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INTRODUCTION

Dans ce mémoire, je présente les recherches que j’ai menées au cours des dix dernières
années, depuis ma thèse jusqu’à aujourd’hui, sur certains problèmes en géométrie dio-
phantienne.

Cette dernière est définie classiquement comme l’étude des solutions, en entiers ou
rationnels, des systèmes d’équations polynomiales en utilisant des techniques et des
outils issus de la géométrie algébrique. Plus précisément, à chaque système on asso-
cie un objet géométrique, la variété donnée par le lieu de ses zéros; on veut alors com-
prendre comment l’ensemble des solutions du système varie en fonction des propriétés
géométriques de la variété.

L’objectif ultime est de décrire le plus explicitement possible cet ensemble. On veut
savoir d’abord s’il est vide ou pas, et, le cas écheant, s’il est fini ou pas. S’il est fini
on cherche à déterminer explicitement tous ses éléments, s’il est infini on se demande
si on peut donner une formule pour les décrire ou comment ils sont distribués sur la
variété.

Un outil très puissant dans ce cadre est la théorie des hauteurs, initiée par Weil.
La hauteur peut être définie de nombreuses façons différentes, selon le contexte, mais
le dénominateur commun est qu’il s’agit d’une mesure de la complexité arithmétique
d’un objet dotée d’une propriété de finitude, c’est-à-dire qu’il existe un nombre fini
d’objets de hauteur bornée.

Ce mémoire décrit mes contributions sur diverses questions concernant, de près ou
de loin et dans des cadres différents, l’étude des points de petite hauteur.

Cette ligne de recherche a probablement été inaugurée dans les années 1930 par
les travaux sur la mesure de Mahler d’un polynôme, qui donne des informations sur
comment ses racines se distribuent autour du cercle unité. La hauteur (logarithmique
de Weil) d’un nombre algébrique α peut être définie alors comme le rapport entre le
logarithme de la mesure de Mahler du polynôme minimale de α et le degré de α.

Cette hauteur satisfait le théorème de finitude Northcott, qui affirme que tout en-
semble de nombres algébriques ayant degré et hauteur bornés est fini, et une conjec-
ture célèbre et toujours ouverte, issue d’une question de Lehmer, prévoit que le produit
entre la hauteur d’un nombre algébrique et son degré ne peut être arbitrairement petit,
à moins qu’il ne soit nul.
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Il est naturel de se demander s’il existe des ensembles de nombres algébriques pour
lesquels on peut faire mieux que le théorème de Northcott et la conjecture de Lehmer,
c’est-à-dire pour lesquels les énoncés ci-dessus sont valables sans conditions sur le de-
gré. De tels ensembles sont précisément ceux qui satisfont les propriétés de Northcott
(N) et de Bogomolov (B) introduites par Bombieri et Zannier.

Plus précisement, la propriété (N) caractérise les extensions des rationnels con-
tenant un nombre fini d’éléments de hauteur bornée tandis que la propriété (B) est
satisfaite par les extensions dans lesquelles la hauteur de chaque élément, lorsqu’elle
est non nulle, est limitée inférieurement par une constante absolue positive. Les deux
propriétés sont valables pour les corps de nombres et un problème intéressant, bien
que généralement difficile, est de décider de leur validité pour une extension infinie
donnée des rationnels.

Parmi leurs premiers résultats sur ce sujet, Bombieri et Zannier ont montré que,
pour un corps de nombres algébriques, les propriétés (N) et (B) sont impliquées par cer-
taines propriétés locales du corps. Cela a été une motivation à l’étude, indépendante,
de certaines propriétés locales des extensions galoisiennes des corps de nombres.

Le Chapitre 1 de ce manuscrit présente mes recherches, commencées pendant la
thèse, sur ce dernier sujet. Après avoir introduit le problème et les motivations, je décris
les résultats que j’ai obtenus, seule ou en collaboration avec U. Zannier et P. Dèbes.
En particulier, on donne une caractérisation des extensions galoisiennes d’un corps
de nombres ayant leurs degrés locaux uniformément bornés, uniquement en terme de
leur groupe de Galois. On montre ensuite que la limitation (non uniforme) des degrés
locaux n’est pas équivalente à une condition sur le groupe de Galois de l’extension. On
discute également de certaines questions analogues dans le cadre des corps de fonc-
tions. Nos principaux résultats dans ce contexte sont des théorèmes de type Cheb-
otarev pour des extensions galoisiennes de corps de fonctions, finies ou infinies, sur
divers corps de base.

Dans le Chapitre 2 de ce mémoire, je décris les résultats que j’ai obtenus, en col-
laboration avec M. Widmer et A. Fehm, sur les propriétés (N) et (B). En particulier, on
étudie de nouveaux exemples de corps de nombres algébriques satisfaisant ces pro-
priétés et, aussi en lien avec les résultats du Chapitre 1, comment, pour les extensions
galoisiennes infinies des corps de nombres, ces propriétés sont liées à la structure de
leur groupe de Galois et à certaines propriétés locales.

L’étude des points de petite hauteur, et les notions qui s’y rapportent, ont évolué au
fil des décennies, prenant progressivement un caractère beaucoup plus géométrique.

Par exemple, sur une variété abélienne G , nous pouvons considérer la hauteur de
Néron-Tate d’un point : cela fournit encore une mesure de la complexité du point, les
points les plus "simples" étant les points de torsion de G .

Dans ce contexte, on dispose de plusieurs résultats célèbres qui illustrent bien l’idée
générale selon laquelle, pour une variété, la géométrie régit l’arithmétique. Par exem-
ple, la conjecture de Manin-Mumford, demontrée par Raynaud, prédit que dans une
sous-variété X de G les points "simples" sont en général "rares" (i.e. non-denses), à
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moins que la variété n’ait une forme "simple" aussi. Plus généralement, la conjecture
de Bogomolov, demontrée grâce aux travaux de Ullmo et Zhang, assure que les petits
points sur X continuent d’être rares à moins que X n’ait une structure précise.

Ces résultats, et bien d’autres, sont aujourd’hui considérés comme des cas partic-
uliers de conjectures plus générales de la théorie des intersections improbables (unlikely
intersections), un terme forgé par Bombieri, Masser et Zannier.

La philosophie qui sous-tend cette terminologie est que deux variétés X et Y dans
un espace G ont peu de chances de se croiser si dim X +dimY < dimG .

Plus précisément, le type de résultats que l’on souhaite prouver est que, si X est
fixée et Y varie dans une famille dénombrable F de sous-variétés de G de dimension
inférieure à dimG −dim X et ayant une certaine propriété spéciale, alors X ∩Y devrait
être vide pour la plupart des Y ∈ F , à moins que X soit également spéciale dans un
certain sens.

Le Chapitre 3 porte sur mes recherches dans ce contexte quand G est une variété
abélienne. Après une introduction sur l’état de l’art dans ce domaine très actif, je décris
les résultats que j’ai obtenus en collaboration avec F. Veneziano et E. Viada, prouvant,
notamment, des cas particuliers de certaines conjectures dues à Bombieri, Masser,
Zannier et à Zilber et quelques cas de la conjecture explicite de Mordell sur la déter-
mination des points rationnels d’une courbe de genre au moins 2.

Dans le Chapitre 4, je présente mes résultats en collaboration avec J. Roques sur
l’arithmétique des fonctions de Mahler, qui sont des séries de puissances à coefficients
algébriques satisfaisant un type particulier d’équation fonctionnelle. Nous montrons,
dans certains cas, comment certaines propriétés arithmétiques de ces fonctions se re-
flètent sur l’équation fonctionnelle. Il s’agit d’un sujet qui reste un peu périphérique
par rapport à mes principaux centres de recherche et sur lequel j’ai été moins active
que sur d’autres, mais qui est au centre d’un nouveau projet de recherche.

Chaque chapitre, que j’ai essayé de rendre aussi indépendant que possible des autres,
commence par une introduction sur le sujet traité qui comprend les définitions les plus
importantes. Elle est suivie de sections décrivant mes travaux, regroupés par thèmes
plus spécifiques, et d’une dernière section dans laquelle je présente quelques pistes de
recherche, dont certaines peuvent convenir à un début de projet de thèse de doctorat.

Une bibliographie commune se trouve à la fin de ce manuscrit.
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CHAPTER 1
LOCAL PROPERTIES OF GALOIS EXTENSIONS

The research presented in this chapter, part of which was done in my PhD thesis, in-
vestigates the relations between certain properties of an infinite Galois extension of the
rationals. After introducing the problem and the motivations, which come from some
results concerning points of small height, I describe the contributions made by my co-
authors and myself on the topic. In particular, we give a characterization of Galois
extensions of the rationals enjoying some strong local property, i.e. having uniformly
bounded local degrees, solely in terms of their Galois group. We then show that the
(non uniform) boundedness of the local degrees alone is not equivalent to any group-
theoretical condition. We also discuss some questions in the function field setting. Our
main results in this context are Chebotarev type theorems for Galois function field ex-
tensions, finite or infinite, over various base fields. The chapter ends with the descrip-
tion of some research leads.
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1.1. Introduction

During my thesis and in the years that followed I studied the relations between some
properties which can occur for an infinite Galois extension of the rationals. Throughout
this chapter all the fields are considered embedded in a fixed algebraic closure of Q,
denotedQ.

A central feature we study is the boundedness of the local degrees of the extension,
first considered by Bombieri and Zannier in [BZ01]

Definition. We say that a (possibly infinite) Galois extension L/Q has bounded local
degrees at a prime p if there exists a constant bp such that L can be embedded in a finite
extension of Qp of degree at most bp . Equivalently, if for every valuation vp of L which
extends the p-adic one, the completion of L with respect to vp is a finite extension ofQp of
degree bounded by bp . Moreover, we say that L/Q has uniformly bounded local degrees
if for all p we have bp ≤ b, where b is a constant depending only on L.

Clearly, if L/Q is finite it has local degrees uniformly bounded by [L : Q]. A non-
trivial example of extension with uniformly bounded local degrees, provided in [BZ01],
is the field K (d), defined as the compositum of all extensions of degree at most d of a
number field K . For d ≥ 2, this is an infinite Galois extension of K . Here the uniform
boundedness of the local degrees comes from the fact that, for every p, K (d) can be
embedded in the compositum of all extensions ofQp of degree at most d [K :Q] and the
number of such fields is bounded independently of p (see [BZ01, Proposition 1]).

The results presented in this chapter stemmed from the seminal paper [BZ01] of
Bombieri and Zannier, defining and studying certain properties concerning points of
small (absolute logarithmic Weil) height in infinite extensions of Q. Although these
properties are discussed in detail in Chapter 2 of this manuscript, we briefly recall here
some definition and results concerning them that motivate our work.

Following [BZ01], we say that an infinite algebraic extension L/Q has the Northcott
property (N) if it contains finitely many elements of bounded height.

Clearly, by Northcott’s theorem, the set of all algebraic numbers of degree bounded
by some constant satisfies property (N) and one of the problems investigated in [BZ01]
is whether this is still true for the smallest field containing such a set, i.e. for fields of the
form K (d). Even though this question remains open, among other results, they prove
that property (N) holds for the field K (d)

ab , which is the maximal subextension of K (d)

being abelian over K . In this proof a crucial role is played by the uniform boundedness
of the local degrees of K (d).

This fact and the considerations made in [BZ01] lead to the following questions,
which may be interesting in their own right:

(Q1) Is every infinite algebraic extension of a number field K with uniformly bounded
local degrees contained in K (d) for some positive integer d?

(Q2) More generally, for a Galois extension of K are there properties which are equiva-
lent to having uniformly bounded local degrees?
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(Q3) An important ingredient in the proof of property (N) for K (d)
ab is the fact that all its

finite subextensions can be generated by algebraic elements of degree bounded
solely in terms of d and [K :Q]. Does the same phenomenon occur for K (d)?

1.2. Description of the results

I. Extensions with uniformly bounded local degrees
(description of the articles [CZ11] and [Che13])

The results presented in this section were obtained during my PhD and constitute my
PhD thesis.

In [CZ11], in collaboration with Umberto Zannier, and [Che13] we address all the
above questions. We remark that, even though the main results in there are stated only
for K =Q, all the proofs can be adapted easily in the general case, as discussed below.

In [CZ11] we completely answer question (Q1). More precisely, as recalled in the
previous section, it is easy to see that if L is a subfield of Q(d), then L has uniformly
bounded local degrees at all primes and we adress the question whether the converse
holds true. Our main result is the following:

Theorem 1 ([CZ11, Proposition 2.1 & Theorem 1.1]). Let L/Q be an abelian extension.
Then L has uniformly bounded local degrees if and only if L ⊆Q(d) for some positive in-
teger d. However, there exists infinitely many non-abelian Galois extensions of Q having
uniformly bounded local degrees which are not contained inQ(d) for any positive integer
d.

The proof of the first part of the theorem uses the remark (see [CZ11, Remark 2])
that if an infinite Galois extension of a number field K has uniformly bounded local de-
grees, then the group Gal(L/K ) must have finite exponent, a fact that follows easily by
Chebotarev’s density theorem and the proof of [CZ11, Proposition 2.1] adapts straight-
forward to any abelian extension of a number field K .

To prove the second part, we construct our extensions as composita of families of
finite Galois extensions as it follows. We fix two odd primes p and q , with q ≡ 1 mod p.
For every m, let Gm = Em oWm where Em is the extraspecial group of order p2m+1 and
exponent p and Wm is a faithful and absolutely irreducible Em-module of dimension
pm over Fq , the semidirect product being taken via the natural action of Em on its mod-
ule (see [DH92, Ch.A, §20 and Ch.B, §9] for the definition of extraspecial groups and
details). By Shafarevich’s theorem (see for instance [NSW00, Chapter 9, §5 and §6]) ev-
ery finite solvable group can be realised as Galois groups over Q. Hence there exists a
Galois extension Lm/Q having Gm as Galois group (and actually, by Galois theory, one
can find infinitely many such realisations pairwise linearly disjoint overQ).

The main feature of the groups Gm is they have Wm as a big minimal normal sub-
group. This condition is used to ensure that the compositum L of the fields Lm is not
contained in Q(d) (see [CZ11, Propositions 3.1 and 3.2]). The family (Gm)m has also
uniformly bounded exponents. This is necessary, in view of the above considerations,
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and it is used to prove that the constructed field L has uniformly bounded local degrees
at all primes except those which ramify wildly. A bound for the local degrees at such
primes is obtained using another result of Shafarevich on the number of generators of
p-extensions of p-adic fields (see [Sha56]). All these results are valid for extensions of
number fields K and the proof adapts easily.

