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Résumé

L’effondrement des coûts de stockage et de traitement des données, conjugué à l’essor de la

numérisation, a permis de nouvelles applications et possibilités pour l’apprentissage automa-

tique. En pratique, les Big Data vont souvent de pair avec la collecte de données sensibles. Ainsi,

la protection de la vie privée, notamment la prévention des fuites de données intentionnelles

ou accidentelles, est l’un des principaux défis de l’intelligence artificielle digne de confiance.

Une première approche pour une meilleure maitrise des données consiste à les conserver de

manière décentralisée, en ne partageant que les informations nécessaires pour le processus

d’apprentissage. Cela peut être réalisé soit via un serveur central orchestrant le processus

dans l’apprentissage fédéré, soit à travers des communications pair-à-pair. Cependant, cela ne

garantit pas que les données sont protégées tout au long du processus, l’apprentissage fédéré

étant connu pour être vulnérable aux attaques de reconstruction, qui permettent de reconstruire

partiellement ou totalement les données en exploitant le modèle, sans avoir directement accès

aux données locales elles-mêmes. Pour quantifier et contrôler de manière fiable la perte de

confidentialité, la confidentialité différentielle est actuellement la référence dans la recherche et

l’industrie pour les applications d’apprentissage automatique.

Dans cette thèse, nous nous situons à l’intersection entre l’apprentissage automatique, les

algorithmes décentralisés et la confidentialité différentielle. Nous introduisons la première

attaque de reconstruction en apprentissage décentralisé, prouvant la capacité d’exploiter les

fuites de confidentialité entre participants non directement connectés entre eux, ce qui prouve

la nécessité d’inclure des mécanismes de défense dans l’apprentissage décentralisé. Nous intro-

duisons ensuite une nouvelle variante de la confidentialité différentielle, la Network Differential

Privacy, adaptée à l’apprentissage décentralisé où chaque nœud ne voit que les communications

locales. À l’aide de cette variante, nous analysons les garanties de confidentialité et d’utilité de

divers algorithmes décentralisés, notamment les algorithmes de gossip et les marches aléatoires

pour la descente de gradient stochastique et l’ADMM. Nos contributions démontrent que la

décentralisation peut amplifier la confidentialité dans le cadre de la confidentialité différentielle,

et que les gains dépendent de l’algorithme et du graphe de communication. Cela ouvre la voie à

l’utilisation de la décentralisation comme outil pour développer des méthodes d’apprentissage

automatique protégeant mieux la vie privée.



Abstract

The collapse of storage and data processing costs, along with the rise of digitization, has

brought new applications and possibilities to machine learning. In practice, Big data is often

synonymous with sensitive data collection. Hence, protecting privacy— especially by avoiding

data leakage, intentional or accidental —is one of the key challenges in Trustworthy Machine

Learning. Afirst direction towardsmore control over data is to keep it decentralized, exchanging

only the information needed to run the learning process. This can be achieved through a

central server orchestrating the learning process in federated learning or through peer-to-peer

communications. However, this does not guarantee that data is protected throughout the entire

process, as federated learning is known to be vulnerable to privacy attacks. To reliably quantify

and control the privacy loss occurring in machine learning algorithms, Differential Privacy is

currently the gold standard both in research and industry for machine learning applications.

This thesis lies at the intersection of machine learning, decentralized algorithms and differ-

ential privacy. We present the first reconstruction attack in decentralized learning, targeting

privacy leaks among participants not directly connected, proving the need to include defense

mechanisms in this setting. We then introduce a new variant of differential privacy, Network

Differential Privacy, which is suited for decentralized learning where each node only sees local

communications. Using this variant, we analyze the privacy and utility guarantees of various

decentralized algorithms, namely gossip algorithms and random walks for stochastic gradient

descent, and ADMM. Our contributions demonstrate that decentralization can bring privacy

amplification in the sense of differential privacy, and that the gains depend on the algorithm

and the communication graph. This paves the way for the use of decentralization as a tool to

develop more effective privacy-preserving machine learning.
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Chapter 1

Introduction

1.1 Context

A short time before my birth, my parents joined a French panel of consumers and participated

for years. It involved transmitting all the information about the goods we bought: when

returning home from the stores, my father sat with a bar code scanner, going through all the

receipts, and I had to find each item for scanning before storing them in the cupboard or the

fridge. Once used to the process, with good organization the overhead was minimal. The

interface improved over the years. At the beginning, when a wrong price was entered, someone

would call and ask if it was a mistake and if we could retrieve the correct value: this was how

outliers and missing data were dealt with. I was told that from all the numbers we entered in

the bar code reader, some smart folks were able to predict the future state of the stores. This, of

course, was something I couldn’t assess, and it sounded quite magical. As I grew up, I was less

prone to help with this intrusive process, and even found some extra tasks such as sending

out precise weight and body measurements a bit embarrassing. However, this program also

had advantages: each data collected earned points, that were converted into attractive goods.

For example, we received three bikes through the program, which significantly enhanced our

vacation. The benefits were thus significant for us: we would not have given our data away for

free, and only the explicit conversion into tangible goods convinced my parents to accept the

burden of data collection.1

This experience embodies the pre-BigData era: data collectionwas painful, costly, and prone

to errors. Data curation was a manual process and could incur delays. Precision was limited,

only tabular data was used, and, obviously, the designers of the vegetables table believed that

all apples were the same, ignoring the various species. The amount of data was limited to a few

1I am not advocating for a data for sale model, but describing a scheme I have been exposed to.
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Data Collection
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human surveillance
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smart city
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oral

written

local digitization
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datacenters

Figure 1.1 – 3D representation of the changes happening with Big Data.

thousand families, and the compensation for each bit of data given was enough to motivate

participants. Since then, data has undergone a three-dimensional upheaval (Figure 1.1):

• Invisibility of Data Collection. Data collection is now the default choice. Purchased

goods are stored in loyalty programs, GPS positions are collected by multiple apps, and

video surveillance is ubiquitous. The revolt I had against sharing my body measurements

cannot arise so easily anymore because we never see that data being shared with other

parties. We do not see a policeman following each of our steps, even though the police can

at any time find the location of our smartphone and thus ours. We collect data that was

not accessible before, and the number of people who have their data collected continues

to grow through the wide adoption of smartphones and Internet of Things.

• Availability of Data Storage. We will see that cheap newspapers were already seen

in the past as a revolution in data accessibility. Nowadays, databases can be extremely

large and complex and can still be easily accessed without a real understanding of data

management, with unprecedented bandwidth and low latency.

• Advances in Data Processing. Machine learning breaks the limits of correlations that

could be humanly discernible, enabling the use of complex relationships between vari-

ables that could not be found manually as long as we can describe a good objective

function. Computational power has grown in a nearly exponential manner, following

Moore’s Law and software has also improved significantly. The size of Machine Learn-

ing models continues to grow in number of parameters, and demands more complex

architecture and tricks to be trained.

2



1.2 Scope of the thesis

Many technologies made possible by this new ecosystem should arguably not be used,

such as social credit, massive facial recognition, and targeted advertisement, which only aim

to classify people to the benefit of a happy few and create divide and fear of diversity in

society [Par12; NC15; Zub19]. However, it can enable a better understanding of our world,

and responsible uses are more likely to happen if the agents are not dispossessed of their data

but actively participate in a collaborative process while maintaining privacy over their data.

This is, in fact, much harder to achieve than intuition would predict, as data can be leaked

in many indirect ways, and effective collaboration between distinct entities is complex. It is

however crucial if we want to empower people through their data. Holding the data rather than

sending it to a third party favors the possibility to switch between service providers, reduces

the tendency toward monopoly and consolidation of the first actors to come into a given market,

and gives control back to the users [Shu20; Sch16]. It should also come with the right tools to

be informed of the risk of indirect privacy leakage: holding data is not a goal per se, but a mean

to regain control over it. Estimating the various privacy risks is essential for a coherent data

policy.

1.2 Scope of the thesis

In this thesis, we explore the impact of keeping data decentralized on the privacy properties of

machine learning. Given a machine learning task and decentralized datasets held by separate

entities, how should we define privacy and what makes an algorithm more privacy-preserving

in this context? How should we train a model to be as private and as efficient as the centralized

alternative? Can decentralization have synergies with the objective of privacy? Or is it only an

obfuscation strategy that does not resist careful auditing? To study these questions, we rely on

two main research areas: decentralized learning and differential privacy.

Decentralized Learning In a fully decentralized environment, several participants — who

may be referred to as nodes, users, or devices depending on the context — each hold a separate

database locally. As opposed to federated learning, where communications are centralized by

a global server which orchestrates the learning process [McM+17; Kai+21; Li+20], this thesis

focuses on decentralized learning, where a graph of communication indicates which nodes can

exchange messages [Boy+06; Hen22; Tan+18; Kol+20]. This setting is particularly applicable to

the Fediverse [EM22], where social networks are organized by instances, interactingwith others

such as in Mastodon [Zig+18], Peertube, or Matrix servers. The communication graph is often

determined by existing links between entities and may reflect some extent of trust relationships.

For instance, these communication schemes can also correspond to partnerships established

between different hospitals or to the geometric graphs resulting from Bluetooth connections

between smartphones. However, maintaining data decentralization increases the complexity

3
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of learning algorithms by introducing heterogeneity and requiring extra care to ensure global

convergence despite local communications without a central orchestrator [Neg+20; Kol+20].

Differential Privacy Privacy protection relies on an accurate estimation of privacy risks. This

evaluation can be done empirically via the design of attacks or by establishing theoretical

privacy guarantees. Attack successes depend on the hypotheses made on the attacker and

only provide evidence of existing vulnerabilities but fixes of a given attack may not protect

against other attacks in the future. In contrast, Differential privacy [Dwo+06a] quantifies in the

worst case how much information about a single entity in the dataset can be leaked through

its influence on the outputs of the algorithm, and thus provide theoretical guarantees against

all attacks. More precisely, an algorithm A is differentially private if, for all pairs of datasets

D ∼ D′ and every measurable subset S ⊂ Z, the following inequality holds:

P(A(D) ∈ S) ≤ exp(ε)P(A(D′) ∈ S) + δ . (1.1)

where ε is the privacy budget and δ a small quantity allowing some flexibility. Trainingmachine

learning models with differential privacy guarantees is challenging due to the numerous

interactions required with the data, the complexity of the models, and the high-dimensionality

of the data. Privacy-preserving machine learning studies algorithms such as differentially

private stochastic gradient descent [Aba+16; BST14; RA12; SCS13] and explores settings that

help limit the risk of data leakage during training.

While decentralization and privacy both provide ways to empower people with their data,

combining effectively decentralization and privacy is challenging. Prior to this thesis, the

dominant approach was reduced to a variant of differential privacy called local differential

privacy, which focuses on aworst-case scenariowhere no one is trusted, impeding the possibility

to achieve competitive accuracy regimes in interesting settings. The practicality of privacy-

preserving decentralized learning was thus limited by the used definitions, and in particular

could not distinguish between the various possible graphs of communication. However, a

natural intuition is that decentralization could bring better privacy by removing the omniscient

knowledge of central entities and adding randomness. This opposition between intuition and

known theoretical results raised several questions.

Is decentralized learning private by nature? Can we adapt differential privacy to decen-

tralized learning? Are some decentralized algorithms more private than others? What is the

impact of the communication graph?

4



1.3 Contributions

1.3 Contributions

This thesis answers to the above questions and allows to better understand the synergies

between privacy and decentralization. Our key contributions are as follows.

First attack in decentralized learning Enforcing privacy is motivated by the risk of privacy

leakage due to the training of the model. While it was already known that federated learning

presents indirect leakage through updates sent to the server, we propose the first reconstruction

attack by a set of participants targeted at other participants who are not necessarily direct neigh-

bors in the communication graph. This work shows that one cannot rely on decentralization

alone to protect sensitive data. Therefore, to provide robust privacy guarantees, decentralized

algorithms must be combined with additional defense mechanisms such as those based on

differential privacy.

New variant of differential privacy tailored to decentralized algorithms We introduce

Network Differential Privacy and Pairwise Network Differential Privacy, two relaxations of

the classical centralized differential privacy that modifies Equation (1.1) to capture the idea

that each participant in the graph only observes their local communication. The pairwise

version allows to quantify the privacy leakage from any two pairs of nodes depending on

their position in the communication graph. These definitions prove to be useful for analyzing

various algorithms.

Study of privacy guarantees of several decentralized algorithms Using these new differ-

ential privacy definitions, we establish improved privacy and utility guarantees for several

popular decentralized algorithms. We study gossip algorithms, randomwalk-based algorithms,

and Alternative Direction Method of Multipliers (ADMM). These results are obtained by lever-

aging new proof techniques, involving small modifications of the algorithms, new privacy

amplification results, links with graph theory, and the extension of existing optimization results.

All the papers presented in this thesis have been presented in 5 papers published at AISTATS

2022, NeurIPS 2022, ICML 2023 and ICML 2024. They have their code freely available onGitHub

to allow reproducibility and help researchers use it as baselines, and several repositories have

indeed been used by follow-up works by other authors.
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1.4 Outline of the Thesis

The manuscript is organized as follows.

• In Chapter 2, we provide some background on decentralized machine learning. After

introducing supervised learning and the empirical risk minimization problem, we give

useful mathematical properties for optimization, such as convexity and smoothness, and

some convergence results for first-order optimization algorithms. We then move to the

decentralized setting by introducing Federated Learning and fully decentralized learning,

with gossip and random walk based algorithms.

• In Chapter 3, we motivate the need for privacy-preserving machine learning algorithms

before focusing on differential privacy. We discuss its definition and some important

properties. Then, we provide some background on differentially privatemachine learning,

and in particular on differentially private stochastic gradient descent and its guarantees.

• In Chapter 4, mainly based on [MCB24], we describe our attack specific to fully decentral-

ized learning. We show that private data locally held by users can be successfully recon-

structed by distant nodes, thus motivating the need to incorporate privacy-preserving

mechanisms into decentralized algorithms.

• In Chapter 5, we discuss the adaptation of differential privacy to the decentralized set-

ting. We propose Network Differential Privacy and an extension of it, Pairwise Network

Differential Privacy. These definitions provide a framework to prove relevant privacy

guarantees when studying decentralized algorithms. This chapter is based on [CB22;

Cyf+22].

• In Chapter 6, we study gossip algorithms and in particular a variant of Decentralized

Stochastic Gradient Descent (D-SGD) under Pairwise Network Differential Privacy and

derive privacy and utility results for this setting, showcasing that decentralization can

bring an amplification of the privacy given by local addition of noise, based on the results

of [Cyf+22].

• In Chapter 7, we study random walk based decentralized gradient descent algorithms,

mainly based on [CBU24] and compare this algorithm to the previous approach based

on gossip.

• In Chapter 8, we turn towards Alternative Direction Method of Multipliers, by leveraging

the general framework of fixed-point algorithms. We also derive differential privacy

guarantees, in centralized, federated, and decentralized settings, based on [CBB23].

• In Chapter 9, we conclude and offer perspectives for future work.

6



1.5 Other Contributions

1.5 Other Contributions

During the duration of the thesis, I have made additional contributions which are not included

in this manuscript.

Performative Prediction for Classification This work studies the setting where the distri-

bution of the learning task changes under the performative effects of the model’s predictions.

Performative learning extends the classical risk minimization framework in that it allows the

data distribution to depend on the deployed model. We study the special case of classification

and make connections with robustness via a push-forward formula of the distribution shift.

This work was published in [Cyf+24].

Benchmark on Federated Learning for Healthcare This work proposes various datasets for

the cross-silo setting, corresponding to the important use case where a few hospitals collaborate

to improve the predictive value of their models. The benchmark aims to be more realistic than

existing ones by focusing on true healthcare data and real heterogeneity between centers. This

work was published in [Ter+22].

Course onDimensionReduction I designed and taught a 24-lectures in theMaster ofMachine

Learning of Lille University on Dimension Reduction tutorial, with mathematical background

and Python implementation, focusing on PCA and then moving on various methods: LLE,

t-SNE, spectral embedding, Kohonen map, VAE, LDA.

1.6 Publications

During my PhD thesis, I had the opportunity to conduct several research projects with different

collaborators, including my supervisor, but also other PhD students and researchers. These

projects led to several publications, which are listed below. Each published paper comes with a

public code repository.

Publications in international conferences with proceedings

• Edwige Cyffers and Aurélien Bellet. “Privacy amplification by decentralization”. In:

International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR. 2022,

pp. 5334–5353

Code: https://github.com/totilas/privacy-amplification-by-decentralization

Contribution: I am the main author.
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• Edwige Cyffers et al. “Muffliato: Peer-to-peer privacy amplification for decentralized opti-

mization and averaging”. In: Advances in Neural Information Processing Systems (NeurIPS)

35 (2022), pp. 15889–15902

Code: https://github.com/totilas/muffliato

Contribution: I am a co-first author. I met Mathieu Even, another PhD student from

Inria Paris whom I met at NeurIPS in Paris 20212. Mathieu specializes in optimization

and I asked him to help with the analysis of gossip algorithms in Network Differential

Privacy. Mathieu had the idea to explore multiple gossip steps between gradient steps

and suggestedmoving away from closed-form solutions to directly tackling the sensitivity

analysis, leading to the final formulas. I developed the concept of Pairwise Network

Differential Privacy, conducted the experiments, contributed to the writing, (and came up

with the nameMuffliato, though Mathieu’s support was crucial for its final acceptance).

• Jean Ogier du Terrail et al. “Flamby: Datasets and benchmarks for cross-silo federated

learning in realistic healthcare settings”. In: Advances in Neural Information Processing

Systems (NeurIPS) 35 (2022), pp. 5315–5334

Code: https://github.com/owkin/FLamby

Contribution: Flamby is a benchmark for cross-silo Federated Learning with natural

partitioning, currently focused in healthcare applications, and it was a large collaborative

project led by the company Owkin and involving more than 20 people. I coded the first

version of the synthetic dataset generation with Paul Mangold (PhD student at Inria

Lille). I contributed to the theoretical design of the heterogeneity measures with Paul

Mangold and Constantin Philippenko (PhD student at Polytechnique).

• Edwige Cyffers, Aurélien Bellet, and Debabrota Basu. “From noisy fixed-point iterations

to private ADMM for centralized and federated learning”. In: International Conference on

Machine Learning (ICML) (2023), pp. 6683–6711

Code: https://github.com/totilas/padadmm

Contribution: I am the main author. The idea for the paper came from Debabrota Basu

(researcher at Inria Lille), who identified opportunities to extend the privacy amplification

results developed in my first paper [CB22] to the ADMM algorithm. The convergence

proof is largely due to his expertise in inequalities. The rest of the contributions, including

the algorithm, transformation to fixed-point, and experiments, are mine.

• Edwige Cyffers, Aurélien Bellet, and Jalaj Upadhyay. “Differentially Private Decentralized

Learning with Random Walks”. In: International Conference on Machine Learning (ICML)

(2024)

Code: https://github.com/totilas/DPrandomwalk

2NeurIPS in Paris is a local meetup held just before the NeurIPS conference. I presented Muffliato the fol-
lowing year and joined the organizing committee afterwards. Website: https://neuripsinparis.github.io/
neurips2024paris/

8

https://github.com/totilas/muffliato
https://github.com/owkin/FLamby
https://github.com/totilas/padadmm
https://github.com/totilas/DPrandomwalk
https://neuripsinparis.github.io/neurips2024paris/
https://neuripsinparis.github.io/neurips2024paris/


1.6 Publications

Contribution: I am the main author. Jalaj Upadhyay (Assistant Professor at Rutgers

University, whom I had met during an internship before starting my PhD) contributed

by deriving examples on specific graphs and helped to the writing.

• Abdellah ElMrini, Edwige Cyffers, andAurélien Bellet. “Privacy Attacks in Decentralized

Learning”. In: International Conference on Machine Learning (ICML) (2024)

Code: https://github.com/AbdellahElmrini/decAttack

Contribution: I co-supervised Abdellah El Mrini for his Master’s thesis. I proposed the

project.

• Edwige Cyffers et al. “Optimal Classification under Performative Distribution Shift”. In:

Advances in Neural Information Processing Systems (NeurIPS) 37 (2024)

Code: https://github.com/totilas/PerOptimClassif

I am the main author. I obtained the main results with Olivier (researcher at the Com-

puter Science Department of ENS). Olivier independently found the variance reduction

example. Muni (Fellow in Artificial Intelligence at Université PSL) and Jamal (Professor

at the University of Paris-Dauphine) contributed significantly to the connection with

robustness. The code is mine.
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Chapter 2

Decentralized Learning

This chapter provides background in machine learning before moving to the specificities

of federated and decentralized learning. We first present the main idea behind supervised

learning (Section 2.1). Then, we focus on convex analysis, as the optimization results of this

thesis will be established mainly in this framework (Section 2.2). While classical machine

learning considers the setting where all the data is centralized, we study decentralized learning,

which adds a layer of complexity to the optimization process. We introduce federated learning

(Section 2.3), and then move to fully decentralized learning (Section 2.4), which is the central

focus of this thesis, where both data and communications are decentralized.

2.1 Supervised Learning

Les statistiques sont des moyens parmi d’autres pour affronter l’inquiétude que susci-

tent les masses sans formes, c’est-à-dire le chaosa. [Des88]
aStatistics are one among other means to confront the anxiety that formless masses provoke, that is,

chaos.

Machine learning can be introduced as the abstract concept of learningwithout explicit rules

but only concrete examples. This approach assumes that there are underlying mechanisms

able to explain the main characteristics of all the examples observed, even if we are not able

to code them in a traditional algorithm [GBC16; M.16]. This assumption is extremely strong

as it suggests the existence of an underlying probability distribution that could be, at least

to some extent, captured by tuning parameters on only a finite number of examples that

cannot cover the entire space of possible inputs. The hypothesis of machine learning is still

controversial today, even in science: it is common to hear doctors claim that each patient

is unique, and to refuse to estimate a probability of success for a given treatment. Relying

on global trends and correlation to learn rather than on a theory is an audacious gamble.
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Decentralized Learning

Figure 2.1 – Example of machine learning applications. Alphafold 3 (2024) predictions are close the
grey ground truth for DNA protein binding, Théâtre D’opéra Spatial (2022) generated by Midjourney
and prompted by JasonMichael Allen won an art prize, ChatGPT (2022) generate plausible conversation
taking advantage of encyclopedic knowledge in every domain. AlphaProof and AlphaGeometry reach
silver medal level at IMO 2024, solving the geometry problem in 19 seconds.

Historically, Desrosières described the long debate during the nineteenth and twentieth century

on the added value of computational methods and subsequently statistics [Des14], where

statisticians faced skepticism and misunderstanding. In this thesis, we however embrace the

faith in machine learning and assume that all unique examples reflect a universal phenomenon

that mathematics can not only capture, but also predict.

This faith is supported by the recent successes of deep learning: Large Language Models

such as the (in)famous ChatGPT, demonstrate the ability to enforce grammar and logical

thinking to some extent without formalizing the grammar of natural languages. Most strategy

games, such as chess [Sil+17], go, and video games[Vin+19] are better solved by machine

learning models than humans. Diffusion models[HJA20] generate images with extremely

realistic features, and deep learning predicts with more accuracy various physical phenomena

than fully explicit mathematical models can, and even problems of maths Olympiad [At24] are

now in the scope of specialized models (Figure 2.1).

Machine learning problems are often divided into unsupervised learning, supervised

learning, and reinforcement learning. These three branches do rely on learning from the

data, but interact with it differently: unsupervised learning directly exploits the structure

of the distribution of data to find patterns, while supervised learning requires labeled data

and reinforcement learning collects data from its own interaction with the environment that

produces the data. We focus here on supervised learning [Bac24].

Labeled data in supervised learning are presented as a collection of pairs (xi, yi)1≤i≤n ∈
(X × Y)n where x ∈ X is an input and y ∈ Y the output the machine learning model should

learn to predict. X can describe various domains such as text documents, pictures, sounds,

tabular data with sensor measurements, or time series. Despite this semantic heterogeneity, we

assume it is possible to encode this input as a vector x ∈ Rd, which means, of course, that d

might need to be large. The output y ∈ Y , also called the label, could also be arbitrary, but we
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often restrict ourselves to regression tasks with real values (y ∈ R) or to classification tasks

where y ∈ {1, . . . , k} or even y ∈ {0, 1} for binary classification.

It is assumed that all the data points belonging to the training set (xi, yi) can be seen as

random variables that are independent and with the same distribution as the ones that the

model should be able to predict at testing time. Coping with non independent samples, such as

in time series, or with distribution shifts, are important research topics, but will not be covered

in this thesis. We thus denote p the probability distribution of the samples.

In order to learn adequately, we should evaluate whether the predictions made by the

model are close to the outputs it should produce. This is measured through a loss function

l : Y ×Y → R+, that takes the prediction of the model z and the output y and returns a positive

value that grows with the magnitude of the error in the prediction. For example, in binary

classification, a natural loss is the 0 − 1 loss, defined by l(y, z) = 1y ̸=z . However, it is often

convenient for training to consider other loss functions with better properties (see Section 2.2).

Following up on the introductory story (Section 1.1), a possible fictive dataset ShopData

(Table 2.1) could contain the goods bought by various customers along with the date of

transaction and the price. From this, one can deduce a classification task, such as whether a

customer will buy a new good or not, which is clearly an interesting prediction for optimizing

stocks and profits for supermarket owners. One could also deduce a regression task with the

same dataset, by predicting the price of a given item. Internally, the model should capture

similar features to solve both regression and classification tasks. For classification, a usable

version is likely to use one-hot encoding for all products, and returns only one row per shopping

basket of a given customer on a given day, where all bought items are marked with the quantity

taken, and other items have zero. It is thus a high-dimensional dataset as it has the dimension

of the number of products in the store. This is usual in machine learning: for instance, a small

image dataset such as MNIST has a dimension d = 784 and language tasks need even bigger

dimensions.

Table 2.1 – Example of fictive dataset ShopData inspired by the shopping basket problem in Section 1.1.

Client ID Date Item Price (€)

501-AXT 2024-08-01 Apple 0.45
202-BYU@E 2024-08-01 Bread 1.10
501-AXT 2024-08-02 Sanitary Product 5.50

303C-XYZA04 2024-08-02 Milk 0.89
404D-123-AB 2024-08-03 Cheese 2.50
202-BYU@E 2024-08-03 Apple 0.40
005-E89-76T 2024-08-04 Biscuits 1.30
303C-XYZA04 2024-08-04 Orange Juice 1.20
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Let us denote by A the trained algorithm, so that the predicted output for the input x is

given by A(x). The goal is to minimize the expected risk:

R(A) = E[l(y,A(x))] =

∫

x×y
l(y,A(x))dp(x, y)

which depends on the unknown distribution p. Hence, we would like to compute R but

we cannot integrate on p, we thus use the empirical risk instead, computed on our samples

(xi, yi)1≤i≤n ∈ (X × Y)n.

Definition 2.1 (Empirical Risk). The empirical risk R̂ of an algorithm A is defined by:

R̂(A) =
1

n

n∑

i=1

l (yi,A (xi))

This empirical approach, however, introduces the risk of memorizing the training set and

learning a model that does not perform well at testing time. This is the risk of overfitting.

Mitigating this problem is part of the difficulty of training models, and the theory does not

always correctly describe this phenomenon: empirically, deep learning exhibits a double descent

[Nak+19], which means that conventional statistical learning theory that predicts overfitting

fails to accurately capture the dynamics of generalization that happens in machine learning

models. As translating the value of the loss function into predictive power is difficult, we

always report not only the decrease of this loss function but also performance on a testing set

that is not used during the training.

Behind the generic formulation of an algorithm A, we refer in practice to a parametrized

family of prediction functions, where we learn a parameter θ ∈ Θ that typically lives in a subset

of a vector space. Denoting by fθ the model resulting from the choice of parameter θ, we aim

at finding θ̂ that minimizes the empirical risk.

Definition 2.2 (Empirical Risk Minimization). The empirical risk minimization consists in

finding θ̂ such that:

θ̂ ∈ arg min
θ∈Θ

R̂ (fθ) =
1

n

n∑

i=1

l (yi, fθ (xi)) (2.1)

2.2 Elements of Convex Optimization and Gradient Descent

The great watershed in optimization isn’t between linearity and nonlinearity, but

convexity and nonconvexity. [Roc93]
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2.2.1 Regularity assumptions

Solving Equation (2.1) can be arbitrarily hard in the general case, as the space Θ is too big to be

easily explored. In particular, training a machine learningmodel generally consists in iteratively

and slowly updating the parameters to steer the model to a better place. Such approaches

require some regularity assumptions if one wants theoretical guarantees that the training will

converge to an optimal model. In this section, we present assumptions that will be used in the

thesis when deriving guarantees, which mainly rely on convexity. These assumptions are not

always satisfied by deep neural networks, however they can be satisfied by simpler machine

learning models, and the theory developed under this framework can be partially extended

to other settings. The privacy guarantees will usually not require convexity but bounded

sensitivity, informally corresponding to the bound on how much a function varies on different

inputs (see Section 3.2).

Definition 2.3 (Convexity). A function f : Rd → R is convex if for all points u, v ∈ Rd and

scalar λ ∈ (0, 1),

f(λu + (1− λ)v) ≤ λf(u) + (1− λ)f(v)

Note that convex functions have the nice property that a localminimum is a globalminimum.

However, these functions can have multiple minima or no minimum at all. We hence often need

to go further in this direction by imposing strong convexity, which ensures that the minimum

exists and is unique.

Definition 2.4 (Strongly convexity). For µ > 0, f is µ-strongly convex if the function f − µ
2∥·∥2

is convex.

Regularity assumptions are quite important for optimization methods used in machine

learning; gradient descent requires the function to be differentiable, and we sometimes also

need regularity of the gradient with twice differentiable functions. Convexity can be nicely

formulated as "being above its chords", which corresponds to the following inequality for a

differentiable function:

∀u, v ∈ Rd, f(u) ≥ f(v) + ⟨∇f(v), u− v⟩

Finally, convexity for a twice differentiable function is equivalent to ∇2f(u) being positive

semi-definite for all u, where the matrix∇2f is the Hessian of f . Strong convexity is equivalent

to ∇2 being positive definite.

To ensure that a function does not change too quickly, and in particular, to bound the

sensitivity, a useful property is Lipschitz continuity.
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Definition 2.5 (L-Lipschitzness). For L > 0, a function f is L-Lipschitz if for all points

u, v ∈ Rd, the following equality holdsa

∥f(u)− f (v)∥ ≤ L ∥u− v∥
aNote that despite the fact we note the two norms with the same notation, they are not identical in general.

As we will often directly work with gradients, the same property transposed to the first

derivative is useful.

Definition 2.6 (β-smoothness). For β > 0, a differentiable function f is β-smooth if its gradient

is β-Lipschitz.

In order to have bounded sensitivity, it is often needed in practice to preprocess the data. A

usual technique is to standardize the features, which means that we enforce them to have zero

mean and unit variance, so each feature has similar importance a priori before starting to train

the model.

Once L-smooth and µ-strongly convex, a function is easily monitored by the two following

two inequalities:

∀u, v ∈ Rd,
µ

2
∥u− v∥2 ≤ f(u)− f(v)− ⟨∇f(v), u− v⟩ ≤ β

2
∥u− v∥2 (2.2)

And when f is also twice differentiable, we have:

µId ⪯ ∇2f ⪯ βId

The ratio κ = β/µ is called the condition number and often appears in convergence results. The

bigger it is, the slower the convergence will be. This can be thought as a way to tame the curve

between two quadratics, as seen in Figure 2.2.

Taking again the classification problem associated to ShopData, the first loss to come up

is the 0 − 1 loss that puts a penalty of 1 for any misclassification. However, the loss has a

discontinuity and does not satisfy the previous properties. In practice, we will use a surrogate

losswith better training properties, such as the logistic loss. For convenience, the two labels

are −1 and 1, which ensures that each class corresponds to a sign. The logistic loss is then

l(y, z) = log(1 + exp(−yz)). In this setting, to minimize the risk, the predictions should have

the correct sign and their absolute value should grow with the confidence of the model.
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f(z)

f(z0) +∇f(z0)
⊤(z − z0)

f(z0) +∇f(z0)
⊤(z − z0) +

β
2
∥z − z0∥

2

f(z0) +∇f(z0)
⊤(z − z0) +

µ
2
∥z − z0∥

2

z0
z

Figure 2.2 – Quadratic upper bound and lower bound provided respectively by β-smoothness (in
magenta) and µ-strong-convexity (in orange) at a point z0 for a function f .

The training consists of finding a good parameter θ ∈ Rd+1 for fθ. 1 The associated model

is simply given by the scalar product xT θ, and thus the learning task is reduced to:

θ̂ ∈ arg min
θ∈Θ

n∑

i=1

(log(1 + exp(−yiθ
⊤xi)))

2.2.2 First-order optimization

After surveying these properties on functions, we introduce how to find their minimum, we

aim to find a point u that minimizes a function f . The most well-known first-order method is

gradient descent, which eventually finds a minimum by moving at each step in the direction of

the steepest descent, as given by the gradient. From an initial point u0, the sequence is defined

by the following iterations

ut+1 = ut − γt∇f (ut) for t ≥ 0 ,

with γt being the sequence of step sizes. We note γ = γt when the sequence (γt) is constant.

This algorithm was first introduced in 1847 [Cau+47], and benefits from a large literature on

its convergence under various conditions [Nes13], and especially in the convex setting [BV04].

As an illustration, for the simplest case of a µ-strongly convex and L-smooth function, we have

the following result.

1In practice, to learn an intercept, we add a dimension where all the inputs are equal to one.
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Theorem 2.7 (Convergence of GD [Nes13]). If f is µ-strongly convex and L-smooth, and if

there exists a global minimum u∗, gradient descent with constant step size γ = 1/L satisfies

f(ut)− f(u∗) ≤
(
1− κ−1

)t
(f(u0)− f(u∗))

Taking γ = 2/(µ + L) leads to the stronger result

f(ut)− f(u∗) ≤
(

1− 2

κ + 1

)2t L

2
∥u0 − u∗∥2

In the case of machine learning, computing the full gradient is, however, very costly: even

the small MNIST dataset has 70, 000 data points. Instead of computing an exact gradient, it is

possible to use an unbiased estimator, at the price of introducing a variance term. The estimator

is typically the gradient with respect to a unique point or a small batch of points. Stochastic

Gradient Descent (SGD) then corresponds to the following iterative algorithm:

ut+1 = ut − γtgt(ut) with E(gt|Ft) = ∇f (ut)

where Ft is the filtration at time t, informally corresponding to the subset of all previously

drawn variables2. In this case, the iterates are stochastic; hence the convergence results are also

stochastic and depend on the variance of the estimates. One can argue that stochastic gradient

descent is ill-named, as it is not a descent algorithm: the iterates are not monotonic, and some

updates might increase the loss.

In practice, the choice of the small sample of the data – a batch or mini-batch – is done ran-

domly or by cycling over the whole dataset. To make the dependency explicit, we can write gB
t

for a computation over the batch B. Another way to express the sample dependency is to con-

sider a loss function with two arguments – the parameter and the sample – often just changing

between upper case and lower case, then gt = ∇uF (ut, ξt) where f(u) = Eξ∼D(F (u, ξ)).

Theorem 2.8 (Convergence of SGD [Gow+19]). If f is µ-strongly convex and β-smooth, if

there exists a global minimum u∗, if gt(ut) satisfies E(gt(ut)|Ft) = ∇f (ut), V(gt(ut)|Ft) ≤ ρ2

and γ < 1/2β, then the following holds for stochastic gradient descent:

E
(
∥ut − u∗∥2

)
≤ (1− γµ)t ∥u0 − u∗∥2 +

2γρ2

µ

We see that this result is similar to the previous one but it is now a result in expectation and

it includes a second term that increases with the level of noise of the estimates. In practice, this

2The filtration will be omitted when the context is clear.
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means that if one wants to achieve a precision ι, fixing γ = min( ιµ
4ρ2 , 1

2β ) gives this precision

after max(4ρ2

ιµ2 , 2β
µ ) log(2∥u0 − u∗∥2/ι) steps. It is possible to refine these results significantly

(see for instance [GG23]), but the same main ideas remain: the condition number is a good

proxy for the hardness of the problem, and the noisier the gradient, the larger the ball within

which we converge is. In fact, some analyses show that the noise that really matters is the noise

at the optimal point, i.e., we can derive guarantees that depend on E
[
∥gt (ut)−∇f (u∗)∥2

]
.

Theorem 2.8 is strong because is characterized the convergence of the iterates to the optimal

point. When convexity is not assumed, this is often impossible, and convergence results can be

expressed as inequalities on the norm of gradients iterates, or on the average of iterates [Nes13;

GG23].

2.3 Federated Learning

FL embodies the principles of focused data collection and minimization, and can

mitigate many of the systemic privacy risks and costs resulting from traditional,

centralized machine learning and data science approaches. [Kai+21]

In the previous sections, we introduced empirical risk minimization and stochastic gradient

descent without discussing the availability of the data during the computation. We thus

implicitly assumed a centralized setting, where a single entity has all the data and can access it

easily. This entity, whether a company, an abstract cloud, or a trusted curator, might not exist in

some practical use-cases. We might even want to avoid such an entity for privacy reasons, and

we defer the reader to Chapter 3 for these aspects. Letting aside privacy reasons, the collection

of the data is often decentralized by design: sensors that are in different locations, health data

coming from various hospitals, logs from smartphones, purchases in various places.

Centralizing raw data has a cost, not only for data safety, but also in terms of storage,

transmission costs, and latency implied for data gathering, and it limits scalability by the

capacity of the central entity [Li+20; Kai+21]. Avoiding data centralization is thus a promising

direction, especially as machine learning moves towards processing larger quantities of data,

which are more sensitive and complex.

Federated learning [McM+17] aims at training a model collaboratively while keeping data

decentralized (see Figure 2.3). The participants are typically referred to as users, centers,

devices, clients or individuals, and we will denote by n the number of participants. The

dataset D used for training the model is the union of each local dataset Du belonging to user u:

D = ∪n
i=1Di. Each dataset might have a different size and different underlying distribution.

For simplicity, in the whole thesis we assume that we only want to construct a single global

model parametrized by θ which means that we let aside the interesting problems related to
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(a) Centralized Learning (b) Federated Learning

Figure 2.3 – Comparison between centralized and federated learning

personalization [Smi+17]. The optimal model is the one that minimizes the average of the

local losses fi:

θ∗ ∈ arg min
θ

1

n

n∑

i=1

fi(θ) =
1

n

n∑

i=1

Eξi∼Di
(Fi(θ, ξi)) (2.3)

Note that the local loss is minimized empirically on the local dataset as discussed previously

(Equation (2.1)). The average can be weighted by the size of the local dataset or any other

relevant weighting schemes. For instance, in the case of logistic regression, the local loss can be

written as follows:

fu(θ) =
1

|Du|
∑

(x,y)∈Du

log
(
1 + exp

(
−yθ⊤x

))

To solve the optimization problem in a federated setting, the approach originally proposed

by [McM+17] is the FedAvg algorithm, shown in Algorithm 2.1. At each round, some users

are selected at random, receive the current model and compute several gradient steps on their

local datasets before sending back the updated version to the server. The new global model is

obtained from the average of these local updates. From this general framework, it is possible

to improve the performance by accommodating the limited availability of devices, tackling

asynchronous updates, dropout, difference in data quality... Refinements can come from the

sampling procedure [Fra+21], the nature of the local updates [Kar+20], the way to average the

local models [Jhu+22; Red+20], the potential compression used for communication [SGSJ21;

Had+21].

Federated learning requires tackling a lot of difficulties inherent to this setting, the first

one being data heterogeneity, which can come from various origins such as variation in the

data collection (not the same scanner in different hospitals), differences in population (a city

in a wealthy neighborhood has a global shift in life expectancy), or even specialized centers
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(a center specialized in a given disease has much more labeled data than other ones). This

raises the question of personalizing the model for each center or for a combination of centers

rather than sticking to a global one. A second challenge is center heterogeneity, where centers

can have various levels of computing resources, different memory size, different bandwidth,

and different latency, which requires algorithms to be robust to the different kinds of centers

encountered, while keeping the communication cost low and efficiency high enough. In these

regimes, being able to detect potential malicious centers that could poison their data, or even

detect dysfunctional centers, remaining stable and being able to interpret the results is still

challenging without seeing the data. These challenges will not be studied in this thesis.

Algorithm 2.1: Federated Averaging (FedAvg)

1 Input: Initial model θ0, number of communication rounds T , local epochs K, learning

rate γ, batch size b, and the proportion p of active workers at each round

2 Output: Global model θT

3 for t = 1, 2, . . . , T do

4 St ← random set of ⌈pn⌉ clients
5 foreach client i in St do

6 θi ← θt−1

7 for k = 1, 2, . . . , K do

8 ξk,i ← Random sample from Di of size b

9 θi ← θi − γ∇θf(θi, ξk,i)

10 θi,t ← θi

11 θt ← 1
n

∑n
i=1 θi,t

Training and deploying federated learning systems has enjoyed some success stories, such

as in the Apple ecosystem [Pau+22] or the Google one [Bon+19] in the cross-device setting

and for hospital consortia [Rie+20] in the cross-silo setting.

2.4 Decentralized learning

Federated learning with a central server still requires a quasi-omniscient server, able to com-

municate with all the devices, to be trustworthy, to remain present during the whole training

and to support all the communication costs. This is thus a bottleneck to scaling up the learning

[Kai+21], especially for the cross-device setting. In Chapter 3, we will see that the central

server also acquires lots of information on the local datasets even if it does not access the local

raw data. It is possible to remove this central entity and still collaborate by relying only on

peer-to-peer communication [Lia+17; Neg+19; Neg+20]: we call this setting decentralized

learning3 and this is the setting that will be studied in this thesis.
3This setting can also be referred to as Fully Decentralized Learning to emphasize the absence of a central server.
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We call communication graph the graph G = (V, E) which has the n = |V| users as nodes
and where an edge (u, v) ∈ E indicates the possibility to exchange messages between u and

v. The goal is still to solve the sum of the local loss functions as defined in Equation (2.3),

but with only peer-to-peer communications. As a warm-up, we first focus on computing a

simple average (Section 2.4.1) before moving on Decentralized Stochastic Gradient Descent

(Section 2.4.2) and conclude with discussing the possible choices of communication graph

(Section 2.4.3).

2.4.1 Average computation

In order to aggregate the local models into a central one similarly to the aggregation step

in FedAvg, we need a procedure that computes global aggregations while relying only on

local communication along the edges of the graph. We thus first present how to compute the

arithmetic average of local values over the graph. Starting from the problem of averaging before

going to optimization is an approach that will be often used in this thesis. We will denote as xu

the value of the node u.

Given a graph G, we can construct a gossip matrix that appropriately weights the local

contributions of the nodes.

Definition 2.9 (Gossip matrix). A gossip matrix over a graph G is a matrix W ∈ [0, 1]n×n

with non-negative entries, symmetric, aperiodic, irreducible, doubly stochastic – i.e W1 = 1 and

1
⊤W = 1

⊤ – and such that for any u, v ∈ V, Wuv > 0 implies that {u, v} ∈ E or u = v.

We adopt this very complete definition as it ensures that all the results presented in the next

chapters hold. However, it is often possible to remove several assumptions, and we discuss the

consequences below.

Assuming that W is symmetric implies that each edge can be traversed in both directions,

with the same probability. In particular, this assumption corresponds to only considering

undirected graphs. Ensuring the symmetry of W has the significant advantage of enabling

the use of the spectral theorem, which proves useful in Chapter 7. However, most of the other

results do not rely on this assumption.

The last constraint on positive coefficients ensures that messages are only sent where they

can transit. Stochasticity ensures that the total mass over the graph is conserved across iterations.

These two hypothesis are thus crucial to any learning process. We also assume that the gossip

matrix is aperiodic and irreducible, i.e., there exists a time t0 such that for all t ≥ t0 and any

pair of vertices u and v, W t
uv > 0. This ensures that, as long as we consider a number of steps t

large enough, there exists a path from u to v in exactly t steps. Under these assumptions, there

22
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exists an invariant distribution π for W :

π = πW

For any connected graph, we can easily construct a gossip matrix such that the invariant

distribution is the uniform distribution π = 1/n, giving the same weights to every participant

in the final model. In this case, the gossip matrix is doubly stochastic. It corresponds to what is

often done in practice, as the uniform weights makes sense in a lot of situations. The Hamilton

weighting satisfies this condition by putting weights uniformly among the neighbors. Let du

denote the degree of node u. Then:

W ham
uv =

1

max{du, dv}
,

W ham
uu = 1−

∑

v ̸=u

W ham
uv .

This weighting gives a symmetric gossip matrix, which in particular ensures the intuitive

property that each edge is used in both directions. Assuming the gossip matrix is symmetric

enables the use of useful linear algebra properties, as the spectral theorem can be applied. Note

that one could take the sum instead of the maximum without changing the properties of the

resulting matrix.

Gossip Given a gossip matrix, we can define Synchronous Gossip as the algorithm executed

locally and iteratively in order to compute a global average on the graph, as depicted in

Figure 2.4. Starting from an initial set of values (xv,0)v∈V , at each step, each node receives the

local values of its neighbors and aggregates them:

xv,t+1 =
∑

w∈Nv

Wv,wxw,t

Let X be the stacked value xv over the nodes, the iterates can be concisely written as a matrix

multiplication:

Xt+1 = WXt

By iterating this from the initial local values, all the local values converge to the weighted

average
∑

v∈V πvxv. The convergence rate depends on the spectral gap, that is the difference

between the largest eigenvalue – it is always 1 by construction with our gossip matrix definition

– and the second one.

Definition 2.10 (Spectral gap). The spectral gap λW associated with a gossip matrix W is

minλ∈Sp(W )\{1}(1− |λ|), where Sp(W ) is the spectrum of W .
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(a) Synchronous Gossip (b) Asynchronous Gossip

Figure 2.4 – In synchronous gossip, all nodes perform synchronous updates: they aggregate their private
value with their neighbors and then share it again, while in asynchronous gossip, only one edge is active
at each time step.

The iterates xt+1 = Wxt converge to themeanwith a linear rate e−tλW [BV04]. This convergence

rate can be accelerated to e−t
√

λW by using Chebychev polynomials [BBG20], by replacing the

power of W by these polynomials, which can also be computed in a decentralized fashion. This

trick is used in Chapter 6.
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Definition 2.11 (Re-scaled Chebychev polynomials). The re-scaled Chebychev polynomials

(Pt)t≥0 with scale parameter γ ∈ [1, 2] are defined by second-order linear recursion:

P0(X) = 1 , P1(X) = X , Pt+1(X) = γXPt(X) + (1− γ)Pt−1(X) , t ≥ 2 . (2.4)

Note that for the complete graph, the gossip matrix is 11T /n, so the second eigenvalue is 0

and the convergence is achieved after a single iteration. It is possible to obtain the asymptotic

number of iterations for other well-known graphs, as reported in Table 2.2.

Synchronous gossip is not the only way to propagate information in the graph. An alterna-

tive isAsynchronous Gossip, also called Randomized Gossip [Boy+06], where at each step a unique

edge wakes up independently from the previous steps, and the nodes at its endpoints average

their values (see Figure 2.4). The probability of each edge waking up is then proportional to

the values in the gossip matrix to ensure the same convergence properties as before. In this

case, we can still express the iterates as matrix multiplication, which now requires to consider

a sequence (Wt) of random matrices, where for activating the edge (u, v) we use

W{u,v} = I − (eu − ev) (eu − ev)⊤

2

Random walks An alternative to gossip is random walks, where a token follows a Markov

chain on the graph with probability given by a transition matrix [LS07; JRJ10]. Note that the

token cannot "fly" without edge from a vertex to another, creating dependency relationships

between the activation of edges, unlike in asynchronous gossip. For simplicity, we will use a

gossip matrix as transition matrix, as defined in Definition 2.9. For convergence analysis, it is

sometimes useful to consider how quickly the probability of the token being at a given node

approaches the invariant distribution π. This can be quantified by the mixing time.

Definition 2.12 (Mixing time). The mixing time τmix(ι) of a Markov chain of gossip matrix W

is the time needed for the random walk to be close to a factor ι of its asymptotic behavior:

τmix(ι) = min
(
t : max

v

∥∥∥(W t)v − π
∥∥∥

T V
≤ ι
)

, (2.5)

where ∥P − Q∥T V is the total variation distance between two probability measures P and Q

defined over the same measurable space (Ω,F), ∥P −Q∥T V = supA∈F |P (A)−Q(A)|.

Then, the average of all the local values can be computed by a running average as the token

goes from one node to another.
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2.4.2 Decentralized SGD

From the propagation mechanisms defined above, we can build more complex algorithms to

solve optimization tasks and in particularminimizing the sumof local loss functions (Section 2.2

and Equation (2.3)). To do so, spreading information steps should alternate with computing

local optimization phases. The most well-known algorithm for this is Decentralized Stochastic

Gradient Descent (D-SGD) [Lia+17; Kol+20] based on synchronous gossip, as presented in

Algorithm 2.2.

Algorithm 2.2: Decentralized Stochastic Gradient Descent (D-SGD)

1 Input: Initial model θ0, number of communication rounds T , gossip matrices (Wt),

learning rate γ

2 for t = 1, 2, . . . , T do

3 foreach node v in V do

4 ξv,t ← Random sample from Dv

5 θv,t+1/2 ← θt,v − γ∇θf(θv,t, ξv,t)

6 Send θv,t+1/2 to nodes u such that Wvu,t > 0

7 Receive θu,t+1/2 from Nv = {u : Wuv,t > 0}
8 θv,t+1 ←

∑
u∈Nv

Wuv,tθu,t+1/2

9 Output: Local models (θv,T )v

Note that even though we choose to present this algorithm by describing the local updates

involved, it is still possible and often convenient to think in terms of matrices. By denoting Gt

the stacked gradient estimates of all the nodes, D-SGD corresponds to the update rule

θt+1 = W (θt − γGt)

There exists a lot of variant of this algorithm, for instance by doing more gossiping steps

between computation, by doing more local steps between gossip, by accelerating the gossip,

by using dual methods [Kol+20; MR16; HBM20]. D-SGD benefits from parallelization, as

all nodes compute gradients in parallel in contrast with the centralized alternative and avoid

the communication bottleneck of federated learning as the gossiping relies on peer-to-peer

communication on a suitable graph.

