a result, the MD scores of all models, except NetShare, are close
to the real data’sMD. This experiment shows that the simpler the dataset, the more likely the

generated model produces copies of the original data.

4.6.3.4 Compliance

All the data generation methods, except for NetShare, have a good DKC score, demonstrating
their ability to producenetworkflows compliantwithnetworkprotocols. NetShare fails to gen-

101

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Figure 4.12: Membership Disclosure of the different models on UGR. Closer to the Real set is
better.

erate valid traffic due to its inability to encode correlations between categorical features.

Figure 4.13: Domain Knowledge Check of the different models on UGR. This score represents

the average number of rules one generated network flow breaks. Lower is better.

4.6.3.5 Overall

Our results reported in Table 4.8 show that BN-based approaches better preserve realism, di-

versity, and compliance in generated network flows compared to GAN-basedmethods, mainly

when dealing with smaller feature dimensions. Therefore, the superiority of BN is not af-

fected by the origin of the training dataset but rather by the number of features in that training

dataset. Worth noting, NetShare showed subpar performance in this experiment, even when

assessedusingdata provideddirectly by its creators, showing its poor quality in individual flow

generation

102

4.6. Results of our experiments

Real Naive BNbins BNGM CTGAN E-WGAN-GP NetShare
JSD 0.069 0.070 0.064 0.073 0.223 0.105 0.400
EMD 0.002 0.002 0.019 0.007 0.029 0.025 0.003
CMD 0.041 0.221 0.031 0.044 0.212 0.049 0.581
PCD 0.495 1.296 0.515 0.787 0.876 1.217 0.681
Density 0.763 0.360 0.607 0.668 0.711 0.571 0.571

Coverage 0.803 0.327 0.349 0.644 0.450 0.536 0.536
MD 8.697 7.574 8.310 8.302 7.447 8.363 5.685
DKC 0.006 0.079 0.006 0.005 0.019 0.004 0.130
Global Rank - 4.375 2.625 2.25 4.125 3.125 4.5

Table 4.8: Comparison according to all our metrics of 7 data generation methods using UGR

Data. The Real column serves as a standard. For each metric: Red indicates the worst model,
Orange the second-best model, and Green the best model. (↑): Higher is better, (↓): Lower is
better, (=): Closest to the real data is better. The last line gives the average rank given by all

metrics to each model and is here just an indication of overall performance.

4.6.4 Computing Cost

Table 4.9 summarizes the computational costs across three key steps: preprocessing, training,

and sampling, along with the hardware configurations used in our experiments. In our analy-

sis, BNbins consistently proves to be themost efficient model for generating synthetic samples.

Its closest competitor, E-WGAN-GP, benefits from its dense layers, enabling rapid training.

However, the reconstruction process required after generation extends its overall generation

time, making it slower on the global pipeline. On CICSmallFeatureSet, BNbins, BNGM, and

E-WGAN-GP exhibit the fastest performance. However, due to the complex IP2Vec embed-

ding reconstruction in E-WGAN-GP and BNGM’s Gaussian Mixture Models (GMMs) training

requirement for numerical features, BNbins proves to be themost efficient in terms of time and

resources. Conversely, CTGAN and NetShare demand significantly higher computational re-

sources. It should be noted that although Configuration (2) features more powerful hardware,

the models running on this setup - CTGAN and NetShare - still require more time to complete

the tasks compared tomodels running on the less powerful hardware of Configuration (1). This

highlights that the computational overhead of these models is not solely dependent on hard-

ware but also on their inherent complexity and resource demands. This trend persists in CI-
CLongFeatureSet, where the rise in numerical features notably extended preprocessing times
for BNGM and training times for all GANmodels.

103

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

Model Duration Epochs Hardware
CICShortFeatureSet CICLongFeatureSet UGR

Prep. Train. Samp. Prep. Train. Samp. Prep. Train. Samp.
BNGM 00:22 00:36 - 1:48 00:44 - 00:19 00:32 - - (1)

BN
bins

- 00:39 - - 00:45 - - 00:32 - - (1)

E-WGAN-GP - 00:11 00:46 - 00:35 0:55 - 00:20 0:21 100 (1)

CTGAN - 15:02 - - 19:30 - - 13:27 - 300 (2)

NetShare - 20:42 00:39 - 27:31 00:56 - ≃100:00 - 100 (2)

Table 4.9: Computing costs of the three experiments. The format is hours: minutes. Prep.:

Preprocessing of the data, Train.: Training of the model, Samp.: Sampling from the model.

Hardware configurations: (1) LaptopCPU / 32GBRAM; (2) A40GPU / 48GBVRAM.The training

of NetShare on UGR is the order of magnitude given by the authors in their paper. A cell with

“-” denotes that either this step does not occur or is so short thatwe consider its timenegligible.

4.6.5 Global Observation

In the experiment onCICShortFeatureSet, we observe that BN outperformGAN in generating

network flows, delivering better overall quality results at a fraction of the computational cost.

However, we aim to determine whether this conclusion holds when the number of features

increases.

When the number of features is increased in the CICLongFeatureSet, we find that CTGAN
performs better, indicating that the initial advantage of BN diminishes in more feature-rich

environments. Still, BN remain an attractive option due to their faster training and generation

times, while maintaining good overall quality.

We also examine whether these results hold when the source of the training data changes

froma simulated testbed to real network traffic, as seen in theUGRdataset. Our findings show
that the origin of the dataset does not significantly impact the results, and BN continue to per-

form better overall.

From these experiments, we conclude that the number of features in the training dataset

plays a more significant role in determining whether to use BN or GAN than the origin of the

dataset. Furthermore, the trade-off between training speed and data generation quality re-

mains a key considerationwhen selecting amodel. Additionally, we note the poor performance

ofNetShare, evenwhen directly using the artifacts provided by the authors. This highlights the

importanceoffirst ensuring that thequality of individual networkflows ishighbefore attempt-

ing to model time-dependent flows, a criterion where NetShare falls short.

We also present examples of network flows generated by the different models to illustrate

their performance. Tables 4.10, 4.11, and 4.12 show sample network flows generated by CT-

GAN, NetShare, and BNbins, respectively, all trained on the CICShortFeatureSet. This dataset

is chosen for its readability in a text format. Among the models, BNbins performs the best for

104

4.6. Results of our experiments

Bayesian Networks on this dataset, while CTGAN and NetShare represent the best and worst

performing GAN-basedmodels, respectively.

Across all three tables, we observe the reduction in cardinality as discussed in

Subsection 4.3.1, where ephemeral ports are consistently represented by “99999” and public IP

addresses by “0.0.0.0.” In Table 4.11, NetShare’s poor quality is evident. For example, Flows 3

and 5 display incorrect behavior with non-compliant ICMP/IGMP flows featuring PUSHflags.

Additionally, there appears to be an overrepresentation of ICMP traffic.

Conversely, both BNbins and CTGANproduce compliant network flows. However, visual in-

spection alone is insufficient to differentiate the models clearly, further emphasizing the im-

portance of the quantitative analyses discussed earlier.

Day Time Duration Proto Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes Flags

1 1 66134 66.186061 TCP 192.168.10.16 99999 0.0.0.0 443 14 809 ..P...

2 2 52865 10.413489 TCP 192.168.10.12 99999 0.0.0.0 443 13 463 ..P...

3 4 60417 84.725331 TCP 192.168.10.50 99999 192.168.10.3 3268 51 2792 ..P...

4 3 52249 0.041221 UDP 192.168.10.3 53 192.168.10.17 99999 2 315

5 0 62180 5.255842 TCP 192.168.10.15 99999 0.0.0.0 443 12 523 ..PR..

6 1 70590 89.951853 TCP 0.0.0.0 443 192.168.10.9 99999 36 46130 ..PR..

7 3 65249 3.217260 TCP 192.168.10.8 99999 192.168.10.50 99999 24 595 ..P.U.

Table 4.10: Example of network flows generated by CTGAN

Day Time Duration Proto Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes Flags

1 0 42170 2.470354 ICMP 0.0.0.0 0 0.0.0.0 0 13 3694

2 0 42179 4.974768 ICMP 192.168.10.14 0 0.0.0.0 0 13 5821

3 0 42193 3.389125 ICMP 192.168.10.9 0 0.0.0.0 0 19 7226 ..P...

4 2 42207 2.618284 ICMP 192.168.10.9 0 0.0.0.0 0 8 693

5 0 42207 6.813809 IGMP 192.168.10.14 0 192.168.10.14 0 22 2397 ..P...

6 2 42214 6.028982 TCP 192.168.10.3 99999 0.0.0.0 80 15 4397

7 3 42217 10.140024 TCP 192.168.10.12 99999 0.0.0.0 99999 34 2906 ..P...

Table 4.11: Example of network flows generated by NetShare

Day Time Duration Proto Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes Flags

1 4 67736 0.172049 UDP 192.168.10.9 99999 0.0.0.0 80 3 288

2 3 43009 0.215606 TCP 0.0.0.0 443 192.168.10.8 99999 12 6238 ..P...

3 3 69139 0.000172 UDP 192.168.10.3 53 192.168.10.9 99999 1 152

4 0 68589 6.212143 TCP 0.0.0.0 443 192.168.10.12 99999 6 1530 ..P...

5 1 54651 61.298785 TCP 0.0.0.0 443 192.168.10.14 99999 9 6063 ..P...

6 1 45805 114.461342 TCP 192.168.10.15 99999 0.0.0.0 443 23 969 ..P...

7 1 50268 0.116868 UDP 192.168.10.3 53 192.168.10.12 99999 2 200

Table 4.12: Example of network flows generated by BNbins

105

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

4.7 Limitations of the study: Handling of the Discrete Feature Car-
dinality

A key limitation of our analysis lies in the reduction of the cardinality for discrete features,

which may be unfair to GANmodels. While BN struggle with high cardinality in discrete fea-

tures due to the exponential increase in complexity, GAN are better equipped to handle such

features. In GAN, a larger number of categories does not significantly affect computational

complexity, unlike with BN.Therefore, by reducing the cardinality of discrete features, wemay

inadvertently restrict the ability of GAN to leverage their full potential.

In particular, our decision to reduce the number of categories for ports to 30 and treat oth-

ers as ephemeral introduces limitations. While this approach simplifies the model and makes

itmanageable for BN, itmay unfairly disadvantageGAN,which could otherwise handle the full

range of port values, such as the potential 65,535 different port numbers. This reduction limits

the variability that GAN can capture, potentially affecting the quality of the generated flows.

Additionally, the choice of 30 for non-ephemeral ports has its own constraints. We based

this on the empirical observation that the top 30 ports cover more than 50% of the traffic in

our datasets. However, this thresholdmay not hold across different datasets or environments.

Traffic patterns and the role of ports can vary, and some less frequent ports that were classified

as ephemeral may still carry important information. Conversely, some of the top 30 ports may

not always represent stable, non-ephemeral traffic. The fixed threshold of 30 is sensitive to

changes in traffic patterns, andmay lead tomisclassification, especially in dynamic or evolving

network environments.

4.8 Summary

In this chapter, wepresent two significant contributions. Thefirst is amethod that implements

BN to generate individual network flows. The second contribution is a comprehensive bench-

mark designed to evaluate the quality of generated individual network flows thoroughly.

WecomparedourBN-basedgenerationmethodagainstGANacross twounidirectionalnet-

work flow datasets. In the first experiment using the CICShortFeatureSet, we demonstrated
that our BN method can surpass state-of-the-art GAN-based methods while requiring only a

fraction of the computational resources. However, in the second experiment with themore ex-

tensive feature set CICLongFeatureSet, the gap between BN and GAN narrowed. In this sce-
nario, one of the GANmodels, CTGAN, achieved slightly better performance but at the cost of

106

4.8. Summary

significantly longer training and sampling times.

Additionally, we compared generation performance using a training dataset from a differ-

ent recording setup, UGR, to determine if this affected the comparison. The results showed

that the origin of the dataset did not impact the superiority of BN, as they consistently outper-

formedGAN, similar to the results obtainedwithCICShortFeatureSet. Therefore, ourfindings

suggest that the choice between BN and GAN is more influenced by the feature set rather than

the dataset’s origin.

4.8.1 Potential Improvements

Building on this work, there are several avenues for improvement:

• UtilityCriterion inBenchmark:Onepotential enhancement could involve addinga “util-
ity” criterion to our benchmark. Currently, our evaluation focuses on neutrally assessing

the generated network flows without considering their final usage. However, since the

primary goal is to create network flows for evaluating NIDS, testing our generated net-

work flows within an NIDS might be beneficial to see if they are flagged as anomalies.

Implementing this would require carefully selecting theNIDS, with justifications for the

choice. Althoughwedidnot explore this due toour focus onamodel-agnostic evaluation,

it could be a valuable extension.

• Privacy-PreservingCriterion: Currently, theNovelty criterion in our benchmark focuses
on preventing the generative model from copying data from the training set, or at least

ensuring itdoes soat a rate similar to thatof the test set. However, ashighlightedby [106],

privacy concerns still arise when using synthetic data generation, as sensitive informa-

tion can be inadvertently leaked. While our MDmetric evaluates the likelihood of train-

ingdataduplication,we aim tomatch the score to the test set (which tends to be relatively

high, as seen in Figures 4.4, 4.8 and 4.12). From a privacy standpoint, however, this score

should be as low as possible to minimize the risk of sensitive data leakage. Currently,

our benchmark does not incorporate a privacy-preserving criterion. However, adding

one would be especially important when considering model-based generation as a sub-

stitute for simulation in the context of sharing datasets for NIDS evaluation.

• Study of Discretization Processes: Another area for improvement could be a more in-
depth study of the discretization processes used in BN. In this chapter, we only com-

pare two discretizationmethods, each with a fixed number of 40 categories. We observe

107

Chapter 4 – Individual Network Flows Generation With Bayesian Networks

that BN face challenges with discrete features, particularly affecting the performance of

BNGM. Further investigation into the impact of this hyperparameter—finding the opti-

mal number of categories or the best discretizationmethod—remains an open question.

• Impact ofCardinalityReduction onGAN:A subsequent question arising from this work

is the impact of reducing the cardinality of discrete features on the quality of data gen-

erated by BN. This aims to address the limitation discussed in Subsection 4.7. By limit-

ing the cardinality of discrete features, onemight argue that we are handicapping GAN-

based methods. A worthwhile comparison would be to evaluate BN and GAN with vary-

ing numbers of categories to determine the point atwhich the computational complexity

of BN outweighs their benefits. It could be done by increasing the number of ports con-

sidered non-ephemeral (30 in our study) or by considering some frequently encountered

public IP addresses (such as those associated with services provided by companies like

Google or Microsoft) as non-anonymized.

• Temporal Dependencies: Lastly, another future direction would be to consider tempo-
ral dependencies among network flows and develop a generationmethod that preserves

these dependencies. This aspect is addressed in the next chapter.

108

Chapter 5

FlowChronicle: Synthetic Network Flow
Generation through Pattern Set Mining

5.1 Introduction

Simulations are often constrained by their time-consuming nature and their lack of adaptabil-

ity, as they require to be entirely run againwhenever there are changes to the network environ-

ment. Thismakes them impractical, particularly for dynamic or large-scale setups. Our goal is

to develop a more scalable and adaptable alternative.

Section 4.6 shows that Bayesian Networks outperform GAN-based methods in generating

individual network flows. However, generating only independent flows does not fully capture

the complexity of real network traffic. Network flows can occur in sequences where one event

triggers another—such as a DNS request preceding an HTTP request. These interactions are

part of real-world traffic; they should be considered when generating synthetic data. Thus,

beyond generating individual flows, we aim to develop a method that can also capture these

sequential patterns, better reflecting the temporal dependencies found in actual network traf-

fic. This will enable synthetic data generation to compete more effectively with simulations,

and this chapter outlines our approach to achieve this.

To reproduce temporal patterns in synthetic traffic, we first explain how to compose pat-

terns that can model such dependencies and encode a network flow dataset with them (Sec-

tion 5.2). We then explain how to select the best set of patterns to represent a network flow

dataset using the MinimumDescription Length principle (Section 5.3). Building on this foun-

dation, we introduce FlowChronicle (Section 5.4), which not only detects these patterns but also
uses them to generate synthetic network traffic by sampling from the identified flows. This

work is a collaboration with Joscha Cüppers, a PhD student at CISPA. Joscha Cüppers con-

tributed his expertise by assisting with the implementation and drafting of the pattern lan-

guage and pattern mining methods described in Sections 5.2 and 5.3, while we focused on

developing the generative method and setting up the experiments, as detailed in Sections 5.4

109

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

and 5.5.

To evaluate the effectiveness of our approach, we address the following key research ques-

tions:

• Does FlowChronicle produce better-quality individual flows than existing methods? In
Subsection 5.6.1,we compareFlowChronicle to othergenerativemethodsusing thebench-
mark presented in Section 4.4.

• Does FlowChronicle better preserve temporal dependencies? In Subsection 5.6.2, we
evaluate FlowChronicle’s ability tomaintain temporal dependenciesmore effectively than
other synthetic generationmethods. Todo so,wedevelopnewmetrics specifically design

for this task in Subsection 5.5.3

• Is the traffic generated by FlowChronicle better than simulated traffic? Conjointly to
the comparison with other generative models, we also compare the traffic produced by

FlowChronicle with traffic generated by simulation to assess whether FlowChronicle gen-
erates more realistic data.

• Does FlowChronicle allow for an adaptable generation? In Subsection 5.6.3, we explore
whether it is possible tomodulate the generation of FlowChronicle by adding specific net-
work activities to the final traffic.

• IsFlowChroniclemoreefficient1? InSubsection5.6.4,wecompare the computational cost
required to run a simulationwith the cost required to generate traffic using FlowChronicle

By addressing these questions, we aim to demonstrate that FlowChronicle is capable of gen-
erating realistic, temporally-aware traffic more efficiently than other generative models and

investigate its potential its potential as a replacement for simulationwhen generating network

flow datasets.

5.2 Dataset Encoding

In this section, we present the encoding of a dataset using what we refer to as patterns and
explain how this approach helps in identifying relationships betweenmultiple network flows.

1
In Section 4.1, efficiency is defined as minimizing computational power while achieving high-quality output

than a simulation

110

5.2. Dataset Encoding

5.2.1 Pattern-Based Encoding: An Intuition

As discussed in Section 2.1, a network flow dataset can be viewed as a table, where each row

corresponds to a network flow, and each column represents a feature of that flow (e.g., source

IP, destination port, transport protocol).

