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RÉSUMÉ EN FRANÇAIS

Contexte

L’utilisation des technologies numériques dans l’éducation s’est intensifiée. Au cours
de la dernière décennie, de nombreuses études se sont concentrées sur la mise en œuvre
de la technologie numérique dans les écoles, dans le but de créer des logiciels éducatifs
qui soutiennent efficacement l’apprentissage des élèves et des enseignants. Avant qu’une
application éducative puisse être considérée comme pratique, il est crucial de développer
des solutions informatiques à la fois fiables et robustes.

Le projet ANR Franco-Allemand KIHT (Fig. 1), dont ma thèse fait partie, se concentre
sur l’apprentissage de l’écriture.

Figure 1 – Vue d’ensemble du projet KIHT.
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L’objectif de ce projet est de développer un dispositif d’apprentissage intelligent pour
l’écriture automatique, composé d’éléments existants, qui peut être mis à la disposition
du plus grand nombre d’étudiants possible. La base est l’application « Kaligo » de la
société française Learn&Go, qui jusqu’à présent dépendait d’ordinateurs tablettes coû-
teux avec un dispositif d’écriture dédié et nécessitait d’écrire sur l’écran tactile capacitif.
L’association du stylo électronique « DigiPen » de la société STABILO et de l’application
Kaligo vise précisément à rendre cela possible : une aide à l’apprentissage de l’écriture
manuscrite dont le plus grand nombre d’enfants peuvent bénéficier. En outre, le Digipen
permet non seulement d’utiliser n’importe quelles tablettes disponibles dans le commerce,
mais aussi il peut être utilisé sur n’importe quel support (papier), ce qui est un grand
avantage pour le développement de l’écriture des enfants.

Notre objectif au sein de l’institut de recherche français IRISA, et plus particulièrement
de l’équipe Intuidoc/ShaDoc, est de mener des recherches sur la conception d’un système
s’appuyant sur des algorithmes d’apprentissage automatique pour générer automatique-
ment des traces manuscrites en ligne à partir de signaux produits par des capteurs du stylo
numérique, tandis que l’institut allemand ITIV, qui fait partie de l’institut de technologie
de Karlsruhe KIT, étudie divers concepts visant à intégrer les algorithmes d’apprentissage
automatique que nous développons dans le stylo numérique. De cette manière, la com-
plexité globale du système est répartie entre le logiciel et le matériel, ce qui permet une
exécution rapide et efficace des algorithmes. L’objectif est de permettre la reconstruction
en ligne du tracé du stylo à partir des données du capteur inertiel à faible coût Digipen.

Pour relever les défis inhérents à la reconstruction des traces de stylo à partir des don-
nées inertielles, il est essentiel d’exploiter des techniques avancées apprentissage profond.
Les méthodes traditionnelles, telles que la double intégration, introduisent une dérive im-
portante dans les données, ce qui rend les résultats presque inutilisables. En revanche,
l’application de réseaux neuronaux formés à la fois sur les données des capteurs et sur
les traces de stylo réelles permettent d’éviter ou limiter une telle dérive, ce qui permet
d’obtenir des reconstructions d’une qualité nettement supérieure.

Prétraitement

Le prétraitement est une étape cruciale dans la préparation des données des capteurs et
des tablettes pour l’analyse, en particulier lorsqu’il s’agit de méthodes d’apprentissage pro-
fond. L’un des principaux défis de ce processus est la variation des fréquences d’échantillonnage
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entre les données du capteur et celles de la tablette dont la trace est utilisée pour
l’apprentissage d’un modèle. Cet écart peut entraîner des points de données mal alignés,
ce qui complique la comparaison et l’analyse précises des informations. En outre, le sig-
nal de la tablette est susceptible d’être perdu lorsque le stylo est levé trop haut, ce qui
entraîne des lacunes dans les données qui doivent être corrigées. Pour garantir l’efficacité
des modèles d’apprentissage profond, il est essentiel de prétraiter les données de manière
à ce que la vérité terrain et les données des capteurs aient des tailles identiques. Cela
implique un pipeline de prétraitement détaillé dans la figure 2.

IMU signals from pen
sensor shape :  (205, 10)
(205, #sensors x3 (x, y, z

component)

IMU signals from pen
sensor shape :  (205, 10)

IMU signals from pen
sensor shape :  (95, 10)

Handwriting trajectory
 from tablet

tablet shape :  (52, 3)

Handwriting trajectory
 from tablet

tablet shape :  (95, 3)

IMU signals from pen
sensor shape :  (95, 10)

   

Handwriting
trajectory

acquired thanks to
the Wacom insert

and the tablet

Handwriting trajectory
 from tablet

tablet shape :  (128, 3)

IMU signals from the
pen sensors

Dual recording
process

(a)
Dual recording

process

(b) 
Cleaning &

Normalisation

(c) 
DTW

alignment

(d) 
Pre-processed

data

Preprocessing 

Figure 2 – Notre pipeline de prétraitement. (a) grâce à la double acquisition, nous
récupérons les signaux du Digipen et la vérité terrain, (b) nous supprimons le début
et la fin du survol, qui ne sont pas des données liées à l’écriture manuscrite, (c) nous
alignons la vérité terrain et les signaux du capteur à l’aide de l’algorithme DTW, (d) nous
obtenons les données prétraitées utilisées pour l’entraînement.

Afin de respecter autant que possible la dynamique de l’écriture qui est présente dans
les données d’entrée, qui sont des accélérations, nous proposons une approche d’alignement
basée sur l’algorithme Dynamic Time Warping (DTW) (Figure 2(C)). Comme le taux
d’échantillonnage des données du capteur est plus élevé que celui des données de la
tablette, nous avons choisi d’augmenter l’échantillonnage des données de la tablette pour
qu’il corresponde à la longueur des données du capteur. En effet, nous voulons conserver
autant de données de capteurs que possible pour aider à la reconstruction, et nous ne
voulons pas limiter notre impact sur la dynamique des données de capteurs.
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Un modèle expert de la trace écrite

Afin de prendre en compte les états passés et futurs lors de la mise en correspondance
d’une séquence d’entrée avec un signal de sortie, nous proposons d’utiliser une architecture
de réseau neuronal convolutionnel temporel non causal (Temporal Convolutional Network
- TCN). Nous nommons cet expert de la trace écrite TEM pour "Touching Expert Model"
car il est entraîné sur les coups de toucher uniquement.

Une architecture convolutive (Convolutional neural network - CNN) peut capturer
des caractéristiques spatiales qui se réfèrent à la disposition des points de données d’une
séquence et à la relation entre eux au sein de la séquence. L’avantage du TCN sur le CNN
est sa capacité à capturer un contexte plus éloigné avec moins de profondeur, grâce à des
convolutions dilatées. Cela permet au TCN de regarder plus loin dans le passé et le futur
tout en conservant une architecture de réseau moins profonde, réduisant ainsi le risque
de rencontrer des disparition du gradient qui survient généralement avec des réseaux plus
profonds.

online signal:
 (batch size; sequence length; 2)

2 channels: Δx / Δy
 

TCN: 
    4 blocks
    dilations 1,2

Dense_1:

Dense_2:

output:

Batch normalisation

input :

TEM

(batch size; sequence length; 256)

(batch size; sequence length; 50)

sensors data :(batch size; sequence length; 10)
 10 channels: 2 x accelerometer (x, y, z) / gyroscope 

(x, y, z) / force

Figure 3 – Notre modèle TEM pour la reconstruction de trajectoires manuscrites.
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Une approche de mélange d’experts (Mixture-Of-Experts
- MOE) pour une meilleure collaboration et une meilleure
spécification des tâches

Nous pouvons formaliser notre problème comme un apprentissage multitâche, en ce
sens que nous avons deux tâches liées, la première étant la prédiction de l’écriture elle-
même, la seconde le mouvement du stylo entre ces différentes parties. Ces deux tâches
diffèrent par leur dynamique et leur nature (signaux bidimensionnels et tridimensionnels).
En pratique, pour prendre en compte ces différentes natures de signaux, nous proposons de
combiner deux réseaux neuronaux, chacun étant dédié à l’une de ces natures de signaux.

Inspirés par nos travaux précédents où une architecture basée sur un réseau de neurones
est entraînée sur des touchers de crayon, produisant des reconstructions dégradées sur les
parties plume haute, nous suggérons d’utiliser cette architecture de réseau comme modèle
expert pour les touchés de crayon. Nous restons convaincus que le réseau TCN est la
bonne architecture de réseau pour traiter ces données IMU pour les raisons mentionnées
précédemment.

Nous nous sommes donc intéressés à la manière d’entraîner notre modèle, en parti-
culier on veux traiter les parties plume haute pour correctement repositionner la trace
après une trajectoire de survol. Compte tenu de la spécificité des parties plume haute,
nous suggérons d’utiliser le modèle sur des séquences complètes, car nous pensons que
le fait de donner autant de contexte que possible peut être bénéfique pour la prédiction
des trajectoires. La raison pour laquelle nous entraînons notre réseau sur des séquences
entières, plutôt que d’isoler les traits de crayon, vient de la dynamique complexe des in-
teractions entre le stylo et la tablette. En disposant de la séquence complète, le modèle
obtient des informations sur les modèles de transition entre les touchers du stylo et les
parties plume haute.

C’est pourquoi nous proposons une nouvelle approche d’apprentissage (Fig 4) : avec
deux réseaux neuronaux en parallèle, le premier sur les touchers et le second sur les
séquences complètes.
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Méthodes d’adaptation de domaine pour le traitement
des données enfants

Un stylo numérique équipé de capteurs cinématiques permet aux utilisateurs d’écrire
sur n’importe quelle surface tout en préservant simultanément une trajectoire numérique
de l’écriture. L’un des principaux problèmes réside dans la différence entre les signaux
capturés par les adultes et les enfants. Pour une trace d’écriture similaire, on observe de
grandes différences dans les signaux des capteurs en raison des différences de vitesse et
de confiance dans le geste d’écriture des enfants. Pour y remédier, nous étudions une ap-
proche d’adaptation au domaine pour construire une représentation intermédiaire unifiée
des caractéristiques visant à faciliter la reconstruction de la trajectoire. Nous démontrons
l’intérêt des méthodes d’adaptation au domaine pour tirer parti des connaissances exis-
tantes afin de les appliquer dans différents contextes. Plus précisément, nous comparons
notre approche d’adaptation au domaine avec deux autres méthodes : l’entraînement du
modèle à partir de zéro et l’ajustement d’un modèle préentraîné sur les données spécifiques
considérées.
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Figure 4 – Notre approche MOE-CI fusionne les avancées pour les deux modèles experts
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TABLE OF CONTENTS

List of acronyms 17

Introduction 19

1 Presentation of the Inertial Measurement Units stylus and the recon-
struction task 23
1.1 Introduction to Inertial Measurement Units . . . . . . . . . . . . . . . . . 23
1.2 Digipen: an Inertial Measurement Units stylus for digital handwriting trace

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Handwiting trajectory reconstruction challenges 26
2.1 Pen related challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Writer challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Deep learning training challenges . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I State of the art 33

3 Deep learning and seqtoseq 35
3.1 Recurrent Neural Networks (RNN) . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . . . . . . . . 36
3.3 Temporal Convolutional Networks (TCN) . . . . . . . . . . . . . . . . . . 37
3.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Conclusion on deep learning methods . . . . . . . . . . . . . . . . . . . . . 38

4 Evaluation of Handwriting Reconstruction 40

5 Handwriting reconstruction 43
5.1 Handwriting Trajectory Reconstruction . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Pen-based digital tablets . . . . . . . . . . . . . . . . . . . . . . . . 44

13



TABLE OF CONTENTS

5.1.2 Handwriting trajectory reconstruction using information from a camera-
based system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Handwriting trajectory reconstruction from offline hand-writing im-
ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.4 Handwriting trajectory reconstruction from Inertial Measurement
Unit (IMU) sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Discussions and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Domain adaptation for handwriting data from IMU sensors. 55
6.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.1 Divergence-based Domain Adaptation . . . . . . . . . . . . . . . . . 56
6.1.1.1 Wasserstein Distance Guided Representation Learning (WD-

GRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Adversarial-based Domain Adaptation . . . . . . . . . . . . . . . . 57

6.1.2.1 Domain-Adversarial Training of Neural Networks (DANN) 58
6.1.3 Reconstruction-based Domain Adaptation . . . . . . . . . . . . . . 59

6.1.3.1 Deep Reconstruction Classification Networks (DRCN) . . 59
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II Contributions 61

7 Data acquisition protocol 62
7.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1 Data acquisition challenges . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.2 Acquisition tools description . . . . . . . . . . . . . . . . . . . . . . 63
7.1.3 Data acquisition protocol . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 A first preprocessing chain 70
8.1 Cleaning and normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.1.1 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.1.2 Signal splitting and normalization . . . . . . . . . . . . . . . . . . . 72

8.2 DTW alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

14



TABLE OF CONTENTS

8.3 Data formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3.1 Splitting into strokes . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3.2 Ground truth representation . . . . . . . . . . . . . . . . . . . . . . 76

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 A Touching Expert Model (TEM) 78
9.1 A Touching Expert Model (TEM) based on Temporal Convolutional Network 79

9.1.1 Architecture Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.1.2 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.1.3 Model training and test . . . . . . . . . . . . . . . . . . . . . . . . 81

9.2 TEM-C: Incorporating temporal context that reflects physics and dynamics
to enhance the touching expert model . . . . . . . . . . . . . . . . . . . . . 82

9.3 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4.1 Comparison with state-of-the-art . . . . . . . . . . . . . . . . . . . 84
9.4.2 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.4.2.1 Alignment methods and models . . . . . . . . . . . . . . . 86
9.4.2.2 Receptive field effect . . . . . . . . . . . . . . . . . . . . . 87
9.4.2.3 Touching versus pen-up trajectories reconstruction . . . . 89
9.4.2.4 Temporal context integration in input of the touching ex-

pert (TEM-C) . . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.6 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 A mixture of expert model for better collaboration with task specifica-
tion 94
10.1 MOE-C: a new mixture of expert model . . . . . . . . . . . . . . . . . . . 96
10.2 MOE-CI: Training on 3D labeled samples . . . . . . . . . . . . . . . . . . . 98
10.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.3.1 Comparison of our approach with state-of-the-art methods on the
KIHT-Private dataset . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.3.2 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.3.2.1 Fine tuning on extra dimension for the pen-up expert

(PEM-I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3.2.2 Comparison of model combinations into a mixture-of-experts101

15



TABLE OF CONTENTS

10.3.2.3 Evaluation on the public dataset . . . . . . . . . . . . . . 103
10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.5 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11 Domain adaptation methods to process children data 105
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.2 DANN-based method for handwriting reconstruction . . . . . . . . . . . . 106

11.2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.5 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

General conclusion 111

Personal publications 115

Bibliography 117

16



LIST OF ACRONYMS

— DNN : Deep Neural Network

— RNN : Recurrent Neural Network

— LSTM : Long Short-Term Memory

— BLSTM : Bidirectional Long Short-Term Memory

— CNN : Convolutional Neural Network

— FCN : Fully Convolutional Network

— TCN : Temporal Convolutional Networks

— ReLU : Rectified Linear Unit

— SGD : Stochastic Gradient Descent

— seq2seq : Sequence-to-Sequence model

— MSE : Mean Squared Error

— DTW : Dynamic Time Warping

— SOTA : State-Of-The-Art

— HMM : Hidden Markov Model

— PCA : Principal Component Analysis

— DA : Domaine Adaptation

— DANN : Domain-Adversarial Training of Neural Networks

17





INTRODUCTION

General thesis context

Handwriting involves creating visual symbols on a surface to express thoughts and
ideas. Like speech, it serves as a method to communicate, with these symbols corre-
sponding to particular languages, enabling others to understand the message. Over the
course of a person’s life, their ability to write progresses and changes uniquely, giving rise
to a handwriting style that is distinct and individualized [Alaei et al., 2022].

