
HAL Id: tel-04902137
https://hal.science/tel-04902137v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PGAS-based Parallel Branch-and-Bound for Ultra-Scale
GPU-powered Supercomputers

Guillaume Helbecque

To cite this version:
Guillaume Helbecque. PGAS-based Parallel Branch-and-Bound for Ultra-Scale GPU-powered Super-
computers. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lille; Université du
Luxembourg, 2025. English. �NNT : �. �tel-04902137�

https://hal.science/tel-04902137v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

PhD-FSTM-2025-009
Faculty of Science, Technology and Medicine Faculty of Science and Technology

DISSERTATION

Defence held on 10 January 2025 in Esch-sur-Alzette (Luxembourg)

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

AND

DOCTEUR DE L’UNIVERSITÉ DE LILLE EN INFORMATIQUE ET
APPLICATIONS

by

Guillaume HELBECQUE
Born on 12 August 1998 in Valenciennes (France)

PGAS-based Parallel Branch-and-Bound for Ultra-Scale
GPU-powered Supercomputers

Dissertation defence committee:

Dr Pascal BOUVRY, Co-Supervisor
Dean of the Faculty of Science, Technology and Medicine, UNIVERSITÉ DU LUXEMBOURG

Dr Nouredine MELAB, Co-Supervisor
Full professor in Computer Science, UNIVERSITÉ DE LILLE

Dr Nicolas NAVET, Chair
Full professor in Computer Science, UNIVERSITÉ DU LUXEMBOURG

Dr Imen CHAKROUN, Vice-Chair
Senior researcher, IMEC

Dr Frédéric SAUBION, Member
Full professor in Computer Science, UNIVERSITÉ D'ANGERS

Dr Enrique ALBA, Member
Full professor in Computer Science, UNIVERSITY OF MALAGA

PhD-FSTM-2025-009
Faculté des Sciences, des Technologies et de
Médecine

Faculté des Sciences et Technologies

THÈSE

Soutenue le 10 janvier 2025 à Esch-sur-Alzette (Luxembourg)

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

ET

DOCTEUR DE L’UNIVERSITÉ DE LILLE EN INFORMATIQUE ET
APPLICATIONS

par

Guillaume HELBECQUE
Né le 12 août 1998 à Valenciennes (France)

Branch-and-Bound Parallèle Basé sur PGAS pour les
Supercalculateurs Ultra-Scale Dotés de GPUs

Comité de soutenance de thèse :

Dr Pascal BOUVRY, Co-Directeur
Doyen de la Faculté des Sciences, des Technologies et de Médecine, UNIVERSITÉ DU LUXEMBOURG

Dr Nouredine MELAB, Co-Directeur
Professeur en Informatique, UNIVERSITÉ DE LILLE

Dr Nicolas NAVET, Président
Professeur en Informatique, UNIVERSITÉ DU LUXEMBOURG

Dr Imen CHAKROUN, Examinatrice
Chercheur senior, IMEC

Dr Frédéric SAUBION, Rapporteur
Professeur en Informatique, UNIVERSITÉ D'ANGERS

Dr Enrique ALBA, Rapporteur
Professeur en Informatique, UNIVERSITY OF MALAGA

À ma mère, à mon père

Abstract

Branch-and-Bound (B&B) algorithms are widely used for the exact resolution of many
combinatorial optimization problems. Their parallel implementation to solve increas-
ingly large instances presents several challenges related to the dynamic generation of
large, highly irregular trees. With the advent of the exascale era, modern supercomput-
ers are now composed of thousands of hybrid compute nodes, each integrating multi-core
processors coupled with GPU accelerators. This hierarchical organization, providing
multi-level parallelism (intra-node, GPU, inter-node or cluster, etc.), makes exascale
parallel implementation complex. To address this complexity, most existing works em-
ploy the “evolutionary” MPI+X approach, which extends the MPI standard used for
inter-node level with environments for intra-node parallelism (OpenMP, CUDA, etc.).
In this thesis, we investigate the PGAS (Partitioned Global Address Space) approach,
an alternative to MPI+X, in the context of implementing B&B algorithms for exas-
cale. This “revolutionary” approach provides a higher level of parallelism abstraction,
unifying intra-node and inter-node levels.

The first contribution of this thesis focuses on the design and implementation of a
PGAS-based data structure, named distBag DFS, dedicated to depth-first exploration of
large, irregular trees. This multi-pool data structure integrates a dynamic load-balancing
mechanism based on large-scale work-stealing, operating at both intra- and inter-node
levels. This mechanism, which required sophisticated synchronization, promotes local-
ity in work-stealing, enabling scalability. The data structure and its load-balancing
mechanism are implemented in Chapel and provided as a module in this PGAS-based
language designed for exascale. The second contribution of this thesis extends the pro-
posed work to the multi-GPU context to accelerate the extensive and costly evaluation of
tree nodes being explored. The challenge of ensuring implementation portability across
multi-vendor GPU architectures (NVIDIA and AMD) is addressed.

The algorithms developed in this thesis have been designed to be generic and to
promote their reuse. This is evidenced by the application of these algorithms to vari-
ous combinatorial optimization problems, including permutation flow-shop scheduling,
binary knapsack problems, the N-Queens problem, and the Unbalanced Tree Search
benchmark. Experimental validation was conducted on two TOP500 supercomputers
(MeluXina and LUMI), among others. The results show that our PGAS-based algo-
rithms are competitive in terms of scalability at both intra-node and inter-node levels
compared to those obtained with the MPI+X approach. Additionally, the results con-

i

ii

firmed the optimality of solutions for some of the largest flow-shop instances, utilizing
up to 400 compute nodes, or 51,200 CPU cores. Furthermore, scalability concerning the
number of GPUs was evaluated on 128 compute nodes, totaling 1,024 GPU accelerators.
Overall, our results demonstrate the competitiveness of PGAS approaches compared to
MPI+X, while identifying opportunities for further enhancement.

Keywords:

Parallel Branch-and-Bound, Combinatorial optimization, PGAS programming, Chapel,
Ultra-scale supercomputers, GPU

Résumé

Les algorithmes Branch-and-Bound (B&B) sont couramment utilisés pour la résolution
exacte de nombreux problèmes d’optimisation combinatoire. Leur mise en œuvre par-
allèle pour la résolution d’instances de plus en plus grandes pose plusieurs défis liés à la
génération dynamique de grands arbres fortement irréguliers. Avec l’arrivée de l’ère ex-
ascale, les supercalculateurs modernes sont désormais composés de milliers de nœuds de
calcul hybrides, chacun intégrant des processeurs multi-cœurs couplés à des accélérateurs
graphiques (GPUs). Cette organisation hiérarchique, fournissant un parallélisme multi-
niveau (intra-nœud, GPU, inter-nœud ou cluster, etc.), rend complexe l’implémentation
parallèle exascale. Pour faire face à cette complexité, la majorité des travaux existants
utilise l’approche ≪ évolutionnaire ≫ MPI+X, qui consiste à étendre le standard MPI
utilisé pour le niveau inter-noeud avec des environnements pour le parallélisme intra-
nœud (OpenMP, CUDA, etc.). Dans cette thèse, nous investiguons l’approche PGAS
(Partitioned Global Address Space), alternative à MPI+X, dans le contexte de la mise en
œuvre des algorithmes B&B pour l’exascale. Cette approche ≪ révolutionnaire ≫ fournit
un niveau d’abstraction du parallélisme plus élevé, unifiant les niveaux intra-nœud et
inter-nœud.

La première contribution de cette thèse porte sur la conception et l’implémentation
d’une structure de données PGAS, nommée distBag DFS, dédiée à l’exploration en pro-
fondeur d’abord d’arbres irréguliers de grande taille. Cette structure de données multi-
pool intègre un mécanisme d’équilibrage de charge dynamique basé sur le paradigme de
vol de tâches large échelle, opéré aux deux niveaux intra- et inter-nœud. Ce mécanisme,
qui a nécessité une synchronisation sophistiquée, favorise la localité des vols de tâches
permettant son passage à l’échelle. La structure de données et son mécanisme d’équilibrage
de charge sont implémentés en Chapel, et fournis comme module dans ce langage basé
sur PGAS et conçu pour l’exascale. La deuxième contribution de cette thèse porte sur
l’extension des travaux proposés au contexte multi-GPU pour accélérer l’évaluation mas-
sive et coûteuse des nœuds de l’arbre exploré. Le défi de la portabilité de l’implémentation
sur architectures GPU multi-fournisseurs (NVIDIA et AMD) est considéré.

Les algorithmes développés dans cette thèse ont été conçus pour être génériques et fa-
voriser leur réutilisation. Ceci est attesté par l’application de ces algorithmes à différents
problèmes d’optimisation combinatoire, notamment les problèmes d’ordonnancement
Flow-Shop à permutation, de sac à dos binaire, des N-reines ainsi que le benchmark Un-
balanced Tree Search. La validation expérimentale a été réalisée, entre autres, sur deux

iii

iv

supercalculateurs du classement TOP500 (MeluXina et LUMI). Les résultats obtenus
montrent que nos algorithmes basés sur l’approche PGAS sont compétitifs, en termes
de passage à l’échelle aux deux niveaux intra- et inter-nœud, en comparaison de ceux
obtenus avec l’approche MPI+X. De plus, les résultats ont confirmé l’optimalité des so-
lutions pour certaines des plus grandes instances du Flow-Shop, en utilisant jusqu’à 400
nœuds de calcul, soit 51 200 cœurs CPU. D’autre part, le passage à l’échelle par rapport
au nombre de GPU a été évalué sur 128 nœuds de calcul, totalisant 1 024 accélérateurs
GPU. De manière générale, nos résultats montrent la compétitivité des approches PGAS
par rapport à MPI+X, tout en mettant en lumière certaines perspectives d’amélioration.

Mots-clés :

Branch-and-Bound parallèle, Optimisation combinatoire, Programmation PGAS, Chapel,
Supercalculateurs ultra-scale, GPU

Acknowledgments

My first acknowledgments naturally go to my two thesis supervisors, Prof. Nouredine
MELAB and Prof. Pascal BOUVRY. I am deeply grateful for the unwavering support
they have provided me throughout these years. Their expertise, availability, and trust
were decisive elements in the completion of this thesis. I have learned a great deal from
them, both scientifically and personally.

Since this thesis is also the result of many collaborations, I would like to thank my
main collaborators, Jan GMYS, Tiago CARNEIRO, and Ezhilmathi KHRISNASAMY,
with whom I had the opportunity to work on this project. Each of them contributed
uniquely to the advancement of my research through their ideas, constructive critiques,
and valuable advice. I would also like to thank Grégoire DANOY for the time he
dedicated to discussing this project, for his invaluable advice, and his ever-present good
humor.

I would like to warmly thank Prof. Enrique ALBA and Prof. Frédéric SAUBION for
the time they spent reviewing my thesis manuscript, as well as Prof. Nicolas NAVET
and Dr. Imen CHAKROUN for examining my thesis defense. I am profoundly grateful
for their valuable feedback and support, which have greatly contributed to improving
my work.

This thesis in cotutelle gave me the opportunity to meet and work with many people
(too many to name all of them), with whom I had the pleasure of exchanging ideas,
collaborating, and learning. The stimulating discussions and exchanges of ideas were
essential in nurturing my reflection and deepening my research. Each of these indi-
viduals contributed, in their own way, to making this experience both enjoyable and
unforgettable, and I leave with wonderful memories.

Finally, I thank my partner for accompanying me on this journey, for all the support,
patience, and love she has shown me throughout these years. Her constant encourage-
ment and presence by my side have been an invaluable source of motivation and comfort,
especially during times of doubt and fatigue.

My final thoughts go to my parents, my family, and my friends.

v

vi

Remerciements

Mes premiers remerciements vont tout naturellement à mes deux co-directeurs de thèse,
Prof. Nouredine MELAB et Prof. Pascal BOUVRY. Je leur suis profondément recon-
naissant pour le soutien indéfectible qu’ils m’ont apporté au cours de ces années. Leur
expertise, leur disponibilité et leur confiance ont été des éléments déterminants dans
la réalisation de cette thèse. J’ai énormément appris à leurs côtés, tant sur le plan
scientifique que sur le plan humain.

Puisque cette thèse est également le fruit de nombreuses collaborations, je souhaite ici
remercier mes principaux collaborateurs, Jan GMYS, Tiago CARNEIRO et Ezhilmathi
KHRISNASAMY, avec qui j’ai eu l’opportunité de travailler sur ce projet. Chacun
d’entre eux a contribué de manière unique à l’avancement de mes recherches, par ses
idées, ses critiques constructives et ses conseils avisés. Un grand merci également à
Grégoire DANOY pour le temps qu’il a consacré à échanger autour de ce projet, pour
ses précieux conseils et son infaillible bonne humeur.

Je tiens à remercier chaleureusement Prof. Enrique ALBA et Prof. Frédéric SAUBION
pour le temps qu’ils ont consacré à rapporter mon manuscrit de thèse, ainsi qu’à Prof.
Nicolas NAVET et Dr. Imen CHAKROUN pour l’examen de ma soutenance. Je leur
suis profondément reconnaissant pour leurs précieux retours et leur soutien, qui ont
grandement contribué à l’amélioration de mon travail.

Cette thèse en cotutelle m’a offert l’opportunité de rencontrer et de travailler avec
de nombreuses personnes (trop nombreuses pour toutes les nommer), avec qui j’ai
eu le plaisir d’échanger, de collaborer et d’apprendre. Les discussions stimulantes et
les échanges d’idées ont été essentiels pour nourrir ma réflexion et approfondir mes
recherches. Toutes ces personnes ont contribué, chacune à leur façon, à rendre cette
expérience agréable et inoubliable, et j’en repars avec de merveilleux souvenirs.

Je remercie enfin ma compagne de m’avoir accompagné dans cette aventure, pour
tout le soutien, la patience et l’amour qu’elle m’a prodigués tout au long de ces années.
Ses encouragements constants et sa présence à mes côtés ont été une source inestimable
de motivation et de réconfort, surtout dans les moments de doute et de fatigue.

Mes dernières pensées vont à mes parents, ma famille et mes amis.

vii

viii

List of Figures

2.1 Illustration of a Branch-and-Bound algorithm. 12
2.2 Illustration of the parallelization models used in this thesis. 13
2.3 Architecture of CPU and GPU processors. 18
2.4 Number of combined CPU and GPU cores by TOP500 rank (June 2024). 19
2.5 Rmax performance of TOP500 supercomputers from 1993 to 2024. 19
2.6 Top 3 of TOP500 ranking (June 2024). 20
2.7 Illustration of main parallel programming models. 23
2.8 Illustration of a PFSP instance consisting of 3 jobs and 4 machines. . . . 30
2.9 Illustration of a 0/1-Knapsack instance with 6 items. 31
2.10 Illustration of the N-Queens problem for N = 8. 32

3.1 Illustration of the distBag DFS components. 38
3.2 Flowchart of the global termination detection. 43
3.3 Illustration of false sharing in shared-memory systems. 44
3.4 Bag size over time solving the 15- and 16-Queens instances. 46
3.5 Speed-up achieved solving geometrical and binomial synthetic UTS trees. 47
3.6 Percentage of explored nodes per tasks solving the UTS-bin instance. . . . 47
3.7 Strong scaling efficiency of P3D-DFS instantiated on three different problems. 48
3.8 Execution time of P3D-DFS on PFSP instances ta021-ta030, relative to

MPI-PBB, using 1 to 64 compute nodes. 50
3.9 Speed-up achieved by P3D-DFS and MPI-PBB on 2 to 64 compute nodes

compared to the execution on one node. 51
3.10 Speed-up achieved solving ta056, compared to a multi-core version. . . . 52

4.1 Parallel model of the GPU-accelerated multi-core B&B. 57
4.2 Flowchart of the GPU-accelerated multi-core B&B algorithm. 58
4.3 Illustration of the static workload distribution. 59
4.4 Normalized execution time of the single-GPU Chapel code solving differ-

ent problem instances on different NVIDIA and AMD GPU architectures,
compared to CUDA/HIP-based counterpart implementations. 64

5.1 Chapel’s official documentation of the DistributedBag package module. . 75
5.2 UML diagram of the pBB-chpl software platform. 76

ix

x List of Figures

List of Tables

3.1 Summary of the UTS instances solved, along with some execution statistics. 46
3.2 Execution statistics of the largest instance solved for each problem using

128 CPU cores. 49
3.3 Summary of execution statistics solving hard benchmark instances. 51

4.1 Calibration of (m,M) parameters on AMD MI250X. 65
4.2 Strong scaling efficiency achieved by the GPU-accelerated B&B consider-

ing both intra- and inter-node levels. 67

A.1 Summary of the PFSP instances solved in this thesis. 97
A.2 Summary of the 0/1-Knapsack instances solved in this thesis. 98
A.3 Summary of the N-Queens instances solved in this thesis. 98
A.4 Summary of the UTS instances solved in this thesis. 98

B.1 Chapel environment configuration for each target architecture. 101

xi

xii List of Tables

List of Algorithms

3.1 Pseudo-code of distBag DFS’s work stealing mechanism. 40
3.2 Pseudo-code of the random victim selection policy iterator. 41
3.3 Reducing false sharing in global termination detection. 44

4.1 Example of LICM optimization in high-level languages. 64

5.1 Example of Node types currently supported in pBB-chpl. 77
5.2 The Problem interface. 78
5.3 Chapel-based B&B skeleton for sequential execution. 80

xiii

xiv List of Algorithms

List of Abbreviations

ALU Arithmetic Logic Unit

API Application Programming Interface

B&B Branch-and-Bound

BFS Breadth-First Search

COP Combinatorial Optimization Problem

CPU Central Processing Unit

deque Double-Ended Queue

DFS Depth-First Search

FIFO First-In First-Out

GPU Graphics Processing Unit

HPC High-Performance Computing

HPCS High Productivity Computing Systems

IVM Integer-Vector-Matrix

LICM Loop-Invariant Code Motion

LIFO Last-In First-Out

MIP Mixed Integer Programming

MPI Message Passing Interface

MW Master-Worker

NUMA Non Uniform Memory Access

OOP Object-Oriented Programming

PFSP Permutation Flowshop Scheduling Problem

PGAS Partitioned Global Address Space

RNG Random Number Generator

SIMD Single Instruction Multiple Data

UMA Uniform Memory Access

xv

xvi List of Abbreviations

UTS Unbalanced Tree Search benchmark

WS Work Stealing

Contents

1 Introduction 1

1.1 Motivations and objectives . 1

1.2 Contributions . 3

1.3 Outline of the thesis . 4

2 Background and Related Works 7

2.1 Solving combinatorial optimization problems 8

2.2 Parallel Branch-and-Bound (B&B) algorithms 9

2.2.1 General principles and terminology of sequential B&B 9

2.2.2 Models for parallel B&B . 11

2.2.3 Challenges in parallel B&B . 13

2.3 Architecture and complexity of modern supercomputers 15

2.3.1 Modern supercomputers: a glimpse into the TOP500 16

2.3.2 Key challenges in ultra-scale optimization 19

2.3.3 Enhancing HPC productivity with PGAS 21

2.4 Related works . 25

2.4.1 Frameworks for parallel B&B . 25

2.4.2 B&B for GPU . 26

2.4.3 Hybrid and distributed parallel B&B 27

2.4.4 PGAS-based parallel B&B . 28

2.5 Benchmark problems . 29

2.5.1 Permutation Flowshop Scheduling Problem 29

2.5.2 0/1-Knapsack problem . 30

2.5.3 N-Queens problem . 31

2.5.4 Unbalanced Tree Search benchmark 32

3 PGAS-based Parallel B&B for CPU-based Clusters 35

3.1 The PGAS-based distBag DFS data structure 36

3.1.1 Origins . 36

3.1.2 Hierarchical structure and core components 37

3.1.3 Locality-aware dynamic load balancing 37

3.2 distBag DFS-based parallel B&B (P3D-DFS) 41

3.2.1 Overall design of P3D-DFS . 41

xvii

xviii Contents

3.2.2 Detecting global termination . 42

3.3 Experiments . 43

3.3.1 Comparison with other data structures 45

3.3.2 Dynamic load balancing mechanism 45

3.3.3 Strong scaling efficiency . 46

3.3.4 Comparison against an MPI+X approach 48

3.3.5 Large-scale experiments . 50

3.4 Conclusion . 52

4 PGAS-based Parallel B&B for GPU-powered Clusters 55

4.1 GPU-acceleration of the bounding operator 56

4.2 PGAS-based GPU-accelerated parallel B&B 56

4.2.1 Overall design . 56

4.2.2 Load balancing mechanisms . 59

4.3 Experiments . 61

4.3.1 Experimental protocol and testbed 61

4.3.2 Code performance and portability 61

4.3.3 Parameter calibration . 65

4.3.4 Strong scaling efficiency . 65

4.4 Conclusion . 66

5 A Chapel Software Platform for PGAS-based Parallel B&B 69

5.1 Scalable code development . 70

5.1.1 Motivations . 70

5.1.2 Conceptual objectives . 71

5.1.3 Tools for scalable code architecture 72

5.2 The Chapel’s DistributedBag module . 73

5.2.1 Integration of distBag DFS into Chapel 74

5.2.2 Local and global operations . 75

5.3 Skeletons for PGAS-based parallel B&B (pBB-chpl) 76

5.3.1 Multi-level abstraction . 77

5.3.2 Parallel B&B skeletons and target systems 78

5.4 Conclusion . 79

6 Conclusions and Perspectives 81

6.1 Conclusions . 81

6.2 Perspectives . 83

6.3 Dissemination . 85

6.3.1 International peer-reviewed publications 85

6.3.2 Open-source software . 86

References 87

A Instances and Execution Statistics 97

Contents xix

B Hardware and Software Configuration 99
B.1 Hardware . 99
B.2 Software configuration . 100

xx Contents

Chapter 1

Introduction

Contents

1.1 Motivations and objectives . 1

1.2 Contributions . 3

1.3 Outline of the thesis . 4

1.1 Motivations and objectives

Combinatorial optimization plays a crucial role in enhancing efficiency across various do-
mains, such as logistics, telecommunications, finance, and manufacturing, where it helps
optimizing processes, reducing costs, and improving overall performance. However, the
increasing scale of real-world problems, driven by the exponential growth of data, has led
to a significant rise in search space size and landscape complexity. This makes solving
Combinatorial Optimization Problems (COP) more challenging than ever before. To
tackle efficiently these problems, various scientific challenges must be addressed across
multiple levels: modeling level, focusing on landscape analysis to better understand
the structure of the problem; algorithmic level, optimizing the algorithmic components
to improve solution quality and efficiency; and mapping-to-hardware level, emphasizing
parallelization strategies to leverage modern computing infrastructures. This thesis fo-
cuses on the third level, specifically on the design and implementation of parallel exact
optimization algorithms for modern ultra-scale supercomputers.

One of the most widely used exact methods to solve COPs is the Branch-and-Bound
(B&B) algorithm. This method implicitly enumerates all possible solutions by dynami-
cally constructing and exploring a search tree, where each node represents a simpler and
more constrained version (subproblems) of the initial problem. B&B operates through
four key operators: branching, bounding, selection, and pruning. Branching involves di-
viding a given problem into several smaller subproblems by creating new branches in
the tree. Bounding calculates a bound on the cost of a subproblem, indicating whether
further exploration is necessary. Selection determines which node to explore next, based

1

2 Chapter 1. Introduction

on predefined criteria, such as depth-first or best-first search strategies. Finally, prun-
ing eliminates subproblems that cannot yield a better solution than the current best,
having a worse bound than the current optimal solution. Collectively, these operators
allow B&B to systematically reduce the search space while ensuring the discovery of
an optimal solution. However, the pruning of branches produces highly irregular and
unpredictable search trees, in terms of size and shape. Additionally, for large-scale prob-
lem instances, B&B still generates very large trees. For example, one of the largest
Permutation Flowshop Scheduling Problem (PFSP) instances solved to optimality re-
quires an equivalent computing power of 64 CPU-years, exploring a tree composed of
339 × 1012 nodes [Gmy22]. For this reason, the design and implementation of parallel
B&B algorithms have been extensively studied in past decades.

Parallelizing B&B presents several challenges related to the dynamic generation of
large, highly irregular trees. The most commonly used approach is to have independent
B&B processes for the parallel exploration of different parts of the search space. This is
generally implemented using Central Processing Unit (CPU) parallelism and involves a
data structure to store generated but not yet evaluated subproblems. In such methods,
the irregularity of B&B requires load-balancing mechanisms to ensure the full utilization
of available cores. Hybrid CPU-Graphics Processing Unit (GPU) approaches have also
been proposed, using available GPU devices for the acceleration of the bounding opera-
tor, which is often the most time-intensive part of B&B. In such configuration, managing
efficiently data transfer and synchronization between CPU and GPU, especially given
the irregularity and dynamic nature of B&B workloads is crucial for performance.

With the advent of the exascale era in June 2022 [TOP24], modern supercomputers
are now composed of thousands of hybrid compute nodes, each integrating multi-core
processors coupled with GPU accelerators. This hierarchical organization, providing
multi-level parallelism (intra-node, GPU, inter-node or cluster, etc.), makes exascale
parallel implementation complex. At least four roadblocks are identified: scalability,
GPU-heterogeneity, portability, and fault-tolerance. Algorithms and communication
patterns must be designed to scale effectively with larger numbers of processing units,
ensuring that overhead does not negate the benefits of added resources. Additionally,
GPU-heterogeneity and portability issues arise from the need to adapt applications to
various GPU architectures, each with unique performance characteristics, while ensuring
that they run efficiently across diverse hardware platforms without extensive rework.
Finally, fault tolerance is another crucial issue, as the sheer scale of exascale systems
increases the likelihood of hardware failures [Cap09].

Exascale computing has greatly stimulated scientific research recent years. Ambi-
tious national and international research initiatives, such as the French Priority Research
Programs and Equipment “Digital for Exascale” (NumPEx)1, aim to promote research
and development of new architectures, new software and new computing technologies
to achieve exascale. This includes exploring new computational paradigms, optimizing
existing algorithms, and developing new methods to solve complex problems. In the
context of optimization, the “Ultra-scale Computing for solving Big Optimization Prob-

1The PEPR NumPEx: a French program dedicated to Exascale; see: https://numpex.org/.

https://numpex.org/

Chapter 1. Introduction 3

lems” (UltraBO) bilateral France / Luxembourg international scientific project, within
which this thesis is situated, aims to investigate approaches for the exascale-aware design
and implementation of algorithms for solving challenging optimization problems2. Most
existing works employ the “evolutionary” MPI+X approach, which extends the Message
Passing Interface (MPI) standard used for inter-node level with environments for intra-
node parallelism (OpenMP, CUDA, etc.). In this thesis, we investigate the Partitioned
Global Address Space (PGAS) approach, an alternative to MPI+X, in the context of
implementing B&B algorithms for exascale. This “revolutionary” approach provides a
higher level of parallelism abstraction, unifying intra-node and inter-node levels.

1.2 Contributions

The addressed issues and proposed contributions are summarized in the following:

• The design of B&B algorithms for large-scale systems highlights the critical need
for scalable data structures to manage large solution spaces. Therefore, the first
contribution of the thesis consists in the design and implementation of a
PGAS-based data structure, called distBag DFS, dedicated to depth-first
exploration of large irregular trees. This multi-pool data structure integrates
a dynamic load-balancing mechanism based on large-scale Work Stealing (WS),
operating at both intra- and inter-node levels. This mechanism, which required
sophisticated synchronization, promotes locality in WS, enabling scalability.

• We provide a distBag DFS-based parallel B&B algorithm targeting CPU-
based clusters. The algorithm is developed with re-usability in mind and is thus
generic with regards to the tackled optimization problem. This contrasts with
the few existing PGAS-based parallel B&B algorithm that benefit from problem-
specific design and optimizations, such as a problem-specific data structure [Car+20].
The algorithm is instantiated on the three following problems: the PFSP, the
0/1-Knapsack problem, and the N-Queens problem. The different characteristic
features of these problems, in particular the shape of the explored tree and the
computational complexity of the node evaluation function, allow us to establish
the performance and limitations of the approach. The experimental results
confirmed the optimality of solutions for some of the largest PFSP in-
stances, using up to 400 compute nodes, or 51,200 CPU cores.

• GPU computing in the PGAS context is in its infancy, especially in the context
of optimization. This third contribution aims to pave the way by extending the
design and implementation of PGAS-based parallel B&B to the multi-
GPU context, accelerating the extensive and costly evaluation of tree nodes being
explored. A vendor-neutral approach is proposed and its code performance and
portability is experimented on several GPU architectures. For comparison purpose,

2The UltraBO research project: Ultra-scale Computing for solving Big Optimization Problems; see:
https://sites.google.com/view/ultrabo.

https://sites.google.com/view/ultrabo

4 Chapter 1. Introduction

baseline implementations based on CUDA/HIP are also provided. Extensive
experimentation on a pre-exascale system is presented, investigating
the scalability of our approach solving large problem instances using up
to 1,024 GPU accelerators.

• Implementing parallel B&B algorithms appeals for a software platform that gathers
re-usable components together and sets down the foundations to ensure compo-
nents interchangeability. We come up with pBB-chpl, a modular Chapel
platform facilitating PGAS-based parallel B&B implementation. All the
approaches investigated in this thesis are provided in pBB-chpl as skeletons, and
the extensibility of the platform to other optimization problems is discussed. Freely
available, open-source, and exemplified, pBB-chpl is documented through a dedi-
cated webpage to maximize its accessibility to the scientific community.

1.3 Outline of the thesis

The remaining of the thesis is organized in five chapters.

Chapter 2 establishes all the necessary prerequisites for a comprehensive understand-
ing of this thesis. It covers a background on the B&B algorithms and the challenges
related to their parallel design and implementation. The architecture of modern super-
computers is presented, highlighting the challenges in parallelizing B&B in the context
of exascale programming. This chapter also provides an extensive review of the state-
of-the-art, along with a description of the benchmark problems under consideration in
this thesis.