Encoding the raw dataset would traditionally involve encoding every value in the entire ta-

ble. However, certain combinations of values tend to appear frequently, and it becomes more

efficient to encode these recurring combinations with a single token. These recurring combi-

nations are what we define as patterns.
The main objective is to discover an encoding of the dataset that is as compact as possible.

For example, DNS traffic typically involves UDP as the transport protocol and port 53 as the

destination port. Instead of encoding the values “UDP” and “53” repeatedly for each DNS flow,

we can assign a single token to represent this common combination, thereby compressing the

dataset. The patternswe identify are essentially frequent combinations of feature values found

through a comprehensive search of the dataset.

While the previous example illustrates a pattern within a single network flow, patterns can

also capture combinations acrossmultiple flows. For instance, an IMAP request to read emails

may be followed by HTTP(S) requests to fetch images embedded in the email. In this scenario,

we can encode the sequence of IMAP andHTTP(S) requests as a pattern, reducing the encoding

size and capturing inter-flow relationships.

5.2.2 Formalizing the Concept of Patterns

In this Subsection, we introduce the formal notation used to define patterns and explain the

elements that constitute a pattern.

LetFi represent each feature of a network flow (e.g., Source IP or Destination Port), and let

F i denote the set of possible values for featureFi. Let n represent the total number of features

in a network flow. A network flow can therefore be represented as a tuple ofn features, and the

domain of all flows is the Cartesian product F 1 × F 2 × · · · × F n.

We denote a timestamp associated with each flow as t. Thus, a datasetD is a sequence of

timestamped network flows, each represented as (t, f), where f is a tuple consisting of the

feature values for a specific flow at time t. Our goal in dataset encoding is to shift from this

explicit representation of flows to a representation based on patterns, which allows for amore
compact description of the dataset.

Partial flows serve as the building blocks of patterns. These are tables with the same

111

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

columns as the dataset, and each row corresponds to a flow. In a partial flow table, each cell

can be one of three types:

• Fixed: The value in the cell is fixed and explicitly provided.

• Reused: The value in the cell is reused from another cell in a previous row of the same

partial flow. A common example would be a Destination IP reusing the Source IP of an

earlier flow.

• Free: The value of the cell is undetermined by the partial flow and is left to be inferred by

a Bayesian Network (BN), which we describe below.

Partial flows help us capture dependencies both within and between flows. However, to

fully describe a dataset using partial flows, two additional elements are required: (i) the times-

tamps of the flows within the partial flows, and (ii) the values for the Free cells.

To assign values to Free cells, each partial flow is associated with a Bayesian Network (BN),

which is used to sample values for the Free cells based on the dataset’s distribution. Thus, a

pattern consists of three key components:

1. A partial flow table that defines the relationships between feature values.

2. The timestamps associated with the flows in the partial flow.

3. ABayesianNetwork thatmodels the dependencies between Free cells and assigns values
to them.

5.2.3 Using Patterns to Encode the Dataset

Amodel is defined as a set of patterns. For each pattern in the model, the occurrences of that
pattern in the dataset are referred to aswindows. Awindow is a list of indices corresponding to
the rows (flows) in the dataset thatmatch the pattern. Since a patternmay occurmultiple times

within the dataset, it can havemultiplewindows. However, each patternmust have at least one

window in the dataset. For instance, in Figure 5.1, pattern p is associated with two windows:

(12, 89) and (178, 206), while pattern q is associated with the window (56, 113, 145).
In Figure 5.1, we illustrate how patterns encode a dataset. On the left, we see three patterns

defined by their partial flows and Bayesian networks. Pattern ϵ has one partial flow, where all

cells are Free, marked by β. Pattern p has two partial flows. The identifierA in the Reused cell

112

5.2. Dataset Encoding

Figure 5.1: Toy example. On the left, we show a model with three patterns; on the right, we

show how the patterns cover the dataset.

ensures that the source IP in the second flow is the same as in the first flow’s cell βA. The desti-

nationports arefixed,while the destination IPs remain Free. Finally, pattern q has three partial

flows, with Reused cells ensuring that the source IP of the second flowmatches the source IP of

the first flow and that the source IP of the third flowmatches the destination IP of the second

flow.

On the right side of Figure 5.1, weobserve the occurrences of eachpattern in thedataset and

deduce the windows for each pattern. Pattern p is associated with two windows: (12, 89) and
(178, 206). Pattern q is associated with the window (56, 113, 145). Notice that the fixed values
always match the dataset, and the Reused cells are consistent; for example, in each occurrence

of pattern p, both source IPs are identical.

To ensure full coverage of the dataset, every flowmust be included in a window. However,

not all flows stem from sequential activities or recognizable patterns; some flows may repre-

sent irregular traffic or “noise”. To address these cases, we introduce the concept of an empty
pattern, which consists of a single row where all cells are Free. This allows us to handle flows

that do not fit into any identified patterns by generating their values through the BayesianNet-

work. In Figure 5.1, the pattern ϵ represents such an empty pattern. It ensures that even flows

without clear relationships are still accounted for within themodel. This guarantees that every

flow in the dataset is assigned to at least onewindow, thus fully encoding the dataset using pat-

terns. By using this approach,we can go fromadescription of a dataset in terms of timestamps

113

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

and network flows to a description in terms of patterns and windows.

5.3 Minimum Description Length

Now that we can describe the dataset in terms of patterns and windows, our next task is to

choose thebestmodel (set of patterns) amongvariousways to encode thedataset. Todetermine

the best model, we employ the Minimum Description Length (MDL) principle, which asserts

that the best model is the one that compresses the dataset most effectively.

The MDL principle [107] is a model selection criterion grounded in Occam’s razor, which

suggests that the simplest explanation is often the best. Formally, MDL is an approximation of

Kolmogorov complexity [108]. For a given class of modelsM, MDL identifies the best model

M ∈M as the one thatminimizes the total number of bits required to describe both themodel

and the data given the model:

L(D, M) = L(M) + L(D|M)

whereL(M) is the length of themodelM in bits, andL(D|M) is the length of the dataD given

the modelM . In this section, we explain how to compute bothL(M) andL(D|M).

5.3.1 Length of a Model

AmodelM is composed of a set of |M | patterns. To encode the model, we need to encode the
number of patterns |M | as well as each individual pattern. Therefore, the total length required

to encode the model is:

L(M) = LN(|M |) +
∑

p∈M

L(p) .

5.3.1.1 Encoding the Number of Patterns |M |

The number of patterns |M | is encoded using a formula derived from Rissanen’s method for

encoding integers [109], which is given by:

LN(|M |) = log∗ |M |+ log c0 ,

114

5.3. Minimum Description Length

where log∗ |M | represents the expansion log |M | + log log |M | + . . . 2, and we continue the

expansion until the value of the next logarithm becomes negative, at which point the series

stops. Rissanen suggests using c0 = 2.865064. This formula allows us to compute the number

of bits required to encode the number of patterns in the model.

5.3.1.2 Encoding the Patterns

To encode a pattern p, we need to encode (i) the number of partial flows it contains, (ii) each

of these partial flows, and (iii) the Bayesian Network (BN) that models the Free cells within the

pattern:

L(p) = LN(|p|) +
|p|∑

j=1
L(X[j]|p) + L(BNp) .

The number of partial flows |p| is encoded using Rissanen’s formula. Next, we detail how the
Bayesian Network and the partial flows are encoded.

Encoding the Bayesian Network We encode the Bayesian Network (BN) by first encoding the

number of parents c for each node in the network using log K bits, whereK is the maximum

numberof parents allowed for anynode
3
. We then select theparents fromthe remaining |B|−1

possible nodes, whereB is the set of Free cells defined by the BN.The encoding length is:

L(BNp) =
∑

(j,i)∈Bp

log K + log
(
|B| − 1

cj,i

)
,

whereBp is the set of Free cells in pattern p.

Encoding the Partial Flows The encoding of partial flows is split into three components:

1. Encoding the Fixed cells.

2. Encoding the Free cells marked for reuse.

3. Encoding reused values from earlier flows, if any.

To encode the Fixed cells, wefirst encode howmany of thenflow features have afixed value,

which requires log n bits. To select the k fixed cells, we use log
(

n
k

)
bits. The values themselves

are encoded by selecting from the domain of each feature.

2
All logarithms in this part are base-2

3K is a hyperparameter of the training, in our experiment Section 5.5, we useK = 3

115

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

For the cells marked for reuse, we first encode how many of the remaining n − k cells are

marked for reuse, followed by selecting the l cells to mark. Finally, for cells that reuse values,

we encode howmany of the remaining n− k− l cells reuse values, and we select them cells to

reuse, along with the specific earlier cells to reference. This encoding is formalized as:

L(X[j]|p) = log(n) + log
(

n

k

)
+
∑
i∈Sj

log |F i|

+ log(n− k) + log
(

n− k

l

)
+

1(|π(j, p)| > 0)
(

log(n− k − l) + log
(

n− k − l

m

)
+ m log |π(j, p)|

)
,

where Sj is the set of fixed cells in the jth
flow, and π(j, p) denotes the set of cells available for

reuse.

5.3.1.3 Final Formula for the Model Length

Thus, the total length required to encode the model is:

L(M) = log∗ |M |+ (|M |+ 1) · log c0

+
∑

p∈M

 log∗ |p|+
|p|∑

j=1

 log(n) + log
(

n

k

)

+
∑
i∈Sj

log |F i|+ log(n− k)

+ log
(

n− k

l

)
+ 1(|π(j, p)| > 0)

(
log(n− k − l)

+ log
(

n− k − l

m

)
+ m log |π(j, p)|

)
+

∑
(j,i)∈Bp

log K + log
(
|B| − 1

cj,i

) .

(5.1)

5.3.2 Length of the Dataset Given the Model

To compute the length of the encoding of the datasetD given the modelM , we rely on what is

referred to as the cover ofD usingM . The cover is a set of windows (see Section 5.2.3), which

describes how the patterns of the model are used to represent the dataset. More precisely, a

116

5.3. Minimum Description Length

cover specifies how frequently each pattern occurs, where these occurrences are located in the

dataset, and the values of the Free cells.

5.3.2.1 Illustration of Encoding the Dataset Using a Cover

A cover is a sequence of codes representing how the dataset is encoded with the model. As

said above, the cover specifies for each pattern how often it occurs (number of windows), the

positions of these occurrences (delays), and the values for the Free cells in each occurrence.

Figure 5.2: Encoding of the data shown in Figure 5.1

In Figure 5.2, we show an example of how the dataset is encoded using the model from

Figure 5.1. For example, we first encode the code 2 p , indicating that pattern p occurs twice

in the dataset. For each occurrence of p, we then encode the timestamps (12 and 77), which

represent the start time and the delay to the next flow (77 + 12 = 89). Next, we encode the values

for the Free cells in eachflow.Thisprocess is repeated for pattern q and the emptypattern ϵ. The

result is a full encoding of the dataset in terms of the patterns and their respective windows.

5.3.2.2 Length of the Cover

To compute the length of the cover, we sum the bits required to encode the number of occur-

rences (windows) for each pattern, the timestamps, and the values of the Free cells, as defined

by the Bayesian Network. Formally, the length is:

L(D |M) =
∑

p∈M

(LN(|Wp|) + L(Wp)) ,

where Wp denotes the set of windows (occurrences) for pattern p in the dataset. The length

L(Wp) depends on the timestamps of each occurrence and the values of the Free cells, which
are encoded based on the probabilities given by the Bayesian Network.

117

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

5.3.2.3 Length of the Cover

The total length of the cover is computed by summing the number of bits required to encode

how often each pattern occurs (the number of windows) and the bits required to encode the

timestamps and Free cells within each window:

L(D |M) =
∑

p∈M

(LN(|Wp|) + L(Wp)) ,

where Wp denotes the set of windows associated with pattern p in the dataset. The length

L(Wp) depends on the timestamps and Free cells, which are encoded using the probabilities
provided by the Bayesian Network.

5.3.2.4 Final Formula for the Dataset Length

The complete length for encoding the dataset given the model is:

L(D |M) =|M | · log c0 +
∑

p∈M

 log∗(|Wp|)

+
|Wp|∑
i=1

L(t1 ofwi) +
|p|∑

k=2
L(tk ofwi | tk−1)

− log (Pr(wi | BNp, {wj | j < i}))

 .

(5.2)

5.4 FlowChronicle: A Model for Network Flow Generation

Having established a framework for encoding datasets with amodel and the objective function

formining the best model, we now introduce FlowChronicle, a method specifically designed for
network flow datasets that mines sequential network flow patterns and generates new data

from them. This process involves three key phases: preprocessing the network flows (Subsec-

tion 5.4.1), mining and optimizing patterns in the dataset (Subsection 5.4.2), and generating

new network flows based on the model (Subsection 5.4.3).

5.4.1 Preprocessing Network Flows

Before training themodel, wemust preprocess the network flow dataset to facilitate searching

for potential patterns. Network flows often contain a mix of numerical and categorical fea-

118

5.4. FlowChronicle: A Model for Network Flow Generation

tures. To enable the identification of patterns, we must first discretize the numerical features

in the network flows. We apply a discretization strategy that divides each numerical feature

into 40 categories, ensuring that each category contains an equal number of samples, similar

to the quantization strategy described in Section 4.3. This discretization strategy was chosen

because our dataset closely resembles the CICSmallFeature set (see Section 4.5), and in that

context, the bayesian network using a discretization using equal-width bins (BNbins) produced

the best results (see Section 4.6).

5.4.2 Pattern Mining

Once the dataset is preprocessed, we aim to identify both inter-feature and inter-flow depen-

dencies, which will allow us to recreate these relationships in synthetic network flows. To

achieve this, we apply the MinimumDescription Length (MDL) principle, as described in Sec-

tion 5.3. Theprocess is iterative: at each step,we addpatterns to ourmodel to reduce the overall

description length. Thepatterns addedat each step are chosen fromaset of candidatepatterns,

which expands as the mining process progresses.

5.4.2.1 Creating Candidate Patterns

Before discussing how we select the best candidate pattern at each step, we need to explain

how candidate patterns are generated. As explained in Section 5.2.2, a pattern consists of three

main components: a partial flow table, the timestamps for each flow, and a Bayesian Network

(BN). At each iteration of the mining process, we generate candidate patterns from existing

patterns in the model through the following three options:

1. Fixed Cell Creation: A Free cell is converted into a Fixed cell, or a new row of Free cells is
added, with one of them transformed into a Fixed cell. It is important to note that source

and destination IP addresses cannot be fixed, as we do not want our patterns to depend

on specific IP addresses in the dataset.

2. Pattern Merging: Two patterns, each with a single partial flow, are merged into a new
single-flowpattern if no conflicting Fixed cells exist. Formulti-flowpatterns, candidates

are generated by appending partial flows.

3. Reused Cell Creation: A Free cell in a multi-flow pattern is converted into a Reused cell,
which references a previously marked cell in an earlier flow.

119

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

This iterative process progressively adds patterns to the model. We start with an initial

model containing only the empty pattern, which covers all the flows in the dataset.

5.4.2.2 Selecting Candidate Patterns

Once candidate patterns are created, we need to select those that optimize the model. At each

step, we aim to minimize the description length of the dataset, as explained in Section 5.3.

Optimizing the Description Length At each step, we choose the candidate pattern that pro-

vides the greatest reduction in the overall description lengthL(D, M). If a candidate does not
reduce the description length, it is discarded from the model.

We maintain two lists: one for candidates that successfully reduce the description length

and improve themodel, and one for candidates that failed, which are not tested again in future

iterations.

Managing the Search Complexity In the early iterations, the number of patterns is small, and

thus thenumber of candidates to evaluate is also low. However, asmorepatterns are added, the

number of candidates increases quadratically (due to the pattern merging operation), which

can significantly slow down each iteration.

To address this, we implement a stopping criterion. If t consecutive candidates fail to re-

duce the description length, we terminate the current iteration and proceed to the next. The

value t represents the threshold for consecutive misses, ensuring that the algorithm focuses

on the most promising patterns. Additionally, candidates are ranked using a candidate score,
calculated by multiplying the number of flows a pattern can cover by the number of Fixed or

Reused cells in the partial flow.

Additional Restrictions in Candidate Generation In the first phase of candidate generation,

we allow the creation of Fixed cells by converting Free cells or adding new rows to partial flows.

However, allowing new rows too early often results in uninformative patterns, such as patterns

consisting only of TCP flows. To avoid local minima and generate more interpretable models,

we restrict the addition of new rows to the second phase of the training process. For the same

reason, sometimes a candidate will be an already existing pattern in the model, so we decide

to prune redundant patterns in the model every time a new pattern is added.

120

5.4. FlowChronicle: A Model for Network Flow Generation

Summary of the Search Process The search begins with an initial model containing only the

empty pattern. Next, the initial set of candidates is created. For each pair of features, and for

each combination of values of these two features (except for the source IP and destination IP),

we create a pattern with a single flow containing two Fixed cells. The remaining cells are Free

and are described by a Bayesian network.

Once the initial set of candidates is generated, we proceed by generating single-row can-

didates according to the first two options in Section 5.4.2. If a candidate reduces the MDL, it

is added to the model; if not, it is discarded. After t consecutive candidates fail to reduce the

MDL,we begin generatingmulti-row candidates and repeat the process. Whenno further can-

didates can reduce the MDL, we reach a local minimum, and the final model for the dataset is

obtained. The entire search process is summarized in Algorithm 1
4

Algorithm 1:Main Search Algorithm
Input : set of flowsD,

continuous misses threshold t
Output:modelM and cover ofD

1 M ← {empty pattern}
2 C ← all pairwise combinations of features and values

3 mode← single-flow, misses← 0
4 whilemisses< t or mode= single-flow do
5 C ← C ∪ BuildCandidates(M,mode)
6 c← arg maxc∈C candidate_score(c)
7 if L(D, M) > L(D, M ∪ c) then
8 M ←M ∪ c
9 M ← Prune(M)
10 misses← 0
11 else
12 misses←misses+1
13 if misses> t andmode= single-flow then
14 mode←multi-flow
15 misses← 0

16 returnM, C

4
For clarity, the inclusion of failed candidates in a separate list, which ensures they are not tested again, is

omitted from the pseudocode.

