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English abstract

Feathers exhibit a highly anisotropic behaviour, governed by their complex hi-
erarchical microstructure composed of individual hairs (barbs) clamped onto a
spine (rachis) and attached to each other through tiny hooks (barbules). Pre-
vious methods in computer graphics have approximated feathers as strips of
cloth, thus failing to capture the particular macroscopic nonlinear behaviour
of the feather surface (vane). To investigate the anisotropic properties of a
feather vane, we design precise measurement protocols on real feather sam-
ples. Our experimental results suggest a linear strain-stress relationship of the
feather membrane with orientation-dependent coefficients, as well as an ex-
treme stiffness in the barb direction which is four order of magnitude greater
that the stiffness in the barbule direction. From these findings we build a sim-
ple continuum model for the feather vane, where the vane is represented as a
three-parameter anisotropic elastic shell. However, implementing the model nu-
merically reveals severe locking, due to the extreme stiffness ratio between the
barb and the barbule directions. To resolve this issue, we align the mesh along
the barb directions. We extensively validate our membrane model against real-
world laboratory measurements, by using an intermediary microscale model
that allows us to limit the number of required lab experiments. Finally, we en-
rich our membrane model with anisotropic bending, and show its practicality
in graphics-like scenarios such as the constrained motion of a full feather.
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French abstract

Les plumes pénacées des oiseaux ont un comportement mécanique particulier
qui émane de leur structure hiérarchique. Cette structure est constituée de
tiges, appellées barbes, partant de d’un axe central, appellé rachis. Ces barbes
s’accrochent entre elles à l’aide d’un système de crochets et goutières liées à
un autre niveau de tiges attachés aux barbes, appellées barbules. Grâce à ce
système d’accroche, les barbes forment une surface élastique, appellée étendard,
qui a la particuliraté d’être fortement anisotrope. Le coefficient de raideur dans
le sens des barbs est quatre ordres de grandeur plus grand que celui dans le sens
des barbules. Cette aspect mécanique des plumes n’a jamais été pris en compte
dans la modélisation des plumes dans l’industrie de l’informatique graphique. À
la place, les plumes sont modélisées en tant que surface élastique isotrope. Dans
le cadre de cette thèse, nous analysons le comportement élastique des plumes
à travers des mesures précises sur de multiples tests de traction d’échantillons
d’étendard de cygnes. De cette analyse, nous tirons une relation linéaire entre
la contrainte et la déformation pour le comportement membranaire fortement
anisotrope de la plume. Seulement, l’implémentation numérique de ce modèle à
travers des éléments finis rencontre un problème de verrouillage. Nous résolvons
ce problème en alignant les éléments avec la direction de plus grande raideur.
Ce modèle est ensuite validé contre d’autres expériences de tractions, eux aussi
sur des échantillons de cygnes. Dans le but de réduire le nombre d’expériences
à faire, nous introduisons un modèle intermédiaire de l’étendard à une échelle
plus basse et nécessitant moins d’expériences pour être validé. Notre modèle
plus haut niveau peut ensuitre être validé contre ce modèle, les expériences
nécessaires étant produites à travers une simulation du modèle bas niveau. De
plus, nous montrons que notre modèle peut être utilisé pour des applications
en informatique graphique à travers l’implémentation préliminaire d’une plume
complète que nous comparons au comportement d’une plume réelle ainsi qu’au
modèle isotrope actuellement utilisé en informatique graphique.
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Chapter 1

Introduction

1.1 Introduction

Feathers are central to the life of birds. They play multiple roles: among others,
they help their thermoregulation, flight, and camouflage. There are two types
of feathers which play different roles. Peannaceous feathers, which are crucial
for rain protection and flight, are found in the outer plumage of the bird and
also on the bird tail and wing. Down feathers can be found underneath the
peannaceous feathers. They play an important role in the thermoregulation of
the bird. Due to their different roles, those feathers possess different structures.
From the naked eye, the difference is striking: a peannaceous feather forms a
curved surface (see Figure 1.1a) while a down feather looks like a bundle of
hair (see Figure 1.1b).

The distinct look between peannaceous and down feathers comes from a
disparity in their underlying structure. Both down and peannaceous feathers
consist of a hierarchical structure starting with a thick shaft called the rachis.
On either side of this rachis emanate hundreds of thinner rods called barbs,
each of them having hundreds of barbules branching out. The dissimilarity
between the two types of feathers comes from this last level of the hierarchical

(a) Photo of a peannaceous feathers from
Ducasse (2004).

(b) Photo of a down feather from Hagens
(2021).

11
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Barb

Rachis

Vane
Barbule

Hook

Figure 1.2 – Hierarchical structure of a feather. The central shaft is the rachis,
and the hundreds of rods that branch off it are barbs (left). Each barb has
hundreds of barbules. The barbules along one side possess hooks, while the
barbules on the other side do not, allowing barbs to reversibly attach and
detach (right). The attached barbs form a surface called the vane.

structure. Some barbules of peannaceous feathers possess hooks, allowing the
barbs to attach together and forming this way two surfaces on either side
of the rachis called vanes. In contrast, in down feathers, no hooks can be
found, preventing the formation of vanes that gives the characteristic look of
peannaceous feathers.

This velcro-like structure of peannaceous feather gives them some interest-
ing mechanical properties. First the surface formed by those feathers on the
wing allows them to produce lift for the purpose of the flight. Also, when the
vane is under great stress, the barbs dissipate the stored energy by unhooking
the connections made by the barbules instead of breaking (see F. Zhang et al.
(2018b) for a video describing this process). A bird can, at a later time, reat-
tach the unhooked barbules by passing their beaks through the feather or by
shaking their wings during the upkeep of their plumage (Zhao et al. 2020a).
This makes peannaceous feathers quite the robust appendage. Another inter-
esting mechanical aspect of the peannaceous feather is found in their membrane
behaviour, meaning their mechanical behaviour that doesn’t involve bending.
The membrane behaviour of the feather vane is mostly driven by its hierarchical
structure: axial tension along the barb is analogous to the very stiff extension
of a beam while tension in the transverse direction is more akin to beam flexion
which is known to be substantially less stiff than the former. Hence, the stiff-
ness of the membrane elastic behaviour is highly dependent on the orientation,
i.e. it is anisotropic. Moreover, this anisotropy is strong as there are four orders
of difference between the highest and lowest stiffness. For comparison, other
highly anisotropic materials such as carbon reinforced epoxy have at most two
order of magnitude of difference between the maximum and minimum stiffness
(Mirdehghan 2021; Toolbox 2003). This might or might not play a role in
the bird day to day life — a more thorough biomechanical literature review
would be necessary to have a clear idea of the state of the art on the question.
Nonetheless, the study of this behaviour would be valuable for understanding
how the feather deforms.

In addition to their peculiar mechanical behaviour, feathers are central
to the typical appearance of birds (see Figure 1.3). Moreover, they are also
used in apparel and decoration throughout human history (see Figure 1.4).
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Figure 1.3 – Feathers are so characteristic of bird’s appearance that most people
are weirded out by the absence of feather on a part of the bird body. Image
from (Mazur 2008).

Figure 1.4 – Feathers are central to the apparel and traditions of some cultures.
Here are presented two apparels from the Wayana people located in the south-
eastern part of Guiana (Image from (left) (Museum 1907) (right) (Museum
1972)).

Hence, their appearance in multiple movies through the use of special effect
and animation. To avoid the manual animation of hundreds of feathers on
a bird body, animators sometimes use simulator to give a first draft of the
movement which they will then iterate over to reach the wanted artistical vision.
To the best of my knowledge, feature film studios have modelled feathers as
simple strips of isotropic cloth (Bowline and Kačić-Alesić 2011; Weber and
Gornowicz 2009; Augello et al. 2019; Heckenberg et al. 2011; Haapaoja and
Genzwürker 2019). Such models are not able to reproduce scenarios where
the strong anisotropy of the vane and the repairing behaviour are key (see
Figure 1.5).

Though most of the mechanical behaviours of feathers are clearly under-
stood from a qualitative point of view, little endeavour has been put toward
their modelling. Efforts have been focused on measuring the Young Modulus
of β-keratin — the material of the feather — (Bonser and Purslow 1995; Wool
2011) and of the rachis (P.P. Purslow and Vincent 1978; Macleod 1980). Higher
level models that describe the elastic, plastic and, fracture interactions between
barbs due to barbules interlocking have also been devised (Kovalev et al. 2014;
F. Zhang et al. 2018a). Among the available work on feathers, those last mod-
els are what come the closest to providing useful tools for the modelling of the
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Figure 1.5 – Renders of the first (left) and final frame (right) of the deformation
of a feather. The bottom images show a simulation of a full feather using
an isotropic model as is usually done in the film industry. The top images
display the same deformation demonstrated on a real feather. The visible
unrealistic deformation of the vane displays the limitation of an isotropic model
for the modelling of a peannaceous feather. See Chapter 6 for details on this
simulation.

dynamic appearance of feathers. Unfortunately, their suggested models would
require more than a million degrees of freedom for the modelling of one full
feather, making them unpractical.

Hence, to further the state of the art of feather modelling both in biome-
chanics and computer graphics, we aimed at bringing closer the possibility of
a predictive model of the dynamics of a full feather which takes into account
both fracture, repairability and strong anisotropy. Moreover, we also consider
the computational efficiency of such a model for the need of animation where
the animator has to do multiple iterations with the simulator before reaching
the final motion. While this target was not reached during the course of the
thesis, we took some steps toward it through the modelling of the membrane
behaviour of the vane, focusing on its elastic behaviour and leaving any plas-
tic or fracture aspect for future works. Furthermore, we did some preliminary
work on the qualitative modelling of a full feather elastic behaviour, taking into
account membrane and flexural behaviour for both the rachis and the vane.

Succinctly, the main contributions of my Ph.D. thesis are:

• An experimental characterisation of the membrane mechanical behaviour.

• A simple elastic membrane model for the feather vane.

• The validation of the vane membrane model against experiments through
a two-step validation.

• A qualitative model for a full feather (rachis and vane) along with some
qualitative validation.

1.2 Summary of our approach

In Chapter 3, we describe our experimental setup for analysing the behaviour
of the feather vane. The experimental scenarios chosen for this analysis are
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simple traction expriments performed on samples of feather vane in different
orientations. The analysis of the resulting stress-strain curve shows that there
is at least four order of magnitude difference between the stiffness in two ori-
entations, which demonstrates a strong anysotropy within the feather vane.
Moreover, we also observe a linear relationship between stress and strain. This
last observation is used as a base for the derivation of our vane membrane
model.

In Chapter 4, we derive a simple model for the membrane behaviour of the
feather vane based on the observations made in the previous chapter. The re-
sulting model is actually very close to the one used in computer graphics for the
modelling of clothes, the difference being the substantially stronger anisotropy
present in the feather vane compared to cloth. This model is implemented
numerically using a linear triangular finite element method. However, this
implementation is subject to locking emanating from the strong anisotropy.
This numerical locking is resolved by aligning the triangular elements with the
barbs.

Following this, in Chapter 5, we proceed to the validation of this model.
Unfortunately, the scenarios presented in Chapter 3 used for the study of the
feather vane are not sufficient for a proper validation of our model. Instead
of designing and performing new experiments, we choose to introduce a lower
scale intermediate model which can be validated on the available experiments
thanks to some geometry considerations. Then, using this validated intermedi-
ate model, we proceed to validate our previously introduced vane model thanks
to experiments generated numerically using the intermediate model.

Finally, since we are considering applications of our work in computer
graphics, we demonstrate the potential applicability of our membrane model
for the modelling of a full feather in Chapter 6. Here, for simplicity, we model
the feather as one single heterogeneous shell: a central band of material repre-
sents the rachis and the material on either side of the rachis model the vane.
The vane is modelled by our model for the membrane behaviour and the flex-
ural behaviour is modelled through an ad hoc anisotropic bending model. To
evaluate the usefulness of this model, it is compared against the video of a real
feather and against a model similar to the isotropic model usually used in the
industry for the modelling of feathers.

1.3 Notations

General rules
• Vectors and other higher order tensor are written in italic bold: 𝒇, 𝝈, 𝑬;

• Scalar are written in italic: 𝛷𝐵, 𝑑, 𝜌;

• The sets of real number is written as ℝ;

• Other sets are written with uppercase italic Greek letters: 𝛤𝑡, 𝛺.

Symbols
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Table 1.1 – Notations common to differential geometry.

Notation Description
𝛬 × 𝛤 Cartesian product of the sets 𝛬 and 𝛤.
𝛬 ⊂ 𝛤 The set 𝛬 is a subset of 𝛤.
𝑨 1

2 Matrix square root of a positive semi-definite matrix 𝑨.
𝑨𝑇 Transpose of matrix 𝑨.
𝑨𝑩 Matrix product of matrices 𝑨 and 𝑩.
𝑨2 Square of the matrix 𝑨.
𝑬 ∶ 𝜺 Double contraction between tensors 𝑬 and 𝜺.
𝜈𝑣 ∼ 1 The scalar 𝜈𝑣 is of the same order of magnitude as 1.
𝜈𝑤 ≪ 1 The scalar 𝜈𝑤 is much smaller than 1.
∇ ⋅ 𝑭 𝝈 Divergence of 𝑭 𝝈.
𝜕𝝋
𝜕𝒓 Jacobian of the function 𝝋 with respect to its argument that

was previously designated as 𝒓.
ℝ, ℝ2, ℝ3 Real numbers; ℝ2 = ℝ × ℝ; ℝ3 = ℝ × ℝ × ℝ.
𝟎 Vector zero.
𝑹 Rotation matrix.

Table 1.2 – Notations used throughout the document.

Notation Description
𝛺 Reference state of an elastic material.
𝝋 Deformation of an elastic material.
𝒖 Displacement.
�̈� Acceleration.
𝒓 Material point of an elastic material, always lies in 𝛺.
𝑭 Deformation gradient, i.e. 𝜕𝝋

𝜕𝒓 .
𝜓 Surface energy density.
𝜓𝑚 Membrane surface energy density.
𝜓𝑓 Flexural surface energy density.
𝜼 Second order tensors that measures bending.
y-axis, x-axis Axis aligned and orthogonal with the direction of elongation

within the considered scenarios.
v-axis, w-axis Axis aligned and orthogonal with the barbs.
�̂�, ̂𝒚, ̂𝒗, �̂� Unit vector in the direction of increasing value along the x-axis,

y-axis, v-axis, and w-axis.
𝜺 Green-Lagrange strain tensor.
𝜀𝑥𝑦 Components of the second order tensor 𝜺 along x-axis and y-

axis, i.e. 𝜀𝑥𝑦 = �̂�𝑇𝜺 ̂𝒚.
𝜀max Maximal strain considered in the experiments.
̃𝜀𝑦𝑦 Strain measured in the experiments under a uniform deforma-

tion assumption.
𝜆 Stretching ratio, ratio between current length and length at

rest.
𝜆max Maximal stretch ratio considered in the experiments.
�̃� Measured stretch ratio.



1.3. NOTATIONS 17

Table 1.2 – Notations used throughout the document (continued).

Notation Description
𝝈 Second Piola-Kirchhoff stress tensor.
�̃�𝑦𝑦 Stress measured in the experiments under a uniform deforma-

tion assumption.
�̃�𝑠

𝑦𝑦, �̃�𝑟
𝑦𝑦 Measured stress predicted by the intermediate model with non-

rigid and rigid barb bands.
𝒇 A force.
𝒑 Linear force density.
d𝑙 A line element.
𝑓 Force measured in the experiments.
𝑑 Displacement measured in the experiments.
𝑊, 𝐻, 𝑏 Width, height and thickness of a sample.
𝑎 Aspect ratio of the samples, i.e. 𝐻

𝑊 .
𝛤𝑡, 𝛤𝑏, 𝛤𝑠 Set of material points forming the top, bottom and sides edges

of a sample.
𝜈𝑣 Poisson’s ratio arising from an elongation along the v-axis
𝑬 Elasticity tensor.
𝐸𝑤𝑤, 𝐸𝑣𝑣, 𝐸𝑣𝑤 Transverse, longitudinal and shearing modulus.
𝛼 Stiffness ratio: 𝐸𝑣𝑣

𝐸𝑤𝑤
𝜌 Surface mass density.
𝐸𝑏, 𝐸𝐵 In the intermediate model, Young’s moduli of the bands repre-

senting the barbule and the barbs.
𝑇 In the intermediate model, distance between the centres of two

band representing the barbs.
𝑤𝐵 In the intermediate model, width of bands representing the

barbs.
𝛷𝐵 In the intermediate model, surface fraction occupied by the

bands representing the barbs.
𝛥||, 𝛥⊥ Slopes of stress-strain curves in the longitudinal and transverse

scenario.
𝜃 Angle between the barbs and the x-axis.
𝑤𝑏, 𝑤𝑒 Width of the rachis at its base and end.
𝑒 Target edge size in the meshing for the full feather model.
𝐴 Area of a triangle.
𝐷 Bending modulus.
𝐷||, 𝐷⊥ Bending modulus for flexion transverse to and along barbs.
𝜂 Curvature.
𝜂0 Curvature at rest.
𝛽 Angle between an edge and the local barb orientation.





Chapter 2

Modelling Method

2.1 Scale of the phenomena vs. scale of modelling

To make the modelling of the feather and the validation of the model practical,
we have to choose the scale size of the phenomena we are interested in. In
our case we chose to focus on the scale just above the barbs. This means that
we are not interested in the movement of the individual barbs nor of anything
smaller than the barbs but of the overall movement of the vane. There are two
reasons behind this choice of scale. First, the overall movement of the vane is
the predominant visual aspect of the feather dynamics to the naked eye, i.e.
it is the macroscopic scale. Hence, it is of most importance in the context of
computer graphics applications1. Second, considering the vane scale makes our
aim of a quantitative validation much easier. In fact, validating that our model
properly predicts the movement of the feather at this scale rather than at a
lower scale would require less precise and pricey equipments.

Choosing the scale size of the phenomena we are interested in does not
necessarily fix the scale size of the model: the only thing that it defines is
the scale of the validation. The significance of this distinction can be seen for
example in the recent work on knitted fabrics in computer graphics. Here, the
phenomenon of interest is the movement of the knitted surface. The movement
of the scale below, i.e. the scale of individual fibres, is often quite subtle espe-
cially in some garments where they are almost invisible to the naked eye (see
Figure 2.1). Considering this, knitted fabrics were initially modelled using the
same methods used for woven cloth. However, this approximation is insufficient
to properly predict the behaviour of knitted cloth (see Figure 2.2).

To get closer to knitted garments, a popular and accurate solution is to
model the cloth at a lower scale than the phenomena of interest, the strand
level, trading computation time for accuracy2 (Kaldor et al. 2008; Cirio et al.
2017). Hence, in the context of the modelling of feathers, though the phenom-

1Movement of smaller scales can also have their importance depending on the proximity
between the camera and the feather, but we believe the scale of the vane to still remain the
one most commonly encountered.

2More recent work have managed produced accurate homogeneous model for knitted
fabrics through the homogenisation of the strand level simulations (Sperl, Narain, et al.
2020). However, this does not invalidate the necessity to consider different modelling scales,
since a strand level model was still needed for the homogenisation process.

19
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Figure 2.1 – While we are mostly used to think of fabric made of big yarn
when knitted garment are mentioned (left and right). For some knitted cloth,
the knits, and yarn are practically invisible to the naked eye (middle). (Image
from Kozachenko (2020))

Figure 2.2 – Extension test on fabric knitted with the stockinette pattern.
Those tests are performed with different tool: with a real fabric (left); with the
cloth model that was used before the introduction of yarn-level models; and
with a yarn-level model. Here, the cloth model is not able to reproduce the
curling that appears on the left of the real fabric, showing its limitation for the
simulation of knitted garment. Images are taken from Kaldor et al. (2008).

ena of interest is at the scale of the feather vane, it is relevant to consider all
lower scales and compare their pros and cons.

Due to the hierarchical structure of the feather, there are three relevant
modelling scales in the feather: the barbule scale, the barb scale, and the vane
scale. For each of these possible modelling scales, we have to consider how
easy it would be build an accurate model, and how easy it would be to provide
initial data for a numerical simulation.

Modelling a feather at the barbule scale is attractive. Indeed, just by using
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Figure 2.3 – Renderings of barbules taken from F. Zhang et al. (2018a). Bar-
bules with hooks are leaf like and ends with thin rod from which the hooks grow
out of (left). Barbules that form a gutter onto which hooks grab also have a
leaf like structure, however, instead of ending with hooks, they end with small
spines (right). This complex shape of the barbules would make it difficult to
generate the appropriate geometry for a simulation of the feather vane at the
barbules level.

existing models for elasticity and friction, you would be able to capture every
phenomenon of interest: elasticity, plasticity, fracture, and repairability. How-
ever, prescribing the geometry of a feather would not be trivial as barbules
have a rather complex shape (see Figure 2.3)3. Moreover, there is near a mil-
lion barbules per feather, and each would require multiple degrees of freedom,
making the computation cost of the modelling at this scale deterring.

The barb scale is more reasonable in terms of geometry prescription — barbs
being only thin rods — and in terms of computation cost — only around 800
barbs per feathers. Although a model at this scale could use existing efficient
one dimensional thin rods model for the rachis and the barbs (Bertails et al.
2006; Bergou et al. 2008), a new model would still need to be devised for the
interaction between barbs. While Kovalev et al. (2014) have built a model for
this interaction for the 2D case, the barbules are represented individually: this
becomes prohibitive when simulating a full feather.