In [Che13] we consider the more general Question (Q2) about possible character-
izations of Galois extensions with uniformly bounded local degrees. In particular we
show that the finiteness of the exponent of the Galois group is not only a necessary, but
also a sufficient condition for the uniform boundedness of the local degrees. We also
consider Question (Q3), that we answer in the negative, showing that the structure of
Q(d) reveals some unexpected sides. Our main result is the following:

Theorem 2 ([Che13, Theorem 1]). For an infinite Galois extension L/Q the following
properties are equivalent:

(1) L has uniformly bounded local degrees at every prime;
(2) L has uniformly bounded local degrees at almost every prime;
(3) Gal(L/Q) has finite exponent.

Moreover, if L/Q is abelian, the following are also equivalent:
(a) L has uniformly bounded local degrees;
(b) L is contained inQ(d) for some positive integer d;
(c) every number field contained in L can be generated by elements of uniformly bounded

degree.
However, in general, we have that (c) implies (b) which implies (a) and none of the inverse
implications holds.

The implication (1) ⇒ (3) was already in [CZ11, Remark 2], as recalled above, but
that proof actually gives the implication (2) ⇒ (3), so the novelty here is (3) ⇒ (1).

We sketch here the proof of this result. Suppose that Gal(L/Q) has exponent b. We
remark that to prove (1) it is sufficient to show that, for every prime p, for any finite
Galois extension F /Q contained in L and for any place v of F above p, the p-adic com-
pletion Fv /Qp has degree bounded solely in terms of b. If p is uramified or just tamely
ramified in F , then for all v , the Galois group of Fv /Qp is either cyclic or meta-cyclic, so
its order is bounded by b2. If p wildly ramifies in F , the number of generators of the p-
part of Gal(Fv /Qp ) can be bounded solely in terms of b by a result of Shafarevich already
mentioned (see [Sha56]). Then one uses Zelmanov’s theorem on the Restricted Burn-
side Problem (see [Zel97]), which shows that (up to isomorphism) there are only finitely
many finite groups having a bounded number of generators and bounded exponent.

The case of abelian extensions was already done in [CZ11]. Here, using local class
field theory, we give explicit bounds for the local degrees in some special cases. The
non-equivalence of properties (a), (b) and (c), also partly already contained in [CZ11], is
based on the same group-theoretical construction with extraspecial groups. Moreover
we provide explicit realisations of such groups, using some elementary techniques in
inverse Galois theory.

As remarked before, the same strategy adapts to show that Theorem 2 holds more
generally whenQ is replaced by a number field K .
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II. Extensions with non-uniformly bounded local degrees
(description of the article [Che19])

In [BZ01], the authors consider also another property concerning points of small height
in infinite extensions, namely the so called Bogomolov property (B): we say that a Ga-
lois extension L/Q has property (B) if the height of every element in L is either zero or
lower bounded by an absolute positive contant (depending only on L). In particular
they prove that such property holds for infinite Galois extensions of Q having bounded
local degrees at at least one prime (see [BZ01, Theorem 2]).

In [ADZ14, Theorem 1.5] Amoroso , David and Zannier prove that property (B) holds
more generally for any Galois extension L/K of a number field K such that the subex-
tension fixed by the center of Gal(L/K ) has bounded local degrees at some prime. They
also define property (B) for groups (see [ADZ14, Definition 5.5]): a profinite group G
has property (B) if, for any number field K and for every Galois extension L/K having G
as Galois group, the field L has property (B).

With this terminology, the results in [Che13] and [ADZ14] imply that property (B)
holds for any group G such that the quotient of G over its center has finite exponent.
Indeed, for any realisation of G , the subfield fixed by the center of G will have uniformly
bounded local degrees. All known examples of groups with (B) satisfy this property,
which is of course stronger than the (non-uniform) boundedness of the local degrees
needed in [ADZ14, Theorem 1.5].

Therefore one might ask the following:

(Q4) Is it possible to give a characterization in terms of the Galois groups of Galois
extensions of number fields having (possibly non-uniformly) bounded local de-
grees at some prime?

A positive answer to this question would provide a bigger family of groups with property
(B).

In [Che19] we answer Question (Q4) in the negative, showing the following:

Theorem 3 ([Che19, Theorem 1]). Let S be a set of rational primes. Let K be a number
field and let µ(K ) be the group of its roots of unity. Let G =∏

m≥1 Gm be a direct product of
an infinite family of finite groups (Gm)m with unbounded exponents and suppose that,
for every m, the group Gm is one of the following types:

(1) an abelian group of odd order;
(2) a solvable group of order prime to |µ(K )|;
(3) an iterated semidirect products of abelian groups of order not divisible by the primes

in S .
Then G has a realisation over K with bounded local degrees at all primes in S . If more-
over the groups Gm ’s have coprime orders, then G admits also a realisation over K with
unbounded local degrees at all primes in S .

The proof of this result is based on the existence of solutions to certain Grunwald
problems. The Grunwald problem, a strong variant of the inverse Galois problem, asks
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the following: given a finite group G , a number field K , a finite set T of finite places of
K and, for every v ∈T , a local Galois extension Lv /Kv of Galois group Gv embeddable
in G , is there a finite Galois extension L/K of group G having completions isomorphic
to Lv at the primes above v , for all v ∈ T ? When the answer is affirmative, we call L a
solution of the Grunwald problem for (G ,T , {Gv }v∈T ).

The Grunwald problem is shown to have a positive answer for any choice of possible
local extensions, for instance, when G is an abelian group of odd order by the Grunwald-
Wang theorem (see[Gru33], [Wan50]), when G is a solvable group of order prime to the
order of the group of roots of unity in K (by Neukirch [Neu79]) and when G is an iterated
product of abelian groups and the primes below all the places in T do not divide the
order of G (by Demarche, Lucchini Arteche and Neftin [DLAN17]).

A central step in the proof of Theorem 3 is [Che19, Theorem 2] where we prove that
a direct product of finite groups Gm can be realised in two ways (with bounded or un-
bounded local degrees at any fixed set of primes) whenever every cyclic Grunwald prob-
lem for Gm (i.e. where the local extensions are chosen to be cyclic) has enough solutions
(i.e. for any given number field, there is at least one solution which is linearly disjoint
from it). Theorem 3 then follows from the above mentioned results. Conjecturally (see
[Col03, Section 2] and also [DLAN17, Section 2.5]) for every group G , there is a set of bad
places (containing, for instance, those above primes dividing the order of G) such that
if T is disjoint from this set, then any Grunwald problem for (G ,T ) has a positive an-
swer. So Theorem 3 should be true for any direct product of finite groups of unbounded
exponents, provided that S does not contain bad primes.

Notice that in the statement of Theorem 3 the set S is not required to be finite.
This implies that there is no group-theoretical condition on Gal(L/K ) which is equiva-
lent to the (non-uniform) boundedness of the local degrees of L/K even at all primes,
underlying the fact that the uniform boundedness of the local degrees is a very strong
condition. Even though without implications on Property (B), it is of some interest to
ask to which extent the boundedness of the local degrees at all primes of an extension
rigidifies the structure of its Galois group. We show (see [Che19, Remark 4]) that the
Galois group of such extensions cannot be torsion free.

While the proof of Theorem 3 does not produce explicit constructions, some more
explicit realisations with opposite local behaviour are provided in [Che19, Section3]
for direct products of certain families of abelian groups. In [Che19, Proposition 2] we
also show that the existence of realisations with bounded local degrees at some prime
also occurs for other classes of profinite groups than direct products (namely, iterated
semidirect products by finite nilpotent groups, see [Che19, Remark 7] for an explicit ex-
ample). The proof relies on the existence of solutions to certain embedding problems
with nilpotent kernel (see [NSW00, Theorems 9.5.10 and 9.5.11(i)]). This, however, pro-
duces extensions with a quite special local structure and this approach seems to be
difficult to exploit for more general families of profinite groups.
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III. Chebotarev theorems for function fields
(description of the article [CD16])

In [CD16], in collaboration with Pierre Dèbes, we consider a function field variant of
some of the results obtained in [CZ11], namely that for an infinite Galois extension of a
number field K , the uniform boundedness of the local degrees implies the finiteness of
the exponent of the Galois group of the extension.

A central ingredient in the proof was the existence part of Chebotarev density the-
orem for number fields: more precisely, we used the fact that, given a finite Galois ex-
tension of number fields F /K of group G , for every σ ∈G there exists a place v of K and
a cyclic unramified local extension Fv /Kv whose Galois group is generated by a conju-
gate of σ. In [CD16] we introduce a sort of function field analog of this result, namely
the Chebotarev existence property (see [CD16, Definition 2.5]). Before recalling its defi-
nition and describing our results we need to introduce some notation.

Let k be a field, X a smooth projective and geometrically integral k-variety, k(X )
its function field and F /k(X ) a finite Galois extension of group G . We mostly consider
extensions such that F /k is regular i.e. such that F ∩k = k. For every overfield k ⊂ K
and each point t0 ∈ X (K ) not in the branch locus of the extension F /k(X ), the special-
ization of F /k(X ) at t0 is a Galois extension of K whose Galois group identifies to some
subgroup of G (well-defined up to conjugation in G). We say that F /k(X ) has the Cheb-
otarev existence property if for everyσ ∈G , there exists a finite place v of k (possibly triv-
ial), a finite extension K /kv and a point t0 ∈ X (K ) such that the specialization (F K )t0 /K
is cyclic, unramified and its Galois group is conjugate to the subgroup generated by σ
in G .

This definition is clearly modeled upon the situation for extensions of global fields.
By the existence part of the Chebotarev density theorem for global fields, every finite
regular Galois extension of global fields has the Chebotarev existence property: the case
of number fields corresponds to the case where X is a point, while for global fields of
positive characteristic, one takes X equal to the projective line (and v the trivial abso-
lute value over the constant field).

A first result of [CD16] (see [CD16, Theorem 3.2 and Corollary 3.7]) provides a wider
range of examples where the property holds. As a special case we have the following:

Theorem 4 ([CD16, Theorem 1.1]). Let G be a finite group and let k be either a number
field, or a finite field, or a PAC field with cyclic extensions of any degree, or a rational func-
tion field κ(x) with κ a finite field of order prime to |G|. Then any finite Galois extension
F /k(T ) with F /k regular has the Chebotarev existence property.

Recall that a field k is PAC (Pseudo Algebraically Closed) if every absolutely irre-
ducible variety defined over k has a k-rational point. As discussed in [CD16, §3.1.2], an
example of a PAC field satisfying the condition in Theorem 4 is, for instance, k =Qtr (i ),
whereQtr is the field of totally real numbers (i.e. the field obtained by adjoining toQ all
algebraic numbers having all real conjugates).
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The main ingredients in our proofs are results by Dèbes and Ghazi [DG12] on a
specialization property mixing Hilbert and Grunwald type results, concerning whether
a given local Galois extension E/K comes from a specialization of a Galois extension
F /k(X ).

The definition of the Chebotarev existence property extends to infinite extensions
in the following way: an infinite Galois extension F /k(X ) has the Chebotarev existence
property if it is the union of an increasing sequence of finite Galois extensions Fn/k(X )
all having the Chebotarev existence property. We remark that if k is finite or PAC, The-
orem 4 is valid also for infinite Galois extensions (see [CD16, Remark 3.4]).

We also compare our property to the classical Hilbert specialization property. Recall
that a finite Galois extension F /k(T ) of group G has the Hilbert specialization property
if the Galois group of the specialization at t0 equals G for infinitely many t0 ∈P1(k).

Even if it only preserves the local structures, the Chebotarev property still encap-
sulates a good part of the Hilbert property, which is somehow squeezed between two
variants of the Chebotarev property, as shown in [CD16, Proposition 4.6]). In addition,
it allows more general base fields and base varieties and it is also defined for infinite
extensions.

Recall that a field k is Hilbertian if the Hilbert specialization property holds for every
finite Galois extension F /k(T ). We also say that k is RG-Hilbertian, when the Hilbert
specialization property occurs for all finite Galois extension F /k(T ) with F /k regular. In
analogy, we say that a field k is Chebotarev if the Chebotarev existence property holds
for every finite Galois extension F /k(T ) with F /k regular.

If k is a PAC field a classical result (see [FV92, Theorem A]) shows that k is Hilbertian
if and only if its absolute Galois group Gk is ω-free i.e. each finite embedding problem
for Gk is solvable (see [FJ04, §27.1]), while k is RG-Hilbertian if and only if every finite
group occurs as a quotient of Gk (see [FJ04, Theorem B]). In analogy to these results we
prove that the property of being Chebotarev can also be read on Gk :

Corollary 5 ([CD16, Proposition 4.4]). Let k be a PAC field with absolute Galois group
Gk . Then k is Tchebotarev if and only if every cyclic group is a quotient of some open
subgroup of Gk .

If k is not PAC, the situation is more complex and it is discussed in [CD16, §4.2].

Finally, we investigate the motivating problem for our work i.e. the local-global re-
sults for infinite extensions implied by the Chebotarev existence property and we give
a function field analog of [CZ11, Remark 2 and Proposition 2.1]. Let again F /k(X ) be a
Galois extension of Galois group G . By local specialization degrees we mean the degrees
of the cyclic unramified local specializations of F /k(X ).

Theorem 6 ([CD16, Theorem 1.3]). Let F /k(X ) be a (possible infinite) Galois extension
with the Chebotarev existence property. Then, if the local specialization degrees of F /k(X )
are uniformly bounded, the exponent of G = Gal(F /k(X )) is finite. The converse holds too
under some standard assumptions on k.
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Moreover, if G is abelian, the uniform boundedness of the local specialization degrees
of F /k(X ) also implies that there exists an integer d ≥ 1 such that F is in the compositum
of all finite extensions of k(X ) of degree at most d.

As discussed in Section 1.2, in the number field case it is proved in [CZ11] that
the hypothesis on G being abelian cannot be removed, providing counter-examples.
We show that the same conclusion holds in the function field context in the situation
where dim(X ) > 0 by providing counter-examples based on several group-theoretical
constructions.

We finally want to mention that the exact analogue of [Che13, Theorem 1] for in-
finite Galois extensions of global function fields of positive characteristic p has been
studied in [Bau16]. The author shows, in particular, that if the exponent of the Galois
group is finite and not divisible by p, then the local degrees are uniformly bounded.

1.3. Some perspectives

(i) More on the structure ofQ(d).

As discussed in Section 1.1, an open and interesting question is whether property
(N) holds for all fields of the form K (d) or, more generally, for Galois extensions with
uniformly bounded local degrees. A better understanding of such fields is surely an
important step towards this problem.