121

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

5.4.3 Generating Synthetic Network Flows

At the end of the training process, we obtain both the model and the cover of the dataset. The

cover consists of windows for each pattern, and from this, we can determine the occurrence

count of each pattern (including the empty pattern). This allows us to construct a probabil-

ity distribution over the patterns, from which we sample new patterns to generate a synthetic

dataset. Once patterns are sampled, they are assigned timestamps to ensure proper temporal

structure in the dataset.

5.4.3.1 Sampling Timestamps

To arrange the patterns in the synthetic dataset, wemust sample timestamps for each pattern.

Using the windows from the model, we extract the initial timestamps for each pattern in the

original dataset. This initial timestampmarks the beginning of the pattern’s occurrence.

By gathering the initial timestamps from each window in the training dataset, we can con-

struct a probabilistic model for the timestamps using Kernel Density Estimation (KDE).
KDE is a non-parametricway to estimate the probability density function of a randomvari-

able. Givena set of observations, KDEconstructs a continuousdistributionbyplacinga smooth

“kernel” function, in our caseGaussian, over eachdata point and summing them to formaden-

sity curve. This allows us to model complex, multimodal distributions without assuming any

particular underlying distribution. In our case, KDE enables us to capture the natural variabil-

ity in initial timestamps, providing a realistic foundation for sampling new values from our

collection of initial timestamps.

Once the initial timestamps are sampled, we must arrange the flows within each pattern.

It is possible for patterns to overlap, as demonstrated in Figure 5.1, where patterns p and q

intersect.

To generate the timestamps for each flow within a pattern, we examine the interarrival

times for the flows in the training dataset. For example, in Figure 5.1, the interarrival times

for the second flow in pattern p are 89 − 12 = 77 and 206 − 178 = 28. Another KDE is ap-
plied to model the distribution of interarrival times for each flow, allowing us to sample new

interarrival times for the synthetic dataset.

5.4.3.2 Generating Flows from Patterns

We use the partial flows from each sampled pattern to generate new synthetic network flows.

The following steps are used to fill in the cells of the sampled patterns:

122

5.5. Experimental Setup

• Fixed cells retain the values specified in the partial flow.

• Free cells are sampled from the Bayesian Network associated with the pattern. Each pat-

tern has its own BN, andwe learn the structure and Conditional Probability Tables (CPT)

from the training data. The Free cells are then sampled directly from the BN.

• Reused cells take the value from the referenced earlier flow within the same partial flow.

5.4.3.3 Postprocessing the Generated Dataset

Because the network flow dataset is discretized in Subsection 5.4.1, the generated synthetic

dataset is initially represented by discrete symbols. To convert it back into the original format,

we replace each symbolwith its correspondingvalue fromthedataset’s alphabet. Fornumerical

features, we sample uniformly within the quantile range corresponding to each symbol, thus

restoring the numerical data to its original form.

5.5 Experimental Setup

This section outlines the experimental setup designed to address the research questions out-

lined in Subsection 5.1. We describe the process of training FlowChronicle and several base-
line methods on a network flow dataset. First, we explain the rationale behind the choice of

the dataset, followed by an introduction to the baseline methods used for comparison with

FlowChronicle. Finally, we describe the methodology for evaluating the performance of these
models.

5.5.1 Dataset

Thechoice of the dataset for our experiment is driven by the necessity of comparing FlowChron-
icle to simulations. When attempting to demonstrate whether FlowChronicle generates better
traffic than a specific simulation, S, onemight consider using a real-world dataset. In this ap-

proach, we generate synthetic traffic with FlowChronicle and then simulate the real traffic with
S for comparison. However, this method only allows for a comparison against that particular

simulation rather than simulations in general. The results might reflect how effectively S is

configured to replicate real traffic, rather than demonstrating FlowChronicle’s potential to serve
as a general replacement for simulation.

123

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

A more reliable approach is to compare FlowChronicle against the best possible scenario
for simulation—where the simulation perfectly replicates the real traffic. To achieve this, we

can select a dataset composed entirely of simulated traffic and use one time period to train

FlowChronicle. We then compare the traffic generated by FlowChronicle to the traffic from a dif-

ferent time periodwithin the same simulated dataset. In this case, the simulation process that

generated the dataset serves as the ideal simulation, as it creates both the training and com-

parison traffic. If FlowChronicle can produce traffic of similar quality to the simulation under
these controlled conditions, it would suggest that FlowChronicle is capable of surpassing other
simulations, which are likely less accurate than this best-case scenario. This method offers a

rigorous and fair assessment of FlowChronicle ’s capability as an alternative to traditional sim-
ulation for synthetic traffic generation.

Therefore, to effectively compare FlowChronicle with other synthetic traffic generation
methods and simulations, we require the reference dataset to meet two key conditions: it

should consist of emulated or simulated traffic and span two distinct periods of time. This

temporal separation enables us to evaluate whether FlowChronicle can achieve the quality of the
optimal simulation, thereby outperforming any other simulation.

5.5.1.1 CIDDS-001

The CIDDS-001 (Coburg Intrusion Detection Data Set) is a labeled, flow-based dataset de-

signed for evaluating anomaly-based intrusion detection systems. It was captured over four

weeks in an emulated small business environment using OpenStack, containing multiple

clients and servers (such as web, email, and backup servers). The dataset includes both benign

and malicious traffic. Traffic was captured from various subnets, including internal server-

client interactions and external server communications. It contains approximately 30 million

network flows.

5.5.1.2 Bidirectional Network Flow

The CIDDS dataset provides unidirectional traffic, but our goal is to study the preservation

of meaningful dependencies. To do this effectively, we need to remove the dependencies of

responses following requestswithin the traffic. Therefore, we combine the unidirectional flows

into bidirectional flows.

To achieve this, we iterate over the entire dataset and group the unidirectional flows by

their 5-tuple: (Source IP Address, Destination IP Address, Source Port, Destination Port, Pro-

124

5.5. Experimental Setup

tocol). This groups all communications that occur between two hosts over the entire dataset.

Naturally, this grouping includesmultiple sessions that span several days. Wemust, therefore,

distinguish between different sessions within these communications. This can be achieved for

TCP connections when both terminals send their FIN flags to close the connection. However,

for UDP traffic, which is connectionless, we need to use a timeout-based approach. We choose

a timeout of 120 seconds, which is a standard value used in the literature [37], [75], to define the

end of a session for UDP flows.

Ultimately, we combine all unidirectional flows within the same session into a single net-

work flowwith 11 features, detailed in Table 5.1. We do not include the Source Port because it is

generally randomly sampledwithin a particular range (see RFC6056 [28]). However, the Source

Port is sometimes fixed, such as with protocols like NetBIOS and NTP. In that case, it can be

reconstructed using basic network knowledge.

Feature Description of the feature Example of value
Date first seen Timestamp of the first packet of the flow 2017-04-11 00:00:14.387

Proto Transport protocol TCP

Src IP Addr Source IP Address (Client) 192.168.220.255

Dst IP Addr Destination IP Address (Server) 10425_118
*

Dst Pt Destination Port 443

In Byte Number of Bytes coming to the client 1165

In Packet Number of Packets coming to the client 7

Out Byte Number of Bytes sending from the client 535

Out Packet Number of Packets sending from the client 5

Flags Type of flags contained in the flow .AP.S.

Duration Duration of the flow 0.369

*
Public IP addresses are anonymized in the CIDDS dataset.

Table 5.1: Set of Features and their description in our dataset

5.5.1.3 Benign network flows

Our focus is on benign activities, but the dataset also includes attack traffic. These attacks are

concentrated in the first two weeks of the dataset. Therefore, we decide not to use the first two

weeks of traffic and concentrate only on the data fromweeks 3 and 4. All flows originating from

external sources outside the network are labeled as “suspicious” during this period. Wediscard

these suspicious flows tomaintain the focus on benign traffic and only consider network flows

recorded within the OpenStack environment.

125

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

Splitting the Dataset Weuse the traffic fromweeks 3and4because theyare theonly twoweeks

in the dataset where no attacks were conducted on the network. Week 3 serves as the training

set for the generative model, while week 4 is used as the simulation result for comparison.

The experiment aims at training the generative models on week 3 to produce a synthetic

week that is as close as possible to the traffic of week 3. We then compare the synthetic data to

the traffic fromweek 4 to evaluate its realism. Suppose one of our generativemodels produces

traffic as close to week 3 as week 4. In that case, we can deduce that the generative model can

replace the best possible simulation and is thus a viable alternative to simulation.

Since some of our evaluation methods require a separate evaluation set (see Subsection

5.5.3.2), we also collect benign traffic from week 2 to serve as the evaluation set. The splitting

procedure is illustrated in Figure 5.3

Figure 5.3: Splitting of the CIDDS datatet

5.5.2 Competing Methods

Wedecide to covermost of the options used in the state of the art for network flow generation.

Thesemodels serve as baselines to compare against FlowChronicle and help address the first two
research questions outlined in Subsection 5.1.

5.5.2.1 BN-based Methods

InSection4.3,we introduceBayesianNetworks (BN) as apotential option fornetworkflowgen-

eration. We, therefore, compare them to FlowChronicle in this part. We design two Bayesian

Networks: one that samples individual flows and another that samples batches of flows.

126

5.5. Experimental Setup

• IndependentBN: This Bayesian Network is similar to the one used in Section 4.3. We

use the same discretization process as FlowChronicle, making it equivalent to the BNbins

method of Section 4.5.

• SequenceBN: Insteadof generating individual networkflows, thismodel generatesflows
in batches of five. The preprocessing is similar to FlowChronicle and IndependentBN, but
we generate 55 features (5 * 11) to produce five network flows simultaneously. This ap-

proach is meant to model the dependencies between the features of these five flows.

5.5.2.2 GAN-based Methods

We reuse the GAN presented in Subsection 4.5.3: CTGAN, E-WGAN-GP, and NetShare for our

comparison with FlowChronicle. For more details on these models, please refer to

Subsection 4.5.3. It is worth noting that among these models, NetShare is the only GAN that

explicitly models temporal dependencies.

5.5.2.3 VAE-based Methods

Wealso include TVAEas aVAE-basedmethod. TVAE is part of the same library asCTGAN [100]

and is integrated similarly into our code. LikeCTGAN, themodel is trained for 300 epochswith

the default hyperparameters.

5.5.2.4 Autoregressive Models / Transformers

Although we want to integrate STAN, we encounter difficulties with the implementation pro-

vided by the authors. Instead, we implement a generative pre-trained transformer (GPT) to

generate sequences of discrete values representing various flows. We train the GPT model for

15 epochs, stopping when we observe the training loss converging.

We use the same discretization process outlined in Subsection 5.4.1 and trained GPT-2 to

generate a new token based on the previous 60 tokens. After the training, the model could

generate new flow features given the previous ones, allowing it to generate synthetic datasets

sequentially.

5.5.3 Evaluation of Synthetic Traffic Quality

To support our claims, we need to evaluate the quality of synthetic flows individually and the

preservation of temporal correlations present in the reference dataset in the synthetic dataset.

127

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

5.5.3.1 Independent Flows

To evaluate independent flows, we use the evaluation framework presented in Section 4.4 with

a fewmodifications to DKC andMD.

DKC Because DKC is dataset-dependent, we need to adapt DKC to the current dataset. The

various tests we execute to evaluate compliance are presented in Table 5.2.

Rule Feature(s) concerned Explanation

Protocol specific applications Dst Pt; Proto
Some applications in the dataset

use only one transport protocol

No outgoing data on ping request
Proto; Out Byte;

Out Packet

The dataset recording was configured

so that only reply were captured

No incoming data

on NetBios or SSDP

Proto; In Byte;

In Packet
Dataset specific

NetBios or SSDP

only toward broadcast
Dst Pt; Dst IP Addr Same reason as above

No incoming web traffic

on local network
Dst Pt; Dst IP Addr

Outside web user reach the inner

networks only through the web server

Nomail traffic coming from outside Dst Pt; Dst IP Addr
The only mail traffic recorded is

the one initiated by internal user

All DNS requests are directed

toward DNS server
Dst Pt; Dst IP Addr

A DNS server has been set up

and it receives all the internal requests

TCP Flags only on TCP traffic Flags; Proto From Ring et al. [16]

The packet should have

a minimal and amaximal size

In Byte; Out Byte;

In Packet; Out Packet
From Ring et al. [16]

No negative Duration Duration
The Duration of a Flow

should always be positive

Only flows of 1 packet

should have a null Duration

In Packet, Out Packet,

Duration

The Duration is the summation

of inter arrival times

Table 5.2: DKC compliance test

MD In Section 4.4, we introduce MD to evaluate the novelty of the generated data. Higher

MD values indicate thatmore data is potentially copied from the training data. However, since

many network flows in real-world datasets are copies of other flows, we aim for generative

models to replicate the novelty seen in a reference dataset.

In this experiment, the reference dataset used for evaluating novelty is unavailable, so we

revert to the initial ideaofGoncalves et al. [83] ofminimizingMDfor themostnovel generation.

This implies that simulation will likely have the worst novelty score, as the generation process

for both the training dataset and the simulation set is the same.

128

5.5. Experimental Setup

5.5.3.2 Temporal Dependency Preservation

Our previous evaluation framework focused on assessing independent network flows and did

not account for preserving temporal dependencies. To demonstrate that FlowChronicle can pre-
serve temporal dependencies present in the reference dataset, we separate categorical features

from numerical features and treat each feature as a time series.

We consider the network flow dataset as amultidimensional time series, similar to the ap-

proach used in NetShare. In this framework, a network flow at time step i is represented as:

Xi =
(
X1

i , X2
i , . . . , Xn

i

)
whereXi consists of n features (e.g., source IP, destination IP, packet count, etc.) observed

at the i-th time step. The entire network flow dataset over T time steps is defined as:

D = (X1, X2, . . . , XT)

whereD represents T network flows, each described by n features. LetXj
denote the time

series of the j-th feature, where:

Xj =
(
Xj

1 , Xj
2 , . . . , Xj

T

)
represents the values of the j-th feature over T time steps.

To assess the preservation of temporal dependencies, we examine the temporal dependen-

cies of each featureXj
independently. Thisprocess involves identifying temporal dependencies

in the real dataset and verifying that they are preserved in the generated dataset. Ideally, we

would also evaluate interactions between different features over time to capture a more com-

prehensive temporal structure. However, due to computational expense and limited resources,

this full analysis was not feasible (see Subsection 5.7.3).

Numerical Features For numerical features, inspired by Liao et al. [110] andWiese et al. [111],

we evaluate temporal dependencies between two time series by comparing their Autocorrela-

tion Functions (ACF) [112]. TheACF of a featureXj
measures the linear correlation betweenXj

t

andXj
t+l, where l is the lag. To do this, we compute the difference between the ACFs of the real

and generated time series across all lags. However, as explained in Subsection 3.2.1, compar-

ing ACF over all lags may mask essential differences at significant lags, as not all lags exhibit

strong autocorrelation. To avoid this, we focus only on lags where the autocorrelation exceeds

129

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

the Bartlett confidence interval [113], ensuring that we evaluate temporal dependencies only

where meaningful autocorrelations exist in the real dataset. This process is applied across all

numerical features. Slight differences in ACFs suggest that the time series exhibit similar tem-

poral structures, whilemore significant discrepancies indicate that temporal dependencies are

not fully captured.

Categorical Features The autocorrelation method does not apply to categorical features. In-

stead, we could compare the contingency matrices of P (Xj
real,t)|X

j
real,t−l) and

P (Xj
generated,t)|X

j
generated,t−l) across all lags l. However, computing these differences over mil-

lions of lags is computationally prohibitive. Inspired by Yoon et al.’s [114] predictive score, we

implement the TSTR (Train on Synthetic, Test on Real) method [101] to assess the preservation

of temporal dependencies in categorical features.

In this approach, we compare the performance of an LSTM
5
trained on real data versus one

trained on synthetic data for a feature-wise autoregressive task, where the model predicts the

current value of a feature based on its previous values. For each categorical feature, we first

encode its values as a one-hot vector and train an LSTM to predict the next value in the se-

quence based on a context window of prior values. The first model is trained on the real train-

ing dataset (week3), while the second LSTM, with identical hyperparameters, is trained on the
generated data. We then evaluate the accuracy of bothmodels on benign traffic fromweek2 (see
Subsection 5.5.1.3). The TSTR score is the difference in accuracy between the twomodels.

This process is repeated for every categorical feature and is illustrated in Figure 5.4. We re-

peat the experiment multiple times with varying hyperparameters to prevent the score from

depending too heavily on a single LSTM configuration. The final score for each categorical fea-

ture is the average accuracy difference across all LSTM configurations.

5.6 Results of the Experiment

In this section, we present the results of the experiment designed to evaluate the performance

of FlowChronicle in comparison to other synthetic traffic generation methods and simulation.
We start by assessing the quality of individual flows in Subsection 5.6.1, followed by an anal-

ysis of temporal dependency preservation in Subsection 5.6.2. Next, we explore the ability of

FlowChronicle togenerate adaptable traffic inSubsection5.6.3, andfinally,wecompare the com-

5
A Long Short-TermMemory (LSTM) network is a type of recurrent neural network capable of learning long-

term dependencies, often used in tasks involving sequential data.

130

5.6. Results of the Experiment

Training Data
Evaluation

Data

Training the

Generative Model

Categorical feature

Training an LSTM

Categorical feature

Training an LSTM

Acc. Acc.Score

Evaluation

Figure 5.4: TSTR data pipeline

131

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

putational cost of FlowChronicle to othermethods in Subsection 5.6.4. We conclude by summa-
rizing our responses to the research questions in Subsection 5.6.5.

5.6.1 Independent Flows

We begin by evaluating the flows independently, without considering temporal dependencies

between flows. The metrics were computed 20 times on 20 different subsamples of both the

generated and training data. Each subsample includes 10,000 flows (like in Section 4.6). The

median of each metric and the ranking of all models according to each metric are reported

in Table 5.3. We present the result according to the four criteria of our benchmark : realism,

diversity, novelty, compliance.

Density CMD PCD EMD JSD Coverage DKC MD Rank
Real.

↑
Real.

↓
Real.

↓
Real./Div.

↓
Real./Div.

