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Abstract
The size of image restoration problems is constantly increasing. This growth poses a
major scaling problem for optimization algorithms, which struggle to provide satisfactory
solutions in a reasonable amount of time.

Among the methods proposed to overcome this challenge, multilevel methods seem to
be an ideal candidate. By systematically reducing the size of the problem, the computa-
tional cost of solving it can be drastically decreased. This type of approach is standard in
the numerical solution of partial differential equations (PDEs), with theoretical guarantees
and practical demonstrations to explain their success.

However, current multilevel optimization methods do not have the same guarantees
nor the same performance. In this thesis, we propose to bridge a part of this gap by
introducing a new multilevel algorithm, IML FISTA, which has the optimal theoretical
convergence guarantees for convex non-smooth optimization problems, i.e. convergence
to a minimiser and convergence rate of the objective function to a minimum value. IML
FISTA is also able to handle state-of-the-art regularizations in image restoration.

By comparing IML FISTA with standard algorithms on many image restoration prob-
lems: deblurring, denoising, reconstruction of missing pixels for colour and hyperspectral
images, and reconstruction of radio-interferometric images, we show that IML FISTA is
capable of significantly speeding up the resolution of these problems. As IML FISTA’s
framework is sufficiently general, it can be adapted to many other image restoration
problems.

We conclude this thesis by proposing a new point of view on multilevel algorithms,
by demonstrating their equivalence, in certain cases, with coordinate descent algorithms,
which are much more widely studied in the non-smooth optimization literature. This
new theoretical framework allows us to analyse multilevel algorithms more rigorously,
and in particular to extend their convergence guarantees to non-smooth and non-convex
problems. This framework is less general than that of IML FISTA, but it paves the way
for a more theoretically robust design of multilevel algorithms.
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Résumé
La taille des problèmes de restauration d’images ne fait qu’augmenter. Cette croissance
pose un problème majeur de passage à l’échelle pour les algorithmes d’optimisation, qui
peinent à fournir des solutions satisfaisantes en un temps raisonnable.

Parmi les méthodes proposées pour surmonter ce défi, les méthodes multi-niveaux
semblent être un candidat idéal. En réduisant de manière systématique la dimension du
problème, le coût computationnel nécessaire à sa résolution peut diminuer drastiquement.
Ce type d’approche est classique pour la résolution numérique des équations aux dérivées
partielles (EDP), avec des garanties théoriques et des démonstrations pratiques pour
expliquer leur succès.

Cependant, les méthodes actuelles d’optimisation multi-niveaux n’ont pas les mêmes
garanties, ni les mêmes performances. Dans cette thèse, nous proposons de combler une
partie de cet écart en introduisant un nouvel algorithme multi-niveau, IML FISTA, possé-
dant les garanties de convergence théoriques optimales pour les problèmes d’optimisation
convexes non-lisses, i.e., convergence vers un minimiseur et taux de convergence de la
fonction objectif vers une valeur minimale. IML FISTA est aussi en mesure de traiter les
régularisations de l’état-de-l’art en restauration d’images.

En comparant IML FISTA aux algorithmes standards sur un grand nombre de prob-
lèmes de restauration d’images: défloutage, débruitage, reconstruction de pixels man-
quants pour des images en couleur et des images hyperspectrales, ainsi qu’en recon-
struction d’images radio-interférométriques, nous montrons qu’IML FISTA est capable
d’accélérer la résolution de ces problèmes de manière significative. Le cadre d’IML FISTA
est suffisamment général pour s’adapter à de nombreux autres problèmes de restauration
d’images.

Nous concluons cette thèse en proposant un nouveau point de vue sur les algo-
rithmes multi-niveaux, en démontrant leur équivalence, dans certains cas, avec les al-
gorithmes de descente par coordonnées qui sont nettement plus étudiés dans la littérature
de l’optimisation non-lisse. Ce nouveau cadre théorique nous permet d’analyser les algo-
rithmes multi-niveaux de manière plus rigoureuse, et notamment d’étendre leurs garanties
de convergence à des problèmes non-lisses et non-convexes. Ce cadre est moins général
que celui d’IML FISTA, mais il ouvre la voie à une conception plus solide sur le plan
théorique des algorithmes multi-niveaux.
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Notations

N Set of natural numbers
R Set of real numbers
H,G Hilbert space
Γ0(H) Set of proper, lower semi-continuous, convex functions
P Probability
xh Variable living in a fine space
xH Variable living in a coarse space
xi i-th component or i-th pixel of the variable x
∇f Gradient of the function f (uniquely valued)
∇`f Gradient of the function f with respect to the variable indexed by `
∇xf Gradient of the function f with respect to the variable x
∇2f Hessian of the function f
∂f Subdifferential of the function f (set-valued)
proxf Proximal operator of the function f
ιC Indicator function of the set C
crit f Set of critical points of the function f
x̂ Minimizer of a functional
f̂ Minimum value of a functional f
IHh Restriction operator (from fine to coarse level)
IhH Prolongation operator (from coarse to fine level)
⊗ Kronecker product
σn Noise standard deviation
σPSF Blur standard deviation
SNR Signal-to-noise ratio
ΠV Projection operator onto the space V
TV Total Variation
NLTV Non-Local Total Variation
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Chapter 1
Introduction

For nothing ought to be posited
without a reason given, unless it is
self-evident [...] or known by
experience.

Guillaume d’Ockham

1.1 Context of this thesis: inverse problems and im-
age reconstruction

The field of “inverse problems” refers to the reconstruction of missing information from
partial or degraded observations, by opposition to “direct problems” where one infers the
observations from the knowledge of the parameters of the direct model. In the context
of image restoration1, the missing information is the original image, but can also include
parameters describing the so-called degradation model, such as the noise level.

A famous example of inverse problems, and probably one of the oldest, is Le Verrier’s
discovery of the planet Neptune in 1846, by observing that the movement of Uranus did
not match the prediction obtained when only taking into account the gravitational pull
of Jupiter and Saturn. Le Verrier inferred the existence of another planet, Neptune,
whose gravitational pull would explain the discrepancy. He presented his results to the
“Académie des Sciences” on August 31, 1846, and Neptune was observed for the first time
on September 23, 1846, by Johann Galle based on Le Verrier’s predictions.

The study of inverse problems in a formal setting appeared at the beginning of the
20th century, and is first discussed as such by Tikhonov in 1943 [1]. Application of this
setting in an imaging context followed in the 70s [2] and have ever since been a central
research question.

Image reconstruction problems are a particular instance of inverse problems. As soon
as an image is recorded by an instrument, be it a camera or a telescope, the resulting
picture will be blurry and noisy [3]. This is an inevitable consequence that we have to deal

1We will alternate between image restoration and image reconstruction to qualify the same type of
problems.
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Chapter 1. Introduction

with. However, in many cases we understand pretty well how instruments capture and,
through this process, degrade images. Naturally it raises the question of how to remove
this degradation, i.e., to invert this process.

To some extent, the degradation induces a loss of information, and thus no reconstruc-
tion can be perfect. This has spurred the development of methods to best mitigate the
effects of this loss, first by crafting representations of what images should look like in gen-
eral [4, 5], and then by constructing algorithms able to take advantage of the knowledge
of the degradation, and of these representations [2,6], to restore the image. Developments
in both fields are still going on, as we do not understand completely what constitutes
natural images (the term natural is commonly used to refer to what an image should look
like) and what are the best algorithms in new contexts. This thesis is concerned by the
latter direction: what are effective strategies to design efficient algorithms suited for the
restoration and/or reconstruction of high-dimensional images.

1.2 Challenges in optimization: convergence and scal-
ability

The methods to solve inverse problems are often based on optimization algorithms whose
goal is to minimize (or maximize but these two are equivalent) an objective function.
Such function is constructed from the inverse problem at hand. The common construction
is to sum two different terms. The first one will control how close one image is to the
observation, given the known degradation: we take an image, degrade it, and then compare
it to the observed image. This term is referred to as the data fidelity term. It will ensure
that the reconstruction matches the observation. The second term will control how close
the image is to what we think the original image should look like (i.e., how natural this
image is). This term is referred to as the regularization term. It will include a priori
information on the reconstruction.

The solution of the optimization problem, defined by the sum of these two terms,
should therefore be a trade-off between fidelity to the data, and consistency with the
prior information. Reaching a trade-off, which leads to a satisfying reconstruction, is our
goal when solving this problem. Therefore, choosing an optimization algorithm able to
find this solution is crucial.

Hence, one of the most important questions when designing an optimization algorithm
is if it can guarantee that the produced solution is the optimal solution of the problem,
i.e., will it reach a minimizer of the problem.

Another important question is the computational cost of the algorithm. The dimension
of the optimization problems considered nowadays is often very high, from millions (in
typical color2 imaging problems) to billions of variables (in real-world hyperspectral3
imaging problems). This creates a huge computational bottleneck, on top of the storage
question: each iteration of an optimization algorithm is costly, and thus we want to reduce
the number of iterations to reach an optimal solution as much as possible, i.e., increase
the convergence speed of the algorithm.

2Images with red, green and blue pixels.
3Images with hundreds to thousands of spectral bands.
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1.3. Multilevel approaches: an intuition

Multilevel approaches provide ways to reduce the computational burden to reach a
solution of our problem faster by modifying some iterations. This greatly improves the
convergence speed of algorithms in practice.

1.3 Multilevel approaches: an intuition
To describe properly the motivations behind multilevel optimization, I prefer to begin
with an analogy4 than a technical argument. I expect that a reader having worked on
optimization long enough has thought about it in similar terms at least once.

Imagine yourself blindfolded at the top of mountain. You want to reach the bottom of
the valley as fast as possible. By exploring your neighborhood you can infer the slope of
the mountain and take a direction of descent. Some directions are better than others, and
you can find what we call the steepest descent direction (i.e., gradient descent), that will
maximize your descent speed. One step at a time. However, each one of your steps can
only go so far. You still have to explore your neighborhood to infer the steepest descent
direction.

A classic solution to this slow speed is the momentum which could be compared to
starting running in the steepest descent direction and letting your inertia guides you along
the slope. But you are still blindfolded! You might go up5.

These two analogies more or less describe the most used optimization algorithms:
gradient descent and accelerated gradient descent. These two work with precise knowledge
of the local landscape of our mountain (i.e., the function to minimize). However, it is
straightforward to come to the conclusion that if you could remove your blindfold you
would be much faster. Obviously, if that was possible, someone would have come up with
an algorithm to do that already6.

This is where multilevel optimization can come into play. To go along the analogy,
it would be equivalent to removing the blindfold but still being short-sighted or myopic
(not quite the optimal situation but an improvement nonetheless).

You do not need to know each rock, each patch of grass, to infer a descent direction,
a rough knowledge of the slope of the mountain is sometimes sufficient. Thus, you can
then take bigger steps and reach the bottom of the valley faster.

In essence multilevel optimization is the crafting of a rough knowledge of the landscape
of the function to minimize, to accelerate the convergence of the underlying optimization
algorithm. As we will see in this manuscript, for standard optimization problems, as long
as there is some kind of structure on the function to minimize, one can derive this rough
knowledge and exploit it.

There is sadly no free lunch in optimization, and building and using this rough knowl-
edge, to accelerate the optimization, comes with a cost. Thus, a trade-off exists. Not
every problem should be tackled with a multilevel algorithm; and every problem that
should, cannot be tackled without careful construction.

The goal of this thesis is to provide some guidelines on the construction of multilevel
algorithms for non-smooth optimization. With these insights, we propose a new multilevel

4I wanted to say that it is a good one to explain multilevel algorithm, but I leave this decision to the
reader.

5Optimization algorithms rarely make the sequence fall.
6In fact, in some context, one can prove that such algorithm does not exist [7].
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algorithm, Inexact Multilevel Fast Iterative Soft Thresholding Algorithm (IML FISTA),
with state-of-the-art convergence guarantees, and we show its efficiency on a wide range
of imaging problems, from the reconstruction of color images to the reconstruction of
hyperspectral images. Several questions arised from the theoretical and practical study of
this algorithm, we present at the end of this manuscript a new perspective on multilevel
algorithm, with the point of view of block-coordinate descent algorithms, that helped
answer some of these questions.

Among our experiments, provided in this thesis, we develop an instance of IML FISTA
that can be applied to large-scale imaging problems in radio-interferometry. To better
illustrate the potential of our proposed algorithm, we present now a summary of our
contribution to this imaging problem.

1.4 An application of multilevel optimization: radio-
interferometric imaging

The effort to understand how galaxies, stars, exoplanets, and the universe, formed has
driven the development of new imaging methods and more computation-intensive tech-
niques to handle the volume of data generated.

Scaling challenge in astronomy. Every day, astronomical instruments collect a huge
amount of data that needs to be processed. In the optical domain, the recently launched
James Webb Space Telescope7 (JWST) produces tens to hundreds gigabytes of data per
day [8] compared to the 1 or 2 of Hubble8. In the radio domain, the Square Kilometer
Array (SKA), when delivered, is expected to produce five terabytes per second of data
[9,10]. Both fields give precious and complementary information on astronomical objects
(see Figure 1.1). This calls for the development of scalable optimization algorithms with
robust convergence guarantees. Multilevel algorithms are one of many solutions.

In this section we propose to illustrate the effectiveness of the method we proposed in
this thesis, and where intuitions of the preceding section can lead us. To do so we present
an imaging problem tackled in this thesis, which is the reconstruction of images from
data obtained by radio-interferometry [11]. The next paragraphs constitute an overview
of what we did on this problem and an in-depth discussion is deferred to Chapter 6.

Radio-astronomy. Complementary to optical astronomy, radio-astronomy is the field
of astronomy studying objects in the radio-frequency domain, by collecting information
(radio waves) through multiple antennas. Radio-interferometry is a technique used in
radio-astronomy to combine the information that the antennas collect to obtain images of
the sky with high sensitivity and high resolution, which would be unachievable by single
antennas.

Astronomers managed since the 1950s to leverage interferometry techniques to over-
come the diffraction limitation. Interferometry already had a rich history at this point
(see [11]), and it led to the development of radio-interferometers: arrays consisting of
multiple antennas of small diameter D spread over a large area and behaving as one

7https://webbtelescope.org, https://science.nasa.gov/mission/webb/
8https://spectrum.ieee.org/james-webb-telescope-communications
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1.4. An application of multilevel optimization: radio-interferometric imaging

Figure 1.1: A comparison between an optical image (bottom left) and a radio image (bot-
tom right) of the same region of the sky: the Galaxy Hercules A (3C48). Both images are
combined on the top. The image in visible wavelengths was obtained by the Hubble Space
Telescope, while the image in radio-wavelengths was obtained by the Karl G. Jansky Very Large
Array (VLA). Credits: NASA, ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton
(NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA)

<latexit sha1_base64="CdV4C8OXH+EV5zjysOwp5OaYLyM="></latexit>

D̃

<latexit sha1_base64="cR3eJ8yuARjGjOCNT/0en2YHGAk="></latexit>

D

Figure 1.2: (Left) The MeerKAT radio-interferometric array in South Africa. It consists
of 64 antennas, and will be a part of the future SKA. (Right) A schematic representation
of a radio-interferometric array.
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single antenna whose apparent diameter D̃ would be the largest distance between two
antennas. This theoretically allows to achieve the resolution associated to a large antenna
of diameter D̃ (see Figure 1.2).

The distance between two antennas is called a baseline. In practice, astronomers
combine multiple pairs of antennas to obtain multiple baselines and thus to be able to
probe the sky in multiple configurations. Measurements obtained in this way by radio-
interferometers are called complex visibilities and unevenly cover the Fourier space. Such
technique only allows to probe the sky in a sparse manner, thus requiring the use of image
reconstruction techniques to achieve this resolution.

One of our contribution, in this thesis, was the development of a multilevel algorithm
tailored for radio-interferometric imaging.

Multilevel optimization for radio-interferometric imaging
The number of visibilities in a radio-interferometric imaging problem is the main bottle-
neck for the optimization algorithm. More data means more visibilities, and thus higher
computational cost. Our proposed multilevel algorithm can reduce this cost by construct-
ing coarse approximation of the function to minimize.

To follow up with our intuition, we do not need all the visibilities to assess whether our
reconstruction goes in the right direction. A natural idea is therefore to design a rough
knowledge of the objective function to minimize by taking into account less visibilities.
We select a subset of the visibilities to form a coarse model of the problem. In this
example, we take the closest visibilities to the center of the Fourier plane, where most of
the signal’s energy is concentrated. Components at the center of the Fourier plane are
low frequency components, and gives us this approximative knowledge of the function to
minimize. Higher frequency components, which are the farthest from the center, are our
small rocks and patches of grass. Hence, they may be ignored from time to time.

With such coarse model we are able to accelerate the convergence of the optimization
algorithm to the solution of the problem. We obtain good reconstructions of the image
in far less computation time: IML FISTA is 3 to 5 times faster than the state-of-the-art
algorithms (see Figure 1.3 and later Chapter 6).

1.5 Summary of contributions
The main contributions of this thesis may be divided into three parts: the definition
of a general multilevel framework with state-of-the-art convergence guarantees, then its
application to many image restoration and reconstruction problems, including radio-
interferometry; and a more theoretical part, where, equipped with a good grasp of multi-
level optimization, we revisit the construction of multilevel algorithms with a new block-
coordinate descent perspective.

Journal papers

1. G. Lauga, E. Riccietti, N. Pustelnik, and P. Gonçalves. IML FISTA: A Multi-
level Framework for Inexact and Inertial Forward-Backward. Application

14



1.5. Summary of contributions

0.98 dB - 303 s 3.49 dB - 575 s 8.29 dB - 897 s 11.26 dB - 1187 s 13.26 dB - 1474 s
FI

ST
A

7.63 dB - 300 s 11.57 dB - 458 s 15.45 dB - 769 s 16.89 dB - 1060 s 17.83 dB - 1497 s

O
ur

m
et
ho

d

Figure 1.3: Reconstruction in log scale of a region of the M31 galaxy by FISTA (top
row) and our method (bottom row) at equivalent CPU times. The legend on top of
each thumbnail reads as follows: log SNR in dB - CPU time in seconds. Log SNR =
SNR(log10(103x+ 1)/3, log10(103xtruth + 1)/3).

to Image Restoration, in SIAM Journal on Imaging Sciences, vol. 17, no. 3, pp.
1347–1376, 2024.
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1.6 Organization of the manuscript
This thesis is organized as follows. In Chapter 2 we present basic notions of convex
optimization and the standard first order optimization methods. We then present in
Chapter 3 the multilevel framework, and some reasons for its success in PDEs. We also
present a comprehensive review of the multilevel optimization literature, with an emphasis
on image restoration problems.

In Chapter 4 we present the extension of the multilevel framework to the non-smooth
case and what constitutes the first major contribution of this thesis: IML FISTA. The
principles underlying the algorithm are presented: extrapolation steps and estimation
of the proximity operator at fine level; construction of coarse models and information
transfer operators, first order coherence for non-smooth functions and decrease guarantees
for multilevel steps. We also derive the convergence of our algorithm, and present a way
to extend this convergence analysis to other types of multilevel first order optimization
algorithms.

Then, in Chapter 5, we present several applications of IML FISTA to image restoration
and reconstruction problems. We start by a benchmark to identify and select hyperpa-
rameters of the algorithm on a toy problem. We present the results of our method on
image deblurring, image inpainting, and hyperspectral image restoration. Image deblur-
ring and image inpainting are standard problems to assess the potential of optimization
algorithm in imaging applications. By considering hyperspectral image restoration, we
place ourselves in a high dimensional setting to assess the scalability of our algorithm.

We continue with an application of IML FISTA to a radio-interferometric imaging
problem in Chapter 6. For this problem we introduce a new way of defining a multilevel
algorithm by reducing the dimension of the problem along the observation instead of the
image itself. This allows us to demonstrate that multilevel algorithm can be efficient in
more realistic settings.

In Chapter 7 we investigate the theoretical foundations of multilevel algorithms for
non-smooth optimization. The convergence guarantees associated IML FISTA, due to its
generality, are not completely on the level of its great practical performance. We thus
propose a construction of multilevel algorithms based on the block-coordinate descent
point of view. To do so, we propose a new proximal gradient block-coordinate descent
algorithm. This algorithm allows us to interpret the multilevel algorithm as a special case
of a block-coordinate descent algorithm for a specific optimization problem. We present
some numerical experiments to validate this point of view, and discuss the richness of this
framework and its potential applications.
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Chapter 2
Optimization for inverse problems

This chapter constitutes an overview of the technical background that will be used in
the manuscript. We intend to present the inverse problem framework and its solving via
minimization problems. Some notions about likelihood maximization, regularization and
image quality metrics will be discussed. Then, by skimming through common knowledge
about convex, smooth, and non-smooth optimization, we will present all the basic tools
of optimization required when considering image restoration problems.

2.1 Inverse problems: optimization formulation
Many problems in image restoration can be formulated as inverse problems, whose goal
is to recover the original image (or at least an image close to it) from an observation, and
the knowledge of the acquisition process.

Notations. Throughout this manuscript,H or G will refer to a finite dimensional (unless
stated otherwise) Hilbert space endowed with the scalar product 〈·, ·〉, and its associated
norm ‖ · ‖ =

√
〈·, ·〉.

Direct model. Formally, let z a degraded image in G, A a bounded linear operator
mapping from H to G, ε some additive noise, and x̄ in H. Knowing that

z = Ax̄+ ε, (2.1)

we want to find x̂ as close as possible to x̄. Equation (2.1) is commonly referred to as the
direct or forward model.

In the following we will refer to imaging inverse problems, image reconstruction, or
image restoration interchangeably as they all refer to the problem we just defined.

2.1.1 An example of image restoration
Degradation model. In this manuscript, we will focus on image reconstruction prob-
lems where the degradation operator A is linear and known. This remains fairly general
as in a lot of applications the degradation can be modelled this way1 [3, 11,12].

1See Chapters 5, 6.
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Chapter 2. Optimization for inverse problems

Figure 2.1: Example of a Gaussian blur’s PSF.

The most common degradation we can think of in image reconstruction is the effect
of a blur, i.e., a convolution of our true image with a blurring kernel [3]. To keep the
setting as simple as possible, we will assume that this kernel is shift-invariant: the same
blur effect will occur on every pixel. This blurring kernel is called a point spread function
(PSF). It will model how the intensity of a single pixel in the image is affected by the
intensity of its neighboring pixels (see Figure 2.1).

From this blur kernel, we can define the operator A as a circulant matrix that will
apply the convolution to the image: each row of A computes the convolution of the image
with the PSF at a given pixel. Then, we obtain a blurred image. This image is then
corrupted by noise, often assumed to be Gaussian with zero mean and variance σ2

noise.
This assumption is quite strong. For instance, in astronomy, one is often confronted with
Poisson noise, as the number of photons received by the sensor is Poisson distributed, i.e.,
during any given time interval the probability of receiving a certain number of photons
follows a Poisson distribution [13, 14]. The subsequent noise is not additive and thus
present a more challenging problem [15–17]. Fortunately, if the number of photons is
large, the Poisson distribution can be approximated by a Gaussian distribution [5, 14].

The Gaussian assumption remains thus a good approximation in a lot of practical
cases, and it also simplifies greatly the optimization problem as the associated functional
possesses desirable smoothness properties.

Ill-posedness of the problem. It is typical of inverse problems to be severely ill-posed,
which means that even if the inverse of A is available explicitly, simply computing

x̂ = A−1z (2.2)

yields a poor approximation of the solution. This estimate is highly sensitive to both
blurring and noise as can be seen in Figure 2.2. Even small degradation leads to poor
reconstruction.

Finding a good reconstruction of the original image may be done by maximizing the
likelihood of the observation z given an image x [18]. This Bayesian interpretation is quite
common, and will help us obtain the formulation of our image reconstruction problem as
an optimization problem.

Bayesian formulation of the image reconstruction problem. In the Bayesian
framework we aim to maximize the a posteriori distribution of the original image knowing
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2.1. Inverse problems: optimization formulation

Figure 2.2: Illustration of the ill-posedness of the inverse problem on a deep field view of
the galaxy cluster SMACS 0723 taken by the James Webb Space Telescope (the first image
captured by this telescope). Left: original image. Middle: blurred and noisy observation.
Right: reconstruction using the inverse of the operator. The reconstruction looks even
more degraded than the observation. Size of the image: 2048 × 2048 pixels; size of the
blur: 40× 40 pixels; standard deviation of the noise: 0.05. Credits for the original image:
NASA, ESA, CSA, STScI. Original image available here2.

z which can be expressed with the Bayes theorem [18,19]:

P(x|z) = P(z|x)P(x)
P(z) (2.3)

as a function of the likelihood P(z|x), the marginal distribution P(z), and P(x) the a priori
distribution for x, that describe original images following P(x) ∼ exp(−p(x)) [5, 20].

As the statistic of z|x is the same as the statistic of the noise ε = z − Ax, we have
under the assumption that this noise is Gaussian that:

P(z|x) = exp
(
− 1

2σ2
noise
‖Ax− z‖2

)
. (2.4)

Thus, we deduce:

P(x|z) = exp
(
− 1

2σ2
noise
‖Ax− z‖2 − p(x)

)
/P(z) (2.5)

The Maximum A Posteriori (MAP) approach consist in finding an image x maximiz-
ing P(x|z) or equivalently minimizing the following (by taking the negative logarithm of
P(x|z)):

min
x

( 1
2σ2

noise
‖Ax− z‖2 + p(x)

)
(2.6)

as the P(z) term does not influence the maximum/minimum value of the function. p(x)
will encode the limited knowledge about the image we are trying to recover.

In general, changing the statistic of the noise will lead to a different expression of
the probability P(x|z), and thus to a different optimization problem. For instance, if we
assume that the noise is not Gaussian but follows a Laplace distribution, we will have an
`1−norm instead of an `2−norm in what is called the data fidelity term.

2https://webbtelescope.org/contents/media/images/2022/035/01G7DCWB7137MYJ05CSH1Q5Z1Z.
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Chapter 2. Optimization for inverse problems

Its formulation as an optimization problem. According to Bayesian interpretation,
the image restoration problem can be generally formulated as the minimization of the sum
of two functions. Following Equation (2.6), it results in the sum of a data fidelity term
that we will denote L (also referred to as a "loss") and a regularization term denoted R.
We then seek to find:

x̂ ∈ Argmin
x∈H

F (x) := L(x) +R(x) (2.7)

The data fidelity term controls how well an image x matches the observation and the
acquisition model while the regularization term controls the knowledge we assume about
the image to restore. While the Bayesian interpretation guides us for the data fidelity
term choice given the noise statistics, the regularization term is more complex to define,
and we will present some common choices in the following section.

2.1.2 Regularization
Sparsity inducing regularization in this manuscript. It has been remarked that
a lot of signals may be represented efficiently, i.e., with a few non-zero coefficients in well-
chosen bases [13,21,22]. This theory has first been extensively studied considering wavelet
bases [22]. As locally regular, or locally smooth signals admit sparse representation in
wavelet bases [4], seeking sparsity of the wavelet coefficients of an image provides a good
denoising algorithm [22]. Simultaneously was developed the theory of compressive sensing,
formalized in [23] and [21] to design and study representations of an image as a sparse
combination of elements in a given basis. From the optimization point of view it consists
in recovering the sparsest representation of the image from the observation by typically
using an `1-norm to penalize the image representation in this basis [24].

In the context of image restoration, it was first formalized in [25–27] as a minimization
problem with a regularization defined as follows

R(x) = λg(Dx). (2.8)

Choosing g as `1-norm and D as a wavelet transform induces a soft thresholding of the
coefficients of x in a wavelet basis [22,26].

In the following we present the most standard bases, and their operator D, under
which natural images may have a sparse representation. We only present extensively the
models used in this thesis. For a more complete survey see [12].

Wavelet transform. Multiresolution analysis (MRA) is a framework used primarily
in image processing and functional analysis. It is designed to analyze images at multiple
levels of resolution or scales [28]. This concept is central to wavelet transform, where it
allows for the decomposition of a signal into different frequency components, each analyzed
with a resolution that matches its scale [28].

In particular, MRA based on wavelet transform is constructed through scaling func-
tions that generate a nested sequence of approximation spaces, capturing the low-frequency
components of the image; and wavelet functions that generate detail spaces, capturing
the high-frequency components or the details of the image [4]. This representation can
capture both edges (neighboring pixels having a large intensity difference) and smooth
regions of the image.
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To come back to the denoising application of [22], the noise induces small fluctua-
tions in the wavelet coefficients of the image (with respect to the data). Therefore, one
can assume that the contribution of the coefficients whose amplitude is under a certain
threshold, is due to the noise and thus might be omitted [22]. This point motivates the
use of the `1-norm and associated soft-thresholding to remove noise.

Total Variation and its by-products. Natural images exhibit simultaneously some
local regularity, or local smoothness, and sharp edges [4]. A good regularization should
preserve these properties during the reconstruction [5]. Wavelet transform are also used
for this task, but their nature may lead to unwanted artifacts in the reconstruction. Even
if Total Variation regularization may also induce artifacts, its simplicity of implementation
and understanding, compared to wavelets, have made it more popular over the years.

The first proposition of such regularization was done in [13] and is known as the Rudin
Osher Fatemi (ROF) model for Total Variation (TV) regularization [12, 29]. In brief,
TV penalizes differences between neighboring pixels, so that only sharp edges remain
at the end of the optimization process, while small differences are reduced to 0 (which
enforces smoothness). There exist connections between TV denoising and Haar wavelet
shrinkage [22, 30, 31], but TV (and its by-products) is generally preferred as it is more
robust to noise [32].

The operator D associated with the TV computes the first order differences between
the component i of x (denoted xi) and its horizontal/vertical nearest neighbors (xic , xir)
(lower/right in the image case).

Considering only neighboring pixels in the definition of TV neglects the fact that
images contain global information. This is why the Non-Local Total Variation (NLTV)
was introduced in [33]. The operator D associated with the NLTV extends TV to a
larger neighborhood of the current pixel i. In words, it is the operator that computes the
weighted differences between the current pixel i of an image x and a subset Ni of pixels
that are located in a large neighborhood of the current pixel i.

One can also consider the Total Generalized Variation (TGV) [34] that extends TV
by considering higher order differences. The TGV allows to control the smoothness of
the image at different levels, which reduces the staircase effect of TV [34]. TGV provides
close result to NLTV, but it cannot be written as in Equation (2.8).

Beyond. The several regularizations we presented so far may be seen as finding sparsity
in a fixed given dictionary. As an extension of these regularizations, many works proposed
to learn the dictionary [35] while simultaneously restoring the images [36] (or tackling the
optimization task at hand) so that the image is sparse in a proper representation basis [37].

The ever ongoing developments of machine learning, deep learning, and other data-
based methods have naturally led to the design of what are called "learned" priors. One of
these ideas is to train a neural network to learn the underlying distribution P(x) of natural
images, and to use this network as a regularizer in our optimization problem. The first
one of its kind was introduced in [38] where the authors replaced the proximity operator3

of a standard penalty by a neural network trained for denoising tasks. The success of deep
learning for image reconstruction has then fostered numerous works to include them in

3See the later sections for its complete presentation.
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the rich optimization framework consistently. For instance, Regularization by Denoising
(RED) was developed to incorporate deep learning based regularization [39, 40]. It was
later included in a framework providing more convergence guarantees to the solution
of the underlying optimization problem [41–43]. The performance of these methods is
undeniable, and it was shown on real-world applications that it can outperform classical
regularization methods [44]. Nevertheless, it still lacks a clear understanding, and the
guarantees that are provided by variational approaches.

2.1.3 Image quality metrics
As our applications concern the restoration of images, it is important to have metrics that
measure the quality of the restoration. These metrics will guarantee that the reconstruc-
tion is evaluated objectively and consistently. Nevertheless, we will also look at the visual
quality of the reconstruction, to assess the quality of images that the metrics could not
capture.

The ground truth x̄ ∈ RN will always be available in our experiments, so we will not
discuss metrics that measure image quality without reference [45–47].

Mean Squared Error. The Mean Squared Error (MSE) is the most common metric
to evaluate the quality of the restoration. It is defined as:

MSE(x, x̄) = 1
N

N∑
i=1

(xi − x̄i)2 (2.9)

and should be as low as possible.

Signal-to-Noise Ratio. The Signal-to-Noise Ratio (SNR) is a metric that measures
the quality of the restoration by comparing the energy of the original image to the energy
of the difference between the original image and the restored image. It is defined as:

SNR(x, x̄) = 10 log10

(
‖x‖2

‖x− x̄‖2

)
(2.10)

As its complement, the Peak Signal-to-Noise Ratio (PSNR):

PSNR(x, x̄) = 10 log10

(
N max2{x̄}
‖x− x̄‖2

)
(2.11)

Both should be as high as possible. PSNR measures the quality of the reconstruction
by looking at the ratio between the maximum intensity value and the mean squared
error, which represent the noise degradation. It can be useful when images have high
dynamic range (i.e., large differences in intensity). There exist other frequently used
metrics such as the SSIM [48] that measures the quality of the restoration by comparing
the luminance, contrast and structure of the original image to the restored image, but is
strongly correlated to the PSNR [49] in our Gaussian noise context, and can therefore be
omitted.
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2.2. Convex optimization

2.2 Convex optimization
The aim of this section is to present all the concepts in optimization needed to understand
or prove the results presented in the rest of the manuscript (for a more detailed description
see for instance [50–55]). In brief, we discuss the main concepts of convex, smooth and
non-smooth optimization.

2.2.1 Notations and reminders on convexity
We recall the classic definition of a convex set, and the definition of a convex function.

Definition 1. Convex set [56, Definition A.1.1.1]. The set C ⊆ H is said to
be convex if for all x, y ∈ C and t ∈ (0, 1), tx+ (1− t)y is in C.

We can define a convex function on C as follows:

Definition 2. Convex function [56, Definition B.1.1.1]. Let C be a nonempty
convex set in H. A function F : C 7→ R is said to be convex on C if for all x, y ∈ C
and t ∈ (0, 1), we have

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) (2.12)

F is said to be strictly convex if for all x 6= y in C the previous inequality is strict.
F is said to be strongly convex on C if there exists µ > 0 such that for all x, y ∈ C
and t ∈ (0, 1), we have

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y)− µ

2 t(1− t)‖x− y‖
2 (2.13)

The following set of functions is of particular interest in optimization, as they are the
building blocks of the optimization problems we will consider in this manuscript.

Definition 3. Proper, lower semi-continuous and convex function. A func-
tion F : H 7→]−∞,+∞] is said to be proper if it is not equal to +∞ everywhere. We
will the domain of F denote by dom F the set {x ∈ H|F (x) < +∞}. F is said to be
lower semi-continuous (l.s.c.) if for all x ∈ H, if xn → x when n goes to infinity, then

F (x) ≤ lim inf
n→∞

F (xn)

The set of proper, lower semi-continuous and convex functions defined from H to
]−∞,+∞] is denoted by Γ0(H).

Finally, we will need the notion of conjugate function, which is a key concept in opti-
mization. The conjugate of a function F is a function that facilitates the characterization
of the dual optimization problem associated to the minimization of F . This notion is
useful to express some optimization problem in equivalent but simpler form to minimize
(e.g. total variation based denoising [57]).
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Definition 4. Legendre-Fenchel conjugate [53, Definition 13.1, Corollary
13.38]. The Legendre-Fenchel conjugate of a function F : H 7→]−∞,+∞] is defined
for all y ∈ H as:

F ∗(y) = sup
x∈H
〈x, y〉 − F (x)

if F belongs to Γ0(H), then F ∗ ∈ Γ0(H) and its biconjugate F ∗∗ is equal to F .

2.2.2 Descent directions and optimality conditions
To design an iterative minimization algorithm, we need to define descent directions, i.e.,
to characterize how a function will behave if we move in a certain direction at any given
point. This is done formally with the directional derivative, which controls the local
variation of the function.

Definition 5. Directional derivative [56, Definition D.1.1.1]. The directional
derivative of F at x in the direction d ∈ H := Rn is

F ′(x; d) = lim
t↓0

F (x+ td)− F (x)
t

(2.14)

In the case of differentiable functions, the directional derivative can be expressed in
terms of the gradient:

Definition 6. Gradient operator [53, Remark 2.55], [56, 0.4.1]. If F is
differentiable at x, then the gradient of F at x is the unique point such that for all
d ∈ H:

F ′(x; d) = 〈∇F (x), d〉 (2.15)
In fact, the differentiability of F at x is equivalent to the existence of this unique vector
∇F (x).

In the context of image restoration, it is common to consider non-smooth functionals
(e.g. `1-norm). Hence, it is important to consider how to obtain directional derivatives
when the gradient is not available. The following definition characterizes the set of vectors
that are below the graph of a convex function, an interesting tool to define subgradients
for potentially non-smooth functions. The subdifferential of a convex function at a point
x can be characterized by the sublinearity property of the function.

The following definition of the subgradient is not unique and is referred to as Subdif-
ferential II in [56].

Definition 7. Subdifferential and subgradient [56, Definition D.1.2.1]. Let
F be a proper function from Rn to ]−∞,+∞].
The subdifferential ∂F (x) of a function F at x is the nonempty compact convex set of
Rn satisfying s ∈ Rn satisfying

∂F (x) := {s ∈ Rn|F (x) + 〈s, y − x〉 ≤ F (y) for all y ∈ Rn} (2.16)
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In order to produce a sequence of decreasing functional values, an iterative algorithm
constructs a sequence of direction d such that F ′(·; d) < 0 at each iteration. These
directions are called descent directions.

Definition 8. Descent direction [51, Definition VIII.1.1.1, Theorem
VIII.1.1.2] [56].
A descent direction d at x in for a convex function F is defined by the following
equivalent properties

(i) F ′(x, d) < 0;

(ii) 〈s, d〉 < 0 for all s ∈ ∂F (x).

Moreover, if F is convex, having F (x + td) − F (x) ≤ 0 for some t > 0 implies that
F ′(x; d) ≤ 0.

With this definition, one might wonder what the optimal direction would be, i.e., what
would be the direction that results in the greatest decrease of the function. This is known
as the steepest descent direction. It is defined as follows for smooth functions

Definition 9. Steepest descent direction [51, Definition II.2.1.3]. The steep-
est descent direction for a continuously differentiable convex function F at x is a de-
scent direction d such that

d̂ ∈ Argmin
‖d‖=1

〈∇F (x), d〉 (2.17)

This problem has a solution because d 7→ 〈∇F (x), d〉 reaches its minimum, given that
it is continuous and that d belongs to a compact set. Recall also that the 〈∇F (x), d〉 is
strictly negative if d is a descent direction, thus the steepest descent direction is the most
negative descent direction.

This definition can be extended to non-smooth functions by replacing the gradient by
the subdifferential:

Definition 10. Steepest descent direction [51, Definition VIII.1.1.4]. The
steepest descent direction for a convex function F at x is a descent direction d such
that

d̂ ∈ Argmin
s∈∂F (x),‖d‖=1

〈s, d〉 (2.18)

Again, this problem has a solution because d 7→ 〈s, d〉 reaches its minimum, given that
it is continuous and that d and s belong to a compact set.

A good iterative algorithm should find the solution of the steepest descent direction
at each iteration.

Now that we have seen how to characterize descent directions, we introduce the notion
characterizing the set of minimizers and/or critical points of a function, which will give a
sense to the convergence of the iterative algorithms (and a stopping criterion).
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Definition 11. First order optimality condition [51, 56]. Let F be in Γ0(H).
Then, x̂ ∈ Argminx F (x) a minimizer of F is equivalent to 0 ∈ ∂F (x̂).

2.3 From smooth to non-smooth optimization
By making use of the tools defined in the previous section we define classical first order
algorithms to solve problem of the type (2.7). We start by describing the most standard
optimization algorithm: gradient descent.

2.3.1 Smooth optimization: gradient descent
Gradient descent is probably the most used optimization algorithm in the community as
it is both simple and robust. The convergence of gradient descent to a critical point of
the function to minimize essentially relies on the Lipschitz smoothness of the function.
This property characterizes the continuity of the gradient.

Definition 12. Lipschitz smoothness. Let F : RN 7→ R be a continuously differ-
entiable function. We say that F is βF−smooth if for all x, y in RN :

‖∇F (x)−∇F (y)‖ ≤ βF‖x− y‖. (2.19)

The well known descent lemma is a direct consequence of the Lipschitz smoothness4

of F . This inequality is at the heart of convergence proofs of gradient descent methods.

Lemma 1. Descent lemma [58, 59]. Let F : RN 7→ R be a continuously differ-
entiable function with Lipschitz continuous gradient and Lipschitz constant βF . Then
for any β ≥ βF ,

F (x) ≤ F (y) + 〈x− y,∇F (y)〉+ βF
2 ‖x− y‖

2 for every x, y ∈ RN . (2.20)

Gradient descent. The previous result tells us that iterating for k = 0, 1, . . . with the
step size 0 < τ < 2

βF

xk+1 = xk − τ∇F (xk), (2.21)

will produce a decrease of the function F at each iteration. Such method requires the
knowledge of the Lipschitz constant βF of the gradient. If this quantity is unavailable, a
rich literature about line search methods has been developed to find the step sizes (see
for instance [55,60]).

Gradient descent is only applicable when the function to be minimized is differentiable.
However, as we have previously observed, the regularization term in image restoration
lacks this differentiability. Despite this limitation, there exists a tool, the proximity

4When a function is called βF−smooth or Lipschitz smooth, it refers to the Lipschitz continuity of
the gradient of F .
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operator, that can be viewed as an implicit form of subgradient/gradient descent5 and
can be used to minimize non-smooth function.

2.3.2 Non-smooth optimization

Non-smooth optimization includes a variety of techniques, with one of the simplest be-
ing an extension of gradient descent known as subgradient descent. In this method, a
subgradient is selected at each iteration to serve as the descent direction. While such
algorithms can converge to a critical point under reasonable conditions, such as dimin-
ishing step sizes, their convergence rates are often suboptimal, and the behavior of the
resulting sequences may lack stability. Consequently, more advanced methods have been
developed, notably proximal algorithms. The proximity operator will play a fundamental
role in the multilevel algorithms we will introduce later.

Proximity operator. We will refer to proximity operator the mapping defined by the
following optimization problem.

Definition 13. Proximity operator [52, 53]. Let F be a function of Γ0(RN).
Given x ∈ RN and τ > 0, the proximity operator associated to F at x is the unique
point such that

proxτF (x) = arg min
u∈RN

1
2τ ‖u− x‖

2 + F (u) (2.22)

This operator can be seen as a generalization of the projection onto convex sets, where
F is the indicator function ιC . For a lot of functions, the mapping defined by the proximity
operator is known explicitly (e.g. `1-norm) or can be estimated efficiently [62,63] (cf prox-
repository).

However, when dealing with the sum of two functions, such a closed form is not
available and the standard approach is to split the search for a descent direction along
each function. For image restoration problems (Equation (2.7)), one of these functions is
often smooth, allowing us to compute its gradient. In contrast, no specific assumptions are
made about the second function, which may be non-smooth. Consequently, computing
its proximity operator becomes a valuable approach. This operator splitting is named
proximal gradient descent or forward-backward [27]. For the sake of clarity, we split the
iterations as follows:

xk+1/2 = xk − τ∇L(xk) (2.23)
xk+1 = proxτR(xk+1/2) (2.24)

The forward pass (Equation (2.23)) refers to the gradient descent, while the backward
pass (Equation (2.24)) refers to the proximity operator application. The behavior of such
algorithm can be characterized rigorously as follows.

5Refer to the ordinary differential equation (ODE) interpretation of gradient and subgradient descent
in [61].
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Proximal gradient descent. One can characterize the decrease of the objective func-
tion after one pass of proximal gradient descent, through the optimality conditions asso-
ciated with the proximity operator.

Lemma 2. Proximal-gradient descent lemma [64]. Let L : RN 7→ R be a
continuously differentiable function with Lipschitz continuous gradient and Lipschitz
constant βL. Let R : RN 7→ R be in Γ0(H). If

y = proxτR(x− τ∇L(x)), (2.25)

then for any 0 < τ < 2
βL

L(y) +R(y) +
(

1
τ
− βL

2

)
‖x− y‖2 ≤ L(x) +R(x). (2.26)

We present the proof of this lemma as similar techniques will be used in the rest of
this manuscript.

Proof. By the first order optimality condition associated with the proximity operator, we
have that

(∀ξ ∈ RN) R(y) + 1
τ
〈x− y|ξ − y〉 ≤ R(ξ) + 〈∇L(x), ξ − y〉 (2.27)

and in particular, choosing ξ = x, we have

R(y) + 1
τ
‖x− y‖2 ≤ R(x) + 〈∇L(x), x− y〉. (2.28)

Now, invoking Lemma 1, it yields for any 0 < τ < 2
βL

L(y) +R(y) +
(

1
τ
− βL

2

)
‖x− y‖2 ≤ L(x) +R(x). (2.29)

We have now described the descent guarantee of the two (gradient and proximal-
gradient descent) main first order algorithms used in optimization. Guaranteeing descent
is only the first step to prove convergence of an algorithm, and the notion of convergence
can take several forms that we describe in the next section.

2.3.3 Convergence of optimization algorithms
In order to characterize and compare algorithms, we look at the convergence guarantees
they provide. In this manuscript we will need three notions of convergence to assess the
performance of the algorithms we designed with respect to those of the literature. We
will derive them for the minimization of a continuously differentiable function F , for the
sake of clarity, but all these notions remain relevant for non-smooth functions.

The first and most important notion in our context is the convergence to a minimizer
of the function. In inverse problems, this guarantees that the restored image is the desired
solution.
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Theorem 1. Convergence of iterates [65]. Let F be a convex function. Let
(xk)k∈N be generated by an algorithm is said to converge to a minimizer x̂ of F if the
generated sequence of iterates is such that its limit exist and respects

lim
k→+∞

xk = x̂ ∈ arg min
x∈H

F

Remark 1. The convergence of the iterates to a minimizer implies the convergence of the
objective function values to the minimum value. The converse is not true in general.

Theorem 2. Convergence of objective function values [65]. Let F be a convex
function. Let (xk)k∈N be generated by an algorithm is said to converge in function values
if

lim
k→+∞

F (xk) = min
x∈H

F (x) = F̂

The last notion of convergence that will be used in this manuscript is the global
convergence.

Theorem 3. Global convergence [55, Chapter 3]. Let F be a continuously
differentiable function. An algorithm is said to be globally convergent if the generated
sequence of iterates is such that starting from any initial point

lim
k→+∞

∇F (xk) = 0

Of the three convergence guarantees we are interested in, this one qualifies as the
weakest because we can find a function that is smooth and convex for which an algorithm
will converge globally, but the underlying sequence will not (see Section 3.2.3).

Rate of convergence. Now that we have seen how an algorithm produces convergent
sequences, the next step is to quantify the speed at which the sequences converge. A great
deal of research has been dedicated to this topic and for most of the classical algorithms
and classical classes of functions, we know precisely which rate of convergence one can
expect from a given algorithm. For instance, one can show that the optimal convergence
rate of gradient descent for a convex function with βF -Lipschitz continuous gradient is
O(1/k), i.e., starting from an initial guess x0,

F (xk)− F (x̂) ≤ β

2k‖x0 − x̂‖2,

where x̂ is a minimizer of F . This is not the best rate (o(1/k)) of convergence one can
theoretically hope for as we will see in the next sections. What is interesting to note is
that in order to prove the previous rate of convergence, one has to invoke the convexity
of F and the related inequalities. As an example, strong convexity would yield linear
convergence rates:

F (xk)− F (x̂) ≤
(

1− µ

βF

)k
‖x0 − x̂‖2, (2.30)

where µ is the strong convexity constant of F .
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2.4 Acceleration techniques
In this section we present some acceleration techniques used to improve the practical
and/or theoretical convergence rate of first order optimization algorithms.

2.4.1 Momentum, inertia and other extrapolation steps
One of the simplest, and most efficient acceleration techniques is the addition of inertia or
momentum to the gradient descent/proximal gradient descent algorithm. The two most
known are referred to as Polyak’s momentum or heavy ball method [66], and Nesterov’s
method [67] or FISTA [68]. Only the latter has been proved to be optimal, therefore we
focused on this one in this manuscript.

It is well known that for problem of the form (2.7), the optimal worst case rate of
convergence is 1/k2 [7, 67, 68]. To reach this rate of convergence, it was first proposed
in [67] to add extrapolation steps to a classical gradient descent algorithm. This was later
proposed for proximal gradient descent in [68] with the following iterations, starting from
x0 = y0 ∈ H and t0 = 1. For k = 0, 1, ...

xk+1 = proxτkR(yk − τk∇L(yk)) (2.31)

tk+1 =
1 +

√
1 + 4t2k
2 , (2.32)

yk+1 = xk+1 +
(
tk − 1
tk+1

)
(xk+1 − xk) (2.33)

where 0 < τk < 1/βL, the Lipschitz constant of the gradient of L.
A basic intuition on adding extrapolation steps is to compensate the fact that gradient

steps, and as a result proximal gradient steps, converge in norm to 0 when approaching
minimizers or critical points. This slows down the sequence. At the same time tk−1

tk+1
starts

from 0 and converges to 1 as k goes to infinity. While gradient steps decrease in size,
extrapolation steps gain in importance thus "accelerating" the convergence speed of the
sequence.

Convergent FISTA and Nesterov’s rule. It is also notable that even though the
optimal convergence rate of objective function values is recovered with extrapolation steps
defined by Equation (2.32) and (2.33), the convergence of the sequence (xk)k∈N to a
solution of Problem (2.7) is not known, and thus not guaranteed in a general setting.

It was later shown in [69] and [70], by using a sequence of extrapolation steps [69] so
that FISTA converges to a solution of Problem (2.7), that FISTA with the "Nesterov"
sequence of extrapolation steps defined as in Equation (2.32) constitutes an edge case.

This is characterized by the following inequality for all k ∈ N:

tk − t2k+1 + tk+1 > 0 (2.34)

For sequence (tk)k∈N ensuring this strict inequality, convergence of the sequence (xk)k∈N
has been obtained in the convex case to a minimizer of the Problem in [69]6 and with

6The convergence was obtained in a weak sense, which is equivalent to the strong convergence (cf
Theorem 1) in finite dimension.
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errors in [70]. The so-called Nesterov sequence is such that for all k ∈ N:

tk − t2k+1 + tk+1 = 0 (2.35)

For the rest of this manuscript we will refer to Equations (2.34) and (2.35) as the Nesterov’s
rule (including thus the equality case). The proof of convergence to a minimizer relies
on a Lyapunov analysis [69, 70], where an energy is to be minimized. Having the strict
inequality being transformed into an inequality implies that the bound obtained on the
energy would be as meaningful as showing 0 ≥ 0, i.e., in this case a Lyapunov analysis
cannot tell us anything about the convergence of the sequence.

Remark 2. Note that in FISTA (and to the best of our knowledge every other related
algorithms) the sequence (yk)k∈N does not converge to a solution of Problem (2.7).

Several incremental improvements of FISTA have been made since in the literature.
The choice of the inertial sequence parameters is highly dependent on the geometry of the
problem and can be optimally chosen under certain assumptions (e.g. strong convexity
[71], [72], restart [73], automatic choice of the parameters [74]).

Moreover, one can recover convergence guarantees even in the case where tk − t2k+1 +
tk+1 < 0. Such study was conducted in [75] under the sequence framework of [69, 70],
which will also be at the core of our analysis.

Through the ODE interpretation of gradient descent, and proximal gradient descent,
more elaborate studies of inertial algorithms have been conducted [76–78]. They shed an
interesting perspective on the dynamics of the algorithm.

2.4.2 Variable metric and preconditioning
Variable metric. The idea of variable metric methods is to adapt the metric of the
space, in which the optimization is performed, to the local geometry of the function to
minimize. This is done by replacing the Euclidean metric by a positive definite matrix
Hk at each iteration k. The most famous variable metric method in the smooth case is
the Quasi-Newton algorithm: the Broyden-Fletcher-Goldfarb-Shanno (BFGS) or LBFGS
algorithm [55] where an approximation of the Hessian matrix is used at each iteration to
adapt the metric. Such idea can be extended to the non-smooth case by changing the
metric used in the definition of the proximity operator (Definition 13) [79–81].

Preconditioning. As the name suggests, preconditioning aims to improve the condi-
tioning of the problem, so that it is easier to solve. For the sake of argument, consider
the following optimization problem

min
x
F (x) = 1

2‖Ax− z‖
2

This function has a constant of strong convexity constant of µ which is the smallest
eigenvalue of ATA and a Lipschitz smoothness constant of βF which is the largest eigen-
value of ATA. This function being strongly convex, the closer to 1 the ratio between µ
and βF the smaller the convergence rate (Equation 2.30). One can improve this ratio by
preconditioning the problem, i.e., reducing βF/µ, and there exist many ways to do so [55].
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2.5 Conclusion
We have presented the main tools and concepts to understand and study the behavior of
first order optimization algorithms. For smooth and non-smooth optimization, gradient
and proximal gradient descent are the standard. Several acceleration techniques have
been proposed over the years to improve the convergence rate of these algorithms. Due
to the increasing scale of optimization problems to solve, development of techniques able
to alleviate the computational burden is of paramount importance. In the next chapter
we will present the method studied in this manuscript: multilevel optimization.
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Chapter 3
A short presentation of multilevel
optimization

This chapter constitutes an overview of the technical background that will be used in the
manuscript to define and study multilevel algorithms. We first present its application to
solve partial differential equations (PDEs). This presentation will highlight the theoretical
argument that propelled multigrid methods to be state-of-the-art when solving certain
PDEs. This success has inspired the adaptation of this framework to optimization, and
we will try to provide a comprehensive overview of the related research found in the
literature.

By the end of this chapter, we aim to have clearly outlined the strengths and limitations
of existing multilevel optimization methods, thereby motivating the focus of the work
conducted in this thesis.

Multilevel or multigrid? In the rest of the manuscript, and in the current literature,
the terms multilevel and multigrid are often used interchangeably. It is quite straight-
forward to understand the use of multigrid, but the rationale behind using multilevel is
somewhat unclear1. From my perspective, it could be justified given that some works de-
fine "coarse" approximations of the problem without necessarily reducing the dimension,
or not along the line of reducing the dimension of the variable space (e.g. the resolution
of an image)2.

3.1 Multigrid methods
Multigrid methods were initially developed to solve differential equations by utilizing a
hierarchy of discretization grids [84–86]. These concepts naturally arise when dealing
with problems originating from the discretization of continuous models. The idea is
to vary the level of discretization to solve problems with different levels of precision
(Figure 3.1). Coarse, i.e., less accurate, solutions, which are computationally cheaper, can
be leveraged to accelerate the computation of more accurate, but costly, fine solutions.

1There is no apparent connection with bilevel optimization [82,83], but maybe it could be interesting
to try to draw one!

2See Appendix A.1 for some references.
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Figure 3.1: Illustration of the hierarchy of grids used in multigrid methods from [87].
The fine grid is used to solve the problem with high accuracy, while the coarse grid is
used to accelerate the computation.

Multigrid methods formalize this intuition by constructing hierarchies of discretizations
and utilizing all of them to solve the problem more efficiently at the desired fine resolution.
These techniques have a rich history in solving differential equations, and the following
paragraphs will discuss the foundational concepts that contribute to their practical and
theoretical effectiveness.

3.1.1 The purpose of multigrid methods
To illustrate the motivation behind multigrid methods, we consider the following one
dimensional equation with Dirichlet boundary conditions [86]:

− u′′(x) + u(x) = f(x) in Ω = (0, 1) with u(0) = u(1) = 0. (3.1)

The rest of the presentation will be based on this equation, and the principles presented
here are derived exhaustively in [86, Chapter 1 and Chapter 2]. This example is quite
standard in the literature and serves as an introduction in most survey/review of multigrid
methods for solving partial differential equations [84–86]. In the context of this problem,
one can highlight that using coarse grids is not only computationally cheaper, but also
that it improves the theoretical convergence rate of the algorithm.

This presentation is quite long, but it is necessary, I think, to understand why multigrid
methods are so efficient, and to understand the gap between their success in solving PDEs
and their lack of success3 (in comparison) in optimization.