As explained in §1.2, one of the results proved in [CZ11] can be stated by saying that
the set of Galois extensions of Q contained in Q(d) for some d is strictly contained in
the set of Galois extensions of Q with Galois group of bounded exponent. A natural
question would be to understand if there exists a group-theoretical characterization of
this proper subset (or of its complement). More precisely, let G be a pro-finite group
with bounded exponent. Is there a group-theoretical condition on G equivalent to the
fact that every infinite Galois extension ofQ of group G is contained inQ(d) for some d?

To start with: In [CZ11, Proposition 3.1] the following sufficient condition for not
being a subfield of Q(d) is given: let (Gm)m be an infinite family of finite groups and
suppose that there exists an increasing sequence of integers (cm)m such that whenever
Gm is isomorphic to a quotient of a subgroup of a direct product of finite groups, then
at least one of the factors in the direct product has order bigger than cm . For each m, let
Km/Q be a Galois extension of group Gm . Then the compositum of the fields Km is not
contained inQ(d) for any d .

A first more precise task would be to understand whether this condition is also nec-
essary and whether there are examples of families of groups satisfying this property,
other than those constructed using extraspecial groups and their modules as in [CZ11].

(ii) Even more on the structure ofQ(3).

A partial, though important result, would be the proof (or disproof) of property (N)
for the simplest infinite non-abelian extension of Q of such type, namely the field Q(3),
the compositum of all quadratic and cubic extensions ofQ.
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One feature of Q(3), studied for instance in [GG14, Corollary 1.2], is the fact the its
finite Galois subextensions are generated by elements of uniformly bounded degree
(notice that this is not true anymore forQ(d) with d ≥ 4).

To start with: One can prove that if L/Q is finite, Galois and L ⊆Q(3), then Gal(L/Q)
is isomorphic to a direct product of finite groups H1× . . .×Hs in which every direct fac-
tor Hi is either an elementary abelian 2-group, or an elementary abelian 3-group or a
generalized dihedral group of the form (Z/3Z)a oϕZ/2Z with Z/2Z acting on (Z/3Z)a

in the usual way. Exploiting this structure and extracting informations about the rami-
fication in finite subextensions of Q(3), could be a first step towards a proof of property
(N) for such field.

(iii) Another local property linked to property (N).

As it will be discussed in detail in §2.2.II, property (N) is linked to some purely local
properties of a field. In particular, as remarked in [BZ01, Remark after Theorem 2] for a
(possibly infinite) Galois extension L/Q with bounded local degrees at a set of rational
primes S (possibly infinite) a special role is played by the quantity

β(L) = 1

2

∑
p∈S

log p

ep (p fp +1)

where ep and fp denote, respectively, the ramification index and the inertial degree of
L at p. If β(L) is divergent the field L has property (N).

In [BZ01], the authors notice that β(L) always diverges when L/Q is finite and in
[CF21] we show the first examples of infinite extensions where this phenomenon also
happens. Moreover, our examples are not included in all previously known examples
of fields with property (N). Thus the divergence of β(L) can be considered as a new
criterion to detect property (N) for a field and this motivates a better understanding of
this quantity attached to a field.

To start with: As shown in [DZ07, Theorem 2.1], property (N) is preserved under
finite extensions of fields. A first question to tackle, as also suggested in see [CF21,
Remark 2.8], is whether the same happens for the divergence of β(L). More precisely, if
L/Q is a Galois extension such that β(L) =∞ and if L′/L is finite with L′/Q Galois, is it
true that β(L′) =∞?
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CHAPTER 2
SMALL HEIGHT IN BIG FIELDS: AROUND THE PROPERTIES (N)
AND (B)

In this chapter I present the research I have done on certain properties, introduced
in [BZ01] by Bombieri and Zannier, on points of small height in infinite algebraic ex-
tensions of the rationals. The first is the Northcott property (N) which characterizes
those extensions containing finitely many elements of bounded height. The second
one, the Bogomolov property (B), is held by extensions in which the height of every
element, when non-zero, is lower bounded by a positive absolute constant. Both prop-
erties hold for number fields and an interesting though generally hard problem is to
decide their validity for a given infinite extension of the rationals. After recalling some
basic definitions and discussing the state of the art, I describe the results obtained by
my co-authors and myself on the subject. In particular, we study new examples of fields
satisfying these properties and how, for infinite Galois extensions of number fields, they
relate to the structure of the Galois group and to certain local properties. The chapter
ends with the description of some research leads.

g
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2.1. Introduction

This chapter is about the study of certain properties on the absence of points of small
height in infinite extensions of the rationals, namely the properties of Northcott and
Bogomolov, introduced by Bombieri and Zannier in [BZ01]. This topic, which initially
partially motivated my PhD thesis and on which I have worked with several co-authors
in the past years, is currently a central subject in my research.

Let me start with a few brief reminders of the key definitions. Here and throughout
the chapter, we will denote byQ a fixed algebraic closure ofQ.

Definition. Let α ∈Q and let p(x) = a(x −α1) · · · (x −αd ) ∈ Z[x] be its minimal polyno-
mial. The absolute logarithmic Weil height (or, for short, the height) of α is the number

h(α) = 1

d
log

(
|a|

d∏
i=1

max(1, |αi |)
)

.

As can easily be seen from the definition, h is a non-negative function and, by a
classical theorem of Kronecker, it takes value zero precisely at zero and at the roots of
unity. While this result classifies points of minimal height, many interesting questions
remain open concerning points of non-zero small height.

A first important result in this setting is Northcott’s theorem, which states that any
set of algebraic numbers having bounded degree and bounded height is finite (and,
in principle, can be explicitly described). A second inescapable statement is that of
Lehmer’s conjecture, asserting that if an algebraic number has small non-zero height,
then it must have big degree over Q. More precisely, it states that there is a constant
c > 0 such that, for any α ∈ Q, the product h(α)[Q(α) : Q] is either zero or bigger than
c. Lehmer’s conjecture has been proved to be true for several classes of algebraic num-
bers, but stands open in general. The best unconditional result is due to Dobrowolski
[Dob79], which proves the conjectural bound up to a logarithmic factor.

One can now ask whether there are sets of algebraic numbers for which one can
do better than Northcott’s theorem and Lehmer’s conjecture i.e. for which the above
statements hold without conditions on the degree. Such sets are precisely those satis-
fying the properties of Northcott and Bogomolov introduced by Bombieri and Zannier
[BZ01], whose definition in recalled here:

Definition (Bombieri, Zannier, [BZ01]). A set of algebraic numbers L has the Northcott
property (N) if it contains finitely many elements of bounded height, while it has the
Bogomolov property (B) if there exists some constant C > 0 such that h(α) > C for all
α ∈ L which are neither zero nor roots of unity.

In this chapter we will be mainly interested in the case where L is a subfield ofQ.

It is easy to see that property (N) implies property (B), while the proof that the con-
verse is false is non trivial: the simplest counterexample is the field Qab , the maximal
abelian extension ofQ, which was proved to have property (B) by Amoroso and Dvorni-
cich [AD00] and which clearly fails to have property (N) due to the presence of infinitely
many roots of unity in the field.
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By Northcott’s theorem, both properties hold for number fields and, more in gen-
eral, for sets of algebraic numbers with bounded degree. On the other side none of the
properties hold forQ, as for instance h( n

p
2) = (log2)/n tends to 0 as n increases.

An interesting, but generally hard, task is to study what happens between number
fields and Q i.e. given an infinite algebraic extension of Q, decide whether it satisfies
property (N) or (B). In recent decades there has been a lot of activity around this prob-
lem and I now briefly summarise the main known results on it.

Concerning property (B), we now know several examples of fields that satisfy it, but
most of them fall into essentially two classes.

The first class is that of fields obtained by adding torsion to some base field. This
class, as shown by the result of [AD00] evoked earlier, contains the field Qab , the maxi-
mal abelian extension of Q, which can be seen as the field obtained by adding to Q all
the torsion points of the torus Gm , i.e., all the roots of unity. This result has been gener-
alised later by Amoroso and Zannier in [AZ00] and [AZ10] to the field K ab , the maximal
abelian extension of a number field K . Later Habegger [Hab13] proved an elliptic ana-
logue of Amoroso and Dvornicich result, namely that property (B) holds for the field
Q(Etor ) obtained by adding toQ all coordinates of the torsion points of an elliptic curve
E defined overQ.

The second class is that of fields satisfying some local conditions. It contains, in view
of a result of Schinzel [Sch73], the fieldQtr of totally real numbers i.e., the field obtained
adjoining toQ all algebraic numbers having all real conjugates. The p-adic analogue of
this result was later proved by Bombieri and Zannier [BZ01], who showed more gen-
erally that property (B) is satisfied by any Galois extension L/Q having bounded local
degrees at some prime p i.e. embeddable in a finite extension of Qp . In particular, it
holds for the field of totally p-adic numbers Qt p , which is the compositum of all finite
Galois extensions of Qwhich are totally split at all primes above p. Another example of
a Galois extension with bounded local degree, as exhibited in [BZ01], is given by K (d),
the compositum of all extensions of a number field K of degree at most d .

Finally, in [ADZ14] Amoroso , David and Zannier have generalized both the above
results, proving that property (B) holds for any Galois extension L/K of a number field
K such that the subextension of L fixed by the center of Gal(L/K ) has bounded local
degrees at some prime. In particular, by [Che13], if the quotient of Gal(L/K ) by its center
has bounded exponent, then L has property (B). This gives a group theoretical criterion
to detect if property (B) holds for a Galois extension.

As for property (N), results continue to be relatively rare and there are essentially
two examples of fields which have been proved to satisfy it. The first, proved in [BZ01],
is the field K (d)

ab which is the maximal abelian extension of a number field K which is

contained in K (d). We remark that, using [CZ11], this result is equivalent to the following
assertion: every Galois extension of a number field whose Galois group is abelian and
of bounded exponent has property (N). This gives a group theoretical criterion to detect
property (N).

As already discussed in Chapter 1, we also remark that the validity of property (N)
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for K (d) and more generally for fields with uniformly bounded local degrees remains an
open problem.

The second construction was given by Widmer [Wid11] and consists of fields ob-
tained as unions of towers of number fields having discriminants that grow fast (the
precise statement can be found in [Wid11, Theorem 3] and it is discussed in §2.2.II).

The following questions arise quite naturally and motivate the research described
in the next sections:

(Q1) Given an infinite Galois extension L/Q, is the structure of Gal(L/Q) related to the
validity of property (B) or (N) for L? And if so, can we classify the groups for which
it happens?

(Q2) Can we say more on how the local properties of a field determine property (N)
and (B)?

(Q3) Are there new examples of fields with property (N) or (B)?

2.2. Description of the results

I. Properties (N) and (B) and Galois groups
(description of the article [CW13])

In [CW13], in collaboration with Martin Widmer, we are mainly concerned with (Q1)
and (Q3).

Concerning (Q1), as already noticed in §2.1, the results in [CZ11] and [Che13], com-
bined with those in [ADZ14] and [BZ01], allow to detect, in some cases, property (B)
and property (N) for a Galois extension by looking only at its Galois groups. More pre-
cisely, one can define property (B), as done in [ADZ14], and property (N) for groups: a
profinite group G has property (B), or (N) respectively, if, for any number field K and for
every Galois extension L/K having G as Galois group, the field L has property (B) or (N),
respectively.

With this terminology, the results in [Che13] and [ADZ14] imply that property (B)
holds for any group G such that G/Z (G) has finite exponent (here Z (G) denotes the
center of G), while those from [Che13] and [BZ01] show that property (N) holds for any
abelian group of finite exponent (indeed any realisation of such group over a number
field K must be contained in K (d)

ab for some d).

A very interesting result towards an answer to Question (Q1) would be to find new
examples of groups with these properties. This currently seems to be very hard.

In [CW13] we consider another natural, though more modest, issue i.e. whether,
given a profinite group G , there exists a dichotomy of the type: either G has property
(B) (resp. (N)) or none of its realisations has property (B) (resp. (N)). We answer this
question in the negative. More precisely, we prove the following:
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Theorem 7 ([CW13, Theorem 4]). Given any family of finite solvable groups (Gm)m there
exists a family of number fields (Km)m such that, for every m ≥ 1, Km/Q is Galois of group
Gm , Km is linearly disjoint overQ from the compositum of K1, . . . ,Km−1 and the composi-
tum of all Km ’s has property (N).

To prove this result we use Shafarevich theorem [Sha56] to get many linealry dis-
joint realisations of a given finite solvable group Gm , Hermite’s theorem combined with
a classical result of Dedekind to ensure that at least one realisation Km/Q of Gm has
discriminant divisible by a very big prime and Widmer’s criterion [Wid11, Theorem 3]
to ensure that the compositum of the fields Km ’s so constructed has property (N).

As a corollary, we can construct groups admitting two realisations over Q, one with
property (N) and one without property (N). As an example, for every odd prime p con-
sider the finite solvable group Gp = Gal(Q(ζp , p

p
2)/Q) and let G be the infinite direct

product of the groups Gp . Then, by our theorem G occurs has the Galois group of a
field with property (N) (and thus (B)), but also as the Galois group of the compositum
of the fields Q(ζp , p

p
2), which clearly does not satisfy neither property (B) nor (N). We

remark that, if one applies the theorem to the family of groups constructed in the proof
of [CZ11, Theorem 1], one obtaines the first example of field with property (N) having
uniformly bounded local degrees which is not contained inQ(d).

As for (Q3), in [CW13, Theorem 3] we prove a sort of generalization of the results in
[BZ01], by showing that the compositum K (d) of all extensions of K of degree at most d
has property (B) not only when K is a number field, but more generally when K /Q is a
Galois extension having finite exponent. We also show that, in this case, the maximal
abelian extension of Q contained in K (d) has property (N). These results are proved by
showing that, under the above assumptions, the extension K (d)/Q is still Galois with
Galois group of bounded exponent and thus, by [CZ11], it has uniformly bounded local
degrees. The results then follow from [BZ01].

In [CW13, §6] we also discuss some problems related to properties introduced by
Liardet and Narkiewicz to study polynomial mappings.

In [Nar62], Narkiewicz gave the following definition: a field of algebraic numbers
K has Property (P) if only finite subsets of K can be fixed by some non-linear poly-
nomial in K [x]. As property (N), property (P) holds for number fields, but not for al-
gebraically closed fields and in [DZ08] Dvornicich and Zannier study the relation be-
tween the two properties. Amongst other results, they show that (N) implies (P) (see for
instance [DZ08, Theorem 3.1]) and that, in contrast to property (N), property (P) is not
preserved under taking finite extensions of fields (see [DZ08, Theorem 3.3]).