↓
Div.
↑

Comp.
↓

Nov.
↓

Average
Ranking

Simulation 1 (0.69) 2 (0.05) 2 (1.42) 1 (0.00) 2 (0.15) 1 (0.59) 1 (0.00) 9 (6.73) 2.375
IndependentBN 8 (0.24) 6 (0.23) 7 (2.73) 6 (0.11) 4 (0.27) 4 (0.38) 3 (0.05) 5 (5.47) 5.375

SequenceBN 7 (0.30) 3 (0.13) 6 (2.20) 5 (0.08) 3 (0.21) 3 (0.44) 2 (0.02) 6 (5.50) 4.375

TVAE 4 (0.50) 5 (0.18) 4 (1.77) 2 (0.01) 5 (0.30) 5 (0.33) 4 (0.07) 4 (5.18) 4.125

CTGAN 3 (0.56) 4 (0.15) 3 (1.56) 2 (0.01) 2 (0.15) 2 (0.51) 5 (0.11) 7 (5.69) 3.5

E-WGAN-GP 9 (0.02) 8 (0.34) 9 (3.70) 2 (0.01) 7 (0.38) 8 (0.02) 4 (0.07) 3 (4.66) 6.25

NetShare 6 (0.32) 7 (0.28) 1 (1.36) 4 (0.03) 6 (0.36) 6 (0.22) 3 (0.05) 1 (3.73) 4.25

Transformer 2 (0.65) 9 (0.78) 8 (3.65) 1 (0.00) 8 (0.55) 7 (0.03) 3 (0.05) 2 (3.76) 5

FlowChronicle 5 (0.41) 1 (0.03) 5 (2.01) 3 (0.02) 1 (0.10) 1 (0.59) 2 (0.02) 8 (5.87) 3.25

Table 5.3: Ranking of our different models without considering the preservation of temporal

dependencies. For each metric, the median of the score is given between parentheses. Real.:

Realism, Div.: Diversity, Comp.: Compliance, Nov.: Novelty, ↓: Lower is better, ↑: Higher is
better. the best model for each metric is indicated in bold.

5.6.1.1 Realism

The Transformer and CTGANmodels achieve relatively high Density scores (0.65 and 0.56, re-

spectively). However, the Transformermodel struggles to represent cross-feature correlations,

as indicated by its CMD and PCD scores (0.78 and 3.65, respectively). Additionally, E-WGAN-

GP generates data with low realism (Density: 0.02, CMD: 0.34, and PCD: 3.70), which could

be due to the bidirectional nature of the dataset, whereas IP2Vec was initially designed for

unidirectional datasets. FlowChronicle generates above-average results in terms of realism for

synthetic network flows. As expected, the best-performingmethod in terms of realism is Sim-

ulation.

132

5.6. Results of the Experiment

5.6.1.2 Diversity

While theTransformerproduces realistic results, it struggleswithdiversity, showinga lowCov-

erage score (0.03) and a high JSD (0.55). This can be attributed to a known behavior in autore-

gressive generative models called degeneration [115], [116], where the model learns to generate a
specific sequence of network flows and repeats it during the generation process (see Table 5.4).

Date first seen Proto Src IP Addr Dst IP Addr Dst Pt In Byte In Packet Out Byte Out Packet Flags

2017-04-05 00:05:00.262 UDP 192.168.200.9 DNS 53.0 0 0 1065 1

2017-04-05 00:05:00.263 UDP 192.168.200.9 DNS 53.0 0 0 1002 1

2017-04-05 00:05:01.264 UDP 192.168.200.9 DNS 53.0 0 0 1033 1

2017-04-05 00:05:15.495 UDP 192.168.200.9 DNS 53.0 0 0 1057 1

2017-04-05 00:05:17.802 UDP 192.168.200.9 DNS 53.0 0 0 1083 1

2017-04-05 00:05:25.036 UDP 192.168.200.9 DNS 53.0 0 0 1016 1

2017-04-05 00:05:25.038 UDP 192.168.200.9 DNS 53.0 0 0 1056 1

2017-04-05 00:05:25.046 UDP 192.168.200.9 DNS 53.0 0 0 1068 1

Table 5.4: Example of Generated Network Flows. Here, we observe that the Transformer base-

line replicates a single network flow across an entire sequence. This tendency to repeatedly

generate the same valid data point is known as degeneration.

We also notice that Bayesian Networks struggle to handle numerical variables, as reflected

in the EMD scores (0.08 and 0.011 for SequenceBN and IndependentBN, respectively), a phe-

nomenon already highlighted in Section 4.6. FlowChronicle and CTGAN are among the best

models for covering the entire training distribution, and FlowChronicle performs almost on par
with Simulation in this regard.

5.6.1.3 Compliance

Besides CTGAN (DKC: 0.11), most models can generate traffic that complies with the prede-

fined rules. FlowChronicle, SequenceBN, and Simulation produce data with the fewest compli-
ance issues.

5.6.1.4 Novelty

Both Simulation and FlowChronicle exhibit high MD scores (6.73 and 5.87, respectively), high-
lighting the fact that generating realistic network flows often requires copying parts of the

training data, as discussed in Subsection 5.5.3.1. Methods that generated unrealistic data,

such as Transformer (3.76) and NetShare (3.73), have lower MD scores, underscoring the re-

alism/novelty tradeoff.

133

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

5.6.1.5 Overall

This evaluation shows that Simulation produces the best overall traffic, whichwas expected be-

cause the samesimulationprocesswasused togenerateweek3andweek4. FlowChronicleemerges
as the generative method closest to Simulation, with CTGAN following closely behind. Thus,

we can affirmatively answer the first research question: Does FlowChronicle produce better quality
independent flows than other solutions?

5.6.2 Preservation of Temporal Correlation

5.6.2.1 Categorical Features: Impact of Generated Sequences on the Accuracy of an LSTM

In Figure 5.5, we show the difference in accuracy between two similar LSTMs trained on the

training data and synthetic data generated by each model for every categorical feature in the

dataset. We observe that the twomethods with the lowest difference across all categorical fea-

tures are Simulation and FlowChronicle, indicating that FlowChronicle successfully learned the
temporal dependencies for these features.

Figure 5.5: Average difference in accuracy of various LSTMs trained on the training data and

synthetic data generated by differentmodels. Each subgroup represents one feature, and each

bar represents one generation method. Lower is better.

5.6.2.2 Numerical Features: Difference in Autocorrelation Functions (ACF)

In Figure 5.6, we present the differences in ACF across all numerical features between the real

training dataset and the generated dataset. CTGANand TVAEperform theworst in preserving

temporal dependencies in numerical features, likely because bothmodels come from the same

library [100] and do not explicitly model temporal dependencies.

134

5.6. Results of the Experiment

On the other hand, Transformer andNetShare preserve temporal dependencies pretty well

since these models are designed to handle such dependencies. Surprisingly, E-WGAN-GP,

which samples network flows independently, also shows relatively low differences. FlowChroni-
cleoutperforms thesemodels, reproducing theautocorrelations acrossnumerical featureswell.
The difference in ACFs between the training set and the dataset generated by FlowChronicle is
nearly equivalent to the difference between the training set and the Simulation set for the five

numerical features. This demonstrates that FlowChronicle effectively learned the temporal de-
pendencies in the training set for these features.

Figure 5.6: Difference in ACF between the generated data and the training data across all nu-

merical features for various generative methods. Lower is better.

5.6.2.3 Overall

We can conclude that FlowChronicle is better than the other generative models for preserving
temporal dependencies, both for categorical and numerical features. It is the only one that

achieves a similarity level to that of simulation across all features. Thus, we can positively an-

swer the second research question: Does FlowChronicle better preserve temporal dependencies?

5.6.3 Explainable Multi-Flow Patterns Discovered by FlowChronicle for an
Adaptable Generation

To address the fourth research question outlined in Subsection 5.1, we explore whether

FlowChronicle can generate specific network activities, adapting its output to meet each user’s
unique requirements.

The model of FlowChronicle is composed of patterns with associated frequencies, allowing
users to adjust these frequencies to prioritize particular network activities in the generated

135

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

dataset, without retraining. This feature enables customization, as users can enrich the gen-

eration with patterns that suit their specific needs. This adaptability is not achievable with

current simulation solutions [9], [12]. In simulations, users must rerun the entire process to

increase the frequency of specific traffic types. With FlowChronicle, users can simply select and
amplify the patterns associated with the desired activities, generating them as needed.

However, for this capability tobeeffective, FlowChroniclemust learnpatterns that canclearly
be linked to identifiable network activities. With minimal expert knowledge, users can select

patterns that correspond to their desired network activities, provided these patterns are in-

terpretable. We identify several such patterns and present examples here. Since our focus is

on sequential patterns (i.e., patterns involvingmultiple flows), we present onlymulti-flowpat-

ternshere. If anactivity is associatedwitha singleflow (e.g., aPINGrequest), it canbemodeled

directly using a Bayesian Network, as discussed in Section 4.3.

The first pattern contains three partial flows, all from the same source IP to the same des-

tination IP. All three partial flows are HTTPS requests (TCP Protocol, Destination Port 443).

This pattern is likely generated when a browser requests a webpage that requires multiple re-

sources (e.g., images, scripts, styles) from the same server, each fetched through a separate

HTTPS connection.

A second pattern represents a DNS request (UDP protocol, destination port 53) followed by

an HTTP flow (TCP protocol, destination port 80). The source IP remains the same for both

flows. This is a classic network pattern: before a device can send an HTTP request to access a

domain, it must resolve the domain’s IP address. While the IP address could be cached locally,

a DNS request may still be required to obtain it.

The thirdpattern includes twopartial flows fromthe samesource IP todifferentdestination

IPs. The first partial flow is anHTTPS request (TCP protocol, destination port 443), followed by

aDNS request (UDPprotocol, destination port 53). This can be explained by the fact that aweb-

pagemight include resources hostedon external servers (e.g., scripts or images). In such cases,

the browsermust send a DNS request to resolve the IP address of the external server. This pat-

ternmay bemissing subsequentHTTPS connections following theDNS request. Interestingly,

we do not find any multi-flow patterns related to non-Web protocols.

These patterns provide strong evidence that FlowChronicle is capable of learning explainable
patterns that align with typical network behavior, which experts can validate. This allows us to

constrain the generation to certain activities. We add more related patterns into our gener-

ated data if we want more of certain activities. This allows for an adaptable generation that

is unreachable by simulation and can be a strong argument for favoring synthetic data over

136

5.6. Results of the Experiment

simulated data for creating a network dataset (see Subsection 1.2.3 for more details).

However, to achieve truly adaptable generation, it is necessary tomapmore of our patterns

to specific network activities. Although we observe patterns associated with certain network

activities, most of patterns identified by the model lack clear explanations. Moreover, we did

not examine the typesof activities in theCIDDS-001dataset, leaving thepotential for adaptable

generation present but currently unexplored.

5.6.4 Computational Cost

Comparing computational costs allowsus to address thefinal objective of Subsection 5.1,which

concerns comparing the efficiency of FlowChronicle to the one of simulation. In Table 5.5, we
report the time taken for training each method and generating synthetic data from it. All ex-

periments were conducted on a server with 500GB of RAM, 2 AMDEPYC 7413 CPUs, and 3 A40

Nvidia GPUs.

One drawback of FlowChronicle is the time required for training and generating data. While
FlowChronicle achieved the best performance on independent and temporal metrics, it also had
the most prolonged training and generation times. Although long training times are a known

issue of MDL-basedmethods, we are confident that the generation time could be significantly

reduced due to the simplicity of the process. Reducing the time required to train the pattern

miner and generate new data is a potential area of improvement for future work (see Subsec-

tion 5.7.3).

Simulation, however, is by far the most time-consuming process for a generation. Sim-

ulations typically require 168 hours to run for a week of traffic generation. While there is no

explicit training time involved, since simulation methods are not trained models, an equiva-

lent time-consuming step would be the creation of a detailed simulation setup. As a result,

our comparison with simulation focuses solely on the generation time, as the preparation and

creation of the simulation environment can vary significantly and is not directly comparable to

FlowChronicle’s training phase.
However, generation speed alonedoesnot fully address the questionof efficiency,which, as

defined in Section 4.1, refers tominimizing computational powerwhile achieving high-quality

output. Therefore, to assess efficiency, we also need to compare the cost of generation between

Simulation and FlowChronicle. To achieve this, we examine the cost of renting a cloud infras-
tructure to run the generation process, estimating the expense of producing a week of traffic

with both FlowChronicle and Simulation.
To generate a week of traffic with Simulation, one needs to configure the OpenStack en-

137

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

Duration (hh:mm)
Model Training Generating
Simulation - 168:00

IndependentBN 00:12 < 0:01
SequenceBN 00:31 < 0:01
CTGAN* 29:12 00:02

TVAE* 02:01 00:03

E-WGAN-GP* 00:36 01:59

NetShare* 59:39 05:00

Transformer* 84:02 34:41

FlowChronicle 106:54 85:16

Table 5.5: Training and generating runtimes for producing one week of traffic. Methods anno-

tated with * rely on GPU.

vironment and run it for 168 hours as detailed in the original dataset paper [6]. This requires

setting up one external server, four internal servers, three Windows clients, three printer em-

ulators, and 16 Linux clients. Based on AWS EC2 pricing, each terminal can be emulated on a

VM using a small instance like t3.medium
6
, which costs approximately $0.04 per hour at the

time of writing. The cost of simulating the entire infrastructure for one week and recording

the traffic would be approximately:

$0.04× (1 + 4 + 3 + 3 + 16)× 168 = $181.44

Running thegenerationprocesswithFlowChronicle takes less timebut requiresmorepower-
ful instances. Based on our experiments, an r6g.16xlarge instance (same number of CPU cores

and RAM)
7
could reproduce the generation duration. The on-demand cost of this instance is

approximately $3.22 per hour at the time of writing
8
. Thus, the cost of generating one week of

traffic with FlowChroniclewould be approximately:

86× $3.22 = $276.92

From this, we can see that FlowChronicle is more expensive than Simulation, even though it
is faster to generate. It is important to note that the cost of generating traffic in simulations

depends on the number of hosts in the network, which is not directly the case for FlowChron-
icle. As discussed in Section 1.2, this limitation impacts the scalability of simulations. If the

6https://aws.amazon.com/ec2/instance-types/t3/
7https://aws.amazon.com/fr/ec2/instance-types/r6g/
8https://instances.vantage.sh/aws/ec2/r6g.16xlarge

138

https://aws.amazon.com/ec2/instance-types/t3/
https://aws.amazon.com/fr/ec2/instance-types/r6g/
https://instances.vantage.sh/aws/ec2/r6g.16xlarge

5.6. Results of the Experiment

training dataset had contained more hosts, the cost of generating a week of traffic using sim-

ulation would have increased. In contrast, the generation cost for FlowChronicle is not directly
influenced by the number of hosts.

5.6.5 Response to the research questions

Below we sum the answers to questions raised in Subsection 5.1 and respond to them individ-

ually

• Does FlowChronicle produce better-quality independent flows than existing methods?
Ourmethod is the best among the generativemethods presented and closely approaches

the quality of the Simulation for individual flows.

• Does FlowChronicle better preserve temporal dependencies?We have also seen that our
method produces the most realistic dataset for preserving temporal dependencies

among the generative methods presented, similar to Simulation.

• Is the traffic generated by FlowChronicle better than simulated traffic? The response to

that question is less straightforward. Wehave shown that FlowChronicle can produce net-
work flows that are close to Simulation in terms of quality, while Simulationwas the best

traffic overall. However, our simulation is a best-case scenario, where the emulating pro-

cess perfectlymimics the activities recorded in the trainingdataset. In amoreusual case,

it is highly probable that the simulation activities would not match the real activities,

lowering the realism of the resulting traffic. In such a configuration, FlowChronicle could
be a better alternative than simulation for representing the real dataset. This will need

further investigation to be shown.

• Does FlowChronicle allow for an adaptable generation ?We have seen that FlowChronicle
is able to have an adaptable generation and that certain network activity can be gener-

ated without having to retrain the model or regenerate the entire traffic. However, this

aspect needs to be further investigated in order to have a propermapping ofmore of our

patterns in terms of network activities

• Is FlowChroniclemore efficient?While FlowChronicle is faster than Simulation in gener-
ating network flows, it incurs higher computational costs, which makes it less efficient

overall. This underscores the need for further optimization to improve cost efficiency.

Reducing the cost to generate remains the main area for enhancing FlowChronicle, but

139

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

improving the speed of its training process—which is longer than that of other genera-

tive methods—could also be beneficial.

5.7 Limitations and Future Work

In this section, we address the limitations of FlowChronicle and the experimental setup used to
evaluate it, followed by potential directions for future improvements.

5.7.1 Limitations of FlowChronicle

The first limitation of FlowChronicle is the expressiveness of the pattern language. While capa-
ble of capturing simple patterns, the current language struggles with complex behaviors, such

as repeating flows in video streaming. A more expressive language could represent these be-

haviors, but this would significantly increase the computational complexity and search space.

Additionally, the greedy search algorithm, although effective, is time-consuming due to

the vast number of possible pattern combinations. Potential improvements, such as paral-

lelization, could reduce runtime by splitting the dataset into independent chunks for process-

ing. However, ensuring consistency across chunks and managing cross-chunk dependencies

presents challenges that remain unresolved.

5.7.2 Experimental Limitations

The experimental setup also has limitations. In comparing FlowChronicle with a simulation,
we used an idealized simulation scenario that assumed perfect alignment between the simu-

lated and training datasets. In reality, simulations often oversimplify user interactions, which

may lead to less realistic traffic. A more comprehensive evaluation would involve comparing

FlowChronicle against a wider range of real and simulated datasets to account for this variabil-
ity. Additionally, the CIDDS-001 dataset lacks labels linking flows to network activities, limit-

ing our ability to verify if detected patterns correspond accurately to specific activities.

Finally, while we compared the computational cost of FlowChronicle and simulation, the
analysis was based on a simplified cost model using on-demand pricing. A more fine-grained

cost comparison, incorporating factors such as reservation-based pricing and hardware opti-

mizations, could better reflect the true cost differences between the two approaches.

140

5.7. Limitations and Future Work

5.7.3 Future Work

Building on the limitations discussed, several areas of future work can further enhance

FlowChronicle’s capabilities in synthetic network traffic generation. Below are key directions

for future improvements.

5.7.3.1 Expanding the Pattern Language

While the current pattern language is effective at detecting simple patterns, it may fall short in

modeling more complex behaviors, such as repeating flows in video streaming or

long-duration activities. Future research should focus on developing a more expressive pat-

tern language that can model repeating sequences or longer-term dependencies common in

real-world network activities.