To solve this problem consider a grid of evenly spaced data points xi = ih for i =
0, 1, . . . , N with h = 1/N and N the number of points. This will constitute our fine grid

3This is not intended to be derogatory to the field, but multilevel optimization has yet to display the
fast convergence of multigrid methods for PDEs. Compare for instance the convergence plots in [88, Figure
1], where a multilevel proximal algorithm is applied to a PDE’s problem to plots in Chapter 5 or in [89,90],
even though algorithms are conceptually similar.
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with a mesh size of h. A finite difference approximation of the previous equation reads,
with ui = u(xi) and zi = z(xi):

− ui+1 − 2ui + ui−1

h2 + ui = zi for i = 1, . . . , N − 1 (3.2)

which can be concisely written as
Au = z (3.3)

where

A = 1
h2



2 + h2 −1 0 . . . 0 0
−1 2 + h2 −1 . . . 0 0
0 −1 2 + h2 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 2 + h2 −1
0 0 0 . . . −1 2 + h2


(3.4)

and u = (u1, . . . , uN−1)T and z = (z1, . . . , zN−1)T , are discrete approximations of the true
solution and the data. An equation with the boundary conditions completes this linear
system: u0 = uN = 0. We will omit in the following the dependence in h for the sake of
clarity.

Solving a differential equation on a grid amounts thus to solving a linear system of
equations of size N . Direct methods, such as Gaussian elimination, work perfectly well for
simple problems such as this one, but are quite limited by the size of the system. This has
spurred the developments and study of iterative methods such as the Jacobi, or Gauss-
Seidel methods that aim to solve the linear system by improving the solution at each
iteration, starting from an initial guess. Such methods are also referred to as relaxation
methods, and have a long history in the solving of partial differential equations [91, 92]
(or in general [93]). These methods are more general but can be really slow to converge,
and multigrid methods are the remedy to this problem (for PDEs).

3.1.2 Solving PDEs with multigrid methods
In this section we study the behavior and convergence of the iterative methods that
propelled the construction of multigrid methods.

Solving a linear system. Solving the linear system Au = z can be seen as a fixed
point problem. The solution û verifies the following "fixed point" equation:

Aû− z = 0 (3.5)

An iterative method aims to find a sequence (uk)k∈N that converges to û. We have seen in
the previous chapter the standard fixed point iterative methods in optimization: gradient
descent. It aims to find for a function F the solution û of:

∇F (û) = 0 (3.6)

We could formulate Problem (3.3) as an optimization problem and solve it with gradient
descent, but here we are interested in the behavior of iterative methods only applicable
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to linear systems. It is in this particular context that one can see the practical and
theoretical advantages of multigrid methods. We will now detail the construction of the
Jacobi and Gauss-Seidel methods, and then introduce the multigrid method.
Given a vector u we can define the algebraic error as

e = u− û.

This error is obviously not available and is approximated by the residual r defined as:

r = z − Au.

Now split A into its diagonal components D, its lower triangular part L and its upper
triangular part U so that A = D − L − U . The Jacobi method consists in iterating the
following steps:

uk+1 = D−1(L+ U)uk +D−1z, (3.7)
until a solution is found. The Gauss-Seidel method is a slight refinement of the Jacobi
method. The update is as follows:

uk+1 = (D − L)−1Uuk + (D − L)−1z. (3.8)

As û is the solution of the linear system, it is a fixed point of the previous iterative
methods, thus we can express the error at iteration k, in the case of the Jacobi method,
as

ek+1 = Rek

= Rk+1e0,

with R = D−1(L+U). If ‖R‖ < 1 then the error converges to 0 as k goes to infinity. Now
we want to look at the rate of convergence under which the components of the error go
to 0. To do so, we introduce the weighted Jacobi method that changes the error update
by using Rω = (1 − ω)Id + ωR. It can be shown that the eigenvalues of Rω and A are
linked by the following relationship [86]:

λ(Rω) = 1− ω

2 λ(A).

The eigenvalues of A (given in Equation (3.4)) are given by [86]:

(∀1 ≤ ` ≤ N − 1), λ`(A) = 4 sin2
( `π

2N
)
,

which yields that:

(∀1 ≤ ` ≤ N − 1), λ`(Rω) = 1− 2ω sin2
( `π

2N
)
.

The corresponding eigenvectors of A are the following:

(∀1 ≤ ` ≤ N − 1), v` =
(

sin
(j`π
N

))
0≤j≤N

.

It allows us to express the evolution of the error in the basis formed by these eigenvectors.
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Figure 3.2: (Left) Eigenvalues (x−axis indexes `, y−axis indicates the value) of the
weighted Jacobi method for the one dimensional diffusion equation with N = 64. The
higher the frequency of the mode, the lower the reduction factor, and thus the faster
the convergence. (Right) Eigenvalues of the coarse (denoted by H) level weighted Jacobi
method.

Remark 3. The oscillations of the eigenvectors of A grow with ` while the eigenvalues of
Rω decrease with `. This is the reason why the high frequency modes of the error converge
faster than the low frequency modes.

There exist (ε`)1≤`≤N−1 ∈ RN−1 such that

e0 =
N−1∑
`=1

ε`v`.

After k iterations, the error reads

ek =
N−1∑
`=1

ε`λ
k
` (Rω)v`,

as eigenvectors of A are eigenvectors of Rω. From this expression one can deduce that the
`−th component of the error has been reduced by a factor λk` (Rω) after k iterations. One
also can see in Figure 3.2(Left) that the low frequency modes of the error have the highest
reduction factor, i.e., the closest to one (and thus the slowest convergence) while the high
frequency modes have the lowest reduction factor (and thus the fastest convergence). The
method smooths the error quite efficiently, but its low frequency modes remain untouched,
as they appear smooth on the grid.

This is where the coarse grid comes into play. This coarse grid contains half the number
of points of the fine grid, spaced by 2h. With an approximation of no consequence, we
can say that the coarse grid iterative equation will be the same as the fine grid iterative
equation, with a smaller number of points and a factor 2 in front of each h. Therefore, we
can reuse the study of the eigenvalues of A to study the eigenvalues of the coarse model
operator, that we denote AH . The eigenvalues of the coarse weighted Jacobi method
follow a similar trend as those of A that is depicted in Figure 3.2(Right).
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In practice AH is constructed using a Galerkin approximation [86, 94], that is the
restriction/projection4 of A to the coarse grid. The restriction is done using a linear
operator IHh (see Definition 14 and Equation (3.12) below) that sends information from
the fine grid to the coarse grid. The prolongation operator IhH sends information from the
coarse grid to the fine grid. The Galerkin approximation reads:

AH = IhHAIHh (3.9)

Nevertheless, the eigenvalues behave similarly as in Figure 3.2.
By construction, as the error is projected to this coarse grid, the modes from around

N/4 to N/2 on the finest grid will become high frequency modes on the coarse grid. Thus,
they will enjoy the fast convergence associated with the iterative method. Coarsening the
grid will result in targeting lower and lower frequency modes.

Most of the relaxation/iterative schemes have this smoothing property, and are thus
well suited to be accelerated by multigrid methods [86]. Moreover, for multigrid methods
to be fully valuable, the residual of the problem should be smooth before being sent to
the coarse grid, so that it contains only low frequency components. Relaxation steps and
multigrid steps complement each other nicely in the solving of differential equations. The
common steps of multigrid methods are the following [84–86,95]:

• Smoothing: apply relaxation steps to the current iterate;

• Restriction: project the resultant residual to the coarse grid;

• Smoothing on the coarse grid: apply relaxation steps to the projected residual;

• Prolongation: send the smoothed residual from the coarse grid to the fine grid;

• Correction: correct the current iterate with the smoothed residual.

• Smoothing: apply relaxation steps to the corrected iterate.

This procedure is repeated until convergence.

3.2 Multilevel optimization
What can be considered the first extension of the multilevel/multigrid framework to op-
timization was done in the seminal paper of S.G. Nash [96]. These methods are usually
referred to as multilevel methods even though some also use multigrid (e.g. [88]). Re-
marking that, just as linear systems arising from PDEs problems, optimization problems
can often be seen as discretization of problems in infinite5 dimensional spaces (e.g. vari-
ational approaches), it was more than natural to use a hierarchy of such discretizations
to tackle the optimization problem in a high dimensional space of interest. An idea
straightforwardly inherited from the multigrid literature on PDEs solving.

We note however that an application of the multigrid framework to optimization had
been done previously in [97] where the authors used an algebraic multigrid approach to

4The two terms refers to the action of sending fine information to the coarse level.
5For instance, the underlying objects in an image do not have finite resolution.
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compute a descent direction for Newton’s method by solving with it the following linear
system for a twice continuously differentiable function F :

∇2F (x)d = −∇F (x). (3.10)

∇2F (x) (resp. ∇F (x)), discretized on a grid would be A (resp. z) in the previous section.
A discretized d is then computed using a multigrid method and then used as a descent
direction to solve a nonlinear optimization problem.

In its article [96], Nash described MG/OPT as a general framework to solve opti-
mization problems. This framework is the basis of most of what is qualified as multilevel
optimization today. The iteration scheme follows the one of classical multigrid scheme:

• N0 gradient or optimization steps on the fine level problem (equivalent to smoothing
steps);

• Projection of the current iterate and gradient value to the coarse level;

• Minimization of the coarse model corrected by the projected gradient value;

• Prolongation of the result to the fine level;

• Correction of the current iterate using a line search to guarantee descent inspired
from the trust region literature [55, 98];

• N1 gradient steps on the fine level problem.

Nash proved the global convergence of his algorithm using the following argument [96,
Theorem 1]. MG/OPT combines gradient descent – a method known to be globally con-
vergent when paired with an appropriate line search [55] – with multigrid updates that
ensure the objective function does not increase. Since gradient descent is globally conver-
gent, MG/OPT inherits this property as well. However, this guarantee is relatively weak.
As we will discuss in Section 3.2.3, it is possible to construct functions and optimization
algorithms that provide similar non-increasing behavior as MG/OPT without ensuring
that the sequence of iterates actually converges.

Since this work, multilevel approaches have not been as successful as multigrid methods
for solving PDEs in the optimization community. I think that the main reason for this
lack of growth is the difficulty to obtain great practical performance – something these
methods are capable of in an optimization context – while maintaining the implementation
and tuning complexity of the algorithm low. We hope that the next section will highlight
this clearly for the reader6.

3.2.1 Core principles
In this section we present the core principles required to design a multilevel algorithm
with some theoretical guarantees. The presentation is done for a two levels algorithm,
and we will reuse this format for the rest of the manuscript. If the extension to more than
two levels is not straightforward in some contexts, necessary details will be presented.

6I do not claim to have circumvented completely this difficulty in this thesis.
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Note that even though the content of this section was already known in the literature, we
worked to clarify and organize the presentation of these principles in this context.

Let us introduce a notation that will follow us through the rest of this manuscript.
We index by h what we refer to as the fine level, and by H what we refer to as the coarse
level. Unless stated otherwise the fine level objective function F (Equation (2.7)) will be
denoted as Fh from now on.

In contrast to multigrid methods for linear system solving, we do not have a way
to quantify the distance of our current iterate to a minimizer of the fine level problem
(an equivalent to what would be the residual). Thus, there is an ambiguity around the
definition of a good coarse level that we need to solve.

Information transfer operators. First, we need to define a coarse space where coarse
variables and functions will live in. Suppose that the fine level problem is defined on RN .
We define Nh := N as the dimension of the fine level problem. The coarse level dimension
will be denoted NH . The standard assumption is NH < Nh. Now to go from fine level to
coarse level and vice versa, we have the following operators

Definition 14. Information transfer operators. Let IHh : RNh 7→ RNH and
IhH : RNH 7→ RNh be linear operators. They are called coherent information transfer
operators (CIT) if there exists ν > 0 such that

IhH = ν
(
IHh
)T

(3.11)

IHh is referred to as the restriction operator that sends information from the fine level
to the coarse level, and reciprocally IhH is the prolongation operator that sends information
from the coarse level back to the fine level. In imaging, to satisfy Equation (3.11), we
usually construct the restriction operator first and then take its normalized transpose to
define IhH .

There are many ways to construct such operators. The most standard CIT operator for
multilevel methods is the dyadic decimated and weighted operator [86]. In the particular
case of squared grids of size

√
Nh ×

√
Nh and

√
NH ×

√
NH at fine and coarse level

respectively, and for NH = Nh/4 corresponding to a decimation factor of 2 along rows
and columns, the restriction operator reads:

IHh = 1
16


2 1 0 . . . 0
0 1 2 1 0 . . . 0
... . . . . . . 0
0 . . . 0 1 2 1


︸ ︷︷ ︸√

Nh/2×
√
Nh

⊗


2 1 0 . . . 0
0 1 2 1 0 . . . 0
... . . . . . . 0
0 . . . 0 1 2 1


︸ ︷︷ ︸√

Nh/2×
√
Nh

∈ RNH×Nh .

(3.12)
⊗ denotes the Kronecker product.

The pair (IHh , IhH) provides a simple and intuitive way to transfer information back
and forth between fine and coarse scales, by means of linear B-spline interpolation. Other
operators of the form of (3.12) corresponding to higher order interpolation have been
proposed in [99] and are commonly used in multigrid methods for solving PDEs [100].
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Definition of coarse level functions. The rule of thumb to define coarse level func-
tions is to take reduced order version of the fine level function. If the reader is interested
this notion can be rigorously defined using the theory of Γ−convergence [101], but this
theory is not at all necessary to create multilevel hierarchy.

Suppose that
Fh(·) = ‖ · −z‖2

RNh

is the fine level objective function. Then a reduced order version of Fh would naturally
be

FH(·) = ‖ · −IHh z‖2
RNH ,

where IHh z is the restriction of z to the coarse space. This is not standard in multigrid
methods for PDEs: often the observation z (see Section 3.1.1) is of small size compared
to u, and therefore remains unchanged.

Now, one needs to define equivalently reduced order version of the linear operators
involved in the optimization problem. Denote by Ah := A the fine level degradation
operator. There is an equivalence between minimizing ‖Ah · −z‖2 and solving Ahx = z.
Multigrid method to solve such linear system naturally define the coarse matrix AH as
the restriction of Ah to the coarse space:

AH = IhHAhI
H
h

This approximation of Ah is often referred to as the Galerkin approximation [86, 94] and
was coined for the first time in multilevel optimization in [98]. In the case of multigrid
methods, only the columns of A are modified, and the rows remain unchanged to match
the unchanged observation z.

First order coherence between levels. Designing natural approximation of the fine
level objective function is not enough to guarantee that such coarse model will help the
optimization of the fine level problem. One way to ensure that it does is to impose
coherence between levels. Let us define a smooth coarse model for smooth functions to
minimize.

Definition 15. Coarse model FH for smooth functions. A continuously differ-
entiable coarse model FH is defined for the point xh ∈ RNh as:

FH = LH +RH + 〈vH , ·〉, (3.13)

where

vH = IHh (∇Lh(xh) +∇Rh(xh))− (∇LH(IHh xh) +∇RH(IHh xh)). (3.14)

Adding the linear term 〈vH , ·〉 to LH + RH allows to impose the so-called first order
coherence.
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Figure 3.3: Illustration of the first order coherence between two smooth functions Lh+Rh

and LH +RH . Left lower part: without first order coherence, points decreasing LH +RH

do not necessarily decrease Lh + Rh. Right lower part: first order coherence rotates the
graph of LH +RH around xH,0 so that decreasing LH +RH also entails decreasing Lh+Rh.

Definition 16. First order coherence [89, 90, 96]. The first order coherence
between the objective function Fh at the fine level and the coarse level objective function
FH is verified in a neighborhood of xh if the following equality holds:

∇FH(IHh xh) = IHh ∇ (Lh +Rh) (xh). (3.15)

The following lemma states that the coarse model proposed in Definition 15 verifies
the first order coherence.

Lemma 3. If FH is given by Definition 15, it necessarily verifies the first order co-
herence (Definition 16).

Proof. Considering the gradient of the coarse model FH and combining it with the defi-
nition of vH in Equation (3.14), yields

∇FH(IHh xh) = ∇LH(IHh xh) +∇RH(IHh xh) + vH ,

= IHh (∇Lh(yh) +∇Rh(xh)) .
(3.16)

The first order coherence defined in Definition 16 is thus verified.

This condition ensures that, in the neighborhood of the current iterates xh and IHh xh =
xH,0, the fine and of the coarse level objective functions are coherent up to order one. Fig-
ure 3.3 illustrates the effect of the first order coherence on the alignment of the gradients
of smooth objective functions at fine and coarse levels.

Now that we have defined the coarse model, we can look at what happen when we
minimize it. We apply repeatedly the following gradient steps on FH :

xH,`+1 = xH,` − γH∇FH(xH,`),
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where 0 < γH < 2/βH . βH is the Lipschitz constant of the gradient of FH , which is
unaffected by the first order coherence term.

We will thus assume that after m iterations of gradient descent on FH we obtain xH,m
that is such that FH(xH,m) ≤ FH(xH,0). With the first order coherence, we guarantee
that the term IhH(xH,m − xH,0) is a descent direction for the fine level problem.

Lemma 4. Descent direction for the fine level function. Assume that IHh and
IhH are CIT operators, that FH satisfies Definition 15, and that m gradient steps have
been computed at coarse level. Then, IhH(xH,m−xH,0) is a descent direction for Lh+Rh

at xh.

Proof. Set xh ∈ RNh and let us define pH := xH,m− xH,0. Recall that xH,0 = IHh xh. From
the definition of descent direction we have that:

〈pH ,∇FH(xH,0)〉 ≤ 0.

By the first order coherence and imposing IHh = ν−1
(
IhH
)T

we obtain

〈pH ,∇FH(xH,0)〉 = 〈pH , IHh ∇(Lh +Rh)(xh)〉 = ν−1〈IhH(pH),∇(Lh +Rh)(xh)〉 ≤ 0.

Minimizing the coarse model FH thus provides a descent direction for the fine level
problem by construction. We can now define a multilevel iteration. As a picture is worth
a thousand words, we provide a scheme of a multilevel iteration in Figure 3.4. Formally,
a multilevel step can be described as the following "inner" Algorithm 1.

Algorithm 1 MultiLevel (ML) step for a smooth functional at any given iteration
if Coarse correction at current iteration then
xH,0 = IHh xh
vH = IHh (∇Lh(yh) +∇Rh(xh))− (∇LH(xH,0) +∇RH(xH,0))
Set τH > 0 and αH > 0 according to [70]
xH,m = (Id− τH∇FH) ◦ . . . ◦ (Id− τH∇FH)︸ ︷︷ ︸

m gradient steps

(xH,0)

xh = xh + αHI
h
H (xH,m − xH,0)

else
xh = xh

end if

First, if we decide to use a coarse correction, the current iterate is projected to the
coarse level using the information transfer operator IHh to obtain xH,0. The coarse model
is also constructed with the projection of the current gradient. Then m + 1 gradient
steps are computed on this function to obtain a new coarse iterate xH,m. The difference
between xH,m and xH,0 is prolonged to the fine level using IhH and added to the current
iterate (with maybe an additional line search to guarantee descent).

Otherwise, i.e., if we choose not to use a coarse correction, nothing changes and the
algorithm continues with fine level steps.
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min
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Figure 3.4: Scheme of a multilevel iteration. It encompasses the projection of the current
iterate to the coarse level; the definition of a coarse level function; several minimization
steps at coarse level; prolongation of the resulting coarse iterate to the fine level; and
finally, the correction of the fine level iterate with the difference between the last and first
coarse iterates. Highlighted in red are the elements that require careful construction for
the correction of the fine level iterate to be a descent direction.

Multi-levels algorithm. The extension from a two-level framework to a multi-level
framework is quite direct. The coarse model we just constructed is smooth, and a similar
method can be employed to construct a coarser model (i.e., a coarse model for this coarse
model) that is first order coherent with respect to the previous coarse model.

In a sense, levels work by pair. Each coarse model is used to accelerate its finer
one. Thus, one can think about going from one level to the other in several manners by
manipulating these pairs. For instance, the most common scheme is called the V-cycle.
It consists in going all the way from the fine level to the coarsest one, and then going
back to the fine level. Such V-cycle is illustrated in Figure 3.5 for 4 levels. Using the
wavelet terminology, the finest level is associated with a resolution J (which corresponds
to 2J pixels), and the coarsest level is associated with a resolution J − 3. For each pair
of levels, we use similar coarse correction scheme as in Figure 3.4.

3.2.2 Literature review
We now discuss the literature on multilevel optimization methods. There exist three
concurrent algorithms to the method we propose and discuss in the next chapters of this
manuscript: [89], [90] and [88]. We will discuss in depth about their differences with our
method in Chapter 4.

Recall that we aim to solve optimization problem formulated as the sum of two func-
tions:

x̂ ∈ Argmin
x∈H

F (x) := L(x) +R(x)

where L is continuously differentiable.
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Figure 3.5: Illustration of a multilevel update with a V-cycle for a 4 levels algorithm. The
algorithm passes through each level to collect its first order information before sending
it to the next coarse level until reaching the coarsest one. At this point m iterations are
computed at each level recursively.

Multilevel approaches have been mainly studied for the resolution of partial differential
equations (PDEs), in which the underlying problem to solve can be formulated as mini-
mizing a differentiable function [96, 98, 102]. Most of the multilevel algorithms are based
on the seminal work of Nash [96] and its method MG/OPT. MG/OPT and algorithms it
inspired are applied to minimize smooth objective functions by first order methods even
in non-convex setting [103] and sometimes to solve PDEs with an optimization based
approach [88,104,105].

Most contributions have been made to adapt MG/OPT to different problems and
contexts. Although it may understate their contributions, experts in the field acknowledge
that the greatest challenge in multilevel optimization lies in its practical implementation.
In a later work [106], Nash acknowledged that practical improvements in the convergence,
when using a multilevel procedure, almost entirely depend on how the algorithm is actually
implemented, as the theoretical guarantees are minimal.

Let us start with extensions of the MG/OPT framework to smooth optimization for
image restoration problems.

Application to (smooth) image restoration. Multilevel algorithms have been em-
ployed in many applications, such as photoacoustic tomography [107], discrete tomogra-
phy [108] and phase retrieval [109]. These three applications are quite different from one
another but multilevel optimization still provides acceleration in all cases.

The authors of [109] proposed a multilevel algorithm to solve an unregularized (and
not necessarily convex) ptychographic phase retrieval problem, in order to work around
the non-smoothness of the regularization. On large sets of experiments, they showed quite
clearly the potential of multilevel algorithms.

In [107], the authors propose a multilevel algorithm to solve the inverse problem of
photoacoustic tomography. At the time of publication, `1 total variation regularization
was among the state-of-the-art regularizations for this problem. In order to construct
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their multilevel algorithm, they smoothed the regularization term (therefore reducing the
sparsity effect). They also incorporated extrapolation steps of FISTA [68] to accelerate
the convergence. The authors showed that their multilevel algorithm was able to recon-
struct images faster than single level algorithms in their experiments, without, however,
providing a theoretical convergence analysis.

The authors of [108] propose a construction of coarse model based on Riemannian
optimization techniques to propagate box constraints at fine level, to the coarse levels.
The method is applied to discrete tomography problems formulated as the sum of two
smooth terms with box constraints. The proposed data fidelity term is a Kullback-Leibler
divergence, whose gradient is not Lipschitz, so the convergence is actually not guaranteed
in this case. The definition of the coarse levels is quite involved as the first order coher-
ence incorporates the box constraints through a Riemannian gradient. With numerical
experiments, the authors demonstrate that incorporating the box constraint at coarse
level greatly improves the reconstruction speed.

Smooth objective functions, and in particular smooth regularizations are not state-of-
the-art in a lot of image reconstruction settings, so an extension to the non-smooth case
for multilevel optimization is needed to reach state-of-the-art reconstructions.

Non-smooth multilevel optimization. There exist three papers that proposed con-
struction of multilevel algorithm for non-smooth optimization problems.

In [89], the authors propose MAGMA: an accelerated multilevel proximal gradient
algorithm for convex optimization problems. The iterations are computed using a combi-
nation of inertia, proximal projection and mirror gradient descent. A rate of convergence
of 1/k2 is obtained for the objective function values with a slightly worse constant than
for its single level counterpart.

The same construction, but for forward-backward updates in a potentially non-convex
setting was later proposed in [90].

The rate of convergence is described as "optimal" for the class of functions in [89],
but the numerical experiments do not really show clearly the impact of the multilevel
steps. For instance, while the hyperparameters of the multilevel algorithm, such as the
number of iterations at the coarse level or the number of levels, are mentioned, they are
not discussed in depth. Similarly, the construction of the first-order coherence could have
been elaborated. Overall, some decisions in the algorithm have an unshown impact on
the convergence.

Nevertheless, these works were the first attempts to introduce multilevel methods in
non-smooth optimization, and they introduced key concepts such as the smoothing of R
to obtain first order coherence between levels. We will build upon these concepts in this
manuscript.

More recently, authors of [88] proposed to construct adaptive restriction operators
to alleviate the subgradient set-value complexity. They work as follows: if one uses a
multilevel correction at points whose subgradient is set-valued, the adaptive restriction
operators will reduce this set to a singleton (like a gradient) that will be used to define the
first order coherence. As we will see it in Chapter 4 this method requires strong convexity
assumption on L to benefit from additional convergence properties with respect to the
work done by authors of [89, 90], and subsequently by us in this manuscript.

Now, we present multilevel methods that have been applied to non-smooth optimiza-
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tion, but in contexts that are not directly relevant to image restoration. In [110], the
authors presented two multilevel versions of the Frank-Wolfe algorithm and the Inexact
Augmented Lagrangian Multiplier method for the recovery of low-rank matrices through
principal component pursuit. The proposed multilevel method is constructed assuming
that the low-rank components of the matrix can be recovered exactly at coarse levels
(which seems to be valid for rank-one matrices). A similar approach was unfolded to
create a multilevel algorithm in [111] that is able to solve semidefinite programming re-
laxation of polynomial optimization problem. It was applied to solve efficiently PDEs
problem.

Higher order multilevel optimization method. Higher order optimization methods
come with faster convergence rates and higher iteration costs. Newton-like optimization
method already had been accelerated using multigrid approaches to solve linear system
[97]. The ideas of Nash can naturally be extended to higher order optimization methods
by increasing the order of the coherence between levels [102,112].

Choice of information transfer operators. Beyond the obvious coherence property
between the information transfer operators, one can ask: is there optimal choices? If not,
is there clearly better choices than others?

In an image restoration context, it was proposed to study the way information transfer
operators would preserve algebraic properties of the operator A when constructing the so-
called Galerkin approximation. Notably, in [113,114], the authors discuss algebraic ways
of defining multilevel algorithms so that the coarse levels are proven to be computationally
efficient to use with respect to the fine level. The idea is to look at the property of common
convolution matrices (Toeplitz, circulant, etc.) when decimated and multiplied by other
convolution matrices (which is a general way of defining information transfer operators.)
In particular, the use of the Haar wavelet basis to define the restriction and prolongation
operators preserves the Toeplitz structure of the convolution matrix [113,114]. Preserving
this structure allows using fast transform to compute the matrix vector product at both
fine and coarse levels [115].

Similar ideas have been used in later works such as [116] where the problems to be
solved incorporates a Tikhonov based regularization. This prompts a way to define a
distance from the current iterate to the true solution in the same manner as the residual
for PDEs.

If we revert to the more studied context of solving linear problems (Ax = b), the
choice of information transfer operators has been formulated as an optimization problem:
how much should one reduce the dimension with respect to the residual of the problem?
This question can be actually shown to be a NP-hard problem [117]. Nevertheless, there
exist good solutions. As this literature is quite large, and to not distract the reader too
much, we present only approaches we thought were worth considering in our context:
learning based methods. In [118], the authors train a neural network to minimize the
Frobenius norm of the prolongation matrix that send the residual from coarse to fine
scales. Assuming that at coarse level the linear system is solved exactly, the authors show
that such network could generalize to other linear systems. A similar idea was tested in
a reinforcement learning context in [119].
You can find more references on multilevel algorithms in optimization in Appendix A.1.
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3.2.3 Main obstacles to multilevel methods in optimization

In this section, we explore two key obstacles to the application and effectiveness of multi-
level methods in optimization: the "Frequency Principle", and the fact that a decrease in
the objective function through multilevel steps does not necessarily ensure the convergence
of the iterates.

The Frequency Principle. In most optimization applications, iterative methods typ-
ically reduce low-frequency residuals before addressing high-frequency ones. This phe-
nomenon has long been observed in image restoration across various algorithms [120] to
our own experiments (see Chapter 5 and 6). Similarly, during the training of neural net-
works, a similar pattern is observed, known as the Frequency Principle (F-principle) [121]
or the spectral bias of neural networks [122]:

Deep Neural Networks often fit target functions starting from low frequencies and grad-
ually moving to high frequencies during training.

The studies in [121, 122] have demonstrated this behavior on standard image classifi-
cation datasets like MNIST [123] and CIFAR-10 [124], where neural networks first learn
the low-frequency components of the target function, followed by the high-frequency com-
ponents. While certain neural network architectures may not exhibit this bias [125], these
architectures often lack practical utility [125].

This behavior contrasts sharply with the numerical solving of partial differential equa-
tions (PDEs), where high frequencies are corrected first, thereby fully justifying the use
of multigrid methods in that context.

The Frequency Principle suggests that multilevel algorithms in most optimization
scenarios are unlikely to offer a universal accelerator as current optimization algorithms are
also able to recover to find the low frequencies of the solution, emphasizing the importance
of careful and robust algorithm design [106].

Decrease of the objective function with ML steps is not sufficient for conver-
gence of the iterates. In these last paragraphs, we show, with a counter-example,
that decreasing the objective function with multilevel (ML) steps does not ensure con-
vergence of the iterates. This analysis fits the framework of MG/OPT [96]: the proof of
convergence relies on intertwining multilevel steps with gradient steps, the latter ensuring
the convergence of the whole sequence. Hence, this analysis calls for a different proof of
convergence, or a different construction of multilevel algorithms to recover state-of-the-art
guarantees (i.e., convergence to a minimizer). Consider the following setup inspired by
the example discussed in [88].

Lemma 5. Let N ∈ N. Denote by F : RN → R a non-convex function to optimize.
Suppose we have an update map σ : RN → RN that generates a sequence {xk+1} =
σ(xk), which is assumed to converge from any starting point to a critical point of F .
Additionally, suppose there exists an operator ρ such that F (ρ(x)) ≤ F (x) for all x.
Despite these two assumptions, the sequence generated by intertwining ρ updates with
σ updates may not converge to a critical point of F .
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Proof. To illustrate this, consider the non-convex function F : R2 → R defined as follows:

F (x1, x2) =


1
1+x2

if |x1| ≥ 1,
(0, 0) is a minimizer if |x1| < 1.

Define the update maps:

• σ(x1, x2) = 9
10(x1, x2),

• ρ such that ρ(x1, x2) =
(

10
9 x

1, x2
)
for |x1| ≥ 1.

Both σ and ρ satisfy the assumptions:

F (σ(x1, x2)) ≤ F (x1, x2) and F (ρ(x1, x2)) ≤ F (x1, x2).

However, alternating between ρ and σ updates does not guarantee convergence. In-
stead, it can cause the sequence to stall. To see that, suppose that we start from the
point (x1, x2) = (1, 1). The sequence generated by alternating between ρ and σ updates
is as follows:

(x1, x2) = (1, 1),

ρ(x1, x2) =
(10

9 , 1
)
,

σ
(10

9 , 1
)

=
( 9

10 ·
10
9 , 1

)
= (1, 1) ,

...

The sequence oscillates indefinitely around (1, 1), which concludes the proof

This illustrates that ensuring a decrease in the objective function alone is insufficient
for the convergence of the iterates. Such result can also be obtained with convex function,
as shown in the following.

Lemma 6. Let N ∈ N. Denote by F : RN → R a convex function to optimize.
Suppose we have an update map σ : RN → RN that generates a sequence {xk+1} =
σ(xk), which is assumed to converge from any starting point to a minimizer of F .
Additionally, suppose there exists an operator ρ such that F (ρ(x)) ≤ F (x) for all x.
Despite these two assumptions, the sequence generated by intertwining ρ updates with
σ updates may not converge to a minimizer of F .

Proof. Consider the function F : R2 → R defined as:

F (x1, x2) =


1
2‖(x

1, x2)‖2 − 1
2 if ‖(x1, x2)‖2 ≥ 1,

0 otherwise.
(3.17)

Now, define the update maps:

• σ(x1, x2) = 1
2(x1, x2) if ‖(x1, x2)‖2 ≥ 1; otherwise, σ(x1, x2) = (x1, x2).
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• ρ(x1, x2) = −(x1, x2).

The function F has a minimum value of 0, and σ(·, ·) and ρ(·, ·) satisfy the conditions for
decreasing F at each step. However, the sequence generated by alternating σ and ρ may
not converge.

Suppose that we start from the point (x1, x2) = (2, 2). The iterations read

(x1, x2) = (2, 2),
ρ(x1, x2) = (−2,−2),

σ(−2,−2) = (−1,−1),
ρ(−1,−1) = (1, 1),

σ(1, 1) = (1, 1),
ρ(1, 1) = (−1,−1),

σ(−1,−1) = (−1,−1),
...

The sequence will oscillate indefinitely, despite the function values having reached the
minimum value.

This example clearly underscores that additional coherence in the algorithm is neces-
sary to ensure convergence of the iterates.

Remark 4. In practice, multilevel (ML) steps generally perform much better due to first-
order coherence, which guarantees coherence between the updates produced by σ that would
be the gradient descent and the updates produced by ρ that would be our multilevel step.

3.3 Conclusion
In this chapter, we have presented and discussed the motivation behind applying multilevel
methods to optimization. The theoretical and practical success of multigrid methods in
the solving of PDEs are such that these methods are now considered state-of-the-art for
most of the PDE problems they are applied to.

Even though multilevel optimization has shown promising practical result on a wide
range of optimization problem; the theoretical understanding and development of these
methods is not on par with the one of multigrid methods. Moreover, a lot of optimization
problems are not yet amenable to multilevel optimization, in particular when considering
imaging problem that involves non-smooth regularizations, whose proximity operator may
not be available explicitly. In the rest of this manuscript will try to close this gap.
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IML FISTA: theory and applications
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Chapter 4
IML FISTA: a new framework for
non-smooth multilevel optimization

In this chapter we present the central contribution of this thesis, Inexact MultiLevel
FISTA (IML FISTA): a multilevel algorithm with state-of-the-art convergence guarantees
for non-smooth and non-proximable1 optimization problems.

The content of this chapter was partially published in the following papers [126–128].
The presentation of the concepts we used to define IML FISTA contains more details than
in [126].

4.1 Introduction
Starting with the work of Nash [96], numerous extensions of the multigrid framework to
smooth optimization have been made since [103,106–109]. One thing that we can remark
when studying these extensions is that the multilevel approach can greatly accelerate the
solution of optimization problems in various contexts [88–90, 106, 129, 130], and Chapter
2, Section 3.2.2.

In the context of image restoration, several constructions of smooth multilevel al-
gorithms have been shown to significantly accelerate the solution of restoration prob-
lems. However, the final reconstruction result was not as good as it could be: to build
such multilevel algorithms, the original non-smooth function to be optimized was ei-
ther smoothed [107, 108], the regularization completely removed [109], or not the best
available [90]. Indeed, in imaging applications, non-smooth optimization provides state-
of-the-art regularization techniques. With the development of wavelet thresholding [22]
and total variation denoising [13] to denoise smooth signals with sharp edges, and later
compressive sensing [21, 131], it has been common and nearly ubiquitous for the last
twenty years to impose sparsity in some form on the solution. Smooth penalties are no-
tably unable to recover sparse solution, and state-of-the-art regularization such as NLTV
are not proximable explicitly [33]. Thus, one can wonder how the multilevel framework
would perform in a non-smooth, non-proximable optimization context to tackle imaging
problems.

1In the sense that the proximity operator is not explicitly known.
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Non-smoothness is a challenge to define multilevel algorithms. To better capture the
difficulty arising in this context, we highlight in red in the algorithm that computes a
coarse correction for smooth functionals (the ML step) (Algorithm 2), the elements that
are to be adapted in the non-smooth case. A diagram of the ML step is displayed in
Figure 4.1. For instance, the definition of the first order coherence involves the projection

Algorithm 2 MultiLevel (ML) step for a smooth function. What needs to be adapted
for non-smooth functions is in red.
if Coarse correction at current iteration then
xH,0 = IHh xh
vH = IHh (∇Lh(yh) +∇Rh(xh))− (∇LH(xH,0) +∇RH(xH,0))
Set τH > 0 and τ̄H > 0 according to [70]
xH,m = (Id− τH∇FH) ◦ . . . ◦ (Id− τH∇FH)︸ ︷︷ ︸

m gradient steps

(xH,0)

xh = xh + τ̄HI
h
H (xH,m − xH,0)

else
xh = xh

end if

of gradients from the fine level to the coarse level (Chapter 1, Definition 16), something
we cannot do in the non-smooth case.

This chapter is dedicated to the definition of IML FISTA, an algorithm that aims to
tackle non-smooth optimization problems using a multilevel approach, with state-of-the-
art convergence guarantees. A proximal multilevel algorithm able to tackle problems of
the form (2.7) will iterate the following steps:

x̄h,k = ML(xh,k), (4.1)
xh,k+1 = proxτR(x̄h,k − τ∇L(x̄h,k). (4.2)

IML FISTA will take the following form. We highlight in red the elements we added to the
standard multilevel algorithm in order to obtain state-of-the-art convergence guarantees:

ȳh,k = ML(yh,k), (4.3)
xh,k+1≈ proxτR(ȳh,k − τ∇L(ȳh,k)), (4.4)
yh,k+1= xh,k+1 + αh,k(xh,k+1 − xh,k) (4.5)

where ≈ in Equation (4.4) indicates potential errors on the proximity operator of R. To
be convergent and efficient, IML FISTA needs to handle the following challenges.

Challenge 1: extending first order coherence to non-smooth functions. There
exists, to the best of my knowledge, two main ways to define the first order coherence for
non-smooth fine and coarse level functions. The first one, and the one we investigated:
smooth both fine and coarse level functions to compute their gradients. The second
one, and most recent, consists in extending the notion of coherence to subgradients [88].
However, it suffers from a lack of generality and other hindrances. We will discuss this at
the end of the chapter when comparing our frameworks to others.
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Figure 4.1: Scheme of a multilevel iteration. In this chapter, we will discuss how to deal
with non-smooth and non-proximable objective functions Fh, in a multilevel setting. The
elements in red require adaptation for non-smooth optimization. We will defer to Chapter
5 and Chapter 6 the discussion on the information transfer operators. The main building
blocks of our algorithm are the smoothing tools (to define FH), the inexact proximity
operator, and the extrapolation steps (to reach optimal convergence rates).

Challenge 2: dealing with non-proximable penalties. State-of-the-art regulariza-
tions are not only non-smooth, but often also non-proximable. Such penalties require the
computation of an estimation of the proximity operator at each iteration, which raises
new questions to define an efficient multilevel algorithm. In particular, this will have an
impact on the smoothing strategy.

Challenge 3: extrapolation steps. In order to reach the optimal convergence of rate
of O(1/k2), we need to add extrapolation steps to our algorithm. Moreover, the ML step
should be applied to the extrapolated point yh,k. These steps are taken from the FISTA
algorithm [68–70]. The extrapolation steps will be defined as in [70], so that along with
the optimal convergence rate, we also keep the convergence to a minimizer of the objective
function.

Organization of the chapter. This chapter is organized as follows. We will describe
the building blocks of our algorithm in details. First, we begin by a presentation of
the smoothing tools that are used to define our multilevel algorithm. Then, we will
discuss how to deal with non-proximable penalties, and the influence of the error on
the convergence guarantees of the algorithm. The last building block of our algorithm
is the possibility of adding extrapolation steps after multilevel and proximal-gradient
steps. This framework is the one of inertial algorithms such as FISTA [68–70]. Combined
with multilevel steps, these extrapolation steps will help us obtain optimal theoretical
convergence guarantees and practical acceleration of the minimization. We then introduce
our algorithm IML FISTA in full and its proof of convergence. We will conclude this
chapter with a comparison of this general framework with concurrent ones of the literature.
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4.2 Smoothing to bridge the gap
We have seen in the previous chapter how to define multilevel algorithms for smooth
optimization. The construction of these algorithms can be extended to non-smooth op-
timization problems by smoothing the fine and coarse functions. We want to emphasize
that the problem we solve is still the non-smooth one, and the smoothing is only a proxy
to define the multilevel steps.

4.2.1 Smoothing tools
The rich understanding of smooth optimization by the community has lead to the devel-
opment of smoothing frameworks that can be applied to solve non-smooth optimization
problems.

There exists several ways of defining a smoothed version of a non-smooth function.
The one we used is the one developed by the authors of [132]. A complete presentation
requires the following definitions.

Definition 17. Infimal convolution [53, Chapter 12]. Let g and ω be functions
both from H to (−∞,+∞]. The infimal convolution of g and ω is

g � ω : H → (−∞,+∞] : x 7→ inf
y∈H

(g(y) + ω(x− y)) (4.6)

This infimal convolution enjoys the following properties if g, and ω belong to Γ0(H):

Proposition 1. Let g and ω be functions belonging to Γ0(H). Then the following
properties hold:

1. g � ω is convex [53, Proposition 12.11].

2. If g is coercive and ω is bounded below then g � ω is everywhere unique and
g � ω ∈ Γ0(H) [53, Proposition 12.14].

The most notable example of the infimal convolution is the Moreau envelope.

The Moreau envelope. The Moreau envelope of a function g was first introduced by
Moreau in his seminal works on duality and proximal point operators [133, 134]. It is a
particular instance of the infimal convolution between functions.

Definition 18. Moreau envelope. [53, Chapter 12]. Let g : H → (−∞,+∞]
and let γ > 0. The Moreau envelope of g of parameter γ is defined as:

γg = g �

(
1

2γ ‖ · ‖
2
)
. (4.7)

Again, if g belongs to Γ0(H), its Moreau envelope enjoys useful properties involving
the proximity operator (Definition 13):
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Proposition 2. [53, Remark 12.24]. Let g ∈ Γ0(H), and γ > 0. Then for x ∈ H:

γg(x) = g(proxγg(x)) + 1
2γ ‖x− proxγg(x)‖2. (4.8)

proxγg(x) has been defined in Chapter 2, Definition 13 and is the unique point satisfying
Equation (4.7), i.e., the minimum of the associated infimal convolution problem.

Proposition 3. [53, Proposition 12.30]. Let g ∈ Γ0(H), and γ > 0. Then
γg : H 7→ R is differentiable on H with 1/γ-Lipschitz continuous gradient:

(∀x ∈ H) ∇γg(x) = 1
γ

(
x− proxγg(x)

)
(4.9)

Thus, a non-smooth function g with proximity operator known under closed form
possess a smooth counterpart whose gradient is easily computable with the proximity
operator. Now that we have introduced the infimal convolution and the Moreau envelope,
we will detail the properties of the resulting smooth approximation of g.

4.2.2 Smoothable convex function
To properly characterize the quality of the smoothing whether it is from the Moreau enve-
lope or from another technique, the authors of [132] introduced the concept of smoothable
convex function, which provides a lower bound and an upper bound on the smooth ap-
proximation. These two bounds allow us to control the tightness of the approximation.

Definition 19. Smoothable convex function [132]. Let g ∈ Γ0(H). Let X ⊂ H
be a closed convex set. The function g is called (µ, η,K)−smoothable over X if there
exist η1, η2 satisfying η1 + η2 = η > 0 such that for every γ > 0 there exists a
continuously differentiable convex function gγ : H → (−∞,+∞] such that the following
hold:

1. for every x ∈ X, g(x)− η1γ ≤ gγ(x) ≤ g(x) + η2γ.

2. The function gγ has a Lipschitz gradient over X with Lipschitz constant which
is less than or equal to K + µ

γ
.

The function gγ is called a "γ−smooth approximation" of g over X with parameters
(µ, η,K).

Remark 5. A smoothable convex function satisfies the following properties:

1. The sum of two smoothable convex functions on X is a smoothable convex func-
tion on X, where the parameters µ, η,K are the sum of the parameters of the two
functions [132, Lemma 2.1].

2. The composition of a smoothable convex function on X with a linear transformation
(i.e. x 7→ Ax + b, with A a linear operator and b a vector in the image of A) is
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a smoothable convex function on a transformation over A−1(X − b) [132, Lemma
2.2]. Where A−1 is the inverse linear mapping of A.

Remark 6. The Moreau envelope of g of parameter γ > 0 provides a (µ, η,K)−smooth
approximation of g over X with µ = 1, and K = 0. η depends on the subgradients of g
as we will see below.

This framework was developed to guarantee that minimizing a γ−smooth approxi-
mation of a non-smooth function g, for a well-chosen γ [132, Theorem 3.1], yields an
ε-approximation of the minimum value of g over X in a finite number of iterations with
fast smooth optimization algorithms. Theorem 3.1 of [132] explicitly links the parameter
γ and the number of iterations necessary to reach an ε−approximation of the minimum
value. For more details about these results and its potential use in our context, see
Appendix A.2.1.

To define a smooth approximation, the authors of [132] extend the ideas behind the
Moreau envelope and consider the infimal convolution of g with a continuously differen-
tiable convex function ω.

Definition 20. Inf-conv γ-smooth approximation [132, Definition 4.2]. Let
g : H → (−∞,+∞] be a closed proper convex function and let ω : H → R be a C1,1

convex function with Lipschitz gradient of constant 1/σ (σ > 0). Suppose that for any
γ > 0 and any x ∈ H, the following infimal convolution is finite:

gicγ (x) = inf
u∈H

{
g(u) + γω

(
x− u
γ

)}
(4.10)

Then gicγ is called the inf-conv γ−smooth approximation of g.

From this definition, and using the dual formulation of Equation (4.10), one can derive
the following result:

Lemma 7. [132, Lemma 4.2]. Consider the setting of Definition 20 and let X
be a closed convex set of H. Suppose that g is subdifferentiable over X. Then for any
γ > 0 and x ∈ X the following holds:

g(x)− γω∗(dx) ≤ gicγ (x) ≤ g(x) + γω(0) (4.11)

where dx ∈ ∂g(x), and ω∗ is the Fenchel conjugate of ω.

In Equation (4.11), one can recognize the constant η1 and η2 in the definition of a
smoothable convex function. In particular, η1 can be chosen so that

η1 = sup
x∈X

sup
d∈∂g(x)

ω∗(dx) < +∞, (4.12)

while η2 = ω(0). The choice of ω will thus control the tightness of the approximation.
Ideally, one wants to find ω̂ such that:

ω̂ ∈ arg min
ω∈C1,1(H,R)

{
sup
x∈X

sup
d∈∂g(x)

ω∗(dx)
}

(4.13)
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This problem is rather complicated to solve, but for some known smoothing techniques
such as the Moreau envelope, and for particular functions g, η is available explicitly.

For instance take g as the `1−norm over RN . Its Moreau envelope γg yields a (µ =
1, η = N/2, K = 0)−smooth approximation of g [132, Example 4.2]. Choosing instead
the approximation gγ : x 7→ ∑N

i=1

√
γ2 + x2

i , yields a (1, N, 0)−smooth approximation of
g [132, Example 4.6]. This smoothing is significantly worse, in theory, than the Moreau
envelope smoothing.

Remark 7. Any convex function is smoothable over closed convex sets provided that its
subgradients are bounded [132, Corollary 4.1].

As presented in Algorithm 2, the first order coherence relied on the gradient of L and
R, at fine and coarse levels. When considering non-smooth functions, such a definition is
not possible anymore. This smoothing framework offers us a new way to handle the first
order coherence and ensure that decreasing the coarse level will decrease the fine level
objective function.

4.3 Inexact proximity operator: estimation and guar-
antees

As previously discussed in Chapter 2, Section 2.1.2, state-of-the-art regularizations consid-
ered in variational approaches are often the result of the composition of a linear operator
D and a non-smooth penalty g. The proximity operator of the composition is explicitly
available first if the proximity operator of g is known under closed form, and second if D
and its adjoint respect the following relationship: D∗D ∝ Id. This encompasses orthogo-
nal operators such as wavelet transform but appears limited as many standard choices of
D do not satisfy this property. If D encodes the finite difference operator involved in the
total variation, then this relationship is not verified anymore, and the proximity operator
of g ◦ D needs to be estimated through an optimization procedure. This estimation has
been investigated rigorously in the literature [27,62,70,135–138].

To account for inexactness in the proximity operator computation and adapt con-
vergence proofs, one needs to enlarge the notion of subdifferential through the following
definition [62,70,135]:

Definition 21. ε-subdifferential. The ε-subdifferential of R at z ∈ dom R is defined
as:

∂εR(z) = {y ∈ RN | R(x) ≥ R(z) + 〈x− z, y〉 − ε,∀x ∈ RN}. (4.14)

We used three types of approximations of proximity operators that were proposed in the
literature [27,62,135], based on this definition.

Definition 22. Type 0 approximation [27]. We say that z ∈ RN is a type 0
approximation of proxγR(y) with precision ε, and we write z ≈0,ε proxγR(y), if and
only if:

‖z − proxγR(y)‖ ≤
√

2γε. (4.15)
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This approximation is the easiest to formulate with respect to the forward-backward
step. The sequence is written as follows:

xk+1 = proxγR(xk − γ∇L(xk)) + ek, (4.16)

where ek models the error in the computation of the proximity operator, and is such that
‖ek‖2 = ε. To obtain convergence of the sequence, the summability of the norm of the
error is sufficient [27, Theorem 3.4].

The next two types of approximations were proposed in [62] to estimate up to a
precision ε the proximity operator.

Definition 23. Type 1 approximation [62]. We say that z ∈ RN is a type 1
approximation of proxγR(y) with precision ε, and we write z ≈1,ε proxγR(y), if and
only if:

0 ∈ ∂ε
(
R(z) + 1

2γ ‖z − y‖
2
)
. (4.17)

Definition 24. Type 2 approximation [62]. We say that z ∈ RN is a type 2
approximation of proxγR(y) with precision ε, and we write z ≈2,ε proxγR(y), if and
only if:

γ−1(y − z) ∈ ∂εR(z). (4.18)

Remark 8. Approximations of type 2 imply approximations of type 1 [62,70] and under
some conditions discussed in [62], approximation of type 0 implies approximation of type
2. Note that these three types of approximations are not equivalent.

When these approximations are used in forward-backward-based algorithms, conver-
gence of the sequence to a minimizer is known from the literature: approximations of
type 1 and 2 are covered by [70] for inertial versions of the forward-backward algorithm,
while the type 0 approximation is treated in [27] only for the forward-backward algo-
rithm. Typical cases of image restoration, where dual optimization is used, are based on
approximations of type 2 (see Chapter 5). We will use only approximations of type 2 in
our experiments, following [62], but the theoretical results are valid and presented for the
three types of approximations.

The type of chosen approximation defines how the sequence (εk)k∈N will be summable
against k or k2. Therefore, it is independent, theoretically, of the multilevel framework.

4.3.1 Computation of the proximity operator of g ◦D
If D : RN 7→ RK is not a projection on a tight frame (e.g., a union of wavelets) or
an orthogonal basis, a common way of estimating the proximity operator consists in
formulating the minimization problem in the dual. Denoting R = g ◦D, we have that (see
for instance [62,63,139,140]):

(∀x ∈ RN) proxγR(x) := proxγg◦D(x) = x−D∗û, (4.19)

with:
û ∈ Argmin

u∈RK

1
2‖D

∗u− x‖2 + (γg)∗(u), (4.20)
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where g∗ is the convex conjugate of g. This problem is known as the dual problem.
One can directly see that the linear operator is now inside the smooth term, and the
composition has an explicit gradient formulation.

An approximation of ûmay be obtained by applying any adapted optimization method
to (4.20). For instance, FISTA yields the following sequence (choosing u0 = v0):

uk+1 =
(
Id− γproxg/γ (·/γ)

)
((Id−DD∗)vk + γDx) (4.21)

vk+1 = (1 + αk)uk+1 − αkuk. (4.22)

where the first step is deduced from the Moreau decomposition [53] (that links the prox-
imity operator of g to the proximity operator of g∗). Dual optimization is a simple way
to estimate the proximity operator while offering guarantees on the computed approxi-
mation, as stated in the following lemma.

Proposition 4. Dual optimization yields approximation of type 2. Assume
that (uk)k∈N is a minimizing sequence for the dual function in (4.20). This yields:

• A convergent sequence (x−D∗uk)k∈N to proxγg◦D (4.19).

• This sequence provides a type 2 approximation of the proximity operator.

Proof. The first point comes from [62, Theorem 5.1]. Then the approximation of type 2
comes from [62, Proposition 2.2, and 2.3].

At each iteration of FISTA or IML FISTA (Equation (4.4)), an estimation of the
proximity operator is computed by solving approximately Problem (4.20).

4.3.2 Accuracy of the computation of the proximity operator
Convergence guarantees of algorithms using inexact proximity operators are directly
linked to the decrease of the error introduced by estimating the proximity operator at
each iteration. This problem was notably addressed in [141], where the authors intro-
duced the Speedy Inexact Proximal-Gradient Strategy (SIP). In order to achieve this
decrease, the number of sub-iterations used to estimate the proximity operator is dynam-
ically increased.

More precisely, if at step k, F (xk) > F (xk−1), we decrease the tolerance2 (tol) on the
estimation of the proximity operator at the next steps k + 1, k + 2, . . . as tol controls the
relative distance between two consecutive sub-iterates of the proximity operator estima-
tion. We expect that a small value of tol will induce a high accuracy (i.e. reduce the
value of ε) on the estimation.

This minimization is carried out by FISTA coupled with a warm start strategy as
in [57]: the estimate of the proximity operator at step k is used as the initial point for
the estimation at step k + 1.

In all cases, a lower error is correlated with a higher computational cost, which is
why some strategies rather use a fixed budget of sub-iterations to compute the proximity

2Intuitively, the error on the computation of the proximity operator acts like the best precision one
can reach on the minimal value of F . It leads to divergence on the sequence when this error is reached.
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Algorithm 3 Accuracy of the proximity operator estimation
1: Set x0 ∈ RN ,
2: for k = 0, 1, . . . , do
3: if F (xk) > F (xk−1) then
4: tol = tol/10
5: end if
6: end for

operator using the dual formulation [57]. This fixed budget comes at the cost of a limited
precision on the estimated solution and may lead to divergence after many iterations.

4.3.3 Circumventing the inexactness
This presentation would not be complete without mentioning the numerous primal-dual
algorithms that have been proposed to solve problems of the form (2.7).

Primal-dual algorithms. Many methods circumvent this dual optimization by directly
introducing dual steps paired with primal steps to reach a minimizer [140, 142–144], but
their cost for large-scale problems remains high, and they may still need to compute
inexact proximity operators [145].

Inexact proximal algorithms with fixed number inner iterations. Alongside
the literature we based our algorithm on, other works have focused on deriving inexact
proximal algorithm where the inner loop had a fixed number of iterations (in opposition
to our strategy here).

The idea is to formulate the problem in a primal-dual sense [146,147], which allows one
to derive inexact forward-backward algorithms with a fixed number of inner primal-dual
iterations to evaluate the proximity operator, combined with the warm start strategy.

Even though inertial versions of these algorithms do exist [147], convergence guarantees
are weaker than those of FISTA with inexact proximity operator [70].

4.4 Extrapolation steps
There exist plenty of acceleration techniques in optimization. For problems of the form
(2.7), the optimal worst case rate of convergence is 1/k2. To reach this rate of convergence,
it was first proposed in [67] to add extrapolation steps to a classical gradient descent
algorithm and later to proximal gradient descent in [68].

4.4.1 Our choice of extrapolations steps
We want to be able to handle inexactness in the proximity operator, and thus small
perturbation errors on the sequence. Luckily, a framework developed in [70] precisely
describes how to deal with errors in the computation of the proximity operator while
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allowing extrapolation steps. The algorithm is as follows:

xk+1 = FBεki (yk), (4.23)

tk+1 =
(

(k + 1) + a− 1
a

)d
, (4.24)

yk+1 = xk+1 +
(
tk − 1
tk+1

)
(xk+1 − xk). (4.25)

where
(∀x ∈ RN) FBεi(x) ≈i,ε proxτR (x− τ∇L(x)) (4.26)

replaces the exact computation of the proximity operator. The sequence (tk)k∈N is parametrized
by [70, Definition 3.1]: {

d = 0
or d ∈]0, 1] & a > max{1, (2d) 1

d}. (4.27)

This allows us to go continuously from a forward-backward algorithm (with d = 0) to
FISTA (d = 1). This parameter was primarily introduced as a way to control the inertia
with respect to the error committed when estimating the proximity operator [70].