Handwriting remains a crucial skill to maintain. Research indicates that using pen
and paper enhances cognitive development and memory retention by activating various
neural networks in the brain, thus boosting learning capacity [James, 2017]. Additionally,
handwriting can foster creativity and improve writing skills, as it encourages focus and
can lead to the generation of more innovative ideas during the drafting process.

While the faithful reproduction of letter shapes is widely accepted to be essential for
legible writing, the importance of motor skills is much less appreciated. Routine hand-
writing is characterized by a smooth course of velocity over time with just one maximum
of velocity within a stroke [Mai et al., 1994]. If words are written repeatedly, experienced
writers retain the characteristic execution of the movement over all runs. Writing move-
ments of this kind are understood by Mai and Marquardt to be automated [N. Mai and
C. Marquardt, 2002]. Non-automated movements, on the other hand, are characterized
by several maxima in the course of velocity, so they are executed with several motion
impulses per stroke.

Learned movements are carried out automatically, that is, completely planned in ad-
vance and then no longer consciously controlled or corrected in detail. They are controlled
by the cerebellum and the motor cortex and require no visual control [Marquardt et al.,
1996]. In less experienced writers, however, writing is associated with conscious hand-eye
coordination. This leads to less automated movements. The cerebrum, which is responsi-
ble for controlling cognitive movements, then takes control of this non-automated motion
execution. This conscious movement control not only leads to significantly slower writing,
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but also heavily burdens the brain’s working memory and makes it difficult to focus on
spelling or content at the same time.

Handwriting plays a crucial role in academic success, as it enhances the learning
process. It significantly improves the retention and understanding of learned material
[Mueller et al., 2014]. According to another study [Oviatt et al., 2012], handwritten papers
contain 38% more relevant concepts compared to typed papers, indicating an improved
creativity when using a pen rather than a keyboard. Askvik et al. show that handwriting
is vital to facilitate and optimize learning [Askvik et al., 2020]. The French National
Ministry of Education has noted that students’ spelling skills have consistently declined
over the past few decades 1. The same problem has also been observed in Germany, where
a large proportion of students have severe handwriting problems. According to a 2019
survey [Schreibmotorik Institut in Kooperation mit dem Verband Bildung und Erziehung
(VBE Bund) und den 16 VBE Landesverbänden, 2019], this concerns 53% of boys and
33% of girls in secondary education in Germany.

Concurrently, the use of digital technologies in education has intensified. Over the
last decade numerous studies have focused on the implementation of digital technology in
schools, aiming to create educational software that effectively supports students learning
and teachers. If educational applications such as Kaligo offer instant visual feedback so
that the child can understand his or her successes and errors by analyzing the tracings.
Its main limitation is that it restricts writing to tablets. Hence the aim of this project is
to remove this constraint.

My thesis is a part of the Kaligo-based Intelligent Handwriting Teacher (KIHT)
project. The KIHT project (Fig. 5), is a French-German bilateral ANR project. It
involves four partners: Institut de Recherche en Informatique et Systèmes Aléatoires
(IRISA, France), Karlsruhe Institute of Technology (KIT, Germany), Learn&Go (France)
and STABILO (Germany). The objective of this project is to enhance children’s writ-
ing skills by merging traditional and digital methods. It leverages the tactile benefits of
writing on any surface while incorporating digital technology for greater adaptability and
data management. Although current learning methods using tablets facilitate writing,
the KIHT project aims to introduce a specialized pen, the Digipen, which can be used
with both tablets and regular paper. This dual functionality significantly benefits the
development of children’s writing skills.

1. https://www.education.gouv.fr/les-performances-en-orthographe-des-eleves
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Introduction

Figure 5 – Overview of the KIHT project.

The project consortium comprises two universities and two companies based in Ger-
many and France. STABILO is in charge of creating the pen. The Karlsruhe Institute
of Technology is developing concepts for integrating AI algorithms tailored to embedded
hardware. Learn&Go is enhancing their Kaligo app to help students learn writing and
spelling using a tablet and the electronic pen. IRISA is tasked with designing and devel-
oping a deep learning-based AI solution that reconstructs online handwriting trajectories
from the pen.

Our objective is to conduct research on a system to automatically generate online
handwritten traces from signals produced by digital pen sensors.

To address the inherent challenges of reconstructing pen traces from inertial data, it
is essential to leverage advanced deep learning techniques. Traditional methods, such as
double integration, introduce significant drift into the data, rendering the outcomes nearly
unusable. In contrast, the application of neural networks trained on both sensor data and
actual pen traces can be less subject to drift, yielding reconstructions of substantially
higher quality. The initial encouraging results from the collaborative research conducted
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by KIT and STABILO underscore the crucial role of deep learning algorithms in enhancing
the accuracy and usability of these reconstructions (Fig. 6).

Figure 6 – Pen trace reconstruction. Left: Original trace. Center: Result from a mathe-
matical reconstruction (sensor signals, which are acceleration, are converted into a trajec-
tory by double integration). Right: First result after applying a trained neural network.
Illustration from the project proposal.
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Chapter 1

PRESENTATION OF THE INERTIAL

MEASUREMENT UNITS STYLUS AND THE

RECONSTRUCTION TASK

In this section, we present the specific features of the inertial measurement unit (IMU)
sensor, and the challenges resulting from this technology.

1.1 Introduction to Inertial Measurement Units

An Inertial Measurement Unit (IMU) is an electronic device that captures the dy-
namics of a moving body, utilizing accelerometers and gyroscopes to measure linear ac-
celeration and angular velocity, respectively. These sensors track the translational and
rotational movements within a local reference frame oriented by gravity. Often, a mag-
netometer is also included to gauge the magnetic field’s strength and direction, aiding in
defining movements relative to an absolute coordinate system.

IMU have become omnipresent across various fields in recent years, including robotics,
quality control, medical rehabilitation, and activity recognition. Their popularity is at-
tributed to their compact size, lightweight nature, minimal power requirements, and af-
fordability. Additionally, IMU operate independently as they are self-contained and do
not rely on external references.

One application of IMU is to digitalize handwriting without the need for physical
writing surfaces, aligning well with advancements in technology. However, this use case
is not without challenges. A significant limitation of IMU is error accumulation over
time, (named sensor drift) which leads to increasing inaccuracies in position data derived
from integration of the sensors outputs. IMU are also susceptible to noise (temperature
variations, vibrations, interference, etc.). These errors can be particularly problematic in
handwriting reconstruction, where precision is crucial [Pan et al., 2018].
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Part , Chapter 1 – Presentation of the Inertial Measurement Units stylus and the
reconstruction task

1.2 Digipen: an Inertial Measurement Units stylus
for digital handwriting trace reconstruction

Digital devices play a crucial role in enhancing the learning experience for both stu-
dents and teachers by facilitating active learning techniques and offering immediate feed-
back [Simonnet et al., 2019]. The literature on e-learning [Atilola et al., 2014] highlights
the accuracy and reliability of computer-based analysis for generating relevant feedback
for correction or guidance. Based on this, pen-based tablet applications have been devel-
oped to provide personalized feedback to children [Krichen et al., 2022].

Despite the increasing reliance on digital platforms, there remains a need for children
to learn writing on paper, as it remains the most widely used surface. To address this,
digital pens, such as the Digipen stylus developed by STABILO, have been equipped with
kinematic sensors to track pen movements (Fig. 1.1). Such a pen allows to capture hand-
writing gestures on any surface such as paper, to visualize and analyze the handwriting
reconstruction on a digital medium (e.g. tablet, computer).

More specifically, version 6.0 of the Digipen is equipped with:

— a front accelerometer;

— a rear accelerometer;

— a front gyroscope;

— a magnetometer;

— a force sensor;

— a microcontroller which is used for reading the sensor data, processing it for wireless
transfer and running the Bluetooth stack.

Each sensor has its own reference system (Fig. 1.2).
From this pen, our goal is to reconstruct its digital trace. To achieve this, we are

focusing on deep learning methods, which have recently seen significant advances, partic-
ularly in the field of remote sensing and tracking systems [Marvasti-Zadeh et al., 2022].
The integration of IMU sensors offers a cost-effective solution, enabling us to create an
affordable pen. However, the use of IMU sensors comes with certain limitations, which
will be discussed in detail in the following chapter.
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1.2. Digipen: an Inertial Measurement Units stylus for digital handwriting trace reconstruction

Figure 1.1 – © STABILO International Digipen’s sensor location

Figure 1.2 – © STABILO International Digipen’s sensor reference
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Chapter 2

HANDWITING TRAJECTORY

RECONSTRUCTION CHALLENGES

Reconstructing handwritten text from kinematic signals stands at the crossroads of
multiple disciplines, including biomechanics, signal processing, machine learning, and
computational linguistics. This intricate process involves translating the complex motion
data generated during writing, which is often influenced by noise and variability in kine-
matic measurements, shaped by an individual’s unique writing style and the conditions
of writing, into the dynamic nature of handwriting itself. This data is captured through
accelerometers, gyroscopes, and other sensors, providing a detailed representation of the
writing process. It is a challenge marked by several obstacles which are discussed in the
following.

2.1 Pen related challenges

Among the most difficult tasks in reconstructing handwritten text from kinematic
signals is dealing with the significant noise and variability present in the data. This
variability can originate from the sensors themselves. In fact, while IMU sensors have the
advantage of being inexpensive, the downside is that they generate noisy signals. The
main limitation of IMU is the accumulation of errors over time (called sensor drift), which
leads to increasing inaccuracies in the data. These errors can be particularly problematic
in handwriting reconstruction, where precision is crucial especially for e-learning in order
to give appropriate feedback. As the aim is to be able to write on any support (i.e. paper
or tablet), this also means greater variability in signals and noise. Indeed, data acquired
on paper are noisier than that acquired on a tablet due to the greater friction on paper.

Working with the Stabilo Digipen involves a number of challenges induced by the
hardware. One challenge we face is the need for the tablet’s trajectory to be used as the
ground truth for training, which differs from the trajectory of the pen. This difference
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2.2. Writer challenges

is particularly noticeable during pen-up movement above the tablet surface, a movement
that is not always reliably detected by the tablet. Synchronisation of timestamps between
devices and accuracy of sensor data are critical in applications involving digital pen and
tablet interfaces. In addition, grouping Bluetooth points, particularly for transmitting
data between a pen and a tablet, involves collecting and buffering 12 data points before
forming a packet for transmission. This method enhances efficiency by reducing transmis-
sion overhead but this process introduces complexities due to varying transmission speeds
and the loss of the original dynamic.

Another important factor is that the ground truth is inherently dependent on the
characteristics of the tablet, such as its model, screen size and sampling rate. These
variables can dramatically affect the interpretation of the pen’s position and movements,
leading to discrepancies in the captured data from the tablet.

2.2 Writer challenges

Another source of variability stems from the inherent differences in an individual’s
writing technique. The act of writing is a complex motor task that requires coordinated
movements of the fingers, wrists, and arms, with each person having a distinct handwriting
style that may include a preference for cursive or block letters. In addition, handwriting
is composed of two distinct parts (Fig 2.1): the act of writing itself and the process of
pen-up movements, which involves repositioning the trajectory of the writing instrument.
The writing phase encompasses the direct contact of the pen or pencil with the surface
(in 2D), creating visible marks. In contrast, pen-up movements involves subtle, above-
the-surface movements that adjust the position and angle of the writing tool (in 3D),
setting up for the next stroke or letter. The dual nature of these different actions makes
the study of handwriting more complicated.

Inter-scripter variability, particularly in the context of reconstructing handwriting from
inertial measurement units, presents significant challenges that stem from the inherent dif-
ferences between the handwriting gestures of children and adults. Children’s handwriting
gestures tend to be slower and more hesitant compared to those of adults. This discrep-
ancy can largely be attributed to the developmental aspects of motor skills in children,
who are still in the process of refining their coordination and muscle control. Such vari-
ability affects the handwriting reconstruction, as the sensors capture a wide range of
motion dynamics.
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Figure 2.1 – Dual recording process, with a Wacom insert, to enable the acquisition of
ground truth

In addition, the way the pen is held by the user adds another layer of complexity. The
sensor data, including pressure, angle and speed, can vary greatly depending on the user’s
grip and style of movement. This variability requires sophisticated algorithms that can
account for these differences in order to accurately interpret the pen’s intended trajectory
and translate it into digital input.

2.3 Deep learning training challenges

To train deep learning models, it is necessary to have an input data / ground truth pair,
which implies having a Digipen tablet acquisition process. Furthermore, the alignment of
signal data with a ground truth is crucial. This alignment ensures that the input features
are correctly mapped to the target outputs, facilitating accurate predictions and model
performance.

However, the most critical factor is data availability. Without sufficient data, the
model’s performance and generalization will be limited, necessitating the design of an
adapted architecture that can work with the constrained dataset.
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2.4. Conclusion

2.4 Conclusion

Reconstructing handwritten text from kinematic signals is an intricate endeavor that
intertwines multiple fields including biomechanics, signal processing, and machine learn-
ing. The process is fraught with challenges arising from both the technology used and the
inherent variability in human writing.

Pen related challenges involve dealing with noisy and variable sensor data, particularly
from IMU, which suffer from drift and accuracy issues. Synchronization of data and the
handling of transmission delays add additional layers of complexity.

Writer related challenges stem from the diversity in individual writing styles and tech-
niques. The distinction between the act of writing and the pen-up movements process
requires consideration. Variability between different writers, including age related dif-
ferences in handwriting dynamics and the effect of the user’s style, presents additional
obstacles that must be addressed.

Deep learning training challenges highlight the need for a robust dataset that aligns
input data with ground truth. The availability of sufficient and well aligned data is critical
for training accurate models. With limited data, specialized architectures and techniques
must be employed to ensure the model’s performance and generalization capabilities.

Addressing these challenges requires a multidisciplinary approach, incorporating signal
processing techniques, and machine learning algorithms.

Thesis contributions

The objective of this thesis is to design an efficient machine learning method based
on neural networks for reconstructing handwriting using data from kinematic sensors.
Our approach follows a constructive methodology, beginning with data collection. Ini-
tially, we introduce a processing pipeline to handle touch strokes. This is followed by
the implementation of a Mixture-of-Experts model to process both touching and pen-up
inputs. Finally, we explore domain adaptation techniques to address variations in data
from children and different surfaces (tablet and paper).

First contribution: Data collection

In reconstructing handwriting trajectories, achieving precision at every step is crucial,
underscoring the need to start with the cleanest possible data before training a neural
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network. Initially, we faced the challenge of not having access to the necessary data,
prompting us to prioritize data collection. Consequently we made 2 datasets publicly
accessible 1, to facilitate research and development in this area. In order to collect this
dataset, a data acquisition protocol was established to enable the simultaneous acquisition
of Digipen sensor data and Wacom trajectory data, which serves as ground truth.

Second contribution: A first preprocessing chain

Reconstructing handwriting trajectories demands high precision throughout the pro-
cess. Hence, our initial task involved establishing a comprehensive preprocessing pipeline,
tailored specifically to address the complexities of IMU data. The key preprocessing step
for training a deep neural network consists in aligning ground truth and sensor data to
obtain sequences of identical size.

Third contribution: A model dedicated to touching part

In our endeavor to reconstruct handwriting trajectories, we are initially focusing on the
touching strokes, as they represent the simplest component of the signal to process. This
strategic decision allows us to refine our methods on a less complex aspect of handwriting,
setting a solid foundation for more comprehensive analysis in later stages. To effectively
process these touching strokes while preserving the crucial temporal context, we propose
utilizing a Temporal Convolutional Network (TCN) architecture. This approach is de-
signed to maintain the sequential integrity of the handwriting signal, facilitating a more
accurate reconstruction of the handwriting.

Fourth contribution: A new mixture of expert models approach.