We nowpresent a convergence result for D-SGD that holds under a quite flexible assumption

about the sequence of gossip matrices, as it requires only properties over the expected value

over several iterations. This assumption allows for possible dropouts, randomized gossip, and

various number of local updates. The only constraint is a geometric decay after a given number

of iterations ω.
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2.4 Decentralized learning

Assumption 2.13 (Expected Consensus Rate). . There exists two constants r ∈ (0, 1] and

integer ω ≥ 1 such that for all matrices X ∈ Rd×n and all integers k ∈ {0, . . . , T/ω}

EW

∥∥∥XWk,ω − X̄
∥∥∥

2
≤ (1− r)∥X − X̄∥2

where Wk,ω = W(k+1)ω−1 · · ·Wkω and X̄ = X 11
⊤

n and E is taken over the distributions Wt ∼
W(t) and indices t ∈ {kω, . . . , (k + 1)ω − 1}.

Theorem 2.14 (Convergence of D-SGD [Kol+20]). Under Assumption 2.13, for a loss µ

strongly convex and β-smooth, the iterates of Algorithm 2.2 converge with the following guarantee.

1

n

n∑

i=1

∥xT,i − x∗∥22 = Õ
(

ρ2

nµT
+ β

ω2σ2
∗ + ωrρ2

β2r2T 2
+

βω∥x0 − x∗∥2
r

exp

[
−µTr

βω

])

where the gradient noise at the minimizer x∗ is assumed to be bounded by ∥∇fv (x∗)∥2 ⩽ σ2
∗ for

all v ∈ V and ρ =
∑n

i=1 Eξi
∥∇Fi (x∗, ξi)−∇fi (x∗)∥22.

Note that, in the special case of using a single deterministic gossipmatrix as in Definition 2.9,

a possible value for r is given by 1− r = (1− λ2)2. This is obtained by rewritting WX − X̄ =

W (X − X̄) and applying Perron Frobenius theorem.

The synchronicity of all updates is however costly in practice, as it requires to wait for

slower nodes – often called stragglers – and that all nodes remain available during the training

procedure. It is possible to use asynchronous gossip instead, but nodes still need to be available

during all the training procedure in this case. These limitations lead to prefer random walks

in some context. In this case, the unique model is held by the token that walks on the graph,

contrary to gossip algorithms where each node maintains and updates its own model. At each

step, a gradient is estimated from the local data of the node vt currently holding the token

before moving to one of its neighbors:

θt+1 = θt − γ∇θf(θt, ξvt,t) (2.6)

In this scenario, convergence results are more difficult to obtain, as the convergence depends

on the specific path taken by the token, and steps are dependent from each other. Bounding

how much the updates differ from the uniform sampling over the graph is thus hard and the

optimization results are rather recent. A first result was given by [JRJ10] but with guarantees

on the minimum of all iterates. Stronger and more general analyses have then been proposed

by [Mao+20; Hen22], and we present here only a recent result in the smooth and strongly

convex setting.
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Line Graph Star Graph 2D Torus Hypercube Complete Graph

Figure 2.5 – Example of classical graphs with n = 16 nodes

Theorem 2.15 (Convergence of RW-DSGD [Eve23]). Let (fv) be β-smooth and strongly convex

functions, such that the gradient noise at the minimizer x∗ can be bounded by ∥∇fv (x∗)∥2 ⩽ σ2
∗

for all v ∈ V . For a well chosen stepsize γ > 0, the iterates generated by Equation (2.6) satisfy:

E
[
∥xT − x∗∥2

]
⩽ 2e− T

κ ∥x0 − x∗∥2 + Õ



Lτmix

(
1
4

)
σ2

∗
µ3T


 .

2.4.3 Examples of communication graphs

So far in this section, we have assumed that the graph was given, and we built algorithms

and convergence results that depend on it. In practice, the graph can be predefined if the

learning task leverages an existing network. Examples include sensor networks, decentralized

internet structures, popular social networks like Facebook or Twitter, or collaborations between

institutes or hospitals. Sometimes, however, the graph can be chosen and constructed by the

participants. In this case, it is interesting to choose the graph that is best suited to the problem at

hand. For example, in the secure aggregation protocol of [Bel+20], participants reach out to k

of their neighbors, forming a k-out random graph, which turns out to be sparse but rather well-

connected and robust to collusions. Similarly, it is interesting to optimize various properties of

the graph in decentralized learning. In this section, we first introduce a few classical graphs

and networks from real-world use cases, then some techniques to generate random graphs,

and finally some properties of these networks.

Among the most classical graphs used in this thesis are trees, with n− 1 edges to connect

all vertices. They can be as flat as a star or as high as a line (see Figure 2.5). An additional

edge on the line gives the ring. Then, the torus makes graph connections more redundant. The

hypercube [Yin+21], for a number of nodes that is a power of two, has a small number of edges

but also a small radius – the radius is the minimum among all the maximum distances between

a vertex to all other vertices. Finally, connecting all the nodes gives the complete graph.

Classical graphs can also stem not from their mathematical construction but from real

networks. There are several real-world graph datasets, such as those available on [LK14].
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Erd s-Rényi Graph Random Geometric Graph Barabási-Albert Graph

Figure 2.6 – Example of random graphs with n = 100 nodes, size of node is proportional to its degree

These networks can represent social networks, citation networks, collaboration networks, road

networks, etc. We will often test our approach on the Facebook Ego dataset from this repository,

where nodes are friends of a given user (this central user is not present in the graph) and

edges encode the friendship relations between these nodes. Ego graphs typically induce

several clusters corresponding to distinct communities, such as the same high school, the same

university, or the same hobbies.

In many cases, it is convenient to generate the graph randomly through a procedure that

can be performed locally at the node level, using only a few parameters [BP16]. In particular,

random graph generation is useful to make the graph vary through time and to study the

dynamics of social networks by generating synthetic graphs that capture some of their proper-

ties, particularly asymptotic behaviors. Perhaps the simplest random graph is the Erdos-Rényi

[ER59; HKP19], where each edge is added to the graph according to an independent Bernoulli

random variable of probability q (see Figure 2.6). These graphs are almost surely fully con-

nected when q > log(n)/n and are expanders – expander graphs are sparse graphs that have

strong connectivity properties – for well-chosen q (e.g., 2 log(n)/n). In this graph, nodes are

somewhat all the same, as edges are created independently from each other: this is convenient

in some scenarios that benefit from this symmetry, but it does not match behaviors usually

seen in social networks, where already popular nodes tend to attract even more connections.

Barabasi-Albert graphs capture this by adding each node sequentially and creating edges to a

node proportionally to its current number of neighbors, which also gives a scale-free degree

distribution. Finally, another way to generate random graphs is to inject randomness via the

position of the node in space. Then, geometric random graphs connect all nodes below a given

radius. There are a lot of other random graph generation algorithms, capturing various graph

properties, that will not be used in this thesis.

When choosing the graph is possible, it is thus interesting to optimize for some properties.

An important graph parameter that has been highlighted in Section 2.4.1 is the spectral gap: in
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Table 2.2 – Spectral gap (Definition 2.10) and degrees of classical graphs

Graph Complete Expander D-dim. Torus Ring Line

λW 1 O(1) O
(

1

n
2
D

)
O
(

1
n2

)
O
(

1
n2

)

Degree n− 1 O(1) 2D 2 2

order to converge quickly, one seeks a graph with a spectral gap close to 1 and not 0. To some

extent, the degree can capture the communication cost. In Table 2.2, we recap the values for

some graphs presented above. An expander graph is a sparse graph that has strong connectivity

properties, which is achieved by the hypercube or by Erdos-Rényi graphswith a good parameter.

It is thus an interesting trade-off in terms of communication cost and speed of convergence.
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Chapter 3

Privacy

In this chapter, we discuss the concept of privacy, starting from amore general philosophical

point of view before narrowing it down to the technical formulation of differential privacy

and its use in machine learning. In the first part, we motivate the importance of privacy by

offering examples and foundational definitions based on sociological works, concrete privacy

breaches, and legal aspects (Section 3.1). We then move towards the definition of differential

privacy, motivating its technical introduction, giving examples of mechanisms, and important

properties relevant to the thesis (Section 3.2). Finally, focusing on machine learning, we explore

privacy attacks and their connection to differential privacy, introduce differentially private

stochastic gradient descent, and discuss the trust models used in machine learning research

(Section 3.3).

3.1 Contextualizing Privacy

In this section, we adopt a non-technical point of view, to latermotivate not only the introduction

of differential privacy, but also the need to continue to play with its definition and to adapt

it, as done in the thesis. It aims to clarify some high-level motivations for privacy-preserving

machine learning. The goal is thus not to finish with a closed definition of privacy, but to give

shape the broad concept of privacy by comparing it to other notions and confronting it with

examples, and to provide good references to readers interested by the social impacts of machine

learning in terms of privacy.

3.1.1 Elements of privacy in philosophy and sociology
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Privacy is valuable not only for our personal lives, but for our lives as citizens – our

participation in public and community life. It is hard to imagine how people could

freely participate in public life without some degree of control over their reputation

and private life. Thus privacy is more than a psychological need or desire; it is a

profound dimension of social structure. In addition to protecting individuals, privacy

safeguards relationships between individuals, which are essential for family life, social

engagement, and political activities. [Sol08]

Privacy is a fundamental human right and recognized as such in the Universal Declaration

of Human Rights [NU48]. It should be enforced and respected, just like the right to have a

nationality, access to fair trials, and freedom of speech, thought, and religion. As often, this

right is intertwined with others, with each right helping the others to exist, but sometimes

being orthogonal to each other and requiring a balance of different aspects [RD23].

From a personal point of view, my first tangible experience of privacy might come from "Les

Misérables". Jean Valjean has a past, he stole some bread to feed his family and then spent years

in jail, trying to escape several times and thus increasing his duty time. However, he also grows

morally during the novel to represent the best traits of humanity, becoming known under the

name of Monsieur Madeleine. He deserves to be allowed to keep his past private, but society is

reluctant to let people change once they have been classified, especially as criminals. In Victor

Hugo’s society, the surveillance comes from the state, and is embodied by the character of

Javert, who keeps recognizing him and trying to arrest him. When Javert finally realizes that

Jean Valjean cannot be reduced to his past, he cannot deal with the contradiction between the

Law that commands putting him in jail and his intimate conviction that Jean Valjean is a good

man, and commits suicide.

Keeping information private is usually less dramatic than in Hugo’s novels. Whether

using sealed letters or encrypted communication, booths to vote, clothes to dissimulate the

body, keeping the draft of a book private before publication, running away from paparazzi, or

attending meetings only for members of an association, we use our right to privacy [Sol08] on

a daily basis. The need for privacy is always dependent on the context [Nis09]: stars are not

against photographers, but against photos of their intimacy; a book is meant to be read once

published; people might choose to undress in specific situations.

The examples of book drafts or voting demonstrate that privacy cannot be reduced to the

concept of intimacy. The set of elements that one could legitimately keep private is not limited

to those directly related to personal intimacy. Another confusion is to reduce privacy to secrecy,

which in particular gives the false idea that keeping information private is bound to immoral

dissimulation. This confusion often arises when asking to end the secrecy of communication

— for instance, by making cryptography illegal — by arguing that this would be beneficial

in fighting against child pornography or terrorism. This is, for instance, the justification of
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the Patriot Act [Con01], which led to mass surveillance in the United States, as described by

Edward Snowden [Sno19]. How surveillance is eventually misused for other purposes such as

fighting political opponents is well known [Ram24; BB19], and we refer the reader to [Zub19;

Shu20]. Thus, I will only argue that mass surveillance is inefficient due to Bayes’ law: there

are not enough criminals in society for systematic checks to be efficient. Even with a very low

probability of false positives, the rate of false positives when scanning the whole population

with independent tests is overwhelming. Hence, making everything public by default is not an

efficient way to fight awful but truly scarce behavior.

A mean to achieve privacy is anonymization. It is not always sufficient: if the goal was to

keep a text private and it is leaked, even if the anonymity of the author is preserved, harm

might still be done. However, when thinking of machine learning use cases, where privacy

risks comes from amodel that generalize from data, the privacy risk is often due to the ability to

link specific data to an individual [WM19]. That is why we often talk about unlinkability as well

for privacy-preserving mechanisms. For instance, the fact that some people have cancer does

not need to be kept private; it is a well-known fact and useful to have data from to advocate for

screening and advance research, but revealing the fact that a given individual has cancer does

harm his/her privacy [DR14].

Another related concept is obfuscation. If secrecy and anonymization cannot be achieved,

making access to the information harder might still be worthwhile. This represents a weaker

form of privacy; it may eventually be compromised, but it is hoped to offer protection for a

necessary short period. Examples include various military decoys during the Second World

War and the Vula operation during Apartheid [BN15]. When proposing a digital service,

relying on obfuscation for protection is however seen as bad practice: even if clients’ data

is not leaked today, it will be at some point. Hence, as we will show in Chapter 4, claiming

that decentralized algorithms are private because it is hard to track the information leakage

is not satisfactory. Accountability and trust are built on transparency, ensuring that proper

protections measures are in place.

As discussed above, examples related to privacy are various, and indeed the situations

in which this right is used have little in common. However, it always has the same goal, to

create the necessary room for an individual to become who they choose to, a room for peace,

trials and errors, dreams [Woo29]. It has been described as the shield against the tyranny of the

majority by the American Supreme Court, and indeed it is by monitoring who accesses which

information that a citizen constructs their place in a society [Zub19]. The diverse nature of

privacy makes it impossible to confine it to a single concept such as intimacy, unlinkability,

or anonymization as previously seen. Thus, a more effective approach is to focus on specific

privacy problems [Sol08].
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Helen Nissenbaum has proposed contextual integrity [BGN17] to accurately describe such

problems, framing them as the appropriateness of information flow. Contextual integrity

affirms that we need five elements to accurately determine whether a flow of information is

appropriate:

1. The sender of the data corresponds to the entity that actually shares the information. It

might have received it from another entity; it can be a legal entity, such as an institution

or a company.

2. The data subject, on the contrary, is the individual that produced the data, for instance, the

person in the picture that is shared.

3. The recipient of the data is the entity or individual who receives the data.

4. The information type corresponds to the content of the information, for instance, the picture.

5. The transmission principle corresponds mainly to the conditions under which the flows

happen, such as reciprocity, consent, by law, or purchase.

From this formalism, one should remember that it is not possible to reduce the question of

appropriateness to the information type, as it is often donewhen trying to legitimate inadequate

use of data. Even if data is made to be public for some friends, it does not mean that we expect

a company to train a large language model on it, or it is not because we share an illness in a

discussion group that we consent to its use in computing an insurance rate [TKC24; VW19;

Hao20].

Paying attention to the five elements allows us to understand why privacy has become hard

to grasp. New senders are collecting and even trading data, for instance, to sell targeted adver-

tisements. Machine learning offers new transmission principles that is not yet well understood,

and so mysterious in its implications that most people cannot meaningfully consent [Bur16].

Even the information type now includes new kinds of data, such as precise geolocation over

time [Mon+13], health data from smartwatches, web browsing logs, and extensive records of

communication.

In the face of this deluge of data [Sch16], it has been said that privacy is dead [MAK20]1,

and that even worse, younger generations do not feel concerned with this right as they happily

share intimate parts of their lives on social networks [Boe05]. Even if their actions seem to

translate an unwillingness to protect their privacy, they still have concerns about it. This privacy

paradox translates the difficulty of protecting personal data today. People do not have the power

to control the flow of their information, so they let it go [HM16].

The fact that a technological upheaval brings new needs to protect privacy is not new. In

1890, the American lawyers Warren and Brandeis wrote their famous article on the right to be

1We cite this work as it has found a wide audience, but disagree with both its conclusions and methods.
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left alone in reaction to the popularization of cheap newspapers with photos, which led to the

publication of articles about mundane facts.

Instantaneous photographs andnewspaper enterprise have invaded the sacred precincts

of private and domestic life; and numerous mechanical devices threaten to make good

the prediction that what is whispered in the closet shall be proclaimed from the

house-top. [WB90]

Big data and machine learning are in many ways even more significant changes, which

also require new protections. In the introduction, we already discussed the three upheavals

brought by big data: first, the recent ability to collect data via a wide range of devices such as

smartphones and IoT, and novel practices such as constant rating, systematic loyalty programs,

and precise online tracking [Ful; Mon+13; Aim20; Swe00]; second, unprecedented data avail-

ability through cheap storage and nearly no latency to access data, unified formats, and larger

infrastructures; and third, a wider ability to extract value from data with the development

of machine learning algorithms. This allows to influence people [Lin24], to classify with the

risk of discriminating [Zub19; Hao20], and to force people into invisible jails of their own

recommended virtual worlds [Sim15; Par12]. This motivates the study of these emerging flows

of information and the emergence of novel privacy problems.

3.1.2 Privacy in Law

Code is law. [Les06]

Although the previous section, by highlighting the social impact of privacy, serves as a

motivation to study privacy, the rise of privacy concerns from the industry’s point of view is

also mainly explained by legal requirements. The General Data Protection Regulation (GDPR)

was signed in 2016 and enforced in 2018 in the European Union. It fostered research in privacy,

by giving a clear motivation: finding a way to continue to extract value from data while being

GDPR compliant.

The text has several interesting aspects. It starts with motivations close to the ones exposed

in the previous section, but also clearly highlights the will to strike balance between economic

interests and protecting privacy:

Rapid technological developments and globalisation have brought new challenges for

the protection of personal data. The scale of the collection and sharing of personal

data has increased significantly. Technology allows both private companies and public

authorities to make use of personal data on an unprecedented scale in order to pursue

their activities. Natural persons increasingly make personal information available

publicly and globally. Technology has transformed both the economy and social life,
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and should further facilitate the free flow of personal data within the Union and the

transfer to third countries and international organisations, while ensuring a high level

of the protection of personal data.

The legislator continues to rely heavily on pseudonymisation:

‘Pseudonymisation’ means the processing of personal data in such a manner that the

personal data can no longer be attributed to a specific data subject without the use of

additional information, provided that such additional information is kept separately

and is subject to technical and organisational measures to ensure that the personal

data are not attributed to an identified or identifiable natural person.

It has been ten years since the AOL incident (see next section): it is already known that

pseudonymisation has shortcomings, and it is thus a political choice to continue to give credit

to this type of protection. However, the GDPR also defines anonymous data as data that “does not

relate to an identified or identifiable natural person or to personal data rendered anonymous”,

which is closer to the unlinkability presented before, and illustrates that pseudonymisation

is not the only approach. Another choice is to center the problem around personal data, and

in particular on Personally identifiable information (PII), and consent rather than on privacy as

a whole [Slo16]. This focus inspires a vision where data could be a property like any other,

with the same exclusivity principle: the data belongs to someone, so it does not belong to

someone else. This is not verified in practice; for instance, genetic data are shared among family

members, and seeing data as a good raises many problems (see [NC15] and in particular

Rochfeld’s contribution). However, recognizing a single data owner allows us to hold them

responsible for sharing the data, which brings us to the importance of consent in GDPR: data

can be collected and processed (subject to extensive discussion of the situations) as long as

the data subject consents. In practice, for non-technical users, GDPR is thus often synonymous

with strange pop-ups on websites, that luckily close after clicking on "accept all". It is extremely

hard to deny consent [HM16], or even to know what permissions have been given, far from

the freely given, specific, informed and unambiguous agreement required by the text. GDPR fails to

see that people have already lost control over the collected data, and that processing activities

are so numerous that a single individual cannot trace all their personal data.

In practice, GDPR has given mainly two actionable means to resist privacy assaults. One is

given by the right of access by the data subject that allows all users to download all their data,

which is a way to know a posteriori to which data collection we have consented to. Properly

analyzed, it has been often an important first step to understand the level of precision in the

data collection.2

2From my generation, people downloaded their Facebook personal information, were terrified about it, and
wanted to stop using Facebook. Unfortunately, no alternative scaled and we still are on Facebook.
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The second one is to establish a supervisory authority in every country (Article 51) – in

France, it is the CNIL who already existed thanks to the law "Internet et Libertés" [CNI15] –

that is in charge to check compliance at the national level. The ability to fine big companies in

case of violations has given a financial and a reputational incentive to not only respect GDPR

but to be proactive and anticipate GDPR issues in advance.

Other data regulations also apply outside of the European Union, such as The California

Privacy Rights Act of 2020 (CPRA), or the Personal Information Protection and Electronic

Documents Act (PIPEDA, the first version became law in 2000). This thesis also terminates

shortly before the introduction of the European AI Act, that focuses on the specific risks due

to the application of artificial intelligence, forbidding most unethical applications such as

social credit, emotion recognition on working places, predictive policing. . . It also creates new

obligations for high risk applications, such as the ones using biometric data, or used for human

resources. Again, the financial impact might be high, as the maximal fine is caped at 7% of

global revenue of the firm.

Regulations cannot solve all privacy issues: illegal behavior happens, and fines do not

suppress previous data leakages. Moreover, although legislation protects consumers from

private companies, the dynamics are different for state surveillance. Often created in reaction

to tragic terrorist attacks, many countries are keen to collect large amounts of personal data

and to force private companies to hand over data when asked. The most well-known example

is the Patriot Act [Con01], but similar dynamics are at play in other countries, especially in the

Five Eyes3, which tend to push towards more surveillance [Shu20; Zub19; Aim20]. In many

ways, these five big democracies are more intrusive than many dictatorships, which brings us

back to the privacy paradox: why do citizens let their representatives build the ultimate state

of bureaucracy, as described in the Permanent Record [Sno19]?

One explanation, already hinted in [Sno19], might come from the fact that despite tracking

a lot of illegal behaviors, there is no massive repression such as in non-democratic states, and

surveillance stays invisible for the majority. When abortion rights were jeopardized by the

overturn of Roe and Casey in 2022, the United States’ possible repression against women

showcased that current data collection could become a threat for users, making the data

collection dangers more discernible. Some companies such as Google promised to delete

this sensitive information, but it seems that the results did not match the expectation with

incomplete and thus useless deletion [Gua24]. This is a strong incentive to keep user data

decentralized and not accessible by the companies: even if the original purpose was genuine, a

state subpoena can transform the data into a mean of persecution. In our example of a shopping

basket, even if the prediction task is not pregnancy, it is obviously possible to detect it when a

woman stops buying sanitary products.

3The Five Eyes (FVEY) is an anglosphere intelligence alliance comprising Australia, Canada, New Zealand, the
United Kingdom, and the United States.
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3.1.3 Data Leakage

Data can be either useful or perfectly anonymous but never both. [Ohm09]

In this subsection, wemove tomore concrete problems raised by Big Data by discussing data

leakage, informally corresponding to the unexpected disclosure of information about a specific

individual. We have seen in the first subsection that a concept related to privacy in the context

of data collection is anonymization and unlinkability. If one can remove the link between the

data subject—i.e., the individual to whom the data refers—while keeping the data unaltered,

we would realize the best of both worlds in the context of machine learning. Indeed, we would

be able to learn our model with data, or to access it for statistical analysis or data visualization,

but we would not be able to tell who participated in the dataset, thus effectively protecting

participants. In this section, we show how this approach led to catastrophic failures in the

past. Indeed, the possibility of anonymization relies on the illusion that one could separate an

individual from their data. This is not the case [OP16].

Pseudonymization refers to the process of removing information that would allow a human

being to directly link a record to an individual, as previously described in Section 3.1.2. This

typically means removing names, addresses, social security numbers, credit card numbers,

or similar entries. The term pseudonymization has been chosen in the community to raise

awareness of the fact that this operation does not enable, most of the time, the severing of ties

between the remaining entries and the individual. It is now well-known that in most cases,

it is possible to link back a specific record to an individual, which is called reidentification or

de-anonymization of the data. Examples of reidentification are numerous; we list three famous

ones below:

Governor of Massachusetts’ health record Latanya Sweeney demonstrated through analy-

sis of the 1990 US Census that 87.1% of people in the United States could be uniquely

identified by their ZIP code, birth date, and sex [Swe15]. When the governor of Mas-

sachusetts promoted the public release of health records by claiming it was risk-free due

to pseudonymization, Latanya Sweeney crossed the database with the voters’ list, found

his record, and mailed it to him [Swe00].

AOL database In 2006, AOL, once an alternative to Google, released a pseudonymized dataset

with users’ search histories, where each user was designated by a random number. Some

search histories contained harmful or embarrassing queries —e.g., "how to kill my wife"

or "dog that urinates on everything". Despite initial defenses claiming it was impossible

to identify who made the queries, two New York Times reporters managed to identify a

retired woman, Thelma Arnold, who acknowledged that it was indeed her search history,

illustrating that even retired women perform some embarrassing queries [BZ06].
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Figure 3.1 – Join between public and private databases from [Swe15].

Netflix dataset A few months after AOL, Netflix launched a challenge to predict users’ movie

ratings from their past ratings. At the time, Netflix was still a DVD-by-mail company,

but predicting the best movie to recommend was already crucial to business success, so

a one million dollar prize was offered for a 10% accuracy increase in rating prediction

accuracy. Researchers demonstrated that by cross-referencing the dataset with another

public rating dataset, Internet Movie Database (IMDb), they could link IMDb public

profiles to their complete movie histories in the Netflix database [NS06].

We will focus on the first example, because it emphasizes how women have pioneered

research in privacy: after discussing the contributions of Helen Nissenbaum in the previous

chapter, we see that Latanya Sweeney was not only the first African-American woman to obtain

a PhD from MIT but also put forward defenses and analyses of privacy [Swe02b; Swe02a;

SLP18; SAW13]. This example is particularly striking because the governor was a specific

victim, not just a random unlucky person; the data was clearly sensitive as it was a medical

record, and the reidentification was explicit.

How did the attack work? The released data still contained exact birth dates, zip codes,

and genders, which seemed legitimate to keep the data valuable for researchers: knowing

a person’s age is clearly useful for health analysis. However, nearly 9 out of 10 people are

uniquely identified by these quasi-identifiers. It is possible to join the public voters’ database

and the health records on the key built on these three features. (birth date, zip code, sex), as

done in Section 3.1.3. This join puts on the same row the name contained in the voter list and

the health information.

This example shows that even if some sets of features are not equivalent to a name for a

human being, they are quasi-identifiers4 that are unique and can play the same role. Faced

4The term quasi-identifier is sometimes used to refer to each of the feature rather than their union. Here we stick
to the choice made in Sweeney’s works where it refers to the whole set.
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with this problem, a first verification that can be done prior to data release is to make sure that

no record with easily accessible public features is unique. K-anonymity was introduced by

Latanya Sweeney to formalize this idea.

Definition 3.1 (K-anonymity [Swe02b]). A dataset D is K-anonymous with respect to a

quasi-identifier if each sequence of values of the quasi-identifiers appears at least K times in D.

This approach effectively addresses the previous attack, but might require to modify signif-

icantly the database [Swe02a], and it relies on the strong to unrealistic assumption that one

can identify the relevant quasi-identifier. Moreover, it fails to address a very simple case: if

the K − 1 records that share your quasi-identifier have the same disease as you, there is no

protection. L-diversity fixes this by ensuring that the set has at least L different records for

each quasi-identifier [Mac+07], and there exist other refinements [LLV07]. However, too many

constraints are hard to meet and can lead to the deletion of all the rows in the database.

These methods highlight two persistent problems: quasi-identifiers are ubiquitous, and

trying to make records indistinguishable destroys the utility of the dataset. Differential privacy

proposes another method to manage this tradeoff.

3.2 Differential Privacy

3.2.1 Definition

“Differential privacy” describes a promise, made by a data holder, or curator, to a data

subject: “You will not be affected, adversely or otherwise, by allowing your data to be

used in any study or analysis, no matter what other studies, data sets, or information

sources, are available.” [DR14]

K-anonymity is not sufficient to efficiently protect personal information. Rather than trying

to enforce more complex and arbitrary constraints like L-diversity does, Differential Privacy

creates uncertainty in all the rows by injecting noise into queries5. The initial idea of using

randomness to protect privacy is usually traced back to the art of surveys [War65]. In 1965,

Warner proposed a new method to avoid bias caused by respondents changing their answers

because they prefer not to disclose shameful or illegal behavior to the interviewers. Tominimize

this behavior, which is hard to estimate and could invalidate the significance of the results,

respondents are asked to modify their answers based on the external randomness of a coin flip,

as described in Algorithm 3.1. The goal is to estimate the true proportion of positive answers

and not the individual answers.
5In this context, "queries" refer to data requests or analyses made on a dataset
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Algorithm 3.1: Randomized response as originally proposed by [War65]

1 Toss two coins sequentially
2 if first result is tail then
3 Tell the truth
4 else
5 if second result is tail then
6 Say yes
7 else
8 Say no

This algorithm creates plausible deniability: if your answer is the shameful one, you can

deny its truthfulness by claiming it was given by the random coin toss. This algorithm creates

additional variance to the estimator because half of the answers are pure noise, but it should

remove the bias term caused by lying participants in the process, since answering ’yes’ does

not create significant data leakage for the person. The original mechanism relies on a fair coin,

but we could consider using a biased coin for the initial toss: the more it is biased towards

revealing the truth, the less private it is, allowing more information to be inferred about the

respondent’s true answer.

Differential privacy builds on this idea and generalizes the answer to yes-no questions

to any kind of output, for instance the ones given by machine learning algorithms, whether

they are predictions or weights. To do so, it relies on the notion of adjacent datasets, which

we discuss before moving to the definition of differential privacy. Two datasets are said to

be adjacent if they identical except for changes in one record, which reflects the granularity

we want to protect [DR14]. In the motivational example of randomized response, the private

information is a single bit, unlike the complex datasets typically involved in machine learning.

Most of the time, it is safe to think about adjacent datasets as representing two scenarios

in which the only difference is the modification of one of the rows of the dataset of the first

scenario into another one. However, how granularity is translated mathematically depends

on the information you want to protect: if two datasets are adjacent when they differ from a

single shopping basket, we aim at protecting specific choices made on a given day, and one

talks about record-level differential privacy. One could also decide to consider user-level privacy

[McM+18], by considering that all the shopping baskets of a single user should be seen as a

single entity rather than a single basket. In these case, we move from the first scenario to the

second one by replacing one of the participant by another one. At an even more ambitious

level, group-level privacy [DR14] considers the appropriate granularity to be the entire family,

comprising several closely related users who share mutual information about each other. In

this case, two datasets are adjacents if all rows corresponding to a given family can be modified

between while other rows remain identical.
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Figure 3.2 – Illustration of differential privacy intuition: between the two scenarios, the datasets stay
identical except for the blue user that is replaced by the orange one. The output remains with a bounded
ratio, as illustrated with classically used mechanisms in differential privacy—Gaussian, Laplace, and
Randomized Response from left to right—where for every output the blue and the orange values remain
not too far apart.

Differential privacy then imposes constraints on the outputs of the algorithm between these

two scenarios. We note D ∼ D′ to indicate that the datasets D and D′ are adjacent.

Definition 3.2 (Differential Privacy [Dwo+06a]). Let ε ≥ 0 and δ ∈ [0, 1]. An algorithm

A is (ε, δ)-differentially private with respect to ∼ if for every pair of databases D ∼ D′ and all

S ⊂ Range(A):

P(A(D) ∈ S) ≤ exp(ε)P(A(D′) ∈ S) + δ

The variable ε is the privacy budget, that quantifies in one positive number the privacy

leakage that occurs by revealing the outputs of the algorithm. It is called the budget as it is

a quantitative measure that one needs to manage, for instance by spending more budget on

some learning tasks rather that others, and that it can be used as a guideline to ensure that we

do not overexpose some data. Translating this number into a level of risk with a clear intuition

is still a rather open problem. Consensus is often to say that the acceptable privacy budget

should depend on the context, but even when fixing a rather precise context, experts opinions

might vary a lot. Some claims that even a big privacy budget is better than an infinite one.

However, another consensus is that it was fallacious for Apple to claim respecting privacy

when using a budget of 16 per day [Tan+17]. In this thesis, we keep ε as a variable and most
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of the time we do not require specific assumptions on this side, leaving the task of determining

the appropriate value to practitioners.

Differential Privacy in Definition 3.2 presents an additive term δ. When setting it to 0, we

have pure differential privacy, which is more restrictive: δ > 0 offers the freedom to have some

catastrophic failures, as long as their probability to happen remain extremely small in practice.

Comparing the two outputs for the two databases boils down to the tricky problem of

comparing two distributions. Even it remains implicit in the historical formulation of differential

privacy presented above, it is more natural, and often more convenient to think in terms of

divergence.

Definition 3.3 (Hockey-stick divergence). The hockey-stick divergence with a ≥ 1 between two

distributions µ and ν is defined by

Dh
a (µ∥ν) = sup

E
(µ(E)− aν(E)) =

∫
max (µ(y)− aν(y), 0) dy

With this definition, an algorithm is differentially if and only if for every pair of adjacent

databases D ∼ D′, Dh
eε (A(D)∥A (D′)) ≤ δ.

Other divergences can be used to derive differential privacy guarantees. A popular choice

is the Rényi divergence.

Definition 3.4 (Rényi Differential Privacy (RDP)). An algorithm A satisfies (α, ε)-Rényi

Differential Privacy (RDP) for α > 1 and ε > 0 if for all pairs of neighboring datasets D ∼ D′:

Dα(A(D)∥A(D′)) ≤ ε

where Dα(µ∥ν) is the Rényi divergence:

Dα (µ∥ν) =
1

α− 1
log

∫ (
µ(z)

ν(z)

)α

ν(z)dz

Interestingly enough, DP and RDP are closely related, as one can translate results from

RDP to (ε, δ) DP with the following lemma.

Lemma 3.5 (Conversion RDP to DP). If an algorithm is (α, ε) Rényi differentially private, it is(
ε + log 1/δ

α−1 , δ
)
-differentially private for any 0 < δ < 1.

Choosing one definition over another is primarily a matter of selecting the best tool for

a given task, as each differential privacy setting offers interesting properties for analyzing
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algorithms, such as difference in composition [MTZ19]. Other definitions, relying on otherways

to compare distributions, also exist, such as f -differential privacy, but will not be investigated

in this thesis.

3.2.2 Two examples of differentially private mechanisms

We already introduced the Randomized Response (RR) mechanism for binary queries. More

generally, for any query on a finite set, we can return the true answer with some probability

and a random choice uniformly chosen among the other options the rest of the time.

Proposition 3.6 (RR is DP). Let RR be the algorithm over {1, . . . , K} such that for an input x,

the outputs are drawn with the following probability:

RR(y|x) =





eε

K−1+eε if y = x

1
K−1+eε if y ̸= x

This algorithm is ε-differentially private.

Similarly, for continuous outputs, we will rely on Gaussian noise, which is easy to analyze

and to generate.

Proposition 3.7 (Gaussian Mechanism). Let f be a function with l2-sensitivity of ∆, defined by

∆ = max
D∼D′

∥f(D)− f(D′)∥

The Gaussian mechanism, given by A(D) = f(D) +N (0, ∆2σ2
)
is (ε, δ)-differentially private

for δ > 0, ε < 1 and σ ≥ c/ε with c2 > 2 log(1.25/δ). It is also (α, α/2σ2)-Rényi differentially

private.

In practice, we use these mechanisms to design differentially private algorithms by making

each of the interactions with the data private. In machine learning, where we need to interact

more than once with each data point, we use these methods multiple times, thus requiring

composition results. This is one of the many nice properties of differential privacy.

3.2.3 Properties of Differential Privacy

Differential Privacy does not distinguish between sensitive and non-sensitive information,

nor does it differentiate between Personally Identifiable Information (PII) and non-PII data.

The examples discussed in Section 3.1.3 demonstrate that this is part of its strength, as it

44



3.2 Differential Privacy

is impossible to predict in advance which features could lead to data leakage during post-

processing. According to the contextual integrity framework (see Section 3.1), one could

say differential privacy is a means of transmission that remains agnostic to the content of

the message. When introducing differential privacy in [DR14], Dwork and Roth provide an

example that fits our discussion of the shopping basket dataset.

Revealing “ordinary” facts, such as purchasing bread, may be problematic if a data

subject is followed over time. For example, consider Mr. T, who regularly buys bread,

year after year, until suddenly switching to rarely buying bread. An analyst might

conclude Mr. T most likely has been diagnosed with Type 2 diabetes. The analyst

might be correct, or might be incorrect; either way Mr. T is harmed.

We also saw that previous data anonymization approaches could turn out to be inefficient

because their obfuscation techniques proved to be unsuccessful once the correct attack was

applied. Differential Privacy suppresses that risk, because the theoretical guarantees provided

actually correspond to the removal of information: the process cannot be reversed, as indicated

by the post-processing property.

Proposition 3.8 (Post-Processing). If A is a differentially private algorithm and f a function

independent from the dataset D and from the randomness of A, then the composition f ◦ A is also

differentially private with the same parameters.

This property ensures immunity against all attacks, even those still unknown today, making

it a highly desirable feature.

Theorem 3.9. Let f : X → Y1 and g : X × Y1 → Y2 be respectively (α, ε1) and (α, ε2)-Rényi

differentially private. Then, the release of g(f(D),D) is (α, ε1 + ε2)-Rényi differentially private.

It is thus sufficient to sum up all the ε’s in RDP, which makes this variant of DP quite

convenient. Summing ε’s is also correct for DP, but not tight. Note in particular that the

computation of the second mechanism can depend on the output of the first mechanism.

Composing all the interactions of a realistic algorithm can lead to large privacy budget. To

improve it, we can also leverage amplification mechanisms which hide certain intermediate

computations in order to make an algorithm more private. A first example of such mechanism

is subsampling, where we apply our algorithm only to a subset of the data that is randomly

sampled from the total dataset.

Theorem 3.10 (Privacy Amplification by Subsampling [BBG18; FMT20]). Let q ∈ (0, 1/5)

be the sampling rate, σ ≥ 4 and S the mechanism where each element is sampled independently at
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random with probability q without replacement and f a function of sensitivity ∆. Then f ◦ S(D) +

N (0, ∆σ2
)
is (α, 6αq2

σ2 )-RDP.

This amplification relies on the secrecy of the sample. There exists numerous other theorems on

subsampling, that cover the spectrum of possible hypotheses, some of them requiring numerical

procedures, but the takeaway is always that the amplification is roughly proportional to q2 in

RDP.

Another interesting mechanism to protect privacy is to keep the intermediary steps of

a computation hidden and only reveal the last step. In this case, despite not being directly

revealed, the previous steps can still be partially leaked through the final output, but there is

some privacy amplification, that is captured by privacy amplification by iteration.

Theorem3.11 (PrivacyAmplification by Iteration [Fel+18; AT22]). LetT 1, . . . , T K , T ′1, . . . , T ′K

be 1-Lipschitz operators, an initial random state x0 ∈ U , and (ζk)K
k=1 a sequence of noise distribu-

tions. Consider the noisy iterations xk+1 = T k+1(xk)+ηk+1 and x̄k+1 = T k+1(x̄k)+ η̄k+1 where

ηk+1 and η̄k+1 are drawn independently from distribution ζk+1. Let sk = supx∈U

∥∥∥T k(x)− T̄ k(x)
∥∥∥.

Let (ak)K
k=1 be a sequence of real numbers such that

∀k ≤ K,
∑

i≤k

si ≥
∑

i≤k

ai, and
∑

i≤K

si =
∑

i≤K

ai . (3.1)

Then,

Dα(xK ||x̄K) ≤
K∑

k=1

sup
x:∥x∥≤ak

Dα(ζk ∗ x∥ζk) , (3.2)

where ∗ is the convolution of probability distributions and x denotes the distribution of the random

variable that is always equal to x.

Privacy amplification by iteration (PABI) is a way to decrease distance in the distribution

space as time increases: when each iteration is 1-Lipschitz, 6 the difference between the updates

done on different data of a given step fades progressively at each iteration and this phenomenon

can be quantified by analyzing the process with a shifted Rényi divergence, that computes a

divergence between a distribution and a distribution moved towards the other by a bounded

Wasserstein distance [Fel+18]. The amplification is roughly linear in the number of iterations

done before revealing the result of the computation. While this mechanism was introduced

in the context of DP-SGD (see Section 3.3.2), in this thesis we show that this amplification

mechanism has also applications for decentralized algorithms (see Chapter 6 and Chapter 7)

and for other iterative algorithms such as ADMM (see Chapter 8).

6A 1-Lipschitz operator is often referred as a non-expansive operator.
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3.2.4 Local Differential Privacy

The constraints of differential privacy apply to the outputs of the algorithm A. When intro-

ducing amplification mechanisms in the previous section, we saw that hiding intermediary

steps of the algorithms allows us to decrease the privacy leakage of these steps. We call Central

Differential Privacy the setting where only the final outputs of the algorithm need to be pro-

tected. Conversely, in a decentralized setting, one might consider that all messages sent by a

participant could be intercepted, and thus the guarantees should apply to all messages sent by

a given node.

Local Differential Privacy [Kas+08; DJW13] relies on similar mechanisms than central DP,

such as randomized response, Laplace or Gaussian injection, but the scale of the noise is thus

computed over all possible entries of a space X rather than on two adjacent datasets.

Definition 3.12 (Local Differential Privacy [Kas+08; DJW13]). Let ε > 0 and δ ∈ (0, 1). A

local randomizer algorithmR is (ε, δ)-locally differentially private (LDP) if for all x, x′ ∈ X and

any possible S ⊂ Z :
P(R(x) ∈ S) ≤ eεP

(R (x′) ∈ S
)

+ δ

Local differential privacy can thus be seen as the equivalent of differential privacy for a

database of size 1 and is convenient for decentralized algorithms [HMV15; Bel+18]. This

assumption corresponds to the setting where we do not trust the central aggregator, and thus

each participant protects his or her own data. This, however, comes at a price in terms of utility.

Here, we use utility as a generic term to design how efficient the algorithm is, which can be

for instance captured by the mean squared error of an estimator, or the accuracy of a model in

machine learning. To illustrate the gap in utility between local and central DP, consider the

task of computing privately the average x̄ over n samples in [0, ∆] held locally by participants.

Under (α, ε)-RDP constraint, the best possible utility is bounded by:

E(
∥∥∥xout − x̄

∥∥∥
2
) ≤ α∆2

2nε
for local DP , and E(

∥∥∥xout − x̄
∥∥∥

2
) ≤ α∆2

2n2ε
for central DP ,

where xout is the output of the algorithm. This 1/n gap motivates the study of intermediate

trust models, where LDP is relaxed so as to obtain better utility while still avoiding the need

for a trusted curator. A popular approach is to resort to cryptographic primitives to securely

aggregate user contributions [Dwo+06b; Shi+11; Bon+17; CSS12b; Jay+18; SBR22] or to

securely shuffle the set of user messages so as to hide their source [Che+19b; Erl+19; Bal+19b;

Bal+19a; Gha+20; FMT20] (Figure 3.3). Recent work has also considered the so-called shuffle

model of DP [Che+19b; Erl+19; Bal+19b; Bal+19a; Gha+20; FMT20], where users send their

contribution to a trusted curator or secure shuffler which permutes the set of messages so

as to hide their source. At the cost of additional computation or communication overhead,
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Figure 3.3 – Intermediate trust model between local and central differential privacy.

these relaxations can provably lead to significant improvements in the privacy-utility trade-off

(sometimes matching the trusted curator model).

These existing trust models, however, rely on the presence of a central aggregator to perform

secure aggregation or on the possibility of adding a trusted third party to perform the shuffling.

This is not feasible in fully decentralized settings with only peer-to-peer communication (as

defined in Section 2.4). Developing intermediate trust models well adapted to this setting is

one of the main contributions of this thesis.

3.3 Privacy in Machine Learning

3.3.1 Privacy Attacks in Machine Learning

Our examples of privacy issues have been focused so far on data leakages, where data is

extracted through a simple join between databases, for example. One of the vulnerabilities of

machine learning stems from the fact that, despite its apparent complexity, it is often possible

to extract information about individual training data points from a trained network, or from

its updates [Sho+17]. In this section, we provide a quick overview of existing attacks7. If a

successful attack can leak significant information from the dataset, then the algorithm cannot

7Note that these privacy attacks should not be confused with robustness attacks, where a malicious agent tries
to evade detection or misclassify an object, such as an image of a panda being classified as a gibbon. These are
unrelated to the attacks we discuss here
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be considered private. This complements the study of differential privacy previously seen in

Section 3.2.

We can distinguish various types of privacy attacks, that always aim to extract information

about the training data points, from the most impressive to the easiest to achieve:

Data Reconstruction [MV14; ZLH19; ZMB20] where the attacker aims to retrieve about indi-

vidual training points only from the model. This attack is particularly visual in the case

of image reconstruction and thus has gained popularity. It is also the most complete one,

as other attacks are also successful if reconstruction is complete.

Attribute inference attack [Mel+19; KÁF23] only targets some properties of the data points,

for instance, the label, or a protected attribute.

Membership inference [Sho+17; Car+21; Ngu+23; ZLS24] aims only at determining if a given

data point is part of the training dataset or not; it can be seen as the least ambitious attack.

However, it is the attack with the closest connection to differential privacy. Indeed, the

privacy budget ε captures how much some outputs have different probabilities whether

a data point is part of the training set. In practice, however, the difficulty in deriving

the tightest ε value means that often results in observed attack performance are less

impressive than what the privacy budget implies. Attacks thus come as an empirical

way to bridge the gap between the theoretical guarantee of differential privacy and the

evidence given by the attack.

The goal of an attack is however not the only factor to take into account. What the attacker

can access and do for attacking greatly changes the quantity of information that can be extracted.

An attacker is said to be passive, or honest-but-curious, when the attacker does not modify

the behavior of the training and only learns information from what is already available. On

the contrary, an active attacker could, for instance, send false messages (for example false

gradients in Algorithm 2.1) to obtain more information [Boe+21]. In this section, we will focus

on passive attacks, as it notably avoids discussing to what extent malicious updates can be

performed without being detected, and matches the setting studied in Chapter 4.

Another factor that greatly changes the ability to attack is how much the attacker knows

about the model. It is possible to have non-trivial results in attacks even when considering

a black box model, where the attacker only accesses predictions of the final model. It is

however limited, and often requires training shadow models that mimic the true model based on

predictions to learn about the training process. However, it is easier to attack when the model

and training procedure is known. This is a motivation to study the federated setting: if the

attacker is a participant or the server, they have access to the structure and the parameters (see

Algorithm 2.1). In particular, the gradient received by the server offers a new surface for attack

compared to the centralized case.
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Figure 3.4 – Schema from [ZLH19]. The reconstruction attack starts from the noisy picture to converge
to the cat one by minimizing the difference between the two gradients ∇W and ∇W ′.

It is easy to see that if the function is an immersion, having access to the gradient allows

determining which data point was used, by using the inverse of the derivative. This is the case

in logistic regression or a full convolutional layer with at least one output that is activated. To

see this, assume we want to reconstruct a data point x and we have access to the update of the

weights in f(w⊤x + b) = y. Assume that we can easily invert f , for example, if it is the sigmoid

or an activated ReLU, then we have w⊤x + b = y′. The gradient we observe corresponds to

dL
dw

=
dL
dy′ ·

dy′

dw

We can replace the first factor by the derivative with respect to the bias, which we also observe,

noting that dL
dy′ = dL

db . The second factor corresponds exactly to the desired x⊤, achieving the

reconstruction. This method was introduced in [Gei+20b]. In fact, even when closed form

reconstruction is impossible or too difficult to achieve, numerous attacks still allow successful

reconstructions from the gradients. One way to proceed is to perform a gradient descent

to invert the gradient: starting from a random data point, and computing its gradient, we

modify the image to minimize the difference between the fake gradient and the true one (see

Figure 3.4).

These methods are an active topic of research. Various improvements for gradient inversion

have been proposed [Gei+20a; ZMB20; Wan+19], including techniques capable of separating

gradients aggregated over large batches [Kar+23]. This motivates the need to adapt machine

learning techniques to minimize these risks. We will turn to differential privacy for doing so.
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3.3.2 Differentially Private Stochastic Gradient Descent (DP-SGD)

We now turn to the famous DP-SGD algorithm [BST14; SCS13; RA12] and give the main

takeaways in terms of privacy-utility tradeoffs. We aim to solve empirical risk minimization as

seen in Chapter 2 that we recap here:

θ̂ ∈ arg min
θ∈Θ

R̂ (fθ) =
1

n

n∑

i=1

l (yi, fθ (xi)) (3.3)

Algorithm 3.2: Differentially private SGD

1 Input: Data points {x1, . . . , xN}, loss function f , learning rate γt, noise scale σ, batch
size B, gradient norm bound C.

2 Initialize θ0 randomly
3 for t ∈ [T ] do
4 Take a random sample Bt with sampling probability B/N
5 for each i ∈ Bt do
6 Compute gt(xi)← ∇θf(θt, xi) ▷ Compute gradient

7 ḡt(xi)← gt(xi)/ max(1, ∥gt(xi)∥2

C ) ▷ Clip gradient

8 ḡt ← 1
B

(∑
i ḡt(xi) +N (0, σ2C2I)

)
▷ Add noise

9 θt+1 ← θt − γtḡt ▷ Descent

10 Output: θT

The private version of SGD is quite close to the non-private version, and mainly present

two differences: the clipping of individual gradients and the Gaussian noise addition to the

gradient. Clipping can be avoided if a theoretical bound is known on the gradient magnitude

(e.g., when the loss function is L-Lipschitz), but if it often more efficient in practice to just

aggressively clip the gradient. This introduces bias and a parameter to tune, and it is unclear

how we should change this clipping bound through the iterations [McM+18; TAM19]. Noise

addition introduces more variance in the updates, and the accumulated noise causes the iterates

to converge within a ball whose radius is proportional to the noise level. Unlike non-private

stochastic gradient descent, this noise cannot be reduced by using smaller step sizes and

more iterations, as each step increases the privacy budget due to composition. Note that the

fact that we cannot converge to an exact minimizer is not surprising: doing so would violate

differential privacy. Finally, because the noise is without structure, it is sometimes needed to

add a projection on a convex set. The privacy-utility trade-off can thus be summarized for a

given level of noise as follows.
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Theorem 3.13 (Utility and Privacy of DP-SGD [BST14]). Let σ2 = O
(

L2n2 log(n/δ) log(1/δ)
ε2

)
.