Chapter 3 provides the design and implementation of a PGAS-based parallel B&B for
CPU-based clusters. More precisely, it first introduces the PGAS-based distBag DFS

data structure, specifically designed for the conception of unbalanced depth-first tree-
based algorithms. distBag DFS consists of a parallel-safe multi-pool equipped with a
dynamic load balancing mechanism and an advanced synchronization scheme. Then, a
distBag DFS-based parallel B&B algorithm is provided. Extensive experiments showing
the strong scaling efficiency of the approach solving various COPs, including at scale,
are reported.

Chapter 4 extends the design and implementation of the PGAS-based parallel B&B
algorithm to deal with GPU-powered heterogeneous architectures. The proposed algo-
rithm exploits GPUs to accelerate the most compute-intensive part of the B&B, while the
CPU manages the dynamic exploration of the tree. The chapter specifically describes
the CPU-GPU interactions and discusses aspects related to dynamic load balancing.
The experimental evaluation first demonstrates the code performance and portability
of our approach on several GPU architectures. Then, the strong scaling efficiency is
investigated on a pre-exascale supercomputer solving hard problem instances.

Chapter 1. Introduction 5

Chapter 5 presents the pBB-chpl software Chapel platform for the multi-level PGAS-
based parallelization of B&B algorithms developed in this thesis. Details are given on the
modular design of the platform, highlighting its scalable architecture and showcasing its
publicly accessible documentation. Furthermore, the flexibility of the latter is discussed,
demonstrating how it can be extended to tackle a wide range of other optimization
problems.

In Chapter 6, the general conclusions of this thesis are drawn and several perspectives
are identified. The chapter also summarizes all the scientific contributions made in the
course of this PhD thesis.

6 Chapter 1. Introduction

Chapter 2

Background and Related Works

Contents

2.1 Solving combinatorial optimization problems 8

2.2 Parallel Branch-and-Bound (B&B) algorithms 9

2.2.1 General principles and terminology of sequential B&B 9

2.2.2 Models for parallel B&B . 11

2.2.3 Challenges in parallel B&B . 13

2.3 Architecture and complexity of modern supercomputers . . . 15

2.3.1 Modern supercomputers: a glimpse into the TOP500 16

2.3.2 Key challenges in ultra-scale optimization 19

2.3.3 Enhancing HPC productivity with PGAS 21

2.4 Related works . 25

2.4.1 Frameworks for parallel B&B 25

2.4.2 B&B for GPU . 26

2.4.3 Hybrid and distributed parallel B&B 27

2.4.4 PGAS-based parallel B&B . 28

2.5 Benchmark problems . 29

2.5.1 Permutation Flowshop Scheduling Problem 29

2.5.2 0/1-Knapsack problem . 30

2.5.3 N-Queens problem . 31

2.5.4 Unbalanced Tree Search benchmark 32

In this chapter, we provide a comprehensive overview of all the prerequisites essential
for understanding the challenges and contributions presented in this thesis. We begin
by exploring the fundamentals of solving COPs in Section 2.1, where we introduce key
concepts and methodologies relevant to this domain. Following this, Section 2.2 examines
the exact B&B methods, focusing on their potential for efficient parallel execution and
the associated challenges.

7

8 Chapter 2. Background and Related Works

Next, Section 2.3 delves into the architecture and complexity of modern supercom-
puters. This section highlights the computational power and architectural hierarchy of
High-Performance Computing (HPC) platforms that can support large-scale parallel al-
gorithms, while also examining the challenges they introduce in algorithm design and
optimization.

To contextualize our work, we review significant related works in Section 2.4, em-
phasizing past efforts in designing and implementing parallel B&B algorithms. Finally,
Section 2.5 introduces the benchmark problems and datasets used for evaluating our
contributions.

2.1 Solving combinatorial optimization problems

Solving a COP consists in optimizing (minimizing or maximizing) an objective function
subject to some constraints within a finite set of solutions. These problems typically
involve decision variables that take on discrete values, and can be mathematically for-
mulated as:

min
x∈X

/max
x∈X

f(x),

where:

• X is the finite (or countably infinite) set of feasible solutions;

• f : X → R is the objective function that assigns a value to each solution x ∈ X,
measuring its cost (e.g., quality, time, benefit);

• The objective is to find x∗ ∈ X such that f(x∗) ≤ f(x),∀x ∈ X (in the case of
minimization), or f(x∗) ≥ f(x),∀x ∈ X (in the case of maximization).

Constraints that must be fulfilled by a feasible solution x ∈ X can be incorporated in
the definition of the search space X or the objective function f . COPs are generally
formulated as Mixed Integer Programming (MIP) problems and most of them are NP-
hard [GJ79].

COPs are omnipresent in daily life, impacting everything from logistics to scheduling
and resource allocation. For instance, assignment problems involve allocating resources
to tasks in a way that minimizes costs or maximizes efficiency, such as matching workers
to jobs or tasks to machines. Routing problems focus on finding the optimal paths
through a network for agents or vehicles, with the goal of minimizing total travel distance
or time. Scheduling problems address the challenge of assigning tasks or jobs to resources
over time, often with complex constraints like task precedence or machine availability.
Solving these problems efficiently is crucial for optimizing performance, reducing costs,
and enhancing productivity across various industries, making them a cornerstone of
decision-making in real-world applications.

Approaches to solving COPs can be classified into two main categories: exact and
approximate methods [Tal09]. Exact methods aim to find the optimal solution(s) to
a problem and prove its (their) optimality. They possess an enumerative nature and

Chapter 2. Background and Related Works 9

require, in the worst case, a number of iterations which grows exponentially with the
problem size (e.g., the number of decision variables). Complete enumeration of feasible
solutions is obviously not appropriate for large problems, which would involve a huge
amount of time and computational resources. Instead, the more advanced B&B algo-
rithm is generally used. It systematically explores and prunes branches of the solution
space by calculating bounds on the objective function, discarding sub-spaces that cannot
yield better solutions than the current best.

Approximate methods, on the other hand, provide a practical approach to tackling
complex problems when exact solving is computationally expensive. These methods
typically involve using metaheuristics to generate near-optimal solutions more quickly,
exploring parts of the solution space where good quality solutions are expected to be
found [Tal09]. Different types of metaheuristics exist, the single solution-based ones
which iteratively improved a given initial solution (e.g., Hill-Climbing, Simulated An-
nealing), and the population-based ones which operate on a set of solutions which are
collectively or independently improved (e.g., Evolutionary Algorithms, Ant Colonies).
Approximate methods do not guarantee the optimality of a solution, but can help iden-
tify promising regions of the search space, guiding more refined search processes in a
B&B framework.

Sophisticated hybrid exact-approximate methods for solving COPs have also been
investigated [Meh11]. They combine the strengths of exact algorithms, which guaran-
tee optimality, with approximate techniques, which provide faster convergence to high-
quality solutions. For instance, these methods can apply exact B&B algorithms to refine
the best solutions found through approximate methods, or integrate metaheuristics to
guide B&B towards promising regions of the search space.

In this thesis, the focus is put on exact solving using B&B algorithms.

2.2 Parallel Branch-and-Bound (B&B) algorithms

2.2.1 General principles and terminology of sequential B&B

B&B is one of the most widely used exact methods to solve COPs. It implicitly enu-
merates all possible solutions by dynamically constructing and exploring a search tree,
where each node represents a potential partial solution. More precisely, three types of
nodes are distinguished in a B&B tree:

• The root node designating the initial problem to be solved (the search space X);

• Internal nodes representing subproblems of the initial problem (subspaces S ⊂ X);

• Leaf nodes designating solutions.

All generated but not yet evaluated nodes are stored in a data structure, which
initially contains only the root node. The B&B method then iteratively applies four
key operators—branching, bounding, selection, and pruning—to implicitly explore the
entire tree, as illustrated in Figure 2.1.

10 Chapter 2. Background and Related Works

• Branching : Branching involves dividing a given subproblem into several smaller
pairwise disjoint subproblems by creating new branches in the tree, each rep-
resenting a more constrained version of the original subproblem. Two different
decomposition strategies are usually considered: the dichotomous decomposition
which generates two subproblems per branching, and the polytomous decompo-
sition which breaks down a subproblem into multiple subproblems in a way that
each branching step assign one decision variable [Rou87]. The choice between
both strategies depends on the nature of the problem being solved. Considering
permutation-based problems, the polytomous strategy is more often used as at
each level l of the tree we still have n− l possible values to place in the permuta-
tion of size n. In contrast, the dichotomous decomposition is preferred where at
each level of the tree, a single binary decision variable xi is chosen for branching
and two values are possible: xi = 0 or 1. For each decomposition method, two sets
of child nodes can be generated by fixing values at the first free position at the
beginning and at the end, respectively.

• Bounding : Bounding calculates a bound on the best possible solution within a sub-
problem (lower bound for minimization problems and upper bound for maximiza-
tion problems). In the literature, two kinds of bound evaluation are distinguished:
eager and lazy evaluations [CP99]. In the first one, bounds are computed as soon
as nodes are generated, i.e., bounding is called after the branching operator. This
contrasts with the lazy evaluation, where bounds are only computed if necessary,
i.e., after selection and before the branching operator. In this thesis, the eager
evaluation mode is used.

• Selection: Selection determines which node to explore next based on predefined
criteria, such as Depth-First Search (DFS) or Breadth-First Search (BFS) strate-
gies. DFS explores a branch as far down as possible before backtracking (Last-In
First-Out (LIFO)), while BFS explores all neighboring nodes at the current depth
before moving deeper (First-In First-Out (FIFO)). DFS uses a stack to keep track
of the nodes that need to be explored and lead to memory usage that is largely de-
termined by the depth of the structure being traversed. In contrast, BFS employs
a queue to manage the nodes at the current level before moving on to the next.
This means that BFS needs to store all of the nodes at a given depth simultane-
ously, which can require much more memory, especially in wide trees where many
nodes are present at the same level.

• Pruning : Pruning eliminates subproblems that cannot yield an optimal solution,
due to having a worse bound than the cost of the current best solution. Actually,
the algorithm keeps track of the best solution found so far (referred to as the
incumbent) and its corresponding cost (known as the upper bound for minimization
problems or the lower bound for maximization problems). This cost is initially set
to either ±∞ or the cost of any feasible solution, if one is known in advance (for
example, obtained through an approximate method). If the algorithm is initialized
with an optimal solution, it will explore exactly the nodes in the solution space

Chapter 2. Background and Related Works 11

for which the bound is better than the cost of the optimal solution. Regardless of
the search strategy, these nodes must be explored to prove the optimality of the
solution. The tree formed by these essential nodes is referred to as the critical tree.

At the end of a B&B algorithm, the final incumbent solution, when no more subprob-
lems remain to explore, is guaranteed to be optimal, as it represents the best possible
solution within the entire solution space. In practice, the size of the explored B&B tree
to achieve optimality depends on several factors, such as the quality of the bounding
operator and the search strategy defined by the selection operator.

The simple B&B method led to several, more sophisticated variants of which the most
significant are Branch-and-Price (B&P) and Branch-and-Cut (B&C) [Bar+98; Mit11].
B&P integrates B&B with column generation to solve large-scale integer programming
problems, while B&C incorporates cutting planes to eliminate fractional solutions and
improve the search for optimal integer solutions. Many other B&B-like approaches ex-
ist, such as branch-and-peg, branch-and-win, branch-and-cut-and-solve [GGS03; CZ06;
PC04]. Some authors consider B&P, B&C, and the other variants as different algorithms
than B&B and use B&X to refer to these algorithms. In this thesis, B&B refers to simple
B&B or any of its variants. Generally speaking, divide-and-conquer algorithms can also
be considered as B&B algorithms, as it is enough to remove the pruning operator from
B&B. Additionally, the fundamental backtracking paradigm used to solve constraint sat-
isfaction problems can also be seen as a particular case of a DFS B&B algorithm. The
difference is that backtracking does not use a bounding operator to detect unpromising
nodes, but it may incorporate pruning mechanisms, for instance based on evaluating the
feasibility of a subproblem, which can be interpreted as a binary bounding function. In
that perspective, the bounding operator is frequently called node evaluation function in
this thesis.

In comparison to complete enumeration, pruning branches considerably reduces the
size of the explored tree. However, for many COPs, the execution time of B&B increases
significantly with the input size, making it practical to solve only instances of small or
moderate size using sequential algorithms. As a result, leveraging parallel computers
becomes an appealing approach for handling larger instances of COPs.

2.2.2 Models for parallel B&B

The parallelization of B&B has been particularly studied and four parallel methods can
be outlined from the literature [GC94; Mel05]:

• Parallel tree exploration model : The parallel tree exploration model is undoubtedly
the model that has been studied the most, since it has a high degree of parallelism
on big problem instances. It consists in exploring several disjoint search subspaces
(branches) in parallel, as shown in Figure 2.2a. More precisely, it allows all four
B&B operators—branching, bounding, selection, and pruning—to be executed in
parallel across different subproblems. In addition, as this model does not affect the
bounding operator, it is independent from the problem to be solved. This model
can be implemented either in a synchronous or asynchronous manner. In the first

12 Chapter 2. Background and Related Works

Figure 2.1: Illustration of a Branch-and-Bound algorithm.

one, the B&B algorithm consists of several phases where the B&B processes con-
duct their exploration independently. Between these phases, the exploration pro-
cesses synchronize and can share information, including the best solution identified
up to that point. In contrast, the asynchronous mode leads to communications
between B&B processes in an unpredictable manner.

• Parallel evaluation of bounds model : This model consists in bounding several sub-
problems concurrently in parallel, as illustrated in Figure 2.2b. The degree of
parallelism in this model depends on the branching scheme and varies according
to the depth of a node in the tree. In order to reach a high degree of parallelism
the selection and branching operators can be applied multiple times until a pool of
pending subproblems is large enough to be efficiently evaluated in parallel [Cha13].
This model leads to more fine-grained parallelism than the parallel tree exploration
model. It also has the advantage of being generic and can be nested inside the
parallel tree exploration model. It is however more suited for problems with a
costly bounding function rather than fine-grained ones, which often penalize it in
large-scale environments.

• Parallel evaluation of a bound model : This model consists in parallelizing the
bounding function itself. As a low-level model modifying only the bounding op-
erator, it can be nested inside both previous models to add one more level of
parallelism, or alone for problems having a very compute intensive bounding func-
tion. This type of parallelism has no influence on the general structure of the B&B
and is specific to the problem to be solved.

• Parallel multi-parametric model : This model is certainly the less studied one and
consists in launching in parallel several independent B&B processes that explore
the same search space but with different algorithm parameters (e.g., different se-
lection and/or branching operators). For instance, in [KK84] only one of the B&B

Chapter 2. Background and Related Works 13

(a) Parallel tree exploration model.
(b) Parallel evaluation of bounds model.

Figure 2.2: Illustration of the parallelization models used in this thesis.

algorithms uses the actual current upper bound while the others use a hypothetical
better solution as upper bound. The main advantage of this model is its generic-
ity, but it has the disadvantage of generating additional exploration costs as many
nodes are explored redundantly.

2.2.3 Challenges in parallel B&B

We identified five main challenges that arise when implementing parallel B&B algo-
rithms:

• Irregularity : The challenges encountered when implementing a parallel B&B algo-
rithm largely stem from the inherent irregularity of the algorithm. In each of the
four parallelization models discussed, this irregularity manifests differently. Due
to the unpredictable pruning of branches, some subproblems demand significantly
more computational effort than others, creating load imbalance. As subproblems
are dynamically assigned to processing units at runtime, efficient dynamic load
balancing becomes crucial for optimizing resource utilization.

While parallel evaluation of tree nodes typically results in a more fine-grained and
often more regular workload, the time required for node evaluation can vary de-
pending on the specific problem and the depth of the tree node. Additionally, both
the search space management and the problem-specific node evaluation functions
are often characterized by highly irregular control flows. These irregularities, such
as diverging instruction flows and unpredictable memory access patterns, pose sig-
nificant challenges for Single Instruction Multiple Data (SIMD) processing. This
can hinder the efficient use of GPUs, which are key drivers of HPC systems’ recent
advancements.

• Work pool management : Most of B&B algorithms employ a work pool to store
subproblems that have been generated but not yet evaluated. This data structure
allows the insertion/retrieval of subproblems following a certain order, facilitating

14 Chapter 2. Background and Related Works

the implementation of a search strategy. For instance, DFS corresponds to process-
ing nodes in LIFO order and is therefore naturally implemented by a stack, while
BFS corresponds to processing nodes in FIFO order and is rather implemented by
a queue.

In parallel B&B, multiple strategies for implementing the work pool exist, such
as single-pool and multi-pool approaches. In single-pool approaches, a central-
ized work pool is concurrently accessed by all B&B processes to pick subproblems
for branching/evaluation. In large-scale scenarios, where synchronization between
processes is needed to ensure parallel-safety, bottleneck and memory contention are
likely to occur, limiting the scalability of the approach. The multi-pool approaches
address this bottleneck by maintaining multiple pools. In the collegial multi-pool
model, for instance, each B&B process keeps its own private pool [GC94]. While
this approach reduces the bottlenecks found in single-pool models, it introduces
the challenge of balancing the workload across multiple pools. Additionally, shar-
ing information among processes—such as the best-known solution and detecting
termination—becomes more complex.

• Load balancing : As discussed previously, load balancing is a significant challenge
in parallel B&B implementations that use a multi-pool strategy. In the literature,
the most common load balancing technique is the WS paradigm, which distributes
tasks among threads [BL99]. In WS, each thread maintains a Double-Ended Queue
(deque) to store tasks. Locally, a thread treats its deque as a stack, popping tasks
from the tail to execute and pushing new tasks onto it. Then, when a thread’s
deque becomes empty due to load imbalance, it acts as a “thief” and steals tasks
from the head of another “victim” thread’s deque. Deques are primarily used in
WS approaches for two main reasons. First, stealing tasks from the head of the
deque allows the victim thread to continue working at the tail without interruption
from steal operations [ABP98; Din+09]. However, because concurrent operations
on deques require expensive memory fences, there is growing interest in WS imple-
mentations that rely on non-concurrent (private) data structures [ACR13; DP14].
The second reason relates to the granularity of the WS mechanism. In DFS B&B,
as in many task-parallel applications, tree nodes lower in the task stack typically
represent a larger workload compared to more recent tasks at the top. Granular-
ity—defined as the number of tasks stolen—is a key characteristic of a WS strategy,
along with the policy for selecting a victim for stealing work.

• Data structure: Both work pool management and load balancing challenges high-
light the central role of the data structure used to store the huge number of pend-
ing subproblems during execution of a B&B algorithm. Usually, operations on
the B&B tree, like node selection, insertion of branched nodes and work transfers
between multiple pools are implemented as push and pop operations on dynamic
sized data structures, such as stacks or queues. The main advantage of these data
structures is their genericity with regards to the problem solved; it is relatively
straightforward to adapt B&B to different problems by changing the definition of

Chapter 2. Background and Related Works 15

a node. In the literature, other types of data structures have been studied, offering
higher performance at the expense of this genericity. This is achieved by taking full
advantage of the characteristics of the problem being tackled, or more generally
the class of problems to which it belongs.

For instance, some data structures have been proposed to exploit the structure
of the search space for permutation problems. A first example is bitsets data
structure, which allows a very compact implementation of DFS [SRR08; Ric97].
Using such approach, a B&B algorithm can be implemented using only one vector
and two integers for the search procedure. The vector is used to store the current
partial solution and the first integer indicates the current depth of the search.
The second integer is seen as a bitset that keeps track of already scheduled jobs.
Another example is the Integer-Vector-Matrix (IVM) data structure, which offers
a more flexible but less compact alternative to bitsets [Mez+14; Ler15]. It uses an
integer to indicate the current depth of the search, a vector to indicate the path
of the current node, and a matrix to store the unscheduled jobs at each level.

• Initial generation and allocation of work units: The last challenge arises at the
beginning of the execution of a parallel B&B algorithm, when only one subproblem,
the root node of the tree, is available to all process. In that case, a start-up phase
where parallelism is not fully utilized seems difficult to avoid. Additionally, in
some scenarios, using parallelism as soon as several work units become available
may lead to performance anomalies [GC94]. Several strategies have been proposed
to address this issue: (1) assign the original problem to one process, and gradually
broadcast among processes the work units as they are created; (2) one process
performs a sequential B&B algorithm up to a point where a “sufficient” number
of pending subproblems are available; (3) all processes perform a sequential phase
in which the same tree is built by every process and, when the number of pending
subproblems becomes at least equal to the number of processes, each process selects
the subproblems on which it will subsequently work; etc. While the third approach
is suited mainly for multi-pool algorithms, the first two can be used in all types
of algorithms. In practice, the choice of an appropriate strategy depends on the
characteristics of the problem to solve and the nature of the parallel architecture
being used.

2.3 Architecture and complexity of modern supercomput-
ers

HPC technologies are evolving rapidly, and the architectures of modern computing sys-
tems are becoming increasingly complex. To fully harness the computational power of
these systems, programmers must have a solid understanding of their hierarchical or-
ganization. While a detailed technical analysis of the hardware used in this thesis, or
an in-depth discussion of the latest trends and future developments in HPC, is beyond
the scope of this chapter, it is important to note that the design of the algorithms pre-

16 Chapter 2. Background and Related Works

sented in this thesis is driven by the recent evolution of the organization of modern
supercomputers. This section aims to provide some context by briefly outlining current
trends and challenges in HPC, along with a concise description of the hardware used in
this work. For those interested in a more thorough exploration of the rapid evolution
of computing systems in recent years, numerous studies are available, such as [GR14;
Kec+11; Par+19], among others.

2.3.1 Modern supercomputers: a glimpse into the TOP500

This section discusses the architecture of modern supercomputers through the prism of
the TOP500 list. The latter provides a revealing snapshot of the most advanced ar-
chitectures shaping the landscape of HPC for over 30 years [TOP24]. Since 1993, it
compiles twice a year a list of the 500 world’s most powerful computer systems, pro-
viding statistics on their performance, architecture, diversification, etc. Supercomputers
are ranked by their Rmax performance, which is the maximal LINPACK performance
achieved solving dense systems of linear equations.

The systems featured in the TOP500 list derive much of their computational power
from advances in CPU design, from single-core processors to today’s multi-core archi-
tectures. Historically, CPUs were simple, single-core processors and performance gains
were achieved by increasing the clock frequency, allowing faster sequential execution of
instructions. However, increasing frequencies led to physical constraints, such as power
consumption and heat dissipation. These limitations led to a paradigm shift in com-
puter architecture with the introduction in the 2000s of multi-core processors running
at slightly lower frequencies, where multiple processing units (cores) were integrated on
a single die, enabling parallel execution of multiple instruction streams. Advances in
semiconductor technology led to the miniaturization of transistors (up to 3 nanometers
in 2022) and a steady increase in transistor count, encapsulated by Moore’s Law, which
predicted a doubling of transistor density roughly every two years. In the latest edition
of TOP500, no system has less than 4 CPU cores per socket and almost half of the
systems have at least 24 cores per socket or more [TOP24]. In addition, the Sunway
SW26010 processor is composed of 260 cores clocked each at a base frequency of 1.45
GHz.

The rise of GPU accelerators has also significantly enhanced the computational capa-
bilities of modern supercomputers, complementing traditional CPU-based architectures.
Originally developed for rendering graphics, GPUs excel in massively parallel process-
ing, making them ideal for handling data-intensive tasks in scientific computing, machine
learning, and large-scale simulations. Unlike CPUs, which prioritize sequential task exe-
cution with fewer, more complex cores, GPUs feature thousands of simpler cores that can
process multiple tasks simultaneously. This ability to perform a high number of parallel
operations has driven their integration into HPC systems. The shift toward heteroge-
neous architectures, combining CPUs with GPUs, has become a defining trend in the
TOP500 list, where GPU-powered systems now dominate the highest ranks. Notably,
the Frontier supercomputer, which holds the top position for several releases, combines
over 37,500 AMD MI250X GPU accelerators alongside its 64-core AMD CPUs to achieve

Chapter 2. Background and Related Works 17

unprecedented levels of performance.

2.3.1.1 Parallel Architectures

Understanding the parallel architecture of computing systems is crucial for optimizing
performance in HPC environments. Efficient parallelism at different levels enables the
effective utilization of multiple processing units, including CPUs and GPUs. In this
context, intra-node parallelism is distinguished from inter-node parallelism. Intra-node
parallelism refers to the parallel execution of multiple threads simultaneously within a
single compute node, leveraging the cores of CPUs and the parallel processing capa-
bilities of GPUs. In contrast, inter-node parallelism operates across multiple compute
nodes within a distributed computing environment, requiring effective communication
and coordination among the nodes to share data and manage workloads efficiently.

Intra-node parallelism exploits the multiple cores available in a CPU and/or the
thousands of cores present in a GPU to execute operations concurrently. However, CPUs
and GPUs are fundamentally different in their architectures and operational designs, as
shown in Figure 2.3. A CPU features one or several processing core(s), each having
three functional units: Arithmetic Logic Unit (ALU), control unit, and memory unit.
The ALU performs all the arithmetic and logical operations on the data as specified in
the program code. The control unit first decodes the program instructions and directs
the ALU to operate on the data. Finally, the memory unit consists of high-speed memory
that is used by the core to store the data during the program execution. The memory
architecture associated with a CPU plays a crucial role in determining how efficiently
data can be accessed and processed. At the top of this hierarchy is cache memory,
which consists of three levels: L1, L2, and L3. The L1 cache is the smallest and fastest,
located directly on the CPU chip and dedicated to each core, storing the most frequently
accessed data. The L2 cache, larger but slightly slower, serves as a secondary storage
area for data that may not currently reside in L1. L3 cache, even larger and shared
among all cores, acts as a buffer for data not found in L1 or L2, further reducing access
times compared to fetching from the main memory3. The main memory of a computer,
primarily composed of Dynamic Random Access Memory (DRAM), is slower than cache
memory but offers significantly greater capacity, allowing it to hold the active data and
instructions required by running applications. GPUs, in contrast, use a large number of
smaller, in-order cores which execute groups of threads in lockstep (SIMD). Compared
to CPUs, a much larger part of the chip area is dedicated to ALUs, and L1 and L2
caches are much smaller. Generally speaking, GPUs deal with the memory latency issue
by combining fast context-switching and massive multi-threading.

Inter-node parallelism, on the other hand, involves coordinating threads across mul-
tiple compute nodes within a distributed system or cluster. Each compute node operates
as an independent unit with its own CPUs, GPUs, and memory, requiring communica-
tion between compute nodes to share workloads. Typically, a message-passing library is
used for data exchange, facilitating communication over high-speed networks like Infini-

3For a sake of simplicity, L2 and L3 caches have been unified in Figure 2.3

18 Chapter 2. Background and Related Works

Figure 2.3: Architecture of CPU and GPU processors.

Band or Ethernet. By utilizing inter-node parallelism, large-scale computations can be
efficiently carried out across clusters, making it a crucial element for high-performance
computing systems.

2.3.1.2 Exascale computing

The June 2022 edition of the TOP500 marked the beginning of the exascale era, 14 years
after the entry into the petascale one. With a LINPACK score of 1.102 Exaflop/s, the
HPE Cray EX Frontier system not only becomes the most powerful supercomputer to
ever exist, but also the first true exascale machine. It consists of 9,408 compute nodes,
each equipped with one AMD Milan “Trento” 7A53 Epyc CPU and four AMD Instinct
MI250X GPUs, for a total of 8,730,112 cores. Although Frontier remains the world’s
most powerful computer to date, the HPE Cray EX Aurora has became in June 2024 the
second system to break the exascale barrier with an LINPACK score of 1.012 EFlop/s,
featuring a total of 9,264,128 cores.

In general, the current trend to achieve exascale systems involves increasing the
number of processing cores [TOP24]. As shown in Figure 2.4, there is a correlation
between the combined number of CPU and GPU cores in June 2024 TOP500 machines
and their ranking. Most systems in the Top 100 feature over 100,000 compute cores,
reaching more than a million for the Top 10. Additionally, there is a generally linear trend
over the years in the performance growth of TOP500 systems. As indicated in Figure 2.5,
the Rmax power has increased linearly since 1993, allowing researchers to predict the
entry into the exascale era in the early 2020s. Finally, while overall performance grows
due to the increasing number of resources, a significant diversification of computing
architectures can also be seen. One of the most striking examples is the Top 3 of the
June 2024 TOP500, shown in Figure 2.6, showcasing three systems (two of which are
exascale) each equipped with a GPU architecture from a different vendor: AMD, Intel,

Chapter 2. Background and Related Works 19

1 100 200 300 400 500

TOP500 rank

1,000

10,000

100,000

1,000,000

10,000,000

Nu
m
be

r o
f c

or
es

Figure 2.4: Number of combined CPU and
GPU cores by TOP500 rank (June 2024).

1990 1995 2000 2005 2010 2015 2020 2025

TOP500 release

100 MFlop/s
1 GFlop/s

10 GFlop/s
100 GFlop/s

1 TFlop/s
10 TFlop/s

100 TFlop/s
1 PFlop/s

10 PFlop/s
100 PFlop/s

1 EFlop/s
10 EFlop/s

Pe
rfo

rm
an

ce

Sum
#1
#500

Figure 2.5: Rmax performance of TOP500
supercomputers from 1993 to 2024.

and NVIDIA.