A challenge will be balancing the expressiveness of the language with the complexity of the

search space. Incorporating a dataset labeled with specific network activities, such as the CIC

IoT dataset 2023
9
, would allow further validation of an enhanced version of FlowChronicle. Suc-

cessfully identifying and reproducing behaviors linked to user activity would demonstrate the

patternmining approach’s ability to capture complex behaviors, further provingFlowChronicle’s
adaptability.

5.7.3.2 Improving Temporal Dependency Evaluation

Current evaluations of temporal dependencies in FlowChronicle focus primarily on

single-feature dependencies. Future work should focus on developing newmetrics that assess

multi-feature temporal correlations to provide amore comprehensive assessment of synthetic

traffic’s temporal dynamics.

One potential direction is to explore the use of Multivariate Dependent Dynamic Time

Warping (MVDTW) [117], which aims to measure the alignment of temporal sequences across

multiple features. Although MVDTW is still a relatively new metric in time series evaluation,

further research could establish its consistency and applicability for evaluating complex net-

work traffic patterns.

9https://www.unb.ca/cic/datasets/iotdataset-2023.html

141

https://www.unb.ca/cic/datasets/iotdataset-2023.html

Chapter 5 – FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining

5.7.3.3 Parallelization and Efficiency

The time-consuming nature of FlowChronicle’s greedy search for patterns can be addressed
through parallelization techniques. Dividing the workload across multiple processors can

speed up both the training and pattern discovery phases, potentially overcoming the compu-

tational bottlenecks seen in larger datasets or more complex patterns.

Additionally, differential search techniques, which dynamically adjust the search space

based on prior results, could help reduce redundant computations. Another promising direc-

tionwouldbe investigating lightweight or approximate searchmethods that could significantly

lower the computational cost of pattern discovery without compromising the quality of gener-

ated data. Thesemethods wouldmake FlowChroniclemore practical for real-time or large-scale
traffic generation scenarios.

5.7.3.4 Exploring Large Language Models (LLMs) for Synthetic Data Generation

Given the success of Large Language Models (LLMs) in generating consistent data sequences

across various domains, LLMs present a promising alternative for synthetic network traffic

generation. Their ability to capture long-range dependencies and maintain internal consis-

tencies throughout data sequences makes them particularly suitable for generating network

flows with complex temporal structures.

Futurework could investigate howLLMs can enhance the realismof synthetic traffic gener-

ated by FlowChronicle. Additionally, LLMs like GPT could offer improvements in terms of train-
ing and generation efficiency, potentially reducing the time and resources needed to generate

high-quality synthetic data.

5.7.3.5 Real-World Validation

WhileFlowChroniclehasdemonstrated strongperformance in controlledexperiments, it still re-
quires validation in real-world environments. Future research should focus on applying

FlowChronicle to real-world datasets that reflect the unpredictability and diversity of network
traffic encountered in practical deployments.

Moreover, conducting experiments in environmentswhere traditional simulationmethods

fail to capture real-world traffic complexity would provide further insights into FlowChronicle’s
performance. Validating FlowChronicle in these challenging scenarios could demonstrate its
potential superiority over conventional simulation methods, especially in environments with

highly dynamic and variable traffic patterns.

142

Chapter 6

Conclusion

To evaluate NIDS, access to benign network traffic is essential, as it provides the baseline for

distinguishing between normal and malicious activity, yet sharing real network traffic raises

significant privacy concerns. Real network traffic frequently contains sensitive user data.

While anonymization is a potential solution, it is difficult to implement and poses some chal-

lenges, like the risk of de-anonymization for example. Moreover, accurately labeling real traf-

fic requires expert knowledge, and errors in this process can negatively impact NIDS perfor-

mance, increasing false positives or false negatives.

Simulations have been proposed as an alternative to real traffic, but they present their own

challenges. Modifying simulations to accommodate new types of traffic or changes in initial

conditions requires rerunning the entire simulation, a time-consuming and

resource-intensive process. Furthermore, simulating large networks increases resource de-

mands, as it involves modeling many agents and processes, which drives up computational

costs and complexity.

Synthetic data generation is often promoted as a solution that addresses the limitations of

both real trafficandsimulation. Thegenerationof “fake” traffic is consideredprivacy-compliant

and easy to label. Moreover, synthetic traffic generation is seen as scalable, as it theoretically

does not depend on network size, and adaptable, as it allows new traffic to be generated with-

out requiring the entire process to be rerun. These characteristics suggest that synthetic traffic

generation could be a viable alternative to both real traffic and simulation.

The primary goal of this thesis is to develop a synthetic network traffic generation system

capable of replacing simulation for NIDS evaluation. The system aims to generate scalable and

adaptable traffic while preserving critical characteristics of real network traffic, such as tem-

poral dependencies, diversity and compliance. In this chapter, we first introduce our contri-

butions in this area and then discuss potential future work. We address current limitations in

our approach and explore possible extensions to broaden the scope of our research.

143

6.1 Contributions of this thesis

6.1.1 Review of Synthetic Traffic Generation Methods

Thefirstmajor contribution of this thesis is a comprehensive reviewof existing synthetic traffic

generationmethods, offering a detailed overview of the current state of the art while identify-

ing areas that require improvement. One of the key findings from this review is the limitations

of Generative Adversarial Networks (GAN) in the context of network flow generation.

GAN, while widely used for various generative tasks, exhibits several shortcomings when

applied to network flow generation. GAN often struggle to capture the complex dependencies

between network flow features, which is crucial for accurately representing realistic traffic.

Moreover, training GAN is time-consuming.

6.1.2 Bayesian Networks as an Alternative

A key contribution of this thesis is the proposal of Bayesian Networks (BN) as an alternative

to GAN for synthetic network flow generation. BN offer several advantages, particularly in

their ability to accurately capture inter-feature dependencies in tabular network flow data. BN

are inherently designed tomodel these relationships,making themparticularly well-suited for

generating realistic network flows.

Our experiments showed that BN outperform GAN on smaller datasets and achieve com-

parable performance on larger datasets while requiring significantly fewer computational re-

sources. This demonstrates that traditional machine learning methods, such as BN, can com-

pete with, and in some cases surpass, more complex neural network architectures when syn-

thesizingnetworkflowdata. Weargue thatBNshouldbe consideredmore extensively in future

research on synthetic network flow generation.

6.1.3 Development of a Unified Benchmark for Evaluation

Thethird contributionof this thesis is the introductionof a comprehensive benchmark for eval-

uating synthetic traffic generation methods.

Current generativemethods lack a unified framework for evaluating the quality of the gen-

erated traffic acrossmultiple dimensions. Typically, evaluations rely on the utility of the traffic

for NIDS, but this approach fails to provide a holistic view of the quality of the traffic itself. For

example, utility metrics do not account for phenomena such as mode collapse, where a gener-

ativemodel fails to produce the full diversity of traffic patterns observed in real data. Likewise,

144

they do not address training data duplication, which can lead to privacy violations if sensitive

information is unintentionally replicated from the training dataset. Mode invention, where

models generate unrealistic or artificial patterns not present in the real data, also goes unno-

ticed.

To address these limitations, we introduce a comprehensive evaluation framework based

on key criteria necessary for synthetic traffic generation. The benchmark assesses synthetic

network flow generation across several critical dimensions, including:

• Realism: Thegeneratednetworkflows should closely resemble the trainingdata, appear-

ing as if they were sampled from the same underlying distribution.

• Diversity: The generated flows should exhibit the same level of variability as the training

ones, avoiding overfitting or repetitive patterns.

• Novelty: While being realistic, the synthetic flows should not simply replicate the train-
ing data. Theymust introduce sufficient variations to ensure the traffic is new and not a

direct copy of the original dataset.

• Compliance: The generatedflows should adhere to protocol specifications, ensuring that

all generated traffic is valid and follows established network protocols.

This benchmark enables researchers to assess and compare synthetic traffic generation

methods without making assumptions about the intended use of the generated traffic. It pro-

vides anobjectivemeans to evaluate thequality of traffic across these critical criteria. Addition-

ally, the benchmark helps identify and address issues such asmode collapse, data copying, and

mode invention. By structuring the evaluation process around these dimensions, the bench-

mark allows for fair and systematic comparisons between different generative approaches, en-

suring a thorough assessment of their strengths and limitations. We also extend this same

benchmark to include an evaluation of how well our generated dataset captures temporal de-

pendencies present in the real dataset.

6.1.4 Preserving Temporal Dependencies in Synthetic Network Flows

Another significant contribution of this thesis is addressing the challenge of preserving tem-

poral dependencies in synthetic network traffic. In real-world scenarios, user activities often

145

result in sequential patterns, such as a DNS request followed by a visit to a website. These tem-

poral dependencies are crucial for generating realistic traffic, as they reflect natural user behav-

ior and interaction flows. However, many current generative methods produce network flows

independently, thereby missing these essential patterns, which diminishes the realism of the

generated traffic.

To resolve this issue, we developed FlowChronicle, a novel approach that combines pattern
mining with Bayesian Networks to capture both independent and sequential flow patterns.

FlowChronicle outperforms existing methods in two critical areas: it generates high-quality in-
dividual flows while also preserving temporal dependencies between them. Our experiments

demonstrate that FlowChronicle offers a substantial improvement over alternative generative
models and has the potential to be more adaptable than traditional simulation methods. We

believe that FlowChronicle is one of the first advanced network flow generation methods capa-
ble of generating high-quality flows whilemaintaining realistic sequential patterns, making it

a valuable tool for both research and practical applications in network traffic generation.

6.2 Future Work

This section proposes several directions to advance synthetic network traffic generation. These

directions are divided into future work to address current limitations and future work to broaden the
research scope, each offering specific avenues for overcoming existing constraints and exploring
novel applications.

6.2.1 Addressing Current Limitations

This section discusses futurework aimed at addressing the limitations identified in FlowChron-
icle, including improvements in model performances, scalability, and practical applicability.

6.2.1.1 Optimizing Cardinality and Discretization in Model Comparison

Our comparison between GAN and BN, discussed in Section 4.5, reveals limitations due to re-

stricted cardinality and the discretization of numerical data. For discrete variables, the limited

cardinality used inour experimentswas chosen tomaintainmodel efficiencybutmayhave con-

strained GAN’ performance by simplifying the variable representation. Future studies should

explore the effect of increasing cardinality, particularly for discrete features such as port num-

bers, which could enhance GAN’ ability to model complex network behaviors. This exploration

146

would provide a more accurate comparison between GAN and BN and clarify their respective

computational trade-offs and performance scalability.

The discretization approach for numerical data in Bayesian Networks was similarly guided

by efficiency considerations to reducemodel complexity. However, since discretization signifi-

cantly impacts the accuracy of BayesianNetworks, future work should investigate optimal dis-

cretization strategies that better capture continuous variables in network data. Future studies

could provide a more balanced comparison by systematically assessing the effects of different

discretization approaches on BN.

6.2.1.2 Evaluating Dataset Size on Model Performance

The scalability of BN has been assessed based on feature count, yet the relationship between

dataset size (i.e., number of flows) and the performance of BN remains largely unexplored.

Although larger datasets could potentially enable neural network-basedmodels, such as GAN,

to better capture inter-feature dependencies, the datasetswe used are of a common sizewidely

employed in GAN studies. This ensures that our comparisons are meaningful, even if future

work might explore whether larger datasets further enhance GAN performance.

Similarly, FlowChronicle would benefit from a study on how training dataset length affects

model quality and training time, especially when employing parallelization strategies. In this

setup, smaller datasets are processed in parallel and then recombined. Initial experiments

show that parallelization can effectively reduce computational demands: increasing the num-

ber of chunks from 50 to 100 reduced training time from 18 hours 30 minutes to 8 hours 5

minutes without compromising temporal correlations. However, splitting data into too many

chunks (e.g., 400) led to an over-representation of single-flow patterns, indicating that too

few flows per chunk can disrupt temporal dependencies. Therefore, determining the optimal

chunk size to balance computational cost with temporal fidelity remains unresolved.

Two key questions arise from these observations:

• Could GAN outperform BN on larger datasets by capturing feature dependencies more

effectively in abundant data?

• What is the optimal chunk size that balances generated dataset quality and training time

of FlowChronicle in a parallelized setup?

Addressing these questions would provide valuable insights into the scalability of generative

methods, a crucial factor given the scarcity of real benign network data.

147

6.2.1.3 Extending Beyond Network Flows to Packet Captures

Currently, FlowChronicle generates network flows exclusively. While network flows capture es-
sential information, they impose a fixed set of flow-level features on the user. Expanding syn-

thetic generation to include packet captures (pcaps) would allow users greater flexibility by en-

abling them to craft their own feature sets from packet-level data, which provides for finer-

grained details such as packet sizes, timestamps, and sequences.

As discussed in Subsection 3.1.3, the primary challenges in generating realistic synthetic

pcaps include creating valid packet payloads and accuratelymodeling header sequenceswithin

aflow.Thefirst challengecouldbeapproachedbyusingautomata to structurepacket sequences

or by enhancing the network flow feature set to incorporate header-level details. Recent re-

search, such as [89] and [17], provides a basis for modeling realistic header attributes. Gener-

ating packet payloads should ideally occur as a subsequent step. Since many packet payloads

are encrypted, future work could explore simulating encrypted payloads with padding. This

approachwouldmaintain thepacket structurewhile safeguardingdataprivacy. Theseadvance-

ments would make FlowChroniclemore adaptable, allowing users to define features according
to specific research or application needs.

6.2.2 Broadening the Research Scope

This section describes directions for expanding FlowChronicle beyond current limitations, ex-
ploring novel methodologies, and introducing new applications in synthetic data generation.

6.2.2.1 Exploring Large Language Models (LLMs) for Network Flow Generation

Large Language Models (LLMs) have demonstrated the capacity to generalize across various

tasks, including previously unseen applications, as highlighted in [118]. Advanced LLMs are

pre-trained on extensive datasets, unlike the GPT-2model we use in Section 5.5. This pretrain-

ing enables them to generalize and adapt across various domains, including the novel network

flow data generation task.

In preliminary studies that we conducted, LLMs (LLaMA-2-70B, Mistral-7B, Llama-2-7B,

and ChatGPT4) are provided with network flow datasets in CSV format and prompted with:

“Above is X minutes of network traffic in CSV format. Each line corresponds to one network

flow. Can you generate X more minutes of traffic using the same format?” The variable X is

adjusted to fit within the model’s maximum context window. These initial experiments reveal

several challenges, which are outlined below.

148

Challenges Encountered Onemajor issue is that the LLMs often fail to recognizewhen to stop

generating data, leading to unbounded output. Additionally, smaller models, such as Mistral-

7B and Llama-2-7B, encounter difficulties with context reinitialization, where they lose track

of their objective when the output exceeds their token limit. Another significant limitation

involves the models’ restricted context sizes, which constrain the quantity of traffic that could

be processed or generated within a single pass.

Proposed Solutions To address these issues, prompt engineering was employed, including

inserting flags at the start and end of the input data to delineate the generation boundaries

clearly. Thisapproachhelpedguide themodels to terminate thegenerationmoreappropriately.

For example, a prompt like: “Above is X minutes of network traffic in CSV format. Each line

corresponds to one network flow. Can you generateX more minutes of traffic using the same

format?”wasused. Additionally, the context reinitialization issuewasmitigatedbyendingeach

prompt with a specific termination flag, prompting the model to complete the task and add

a final “End of generated traffic” marker, improving task consistency. Another example of a

prompt with flags given to LLMs is provided in Figure 6.1:

Start of Original Traffic
Date first seen, Proto, Src IP Addr, Dst IP Addr, Dst Pt, In Byte, Out Byte
2017-04-05 00:00:00.266, TCP, 192.168.220.15, 10031_250, 445.0, 743.0, 547.0
2017-04-05 00:00:01.264, UDP, 192.168.200.4, 192.168.200.255, 137.0, 0, 0.0
2017-04-05 00:00:10.534, TCP, 192.168.220.4, 192.168.100.5, 445.0, 97.0, 522.0
2017-04-05 00:00:11.275, UDP, 192.168.200.5, 192.168.200.255, 138.0, 0, 0.0
2017-04-05 00:00:25.558, TCP, 10031_250, 192.168.100.5, 445.0, 248.0, 128.0
2017-04-05 00:01:00.096, UDP, 192.168.200.8, 10031_250, 1900.0, 0, 0.0
...
2017-04-05 00:05:57.461, TCP, 10031_250, 192.168.100.5, 445.0, 787.0, 138.0
2017-04-05 00:06:03.715, UDP, 192.168.200.9, 192.168.200.255, 138.0, 0, 0.0
End of Original Traffic

Above is network traffic in a .csv format. Each line corresponds to one network flow. Can you generate the same kind of

traffic using the same format as the original traffic but with different timestamps and traffic details? The generated traffic

should be in the same time range and similar to the original one.

Start of Generated Traffic

Figure 6.1: Prompt used to generate network flows with LLMs. In this example, the flows are

reduced for readability, showingonly aportionof theoriginal traffic. The traffic is encapsulated

by start and termination flags.

To overcome the context size limitations, we propose two potential approaches. The first is

to develop a custom encoding that captures network flow structures more efficiently and train

a foundational model specifically for network flow data. This would allow us to define special-

ized tokens representing network flowsmore compactly, similar to the transformer baseline in

149

Section 5.5. However, this would require significant computational resources and further re-

search. The second,more immediate approach involves adopting a Retrieval-Augmented Gen-

eration (RAG) strategy. The model could retrieve relevant chunks as needed by splitting the

dataset into manageable chunks stored in a vector database, effectively expanding its context

size throughmemory retrieval.

6.2.2.2 Privacy Considerations in Network Traffic Generation

Although this thesis evaluates Novelty to prevent direct data replication, more advanced pri-

vacy metrics are needed to protect against sensitive data leakage. Specifically, more advanced

membership inference attacks, as discussed in [119], could test whether a synthetic dataset un-

intentionally reveals information about the original data. Additionally, implementing differ-

ential privacy techniques, such as those explored in [120], could add an extra layer of protection

by ensuring that individual data points are not identifiable. By incorporating these techniques,

futurework could alignFlowChroniclewithprivacy standards essential for security-sensitive ap-
plications.