4.4.2 Inertia and approximation error
The necessary speed of the error’s decrease depends on the choice of d (Equation (4.27)),
therefore on the quantity of inertia incorporated at each iteration; and on the type of
approximation we are using. Indeed, going from d = 1 (FISTA) to d = 0 (FB) relaxes the
decrease speed [70]. This can be useful if the approximation error is too large.

We will see in our numerical experiments (Chapter 5, Section 5.6) that it is also ad-
vantageous, in some contexts, for multilevel algorithms to use d < 1 to avoid unnecessary
oscillations when leaving the coarse models.

4.5 Inexact MultiLevel FISTA
To facilitate the presentation of the proposed algorithm IML FISTA, we will first introduce
its two-levels version, then in Section 4.5.5 we will generalize it to an arbitrary number
of levels.

4.5.1 Our algorithm
Following the notations introduced in Chapter 2, we index by h (resp. H) all quantities
defined at the fine (resp. coarse) level. We thus define Fh := F : RNh → (−∞,+∞]
the objective function at the fine level where Nh = N , such that Fh = Lh + Rh (with
Lh := L and Rh := R). We pair this objective function at fine level with its coarse level
approximation, which is denoted FH : RNH → (−∞,+∞], with NH < Nh, and where
LH , RH are lower dimensional approximations of L and R.
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One standard step of our algorithm can be summarized by the following three instruc-
tions:

ȳh,k = ML(yh,k), (4.28)
xh,k+1 = FBεh,ki (ȳh,k), (4.29)
yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k) (4.30)

which are developed in details in Algorithm 4, and where ML encompasses Steps 3 to 11.
The algorithm works as follows. Given the current iterate yh,k at fine level, we can

decide to update it either by a standard fine step, combining Steps 10 and 12-14 of the
algorithm, or by performing iterations at the coarse level (cf. steps 5-8), followed by a
standard fine step (cf. steps 12-14).

Particular attention is paid to steps 5-8, which produce a coarse correction that is used
to define an intermediate fine iterate ȳh,k. The coarse correction is used to update the
auxiliary variable yh,k and not xh,k directly (see Equations (4.29) and (4.30)). This makes
sense for two reasons: first, the iterate that receives the forward-backward update is yh,k,
therefore it is natural to update it with an ML step beforehand; second, the convergence
framework we chose is suited to deal with corrections to the sequence if incorporated
inside the forward-backward step.

To obtain this coarse correction, the current iterate yh,k is projected to the coarse level
thanks to a projection operator IHh , and it is used as the initialization for the minimization
of the coarse approximation FH .

This generates a sequence (xH,k,`)`∈N, where k represents the current iteration at the
fine level and ` indexes the iterations at the coarse level. This sequence is defined by
xH,k,`+1 = ΦH,`(xH,k,`), with ΦH,` any operator such that, after m > 0 coarser iterations,
FH(xH,k,m) ≤ FH(xH,k,0). A discussion about an adequate choice for m is deferred to
Chapter 5. While this operator has to implicitly adapt to the current step k, its general
construction does not depend on k. After m iterations at the coarse level we obtain a
coarse direction xH,k,m − xH,k,0, prolonged at the fine level with IhH to update yh,k.

The central point of multilevel approaches is to ensure that the correction term xH,k,m−
xH,k,0, after prolongation from the coarse to the fine level, leads to a decrease of Fh. For
this, particular care must be taken in the selection of the following elements:

(i) the coarse model FH ,

(ii) the minimization scheme ΦH,•,

(iii) the information transfer operators IHh and IhH .

We detail these choices in the following subsections.

4.5.2 Smooth coarse model for non-smooth multilevel optimiza-
tion

In our algorithm the construction of coarse functions relies on smoothing the non-differentiable
Rh [132] to ensure similarity with the fine model, and at the same time to impose desirable
properties to the coarse model. As demonstrated in [89,90], smoothing is a natural choice
to extend ideas coming from the classical smooth case [98] to multilevel proximal gradient
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Algorithm 4 IML FISTA
1: Set xh,0, yh,0 ∈ RN , th,0 = 1
2: while Stopping criterion is not met do
3: if Descent condition and r < p Under this condition, we use coarse models then
4: r = r + 1,
5: xH,k,0 = IHh yh,k Projection
6: xH,k,m = ΦH,m−1 ◦ .. ◦ ΦH,0(xH,k,0) min FH
7: Set τ̄h,k > 0,
8: ȳh,k = yh,k + τ̄h,kI

h
H (xH,k,m − xH,k,0) Coarse step update whose size is set by τ̄h,k

9: else
10: ȳh,k = yh,k
11: end if
12: xh,k+1 = FBεh,ki (ȳh,k) min Fh
13: th,k+1 =

(
k+a
a

)d
, αh,k = th,k−1

th,k+1

14: yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k). Inertial step
15: end while

methods. We take the ideas originally proposed in [89, 90], and develop them further in
the present contribution.

Smoothed convex approximations exist if the smoothing is done according to the
principles developed in [132], and presented in Section 4.2.2, where the sum η1 + η2
depends on R and on the type of smoothing (Definition 19).

Definition 25. Coarse model FH for non-smooth functions. The coarse model
FH is defined for the point yh ∈ RNh as:

FH = LH +RH,γH + 〈vH , ·〉, (4.31)

where

vH = IHh (∇Lh(yh) +∇Rh,γh(yh))− (∇LH(IHh yh) +∇RH,γH (IHh yh)). (4.32)

Rh,γh and RH,γH are smoothed versions of Rh and RH respectively, and they verify
Definition 19 with smoothing parameters γh > 0 and γH > 0.

Adding the linear term 〈vH , ·〉 to LH +RH,γH allows to impose the so-called first order
coherence recalled in Definition 26 below.

Remark 9. Note that if Rh and RH are smooth by design, one can simply replace RH,γH

and Rh,γh by RH and Rh, respectively. The construction stays otherwise the same.

Definition 26. First order coherence. The first order coherence between the
smoothed version of the objective function Fh at the fine level and the coarse level
objective function FH is verified in a neighborhood of yh if the following equality holds:

∇FH(IHh yh) = IHh ∇ (Lh +Rh,γh) (yh). (4.33)
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The following lemma shows that our choice of coarse model respects the first order
coherence between two smoothed fine and coarse level functions.

Lemma 8. If FH is given by Definition 25, it necessarily verifies the first order co-
herence (Definition 26).

Proof. Consider the gradient of the coarse model FH and combine it with the definition
of vH in Equation (4.32). It yields

∇FH(IHh yh) = ∇LH(IHh yh) +∇RH,γH (IHh yh) + vH ,

= IHh (∇Lh(yh) +∇Rh,γh(yh)) .
(4.34)

This condition ensures that, in the neighborhood of the current iterates yh = yh,k and
IHh yh,k = xH,k,0, smoothed versions of the fine and of the coarse level objective functions
are coherent up to order one [90].

Choice of coarse iterations. The operators ΦH,• aim to build a sequence producing
a sufficient decrease of FH after m iterations.

Assumption 1. Coarse model decrease. Let (ΦH,`)`∈N be a sequence of operators such
that there exists an integer m > 0 that guarantees that if xH,m = ΦH,m−1 ◦ . . . ◦ΦH,0(xH,0)
then FH(xH,m) ≤ FH(xH,0). Moreover, xH,m − xH,0 is bounded.

Some typical choices for ΦH,` are the gradient descent step, inertial gradient descent
step, forward-backward step or inertial forward-backward step (see Chapter 5, Section 5.4
for a comparison of these operators in a multilevel context - the choice depends mostly
on the intensity of degradation for image reconstruction problems). These operators
guarantee that xH,m − xH,0 is a bounded (through convergence of the sequence [70])
descent direction for FH .

Construction of information transfer operators. Going from one level to the other
requires several information transfers. For this purpose recall that information transfer
operators IHh and IhH are called coherent information transfer operators if there exists
ν > 0 such that IhH = ν(IHh )T (Chapter 2, Definition 14).

Fine model minimization with multilevel steps. With the previous definitions of
FH , ΦH,• and IHh , the following lemmas prove that minimization at the coarse level also
induces a descent direction at the fine level.

Lemma 9. Descent direction for the fine level smoothed function. Let us
assume that IHh and IhH are CIT operators and that FH satisfies Definition 25 and that
ΦH,• verifies Assumption 1. Then, IhH(xH,m−xH,0) is a descent direction for Lh+Rh,γh.
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Proof. Set yh ∈ RNh and let us define pH := xH,m − xH,0. Recall that xH,0 = IHh yh. From
the definition of descent direction we have that:

〈pH ,∇FH(xH,0)〉 ≤ 0.

By the first order coherence and imposing IHh = ν−1
(
IhH
)T

we obtain

〈pH ,∇FH(xH,0)〉 = 〈pH , IHh ∇(Lh +Rh,γh)(yh)〉 = ν−1〈IhH(pH),∇(Lh +Rh,γh)(yh)〉 ≤ 0.

We can now go a step further and derive a bound on the decrease of the non-smooth
objective function at the fine level Fh := Lh + Rh. Following [89, 90], we search a proper
step size τ̄h that avoids "too" big corrections from the coarse level by guaranteeing that:

(Lh +Rh,γh)(yh + τ̄hI
h
H(xH,m − xH,0)) ≤ (Lh +Rh,γh)(yh). (4.35)

Lemma 10. Fine level decrease. If the assumptions of Lemma 9 hold, the iterations
of Algorithm 4 ensure:

Fh(yh + τ̄ IhH(xH,m − xH,0)) ≤ Fh(yh) + (η1 + η2)γh. (4.36)

Proof. This directly comes from the definition of a smoothed convex function (Definition
19). As there exists a value of τ̄h satisfying Equation (4.35), we have:

Fh(yh + τ̄hI
h
H(xH,m − xH,0)) ≤ (Lh +Rh,γh)(yh + τ̄hI

h
H(xH,m − xH,0)) + η1γh

≤ (Lh +Rh,γh)(yh) + η1γh

≤ Fh(yh) + (η1 + η2)γh.
(4.37)

This result shows that a coarse level minimization step leads to a decrease of Fh, up
to a constant (η1 + η2)γh that can be made arbitrarily small by driving γh to zero.

This type of result is commonly found in the literature of multilevel algorithms [89,90,
127, 128], but it is not sufficient to guarantee the convergence of the generated sequence.
In the next section we derive stronger convergence guarantees.

4.5.3 Non-smooth coarse model for non-smooth multilevel op-
timization

The previous section showed the construction of a smooth coarse model FH that would
ensure a decrease of the fine level objective function Fh. We can extend these ideas to
propose non-smooth coarse models with similar guarantees. A simple additional assump-
tion is nonetheless required to ensure the decrease of the fine level objective function with
such coarse level.
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Assumption 2. Smoothing type. Let γH > 0. Let RH be a smoothable convex function
(Definition 19), with an inf-conv γH-smooth approximation (Definition 20), where for all
x ω(x) ≥ 0. This approximation RH,γH : H → (−∞,+∞] is such that there exist η > 0
such that the following hold:

(∀x ∈ X) RH(x)− ηγ ≤ RH,γH (x) ≤ RH(x). (4.38)

This assumption is met by inf-conv γH-smooth approximation (Definition 20) as soon
as ω(0) = 0 (Lemma 7). It is the case of the Moreau envelope and of other choices of ω
constructed with norms.

Definition 27. Non-smooth coarse model FH. The coarse model FH is defined
for the point yh ∈ RNh as:

FH = LH +RH + 〈vH , ·〉, (4.39)

where

vH = IHh (∇Lh(yh) +∇Rh,γh(yh))− (∇LH(IHh yh) +∇RH,γH (IHh yh)).

Remark 10. Two remarks. The coarse model is no longer constructed with a smooth
regularization and thus the first order coherence is imposed between smoothed version of
the fine level and of the coarse level objective functions.

Definition 28. First order coherence between smoothed functions. The first
order coherence between the smoothed version of the objective function Fh at the fine
level and the smoothed coarse level objective function FH is verified in a neighborhood
of yh if the following equality holds:

∇ (LH +RH,γH ) (IHh yh) = IHh ∇ (Lh +Rh,γh) (yh). (4.40)

The defined coarse model obviously respects this definition.

Lemma 11. If FH is given by Definition 27, it necessarily verifies the first order
coherence (Definition 28).

Proof. Straightforward.

Now it remains to show that decreasing this non-smooth coarse model will decrease
the fine level objective function.

Fine model minimization with non-smooth multilevel steps. With the previous
definitions of FH , ΦH,• and IHh , the following lemmas prove that minimization at the
coarse level also induces a descent direction at the fine level.

Lemma 12. Descent direction for the fine level smoothed function. Let us
assume that IHh and IhH are CIT operators and that FH satisfies Definition 27 and
Assumption 2 and that ΦH,• verifies Assumption 1. Then, IhH(xH,m−xH,0) is a descent
direction for Lh +Rh,γh.
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Proof. Set yh ∈ RNh and let us define pH := xH,m − xH,0. Recall that xH,0 = IHh yh. From
Assumption 1 we have that FH(xH,m) ≤ FH(xH,0), which is

LH(xH,m) +RH(xH,m) ≤ LH(xH,0) +RH(xH,0) (4.41)

By taking the inf-conv γH-smooth approximation of RH we have that:
LH(xH,m) +RH,γH (xH,m) ≤ LH(xH,0) +RH,γH (xH,0) (4.42)

Thus:
〈pH ,∇FH,γH (xH,0)〉 ≤ 0.

By the first order coherence and imposing IHh = ν−1
(
IhH
)T

we obtain

〈pH ,∇FH,γH (xH,0)〉 = 〈pH , IHh ∇(Lh +Rh,γh)(yh)〉 = ν−1〈IhH(pH),∇(Lh +Rh,γh)(yh)〉 ≤ 0.

Now with a proper step size τ̄h that guarantees:
(Lh +Rh,γh)(yh + τ̄hI

h
H(xH,m − xH,0)) ≤ (Lh +Rh,γh)(yh),

we recover the fine level decrease property:

Lemma 13. Fine level decrease. If the assumptions of Lemma 12 hold, the itera-
tions of Algorithm 4 ensure:

Fh(yh + τ̄ IhH(xH,m − xH,0)) ≤ Fh(yh) + (η1 + η2)γh. (4.43)

This allows us to use a non-smooth coarse model at coarse level, which in case of an
explicit proximity operator for Rh may be of interest as a non-smooth coarse model should
approximate better the fine level objective function.

4.5.4 Asymptotic convergence guarantees
In order to obtain the convergence of the iterates to a minimizer of Fh and the optimal
rate of convergence of the objective function values, we need to take into account two
types of inexactness in the computation of one iterate: one on the proximity operator of
Rh and one on the gradient of Lh. The error on the gradient will allow us to model coarse
corrections to the fine level sequence with our multilevel framework, while the error on
the proximity operator will allow us to consider approximation of proximity operators
whose closed form is unknown.

The goal of this section is to show that an iteration of our algorithm (Steps 12-14 in
Algorithm 4) can be reformulated as:

xh,k+1 ≈i,εh,k proxτh,kRh (yh,k − τh,k∇Lh (yh,k) + ch,k) ,
yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k),

(4.44)

where we introduce ch,k to model uncertainties on the gradient step due to the multilevel
corrections and the pair (i, εh,k) introduced in (4.26), to designate the type and the ac-
curacy of the proximity operator approximation. Such rewriting allows us to fit in the
framework described by the authors of [70] to define an inexact and inertial forward-
backward algorithm.
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Inexactness due to coarse corrections. As presented in the algorithm, a coarse
correction is inserted before a typical fine level step. We can see the coarse correction as
some kind of error on the gradient of Lh. In a typical multilevel step, at the fine level (cf.
Steps 12 and 8 of Algorithm 4), the update would simply take the form:

ȳh,k = yh,k + τ̄h,kI
h
H(xH,k,m − xH,k,0), (4.45)

xh,k+1 ≈i,εh,k proxτh,kRh (ȳh,k − τh,k∇Lh (ȳh,k)) , (4.46)
yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k). (4.47)

It is easy to see that the coarse corrections are finite as we sum a finite number of bounded
terms, thanks to computing updates at the coarse level with a Lipschitz gradient. This
reasoning is detailed in the following proof for completeness of the argument.

Lemma 14. Coarse corrections are finite. Let βh and βH be the Lipschitz con-
stants of the gradients of Lh and LH , respectively. Assume that we compute at most p
coarse corrections. Let τh,k, τH,l ∈ (0,+∞) be the step sizes taken at fine and coarse lev-
els, respectively. Assume that τH,l < β−1

H and that τh,k < β−1
h and denote τ̄h = supk τ̄h,k.

Then the sequence (ch,k)k∈N in RNh generated by Algorithm 4 is defined as:

ch,k = τh,k
(
∇Lh(yh,k)−∇Lh(ȳh,k) + (τh,k)−1τ̄h,kI

h
H(xH,k,m − xH,k,0)

)
, (4.48)

if a coarse correction has been computed, and ch,k = 0 otherwise. This sequence is such
that ∑k∈N k‖ch,k‖ < +∞.

Proof. ch,k only concerns the gradient update, so we focus on the forward step. Consid-
ering

∇Lh (ȳh,k) = ∇Lh (ȳh,k)−∇Lh (yh,k) +∇Lh (yh,k) ,

and that we can rewrite ȳh,k = ȳh,k + yh,k − yh,k, the forward step can be rewritten as:

ȳh,k − τh,k∇Lh(ȳh,k) = yh,k − τh,k∇Lh(yh,k)

+ τh,k

(
∇Lh(yh,k)−∇Lh(ȳh,k) + 1

τh,k
(ȳh,k − yh,k)

)
.

Therefore, each time a multilevel step is performed, it induces at iteration k, an error that
reads:

ch,k = τh,k
(
∇Lh(yh,k)−∇Lh(ȳh,k) + (τh,k)−1τ̄h,kI

h
H(xH,k,m − xH,k,0)

)
.

Now, assuming that we use inertial inexact proximal gradient steps at the coarse level3,
the corresponding minimization verifies Assumption 1 on the decrease of FH . It also
produces bounded sequences if constructed according to the rules of [70, Definition 3.1,
Theorem 4.1] as the sequences (xH,k,`)k∈N,`∈N∗ converge. The sequence (ch,k)k∈N has at

3The most general assumption in Assumption 1.
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most p non-zero terms, that are bounded as shown below:

τ−1
h,k‖ch,k‖ = ‖∇Lh(yh,k)−∇Lh(ȳh,k) + (τh,k)−1τ̄hI

h
H(xH,k,m − xH,k,0)‖ (4.49)

≤ βhτ̄h‖IhH(xH,k,m − xH,k,0)‖+ (τh,k)−1τ̄h‖IhH(xH,k,m − xH,k,0)‖ (4.50)

≤ τ̄h

(
βh + 1

τh,k

)
‖IhH(xH,k,m − xH,k,0)‖. (4.51)

The second inequality is deduced from the fact that Lh has a βh-Lipschitz gradient and
that ȳh,k− yh,k = τ̄h,kI

h
H(xH,k,m−xH,k,0). Finally, as (‖xH,k,0−xH,k,m‖)k∈N is bounded, we

have:

τ−1
h,k‖ch,k‖ ≤ τ̄h

(
βh + 1

τh,k

)
sup
k∈N
‖IhH(xH,k,m − xH,k,0)‖ < +∞. (4.52)

Convergence of IML FISTA (Algorithm 4). We now discuss the convergence of
our algorithm for the three types of approximation of the proximity operator introduced
in Section 4.3.

We first consider a standard inexact forward-backward with a finite number of multi-
level coarse corrections.

Theorem 4 (Approximation of Type 0). Let us suppose in Algorithm 4 that ∀k ∈
N∗, αh,k = 0 at step 14, that the assumptions of Lemma 14 hold, and that the sequence
(εh,k)k∈N is such that ∑k∈N

√
‖εh,k‖ < +∞. Set xh,0 ∈ RNh and choosing approximation

of Type 0, the sequence (xh,k)k∈N converges to a minimizer of Fh.

Proof. The proof stems from Theorem 3.4 in [27] applied to the defined sequence.

Theorem 5 (Approximations of Type 1 and Type 2). Let us suppose in Algorithm 4,
that ∀k ∈ N∗, th,k+1 =

(
k+a
a

)d
, with (a, d) satisfying the conditions in [70, Definition

3.1], and that the assumptions of Lemma 14 hold. Moreover, if we assume that:

- ∑+∞
k=1 k

d√εh,k < +∞ in the case of Type 1 approximation,

- ∑+∞
k=1 k

2dεh,k < +∞ in the case of Type 2 approximation,

then, we have that:

- The sequence (k2d (Fh(xh,k)− Fh(x∗)))k∈N belongs to `∞(N).

- The sequence (xh,k)k∈N converges to a minimizer of Fh.

Proof. [70, Theorem 3.5, 4.1, and Corollary 3.8] with Lemma 14 yield the desired
result.

Theorem 4 and 5 encompass convergence results obtained in [128, Theorem 1], [127,
Theorem 1] and [126, Theorems 2.15, 2.16].
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Remark 11. The convergence results of Theorems 4 and 5 rely on quite weak assumptions.
The advantage is that such assumptions encompasses a lot of previously proposed multilevel
algorithms. We will not make of list of these algorithms here, but when discussing aspects
and problems we have in common with them, we will refer to these two theorems.

4.5.5 Extension to the multilevel case
In order to define more than two levels, it suffices to apply the same reasoning as in the
two-level case but for the coarse level. Let us define a three-level algorithm. The fine level
has a coarse model constructed according to Definition 25. This coarse level is smooth,
therefore we can use directly the tools of smooth multilevel optimization (Chapter 2,
Definition 15) to define the coarsest level, which is the coarse level of our coarse level.
And so on if we want to define more levels.

As the construction we presented does not depend on the number of levels, the con-
vergence results can be extended to more than two levels.

If the algorithm is used on J levels, we just have to apply the analysis derived above to
each pair of consecutive levels. Then, recursively, showing that the coarsest level produces
a bounded coarse correction will ensure that the upper finer level will converge to one of
its minimizers, producing in turn a bounded coarse correction for the next upper finer
level, and so on. We present the proof of convergence for a J-levels algorithm for only one
type of approximation of the proximity operator, the proof being identical for the other
cases.

Theorem 6 (Convergence of J-levels algorithm. Approximation of Type 0). Let us
suppose in Algorithm 4 that ∀k ∈ N∗, αh,k = 0 at step 14, that the assumptions of
Lemma 14 hold for every pair of levels, and that the sequence (εh,k)k∈N is such that∑
k∈N

√
‖εh,k‖ < +∞. Set xh,0 ∈ RNh and choosing approximation of Type 0, the

sequence (xh,k)k∈N converges to a minimizer of Fh.

Proof. Index the levels from j = 1 (the coarsest) to j = J (the finest). The sequence at
level j = 1 converges, and thus is bounded.

From Lemma 14, the coarse corrections applied to level j = k, k ∈ {2, . . . , J} from
level j = k − 1 are finite, assuming that the sequence at level j = k − 1 converges.

Therefore, by applying Theorem 4, the sequence generated by level j = k converges
to a minimizer of the associated problem.
By induction, the sequence generated by level j = J converges to a minimizer of Fh.

4.5.6 When to use the coarse models
We discuss now the decision rule to use the multilevel hierarchy. We want to answer the
following question:

When should we use coarse corrections in the multilevel algorithm ?

The most common attempt to answer this question in multilevel optimization literature
is derived from trust-region methods (see for instance [98, 102] and [89, 90, 96]) and use
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one or combine some of the three conditions below:

‖IHh ∇Fh(xh,k)‖ > κ‖∇Fh(xh,k)‖,
‖IHh ∇Fh(xh,k)‖ > ξ,

‖xh,k − x̃‖ > ϑ‖x̃‖,
(4.53)

where x̃ is the last iterate that received a coarse correction, and κ, ξ, ϑ are positive pa-
rameters. The intention behind checking these conditions is to:

(i) only use coarse corrections when the first coarse step is relatively big compared to
the fine level step;

(ii) verify if the first iterate at coarse level is not too close to the optimum of FH , which,
according to the literature [89,90], would make a coarse correction less impactful;

(iii) compute coarse corrections after some progress has been made at fine level.

In a vacuum these three conditions seem reasonable, but they have several limits:

• If one uses first order methods, computing at each iteration a restriction at coarse
level of the gradient even when one does not use coarse corrections4 is costly: one
needs to compute a useless matrix-vector product in the fine level space.

• As we only force local first order coherence, it may be useful to go back at fine level
after a few coarse iterations to update this coherence and then go down again. Such
chain of coarse corrections iterations may lead to faster convergence (see section 5)
and reduced computation time as a result.

Multilevel methods are of interest to reduce computation time, using these conditions in-
stead of setting when to use the coarse corrections before the optimization could hurt our
efforts. Nevertheless, they are interesting for high order multilevel optimization where
computing a restriction of the gradient is almost negligible compared to other compu-
tations [102]. We choose to drop such conditions in our experiments and choose a fix
predefined multilevel pattern as in classical multigrid. Such pattern can be identified
experimentally, and we will discuss this in Chapter 5.

4.6 Concurrent frameworks
In this section we present concurrent frameworks proposed in the literature to define mul-
tilevel proximal algorithms, and to highlight their strengths and key differences with our
approach. As previously stated, we have identified three of them [88–90] that we will
discuss in chronological order of publication. All three of these algorithms are designed
to tackle composite optimization problems of the form of Problem (2.7): the sum of one
continuously differentiable function and one non-smooth function. None of the three pro-
posed algorithms allow for inexactness in the proximity operator, so we won’t emphasize
this aspect in the following, but it should be kept in mind. For the presentation, we used
our notations, instead of the notations of the respective articles, to avoid confusion.

4There is not a lot of them used in practice (see for instance the experiments done in [89, 90, 108] or
our own in Chapter 5)
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MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm [89].
Parpas and co-authors have proposed in [89] a multilevel algorithm based on gradient and
mirror descent. The idea behind this choice is the interpretation of Nesterov acceleration
in [148] as a linear coupling between gradient and mirror descent steps5.

At each iteration MAGMA performs both gradient and mirror descent steps, then
uses a convex combination of their results to compute the next iterate. When a coarse
correction is computed, this correction replaces the proximal gradient step.

The construction of the coarse model is similar to ours in the sense that it is chosen
smooth with the first order coherence enforced with the smoothed fine level objective
function (using the framework of [132]). Step (14) of MAGMA is the Mirror descent step

Algorithm 5 MAGMA [89]
1: Set xh,0, yh,0 ∈ RN , th,0 = 1
2: while k = 0, 1, 2, . . . , T do
3: Choose δk+1 and αk+1 [89, Eq. 3.18,3.19].
4: Set tk = 1

αk+1δk+1
.

5: Set xk = tkzk + (1− tk)yk.
6: if Conditions (4.53) are satisfied then
7: xH,k,0 = IHh yk
8: Compute m gradient steps on FH .
9: Set τ̄k > 0 [89, Eq. 3.10],
10: yk+1 = yk + τ̄kI

h
H (xH,k,m − xH,k,0)

11: else
12: yk+1 = prox1/βhRh (yk − 1/βh∇Lh (yk))
13: end if
14: Set zk+1 = Mirrorzk(∇Lh(xk), αk+1)
15: end while

on L defined by [89, Definition 2.2], where αk+1 is the associated step size. It is assumed
to be available in closed form. With the right choice of underlying potential for the Mirror
descent step, one can recover the proximal gradient step.

In all their experiments, for the Mirror operator authors of [89] chose the standard
Euclidean norm ‖ · ‖2 and accordingly 1

2‖ · ‖
2
2 as a Bregman divergence, which transforms

the Mirror step in a proximal gradient step. In this setting, each coarse correction step is
followed by a proximal gradient step (Step (14)), but a key difference with our method is
that the Mirror step does not take into account the coarse correction: the Mirror step is
computed with the previous iterate instead.

Another key difference is that the cost per iteration when coarse models are unused is
at least twice the cost of our method: one proximal gradient step and one mirror step.
When using coarse corrections, the cost is the same as our method: one coarse correction
step and one mirror step (instead of a proximal gradient step in IML FISTA).

The convergence of the algorithm MAGMA was shown with respect to objective func-

5To keep the presentation as simple as possible we do not detail the mirror descent step in the general
case, see [89,148].
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tion values assuming that the smoothing parameter is chosen according to the relationship

0 < γk ≤
ξ

(βh + δk+1)αk+1ηT
(4.54)

for a small ξ ∈ (0, 1), objective function values generated by MAGMA converge with a rate
1/k2 to the minimum of Problem (2.7). This forces the smoothing parameter to be quite
small in practice. In our own experiments we observed that small smoothing parameters
led to small coarse correction steps at the fine level, and thus slower convergence. This
choice of smoothing parameter is also necessary to prove the convergence of MPGM which
is discussed next.

A summary of the differences between our work and what was proposed in [89] is given
below:

1. The smoothing parameter cannot be tuned as freely as in our method, and it may
slow down the convergence in practice.

2. The use of non-smooth coarse models was not considered, only smooth ones are
permitted.

3. Same convergence rate as ours, but a complexity per iteration potentially twice as
high: this ascertains our choice of FISTA as a fine level algorithm.

4. The convergence of the sequence of iterates to a minimizer was not discussed.

MPGM: Multilevel Proximal Gradient Method [90]. It was later proposed by
the same author in [90] to define a multilevel algorithm, restricted to proximal gradient
updates at fine level this time. This algorithm was used for one image restoration task:
deblurring regularized with an `1-wavelet penalty, where MPGM showed great convergence
speed in practice. MPGM was proposed to solve problems where L was possibly non-
convex, and consequently LH could also be non-convex. Therefore, a line search is added
at each step at coarse level to guarantee that the coarse correction will be a descent
direction for the smoothed fine level objective function (Lemma 9). This line-search
was first proposed in [103], specifically for multigrid algorithm applied on non-convex
optimization. It is not necessary to use it in the convex case as the first condition

FH(xH,k,0) + κ2〈∇FH(xH,k,0), xH,k,`+1 − xH,k,0〉 < FH(xH,k,`+1) (4.55)

directly comes from the convexity of FH if FH(xH,k,`+1) < FH(xH,k,0). Thus, the coarse
model minimization is similar to the one used in MAGMA and our method in the convex
case. Again, similarly to MAGMA, the smoothing parameter is reduced at each iteration
to guarantee convergence of the algorithm.

If the framework shares similarities with our own method, there are notable differences
in the choice of coarse model in the applications. The choice of smoothing method for
the `1-norm is suboptimal in the experiments done in [90]. Indeed, the regularization is
smoothed using x 7→ ∑N

i=1

√
x2
i + γ, which is a factor 2 worse than the Moreau envelope

(see end of Section 4.2.2). Moreover, the information transfer operator used is the most
standard one (Equation (3.12)). Finally, in the reported results, only 20 iterations of
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Algorithm 6 MPGM
1: Set xh,0 ∈ RN ,
2: Line search parameters: 0 < κ1 <

1
2 , 1− κ1 ≤ κ2 ≤ 1

3: γ > 0 and 0 < δ < 1, and r = 0.
4: while Stopping criterion is not met do
5: if Conditions (4.53) are satisfied then
6: xH,k,0 = IHh xh,k
7: Set γk = γδr, Smoothing adjustment,
8: for ` = 0, 1, . . . ,m− 1 do
9: Set τH,l > 0 such that
10: FH(xH,k,0) + κ2〈∇FH(xH,k,0), xH,k,`+1 − xH,k,0〉 < FH(xH,k,`+1)
11: and FH(xH,k,`+1) ≤ FH(xH,k,`)− κ1τH,l‖∇FH(xH,k,`)‖2

12: xH,k,`+1 = xH,k,` − τH,l∇FH(xH,k,`)
13: end for
14: Set τ̄h,k > 0,
15: x̄h,k = xh,k + τ̄h,kI

h
H (xH,k,m − xH,k,0)

16: r = r + 1
17: else
18: x̄h,k = xh,k
19: end if
20: xh,k+1 = prox1/βhRh (x̄h,k − 1/βh∇Lh (x̄h,k))
21: end while

MPGM, FB and FISTA were displayed, which is a bit small to compare the convergence
speed of the three algorithms. FISTA may to be slower than FB in the first iterations in
some contexts.

A summary of the differences between our work and what was proposed in [90] is given
below:

1. The smoothing parameter cannot be tuned as freely as in our method, and it may
slow down the convergence in practice.

2. The use of non-smooth coarse models was not considered.

3. Global convergence of the algorithm in the case of non-convex function L (R was
still assumed convex) is shown (the minimum of all the steps taken goes to 0 when
k goes to infinity) [90, Theorem 3.1].

4. A convergence rate was specified for strongly convex functions.

5. Extrapolation steps were not used, thus a slower convergence rate is expected.

6. The convergence of the sequence of iterates to a minimizer was not discussed.

If we implement rigorously MPGM to compare it to our algorithm, it is expected to be
slower than IML FISTA due to the fact that a condition that computes the gradient of the
smoothed fine level objective function, and its projection to the coarse level, is checked
at each iteration. This is a costly operation, that is not particularly useful in the context
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of our imaging applications as we will see it in Chapters 5 and 6. Therefore, such a
comparison would be unfair to MPGM.

MGProx: MultiGrid Proximal gradient method [88]. In a recent paper, Ang
and co-authors [88] proposed a framework to define multilevel algorithms for non-smooth
optimization. The presented construction is mostly suited for strongly convex objective
function, and in the rest of this paragraph we will make this assumption unless stated
otherwise.

Their main idea is to define the first order coherence using a subgradient selection
(as opposed to the smoothing). This subgradient selection is done with what is called
adaptive information transfer operators. We reproduce the definition they provided here:

Definition 29. Adaptative restriction operator for separable regularization
R [88, Definition 2.3]. For a possibly non-smooth function R : RN → R that is
separable, i.e. R(x) = ∑N

i=1Ri(xi), given a full restriction operator IHh and a vector
x, the adaptive restriction operator ĪHh with respect to R at x is defined by zeroing out
the columns of IHh corresponding to the elements in ∂R that are set-valued.

As the (Minkowski) sum of the set of subgradients of two functions is not always
equal to the subgradients of the sum of those two functions (Moreau-Rockafellar theorem
[149]), the adaptive restriction operator removes any possible ambiguity. The first order
coherence is then defined as choosing an element of the set

∂FH(xH,k,0)− ĪHh ∂Fh(yh,k+1) (4.56)

where the right-hand side ĪHh ∂Fh(yh,k+1) is uniquely valued. After minimization of the
coarse model to obtain xh,k+1, the coarse correction sent to the fine level respects the
following strict inequality (≤ if F is only convex) [88, Theorem 2.5]:

〈∂Fh(yh,k+1), IhH(xH,k+1 − xH,k,0)〉 < 0, (4.57)

i.e. every element of ∂Fh(yh,k+1) is negatively correlated with IhH(xH,k+1 − xH,k,0). Now
to show that this constitutes a descent direction for the fine level function, we need the
following notions:

Definition 30. Support function of a convex set [51]. The support function
σC : Rn → R of a non-empty closed convex set C in Rn is given by:

σC(x) = sup
s∈C
〈s, x〉 (4.58)

The subdifferential of a convex function at a point x can be characterized equivalently
by the support function of its directional derivative (Subdifferential I), or by sublinearity
property of the function (Subdifferential II). The former is useful to characterize descent
directions and steepest descent direction, which is precisely what was used by the authors
of [88].
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Definition 31. Subdifferential and subgradient of convex functions [51].
Let g be a proper, lower semi-continuous, convex function on Rn. The subdifferential
of g is defined by the following sets:
Subdifferential I. The subdifferential ∂F (x) of F at x is the nonempty compact
convex set of Rn whose support function is F ′(x, ·), i.e.

∂F (x) := {s ∈ Rn|〈s, d〉 ≤ F ′(x, d) for all d ∈ Rn} (4.59)

We have the following relationship that links the support function to the directional
derivative (if F (x) is finite):

F ′(x; d) = σ∂F (x) = max {〈s, d〉, s ∈ ∂F (x)} ,

thus

F ′h(yh,k+1; IhH(xH,k+1 − xH,k,0)) = max
{
〈s, IhH(xH,k+1 − xH,k,0)〉, s ∈ ∂Fh(yh,k+1)

}
< 0.

This proves that there exists τ̄h,k > 0 such that [88, Lemma 2.7]:

Fh(yh,k+1 + τ̄h,kI
h
H (xH,k,m − xH,k,0)) < Fh(yh,k+1).

However, there is no available line-search that is guaranteed to find such a τ̄h,k in practice.
Moreover, if Fh is only convex, τ̄h,k is not guaranteed to be strictly positive. The conver-

Algorithm 7 MGProx
1: Set xh,0 ∈ RN ,
2: while Stopping criterion is not met do
3: yh,k+1 = prox1/βhRh (x̄h,k − 1/βh∇Lh (x̄h,k))
4: Construct the adaptive restriction operator ĪHh
5: xH,k,0 = ĪHh yh,k+1 Projection
6: Select a subgradient gk+1 of ∂FH(xH,k,0)− ĪHh ∂Fh(yh,k+1)
7: xH,k+1 = arg minx FH(x)− 〈gk+1, x〉
8: Set τ̄h,k > 0,
9: ȳh,k+1 = yh,k+1 + τ̄h,kI

h
H (xH,k,m − xH,k,0)

10: xh,k+1 = prox1/βhRh (ȳh,k+1 − 1/βh∇Lh (ȳh,k+1))
11: end while

gence of the algorithm MGProx was shown with respect to objective function values. The
authors of [88] showed that the objective function values generated by MGProx converge
to the minimum of Problem (2.7), with a rate 1/k or 1/k2 if inertia was used.

The use of adaptive restriction operators is a great idea to define the first order co-
herence, however it limits the application of the framework to separable regularizations.
Moreover, a choice of subgradient must be made each time a coarse model is used, which
may be difficult to do correctly in practice. The authors of [88] chose to put to zero the
set elements of the subgradient, which works fine for the `1-norm whose subgradient at
0 contains 0. However, for a convex function that does not have such property, zero-ing
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would not work. Also, the descent guarantee coming back from the coarse level are equiv-
alent to ours when Fh is only convex and not strongly convex, which is the case in a lot
of applications. Indeed, there is no guarantee to find a positive step size that ensures
decrease of the fine level (Steps (8), (9) in MGProx).

MGProx was applied only on a PDE problem, which is a really favorable context for
multilevel algorithms (recall our discussions in Chapter 3). Therefore, the results are
quite impressive. A summary of the differences between our work and what was proposed
in [88] is given below:

1. The first order coherence is more rigorously defined than ours for non-smooth opti-
mization but only applicable when the problem is separable.

2. Coarse corrections are fixed points of the proximal gradient steps at fine level, a
property that is not always preserved when using smoothing.

3. The coarse model needs to be minimized (versus decreased in our method) to guar-
antee a descent direction.

4. The cost per iteration is at least twice as high as ours: two proximal gradient step
are used at the fine level, and the coarse level needs to be minimized.

5. The convergence of the sequence of iterates to a minimizer was not discussed.

In the end, one could plug the construction of coarse model developed in [88] in our
framework to obtain a more general multilevel algorithm. Due to the late discovery of
this work, we leave to later work the practical comparison of the two methods to define
coarse models. In the next section, we will also argue that there are equivalences to be
drawn when dissecting the smoothing framework.

IML FISTA versus MPGM, MAGMA and MGProx. We summarize the main
differences of the three algorithms presented above with our proposed IML FISTA in
Table 4.1.

4.7 Conclusion
In this chapter, we laid the theoretical foundations for our algorithm IML FISTA. We
recovered optimal convergence guarantees of the literature on the class of functions we
consider in this manuscript. However, the proposed construction does not answer the
most important question of multilevel algorithm: will it perform better than its single
level counterpart? There does not exist a theoretical (and definite) answer in general,
thus we will rely on numerical experiments in the next chapters to confirm the relevance
of our approach.
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Guarantees
Generality Inexactness

(
F (xk)− F ∗

)
≤ O(1/k2) xk → x∗

MAGMA [89] X 7 X 7

MPGM [90] X 7 7 7

MGProx [88] 7 7 X 7

IML FISTA X X X X

Table 4.1: In this table, we summarize the guarantees of the multilevel algorithms pre-
sented in this section with respect to our proposed IML FISTA. The first column of the
guarantees (Generality) indicates whether the algorithm is applicable on all problem of
the form (2.7) (i.e. when F is convex, the proximity operator of R is available and L has a
β−Lipschitz gradient), while the second column refers to the inexactness of the proximity
operator, the third to the convergence rate of objective function values, and the fourth to
the convergence to a minimizer.
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Chapter 5
IML FISTA: applications to image
restoration

In this chapter we present the three applications of our algorithm IML FISTA on color and
hyperspectral images. We start by demonstrating its potential on the reconstruction of
color images. With this presentation comes a detailed discussion about the tuning of our
algorithm’s hyperparameters. Then, we will consider the reconstruction of hyperspectral
images, to display IML FISTA’s performance in a high dimensional context.

The content of this chapter was partially published in the following papers [126–128,
150]. The specific design of the multilevel algorithms was refined from [128] (submitted
in March 2022) to [126] (submitted in July 2023), therefore this Chapter is a more co-
herent presentation of the experiments we conducted. We also added some unpublished
experiments on low dimensional images to support conclusions made in [126]. The code
to reproduce the experiments is available here: https://github.com/laugaguillaume/.

5.1 Introduction
We have seen in the previous chapter the design of a general framework that allows us
to tackle all sort of optimization problems. With this generality also comes the lack of
theoretical proof that our multilevel algorithm will perform better than its single level
counterpart. This is a common issue in papers presenting multilevel optimization meth-
ods, and often they chose to demonstrate the efficiency of their algorithm on problems with
a limited scope. We aim to enlarge this scope, to show that our algorithm can be applied
to a wide range of problems, and where it may fail to outperform single level algorithms.
With our experiments we want to identify as precisely as possible in which contexts our
algorithm, and other multilevel algorithms should be considered (and subsequently when
they should not).

The first question that comes to mind when trying to identify such contexts is the
choice of hyperparameters, that are plenty. We list here the hyperparameters of our
algorithm:

(i) the number of levels L,

(ii) the information transfer operators,
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(iii) the functions at each level: LH and RH ,

(iv) the choice of smoothing to define the first order coherence,

(v) the smoothing parameter γ,

(vi) the number of uses or calls to the coarse models p,

(vii) the path through the levels, i.e., in which order we go through the levels (e.g. V-
cycle, W-cycle etc. [84,86,96]),

(viii) the minimization strategy at coarse level ΦH ,

(ix) the number of iterations at each level m,
We did not test exhaustively hyperparameters (i), (iii) and (vii) of this list. For the
number of levels, we have seen in our experiments that L = 5 was a good choice, and that
one would be even happy with L = 2 in all cases where multilevel algorithms work, i.e.,
when they outperform their single level counterpart. For the choice of coarse models, a
lot of the possible functions are ineffective,for obvious reasons. We tested some of them,
and it showed that going along the route of reduced order approximation is a good (and
more importantly simple) choice in all configurations. Finally, we always use V-cycles in
our experiments, as they are the simplest cycles, and the most common in the literature.

Organization of the chapter. In the first section of this chapter, we quickly present
the fine level optimization problem that we will consider. From this definition, we specify
the construction of the coarse model and information transfer operators, and then conduct
a benchmark of the impact of the other hyperparameters. This benchmark will be used
as a guideline for the rest of the applications considered in this chapter.

Then we specify IML FISTA to three different image restoration problems: image
deblurring, image inpainting and then hyperspectral image reconstruction where both
types of degradation are considered. In these sections, we will investigate the impact
of the dimension on IML FISTA’s performance, and we will see that it varies quite a
lot depending on the problem. We conducted extensive experiments to show that IML
FISTA, when compared to FISTA, is a good choice in terms of convergence and image
quality, and that the chosen hyperparameters are robust across all problems.

5.2 Image restoration problems: data fidelity and
regularization

For the rest of this chapter, let us specify Problem (2.7) to the specific context of image
restoration in multilevel notations:

x̂ ∈ Argmin
xh∈RNh

Fh(x) := fh(Ahxh) + gh(Dhxh) (5.1)

with Ah ∈ RMh×Nh and Dh ∈ R(Nh×K̃)×Nh (K̃,Mh > 0). Recall that the inverse problem
modeling is as follows, with an additive Gaussian noise ε:

zh = Ahx̄h + ε.
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The parameter K̃ expresses the fact that operator Dh can map xh to a higher dimensional
space, e.g. K̃ = 2 for Total Variation penalization. In this expression, xh = (xih)1≤i≤Nh
is the vectorized version of an image Xh of Nh,r rows and Nh,c columns, and where each
pixel corresponds to a vector of C ≥ 1 components (e.g. C = 3 for the RGB bands of a
color image). Hence, we have Nh = Nh,r × Nh,c × C. In the following, as the operators
we deal with are applied separately to each channel, for the sake of clarity and without
loss of generality, we present their construction for grayscale images corresponding to
C = 1. For the reader familiar with deblurring and inpainting problem, and total variation
regularization, this section may be skimmed.

5.2.1 Data fidelity terms fh ◦ Ah

We will consider two different types of degradation in this chapter: image blurring and
image inpainting. Only for hyperspectral images, will we consider a combination of both.
For these two types of degradation, we specify the construction of Ah and fh.

Deblurring problem. When the degradation of the image corresponds to a blurring
effect, the operator Ah is a convolution matrix built from a two-dimensional Point Spread
Function (PSF). As it is the case for Gaussian blurs, the PSF function often takes the
form of a separable kernel (horizontally and vertically) and Ah can be decomposed into a
Kronecker product:

Ah = Ah,r ⊗ Ah,c (5.2)

with Ah,r ∈ RNh,c×Nh,c and Ah,c ∈ RNh,r×Nh,r (r stands for row, c for columns). From the
numerical viewpoint, this Kronecker decomposition is particularly efficient for processing
large images, and can be easily implemented with the HNO package [3]. Finally, as it is
common in image restoration, the data-fidelity term is the least square regression:

(∀xh ∈ RNh) fh(Ahxh) = 1
2‖Ahxh − zh‖2

2 = 1
2

Nh∑
i=1

((Ahxh)i − (zh)i)2. (5.3)

Inpainting problem. When the degraded image coincides with the original image but
with potentially altered or missing pixels, the reconstruction task is called inpainting and
Ah is a measurement operator that keeps a subset I ⊆ {1, . . . , Nh} of pixels of the image
and removes the others. Here, we assume that the subset I is chosen randomly. Formally
Ah takes the form of a diagonal matrix with a Bernoulli random variable (zeros and ones)
on its entries, and it plays the role of a mask applied to the image xh:

(Ahxh)i =
 xih if i ∈ I

0 otherwise
(5.4)

In this case too, the data-fidelity term is the least square regression as in Equation (5.3).
Such inpainting problem is quite simple in its formulation, and far from the complexity
of inpainting problems treated by deep learning techniques nowadays [151]. It is however
still relevant for hyperspectral images, where similar degradation can occur [152].
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5.2.2 Regularization terms gh ◦Dh

In our experiments we considered three types of regularization terms:

Wavelet transform norm. The operator Dh associated with a wavelet transform reg-
ularization is the discrete wavelet transform operator which computes a given number of
consecutive decimated low pass and high pass filtering of the image xh. The classical reg-
ularization associated is the application of the l1-norm on the discrete wavelet transform
coefficients.

Total Variation. The operator Dh associated with the Total Variation (TV) computes
the first order differences between the component i of xh and its horizontal/vertical nearest
neighbors (xich , xirh ) (lower/right in the image case). It is defined such that for all xh ∈ RNh ,
and for each pixel i ∈ {1, . . . , Nh},

(Dhxh)i =
[
xih − xirh , xih − xich

]
, (5.5)

paying particular attention to the management of border effects. Here Dhxh belongs to
RNh×2 (K̃ = 2). With this definition, the classical isotropic Total Variation semi-norm [57]
reads:

gh(Dhxh) = λh

Nh∑
i=1
‖ (Dhxh)i ‖2 = λh

Nh∑
i=1

√
|xih − x

i1
h |2 + |xih − xi2h |2 = λh‖Dhxh‖2,1 (5.6)

with λh > 0.

Non-Local Total Variation. The operator Dh associated with the Non-Local Total
Variation (NLTV) extends TV to a non-local neighborhood of the current pixel i. In
words, it is the operator that computes the weighted differences between the current pixel
i of an image xh and a subset Ni of pixels localized near i.

For every xh ∈ RNh , and at each pixel i ∈ {1, . . . , Nh}, for some given weights ωi,j > 0,

(Dhxh)i =
[
ωi,j

(
xih − x

j
h

) ]
j∈Ni

. (5.7)

Here Dhxh belongs to RNh×K̃ and K̃ is the cardinality of the subset Ni. For every i ∈
{1, . . . , Nh} and j ∈ Ni, the weights ωi,j > 0 depend on the similarity (e.g., `2 norm)
between patches that are centered around components i and j of the image [33].

As for the isotropic TV semi-norm, an `p (p ≥ 1) based NLTV semi-norm takes the
form:

gh(Dhxh) = λh

Nh∑
i=1
‖ (Dhxh)i ‖p with λh > 0. (5.8)

5.3 Construction of the coarse models and the infor-
mation transfer operators

In this section we adapt our Inexact MultiLevel FISTA to image reconstruction problems
in the framework of Problem (5.1). We present our problem in a multilevel context, then
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we propose CIT1 operators designed for image reconstruction problems, and we derive
the construction of a good coarse model through a specific choice of smoothing.

5.3.1 Information transfer operators
In the context of image reconstruction problems, we consider CIT operators that rely
on wavelet bases (referred to as wavelet CIT in the following). The idea of constructing
such information transfer operators traces back to works dedicated to image deblurring
problems either based on biorthogonal wavelets [153] or Haar and Symlet wavelets [113,
114, 154]. Our objective is to obtain a computationally efficient coarse approximation
of a vector lying in a higher resolution space, from the approximation coefficients of its
discrete wavelet transform (DWT). We impose in this context that Nh = (Nh,r ×Nh,c) =
(2NH,r × 2NH,c) = 4×NH . For a generic quadrature mirror filter q = (q1, . . . , qm):

IHh := (Rq,r ⊗Rq,c) , (5.9)

where Rq,c is the decimated NH,r-by-Nh,r matrix (every other line is kept) of the Nh,r-by-
Nh,r Toeplitz matrix generated by q as :

q1 q2 . . . qm 0 . . . 0
0 0 q1 q2 . . . . . . 0
... . . . . . . . . . . . . . . .
0 . . . 0 0 0 q1 q2

 .

Similarly, Rq,r is the decimated NH,c-by-Nh,c matrix (every other line is kept) of the Nh,c-
by-Nh,c Toeplitz matrix generated by q. For both matrices the vector q is completed with
the right number of 0’s to reach the size Nh,r or Nh,c. IhH is then taken in order to satisfy
Definition 14. This Kronecker product structure is particularly interesting to accelerate
the projection of fine level information to the coarse level as:

IHh xh = Rq,cXhRT
q,r, (5.10)

where Xh is the reshaped version of xh in a matrix of size Nh,r ×Nh,c.

5.3.2 Fast coarse models
A challenging numerical problem is to keep the efficiency of matrix-vector product compu-
tation at coarse level if it exists at fine level. For instance, when considering convolutions,
if the convolution matrix is expressed with a Kronecker product, such structure should
be preserved with the right definition of operators at coarse levels.

AH in the deblurring problem. Thanks to the Kronecker factorization of both Ah

and IHh , the coarsened operator AH can be written as:

AH =
(
Rq,cAh,rRT

q,c

)
⊗
(
Rq,rAh,cRT

q,r

)
1Coherent Information Transfer operators (see Chapter 4, Definition 14)
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preserving the same computational efficiency. Thus, in image restoration problems where
a separable blur is used, it is straightforward to design coarse operators (which can be
computed beforehand) that are fast for matrix-vector products while keeping fidelity to
the fine level.

AH in the inpainting problem. Due to the specific diagonal form of Ah, the coarsened
inpainting operator AH simply stems from decimating the rows and the columns of Ah

by a factor 2. AH ∈ RNH×NH remains a diagonal indicator matrix of a pixel subset
J ⊆ {1, . . . , NH} acting as a mask on the coarse image:

(AHxH)j =
 xjH if j ∈ J

0 otherwise

Examples of operators DH. For the regularization operators, the construction is sim-
pler. Consider the case of the wavelet transform, the operator DH is the decomposition
with one level less. For both TV and NLTV, we use the same hyperparameters (maximum
number of patches, size of patches, computation of similarity between patches, etc.) for
DH as for Dh. Adapting these parameters to current resolution could be worth investi-
gating. However, due to the limited size of the chosen patches, we believe it would lead
to marginal improvements. DH is thus playing the same role as Dh but for images of size
NH . Here DHxH belongs to RNH×K̃ .

5.3.3 Choice of smoothing
A complete presentation of the coarse models cannot omit the choice of the smoothing
technique to define the first order coherence between the fine and coarse levels. In this
thesis, we chose to use the Moreau envelope in all of our experiments, with some little
tweaks. The motivation is quite easy to understand: the Moreau envelope and the prox-
imity operator are two sides of the same coin. In addition, the gradient of the Moreau
envelope is directly expressed through the proximity operator (Chapter 4, Proposition 3):

(∀x ∈ H), ∇γg(x) = 1
γ

(
Id− proxγg(x)

)
.

Therefore, the Moreau envelope is the natural choice for the smoothing of both fine and
coarse models.

Smoothing when proxgh◦Dh is known. A coarse model for the image restoration prob-
lem (5.1) is defined at iteration k of a multilevel algorithm as:

FH(xH) = (fH ◦ AH)(xH) + (γH (gH ◦DH)) (xH) + 〈vH,k, xH〉, (5.11)

where vH,k will be set to:

vH,k = IHh [(∇(fh ◦ Ah) +∇(γh(gh ◦Dh)h) (yh,k)]− (∇(fH ◦AH)+∇(γH (gH ◦DH)))(xH,k,0).

As the proximity operator is available explicitly, a non-smooth coarse model may also be
used (replace (γH (gH ◦DH)) by gH ◦DH). We will test the two options in our experiments
(Section 5.4).
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Smoothing when proxgh◦Dh is unknown. In the cases we are interested in, proxgh◦Dh
is unknown, but proxgh is available. As a result, instead of directly using the Moreau
envelope of gh ◦Dh, we first compute the Moreau envelope of gh and compose it with Dh.
This smoothing satisfies Definition 19:

Lemma 15. γgh ◦Dh is a smoothed convex function approximating g ◦D in the sense
of Definition 19.

Proof. Remark that γgh is a smooth convex function in the sense of Definition 19 [132].
By [132, Lemma 2.2], the fact that γgh ◦ Dh is a smooth function applied to a linear
transformation concludes the proof.

This smooth approximation has the following interesting property:

Lemma 16. [155, Lemma 3.2]. For any x ∈ RN
h , Dh : RNh → RKh and gh :

RKh → R a convex, l.s.c., and proper function, we have that:

∇ (γgh ◦Dh) (x) = γ−1D∗h
(
Dhx− proxγgh(Dx)

)
. (5.12)

Proof. The proof is a direct consequence of the properties of the gradient operator.

This means that an explicit form of proxγhgh is sufficient to express the gradient of
γhgh(Dh·). A coarse model for the image restoration problem (5.1) is defined at iteration
k of a multilevel algorithm as:

(∀xH ∈ RNH ), FH(xH) = (fH ◦ AH)(xH) + (γHgH ◦DH) (xH) + 〈vH,k, xH〉, (5.13)

where vH,k will be set to:

vH,k = IHh [(∇(fh ◦ Ah) +∇(γhgh ◦Dh) (yh,k)]− (∇(fH ◦ AH) +∇(γHgH ◦DH))(xH,k,0).

5.4 Selecting the hyperparameters
In this section, we present a numerical study on the impact of some hyperparameters of
the multilevel algorithm, such as the number of times the coarse level models are used,
the minimization strategy at coarse level, and the number of iterations at each level.
We place ourselves in some high degradation scenarios, which are the most interesting
ones. The optimization problem we solve cannot be considered as part of the state-of-
the-art in image restoration, as we will consider a wavelet penalized deblurring problem.
Nevertheless, this problem allows to compare our inertial multilevel algorithm to FISTA
in a context where all the variables are controlled, and where the inexactness cannot
influence the results.