At a quintillion (1018) calculations each second, exascale supercomputers will have
a profound impact on everyday life in the coming decades, quickly analyzing massive
volumes of data and more realistically simulating the complex processes and relation-
ships behind many of the fundamental forces of the universe. This will have practical
applications in everything from precision medicine to regional climate, water use to
materials science, nuclear physics to national security. Given this context, several am-
bitious national and international research initiatives have emerged. For instance, the
French Priority Research Programs and Equipment “Digital for Exascale” (NumPEx)
aims to promote research and development of new architectures, new software and new
computing technologies to achieve exascale. This includes exploring new computational
paradigms, optimizing existing algorithms, and developing new methods to solve complex
problems. Similarly, the “Ultra-scale Computing for solving Big Optimization Problems”
(UltraBO) bilateral France / Luxembourg international scientific project, within which
this thesis is situated, aims to investigate exascale-aware design and implementation of
algorithms for solving challenging optimization problems. Indeed, several key challenges
remain to be addressed to fully leverage the potential of exascale computing, particularly
in the optimization context.

2.3.2 Key challenges in ultra-scale optimization

Ultra-scale computing is essential for effectively solving the large number of subproblems
generated by the decomposition of large optimization problems. Additionally, the inher-
ent parallelism in these problems makes them well-suited for ultra-scale supercomputers.
However, leveraging these systems efficiently presents a significant challenge: managing
an massive amount of irregular tasks across supercomputers that feature multiple layers
of parallelism and a heterogeneous mix of computing resources, including GPUs, multi-
core CPUs with varying architectures, and complex network topologies. This section

20 Chapter 2. Background and Related Works

Figure 2.6: Top 3 of TOP500 ranking (June 2024).

explores the key challenges in ultra-scale optimization that are scalability, heterogeneity
and portability, fault-tolerance, and productivity.

• Scalability : The scalability issue requires, on the one hand, the definition of scalable
data structures for efficient storage and management of the tremendous amount
of subproblems generated by decomposition [Sha11]. On the other hand, dynamic
load balancing mechanism requiring adaptive strategies to distribute computa-
tional tasks across resources effectively is another critical issue. This requires the
optimization of communications (in number of messages, their size and scope) es-
pecially at the inter-node level. Finally, efficient mechanisms are also needed for
granularity management and coding of the work units stored and communicated
during the resolution process.

• Heterogeneity and portability : Heterogeneity means harnessing various resources
including multi-core processors within different architectures and GPU devices.
The challenge is therefore to design and implement hybrid optimization algorithms
taking into account the difference in computational power between the various re-
sources as well as the resource-specific issues. Hardware resource specific-level
optimization mechanisms are required to deal with related issues such as thread
divergence and memory optimization on GPU, data sharing and synchronization,
cache locality, and vectorization on multi-core processors, etc. Portability, on the
other hand, ensures that optimization models and tools can run seamlessly across
different operating systems, hardware configurations, and software environments.
This is particularly challenging in ultra-scale systems, where maintaining com-
patibility with diverse system setups while achieving optimal performance requires
careful design and the use of cross-platform tools that can seamlessly scale without
sacrificing performance or functionality across different architectures.

• Fault tolerance: Although not investigated in this thesis, fault tolerance represents
another major challenge for ultra-scale computing [Cap09; Sni+14]. Failures can
arise from various sources, including hardware failures due to component degra-

Chapter 2. Background and Related Works 21

dation, software bugs, network issues like congestion or disconnections, etc. It is
also established that as supercomputers increase in size to millions of processing
cores, their Mean-Time Between Failures tends to become shorter [Sha+19]. In
the optimization context, failures lead to the loss of work unit(s) being processed
by some thread(s) during the resolution process. Therefore, a major issue, which
is particularly critical in exact optimization, is how to recover the failed work units
to ensure a reliable execution.

• Productivity : Productivity is an emerging measure of merit for HPC [SD08]. It
stems from the increasing complexity of modern supercomputer architectures,
which require more advanced software and programming models to fully exploit
their capabilities, as described in previous points. Traditional parallel models like
MPI+X impose a steep learning curve and necessitate considerable manual effort
to optimize for performance, especially when dealing with heterogeneous compo-
nents such as CPUs and GPUs. More expressive programming models are needed
to deal with this issue and simplify the developer’s efforts while supporting dy-
namic parallelism. The scientific computing challenge is retaining expressivity and
productivity while also delivering high performance.

2.3.3 Enhancing HPC productivity with PGAS

This section introduces key parallel programming models, highlighting the PGAS model
as an alternative to the traditional MPI+X approach. It then explores the concept of
software productivity in HPC and examines the role of High Productivity Computing
Systems (HPCS) languages in tackling this challenge.

2.3.3.1 PGAS as alternative to MPI+X

Parallel programming models can be categorized into three primary groups: shared-
memory models, where multiple processes can read from and write to a common shared
memory; message-passing models, where isolated processes with separate memories com-
municate by exchanging messages; and PGAS models, where a global address space is
logically partitioned across multiple processes, enabling efficient access to both local and
remote memory locations, combining features of both shared and distributed memory
systems [DMN12]. These models are illustrated in Figure 2.7 and are discussed in more
detail below.

• Shared-memory model : This model allows multiple threads to access a common
address space, facilitating communication and data sharing. All threads can read
from and write to the same physical memory, enabling efficient concurrent exe-
cution as multiple threads operate simultaneously on shared data. However, to
maintain data consistency and prevent conflicts, synchronization mechanisms like
mutexes, semaphores, and condition variables, are employed to manage access to
shared resources and prevent data races. While the shared-memory model is preva-
lent in multi-core architectures, due to its straightforward approach to data access

22 Chapter 2. Background and Related Works

and communication, its limitations become more pronounced as systems scale, due
to increased contention for shared resources resulting in bottlenecks as the number
of threads increases.

• Message-passing model : In contrast to the previous model, in this one threads com-
municate and synchronize by sending and receiving messages, rather than sharing
a common address space. Each thread has its own address space, and communica-
tion occurs through explicit send and receive operations, which can be synchronous
or asynchronous. This model is particularly well-suited for distributed systems,
where processes may run on separate machines with their own local memory. One
of the key advantages of this model is that it naturally supports scalability, as
processes can be distributed across multiple nodes without concerns about mem-
ory contention. However, the message-passing model also introduces complexity in
managing communication, as developers must carefully handle message formatting,
delivery, and potential delays, which can affect overall performance.

• Partitioned Global Address Space model : The PGAS model aims to merge the
strengths of both shared and distributed memory models. It provides a unified
global address space that is logically shared among all processes, even though the
physical memory is distributed across multiple compute nodes. More precisely,
PGAS implementations typically make the distinction between local, shared lo-
cal and shared remote memory references. Processes are allowed to access both
local and remote data using familiar pointer-based syntax, offering control over
data locality. A key benefit of PGAS is its improved performance in applications
with irregular memory access patterns, minimizing the overhead of traditional
message-passing. However, challenges remain in maintaining data consistency and
managing communication efficiently, particularly in large-scale systems. Indeed,
even though processes can access remote memory, these accesses involve higher
latency and additional overhead compared to local memory accesses.

The combination of shared-memory and message-passing programming models offers
the potential to leverage the strengths of both: the efficiency, memory savings, and ease
of programming of shared-memory models, alongside the scalability of message-passing
models. In fact, this hybrid approach is the core objective of the PGAS model. In
practice, implementing such a hybrid parallel model is often done in an “evolutionary”
manner, by combining existing programming models and tools from each paradigm.
Typically, message passing (usually with MPI) is used for communication across dis-
tributed nodes, while shared-memory (via OpenMP or Pthreads) is employed within
each node. Furthermore, GPUs can be integrated to introduce a third level of paral-
lelism, along with specialized GPU programming models such as CUDA. The combina-
tion of message-passing and shared-memory parallelism is often referred to as MPI+X.
Alternatively, PGAS is implemented through parallel programming languages and li-
braries like Unified Parallel C (UPC), Coarray Fortran (CAF), and Titanium, which
extend C, Fortran, and Java, respectively; or newer languages such as Chapel, X10, and

Chapter 2. Background and Related Works 23

(a) Shared-memory. (b) Message-passing. (c) PGAS.

Figure 2.7: Illustration of main parallel programming models. Circles and rectangles
represent processes and address spaces, respectively. Plain arrows and dotted arrows
represent data accesses and network communications, respectively.

Fortress [Alm11]. Some of these languages, like Chapel, integrate all three levels of par-
allelism (intra-node, inter-node, and GPU), providing a “revolutionary” alternative to
traditional MPI+X approaches and offering significant advantages in terms of software
productivity. This motivated us to use the Chapel language for the implementation of
our PGAS-based algorithms.

2.3.3.2 Software productivity in HPC

As modern systems tend to become larger, including numerous levels of memory, various
forms of parallelism, and an increasing diversity of architectures and configurations, the
notion of productivity in the context of HPC is emerging more prominently [SD08]. Some
authors proposed formal frameworks to quantitatively measure HPC productivity [SB04;
KKS04]. For instance, assuming that T is the time to solution, S the system used, P
the problem solved, the productivity Ψ is defined by [SB04] as an utility U over a total
cost:

Ψ(P, S, T, U) =
U(P, T)

CD(P, S, TD) + CE(P, S, TE)
,

where CD and CE are the development and execution costs, respectively, and TD and
TE their associated times. The utility includes the operations/time peak that can be
achieved on the system, the efficiency achieved by the parallel program, the availability
of the system, etc. The development cost includes code development, testing, and doc-
umentation, but also the cost of porting to new systems, the cost of recovering from the
failures, the cost of training programmers when a new language or computer system is
used, etc. In contrast, the execution cost includes the cost of the system (hardware and
software), the cost of the maintenance and repair of the system, the cost of electrical
power and other supplies, etc.

In practice, most of these measurements are hard to evaluate as they are subjective
and often maintained transparently to the HPC users. It is possible to make numerous
assumptions to reduce the definition of productivity to something simpler to measure,
but this raises the question of its relevance. In this thesis, we address software pro-

24 Chapter 2. Background and Related Works

ductivity via the use of languages implementing the PGAS programming model, which
offers the functionalities described in the previous section. More particularly, we put the
focus on HPCS languages.

2.3.3.3 HPCS languages

In 2002, the Defense Advanced Research Projects Agency (DARPA) initiated the HPCS
project, with the goal of accelerating both the performance of the largest parallel com-
puters and their usability. It was recognized that a significant barrier to the application
of computing to science, engineering, and large-scale processing of data was the cum-
bersomeness of developing software that exploits the power of new architectures. As
part of the HPCS project, three computer vendors, Cray, IBM, and Sun, have competed
not only in the area of hardware design to address DARPA’s performance goals, but
also in language design to address the software development productivity goals. Each of
these languages—Chapel, X10, and Fortress—is based on the PGAS model [LY07], and
is described below.

• Chapel : Open-source programming language developed by HPE (previously Cray
Inc.) for productive parallel computing on large-scale systems, including multi-
core desktops, clusters, clouds, and supercomputers [CCZ04]. It supports multi-
threaded execution through high-level abstractions for data parallelism, task par-
allelism, concurrency, and nested parallelism. Chapel’s locale type enables users to
specify and reason about the placement of data and tasks on a target architecture
in order to tune for locality and affinity. Chapel supports global-view data ag-
gregates with user-defined implementations, permitting operations on distributed
data structures to be expressed in a natural manner. In contrast to many previ-
ous higher-level parallel languages, Chapel is designed around a multi-resolution
philosophy, permitting users to initially write very abstract code and then incre-
mentally add more detail until they are as close to the machine as their needs
require. Chapel supports code reuse and rapid prototyping via object-oriented
design, type inference, and features for generic programming. Existing code can
be integrated into Chapel programs (and vice-versa) via interoperability features.

• X10 : Java-derived, type-safe, parallel object-oriented language developed by IBM
aiming to provide a programming model that can address the architectural chal-
lenge of multiples cores, hardware accelerators, clusters, and supercomputers in a
manner that provides scalable performance in a productive manner [Cha+05]. X10
introduces a flexible treatment of concurrency, distribution, and locality, within an
integrated type system. Locality is managed explicitly using places, computational
units with local shared memory. A program runs over a set of places. Each place
can host data or run activities, which are lightweight threads that can run on its
place, or (explicitly or implicitly) asynchronously update memory, in other places.
For synchronization, X10 uses “clocks”, which are a generalization of barriers.

Chapter 2. Background and Related Works 25

• Fortress: General-purpose, statically typed, component-based programming lan-
guage developed by Oracle Lab (previously Sun Microsystems Inc.) designed for
producing robust high-performance software with high programmability [Ste+11].
Fortress supports features such as transactions, specification of locality, and im-
plicit parallel computation, as integral features built into the core of the language.
It has a novel type system to integrate functional and object-oriented programming
better. Thus, it supports mathematical notation, such as

∑
, and static checking of

properties, such as physical units and dimensions, static type checking of multidi-
mensional arrays and matrices, and definitions of domain-specific language syntax
in libraries.

Fortress has been officially discontinued in 2012, citing severe technical challenges
with using Fortress’s type system on existing virtual machines. In addition, at the time
of writing this thesis, the development of the X10 language seems to have been at a
standstill for several years. However, Chapel stands out as one of the most promising
PGAS-based high-performance and high-productivity parallel programming language,
benefiting from an active open-source code development and lots of community-oriented
resources4. It is therefore considered for the implementation of the contributions of this
thesis.

2.4 Related works

The range of applications for B&B software is broad, which naturally leads to a wide
variety of problem types, user interfaces, parallelization methods, and machine config-
urations. As a result, the literature has seen the development of numerous specialized
B&B algorithms tailored to specific problem classes or architectures. In the following,
we review the most significant of these, including a particular emphasis on PGAS-based
approaches.

2.4.1 Frameworks for parallel B&B

Many frameworks for parallel B&B algorithms have been proposed over the years, such as
ALPS [Xu+05], Bob++ [Dje+06], MALLBA [Alb+02], PEBBL [EHP15], PICO [EPH01],
Symphony [RG05], and YewPar [Arc+19], to name a few. These frameworks aim to facil-
itate interaction between the user and the parallel machine by defining abstract types for
search tree nodes and solutions. Users are responsible for providing concrete implemen-
tations of these types, along with the specific branching and bounding procedures, while
the framework manages the broader aspects of parallel B&B execution. Frameworks
differ in the types of B&B variants they support, the parallel models they implement,
and the programming environments they are designed for. Often structured as multi-
layered class libraries, they allow for the integration of additional features by building

4e.g., annual forum for users and developers, blog articles, and social networks.

26 Chapter 2. Background and Related Works

upon foundational layers. For example, PEBBL originated as the core component of the
parallel MIP solver PICO, and has since been extended to offer more functionalities.

Symphony employs the Master-Worker (MW) paradigm for parallelizing the applica-
tion, with centralized node management [RG05]. A single process, the master, oversees
all aspects of the search, while the worker processes carry out the tasks assigned by
the master, such as exploring one or more node(s). However, since the unit of work
is the subtree rather than the subproblem, each worker is responsible for searching its
assigned subtree. As a result, while the overall search is coordinated by the master,
the search control is effectively distributed among the workers. This strategy performs
well with a small number of processors, but it does not scale effectively. As the number
of processors increases, the central pool becomes a computational and communication
bottleneck. Alternatively, several frameworks adopt the Master-Hub-Worker paradigm
to address the limitations of the MW approach [Xu+05; EPH01; EHP15; Dje+06]. In
this model, a middle management layer is introduced between the master and worker
processes. A “cluster” consists of a hub, which manages a fixed number of workers. As
the number of processes grows, additional hubs and worker clusters are added. This
decentralized approach preserves many of the benefits of global decision-making while
reducing overhead and shifting some of the computational load from the master process
to the hubs. Some libraries propose one or several distributed strategies, for instance
based on MPI [Dje+06; Xu+05; Alb+02; EPH01] or the PGAS-based HPX [Arc+19].

Generally speaking, it is challenging for a framework to deliver optimal performance
compared to a custom-developed algorithm, as the specific characteristics of a problem
may not be accounted for by the framework. Therefore, problem-specific or architecture-
specific B&B algorithms are often proposed in the literature.

2.4.2 B&B for GPU

Jenkins et al. [Jen+11] offer a thorough overview of the challenges in implementing
parallel backtracking on GPUs, with many of their findings on GPU-based backtracking
remaining applicable to B&B algorithms that employ a DFS strategy. To leverage the
GPU’s massive parallel processing capabilities, a fine-grained parallelization of search
space exploration and/or node evaluation is essential, depending heavily on the problem’s
nature and the chosen parallelization model. Additional key factors include latency
hiding through coalescence, saturation, and shared memory utilization. In general, the
algorithmic properties of B&B, including the irregularity of the search space, control flow,
and memory access patterns, conflict with the GPU programming model. Moreover,
the memory requirements for backtracking and B&B algorithms are often challenging
to estimate and can exceed the memory capacity of GPUs. Various approaches for
GPU-accelerated B&B algorithms have been proposed, each corresponding to different
parallelization models, with their design typically driven by the specific characteristics
of the problem being addressed. Typically, one can cluster the approaches according to
the granularity—fine, medium, and coarse—of the bounding function.

For fine-grained problems, the parallel tree exploration model is commonly imple-
mented on the GPU [Car+11; Fei+10; Li+15; RS10; ZSW11]. In works such as [Fei+10;

Chapter 2. Background and Related Works 27

Li+15; ZSW11], the node evaluation function for the N-Queens problem is executed on
the GPU, utilizing minimal registers or memory and performing a few bit-operations.
A typical approach in these algorithms involves first conducting a sequential (or weakly
parallel) search on the CPU, followed by a parallel search on the GPU. The primary
goal of the CPU search is to generate a sufficiently large active set of subproblems. Each
subproblem is then assigned to a GPU thread and serves as the root for an independent
search. The main challenge in this fine-grained approach lies in the careful tuning of
parameters such as the cutoff depth or the active set size, as these factors significantly
affect thread granularity. Although varying thread granularities can lead to load imbal-
ance, none of these works implement dynamic load balancing on the GPU. They assume
that the static work distribution, established after the CPU search, is sufficiently regular
to avoid significant issues.

Medium-grained problems are defined in [Gmy17] as problems involving a bounding
operator that is very high compared to the rest of the algorithm, but where the cost
of evaluating one node is sufficiently small to be efficiently performed by a single GPU-
thread. An example of such problems is the PFSP, where it has been shown that the
bounding function consumes up to 99% of the sequential execution time [MCB14]. Most
of the approaches in the literature tackle those problems by bounding several subprob-
lems in parallel on the GPU, while managing the tree exploration on the CPU [Cha+13b;
LE12]. Significant efforts have been dedicated to transferring larger portions of the algo-
rithm to the GPU and minimizing the overheads associated with data transfers between
the CPU and GPU. In [Gmy+16], a fully GPU-based B&B algorithm is proposed, uti-
lizing the compact IVM data structure. Various lock-free WS strategies are explored
to address workload irregularities, allowing explorers to exchange work units during a
dedicated WS phase incorporated into the synchronous parallel exploration process.

Finally, for coarser-grained problems, where the bounding function is particularly
heavy, accelerating the function itself often provides the best results [Dab+16; MCA13].
For instance, a GPU-accelerated B&B algorithm dealing with the blocking jobshop
scheduling problem has been proposed [Dab+16]. The approach offloads subproblems
to the GPU but uses a block-based parallelization for each node evaluation. As a re-
sult, fewer subproblems need to be offloaded to fully saturate the GPU compared to
medium-grained problems.

2.4.3 Hybrid and distributed parallel B&B

Few works investigated the parallelization of B&B using multiple CPUs and GPUs in
distributed heterogeneous systems. In [VD16], the authors examine the design of paral-
lel B&B algorithms for large-scale heterogeneous computing environments with shared
memory cores, distributed CPUs, and GPUs. Through extensive experimentation, the
study highlights the importance of adaptive and hybrid load balancing to achieve linear
speed-ups and reduce idle times, showing that intra-node parallelism and decentralized
load balancing are key to handling locking issues and scaling distributed resources ef-
fectively. In [Cha+13a], the authors introduce a refined approach where branching,
bounding, and pruning are parallelized on the GPU to reduce CPU-GPU communication

28 Chapter 2. Background and Related Works

latency. An experimental comparison between concurrent and cooperative approaches
reveals that the cooperative method enhances performance over a GPU-only strategy,
while the concurrent approach provides no advantage. The authors highlight reducing
CPU-GPU communication overhead as a key challenge and address this by introducing
overlapping communication schemes and auto-tuning the size of offloaded task pools.

Computational grids, offering a vast pool of computational power, have also led to
the formulation of some parallel B&B algorithms [MMT07; BMT12; Ans+02; Dro+12].
A compact encoding of work units is utilized in [MMT07] to minimize communication
overhead in distributed B&B, along with a checkpoint-based fault-tolerance mechanism.
Applied to the Ta056 flowshop problem instance, this approach achieved an optimal
solution within 25 days using 1,900 processors across 9 clusters. In fact, some of the
largest known exact resolutions of COPs have been performed using grid computing tech-
nologies; another example being the resolution of hard quadratic assignment problem
instances in [Ans+02], using the MW paradigm. In [BMT12], the proposed algorithm
addresses the scalability limitations of traditional MW-based B&B algorithms by intro-
ducing a hierarchical MW paradigm, where inner nodes (masters) handle branching and
leaf nodes (workers) explore sub-trees. Applied to the Flowshop scheduling problem,
the authors demonstrates improved scalability and efficiency in large-scale computa-
tional grid environments. In [BMT14], the authors build on their previous approach by
introducing an enhanced fault-tolerance mechanism.

2.4.4 PGAS-based parallel B&B

Generally, the literature on parallel PGAS-based optimization is very scarce. In [MAD13]
and [Mun+14], the authors investigate the use of the Global address space Programming
Interface (GPI) PGAS Application Programming Interface (API) and X10, respectively,
for parallel local search metaheuristics (approximate optimization). The reported re-
sults show that good speed-ups could be obtained on some basic problem instances, but
no comparison against MPI+X approaches is provided. In the context of parallel B&B
algorithms, a PGAS-based productivity-aware design and implementation of distributed
B&B for solving large COPs on multi-core systems is proposed in [Car+20]. The ap-
proach is based on Chapel and combines a sequential initial search with Chapel’s parallel
and distributed iterators for load balancing. Experiments on the PFSP demonstrate the
expressiveness and productivity of Chapel compared to an MPI +Pthreads counterpart
implementation, in addition to equivalent performance for the best results on 1,024 CPU
cores.

PGAS programming models were originally designed to facilitate productive paral-
lel programming at both the intra-node and inter-node levels in homogeneous parallel
machines. However, facing the growing need to support accelerators, especially GPU ac-
celerators, PGAS models have been extended to accommodate heterogeneous systems.
Past approaches focus on extending existing compilers, for example to compile and op-
timize high-level data-parallel constructs for GPU execution [Sid+12; CBS11; Che+11].
It is also not rare that the user eventually writes a fully external GPU program that
includes the host part (i.e., GPU memory (de)allocation, host-device/device-host data

Chapter 2. Background and Related Works 29

transfer) and the device part (i.e., GPU kernels) from their primary language. In [HPS19;
HPS23], the authors introduce the Chapel’s GPUIterator and GPUAPI modules to facil-
itate the invocation of user-written low-level GPU programs and choose an appropriate
abstraction level depending on the tuning scenarios, respectively. Finally, GPU-native
support has recently become available in languages like Chapel, marking a significant
advancement in easing GPU programming within the PGAS model [MWA24].

To the best of our knowledge, the only work investigating PGAS-based parallel B&B
for heterogeneous systems is based on Chapel and the GPUIterator module [Car+21].
It combines a partial search strategy with pre-compiled CUDA kernels for more efficient
exploitation of the intra-node parallelism. The combination of Chapel with CUDA aimed
to address Chapel’s lack of GPU support from a few years ago. Since then, the language
has been expanded to include a native vendor-neutral GPU support, thus unifying the
different levels of parallelism within a single language. Moreover, whereas the approach
proposed by [Car+21] tackled permutation-based problems using a bitsets data structure,
this thesis focuses on generic approaches with respect to the problem being solved.

2.5 Benchmark problems

This section provides a description of the benchmark problems considered in this thesis.
Appendix A summarizes the instances solved, along with some execution statistics.

2.5.1 Permutation Flowshop Scheduling Problem

Because of many economic and industrial applications, the Permutation Flowshop Schedul-
ing Problem (PFSP) is widely used in the literature, specifically the formulation with
makespan criterion [HS05]. It consists in finding an optimal processing order (a permu-
tation) for n jobs {J1, . . . , Jn} on m machines {M1, . . . ,Mm}, such that the completion
time of the last job on the last machine (makespan) is minimized. Obeying a chain pro-
duction principle, the processing of a job Jj on machineMk can only start if processing of
Jj is completed on all upstream machines M1, . . . ,Mk−1. Processing job Jj on machine
Mk takes a given indivisible amount of time pjk and all jobs are to be processed in the
same order on all machines. Figure 2.8 illustrates a PFSP instance consisting of n = 3
jobs and m = 4 machines. For m ≥ 3, the problem is shown to be NP-hard [GJS76].

The following two lower bound functions are considered in this thesis:

• LB1: A variant of the so-called one-machine bound that can be computed in O(m)
steps per subproblem [LLR78];

• LB2: The so-called two-machine bound that is known for its good results and
has complexity of O(m2n log(n)) steps per subproblem. It is mainly based on
Johnson’s theorem [Joh54] which provides polynomial time procedure for finding
an optimal solution for solving the 2-machine problem.

30 Chapter 2. Background and Related Works

M1 M2 M3 M4

J1 5 3 4 1
J2 2 2 1 4
J3 1 3 5 2

(a) Processing times.

(b) Optimal solution.

Figure 2.8: Illustration of a PFSP instance consisting of n = 3 jobs and m = 4 machines.
The table shows the processing times of the jobs on each machine. The Gantt diagram
shows the optimal solution.

The LB1 bound results in larger trees with a more fine-grained workload, while LB2
results in a more coarse-grained but also more irregular workload, due to the improved
efficiency of the pruning operator.

Different branching strategies are also considered. The static forward branching
scheme that constructs solutions from left to right, and the dynamic minBranch branch-
ing scheme proposed in [Gmy+20b]. Using a dynamic branching strategy, the algorithm
must choose between the sets of subproblems constructed from left to right and right to
left, respectively. Assuming that the lower bounds corresponding to these subproblems
have been computed, the minBranch branching scheme locally minimizes the branching
factor (the average number of children per node) by keeping the set where more nodes
can be pruned. This strategy is known to produce the smallest tree size in most cases
when combined with LB1, compared to other branching strategies.

The most used benchmark instances considered in the literature are the ones defined
by Taillard [Tai93]. The latter are indexed from ta001 to ta120 and are divided into 12
groups of 10 instances according to their size (n×m): 20× 5, 20× 10, 20× 20, 50× 5,
50×10, 50×20, 100×5, 100×10, 100×20, 200×10, 200×20, and 500×20. Whenm ≤ 10,
the instances can be solved in few seconds using a sequential B&B. However, instances
where m = 20 and n ≥ 50 are very hard to solve. For example, proving the optimality
of the 50× 20 ta058 required over 13 hours of processing on 256 NVIDIA V100 GPUs,
and 339× 1012 node decompositions [Gmy22]. Some instances remain unsolved, such as
ta051, ta054, and ta060, more than 30 years after Taillard’s benchmark release.

2.5.2 0/1-Knapsack problem

The NP-hard 0/1-Knapsack problem is one of the most intensively studied problems, as
it appears in many practical situations [Lag96]. Given a finite set S of k items, a positive
weight and profit for each item, along with a knapsack capacity W , the problem consists
in finding a subset S′ ⊆ S such that the total profit is maximized while fulfilling the

Chapter 2. Background and Related Works 31

A B C D E F

Profit 3 5 7 2 1 4
Weight 3 4 12 4 7 2

(a) Instance data.

(b) Optimal solution.

Figure 2.9: Illustration of a 0/1-Knapsack instance with 6 items. The table shows the
profits and weights associated to each item, denoted from A to F. The array of binary
variables on the right shows the optimal solution.

capacity constraint5. A solution is represented as an array of binary variables, where 1
means that the item is selected, and 0 means that it is not selected. Figure 2.9 illustrates
a 0/1-Knapsack instance with 6 items.

The upper bound function proposed by Dantzig is considered [Dan57]. It is an effi-
cient method to determine inO(k) a solution to the continuous relaxation of the problem,
hence providing an upper bound on the optimal solution. Solutions are constructed from
left to right.

The instances proposed by Pisinger are used in this thesis [Pis05]. They are composed
of multiple groups of randomly generated instances, in which the weights are uniformly
distributed in a given interval with data range 1,000 and 10,000 and the number of items
varies from 20 to 10,000. These instances are known to be hard, as there are numerous
instances for which all currently known upper bounds perform badly, and for which the
running times of the algorithms are close to the worst-case time-bound. The instances
addressed in this thesis contain either 50 or 100 items and require anywhere from a few
seconds to several hours to solve sequentially.

2.5.3 N-Queens problem

The N-Queens problem has been studied for over 170 years and is still widely consid-
ered in Computer Science today, particularly as a benchmark problem for constraint
programming algorithms [EST92]. It consists in placing N queens on a N by N chess-
board, one queen on each square, so that no queen captures any other, that is, the board
configuration in which there exists at most one queen on the same row, column and
diagonals. Several variants of the problem exist, but the one considered in this thesis is
to enumerate all valid solutions.

5Without a loss of generality, we assume in this thesis that profits, weights, and W are positive
integers.

32 Chapter 2. Background and Related Works

(a) Partial solution that cannot be extended to
achieve feasibility.

(b) Valid solution.

Figure 2.10: Illustration of the N-Queens problem for N = 8. The permutation repre-
senting the board configuration is displayed on the left side of the board.