6.2.2.3 Testing Generated Traffic on NIDS

Applying synthetic traffic generated by FlowChronicle to real NIDS, such as ntopng1 or oth-
ers [121], [122], would validate its practical applicability. This process involves generating be-

nign traffic that minimizes false positives on flow-based NIDS. By evaluating FlowChronicle ’s
performance across different types of NIDS, future work could demonstrate its versatility and

applicability for real-world intrusiondetection scenarios. Testingonmultipleflow-basedNIDS

with varying feature requirementswould also highlight FlowChronicle ’s flexibility to diverse de-
tection systems.

6.2.2.4 Enhancing the Pattern Language in FlowChronicle

The current pattern language used in FlowChronicle faces challenges when representing com-
plex, recurring flow patterns, such as those in video streaming or repeated communication

sequences in IoT traffic. Expanding the pattern language to includemore expressive, nuanced

flow sequences could better capture these types of traffic patterns, increasing the synthetic

data’s realism and utility in NIDS testing and other applications.

1https://www.ntop.org/guides/ntopng/index.html

150

https://www.ntop.org/guides/ntopng/index.html

To verify this, an activity identification experiment should be conducted to evaluate

whether FlowChronicle can detect complex network activities. Thiswould require a dataset with

labels linking specific network flows to particular activities. Initial research suggests that the

CIC IoT dataset 2023
2
may be well-suited for this purpose.

This research direction would likely require advanced pattern-matching techniques, pos-

sibly incorporating non-greedy search algorithms to optimize pattern extraction without sub-

stantially increasing computational overhead. By balancing themodel’s descriptive powerwith

computational efficiency, a more expressive pattern language could enhance FlowChronicle ’s
applicability across diverse synthetic traffic scenarios.

6.2.2.5 Creating and Sharing a Comprehensive Synthetic Dataset for NIDS Evaluation

A long-termgoal is to establish a large-scale, comprehensive syntheticNIDSevaluationdataset

comprising both benign andmalicious traffic. Such a dataset would serve as a benchmark, of-

fering a synthetic alternative to traditional simulateddatasets. Includingbothbenignand real-

isticmalicious traffic patternswould allow the dataset to bridge the gap between synthetic data

generation and traditional simulations, potentially positioning FlowChronicle as a foundational
tool for security-focused research and practical NIDS deployment.

Generating synthetic malicious traffic presents unique challenges, particularly in merging

attack traffic with benign traffic while preserving the properties of both. Successfully com-

bining these traffic types requires careful handling to ensure thatmalicious characteristics ac-

curately reflect real-world attack profiles without distorting the integrity of benign flows [23].

Futurework should exploremethods for integrating diverse attack vectors, such asDDoS,mal-

ware signatures, and network reconnaissance behaviors, into synthetic traffic.

While current evaluation benchmarks focus primarily on benign flows, future research

should establish benchmarks and evaluation metrics tailored to datasets containing both be-

nign and malicious traffic, as discussed in [123]. By developing and sharing such datasets,

FlowChronicle could substantially contribute to synthetic traffic generation in network security,
enhancing its applicability across various security-focused research and practical implemen-

tations.

2https://www.unb.ca/cic/datasets/iotdataset-2023.html

151

https://www.unb.ca/cic/datasets/iotdataset-2023.html

Bibliography

[1] S. Northcutt and J. Novak, Network Intrusion Detection: An Analyst’s Handbook, 3rd. USA: New Riders Pub-
lishing, 2002, isbn: 0735712654 (page 15).

[2] M. Roesch, “Snort - lightweight intrusion detection for networks”, in Proceedings of the 13th USENIX Con-
ference on System Administration, ser. LISA ’99, Seattle, Washington: USENIX Association, 1999, pp. 229–
238 (page 16).

[3] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion detection”, ACM Trans. Inf. Syst. Secur.,
vol. 3, no. 3, pp. 186–205, Aug. 2000, issn: 1094-9224. doi: 10.1145/357830.357849. [Online]. Avail-
able: https://doi.org/10.1145/357830.357849 (page 16).

[4] P. Voigt and A. Bussche,TheEUGeneralData ProtectionRegulation (GDPR): APracticalGuide. Jan. 2017, isbn:
978-3-319-57958-0. doi: 10.1007/978-3-319-57959-7 (page 17).

[5] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the kdd cup 99 data set”, in

2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp. 1–6. doi:
10.1109/CISDA.2009.5356528 (page 17).

[6] M. Ring, S.Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-based benchmark data sets for intru-

sion detection”, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:3637071
(pages 17, 18, 74, 138).

[7] A.H. Lashkari, G.DraperGil,M.Mamun, andA. A. Ghorbani, “Characterization of tor traffic using time

based features”, in Proceedings of the 3rd International Conference on Information Systems Security and Privacy
(ICISSP), SciTePress, 2017, pp. 253–262 (pages 17, 27–29).

[8] I. Sharafaldin, A.H. Lashkari, andA. A.Ghorbani, “Toward generating a new intrusion detection dataset

and intrusion traffic characterization”, in International Conference on Information Systems Security and Pri-
vacy, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:4707749 (pages 17,
74, 82, 84).

[9] S. Abt and H. Baier, “A plea for utilising synthetic data when performingmachine learning based cyber-

security experiments”, in Proceedings of the 2014Workshop on Artificial Intelligent and SecurityWorkshop, ser.
AISec ’14, Scottsdale, Arizona, USA: Association for ComputingMachinery, 2014, pp. 37–45, isbn:

9781450331531. doi: 10.1145/2666652.2666663. [Online]. Available: https://doi.org/10.1145/
2666652.2666663 (pages 17, 18, 39, 136).

[10] T. J. Anande andM. S. Leeson, “Generative adversarial networks (gans): a survey on network traffic gen-

eration”, International Journal of Machine Learning and Computing, vol. 12, pp. 333–343, Oct. 2022. doi: 10.
18178 / ijmlc . 2022 . 12 . 6 . 1120. [Online]. Available: https : / / api . semanticscholar . org /
CorpusID:253339791 (pages 18, 46).

152

https://doi.org/10.1145/357830.357849
https://doi.org/10.1145/357830.357849
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1109/CISDA.2009.5356528
https://api.semanticscholar.org/CorpusID:3637071
https://api.semanticscholar.org/CorpusID:4707749
https://doi.org/10.1145/2666652.2666663
https://doi.org/10.1145/2666652.2666663
https://doi.org/10.1145/2666652.2666663
https://doi.org/10.18178/ijmlc.2022.12.6.1120
https://doi.org/10.18178/ijmlc.2022.12.6.1120
https://api.semanticscholar.org/CorpusID:253339791
https://api.semanticscholar.org/CorpusID:253339791

[11] H. Navidan, P. FardMoshiri, M. Nabati, et al., “Generative adversarial networks (gans) in networking:
a comprehensive survey evaluation”, Computer Networks, vol. 194, p. 108 149, May 2021. doi: 10.1016/j.
comnet.2021.108149 (pages 18, 29).

[12] C. Pandey, V. Tiwari, R. S. Rathore, R. H. Jhaveri, D. S. Roy, and S. Selvarajan, “Resource-efficient syn-

thetic data generation for performance evaluation in mobile edge computing over 5g networks”, IEEE
Open Journal of the Communications Society, vol. 4, pp. 1866–1878, 2023. doi: 10.1109/OJCOMS.2023.
3306039 (pages 18, 136).

[13] I. Goodfellow, J. Pouget-Abadie,M.Mirza, et al., “Generative adversarial networks”,Communications of the
ACM, vol. 63, no. 11, pp. 139–144, 2020 (pages 19, 32).

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised

multitask learners”, 2019 (page 19).

[15] R. Singh, H. Kumar, and R. K. Singla, “A reference dataset for network traffic activity based intrusion

detection system”, Int. J.Comput.Commun.Control, vol. 10, pp. 390–402, 2015. [Online]. Available:https:
//api.semanticscholar.org/CorpusID:53976879 (page 19).

[16] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network traffic generation using generative

adversarial networks”,Computers Security, vol. 82, pp. 156–172, 2019 (pages 19, 42, 45, 66, 67, 81, 82, 87, 89,
128).

[17] M.R.Shahid,G.Blanc,H. Jmila,Z.Zhang, andH.Debar, “Generativedeep learning for internet of things

network traffic generation”, in 2020 IEEE25thPacificRimInternational SymposiumonDependableComputing
(PRDC), IEEE, 2020, pp. 70–79 (pages 19, 148).

[18] X. Jiang, S. Liu, A.Gember-Jacobson, et al., “Netdiffusion: network data augmentation throughprotocol-
constrained traffic generation”, Proceedings of the ACM on Measurement and Analysis of Computing Systems,
vol. 8, no. 1, pp. 1–32, 2024 (pages 19, 53).

[19] S. Xu, M. Marwah, M. Arlitt, and N. Ramakrishnan, “Stan: synthetic network traffic generation with

generative neural models”, in Sep. 2021, pp. 3–29, isbn: 978-3-030-87838-2. doi: 10.1007/978- 3-
030-87839-9_1 (pages 19, 29, 47, 58, 64–68, 78, 89).

[20] R. Sommer and V. Paxson, “Outside the closed world: on using machine learning for network intrusion

detection”, in 2010 IEEESymposiumonSecurityandPrivacy, 2010, pp. 305–316.doi:10.1109/SP.2010.25
(page 21).

[21] W.HuandY.Tan, “Generating adversarialmalware examples for black-box attacks basedongan”, inData
Mining and Big Data, Y. Tan and Y. Shi, Eds., Singapore: Springer Nature Singapore, 2022, pp. 409–423,
isbn: 978-981-19-8991-9 (page 21).

[22] Q. Li, J. Li, Y. Li, F. Jiu, and Y. Chu, “An adaptive enhancementmethod ofmalicious traffic samples based

ondcgan-resnet system”, International Journalof InformationTechnologiesandSystemsApproach, vol. 17, pp. 1–
17, Jan. 2024. doi: 10.4018/IJITSA.343317 (page 21).

[23] C. G. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer, and M. Mühlhäuser, “Id2t: a diy

dataset creation toolkit for intrusion detection systems”, in 2015 IEEE Conference on Communications and
Network Security (CNS), 2015, pp. 739–740. doi: 10.1109/CNS.2015.7346912 (pages 21, 151).

153

https://doi.org/10.1016/j.comnet.2021.108149
https://doi.org/10.1016/j.comnet.2021.108149
https://doi.org/10.1109/OJCOMS.2023.3306039
https://doi.org/10.1109/OJCOMS.2023.3306039
https://api.semanticscholar.org/CorpusID:53976879
https://api.semanticscholar.org/CorpusID:53976879
https://doi.org/10.1007/978-3-030-87839-9_1
https://doi.org/10.1007/978-3-030-87839-9_1
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.4018/IJITSA.343317
https://doi.org/10.1109/CNS.2015.7346912

[24] H. Zimmermann, “Osi reference model - the iso model of architecture for open systems interconnec-

tion”, IEEE Transactions on Communications, vol. 28, no. 4, pp. 425–432, 1980. doi: 10.1109/TCOM.1980.
1094702 (page 24).

[25] J. Postel, Internet protocol, RFC 791, 1981. [Online]. Available: https://tools.ietf.org/html/rfc791
(page 25).

[26] S. Deering and R. Hinden, Internet protocol, version 6 (ipv6) specification, 2017. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc8200/ (page 25).

[27] R. Hinden and S. Deering, Ipv6 addressing architecture, RFC 4291, 2006. [Online]. Available: https://
tools.ietf.org/html/rfc4291 (page 25).

[28] M. Larsen and F.Gont,Recommendations for Transport-Protocol PortRandomization, RFC 6056, Jan. 2011.doi:
10.17487/RFC6056. [Online]. Available: https://www.rfc-editor.org/info/rfc6056 (pages 25,
125).

[29] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed. Pearson, 2011 (pages 25–27).

[30] S.Dharmapurikar, P.Krishnamurthy,T. Sproull, and J. Lockwood, “Deeppacket inspectionusingparallel

bloom filters”, in 11th Symposium onHigh Performance Interconnects, 2003. Proceedings., IEEE, 2003, pp. 44–
51 (page 27).

[31] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, 5th ed. Morgan Kaufmann, 2011
(page 27).

[32] W.Haag, “Nfdumptools fornetflowdataanalysis”,https://github.com/phaag/nfdump, 2014,Accessed: 2024-
05-28. [Online]. Available: https://github.com/phaag/nfdump (page 27).

[33] L. Deri, “Nprobe: an open source netflow probe for gigabit networks”, Proceedings of the IEEE International
Symposium on Computers and Communications (ISCC), pp. 200–205, 2003 (page 27).

[34] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine

learning”, IEEECommunications Surveys Tutorials, vol. 10, no. 4, pp. 56–76, 2008 (page 28).

[35] B. Claise, Cisco systems netflow services export version 9, RFC 3954, 2004. [Online]. Available: https : / /
tools.ietf.org/html/rfc3954 (page 28).

[36] E. D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R. Springer, 2014 (page 28).

[37] R.Hofstede, P. Čeleda, B. Trammell, et al., “Flowmonitoring explained: frompacket capture to data anal-

ysis with netflow and ipfix”, IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.
doi: 10.1109/COMST.2014.2321898 (pages 28, 125).

[38] B. Claise, “Ip flow information export (ipfix) protocol specifications”, RFC 7011, Internet Engineering Task
Force (IETF), 2013 (pages 28, 29).

[39] D. Olivier, M. Peterson, and S. Wright, Cisco NetFlow: Advanced Network Monitoring for Performance and Se-
curity. Cisco Press, 2004 (pages 28, 29).

[40] P. Phaal, S. Panchen, and N. McKee, “Sflow: real-time network monitoring for high-speed networks”,

IEEENetwork, vol. 14, no. 5, pp. 35–42, 2001 (page 28).

154

https://doi.org/10.1109/TCOM.1980.1094702
https://doi.org/10.1109/TCOM.1980.1094702
https://tools.ietf.org/html/rfc791
https://datatracker.ietf.org/doc/rfc8200/
https://datatracker.ietf.org/doc/rfc8200/
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
https://doi.org/10.17487/RFC6056
https://www.rfc-editor.org/info/rfc6056
https://github.com/phaag/nfdump
https://tools.ietf.org/html/rfc3954
https://tools.ietf.org/html/rfc3954
https://doi.org/10.1109/COMST.2014.2321898

[41] J. Networks, Juniper networks j-flow monitoring and configuration guide, https : / / www . juniper . net /
documentation/en_US/junos/topics/concept/services- interfaces- jflow- overview.
html, 2020 (pages 28, 29).

[42] H. Technologies,Huawei netstream technology overview, https://support.huawei.com/enterprise/
en/doc/EDOC1100075466, 2018 (pages 28, 29).

[43] M.Marwah andM. Arlitt, “Deep learning for network traffic data”, in Proceedings of the 28th ACMSIGKDD
Conference on Knowledge Discovery and Data Mining, ser. KDD ’22, Washington DC, USA: Association for

Computing Machinery, 2022, pp. 4804–4805, isbn: 9781450393850. doi: 10.1145/3534678.3542618.
[Online]. Available: https://doi.org/10.1145/3534678.3542618 (page 29).

[44] G. Agrawal, A. Kaur, and S. Myneni, “A review of generative models in generating synthetic attack data

for cybersecurity”, Electronics, vol. 13, no. 2, 2024, issn: 2079-9292. [Online]. Available: https://www.
mdpi.com/2079-9292/13/2/322 (page 29).

[45] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-based intrusion

detection data sets”, Computers Security, vol. 86, pp. 147–167, 2019, issn: 0167-4048. doi: https://doi.
org/10.1016/j.cose.2019.06.005. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S016740481930118X (pages 29, 82, 84).

[46] S. Bourou, A. E. Saer, T.-H. Velivassaki, A. Voulkidis, and T. Zahariadis, “A review of tabular data syn-

thesis using gans on an ids dataset”, Information, vol. 12, no. 09, p. 375, 2021 (pages 29, 45, 46, 65, 67, 89).

[47] Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Practical gan-based synthetic ip header trace generation

using netshare”, in Proceedings of the ACMSIGCOMM2022 Conference, 2022, pp. 458–472 (pages 29, 47, 48,
53, 58, 64–68, 78, 87, 90).

[48] I. Goodfellow, Y. Bengio, and A. Courville,Deep learning. MIT press, 2016 (page 30).

[49] M. I. Jordan andT.M.Mitchell, “Machine learning: trends, perspectives, and prospects”, Science, vol. 349,
no. 6245, pp. 255–260, 2015 (page 30).

[50] G. Carleo, I. Cirac, K. Cranmer, et al., “Machine learning and the physical sciences”, Reviews of Modern
Physics, vol. 91, no. 4, p. 045 002, 2019 (page 30).

[51] N. Radakovich, M. Nagy, and A. Nazha, “Machine learning in haematological malignancies”,The Lancet
Haematology, vol. 7, no. 7, e541–e550, 2020 (page 30).

[52] L. Wendlinger, E. Berndl, and M. Granitzer, “Methods for automatic machine-learning workflow anal-

ysis”, inMachine Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Confer-
ence, ECMLPKDD2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part V 21, Springer, 2021, pp. 52–67
(page 30).

[53] T. Guo, J. Xu, X. Yan, et al., “Ease the process ofmachine learningwith dataflow”, in Proceedings of the 25th
ACM International on Conference on Information and KnowledgeManagement, 2016, pp. 2437–2440 (page 30).

[54] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task execution time in the cloud using a

two-stage machine learning approach”, IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp. 256–268,
2017 (page 30).

155

https://www.juniper.net/documentation/en_US/junos/topics/concept/services-interfaces-jflow-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-interfaces-jflow-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-interfaces-jflow-overview.html
https://support.huawei.com/enterprise/en/doc/EDOC1100075466
https://support.huawei.com/enterprise/en/doc/EDOC1100075466
https://doi.org/10.1145/3534678.3542618
https://doi.org/10.1145/3534678.3542618
https://www.mdpi.com/2079-9292/13/2/322
https://www.mdpi.com/2079-9292/13/2/322
https://doi.org/https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/https://doi.org/10.1016/j.cose.2019.06.005
https://www.sciencedirect.com/science/article/pii/S016740481930118X
https://www.sciencedirect.com/science/article/pii/S016740481930118X

[55] Y. LeCun, Y. Bengio, andG.Hinton, “Deep learning”, nature, vol. 521, no. 7553, pp. 436–444, 2015 (page 31).