For θT output by Algorithm 3.2, for a loss function L that is L-Lipschitz, we have:

E [L (θT ;D)− L (θ∗;D)] = O

(
L log3/2(n/δ)

√
d log(1/δ)

nε

)

and if L is also µ-strongly convex, we have

E [L (θT ;D)− L (θ∗;D)] = O

(
L2 log2(n/δ)d log(1/δ)

n2µε2

)

Furthermore, the output is
(
α, αT

2n2σ2

)
-Rényi differentially private.

The privacy analysis relies the Gaussian mechanism, the composition property of RDP, and

amplification by subsampling. By using only a subset of size B/n of the data points, we have

an amplification of B2/n2 but the sensitivity of each update is also scaled by the sampling

factor, so both cancel out in the final guarantee given in the above theorem.

This theorem reveals the trade-off between privacy and utility: both formulas depend on σ;

as σ increases, privacy improves but utility worsens, showcasing the tension between these two

objectives. It can be demonstrated that the above bounds are optimal up to some logarithmic

factors [BST14]. However, it is generally difficult to determine the best achievable trade-off

and how to approach it, depending on the chosen trust assumptions. For instance, it might be

possible to achieve some level of privacy for free in the over-parameterized regime [BM24].

Identifying which algorithms and conditions provide the best trade-offs is a key question in

privacy-preserving learning.

In this thesis, we will study these questions in the decentralized setting, thus introducing

various private versions of existing decentralized algorithms (Section 2.4) and trying to obtain

privacy-utility guarantees that are of the same order as those of centralized algorithms.
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Chapter 4

Privacy Attacks in Decentralized

Learning

In this chapter, we demonstrate that decentralization alone is not enough to prevent data

leakage. We study Decentralized Gradient Descent (D-GD), an algorithm that allows a set of

users to perform collaborative learningwithout sharing their data. D-GDproceeds by iteratively

averaging local model updates with their neighbors in a network graph, as seen in Section 2.4.

We propose the first attack against D-GD that enables a user (or set of users) to reconstruct the

private data of other users outside their immediate neighborhood. Our approach is based on a

reconstruction attack against the gossip averaging protocol, which we then extend to handle

the additional challenges raised by D-GD. We validate the effectiveness of our attack on real

graphs and datasets, showing that the number of users compromised by a single or a handful

of attackers is often surprisingly large. We empirically investigate some of the factors that affect

the performance of the attack, namely the graph topology, the number of attackers, and their

position in the graph. Our code is available at https://github.com/AbdellahElmrini/decAttack.

These results motivate the need of adding differential privacy to decentralized algorithms,

as done in subsequent chapters. This chapter is mostly based on [MCB24].

4.1 Introduction

We saw in the previous chapter the importance to protect data in machine learning, and that

federated learning was susceptible to reconstruction attacks (Section 3.3.1). In this chapter, we

investigate whether gossip-based algorithms, by preventing any single node from observing

the individual contributions of all other nodes, are less vulnerable than traditional federated

learning systems. Indeed, while a node can observe the contributions of its immediate neigh-

bors in the graph, making the reconstruction of their values somewhat expected [PRT23], the
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contributions of more distant nodes are iteratively mixed multiple times with other contribu-

tions before being observed. Intuitively, one might thus expect that individual contributions

are harder to retrieve from only indirect feedback, especially when the attacker node is far from

its target. This, in turn, leads to the common belief that decentralized learning may be more

privacy-preserving by design. Questioning this belief is the motivation of our work.

To do so, we design and evaluate attacks performed by a node (or a set of nodes) to retrieve

other nodes’ private data in two algorithms: gossip averaging, a key protocol in decentralized

computation [Boy+06; XB04; OT09], and the prominent Decentralized Gradient Descent (D-

GD) algorithm [Lia+17; Kol+20]. As our goal is to assess the potential vulnerabilities specific to

decentralization, we focus on the strongest type of privacy leakage, namely data reconstruction,

executed by the weakest type of attackers, namely honest-but-curious nodes. In other words,

attacker nodes follow the protocol and try to reconstruct as much data as possible from other

nodes using only their legitimate observationswithin the protocol. To the best of our knowledge,

the attacks we present are the first to be able to reconstruct data from non-neighboring nodes.

Our attacks rely on interpreting each message received by the attackers as an equation that

ties together the private values of nodes, the weights of the gossip matrix, and the received

values. In the case of gossip averaging, we show that an appropriate factorization of a knowl-

edge matrix representing these equations yield the private values of the (often numerous)

reconstructible nodes, and additionally produces a reduced set of equations linking together

the values of the remaining nodes (which may leak sensitive information in certain cases).

Interestingly, we can predict even before running the algorithm which nodes will have their

values leaked depending on the gossip matrix of the network graph. For the case of D-GD,

the key ideas of our attack against gossip averaging can be applied to reconstruct individual

gradients, with some modifications to account for the extra difficulty induced by combining

gossip averaging with gradient descent steps. Once we have reconstructed individual gradients,

we rely on existing gradient inversion attacks [ZLH19; Gei+20a] as a black-box to reconstruct

data points. We show that under reasonable assumptions, the reconstruction of the private

data points of non-neighboring nodes is still possible in D-GD.

We empirically evaluate the performance of our attacks on synthetic and real graphs and

datasets. Our attacks prove to be effective in practice across various graph structures. In many

cases, even a single attacker node is able to reconstruct the data of a large number of other

nodes, some of them located many hops away. The collusion of several attacking nodes further

strengthens the attack. We also observe that the graph topology, the position of attackers in the

graph, and the choice of learning rate play an important role.

Our results clearly show that relying solely on decentralization to ensure the privacy of

training data is ineffective, even if nodes fully trust their immediate neighbors. Thus, additional

protections must be implemented.
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Concurrently and independently from our research, Dekker, Erkin, and Conti [DEC23]

studied a different setting where nodes perform a sequence of secure aggregations with their

neighbors, without considering a learning objective. Similar to [PRT23], their attack focuses

solely on direct neighbors. In contrast, our attack is capable of reconstructing the data of

more distant nodes, thus addressing the specific challenges of the decentralized setting more

effectively.

Related work. We are aware of only two recent works on privacy attacks targeting decen-

tralized learning [PRT23] and Dekker, Erkin, and Conti [DEC23]. The attack of [PRT23]

only targets direct neighbors, making it quite similar to existing attacks on federated learning.

Concurrently and independently from our research, Dekker, Erkin, and Conti [DEC23] studied

a different setting where nodes perform a sequence of secure aggregations with their neighbors,

without considering a learning objective. Similar to [PRT23], their attack focuses solely on

direct neighbors. In contrast, our attack is capable of reconstructing the data of more distant

nodes, thus addressing the specific challenges of the decentralized setting more effectively.

4.2 Setting

4.2.1 Decentralized Algorithms

As introduced in Chapter 2, we consider a fixed undirected and connected graph G = (V, E)

where |V| = n and an edge {u, v} ∈ E indicates that u and v can exchange messages. We denote

by N (u) = {v : {u, v} ∈ E} the neighbors of node v. We assume that each node u possesses a

private value xu ∈ Rd. To ease the notations, we will assume in the presentation of the next

sections that d = 1, but the generalization to the vector case is straightforward.

Remark 4.1. The simplification of considering local datasets with a single element was also made

by Pasquini, Raynal, and Troncoso [PRT23] and is natural in the case of decentralized averaging,

where each node has indeed only one private value. For Decentralized Gradient Descent, recent work

has proposed reconstruction attacks from gradients aggregated over several data points [Boe+21;

Kar+23], which can be readily used as a black-box in our attack. We thus abstract away this

secondary aspect to focus on the particularity of decentralized learning.

We consider synchronous gossip-based algorithms, where at each step each node performs

a weighted average of its value with those of its neighbors, as determined by the weights given

by a gossip matrix (see Definition 2.9).
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Gossip averaging. The gossip matrix can be used to iteratively compute the average of the

private values (xv)v∈V . Initializing each node v with θ0
v = xv, the gossip averaging iteration

[XB04] is given by

θt+1 = Wθt. (4.1)

This converges to the global average at a geometric rate governed by the spectral gap of W (see

[XB04] and Section 2.4).

Remark 4.2 (Accelerated gossip). An accelerated version of gossip [BBG20], which involves

replacing the multiplication by W with a polynomial of W , is often used to speed up convergence.

We note that this does not impact the information accessible to a node, as the values observed in

accelerated gossip can be easily translated back to the non-accelerated counterpart through a simple

linear transformation. For the sake of clarity, our discussion will thus focus on the non-accelerated

version.

Decentralized Gradient Descent (D-GD). In decentralized learning, nodes aim to optimize

an objective function of the form f(θ) =
∑n

v=1 L(θ, xv) where θ represents the parameters of

the model and L is some differentiable loss function. The most popular algorithm to achieve

this is D-GD [Lia+17; Kol+20]. At each iteration of D-GD, each node performs a local gradient

step with a learning rate η > 0 followed by a gossip averaging step with its neighbors. Let θ0
v

be an arbitrary initialization of the parameters at each node v. We denote the local gradient of

node v at iteration t (scaled by η) by

gt
v = −η∇θt

v
L(θt

v, xv). (4.2)

Then, the gradient step of D-GD can be written as

θt+ 1
2 = θt + gt, (4.3)

and the gossiping step corresponds to

θt+1 = Wθt+ 1
2 . (4.4)

Under suitable assumptions, D-GD converges to a global or local optimum of f [Kol+20].

4.2.2 Threat Model

Throughout this chapter, we focus on honest-but-curious attackers that consist of a subset of

nodes that adhere to the protocol but attempt to extract as much information as they can from

their observations. We denote byA ⊂ V the set of attacker nodes and byN (A) =
⋃

a∈AN (a)\A
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the neighbors of the attackers. Without loss of generality, we assume that attacker nodes

correspond to the first |A| nodes. When |A| > 1, we assume that the knowledge is completely

shared between attacker nodes, even if the network graph does not contain edges between

them.

We also assume that the network graph and the gossip matrix are known to the attacker.

This assumption is often naturally satisfied in practical use cases (e.g., within social networks),

and we further discuss its relevance in Appendix A.4.

4.3 Reconstruction in Gossip Averaging
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Figure 4.1 – Overview of our attack on gossip averaging. The attackers 0 and 1 (red) receive updates
from nodes 2, 5, 7 and 8 (orange). For T = 3 iterations, it leads to the knowledge matrix K3. Its RREF
(matrix U) exhibits that only nodes 3 and 4 are non-reconstructible (green). All other nodes (purple)
have their private value leaked.

In this section, we describe our attack on gossip averaging. The key idea of our attack is

that each message θt
v received by an attacker node a ∈ A from one of its neighbors v ∈ N (a)

corresponds to a linear equation where the unknown are the private values of the nodes of the

graph and the coefficients depend on the gossip matrix W (which is known to the attackers).

Our attack consists in accurately generating this system of linear equations (KT X = YT in our

notations) and then solving it in order to reconstruct as many private values as possible. We

provide a visual summary of this reconstruction process in Figure 4.1.

Collecting linear equations. For a given gossip matrix W and set of attackers A, we now

describe how the attackers can systematically construct a system of linear equations capturing

the knowledge that they gather about the private values throughout T iterations of gossip

averaging. Informally, the attackers receive |A|+ T · |N (A)| values, and they can associate each

of these values to a linear combination of the n private inputs. At the beginning of the protocol,

the attackers already know their inputs (these are the first |A| values). Then, at each round t

of gossip, the attackers receive one value θ
(t)
v from each of their neighbors v ∈ N (A). These

received values correspond to a linear combination of private inputs, where the weights are

given by the corresponding powers of the gossip matrix.
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Formally, wedenote this systemof linear equations byKT X = YT , whereX = (x0, . . . , xn) ∈
Rn is the vector of private values that the attackers seek to reconstruct, and KT , YT are defined

as follows.

Definition 4.3 (Knowledge matrix and observation vector). The knowledge matrix KT ∈
R|A|+T ·|N (A)|×n is defined by Algorithm 4.1. The observation vector YT ∈ R|A|+T ·|N (A)| is

obtained by having attackers stack their own values and the received messages (θt
v)0≤t≤T −1,v∈N (A).

The pair (KT , YT ) forms the view of the attackers.

Note that KT only depends on the gossip matrix, whereas YT is specific to the private values.

For concreteness, let us consider a simple example. Consider a graph of n nodes with one

attacker at position 0. The attacker knows his own private input x0 (stored in the first entry of

YT ), which corresponds to the insertion of the one-hot vector (1, 0, . . . , 0) in the first row of the

knowledge matrix KT . Assuming that nodes 1 and 2 are the neighbors of the attacker, they

will send θ
(0)
1 = x1 and θ

(0)
2 = x2 to the attacker at iteration 0 (stored in the second and third

entries of YT ), corresponding to the insertion of (0, 1, 0, . . . , 0) and (0, 0, 1, 0, . . . , 0) respectively

in the second and third rows of KT . At iteration 1, they will send θ
(1)
1 =

∑
j Wj,1xj and θ

(1)
2 =

∑
j Wj,2xj , corresponding to (W0,1, . . . , Wn−1,1) and (W0,2, . . . , Wn−1,2) respectively. In general,

for each iteration t, the attacker receives the values θ
(t)
1 =

∑
j W t

j,1xj and θ
(t)
2 =

∑
j(W t)j,2xj

from his two neighbors, by definition of the gossip averaging algorithm, and this information

is stored in the corresponding rows of KT and YT .

Solving the linear system. Recovering the private values corresponds to solving the equation

KT X = YT where X is the unknown. The set of solutions of this equation is always non-empty

by construction (as the set of private values satisfies the equation), and is reduced to a single

element when KT is full rank (i.e., rank n). Thus, if KT is full rank, attackers can reconstruct

all the private values of the nodes. Otherwise, attackers may still reconstruct a subset of the

private values, and deduce relationships between the ones that cannot be fully reconstructed.

To do so, we factorizeKT using its Reduced RowEchelon Form (RREF), namelyKT = L−1U

where U is the unique RREF of KT and L is such that UX = LYT . RREF is a form often

introduced in algebra courses to teach Gauss-Jordan elimination [ND88]. In this form, the

block of matrix U corresponding to reconstructible nodes becomes the identity matrix, while

the remaining rows (corresponding to non-reconstructible nodes) contain the linear equations

that link their values together. Solving KT X = YT is thus equivalent to solving UX = LYT

with trivial equations 1×Xv = (LYT )v for reconstructible nodes. Hence, this decomposition

allows us to clearly identify the nodes that our attack can reconstruct, even before the algorithm

is executed (as the attackers only need to construct KT but not YT ).
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Algorithm 4.1: Knowledge matrix construction

1 Input: the graph G, the set of attackers A, the number of iterations T
2 Output: The knowledge matrix KT

3 KT ← an empty matrix of size m× n where m = |A|+ T · |N (A)|
4 foreach v ∈ A do
5 KT [v, :]← ev, where ev is the one-hot vector of size n with 1 at index v
6 i← |A|
7 for t = 0 to T − 1 do
8 foreach v ∈ N (A) do
9 KT [i, :]←W t[v, :] ▷ Gossip, at t = 0, attackers receive ev for

v ∈ N(A) i← i + 1

10 return KT

Definition 4.4 (Reconstructible node). Given a network graph G and a set of attackers A, a

node v is said to be reconstructible by A after T iterations if in the RREF form U of KT , the row

corresponding to v is a vector with the value 1 in a single entry and 0 everywhere else.

A complete characterization of reconstructible nodes using explicit graph-related quantities,

instead of linear algebra as in Definition 4.4, appears to be quite challenging. In Appendix A.1,

we provide some counter-intuitive examples on simple graphs to illustrate this point.

Remark 4.5 (Secure aggregation). One of the defense mechanisms widely studied in federated

learning is the use of secure aggregation (SecAgg), where a set of parties jointly compute the sum

of their private values without revealing more than the final output [Bon+17]. This could be used

in gossip averaging: at each iteration, each node could compute the weighted sum by running a

SecAgg protocol with its neighbors [DEC23]. Aside from the high computation and communication

overhead, in terms of leakage, this would be akin to an attack in a model without SecAgg from a

node only connected to the true attacker. We note that our attack still works in this case, with a

slight modification in the construction of the knowledge matrix. As illustrated by Figure 4.4(b) or

Figure 4.3, numerous nodes can have their data leaked in the case where the attacker has a single

neighbor.

Remark 4.6 (Extension to dynamic networks). Our approach can be adapted to dynamic

networks where the graph changes over time, as long as the attackers know the gossip matrix Wt

used at each iteration. Indeed, the reconstruction problem is equivalent to the one with a static W ,

up to the modification of the construction of the knowledge matrix. In some cases, dynamic networks

might be more vulnerable to reconstruction: the union of the direct neighbors of the attackers could
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be larger than for static networks, so the proportion of nodes that can be directly reconstructed might

increase.

4.4 Reconstruction in D-GD

In this section, we present our attack on Decentralized Gradient Descent. Our attack proceeds

in two steps: we first reconstruct the gradients and then reconstruct the data points from the

reconstructed gradients. The latter step can be done by resorting to existing gradient inversion

attacks as a black box [see e.g., ZLH19; Gei+20a; Kar+23]. Therefore, in the rest of the section,

we focus on the gradient reconstruction part, which is the core of our contribution.

To reconstruct the gradients of nodes, our attack builds upon the attack on gossip averaging

presented in Section 4.3. However, several additional challenges arise. While the private values

in gossip averaging remain constant across iterations, the gradients in D-GD evolve over time.

This means that each step brings new unknowns in the equation, making it impossible to find

an exact solution through direct equation solving. Attacking D-GD thus requires additional

steps:

1. Reducing the number of unknowns by introducing similarity assumptions on the gradi-

ents;

2. Changing the construction of the knowledge matrix, to reconstruct the gradients gt
v

instead of the model parameters θt;

3. Removing the attackers’ own contributions to reduce overall noise in the approximated

reconstruction;

1. Gradient similarity. We derive our reconstruction attack under the assumption that the

gradients of a node along the iterations can be described as a combination of a fixed and a

random component.

Assumption 4.7 (Noise-signal gradient decomposition). For each node v ∈ V , we assume

that we can decompose the gradient update as follows

gt
v = −η∇θt

v
L(θt

v, xv) = gv + N t
v, (4.5)

where N t
v is a centered random variable with variance σ2, and the constant part gv is specific to

node v but stays the same across iterations.

We note that this assumption is typically not satisfied in real use cases, but we will see in

Section 4.5 that the algorithm is robust in practice to small violations of this assumption (in

particular, it works well when gradients change sufficiently slowly across iterations).
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Algorithm 4.2: Building the knowledge matrix for D-GD

1 Input: the graph G, the set of attackers A, the set of targets T = V \ A, the number of
iterations T

2 Output: The knowledge matrix KT

3 KT ← an empty matrix of size m× n where m = T · |N (A)|
4 i← 0
5 for t = 0 to T − 1 do
6 foreach v ∈ N (A) do

7 KT [i, :]← (
∑t

j=0 W j
T ,T )[v − |A|, :] ▷ Gossip, at t = 0, attackers receive

ev for v ∈ N(A) i← i + 1

8 return KT

Remark 4.8 (Connection to differential privacy). Assumption 4.7 naturally models situations

where noise is added to satisfy differential privacy [HMV15; XZW21; Cyf+22]. In particular, one

can see this as an instance of averaging under local differential privacy. Naturally, the accuracy of

the reconstruction will be directly related to the variance of the noise, and thus to the chosen privacy

budget.

2. Knowledge matrix construction. Denoting the set of target nodes as T = V \A, we rewrite

the gossip matrix W as follows:

W =

(
WA,A WA,T
WT ,A WT ,T

)
(4.6)

We now write the values θt+ 1
2 shared by nodes during the execution of the algorithm in

terms of this decomposition.

Proposition 4.9 (Closed-form of D-GD updates). For the D-GD algorithm described by (4.3)

and (4.4), we have:

θt+ 1
2 =




θ
t+ 1

2
A(

t∑
i=0

W i
T ,T

)
gT +

t∑
i=0

W i
T ,T N t−i

T

+
t−1∑
i=0

W t−1−i
T ,T WT ,Aθ

i+ 1
2

A




. (4.7)

Proof. The proof is done by induction, applying the Equation (4.3) and Equation (4.4) and

rearranging the terms. ■
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This formula leads to a more complex computation of the knowledge matrix KT (see

Algorithm 4.2) compared to the one used for gossip averaging, because we want to reconstruct

the gradients g = (gv)v∈V (not model parameters θt).

3. Attackers’ contributions removal. Given YT the concatenated vector of updates received

by the attackers until iteration T , the attackers need to preprocess it in order to remove their

own contributions. Algorithm 4.3 shows how to compute ŶT from YT and the gossip matrix.

Algorithm 4.3: Removing the attackers’ contributions

1 Input: the gossip matrix W of the graph G, the set of attackers A, the set of targets
T = V \ A, the number of iterations T , the dimension of the model d, the
received updates YT and the concatenated vector of the updates sent by the

attackers θA = (θ
1
2
A, . . . , θ

T − 1
2

A )

2 Output: The updated matrix ŶT

3 ŶT ← an empty matrix in RT ×|N (A)|×d

4 B ← zero matrix in R|T |×d

5 for t = 0 to T − 1 do

6 ŶT [t, :]← YT [t, :]−B[N (A), :]

7 B ←WT ,T B + WT ,Aθ
t+ 1

2
A ▷ The contribution of the attackers to be

eliminated
8 return ŶT
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Figure 4.2 – Average fraction of reconstructed nodes in Erdös-Rényi graphs with a different number of
nodes n and edge probability p, for 1, 2 or 3 attacker nodes. Error bars give the standard deviations,
computed over 20 random graphs.

Gradient reconstruction. Equipped with the previous concepts, reconstructing the gradients

reduces to a Generalized Least Square (GLS) problem:

KT g + εT = ŶT , (4.8)
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where εT is the noise of covariance ΣT , the (non-diagonal) covariance matrix resulting from

the aggregation of noise from various nodes at each step. The formula and detailed algorithm

for computing this covariance matrix is provided in Appendix A.2 (Algorithm A.1).

The reconstruction minimizing the squared error is thus given by:

ĝ = (K⊤
T Σ−1

T KT )−1K⊤
T Σ−1

T ŶT .

and this estimator is unbiased with a variance of size (K⊤
T Σ−1

T KT )−1 under Assumption 4.7.

Remark 4.10 (Impact of covariance matrix). An alternative to computing this exact covariance

matrix ΣT is to solve directly the Ordinary Least Square (OLS). Although this gives a bit more

weight to the most noisy points compared to the optimal estimator under Assumption 4.7, we found

experimentally that the reconstruction quality is quite similar between the two methods. This can

be explained by the fact that the assumption of the noise structure is not fully satisfied, and OLS

tends to be quite robust in practice.

Remark 4.11 (Gossip protocols with consecutive averaging steps). An existing variant of

D-GD involves performing multiple gossip averaging steps for each gradient step [Kon+21; Kol+20;

Cyf+22; Dan+22]. Our attack can be easily adapted to this case. In fact, it makes reconstruction

easier as it brings D-GD closer to gossip averaging by effectively making gradients constant across

several iterations. In scenarios where sufficiently many iterations are performed, we can simply

use the reconstruction attack designed for gossip averaging, up to the minor modifications to the

knowledge matrix.

4.5 Experimental Results

In this section, we show that our attacks on gossip averaging and decentralized gradient descent

are effective in practice. We evaluate our attacks on synthetic and real-world graphs, showing

successful reconstructions in all cases.

Our code is available at https://github.com/AbdellahElmrini/decAttack.

4.5.1 Gossip Averaging

Synthetic graphs and impact of global characteristics. We generate Erdös-Rényi graphs

with different number of nodes n and different edge probability p. We also vary the number of

attacker nodes from 1 to 3. The proportion of reconstructed nodes in each setting is shown in

Figure 4.2. We can see that a single attacker node is typically able to reconstruct many nodes,
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Figure 4.3 – Reconstruction attack on the Facebook Ego Graph 414. Left: each node is colored by the
number of nodes it can reconstruct among the 147 other nodes. Right: detailed view of the case where
the node circled in red is the attacker, with reconstructed nodes shown in purple and non-reconstructed
ones in yellow.

well beyond its direct neighborhood. The fraction of reconstructed nodes increases with the

connectivity of the graph and the number of attackers.

Real-world graphs. We consider the graphs of the Facebook Ego dataset [LM12], where

nodes are the friends of a given user (this central user is not present in the graph) and edges

encode the friendship relation between these nodes. These graphs typically present several

communities corresponding to different interests. We show that reconstruction is much more

likely within clusters, but also occur across nodes belonging to distinct clusters. We give an

example in Figure 4.3 and report other Ego graphs in Appendix A.6.

Table 4.1 – Correlation between the centrality of the attacker and the proportion of nodes it is able to
reconstruct.

Centrality Erdos-Rényi graph Ego graph

Degree 0.94 0.94
Eigenvector 0.81 0.64
Betweenness 0.84 0.66

Impact of nodes’ characteristics. Intuitively, it is easier to attack close nodes rather than

distant ones. We quantify this effect by evaluating how the attacker centrality impacts its

reconstruction ability. Centrality measures are often used in graph mining to measure how

important a node is. We test two kinds of graphs. First, we randomly sample Erdös-Rényi

graphs with n = 50 and p = 0.08. We reject graphs that are not fully connected and consider

a single attacker (node 0 as the graph construction treats all nodes equally). Second, for a

fixed Facebook Ego graph, we make each node play the role of the attacker in turn. To assess

the relation between the centrality of a node and the proportion of the nodes it is able to
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reconstruct, we use Spearman correlation, a non-parametric measure which is only based on

rank statistics. We observe in Table 4.1 that for both types of graphs, degree centrality is the

most correlated with the proportion of reconstructed nodes. Interestingly, other centrality

measures that capture some structural properties of the graph beyond immediate neighbors,

such as eigenvector and betweenness centrality, also exhibit strong correlation. In Appendix A.3,

we report metrics to assess how the relative position of the attacker and its target impact the

probability of reconstruction.

4.5.2 Decentralized Gradient Descent

(a) Cifar10, logistic regression, learning rate 10
−4

(b) MNIST, convnet, learning rate 10
−6, gradient inversion from [Gei+20a]

Figure 4.4 – Reconstruction attack on D-GD for a line graph with 31 nodes where the attacker lies at
an extremity. The first (resp. second) row shows the true (resp. reconstructed) inputs of the 30 other
nodes ordered by their distance to the attacker.

We now turn to the more challenging case of D-GD. We first focus on the Cifar10 dataset

[Kri09] using a model that consists of a fully connected layer with a softmax activation, a bias

term, and a cross-entropy loss (a.k.a., logistic regression). For this simple model, one can

reconstruct a data point from its gradient in closed-form [see Bis23, Lemma 6.1 therein]. This

allows us to focus the evaluation on the core of our attack (reconstructing gradients), avoiding

the inherent errors due to the imperfections of gradient inversion attacks on more complex

models. We start running our attack when the model is close to convergence so that gradients

are more stable. To ensure that attackers gather enough information about other nodes in the

knowledge matrix, we run D-GD for a number of steps roughly equal to the diameter of the

graph.

We first run our attack on the classic Florentine graph [BP86], a graph with n = 15 nodes

describing marital relations between families in 15th-century Florence. We can see in Figure 4.5

that most nodes (except those located at the edge of the network) can reconstruct a large

proportion of other nodes with very good visual accuracy.

We further test the limit of reconstruction by using a line graph of 31 nodes with the attacker

at an extremity. We see in Figure 4.4(a) that the results are far better than one would intuitively
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Figure 4.5 – Reconstruction attacks on D-GD for the Florentine graph (Cifar10, logistic regression model,
learning rate 10−5). Left: the color of each node represents the success rate when that node is the attacker.
The success rate is measured as the fraction of nodes for which the reconstructed image achieves a PSNR
superior to 10 with respect to the original image (averaged over 10 experiments). Right: detailed view
of the case where the attacker is node 5 (highlighted with blue borders). Nodes with green borders are
accurately reconstructed, the ones with red borders are not. For completeness, the true input images are
shown in Appendix A.7.

expect: even though the gradients of distant nodes are mixed many times before reaching the

attacker, our attack allows to disentangle the contributions of the different nodes to enable

informative reconstruction up to distance 28. The visual impression is further confirmed by

reconstruction metrics over multiple runs (see Figure 4.6).

Finally, we switch to a more complex model for which it is necessary to rely on a gradient

inversion attack. We use a small convolutional neural network (see details in Appendix Ap-

pendix A.8) on the MNIST dataset and the gradient inversion attack of Geiping et al. [Gei+20a]

as a black box. Using a line graph with 31 nodes as in the previous experiment, we see in

Figure 4.4(b) that our approach can naturally rely on a black-box gradient inversion attack to

reconstruct data from the gradients of more complex models. Here, the reconstructions are

accurate up to distance 26. We refer to Appendix Appendix A.7 for results on the Florentine

graph.

We note that the performance of our attack on D-GD is sensitive to several parameters. First,

having similar local parameters θv across nodes enables better reconstructions as the observed

values are primarily influenced by the gradients rather than by variations in the parameters.

This condition is easily satisfied either by initializing all the nodes with the same parameters

(a standard practice in D-GD) or by waiting until the system approaches convergence. Second,

the learning rate plays an important role: it should be small enough to ensure that gradients

do not vary wildly across iterations. We illustrate this behavior in Appendix Appendix A.9.
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Figure 4.6 – Reconstruction accuracy (measured by PSNR) and error (measured by the relative square
distance) as a function of the distance between the victim and the attacker for D-GD on a line graph
(see details in Figure 4.4(a)). The plot shows the mean and standard deviation across 100 experiments.

4.6 Conclusion

Our work demonstrates the vulnerability of data when using standard decentralized learning

algorithms. More precisely, we show that a node can attack and successfully reconstruct the

data of non-neighboring (and sometimes quite distant) nodes by leveraging the communication

structure inherent to gossip protocols. We also highlight the impact of the graph topology

and the position of the attackers in the success rate of the attack in practice. An interesting

open question is a full characterization of reconstructible nodes by structural properties of the

graph, which appears to be a challenging problem as we discuss in Appendix A.1. Likewise,

optimizing the graph so as to minimize the number of reconstructible nodes is an open question.

Our work shows that one cannot rely on decentralization alone to protect sensitive data.

Therefore, to provide robust privacy guarantees, decentralized algorithms must be combined

with additional defense mechanisms such as those based on differential privacy. This is the goal

of the next chapters. In Chapter 5, we will propose a variant of differential privacy specifically

designed for decentralized learning, adopting a trust setting similar to this chapter, where

potential attackers are the nodes with their local view on the graph. In Chapter 6, we will use

this notion to revisit the privacy analysis of gossip algorithms, but with modifications that

enable the derivation of differential privacy guarantees.
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Chapter 5

Network Differential Privacy

In this chapter, we introduce novel relaxations of local differential privacy (LDP) that naturally

arises in fully decentralized algorithms, i.e., when participants exchange information by com-

municating along the edges of a network graph without central coordinator. These relaxations,

that we call network DP and pairwise Network DP, capture the fact that users have only a local

view of the system and that the privacy leakage from a user u to a user v may depend on their

relative position in the graph for the pairwise version. To show the relevance of network DP,

we study a decentralized model of computation where a token performs a walk on a ring and is

updated sequentially by the party who receives it. We prove that the privacy-utility trade-offs

of our algorithms under network DP significantly improve upon what is achievable under LDP,

and often match the utility of the trusted curator model. Our results show for the first time

that formal privacy gains can be obtained from full decentralization.

This chapter draws from contributions present in [CB22] and [Cyf+22].

5.1 Introduction

In the previous chapter, we illustrated the need to add privacy defenses to decentralized

learning to avoid data leakage during the training. To control the privacy leakage, the promi-

nent approach is based on the standard notion of Differential Privacy introduced in detail in

Chapter 3. DP guarantees are computed with respect to a trust model.

Several trust models can be considered in in federated and decentralized learning, leading

to different privacy-utility trade-offs. The strongest model is local differential privacy (LDP)

[Kas+08; DJW13], where each participant (user) does not trust anyone and aims to protect

against an adversary that can observe everything that she/he shares. In LDP, random perturba-

tions are performed locally by each user, making it convenient to design private versions of fully

decentralized algorithms in this model [see e.g., HMV15; Bel+18; Li+18; Che+19a; XZW20].
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Unfortunately, LDP comes at a great cost in utility: for real summation with n users, the best

possible error under LDP is a factor
√

n larger than in the centralized (trusted curator) model of

DP [CSS12a], as explained previously in Section 3.2.4. The existing methods to bridge the gap

between local and central DP require all users to interact with each other at each step and/or

rely on a central coordinator that communicates with all users. Integrating such solutions in

fully decentralized algorithms would thus destroy the benefits of full decentralization.

A related line of work has studiedmechanisms that “amplify” the DP guarantees of a private

algorithm. Beyond privacy amplification by shuffling [Erl+19; Bal+19b; FMT20] (based on the

shuffling primitive mentioned above), we can mention amplification by subsampling [BBG18]

and amplification by iteration [Fel+18]. These schemes are generally difficult to leverage

in a federated/decentralized setting: the former requires that the identity of subsampled

participants remain secret, while the latter assumes that only the final result is revealed.

Our contributions. In this chapter, we propose a novel relaxation of LDP where users have

only a local view of the decentralized system, which is a natural assumption in fully decentralized

settings. This relaxation, calledNetwork Differential Privacy, effectively captures the fact that each

user only observes information received from her/his neighbors in the network graph. Network

DP can also account for potential collusions between users. We initiate the study of algorithms

under network DP in a decentralized model of computation where a token containing the

current estimate performs a walk on the network graph and is updated sequentially by the

user who receives it. This model has been studied in previous work as a way to perform (non-

private) decentralized estimation and optimization with less communication and computation

overhead than algorithms that require all users to communicate with their neighbors at each

step [RNV09; Mao+20; AR20; JRJ10].

In this rest of the chapter, we illustrate the usefulness of Network Differential Privacy on

the simple case of computing real summations and discrete histograms through a deterministic

walk over a directed ring. More complex tasks, algorithms and topologies will be studied

in the next chapters. For this simple scenario, we propose simple algorithms which achieve

a privacy gain of O(1/
√

n) compared to LDP, thereby matching the privacy-utility trade-off of a

trusted aggregator without relying on any costly secure multi-party computation protocol.

To the best of our knowledge, our work is the first to show that formal privacy gains can

be naturally obtained from full decentralization (i.e., from having no central coordinator). Our

results imply that the true privacy guarantees of some fully decentralized algorithms have

been largely underestimated, providing a new incentive for using such approaches beyond the

usual motivation of scalability.

The chapter is organized as follows. Section 5.2 introduces our notion of network DP and

the decentralized model of computation that we study. Section 5.4 focuses on the case of a
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fixed ring topology. Section 5.3 we introduce Pairwise Network Differential Privacy, a variant

where privacy budget depends on the pair of nodes.

5.2 Network Differential Privacy

Let V = {1, . . . , n} be a set of n users (or parties), which are assumed to be honest-but-curious

(i.e., they truthfully follow the protocol). Each user u holds a private dataset Du, which we

keep abstract at this point. We denote by D = D1 ∪ · · · ∪ Dn the union of all user datasets,

and by D ∼u D′ the fact that datasets D and D′ of same size differ only on user u’s data. This

defines a neighboring relation over datasets which is sometimes referred to as user-level DP

[McM+18]. This relation is weaker than the one used in classic DP and will thus provide

stronger privacy guarantees. Indeed, it seeks to hide the influence of a user’s whole dataset rather

than a single of its data points.

We consider a fully decentralized setting, in which users are nodes in a network graph

G = (V, E) and an edge (u, v) ∈ E indicates that user u can send messages to user v. The

graph may be directed or undirected, and could in principle change over time although we will

restrict our attention to fixed topologies. For the purpose of quantifying privacy guarantees, a

decentralized algorithm A will be viewed as a (randomized) mapping which takes as input a

dataset D and outputs the transcript of all messages exchanged between users over the network.

We denote the (random) output in an abstract manner by A(D) = ((u, m, v) : user u sent

message with content m to user v ).

Network DP. The key idea of our new relaxation of LDP is to consider that a given user does

not have access to the full transcript A(D) but only to the messages she/he is involved in (this can be

enforced by the use of secure communication channels). We denote the corresponding view of

a user u by

Ou(A(D)) = ((v, m, v′) ∈ A(D) : v = u or v′ = u). (5.1)

Definition 5.1 (Network Differential Privacy). An algorithm A satisfies (ε, δ)-network DP

if for all pairs of distinct users u, v ∈ V , all pairs of neighboring datasets D ∼u D′ and all

S ⊂ Range(Ov(A)), we have:

P(Ov(A(D)) ∈ S) ≤ eεP(Ov(A(D′)) ∈ S) + δ. (5.2)

Network DP essentially requires that for any two users u and v, the information gathered by

user v during the execution of A should not depend too much on user u’s data. Network DP

can be thought of as analyzing the composition of the operator Ov with the algorithm A. The
hope is that in some cases Ov ◦ A is more private than A: in other words, that applying Ov
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amplifies the privacy guarantees of A. Note that if Ov is the identity map (i.e., if each user is

able to observe all messages), then Eq. 5.2 boils down to local DP.

We can naturally extend Definition 5.1 to account for potential collusions between users. As

common in the literature, we assume an upper bound c on the number of users that can possibly

collude. The identity of colluders is however unknown to other users. In this setting, we would

like to be private with respect to the aggregated information OV ′ = ∪v∈V ′Ov acquired by any

possible subset V ′ of c users, as captured by the following generalization of Definition 5.1.

Definition 5.2 (Network DP with collusions). An algorithm A is (c, ε, δ)-network DP if for

each user u, all subsets V ′ ⊂ V such that |V ′| ≤ c, all pairs of neighboring datasets D ∼u D′, and

all S ⊂ Range(OV (A)), we have:

P(OV ′(A(D)) ∈ S) ≤ eεP(OV ′(A(D′)) ∈ S) + δ. (5.3)

As done previously in Chapter 3, we introduce the variant using Rényi divergence. This

definition will be used is most of our results.

Definition 5.3 (Network Rényi Differential Privacy). An algorithm A satisfies (α, ε)-Network

Rényi Differential Privacy (NRDP) for α > 1 and ε > 0 if for all pairs of neighboring datasets

D ∼ D′:

Dα
(Ov(A(D))||Ov(A(D′))

) ≤ ε . (5.4)

5.3 Pairwise Network Differential Privacy

In this section, we introduce pairwise network DP, a relaxation of LDP which is able to quantify

the privacy loss of a decentralized algorithm for each pair of distinct users in a graph. This

definition is particularly attractive in situations where nodes want stronger guarantees with

respect to some (distant) peers. For instance, in social network graphs, users may have lower

privacy expectations with respect to close relatives than regarding strangers. In healthcare,

a patient might trust her family doctor more than she trusts other doctors, and in turn more

than employees of a regional agency and so on, creating a hierarchical level of trust that our

algorithms naturally match.

Definition 5.4 (Pairwise Network DP). For f : V × V → R+, an algorithm A satisfies (α, f)-

Pairwise Network DP (PNDP) if for all pairs of distinct users u, v ∈ V and neighboring datasets

D ∼u D′:

Dα
(Ov(A(D)) || Ov(A(D′))

) ≤ f(u, v) . (5.5)
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We note εu→v = f(u, v) the privacy leaked to v from u and say that u is (α, εu→v)-PNDP with

respect to v if only inequality (5.5) holds for f(u, v) = εu→v.

By taking f constant in Definition 5.4, we recover the definition of Network DP (Defini-

tion 5.1). Our pairwise variant refines Network DP by allowing the privacy guarantee to

depend on u and v (typically, on their relative position in the graph). We refer to Appendix C.7

for a natural adaptation of our definition to the presence of colluding nodes and to the protection

of groups of users in the study of gossip algorithms.

In the rest of this chapter, we will use only Network DP to illustrate the definitions, but

Pairwise Network DP will be used in Chapter 6 and 7.

5.4 Walk on a Ring

In this section, we recap a very simple random walk algorithm. Then, we analyze a simple

special case where the graph is a directed ring, i.e., E = {(u, u + 1)}n−1
u=1 ∪ {(n, 1)}. The token

starts at user 1 and goes through the ring K times. The ring (i.e., ordering of the nodes) is

assumed to be public.

Decentralized computation model. We study network DP for decentralized algorithms

that perform computations via sequential updates to a token τ walking through the nodes by

following the edges of the graph G. At each step, the token τ resides at some node u and is

updated by

τ ← τ + xk
u, with xk

u = gk(τ ; Du), (5.6)

where xk
u = gk(τ ; Du) denotes the contribution of user u. The notation highlights the fact that

this contribution may depend on the current value τ of the token as well as on the number

of times k that the token visited u so far. The token τ is then sent to another user v for which

(u, v) ∈ E.

Provided that the walk follows some properties, this model of computation allows to

optimize sums of local cost functions using (stochastic) gradient descent as seen in Section 2.4.

In this case, the token τ holds the model parameters and xk
u is a (stochastic) gradient of the

local loss function of user u evaluated at τ . Such decentralized algorithms can also be used to

compute summaries of the users’ data, for instance any commutative and associative operation

like sums/averages and discrete histograms. In these cases, the contributions of a given user

may correspond to different values acquired over time, such as power consumption in smart

metering or item ratings in collaborative filtering applications.
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Algorithm 5.1: Private real summation on the ring

1 τ ← 0; a← 0;
2 for k = 1 to K do
3 for u = 1 to n do
4 if a = 0 then
5 τ ← τ + Perturb(xk

u; σloc);
6 a← n− 2;
7 else
8 τ ← τ + xk

u; a← a− 1;
9 return τ

5.4.1 Real Summation

We first consider the task of estimating the sum x̄ =
∑n

u=1

∑K
k=1 xk

u where the x’s are bounded

real numbers and xk
u represents the contribution of user u at round k. For this problem, the

standard approach in local DP is to add random noise to each single contribution before

releasing it. For generality, we consider an abstract mechanism Perturb(x; σ) which adds

centered noise with standard deviation σ to the contribution x (e.g., the Gaussian or Laplace

mechanism). Let σloc be the standard deviation of the noise required so that Perturb(·; σloc)

satisfies (ε, δ)-LDP.

Consider now the simple decentralized protocol in Algorithm 5.1, where noise with the

same standard deviation σloc is added only once every n− 1 hops of the token. By leveraging the

fact that the view of each user u is restricted to the values taken by the token at each of its K

visits to u, combined with advanced composition [DRV10], we have the following result (see

Appendix B.1 for the proof).

Theorem 5.5. Let ε, δ > 0. Algorithm 5.1 outputs an unbiased estimate of x̄ with standard

deviation
√
⌊Kn/(n− 1)⌋σloc, and is (

√
2K log(1/δ′)ε + Kε(eε − 1), Kδ + δ′)-network DP for

any δ′ > 0.

To match the same privacy guarantees, LDP incurs a standard deviation of
√

Knσloc. There-

fore, Algorithm 5.1 provides an O(1/
√

n) reduction in error or, equivalently, an O(1/
√

n) gain in

ε. In fact, Algorithm 5.1 achieves the same privacy-utility trade-off as a trusted central aggregator

that would iteratively aggregate the raw contributions of all users at each round k and perturb

the result before sending it to the users, as done in federated learning algorithms with a trusted

server [Kai+21].

Remark 5.6. We can design variants of Algorithm 5.1 in which noise addition is distributed across

users. Using the Gaussian mechanism, each user can add noise with std. dev. σ′
loc = σloc/

√
n,
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Algorithm 5.2: Private histogram on the ring

1 Init. τ ∈ NL with γn random elements
2 for k = 1 to K do
3 for u = 1 to n do
4 yk

u ← RRγ(xk
u)

5 τ [yk
u]← τ [yk

u] + 1

6 for i = 0 to L− 1 do

7 τ [i]← τ [i]−γ/L
1−γ

8 return τ

except for the very first contribution which requires std. dev. σloc to properly hide the contributions

of users in the first cycle. The total added noise has std. dev.
√
⌊Kn/(n− 1)⌋+ 1σloc, leading to

same utility as Algorithm 5.1 (up to a constant factor that is negligible when K is large).

5.4.2 Discrete Histogram Computation

We now turn to the computation of histograms over a discrete domain [L] = {1, . . . , L}. The
goal is to compute h ∈ NL s.t. hl =

∑n
u=1

∑K
k=1 I[x

k
u = l], where xk

u ∈ [L]. A classic approach

in LDP is based on L-ary randomized response [KOV14], where each user submits its true

value with probability 1− γ and a uniformly random value with probability γ. We denote this

primitive by RRγ : [L]→ [L].

In our setting with a ring network, we propose Algorithm 5.2, where each contribution of

a user is randomized using RRγ before being added to the token τ ∈ NL. Additionally, τ is

initialized with enough random elements to hide the first contributions. Note that at each step,

the token contains a partial histogram equivalent to a shuffling of the contributions added so

far, allowing us to leverage results on privacy amplification by shuffling [Erl+19; Bal+19b; FMT20].

In particular, we can prove the following utility and privacy guarantees for Algorithm 5.2 (see

Appendix B.2 for the proof).

Theorem 5.7. Let ε < 1
2 , δ ∈ (0, 1

100), and n > 1000. Let γ = L/(exp(12ε
√

log(1/δ)/n) + L−
1). Algorithm 5.2 outputs an unbiased estimate of the histogram with γn(K + 1) expected random

responses. Furthermore, it satisfies (
√

2K log(1/δ′)ε + Kε(eε− 1), Kδ + δ′)-network DP for any

δ′ > 0.

Achieving the same privacy in LDPwould require γ to be constant inn, hence
√

n timesmore

random responses. Equivalently, if we fix utility (i.e., γ), Theorem 5.7 shows that Algorithm 5.2

again provides a privacy gain of 1
n

√
n/ log(1/δ) = O(1/

√
n) compared to LDP.

75



Network Differential Privacy

Remark 5.8. For clarity, Theorem 5.7 relies on the amplification by shuffling result of [Erl+19]

which has a simple closed form. A tighter and more general result (with milder restrictions on the

values of n, ε and δ) can be readily obtained by using the results of [Bal+19b] and [FMT20].

Remark 5.9. Algorithm 5.1 (real summation) can also be used to perform histogram computation.

However, for domains of large cardinality L (e.g., L≫ n), Algorithm 5.2 requires fewer random

numbers and maintains a sparse (more compact) representation of the histogram.

5.4.3 Discussion

We have seen that decentralized computation over a ring provides a simple way to achieve

utility similar to a trusted aggregator thanks to the sequential communication that hides the

contribution of previous users in a summary. We emphasize that this is achievedwithout relying

on a central server (only local communications) or resorting to costly multi-party computation

protocols (only two secure communication channels per user are needed). Interestingly, the

ring topology is often used in practical deployments and theoretical analysis of (non-private)

decentralized algorithms [Lia+17; Tan+18; Kol+20; Neg+20; Mar+20], owing to its simplicity

and good empirical performance. Finally, we note an interesting connection between the case

of network DP over a ring topology and the pan-privacy model for streaming algorithms

[Dwo+10] (see Appendix B.3 for details).

Despite the above advantages, the use of a fixed ring topology has some limitations. First,

the above algorithms are not robust to collusions: in particular, if two users collude and share

their view, Algorithm 5.1 does not satisfy DP. While this can be mitigated by distributing the

noise addition across users (Remark 5.6), a node placed between two colluding nodes (or with

few honest users in-between) would suffer largely degraded privacy guarantees. A similar

reasoning holds for Algorithm 5.2. Second, a fixed ring topology is not well suited to extensions

to gradient descent, where wewould like to leverage privacy amplification by iteration [Fel+18].

In the latter, the privacy guarantee for a given user (data point) grows with the number of

gradient steps that come after it. In a fixed ring, the privacy of a user u with respect to another

user v would thus depend on their relative positions in the ring (e.g., there would be no privacy

amplification when v is the user who comes immediately after u). These limitations motivate

us to consider random walks on a complete graph and on arbitrary topologies that are studied

in Chapter 7.
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5.5 Conclusion

In this chapter, we focus on the definition of two relaxations of differential privacy, which

impose privacy constraints based on a node’s view. This view corresponds to either a subset

or a projection of the entire set of outputs from the algorithm. These relaxations introduce

interesting trust models that notably emphasize the dependence of privacy guarantees on the

graph structure. In the next chapter, we will explore these models in more detail, first in the

context of gossip algorithms (Chapter 6), then random walks (Chapter 7), and Alternating

Direction Method of Multipliers (ADMM) algorithms in Chapter 8.
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Chapter 6

Muffliato: Peer-to-Peer Privacy

Amplification in Gossip

In this chapter, we analyze, under the Pairwise Network DP setting introduced in Chapter 5, the

combination of local noise injection with (simple or randomized) gossip averaging protocols

on fixed and random communication graphs. We also derive a differentially private decentral-

ized optimization algorithm that alternates between local gradient descent steps and gossip

averaging. Our results show that our algorithms amplify privacy guarantees as a function of

the distance between nodes in the graph, matching the privacy-utility trade-off of the trusted

curator, up to factors that explicitly depend on the graph topology. Remarkably, these factors

become constant for expander graphs. Finally, we illustrate our privacy gains with experiments

on synthetic and real-world datasets.