Our final choice of hyperparameters will not be guided only by the consistency of the
performance of IML FISTA across all contexts. We want to bring to light a configuration
of IML FISTA that is good enough for a large set of problems, instead of the best for a
given problem. Such configuration should thus be more robust when applying IML FISTA
to other problems.
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5.4.1 Experimental setup
Dataset and degradation. We consider a large gray image (Figure 5.1 left) of size
2048×2048, yieldingN = (2J)2 ' 4×106 with J = 11. The linear degradation operator Ah
is constructed with HNO [3] as a Kronecker product with Neumann boundary conditions,
and we add a Gaussian noise (see the legend of Figure 5.1 for details). In all tests, the
regularization parameter λh was chosen by a grid search, in order to maximize the Signal-
to-Noise-Ratio (SNR) of x̂ obtained with FISTA at convergence. For all experiments in
this manuscript, the same procedure will be used to find λh. Also, we initialize x0 with
the Wiener filtering of z.

Problem formulation. A usual choice for the optimization problem, even though a bit
outdated now, is to apply the l1-norm on the coefficients raised by a wavelet transform
D ∈ RK×N , thus promoting the sparsity of the solution [20].

Given a regularization parameter λ > 0, the associated minimization problem reads:

x̂ ∈ Argmin
x∈RN

1
2‖Ax− z‖

2
2 + λ‖Dx‖1. (5.14)

Thus, fh ◦ Ah = 1
2‖Ah · −zh‖

2 (with A := Ah). The penalty term gh ◦ Dh = λ‖Dh · ‖1 is
defined using a full wavelet decomposition over J levels (D := Dh).

Coarse level construction. At iteration k, the non-smooth coarse model FH is defined
as

FH(xH) = fH(AHxH) + gH(DHxH) + 〈vH,k, xH〉 (5.15)

where AH = IHh AhI
h
H and DH is a decomposition over J − 1 up to J − 4 levels, with

λH = λh/4. Therefore, fH = 1
2‖ · xH − zh‖

2 and gH = λH‖ · xH‖1.

vH,k =IHh (∇(fh ◦ Ah)(yh,k) +∇(γh(gh ◦Dh))(yh,k))
− (∇(fH ◦ AH)(xH,k,0) +∇(γH (gH ◦DH))(xH,k,0)). (5.16)

The third term in (5.15) enforces the first order coherence between a smoothed coarse
objective function

FH,γH (xH) = fH(AHxH) + γH (gH ◦DH)(xH) + 〈vH,k, xH〉 (5.17)

and a smoothed fine objective function Fh,γh [90] near xH,k,0:

∇FH,γH (xH,k,0) = IHh ∇Fh,γh(yh,k). (5.18)

Multilevel architecture. We use a 5-levels hierarchy: from 2048 × 2048 (J = 11) to
128 × 128 (indexed by J − 4). We choose IHh as the low scale projection on a Symlet
wavelet with 10 vanishing moments and IhH = 1

4(IHh )T . The Moreau envelope parameter
associated with gH is set to γH = 1.1 while γh is set to 1, but both values do not seem to
be critical here.
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Minimization operator ΦH. At the coarse level we can decide to consider either
the non-smooth approximation (5.15) of the objective function or the smoothed version
(5.17). Both cases lead to a decrease in FH,γH : indeed, taking the Moreau envelope of
gH in FH(xH,k,m) ≤ FH(xH,k,0) yields FH,γH (xH,k,m) ≤ FH,γH (xH,k,0). The two cases are
linked by the same choice of the correction term to ensure the coherence between the two
levels (5.16). We consider here three different strategies :

1. Gradient steps on the smoothed FH,γH :
ΦH
S = (Id− τH(∇(fH + γHgH) + vH))

2. Proximal gradient steps on the non-smooth FH :
ΦH
FB = proxτHgH (Id− τH(∇fH + vH)).

3. FISTA steps on the non-smooth FH with the previous proximal gradient step and
where the inertia follows the Nesterov’s rule [70] ensuring convergence of the iterates.
Noted ΦH

FISTA in the following.

Performance assessment. We measure TimeIML FISTA, the CPU time needed to
reach 5, 2, 1, 0.1 and 0.01% of the distance ‖Fh(xh,0) − Fh(x̂)‖, where x̂ is computed be-
forehand by FISTA, and we compare it to TimeFISTA, the CPU time of FISTA with the
following relationship

TimeIML FISTA − TimeFISTA
TimeFISTA

× 100. (5.19)

A similar measure was used in [90] to assess the performance of MPGM with respect to
other algorithms.

5.4.2 Benchmark results
We tested the performance for several values of m, and among our numerous numerical
experiments, m = 5 at the different coarse levels appears to be a good compromise
whatever the noise and blur levels. We report in Table 5.1 and Table 5.2 the relative
CPU time (Equation (5.19)) for m = 5 at every coarse levels. In this table we evaluate
two phenomena in particular: the impact of the number of coarse corrections, and the
impact of the degradation level on the performance.

The impact of p. In our numerical experiments we only consider p = 1 (•) or p = 2 (•)
uses of the coarse models, performed at the beginning of the iterative process. They allow
to quickly determine the low frequencies components of the solution at the fine level. The
choice of p depends on the sought accuracy. If a rough approximation is sufficient, fixing
p = 1 is the best choice, while p = 2 is better for lower thresholds. While we obtain good
gains for those, for very low ones the use of a multilevel strategy is not useful, but note
that it does not deteriorate the performance either.

The impact of noise and blur level. For all three minimization methods at coarse
level acceleration increases significantly as the blur gets worse. Moreover, as the noise
decreases, the improvement obtained with ΦH,FISTA as compared to others ΦH increases.
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Noise \ Blur (a) size(blur) = [40, 40], σ(blur) = 7.3

(1) σ = 0.01

FISTA CPU time 16 28 42 161 401

ΦH,S −20 • −22 • +1 • +1 • −1 •

ΦH,FB −19 • −19 • +5 • +2 • +1 •

ΦH,FISTA −51 • −32 • −4 • +2 • +1 •

(2) σ = 0.04

FISTA CPU time 14 22 34 108 220

ΦH,S −22 • −10 • −1 • −1 • −1 •

ΦH,FB −22 • −10 • −1 • +1 • −1 •

ΦH,FISTA −21 • −12 • −10 • −1 • −2 •

Table 5.1: The first line of each subtable represents the computation time (in sec) needed
by FISTA to reach 5, 2, 1, 0.1 and 0.01% of the distance ‖Fh(xh,0)−Fh(x̂)‖. Then for each
type of minimization algorithm at coarse level, we display the CPU time relative to FISTA
(5.19) (in %) for the best configuration with a colored bullet : p = 1 • and p = 2 •. In
all cases : m = 5. SNR of z : (1) 11.05 (2) 9.64. SNR of xh,300 computed by IML FISTA
: (1) 12.71 (2) 11.02.

z xFISTA
h,2 z xFISTA

h,2

xIML FISTA
h,300 xIML FISTA

h,2 xIML FISTA
h,300 xIML FISTA

h,2

Figure 5.1: Top : From left to right : Original 2048× 2048 image2 x, (first row) zoom of
the degraded image z for a noise with σ = 0.01 and a Gaussian blur of size 40 × 40 and
7.3 standard deviation and of xh2 computed by FISTA. (Second row) Zoom of xh2 and xh300
computed by IML FISTA. λh = 1.7× 10−4.
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Noise \ Blur (b) size(blur) = [88, 88], σ(blur) = 16

(1) σ = 0.01

FISTA CPU time 17 30 42 148 421

ΦH,S −51 • −44 • −18 • +4 • −1 •

ΦH,FB −50 • −42 • −15 • +6 • +1 •

ΦH,FISTA −50 • −42 • −35 • +8 • +1 •

(2) σ = 0.04

FISTA CPU time 15 25 34 122 315

ΦH,S −29 • −25 • −18 • +3 • +1 •

ΦH,FB −42 • −31 • −16 • +5 • +2 •

ΦH,FISTA −42 • −31 • −22 • +7 • +2 •

Table 5.2: The first line of each subtable represents the computation time (in sec) needed
by FISTA to reach 5, 2, 1, 0.1 and 0.01% of the distance ‖Fh(xh,0)−Fh(x̂)‖. Then for each
type of minimization algorithm at coarse level, we display the CPU time relative to FISTA
(5.19) (in %) for the best configuration with a colored bullet : p = 1 • and p = 2 •. In
all cases : m = 5. SNR of z : (1) 11.03 (2) 9.63. SNR of xh,300 computed by IML FISTA
: (1) 12 (2) 10.6.
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Figure 5.2: (Left) Evolution of Fh versus iterations for IML FISTA with ΦH
FISTA for

p = 1, 2, m = 5. (Right) Same for CPU time (in sec). Degradation: Gaussian noise
with σnoise = 0.01 and a Gaussian blur of size 40 × 40 and 7.3 standard deviation. λh =
1.7× 10−4.

The main takeaway from these experiments is that, with a few coarse corrections, our
method can provide good approximations of the solution while staying competitive with
FISTA for high precision approximations. Guided by these results, we will choose m = 5
and p = 2 for the rest of our experiments in this chapter. Moreover, there seems to be no
significant difference between smooth and non-smooth coarse models, so we will use the
smooth version in the following for simplicity. Using extrapolation steps at coarse level,
even though it seems to yield the most gains in terms of CPU time, won’t be used anymore,
again for simplicity. It is possible that all of our results in the following may be improved
with these steps, but we are primarily interested in constructing a robust algorithm, that
performs well on any given problem, rather than finding the best configuration for each
specific problem.
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Chapter 5. IML FISTA: applications to image restoration

Finding the best configuration is obviously interesting, but our goal is to propose an
algorithm that generalizes well to other problems, and thus the best configuration for
one problem may be completely different for another. In practice no one would tune its
algorithm for hours to gain a few % of CPU time on one run, so we will not do it either.

Starting from these choices of hyperparameters, we will now test the robustness of our
algorithm on color image restoration problems, where state-of-the-art regularizations are
used.

5.5 Application to color image restoration
In this section, based on the hyperparameters identified in the previous section, we con-
duct extensive numerical experiments to validate the design of IML FISTA. We consider
two types of image restoration problems: deblurring and inpainting (both with additive
Gaussian noise). Our goal will be twofold: test on high dimensional problems, with state-
of-the-art regularization (TV and NLTV), to see how our algorithm behaves if we use
the same parameters on all problems; and test on problems of smaller dimension, in the
same setting, to see if our algorithm is competitive. For the latter, we expect IML FISTA
to perform less and less well as the dimension decreases, but this in fact not true for all
degradation levels.

These experiments will also consolidate our vision about the tuning of IML FISTA’s
hyperparameters: choosing the optimal ones is not necessary, our algorithm is robust
enough to provide good results in a wide range of contexts.

5.5.1 Experimental setup
Degradation types. We consider two types of image reconstruction problems: a restora-
tion problem where the linear operator A is a Gaussian blur, and an inpainting problem
where A models the action of random pixel deletion. In all cases, we consider an additive
white Gaussian noise with standard deviation σ.

Minimization problem. At fine level, we consider the state-of-the-art optimization
problem in this context, the minimization of the sum of a quadratic data-fidelity term
and a sparsity prior based on a total variation `1,2-norm (isotropic total variation):

(∀x ∈ RNh), Fh(x) = 1
2‖Ahx− zh‖2

2 + λh‖Dhx‖1,2, (5.20)

with λh > 0. In all the experiments, the regularization parameter λh was chosen by a grid
search, in order to maximize the SNR of x̂ computed by FISTA at convergence. Finally,
we choose as initialization xh,0, the Wiener filtering of z.

Estimation of the proximity operator. The minimization of the dual problem as-
sociated with the proximity operator of x 7→ ‖Dhx‖1,2 is carried out by FISTA coupled
with a warm start strategy as in [57]. We set the initialization value of tol (in Algorithm
3) based on the reconstruction quality of images in a Total Variation based denoising
problem (that is equivalent to one computation of the associated proximity operator).
tol = 10−8 at the start of the optimization unless stated otherwise.
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5.5. Application to color image restoration

Figure 5.3: ImageNet Car "ILSVRC2012_test_00000164"1. Pillars of Creation2. Credits:
SCIENCE: NASA, ESA, CSA, STScI (Image processing): Joseph DePasquale (STScI),
Alyssa Pagan (STScI), Anton M. Koekemoer (STScI).

Experiment datasets. We consider two color images of different sizes to evaluate the
impact of the problem’s dimension: "ImageNet Car" the picture of a yellow car of size
512× 512× 3, taken from the ImageNet dataset, and a picture taken by the James Webb
Space Telescope with its Near-Infrared Camera and its Mid-Infrared Instrument of the
structure called "Pillars of Creation" of size 2048 × 2048 × 3 (Figure 5.3). Pixels values
are normalized so that the maximum value across all channels is 1.

Multilevel structure. For all our experiments we use a 5-levels hierarchy. For the
image "Pillars of Creation", the first level corresponds to an image of size 2048×2048×3,
and the fifth level to an image of size 128 × 128 × 3. Similarly, for "ImageNet Car" the
first level corresponds to an image of size 512× 512× 3 and the fifth level to an image of
size 32× 32× 3.

The coarse model associated to (5.20) is written as:

(∀x ∈ RNH ), FH(x) = 1
2‖AHx− zH‖2

2 + λH (γHgH (DHx)) + 〈vH , x〉, (5.21)

with λH > 0, zH = IHh zh and gH the `1,2-norm applied on the NH components of DHx, as
for the fine level.

As the dimension of the problem is reduced by a factor 4 every time we lower the
resolution, we set the regularization parameter λH at coarse level to a quarter of the
value of the regularization parameter at the next higher level. In practice, this ratio gives
the best performance in terms of decrease of the fine level objective function. The CIT
operators were built for every pair of levels with “Symlet 10" wavelets corresponding to a
filter size of 20 coefficients.

Remark 12. Ideally, in order to speed up the computations, one would like to choose an
approximation RH whose proximity operator is known under closed form, even when Rh

does not possess this desirable property. However, we have seen in our experiments that
choosing RH not faithful to Rh deteriorates the performance of the multilevel algorithm.
For instance, when Rh is the TV based norm, choosing a Haar wavelet based norm for
RH is suboptimal, even though there is a link between Haar wavelet and total variation
thresholdings [30,31].
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Chapter 5. IML FISTA: applications to image restoration

Finally, recall that our algorithm take the compressed form:

ȳh,k = ML(yh,k),
xh,k+1 = FBεh,ki (ȳh,k), (5.22)
yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k)

where

• 0 < τh,k < 1/βh

• αh,k = tk−1
tk+1

• tk =
(
k+a−1
a

)d
, with d ∈ (0, 1] and a > max{1, (2d) 1

d} [70, Definition 3.1].

5.5.2 Application to image deblurring
In this section, we consider the problem of image deblurring with additive Gaussian
noise. We compare the performance of IML FISTA with the one of FISTA. First, we
confirm that FISTA outperforms FB even in this inexact proximal context. Then, we
show that IML FISTA outperforms FISTA in terms of convergence speed and quality of
the reconstruction.

Experimental setup. To get a full picture of the performance of IML FISTA, we
propose four scenarios, corresponding to four different combinations of the size of the
Gaussian blur PSF and of the value of the standard deviation σ(noise) of the Gaussian
noise. These four scenarios are described in Table 5.3.

Blur \ Noise σ(noise) = 0.01 σ(noise) = 0.05
dim(PSF) = 20, σ(PSF) = 3.6 low blur, low noise low blur, high noise
dim(PSF) = 40, σ(PSF) = 7.3 high blur, low noise high blur, high noise

Table 5.3: Four scenarios of Gaussian blur degradation with additive Gaussian noise.

FB/FISTA vs IML FB/FISTA. This first set of experiments allows us to compare
several formulations of IML FISTA, including its particular instances FB and FISTA.
Algorithm 5.22 can take the form of

• FB when d = 0 and ML(yh,k) = yh,k,

• IML FB when d = 0 and ML(yh,k) = ȳh,k,

• FISTA when d = 1 and ML(yh,k) = yh,k,

• IML FISTA when d = 1 and ML(yh,k) = ȳh,k.
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Figure 5.4: Comparison of FB and FISTA against their multilevel counterpart constructed
with our framework, IML FB and IML FISTA for the restoration `1,2-TV problem for the
Pillars of Creation image (see top left corner Table 5.3). To put the emphasis on the
performance’s difference between these algorithms, the objective function evolution is
displayed in a log scale between the initial value and the minimum value obtained by
these four algorithms in 50 iterations.

In Figure 5.4, we focus on the top left corner degradation configuration (Table 5.3) and
display the evolution of the objective function w.r.t. the CPU time for the four versions of
Algorithm 5.22. We observe that IML FB (resp. FISTA) converges faster than FB (resp.
FISTA) and additionally, it confirms that FISTA and IML FISTA outperform forward-
backward approaches without inertial steps. In the following experiments, we focus on
FISTA and IML FISTA comparisons.

Experimental performance for different degradation levels. In each of the fol-
lowing figures, the organization of the four plots coincides with the configurations in table
5.3. For each of them, we tested two regularizations: `1,2-TV and `1,2-NLTV. Because
the relative behavior of IML FISTA with respect to FISTA is similar for the two regu-
larizations, for the sake of conciseness, we only report here the results obtained with the
`1,2-TV prior. Figure 5.5 and Figure 5.6 provide a first set of results for the 2048× 2048
Pillars of Creation image. We focus in the following on the 25 first iterations as the
main gain provided by the proposed method is obtained at the start of the optimization.
We can see that in all cases, the decreasing of the objective function of IML FISTA is
faster than that of FISTA. Given the cost of estimating proximity operators for TV and
NLTV based regularizations, the computational overhead of a multilevel step is almost
negligible, as we expected (cf. Figure 5.5). Thus, the two low cost coarse corrections
are sufficient for our algorithm to gain an advantage that FISTA cannot recover without
decreasing the tolerance on the approximation of the proximity operator. As a result, this
would entail higher computation time at each iteration as the error must decrease with
the number of iterations to converge. Most interestingly, if we compare the methods at
the very early stages of the optimization process, after the same number of iterations, IML
FISTA reaches a much lower value for the objective function, leading to a much better
reconstruction. The difference is particularly striking after 2 iterations (Figure 5.6).

One can also notice that increasing the noise (and thus increasing the value of regular-
ization term λ) degrades the relative performance of our algorithm compared to FISTA.
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Figure 5.5: Deblurring `1,2-TV for the Pillars of Creation image. Objective function
(normalized w.r.t. the initial value) vs CPU time (sec). First column: σ(noise) = 0.01;
second column: σ(noise) = 0.05. First row: dim(PSF) = 20, σ(PSF) = 3.6; second row:
dim(PSF) = 40, σ(PSF) = 7.3. For each plot, the crosses represent iterations of the
algorithm.

This behavior was observed in the exact proximal case (see previous section) albeit it is
far less pronounced here. Similarly, increasing the blur size improves the relative perfor-
mances of IML FISTA, just like in the case of exact expression for the proximity operator.

We stress that the potential of multilevel strategies, especially for high levels of degra-
dation (i.e., blurring and noise), is particularly evident for large scale images: on smaller
problems the overhead introduced by the method may overcome the gain obtained in
passing to lower resolutions. This is evident when looking at the results obtained in the
same degradation context for the Yellow Car image of size 512×512×3. We reproduce in
Figure 5.7 the evolution of the objective function when the regularization is the `1,2-TV
norm. With this problem of small dimension, the relative performances of IML FISTA
compared to those of FISTA are less impressive than in the case of the Pillars of Creation
image. The visual gains are also less obvious (Figure 5.8). We can still observe that for
this small problem, the degradation impacts greatly the relative performances: as the
blur size increases, the relative performances of IML FISTA compared to FISTA improve
(bottom left curve of Figure 5.7). Thus, one can expect to have good performances with
IML FISTA for small problems if the degradation is high.

5.5.3 Application to image inpainting
Here again, we consider four scenarios based on two variables: the percentage of missing
pixels and the standard deviation of the Gaussian noise σ(noise). These four scenarios are
specified in Table 5.4. For each of these four scenarios we tested two regularizations: `1,2-
TV and `1,2-NLTV. In this case we only report the results obtained with the `1,2-NLTV
prior.

Again, in all cases, the objective function decreases faster with IML FISTA than with
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Figure 5.6: Deblurring `1,2-TV for the Pillars of Creation image. Small crop of the image
after 2 iterations and after 50 iterations for FISTA (top row) and IML FISTA (bottom
row) compared to the original (x) and degraded (z) images. For each image we report the
SNR in dB. First column: σ(noise) = 0.01; second column: σ(noise) = 0.05. First row:
dim(PSF) = 20, σ(PSF) = 3.6; second row: dim(PSF) = 40, σ(PSF) = 7.3.
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Figure 5.7: Deblurring `1,2-TV for the Yellow Car image (small dimensional image). Ob-
jective function (normalized with initialization value) vs CPU time (sec). First column:
σ(noise) = 0.01; second column: σ(noise) = 0.05. First row: dim(PSF) = 20, σ(PSF)
= 3.6; second row: dim(PSF) = 40, σ(PSF) = 7.3. For each plot, the crosses represent
iterations of the algorithm.

Inpainting \ Noise σ(noise) = 0.01 σ(noise) = 0.05
missing pixels 50% low inpainting, low noise low inpainting, high noise
missing pixels 90% high inpainting, low noise high inpainting, high noise

Table 5.4: Four scenarios of inpainting degradation with additive Gaussian noise.

FISTA, proving that the computational cost of multilevel steps is almost negligible. The
two performed coarse corrections bring a considerable advantage to the minimization
achieved with IML FISTA (Figure 5.9). Also, one can remark that given a capped sub-
iterations budget, IML FISTA reaches the smallest possible value, faster than FISTA.
Comparing the two methods after only two iterations, is particularly convincing as we
can observe it in Figure 5.10: IML FISTA has already recovered the main features of
the original image, while FISTA is still far from it. Moreover, as it was already the case
for the deblurring task, IML FISTA outperforms FISTA in terms of convergence speed,
specifically when the original image is heavily corrupted. As for the deblurring task, we
display the results under the same degradation contexts (i.e., inpainting and noise) for the
Yellow Car image. We reproduce in Figure 5.11 the evolution of the objective function
when the regularization is the `1,2-NLTV norm and in Figure 5.12 the reconstructed im-
ages. In contrast to the deblurring case, IML FISTA still performs better than FISTA for
an inpainting task on a relatively small image size. This suggests that the dependency of
IML FISTA’s performances to the problem dimension is clearly linked to the degradation
context.
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Figure 5.8: Deblurring `1,2-TV for the Yellow Car image. Small crop of the image after
2 iterations and after 50 iterations for FISTA (top row) and IML FISTA (bottom row)
compared to the original (x) and degraded (z) images. For each image we report the SNR
in dB.
First column: σ(noise) = 0.01; second column: σ(noise) = 0.05. First row: dim(PSF)
= 20, σ(PSF) = 3.6; second row: dim(PSF) = 40, σ(PSF) = 7.3.

99



Chapter 5. IML FISTA: applications to image restoration

0 1000 2000 3000 4000 5000 6000

CPU time (s)

10
-1

10
0

F
h

F
h
 evolution with CPU time

FISTA

IML FISTA

0 1000 2000 3000 4000 5000 6000 7000

CPU time (s)

0.3

0.4

0.5

0.6

0.7

0.8
0.9

F
h

F
h
 evolution with CPU time

FISTA

IML FISTA

0 2000 4000 6000 8000

CPU time (s)

0.2

0.4

0.6

0.8

1

F
h

F
h
 evolution with CPU time

FISTA

IML FISTA

0 2000 4000 6000 8000

CPU time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1

F
h

F
h
 evolution with CPU time

FISTA

IML FISTA

Figure 5.9: Inpainting `1,2-NLTV for the Pillars of Creation image. Objective function
(normalized with initialization value) vs CPU time (sec). First column: σ(noise) = 0.01;
second column: σ(noise) = 0.05. First row: missing pixels 50%; second row: missing
pixels 90%. For each plot, the crosses represent iterations of the algorithm.

Discussion of the results. With these two tasks, we have highlighted the robustness of
our algorithm to the degradation context, in the presence of inexactness on the proximity
operator. IML FISTA has the potential to outperform FISTA in a wide range of context,
and can even be interesting for low dimensional problems. With that said, the main aim
of multilevel optimization is to tackle high dimensional problems. An easy way to increase
the dimension of the problem is to consider hyperspectral images, which we will address
in the next section.

5.6 Application to hyperspectral image restoration
We conclude this experimental chapter by applying IML FISTA to a hyperspectral image
(HSI) restoration problem.

5.6.1 Experimental setup
The acquisition of hyperspectral images is of tremendous importance in many fields such
as remote sensing [156] or art analysis [157,158]. It is often impaired by missing data and
noise due to cameras defect, and blurring effects. Several methods have been designed to
handle them [159]. Among them, the variational approach is of great interest but suffers
from a high computational cost [159]. This approach is a particular case of Problem (5.1)
where

Fh(x) = 1
2‖Ahx− z‖2

2 + λ
Nh∑
i=1
‖(Dhx)i‖∗, (5.23)

where ‖·‖∗ is the nuclear norm. The proximity operator of this norm is a soft-thresholding
operation on the singular values of Dhx [33]. The nuclear norm allows us to take into
account the strong correlation between the bands to improve the reconstruction.
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Figure 5.10: Inpainting `1,2-NLTV for the Pillars of Creation image. Small crop of the
image at 2 iterations and after 50 iterations for FISTA (top row) and IML FISTA (bottom
row) compared to the original (x) and degraded (z) images. For each image we report the
SNR in dB. First column: σ(noise) = 0.01; second column: σ(noise) = 0.05. First row:
missing pixels 50%; second row: missing pixels 90%.
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Figure 5.11: Inpainting `1,2-NLTV for the Yellow Car image. Objective function (normal-
ized with initialization value) vs CPU time (sec). First column: σ(noise) = 0.01; second
column: σ(noise) = 0.05. First row: missing pixels 50%; second row: missing pixels 90%.
For each plot, the crosses represent iterations of the algorithm.

Here a coarse level can be derived naively from the nature of those images: high
correlation between bands is observed on hyperspectral images, and thus it seems natural
to exploit this redundancy to reduce the dimension and restore the image.

Notations. Formally, we denote x(i,b) = x(i1,i2,b) the pixel located at the spatial index
i = (i1, i2) ∈ {1, . . . , Nr} × {1, . . . , Nc} and band b ∈ {1, . . . , L} of HSI x. x can be
represented as a hypercube of size Nh = L × Nr × Nc. We denote w(b) the wavelength
associated with the b band. We also note µ(λ) the mean of the differences λ(b+1) − λ(b)

for all b and σ(λ) the associated standard deviation.

5.6.2 Information transfer operators
Hyperspectral images naturally present a redundancy of spatial and/or spectral informa-
tion [160–162]. We propose to exploit these two correlations to define coarse approxima-
tions of Problem (5.23).

Dimension reduction along the spatial dimension. We aim to reduce the size of an
HSI by reducing the size of each band, with the same procedure we use for color images.
Formally,

(∀b = {1, . . . , Lh}) x
(:,b)
H = IHh (x(:,b)

h ) (5.24)

where IHh is defined as in Equation (5.9), with a Symlet 10 wavelet filter.

Dimension reduction along the spectral dimension. We aim to reduce the size
of an HSI by reducing the number of bands. A small wavelength difference between
two successive bands suggests a strong correlation between them. This similarity can be
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Figure 5.12: Inpainting `1,2-NLTV for the Pillars of Creation image. Small crop of the
image at 2 iterations and after 50 iterations for FISTA (top row) and IML FISTA (bottom
row) compared to the original (x) and degraded (z) images. For each image we report the
SNR in dB. First column: σ(noise) = 0.01; second column: σ(noise) = 0.05. First row:
missing pixels 50%; second row: missing pixels 90%.

Spatial resolution

Dimension reduction  :  spatial reduction

Figure 5.13: Illustration of the dimension reduction process for an HSI of size 256×256×
145 when reducing the dimension of each band (hence the name spatial reduction) without
touching the number bands. For illustration purposes, each band is not represented here.
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Figure 5.14: Illustration of the dimension reduction process for an HSI of size 256×256×
145 when reducing the dimension along the bands (hence the name spectral reduction)
without touching the size of each band. For illustration purposes, each band is not
represented here.

difficult to measure in our case (for a review of methods see [161]) because the observed
HSI is very degraded. We have therefore chosen a simple heuristic to infer this correlation,
independent of the content of the band. For all b ∈ {1, . . . , L}, every two consecutive
bands whose wavelengths difference is smaller than µ(∆) + σ(∆) then these two bands
are a priori correlated and will be aggregated at the coarse level. The "distant" bands in
wavelength are kept as they are at the coarse level. There will therefore be LH bands at
the coarse level, of size Nh,r ×Nh,c, with LH ≤ Lh. Algorithm 8 details this process (see
also Figure 5.14).

Algorithm 8 Band aggregation
1: b, ` = 1
2: while b ≤ Lh − 1 do
3: if λ(b+1) − λ(b) ≤ µ(λ) + σ(λ) then
4: x

(:,`)
H = 1

2(x(:,b)
h + x

(:,b+1)
h ),

` = `+ 1
5: else
6: x

(:,`)
H = x

(:,b)
h ,

x
(:,`+1)
H = x

(:,b+1)
h ,

` = `+ 2
7: end if
8: b = b+ 2
9: end while

We apply the same operation on Ah by averaging the blocks that represent the bands.

5.6.3 Application to inpainting
Here we assess the relative performances of the two strategies designed to reduce the
dimension of the hyperspectral images.

Degradation. The operator A will model the missing pixels: 50% of the pixels in each
band are randomly set to 0. Therefore, each band is degraded independently of the others.
Gaussian noise of variance σ = 0.01 is then added to each band. Ah is therefore a matrix
of Lh diagonal blocks where each block is a mask associated with the pixels in a band.
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Dataset. The numerical experiments are carried out on three HSIs: one on the Wash-
ington DC Mall1, one on the Okavango Delta in Botswana2 (which is used to illustrate
the information transfer operators in Figures 5.13 and 5.14) and one of a wood engraving
of St Christopher3.

Algorithm parameters. For all our experiments, we use a 5-level hierarchy (see be-
low). We always impose p = 2 coarse corrections at the start of the optimization, each
with m = 5 minimization iterations per level: our standard configuration now (Section
5.4).

When playing around with the parameters, we observed that IML FISTA was fast
on this type of problems, and so the error computed on the proximity operator could
not decrease fast enough with our procedure (see Algorithm 3) and induced increase of
the objective functions after several iterations. To take this into account, we reduce the
inertia of IML FISTA by fixing d to 0.5 (for FISTA d = 1). The two algorithm were
stopped after a given computation time accounting for 50 iterations of FISTA, and 41 of
IML FISTA.

Specifics of information transfer operators. Our information transfer operators
being data dependent, we present the resulting hierarchy of approximations for each HSI.

Spatial reduction. For the engraving of St Christopher, the first level corresponds to
an HSI of size (512)2 × 33, and the fifth level to an HSI of size (32)2 × 33. The reduction
factor is the same for the other HSIs, giving an overall reduction factor of 256. The AH

operator is constructed by taking every other column and every other row of Ah.

Spectral reduction. For the Washington DC Mall, the first level corresponds to an
HSI of size (256)2× 191, and the fifth level corresponds to an HSI of size (256)2× 23. For
the Okavango Delta HSI, the first level corresponds to an HSI of size (256)2 × 145, and
the fifth level to an HSI of size (256)2 × 12. For the HSI of St Christopher, the first level
corresponds to an HSI of size (512)2 × 33, and the fifth level to an HSI of size (512)2 × 3.
The AH operator is constructed using Algorithm 8’s procedure: the Ah blocks are merged
or retained to define AH .

For both information transfer methods, the DH operator is a reduced order version of
Dh: DH ∈ RK̃LHNH×NH .

Impact of information transfer. As the dimension reduction is smaller for spectral
information transfer, the cost of a coarse correction is higher. We also expected that
it would slow down this version of IML FISTA, that we called IML FISTA Spec (for
spectral), with respect to IML FISTA Spat (for spatial). These corrections will, however,
bring a greater decrease in the objective function and improve the rest of the optimization.

1Washington DC Mall: acquisition by HYDICE [163].
2Okavango Delta : acquisition by NASA EO-1 satellite [164].
3St Christopher: acquisition by authors of [165].
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Figure 5.15: Evolution of the objective function for the inpainting problem on the St
Christopher HSI with respect to the CPU time (in seconds). The green and blue curves
represent the evolution of the objective function for IML FISTA Spec and IML FISTA
Spat in comparison to FISTA in red.

Performance with respect to FISTA. In both cases IML FISTA is much better
than FISTA at equivalent computation time: we can observe gains of several decibels on
the SNR of the reconstructions (see Table 5.5). Figure 5.15 shows the evolution curves
of the objective functions and a comparison of a channel from the St Christopher HSI.
Similar curves were obtained for the other HSIs tested, we do not reproduce them here.
IML FISTA Spec enables good quality restorations to be achieved on inpainting problems

z FISTA IML Spat IML Spec
Washington DC 4.8 15.8 18.6 19.5
Okavango Delta 5.4 18.7 23.0 24.8
St Christopher 5.4 21.7 32.7 35.5

Table 5.5: Restoration results at equal computation time (around 50 iterations) and
around convergence for the three HSI. Metric: SNR (dB). In bold, we highlight the best
result. Note that IML FISTA Spat also vastly outperforms FISTA.

in a few tens of minutes for an image of size (512)2 × 33 instead of several hours of
computation with FISTA. Visually, a few iterations of IML FISTA are enough to obtain
a good restoration, as shown in Figure 5.16 for the St Christopher HSI.

Discussion of the results. As said before, we expected IML FISTA Spat to perform
better than IML FISTA Spec. Numerical experiments consistently show the opposite.
A first explanation is that IML FISTA Spec averages the bands, which are all degraded
differently. Therefore, if pixels are missing in a band, they may be present in its neighbors.
This averaging operation can then be seen as a way to fill in the missing pixels. This is not
the case for IML FISTA Spat, which averages the pixels of the same band. To check if this
explanation was correct, we put to 0 the same 50% of pixels in each band and repeated
the experiment. We obtained the same results that are displayed in Figure 5.15. These
results suggest that fidelity to the fine level is more important than drastic dimension
reduction to accelerate the optimization.
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Figure 5.16: Inpainting `∗-NLTV for the St-Christopher engraving hyperspectral image.
Missing pixels 50%, σ(noise) = 0.01. On the left, objective function (normalized with
initialization value) vs CPU time (×104 sec). We display the 15-th band of of the HSI for
FISTA and IML FISTA after 2 iterations and at the end of the computation time budget
(50 iterations of FISTA).
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5.6.4 Application to deblurring and inpainting, combined
In this final experiment, we consider the restoration of a hyperspectral image degraded
by a blur and missing pixels. This context is slightly harder than the inpainting one, as
the blur occurs before the missing pixels. We will only consider the HSI of St Christopher
for this experiment.

Data fidelity term. To perform the restoration of such images, we model the degra-
dation as the combination of a Gaussian blur and a mask on the pixels (in this order).
The parameters of the degradation are the following: missing pixels 50%; dimension(PSF)
= 5; σ(PSF) = 0.9; σnoise = 0.01.

Regularization term. We consider the same regularization as before, the structure
tensor non-local TV penalization proposed in [33].

Information transfer operators. We have assessed that IML FISTA Spec was faster
than IML FISTA Spat in the previous inpainting experiment. Thus, we will only consider
IML FISTA Spec for this experiment, and the construction of the hierarchy is the same
as in the previous experiment.

Multilevel parameters. The proposed multilevel algorithm has then 5 levels, and at
the last level the HSI is of size 512 × 512 × 3. The configuration remains the same
as presented in previous experiments. In the previous study, we have also seen that
d = 0.5 was a good trade-off between relaxing the necessary decrease of the proximity
operator estimation’s error and having a sufficient decrease of the objective function at
each iteration with the inertia. We reuse this choice of d here.

Results. The evolution of the objective function and the reconstructed hyperspectral
image of this experiment are displayed in Figure 5.17 and Figure 5.18. Essentially, the
decrease of the objective function obtained by IML FISTA is faster than what it is obtained
by FISTA on about 50 iterations while only calling ML twice.

5.7 Conclusion
In this chapter, we have shown that IML FISTA could vastly outperform FISTA, the
state-of-the-art first order optimization method on the class of functions we consider, on
a wide range of problems. We have shown that the algorithm is robust to the degradation
context, whether it is deblurring or inpainting or a combination of the two. We also
placed ourselves in really high dimensional settings with hyperspectral images. Under
these settings, the available gains when using IML FISTA are massive.

Among its many advantages, IML FISTA provides good quality reconstructions faster
than FISTA. This opens up a great opportunity to deal with problems of large dimension,
especially when limited computational resources prevent convergence from being achieved
systematically. In addition, this accelerated coarse approximation could play an important
role in applications where image reconstruction is only a pre-processing task.
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Figure 5.17: Blurring and inpainting `∗-NLTV for the St-Christopher engraving hyper-
spectral image. Missing pixels 50%, dim(PSF) = 5, σ(PSF) = 0.9, σ(noise) = 0.01. On
the left, objective function (normalized with initialization value) vs CPU time (×104 sec).
On the right, band 15 of the HSI for FISTA and IML FISTA after 2 iterations and at the
end of the computation time budget (50 iterations of FISTA).
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Figure 5.18: Blurring and inpainting `∗-NLTV for the St-Christopher engraving hyper-
spectral image. Missing pixels 50%, dim(PSF) = 5, σ(PSF) = 0.9, σ(noise) = 0.01. We
display the 15-th band of of the HSI for FISTA and IML FISTA after 2 iterations and at
the end of the computation time budget (50 iterations of FISTA).
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At last, the higher the degradation, the better the performance of IML FISTA is
relative to FISTA. This suggests that the algorithm is well suited to the most difficult
problems. In order to convince the reader of the potential of IML FISTA, we will apply
it to a real-world problem in the next chapter: the reconstruction of images obtained
through radio-interferometry in astronomy.

Nonetheless, the performance of IML FISTA with respect to FISTA is not as good as
that of a multigrid method with respect to a single grid method to solve PDEs. This is
certainly due to the fact that FISTA still recovers the low frequency information of the
solution first, therefore the coarse correction is not as efficient as it could be. But still,
the gain is substantial, and the algorithm is very promising.
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Chapter 6
IML FISTA: application to
radio-interferometric imaging

In this chapter, we conclude with the applications of IML FISTA by tackling a radio-
interferometric imaging problem. The design of our algorithm to tackle this problem
is quite interesting, as the reduction of the dimension will not take place in the image
directly but rather in a "dual" observation space.

The content of this chapter was partially published in the following paper [166]. It
follows the same structure as the paper, with additional details: notably the generalization
of the developed framework to more than 2-Levels; and additional illustrations.

This work was done in collaboration with Audrey Repetti and Yves Wiaux from Heriot-
Watt University, Edinburgh, UK. Our contribution is built on the work done in the BASP
Group1 which includes some code, and domain specific knowledge.

6.1 Introduction
Motivated by the success of IML FISTA on relatively toy problems in the previous chapter,
it is natural to wonder how our algorithm would perform on more realistic problems. In
this chapter, we will apply IML FISTA to radio-interferometric imaging (RI), a problem
that is of great interest in astronomy. This problem is particularly challenging due to
the large amount of observations that are collected by radio telescopes, and thus is an
excellent candidate to test the relevance of our approach.

Notations. In this chapter, we do not follow the convention of the RI literature, and
of our own article [166], but rather those of the rest of the manuscript. For instance, the
visibilities are denoted by z instead of y in the literature.

Organization of the chapter. We will first begin by a short presentation of the as-
tronomy context and its challenges we want to address in Section 6.2. Then, we will
present the radio-interferometric imaging problem and the state-of-the-art methods. Fi-

1https://basp.site.hw.ac.uk
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Figure 6.1: The MeerKAT radio-interferometric array in South Africa. It consists of 64
antennas, and will be a part of the future Square Kilometer Array (SKA).

nally, we will present our IML FISTA algorithm whose construction is adapted for this
problem.

6.2 Radio-interferometric imaging
Radio-interferometric (RI) imaging aims to reconstruct a sky brightness distribution from
noisy observations in the Fourier space (named visibilities). These measurements are col-
lected by what is called a radio-interferometer, an array2 of antennas or dishes that com-
bine the signal between pairs of antennas. In contrast, an optical telescope only has one
dish. The last decades have seen the development of ever-increasing number of antennas
for radio-interferometric arrays. From the Very Large Array (VLA) in New Mexico (USA)
to the ongoing SKA in South Africa and Australia, the number of antennas has increased
from a few and is expected to reach a few thousands in this decade (2020s). Typical array
now possess dozens of antennas that are combined to sample the Fourier observations
(see Figure 6.1 for an example of a radio-interferometric array). The distribution of the
Fourier frequency samples is dictated by the position of the antennas used to probe the
sky. The largest sampled spatial frequency is a direct function of the longest baseline, i.e.
the distance between the two antennas that are the farthest apart. The larger the sampled
frequencies, the higher the angular resolution of telescope and thus of the resulting image.

Classical diffraction theory says that the angular resolution θ of a telescope is limited
by its diameter D according to the following relationship [9]:

θ = 1.22 λ
D

(6.1)

where λ is the wavelength of the observed signal. Radio-interferometers artificially in-
crease the diameter D with the longest baseline D̃ between two antennas (see Figure 6.2).
The number of antennas within an interferometer being naturally finite, this leads to un-
der sampling the Fourier measurements [11]. Again this under sampling is a consequence
of the array configuration. In Figure 6.4 you can see elliptic arcs crossing the Fourier
space. Each one of them is the signal collected by a pair of two antennas across several

2We refer here to a network of several antennas.
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Figure 6.2: A schematic representation of a radio-interferometric baseline.

hours, the arc being the projection of the Earth rotation on the sky. The problem we are
facing can be seen as an inpainting problem in the Fourier space.

Obtaining then the target image requires to deconvolve and denoise the Fourier mea-
surements, otherwise a direct inverse Fourier transform would lead to a blurry image.

6.2.1 Imaging model
The problem we presented above can be mathematically formulated as follows. Our goal
is to reconstruct the intensity image x ∈ RN from a set of measured complex visibilities
z ∈ CM acquired in the Fourier space. The corresponding discretized forward model can
be formulated as follows [167]:

z = GFZx+ ε := Φx+ ε (6.2)
where

• G ∈ CM×d is a sparse interpolation operator that maps the Fourier coefficients on
a regular grid (inherited from the image) to the non-uniformly located visibilities,

• F ∈ Cd×d is the 2D Discrete Fourier Transform,

• and Z ∈ Rd×N is a zero-padding operator to properly map x for the convolution
performed through the operator G. The value of d is controlled by the size of the
interpolation kernel of G [168].

The term ε stands for a centered white Gaussian noise3. Such perturbations have been
investigated in [170], but more generally they can be taken into account with a careful
calibration processing [9, 171, 172]. Typically, M � N and is of the order of 10 millions
visibilities (see [170] for more details).

This problem presents two main challenges. First, it is severely ill-posed, hence requir-
ing advanced imaging techniques. Second, the size of the data streams coming from radio-
telescopes is expected to be ever-increasing, thus raising the challenge of designing highly

3This modeling of the measurement operation is an approximation of the true measurement process
[9, 169, 170]: we assume here a narrow field of view, white noise across all visibilities and no anisotropic
perturbations.
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scalable methods. We present now some well-known methods in the radio-interferometric
imaging field.

6.2.2 Recovery techniques in radio-interferometry

CLEAN [173, 174] is the most used algorithm in RI imaging. It is similar to a matching
pursuit method, but shows limitations when probing extended complex emissions, or for
large numbers of point sources (e.g. single stars) [175]. From what is called the dirty
image (the inverse Fourier transform of the measurement), CLEAN iteratively identifies
the brightest point source and the corresponding point spread function is estimated from
this source. The result of the convolution of the point spread function with the point
sources is subtracted from the dirty image. This process is repeated until the residual
image is below a certain threshold. There exist variations of this algorithm, and it has
seen several improvements since its inception [176–178].

The CLEAN algorithm has really efficient implementation, and is often much faster
than other existing methods. However, the imaging quality is not on par with these
methods [44,167,179], which we will present now.

6.2.3 Variational approaches

Sparsity Averaging Reweighted Analysis (SARA). Penalized variational proce-
dures have been proposed to improve the quality of the reconstructed images in a more
general framework [9, 170]. Based on the works done to develop regularized imaging
methods and algorithms to solve them, the state-of-the-art variational formulation in RI
is Sparsity Averaging Reweighted Analysis [167], promoting average sparsity of the solu-
tion in a concatenation of bases through a reweighted-`1 procedure. Specifically, it aims
at minimizing a log-sum prior by solving a sequence of weighted `1 problems [179–181].
Two SARA formulations have been proposed for imaging [44,167,181]: a constrained and
an unconstrained one, uSARA, on which we will focus on in this chapter.

6.2.4 uSARA approach in a nutshell

Inverse problems of the form of (6.2) can be solved by defining iterations to

minimize
x∈RN

F (x) := 1
2‖Φx− z‖

2︸ ︷︷ ︸
L(x)

+R(x), (6.3)

where R : RN →] −∞,+∞] is a regularization function incorporating prior information
on the target solution.

The uSARA problem corresponds to Equation (6.3), where R corresponds to a log-sum
penalization to promote sparsity in the concatenation of the first eight Daubechies wavelet
bases and the Dirac basis. Such a regularization is then handled using a reweighted `1
approach, that aims at solving a sequence of weighted `1 problems [44, 180, 181]. The
resulting reweighting procedure, starting with W0 = λId, can then be written as
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for i = 0, . . . , I x̃i+1 ∈ Argmin
x∈RN

Fi(x) := L(x) +R(x,Wi),

Wi+1 = Diag (λ(ρ+ |D∗x̃i+1|)−1) ,

(6.4)

where I > 0 is the maximum number of reweighting steps,

R(x,Wi) = ‖WiD∗x‖1 + ιRN+ (x), (6.5)

with D being the SARA dictionary (a concatenation of wavelet bases), D∗ its adjoint,
and ιRN+ being the indicator function associated with the positive orthant, λ > 0 is a
regularization parameter balancing the contribution of the regularization and the data
fidelity terms, and ρ > 0 ensures stability of the method. As ρ tends to 0 the solution of
the weighted `1−norm problem approaches that of the `0 pseudo-norm problem [181,182].

It has been shown in [179] that when solving approximately the minimization problem
in (6.4) with a fixed number of forward-backward iterations, the sequence (x̃i)i∈N converges
to a critical point of F in (6.3).

Scaling to high-dimensional data. Many algorithms have been proposed to reduce
the computational load induced by the number of visibilities. Most often, these algorithms
consider only a subset of visibilities at each iteration. A first idea is to split the visibilities
into blocks and to parallelize the action of Φ block wise [169]. This parallelization can
also be extended to the regularization term [183], this time by splitting the reconstructed
image. This will not be considered in this chapter, as we wanted first to see if IML FISTA
could provide acceleration in the simplest setting.

In [184], this approach was also extended to multi-spectral data with a modification
of SARA to take into account spectral correlations. Other approaches solve approxima-
tions of the original problem in smaller dimensions, by selecting relevant visibilities in a
sketching fashion (suitable random projections for instance) [185] or updating only with
a fraction of the visibilities at each optimization step in an online manner [186]. Finally,
acceleration schemes such as preconditioning strategies can be considered to better take
into account the specific RI Fourier distribution [183].

Some of these techniques may be combined with the IML FISTA algorithm we propose
in this chapter, and will be discussed at the end. We will now present our approach to
tackle the uSARA problem with IML FISTA.

6.3 The multilevel framework for radio-interferometry
Without loss of generality, we again present the proposed multilevel strategy on a two-
level case and will discuss when needed the extension to more levels. In this setting, we
index the functions at the coarse level with subscript H, i.e. FH , LH and RH , for F , L,
and R, respectively.

Spirit of the method. Given an objective function at the fine level F , the goal of
multilevel approaches is to build a coarse approximation FH of F , which is cheaper to
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optimize, to accelerate the minimization of F . Our multilevel algorithm consists of alter-
nating iterations at the coarse level on FH (ML steps) and at the fine level on F . Within
the multilevel framework developed in Chapter 4, the minimization of (6.3) at the fine
level can be computed using either forward-backward iterations or its accelerated inertial
version FISTA. Then, the overall multilevel alternating procedure reads

for k = 0, 1, . . . xk = ML(xk)
xh,k+1 = FISTA(xk).

(6.6)

The crucial component of our multilevel strategy is the construction of a FH in order to
be consistent with F [90, 126].

Our main contribution in this chapter is to construct FH exploiting properties of the
RI problem, considering a coarse model in the data domain rather than in the image
domain as done in Chapter 5, and leveraging the specific RI Fourier sub-sampling.

6.3.1 Proposed coarse model in data space
The usual approach to construct FH consists in approximating F in a lower dimensional
space. This would amount here to decrease the size of the image x and to formulate a
similar optimization problem for a low resolution image (see Chapter 5). However, to
take into account that the limiting factor in RI imaging is the large number of visibilities
rather than the size of the sought image, we deviate from the classical multilevel scheme,
and we construct a coarse model based on the following approximation of L:

(∀x ∈ RN) LH(x) := 1
2‖SΦx− Sz‖2 (6.7)

where S : CM → CMH is an operator reducing the data dimensionality M to a lower
dimension MH < M . Note that LH : RN → R is defined on the same space RN as L,
thus information transfer operators between levels, commonly used in standard multilevel
algorithms [88–90,126,128], are not required in the proposed setting.

In general, choosing S to reduce computation complexity without sacrificing recon-
struction accuracy is challenging, and some choices may lead to suboptimal reconstruc-
tion [185]. However, in our framework, LH is only used to propel the minimization of the
fine level objective function. We propose to sub-sample the Fourier coverage, that will
enable preserving the reconstruction quality while reducing the computation complexity
of the overall minimization method. This choice will be further discussed in Section 6.4.2.

Remark 13. Formulation (6.7) is standard in the sketching literature, where S is typically
a Gaussian random matrix so that minimizing (6.7) guarantees signal recovery [187].
Such a strategy has however many drawbacks for RI imaging that were investigated in
[185]. Notably operator SΦ is dense and thus computationally intensive to use in iterative
optimization (i.e. each matrix vector product involving SΦ is inefficient).
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Figure 6.3: Scheme of a multilevel iteration in the radio-interferometric context. It
encompasses the selection of a subset of the visibilities to define the coarse level; the
definition of a coarse level function with these visibilities; several minimization steps at
coarse level; and finally correction of the fine level iterate with the difference between the
last and first coarse iterates. In this context there is no need for information transfer
operators between levels: the reduction of the image dimension is done implicitly by
selecting low frequencies in the Fourier space.

6.4 ML approach for uSARA acceleration

6.4.1 Proposed IML FISTA for uSARA
In the context of RI imaging we adapt IML FISTA for minimizing Fi at each reweighting
step i ∈ {0, . . . , I}. Then, the proposed IML FISTA iterations for uSARA, read

Initialize x0 = z0 = x̃i and for k = 0, 1, . . .
yk = ML(yk)
xk+1 ≈ proxτR(·,Wi) (yk − τ∇L(yk)) ,
yk+1 = xk+1 + αk(xk+1 − xk)

Return x̃i+1 = xk+1,

(6.8)

where τ > 0 and (αk)k∈N are chosen according to [70], and the approximation errors on
the proximal operator are assumed to be summable [70, 126]. The multilevel (ML) step
consists of updating the variable yk at certain iterations with a correction from coarse
models to obtain a better update yk. The detailed version of this step and the variables
involved are presented in Algorithm 9.
At iteration k of algorithm (6.8) the coarse objective function FH is given for all x ∈ RN

by
FH(x) = LH(x) +RH,γ(x,Wi) + 〈vH,k, x〉, (6.9)

where
vH,k = ∇

(
L+Rγ(·,Wi)− LH −RH,γ(·,Wi)

)
(yk). (6.10)
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Algorithm 9 ML step in (6.8)
if Coarse correction at iteration k then
Set τH > 0 and αH > 0 according to [70]
y+ = (Id− τH∇FH) ◦ . . . ◦ (Id− τH∇FH)︸ ︷︷ ︸

p gradient steps

(yk)

yk = yk + αH (y+ − yk)
else
yk = yk

end if

In (6.10), Rγ(·,Wi) corresponds to a smooth approximation of R(·,Wi) with parameter
γ > 0 [132, Definition 2.1], obtained using a Moreau-Yosida smoothing technique (see
Chapters 4 and 5). The advantage of this technique is that the gradient has a closed form
expression. Similarly, RH,γ is a smooth approximation of the coarse approximation RH ,
built using the same technique. Note that a coarse model for FH can be defined in the
same manner, so that the coarse approximation could recursively benefit from its own
coarse approximation.
In (6.9), vH,k imposes first-order coherence between the smoothed versions of the functions
at fine and coarse levels. According to Theorem 5 (Chapter 4, Section 4.5.4), we then
have the following theoretical guarantees:

Theorem 7. Let i ∈ {1, . . . , I}. Let (xk)k∈N and (yk)k∈N be sequences generated by
algorithm (6.8). Assume that, for every k ∈ N, the coarse model defined in Algorithm
9 decreases, i.e. FH(y+) ≤ FH(yk)a. Then, the following assertions hold:

1.
(
F (xk)− F ∗

)
k∈N

is decreasing at a rate of 1/k2,

2. (xk)k∈N converges to a minimizer of Fi when k →∞.
aThis is ensured as soon as τH < β−1

H , where βH > 0 is the Lipschitz constant of ∇FH .

6.4.2 Algorithmic settings and implementation
Proximity operator computation. In (6.8), the proximity operator of R(·,Wi) is
defined, for every x ∈ RN , as

proxτR(·,Wi)(x) = arg min
u∈RN+

1
2τ ‖u− x‖

2 + ‖WiD∗u‖1.

Since this proximity operator does not have a closed form expression, it can be computed
with sub-iterations. In particular, the dual forward-backward algorithm proposed in [63]
produces a sequence of feasible iterates converging to proxτR(·,Wi)(x) [63, Theorem 3.7].
We detail now the procedure to compute this proximity operator.

Let x ∈ RN . WiD∗ : RN → R9N is a bounded non-zero linear operator such that the
qualification condition

0 ∈ sri (WiD∗(domιRN+ )− dom ‖ · ‖1) (6.11)
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holds (sri denotes the strong relative interior of a convex set). The problem of computing
the proximity operator of the sum is (with τ = 1 for simplicity) [63]

min
u∈RN

ιRN+ (u) + ‖WiD∗u‖1 + 1
2‖u− x‖

2 (6.12)

Its dual problem is the following [63]:

min
v∈R9N

1(σRN+ )(x−WiDv) + ‖v‖∞ (6.13)

The notation 1(σRN+ ) is to be understood as the Moreau envelope of parameter 1 of the
conjugate of ιRN+ (which is the support function of the set RN

+ ). This problem admits at
least one solution, and every solution v∗ is characterized by the inclusion [63, Proposition
3.3]

WiD∗
(
proxιRN+

(x−WiDv∗)
)
∈ ∂‖(v∗)‖∞. (6.14)

Proposition 5. Let v∗ be a solution to Problem (6.13) and set

z = proxιRN+
(x−WiDv∗). (6.15)

Then z is the solution to Problem (6.12).

The solution of Problem (6.12) can be computed by Algorithm 6 [63]. This algorithm

Algorithm 10 Computation of the proximity operator. Let (an)n∈N be a sequence in R9N

such that ∑n∈N ‖an‖ < +∞ and let (bn)n∈N be a sequence in H such that ∑n∈N ‖bn‖ <
+∞. Sequences (un)n∈N and (vn)n∈N are generated by the following routines:
Require: η ∈]0,min{1, ‖WiD∗‖−2}[, v0 ∈ R9N

1: for n = 0, 1, . . . do

2: un = proxιRN+
(x−WiDvn) + bn

3: γn ∈ [η, 2], ‖WiD∗‖−2 − η]

4: λn ∈ [η, 1]

5: vn+1 = vn + λn
(
proxγn‖·‖∞(vn + γn(WiD∗un)) + an − vn

)
.