Finally, for the vane scale almost all the necessary modelling tools already
exist. Indeed, elasticity, plasticity, and fracture have been thoroughly studied
in the context of homogeneous surfaces. To have a complete modelling of
the phenomena at the vane scale, only the healing model would be missing.
Moreover, choosing the vane scale should allow us to use fewer degrees of
freedom than would be necessary compared to a model at the barb scale4.
Modelling at the vane scale is not without downsides compared to the other
scales. More model parameters are required to take into account the effect

3Obtaining the geometry of a known feather could easily be done through tomography
or similar techniques. But when one does not want the geometry to match one specific real
feather, as would often be the case in computer graphics, the task would become substantially
more complicated.

4A strip of surface elements should be enough, to model multiple barbs. Hence, the
number of necessary degrees of freedom would probably be divided by the number of barbs
per strips.
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Scale Barbules Barbs Vane
Geometry Complexity +++ + +
Computational Cost +++ ++ +
Experimental setup +++ ++ +
Model design difficulty + +++ ++

Table 2.1 – Purely subjective and a priori evaluation, those might differ widely
in practice. This table aims at providing a summary of the different pros and
cons of the modelling of the feather vane at different scales discussed in this
section.

of the underlying complex geometry that is abstracted away. And it is less
obvious how to find the right model that is able to take into account those
effects. In contrast, in the barbules scale only a simple elasticity and friction
model would be required.

In addition to comparing the impact of the modelling scale on computation
cost and modelling difficulty, we also consider the difficulty of the analysis of
the scale through experiments. While the validation is done at the vane scale
as it is the scale of the phenomenon of interest, we still want our model to
emanate from experimental observations. And, the smaller the scale we would
need to analyse, the more precise the equipments need to be and the more
tedious the setting up of experiments becomes.

In light of these differences between the modelling scales — summarized
in Table 2.1 — and due to the performance requirement of computer graphics
applications as well as our lack of very precise measurement devices, we model
the feather behaviour at the vane scale, i.e. the macroscopic scale. We will
show through a quantitative validation in Chapter 5 that our choice of scale is
sufficient for our purpose.

2.2 Material model identification

Finding the right elastic model for a new material is far from being a new
problem. The general problem of material model identification has been studied
for as long as people have wanted to predict and measure the world around
us, and for elasticity this most likely started with the work of Hook (1678),
and continues to be studied, even now (Ghiba et al. 2017). Hence, due to
the long-standing nature of this problem, there are multiple possible methods
available to us to find the right vane model for our feather. We describe in
this section some of these methods and specify the one we use among them. A
more involved discussion on material model identification can be found in the
introduction of Flaschel (2023).

Here, we make a clear distinction between material model identification and
parameter identification. The former consists in finding the formal description
the model with any dimensional quantity left to be set. The latter is the process
of fixing those dimensioned parameters that were left unset. For example, the
material model identification for a one dimensional spring stretched by a factor
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𝜆 might result in the following quadratic internal energy model,

𝑘(𝜆 − 1)2, (2.1)

where 𝑘 is a parameter that should be set later on through the process of pa-
rameter identification. As stated earlier, this section only deals with material
model identification, parameter identification being discussed later in Chap-
ter 5.

Conventional method
The oldest method for material model identification is more of an art than a
method, but is still widely used nowadays. It consists in guessing the mate-
rial model from experimental observations (see Figure 2.6a). This process can
sometimes be tedious as the initial guess might be demonstrated to be wrong
through parameter identification if one is unable to find parameter values that
allow the model to predict all experimental observations. In this case, another
guess must be made, and parameter identification is needed once again, increas-
ing the amount of work necessary with each guess. Most often, this method of
finding a material model is not all guessing, thankfully, some geometric argu-
ments such as symmetry within the material can sometime help find the proper
model.

Homogenisation and dimensionality reduction
Sometimes, a material model, that is more complex than necessary, might
already be available for the system considered. This unnecessary complexity
can usually be identified by the model predicting some deformation that are
negligible or irrelevant to the application considered. For example, modelling
a thin rod through a full three-dimensional model might be superfluous as
the cross-section does not deform much in most applications (see Figure 2.4).
Another example could be modelling every small cavity in an elastic porous
material, this might be unuseful when one is only interested in the macroscopic
deformation of the material (see Figure 2.5). In those cases, a simpler and more
efficient material model can be derived from the original model through one
of two similar process: dimensionality reduction, which reduces the necessary
number of dimension for modelling a system, this is what one would do to find
a simpler model for the thin rod (see Audoly and Pomeau (2010) for a detail
of the process); and homogenisation which, as its name suggests, homogenise
away the small heterogeneity present in the original model to produce a new
model which behaves the same statistically (Miled et al. 2011)

These two methods are quite alike in how they are applied: First, one
has to identify small parameters in the original material model. Those small
parameters usually emanate from the difference between the scale of what is
modelled and the scale of the phenomenon of interest. In the thin rod example,
this parameter would usually be the ratio between the size of the cross-section
and the length of the rod. For the porous material, that would most likely be
the average size of a cavity over the size of the system. Then, the new material
model can be worked out by analysing how the original model behaves as this
small parameter goes to zero. Both of those methods’ protocol is schematised
in Figure 2.6b.
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Figure 2.4 – Modelling the deformation of the full volume of a thin rod through
three-dimensional elasticity theory (left) is usually unecessary, since the cross-
section stays relatively undeformed. Instead, a simpler one-dimensional model
requiring less degrees of freedom can be obtained through dimensionality re-
duction (right) (Bertails et al. 2006; Bergou et al. 2008).

Figure 2.5 – Modelling every cavity in a porous medium (left) might be super-
fluous when one is only interested in the overall deformation of the considered
system. Thankfully, an equivalent homogeneous model (right) can be obtained
by averaging the behaviour emanating from the presence of the cavities re-
sulting in a model which required fewer degrees of freedom to predict the
deformation of the system.

Since this process is fully analytical, it requires certain mathematical skills
and is usually far from trivial. However, some work has been done on its
automation though symbolic computation (Audoly and Lestringant 2023).

Data-driven methods

The following discussion on data-driven methods is highly inspired by the in-
troduction of Flaschel (2023).

A last set of method, which we could call data-driven, aims at automating
the two previous problem, i.e. finding a model from observations or finding
a more efficient model from a complex model. To do so, these methods will
represent the material model through a functional with a tremendous amount of
parameters, such as a neural network (Ghaboussi et al. 1991), splines (Sussman
and Bathe 2009), or others. Thanks to this, those models can pretty much
represent any function. Meaning that the material model can be made to
match any set of experimental observations through an automated parameter
identification. Since all the work is done during parameter identification, those
methods do not quite fit in what we call material model identification. However,
due to their generality, their comparison with material identification method is
quite relevant. See Figure 2.6c for a schematised description of the associated
protocol.
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(a) Conventional method.
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Material model

(b) Homogenisation or dimensionality reduction.
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Material model
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Experimental observations

Calibrated model

(c) Data driven direct modelling.

Person

Material model

Existing calibrated model

Experimental observations

Final model

(d) Data driven homogenisation or dimensionality reduction.

Figure 2.6 – Schematics of the different material and parameter identification
methods described in this chapter.

While these methods do reduce the effort necessary for material model iden-
tification, this effort is transferred to the production of the substantial amount
of experimental data necessary for setting all the parameters. This effort can be
discharged to a computer if the problem at hand is homogenisation (Z. Zhang
et al. 2023) or dimensionality reduction (Sperl, Narain, et al. 2020) as the data
production can be automated thanks to the already available model (see Fig-
ure 2.6d). Also, in the case of solid mechanics, a considerable amount of data
can be generated from a single experiment by measuring the full displacement
of the considered specimen through Digital Image Correlation.

Unfortunately, models resulting from data-driven methods are difficult to
interpret and analyse through analytical means compared to conventional mod-
els. This prevents the investigation of material behaviours in general cases, the
proof of existence of solutions, the study of the impact each parameter has on
the overall behaviour of the material, and so on. Flaschel et al. (2021) overcome
this issue by choosing a model which is the sum of usual conventional model
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for elasticity, in addition they enforce a sparse number of non-zero parame-
ters which results in a somewhat simple model which can be properly analysed
using usual analytical tools.

Discussion

In our work, material model identification was done through the conventional
method. We could have considered the analytical homogenisation of a model
of the underlying structure of the feather vane. However, it was not clear to us
how this problem should be tackled. We did use a homogenisation procedure
on a barb scale model for the simpler process of identifying the parameters
of the vane scale model we chose. In this case, the material is fixed, and the
parameter of the vane scale model are fitted on the lower scale model without
much use of analytical tool.

Data-driven methods were not considered, since we wanted our model to
be as simple and interpretable as possible. We could have used the automated
model discovery from Flaschel et al. (2021) to ensure interpretability while hav-
ing a better guarantee that the resulting model would match our experimental
data. However, we were not aware of their work at the time, hence, we leave
the application of their method to the feather vane for future work.

2.3 Membrane modelling

As discussed in the previous section, we model the feather as an elastic system.
More specifically, by elastic, we mean that the behaviour of the material doesn’t
depend on its history, i.e. its current state is completely described by its current
geometrical deformation and is independent on how the material was deformed
to get there. With this in mind, an elasticity model will simply relate the
current deformation of the solid to the resulting internal forces induced by this
deformation.

To predict the forces within the considered system, a general three-dimensional
elasticity model needs a description of the deformation of any point within its
volume. This is often inefficient when working with systems which are thin
in one dimension such as the vane of feathers. Indeed, this thinness allows
the whole deformation to be described only by the one of the mean surface,
which means that fewer degrees of freedom are necessary to describe the state
of the system (see Figure 2.7). The theory that allow this simplification is
called shell theory (Ciarlet 2021b) and its simplification to surfaces which have
a planar rest state is called plate theory (Ciarlet 2021a). For our modelling of
the feather vane, we naturally employ these theories.

Models lying within shell theory usually have two components, a membrane
component which describe the in-plane behaviour of the shell, and a flexu-
ral component which describe how the shell bends. In our work, we decided
to focus on the modelling and validation of a model for only the membrane
behaviour. Hence, in this section, we will show that the modelling of the
membrane behaviour can be tackled without considering the modelling of the
flexural behaviour. Instead of discussing this using shell theory, we use the
simpler plate theory. The different aspects discussed should be extendable to
the more general case of shell theory.
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Figure 2.7 – Three-dimensional elasticity theory would consider the deforma-
tion of the whole volume when modelling a thin structure (left) while plate and
shell theory only consider the deformation of the mean surface (right).

Separation of modelling between flexural and membrane
components
To discuss the reasoning behind our focus on membrane behaviour, we first
make a high level description of plate theory.

Describing the deformation of a plate means giving the position of the
different material points that make it up. Hence, we consider the set of material
points 𝛺 ⊂ ℝ2 which also gives an arbitrary rest state of the plate. This is also
called the reference state. With this, the deformation is given by a function
𝝋 ∶ 𝛺 → ℝ3 that maps any given material point 𝒓 ∈ 𝛺 to its current position
in space 𝝋(𝒓) ∈ ℝ3, i.e., it describes how the system is deformed from its rest
state. We will often use the displacement 𝒖(𝒓) = 𝝋(𝒓) − 𝒓 in some expressions
instead of the deformation 𝝋 as it can result in simpler equations.

Since the deformation of a localised part of an elastic material does not
affect remote regions, the response of the material at a point 𝒓 ∈ 𝛺 only
depends on the derivative of the deformation at this point 𝜕𝝋

𝜕𝒓 , 𝜕2𝝋
𝜕𝒓2 , … at the

point of interest. The first derivative is often called deformation gradient and
is denoted by 𝑭.

Based on this description of the deformation, most elastic model prefer to
use a potential energy density 𝜓 (𝑭 , 𝜕𝑭

𝜕𝒓 , …) from which the forces can be derived
rather than to describe these forces directly. This ensures energy conservation
and gives access to a myriad of useful analytical tools for the study of elasticity.
Such models are called hyperelastic.

In most elasticity models for plate and shell theory, the energy density
can be separated in the sum of two energy densities, one for the membrane
behaviour 𝜓𝑚 and another for the flexural behaviour 𝜓𝑓

5. Formally, this means
that the energy takes the following form

𝜓 (𝑭 , 𝜕𝑭
𝜕𝒓

, …) = 𝜓𝑚 (𝑭) + 𝜓𝑓 (𝜼 (𝑭 , 𝜕𝑭
𝜕𝒓

, …)) ,

5This separation is present for all model implemented in commonly used software. For
example, all model implemented in FEniCS-Shells (Jack S Hale et al. 2018), Kirchhoff-
Love plate (Ciarlet 2021a); von-Kármán plates (Audoly and Pomeau 2010); Reissner-Mindlin
plate (Ciarlet 2021a); and Naghdi shell (Antman 2005), can be separated into a flexural and
membrane model. Some unconventional systems cannot be modelled with such a separation,
this is the case of shell that have a non-uniform distribution of material across the thickness
(Caillerie and Sanchez-Palencia 1995)
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where the membrane energy 𝜓𝑚 depends only on the deformation gradient6

𝑭, and 𝜼 is a second order tensor, which measures bending7. Considering
this specific form of the energy, it seems natural to find one model for the
membrane behaviour and another for the flexural behaviour, rather than trying
to characterize the whole plate model at once.

The order in which those models are more easily defined can be analysed
by noticing that any bending measure 𝜼 is zero if and only if the deformation
of the plate is in plane. And, naturally, the flexural energy 𝜓𝑓 is zero if and
only if the bending measure 𝜼 is zero. Hence, as long as the deformation is in
plane, the energy density of the plate coincides with its membrane energy, i.e.

𝜓 (𝑭 , 𝜕𝑭
𝜕𝒓

, …) = 𝜓𝑚(𝑭 ).

Moreover, since any deformation gradient 𝑭 can be obtained through an in-
plane deformation8, the membrane energy 𝜓𝑚 can be completely characterized
through in-plane experiments. In light of this and of the difficulty presented
by the validation of the membrane model, we chose to focus on the membrane
behaviour and leave the meticulous characterisation of the flexural behaviour
for future work.

Property of the membrane model

We now discuss some properties that any membrane energy 𝜓𝑚 should sat-
isfy. A more detailed introduction of those properties can be found in Audoly
and Pomeau (2010) or Ciarlet (1988) for a particularly rigorous mathematical
derivation of them.

Green-Lagrange strain

The membrane energy 𝜓𝑚 is usually not made to depend directly on the de-
formation gradient 𝑭. This is because an elastic energy needs to be invariant
by any rigid motion of the considered system, meaning that for any rotation
𝑹, we have

𝜓𝑚(𝑹𝑭 ) = 𝜓𝑚(𝑭 ). (2.2)

Instead, the membrane energy 𝜓𝑚 only depends on the symmetric part 𝑺 =
(𝑭 𝑇𝑭 ) 1

2 of the polar decomposition of the deformation gradient 𝑭 = 𝑹𝑺. Or
more specifically, on the so called Green-Lagrange strain 𝜺,

𝜺 = 1
2

(𝑭 𝑇𝑭 − 𝑰) = 1
2

(𝑺2 − 𝑰) , (2.3)

where 𝑰 is the second order identity tensor. This measure has the nice property
of being null when the considered system is not deformed.

6This results from the dimensionality reduction of three-dimensional elasticity to plate
theory (see Ciarlet (2021a)

7Note that this bending measure is not necessarily the same from one plate model to
another.

8This can be easily seen by noticing that a deformation gradient 𝑭 can be obtained
through a linear deformation 𝝋(𝒓) = 𝑭 𝒓 which keeps the system planar.
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Figure 2.8 – To obtain the elastic force d𝒇 acting on the line element d𝑙 ( )
at material point 𝒓 with normal 𝒏, the formula 𝒑 = 𝑏𝑭 (𝒓)𝝈(𝒓)𝒏 can be used.
Note that it is natural for this picture to be in two dimensions as we are dealing
with two dimension elasticity in the context of shells.

Second Piola-Kirchhoff stress

In our work, we chose the membrane energy model based on observations ob-
tained from experiments (see Chapter 3). Since those observations relate the
deformation to a measured force, we need a way to derive forces from the
present membrane energy 𝜓𝑚. Such a quantification of force can be done
through the second Piola-Kirchhoff stress tensor 𝝈 which is a second order
tensor given by9

𝝈 = 1
𝑏

𝜕𝜓𝑚
𝜕𝜺

, (2.4)

where 𝑏 is the thickness of the considered shell. This tensor quantifies forces
acting on surface element. Concretely, the force 𝒑 acting on a line element d𝑙
with normal 𝒏 at material point 𝒓, both given in the reference state, can be
computed as

𝒑 = 𝑏𝑭 (𝒓)𝝈(𝒓)𝒏. (2.5)

Hence, a total force 𝒇 acting on a line 𝑙 can be obtained by integrating this
force over the line,

𝒇 = ∫
𝑙
𝑏𝑭 (𝒓)𝝈(𝒓)𝒏 d𝑙 . (2.6)

The quantities involved in these relations are schematised in Figure 2.8.

Nonlinearity

We can note that the use of the Green-Lagrange strain 𝜺 = 1
2 (𝑭 𝑇𝑭 − 𝑰) intro-

duces a geometric nonlinearity in the model. A non-linearity also comes from
the second Piola-Kirchhoff stress tensor 𝝈 which is multiplied by the deforma-
tion gradient 𝑭 to obtain the force. Geometrically linear models which use the
Cauchy strain 𝜺𝑙 = 1

2 (𝑭 + 𝑭 𝑇) as a measure of deformation and the Cauchy
stress 𝝈𝑙 = 1

𝑏
𝜕𝜓𝑚
𝜕𝜺𝑙 to derive the force. While the two measures highly simplify

9In mathematical derivations of elasticity theory, stress tensors is usually obtained as
way to formulate forces in the context of continuum mechanic rather than from the energy
(see Ciarlet (1988)). However, we prefer to present it through the relations that are central
to the understanding of our work.



30 CHAPTER 2. MODELLING METHOD

the equations of elasticity thanks to their linearity, they do not properly take
into account rotation of the material. This can be seen in the Cauchy strain
tensor which is not invariant by rotation of the deformation. And this issue is
also apparent in the computation of force. A linear force density 𝒑 is computed
as follows using the Cauchy stress tensor 𝝈𝑙

𝒑 = 𝑏𝝈𝑙(𝒓)𝒏. (2.7)

Here, compared to the expression which uses the second Piola-Kirchhoff stress
𝝈, there is no multiplication by the deformation gradient, which is important
to orient the force in the right direction.

Since the vane deforms quite easily when acted upon manually, we can-
not use the Cauchy strain which are not fit for handling large displacement.
Hence, our model will be based on the Green-Lagrange strain and second Piola-
Kirchhoff stress tensor. Those will be respectively named strain and stress in
the rest of the document, as there will be no ambiguity with other type of
stress and strain.

In anticipation of our analytical model which will be presented in Chap-
ter 4, we note that this geometrical non-linearity will be the only source of
non-linearity within our material. Indeed, our experiments show that the re-
lationship between stress and strain is linear. This can be striking as a linear
relationship between stress and strain are often only valid for small deforma-
tion. However, we will show that, despite the presence of large deformation
within our experiments, this linear relation between stress and strain is in fact
able to properly model the elastic behaviour of the vane.



Chapter 3

Lab experiments

As discussed in the previous chapter, we aim at an elastic membrane model for
the vane which requires few parameters. Most of all, we want this model to be
inspired by quantitative observations on the vane made through experiments.
In this chapter, we describe the experiments that helped us design our vane
model and also discuss the observations we could make from them. Note that
these experiments are not exclusively used for the design of the model: the
data gathered through them is also central to the validation of the model (see
Chapter 5).

The work presented in this chapter has been divided between me and one
of my supervisors Victor Romero-Gramegna. Victor focused on setting up the
experiments and gathering the resulting data, and I focused on the design of
the experimental scenarios and the analysis of the data.

3.1 Scenarios

As presented earlier, our membrane model takes the form of an energy density
𝜓𝑚(𝜺), where 𝜺 is the strain tensor. Ergo, it would be natural to set up
experiments whose observation tells us how the internal energy of the material
varies with its deformation. However, to the best of our knowledge, it is not
possible to directly measure energy. Hence, the model form needs to be inferred
from the evolution of other quantities. In the case of elasticity, it is natural to
go back to how they were originally modelled and look at how forces behave
as the material is deformed1.

The strain tensor, which quantifies local deformation, can be expressed in
matrix form by choosing a basis,

[𝜀𝑥𝑥 𝜀𝑥𝑦
𝜀𝑥𝑦 𝜀𝑦𝑦

] ,

where the first basis vector is taken as the x-axis and the second one as the y-
axis. The components of this matrix change with different kinds of deformation,

1Actually, it is also impossible to measure forces directly. Instead, usual force sensor
measure the deformation of small material in contact with the point at which we would like
to know the force. Models for the small material use are well known, which allows one to
derive the force from the deformation of this material. No such mechanism currently exists
for measuring elastic potential energy.

31
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𝜀𝑦𝑦 𝜀𝑥𝑥 𝜀𝑥𝑦
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Figure 3.1 – Each component of a matrix representation of the strain tensor is
correlated with a specific deformation.

𝜀𝑥𝑥 with an extension along the x-axis, 𝜀𝑦𝑦 with an extension along the y-axis,
and 𝜀𝑥𝑦 with a shearing (see Figure 3.1).

Hence, to analyse the behaviour of the feather vane with the purpose of
building a model, we find it natural to use three experiments which would each
excites one of these deformations2. As the deformations depend on the choice
of the basis, we have to fix one to properly choose what deformation we want
to perform in our experiments. Due to the underlying geometry of the feather
vane, it is natural to choose the x-axis to be along the barbs and the y-axis to
be orthogonal such that they form a direct basis. This is the basis that will be
used in the rest of the document.

More concretely, to study those deformations, we place rectangular vane
samples between two clamps which are moved to enforce the wanted target
displacement (see Figure 3.2). The force required to move the clamps is mea-
sured, giving us a force-displacement relation that we are able to study. More
details concerning this protocol are given in the next section.