This chapter is drawn from [Cyf+22].

6.1 Introduction

In this chapter, we use the privacy model defined in Chapter 5 to formally quantify the privacy

amplification for the fundamental brick of communication at the core of decentralized opti-

mization: gossip algorithms. Calling Muffliato the combination of local noise injection with

a gossip averaging protocol, we precisely track the resulting privacy leakage between each

pair of nodes. Through gossiping, the private values and noise terms of various users add up,

obfuscating their contribution well beyond baseline LDP guarantees: as their distance in the

graph increases, the privacy loss decreases. We then show that the choice of graph is crucial to

enforce a good privacy-utility trade-off while preserving the scalability of gossip algorithms.
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(i) We propose Muffliato1, a privacy amplification mechanism composed of local Gaussian

noise injection at the node level followed by gossiping for averaging the private values. It offers

privacy amplification that increases as the distance between two nodes increases. Informally,

the locally differentially private value shared by a node u is mixed with other contributions, to

the point that the information that leaks to another node v can have a very small sensitivity to

the initial value in comparison to the accumulated noise. Our contributions can be described

as following.

(ii) We analyze both synchronous gossip [Dim+10] and randomized gossip [Boy+06]

under a unified privacy analysis with arbitrary time-varying gossip matrices. We show that

the magnitude of the privacy amplification is significant: the average privacy loss over all the

pairs in this setting reaches the optimal privacy-utility trade-off of a trusted aggregator, up to

a factor d√
λW

, where λW is the weighted graph eigengap and d the maximum degree of the

graph. Remarkably, this factor can be of order 1 for expanders, yielding a sweet spot in the

privacy-utility-scalability trade-off of gossip algorithms. Then, we study the case where the

graph is itself random and private, and derive stronger privacy guarantees.

(iii) Finally, we develop and analyze differentially private decentralized Gradient Descent

(GD) and Stochastic Gradient Descent (SGD) algorithms to minimize a sum of local objective

functions. Building on Muffliato, our algorithms alternate between rounds of differentially

private gossip communications and local gradient steps. We prove that they enjoy the same

privacy amplification described above for averaging, up to factors that depend on the regularity

of the global objective.

(iv) We demonstrate the usefulness of our approach and analysis through experiments on

synthetic and real-world datasets and network graphs. We illustrate how privacy is amplified

between nodes in the graph as a function of their distance, and show how time-varying random

graphs can be used to split the privacy loss more uniformly across nodes in decentralized

optimization.

6.2 Private Gossip Averaging

In this section, we analyze a generic algorithm with arbitrary time-varying communication

matrices for averaging. Then, we instantiate and discuss these results for synchronous commu-

nications with a fixed gossip matrix, communications using randomized gossip [Boy+06], and

with Erdös-Rényi graphs, whose non-private versions were introduced in Chapter 2.

1The name is borrowed from the Harry Potter series: it designates a “spell that filled the ears of anyone nearby
with an unidentifiable buzzing”, thereby concealing messages from unintended listeners through noise injection.
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6.2.1 General Privacy Analysis of Gossip Averaging

We consider gossip over time-varying graphs (Gt)0≤t≤T , defined as Gt = (V, Et), with cor-

responding gossip matrices (Wt)0≤t≤T . The generic Muffliato algorithm AT for averaging

x = (xv)v∈V corresponds to an initial noise addition followed by T gossip steps, similarly

to non-private version defined in Section 2.4.1. Writing W0:t = Wt−1 . . . W0, the iterates of AT

are thus defined by:

∀v ∈ V, x0
v = xv + ηv with ηv ∼ N

(
0, σ2

)
, and xt+1 = Wtx

t = W0:t+1(x + η) . (6.1)

Note that the update rule at node v ∈ V writes as xt+1
v =

∑
w∈Nt(v)(Wt)v,wxt

w where Nt(v) are

the neighbors of v in Gt, so for the privacy analysis, the view of a node is:

Ov

(
AT (D)

)
= {(W0:t(x + η))w | {v, w} ∈ Et , 0 ≤ t ≤ T − 1} ∪ {xv} . (6.2)

Theorem 6.1. Let T ≥ 1 and denote by PT
{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps

with communication along edge {v, w}. Then, AT is (α, f)-PNDP with:

f(u, v) =
α∆2

2σ2

∑

w∈V

∑

t∈PT
{v,w}

(W0:t)
2
u,w

∥(W0:t)w∥2
. (6.3)

This theorem, proved inAppendix C.2, gives a tight computation of the privacy loss between

every pair of nodes and can easily be computed numerically (see Section 6.4). Since distant

nodes correspond to small entries in W0:t, Equation 6.3 suggests that they reveal less to each

other. We will characterize this precisely for the case of fixed communication graph in the next

subsection.

In addition to pairwise guarantees, we can interpret the result of Theorem 6.1 by introducing

the mean privacy loss εv = 1
n

∑
u∈V\{v} f(u, v). It allows us to compare NDP guarantees with

baselines LDP and trusted aggregator by enforcing ε = maxv∈V εv ≤ ε. The value εv is the

average of the privacy loss from all the nodes to v and thus does not correspond to a proper

privacy guarantee, but it provides a convenient way to summarize our gains, noting that distant

nodes — in ways that will be specified — will have better privacy guarantee than this average,

while worst cases will remain bounded by the baseline LDP guarantee provided by local noise

injection. For Theorem 6.1, the mean privacy satisfies:

εv =
α∆2Tv

2nσ2
, (6.4)
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where Tv is the total number of communications node v was involved with up to time T . Thus,

in comparison with LDP, the mean privacy towards v is n/Tv times smaller. In other words, a

node learns much less than in LDP as long as it communicates o(n) times.

Algorithm 6.1:Muffliato

1 Input: local values (xv)v∈V to average, gossip matrix W on a graph G, in T iterations,

noise variance σ2

2 γ ← 2
1−
√

λW (1− λW
4

)

(1−λW /2)2

3 for all nodes v in parallel do

4 x0
v ← xv + ηv where ηv ∼ N

(
0, σ2

)

5 for t = 0 to T − 1 do

6 for all nodes v in parallel do

7 for all neighbors w defined by W do

8 Send xt
v, receive xt

w

9 xt+1
v ← (1− γ)xt−1

v + γ
∑

w∈Nv
Wv,wxt

w

6.2.2 Private Synchronous Muffliato

We now consider Muffliato over a fixed graph (Algorithm 6.1). Note that we use gossip acceler-

ation (see Definition 2.4). We start by analyzing the utility ofMuffliato, which decomposes as

an averaging error term vanishing exponentially fast, and a bias term due to the noise. General

convergence rates are given in Appendix C.3, from which we extract the following result.

Theorem 6.2 (Utility analysis). Let λW be the spectral gap of W . Muffliato (Algorithm 6.1)

verifies, for any t ≥ T stop:

1

2n

∑

v∈V
E(
∥∥∥xt

v − x
∥∥∥

2
) ≤ 3σ2

n
, where T stop =

1√
λW

log

(
n

σ2
max

(
σ2,

1

n

∑

v∈V
∥xv − x∥2

))
.

For the privacy guarantees, Theorem 6.1 still holds as accelerated gossip can be seen as a

post-processing of the non-accelerated version. Thanks to the fixed graph, we can derive a

more explicit formula.

Corollary 6.3. Algorithm 6.1 satisfies (α, εT
u→v(α))-PNDP for node u with respect to v, with:

εT
u→v(α) ≤ α∆2n

2σ2
max

{v,w}∈E
W −2

v,w

T∑

t=1

P(Xt = v|X0 = u)2 ,
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Algorithm 6.2: Randomized Muffliato

1 Input: local values (xv)v∈V to average, activation intensities (p{v,w}){v,w}∈E , in T
iterations, noise variance σ2

2 for all nodes v in parallel do
3 x0

v ← xv + ηv where ηv ∼ N
(
0, σ2

)

4 for t = 0 to T − 1 do
5 Sample {vt, wt} ∈ E with probability p{vt,wt}
6 vt and wt exchange xt

vt
and xt

wt

7 Local averaging: xt+1
vt

= xt+1
wt

=
xt+1

vt
+xt+1

wt
2

8 For v ∈ V \ {vt, wt}, xt+1
v = xt

v

Table 6.1 –Utility ofMuffliato for several topologies under the constraint ε ≤ ε for the classic gossipmatrix
where Wv,w = min(1/dv, 1/dw) and dv is the degree of node v. Õ(·) hides constant and logarithmic
factors. Recall that utility is Õ(α∆2/nε) for LDP and Õ(α∆2/n2ε) for central DP.

Graph Arbitrary Expander C-Torus Complete Ring

Algorithm 6.1 Õ
(

α∆2d
n2ε

√
λW

)
Õ
(

α∆2

n2ε

)
Õ
(

α∆2C
n2−1/Cε

)
Õ
(

α∆2

nε

)
Õ
(

α∆2

nε

)

Algorithm 6.2 Õ
(

α∆2

n2ελW

)
Õ
(

α∆2

n2ε

)
Õ
(

α∆2

n2−2/Cε

)
Õ
(

α∆2

n2ε

)
Õ
(

α∆2

nε

)

where (Xt)t is the random walk on graph G, with transitions W .

This result allows us to directly relate the privacy loss from u to v to the probability that the

random walk on G with transition probabilities given by the gossip matrix W goes from u

to v in a certain number of steps. It thus captures a notion of distance between nodes in the

graph. We also report the utility under fixed mean privacy loss ε = maxv∈V εv ≤ ε in Table 6.1

for various graphs introduced in Section 2.4, where one can see a utility-privacy trade-off

improvement of n
√

λW /d, where d is the maximum degree, compared to LDP. Using expanders

closes the gap with a trusted aggregator (i.e., central DP) up to constant and logarithmic terms.

Remarkably, graph topologies that make gossip averaging efficient (i.e. with big
√

λW /d),

such as exponential graphs or hypercubes [Yin+21], are also the ones that achieve optimal

privacy amplification (up to logarithmic factors). In other words, privacy, utility and scalability

are compatible.

6.2.3 Private Randomized Muffliato

Synchronous protocols require global coordination between nodes, which can be costly or even

impossible in some settings. On the contrary, asynchronous protocols only require separated

activation of edges: they are thus are more resilient to stragglers nodes and faster in practice.

In asynchronous gossip, at a given time-step a single edge {u, v} is activated independently

from the past with probability p{u,v}, as described in Section 2.4 and in particular Section 2.4.1.
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In our setting, randomized Muffliato (Algorithm 6.2) corresponds to instantiating our general

analysis with W t = W{vt,wt} = In − (evt − ewt)(evt − ewt)
⊤/2 if {vt, wt} is sampled at time t.

The utility analysis is similar to the synchronous case.

Theorem6.4 (Utility analysis). Letλ(p) be the spectral gap of graphGwithweights (p{v,w}){v,w}∈E .

Randomized Muffliato (Algorithm 6.2) verifies, for all t ≥ T stop:

1

2n

∑

v∈V
E
∥∥∥xt

v − x
∥∥∥

2
≤ 2σ2

n
, where T stop =

1

λ(p)
log

(
n

σ2
max

(
σ2,

1

n

∑

v∈V

∥∥∥x0
v − x

∥∥∥
2
))

.

To compare with synchronous gossip (Algorithm 6.1), we note that activation probabilities can

be derived from a gossip matrix W by taking p{u,v} = 2W{u,v}/n implying that λ(p) = 2λW /n,

thus requiring n times more iterations to reach the same utility as the synchronous applications

of matrix W . However, for a given time-horizon T and node v, the number of communications v

can be bounded with high probability by a T/n multiplied by a constant whereas Algorithm 6.1

requires dvT communications. Consequently, as reported in Table 6.1, for a fixed privacy mean

εv, Algorithm 6.2 has the same utility as Algorithm 6.1, up to two differences: the degree factor

dv is removed, while
√

λW degrades to λW as we do not accelerate randomized gossip (see

Remark 6.5 below). Randomized gossip can thus achieve an optimal privacy-utility trade-off

with large-degree graphs, as long as the spectral gap is small enough.

Remark 6.5 (Accelerating Randomized Muffliato). For simplicity, Randomized Muffliato

(Algorithm 6.2) is not accelerated, while Muffliato (Algorithm 6.1) uses Chebychev acceleration

to obtain a dependency on
√

λW rather than λW (see Chapter 2 for definition). Thus, and as

illustrated by Table 6.1, Algorithm 6.2 does not improve over Algorithm 6.1 for all values of d

(maximum degree), n and λW . However, Algorithm 6.2 can be accelerated using a continuized

version of Nesterov acceleration [EHM20; Eve+21], thus replacing λ(p) in the expression of T stop

in Theorem 6.4, by
√

λ(p)/(dn). Doing so, using randomized communications improve privacy

guarantees over Algorithm 6.1 for all graphs considered in Table 6.1.

6.2.4 Erdös-Rényi Graphs

So far the graph was considered to be public and the amplification only relied on the secrecy of

the messages. In practice, the graph may be sampled randomly and the nodes need only to

know their direct neighbors. We show that we can leverage this through the weak convexity

of Rényi DP to amplify privacy between non-neighboring nodes. We focus on Erdös-Rényi

graphs, which can be built without central coordination by picking each edge independently

with the same probability q. For q = c log(n)/n where c > 1, Erdös-Rényi graphs are good

expanders with node degrees dv = O(log n) and λW concentrating around 1 [HKP19]. We

obtain the following privacy guarantees.
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Theorem 6.6 (Muffliato on a random Erdös-Rényi graph). Let us fix u, v ∈ V distinct nodes.

Let α > 1, T ≥ 0, σ2 ≥ ∆2α(α−1)
2 and q = c log(n)

n for c > 1. After running Algorithm 6.1 with

these parameters, node u is (α, εT
u→v(α))-PNDP with respect to v, with:

εT
u→v(α) ≤





α∆2

2σ2
with probability q ,

α∆2

σ2

Tdv

n− dv
with probability 1− q .

This results shows thatwith probability q, u and v are neighbors and there is no amplification

compared to LDP. The rest of the time, with probability 1− q, the privacy matches that of a

trusted aggregator up to a degree factor dv = O(log n) and T = Õ(1/
√

λW ) = Õ(1) [HKP19].

In particular, if several rounds of gossip averaging are needed, as in the next section for SGD,

changing the graph mitigates the privacy loss of the rounds where two nodes are neighbors

thanks to the rounds where they are not.

6.3 Private Decentralized Optimization

We now build upon Muffliato to design decentralized optimization algorithms. Each node

v ∈ V possesses a data-dependent function ϕv : RD → R and we wish to privately minimize the

function

ϕ(θ) =
1

n

∑

v∈V
ϕv(θ) , with ϕv(θ) =

1

|Dv|
∑

xv∈Dv

ℓv(θ, xv) , θ ∈ RD , (6.5)

where Dv is the (finite) dataset corresponding to user v for data lying in a space Xv, and

ℓv : RD × Xv → R a loss function. We assume that ϕ is µ-strongly convex, and each ϕv is

L-smooth, and denote κ = L/µ. We note that our results can be extended to the general convex

and smooth setting. Denoting by θ⋆ the minimizer of ϕ, for some non-negative (ζ2
v )v∈V , (ρ2

v)v∈V
and all v ∈ V , we assume:

∥∇ϕv(θ⋆)−∇ϕ(θ⋆)∥2 ≤ ζ2
v , E(∥∇ℓv(θ⋆, xv)−∇ϕ(θ⋆)∥2) ≤ ρ2

v , xv ∼ Lv ,

where Lv is the uniform distribution over Dv. We write ρ̄2 = 1
n

∑
v∈V ρ2

v and ζ̄2 = 1
n

∑
v∈V ζ2

v .

We introduce Algorithm 6.3, a private version of the classical decentralized SGD algorithm

studied in [Kol+20]. Inspired by the optimal algorithm MSDA of Scaman et al. [Sca+17]

that alternates between K Chebychev-accelerated gossip communications and expensive dual

gradient computations, our Algorithm 6.3 alternates between K Chebychev-accelerated gossip

communications and cheap local stochastic gradient steps. This alternation reduces the total

number of gradients leaked, a crucial point for achieving good privacy. Note that in Algo-

rithm 6.3, each communication round uses a potentially different gossip matrix Wt. In the
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Muffliato: Peer-to-Peer Privacy Amplification in Gossip

Algorithm 6.3:Muffliato-SGD and Muffliato-GD

1 Input: initial points θ0
v ∈ RD, number of iterations T , step sizes ν > 0, noise variance σ2,

gossip matrices (Wt)t≥0, local functions ϕv, number of communication rounds K
2 for t = 0 to T − 1 do
3 for all nodes v in parallel do

4 Compute θ̂t
v = θt

v − ν∇θℓv(θt
v, xt

v) where xt
v ∼ Lv

5 θt+1
v = Muffliato

(
(θ̂t

v)v∈V , Wt, K, ν2σ2
)

results stated below, we fix Wt = W for all t and defer the more general case to Appendix C.6,

where different independent Erdös-Rényi graphs with same parameters are used at each

communication round.

Remark 6.7. Our setting encompasses both GD and SGD.Muffliato-GD is obtained by removing

the stochasticity, i.e., setting ℓv(·) = ϕv(·). In that case, ρ̄2 = 0.

Theorem 6.8 (Utility analysis of Algorithm 6.3). For suitable step-size parameters, for a total

number of T stop computations and T stopK communications, with:

T stop = Õ (κ) , and K =

⌈
√

λW
−1

log

(
max

(
n,

ζ̄2

Dσ2 + ρ̄2

))⌉
,

the iterates (θt)t≥0 generated by Algorithm 6.3 verify E(ϕ(θ̃out) − ϕ(θ⋆)) = Õ(Dσ2+ρ̄2

µnT stop ) where

θ̃out ∈ RD is a weighted average of the θ̄t = 1
n

∑
v∈V θt

v until T stop.

For the following privacy analysis, we need a bound on the sensitivity of gradients with

respect to the data. To this end, we assume that for all v and xv, ℓv(·, xv) is ∆ϕ/2 Lipschitz2.

Theorem 6.9 (Privacy analysis of Algorithm 6.3). Let u and v be two distinct nodes in V . After
T iterations of Algorithm 6.3 with K ≥ 1, node u is (α, εT

u→v(α))-PNDP with respect to v, with:

εT
u→v(α) ≤

T 2∆2
ϕα

2σ2

K−1∑

k=0

∑

w:{v,w}∈E

(W k)2
u,w

∥(W k)w∥2
. (6.6)

Thus, for any ε > 0, Algorithm 6.3 with T stop(κ, σ2, n) steps and for K as in Theorem 6.8, there

exists f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ≤ ε and Eϕ(θ̃out)− ϕ(θ⋆)) ≤ Õ
(

αD∆2
ϕκd

µn2ε
√

λW
+

ρ̄2

nL

)
,

2This assumption can be replaced by the more general Assumption C.8 given in Appendix C.6.
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6.4 Experiments

where d = maxv∈V dv.

The term ρ̄2

nL above (which is equal to zero forMuffliato-GD, see Remark 6.7) is privacy inde-

pendent. It is typically dominated by the first term, which corresponds to the utility loss due

to privacy. Comparing Theorem 6.9 with the results forMuffliato (Table 6.1 in Section 6.2.2),

the only difference lies in the factor D∆2
ϕκ/µ. Note that ∆2

ϕ plays the role of the sensitivity ∆2,

and D appears naturally due to considering D-dimensional parameters. On the other hand,

κ/µ is directly related to the complexity of the optimization problem: the easier the problem,

the better the privacy-utility trade-off of our algorithm. Regarding the influence of the graph,

the same discussion as after Corollary 6.3 applies here. In particular, for expander graphs like

the exponential graph of [Yin+21], the factor d/
√

λW is constant. In this case, converting to

standard (ε, δ)-DP gives Õ
(

D∆2
ϕκ

µn2ε2

)
, recovering the optimal privacy-utility trade-off of central

DP [BST14; WYX17] up to a factor κ. Note that we achieve this nearly optimal rate under a

near-linear gradient complexity of T stop(κ, σ2, n)n = Õ(κn) and near-linear total number of

messages T stop(κ, σ2, n)Kn = Õ(κn).

Remark 6.10 (Time-varying graphs). The analysis of Muffliato-GD/SGD presented in this

section (Theorems 6.8 and 6.9) assumes constant gossip matrices Wt = W . A more general

version of these results is presented in Appendix C.6 to handle any fixed sequence of matrices (Wt)t

and graphs. This can be used to model randomized communications (as previously described for

gossip averaging in Section 6.2.3) as well as user dropout (see experiments in Appendix C.8).

Time-varying graphs can also be used to split the privacy loss more uniformly across the different

nodes by avoiding that nodes have the same neighbors across multiple gossip computations. We

illustrate this experimentally for decentralized optimization in Section 6.4, where we change the

graph after each gradient step of Muffliato-GD. Note that our analysis does not allow to select the

next graph adaptively to the current privacy losses, as this would require other analysis techniques,

such as privacy odometers [Rog+16; FZ20; KTH22].

6.4 Experiments

In this section, we show that pairwise network DP provides significant privacy gains in practice

even for moderate size graphs. We use synthetic graphs and real-world graphs for gossip

averaging. For decentralized optimization, we solve a logistic regression problem on real-

world data with time-varying Erdos-Rényi graphs, showing in each case clear gains in privacy

compared to LDP. The code used to obtain these results is available at https://github.com/

totilas/muffliato.

Averaging on synthetic graphs. We generate synthetic graphs with n = 2048 nodes and

define the corresponding gossip matrix according to the Hamilton scheme. Note that the
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Figure 6.1 – (a) Left: Privacy loss of Muffliato in pairwise NDP on synthetic graphs (best, worst and
average in error bars over nodes at a given distance), confirming a significant privacy amplification
as the distance increases. (b) Middle: Privacy loss of Muffliato from a node chosen at random on a
Facebook ego graph, showing that leakage is very limited outside the node’s own community. (c) Right:
Privacy loss and utility ofMuffliato-GD when using different Erdös-Rényi graphs after each gradient
step, compared to a baseline based on a trusted aggregator.

privacy guarantees ofMuffliato are deterministic for a fixed W , and defined by Equation 6.1. For

each graph, we run Muffliato for the theoretical number of steps required for convergence, and

report in Figure 6.1(a) the pairwise privacy guarantees aggregated by shortest path lengths

between nodes, along with the LDP baseline for comparison. Exponential graph (generalized

hypercube): this has shown to be an efficient topology for decentralized learning [Yin+21].

Consistently with our theoretical result, privacy is significantly amplified. The shortest path

completely defines the privacy loss, so there is no variance. Erdos-Rényi graphwith q = c log n/n

(c ≥ 1) [ER59], averaged over 5 runs: this has nearly the same utility-privacy trade-off as the

exponential graph but with significant variance, which motivates the time-evolving version

mentioned in Remark 6.10. Grid: given its larger mixing time, it is less desirable than the

two previous graphs, emphasizing the need for careful design of the communication graph.

Geometric random graph: two nodes are connected if and only if their distance is below a given

threshold, which models for instance Bluetooth communications (effective only in a certain

radius). We sample nodes uniformly at random in the square unit and choose a radius ensuring

full connectivity. While the shortest path is a noisy approximation of the privacy loss, the

Euclidean distance is a very good estimator as shown in Appendix C.8.

Averaging on real-world graphs. We consider the graphs of the Facebook ego dataset

[LM12], where nodes are the friends of a given user (this central user is not present is the graph)

and edges encode the friendship relation between these nodes. Ego graphs typically induce

several clusters corresponding to distinct communities: same high school, same university,

same hobbies... For each graph, we extract the giant connected component, choose a user at

random and report its privacy loss with respect to other nodes. The privacy loss given by
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6.5 Conclusion

LDP is only relevant within the cluster of direct neighbors: privacy guarantees with respect to

users in other communities are significantly better, as seen in Figure 6.1(b). We observe this

consistently across other ego graphs (see Appendix C.8). This is in line with one of our initial

motivation: our pairwise guarantees are well suited to situations where nodes want stronger

privacy with respect to distant nodes.

Logistic regression on real-world data. Logistic regression corresponds to minimizing

Equation 6.5 with loss function ℓ(θ; x, y) = log(1 + exp(−yθ⊤x)) where x ∈ Rd and y ∈ {−1, 1}.
We use a binarized version of UCIHousing dataset.3 We standardize the features and normalize

each data point x to have unit L2 norm so that the logistic loss is 1-Lipschitz for any (x, y). We

split the dataset uniformly at random into a training set (80%) and a test set and further split

the training set across users. After each gradient step of Muffliato-GD, we draw at random an

Erdös-Rényi graph of same parameter q to perform the gossiping step and run the theoretical

number of steps required for convergence. For each node, we keep track of the privacy loss

towards the first node (note that all nodes play the same role). We report the pairwise privacy

loss for this node with respect to all others for n = 4000 and n = 8000 in Figure 6.1(c) (top).

We see that, as discussed in Remark 6.10, time-varying graphs are effective at splitting the

privacy loss more uniformly across nodes: the privacy gains over LDP are clear with respect to

all nodes. As captured by our theory, these gains increase with the number of nodes n in the

system, and they also concentrate better around the mean. We compare the utility of Muffliato-

GD to a federated learning alternative which uses the same parameters but aggregates noisy

model updates using a trusted central server rather than by gossiping. As seen in Figure 6.1(c)

(bottom), both approaches behave similarly in terms of accuracy across iterations.

6.5 Conclusion

We showed that gossip protocols amplify the LDP guarantees provided by local noise injection

as values propagate in the graph. Despite the redundancy of gossip that, at first sight, could

be seen as an obstacle to privacy, the privacy amplification turns out to be significant: it can

nearly match the optimal privacy-utility trade-off of the trusted curator. From the fundamental

building block — noise injection followed by gossip — that we analyzed under the name

Muffliato, one can easily extend the analysis to other decentralized algorithms, such as the dual

approach proposed in [Sca+17]. Our results are motivated by the typical relation between

proximity in the communication graph and lower privacy expectations. Other promising

directions are to assume that closer people are more similar, which leads to smaller individual

privacy accounting [FZ21], to design new notions of similarity between nodes in graphs as

done in personalization [EMS22] that match the privacy loss variations.

3https://www.openml.org/d/823
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Chapter 7

Random Walks under Network

Differential Privacy

In this chapter, we characterize the privacy guarantees of decentralized learning with random

walk algorithms, where a model is updated by traveling from one node to another along the

edges of a communication graph. We first derive an expression for the complete graph. We then

derive closed-form expressions for the privacy loss between each pair of nodeswhere the impact

of the communication topology is captured by graph theoretic quantities. Our results further

reveal that random walk algorithms yield better privacy guarantees than gossip algorithms for

nodes close to each other. We supplement our theoretical results with an empirical evaluation

over synthetic and real-world graphs and datasets.

This chapter corresponds to the last theorem of [CB22] and the paper [CBU24].

7.1 Introduction

In the previous chapter, we have seen that gossip algorithms enables good privacy-utility

tradeoffs under the Network DP setting. However, a major drawback of gossip algorithms

is that, even in their more asynchronous versions, they generate redundant communications

and require all nodes to be largely available (since any node can be updated at any time).

Redundant communication and availability has been touted as a major obstacle in distributed

private learning [STU17]. In this chapter, we study random walk algorithms under the net-

work differential privacy setting defined in Chapter 5. The random walk approach has been

previously analyzed for the ring graph (see Section 5.4), which has the advantage of being

deterministic and always having the same interval between two nodes participations, easing

the privacy guarantees computations. In this chapter, we remove this hypothesis and tackle

general network topologies.
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Random Walks under Network Differential Privacy

We first consider the case of random walks over a complete graph in Section 7.2. We

provide an algorithm for real summation and prove a privacy amplification result of O(1/
√

n)

compared to the same algorithm analyzed under LDP, again matching the privacy-utility trade-

off of the trusted curator model. We also discuss a natural extension for computing discrete

histograms. Finally, we turn to the task of optimization with stochastic gradient descent and

propose a decentralized SGD algorithm that achieves a privacy amplification of O(log n/
√

n)

in some regimes, nearly matching the utility of centralized differentially private SGD [BST14].

Interestingly, the above algorithms can tolerate a constant number of collusions at the cost

of some reduction in the privacy amplification effect. At the technical level, our theoretical

analysis leverages results on privacy amplification by subsampling [BBG18], shuffling [Erl+19;

Bal+19b; FMT20] and iteration [Fel+18] in a novel decentralized context: this is made possible

by the restricted view of participants offered by decentralized algorithms and adequately

captured by our notion of network DP. We show experimentally in Section 7.2.4 that privacy

gains are significant in practice both for simple analytics and for training models in federated

learning scenarios.

We then generalize to arbitrary communication graphs, raising even more challenging

privacy analysis. In Section 7.3, we first introduce a private version of decentralized stochastic

gradient descent (SGD) based on random walks on arbitrary graphs: in a nutshell, the node

holding the model at a given step updates it with a local SGD step, adds Gaussian noise

and forwards it to one of its neighbor chosen with appropriate probability. Focusing on the

strongly convex setting, we then establish a convergence rate for our algorithm by building upon

recent results on SGD under Markovian sampling [Eve23], and show that the result compares

favorably to its gossip SGD counterpart. Our main contribution lies in precisely characterizing

the privacy loss between all pairs of nodes using a PNDP analysis. We obtain elegant closed-

form expressions that hold for arbitrary graphs, capturing the effect of a particular choice

of graph through graph-theoretic quantities. We also show how our general closed-form

expression yields explicit and interpretable results for specific graphs. Finally, we use synthetic

and real graphs and datasets to illustrate our theoretical results and show their practical

relevance compared to the gossip algorithms analyzed in previous work.

In summary, our contributions are as follows:

1. We propose a private version of random walk stochastic gradient descent for arbitrary

graphs (Algorithm 7.3);

2. We establish its convergence rate for strongly convex loss functions (Theorem 7.6);

3. We derive closed-form expressions for the privacy loss between each pair of nodes that

capture the effect of the topology by graph-theoretic quantities (Theorem 7.7);
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7.2 Walk on complete graph

Algorithm 7.1: Private summation on a complete graph

1 τ ← 0, k1 ← 0, . . . , kn ← 0
2 for t = 1 to T do
3 Draw u ∼ U(1, . . . , n)
4 ku ← ku + 1

5 τ ← τ + Perturb(xku
u ; σloc)

6 return τ

4. We theoretically and experimentally compare our guarantees to those of gossip algorithms,

highlighting the superiority of our approach in several regimes.

7.2 Walk on complete graph

In this section, we consider the case of a random walk on the complete graph. In other words,

at each step, the token is sent to a user chosen uniformly at random among V . We consider

random walks of fixed length T > 0, hence the number of times a given user contributes is

itself random. We assume the token path to be hidden, including the previous sender and

the next receiver, so the only knowledge of a user is the content of the messages that she/he

receives and sends.

7.2.1 Real Summation

For real summation, we consider the simple and natural protocol shown in Algorithm 7.1: a

user u receiving the token τ for the k-th time updates it with τ ← τ + Perturb(xk
u; σloc). As in

Section 5.4.1, σloc is set such that Perturb(·; σloc) satisfies (ε, δ)-LDP, and thus implicitly depends

on ε and δ. We now show network DP guarantees, which rely on the intermediate aggregations

of values between two visits of the token to a given user and the secrecy of the path taken by the token.

For clarity, the theorem below gives only the main order of magnitude, but the complete and

tighter formula can be found in Appendix D.1.

Theorem 7.1. Let ε < 1 and δ > 0. Algorithm 7.1 outputs an unbiased estimate of the sum of T

contributions with standard deviation
√

Tσloc, and satisfies (ε′, (Nv +T/n)δcycle +δ′ + δ̂)-network

DP for all δ′, δ̂ > 0 with

ε′ = O
(√

Nv log(1/δ′)ε/
√

n
)
, (7.1)
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Random Walks under Network Differential Privacy

where Nv = T
n +

√
3
nT log(1/δ̂) and δcycle = f(ε, δ, n) is given by amplification by subsampling

for n points with replacement [BBG18] in a set of size n.a".

aSee Appendix D.1.1 for the precise formula. In practice, we numerically observe that δcycle ≤ δ in our
experiments.

Sketch of proof. We summarize here the main steps (see Appendix D.1 for details). We fix a

user v and quantify how much information about the private data of another user u is leaked

to v from the visits of the token. The number of visits to v follows a binomial law B(T, 1/n)

that we upper bound by Nv using Chernoff with probability 1 − δ̂. Then, for a contribution

of u at time t, it is sufficient to consider the cycle formed by the random walk between the

two successive passages in v containing t. To be able to use amplification by subsampling

[BBG18], we actually consider a fictive walk where each cycle cannot exceed a length of n:

if a cycle is larger, we assume that the value of the token is observed by v every n steps. As

the information leaked to v by the actual walk can be obtained by post-processing of this

fictive walk, it is enough to compute the privacy loss of the fictive walk, which has at most

Nv +T/n cycles (with high probability). Then, we prove that each cycle incurs at most a privacy

loss of 3ε/
√

n by combining intermediate aggregations and amplification by subsampling. We

concludewith ε′ = O(
√

(Nv + T/n) log(1/δ′) ε√
n

) and δf = (Nv+T/n)δcycle+δ′+δ̂ by advanced

composition. ■

The same algorithm analyzed under LDP yields ε′ = O(
√

Nv log(1/δ′)ε), which is optimal

for averaging Nv contributions per user in the local model. For T = Ω(n), Theorem 7.1 thus

shows that network DP asymptotically provides a privacy amplification of O(1/
√

n) over LDP

and matches the privacy-utility trade-off of a trusted aggregator. We will see in Section 7.2.4

that our complete (tighter) formula given in Appendix D.1 improves upon local DP as soon as

n ≥ 20 (Figure 7.1(a)). We also show that the gains are significantly stronger in practice than

what our theoretical results guarantee (Figure 7.1(b)).

Extension to discrete histogram computation. We can obtain a similar result for histograms

by bounding the privacy loss incurred for each cycle by using amplification by shuffling [Erl+19;

Bal+19b; FMT20], similar to what we did for the ring topology (Section 5.4.2). Details are in

Appendix D.2.

7.2.2 Optimization with SGD

We now turn to the task of private convex optimization with stochastic gradient descent (SGD).

Let W ⊆ Rd be a convex set and f(·; D1), . . . , f(·; Dn) be a set of convex L-Lipschitz and β-

smooth functions overW associated with each user. We denote by ΠW(w) = arg minw′∈W ∥w−
w′∥ the Euclidean projection onto the setW . We aim to privately solve the following optimiza-
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7.2 Walk on complete graph

Algorithm 7.2: Private SGD on a complete graph

1 Initialize τ ∈ W
2 for t = 1 to T do
3 Draw u ∼ U(1, . . . , n)

4 Z = [Z1, . . . , Zd], Zi ∼ N
(
0, 8L2 log(1.25/δ)

ε2

)

5 τ ← ΠW(τ − η(∇τ f(τ ; Du) + Z))

6 return τ

tion problem:

w∗ ∈ arg minw∈W
{
F (w) := 1

n

∑n
u=1 f(w; Du)

}
. (7.2)

Eq. 7.2 encompasses many machine learning tasks (e.g., ridge and logistic regression, SVMs,

etc).

To privately approximate w∗, we propose Algorithm 7.2. Here, the token τ ∈ W represents

the current iterate. At each step, the user u holding the token performs a projected noisy gradient

step and sends the updated token to a random user. We rely on the Gaussian mechanism to

ensure that the noisy version of the gradient ∇τ f(τ ; Du) + Z satisfies (ε, δ)-LDP: the variance

σ2 of the noise in line 4 of Algorithm 7.2 follows from the fact that gradients of L-Lipschitz

functions have sensitivity bounded by 2L [BST14]. Our network DP guarantee is stated below,

again in a simplified asymptotic form.

Theorem 7.2. Let ε < 1, δ < 1/2. Alg. 7.2 with η ≤ 2/β achieves (ε′, δ + δ̂)-network DP for all

δ̂ > 0 with

ε′ =
√

2q log(1/δ)ε/
√

log(1.25/δ), (7.3)

where q = max
(2Nu log n

n , 2 log(1/δ)
)
and Nu = T

n +
√

3
nT log(1/δ̂).

Sketch of proof. The proof tracks the evolution of the privacy loss using Rényi Differential Privacy

(RDP) [Mir17] and leverages amplification by iteration [Fel+18] in a novel decentralized

context. We give here a brief sketch (see Appendix D.3 for details). Let us fix two users u and

v and bound the privacy leakage of u from the point of view of v. We again bound the number

of contributions Nu of user u, but unlike in the proof of Theorem 7.1 we apply this result to the

user releasing information (namely u). We then compute the network RDP guarantee for a

fixed contribution of u at time t. Crucially, it is sufficient to consider the first time v receives

the token at a step t′ > t. Privacy amplification by iteration tells us that the larger t′, the less is

learned by v about the contribution of u. Note that t′ follows a geometric law of parameter 1/n.

Using the weak convexity of the Rényi divergence [Fel+18], we can bound the Rényi divergence

Dα(Yv||Y ′
v) between two random executions Yv and Y ′

v stopping at v and differing only in the

contribution of u by the expected divergence over the geometric distribution. Combining with
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Random Walks under Network Differential Privacy

amplification by iteration eventually gives us Dα(Yv||Y ′
v) ≤ 4αL2 log n/σ2n. We apply the

composition property of RDP over the Nu contributions of u and convert the RDP guarantee

into (ε, δ)-DP. ■

Algorithm 7.2 is also a natural approach to private SGD in the local model, and achieves ε′ =

O(
√

Nu log(1/δ′)ε) under LDP. Thus, for T = Ω(n2
√

log(1/δ)/ log n) iterations, Theorem 7.2

gives a privacy amplification of O(log n/
√

n) compared to LDP.Measuring utility as the amount

of noise added to the gradients, the privacy-utility trade-off of Algorithm 7.2 in network DP is

thus nearly the same (up to a log factor) as that of private SGD in the trusted curator model!1

For smaller T , the amplification is much stronger than suggested by the simple closed form

in Eq. 7.3: we can numerically find a smaller ε′ that satisfy the conditions required by our

non-asymptotic result, see Appendix D.3 for details.

We note that we can easily obtain utility guarantees for Algorithm 7.2 in terms of optimiza-

tion error. Indeed, the token performs a random walk on a complete graph so the algorithm

performs the same steps as a centralized (noisy) SGD algorithm. We can for instance rely on a

classic result by Shamir and Zhang [SZ13, Theorem 2 therein] which shows that SGD-type

algorithms applied to a convex function and bounded convex domain converge in O(1/
√

T ) as

long as gradients are unbiased with bounded variance.

Proposition 7.3. Let the diameter ofW be bounded by D. Let G2 = L2 + 8dL2 log(1.25/δ)
ε2 , and

τ ∈ W be the output of Algorithm 7.2 with η = D/G
√

t. Then we have:

E[F (τ)− F (w∗)] ≤ 2DG(2 + log T )/
√

T .

A consequence of Proposition 7.3 and Theorem 7.2 is that for fixed privacy budget and

sufficiently large T , the expected error of Algorithm 7.2 is O(log n/
√

n) smaller under network

DP than under LDP.

7.2.3 Discussion

An advantage of considering a random walk over a complete graph is that our approach is

naturally robust to the presence of a (constant) number of colluding users. Indeed, when c

users collude, they can be seen as a unique node in the graph with a transition probability

of c
n instead of 1

n . We can then easily adapt the proofs above, as the total number of visits to

colluding users follows B(T, c/n) and the size of a cycle between two colluding users follows a

geometric law of parameter 1−c/n. Hence, we obtain the same guarantees under Definition 5.2

as for the case with n/c non-colluding users under Definition 5.1. Interestingly, these privacy

1Incidentally, the analysis of centralized private SGD [BST14] also sets the number of iterations to be of order n
2.
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guarantees hold even if colluding users bias their choice of the next user instead of choosing it

uniformly. Indeed, as soon as colluded nodes do not hold the token, the random walk remains

unbiased, with the same distribution for the time it takes to return to colluders (i.e., G(m/n)

for m colluded nodes).

We note that despite the use of a complete graph, all users do not necessarily need to be

available throughout the process. For instance, if we assume that the availability of a user

at each time step follows the same Bernoulli distribution for every user, we can still build a

random walk with the desired distribution, similarly to what is done in another context by

[Bal+20b].

On the other hand, the assumption that users do not know the identity of the previous

sender and the next receivermay seem quite strong. It is however possible to lift this assumption

by bounding the number of times that a contribution of a given user u is directly observed by

a given user v separately and adding the corresponding privacy loss to our previous results.

This additional term dominates the others for small values of T due to its large variance (an

“unlucky” node may forward a lot of times the token to the same node). But as the expected

number of contributions per node increases, the relative importance of this term decreases (and

thus the privacy amplification increases) until T = Ω(n2), for which the amplification reaches

the same order as in Theorems 7.1-7.2. Even though T = Ω(n2) is seldom used in practice, we

note that it is also required to obtain optimal privacy amplification by iteration under multiple

contributions per user [Fel+18]. Moreover, in practical implementations, we can mitigate the

large variance effect in the regime where T = o(n2) by enforcing a deterministic bound on the

number of times any edge (u, v) is used, e.g., by contributing only noise along (u, v) after it has

been used too many times. We refer to Appendix D.4 for details and formal derivations.

7.2.4 Experiments

We now present some numerical experiments that illustrate the practical significance of our

privacy amplification results in the complete graph setting (Section 7.2).2

Real Summation

Comparison of analytical bounds. We numerically evaluate the theoretical (non-asymptotic)

bound of Theorem 7.1 for the task of real summation and compare it to local DP. Recall that the

number of contributions of a user is random (with expected value T/n). For a fair comparison

between network and local DP, we derive an analogue of Theorem 7.1 for local DP. In addition,

to isolate the effect of the number of contributions (which is the same in both settings), we

also report the bounds obtained under the assumption that each user contributes exactly T/n

2The code is available https://github.com/totilas/privacy-amplification-by-decentralization
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Figure 7.1 – Comparing network and local DP on real summation for T = 100n. ε0 rules the amount of
local noise added to each contribution (i.e., each single contribution taken in isolation satisfies ε0-LDP).
For the empirical results of Figure 7.1(b), the curves report the average privacy loss across all pairs of
users and all 10 random runs; error bars give best and worst cases.

times. Figure 7.1(a) plots the value of the bounds for varying n. We see that our theoretical

result improves upon local DP as soon as n ≥ 20, and these gains become more significant as n

increases. We note that the curves obtained under the fixed number of contributions per user

also suggest that a better control of Nv in the analytical bound could make our amplification

result significantly tighter.

Gap with empirical behavior. Our formal analysis involves controlling the number of

contributions of users, as well as the size of cycles using concentration inequalities, which

require some approximations. In practical deployments one can instead use the actual values

of these quantities to compute the privacy loss. We thus investigate the gap between our

theoretical guarantees and what can be obtained in practice through simulations. Specifically,

we sample a random walk of size T = 100n. Then, for each pair of users, we compute the

privacy loss based on the actual walk and the advanced composition mechanism. We repeat

this experiment over 10 random walks and we can then report the average, the best and the

worst privacy loss observed across all pairs of users and all random runs. Figure 7.1(b) reports

such empirical results obtained for the case of real summation with the Gaussian mechanism,

where the privacy grows with a factor
√

m where m is the number of elements aggregated

together (i.e., the setting covered by Theorem 7.1). We observe that the gains achieved by

network DP are significantly stronger in practice than what our theoretical bound guarantees,

and are significant even for small n (see Figure 7.1(a)). Our experiments on discrete histogram

computation also show significant gains (see Appendix D.5).
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7.2 Walk on complete graph

Figure 7.2 – Comparing three settings for SGD with gradient perturbation. Unlike Local and Network
DP-SGD, Centralized DP-SGD requires a trusted curator and benefits from amplification by subsampling.
Network DP nearly bridges the gap between Centralized and Local DP-SGD. In all methods, σ is set
to ensure ε = 10 (left plots) or ε = 1 (right plots), and δ = 10−6. Mean and standard deviations are
computed over 20 runs.

Machine Learning with SGD

We now present some experiments on the task of training a logistic regression model in the

decentralized setting. Logistic regression corresponds to solving Eq. 7.2 withW = Rd and

the loss functions defined as f(w; Du) = 1
|Du|

∑
(x,y)∈Du

log(1 + exp(−yw⊤x)) where x ∈ Rd

and y ∈ {−1, 1}. We use a binarized version of UCI Housing dataset.3 We standardize the

features and further normalize each data point x to have unit L2 norm so that the logistic loss

is 1-Lipschitz for any (x, y). We split the dataset uniformly at random into a training set (80%)

and a test set, and further split the training set across n = 2000 users, resulting in each user u

having a local dataset Du of size 8.

We compare three variants of private SGD based on gradient perturbation with the Gaus-

sian mechanism. Centralized DP-SGD is the centralized version of differentially private SGD

introduced by [BST14], which assumes the presence of a trusted curator/aggregator. Local

DP-SGD corresponds to Algorithm 7.2 with the noise calibrated for the LDP setting. Finally,

Network DP-SGD is Algorithm 7.2 with the noise calibrated according to network DP (see The-

orem 7.2). To make the comparison as fair as possible, all approaches (including Centralized

DP-SGD) use the full dataset Du of a randomly chosen user u as the mini-batch at each step.

Given the privacy budget (ε, δ) for the whole procedure, each of the three methods leads

to a different choice for σ that parametrizes the level of noise added to each gradient. In our

experiments, we fix ε = 10 (low privacy) and ε = 1 (stronger privacy) and δ = 10−6. We recall

that we consider user-level DP (X ∼u X ′ differ in the local database of user u). Note that

due to composition, more iterations increase the per-iteration level of noise needed to achieve

a fixed DP guarantee. As the number of contributions of a given user is random, we upper

bound it in advance with a tighter bound than used in our theorems, namely cT/n where c

3https://www.openml.org/d/823
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is a parameter to tune. If a user is asked to participate more times than budgeted, it simply

forwards the token to another user without adding any contribution. In the case of Network

DP-SGD, the user still adds noise as the privacy guarantees of others rely on it. Note that the

best regime for network DP is when the number of contributions of a user is roughly equal to

n, see Theorem 7.2. In our experiments, we are not in this regime but the privacy amplification

effect is stronger than the closed form of the theorem. In practice, we compute numerically the

smallest σ needed to fulfill the conditions of the proof (see Appendix D.3).

Figure 7.2 shows results for T = 20000, where the step size η was tuned separately for each

approach in [10−4, 2]. We see that Network DP-SGD nearly matches the privacy-utility trade-off

of Centralized DP-SGD for both ε = 1 and ε = 10 without relying on a trusted curator. Network

DP-SGD also clearly outperforms Local DP-SGD, which actually diverges for ε = 1. These

empirical results are consistent with our theory and show that Network DP-SGD significantly

amplifies privacy compared to local DP-SGD even when the number of iterations T is much

smaller than O(n2/ log n), a regime which is of much practical importance.

7.3 Extension to arbitrary graphs

In the rest of the chapter, we study random walk SGD, as defined in Section 2.4, incorpo-

rating Gaussian noise injection, as previously done for the complete graph and recapped in

Algorithm 7.3. To align with the published version [CBU24], we remove the assumption

that the gossip matrix is doubly stochastic and allow for any stationary distribution solely for

optimization analysis. In this context, we examine the following minimization problem.

f(x) =
n∑

v=1

πvfv(x), (7.4)

where x ∈ Rd represents the parameters of the model and the local function fv depends only

on the local dataset of node v, and πv ≥ 0 is the weight given to fv (in practice, the vector π

will correspond to the stationary distribution of the random walk as defined below).

For the random walk algorithms we will consider, the complete output A(D) consists of

the trajectory of the token and its successive values during training. At a given step, the token

of the random walk shares its current value only with its current location, but the other nodes

cannot see this state. Thus, we define the view of a node v as

Ov
(A(D)

)
= {(t, xt, w) : the token xt was in v

at time t and then sent to w} .
(7.5)
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Algorithm 7.3: Private random walk gradient descent (RW DP-SGD)

1 Input: transition matrix W on a graph G, number of iterations T , noise variance σ2,
starting node v0, initial token value x0, step size γ, gradient sensitivity ∆, local
loss function fv

2 for t = 0 to T − 1 do
3 Draw η ∼ N (0, ∆2σ2

)

4 Compute gt s.t. E[gt] = ∇fvt(xt)
5 xt+1 ← xt − γ(gt + η)
6 Draw u ∼Wvt in the set of neighbors of vt

7 Send token to u
8 vt+1 ← u

In this definition, nodes know to whom they send the token, but not from whom they receive

it. Ensuring the anonymity of the sender can be achieved by using mix networks [SP06] or

anonymous routing [DMS04]. However, our results directly extend to the case where the

sender’s anonymity cannot be ensured, see Remark 7.9 in Section 7.3.1.

Private SGD with Random Walks

In this section, we introduce a decentralized stochastic gradient descent (SGD) random walk

algorithm to privately approximate the minimizer of (7.4), and analyze its convergence in

the strongly convex case. This algorithm, presented in Algorithm 7.3, generalizes the private

random walk algorithm on the complete graph, introduced and analyzed by Cyffers and Bellet

[CB22], to arbitrary graphs. Differential privacy is achieved by adding Gaussian noise to the

local gradient at each step. The step size is constant over time as commonly done in (centralized)

differentially private stochastic gradient descent (DP-SGD) [BST14].

The non-private version of this algorithm converges in various settings (see Section 2.4). In

this chapter, we adapt a recent proof for the non-private version [Eve23]. For simplicity, we

focus on strongly convex and smooth objectives with bounded gradients at the global optimum.

Assumption 7.4 (Bounded gradient and strong convexity). We assume that f is µ-strongly

convex and L-smooth. Let x∗ be its minimizer. We assume that, for ζ∗ ≥ 0, ∀v ∈ V, ∥∇fv(x∗)∥2 ≤
ζ2

∗ .