Narkiewicz (see for instance [Nar71, Problem 10.(i)]) conjectured that property (P)
holds for Q(d). For d = 2 this follows from [DZ08] combined with [BZ01], but the con-
jecture is open for d > 2. He also introduced several other properties including prop-
erty (SP), an analogue in several variables of of property (P), property (R), a variant of
property (P) for rational functions. Property (P ), a version of property (P) for invariants
sets of elements of bounded degree, was also introduced by Liardet [Lia71]. In [Nar95],
Narkiewicz suggested several open problems concerning the relation between all these
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properties. Basing also on results from[DZ07, DZ08], we easily deduce answers to some
of them and we study relations between all these properties and property (N).

II. Property (N) and local degrees
(description of the article [CF21])

The article [CF21], in collaboration with Arno Fehm, deals with questions (Q2) and (Q3)
and focuses in particular on the search of new examples of fields with property (N).

As discussed in §2.1, results on this property are quite rare and the only two criteria
to detect such property for a field are the following:

(a) Bombieri and Zannier’s criterion ([BZ01, Theorem 1]): if K is a number field, d ≥ 1
is an integer and L is a subfield of K (d)

ab , then L has property (N).

(b) Widmer’s criterion ([Wid11, Theorem 3]): let K0 ⊆ K1 ⊆ K2 ⊆ . . . be an infinite tower
of number fields and, for every i ≥ 1, set

δi = inf
Ki−1(M⊆Ki

 |∆M |
1

[M :Ki−1]∣∣∆Ki−1

∣∣
 1

[M :K0]

where for a number field F ,∆F denotes its absolute discriminant. If δi →∞ when
i tends to infinity, then L =∪i≥0Ki has property (N).

We remark that Widmer’s criterion roughly says that if at each new step in the tower,
the discriminants grow enough compared to the previous ones (in the above precise
sense), then the union of the tower has property (N). Using this result, Widmer was able
to give new examples of fields with property (N) (see for instance [Wid11, Theorem 4 &
Corollary 2]).

It is quite natural to ask whether there are other criteria to detect property (N). It
turns out that to obtain an answer to this question, it is convenient to look at a state-
ment on property (B) shown in [BZ01]:

Theorem ([BZ01, Theorem 2]). If L/Q is Galois and S(L) 6= ; is the set of primes at which
L has bounded local degrees, then

liminf
α∈L

h(α) ≥β(L) = 1

2

∑
p∈S(L)

log p

ep (p fp +1)

where ep and fp denote, respectively, the ramification index and the inertial degree of L
at p.

In [BZ01, Remark, p.8], the authors notice that if β(L) =∞ then L enjoys also prop-
erty (N) (this is a simple consequence of Bolzano-Weierstrass theorem) and that β(L) =
∞ if L is a number field (this follows essentially by Chebotarev density theorem com-
bined with the prime number theorem, as proved in [CF21, Proposition 2.1]).

They then ask whether the divergence of β(L) can also occur for infinite extensions
L/Q, saying that they consider this event unlikely. One can further ask whether there
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are infinite extensions L/Q for which β(L) is divergent and that are not covered by the
criteria of Bombieri-Zannier and Widmer i.e., whether the divergence of β(L) is really a
new criterion for property (N). In [CF21] we positively answer this last question, proving
the following:

Theorem 8 ([CF21, Theorem 1.6]). There exist an infinite Galois extension L/Q such that:
(i) β(L) =∞

(ii) L 6⊂Q(d)
ab for any d;

(iii) L does not satisfy Widmer’s criterion.

Although not explicitly stated, the proof of the theorem yields infinitely many lin-
early disjoint extensions ofQwith the required properties. Here is briefly how it works:
the field L is constructed as a compositum of infinitely many cyclic extensions Fi /Q
having distinct prime degrees pi . Thanks to the results in [CZ11], this condition alone
ensures already that the field L, being an abelian extension of Q of unbounded expo-
nent, is not contained in Q(d)

ab for any d . Two constraints must be taken into account
when constructing the Fi : on the one hand we want all primes up to a certain bound
to split completely (this serves to make the sum β(L) large) and on the other hand we
want a good control on the absolute discriminant of Fi (to avoid that the sequence δi

considered by Widmer is divergent). This is possible by constructing the Fi ’s inside
composita of cyclotomic extensions of order certain primes congruent to 1 modulo pi

chosen appropriately via Walfisz’s theorem (see [CF21, Lemma 3.1]).

We also show that, if one is only interested in the divergence of β(L), there is some
freedom in choosing the Galois group:

Theorem 9 ([CF21, Theorem 1.3]). Given an infinite family of finite solvable groups
(Gm)m , there exists a Galois extension L/Q with Gal(L/Q) equal to the direct product of
all the groups Gm ’s and such that β(L) =∞.

The proof of this result uses, among other ingredients, a refined version of Shafare-
vich theorem on the realisability of finite solvable groups. More precisely, in [CF21,
Theorem 2.2 & Appendix A] we show that given G a finite solvable group and S a finite
set of primes of a number field K , there exists a Galois extension of K with Galois group
G in which all primes in S split totally. This theorem is applied to each of the groups
Gm choosing the corresponding set of primes in a suitable way.

Another issue considered in [CF21] is about question (Q2). Recall that, as already
remarked in §2.1, using [CZ11], Bombieri and Zannier’s result on property (N) can be
stated by saying that every abelian extension of a number field with uniformly bounded
local degrees has property (N) and a difficult open problem is to decide whether the
statement continues to be true without the condition on abelianity.

Then one could ask the simpler question of whether property (N) holds for all ex-
tensions with finite (but not necessarily uniformly bounded) local degrees. In [Feh18,
Proposition 1.3] the author constructs extensions without property (N) and having local
degree equal to one at infinitely many prime numbers (but also infinite local degree at
infinitely many other prime numbers). In [CF21, Theorem 1.6] we prove the existence
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of extensions with (non-uniformly) bounded local degree at all primes and which do
not have property (N). This result is deduced from a theorem of Fili [Fil14, Theorem
1.2] on elements of small height in fields of totally p-adic numbers which is discussed
in details in the next section.

III. Small totally p-adic numbers
(description of the article [CF22])

In [CF22], in collaboration with Arno Fehm, we are mainly interested in (Q2). More
precisely, we study elements of small height in fields satisfying some local properties.

As explained in §2.2.II, some of the results proved in [CF21] are based on a result
of Fili [Fil14] on an upper bound for the height of totally p-adic numbers. As recalled
above, for Galois extensions L/Q with bounded local degrees property (B) holds true
and explicit lower bounds for the height have been given by Bombieri and Zannier
[BZ01, Theorem 2]. In the special case where L is the intersection of a finite number
of totally p-adic fields, they prove the following:

Theorem ([BZ01, Example 2 & special case of Theorem 2]).

1

2

n∑
i=1

log(pi )

(pi +1)
≤ liminf
α∈∩n

i=1Q
t pi

h(α) ≤
n∑

i=1

log(pi )

(pi −1)
.

As remarked by the authors, this shows that the lower bound in [BZ01, Theorem 2],
at least in the totally p-adic case, is of the correct order of magnitude. Other proofs,
refinements and generalizations were given in [Fil14, Pot15, FP15, FP19, PS19]. In par-
ticular in [Fil14] Fili generalises the result to extensions of number fields as it follows:

Theorem ([Fil14, Theorem 1.2]). Let K be a number field and let p1, . . . ,pn be distinct
prime ideals of the ring of integers OK of K . For each i , let Ei be a finite Galois extension
of the completion Fi of K at pi . Denote by ei and fi the ramification index and the inertia
degree of Ei /Fi and write qi = |OK /pi |. Then, if L is the maximal Galois extension of K
contained in ∩n

i=1Ei , one has:

liminf
α∈L

h(α) ≤ 1

[K :Q]

 n∑
i=1

log(qi )

ei (q fi
i −1)

 .

Fili also conjectures that equality should hold, and this already taking the liminf
only over algebraic integers (see [Fil14, Conjecture 1]). We remark that his proof uses
capacity theory on analytic Berkovich spaces and does not provide explicit bounds on
the degree and the height of a sequence of integral elements in the liminf.

In [CF22] we prove an effective version of Fili’s result. More precisely:

Theorem 10 ([CF22, Theorem 1.3]). Let K be a number field and let p1, . . . ,pn be distinct
prime ideals of the ring of integers OK of K . For each i , let Ei be a finite Galois extension
of the completion Fi of K at pi . Denote by ei and fi the ramification index and the in-
ertia degree of Ei /Fi , write qi = |OK /pi | and let L be the maximal Galois extension of K
contained in ∩n

i=1Ei .
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Set C = max
{

[K :Q], |∆K |,maxi (ei fi ),maxi q fi
i

}
where ∆K is the absolute discrimi-

nant of K . Then for every 0 < ε< 1 and ρ ≥ 3C n , there exists α ∈OL such that

h(α) ≤ 1

[K :Q]

 n∑
i=1

log(qi )

ei (q fi
i −1)

+13nC 2n+2 log([K (α) : K ])

[K (α) : K ]
+

{
0, n = 1

nε, n > 1
.

and

ρ ≤ [K (α) : K ] ≤
Cρ, n = 1

ρ
(4logC )n+1

logn (1+ε) , n > 1
.

Our effective proof is more elementary than Fili’s one and it is inspired by Bombieri
and Zannier’s effective proof of [BZ01, Example 2]. We briefly sketch it here: given ρ ≥
3C n we construct a monic irreducible polynomial g ∈OK [X ] such that:

(i) deg g is upper and lower bounded in terms of ρ as the degree of [K (α) : K ] in the
statement;

(ii) the coefficients of g and all their conjugates have small enough absolute value;
(iii) g has all its roots in ∩n

i=1Ei .

In Bombieri and Zannier’s proof, (i) and (ii) were achieved by using the Chinese Re-
mainder Theorem to deform the polynomial

∏ρ

i=1(X −i ) into an irreducible polynomial
of the same degree with coefficients small enough to give the desired bound for the
height of the roots. Then a variant of Hensel’s lemma was applied to show that the roots
of the constructed polynomial are still inQpi for each i .

In our generalisation, we start by constructing polynomials
∏
α∈Ai

(X −α), where
Ai ⊆ OEi are certain special Galois invariant sets of representatives of residue rings of
local fields. These are then merged into an irreducible polynomial g by applying the
Chinese Remainder Theorem. The size of the sets Ai , and hence the degree of g , is
carefully chosen to obtain (i) via Dirichlet’s theorem on simultaneous approximation.
To achieve (ii), we use a bound for the size of representatives in quotient rings of rings
of integers. Property (iii) is then verified using a variant of Hensel’s lemma. Finally, we
use classical bounds for the height of a root of a polynomial defined over a number field
in terms of its coefficients to show that g has a root α of height bounded from above as
desired.

To the best of our knowledge, our theorem is the only result currently available that
gives a bound on the height in terms of the degree of such a sequence of α, except for
the case where K =Q and Ei =Qpi for all i , where such a bound can be deduced from
[BZ01].

2.3. Some perspectives

(i) Bogomolov and Galois

This research goal is part of a project with Arno Fehm (University of Dresden). Our
aim is to study lower bound for the height of the algebraic numbers in the following
special set

G = {α ∈Q |Q(α)/Q is Galois }.
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Amoroso and David [AD99] proved that Lehmer’s cojecture holds for elements in such
set and, inspired by their result, Smyth in [APSV, problem 21, p.17], asked whether G

actually satisfies property (B).

Later, Amoroso and Masser [AM16, Theorem 3.3] prove a very strong Lehmer type
bound for G : they show that given ε > 0 there exists a constant c(ε) > 0 such that
h(α)[Q(α) :Q]ε > c(ε) for all α ∈ G such that h(α) 6= 0. This result clearly seems to sug-
gest that Smyth’s question has a positive answer.

Further evidence in this direction is provided by another result by Amoroso [Amo16b,
Theorems 1.1 and 1.2]: motivated also by another question of Smyth in [APSV, p.17], he
proves, in particular, that, for certain particular classes of algebraic numbers αn ∈ G

with Gal(Q(αn)/Q) = Sn one has h(αn) ≥ c(n) for some explicit constant c(n) which
tends to infinity with n. Amoroso [Amo16b, Conjecture 1.3] conjectures also that this
should happen for every generator of an Sn-extension. Let us also mention, in this
context, the recent article [AD21, Theorem 1.1] where the authors show that the Galois
group of a lacunary polynomial, under some natural assumptions, grows more than
polynomially in the degree.

One of the difficulties in trying to provide a negative answer to Smyth’s question is
that there is essentially one known way to explicitly construct elements of small height,
that is to take roots of ’sparse’ polynomials (i.e. polynomials having few coefficients
compared to the degree) and this does not give in general generators of Galois exten-
sions. For instance, ifαn is a root of xn−2 or a root of xn−x−1 then, by using elementary
properties of the Weil height, one can easily see that h(αn) tends to zero as n grows. We
remark however that the αn ’s so constructed are such thatQ(αn)/Q is not Galois.

To start with: One of our first research objectives is to investigate other classes of
generators of Galois extensions, in particular, to decide property (B) for the following
set

G ∩Q(ζn ,b1/n | n ≥ 2)∗

for b ∈Q∗.

This set quite natural to investigate in this context. First, it is sufficiently interest-
ing, since, as remarked before, the field Q(ζn ,b1/n | n ≥ 2) has not property (B). We also
notice that, in this case, as remarked already in [Amo16b, p.3], we cannot expect an
analogue of Amoroso’s conjecture [Amo16b, Conjecture 1.3] to hold i.e. the height can-
not increase with the size of the Galois group: for instance, one can easily show that
αn = ζn + 21/n is in the set and it generates a Galois extension of degree nϕ(n), but
h(αn) ≤ 2log2.

However, a way deeper reason to expect property (B) for the above set comes from
some conjecture suggested by G. Rémond [Rém17] to unify different versions (absolute
and relative) of Lehmer’s conjecture in tori and abelian varieties.

A very special case of [Rém17, Conjecture 3.1](see also conjecture [Amo16a, Con-
jecture 1.2]) says, roughly speaking, that all the small points in Q(ζn ,b1/n | n ≥ 2)∗ are
of the form ζi

nbr for some i ∈ ζ, r ∈Q. The validity of this special case of the conjecture
would of course easily imply that the set we study has property (B).
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In [Amo16a, Theorem 3.3] Amoroso was able to prove that the conjecture is true for

the subfield Q(ζp i ,b1/p i | i ≥ 1) where b ≥ 2 is an integer and p is an odd prime not

dividing b and such that p2 does not divide bp−1 − 1, providing also a totally explicit
lower bound for the height of non-small points.