Considering those three specific deformations to study the membrane be-
haviour of an anisotropic material is nothing new. In the textile industry Kawa-
bata and Niwa (1989) suggested an objective way to measure textile qualities
hoping that it supersedes the more subjective methods used at the time. In the
graphics community, this method has been used to measure the parameters of
a Saint-Venant Kirchhoff membrane model for textiles (Volino et al. 2009).

In these scenarios, the vertical edges of the sample are not constrained,
hence, the behaviour of the sample at the edge can be substantially different
from the one at the centre of the sample. If such a phenomenon were to
appear, it would hinder the easy analysis of the scenarios. Volino et al. (2009)
mitigate this by considering samples that are far wider than they are high (see
Figure 3.3). While this trick is easy to perform with cloth which can come in
large size, it does not transfer easily to the feather. Cutting such samples from
the feather vane is not really possible. Those samples need to be large enough

2If the feather vane was known to be isotropic, which it is not, we could have limited
our study to the stretch in only one direction. While the direction orthogonal to the stretch
would not be constrained, its deformation would still have to be measured to derive the
full model. For example, it would be necessary to find the Poisson’s ratio if the model was
considered linear.
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Figure 3.2 – Experimental scenarios each related to the deformation associated
to the components 𝜀𝑥𝑥 (left), 𝜀𝑦𝑦 (centre) and 𝜀𝑥𝑦 (right) of the matrix rep-
resentation of the strain tensor. Those are the same scenario considered by
Kawabata and Niwa (1989) and Volino et al. (2009) in their works.

to average away the individual behaviours of barbs, but we are also limited by
the size of the vane itself. This prevents us to have a large difference between
the width and height of the sample.

Thankfully, in the extension scenarios, the behaviour at the free edges of the
sample is the same as at any point of the feather. However, the phenomenon
does appear in the shearing scenario in the form of buckling (see Figure 3.4).
We could have put in the effort to deal with the more complicated problem of
in-plane elasticity due to the phenomenon appearing at edges. But, to the best
of our knowledge, no post-processing effort could deal with the buckling which
prevents us from using this scenario to study the membrane behaviour of the
vane.

To avoid this buckling behaviour without preventing our study of the shear-
ing deformation, we instead use another extension scenario with an orientation
at a quarter turn from the x-axis. While this scenario still displays a non-
uniform behaviour due to the free edges, it is exempt of buckling on the range
of deformation considered.

In the rest of the document, the scenario in which an extension along x-axis
is done will be called the longitudinal scenario, the one in which the extension
is along y-axis, transverse scenario and the last one tilted scenario.
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Figure 3.3 – In their experimental setup, Volino et al. (2009) used rectangular
cloth samples that were much wider than high. This allows them to mitigate
the effect of the cloth at its free edges.

Figure 3.4 – First (left) and last (right) state of the shearing scenario. In this
scenario the sample vane buckles out of plane. This buckling is visible as a
darker part of the sample at the top of the last state of the shearing scenario.
This prevents the proper analysis of the membrane behaviour of the vane.

̂𝒚

�̂�

Figure 3.5 – To study shearing deformation within the feather vane, we con-
sider an extension test oriented at a quarter turn from the x-axis. Unlike the
previously presented shearing scenario, the extension test doesn’t present any
buckling in the range of deformation we are interested in.
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3.2 Setup

In the previous section, we discussed the different experimental scenarios we
perform to study the feather vane. In this section, we describe precisely how
we set up those scenarios in the lab and what we chose to measure.

Experiment on a sample

When a sample is too large, the orientation of barbs can vary across its surface.
The heterogeneity incurred by such a variation increases the complexity of the
behaviour analysis. Also, if a sample is too small, we will not be able to focus
our study on the overall behaviour of the vane. Hence, we take our samples
as large as possible while keeping the barb orientation uniform. Also, in the
tilted scenario, it is important to look at samples with a range of different
aspect ratios between their two sides. The significance of this aspect ratio on
the behaviour of the samples will be shown in Section 3.3.

Samples are cut out from the vane using a paper guillotine3. They are then
clamped to two edges: during traction, one remains fixed and attached to the
force sensor while the other, attached to the motorized stage, is pulled up.
Each run is performed in consecutive steps up to a target maximal strain 𝜀max.
For the transverse scenario, the maximal strain is chosen to be 𝜀max = 0.4 as
fracture appears for greater strains. In the tilted scenario, strain at fracture is
highly dependent on the aspect ratio of the sample. Hence, instead of choosing
the maximal strain from the point of fracture, we arbitrarily use the same
maximal strain used for the transverse scenario. In the longitudinal scenario,
the sample slips out of the clamp early in the experiments due to high stiffness of
the deformation. Therefore, we chose a maximal strain before skipping occurs,
which we found to be around 𝜀max = 0.01. In each step we displace the motor
to a given position, stop, and make a force measurement, denoted by 𝑓, for 2 s
at 5 kHz. Hence, one data point is the average of 10 000 measures, allowing
us to highly reduce the uncertainty on the force measurement. In addition,
the displacement, denoted by 𝑑, is taken from the readings of the motors (see
Figure 3.6).

Beside the force and the displacement, we also measure the width, denoted
by 𝑊, and height, denoted by 𝐻, as they are necessary to relate the measured
force and displacement to stress and strain. In addition to those, we also
measure the thickness 𝑏 of each sample, since it has a substantial impact on
the measure of forces, and we have seen it to vary across the vane. The width
is measured on the sample once it is cut, while the height is computed from
the position of the motor at the beginning of a traction test. To estimate one
thickness value per sample, we compute the average over several measurements
taken using a micrometer on different regions of the sample patch. To avoid
any difference in mechanical response due to damage by the micrometer, we
perform thickness measurements after the traction test is done.

3The paper guillotine was chosen to produce the samples as it allow precise cut — through
the juxtaposition of a ruler — without tearing the barbs apart during the process. We could
have considered other obvious tools beside the paper guillotine such as a knife or a pair of
scissors. But they were not appropriate for the task. A knife would have allowed the use of
a ruler, but the shearing induced by the cut induces a separation of the barbs. And, while a
pair of scissors would have avoided any damage, its lack of precision was problematic.
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Figure 3.6 – Top: Real feather and example patches. Bottom left: Ex-
perimental setup for traction tests. Bottom right: Zoom on the traction
experiment.

𝑊

𝐻

𝑓

𝑑

Figure 3.7 – During the traction of each sample, we measure force 𝑓 and dis-
placement 𝑑. Also, width 𝑊, height 𝐻 and thickness of the sample are mea-
sured.
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Figure 3.8 – We run our experimental scenarios with mute swan feathers (top)
and guinea fowl feathers (bottom). The mute swan feathers are especially easy
to work with due to their mostly uniform barb orientation. Each square shown
under the feather has 1 cm sides

The setup and execution of each of experiment can take thirty minutes of
manipulation on average. A great deal of precision and attention is required
throughout the process to make sure that no sample breaks during the testing.
This high cost of experimental data generation will drive us to produce a mul-
tistep validation protocol to avoid any additional in-lab work (see Chapter 5).

Origin of samples

While those precise measures allow us to properly analyse each sample individ-
ually, we also need to be careful of the origin of each of them to allow proper
comparison between observations obtained from two different samples.

In fact, due to the biological nature of the feather vane, there can be sub-
stantial variation between measures on distinct samples. We noticed that this
variation is especially high when looking at feathers of different species. This
variability is also present to a lesser extent between samples taken at different
places in the vane.

To simplify our work, we chose to focus our observations to the behaviour
of feathers of only two bird species, the mute swan and the guinea fowl (see
Figure 3.8). Our quantitative analysis mainly focuses on the mute swan as
their feathers are the easiest to deal with among the cheap and commercially
available feathers4. The observations of the guinea fowl feather have the pur-
pose of a somewhat quick check that our qualitative observations on feather
of swans at the bases of our model are also found in other bird species. Also,
to analyse the origin of the variability between different region of the vane, we
diversify the region from which the samples are cut out, while still making sure
that each sample have a uniform orientation of barbs.

4Their feathers are large — around 25 cm, making them easier to manipulate. Also,
the barb orientation is mostly uniform across the vane, making it easier to cut out uniform
samples out of them.
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Figure 3.9 – Measured force-displacement in load-unload cycles of increasing
amplitude of a vane sample. After one cycle, the force is negative in the final
state while it was null in the initial state. This hysteresis effect shows that
there are dissipative effect in plays in the vane mechanics. We believe that
those dissipative effect are due to the friction between barbules while they
slide against each others.

Hysteresis

Instead of considering scenarios in which only one single traction is performed,
as we have done in this PhD, load-unload cycles could have been performed.
We first performed such cycles and observed hysteresis, showing that the de-
formation is actually not purely elastic (see Figure 3.9). We believe that this
hysteresis is inherent to the frictional nature of the connection between bar-
bules. Since we limit our work here to a non-dissipative model, we chose to
only present pure traction experiments (without cycling) from which we can
obtain elastic parameters.

3.3 Results and observations

Measure

As discussed in Section 2.3, our model does not work directly with forces and
displacements but with stress and strain tensors. Hence, instead of looking at
the relation between the measured force and displacement, we rather observe
how a measure analogous to the stress tensor relates to one analogous to the
strain tensor.

The measure we chose are the components of the strain and stress tensors
along the axis aligned with the movement of the clamped, denoted here as y-
axis, 𝜀𝑦𝑦 and 𝜎𝑦𝑦, under the assumption of uniform deformation of the sample.
Those measures are completely defined by the measured force 𝑓, size of the
sample 𝑊, 𝐻, and 𝑏 as well as the measured displacement 𝑑. In this context of
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assumed uniformity, we will express the different quantity with a ̃⋅ to put an
emphasis on the fact that they arise from an assumption not necessarily verified
in our experiments. With these considerations, the deformation gradient ̃𝑭 is
expressed as,

̃𝑭 = [1 0
0 1 + 𝑑

𝐻
] ,

where we omitted the dependence on the material point as the quantity is
uniform over the sample. Hence, using Equation (2.3), the strain tensor can
be expressed as

̃𝜺 = [ ̃𝜀𝑥𝑥 ̃𝜀𝑥𝑦
̃𝜀𝑥𝑦 ̃𝜀𝑦𝑦

] = 1
2

[
0 0
0 (1 + 𝑑

𝐻 )2 − 1
] .

The stress �̃� can be linked to the measured force under the same consideration
of uniformity by integrating along the clamped edge,

𝑓 = 𝑏 ̂𝒚𝑇 ∫
𝛤𝑡

̃𝑭 �̃�𝒏 d𝒓

= 𝑏𝑤 [0 1] [1 0
0 1 + 𝑑

𝐻
] [�̃�𝑥𝑥 �̃�𝑥𝑦

�̃�𝑥𝑦 �̃�𝑦𝑦
] [0

1]

= 𝑏𝑤(1 + 𝑑
𝐻

)�̃�𝑦𝑦

where 𝛤𝑡 is the clamped edge of the sample, 𝒏 is the normal of this edge going
outward of the sample, and ̂𝒚 is the unit vector along y-axis. Inverting this we
obtain,

�̃�𝑦𝑦 = 𝐻
𝑏𝑊 (𝐻 + 𝑑)

𝑓.

While the uniform longitudinal stress �̃�𝑦𝑦 and the uniform longitudinal
strain ̃𝜀𝑦𝑦 are not necessarily the actual stress and strain present in the sample,
they have the nice property to be independent of the size and thickness of the
sample, and they are the closest measures to the actual stress and strain we
could find. Moreover, as discussed later in this section, it happens that the
feather vane deforms uniformly in the longitudinal and transverse scenarios,
making our chosen measures actually match the strain and stress present in
the sample.

Variability
The data we gathered through our experimental scenarios are plotted in Fig-
ure 3.10. The first thing noticeable is the dispersion of the data. In both
the transverse and longitudinal scenarios the slopes of plotted curves vary by
±25 % around their middle value. Considering our choice of measure, it is un-
likely that this variation comes from a difference in sample size. We believe
that this dispersion comes from two other possible sources. Either from the
intrinsic variation expected from biological materials5. Or from the hysteresis

5Unlike materials produced in the industry, where an emphasis is put on repeatability
and uniformisation of processes, biological material can have some slight differences from one
object to another. For example, knot in wood are not always found at the same places, and
two feathers found at the same place on two different birds of the same species might not
have the exact same geometry.
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Figure 3.10 – Experimental stress-strain measurements for feather samples from
swans ( ) and guinea fowls ( ) in the three experimental scenarios: trans-
verse (top); longitudinal (middle); tilted (bottom). Pictures of one of the sam-
ples on swan’s feathers are shown on the right for each scenario. The geometry
of the samples used here are listed in Table 3.1. In these measurements, one
can notice the flagrant linear relation between stress and strain in the trans-
verse and longitudinal scenario. This linear relation is not really visible in the
tilted scenario, but might be explainable by the geometric non-linearity aris-
ing from the Green-Lagrange strain formulation. Another noticeable aspect of
these measurements is the already mentioned strong anisotropy. The stiffness
measured in both the transverse and longitudinal scenario differ by four orders
of magnitude, which, as said in Chapter 1, is larger that similar materials which
only have two orders of magnitude difference between their highest and lowest
stiffness.
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𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
15 14 120
8 14 100
12 11 120
10 11 110
10 13 95
12 11 140
11 13 120
10 15 100
17 14 112
10 13 125
11 12 120
16 12 150
8 10 110
11 12 120

(a) Transverse scenario

𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
9 18 73
7 15 133
9 23 60
8 13 120
9 16 129
4 12 116
10 11 80
7 19 125
10 10 117
6 6 100
7 10 145
2 6 130
5 11 140

(b) Longitudinal scenario

𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
6 15 120
3 14 110
9 16 132
12 16 155
8 14 143
16 16 130
14 19 114
13 18 103

(c) Tilted scenario

Table 3.1 – Width 𝑊, height 𝐻, and thickness 𝑏 of the samples whose stress-
strain relation are measured in Figure 3.10. The width and height of samples
used for the tilted scenario are especially important as the behaviour is highly
influenced by the aspect ratio of the sample (see Figure 3.11). These geomet-
rical measures are represented in Figure 3.7.

noticed in the previous section. Due to this non-elastic behaviour, a feather
sample does not return to its initial configuration when relaxed. This intro-
duces a variability in the possible initial state of the tested sample, and, hence,
a variability in the observed measures.

In the tilted scenario, a stronger variability can be seen, however, unlike
the longitudinal and transverse scenario, most of the variation comes from
the aspect ratio of the tested sample. Here, the narrower a sample is the more
barbs are not constrained by the clamps (see Figure 3.11). Those unconstrained
barbs are free to move relative to each other, hence, instead of calling on their
bending stiffness to deform as the clamped barbs do, they rather rely on the
less stiff deformation of the barbules. This makes narrow samples much softer.
The strong impact of the aspect ratio on the behaviour of samples in the tilted
scenario will need to be properly taken into account in the validation process
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Figure 3.11 – Pictures of samples used in the tilted scenario, each having a
different aspect ratio in their rest state (top). When elongated (bottom), the
behaviour of samples is highly dependent on their aspect ratio. The more
elongated a sample is, the more barbs are not constrained by the clamps.
Hence, more barbules are free to move, making the sample less rigid during the
deformation.

(see Chapter 5).

Stiffness

Another noticeable aspect in the data is the stiffness observed in the longitudi-
nal scenario. The stiffness there, mostly coming from the stiffness of barbs, is
four order of magnitude higher than in the transverse scenario where the defor-
mation is mostly supported by the barbules. Due to this stiffness we could not
observe how samples behaved for large deformations as they were sliding out
from the clamps. Thankfully, we should not need to look at larger deformation
along the barb orientation, since other much softer deformations should occur
before the material ever attain higher deformations.

Aside from preventing us to reach large displacements, this large stiffness
ratio between transverse and longitudinal deformations is indicative of a strong
anisotropy rarely seen in most materials studied in computer graphics and
mechanics. This strong anisotropy will make our numerical modelling efforts
quite arduous as will be explained in Section 4.3.
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𝐻 𝐻′𝑊 𝑊 ′

Figure 3.12 – Picture of sample used in the transverse scenario in its initial
state (left) and final state (right). In this scenario, samples do no show any
change in width when they are elongated, i.e. they do not show any Poisson
effect. The Poisson’s ratio can be computed from the width 𝑊 and height 𝐻
at rest, at in the deformed state 𝑊 ′, 𝐻′: 𝜈𝑦 = − ̃𝜀𝑥𝑥

̃𝜀𝑦𝑦
= − (𝑊 ′2−𝑊 2)𝐻2

(𝐻′2−𝐻2)𝑊 2 . Here,
since we have 𝑊 = 𝑊 ′, the Poisson’s ratio is null 𝜈𝑦 = 0.

Poisson’s effect
In the transverse scenario, the width of samples does not seem to vary as the
material is deformed (see Figure 3.12) This is unusual as the width of most
materials decrease as they are pulled to preserve their volume, a phenomenon
commonly referred to as the Poisson’s effect6. Materials displaying such a
behaviour are, among others, rubber, most metals, some textiles. The relation
between length and width change is usually quantified by the Poisson’s ratio,
denoted by 𝜈𝑦, where 𝑥 is the axis along which the material is stretched. This
is computed from the ratio between the strain in the direction of extension ̃𝜀𝑦𝑦
and the strain in the direction transverse of the extension ̃𝜀𝑥𝑥.

𝜈𝑦 = − ̃𝜀𝑥𝑥
̃𝜀𝑦𝑦

. (3.1)

This means that this ratio is positive for materials that tend to keep their vol-
ume as they deform — and taking the value 0.5 when exactly incompressible.
In our case, the Poisson’s ratio seem to be null, which is striking as the under-
lying material, β-keratin is known to have a Poisson’s ratio of 0.4 (Khani et al.
2022).

We believe that the apparent absence of Poisson effect in the feather vane
is due to the underlying structure of the vane and mostly to the stiffness of
the barbs compared to that of the barbules. In the transverse scenario, the
width of the sample is given by the length of the barbs. For the considered
range of deformation in the transverse scenario, stresses are not strong enough
to deform the barbs, hence the absence of width change.

6We wrote “most materials”, some do not present such behaviour, as is obviously seen
here in the case of the feather vane. For another example of materials whose width does
not decrease while they are stretched are the set of auxetic materials, instead their width
increase, their volume becoming larger as they deform.
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In the longitudinal scenario, the maximum displacement is too small to
make any conclusion on the presence of Poisson effect without more precise
measuring devices. However, since the deformation of the barbs should be
negligible due to the range of stresses considered, we will still consider the
Poisson effect to be null in this orientation in our modelling. Moreover, it will
be seen in our modelling section (see Section 5.3) that the absence Poisson effect
in one direction implies an absence of Poisson effect in orthogonal direction for
the sake of energy conservation.

Unlike the longitudinal and transverse scenario, the tilted scenario displays
a strong Poisson’s effect. This would be unexpected if we were dealing with
an isotropic material, where the behaviour should be the same in all direction,
however, such a Poisson’s effect is expected from an anisotropic material. We
will see in Chapter 5 that our model can properly capture this effect.

Overall behaviour

Let focus back on our original aim: building a model for the vane. The stress-
strain relation observed in the context of the transverse scenario strikes as
being linear. In light of this, we will be considering a linear elastic model —
but geometrically non-linear due to the use of the Green-Lagrange strain — in
the next section. This assumption might be strong at first glance as the datas
produced through the other scenarios are not quite linear.

First, in the longitudinal scenario, the stress slightly soften toward the end
of the observed range of strain. While this could be problematic if we had to
consider much larger deformations where such non-linear behaviour would have
a substantial effect, extension of barbs will be kept small and in the regime of
linear behaviour thanks to the high stiffness ratio as pointed out in the previous
subsection.

Secondly, in the tilted scenario the stress seem to be subject to some sub-
stantial stiffening until the barbule separation comes into play and cause the
sharp drop of stress. Here, this non-linear behaviour cannot be dismissed as
easily as we have done for the longitudinal scenario where the range of defor-
mation was much smaller. Nevertheless, as stipulated earlier in this section,
the phenomenon shown in this scenario are more complex and their non-linear
nature is not sufficient to dismiss our choice of linear relation between stress
and strain. In fact, this non-linear behaviour could well be predicted by our
suggested model thanks to the non-linear representation of the deformation
through the Green-Lagrange strain as will be shown in Chapter 5.

For all these reasons, we chose to model the membrane behaviour of the
feather vane through a linear relation between the stress and the strain. The
formal description of this model will be discussed in the next chapter.

Mute swan and guinea fowl

In Figure 3.10 we showed the results for samples taken from feathers of both
mute swans and guinea fowls. The guinea fowl samples are less stiff than the
swan feathers, but their behaviour is similarly linear and strongly anisotropic.
Hence, while our quantitative validation of our proposed membrane model,
presented in Chapter 5, uses only on the data obtained from swan feathers, we
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believe that it is highly probable that those validation results could be extended
to other bird species.





Chapter 4

Macroscopic model for the
membrane

4.1 Analytical Model

In the previous chapter, our observations suggested a linear relationship be-
tween stress 𝝈 and strain 𝜺, this means that our membrane model takes the
form

𝝈 = 𝑬 ∶ 𝜺,

where 𝑬 is a fourth order tensor usually called the elasticity tensor.
Note that the suggested model is equivalent to an anisotropic Saint-Venant

Kirchhoff model. This model is usually used to model the linear relation be-
tween stress and strain due to small deformations. However, in our case, the
choice of the model does not arise from such considerations. In fact, as seen
in the previous chapter, the considered deformation are quite large, going up
to 40 %. This model was chosen simply because it seems natural regarding our
data.