Our latest approach in handwriting trajectory reconstruction focus on the reconstruc-
tion of touching parts, where we have access to reliable ground truth data during train-
ing. Notably, while touching trajectories offer 2D data that can be accurately captured,
pen-up trajectories present a more complex 3D challenge, with ground truth signals only
discernible within a 7mm height. Our work underscores the critical role of dynamics in ac-
curately reconstructing trajectories from IMU data. In this new phase, we aim to broaden
our approach to include both touching and pen-up aspects of handwriting. By introduc-
ing two expert networks, we intend to tackle the distinct characteristics of IMU signals,

1. https://www-shadoc.irisa.fr/irisa-kiht-s-and-kiht-public-datasets/
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leveraging the successful outcomes from our prior focus on pencil touching trajectories to
inform a more holistic strategy in capturing the nuanced dynamics of handwriting.

Fifth contribution: Domain adaptation method to process chil-
dren data

The transition from reconstructing adult handwriting captured on tablets to child
handwriting necessitates a methodological approach. This expansion is crucial due to
the significant variances in motor skills and stylus or pen pressure between adults and
children. These variations introduce complexities in signal processing and pattern recogni-
tion, highlighting the need for domain adaptation algorithms that can accurately interpret
and reconstruct the diverse range of handwriting styles.

Manuscript organization

The thesis is organized as follows. The first part presents the state of the art in hand-
writing reconstruction (Part: I), including an overview of the different neural networks
that can be used to process time series. This section sets the foundation by explor-
ing existing literature, methodologies, and the challenges associated with handwriting
reconstruction. It begins with a comprehensive review of deep learning and sequence-
to-sequence models (Chapter 3), emphasizing their relevance to the task at hand. This
is followed by an evaluation of various handwriting reconstruction methods (Chapter 4),
highlighting the criteria and metrics used to assess their effectiveness. We then focus on
the method dedicated to handwriting reconstruction (Chapter 5), with a particular focus
on methods using the Digipen, which will serve as a baseline for our work. The section
concludes with a discussion on domain adaptation for handwriting data from IMU sen-
sors (Chapter 6), addressing the complexities of transitioning data from one domain to
another.

The second part is dedicated to our contributions (Part: II). It starts with detailing
the data choice and acquisition protocol (Chapter 7), explaining the selection criteria and
the steps taken to ensure data quality. The next chapter introduces the first complete
preprocessing chain developed for handwriting data (Chapter 8), showcasing the steps
involved and the impact on reconstruction quality. Following this, we present TCN based
model dedicated to handling touching strokes, known as the Touching Expert Model
(TEM) (Chapter 9). Subsequently, we describe our mixture-of-experts approach (Chapter
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10), designed to achieve the best reconstructions for each part of the writing process
through collaborative strategies and task specification. The next part of the thesis focuses
on our domain adaptation methods (Chapter 11), focusing on transitioning from adult
data to child handwriting. Experimental results will be presented as they come in, to
provide a clearer understanding of the problems and the solutions we have proposed.

Finally, the manuscript concludes with a general conclusion (Chapter 11.5) that high-
lights the key contributions of the research, discusses the broader implications of the
findings, and suggests potential directions for future work.
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State of the art
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Part I,

Few studies have focused on reconstructing handwritten text from Inertial mesurement
unit (IMU) data. Consequently, in this review of the state-of-the-art, we will first intro-
duce deep learning techniques specifically designed for processing time series data. This
will be followed by a presentation of the evaluation metrics commonly used to assess and
compare online handwriting reconstruction methods. Subsequently, we will provide an
overview of various approaches that have been proposed for handwriting reconstruction.
Finally, the last part of this state-of-the-art review is dedicated to domain adaptation
methods for handwriting reconstruction.
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Chapter 3

DEEP LEARNING AND SEQTOSEQ

Advances in the field of deep learning, particularly in processing sequential data, have
been significantly driven by the development of various neural network architectures.
Each architecture possesses unique features suited to different types of data and tasks.
In this chapter, we explore three main categories: Recurrent Neural Networks (RNN
and its variants), Convolutional Neural Networks (CNN and TCN), and Transformers,
focusing on their fundamental principles, advantages, and disadvantages in relation to
the challenges of this thesis.

3.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are specifically designed to handle sequential data.
They use recurring connections to propagate information over time (Fig. 3.1), allowing
the network to maintain a state or memory of previous inputs. This capability is cru-
cial for processing sequences where context and the order of observations are important.
Enhancements such as Long Short-Term Memory (LSTM) [Hochreiter et al., 1997] and
Gated Recurrent Units (GRU) [Chung et al., 2014] have been developed to address the
problem of vanishing gradients, which makes learning long-term dependencies difficult
for vanilla RNNs. LSTM consists of memory cells that maintain a cell state, along with

Figure 3.1 – Representation of RNN, visual from stanford.edu
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Figure 3.2 – 1D CNN Network architecture from [Pathour et al., Apr. 2023]

gates (input, forget, and output gates) that regulate the flow of information, allowing the
network to selectively remember or forget information over long sequences. GRUs sim-
plify the LSTM architecture by combining the forget and input gates into a single update
gate and using a reset gate to control the flow of information. These advanced architec-
tures are capable of capturing long-distance information in the data, making them ideal
for tasks like language modeling and speech recognition. However, they face challenges,
LSTMs and GRUs have more parameters than vanilla recurrent neurons due to their ar-
chitectures involving multiple gates. This increased number of parameters leads to higher
computational complexity, requiring more memory and processing power. Consequently,
training LSTMs and GRUs often necessitates larger datasets to effectively learn patterns
and dependencies. They have also difficulty in processing very long sequences, and speed
limitations due to sequential calculations.

3.2 Convolutional Neural Networks (CNN)

On the other hand, Convolutional Neural Networks (CNN) utilize convolutional filters
to process data. Primarily known for their application in image processing, where they
excel due to their ability to extract significant patterns and features from spatial data,
CNN are also suited for other types of structured data. Pooling layers are frequently
utilized to decrease the spatial dimensions of feature maps, effectively compressing the
data while preserving essential features (Fig. 3.2).
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3.3. Temporal Convolutional Networks (TCN)

The advantages of CNN include their ability to reduce the number of parameters
through the use of shared weights and their translational invariance, making them robust
to variations in data positioning. The effectiveness of these designs in capturing long-term
dependencies is potentially limited by their focus on local processing. This limitation
arises from their specified filter size and receptive field, and their lack of internal memory
makes them less suitable for processing temporal sequences.

Causal convolutions are a type of convolution designed for temporal data, ensuring
that the model respects the chronological order of the data. Specifically, this means that
the prediction ht = f(x0, . . . , xt)) made by the model at timestep t is only based on
the current and past timesteps x1, . . . , xt and does not depend on any future timesteps
xt+1, . . . , xT .

3.3 Temporal Convolutional Networks (TCN)

Temporal Convolutional Networks (TCN) are a type of neural network designed for
processing sequential data and can be either causal or non-causal. Causal TCN ensure
that the output at any given time step depends only on the current and past inputs,
making them suitable for real time applications where future data is not available. Non-
causal TCN, on the other hand, allow the output to depend on both past and future
inputs, making them ideal for offline applications where the entire sequence is known in
advance. Both variants use dilated convolutions to efficiently increase the receptive field
without a proportional increase in computational complexity. A notable example of a
TCN is WaveNet [Oord et al., 2016], which uses dilated causal convolutions for effective
modeling of audio waveforms (Fig. 3.3).

TCN offer several advantages, such as the ability to process variable-length sequences
and perform parallel computations, which speeds up training. They are particularly
adapted to capture long-term dependencies [Ehteram et al., 2024]. However, unlike RNN,
they do not maintain an internal state for sequences, which can be a drawback for some
applications requiring memory of past events.

3.4 Transformers

Finally, the architecture of Transformers [Vaswani et al., 2017] represents a significant
advancement in sequence processing through its attention mechanism.
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Figure 3.3 – Visualization of stack dilated causal convolution from [Oord et al., 2016]

It relies on attention mechanisms, where the model evaluates the relevance of each
elements in a sequences with respect to every other element, enabling it to capture com-
plex dependencies and contextual meanings. Transformers use multi-head attention to
process multiple pieces of information in parallel, enhancing the model’s ability to handle
large-scale tasks efficiently. This allows models to differentially weigh parts of a sequence,
thereby facilitating the capture of long-range relationships between elements. Transform-
ers offer advantages such as parallelism efficiency, which significantly speeds up training.
In addition, they mitigate the effects of vanishing gradients during backpropagation, which
only occur over the network’s depth rather than over time as seen with RNNs, as the sam-
ples are not processed sequentially, but rather in parallel. Due to their many parameters
and the attention mechanism, they are prone to overfitting and therefore require a large
amount of training data.

3.5 Conclusion on deep learning methods

In conclusion, our framework for reconstructing writing from IMU sensors must ad-
dress challenges such as handling long sequences, time-series data, and noise. Recurrent
Neural Networks (RNN) often struggle with vanishing gradients in long sequences, and
Transformers may be less effective when dealing with smaller datasets. Convolutional
Neural Networks (CNN) also tend to fall short in capturing the essential temporal de-
pendencies of time-series data. In contrast, Temporal Convolutional Networks (TCN)
perform well in these areas by effectively modeling long-range dependencies and leverag-
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ing the strengths of convolutional methods. In the context of the thesis, given the limited
amount of data, transformers models do not seem to be the best solution, and RNNs do
not seem to be the best option due to the problem of vanishing gradient, which is why
convolutional networks will be studied in this thesis.
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Chapter 4

EVALUATION OF HANDWRITING

RECONSTRUCTION

Having relevant metrics, whether for evaluation or as a loss function, is a key element
in the reconstruction and evaluation of handwriting, which is why we now present the
main metrics in the field.

Evaluation methods vary across studies, with some relying on qualitative assessments
of reconstructed trajectories [Nguyen et al., 2021], while others use recognition perfor-
mance as a proxy for evaluation [Huang et al., 2022]. Metrics like Root Mean Squared
Error (RMSE), Dynamic Time Warping (DTW) and Fréchet distance are also employed
in certain cases to assess reconstruction accuracy [Chen et al., 2022]. The diverse ap-
proaches underscore the complexity of evaluating handwriting trajectory reconstruction
from digital stylus inputs.

Note that when evaluating the reconstruction of a trajectory, several criteria must
be taken into account: shape, direction and dynamics. Here, we focus on shape and
direction, with a view to adding the evaluation of dynamics. In fact, we want a faithful
reconstruction of the shape to produce feedback on the quality of the layout. We will take
a more in depth look at these three metrics.

The MSE between two multivariate time series A ∈ RTA×z, and B ∈ RTB×z of equal
feature dimensionality z and have an equal lengths TA = TB is:

MSE(A, B) = 1
TA

n∑
i=1
∥ai − bi∥2 (4.1)

The DTW algorithm ([Sakoe et al., 1978]) is based on dynamic programming to assess
the similarity between time series. For two multivariate time series A ∈ RTA×z, and
B ∈ RTB×z of equal feature dimensionality z and respective lengths TA and TB, the DTW
is written as follows:

DTW (A, B) = min
δ∈E(A,B)

∑
(i,j)∈δ

d(ai, bj) (4.2)
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where E(A, B) represents the set of all admissible alignments between A and B and d is
a distance metric in Rz. Commonly, the squared Euclidean distance d(ai, bj) = ∥ai− bj∥2

is used.

Several variants of this metric exist. [Mohamed Moussa et al., 2023] proposed DTWseg,
an adaptation of the Dynamic Time Warping (DTW) algorithm, designed to improve
the matching of online handwriting signals. Instead of the traditional point-to-point
Euclidean distance, DTWseg employs a point-to-segment distance metric, where each
segment corresponds to a stroke. This adjustment greatly reduces sensitivity to variations
in signal sampling rates, which are often caused by differences in acquisition frequencies or
writing speeds. Consequently, it eliminates the need for resampling, which can overlook
important dynamic characteristics of handwriting.

The Fréchet distance, for two multivariate time series A ∈ RTA×z, and B ∈ RTB×z of
equal feature dimensionality z and respective lengths TA and TB is defined by the following
equation:

F (A, B) = min
δ∈E(A,B)

max
(i,j)∈δ

d(ai, bj) (4.3)

More concretely (Fig. 4.1), MSE is a straightforward metric that computes the average
squared difference between corresponding elements in two sequences. It does not account
for any time shifts or sequence order variations, and is sensitive to outliers. The DTW
distance is the minimum cumulative distance between the sequences when mapped onto
each other. DTW consider time shifts by finding an optimal alignment. The Fréchet
distance between two curves measures the minimum distance required for two points,
each moving along their respective curves, to simultaneously traverse their paths from
start to finish while staying as close as possible to each other. All these metrics are
sensitive to outliers. DTW and Fréchet are computationally intensive algorithms.

It’s also important to remember, depending on what you want to measure, that re-
sampling, normalization, and recentering are preprocessing steps that significantly impact
theses three metrics (DTW, MSE, Fréchet Distance). Resampling standardizes the tempo-
ral scale of data sequences, making them more comparable, especially beneficial for DTW.
Normalization scales data into a uniform range, enhancing the comparability and mean-
ingfulness of all three metrics by focusing on patterns and shapes rather than magnitude.
Recentering impact is more specific to the application context but generally recentering
can help to align sequences. Together, these preprocessing steps can improve the accuracy
and relevance of measurements for a given objective.
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Part I, Chapter 4 – Evaluation of Handwriting Reconstruction

Figure 4.1 – Comparison between Euclidean distance, DTW and Fréchet distance. Note
that, for visualization, time series are shifted vertically, but one should imagine that
feature value ranges (y-axis values) match.
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Figure 4.2 – Metrics comparison. On the top, the ground truth and on the bottom two
predictions coming from different models.

Appropriate assessment metrics are needed to evaluate trajectory reconstruction to
provide the end-user with useful feedback. Fréchet distance doesn’t disagree with visual
evaluation like DTW and RMSE. Figure 4.2 indicates that the left upper loop of the f is
better reconstructed. To confirm this, we conducted several experiments with qualitative
verification. The conclusion was that the Fréchet distance appeared more robust and
closer to human perception.
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Chapter 5

HANDWRITING RECONSTRUCTION

The field of digital devices for note-taking, drawing, and handwriting learning is
rapidly expanding. However, most systems use display-based interfaces for digital hand-
writing acquisition, with only a few incorporating styluses equipped with motion tracking
systems to reconstruct handwriting trajectories. These conventional approaches are often
limited by the physical constraints of a screen or tablet, which can hinder user flexibility.

In contrast, research has been exploring alternative methods for handwriting trajectory
reconstruction using Inertial Measurement Unit (IMU) sensors. IMU are small devices
that track changes in their orientation and motion using a combination of accelerometers
and gyroscopes. This technology has the potential to enable surface-free digital handwrit-
ing, where users can write with any device or object, without being confined to a specific
display-based interface.

In this context, this thesis aims to push the boundaries of conventional digital note-
taking systems by developing a surface-free handwriting reconstruction pen using IMU
sensors (the Digipen).

5.1 Handwriting Trajectory Reconstruction

The field of handwriting trajectory reconstruction can be broadly categorized into two
main approaches:

— active surface (tablet), to collect a digital ink;

— passive surface, another medium is needed for the handwriting reconstruction:

— reconstruction from pen-tip optical tracking systems;

— reconstruction from offline handwriting images;

— reconstruction from IMU signals.

We present these approaches in the following sections.
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5.1.1 Pen-based digital tablets

In the realm of digitizing handwritten text, various methodologies have emerged, each
leveraging distinct technologies to accurately capture the intricacies and personal nuances
of human handwriting. Among the most prevalent methods are the use of pen-based
digital tablets. These devices, including those compatible with the Samsung S Pen, Apple
Pencil, Microsoft Surface Pen, and Wacom styluses, are recognized for their precision
and responsiveness. The core of these devices is Electro-Magnetic Resonance (EMR)
technology for S pen and Wacom, whereas Apple and Microsoft use capacitive sensing
coupled with sensors in their pens. However, while these devices offer high precision
and ease of use, they often come with a significant limitation: they tie users to specific
hardware ecosystems.