The N-Queens problem can be modeled as a permutation problem, in which the value
xj ∈ {1, . . . , N} at index j ∈ {1, . . . , N} indicates that a queen is placed in column xj of
row j. As an example, Figure 2.10 illustrates an unfeasible partial solution along with a
valid solution for N = 8. The encoding of a solution as a permutation of size N ensures
that exactly N queens are placed on the board and that the “exactly-one” constraints
on rows and columns are satisfied. Therefore, to evaluate the feasibility of a (partial)
solution, it is enough to check for diagonal conflicts among the queens already placed.

Formally, N-Queens is not an optimization problem, but a constraint satisfaction
problem. However, B&B can easily be adapted to solve such problems. Instead of
searching for optimal solutions the goal is to find all valid solutions. Instead of a lower
bound on the optimal cost of a subproblem it is enough to use a node evaluation func-
tion that assigns the value 0 to feasible (partial) solutions and 1 to infeasible (partial)
solutions. Initializing the algorithm at the upper bound 0 and pruning only in the case
of strict inequality, the number of leaf nodes visited by B&B equals the number of valid
board configurations.

For N ≤ 14, the N-Queens problem can be solved within a fraction of a second by
a sequential algorithm. However, the size of the explored tree grows exponentially with
N , so we consider the instances for N = 15 to 19. The largest known solution count to
date is for the N = 27 instance that contains approximately 235×1015 solutions [PE17].
Permutations are only constructed from left to right, as the tree size cannot be reduced
by constructing solutions from right to left due to symmetries.

2.5.4 Unbalanced Tree Search benchmark

The Unbalanced Tree Search benchmark (UTS) has been designed to evaluate the per-
formance for parallel applications requiring dynamic load balancing [Oli+07]. It consists
in counting the number of nodes in an implicitly constructed tree that is parameterized

Chapter 2. Background and Related Works 33

in shape, depth, size, and imbalance. The tree is generated on the fly using a Random
Number Generator (RNG) that allows the random stream to be processed in parallel
while still producing a deterministic tree.

In these thesis, two representative tree shapes are considered:

• Binomial trees: Each node has q children with probability p and no children with
probability 1− p. When pq < 1, this process generates a finite tree with expected
size 1

1−pq . The variation in subtree sizes increases dramatically as pq approaches 1,
causing the tree to become imbalanced. A binomial tree serves as an optimal
adversary for load balancing strategies because choosing to move one node over
another provides no advantage for load balancing; the expected work at all nodes
is identical. The root-specific branching factor b0 can be set sufficiently high to
generate a variety of subtree sizes below the root.

• Geometric trees: Each node has a branching factor that follows a geometric distri-
bution with an expected value that is specified by the parameter b0 > 1. Since the
geometric distribution has a long tail, some nodes will have significantly more than
b0 children, yielding unbalanced trees. The parameter d specifies the maximum,
beyond which the tree is not allowed to grow. Unlike binomial trees, the expected
size of the subtree rooted at a node increases with proximity to the root.

Multiple instances of a tree type can be generated by varying the seed r for RNG state
at root.

34 Chapter 2. Background and Related Works

Chapter 3

PGAS-based Parallel B&B for
CPU-based Clusters

Contents

3.1 The PGAS-based distBag DFS data structure 36

3.1.1 Origins . 36

3.1.2 Hierarchical structure and core components 37

3.1.3 Locality-aware dynamic load balancing 37

3.2 distBag DFS-based parallel B&B (P3D-DFS) 41

3.2.1 Overall design of P3D-DFS . 41

3.2.2 Detecting global termination 42

3.3 Experiments . 43

3.3.1 Comparison with other data structures 45

3.3.2 Dynamic load balancing mechanism 45

3.3.3 Strong scaling efficiency . 46

3.3.4 Comparison against an MPI+X approach 48

3.3.5 Large-scale experiments . 50

3.4 Conclusion . 52

This chapter investigates the design and implementation of a PGAS-based parallel
B&B for CPU-based clusters, leveraging PGAS’s ability to efficiently manage memory
access and enhance parallelism in distributed computing environments. Several chal-
lenges have to be addressed, such as ensuring memory consistency, achieving effective
load balancing, and minimizing communication overhead associated with shared data
structures. Additionally, scalability becomes a concern as the number of nodes increases,
necessitating efficient management of inter-node communication and synchronization.

Section 3.1 contributes a PGAS-based data structure, called distBag DFS, imple-
menting a highly parallel segmented multi-pool specialized for unbalanced DFS. This
data structure integrates a dynamic load-balancing mechanism based on large-scale WS,

35

36 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

operating at both intra- and inter-node levels. This mechanism, which required sophis-
ticated synchronization, promotes locality in WS, enabling scalability.

Then, Section 3.2 presents the P3D-DFS algorithm, a generic distBag DFS-based
parallel B&B algorithm for CPU-based clusters. Crucial aspects of the algorithm, such
as termination detection, are discussed.

Both data structure and parallel B&B algorithm are then thoroughly tested in Sec-
tion 3.3, which includes evaluations of memory consumption, the dynamic load balancing
mechanism, the strong scaling efficiency considering both intra- and inter-node levels,
comparison with an MPI+X counterpart implementation, and large-scale experiments
conducted on a petascale system. Finally, Section 3.4 draws the conclusion of this chap-
ter.

3.1 The PGAS-based distBag DFS data structure

This section provides a comprehensive description of the distBag DFS data structure.
Each of its internal components plays a crucial role in exploiting intra- and inter-node
parallelism of the target multi-core architecture and managing data efficiently. In addi-
tion, the dynamic load balancing mechanism based on WS is forwarded.

3.1.1 Origins

The distBag DFS data structure presented in this chapter is a revisit of an existing PGAS
data structure, called distBag [JFK17]. The latter is a parallel-safe data structure that
can be used across multiple threads across multiple nodes, and support basic operations
that any data structure needs, such as insertion/removal of an arbitrary element and
iteration over all elements. More specifically, distBag implements a generic unordered
distributed multi-set and employs a load balancing mechanism based on WS to balance
work across nodes.

Internally, distBag maintains multiple bag, one per compute node, themselves com-
posed of multiple sets, called segments, implemented as unrolled linked-lists. The parallel-
safety of segments is guaranteed by a spin-lock on each segment. In the following, we
refer to pool and segment without distinction. By default, there are as many segments
per node as threads per node. However, pools are not explicitly mapped onto threads.
Actually, multiple pools are maintained in parallel to reduce lock contention, but threads
remove and insert elements from any (not necessarily the same) unlocked pool. In prac-
tice, this “unordered” characteristic of distBag may cause memory issue, as in the
context of tree exploration. For instance, when child nodes are inserted into a different
pool than the one from which the parent node was taken, no exploration strategy can be
followed. As a direct consequence, large number of nodes may be generated and stored
in the data structure, leading to large memory requirements. This will be experimentally
confirmed in Section 3.3.1.

The parallel distributed nature of the PGAS distBag data structure, as well as the
underlying load balancing mechanism make it particularly attractive in the context of

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 37

parallel productivity-aware tree-search. However, its segments’ scheduling policy does
not allow us to use it for parallel DFS B&B, nor to have any control over the order
of insertion/retrieval of elements. This motivates our revisit of the data structure into
distBag DFS, a variant specialized for parallel DFS.

3.1.2 Hierarchical structure and core components

Figure 3.1 illustrates the hierarchical organization of the data structure. In order to
account for the Non Uniform Memory Access (NUMA) characteristics of large-scale
systems with multi-core compute nodes, distBag DFS maintains a separate bag instance
(multi-pool) for each locality, as depicted in Figure 3.1a. A locality represents a subset of
the target architecture, used to manage and optimize affinity for improved performance
and scalability. Typically, a locality corresponds to a single compute node so that it can
access its local memory with a comparably uniform and minimal cost. Accessing data
from different localities, however, comes at a higher cost. Although the data structure
supports distributed use, it allows for the creation of privatized bag instances to maximize
performance. Each locality thus operates on its own privatized instance.

As shown in Figure 3.1b, each instance of a bag contains multiple pools, hereafter
called segments. Specifically, one segment is assigned to each parallel thread (denoted
as T in the figure). Each thread is uniquely identified by indexes from 1 to T , which are
used to map threads to their corresponding segments. During the insertion and retrieval
procedures of distBag DFS, the segment is specified to indicate where a tree node is
inserted into or retrieved from. This specification is crucial for DFS because it ensures
that when a node is evaluated, its entire subtree is explored before processing another
sibling node. If child nodes are inserted into a different segment than their parent, the
DFS condition cannot be guaranteed. It is however important to note that while each
segment ensures a local DFS order, this order is not guaranteed across the multi-pools.

Segments are implemented using non-blocking split deques, as described in [DP14].
Each segment is logically divided into “shared” and “private” regions using an atomic
split pointer, illustrated in Figure 3.1c. This design enables lock-free access to the private
section of the deque locally, and facilitates transfer of work between the shared and
private regions without copying. Work transfer occurs by adjusting the split pointer
bidirectionally using appropriate operators. Thread access the shared region for load
balancing, synchronizing themselves using an atomic lock. Segments are initially sized
with a capacity of 1,024 elements, and when a segment reaches full capacity, it expands
its size exponentially by a power of two. To prevent uncontrolled growth and excessive
memory usage, distBag DFS sets a maximum capacity limit for each segment. However,
this limit is rarely reached due to the DFS exploration order, which ensures limited
memory consumption over time.

3.1.3 Locality-aware dynamic load balancing

Load balancing ensures that work is evenly distributed among processing units, minimiz-
ing idle time and maximizing parallel exploration benefits. By effectively distributing the

38 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

(a) Bag instances. (b) Multi-pool.

(c) Pool.

Figure 3.1: Illustration of the distBag DFS components: (a) bag instances, (b) multi-
pool, and (c) pool based on non-blocking split deque. Red arrows represent potential
work stealing operations.

workload, the overall performance of parallel B&B algorithms is significantly enhanced,
resulting in a substantial reduction in solution time.

distBag DFS is equipped with a locality-aware dynamic load balancing mechanism
based on WS, as shown in Figure 3.1 by the red arrows. Algorithm 3.1 describes the
pseudo-code of the WS mechanism.

• Intra-node work stealing : The algorithm starts by iterating over potential victim
threads (line 1), according to a victim selection iterator forwarded later. For each
victim thread, the algorithm retrieves the corresponding target segment from the
multi-pool (line 2). It then acquires the atomic lock on this segment to ensure that
no other thief thread can modify it concurrently, which prevents race conditions
(line 3). Once the segment is locked, the algorithm checks if the shared part of
the latter contains at least minElts elements. The minElts parameter prevents
stealing from a pool that already contains few elements. If this condition is met, the
thief thread steals an element before releasing the lock (lines 5-6). This element is
finally returned along with a boolean flag—SUCCESS or FAIL—showing the status
of the operation (line 7). If the shared segment does not have enough elements
(i.e., segment’s size < minElts), the algorithm checks if the private segment has
at least one element. If so, it sends a request to the victim thread asking to expand
the shared portion of the segment for future stealing attempts (line 9). Finally, the
local WS attempts fail if all the victim threads have been visited and no element
was stolen. In distributed setting, the triggers the inter-node WS attempts.

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 39

• Inter-node work stealing : In contrast to the intra-node approach, the algorithm
starts by iterating over localities (line 14). For each victim locality, the algorithm
executes the subsequent block of code on the remote locality, meaning that the
following is performed on the remote bag instance (line 15). Then, similarly to the
intra-node WS approach, the algorithm iterates over threads within the remote
locality (line 16). One key difference is the amount of tree nodes that are stolen at
once. In this approach, half of the private region of the segments is stolen, aiming
at reducing the total number of inter-node WS operations (line 20). In addition,
all threads are visited once. However, if at least one steal has been successful, the
algorithm breaks out the loop iterating over victim localities (lines 26-27). This
avoids unnecessary attempts to steal work once sufficient work has already been
stolen. Finally, the stolen nodes are inserted back to the thief threads’s segment,
except one that is returned (lines 29-30). The inter-node WS attempts fail if all
the threadss from all the localities have been visited and no element was stolen.
In that case, nothing is returned along with a FAIL flag.

The design choices regarding the victim selection policy and the granularity policies
are discussed in the following.

3.1.3.1 Victim selection policy

The victim selection strategy defines how a thief thread selects its target(s). One of
the most commonly used and provably efficient policies in the literature is the random
selection policy [BL99]. It assumes that a victim thread is selected uniformly at random
when a thread initiates a WS operation. Algorithm 3.2 describes the approach used
by distBag DFS. Assuming that T threads are executing per locality and that the WS
operation is initiated by thread threadId ∈ {0, . . . , T−1}, the algorithm iterates over the
randomly permuted list of thread indices, yielding each index except the one matching
threadId. The algorithm is generic and is employed to select victim threads and/or
localities, as shown in lines 1, 14, and 16 of Algorithm 3.1.

3.1.3.2 Granularity policies

The granularity policy determines how many work items are stolen per WS opera-
tion. Its implementation is guided by two factors: (1) the depth-first search ordering of
distBag DFS, and (2) the locality-awareness of the dynamic WS mechanism.

The depth-first ordering guarantees that the tree nodes at the end of the segment,
which are shared among the threads, are the shallowest in the tree. For a wide variety of
COPs, these tree nodes also tend to have a large branching factor. Indeed, when solving
COPs, there is generally a high degree of freedom in how the tree nodes are branched
initially, leading to a drastic increase in the number of possible sub-configurations. As
one delves deeper into the tree, constraints accumulate, reducing the number of partially
feasible solutions and thus the size of the subtrees. This is particularly true for permu-
tation problems. For instance, in the absence of pruning, solving a permutation problem

40 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

Algorithm 3.1: Pseudo-code of distBag DFS’s work stealing mechanism.

input : threadId - index of the calling thread
T - number of threads
LocaleId - index of the calling locality
L - number of localities

// INTRA-NODE WORK STEALING ATTEMPTS

1 for victimThreadId from victim iterator(threadId, T) do /* see Alg. 3.2

*/

2 targetSegment ← segments[victimThreadId];
3 targetSegment.acquireLock();
4 if (targetSegment.shared.size ≥ minElts) then
5 elt ← targetSegment.stealElement();
6 targetSegment.releaseLock();
7 return (elt, SUCCESS);

8 else if (targetSegment.private.size ≥ 1) then
9 targetSegment.splitRequest();

10 targetSegment.releaseLock();

11 if (numLocales > 1) then
// INTER-NODE WORK STEALING ATTEMPTS

12 steal ← false;
13 stolenElts ← [];
14 for victimLocaleId from victim iterator(LocaleId, L) do
15 go on Locales[victimLocaleId];
16 for victimThreadId from victim iterator(threadId, T) do
17 targetSegment ← segments[victimThreadId];
18 targetSegment.acquireLock();
19 if (targetSegment.shared.size ≥ minElts) then
20 elts ← targetSegment.stealElements();
21 stolenElts.insert(elts);
22 steal ← true;

23 else if (targetSegment.private.size ≥ 1) then
24 targetSegment.splitRequest();

25 targetSegment.releaseLock();

26 if (steal = true) then
27 break;

28 if (steal = true) then
29 segments[threadId].insert(stolenElts);
30 return (segments[threadId].get(), SUCCESS);

31 return (NULL, FAIL);

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 41

Algorithm 3.2: Pseudo-code of the random victim selection policy iterator.

input : myId - index of the calling thread/locality
N - number of threads/localities

1 id ← 0;
2 victims ← permuteRand([0, . . . , N − 1]);
3 while (id < N) do
4 if (victims[id] ̸= myId) then
5 yield victims[id];

6 id ← id + 1;

generates a tree in which each tree node produces s− d ≥ 0 children, where d ∈ [0, s] is
the depth of the node and s is the size of the permutation. Given this observation, the
granularity of our intra-node WS mechanism is fine, involving the stealing of a single
node, as it is assumed to contain a significant amount of work. However, at the inter-
node level, half of the available nodes in the shared region of the victim thread’s pool
are stolen, as taking only one node is insufficient to fully occupy the thief thread and
the other threads sharing its locality.

3.2 distBag DFS-based parallel B&B (P3D-DFS)

This section presents the overall design of the proposed P3D-DFS PGAS-based parallel
B&B algorithm based on the distBag DFS data structure.

3.2.1 Overall design of P3D-DFS

The distBag DFS data structure is the cornerstone of the proposed algorithm, pro-
viding the implementation of multiple parallel-safe pools and encapsulating a locality-
aware dynamic load balancing mechanism, transparently to the B&B algorithm. This
multi-pool configuration allows to design efficiently a parallel tree exploration model,
whose main advantage is the potential high degree of parallelism. By leveraging the
distBag DFS structure, the algorithm can effectively manage and distribute computa-
tional tasks among multiple CPU threads, reducing contention and enhancing through-
put. This results in a more efficient exploration of the search space, as threads can
operate independently while still benefiting from localized data access.

Aside from the potentially high degree of parallelism of the parallel tree exploration
model used, the genericity is also a major advantage. First, P3D-DFS is independent
from the problem solved, as the parallel design does not affect the bounding operator.
Then, the distBag DFS data structure is itself generic with regards to the element type
contained, which means that for the same problem, different solution encodings can also
be considered. The extensibility of P3D-DFS to different optimization problems will be
discussed more in details in Chapter 5.

42 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

The implementation complexity of parallel B&B algorithms, which is usually con-
centrated on the distributed aspects, notably the load-balancing mechanism and the
management of a data structure, are now handled transparently by the distBag DFS

data structure. This results in an algorithm with a high level of abstraction, where the
last major design challenge is the detection of global termination.

3.2.2 Detecting global termination

In asynchronous environments, where B&B processes operate independently and at dif-
ferent speeds, detecting global termination becomes particularly challenging. This refers
to the process of determining when all B&B processes have completed their tasks and
no further subproblems are pending. Several strategies exist for termination detection,
including the use of tokens, or consensus algorithms that help identify completion across
distributed processes [MC98]. These methods often involve maintaining a record of active
threads and their states, enabling the system to determine if any ongoing computations
are still in progress.

Figure 3.2 shows a flowchart of the global termination detection algorithm imple-
mented in P3D-DFS. It can be considered as a “wave algorithm”, as the initiator makes
a decision, the decision is preceded by an event in each process, and the wave termi-
nate [MC98]. It assumes that each threads maintains a state variable in the global
address space, either set to BUSY or IDLE. A state variable is also assigned to each locale,
and is set to BUSY if at least one of its threads is busy; IDLE otherwise. The algorithm
is initiated when a thread becomes idle during execution, meaning that its work pool is
empty, and all WS attempts fail. In that case, the initiator first checks the states of the
other threads from its locality (step 1), after setting its own state to IDLE. If at least
one thread is busy, then the termination detection ends and the initiator continues the
B&B algorithm. Otherwise, the locality state is set to IDLE and the states of the other
localites is checked (step 2). If all localities are found to be idle, the algorithm triggers
the global termination of the B&B algorithm. In this PGAS-based global termination
detection algorithm, the initiator read the state of each other thread from the global
address space, in a one-sided manner. Since some of the state variables are located in
remote memory areas, we implement the global termination detection mechanism in a
locality-aware manner. The first step allows to check the state of each thread from the
same locality at a relatively low cost, performing Uniform Memory Access (UMA) at
the intra-node level. Then the second step, involving remote memory accesses at the
inter-node level, is triggered only if the first step does not allowed the initiator to make
a decision. This method aims to minimize the number of remote communication, hence
reducing the associated overhead.

To ensure that the state read by the initiator is consistent with the actual state of the
thread, we implement states as atomic variables. More precisely, each locality maintains
an array of atomic variables (one per thread), and each thread updates its state during
execution. In other words, the arrays store each thread’s state in contiguous memory to
facilitates the finding of the global-state, while each state is only modifies by its assigned
thread. In practice, we observed that this implementation generates false sharing [BS93],

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 43

Figure 3.2: Flowchart of the global termination detection.

as illustrated in Figure 3.3. The figure assumes that two CPU cores, each with their
own L1 and L2 caches, share an L3 cache. Variable x is loaded by core 1 (left) into
its L1 and L2 caches, and variable y (located in the same cache line as x) is loaded by
core 2 (right). Since x and y are in the same cache line, the modification of x by core
1 (blue arrows) invalidates the corresponding cache line in core 2’s caches (red arrows).
If core 2 then accesses variable y, it finds that its cache line has been invalidated, and
have to reload the cache line. Reloading can happen from L3 cache if the cache line
modified by core 1 is still present in the cache, or RAM if the cache line has been evicted
from L3 (for example, by other memory accesses). Even though core 1 and core 2 are
working on different variables (x and y), they continue to invalidate each other’s cache
lines due to the proximity of the variables in memory, creating “false sharing”. Usually,
two different ways exist to reduce such phenomenon: make sure that unrelated data are
stored in different cache lines, and use local data for intermediate calculation and then
access shared memory when necessary. In the implementation of the global termination
detection algorithm in P3D-DFS, we adopted the second approach and introduced local
data threadState for intermediate checking, as shown in Algorithm 3.3.

3.3 Experiments

In this section, we report the experimental results for the data structure and algorithm
presented in this chapter. Unless explicitly mentioned, all the experiments are performed
on a cluster, where each compute node is equipped with two 64-core AMD EPYC Rome
7H12 @ 2.60 GHz CPUs, and 256 GB of RAM. Compute nodes are connected through
an InfiniBand HDR 100 Gb/s network, configured over a Fat-Tree topology. The code is
compiled and executed using Chapel 2.1.0, along with the gcc 10.2.0 back-end compiler.

44 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

Figure 3.3: Illustration of false sharing in shared-memory systems.

Algorithm 3.3: Reducing false sharing in global termination detection.

input : threadId - index of the calling thread
threadStates - array of atomic thread states
threadState - private copy of threadStates[threadId]

1 if (threadState = IDLE) then
2 threadState ← BUSY;
3 threadStates[threadId].write(BUSY);

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 45

Appendix B contains the environment configurations used to build and execute Chapel
code.

3.3.1 Comparison with other data structures

This section aims to demonstrate experimentally the limitations of the original distBag
data structure in terms of memory usage. As a test-case, the N-Queens instances are
solved with N = 15 and 16 using the parallel B&B algorithm presented in this chapter,
based on distBag and our revisited version distBag DFS. The number of threads is set
to 4 and the bag size according to the execution time is shown in Figure 3.4. The bag
size is expressed in terms of subproblems, which is an indicator of the overall memory
usage of the program.

First of all, we can observe that the distBag-based parallel B&B stores up to 3.2×
107 pending subproblems at once for N = 15, and up to 5 × 107 for N = 16. The
latter experiment reached the limit we had set ourselves so as not to risk damaging the
system’s memory. As each subproblem contains at least 224 bits of data, this represents
224×5×107 = 11.2×109 bits, or 1.4 GB of memory. The bell curve observed solving the
15-Queens instance can be explained by the fact that in the upper parts of the search
tree the average branching factor is higher than in the bottom parts. The shallowest
nodes in the tree have few queens placed and therefore few constraints, which results
in a high number of child nodes. However, as we go deeper into the tree, constraints
accumulate, and pruning occurs more frequently, leading to the drain of the bag.

The same experiments using the distBag DFS-based parallel B&B revealed that, for
both instances, the size of the bag, and thus the memory consumption, remains bounded
over time. Theoretically, in a DFS B&B algorithm applied to a permutation problem
of size n, the maximum size that a pool can contain is

∑n−1
i=1 i. Indeed, by definition,

the subtree of a node must be completely explored before branching another node of
the same depth. Therefore, for each depth l, at most n − l nodes are kept in memory
(the generated but not yet evaluated subproblems). Since here we have 4 threads, thus
4 pools in parallel, this means that the number of pending subproblems that cannot be
exceeded is 420 for N = 15 and 480 for N = 16. This rule is satisfied, as the bag size
never exceeds 220 at a time.

3.3.2 Dynamic load balancing mechanism

In this section, the goal is to evaluate the distBag DFS’s dynamic load balancing mech-
anism. For that purpose, P3D-DFS is instantiated on the UTS benchmark and two
synthetic trees with different types—binomial and geometric—are solved using up to
128 CPU cores. In order to allow a fair comparison between both instances, we made
sure that the sequential times are approximately the same.

Figure 3.5 shows that the best performance is achieved with the UTS-geo instance,
achieving 59% of the ideal speed-up when using 128 processing cores. In contrast, the
UTS-bin instance achieves only 26% of the ideal speed-up. Table 3.1 provides some
execution statistics of the solved instances. For both instances, the percentage of WS

46 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

0 5 10 15 20
Execution time [s]

0

1

2

3

4

5

Ba
g
siz

e

1e7 distBag

N = 15
N = 16

0 2 4 6 8
Execution time [s]

0

50

100

150

200

250 distBag-DFS

N = 15
N = 16

Figure 3.4: Bag size (in subproblems) according to the processing time when solving the
15-Queens and 16-Queens instances.

Table 3.1: Summary of the UTS instances solved, along with some execution statistics.

Instance # nodes (106) Time (s) kn/s # WS attempts (% success)

UTS-geo 91.4 36.06 2,534.6 48,433 (99.0%)
UTS-bin 131.7 36.30 3,628.1 1,473,048 (96.8%)

attempts failed is less than 4%, which demonstrates the efficiency of the WS. However,
we observe that the number of WS attempts is 30 times greater when solving the UTS-bin
instance compared to the UTS-geo instance. This can be explained by the tree shape,
and more precisely the branching factor. In a geometric tree, the expected size of the
subtree rooted at a node increases with proximity to the root, meaning that shallowest
nodes have a higher branching factor than the others, leading to the generation of many
subproblems. This perfectly fits distBag DFS’s load balancing mechanism as shallowest
nodes are stolen first. However, in a binary tree the expected work at all nodes is
identical, i.e., at most two child nodes per branching operation. Therefore, stealing the
shallowest nodes does not provide any benefits and only one subproblem is not sufficient
to allow the generation of new subproblems, leading to many WS attempts. This causes
contention on the data structure, hence degrading overall parallel efficiency.

Figure 3.6 shows the percentage of explored tree nodes per processing core solving
the UTS-bin instance, hence providing the workload distribution of the overall B&B tree.
Even in this challenging scenario, the total workload is almost evenly balanced among
all the processing cores, meaning that all the allocated resources are fully exploited.

3.3.3 Strong scaling efficiency

Figure 3.7 shows the strong scaling efficiency of P3D-DFS instantiated on three different
problems—PFSP, 0/1-Knapsack, and N-Queens—considering both intra- and inter-node
parallel levels. For each problem, a set of instances of different sizes have been selected.

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 47

1 16 32 64 128
Processing cores

1
16
32

64

128

Sp
ee

d-
up

Ideal
UTS - geo
UTS - bin

Figure 3.5: Speed-up achieved solving
geometrical and binomial synthetic UTS
trees, compared to a sequential version.

0 1270.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6: Percentage of explored nodes
per tasks solving the UTS-bin instance.
The black lines represent the ideal per-
centage, i.e., 100/nTasks.

For the PFSP, the LB2 lower bound function is used along with the static forward
branching rule. At the intra-node (resp. inter-node) parallel level, the speed-up is
computed as the ratio of the sequential (resp. single-node) algorithm over the multi-core
(resp. multi-node) variant.

At the intra-node parallel level, the strong scaling efficiency ranges from 43% to 97%
of the ideal speed-up using 128 CPU cores. The best results are achieved solving the
PFSP instances, where near-linear speed-ups are observed on the largest instances. On
the 0/1-Knapsack problem, the performance of P3D-DFS is quite limited, where at most
45% of strong scaling efficiency is reached using 128 cores. These results are directly
related to the previous section, where we shown the limitation of distBag DFS’s load
balancing mechanism exploring binary trees. Solving the N-Queens instances, the per-
formance is also hindered, achieving only 50% of the ideal speed-up. The poor results
highlight the challenges posed by the fine-grained node evaluation function. Table 3.2
shows execution statistics of the largest instance solved for each problem using 128 CPU
cores. Solving the PFSP ta030 instance, 98% of the total execution time is dedicated
to the decomposition of nodes, which allows the high-performance of our parallel tree-
exploration model. In contrast, the fine-granularity of the 17-Queens instance enables
to decompose much more nodes per second, but also adds more contention on the data
structure, as 28% is dedicated to remove/insert nodes from/to the data structure. Specif-
ically, the frequent synchronization and communication required in such a fine-grained
scenario lead to significant overhead, which detracts from the advantages of parallel ex-
ecution. Solving the 0/1-Knapsack kp3 instance, we can see that the algorithm spends
almost as much time decomposing nodes as it does retrieving them from the data struc-
ture (including the WS operation).

48 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

1 16 32 64 128
Processing cores

1
16
32

64

128
Sp

ee
d-
up

PFSP
Ideal
ta030
ta020
ta010

1 16 32 64 128
Processing cores

1
16
32

64

128
0/1-Knapsack

Ideal
kp3
kp2
kp1

1 16 32 64 128
Processing cores

1
16
32

64

128
N-Queens

Ideal
N=17
N=16
N=15

(a) Intra-node parallel level.

1 8 16 32 64
Compute nodes

1
8

16

32

64

Sp
ee

d-
up

PFSP
Ideal
ta024
ta026
ta027

1 8 16 32 64
Compute nodes

1
8

16

32

64
0/1-Knapsack

Ideal
kp6
kp5
kp4

1 8 16 32 64
Compute nodes

1
8

16

32

64
N-Queens

Ideal
N=19
N=18
N=17

(b) Inter-node parallel level.

Figure 3.7: Strong scaling efficiency of P3D-DFS instantiated on three different problems,
at both intra- and inter-node parallel levels. Three instances of different sizes are solved
for each problem.

At the inter-node parallel level, similar observations are made. The strong scaling
efficiency ranges from 20% to 94% of the ideal speed-up using 64 compute nodes, or 8,192
CPU cores. As the instance size increases, speed-up improves because larger instances
include a greater number of independent tasks that can be processed simultaneously.
This allows a more efficient distribution of the workload across the available compute
nodes.