A simple expression for the elasticity can be worked out if we express its
component in the orthonormal basis whose first axis is along the barbs. Note
that this basis is different from the one used in the description of the scenarios.
To make this difference clear, we denote the axis along the barb by v-axis, and
the one orthogonal to the barbs by w-axis. Using indices 𝑖, 𝑗, 𝑘 and 𝑙 that
spans 𝑣 and 𝑤, we have

𝜎𝑖𝑗 = ∑
𝑘,𝑙

𝐸𝑖𝑗𝑘𝑙𝜀𝑘𝑙.

Here, the elasticity tensor components 𝐸𝑖𝑗𝑘𝑙 must satisfy some well, known
conditions for the model to be a proper elastic model.

Constraint due to general elasticity
Since both the stress tensor 𝝈 and the strain tensor 𝜺 are symmetric we must
have,

𝐸𝑖𝑗𝑘𝑙 = 𝐸𝑖𝑗𝑙𝑘 = 𝐸𝑗𝑖𝑘𝑙.

This allows us to use Voigt’s notation, which is often used in the context of
elasticity theory as it is simpler to work with. This notation consists in writing

47



48 CHAPTER 4. MACROSCOPIC MODEL FOR THE MEMBRANE

̂𝒗

�̂�

Figure 4.1 – In our notations, we choose the v-axis to be along the barb and
the w-axis to be orthogonal to the barbs. Everywhere, the vane is locally
symmetric with respect to the v-axis ( ).

the independent component of the stress and strain tensor in vector form, and
the components of the elasticity tensor in matrix form:

⎡⎢
⎣

𝜎𝑣𝑣
𝜎𝑤𝑤
𝜎𝑣𝑤

⎤⎥
⎦

= ⎡⎢
⎣

𝐸11 𝐸12 𝐸13
𝐸21 𝐸22 𝐸23
𝐸31 𝐸32 𝐸33

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑬

⎡⎢
⎣

𝜀𝑣𝑣
𝜀𝑤𝑤
2𝜀𝑣𝑤

⎤⎥
⎦

.

Note that the shearing 𝜀𝑥𝑦 is multiplied by two. This is to make sure that the
double contraction of the stress and strain tensor is equal to the scalar product
of their vector form, i.e. 𝝈 ∶ 𝜺 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦][𝜀𝑥𝑥 𝜀𝑦𝑦 2𝜀𝑥𝑦]𝑇.

Here, to ensure energy preservation, the matrix form of the elasticity tensor
needs to be symmetric.1

⎡⎢
⎣

𝜎𝑣𝑣
𝜎𝑤𝑤
𝜎𝑣𝑤

⎤⎥
⎦

= ⎡⎢
⎣

𝐸11 𝐸12 𝐸13
𝐸12 𝐸22 𝐸23
𝐸13 𝐸23 𝐸33

⎤⎥
⎦

⎡⎢
⎣

𝜀𝑣𝑣
𝜀𝑤𝑤
2𝜀𝑣𝑤

⎤⎥
⎦

.

Constraint due to the feather vane
This expression of a general membrane model linear in the strain has six pa-
rameters, but we can reduce them to three using the following geometric and
mechanical considerations specific to the feather vane.

First, at any point on the vane of a feather, the vane is locally symmetric
around the axis collinear to the barbs (See Figure 4.1). This symmetry, usually
called orthotropy, removes some components from the elasticity tensor (Milton
2002, p. 37), namely 𝐸13 = 0 and 𝐸23 = 0.

Secondly, in Section 3.3 we have seen that the Poisson’s ratio in the trans-
verse scenario 𝜈𝑤 is very close to zero as we were unable to see any Poisson
effect. Since, this Poisson’s ratio can be expressed in terms of our model pa-
rameters as (see Appendix A.1 for the details of the derivation)

𝜈𝑤 = 𝐸12
𝐸11

,

1Otherwise, given any elastic object, it would be possible to formulate a series of defor-
mations that cycles back to a rest configuration of the considered object while generating
work, creating this way a free source of energy. If we require the stress to derive from a
hyperelastic energy, which intrinsically conserve energy, we would naturally fall on the same
condition for the elasticity tensor.
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we know that 𝐸11 ≫ 𝐸12. This can give the intuition that 𝐸12 should be set
to 0. However, to properly decide on this, the Poisson’s ratio along the barb
𝜈𝑣, i.e. in the longitudinal scenario have to be considered:

𝜈𝑣 = 𝐸12
𝐸22

.

Here, if the 𝐸12 is set to 0, this would imply the absence of Poisson’s ratio in
this direction. But, 𝐸12 could very well be of the same order as 𝐸22, which
would imply the presence of a Poisson effect when stretching along the barb.
The presence of this Poisson effect is difficult to determine from our longi-
tudinal scenario, since the tested deformation range is small (less than 1 %).
However, since deformations along the barbs should very small due to their
apparent stiffness, we will consider that there is virtually no Poisson effect in
this direction, meaning that 𝐸22 ≫ 𝐸12. With this, we set 𝐸12 to 0.

With these parameters removed, our analytical vane model is left with only
three parameters,

⎡⎢
⎣

𝜎𝑣𝑣
𝜎𝑤𝑤
𝜎𝑣𝑤

⎤⎥
⎦

= ⎡⎢
⎣

𝐸𝑣𝑣 0 0
0 𝐸𝑤𝑤 0
0 0 𝐸𝑣𝑤

⎤⎥
⎦

⎡⎢
⎣

𝜀𝑣𝑣
𝜀𝑤𝑤
2𝜀𝑣𝑤

⎤⎥
⎦

, (4.1)

where we renamed the parameters of the elasticity tensor to be closer to the
notations of the stress and strain that they relate. We will refer to 𝐸𝑣𝑣 as
the longitudinal modulus, 𝐸𝑤𝑤 as the transverse modulus and 𝐸𝑣𝑤 as the shear
modulus.

Discussion
This elasticity model is close to the a linear orthotropic elastic materials that
as already been used for cloth simulation (Volino et al. 2009). However, it
presents some differences. First, our model is heterogeneous across the shell.
Second, due to the extreme stiffness ratio between barbs and barbules and the
structure of the vane, the range of parameters value needed to properly model
feathers is widely different to the range of parameters used to model cloth.

4.2 Numerical model

As stipulated in the introduction, we aim to have a numerical model of the
vane model. This would allow us to validate our membrane model and pro-
duce a feather numerical model with the purpose of helping animator in their
work. The first step consists in building a numerical model of the different
experimental scenarios.

To do so, we start from by presenting the associated continuous elasticity
problem. Our experiments are done in a quasistatic manner: as said in the
previous chapter, after each displacement the sample is kept in place for 2 s
while measurements are done. Hence, we consider a static elasticity problem
rather than a dynamic one as it is easier to analyse2. We denote the sample

2As discussed later in this section, the static problem is implemented numerically as a
dynamic problem due to the limitation of our software. Hence, the use of the static case for
the base problem might seem unnatural considering our numerical implementation. However,
this static problem is much easier to handle in all our analytical analysis of the experiments.
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𝛤𝑡

𝛤𝑏

𝛤𝑠 𝛤𝑠𝛺
𝒏

𝑑

Figure 4.2 – Schematic of the reference state (left) and deformed state of the sce-
narios considered in Section 3.1 with the notations associated to Equation 4.2.

reference configuration by 𝛺 = [0, 𝑊] × [0, 𝐻], the top clamped edge by 𝛤𝑡 =
[0, 𝑊]×{𝐻}, the bottom clamped edge by 𝛤𝑏 = [0, 𝑊]×{0}, and the side edges
by 𝛤𝑠 = {0, 𝑊} × [0, 𝐻]. With these notations, the static elasticity boundary
value problem for a given scenario can be written as

−∇ ⋅ 𝑭 𝝈 (𝒓) = 𝟎, ∀𝒓 ∈ 𝛺;
𝒖(𝒓) = 𝟎, ∀𝒓 ∈ 𝛤𝑏;
𝒖(𝒓) = 𝑑 ̂𝒚, ∀𝒓 ∈ 𝛤𝑡;

𝑭 𝝈(𝒓)𝒏(𝒓) = 𝟎, ∀𝒓 ∈ 𝛤𝑠,

(4.2)

where 𝝈 is the stress computed through our membrane model presented in the
previous section, 𝑑 represents the measured displacement in the experimental
scenario and 𝒏(𝒓) is the normal at material point 𝒓 (see Figure 4.2). In this
boundary value problem, the first and last equations enforce the balance of
forces inside the material, ∇ ⋅ 𝑭 𝝈 being the surface force density3. The two
others equations are the constraint imposed by the clamps.

The standard numerical methods for solving this problem are the finite
element method and its derivatives. We used two different software to solve
this problem: ARCSim simulator specifically catered to cloth simulation and
already well known to the people of the graphics community and us (Narain
et al. 2012); and FEniCS an open-source general purpose finite element solver
(Baratta et al. 2023). All results shown in this thesis were produced with
ARCSim. FEniCS was used to cross-validate the results of ARCSim on simpler
scenario (see Figure 4.3)

The static problem given in Equation (4.2) was straightfoward to implement
with FEniCS, in which we used triangular linear elements. However, some
care must be taken when implementing it in ARCSim. For the purpose of this
section, ARCSim can be seen as a finite element method targeted at dynamic
elasticity problem which uses triangular linear elements and a lumped mass

3The last equation consists in the balance of forces on the edges of the sample. As nothing
is acting on those edges, the forces should be null, otherwise the sample edges would be in
movement and, hence, not in static equilibrium.
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Figure 4.3 – We compare the measured stress �̃�𝑦𝑦 nondimentionalised by the
transverse modulus 𝐸𝑤𝑤 predicted by both ARCSim ( ) and FEniCS ( )
in both the transverse (left) and longitudinal (right) scenarios. Simulations are
run with a stiffness ratio 𝛼 = 𝐸𝑣𝑣

𝐸𝑤𝑤
between the transverse and longitudinal

modulus of 104 Both ARCSim and FEniCS predicts the same thing.

matrix4 Due to the dynamic nature of ARCSim, we cannot solve directly the
static elasticity problem. Instead, we have to work from the dynamic equivalent
of this boundary value problem,

𝜌�̈�(𝒓) − ∇ ⋅ 𝑭 𝝈 (𝒓) = 𝟎, ∀𝒓 ∈ 𝛺;
𝒖(𝒓) = 𝟎, ∀𝒓 ∈ 𝛤𝑏;

𝒖(𝒓) = 𝑑(𝑡) ̂𝒚, ∀𝒓 ∈ 𝛤𝑡;
(4.3)

where �̈�(𝒓) is the acceleration at 𝒓, 𝜌 is the surface mass density, which is
considered uniform over the sample, and the imposed displacement 𝑑(𝑡) now
depends on the time. Note that the equation on the side edges is not present
anymore as we are considering dynamic behaviour.

For this dynamic problem to behave quasistatically, we chose the surfafic
mass density 𝜌 such that elastic waves are able to propagate within the whole
material in less time than a step size ℎ. The elastic wave speed 𝑐 for an isotropic
material of Young’s modulus 𝐸 is given by

√𝐸
𝜌

. (4.4)

Hence, to be conservative we replace the Young’s modulus 𝐸 by the smallest
modulus in our material and obtain the following constraint on the surface
mass density 𝜌

𝜌 < ℎ2𝐸
𝐻2 , (4.5)

4ARCSim is not explicitly coded as such, however, in Section B.1 we prove the equivalence
of the formulation.
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where 𝐻 is the height of the tested sample. In our simulations, we chose to set

𝜌 = ℎ2

10𝐻2 min{𝐸𝑣𝑤, 𝐸𝑣𝑣, 𝐸𝑤𝑤}. (4.6)

In addition to making sure that elastic waves propagate fast enough, they
also have to be dissipated. Thankfully, this is taken care by the numerical
dissipation induced by the time integration used within the software.

In ARCSim, this dynamic problem is discretised in time using an implicit
Euler method and discretised in space using linear triangular elements as
presented earlier. The resulting non-linear problem is equivalent to a usual
Galerkin’s method with lumped mass matrix. Equations are given in Ap-
pendix B.1.

Previous versions of ARCSim were only solving a linearised version of this
problem at each time-step. Since our problem is badly conditioned due to
the high stiffness ratio, the solution provided by the linearised equation was
too far from the proper solution of the non-linear problem. Hence, we replace
the internal solver with the non-linear constrained optimisation problem solver
IPOPT (Wächter and Biegler 2006). See Appendix B.1 for more details on the
implementation.

4.3 Numerical locking

Unfortunately, one serious issue rapidly become apparent in our simulations.
We indentify the presence of numerical locking, i.e. the higher the stiffness
ratio between the two material directions

𝛼 = 𝐸𝑣𝑣
𝐸𝑤𝑤

, (4.7)

the slower the convergence of the finite element model.
Numerical locking and how we deal with it is discussed in this section.

In the next section, we discuss how we mitigated the ill-conditioning of our
time-stepping problem.

Identifying Numerical Locking
Some modelling problem can sometimes result in solutions that are poorly
discretised by textbook finite element methods. This is the case for incom-
pressible fluid and elasticity, where solutions for displacement fields should
have zero divergence (Brezzi and Fortin 1991). This also appears with some
scenarios for thin shells, where only flexural deformations should appear and
membrane deformations should be absent (Chapelle 1995). In both of those
cases, conventional elements poorly discretise the set of solutions.

In practice, this results in a degradation of the convergence as the constraint
on the problem increases (Chapelle 1995). For incompressible materials, this
happens when the Poisson’s ratio approaches 0.5. And, in the case of thin
shells, this degradation occurs when the thickness vanishes.

Hence, we first identify the locking problem by analysing the convergence of
the finite element model in the context of the tilted scenario as the stiffness ratio
𝛼 increases (see in Figure 4.4). In those results, the clear degradation of
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the convergence points toward a locking phenomenon, meaning that our choice
of elements is inappropriate5.
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Figure 4.4 – Finite element convergence of the simulated tilted scenario with
for different type of meshes and stiffness ratios 𝛼. Meshes are either aligned
( ) or unaligned ( ) with the orientation of barbs. The error is com-
puted as the relative difference between the evaluated stress at 5 % strain and
the same stress for a simulation with aligned mesh and 128 × 103 elements.
Its value is compared with the reference for the stiffness ratio 𝛼 = 104. As
suggested by Chapelle’s methodology (Chapelle 1995), these plots clearly show
a numerical locking phenomenon when an unaligned mesh is used: the conver-
gence of the finite element method substantially deteriorates as the stiffness
ratio is increased. This is shown by a upward shift in the curve in loglog scale,
which means an increase in the prefactor in the actual relationship between
relative error and number of elements. In contrast, the use of an aligned mesh
drastically reduces this degradation of convergence.

In fact, the inability of the elements can be understood from the pictures of
our in-lab tilted scenario (see Figure 4.5). Here, a discontinuity in the strain can
be identified between the bound barbs and the shear band. This discontinuity
implies a discontinuity in the derivative of the displacement, and is not properly
discretised by our linear triangular elements mesh generated through a random
Delaunay triangulation. Thankfully, in the case of linear elements, continuity
of the derivative between elements is not enforced. Hence, we mitigate the
locking phenomenon by aligning edges of elements with the discontinuity (see

5This locking phenomenon is not specific to the ARCSim implementation, as we have
checked that it also arises when using a thin membrane model implemented within the
FEniCS library (J. S. Hale et al. 2018).
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Figure 4.5 – Images of the first (left) and last (right) state of the tilted scenario.
A discontinuity in the derivative of the displacement can be observed in the
sharp transition between the lighter and darker region of the sample, marked
by a red line here.

Figure 4.6). For the purpose of generalising this solution to scenarios that differ
from the tilted scenario, we can notice that this discontinuity appears due to
the high stiffness of barbs. Therefore, in all cases, elements should be aligned
with barbs.

With this, degradation of the convergence with the increase of the stiffness
ratio 𝛼 is mitigated (see Figure 4.4 and Figure 4.7).

(a) Non aligned mesh (b) Aligned mesh

Figure 4.6 – Examples of meshes used for the simulation of the vane samples.
Those are meshes used for the tilted scenario. We either used mesh whose
elements are not aligned with the barb direction (left) or mesh whose elements
are aligned with those directions (right).

The locking phenomenon we show here is very similar to the one seen in
the work of Yu et al. (2006), where, instead of having one really stiff direction,
they have two very stiff directions and a low shearing stiffness. In this context,
discontinuity in the strain also appears. Our solution of aligning elements with
the discontinuity was taken from their work.
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Figure 4.7 – Stress 𝜎 for a deformation of 5 % in the tilted scenario, as a function
of the number of elements. The stiffness ratio is fixed to our experimental value
𝛼 = 104. The convergence for simulations using an arbitrary mesh ( ) is
considerably worse than an aligned mesh ( ). The reference value ( ) is
the one obtained with a finer aligned mesh made of 128 × 103 elements.





Chapter 5

Calibration and validation

Since it is impossible to mathematically prove that any model is able to predict
anything1, their predictive power is usually demonstrated through validation.
Validation generally consists in showing the considered model is capable to
predict something on which it was not build upon. Some well-known examples
of such validation are the prediction of black holes by the theory of general
relativity, or the prediction of the planet Uranus in the solar system through
the gravity model of Newton. In both cases, the structure and parameters of
the model were not chosen using the knowledge of the existence of either Uranus
nor the black holes, and the ability of those model to predict the presence of
those stellar objects is a demonstration of their predictive power.

The field of machine learning has picked up the same method to make sure
that their models are predictive. Consider the example of a neural network
which predicts the presence of some predefined object in pictures. In this case
the neural network parameters are set from a given set of tagged images. Then,
as is done for any validation, the predictive power of the trained neural network
is tested against another set of tagged images. The importance of using a set
of images different from the one used for the training of the parameter is easy
to explain here. The parameters of the model are chosen such that the model
is able to give the tag associated to the images of the training set, hence, if
the training set was used to evaluate the predictivity of the model, the model
would obviously pass with flying colours, making the validation rather useless.

Hence, to demonstrate how predictive our membrane model is, we first need
to choose a set of experiments on which the parameters of our model, 𝐸𝑣𝑣, 𝐸𝑤𝑤,
and 𝐸𝑣𝑤, are to be calibrated. And in a second time, we show that our model is
capable of predicting the elastic behaviour of the feather vane on an experiment
different from the one used for the calibration of the parameters.

In this chapter, we first show in Section 5.1 that the three scenarios dis-
cussed in Chapter 3 are not sufficient to calibrate directly the parameters of our
membrane model and validate them. In Section 5.2, we introduce an interme-
diate model which can be validated using those scenarios. In Section 5.3, this
intermediate model is used to produce numerically the missing experiments
necessary for the validation of our membrane model. The validation protocol

1Indeed, a formal description of the modelled phenomenon would be required, however,
there are no such description of natural phenomenons. One only has access to outcomes of
the phenomenon.

57
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Lab experiments

Intermediate model

⎡⎢
⎣

𝐸𝑣𝑣 0 0
0 𝐸𝑤𝑤 0
0 0 𝐸𝑣𝑤

⎤⎥
⎦

Final model

Measure& Validation
Numerical

identification& Validation

Figure 5.1 – Schematic summarising our validation protocol. We introduce an
intermediate model which is validated against our experimental data. Then,
this intermediate heterogeneous model is used to produce enough data to vali-
date the final macroscopic model.

we follow is summed up in Figure 5.1.

5.1 Avoiding manual work

To calibrate the parameters of our model on the scenarios described in Chap-
ter 3, we need to analyse how each of those parameters influence the prediction
of our model for those scenarios. Then, those parameters are chosen such that
the outcome of our model for the measured stress, denoted by �̃�𝑠

𝑦𝑦, matches
as best as possible the experimental data gathered through execution of those
scenarios in the lab.

We first consider the transverse scenario, where the barbs are orthogonal
to the displacement. For a measured displacement 𝑑, the associated boundary
value problem given in Equation (4.2) with our model gives the relationship
for the measured stress of

�̃�𝑠
𝑦𝑦 = 1

2
𝐸𝑤𝑤 (( 𝑑

𝐻
+ 1)

2
− 1)

= 𝐸𝑤𝑤 ̃𝜀𝑦𝑦,
(5.1)

where the quantity marked by a ̃⋅ are measured under the assumption of uni-
formity instead of being the exact value seen in the sample, as was done in
Chapter 3. Here, our model shows a linear relationship between the mea-
sured strain ̃𝜀𝑦𝑦 and the measured stress �̃�𝑦𝑦, with coefficient 𝐸𝑤𝑤. Hence,
the parameter 𝐸𝑤𝑤 can be obtained through a simple linear regression on the
experimental data. Equivalent results can also be obtained to measure the
longitudinal modulus 𝐸𝑣𝑣 using the longitudinal scenario.
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𝑇

𝑤𝐵

Figure 5.2 – The mesoscale model is composed of bands of isotropic elastic
material that are alternately stiff (blue) and supple (red). Both materials have
zero Poisson’s ratio. The Young modulus of the stiff bands is denoted by
𝐸𝐵, and that of supple bands by 𝐸𝑏. This model is also parametrized by the
distance between barb centers 𝑇 and the width of barbs 𝑤𝐵, which allows us
to define the barbs surface fraction as 𝛷𝐵 = 𝑤𝐵

𝑇 .

Therefore, we are left with only the shearing scenario, while we need at
least two scenarios, one for the calibration of the last uncalibrated parameter,
the shearing modulus 𝐸𝑣𝑤, and another for the validation of the model.

Since we want to avoid additional lab experiments given their difficulty,
we choose not to validate our membrane model directly on real experiments.
Instead, we introduce in the next section an intermediary, so-called mesoscale
numerical model, which is validated on a unique experimental tilted traction
test, this mesoscale model is then meant to serve as a reference for the validation
of our macroscale model through numerical experiments.