5.1.2 Handwriting trajectory reconstruction using information
from a camera-based system

By utilizing the visual information captured by cameras, it is possible to reconstruct
the dynamic path of a pen or stylus during handwriting. This section delves into the
methodologies and challenges associated with this process. The Anoto pen [Liao et al.,
Jan. 2008], enables writing on paper while simultaneously capturing digital ink. This sys-
tem utilizes a specialized pen and paper duo, where the paper is embedded with a complex,
invisible dot pattern. This pattern allows the accompanying digital pen to accurately de-
termine its position on the sheet. The pen, a conventional ink-based writing tool to the
eye, houses a tiny camera and processor under its hood. These components work in tan-
dem to capture hundreds of images per second, deciphering the pen’s movements and
translating them into digital text or illustrations stored within the pen. However, while
these devices can synthesize handwriting, they have two major limitations: the need to
use special paper and an often expensive pen.

[Ott et al., 2022] combine IMU with a camera to reconstruct the writing trajectory.
They propose a novel approach to classifying and reconstructing trajectories in online
handwriting recognition using a multi-task learning framework. The authors propose a
neural network architecture that integrates the learning of both classification tasks, such
as character recognition, and trajectory regression tasks, using IMU and camera-based
data inputs. Their proposed approach utilizes multi-task learning (MTL) (Fig. 5.1),
which exploits the differences and commonalities across the two tasks (classification and
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5.1. Handwriting Trajectory Reconstruction

Figure 5.1 – [Ott et al., 2022] multi-task learning (MTL) approach using convolutional neu-
ral networks (CNN) for processing inertial measurement unit (IMU) and visual datasets.
The architecture features a shared CNN trunk with separate heads for classification and
trajectory prediction.

trajectory regression) to improve performance on each. The architecture is a 2-branch
CNN, where the 2 inputs are video and IMU signals. They combine cross-entropy loss for
classification with distance and similarity losses for trajectory regression. By doing so, it
achieves notable improvements in handwriting recognition tasks, reducing errors and vari-
ance in trajectory prediction while also enhancing character classification accuracy. In the
regression section, the study compares several loss functions (MSE, Andrew’s Sine, Hu-
ber, Pearson Correlation, Cosine Similarity, MSE + Pearson Correlation, MSE + Cosine
Similarity, and MSE + Wasserstein). Among these, only MSE, Andrew’s Sine, Huber,
and MSE + Pearson Correlation yield satisfactory and comparable results. The regression
branch comprises three convolutional layers followed by an LSTM layer, demonstrating
that a relatively small architecture can achieve promising outcomes.

5.1.3 Handwriting trajectory reconstruction from offline hand-
writing images

Some work has been done on the transition from offline to online trajectories to rein-
troduce documents into an online flow. This work is particularly interesting in terms of
the metrics used to evaluate online reconstruction. Let’s explore a few methods.

[Chen et al., 2022] propose an approach for generating online handwriting trajecto-
ries from offline images. Traditional evaluation metrics only considered writing order,
neglecting glyph fidelity. To address this, [Chen et al., 2022] introduced two new metrics:
Adaptive Intersection on Union (AIoU) for assessing glyph fidelity by eliminating stroke
width influences, and Length-Independent Dynamic Time Warping (LDTW) for align-
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Part I, Chapter 5 – Handwriting reconstruction

Figure 5.2 – [Chen et al., 2022] method for a given static handwriting image, the double-
stream parsing encoder examines the stroke context and interprets the glyph structure,
extracting features that the global tracing decoder will use to predict trajectory points.

ing handwriting trajectories of varying lengths. They propose a double-stream parsing
encoder for glyph structure analysis and a global tracing decoder to predict trajectory
points (Fig. 5.2). Using DTW or its variations as a loss function introduces a major
disadvantage which is the calculation cost. The computational cost of DTW is significant
because it requires calculating distances between all possible pairs of points between the
two sequences, leading to a quadratic time complexity. This can become particularly
burdensome with longer sequences, making the training of models excessively slow and
computationally expensive.

To retrieve online handwriting from offline, [Mohamed Moussa et al., 2023] introduces
DTWseg which was previously described (in chapter 4). The paper establishes a new
benchmark for evaluating state-of-the-art methods in offline to online handwriting con-
version using this innovative metric, underscoring DTWseg’s potential in providing more
accurate and meaningful comparisons for online handwriting signals.

[Zhu et al., 2024], takes Chinese handwritten images as its input. Initially, a feature
map is generated through a spatial encoder (a ResNet). This feature map is then processed
by the decoding network, which utilizes both the temporal information from a GRU and
the spatial features from the encoder, along with stroke features. The decoding network
outputs a heatmap. This heatmap serves two purposes: predicting the state at the current
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5.1. Handwriting Trajectory Reconstruction

moment and forecasting the handwriting point for the subsequent moment. The loss used
is the MSE.

An important lesson from this section is the frequent use of Dynamic Time Warping
(DTW) in handwriting reconstruction problems. This makes DTW and its variants a
natural choice, especially for matching sensor signals to ground truth data.

5.1.4 Handwriting trajectory reconstruction from Inertial Mea-
surement Unit (IMU) sensors

Specialized hardware, such as Inertial Measurement Unit (IMU) sensors, allows for the
digitization of handwriting on conventional paper by recording writing movements and
producing a digital trace. Such sensors are installed in the Digipen pen we are working
with in our project. In this section, we will explore various methods for reconstructing
trajectories using IMUs. We will begin with traditional methods and then move on to
those that incorporate deep learning techniques. Then, we will focus on methods utilizing
the Stabilo Digipen. Finally, we will discuss approaches that deal with recognition rather
than reconstruction. Although recognition is a different and generally easier task, these
approaches and models can still provide valuable insights for our work.

However, there is limited research focusing on IMU-based trajectory reconstruction.
For instance, in the work by [Pan et al., 2016], traditional approaches are employed (Fig.
5.3). This method involves signal preprocessing for trajectory reconstruction, utilizing the
integration of linear discriminant analysis (LDA) for movement detection. The trajectory
is reconstructed from the last known point and speed.

[Miyagawa et al., 2000] utilized a pen equipped with an accelerometer and a gyroscope
to capture triaxial linear acceleration and angular velocity. These measurements are ini-
tially processed through low-pass filters to eliminate unwanted frequency components.
Subsequently, the linear acceleration and angular velocity are adjusted using a coordinate
transformation matrix to account for the pen’s orientation during writing. The pen’s posi-
tion is derived by doubly integrating the filtered and transformed accelerometer data (Fig.
5.4). This process calculates the pen’s displacement, which is essential for reconstruct-
ing the written characters. The reconstructed characters are then visually represented in
various combinations of the three-dimensional axes provided by the sensors, such as the
x-y, x-z, and y-z combinations.

The IMUPEN, a device integrating an accelerometer and two gyroscopes, employs a
methodology similar to previous techniques for digitizing handwriting [Wang et al., 2009].
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Figure 5.3 – [Pan et al., 2016] pipeline for trajectory reconstruction, where the trajectory
is mathematically reconstructed from the last known point and speed after some prepro-
cessing steps.

Initially, the recorded signals are calibrated to adjust for any sensor offsets. Subsequently,
a moving filter is applied to mitigate high-frequency noise from the data, ensuring that
only relevant signal components are preserved. To accurately represent the orientation
of the pen during use, quaternions are utilized. These quaternions are then transformed
to a reference frame using a coordinate transformation matrix, aligning the data with a
standardized orientation. Position estimation is subsequently computed through integral
methods, which calculate the cumulative path of the pen based on the processed sensor
data. This refined data is then used for the task of recognizing handwritten digits (Fig.
5.5).

[Bu et al., 2021] attached an inertial measurement unit (IMU) to the pen’s tail, the
system captures handwriting movements (Fig. 5.6). They extract the motion segments
from IMU readings based on the short time energy (STE). Principal component analysis
(PCA) is used to detect the writing plane, distinguishing on-plane writing from off-plane
movements to capture effective handwriting during continuous writing processes. The
IMU displacement is then calculated by double integration of the global linear acceleration.

[Liu et al., 2020] explored the use of magnetic signals for handwriting recognition. They
began by segmenting the continuous 3D magnetometer readings into smaller sections, with
each section corresponding to an individual handwritten letter. After segmentation, each
segment of magnetometer readings is processed independently, converting them into their
equivalent handwriting trajectories. This conversion is achieved through projection and
coordinate transformation.
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5.1. Handwriting Trajectory Reconstruction

Figure 5.4 – [Miyagawa et al., 2000] pipeline for trajectory reconstruction. Based on a low-
pass filter to denoise the signal. Followed by double integration to pass from acceleration
to trajectory.

The Digipen [Harbaum et al., 2024] utilize IMU sensors, enhancing versatility by al-
lowing users to write on various surfaces, including tablets, paper, or boards. Nonetheless,
IMU based systems primarily track relative pen displacements, which may introduce in-
accuracies due to the inherent noise in sensor data. During this thesis it will be our object
of study. Let’s focus now on [Wehbi et al., 2022] Digipen approach (Fig. 5.7), which we
will then use as a benchmark for our approach.

This approach involves mapping movements captured by an IMU enhanced digital
pen into relative displacement data, trained using a convolutional neural network (CNN)
(5.8). It starts with a 1D convolution layer. Followed by a batch normalization layer.
Next, a dropout layer is applied. This sequence of a 1D convolution, batch normalization,
and dropout is repeated three times. The network finish with a TimeDistributed fully
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Figure 5.5 – [Wang et al., 2009] pipeline for trajectory reconstruction. The main steps are:
First, apply a low-pass filter to denoise the signal. Then, double integration is performed
to convert the acceleration data into trajectory information.

Figure 5.6 – [Bu et al., 2021] pipeline for trajectory reconstruction. IMU is read and
STE used to extract motion segments. PCA distinguishes on-plane writing from off-plane
movements. IMU displacement is calculated by integrating global linear acceleration
twice.

connected layer, which allows the network to maintain the temporal sequence information
while applying the same fully connected operation to every time step.

A special aspect of their work is to minimize preprocessing, segmentation, or post-
processing alignment during inference. To ensure that the sensor signals and ground truth
data have identical sizes, linear interpolation is applied. This involves adding points to
the ground truth to match the number of sensor data points. Once the number of points
is equal, all the points are distributed linearly along the trajectory. This manipulation has
the effect of breaking the trajectory dynamics. Indeed, an linear interpolation breaks the
dynamics of the trajectory by artificially smoothing the data, eliminating fluctuations and
temporal relationships, which can lead to significant discrepancies and potential errors in
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5.1. Handwriting Trajectory Reconstruction

Figure 5.7 – [Wehbi et al., 2022] pipeline for trajectory reconstruction. The preprocessing
steps are label interpolation, stroke interpolation, and chunking to prepare the data for
training a trajectory model (CNN) that predicts handwriting trajectories.

the representation of real motion. For evaluation, the output trajectories were normalized
using min–max scaling to evaluate the predictions on a unit scale. Root mean squared
error (RMSE) was calculated to evaluate the similarity of the reconstructed trajectories
in comparison to the ground truth from the original ones.

While few works focus on handwriting reconstruction from IMU sensors, online hand-
writing recognition from IMU sensor data has been explored using pen-tip trajectory
signals and IMU sensor signals. It should be noted that, although the two objectives
may seem close, they are different in nature. The state-of-the-art shows that recognizing
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Figure 5.8 – CNN Architecture proposed by [Wehbi et al., 2022].

from an IMU signal is a less complex task than reconstructing a precise trajectory. Hand-
writing reconstruction focuses on the replication of the pen’s exact path during writing,
necessitating precise trajectory data. On the other hand, handwriting recognition aims to
identify the characters or symbols penned, relying on interpreting representative global
trace shapes rather than mimicking the motion.

A benchmark study by [Ott et al., 2022] compared various neural network architectures
(CNN, LSTM, BILSTM, and transformers) for recognizing characters, symbols, words,
and equations from IMU sensor data. Their work identifies the combination of Convolu-
tional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BLSTM) as
yielding the best results. However, the performance is not significantly different from that
achieved by the other approach. The IAM-OnDB dataset is a widely used handwritten
text dataset that consists of forms of handwritten English text, commonly employed for
training and evaluating handwriting recognition systems. In terms of performance these
methods have a character error rate on IAM-OnDB is about 10 % on average, which
means that the problem is generally well understood. The conclusion is that the main
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difficulty is not the choice of architecture, but understanding and processing the input
signals.

Explorations into simultaneous online handwriting trajectory reconstruction and char-
acter recognition are also prevalent. In the context of the UbiComp 2021 Challenge,
[Wegmeth et al., 2021] utilized a CNN/LSTM framework for recognizing mathematical
expressions written with the Stabilo’s Digipen, emphasizing the precision of label bound-
ary identification. Their network is composed of 4 convolution layers followed by 5 LSTM
layers.

Further studies have sought to optimize the data transmission efficiency between the
Digipen and remote devices, as seen in [Kreß et al., 2022], or to adapt the model to different
domains, as discussed in works by [Klaß et al., 2022]. The pursuit of explainability in the
models, as undertaken by [Azimi et al., 2022], underscores the ongoing efforts to enhance
interpretability within this domain.

A recent advancement [Wang et al., 2024] involves leveraging low-cost IMU sensors
from smartphones for the recognition of 62 characters. This approach uniquely combines
dynamic inertial signals with trajectory morphology, derived from the handwriting image,
subsequently employing a CNN for classification. This innovation represents a stride
towards accessible and efficient handwriting recognition, bridging inertial dynamics with
visual traits to enhance model performance.

5.2 Discussions and conclusions

The state of the art in handwriting reconstruction has made significant strides, par-
ticularly in utilizing diverse methodologies for capturing and reconstructing handwritten
text. Notable advancements include pen-based digital tablets, camera-based systems, of-
fline handwriting, and IMU sensors. Each system offers distinct strengths and weaknesses
that influence their practicality and accuracy.

System with active surface (tablet), provide high precision and a natural writing ex-
perience, but their reliance on specific hardware ecosystems limits their flexibility and
increases costs. Camera-based systems, such as those using specialized pen-paper duos,
offer accurate digital captures but are constrained by the need for expensive, proprietary
paper and hardware.

Handwriting reconstruction from offline image has introduced innovative metrics like
DTWseg and LDTW to improve glyph fidelity and trajectory alignment can be a source
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of inspiration, especially for preprocessing. However, these approaches suffer from high
computational costs due to their reliance on DTW, making them less practical for real-
time applications.

IMU sensor-based methods have shown promise by allowing writing on various sur-
faces and leveraging deep learning techniques for trajectory reconstruction. Traditional
approaches, which do not rely on deep learning, often struggle with sensor noise and error
accumulation. These methods typically involve a series of preprocessing steps, such as
applying low-pass filters to remove high-frequency noise and using coordinate transfor-
mation matrices to adjust for sensor orientation. However, the cumulative effect of noise
and small errors during these preprocessing steps can lead to significant inaccuracies in
the reconstructed trajectories over time.

In contrast, deep learning methods offer a more sophisticated approach to handling
IMU data. These methods can learn and adapt to noise patterns in the data, potentially
providing more accurate trajectory reconstructions. Despite their advantages, deep learn-
ing methods require careful alignment between the ground truth and sensor data during
the training process. To address this, techniques such as linear interpolation are used to
match the sizes of sensor signals and ground truth data, although this disrupt the dy-
namics of the original trajectory. Moreover, normalization methods like min-max scaling
are applied to the output trajectories to ensure consistent evaluation metrics, facilitating
more accurate comparisons between predicted and ground truth trajectory.

From this state of the art, no single neural network architecture stands out as superior
to the others for handwriting trajectory reconstruction. Various architectures, including
CNN, LSTM, and hybrid models, have been explored, each demonstrating strengths and
limitations in different aspects of the task. As far as the objectives of the thesis are
concerned, a convolutional network would seem to be an appropriate choice, given the
small amount of data involved. In addition, it seems appropriate to use a matching-based
metric such as DTW or Fréchet to align sensor signals and ground truth. In the next
chapter, we will delve into the details of domain adaptation for handwriting data from
IMU sensors.
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Chapter 6

DOMAIN ADAPTATION FOR HANDWRITING

DATA FROM IMU SENSORS.