Our first goal with A. Fehm would be to study Galois generators inside the field
where we take as our n’s all distinct primes (instead of powers of the same prime). To
our knowledge, the only result in this context is proved by Plessis [Ple22, Theorem 1.5]
who shows in particular, that for any prime p, there exists a constant c > 0 such that for
any a1,b1, a2,b2 ∈ Q, if x = a1pb1 + a2pb2 6= 0, then either h(x) ≥ c or x = ζpr for some
p-th root of unity ζ and r ∈ Q. His approach uses equidistribution and the constant
does not seem to be effective.

(ii) Bogomolov, Northcott and Galois.

As evoked in §2.2.I, it would be very interesting to better understand profinite groups
with property (N) or (B). While a full classification of such groups seems to be way out of
reach, a more attainable goal would be to study the following questions from [ADZ14]:

Question ([ADZ14, Problem 5.6]). Let G be a profinite group with property (B).
(i) Is it true that if H is a subgroup of G of finite index, then H satisfies (B)?

(ii) If K is a number field and L/K is a Galois extension with Galois group G, is it true
that any finite extension of L satisfies (B)?

It is remarked in [ADZ14] that the validity of (i) implies the validity of (ii). Focusing
on question (ii), we notice that it has a positive answer when considering property (N)
instead of (B). This follows from the fact that property (N) is preserved for finite exten-
sions, while this phenomenon does not occur for property (B). An example, given in
[ADZ14, Theorem 5.3], is the field Qtr : it satisfies (B) by [Sch73], but its finite extension
Qtr (i ) contains points of arbitrarily small non-zero height, as shown in [AN07, Theorem
1.3].

To start with: In a very recent joint project with L. Pottmeyer (University of Duisburg-
Essen), partly motivated by the above questions, we investigate further the behaviour
of property (B) under finite extensions.

We will first consider the easier question of whether there exist extensions L/Qwhich
are maximal with respect to (B) i.e. which enjoy property (B) but always lose it under
any finite extension. We do not expect such fields to exist. Indeed, as a first reason to be
skeptical, first notice that property (B) is preserved under finite extensions for almost
all known examples of fields satisfying it i.e. number fields, abelian extensions and ex-
tensions with bounded local degrees at some prime. As for Qtr , as shown in [Pot16,
Theorem 1.1], a finite extension of it has property (B) if and only if it does not contain i .
So, in some sense,Qtr (i ) is essentially the only case where things go wrong. As a second
and more ambitious goal, we would like to understand whether actually Qtr (i )/Qtr is
the unique example of a finite extension of fields where property (B) is not preserved.

(iii) Northcott and Siegel.
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In [GR17], Gaudron and Rémond introduce and study the notion of Siegel fields,
which are subfields of Q satisfying Siegel’s lemma. More precisely, following [GR17,
p.189], we say that a subfield L ⊆Q is a Siegel field if there exists a constant c = c(L) > 0
such that for all a,b,c ∈ L, not all zero, the equation ax + by + cz = 0 has a nontriv-
ial solution with x, y, z ∈ L and H(x, y, z) ≤ cH(a,b,c)1/2 (where H(·) denotes the non-
logarithmic projective height).

Examples of Siegel fields are given by number fields (see [BV83] for a sharper result
in this case) and also by L = Q (see [RT99], [Zha95a]). In [GR17], the authors give new
examples of Siegel fields and also examples of non-Siegel fields. In particular, they show
that an infinite extension of Q with property (N) cannot be a Siegel field. This result
stems from a very delicate study of successive minima, the so-called Zhang minima, in
rigid adelic spaces. An open and difficult question is whether the converse is true or
whether there are fields that are neither Siegel nor satisfying property (N).

To start with: Some first concrete examples to study to answer the previous ques-
tion, are the fields Qab and Qt p , which are known to fail property (N). To the authors
knowledge, as also underlined in [GR17, §5.6], for these fields the Siegel property has
not been studied yet.
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CHAPTER 3
ON SOME UNLIKELY INTERECTIONS IN ABELIAN VARIETIES

Unlikely intersections is a term coined by Bombieri, Masser and Zannier to describe a
class of problems that can be seen as statements about the intersection of objects that
should not intersect for dimensional reasons and that includes many famous conjec-
tures. After an introduction on the state of the art in this very active area, I will describe
the results obtained by my co-authors and myself on the subject, proving, in particular,
certain cases of the so-called torsion anomalous conjecture and of the explicit Mordell
conjecture. The chapter ends with the description of some research leads.
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3.1. Introduction

This chapter focuses on some problems on unlikely intersections in abelian varieties, a
topic which has been central in my research in the first years after my PhD studies.

I do not presume in any way to give an exhaustive overview of the many results that
have been proved on the subject, which is a very important and active area of research,
nor an exhaustive list of the massive amount of corresponding literature. I refer the
interested reader to Zannier’s beautiful book [Zan12] for a detailed account on the topic
and for more references.

Unlikely intersections is a term, introduced by Bombieri, Masser and Zannier (see
for instance [BMZ07, BMZ08b]), that encompasses a wide class of problems in arith-
metic geometry (and beyond). The philosophy underlying this terminology is that two
varieties X and Y in a space G are unlikely to intersect if dim X +dimY < dimG .

More precisely, the kind of results one would like to prove is that, if X is fixed and
Y varies in a denumerable family F of varieties of dimension less than dimG −dim X
and having some special property, then X ∩Y is expected to be empty for most Y ∈F ,
unless X is also special in some sense.

Many famous conjectures and results can be interpreted as special cases of this gen-
eral tenet. In this chapter we will focus on the case where G is an abelian variety, but
most of the results we state have been proved also when G =Gn

m is a multiplicative torus
or in more general settings. All varieties we consider are defined over Q, which, thanks
to the recent work in [BD22], is the most interesting case in our setting. Also, for us va-
rieties are always irreducible and subvarieties are always irreducible and closed in their
ambient variety.

We recall that a proper subvariety of G is said to be a translate, a torsion variety
respectively, if it is a finite union of translates of proper algebraic subgroups of G by
points, by torsion points respectively. We say that X is transverse, weak-transverse re-
spectively, in G if it not contained in any proper translate, torsion variety respectively.

With this terminology, the Manin-Mumford conjecture, proved in [Ray83], states
that, if X is an algebraic subvariety of G and Gtor is the set of torsion points of G , then
X ∩Gtor is not Zariski-dense in X , unless X is itself a torsion variety. Or, equivalently,
the Zariski-closure of X ∩Gtor in X is a torsion subvariety of G .

If instead of Gtor one considers more generally a subgroup Γ of G of finite rank, the
Mordell-Lang conjecture, proved in [Fal94], asserts that X ∩Γ is not Zariski-dense in X ,
unless X is a translate. The special case when X is a non-singular curve defined over
a number field k, G is its Jacobian and Γ = G(k) are the k-rational points of G , is the
famous Mordell conjecture, proved in [Fal83], stating that X ∩Γ= X (k) is always finite
when dimG ≥ 2.

All these conjectures can now be viewed as special cases of a series of conjectures
formulated independently by Bombieri, Masser and Zannier in [BMZ07] (but already
partially suggested in the founding work [BMZ99]) and Zilber [Zil02] in tori, and by Pink
[Pin05] in the setting of mixed Shimura varieties. They imply in particular the following:
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Conjecture 1. Let X be an algebraic subvariety of a semi-abelian variety G and let G [dim X+1]

be the countable union of all algebraic subgroups of G having codimension at least dim X+
1. Then X ∩G [dim X+1] is not Zariski-dense in X , unless X is not weak-transverse.

While it is quite clear that this generalises the Manin-Mumford conjecture, an im-
portant aspect of Conjecture 1 is that it also generalises the Mordell-Lang conjecture: it
is indeed equivalent to the assertion that, the intersection of X with the union of all al-
gebraic subgroups of codimension at least dim X +1, translated by points in a subgroup
of G of finite rank, is non-dense in X , unless X is contained in a translate.

The case where X is a curve is of particular interest: when G is the multiplica-
tive torus it was already treated, under the stronger assumption that X is not con-
tained in any translate, in [BMZ99] and then fully proved in [Mau08] (and later re-
proved in [BHMZ10] with an alternative approach based on the work in [Hab09]). For
G an abelian variety, it was established in [HP16]. In particular, they use a variation of
the so called Pila-Zannier method, introduced for the first time by the two named au-
thors to reprove the Manin-Mumford conjecture for abelian varieties, which is based
on the combination of point counting results coming from the theory of o-minimality
with other diophantine ingredients. We refer also to [Via03, RV03, Rém05, Rat08, Car09,
Via08, Gal10, Via10] for some previous important partial results.

If dim X > 1, then X can contain subvarieties of positive dimension accumulating
points of the intersection X ∩G [dim X+1] and this is where the notions of anomalous
subvarieties come into play.

These objects have been introduced by Bombieri, Masser and Zannier in the toric
case in [BMZ07]. In particular, following them, we say that a subvariety Y of X is X -
torsion anomalous if it is an irreducible component of X ∩ H , where H ⊂ G is an irre-
ducible torsion variety with codimH ≥ dim X −dimY + 1. We also say that a torsion
anomalous variety is maximal if it is not contained in a strictly larger torsion anoma-
lous subvariety of X .

Clearly, one should first remove from X such subvarieties before trying to prove
some finiteness statement in the context of Conjecture 1 and obviously it is enough to
remove the maximal ones. We also remark that our definition is slightly different from
the one in [BMZ07], where only varieties of strictly positive dimension are considered.

In [BMZ07], among many other results, the authors formulate two conjectures on
the set X t a , obtained by removing from X all the maximal torsion anomalous subvari-
eties: the Torsion Openness Conjecture states that X t a is Zariski-open in X , while the
Torsion Finiteness Conjectures predicts that X t a ∩G [dim X+1] is finite.

In [BMZ07], the authors notice, in particular, that these two conjectures together
imply Conjecture 1. This last is actually a consequence of the following conjecture,
formulated in [Zil02] for semi-abelian varieties:

Conjecture 2 (Torsion anomalous conjecture). Let X be a subvariety of an abelian vari-
ety G. Then, X contains finitely many maximal torsion anomalous varieties.
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The conjecture is trivial if codimX = 0, while it follows from the Manin-Mumford
conjecture if codimX = 1 (as in this case the X -torsion anomalous varieties are pre-
cisely the torsion varieties contained in X ). Also, X is itself X -torsion anomalous if it is
contained in a torsion variety. So Conjecture 2 is interesting when X is weak-transverse
of codimension at least 2.

When codimX = 2 and G = Gn
m this follows from the work of Bombieri and Zannier

[Zan00, Theorem 2] or from Bombieri, Masser and Zannier’s article [BMZ07, Theorem
1.7]. When codimX = 2 and G is an abelian variety, this has been proved in powers of
elliptic curves with complex multiplication (for short, CM) in [CVV14] and in arbitrary
products of elliptic curves with CM [CV14]. These articles will be discussed in details in
§3.3. Recently, a proof has been given also in powers of elliptic curves without CM (see
[HV19]) and in any abelian variety defined over an algebraically closed field of char-
acteristic 0 in [BD22] as a consequence of the work in [HP16] (see [BD22, Corollary
1.6 and Theorem 7.1]). To the author’s knowledge no other general results is known in
higher codimension.

Returning to the general philosophy of unlikely intersections, other issues arise some-
what complementary in nature to those discussed so far. Take again a subvariety X of
G and some special family of varieties F of dimension strictly less than dimG −dim X .
Suppose that X is not special, so that ∩Y ∈F X ∩Y is small, as expected. How can one
measure this smallness? Can one describe the set somehow explicitly?

Here we need to be precise about what explicitly means. We take, as an example,
Mordell conjecture, discussed earlier, which will be important in the description of my
work on this topic. As already mentioned, this predicts that a non-singular algebraic
curve X of genus at least 2 defined over a number field k has only finitely many k-
rational points.

This result was proved by Faltings in [Fal83] and since then other different proofs
have been given in [Voj91], later simplified in [Fal91] and further in [Bom90], and very
recently in [LV20]. Unfortunately, these proofs are not effective, in the sense that they
do not give, even in principle, a bound for the height of the points in X (k), which, by
Northcott’s theorem, would be enough to find them explicitly, i.e. to list them down.

Although no general effective method is known that works for every curve, some
effective approaches do work under certain conditions, as we will discuss later (see
§3.3.III for a detailed description).

For varieties of higher dimension, the same questions can be posed. For instance, in
connection to Conjecture 2, given a subvariety X of an abelian variety G , can one give
an explicit bound on the (suitably chosen) height and degree of the maximal torsion
anomalous varieties it contains?

After some preliminaries in §3.2, in §3.3 I will describe some effective results I have
obtained with my coauthors on unlikely intersections, including some applications to
the effective Mordell-Lang and the explicit Mordell conjectures.
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3.2. Some preliminaries

Before describing our results, so as not to burden the reading of the next section, it
might be convenient to introduce here some notation and preliminaries. This dedi-
cated section can be consulted by the reader, if needed, while reading the next parts.
Headings are placed to make it easier to browse the section.

In §3.3 we describe some effective results we have obtained in the context of Conjec-
ture 2, in which we provide explicit bounds on the height and the degree of the varieties
involved. We want to specify here which heights and degrees we will use and recall
some of the relevant properties they enjoy and which will be important to us.

(a) Heights and degrees. Let G be an abelian variety defined over Q. We fix a sym-
metric ample line bundle L on G to which we attach an embedding iL : G ,→ Pm (de-
fined by the minimal power of L which is very ample). The degree and the height of a
subvariety of G are those of its image via this embedding.

More precisely, given a subvariety of X ⊂ Pm , its degree deg(X ) is the maximal car-
dinality of a finite intersection between X and a linear subspace of dimension equal to
codimX .

The height of X can be either its canonical height ĥ(X ) or its normalised height
h(X ), as defined and studied in [Phi91, Phi95]. In particular, for points, ĥ reduces to
the classical Néron-Tate height (see [Phi91, Proposion 9.(v)]) and h to a modified ver-
sion of the Weil height (see [CVV17, §2.2]). For a general subvariety X , the difference
|h(X )− ĥ(X )| is bounded by a constant depending only on G and deg(X ) (see [Phi95,
Proposition 9.(iv)]). Both such heights satisfy a Northcott’s theorem i.e. there are finitely
many varieties of bounded degree and bounded height.