6: end for

is akin to a forward-backward algorithm and thus produces a decreasing sequence of dual
objective function values.

Construction of S. To demonstrate the potential of the proposed IML FISTA for RI
imaging, we choose S in (6.7) to select low-frequency coefficients in the Fourier u − v
coverage, and preserving the ellipsis arcs (i.e. corresponding to antenna pairs selecting
low-frequency components). An example with a Fourier coverage simulated from a subset
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Figure 6.4: Fourier coverage for the fine (in blue) and coarse level (in red) when using the
MeerKAT telescope [188].

of 64 antennas of the MeerKAT telescope [188] is displayed in Figure 6.4, where S selects
M/2 coefficients (in red) out of the M = 10, 080, 000 total observations.

In other words we keep the visibilities produced by pair of antennas with the smallest
distance to each others in the physical world. This choice is also based on the fact that
most of the signal energy is usually concentrated around low frequencies [167] to accelerate
the reconstruction of the image, a common idea in RI imaging [183].

Formally S is a sub-sampling operator that selects a subset J ⊆ {1, . . . ,m} of the
available visibilities. We then construct ΦH = SΦ to map the DFT of the image x to Sy.

Choice of coarse model. We choose RH,γ = 0, i.e. the coarse level is not regularized
explicitly. This choice is due to the fact that through S we are only working with low-
frequencies, and we observed that adding a coarse regularization in this case was not
making a quantitative difference in preliminary numerical experiments4. Thus, the coarse
objective function (6.9) boils down to

(∀x ∈ RN) FH(x) := 1
2‖SΦx− Sz‖2 + 〈vH , x〉. (6.16)

Hence, the coarse model is still guided by the fine level regularization through vH,k.
Regarding the smoothing of R(·,Wi) in (6.10), we choose to only smooth the SARA

weighted-`1 regularization without enforcing the first order coherence with respect to
ιRN+ (·). Moreover, one can think of ML steps as some kind of "gradient" steps, before
applying the proximity operator that enforces the feasibility. In practice, we have not
observed unfeasible coarse iterates.

4We did not try to remove the regularization in the experiments from Chapter 5, it may be another
way of improving the performance of IML FISTA in these applications.
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Figure 6.5: Fourier coverage for level 3 (fine) (in blue) and coarse level 2 (in red) and 3
(in orange) when using the MeerKAT telescope [188].

Multilevel setup. For all the performed experiments, our multilevel algorithm will
consist of 3 levels. Each coarse level has half of the available measurements of its cor-
responding fine level. At each level we perform p = 5 iterations of gradient descent in
algorithm 9 with FH given in (6.16). The coarse models are called every iteration, i.e.,
we never compute fine level updates alone.

6.4.3 Generalization to more than two levels

It may not be straightforward for the reader to see how one could generalize the proposed
method to more than two levels. In fact, to construct more than two levels we will repeat
the same procedure as to define the coarse level in the previous paragraph and construct
a series of (S`)2≤`≤L that select visibilities of level ` to define the coarse level of level `−1.
The coarse model of level `− 1 will then be defined as in (6.16) with S = SL.

(∀2 ≤ ` ≤ L) (∀x ∈ RN) F`−1(x) := 1
2‖
 L∏
j=`

Si

Φx−

 L∏
j=`

Si

 z‖2 + 〈vH , x〉. (6.17)

The computation of
(∏L

j=` Si
)

Φ and of
(∏L

j=` Si
)
z is done once at the start of the opti-

mization.
The multilevel algorithm will then consist of L levels, each level having half of the

available measurements of its corresponding fine level. You can see in Figure 6.5 the
selection of visibilities when using 3 levels.

By increasing the number of levels in this case of coverage, one can target lower
frequencies, which contain most of the signal here (note that this may not be true for
other coverages).
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6.5 Numerical experiments

6.5.1 Dataset
We use a subset of 64 antennas from the MeerKAT array [188]. Each antenna pair acquires
5, 000 visibilities, leading to a total of M = 10, 080, 000 observations (see Figure 6.4 for
the resulting Fourier coverage). In our simulations, we use a simulated image of the M31
galaxy5 of dimension n = 512×512, provided by the BASP group. The measurements are
obtained as per equation (6.2), where ε ∈ Cm is a realization of a centered white Gaussian
noise with variance σ = 0.007, so that the input Signal-to-Noise-Ratio (SNR) is equal to
19 dB in the visibility domain.

6.5.2 Minimization comparison without reweighting
In this section we will compare three optimization methods for solving Equation (6.3):
FB, FISTA, and IML FISTA. Each algorithm is given a budget of CPU time to reach
the best reconstruction (λ is chosen via grid search). Our main goal is to demonstrate
that IML FISTA is faster than FISTA to solve this problem. First and foremost we are
interested in the quality of the reconstruction, so we will plot two criteria to validate the
performances of our algorithm: the objective function and the SNR evolution with respect
to the CPU time, in Figures 6.6 left and middle, respectively.
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Figure 6.6: Evolution of the objective function values (left), of the SNR (middle) of the
iterates produced by FB algorithm, FISTA and IML FISTA with respect to the CPU time
when solving Problem (6.3) (each algorithm had a CPU time budget of 1500 seconds).
Evolution of the SNR for the three algorithms when we involve the complete reweighting
procedure (right) (CPU time budget of 10000 seconds).

As one can see IML FISTA outperforms both FISTA and FB algorithms for a single
round of convex optimization. We further provide reconstructions obtained with the three
methods for visual inspection in Figure 6.7, at given CPU computation times {≈ 300s,≈
500s,≈ 800s,≈ 1, 100s,≈ 1, 500s}.

6.5.3 Minimization comparison for uSARA
We now focus on solving the complete uSARA problem. As we solve a sequence of
optimization problems (6.4) that will be different for each optimization method, the easiest

5Image available at: https://casaguides.nrao.edu/index.php?title=Sim_Inputs.
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Figure 6.7: Reconstruction in log scale of a region of the M31 galaxy by FB (top row)
FISTA (middle row) and IML FISTA (bottom row) at equivalent CPU times. The legend
on top of each thumbnail reads as follows: log SNR in dB - CPU time in seconds. log
SNR = SNR(log10(103x+ 1)/3, log10(103xtruth + 1)/3).

way to evaluate each method is to only compare FB, FISTA and IML FISTA on the SNR
evolution with respect to the CPU time computation. The results are shown in Figure 6.6-
right. One can see that at each "reweighting" step a small jump in the SNR of the iterates
occurs (for both FISTA and IML FISTA) due to the reset of the inertia parameters (for
convergence reasons [70]). With the given coverage we can only slightly improve the SNR
of the reconstruction, but nevertheless IML FISTA reaches an upper bound faster than
FISTA.

6.6 Conclusion
Conclusion. In this chapter we proposed a multilevel approach for solving the uSARA
problem in RI imaging, where the coarse level enables working with low-dimensional
data, while the fine model ensures consistency with the full data and promotes averaging
sparsity. We have also integrated the resulting IML FISTA iterations, within a reweighting
framework, further enhancing sparsity. We have shown through simulations on RI imaging
that the proposed IML FISTA leads to impressive acceleration with respect to FB to
solve uSARA by exploiting approximations in the observation space of the problem. Our
method shows promising results on simulations when integrated within the reweighting
procedure. It remains to conduct more extensive experiments to further explore the
benefits and possible gains of the procedure, as radio-interferometric imaging is a vast
domain where numerous configurations of measurements can happen depending on the
astronomical object to observe.
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Perspectives. The proposed multilevel acceleration for uSARA being very promising,
we have identified future research directions to better assess its potential for RI imaging.

On the one hand, there exist approaches to efficiently handle high-dimensional data
based on a parallel implementation of the measurement operator Φ [169]. Our method
could be coupled with such a parallelization strategy to benefit at the same time from the
dimensionality reduction at the coarse levels and from an efficient parallel implementation
of Φ at the fine levels.

This parallelization strategy exploits the distribution of the measurements across the
Fourier space, and the structure of the interpolation kernel to construct a parallel im-
plementation of the measurement operator. One could exploit in similar fashion this
construction to select the measurements at coarse level, so that the subsequent measure-
ment operator enjoys the same parallelization properties.

Also, preconditioning strategies enabling natural weighting (leveraging the local den-
sity of the Fourier sampling) could be considered for comparison and/or further acceler-
ation of the proposed method [183].

Moreover, sophisticated coarse models for RI could be investigated to potentially im-
prove the results (for instance sketching approaches [185]).

Furthermore, connections of multilevel approaches with CLEAN algorithm [173] and
its learned version R2D2 [189] could be studied. Both methods are built on major-minor
cycles reminiscent of matching pursuit. During the minor cycles, an approximate data
term is used, ultimately enabling a much smaller number of major cycles (requiring passing
through the full data). This is akin to the proposed multilevel method.

On the other hand, a few theoretical research directions could be pursued. Leveraging
approximation theory as in [179], the global convergence of the multilevel strategy within
a reweighting framework could be studied. The multilevel framework, as we have seen at
the end of Chapter 4, could also be extended to primal-dual algorithms, to enable solving
the constrained formulation of SARA, which in this RI context yields better reconstruction
quality. At this point, multilevel primal-dual algorithms are not well enough understood to
tackle such imaging problem (see Appendix A.3.2), but it would nevertheless be interesting
to investigate this direction.
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Part III

Multilevel optimization: a new
perspective
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Chapter 7
Multilevel algorithms from a block-coordinate
descent point of view

In this final part of the manuscript we revisit the theoretical construction of multilevel
algorithm from the point of view of coordinate descent algorithms. This point of view
emerged from revisiting the very first image restoration problem we tackled during my
PhD: the `1-wavelet-regularized deblurring problem. We establish an equivalence between
IML FB and a block-coordinate descent (BCD) algorithm having a hierarchical – in a
multilevel sense – selection of the blocks to update. On the way, we prove the convergence
of this BCD algorithm in a non-convex, non-smooth setting. We leave for later works the
study of the equivalence between IML FISTA and inertial BCD algorithms [190].

This work was done in collaboration with L. Briceño-Arias from Universidad Técnica
Federico Santa María, Chile.

7.1 Introduction

Our motivation. We have seen in Chapter 4 how to construct a convergent multilevel
algorithm for non-smooth optimization. Then we showed in Chapter 5 and in Chapter 6
that this algorithm had great potential to accelerate the optimization of a wide range of
large-scale imaging problems.

This acceleration has come with a what I would call a pre-computation cost: we worked
quite a lot to identify a robust construction for the algorithm, that could be adapted to
each one of the considered applications. Such search takes a good amount of time and
knowledge about the problem at hand. Given that multilevel algorithms in the literature
do seem to accelerate the solution of the associated optimization problem (to name a
few [88–90,103,107,108,112]), one can imagine that the authors of these papers followed
a similar path.

Therefore, I was strongly motivated to find a way to construct ad hoc multilevel
algorithms, i.e., that could help us identify quickly good constructions. This is what this
last part is about. The reader should keep in mind that the findings of this chapter came
after the work presented in Chapter 4, 5, and 6.
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Multilevel algorithm are block-coordinate descent algorithms. In the present
chapter, we propose to construct an algorithm that fits at the same time the multilevel
formalism1 and the BCD formalism, so that the analysis of the multilevel algorithm would
be done using BCD tools. Such connection was briefly mentioned in [112, Section 2.4], but
their proposed multilevel algorithm did not follow the classic rules of multigrid/multilevel
(see Chapter 3 and Chapter 4).

The analogy we draw between the block-coordinate algorithm and the multilevel algo-
rithm goes both ways. We will show that the two algorithms are in fact the same for this
problem, and that the block-coordinate point of view can be used to construct a multilevel
algorithm. Then we will show that adopting multilevel precepts can help choose efficient
update rules for block-coordinate algorithms and the block-coordinate point of view can
give additional theoretical guarantees to multilevel algorithms.

To draw this analogy, we will construct a new BCD algorithm, able to handle non-
convex, non-smooth optimization problems.

Organization of the chapter. This chapter is organized as follows. We first present
the multilevel algorithm we want to analyze in the simplest setting, so that the reader
can understand where we are heading: we will solve a deblurring problem with `1-wavelet
regularization with a 2-levels algorithm and a 2-blocks algorithm.

Then we will present extensively the block-coordinate context, before providing our
own BCD algorithm. The rest of the chapter will be dedicated to the study of this new
BCD algorithm, and the analysis of multilevel algorithms through this lens.

We will end this chapter with some numerical experiments to confirm our theoretical
findings.

7.2 A compelling example
In this section, for the sake of clarity, we recall some key facts about multiresolution
analysis needed to understand the use of wavelet made in this chapter; then present the
construction of the block algorithm, and of the multilevel algorithm for respectively two
blocks and two levels. This presentation will allow us to highlight the parallels between
the two approach on the simplest setting.

7.2.1 Key facts about multiresolution analysis
Let x ∈ Ω ⊂ R2 be an image, such that x ∈ L2(Ω). We can decompose L2(Ω) into a sum
of two spaces, that of approximation coefficients VJ and that of detail coefficients V ⊥J at
resolution J ∈ N [4]:

L2(Ω) = VJ ⊕ V ⊥J . (7.1)
We will assume that x lives exclusively in VJ in the following, i.e., x has 22J pixels. VJ can
be decomposed into subspaces VJ−1 and WJ−1, where VJ−1 is the space of approximation
coefficients at resolution J−1 andWJ−1 the space of detail coefficients at resolution J−1.
x is then decomposed exactly as:

x = Π∗VJ−1
aJ−1 + Π∗WJ−1

dJ−1. (7.2)
1Following the principles presented in Chapter 4.
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Figure 7.1: Decomposition on two levels of an image x with a wavelet transform. We
regroup the detail coefficients d1, d2 and d3 into one single block d to simplify the presen-
tation of our two level or two block proximal gradient descent algorithms.

aJ−1 (resp. dJ−1) are the approximation (resp. detail) coefficients at resolution J − 1.
Note that ΠVJ−1Π∗VJ−1

= IdVJ−1 and ΠWJ−1Π∗WJ−1
= IdWJ−1 where IdVJ−1 and IdWJ−1 are the

identity operators on VJ−1 andWJ−1 respectively. Also, we won’t take into account in our
presentation the fact that wavelet transform of an image yields one block of approximation
coefficients and three blocks of detail coefficients. The detail coefficients will be grouped
together in a single block belonging to WJ−1 (which will therefore be three times as big
as the approximation block), see Figure 7.1.

7.2.2 Wavelet deblurring: a block-multilevel algorithm
Assume that we can decompose our 22J pixels image x into two independent components
such that x = Π∗VJ−1

aJ−1 + Π∗WJ−1
dJ−1 with aJ−1 ∈ VJ−1 and dJ−1 ∈ WJ−1. The index

J − 1 is dropped in the following for simplicity. The detail coefficients are grouped into
one block d as stated in the previous section. We want to minimize the following objective
function:

Argmin
x ∈VJ

F (x) = 1
2‖Ax− z‖

2
2 + ‖Dx‖1 (7.3)

where A is a bounded linear operator, D is the wavelet transform of x on one level,
and λ is multivalued to penalize differently the approximation and detail coefficients.
We can rewrite this classical `1-wavelet penalized least-squares problem with the wavelet
decomposition of x:

Argmin
a∈V,d∈W

Ψ(a, d) = 1
2‖A (Π∗V a+ Π∗Wd)− z‖2 + λa‖a‖1 + λd‖d‖1 (7.4)

Minimizing Ψ with respect to a and d is perfectly equivalent to minimizing F with respect
to x, as we recover the solution of Problem (7.3), x̂, with the solution of Problem (7.4)

x̂ = Π∗V â+ Π∗W d̂. (7.5)

Two block-coordinate proximal gradient descent. To minimize Ψ, our first strat-
egy is using a block-coordinate approach starting from a0, d0, and with 0 < τ < 2/‖A∗A‖
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and εa,n, εd,n ∈ {0, 1}.

for n = 0, 1, . . . an+1 = an + εa,n
(
proxτλa‖·‖1 (an − τΠV A∗ (A (Π∗V an + Π∗Wdn)− z))− an

)
dn+1 = dn + εd,n

(
proxτλd‖·‖1 (dn − τΠWA∗ (A (Π∗V an + Π∗Wdn)− z))− dn

) (7.6)

Setting (εa,n, εd,n) = (1, 1) for all n leads to the standard forward-backward algorithm. A
cyclic coordinate descent algorithm consists in setting alternatively one of εa,n, εd,n to 1.
This could also be set at random, provided that P [(εa,n, εd,n) = (0, 0)] = 0.

In a typical multilevel fashion, we would alternate between updating a alone, then a
and d together (i.e., if (εa,n, εd,n) = (1, 0) then (εa,n+1, εd,n+1) = (1, 1)).

In all cases, the convergence of the resulting algorithm to a minimizer of Ψ is guaran-
teed under the assumption that Ψ is convex and that the step size τ is chosen properly.
We leave the proof for the general case.

Two-level proximal gradient descent. We present now the construction of a two-
level algorithm to minimize Ψ. We will denote by ΨH the coarse level function.

Given the structure of the problem, it is natural to define ΨH in the approximation
space V . Consequently, and following the rule and guidelines established in Chapter 4,
the information transfer operator IHh is the projection ΠV onto V , and the prolongation
operator IhH is directly Π∗V . We also project z to V .

The coarse linear operator AH can be then naturally defined as the Galerkin approx-
imation of A (which is applied to x) so that AH = ΠV AΠ∗V . The coarse model is thus
defined as:

ΨH(a) = 1
2‖AHa− ΠV z‖2

2 + λa‖a‖1 + 〈vH , a〉 (7.7)

where vH enforces the first order coherence between two smoothed version (Chapter 4,
Definition 25) of Ψ and ΨH (Chapter 4, Definition 26 and Lemma 8)

vH = ΠV∇Ψµ(a0, d0)−∇(‖AH · ‖2
2 + ‖ · ‖1,µ)(a0). (7.8)

For simplicity, we denote ‖ · ‖1,µ the µ > 0-smoothed `1-norm (according to the principles
of Chapter 4, Section 4.2.2) and suppose that we compute only one coarse iteration before
going back to the fine level. This iteration will yield an+1/2 from an. The coarse level
being non-smooth, we will use a proximal gradient step to decrease it.

Accordingly, the two-level proximal gradient algorithm is then defined as:

for n = 0, 1, . . .
an+1/2 = proxτλa‖·‖1 (an − τA∗H (AHan − ΠV z)− τvH)
an+1 = proxτλa‖·‖1

(
an+1/2 − τΠV A∗

(
A
(
Π∗V an+1/2 + Π∗Wdn

)
− z

))
dn+1 = proxτλd‖·‖1

(
dn − τΠWA∗

(
A
(
Π∗V an+1/2 + Π∗Wdn

)
− z

))
(7.9)

The fact that Algorithms 7.6 and 7.9 are the same algorithm is not obvious at first
sight. We will show in the following that this is indeed the case. After summarizing our
assumptions, we will compute the first order coherence term explicitly.
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Assumption 3. We assume that:

(i) the information transfer operator is the projection ΠV onto V ;

(ii) in the definition of vH , the fine and coarse models are smoothed with the same
smoothing technique, with the same smoothing parameter µ > 0;

(iii) Ψ and ΨH are first order coherent with respect to their smoothed versions (Definition
26).

Lemma 17. Suppose that Assumption 3 holds. The first order coherence term vH in
Equation (7.7) at point (a0, d0) is given by:

vH = ΠV A∗ (AΠ∗Wd0 − Π∗WΠW z) . (7.10)

The first order coherence sends to the coarse level the contribution of the detail coeffi-
cients to the gradient of the data fidelity term.

Proof. By definition of first order coherence between smoothed functions, we have:

vH = ΠV∇Ψµ(a0, d0)−∇ΨH,µ(a0). (7.11)

The term on the right is a simple computation of the gradient of the coarse model:

∇ΨH,µ(a0) = ∇
(1

2‖AHa0 − ΠV z‖2
2 + λa‖a0‖1,µ

)
= A∗H (AHa0 − ΠV z) + λa∇a (‖ · ‖1,µ) (a0)
= ΠV A∗ (AΠ∗V a0 − Π∗V ΠV z) + λa∇a (‖ · ‖1,µ) (a0) (7.12)

The term on the left in Equation (7.10) is a bit more involved. We have:

∇Ψµ(a0, d0) = ∇
(1

2‖A (Π∗V a0 + Π∗Wd0)− z‖2
2 + λa‖a0‖1,µ + λd‖d0‖1,µ

)
(7.13)

= A∗ (A (Π∗V a0 + Π∗Wd0)− z) +
λa∇a (‖ · ‖1,µ) (a0)
λd∇d (‖ · ‖1,µ) (d0)


And now:

vH = ΠV

A∗ (A (Π∗V a0 + Π∗Wd0)− z) +
λa∇a (‖ · ‖1,µ) (a0)
λd∇d (‖ · ‖1,µ) (d0)


− ΠV A∗ (AΠ∗V a0 − Π∗V ΠV z) + λa∇a (‖ · ‖1,µ) (a0)

As V and W are orthogonal to each other, ΠV (λd∇ (‖ · ‖1,µ) (d0)) = 0 and thus:

vH = ΠV A∗ (AΠ∗Wd0 − Π∗WΠW z) ,

where we used that
z − Π∗V ΠV z = Π∗WΠW z.
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With this in mind, let us compute explicitly the proximal gradient step at coarse level
at iteration n, specifying a0 and d0 as an and dn in Equation (7.10):

an+1/2 = proxτλa‖·‖1 (an − τA∗H (AHan − ΠV z)− τvH)
= proxτλa‖·‖1 (an − τΠV A∗ (AΠ∗V an − z + AΠ∗Wdn))
= proxτλa‖·‖1 (an − τΠV A∗ (A (Π∗V an + Π∗Wdn)− z)) (7.14)

Therefore, the proximal gradient step at coarse level is exactly equal to a proximal gradient
step at fine level, with respect to the approximation coefficients. We summarize the
consequence of this result in the following lemma:

Lemma 18. The two-level algorithm defined in Equation (7.9) is equivalent to the
block-coordinate algorithm defined in Equation (7.6) when choosing εa,2n = 1 and
εd,2n = 0, then εa,2n+1 = 1 and εd,2n+1 = 1 for all n.

A direct consequence of this lemma is that the two-level algorithm can be ana-
lyzed as a block-coordinate descent algorithm with specific update rules.

Seeking convergence guarantees for a multilevel algorithm can now be deferred to
seeking convergence guarantees for BCD algorithms, which are much more studied in the
literature (see Section 7.3.2 for references). Moreover, this point of view gives us some
precious insights on the construction of multilevel algorithms. We will present them in
full in Section 7.5.

In the next sections, we will present a convergent block-coordinate descent algorithm
that allows the type of updates described in Lemma 18. Notably, the difficulty lies in
allowing parallel updates of the blocks, and non-independence of the choice of the blocks
to update from one iteration to the other. The block update scheme we employ to emulate
a multilevel algorithm with a block-coordinate descent algorithm is presented in Figure
7.2. It displays the parallel updates, the non-independence and the notion of cycle, which
is crucial for the convergence of our algorithm.

The presentation of our BCD algorithm will adopt the point of view of the rest of
the literature on the subject, which may be quite different from that of the multilevel
algorithms. We will include some anchor points along the way so that we don’t lose sight
of the connection we are trying to draw between multilevel and BCD approaches.

7.3 Block-coordinate descent methods: quick overview
In this section, we introduce the relevant literature and technical background about block-
coordinate descent algorithm. The reader familiar with this context can skip this section
and go straight to Section 7.4.

Many problems in machine learning or signal and image processing, consist in mini-
mizing a sum of two functions, one encoding a fidelity with respect to some observation
(data) and the other encoding some prior knowledge about the parameters (e.g. an image)
to estimate. The associated non-smooth and non-convex optimization problem is

x̂ ∈ Argmin
x∈H

Ψ(x) := f(x) + g(x), (7.15)
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Figure 7.2: Update scheme of the two block-coordinate descent algorithm. The blocks
are updated in a cyclic fashion, first with the approximation block updated alone (a1 in
red), then the approximation and detail blocks updated together (a2 and d2 in red). We
represent two cycles in this figure k = 1 and k = 2 for a total of n = 4 iterations. This
notion of cycle will be crucial for our block-coordinate descent algorithm.

where f : H 7→ (−∞,+∞] and g : H 7→ (−∞,+∞].
We will consider the real finite dimensional Hilbert space H := ⊕L

`=1H`, as the direct
sum of L separable Hilbert spaces (H`)1≤`≤L, meaning that all x ∈ H can be decomposed
into L blocks such that x = (x1, . . . , xL) with x` ∈ H`. To come back to our 2 levels
example, x would be (x0, x1) = (a, d). We assume that g is a separable function with
respect to this direct sum, so that for all x ∈ H,

g(x) =
L∑
`=1

g`(x`), (7.16)

where for all `, g` : H` → (−∞,+∞], and its proximity operator is available. This block
separability has been exploited to obtain fast solvers for Problem (7.15). These methods
have been shown on numerous occasions to be competitive on structured optimization,
for instance on problems of the following form:

arg min
x

f(Ax) +
L∑
`=1

g`(x`), (7.17)

where the structure of the matrix A can be exploited to compute global gradient steps
at the block scale (thus reducing greatly the computation cost of one update) [191–194].
Consider for instance a blurring matrix A, computing the gradient with respect to one
coordinate of x only requires the knowledge of the neighboring coordinates.

Likewise, in our motivating example in section 7.2, if we can pre-compute for instance
ΠV A∗AΠ∗V , which is of smaller size than A∗A, then the computation of a block gradient
step is lower than the computation of a full gradient step.

The idea of splitting the optimization problem into smaller operations is ubiquitous
in practice and has sparked in the last years a lot of research to better understand its
potential from a theoretical perspective. The following paragraphs describe the bulk of
these studies in the context of block-coordinate forward-backward algorithm where block
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updates are done using proximal-gradient descent. A more complete overview of the
update methods may be found in [192]. Methods are classified according to their update
rules, convergence guarantees, and strategies followed to prove the convergence.

7.3.1 Block-coordinate forward-backward algorithm
The most general formulation of a block-coordinate forward-backward algorithm is the
following. Let (εn)n∈N = (εn1 , . . . , εnL)n∈N be a sequence of variables with value in {0, 1}L.
Let (τ`)1≤`≤L ∈ RL

++ and x0 = (x0
1, . . . , x

0
L) ∈ dom g. Iterate

for n = 0, 1, . . . for ` = 1, . . . , L⌊
xn+1
` = xn` + εn`

(
proxτ`g` (xn` − τ`∇`f(xn))− xn`

)
.

(7.18)

We now review the types of update rules that have been studied in the literature.

Update rules in Algorithm (7.18). This algorithm can either be

• stochastic by choosing randomly (εn1 , . . . , εnL) ∈ {0, 1}L, thus enabling random par-
allel updates, for all n ∈ N;

• essentially2 cyclic by ensuring that for all n only one ` ∈ {1, . . . , L} is such that
εn` = 1 (these updates encompass alternated optimization techniques) and in a way
that in a cycle all the blocks have been updated at least once;

• parallel and essentially cyclic by setting a priori the sequence (εn1 , . . . , εnL) for all
n ∈ N. In this case for a given n multiple ` ∈ {1, . . . , L} can be such that εn` = 1.

A random shuffling of the order of the updates is also possible at the beginning of each
cycle for the last two methods. The convergence guarantees vary depending on the type
of updates.

7.3.2 Convergence studies
There have been numerous works to study Algorithm (7.18) in the first two settings.
We list some of them below before discussing in depth the convergence guarantees they
provide:

• stochastic: [192,194–203]

• essentially cyclic with/without random shuffling: [59,64,80,179,191–193,204–208]
2Essentially refers to the fact that what matters for convergence of the algorithm is the existence of

a finite number of iterations after which all blocks have been updated once. This number of iterations
may be different from the number of blocks. In contrast the adjective cyclic only refers to the sequential
update of one block after the other until every one of them has been updated once.
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This list of references is not exhaustive, but it is representative of the proof techniques
used to study the convergence of Algorithm (7.18). The last setting, to the best of our
knowledge, i.e., parallel and cyclic/essentially cyclic with or without random shuffle, has
not been studied previously in the literature, and we will consider it in the following. We
present now the proof techniques and convergence results used in the first two settings:
stochastic and cyclic/essentially cyclic.

Stochastic setting. For most of the literature on randomized approaches only conver-
gence or rate of convergence, in expectation, of the objective function values is shown
[192,197–199].

In order to show convergence of the iterates to a minimizer, the concept of stochastic
Quasi-Féjer sequence was introduced in [196]. This framework is powerful and can be
applied to many types of block-coordinate descent algorithms (see for instance primal-
dual ones in [195]). However, it is thus far only applicable if Ψ is convex, and we will
consider the non-convex setting in the following.

It is interesting to remark that in the convex case randomized block-coordinate de-
scent algorithm have shown themselves to be easier to study than their cyclic counterparts,
whether it is in terms of complexity, convergence of objective function values, or conver-
gence of the iterates [191,192,196,197,209]. Even on problems that are solvable by both
approaches, practical performance is equivalent [209] or even better for clever selection
rules in the cyclic case (Gauss-Southwell rule3 for instance [193]4 or random reshuffling
at each cycle [202]5), while convergence guarantees are not on par.

Remark 14. It seems accepted in the literature that ensuring convergence of a random
block-coordinate descent algorithm requires proper sampling [194, 198, 210, 211]. Proper
sampling refers to the fact that the probability of selecting a block should depend on the
Lipschitz constant of the gradient of the block.

Cyclic setting. Guarantees of convergence of cyclic/essentially cyclic BCD have been
investigated for instance in [64, 80, 208] in the framework developed around Kurdyka-
Łojasiewicz (KŁ) or Łojasiewicz properties/inequalities [64,212–214]. The authors proved
the convergence to a minimizer or a critical point of Ψ, and some rate of convergence of the
sequence of iterates if parameters governing KŁ inequalities are known. The possibility of
parallel updates was not investigated in this context even though the significant appeal
of block-coordinate descent methods is partly rooted in parallelization.

What we want to do. Guided by the possible analogy between multilevel algorithm
and BCD algorithms, we aim to design a convergent block-coordinate descent algorithm

3Gauss-Southwell rule: greedy selection of the coordinates to update, i.e., coordinates with the largest
gradient norms.

4In [193], the authors argue that the Gauss-Southwell selection rule for coordinate descent algorithm
tends to perform substantially better than random selection. They identify the subclass of functions that
was hindering the potential performance of the Gauss-Southwell rule, that was making it theoretically as
effective as random selection, and thus worse in practice due to its cost.

5Random permutations in cyclic coordinate descent allows the latter to match performance of random
coordinate descent [202]. For quadratic function it was shown before that a significant gap existed between
cyclic coordinate descent (without permutations) and random coordinate descent [203].
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for non-smooth and non-convex optimization where the updates are potentially parallel
and may be randomly shuffled if needed (as it in can be useful in practice). This will
allow us to implement update strategies mimicking those of multilevel algorithms.

Hence, we propose an unbalanced (i.e., some blocks are updated more often than
others) parallel block-coordinate forward-backward algorithm, which we refer to as Hier-
archical Block-Coordinate Forward-Backward (H-BC-FB) in reference to its underlying
hierarchical block selection rule.

The first major contribution is to show the convergence of the method both in function
values and with respect to the set of critical points, even when Ψ is non-convex. The
convergence of the proposed scheme is analyzed from two point of views: we propose a
KŁ-based analysis in the general setting and stochastic convergence guarantees in the
convex case. Both analyzes allow us to provide convergence of the objective function
values, and of the iterates to a critical point of Ψ. Even though the deterministic setting
can be seen as a particular instance of the stochastic one, the study of the sequences
generated by a stochastic block algorithm rely on specific tools that have limitations. As
said before the concept of stochastic Quasi-Féjer sequence [196, Proposition 2.3] does not
work yet in the non-convex setting. Moreover, the independence between consecutive
iterations of the random variables selecting the blocks is crucial to establish convergence
properties (see [194,195]). As we aim to allow correlations in the block selection between
iterations (remember our example in Section 7.2), so that the classical stochastic tools
are not applicable here (at least not in a straightforward way).

The second contribution amounts to show that the proposed hierarchical block archi-
tecture encompasses the classical multilevel formalism. This new point of view, provided
by the block-coordinate descent framework, allows us to define key points of the multilevel
algorithm in a rigorous manner, and most importantly a priori. This will be presented in
Section 7.5.

7.3.3 Relevant notations and technical background
In this section we introduce the necessary mathematical background and notations that
will be used We denote by |||·||| the Euclidean norm on H and by ‖ · ‖ the Euclidean
norm on the L spaces (H`)1≤`≤L. Similarly, the scalar product on H will be denoted by
〈〈·, ·〉〉 and the scalar product on H` by 〈·, ·〉; the potential ambiguity between two spaces
is cleared up as the variables on which the scalar product is applied will be indexed by
`. Note that for all x,y ∈ H, 〈〈x,y〉〉 = ∑L

`=1〈x`, y`〉. For a continuously differentiable
function f , we denote for all x ∈ H by ∇`f(x) the gradient of f taken with respect to
the variables in the `-th block.

We will index our sequence of iterates by a superscript denoting the iteration number
and a subscript denoting the block of variables. Thus, xn` denotes the `-th block at the
n-th iteration. For convenience, we will write xn to denote the full variable at iteration
n, so that xn = (xn1 , . . . , xnL). Furthermore, the convergence analysis relies on a cyclic rule
for the updates, and we assume that each cycle consists of K maximum iterations. We
will denote with exponent k, with an upper bar and in bold font the iterates x̄k that has
seen k cycles and thus k ×K iterations to accentuate the difference with the iterates xn,
whose sequence is not guaranteed to converge. Thus, x̄k = xn when n = k ×K. These
notations are summarized in Table 7.1 and are illustrated in Figure 7.3.
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xn` block in H` at iteration n
xn iterate in H at iteration n
x̄k iterate in H at cycle number k

Table 7.1: Summary of notations of the iterates generated by our algorithm
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n = 4

<latexit sha1_base64="NaDzYtYBjC06msRvVDiK1BYmw2w="></latexit>

n = 5

<latexit sha1_base64="Iebx729sDxC7yUij4IfDoZLr5YY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6kYouumyon1ALZKk0zo0TcJkopQi+ANu9dPEP9C/8M44BbWITkhy5tx7zsy9109CnkrHec1Zc/MLi0v55cLK6tr6RnFzq5nGmQhYI4jDWLR9L2Uhj1hDchmydiKYN/JD1vKHZyreumUi5XF0KccJ6468QcT7PPAkURfRSeW6WHLKjl72LHANKMGselx8wRV6iBEgwwgMESThEB5Sejpw4SAhrosJcYIQ13GGexRIm1EWowyP2CF9B7TrGDaivfJMtTqgU0J6BSlt7JEmpjxBWJ1m63imnRX7m/dEe6q7jenvG68RsRI3xP6lm2b+V6dqkejjWNfAqaZEM6q6wLhkuivq5vaXqiQ5JMQp3KO4IBxo5bTPttakunbVW0/H33SmYtU+MLkZ3tUtacDuz3HOguZB2a2UD88PS9VTM+o8drCLfZrnEaqooY4GeQ/wiCc8WzUrsjLr7jPVyhnNNr4t6+EDtBSQAw==</latexit>

n = 6

<latexit sha1_base64="TF6ASanpiE/SlaH8fu9NiyGBYYA="></latexit>

n = 7

<latexit sha1_base64="jv4KObl27CfgflByUfFUd6zCVrE="></latexit>

n = 8

<latexit sha1_base64="CMFvvVImH2fuhFPOXT0xSbja0Kk="></latexit>

k = 1
<latexit sha1_base64="6p9nYT9xaQdKrOExKoM5nKaauh0="></latexit>

k = 2

<latexit sha1_base64="WCw565H8erIR9Dpwi/KRXVd4Hv8="></latexit>

n = 0
<latexit sha1_base64="yN/i8wkcZwt5p3k1dY6W945TaWg="></latexit>

x0
1

<latexit sha1_base64="mfibyxOA+3L8eY3UNaDsnHIvKMo="></latexit>

x0
2

<latexit sha1_base64="zy7GDqM7m5Qud5J3P1ZiJlWZKsw="></latexit>

x0
3

<latexit sha1_base64="T3keKe2hbeiIJNINwWd57btQCC8="></latexit>

x0
4

<latexit sha1_base64="aIiIpvXMONVqZNMn5UAeuRXLCjo="></latexit>

x1
4

<latexit sha1_base64="yU+73A25jDg+vjDItnGlNXp8jIg=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4Ii0h6pLoxrjCxAIJImnLgBNK27RTlRA3/oBb/TLjH+hfeGccEpUYnabtmXPvOTP3Xi8OeCos6zVnzM0vLC7llwsrq2vrG8XNrUYaZYnPHD8KoqTluSkLeMgcwUXAWnHC3JEXsKY3PJHx5g1LUh6FF2Ics87IHYS8z31XEOXcdatXlW6xZJUttcxZYGtQgl71qPiCS/QQwUeGERhCCMIBXKT0tGHDQkxcBxPiEkJcxRnuUSBtRlmMMlxih/Qd0K6t2ZD20jNVap9OCehNSGlijzQR5SWE5WmmimfKWbK/eU+Up7zbmP6e9hoRK3BN7F+6aeZ/dbIWgT6OVA2caooVI6vztUumuiJvbn6pSpBDTJzEPYonhH2lnPbZVJpU1S5766r4m8qUrNz7OjfDu7wlDdj+Oc5Z0KiU7YNy9bxaqh3rUeexg13s0zwPUcMp6nDIm+MRT3g2zozYuDXGn6lGTmu28W0ZDx+8JpDR</latexit>

x2
4

<latexit sha1_base64="N23+9zqsuovJua8VoyG5AxXGhmo="></latexit>

x3
4

<latexit sha1_base64="a6b6NEDgIgjOPgfBAJkvkwCeI1k="></latexit>

x4
4

<latexit sha1_base64="f0gGi74oAZzz1GmNskN/7MBqLew="></latexit>

x5
4

<latexit sha1_base64="rFPdel2A3KFaZW1oTiW/HriJoMw="></latexit>

x6
4

<latexit sha1_base64="aPtFA630umeDm2ZnZd6NI0lam8Y=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4Iq0h4pLoxrjCxAIJImmHASeUtmmnKiFu/AG3+mXGP9C/8M5YEpUYnabtmXPvOTP3Xi/yRSIt6zVnzM0vLC7llwsrq2vrG8XNrUYSpjHjDgv9MG55bsJ9EXBHCunzVhRzd+T5vOkNT1S8ecPjRITBhRxHvDNyB4HoC+ZKopy7buWq2i2WrLKllzkL7AyUkK16WHzBJXoIwZBiBI4AkrAPFwk9bdiwEBHXwYS4mJDQcY57FEibUhanDJfYIX0HtGtnbEB75ZloNaNTfHpjUprYI01IeTFhdZqp46l2Vuxv3hPtqe42pr+XeY2Ilbgm9i/dNPO/OlWLRB9HugZBNUWaUdWxzCXVXVE3N79UJckhIk7hHsVjwkwrp302tSbRtaveujr+pjMVq/Ysy03xrm5JA7Z/jnMWNA7K9mG5cl4p1Y6zUeexg13s0zyrqOEUdTjkLfCIJzwbZ0Zk3Brjz1Qjl2m28W0ZDx/IBpDW</latexit>

x7
4

<latexit sha1_base64="agV2aOG6t/IGoC8jsxwqVWOlZKQ="></latexit>

x8
4

<latexit sha1_base64="mkfAEZB0i/7cL3TZKj8sIwROl+I=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4Iq0hypLoxrjCxAIJImmHASeUtmmnKiFu/AG3+mXGP9C/8M5YEpUYnabtmXPvOTP3Xi/yRSIt6zVnzM0vLC7llwsrq2vrG8XNrUYSpjHjDgv9MG55bsJ9EXBHCunzVhRzd+T5vOkNT1S8ecPjRITBhRxHvDNyB4HoC+ZKopy7rn1V7RZLVtnSy5wFdgZKyFY9LL7gEj2EYEgxAkcASdiHi4SeNmxYiIjrYEJcTEjoOMc9CqRNKYtThkvskL4D2rUzNqC98ky0mtEpPr0xKU3skSakvJiwOs3U8VQ7K/Y374n2VHcb09/LvEbESlwT+5dumvlfnapFoo+qrkFQTZFmVHUsc0l1V9TNzS9VSXKIiFO4R/GYMNPKaZ9NrUl07aq3ro6/6UzFqj3LclO8q1vSgO2f45wFjYOyfViunFdKteNs1HnsYBf7NM8j1HCKOhzyFnjEE56NMyMybo3xZ6qRyzTb+LaMhw/DQJDU</latexit>

x8
1

<latexit sha1_base64="5yJ1B3WVcnMRwWNBY3+8+AYBOC4="></latexit>

x7
1

<latexit sha1_base64="qLip04oI0QZXRJ8Xa6fotau9aWU="></latexit>

x6
1

<latexit sha1_base64="LWlkT6kt04mOu6o+xgXnXZzT0Co=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRKpj2XRjbiqYB9Qa0mm0zo0L5KJWoobf8Ctfpn4B/oX3hlTUIvohCRnzr3nzNx73cgTibSs15wxMzs3v5BfLCwtr6yuFdc3GkmYxozXWeiFcct1Eu6JgNelkB5vRTF3fNfjTXd4ouLNGx4nIgwu5CjiHd8ZBKIvmCOJqt917av9brFklS29zGlgZ6CEbNXC4gsu0UMIhhQ+OAJIwh4cJPS0YcNCRFwHY+JiQkLHOe5RIG1KWZwyHGKH9B3Qrp2xAe2VZ6LVjE7x6I1JaWKHNCHlxYTVaaaOp9pZsb95j7WnutuI/m7m5RMrcU3sX7pJ5n91qhaJPo50DYJqijSjqmOZS6q7om5ufqlKkkNEnMI9iseEmVZO+mxqTaJrV711dPxNZypW7VmWm+Jd3ZIGbP8c5zRo7JXtg3LlvFKqHmejzmML29ileR6iilPUUCdvgUc84dk4MyLj1hh9phq5TLOJb8t4+AC8IJDR</latexit>

x5
1

<latexit sha1_base64="I0VEEFZ5454E0QUJmqbn3A5mWLQ="></latexit>

x4
1

<latexit sha1_base64="Eh/ChIK/ViAA8O4sH91WaxCW+VY="></latexit>

x3
1

<latexit sha1_base64="mvdCJOVsOM8Rji57XQwxQx8US3Y="></latexit>

x2
1

<latexit sha1_base64="VI1a2sjJYqCqqFak5dlzacC5KL8="></latexit>

x1
1

<latexit sha1_base64="3hViM7OIx+18hukAPU5VaXdTsdY="></latexit>

x1
2

<latexit sha1_base64="R+tp6VLPN/6wVAW80+6kuRAx82M="></latexit>

x2
2

<latexit sha1_base64="EzjdCudoJ1hg5Q7u5NoQQySOrdM="></latexit>

x3
2

<latexit sha1_base64="hcF6xVxmfPPeJwOidyIWDO2k9b0="></latexit>

x4
2

<latexit sha1_base64="mcB95fzsMoMq973IWIRzaWsIMlk="></latexit>

x5
2

<latexit sha1_base64="+7vlOJIIGRxQIMX0z3DFwmPEyaQ="></latexit>

x6
2

<latexit sha1_base64="cczkbwZYEWYNNEeqb3ElDJheba0=">AAACyHicjVHLTsJAFD3WF+ILdemmkZi4Ii0h4pLoxrjCxAIJImmHASeUtmmnKiFu/AG3+mXGP9C/8M5YEpUYnabtmXPvOTP3Xi/yRSIt63XOmF9YXFrOreRX19Y3Ngtb240kTGPGHRb6Ydzy3IT7IuCOFNLnrSjm7sjzedMbnqh484bHiQiDCzmOeGfkDgLRF8yVRDl33fJVtVsoWiVLL3MW2BkoIlv1sPCCS/QQgiHFCBwBJGEfLhJ62rBhISKugwlxMSGh4xz3yJM2pSxOGS6xQ/oOaNfO2ID2yjPRakan+PTGpDSxT5qQ8mLC6jRTx1PtrNjfvCfaU91tTH8v8xoRK3FN7F+6aeZ/daoWiT6OdA2Caoo0o6pjmUuqu6Jubn6pSpJDRJzCPYrHhJlWTvtsak2ia1e9dXX8TWcqVu1ZlpviXd2SBmz/HOcsaJRL9mGpcl4p1o6zUeewiz0c0DyrqOEUdTjkLfCIJzwbZ0Zk3Brjz1RjLtPs4NsyHj4Aw0KQ1A==</latexit>

x7
2

<latexit sha1_base64="THJbeQXiDYmcVXzLHABCpI78J74="></latexit>

x8
2

<latexit sha1_base64="Hc8suMoKb/BBK70EBTFg86hEcCw="></latexit>

x8
3

<latexit sha1_base64="7JHY9pVbHe+ISuqRu2i5fwb7nm8="></latexit>

x7
3

<latexit sha1_base64="XorEm6OPnZkFKNCWKAa+Q0mvwPo="></latexit>

x6
3

<latexit sha1_base64="B7gY04Pt9x13ynbOnKElAfcrmIU="></latexit>

x5
3

<latexit sha1_base64="szxPdcy6Vc/YAuFbxe++uS2CQCM="></latexit>

x4
3

<latexit sha1_base64="Zp99pUuEB2sx6V00EkMgdVCjLgM="></latexit>

x3
3

<latexit sha1_base64="60fvF2sCeHtyRtOWgbrYI/mSeCg="></latexit>

x2
3

<latexit sha1_base64="AdAExpSOSbiJjZ1q1XxxFBRXwac="></latexit>

x1
3

Figure 7.3: One possibility of a complete iteration of the proposed Hierarchical Block-
Coordinate Forward-Backward for a variable x separable into 4 blocks. First row is the
initialization of the algorithm. Each row indicates an iteration n. The group of blocks that
are updated is highlighted with a red circle. K = 4 iterations are required to complete
the first cycle k = 1 which is highlighted in rose. Each cycle is a multilevel cycle, where
x1 would be the coarsest block while x4 is the finest. The union of x1, x2, x3, and x4 would
constitute our fine level.
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Chapter 7. Multilevel algorithms from a block-coordinate descent point of view

As we venture in the non-convex setting, we will need an appropriate notion of sub-
gradient.

Definition 32. Subgradient [52]. Let g : H 7→ R, and let x ∈ H. The Fréchet
subdifferential of g at x is denoted by ∂̂g(x) and is given by

∂̂g(x) =
{
v̂(x) ∈ H| lim

y→x
inf
y 6=x

1
|||x− y|||

(g(y)− g(x)− 〈y− x, v̂(x)〉) ≥ 0
}

(7.19)

If x /∈ dom g, then ∂̂g(x) = ∅. The limiting subdifferential of g at x is denoted by
∂g(x) and is given by

∂g(x) =
{
v(x) ∈ H|∃

(
xk, v̂(xk)

)
→ (x, v(x)) (7.20)

such that g(xk)→ g(x) and (∀k ∈ N) v̂(xk) ∈ ∂̂g(xk)
}
. (7.21)

Recall that if g is convex, its subdifferential is given for all x ∈ H by

∂g(x) = {s ∈ H, g(x) + 〈s,y− x〉 ≤ g(y),∀y ∈ H}. (7.22)

Both ∂̂g(x) and ∂g(x) are closed [52, Theorem 8.6].

The Kurdyka-Łojasiewicz (KŁ) property. We remind here the definition of the KŁ
property and some other important properties. First, we introduce the notion of sublevel
sets.

Definition 33. Sublevel sets [64]. Given a, b ∈ R and Ψ a proper lower semicon-
tinuous function, we set

[a ≤ Ψ ≤ b] := {x ∈ RN , a ≤ Ψ(x) ≤ b}

Concave and continuous functions of the following form are of particular interest in
the KŁ framework: they are called the desingularizing functions.

Definition 34. Concave and continuous functions [64]. Let η ∈ (0,+∞]. We
denote by Φη the class of all concave and continuous functions ϕ : [0, η) → R+ which
satisfy the following conditions

(i) ϕ(0) = 0,

(ii) ϕ is C1 on (0, η) and continuous at 0,

(iii) for all s ∈ (0, η): ϕ′(s) > 0

Now, we can introduce the definition of a KŁ function.
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7.3. Block-coordinate descent methods: quick overview

Definition 35. Kurdyka-Łojasiewicz (KŁ) property [64]. Let Ψ : Rd →
(−∞,+∞] be proper and lower semicontinuous.

(i) The function Ψ is said to have the KŁ property at ū ∈ dom ∂Ψ if there exist
η ∈ (0,+∞], a neighborhood U of ū and a function ϕ ∈ Φη such that for all

u ∈ U ∩ [Ψ(ū) < Ψ(u) < Ψ(ū) + η],

the following inequality holds

ϕ′(Ψ(u)−Ψ(ū))dist(0, ∂Ψ(u)) ≥ 1 (7.23)

(ii) If Ψ satisfies the KŁ property at each point of dom ∂Ψ then Ψ is called a KŁ
function.

The following lemma characterizes the KŁ property in a more practical form.

Lemma 19. Uniformized KŁ property [64]. Let Ω be a compact subset of RN .
Let Ψ : RN 7→ (−∞,+∞] be a proper and lower semicontinuous function, constant on
Ω and satisfying the KŁ inequality on Ω. Then there exists ε > 0, η > 0 and ϕ ∈ Φη

such that for all ū ∈ Ω and all u in the following intersection{
u ∈ RN : dist(u,Ω) < ε

}
∩ [Ψ(ū) < Ψ(u) < Ψ(ū) + η] (7.24)

one has,
ϕ′(Ψ(u)−Ψ(ū))dist(0, ∂Ψ(u)) ≥ 1. (7.25)

Remark 15. The KŁ property is satisfied by numerous classes of functions, and notably
for those considered in typical optimization settings such as `p norms. See [214] for an
overview on this property.

Remark 16. The KŁ property may seem obscure at a first glance, but in essence, it
says that a function respecting this property should not be too flat around its critical
point [64, 214]. We attempt a hand-wavy explanation here. For a rigorous and far more
complete point of view see for instance [61, Chapter 3].

The flatness of a function around its critical points is characterized by the norm of
its gradient. In a continuous setting, one can analyze typical descent algorithm such as
gradient descent on continuously differentiable function Ψ using the following differential
equation:

(∀t ≥ 0) ẋ(t) +∇Ψ(x(t)) = 0. (7.26)
This equation can be obtained by seeing gradient descent as an Euler forward scheme to
compute a discretized solution of an ordinary differential equation (ODE):

xt+1 = xt − τ∇Ψ(xt) (7.27)
xt+1 − xt

τ
= −∇Ψ(xt). (7.28)

By taking the limit when τ goes to 0 in Equation (7.28), we recover (7.26).
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Chapter 7. Multilevel algorithms from a block-coordinate descent point of view

Briefly, t 7→ ‖∇Ψ(x(t))‖ will control the length of the trajectory∫ +∞

0
‖ẋ(t)‖dt,

through the relationship of Equation (7.26). The function ϕ in Definition 34 tells us how
‖∇Ψ(x(t))‖ behaves if Ψ is such that the KŁ property is respected through Equality (7.25)
(dist(0, ∂Ψ(x)) = ‖∇Ψ(x)‖). Therefore,∫ +∞

0
‖ẋ(t)‖dt < +∞.

This means that the sequence has finite length and thus converges to a critical point [61,
Chapter 3]. This analysis is generalizable to non-smooth functions using the subdifferential
instead of the gradient in the differential equation [61].

7.4 Convergence of the Hierarchical-BC-FB algorithm
In this section, we study Algorithm (7.18) in the "deterministic" setting. The proof of
convergence relies on the framework developed in [64, 213, 215], which is built on the KŁ
property [64, 213, 216]. More precisely, our convergence proof follows the same structure
as the proof presented in [64] for an alternated proximal minimization algorithm.

Therefore, for clarity, we defer the technical details of the proof to the Appendix A.4
and focus on the main ideas in the following.

7.4.1 Convergence settings
Assumptions on the functions. The convergence relies on several classical assump-
tions that we present in the following.

Assumption 4. y
A1 Ψ := f +∑L

i=1 g` is coercive, and bounded below. For all `, g` is bounded below, as
well as f .

A2 Ψ satisfy the KŁ property (Definition 35 and Lemma 19).
Assumption 5. y
A3 For all `, g` is a lower semicontinuous, proper function. Its proximity operator is

available under closed form.

A4 f is continuously differentiable and there exists (β`,j)`,j∈{1,...,L} ∈ R++ such that

(∀`, j ∈ {1, . . . , L})(∀x ∈ H)(∀vj ∈ Hj)
‖∇`f(x + (0, . . . , 0, vj, 0, . . . , 0))−∇`f(x)‖ ≤ β`,j‖vj‖ (7.29)

Remark 17. With Assumption A3, we restrict ourselves to the case where the proximity
operators of g` is available explicitly for all `, but may be set-valued without convexity
assumptions (see Appendix A.4, Lemma 35). It is quite standard in a non-convex setting,
but remains a more restrictive assumption than the one made to define IML FISTA (see
Chapter 4).
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7.4. Convergence of the Hierarchical-BC-FB algorithm

Remark 18. Assumption A1 is sufficient to assert that the sequences generated by our
algorithm are bounded [213]. Assumption A4 is fairly easy to verify in practice, as it
is implied by having ∇f being Lipschitz continuous: if ∇f is Lipschitz continuous with
constant βf , then we can take β`,j = βf for all `, j.

Assumption A4 states that every partial gradient with respect to the block is Lipschitz
continuous with respect to all the blocks, which is a quite stronger assumption than being
Lipschitz continuous with respect only to its block. From this assumption we can derive
what we call multiple block smoothness, a common assumption in the BCD literature
(e.g. [194, Assumption S1-S2-S3]).

Proposition 6. Multiple block smoothness. Suppose that Assumption 5 holds.
For all ε = (ε`)1≤`≤L ∈ {0, 1}L, there exists β > 0 such that for all 1 ≤ ` ≤ L, v` ∈ H`

we have

(∀x ∈ H)
∣∣∣∣∣∣∣∣∣∇f(x + (ε`v`)`∈{1,...,L})−∇f(x)

∣∣∣∣∣∣∣∣∣ ≤ β
∣∣∣∣∣∣∣∣∣(ε`v`)`∈{1,...,L}∣∣∣∣∣∣∣∣∣ (7.30)

Assumptions on the update rules. We consider an essentially cyclic update scheme
for the blocks in which parallel updates of different blocks may be used, paired with a
potential shuffle of the updates order, as specified in the following assumption.

Assumption 6. Consider the following assumptions on the update rules:

A5 Every K iterations, each block has been updated at least once, i.e., updates are essen-
tially cyclic. Formally, denote by In the set of the blocks updated at this iteration:
In = {` | εn` = 1} ⊆ {1, . . . , L}. For all j

j+K−1⋃
n=j

In = {1, . . . , L} (7.31)

Remark 19. Assumption A5 on the order of the updates of the blocks is not restrictive.
For instance, it includes the sequential update of the blocks if K = L and the classical
forward-backward update for K = 1.

Now, to allow flexibility, one may want to alternate between different ways of updating
the blocks from one cycle to the other. For instance, from a multilevel setting, alternating
between V-cycles (Figure 7.3) and W-cycles may be interesting [85].

Furthermore, it has been noted that randomly shuffling the order of updates could
improve greatly the convergence speed of the algorithm in practice [208]. Such shuffle
is compatible with Assumption A5. Our algorithm is thus as flexible as possible in the
non-randomized setting.

Our algorithm. For the purpose of clarity, we rewrite algorithm (7.18) to incorporate
explicitly the cycles.

Let K ∈ N∗ be the number of iterations to complete one cycle. Let (εn)n∈N =
(εn1 , . . . , εnL)n∈N be a sequence of variables with value in {0, 1}L. Let (τ`)1≤`≤L ∈ RL

++
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Chapter 7. Multilevel algorithms from a block-coordinate descent point of view

and x̄0 = x0 = (x0
1, . . . , x

0
L) ∈ dom g. Set k = 0. Iterate

for n = 0, 1, . . .

for ` = 1, . . . , L⌊
xn+1
` = xn` + εn`

(
proxτ`g` (xn` − τ`∇`f(xn))− xn`

)
.

if n+ 1 ≡ 0 [K] k = k + 1
x̄k = xn+1

(7.32)

Convergence proof. Before setting the main result, we need two intermediary lemmas
that show that each iteration of algorithm H-BC-FB decreases the objective function Ψ,
and that the set of limit points of the iterates produced by the algorithm is contained in
the set crit Ψ of the critical points of Ψ, i.e., the set of points x such that 0 ∈ ∂Ψ(x).