Handwriting analysis using IMU data holds significant potential for applications in
education. However, a major challenge in leveraging IMU data for handwriting recon-
struction lies in the domain discrepancy problem. IMU data can vary significantly across
different devices, individuals, and environments due to variations in sensor placement, ori-
entation, and personal writing styles. These variances can lead to significant performance
degradation of machine learning models when applied to data from a different domain
than they were trained on.

Domain adaptation (DA) techniques offer a solution to this problem by enabling mod-
els to generalize across different domains. DA methods aim to transfer knowledge learned
from a source domain (e.g., IMU data from a specific device or user) to a target domain
(e.g., IMU data from a different device or user) with a limited amount of labeled data
from the target domain. This capability is crucial in handwriting reconstruction tasks
where collecting and labeling large amounts of data for every new device or user can be
impractical. In particular, obtaining handwriting data from specific populations, such
as children, poses significant challenges. Children’s handwriting evolves rapidly as they
develop their motor skills, and capturing this dynamic process requires frequent data col-
lection over extended periods. Additionally, ethical and privacy considerations make it
difficult to gather large datasets from children, as parental consent and strict adherence
to data protection regulations are required.

This introduction explores the landscape of domain adaptation techniques applied to
handwriting data from IMU sensors. We will discuss the unique challenges posed by IMU
based handwriting data, review existing domain adaptation methodologies, and highlight
recent advancements in this field. The goal is to provide a comprehensive understanding
of how domain adaptation can enhance the performance and robustness of handwriting
reconstruction systems in the face of domain variability, ultimately paving the way for
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more accurate and widely applicable handwriting analysis solutions using wearable IMU
sensors.

6.1 Presentation

Depending on the data available, the domain adaptation can be:

— Supervised: You have labeled data from the target domain.

— Semi-Supervised: You have both labeled as well as unlabeled data from the target
domain.

— Unsupervised: You have unlabeled data from the target domain.

The three prominent way to perform domain adaptation are: Divergence-based Do-
main Adaptation, Adversarial-based Domain Adaptation and Reconstruction-based Do-
main Adaptation.

6.1.1 Divergence-based Domain Adaptation

This approach focuses on minimizing the divergence or discrepancy between the dis-
tributions of the source and target domains. Techniques such as Maximum Mean Discrep-
ancy (MMD), Kullback-Leibler (KL) divergence, and Wasserstein distance are commonly
employed to quantify and reduce this statistical distance. The core intuition behind these
methods is that the error in the target domain is bounded by the error in the source
domain plus the distance between the source and target distributions. This means that,
in order to effectively apply a model trained on the source domain to the target domain,
we need to find a representation space where we remain good at classifying the source
data while also ensuring that the source and target distributions are as close as possible.

6.1.1.1 Wasserstein Distance Guided Representation Learning (WDGRL)

This technique [Shen et al., 2018] aims to address the challenge of domain adaptation
by learning feature representations that are invariant across different but related domains,
which typically have varied data distributions. WDGRL employs a domain critic network
to estimate the empirical Wasserstein distance between the source and target domains and
then optimizes the feature extractor network to minimize this distance in an adversarial
fashion (Fig. 6.1).
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Empirical studies show this approach it outperforms other state-of-the-art methods
in domain adaptation tasks across common sentiment and image classification datasets.
Additionally, WDGRL integrates well with existing domain adaptation frameworks by
replacing their representation learning components, and can be further customized for
various domain-specific applications.

From a supervisory point of view, this method is used in the same way as the previous
one.

Figure 6.1 – [Shen et al., 2018] method, with Wasserstein Distance used as objective for
the adaptation.

6.1.2 Adversarial-based Domain Adaptation

Inspired by Generative Adversarial Networks (GAN), this method employs a game-
theoretic approach. It involves a discriminator and a feature extractor where the discrim-
inator tries to distinguish between the source and target domain features, and the feature
extractor learns to generate features that are domain-indistinguishable. This adversarial
training helps in creating a feature space where the distinction between the domains is
minimized, thereby aiding in better generalization of the model to the target domain.
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6.1.2.1 Domain-Adversarial Training of Neural Networks (DANN)

Domain-Adversarial Training of Neural Networks [Ganin et al., 2016], are specialized
neural network architectures designed to address the challenge of domain shift, where
a model trained on one domain (source) is expected to perform well on a different but
related domain (target). These networks operate by learning features that are domain-
invariant, meaning they are useful and generalizable across both domains. This is typically
achieved through a shared feature extractor on which additional components are built:
a domain classifier and a task-specific classifier. The domain classifier tries to determine
the domain of the input data, whereas the task-specific classifier focuses on predicting the
actual labels.

Training involves a twist (Fig. 6.3): the domain classifier’s gradients are reversed
during backpropagation, which encourages the feature extractor to generate features that
are indistinguishable between domains, thus fooling the domain classifier. This technique,
known as adversarial training, helps the network to minimize the representation gap
between the source and target domains, leading to better performance on the target
domain without requiring extensive labeled data from it.

Figure 6.2 – DANN from [Ganin et al., 2016], consists of a feature extractor (green) and a
label predictor (blue), forming a standard feed-forward structure. To achieve unsupervised
domain adaptation, a domain classifier (red) is incorporated. This classifier is linked to
the feature extractor via a gradient reversal layer, which multiplies the gradient by a
negative constant during backpropagation. This training approach minimizes both the
label prediction loss (for source domain examples) and the domain classification loss (for
all samples).
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6.1.3 Reconstruction-based Domain Adaptation

This technique utilizes the concept of reconstructing inputs in either the source or
target domain from a common feature representation. By encouraging the model to
maintain reconstruction ability across domains, the underlying feature representation be-
comes more robust to domain shifts. Autoencoders are a popular choice for implementing
this strategy, where the encoder learns a domain-agnostic representation and the decoder
reconstructs the domain-specific data.

6.1.3.1 Deep Reconstruction Classification Networks (DRCN)

[Ghifary et al., 2016] introduces Deep Reconstruction Classification Networks (DRCN),
a convolutional network designed to simultaneously tackle two tasks: supervised predic-
tion of source labels and unsupervised reconstruction of target data. The objective is to
ensure that the label prediction function effectively classifies images in the target domain,
with the reconstruction task serving as a supportive auxiliary function for enhancing label
prediction adaptability. Unlike conventional pretraining-fine tuning methods, the DRCN
employs a unique learning strategy that alternates between unsupervised and supervised
training phases.

Figure 6.3 – DRCN [Ghifary et al., 2016], is structured around two main branches: the
label prediction pipeline and the data reconstruction pipeline.
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6.2 Conclusion

This chapter explores domain adaptation techniques applied to handwriting analysis
using IMU sensors, addressing the challenge of domain discrepancy caused by variations in
devices and individuals. The chapter introduces specific models like Domain-Adversarial
Training of Neural Networks (DANN) and Wasserstein Distance Guided Representation
Learning (WDGRL), which aim to create domain-invariant features to enhance the perfor-
mance of handwriting reconstruction across different domains, with a focus on applications
in education and data from children.

DANN is particularly well-suited for handwriting analysis using IMU sensors due to
its focus on learning domain-invariant features through adversarial training. Its flexibility
to operate in both supervised and unsupervised settings allows it to adapt to various
scenarios. Moreover, DANN has been widely validated in various domain adaptation
tasks, demonstrating superior performance in scenarios where there is a significant domain
shift.
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Chapter 7

DATA ACQUISITION PROTOCOL

At the start of the project, we had no data. In fact, the FAU-EINNS proposed
by[Wehbi et al., 2022] does exist; however, it is limited to words and includes only six
writers, making it unsuitable for our needs. Additionally, the old version of the pen op-
erates at 100 Hz, which may lack precision and is particularly far from the frequency of
the tablet. So we set up a protocol and data collection with the project partners. In this
section, we describe the choices we made. This will be followed by a description of the
datasets that have been collected during the project. Some of these data has been made
public to help future work in the field.

7.1 Data acquisition

Throughout this thesis, several versions of the digital pen were employed, reflecting
advancements in pen technology and impacting the data acquisition process. At the
beginning of the research project, Digipen Version 5.0 was utilized, operating at a 100 Hz
sampling rate. During the first year, the pen was upgraded to Digipen Version 6.0, which
offered sampling rates of 100 Hz, 200 Hz, and 400 Hz. Later, Version 6.3 was introduced,
which incorporated sensors from different manufacturers. In the final year, Version 7.5 was
developed with the front accelerometer removed, featuring dual acquisition capabilities
for both paper and ground truth.

These technological advancements highlight the challenge of obtaining consistent data,
as the pen’s design was still evolving at the start of the research project. The changes
in sensor technology and acquisition methods by Stabilo significantly impacted the devel-
opment of the acquisition protocol and the analysis of the data throughout the research
project.

62
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7.1.1 Data acquisition challenges

To create datasets the acquisition process is quite challenging due to several difficulties
which we will briefly remind you of. First, the stylus and the tablet have different
sampling rates, so the selection of both of them is an important step. Another challenge
concerns the recording of the pen-up movements. When the pen gets too far from the
tablet (over 7mm high), the tablet stops recording a trace. This results to parts of the
data coming from the stylus that do not match any ground truth from the tablet.
In addition, a drift in the accelerometer measurements is possible, and the kinematic
signals are transmitted from the pen to the tablet in sets of six points through Bluetooth.
Variable transmission time delay results in asynchronous timestamps for kinematic and
tablet data.

7.1.2 Acquisition tools description

To create a datasets of the handwriting trajectory reconstruction task, we use three
equipments and tools:

— the Digipen is equipped with Wacom insert to be used with EMR acquisition tech-
nology;

— a Samsumg Galaxy S7 FE tablet, working with EMR technology;

— an Android application developped by Stabilo, that guides the collection in which
the data from the tablet are associated to the ones of the pen.

For ground-truth acquisition, the Digipen pen is equipped with a Wacom insert, pro-
viding a ground-truth online trajectory trace of the handwriting that corresponds to the
pen’s IMU signals (Fig. 2.1).

As a reminder, the Digipen embeds the following IMU sensors (Fig.1.1): a gyroscope,
a front and a rear accelerometer, a magnetometer, and a force sensor. Each of these
sensors provides temporal reading values that describe the relative pen movement in 3-axes
channels (x, y and z), except the force sensor which has only one channel. The readings
of the sensors are buffered before being sent to the tablet via Bluetooth connection. This
produces multi-variate time series made of 13 modalities (10 for Version 7.5) for every
dataset sample.

The tablet choice is important, as the model, the screen size, and the sampling rate
must be considered to get consistent online handwriting signals. Remember, tablet data
serves as the ground truth for training our neural networks. Indeed, each tablet has
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its own sampling rate so, only one model of tablet (Samsumg Galaxy S7 FE) has been
used for the whole data collection campaign to obtain homogeneous ground truth. The
Samsumg Galaxy S7 FE has a resolution of 2560 x 1600. The EMR technology captures
the pencil signal up to 7mm high. The tablet dynamically adjusts its sampling rate based
on the stylus’s speed, increasing it for fast movements to capture detailed input accurately
(up to 370Hz), and decreasing it for slow movements or pauses to conserve power and
processing resources (down to 60Hz).

Stabilo has developed a dedicated mobile application to record (i) the handwriting
trajectories using the Digipen integrating Wacom tip, (ii) the corresponding sensor signals
from the Digipen. The application allows to calibrate the Digipen sensors’ signals and
setup the sampling rate of the Digipen sensors. The app provides instructions, allowing
the user to simply follow the prompts and complete the required writing tasks. Data
acquisition is pseudonymized with an individual ID assigned to each person. This ID is
not stored in a database or linked to personal identities, ensuring privacy and security.

Before collecting a large amount of data, we chose an appropriate sampling frequency
among 100Hz, 200Hz, and 400Hz. We opted for 400Hz as it closely aligns with the tablet’s
maximum sampling rate of 370Hz. This choice minimizes discrepancies in sequence size,
which is crucial for reducing the impact of preprocessing alignment.

7.1.3 Data acquisition protocol

The recording process (Fig. 2.1) begins by selecting a set of predefined scripts to be
written on the tablet surface using the Digipen. These two data sets are made up of the
following two recording types:

— BASIC, consists of 34 samples to be written one by one during a single recording
session. It is composed of five types: 15 characters, 10 words, 5 equations, 2 shapes
and 2 word groups.

— EXTENDED, consists of 57 samples to be written one by one during a single record-
ing session. It is composed of five types: 30 characters, 10 words, 5 equations, 4
shapes and 8 word groups.

These two distributions are chosen to facilitate the study of handwriting reconstruc-
tion. The datasets contains more characters than other types, focusing on essential strokes
and forms. This approach helps models first learn the fundamental elements of handwrit-
ing before progressing to more complex forms. Words and groups of words have also
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been collected, the length of which, linked to potential drifting and pen-up movements,
increases the complexity. Equations and shapes, though less numerous, are included
specifically to extend the model’s capabilities in reconstructing non-textual handwriting
elements by the presence of many pen-up phases. This gradual and intentional increase in
complexity ensures that the model develops robust reconstruction skills, effectively transi-
tioning from simple to more complex handwriting inputs, thus making it highly adaptable
for both research and practical implementations in handwriting reconstruction.

While recording, a user holds the pen’s on/off switch up, which is a natural way
to take the Digipen due to grips designed on the pen to naturally position the fingers
properly. Since the pen is held consistently, the sensors are oriented in the same direction.
Consequently, for similar trajectories, the signals resemble each other closely.

Regarding data collection, we initially started the project with version 5.0 data from
a select group of users. The first data collection campaign commenced with the release
of the 6.0 pencil at the end of the first year, conducted by the four project partners for
adults. Data from children was collected exclusively by Learn&Go in schools, resulting in
a smaller dataset due to the greater complexity of collection. Six months later, a second
campaign began, featuring an extended data collection strategy to address the issues we
encountered.

7.2 Data cleaning

As part of the research project, hardware evolution over time has introduced chal-
lenges, particularly regarding consistency between Wacom acquisition and Digipen force
measurements. Small samples often face incorrect pressure conditions, pencil lift are some-
times undetected and sometimes over-detected, resulting in a mismatch between sensor
signals and tablet ground truth. To remedy this, we suggest the following method (Algo-
rithme 1): We assess whether the sensor data and ground truth are aligned. In cases of
minor discrepancies, we adjust the samples accordingly. However, if the mismatch is too
significant, we exclude the sample from the training set.
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Algorithm 1 Pseudocode for cleaning incorrect pressure recordings
1: function Cleaning(tablet_samples, sensors_samples)
2:
3: filtered_tablet_samples← [] ▷ Initialize a list to store filtered tablet samples.
4: filtered_sensors_samples← [] ▷ Initialize a list to store filtered sensor samples.
5:
6: for (tab_sample, sens_sample) in (tablet_samples, sensors_sample) do
7: ▷ Loop over pairs of tablet and sensor samples.
8:
9: tablet_partitions← Cut_into_stroke(tab_sample[′pres′])

10: ▷ Find touching and pen-up partitions for the tablet sample.
11: sensor_partitions← Cut_into_stroke(sens_sample[′force′])
12: ▷ Find touching and pen-up partitions for the sensors sample.
13:
14: if len(tablet_partitions) ̸= len(sensor_partitions) then
15: ▷ Check if the number of partitions differs between ’tablet’ and ’sensor’.
16:
17: if abs(len(tablet_partitions) - len(sensor_partitions)) < 5 then
18: ▷ Check if the difference in partition count is small (less than 5).
19:
20: tab_sample, sens_sample← Merge(tab_sample, sens_sample, 20)
21: ▷ Stroke merging for those with a difference of less than 20 points
22:
23: Append tab_sample to filtered_tablet_samples
24: Append sens_sample to filtered_sensors_samples
25: end if
26: else
27: Append tab_sample to filtered_tablet_samples
28: Append sens_sample to filtered_sensors_samples
29: end if
30: end for
31: return filtered_tablet_samples, filtered_sensors_samples
32: end function

This approach aims to mitigate inconsistencies and enhance the accuracy and reli-
ability of our data by ensuring that the pressure measurements from both Wacom and
Digipen are aligned and consistent, while effectively handling small discrepancies through
merging. Even if this cleaning is necessary to have coherent data between the sensor and
the pen, it only affects about 3% of adults’ recordings.
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7.3 Datasets description

From this adult data collection, we have decided to make two datasets public to
serve as benchmarks for future studies: the IRISA-KIHT-S dataset and the KIHT-Public
dataset 1. These datasets are composed of 30 recordings for the IRISA-KIHT-S dataset
and 149 recordings for the KIHT-Public datasets. For each recording session, 4 different
files are provided:

— The sensor signals file has 14 columns: milliseconds, accelerometer front (x, y, z),
accelerometer rear (x, y, z), gyroscope (x, y, z), magnetometer (x, y, z), and force
signals;

— Tablet signal files contain milliseconds, position coordinates (x, y, z), and force
signals;

— The transcription (labels) file contains labels (the text to be written or the task to
be carried out for a form) and the start and stop time-stamps for every sample;

— Additional files concerning the sensor calibration and recording meta data are pro-
vided.