(b) The arithmetic Bézout theorem. The normalised height satisfies also other two
important results. The first is an arithmetic Bézout theorem (see [BGS94, Theorem
5.4.4] and [Phi95, Theorem 3]) which gives a bound for the height of an intersection
of two varieties in terms of their heights and degrees. More precisely, it ensures that
given two closed and irreducible subvarieties X ,Y ⊂ Pm , the sum of the height of the
irreducible components Z1, . . . , Zn of X ∩Y is bounded as

n∑
i=1

h(Zi ) ≤ deg(X )h(Y )+deg(Y )h(X )+ c(m)deg(X )deg(Y )

where c(m) > 0 is an explicit constant.

(c) Zhang’s inequality. The second is an inequality coming from the work of Zhang
on the Bogomolov Conjecture, predicting that, if X ⊂G is a non-torsion subvariety, then
there exists an ε> 0 such that the set

{
P ∈ X | ĥ(P ) ≤ θ}

is not Zariski dense in X . Equiv-
alently, defining the essential minimum of X , µ̂(X ), as the infimum of the θ ∈ R>0 such
that the set

{
P ∈ X | ĥ(P ) ≤ θ}

is Zariski-dense in X , the conjecture claims that µ̂(X ) > 0
for non-torsion varieties. This is now a theorem thanks to the work in [Ull98] and
[Zha98].
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An important ingredient in the proofs of our results will be Zhang’s inequality proved
in [Zha95b, Theorem 1.10], from which one can deduce that

µ̂(X ) ≤ ĥ(X )

deg(X )
≤ (1+dim X )µ̂(X )

and that the same statement holds with the canonical height replaced by the normalised
ones, see [CVV17, Theorem 2.2].

(d) Galateau’s result on Bogomolov’s problem. When X ⊂G is not a torsion variety,
the so-called Bogomolov’s problem asks to find explicit lower bounds for its essential
minimum in terms of geometrical invariants of X and G . This problem has been studied
extensively (see for instance [DP98, DP02, DP07]).

If G has a positive density of ordinary primes (which should always be the case ac-
cording to a conjecture of Serre) and X is transverse, Galateau [Gal10] proves a quasi-
optimal lower bound, i.e. he shows that, for any ε> 0 one has

µ̂(X ) ≥ c(G ,ε)

deg (X )
1

dimG−dim X +ε (♣)

with c(G ,ε) > 0 is effective (and also depends on the line bundle L used to compute
heights and degrees).

This theorem, together with the bounded height theorem of Habegger [Hab09], has
been applied in [Via10] to prove Conejcture 1 for curves in abelian varieties with a pos-
itive density of ordinary primes. The case where X is not transverse is investigated in
[CVV12] and applied in [CVV14]. Details on these articles are given in §3.3.

(e) Carrizosa’s result on the relative Lehmer’s problem. For points, the search for
lower bounds for height in terms of the degree is a long-standing problem initiated by
a question of Lehmer, now known as Lehmer’s Conjecture.

This predicts the existence of a constant c such that, for any α ∈ Q which is not
a root of unity, one has h(α) ≥ c/[Q(α) : Q], where h is the absolute logarithmic Weil
height. The conjecture is still open in general, though some results have been proved
(see Chapter 2 of this manuscript for more details).

In particular, [AZ10] proved that it holds when α generates an abelian extension of
a number field. More precisely they show that if k is a number field and α ∈Q is not a
root of unity, then

h(α) ≥ c(k)

D

(
loglog5D

log2D

)13

where D = [kab(α) : kab] and c(k) > 0.

An analogue of this results for points in an abelian variety G was given in [Rat04]
when G is an elliptic curve with CM. Later Carrizosa in [Car09] generalised this result
to any CM abelian variety, proving a lower bound for the height of a non-torsion point
depending also on the minimal torsion variety containing the point. More precisely,
she shows that if G is an abelian variety with CM defined over a number field k, ktor
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is the field of definition of all the torsion points of G , P ∈ G is a non-torsion point and
H ⊂G is a torsion variety of minimal dimension containing P , then for every ε> 0 one
has

ĥ(P ) ≥ c(G ,ε)
deg(H)

1
dim H −ε

[ktor (P ) : ktor ]
1

dim H +ε

where c(G ,ε) > 0. This result will be important in the proof of the main theorem of
[CVV14], as explained in the next section.

3.3. Description of the results

I. Some effective cases of the torsion anomalous conjecture
(description of the article [CVV12], [CVV14] and [CV14])

In [CVV14], in collaboration with Francesco Veneziano and Evelina Viada, we investi-
gate Conjecture 2 when G = E N is the power of an elliptic curve E with CM defined over
Q, claiming the finiteness of the maximal torsion anomalous varieties contained in any
given subvariety X ⊆G .

When talking about heights and degrees of varieties and for all other preliminary
result, we refer to §3.2. We notice again that, unlike [BMZ07], our definition of torsion
anomalous varieties includes points.

As already recalled, Conjecture 2 is only interesting when X is weak-transverse in G
and codimX ≥ 2. Moreover, one may also assume that X is not a translate, as otherwise
an easy argument shows that the set of X -torsion anomalous varieties is empty (see
[CVV14, Proposition 3.7]).

In [CVV14] we study maximal torsion anomalous subvarieties according to their rel-
ative codimension, which is defined as it follows. If Y is X -torsion anomalous, then
it is an irreducible component of X ∩ H , where H is a torsion variety with codimX >
dim H −dimY and we can assume that H is minimal for Y i.e. it is a variety of minimal
dimension satisfying these conditions. In this case, we call dim H −dimY the relative
codimension of Y .

Notice that maximal torsion anomalous varieties of relative codimension one are in
some sense the most anomalous, and the main result of [CVV14] proves their finiteness:

Theorem 11 ([CVV14, Theorem 1.4]). Let G = E N be a power of an elliptic curve E with
CM defined over Q. Let X ⊂G be a weak-transverse variety. Then there are finitely many
maximal X -torsion anomalous varieties of relative codimension one. In addition, their
degrees and normalised heights are upper bounded by effective constants whose depen-
dence in the height and the degree of X is explicit.

We refer to the statement of [CVV14, Theorem 1.4] for the exact shape of the con-
stants alluded to in the theorem. We want to stress that one of the interesting aspects is
that the dependence on X in the bounds we provide is completely explicit and all other
constants depend only on G .
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One of the corollaries of our theorem is that Conjecture 2 holds for varieties of codi-
mension 2 in G = E N , providing an analogue of [BMZ07, Theorem 1.7] (see also [CVV14,
Corollaries 1.5 and 1.6]). In particular, this gives an effective proof of Conjecture 1 when
X is a weak-transverse curve in G = E 3 when E is CM. We remark that, in this case, the
finiteness of X ∩G [2] already stemmed from [RV03].

In [CVV14, §2], we also give another applications of our result in the context of
the Mordell-Lang conjecture. In particular, in [CVV14, Corollary 2.1] we give an effec-
tive bound for the the height and the number of points in X ∩Γ, where X is a weak-
transverse curve in E N , N > 2 and Γ ⊆ E N (Q) is a subgroup such that the End(E)-
module generated by the coordinates of its points has rank one.

This result follows from the fact that, if P ∈ X ∩Γ, then either P is torsion or it is
contained in some intersection X ∩ H , where H is a torsion variety of dimension 1.
Thus P is torsion anomalous of relative codimension one, unless H is contained in X ,
a case which is discarded from the weak-transversality of X and the hypothesis N > 2,
so that our main theorem can be applied. A bound on the cardinality of X ∩Γ is then
obtained using also Rémond’s result [Rém00].

We now discuss the proof of our main result [CVV14, Theorem 1.4].

This is inspired by the first and pioneering approach to Conjecture 1 introduced
in [BMZ99] when X is a curve in G = Gn

m , which can be schematised by the following
two-step argument. Let G [2] be the countable union of all algebraic subgroups of G of
codimension at least 2. Then:

(i) one first shows that the height of all points in X ∩G [2] is bounded;
(ii) one then deduces from this a bound for the degree of such points, hence their

finiteness by Northcott’s theorem.

Using this strategy, in [BMZ99, Theorem 2] Conjecture 1 is proved under the stronger
assumption that the curve X is transverse in Gn

m .

While step (i) follows from [BMZ99] (see also [Mau08] and [Hab09]), for step (ii) one
needs some geometry of numbers and good lower bounds for the height of the points
of interest in terms of their degree. The latter are provided by a higher dimensional
analogue of Dobrowolski’s theorem on Lehmer’s conjecture proved in [AD99]. We refer
to [Zan12, p.26-28] for more details on the proof of [BMZ99, Theorem 2]. This proof was
then adapted to the abelian case in [Via03].

Let’s now come to sketch the proof of our main theorem. We denote by k the field
of definition of E and by ktor be the field of definition of all torsion points of E N . We
assume that Y is a torsion anomalous component of X∩H where H is a minimal torsion
variety for Y and 1 = dim H −dimY < codimX .

We first show that, using linear algebra and some geometry of numbers, we can con-
struct an auxiliary torsion subvariety H ′ ⊂G with codimH ′ = dim X −dimY and smaller

degree deg(H ′) ¿G (deg(H))
dim X−dimY

codimH such that Y is still a (non-anomalous) component
of the intersection X ∩H ′. Here by ¿G we mean that the inequality holds up to a multi-
plicative constant depending on G . We refer to [CVV14, §4.2 and p.19] for more details
on the construction of H ′.
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We then apply the arithmetic Bézout theorem [BGS94, Theorem 5.4.4] (see §3.2.(b))
to the intersection X ∩H ′ to get

h(Y ) ¿G (h(V )+deg(V ))(deg(H))
dim X−dimY

codimH .

We now want to get a lower bound for h(Y ) in terms of deg(H) good enough to be
compared to the upper bound and eventually lead to a bound for deg(H) and thus, by
the arithmetic Bézout theorem for h(Y ) and by the classical Bézout theorem for deg(Y ).
The proof now proceeds by separating three different cases.

If Y is a point, the lower bound for the height of Y follows from Carrizosa’s result
[Car09] (see §3.2.(e)). This case is treated in [CVV14, §6].

If Y is a translate of positive dimension we use a result by Philippon [CVV14, Lemma
7.2] which guarantees that Y = H ′′+p where H ′′ is a subgroup and p ∈G is a point such
that µ̂(H ′′+p) = ĥ(P ). We then combine Zhang’s inequality [Zha95b, Theorem 1.10] (see
§3.2.(c)) with Carrizosa’s theorem [Car09] to get the sought for lower bound for ĥ(Y ) in
terms of deg(H). This case is done in [CVV14, §7].

We notice that these are the only cases where the CM hypothesis on the elliptic curve
E is needed, due to the use of [Car09].

Finally comes the case where Y is not a translate, proved in [CVV14, §5]. Here
we use the following result, that we prove in [CVV12], in collaboration with Francesco
Veneziano and Evelina Viada, which gives a lower bound for the essential minimum of
a non trasverse variety in the spirit of the result of Galateau’s bound (♣) from [Gal10]
recalled in §3.2.(d):

Theorem 12 ([CVV12, Theorem 1.3]). Let G be an abelian variety and assume that an
effective Bogomolov bound (♣) holds for transverse subvarieties of G. Suppose that Y is
a subvariety of G contained in a translate H, but not contained in any translate strictly
contained in H. Then, for every ε> 0

µ̂(Y ) ≥C ′(G ,ε)
deg(H)

1
dim H−dimY −ε

deg(Y )
1

dim H−dimY +ε (♦)

where C ′(G ,ε) > 0 is an effective constant (also depending on the line bundle L cho-
sen to compute heights and degrees).

The novelty of this result consists in the dependence on the degree of H and is a new
step in direction of a conjecture from [DP07].

The proof of [CVV12, Theorem 1.3] is essentially geometric and easily reduces to
the case where H is an abelian subvariety (see [CVV12, p.908]). Here is a very short
sketch of it. Let L be a fixed ample symmetric line bundle on G and let µ̂= µ̂L be the
corresponding essential minimum. In order to prove the result we need to compare the
line bundle L on G with its restriction L |H to H .

The idea is to identify H , via a suitable morphism φ, to a product G ′ =Gn1
1 ×·×Gnr

r

where the Gi ’s are the simple factors of G . We then consider another bundle M on G ′
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given by the tensor product of the pullbacks of L via the projection morphisms from G
onto Gni

i .

The main technical point in our proof is an equivalence of line bundles (see [CVV12,
Theorem 3.4]) which shows that there is an isogeny Φ : G ′ → G ′ such that L |H can be
described in terms of Φ∗M .

We then show that µ̂ well behaves under isogenies. More precisely, as Φ(Y ) is trans-
verse in G ′, we have that the bound (♣) holds for Φ(Y ) with respect to M and we prove
that this implies the validity of (♦) for Φ(Y ) in G ′ with respect to the pullback Φ∗M

(see [CVV12, Theorem 2.5]). This result, together with our equivalence of line bundles
and the comparisons of the degrees and essential minima of the objects involved (com-
puted with respect to the different morphisms and line bundles), allow to conclude.

We remark that the hypothesis on G in Galateau’s result (and so an effective Bogo-
molov bound (♣)) holds more generally when G is a product of elliptic curves or abelian
surfaces (with or without CM) or any abelian variety with CM (see [Gal10, p.551] for
more details).

In [CV14], in collaboration with Evelina Viada, we generalise our main result from
[CVV14] to abelian varieties with CM under certain assumptions on the subvariety X .
More precisely, we prove the following:

Theorem 13 ([CV14, Theorem 1.4]). Let G be an abelian variety with CM defined overQ.
Suppose that G is isogenous to a product of simple abelian varieties all having dimen-
sion at most g . Let X be a weak-transverse subvariety of G with codimX > g . Then there
are only finitely many maximal X -torsion anomalous subvarietiesof relative codimen-
sion 1. In addition, their degrees and normalised heights are upper bounded by effective
constants whose dependence in the variety X is explicit.

The proof follows the same lines as the one of [CVV14, Theorem 1.4]: here too, we
deal separately with cases where the torsion anomalous variety is a point, a translate
of positive dimension or a non-translate. The main ingredients are the same, but the
geometrical part on the construction of the auxiliary subgroup is more delicate and it
forces the condition on codimX in the statement. We also discuss some applications of
our result to new cases of the effective Mordell-Lang conjecture (see [CV14, Theorem
1.5 and Corollary 1.6]).