The following lemma bounds the norm of the difference between cycle iterates by the
sum of all the norm of the differences between block iterates.

Lemma 20. Let {x̄k}k∈N be a sequence generated by Algorithm H-BC-FB. Then,

∣∣∣∣∣∣∣∣∣x̄k+1 − x̄k
∣∣∣∣∣∣∣∣∣ ≤

(k+1)×K−1∑
n=k×K

∑
`∈In
‖xn+1

` − xn` ‖

 (7.33)

Proof. Proof is in Appendix A.4.

The next lemma shows that the function value decreases at each cycle iteration.

Lemma 21. Sufficient decrease property. Suppose that Assumption 5 holds. Let
{x̄k}k∈N be the sequence of cycle iterates generated by algorithm H-BC-FB. Let n ∈ N,
xn = (xn1 , . . . , xnL) the n-th iterate of algorithm H-BC-FB (7.18).
For each n, let βnf :=

√∑
j∈Jn,1≤`≤L εjβ

2
`,j and 0 < τn` < 1/βnf . Then

Ψ(x̄k+1) +
(k+1)×K−1∑

n=k×K

∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖2

 ≤ Ψ(x̄k). (7.34)

Furthermore,
+∞∑
n=0

(
L∑
`=1
‖xn` − xn+1

` ‖2
)
< +∞, (7.35)

which implies
limn→+∞ ‖xn` − xn+1

` ‖ = 0 for all ` and thus limn→+∞ |||xn − xn+1||| = 0.

Proof. Proof is in Appendix A.4.

Remark 20. Note that a random shuffle of the update order at each cycle is possible, as
the order of the updates does not intervene in the proof of sufficient decrease nor in the
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proof of the following results. A similar observation was made in [208] (but without the
possibility of parallel updates). Also note that a random shuffle is totally different from a
random choice of block update at each iteration, as in the latter case there is no definite
guarantee that a cycle of length K where all blocks have been updated, would exist (only
with high probability).

Remark 21. An interesting consequence of this lemma is the fact that it ensures that
multilevel steps, for our motivating example (Section 7.2), are always decreasing
the function value. This was guaranteed only up to an error term for IML FISTA
(Chapter 4, Lemma 10).

7.4.2 Main result

Now that we have established the decrease of the objective function at each iteration, we
are ready to state our main result.

Theorem 8. Sufficient decrease and subgradient bound. Suppose that Assump-
tions 4 and 5 hold. Let {x̄k}k∈N be a sequence generated by Algorithm H-BC-FB. The
following assertions hold.

(i) The sequence {Ψ(x̄k)}k∈N is non-increasing. For each n, let βnf =√∑
j∈Jn,1≤`≤L εjβ

2
`,j and 0 < τn` < 1/βnf . Then for all k ≥ 0

Ψ(x̄k+1) +
(k+1)×K−1∑

n=k×K

∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖2

 ≤ Ψ(x̄k). (7.36)

(ii) For each k ∈ N define

B̄k+1 =
(
x`,n` − x`,n`+1

τ`,n`
−∇`f(xn`) +∇`f(x̄k+1)

)
1≤`≤L

(7.37)

where n` is a positive integer such that k × K ≤ n` ≤ (k + 1) × K − 1, and
is the last iteration of cycle k at which block ` will receive an update. Then
B̄k+1 ∈ ∂Ψ(x̄k+1) and there exist positive numbers τk such that:

∣∣∣∣∣∣∣∣∣B̄k+1
∣∣∣∣∣∣∣∣∣ ≤ ( 1

τk
+ βf

)(k+1)×K−1∑
n=k×K

∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖

 . (7.38)

Proof. Proof is in Appendix A.4.
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Theorem 9. Converge of the sequence to critical points of Ψ. Suppose that
Assumptions 4 and 5 hold. Let {x̄k}k∈N be a sequence generated by Algorithm H-BC-
FB. The following assertions hold.

(iii) The sequence (x̄k) has finite length, that is,
∞∑
k=1

∣∣∣∣∣∣∣∣∣x̄k − x̄k+1
∣∣∣∣∣∣∣∣∣ <∞. (7.39)

(iv) The sequence (x̄k) converges to a critical point x∗ of Ψ.

Proof. Proof is in Appendix A.4.

The proof of the convergence of the sequence require the study of the limit points set,
defined as follows.

Definition 36. Limit points set [64]. The set of all limit points of sequences
generated by H-BC-FB from a starting point x0 = x̄0 will be denoted by lp(x̄0):

lp(x̄0) = {x∗ ∈ H,∃ an increasing sequence of integers {kj}j∈N,
such that x̄kj → x∗ as j → +∞}

The properties of the limit points of sequences produced by block algorithms such as
the proposed H-BC-FB were investigated in [64], small tweaks are required here.

Lemma 22. Properties of the limit points set. Suppose that Assumptions 4 and
5 hold. Let {x̄k}k∈N be a sequence generated by Algorithm H-BC-FB starting from
x̄0 = x0. The following hold:

(i) ∅ 6= lp(x̄0) ⊂ crit Ψ

(ii) We have
lim
k→∞

dist(x̄k, lp(x̄0)) = 0. (7.40)

(iii) lp(x̄0) is a nonempty, compact and connected set.

(iv) The objective function Ψ is finite and constant on lp(x̄0).

Proof. Proof is in Appendix A.4.

Sketch of the proof for our main result. We split the proof of our main result into 4
steps, which are common when studying descent algorithm on KŁ functions [64,179,208,
212,213]. For each step we detail how the existing proofs were adapted for our approach.

(i) Sufficient decrease property: we will show that at each cycle, the objective
function Ψ is decreased. The decrease is controlled by the squared norm of the
differences between the block updates. Difference with the literature: we introduce
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7.4. Convergence of the Hierarchical-BC-FB algorithm

the possibility of parallel updates to decrease the function, and thus to adapt the
choice of step size to the smoothness of the group of blocks considered.

(ii) Subgradient upper bound: at each cycle, we can exhibit an upper bound on
one element of the subgradient of Ψ at the cycle iterate. This upper bound is
controlled by the norm of the differences between the block updates. Difference
with the literature: this bound is not sharp at all (as the reader can see it in the
proof in Appendix A.4), but it is necessary to write it in this way to apply the KŁ
property and obtain finite length.

(iii) Limit points are critical points: the set of limit points of the sequences generated
by our algorithm will be a subset of the set of critical points of Ψ. Difference with
the literature: due to the possible parallel block updates, we need to be a bit more
cautious when looking at the converging subsequences.

(iv) Finite length of the sequences: the sequences generated by our algorithm have
finite length and thus converge. This is a consequence of the KŁ property satisfied
by Ψ (see Definition 35) and of point (i) and (ii). Difference with the literature:
we invoke a particular instance of Cauchy-Schwartz inequality to obtain the desired
result.

Remark 22. Regarding Theorems 8 and 9, we can make the following remarks:

• The KŁ property allows deriving the convergence rate of the iterates to a critical
point of Ψ when for instance f and g`, for all `, are semi-algebraic [212]. The class
of semi-algebraic function is quite large [64,212,215]. The desingularizing function
ϕ can be defined with parameters that control this convergence rate (see [64, Remark
6]). Finding ϕ is a non-trivial question, and papers are dedicated to its computation
for classical classes of function, see for instance [217].

• It may not appear obvious that algorithm H-BC-FB needs to update each block in
an essentially cyclic manner, but this is necessary otherwise point (ii) of Theorem
8 would not hold: if a block is never updated the norm of Ak ∈ ∂Ψ(x̄k) will not go
to 0 as k goes to infinity.

Convexity of the regularization. We can derive a slightly different sufficient decrease
property of our algorithm when assuming convexity of the regularizing functions g`, for
all `. This assumption allows us to take bigger step sizes when updating the blocks.
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Lemma 23. Sufficient decrease property: convexity of g`. Suppose that As-
sumption 5 holds. Suppose also that for all ` ∈ {1, . . . , L}, g` is a convex function.
Let {x̄k}k∈N be the sequence of cycle iterates generated by algorithm H-BC-FB. Let
n ∈ N, xn = (xn1 , . . . , xnL) the n-th iterate of algorithm H-BC-FB (7.18). For each n,
let βnf = max`∈In ν` and 0 < τn` < 2/βnf . Then

Ψ(x̄k+1) +
(k+1)×K−1∑

n=k×K

∑
`∈In

(
1
τn`
−
βnf
2

)
‖xn` − xn+1

` ‖2

 ≤ Ψ(x̄k). (7.41)

Furthermore,
+∞∑
n=0

(
L∑
`=1
‖xn+1

` − xn` ‖2
)
< +∞ (7.42)

which implies limn→+∞ ‖xn` − xn+1
` ‖ = 0 for all ` and thus limn→+∞ |||xn − xn+1||| = 0.

Proof. Proof is in Appendix A.4.

We have seen how to construct a convergent hierarchical block-coordinate forward-
backward algorithm, able to handle non-convexity and non-smoothness of the objective
function. This algorithm is deterministic by essence, even though a random shuffle of
the order of the updates is possible. Most of the literature on block-coordinate descent
algorithms is more concerned by stochastic algorithms, as they provided more guarantees
under more general update rules (e.g. parallel updates). For our presentation of the
BC point of view of multilevel algorithms to be complete, we need to inspect multilevel
algorithm from the stochastic perspective. This is the subject of the next section.

7.4.3 Convergence of H-BC-FB in a stochastic setting
In this section, we briefly present a convergence result for a randomized version of our
Hierarchical Block-Coordinate Forward-Backward algorithm. The convergence result in
itself is a direct application of [194, Theorem 4.9]. We aim here to construct a stochastic
BC FB that, in expectation, mirrors the behavior of our multilevel algorithm and is
convergent. Such algorithm follows classic rules of stochastic BCD algorithms that can
update in parallel the blocks.

With such algorithm we will be able to have a complete comparison of the update rules
available today for BC descent algorithms. Recall that the algorithm is of the following
form: Let (εn)n∈N = (εn1 , . . . , εnL)n∈N be a sequence of variables with value in {0, 1}L. Let
(τ`)1≤`≤L ∈ RL

++ and x0 = (x0
1, . . . , x

0
L) ∈ dom g. Iterate

for n = 0, 1, . . . for ` = 1, . . . , L⌊
xn+1
` = xn` + εn`

(
proxτ`g` (xn` − τ`∇`f(xn))− xn`

)
.

(7.43)

With a main difference: ε and x are now random variables. Consider the following
assumptions:
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Assumption 7. y
A6 f : H → R is convex and continuously differentiable,

A7 for every ` = 1, . . . , L, g` : H` →]−∞,+∞] is proper, convex, and lower semicon-
tinuous.

A8 ε = (ε1, . . . , εL) is a random variable with values in {0, 1}L, such that for every
` ∈ {1, . . . , L}, P(ε` = 1) > 0 and P(ε = (0, . . . , 0)) = 0. Note p` = P(ε` = 1)

We can now present a way to construct update rules to mimic our multilevel algorithm
that verify Assumption A8. As we mostly used V -scheme in practice (Chapters 5 and 6),
we present an update rule for this scheme.

Lemma 24. V-scheme probabilities for H-BC-FB. Suppose that ε = (ε1, . . . , εL)
is a random variable with values in {0, 1}L, such that for every ` ∈ {1, . . . , L− 1},

• P(ε`+1 = 1|ε` = 1) > 0,

• P(ε`+1 = 1|ε` = 0) = 0,

and that P(ε1 = 1) = 1.
Then, for every ` ∈ {1, . . . , L}, P(ε` = 1) > 0 and P(ε = (0, . . . , 0)) = 0.

Proof. The second point is straightforward. For the first point, simply remark that for
every ` ∈ {2, . . . , L}:

P(ε` = 1) = P(ε` = 1|ε`−1 = 1)P(ε`−1 = 1), (7.44)

then one directly has:

P(ε` = 1) =
j=∏̀
j=2

P(εj = 1|εj−1 = 1)
P(ε1 = 1). (7.45)

which is strictly greater than 0.

One can see that with this construction we will update the coarsest level at each
iteration, and that updating "fine" levels will also force us to update coarser levels, which
is typical of multilevel methods.

The sampling of ε is done sequentially by increasing ` until we reach the first zero
occurrence. In order to update all levels as often as possible, the value of P(ε`+1 = 1|ε` =
1) should be close to 1 for large `.

Choosing the right value of conditional probabilities. In a typical V-scheme, a
multilevel algorithm would compute m iterations at each coarse level, going upwards in
the resolution. After that it would compute one iteration at fine level. Thus, we should
adjust the conditional probabilities of activating each block so that with high probability
we update m ≥ 0 times the coarsest level alone, then m times the coarsest level and the
second to last coarsest level, and so on ... We have for all `:

P(ε` = 1) =
( 1
m

)`
(7.46)
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which yields to:

P(ε`+1 = 1|ε` = 1) = 1
m

(7.47)

Convergence of the stochastic algorithm. We can now state the convergence result
for the stochastic version of our algorithm. The proof is a direct application of [194,
Theorem 4.9] and is therefore omitted.

Theorem 10. Convergence of stochastic and parallel BC FB [194, Theorem
4.9]. Let (εn)n∈N = (εn1 , . . . , εnL)n∈N be a sequence of independent copies of ε. Let
(τ`)1≤`≤L ∈ RL

++ and x0 = (x1,0, . . . , xL,0) ≡ x0 ∈ dom g be a constant random variable.
Set δ = max1≤`≤L τ`ν` and pmin = min1≤`≤L P(ε` = 1).
Set Id = ⊕L

`=1
1

τ`p` Id` (the identity operators on H`), F∗ = inf F, and S∗ = arg minF ⊂
H. Then the following hold.

(i) E[F (xn)]→ F∗.

(ii) Suppose that S∗ 6= ∅. Then E[F (xn)]− F∗ = o(1/n) and for every integer n ≥ 1,

E[F (xn)]− F∗ ≤
[
dist2Id(x0, S∗)

2 +
(

max{1, (2− δ)−1}
pmin

− 1
)

(F (x0)− F∗)
]

1
n

Moreover there exists a random variable x∗ taking values in S∗ such that xn ⇀ x∗.

7.5 Multilevel algorithms from the BC point of view:
the general case

In the rest of the chapter, equipped with the hierarchical block-coordinate descent frame-
work that we developed, we will construct a multilevel algorithm for the wavelet deblur-
ring problem. This algorithm will be compared in its construction to what would be the
standard block-coordinate descent algorithms of the literature in order to demonstrate
empirically that following the multilevel spirit is indeed a better way of constructing a
block-coordinate descent algorithm for problems with similar structures.

By looking at multilevel algorithms through this lens we are able to answer several
questions regarding the construction of such algorithms in order to obtain convergence
(and thus how to construct them properly). The problem we consider is commonly for-
mulated as:

x̂ ∈ Argmin
x∈H

Ψ(x) := 1
2‖Ax− z‖2

2 + λ‖Dx‖1 (7.48)

where D is the wavelet transform and λ is potentially multivalued to penalize scales
differently. The structure of the wavelet transform decomposes naturally x at successive
scales that we will employ to define our coarse levels. For clarity of the presentation, we
leave the technical proofs to Appendix A.6.
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7.5.1 Multiresolution analysis and optimization
In this section we introduce as rigorously as possible, without introducing too much
complexity, the wavelet decomposition of an image. This will allow us to present the
construction of our multilevel algorithm faithfully.

Let ψ be a wavelet function and consider {ψij,k} a Riesz basis where, for j ∈ Z, k ∈ Z,
and i ∈ {1, 2, 3}, we have

ψij,k(t) = 2−jψ(t− 2jk
2j ). (7.49)

As stated in Section 7.2, we will not carry the distinctions between the detail coefficients
i = 1, 2, 3 in the wavelet decomposition of an image in our presentation, to avoid unnec-
essary complexity and will refer to ψj,k in the following. A complete presentation can be
found in [4].

For Ω ⊂ R, we define the wavelet spaces Wj := span{ψj,k}k∈Z for j ∈ Z, where the
closure is with respect to L2(Ω). The space L2(Ω) can be decomposed as the direct sum
of the Wj: L2(Ω) = ⊕

j∈ZWj.
Multiresolution analysis is a method for L2(Ω)-approximation of functions with ar-

bitrary precision. MRA gives approximations on different scales in such a way, that an
approximation on a fine scale can be obtained by adding the "details" to an approximation
on a coarse scale. The sequence of subspaces defined as Vi := ⊕j≥i−1Wj forms an MRA
such that

L2(Ω) = Vi ⊕
∞⊕
j=i

Wj. (7.50)

Approximation spaces Vi are generated by a scaling function φ, constructed using the
same dilatation/translation operation of Equation (7.49) [4]. Wj is also the orthogonal
complement of Vj inside Vj+1:

Vj+1 := Vj ⊕Wj. (7.51)
This structure can be used to introduce the decomposition of an image x into different

resolution levels. At resolution level J ∈ N, x has N = 22J pixels. A decomposition of
L2(Ω) at this resolution may thus be obtained as:

L2(Ω) = VJ ⊕ V ⊥J = VJ ⊕

 ∞⊕
j=J

Wj

 (7.52)

In the following we assume that the image x we want to decompose lives in a resolution J
so that x ∈ VJ , which is a standard, and implicit, assumption in the literature (while not
being true in general). Such decomposition is valid in a wavelet approximation space if and
only if x represent the coefficients of an image projected inside this wavelet approximation
space which is a subspace of L2(R2). It holds when the scaling and wavelet functions are
both generated by the Haar wavelet [4, 218].

Assume that we want to decompose x until the resolution J −L with L ∈ {1, . . . , J}.
As we can decompose VJ into sub-spaces VJ−1 and WJ−1, formally x would be written as:

x =
∑
k

〈x, φJ−L,k〉φJ−L,k +
J−1∑

j=J−L

∑
k

〈x, ψj,k〉ψj,k (7.53)

The result of the scalar products are known as [4]
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• the approximation coefficients aJ−L,k = 〈x, φJ−L,k〉,

• and the detail coefficients: for all j ∈ {J − L, . . . , J − 1}, dj,k = 〈x, ψj,k〉.

The coefficients of the resolution j − 1, given the approximation coefficients of the
resolution j can be obtained through filtering and dyadic sub-sampling:

• the approximation coefficients aj = (aj+1 ∗ low) ↓ 2,

• and the detail coefficients: dj = (aj+1 ∗ high) ↓ 2.

∗ denotes the convolution and ↓ the dyadic sub sampling (conversely, ↑ will denote the
dyadic up sampling). low and high are a low-pass and a high-pass filter obtained from
the wavelet functions (see [219, Chapter 2] or [4] for more details). From the same filters
one can construct the inverse operation:

aj+1 = (aj ↑ 2) ∗ low + (dj ↑ 2) ∗ high (7.54)

At a given resolution j + 1, we will write as ΠVj and ΠWj
the projections onto the spaces

Vj and Wj respectively. Hence, if aj+1 ∈ Vj+1, then it admits the following unique
representation Π∗Vjaj + Π∗Wj

dj where aj = ΠVjaj+1 and dj = ΠWj
aj+1 [4].

Definition of the blocks using MRA. Recall that we want to solve Problem (7.48)
for an image x with N = 22J pixels. The wavelet decomposition defining the regular-
ization will be done on L-levels. In order to design our block or multilevel algorithm,
we need to properly define the blocks, using this wavelet decomposition6. At each level,
the approximation coefficients will be decomposed in a low frequency block and a high
frequency block. Formally, we will define the blocks as follows:

Definition 37. Approximation spaces & operators. For all ` ∈ {J−L+1, . . . , J}
we define a pair of filtering-subsampling operators ΠV,`−1 and ΠW,`−1 such that:

• ΠV,`−1 : V` → V`−1,

• ΠV,`−1 : V` → W`−1,

with V` and W` being orthogonal to each other so that (ΠV,`−1)∗×ΠW,`−1 = (ΠW,`−1)∗×
ΠV,`−1 = 0 for all ` ∈ {1, . . . , L}. ΠV,` and H` are projection operators.

We adopt the usual convention that the fine variable x is equal to aJ , meaning that
x lives in the approximation space VJ . Every coarse level variable, whether it be high or
low frequency components, can be obtained from the fine variable x as follows:

6Following our 2-Levels example from Section 7.2.
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Lemma 25. Suppose that for all ` ∈ {J − L + 1, . . . , J} we have a pair of filtering-
subsampling operators ΠV,`−1 and ΠW,`−1 such that:

a`−1 = ΠV,`−1a` ∈ V`−1 and d`−1 = ΠW,`−1a` ∈ W`−1 (7.55)

Then for all ` ∈ {J − L+ 1, . . . , J}, one has:

a` =
(
J−1+`∏
i=0

ΠV,`+i

)
x and d` = ΠW,`

(
J−1+`∏
i=1

ΠV,`+i

)
x (7.56)

Proof. When writing

a` =
(
J−1+`∏
i=0

ΠV,`+i

)
x, (7.57)

we mean
a` = ΠV,`ΠV,`+1 . . .ΠV,J−1x. (7.58)

The proof is thus straightforward by induction.

We can also reconstruct each coarse variable with the following relationship with its own
coarse variables (i.e., lower levels variables):

Lemma 26. For all ` ∈ {J − L + 1, . . . , J} we have a pair of projection operators
ΠV,`−1 and ΠW,`−1 such that:

a` = Π∗V,`−1a`−1 + Π∗W,`−1d`−1 (7.59)

Then for all ` ∈ {J − L+ 1, . . . , J}, one has:

a` = Π∗V,`−1

(L−J+`∏
i=2

Π∗V,`−i
)
aJ−L +

L−J+`∑
i=2

i−1∏
j=2

Π∗V,`−j

 (ΠW,`−1−i)∗d`−i


+ Π∗W,`−1d`−1 (7.60)

Proof. Here the product of operators is to be understood as a composition from left (the
first term of the product) to right (last term of the product). The second coarsest variable
is written as:

aJ−L+1 = Π∗V,J−LaJ−L + Π∗W,J−LdJ−L (7.61)

with the coarsest variable being aJ−L. The rest follows by induction.

From these two construction/reconstruction one can define the variable a` as the co-
efficients of its own coarse levels: a` := [aJ−L, dJ−L, dJ−L+1, . . . , d`−1] for ` ≥ J − L + 2.
This is an abuse of notation, but it is for the sake of conciseness and clarity.
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The problem in block form. Now that we are equipped with a definition of the blocks
for an L-levels wavelet decomposition, we can rewrite Problem (7.48) so that the blocks
directly appear. Recall that we assumed that aJ := x. Anticipating on the construction
of the L-levels algorithm, we index the fine level problem with its resolution J .

min
aJ∈H

FJ(aJ) := 1
2‖AaJ − z‖

2 +
J−1∑

`=J−L
λ`‖d`‖1 (7.62)

with aL := [aJ−L, dJ−L, dJ−L+1, . . . , dJ−1]. To simplify the presentation, we consider the
same problem written as:

min
aJ∈H

FJ(aJ) := fJ(AaJ − z) +
J−1∑

`=J−L
λ`g`(d`) (7.63)

where we assume the following:

Assumption 8. y

• fJ : H →]−∞,+∞] is a proper, lower semi-continuous function.

• A : H → H is a linear operator.

• ∀` ∈ {J − L, . . . , J − 1}, g` : W` →] −∞,+∞] is a proper, lower semi-continuous,
and proximable function.

7.5.2 L-levels algorithm for wavelet deblurring

In this section, we construct an L-levels algorithm for Problem (7.62) and check that it
is indeed a block-coordinate descent algorithm. The idea is to write explicitly, like in
our example of Section 7.2, the iterations of our multilevel algorithm and compare these
iterations to that of a block-coordinate descent algorithm.

Coarse level variables. We will consider that at level ` the algorithm will update the
variable a` = [aJ−L, dJ−L, . . . , d`−1], which amounts to computing parallel updates on the
blocks [aJ−L, dJ−L, . . . , d`−1].

Coarse levels functions. Let us first define the coarse level operators A` for all ` ∈
{J −L, . . . , J − 1} which are Galerkin approximations of the fine level operator AJ := A.
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Lemma 27. Coarse level operators. Suppose that Assumption 8 holds. For all
` ∈ {J − L, . . . , J − 1}, suppose that we have the following (Galerkin) relationship
between the coarse operator A` and its finer level counterpart A`+1:

A` := ΠV,`A`+1Π∗V,`, (7.64)

and that
z` := ΠV,`z`+1. (7.65)

Therefore, for all ` ∈ {J − L, . . . , J − 1}, we have A` : V` → V` and

A` =
J−(`+1)∏

i=0
ΠV,`+i

A
(
J−∏̀
i=1

Π∗V,J−i
)
, (7.66)

and

z` =
J−(`+1)∏

i=0
ΠV,`+i

 z. (7.67)

Proof. Proof is in Appendix A.6.

We can now define the coarse level functions as follows.

Definition 38. Coarse level functions. For all ` ∈ {J − L + 1, . . . , J − 1}, the
function associated with the coarse level ` is defined as:

F`(a`) := f`(A`a` − z`) +
`−1∑

j=J−L
λjgj(dj) + 〈v`, ·〉, (7.68)

where v` enforces the first order coherence between levels ` and `+ 1. Each A` can be
expressed from A using Lemma 27.

Remark 23. The gradient of the data fidelity term can be expressed using Lemma 27 as:

∇f` =
J−(`+1)∏

i=0
ΠV,`+i

A∗
(

A
(
J−∏̀
i=1

Π∗V,J−i
)
· −

(
J−∏̀
i=1

Π∗V,J−i
)
z`

)
(7.69)

This expression will help us compute the correction term v` in the next section.

Coarse level corrections: enforcing first order coherence. We now compute ex-
plicitly the correction term v` for all level `. After that, we will be able to write the
iterations of the L-levels algorithm and compare them to that of a block-coordinate de-
scent algorithm. First, we look at the first order coherence between levels ` and ` + 1
(without considering upper levels dependencies).
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Lemma 28. Suppose that Assumption 8 holds and that coarse models are defined as
in Definition 38. For all ` ∈ {J − L + 1, . . . , J − 1}, the correction term v` enforcing
the first order coherence between levels ` and `+ 1 is given by:

v` = ΠV,`A∗`+1

(
A`+1Π∗W,`ΠW,` (a`+1 − z`+1)

)
+ ΠV,`v`+1. (7.70)

Proof. Proof is in Appendix A.6.

Remark 24. One can recognize in the first part of v` the first order coherence term we
computed in the motivating example of Section 7.2.

A brief development then yields the following lemma.

Lemma 29. Suppose that Assumption 8 holds and that coarse models are defined as
in Definition 38. For all ` ∈ {J − L + 1, . . . , J − 1}, the correction term v` enforcing
the first order coherence between levels ` and `+ 1, with respect to level J , is given by:

v` =
(
J−∏̀
k=0

ΠV,`+k

)
A∗A

(
J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

)
(7.71)

−
(
J−∏̀
k=0

ΠV,`+k

)
A∗

J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−kΠ∗W,`+i−1ΠW,`+i−1

(
J−`−i∏
k=0

ΠV,`+i+k

)
z

)
. (7.72)

Proof. Proof is in Appendix A.6.

We can therefore express every iteration of our multilevel algorithm using only A and
z as follows. One pass of gradient descent on the smooth component of level ` reads:

∇f`(a`) + v` =
J−(`+1)∏

k=0
ΠV,`+k

A∗A
(
J−∏̀
k=1

Π∗V,J−k
)
a`

+
(
J−∏̀
k=0

ΠV,`+k

)
A∗A

(
J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

)

−

J−(`+1)∏
k=0

ΠV,`+k

A∗
(
J−∏̀
k=1

Π∗V,J−k
)
z`

−
(
J−∏̀
k=0

ΠV,`+k

)
A∗

J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−kΠ∗W,`+i−1ΠW,`+i−1

(
J−`−i∏
k=0

ΠV,`+i+k

)
z

)
(7.73)

One can identify in the first two lines the contribution of all the wavelet coefficients
[a`, d`, . . . , dJ−1] to the gradient of the smooth component of level `; while the last two
lines contain the contribution of the wavelet coefficients of z from decomposition level `
to J − 1.
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Block updates. We now express the block updates in the same way as the multilevel
algorithm. As we have seen in Section 7.2, computing the contribution of the gradient
of the data fidelity term to the block in question is the main difficulty. We will assume,
as our H-BC-FB algorithm can handle parallel updates, that we can update blocks a` for
` ∈ {J − L+ 1, . . . , J − 1}, which are in practice groups of blocks as:

x := aJ = [aJ−L, dJ−L, dJ−L+1, . . . , dJ−1].

In the following, we will refer to these groups of blocks as blocks to simplify the presen-
tation. For all ` ∈ {J − L, . . . , J − 1}, the gradient of the data fidelity term to the block
a` is denoted by ∇`fJ and is given by:

∇`fJ(aJ) =
J−(`+1)∏

i=0
ΠV,`+i

A∗ (AaJ − z) (7.74)

Therefore we have the following lemma.

Lemma 30. Suppose that Assumption 8 holds. One iteration of a multilevel algorithm
with L levels at level `, for all ` ∈ {J − L, . . . , J}, is equivalent to one iteration of a
block-coordinate algorithm updating blocks [aJ , dJ , . . . , d`−1].

Proof. The result comes directly from the expression of the gradient of the data fidelity
term with respect to a` = [aJ , dJ , . . . , d`−1] (Equation (7.74)) and the expression of the
gradient of the smooth component of level ` (Equation (7.73)).

The proximal step is straightforward.

With this last lemma we have established the equivalence between the multilevel al-
gorithm and a block-coordinate algorithm. We can now analyze our multilevel algorithm
with this lens.

7.5.3 What we learned from the BC point of view
In this section, we present what we learned by looking at multilevel algorithms through
BC glasses.

Coarse levels, coarse spaces, and information transfer operators. At the be-
ginning of our work on multilevel algorithms, and several times since then, we asked
ourselves and were asked if using wavelet based information transfer operators to solve
our wavelet deblurring problem could help the analysis of the algorithm. It turns out it
can. Indeed, when looking at our problem through the BC lens, it appears natural to
define coarse levels so that they respect the hierarchy the wavelet regularization induces
on the solution.

Hence, multilevel algorithm should adopt the hierarchy induced by the regularization,
if it exists, or at least the separability of the problem.

Along the various numerical experiments we conducted, we also remarked that con-
structing the coarse levels from the wavelet bases of the regularization was beneficial to
the convergence of the algorithm - even if what we learned to really matter was more
the length of the wavelet filters than the wavelet basis per se (e.g. wavelets known as
Daubechies 20 and Symlet 10 display similar results in practice).
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Non-smooth fine level implies non-smooth coarse levels. Just as with the selec-
tion of coarse spaces, the non-smoothness of the fine level function should prompt the
non-smoothness of the coarse levels functions. This was something we did not observe in
practice with IML FISTA between the smooth and non-smooth coarse models on the ac-
celeration of the convergence (see Section 5.4, Chapter 5): the non-smooth coarse model
had a small advantage over the smooth one on high noise settings, but otherwise the
performance was similar.

However, these experiments were conducted without knowing that to compute the
first order coherence term, when choosing non-smooth coarse models, we did not need to
compute the gradient of the smoothed regularization (as they cancel each other between
fine and coarse levels). This is a significant advantage of non-smooth coarse models that
we did not exploit.

First order coherence is necessary. Another important question was the necessity of
the first order coherence term. Computing the first order coherence is without a doubt the
most computationally expensive part of a multilevel iteration. Thus, we were wondering
if it could be avoided. The answer seems to be no: the first order coherence term is
necessary to bridge multilevel algorithms and BCD algorithms.

From a practical point of view, we observed in some tests that the first order coherence
term was paramount in the good behavior of IML FISTA. Now, from a theoretical point
of view, we showed that the first order coherence term is bridging the gap between a
convergent BC FB algorithm and our multilevel algorithm, as illustrated in Equation
(7.73).

Minimizing coarse levels completely is useless in general. This BC interpretation
comes with another important conclusion: minimizing the coarse levels completely is
useless in general. Indeed, as first order coherence is sending high frequency information
to the coarse levels at the beginning of the coarse optimization, minimizing completely the
coarse levels functions would mean that higher frequency information would not influence
coarser level in any way after this initial correction. This is untrue in general, and we use
our example of Section 7.2 to show it.

The coarse level operator AH is obtained as a Galerkin approximation of A on the low
frequency block: AH = ΠV AΠ∗V . An iteration on the coarse level is then given by:

an+1 = proxγλHgH (an − γΠV A∗ (A (Π∗V an + Π∗Wdn)− z)) (7.75)

For minimizing completely our objective function with respect to a ∈ V to be useful, we
would need the following condition to hold for all d ∈ W :

ΠV A∗AΠ∗Wd = 0, (7.76)

which is quite strong (and was not true in our experiments). Hence, in general, minimizing
completely the coarse levels is not useful. It is also showing that fine level steps are
paramount for the convergence of a multilevel algorithm.
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7.6 Numerical experiments
In this section, we present preliminary numerical experiments to assess the performance
of the proposed construction of a multilevel algorithm. We have seen in Chapter 5, and
notably in Section 5.4 that multilevel algorithms do accelerate the solution of Problem
(7.48) (see Figure 5.2 in particular).

Dataset. In this section we will consider two versions of the first image of the JWST
(see Figure 2.2, Chapter 2), one of size 512 × 512 and one of size 2048 × 2048. We will
apply a Gaussian blur and a Gaussian noise on these images. The regularization will be
done with a 2-Level `1-Wavelet Symlet 10 (see Figure 7.1).

Experimental setup. We will compare our algorithm to several versions of BC-FB
and to the forward-backward algorithm. We will consider the following algorithms:

• FB: the forward-backward algorithm.

• Random BC-FB: the block-coordinate forward-backward algorithm with one ran-
domly chosen block updated at each iteration. The blocks correspond to the ap-
proximation block and the three detail blocks.

• Random parallel BC-FB: the block-coordinate forward-backward algorithm with
one or more randomly chosen blocks updated at each iteration, in parallel. Same
block structure as above.

• IML FB (H-BC-FB): the multilevel algorithm with 2 levels, with m coarse iterations
every 10 fine iterations.

• Stochastic H-BC-FB: a random multilevel algorithm with 2 levels, with m coarse
iterations every 10 fine iterations in expectation. It is based on a stochastic and
parallel BC-FB algorithm, with the selection rule of Lemma 24.

For all block algorithms, the number of blocks will be 4, following the wavelet decompo-
sition (see Figure 7.1); at the same time, multilevel algorithm will always update all the
details coefficients at the same time. With this choice we intend to show that our block
update rule, which forces the update of the approximation coefficients at each iteration, is
more efficient than a random one. Note that we also tested a Random BC-FB algorithm
that splits the image in four equally sized patches, but the results were worse than all the
other algorithms presented here.

Implementation constraints. The efficiency of BCD algorithms on problems of the
form (7.62) is highly dependent on the fact that the operator A can be applied at the
block scale. It is possible in this context to pre-compute the operator A on the blocks, i.e.,
to compute in advance Π∗V A∗AΠV and Π∗WA∗AΠW . However, we did not have the time
to implement this pre-computation efficiently, therefore BCD and multilevel algorithms
are at a disadvantage compared to FB.
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Comparison of several update choices. A first test to evaluate the interest of our
method is to vary the number of coarse iterations m in the multilevel algorithm, therefore
looking at the weight we put on updating the coarse level with respect to the detail
coefficients.

The setting is the following for the multilevel algorithms: every 10 iteration we com-
putem coarse iterations, withm varying from 1 to 10: for a standard multilevel algorithm,
setting m = 1 consists in applying one iteration of the projected fine level gradient, like
applying a low frequency approximation of the gradient at fine level; settingm = 10 shows
what happens if we only update the approximation coefficients. For our random multi-
level algorithms we implement in expectation the same behavior, with a small caveat:
we stopped at m = 9 in order not to put the probability of a fine level iteration to 0 (if
m = 10);

We can see in Figure 7.4 that the multilevel algorithm with m = 1 is already outper-
forming FB and all BC-FB algorithms. There seems to be a sweet spot around m = 5
where the convergence is the fastest, but the difference with other versions of the algo-
rithm is marginal, therefore we only displayed this configuration. The main difference is
at the start of the optimization, where multilevel algorithms with m big enough seems
slower than FB but quickly overtakes it, which indicates that the coarse level contains
information that is then useful to accelerate the optimization.

We expected that the BC-FB algorithms would be slower than FB, given the imple-
mentation constraints we mentioned earlier. It is interesting to note that the random
BC-FB algorithm is performing better than the random parallel BC-FB algorithm, even
though the latter exploits more information at each iteration. Both algorithms are vastly
outperformed by the multilevel algorithm and its random version, which not only corrob-
orate our previous findings but also show that clever selection of the blocks to update can
lead to faster convergence.

To be completely fair to BC algorithms, a multilevel rule to update the blocks still
require updating all the blocks at once, every few iterations. Therefore, standard update
rule are still relevant when the problem is big enough that updating all the blocks at once
is no longer possible.

High dimensional test. We conclude this experiment section with a test of our ap-
proach on a high dimensional problem. We consider a 2048 × 2048 image of the JWST
(see Figure 2.2, Chapter 2) and apply the same type of degradation as in the previous
experiment. The results are displayed in Figure 7.5. Again, our algorithm show promising
results, beating both forward-backward algorithm and block approaches.

7.7 Conclusion
In this chapter, we proposed a new convergent BC-FB algorithm, based on a hierarchical
strategy for the block selection, able to tackle non-convex and non-smooth optimization
problem. This proposition was motivated by the new perspective it brings to analyze
multilevel algorithms. In the case of image deblurring with `1-wavelet regularization,
we followed the standard approach to construct a multilevel algorithm to tackle this
problem. We have shown that this algorithm can be viewed as a block-coordinate descent
algorithm, which allowed us to analyze its convergence properties and more notably to
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Figure 7.4: Comparison of the convergence of multilevel algorithms against FB (red),
random BC-FB (green, one block updated at each iteration), and random parallel BC-FB
(blue) for the deconvolution problem regularized with 2-Level `1-Wavelet Symlet 10 on
a 512 × 512 image of the JWST (see Figure 2.2, Chapter 2). Degradation: Gaussian
noise with σnoise = 0.05 and a Gaussian blur of size 10 × 10 and 1.8 standard deviation.
λa = 1 × 10−7, λd = 1 × 10−2. (Top) IML FB: standard multilevel algorithm: every 10
iteration we compute m coarse iterations (m being indicated in the legend). (Bottom)
Random Multilevel: same behavior but in expectation (except that for m = 10 we did
not put the probability of a fine level iteration to 0).
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Figure 7.5: Comparison of the convergence of multilevel algorithms against FB (red),
random BC-FB (green, one block updated at each iteration), and random parallel BC-FB
(blue) for the deconvolution problem regularized with 2-Level `1-Wavelet Symlet 10 on a
2048 × 2048 image of the JWST (see Figure 2.2, Chapter 2). Multilevel: standard mul-
tilevel algorithm: every 10 iteration we compute 2 coarse iterations. Random Multilevel:
same behavior but in expectation. Degradation: Gaussian noise with σnoise = 0.05 and a
Gaussian blur of size 40× 40 and 7.7 standard deviation. λa = 1× 10−7, λd = 5× 10−2.

understand the importance of each build block of a multilevel algorithm, e.g. the first order
coherence. Finally, we conducted preliminary numerical experiments that demonstrate the
effectiveness of our approach compared to traditional BC-FB algorithms.

We believe that this new perspective will help us to further improve the performance of
multilevel algorithms. A promising first direction is the design of multilevel algorithm with
a priori rules, i.e., rules that would not require an extensive tuning of hyperparameters.
We could for instance revisit the image restoration problem we treated in Chapter 5 and
in Chapter 6 to see if we can improve the performance of our algorithms by following the
BC perspective we developed in this chapter.
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Conclusion
In this thesis we present an in-depth study of multilevel methods for non-smooth opti-
mization, with application to image reconstruction problems. By exploiting a hierarchy
of approximations of the objective function, multilevel algorithms can accelerate the con-
vergence of optimization algorithms.

In Chapter 4, we presented a general framework for designing a multilevel algorithm
with state-of-the-art convergence guarantees for optimization problems that may be non-
smooth, and without an explicit formulation of their proximity operators. Specifically,
a convergence rate of O(1/k2) for the objective function values and convergence to a
minimizer. This framework led to IML FISTA, an inexact multilevel variant of FISTA.

With this algorithm we have been able to show that we can accelerate the solution
of image reconstruction problems, with a speedup of up to 10 times compared to the
state-of-the-art algorithms. In Chapter 5, we applied our algorithms to the following
problems:

(i) grayscale image deblurring regularized with wavelet transform,

(ii) color image deblurring regularized with total variation,

(iii) color image inpainting regularized with non-local total variation,

(iv) hyperspectral image inpainting and deblurring regularized with non-local total vari-
ation,

and showed that it can provide a good acceleration on all of them. From these experiments,
we thus concluded that multilevel methods are valuable approaches to accelerate the
solution of image reconstruction problems, and that they can be applied to a wide range
of problems.

This is why we decided to tackle a more realistic imaging problem in Chapter 6: radio-
interferometric (RI) image reconstruction regularized with wavelet transform and positive
constraints. We showed that IML FISTA can be successfully applied to this problem,
providing a significant speedup compared to the state-of-the-art algorithms. Moreover,
we implemented a new way of reducing the dimension of the problem, by constructing
our hierarchy of levels based on a selecting fewer and fewer observations (visibilities) at
each level, to be more in tune with the scaling challenges of RI problems [169].
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We also remarked that the theoretical guarantees of IML FISTA are still not on par
with the performance we can observe in practice, which is a good sign for the robust-
ness of the method, but also an incentive for more theoretical work. Up to this point,
our experience with IML FISTA is consistent with the experience of other authors on
multilevel methods7, that is that the primary difficulty in getting them work lies in the
implementation details: choice of coarse models, choice of algorithms at each level, and
so on.

To illustrate this phenomenon with a specific example, in the general context of IML
FISTA, we could only guarantee that a multilevel step would decrease the fine level
objective function up to a small error. In our experiments we never observed this error,
which prompts the question: is it possible to prove that the multilevel step is always a
descent step?

Progress in this direction (and others) was obtained in Chapter 7, where we studied
the convergence of multilevel algorithms from the point of view of block-coordinate de-
scent algorithms. For this study, we provided a convergence proof for a new hierarchical
block-coordinate forward-backward algorithm, applicable to non-smooth and non-convex
optimization. Regarding our question, in this context, we are able to guarantee that a
multilevel step is a descent step, even for non-convex problems.

This new point of view led us to a rigorous design of a multilevel algorithm for image
deblurring regularized with wavelets, that solved all the theoretical issues we encountered
with IML FISTA in this context.

The work presented in this manuscript opens the door for new theoretical and practical
developments.

Practical perspectives
First from an application perspective, our numerical experiments further highlighted that
multilevel methods have a great potential on imaging problems where a sequence of op-
timization problems needs to be solved. On such applications, the gain of the multilevel
approaches could be compounding, leading to even greater speedups. For instance, in RI
imaging, the volume of data to handle is so large that it is common to reconstruct the im-
age by solving a sequence of optimization problems with disjoint set of observations, in an
online fashion [186]. The multilevel approach could be used to accelerate the resolution of
each individual problem. To continue with RI imaging, benchmarking the performance of
IML FISTA on real data would be a natural next step. Then we could consider extending
our construction of multilevel algorithms to tackle the constrained version of SARA (see
Appendices A.3.2 and A.2.3).

From an image restoration perspective, there are also plenty of directions that could
be explored. To start with the variational approaches, we talked briefly about Total
Generalized Variation (TGV) in Chapter 2. It offers a more flexible regularization than
TV, and is simpler than NLTV while providing similar reconstruction results. TGV is not
immediately handled by our framework of multilevel algorithms, as it is not formulated
as the composition of a norm and a linear operator [34], and could be an interesting
extension.

7As noted in Chapter 3, Section 3.2.2.
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With the introduction of deep learning techniques for image restoration, it would be
interesting to see how they could be combined with multilevel algorithms. The recent and
numerous developments to train deep neural networks to mimic variational regularizers
such as RED [39, 40] or Plug-and-Play (PnP) methods [38] seems to be a good starting
point. RED for instance has a smooth formulation [39], which consists in writing the
regularization as

R(x) = gσ(x), (7.77)

with its gradient being explicitly formulated as: ∇gσ : x 7→ x − NNσ(x), where NNσ

is a denoising neural network parametrized by a noise level σ. PnP methods, on the
other hand, links the neural network to the proximity operator of the regularization, so
that proxgσ = NNσ [41–43]. In both cases, the resulting method is an iterative one,
with a great cost with respect to variational approaches as evaluating a neural network is
computationally expensive [220]8. Hence, a multilevel algorithm could help alleviate this
cost. However, we have seen in our own experiments that the coarse models need to be
efficient to provide a speedup, therefore we need to construct a clever approximation of
the neural network, or for instance, not regularize the coarse level like in Chapter 6 (while
maintaining first order coherence). Some work is currently being done in this direction.

The last chapter also suggests revisiting some of our numerical experiments, in partic-
ular the application to hyperspectral image restoration. The notion of band is analogous
to the notion of blocks in our BC theoretical framework. It could be interesting to define
a multilevel algorithm that would exploit the intrinsic hierarchy of the bands [223, 224],
and thus maybe improve the performance of the algorithm.

Following similar principles on new optimization problems to construct multilevel al-
gorithms beforehand, could help skip a lot of the trial-and-error process that is currently
needed to design a multilevel algorithm on a new problem.

Theoretical perspectives
For IML FISTA. From a theoretical perspective, even if we managed to make some
progress in the convergence analysis of multilevel algorithms in Chapter 7, a gap remains
with the generality of our framework IML FISTA.

First, coarse corrections are guaranteed to decrease the objective function in the BC
framework, that is not guaranteed in the IML FISTA framework (or under any other
general multilevel framework for non-smooth optimization). We tried to investigate im-
provement of the smoothing framework in Appendix A.2.1, by looking at a sufficient
decrease condition, but the results are not exploitable in practice. Hence, the question
remains open.

Second, inexact proximal steps as characterized by [62] in the convex case, are not
possible (yet) in the Kurdyka-Łojasiewicz setting, even though some notion of inexactness
already exist [212, 214]. Trying to extend our convergence results obtained in Chapter 7
to this setting would be a natural next step.

8To quote the authors: "The inference of neural networks is claimed to represent 90% of the cost of
machine learning at scale according to independent reports from both NVIDIA [221] and Amazon Web
Services [222]."
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Finally, on a more positive note, the proof of convergence we used in Chapter 4 can
be reused to prove the convergence of other multilevel algorithms, as we demonstrate it
in Appendix A.3.2. Therefore, we can concentrate on finding efficient implementations of
these algorithms, without worrying about having to prove convergence.

For BCD. Now from our BC point of view, one can wonder if the results of Chapter 7
could be proven in a complete (non-convex) stochastic setting. Is it possible to consider
correlations between updates from one iteration to the next and still obtain the same
guarantees as in the Féjer setting [196]? Answering this question would greatly improve
convergence guarantees of some stochastic BC methods.

It was proven in [179] that the reweighting procedure involved in SARA [167] could
be interpreted as solving a unique optimization problem with a block-coordinate descent
algorithm, and later applied to RI imaging [181]. Our new block-coordinate perspective
could be used to analyze the convergence of a multilevel algorithm applied to this problem.

Also, it is known that BC algorithms are really competitive in settings where updating
all the coordinates at once is not possible [192]. Hence, it would be interesting to see how
we could adapt our hierarchical selection of the blocks to update in such contexts.

Finally, we did not study the impact of adding inertia [190] on the convergence of our
H-BC-FB algorithm. Such study would also help us end the analogy between IML FISTA
and H-BC-FB, and maybe provide some insights on how to improve the convergence of
IML FISTA: should we use inertia in the multilevel steps?

Higher order optimization. Higher order optimization methods are known to adapt
better to the geometry of the function and therefore converge faster, but at a higher
cost [55, 225]. First order methods are more understood, and more used than higher
order methods, and their potential is, most likely, close to be fully exploited nowadays.
Therefore, some effort should be made to reduce the computational cost of higher order
optimization methods.

From a non-smooth multilevel optimization perspective, a first step in this direction
could be taken by trying to emulate the second order coherence with the data fidelity,
constructing a Galerkin approximation of the Hessian matrix at coarse level. Such can
be implicitly done when choosing AH = IHh AhI

h
H in our image restoration problems, as

AT
HAH = IHh AT

h I
h
HI

H
h AhI

h
H = IHh AT

hAhI
h
H if IhHIHh = IdH (the identity at coarse level).

This is trivially satisfied within our BC point of view of multilevel algorithm for wavelet
deblurring. Studying the eigenvalues of IHh AT

hAhI
h
H and their relationship to those of

AT
hAh could tell us how faithful to the fine level is the second order information of the

coarse level, without having to send the actual Hessian matrix at coarse level at each
multilevel coarse correction.

Such ideas could be incorporated into a multilevel proximal Newton algorithm [226]
which uses the Hessian matrix of the smooth term in the iterations to better adapt the
forward step to the geometry of the function.
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Appendix A
A.1 Chapter 3 – Supplementary literature on multi-

level algorithms
In this section, we present some literature on multilevel optimization that is not directly
relevant to this manuscript but is of interest. First we consider applications of the multi-
level framework to either accelerate or improve the training of neural networks.

Deep learning. It seems natural to want to use the multigrid framework to accelerate
the training of neural networks as it can be quite expansive. In [227], the authors present
a way to define a hierarchy of neural networks inducing thus a hierarchy of losses so
that one can accelerate the training of deep neural networks. The idea relies on the fact
that deep neural networks known as ResNets can be seen as the discretization of partial
differential equation. A layer of ResNet obeys the following equation:

yk+1 = yk + ∆kF (yk, θk), (A.1)

where δk = 1, and θk = (Wk, bk) represent the parameters of the layer k so that:

F (yk, θk) = σ(Wkyk + bk),

with σ a nonlinear activation function (e.g. rectified linear unit (ReLU)). Equation A.1
can be seen as the discretization of the following ordinary differential equation when ∆k

goes to zero:

dy

dt
= F (y, t) (A.2)

y(0) = y0.

Thus, by adjusting the step size ∆k in the ResNet, we implicitly adjust the mesh size of
the discretization. The hierarchy of neural networks is thus naturally defined and can be
used to construct a multilevel algorithm.

Authors of [228] rather use the multilevel procedure to regularize the solution of the
loss function associated with a deep neural network. This way the method is claimed to
avoid overfitting of the neural network to the training dataset.
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Miscellaneous multilevel algorithms. The term multilevel may be confusing given
that it shares the same name as bilevel optimization field. It can be justified by the fact
that the hierarchy of levels may not necessarily be constructed to reduce the dimension
of the problem, but rather to reduce its complexity.

For instance the authors of [130] proposed a method to define an approximation of the
loss in a deep learning context. The loss is classically defined with respect to a dataset,
and the authors proposed to construct another loss to minimize with synthetic data. Let
L be the loss we aim to minimize and L̄ its approximation. The approximation relies on
the following assumptions:

• h := L− L̄ is differentiable, and its gradient is δ-Lipschitz continuous.

• This is equivalent to require that for all w, ‖∇2L(w) −∇2L̄(w)‖op ≤ δ if L and L̄
are twice differentiable.

By construction, it is already the approximation is already first order coherent with L [130]
(using the stochastic gradient), and with these assumptions, in a sense, the approximation
should be coherent up to second order with the original loss.

Multilevel algorithms have also been used to accelerate the solving of graphical lasso
problems [229]. Such problems are graph reconstruction problems regularized with an
`1-norm. Authors of [229] design a hierarchy of sub-problems by restricting the number
of variables to be updated at any given iteration. The fact that the `1-norm provide
separable regularization and also identifies the support of the solution (often much smaller
than the actual dimension of the problem) justifies the use of this approach. Nonetheless,
convergence of the method to a global minimizer requires each coarse model to be solved
exactly.

For particular image restoration problem such as Total Variation denoising, explicit
construction of all the levels was tried for instance in [230]. The authors present a multi-
level algorithm to solve a deblurring problem regularized with a smoothed total variation
but in a variational sense. The approach consists in defining the functional for the small-
est group of pixels possible (4× 4 for TV), minimize it and then upscale the solution to
the next level (groups of pixels of size 8×8 and so on). Each group at given scale is solved
in parallel. As long as the functional at end is smooth, the method converge with optimal
complexity to the solution of the original problem. The main difficulty is to define the
correct functional at each scale, which is already quite involving for the simple case of the
TV regularization. This kind of idea was previously developed in [231] but for different
optimization problems.

Finally, in [232], the authors design a FISTA algorithm able to work by computing
iterations in subspaces of different dimensions. This idea is quite interesting and can
work in infinite dimensional setting, but the formulation of the algorithm is completely
different from the one of multilevel algorithms. There may be some connections to be
drawn between IML FISTA and this algorithm, as the extrapolation steps in [232] do not
always occur in the "fine" space.
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A.2 Chapter 4 – Possible improvements of IML FISTA’s
framework

In this section, we look at possible improvements of the framework of IML FISTA. In
particular, we look at the smoothing technique, and the descent guarantees it produces;
the extrapolation step; and conclude with some unaddressed limits of the method.

A.2.1 Improving the smoothing: sufficient decrease and other
techniques.

In this section, we discuss the limitations of the framework we use to define the coarse
models of IML FISTA in Chapter 4, and the subsequent descent guarantees at fine level,
to try to propose some improvements.

Recall that with our method, a coarse correction amounts to minimizing through the
coarse model a smooth approximation of the objective function. This results in a descent
guarantee up to an error (Chapter 4, Lemmas 10 and 13).

Fh(yh + τ̄ IhH(sH,m − sH,0)) ≤ Fh(yh) + (η1 + η2)γh.

This error can be made as close to 0 as possible by driving γh to 0. However, doing
so is detrimental to the practical performance of the algorithm in the applications we
considered (see Chapter 5). Thus, a question that we tried to tackle during my PhD was:
Can we guarantee descent of the objective function at the fine level when using a smooth
approximation of the objective function?

In practice, we never observed a non-decreasing objective function, but a theoretical
argument would certainly make our method more robust. We present in the following
our findings in the most general setting, in order to extend the guarantees we obtained in
Chapter 7.

Sufficient decrease condition. The first idea that comes to mind is to decrease our
smoothed function sufficiently so that it is guaranteed to then decrease the non-smooth
objective function. From the definition of the smoothed coarse models (Chapter 4, Defi-
nition 25), we have that for all x ∈ H:

Fh,γh(x) ≤ Fh(x) + η2γh

Fh(x) ≤ Fh,γh(x) + η1γh.

Thus, finding y ∈ H such that Fh,γh(y) ≤ Fh,γh(x)− ηγh guarantees that Fh(y) ≤ Fh(x).
This leads to the following lemma:

Lemma 31. Let F be a convex function on a convex set X. Let Fγ be a γ−smooth
approximation of F with γ > 0. Suppose that for x ∈ X there exists y ∈ X such that

Fγ(y) ≤ Fγ(x)− ηγ, (A.3)

then we have
F (y) ≤ F (x). (A.4)
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Proof. The proof comes from the steps above.

It remains now to fulfill the strong assumption of this lemma, finding y such that
Equation (A.3) is valid. This boils down to finding an algorithm, and a sufficient number
of iterations so that this condition is met. In [132], the authors proposed a parametrization
of the smoothing, so that with a fast method (with a rate of convergence 1/k2) one can
estimate the sufficient number of iterations to reach an ε−approximation of the minimum
value of the objective function. We will place ourselves in a similar setting.