We also worked on two private datasets during this thesis: IRISA-KIHT and KIHT-
Private dataset. Each dataset includes BASIC and EXTENDED recordings. Note that
the test recordings are identical across four datasets to ensure fair comparisons. The
KIHT-Private dataset is an extension of the KIHT-Public dataset with an additional 300
recordings. The IRISA-KIHT-S dataset is a subset of the IRISA-KIHT dataset. Each
datset is composed of five groups: characters, words, sentences, equations and form (Tab.
7.2). Note that the writers in the test set are not included in the train set.

Note that the line “Inclined data” in the table 7.1 refers to data acquired on inclined
planes, which will be used in the method presented in section 10.2. Note that the IRISA-
KIHT dataset 57 recording of German words are included, hence the higher proportion
of words.

Note that child databases collected by Learn&Go project partner, will be detailed in
the chapter 11 when they are used.

1. https://www-shadoc.irisa.fr/irisa-kiht-s-and-kiht-public-datasets/
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Figure 7.1 – Some examples of KIHT-Public data. Pen-up movements are in gray and
pen-down (touching) strokes are in blue.

Table 7.1 – Adult datasets and their corresponding sets.

Sets Datasets Inclined data # Writers # Recordings # Samples

Tr
ai

ni
ng

IRISA-KIHT 25 113 3770

KIHT-Public 36 90 2761
x 7 30 1368

KIHT-Private 66 371 11811
x 12 49 2234

IRISA-KIHT-S 20 30 680

Te
st Common test set 9 9 266

IRISA-KIHT-S 10 10 340

7.4 Conclusion

In this chapter, we have detailed data choice and acquisition necessary for the hand-
writing trajectory reconstruction task. Beginning this work without data, we establish
a protocol for data collection. The data acquisition protocol was designed to include a
diverse range of handwriting samples, from basic characters to complex equations and
form, to build a comprehensive dataset that supports various aspects of handwriting re-
construction.

68



7.4. Conclusion

Table 7.2 – Detailed distribution of each entry category in datasets.

Sets Datasets Inclined data Characters Words Sentences Equations Drawing

Tr
ai

ni
ng

IRISA-KIHT 915 2306 102 305 122

KIHT-Public 1217 812 163 406 163
x 603 402 81 201 81

KIHT-Private 5209 3474 697 1734 697
x 985 657 132 328 132

IRISA-KIHT-S 300 200 40 100 40

Te
st Common test set 135 81 18 45 18

IRISA-KIHT-S 150 100 20 50 20

The following chapters will use these databases to support the experiments. The
first data collections consist primarily of adult data, which is why our focus will be
on reconstructing handwriting trajectories for adults. This strategy allows for a clearer
segmentation of challenges, preventing the accumulation of difficulties and offering a more
focused understanding of the handwriting reconstruction problem.
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Chapter 8

A FIRST PREPROCESSING CHAIN

Preprocessing is a crucial step in the preparation of sensor and tablet data, especially
when it comes to deep learning methods that require sequence pairs of the same size (input
/ ground truth). A primary challenges is the varying sampling frequencies between the
sensor and tablet data. This discrepancy can lead to misaligned data points, making it
difficult to accurately analyze the information. Additionally, the tablet signal is prone
to being lost when the pen is raised too high above the tablet, resulting in gaps in the
data that need to be addressed. To ensure the effectiveness of deep learning models, it
is essential to preprocess the data such that the ground truth and the sensor data have
identical sizes. This involves a preprocessing pipeline detailed in figure 8.1 and presented
in the next sections. We will present the preprocessing steps involved in the training
phase. It is important to note that the preprocessing for the test phase is identical,
except for the Dynamic Time Warping (DTW) alignment and the exclusion of the ground
truth component.
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Figure 8.1 – Our proposed preprocessing pipeline. (a) Thanks to dual acquisition, we
recover Digipen signals (14 channels: 2 x 3 (x, y, z) for accelerometer, 3 for gyroscope, 3
for magnetometer and 1 for the force) and the ground truth (3 channels: x, y and pressure),
(b) we remove start and end pen-up movements, which are not related to handwriting, (c)
we align ground truth and sensor signals using DTW, (d) data formatting, (e) we obtain
the preprocessed data used for training.
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8.1 Cleaning and normalization

8.1.1 Dimension reduction

The first preprocessing step is to remove the 3 magnetometer channels (x, y, z) from
the sensor channels. As the data is collected on a tablet, the electromagnetic field detected
is that of the tablet and not that of the earth. Therefore, in order not to bias the network
by mapping it to the electromagnetic field specific to a tablet, we have removed the
magnetometer data.

We have also decided to remove the z-coordinate from the ground truths, as our
primary focus is on the writing within the (x, y) plane. The timestamps of the Digipen
and the tablet are “kept” during preprocessing.

8.1.2 Signal splitting and normalization

First, signals are divided into spans that correspond to the written samples. The
samples are segmented based on the timestamps provided in the label.csv file, which
specifies the start and end times for each sample. These timestamps were recorded at the
time of data collection.

Irrelevant parts of the input signals are removed. Those parts are the start and
end pen-up movements that does not refer to pen-up and pen-down actions to write
the given script (Fig. 8.1(b)). Cutting is performed using Digipen’s force sensor by
detecting the presence or absence of a zero-pressure reading. In order to maintain the
interoperability of the system between the different versions of Digipen, accelerometers,
gyroscope, magnetometer and force signals are normalized by their maximum values (as
reported by the manufacturer).

8.2 DTW alignment

Due to the different sampling rates between the stylus and the tablet, an alignment
process is crucial to get a mapping between each input points from the stylus and each
output points from the tablet. In addition, the sensor data are acquired in packets of 6
data points and the recorded timestamps are not equally spaced due to the Bluetooth
transmission time delay (Fig. 8.2).
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(a) 
Bluetooth data points packetizing

(c) 
Difference in sampling rate due to

pen-up movements not being
tracked

(b) 
Difference in sampling rate due to

the difference between Digipen
and Wacom

Text

Figure 8.2 – Visualization of the challenges linked to the data, in particular the grouping
for transfer by Bluetooth (a), and the difference in the number of points between the
Digipen and the ground truth due to both a difference in acquisition frequency (b) and
signals lost during pen-up movements (c). In figures (b) and (c) the first line corresponds
to the ground truth (x, y), the second line corresponds to the distribution of Digipen
’pressure’ points over time, the last line corresponds to the distribution of Wacom ’pres-
sure’ points over time.
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Due to this mismatch, the recorded input and output signals have different lengths
and are not synchronized. A naive approach would be to linearly interpolate the ground
truth to match the number of points in the sensor sequence. [Wehbi et al., 2022] uses
this method, and we will come back to this point in more detail in the following chapters.
However, as illustrated in Figure 8.3, linear interpolation fails to preserve the dynamics of
the writing. While linear interpolation evenly distributes points, it disrupts the natural
linkage between the ground truth and the sensor signals. Consequently, the interpolated
points no longer align accurately with the sensor signals, undermining the fidelity of the
synchronization.

Figure 8.3 – Visualization of a raw and linearly interpolated character that alters the
dynamics.

To respect the dynamics of writing as much as possible, we propose an alignment
approach based on the Dynamic Time Warping (DTW) algorithm (Figure 8.1(C)). In
practice, we observe that aligning the timestamps using the DTW algorithm is more
effective than relying on the DTW alignment on force and pressure data. Figure 8.4
shows a comparison between the alignment based on linear interpolation and our proposed
approach based on DTW. Alignments are presented on the force (pen sensor) signal
against the pressure signal (from the tablet). Unlike linear interpolation, DTW matche
points to the closest position in time in the trajectory. This results seems more fairthful
and reliable representation of the data. The transmission time delay is between 10 and 40
milliseconds in the Digipen version 6.0. The average transmission time delay is subtracted
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to the tablet data in order to approximately synchronize it with sensors data. Then, we
use the DTW algorithm to find an alignment path between the timestamps of the stylus
and the tablet. Since the sampling rate of the sensor data is higher than the one of the
tablet data, we have made the choice to up-sample the tablet data to match the sensors
data length. Indeed, We wanted to maintain the pen signals as they are to avoid affecting
the input dynamics of the model.
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Figure 8.4 – Our proposed DTW-based alignment compared to the linear interpolation-
based alignment. The left side image represents the raw force / pressure (sensor/online)
signals, the middle image shows the linear interpolation alignment result and the right
side image shows the DTW-based alignment results. The red lines connecting the two
signals represent the duplicate points in the pressure signal and the grey ones represent
the one-to-one alignment. The first line shows the ’pressure’ of Digipen and Wacom over
time. The second line shows Digipen and Wacom ’pressure’ by number of points. The
last line shows the handwriting trajectory used as ground truth.
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8.3 Data formatting

8.3.1 Splitting into strokes

Splitting into strokes is an aspect of the training phase in our proposed pipeline. This
process focuses on training the neural network using only touching stroke of handwriting.
The primary motivation for that is to avoid losing trace of pen-up movements when the
pen is lifted high (over 7mm 1). Strokes are identified by analyzing the force/pressure
signals from the sensors and the tablet. Specifically, we consider a stroke to be valid if
it meets the following conditions: the force value of the Digipen must be greater than a
predefined threshold of 0.01, and the pressure value of the tablet must be greater than 0.
These conditions must be met simultaneously for a stroke to be preserved. This method
ensures that the neural network is trained only on parts dedicated to the handwriting
trace, enhancing the accuracy and effectiveness of the model in recognizing handwriting
patterns.

8.3.2 Ground truth representation

Initially, one might consider using the absolute positions (x, y) of each point in the
trace. However, learning to predict absolute positions from sensor data that represents
relative changes (i.e., displacements due to acceleration, speed, and orientation of the
Digipen) is mathematically impossible. The starting position is unpredictable and is
therefore not worth predicting.

Consequently, we opt for the "displacement vector" representation. This approach en-
tails using displacement vectors between successive points, meaning each point is defined
relative to its predecessor. Given that the input sensor signals reflect relative changes, this
representation logically aligns with the data characteristic. In the "displacement vector"
representation, vectors (∆x, ∆y) are calculated from the successive (x, y) coordinates
of the handwriting trajectory. This method leverages the relative changes in position,
making it a suitable choice for capturing the dynamics of the handwriting process.

1. http://tennojim.xyz/article/wacom_intuos_pro_l_guide
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8.4 Conclusion

In conclusion, the preprocessing of sensor and tablet data is essential for ensuring
the accurate alignment and effectiveness of deep learning models designed to analyze
handwriting patterns. By addressing challenges such as varying sampling frequencies,
transmission delays, and signal gaps caused by pen-up movements, we implement a robust
pipeline that ensures synchronized input and ground truth data. Through steps like the
removal of unnecessary sensor channels, signal normalization, DTW-based alignment,
and stroke segmentation, the data is transformed to maintain the natural dynamics of
handwriting.

As a result from this preprocessing, we get touching strokes as input of the neural
network, and for each stroke we have two time series of equal size, the first coming from
the Digipen sensors, the other being the Wacom ground truth. We reduced the number
of channels for DigiPen signals from 14 to 10 and decreased the number of ground truth
channels sides from 4 to 2, with a significant shift from absolute to relative position
measurements. Comparative results between our proposed DTW-based alignment and
the linear interpolation used in the state of the art [Wehbi et al., 2022] will be discussed
in the next chapter.
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Chapter 9

A TOUCHING EXPERT MODEL (TEM)

Reconstructing the handwriting trajectory from IMU signals is a complex task for
several reasons. Firstly, sophisticated algorithms are required to deal with the multi-
dimensional nature of IMU data comprising acceleration and angular velocities and to
synthesize it into a two-dimensional handwriting trajectory. Secondly, the challenge is
further heightened by the need to mitigate sensor noise and bias, which can cumulatively
lead to significant trajectory drifts. We need a model that can analyze signals in fine
detail at the local level while also considering broader, global patterns to correct these
biases. The approach needs to capture the intrinsic variability of human handwriting,
which fluctuates not only between individuals but also within a single individual between
different writings sessions, as well as the sensitivity to different frictions according to the
surface and the size of the writing, which leads to different movements.

In fact, handwriting can be divided into two distinct phases: the act of writing, where
the stylus touches the surface, and the pen-up movements, which occurs when transition-
ing to the next segment of writing. The first phase, involving direct contact with the
surface, has a 2-dimensional ground truth based on the observable path of the stylus on
the surface. The second phase, the pen-up movements, is to move the stylus through
a 3-dimensional space to the next starting point for writing. This phase introduces a
different set of dynamics and that there is more variance in the gesture, as the trajectory
can be more random, with no ground truth if the stylus is raised too high during pen-up
movements (Fig. 9.1).

We therefore decided to start by simplifying our problem, by focusing on the stylus
touching parts, for which we have sensor information and ground truth for all sequences.

So, we design a neural network architecture to predict the displacement vectors of
the handwriting trajectory from the tablet, given a sensors signal of the Digipen (Fig.
8.1(d)). The training and test steps of our proposed model are described in the following
sub-sections. In a second step, we will present a more advanced version of our model,
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(a) "A" for ground truth with pen-up move-
ments

(b) "OE" for ground truth with pen-up move-
ments

(c) "URL" for ground truth with pen-up move-
ments

(d) an "ë" for ground truth with pen-up move-
ments, but part of it (in green) is not tracked

Figure 9.1 – Examples of data used as ground truth. They are composed of writing parts
(in blue) and pen-up movements (in red) that are not always tracked (in green).

named TEM-C. The chapter will conclude with a comparison of experimental results,
both with state-of-the-art methods and between our two variants, TEM and TEM-C.

9.1 A Touching Expert Model (TEM) based on Tem-
poral Convolutional Network

In order to take into account the past and future states when mapping an input
sequence toward an output signal, we propose to use a non-causal Temporal Convolutional
neural Network (TCN) architecture inspired by [Bai et al., 2018]. We name this model
TEM for touching expert model as it is trained on touching strokes only.
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9.1.1 Architecture Choice

The choice of a TCN architecture is supported by the great success of the TCN for
sequence-to-sequence tasks with few training samples, e.g. for weather prediction [Yan
et al., 2020], traffic prediction [Dai et al., 2020] and sound event localization and detection
[Guirguis et al., 2021].

A CNN architecture can capture the spatial features that refer to the arrangement
of data points of a sequence, and the relationship between them within the sequence.
However, the advantage of TCN over CNN is their ability to capture more distant context
with less depth, thanks to dilated convolutions. This allows TCN to look further into
the past while maintaining a shallower network architecture, thereby reducing the risk
of encountering vanishing gradients that typically arise with deeper networks. TCN is
designed to extract both local and global features, allowing for reconstruction that aims
to minimize drift effects.