5.2 Mesoscale Model

Introduction of the model

The intermediate model we choose reproduces the structure of the vane at the
barb scale, through a heterogeneous shell consisting of stiff bands representing
the barbs, connected by soft bands representing the barbules (see Figure 5.2).
For simplicity, the material of both bands are chosen to be isotropic linear.
While this material choice is arbitrary, the validation of our model will demon-
strate its appropriateness. Isotropic linear materials are parametrised by their
Young’s modulus, which quantifies the resistance of the material to deforma-
tion, and their Poisson’s ratio, which quantifies how their volume changes as
they are deformed. We have shown in Section 3.3 that the feather does not
feature any Poisson effect: we reflect that in the model by setting the Poisson’s
ratio of the material of both bands to zero. The two Young’s modulus, one for
each type of bands, are left to be determined through the experimental data.

Due to the lower scale of this model compared to our membrane model, we
will call it the mesoscale model. Also, to put an emphasis on the difference
between the two models, the membrane model will now be referred as the
macroscale model.

To validate this model, we have to go through the same process discussed
in the previous section: we first calibrate the parameters, then validate the
model with those calibrated parameters. In the mesoscale model, there are
three parameters to calibrate: one geometric parameter emanating from the
heterogeneous aspect of the model, the barbs surface fraction 𝛷𝐵, and two
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Figure 5.3 – Surface coverage of barbs and barbules. Left: the segmented barbs
(red) and barbules (green). Right: the original image of the patch region.

mechanical parameters, the Young’s modulus of the barbs 𝐸𝐵 and the one of
the barbules 𝐸𝑏.

Calibration of the parameters of the model
Since the barb surface fraction is a geometric quantity, we avoid the setup of a
complex experimental montage and simply measure its value from 50 zoomed
images of different regions on a feather vane (Figure 5.3 (right)). Intensity
thresholding is performed to segment the barbs from the barbules (green and
red, respectively, in Figure 5.3 (left)). The threshold value is chosen manually
per image to avoid including the dark middle parts corresponding to the in-
terlaced barbules. From these measurements, we computed the average barbs
surface fraction 𝛷𝐵 = 0.14, with a standard deviation of 0.02.

The two remaining parameters, 𝐸𝐵 and 𝐸𝑏, need to be set from the exper-
imental data obtained in both the transverse and longitudinal scenarios.

In the longitudinal scenario, for a measured strain of ̃𝜀𝑦𝑦, the associated
boundary value problem given in Equation 4.2 with the mesoscale model gives
the predicted measured stress of

�̃�𝑠
𝑦𝑦 = [𝛷𝐵𝐸𝐵 + (1 − 𝛷𝐵)𝐸𝑏] ̃𝜀𝑦𝑦. (5.2)

Hence, denoting by 𝛥|| the slope of the experimental stress-strain curves ob-
tained through a linear regression, we have a first constraint on the mechanical
parameters of the mesoscale model,

𝛥|| = 𝛷𝐵𝐸𝐵 + (1 − 𝛷𝐵)𝐸𝑏. (5.3)

In the transverse scenario, the boundary value problem is harder to work
with. Here, the predicted measured stress �̃�𝑠

𝑦𝑦 is the solution of a cubic poly-
nomial from which we were initially unable to extract the missing constraint
on the two mechanical parameters (see Appendix C.1). Instead, we look at
the simpler boundary value problem where the highly stiff bands representing
the barbs are considered to be rigid. In this case, the relationship between the
measured stress �̃�𝑟

𝑦𝑦 and measured strain ̃𝜀𝑦𝑦 is

�̃�𝑟
𝑦𝑦 = 𝐸𝑏

(𝛷𝐵 − �̃�) [(𝛷𝐵 − �̃�)
2

− (𝛷𝐵 − 1)2]

2�̃� (𝛷𝐵 − 1)3 , (5.4)
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Figure 5.4 – Plot of the stress-strain relationship obtained through an analyt-
ical resolution of the transverse scenario with the mesoscale model (left). The
plotted stress are nondimentionalised through a division by the Young’s mod-
ulus of the barbules 𝐸𝑏. Two different stresses are plotted: the stress obtained
with a Young’s modulus for barbs that is four order of magnitude bigger than
the Young’s modulus for barbules 𝐸𝐵 = 104𝐸𝑏 ( ); the stress obtained with
the band representing the barbs considered to be rigid ( ). The relative
difference between the two stresses are considerably small (right).

where �̃� = 𝑑
𝐻 = √2 ̃𝜀𝑦𝑦 + 1 is the measured stretching of the sample. As

expected, we can see through a numerical comparison that the stress predicted
with rigid bands �̃�𝑟

𝑦𝑦 is very close to the one predicted with stiff bands �̃�𝑠
𝑦𝑦. In

fact, their relative difference is in the order of 10−5 for a barb surface fraction
of 𝛷𝐵 = 0.14 and four orders of magnitude between the stiffnesses of barbs and
barbules, 𝐸𝐵

𝐸𝑏
= 104 (see Figure 5.4). Moreover, the rigid problem results with

an expression that is much easier to work with than the one obtained through
the stiff problem.

Formally computing this expression through the computer algebra system
SymPy (Meurer et al. 2017), we obtain the predicted slope 𝛥⊥ of the linear
regression of the stress-strain relation in the transverse scenario as

𝛥⊥ = 𝐸𝑏 [−15𝛷2
𝐵𝜆max − 25𝛷2

𝐵 + 18𝛷𝐵𝜆2
max + 39𝛷𝐵𝜆max + 23𝛷𝐵

5 (𝛷𝐵 − 1)3 (𝜆max + 1)3 − 1
(𝛷𝐵 − 1)3 ] , (5.5)

where 𝜆max is the maximum stretch considered . With this second constraint
on our mechanical parameters, we can calibrate both the Young’s modulus of
the barbs 𝐸𝐵 and the one of the barbules 𝐸𝑏.

Since our experimental data is made up of more than one stress-strain
curve from which to extract a slope, we choose to measure the parameters by
matching the slope of the linear regression of all experimental data points. See
Figure 5.5 ( ) for a representation of the linear stress-strain curve on which
we fit the parameter. Here, it would have been more informative to consider
the uncertainty on the calibrated parameters introduced by the spreading of
the experimental stress-strain curve. However, we chose to focus on the average
behaviour, since it should give a good preliminary idea of the usefulness of the
solver. The study of the impact of this uncertainty is left for future work.
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Table 5.1 – Mesoscale model measurements.

𝛷𝐵 𝐸𝑏 [Pa] 𝐸𝐵 [Pa]
0.12 4.04 × 104 2.8 × 109

0.14 3.92 × 104 2.57 × 109

0.16 3.79 × 104 2.25 × 109
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Figure 5.5 – Comparison of the mesoscale model behaviour with the behaviour
observed in experiments. Parameters of the mesoscale model were chosen to
minimise the distance to every data point of the experiments in both the trans-
verse scenario (left) and the longitudinal scenario (right). The mesoscale model
parameters resulting from our fitting procedure are listed in Table 5.1.

To take into account the substantial uncertainty on the barbs surface frac-
tion 𝛷𝐵 = 0.14 ± 0.02, we perform this procedure three times, with the surface
fraction set to its average value and the values at a standard deviation from
the average. The measured parameters are listed in Table 5.1.

Validation of the model
To validate our model, we compare its prediction with the experimental data
obtained in the tilted scenario. In this scenario, the aspect ratio of the tested
sample, defined as the height over the width 𝑎 = 𝐻

𝑊 , has a substantial impact
on the measured stress. Hence for each sample tested in-lab, we perform one
simulation with the same aspect ratio as this sample. First, we focus on the
prediction made with the barbs surface fraction set to its measured average
value 𝛷𝐵 = 0.14 which is shown in Figure 5.6. Strikingly, this comparison
shows that while the simulation manages to give a pretty good prediction of
the measured stress of some samples, it overestimates the stress for most of the
samples.

However, this difference between measured and predicted stress does not
invalidate our mesoscale model. This difference comes from the presence of
non-elastic events in the experiments which our pure elastic model was not
built for. Pictures of those experiments show a rearranging of the barbules as
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the sample deforms, allowing stress to dissipate and, this way, reaching lower
values than the ones predicted (see Figure 5.7). Moreover, when none of these
rearrangements can be seen in the pictures, the simulation manages to predict
well the behaviour of the sample. From this, we conclude that our mesoscale
model properly predicts the elastic behaviour of the feather vane which was
our main purpose in this thesis.
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Figure 5.6 – Comparison of the mesoscale model with lab experiments on the
tilted traction scenario. In some of those experiments (left), the barbules re-
arrange themselves (see Figure 5.7) allowing stress to dissipate and preventing
our exclusively elastic model to properly predict the observed behaviour. Other
experiments (right) do not have any of these barbules rearrangements. In these
cases, our model properly predicts the measured stress-strain curves.

(a) Non-elastic behaviour (b) Elastic behaviour

Figure 5.7 – Images of two tilted traction tests zoomed on the side of the
tested sample. The sample shown in the subfigure 5.7a displays a non-elastic
behaviour. In its rest state (left) the edge of the sample is smooth, while after
extension (right) the edge has become ragged due to a rearrangement of the
barbules. This rearrangement dissipates the bending energy of the barbules,
allowing the samples to reach a lower energy state. The subfigure 5.7b presents
a sample in which none of those rearrangements take place, as can be seen by
the smooth sample edge even after extension.



64 CHAPTER 5. CALIBRATION AND VALIDATION

0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

30

𝜀

𝜎[
kP

a]

Simulations
Experiments

𝛷𝐵 ±0.02 variation

Figure 5.8 – Comparison of the mesoscale model’s predictions against experi-
mental data obtained on a sample with aspect ratio of 1.38. The simulation ran
for the average and extreme measures of the barbs surface fraction. We can see
that the predicted behaviour is not much impacted by the large uncertainty.
This shows that our mesoscale model should be capable of providing a good
estimation of the feather vane elastic behaviour for all potential barb surface
fraction.

Influence of the barb surface fraction uncertainty
Until now, we have only looked at the average behaviour of the simulator
for a barbs surface fraction of 𝛷𝐵 = 0.14. In this case, we have shown out
mesoscale model to properly predict the elastic behaviour of the feather vane.
However, due to the uncertainty on the barb surface fraction measurements,
the model calibrated with a more precise measure might not be able to predict
the observed behaviour. Thankfully, focusing on the sample with aspect ratio
1.38 we can see that this uncertainty has little impact on the predicted stress
(see Figure 5.8).

This reinforces our claim that the mesoscale model is capable to estimate
quantitatively the elastic behaviour of the feather vane. The modelling of non-
elastic behaviour is left for future work.

5.3 Membrane model

With the mesoscale model validated against the experimental data, we can
proceed to the validation of the macroscale model against it. Here, the cali-
bration of the parameters of the macroscale model on the mesoscale model is a
well-known process called homogenisation. This process consists in computing
the parameters of a homogeneous model from a heterogeneous model such that
the homogeneous model reproduces the average behaviour of the heterogeneous
model.

In addition to the calibration problem being well-known, the mesoscale
model itself has a lot in common with models for fibre reinforced matrices.
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Figure 5.9 – Schematic of a fibre reinforced material taken from Maiti et al.
(2022). Such materials are made of stiff fibre embedded in a suppler matrix.
Fibre reinforced materials are quite close to our mesoscale model. In fact, tak-
ing a section of the material shown here would result exactly in our mesoscale
model, i.e. in a material with bands of alternating properties.

The bands representing the barbules can be seen as the medium that is rein-
forced and the band representing the barbs as the fibres that are reinforcing this
medium (see Figure 5.9). This type of material being crucial in the industry
— think of reinforced concrete for example, their modelling, and most espe-
cially modelling through homogenisation, has been extensively studied (see for
instance the introduction of Bleyer (2018) for a state of the art of these studies).

Unfortunately, due to brittleness of most reinforced material — meaning
that they have a high stiffness compared to their resistance to fracture —
studies have focused on the linear regime of these materials and never ventured
in the study of large deformations. Hence, their work on homogenisation of
the linear model is difficult to apply directly to our non-linear model.

Instead of performing the calibration through an analytical method, we
proceed through a numerical method. As already shown in the first section of
this chapter (see Section 5.1), the transverse modulus 𝐸𝑤𝑤 and the longitudinal
modulus 𝐸𝑣𝑣 can be obtained from a linear regression of the experimental
stress-strain curve produced respectively in the transverse and longitudinal
scenarios. This only leaves the need to calibrate the shearing modulus 𝐸𝑣𝑤.

We measure this parameter through bisection, performing macroscale model
simulations with different values of 𝐸𝑣𝑤 to match the slope with that of the
mesoscale model in the tilted scenario. As stated in the previous section, the
aspect ratio has an influence on the predicted stress in the tilted scenario: here,
the calibration of the shearing modulus was done with an aspect ratio fixed
to 1.3. The rest of the validation protocol is done with the same fixed aspect
ratio. The calibrated parameters are given in Table 5.2.

In Figure 5.11, we show that the macroscale model, whose parameters have
been fit from the mesoscale model on the longitudinal, transverse and tilted
traction tests, matches the same mesoscale model on traction scenarios with
barbs oriented at various angles (see Figure 5.10). With this, our macroscale
model is validated against the mesoscale model which was itself validated
against experimental data. Hence, we claim that our macroscale model is
capable of predicting the experimental elastic behaviour of the feather vane.

In addition to this quantitative validation, we also visually compare, on the
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Table 5.2 – Macroscale model measurements. The macroscale measurements
were obtained by fitting to the mesoscale model parameters.

𝛷𝐵 𝐸𝑣𝑣 [Pa] 𝐸𝑤𝑤 [Pa] 𝐸𝑣𝑤 [Pa]
0.12 3.60 × 108 4.80 × 104 2.65 × 104

0.14 3.60 × 108 4.80 × 104 2.78 × 104

0.16 3.60 × 108 4.80 × 104 2.88 × 104

𝜃

Figure 5.10 – The mesoscale and macroscale model are compared on the tilted
scenario with different barb orientation angles 𝜃.
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Figure 5.11 – Comparison between slopes of the stress-strain curves of the
macroscale model and the mesoscale model in traction scenarios with barbs
oriented at different angles. The slopes are nondimensionalised through scaling
by the Young modulus of the barbules in the mesoscale model 𝐸𝑏. Comparison
is done using the measured barb density 𝛷𝐵 = 0.14, as well as the two extreme
values of the error range ±0.02.
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Figure 5.12 – Tilted scenario performed on samples with different aspect ratios.
This was performed experimentally (top), with the mesoscale model (middle)
and with the macroscale model (bottom). For a given aspect ratio, each test
displays shear bands of the same size and similar overall geometry.

tilted scenarios, the geometry of our macroscale model, mesoscale model, and
real experiment (see Figure 5.12). Remarkably, we observe not only the same
contours of the samples during extension, but also the very similar appearing of
a shear band (in the experiment and in the macroscale model), which increases
in width as the aspect ratio of the feather sample is increased. These obser-
vations nicely complete our quantitative agreements on forces with qualitative
agreements on shapes.

5.4 Discussion

In this chapter, we have presented a parameter identification and validation
protocol for our membrane model. This validation showed that our membrane
model is able to properly predict the real elastic behaviour of the feather vane.

Two step protocol
The parameter identification protocol we suggest has some remote similarity
with the work of Sperl, Sánchez-Banderas, et al. (2022) who are estimating
parameter for a yarn level model of cloth from cloth level experiments. To
do so, they first identify the parameter of a shell model from traction test on
cloths samples. Then, they perform an inverse homogenisation procedure on
the resulting calibrated shell model to obtain parameters for the yarn level
model. Here, there are two main difference with our procotol. One is in the
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process, where, instead of using a low scale calibrated model to calibrate a
high scale model, they do the inverse: using a high scale calibrated model to
calibrate a low scale model. The other is in the purpose of this two stage
protocol. Their aim is to avoid the repeated simulations of the complex yarn
level required for a straightforward fitting of the parameters. Both step of
their protocol are more efficient than the naive approach as the shell model
requires fewer degrees of freedom and the link between the shell model and the
yarn level model can be done through homogenisation which also requires fewer
degrees of freedom than a full simulation of a traction test. In comparison, our
aim is to reduce the number of experiments that needs to be setup.

While we managed to reach this aim of reducing the number of experiments
needed for calibration of our membrane model, we didn’t really reduce the
amount of work necessary, as we initially intended. In fact, the avoided effort
necessary for the setup of more experiments was merely replaced by effort spent
in the numerical modelling of the mesoscale model. Overall, the time spent on
the two stage protocol probably is much greater than if we had performed the
additional experiments, mostly due to workload induced by the implementation
and debuging of the mesoscale model.

However, we believe that the introduced mesoscale model usefulness is not
limited to our parameter identification protocol. First, the model being closer
to the underlying structure of the feather vane, it is a first step toward under-
standing the link between this structure and the overall behaviour of the vane
described by our membrane model. However, the path toward establishing such
a link would probably be quite long (see Chapter 7). Secondly, the mesoscale
model can be used to study other properties of the feather such as size-effect
discussed in the conclusion of the thesis.

Compression
An interesting aspect of the validation protocol of the mesoscale model is that
parameter identification didn’t consider at all the behaviour in compression
of the vane. Indeed, both the transverse and longitudinal scenarios which
were used for the calibration exclusively induce extension within the material.
Despite this restriction to non-compressive behaviour in the parameter identi-
fication, the mesoscale has no issue matching the elastic behaviour of the vane
in the tilted scenario which is driven by compression of the barbules. This
highlights that our model can capture a wide range of the vane membrane
behaviour despite having so few parameters.

Lack of statistical method
A limitation of our protocol is its lack of rigour. Validation is made through
a simple eyeball comparison and, while we roughly take into account the un-
certainty on the measure of the barb surface fraction 𝛷𝐵, the impact of a lot
of the uncertainty of other measures are not properly looked into. Even more,
the flagrant variation between the stress-strain curve induced by the biological
aspect of the studied material is only brushed upon. A careful statistical study
of all those parameters could have provided an understanding of the qualities
and limitation of our model. It might be fine to leave aside the uncertainty
due to measures in the experimental protocol due to their low impact on the
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model parameters. However, the impact of the biologically induced variations
needs to be tackled in future works. Especially to show that our model is valid
for most feathers instead of just the average feather.

To the best of our knowledge, such statistical studies are often not con-
sidered in the validation of models in both mechanics and computer graphics.
This is somewhat understandable as, in mechanics, the materials are produced
in very control environment, leaving little place for impactful variations, and in
computer graphics, the appearance of the phenomenon is often the only aspect
of interest, hence, slight variations would often go unnoticed.

Other fields dealing with populations, such as social study and biology,
that are much more subject to internal variation, are likely more used to using
statistical tool to analyse their hypothesis and model. And, hence, more prone
to use those tool when tackling any problem.

This is why, coming from both mechanics and computer graphics, it was not
natural to consider the use of statistical methods for the study of our material.
As said earlier, this will need to be corrected in future works studying feathers.





Chapter 6

Model of a full feather

In this chapter, we present a preliminary modelling of the elasticity of a full
feather which aims to be as visually similar to the behaviour of a real feather
as possible. We believe that three ingredients are crucial to properly reproduce
the movement of a feather:

• The modelling of the rachis and its interaction with the vane;

• A non-uniformity of the distribution of barbs orientations;

• The modelling of the flexural behaviour of the vane.

6.1 Rachis

Consider the thin rod geometry of the rachis, it would seem appropriate to
model it through a rod model which would be coupled with the vanes modelled
as two shells. We rather model the whole feather as one shell where the rachis
is represented by a thin band of stiff linear isotropic band (see Figure 6.1).
While this is probably less efficient than the first solution, it is easier to deal
with, as our software ARCSim is capable to deal with heterogeneous shells but
not thin rods.

In our workflow, the overall shape of the feather is given by a triangular
mesh which describes its reference state. The rachis is given by its center-line
described as a spline as well as two scalars, its width at the base and its width

Figure 6.1 – The rachis and the vane are represented using the same shell mesh.
The rachis is modelled by a band of stiff isotropic material, in orange here.

71
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at the end. Those scalar are usually chosen such that the rachis is wider at its
base than at its end, as is the case in real feathers.

In the present work, we choose to keep the thickness of the rachis uniform
across its representing band. This is a considerable approximation as the thick-
ness of the rachis substantially changes from its base to its end. However, this
approximation seems to be enough for the deformations considered during the
thesis (see Section 6.6). The variation of the thickness might have to be taken
into account in future works if more involved deformations or more precise
prediction are required.

6.2 Non-uniformity of barb orientation

Modelling
The distribution of barb orientations is modelled by an angle field over the ref-
erence state of the feather 𝜃 ∶ 𝛺 → [0, 𝜋], which gives the angle 𝜃(𝒓) between the
barb orientation and an arbitrarily chosen x-axis at point 𝒓. The membrane
model is parametrised by this vector field such that the transverse modulus
properly penalises deformation orthogonal to the barb orientation. More for-
mally, the membrane energy density 𝜓𝑚(𝒓) at material point 𝒓 is given by

𝜓𝑚(𝒓) = 𝑏𝜺(𝒓) ∶ 𝑬(𝜃(𝒓)) ∶ 𝜺(𝒓), (6.1)

where 𝑬(𝜃(𝒓)) is our membrane model tensor presented in Section 5.3 whose
basis is changed by a rotation of angle −𝜃(𝒓) (see Section A.2 for its detailed
expression).

In the context of the finite element method, we chose to discretise the
barbs angle by a piecewise constant field. We could not consider higher order
discretisation as it would have prevented the implementation of the solutions
to the different numerical issues discussed in Section 4.3. Moreover, this saves
us the time-consuming implementation of higher order elements in ARCSim.