A fast iterative method for convex optimization is given by the following definition:

Definition 39. Fast iterative method [132, Definition 3.1]. Let (L,R, β) be
a given input convex optimization model with an optimal solution x̂, and let x0 ∈ H
be an initial point. An iterative method M for solving problem (2.7) is called a fast
iterative method with constant 0 < Γ < +∞, which possibly depends on x0 and x̂, if it
generates a sequence (xk)k∈N satisfying for all k ≥ 1,

F (xk)− F (x̂) ≤ βΓ
k2 . (A.5)

With such a method, and the smoothing of R proposed in [132] to define the smooth
problem Fγ, the following theorem holds:

Theorem 11. [132, Theorem 3.1]. Let (xk)k∈N be the sequence generated by a
fast iterative method M when applied to the smooth problem Fγ. Let ε > 0. Suppose
that the smoothing parameter is chosen as:

γ =
√
α

η

ε
√
αη +

√
αη + (β +K)ε

. (A.6)

Then for
k ≥ 2

√
αηΓ1

ε
+
√

(β +K)Γ 1√
ε
, (A.7)

it holds that F (xk)− F (x̂) ≤ ε.

In our context, we will start by working only on Fγ withM:

Lemma 32. Let (xk)k∈N be the sequence generated by a fast iterative methodM when
applied to the smooth problem Fγ. Suppose that Fγ(x0)−Fγ(x̂) > ηγ. If k is such that:

k ≥

√√√√ βΓ
Fγ(x0)− Fγ(x̂)− ηγ (A.8)

then
Fγ(xk) ≤ Fγ(x0)− ηγ. (A.9)
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Proof. From the definition ofM we have that:

Fγ(xk)− Fγ(x̂) ≤ βΓ
k2 . (A.10)

Injecting k in this inequality yields

Fγ(xk)− Fγ(x̂) ≤ βΓ
βΓ

Fγ(x0)−Fγ(x̂)−ηγ

= Fγ(x0)− Fγ(x̂)− ηγ, (A.11)

which concludes the proof.

This lemma is not satisfying, for the simple reason that if one is close enough to a
minimizer, Fγ(x0) − Fγ(x̂) > ηγ has no reason to hold (ηγ is of the order of N for the
`1-norm smoothed by the Moreau envelope).

A better result would depend on a relative instead of absolute difference between
Fγ(x0) and Fγ(x̂). Consider Lemma 7, we have that for all x ∈ X:

R(x)− γω∗(dx) ≤ Ric
γ (x) ≤ R(x) (A.12)

where dx ∈ ∂R(x), and where Ric follows Definition 20.

Other smoothing techniques? In order to improve upon the previous results, we
tried to look at other smoothing frameworks, hoping that tighter (or easier) bounds may
be available to link the smoothed functional Fγ to the original functional F . We do not
claim to have look exhaustively for all the possible frameworks, but given what we have
found about the following one, we can already draw some conclusions.

Smooth oracles. In [233], the authors introduced the concept of inexact smooth oracle
to take into account possible errors when computing the gradient of the smooth approxi-
mation. Such errors are none of our concerns, but the oracle proposed can be used in our
context. The oracle is defined as follows:

Definition 40. Inexact smooth oracle [233]. Let R be a convex function on a
convex set X. We say that it R equipped with a first order (δ, L)−oracle if for any
y ∈ X we can compute a pair (fδ,L(y), gδ,L(y)) ∈ R×X∗ such that for all x ∈ X

0 ≤ R(x)− (fδ,L(y) + 〈gδ,L(y), x− y〉) ≤ L

2 ‖x− y‖
2 + δ (A.13)

Remark 25. A (δ, L)−oracle provides a lower δ−approximation of the function value.
Taking x = y in Eq. (A.13)

fδ,L(y) ≤ R(y) ≤ fδ,L(y) + δ (A.14)

Remark 26. A (δ, L)−oracle provides a δ−subgradient of R at y ∈ X, i.e.

gδ,L(y) ∈ ∂δR(y) = {z ∈ X∗ : R(x) ≥ R(y) + 〈z, x− y〉 − δ, ∀x ∈ X}. (A.15)
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Under the assumption that the function ω used to define an inf-conv γ-approximation
of R is such that ω(0) = 0, an inf-conv approximation constitutes an inexact smooth
oracle for R.

Lemma 33. Inf-conv smooth approximation are inexact smooth oracles.
Consider Definition 20, where ω(0) = 0. Suppose that R is subdifferentiable over X.
For any x ∈ X the following holds (Lemma 7):

R(x)− γω∗(dx) ≤ Ric
γ (x) ≤ R(x) (A.16)

where dx ∈ ∂R(x). Then, (Ric
γ ,∇Ric

γ ) is a
(
γ supx∈X supd∈∂R(x) ω

∗(dx), 1
σγ

)
−oracle for

R.

Proof. If ω(0) = 0 one can rewrite Lemma 7 into the following:

0 ≤ R(x)−Ric
γ (x) ≤ µω∗(dx). (A.17)

Taking the supremum over all x of the right-hand side yields the desired bound on the
function values. Now, for the subgradients, using point (b) of [132, Theorem 4.1] which
states that Ric

γ has a gradient which is 1
σγ
-Lipschitz (recall that 1/σ is the Lipschitz

constant of ω).
Take ∇Ric

γ (x) as the subgradient estimate, and a direct application of the descent
lemma (Chapter 2, Lemma 1) yields the desired result: Ric

µ is a first order inexact oracle
of R.

We expect other smoothing framework to be equivalent, under reasonable assumptions,
to those already investigated in this manuscript. Therefore, we should probably look in
other directions to improve upon our error bound on the decrease of the fine level objective
function after a coarse correction.

A.2.2 Beyond FISTA?
In this section, we present a method we tried to better match the evolution of the inertia
to the impact of multilevel steps, without losing any convergence guarantees.

In some experiments, we noticed that using the standard update rule for th,k could be
detrimental to the asymptotic convergence speed of our multilevel algorithm. We think
the reason is quite intuitive: iteration where we use a coarse model tend to bring us faster
closer to the minimum (when compared to the same iteration without coarse correction),
which reduces the size of proximal-gradient steps faster than what is expected by the
dynamics of FISTA. We can consider increasing the inertia when using coarse corrections
to circumvent this problem. The idea is to "boost" the speed of convergence of the sequence
αh,k to 1 when k → +∞.

In the framework of [69, 70], a simple way of doing so is to "saturate" the Nesterov
rule : we modify the Chambolle-Dossal sequence slightly so that tk grows faster when we
use coarse iterations while keeping the same convergence guarantees of Theorem 5. For
example, we can take the following sequence:

t̃k =
(
k + a+ bk − 1

a

)d
(A.18)
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where the sequence of (bk)n∈N is positive and increasing (but not necessarily strictly). As
it is crucial for the convergence of the algorithm to guarantee that t̃2k−1 − t̃2k + t̃k ≥ 0, we
investigate which type of sequences (bk)n∈N could work in the next lemma.

Lemma 34. The sequence of (t̃k)k∈N defined by (A.18) is such that t̃2k−1 − t̃2k + t̃k is
positive (resp. strictly positive) if the sequence of (bk)k∈N is increasing and such that:

bk − bk−1 ≤
ad

2d − 1 (resp. bk − bk−1 <
ad

2d − 1). (A.19)

Proof. As in proof of [70, Lemma 3.2] (appendix A.1), we can notice that :

(k + a+ bk − 1)2d − (k + a+ bk−1 − 2)2d =
∫ n+a+bk−1

k+a+bk−1−2
(2d)t2d−1dt

Then if d ∈
[

1
2 , 1

]
by bounding the integral :

(k + a+ bk − 1)2d − (k + a+ bk−1 − 2)2d ≤ (2d)(bk − bk−1 + 1)(k + a+ bk − 1)d

and similarly if d ∈
[
0, 1

2

[
,

(k+a+bk−1)2d−(k+a+bn−1−2)2d ≤ (2d)(bk−bn−1+1) ≤ (2d)(bk−bk−1+1)(k+a+bk−1)d

using the condition [70, Definition 3.1] (Equation (4.27)). Thus :

t̃2k−1 − t̃2k + 2d(bk − bk−1 + 1)
a2d (k + a+ bk − 1)d ≥ 0

And finally :

ρ̃k = t̃2k−1 − t̃2k + t̃k ≥
(

1
ad
− 2d(bk − bk−1 + 1)

a2d

)
(k + a+ bk − 1)d

We must finally have :

0 ≤ 1
ad
− 2d(bk − bk−1 + 1)

a2d

⇔ bk − bk−1 ≤
ad

2d − 1

By the condition [70, Definition 3.1], we have: a > max(1, (2d) 1
d ) which implies a > (2d) 1

d

and thus ad

2d > 1, which concludes the proof.

We therefore have after N iterations that bN ≤ N
(
ad

2d − 1
)
. We can saturate the inertia

by adding (
ad

2d − 1
)
µ, (A.20)

with µ ∈ [0, 1[ to the sequence each time we use the coarse models. Imposing µ < 1 keeps
the strict positivity of ρ̃n for all n ≥ 1.
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Figure A.1: Comparison of the evolution of the inertia with and without the added bk.
One can easily see that differences between two curves for a given value of a are quite
small. Here µ = 0.99 so that b0 = 0 and bk = bk−1 + (a/2− 1)µ.

Although theoretically promising as we can maintain the same convergence guarantees,
in practice the increase of the inertia is difficult to tune. One can only add a small amount
on the tk between two iterates such that it cannot compensate the lack of inertia of our
method if only added when coarse correction are used (see a comparison with and without
this added inertia in Figure A.1). This raises the question of where to add the missing
inertia which we cannot say for now. Could we go beyond Nesterov’s rule [75]?

A.2.3 Quick overview of unaddressed hurdles
In this section, we present some known issues about multilevel algorithm in general, that
we did not address with the design of IML FISTA.

Null space of the information transfer operators. With multilevel algorithms, one
aim to reduce the total computation time to reach a minimizer of the objective function,
or an approximate solution. Therefore, in practice, it is almost always chosen to define our
coarse models in space of lower dimensions. This leads to information transfer operators
having null spaces of large dimension. The problem one can then face is that the projection
of the gradient at the fine level to the coarse level may be null.

To circumvent this difficulty it was proposed for instance in [112] to create multiple
information transfer operators (IHh )j with j ∈ {1, . . . , P}, such that the span of all the
rows of the (IHh )j is equal to the whole fine level space. It guarantees the existence of at
least one operator (IHh )j such that ‖(IHh )j∇Fh,γh‖ > 0.

A cycle browsing between all the operators along the iterations is then used in practice
to exploit this property, while preventing the coarse model to be inefficient.

Nevertheless, it is quite involving to create multiple operators, and to check that all the
coarse models derived from these operators are useful. Moreover, multilevel algorithms
are often more beneficial to the convergence at the beginning of the optimization, where
the chances of the coarse correction being in the null space of the information transfer
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operator seem to be minimal. We thus choose not to consider such idea in our own
experiments.

Constrained optimization problems. In imaging applications, the regularization of-
ten contains an indicator function modeling a set of closed convex constraints C (e.g.
positiveness of the pixels which is crucial for physical interpretation of the results).

For such convex constrained optimization problems, the definition of convergent mul-
tilevel algorithm is not straightforward. In our framework and most of the multilevel
frameworks that we know of, we can define a coarse model that will yield a descent direc-
tion at the fine level, but we have no guarantee of obtaining feasible descent directions.

And as it is well known that if you replace the gradient descent by a descent direction
in the projected gradient descent algorithm, in general the descent property is lost [55],
therefore a projection onto the set of constraints of the coarse correction will not work.
We need therefore to find a way to guarantee feasibility.

Let us consider that a coarse update has been computed and sent to the fine level.
The problem of finding a feasible descent direction can be formulated as:

min
α>0

Fh
(
xh,k + αIhH(xH,k,m − xH,k,0)

)
(A.21)

subject to xh,k + αIhH(xH,k,m − xH,k,0) ∈ C

Sadly there is no guarantee that this problem has a solution α̂ such that:

Fh
(
xh,k + α̂IhH(xH,k,m − xH,k,0)

)
< Fh(xh,k). (A.22)

If no feasible direction is found, taking α = 0 at least ensures that this iteration will
not be detrimental to the rest of the optimization. As multilevel update involve some
computation, this is obviously inefficient.

Even for one of the simplest set of constraints C, positive constraints, there does not
exist a simple way to guarantee descent. For the sake of the argument, suppose that we
have chosen an information transfer operator IhH with only positive coefficients (Equation
(3.12) in Chapter 2). This cannot ensure, given a positive xh,k positive and a positive
coarse iterate xH,k,m (by construction xH,k,0 is positive), that there exists α > 0 such that
xh,k + αIhH(xH,k,m − xH,k,0) is also positive. For instance, take xh,k on the boundary of C,
and IhH(xH,k,m − xH,k,0) may point out of the set of constraints.

To get closer to what we want to do, some inspiration could be taken from Frank-
Wolfe algorithms (or Conditional Gradient methods) which correspond to the following
iterations [234]:

vk ∈ arg min
v∈C

〈∇f(xk), v〉 (A.23)

xk+1 = xk + γk(vk − xk) (A.24)

These methods are commonly used for smooth constrained optimization as projection onto
C may not be simple. One can see some connections between the concept of first order
coherence and the linearization used in Frank-Wolfe iterations. Sadly we have not been
able to link the two together to obtain a multilevel algorithm for constrained optimization.
We think it would be an interesting direction to follow, even if Frank-Wolfe algorithm have
known flaws [235].
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In the smooth case, provided that the set of constraints can be described by a set
of linear inequalities, the projection of the gradient to the coarse level can be done with
respect to these constraints by modeling them as a manifold upon which gradient descent
occurs [108]. Taking into account these constraints greatly improve the speed of recon-
struction on tomography applications, but no convergence proof of the algorithm to a
minimizer was provided.

The same assumptions that allowed us to obtain convergence of our algorithm in
Theorems 4 and 5 (Chapter 4) are fulfilled for the algorithm proposed by [108], hence
providing a direct convergence proof for this algorithm.

A.3 Chapter 4 – Extension of IML FISTA’s frame-
work to other multilevel algorithms

In this section, we present a strategy to extend the framework of IML FISTA to other
multilevel algorithms.

To prove convergence of our algorithm IML FISTA, we only added a small assumption
on the iterations: a finite number of coarse corrections may be computed. In practice,
this is not a problem at all as we compute a finite number of iterations anyway. This
idea being quite simple, we asked ourselves if it could be reused to construct other con-
vergent multilevel algorithms. In the next section, we will present an abstract and simple
convergence principle which formalize this.

A.3.1 Abstract convergence principle
The proof of Theorem 4 and 5 rely on the assumption that the underlying fine level
algorithm can manage errors whose sum of the norms is finite. Most of the first order
algorithms can handle such errors. Formally, let us say that we want to minimize a
function f and that we have an oracleMf : H 7→ H (whose properties will be presented
later) and let (xk)k∈N be a sequence in H constructed by the following recursion:

xk+1 =Mf (xk) + εk (A.25)

where εk is a sequence in H.

Assumption 9. Mf is such that:

lim
k→+∞

xk = x̂ (A.26)

and that there exists a function g : R× R 7→ R+ such that:∑
k∈N

g(k, ‖εk‖) < +∞ (A.27)

The function g controls how the error behave with respect to the iteration number. In
Theorem 5, in the case of type 2 approximations, we had:

g(k, ‖εk‖) = k2d‖εk‖
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We now construct another sequence intertwiningMf with an ML step, which consti-
tutes the basic step of IML FISTA. For some iterations j ∈ N we have:

xj+1 =Mf (ML(xj)) (A.28)

This is equivalent to:

xj+1 =Mf (xj) +
(
Mf (ML(xj))−Mf (xj)

)
(A.29)

The error is here the difference between what would have been computed byMf without
the coarse correction and the actual value.

‖xj+1 −Mf (xj)‖ = ‖Mf (ML(xj))−Mf (xj)‖ (A.30)

We need thus to show that the right hand-side is bounded. For that we make the following
assumption:

Assumption 10. Mf is M-Lipschitz or M-non expansive with M > 0.

Gradient, proximal operators and other classical operators respect this assumption
[60]. This assumption yields:

‖Mf (ML(xj))−Mf (xj)‖ ≤M‖ML(xj)− xj‖ (A.31)

Then, ‖ML(xj)−xj‖ is bounded, which is straightforward if a finite number of iterations
at coarse level are employed. Now if we compute a finite number of ML steps, it is obvious
that for all proper functions g:∑

k∈N
g(k,Mf (ML(xk))−Mf (xk)‖) < +∞ (A.32)

Therefore, we have the following convergence result:

Theorem 12. Suppose that Assumptions 9 and A.3.1 are fulfilled. Let p ∈ N∗. Suppose
that the sequence (xk)k∈N, is generated by the following algorithm:

xk+1 =
 Mf (ML(xk)) p times

Mf (xk) otherwise
(A.33)

Then,
lim

k→+∞
xk = x̂. (A.34)

Proof. The proof is direct from the previous discussion.

A.3.2 A multilevel primal-dual method
In this section, in order to show that this convergence principle is useful, we will consider
the primal-dual algorithm proposed in [140, 143]. It is natural to wonder, given that we
deal with non-proximable penalties due to composition with linear operators in Chapter
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5, if we could accelerate, with multilevel methods, the convergence of the algorithms that
circumvent that inexactness.

This primal-dual algorithm is tailored to solve the following problem1:

x̂ ∈ Argmin
x∈H

F (x) := f1(x) + f2(x) + f3(Dx) (A.35)

where H, G are real Hilbert spaces and

• for all i, fi is proper, convex and lower semi-continuous,

• f1 is differentiable with β-Lipschitz continuous gradient,

• the proximity operators of f2 and f3 are explicitly available or can be estimated,

• and D : H → G is a bounded linear operator.

Such problem encompasses a wide range of optimization problems, including those we
considered in this manuscript. For instance, the proposed algorithm has been used to
solve formulation of the radio-interferometric imaging problem we presented in Chapter
6. The algorithm can also be seen as a forward-backward or Douglas-Rachford splitting
algorithm depending on the context, thus generalizing them.

To solve this problem, [140,143] first formulate the dual problem as follows:

ŷ ∈ Argmin
y∈G

= (f1 + f2)∗(−D∗y) + f ∗3 (y) (A.36)

The algorithm solves both the primal and the dual problem jointly. Combine for instance
these two minimization problem into the search of a saddle point of the Lagrangian:

Find(x̂, ŷ) ∈ arg min
x∈H

max
y∈dom(f∗3 )

[f1(x) + f2(x)− f ∗3 (y) + 〈Dx, y〉] (A.37)

From Karush-Kuhn-Tucker theory, we have that if (x̂, ŷ) ∈ H × G is a solution to the
monotone variational inclusion

Find (x̂, ŷ) ∈ H × G such that
 0

0

 ∈
 ∂f2(x̂) + D∗ŷ +∇f1(x̂)

−Dx̂+ ∂f ∗3 (ŷ)

 (A.38)

Then x̂ is a solution to Problem (A.35) and ŷ a solution to Problem (A.36). Under
simple assumptions [140,143], solutions to Problems (A.35) and (A.36) provide solutions
to Problem (A.38). There exist several ways to organize the Primal-Dual algorithm that
will solve Problem (A.38), but for the sake of conciseness we will only consider Algorithm
11 and Algorithm 12.

The proof of convergence of Algorithms 11 and 12 is given in [140,143].

1The notation is different from the one used in the previous section, and in [140, 143], as we face the
sum of three functionals (which were named f, g and h in [140]).

176



A.3. Chapter 4 – Extension of IML FISTA’s framework to other multilevel algorithms

Algorithm 11 Condat-Vũ Algorithm 1 [140,143]
1: τ > 0, σ > 0, (ρn)n∈N,
2: (x0, y0) ∈ H × G.
3: while Stopping criterion is not met do
4: x̃n+1 := proxτf2 (xn − τ(∇f1(xn) + ef1,n)− τD∗yn) + ef2,n,
5: ỹn+1 := proxσf∗3 (yn + σD(2x̃n+1 − xn)) + ef3,n,

6: (xn+1, yn+1) := ρn(x̃n+1, ỹn+1) + (1− ρn)(xn, yn).
7: end while

Algorithm 12 Condat-Vũ Algorithm 2 [140,143]
1: τ > 0, σ > 0, (ρn)n∈N,
2: (x0, y0) ∈ H × G.
3: while Stopping criterion is not met do
4: ỹn+1 := proxσf∗3 (yn + σD(xn)) + ef3,n,

5: x̃n+1 := proxτf2 (xn − τ(∇f1(xn) + ef1,n)− τD∗(2ỹn+1 − yn)) + ef2,n,
6: (xn+1, yn+1) := ρn(x̃n+1, ỹn+1) + (1− ρn)(xn, yn).
7: end while

Multilevel primal-dual algorithm. Following what we did in the previous section,
we want to add a coarse correction before the iteration of the primal-dual algorithm that
computes a gradient step on f1 (cf Chapter 4, Lemma 14).

Thus, we propose to compute a coarse correction on both the primal and dual variables
before:

• step 4 in Algorithm 11,

• step 5 in Algorithm 12.

Such coarse correction step would be written as:

(x̄n, ȳn) := ML(xn, yn). (A.39)

We compare the two subsequent algorithms, to highlight their differences, and the dif-
ficulty we face in constructing a multilevel primal-dual algorithm with respect to the
construction of multilevel forward-backward algorithm. First, we present the iterations
of the multilevel primal-dual algorithm 1.

(x̄n, ȳn) = ML(xn, yn) (A.40)
x̃n+1 = proxτf2 (x̄n − τ(∇f1(x̄n) + ef1,n + D∗ȳn)) + ef2,n, (A.41)
ỹn+1 = proxσf∗3 (yn + σD(2x̃n+1 − xn)) + ef3,n, (A.42)

(xn+1, yn+1) = ρn(x̃n+1, ỹn+1) + (1− ρn)(xn, yn). (A.43)

As we incorporate the "error" created by the multilevel step in ef,1, the dual variable ȳn is
only used in Equation (A.41) to obtain x̃n+1, and not in Equation (A.42) to obtain ỹn+1.
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The primal-dual algorithm 1 was inherently asymmetric with respect to the primal and
dual variables [140], its multilevel version further accentuates this asymmetry.

If we now look at our multilevel primal-dual algorithm 2, we have the following itera-
tions:

(x̄n, ȳn) = ML(xn, yn) (A.44)
ỹn+1 = proxσf∗3 (yn + σD(xn)) + ef3,n, (A.45)
x̃n+1 = proxτf2 (x̄n − τ(∇f1(x̄n) + ef1,n + D∗(2ỹn+1 − yn)) + ef2,n, (A.46)

(xn+1, yn+1) = ρn(x̃n+1, ỹn+1) + (1− ρn)(xn, yn). (A.47)

Again, we cannot use the dual variable ȳn in Equation (A.45) to obtain ỹn+1. We also
cannot use x̄n. This version is clearly worse than the first one, as the ML step is not
at all taken into account in the update of the dual variable, while it is in the first one
through x̃n+1 (Equation (A.42)). It remains now to construct such a primal-dual coarse
correction.

Multilevel double descent. We will denote as F primal
H and F dual

H the primal and dual
objective functions at the coarse level. We will denote by Hh (resp. Gh) the space of the
fine level primal variable (resp. dual variable) and by HH (resp. GH) the space of the
coarse primal variable (resp. dual variable). To lighten the notation, we will refer to as
IHh and IhH , both information transfer operators, the space of the variables being implicit.
At a pair of primal-dual points (xh, yh), the first order coherence on the primal and on the
dual problems would be, given the Karush-Kuhn-Tucker conditions of Equation (A.38): ∇F primal

H (xH,0)
∇F dual

H (yH,0)

 :=
 IHh (∇γf2(xh) + D∗yh +∇f1(xh))

IHh (−Dxh +∇µf ∗3 (yh))

 (A.48)

The ML step would then be:

ML

 xn

yn

 =
 xn + τ̄x,nI

h
H(xH,n,m − xH,n,0)

yn + τ̄y,nI
h
H(yH,n,m − yH,n,0)

 (A.49)

The error term ef1,n would thus read as:

ef1,n =∇f1(xn)−∇f1(x̄n)
+ (τ)−1τ̄x,nI

h
H(xH,n,m − xH,n,0)

+ τ̄y,nD
∗IhH(yH,n,m − yH,n,0) (A.50)

when a multilevel step is performed and 0 otherwise. Therefore, provided that:∥∥∥∥∥∥ τ̄x,nI
h
H(xH,n,m − xH,n,0)

τ̄y,nD∗IhH(yH,n,m − yH,n,0)

∥∥∥∥∥∥ < +∞. (A.51)

The error term ef,1,n is bounded for all n ∈ N. If it has a finite number of non-zero terms,
we can apply the convergence principle presented in the previous section to the multilevel
primal-dual algorithm, and recover the following convergence guarantees (from [140]).
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Theorem 13. Convergence of Multilevel Primal-Dual Algorithm 1 11 [140,
143]. Let τ > 0, σ > 0 and the sequences (ρn)n∈N, (ef1,n)n∈N, (ef2,n)n∈N, (ef3,n)n∈N,
be the parameters of Multilevel Primal-Dual Algorithm 1. Suppose that we compute a
finite number of ML steps p > 0. Let β bet the Lipschitz constant of f1. Suppose that
β > 0 and that the following hold:

1. 1
τ
− σ‖D‖2 ≥ β

2 ,

2. ∀n ∈ N, ρn ∈]0, δ[, where we set δ := 2− β
2

(
1
τ
− σ‖D‖2

)−1
∈ [1, 2[,

3. ∑n∈N ρn(1− ρn) = +∞,

4. ∑n∈N ρn‖ef1,n‖ < +∞ and ∑n∈N ρn‖ef2,n‖ < +∞ and ∑n∈N ρn‖ef3,n‖ < +∞.

Then there exists a pair (x̂, ŷ) ∈ H × G solution to (A.38), such that, in Multilevel
Primal-Dual Algorithm 1, the sequences (xn)n∈N and (yn)n∈N converge weakly to x̂ and
ŷ, respectively.

A.4 Chapter 7 – Proofs of convergence for algorithm
H-BC-FB.

In this section, we detail the proofs of the lemmas, propositions and theorems need to
assert the convergence of our H-BC-FB algorithm. First, we recall the following proposi-
tion.

Proposition 7. Subdifferentiability property [52]. Suppose that f in Ψ is con-
tinuously differentiable. Then for all x = (x1, . . . , xL) ∈ H1 × . . .×HL we have

∂Ψ(x) = (∇1f(x) + ∂g1(x1), . . . ,∇Lf(x) + ∂gL(xL)). (A.52)

And an extension of Lemma 2 to the non-convex case:

Lemma 35. (Non-convex) proximal-gradient descent lemma [64]. Let f :
RN 7→ R be a continuously differentiable function with Lipschitz continuous gradient
and Lipschitz constant βf . Let g : RN 7→ R be a proper, lower semicontinuous function
with infRN g > −∞. If

y ∈ proxτg(x− τ∇f(x)), (A.53)
then for any 0 < τ < 1

βf

f(y) + g(y) + 1
2

(1
τ
− βf

)
‖x− y‖2 ≤ f(x) + g(x). (A.54)

Proof. First proxτg(·) is well-defined by [64, Proposition 2]. Thus, for all x ∈ RN , there
exists y ∈ proxτg(x − τ∇f(x)). This inequality comes directly from [64, Lemma 2], but
for completeness of the argument we reproduce it here. By definition of the proximity
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operator:
y ∈ arg min

RN
〈z − x,∇f(x)〉+ g(z) + 1

2τ ‖z − x‖
2 (A.55)

Thus taking z = x we obtain

〈y − x,∇f(x)〉+ g(y) + 1
2τ ‖y − x‖

2 ≤ 〈x− x,∇f(x)〉+ g(x) + 1
2τ ‖x− x‖

2

≤ g(x)
Now invoking Lemma 1, we have:

〈∇f(x), x− y〉 ≤ f(x)− f(y) + βf
2 ‖x− y‖

2 (A.56)

which yields for any 0 < τ < 1
βf

f(y) + g(y) + 1
2

(1
τ
− βf

)
‖x− y‖2 ≤ f(x) + g(x). (A.57)

Remark 27. It is interesting to note that the step size of the proximal gradient descent
is not controlled by the smooth and potentially non-convex function f but by the convexity
of the function g.

Proof of Proposition 6.

Proof. Indeed, suppose that Assumption 5 A4 is true and let x,v = (v`)L`=1 ∈ H =
⊕L`=1H`. Note that

|||∇f(x + v)−∇f(x)|||2 =
L∑
`=1
‖∇`f(x + v)−∇`f(x)‖2. (A.58)

We note by � the element-wise multiplication. Note that ε � v = (ε1v1, ε2v2, . . . , εLvL).
Now define, for every j ∈ {0, . . . , L}, vj = 0 ∈ H and vj = (v1, . . . , vj, 0, . . . , 0) if j > 0.
Note that vL = v and that

(∀j ∈ {1, . . . , L}) vj − vj−1 = (0, . . . , vj, . . . , 0). (A.59)
Then, for every ` ∈ {1, . . . , L}, triangular inequality and A4 imply

‖∇`f(x + ε� v)−∇`f(x)‖ =
∥∥∥∥ L∑
j=1

(∇`f(x + ε� vj)−∇`f(x + ε� vj−1))
∥∥∥∥

≤
L∑
j=1
‖∇`f(x + ε� vj)−∇`f(x + ε� vj−1)‖

≤
L∑
j=1

β`,j‖εjvj‖ (A.60)

and, therefore, from Cauchy-Schwarz in RL,

|||∇f(x + ε� v)−∇f(x)|||2 ≤
L∑
`=1

 L∑
j=1

β`,j‖εjvj‖

2

≤
L∑

`,j=1
β2
`,j|||ε� v|||2, (A.61)

deducing that β =
√∑L

`,j=1 εjβ
2
`,j is the Lipschitz constant of ∇f with respect to the

blocks selected by ε.
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Proof of Lemma 21.

Proof. First, for all ` /∈ In, xn+1
` = xn` . For all ` ∈ In, by applying the first order

optimality conditions of the proximity operator (2.22)

g`(xn+1
` ) + 1

2τn`
‖xn` − xn+1

` ‖2 ≤ g(xn` ) + 〈∇`f(xn), xn` − xn+1
` 〉 (A.62)

which we can sum up to obtain

∑
`∈In

(
g`(xn+1

` ) + 1
2τn`
‖xn` − xn+1

` ‖2
)
≤
∑
`∈In

(
g(xn` ) + 〈∇`f(xn), xn` − xn+1

` 〉
)
. (A.63)

We now invoke A4 from Assumption 5 and by splitting the scalar product along the blocks
we get

f(xn + [xn+1
1 −xn1 , . . . , xn+1

L −xnL]T ) ≤ f(xn) +
∑
`∈In
〈∇`f(xn), xn+1

` −xn` 〉+
βnf
2 ‖x

n
` −xn+1

` ‖2

(A.64)
Note that f(xn + [xn+1

1 − xn1 , . . . , xn+1
L − xnL]T ) = f(xn+1), and thus

∑
`∈In

(
〈∇`f(xn), xn` − xn+1

` 〉
)
≤ f(xn)− f(xn+1) +

βnf
2
∑
`∈In
‖xn` − xn+1

` ‖2. (A.65)

Combining inequalities (A.63) and (A.65) we obtain:

∑
`∈In

(
g`(xn+1

` ) + 1
2τn`
‖xn` − xn+1

` ‖2
)
≤
∑
`∈In

g(xn` )+f(xn)−f(xn+1)+
βnf
2
∑
`∈In
‖xn` −xn+1

` ‖2.

We add∑`/∈In g`(xn` ) to each side of this inequality, and since∑`/∈In g`(xn` ) = ∑
`/∈In g`(xn+1

` ),
we have

Ψ(xn+1) +
∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖2 ≤ Ψ(xn) (A.66)

Bundle K block iterations together to define the sequence (x̄k)k∈N. Let k ∈ N, using
inequality (A.66) on all iterations from n = k × K to n = (k + 1) × K − 1 and then
summing the resulting inequalities all together, taking into account that xk×K = x̄k and
x(k+1)×K = x̄k+1 we have that:

Ψ(x̄k+1) +
(k+1)×K−1∑
n=k×K

∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖2 ≤ Ψ(x̄k) (A.67)

where for all n, βnf = max`∈In β`. This is the desired result.

Let us now take n0 ∈ N∗. Summing up inequality (A.66) from n = 0 to n0− 1, we obtain

n0−1∑
n=0

∑
`∈In

1
2

(
1
τn`
− βnf

)
‖xn` − xn+1

` ‖2

 ≤ Ψ(x0)−Ψ(xn0)

≤ Ψ(x0)− inf Ψ
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and then, taking C := min
n=0,...,n0−1

1
2

(
1
τn`
− βnf

)
> 0 we get

n0−1∑
n=0

∑
`∈In
‖xn` − xn+1

` ‖2

 ≤ 1
C

(
Ψ(x0)− inf Ψ

)
< +∞.

The limit when N goes to infinity gives us the desired result.

Proof of Lemma 20.

Proof. Recall that

∣∣∣∣∣∣∣∣∣x̄k+1 − x̄k
∣∣∣∣∣∣∣∣∣ =

√√√√ L∑
`=1
‖x̄k+1

` − x̄k`‖2 ≤
L∑
`=1

√
‖x̄k+1

` − x̄k`‖2 ≤
L∑
`=1
‖x̄k+1

` − x̄k`‖. (A.68)

Now for all ` ∈ {1, . . . , L}, a triangular inequality yields

‖x̄k+1
` − x̄k`‖ ≤

(k+1)×K−1∑
n=k×K

‖xn+1
` − xn` ‖ =

(k+1)×K−1∑
n=k×K

∑
`∈In
‖xn+1

` − xn` ‖. (A.69)

Thus, summing up for all `, we obtain

∣∣∣∣∣∣∣∣∣x̄k+1 − x̄k
∣∣∣∣∣∣∣∣∣ ≤

(k+1)×K−1∑
n=k×K

∑
`∈In
‖xn+1

` − xn` ‖

 . (A.70)

Proof of point (i) and (ii) of Theorem 8.

Proof. • Point (i) has been proven in Lemma 21. Now for the conciseness of the rest of
the proof define

ρk = min
k×K≤n≤(k+1)×K−1

(
1
τn`
−
βnf
2

)
(A.71)

By construction ρk ≥ 0. Also set

Ck =
(k+1)×K−1∑
n=k×K

∑
`∈In
‖xn` − xn+1

` ‖2. (A.72)

• Proof of point (ii). For all k ∈ N and for all ` ∈ {1, . . . , L} there exists an iteration
index n` ∈ N such that k × K ≤ n` ≤ (k + 1) × K − 1 and such that block ` receives
its last update of cycle k at such iteration. We have thus for all ` ∈ {1, . . . , L} from the
optimality conditions of the proximity operator

xn`` − x
n`+1
`

τn``
−∇`f(xn`) ∈ ∂g`(xn`+1

` ).
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We add ∇`f(x̄k+1) on both sides, so that we get

xn`` − x
n`+1
`

τn``
−∇`f(xn`) +∇`f(x̄k+1) ∈ ∂g`(xn`+1

` ) +∇`f(x̄k+1)

= ∂`Ψ(xk+1)

where the last equality follows from Proposition 7. We can thus construct an element of
∂Ψ(xk+1) by repeating this construction for all `. Now we want to obtain an upper bound
on the norm of this element.

Using the fact that ∇f is βf−Lipschitz continuous we can bound

‖∇`f(x̄k+1)−∇`f(xn`)‖ ≤ βf
∣∣∣∣∣∣∣∣∣x̄k+1 − xn`

∣∣∣∣∣∣∣∣∣
≤ βfDk

where the last inequality is deduced from Lemma 20 and

Dk =
(k+1)×K−1∑
n=k×K

∑
`∈In
‖xn` − xn+1

` ‖

The bound is not tight at all, but the proof of convergence does not require it to be.
Now define τk = mink×K≤n≤(k+1)×K−1 τ

n
` . Thus, for all k ∈ N, there exists an element of

B̄k+1 ∈ ∂Ψ(xk+1) whose norm is upper bounded by:∣∣∣∣∣∣∣∣∣B̄k+1
∣∣∣∣∣∣∣∣∣ ≤ ( 1

τk
+ βf

)
Dk. (A.73)

Proof of Lemma 22.

Proof. We have from Lemma 21 and by Lemma 20 that
∣∣∣∣∣∣∣∣∣x̄k+1 − x̄k

∣∣∣∣∣∣∣∣∣ → 0 as k goes to
infinity, and thus point (ii) and point (iii) hold, see [64, Remark 5 & Lemma 5]. Point
(iv) is derived from point (i) [64, Lemma 5].
(i) Let x∗ be a limit point of {x̄k}k∈N. By Definition 36 there exists a subsequence {x̄kq}q∈N
such that x̄kq → x∗. Using the assumption that ∀`, g` is lower semicontinuous, it follows
that for all `:

lim inf
q→+∞

g`(xkq` ) ≥ g`(x∗`). (A.74)

We now need to show that
lim sup
q→+∞

g`(xkq` ) ≤ g`(x∗`). (A.75)

This, combined with the fact that f is continuous, will be then sufficient to obtain that:

lim
q→∞

Ψ(x̄kq) = Ψ(x∗). (A.76)

For all k ∈ N and for all ` ∈ {1, . . . , L} we denote with k` ∈ N the iteration index at
which block ` has received its last update in the k-th cycle (i.e., at which we compute
xk`+1
` from xk` , thus k ×K ≤ k` ≤ (k + 1)×K − 1). We have for all `:

xk` = arg min
x`∈H`

{
〈x` − xk`` ,∇`f(xk`)〉+ 1

2τ`
‖x` − xk`` ‖2 + g`(x`)

}
.
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Thus, for x` = x∗` it holds

〈xk`−x
k`
` ,∇`f(xk`)〉+ 1

2τ`
‖xk`−x

k`
` ‖2+g`(xk` ) ≤ 〈x∗`−x

k`
` ,∇`f(xk`)〉+ 1

2τ`
‖x∗`−x

k`
` ‖2+g`(x∗`)

The index k` depends implicitly on k. For the rest of the proof we need to extract the
converging subsequence, and to note the dependence to q we will write kq,` to indicate the
last update received by block ` at cycle kq. Taking then k = kq, we get:

〈xkq` − x
kq,`
` ,∇`f(xkq,`)〉+ 1

2τ`
‖xkq` − x

kq,`
` ‖2 + g`(xkq` )

≤ 〈x∗` − x
kq,`
` ,∇`f(xkq,`)〉+ 1

2τ`
‖x∗` − x

kq,`
` ‖2 + g`(x∗`) (A.77)

Now we look at the limit when q goes to infinity. Using the following properties:

• ‖xkq` − x
kq,`
` ‖ goes to 0 as q goes to infinity,

• ∇`f is Lipschitz continuous and the sequence (xn)n∈N is bounded,

• ‖x∗` − x
kq,`
` ‖ ≤ ‖x∗` − x

kq
` ‖ + ‖xkq` − x

kq,`
` ‖ and both terms on the right-hand side of

the inequality go to 0 as q goes to infinity.

We can deduce that
lim sup
q→+∞

g`(xkq` ) ≤ g`(x∗`)

Now, we know from point (ii) that B̄k → 0 as k → +∞. The closedness property of ∂Ψ
implies that 0 ∈ ∂Ψ(x∗), and therefore that x∗ is a critical point of Ψ.

Proof of point (iii) and (iv) of Theorem 9.

Proof. • Proof of point (iii). Now we follow the path of [64]. Since the sequence (x̄k)k∈N
is bounded, there exists a sub-sequence that converges to x∗.

1. As {Ψ(x̄k)}k∈N is a non-increasing sequence, and as the limit points set lp(x0) is such
that limk→∞ dist(x̄k, lp(x0)) = 0 ((ii) of Lemma 22), there exist k0 ∈ N, ε > 0, η > 0
such that for all k > k0, x̄k belongs to:{

x ∈ Rd : dist(x, lp(x0) < ε
}
∩ [Ψ(x∗) < Ψ(x) < Ψ(x∗) + η].

2. Using now that lp(x0) is nonempty and compact, and that Ψ is constant on it
(Lemma 22 (ii) and (iv)), one can apply Lemma 19 so that for any k > k0:

ϕ′(Ψ(x)−Ψ(x∗))dist(0, ∂Ψ(x)) ≥ 1.

3. One can now use point (ii) to upper bound dist(0, ∂Ψ(x̄k)): at least one element of
∂Ψ(x̄k) has its norm bounded, thus dist(0, ∂Ψ(x̄k)) is necessarily equal to or less
than this bound. Now define ρ1 = mink ρk and ρ2 = maxk

(
1
τk

+ βf
)
. We have

dist(0, ∂Ψ(x̄k)) ≤ ρ2Dk−1 (A.78)
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This bound then yields:

ϕ′(Ψ(x̄k)−Ψ(x∗))ρ2Dk−1 ≥ 1,
=⇒ ϕ′(Ψ(x̄k)−Ψ(x∗)) ≥ ρ−1

2 D−1
k−1.

4. The concavity of ϕ yields that:

ϕ(Ψ(x̄k)−Ψ(x∗))− ϕ(Ψ(xk+1)−Ψ(x∗)) ≥ ϕ′(Ψ(x̄k)−Ψ(x∗))
(
Ψ(x̄k)−Ψ(xk+1)

)
.

(A.79)

5. Now recall that:
ρ1Ck ≤ Ψ(x̄k)−Ψ(xk+1)

And define the following quantity for all p, q ∈ N:

∆p,q := ϕ(Ψ(xp)−Ψ(x∗))− ϕ(Ψ(xq)−Ψ(x∗))

Setting ρ := ρ1ρ
−1
2 > 0 we now get:

∆k,k+1 ≥
Ck

ρ Dk−1
(A.80)

and then:

Ck ≤ ρ ∆k,k+1Dk−1

6. First, to simplify the computations we rewrite the expression of both Ck and Dk so
that:

Dk =
mk∑
j=1

ak,j (A.81)

where mk = ∑(k+1)
n=k×K card(In) and ak,j = ‖xn` − xn+1

` ‖ where j browses through n
and ` by increasing order, meaning ak,1 = ‖xk×K3 − xk×K+1

3 ‖ if at the first iteration
of the cycle, block 3 has been updated but not block 1 and 2. Then:

Ck =
mk∑
j=1

a2
k,j (A.82)

We recall that the 1-trick of the Cauchy inequality implies that:

mk∑
j=1

ak,j ≤
√
mk

√√√√mk∑
j=1

a2
k,j

⇔ Dk ≤
√
mk

√
Ck

Using 2
√
ab ≤ a+ b for all a, b ≥ 0, and writing M = maxkmk we get that

2Dk ≤Mρ∆k,k+1 +Dk−1 (A.83)
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We now want to sum up this inequality from i = k0 + 1 to a given k > k0 to
demonstrate that the sum of left-hand side is bounded and thus converges. It is
straightforward to see that:

2
k∑

i=k0+1
Di ≤

k∑
i=k0+1

Di−1 +Mρ
k∑

i=k0+1
∆i,i+1

=
k−1∑
i=k0

Di +Mρ
k∑

i=k0+1
∆i,i+1

≤
k∑

i=k0+1
Di +Dk0 +Mρ

k∑
i=k0+1

∆i,i+1

=⇒
k∑

i=k0+1
Di ≤ Dk0 +Mρ

k∑
i=k0+1

∆i,i+1

=⇒
k∑

i=k0+1
Di ≤ Dk0 +Mρ∆k0+1,k+1 (A.84)

The last line coming from the fact ∆p,q + ∆q,r = ∆p,r for all p, q, r ∈ N [64, Proof of
theorem 3.1]. As ϕ ≥ 0, we have that:

∆k0+1,k+1 = ϕ(Ψ(x̄k0+1)−Ψ(x̄))− ϕ(Ψ(x̄k+1)−Ψ(x̄)) ≤ ϕ(Ψ(xk0+1)−Ψ(x̄))

Then as Dk ≥
∣∣∣∣∣∣∣∣∣x̄k − x̄k+1

∣∣∣∣∣∣∣∣∣ (Lemma 20), this allows us then to conclude then that
{x̄k}k∈N has finite length:

∞∑
k=1

∣∣∣∣∣∣∣∣∣x̄k − x̄k+1
∣∣∣∣∣∣∣∣∣ <∞ (A.85)

• Proof of point (iv). The finite length of the sequence implies that it is a Cauchy
sequence and hence a convergent sequence [64, Proof of Theorem 3.1(ii)].

Proof of Lemma 23.

Proof. Due to the convexity of g` for all `, the associated proximity operator is uniquely
valued.

For all ` ∈ In, the first order optimality conditions of the proximity operator (2.22)
yield:

g`(xn+1
` ) + 1

τn`
‖xn` − xn+1

` ‖2 ≤ g(xn` ) + 〈∇`f(xn), xn` − xn+1
` 〉 (A.86)

The subtle difference with the non-convex case is the factor dividing ‖xn` − xn+1
` ‖2. With

the same derivation as in the non-convex case (proof of Lemma 21), we obtain finally
that:

Ψ(x̄k+1) +
(k+1)×K−1∑

n=k×K

∑
`∈In

(
1
τn`
−
βnf
2

)
‖xn` − xn+1

` ‖2

 ≤ Ψ(x̄k). (A.87)

The summability of the sequences is derived similarly.
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A.5 Chapter 7 – Supplementary literature on opti-
mization with wavelets

In this section, we present some works that used wavelet transform to reduce the dimen-
sion of the problem at hand, and solved it by considering the subspaces of the wavelet
transform. The idea, at first glance, looks similar to ours, but there are notable differences.

Subspace correction methods. In a couple of articles [236,237], the authors introduce
a subspace correction method for problem of the form:

min
x∈H

F (x) := ‖Ax− z‖2 + 2λg(x) (A.88)

where A ∈ L(H) is a bounded linear operator, λ > 0 and g (total variation for instance)
is a semi-norm for a suitable subspace Hg of H. The main idea of the two articles is to
decompose the variable x into two spaces V1,V2 such x0 = u0

1 + u0
2 ∈ V1 ⊕ V2, like in our

BC example tackling wavelet deblurring (Chapter 7, Section 7.2) and iterate:


uk+1

1 ≈ arg minu1∈V1 F (u1 + uk2),
uk+1

2 ≈ arg minu2∈V2 F (uk1 + u2)
xk+1 = uk+1

1 + uk+1
2

(A.89)

Such methods were also employed in [238] for deblurring (or deconvolution) problems
using Haar wavelets, where cyclic updates across different resolution levels were com-
bined with the preconditioning effect of subband-specific parameters [237]. The spectral
localization properties of wavelets are noted as being suitable for preconditioning [238],
partly compensating for the poor conditioning of the inverse problem. The algorithm
presented is comparable but differs slightly from a non-linear block Gauss-Seidel method,
as the variable uk+1

2 is not updated using uk+1
1 . Additionally, a significant distinction from

block-coordinate methods is that the partial sub-problems in this algorithm may not be
solved exactly, whereas block-coordinate methods typically require exact minimization of
each (proximal in our case) sub-problems.

Finally, the authors of [236,237] do not prove that their algorithm converges to a min-
imizer of the functional J in general, even when the algorithm halts (i.e., it can converge
to an incorrect solution). In fact, they provide a counterexample demonstrating failure to
converge to a minimizer when using a Haar wavelet decomposition [237, Proposition 4.2]

Furthermore, as mentioned in [237], numerical experiments reveal that the beneficial
effects of preconditioning are not significantly improved by considering multiple decom-
positions. It is also observed that consistently using coarse models may be advantageous,
as they tend to converge in a similar number of iterations as single-level methods. How-
ever, for large images, the single-level method significantly outperforms the decomposition
method in terms of CPU time, unlike multilevel methods. Since multilevel approaches
only aim for approximate convergence within each subdomain (as described in the algo-
rithm), this suggests that minimizing coarse models to full convergence may not be an
optimal strategy.
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A.6 Chapter 7 – Proofs of equivalence between mul-
tilevel and block-coordinate methods

Proof of lemma 27.

Proof. We reason by induction. We have AJ = A and AJ−1 = ΠV,−1A(ΠV,−1)∗. Hence,
the statement holds for ` = J − 1.

Now suppose that for ` ∈ {J − L+ 1, . . . ,−2}:

A` =
J−(`+1)∏

i=0
ΠV,`+i

A
(
J−∏̀
i=1

Π∗V,J−i
)

(A.90)

Computing A`−1 yields:

A`−1 = ΠV,`−1A`Π∗V,`−1 (A.91)

= ΠV,`−1

J−(`+1)∏
i=0

ΠV,`+i

A
(
J−∏̀
i=1

Π∗V,J−i
)

Π∗V,`−1 (A.92)

=
J−(`+1)∏

i=−1
ΠV,`+i

A
(
J−`+1∏
i=1

Π∗V,J−i
)

(A.93)

=
(
J−∏̀
i=0

ΠV,`−1+i

)
A
(
J−`+1∏
i=1

Π∗V,J−i
)

(A.94)

which concludes the proof for A`. Projecting an observation vector z to a coarse level is
quite straightforward, therefore we won’t detail it here.

Proof of Lemma 28.

Proof. First, we have that for all ` ∈ {J − L + 1, . . . , J − 1}, the projection of a point
a`+1 = [aJ−L, dJ−L, dJ−L+1, . . . , d`] to the space V` is given by:

a` = ΠV,`a`+1. (A.95)

Recall that the first order coherence between two levels `, `+1 ∈ {J−L, J−1} is enforced
by the following relationship at a point a`+1:

v` = ΠV,`

∇(f`+1(A`+1a`+1 − z`+1)
)

+
∑̀

i=J−L
∇gµ,i(di) + v`+1


−∇

(
f`(A`a` − z`)

)
−

`−1∑
i=J−L

∇gµ,i(di) (A.96)

We now look more closely at the projection of the gradient of level ` + 1 to level `. We
first have that:

ΠV,`

( ∑̀
i=J−L

∇gµ,i(di)
)

=
∑̀

i=J−L
ΠV,`∇gµ,i(di)

=
`−1∑

i=J−L
∇gµ,i(di) (A.97)
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using that d` ∈ W` and therefore ΠV,`d` = 0. Similarly, we have that:

ΠV,` (∇f`+1(A`+1a`+1 − z`+1)) = ΠV,`

(
A∗`+1 (A`+1a`+1 − z`+1)

)
(A.98)

and that:

∇f`(A`a` − z`) =
(
A∗` (A`a` − z`)

)
(A.99)

= ΠV,`A∗`+1

(
A`+1Π∗V,`a` − Π∗V,`z`

)
(A.100)

Now recall that a`+1 − Π∗V,`a` = d` = ΠW,`a`+1 and that z`+1 − Π∗V,`z` = Π∗W,`+1ΠW,`z`+1.
Hence,

v` = ΠV,`A∗`+1

(
A`+1Π∗W,`ΠW,`(a`+1 − z`+1)

)
+ ΠV,`v`+1 (A.101)

Proof of Lemma 29.

Proof. We reason by first expressing in full v` without involving v`+1. The base case is
given by Lemma 28. We have that:

v` = ΠV,`A∗`+1

(
A`+1Π∗W,`ΠW,`(a`+1 − z`+1)

)
(A.102)

+ ΠV,`+1A∗`+2

(
A`+2Π∗W,`+1ΠW,`+1(a`+2 − z`+2)

)
(A.103)

+ ΠV,`ΠV,`+1v`+2. (A.104)

From which we can deduce the more general formula:

v` =
J−∑̀
i=1

i−1∏
j=0

ΠV,`+j

A∗`+i
(
A`+iΠ∗W,`+i−1ΠW,`+i−1 (a`+i − z`+i)

)
(A.105)

It remains now to insert into this equation the explicit form of the operators A`+i and
z`+i. Recall that:

A`+i =
J−(`+i+1)∏

k=0
ΠV,`+i+k

A
(
J−`−i∏
k=1

Π∗V,J−k
)

We will split the contribution of the wavelet coefficients a`+i and z`+i in the following way:

v` =
J−∑̀
i=1

i−1∏
j=0

ΠV,`+j

A∗`+i
(
A`+iΠ∗W,`+i−1d`+i−1

)

−
J−∑̀
i=1

i−1∏
j=0

ΠV,`+j

A∗`+i
(
A`+iΠ∗W,`+i−1ΠW,`+i−1z`+i

)
which yields:

v` =
J−∑̀
i=1

i−1∏
j=0

ΠV,`+j

J−(`+i+1)∏
k=0

ΠV,`+i+k

A∗
(

A
(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

)

−
J−∑̀
i=1

i−1∏
j=0

ΠV,`+j

J−(`+i+1)∏
k=0

ΠV,`+i+k

A∗
(
J−`−i∏
k=1

Π∗V,J−k
)(

Π∗W,`+i−1ΠW,`+i−1z`+i
)
,

189



Chapter A.

that can be "simplified" to:

v` =
J−∑̀
i=1

(
J−∏̀
k=0

ΠV,`+k

)
A∗
(

A
(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

)

−
J−∑̀
i=1

(
J−∏̀
k=0

ΠV,`+k

)
A∗
(
J−`−i∏
k=1

Π∗V,J−k
)(

Π∗W,`+i−1ΠW,`+i−1

(
J−`−i∏
k=0

ΠV,`+i+k

)
z

)
.

We can pass the sum inside the product to obtain:

v` =
(
J−∏̀
k=0

ΠV,`+k

)
A∗A

(
J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

)

−
(
J−∏̀
k=0

ΠV,`+k

)
A∗

J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−kΠ∗W,`+i−1ΠW,`+i−1

(
J−`−i∏
k=0

ΠV,`+i+k

)
z

)
.

The term
J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−k
)

Π∗W,`+i−1d`+i−1

contains all the contribution of coefficients [d`, . . . , dJ−1] to the correction term v`. There-
fore, we will write in the following that:

v` =
(
J−∏̀
k=0

ΠV,`+k

)
A∗A ([d`, . . . , dJ−1])

−
(
J−∏̀
k=0

ΠV,`+k

)
A∗

J−∑̀
i=1

(
J−`−i∏
k=1

Π∗V,J−kΠ∗W,`+i−1ΠW,`+i−1

(
J−`−i∏
k=0

ΠV,`+i+k

)
z

)
,

so that the proof is simpler to read and follow.
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Résumé long de la thèse en français

Nous présentons ici une traduction de l’introduction et de la conclusion ainsi qu’un résumé
détaillé des chapitres de la thèse.

Contexte et motivation
Le domaine des problèmes inverses se réfère à la reconstruction des informations man-
quantes d’une image ou d’un signal, à partir d’observations partielles ou dégradées de
ceux-ci. Dans le cadre classique de la restauration d’images, l’information manquante est
l’image originale, mais peut aussi inclure des paramètres décrivant le modèle de dégrada-
tion, comme le niveau de bruit, ou le flou.

Un exemple célèbre de problèmes inverses, et probablement l’un des plus anciens, est la
découverte par Le Verrier de la planète Neptune en 1846, qui a remarqué que le mouvement
d’Uranus ne correspondait pas à celui prédit en ne tenant compte que de l’attraction
gravitationnelle de Jupiter et de Saturne. Le Verrier en déduisit alors l’existence d’une
autre planète, Neptune, dont l’attraction gravitationnelle pourrait expliquer l’écart entre
ses relevés et les prédictions théoriques. Il présenta ses résultats à l’Académie des Sciences
le 31 août 1846 et la planète fût observée pour la première fois le 23 septembre 1846 par
l’astronome Johann Galle sur la base des prédictions faites par Le Verrier.

L’étude des problèmes inverses dans un cadre formel apparaît au début du 20e siècle
et est abordée pour la première fois par Tikhonov en 1943 [1]. L’application de ce cadre
à l’imagerie a suivi dans les années 1970 [2] et a toujours été une question centrale de
recherche depuis.

Les problèmes de reconstruction d’images sont un exemple de problèmes inverses. Dès
qu’une image est acquise par un instrument, qu’il s’agisse d’un appareil photo ou d’un
télescope, l’image résultante sera floutée et bruitée. Cependant, dans de nombreux cas,
nous comprenons assez bien comment les instruments capturent et dégradent les images.
La question se pose alors de savoir comment supprimer cette dégradation, c’est-à-dire
comment inverser ce processus.