3.3.4 Comparison against an MPI+X approach

This evaluation compares P3D-DFS to a low-level state-of-the-art implementation, here-
after called MPI-PBB [Gmy17]. This latter is a hierarchical MW B&B written in C++
and MPI+PThreads, compiled and executed using OpenMPI 4.0.5. An interval-based
encoding of work units and the IVM data structure [Gmy+17] are used for the imple-
mentation of DFS. Each MPI worker can be configured to use multiple worker threads
performing local WS operations for load balancing on the intra-node level. A dedicated

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 49

Table 3.2: Execution statistics of the largest instance solved for each problem using 128
CPU cores.

Instance kn/s
Percentage of total execution time

Remove Decompose Insert Termination

ta030 2,204.7 < 1% 98% < 1% < 1%
17-Queens 269,751.7 18% 62% 10% 8%

kp3 161,505.5 42% 47% 5% 4%

thread is used for communication with the master process, allowing to overlap work
progress and communication efficiently. To overlap computation and communication,
redundant exploration of some parts of the search space is tolerated. Inter-node work-
load balancing is performed by the intermediate of the centralized coordinator process.
In the following experiments, 16 threads (plus one additional communication thread)
are used per MPI process, for a total of 8 MPI processes per compute node. Node 0
runs the master process using the same configuration, meaning that it hosts at most
7 worker processes (112 threads). It is worth to mention that P3D-DFS and MPI-PBB

follow the DFS search strategy as selection rule, and implement the same bounding
functions introduced in Section 2.5.1. However, they divergence in some aspects, for
example the data structure used to store pending subproblems. For a fair comparison,
both implementations enumerate equivalent search spaces for proving the optimality of
a solution.

Figure 3.8 reports the execution time of P3D-DFS for solving the PFSP instances
ta021-ta030 to optimality, relatively to the MPI-PBB baseline. Results are shown for 1
(128 cores) to 64 compute nodes (8,192 cores) and instances are sorted by the number of
nodes. In almost all configurations (except the biggest instances on one node), P3D-DFS
is faster than MPI-PBB. The most significant results are obtained solving the smallest
instances (ta029, ta030, and ta022), where P3D-DFS is up to 65% faster than the
baseline. The poor performance of MPI-PBB compared to P3D-DFS can be explained by
at least two factors. First, the presence of a master process centralizing the work-pool
has the advantage of making termination detection trivial, but becomes a substantial
bottleneck as the number of nodes increases. Then, in general, “the results show that
fine-grained problems with computationally inexpensive node evaluation functions can
benefit most from using IVM” [Gmy17]. As a result, using the specialized IVM structure
to solve PFSP instances with the coarse-grained LB2 bounding function offers little
or no advantage over distBag DFS. As instance size increases, we can notice that the
performance gap narrows, to the point where P3D-DFS becomes slightly slower than
MPI-PBB on one node.

Figure 3.9 shows the speed-ups achieved by P3D-DFS and MPI-PBB on 2 to 64 compute
nodes. Results ranging from 13% (ta030) to 95% (ta021) of the linear speed-up on 64
nodes are observed for P3D-DFS. For the smaller instances (ta029, ta030, ta022, and
ta027), severe speed-up decreases are observed when comparing the results on 8 to the
ones on 64 locales. For this subset of smaller instances, the size of the explored tree is

50 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

29 30 22 27 23 28 25 26 24 21
Instance index

0.0

0.2

0.4

0.6

0.8

1.0

1.2
No

rm
al
ize

d
ex

ec
ut
io
n
tim

e

baseline
1 node
8 nodes
16 nodes
32 nodes
64 nodes

Figure 3.8: Execution time of P3D-DFS for solving instances ta021-ta030 to optimality.
Results shown are for 1 (128 cores) to 64 compute nodes (8,192 cores). For each con-
figuration, the execution time is given relative to the MPI-PBB baseline. Instances are
sorted by the number of nodes.

not large enough to fully utilize the computational resources available on 64 nodes. As a
result, there is insufficient workload to distribute across all nodes, leading to suboptimal
parallel efficiency. In turn, we can see that MPI-PBB is outperformed in all configurations.
The scalability is up to 50% smaller on 64 nodes for the set of smaller instances, while
only 10% solving the largest ta021 instance. This shows that the use of the distBag DFS

data structure and its load-balancing mechanism are perfectly suited to solving coarse-
grain PFSP instances using multiple compute nodes, whereas the approach used by
MPI-PBB suffers from the presence of a centralized coordinator process.

3.3.5 Large-scale experiments

This section investigates the performance of P3D-DFS at scale on the MeluXina petascale
system6. All resources are deployed to solve hard PFSP instances and confirm the
optimality of solutions given in the literature. For these experiments, the dynamic
minBranch branching rule is used along with the LB1 bounding function. Up to 400
compute nodes are used, each composed of two 64-core AMD EPYC Rome 7H12 @
2.60 GHz CPUs, for a total of 128 cores, and 512 GB of RAM. The compute nodes are
interconnected using the InfiniBand HDR 200 Gb/s high-speed fabric and operate under
Rocky Linux 8.7. Chapel 1.31.0 is used in a fine-tuned configuration environment, along
with the gcc 11.3.0 back-end compiler.

Figure 3.10 shows the strong scaling efficiency reached solving the 50×20 ta056 PFSP
instance up to 400 nodes. The latter instance exhibits 173× 109 nodes and requires 4.0
CPU-hours. The experimental results revealed that up to 70% of the ideal speed-up can
be achieved using up to 128 computer nodes, and around 50% using 400 nodes. In the

6Cluster module, ranked 460th in the TOP500 release of June 2024.

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 51

29 30 22 27 23 28 25 26 24 21
Instance index

0

20

40

60

80

100

120

Sp
ee

d-
up

 (i
n

%
 o

f t
he

 li
ne

ar
)

MPI-PBB
Linear
8 nodes
16 nodes
32 nodes
64 nodes

Figure 3.9: Speed-up achieved by P3D-DFS and MPI-PBB on 2 (256 cores) to 64 compute
nodes (8,192 cores) compared to the execution on one node. Values are given in percent
of the linear speed-up. For a given configuration, the speed-up achieved by MPI-PBB is
presented through an × red mark. Instances are sorted by the number of nodes.

Table 3.3: Summary of execution statistics solving hard benchmark instances (50× 20).

Instance # CPU Time (s) CPU-hour # nodes (109) Optimum

ta056 800 18.1 4.0 173.3 3,679
ta052 128 7,960.5 283.0 17,117.8 3,699
ta057 800 2,017.6 448.3 28,340.7 3,704
ta053 128 43,605.5 1,550.4 94,885.1 3,640

latter configuration, 51,200 processing cores are used, and therefore as many segments
are maintained in parallel by the distBag DFS data structure. This leads to a large
number of potentially remote communications, due to dynamic load balancing, which
can explain the limit in performance scalability.

In this second series of experiments, we confirm the optimality of the solutions re-
ported in [Gmy22] for some of the very hard 50× 20 PFSP instances. Table 3.3 summa-
rizes the obtained execution statistics. For the biggest instance (ta053), more than 12
hours of computation are required to prove the optimality of the given solution using 128
CPUs. This represents more than 11 years of computation using a serial execution on a
single processing core. In contrast, the above reference used 128 GPUs during 8 hours
and also exhibited a tree composed of 95× 1012 nodes. This means that our CPU-based
approach is able to cope with large-scale and to solve hard PFSP instances, which were
previously solved using hundreds of GPU accelerators.

52 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

20 21 22 23 24 25 26 27 28 29

Computer nodes

20
21
22
23
24
25
26
27
28
29

Sp
ee

d-
up

Ideal
P3D-DFS

Figure 3.10: Speed-up achieved solving ta056, compared to a multi-core version.

3.4 Conclusion

In this chapter, we have revisited the design and implementation of PGAS-based parallel
B&B algorithms for CPU-based clusters. We have presented a parallel B&B algorithm
(P3D-DFS) based on an innovative PGAS-based data structure, called distBag DFS.

distBag DFS is a parallel-safe multi-pool data structure dedicated to depth-first ex-
ploration of large, irregular trees. It integrates a dynamic load-balancing mechanism
based on large-scale WS, operating at both intra- and inter-node levels. This mechanism,
which required sophisticated synchronization based on non-blocking split deques, pro-
motes locality in WS, enabling scalability. The second contribution of this chapter is the
design and implementation of P3D-DFS, a PGAS-based B&B algorithms for CPU-based
clusters. The algorithm is generic with regards to the tackled optimization problem,
and has been tested on three different challenging problems: PFSP, 0/1-Knapsack, and
N-Queens. The PGAS-based design of P3D-DFS has been compared to a state-of-the-
art MPI+X counterpart implementation from the literature, in terms of performance.
Large-scale experimentation on a petascale supercomputer are also reported.

A summary of the main experimental results is given in the following:

• The DFS scheduling policy of distBag DFS’s segments allows to effectively control
memory usage despite its parallel and unpredictable nature. This results in a
bounded memory consumption on the tested permutation-based problem instances,
in contrast to the existing PGAS-based distBag data structure.

• The distBag DFS’s dynamic load balancing mechanism achieved good performance,
as well as a fair workload distribution between all the allocated resources, solv-
ing fine-grained UTS instances. The mechanism takes advantage of the fact that
the shallowest nodes are stolen first, and that those nodes generally have a higher

Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters 53

branching factor than the others. Nevertheless, it is observed that the performance
may be impacted when it is not the case, like exploring binary trees.

• P3D-DFS achieves strong scaling efficiencies of up to 97% at the intra-node level
and 94% at the inter-node level, with the best performance observed for the PFSP
problem. However, the 0/1-Knapsack and N-Queens problems show limited ef-
ficiencies, highlighting the challenges posed by load balancing and fine-grained
computations that introduce significant overhead.

• The PGAS-based P3D-DFS algorithm outperforms a state-of-the-art MPI+X coun-
terpart implementation (MPI-PBB) across most configurations, achieving up to 65%
faster execution for smaller PFSP instances, while maintaining better scalability
with speed-ups of up to 95% on 64 nodes. In contrast, MPI-PBB suffers from bot-
tlenecks due to its centralized master process, especially as instance sizes increase
and workload distribution becomes less efficient.

• We demonstrated the ability of P3D-DFS to cope with large-scale solving hard
PFSP instances on a petascale supercomputer. Using up to 400 compute nodes, or
51,200 CPU cores, we confirmed in few hours the optimality of solutions for some
large instances, which would have taken several years in sequential.

54 Chapter 3. PGAS-based Parallel B&B for CPU-based Clusters

Chapter 4

PGAS-based Parallel B&B for
GPU-powered Clusters

Contents

4.1 GPU-acceleration of the bounding operator 56

4.2 PGAS-based GPU-accelerated parallel B&B 56

4.2.1 Overall design . 56

4.2.2 Load balancing mechanisms . 59

4.3 Experiments . 61

4.3.1 Experimental protocol and testbed 61

4.3.2 Code performance and portability 61

4.3.3 Parameter calibration . 65

4.3.4 Strong scaling efficiency . 65

4.4 Conclusion . 66

In this chapter, we extend the design and implementation of the PGAS-based par-
allel B&B algorithm to deal with GPU-powered heterogeneous architectures. In this
context, a key challenge is the dynamic handling of irregular workloads on GPUs having
a SIMD architecture, as well as ensuring portability across different platforms, which is
often constrained by vendor-specific APIs (e.g., CUDA for NVIDIA). Additionally, GPU
computing within the PGAS paradigm is still in its early stages, necessitating further
exploration and development.

Section 4.1 presents the approach used to leverage GPU accelerators. The goal is
to evaluate the bounds in parallel on the GPU, which is particularly compute-intensive,
while the tree exploration is performed on the CPU. Then, Section 4.2 outlines the design
and implementation of the PGAS-based GPU-accelerated parallel B&B algorithm. It
specifically describes how the CPU and GPU interact with each other and discusses
aspects related to dynamic load balancing.

55

56 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

Section 4.3 contains the experimental evaluations, investigating code performance
and portability along with strong scaling efficiency considering both intra- and inter-
node levels. Finally, Section 4.4 draws the conclusion of this chapter.

4.1 GPU-acceleration of the bounding operator

It is now acknowledged that the most compute-intensive part in a B&B algorithm is often
the bounding operation. For instance, it has been shown that 98% of the total execution
time is dedicated to the bounding operation in solving large PFSP instances [MCB14].
Therefore, a common way to accelerate a B&B algorithm is to offload the bounding
operation to one or several GPU (s). This approach holds promise, provided that the
node evaluation aligns with the GPU’s execution model. Since offloading involves data
preparation and transfers, the bounding operation must be significantly accelerated to
offset the associated overhead. Following this strategy, two parallel models are possible:
the parallel evaluation of a bound and the parallel evaluation of bounds. In this thesis,
the latter one is investigated for its genericity.

Figure 4.1 illustrates the overall parallel model of our GPU-accelerated B&B algo-
rithm. It combines the parallel tree exploration on CPU with the parallel evaluation of
bounds on GPU. More specifically, several compute nodes are involved in parallel, each
equipped of multi-core CPUs and many-core GPUs. For a sake of simplicity, the figure
assumes that all compute nodes have the same amount of processing cores. Different
interactions between the CPU and GPU occur during execution. First, the CPU is re-
sponsible for preparing and offloading the subproblems to be evaluated on the GPU. The
amount of subproblems to be sent will be discussed in the next section. Indeed, in order
to accelerate the bounding operation effectively, the number of offloaded subproblems
must be sufficiently high to guarantee full utilization of the GPU, but not too high to
avoid saturation and significant communication overhead. Then, the GPU launches ker-
nel functions in parallel and returns the results to the CPU. The CPU can then proceed
with the branching, selection, and pruning operators. In this scheme, the CPU thread
needs to wait for the completion of the GPU kernel since it produces lower bounds which
are needed for the pruning operation. Additionally, the CPU is responsible for managing
the load balance among available threads.

4.2 PGAS-based GPU-accelerated parallel B&B

4.2.1 Overall design

Figure 4.2 shows the design of our PGAS-based GPU-accelerated parallel B&B algo-
rithm. It is assumed that compute nodes are homogeneous, meaning that they all of
them have the same amount and power of computing resources.

At the intra-node level, the algorithm maintains a multi-pool of tree nodes. More
precisely, each GPU device is mapped to a CPU core host managing a pool of tree nodes.
In that configuration, the CPU manages all the algorithm’s dynamic aspects, such as

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 57

Figure 4.1: Parallel model of the GPU-accelerated multi-core B&B.

data structure management and irregular workload. In addition, GPU devices are kept
independent from each other, with potential communication and collective operations
performed by the hosts. Based on these pools, the tree exploration takes place in parallel
on the hosts: (1) a tree node is first get from the pool; (2) this tree node is then
evaluated using the problem-specific objective function; (3) depending on the evaluation
it is either branched or pruned; and (4) the previous steps are repeated until the global
termination of the algorithm is triggered. In this algorithm, the global termination
detection algorithm follows the approach implemented in P3D-DFS. In practice, the pool
size Q increases as the iterations progress, leading to CPU over-occupancy. At this point,
GPU devices are used to accelerate the evaluation of pending tree nodes, performing this
massively in parallel. Specifically, when a pool contains at least m tree nodes, a chunk of
q = max(Q,M) tree nodes is transferred from the host to the device. Then, the device
performs the evaluation of all tree nodes in parallel and sends back the results to the
host. The latter is now able to proceed with the tree exploration, applying branching
or pruning. The m and M parameters are used to determine the minimum number
of tree nodes required for efficient GPU processing and to set the maximum chunk
size for data transfer, respectively. This ensures optimal use of GPU resources and
minimizes communication overhead. Good values for m and M should be determined
experimentally.

At the inter-node parallel level, we assume that compute nodes are interconnected
though a high-performance network. The latter enables remote data exchange, which is
essential for the design of efficient load balancing mechanisms. Indeed, the performance
of such a multi-pool algorithm targeting irregular applications lies in the load balancing
between local and remote pools.

58 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

Figure 4.2: Flowchart of the GPU-accelerated multi-core B&B algorithm.

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 59

Figure 4.3: Illustration of the static workload distribution, assuming that 2 compute
nodes are used, each with 3 GPU devices, and m = 5.

4.2.2 Load balancing mechanisms

Two complementary load balancing mechanisms are proposed to guarantee the full uti-
lization of available resources: (1) a static workload distribution that occurs before the
parallel execution and after an initial partial search, and (2) a locality-aware WS mech-
anism dynamically triggered during parallel execution, based on the one implemented
in distBag DFS.

4.2.2.1 Initial search and static workload distribution

Preliminary to the parallel tree exploration, an initial partial exploration of the tree is
performed sequentially on the CPU, aiming at providing a sufficiently large number of
tree nodes to each pool to prevent GPU starvation at the beginning of the parallel search.
Indeed, GPU devices are composed of thousands of cores, which require a substantial
number of tree nodes to maintain high utilization and efficiency. The initial search is
performed in a BFS manner, allowing for a broad and uniform distribution of tree nodes,
and ends when m×numGPUs×numComputeNodes pending tree nodes are in the pool.

At the end of the initial search, the workload is evenly spread among pools in a
cyclic fashion, as shown in Figure 4.3. More precisely, two cyclic distributions occur
successively. The first one distributes all the workload evenly among all the available
localities (compute nodes), while the second one distributes all the workload on each
locality evenly among the available processing threads. Although the mapping is static, it
is preferable in practice to perform two successive distributions. Indeed, on a distributed
architecture with NUMA, having a single master thread communicate with each other
thread of every compute node to transfer elements would generate higher communication
overheads.

60 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

4.2.2.2 Dynamic Work Stealing

AWSmechanism is dynamically triggered during parallel execution when a pool becomes
empty. This mechanism is composed of three main components: (1) a victim selection
strategy, (2) a work sharing policy, and (3) a synchronization mechanism. Each of these
is discussed in the following.

• Victim selection strategy : The victim selection strategy determines how victim
pools are chosen among all available ones. The latter mechanism is based on the
random victim selection policy iterator introduced in previous chapter. It assumes
that a victim thread is selected at random when a thread initiates a WS operation.
As most of distributed systems have a NUMA architecture, threads are not selected
uniformly as the cost of accessing a remote thread is higher compared to a local
one. Therefore, the victim selection strategy exploits locality-awareness. When
a thread becomes empty during execution and triggers a WS operation, it first
selects uniformly a victim thread from its own locality. Indeed, at the intra-node
level, memory access can be considered as uniform. If all WS attempts fail, the
calling thread searches at the inter-node level from another locality, also selected
randomly.

• Work sharing policy : The work sharing policy controls how many tree nodes are
stolen from the victim pool. It is an important aspect for performance as stealing
only few tree nodes may not be sufficient to balance the workload, while stealing
too many tree nodes may create load imbalance implicitly. In addition, any WS
operation implies a potentially remote data exchange, and it is often not worth
to exchange only few tree nodes regarding the communication overhead. In this
algorithm, the thief thread steals half of the available tree nodes, only if the victim
pool size is larger than 2 ×m. This work sharing policy guarantees that at least
m nodes remain in both thief and victim pools after a stealing operation, allowing
threads to proceed with the exploration.

• Synchronization mechanism: The synchronization mechanism determines how thief
and victim threads coordinate themselves to ensure the parallel-safety of pools. In
this algorithm, we adopt a spin-lock synchronization mechanism. When a thread
tries to acquire a spin-lock, it continuously checks (or “spins”) to see if the lock is
available, rather than yielding control or putting itself to sleep. This is achieved
by repeatedly polling a flag or memory location until the lock becomes free. Spin-
locks are typically lightweight and provide low-latency access to locks, making
them suitable for short critical sections where the lock is held briefly. However,
they can cause high CPU usage if contention is significant, as waiting threads con-
sume processor cycles while spinning. Spin-locks are often used in real-time or
low-latency systems and are generally more efficient on multiprocessor systems,
where other threads can make progress without blocking the processor.

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 61

4.3 Experiments

This section evaluates the performance and portability of our algorithms. Section 4.3.1
describes the experimental protocol and testbed. Section 4.3.2 provides an extensive ex-
perimentation on code performance and portability considering six different GPU archi-
tectures, including different generations and vendors. Section 4.3.3 contains preliminary
experiments for the parameter calibration. Finally, Section 4.3.4 presents the strong
scaling efficiency of our algorithm, considering both intra- and inter-node parallel levels.

4.3.1 Experimental protocol and testbed

The proposed PGAS-based algorithm has been developed in three distinct implementa-
tions, each optimized for execution on a single-GPU, single-node multi-GPU, and multi-
node multi-GPU configurations, respectively. In addition, we also implemented low-level
counterpart implementations based on CUDA, following as close as possible the same de-
sign. This substantial effort seeks to address the lack of optimized low-level open-source
implementations of GPU-accelerated B&B algorithms in the literature. These base-
lines will serve as a reference for evaluating the parallel efficiency of our PGAS-based
approach.

The experiments are conducted on the HPE Cray EX LUMI European pre-exascale
supercomputer7. The compute nodes are equipped with a single 64-core AMD EPYC
7A53 “Trento” CPU, four AMD Instinct MI250X GPUs, and are connected to a HPE
Cray Slingshot-11 200 Gb/s network interconnect. A MI250X is a multi-chip module
with two GPU dies, each featuring 110 compute units (CU) and 64 GB slice of HBM2e
memory for a total of 220 CUs and 128 GBmemory per MI250X module. From a software
perspective, one MI250X module is considered as two GPUs, meaning that nodes can
be considered as 8-GPU compute nodes. The portability of CUDA code to AMD GPU
architectures is handled by the hipify-perl tool, which automatically translates CUDA
code into portable HIP code.

In the following, the algorithms are tested on the PFSP and N-Queens problems.
Instances ranging from N = 15 to 19 are considered for the latter problem, while the
class of 20× 20 instances is considered for the PFSP.

4.3.2 Code performance and portability

GPU accelerators vary significantly across architectures and vendors in terms of per-
formance, memory capacity, and parallelism capabilities. Consequently, in this section
we evaluate the performance and portability of our PGAS-based GPU-accelerated algo-
rithm. Specifically, in addition to the AMD MI250X accelerators, the following GPU
architectures are also considered:

• NVIDIA P100 : 12-core Intel Xeon Gold 6126 (Skylake-SP) @ 2.60GHz CPU,
equipped with an NVIDIA Tesla P100 PCIE 16GB GPU (3,584 cores, released in

7LUMI is ranked 5th in June 2024 TOP500 ranking.

62 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

June 2016);

• NVIDIA V100 : 12-core Intel Xeon Gold 6126 (Skylake-SP) @ 2.60 GHz CPU,
equipped with an NVIDIA Tesla V100 PCIE 32GB GPU (5,120 cores, released in
March 2018);

• NVIDIA A100 : 32-core AMD EPYC 7513 (Zen 3) @ 2.60 GHz CPU, equipped
with an NVIDIA A100 SXM4 40GB GPU (6,912 cores, released in May 2020);

• AMD MI50 : 48-core AMD EPYC 7642 (Zen 2) @ 2.40 GHz CPU, equipped with
an AMD Radeon Instinct MI50 32GB GPU (3,840 cores, released in November
2018);

• AMD MI300X : 64-core AMD EPYC 7A53 ”Trento” (Zen 3) @ 2.0 GHz CPU,
equipped with an AMD Instinct MI300X GPU (19,456 cores, released in June
2023).

Figure 4.4 shows the normalized execution time of the Chapel algorithm compared
to the CUDA/HIP baseline, solving instances of the PFSP and N-Queens problems.
Single-GPU experiments are conducted to isolate and evaluate the core performance on
individual GPUs without the added complexity of multi-GPU coordination or commu-
nication overhead. It is important to observe that no direct comparison can be made
between the performance and capabilities of the different GPU architectures.

Solving the N-Queens instances, one can see that the Chapel algorithm is between
87% faster to 43% slower than the baselines. Actually, it can be observed that the per-
formance gap strongly depends on the GPU architecture. Considering NVIDIA GPUs,
the performance improves with more modern architectures. Specifically, the Chapel-
based algorithm is on average 13% slower on the NVIDIA P100 (released in 2016), 7%
slower on the NVIDIA V100 (released in 2018), and 3% faster on the NVIDIA A100
(released in 2020). This is largely due to the fact that modern architectures offer greater
capabilities in terms of core count, memory storage and bandwidth, etc. Furthermore,
optimizing compiler performance on older GPU architectures, such as the NVIDIA P100,
is of limited interest to language developers targeting exascale, like Chapel, as these ar-
chitectures are no longer (or only minimally) used in modern systems [TOP24]. Similar
observations are done considering the AMD GPUs, where the best average performance
are achieved using the AMD MI300X GPU.

The experiments on PFSP instances reveal similar behaviors, but the performance
gaps between the PGAS approach and the low-level baselines are now much more pro-
nounced. For example, the Chapel approach is on average 62% slower than the baseline
on the AMD MI250X GPU, whereas it was 4% faster on the N-Queens problem. A key
difference between the two problems lies in the bounding function of the B&B algorithm.
For the N-Queens problem, the bounding function is relatively simple, relying only on
the depth of the tree node and the permutation that represents the associated subprob-
lem to determine satisfiability. In contrast, the PFSP requires a more complex bounding
function, as it must account for cumulative processing times across multiple machines

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 63

and jobs to compute the lower bound. Storing data, such as constant matrices, on the
GPU device reduces memory transfer overhead and provides faster access during com-
putation. However, this may increase the demands on memory usage and management,
especially on GPUs with limited memory capacity, leading to a severe degradation in
performance.

In investigating the performance gap between Chapel and baseline codes, we detected
that Loop-Invariant Code Motion (LICM) may be thrown off by the Chapel compiler in a
few specific configurations. LICM is a compiler optimization that performs automatically
the movement of statements or expressions that can be moved outside the body of a loop
without affecting the semantics of the program. In programs implemented using high-
level languages, such as Chapel, LICM typically occurs when arrays, which are not merely
simple arrays but also embed additional data or metadata, are used within loops. For
instance, in contrast to C arrays that are essentially contiguous blocks of memory that
store elements of a specific data type, Chapel arrays also include metadata such as their
size, domain (index space), distribution, etc. As a result, accessing redundant metadata
repeatedly within the loop may result in performance degradation in the absence of
LICM, compared to simpler baseline codes where such operations are either absent or
easily optimized away. Algorithm 4.1 illustrates the LICM optimization that is usually
performed by compilers to deal with this issue. It consists in isolating array pointers
towards contiguous blocks of memory in dedicated variables (here Aptr and Bptr) and
using the latter inside the loop, thus avoiding any metadata access. In practice, we
observed that the Chapel compiler may fail LICM in certain scenarios, thus degrading
performance especially solving PFSP instances, where the problem data is stored in
constant arrays on the device. Although it is not possible to identify the root cause
of the non-triggering of the optimization in the Chapel compiler without a low-level
analysis of it (which goes beyond the scope of this thesis), doing LICM manually in
inner-most parts of our code allows to reduce the execution time from 10% on the P100
GPU to 26% on the MI50 GPU.

LICM is not the only factor that can explain the difference in performance between
Chapel and baseline counterparts. Related works investigating the performance porta-
bility of Chapel in a different context also reported that the Chapel compiler may fail to
take advantage of register coalescing optimizations provided by LLVM, which are avail-
able to the GPU back-end code generation [MWA24]. Register coalescing is another
compiler optimization technique aimed at improving the efficiency of register usage by
reducing the number of move instructions between registers. This optimization identifies
situations where multiple registers hold values that could be stored in a single register
without affecting the program’s correctness, and then “coalesces” (merges) them into
one register, eliminating unnecessary data transfers between registers. Failing this op-
timization may result in a higher register pressure and, thus, lower warp occupancy,
reducing parallel execution.

64 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

15 16 17 18
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
No

rm
al

ize
d
ex
ec
ut
io
n
tim

e

baseline
Chapel - P100
Chapel - V100
Chapel - A100
Chapel - MI50
Chapel - MI250X
Chapel - MI300X

(a) N-Queens problem instances.

29 30 22 27 23 28 25 26 24 21
Instance index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
ex
ec
ut
io
n
tim

e

29 30 22 27 23 28 25 26 24 216.5

7.0

7.5

8.0

baseline
Chapel - P100
Chapel - V100
Chapel - A100
Chapel - MI50
Chapel - MI250X
Chapel - MI300X

(b) PFSP instances.

Figure 4.4: Normalized execution time of the single-GPU Chapel code solving different
problem instances on different NVIDIA and AMD GPU architectures, compared to
CUDA/HIP-based counterpart implementations.

Algorithm 4.1: Example of LICM optimization in high-level languages.

input : n: number of iterations;
A: array of constant data;
B: array of constant data;

1 Aptr ← constPtr(A[0]);
2 Bptr ← constPtr(B[0]);
3 for i from 0 to n do

// arithmetic operations, accessing Aptr and Bptr

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 65

Table 4.1: Calibration of (m,M) parameters on AMD MI250X, executing the Chapel
single-GPU B&B algorithm for different values of (m,M) and solving the ta030 PFSP
instance. The execution times are in second; whiter is better.

m M 50,000 100,000 200,000 300,000 400,000 500,000 600,000

10 9.78 9.55 9.41 9.42 9.36 9.36 9.42
20 9.78 9.52 9.4 9.39 9.38 9.36 9.38
30 9.78 9.56 9.41 9.4 9.36 9.36 9.38
40 9.78 9.56 9.4 9.38 9.37 9.37 9.37
50 9.78 9.55 9.41 9.38 9.37 9.36 9.36
60 9.79 9.56 9.4 9.38 9.37 9.36 9.36
70 9.78 9.56 9.42 9.4 9.36 9.36 9.37
80 9.78 9.55 9.41 9.38 9.36 9.37 9.38
90 9.79 9.56 9.41 9.37 9.37 9.36 9.38
100 9.8 9.56 9.41 9.39 9.36 9.36 9.39

4.3.3 Parameter calibration

The experiments presented in this section aim to determine the couple of parameters
(m,M) that optimize the execution of the proposed B&B algorithm on AMD MI250X.
m determines the minimal workload necessary for efficient GPU processing. If set too
low, the overhead of data transfer can negate the advantages of parallel computation,
leading to sub-optimal performance. Conversely, an appropriately chosen m allows the
GPU to handle a sufficient volume of data, maximizing throughput and reducing idle
time. On the other hand, M influences the efficiency of data transfers. A chunk size
that is too large may exceed memory limits or result in long transfer times, while a size
that is too small can create excessive overhead from frequent transfers. Carefully tuning
both m and M is needed to balance between efficient resource utilization and processing
speed, enhancing overall execution times and performance on the GPU.