Meshing
The meshing algorithm consists in generating the edges we want to be present
in the mesh and letting a triangulation software (triangle from Shewchuk (1996)
here) produce a proper triangulation which contains those edges and vertices.
Hence, we only describe the generation of those vertices and edges here. The
description heavily relies on the schematics shown in Figure 6.2.

The input of the meshing is provided by the user. It consists in the bound-
aries of the feather as a mesh ( ), the center-line of the rachis as a spline
( ) and guides indicating the overall orientation of barbs as splines ( ).
The meshing algorithm takes also three input parameters, the width at the
base 𝑤𝑏 and the end 𝑤𝑒 of the rachis, as well as the element target edge size 𝑒.

The meshing algorithm starts by generating the vertices ( ) of the rachis,
placing them next to its center-line at a distance 𝑤𝑏

2 at the base and 𝑤𝑒
2 at the

end of the rachis, decreasing the distance at a constant rate between the two
tips (see Figure 6.2b). Vertices that do not fall into the provided boundary of
the feather are removed ( ). Edges ( ) are placed between the kept vertices
(see Figure 6.2c). Edges are also added between the boundary of the feather
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and the first and last vertices, making sure that the region representing the
rachis is separated from the vane.

Then, starting at each rachis vertex, we add the vertices of the vane. To
do so, the two closest guides are interpolated to produce a new guide passing
by the considered rachis vertex (see Figure 6.2d). The vane vertices are placed
along this guide such that the distance between them respects the target edge
length 𝑒. Vertices falling out of the boundary of the feather are naturally not
added. Finally, vertices are linked by edges and the last vertex is linked to a
vertex of the boundary.

Initialising barb orientation
We want each element to have at least one edge aligned with the barb orienta-
tion to mitigate numerical locking issues. Thankfully, the elements generated
by the triangulation software should be incident to at least one of the edges
whose presence was enforced. Since those edges were generated to be as aligned
as possible with the user provided barb orientation, we simply assign the angle
each of those edge makes with the x-axis to its incident faces (see Figure 6.3).

6.3 Flexion modelling

As we chose to focus on the membrane model during the course of the thesis,
we leave the design of a flexural model from experiments for future works. We
instead use an ad hoc anisotropic model linear in the curvature. Bending forces
are derived from an energy associated to each edge,

𝐴1 + 𝐴2
6

𝐷(𝛽) (𝜂 − 𝜂0)2 , (6.2)

where 𝐴1 and 𝐴2 are the area of the triangles incident to the edge, 𝜂 and 𝜂0
are respectively the curvature and rest curvature at the edge, and 𝐷(𝛽) is the
bending modulus. The curvature is computed through the method described
in Grinspun et al. (2003)

𝜂 = 9 𝑒𝜒
𝐴1 + 𝐴2

, (6.3)

where 𝑒 is the size of the edge and 𝜒 is the dihedral angle between the triangle
that join at the edge. The bending modulus depends on the angle 𝛽 made
between the edge and the local barb orientation in reference space, which we
call the tilt angle.

The directional variation of the bending modulus is parametrised by the lon-
gitudinal bending modulus 𝐷|| (bending the barbs themselves) and the trans-
verse bending modulus 𝐷⊥ (bending the vane keeping the barbs straight) (see
Figure 6.4) The relationship between the bending modulus and the tilt angle
is chosen such that 𝐷(0) = 𝐷⊥ and 𝐷 ( 𝜋

2 ) = 𝐷||:

𝐷(𝛽) =
𝐷⊥ − 𝐷||

2
cos(2𝛽) +

𝐷⊥ + 𝐷||

2
. (6.4)

For feathers, 𝐷⊥ is chosen much smaller than 𝐷|| so that deformations that
avoid bending of barbs are favoured.
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(a) Input of the meshing al-
gorithm

𝑤𝑏

𝑤𝑒

𝑒

(b) Generation of rachis
vertices

(c) Generation of rachis
edges

≈ 𝑒

(d) Generation of vane ver-
tices

(e) Generation of vane
edges

Figure 6.2 – Schematics displaying the different steps of our meshing algo-
rithm. Here, only the left side of the feather is shown, barb orientation is given
spearately for the left and right side. Unlike the generation of the rachis, no
symmetry with respect to the center-line is assumed when generating the ver-
tices and edges of the vanes. These schematics are described within the main
text.

Since the barb orientation is defined constant on faces, we have two tilt
angles 𝛽1 and 𝛽2, one for each face. The tilt angle is obtained through an area
based average of both angles,

𝛽 = 𝐴1𝛽1 + 𝐴2𝛽2
𝐴1 + 𝐴2

. (6.5)
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𝜃(𝒓)

𝜃(𝒓)

𝜃(𝒓)
𝜃(𝒓)

Figure 6.3 – Schematics of the initialisation of the barb angle field 𝜃. The
barb angle field is chosen to be discretised as a piecewise constant field. Each
element incident to edges that were placed along the barb orientation during
the meshing ( ) are given as barb angle 𝜃(𝒓) the angle of this incident edge.

Figure 6.4 – Schematics of two different bending direction. Here, the barbs are
represented as black lines. One bending orientation is transverse bending (left)
and is associated to the transverse bending modulus 𝐷||, the other is longitudi-
nal bending (right) and is associated to the longitudinal bending modulus 𝐷⊥.

6.4 Parameter calibration

Wanting to show that our model performs better than the isotropic cloth model
used in the industry (Bowline and Kačić-Alesić 2011; Weber and Gornowicz
2009; Augello et al. 2019; Heckenberg et al. 2011; Haapaoja and Genzwürker
2019), we qualitatively compare the visuals produced by both our full feather
model and a shell model close to the one used in the industry with a video taken
from a real feather. To make the comparison as fair as possible, we do our best
to calibrate the parameters of both models on a scenario separate from the one
used for the comparison. The present section deals with this calibration. The
final parameters used in the comparison presented in the next section are listed
in Table 6.1.

Since the validation of our model is done through a qualitative visual com-
parison, we believe that it is sufficient to calibrate the parameters by choosing
them manually such that the produced visuals qualitatively match a video of a
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Figure 6.5 – Scenario where the rachis of a feather is held at its base and pulled
at its tip. This scenario was performed with a real feather (top) and within the
simulation using an isotropic membrane model (middle) and our anisotropic
membrane model (bottom). This scenario was used to select the mechanical
parameters of the rachis model and vane bending model.

real feather. Hence, aside from the membrane parameters which were already
calibrated in the previous section, the rachis parameters and bending param-
eters of the vane are chosen by testing different sets of parameters until the
simulation resembles to the naked eye our video of a real feather. The scenario
used for the calibration consists in a feather where the base of its rachis is kept
still while the tip is pulled away from its rest state (see Figure 6.5).

Our model

As discussed in Section 6.1, the rachis band has three parameters, its thickness,
Young’s modulus and Poisson’s ratio. Its Poisson’s ratio is arbitrarily chosen
to be 0.49 to be as close as possible to incompressible, whereas we chose its
Young’s modulus by measuring it ourselves through a simple traction test on
the rachis which resulted in the value of 34 MPa. While it would have been
natural to directly measure the thickness of the rachis on the real feather, the
resulting value was inducing an out of plane buckling of the rachis, which is
absent from the video of the real feather (see Figure 6.5 (top)). Instead, we set
the thickness to be as close as possible to the measured value, while preventing
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buckling in the considered scenario.
For the vane, the two bending moduli of our flexural model need to be

calibrated. We noticed that the farther apart they are, the more difficult it is
for the solver to converge1. Hence, we decided to choose the closest possible
values such that buckling of the vane on the side away from the movement is
prevented (this is the top side in the images shown in Figure 6.6) and wrinkling
looks as close as possible to the one in the real feather. Finally, the target edge
length in the meshing algorithm was chosen as high as possible to obtain good
performances, while keeping the produced visual close to the real feather. The
resulting visuals for the membrane model are shown in Figure 6.5.

Figure 6.6 – Using too small a longitudinal bending modulus can cause the vane
to buckle during the deformation (left). Using too high a transverse bending
modulus reduces the wave length of the wrinkles, making the deformation un-
realistic (right).

Isotropic model

The simulation with which we compare our approach is exactly the same as
our model with the exception of the membrane model being isotropic, which
means that the stiffness modulus are all equals 𝐸𝑣𝑣 = 𝐸𝑣𝑤 = 𝐸𝑤𝑤. Thanks
to this, differences appearing between the two models should come from the
difference between the membrane model as it is only difference between the
two simulations. This allows us to highlight the contribution of our membrane
model without being hindered by the flexural and rachis model.

For the purpose of fairness, the parameters of this model were chosen inde-
pendently of the parameters of our proposed feather model and such that the
visuals produced are also as close as possible to the video of the real feather.
While this results in the same parameters for the rachis, the parameters of the
vane are naturally different. First, the Poisson’s ratio of the vane is set to 0 to
obtain the same effect found in the real feather. Then the Young’s modulus of
the vane is chosen small enough for the vane to not buckle during the flexion,
but as high as possible. With the Young modulus set, the bending parame-
ters are picked using the same process used for the calibration of the bending
parameter of our anisotropic membrane model. As for our membrane model,
results produced with the isotropic model are displayed in Figure 6.5.

1We believe that this slow convergence comes from the high ratio between the two bending
modulus inducing a poor condition number for the hessian of the problem.
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Parameter Value
Feather length 0.2 m
Tolerance 10−7

Number of Newton steps 50
Target element edge length 5 × 10−3 m
Isotropic longitudinal bending modulus 𝐷|| 5.0 × 10−3 N m
Isotropic transversal bending modulus 𝐷⊥ 2.5 × 10−8 N m
Isotropic Young’s modulus 4.80 × 104 Pa
Anisotropic longitudinal bending modulus 𝐷|| 2.5 × 10−4 N m
Anisotropic transverse bending modulus 𝐷⊥ 10−7 N m
Barrier coefficient 𝜅 (see Section 6.5) 5.04 × 107 N m−1

Surface mass density 2.6 × 10−2 kg m−2

Rachis Young’s modulus 34 × 106 Pa
Rachis thickness 1.2 × 10−2 m
Rachis Poisson’s ratio 0.49
Rachis surface mass density 0.54 kg m−2

Time-step 0.011 s

Table 6.1 – Parameters used for generating the figures involving the full feather
in the main document. Parameters whose value can be inferred from the main
document are not listed. If a notation was given in the main document for a
parameter, we recall this notation in the table.

Figure 6.7 – When compression reaches a certain point (left), elements whose
elasticity follows the St. Venant-Kirchhoff model collapse to allow other ele-
ments to stretch (right).

6.5 Energy penalty for bending

Unfortunately, the interaction between the bending and membrane parameter
chosen in the previous section results in some instabilities in our simulation
of the full feather when the vane is under large compressive strain (see Fig-
ure 6.7). This unphysical behaviour has already been studied in the context
of a model close to ours, the St. Venant-Kirchhoff three-dimensional elasticity
model (Sautter et al. 2022).

This non-physical behaviour under large strain is usually not an issue when
working with shells thanks to the fact that buckling appears before those prob-
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lematic strains are reached. However, the high longitudinal bending modulus
chosen to prevent the buckling of the vane in the previous section also unphys-
ically prevents buckling under large compression. To enforce buckling under
large compression, we use the model of Kikuuwe et al. (2009) designed to pre-
vent compression to zero volume.

1
2

𝑏𝜺 ∶ 𝑬(𝜃) ∶ 𝜺 + 𝑏 𝜅
12

(1 − 𝐽
6

)
3
, (6.6)

where 𝐽 is the determinant of the deformation gradient, and 𝜅 is a parameter
of the model. This models adds the right term to the St. Venant-Kirchhoff
model only under compression, it removes the instabilities and allows buckling
if its parameter 𝜅 is chosen sufficiently high (see Figure 6.8).

The use of a log barrier instead of the cubic term has been considered. Such
barrier diverges to infinity as 𝜆 approaches 0: this enforces buckling for any
parameter chosen. However, the nonlinear solver becomes unable to converge
on the time-stepping problem, hence our choice for the gentler cubic term.

6.6 Qualitative Validation

The scenario we chose for the purpose of the visual qualitative validation is the
same as the one used for the parameter identification protocol aside that pulling
is not exerted from the side of the rachis but from the side of the vane (see
Figure 6.9). This scenario was performed with a real feather, our calibrated
feather model and the calibrated isotropic feather model. Our model manages
to reproduce the bending of the rachis and the wrinkles in the vane, while
the isotropic model is unable to reproduce either and deforms unrealistically.
The unrealistic behaviour of the isotropic model is due to its softness. This
behaviour could be prevented by using a higher Young’s modulus, but, as
mentioned in the previous section, this would result in an unrealistic buckling
of the vane. This shows the importance of the modelling anisotropic aspect of
the vane for applications where the appearance of the deformation is critical.
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Figure 6.8 – Total internal energy 𝛹 of a one dimensional truss of length 𝐿
and thickness ℎ. The endpoints of the truss are moved away and brought
close to each other (bottom left). The distance between the endpoints relative
to the distance at rest is denoted by 𝜆. The displayed curves (top) are the
internal total energy when no buckling occurs (bottom right top) for both the
St. Venant-Kirchhoff model ( ) 𝛹 = 1

2 𝐿ℎ𝐸(𝜆2 −1)2 and the Kikuuwe model
( ) 𝛹 = 1

2 𝐿ℎ𝐸(𝜆2 − 1)2 + 𝐿ℎ 𝜅
12 ( 1−𝜆

6 )3, as well as the bending energy for an
isometric deformation (bottom right bottom) ( ) 𝛹 = 1

2 ∫𝐿
0

𝐷𝜂2 d𝑠 where 𝐷
is the bending modulus and 𝜂 is the curvature. This last curve was computed
through ARCSim’s finite element simulation. The coefficint of Kikuuwe energy
was chosen such that 𝜅 = 3 × 103𝐸 and the bending modulus was chosen such
that 𝐷 = 1

3 ℎ𝐿2𝐸. When the membrane behaviour is modeled with the St
Venant-Kirchhoff and the bending modulus is large, buckling does not occur
under compression as it would not reduce the internal energy of the truss. In
contrast, with the Kikuuwe model, a sufficiently large coefficint 𝜅 induces a
membrane energy that is higher than the bending energy under compression,
allowing buckling to emerge.



6.6. QUALITATIVE VALIDATION 81

(a) Initial Frame (b) Final frame with our
membrane model

(c) Final frame with an
isotropic model

Figure 6.9 – Renderings of two simulations of a feather where the base of the
rachis is held in place (a) and then the tip of the vane is moved downwards in
a direction parallel to the vane (b,c). Inset, the same scenario reproduced on a
real feather. This scenario is run both with our new strongly anisotropic mem-
brane model (b) and with an isotropic elastic material (c). Our model captures
well the behaviour of the real feather (in particular the quasi-inextensibility of
the membrane in the barb direction, causing the bending of the rachis), while
the naive isotropic elasticity model is unable to.





Chapter 7

Conclusion

Through this thesis, we presented an elastic membrane model for the feather
vane which was validated against experiments. This model was numerically
implemented using linear triangular finite elements, which were aligned with
the stiff barbs’ direction to avoid locking. Moreover, we qualitatively showed
that our membrane model could be used to model full feathers for the purpose
of animation.

Link to the underlying structure

Knowing how the shape of the barbules and barbs impacts the phenomenon
emerging at the vane scale, quantified by our membrane model, would be es-
pecially useful for engineering purposes. This would allow one to understand
what is important to produce a material that would have some of the useful
mechanics properties of feathers.

For most materials, this link can be established through the derivation of
the parameters of a high scale material model in function of parameters of a
lower scale model through either homogenisation or dimensionality reduction.
A good example is the one dimensional Kirchhoff thin rod model. The link
between the bending parameters appearing in this model and the lower scale
geometry is well known thanks to its derivation through dimensionality reduc-
tion: the bending parameter 𝐷 scales with the fourth power of the rod’s radius
𝑟, i.e. 𝐷 = 𝐶𝑟4, where 𝐶 is a constant. Those types of relation are especially
important when one wants to design some structures with specific properties.

Unfortunately, our phenomenological modelling of the feather, i.e. based on
observations rather than through derivation from existing model, prevents us
to obtain an understanding on how the different aspects of the microstructure
impact the behaviour at the vane scale.

To establish the link between the structure of the feather and its behaviour,
one would first need to understand the behaviour of the structure in details
through proper experimental observations. Unfortunately, oberving this scale
of the feather is hindered by the micrometer size of the barbules which would
require precise equipment to analyse. Despite this apparent difficulty, F. Zhang
et al. (2018a) have qualitatively investigated the mechanism of barbules’ lock-
ing, laying this way the path to a barbules scale model that could then be
linked to our higher scale model.

83



84 CHAPTER 7. CONCLUSION

However, even if a barbule scale model of the feather vane were to be
designed, deriving the link between this lower scale model and the overall be-
haviour of the vane would be difficult. In fact, consider the more than half
a century old Drucker-Prager yield criterion (Drucker and Prager 1952) used
to model the behaviour of granular medium when modelled as a continuum.
While the behaviour of such granular a medium is straightforward to model
at lower scale through rigid body mechanics and friction, the parameters of
the criterion have yet to be linked to the shape and friction coefficient of the
underlying grains. Hence, it is not clear how much work would be required to
establish a connection between the barbules scale and the vane scale for the
feather vane.

Size effect
In our model, deformation is measured by the Green-Lagrange strain which is
dimensionless. This means that the behaviour of a considered system doesn’t
depend on its overall size. However, this is only true when the underlying struc-
ture is sufficiently small compared to the overall size of the system. Otherwise,
the size of the heterogeneity at the lower scale has an impact on the overall
behaviour (Bažant 2000).

We observed this phenomenon, called size effect, through our mesoscale
model which emerged due to the bending of barbs (see Appendix A.3). This is
unsurprising as this was observed in fibre reinforced material whose structure
and behaviour are quite similar to the feather vane (Bleyer 2018). The impact
of this phenomenon is probably small in the context of the deformation we
considered in this work, since we managed to predict quite well the elastic
behaviour as shown by our validation protocol. Taking the size effect into
consideration might result in a small gain in precision for those deformations.
But for other deformations, properly modelling their effect through higher order
theory of elasticity, such as, among other, strain-gradient and coupled stress
might be crucial (Ghiba et al. 2017; Lam et al. 2003). This phenomenon will
need to be studied at some point to make advances on the modelling of feathers,
especially if mechanical applications are to be considered.

Perspective
As mentioned in the introduction of this thesis, there is currently not much
work on the mechanics of feather, hence, there is still a lot to work on to
understand the details of the mechanical behaviour of the feather and design
an appropriate model for it. Naturally, every phenomenon we have left aside
during the course of the thesis would need to be investigated. This means
looking into the non-elastic behaviour of the feather mentioned in Section 5.2
which is quite important considering its impact on measured stresses in our
traction scenario. This could probably be modelled using a simple plasticity
model. However, like our elastic model, its numerical implementation might
encounter some difficulty due to the strong anisotropy. Obviously, flexion,
fracture, and healing of the feather vane will have to be tackled.

As mentioned in Section 5.4, our analysis of the elastic membrane behaviour
of the feather seriously lacks a consideration for the observed variance in the
stiffness parameter. A proper study of its impact is of importance if we want
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to properly support the claim that our model is capable to model the elastic
behaviour of any feather.

Moreover, it would be interesting to advance the knowledge of size-effect
within the feather as well as on the establishment of a link between the geom-
etry of the structure and the macroscale parameters as mentioned in the two
previous subsections.





Appendix A

Elasticity Theory

A.1 Poisson’s ratio

In this section, we show that for an orthotropic material modelled by a linear
stress-strain relation

⎡⎢
⎣

𝜎𝑣𝑣
𝜎𝑤𝑤
𝜎𝑣𝑤

⎤⎥
⎦

= ⎡⎢
⎣

𝐸11 𝐸12 0
𝐸12 𝐸22 0
0 0 𝐸33
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⎦
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⎣

𝜀𝑣𝑣
𝜀𝑤𝑤
2𝜀𝑣𝑤

⎤⎥
⎦

, (A.1)

the Poisson’s ratio 𝜈𝑤 along the w-axis is given by

𝜈𝑤 = 𝐸12
𝐸11

. (A.2)

To do so, we cannot consider a scenario different from the one considered in
our experiments (see Section 3.1). In such scenarios, an orthotropic material
doesn’t have a uniform strain due to the constraint on the displacement along
the v-axis (see Figure A.1) This means that there is an ambiguity on the strains
𝜀𝑣𝑣 and 𝜀𝑤𝑤 present in the definition of the Poisson’s ratio 𝜈𝑤 = − 𝜀𝑣𝑣

𝜀𝑤𝑤
.

Instead, we consider a scenario in which the material is stretched along
its w-axis while its deformation along the v-axis is nowhere constrained. This

Figure A.1 – Images of the initial state (left) and last state (right) of a traction
test where the sides of the tested sample are completely constrained. In such
a traction test, if the tested sample’s material is subject to a Poisson’s effect,
the resulting deformation will be non-uniform.
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Figure A.2 – Example of an experimental setup where the displacement trans-
verse to the direction of elongation is not constrained. Here, knitted patch is
attached to a bar in a way that allow loops to move along the bar. This image
was taken from Poincloux (2018).

scenario can be modelled by a boundary value problem quite similar to the one
shown in Section 4.2

−∇ ⋅ 𝑭 𝝈 (𝒓) = 𝟎, ∀𝒓 ∈ 𝛺;
𝑢𝑤(𝒓) = 𝟎, ∀𝒓 ∈ 𝛤𝑏;
𝑢𝑤(𝒓) = 𝑑 ̂𝒚, ∀𝒓 ∈ 𝛤𝑡;

𝑭 𝝈(𝒓)𝒏(𝒓) = 𝟎, ∀𝒓 ∈ 𝛤𝑠,

(A.3)

where, rather of constraining the whole displacement, only the displacement
along w-axis is constrained.