In the case of stochastic gradient descent, stochasticity also comes from the fact that we

sample from the local dataset. To handle both cases, we define gt as an unbiased estimator of

∇fvt(xt). We thus require to bound the variance of this estimator.
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Assumption 7.5 (Bounded local noise). We assume that the stochastic gradients respect the

following condition: E
[
∥gt −∇fvt (xt)∥2 |xt, vt

]
⩽ σ2

sgd.
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Theorem 7.6. Under Assumptions 7.4, and 7.5, for step size γ = min

(
1
L , 1

T µ log

(
T ∥x0−x⋆∥2

39L
µ2 τmixζ2

⋆

))

the iterates verify:

E(∥xT − x∗∥2) ≤ 2e− T µ
L ∥x0 − x∗∥2

+

(
39τmixζ2

∗L

µ3T
+

(dσ2∆2 + σ2
sgd)L

µ2T

)
log

Tµ2 ∥x0 − x∗∥2
39Lτmixζ2∗

.

Proof. We adapt the proof from Even [Eve23] that keeps track of the shift due to the Markov

sampling of the random walk thanks to a comparison with delayed gradient. Following the

same bounding steps and taking expectation over the noise distribution we obtain a similar

inequality on the iterates than the non-private version up to an additional term for the noise.

Setting the step size to balance the terms leads to the final equality. See Appendix D.6 for a full

proof. ■

The convergence rate in Theorem 7.6 has three terms: the exponential convergence towards

the minimizer parameterized by the condition number L/µ of f , the impact of the stochasticity

of the random walk in Õ(τmixζ2
∗L/µ3T ) and the additional term due to the noise injection in

Õ(σ2∆2L/µ2T ). A similar term would appear when adapting the non-private convergence

proof for other settings such as under the Polyak-Lojasiewicz condition.

Comparison with private gossip [Cyf+22]. In our random walk algorithm, each step

involves computing the gradient of a single node and a single message, whereas the private

gossip SGD algorithm of Cyffers et al. [Cyf+22] alternates between the computation of local

gradients at all nodes in parallel and a multi-step gossip communication phase until (ap-

proximate) consensus. Rephrasing the result of Cyffers et al. [Cyf+22] in our notation, each

communication phase in Cyffers et al. [Cyf+22] requires Õ(τmix · log(ζ2
∗/σ2)) steps where all

the nodes send updates synchronously. For the optimization part, the first term is the same

in O(e− T µ
L ∥x0 − x∗∥2), but there is only one other term in O(σ2L/nµT ). Hence, we lose a

factor of n, but the reduced communication compensates for this. Our analysis is tighter in

the sense that we can separate the privacy noise that is independent of the Markov chain,

thereby improving the rate of the spectral gap factor compared to a naive analysis. In contrast,

the private gossip analysis casts this noise as gradient heterogeneity, because it re-uses the

non-private convergence analysis of Koloskova et al. [Kol+20].

Special case of averaging. One can use the above algorithm to privately compute the

average of values at each node. In this case, we assume that each node has a private value yv

(a float or a vector) and define the local objective function as:

fv(x) = ∥x− yv∥2 . (7.6)
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Note that, in this case, we haveL = µ = 2. A natural approach is to compute the running average

of the visited values with noise injection at each step, which corresponds to Algorithm 7.3 with

a decreasing step-size γt = 1/t. The drawback of this approach is that damping the first terms of

the sum (when theMarkov chain is not yet well mixed) requires a lot of steps and results in slow

convergence (at least τmix steps). Adopting a constant step-size instead, as in Algorithm 7.3,

does not modify the convergence leading terms that stay in O(1/T ) for an adequate step-size.

Oneway to completely remove the influence of the first terms is to have a burn-inphase, when

the token walks without performing any update, to come closer to the stationary distribution.

Then, after τmix(ι/2) steps, a running average of 4δ2/(ι3λW ) is obtained, as proven in Theorem

12.21 of [LP17].

7.3.1 Privacy Analysis

In this section, we derive the privacy guarantees of Algorithm 7.3 for arbitrary graphs and

show how this leads to improved trade-offs for specific graphs widely used in decentralized

learning. Our main result is a closed-form expression for the privacy loss between each pair of

nodes, which holds for arbitrary graphs.

Theorem 7.7. Consider a graph G with transition matrix W . After T iterations, for a level of

noise σ2 ≥ 2α(α− 1), the privacy loss of Algorithm 7.3 from node u to v is bounded by:

εu→v ≤ O
(

αT log(T )

σ2n2
− αT

σ2n
log

(
I −W +

1

n
11

⊤
)

uv

)
.

We recall that the logarithm of a matrix corresponds to the matrix whose eigenvalues are the

log of the original eigenvalues and the eigenvectors remain identical. In particular, if λ1, · · · , λn

are n-eigenvalues (counting multiplicity) of a bistochastic symmetric matrix M and x1, · · · , xn

are the corresponding eigenvectors, then log(M) =
∑n

i=1 xix
⊤
i log(λi). Note that the fact that

W is symmetric ensures this decomposition exists.

Sketch of proof. We give a high-level overview of the proof here and refer to Appendix D.7 for

details. We fix the two vertices u and v and see how a token visit to u will leak information to v.

By the post-processing property of RDP, it is sufficient to compute the privacy loss that occurs

when the token reaches for the first time v after the visit in u. For computing this loss, we use

the weak convexity of the Rényi divergence [Fel+18] to condition over the number of steps

before reaching v. The length of the walk is parameterized by the power of the transition matrix.

For a given length, we bound the privacy loss by using privacy amplification by iteration

(Theorem 3.11). Refactoring the sum leads to the logarithm of the matrix. We finish by using

composition over the O(T/n) times the token visits u during the walk. ■
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Remark 7.8. For the complete graph, the second term is equal to zero as the transition matrix is

exactly W = 1
n11

⊤. Thus, we recover the bound of Theorem 7.2. In other words, Theorem 7.7 is a

generalization of this previous result to arbitrary graphs.

Remark 7.9. Theorem 7.7 holds for the definition of the view of the node given in (7.5), where

the sender is kept anonymous. We provide in Appendix D.7.1 a similar theorem if the senders are

known. In this case, although the formula is more complex, the asymptotic is the same as it roughly

shifts the privacy guarantees from one hop.

Interpretation of the Formula via Communicability

The privacy loss of Theorem 7.7 has two terms that we can interpret as follows. The first term is

the same as in Theorem 7.2 for the complete graph: we have an O(1/n2) privacy amplification

factor compared to local DP, matching what would be obtained in central DP with n users.

Our analysis reveals that this term also appears for arbitrary graphs: we can interpret it as a

baseline privacy loss that occurs from the collaboration of all agents.

However, in graphs differing from the complete graph, this baseline privacy loss is corrected

by the second term which depends on the specific pair (u, v) of the nodes considered. Note that

this second term can be negative for some pairs as eigenvector components can be of arbitrary

signs. This quantity can be seen as a variant of known graph centrality metrics and, more

precisely, communicability.

Definition 7.10 (Communicability, [EH08; EK15]). For a transition matrix W and ci a non-

increasing positive series ensuring convergence, the communicability between two vertices u, v is

defined by:

Guv =
∑∞

i=1 ciW
i
uv .

For ci = 1/i!, this corresponds to the original notion of communicability as presented in

[EH08], while for ci = ai we recover the Katz centrality [Kat53]. Our formula corresponds to

the case ci = α
σ2i

as proven in Appendix D.7, and the convergence of the infinite sum is ensured

by the fact that we remove the graph component associated with the eigenvalue 1. Note that

the coefficient depends on the privacy parameters α and σ, which might be surprising. Katz

centrality does not prescribe a specific value for a, except to be small enough – for example,

Networkx implementation uses the default value a = 0.1 –, as the result and ranking tends not

to be too sensitive to the choice of a.

Communicability is used to detect local structures in complex networks, with applications to

community detection and graph clustering, for instance, in physical applications [EK15]. Good
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communicability is supposed to capture how well connected are the two nodes in the networks,

i.e. how close they are. Hence, having the second term of the privacy loss proportional to the

communicability of the nodes shows that our formula matches the intuition that nodes leak

more information to closer nodes than to more distant ones.

7.3.2 Application to Specific Graphs

We now give closed-form expressions of the privacy loss (7.7) for specific graphs. To show the

power of our bound, we note that the results for two network graphs, namely the complete

graph in Theorem 7.2 and the ring graph in Theorem 5.5, follow as a corollary of our general

result. We illustrate below the possibility to derive closed formulas for other classes of graphs.

Proofs are given in Appendix D.10.

Star graph. We consider a star graph with a central node in the first position linked to the n− 1

other nodes. We choose the transition matrix such that the probability of self-loop κ > 0 is an

arbitrarily small constant, and the distribution over the non-central nodes is uniform. Then we

have the following privacy guarantees.

Theorem 7.11. Let u, v ∈ V be two distinct nodes of the star graph and κ > 0 be an arbitrarily

small constant. For a single contribution of node u in Algorithm 7.3 on the star graph, the privacy

loss to node v is bounded by:

εu→v ≤



− α(1−κ)

σ2(n−1)
log

(
1− 1

n−1

)
u ̸= 1 and v ̸= 1

α(1−κ)

2σ2
√

n−1
log

(√
n−1+1√
n−1−1

)
u = 1 or v = 1

.

Sketch of proof. At a high level, as κ is an arbitrarily small constant, we can have an upper bound

on the entries of all the powers of the adjacency matrix of the star graph. ■

In particular, composing over theO(T/n) contributions, we see that extremal nodes enjoy a

privacy amplification factor of order O(n2) and the central node of order O(n).

Ring graph. We consider a symmetric ring where nodes are enumerated from 1 to n, which

thus slightly differs from the case studied in Yakimenka et al. [Yak+22] and Cyffers and Bellet

[CB22], where the ring is directed and thus deterministic [up to the possibility of skipping

in Yak+22]. For this graph, our results shows that the amplification is parameterized by the

distance between the nodes in the ring.

Theorem 7.12. Let u, v ∈ V be two distinct nodes of the ring with a = (u + v − 2) mod n and

α′ = α1|u−v|=1. For a single contribution of node u in Algorithm 7.3 on the ring graph, the privacy
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loss to node v, εu→v, is bounded by:

α′ log(T ) cos
(

2πa
n

)

nσ2
+

2α

nσ2

n−1∑

k=1

cos
πak

n
log

3 csc2(πk/n)

4
,

in the case of equal probability between going left, right, or self-looping. Furthermore, if the

probability of self-looping is set to κ > 0, then εu→v is bounded by

α′

nσ2
+

α(1− κ)

nσ2

T∑

t=2

n∑

k=1

cost−1 2πk

n
cos

2π(a + 1)k

n
.

Sketch of proof. At a high level, we use the fact that the adjacency matrix for a ring graph

is a circulant matrix, so its eigenvectors are the Fourier modes. Therefore, its full spectral

decomposition can be easily computed. ■

To get an intuition regarding Theorem 7.12, consider two nodes that are close to each other. For

simplicity of calculation, consider nodes 1 and 2 and the statement of the theorem. Then a = 0

and cost−1(2πk/n) cos(2π(a + 1)k/n) = cost(2πk/n).

Therefore, εu→v ≤ α
σ2n

+ α(1−κ)
σ2n

∑n
k=1

cos2(2πk/n)
1−cos(2πk/n) .

7.3.3 Experiments

In this section, we illustrate our results numerically on synthetic and real graphs and datasets

and show that our randomwalk approach achieves superior privacy-utility trade-offs compared

to gossip as long as the mixing time of the graph is good enough. The code is available at

https://github.com/totilas/DPrandomwalk

Privacy losses and comparison with the gossip counterpart. We generate synthetic graphs

with n = 2048 nodes and report the privacy loss averaged over 5 runs for every pair of

nodes of the graphs as a function of the length of their shortest path in Figure 6.1(a). The

transition matrix is computed using the Hamilton weighting. To compare with the private gossip

algorithm [Cyf+22], we consider the task of averaging (thus with L = µ = 2) and consider

the same precision level and the same graphs: an exponential graph, an Erdös-Rényi graph

with q = c log(n)/n for c > 1, a grid and a geometric random graph. Our private random

walk approach incurs a smaller privacy loss for close enough nodes than the private gossip

algorithm. Remarkably, our approach improves upon the baseline local DP loss even for very

close nodes. Conversely, the privacy loss of our approach is generally higher for more distant

nodes. Nevertheless, random walks offer uniformly better privacy guarantees than gossip

algorithms for graphs with good connectivity such as Erdös-Rényi graphs or expanders.
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(a) Comparison of privacy loss for random walks in
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(b) Private logistic regression on the Houses dataset
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Figure 7.3 – Comparison with Muffliato and experiments on Houses

Logistic regression on synthetic graphs. We train a logistic regression model on a bina-

rized version of the UCI Housing dataset.4 The objective function corresponds to fv(x) =
1

|Dv |
∑

(d,y)∈Dv
log(1 + exp(−yx⊤d)) where d ∈ Rd and y ∈ {−1, 1}. As in other chapters, we

standardize the features, normalize each data point, and split the dataset uniformly at random

into a training set (80%) and a test set (20%). We further split the training set across 2048 users,

resulting in local datasets of 8 samples each.

In a first experiment, we compare centralized DP-SGD, local DP-SGD, and our random

walk-based DP-SGD. For all algorithms, we follow common practice and clip the updates to

control the sensitivity tightly. We set ε = 1 and δ = 10−6. Following Chapter 5, we use the

mean privacy loss over all pairs of nodes (computed by applying Theorem 7.7) to set the noise

level needed for our random walk-based DP-SGD. Figure 7.3(b) reports the objective function

through iterations for complete, hypercube, and random geometric graphs. Experimentally,

the behavior is the same for all the graphs, meaning that the token walk is diverse enough in

every case to have a behavior similar to a uniformly random choice of nodes. The improvement

in the privacy-utility trade-off compared to the local DP is significant.

We then compare our random walk algorithm to its gossip counterpart [Cyf+22] on the

same logistic regression task. For both algorithms, we fix the mean privacy loss ε̄ across all

pairs of nodes to three different levels (ε̄ ∈ {0.5, 1, 2}) and we report the accuracy reached by

each algorithm on 4 graphs: complete, exponential, geometric and grid. As shown in Table 7.1,

our random walk algorithm outperforms gossip in all cases, which can be explained by a

combination of two factors. First, as seen previously in Figure 7.3(a), our algorithm yields a

4https://www.openml.org/d/823/
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7.3 Extension to arbitrary graphs

Table 7.1 – Model accuracy at various mean privacy loss levels averaged over 8 runs.

Graph Gossip Random walk

Mean Privacy Loss of 0.5
Complete 0.65± 0.10 0.841± 0.07
Exponential 0.70± 0.10 0.818± 0.09
Geometric 0.60± 0.07 0.795± 0.06
Grid 0.60± 0.07 0.803± 0.10

Mean Privacy Loss of 1
Complete 0.70± 0.10 0.900± 0.04
Exponential 0.77± 0.05 0.883± 0.05
Geometric 0.66± 0.10 0.873± 0.05
Grid 0.73± 0.10 0.848± 0.07

Mean Privacy Loss of 2
Complete 0.83± 0.06 0.940± 0.02
Exponential 0.89± 0.04 0.937± 0.01
Geometric 0.67± 0.04 0.933± 0.02
Grid 0.72± 0.10 0.919± 0.02

lower mean privacy loss for graphs with good expansion property, especially when the degree

of the nodes is high (because the privacy guarantees of gossip degrade linearly with the degree,

while random walk is insensitive to it). This gain directly leads to less noise injection when

fixing the mean privacy loss, and thus better utility. The second factor that explains why the

gain in utility is so pronounced (even for the grid) comes from differences in the SGD version

of gossip and random walk. In both methods, the privacy guarantee degrades as a function of

the number of participations of nodes (linearly in Rényi DP). In gossip, allowing each node to

participate 10 times means that the model will essentially be learned by applying 10 “global”

gradient updates (i.e., aggregated over the n nodes), because all local gradients are gossiped

until convergence between each gradient computation [see Algorithm 3 in Cyf+22]. In our

randomwalk algorithm, themodel is learned by applying 10×n “local” gradient updates. Even

if this represents the same amount of information about the data, better progress is made with

many noisy steps than with a small number of less noisy steps, in the same way as mini-batch

SGD tends to progress faster than GD in practice.

Privacy loss on real graphs and communicability. We consider two real-world graph

datasets well-suited for community detection: (i) The Facebook Ego dataset [LM12] represents

subgraphs of the Facebook network, where users are nodes and edges correspond to the

friendship relation, and each subgraph corresponds to the set of friends of a unique user that

is removed from the subgraph; (ii) The Davis Southern women social network [Rob00] is a

graph with 32 nodes which corresponds to a bipartite graph of social event attendance by

women and has been used in Koloskova, Stich, and Jaggi [KSJ19] and Pasquini, Raynal, and
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Random Walks under Network Differential Privacy

Figure 7.4 – Link between graph structure and privacy loss. Left: (a) example of Facebook Ego graph
communicability and privacy loss, logarithmic scale. Middle: (b) same on the Southern women graph.
Right: (c) the corresponding mean privacy loss and Katz centrality.
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Troncoso [PRT23]. We report side-by-side the matrix of pairwise privacy losses and of the

communicability in Figure 7.5(a) and Figure 7.5(b). This confirms the similarity between the

two quantities as discussed in Section 7.3.1. We also report the Katz centrality compared to the

mean privacy loss for each node in Figure 7.5(c), showing that the two quantities also have

similar behavior.

We provide other numerical experiments in Appendix D.8: we report the privacy loss on

the other Facebook Ego graphs and study the impact of data heterogeneity.

7.4 Conclusion

In this chapter, we analyzed the convergence and privacy guarantees of private random walks

on complete graphs and then extend the approach to arbitrary graphs. Our results show that

random walk-based decentralized algorithms provide favorable privacy guarantees compared

to gossip algorithms as presented in Chapter 5, and establish a link between the privacy loss

between two nodes and the notion of communicability in graph analysis. Remarkably, as long

as the spectral gap of the communication graph is large enough, the random walk approach

nearly bridges the gap between the local and the central models of differential privacy. Our

results could be broadened by showing convergence under more general hypotheses. Other

extensions could include skipping some nodes in the walk, considering latency, or having

several tokens running in parallel. Another possible direction is to consider other updates than

stochastic gradient descent, such as ADMM algorithms, as done in the next Chapter 8.
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Chapter 8

From Noisy Fixed-Point Iterations to

Private ADMM

In this chapter, we study differentially private machine learning algorithms as instances of noisy

fixed-point iterations, in order to derive privacy and utility results from this well-studied frame-

work. We show that this new perspective recovers popular private gradient-based methods

like DP-SGD and provides a principled way to design and analyze new private optimization

algorithms in a flexible manner. Focusing on the widely-used Alternating Directions Method of

Multipliers (ADMM), we use our general framework to derive novel private ADMMalgorithms

for centralized, federated and decentralized learning. For these three algorithms, we establish

strong privacy guarantees leveraging privacy amplification by iteration and by subsampling.

Finally, we provide utility guarantees using a unified analysis that exploits a recent linear

convergence result for noisy fixed-point iterations.

This chapter corresponds to the paper [CBB23].

8.1 Introduction

In this chapter, we take a step back from decentralized algorithms and revisit the general prob-

lem of private Empirical Risk Minimization (ERM) from the perspective of fixed-point iterations

[BC11], which compute fixed points of a function by iteratively applying a non-expansive

operator T . Fixed point iterations are well-studied and widely applied in mathematical opti-

mization, automatic control, and signal processing. They provide a unifying framework that

encompasses many optimization algorithms, from (proximal) gradient descent algorithms to

the Alternating DirectionMethod of Multipliers (ADMM), and comewith a rich theory [CP21].

Specifically, we study a general noisy fixed-point iteration, where Gaussian noise is added to the

operator T at each step. We also consider a (possibly randomized) block-coordinate version,
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From Noisy Fixed-Point Iterations to Private ADMM

where the operator is applied only to a subset of coordinates. As particular cases of our frame-

work, we show that we can recover DP-SGD (see Section 3.3.2) and a recent coordinate-wise

variant [Man+22]. We then prove a utility bound for the iterates of our general framework by

exploiting recent linear convergence results from the fixed-point literature [CP19].

With this general framework and results in place, we show that we can design and analyze

new private algorithms for ERM in a principled manner. We focus on ADMM-type algorithms,

which are known for their effectiveness in centralized and decentralized machine learning

[Boy+11; WO12; WO13; Shi+14; VBT17; TSB22; ZL22]. Based on a reformulation of ERM as

a consensus problem, we derive private ADMM algorithms for centralized, federated, and

decentralized learning. In contrast to previously proposed private ADMM algorithms that

require ad-hoc algorithmic modifications and customized theoretical analysis [Hua+19; ZZ17;

ZKL18; Din+20], our algorithms and utility guarantees follow directly from our analysis of the

general noisy fixed-point iteration. In particular, we are the first to our knowledge to derive

a general convergence rate analysis of private ADMM that can be used for the centralized,

federated, and decentralized settings. We leverage privacy amplification by iteration [Fel+18]

and by subsampling [MTZ19] to prove DP guarantees for our private ADMM algorithms. It

extends the use of privacy amplification by iteration technique from DP-SGD to private ADMM

algorithms.

More generally, our work stands out as we are not aware of any prior work that considers the general

perspective of noisy-fixed point iterations to design and analyze differentially private optimization

algorithms.

Related work on Private ADMM. Due to the flexibility and effectiveness of ADMM for

centralized and decentralized machine learning [Boy+11; WO12; Shi+14; VBT17], differentially

private versions of ADMM have been studied for the centralized [Sha+21], federated [Hua+19;

Cao+21; RK22; Hu+19], and fully decentralized [ZZ17; ZKL18; Din+20] settings. These ap-

proaches are based on ad-hoc algorithmic modifications and customized convergence analysis.

In particular, the privacy guarantees usually rely on perturbation of the primal variables, often

through noise addition to the first-order approximation of the corresponding subproblem, simi-

larly to DP-SGD [ZZ17; Cao+21; Din+20; Sha+21]. This leads to complex convergence analysis

with potentially restrictive assumptions, and results in privacy guarantees that are difficult to

interpret and are often limited to LDP. In contrast, our framework leads to the addition of noise

to the dual variable and the privacy analysis requires no additional hypothesis compared to

standard ADMM. Furthermore, our centralized, federated and fully decentralized algorithms

and their analysis all naturally follow from our generic (block-wise) noisy fixed point iteration

formulation. Lastly, except for Cao et al. [Cao+21] who considered only the trusted server

setting, we are the first to achieve user-level DP for federated and fully decentralized ADMM.
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Finally, as discussed below, we are the first to show that ADMM can benefit from privacy

amplification to obtain better privacy-utility trade-offs.

8.2 Background on Fixed-Point Iterations and ADMM

In this section, we introduce the necessary background that will constitute the basis of our

contributions. We start by providing basic intuitions and results about the fixed-point iterations

framework. Then, we show how ADMM fits into this framework.

8.2.1 Fixed-Point Iterations

Let us consider the problem of finding a minimizer (or generally, a stationary point) of a

function f : U → R, where U ⊆ Rp. This problem reduces to finding a point u∗ ∈ U such

that 0 ∈ ∂f(u∗), or ∇f(u∗) = 0, when f is differentiable. A generic approach to compute u∗ is

to iteratively apply an operator T : U → U such that the fixed points of T , i.e., the points u∗

satisfying T (u∗) = u∗, coincide with the stationary points of f . The iterative application of T

starting from an initial point u0 ∈ U constitutes the fixed-point iteration framework [BC11]:

uk+1 ≜ T (uk). (8.1)

We denote by I the identity operator, i.e. I(u) ≜ u. To analyze the convergence of the sequence

of iterates to a fixed point of T , various assumptions on T are considered.

Definition 8.1 (Non-expansive, contractive, and λ-averaged operators). Let T : U → U and

λ ∈ (0, 1). We say that:

• T is non-expansive if it is 1-Lipschitz, i.e., ∥T (u)− T (u′)∥ ≤ ∥u− u′∥ for all u, u′ ∈ U .
• T is τ -contractive if it τ -Lipschitz with τ < 1.

• T is λ-averaged if there exists a non-expansive operator R such that T = λR + (1− λ)I .

Hereafter, we will focus on λ-averaged operators that correspond to a barycenter between

the identity mapping and a non-expansive operator. This family encompasses many popular

optimization algorithms. For instance, when f is convex and β-smooth, the operator T =

I − γ∇f , which corresponds to gradient descent, is γβ/2-averaged for γ ∈ (0, 2/β). The

proximal point, proximal gradient and ADMM algorithms also belong to this family [BC11].

By the Krasnosel’skii Mann theorem [Byr03], the iterates of a λ-averaged operator converge.

Hence, formulating an optimization algorithm as the application of a λ-averaged operator allows us to

reuse generic convergence results.
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From Noisy Fixed-Point Iterations to Private ADMM

The rich convergence theory of fixed point iterations goes well beyond the simple iteration

(8.1), see [CP21] for a recent overview. In this chapter, we leverage several extensions of this

theory. First, we consider inexact updates, where each application of T is perturbed by additive

noise of bounded magnitude. Such noise can arise because the operator is computed only ap-

proximately (for higher efficiency) or due to the stochasticity in data-dependent computations.

Another extension considers T operating on a decomposable space U = U1 × · · · × UB with

B blocks, i.e.,

T (u) ≜ (T1(u), . . . , TB(u)), where Tb : U → Ub,∀b.

Here, it is possible to update each block separately in order to reduce per-iteration computational

costs and memory requirements, or to facilitate decentralization [Mao+20]. This corresponds

to replacing the update in (8.1) by:

∀b : uk+1,b = uk,b + ρk,b(Tb(uk)− uk,b), (8.2)

where ρk,b is a Boolean (random) variable that encodes if block b is updated at iteration k.1

Various strategies for selecting blocks are possible, such as cyclic updates or random sampling

schemes. A generic convergence analysis of fixed-point iterations under both inexact and

block updates has been proposed by Combettes and Pesquet [CP19], which we leverage in our

analysis.

8.2.2 ADMM as a Fixed-Point Iteration

We now present how ADMM can be defined as a fixed-point iteration. ADMM minimizes

the sum of two (possibly non-smooth) convex functions with linear constraints between the

variables of these functions, which can be formulated as:

minimize
x, z

f(x) + g(z)

subject to Ax + Bz = c
(8.3)

ADMM is often presented as an approximate version of the augmented Lagrangian method,

where the minimization of the sum in the primal is approximated by the alternating minimiza-

tions on x and z. However, this analogy is not fruitful for theoretical analysis, as no proof

of convergence only relies on bounding this approximation error to analyze ADMM [EY15].

A more useful characterization of ADMM is to see it as a splitting algorithm [EY15], i.e., an

approach to find a fixed point of the composition of two (proximal) operators by performing

operations that involve each operator separately. For completeness we recap the definition of

proximal operator.

1Note that these block updates can be seen as projections of the global update and thus are also non-expansive.
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8.3 A General Noisy Fixed-Point Iteration for Privacy Preserving Machine Learning

Definition 8.2 (Proximal operator). Let f : U ⊂ Rp → R ∪ {+∞} be a convex function that is

lower semi-continuous and with its image not reduced to {+∞}. The proximal operator proxf is

defined for v ∈ Rp by:

proxf (v) = arg min
x

(
f(x) +

1

2
∥x− v∥2

)

Specifically, ADMM can be defined through the Lions-Mercier operator [LM79]. Given two

proximable functions p1 and p2 and parameter γ > 0, the Lions-Mercier operator is:

Tγp1,γp2 = λRγp1Rγp2 + (1− λ)I, (8.4)

where Rγp1 = 2 proxγp1
−I and Rγp2 = 2 proxγp2

−I . This operator is λ-averaged, and it can be

shown that if the set of the zeros of ∂(f + g) is not empty, then the fixed points of Tγp1,γp2 are

exactly these zeros [Boy+11].

The fixed-point iteration (8.1) with Tγp1,γp2 is known as the Douglas-Rachford algorithm,

and ADMM is equivalent to this algorithm applied to a reformulation of (8.3) as minu p1(u) +

p2(u) with p1(u) = (−A▷f)(−u−c) and p2(u) = (−B ▷g)(u), where we denote by (M ▷f)(y) =

inf{f(x) | Mx = y} the infimal postcomposition [GB14]. For completeness, we show in

Appendix E.2.1 how to recover the standard ADMM updates from this formulation.

Our analysis builds upon privacy amplification results. This includes amplification by

subsampling [MTZ19]: if the above algorithm A is executed on a random fraction q of D, then it

satisfies (α,O(α∆2q2/2σ2))-RDP. We also use privacy amplification by iteration [Fel+18; AT22].

This technique captures the fact that sequentially applying a non-expansive operator improves

privacy guarantees for the initial point as the number of subsequent updates increase. Feldman

et al. [Fel+18] and Altschuler and Talwar [AT22] applied this result to ensure differential

privacy for SGD-type algorithms. We use this result in tandem with the generic fixed-point iteration

approach to develop and analyze the privacy of ADMM algorithms.

8.3 A General Noisy Fixed-Point Iteration for Privacy Preserving

Machine Learning

In this section, we formulate privacy preserving machine learning algorithms as instances of

a general noisy fixed-point iteration. We show that we can recover popular private gradient

descent methods (such as DP-SGD) from this formulation, and we provide a generic utility

analysis.
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8.3.1 Noisy Fixed-Point Iteration

Algorithm 8.1: Private fixed point iteration

1 Input: Non-expansive operator R = (R1, . . . , RB) over 1 ≤ B ≤ p blocks, initial point
u0 ∈ U , step sizes (λk)k∈N ∈ (0, 1], active blocks (ρk)k∈N ∈ {0, 1}B , errors
(ek)k∈N, privacy noise variance σ2 ≥ 0

2 for k = 0, 1, . . . do
3 for b = 1, . . . , B do
4 uk+1,b = uk,b + ρk,bλk(Rb(uk) + ek,b + ηk+1,b − uk,b) with ηk+1,b ∼ N

(
0, σ2Ip

)

Given a dataset D = (d1, . . . , dn), we aim to design differentially private algorithms to

approximately solve the ERM problems of the form:

minimize
u ∈ U ⊆ Rp

1

n

n∑

i=1

f(u; di) + r(u), (8.5)

where f(·; di) is a (typically smooth) loss function computed on data item di and r is a (typically

non-smooth) regularizer. We denote f(u;D) ≜ 1
n

∑n
i=1 f(u; di).

To solve this minimization problem, we propose to consider the general noisy fixed-point

iteration described in Algorithm 8.1. The core of each update applies a λk-averaged operator

constructed from a non-expansive operator R, and a Gaussian noise term added to ensure

differential privacy via the Gaussian mechanism (see Proposition 3.7). Algorithm 8.1 can use

(possibly randomized) block-wise updates (B > 1) and accommodate additional errors in

operator evaluation (in terms of ek).

Despite the generality of this scheme, we show in Section 8.3.3 that we can provide provide

a unified utility analysis under the only assumption that the operator R is contractive.

8.3.2 Recovering Private Gradient-based Methods from the Noisy Fixed-Point

Iteration

Differentially Private Stochastic Gradient Descent (DP-SGD) [BST14; Aba+16] is the most

widely used private optimization algorithm (see Section 3.3.2). In Proposition 8.3, we show

that we recover DP-SGD from our general noisy fixed-point iteration (Algorithm 8.1).

Proposition 8.3 (DP-SGD as a noisy fixed-point iteration). Assume that f(·; d) is β-smooth

for any d, and let r(u) = 0. Consider the non-expansive operator R(u) ≜ u − 2
β∇f(u;D). Set

B = 1, λk = λ = γβ
2 with γ ∈ (0, 2

β ), and ek = 2
β (∇f(uk)−∇f(uk; dik

)) with ik ∈ {1, . . . , n}.a
Then, Algorithm 8.1 recovers DP-SGD [BST14; Aba+16], i.e., the update at step k + 1 is uk+1 =

uk−γ(∇f(uk; dik
) + η′

k+1) with η′
k+1 ∼ N

(
0, β2

4 σ2I
)
. The term ek corresponds to the error due
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to evaluating the gradient on dik
only, and satisfies E[∥ek∥] ≤ 4L/β when f(·; d) is L-Lipschitz

for any d.

aOne can draw ik uniformly at random, or choose it so as to do deterministic passes over D.

The privacy guarantees of DP-SGD can be derived: first, by observing that R(uk) + ek =

uk −∇fik
(uk; dik

) is itself non-expansive, and then applying privacy amplification by iteration,

as done in [Fel+18]. Alternatively, composition and privacy amplification by subsampling can

be used [MTZ19].

Similarly, we also recover Differentially Private Coordinate Descent (DP-CD) [Man+22].

Proposition 8.4 (DP-CD as a noisy fixed-point iteration). Consider the same setting as in

Proposition 8.3, but with B > 1 blocks (coordinates), and Rb(u) ≜ ub − 2
β∇bf(u;D), where

∇bf is the b-th block of∇f , and ek = 0. Then Algorithm 8.1 reduces to the Differentially Private

Coordinate Descent (DP-CD) algorithm [Man+22].

Utility guarantees for DP-SGD and DP-CD can be obtained as instantiations of the general

convergence analysis of Algorithm 8.1, presented in Section 8.3.3.

8.3.3 Utility Analysis

In this section, we derive a utility result for our general noisy fixed-point iteration when the

operator R is contractive (see Definition 8.1). For gradient-based methods, this holds notably

when g is smooth and strongly convex. This is also the case for ADMM [see GB14; Ryu+20,

and references therein for contraction constants under various sufficient conditions]. Our

result, stated below, leverages a recent convergence result for inexact and block-wise fixed-point

iterations [CP19]. The proof can be found in Appendix E.1.

Theorem 8.5 (Utility guarantees for noisy fixed-point iterations). Assume that R is τ -

contractive with fixed point u∗. Let P [ρk,b = 1] = q for some q ∈ (0, 1]. Then there exists a

learning rate λk = λ ∈ (0, 1] such that the iterates of Algorithm 8.1 satisfy:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽

(
1− q2(1− τ)

8

)k

D

+ 8

( √
pσ + ζ

√
q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)

where D ≜ ∥u0 − u∗∥2, p is the dimension of u, σ2 > 1− τ is the variance of the added Gaussian

noise, and E[∥ek∥2] ≤ ζ2 for some ζ ≥ 0.
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Theorem 8.5 shows that our noisy fixed-point iteration enjoys a linear convergence rate up to

an additive error term. The linear convergence rate depends on the contraction factor τ and the

block activation probability q. The additive error term is ruled by the noise scale σ
√

p+ζ, where

σ is due to the Gaussian noise added to ensure DP and ζ captures some possible additional

error. Under a given privacy constraint, running more iterations requires to increase σ (due to

the composition rule of DP), yielding a classical privacy-utility trade-off ruled by the number

of iterations. We investigate this in details for private ADMM algorithms in Section 8.4.

8.4 Private ADMMAlgorithms

We now use our general noisy fixed-point iteration framework introduced in Section 8.3 to

derive and analyze private ADMM algorithms for the centralized, federated and decentralized

learning settings.

8.4.1 Private ADMM for Consensus

Given a dataset D = (d1, . . . , dn), we aim to solve an ERM problem of the form given in (8.5).

This problem can be equivalently formulated as a consensus problem [Boy+11] that fits the

general form (8.3) handled by ADMM:

minimize
x ∈ Rnp, z ∈ Rp

1

n

n∑

i=1

f(xi; di) + r(z)

subject to x− In(p×p)z = 0,

(8.6)

where x = (x1, . . . , xn)⊤ is composed of n blocks (one for each data item) of size p and

In(p×p) ∈ Rnp×p denotes n stacked identity matrices of size p × p. For convenience, we will

sometimes denote fi(·) ≜ f(·; di).

To privately solve problem (8.6), we apply our noisy fixed-point iteration (Algorithm 8.1)

with the non-expansive operator Rγp1Rγp2 corresponding to ADMM (see Section 8.2.2). In-

troducing the auxiliary variable u = (u1, . . . , un) ∈ Rnp initialized to u0 and exploiting the

separable structure of the consensus problem (see Appendix E.2 for details), we obtain the

following (block-wise) updates:

zk+1 = proxγr

(
1
n

∑n
i=1 uk,i

)
, (8.7)

xk+1,i = proxγfi
(2zk+1 − uk,i) (8.8)

uk+1,i = uk,i + 2λ
(
xk+1,i − zk+1 + 1

2ηk+1,i

)
. (8.9)
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Algorithm 8.2: Centralized private ADMM

1 Input: initial vector u0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, γ > 0
2 for k = 0 to K − 1 do
3 ẑk+1 = 1

n

∑n
i=1 uk,i

4 zk+1 = proxγr (ẑk+1)

5 for i = 1 to n do
6 xk+1,i = proxγfi

(2zk+1 − uk,i)

7 uk+1,i = uk,i + 2λ
(
xk+1,i − zk+1 + 1

2ηk+1,i

)
with ηk+1,i ∼ N

(
0, σ2Ip

)

8 return zK

From these updates and together with the possibility to randomly sample the blocks in

our general scheme, we can naturally obtain different variants of ADMM for the centralized,

federated and decentralized learning. In the remainder of this section, we present these variants,

the corresponding trust models, and prove their privacy and utility guarantees.

Remark 8.6 (General private ADMM). Our private ADMM algorithms for the consensus

problem (8.6) are obtained as special cases of a private algorithm for the more general problem (8.3).

We present this algorithm in Appendix E.2.2. In Appendix E.3, we prove its privacy guarantees via

a sensitivity analysis of the general update involving matrices A and B, under the only hypothesis

that A is full rank. Then, we instantiate these general results to obtain privacy guarantees for private

ADMM algorithms presented in this section.

8.4.2 Centralized Private ADMM

In the centralized setting, a trusted curator holds the dataset D and seeks to release a model

trained on it with record-level DP guarantees [CMS11]. Our private ADMM algorithm for this

centralized setting closely follows the updates (8.7)-(8.9). The version shown in Algorithm 8.2

cycles over the n blocks in a fixed order, but thanks to the flexibility of our scheme we can

also randomize the choice of blocks at each iteration k, e.g., update a single random block or

cycle over a random perturbation of the blocks. Note that at the end of the algorithm, we only

release zK , which is sufficient for all practical purposes. Returning xK would violate differential

privacy as its last update interacts with the data through proxγfi
without subsequent random

perturbation. The privacy guarantees of the algorithm are as follows.

Theorem 8.7 (Privacy of centralized ADMM). Assume that the loss function f(·, d) is L-

Lipschitz for any data record d and consider record-level DP. ThenAlgorithm 8.2 satisfies (α, 8αKL2γ2

σ2n2 )-

RDP.
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Sketch of proof. We bound the sensitivity of the ADMM operator by relying on the structure of

our updates, the strong convexity of proximal operators and known bounds on the sensitivity

of the arg min of strongly convex functions. The result then follows from composition. ■

Theorem 8.7 shows that the privacy loss of centralized ADMM has a similar form as that of

state-of-the-art private gradient-based approaches like DP-SGD. The factor K comes from the

composition over the K iterations, while the L2γ2/n2 factor comes from the sensitivity of the

ADMM operator. Crucially, the 1/n2 term allows for good utility when the number of data

points is large enough. We also see that, similar to output perturbation [CMS11], the strong

convexity parameter 1/γ of the proximal updates can be used to reduce the sensitivity.

By combining Theorem 8.7 and our generic utility analysis (Theorem 8.5 with q = 1), we

obtain the following privacy-utility trade-off.

Corollary 8.8 (Privacy-utility trade-off of centralized ADMM). Under the assumptions and

notations of Theorem 8.5 and 8.7, setting K appropriately, Algorithm 8.2 achievesa

E
(
∥uK − u∗∥2

)
= Õ

( √
pαLγ√

εn (1− τ)
+

pαL2γ2

εn2 (1− τ)3

)
.

aÕ ignores all the logarithmic terms.

8.4.3 Federated Private ADMM

We now switch to the Federated Learning (FL) setting [Kai+21] (see Section 2.3). We consider

a set of n users, with each user i having a local dataset di (which may consist of multiple data

points). The function fi(·) = f(·; di) thus represents the local objective of user i on its local

dataset di. As before, we denote the joint dataset by D = (d1, . . . , dn), but we now consider

user-level DP.

Recall that in FL, the algorithm is orchestrated by a (potentially untrusted) central server

and proceeds in rounds. Our federated private ADMM algorithm follows this procedure by

essentially mimicking the updates of its centralized counterpart. Indeed, these updates can be

executed in a federated fashion since (i) the blocks xi and ui associated to each user i can be

updated and perturbed locally and in parallel, and (ii) if each user i shares uk+1,i − uk,i with

the server, then the latter can execute the rest of the updates to compute zk+1. In particular,

we do not need to send xi to the server during training (the consensus is achieved through

z). On top of this vanilla version, we can natively accommodate user sampling (often called

“client sampling” in the literature), which is a key property for cross-device FL as it allows to

improve efficiency and to model partial user availability [Kai+21]. User sampling is readily

obtained from our general scheme by choosing a subset of m blocks (users) uniformly at

random. Algorithm 8.3 gives the complete procedure.
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Algorithm 8.3: Federated private ADMM

1 Input: initial point z0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, parameter
γ > 0, number of sampled users 1 ≤ m ≤ n

2 Server loop:
3 for k = 0 to K − 1 do
4 Subsample a set S of m users
5 for i ∈ S do
6 ∆uk+1,i = LocalADMMstep(zk, i)
7 ẑk+1 = zk + 1

n

∑
i∈S ∆uk+1,i

8 zk+1 = proxγr(ẑk+1)

9 return zK

10 LocalADMMstep(zk, i):
11 Sample ηk+1,i ∼ N

(
0, σ2Ip

)

12 xk+1,i = proxγfi
(2zk − uk,i)

13 uk+1,i = uk,i + 2λ
(
xk+1,i − zk + 1

2ηk+1,i

)

14 return uk+1,i − uk,i

The privacy guarantees of FL algorithms can be analyzed at two levels [NBD22]. The first

level, corresponding to local DP [DJW13; Kas+08], is the privacy of each user with respect to

the server (who observes the sequence of invidivual updates) or anyone eavesdropping on the

communications. The second level, corresponding to central DP, is the privacy guarantee of

users with respect to a third party observing only the final model. Our algorithm naturally

provides these two levels of privacy, as shown in the following theorem.

Theorem 8.9. Assume that the loss function f(·, d) is L-Lipschitz for any local dataset d and

consider user-level DP. Let Ki be the number of participations of user i. Then, Algorithm 8.3

satisfies (α, 8αKiL
2γ2

σ2 )-RDP for user i in the local model. Furthermore, if m < n/5 and α ≤
(
M2σ2/2− log

(
5σ2

))
/
(
M + log(mα/n) + 1/

(
2σ2

))
where M = log(1 + 1/(m

n (α − 1))),

then it also satisfies (α, 16αKL2γ2

σ2n2 )-RDP in the central model.

Sketch of proof. The local privacy guarantee follows from a sensitivity analysis, similarly to the

centralized case. Then, we obtain the central guarantee by using amplification by subsampling

and the aggregation of user contributions. ■

As expected, the local privacy guarantee does not amplify with the number of users n: since

the server observes all individual updates, privacy only relies on the noise added locally by the

user. In contrast, the central privacy guarantee benefits from both amplification by subsampling

[MTZ19] thanks to user sampling (which gives a factor m2/n2) and by aggregation of the

contributions of the m sampled users (which gives a factor 1/m2). In the end, we thus recover

the privacy guarantee of the centralized algorithm with the 1/n2 factor. We stress that the
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restriction on m/n and α in Theorem 8.9 is only to obtain the simple closed-form solution, as

done in other works [see e.g. AT22]. In practice, privacy accounting is done numerically, see

Appendix E.3.3 for details.

Remark 8.10 (Secure aggregation). Our federated ADMM algorithm is compatible with the use

of secure aggregation [Bon+17]. This allows the server to obtain
∑

i∈S ∆uk+1,i without observing

individual user contributions. In this case, the sensitivity is divided by m and the privacy of

users with respect to the server is thus amplified by a factor 1/m2. Therefore, for full participation

(m = n), we recover the privacy guarantee of the centralized case.

We provide the privacy-utility trade-off by resorting to Theorem 8.5, where we fix q =

m/n = r with r ∈ (0, 1/5].

Corollary 8.11 (Privacy-utility trade-off of federated ADMM in the central model). Under

the assumptions and notations of Theorem 8.5 and 8.9, setting K appropriately, and also m = rn

for r ∈ (0, 1/5), Algorithm 8.3 achieves

E ∥uK − u∗∥2 = Õ
( √

pαLγ√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)3

)
.

8.4.4 Decentralized Private ADMM

Finally, we come back to the decentralized setting at the center of this thesis (see Section 2.4),

focusing on the complete graph. Instantiating our general private ADMM algorithm with

uniform subsampling of a single block at each iteration, we directly obtain a decentralized

version of ADMM (Algorithm 8.4). The algorithm proceeds as follows. The model z0 is

initialized at some user i. Then, at each iteration k, the user with the model zk performs a

local noisy update using its local dataset di, and then sends the resulting zk+1 to a randomly

chosen user. In other words, the model is updated by following a random walk. This random

walk paradigm is quite popular in decentralized algorithms as seen in Chapter 7. In particular,

it requires little computation and communication compared to other algorithms with more

redundancy such as gossip algorithms see in Chapter 6.

It is easy to see that our decentralized algorithm enjoys the same local privacy guarantees

as its federated counterpart (see Theorem 8.9). This provides a baseline protection against

other users, and more generally against any adversary that would eavesdrop on all messages

sent by the users. Yet, this guarantee can be quite pessimistic if the goal is to protect against

other users in the system. Indeed, it is reasonable to assume that each user i has only a limited

view and only observes the messages it receives, without knowing the random path taken by

the model between two visits to i. To capture this and improve privacy guarantees compared

to the local model, we rely on the notion of network DP, as defined in Chapter 4.
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Algorithm 8.4: Decentralized private ADMM

1 Input: initial points u0 and z0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, γ > 0
2 for k = 0 to K − 1 do
3 Let i be the currently selected user
4 Sample ηk+1,i ∼ N

(
0, σ2Ip

)

5 xk+1,i = proxγfi
(2zk − uk,i)

6 uk+1,i = uk,i + 2λ
(
xk+1,i − zk + 1

2ηk+1,i

)

7 ẑk+1 = zk + 1
n(uk+1,i − uk,i)

8 zk+1 = proxγr (ẑk+1)

9 Send zk+1 to a random user

In our case, the view Oj of user j is limited to Oj(A(D)) = (zkl(j))
Kj

l=1 where kl(j) is the

time of l-th contribution of user j to the computation, and Kj is the total number of times

that j contributed during the execution of algorithm. We can show the following network DP

guarantees.

Theorem 8.12. Assume that the loss function f(·, d) is L-Lipschitz for any local dataset d and con-

sider user-level DP. Let α > 1, σ > 2Lγ
√

α(α− 1) and Ki the maximum number of contribution

of a user. Then Algorithm 8.4 satisfies (α, 8αKiL
2γ2 log n

σ2n
)-network RDP.

Sketch of proof. Fixing a single participation of a given user (say i), we have the same local

privacy loss as in the federated case. We then control how much this leakage decreases when

the information reaches another user (say j). To do this, we first quantify the leakage when the

z variable is seen by user j after m steps by relying on privacy amplification by iteration. Then,

thanks to the randomness of the path and the weak convexity of the Rényi divergence, we

can average the different possible lengths m of the path between users i and j in the complete

graph. We conclude by composition over the number Ki of participations of a user. ■

Remarkably, Theorem 8.12 shows that thanks to decentralization, we obtain a privacy

amplification of O(log n/n2) compared to the local DP guarantee. This amplification factor is

of the same order as the one proved in Chapter 7 for a random walk version of DP-SGD, and

matches the privacy guarantees of the centralized case up to a log n factor. To the best of our

knowledge, this is the first result of this kind for ADMM, and the first application of privacy

amplification by iteration to ADMM.

As before, we obtain the privacy-utility trade-off by resorting to Theorem 8.5, but this time

with q = 1/n.
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Corollary 8.13 (Privacy-utility trade-off of decentralized ADMM). Under the assumptions

and notations of Theorem 8.5 and 8.12, setting K appropriately Algorithm 8.4 achieves

E
(
∥uK − u∗∥2

)
= Õ

( √
pαLγ√

εn (1− τ)
+

pαL2γ2

εn (1− τ)3

)
.

Remark 8.14 (Utility guarantees for centralized, federated, and decentralized settings.).

From Corollary 8.8, we observe that the utility for the centralized setting is Õ
(√

pα
ε

1
n

)
(in the

regime n ≫ p). On the other hand, the utility for the decentralized setting is Õ
(√

pα
εn

)
. This

difference captures the shift in hardness from the centralized setting to the decentralized one. For

the federated learning setting, the utility is Õ
(√

pα
εmn

)
, where m is the number of sampled users

at each step. Thus, if m = n (all users contribute at each step), we recover the utility of the

centralized setting. Instead, if m = 1, we are back to the utility of the decentralized setting. These

observations demonstrate that our results on the privacy-utility trade-offs reasonably quantify the

relative hardness of these three settings.

8.5 Conclusion

In this chapter, we provide a unifying view of private optimization algorithms by framing

them as noisy fixed-point iterations. The advantages of this novel perspective for privacy-

preserving machine learning are at least two-fold. First, we give utility guarantees based only

on very general assumptions on the underlying fixed-point operator, allowing us to cover many

algorithms. Second, we show that we can derive new private algorithms by instantiating our

general scheme with particular fixed-point operators. We illustrate this through the design of

novel private ADMM algorithms for the centralized, federated and fully decentralized learning

and the rather direct analysis of their privacy and utility guarantees. We note that an intrinsic

limitation of our approach is that its generality may come at the cost of the tightness of utility

guarantees, as we do not exploit the properties of specific algorithms.