Table 4.1 shows the execution time of the single-GPU B&B algorithm solving the
ta030 PFSP instance on AMD MI250X, and varying the parameters m and M . One
can first see that for almost all values of m, setting M = 500, 000 allows to minimize
the execution time. Moreover, in the range of the optimal value for M (i.e., M ∈
[400, 000; 600, 000]) setting m ∈ [50; 60] seems to provide the best results. We can also
note that the worst-case time obtained on this instance is about 5% longer than the
optimal one. The calibration of (m,M) has been repeated for several PFSP and N-
Queens instances. Most of the time, setting m and M to 50 and 500,000, respectively,
provides good results. These values are therefore considered in the following.

4.3.4 Strong scaling efficiency

Table 4.2 shows the absolute strong scaling efficiency achieved by our PGAS-based GPU-
accelerated B&B algorithms considering both intra- and inter-node parallel levels. At
the intra-node (resp. inter-node) level, the single-node (resp. multi-node) multi-GPU

66 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

B&B algorithm is tested, and compared to the optimized single-GPU (resp. single-node
multi-GPU) version.

At the intra-node level, we achieve on average 87% of the ideal speed-up solving
the N-Queens instances using 2 GPUs, and 40% using 8 GPUs. As the number of
GPUs increases, the coordination and data exchange associated with intra-node load
balancing produce overhead that becomes progressively more significant. Since the N-
Queens problem is fine-grained, the computation cost per subproblem is insufficient
to offset these overheads, which limits scalability. Solving the PFSP instances, the
observed speed-up is very low, reflecting the fact that the single-GPU Chapel version
of our algorithm is, on average, 62% slower than the HIP-based baseline, as shown in
Figure 4.4b. However, it is theoretically possible to determine the relative speed-up of
our algorithm. In general, if we assume that tchpl = x×thip with x ≥ 1, then the following
relationship between absolute and relative speed-up holds: srelative = x× sabsolute. This
means that, on average, our Chapel approach achieves a relative speed-up of 1.62×0.89 =
1.44 using 2 GPUs, and 1.62 × 2.39 = 3.87 with 8 GPUs. For the best relative results,
73% of the ideal speed-up is achieved solving the ta024 instance using 8 GPUs.

At the inter-node level, a similar trend appears. Scalability for solving large N-
Queens instances is limited as the number of compute nodes increases, achieving only
25% of the ideal speed-up on average with 128 compute nodes, corresponding to roughly
3 billion nodes processed per second. For the PFSP, a relative speed-up of 44% is
observed with 32 compute nodes, but this drops to less than 19% with 128 compute
nodes. This limitation arises from the synchronization approach of the dynamic WS
mechanism, which relies on spin-locks. When hundreds of GPUs are used, this approach
maintains numerous pools and threads, leading to substantial overhead and performance
degradation at scale. However, this effect is less severe for the N-Queens problem, as
the problem generates relatively regular trees, allowing the initial static load-balancing
mechanism to distribute the workload more effectively among nodes. This reduces WS
and, consequently, synchronization requirements.

4.4 Conclusion

In this chapter, we have extended the design and implementation of our PGAS-based
parallel B&B algorithm to deal with GPU-powered heterogeneous architectures.

The algorithm combines the parallel tree exploration on CPU with the parallel eval-
uation of bounds on GPU to accelerate the compute-intense bounding operator of the
B&B algorithm. The workload irregularity is managed by a multi-level dynamic load-
balancing mechanism, inspired by the one of distBag DFS, adapted to the context of
GPU. From the implementation aspect, the use of Chapel allows high-level abstrac-
tions that seamlessly integrate multiple levels of parallelism—CPU, GPU, and inter-
node—within a unified programming language. In addition, the portability challenge is
addressed by the vendor-neutral GPU-support of the language.

The algorithm is generic with regards to the tackled optimization problem, and has
been tested on two different challenging problems: PFSP and N-Queens. For compari-

Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters 67
T
ab

le
4.
2:

S
tr
on

g
sc
al
in
g
effi

ci
en

cy
ac
h
ie
ve
d
b
y
th
e
G
P
U
-a
cc
el
er
at
ed

B
&
B

co
n
si
d
er
in
g
b
ot
h
in
tr
a-

an
d
in
te
r-
n
o
d
e
le
v
el
s.

In
st
an

ce
s
ar
e
so
rt
ed

b
y
th
e
n
u
m
b
er

of
n
o
d
es
.

(a
)
In
tr
a
-n
o
d
e
le
ve
l
(s
in
g
le
-n
o
d
e
m
u
lt
i-
G
P
U

co
n
fi
g
u
ra
ti
o
n
).

In
st
an

ce
G
P
U
×
1

G
P
U
×
2

G
P
U
×
4

G
P
U
×
8

k
n
/s

k
n
/s

sp
ee
d
-u
p

k
n
/s

sp
ee
d
-u
p

k
n
/s

sp
ee
d
-u
p

15
-Q

u
ee
n
s

34
,7
4
4.
0

5
7,
97
0
.7

1.
6
7

82
,1
0
6.
1

2.
36

8
8,
47
5
.6

2.
5
4

16
-Q

u
ee
n
s

34
,8
8
4.
4

6
0,
16
3
.2

1.
7
2

95
,4
8
7.
7

2.
74

11
9,
12
0
.2

3.
4
1

17
-Q

u
ee
n
s

34
,9
4
0.
7

6
4,
45
8
.7

1.
8
4

93
,9
6
6.
3

2.
69

12
4,
72
0
.3

3.
5
7

A
V
G

3
4
,8
5
6
.4

6
0
,8
6
4
.2

1
.7
4

9
0
,5
5
3
.4

2
.6
0

1
1
0
,7
6
8
.8

3
.1
7

t
a
0
2
9

2,
03
6.
3

1,
5
46
.3

0
.7
6

2
,2
22
.7

1.
09

2,
60
2
.0

1.
2
8

t
a
0
3
0

2,
13
4.
5

1,
7
33
.6

0
.8
1

2
,3
56
.0

1.
10

2,
64
1
.1

1.
2
4

t
a
0
2
2

2,
12
6.
4

1,
6
80
.6

0
.7
9

2
,4
35
.4

1.
15

2,
69
9
.0

1.
2
7

t
a
0
2
7

2,
21
7.
6

1,
9
80
.8

0
.8
9

3
,3
19
.3

1.
50

4,
79
0
.8

2.
1
6

t
a
0
2
3

2,
25
6.
0

2,
0
68
.4

0
.9
2

3
,5
03
.1

1.
55

5,
81
7
.1

2.
5
8

t
a
0
2
8

2,
21
6.
0

2,
0
92
.4

0
.9
4

3
,5
69
.3

1.
61

5,
99
3
.0

2.
7
0

t
a
0
2
5

2,
27
8.
9

2,
1
02
.2

0
.9
2

3
,6
73
.6

1.
61

6,
46
8
.7

2.
8
4

t
a
0
2
6

2,
22
8.
3

2,
1
66
.3

0
.9
7

3
,8
14
.3

1.
71

6,
74
5
.3

3.
0
3

t
a
0
2
4

2,
23
3.
3

2,
1
67
.5

0
.9
7

3
,9
73
.0

1.
78

8,
08
6
.0

3.
6
2

t
a
0
2
1

2,
28
8.
4

2,
1
75
.4

0
.9
5

3
,9
92
.2

1.
74

7,
17
0
.0

3.
1
3

A
V
G

2
,2
0
1
.6

1
,9
7
1
.4

0
.8
9

3
,2
8
5
.9

1
.4
8

5
,3
0
1
.3

2
.3
9

(b
)
In
te
r-
n
o
d
e
le
ve
l
(m

u
lt
i-
n
o
d
e
m
u
lt
i-
G
P
U

co
n
fi
g
u
ra
ti
o
n
).

In
st
an

ce
n
o
d
e×

1
n
o
d
e×

8
n
o
d
e×

16
n
o
d
e×

32
n
o
d
e×

6
4

n
o
d
e×

1
2
8

k
n
/s

k
n
/s

sp
ee
d
-u
p

k
n
/s

sp
ee
d
-u
p

k
n
/
s

sp
ee
d
-u
p

k
n
/s

sp
ee
d
-u
p

k
n
/
s

sp
ee
d
-u
p

17
-Q

u
ee
n
s
12
4,
72
0.
3

24
1,
35
6.
8

1.
94

40
8,
78
8.
8

3.
28

70
8
,2
50
.0

5.
68

1
,2
88
,6
2
8.
5

1
0
.3
3

2
,3
6
2
,4
8
3
.6

1
8
.9
4

18
-Q

u
ee
n
s

80
,5
71
.4

28
4,
73
1.
0

3.
53

52
6,
90
8.
5

6.
54

91
4
,0
21
.0

11
.3
4

1
,5
20
,2
5
7.
5

1
8
.8
7

2
,9
1
3
,5
3
5
.2

3
6
.1
6

19
-Q

u
ee
n
s

79
,3
08
.8

28
6,
32
1.
1

3.
61

63
1,
28
2.
6

7.
96

1
,2
05
,4
58
.2

1
5.
20

2,
02
9,
6
09
.9

2
5
.5
9

3
,2
1
0
,8
4
8
.4

4
0
.4
9

A
V
G

9
4
,8
6
6
.8

2
7
0
,8
0
3
.0

3
.0
3

5
2
2
,3
2
6
.6

5
.9
3

9
4
2
,5
7
6
.4

1
0
.7
4

1
,6
1
2
,8
3
2
.0

1
8
.2
6

2
,8
2
8
,9
5
5
.7

3
1
.8
6

t
a
0
2
8

5,
99
3.
0

15
,8
12
.0

2
.6
4

26
,1
7
2.
8

4.
37

38
,7
6
8.
2

6.
4
7

44
,6
93
.5

7
.4
6

4
0
,9
6
9
.0

6
.8
4

t
a
0
2
5

6,
46
8.
7

17
,5
83
.4

2
.7
9

30
,6
2
8.
0

4.
86

42
,1
0
0.
1

6.
6
9

58
,2
18
.3

9
.2
5

6
3
,8
6
5
.0

1
0
.1
5

t
a
0
2
6

6,
74
5.
3

18
,6
42
.2

2
.7
6

33
,0
2
2.
3

4.
89

48
,9
2
1.
9

7.
2
5

64
,8
21
.5

9
.6
0

9
3
,8
7
8
.2

1
3
.9
2

t
a
0
2
4

8,
08
6.
0

22
,6
68
.0

2
.8
1

40
,2
9
3.
7

5.
01

68
,7
3
1.
1

8.
5
4

10
0,
0
30
.1

1
2
.4
4

1
4
1
,0
0
5
.3

1
7
.5
4

t
a
0
2
1

7,
17
0.
0

20
,3
94
.6

2
.8
4

37
,6
4
2.
5

5.
25

67
,6
3
7.
6

9.
4
3

93
,2
49
.8

1
3
.0
0

1
3
1
,7
6
8
.6

1
8
.3
7

A
V
G

6
,8
9
2
.6

1
9
,0
2
0
.0

2
.7
7

3
3
,5
5
1
.8

4
.8
8

5
3
,2
3
1
.7

7
.6
8

7
2
,2
0
2
.6

1
0
.3
5

9
4
,2
9
7
.2

1
3
.3
6

68 Chapter 4. PGAS-based Parallel B&B for GPU-powered Clusters

son purpose, CUDA-based counterpart implementation has also been implemented. We
investigated the performance and portability of the algorithms on several GPU architec-
ture, and also performed large-scale experimentation on a pre-exascale supercomputer.

A summary of the main experimental results is given in the following:

• Chapel’s performance varies significantly across problems and GPU architectures.
For instance, it outperforms the baseline by 3% on the NVIDIA A100 for the
N-Queens problem but lags 13% behind on the older P100. For the PFSP, the
performance gap is even more pronounced, primarily due to the complex bounding
function that increases memory demands and limits performance.

• The experimental results show that missed compiler optimizations in Chapel, in-
cluding LICM and register coalescing, contribute to performance gaps. Manual
LICM improves execution by up to 26% on certain GPUs.

• The experiments demonstrated that the tuning of the m and M parameters in
our B&B algorithm may have an impact on overall performance. On the AMD
MI250X, m ∈ [50, 60] and M = 500, 000 consistently provide good results across
various N-Queens and PFSP instances.

• The strong scaling efficiency analysis shows that our approach achieves up to 40%
speed-up on the N-Queens problem with 8 GPUs at the intra-node level, but only
25% at the inter-node level with 128 nodes. Deploying up to 1,024 GPUs in parallel
proves limited for fine-grained problems, as the node evaluation cost fails to offset
synchronization overhead.

• For the coarse-grained PFSP problem, relative speed-ups of up to 73% were achieved
at the intra-node level using 8 GPUs for the largest instances. However, at the
inter-node level, large-scale performance is constrained by the overhead from spin-
lock-based thread synchronization.

Chapter 5

A Chapel Software Platform for
PGAS-based Parallel B&B

Contents

5.1 Scalable code development . 70

5.1.1 Motivations . 70

5.1.2 Conceptual objectives . 71

5.1.3 Tools for scalable code architecture 72

5.2 The Chapel’s DistributedBag module 73

5.2.1 Integration of distBag DFS into Chapel 74

5.2.2 Local and global operations . 75

5.3 Skeletons for PGAS-based parallel B&B (pBB-chpl) 76

5.3.1 Multi-level abstraction . 77

5.3.2 Parallel B&B skeletons and target systems 78

5.4 Conclusion . 79

The algorithms presented in this thesis are characterized by their genericity with
regards to the problem being solved. This chapter introduces the resulting Chapel-based
software platform for PGAS-based parallel B&B algorithms, referred to as pBB-chpl,
enabling users to assess the feasibility of reusing the platform to solve new problems.

Section 5.1 motivates the need for software platform in the context of scientific re-
search and raises the challenges to achieve a scalable design. The design scalability is
defined as the ability of a computer program to be modified, to be expanded and to cope
with increased use [RXX11]. To rise to these challenges, existing tools are underlined
for the convenient features they provide regarding code abstraction, utility, extensibility
and accessibility. The Object-Oriented Programming (OOP) paradigm and the Chapel
programming language are notably put forward.

Section 5.2 presents the DistributedBag module, implemented within the context
of pBB-chpl, encapsulating the distBag DFS data structure presented in Chapter 3.
This module has been integrated into the Chapel language, enabling users to easily

69

70 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

import the data structure into their own code for various applications, independently
from pBB-chpl. Aspects relative to the data structure capabilities and tuning options
are discussed.

Then, Section 5.3 details the pBB-chpl software platform, which contains the skele-
tons of the parallel B&B algorithms presented in Chapter 3 and Chapter 4. The modular
and flexible code structure of the platform is presented, along with a description of the
skeletons and their target architectures, including multi-core desktops and laptops, com-
modity clusters, in addition to the high-end supercomputers. Finally, Section 5.4 draws
the conclusion of this chapter.

The implementation and documentation of the DistributedBagmodule are provided
in the open-source code repository and online documentation of the Chapel program-
ming language, available at https://github.com/chapel-lang/chapel and https:

//chapel-lang.org/docs/, respectively. In addition, the parallel B&B skeletons target-
ing CPU-based and GPU-powered clusters are hosted on the open-source code reposito-
ries https://github.com/Guillaume-Helbecque/P3D-DFS and https://github.com/

Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel, respectively, and archived
on Zenodo (DOIs 10.5281/zenodo.7328540 and 10.5281/zenodo.10786275, respectively).

5.1 Scalable code development

This section first presents the different aspects motivating the adoption of a scalable
code architecture. Then, the main conceptual objectives of our platform are defined,
and the tools used to achieve these objectives are discussed.

5.1.1 Motivations

Reducing the costs of software development
One of the primary objectives of this thesis is to promote software productivity at various
levels. While we have designed and implemented PGAS-based parallel B&B algorithms
that unify the different levels of parallelism through high-level abstractions, a second
objective is to make our algorithms available to the community and enable their exten-
sibility to many other problems. Indeed, the costs associated with software development
and maintenance should not be entirely overshadowed by computational costs. As ar-
gued in [RXX11], the time and resources required for software development often exceed
those of computation. The authors recommend structuring 80% of the code to facilitate
the software development, while focusing on optimizing the remaining 20% that bears
the greatest computational load to reduce runtime.

Targeting as wider community as possible
The dissemination of parallel B&B requires software tools that are intuitive, extensi-
ble, and customizable, allowing a wide scientific community to leverage them effectively.
Ensuring compatibility across computational environments, from desktops to supercom-
puters, reduces barriers for non-expert users and promotes widespread adoption and

https://github.com/chapel-lang/chapel
https://chapel-lang.org/docs/
https://chapel-lang.org/docs/
https://github.com/Guillaume-Helbecque/P3D-DFS
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel
https://doi.org/10.5281/zenodo.7328540
https://doi.org/10.5281/zenodo.10786275

Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B 71

collaboration. The platform should provide ready-to-use methods and templates, em-
powering researchers across disciplines to benchmark and solve complex, real-world op-
timization problems.

Scalable design
Since the late 20th century, designing scalable code architectures has been recognized
as a task of paramount importance, on par with the development of supercomputers
themselves [DNS97]. In the context of software architecture, design scalability is defined
as the ability of a computer program to be modified, expanded, and to handle increased
usage [RXX11]. An architecture that employs modular decomposition is expected to
reduce dependencies between algorithmic components, thereby enhancing flexibility. A
key condition for achieving a scalable design is also the availability of comprehensive
and well-illustrated documentation, which promotes accessibility and helps mitigate the
complexity associated with code evolution.

5.1.2 Conceptual objectives

Code reusability
One of the key objectives of design scalability is ensuring code reusability. Reusability
is defined by [Al-+10] as “the ability to use part or the whole system [...] to reduce
the effort, cost, and time to develop a new system”. It have also been identified three
main approaches to software re-usability: no reuse, code reuse, and code and design
reuse [Mel05]. The motivation behind the no reuse approach is the apparent simplicity
of the implemented algorithms, which encourages the developer to implement them
independently. However, beyond the difficulty of maintaining the code, such an approach
requires significant time and effort and is prone to errors.

The code reuse approach involves reusing standalone programs or libraries. Reusing
standalone programs requires a detailed examination of the code and the rewriting of
specific sections related to the problem at hand. This task is time-consuming, tedious,
and prone to errors. For this reason, libraries provide a more efficient and reliable solu-
tion for reusing existing code. Additionally, libraries are often tested and documented,
making their maintenance much easier. However, libraries only allow for code reuse and
are not designed to facilitate the reuse of design.

Finally, the objective of the code and design reuse approach is to overcome the lim-
itations of the previous approach by enabling both code and design reuse. In other
words, it aims to minimize the amount of code developed (and thus the development
effort) whenever a new optimization problem is addressed. In the context of combi-
natorial optimization, this approach is based on separating the invariant parts of the
solution methods from the parts specific to the problems being solved. The invariant
part, independent of the problems, forms a set of components that can serve as design
models, and are often called “skeletons”.

Utility and adaptation
The aim of the invariant part of the software platform is twofold. Firstly, it should at-

72 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

tract a wide user community by saving them time, enabling them to focus more on their
specific problems. This is achieved by providing a diverse set of ready-to-use algorith-
mic tools (e.g., problem-solving methods) that have already demonstrated their value
for pBB-chpl. Secondly, the skeletons should provide access points for easily integrating
specific code. The invariant code must be sufficiently robust to prevent significant dis-
ruptions while still offering flexibility for adaptation.

Accessibility
Accessibility is primarily ensured through the ease of use of the software platform. The
process of obtaining the code, installing the necessary dependencies, and running an ini-
tial example should be simple and quick. The ease of extension is the second key aspect.
It is closely tied to a clear understanding of the code structure, from the overall plat-
form layout to the finer details at the class level. Access points for inserting custom code
should be clearly identified. Finally, portability across different operating systems and
hardware infrastructures is crucial to achieve accessibility. The heterogeneity of modern
computational systems, particularly in terms of hierarchical memory organization, must
be addressed to maximize the parallel use of computational resources.

5.1.3 Tools for scalable code architecture

Object-Oriented Programming
OOP is a paradigm that structures code around “objects”, encapsulating attributes and
methods within classes to promote modular, re-usable, and scalable design [Weg90]. Key
principles—encapsulation, inheritance, and polymorphism—enable a clear separation of
concerns and reduce complexity as the code grows. Encapsulation is a technique that
combines attributes and the methods that operate on these attributes within a single
unit, called an object. By making an object’s internal state private and exposing only
selected methods for interacting with it, encapsulation restricts direct access to sensitive
information and maintains data integrity. Inheritance is a mechanism that allows a new
class (subclass) to acquire properties and behaviors (attributes and methods) from an
existing class (superclass), establishing a hierarchical relationship between classes. The
subclass can inherit the methods and attributes of the superclass, and it can also over-
ride or extend them to provide specialized behavior. Inheritance enables the creation
of more specific classes based on general ones, facilitating a structured and organized
codebase while reducing redundancy. Finally, polymorphism allows objects of different
classes to be treated as objects of a common superclass. Through method overriding
(runtime polymorphism) or method overloading (compile-time polymorphism), polymor-
phism allows a method to behave differently based on the object it is called on. This
promotes flexibility and extensibility, as new classes can be added without modifying ex-
isting code. Put together, these principles support modularity, and are ideal for scalable
systems, where components can be independently developed, improved, and deployed,
ultimately making large-scale systems more manageable, robust, and easier to extend.

Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B 73

Chapel programming language
Choosing one programming language over another for the implementation of a software
framework is generally not a trivial decision. In the context of PGAS programming,
we have opted for the Chapel programming language for multiple reasons. First of all,
Chapel is a free, open-source and general-purpose language, benefiting from an active de-
velopment and community, notably with an annual forum for Chapel users and develop-
ers. In addition, Chapel already powers several academic research projects, ranging from
a multi-physics software oriented toward fluid dynamics (CHAMPS) to simulation of the
dynamics of ultra-light dark matter for astrophysics (chplUltra)8. Even though Chapel
is a new base language that requires some learning before it can be used effectively, it is
designed to be easy to learn for users of Python, C, C++, Fortran, Java, Matlab, and
the like. Indeed, Chapel allows avoiding the use of pointers, supports type inference,
and high-level abstractions, allowing developers to focus on expressing their algorithms
and parallelism without getting bogged down in low-level implementation details. In
addition, Chapel includes OOP features for modularity, code portability through the
compiler, code indentation favoring readability and vectorization alleviating the amount
of code. Additionally, Chapel allows C, Fortran, and Python interoperability, enabling
the re-use of existing libraries. All these assets make the Chapel programming language
a good candidate for the implementation of a scalable code architecture.

Documentation and distribution
Documentation and distribution are essential aspects of software development, ensuring
that the code is clear, well-organized, and easily accessible to both users and develop-
ers. Clear and thorough documentation serves as a guide to understanding the system,
outlining its architecture, functionality, and user interaction. Effective distribution,
meanwhile, guarantees that the software can be deployed, updated, and used effortlessly
by the target audience. This includes packaging the software to simplify its installation
and configuration, ensuring compatibility across various environments, and maintaining
version control for managing updates and fixes. To this end, pBB-chpl is hosted on
GitHub, a popular platform for open-source software, and is also archived on Zenodo,
an archiving service that facilitates long-term preservation. Together, documentation
and distribution foster seamless collaboration and usability, allowing both end-users and
developers to interact with the software efficiently and confidently.

5.2 The Chapel’s DistributedBag module

This section presents an initial effort towards designing a scalable software interface,
based on the integration of the distBag DFS data structure into the Chapel programming
language.

8Projects powered by Chapel: https://chapel-lang.org/poweredby.html.

https://chapel-lang.org/poweredby.html

74 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

5.2.1 Integration of distBag DFS into Chapel

Chapel provides a rich collection of modules that enable users to import the libraries
they require. These modules are categorized into two groups: standard modules and
package modules. Standard modules describe features that are considered part of the
Chapel Standard Library, while package modules consist of libraries that exist outside
the Chapel Standard Library. This separation is typically due to these libraries being
either not fundamental enough or not yet sufficiently mature for inclusion in the standard
library.

The distBag DFS data structure introduced in Chapter 3 has been integrated into
the DistributedBag package module since Chapel 2.0 release. This integration offers
several key benefits:

• Re-usability : By packaging distBag DFS as a module, the data structure can be
reused across multiple projects and applications with minimal effort. This pro-
motes software productivity by enabling developers to leverage existing function-
alities without needing to re-implement them for each project. Furthermore, this
modular approach reduces code duplication, making it easier to maintain consis-
tent and reliable solutions across different contexts. Additionally, being part of
an open-source ecosystem, developers can freely access, modify, and extend the
module, fostering innovation and collaboration across a wide range of projects.

• Maintainability : All notable features of Chapel, including package modules, are
extensively tested to ensure stability and reliability as the language evolves. This
provides two major advantages. First, it ensures that the functionality of the
distBag DFS data structure remains consistent, even as new language features are
introduced or the Chapel compiler is updated. Second, it helps to early detect per-
formance regressions, allowing developers to address potential issues before they
become widespread. Additionally, encapsulating the data structure in a module
makes it easier to update or improve the implementation without introducing un-
intended side effects in other parts of the codebase. Any necessary changes can be
made in a single location, streamlining the maintenance process.

• Modularity : Modularity is a core principle of the package module system. By
organizing distBag DFS within its own module, the structure is isolated and well-
defined. This promotes clean and well-structured code, allowing developers to
focus on specific components without affecting unrelated functionality.

• Visibility : The integration of distBag DFS in a package module increases its vis-
ibility within the Chapel community, and by extension the parallel computing
community. By packaging it in a module, the data structure becomes accessible
to a wider audience of developers who may not be familiar with its specifics but
can now easily incorporate it into their own projects. Documentation generated
for the module, as illustrated in Figure 5.1, further enhances its accessibility. This
visibility encourages adoption, feedback, collaboration, and contributions from the
community, which in turn helps refine and improve the data structure over time.

Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B 75

Figure 5.1: Chapel’s official documentation of the DistributedBag package module.

In the following, we present an overview of the features of the data structure, en-
abling the implementation of various applications, independently from the pBB-chpl

framework.

5.2.2 Local and global operations

distBag DFS provides several operations, categorized into two types: local operations,
which apply to a specific segment of an individual bag instance, and global operations,
which affect the entire distBag DFS.

Local operations include add, addBulk, and remove, and allow to insert an element,
insert elements in bulk, and remove an element from the segment specified by taskId,
respectively. Each of these operations applies to the bag instance of the locale it is
called from. One of the specific features of distBag DFS is that the index of the task
to operate on must be explicitly given when calling the operation, ensuring DFS order-
ing. Alternative implementations could investigate an automated way to deal with this
index, but PGAS-based languages, such as Chapel, often intentionally avoid supporting
a standard language-level way to query a task’s id. On the other hand, some internal
opaque type exist, referring to the task id that the runtime uses. However, their usage
can lead to portability issues since different runtime tasking options may exist, and the
support is not guaranteed to continue across future versions of the languages. Another
specific feature of the data structure is that the work-stealing mechanism is managed
transparently to the user by the remove operation.

In contrast to local operations, global operations apply to the whole distBag DFS,
requiring all segments from all bag instances to be visited. These operations include

76 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

Figure 5.2: UML diagram of the pBB-chpl software platform.

clear, contains, getSize, and these, and allow to clear the distBag DFS, search for
a specific element in it, get its global size, and iterate over its elements, respectively.
The first three operations are implemented in a best-effort manner to enhance mem-
ory and processing efficiency. This approach sacrifices strict consistency for improved
performance and resource usage, making it suitable for operations where occasional in-
accuracies are acceptable. Differently, a snapshot approach is preferred for the these

operation as it provides a stable state of the data structure, avoiding concurrency issues.
Indeed, the method creates a consistent view of the data structure at a particular point
in time by making a full-copy. Although this increases memory consumption, it also
enhances parallelism, allowing other concurrent, even mutating, operations to proceed
without interference. However, this approach can result in iterating over duplicated or
missing elements due to concurrent modifications. While locking approaches provide
strong consistency, they often lead to contention and reduced concurrency especially
when many tasks are used, making the snapshot approach a balanced choice for main-
taining performance while iterating.

5.3 Skeletons for PGAS-based parallel B&B (pBB-chpl)

Figure 5.2 shows the overall structure of the pBB-chpl Chapel software platform for
PGAS-based parallel B&B algorithms developed in this thesis. In the following, the
different levels of abstraction and B&B skeletons are presented, allowing the user to gauge
the implications of extending the software platform to another problem. In addition, the
various configuration options and target systems are discussed.

Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B 77

5.3.1 Multi-level abstraction

The pBB-chpl platform introduces several levels of abstraction for implementing parallel
B&B algorithms. The first of these is the Node type, which typically contains the data
required to compute the bound for a subproblem and also holds the partial solution
associated with that subproblem. Algorithm 5.1 illustrates the Node types used for the
problems tested in this thesis: PFSP, 0/1-Knapsack, N-Queens, and UTS. For a sake
of simplicity, initializers are omitted. Common attributes across these types are usually
the node’s depth and the encoding for the partial solution, which are commonly used
for determining the position of the node within the overall search tree and compute
bounds. While other platforms may offer a separate abstraction for the solution type,
which typically includes both the solution value and the solution itself, pBB-chpl uses the
same Node type to represent the solution. This design choice is based on the perspective
that solutions can be seen as special cases of subproblems, where all the decision variables
are assigned (i.e., typically when the node’s depth equals the problem size).