[56] G. Huang, S. Song, J. N. Gupta, and C. Wu, “Semi-supervised and unsupervised extreme learning ma-

chines”, IEEE transactions on cybernetics, vol. 44, no. 12, pp. 2405–2417, 2014 (page 31).

[57] H. Chen, “Challenges and corresponding solutions of generative adversarial networks (gans): a survey

study”, Journal of Physics: Conference Series, vol. 1827, no. 1, p. 012 066, Mar. 2021. doi: 10.1088/1742-
6596/1827/1/012066. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1827/1/
012066 (pages 32, 37).

[58] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative ad-

versarial networks: an overview”, IEEE signal processingmagazine, vol. 35, no. 1, pp. 53–65, 2018 (page 33).

[59] D. P. Kingma,M.Welling, et al., “An introduction to variational autoencoders”, Foundations and Trends® in
Machine Learning, vol. 12, no. 4, pp. 307–392, 2019 (page 33).

[60] M. Ehsan Abbasnejad, A. Dick, and A. van den Hengel, “Infinite variational autoencoder for

semi-supervised learning”, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5888–5897 (page 34).

[61] S. Zhao, J. Song, and S. Ermon, “Infovae: informationmaximizing variational

autoencoders”, arXiv preprint arXiv:1706.02262, 2017 (page 34).

[62] D. Heckerman, “Bayesian networks for data mining”, Data mining and knowledge discovery, vol. 1, pp. 79–
119, 1997 (pages 34, 74).

[63] G. Schwarz, “Estimating theDimension of aModel”,Annals of Statistics, vol. 6, no. 2, pp. 461–464, Jul. 1978
(page 34).

[64] N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham, “A survey of bayesian network struc-

ture learning”, Artificial Intelligence Review, vol. 56, no. 8, pp. 8721–8814, 2023 (page 36).

[65] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural networks and

tabular data: a survey”, IEEE Transactions on Neural Networks and Learning Systems, vol. PP, pp. 1–21, Dec.
2022. doi: 10.1109/TNNLS.2022.3229161 (pages 36, 37).

[66] H.-P. Kriegel, E. Schubert, and A. Zimek, “The (black) art of runtime evaluation: are we comparing algo-

rithms or implementations?”, Knowledge and Information Systems, vol. 52, pp. 341–378, 2017 (page 37).

[67] S. Huang, J. Li, J. Ye, et al., “A sparse structure learning algorithm for gaussian bayesian network identi-

fication from high-dimensional data”, IEEE transactions on pattern analysis andmachine intelligence, vol. 35,
no. 6, pp. 1328–1342, 2012 (page 37).

[68] A. Giuseppe, F. Giampaolo, C. Guida, et al., “Synthetic and privacy-preserving traffic trace generation
using generative ai models for training network intrusion detection systems”, Available at SSRN 4643250,
2023 (page 39).

[69] X. Huang, X.Wang, Y. Liu, and Q. Xue, “A distributed traffic replay framework for network emulation”,

Information, vol. 14, no. 2, 2023, issn: 2078-2489. doi: 10.3390/info14020059. [Online]. Available:
https://www.mdpi.com/2078-2489/14/2/59 (page 39).

156

https://doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.1088/1742-6596/1827/1/012066
https://dx.doi.org/10.1088/1742-6596/1827/1/012066
https://dx.doi.org/10.1088/1742-6596/1827/1/012066
https://doi.org/10.1109/TNNLS.2022.3229161
https://doi.org/10.3390/info14020059
https://www.mdpi.com/2078-2489/14/2/59

[70] N. Elmrabit, F. Zhou, F. Li, andH. Zhou, “Evaluation ofmachine learning algorithms for anomaly detec-

tion”, in 2020 InternationalConference onCyber Security andProtection ofDigital Services (Cyber Security), 2020,
pp. 1–8. doi: 10.1109/CyberSecurity49315.2020.9138871 (page 39).

[71] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar, “Adversarially learned anomaly de-

tection”, in 2018 IEEE International conference on datamining (ICDM), IEEE, 2018, pp. 727–736 (pages 40, 45,
61, 64).

[72] J. Donahue and K. Simonyan, “Large scale adversarial representation learning”, Advances in neural infor-
mation processing systems, vol. 32, 2019 (page 40).

[73] W. Xu, J. Jang-Jaccard, T. Liu, F. Sabrina, and J. Kwak, “Improved bidirectional gan-based approach for

network intrusion detection using one-class classifier”, Computers, vol. 11, no. 6, p. 85, 2022 (pages 41, 61,
64, 65, 67).

[74] T. Zixu, K. S. K. Liyanage, and M. Gurusamy, “Generative adversarial network and auto encoder based

anomaly detection in distributed iot networks”, in GLOBECOM 2020-2020 IEEE Global Communications
Conference, IEEE, 2020, pp. 1–7 (page 41).

[75] L. Han, Y. Sheng, and X. Zeng, “A packet-length-adjustable attention model based on bytes embedding

using flow-wgan for smart cybersecurity”, IEEE Access, vol. 7, pp. 82 913–82 926, 2019 (pages 41, 125).

[76] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks”, in Proceedings
of the 34th International Conference on Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings
of Machine Learning Research, vol. 70, PMLR, Aug. 2017, pp. 214–223. [Online]. Available: https://
proceedings.mlr.press/v70/arjovsky17a.html (pages 41, 45).

[77] V. Chetlapalli, H. Agrawal, K. Iyer, M. A. Gregory, V. Potdar, and R. Nejabati, “Performance evaluation

of iot networks: a product density approach”, Computer Communications, vol. 186, pp. 65–79, 2022, issn:
0140-3664. doi: https://doi.org/10.1016/j.comcom.2022.01.010. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366422000160 (page 42).

[78] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “Ip2vec: learning similarities between ip addresses”, in

2017 IEEE International Conference on DataMiningWorkshops (ICDMW), 2017, pp. 657–666. doi: 10.1109/
ICDMW.2017.93 (pages 42–44).

[79] M.Heusel,H.Ramsauer, T.Unterthiner, B.Nessler, andS.Hochreiter, “Gans trained by a two time-scale

update rule converge to a local nash equilibrium”, in Proceedings of the 31st International Conference onNeural
Information Processing Systems, ser. NIPS’17, Long Beach, California, USA: Curran Associates Inc., 2017,
pp. 6629–6640, isbn: 9781510860964 (page 43).

[80] L. D.Manocchio, S. Layeghy, andM. Portmann, “Flowgan-synthetic network flow generation using gen-

erative adversarial networks”, in 2021 IEEE 24th International Conference on Computational Science and Engi-
neering (CSE), IEEE, 2021, pp. 168–176 (pages 45, 46, 65, 67).

[81] N. Park,M.Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, “Data synthesis based on generative

adversarial networks”, Proc. VLDB Endow., vol. 11, no. 10, pp. 1071–1083, Jun. 2018, issn: 2150-8097. doi:
10.14778/3231751.3231757. [Online]. Available:https://doi.org/10.14778/3231751.3231757
(pages 45, 89).

157

https://doi.org/10.1109/CyberSecurity49315.2020.9138871
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/https://doi.org/10.1016/j.comcom.2022.01.010
https://www.sciencedirect.com/science/article/pii/S0140366422000160
https://www.sciencedirect.com/science/article/pii/S0140366422000160
https://doi.org/10.1109/ICDMW.2017.93
https://doi.org/10.1109/ICDMW.2017.93
https://doi.org/10.14778/3231751.3231757
https://doi.org/10.14778/3231751.3231757

[82] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling tabular data using con-

ditional gan”, in Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., 2019 (pages 45, 87, 89).

[83] A. Gonçalves, P. Ray, B. Soper, J. Stevens, L. Coyle, and A. Sales, “Generation and evaluation of synthetic

patient data”,BMCMedicalResearchMethodology, vol. 20,May2020.doi:10.1186/s12874-020-00977-
1 (pages 46, 48, 54, 56, 57, 59, 60, 62–64, 70, 81, 128).

[84] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using gans for sharing networked time series data:

challenges, initial promise, and open questions”, in Proceedings of the ACMInternetMeasurementConference,
2020, pp. 464–483 (pages 47, 53, 65–68, 78).

[85] A. Cheng, “Pac-gan: packet generation of network traffic using generative adversarial networks”, in 2019
IEEE 10th Annual Information Technology, Electronics andMobile Communication Conference (IEMCON), IEEE,
2019, pp. 0728–0734 (pages 49, 66, 67).

[86] A. Meddahi, H. Drira, and A. Meddahi, “Sip-gan: generative adversarial networks for sip traffic gener-

ation”, in 2021 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, 2021,
pp. 1–6 (pages 49, 66, 67).

[87] S. K. Nukavarapu, M. Ayyat, and T. Nadeem, “Miragenet-towards a gan-based framework for synthetic

network trafficgeneration”, inGLOBECOM2022-2022IEEEGlobalCommunicationsConference, IEEE,2022,
pp. 3089–3095 (page 49).

[88] B. Dowoo, Y. Jung, and C. Choi, “Pcapgan: packet capture file generator by style-based generative adver-

sarial networks”, in 2019 18th IEEE International Conference OnMachine Learning And Applications (ICMLA),
IEEE, 2019, pp. 1149–1154 (page 51).

[89] F.Meslet-Millet, S.Mouysset, and E. Chaput, “Necstgen: an approach for realistic network traffic gener-

ation using deep learning”, inGLOBECOM2022-2022 IEEEGlobal CommunicationsConference, IEEE, 2022,
pp. 3108–3113 (pages 51, 148).

[90] J. Sommers, H. Kim, and P. Barford, “Harpoon: a flow-level traffic generator for router and network

tests”, in Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS ’04/Performance ’04,NewYork,NY,USA:Association forComputingMachinery, 2004,

p. 392, isbn: 1581138733. doi: 10.1145/1005686.1005733. [Online]. Available: https://doi.org/
10.1145/1005686.1005733 (page 51).

[91] C. Rolland, J. Ridoux, and B. Baynat, “Litgen, a lightweight traffic generator: application to p2p andmail

wireless traffic”, in Proceedings of the 8th International Conference on Passive and Active Network Measurement,
ser.PAM’07, Louvain-la-Neuve,Belgium:Springer-Verlag, 2007,pp. 52–62, isbn: 9783540716167 (page 51).

[92] I. E. Livieris, N. Alimpertis, G. Domalis, and D. Tsakalidis, “An evaluation framework for synthetic data

generationmodels”, in Artificial Intelligence Applications and Innovations, I.Maglogiannis, L. Iliadis, J.Mac-
intyre, M. Avlonitis, and A. Papaleonidas, Eds., Cham: Springer Nature Switzerland, 2024, pp. 320–335,

isbn: 978-3-031-63219-8 (pages 55, 58, 61, 64).

158

https://doi.org/10.1186/s12874-020-00977-1
https://doi.org/10.1186/s12874-020-00977-1
https://doi.org/10.1145/1005686.1005733
https://doi.org/10.1145/1005686.1005733
https://doi.org/10.1145/1005686.1005733

[93] M. Hernandez, G. Epelde, A. Alberdi, R. Cilla, and D. Rankin, “Synthetic tabular data evaluation in the

health domain covering resemblance, utility, and privacy dimensions”,Methods of information inmedicine,
vol. 62, Jan. 2023. doi: 10.1055/s-0042-1760247 (pages 55, 57–59, 61, 62, 64, 65).

[94] F. K. Dankar, M. K. Ibrahim, and L. Ismail, “A multi-dimensional evaluation of synthetic data genera-

tors”, IEEE Access, vol. 10, pp. 11 147–11 158, 2022. doi: 10.1109/ACCESS.2022.3144765 (pages 56–60,
64).

[95] M. F. Naeem, S. J. Oh, Y. Uh, Y. Choi, and J. Yoo, “Reliable fidelity and diversity metrics for generative

models”, in Proceedings of the 37th International Conference onMachine Learning, H. D. III and A. Singh, Eds.,
ser. Proceedings ofMachine Learning Research, vol. 119, PMLR, Jul. 2020, pp. 7176–7185. [Online]. Avail-

able: https://proceedings.mlr.press/v119/naeem20a.html (pages 56, 57, 61, 64, 80).

[96] A. Borji, “Pros and cons of gan evaluation measures”, Computer vision and image understanding, vol. 179,
pp. 41–65, 2019 (pages 56–58, 64).

[97] A. Borji, “Pros and cons of gan evaluation measures: new developments”, Computer Vision and Image Un-
derstanding, vol. 215, p. 103 329, 2022 (pages 56, 57, 61, 64).

[98] C.Meehan, K. Chaudhuri, and S. Dasgupta, “A non-parametric test to detect data-copying in generative

models”, in International Conference on Artificial Intelligence and Statistics, 2020 (pages 57, 62, 64).

[99] A. Alaa, B. Van Breugel, E. S. Saveliev, and M. van der Schaar, “How faithful is your synthetic data?

sample-level metrics for evaluating and auditing generative models”, in International Conference on Ma-
chine Learning, PMLR, 2022, pp. 290–306 (pages 57, 61, 63, 64).

[100] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault”, in 2016 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA), 2016, pp. 399–410. doi: 10.1109/DSAA.2016.49
(pages 58, 64, 127, 134).

[101] P. Zingo and A. Novocin, “Introducing the tstr metric to improve network traffic gans”, in Apr. 2021,

pp. 643–650, isbn: 978-3-030-73099-4. doi: 10.1007/978-3-030-73100-7_46 (pages 61, 64, 65, 67,
130).

[102] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. García-Teodoro, and R. Therón, “Ugr‘16: a new

dataset for the evaluation of cyclostationarity-based network idss”, Computers Security, vol. 73, pp. 411–
424, 2018, issn: 0167-4048. doi: https://doi.org/10.1016/j.cose.2017.11.004. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii / S0167404817302353
(pages 74, 85).

[103] M. Sarhan, S. Layeghy, and M. Portmann, “Towards a standard feature set for network intrusion de-

tection system datasets”, Mob. Netw. Appl., vol. 27, no. 1, pp. 357–370, Feb. 2022, issn: 1383-469X. doi:
10.1007/s11036-021-01843-0. [Online]. Available: https://doi.org/10.1007/s11036-021-
01843-0 (page 84).

[104] L. Liu, G. Engelen, T. Lynar, D. Essam, andW. Joosen, “Error prevalence in nids datasets: a case study on

cic-ids-2017 and cse-cic-ids-2018”, in 2022 IEEEConference on Communications andNetwork Security (CNS),
2022, pp. 254–262. doi: 10.1109/CNS56114.2022.9947235 (page 84).

159

https://doi.org/10.1055/s-0042-1760247
https://doi.org/10.1109/ACCESS.2022.3144765
https://proceedings.mlr.press/v119/naeem20a.html
https://doi.org/10.1109/DSAA.2016.49
https://doi.org/10.1007/978-3-030-73100-7_46
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.004
https://www.sciencedirect.com/science/article/pii/S0167404817302353
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1109/CNS56114.2022.9947235

[105] M. Lanvin, P.-F. Gimenez, Y. Han, F. Majorczyk, L. Mé, and É. Totel, “Errors in the cicids2017 dataset

and the significant differences in detection performances it makes”, in Risks and Security of Internet and
Systems, S. Kallel, M. Jmaiel, M. Zulkernine, A. Hadj Kacem, F. Cuppens, and N. Cuppens, Eds., Cham:
Springer Nature Switzerland, 2023, pp. 18–33, isbn: 978-3-031-31108-6 (page 84).

[106] P. A.Osorio-Marulanda,G. Epelde,M.Hernandez, I. Isasa,N.M.Reyes, andA. B. Iraola, “Privacymech-

anisms and evaluation metrics for synthetic data generation: a systematic review”, IEEE Access, vol. 12,
pp. 88 048–88 074, 2024. doi: 10.1109/ACCESS.2024.3417608 (page 107).

[107] P. Grünwald,TheMinimumDescription Length Principle. MIT Press, 2007 (page 114).

[108] P. Li andM. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications. Springer, 1997 (page 114).

[109] J. Rissanen, “A universal prior for integers and estimation byminimumdescription length”, vol. 11, no. 2,

pp. 416–431, 1983 (page 114).

[110] H. Ni, L. Szpruch, M. Sabate-Vidales, B. Xiao, M. Wiese, and S. Liao, “Sig-wasserstein gans for time

series generation”, in Proceedings of the Second ACM International Conference on AI in Finance, 2021, pp. 1–8
(page 129).

[111] R. K. Magnus Wiese Robert Knobloch and P. Kretschmer, “Quant gans: deep generation of financial

time series”, Quantitative Finance, vol. 20, no. 9, pp. 1419–1440, 2020. doi: 10.1080/14697688.2020.
1730426. eprint: https : / / doi . org / 10 . 1080 / 14697688 . 2020 . 1730426. [Online]. Available:
https://doi.org/10.1080/14697688.2020.1730426 (page 129).

[112] M. H. Naveed, U. S. Hashmi, N. Tajved, N. Sultan, and A. Imran, “Assessing deep generative models on

time series network data”, IEEE Access, vol. 10, pp. 64 601–64 617, 2022. doi: 10.1109/ACCESS.2022.
3177906 (page 129).

[113] M. S. Bartlett, “On the theoretical specification and sampling properties of autocorrelated time-series”,

Supplement to the Journal of theRoyal Statistical Society, vol. 8, no. 1, pp. 27–41, 1946, issn: 14666162. [Online].
Available: http://www.jstor.org/stable/2983611 (visited on 05/16/2024) (page 130).

[114] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative adversarial networks”, in Advances in
Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
andR.Garnett, Eds., vol. 32,CurranAssociates, Inc., 2019. [Online]. Available:https://proceedings.
neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.
pdf (page 130).

[115] Z. Zhang, C. Gao, C. Xu, R.Miao, Q. Yang, and J. Shao, “Revisiting representation degeneration problem

in language modeling”, in Findings, 2020. [Online]. Available: https://api.semanticscholar.org/
CorpusID:226283524 (page 133).

[116] J. Gao, D. He, X. Tan, T. Qin, L. Wang, and T. Liu, “Representation degeneration problem in training

natural language generationmodels”, in 7th International Conference on Learning Representations, ICLR 2019,
NewOrleans, LA, USA,May 6-9, 2019, OpenReview.net, 2019. [Online]. Available: https://openreview.
net/forum?id=SkEYojRqtm (page 133).