We believe that our framework provides a general and principled approach to design and

analyze novel private optimization algorithms by leveraging the rich literature on fixed-point

iterations [CP21]. In future work, we would like to further broaden the applicability of our

framework by proving (weaker) utility guarantees for λ-averaged operators that are non-

expansive but not contractive. To achieve this, a possible direction is to extend the sublinear

rates of [LFP15] to block-wise iterations.
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Chapter 9

General Summary and Perspectives

9.1 Summary on our Contributions

In this thesis, we investigated how decentralization impacts privacy guarantees. In Chapter 4,

we showed that the standard Decentralized Gradient Descent algorithm exposes nodes to

reconstruction attacks, even when attackers and victims are separated by numerous nodes in

the graph. This work demonstrated that decentralization alone does not ensure privacy unless

combined with other defense mechanisms. In Chapter 5, we introduced two relaxations of

differential privacy that build on the fact that participants only have local knowledge of the

training and adapt the constraints to match the knowledge of a potential attacker. Subsequent

chapters validated the soundness of this approach. The study of gossip algorithms in Chapter 6

illustrated that privacy guarantees are amplified by the accumulation of noise as distance grows

in the graph, and that the computation of the privacy budget matches existing structures in

the graph. It also showed that under this trust setting, the privacy guarantees nearly matches

the ones obtained for the more stringent trust requirements of central differential privacy. In

Chapter 7, we went further in this direction by showing that random walks, thanks to the

randomness of the walks, achieve better privacy-utility trade-off than gossip algorithms when

the spectral gap is large enough. In particular, we showed that we can explicitly relate the gossip

matrix to the privacy guarantees of each pair of nodes, and drew connections with the existing

graph-theoretic notion of communicability. Finally, in Chapter 8, we showed that it is possible

to move beyond Stochastic Gradient Descent-based algorithms to design private optimization

methods by leveraging the fixed-point iteration framework. Specifically, we presented a private

ADMM algorithm that can benefit from privacy amplification mechanisms.

This thesis thus shows that interactions between graphs, algorithms, and privacy are

complex and can exhibit a good synergy. By focusing on very general algorithmic formulations,

we gain on generality but might be less tight than what has been achieved in follow-up works.
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For instance, focusing on the ring topology, [Yak+22] were able to incorporate a detailed

analysis of latency and stragglers. The idea that decentralization can, in some way, mimic a

hidden state within an algorithm and thereby enhance privacy has inspired other works. For

instance, [Bis+24] brings the idea of adding virtual nodes to the graph, [Gue+23] adds more

randomness to walks by adding a probabilistic die out, [Lie+22] uses decentralization as a

way to emulate a shuffling procedure and [All+24] improves over Muffliato’s guarantees by

relying on correlated noise. This thesis continue to open questions in several directions.

9.2 Perspectives

9.2.1 Follow-up Research Directions

Vulnerability to Attacks in Decentralized Learning Our attack uses three hypotheses: the

graph is known, the private database is reduced to a single element, and the protocol is a

synchronous D-GD based on gossip with rather stable gradients (i.e., near convergence or a

small step size regime). It is likely that these three hypotheses can be successfully removed by

designing more complex attacks. For the first, it would be interesting to combine this attack

with an attack on graph topology [Che+21], andmore broadly with existing literature on graph

privacy, to determine whether we can infer enough information from the updates to reconstruct

both the graph and the data. The second point is likely to be the easiest one, as one can directly

take advantage of the progress in attacks on federated learning, such as [Boe+21; Kar+23],

which could yield stronger results. Extending the attack to more complex algorithms such

as random walks or randomized gossip is challenging: it is unclear if sufficient randomness

emerges from these methods to effectively protect the private data of the nodes, or if they

simply require more computational effort. Graphs are prone to combinatorial explosion, so

providing an effective attack may seem implausible if the algorithm is sufficiently random.

However, a training procedure with too much variance is also at odds with optimization goals,

making it unclear whether a sweet spot exists where optimization remains effective but privacy

attacks are mitigated. How to optimize the structure of the graph to minimize the number of

reconstructible nodes, while still ensuring fast convergence, is an interesting open problem.

Graph Optimization in Function of Pre-existing Trust Confidence This graph optimization

can be done not only from the "reconstructibility" point of view explained above, but also more

generally as a graph optimization problem under various pairs of privacy budgets. As we are

able to explicitly connect the gossip matrix W to the privacy loss, optimizing W is the natural

next step. The ability to choose the graph can match practical scenarios. For instance, when

considering a central server which communicates with all the nodes, it is possible to create a

secure channel between any pair of nodes using a Diffie–Hellman key exchange. Similarly to
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what is done in secure aggregation where a sparse but well-connected graph is used [Bel+20],

it makes sense to design communication graphs depending on the affinity between nodes in

the presence of an untrusted central server. In the longer term, this optimization process could

be coupled with objectives beyond mere privacy, such as personalization based on similarities

between nodes [VBT17] or mitigation of heterogeneity issues [LB+23]. Empowering the

participants could stem from communication patterns designed to comply with local nodes’

objectives rather than through a global optimization process.

Extension to Other Algorithms Our work proved the importance of the choice of algorithm

for achieving privacy objectives: randomwalks do not yield the same profile of privacy budgets

between nodes as synchronous gossip does. It is thus natural to explore new methods, as

already investigated in the other works cited above. It seems important to introduce as much

randomness as possible, while avoiding to pay a price in variance when doing so. An inter-

esting direction would be to model more closely the randomness that appears in real-world

decentralized systems, where asynchrony is the norm, dropout or missed packets are unavoid-

able, and communication needs to be compressed. These factors seem to present synergies

with the privacy objective but could also introduce complexities not carefully modeled in our

current representations of algorithms. Delving deeper in this direction could certainly bring

decentralized differential privacy closer to real-world deployment. To create trust, it would

also be important to make the guarantees given to users interpretable, which is often a hurdle

in differential privacy.

9.2.2 Broader Outlook on Differential Privacy

We conclude this thesis with some thoughts on the future of differential privacy. It is quite

common to cite the choice of the privacy budget in differential privacy as the open question to

make DP practical. In my opinion, this question seems particularly useless and represents an

unfair and irrelevant attack on DP: no one can hope that we will discover relevant rules that

would be obvious to follow for every non-technical person without context1. The success of

differential privacy is mainly explained by two properties: firstly, it provides many complex and

beautiful mathematical questions, thus attracting researchers inclined towards theoretical and

rigorous approaches of ethical AI. Secondly, it simplifies the abstract notion of privacy to a single

scalar with the privacy budget. The privacy budget is easy to understand in simple instances:

in the initial Randomized Response, it was understood by participants of sociology studies.

As long as the output is discrete or low-dimensional, the probability histogram depending on

the privacy budget is perfectly clear, and easier to understand than many machine learning

metrics. The question becomes trickier in high-dimensional spaces where we cannot visualize

1If it does not ring a bell, you can go back to Section 3.1.
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the output distribution. In such cases, DP takes a very protective stance by always bounding the

maximum ratio between the most different distributions that could be generated, which means

that it is always matches at least the protection we intuitively expect from a low-dimension

intuition [BCH22]. Going beyond and allowing bigger budgets in some cases requires a better

understanding of high-dimensional spaces and machine learning models, which are interesting

questions not limited to differential privacy.

In the various applications which require higher privacy budgets, auditing and attacks

provide good empirical insights into the concrete risks of reconstruction [Nas+21; CBP24;

ZLS24; Nas+23]. Pursuing this direction improves our understanding and clarifies the desired

order of magnitude for specific use cases. A privacy budget quantifies the complex notion

of privacy, and thus suffers the same fate as other quantifiers: it will always be questioned

and subject to interpretation, and cannot address all dimensions of privacy. A much more

interesting question discussed and partially addressed in this thesis is the trust model and the

granularity of the adjacency relationship.

When designing a privacy budget for ad placement, the most tangible risk for most people

is overly effective personalization, leading them to spend more than necessary. In other words,

no utility-privacy trade-off can be relevant, because the task itself is the privacy threat. The

problem does not stem from the definition of DP; rather, it arises because the goal is inherently

not private. Privacy washing in web tracking or video surveillance face the same limitations:

if you destroy all utility when implementing privacy, maybe the task you are pursuing is an

attack on privacy. In other contexts, however, this opposition is less direct: it should be possible

to design machine learning models that detect tumors without memorizing the identities of

patients who have cancer, or to predict global energy consumption needs at the scale of a

neighborhood without learning the break patterns of every worker. In these cases, the exact

value of the privacy budget is not extremely important. It should rather serve as an indicator

to choose, among different methods, the one with the lowest risk, and the risk is likely to be

manageable, as participants engage because they believe their involvement holds meaningful

value. To be efficient, we should focus on designing tighter analyses, especially to track where

privacy amplification can be found, by decentralizing some pre- or post-processing, by adding

secure aggregation or shuffling. In other words, try to be sharp enough to distinguish between

more and less private algorithms. Trust will not come from going from ε = 19 to ε = 17, but

from the ability to join or stop participating in training, to have a say in the goals of the training

and ensuring models with fair, robust and interpretable behaviors. Privacy is not an island of

itself, it is a piece in the construction of trustworthy machine learning.
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A.1 Examples of Reconstructible Nodes

We illustrate the difficulty of knowing which nodes are reconstructible from explicit graph

characteristics on some small examples reported in Figure A.1. The first graph G1 is the smallest

one, but has the smallest proportion of reconstructible nodes (2/4). Adding a single node as

done in G3 makes all the nodes become reconstructible. However, adding a new node can also

drastically reduce the proportion of reconstructible nodes, as shown in G4. Symmetry is not

enough to prevent reconstruction, as highlighted in G2 where all nodes stay reconstructible.

0

1

2 3

G1
0

1 2

3 4 5

G2
0

1

2 3

4

G3
0

1

2 3

4 5

G4

Figure A.1 – Examples of similar graphs with different reconstructible sets. Attacker is node 0 (red),
reconstructible nodes are in purple, and non-reconstructible ones are in green.
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A.2 Construction of the Covariance Matrix for the Reconstruction Attack on Decentralized
Gradient Descent

A.2 Construction of the Covariance Matrix for the Reconstruction

Attack on Decentralized Gradient Descent

Algorithm A.1 shows how to build the covariance matrix ΣT , necessary for the GLS method.

Algorithm A.1: Building the covariance matrix

1 Input: the graph G, the set of attackers A, the number of iterations T , σ the noise

amplitude

2 Output: The covariance matrix ΣT

3 ΣT ← an empty matrix of size m×m where m = T · |N (A)|;
4 i← 0;

5 for t = 0 to T − 1 do

6 foreach v ∈ N (A) do

7 j ← t · |N (A)|;
8 for t′ = t to T − 1 do

9 foreach v′ ∈ N (A) do

10 C[i, j]← σ2
(∑T

l=0 W t+t′−2l
T ,T

)
[v, v′];

11 C[j, i]← C[i, j] ▷ * [r]Entry (i, j) corresponds to the pair ((t, v), (t′, v′))

j ← j + 1;

12 i← i + 1;

13 return ΣT ;

A.3 Impact of Pairwise Relationship in Reconstruction

In this section, we report our findings on how the relationship between the attacker and its

target affects the probability of reconstruction in gossip averaging. For a given attacker and

target, the reconstruction can either be successful or failed, so it can be seen as a binary label.

So how well can we predict this label based on the relation in the graph? This can be measured

using Kendall rank correlation coefficient. We consider two relation metrics: the length of the

shortest path between the attacker and the target, and their communicability [EH08], a measure

used in graph mining. It is defined as a weighted average of the probability of going from one

node to another in a given number of steps and measures how easy it is to communicate from

one node to the other.

We use the same graphs as in the experiment on centrality, namely random Erdös Rényi

graphs with 0 as the attacker and the Facebook Ego graph 414 where each node plays the

role of the attacker in turn. We report the results in Table A.1. We see that in both cases, the

shortest path length provides a good insight on the reconstruction probability, whereas the

communicability only shows a small correlation.
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Relationship Erdös-Rényi graph Facebook Ego graph

Shortest Path Length −0.44± 0.09 −0.51± 0.13
Communicability 0.35± 0.05 0.08± 0.35

Table A.1 – Kendall rank correlation coefficient between communicability, shortest paths, and the
probability of reconstruction.

A.4 Discussion of the Assumption of Public Knowledge of the Gos-

sip Matrix

In our work, we assume that the attackers know the graph and the gossip matrix. While these

quantities may not be fully known in some use-cases, we believe this is a justified assumption

for the following reasons:

1. In many real-world scenarios, the graph topology is, or can be extracted from, public

information. This is the case when nodes are hospitals in various universities (these

collaborations are typically public knowledge) or financial institutions (e.g., SEC requires

financial ties to be made public), in the context of computations over social network

graphs such as Mastodon, and when learning within blockchain networks or distributed

ledgers.

2. In general, it appears to be unsafe to assume that the graph and gossip matrix W can be

kept fully hidden from the attacker nodes. Since they are part of the learning process,

attacker nodes must know at least their corresponding row. From this knowledge, with

enough attacker nodes, they may be able to know/infer a large part of the graph. In

particular, they can exploit the fact that W must be doubly stochastic. Furthermore,

keeping a graph private while publishing basic statistics (such as the spectral gap or

the number of edges, triangles, or degree distribution) is also known to be hard. For

instance, Chen et al. [Che+21, Section II.C therein] gives an example where a node can

infer the edges of the graph from its own edges and the spectral gap; yet the spectral gap

is often used to determine how many gossip steps are needed to reach a given precision.

Therefore, given the challenge of precisely quantifying the risk of graph reconstruction,

we find it reasonable to assume both the graph and matrix W to be public information.

This stance aligns with the established literature on differential privacy in decentralized

learning, where it is commonly assumed that adversaries have access to the graph and

matrix W [see e.g. Cyf+22, and references therein].
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A.5 Example of reconstruction on Random Geometric graphs
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(a) After 1 iteration
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(b) After 4 iterations
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(c) After 8 iterations

Figure A.2 – Reconstruction after different number of steps of gossip averaging, on a random geometric
graph of 50 nodes uniformly drawn from the unit square and a radius of 0.2. Attackers are in red,
reconstructed nodes in purple, and non-reconstructed ones in green.

Figure A.3 – Reconstruction attack on gossip averaging for several Facebook Ego graphs with different
attackers chosen randomly. The node circled in red is the attacker, with reconstructed nodes shown in
purple and non-reconstructed ones shown in yellow.

A.5 Example of reconstruction on Random Geometric graphs

To illustrate the speed of reconstruction in gossip averaging, we report in Figure A.2 the

reconstruction after 1 iterations, 4 iterations and 8 iterations (doing more iterations does not

allow to reconstruct more nodes). Note that our attack support non-fully connected graph,

although nodes that are part of different components are of course not reconstructed.

A.6 Reconstruction Attacks on Facebook Ego Graphs

Figure A.3 shows the results of our reconstruction attack on gossip averaging for several

Facebook Ego graphs. We report the same graphs twice but with different choices of attackers.

This illustrates that the proportion of reconstructed nodes depends both on the graph structure
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Figure A.4 – Reconstruction attack on D-GD for the Florentine graph showing the true image inputs
(left) and the reconstructions (right). The attacker is the node with the blue borders. Nodes with green
borders are accurately reconstructed, the ones with red borders are not.

Figure A.5 – Reconstruction results on D-GD for the Florentine graph. The first (resp. second) row
shows the true (resp. reconstructed) inputs (Learning rate 10−5 and CNN model from Table A.2). The
indices refer to the node labeling in Figure 4.5 where the attacker is node 0.

and the specific choice of the attacker. Note that in most cases, a vast majority of the nodes of

the same community see their data leaked.

A.7 Additional Experimental Results for Reconstruction Attacks on

D-GD

In Figure A.4, we show the true inputs alongside the reconstructed images for the reconstruction

attack.

In Figure A.5, we show an example of reconstruction on the Florentine graph with the

MNIST dataset using a Convolutional Neural Network (details in Table A.2).
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A.8 Details about the Convolutional Network
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Figure A.6 – Impact of the learning rate on the reconstruction attack on D-GD for the Florentine graph
experiment shown in Figure 4.5. We plot the PSNR (averaged over 4 runs) between the reconstructed
and original images for each of the target nodes and for different learning rates. We use different markers
to classify the nodes that are at a distance of 2 from the attackers and the ones that are at a distance of 3
(The distance here refers to that of the shortest path between the attacker and the target). Points above
the blue horizontal line are reconstructed with good visual quality.

A.8 Details about the Convolutional Network

We report in Table A.2 the following Convolutional Neural Network for the experiments with

MNIST.

Layer Type PyTorch Notation Size Activation/Pooling

Convolution (1, 32) ReLU, Max Pooling
Convolution (32, 64) ReLU, Max Pooling
Fully Connected (4096, 1024) ReLU
Fully Connected (1024, 10) -

Table A.2 – Model Architecture Description

A.9 Influence of the Learning Rate on the Attack on D-GD

In Figure A.6, we show the influence of the learning rate. When the learning rate becomes too

large, gradients vary too much across iterations and it becomes impossible to make accurate

reconstructions.
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B.1 Proof of Theorem 5.5 (Real Aggregation on a Ring)

Proof. We start by proving the utility claim. Algorithm 5.1 adds independent noise with

standard deviation σloc to the token every n − 1 contributions. As there are Kn steps, such

noise is added ⌊Kn/(n− 1)⌋ times. By commutativity, the total noise has standard deviation
√
⌊Kn/(n− 1)⌋σloc.

We now turn to the network differential privacy claim. Let us fix two distinct users u

and v and consider what v learns about the data of u. Recall that the structure of the ring

is assumed to be public. The view Ov of v (i.e., the information observed by v during the

execution of the protocol as defined in Eq. 5.1) thus corresponds to the K values of the token

that she receives. We denote these values by τ v
1 , . . . , τv

K , each of them corresponding to user

contributions aggregated along with random noise. We define the view of v accordingly as:

Ov(A(D)) = (τ v
i )K

i=1. (B.1)

Let us fix i ∈ {2, . . . , K}. By construction, τ v
i − τ v

i−1 is equal to the sum of updates between

two visits of the token. In particular, we have the guarantee that at least one user different

from v has added noise in τv
i − τ v

i−1 (as there are n > n− 1 steps), and that τ v
i − τ v

i−1 does not

contain more than one contribution made by v. It follows that the aggregation τ v
i+1 − τv

i can be

rewritten as Perturb(xi
u; σloc) + z, where z is independent from the contribution of u. By the

(ε, δ)-LDP property of Perturb(·; σloc) and the post-processing property of differential privacy,

we have for any x, x′:

P(τ v
i+1 − τ v

i = τ |xi
u = x) ≤ eεP(τ v

i+1 − τv
i = τ |xi

u = x′) + δ.

For the first token τ v
1 , note it also contains noise with standard deviation σloc added by the

first user, so the same guarantee holds.

Finally, we apply the advanced composition theorem [DRV10] to get a differential privacy

guarantee for theK visits of the token, leading to the final privacy guarantee of (
√

2K log(1/δ′)ε+

Kε(eε − 1), Kδ + δ′)-network DP. ■

B.2 Proof of Theorem 5.7 (Histogram Computation on a Ring)

Proof. The proof is similar in spirit to the real summation case (see Appendix B.1), but leverages

privacy amplification by subsampling to be able to quantify how much information is leaked

by the value of the token (which is now a histogram).
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B.3 Relation between Network DP on a Ring and Pan-Privacy

We start by the utility claim (expected number of contributions). There are Kn steps with

at each step a probability γ of adding a random response, plus the γn random responses at

initialization, leading to a total of γn(K + 1) random responses in expectation.

We now turn to the differential privacy guarantee. The view of a user v is the content of

the token at each visit of the token as defined in Eq. B.1, except that each τ v
i ∈ NL is now a

histogram over the domain [L]. More specifically, for i ∈ {2, . . . , K}, the difference τ v
i+1 − τ v

i

between two consecutive tokens is now a discrete histogram of n answers obtained by RRγ

(each of them is randomwith probability γ). Similarly, in the first round, the token is initialized

with γn random elements. Therefore, we can apply results from amplification by shuffling,

because a discrete histogram carries the same more information as a shuffle of the individual

values. In particular, we can use Corollary 9 from [Erl+19] that we recall below.

Theorem B.1 (Erlingsson). Let n ≥ 100, 0 < ε0 < 1
2 and δ < 1

100 . For a local randomizer

ensuring ε0-LDP, the shuffling mechanism is (ε, δ)-differentially private with

ε = 12ε0

√
log(1/δ)

n
.

We can apply this result to the information revealed by the value of the token between

two visits to user v. The required LDP guarantee is ensured by the use of the randomized

response mechanism, where we set γ so that RRγ satisfies 12ε
√

log(1/δ)
n -LDP, leading to an

(ε, δ)-DP guarantee after shuffling. We conclude by the application of advanced composition

[DRV10]. ■

B.3 Relation between Network DP on a Ring and Pan-Privacy

In this section, we highlight an interesting connection between the specific case of network

DP on a ring topology and the pan-privacy model [Dwo+10]. In the pan-privacy model, raw

data is processed in an online fashion by a central party. This central party is trusted to process

raw data but not to store it in perpetuity, and its storage may be subject to breaches (i.e., its

internal state may become visible to an adversary). It can thus be seen as an intermediate trust

model between the central and local models. Connections between pan-privacy and the shuffle

model have been recently studied [Bal+20a], allowing in some cases to adapt algorithms from

one setting to the other. Other recent work has studied the relation between pan-privacy with

several breaches and the local model [AJM19].

To formally define pan-privacy, we first need to define what we mean by online algorithms.

An online algorithm receives a stream of raw data and sequentially updates an internal state
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with one data point before deleting it. At the end of the stream, the algorithm publishes a final

output based on its last internal state.

Definition B.2 (Online algorithm). An online algorithm A is defined by a sequence of internal

algorithms A1, . . . and an output algorithm AO. Given an input stream x⃗, the first internal

algorithm A1 : X → I maps x1 to a state s1, and for i ≥ 2, Ai : X × I → I maps xi and

the previous state si−1 to a new state si. At the end of the stream, A publishes a final output by

executing AO : I → O on its final internal state. We denote by AI(x⃗) the internal state of A after

processing stream x⃗.

In pan-privacy, the algorithm is trusted to process a raw data stream, but should protect

its internal states against potential breaches. The moment of the update where the state is

modified by a raw data point is supposed to be atomic. Hence, the observable impact of a

data point is restricted to the internal state and the final output. Below, we state the standard

definition of pan-privacy with a single breach, i.e., the adversary may observe a single internal

state in addition to the final output. Two streams x⃗, x⃗′ are said to be neighboring if they differ

in at most one element.

Definition B.3 (Pan-privacy). An online algorithm A is (ε, δ)-pan private if for every pair of

neighboring streams x⃗ ∼ x⃗′, for every time t, and for every subset T ⊆ I ×O, we have:

P ((AI (x⃗≤t) ,AO (AI(x⃗))) ∈ T ) ≤ eε · P
((
AI

(
x⃗′

≤t

)
,AO

(AI
(
x⃗′))) ∈ T

)
+ δ,

where x⃗≤t denotes the first t elements of stream x⃗.

We can now make a connection between the above pan-privacy definition and our simple

protocols for network DP on a ring topology introduced in Section 5.4, in the case where each

user contributes only once (K = 1 in our notations). In our network DP setting, the internal

state corresponds to the value of the token and the final output is empty (or is equal to the

final state of the token, if one performs an additional cycle over the ring during which the

token is left unchanged to broadcast it to all users). A breach at time t (i.e., observation of

internal state st) corresponds to the observation of the token by the t-th user. Note also that

our neighboring relation on the users’ datasets is equivalent to that on data streams for the

case of K = 1. Therefore, we can simulate a pan-private algorithm as a network DP algorithm

on a ring.

We note that the lack of privacy gains for network DP compared to local DP when consider-

ing a ring topology with collusions (see discussion in Section 5.4.3) is in line with the reduction

of [AJM19], which shows that in pure pan-privacy, protection against multiple breaches is

equivalent to sequentially interactive local privacy.
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B.3 Relation between Network DP on a Ring and Pan-Privacy

While network DP reduces to pan-privacy when the topology is the ring and one considers

simple protocols with a single token and a single contribution per user, we emphasize that

our model is more general and potentially allows superior privacy-utility trade-offs for more

complex protocols and/or topologies. This is illustrated by our results on the complete graph,

where breaches cannot follow an arbitrary pattern. Indeed, as a breach corresponds to sending

the token to a colluding user, this risk is mitigated by the properties of the random walk: as

long as the token is held by non-colluding users, the walk stays unbiased and thus does not

return too quickly to colluding users. This additional structure on the potential breaches give

us the room for stronger guarantees.
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C.1 Preliminary Lemmas and Notations

We conduct our analysis with the Gaussian mechanism that we recall here for readability.

Lemma C.1 (Gaussian mechanism). For α > 1, noise variance σ2, sensitivity ∆ > 0 and

x, y ∈ R such that |x− y| ≤ ∆, we have:

Dα
(N (x, σ2) || N (y, σ2)

) ≤ α∆2

2σ2
.

For the privacy analysis when the graph is private and randomly sampled (Appendix C.5),

we use the following result on the weak convexity of the Rényi divergence [Fel+18].

Lemma C.2 (Quasi-convexity of Rényi divergence [Fel+18]). Let (µi)i∈I and (νi)i∈I be

probability distributions over shared space, such that for all i ∈ I, we have Dα(µi||νi) ≤ c/(α− 1)

for some c ∈ (0, 1]. Let ρ be a distribution over I and µρ and νρ be obtained by sampling i from ρ,

and outputting a sample from µi and νi. Then, we have:

Dα(µρ||νρ) ≤ (1 + c)E [Dα(µi||νi) | i ∼ ρ] .

In the following, we will use the notation u ∼ v to denote that two nodes u and v are

neighbors.

C.2 General Privacy Analysis (Theorem 6.1)

Proof. We need to bound the privacy loss that occurs from the following view:

Ov

(
AT (D)

)
= {(W0:t(x + η))w | {v, w} ∈ Et , 0 ≤ t ≤ T − 1} ∪ {xv} .

We have:

Dα
(Ov(AT (D)) || Ov(AT (D′))

) ≤
T −1∑

t=0

∑

w∈Nt(v)

Dα
(

(W0:t(x + η))w ||
(
W0:t(x

′ + η)
)

w

)
.

We have (W0:t(x
′ + η))w − (W0:t(x + η))w ∼ N ((W0:t(x

′ + η))w − (W0:t(x + η))w, σ2∥(W0:t)w∥2)

with a sensitivity verifying |(W0:t(x
′ + η))w − (W0:t(x + η))w|2 ≤ ∆2(W0:t)

2
u,w with ∆2 the

sensitivity and D ∼u D′. Thus, using Lemma C.1, we have:

Dα
(

(W0:t(x + η))w ||
(
W0:t(x

′ + η)
)

w

) ≤ α∆2

2σ2

(W0:t)
2
u,w

∥(W0:t)w∥2
,
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leading to the desired f(u, v). The mean privacy loss is then obtained by summing the above

inequality for u ̸= v and t < T :

εv =
1

n

∑

u ̸=v

f(u, v) ≤ 1

n

∑

u∈V

α∆2

2σ2

∑

w∈V

∑

t∈PT
{v,w}

(W0:t)
2
u,w

∥(W0:t)w∥2

=
1

n

α∆2

2σ2

∑

t∈PT
{v,w}

∑

w∈V

∑

u∈V

(W0:t)
2
u,w

∥(W0:t)w∥2

=
1

n

α∆2

2σ2

∑

t∈PT
{v,w}

∑

w∈V
1

=
α∆2Tv

2nσ2
,

where Tv =
∑

w∈V |PT
{v,w}| is exactly the number of communications node v is involved in, up

to time T . ■

C.3 Synchronous Muffliato

C.3.1 Utility Analysis (Theorem 6.2)

While the main text presents the result for the 1-dimensional case for simplicity, we prove

here the convergence for the general case where each node holds a vector of dimension D.

Theorem 6.2 is then a direct consequence of Equation (C.1) for D = 1.

Theorem C.3 (Utility analysis). For any T ≥ 0, the iterates (xT )T ≥0 of Muffliato (Algo-

rithm 6.1) verify, for λW the spectral gap and x̄ = 1
n

∑
v∈V xv:

1

2n

∑

v∈V
E
[∥∥∥xT

v − x
∥∥∥

2
]
≤
(

1

n

∑

v∈V
∥xv − x∥2 + Dσ2

)
e−T

√
λW +

Dσ2

n
. (C.1)

Proof. For t ≥ 0 and y ∈ RV×D, using results from Berthier, Bach, and Gaillard [BBG20],

we have, for a vector y ∈ RV×D such that
∑

v∈V yv = 0, ∥Pt(W )y∥2 ≤ 2(1 − √λW )2∥y∥2. In
particular: ∥∥∥Pt(W )(y − y1⊤)

∥∥∥ ≤ 2(1−
√

λW )t
∥∥∥y − y1⊤

∥∥∥
2

,

where 1 with the vector with all entries equal to 1. Since

xt = Pt(W )
(
x +N

(
0, σ2IV×D

))
, t ≥ 0 ,
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we obtain that, for η ∼ N (0, σ2IV×D

)
and η = 1

n

∑
v∈V ηv1

⊤ ∈ RV×D, using bias-variance

decomposition twice:

1

2
E
[∥∥∥xt − x

∥∥∥
2
]

=
1

2
E
[∥∥∥Pt(W )(x(0) − x)

∥∥∥
2
]

=
1

2
∥Pt(W )(x + η − x− η)∥2 +

1

2
E
[
∥Pt(W )η∥2

]

≤ (1−
√

λW )tE
[
∥x + η − x− η∥2

]
+

Dσ2

2n

≤ (1−
√

λW )t
(
E
[
∥x− x∥2

]
+ nDσ2

)
+

Dσ2

2n
. ■

The precision 3Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , Dσ2

)
≤
√

λW
−1

log

(
n

Dσ2
max

(
Dσ2,

1

n

∑

v∈V
∥xv − x∥2

))
.

C.3.2 Privacy Analysis (Corollary 6.3)

Proof of Corollary 6.3. For a fixed gossip matrix W , we have W0:t = W t, so that Theorem 6.1

reads:

f(u, v) =
α∆2

2σ2

∑

t<T

∑

w:{v,w}∈E

(W t)2
u,w

∥(W t)w∥2
.

Since W is bi-stochastic,
(W t)2

u,w

∥(W t)w∥2 ≤ n × (W t)2
u,w = nP

(
Xt = u|X0 = w

)2, using Cauchy-

Schwarz inequality.

Summing over the neighbors w ∼ v, we obtain, for t < T :

∑

w∼v

α

2σ2

∑

w:{v,w}∈E

(W t)2
u,w

∥(W t)w∥2
≤ αn

2σ2

∑

w∼v

P
(
Xt = u|X0 = w

)2

≤ αn

2σ2

(
∑

w∼v

P
(
Xt = u|X0 = w

))2

≤ αn

2σ2

1

minw∼v W 2
v,w

(
∑

w∼v

Wv,wP
(
Xt = u|X0 = w

))2

≤ αn

2σ2

1

minw∼v W 2
v,w

P
(
Xt+1 = u|X0 = v

)2
,

where the last line is obtained by observing that:

∑

w∼v

Wv,wP
(
Xt = u|X0 = w

)
= P

(
Xt+1 = u|X0 = v

)
,
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by conditioning on the first step of the random walk. This leads to Corollary 6.3. ■

C.3.3 First Line of Table 6.1

The results in the first line of Table 6.1 are obtained by observing that v is involved in dvT

communications up to time T , leading to ε̄v = α∆2dvT
2σ2n2 . Using Theorem 6.2, we have a utility of

3σ2/n for T stop = λ
−1/2
W log

(
n
σ2 max

(
σ2, 1

n

∑
v∈V

∥∥x0
v − x

∥∥2
))

steps. Thus, imposing ε̄v ≤ ε for

a fixed ε > 0 gives us σ2 = α∆2dT stop

2σ2n2 , leading to a utility of

Õ
( α∆2d

2σ2
√

λW

)
.

We then instantiate this formula on graphs with known spectral gaps, as described for instance

in Mohar et al. [Moh+91].

C.4 Randomized Muffliato

C.4.1 Utility Analysis (Theorem 6.4)

As in the synchronous case, we prove a more general convergence result that holds for D-

dimensional inputs. Then, Theorem 6.4 follows directly from (C.2).

Theorem C.4 (Utility analysis). For any T ≥ 0, the iterates (xT )T ≥0 of randomized Muffliato

(Algorithm 6.2) verify:

1

2n

∑

v∈V
E
[∥∥∥xT

v − x
∥∥∥

2
]
≤
(

1

n

∑

v∈V

∥∥∥x0
v − x

∥∥∥
2

+ Dσ2

)
e−T λ2(p) +

Dσ2

n
. (C.2)

Proof of Theorem 6.4. For t ≥ 0 and y ∈ RV×D, using results from Boyd et al. [Boy+06], we have:

E
[∥∥∥W (t)(y − y1⊤)

∥∥∥
2
]
≤ (1− λ(p))t

∥∥∥y − y1⊤
∥∥∥

2
,

where 1 with the vector with all entries equal to 1 and y = 1
n

∑
v∈V yv. The rest of the proof

follows as in the proof of Theorem 6.2 with two bias-variance decompositions. ■

The precision 2Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , σ2

)
≤ λ(p)−1 log

(
n

Dσ2
max

(
Dσ2,

1

n

∑

v∈V
∥xv − x∥2

))
. (C.3)
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C.4.2 Privacy Analysis

In terms of privacy, randomized Muffliato satisfies the following guarantees, obtained by

applying Theorem 6.1.

Corollary C.5. After T iterations of randomizedMuffliato, and conditionally on the edges sampled,

node u ∈ V is (α, εT
u→v(α))-PNDP with respect to v, with:

εT
u→v(α) ≤ α∆2

2σ2

∑

w∼v

∑

t∈PT
{v,w}

(W0:t)
2
uw

∥(W0:t)w∥2
.

Taking the mean over u ̸= v yields:

ε̄v =
1

n

∑

u∈V\{v}
εT

u→v(α) ≤ α∆2

2nσ2
Tv ,

where Tv =
∑

t<T

∑
w∼v 1{{v,w}={vt,wt}} the number of communications node v is involved in up

to time T .

Note that Tv is a Binomial random variable of parameters (T, πv) where πv =
∑

w∼v p{v,w}.

We now explain how we obtain the second line of Table 6.1.

Note that a choice p{v,w} = 2Wv,w/n for some given gossip matrix W yields probability

activations. For the sake of comparison with Muffliato with a fixed matrix, we place ourselves

in this case. This leads to πv = 2/n, so that

E [ε̄v] =
α∆2T

2n2σ2
,

and for any C > 0,

P (Tv − ETv ≥ C) ≤ exp

(
−C2

T

)
,

using Hoeffding’s inequality. We take as time-horizon T = T stop ≥ 1/λ(p) defined in Theo-

rem 6.4, leading to

P (Tv − ETv ≥ C) ≤ exp

(
−C2λW

n

)
, E [ε̄v] = Õ(

α∆2

2nσ2λW
) ,

since λ(p) = 2λW
n in our case.

The same methodology as in the synchronous case (imposing ε̄v ≤ ε for the time horizon

T stop, deriving σ2 from this and thus the resulting utility) leads to the second line of Table 6.1.
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C.5 Muffliato on Private Random Graphs (Theorem 6.6)

We fix all nodes, and in particular u the attacked node, and v the observer. We assume that G is

drawn randomly. Edges {v, w} are drawn independently from one another. The result we prove

below is just slightly more general than Theorem 6.6 that is recovered for P ({u, v} ∈ E) = q

(Erdös-Rényi random graph).

We make the following assumption: node v is only aware of its direct neighbors in the

topology of graph G, and conditionally on {v} ∪ N (v), the law of the graph is invariant under

any permutation over the set V \ ({v} ∪ N (v)).

Theorem C.6 (Muffliatowith a random graph). Let us fix nodes u and v. Let α > 1, T ≥ 0,

σ2 ≥ ∆2α(α−1)
2 and let the above assumptions on G be satisfied. After running Algorithm 6.1 with

these parameters, node u is (α, εT
u→v(α))-PNDP with respect to v, with:

εT
u→v(α) ≤





α∆2

2σ2
with probability P ({u, v} ∈ E) ,

α∆2

σ2

Tdv

n− dv
with probability 1− P ({u, v} ∈ E) .

Proof. If {u, v} ∈ E , we cannot do better than εT
u→v ≤ α∆2

2σ2 : v only sees x
(0)
u +N (0, σ2

)
and then

next messages can be seen as post-processing of this initial message and thus do not induce

further loss. This happens with probability P ({u, v} ∈ E).

Now,we reason conditionally on {v}∪N (v) andu /∈ N (v). Using the averaged formula (6.3),

we have:
1

n


 ∑

w∈N (v)

α∆2

2σ2
+

∑

w∈V\(N (v)∪{v})

εT
w→v(α)


 ≤ α∆2dvT

2nσ2
.

Here we adapted the proof of the formula: to obtain the right-handside, a value εT
w→v bigger

than α∆2

2σ2 was taken, so that the formula above is also true. Then, using the fact that node v

only sees its neighbors, we can use Lemma C.2 that allows us to take the mean conditionally

on v ∪N (v) (for σ2 ≥ ∆2α(α−1)
2 ), leading to

1

n


 ∑

w∈N (v)

α∆2

2σ2
+

∑

w∈V\(N (v)∪{v})

E
[
εT

w→v(α) | v ∪N (v)
]

 ≤ α∆2dvT

nσ2
.

In fact, we write it with the expected value, but all nodes are equal since node v only sees

its neighbors. Using the invariance under permutation of E
[
εT

w→v(α)v ∪N (v)
]
over w ∈
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V \ (N (v) ∪ {v}), we have that:

1

n


 ∑

w∈N (v)

α∆2

2σ2
+ (n− dv)εT

u→v


 ≤ α∆2dvT

nσ2
.

Rearranging this inequality gives the result. ■

C.6 Differentially Private Decentralized Optimization

We consider Algorithm 6.3 with general time-varying matrices Wt. We assume that for all t ≥ 0,

λWt ≥ λ for some fixed λ > 0. An instance of this setting is to sample different Erdös-Rényi

random graphs at each communication round and adapt Wt accordingly. Such graphs have a

spectral gap that concentrates around 1, so that for λ = 1/2, with high probability λWt ≥ λ will

be verified [HKP19].

C.6.1 Proof of Theorem 6.8 (Utility Analysis)

As before, we have a more general convergence result.

Theorem C.7 (Utility analysis of Algorithm 6.3). Let K ≥
⌈√

λ
−1

log
(
max

(
n, ζ̄2

Dσ2+ρ̄2

))⌉
.

For a suitable choice of step size parameters, the iterates (θt)t≥0 generated by Algorithm 6.3 verify:

E
[
ϕ(θ̃T )− ϕ(x⋆)

]
≤ Õ

(
ρ̄2 + Dσ2

nµT
+ L

∥∥∥θ0 − θ⋆
∥∥∥

2
e− T

2κ

)
,

where θ̃T =

∑
t<T

ωtθ̄t

∑
t<T

ωt is a weighted average along the trajectory of the means θ̄t = 1
n

∑
v∈V θt

v.

The proof of Theorem C.7 is a direct consequence of Theorem 2 in Koloskova et al. [Kol+20],

and especially the formula in their Appendix A.4. We apply their result with ρ̄2 +Dσ2 instead of

their σ̄2, τ = 1 (no varying topology), and p such that 1− p = 2(1−
√

λ)K ≤ 2 min( 1
n , Dσ2+ρ̄2

ζ̄2 ).
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C.6.2 Proof of Theorem 6.9 (Privacy Analysis)

The function Lipschitzness can in fact be replaced by a more general assumption.

Assumption C.8. We assume that, for some ∆2
ϕ > 0, for all v in V , and for all adjacent datasets

D ∼v D′ on v, we have:

sup
θ∈RD

sup
(xv ,x′

v)∈Dv×D′
v

∥∥∇xℓ(θ, xv)−∇xℓ(θ, x′
v)
∥∥2 ≤ ∆2

ϕ .

Theorem C.9 (Privacy analysis of Algorithm 6.3). Let (Wt)0≤t<T be a sequence of gossip

matrices of spectral gap larger than λ. Let u and v be two distinct nodes in V . After T iterations of

Algorithm 6.3 with K ≥ 1, node u is (α, εT
u→v(α))-PNDP with respect to v, with:

εT
u→v(α) ≤

∆2
ϕα

2σ2

T∑

t=1

T∑

j=t

K−1∑

k=0

∑

w:{v,w}∈Ej

(Πj−1
i=t W K−1

i W k
j )2

u,w∥∥∥(Πj−1
i=t W K−1

i W k
j )w

∥∥∥
2 , (C.4)

Thus, for any ε > 0, Algorithm 6.3 with T stop(κ, σ2, n) steps and for K as in Theorem 6.8, there

exists f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ≤ ε and E
[
ϕ(θ̃out)− ϕ(θ⋆)

]
≤ Õ

(
αD∆2

ϕd̄

n2µε
√

λ
+

ρ̄2

nL

)
,

where d̄ = supv∈V d̄v for d̄v = 1
T

∑
t<T |{w ∈ V : {v, w} ∈ Et}| the mean degree of node v through-

out time.

Proof of Theorem C.9. The information leaked by u to v up to iteration T of Algorithm 6.3 consists

in the T (stochastic) gradients locally computed at node u and gossiped through the graph,

using the Muffliato algorithm. Note that the gradient used at iteration t continues to leak

information to some nodes after the K gossip averaging steps of iteration t, as the information

continues to flow in the graph until the end of the Muffliato-GD/SGD algorithm, i.e. for the

subsequent (T − t) iterations.

For the last round however, using Theorem 6.1, the privacy loss is given by that of Muffliato:

∆2
ϕα

2σ2

K−1∑

k=0

∑

w:{v,w}∈ET

(W k
T )2

u,w∥∥(W k
T )w

∥∥2 .

Then, the total privacy loss of a given round t can be upper bounded by the privacy loss of

running Muffliato for (T − t)K steps. Thus, we sum each of the round t over the (T − t)K
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subsequent steps, leading to the formula:

∆2
ϕα

2σ2

T∑

j=t

K−1∑

k=0

∑

w:{v,w}∈Ej

(
(Πj−1

i=t W K−1
i )W k

j

)2

u,w∥∥∥
(
(Πj−1

i=t W K−1
i )W k

j

)
w

∥∥∥
2 ,

where Et are the edges of the graph drawn at time t. We obtain the upper bound on εT
u→v(α)

stated in the first part of TheoremC.9 by summing this expression over t < T , and the simplified

version in the first part of the Theorem 6.9 follows directly from the fact that we consider the

graph fixed across iterations.

For the second inequality, we have, by summing:

εv =
1

n

∑

u ̸=v

εT
u→v(α) ≤

KT 2d̄v∆2
ϕα

2nσ2
≤

KT 2d̄∆2
ϕα

2nσ2
.

In order to reach a precision Dσ2+ρ̄2

n , T = O(κ log(Dσ2/n)) = T stop(κ, σ2, n) iterations are

required. Using K = Õ(1/
√

λ), we have:

εv = O
(

d̄∆2
ϕα

2nσ2
κ2
√

λ
−1

log2(Dσ2/n)

)
.

Taking σ2 such that
d̄∆2

ϕα

2nσ2 κ2
√

λ
−1

log2(σ2/n) = ε and plugging into Theorem 6.8 yields the

desired result. ■

C.7 Extensions to Collusion and Group Privacy

In this section, we discuss natural extensions of our privacy definitions to the case of colluding

nodes, and to group privacy.

C.7.1 Presence of Colluding Nodes

Definitions

The notions of pairwise network DP we introduced in Equation (6.3) can naturally be extended

to account for potential collusions. For V ⊂ V a set of colluding nodes, we define the view of

the colluders as:

OV (A(D)) =
⋃

v∈V

OV (A(D)) ,
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or equivalently as:

OV (A(D)) = {(u, m(t), v) ∈ A(D) such that {u, v} ∈ E , v ∈ V } .

Below, P(V) denotes the powerset of V .

Definition C.10 (Pairwise Network DP with colluders). For f : V × P(V) → R+, an

algorithm A satisfies (α, f)-pairwise network DP if for all users u ∈ V , pairs of neighboring
datasets D ∼u D′, and any potential set of colluders V ∈ V such that u /∈ V , we have:

Dα
(OV (A(D)) || OV (A(D′))

) ≤ f(u, V ) . (C.5)

We note f(u, V ) = εu→V the privacy leaked to the colluding nodes V from u and say that u is

(α, εu→V )-PNDP with respect to V if only inequality (C.5) holds for f(u, V ). Finally, if for a

function f : V × P(V)→ R, inequality (C.5) holds for all (u, V ) ∈ V × P(V) such that u /∈ V ,

we say that A is (α, f)-pairwise NDP.

This definition quantifies the privacy loss of a node u with respect to the collusion of

any possible subset V of nodes, and thus generalizes the definition of the main text (which

corresponds to restricting V such that |V | = 1).

The proofs of this section are actually direct consequences of the proof techniques of our

results without colluders, by replacing Ov (the view of a colluder) by OV (the view of the

colluding set). Roughly speaking, V can be seen as a unique abstract node, resulting from the

fusion of all its nodes.

Adapting Theorem 6.1 and the Resulting Corollaries

For w ∈ V and V ∈ P(V), let Pt
{V,w} = {s < t : ∃v ∈ V , {v, w} ∈ Es} the times (up to time t) at

which an edge {v, w} for any v ∈ V is activated i.e. the times at which there is a communication

between w and a colluder. For t ≥ 0 and V ⊂ V , let Nt(V ) be the neighbors in Gt of the

colluders set V , defined as:

Nt(V ) = {w ∈ V \ V | ∃v ∈ V , {v, w} ∈ Et} .

For T ≥ 1,
∑

t<T |Nt(V )| is thus the total number of communications in which colluders are

involved with.
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Theorem C.11. Let T ≥ 1, u ∈ V and V ⊂ V such that u /∈ V , and α > 1. Then the algorithm

AT is (α, f)-PNDP with::

f(u, V ) ≤ α∆2

2σ2

∑

w∈V

∑

t∈PT
{V,w}

(W0:t)
2
u,w

∥(W0:t)w∥2
. (C.6)

Consequently, there exists f such that AT is (α, f)-PNDP with:

εV =
1

n

∑

u∈V\V

f(u, V ) ≤ α∆2

2nσ2

∑

t<T

|Nt(V )| , (C.7)

where
∑

t<T |Nt(V )| is the total number of communications a colluding set V is involved with, up

to time T .

We now consider the synchronousMuffliato algorithm (Algorithm 6.1) with colluders.

Corollary C.12. Let u ∈ V and V ∈ P(V) such that u /∈ V , α > 0. After T iterations of

Algorithm 6.1, node u is (α, εT
u→V (α))-PNDP with respect to V , with:

εT
u→V (α) ≤ αn

2σ2
max
w∼V

W −2
v,w

T∑

t=1

P
(
Xt ∈ V |X0 = u

)2
,

where (Xt)t is the random walk on graph G, with transitions W , and w ∼ V if w /∈ V and if there

exists v ∈ V such that {v, w} ∈ E .

Corollary C.13. There exists f : V × P(V) → R+ such that Algorithm 6.1 after T steps is

(α, f)-PNDP with the following privacy-utility guarantees for any V ⊂ V :

εV =
1

n

∑

u∈V\V

f(u, V ) ≤ ε ,
1

2n

∑

v∈V
E
[∥∥∥xout

v − x
∥∥∥

2
]
≤ Õ

(
α

dV ∆2

εn2
√

λW

)
,

where xout is the output of Algorithm 6.1 after T stop(x, W, σ2) steps for σ2 = dV ∆2

2αε , and Õ hides

logarithmic factors in n and ε. dV is the degree of set V , defined as the number of w ∈ V \ V such

that there exists v ∈ V , {v, w} ∈ E .

Corollary C.14 (Muffliato on a random graph with collusions). Let α > 1, T ≥ 0, σ2 ≥
∆2α(α−1)

2 and q = c log(n)
n for c > 1. Let u ∈ V and V ∈ P(V) such that u /∈ V . After running

Algorithm 6.1 on an Erdos Rényi random graph of parameters (n, q) and under the assumptions of
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Theorem 6.6, node u is (α, εT
u→v(α))-PNDP with respect to colluders V , with:

εT
u→V (α) ≤





α

2σ2
with probability 1− (1− q)|V |

α

σ2

TdV

n− dV
with probability (1− q)|V |

.

Compensating for Collusions with Time-Varying Graph Sampling

We now consider the decentralized optimization problem of Section 6.3 in the presence of

colluders, and analyze its privacy with time-varying graph sampling as in Appendix C.6.2.

Themotivation for this is that, if the graph is fixed, node uwill suffer from poor privacy guar-

antees (the same as in LDP) with respect to the colluding set V as soon as u is inN (V ) = N0(V )

(i.e., one of colluders in V is a neighbor of u). Even if the graph is sampled randomly, this will

happen with probability that increases with |V |. In contrast, for time-varying random graphs

sampled independently at each communication round and for sufficiently many communica-

tion rounds (i.e., large enough condition number κ), it becomes unlikely that u is in Nt(V ) for

many rounds t, and therefore the privacy guarantees with respect to V can improve.

Below, we consider Algorithm 6.3 with time-varying graphs (and associated gossipmatrices

(Wt)t≥0) sampled in an i.i.d. fashion at each communication round as Erdös-Rényi graphs of

parameters n, q = c log(n)
n for some c > 1, such that they verify λWt ≥ λ > 0 for all t (as noted

before, this happens with high probability for λ of order 1 [HKP19]). In this context, we have

the following result.