Thanks to the relaxation of the constraint on the displacement, the solution
to this problem is uniform. Meaning that there is no ambiguity when we talk
about either the strain along the v-axis 𝜀𝑣𝑣 and the one along the w-axis 𝜀𝑤𝑤.

Due to the absence of constraint on the side of the material, we have

𝑭 𝝈 ̂𝒗 = 0 (A.4)

where the normal 𝒏 as been expressed in the referential basis.
Finally, from this we derive

𝑭 𝝈 ̂𝒗 = 0
⟹ 𝝈 ̂𝒗 = 0
⟹ 𝜎𝑣𝑣 = 0
⟹ 𝐸11𝜀𝑣𝑣 + 𝐸12𝜀𝑤𝑤 = 0

⟹ 𝜈𝑤 = − 𝜀𝑣𝑣
𝜀𝑤𝑤

= 𝐸11
𝐸12

.

A.2 Elasticity tensor change of basis

As explained in Section 5.3, the diagonal shape of the elasticity tensor only
appear for an appropriate choice of basis, namely, the orthonormal basis formed
of the axis aligned with the barbs. Another choice of the basis would result
in a dense elasticity tensor. This can be seen in the following formulas which
gives the values of the components of the elasticity tensor for a basis rotated
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by an angle of 𝜃 from our suggested one.

𝐸11 = 𝐸𝑣𝑣 cos4 (𝜃) + 𝐸𝑣𝑤 sin2 (2𝜃)
2

+ 𝐸𝑤𝑤 sin4 (𝜃)

𝐸22 = 𝐸𝑣𝑣 sin4 (𝜃) + 𝐸𝑣𝑤 sin2 (2𝜃)
2

+ 𝐸𝑤𝑤 cos4 (𝜃)

𝐸33 = 𝐸𝑣𝑣 sin2 (2𝜃)
4

+ 𝐸𝑣𝑤 cos2 (2𝜃)
2

+ 𝐸𝑤𝑤 sin2 (2𝜃)
4

𝐸12 = (𝐸𝑣𝑣 − 2𝐸𝑣𝑤 + 𝐸𝑤𝑤) sin2 (𝜃) cos2 (𝜃)

𝐸13 = 𝐸𝑣𝑣 sin (𝜃) cos3 (𝜃) − 𝐸𝑣𝑤 sin (4𝜃)
4

− 𝐸𝑤𝑤 sin3 (𝜃) cos (𝜃)

𝐸23 = 𝐸𝑣𝑣 sin3 (𝜃) cos (𝜃) + 𝐸𝑣𝑤 sin (4𝜃)
4

− 𝐸𝑤𝑤 sin (𝜃) cos3 (𝜃)

(A.5)

Notice that, since the matrix is dense for another basis, the Poisson’s ratio can
be nonzero. This explains the presence of a Poisson’s effect in the transverse
scenario.

A.3 Size effect

As explained in Chapter 7, due to the absence of dimensions in the Green-
Lagrange strain, the model is agnostic to the size of the considered system.
Meaning that two systems, one where every distance is twice as big as in the
other, would behave exactly the same. However, this is usually not true for real
systems of small enough size. The heterogeneity of the underlying structure
will impact the overall behaviour when the scale of the system gets near the
scale of the heterogeneity, this phenomenon is commonly called a size effect
(Bažant 2000). This phenomenon is also present in the feather vane.

To display this size effect we will consider the longitudinal scenario, but,
instead extension, we will be looking at the behaviour of a sample under com-
pression (see Figure A.3). Unfortunately, we didn’t try this scenario in the
laboratory. However, the impact of the size effect can still be looked into
through the mesoscale model in which the heterogeneity is present (see Fig-
ure A.4). This simulation is run for different ratio of sample size over inter
barb distance 𝑁 = 𝑊

𝑇 . The results are shown in Figure A.5.
Here, it is clear that the behaviour is dependent on the size of the sample:

the smaller the size, the higher the stiffness, hence, we are clearly in the presence
of a size effect. The origin of the difference of behaviour between the different
size is due to the barb bands being in flexion rather than in compression during
the scenario. To understand this, it is easier to consider an equivalent setup
where the size of the sample is fixed, but the width of the bands is changed.
Since the bending modulus 𝐷 of a band scales with the cube of its width
𝐷 = 𝐶𝑤3

𝐵, where 𝐶 is a constant, the forces at the end of each band also has
a cubic dependence on the width of the bands. Then, when normalising by
the width of the band to obtain the measured stress, we obtain a quadratic
dependence on the size of the bands. This dependence is shown in Figure A.6.
For a large enough sample, the impact of the bending of the barbs will become
negligible which will make the size effect unnoticeable.
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Figure A.3 – Schematics of the first (left) and last (right) step of scenario
considered studying the size effect phenomenon within the vane of feathers. The
scenario is the same as the longitudinal scenario, but in compression instead
of extension.

Figure A.4 – Images of the first (left) and last (right) step of a simulation of
the scenario used to display the size effect using the mesoscale model. Here the
ratio between sample size over inter barb distance is 𝑁 = 25.
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Appendix B

ARCSim

B.1 ARCSim implementation

In this section, we will discuss how ARCSim and our modification to its source
code solves the following continuous dynamic elasticity problem

𝜌�̈�(𝒓) − ∇ ⋅ 𝑭 𝝈 (𝑭 (𝒓)) = 𝟎, ∀𝒓 ∈ 𝛺;
𝒖(𝒓) = 𝒈(𝒓), ∀𝒓 ∈ 𝛤,

(B.1)

where 𝛤 is the boundary of the reference state 𝛺, and 𝒈 ∶ 𝛤 → ℝ3 is a user
defined direchlet boundary condition.

Discretised problem
Similar to a textbook finite element method, ARCSim discretises the displace-
ment in space through linear triangular elements and in time through an im-
plicit Euler’s method. In what follows, we chose to use the same notations
for the discretised value and the continuous values, this should not introduce
any ambiguity since they are never compared to each other. With this, the
discretisation of the displacement will be represented by a vector (𝑢𝑖). Each of
its scalar component 𝑢𝑖 gives the displacement in one direction at one node of
the chosen mesh. We denote the interpolant associated to the component 𝑢𝑖
by 𝝋𝑖 ∶ 𝛺 → ℝ3, meaning that the discretised displacement field 𝒖 is given by
𝒖 = ∑𝑖 𝑢𝑖𝝋𝑖. The material position of nodes on the reference state boundary
are denoted by 𝛤. Also, we denote the time derivative of the displacement, the
velocity, by 𝒗. Quantities at time step 𝑡𝑛 will be marked by a superscript 𝑛,
meaning that the displacement at time step 𝑡𝑛 is denoted by 𝒖𝑛. Finally, the
difference between two time step, the step size, will be denoted by ℎ.

With these notations, ARCSim solves the following non-linear problem at
each time step,

1
ℎ

𝑴 (𝒗𝑛+1 − 𝒗𝑛) = 𝒇 (𝒖𝑛+1) + 𝑪𝝁;

𝒖𝑛+1 = 𝒖𝑛 + ℎ𝒗𝑛+1;
𝒖𝑛+1(𝒓) = 𝒈(𝒓), ∀𝒓 ∈ 𝛤,

(B.2)

where 𝑴 is a lumped mass matrix, 𝑪 is the transpose of the jacobian of the
boundary constraints, 𝝁 are the associated Lagrange’s multipliers, and the
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nodal elastic forces 𝒇(𝒖𝑛+1) are given by

𝒇(𝒖𝑛+1) = − 𝜕
𝜕𝒖𝑛+1 ∫

𝛺
𝜓𝑚 (𝒖𝑛+1; 𝒓) d𝒓 . (B.3)

The intuition behind these equations comes from a direct application of New-
ton’s second law of motion, the product of the mass and acceleration of a body
is equal to the sum of forces acting on this body. Here, the force is given by
the gradient of the elastic energy.

This system of equations looks different from the one resulting from a text-
book finite element method which usually use Galerkin’s method . We prove
in the following subsection that the system of equation used by ARCSim is
actually equivalent to the one obtained through Galerkin’s method.

ARCSim as a finite element method
For the proof, we will leave aside the boundary constraints and the integration
of displacement to focus solely on th part that differ between ARCSim and
usual Galerkin’s method. With these removed, the system of equation solved
by ARCSim can be written

1
ℎ

𝜌𝐴𝑖 (𝑣𝑛+1
𝑖 − 𝑣𝑛

𝑖 ) = − ∫
𝛺

𝜕𝜓𝑛+1
𝑚

𝜕𝑢𝑛+1
𝑖

d𝒓 , ∀𝑖, (B.4)

where 𝐴𝑖 is a third of the total area of elements incident to the node associated
to the displacement component 𝑢𝑖.

In comparison, the system of equation resulting from Galerkin’s method
gives

1
ℎ

𝜌𝐴𝑖(𝑣𝑛+1
𝑖 − 𝑣𝑛+1

𝑖 ) = − ∫
𝛺

𝑭 𝑛+1𝝈𝑛+1 ∶ ∇𝝋𝑖 d𝒓 , ∀𝑖. (B.5)

To prove that these two system of equations are the same, we have to show
that for any displacement component 𝑢𝑖, we have

𝜕𝜓𝑚
𝜕𝑢𝑖

= 𝑭 𝝈 ∶ ∇𝝋𝑖, (B.6)

or, equivalently, consider the differential of the considered displacement compo-
nent d𝑢𝑖 and show that the differential of the membrane energy surface density
d𝜓𝑚 is

d𝜓𝑚 = 𝑭 𝝈 ∶ ∇𝝋𝑖 d𝑢𝑖 (B.7)

,
First, since the derivative of the membrane surface energy density 𝜓𝑚 with

respect to the Green-Lagrange strain 𝜺 gives the second Piola-Kirchhoff stress
𝝈, we have,

d𝜓𝑚 = 𝜕𝜓𝑚
𝜕𝜺

∶ d𝜺

= 𝝈 ∶ d𝜺 .
(B.8)

Then, working from the definition of the Green-Lagrange strain 𝜺, we get

d𝜺 = 1
2

(𝑭 𝑇 d𝑭 + d𝑭𝑇 𝑭) . (B.9)
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Plugging this back into the differential of the membrane energy density, we
get

d𝜓𝑚 = 1
2

𝝈 ∶ (𝑭 𝑇 d𝑭 + d𝑭𝑇 𝑭) . (B.10)

Since the second Piola-Kirchhoff strain is symmetric we have for any any
matrix 𝑨

𝝈 ∶ 𝑨 = 𝝈 ∶ 𝑨𝑇. (B.11)

Hence, we can simplify the expression for the differential of the membrane
energy density,

d𝜓𝑚 = 𝝈 ∶ (𝑭 𝑇 d𝑭) . (B.12)

Now, we work out the expression of the differential of the deformation
gradient. We start by looking at the expression of the deformation gradient,

𝑭 = 𝜕𝒖
𝜕𝒓

= 𝜕
𝜕𝒓

∑
𝑗

𝑢𝑗𝝋𝑗

= ∑
𝑗

𝑢𝑗∇𝝋𝑗
𝑇.

(B.13)

Hence, the differential of the deformation gradient is given by

d𝑭 = ∇𝝋𝑖
𝑇 d𝑢𝑖 . (B.14)

With this, we finally have the differential of the membrane energy expressed in
function of the differential of the considered displacement component:

d𝜓𝑚 = 𝝈 ∶ (𝑭 𝑇∇𝝋𝑖
𝑇 d𝑢𝑖)

= Tr (𝝈∇𝝋𝑖𝑭) d𝑢𝑖

= Tr (𝑭 𝝈∇𝝋𝑖) d𝑢𝑖

= 𝑭 𝝈 ∶ ∇𝝋𝑖 d𝑢𝑖 ,

(B.15)

Where we expressed the double contraction of two matrices using the trace
and used its property to obtain the final expression. This ends our proof that
ARCSim is equivalent to Galerkin’s method using a lumped mass matrix.

Solving the non-linear system
As mentioned in Section 4.2, previous version of ARCSim only solved one
linearisation of the non-linear time-stepping problem which we found to be
insufficient for our purpose. Instead, we used the non-linear constrained opti-
misation problem solver IPOPT. To do so, we rephrase the discretised problem
as the following optimisation problem

min
𝒗𝑛+1

𝒗𝑛+1∈𝒞

(𝒗𝑛+1 − 𝒗𝑛)𝑇𝑴 (𝒗𝑛+1 − 𝒗𝑛) + ∫
𝛺

𝜓𝑚 (𝒖𝑛 + ℎ𝒗𝑛+1; 𝒓) d𝒓 , (B.16)

where 𝒞 is the set of velocity that satisfy the boundary conditions.





Appendix C

Experimental scenarios

C.1 Intermediate model and transverse scenario

In Section 5.2, we derive the following expression for the slope of the linear
regression of stress strain relationship obtained through the mesoscale model
in the context of the transverse scenario

𝛥⊥ = 𝐸𝑏 [ −15𝛷2
𝐵𝜆max−25𝛷2

𝐵+18𝛷𝐵𝜆2
max+39𝛷𝐵𝜆max+23𝛷𝐵

5(𝛷𝐵−1)3(𝜆max+1)3 − 1
(𝛷𝐵−1)3 ] . (C.1)

In the present section, we detail the derivation of this relation.
First we consider the transverse scenario where the bands of both the bar-

bules and of the barbs are deformable. Since both bands have a Poisson’s ratio
of zero, there is no Poisson’s effect and the displacement is uniform per bands.
Moreover, there is no displacement along the x-axis, hence, the problem is one
dimensional. We denote by 𝜆 the stretch of the whole patch, which a parameter
of the problem here, and respectively by 𝜆𝐵 and 𝜆𝑏 the stretch of the barb and
barbule bands, which are degrees of freedom (see Figure C.1). Those two last
stretch are linked to the overall stretch through the following relation

𝜆 = 𝛷𝐵𝜆𝐵 + (1 − 𝛷𝐵)𝜆𝑏. (C.2)

With these notations, we can write the force balance between the two bands,

1
2

𝐸𝐵𝜆𝐵 (𝜆2
𝐵 − 1) = 1

2
𝐸𝑏𝜆𝑏 (𝜆2

𝑏 − 1) . (C.3)

Using the computational algebra system SymPy (Meurer et al. 2017) equations
we can determine our two unknowns 𝜆𝐵 and 𝜆𝑏. This expression for 𝜆𝑏 can
be found below in Equation (C.4) where common subexpressions have been
collected to fit on the page. Unfortunately the resulting expression is difficult
to analytically link to a linear regression of the experimental stress-strain curve
to obtain a value for the Young’s modulus. However, a stress-strain relationship
can still be plotted numerically for a chosen set of parameters (see Figure 5.4).
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𝐻𝐵

𝐻𝑏 𝐻

𝐻′
𝐵

𝐻′
𝑏 𝐻′

Figure C.1 – Schematic of the transverse scenario modelled using the interme-
diate model. The overall stretch ratio 𝜆 and the stretch ratio of the barbs 𝜆𝐵
and of the barbules 𝜆𝑏 can be computed from the rest heights 𝐻, 𝐻𝐵, 𝐻𝑏 and
the deformed heights 𝐻′, 𝐻′

𝐵, 𝐻′
𝑏: 𝜆 = 𝐻′

𝐻 , 𝜆𝐵 = 𝐻′
𝐵

𝐻𝐵
, 𝜆𝑏 = 𝐻′

𝑏
𝜆𝑏

.

𝑥0 = 3𝐸𝐵;
𝑥1 = 𝐸𝐵𝛷2

𝐵;
𝑥2 = 3𝑥1;
𝑥3 = −6𝐸𝐵𝛷𝐵𝜆 + 𝜆𝑥0 + 𝜆𝑥2;
𝑥4 = 𝛷3

𝐵;
𝑥5 = −𝐸𝐵𝑥4 + 𝐸𝑏𝑥4;
𝑥6 = 3𝐸𝐵𝛷𝐵 − 𝐸𝐵 − 𝑥2 − 𝑥5;

𝑥7 = 1
𝑥6

;

𝑥8 = 𝑥7 (𝐸𝐵𝜆3 − 𝜆𝑥1) ;

𝑥9 = 𝑥3
3

𝑥3
6

;

𝑥10 = 1
𝑥2

6
;

𝑥11 = 𝜆2;
𝑥12 = 𝛷𝐵𝑥0𝑥11 − 𝑥0𝑥11 + 𝑥1 + 𝑥5;
𝑥13 = 𝑥10𝑥12𝑥3;
𝑥14 = 𝑥10𝑥2

3 − 3𝑥12𝑥7;

𝑥15 =
3
√√√
⎷

−9𝑥13
2

+ 27𝑥8
2

+ 𝑥9 +
√−4𝑥3

14 + (−9𝑥13 + 27𝑥8 + 2𝑥9)2

2
;

𝜆𝑏 = − 𝑥14
3𝑥15

− 𝑥15
3

− 𝑥3𝑥7
3

.

(C.4)

This plotted stress-strain relation is compared with the stress-strain rela-
tionship obtained when the band of the barb is considered rigid, i.e. 𝜆𝐵 = 1.
The expression of this stress strain relationship is given in Equation (5.4) in
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Section 5.2. To obtain this equation, we start from the expression of the force
𝑓 acting on the top clamp

𝑓 = 𝑊1
2

𝐸𝑏𝜆𝑏 (𝜆2
𝑏 − 1) (C.5)

From this force, we derive the stress �̃�𝑟
𝑦𝑦 of the overall material

�̃�𝑟
𝑦𝑦 = 1

𝑊𝜆
𝑓

=
𝐸𝑏𝜆𝑏 (𝜆2

𝑏 − 1)
2𝜆

(C.6)

We can then replace 𝜆 using Equation (C.2) to obtain Equation (5.4).
In Section 5.2, we showed numerically that the expression of the stress is

pretty much the same in both the rigid and non-rigid case. Hence, we will
derive the analytical expression of the slope of the linear regression 𝛥⊥ from
the simpler expression derived through the rigid assumption. To find this
expression, we simply express the linear regression problem as a mean square
minimisation:

min
𝛥⊥

∫
𝜀max

0
(�̃�𝑟

𝑦𝑦( ̃𝜀𝑦𝑦) − 𝛥⊥ ̃𝜀𝑦𝑦)2 d ̃𝜀𝑦𝑦 . (C.7)

And we solve it using, once again, SymPy which results in the expression given
in Equation (C.1).

C.2 Equipment

In this section, we provide a detailed description of the used devices and give
the precision for the measuring captors in our experimental setup.

Quasi-static traction experiments are carried out by means of a motorized
translational stage Zaber X-LRT0500BL-E08C, which allows us to control the
pulling position to an accuracy of ±1𝜇m. Simultaneously, we measure the
traction force with a load cell. Depending on the orientation of the barbs, forces
may vary widely. For hundreds of milli-Newtons, we use a Futek LBS-200 with
a maximum load of 5 N and an accuracy of ±25 mN. For unit Newtons, we
measure with a force gauge ME-systems KD-80s with a maximum load of 100
N and an accuracy of ±0.5 N. The signals from the load sensors are acquired by
a Ni DAQ at 16 bits and sampled at high frequencies to produce statistically
significant measurements. Finally, each run of a traction experiment is imaged
at the patch scale with a camera mounted on a microscope Leica z16.





Appendix D

French overall summary

D.1 Introduction

Les pennes (ou plumes de contour) sont des plumes qui parent les ailes et queues
des oiseaux. En raison de leur structure multi-échelle hiérarchique, elles ont des
propriétés hors du commun. Cette structure est constituée d’une tige centrale
nommée rachis, de cette tige sortent des centaines d’autres appelées barbes,
et sur chacune d’elles se trouve une centaine de branches nommées barbules.
Ces barbules ont une structure qui diffère en fonction de leur orientation par
rapport à la barbe. Celles dirigées vers la pointe extérieure du rachis ont des
crochets à leur extrémité, celles dirigées vers la base du rachis ont la forme d’une
gouttière dans laquelle les crochets peuvent venir se loger (voir Figure D.1)
Cette particularité permet aux barbes de s’accrocher entre elles, formant ainsi
une surface le long du rachis dénommée étendard. Cette structure permet à
l’étendard de dissiper les chocs en se fracturant de façon réversible. L’oiseau
peut ensuite reformer l’étendard abîmé en accrochant les barbules entre elles à
travers le passage de son bec dans ses plumes (F. Zhang et al. 2018a).

Barb

Rachis

Vane
Barbule

Hook

Figure D.1 – Schéma de la structure hiérarchique d’une plume. De chaque
côté de la tige centrale, nommée rachis, se trouvent les barbes. Comme le ra-
chis, les barbes sont bordées d’autres tiges, barbules. Dans le cas spécifique des
pennes, les barbules pointant vers le haut de la plume ont des crochets qui leur
permettent de s’accrocher à d’autres barbules. Les barbes attachées entre elles
par leurs barbules forment l’étendard.

En plus d’avoir ce comportement inélastique particulier, l’étendard se com-
porte comme une coque fortement anisotrope, similaire aux coques renforcées
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par des tiges. En raison de la grande rigidité des barbes comparée à celle des
barbules, l’étendard est plus rigide de plusieurs ordres de grandeurs dans la
direction des barbes que dans celle orthogonale aux barbes.