160

https://doi.org/10.1109/ACCESS.2024.3417608
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.1080/14697688.2020.1730426
https://doi.org/10.1109/ACCESS.2022.3177906
https://doi.org/10.1109/ACCESS.2022.3177906
http://www.jstor.org/stable/2983611
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://api.semanticscholar.org/CorpusID:226283524
https://api.semanticscholar.org/CorpusID:226283524
https://openreview.net/forum?id=SkEYojRqtm
https://openreview.net/forum?id=SkEYojRqtm

[117] E.Brophy,Z.Wang,Q.She, andT.Ward, “Generative adversarial networks in timeseries: a systematic lit-

erature review”, ACMComput. Surv., vol. 55, no. 10, Feb. 2023, issn: 0360-0300.doi: 10.1145/3559540.
[Online]. Available: https://doi.org/10.1145/3559540 (page 141).

[118] L. C.Melo, “Transformers aremeta-reinforcement learners”, in Proceedings of the 39th International Confer-
ence on Machine Learning, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds.,
ser. Proceedings of Machine Learning Research, vol. 162, PMLR, Jul. 2022, pp. 15 340–15 359. [Online].

Available: https://proceedings.mlr.press/v162/melo22a.html (page 148).

[119] P. Francis, C. Berneanu, and E. Gashi, Syndiffix: more accurate synthetic structured data, 2023. arXiv: 2311.
09628 [cs.CR]. [Online]. Available: https://arxiv.org/abs/2311.09628 (page 150).

[120] D. Sun, J. Q. Chen, C. Gong, T. Wang, and Z. Li, Netdpsyn: synthesizing network traces under differential pri-
vacy, 2024. arXiv: 2409.05249 [cs.CR]. [Online]. Available: https://arxiv.org/abs/2409.05249
(page 150).

[121] W.W. Lo, S. Layeghy,M. Sarhan,M.Gallagher, andM. Portmann, “E-graphsage: a graph neural network

based intrusion detection system for iot”, inNOMS 2022-2022 IEEE/IFIP Network Operations andManage-
ment Symposium, Budapest, Hungary: IEEE Press, 2022, pp. 1–9. doi: 10.1109/NOMS54207.2022.
9789878. [Online]. Available: https://doi.org/10.1109/NOMS54207.2022.9789878 (page 150).

[122] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras, “Towards real-time intrusion detection for netflow and

ipfix”, Oct. 2013, pp. 227–234, isbn: 978-3-901882-53-1. doi: 10.1109/CNSM.2013.6727841 (page 150).

[123] R. Flood, G. Engelen, D. Aspinall, and L. Desmet, “Bad design smells in benchmark nids datasets”, in

2024 IEEE9thEuropeanSymposiumonSecurityandPrivacy (EuroSP), LosAlamitos,CA,USA: IEEEComputer
Society, Jul. 2024, pp. 658–675. doi: 10.1109/EuroSP60621.2024.00042. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/EuroSP60621.2024.00042 (page 151).

[124] M. E. Tschuchnig, C. Ferner, and S.Wegenkittl, “Sequential iot data augmentation using generative ad-

versarial networks”, in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), IEEE, 2020, pp. 4212–4216.

[125] G. Andresini, A. Appice, L. De Rose, and D. Malerba, “Gan augmentation to deal with imbalance in

imaging-based intrusion detection”, Future Generation Computer Systems, vol. 123, pp. 108–127, 2021.

[126] X. Jiang,S. Liu,A.Gember-Jacobson,P.Schmitt, F.Bronzino, andN.Feamster, “Generative, high-fidelity

network traces”, in Proceedings of the 22nd ACMWorkshop onHot Topics in Networks, 2023, pp. 131–138.

[127] S. Hui, H.Wang, T. Li, et al., “Large-scale urban cellular traffic generation via knowledge-enhanced gans
withmulti-periodic patterns”, in Proceedings of the 29thACMSIGKDDConference onKnowledgeDiscovery and
DataMining, 2023, pp. 4195–4206.

[128] R. H. Randhawa, N. Aslam, M. Alauthman, and H. Rafiq, “Evasion generative adversarial network for

low data regimes”, IEEE Transactions on Artificial Intelligence, 2022.

[129] G.Dlamini andM. Fahim, “Dgm: a data generativemodel to improveminority class presence in anomaly

detection domain”,Neural Computing and Applications, vol. 33, pp. 13 635–13 646, 2021.

161

https://doi.org/10.1145/3559540
https://doi.org/10.1145/3559540
https://proceedings.mlr.press/v162/melo22a.html
https://arxiv.org/abs/2311.09628
https://arxiv.org/abs/2311.09628
https://arxiv.org/abs/2311.09628
https://arxiv.org/abs/2409.05249
https://arxiv.org/abs/2409.05249
https://doi.org/10.1109/NOMS54207.2022.9789878
https://doi.org/10.1109/NOMS54207.2022.9789878
https://doi.org/10.1109/NOMS54207.2022.9789878
https://doi.org/10.1109/CNSM.2013.6727841
https://doi.org/10.1109/EuroSP60621.2024.00042
https://doi.ieeecomputersociety.org/10.1109/EuroSP60621.2024.00042
https://doi.ieeecomputersociety.org/10.1109/EuroSP60621.2024.00042

[130] Z. Lin, Y. Shi, and Z. Xue, “Idsgan: generative adversarial networks for attack generation against intru-

sion detection”, in Pacific-asia conference on knowledge discovery and datamining, Springer, 2022, pp. 79–91.

[131] P. Wang, S. Li, F. Ye, Z. Wang, and M. Zhang, “Packetcgan: exploratory study of class imbalance for en-

crypted traffic classification using cgan”, in ICC 2020-2020 IEEE International Conference on Communica-
tions (ICC), IEEE, 2020, pp. 1–7.

[132] M. Kim, “Ml/cgan: network attack analysis using cgan as meta-learning”, IEEE Communications Letters,
vol. 25, no. 2, pp. 499–502, 2020.

[133] S. Fathi-Kazerooni and R. Rojas-Cessa, “Gan tunnel: network traffic steganography by using gans to

counter internet traffic classifiers”, Ieee Access, vol. 8, pp. 125 345–125 359, 2020.

[134] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[135] A. Orebaugh, G. Ramirez, J. Beale, and J.Wright,Wireshark EtherealNetworkProtocol Analyzer Toolkit. Syn-
gress Publishing, 2007, isbn: 1597490733.

[136] V. Jacobson, C. Leres, and S.McCanne, “Tcpdump: a protocol analyzer for the 4.3bsd unix operating sys-

tem”, in Proc. of theWinter 1989 USENIXConference, USENIX Association, 1989, pp. 317–329.

[137] F. Ratle, G. Camps-Valls, and J.Weston, “Semisupervised neural networks for efficient hyperspectral im-

age classification”, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, pp. 2271–2282, 2010.

[138] G.-J. Qi and J. Luo, “Small data challenges in big data era: a survey of recent progress on unsupervised

and semi-supervisedmethods”, IEEETransactions onPatternAnalysis andMachine Intelligence, vol. 44, no. 4,
pp. 2168–2187, 2020.

[139] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems: tech-

niques, datasets and challenges”, Cybersecurity, vol. 2, 2019. [Online]. Available: %5Curl%7Bhttps://
api.semanticscholar.org/CorpusID:197645932%7D.

[140] D.Heckerman,D.Geiger, andD.M.Chickering, “Learningbayesiannetworks: the combinationofknowl-

edge and statistical data”,Machine learning, vol. 20, pp. 197–243, 1995.

[141] S. Kundu, Fundamentals of Computer Networks. PHI Learning Pvt. Ltd., 2008.

[142] T. M. Chen, “Network traffic modeling”, inThe handbook of computer networks, vol. 3, Wiley Hoboken, NJ,
2007, p. 156.

[143] P. T. Watrobski and D. H. Summerville, “De-encapsulation of network packets for network protocol re-

verse engineering”, in MILCOM 2016 - 2016 IEEE Military Communications Conference, 2016, pp. 557–562.
doi: 10.1109/MILCOM.2016.7795386.

[144] M. Hassan, M. E. Haque, M. E. Tozal, V. Raghavan, and R. Agrawal, “Intrusion detection using payload

embeddings”, IEEE Access, vol. 10, pp. 4015–4030, 2021.

[145] S.Dharmapurikar, P.Krishnamurthy,T. Sproull, and J. Lockwood, “Deeppacket inspectionusingparallel

bloom filters”, in 11th Symposium onHigh Performance Interconnects, 2003. Proceedings., IEEE, 2003, pp. 44–
51.

[146] D. A. Freedman, StatisticalModels:Theory and Practice. Cambridge University Press, 2009.

162

%5Curl%7Bhttps://api.semanticscholar.org/CorpusID:197645932%7D
%5Curl%7Bhttps://api.semanticscholar.org/CorpusID:197645932%7D
https://doi.org/10.1109/MILCOM.2016.7795386

[147] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,Classification andRegression Trees. CRC Press, 1984.

[148] L.KaufmanandP. J.Rousseeuw,FindingGroups inData:AnIntroduction toClusterAnalysis. JohnWiley Sons,
2009.

[149] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer, 2002.

[150] D. M. Blei andM. I. Jordan, “Variational inference for dirichlet process mixtures”, 2006.

[151] S. Nakayama and D. Watling, “Consistent formulation of network equilibrium with stochastic flows”,

Transportation Research Part B-methodological, vol. 66, pp. 50–69, 2014. doi: 10.1016/J.TRB.2014.03.
007.

[152] S. Layeghy,M.Gallagher, andM. Portmann, “Benchmarking the benchmark—comparing synthetic and

real-world network ids datasets”, Journal of Information Security and Applications, vol. 80, p. 103 689, 2024,
issn: 2214-2126. doi: https : / / doi . org / 10 . 1016 / j . jisa . 2023 . 103689. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212623002739.

[153] J. Sommers, H. Kim, and P. Barford, “Harpoon: a flow-level traffic generator for router and network

tests”, SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, p. 392, Jun. 2004, issn: 0163-5999. doi: 10.1145/
1012888.1005733. [Online]. Available: https://doi.org/10.1145/1012888.1005733.

[154] R. Flood and D. Aspinall, “Measuring the complexity of benchmark nids datasets via spectral analysis”,

in 2024 IEEE European Symposium on Security and Privacy Workshops (EuroSPW), Los Alamitos, CA, USA:
IEEE Computer Society, Jul. 2024, pp. 335–341. doi: 10.1109/EuroSPW61312.2024.00043. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/EuroSPW61312.2024.00043.

163

https://doi.org/10.1016/J.TRB.2014.03.007
https://doi.org/10.1016/J.TRB.2014.03.007
https://doi.org/https://doi.org/10.1016/j.jisa.2023.103689
https://www.sciencedirect.com/science/article/pii/S2214212623002739
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1145/1012888.1005733
https://doi.org/10.1109/EuroSPW61312.2024.00043
https://doi.ieeecomputersociety.org/10.1109/EuroSPW61312.2024.00043

Titre : Génération par apprentissage automatique de trafic réseau pour l’évaluation des outils
de détection d’intrusion

Mot clés : Réseaux, Génération de trafic, Détection d’intrusion, Intelligence Artificielle

Résumé : Avec la montée en puissance des
infrastructures numériques, la cybersécurité
est devenue une priorité mondiale. Les sys-
tèmes de détection d’intrusion réseau (NIDS)
sont essentiels pour sécuriser les communica-
tions en détectant les activités malveillantes.
Cependant, pour évaluer l’efficacité des NIDS,
il est nécessaire de disposer de grands vo-
lumes de trafic réseau bénin. Or, l’acquisition
de ces données pose des problèmes de confi-
dentialité, d’étiquetage, et les méthodes de si-
mulation de trafic atteignent leurs limites. Face
à ces défis, la recherche s’oriente vers la gé-
nération de trafic synthétique, qui permet de
protéger la vie privée et de passer à l’échelle,
mais souffre encore d’un manque de cadre
standard pour évaluer la qualité des données
générées, et son efficacité par rapport aux si-
mulations traditionnelles reste à démontrer.

Cette thèse s’inscrit dans cet effort de
remplacement des simulations par des ap-
proches de génération de trafic synthétique.
Nous commençons par un état de l’art dé-
taillé des méthodes existantes, en mettant
en lumière leurs tendances et leurs limites.

Constatant l’absence d’un cadre d’évaluation
standardisé, nous proposons un protocole
d’évaluation permettant de mesurer la qua-
lité du trafic généré par différents modèles.
Par ailleurs, nous introduisons deux nouvelles
approches de génération de flux réseau : la
première, basée sur des réseaux bayésiens,
se montre plus performante que les méthodes
actuelles reposant sur des GAN; la seconde,
fondée sur la découverte de motifs récurrents,
produit un trafic diversifié et réaliste, offrant
ainsi une alternative prometteuse aux simula-
tions traditionnelles.

Ces contributions visent à positionner la
génération de trafic synthétique comme une
solution crédible pour remplacer les simula-
tions, en fournissant à la communauté de
la sécurité des réseaux des outils plus ef-
ficaces et adaptés à la création de jeux de
données synthétiques de qualité. Le protocole
d’évaluation et les méthodes proposées repré-
sentent un pas important vers une évaluation
plus rigoureuse et cohérente des techniques
de génération de trafic.

Title: Network Traffic Generation for Evaluation of Intrusion Detection Tools

Keywords: Network, Synthetic Traffic Generation, Machine Learning, Intrusion Detection

Abstract: The increasing reliance on digital
infrastructures has made cybersecurity a crit-
ical global concern. Network Intrusion Detec-
tion Systems (NIDS) play a vital role in safe-
guarding network communications by detect-
ing malicious activities. However, evaluating

the effectiveness of NIDS requires large, rep-
resentative datasets of benign network traf-
fic, which are difficult to obtain due to pri-
vacy concerns, labeling challenges, and the
limitations of simulated traffic. To address
these challenges, the research community

has turned to model-based synthetic data
generation, which offers privacy preservation
and scalability but lacks comprehensive evalu-
ation standards and proven effectiveness over
traditional simulation methods.

This thesis contributes to the ongoing ef-
fort to replace simulation with model-based
network traffic generation. We first conduct a
comprehensive survey of model-based meth-
ods, highlighting current trends and limita-
tions. Recognizing the absence of a stan-
dardized evaluation framework, we develop a
benchmark for assessing the quality of gen-
erated traffic across various generative mod-
els. Furthermore, we propose two novel meth-
ods for generating network flows: one based
on Bayesian Networks that outperforms exist-

ing GAN-based methods, and another based
on Pattern Mining that produces realistic, di-
verse network traffic. The latter method of-
fers the potential to substitute traditional simu-
lation in network traffic generation, particularly
for NIDS evaluation.

Through these contributions, we aim to es-
tablish model-based generation as a viable al-
ternative to simulation, providing the network
security community with more efficient and
scalable tools for creating high-quality syn-
thetic datasets. Our proposed benchmark
and generation methods represent a signifi-
cant step towards this goal, facilitating more
rigorous and meaningful comparisons in fu-
ture research.

166

	Introduction
	Global Context
	The need for synthetic network traffic
	Challenges with real network traffic
	Simulation as a possible solution
	Synthetic Traffic Generation

	Problem statement
	Research objectives
	Assumptions and Scope of Our Study

	Contributions
	Plan of the Study

	Background
	Network Basics
	Users on a Network
	Network Packets
	Analyzing Packet Exchanges
	Network Flow Format

	Introduction to Machine Learning
	Machine Learning Pipeline
	Neural Networks

	Unsupervised Learning for Data Generation
	Generative Adversarial Networks (GAN)
	Variational Autoencoders (VAE)
	Bayesian Networks for Data Generation

	Challenges in Generating Synthetic Tabular Data
	Summary

	State of the art
	Synthetic network flow generation using AI
	Generating Network Flows in the Context of Training an NIDS
	Generating Network Flows for General Purposes
	Generating Network Traffic in Other Data Format
	Limitations of current synthetic network traffic generation

	Quality evaluation of generated traffic
	Evaluating Tabular Data Generation
	Evaluating Network Traffic Generation
	Limitations of current synthetic traffic evaluation

	Summary

	Individual Network Flows Generation With Bayesian Networks
	Motivations
	Individual Network Flow Generation
	Rationale for Using Bayesian Networks for Synthetic Network Flow Generation

	Research Objectives and Contributions
	Bayesian Networks for Network Flow Generation
	Addressing Challenges for BN on Network Flows
	Implementation with the bnlearn Python Library

	Evaluation Methodology and Metrics
	Comparing Marginal Distributions
	Comparing Conditional Distributions
	Comparing Joint Distributions
	Novelty Evaluation
	Compliance Evaluation

	Experimental Setup
	Datasets for Training and Evaluation
	Bayesian Networks
	Competing Methods and Baselines

	Results of our experiments
	Experiment on CICSmallFeatureSet
	Experiment on CICLongFeatureSet
	UGR
	Computing Cost
	Global Observation

	Limitations of the study: Handling of the Discrete Feature Cardinality
	Summary
	Potential Improvements

	FlowChronicle: Synthetic Network Flow Generation through Pattern Set Mining
	Introduction
	Dataset Encoding
	Pattern-Based Encoding: An Intuition
	Formalizing the Concept of Patterns
	Using Patterns to Encode the Dataset

	Minimum Description Length
	Length of a Model
	Length of the Dataset Given the Model

	FlowChronicle: A Model for Network Flow Generation
	Preprocessing Network Flows
	Pattern Mining
	Generating Synthetic Network Flows

	Experimental Setup
	Dataset
	Competing Methods
	Evaluation of Synthetic Traffic Quality

	Results of the Experiment
	Independent Flows
	Preservation of Temporal Correlation
	Explainable Multi-Flow Patterns Discovered by FlowChronicle for an Adaptable Generation
	Computational Cost
	Response to the research questions

	Limitations and Future Work
	Limitations of FlowChronicle
	Experimental Limitations
	Future Work

	Conclusion
	Contributions of this thesis
	Review of Synthetic Traffic Generation Methods
	Bayesian Networks as an Alternative
	Development of a Unified Benchmark for Evaluation
	Preserving Temporal Dependencies in Synthetic Network Flows

	Future Work
	Addressing Current Limitations
	Broadening the Research Scope

	Bibliography