Algorithm 5.1: Example of Node types currently supported in pBB-chpl.

1

A second level of abstraction is obviously dedicated to the definition of the problem,
including a function to bound/evaluate a subproblems, which, based on the depth of the
node, calculates either the evaluation of the partial solution or the cost of a complete
solution; a branching function, which defines the method for dividing a subproblem
into smaller subproblems; a function to generate the root problem; and a function to
create the initial solution. All these methods are defined in the Problem interface, as
illustrated in Algorithm 5.2. An interface defines a “contract” outlining specific methods
that a class must implement if it chooses to adopt that interface. The latter consist of
three “core” methods: decompose, which embeds the branching and bounding functions;
getInitSolution, which determines how the initial solution is initialized; and copy, a
copy-initializer used to specify how a Problem class instance has to be copied to each
compute node in distributed settings. In a scenario where a problem requires data and

78 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

pre-processing on it before the exploration begins9, the copy initializer can be used to
handle the replication of this data across the locales, eliminating the need to repeat
the data reading and pre-processing phase on each locale. The interface also includes
four additional “utility” methods that allow the user to specify the output format, for
example. These methods are typically used for extracting execution statistics or for
debugging purposes.

Algorithm 5.2: The Problem interface.

1 class Problem
// CORE PROCEDURES

2 proc copy() {}
3 proc decompose(/*args*/) {}
4 proc getInitSolution(): int {}

// UTILITY PROCEDURES

5 proc print settings(): void {}
6 proc print results(/*args*/): void {}
7 proc output filepath(): string {}
8 proc help message(): void {}

5.3.2 Parallel B&B skeletons and target systems

Once the user has provided the concrete node and problem objects, he/she obtains dif-
ferent parallel solvers. Solvers allow to target several architectures, including multi-core
desktops and laptops, commodity clusters, in addition to the high-end supercomputers
for which pBB-chpl was designed. More precisely, the platform supports the following
parallel execution modes:

• sequential : Optimized version designed for single-core execution, without any par-
allel feature. This version primarily serves as a baseline to evaluate the perfor-
mance of parallel variants and is only applicable to solving small-size problems,
where sequential execution is feasible. As an example, Algorithm 5.3 presents the
associated Chapel-based B&B skeleton, highlighting a straightforward structure
for initialization, tree exploration, and result output. For simplicity, logic related
to counting statistics and time measurement has been omitted.

• single-node multi-core: Optimized version designed for single-node, multi-core ex-
ecution, leveraging parallelism within a single machine. It can be used to either
provide a reference for evaluating the performance of distributed implementations,
or in a standalone manner to solve problems of small to moderate size that can
benefit from shared-memory parallelism on a single compute node.

9such as for some Knapsack problems, where the list of items has to be ordered according to the
weight and profit of each item.

Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B 79

• multi-node multi-core: This version, optimized for multi-node, multi-core execu-
tion, utilizes distributed parallelism across multiple compute nodes. It is mostly
used as a standalone solution for tackling large-scale problems that require the
combined resources of multiple compute nodes and benefit from both distributed
and shared-memory parallelism. Currently, the skeleton assumes that all com-
pute nodes have an identical number of computing threads. Configurations with
heterogeneous compute nodes—such as variations in core count across compute
nodes—have not been tested and may not perform as expected.

• single-node single-GPU : Optimized for single-GPU execution. It can be used either
as a benchmark for evaluating multi-GPU implementations or as a standalone
solution for solving moderate-size problems that benefit from GPU parallelism.

• single-node multi-GPU : Optimized for single-node, multi-GPU execution, leverag-
ing parallelism across multiple GPUs within a single compute node. This version
is suitable for solving larger problems that can benefit from multiple GPUs, pro-
viding enhanced computational power for tasks that demand high throughput. It
can serve as a benchmark for evaluating distributed multi-GPU implementations
or as a standalone solution for problems of medium to large size.

• multi-node multi-GPU : Optimized for multi-node, multi-GPU execution, utilizing
both distributed parallelism and multiple GPUs across different compute nodes.
This version is designed for solving very large-scale problems that require the
combined power of multiple GPUs spread across several nodes. It is primarily
used in HPC environments where the problem size and computational demands
exceed the capabilities of a single-node, multi-GPU configuration.

The portability of the GPU-accelerated implementations across NVIDIA and AMD
GPU architectures is ensured by the Chapel compiler, which offers vendor-neutral sup-
port for GPU. Specifically, Chapel supports compilation from a single source file to
multiple target architectures, including CPUs and GPUs. This is achieved through the
LLVM compiler framework, which allows Chapel code generation to target a diverse
range of back-ends, such as PTX for NVIDIA GPUs and AMDGCN for AMD GPUs.
Other GPU architectures (e.g., Intel GPUs) are not currently supported, but their in-
tegration with these platforms is part of the future development plans for the Chapel
compiler.

5.4 Conclusion

In this chapter, we have presented the pBB-chpl Chapel software platform for PGAS-
based parallel B&B algorithms, with a particular focus on its scalable code architecture.
The distBag DFS data structure, developed within this context, has been encapsulated
in the DistributedBag module and integrated into the Chapel programming language.
This exposes the data structure to a large community of users interested in parallel

80 Chapter 5. A Chapel Software Platform for PGAS-based Parallel B&B

Algorithm 5.3: Chapel-based B&B skeleton for sequential execution.

1 use List;
2 use Node, Problem;

3 proc search sequential(Node, problem)
4 var best = problem.getInitSolution();
5 problem.print settings();

// INITIALIZATION

6 var pool: list(Node);
7 var root = new Node (problem);
8 pool.pushBack(root);

// TREE EXPLORATION

9 while !pool.isEmpty() do
10 var parent: Node = pool.popBack();
11 var children = problem.decompose(Node, parent, best);
12 pool.pushBack(children);

// OUTPUT

13 problem.print results(best);

computing, and aims to promote its use as well as stimulate scientific collaboration.
The pBB-chpl platform, on the other hand, provides multiple parallel B&B skeletons
allowing to target several architectures, including multi-core desktops and laptops, com-
modity clusters, in addition to the high-end supercomputers for which pBB-chpl was
designed. The software platform and associated documentation are open-source and
publicly available online through Github repositories.

Chapter 6

Conclusions and Perspectives

Contents

6.1 Conclusions . 81

6.2 Perspectives . 83

6.3 Dissemination . 85

6.3.1 International peer-reviewed publications 85

6.3.2 Open-source software . 86

Section 6.1 and Section 6.2 present the general conclusions of this thesis and outline
several perspectives, respectively. Lastly, Section 6.3 provides a summary of all scientific
production made throughout this PhD research, including the publications and software
developments.

6.1 Conclusions

The June 2022 edition of the TOP500 marked a historic turning-point with the begin-
ning of the exascale era. Modern systems evolve to tackle unprecedented computational
demands, integrating thousands of hybrid compute nodes, each integrating multi-core
processors coupled with GPU accelerators. In the near future, exascale supercomput-
ers will have a profound impact on everyday life, quickly analyzing massive volumes of
data and more realistically simulating the complex processes and relationships behind
many of the fundamental forces of the universe. This leap forward, however, introduces
significant challenges for supercomputer programmers, particularly in managing the hi-
erarchical organization, providing multi-level parallelism. In this context, the design and
implementation of efficient algorithms for those computing environments is challenging,
and the development of new computational paradigms and software to achieve exascale
becomes a necessity.

In this thesis the focus is put on exact combinatorial optimization using tree search
algorithms. Based on the PGAS paradigm, providing an alternative to the traditional

81

82 Chapter 6. Conclusions and Perspectives

shared-memory and message-passing models, we have revisited the design and imple-
mentation of parallel B&B algorithms on large-scale systems combining multi-core pro-
cessors and many-core GPU. While PGAS is known to facilitate parallel programming
with shared-memory semantics across distributed systems, its use in the optimization
context is still in its infancy. Moreover, the irregularity of B&B makes its implemen-
tation particularly challenging in computing environments where performance relies on
SIMD processing and regular memory access patterns. The proposed algorithms ex-
ploit a pool-based design to allow generic implementation with regards to the problem
solved. As test-cases, three well-known benchmarks problems are used: the PFSP, the
0/1-Knapsack problem and the N-Queens problem.

The first contribution consists in the design and implementation of the PGAS-based
distBag DFS multi-pool data structure dedicated to depth-first exploration of large,
irregular trees. It is intrinsically highly parallel and integrates a dynamic load-balancing
mechanism based on large-scale work-stealing, operating at both intra- and inter-node
levels. This mechanism, which required sophisticated synchronization based on non-
blocking double-ended queues, promotes locality in work-stealing, enabling scalability.
As a second contribution, we have proposed the design and implementation of a PGAS-
based B&B algorithm for CPU-based clusters, based on the distBag DFS data structure.
The algorithm exploits genericity of the pool-based data structure to allow a generic
design with regards to the tackled optimization problem.

The third major contribution is the extension of the design and implementation of
the PGAS-based parallel B&B algorithm to deal with GPU-powered heterogeneous ar-
chitectures. The algorithm combines the parallel tree exploration on CPU with the
parallel evaluation of bounds on GPU to accelerate the compute-intense bounding op-
erator of the B&B algorithm. The workload irregularity is managed by a multi-level
dynamic load-balancing mechanism, inspired by the one of distBag DFS, adapted to the
context of GPU. From the implementation aspect, the use of Chapel allows high-level
abstractions that seamlessly integrate multiple levels of parallelism—CPU, GPU, and
inter-node—within a unified programming language. In addition, the portability chal-
lenge is addressed by the vendor-neutral GPU-support of the language. For comparison
purpose, optimized CUDA-based baseline implementations have also been provided.

The fourth and last contribution consists in the pBB-chpl Chapel software platform
developed during this thesis for the dissemination of the included PGAS-based parallel
B&B skeletons. The software demonstrates extensible and flexible skeletons, allowing to
target several architectures, including multi-core desktops and laptops, commodity clus-
ters, in addition to the high-end supercomputers for which pBB-chpl was designed. The
accessibility is guaranteed by the free and open-source license. Finally, independently
from the software platform, the distBag DFS data structure has been integrated into the
Chapel programming language (HPE/Cray) as the DistributedBag package module.

One of the main objectives of this thesis was to investigate whether the PGAS
paradigm can be used to build more efficient and more programmable parallel B&B

Chapter 6. Conclusions and Perspectives 83

algorithms for modern ultra-scale computing platforms. The experiments, conducted on
the petascale MeluXina and LUMI supercomputers (460th and 5th in TOP500 in June
2024, respectively), indicate that the answer to this question is highly dependent on
both the input and the target platform. On CPU-based clusters, the results show that
our distBag DFS-based parallel B&B can achieve near-linear strong scaling efficiencies
on hard PFSP instances, while outperforming a state-of-the-art baseline implementation
based on MPI+X. More significantly, our algorithm is able to scale up to 400 compute
nodes, or 51,200 CPU cores, solving very hard PFSP instances. These good results
highlight the suitability of our approach to tackle coarse-grained problems. However,
on the 0/1-Knapsack and N-Queens problems, the experiments show limited efficiencies,
highlighting the challenges posed by load balancing and fine-grained computations. On
GPU-powered clusters, on the other hand, the results show that the PGAS approach
allows portable execution on several GPU architectures, while providing faster execu-
tion time compared to baselines on modern architectures solving N-Queens instances.
However, the complexity of the bounding function for the PFSP problem leads to a
performance degradation, attributable to missed optimizations by the Chapel compiler.
The strong scaling analysis indicates that our approach achieves reasonable intra-node
speed-ups—up to 40% for the fine-grained N-Queens and 73% for the coarse-grained
PFSP with 8 GPUs. However, inter-node performance is significantly limited by syn-
chronization overhead, with only 25% efficiency for N-Queens and reduced scalability for
PFSP at large scales due to spin-lock-based thread synchronization.

6.2 Perspectives

As future research directions for this work, we have identified some challenging perspec-
tives summarized in the following:

• Extend/improve proposed approaches: The experimental results indicated that the
granularity of dynamic load balancing in distBag DFS produces an excessive num-
ber of WS attempts, particularly in cases where stealing shallow nodes (such as
in binary trees) offers no advantage. Looking forward, an adaptive approach to
load balancing granularity tailored to the specific characteristics of each problem
is proposed. In addition, a comprehensive analysis of the performance limita-
tions encountered in GPU configurations is planned. This direction could further
strengthen our collaboration with the Chapel development team (HPE/Cray), po-
tentially leading to recommendations for compiler optimization. Furthermore, in-
vestigating other PGAS-based languages, as well as high-level programming lan-
guages like Julia [Bez+17], is of interest. While studies comparing high-level lan-
guages in parallel metaheuristics exist [Gmy+20a], to the best of our knowledge,
no such analysis has been conducted for parallel B&B.

• Design fault-tolerance mechanisms: Fault tolerance represents another major chal-
lenge that remains to be investigated [Cap09; Sni+14]. Failures can arise from var-
ious sources, including hardware failures due to component degradation, software

84 Chapter 6. Conclusions and Perspectives

bugs, network issues like congestion or disconnections, etc. It is also established
that as supercomputers increase in size to millions of processing cores, their Mean-
Time Between Failures tends to become shorter [Sha+19]. In the optimization
context, failures lead to the loss of work unit(s) being processed by some thread(s)
during the resolution process. Therefore, a major issue, which is particularly criti-
cal in exact optimization, is how to recover the failed work units to ensure a reliable
execution. One of the mainly used approach in the literature is checkpoint-and-
restart method [Sha+13], which involves periodically saving the state of a running
application or process (checkpoint) to a stable storage medium, such as a disk.
This saved state includes essential data, such as variable values and the program
counter, allowing the application to be restored (restart) in the event of a failure.
However, this approach raises several questions, mainly: which critical information
defines the state of the work units and allows to resume properly their execution?
When, where and how (using which data structures) to store it efficiently? How
to deal with scalability and heterogeneity?

• Hybridize B&B with metaheuristics: It is now widely recognized that hybrid exact-
approximate methods outperform traditional optimization approaches when used
separately [Meh11]. However, designing such hybrid methods requires considerable
effort at the algorithmic level. In fact, there are numerous hybridization schemes,
and selecting the most suitable one for a specific application is not always straight-
forward [Tal09]. Among these, low-level hybrids directly integrate metaheuristics
into the B&B process to improve tree exploration and bounding of subproblems.
For instance, the choice of the branching operator is known to have a strong impact
of the explored tree [Gmy+20b; Cer+17], and metaheuristics can be used to select
the one that optimizes the algorithm on a given problem. In contrast, high-level
teamwork hybrids combine B&B and metaheuristics at a strategic level, allowing
each method to alternate in guiding the search or refining the solution. Another
promising application of metaheuristics is their use in tuning the parameters of
the B&B algorithm itself.

• Solve open instances of hard COPs: Many COPs still have open benchmark in-
stances and their solving to the optimality represents a major challenge. For
instance, some of the PFSP Taillard’s instances remain open, more than 30 years
after the benchmark’s release. In a recent attempt to solve them to the optimality,
it has been shown that despite best-known UBs seems likely to be optimal, proofs
of optimality are very hard to obtain for some 50 × 20 instances (ta051, ta054,
ta055, ta059 and ta060) [Gmy22]. Solution attempts using 3-5,000 GPU-hours
per instance failed that objective. Moreover, for the open 100× 20 instances, the
exploration could not be completed despite using 2-10,000 GPU-hours of compu-
tation per instance.

Chapter 6. Conclusions and Perspectives 85

6.3 Dissemination

Below are listed all scientific contributions made throughout this PhD research, including
international publications and open-source software.

6.3.1 International peer-reviewed publications

Journals

• G. Helbecque, J. Gmys, N. Melab, T. Carneiro, and P. Bouvry. Parallel dis-
tributed productivity-aware tree-search using Chapel. Concurrency Computat
Pract Exper (CCPE). 35(27):e7874, 2023. DOI: 10.1002/cpe.7874.

• [selected for special issue] G. Helbecque, E. Krishnasamy, T. Carneiro, N. Melab,
and P. Bouvry. Massively Parallel PGAS-based Branch-and-Bound for GPU-
powered Clusters. Concurrency Computat Pract Exper (CCPE). 2024.

Conferences and workshops with proceedings

• G. Helbecque, J. Gmys, T. Carneiro, N. Melab, and P. Bouvry. A performance-
oriented comparative study of the Chapel high-productivity language to conven-
tional programming environments. In: Proceedings of the Thirteenth International
Workshop on Programming Models and Applications for Multicores and Manycores
(PMAM). pp. 21–29, 2022. DOI: 10.1145/3528425.3529104.

• G. Helbecque, E. Krishnasamy, N. Melab, and P. Bouvry. GPU-Accelerated
Tree-Search in Chapel versus CUDA and HIP. In: 14th IEEE Workshop Parallel
/ Distributed Combinatorics and Optimization (PDCO). 2024.
DOI: 10.1109/IPDPSW63119.2024.00156.

• G. Helbecque, T. Carneiro, N. Melab, J. Gmys, and P. Bouvry. PGAS Data
Structure for Unbalanced Tree-Based Algorithms at Scale. In: Computational
Science – ICCS 2024 (ICCS). vol 14834, 2024. DOI: 10.1007/978-3-031-63759-9 13.

• T. Carneiro, E. Kayraklioglu, G. Helbecque, N. Melab. Investigating Portability
in Chapel for Tree-based Optimization on GPU-powered Clusters. In: Euro-Par
2024: Parallel Processing (EuroPar). LNCS, vol. 14803, pp. 386-399, 2024. DOI:
10.1007/978-3-031-69583-4 27.

• G. Helbecque, E. Krishnasamy, T. Carneiro, N. Melab, and P. Bouvry. A Chapel-
based Multi-GPU Branch-and-Bound Algorithm: Application to the Flowshop
Scheduling Problem. In: 22nd International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar). 2024.

https://doi.org/10.1002/cpe.7874
https://doi.org/10.1145/3528425.3529104
https://doi.org/10.1109/IPDPSW63119.2024.00156
https://doi.org/10.1007/978-3-031-63759-9_13
https://doi.org/10.1007/978-3-031-69583-4_27

86 Chapter 6. Conclusions and Perspectives

Conferences and workshops without proceedings

• G. Helbecque, J. Gmys, N. Melab, T. Carneiro, and P. Bouvry. Productivity-
aware Parallel Distributed Tree-Search for Exact Optimization. In: 6th Interna-
tional Conference on Optimization and Learning (OLA). 2023.

• G. Helbecque, J. Gmys, T. Carneiro, N. Melab, and P. Bouvry. Towards a
scalable load balancing for productivity-aware tree-search. In: 10th Annual Chapel
Implementers and Users Workshop (CHIUW). 2023.

• G. Helbecque, E. Krishnasamy, N. Melab, and P. Bouvry. GPU Computing in
Chapel: Application to Tree-Search Algorithms. In: 7th International Conference
on Optimization and Learning (OLA). 2024.

6.3.2 Open-source software

• The Chapel programming language. The DistributedBag package module. Ver-
sion 2.0 or later. URL: https://github.com/chapel-lang/chapel.

• G. Helbecque, J. Gmys, T. Carneiro, N. Melab, and P. Bouvry. Productivity-
and Performance-aware Parallel Distributed Depth-First Search (P3D-DFS). 2023.
DOI: 10.5281/zenodo.7674860, URL: https://github.com/Guillaume-Helbecque/
P3D-DFS.

• G. Helbecque, I. Tagliaferro, T. Carneiro, E. Krishnasamy, N. Melab, and P. Bou-
vry. GPU-accelerated tree-search in Chapel. 2024. DOI: 10.5281/zenodo.10786276,
URL: https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel.

https://github.com/chapel-lang/chapel
https://doi.org/10.5281/zenodo.7674860
https://github.com/Guillaume-Helbecque/P3D-DFS
https://github.com/Guillaume-Helbecque/P3D-DFS
https://doi.org/10.5281/zenodo.10786276
https://github.com/Guillaume-Helbecque/GPU-accelerated-tree-search-Chapel

References

[ABP98] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. “Thread scheduling for
multiprogrammed multiprocessors”. In: Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures. 1998, pp. 119–
129. doi: 10.1145/277651.277678.

[ACR13] U. A. Acar, A. Chargueraud, and M. Rainey. “Scheduling parallel pro-
grams by work stealing with private deques”. In: Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. 2013, pp. 219–228. doi: 10.1145/2442516.2442538.

[Al-+10] A. B. Al-Badareen et al. “Reusable software components framework”. In:
Proceedings of the European Conference of Systems, and European Con-
ference of Circuits Technology and Devices, and European Conference of
Communications, and European Conference on Computer Science. 2010,
pp. 126–130. doi: 10.5555/1961414.1961435.

[Alb+02] E. Alba et al. “MALLBA: A Library of Skeletons for Combinatorial Opti-
misation”. In: Euro-Par 2002 Parallel Processing. 2002, pp. 927–932. doi:
10.1007/3-540-45706-2_132.

[Alm11] G. Almasi. “PGAS (Partitioned Global Address Space) Languages”. In:
Encyclopedia of Parallel Computing. Springer US, 2011, pp. 1539–1545.
doi: 10.1007/978-0-387-09766-4_210.

[Ans+02] K. Anstreicher et al. “Solving large quadratic assignment problems on
computational grids”. In:Mathematical Programming 91.3 (2002), pp. 563–
588. doi: 10.1007/s101070100255.

[Arc+19] B. Archibald et al. “Implementing YewPar: A Framework for Parallel Tree
Search”. In: Euro-Par 2019: Parallel Processing. Ed. by Ramin Yahyapour.
2019, pp. 184–196. doi: 10.1007/978-3-030-29400-7_14.

[Bar+98] C. Barnhart et al. “Branch-and-Price: Column Generation for Solving
Huge Integer Programs”. In: Operations Research 46.3 (1998), pp. 316–
329. doi: 10.1287/opre.46.3.316.

[Bez+17] J. Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”.
In: SIAM Review 59.1 (2017), pp. 65–98. doi: 10.1137/141000671.

87

https://doi.org/10.1145/277651.277678
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.5555/1961414.1961435
https://doi.org/10.1007/3-540-45706-2_132
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/s101070100255
https://doi.org/10.1007/978-3-030-29400-7_14
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1137/141000671

88 References

[BL99] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded compu-
tations by work stealing”. In: J. ACM 46.5 (1999), pp. 720–748. doi:
10.1145/324133.324234.

[BMT12] A. Bendjoudi, N. Melab, and E.-G. Talbi. “Hierarchical branch and bound
algorithm for computational grids”. In: Future Generation Computer Sys-
tems 28.8 (2012), pp. 1168–1176. doi: 10.1016/j.future.2012.03.001.

[BMT14] A. Bendjoudi, N. Melab, and E.-G. Talbi. “FTH-B&B: A Fault-Tolerant
Hierarchical Branch and Bound for Large Scale Unreliable Environments”.
In: IEEE Transactions on Computers 63.9 (2014), pp. 2302–2315. doi:
10.1109/TC.2013.40.

[BS93] W. J. Bolosky and M. L. Scott. “False sharing and its effect on shared
memory performance”. In: USENIX Systems on USENIX Experiences with
Distributed and Multiprocessor Systems - Volume 4. 1993.

[Cap09] F. Cappello. “Fault Tolerance in Petascale/ Exascale Systems: Current
Knowledge, Challenges and Research Opportunities”. In: The Interna-
tional Journal of High Performance Computing Applications 23.3 (2009),
pp. 212–226. doi: 10.1177/1094342009106189.

[Car+11] T. Carneiro et al. “A New Parallel Schema for Branch-and-Bound Algo-
rithms Using GPGPU”. In: 2011 23rd International Symposium on Com-
puter Architecture and High Performance Computing. 2011, pp. 41–47.
doi: 10.1109/SBAC-PAD.2011.20.

[Car+20] T. Carneiro et al. “Towards ultra-scale Branch-and-Bound using a high-
productivity language”. In: Future Generation Computer Systems 105 (2020),
pp. 196–209. doi: 10.1016/j.future.2019.11.011.

[Car+21] T. Carneiro et al. “Towards Chapel-based Exascale Tree Search Algo-
rithms: dealing with multiple GPU accelerators”. In: HPCS 2020 - The
18th International Conference on High Performance Computing & Simu-
lation. 2021.

[CBS11] D. Cunningham, R. Bordawekar, and V. Saraswat. “GPU programming in
a high level language: compiling X10 to CUDA”. In: Proceedings of the 2011
ACM SIGPLAN X10 Workshop. 2011. doi: 10.1145/2212736.2212744.

[CCZ04] D. Callahan, B. Chamberlain, and H. Zima. “The Cascade High Produc-
tivity Language”. In: Proceedings. Ninth International Workshop on High-
Level Parallel Programming Models and Supportive Environments. 2004,
pp. 52–60. doi: 10.1109/HIPS.2004.10002.

[Cer+17] A. Cerqueus et al. “On branching heuristics for the bi-objective 0/1 uni-
dimensional knapsack problem”. In: Journal of Heuristics 23.5 (2017),
pp. 285–319. doi: 10.1007/s10732-017-9346-9.

https://doi.org/10.1145/324133.324234
https://doi.org/10.1016/j.future.2012.03.001
https://doi.org/10.1109/TC.2013.40
https://doi.org/10.1177/1094342009106189
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1016/j.future.2019.11.011
https://doi.org/10.1145/2212736.2212744
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1007/s10732-017-9346-9

References 89

[Cha+05] P. Charles et al. “X10: an object-oriented approach to non-uniform cluster
computing”. In: Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions. 2005, pp. 519–538. doi: 10.1145/1094811.1094852.

[Cha+13a] I. Chakroun et al. “Combining multi-core and GPU computing for solving
combinatorial optimization problems”. In: Journal of Parallel and Dis-
tributed Computing 73.12 (2013), pp. 1563–1577. doi: 10.1016/j.jpdc.
2013.07.023.

[Cha+13b] I. Chakroun et al. “Reducing thread divergence in a GPU-accelerated
branch-and-bound algorithm”. In: Concurrency and Computation: Prac-
tice and Experience 25.8 (2013), pp. 1121–1136. doi: 10.1002/cpe.2931.

[Cha13] I. Chakroun. “Parallel heterogeneous Branch and Bound algorithms for
multi-core and multi-GPU environments”. PhD thesis. Université de Lille
1, 2013.

[Che+11] L. Chen et al. “Unified Parallel C for GPU Clusters: Language Extensions
and Compiler Implementation”. In: Languages and Compilers for Parallel
Computing. 2011, pp. 151–165. doi: 10.1007/978-3-642-19595-2_11.

[CP99] J. Clausen and M. Perregaard. “On the best search strategy in parallel
branch-and-bound: Best-First Search versus Lazy Depth-First Search”. In:
Annals of Operations Research 90 (1999), pp. 1–17. doi: 10.1023/A:
1018952429396.

[CZ06] S. Climer and W. Zhang. “Cut-and-solve: An iterative search strategy
for combinatorial optimization problems”. In: Artificial Intelligence 170.8
(2006), pp. 714–738. doi: 10.1016/j.artint.2006.02.005.

[Dab+16] A. Dabah et al. “GPU-Based Two Level Parallel B&B for the Blocking
Job Shop Scheduling Problem”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2016, pp. 747–
755. doi: 10.1109/IPDPSW.2016.14.

[Dan57] G. B. Dantzig. “Discrete-Variable Extremum Problems”. In: Operations
Research 5.2 (1957), pp. 266–288. doi: 10.1287/opre.5.2.266.

[Din+09] J. Dinan et al. “Scalable work stealing”. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. 2009.
doi: 10.1145/1654059.1654113.

[Dje+06] A. Djerrah et al. “Bob++: Framework for Solving Optimization Problems
with Branch-and-Bound methods”. In: 2006 15th IEEE International Con-
ference on High Performance Distributed Computing. 2006, pp. 369–370.
doi: 10.1109/HPDC.2006.1652188.

https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1016/j.jpdc.2013.07.023
https://doi.org/10.1016/j.jpdc.2013.07.023
https://doi.org/10.1002/cpe.2931
https://doi.org/10.1007/978-3-642-19595-2_11
https://doi.org/10.1023/A:1018952429396
https://doi.org/10.1023/A:1018952429396
https://doi.org/10.1016/j.artint.2006.02.005
https://doi.org/10.1109/IPDPSW.2016.14
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1109/HPDC.2006.1652188

90 References

[DMN12] J. Diaz, C. Muñoz-Caro, and A. Niño. “A Survey of Parallel Programming
Models and Tools in the Multi and Many-Core Era”. In: IEEE Transac-
tions on Parallel and Distributed Systems 23.8 (2012), pp. 1369–1386. doi:
10.1109/TPDS.2011.308.

[DNS97] V. Decyk, C. Norton, and B. Szymanski. “High Performance Object-Oriented
Scientific Programming in Fortran 90”. In: Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing. 1997.

[DP14] T. van Dijk and J. C. van de Pol. “Lace: Non-blocking Split Deque for
Work-Stealing”. In: Euro-Par 2014: Parallel Processing Workshops. 2014,
pp. 206–217. doi: 10.1007/978-3-319-14313-2_18.

[Dro+12] M. Drozdowski et al. “Grid Branch-and-Bound for Permutation Flow-
shop”. In: Parallel Processing and Applied Mathematics. 2012, pp. 21–30.
doi: 10.1007/978-3-642-31500-8_3.

[EHP15] J. Eckstein, W. E. Hart, and C. A. Phillips. “PEBBL: an object-oriented
framework for scalable parallel branch and bound”. In: Mathematical Pro-
gramming Computation 7.4 (2015), pp. 429–469. doi: 10.1007/s12532-
015-0087-1.