It has been shown that TCN architecture is most suitable to extract relevant spatial
and temporal features for a sequence of frames describing an action compared to an LSTM
recurrent network [Nan et al., 2021]. Indeed, recurrent architectures are known to suffer
from vanishing gradient [Roodschild et al., 2020] and forgotten information problems in
very long sequences, such as those produced by IMU sensors. Thus, TCN based systems
outperforms their LSTM counterparts in different fields of application such as anomaly
detection [Gopali et al., 2021] or skeleton-based action recognition [Nan et al., 2021].

While transformers are gaining popularity in many domains, they come with notable
limitations. One major issue is their computational complexity, which increases quadrat-
ically with the sequence length. This quadratic dependency makes training Transformer
models computation-heavy for very long sequences. In addition, a context limited to a fix
number of tokens may not be sufficient to capture all relevant information [Zaheer et al.,
2021]. Additionally, Transformers are known to demand a significant amount of data in
training, which lack in the KIHT project.

9.1.2 Architecture details

Our TEM model, described in Fig. 9.2, is designed to handle 10 input channels of
sensor data. The core of this architecture consists of Temporal Convolutional Network
(TCN) layers.

The TCN part consists of four stacked inner blocks of non-causal and dilated 1D-
convolutions with kernel size of 3. The dilation rate applied to each block is increased
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with the depth of the network, from 1 to 2. Each convolutional layer is followed by a
batch normalization layer, which standardizes the activations from the layer.

The network terminates with two dense layers (with a linear activation for the first),
with a layer of batch normalization in between. The output of the second dense layer
refers to the two channels (∆x, ∆y) representing the spatial displacements.

In this configuration, the receptive field of 49 and there are less than 900 000 param-
eters, which is a relatively small number compared to popular neural networks. This is
consistent with the fact that the data sets are of limited sizes.
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Figure 9.2 – Our TEM model for handwriting trajectory reconstruction. This model have
870452 parameters.

9.1.3 Model training and test

During the training phase, the model is trained to minimize the Mean Squared Error
between the real and predicted displacement vectors of the handwriting trajectories. We
uses the ADAM optimization, a batch size of 16 and a learning rate of 10e−3. As stated
before, the 10 input channels of the sensor signal are the front and rear accelerators,
gyroscope and force channels of the sensor signal, obtained after the cleaning and nor-
malization process. During the test phase, a cleaned and normalized signal is given as
input of the model that predict the corresponding displacement vectors of the handwriting
trajectory signal.

The results of this first approach will be presented in section 9.4. In the following
section we will present a first improvement of our TEM model.
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9.2 TEM-C: Incorporating temporal context that re-
flects physics and dynamics to enhance the touch-
ing expert model

The TEM architecture is well-suited for stroke-level reconstruction, but cutting touch-
ing strokes leads to a theoretical weakness.

Indeed, in the reconstruction of a trajectory based on Inertial Measurement Units,
the temporal context plays a crucial role in accurately capturing the dynamic movement
of an object. IMU are sensor systems that measure specific forces and angular rates to
determine the acceleration and orientation of an object. Mathematically, the integration
of these measurements over time helps to reconstruct object trajectory. The importance
of temporal context in trajectory reconstruction process is the result from the necessity to
accurately model continuous variations in acceleration and angular velocities, which reflect
object dynamic behaviors including acceleration and directional shifts. By integrating
temporal information, the object motion can be more accurately reconstructed, accounting
for these dynamic changes.

This weakness has been confirmed in our experiments. The prediction was less accurate
(Fig. 9.3) for the initial points of a stroke due to a lack of dynamics.

Figure 9.3 – On the first line the ground truth. On the second the TEM prediction.
The observation is that the first points are less well reconstructed. On the last line the
alignment between ground truth and the prediction.

To take this physical aspect into account, dynamic context is given to input during
the network training phase. For that, pen-up movements preceding the touching strokes
are added in the input sequences (in red on Fig. 9.4). The size of this pen-up movements
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corresponds to half of the receptive field that can be captured by the model on the left
border of the touching strokes, so that the model sees no padding to predict the positions
associated with the first touching values. In addition, this will enable the network to see
real signals instead of padding and thus have a better generalization capability.

Figure 9.4 – Illustration of ground truth with and without context (in red) beginning each
stroke. We add a 2D projection of the 3D pen-up movements captured by the tablet to
replace the padding seen on the input with real data. This figure is a representation of
the trace whose associated input is seen during learning.

9.3 Evaluation protocol

As discussed in Chapter 4, the Fréchet distance is a good metric to evaluate the
trajectory reconstruction, due to its more intuitive measure of geometric shape similarity
than DTW or MSE, which corresponds to our expectations in this work. This is why we
use this metric to evaluate trajectory reconstructions.

The Fréchet distance measures the distance between curves, by taking into account
the location and ordering of the points along the curves [Har-Peled et al., 2002]. This
allows us to capture both local and global information accurately, and correlates well with
qualitative assessment in practice.

Since we are interested in the shape of the reconstruction and not its size, we propose
2 additional steps before calculating the Fréchet distance (Fig. 9.5).

The first step is to find the longest dimension of the ground truth bounding box (resp.
the reconstruction), and set its size to 1. The aim is not to give too much weight in the
evaluation to the size of reconstruction, but to the overall quality of shape reconstruc-
tions. The second step consists in centering the centroids of the prediction and ground
truth bounding boxes. As the Fréchet distance is not directly impacted by the length
of sequences, we can have a quantitative analysis of the impact of sequence length on
reconstruction quality.
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Figure 9.5 – Our evaluation pipeline, composed of four steps, dual acquisition of Digipen
signals and ground truth, alignment with DTW to find identical sequence sizes, scaling
and centering on centroids.

TEM/TEM-C are trained using touching strokes but are designed to predict both
touching and pen-up strokes. During evaluation, we assess the full label, which includes
both the touching and pen-up strokes. This approach allows us to evaluate the overall
quality of the reconstruction by considering both the actual writing components (touching
strokes) and any repositioning errors (pen-up strokes). In doing so, we ensure that the
model performs well across the entire motion, not just the writing segments.

9.4 Experiment

9.4.1 Comparison with state-of-the-art

We compare the performance of our approach against the one of [Wehbi et al., 2022]
on our own dataset, called IRISA-KIHT. We also provide results on the subset of the
latter called IRISA-KIHT-S which is made publicly available and can hence be used as
benchmark for future works. Since [Wehbi et al., 2022] provided a dataset called FAU-
EINNS with their approach, we also compared ourselves on their dataset. It has the
peculiarity of having been collected with Digiven v5.0, i.e. at 100Hz, as opposed to 400Hz
for our Digipen v6.0. The FAU-EINNS dataset consists of words written by 6 writers,
and we take the samples of the user numbers 1, 2, 3, 5 and 6 for training (1774 samples)
and testing on the 344 samples of the user numbers 4. We applied the same evaluation
protocol on both models and processing pipelines. Due to the comparatively smaller size
of IRISA-KIHT-S, a 3 fold cross validation is used when the dataset is at stake. To
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create the folds, we selected the 9 recordings from the test set of the IRISA-KIHT dataset
and added one additional random recording. Additionally, we randomly chose 10 other
recordings, each from a different writer, to complete the two other folds. Note that the
test sets are not identical between these different datasets.

Table 9.1 – Average Fréchet distance of our pipeline compared to [Wehbi et al., 2022]. For
IRISA-KIHT-S dataset on 3 folds with standard deviation.

[Wehbi et al., 2022] Our approach
FAU-EINNS 0.463 0.277
IRISA-KIHT 0.669 0.404
IRISA-KIHT-S 0.654 ± 0.048 0.433 ± 0.057

Results show that our pipeline (TEM and DTW based preprocessing) outperforms
[Wehbi et al., 2022] (CNN model and linear interpolation as preprocessing) on every
dataset, both quantitatively as seen in Table 9.1 on the average Fréchet distance and
qualitatively as illustrated in Figure 9.6 and 9.7. The differences in alignment (using
DTW vs. linear methods and TCN vs. CNN) appear to result in more accurate trajec-
tory reconstructions. Additionally, Wehbi’s approach exhibits a more pronounced drift
phenomenon.

Figure 9.6 – Illustrations of handwriting reconstructions on the FAU-EINNS dataset. First
line: the ground truth; Second line: the approach proposed by [Wehbi et al., 2022]; Thrid
line: our proposed approach based on the TEM.
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Figure 9.7 – Illustrations of handwriting reconstructions on the IRISA-KIHT dataset.
First line: the ground truth; Second line: the approach proposed by [Wehbi et al., 2022];
Thrid line: our proposed approach based on the TEM.

Despite the difference in size between IRISA-KIHT and IRISA-KIHT-S datasets and
different test set, the same conclusion can be makes for both datasets (Table 9.1). This
confirms that IRISA-KIHT-S seems of sufficient size for the quantitative assessment of
online handwriting trajectory reconstruction from IMU sensor data. In the next section,
we will evaluate the impact of preprocessing or models on performance.

9.4.2 Ablation study

9.4.2.1 Alignment methods and models

In the following, we compare two effective processes of the handwriting trajectory re-
construction pipeline; (i) the input-output alignment process (linear interpolation [Wehbi
et al., 2022] versus our DTW alignment) and (ii) the reconstruction model performance
(CNN [Wehbi et al., 2022] versus TEM).

We provide a comparative evaluation scheme between the two alignment methods
(linear interpolation and DTW based alignment methods) and the two reconstruction
models (CNN and TEM) on the FAU-EINNS and IRISA-KIHT datasets. From Table 9.2,
we observe that each step of our approach outperforms the counterpart from the [Wehbi
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et al., 2022] method on both datasets. The results show that our alignment is better
whatever the model on all the datasets. In contrast to the linear alignment, our alignment
based on the DTW algorithm keeps the writing dynamic, which seems to be essential
to reach quality trajectory reconstruction. Figure 9.9 shows examples of reconstruction
trajectories using the CNN or TCN models, when using the linear interpolation and the
DTW alignments on the two datasets. Moreover, the results are close and slightly better
whatever the alignment method. On the other hand, the visuals show that the overall
quality is better, which shows that the TCN model benefits from a larger receptive field
and a deeper network to model more complex patterns and to be less sensitive to the
noise.

Table 9.2 – Model and alignment method comparison between [Wehbi et al., 2022] and
ours on both datasets.

CNN model [Wehbi et al., 2022] Our TEM
[Wehbi et al., 2022]
alignment

Our DTW
alignment

[Wehbi et al., 2022]
alignment

Our DTW
alignment

FAU-EINNS 100Hz 0.463 0.280 0.321 0.277
IRISA-KIHT 400Hz 0.669 0.410 0.586 0.404

9.4.2.2 Receptive field effect

To design the TEM architecture, we pay attention to the sampling rate of the input
signal of sensors. The TCN based neural network may have the capacity to absorb the
noise of such low quality and noisy signals, depending on the size of its receptive field.

In order to evaluate the receptive field effect, we trained and evaluated the model with
different sizes of receptive fields equal to 49, 85, 168 and 373 on IRISA-KIHT dataset.
These results are presented in the following table 9.3.

On our IRISA-KIHT dataset, the TCN model with the greatest receptive field (373)
generally outperforms the other sizes of receptive field as seen in Table 9.3. With a bigger
receptive field, a large context can be exploited to make the prediction and the signal noise
of long pen-up movements can be absorbed, at the cost of a larger number of learnable
parameters.

Table 9.4 illustrates the size of TCN models in terms of number of learnable parameters
with regard to the receptive fields.

By comparing TCN-49 and TCN-373, during pen-up movements, the network may
see the last and next touching points of two successive touching strokes, as illustrated in
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Figure 9.8 – Comparison between [Wehbi et al., 2022] and ours on FAU-EINNS dataset.
Note that TEM model and DTW alignment is our comprehensive approach.

Figure 9.9 – Comparison between [Wehbi et al., 2022] and ours on IRISA-KIHT dataset.
Note that TEM model and DTW alignment is our comprehensive approach.
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Table 9.3 – Fréchet distance from TCN model with varied receptive fields on IRISA-KIHT
dataset

Type TCN-49 TCN-85 TCN-169 TCN-373
Global 0.404 0.442 0.404 0.381
Characters 0.476 0.505 0.436 0.440
Words 0.339 0.372 0.361 0.321
Equation 0.344 0.413 0.396 0.346
Shapes 0.481 0.507 0.476 0.451
Word groups 0.355 0.397 0.403 0.327

Table 9.3 with better results on word groups on repositioning the next stroke. These two
models seem to yield fairly similar reconstructions (Fig. 9.10).

The one of the goal of the KIHT project is to create an autonomous pen, which
necessitates that the reconstruction process is conducted internally within the Digipen.
Therefore, we decided to keep the TCN-49 model to get a good trade-off between the
model performance and the number of parameters (nearly 2 times fewer parameters).

9.4.2.3 Touching versus pen-up trajectories reconstruction

We focused on training the model using only the "touching" strokes, as outlined above.
The goal was to evaluate the model’s performance on both touching and pen-up strokes
after being trained exclusively on touching strokes. To assess the model’s effectiveness,
we compared its performance when trained solely on touching strokes versus when trained
on a combination of both touching and pen-up strokes. It’s important to note that during
training on the entire sequence, if the pen-up distance exceeds the threshold (where the
trace is no longer tracked), the closest point identified by Dynamic Time Warping (DTW)
is retained.

Table 9.5 shows that the strategy of learning on touching strokes only is generally
better than the one of learning on touching and pen-up strokes upon the distance of
Fréchet, and this is also the case for characters, words, equations and shapes categories.
Results on the sentence category are very close. We think this is due to the correlated

Table 9.4 – TCN models’ size with various receptive fields

# Params TCN-49 TCN-85 TCN-169 TCN-373
Total 467,452 528,452 870,452 894,452
Trainable 464,152 524,752 866,752 888,352
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Figure 9.10 – Handwriting reconstructions with two TCN models with different receptive
fields on the IRISA-KIHT datasets. First line, ground-truth. Second, the 49-receptive-
field TCN model. Third line: TCN model with 373 receptive field.

Figure 9.11 – TCN-49 model performance when training on pen-up and touching data
(middle) and touching data only (bottom). The ground truth is on first line.
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Table 9.5 – Training on touching strokes versus training on touching & pen-up strokes
results

Our TEM

Type Trained on touching
& pen-up strokes

Trained on touching
strokes only

Global 0.447 0.404
Characters 0.559 0.476
Words 0.350 0.338
Equations 0.348 0.344
Shapes 0.629 0.481
Word groups 0.350 0.355

effect of the untracked pen-up movements and the pen-movement hesitations of the writer
between the words of the sentence.

However, by looking at Figure 9.11, we observe that the touching model reconstructs
better touching strokes. The only part where it is not as accurate is on pen-up movements
prediction. This is logical, as the model has not been trained on signals that include the
third dimension.

Similarly, we observe that our model better reconstructs the touching parts of the
word groups but it fails to find where to start the reconstruction of the next stroke. This
may happen due to untracked pen-up movements (that represents movement hesitations
about where to put the pen again on the screen) like in "a — bed" where there is a long
untracked pen-up movements between "a" and "bed".

9.4.2.4 Temporal context integration in input of the touching expert (TEM-
C)

As presented in section 9.2, we suggest to integrate temporal context in input to the
Touching Expert Model. Results are shown at stroke level both quantitatively in Tab.
9.6 and qualitatively in Fig. 9.12. Adding temporal context significantly improves the
model’s ability to capture dynamic movement. By adding an earlier pen-up portion to
the touching strokes inputs, the model can now account for past dynamics, providing a
more comprehensive understanding of the trajectory. It also appears to enhance stroke
reconstruction and improve repositioning, as the model can see during training sections
of 3D signals.
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Table 9.6 – TEM and TEM-C comparison at label and stroke levels using the Fréchet
distance.

Evaluation TEM TEM-C
Label level 0.404 0.308
Stroke level 0.097 0.091

Figure 9.12 – Comparison between the touching expert model (TEM) and its variant
(TEM-C), on the first line the ground truth at stroke (down) and label (up) level, on
the second line the expert model dedicated to touching strokes, on the last line the TEM
improved by adding temporal context (TEM-C).