II. Some explicit results for points and applications to the Mordell-Lang and the
Mordell conjectures

(description of the results in [CVV17] and [CVV19])

In [CVV17], in collaboration with Francesco Veneziano and Evelina Viada, we prove
upper bounds for the height of torsion anomalous points of relative codimension one
when G = E N is a power of an elliptic curve, with or without CM. The case when E has
CM was already treated in [CVV14]. The main novelty of [CVV17] is to introduce a new
method which is not sensitive to the CM hypothesis and which gives (as in [CVV14])
effective bounds in the CM case and completely explicit bounds in the non CM case.
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Although restricting oneself to points may appear, at first sight, a too particular
choice in the context of Conjecture 2, its importance stands out in applications to the
Mordell-Lang and Mordell conjectures, as we will explain later.

In order to state our explicit results we need to fix some notation. We let E be an
elliptic curve defined overQ. We fix (once and for all) a Weierstrass equation for E . This
gives an embedding of E N in PN

2 , which, composed with the Segre-embedding, extends
to an embedding of E N in P3N−1. When computing heights and degrees of points and
subvarieties of E N , these are considered as embedded in P3N−1 via the previous map. In
particular, we denote by ĥ the associated Néron-Tate height on E N , by h the normalised
height (see §3.2.(a)) and by hW (E) the height of the Weierstrass equation of E (as defined
in [CVV17, §2.2]). We can now state our main result from [CVV17]:

Theorem 14 ([CVV17, Theorem 1.1]). Let X ⊂ E N be an irreducible subvariety. Then the
set of maximal X -torsion anomalous points of relative codimension one has Néron-Tate
height bounded by an effective constant C (X ,E , N ).

In particular, if E has no CM, the constant is explicit and can be taken as:

C (X ,E , N ) =C1(N )h(X )(deg X )N−1 +C2(E , N )(deg X )N +C3(E , N )

where

C1(N ) = (N !)N N 3N−2
(
3N 2+N+122N 2+3N−1(N +1)N+1Γ

(
N +1

2

)2

Γ

(
N +2

2

)2

π2−N
)N−1

C2(E , N ) =C1(N )

(
3N log2

2
+12N log2+N log3+6N hW (E)

)
C3(E , N ) = 7N 2

6
log2+ N 2

2
hW (E),

where Γ is the Euler Gamma function.

We remark that this result could not be obtained with the method used in [CVV14],
because of the use of the Lehmer bound from [Car09] therein, which is not available
in the non-CM case. In contrast, the new proof strategy we introduce in [CVV17] does
not distinguish CM from non CM elliptic curves and it was also applied later in [Via18]
to compute explicit constants in the CM case as well, where further technical compli-
cations arise due to the structure of the endomorphism ring of E . Also, the bounds we
obtain do not depend on the field of definition of X , unlike other bounds in similar
contexts. This is important for our applications.

Here is a sketch of our proof, which is based on an approximation process. Let P ∈
X ∩ H be a maximal torsion anomalous point of relative codimension one, with H a
torsion variety (minimal for P ) of dimension dim H = 1 < codimX .

We first build an auxiliary translate H ′ having small degree and height bounded in
terms of ĥ(P ) and deg H ′ and such that P is still a component of the intersection X ∩H ′.
We can then bound ĥ(P ) using the arithmetic Bézout theorem in terms of the height
and the degree of H ′. Combining carefully these inequalities (and optimally choosing
certain parameters involved in the construction) leads to the desired result.
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The construction of the auxiliary subgroup (done in [CVV17, Propositions 3.1 and
3.2]) is the core of our strategy and it is inspired by the work in tori by Habegger [Hab08].
Its proof is based on sharp estimates for the heights and the degrees in E N (see [CVV17,
§2.2 and §6]) and some geometry of numbers (see [CVV17, §7.4]).

As a first corollary of our result (see [CVV17, Corollary 1.2]) we get the finiteness of
the maximal torsion anomalous points of relative codimension one in E N .

However, as already anticipated, the more interesting application of our result is the
following explicit case of the Mordell-Lang conjecture:

Theorem 15 ([CVV17, Theorem 1.3]). Let X ⊆ E N be a curve where E has no CM. Let
P ∈ X be a point whose coordinates generate a subgroup of rank either zero or one.

If X is weak-transverse and N ≥ 3 then

ĥ(P ) ≤C1(N )h(X )(deg X )N−1 +C2(E , N )(deg X )N +C3(E , N ),

where the constants are the same as in Theorem 14.
If X is transverse and N = 2 then

ĥ(P ) ≤ 1035h(X )(deg X )2 +1036(hW (E)+1)(deg X )3 +8(hW (E)+1).

We refer to the statement of [CVV17, Theorem 1.3] for more precise bounds. In par-
ticular, in both cases, if k is a field of definition for E and E(k) has rank 1, then all points
in C (k) have Néron-Tate height effectively bounded as above.

This allows to prove some effective case of the Mordell conjecture (i.e. to bound
effectively the height of the rational points) for an infinite family of curves of increasing
genus in E 2 where E is a suitably chosen and fixed elliptic curve (see [CVV17, Theorem
1.4]). However, the bounds we obtain are still too big to be implemented and find all
the rational points on such curves i.e. to solve the explicit Mordell conjecture for them.

The search for a method to solve some cases of the explicit Mordell conjecture has
been our main motivation in [CVV19].

Before describing our result, and in order to better put it in context and be able to
appreciate its novelty, it is perhaps worth giving a brief overview of the main known
methods for explicitly finding rational points on certain curves of genus at least 2.

Before we begin, we must warn that, as already mentioned in the Introduction,
no general method is known to work for all curves. None of the known proofs of the
Mordell conjecture (as in [Fal83], [Voj91], [Fal91], [Bom90] or very recently in [LV20])
are in fact effective. Nevertheless, these proofs generally provide an upper bound (ef-
fective since [Bom90] and explicit since [Rém00]) on the number of rational points of
a curve, the so-called quantitative version of the Mordell conjecture. Here, raised by
a question of Mazur, comes the problem of uniformity, i.e. how this bound depends
on the parameters of the problem. Although this issue does not concern us closely, we
would like to mention the very recent break-through in [DGH21, Küh21, GGK21].

Returning to the explicit Mordell conjecture, a first method, of p-adic nature, was
introduced by Chabauty [Cha41] and later refined by Coleman [Col85]. The method
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gives a bound on the number of rational points of a curve X when, for instance, the
group of rational points of its Jacobian JX has rank strictly less than the genus g (X ) of
the curve.

The idea is the following: one fixes a prime p and considers the closure JX (Q) of
JX (Q) in JX (Qp ). It is now sufficient to prove that the intersection X (Qp ) ∩ JX (Q) is
finite as it contains clearly X (Q). As dim X (Qp ) = 1 as a submanifold of JX (Qp ), if

one supposes that dim JX (Q) < g (X ), one expects, by reasoning on dimensions, that
X (Qp ) ∩ JX (Q) has dimension 0 and thus is finite (as a discrete subset of the com-
pact space JX (Qp )), which is what Chabauty proved. We also notice that, in general,

dim JX (Q) ≤ rankJX (Q), so the hypothesis rankJX (Q) < g (X ) is enough to apply the the-
orem. This strategy was later refined by Coleman, using p-adic integration, to get an
explicit exploitable bound on the size of the intersection.

This method gives often a sharp bound on the number of rational points and, when
this happens, possibly in combination with ad hoc descent arguments, one can man-
age to find them explicitly. See for example [Fly97] for some explicit applications of
the Chabauty–Coleman method, [Sik13] for investigations on possible extensions of the
method, and [McCP12] for a general survey.

Later, Kim [Kim05, Kim09] proposed a method that allows to replace the restriction
on the Jacobian of the curve with a condition on a larger object, the Selmer variety. This
was further studied in [BD18, BDMTV19, BD21, BBBM21], where the authors were able
to apply it to determine the set of rational points in a number of new cases.

A second method was developed by Dem’janenko [Dem68] and then generalised
by Manin [Man69]. It applies to curves X defined over a number field k which ad-
mit enough independent morphisms φ1, . . . ,φN to an abelian variety A, where enough
means that N > rankA(k) and independent means that no nontrivial integral linear
combination of the φi ’s is constant. Under such hypothesis, one can effectively com-
pute the finite set X (k). However the method does not give an explicit upper bound for
the height of the rational points, which makes it difficult to apply.

We refer to [Ser89, §5.2] for a description of the method and to [Kul99, KMS04, GK05]
for some applications to curves admitting morphisms to certain special elliptic curves.
We also mention that in [Via03] an effective method is given in a setting similar to that
in which the Manin-Dem’janenko method is applicable.

We remark that in the special case where A = E is an elliptic curve, the condition
on the existence of N linearly independent morphisms from X to E is equivalent to the
fact that the image of X in E N under such morphisms is a transverse curve.

Our main result in [CVV19] is a good explicit upper bound for the height of the
points in the intersection of a curve of genus at least 2 in E N with the union of all al-
gebraic subgroups of E N of dimension one, where E is an elliptic curve without CM,
proving explicitly a particular case of the Mordell-Lang conjecture in an elliptic setting.

As before, we suppose that an elliptic curve E is given by a fixed Weierstrass equation
y2 = x3+ Ax +B with A,B ∈Q, providing an embedding of E N into PN

2 and then, via the
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Segre embedding, into P3N−1. Heights and degrees are computed via such embedding
(see §3.2). We denote, in particular, by hW the Weil-height on Q and by h∞ a modified
version of the Weil height, which takes into account only the contributions coming from
the Archimedean places (see [CVV19, §2.1]). Here is the statement of our main theorem:

Theorem 16 ([CVV19, Theorem 1.2]). Let E be an elliptic curve without CM given by the
equation y2 = x3+Ax+B with A,B ∈Q, let jE be its j -invariant and∆E its discriminant.

Let X be an irreducible curve of genus at least 2 embedded in E N , N ≥ 2. Suppose that
P ∈ X (Q) is contained in a minimal algebraic subgroup of E N of dimension one.

Then if N = 2 we have

ĥ(P ) ≤ 73 ·h2(X )deg X +73(6+ c1(E)/2)(deg X )2 + c2(E)

while if N ≥ 3 we have

ĥ(P ) ≤17 ·3N ·N ! ·h2(X )(deg X )2 +2 ·32N ·N ! · c1(E)(deg X )3

where

c1(E) = hW ( j )+2hW (∆)+2h∞( j )+4hW (A)+4hW (B)+30.

c2(E) = hW (∆)+h∞( j )+2hW (A)+2hW (B)+8.

Our main theorem generalises and drastically improves a previous result obtained
in [CVV17]: there we considered only weak-transverse curves and only torsion anoma-
lous points. Moreover the bounds obtained in [CVV17] were much worse and not im-
plementable in any concrete case.

To go beyond the more restrictive setting of [CVV17] we introduce new key elements
in the proof. This change in approach leads to improvements of the bounds which are
crucial for the applications we will discuss later.

We now give a sketch of the proof of [CVV19, Theorem 1.2]. If P is a point on X of
rank zero, then it is a torsion point and the theorem is trivially true. So the interesting
case are points of rank one.

We first use geometric construction which shows how to deduce the general case
from the case N = 2 (see [CVV19, Theorem 4.3]). More precisely, we consider the pro-
jection π : E N → E 2 from E N onto any two factors. If P is a point of rank one on X ⊂ E N ,
we bound ĥ(P ) in terms of ĥ(π(P )) and the degree and the height of π(X ) in terms of
those of X by using, amongst others, results by Masser and Wüstholz on isogenies of
elliptic curves [MW90] and Zhang’s inequality. This procedure, only briefly sketched
here, is adapted to the different cases in which X is transverse or weak-transverse in E N

and allows us to reduce to the case of a curve X in E 2 of genus at least 2.

If N = 2, as in [CVV17], the core of the proof is construction of a suitable auxiliary
subgroup of E 2 whose intersection with X still contains P as component. More pre-
cisely, we fix two parameters k > 1 and t big enough with respect to k and we construct
an elliptic curve E ⊂ E 2 such the translate E +P has degree at most t and height at most
18(k2/t )ĥ(P )+4tc1(E). To this end we use, among other things, some classical results
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of the geometry of numbers; as N = 2, we can do this in a much finer way than we did
in [CVV17] and this is what prevents the bounds from growing too much.

We then notice that P is a component of the intersection X ∩ (E +P ), otherwise we
would have X = E +P , contradicting the fact that the genus of X is at least 2. Using the
arithmetic Bézout theorem we can then bound the height of P in terms of the height and
the degree of X and E and an optimal choice of the parameters k and t , together with
accurate explicit comparisons described in [CVV19, §3] between the different height
functions we use, lead to the conclusion.

A significant feature of our main theorem is that it can easily be applied to find all
the rational points on certain explicit infinite families of curves of increasing genus. Just
to give one example, we prove the following:

Theorem 17 ([CVV19, Theorem 1.5 & Appendix A.4]). Let E be the elliptic curve given
by the Weierstrass equation y2 = x3 + x −1 and write y2

1 = x3
1 + x1 −1, y2

2 = x3
2 + x2 −1 for

the equations of E 2 in P2
2 using affine coordinates

(
(x1, y1), (x2, y2)

)
. Let O be the neutral

element of E.
Let Xn ⊂ E 2 be the projective closure of the curve defined via the additional equation

Φn(x1) = y2, where Φn(x) is the n-th cyclotomic polynomial. Then

X1(E1)(Q) = {(O,O),
(
(2,3), (1,1)

)
,
(
(2,−3), (1,1)

)
}

X2(E1)(Q) = {(O,O),
(
(2,3), (2,3)

)
,
(
(2,−3), (2,3)

)
}

X6(E1)(Q) = {(O,O),
(
(1,1), (1,1)

)
,
(
(1,−1), (1,1)

)
,
(
(2,3), (2,3)

)
,
(
(2,−3), (2,3)

)
}

Xn(E1)(Q) = {(O,O)} if n > 2 and n = pm with p 6= 3,47,

Xn(E1)(Q) = {(O,O),
(
(1,1), (2,3)

)
,
(
(1,−1), (2,3)

)
} if n = 3m ,

Xn(E1)(Q) = {(O,O),
(
(1,1), (13,47)

)
,
(
(1,−1), (13,47)

)
} if n = 47m ,

Xn(E1)(Q) = {(O,O),
(
(1,1), (1,1)

)
,
(
(1,−1), (1,1)

)
} if n ≥ 7 is not a prime power.

The elliptic curve E in the theorem has no CM and is such that E(Q) has rank 1. As
already said, this is just an example of what we obtain and we refer to [CVV19, Theorem
1.5 and Appendix A] for many more examples.