Nous considérons que ces propriétés hors du commun de la plume en font
un objet d’étude intéressant pour augmenter les connaissances concernant l’or-
nithologie, permettre la création future de matériaux par biomimétisme, ainsi
que produire des outils aidant à la création d’images animés par ordinateur
de plumes. À notre connaissance, aucune modélisation de ce comportement de
l’étendard n’existe à ce jour. Les études de la mécanique des pennes se sont
concentrées sur des aspects différents. L’interaction entre deux barbes due à
l’imbrication des barbules a été étudiée à plusieurs reprises (Kovalev et al.
2014 ; Chen et al. 2016 ; F. Zhang et al. 2018a). Certaines études ont aussi ana-
lysé le comportement mécanique de la penne complète, rachis compris (Bhar
et al. 2019 ; Zhao et al. 2020b). Ainsi, nous proposons un modèle de membrane
caractérisant la forte anisotropie de la plume.

La modélisation numérique de matériaux fortement anisotropes voire qua-
siment inextensibles dans une direction ou deux directions est confrontée à
un phénomène de verrouillage lorsque des éléments finis standards sont uti-
lisés (Wriggers et al. 2018 ; Yu et al. 2006). C’est-à-dire que la vitesse de
convergence de ces méthodes est considérablement réduite, ou que leur conver-
gence vers la solution du problème continue est impossible (Brezzi et Fortin
1991). Plusieurs travaux ont proposé des solutions pour limiter ces effets. Par
exemple, dans le cadre de matériaux ayant deux directions quasi inextensibles,
le verrouillage est soit résolu par un alignement des éléments avec ces direc-
tions, soit par une intégration réduite de la partie raide de l’énergie élastique,
ou encore par l’introduction d’éléments mixtes (Yu et al. 2006 ; ten Thije et
Akkerman 2008). Pour les cas où l’extension dans une direction seulement
est raide, par exemple pour les matériaux renforcés par des fibres, les solutions
proposées se reposent sur l’utilisation d’éléments finis mixtes (Wriggers et al.
2018 ; Schröder et al. 2016).

Notre modèle de plume présentant une grande raideur dans une direction
(celle des barbes), nous avons choisi de le résoudre numériquement à travers
des éléments finis linéaires alignés selon la direction de plus grande raideur.

Pour résumer, les contributions qui seront présentées sont :

• Un modèle de membrane pour l’étendard des pennes ;

• Une comparaison de ce modèle avec des tests de traction sur des échan-
tillons réels de plumes de cygne ;

• Une analyse du phénomène de verrouillage qui émerge de la forte ani-
sotropie présente dans notre modèle. Cette étude confirme les analyses
précédentes de l’état de l’art.

D.2 Méthode expérimentale

Afin de modéliser les étendards de pennes et de valider le modèle résultant,
nous avons analysé plusieurs échantillons de plumes de cygne à travers des
tests de traction. Comme la plume est clairement anisotrope due à la présence
des barbes, les échantillons sont découpés à différents angles 𝜃 entre barbes et
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direction d’extension. Nous avons choisi les directions transverse et longitudi-
nale pour leur simplicité d’analyse et une direction en biais à 45° dont le but est
d’activer les déformations de cisaillement (voir Figure D.2). Nous avons testé
10 échantillons différents pour la direction transverse, 9 échantillons pour la
direction longitudinale et 8 échantillons pour la direction en biais.

Figure D.2 – Haut : Plume de cygne et exemples de découpes tracées en
pointillé pour chaque orientation d’échantillon testé. Bas gauche : Photo du
montage expérimental. Bas droite : Gros plan sur le test de traction.

De ces tests de traction, nous tirons des mesures de contraintes de Green-
Lagrange 𝜺 et du second tenseur de déformation de Piola-Kirchhoff 𝝈 (voir
Figure D.3). On peut noter que la raideur du test longitudinal est quatre
ordres de grandeur plus grande que celle des autres tests, montrant bien le
comportement fortement anisotrope de l’étendard. De plus, dans le test trans-
verse le comportement semble linéaire malgré les grandes déformations, cela
nous amène à choisir une relation linéaire entre déformation et contrainte pour
notre modèle. Les résultats du scénario en biais présentent de grandes diffé-
rences : cette disparité est discutée dans Annexe D.5.

D.3 Modèle

Afin de décrire notre modèle de membrane pour l’étendard, nous fixons le ré-
férentiel de l’espace de référence de sorte que l’axe 𝑥 soit colinéaire aux barbes
et que la base soit orthonormée. Dans la section précédente, nous avons iden-
tifié une relation linéaire entre contrainte et déformation dans les résultats
expérimentaux. Ainsi, en prenant les mêmes notations que dans la section pré-
cédente, cette relation linéaire entre contrainte et déformation en notation de
Voigt s’écrit

⎡⎢
⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥
⎦

= ⎡⎢
⎣

𝐸11 𝐸12 𝐸13
𝐸12 𝐸22 𝐸23
𝐸13 𝐸23 𝐸33

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑬

⎡⎢
⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

⎤⎥
⎦

.

Ici, le tenseur d’élasticité 𝑬 est symétrique pour des raisons de conservation
d’énergie. Les paramètres de ce tenseur peuvent être réduits en utilisant des
arguments géométriques. L’étendard a un axe de symétrie local en tous points
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Figure D.3 – Résultats expérimentaux pour chaque orientation. Les dimen-
sions associées aux échantillons testé sont listées dans Table D.1. Pour la direc-
tion transverse, les pentes des courbes varient entre 37 kPa et 61 kPa, et entre
263 MPa et 457 MPa pour la direction longitudinale.



D.3. MODÈLE 105

𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
15 14 120
8 14 100
12 11 120
10 11 110
10 13 95
12 11 140
11 13 120
10 15 100
17 14 112
10 13 125

(a) Transverse

𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
9 18 73
7 15 133
9 23 60
8 13 120
9 16 129
4 12 116
10 11 80
7 19 125
10 10 117

(b) Longitudinal

𝑊 [mm] 𝐻 [mm] 𝑏 [µm]
6 15 120
3 14 110
9 16 132
12 16 155
8 14 143
16 16 130
14 19 114
13 18 103

(c) Biai

Table D.1 – Largeur 𝑊, hauteur 𝐻 et épaisseur 𝑏 des échantillons testées pour
chaque orientations.

aligné sur les barbes (voir Figure D.4), ce qui induit un modèle orthotrope,
c’est-à-dire 𝐸13 = 𝐸23 = 0. De plus, nous avons pu voir que les échantillons ne
subissent aucun changement de largeur dans les tests transversaux et longitu-
dinaux, ainsi il n’y a aucun phénomène de Poisson et on a 𝐸12 = 0. Avec cela,
le modèle est réduit à la relation

⎡⎢
⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤⎥
⎦

= ⎡⎢
⎣

𝐸𝑥𝑥 0 0
0 𝐸𝑦𝑦 0
0 0 𝐸𝑥𝑦

⎤⎥
⎦

⎡⎢
⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

⎤⎥
⎦

,

où les paramètres du tenseur d’élasticité ont été renommés pour mettre en
valeur les quantités qu’ils relient. Aussi, nous dénoterons parfois 𝐸𝑥𝑥 par module
longitudinal, 𝐸𝑦𝑦 par module transverse et 𝐸𝑥𝑦 par module de cisaillement.
Grâce aux résultats expérimentaux on peut déduire que le rapport entre le
module longitudinal et le module transverse 𝐸𝑥𝑥

𝐸𝑦𝑦
est de l’ordre de 104, ce qui

indique bien l’aspect fortement anisotrope des pennes. Dans la suite du résumé,
nous appelons le rapport 𝐸𝑥𝑥

𝐸𝑦𝑦
rapport de raideur.
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̂𝒗
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Figure D.4 – En tous points,
l’étendard admet un axe de symé-
trie colinéaire aux barbes ( ).

Figure D.5 – Maillage utilisé pour
une simulation du scénario ex-
périmental en biais. L’alignement
des éléments sur l’orientation des
barbes réduit considérablement le
phénomène de verrouillage numé-
rique.

D.4 Verrouillage

Nous implémentons notre modèle numériquement grâce au simulateur libre
de plaques minces élastiques qui nous est le plus familier ARCSim (Pfaff et
al. 2014) que nous modifions pour utiliser IPOPT comme solveur non-linéaire
(Wächter et Biegler 2006). Ce simulateur ne supporte actuellement que des
éléments triangulaires linéaires, l’impact du type d’éléments utilisé est gardé
pour des travaux futurs. La modélisation de notre modèle dans le cas fortement
anisotrope présente un désagrément. Cette ennui est la présence d’un phéno-
mène de verrouillage numérique, c’est-à-dire que plus le rapport de raideur est
élevé, plus la vitesse de convergence du modèle d’élément fini est faible, voire
la convergence devient impossible.

Pour atténuer le phénomène de verrouillage, nous nous inspirons des travaux
de Yu et al. (2006) et ten Thije et Akkerman (2008), dans lesquels ils et
elles considèrent un matériau ayant deux directions de très grande raideur
comparée au module de cisaillement associé à ces directions. Une simulation
naïve d’un tel matériau présente un phénomène de verrouillage. Une de leurs
solutions pour pallier cela est d’aligner les éléments selon les directions de forte
raideur. Nous la reproduisons dans notre contexte en faisant en sorte que chaque
élément triangulaire ait au moins une arête alignée selon la direction des barbes
(voir Figure D.5). Comme attendu, cet alignement limite considérablement le
phénomène de verrouillage numérique (voir Figure D.6).

D.5 Validation

Notre modèle a trois paramètres indépendants 𝐸𝑥𝑥, 𝐸𝑦𝑦 et 𝐸𝑥𝑦. Les deux pre-
miers paramètres peuvent être mesurés à travers les tests de traction trans-
verses et longitudinaux. Le troisième 𝐸𝑥𝑦 nécessite un scénario en biais. Ainsi,
la calibration seule du modèle demanderait d’utiliser nos trois scénarios de la-
boratoire, ce qui nous contraindrait à produire une nouvelle expérience afin de
valider le modèle.

Pour éviter l’exécution laborieuse de nouvelles expériences en laboratoires,
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Figure D.6 – Contrainte 𝜎 pour une déformation de 5 % en fonction du nombre
d’éléments dans une simulation du scénario en biais. Dans ces simulations le
rapport de raideur est fixé) 𝐸𝑥𝑥

𝐸𝑦𝑦
= 104. Les courbes de convergence sont don-

nées pour une simulation utilisant un maillage arbitraire ( ) et pour une
simulation utilisant un maillage aligné ( ). La valeur de référence affichée
( ) est celle obtenue avec la simulation sans contrainte utilisant le maillage
aligné constituée de 128 × 103 éléments. La simulation utilisant un maillage
non-aligné a une vitesse de convergence plus faible que la simulation utilisant
un maillage aligné. Cela met en valeur le phénomène de verrouillage dans le
cadre de cette simulation et montre que l’utilisation d’un maillage aligné pallie
ce phénomène.

nous choisissons de ne pas valider notre modèle directement sur les expériences.
Au lieu de cela, nous introduisons un modèle de membrane plus basse échelle
pouvant être validé avec seulement nos trois scénarios. Dans le reste du docu-
ment, nous appellerons ce modèle intermédiaire modèle méso et notre modèle
d’étendard présenté plus tôt modèle macro. Ainsi après avoir validé le modèle
méso, nous l’utilisons pour produire en simulation les scénarios nous manquant
pour la validation du modèle macro.

Le modèle méso pour l’étendard se trouve à l’échelle des barbes. C’est un
modèle de membrane hétérogène fait de bandes raides représentant les barbes
connectées ensemble par des bandes souples représentant les barbules. Les ma-
tériaux de ces bandes sont décrits par le modèle de Saint Venant-Kirchhoff
isotrope dont le coefficient de Poisson est nul. Ainsi, le modèle a seulement
deux paramètres physiques, le module de Young des barbes 𝐸𝐵 et le module
de Young des barbules 𝐸𝑏 (voir Figure D.7).

Ce modèle n’ayant que deux paramètres physiques, seulement deux des
scénarios sont nécessaires pour les calibrer. Les autres paramètres étant géo-
métriques, ils peuvent être mesurés sur les images des échantillons prises au
début de chaque expérience. Les mesures des modules 𝐸𝐵 et 𝐸𝑏 sont données
dans le tableau D.2.

Les prédictions de la simulation sont comparées avec le scénario en biais.



108 APPENDIX D. FRENCH OVERALL SUMMARY

𝐸𝑏 [Pa] 𝐸𝐵 [Pa] 𝐸𝑥𝑥 [Pa] 𝐸𝑦𝑦 [Pa] 𝐸𝑥𝑦 [Pa]

3.92 × 104 2.57 × 109 3.60 × 108 4.80 × 104 2.27 × 104

Table D.2 – Mesure des paramètres physiques du modèle méso et macro.

Dans ce scénario le comportement dépend fortement de l’aspect de forme de
l’échantillon utilisé. Pour rendre compte de cette dépendance, des échantillons
ayant des rapport de forme variant de 1.0 à 3.82 ont été utilisés (voir Fi-
gure D.8). Les calculs en simulation prédisent une contrainte légèrement plus
élevée que la mesure expérimentale. Cela peut être expliqué en partie par des
événements non-élastiques de réarrangement des barbules ayant lieu dans ces
expériences (voir Figure D.9). Notre modèle étant complètement élastique, il
ne peut rendre compte de ces événements dissipateurs d’énergie. Dans certains
scénarios en biais exécutés en laboratoire, aucun réarrangement des barbules
n’a pu être identifié visuellement : pour ces scénarios la simulation prédit un
comportement bien plus proche de l’expérience.

𝑇

𝑤𝐵

Figure D.7 – Schéma du modèle intermédiaire méso utilisé pour la validation
de notre modèle d’étendard. Ce modèle de membrane est formé d’une alter-
nance de bandes élastiques raides et isotropes représentant les barbes ( ) et de
bandes élastiques souples et isotropes représentant les barbules ( ) accrochant
les barbes entre eux. Le modèle a quatre paramètres : deux paramètres phy-
siques, le module d’Young des bandes représentant les barbes 𝐸𝐵, et celui des
bandes représentant les barbules 𝐸𝑏 ; deux paramètres géométriques, la largeur
des barbes 𝑤𝐵 et la distance entre deux barbes centre à centre 𝑇.

Le modèle méso étant validé, nous considérons qu’il peut être utilisé pour
valider le modèle macro. Nous reproduisons en simulation avec le modèle méso
les tests de traction sur un échantillon de rapport de forme 1.38 avec différentes
orientations de barbes allant de 0° à 0.53°. Les paramètres 𝐸𝑦𝑦, 𝐸𝑥𝑥 et 𝐸𝑥𝑦 du
modèle macro sont calibrés sur les orientations 0° et 45° (voir Table D.2). Les
résultats de la validation montrent un bon accord entre le modèle méso et
macro (voir Figure D.10).

D.6 Conclusion

Dans ce résumé étendu, nous avons décrit notre montage expérimental qui
nous a permis de suggérer un modèle que nous pensons être approprié pour
l’étendard des pennes. Nous implémentons ce modèle grâce à des éléments finis
linéaires. Pour pallier le phénomène de verrouillage numérique et de mauvais
conditionnement dus à la forte anisotropie de notre modèle, nous proposons
d’aligner les éléments le long des barbes et de remplacer la partie raide de
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Figure D.8 – Comparaison de la simulation et de l’expérience sur le scénario
en biais. Dans certaines expériences les barbules se réarrangent, dissipant ainsi
l’énergie (gauche) (voir Figure D.9). Notre modèle d’étendard étant strictement
élastique, il prédit une contrainte légèrement plus haute que celle observée dans
l’expérience. D’autres expériences ne présentent aucun réarrangement (droite),
en conséquence la simulation fournit de meilleures prédictions.

(a) Comportement non élastique (b) Comportement élastique

Figure D.9 – Photographies de deux tests de traction. L’expérience montrée
dans la sous-figure D.9a présente un comportement non-élastique ; à l’état au
repos (gauche) les barbules du bord sont alignées, après extension (droite) ces
barbules se réarrangent. Ce réarrangement des barbules permet aux barbes de
glisser sans induire de cisaillement important et ainsi de réduire la contrainte
sur le matériau. La sous-figure D.9b montre une expérience où ce comportement
non élastique n’est pas présent.
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Figure D.10 – Comparaison entre les pentes des courbes de contraintes-
déformations du modèle méso et du modèle macro dans des scénarios de trac-
tion sur un échantillon de rapport de forme 1.38 avec des orientations de barbes
à différents angles. Les pentes sont adimensionnées par le module de Young des
barbules dans le modèle méso 𝐸𝑏.

l’énergie élastique par une contrainte d’inextensibilité. De plus, nous avons va-
lidé notre modèle indirectement, en utilisant un modèle intermédiaire plus bas
niveau et validé expérimentalement, et ce pour réduire le nombre de scénarios
différents à réaliser en laboratoire.



Annexe E

French chapter summary

E.1 Introduction

Les plumes d’oiseaux sont formées d’une structure hiérarchique de tige par-
tant d’un rachis central, duquel partent des barbes, qui elles-mêmes portent
des barbules les accrochant entre elles. Cette structure donne des propriétés
mécaniques particulières à la plume, en particulier une forte anisotropie dirigée
par l’orientation des barbes. À notre connaissance, très peu de travaux ont
étudié le comportement élastique de la plume sous l’ange de cette forte aniso-
tropie. Dans le cadre de cette thèse, nous proposons une modèle homogène à
l’échelle de la plume pour l’élasticité non-flexurale produite à partir de résul-
tats d’expériences faites sur des échantillons de plumes. Une implémentation
numérique ainsi qu’un protocole de mesure est suggéré pour le modèle. Cette
implémentation et ce protocole sont ensuite utilisés pour valider le modèle. De
plus, nous suggérons une modélisation préliminaire d’une plume complète à des
fins d’applications dans le domaine de l’informatique graphique.

E.2 Méthode de modélisation

Plusieurs aspects sont à prendre en compte pour la modélisation de notre mo-
dèle. Premièrement, il nous a fallu choisir l’échelle de modélisation. Nous mo-
délisons la plume à l’échelle de la plume, c’est-à-dire en tant que surface, car
cela nous permet d’utiliser toute la théorie d’élasticité déjà existante. De plus,
cela nous évite les difficultés apportées par la modélisation à une échelle infé-
rieure, i.e. un nombre de degrés de liberté prohibitif et un besoin de matériel
particulièrement précis pour le protocole de calibration. Deuxièmement, nous
déterminons le modèle depuis des résultats expérimentaux en nous basant sur
notre intuition. Nous avons préféré cela aux techniques d’homogénéisation et
de réduction de dimension, car elle nécessite un modèle existant et une connais-
sance précise de la géométrie que nous n’avons pas. Nous aurions pu aussi consi-
dérer les méthodes basées sur les données, mais nous voulions nous éviter la
production importante de données que la plupart de ces méthodes nécessitent.
Finalement, la modélisation du comportement élastique de surfaces est sou-
vent séparée en deux aspects, l’aspect flexural et l’aspect membranaire. Dans
la thèse, nous nous concentrons exclusivement sur le comportement membra-
naire, laissant la modélisation de la flexion pour des travaux futurs.

111
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E.3 Expériences

Notre montage expérimental consiste en des tests de tractions sur des échan-
tillons rectangulaires de plumes. Ces tests sont exécutés pour différentes orien-
tations des barbes pour proprement révéler le caractère anisotrope de la plume.
De ces expériences est mise en exergue une relation linéaire entre le tenseur de
déformation de Green-Lagrange et le second tenseur de contrainte de Piola-
Kirchhoff. De plus, les vidéos de ces expériences montrent une absence d’effet
de Poisson pour les orientations de traction longitudinale et transverse aux
barbes.

E.4 Modélisation

Considérant les résultats des expériences, le comportement membranaire de la
plume est modélisé par une relation linéaire entre les deux tenseurs susmen-
tionnés. Par des considérations géométriques, nous montrons que ce modèle n’a
que trois paramètres, le module longitudinal 𝐸𝑥𝑥 quantifiant la raideur longitu-
dinale aux barbes, le module transverse 𝐸𝑦𝑦 et le module de cisaillement 𝐸𝑥𝑦.
Pour implémenter numériquement ce modèle, nous utilisons un modèle d’élé-
ments finis linéaires et triangulaires. Dû à la forte anisotropie présente dans la
plume, un problème de verrouillage est présent dans notre première modélisa-
tion numérique qui considère des maillages arbitraires à cause de discontinuités
dans la dérivée du champ de déplacement. Nous réduisons ce verrouillage nu-
mérique en alignant les éléments sur cette discontinuité, c’est-à-dire avec les
barbes.

E.5 Calibration and validation

Pour valider notre modèle, il nous faut d’abord produire un protocole de ca-
libration de ses paramètres. Malheureusement, les expériences considérées ne
sont pas suffisantes pour mesurer directement les trois paramètres de notre
modèle ainsi que de le valider. Au lieu de produire plus d’expériences, nous
considérons un modèle intermédiaire qui grâce à une représentation plus basse
échelle de la plume est capable d’être calibré et validé à partir des observations
expérimentales que nous avons à notre disposition. Ainsi, ce modèle intermé-
diaire validé, nous l’utilisons pour produire numériquement plus d’observations
expérimentales qui nous permettent de calibrer et valider notre modèle.

E.6 Plume complète

Pour mettre en valeur l’utilité de notre modèle dans le cadre de l’informatique
graphique, nous suggérons une modélisation préliminaire d’une plume complète
utilisant notre modèle précédemment validé. Ici, la plume est modélisée par une
surface comprenant le rachis et l’étendard. Comme notre modèle d’étendard ne
considère que le comportement membranaire, nous introduisons un modèle de
flexion anisotrope à deux paramètres. Aussi, pour aligner les éléments de notre
modèle sur l’orientation des barbes, nous devons introduire un algorithme de
maillage. Nous procédons ensuite à une validation qualitative de ce modèle à
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travers une comparaison visuelle avec une plume réelle et un modèle similaire
utilisant un modèle de membrane isotrope pour l’étendard.
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