Proposition C.15. Let α > 1, T ≥ 0, σ2 ≥ ∆2α(α−1)
2 . Let u ∈ V and V ∈ P(V) such that

u /∈ V . After running Algorithm 6.3 under the assumptions described above and the function

assumptions of Theorem 6.9, node u is (α, εT
u→v(α))-PNDP with respect to colluders V , with:

εT
u→V (α) ≤

∆2
ϕα

σ2

T stop∑

t=0

βt + (1− βt)
K|Nt(V )|

n− |Nt(V )| ,

where T stop = Õ(κ) and K = Õ(1/
√

λ) (see Theorem 6.8), (βt)t are i.i.d. Bernoulli random

variables of parameter P (∃v ∈ V , {u, v} ∈ Et) = 1 − (1 − q)|V |, and |Nt(V )| is the number of

neighbors of V in the graph sampled at iteration t, of order c|V | log(n)
n .

Discussion

Generally speaking, our bounds degrade in presence of colluding nodes. This is a fundamental

limitation of our approach that considers only privacy amplification due to decentralization.

By definition, our privacy guarantees can only provide amplification as long as the view of
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the attackers is smaller than the one of the omniscient attacker considered in local differential

privacy, i.e OV (AT ) ⊊ AT . A condition for having equality corresponds to observing all

messages that are transmitted. In the case of a fixed graph, this can be characterized by the fact

that V contains a dominating set for the graph. For Erdos Rényi graphs or exponential graphs,

there exists dominating sets of size O(log n), thus it is meaningless to expect guarantees for

all possible sets of colluding nodes of that size. However, if some/most colluding nodes are

actually far from the target node u in the graph, then good privacy amplification can still be

achieved. This can be precisely measured by Equation C.6.

C.7.2 Group Privacy

Symmetrically to the problem of collusions, where there are several attackers, one can study

group privacy, where privacy guarantees are computed towards a group rather than a single

individual. This is useful when some users have correlated data (e.g., close family members).

The usual notion of group privacy [see e.g., DR14] would provide a guarantee against all

groups of users of a given size. However, this standard definition would provide pessimistic

guarantees in some cases as it does not take advantage of the fact that groups may correspond

to specific subgraphs. Hence, we propose the following definition.

Definition C.16 (Group Pairwise Network DP). For f : V × P(V) → R+, an algorithm

A satisfies (α, f)-group pairwise network DP if for all set of users U ⊂ V , pairs of neighboring
datasets D ∼U D′, and any vertex v ∈ V , we have:

Dα
(Ov(A(D)) || Ov(A(D′))

) ≤ f(U, v) . (C.8)

The modifications of the theorems are similar to the case of collusion, summing over the

nodes in U (instead of summing over the nodes in V for the case of collusion). The following

theorem gives the general case corresponding to Theorem 6.1. The other results can be adapted

in the same way.

Theorem C.17. Let T ≥ 1 and denote by PT
{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps

with communication along edge {v, w}. With ∆ the sensitivity, AT is (α, f)-group PNDP for

with:

f(U, v) =
α∆2

2σ2

∑

w∈V

∑

t∈PT
{v,w}

∑
u∈U (W0:t)

2
u,w

∥(W0:t)w∥2
. (C.9)

Note that in some configurations, this bound bound is clearly sub-optimal, as summing

does not take into account cases where the information gathered by some of the nodes in the

group can be seen as a post-processing of information received by other nodes in the group. In
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such cases, analyzing group privacy by considering a modified graph where the nodes in the

group are merged into a single node, with edge/weights adjusted accordingly, would yield

better results.
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Figure C.1 – Level of the privacy loss for each node (color) with respect to a fixed node in the graph.
These graphs corresponds to the graphs used in Figure 6.1(a): from left to right, exponential graph,
Erdos-Rényi graph, geometric random graph and grid.
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Figure C.2 – Privacy loss for the exponential graph with respect to the number of nodes n (following
powers of 2).

C.8 Additional Numerical Experiments

C.8.1 Extra Synthetic graphs

Figure 6.1(a) summarizes the result ofMuffliato according to the shortest path length. However,

other characteristics of the topology can play a role in the privacy leakage. Thus, we show the

graph representation for each of the synthetic graphs we considered in Figure C.1.

We also report in Figure C.2 how privacy guarantees improve when n increases for the

exponential graph. We see that privacy guarantees improve with n: distance between nodes

increases, but also the number of nodes with whom the contribution of a specific node is mixed.

This is especially significant for pairs of nodes that are not direct neighbors but at short distance

of each other.
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C.8.2 Proof of Fixed Privacy Loss for Exponential Graphs

For an exponential graph, the pairwise privacy loss is fully determined by the shortest length

path, i.e f(u, v) = g(d(u, v)) where d : V → N is the function that returns the length of the

shortest path between u and v.

This result is a consequence of the invariance per vertex permutation in the hypercube. For

the hypercube with 2m vertices, each vertex can be represented by a m-tuple in {0, 1}, where

there is an edge if and only if two vertices share all values of their tuple but one. Let us now

fix two pairs of vertices (u, v) and (u′, v′) with the same distance between them. To prove that

their privacy loss is the same, it is sufficient to exhibit an graph isomorphism Φ that sends (u, v)

on (u′, v′).

By construction, d(u, v) corresponds to the number of coordinates that differ between their

tuple, and the same holds for (u′, v′). The set of equal coordinates Fix(u, v) is thus of the same

size m−d(u, v) than Fix(u′, v′). Hence we can construct a bijective function b of the coordinates

that is stable for the set of fixed coordinates

b(Fix(u, v)) = Fix(u′, v′) b({1, 2, . . . , m} \ Fix(u, v)) = {1, 2, . . . , m} \ Fix(u′, v′)

Finally, noting that 0 and 1 play the same role, we match each coordinate accordingly to

the value defined by our couple. We thus define our isomorphism per coordinate Φ(w) =

(Φ1(w), . . . , Φm(w)) with Φi(w) = s(wb−1(i)) where s is the identity function if ub−1(i) = ui and

the swap function otherwise. This function is clearly an isomorphism: by construction it is

a bijection, and the edges still exist if and only if the vertices differ on only one coordinate.

We have Φ(u) = u′ and Φ(v) = v′ and thus the privacy loss is equal between the two pairs of

vertices.

C.8.3 Random Geometric Graphs

Geometric graphs are examples of possible use cases of Pairwise Network Differential Privacy.

Constructing edges when nodes are at a distance below a given threshold naturally models

short-rangewireless communications such as Bluetooth. In this situation, the Euclidean distance

between nodes is a convenient indicator for setting the privacy loss. Indeed, it is a parameter

that we can measure, and it can match the users expectations in terms of privacy loss. For

instance, if direct neighbors in the graph correspond to people within 5 meters around the

sender, some information are bound to be available to them independently of what may be

revealed by the communication itself: sensitive attributes such a gender, age, or overall physical

fitness are leaked simply from physical proximity. However, the user might have stronger

privacy expectations for people far away. Hence, having privacy guarantees as function of the

Euclidean distance can be particularly interesting.
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Figure C.3 – Privacy towards all the nodes as function of the Euclidean distance in a random geometric
graph. We see a high level of correlation between the Euclidean distance and the privacy loss.

Table C.1 – Parameter for the logistic regression

Parameters Value

# of trials 10
Step-size 0.7
# of nodes 2000 or 4000
probability of edges q log(n)/n
score Mean accuracy

Our experiments show that the privacy loss is extremely well correlated to the Euclidean

distance, as represented in Figure C.3. It is thus possible to design algorithms where one could

impose Pairwise Network DP for a function f(u, v) = g(∥zu − zv∥) where g is a non-increasing

function and zu and zv are the geolocation of nodes u and v.

C.8.4 Facebook Ego Graphs

We report figure on the other nine graphs of the Facebook Ego dataset, following the same

methodology and scale. Across these graphs, we can see that privacy losses depending on

visible communities is consistent through datasets, and become more consistent as the number

of nodes increase.

C.8.5 Logistic Regression on Houses Dataset

We report in Table C.1 the parameters used in the experiments of Figure 6.1(c).
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C.8 Additional Numerical Experiments

Figure C.4 – Privacy loss on the 9 other Facebook Ego graphs, following the same methodology as in
Figure 6.1(b).
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Figure C.5 – Simulation (10 runs) of a dropout scenario (with different levels of dropout) with n = 1000,
where at each gossip step an Erdös-Rényi graph with parameter p = 0.002 over the set of available users.
(a) Left: Privacy loss of a node across iterations ;(b) Right: Convergence of the same runs to the mean.

Table C.2 – Total Privacy loss in function of dropout

Dropout Privacy loss

No dropout (1.7± 0.6)× 10−2

10% dropout (1.8± 0.6)× 10−2

50% dropout (1.5± 0.7)× 10−2

90% dropout (1.4± 0.6)× 10−2

C.8.6 Modeling User Dropout using Time-Varying Graphs

In Theorem 6.1, we analyzed the very generic case where the gossip matrix is arbitrary at each

time-step. Then, for deriving the convergence rate and obtaining closed-form privacy-utility

trade-offs and using acceleration, we focused on fixed gossip matrices until the convergence of

each gossip averaging step. In this subsection, we show empirically that we can still reach a

good privacy-utility trade-offs when the gossip matrix change at each communication.

In particular, our experiment focuses on modelling user dropouts. Specifically, at each time

step, the availability of each node is modeled by an independent Bernouilli random variable

and we draw a new Erdos Rényi graph over the set of available nodes. We assume that at

each step, each node has the same given probability to be active so as to ensure convergence to

the mean of the values. One could design more sophisticated dropout models, as long as the

contributions of nodes remain balanced.

We vary the expected level of available nodes at each step from 10 to 90%. Note that the

number of iterations needed for convergence becomes stochastic: we thus set an arbitrary

number of iterations experimentally, and average several runs. For simplicity, we do not

perform gossip acceleration. We report several runs at each dropout level in Figure C.5(a),

and report the privacy loss and its standard deviation at each dropout level in Table C.2.

As expected, the convergence time increases with the proportion of inactive users, but the
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achievable privacy-utility trade-off is not significantly impacted. Therefore, our approach scales

gracefully difficulty to the situations where there is dropout.

C.9 Broader Impact Assessment

Our work promotes increased privacy in federated ML. The potential longer-term benefits of

our work in this respect are a wider adoption of privacy-preserving and fully decentralized ML

solutions by service providers thanks to the improved privacy-utility guarantees, as well as

better confidence of users and the general public in the ability of decentralized ML systems to

avoid catastrophic data leaks. In particular, ourwork shows that the advantages of decentralized

methods over centralized ones have been overlooked, due to the lack of privacy analysis able

to capture the benefits of decentralized algorithms.

Conversely, there are potential risks of accidental or deliberate misuse of our work in the

sense that it could give a false sense of privacy to users if weak privacy parameters are used in

deployment. This applies to all work on differential privacy. More applied research is needed

towards developing a methodology to choose appropriate privacy parameters in a data-driven

manner and to reliably assess the provided protection in practical use-cases.

Our work specifically proposes a varying privacy budget that depends on the relation

between users, which might be misused for giving smaller privacy guarantees than the ones

that would be designed otherwise. Modularity in privacy guarantees has however already

been studied, for instance in [Cha+13] where the privacy budget is a function of a metric

on the input space. Informally, defining what is an acceptable privacy budget based on the

context in which some information is revealed is in line with the idea of contextual integrity

[BGN17]. According to Helen Nissenbaum’s theory, the privacy expectations should take into

account five elements: the sender, the receiver, the message, the medium of transmission and

the purpose. Mathematically, adapting the privacy guarantee to the receiver and promoting

peer-to-peer communications for building a global model thus naturally fits this view. In

particular, contextual integrity emphasizes that the privacy budget should not only depend on

the information being transmitted, but also on who receives it.
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Proofs and Additional Results for Chapter 7

D.1 Proof of Theorem 7.1 (Real Summation on the Complete Graph)

Proof. We will prove an (εf , δf )-DP guarantee for Algorithm 7.1. We note that our proof does

not require the global time counter t to be hidden from users (i.e., the result holds even if users

receiving the token know how many users have added contributions to the token since its last

visit).

Let us fix two distinct users u and v. We aim to quantify how much information about the

private data of user u is leaked to v from the visits of the token. Recall that we assume the

token path to be hidden, including the previous sender and the next receiver. We can thus

define the view Ov of user v by:

Ov(A(D)) = (τki
)Tv
i=1, (D.1)

where ki is the i-th time that v receives the token, τki
the corresponding value of the token, and

Tv the number of times that v had the token during the whole execution of the protocol.

We aim at bounding the privacy loss with respect to the contributions of u from the point of

view of v. We call “cycle” the portion of the walk between two visits of the token to v. We first

note that we can decompose the walk in cycles by cutting the walk at each ki. If a contribution of

u happens at time t, there is single i such a ki < t < ki+1.1 Note that the token values observed

before t do not depend on the contribution of u at time t. Moreover, it is sufficient to bound the

privacy loss induced by the observation of the token at ki+1: indeed, by the post-processing

property of DP, no additional privacy loss with respect to v will occur for observations posterior

to ki+1.

To allow the use of privacy amplification by subsampling results [BBG18], we will actually

consider a variant of the actual walk. We assume that if n steps have occurred since the last

visit of the token to v, the value of the token at that time is observed by v “for free”. As the

information leaked to v by the actual walk can be obtained by post-processing of this fictive

walk, it is sufficient to prove privacy guarantees on the fictive walk.

The number of observations of the token by v can be bounded by the “real” observations

(from actual visits of the token) plus the fictive ones. By definition, there is no more than T/n

fictive observations of the token. We now bound the number of real visits of the token to v.

As the user receiving the token at a given step is chosen uniformly at random and indepen-

dently from the other steps, there is a probability of 1/n that the token is at v at any given step.

Thus, the number of visits Tv to v follows a binomial law B(T, 1/n). We bound it by Nv with

probability 1− δ̂ using Chernoff. Recall that the Chernoff bound allows to upper bound (with

1If the contribution of u occurs before the first passage of the token at v, we can take ki = 0. As for contributions
occurring after the last passage of the token at v, they do not incur any privacy loss.
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high probability) the sum of independent random variables X1, . . . , XT of expected value p,

for any real α ∈ [0, 1]:

P

(
T∑

i=1

Xi ≥ (1 + α)Tp

)
≤ e−α2pT/3.

In our case, we want to upper bound the probability that the number of contributions Tv

of a given user v exceeds some threshold Nv by δ̂. Using the previous bound for p = 1/n

and α =
√

3n log(1/δ̂)
T , by considering the random variables equal to 1 it v has the token and 0

otherwise, we have:

P
(

Tv ≥
T

n
+

√
3T

n
log(1/δ̂)

︸ ︷︷ ︸
Nv

)
≤ δ̂.

Let us now upper bound the privacy loss that occurs during a fixed cycle. The information

revealed to v by a cycle of size 1 ≤ m ≤ n can be seen as a mechanismM = A ◦ S, where

A corresponds to the aggregation of m values with m additions of Gaussian noise, and S
corresponds to subsampling with replacement m users among n (as each user is uniformly

chosen at random at each step). The base mechanism A satisfies (ε/
√

m, δ)-DP.

According to Theorem 10 from [BBG18]: given n users and m the size of the cycle, the

privacy ofM = A ◦ S satisfies (εcycle, δcycle) with:

εcycle = log(1 + (1− (1− 1/n)m)(eεA − 1)), (D.2)

Hence, for a cycle of size m,M satisfies (εcycle, δcycle)-DP with

εcycle ≤ log

(
1 + (1−

(
1− 1

n

)m

)(eε/
√

m − 1)

)
.

Using the fact that ε ≤ 1, we can upper bound eε/
√

m−1 by 2ε/
√

m. Moreover, as 1/n < 0.58,

we have − 3
2n ≤ log(1− 1/n). So we have

1− exp(m log(1− 1/n)) ≤ 1− exp

(
−3m

2n

)
≤ 3m

2n
.

Combining the two upper bounds and the classical inequality log(1 + x) ≤ x gives us:

εcycle ≤
3
√

mε

n
≤ 3ε√

n
.

Hence we can upper bound the privacy loss of each cycle by 3ε√
n
regardless of its length m.

Finally, we use advanced composition to account for the privacy losses of all T/n + Nv cycles,
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leading to the following bound:

εf ≤

√√√√√


4T

n
+ 2

√
3T

n
log(1/δ̂)


 log(1/δ′)

3ε√
n

+

√√√√2T

n
+

√
3T

n
log(1/δ̂)ε(e3ε/

√
n) − 1),

with δf = (Nv + T/n)δcycle + δ′ + δ̂. ■

D.1.1 Precise δcycle computation

In the previous proof, we used δcycle to derive our privacy guarantee as defined in [BBG18].

We detail here how the term can be computed and discuss its value. For running a mechanism

A on a sample of m samples drawn with replacement from a set of size n, the bound given by

[BBG18] is:

δcycle =
m∑

k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k

δA,k

In this equation, the term δA,k does not admit a direct closed form in most cases. Its

definition is the following:

δA,k(ε) = sup
d(x,x′)≤k

Dh
eε

(A(x)∥A (x′))

which corresponds to the guarantee that holds for group privacy of size k. Dh is the hockey-stick

divergence (see Definition 3.3). By applying the definition of group privacy and composing k

times the inequality constraints, one can derive the following formula:

δA,k(ε) ≤ (eε − 1) δA(ε/k)/
(
eε/k − 1

)

The term makes appears δA(ε/k) which has no explicit connection with δA(ε) in general, and

thus does not admit a closed form formula either. However, in the case of Gaussian mechanism,

it is possible to use the following formula:

δA (ε) = Φ(θ/2− ε/θ)− eεΦ(−θ/2− ε/θ)

with θ = δ/σ and Φ the CDF of the standard normal distribution, which allows to compute

numerically the resulting value of δcycle.

In particular, for all values used for the numerical experiments (Section 7.2.4), applying

this method of computation gives δ ≤ δcycle, and thus we use δ as a simplification. It seems

172



D.2 Histogram Computation on the Complete Graph

Algorithm D.1: Private histogram computation on a complete graph

1 Initialize τ ∈ NL;
2 for t = 1 to T do
3 Draw u ∼ U(1, . . . , n);
4 yk

u ← RRγ(xk
u);

5 τ [yk
u]← τ [yk

u] + 1;
6 for i = 0 to L− 1 do

7 τ [i]← τ [i]−γ/L
1−γ ;

8 return τ

that this inequality holds experimentally for reasonable values of σ and ε. Two facts can give

intuition on why δcycle ≤ δ numerically.

Firstly, note that for other sampling schemes, such as sampling without replacement and

Poisson sampling, the corresponding δsampling is provably smaller than the δ of the base mecha-

nism. Secondly, note that δcycle increases with the sample size m and thus reaches its maximum

for m = n. For this value, we can interpret the formula as the expected value of the function

k → δA,k under a binomial distribution of parameter 1/n.

max δcycle =
n∑

i=1

(
n

k

)(
1

n

)k (
1− 1

n

)n−k

δA,k = EX∼Bin(n,1/n)(δA,X)

Thus, even if δA,k increases exponentially in k and ε, we know that the moment generative

function for a binomial law is E(etX) = (1 + 1
n + 1

net)n hence the term remains small.

D.2 Histogram Computation on the Complete Graph

For discrete histogram computation on the complete graph, we propose Algorithm D.1: when

receiving the token, each user perturbs his/her contribution with L-ary randomized response,

adds it to the token and forwards the token to another user chosen uniformly at random. We

have the following guarantees, which provide a privacy amplification of O(1/
√

n) over LDP

for T = Ω(n).

Theorem D.1. Let ε ≤ 1, δ > 0 and n ≥ 142 log(4/δ). Algorithm D.1 with γ = L/(eε + L− 1)

achieves an unbiased estimate of the histogram with γT expected random responses. Furthermore, it
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satisfies (ε′, (Nv + T
n )δ + δ′ + δ̂)-network DP for all δ′, δ̂ > 0 with

ε′ ≤

√√√√√


4T

n
+ 2

√
3T

n
log(1/δ̂)


 log(1/δ′)

21
√

log(4/δ)√
n

ε

+

√√√√2T

n
+

√
3T

n
log(1/δ̂)ε(e21ε

√
log(4/δ)/

√
n)− 1).

Remark D.2. In the proof below, we use some approximations to obtain the simple closed-form

expressions of Theorem D.1. These approximations however lead to the unnecessarily strong

condition n ≥ 142 log(4/δ) and suboptimal constants in ε′. In concrete implementations, we can

obtain tighter results by numerically evaluating the complete formulas.

Proof. The proof follows the same steps as in the case of real summation (Appendix D.1), using

the same “fictive” walk trick. We only need to adapt how we bound the privacy loss of a given

cycle. More precisely, keeping the same notations as in Appendix D.1, we need to modify how

we bound the modification of the privacy loss of A. Here, A corresponds to the aggregation

of some discrete contributions, which is equivalent to shuffling these contributions. We can

therefore rely on privacy amplification by shuffling. Specifically here, we use the bound of

Feldman, McMillan, and Talwar [FMT20, Theorem 3.1 therein] which is more tight and holds

under less restrictive assumptions than the result of [Erl+19]. We recall the result below below.

Theorem D.3 (Amplification by shuffling, [FMT20]). For any data domain X , let R(i) :

S(1) × · · · × S(i−1) ×X → S(i) for i ∈ [n] (where S(i) is the range space ofR(i)) be a sequence of

algorithms such thatR(i) (z1, . . . , zi−1, ·) is an ε0-DP local randomizer for all values of auxiliary

inputs (z1, . . . , zi−1) ∈ S(1) × · · · × S(i−1). Let As : X n → S(1) × · · · × S(n) be the algorithm

which takes as input a dataset (x1, . . . , xn) ∈ X n, samples a uniform random permutation π over

[n], then sequentially computes zi = R(i)
(
z1, . . . , zi−1, xπ(i)

)
for i ∈ [n] and outputs (z1, . . . , zn).

Then for any δ ∈ [0, 1] such that ε0 ≤ log
(

n
16 log(2/δ)

)
,As satisfies (εshuff , δ)-DP with

εshuff ≤ log

(
1 +

eε0 − 1

eε0 + 1

(
8
√

eε0 log(4/δ)√
n

+
8eε0

n

))
.

For clarity, we propose to use a simpler expression for εshuff (Eq. D.3 below) which makes

the asymptotic amplification in O(1/
√

n) explicit. However, it is possible to keep the initial form

of Theorem D.3 for numerical applications. To derive a less tight but more tractable bound, we

use the fact that ex−1
ex+1 ≤ x

2 , which gives:

εshuff ≤
(

1 +
ε0

2

(
8
√

eε0 log(4/δ)√
n

+
8eε0

n

))
.
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We then use the hypothesis ε0 ≤ 1 and the concavity of the logarithm to obtain the following

simple bound:

εshuff ≤
14
√

log(4/δ)√
n

ε0. (D.3)

Here, contrary to the case of real summation, amplification by shuffling is effective only for

cycles whose length m is large enough. To mitigate this issue, we remark that, since the k-ary

randomized response protocol A satisfies ε-LDP, we can always bound the privacy loss of A by

the local guarantee ε.

Let us assume that m ≥ 142 log(4/δ). This implies that 14
√

log(4/δ)√
m

ε ≤ 1. This inequality is

the hypothesis needed to simplify the expression of the privacy loss with the amplification by

subsampling, as in the proof of real summation:

log(1 + (1− (1− 1/n)m)(e
14

√
log(4/δ)√

m
ε − 1) ≤ 21

√
log(4/δ)m

n
ε.

In particular, for every cycle,

εcycle ≤ min
(3mε

2n
,
21
√

log(4/δ)m

n
ε
)
,

where the first term corresponds to the analysis where we use amplification by subsampling

and ε for the privacy loss of A, while the second one is obtained by combining amplification

by subsampling with amplification by shuffling using (D.3) in the case of m ≥ 142 log(4/δ).

We note that the second term becomes smaller when m is larger than m = 142 log(4/δ). In

this regime, the constraint ε ≤ log( m
16 log(2/δ)) required by Theorem D.3 is directly satisfied, as

ε ≤ log(142 log(4/δ)
16 log(2/δ) ) is less restrictive than ε ≤ 12.25. As we assume that n ≥ 142 log(4/δ), the

regime where the second term is larger exists. We see that the worst privacy loss is reached for

a cycle of length n, for which we have:

εcycle ≤
21
√

log(4/δ)√
n

ε.

Using the above bound for the privacy loss of any cycle, we conclude by applying advanced

composition as in the case of real aggregation. ■
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D.3 Proof of Theorem 7.2 (Stochastic Gradient Descent on a Com-

plete Graph)

Proof. The proof tracks privacy loss using Rényi Differential Privacy (RDP) [Mir17] and lever-

ages results on amplification by iteration [Fel+18]. We first recall the definition of RDP and

the main theorems that we will use. Then, we apply these tools to our setting and conclude by

translating the resulting RDP bounds into (ε, δ)-DP.

Rényi Differential Privacy quantifies the privacy loss based on the Rényi divergence between

the outputs of the algorithm on neighboring databases.

Definition D.4 (Rényi divergence). Let 1 < α < ∞ and µ, ν be measures such that for all

measurable set A, µ(A) = 0 implies ν(A) = 0. The Rényi divergence of order α between µ and ν

is defined as

Dα(µ∥ν) =
1

α− 1
log

∫ (
µ(z)

ν(z)

)α

ν(z)dz.

In the following, when U and V are sampled from µ and ν respectively, with a slight abuse

of notation we will often write Dα(U ||V ) to mean Dα(µ∥ν).

Definition D.5 (Rényi DP). For 1 < α ≤ ∞ and ε ≥ 0, a randomized algorithm A satisfies

(α, ε)-Rényi differential privacy, or (α, ε)-RDP, if for all neighboring data sets D and D′ we have

Dα
(A(D)∥A (D′)) ≤ ε.

We can introduce a notion of Network-RDP accordingly.

Definition D.6 (Network Rényi DP). For 1 < α ≤ ∞ and ε ≥ 0, a randomized algorithm A
satisfies (α, ε)-network Rényi differential privacy, or (α, ε)-NRDP, if for all pairs of distinct users

u, v ∈ V and all pairs of neighboring datasets D ∼u D′, we have

Dα
(Ov(A(D))∥Ov

(A(D′)
)) ≤ ε.

As in classic DP, there exists composition theorems for RDP, see [Mir17]. We will use the

following.

Proposition D.7 (Composition of RDP). If A1, . . . ,Ak are randomized algorithms satisfying

(α, ε1)-RDP, . . . , (α, εk)-RDP respectively, then their composition (A1(S), . . . ,Ak(S)) satisfies

(α,
∑k

l=1 εl)-RDP. Each algorithm can be chosen adaptively, i.e., based on the outputs of algorithms

that come before it.

Finally, we can translate the result of the RDP by using the following result.
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D.3 Proof of Theorem 7.2 (Stochastic Gradient Descent on a Complete Graph)

Proposition D.8 (Conversion from RDP to DP [Mir17]). IfA satisfies (α, ε)-Rényi differential

privacy, then for all δ ∈ (0, 1) it also satisfies
(
ε + log(1/δ)

α−1 , δ
)
differential privacy.

Privacy amplification by iteration [Fel+18] captures the fact that for algorithms that con-

sist of iterative contractive updates, not releasing the intermediate results improve the privacy

guarantees for the final result. An important application of this framework is Projected Noisy

Stochastic Gradient Descent (PNSGD) in the centralized setting, where the trusted curator only

reveals the final model. More precisely, when iteratively updating a model with PNSGD, any

given step is hidden by subsequent steps (the more subsequent steps, the better the privacy).

The following result from [Fel+18] (Theorem 23 therein) formalizes this.

Theorem D.9 (Rényi differential privacy of PNSGD). LetW ∈ Rd be a convex set, X be an

abstract data domain and {f ′; x)}x∈X be a family of convex L-Lipschitz and β-smooth function

over K. Let PNSGD(D, w0, η, σ) be the algorithm that returns wn ∈ W computed recursively

from w0 ∈ W using dataset D = {x1, . . . , xn} as:

wt+1 = ΠW(wt − η(∇f(wt; xt+1) + Z)), where Z ∼ N (0, σ2Id).

Then for any η ≤ 2/β, σ > 0, α > 1, t ∈ [n], starting point w0 ∈ K and D ∈ X n, PNSGD

satisfies (α, αε
n+1−t)-RDP for its t-th input, where ε = 2L2

σ2 .

In our context, we aim to leverage this result to capture the privacy amplification provided

by the fact that a given user v will only observe information about the update of another user

u after some steps of the random walk. To account for the fact that this number of steps will

itself be random, we will use the so-called weak convexity property of the Rényi divergence

[Fel+18].

Proposition D.10 (Weak convexity of Rényi divergence). Let µ1, . . . , µm and ν1, . . . , νm be

probability distributions over some domain Z such that for all i ∈ [m], Dα (µi∥νi) ≤ c/(α − 1)

for some c ∈ (0, 1]. Let ρ be a probability distribution over [m] and denote by µρ (resp. νρ) the

probability distribution over Z obtained by sampling i from ρ and then outputting a random sample

from µi (resp. νi). Then we have:

Dα (µρ∥νρ) ≤ (1 + c) · E
i∼ρ

[Dα (µi∥νi)] .

We now have all the technical tools needed to prove our result. Let us denote by σ2 =
8L2 log(1.25/δ)

ε2 the variance of the Gaussian noise added at each gradient step in Algorithm 7.2.

Let us fix two distinct users u and v. We aim to quantify how much information about the

private data of user u is leaked to v from the visits of the token. In contrast to the proofs of

Theorem 7.1 (real summation) and Theorem D.1 (discrete histogram computation), we will
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reason here on the privacy loss induced by each contribution of user u, rather than by each

visit of the token through v.

Let us fix a contribution of user u at some time t1. The view Ov of user v on the entire

procedure is defined as in the proof of Theorem 7.1. Note that the token values observed before

t1 do not depend on the contribution of u at time t1. Let t2 > t1 be the first time that v receives

the token posterior to t1. It is sufficient to bound the privacy loss induced by the observation of

the token at t2: indeed, by the post-processing property of DP, no additional privacy loss with

respect to v will occur for observations posterior to t2.

By definition of the random walk, t2 follows a geometric law of parameter 1/n, where n is

the number of users. Additionally, if there is no time t2 (which can be seen as t2 > T ), then no

privacy loss occurs. Let Yv and Yv be the distribution followed by the token when observed by

v at time t2 for two neighboring datasets D ∼u D′ which only differ in the dataset of user u. For

any t, let also Xt and X ′
t be the distribution followed by the token at time t for two neighboring

datasets D ∼u D′. Then, we can apply Proposition D.10 to Dα(Yv||Y ′
v) with c = 1, which is

ensured when σ ≥ L
√

2α(α− 1), and we have:

Dα(Yv||Y ′
v) ≤ (1 + 1)Et∼G(1/n)Dα(Xt||X ′

t).

We can now bound Dα(Xt||X ′
t) for each t using Theorem D.9 and obtain:

Dα(Yv||Y ′
v) ≤ ∑T −t1

t=1
1
n(1− 1

n)t 2αL2

σ2t

≤ 2αL2

σ2n

∑∞
t=1

(1−1/n)t

t

≤ 2αL2 log n
σ2n

.

To bound the privacy loss over all the Tu contributions of user u, we use the composition

property of RDP, leading to the following Network RDP guarantee.

Proposition D.11. Let α > 1, σ ≥ L
√

2α(α− 1) and Tu be maximum number of contributions

of a user. Then Algorithm 7.1 satisfies (α, 4TuαL2 log n
σ2n

)-Network Rényi DP.

We can now convert this result into an (εc, δc)-DP statement using Proposition D.8. This

proposition calls for minimizing the function α→ εc(α) for α ∈ (1,∞). However, recall that

from our use of the weak convexity property we have the additional constraint on α requiring

that σ ≥ L
√

2α(α− 1). This creates two regimes: for small εc (i.e, large σ and small Tu), the

minimum is not reachable, so we take the best possible α within the interval, whereas we have

an optimal regime for larger εc. This minimization can be done numerically, but for simplicity

of exposition we can derive a suboptimal closed form which is the one given in Theorem 7.2.
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To obtain this closed form, we reuse the result of [Fel+18] (Theorem 32 therein). In partic-

ular, for q = max
(2Tu log n

n , 2 log(1/δc)
)
, α =

σ
√

log(1/δc)

L
√

q and εc =
4L
√

q log(1/δc)

σ , the conditions

σ ≥ L
√

2α(α− 1) and α > 2 are satisfied. Thus, we have a bound on the privacy loss which

holds the two regimes thanks to the definition of q.

Finally, we bound Tu by Nu = T
n +

√
3T
n log(1/δ̂) with probability 1 − δ̂ as done in the

previous proofs for real summation and discrete histograms. Setting ε′ = εc and δ′ = δc + δ̂

concludes the proof. ■

Remark D.12 (Tighter numerical bounds). As mentioned in the proof, we can compute a tighter

bound for small σ when the optimal α violates the constraints on σ. In this case, we set α to its

limit such that σ = L
√

2α(α− 1) and deduce a translation into (εc, δc)-differential privacy. This

is useful when q ̸= 2Nu log n
n , i.e., situations where the number of contributions of a user is smaller

than the number of users.

In particular, we use this method in our experiments of Section 7.2.4. In that case, we have a fixed

(εc, δc)-DP constraint and want to find the minimum possible σ that ensures this privacy guarantee.

We start with a small candidate for σ and compute the associated privacy loss as explained above.

We then increase it iteratively until the resulting εc is small enough.

D.4 Lifting the Assumption of Hidden Sender/Receiver

In the analysis of Section 7.2, we assumed that a user does not know the identity of the previous

(sender) or next (receiver) user in the walk. We discuss here how we can lift this assumption.

Our approach is based on separately bounding the privacy loss of contributions that are adjacent

to a given user (spotted contributions), as these contributions do not benefit from any privacy

amplification if the identity of the sender/receiver is known. We first compute the privacy

loss resulting from spotted contributions, then discuss in which regimes this term becomes

negligible in the total theoretical privacy loss, and finally how to deal with it empirically.

Definition D.13 (Spotted contribution). For a walk on the complete graph, we define a spotted

contribution of u with respect to v as a contribution of u that is directly preceded or followed by a

contribution of v.

Aspotted contribution has a privacy loss bounded by ε, aswe still have the privacy guarantee

given by the local randomizer, but no further amplification of privacy. Thus, we need to bound

the number of contributions for a given vertex u to be spotted by another user v. As in the

proofs of Theorem 7.1, Theorem 7.2 and TheoremD.1, we bound the number of contributions of

u by Nu using Chernoff. Now, for each of these contributions, the probability of being spotted
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is 2/n, so the number of spotted contributions follows a binomial law of parameter B(Nu, 2/n).

We then use once again Chernoff to bound the number of spotted contributions with probability

δ̃, and use either simple or advanced composition. This leads to the following bound for the

privacy loss associated with spotted contributions.

Proposition D.14 (Privacy loss of spotted contributions). For a random walk with Nu contri-

butions of user u, the privacy loss induced by spotted contributions is bounded with probability

1− δ̃ by:

• εs =

√(
2Nu

n +
√

6Nu
n log(1/δ̃)

)
log(1/δ′)ε +

(
2Nu

n +
√

6Nu
n log(1/δ̃)

)
ε(eε − 1) with

advanced composition,

• εs =

(
2Nu

n +
√

6Nu
n log(1/δ̃)

)
ε with simple composition.

The above term (along with δ̃) should be added to the total privacy loss to take into account

the knowledge of the previous and next user. The difficulty comes from the fact that the number

of spotted contributions has a high variance if the number of contributions per user is small

compared to the number of users. We already observed this when bounding the number of

contributions per user, where the worst case is far from the expected value (see Figure 7.1(a)).

Here, the price to pay is higher as the square root dominates the expression in the regime

where T = o(n2). However, for T = Ω(n2), the spotted contribution term becomes negligible

and we recover the same order of privacy amplification as in Theorem 7.1, Theorem 7.2 and

Theorem D.1.

The derivations above provide a way to bound the impact of spotted contributions theoreti-

cally, but we can also deal with it empirically. In practical implementations, one can also enforce

a bound on the number of times that an edge can be used, and dismiss it afterwards, with

limited impact on the total privacy loss. Another option to keep the same formal guarantees is

to replace real contributions with only noise when an edge has exceeded the bound. These

“fake contributions” seldom happen in practice and thus do not harm the convergence.

D.5 Additional Experiments

We run experiments to investigate the empirical behavior of our approach for the task of discrete

histogram computation on the complete graph by leveraging results on privacy amplification by

shuffling. Here, we have used the numerical approach from [Bal+19b] to tightly measure the

effect of amplification by shuffling based on the code provided by the authors.2 Figure D.1 con-

2https://github.com/BorjaBalle/amplification-by-shuffling
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D.5 Additional Experiments

Figure D.1 – Comparing network and local DP on the task of computing discrete histograms. The results
are obtained for T = 100n (i.e., the expected number of contributions per user is 100). The value of
ε0 rules the amount of local noise added to each contribution (i.e., each single contribution taken in
isolation satisfied ε0-LDP). Curves report the average privacy loss across all pairs of users and all 10
random runs, while their error bars give the best and worst cases.

firm that the empirical gains from privacy amplification by decentralization are also significant

for this task.
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D.6 Proof of Theorem 7.6

We adapt the proof of Theorem 5 of [Eve23]. Because constants matters in differential privacy,

we detail the steps needed to explicit these constants. We recall here the keys steps and

definition and how we adapt the proofs to allow the addition of Gaussian noise. We keep the

same definitions, except that the sequence of token iterates is now defined by

xt+1 = xt − γ(gt + ηt) .

This does not impact Lemma 8, which only relies on the graph properties and the function at

the optimum. Up to the transposition of notation, we have for any T ⩾ 1:

E



∥∥∥∥∥
∑

t<T

∇fvt (x⋆)

∥∥∥∥∥

2

 ⩽ Tζ2

⋆ + ζ2
⋆

∑

t<T

dTV

(
P t

v0,, π⋆
)

+ 2ζ2
⋆

∑

s<t<T

dTV(t− s), (D.4)

where dTV(r) = sup
{

dTV

(
(P r)v,, , π⋆

)
, v ∈ V

}
for r ∈ N, so that:

E



∥∥∥∥∥
∑

t<T

∇fvt (x⋆)

∥∥∥∥∥

2

 ⩽ ζ2

⋆ (4τmix (1/4) + T (1 + 8τmix (1/4))) . (D.5)

Next, we can transform Lemma 9 into

Eη(∥xt+1 − yt+1∥2) ≤ (1− γµ)Eη(∥xt − yt∥2) + γL ∥yt − x∗∥2 + γ2(dσ2 + σ2
sgd) .

where the sequence of yt and yt+1 satisfies the relation.

yt+1 = yt − γ∇fvt(x
∗)

By applying the formula recursively, we obtain:

Eη ∥xT − yT ∥2 ⩽ (1− γµ)T ∥x0 − y0∥2 +
∑

t<T

(1− γµ)T −t
(
γL ∥yt − x⋆∥2 + γ2(dσ2 + σ2

sgd)
)

,

where we use Eη to denote the expected value with respect to the privacy noise.

By instantiating the y sequence as done in the non-private version with the x, we recover

nearly the same formula, with yt = x∗. The first term can be handled as in the non-private case,
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while the second term has an additional sum:

Eη ∥xT − x⋆∥2 ⩽2(1− γµ)T


E ∥x0 − x⋆∥2 + γ2E



∥∥∥∥∥
∑

s<T

∇fvs (x⋆)

∥∥∥∥∥

2





+
∑

t<T

(1− γµ)T −t


γ3LE




∥∥∥∥∥∥

∑

t⩽s<T

∇fvs (x⋆)

∥∥∥∥∥∥

2

+ γ2(dσ2 + σ2

sgd)


 .

As
∑

t<T (1− γµ)T −t < 1
γµ , and the other terms remain identical, we have:

Eη ∥xT − yT ∥2 ⩽ 2(1− γµ)T ∥x0 − x⋆∥2 +
3γL

µ2
Cτmixζ2

⋆ +
γ(dσ2 + σ2

sgd)

µ
.

with C = 13.

We conclude by plugging back the following γ (as in [Eve23]) in the previous formula:

γ = min

(
1

L
,

1

Tµ
log

(
T
∥x0 − x⋆∥2
39
µ2 Cτmixζ2

⋆

))
.

Remark D.15. As long as σ2 ≤ 39Lτmixζ2
∗

dµ , the noise due to privacy is smaller than the one due to

the randomness of the walk.

D.7 Privacy Proofs

Let u, v be two distinct nodes. To prove Theorem 7.7, we see the privacy loss εu→v as the

composition of the privacy loss induced by each of the contributions of node u. Thus, we

first bound the privacy loss for one contribution εsingle
u→v . Let us denote by tc the time step

where this contribution is made (i.e., the token is at node u at time tc). For t ≤ tc, there is

no privacy leakage. Let us denote by tl the first t ≥ tc where the token is held by v. By the

post-processing property of differential privacy, the steps after tl will not yield additional

leakage for the contribution of time tc. Hence, we only need to bound the privacy leakage

at time tl. This leakage depends on the number of steps between tc and tl. We use the weak

convexity property of the Rényi divergence to decompose our privacy loss.

Lemma D.16 (Weak convexity of Rényi divergence). Let µ1, . . . , µn and ν1, . . . , νn be prob-

ability distributions over some domain Z such that for all i ∈ [n], Dα (µi∥νi) ≤ c/(α − 1) for

some c ∈ (0, 1]. Let ρ be a probability distribution over [n] and denote by µρ (respectively, νρ) the

probability distribution over Z obtained by sampling i from ρ and then outputting a random sample
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from µi (respectively, νi). Then

Dα (µρ∥νρ) ≤ (1 + c) · E
i∼ρ

[Dα (µi∥νi)] . (D.6)

We can thus partition according to the length of the walk and write the privacy guarantee

depending on T the total number of steps and β(i) a function bounding the privacy loss

occurring for seeing the token i steps after the node contribution:

εsingle
u→v ≤ (1 + c)

T∑

i=1

P(u→ v after i steps)β(i) . (D.7)

The probability of the path of t steps between u and v can be easily extracted from the

power of the transition matrix W . We thus obtain the generic formula.

Lemma D.17. Let β(i) be a bound on the privacy loss occurring for seeing the token i steps, and T

the total number of steps. Then, the following holds:

εsingle
u→v ≤

T∑

i=1

W i
uv2β(i) . (D.8)

We recognize in this formula the communicability (Definition 7.10) with ci = 2β(i).

We can now compute the function β by resorting to privacy amplification by iteration

(Theorem 3.11). As we apply the Gaussian mechanism at each step, we have s1 = α
2σ2 and

sj = 0 for 0 < j ≤ i. We thus take all aj = α
2σ2i

in Theorem 3.11. This gives the bound

β(i) = α
2σ2i

, which corresponds to setting ci = ασ2i.

We now focus on how to simplify and compute this formula when the transition matrix is

bistochastic and symmetric. Since the matrix is symmetric by assumption, we can apply the

spectral theorem to write:

W =
n∑

i=1

λiϕiϕ
⊤
i , (D.9)

Furthermore, since the matrix is bistochastic, λ1 = 1 > λ2 ≥ · · · ≤ λn > −1 and the eigenvector

associated to the first eigenvalue is 1√
n
1. Hence, we can isolate the first term and plug into

(D.8) to get:

εsingle
u→v ≤

T∑

t=1

α

σ2t

1

n
+

n∑

i=2

T∑

t=1

α

σ2t
λt

iϕi(u)ϕi(v) . (D.10)

In these sums, we isolate
∑T

t=1 λt
i/t. Noticing that the sum converges for all these eigen-

values, we can rewrite it as
∑T

t=1 λt
i/t = − log(1 − λi) + O(λT

i ). We use the integral test for

convergence to replace the sum by the logarithm.
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This gives us the privacy loss for a single contribution. In order to conclude, we compose

the privacy loss of each of the Nu contributions of node u, leading to, for any σ2 ≥ 2α(α− 1) :

εu→v ≤
αNu log(T )

σ2n
− αNu

σ2
log(I −W +

1

n
11

⊤)uv +O(λT
2 ) . (D.11)

As |λ2| < 1, its power decreases exponentially fast with the number of steps and thus is

negligible with respect to the other terms.

The average number of contributions is T/n as the transition matrix is bi-stochastic. We

can then upper bound the real number of contributions with high probability, for example by

using Theorem 12.21 of [LP17]. The small probability of exceeding the upper bound can be

added to δ when converting from RDP to (ε, δ)-differential privacy.

Remark D.18. The upper bound on Nu tends to be large for “cryptographically” small δ. An

efficient way to avoid this issue in practical implementations is to force a tighter bound on the

maximum number of contributions by each node. After a node reaches its maximum number of

contributions, if the token passes by the node again, the node only adds noise. We use this trick in

numerical experiments.

D.7.1 Adaptation to the case without sender anonymity

For bounding the privacy loss of a single contribution, we consider above the value of the

privacy loss occurring at time tl. However, this is computed without taking into account the

knowledge of where the token comes from, for example, if v can know which of its neighbors

sent him the token. This computation is thus justified only in the specific case where the

anonymity of the sender is ensured, e.g., by resorting to mix networks [SP06] or anonymous

routing [DMS04].

If this is not the case, then we should a priori use the conditional probability towards the

position of the token at time tl − 1. However, there is no close form for this in general for a

graph. To fix this issue, we consider that the last step for reaching v is only a post-processing of

the walk reaching one of its neighbors.

For each of the neighbors, the previous formula applies. We obtain different values for the

various neighbors, so a worst-case analysis consists in taking the max over this set. Denoting

by ˜
εsingle

uv the privacy loss when a node v knows the neighbors from which it received the token,

we have
˜
εsingle

uv ⩽ max
w∈Nv

εsingle
uw

This approach allows to keep a closed form for the matrix and just add a max step. However,

this analysis is not tight and may lead to a significant cost in some scenarios. A simple example
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is the special case where the nodes u and v are neighbors. It effectively assumes that the

transition between u and v is always direct, which may not always be the case.

We provide in Figure D.2 the equivalent of Figure 7.3(a) by taking the max below. As

expected, amplification is smaller for close nodes, but the curves have the same asymptotic.

D.8 Additional Numerical Experiments
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Figure D.2 – Comparison of privacy loss for random walks when nodes know who send them the
token in bold lines and gossip in dashed lines for the same synthetic graphs with n = 2048. Privacy
amplification is visible even for close neighbors but the decay is slower than for gossip.

In this section, we include other examples of graphs that illustrate how the privacy loss

matches the graph structure.

A classic synthetic graph to exhibit subgroup is the stochastic block model, where each

edge follows an independent Bernoulli random variable. The parameter of the law depends

from a matrix encoding the relation between the clusters. As for other graphs, the privacy loss

is similar to communicability and shows different level of privacy within and outside a group

Figure D.3(b), so that a node sees the major part of its privacy loss occurring within its group

(Figure D.3(a).

We report other examples of privacy loss for a node chosen at random in Facebook Ego

graphs. Once again, these results illustrate that our privacy loss guarantees match the existing

clusters of the graph (Figure D.4).

Intuitively, compare to gossip algorithms where the updates only slowly flows in the

graph, the random walk should mix quite easily heterogeneous data. while we do not derive

mathematical guarantees on heterogeneity, we illustrate this idea with the following numerical

experiment. We generate a synthetic geometric random graph and compare two scenarii

(Figure D.5). On the first trial, the data is position-dependent, which generate heterogeneity

as close nodes also have close data point. We then shuffle randomly the data to destroy the

heterogeneity and compare the convergence of the two in Figure D.6.
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Privacy loss

6.5 6.0 5.5

Communicability

8 6 4

Figure D.3 – Stochastic Block Model with 200 nodes in three clusters (75, 75, 50) and probability matrix
[[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]. The privacy loss matrix recovers the different blocks.

D.9 Collusion

The results of our work assume that nodes are separated entities that do not share information

outside the protocols. One could however claim that a fraction of nodes can collude and share

information between them. In this case, if we denote F ⊂ V the fraction of the colluded nodes,

for a given contribution done by u what matters is the first time that one of the node of F is

reached afterwards. More precisely, we can derive the privacy loss as

εsingle
u→F ≤

T∑

i=1

(
∑

v∈F

W i
uv

)
ασ2i . (D.12)

where the term between parenthesis corresponds to the probability to reach F in exactly i steps

from u. By reorganizing these terms, we obtain the upper bound:

εu→F ≤
∑

v∈F

εu→v (D.13)

This term corresponds also to the formula onewould obtain from basic composition. Hence, our

analysis does not allow to avoid the degradation of the privacy guarantees to collusion. Note that

if all the colluded nodes are far away from u, it is still possible to derive non trivial guarantees

compare to what would give the bound of local differential privacy. In comparison to gossip

where the privacy loss decrease is sharper with distance, the cases where the amplification

remains are scarcer. This is a fundamental limitation of amplification by decentralization, that

was already pointed out in [CB22; Cyf+22].
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Figure D.4 – Privacy loss on the 9 other Facebook Ego graphs, following the same methodology as in
Figure 7.5(a).
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Figure D.5 – Geometric random graph with 200 nodes. On the left, the label is given by the sum of the
coordinates, providing heterogeneity in the graph. On the right the same graph has its label shuffled
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(a) With original labels
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(b) With shuffled labels

Figure D.6 – We compute the quantiles of the euclidean distance between node. For each quantile,
we report the mean on all the pair of nodes of the quantiles for the privacy loss and for the distance
between the current estimates. We report different time step across the learning. The privacy loss is
identical in both cases. At the beginning of the learning, the homogeneous case has smaller average
values heterogeneity, but the difference reduces with the learning
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D.10 Refined Privacy Bounds for Specific Graphs

D.10.1 Useful Auxiliary Results

We first collect some auxiliary results that we use in our bounds.