For the curves we consider the bounds for the height of the rational points obtained
applying our main theorem [CVV19, Theorem 1.2] are so good that we can carry out a
fast computer search and determine all the rational points for all n up to a quite large
bound. The computations have been executed with PARI/GP using an algorithm by
K. Belabas based on a sieving method and described in [CVV19, §9]. In [CVV19, Ap-
pendix A] M. Stoll completes the study of the rational points by showing that, for n large
enough, all rational points on the curves must be integral in E 2 and a quick compu-
tation with Magma is enough to find them. This is obtained by combining our upper
bound for the height of the rational points with a lower bound obtained by studying the
`- adic behaviour of points on the curve close to the origin.

In [CVV19, Appendix A.1] M. Stoll makes a very nice and detailed comparison be-
tween our method and that of Manin-Dem’janenko, explaining concretely in which
cases one method is more advantageous than the other.
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We also remark that in [Via18] the author has established some generalizations of
our results, for instance for elliptic curves with CM and higher Mordell-Weil rank. We
finally mention the recent result in [VV21], where the authors generalise the method
of [CVV19] to bound the height of points of rank at most n − 1 on transverse curves
embedded in E n , where E is an elliptic curve defined overQ.

3.4. Some perspectives

(i) Lower bounds for the height in Gn
m .

This research goal is part of a project with Francesco Amoroso, Gaël Rémond, Mat-
teo Viale and Martin Weimann that started as part of an application for an IEA (Inter-
national Emerging Actions) project of the CNRS.

As recalled in the Introduction, Conjecture 2 has been proved for varieties of codi-
mension at most 2 in Gn

m . Two proofs of this theorem are now known. The original one
by Bombieri and Zannier, detailed in [Zan00], and one by Bombieri, Masser and Zan-
nier in [BMZ07]. Moreover, as explained in §3.3, the elliptic analogue of this theorem
has been proved using a new method in [CVV14]. The bounds that appear in the above
cited proofs are not explicit, although they are effective.

An explicit version of such results for tori would provide, in particular, an explicit
version of a result first conjectured by Schinzel [Sch65] which has notably applications
to the factorization of lacunary polynomials and the search for their multiple roots (see
for instance [FGS08, ALS15, ASZ17]).

The aim of this project is to develop the analogue for subvareties of Gn
m of the proof

of [CVV14] by making the bounds explicit and in particular their dependence on n. This
question has been explicitly asked several times, notably in [FGS08].

To start with: One of the points which has to be clarified and make explicit is a
transfer theorem of Rémond [Rém17] which shows the equivalence between two ver-
sions of the generalized Lehmer conjecture of [AD03]. This is a key ingredient to ensure
that our strategy produces explicit constants.
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CHAPTER 4
ARITHMETIC PROPERTIES OF MAHLER FUNCTIONS

In this chapter, I present some results I have obtained on the arithmetic of Mahler func-
tions, which are power series with algebraic coefficients satisfying a particular type of
functional equation. After a brief introduction to the problem, I will describe the re-
sults I obtained in collaboration with my co-author in [CR17], showing, in particular,
how certain arithmetic properties of Mahler functions mirror on the functional equa-
tion.

This is a topic that remains somewhat peripheral to my main research centres and
on which I have been less active than others, but on which I have recently started a new
project that I will describe at the end of the chapter.

g

List of articles presented in this chapter

[CR17] «On certain arithmetic properties of Mahler functions. »
(with J. ROQUES), Israel Journal of Mathematics, Volume 228, Issue 2, 801–833
(2018).

h

4.1. Introduction

A Mahler function is a power series f (z) ∈Q[[z]] satisfying an equation of the form

pd (z) f (z`
d

)+pd−1(z) f (z`
d−1

)+ . . .+p0(z) f (z) = 0 (?)

where ` ≥ 2 is an integer and p0(z), . . . , pd (z) ∈ Q[z] are not all zero. These functions
have been extensively studied, starting with the seminal work of Mahler [Mah29, Mah30a,
Mah30b], investigating the algebraic relations between their values at algebraic points.

The first example considered by Mahler was the function f (z) = ∑∞
n=0 z2n

: exploit-
ing the fact that it satisfies the equation f (z2)− f (z)+ z = 0, Mahler was able to prove
that f (z), beside not being algebraic over Q(z), even takes transcendental values at all
non-zero algebraic points inside its domain of convergence, the unit disc. This new
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approach in transcendence theory lead to a way more general method, later called
Mahler’s method, and was further explored and developed by many authors, such as
Becker, Kubota, Loxton, van der Poorten, Masser, Nishioka, Töpfer, just to cite some.
This introduction is not the appropriate place to say more about the vast literature on
Mahler’s method, of which I am by no means an expert. For a detailed account on the
subject and a complete list of referencese I refer to Nishioka’s book [Nis97] and to the
recent very nice survey by Adamczewski [Ada19].

Other examples considered by Mahler already in [Mah29] include solutions of the
following special Mahler equations

f (z) = p(z) f (z`). (??)

For instance, if p(x) = 1− z the (unique, up to a multiplicative constant) solution of
(??) is f (z) = ∑∞

n=0(−1)tn zn where (tn)n is the so called Thue-Morse sequence and tn

is the number of non-zero digits in the binary expansion of n. This is an example of an
automatic sequence and it is precisely because of its connection to these objects that,
in recent decades, Mahler’s method took on renewed relevance and enhanced interest.

We briefly recall that, if A is a finite alphabet and k ≥ 2 is an integer, a sequence
( fn)n ∈ A N is called k-automatic if, for every n, fn can be computed by a finite state
machine (called automaton). This machine, takes in input the expansion of n in base k
and, starting from an initial state, associates each digit it reads with a state transition.
Each possible state comes with an associated output value and fn equals the output
attached to the last state reached after reading all the digits of n in base k. For more
informations about the theory of automata, we refer to [AS03]. This notion was intro-
duced by Cobham in [Cob68], who proved (see [Cob72]) that ( fn)n is k-automatic if and
only if its k-kernel i.e. the set of the subsequences of the form ( fke n+a)n with e ≥ 0 and
0 ≤ a < ke , is finite. The notion of k-automaticity was later generalised by Allouche and
Shallit [AS92] to k-regularity: a sequence ( fn)n with values in a Z-module R (possibly
infinite) is k-regular if its k-kernel is contained in a finitely generated Z-module. Thus,
as shown in [AS03, Theorem 16.1.5], k-automatic sequences are precisely k-regular se-
quences taking finitely many values.

The link to Mahler functions comes from the fact that, as proved by Becker [Bec94],
if ( fn)n is k-regular then its generating function f (z) = ∑∞

n=0 fn zn is a Mahler function
(see [LP88] for the previously known special case of automatic sequences). The ques-
tion arises naturally of whether it is possible to characterise Mahler functions coming
from regular sequences. In this direction, Becker shows [Bec94, Theorem 2] that if f (z)
satisfies (?) with p0(z) = 1, then the coefficients of its series expansion form a k-regular
sequence. He also conjectured [Bec94, p.279] that a weaker converse should hold and,
more precisely, that if f (z) is k-regular (i.e. it is the generating function of a k-regular
sequence), then f (z)/r (z) satisfies (?) with p0(z) = 1 for some k-regular rational func-
tion r (z). A stronger form of this conjecture was recently proved in [BCCD19], where the
authors show that one can even take r (z) = zm q(z) for some integer m ≥ 0 and polyno-
mial q(z) with q(0) = 1 and such that 1/q(z) is k-regular. The following question arises
then naturally:
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(Q) Which properties of a Mahler function can be read on its functional equation? In
particular, is it possible to detect on (?) if its solutions are the generating function
of some automatic sequence?

4.2. Description of the results

In [CR17], in collaboration with J. Roques, we are mainly interested in Mahler functions
satisfying equation (??) where p(z) ∈Z[z] and p(0) = 1. Up to a multiplicative constant,
(??) has a unique solution given by the infinite product

f (z) = ∏
i≥0

p(z`
i
).

As in question (Q), one of our aims is to study how the behaviour of f (z) mirrors on the
polynomial p(z).

Duke and Nguyen [DN15] studied an aspect of this question in the case where ` is
a prime and p(z) = Φm(z) is the m-th cyclotomic polynomial. They ask in particular
under which conditions on p(z) the solution f (z) is a rational function.

One of the main results of [DN15] states that f (z) is rational if and only if ` divides
m, in which case f (z) = 1/Φd (z`

r−1
) where m = `r d , r ≥ 1 and ` - d , and that f (z) has

the unit circle as a natural boundary otherwise (see [DN15, Theorem 1]).

The proof of their result partly bases on a modified version of Mahler’s approach to
the case m = 1, which consists in studying the behaviour of f (z) as z approaches certain
roots of unity. More precisely, they determine (see [DN15, Theorem 2]) the asymptotic
behaviour of f (z) as z tends radially to a root of unity of order prime to `, by using the
arithmetic properties of the Dirichlet series attached to f (z). We mention that, in this
setting, the asymptotic of the coefficients of f (z)−1 was precisely described in [DF96]
for any integer `≥ 2 prime to m.

As a first result, we obtain the following generalization of [DN15, Theorem 1].

Theorem 18 ([CR17, Theorem 1.1]). Let ` ≥ 2 be an integer, p(z) ∈ Z[z] a polynomial
with p(0) = 1 and let f (z) be a solution of f (z) = p(z) f (z`).

Suppose that p(z) is monic and that there exists infinitely many integers m prime
to ` such that f (z) is bounded as z tends radially to any m-th primitive root of unity.
Then p(z) is the product of cyclotomic polynomials. Moreover, if ` is prime, the following
conditions are equivalent:

(1) p(z) is monic and, for almost all roots of unity ζ of order prime to `, f (z) is bounded
as z tends to ζ radially;

(2) p(z) is a product of cyclotomic polynomials of order divisible by `;
(3) f (z) is rational.

The proof relies on a simplified but more general version of [DN15, Theorem 2]
(see [CR17, Proposition 2.1]) which describes the asymptotic behaviour of f (z) as z
approaches radially a root of unity ζ of order `n −1 and shows, in particular, that this

depends on the value
∏n−1

k=0 p(ζ`
k

). This description is then used to deduce some strong
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bound for the absolute value of the norm of p(z) evaluated at roots of unity, which im-
plies that p(z) is a product of cyclotomic polynomials. Our proof of [CR17, Proposition
2.1] is different in nature than the one of [DN15, Theorem 2]: we first consider a certain
functional equation (a q-difference equation) satisfied by f (ζe t ), where ζ is a root of
unity of order prime to `, then we construct another suitable solution to this equation
and use it to study the behaviour of f (ζe t ) as t tends to 0.

A second natural question we consider is how to characterize Mahler equations
whose solutions are generating functions of automatic sequences, a problem which
seems highly non trivial even for equation (??). In this special case, we investigate
whether it is possible to classify all polynomials p(z) for which any solution f (z) =∑∞

n=0 fn zn of (??) is the generating function of an automatic sequence ( fn)n . As re-
marked above, this is equivalent to asking that ( fn)n takes finitely many values.

It is easy to see that ( fn)n is automatic when p(z) is a product of certain cyclotomic
polynomials of order divisible by ` (see [CR17, Proposition 5.1]), and the question is
whether there are other examples. The second result of the paper answers this question,
for p(z) monic, when either ` is big or deg p is small:

Theorem 19 ([CR17, Theorem 1.2]). Let `≥ 2 be an integer and let f (z) =∑∞
i=0 fn zn be a

solution of f (z) = p(z) f (z`), with p(z) ∈Z[z] monic such that p(0) = 1. Then:
(1) If `> deg p, ( fn)n is automatic if and only if the coefficients of p(z) are in {0,±1}.
(2) If deg p = `= 2, ( fn)n is automatic if and only if p(z) ∈ {z2 +1, z2 − z +1}.
(3) If deg p = 3 ≥ `, ( fn)n is automatic if and only if ` = 2 and p(z) = z3 +1 or ` = 3

and p(z) ∈ {z3 +1, z3 − z2 +1, z3 − z +1}.

Here are some ideas in the proof. It is easy to deduce from (??) that the coefficients
of f (z) satisfy a divide-and-conquer type recurrence (see [Dum93] for more details).
When `> deg p(x) the recurrence is particularly simple and is enough to prove the the-
orem. If`≤ deg p, things gets more involved and the proof relies on the theory of Cartier
operators (see [CR17, §5.3]).

A reason a parte to study Mahler functions with bounded coefficients is given in
[CR17, §6] in relation to G-functions and E-functions, which are power series satisfy-
ing a homogeoneous linear differential equation and whose coeffcients fulfill special
growth conditions.

As a consequence of a general index theorem for Mahler operators [CR17, Theo-
rem 6.1], we prove in [CR17, Proposition 6.4]) that the coefficients of any Mahler func-
tion satisfy automatically certain conditions defining the G-functions and even some
stronger properties (characteristic of globally bounded functions, see [CR17, Definition
6.3]).

We finally remark that similar problems have been recently considered by S. Li in
his PhD thesis [Li20], where he shows, in particular, that given `≥ 2 and d ≥ 1 there are
finitely many polynomials p(z) ∈ Q[z] of degree d such that the solutions of (??) are
generating functions of some automatic sequence (see [Li20, Proposition 4.5]).
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4.3. Some perspectives

(i) Mahler measure of automatic polynomials.

This research goal is part of a starting project with Tanguy Rivoal which aims to
study the arithmetic properties of certain families of polynomials attached to automatic
sequences.

To an automatic sequence ( fn)n , we can attach a sequence of "automatic polyno-
mials" (pm(x))m , where pm(x) is the polynomial having as coefficients the first m terms
of the sequence. In this project, we are interested in understanding the growth of the
Mahler measures of the sequences of such polynomials.

The only known results on this subject concern the polynomials associated with the
Rudin-Shapiro sequence by Erdelyi ([Erd16, Erd20]) who, motivated by conjectures of
Saffari and Montgomery, gives asymptotic formulas for the Mahler measure of these
polynomials. He shows, in particular, that the sequence of these Mahler measures is
unbounded and it is natural to ask whether the same phenomenon occur for any auto-
matic sequence.

This question is also interesting because, as recalled before, the generating func-
tions of automatic sequences are examples of Mahler functions. In the paper [ABS21],
the authors study the growth of coefficients of Mahler functions. Their result implies
that if the generating function of ( fn)n is a Mahler function, then the Mahler measures
of the associated polynomials are, in general, unbounded, the only case left open being
the one where the sequence is automatic.

In this framework, new results, even for a single new example of a family of auto-
matic polynomials, would be very interesting and, apparently, highly non-trivial.
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