[EPH01] J. Eckstein, C. A. Phillips, and W. E. Hart. “Pico: An Object-Oriented
Framework for Parallel Branch and Bound”. In: Inherently Parallel Al-
gorithms in Feasibility and Optimization and their Applications. Vol. 8.
Studies in Computational Mathematics. Elsevier, 2001, pp. 219–265. doi:
10.1016/S1570-579X(01)80014-8.

[EST92] C. Erbas, S. Sarkeshik, and M. M. Tanik. “Different perspectives of the
N-Queens problem”. In: Proceedings of the 1992 ACM Annual Conference
on Communications. 1992, pp. 99–108. doi: 10.1145/131214.131227.

[Fei+10] F. Feinbube et al. “NQueens on CUDA: Optimization Issues”. In: 2010
Ninth International Symposium on Parallel and Distributed Computing.
2010, pp. 63–70. doi: 10.1109/ISPDC.2010.22.

[GC94] B. Gendron and T. G. Crainic. “Parallel Branch-And-Bound Algorithms:
Survey and Synthesis”. In: Operations Research 42.6 (1994), pp. 1042–
1066. doi: 10.1287/opre.42.6.1042.

[GGS03] B. Goldengorin, D. Ghosh, and G. Sierksma. “Branch and peg algorithms
for the simple plant location problem”. In: Computers & Operations Re-
search 30.7 (2003), pp. 967–981. doi: 10.1016/S0305-0548(02)00049-7.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1979. isbn:
0716710447.

[GJS76] M. R. Garey, D. S. Johnson, and R. Sethi. “The Complexity of Flow-
shop and Jobshop Scheduling”. In: Mathematics of Operations Research
1.2 (1976), pp. 117–129. doi: 10.1287/moor.1.2.117.

https://doi.org/10.1109/TPDS.2011.308
https://doi.org/10.1007/978-3-319-14313-2_18
https://doi.org/10.1007/978-3-642-31500-8_3
https://doi.org/10.1007/s12532-015-0087-1
https://doi.org/10.1007/s12532-015-0087-1
https://doi.org/10.1016/S1570-579X(01)80014-8
https://doi.org/10.1145/131214.131227
https://doi.org/10.1109/ISPDC.2010.22
https://doi.org/10.1287/opre.42.6.1042
https://doi.org/10.1016/S0305-0548(02)00049-7
https://doi.org/10.1287/moor.1.2.117

References 91

[Gmy+16] J. Gmys et al. “IVM-Based Work Stealing for Parallel Branch-and-Bound
on GPU”. In: Parallel Processing and Applied Mathematics. Cham: Springer
International Publishing, 2016, pp. 548–558. doi: 10.1007/978-3-319-
32149-3_51.

[Gmy+17] J. Gmys et al. “IVM-based parallel branch-and-bound using hierarchical
work stealing on multi-GPU systems”. In: Concurrency and Computation:
Practice and Experience 29.9 (2017), e4019. doi: 10.1002/cpe.4019.

[Gmy+20a] J. Gmys et al. “A comparative study of high-productivity high-performance
programming languages for parallel metaheuristics”. In: Swarm and Evolu-
tionary Computation 57 (2020), p. 100720. doi: 10.1016/j.swevo.2020.
100720.

[Gmy+20b] J. Gmys et al. “A computationally efficient Branch-and-Bound algorithm
for the permutation flow-shop scheduling problem”. In: European Journal
of Operational Research 284.3 (2020), pp. 814–833. doi: 10.1016/j.ejor.
2020.01.039.

[Gmy17] J. Gmys. “Heterogeneous cluster computing for many-task exact optimiza-
tion - Application to permutation problems”. PhD thesis. Université de
Mons and Université de Lille, 2017.

[Gmy22] J. Gmys. “Exactly Solving Hard Permutation Flowshop Scheduling Prob-
lems on Peta-Scale GPU-Accelerated Supercomputers”. In: INFORMS Jour-
nal on Computing 34.5 (2022), pp. 2502–2522. doi: 10.1287/ijoc.2022.
1193.

[GR14] M. B. Giles and I. Reguly. “Trends in high-performance computing for
engineering calculations”. In: Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 372.2022 (2014),
p. 20130319. doi: 10.1098/rsta.2013.0319.

[HPS19] A. Hayashi, S. R. Paul, and V. Sarkar. “GPUIterator: bridging the gap
between Chapel and GPU platforms”. In: Proceedings of the ACM SIG-
PLAN 6th on Chapel Implementers and Users Workshop. 2019, pp. 2–11.
doi: 10.1145/3329722.3330142.

[HPS23] A. Hayashi, S. R. Paul, and V. Sarkar. “AMulti-Level Platform-Independent
GPU API for High-Level Programming Models”. In: High Performance
Computing. ISC High Performance 2022 International Workshops. 2023,
pp. 90–107. doi: 10.1007/978-3-031-23220-6_7.

[HS05] S. Reza Hejazi and S. Saghafian. “Flowshop-scheduling problems with
makespan criterion: a review”. In: International Journal of Production Re-
search 43.14 (2005), pp. 2895–2929. doi: 10.1080/0020754050056417.

[Jen+11] J. Jenkins et al. “Lessons Learned from Exploring the Backtracking Paradigm
on the GPU”. In: Euro-Par 2011 Parallel Processing. 2011, pp. 425–437.
doi: 10.1007/978-3-642-23397-5_42.

https://doi.org/10.1007/978-3-319-32149-3_51
https://doi.org/10.1007/978-3-319-32149-3_51
https://doi.org/10.1002/cpe.4019
https://doi.org/10.1016/j.swevo.2020.100720
https://doi.org/10.1016/j.swevo.2020.100720
https://doi.org/10.1016/j.ejor.2020.01.039
https://doi.org/10.1016/j.ejor.2020.01.039
https://doi.org/10.1287/ijoc.2022.1193
https://doi.org/10.1287/ijoc.2022.1193
https://doi.org/10.1098/rsta.2013.0319
https://doi.org/10.1145/3329722.3330142
https://doi.org/10.1007/978-3-031-23220-6_7
https://doi.org/10.1080/0020754050056417
https://doi.org/10.1007/978-3-642-23397-5_42

92 References

[JFK17] L. Jenkins, M. Ferguson, and E. Kayraklioglu. Distributed Data Structures.
Google Summer of Code program. 2017. url: https://summerofcode.
withgoogle.com/archive/2017/projects/6530769430249472.

[Joh54] S. M. Johnson. “Optimal two- and three-stage production schedules with
setup times included”. In: Naval Research Logistics Quarterly 1.1 (1954),
pp. 61–68. doi: 10.1002/nav.3800010110.

[Kec+11] S. W. Keckler et al. “GPUs and the Future of Parallel Computing”. In:
IEEE Micro 31.5 (2011), pp. 7–17. doi: 10.1109/MM.2011.89.

[KK84] V. Kumar and L. N. Kanal. “Parallel Branch-and-Bound Formulations for
AND/OR Tree Search”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-6.6 (1984), pp. 768–778. doi: 10.1109/TPAMI.
1984.4767600.

[KKS04] K. Kennedy, C. Koelbel, and R. Schreiber. “Defining and Measuring the
Productivity of Programming Languages”. In: The International Journal
of High Performance Computing Applications 18.4 (2004), pp. 441–448.
doi: 10.1177/1094342004048537.

[Lag96] M. G. Lagoudakis. “The 0–1 Knapsack Problem: An Introductory Survey”.
1996.

[LE12] M. E. Lalami and D. El-Baz. “GPU Implementation of the Branch and
Bound Method for Knapsack Problems”. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops & PhD Forum.
2012, pp. 1769–1777. doi: 10.1109/IPDPSW.2012.219.

[Ler15] R. Leroy. “Parallel Branch-and-Bound revisited for solving permutation
combinatorial optimization problems on multi-core processors and copro-
cessors”. PhD thesis. Université de Lille 1, 2015.

[Li+15] L. Li et al. “A Parallel Algorithm for Game Tree Search Using GPGPU”.
In: IEEE Transactions on Parallel and Distributed Systems 26.8 (2015),
pp. 2114–2127. doi: 10.1109/TPDS.2014.2345054.

[LLR78] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan. “A General
Bounding Scheme for the Permutation Flow-Shop Problem”. In: Opera-
tions Research 26.1 (1978), pp. 53–67. doi: 10.1287/opre.26.1.53.

[LY07] E. Lusk and K. Yelick. “Languages for High-Productivity Computing: The
DARPA HPCS Language Project”. In: Parallel Processing Letters 17.1
(2007), pp. 89–102. doi: 10.1142/S0129626407002892.

[MAD13] R. Machado, S. Abreu, and D. Diaz. “Parallel Local Search: Experiments
with a PGAS-based programming model”. In: Proceedings of CICLOPS
2012 12th International Colloquium on Implementation of Constraint and
LOgic Programming Systems. 2013. doi: 10.48550/arXiv.1301.7699.

https://summerofcode.withgoogle.com/archive/2017/projects/6530769430249472
https://summerofcode.withgoogle.com/archive/2017/projects/6530769430249472
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/TPAMI.1984.4767600
https://doi.org/10.1109/TPAMI.1984.4767600
https://doi.org/10.1177/1094342004048537
https://doi.org/10.1109/IPDPSW.2012.219
https://doi.org/10.1109/TPDS.2014.2345054
https://doi.org/10.1287/opre.26.1.53
https://doi.org/10.1142/S0129626407002892
https://doi.org/10.48550/arXiv.1301.7699

References 93

[MC98] J. Matocha and T. Camp. “A taxonomy of distributed termination detec-
tion algorithms”. In: Journal of Systems and Software 43.3 (1998), pp. 207–
221. doi: 10.1016/S0164-1212(98)10034-1.

[MCA13] X. Meyer, B. Chopard, and P. Albuquerque. “A Branch-and-Bound algo-
rithm using multiple GPU-based LP solvers”. In: 20th Annual Interna-
tional Conference on High Performance Computing. 2013, pp. 129–138.
doi: 10.1109/HiPC.2013.6799105.

[MCB14] N. Melab, I. Chakroun, and A. Bendjoudi. “Graphics processing unit-
accelerated bounding for branch-and-bound applied to a permutation prob-
lem using data access optimization”. In: Concurrency and Computation:
Practice and Experience 26.16 (2014), pp. 2667–2683. doi: 10.1002/cpe.
3155.

[Meh11] M. Mehdi. “Parallel hybrid optimization methods for permutation based
problems”. PhD thesis. Université de Lille 1 and Université du Luxem-
bourg, 2011.

[Mel05] N. Melab. “Contributions à la résolution de problèmes d’optimisation com-
binatoire sur grilles de calcul”. Thèse HDR. Université des Sciences et
Technologies de Lille, 2005.

[Mez+14] M. Mezmaz et al. “A Multi-core Parallel Branch-and-Bound Algorithm
Using Factorial Number System”. In: 2014 IEEE 28th International Par-
allel and Distributed Processing Symposium. 2014, pp. 1203–1212. doi:
10.1109/IPDPS.2014.124.

[Mit11] J. E. Mitchell. “Branch and Cut”. In: Wiley Encyclopedia of Operations
Research and Management Science. John Wiley & Sons, Ltd, 2011. doi:
10.1002/9780470400531.eorms0117.

[MMT07] M. Mezmaz, N. Melab, and E-G. Talbi. “A Grid-enabled Branch and
Bound Algorithm for Solving Challenging Combinatorial Optimization
Problems”. In: 2007 IEEE International Parallel and Distributed Process-
ing Symposium. 2007, pp. 1–9. doi: 10.1109/IPDPS.2007.370217.

[Mun+14] D. Munera et al. “A Parametric Framework for Cooperative Parallel Lo-
cal Search”. In: Evolutionary Computation in Combinatorial Optimisation.
2014, pp. 13–24. doi: 10.1007/978-3-662-44320-0_2.

[MWA24] J. Milthorpe, X. Wang, and A. Azizi. “Performance Portability of the
Chapel Language on Heterogeneous Architectures”. In: 2024 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW).
2024, pp. 6–13. doi: 10.1109/IPDPSW63119.2024.00011.

[Oli+07] S. Olivier et al. “UTS: An Unbalanced Tree Search Benchmark”. In: Lan-
guages and Compilers for Parallel Computing. 2007, pp. 235–250. doi:
10.1007/978-3-540-72521-3_18.

https://doi.org/10.1016/S0164-1212(98)10034-1
https://doi.org/10.1109/HiPC.2013.6799105
https://doi.org/10.1002/cpe.3155
https://doi.org/10.1002/cpe.3155
https://doi.org/10.1109/IPDPS.2014.124
https://doi.org/10.1002/9780470400531.eorms0117
https://doi.org/10.1109/IPDPS.2007.370217
https://doi.org/10.1007/978-3-662-44320-0_2
https://doi.org/10.1109/IPDPSW63119.2024.00011
https://doi.org/10.1007/978-3-540-72521-3_18

94 References

[Par+19] L. A. Parnell et al. “Trends in High Performance Computing: Exascale
Systems and Facilities Beyond the First Wave”. In: 2019 18th IEEE In-
tersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm). 2019, pp. 167–176. doi: 10.1109/ITHERM.
2019.8757229.

[PC04] R. Pastor and A. Corominas. “Branch and win: OR tree search algorithms
for solving combinatorial optimisation problems”. In: Top 12.1 (2004),
pp. 169–191. doi: 10.1007/BF02578930.

[PE17] T. B. Preußer and M. R. Engelhardt. “Putting Queens in Carry Chains,
No27”. In: J Sign Process Syst 88 (2017), pp. 185–201. doi: 10.1007/
s11265-016-1176-8.

[Pis05] D. Pisinger. “Where are the hard knapsack problems?” In: Computers &
Operations Research 32.9 (2005), pp. 2271–2284. doi: 10.1016/j.cor.
2004.03.002.

[RG05] T. K. Ralphs and M. Güzelsoy. “The Symphony Callable Library for Mixed
Integer Programming”. In: The Next Wave in Computing, Optimization,
and Decision Technologies. Boston, MA: Springer US, 2005, pp. 61–76.
doi: 10.1007/0-387-23529-9_5.

[Ric97] M. Richards. Backtracking algorithms in MCPL using bit patterns and
recursion. Tech. rep. UCAM-CL-TR-433. University of Cambridge, Com-
puter Laboratory, 1997. doi: 10.48456/tr-433.

[Rou87] C. Roucairol. “A parallel branch and bound algorithm for the quadratic as-
signment problem”. In:Discrete Applied Mathematics 18.2 (1987), pp. 211–
225. doi: 10.1016/0166-218X(87)90022-9.

[RS10] K. Rocki and R. Suda. “Parallel Minimax Tree Searching on GPU”. In:
Parallel Processing and Applied Mathematics. 2010, pp. 449–456. doi: 10.
1007/978-3-642-14390-8_47.

[RXX11] D. Rouson, J. Xia, and X. Xu. Scientific Software Design: The Object-
Oriented Way. Cambridge University Press, 2011. doi: 10.1017/CBO9780511977381.

[SB04] M. Snir and D. A. Bader. “A Framework for Measuring Supercomputer
Productivity”. In: The International Journal of High Performance Com-
puting Applications 18.4 (2004), pp. 417–432. doi: 10.1177/1094342004048535.

[SD08] T. Sterling and C. Dekate. “Productivity in High-Performance Comput-
ing”. In: Advances in COMPUTERS. Vol. 72. Advances in Computers.
Elsevier, 2008, pp. 101–134. doi: 10.1016/S0065-2458(08)00002-8.

[Sha+13] F. Shahzad et al. “A survey of checkpoint/restart techniques on distributed
memory systems”. In: Parallel Processing Letters 23.04 (2013), p. 1340011.
doi: 10.1142/S0129626413400112.

https://doi.org/10.1109/ITHERM.2019.8757229
https://doi.org/10.1109/ITHERM.2019.8757229
https://doi.org/10.1007/BF02578930
https://doi.org/10.1007/s11265-016-1176-8
https://doi.org/10.1007/s11265-016-1176-8
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1007/0-387-23529-9_5
https://doi.org/10.48456/tr-433
https://doi.org/10.1016/0166-218X(87)90022-9
https://doi.org/10.1007/978-3-642-14390-8_47
https://doi.org/10.1007/978-3-642-14390-8_47
https://doi.org/10.1017/CBO9780511977381
https://doi.org/10.1177/1094342004048535
https://doi.org/10.1016/S0065-2458(08)00002-8
https://doi.org/10.1142/S0129626413400112

References 95

[Sha+19] F. Shahzad et al. “CRAFT: A Library for Easier Application-Level Check-
point/Restart and Automatic Fault Tolerance”. In: IEEE Transactions on
Parallel and Distributed Systems 30.3 (2019), pp. 501–514. doi: 10.1109/
TPDS.2018.2866794.

[Sha11] N. Shavit. “Data structures in the multicore age”. In: Commun. ACM 54.3
(2011), pp. 76–84. doi: 10.1145/1897852.1897873.

[Sid+12] A. Sidelnik et al. “Performance Portability with the Chapel Language”. In:
2012 IEEE 26th International Parallel and Distributed Processing Sympo-
sium. 2012, pp. 582–594. doi: 10.1109/IPDPS.2012.60.

[Sni+14] M. Snir et al. “Addressing failures in exascale computing”. In: Int. J.
High Perform. Comput. Appl. 28.2 (2014), pp. 129–173. doi: 10.1177/
1094342014522573.

[SRR08] P. San Segundo, D. Rodriguez-Losada, and C. Rossi. “Recent Develop-
ments in Bit-Parallel Algorithms”. In: Tools in Artificial Intelligence. Ri-
jeka: IntechOpen, 2008. Chap. 20. doi: 10.5772/6076.

[Ste+11] G. L. Steele et al. “Fortress (Sun HPCS Language)”. In: Encyclopedia of
Parallel Computing. Ed. by David Padua. Boston, MA: Springer US, 2011,
pp. 718–735. doi: 10.1007/978-0-387-09766-4_190.

[Tai93] E. Taillard. “Benchmarks for basic scheduling problems”. In: European
Journal of Operational Research 64.2 (1993), pp. 278–285. doi: 10.1016/
0377-2217(93)90182-M.

[Tal09] E.-G. Talbi. Metaheuristics: From Design to Implementation. Wiley Pub-
lishing, 2009. isbn: 978-0-470-27858-1.

[TOP24] TOP500.org. TOP500 The List. 2024. url: https://www.top500.org/.

[VD16] T.-T. Vu and B. Derbel. “Parallel Branch-and-Bound in multi-core multi-
CPUmulti-GPU heterogeneous environments”. In: Future Generation Com-
puter Systems 56 (2016), pp. 95–109. doi: 10.1016/j.future.2015.10.
009.

[Weg90] Peter Wegner. “Concepts and paradigms of object-oriented programming”.
In: SIGPLAN OOPS Mess. 1.1 (1990), pp. 7–87. doi: 10.1145/382192.
383004.

[Xu+05] Y. Xu et al. “Alps: A Framework for Implementing Parallel Tree Search
Algorithms”. In: The Next Wave in Computing, Optimization, and De-
cision Technologies. Boston, MA: Springer US, 2005, pp. 319–334. doi:
10.1007/0-387-23529-9_21.

[ZSW11] T. Zhang, W. Shu, and M.-Y. Wu. “Optimization of N-queens solvers on
graphics processors”. In: Proceedings of the 9th International Conference
on Advanced Parallel Processing Technologies. 2011, pp. 142–156. doi: 10.
5555/2042522.2042533.

https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1109/IPDPS.2012.60
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1177/1094342014522573
https://doi.org/10.5772/6076
https://doi.org/10.1007/978-0-387-09766-4_190
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://www.top500.org/
https://doi.org/10.1016/j.future.2015.10.009
https://doi.org/10.1016/j.future.2015.10.009
https://doi.org/10.1145/382192.383004
https://doi.org/10.1145/382192.383004
https://doi.org/10.1007/0-387-23529-9_21
https://doi.org/10.5555/2042522.2042533
https://doi.org/10.5555/2042522.2042533

96 References

Appendix A

Instances and Execution Statistics

Tables A.1 to A.4 summarize the PFSP, 0/1-Knapsack, N-Queens, and UTS instances
solved in this thesis, respectively, including their parameters and execution statistics10.

Table A.1: Summary of the PFSP instances solved in this thesis. For each size, instances
are sorted by their number of decomposed nodes.

(a) LB2 bound with the forward branching rule.

Instance size (m× n) # nodes Optimum

ta010 5× 20 8,122,579 1,108

ta020 10× 20 4,870,386 1,591

ta029 20× 20 9,499,307 2,237
ta030 20× 20 13,228,600 2,178
ta022 20× 20 14,561,974 2,099
ta027 20× 20 54,588,346 2,273
ta023 20× 20 115,511,993 2,326
ta028 20× 20 196,916,205 2,200
ta025 20× 20 234,988,695 2,291
ta026 20× 20 514,453,278 2,226
ta024 20× 20 2,173,092,255 2,223
ta021 20× 20 00,003,944,527,267 2,297

(b) LB1 bound with the minBranch branching rule.

Instance size (m× n) # nodes Optimum

ta056 20× 50 173,314,864,803 3,679
ta052 20× 50 17,117,837,075,484 3,699
ta057 20× 50 28,340,718,802,452 3,704
ta053 20× 50 94,885,132,700,180 3,640

10kp1, kp2, kp3, kp4, kp5, and kp6 are aliases for knapPI 3 100 1000 83, knapPI 3 100 1000 15,
knapPI 13 50 1000 45, knapPI 13 100 1000 44, knapPI 13 100 1000 4, and knapPI 13 100 1000 5, re-
spectively.

97

98 Appendix A. Instances and Execution Statistics

Table A.2: Summary of the 0/1-Knapsack instances solved in this thesis. Instances are
sorted by their number of decomposed nodes.

Instance # items Capacity # nodes Optimum

kp1 100 44,997 75,469,089 53,897
kp2 100 8,777 225,989,975 11,777
kp3 50 8,354 1,560,143,662 12,242
kp4 100 12,907 4,945,928,475 19,047
kp5 100 1,315 13,637,806,638 1,734
kp6 100 1,594 91,261,029,078 2,601

Table A.3: Summary of the N-Queens instances solved in this thesis.

N # nodes # solutions

15 171,129,071 2,279,184
16 1,141,190,302 14,772,512
17 8,017,021,931 95,815,104
18 59,365,844,490 666,090,624
19 461,939,618,823 4,968,057,848

Table A.4: Summary of the UTS instances solved in this thesis. Instances are sorted by
their number of decomposed nodes.

Instance Tree type b0 p q a d r # nodes

UTS-geo GEO 7 - - 2 23 201 91,373,715
UTS-bin BIN 2000 2 0.499995 - - 167 131,739,000

Appendix B

Hardware and Software
Configuration

B.1 Hardware

The following systems and architectures were used in this thesis:

• Aion cluster (Université du Luxembourg):

– AMD Rome 7H12: two 64-core AMD EPYC Rome 7H12 @ 2.6 GHz CPUs,
and 256 GB of RAM per node. Nodes are connected through an InfiniBand
HDR 100 Gb/s network, configured over a Fat-Tree topology.

• MeluXina - Cluster module (ranked 460th in June 2024 TOP500):

– AMD Rome 7H12: two 64-core AMD EPYC Rome 7H12 @ 2.6 GHz CPUs,
and 512 GB of RAM per node. Nodes are connected to an InfiniBand HDR
200 Gb/s high-speed fabric, configured over a DragonFly+ topology.

• LUMI (ranked 5th in June 2024 TOP500):

– AMD MI250X: single 64-core AMD EPYC 7A53 “Trento” (Zen 3) @ 2.0
GHz CPU, equipped with four AMD Instinct MI250X GPUs (14,080 cores,
released in November 2021), and 512 GB of RAM per node. Nodes are con-
nected to a HPE Cray Slingshot-11 200 Gb/s network interconnect, configured
over a DragonFly topology.

• Grid’5000 testbed:

– NVIDIA A100: single 32-core AMD EPYC 7513 (Zen 3) @ 2.60 GHz CPU,
equipped with four NVIDIA A100 SXM4 40GB GPUs (6,912 cores, released
in May 2020), and 512 GB of RAM.

99

100 Appendix B. Hardware and Software Configuration

– NVIDIA V100: two 12-core Intel Xeon Gold 6126 (Skylake-SP) @ 2.60
GHz CPUs, equipped with two NVIDIA Tesla V100 PCIE 32GB GPUs (5,120
cores, released in March 2018), and 192 GB of RAM.

– NVIDIA P100: two 12-core Intel Xeon Gold 6126 (Skylake-SP) @ 2.60
GHz CPUs, equipped with two NVIDIA Tesla P100 PCIE 16GB GPUs (3,584
cores, released in June 2016), and 192 GB of RAM.

– AMD MI50: single 48-core AMD EPYC 7642 (Zen 2) @ 2.40 GHz CPU,
equipped with eight AMD Radeon Instinct MI50 32GB GPUs (3,840 cores,
released in November 2018), and 512 GB of RAM.

– AMD MI300X (early access): 64-core AMD EPYC 7A53 ”Trento” (Zen
3) @ 2.0 GHz CPU, equipped with a AMD Instinct MI300X GPU (19,456
cores, released in June 2023).

B.2 Software configuration

The Chapel compiler was manually built from source on each system described in the
previous section. Table B.1 summarizes the environment configuration used for building
the compiler and running the code. Only non-default options are listed; further details
can be found at https://chapel-lang.org/docs/usingchapel/chplenv.html.

https://chapel-lang.org/docs/usingchapel/chplenv.html

Appendix B. Hardware and Software Configuration 101

T
ab

le
B
.1
:
C
h
ap

el
en
v
ir
on

m
en
t
co
n
fi
gu

ra
ti
on

fo
r
ea
ch

ta
rg
et

ar
ch
it
ec
tu
re
.

CHPL
RTNUM

THRE
ADS

PER
LOCA

LE
CHPL

COMM

CHPL
COMM

SUBS
TRAT

E
CHPL

LAUN
CHER

CHPL
IBV

SPAW
NERS

CHPL
LLVM

CHPL
LOCA

LEMODE
L

CHPL
GPU

CHPL
GPU

ARCH

CHPL
RTNUM

GPUS
PER

LOCA
LE

A
M
D

R
om

e
7H

12
(A

io
n
)

12
8

ga
sn
et

ib
v

ga
sn
et
ru
n
ib
v

ss
h

n
on

e
-

-
-

-
A
M
D

R
om

e
7H

12
(M

el
u
X
in
a)

12
8

ga
sn
et

ib
v

ga
sn
et
ru
n
ib
v

m
p
i

n
on

e
-

-
-

-
N
V
ID

IA
A
10

0
32

-
-

-
-

b
u
n
d
le
d

gp
u

n
v
id
ia

sm
80

4
N
V
ID

IA
V
10

0
24

-
-

-
-

b
u
n
d
le
d

gp
u

n
v
id
ia

sm
70

2
N
V
ID

IA
P
10

0
24

-
-

-
-

b
u
n
d
le
d

gp
u

n
v
id
ia

sm
60

2
A
M
D

M
I3
00

X
64

-
-

-
-

sy
st
em

gp
u

am
d

gf
x
94

2
8

A
M
D

M
I2
50

X
64

ofi
-

sl
u
rm

-s
ru
n

-
sy
st
em

gp
u

am
d

gf
x
90

a
8

A
M
D

M
I5
0

48
-

-
-

-
sy
st
em

gp
u

am
d

gf
x
90

6
8

	Introduction
	Motivations and objectives
	Contributions
	Outline of the thesis

	Background and Related Works
	Solving combinatorial optimization problems
	Parallel Branch-and-Bound (B&B) algorithms
	General principles and terminology of sequential B&B
	Models for parallel B&B
	Challenges in parallel B&B

	Architecture and complexity of modern supercomputers
	Modern supercomputers: a glimpse into the TOP500
	Key challenges in ultra-scale optimization
	Enhancing HPC productivity with PGAS

	Related works
	Frameworks for parallel B&B
	B&B for GPU
	Hybrid and distributed parallel B&B
	PGAS-based parallel B&B

	Benchmark problems
	Permutation Flowshop Scheduling Problem
	0/1-Knapsack problem
	N-Queens problem
	Unbalanced Tree Search benchmark

	PGAS-based Parallel B&B for CPU-based Clusters
	The PGAS-based distBag_DFS data structure
	Origins
	Hierarchical structure and core components
	Locality-aware dynamic load balancing

	distBag_DFS-based parallel B&B (P3D-DFS)
	Overall design of P3D-DFS
	Detecting global termination

	Experiments
	Comparison with other data structures
	Dynamic load balancing mechanism
	Strong scaling efficiency
	Comparison against an MPI+X approach
	Large-scale experiments

	Conclusion

	PGAS-based Parallel B&B for GPU-powered Clusters
	GPU-acceleration of the bounding operator
	PGAS-based GPU-accelerated parallel B&B
	Overall design
	Load balancing mechanisms

	Experiments
	Experimental protocol and testbed
	Code performance and portability
	Parameter calibration
	Strong scaling efficiency

	Conclusion

	A Chapel Software Platform for PGAS-based Parallel B&B
	Scalable code development
	Motivations
	Conceptual objectives
	Tools for scalable code architecture

	The Chapel's DistributedBag module
	Integration of distBag_DFS into Chapel
	Local and global operations

	Skeletons for PGAS-based parallel B&B (pBB-chpl)
	Multi-level abstraction
	Parallel B&B skeletons and target systems

	Conclusion

	Conclusions and Perspectives
	Conclusions
	Perspectives
	Dissemination
	International peer-reviewed publications
	Open-source software

	References
	Instances and Execution Statistics
	Hardware and Software Configuration
	Hardware
	Software configuration