Proposition D.19. For any x ∈ (0, 1), we have

∑

p is odd

xp

p
=

1

2
log

1 + x

1− x
and

∑

p is even

xp

p
= − log(1− x2) .

Proof. Recall that

log(1 + x) = x +
x2

2
+

x3

3
+ · · · , and log(1− x) = −x +

x2

2
− x3

3
+ · · ·

Now log(1 + x)− log(1− x) gives the first bound and log(1− x) + log(1 + x) gives the second

bound. This completes the proof. ■

Proposition D.20 (Godsil and Royle [GR01]). Let 1 ≤ d ≤ n− 1 be an integer. Then for any

d-regular graph G, the eigenvectors of the Laplacian and those of the adjacency matrix of G coincide.

D.10.2 Privacy Loss for Specific Graphs

Complete graph. The transition matrix is exactly 1
n11

⊤ and thus we recover exactly the same

formula as in [CB22]. In particular, there is only one non-zero eigenvalue with magnitude 1

with an all-one vector as the corresponding eigenvector. In particular,

εu→v ≤
α

σ2

T∑

i=1

W i
uv

1

i
=

α

σ2

T∑

i=1

1

i




n∑

j=1

λi
jvjv⊤

j




uv

=
α

nσ2

T∑

i=1

1

i
≤ α log(T )

nσ2

Ring graph. To ensure aperiodic Markov chain, the transition matrix should be in the form

aI + b(J + J⊤), a + 2b = 1.
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The adjacency matrix AR of the ring graph R is a circulant matrix. Therefore, all its eigen-

vectors are just the Fourier modes [HJ12]:

ϕ(ωk) =




1

ωk

ω2
k
...

ωn−1
k




,

where ωn
k = 1 is the n-th root of unity, i.e, e2πιk/n for 1 ≤ k ≤ n. This can be seen by noting that

multiplication with a circulant matrix gives a convolution. In the Fourier space, convolutions

become multiplication. Hence the product of a circulant matrix with a Fourier mode yields a

multiple of that Fourier mode, which by definition is an eigenvector.

The eigenvalues can be then computed as

ωk + ω−1
k = 2 cos(2πk/n) for 0 ≤ k ≤ n− 1 .

Computing ϕ(ω)ϕ(ω)⊤ is straightforward. The (u, v)-th entry would be just ω(u+v−2) mod n.

Recall that

εu→v ≤
α

σ2

T∑

i=1

W i
uv

i
.

For ease of calculation, let us assume that a = b = 1
3 . Then W = AR

3 + I
3 , where AR is a

binary matrix with (i, j)-th entry 1 only when |i− j| = 1. Then the eigenvalues of W are given

by 2 cos(2πk/n)+1
3 for 0 ≤ k ≤ n− 1. Let a = (u + v − 2) mod n. Hence,

εu→v ≤
α

nσ2

T∑

t=1

(
e2πιa/n

t
+

n−1∑

k=1

1

t

(
2 cos(2πk/n) + 1

3

)t

e2πιak/n

)

≤ α

nσ2

T∑

t=1


e2πιa/n

t
+

n−1∑

k=1

1

t

(
4 cos2(πk/n)− 1

3

)t

e2πιak/n




=
α

nσ2

T∑

t=1

1

t
cos (2πa/n) +

α

nσ2

T∑

t=1

n−1∑

k=1

1

t

(
4 cos2(πk/n)− 1

3

)t

cos (2πak/n)

≤ α log(T )

nα2
+

α

nσ2

n−1∑

k=1

∞∑

t=1

1

t

(
4 cos2(πk/n)− 1

3

)t

cos

(
2π(u + v − 2)k

n

)

=
α log(T )

nσ2
− α

nσ2

n−1∑

k=1

log

(
1− 4 cos2(πk/n)− 1

3

)
cos

(
2πak

n

)
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≤ α log(T )

nσ2
+

2α

nσ2

n−1∑

k=1

cos

(
2πak

n

)
log

(
3 csc(πk/n)

2

)
,

where csc is the cosecant function. The second equality follows from the fact that W i
u,v is a real

number, so the imaginary part is identically zero.

In the previous bound, we give self-loops the same probability as other edges. The main

reason to give self-loop a non-zero weight is to ensure irreducibility and aperiodicity of the

Markov chain. The same effect can be achieved by giving any non-negligible weight to the

self-loops. In particular, we can consider the following adjacency matrix:

ÂR = (1− κ)AR + κI

for some κ > 0. Then, the eigenvalues would be (1− κ)(ωk + ω−1) + κ. The adjacency matrix

is still a circulant matrix. As a result, the eigenvectors still remain the same. Furthermore,

(ωk + ω−1
k )t cos

(
2πak

n

)
= 2 cost

(
2πk

n

)
cos

(
2πak

n

)
= cost−1

(
2πk

n

)
cos

(
2π(a + 1)k

n

)
.

Let κ = 1
T 2 . Then

Ât
uv ≤ (1− κ)At

uv

for t ≥ 2. Therefore, for a = (u + v − 2) mod n:

εu→v ≤
α(1− κ)

nσ2
Auv +

α(1− κ)

nσ2

T∑

t=2

At
uv

≤ α

nσ2
Auv +

α(1− κ)

nσ2

T∑

t=2

n∑

k=1

(ωk + ω−1
k )t cos

(
2πak

n

)

=
α

nσ2
AR[u, v] +

α(1− κ)

nσ2

T∑

t=2

n∑

k=1

cost−1
(

2πk

n

)
cos

(
2π(a + 1)k

n

)
.

If |u− v| = 1, then we have

εu→v ≤
α

nσ2
+

α(1− κ)

nσ2

T∑

t=2

n∑

k=1

cost−1
(

2πk

n

)
cos

(
2π(a + 1)k

n

)
.

otherwise, we have

εu→v ≤
α(1− κ)

nσ2

T∑

t=2

n∑

k=1

cost−1
(

2πk

n

)
cos

(
2π(a + 1)k

n

)
.
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Star graph. We set the vertex set of a simple star graph as

V = {1, 2, · · · , n}

with the node 1 being the central node. This gives the edge set

E = {(1, i), 2 ≤ i ≤ n}.

Lemma D.21. The eigenvalues of the Laplacian of the star graph are

(
0 1 · · · 1 n

)

and the eigenvectors are δi−δi+1 for eigenvalues 1 and 2 ≤ i ≤ n−1. The eigenvector corresponding

to eigenvalue n is computed in the proof.

Proof. Let 1 denote the all one vector. Then by the definition of Laplacian, L1 = 0 and

eigenvalue 0 corresponds to the eigenvector 1. Now, the trace of the Laplacian is just the sum

of its eigenvalues. Therefore,

Tr(L) = 2n− 2.

Let v be the eigenvector for eigenvalue n. Then we know that

v⊥Span{1, e2 − e3, e3 − e4, · · · , en−1 − en}.

This implies that

n− 1 + v[1] = 0,

or that v =
(
−(n− 1) 1 1 · · · 1

)⊤
. ■

We can perform the spectral decomposition of the adjacency matrix of a star graph, but

noting that the adjacency matrix of a star graph is

A =




0 1 1 · · · 1

1 0 0 · · · 0

1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0
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it is easy to compute the coordinates of any higher power of A. In particular, if p is an even

power, then (u, v)-th coordinate of Ap
S is

Ap
uv =





(n− 1)p/2 u = v = 1

0 u = 1 or v = 1 and u ̸= v

(n− 1)p/2−1 otherwise

If p is an odd power, then (u, v)-th coordinate of Ap is

Ap
uv =





(n− 1)(p−1)/2 u = 1 or v = 1

0 otherwise

Since W = A
(n−1) for a normalization constant (n− 1) to make W doubly stochastic, we have

εu→v ≤
T∑

p=1

Ap
uv

α

σ2p(n− 1)p

=
α

σ2




T∑

p is odd

Ap
uv

p(n− 1)p
+

T∑

p is even

Ap
uv

p(n− 1)p


 .

We now compute the privacy loss for each case. Since we only care about the privacy loss

when u ̸= v, we consider the following two cases:

1. u = 1 or v = 1 and u ̸= v. In this case, using Proposition D.19, we have

εu→v ≤
α

σ2

T∑

p is odd

(
√

n− 1)p−1

p(n− 1)p
≤ α

2σ2
√

n− 1
log

(√
n− 1 + 1√
n− 1− 1

)
.

2. u ̸= 1 and u ̸= v. In this case, using Proposition D.19, we have the following

εu→v ≤
α

σ2

T∑

p is even

(n− 1)p/2−1

p(n− 1)p

=
α

σ2(n− 1)

T∑

p is even

(n− 1)p/2

p(n− 1)p

≤ − α

σ2(n− 1)
log

(
1− 1

n− 1

)
.

The above calculation is when the graph is simple. To make the Markov chain aperiodic, as

before, we add self-loops with a small weight on the self-loop. For example, we consider the
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following adjacency matrix:

Â = (1− κ)A + κI .

We pick κ = 1
T 2 , so that

Âp
uv ≤ (1− κ)Ap

uv

for u ̸= v and p ≤ T . Then if p is an even power, then (u, v)-th coordinate of Âp is

Âp
uv ≤





(1− κ)(n− 1)p/2 u = v = 1

0 u = 1 or v = 1 and u ̸= v

(1− κ)(n− 1)p/2−1 otherwise

If p is an odd power, then (u, v)-th coordinate of Âp is

Âp
uv ≤





(1− κ)(n− 1)(p−1)/2 u = 1 or v = 1

0 otherwise

Now again we have

εu→v ≤
T∑

p=1

Âp
uv

α

σ2p(n− 1)p

=
α

σ2




T∑

p is odd

Âp
uv

p(n− 1)p
+

T∑

p is even

Âp
uv

p(n− 1)p


 .

Using the same calculation as before, we have for all u ̸= v,

εu→v ≤




α(1−κ)

2σ2
√

n−1
log

(√
n−1+1√
n−1−1

)
u = 1 or v = 1 and u ̸= v

− α(1−κ)
σ2(n−1)

log
(
1− 1

n−1

)
u ̸= 1

.

In particular, this means that the privacy loss for the apex node is the most. In contrast, the

nodes on the arms have approximately
√

n more privacy than the apex node, which is what we

expect: the apex node is the only one communicating with every other node in the graph.
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E.1 Generic Utility Analysis of Private Fixed Point Iterations (Algo-

rithm 8.1)

E.1.1 Existing Result of Combettes and Pesquet [CP19]

Our convergence analysis leverages the generic convergence result of Combettes and Pesquet

[CP19] for stochastic quasi-Fejér type block-coordinate fixed-point operators. Here, we briefly

summarize their result (Theorem 3.1 in [CP19]) before deriving our specific analysis.

Theorem E.1 (Mean-square convergence of stochastic quasi-Fejér type block-coordinate

iterations, [CP19]). The update rule of the stochastic quasi-Fejér type block-coordinate iterations

is given by

uk+1,b = uk,b + ρk,bλk (Rk,b (uk) + ei,k − ui,k) . (E.1)

Here, b ∈ [B] denotes the b-th coordinate (block) of u ∈ U = U1 × · · · × UB , i.e. uk =

[uk,1, . . . , uk,b, . . . , uk,B], and k denotes the number of iterations. We assume that the operators

(Rk)k∈N are quasi-non-expansive with common fixed point u∗ such that:

∥Rk(u)− u∗∥2 ≤
B∑

b=1

τk,b ∥ub − u∗
b∥2 , ∀k ∈ N,∀u ∈ U , and ∃ τk,b ∈ [0, 1). (E.2)

Let (Fk)k∈N be a sequence of sub-sigma-algebras of F such that ∀k ∈ N : σ(u0, . . . , uk) ⊂ Fk ⊂
Fk+1.

Given this structure, we assume that the following conditions hold:

[a] infk∈N λk > 0.

[b] There exists a sequence of non-negative real numbers (αk)k∈N such that
∑

k∈N
√

αk < +∞,

and E
(
∥ek∥2 | Fk

)
≤ αk for every k ∈ N.

[c] For every k ∈ N, Ek = σ (ρk) and Fk are independent.

[d] For every b ∈ {1, . . . , B}, pb = P [ρ0,b = 1] > 0.

Under the assumptions [a]-[d], the iteration defined in Equation (E.2) satisfies almost surely

B∑

b=1

ωbE
(
∥uk+1,b − u∗

b∥2 | F0

)
≤



k∏

j=0

χj



(

B∑

b=1

ωb ∥u0,b − u∗
b∥2
)

+ η̄k, ∀k ∈ N. (E.3)

Here,

χk = 1− λk (1− µk) +
√

ξkλk (1− λk + λk
√

µk)
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η̄k =
k∑

j=0




k∏

ℓ=j+1

χℓ


λj

(
1− λj + λj

√
µj + λj

√
ξj

)√
ξj

ξk = αk max
1≤b≤B

ωb

µk = 1− min
1≤b≤B

(
pb −

τk,b

ωb

)

max
1≤b≤B

lim τk,b < ωbpb

We leverage this result to derive our generic convergence analysis for the private fixed-point

iteration (Algorithm 8.1), which we then instantiate to the three types of private ADMM

algorithms we introduce (Section 8.4).

E.1.2 Proof of Theorem 8.5

For ease of calculations, we mildly restrict the coordinate-wise contraction assumption made in

Theorem E.1 by the following assumption of global contraction.

Assumption E.2 (Global contraction constant). In our analysis, we assume that there exists a

global contraction constant τ ∈ [0, 1) for the contraction operator Rk. Mathematically,

∥Rk(u)− u∗∥2 ≤
B∑

b=1

τ2
k,b ∥ub − u∗

b∥2 ≤ τ2 ∥u− u∗∥2 , ∀k ∈ N,∀u ∈ U . (E.4)

Theorem 8.5. Assume that R is a τ -contractive operator with fixed point u∗ for τ ∈ [0, 1). Let

P [ρk,b = 1] = q for some q ∈ (0, 1]. Then there exists a learning rate λk = λ ∈ (0, 1] such that the

iterates of Algorithm 8.1 satisfy:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽

(
1− q2(1− τ)

8

)k

D + 8

( √
pσ + ζ

√
q (1− τ)

+
pσ2 + ζ2

q3(1− τ)3

)
(E.5)

where D = maxu0 ∥u0 − u∗∥2 is the diameter of the domain, p is the dimension of u, σ2 > 1− τ is the

variance of Gaussian noise, and E[∥ek∥2] ≤ ζ2 for some ζ ≥ 0.

Proof. We observe that Algorithm 8.1 satisfies the assumptions of Theorem E.1 if we specify

pb = q, ωb = 1
q , and µ = 1− q (1− τ). Since ξ ≥ 1

qE[∥ek + ηk∥2], E[∥ηk∥2] ≤ pσ2 as zero-mean

Gaussian noise are added independently to each dimension, and E[∥ek∥2] ≤ ζ2, we can assign

ξ = pσ2+ζ2

q . For ease of calculations, hereafter, we refer to ξ as σ2
1 .
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Step 1: Instantiating the mean-square convergence result. By substituting the aforemen-

tioned parameters in Equation (E.3), we obtain

E
(
∥uk+1 − u∗∥2 | F0

)
≤ χk ∥u0 − u∗∥2 + qη

≤ χkD + qη. (E.6)

Here,

χ = 1− λq (1− τ) + λσ1

(
1− λ + λ

√
1− q (1− τ)

)

= 1− λ
(
1− b2

)
+ λσ1(1− λ + λb)

= 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b),

and

η =
k∑

i=0

χk−i−1λσ (1 + λ (σ1 − (1− b)))

=

1
χ − χk

1− χ

(
χ− 1 + λ

(
1− b2

)
+ σ2

1λ2
)

=

(
χk − 1

χ

)
1−

σ1λ
(
σ1λ + 1−b2

σ1

)

σ1λ
(
(1− b)λ + 1−b2

σ1
− 1

)




=

(
χk − 1

χ

)
1−

λσ1 + 1−b2

σ1

(1− b)λ + 1−b2

σ1
− 1


 . (E.7)

For simplicity, we introduce the notation b ≜
√

1− q (1− τ). We observe that b ∈ [0, 1) as

q ∈ (0, 1] and τ ∈ [0, 1).

Step 2: Finding a ‘good’ learning rate λ. First, we assume that there exists a c > 0, such that

the noise variance can be rewritten as σ1 = (1 + c)(1− τ). From Lemma E.3, we obtain that

λ ∈
(

1 + c− q

(1 + c)(1− b)
,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

))
.

For ease of further calculations, we fix λ = 1
1−b

(
1− q

2(1+c)

)
. Before proceeding further, we

prove that this choice of λ belongs to the desired range. We begin by observing that

1− b

1− τ
=

1−
√

1− q (1− τ)

(1− τ)
⩾

q (1− τ)

2(1− τ)
=

q

2
.
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The inequality holds due to concavity of the square root, specifically
√

1− x ≤ 1− x
2 .

Thus,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

)
≥ 1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q(1 + c)

(1 + c− q)2

)

=
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q(1 + c− q)

(1 + c− q)2
+

2q2

(1 + c− q)2

)

>
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 +

2q

(1 + c− q)
+

q2

(1 + c− q)2

)

=
1 + c− q

(1 + c)(1− b)

(
1 +

q

2(1 + c− q)

)

=
1

1− b

(
1− q

2(1 + c)

)
.

Step 3: Understanding the impact of the noise term η. First, we investigate the term A ≜

λσ1+ 1−b2

σ1

(1−b)λ+ 1−b2

σ1
−1

in (E.7).

Denominator of A = (1− b)λ +
1− b2

σ1
− 1

= 1− q

2(1 + c)
+

q (1− τ)

(1 + c) (1− τ)
− 1

=
q

2(1 + c)

Numerator of A = λσ1 +
1− b2

σ1

=
(1 + c) (1− τ)

1− b

(
1− q

2(1 + c)

)
+

q

1 + c

=
(1 + c) (1 + b)

q

(
1− q

2(1 + c)

)
+

q

1 + c

=
(1 + c) (1 + b)

q
+

q

1 + c

(
1− (1 + c) (1 + b)

2q

)

Thus, we get

A =
2(1 + b)(1 + c)2

q2
+ 2− (1 + c) (1 + b)

q

and,

1−A =
(1 + c) (1 + b)

q
− 1− 2(1 + b)(1 + c)2

q2
.
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By substituting (1−A) in Equation (E.7) and plugging back η into Equation (E.6), we get

E
(
∥uk+1 − u∗∥2 | F0

)
≤ χkD + q

(
χk − 1

χ

)
(1−A)

= χk(D + q(1−A))− 1

χ
q(1−A)

= χk

(
D + (1 + c) (1 + b)− q − 2(1 + b)(1 + c)2

q

)

+
1

χ

(
−(1 + c) (1 + b) + q +

2(1 + b)(1 + c)2

q

)

≤ χk (D + (1 + c)(1 + b)) +
1

χ

(
q +

2(1 + b)(1 + c)2

q

)

≤ χk (D + 2(1 + c)) +
1

χ

(
q +

2(1 + b)(1 + c)2

q

)
. (E.8)

Step 4: Upper & lower bounding χ. We can rewrite χ as follows:

χ = 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b)

= 1 + λ ((1 + c) (1− τ)− q (1− τ))− λ2(1 + c) (1− τ) (1− b)

= 1 + λ (1− τ) (1 + c− q)− λ2(1 + c) (1− τ) (1− b)

= 1 +
(1− τ) (1 + c− q)(1 + c− q/2)

(1 + c)(1− b)
− (1− τ) (1 + c− q/2)2

(1 + c)(1− b)

= 1− q (1− τ) (1 + c− q/2)

2(1− b)(1 + c)

= 1− (1 + b)(1 + c− q/2)

2(1 + c)

Lower bound:

χ = 1− 1 + b

2
+

q(1 + b)

4(1 + c)
>

1− b

2
=

1−
√

1− q(1− τ)

2
≥ q(1− τ)

4

The inequality holds due to the fact that b =
√

1− q (1− τ) < 1− q(1−τ)
2 .

Upper bound:

χ = 1− (1 + b)

2

(
1− q

2(1 + c)

)
=

1− b

2
+

q(1 + b)

4(1 + c)
⩽

1

2
+

q(1 + b)

4

⩽
1

2
+

q

4

(
2− q(1− τ)

2

)

⩽ 1− q2(1− τ)

8
.
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The first inequality holds for any non-negative b, c, q. The second inequality leverages the fact

that b =
√

1− q(1− τ) ≤ 1− q(1−τ)
2 . The final inequality follows from the fact that q ∈ (0, 1].

Step 5: Final touch. By substituting upper and lower bounds of χ in Equation (E.8), we get

E
(
∥uk+1 − u∗∥2 | F0

)
<

(
1− q2(1− τ)

8

)k

(D + 2(1 + c)) +
4

q(1− τ)

(
q +

2(1 + b)(1 + c)2

q

)

=

(
1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

4

q (1− τ)

(
q +

2(1 + b)σ2
1

q(1− τ)2

)

=

(
1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

4

(1− τ)
+

8(1 + b)σ2
1

q2(1− τ)3

≤
(

1− q2(1− τ)

8

)k (
D +

2σ1

(1− τ)

)
+

(
4

(1− τ)
+

16σ2
1

q2(1− τ)3

)

≤
(

1− q2(1− τ)

8

)k (
D +

2(σ
√

p + ζ)
√

q (1− τ)

)
+

(
4

(1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)

≤
(

1− q2(1− τ)

8

)k

D +

(
8(σ
√

p + ζ)
√

q (1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)

We can also alternatively write the result as follows. Since (1− a)k ≤ exp(−ak) for a ∈ [0, 1)

and k ∈ N, we have:

E
(
∥uk+1 − u∗∥2 | F0

)
⩽ exp

(
−q2(1− τ)

8
k

)
D +

(
8(σ
√

p + ζ)
√

q (1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)

■

E.1.3 Technical Lemma on the Learning Rate

We prove below a technical lemma used in the proof of Theorem 8.5.

Lemma E.3 (Choices of the Learning Rate). In order to ensure convergence of Algorithm 8.1,

we should choose the learning rate λ in the range

(
1 + c− q

(1 + c)(1− b)
,

1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

))
.

Here, we assume that there exists c > 0 such that σ1 ≜
σ

√
p+ζ√
q ≜ (1+c)(1−τ), b ≜

√
1− q(1− τ),

σ is the noise variance, τ ∈ [0, 1) is the contraction factor, and q ∈ (0, 1].
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Proof. In order to ensure convergence of the algorithm, we need to satisfy 0 < χ < 1. We

observe that

χ = 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b),

As χ is a function of the learning rate, the upper and lower bounds on χ impose lower and

upper bounds on the desired learning rate λ.

Step 1: Lower Bounding λ.

χ < 1 =⇒ 1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b) < 1

=⇒
(a)

(
σ1 −

(
1− b2

))
− λσ1(1− b) < 0

=⇒ σ1 −
(
1− b2

)

σ1(1− b)
< λ

=⇒ (1 + c)(1− τ)− q
(
1− τ2

)

(1 + c)(1− τ)(1− b)
< λ

=⇒ 1 + c− q

(1 + c)(1− b)
< λ

Step (a) holds true for λ > 0, i.e. for any positive learning rate.

Step 2: Upper Bounding λ. As χ > 0, we should choose the learning rate λ in a range such

that the following quadratic equation satisfies

1 + λ
(
σ1 −

(
1− b2

))
− λ2σ1(1− b) > 0.

Since the coefficient corresponding to λ2 is negative, the quadratic equation stays positive only

between its two roots:

λinf =
(σ1 − (1− b2))−

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)
,

and

λsup =
(σ1 − (1− b2)) +

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)
.

Since the smallest root λinf is negative, and we care about only positive learning rates, it

provides a vacuous bound. Thus, we can ignore it.

Thus, we conclude that

λ <
(σ1 − (1− b2)) +

√
(σ1 − (1− b2))2 + 4σ1(1− b)

2σ1(1− b)

=
(1 + c− q)(1− τ) +

√
(1 + c− q)2(1− τ)2 + 4(1 + c)(1− b)(1− τ)

2(1 + c)(1− τ)(1− b)
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=
(1 + c− q) + (1 + c− q)

√
1 + 4 (1+c)(1−b)

(1−τ)(1+c−q)2

2(1 + c)(1− b)

=
1 + c− q

(1 + c)(1− b)

(
1

2
+

1

2

√
1 + 4

(1 + c)(1− b)

(1− τ)(1 + c− q)2

)

to obtain a valid convergence of the algorithm. ■
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E.2 Derivation of Private ADMMUpdates

In this section, we give details on how to obtain the private ADMM updates given in Al-

gorithm 8.2, Algorithm 8.4 and Algorithm 8.3 from our general noisy fixed-point iteration

(Algorithm 8.1).

E.2.1 Warm-up: Non-Private ADMM

For clarity and self-completeness, we start by deriving the standard ADMM updates from the

fixed-point iteration formulation described in Section 8.2.2. This derivation follows the lines of

[GFB16, Appendix B therein].

Recall that ADMM solves an optimization problem of the form (8.3), which we restate here

for convenience:

minx,z f(x) + g(z)

s.t. Ax + Bz = c
(E.9)

We also recall the definition of the infimal postcomposition.

Definition E.4 (Infimal postcomposition). Let M be a linear operator. The infimal postcomposi-

tion M ▷ f is defined by

(M ▷ f)(y) = inf{f(x) |Mx = y}.

As mentioned in Section 8.2.2, the minimization problem above can be rewritten as

min
u

(−A ▷ f)(−u− c) + (−B ▷ g)(u).

Introducing p1(u) = (−A ▷ f)(−u − c) and p2(u) = (−B ▷ g)(u) recovers a minimization

problem solvable with the Douglas-Rachford algorithm. Formally, the λ-averaged ADMM can

be written as the following fixed-point operator:

uk+1 = uk + λ
(
Rγp1(Rγp2 (uk))− uk

)
, (E.10)

where Rγp1 = 2 proxγp1
−I and Rγp2 = 2 proxγp2

−I .
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From this generic formula, we can recover the standard ADMM updates in terms of x and

z. We start by rewriting Rγp2(u):

Rγp2(u) = 2 proxγp2
(u)− u

= 2 arg min
v

{
inf

z
{g(z) | −Bz = v}+

1

2γ
∥u− v∥2

}
− u

= −2B arg min
z

{
g(z) +

1

2γ
∥Bz + u∥2

}
− u.

This leads to the introduction of the z variable with associated update:

zk+1 = arg min
z

{
g(z) +

1

2γ
∥Bz + uk∥2

}
. (E.11)

Similarly, we can rewrite Rγp1 :

Rγp1(u) = 2 proxγp1
(u)− u

= 2 arg min
v

{
inf
x
{f(x) | −Ax = −v − c}+

1

2γ
∥u− v∥2

}
− u

= 2A arg min
x

{
f(x) +

1

2γ
∥Ax− u− c∥2

}
− 2c− u,

which leads to the introduction of the x variable with associated update:

xk+1 = arg min
x

{
f(x) +

1

2γ
∥Ax + 2Bzk+1 + uk − c∥2

}
. (E.12)

Based on (E.11) and (E.12), we can rewrite:

Rγp1Rγp2 (uk) = Rγp1 (−2Bzk+1 − uk)

= 2Axk+1 − 2c− (−2Bzk+1 − uk)

= 2 (Axk+1 + Bzk+1 − c) + uk,

which in turns gives for the update of variable u in (E.10):

uk+1 = uk + 2λ (Axk+1 + Bzk+1 − c) , (E.13)

The updates (E.11), (E.12) and (E.13) correspond to the standardADMMupdates [Boy+11;

GFB16].
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Algorithm E.1: General Private ADMM to solve problem (E.9)

1 Input: initial point u0, step size λ ∈ (0, 1], privacy noise variance σ2 ≥ 0, Lagrange
parameter γ > 0

2 for k = 0 to K − 1 do

3 zk+1 = arg minz

{
g(z) + 1

2γ ∥Bz + uk∥2
}

4 xk+1 = arg minx

{
f(x;D) + 1

2γ ∥Ax + 2Bzk+1 + uk − c∥2
}

5 uk+1 = uk + 2λ
(
Axk+1 + Bzk+1 − c + 1

2ηk+1

)
with ηk+1 ∼ N

(
0, σ2I

)

6 return zK

E.2.2 General Private ADMM

We now introduce a general private version of ADMM to solve problem (E.9). In this generic

part, we consider without loss of generality that the data-dependent part is in the function f .

For clarity, we denote f(x) by f(x;D) to make the dependence on the dataset D explicit.

Following our general noisy fixed-point iteration (Algorithm 8.1), the private counterpart

of the non-private ADMM iteration (E.10) is given by:

uk+1 = uk + λ (Rγp1(Rγp2 (uk);D)− uk + ηk+1) ,

where the notation Rγp1(·; D) is again to underline the data-dependent part of the computation.

By following the same derivations as in Appendix E.2.1, we obtain the following equivalent

update:

uk+1 = uk + 2λ

(
Axk+1 + Bzk+1 − c +

1

2
ηk+1

)
,

where zk+1 and xk+1 are defined as in (E.11) and (E.12) respectively. The full algorithm is given

in Algorithm E.1. Note that we return only zK , which is differentially private by postprocessing

of uK−1 (see Appendix E.3). In contrast, returning xK would violate differential privacy as

the last update interacts with the data without subsequent random perturbation. In many

problems (such as the consensus problem considered below), returning zK is sufficient for

all practical purposes. Note that when A is invertible (which is the case for consensus, see

below), one can recover from zK the unique x̃K = A−1(c−BzK) such that (x̃K , zK) satisfies

the constraint in problem (E.9).

E.2.3 Instantiations for the Consensus Problem

We now instantiate the generic private ADMMupdate given in Appendix E.2.2 to the consensus

problem and derive centralized, fully decentralized and federated private ADMM algorithms

for ERM.
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Recall that the ERM problem (8.5) can be reformulated as the consensus problem (8.6),

which we restate below for convenience:

min
x∈Rnp,z∈Rp

1

n

n∑

i=1

f (xi; di) + r(z)

s.t xi = z ∀i,

which is a special case of problem (E.9) with x = (x1, . . . , xn)⊤ composed of n blocks of p

coordinates, f(x) = f(x;D) = 1
n

∑n
i=1 f(xi; di), g(z) = r(z), c = 0, A = I and B = −In(p×p) ∈

Rn×p where In(p×p) ∈ Rn×p denotes n stacked identity matrices of size p× p.

Centralized private ADMM (Algorithm 8.2). We use the specific structure of the consensus

problem to simply the general private ADMM updates in Appendix E.2.2. The z-update gives:

zk+1 = arg min
z

{
r(z) +

1

2γ

∥∥∥∥
( I

. . .

I

)
z − uk

∥∥∥∥
2
}

,

zk+1 = proxγr

( 1

n

n∑

i=1

uk,i

)
.

For the x-update, we have:

xk+1 = arg min
x

{
f(x;D) +

1

2γ

∥∥∥∥x− 2

( I

. . .

I

)
zk+1 + uk

∥∥∥∥
2
}

.

As f is fully separable, this can be decomposed into n block-wise updates as:

xk+1,i = arg min
xi

{
f(xi; di) +

1

2γ
∥xi − 2zk+1 + uk,i∥

}

= proxγfi
(2zk+1 − uk,i).

Finally, the u-update writes:

uk+1 = uk + 2λ

(
xk+1 −

( I

. . .

I

)
zk+1 +

1

2
ηk+1

)
,
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which can be equivalently written as block-wise updates:

uk+1,i = uk,i + 2λ

(
xk+1,i − zk+1 +

1

2
ηk+1,i

)
.

Algorithm 8.2 shows the resulting algorithm when cycling over the n blocks of x and u in

lexical order (which is equivalent to considering a single block, i.e., B = 1). But remarkably,

the flexibility of our general noisy fixed-point iteration (Algorithm 8.1) and associated utility

result (Theorem 8.5) allows us to cover many other interesting cases, some of which directly

leading to federated and fully decentralized learning algorithms (see below). In particular, we

can sample the blocks in a variety of ways, such as:

1. cycling over an independently chosen random permutation of the blocks at each iteration

(the corresponding utility can be obtained by setting q = 1 in Theorem 8.5);

2. choosing a single random block at each iteration k (this is used to obtained our fully

decentralized algorithm);

3. choosing a random subset of m blocks (this is used to obtain our federated algorithm

with user sampling).

The utility guarantees can be obtained from Theorem 8.5 by setting q = 1 in case 1, q = 1/n in

case 2, and q = m in case 3.

Federated private ADMM (Algorithm 8.3). Our federated private ADMM algorithm exactly

mimics the updates of centralized private ADMM (Algorithm 8.2), which can be executed

in a federated fashion since (i) the blocks xi and ui associated to each user i can be updated

in parallel by each user, and (ii) if each user i shares uk+1,i − uk,i with the server, then the

latter can execute the rest of the updates. The more general version with user sampling given

in Algorithm 8.3 is obtained by choosing a random subset of m blocks (users) uniformly at

random.

Fully decentralized private ADMM (Algorithm 8.4). In the fully decentralized setting, each

user i with local dataset di is associated with blocks xi and ui. Our fully decentralized private

ADMM algorithm (Algorithm 8.4) directly follows from a block-wise version of Algorithm 8.2,

where at each iteration k we select uniformly at random a single block (user) to update. This

corresponds to a user performing an update on its local parameters before sending it to another

user chosen at random.
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E.3 Privacy Analysis of our ADMMAlgorithms

Privacy amplification by subsampling

When a DP algorithm is executed on a random subsample of data points, and the choice of this

subsampling remains secret, we can obtain privacy amplification. This privacy amplification

by subsampling effect has been extensively studied under various sampling schemes [BBG18;

MTZ19] and is classically used in the privacy analysis of DP-SGD [BST14; Aba+16; AT22].

While tighter bounds can be computed numerically, here for the sake of simplicity we use a

simple closed-form expression which gives the order of magnitude of the amplification.

Lemma E.5 (Amplification by subsampling, [AT22]). Let q < 1/5, α > 1 and σ ≥ 4. Then,

for α ≤ (M2σ2/2− log
(
5σ2

))
/
(
M + log(qα) + 1/

(
2σ2

))
where M = log(1 + 1/(q(α− 1))),

the subsampled Gaussian mechanism with probability q and noise parameter σ2 satisfies (α, εsamp)-

RDP with

εsamp ≤
2αq2∆2

σ2
.

E.3.1 Sensitivity Bounds

We aim at bounding the privacy loss of the general centralized ADMM introduced in Sec-

tion E.2.1. We assume that K iterations are done with only f interacting with data, i.e., the

data-dependent step lies in the x-update. We assume that all data points are used with uniform

weighting, meaning that f can be written as f(x;D) = 1
n

∑n
i=1 f(x; di).

To bound the privacy loss, we aim at computing the Rényi divergence between the distribu-

tion of the outputs, which can be linked to the sensitivity of the fixed-point update (E.13) to

the change of one data point. For any pair of neighboring datasets D ∼ D′ that differs only on

data item di (i.e., dj ̸= d′
j =⇒ i = j) and any u, we thus want to bound the difference between

T (u) computed on dataset D and T ′(u) computed on the dataset D′. We note x (resp. x′) and

z (resp. z′) the primal variables in the calculation.

We first investigate how the sensitivity of the data-dependent update propagates to u. As

only x-updates are data-dependent, the z stays identical for D and D′ and thus we have:

T (u)− T ′(u) = 2λA(x− x′). (E.14)

We bound the sensitivity by assuming that A has its smallest singular value ωA > 0.
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Let us define φ(x) = 1
2γ ∥Ax + Bz + u + c∥2. φ is twice differentiable and we have

∇xφ(x) =
1

2γ
∇x

(
x⊤A⊤Ax− 2(Bz + u + c)⊤Ax + (Bz + u + c)⊤(Bz + u + c)

)

=
1

2γ

(
2A⊤Ax− 2A(Bz + u + c)

)
,

∇2
xφ(x) =

1

γ
A⊤A.

Thus, φ is µ-strongly convex if and only:

µIn ⪯
1

γ
AT A.

This is satisfied when the smallest eigenvalue of A⊤A is larger than µ. This corresponds to

the same condition on the smallest singular value ωA of A, hence

ωA ≥ µγ,

and thus φ is ωA
γ -strongly convex.

Let us now consider F (x) = f(x;D) + φ(x) and F ′(x) = f ′(x;D′) + φ(x). We assume that

fi(·) = f(·; di) are convex, differentiable and L-Lipschitz with respect to the l2 norm for all

possible d. Then, using a classic result on the sensitivity of the arg min of strongly convex

functions [CMS11], the sensitivity of arg min F (x) is bounded by:

∥∥x− x′∥∥ ⩽ 2Lγ

nωA
.

Finally, by re-injecting this formula into (E.14), we get the final bound:

∥∥T (u)− T ′(u)
∥∥ ≤ 4λLγ ∥A∥2

nωA
. (E.15)

Special case of the consensus problem. In the case of the consensus problem, we can derive

a tighter upper bound for the sensitivity of the block-wise update for which the data point is

different between D and D′:

T (u)i − T ′(u)i = 2λ(xi − x′
i).

In this case, the xi can be simply rewritten as proxγfi
(2z − u), where fi is L-Lipschitz, and

we have:
∥∥xi − x′

i

∥∥ ≤ 2Lγ.
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Therefore, ∥T (u)i − T ′(u)i∥ ≤ 4λLγ and then

∥∥T (u)− T ′(u)
∥∥ ≤ 4λLγ

n
. (E.16)

E.3.2 General Centralized Private ADMM

We can now derive the privacy loss of our general private ADMM algorithm (Algorithm E.1).

Theorem E.6 (Private classic centralized ADMM). Let A be full rank and ωA > 0 the minimal

module of its singular values. After performing K iterations, Algorithm E.1 is (α, ε(α))-RDP with

ε(α) =
8Kα ∥A∥22 L2γ2

σ2n2ω2
A

. (E.17)

Proof. Recall that the output of the algorithm is zK . We also recall that, for a function of

sensitivity ∆, we know that the addition of Gaussian noise of parameter σ2 gives (α, α ∆2

2σ2 )-

RDP.

Hence, using the sensitivity bound given in (E.15), a single update leads to a privacy loss of

ε(α) =
8α ∥A∥22 L2γ2

σ2n2ω2
A

.

We conclude by using by the composition property of RDP over the K iterations and the

robustness to postprocessing. ■

Note that the theorem only requires the matrix A to be full rank, which is a mild assumption.

In particular, for the consensus problem, A is the identity matrix. This leads to the following

privacy guarantee.

Theorem E.7. After performing K iterations, Algorithm 8.2 is (α, ε)-RDP with

ε(α) =
8KαL2γ2

σ2n2
.

Proof. The proof is the same as that of Theorem E.6 except that we use the improved sensitivity

bound given in (E.16). ■
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E.3.3 Federated Private ADMMwith Subsampling

As explained in the main text, we can derive two levels of privacy for the federated algorithm.

One is achieved at the level of users thanks their local injection of noise: this ensures local DP.

The second one in achieved with respect to a third party observing only the final model: this is

central DP. In the latter case, the local privacy level is amplified by the subsampling of users

and the sensitivity is further reduced by the aggregation step.

We start by the local privacy guarantee.

Theorem E.8 (LDP of federated ADMM). Let Ki be the number of participations of user i.

Algorithm 8.3 satisfies (α, εi) local RDP for user i with

εi ≤ O
(

8KiαL2γ2

σ2

)
.

Proof. We first derive the local privacy loss of sharing z. Using the sensitivity bound (E.16)

derived for the centralized case and the fact that we consider a post-processing of u, we have

εloc ≤
8αL2γ2

σ2
. (E.18)

We obtain the total local privacy loss by composition over the Ki participations of user i. ■

We now turn to the central privacy guarantee.

Theorem E.9. Let m < n/5, α > 1 and σ ≥ 4, then for α ≤ M2σ2/2−log(5σ2)
M+log(mα/n)+1/(2σ2)

where

M = log(1 + 1/(m(α− 1)/n)). Then, Algorithm 8.3 has for central DP loss the following bound:

ε ≤ 16KαL2γ2

n2σ2

Proof. Recall that we subsample m participants at each round. By the reduction of sensitivity

due to the aggregation of the m participations, the initial privacy loss for one iteration is

εloc/m2, where εloc is given in (E.18). Then, applying privacy amplification by subsampling

(see Appendix E.3) of m users among n leads to

ε ≤ 8αL2γ2

m2σ2

2m2

n2
.

We conclude using composition over the K rounds of the algorithm. ■
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E.3.4 Fully Decentralized Private ADMM

In the fully decentralized setting, the local privacy loss is the same as in the previous section

for the federated case. However, the threat model is quite different. The privacy guarantees are

with respect to the other users’ view, and each user will only observe information in time steps

where he/she participates.

We characterize the privacy loss by decomposing the problem as follows. Starting from the

LDP loss, we derive the privacy loss suffered by a user i when the z variable is observed m steps

after the contribution made by i. This is similar to the classic setting of privacy amplification

by iteration where a model is only available after a given number of steps (see Theorem 3.11).

Then, from the formula for a fixed number of steps, we derive the privacy loss that accounts

for the secrecy of the path and the randomness of its length. This is done by using the weak

convexity property of the Rényi divergence [Fel+18] to weight each scenario according to the

probability of the possible lengths. These probabilities can be easily computed as we consider

a complete graph for the communication graph. We conclude the proof by using composition

over the maximum number of times Ki any user participates to the computation.

For convenience, we first restate the theorem, and then give the full proof.

Theorem 8.12. Assume that the loss function f(·, d) is L-Lipschitz for any local dataset d and consider

user-level DP. Let α > 1, σ > 2Lγ
√

α(α− 1) and Ki the maximum number of contribution of a user.

Then Algorithm 8.4 satisfies (α, 8αKiL
2γ2 log n

σ2n
)-network RDP.

Proof. Here, a given user j can only infer information about the other users when it participates,

by observing the current value of the z variable. Therefore, we can write the view of user j as:

Oj(A(D)) =
(
zkl(j)

)Kj

l=1
,

where kl(j) is the time of l-th contribution of user j to the computation, and Kj is the total

number of times that j contributed during the execution of algorithm. As we consider the

complete graph, the probability to visit j at any step is exactly 1/n. Hence, we have closed

forms for the probability that the random walk goes from a user i to another user j in m steps.

Specifically, it follows the geometric law of parameter 1/n.

As an intermediate step of the proof, we thus express the privacy loss induced by a user i

with respect to another user j when there is exactly m steps after the participation of i to reach

j, meaning than j will only observe the variable zk+m if i participated at time k, and thus the

contribution of i has already been mixed with m subsequent steps of the algorithm.

In this case, the privacy loss can be computed from the local privacy loss εloc in Equa-

tion (E.18), and the use of privacy amplification by iteration in Theorem 3.11 where we have
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s1 = εloc and si>1 = 0, and we set ai = εloc/m. This leads to following bound:

ε ≤
m∑

i=1

Dα(N
(
0, σ2

)
||N (ai, σ2)) ≤ 8αL2γ2

σ2m
.

Now that we have a bound for a fixed number of steps between the two users, we can

compute the privacy loss for the random walk. Using the fact that the walk remains private to

the users, i.e. they do not observe the trajectory of the walk except the times it passed through

them, we can apply the weak convexity of the Rényi divergence [Fel+18].

Let us fix a contribution of user i at some time k(i). We apply this lemma to ρ the distribution

of the number of steps before reaching user j, which follows a geometric law of parameter 1/n.

This gives:
Dα(zj ||z′

j) ≤ ∑K−k(i)
k=1

1
n(1− 1

n)k 8αL2γ2

2σ2k

≤ 8αL2γ2

σ2n

∑∞
k=1

(1−1/n)k

k

≤ 8αL2γ2 log n
σ2n

.

Finally, we use composition to bound the total privacy loss. Each user participates K/n

times in average, and this estimate concentrates as K increases. For the sake of simplicity, we

use Ki = O(K/n) as an upper bound. ■
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E.4 Privacy-Utility Trade-offs of Private ADMMAlgorithms

Now,we amalgamate the privacy analysis of the three privateADMMalgorithms (Appendix E.3)

with the generic convergence analysis of fixed-point iterations (Theorem 8.5) to obtain the

privacy-utility trade-off for these three algorithms.

E.4.1 Centralized Private ADMM

Here, we present the detailed proof of Corollary 8.8.

Corollary 8.8. Under the assumptions and notations of Theorem 8.5 and 8.7, and for number of

iterations K = O
(
log

(
Lγ

nD(1−τ)

(pα
ε

)1/2
+ pαL2γ2

εn2D(1−τ)3

))
, Algorithm 8.2 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

(
Lγ
√

pα√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)3

)
. (E.19)

Proof. We recall from Theorem 8.5 that

E[∥uk+1 − u∗∥2] ⩽

(
1− q2(1− τ)

8

)k (
D +

2(σ
√

p + ζ)
√

q (1− τ)

)
+

8(pσ2 + ζ2)

q3(1− τ)3
+

4

(1− τ)

≤
(

1− q2(1− τ)

8

)k

D +

(
8(σ
√

p + ζ)
√

q (1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)

In case of centralized private ADMM, ζ = 0, q = 1, and σ2 = 8KαL2γ2

εn2 (Theorem 8.7). Thus, we

obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(

7 + τ

8

)K

D +


 8

√
p

(1− τ)

√
8KαL2γ2

εn2
+

8p

(1− τ)3

(
8KαL2γ2

εn2

)


≤
(

7 + τ

8

)K

D + 2


 4

√
p

(1− τ)

√
8αL2γ2

εn2
+

8p

(1− τ)3

(
8αL2γ2

εn2

)
K

=

(
7 + τ

8

)K

D +O
(

Lγ

(1− τ) n

(
pα

ε

)1/2

+
pαL2γ2

εn2 (1− τ)3

)
K

Now, if we consider K such that

(
7 + τ

8

)K

D = O
(

Lγ

(1− τ) n

(
pα

ε

)1/2

+
pαL2γ2

εn2 (1− τ)3

)

=⇒ K = O
(

log

(
Lγ

nD (1− τ)

(
pα

ε

)1/2

+
pαL2γ2

εn2D (1− τ)3

))
,
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we obtain

E
(
∥uK+1 − u∗∥2

)

=O
((

Lγ

n (1− τ)

(
pα

ε

)1/2

+
pαL2γ2

εn2 (1− τ)3

)
log

(
Lγ

nD (1− τ)

(
pα

ε

)1/2

+
pαL2γ2

εn2D (1− τ)3

))

=Õ
(

Lγ
√

pα√
εn (1− τ)

+
pαL2γ2

εn2 (1− τ)3

)

■

E.4.2 Federated Private ADMMwith Subsampling

Here, we present the detailed proof of Corollary 8.11.

Corollary 8.11. Under the assumptions and notations of Theorem 8.5 and 8.9, for number of iterations

K = O
(
log

( √
pαLγ√

εrnD(1−τ)
+ pαL2γ2

εr2n2D(1−τ)3

))
, and m = rn for r ∈ (0, 1), Algorithm 8.3 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

( √
pαLγ√

εrn (1− τ)
+

pαL2γ2

εr2n2 (1− τ)3

)
. (E.20)

Proof. In case of federated private ADMM, ζ = 0, q = m
n , and σ2 = 16KαL2γ2

εn2 (Theorem 8.9).

Thus, using Theorem 8.5, we obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(

1− m2(1− τ)

8n2

)K

D +


 8

√
p

(1− τ)

√
n

m

√
16KαL2γ2

εn2
+

8p

(1− τ)3

(
16KαL2γ2

εn2

)(
n

m

)3



≤
(

1− m2(1− τ)

8n2

)K

D + 2


 8

√
p

(1− τ)

√
8αL2γ2

εnm
+

8p

(1− τ)3

(
8αL2γ2

εn2

)
n

m3


K

=

(
1− m2(1− τ)

8n2

)K

D +O
(

Lγ

(1− τ)

(
pα

εnm

)1/2

+
L2γ2pα

ε (1− τ)3

n

m3

)
K
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(
1− m2(1− τ)

8n2

)K

D +O
( √

pαLγ√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)3

)
K

The last equality holds true when we choose m = rn, where r ∈ (0, 1/5] is a constant subsam-

pling ratio.

Now, if we consider K = O
(
log

( √
pαLγ√

εrnD(1−τ)
+ pαL2γ2

εr2n2D(1−τ)3

))
, we obtain

E
(
∥uK+1 − u∗∥2

)

=O
(( √

pαLγ√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)3

)
log

( √
pαLγ√

εrnD (1− τ)
+

pαL2γ2

εr2n2D (1− τ)3

))
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=Õ
( √

pαLγ√
εrn (1− τ)

+
pαL2γ2

εr2n2 (1− τ)3

)

■

E.4.3 Fully Decentralized Private ADMM

Here, we present the detailed proof of Corollary 8.13.

Corollary 8.13. Under the assumptions and notations of Theorem 8.5 and 8.12, and for number of

iterations K = O
(

log

(
Lγ

D(1−τ)

(
pα log n

εn

)1/2
+ L2γ2

D(1−τ)3

(
pα log n

εn

)))
, Algorithm 8.4 achieves

E
(
∥uK+1 − u∗∥2

)
= Õ

( √
pαLγ√

εn (1− τ)
+

pαL2γ2

εn (1− τ)3

)
. (E.21)

Proof. In case of decentralized private ADMM, ζ = 0, q = 1
n , and σ2 = 8KiαL2γ2 log n

σ2n
=

8KαL2γ2 log n
σ2n2 (Theorem 8.9). Thus, using Theorem 8.5, we obtain for k = K that

E
(
∥uK+1 − u∗∥2

)
≤
(

1− q2(1− τ)

8

)k

D +

(
8(σ
√

p + ζ)
√

q (1− τ)
+

8(pσ2 + ζ2)

q3(1− τ)3

)

≤
(
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Now, if we consider K = O
(

log

(
Lγ

D(1−τ)

(
pα log n

εn

)1/2
+ L2γ2

D(1−τ)3

(
pα log n
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, we obtain

E
(
∥uK+1 − u∗∥2
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■
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