La dégradation de l’image induit une perte d’information et, par conséquent, aucune
reconstruction ne peut être parfaite. Cela a stimulé le développement de méthodes visant
à atténuer au mieux les effets de cette perte, d’abord en élaborant des représentations
théoriques des images [4, 5], puis en construisant des algorithmes capables de tirer parti
de la connaissance de la dégradation et de ces représentations [2,6] pour restaurer l’image.
Les développements dans les deux domaines sont encore en cours, aucune représentation
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n’étant pleinement satisfaisante pour modéliser les images naturelles (le terme naturel est
couramment utilisé pour se référer à ce à quoi une image devrait ressembler) et aucun
algorithme d’optimisation n’étant a priori meilleur qu’un autre dans tous les contextes.
Dans cette thèse nous nous intéressons plutôt à cette dernière question et avons essayé
d’apporter des réponses à la question suivante : quelles sont de bonnes stratégies pour
concevoir des algorithmes efficaces capable de restaurer/reconstruire des images de grande
taille.

Les principaux défis en optimisation : convergence et passage à
l’échelle

Les méthodes de résolution des problèmes inverses sont souvent basées sur des algorithmes
d’optimisation dont le but est de minimiser (ou de maximiser, ces deux notions étant
équivalentes) une fonction objectif. Cette fonction est construite à partir du problème
inverse en question. La construction la plus courante consiste à additionner deux différents
termes. Le premier contrôle la proximité d’une image par rapport à l’image observée,
compte tenu du vecteur de dégradation (que nous supposons connue) : nous prenons une
image, la dégradons, puis la comparons à l’image observée. Ce terme est appelé attache
aux données. Il garantit que la reconstruction corresponde aux observations. Le second
terme contrôle la proximité de l’image avec ce que nous pensons être l’image originale
(c’est-à-dire le degré de naturalité de cette image). Ce terme est appelé régularisation. Il
prend en compte nos a prioris sur la reconstruction.

La solution du problème d’optimisation défini par la somme de ces deux termes doit
donc être un compromis entre être fidèle aux observations et être fidèle à ces a prioris.
Notre objectif est de parvenir à un compromis qui conduise à une reconstruction satis-
faisante. Par conséquent, le choix d’un algorithme d’optimisation capable de trouver la
solution du problème, qui correspond donc à ce compromis, est crucial.

Dès lors, l’une des questions les plus importantes lors de la conception d’un algorithme
d’optimisation est de savoir s’il peut garantir que la solution produite est la solution
optimale du problème, c’est-à-dire va-t-il atteindre la véritable solution du problème ?

Une autre question importante est celle du coût en temps de calcul de l’algorithme. La
dimension des problèmes d’optimisation considérés de nos jours est souvent très élevée,
allant du million (pour les problèmes classiques d’imagerie couleur) au milliard de vari-
ables (pour les problèmes d’imagerie hyperspectrale). Cela crée un goulot d’étranglement
computationnel, en sus de celui du stockage de ces variables : chaque itération d’un algo-
rithme d’optimisation est coûteuse, et nous voulons donc réduire autant que possible le
nombre d’itérations pour atteindre une solution optimale, c’est-à-dire augmenter la vitesse
de convergence de l’algorithme.

Les approches multiniveaux fournissent un moyen de réduire le coût, en temps de
calcul, pour atteindre une solution de notre problème, en modifiant certaines itérations.
En pratique, elles permettent d’améliorer considérablement la vitesse de convergence des
algorithmes.
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Approches multiniveaux : une intuition
Pour décrire correctement les motivations qui sous-tendent l’optimisation multiniveaux, je
préfère commencer par une analogie2 plutôt que par un argument technique. Je m’attends
à ce que tout lecteur ayant travaillé suffisamment longtemps en optimisation, ait pensé à
celle-ci au moins une fois en des termes similaires.

Imaginez que vous ayez les yeux bandés au sommet d’une montagne. Vous voulez
vous rendre en bas de la vallée le plus rapidement possible. En explorant à tâtons autour
de vous, vous pouvez déduire la pente de la montagne et prendre ainsi une direction de
descente. Certaines directions sont meilleures que d’autres, et vous pouvez trouver ce
que nous appelons la direction de descente la plus forte (c’est-à-dire la direction indiquée
par le gradient de la pente), qui maximisera votre vitesse de descente, un pas à la fois.
Cependant, chacun de vos pas ne peut pas aller très loin. Vous devez encore tâtonner à
chaque pas pour trouver la direction de descente la plus forte.

Une solution classique à ce manque de rapidité serait de conserver l’élan de vos pas
précédents, qui peut être comparé au fait de commencer à courir dans la direction de la
descente la plus forte et de se laisser guider par votre inertie le long de la pente. Vos yeux
sont toujours bandés, vous risquez de prendre une mauvaise direction.

Ces deux analogies décrivent plus ou moins les algorithmes d’optimisation les plus
utilisés : la descente de gradient et la descente de gradient accélérée. Ces deux algorithmes
fonctionnent avec une connaissance précise du paysage local de notre montagne (c’est-à-
dire de la fonction à minimiser).

Il est facile d’arriver à la conclusion que si l’on pouvait enlever son bandeau, on serait
beaucoup plus rapide. Il est évident que si c’était possible, quelqu’un aurait déjà trouvé
un algorithme pour le faire 3.

C’est là que l’optimisation multiniveau peut entrer en jeu. Pour poursuivre l’analogie,
cela équivaudrait à enlever le bandeau sur les yeux tout en restant myope (ce n’est pas
tout à fait la situation idéale, mais cela reste un progrès).

Il n’est pas nécessaire de connaître chaque rocher, chaque brin d’herbe, pour déduire
une direction de descente, une connaissance approximative de la pente de la montagne
est parfois suffisante. On peut alors faire de plus grands pas et atteindre plus rapidement
le fond de la vallée.

L’essence de l’optimisation multiniveau consiste à utiliser une connaissance approxima-
tive du paysage de la fonction à minimiser, afin d’accélérer la convergence de l’algorithme
d’optimisation sous-jacent. Comme nous allons le voir dans ce manuscrit, pour des prob-
lèmes d’optimisation classiques, tant que la fonction à minimiser possède une certaine
structure, il est possible d’obtenir cette connaissance approximative et de l’exploiter.

Malheureusement, rien n’est gratuit en optimisation, et la construction et l’utilisation
de cette connaissance approximative, pour accéler l’optimisation, ont un coût. Il faut
donc faire un compromis. Tous les problèmes ne doivent pas être traités avec un algo-
rithme multiniveau ; et tous les problèmes qui peuvent être traités avec un algorithme
multiniveau, ne peuvent l’être sans une construction minutieuse.

L’objectif de cette thèse est de fournir des lignes directrices sur la construction d’algorithmes
2J’aurais aimé affirmer que c’est une bonne analogie pour expliquer les algorithme multiniveaux, mais

je laisse cette décision au lecteur.
3En fait, dans certains contextes, on peut prouver qu’un tel algorithme n’existe pas [7].
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multiniveaux pour l’optimisation non lisse. Grâce à ces connaissances, nous proposons
un nouvel algorithme multiniveau, IML FISTA (Inexact Multilevel Fast Iterative Soft
Thresholding Algorithm), avec des garanties de convergence au niveau de celles de l’état
de l’art, et nous montrons son efficacité sur une large gamme de problèmes d’imagerie, de
la reconstruction d’images couleur à la reconstruction d’images hyperspectrales. L’étude
théorique et pratique de l’algorithme IML FISTA a suscité plusieurs questions, et nous
présentons à la fin de ce manuscrit une nouvelle perspective sur les algorithmes multi-
niveaux, du point de vue des algorithmes de descente en bloc-coordonnée, qui a permis
de répondre à certaines de ces questions.

Parmi nos nombreuses expériences numériques, nous développons une version d’IML
FISTA qui peut être appliquée à des problèmes d’imagerie à grande échelle en radio-
interférométrie. Pour mieux illustrer le potentiel d’IML FISTA, nous présentons dans la
suite un résumé de notre contribution à ce problème d’imagerie.

Une application de l’optimisation multiniveau : l’imagerie
radio-interférométrique
Les efforts déployés pour comprendre la formation des galaxies, des étoiles, des exoplanètes
et de l’univers ont conduit au développement de nouvelles méthodes d’imagerie, et de
techniques de calcul plus intensives pour traiter le volume de données généré.

Défi du passage à l’échelle en astronomie. Chaque jour, les appareils d’observation
astronomiques collectent une énorme quantité de données, qui doivent être traitées. Dans
le domaine optique, le télescope spatial James Webb (JWST), récemment lancé, produit
des dizaines, voire des centaines de gigaoctets de données par jour [8], contre 1 ou 2
pour Hubble4. Dans le domaine radio, le Square Kilometer Array (SKA), une fois livré,
devrait produire cinq téraoctets de données par seconde [9, 10]. Ces deux domaines de
l’observation fournissent des informations précieuses et complémentaires sur les objets
astronomiques (voir la figure 7.2).

Cela nécessite le développement d’algorithmes d’optimisation capables de passer à
l’échelle avec des garanties de convergence solides. Les algorithmes multiniveaux sont
l’une des nombreuses solutions à ce défi.

Dans cette section, nous proposons d’illustrer l’efficacité de la méthode que nous avons
proposée dans cette thèse, et où les intuitions de la section précédente peuvent nous mener
dans la compréhension des choix effectués. Pour ce faire, nous présentons un problème
d’imagerie abordé dans cette thèse, qui est la reconstruction d’images à partir de données
obtenues par radio-interférométrie [11]. Les prochains paragraphes constituent un aperçu
de ce que nous avons fait sur ce problème, et une discussion approfondie est reportée au
chapitre 6.

Radio-astronomie. Complémentaire de l’astronomie optique, la radio-astronomie est
le domaine de l’astronomie qui étudie les objets dans le domaine des radio-fréquences, en
collectant des ondes radio par l’intermédiaire de plusieurs antennes. La radio-interférométrie

4https://spectrum.ieee.org/james-webb-telescope-communications
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Figure 7.2: Comparaison entre une image optique (en bas à gauche) et une image radio (en
bas à droite) de la même région du ciel : la galaxie Hercules A (3C48). Les deux images sont
combinées en haut. L’image dans le visible a été obtenue par le télescope Hubble, tandis que
l’image dans le domaine radio a été obtenue par le Karl G. Jansky Very Large Array (VLA).
Crédits : NASA, ESA, S. Baum et C. O’Dea (RIT), R. Perley et W. Cotton (NRAO/AUI/NSF),
et Hubble Heritage Team (STScI/AURA).

est une technique utilisée en radio-astronomie pour combiner les informations collectées
par ces antennes afin d’obtenir des images du ciel avec une sensibilité, et une résolution,
élevées, ce qui serait impossible avec une seule antenne.

Depuis les années 1950, les astronomes ont réussi à exploiter les techniques d’interférométrie
pour surmonter les limites de la diffraction. L’interférométrie avait déjà une histoire bien
développée à ce moment-là (voir [11]), ce qui a conduit au développement des radio-
interféromètres : des réseaux constitués de plusieurs antennes de petit diamètre D, répar-
ties sur une grande surface, et se comportant comme une seule antenne dont le diamètre
apparent D̃ serait la plus grande distance entre deux antennes. Théoriquement, cela per-
met d’atteindre la résolution associée à une grande antenne de diamètre D̃(voir Figure
7.3).

La distance entre deux antennes est appelée "baseline". Dans la pratique, les as-
tronomes combinent plusieurs paires d’antennes pour obtenir plusieurs "baseline" et pou-
voir ainsi sonder le ciel dans plusieurs configurations. Les mesures obtenues de cette
manière par les radio-interféromètres sont appelées visibilités complexes et recouvrent de
manière inégale l’espace de Fourier. Cette technique ne permet de sonder le ciel que
de manière éparse, ce qui nécessite l’utilisation de techniques de reconstruction d’images
pour atteindre cette résolution.

Une de nos contributions, dans cette thèse, a été le développement d’un algorithme
multiniveau adapté à l’imagerie radio-interférométrique.
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<latexit sha1_base64="CdV4C8OXH+EV5zjysOwp5OaYLyM="></latexit>

D̃

<latexit sha1_base64="cR3eJ8yuARjGjOCNT/0en2YHGAk="></latexit>

D

Figure 7.3: (À gauche) Le réseau radio-interférométrique MeerKAT en Afrique du Sud. Il
se compose de 64 antennes et fera partie du futur réseau SKA. (À droite) Représentation
schématique d’un réseau radio-interférométrique.

Optimisation multiniveau pour l’imagerie radio-interférométrique
Le nombre de visibilités complexes dans un problème d’imagerie radio-interférométrique
est le principal goulot d’étranglement pour l’algorithme d’optimisation. Plus de données
signifie plus de visibilités, et donc un coût de calcul plus élevé. L’algorithme multiniveau
que nous proposons peut réduire ce coût en construisant une approximation grossière de
la fonction à minimiser.
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Figure 7.4: Reconstruction en échelle logarithmique d’une région de la galaxie M31 par
FISTA (haut) et par notre méthode (bas) à des temps CPU équivalents. La légende en
haut de chaque vignette se lit comme suit : log SNR en dB - temps CPU en secondes.
Log SNR = SNR(log10(103x+ 1)/3, log10(103xtruth + 1)/3).

Pour se ramener à notre intuition, nous n’avons pas besoin de toutes les visibilités
pour évaluer si notre reconstruction va dans la bonne direction. Une idée naturelle est
donc de concevoir une connaissance approximative de la fonction objectif à minimiser en
prenant en compte moins de visibilités. Nous sélectionnons un sous-ensemble de toutes les
visibilités pour former un modèle grossier du problème. Dans cet exemple, nous prenons
les visibilités les plus proches du centre du plan de Fourier, où se concentre la majeure
partie de l’énergie du signal. Les composantes au centre du plan de Fourier sont des
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composantes de basse fréquence et nous donnent une connaissance approximative de la
fonction à minimiser. Les composantes à plus haute fréquence, qui sont les plus éloignées
du centre, sont nos rochers et nos brins d’herbe. Ils peuvent donc être ignorés de temps
à autre.

Avec un tèl modèle grossier, nous arrivons à accélérer la convergence de l’algorithme
d’optimisation vers la solution du problème. En outre, nous obtenons de bonnes recon-
structions de l’image en un temps de calcul bien plus court : IML FISTA est 3 à 5 fois
plus rapide que les algorithmes de l’état de l’art (voir Figure 7.4 et le chapitre 6).

Résumé des chapitres

Résumé du Chapitre 2
Dans ce chapitre, nous présentons les outils nécessaires à la compréhension du manuscrit.
Nous commençons par introduire les problèmes inverses dans le contexte des images, avant
de présenter leurs formulations en tant que problèmes d’optimisation. Nous décrivons en
en détail les deux termes qui composent la fonction objectif, l’attache aux données et la
régularisation.

Ensuite, nous présentons les concepts classiques de l’optimisation convexe, afin d’introduire
les algorithmes d’optimisation du premier ordre, descente de gradient et descente de gra-
dient proximal, pour minimiser les fonctions qui nous intéressent dans cette thèse. Cette
présentation passe par les notions de directions de descente pour les fonctions lisses et
non-lisses, ainsi que du gradient et de l’opérateur proximal.

Au passage, nous présentons différentes notions de convergence vers une solution, qui
nous permettrons de mieux caractériser l’efficacité des algorithmes. Nous terminons ce
chapitre par une rapide présentation des stratégies permettant d’accélérer ces algorithmes
du premier ordre.

Résumé du Chapitre 3
Dans ce chapitre, nous introduisons les méthodes multiniveaux. Ces méthodes étant con-
sidérées comme le standard en résolution d’équations aux dérivées partielles (EDP), sous
le nom de multi-grilles, nous commençons par un petit exemple pour illustrer leur attrait
pratique et théorique dans ce contexte. En quelques mots, en jouant sur la taille de la
grille sur laquelle on résout l’EDP, on peut rapidement voir que l’on peut utiliser des
grilles plus grossières pour diminuer le coût en temps de calcul de résolution. En plus,
les méthodes itératives qui étaient communément utilisées avant l’introduction du multi-
grilles, ont des taux de convergence théoriques qui dépendent des fréquences de l’erreur
(l’écart avec la vraie solution de l’EDP): très rapide pour réduire les hautes fréquences,
mais très lent pour réduire les basses fréquences.

Dès lors, il est intéressant de passer à des grilles plus grossières pour réduire les basses
fréquences, et c’est ce que font les méthodes multi-grilles pour les EDP avec succès.

Il a donc été naturel de se demander si de telles performances pouvaient s’étendre à
l’optimisation. De nombreux travaux ont été faits dans cette direction, que nous présen-
tons. Nous terminons ce chapitre en présentant deux points bloquants identifiés par nous
et la littérature, au succès des méthodes multiniveaux en optimisation.
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Résumé du Chapitre 4

Dans ce chapitre nous présentons la contribution centrale de la thèse, notre algorithme
Multi-niveaux FISTA Inexact. Notre objectif est de proposer un algorithme multiniveau
avec les garanties de convergence de l’état de l’art (c’est-à-dire convergence des valeurs
de la fonction vers une valeur minimale en O(1/k2), où k est le nombre d’itérations et
convergence vers un minimiseur de la fonction), et capable de traiter les régularisations
de l’état de l’art (qui n’ont pas d’opérateur proximal sous forme fermée) au niveau fin et
au niveau grossier.

Nous présentons successivement les outils qui vont nous permettre: de passer de
l’optimisation multiniveau lisse à l’optimisation multiniveau non-lisse, inspirés par [89,90];
de traiter les régularisations non-proximables; et enfin d’ajouter les pas d’extrapolation.
Ensuite, IML FISTA est présenté dans le cadre le plus général possible, en décrivant les
niveaux grossiers possibles (lisses et non-lisses), ainsi que la preuve des garanties de con-
vergence précédemment citées. Nous terminons ce chapitre par une comparaison poussée
de notre algorithme avec ceux de la littérature capables de traiter l’optimisation non-lisse.
En quelques mots, IML FISTA est l’algorithme multiniveau le plus général possible, avec
les meilleures garanties de convergence.

Résumé du Chapitre 5

Dans ce chapitre, nous présentons les applications de notre algorithme IML FISTA à
une série de problèmes classiques en imagerie couleur et hyperspectrale. L’enjeu majeur
d’un algorithme multiniveau étant la construction de niveaux grossiers efficaces, nous la
discutons en détail et proposons une construction adaptée à l’imagerie.

Ensuite, nous basculons sur la présentation des résultats expérimentaux. Dans la
continuité de la construction théorique des niveaux grossiers, nous avons testé un grand
nombre de configurations de l’algorithme afin d’en identifier une qui soit robuste et efficace.
Cette configuration a ensuite été utilisée pour traiter les problèmes suivants:

• défloutage et débruitage d’image en couleur (avec une réguarisation TV);

• reconstruction de pixels manquants dans une image en couleur (avec une régulari-
sation NLTV);

• défloutage, débruitage et reconstruction de pixels manquants dans une image hy-
perspectrale (avec une régularisation NLTV).

Les deux premiers jeux d’expériences numériques nous ont permis de mettre en lumière
le potentiel d’accélération d’IML FISTA par rapport aux algorithmes de l’état de l’art,
ainsi que d’illustrer l’impact de la dimension sur les performances du multiniveau.

La restauration d’image hyperspectrale a donné lieu à la comparaison de deux manières
de réduire la dimension du problème pour construire les modèles grossiers, en réduisant
la taille de chaque bande, ou en fusionnant les bandes entre elles en fonction de leurs
longueurs d’onde respectives. La seconde approche est la plus efficace, bien que la réduc-
tion de la dimension soit moindre.
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Résumé du Chapitre 6
Dans ce chapitre, nous présentons une application de notre algorithme à un problème
d’imagerie radio-interférométrique. L’enjeu de ce problème est de reconstruire une image
à partir d’un échantillonage de la transformée de Fourier spatiale d’un objet astronomique.
Ce problème nous permet de confronter IML FISTA à un problème avec de nombreuses
contraintes pour lequel plusieurs méthodes de résolution ont été proposées.

Nous commençons par présenter le problème d’imagerie radio-interférométrique, ce qui
nous permet de mettre en lumière que dans ce cas-ci ce n’est plus la taille de l’image qui
empêche le passage à l’échelle des algorithmes, mais bien la taille des observations. Dès
lors, nous proposons de construire notre niveau grossier en sélectionnant certaines de ces
observations, sans réduire la taille de l’image. Cette construction nous permet d’accélerer
grandement la résolution du problème avec IML FISTA, et d’ouvrir la porte à d’autres
applications de notre algorithme à ce type de problèmes, par exemple sur des données
réelles.

Résumé du Chapitre 7
Dans ce dernier chapitre, nous revisitons la construction des algorithmes multiniveaux à
travers le point de vue des algorithmes de descente par coordonnées. Pour expliciter au
mieux nos motivations, nous débutons par un exemple simple qui nous permet d’illustrer
l’équivalence entre approches multiniveaux et approches par blocs. Cette équivalence nous
permet d’analyser l’approche multiniveau via les outils de la littérature sur la descente
par coordonnées.

Ensuite, étant donné que l’algorithme de descente par coordonnées est induit par une
mise à jour des blocs imitant celle effectuée par le multiniveau (hiérarchique, potentielle-
ment en parallèle et déterminée en amont de la procédure d’optimisation), il nous faut
développer une nouvelle analyse pour prouver la convergence de cet algorithme. Cette
analyse repose sur la propriété de Kurdyka-Łojasiewicz, qui nous permet de prouver la
convergence de l’algorithme de descente par blocs hiérarchique, et donc de l’algorithme
multiniveau.

Nous terminons par généraliser l’exemple introductif au cas à L-niveaux, ce qui nous
permet de mettre en lumière certains enseignements sur la construction des algorithmes
multiniveaux. Une série d’expériences numériques vient illustrer ces enseignements, ainsi
que la pertinence de l’approche par blocs développée dans ce chapitre, en regard de celles
de l’état de l’art.

Conclusion
Dans cette thèse, nous présentons une étude détaillée des méthodes multiniveaux pour
l’optimisation non lisse, avec une application aux problèmes de reconstruction d’images.
En exploitant une hiérarchie d’approximations de la fonction objectif, les algorithmes
multiniveaux peuvent accélérer la convergence des algorithmes d’optimisation.

Dans le chapitre 4, nous avons présenté un cadre général pour concevoir un algo-
rithme multiniveau avec des garanties optimales de convergence, pour les problèmes
d’optimisation qui peuvent être non lisses et non proximables. En particulier, nous avons
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obtenu un taux de convergence de O(1/k2) pour les valeurs de la fonction objectif et la
convergence vers un minimiseur. Ce cadre a conduit à IML FISTA, une variante multi-
niveau inexacte de FISTA.

Avec cet algorithme, nous avons pu montrer que nous pouvions accélérer la résolution
de problèmes de reconstruction d’images, avec une vitesse jusqu’à 10 fois supérieure à
celle des algorithmes de l’état de l’art. Dans le chapitre 5, nous avons appliqué notre
algorithme aux problèmes suivants :

(i) défloutage d’images noir et blanc, régularisé par la transformée en ondelettes,

(ii) défloutage d’images couleur, régularisé avec la variation totale,

(iii) reconstruction de pixels manquants d’images couleur, régularisé avec la variation
totale non-locale,

(iv) reconstruction de pixels manquants et défloutage d’images hyperspectrales, régular-
isé avec la variation totale non-locale,

et avons montré qu’il peut fournir une bonne accélération sur tous ces problèmes. Ces
expériences nous ont permis de conclure que les méthodes multiniveaux sont des approches
intéressantes pour accélérer la résolution des problèmes de reconstruction d’images et
qu’elles peuvent être appliquées à un large éventail de problèmes.

C’est pourquoi nous avons décidé de nous attaquer à un problème d’imagerie plus réal-
iste dans le chapitre 6 : la reconstruction d’images radio-interférométriques (RI) régular-
isée avec la transformée en ondelettes et une contrainte de positivité. Nous avons montré
que l’IML FISTA peut être appliqué avec succès à ce problème, offrant une accélération
significative par rapport aux algorithmes de l’état de l’art. En outre, nous avons mis
en œuvre une nouvelle façon de réduire la dimension du problème, en construisant notre
hiérarchie de niveaux sur une sélection de moins en moins d’observations (visibilités) à
chaque niveau, pour être plus en phase avec les défis de passage à l’échelle des problèmes
de radio-interférométrie [169].

Nous avons également remarqué que les garanties théoriques d’IML FISTA ne sont
toujours pas à la hauteur des performances que nous pouvons observer en pratique, ce qui
est un bon signe pour la robustesse de la méthode, mais aussi une incitation à une analyse
théorique plus approfondie de l’algorithme. Jusqu’à présent, notre expérience avec IML
FISTA est cohérente avec l’expérience d’autres auteurs sur les méthodes multiniveaux,
c’est-à-dire que la principale difficulté pour les faire fonctionner réside dans les détails de
l’implémentation : choix des modèles grossiers, choix des algorithmes à chaque niveau,
etc.

Pour illustrer ce phénomène avec un exemple, dans le contexte général d’IML FISTA,
nous ne pouvons que garantir qu’une étape multiniveau diminue la fonction objectif au
niveau fin avec une petite erreur. Dans nos expériences, nous n’avons jamais observé cette
erreur, ce qui amène à se poser la question suivante : est-il possible de prouver qu’une
correction multiniveau est toujours une direction de descente ?

Des progrès dans cette direction (et dans d’autres) ont été obtenus au chapitre 7,
où nous avons étudié la convergence des algorithmes multiniveaux du point de vue des
algorithmes de descente par blocs. Pour cette étude, nous avons fourni une preuve de
convergence pour un nouvel algorithme hiérarchique de descente par bloc, applicable à
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l’optimisation non lisse et non convexe. En ce qui concerne notre question, dans ce
contexte, nous sommes en mesure de garantir qu’une étape multiniveau fait décroître la
fonction objectif, même pour des problèmes non convexes.

Ce nouveau point de vue nous a conduits à une conception rigoureuse d’un algorithme
à plusieurs niveaux pour le défloutage d’images, régularisé avec des ondelettes, qui a
apporté une réponse aux questionnements théoriques que nous avions rencontrés avec
IML FISTA dans ce contexte.

Le travail présenté dans ce manuscrit ouvre la voie à de nouveaux développements
théoriques et pratiques.

Perspectives pratiques
Tout d’abord, du point de vue des applications, nos expériences numériques ont mis
en évidence que les méthodes multiniveaux ont un grand potentiel pour les problèmes
d’imagerie où une suite de problèmes d’optimisation doivent être résolus. Pour de telles
applications, le gain des approches multiniveaux pourrait se cumuler à chaque résolution,
conduisant à des accélérations encore plus importantes. Par exemple, en imagerie radio-
interférométrique, le volume de données à traiter est si important qu’il est courant de
reconstruire l’image via la résolution d’une suite de problèmes d’optimisation avec des
ensembles d’observations disjoints, une reconstruction "en ligne" [186]. Le multiniveau
pourrait être utilisé pour accélérer la résolution de chacun de ces problèmes d’optimisation.
Pour poursuivre sur l’imagerie radio-interférométrique, évaluer les performances d’IML
FISTA sur des données réelles serait une prochaine étape naturelle. Nous pourrions ensuite
envisager d’étendre le cadre d’IML FISTA à la construction d’un algorithme multiniveau
pour résoudre la version contrainte de SARA (voir Annexes A.3.2 et A.2.3).

Du point de vue de la restauration d’images, de nombreuses directions peuvent être
explorées. Pour commencer avec les approches variationnelles, nous avons brièvement
parlé de la variation totale généralisée (TGV) au Chapitre 2. TGV offre une régularisa-
tion plus souple que TV et est plus simple que NLTV tout en fournissant des résultats de
reconstruction similaires. Le cadre de la TGV n’est pas immédiatement pris en compte
dans celui de nos algorithmes multiniveaux, car elle n’est pas formulée comme la com-
position d’une norme et d’un opérateur linéaire [34]. Cela pourrait donc constituer une
extension intéressante.

Avec l’introduction de techniques d’apprentissage profond pour la restauration d’images,
il serait intéressant de voir comment ces techniques pourraient être combinées avec des
algorithmes multiniveaux. Les récents et nombreux développements visant à entraîner les
réseaux neuronaux profonds à imiter les régularisateurs variationnels tels que RED [39,40]
ou les méthodes Plug-and-Play (PnP) [38], semblent être un bon point de départ. RED
par exemple a une formulation lisse [39], qui consiste à écrire la régularisation sous forme
suivante:

R(x) = gσ(x), (7.106)

dont le gradient est explicitement formulé comme suit : ∇gσ : x 7→ x − NNσ(x), où
NNσ est un réseau de neurones entraîné pour une tâche de débruitage, paramétré par
un niveau de bruit σ. Les méthodes PnP, quant à elles, relient le réseau de neurones à
l’opérateur proximal de la régularisation. Ainsi proxgσ = NNσ [41–43]. Dans les deux cas,
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la méthode résultante est itérative, avec un coût élevé en temps de calcul par rapport aux
approches variationnelles, car l’évaluation d’un réseau de neurones est très coûteuse [220]5.
Un algorithme multiniveau pourrait donc contribuer à réduire ce coût. Cependant, nous
avons constaté dans nos propres expériences que les modèles grossiers doivent être efficaces
pour fournir une accélération, nous devons donc construire une approximation astucieuse
du réseau de neurones ou, par exemple, ne pas régulariser le niveau grossier comme dans
le Chapitre 6 (tout en maintenant la cohérence du premier ordre). Des travaux sont
actuellement menés dans cette direction.

Les résultats du dernier chapitre suggèrent également de revoir certaines de nos ex-
périences numériques, en particulier la restauration d’images hyperspectrales. La notion
de bande est analogue à la notion de blocs dans notre cadre théorique de la descente
par coordonnées. Il pourrait être intéressant de définir un algorithme multiniveau qui
exploiterait la hiérarchie intrinsèque des bandes [223,224], et donc améliorerait peut-être
la performance de l’algorithme.

L’application de principes similaires à de nouveaux problèmes d’optimisation pour
construire des algorithmes multiniveaux de manière ad hoc pourrait permettre d’éviter
une grande partie du processus d’essais et d’erreurs qui est actuellement nécessaire pour
concevoir un algorithme multiniveau afin de résoudre un nouveau problème.

Perspectives théoriques

Pour IML FISTA. D’un point de vue théorique, même si nous avons réussi à faire
quelques progrès dans l’analyse de la convergence des algorithmes multiniveaux dans le
chapitre 7, un écart subsiste avec la généralité du cadre d’IML FISTA.

Premièrement, les corrections grossières sont garanties de diminuer la fonction objectif
dans le cadre BCD, ce qui n’est pas garanti dans le cadre d’IML FISTA (ou dans tout autre
cadre multiniveau général pour l’optimisation non lisse). Nous avons tenté d’améliorer le
cadre théorique du lissage en Annexe A.2.1, en examinant une condition de décroissance
suffisante, mais les résultats obtenus ne sont pas exploitables en pratique. La question
reste donc ouverte.

Deuxièmement, les étapes proximales inexactes telles que caractérisées par [62] dans
le cas convexe, ne sont pas (encore) possibles dans le cadre défini par la propriété de
Kurdyka-Łojasiewicz, même si une certaine notion d’inexactitude existe déjà [212, 214].
Essayer d’étendre nos résultats de convergence obtenus dans le chapitre 7 à ce cadre serait
donc une prochaine étape naturelle.

Enfin, sur une note plus positive, la preuve de convergence que nous avons utilisée
au chapitre 4 peut être réutilisée pour prouver la convergence d’autres algorithmes multi-
niveaux, comme nous le démontrons en Annexe A.3.2. Nous pouvons donc nous concentrer
sur la recherche d’implémentations efficaces de ces algorithmes, sans nous préoccuper de
prouver la convergence.

5Pour citer les auteurs : « L’inférence des réseaux neuronaux représenterait 90 % du coût de
l’apprentissage automatique à grande échelle selon des rapports indépendants de NVIDIA [221] et
d’Amazon Web Services [222]. »
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Pour la descente par coordonnées. Maintenant, du point de vue de la descente par
coordonnées, on peut se demander si les résultats du chapitre 7 pourraient être prouvés
dans un cadre complètement stochastique (non convexe). Est-il possible de considérer des
corrélations entre les mises à jour des blocs d’une itération à l’autre tout en conservant
les mêmes garanties que dans le cadre Féjer de [196] ? Une réponse à cette question
améliorerait grandement les garanties de convergence de certaines méthodes de descente
par coordonnées stochastiques.

Il a été prouvé dans [179] que la procédure de repondération mise en œuvre dans SARA
[167] pouvait être interprétée comme la résolution unique d’un problème d’optimisation
à l’aide d’un algorithme de descente par blocs [181]. La nouvelle perspective sur les
algorithmes multiniveaux, que nous apporte le cadre de la descente par coordonnées,
pourrait être utilisée pour analyser la convergence d’un algorithme multiniveau appliqué
à ce problème.

De plus, il est connu que les algorithmes BCD sont vraiment compétitifs dans les con-
textes où la mise à jour de toutes les coordonnées à la fois n’est pas possible [192]. Il serait
donc intéressant de voir comment nous pourrions adapter notre sélection hiérarchique des
blocs à mettre à jour dans de tels contextes.

Enfin, nous n’avons pas étudié l’impact de l’ajout d’inertie [190] sur la convergence
de notre algorithme H-BC-FB. Une telle étude nous aiderait à établir l’analogie entre
IML FISTA et H-BC-FB, et pourrait peut-être fournir des indications sur la manière
d’améliorer la convergence d’IML FISTA : devrions-nous utiliser des pas d’extrapolations
dans les étapes multiniveaux ?

Optimisation d’ordre supérieur. Les méthodes d’optimisation d’ordre supérieur sont
connues pour mieux s’adapter à la géométrie de la fonction et donc converger plus rapi-
dement, mais à un coût plus élevé [55, 225]. Les méthodes du premier ordre sont mieux
comprises et plus utilisées que les méthodes d’ordre supérieur, et leur potentiel est très
probablement proche d’avoir été pleinement exploité aujourd’hui. Par conséquent, des
efforts devraient être faits pour réduire le coût de calcul des méthodes d’optimisation
d’ordre supérieur.

Du point de vue de l’optimisation multiniveau non lisse, un premier pas dans cette
direction pourrait être fait en essayant d’imiter la cohérence du second ordre avec le terme
d’attache aux données, en construisant une approximation de Galerkin de la matrice
hessienne au niveau grossier. Cela peut être implicitement fait en choisissant AH =
IHh AhI

h
H dans nos problèmes de restauration d’image, comme AT

HAH = IHh AT
h I

h
HI

H
h AhI

h
H =

IHh AT
hAhI

h
H si IhHIHh = IdH (l’opérateur identité au niveau grossier). Ceci est trivialement

satisfait dans le cadre BCD de l’algorithme multiniveau pour le défloutage régularisé par
ondelettes. L’étude des valeurs propres de IHh AT

hAhI
h
H et de leur relation avec celles de

AT
hAh pourrait nous indiquer dans quelle mesure les informations de second ordre du

niveau grossier sont fidèles à celles du niveau fin, sans qu’il soit nécessaire d’envoyer la
matrice hessienne au niveau grossier à chaque étape multiniveau.

Ces idées pourraient être incorporées dans un algorithme de Newton proximal à
plusieurs niveaux [226] qui utilise la matrice hessienne du terme lisse dans les itérations,
pour mieux adapter le pas de gradient à la courbure de la fonction.

203



SOMMAIRE EN FRANÇAIS

Sommaire en français

I Introduction 9

1 Introduction 9
1.1 Contexte de la thèse : problèmes inverses et reconstruction d’images . . . 9
1.2 Défis en optimisation : convergence et passage à l’échelle . . . . . . . . . 10
1.3 Approches multiniveaux : une intuition . . . . . . . . . . . . . . . . . . . 11
1.4 Problèmes d’imagerie à grande échelle en astronomie avec optimisation

multiniveau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Résumé des contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Optimisation pour les problèmes inverses 17
2.1 Problèmes inverse: formulation en optimisation . . . . . . . . . . . . . . . 17

2.1.1 Un exemple de restauration d’image . . . . . . . . . . . . . . . . . . 17
2.1.2 Régularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Métriques d’évaluation de la qualité d’image . . . . . . . . . . . . . 22

2.2 Optimisation convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Notations et rappels sur la convexité . . . . . . . . . . . . . . . . . 23
2.2.2 Directions de descente et conditions d’optimalité . . . . . . . . . . . 24

2.3 De l’optimisation lisse à l’optimisation non-lisse . . . . . . . . . . . . . . . 26
2.3.1 Optimisation lisse : descente de gradient . . . . . . . . . . . . . . . 26
2.3.2 Optimisation non-lisse . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Convergence des algorithmes d’optimisation . . . . . . . . . . . . . . 28

2.4 Techniques d’accélération . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Momentum, inertie et extrapolation . . . . . . . . . . . . . . . . . . 30
2.4.2 Métrique variable et préconditionnement . . . . . . . . . . . . . . . 31

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Une brève présentation de l’optimisation multiniveau 33
3.1 Méthodes multi-grilles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 L’objectif des méthodes multi-grilles . . . . . . . . . . . . . . . . . . 34
3.1.2 Résolution d’EDP avec les méthodes multi-grilles . . . . . . . . . . . 35

3.2 Optimisation multiniveau . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Principes fondamentaux . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Revue de la littérature . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Principaux obstacles aux méthodes multiniveaux en optimisation . . 48

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

204



SOMMAIRE EN FRANÇAIS

II IML FISTA : théorie et applications 53

4 IML FISTA: un nouveau cadre pour l’optimisation multiniveau non-lisse 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Combler l’écart avec le lissage . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Outils de lissage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Fonction convexe lissable . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Opérateur proximal inexact : estimation et garanties . . . . . . . . . . . . 59
4.3.1 Estimation de l’opérateur proximal de g ◦D . . . . . . . . . . . . . 60
4.3.2 Précision de l’estimation de l’opérateur proximal . . . . . . . . . . . 61
4.3.3 Contourner l’inexactitude . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Étapes d’extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Notre choix pour l’extrapolation . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Inertie et erreur d’approximation . . . . . . . . . . . . . . . . . . . . 63

4.5 Inexact Multilevel FISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.1 Notre algorithme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Modèle lisse au niveau grossier pour l’optimisation multiniveau non

lisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.3 Modèle non lisse au niveau grossier pour l’optimisation multiniveau

non lisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.4 Garanties de convergence asymptotique . . . . . . . . . . . . . . . . 69
4.5.5 Extension au cas à plusieurs niveaux . . . . . . . . . . . . . . . . . 72
4.5.6 Quand utiliser les modèles grossiers . . . . . . . . . . . . . . . . . . 72

4.6 Cadres concurrents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 IML FISTA : applications à la restauration d’images 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Attache aux données et régularisation pour les problèmes de restauration

d’images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Termes d’attache aux données fh ◦ Ah . . . . . . . . . . . . . . . . . 83
5.2.2 Termes de régularisation gh ◦Dh . . . . . . . . . . . . . . . . . . . . 84

5.3 Construction des modèles grossiers et des opérateurs de transfert d’information 84
5.3.1 Opérateurs de transfert d’information . . . . . . . . . . . . . . . . . 85
5.3.2 Modèles grossiers rapides . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Choix du lissage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Sélection des hyperparamètres . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.1 Contexte expérimental . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Résultats des expériences de référence . . . . . . . . . . . . . . . . . 89

5.5 Application à la restauration d’images en couleur . . . . . . . . . . . . . . 92
5.5.1 Contexte expérimental . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Application au défloutage d’images . . . . . . . . . . . . . . . . . . 94
5.5.3 Application à la reconstruction de pixels manquants . . . . . . . . . 96

5.6 Application à la restauration d’images hyperspectrales . . . . . . . . . . . 100
5.6.1 Contexte expérimental . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.2 Opérateurs de transfert d’information . . . . . . . . . . . . . . . . . 102
5.6.3 Application à la reconstruction de pixels manquants . . . . . . . . . 104

205



SOMMAIRE EN FRANÇAIS

5.6.4 Application au défloutage et à la reconstruction de pixels man-
quants, combinés . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 IML FISTA : application à l’imagerie radio-interférométrique 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Imagerie radio-interférométrique . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Problème direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Techniques de reconstruction en radio-interférométrie . . . . . . . . 114
6.2.3 Approches variationnelles . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.4 uSARA en quelques mots . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Le cadre multi-niveau pour la radio-interférométrie . . . . . . . . . . . . . 115
6.3.1 Modèle grossier dans l’espace des observations . . . . . . . . . . . . 116

6.4 Approche multi-niveau pour l’accélération d’uSARA . . . . . . . . . . . . 117
6.4.1 IML FISTA pour uSARA . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.2 Paramètres et implémentation de l’algorithme . . . . . . . . . . . . 118
6.4.3 Généralisation au cas à plusieurs niveaux . . . . . . . . . . . . . . . 121

6.5 Expériences numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.1 Jeu de données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.5.2 Comparaison des méthodes sans repondération . . . . . . . . . . . . 122
6.5.3 Comparaison des méthodes pour uSARA . . . . . . . . . . . . . . . 122

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III Optimisation multiniveau : une nouvelle perspective 127

7 Algorithmes multiniveaux depuis le point de vue de la descente par
blocs 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Un exemple convaincant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Points clés de l’analyse multi-résolution . . . . . . . . . . . . . . . . 128
7.2.2 Défloutage via ondelettes : un algorithme bloc-multiniveau . . . . . 129

7.3 Méthodes de descente par blocs : bref aperçu . . . . . . . . . . . . . . . . 132
7.3.1 Algorithme forward-backward de descente par blocs . . . . . . . . . 134
7.3.2 Étude de la convergence . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.3 Contexte mathématique et notations . . . . . . . . . . . . . . . . . 136

7.4 Convergence de l’algorithme Hierarchical-BC-FB . . . . . . . . . . . . . . 140
7.4.1 Hypothèses pour la convergence . . . . . . . . . . . . . . . . . . . . 140
7.4.2 Résultat principal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.3 Convergence de l’algorithme H-BC-FB dans un cadre stochastique . 146

7.5 Algorithmes multiniveaux du point de vue de la descente par blocs: le cas
général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5.1 Analyse multi-résolution et optimisation . . . . . . . . . . . . . . . 149
7.5.2 Algorithme à L-niveaux pour le défloutage d’images via ondelettes . 152
7.5.3 Ce que nous avons appris du point de vue de la descente par blocs . 155

7.6 Expériences numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

206



SOMMAIRE EN FRANÇAIS

Conclusion 161

A Annexes 165
A.1 Chapitre 3 – Littérature supplémentaire sur les algorithmes multiniveaux 165
A.2 Chapitre 4 – Potentielles améliorations d’IML FISTA . . . . . . . . . . . 167

A.2.1 Améliorer le lissage : condition de décroissance suffisante et autres
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2.2 Au-delà de FISTA ? . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
A.2.3 Aperçu rapide d’obstacles non traités ici . . . . . . . . . . . . . . . 172
A.3.1 Principe de convergence . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.3.2 Un algorithme primal-dual multiniveau . . . . . . . . . . . . . . . . 175

A.4 Chapitre 7 – Preuves de convergence de l’algorithme H-BC-FB. . . . . . . 179
A.5 Chapitre 7 – Littérature supplémentaire sur l’optimisation avec ondelettes 187
A.6 Chapitre 7 – Preuves de l’équivalence entre les méthodes multiniveaux et

les méthodes par blocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Références 226

207





Bibliography

[1] A. N. Tikhonov et al., “On the stability of inverse problems,” in Dokl. akad. nauk
sssr, vol. 39, pp. 195–198, 1943.

[2] M. Bertero, P. Boccacci, and C. De Mol, Introduction to inverse problems in imag-
ing. CRC press, 2021.

[3] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images. SIAM, 2006.

[4] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

[5] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, T. Pock, et al., “An introduc-
tion to total variation for image analysis,” Theoretical foundations and numerical
methods for sparse recovery, vol. 9, no. 263-340, p. 227, 2010.

[6] J. Mairal, F. Bach, and J. Ponce, “Sparse modeling for image and vision processing,”
Foundations and Trends® in Computer Graphics and Vision, vol. 8, no. 2-3, pp. 85–
283, 2014.

[7] Y. Nesterov et al., Lectures on convex optimization, vol. 137. Springer, 2018.

[8] A. Johns, B. Seaton, J. Gal-Edd, R. Jones, C. Fatig, and F. Wasiak, “James webb
space telescope: L2 communications for science data processing,” in Observatory
Operations: Strategies, Processes, and Systems II, vol. 7016, pp. 425–431, SPIE,
2008.

[9] J. Birdi, Advanced sparse optimization algorithms for interferometric imaging in-
verse problems in astronomy. PhD thesis, Heriot-Watt University, 2019.

[10] P. C. Broekema, R. V. van Nieuwpoort, and H. E. Bal, “The square kilometre
array science data processor. preliminary compute platform design,” Journal of
Instrumentation, vol. 10, no. 07, p. C07004, 2015.

[11] A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and synthesis
in radio astronomy. Springer Nature, 2017.

[12] A. Chambolle and T. Pock, “An introduction to continuous optimization for imag-
ing,” Acta Numerica, vol. 25, pp. 161–319, 2016.

209



BIBLIOGRAPHY

[13] L. Rudin, S. J. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[14] R. Abergel, C. Louchet, L. Moisan, and T. Zeng, “Total variation restoration of
images corrupted by poisson noise with iterated conditional expectations,” in Scale
Space and Variational Methods in Computer Vision: 5th International Conference,
SSVM 2015, Lège-Cap Ferret, France, May 31-June 4, 2015, Proceedings 5, pp. 178–
190, Springer, 2015.

[15] S. Setzer, G. Steidl, and T. Teuber, “Deblurring poissonian images by split bregman
techniques,” Journal of Visual Communication and Image Representation, vol. 21,
no. 3, pp. 193–199, 2010.

[16] H. Talbot, H. Phelippeau, M. Akil, and S. Bara, “Efficient poisson denoising for
photography,” pp. 3881 – 3884, 12 2009.

[17] C. Deledalle, F. Tupin, and L. Denis, “Poisson NL means: Unsupervised non local
means for poisson noise,” in Proceedings of the International Conference on Image
Processing, pp. 801–804, 2010.

[18] D. Geman and S. Geman, “Bayesian image analysis,” in Disordered systems and
biological organization, pp. 301–319, Springer, 1986.

[19] J. Besag, J. York, and A. Mollié, “Bayesian image restoration, with two applications
in spatial statistics,” Annals of the institute of statistical mathematics, vol. 43, pp. 1–
20, 1991.

[20] N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, and J.-C. Pesquet, “Wavelet-based
image deconvolution and reconstruction,” in Wiley Encyclopedia of Electrical and
Electronics Engineering, Feb 2016. Tutorial paper.

[21] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[22] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via
wavelet shrinkage,” Journal of the american statistical association, vol. 90, no. 432,
pp. 1200–1224, 1995.

[23] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Transactions
on information theory, vol. 52, no. 2, pp. 489–509, 2006.

[24] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[25] M. A. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image
restoration,” IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 906–916,
2003.

210



BIBLIOGRAPHY

[26] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint,” Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

[27] P. Combettes and V. Wajs, “Signal Recovery by Proximal Forward-Backward Split-
ting,” SIAM Multiscale Model. Simul., vol. 4, pp. 1168–1200, 2005.

[28] L. Jacques, L. Duval, C. Chaux, and G. Peyré, “A panorama on multiscale geometric
representations, intertwining spatial, directional and frequency selectivity,” Signal
Processing, vol. 91, no. 12, pp. 2699–2730, 2011.

[29] A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and
related problems,” Numerische Mathematik, vol. 76, pp. 167–188, 1997.

[30] G. Steidl and J. Weickert, “Relations between soft wavelet shrinkage and total
variation denoising,” in Joint pattern recognition symposium, pp. 198–205, Springer,
2002.

[31] U. Kamilov, E. Bostan, and M. Unser, “Generalized total variation denoising via
augmented lagrangian cycle spinning with haar wavelets,” in 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 909–
912, Ieee, 2012.

[32] P. Rodríguez, “Total variation regularization algorithms for images corrupted with
different noise models: a review,” Journal of Electrical and Computer Engineering,
vol. 2013, no. 1, p. 217021, 2013.

[33] G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet, “A Non-Local
Structure Tensor Based Approach for Multicomponent Image Recovery Problems,”
IEEE Trans. Image Process., vol. 23, pp. 5531–5544, Dec. 2014. arXiv:1403.5403.

[34] K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM Journal
on Imaging Sciences, vol. 3, no. 3, pp. 492–526, 2010.

[35] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, “Supervised dictionary
learning,” Advances in neural information processing systems, vol. 21, 2008.

[36] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly undersampled
k-space data by dictionary learning,” IEEE transactions on medical imaging, vol. 30,
no. 5, pp. 1028–1041, 2010.

[37] I. Tošić and P. Frossard, “Dictionary learning,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 27–38, 2011.

[38] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors
for model based reconstruction,” in 2013 IEEE global conference on signal and
information processing, pp. 945–948, IEEE, 2013.

211



BIBLIOGRAPHY

[39] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization
by denoising (red),” SIAM Journal on Imaging Sciences, vol. 10, no. 4, pp. 1804–
1844, 2017.

[40] R. Cohen, M. Elad, and P. Milanfar, “Regularization by denoising via fixed-point
projection (red-pro),” SIAM Journal on Imaging Sciences, vol. 14, no. 3, pp. 1374–
1406, 2021.

[41] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-and-play methods
provably converge with properly trained denoisers,” in International Conference on
Machine Learning, pp. 5546–5557, PMLR, 2019.

[42] J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux, “Learning maximally monotone
operators for image recovery,” SIAM Journal on Imaging Sciences, vol. 14, no. 3,
pp. 1206–1237, 2021.

[43] S. Hurault, A. Leclaire, and N. Papadakis, “Proximal denoiser for convergent plug-
and-play optimization with nonconvex regularization,” in International Conference
on Machine Learning, pp. 9483–9505, PMLR, 2022.

[44] M. Terris, A. Dabbech, C. Tang, and Y. Wiaux, “Image reconstruction algorithms
in radio interferometry: From handcrafted to learned regularization denoisers,”
Monthly Notices of the Royal Astronomical Society, vol. 518, no. 1, pp. 604–622,
2023.

[45] Z. Wang and E. P. Simoncelli, “Reduced-reference image quality assessment using
a wavelet-domain natural image statistic model,” in Human Vision and Electronic
Imaging X, Proc. SPIE, vol. 5666, (San Jose, CA), p. 18 March 2005, 2005.

[46] P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper, “SER-FIQ:
Unsupervised estimation of face image quality based on stochastic embedding ro-
bustness,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5651–5660, 2020.

[47] X. Liu, J. Van De Weijer, and A. D. Bagdanov, “Rankiqa: Learning from rankings
for no-reference image quality assessment,” in Proceedings of the IEEE international
conference on computer vision, pp. 1040–1049, 2017.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE transactions on image
processing, vol. 13, no. 4, pp. 600–612, 2004.

[49] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in 2010 20th
international conference on pattern recognition, pp. 2366–2369, IEEE, 2010.

[50] R. T. Rockafellar, Convex Analysis. 1970.

[51] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algo-
rithms I: Fundamentals, vol. 305. Springer science & business media, 1996.

212



BIBLIOGRAPHY

[52] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317. Springer Science
& Business Media, 2009.

[53] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books in Mathematics, New York: Springer Inter-
national Publishing, 2017.

[54] C. Zalinescu, Convex analysis in general vector spaces. World scientific, 2002.

[55] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[56] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer
Science & Business Media, 2004.

[57] A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for Constrained Total
Variation Image Denoising and Deblurring Problems,” IEEE Trans. Image Process.,
vol. 18, pp. 2419–2434, Nov. 2009.

[58] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 2nd ed.,
1999.

[59] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, vol. 30 of Classics in Applied Mathematics. Philadelphia: SIAM,
2000.

[60] L. M. Briceño-Arias and N. Pustelnik, “Theoretical and numerical comparison of
first order algorithms for cocoercive equations and smooth convex optimization,”
Signal Processing, vol. 206, p. 108900, 2023.

[61] G. Garrigos, Descent dynamical systems and algorithms for tame optimization and
multi-objective problems. PhD thesis, Université de Montpellier; Universidad Tec-
nica Federico Santa Maria, 2015.

[62] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, “Accelerated and Inexact Forward-
Backward Algorithms,” SIAM Journal on Optimization, vol. 23, pp. 1607–1633,
Jan. 2013.

[63] P. L. Combettes, Ð. Dũng, and B. C. Vũ, “Dualization of signal recovery problems,”
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Abstract
The size of image restoration problems is constantly increasing. This growth poses a
major scaling problem for optimization algorithms, which struggle to provide satisfactory
solutions in a reasonable amount of time.

Among the methods proposed to overcome this challenge, multilevel methods seem to
be an ideal candidate. By systematically reducing the size of the problem, the computa-
tional cost of solving it can be drastically decreased. This type of approach is standard in
the numerical solution of partial differential equations (PDEs), with theoretical guarantees
and practical demonstrations to explain their success.

However, current multilevel optimization methods do not have the same guarantees
nor the same performance. In this thesis, we propose to bridge a part of this gap by
introducing a new multilevel algorithm, IML FISTA, which has the optimal theoretical
convergence guarantees for convex non-smooth optimization problems, i.e. convergence
to a minimiser and convergence rate of the objective function to a minimum value. IML
FISTA is also able to handle state-of-the-art regularizations in image restoration.

By comparing IML FISTA with standard algorithms on many image restoration prob-
lems: deblurring, denoising, reconstruction of missing pixels for colour and hyperspectral
images, and reconstruction of radio-interferometric images, we show that IML FISTA is
capable of significantly speeding up the resolution of these problems. As IML FISTA’s
framework is sufficiently general, it can be adapted to many other image restoration
problems.

We conclude this thesis by proposing a new point of view on multilevel algorithms,
by demonstrating their equivalence, in certain cases, with coordinate descent algorithms,
which are much more widely studied in the non-smooth optimization literature. This
new theoretical framework allows us to analyse multilevel algorithms more rigorously,
and in particular to extend their convergence guarantees to non-smooth and non-convex
problems. This framework is less general than that of IML FISTA, but it paves the way
for a more theoretically robust design of multilevel algorithms.
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Résumé
La taille des problèmes de restauration d’images ne fait qu’augmenter. Cette croissance
pose un problème majeur de passage à l’échelle pour les algorithmes d’optimisation, qui
peinent à fournir des solutions satisfaisantes en un temps raisonnable.

Parmi les méthodes proposées pour surmonter ce défi, les méthodes multi-niveaux
semblent être un candidat idéal. En réduisant de manière systématique la dimension du
problème, le coût computationnel nécessaire à sa résolution peut diminuer drastiquement.
Ce type d’approche est classique pour la résolution numérique des équations aux dérivées
partielles (EDP), avec des garanties théoriques et des démonstrations pratiques pour
expliquer leur succès.

Cependant, les méthodes actuelles d’optimisation multi-niveaux n’ont pas les mêmes
garanties, ni les mêmes performances. Dans cette thèse, nous proposons de combler une
partie de cet écart en introduisant un nouvel algorithme multi-niveau, IML FISTA, possé-
dant les garanties de convergence théoriques optimales pour les problèmes d’optimisation
convexes non-lisses, i.e., convergence vers un minimiseur et taux de convergence de la
fonction objectif vers une valeur minimale. IML FISTA est aussi en mesure de traiter les
régularisations de l’état-de-l’art en restauration d’images.

En comparant IML FISTA aux algorithmes standards sur un grand nombre de prob-
lèmes de restauration d’images: défloutage, débruitage, reconstruction de pixels man-
quants pour des images en couleur et des images hyperspectrales, ainsi qu’en recon-
struction d’images radio-interférométriques, nous montrons qu’IML FISTA est capable
d’accélérer la résolution de ces problèmes de manière significative. Le cadre d’IML FISTA
est suffisamment général pour s’adapter à de nombreux autres problèmes de restauration
d’images.

Nous concluons cette thèse en proposant un nouveau point de vue sur les algo-
rithmes multi-niveaux, en démontrant leur équivalence, dans certains cas, avec les al-
gorithmes de descente par coordonnées qui sont nettement plus étudiés dans la littérature
de l’optimisation non-lisse. Ce nouveau cadre théorique nous permet d’analyser les algo-
rithmes multi-niveaux de manière plus rigoureuse, et notamment d’étendre leurs garanties
de convergence à des problèmes non-lisses et non-convexes. Ce cadre est moins général
que celui d’IML FISTA, mais il ouvre la voie à une conception plus solide sur le plan
théorique des algorithmes multi-niveaux.
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