9.5 Conclusion

We present two new models and demonstrated their performance, as well as the ben-
efits of the preprocessing introduced in the previous chapter.

To address the discrepancies in sampling rates between the Digipen and the tablet,
as well as synchronization issues, we proposed a Dynamic Time Warping (DTW) based
alignment approach. Through experimentation the multiple datasets we have made as
part of the KIHT project and one from the state-of-the-art, we demonstrate that the our
approach surpasses the [Wehbi et al., 2022] proposal.
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The first factor is the alignment with DTW, which preserves its dynamic nature and
significantly enhances prediction accuracy. The second offers visually much better recon-
struction thanks to the wider context.

While the TEM model achieved strong reconstruction results at the stroke level, the
challenge of accurately predicting the initial points of a stroke where dynamic motion
is cut. To address this, we proposed a solution to incorporate the preceding pen-up
trajectory into the input data during the network training phase. By extending the input
sequences to include pen-up signals, the network is exposed to a richer set of dynamic
patterns, thereby improving its generalization capability and ability to predict the first
touching values without relying on padding. Which helps to improve the accuracy of what
we predict.

However, a significant limitation of our approach is modeling untracked and complex
pen-up trajectories, which remains a challenge. We present a new proposal to meet this
challenge in the following chapter.

9.6 Related publications

The preprocessing work presented in the previous chapter and the first TEM model
gave rise to a scientific publication [Swaileh et al., 2023], a presentation at the SIFED
symposium [Imbert et al., 2022], and served as a baseline for the KIT colleague working
on the hardware part with whom we have produced a joint publication [Serdyuk et al.,
2023].
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Chapter 10

A MIXTURE OF EXPERT MODEL FOR

BETTER COLLABORATION WITH TASK

SPECIFICATION

Our TEM-C presented in the previous chapter, the third attempt to reconstruct hand-
writing trajectories from the Digipen using deep neural networks, has produced promising
results in terms of handwriting reconstruction. It is dedicated to the reconstruction of
touching parts (except for the contextual parts of TEM-C, which are quite marginal ie
the 24 points are extremely small compared to the length of a stroke.), which are the
only parts for which a reliable ground truth is available during training. Unlike touch-
ing trajectories, which are 2D trajectories where ground truth can be obtained using
double Digipen-Wacom acquisitions (Fig. 2.1), pen-up trajectories are 3D trajectories
where ground truth signals can only be recovered up to a 7mm height. TEM-C, learned
only from 2D data where we have the ground truth, fails to process 3D trajectories that
correspond to pen-up movements.

Given the positive outcomes of TEM-C regarding pencil touching, but the significantly
degraded results during the pen-up phases (Fig. 10.1), we should consider adjustments to
enhance performance. We want a more global approach to deal both touching and pen-up
movements.

Figure 10.1 – Our TEM-C, which performs very well on touching strokes but has difficulty
for predicting pen-up movements.
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We propose an approach consisting of two expert networks to deal with the different
nature of IMU signals. In the scenario of pencil-based handwriting, we observe two distinct
phases: the pencil touching phase, which produces a 2-dimensional trajectory, and the
pencil pen-up phase, which involves a 3-dimensional target trajectory as the pencil moves
towards the next point of contact. These two phases differ in both the nature of the
signals they generate and the associated ground truth data.

During the pencil touching phase, the pencil directly contacts the surface, resulting
in a 2D trajectory that accurately captures the written path. This trajectory reflects the
actual movements involved in writing, providing clear and reliable ground truth data.

However, once the pencil is lifted off the surface, the dynamics change significantly.
In this pen-up phase, the pencil’s motion becomes 3D, as it moves through space towards
the next part of the writing. The target trajectory during this phase involves the pencil’s
position in 3D space, where height (z-axis) is introduced in addition to the usual 2D
coordinates (x and y). Unlike the pencil touching phase, where the ground truth is the
writing itself, the ground truth for this pen-up movement is more ambiguous. If the user
raises the pencil too high, it can lead to a loss of reliable 3D ground truth. When the
ground truth is lost, learning becomes either impossible or dependent on interpolated
points that do not accurately reflect the real trajectory. Dynamic time warping (DTW)
alignment can introduce discrepancies and disrupt the model’s dynamics. Due to the
absence of a ground-truth trajectory during a pen-up movement, DTW applied over time
associates part of the elevated trajectory with the last point of the previous stroke, and
another part with the first point of the following stroke. As discussed in the previous
chapter, if we attempt to train a model using data that includes both touching and pen-
up, we degrade the quality of the touching reconstruction. To address this, it is essential
to keep a high-performance model specifically dedicated to touching interactions. By
introducing an expert model for pen-up movements, the system can compartmentalize
the learning tasks, ensuring that the touching model remains robust and unaffected by
the inconsistencies and variability inherent in pen-up movements data. This approach
preserves the integrity and performance of the touching model while addressing the unique
requirements of pen-up movements interactions.

In this way, we propose a mixture-of-experts made of two expert neural networks, one
for the touching trajectory, the other for the pen-up parts of the trajectory. This model is
called MOE-C, combines the TEM-C seen before with the Pen-up Expert Model, called
PEM. Additionally, we introduce a variant of the Pen-up Expert Model, called PEM-
I, which accounts for the extra dimension associated with the pen’s height during the
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pen-up phases. This variant uses new, specialized training data to enhance the expert
model dedicated to these pen-up parts. The resulting mixture-of-experts model is called
MOE-CI.

These two approaches are described in detail in the following sections, followed by an
experimental section.

10.1 MOE-C: a new mixture of expert model

We can formalize our problem as multitask learning, in that we have two linked tasks,
the first being the prediction of the writing itself, the second the pen-up movement between
these different parts. These two tasks differ in their dynamics and nature (2-dimensional
vs 3-dimensional signals). In practice, this means combining two specific neural networks.
Inspired by our previous work where the TEM-C is trained on touching strokes only
producing degraded reconstructions on pen-up parts, we suggest to use the same network
architecture as the expert model for touching strokes.

As a reminder and for reproducibility purposes, the TCN model (Fig. 9.2) is based on
4 blocks of a non-causal TCN followed by 2 dense layers. Each TCN block is composed
of 2 convolutions with dilation 1 and 2 respectively and a kernel size of 3. To reconstruct
pen-up strokes, we propose the same architecture but with different learning strategies.

We therefore turned our attention on how to train our PEM model, in particular with
regard to the type of data given as input to the network. Addressing the specificity of
pen-up strokes, we suggest to use the backbone model on complete sequences, because we
believe that giving as much context as possible can be beneficial for pen-up prediction.
The first reason for training our network on entire sequences, rather than isolating pen-up
strokes, comes from the complex dynamics of pen-to-tablet interactions. By having the
full sequence, the model gains insights into the transition patterns between active stylus
contact and pen-up states. Another hypothesis comes from physics: we are in the process
of integration of a signal, so we need information about the initial conditions.

The result is a global reconstruction of the handwriting where two models are trained
in parallel. Thus, this approach acts as a mixture-of-experts, one on the touching that
corresponds to the handwriting itself, the other trained on complete sequences is dedicated
to predicting pen-up part. Contrary to standard MOE models, switching from one model
to the other, our mixture is controlled through the pen’s pressure sensor. In this way,
each expert better captures its own specificities.
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Figure 10.2 – Our MOE-C / MOE-CI approaches merge advancements for the two expert
models: TEM-C, which improves the Touching Expert Model (TEM) by integrating pen-
up context (in green), which gives more context and facilitates the transition from pen-up
to touching, PEM-I, which enhances the Pen-up Expert Model (PEM) by a fine tuning
on 3D data for a better understanding of this third dimension.

We call this approach MOE-C (Fig 10.2), which is the combination of the 2 following
experts:
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— the TEM-C for Touching Expert Model with pen-up Context: its corresponds to
the backbone model trained with touching stoke with pen-up portions preceding the
touching strokes, presented in section 9.2;

— the PEM for Pen-up Expert Model, its corresponds to the backbone model trained
with complete sequence named Pen-up Expert Model (PEM).

10.2 MOE-CI: Training on 3D labeled samples

Handling the pen-up phase in trajectory reconstruction presents unique challenges
due to distinct dynamics compared to writing segments. While the touching parts share
a common 2D plane, pen-up movements introduces a third dimension, representing the
height of the pen-up movements, adding complexity to sensor data as well as the variability
of unconstrained pen-up trajectories. To address this variability, we refined our approach
by fine-tuning a dedicated network using data acquired on inclined planes. In this way,
we expect that the fine-tuned network demonstrates enhanced adaptability to variations
in pen-up height, resulting in more robust predictions for pen-up segments. Acquisition
protocol to acquire inclined examples (Fig. 10.3) includes several positions to introduce
variability in the inclination of the writing surface. Four setups are considered, positioning
the tablet horizontally with a 30-degree upward or downward inclination, and vertically
with similar 30-degree inclinations upwards or downwards.

(a) Horizontal tablet
inclined upward

(b) Horizontal tablet
inclined downward

(c) Vertical tablet in-
clined upward

(d) Vertical tablet in-
clined downward

Figure 10.3 – Data acquisition protocol on inclined planes

We call this approach MOE-CI (Fig 10.2), which is the combination of the 2 following
experts:

— the TEM-C for Touching Expert Model with pen-up Context: its corresponds to
the backbone model trained with touching stoke with pen-up portions preceding the
touching strokes, presented in section 9.2;
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— the PEM-I for Pen-up Expert Model fine tuned on inclined data, its corresponds to
the backbone model trained with complete sequence followed by a fine tuning on
data acquired on inclined plane.

10.3 Experiments

First, we report a comparative analysis of our first approach based on touching strokes
and the novel mixture-of-experts approaches (MOE-C / MOE-CI) against the established
[Wehbi et al., 2022] methodology. We then proceed to an ablation study to analyze in
detail the contributions. We will focus on the specific contribution of each expert and their
impact on overall reconstruction. We do a comparative exploration of possible mixtures,
in order to better understand the improvements of each expert in their collaboration
together in the mixture-of-experts. Finally, we offer an overview of the approaches used on
private and public databases, providing an understanding of the impact of data quantity
and diversity. Note that the databases have been evolved and been enriched throughout
the course of this thesis and the associated project. Unlike in the previous chapter,
the experiments in this section are conducted using the KIHT-Private and KIHT-Public
databases.

10.3.1 Comparison of our approach with state-of-the-art meth-
ods on the KIHT-Private dataset

Using the evaluation protocol and datasets that have been presented, we compared
our TCN model learned on touching strokes only and MOE approaches to the work of
[Wehbi et al., 2022], the reference in the field.

As a reminder, they proposed an approach based on a CNN model with a linear interpo-
lation between sensor signals and ground truth. These results are presented qualitatively
(Fig. 10.4) and quantitatively (Table. 10.1).

The Fréchet distances at label and stroke level are significantly better for our mixture-
of-experts. We can see that on the touching parts, MOE-C and TEM-C performance is the
same, as the same models are used on this part. Adding 3D data into the training of the
Pen-up expert model, as proposed in our MOE-CI, slightly improves the efficiency. It can
be observed that our mixture-of-expert retains the strengths of both models, resulting in a
significant improvement of the reconstruction for both the touching and the pen-up part.
The gain is particularly noticeable at label level, demonstrating a better estimation of the
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pen-up trajectory for repositioning the next stroke. Note that differences in performance
may occur at stroke level for the same expert as the bounding box normalizations are
applied at label level.

Table 10.1 – Fréchet distance computed for our TEM-C, mixture-of-experts and the state-
of-the-art methods trained on the KIHT-Private dataset, and evaluated on the test set.

[Wehbi et al., 2022] Our: TEM-C Our: MOE-C Our: MOE-CI
Label level 0.571 0.437 0.321 0.312
Stroke level 0.120 0.097 0.097 0.091

Figure 10.4 – Comparison of our approaches, on the first line the ground truth, on the
second the reconstruction with the TEM-C, on the third and fourth lines ours mixture-
of-experts approaches: MOE-C / MOE-CI.

10.3.2 Ablation study

In this section, we focus on the ablation study, to evaluate the impact of different
contributions on the overall performance of our different approaches.

We focus on the impact of different contributions on the overall performance of our
mixture-of-experts. We first explore the impact of the extra dimension on the pen-up
expert (PEM vs PEM-I) (cf. 10.3.2.1). This ablation study was performed on the KIHT-
Private dataset. As a reminder, the contribution of temporal context in TEM-C versus
TEM was shown in Section 9.2.
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10.3.2.1 Fine tuning on extra dimension for the pen-up expert (PEM-I)

We now evaluate the training of the pen-up expert on inclined data, including the ex-
tra dimension (discussed in section 10.2). Fine-tuning the PEM model on data acquired
from inclined planes has yielded remarkable improvements in prediction accuracy. It can
be seen both at the stroke and label level, quantitatively in Table 10.2 and qualitatively
in Fig. 10.5. Our expert model seems to tackle the inherent variability in sensors dur-
ing pen-up parts, that is due to different dynamics between writing and pen-up strokes
and from having the height dimension varying in the data. Thus, using data acquired
from inclined planes to simulate various pencil heights, we have successfully dealt with
the height dimension in sensors inputs. The fine-tuned model (PEM-I) demonstrates
enhanced adaptability to variations in pen-up height, resulting in a more robust expert
model for predicting pen-up segments as shown on the Fréchet distance at label level. Ad-
ditionally, improvements are observed at the stroke level, attributable to a more accurate
orientation of characters in their reconstructions. This enhancement stems from a more
precise understanding of spatial relationships.

Table 10.2 – PEM and PEM-I comparison at label and stroke levels using the Fréchet
distance.

Evaluation PEM PEM-I
Label level 0.413 0.350
Stroke level 0.129 0.114

10.3.2.2 Comparison of model combinations into a mixture-of-experts

Now that each expert has been established, we evaluate the performance of each
possible mixture combination (Fig. 10.6 and Table 10.3). We introduce some notation
for the mixture-of-experts (MOE) :

— MOE: the combination touching expert model (TEM) & pen-up expert model
(PEM);

— MOE-I: the combination touching expert model (TEM) & pen-up expert model fine
tuned on inclined data (PEM-I);

— MOE-C: as a reminder, the combination touching expert model with temporal con-
text (TEM-C) & pen-up expert model (PEM);

101



Part II, Chapter 10 – A mixture of expert model for better collaboration with task specification

Figure 10.5 – Comparison between the Pen-up expert model without (PEM) and with
(PEM-I) a fine-tuning on inclined data, on the first line the ground truth, on the second
line the expert model dedicated to pen-up (PEM), on the last line the fine-tuned model
on inclined data (PEM-I).

— MOE-CI: the combination touching expert model with temporal context (TEM-C)
& pen-up expert model fine tuned on inclined data (PEM-I).

This evaluation shows us the benefits of different contributions within a mixture of
models. The addition of context enables more accurate reconstruction of touching strokes,
especially at their extremities. As a reminder, performance differences may occur at stroke
level for the same expert as the bounding box normalizations are applied at label level.
Fine-tuning on 3D data enables better repositioning of pen-up movements. In addition,
the combination MOE-CI, which is the combination of the 2 improved experts, is actually
the method that shows the best results, as expected. The MOE-CI is more often better
than the others, which attests to the benefits of our contributions. Nevertheless, the MOE
has correct performance due to good performances on short mono stroke examples, which
are the easiest part to reconstruct.

Table 10.3 – Evaluation of possible mixtures of experts on the KIHT-Private dataset. The
Fréchet distance is computed to evaluate the models at label and stroke level.

Evaluation MOE MOE-I MOE-C MOE-CI
Label level 0.344 0.321 0.333 0.312
Stroke level 0.096 0.091 0.096 0.091
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Figure 10.6 – Comparison between the different combinations of mixture-of-experts, on
the first line the ground truth, then from the top to bottom: MOE, MOE-C, MOE-I and
MOE-CI.

10.3.2.3 Evaluation on the public dataset

We have released the KIHT-public dataset that will serve as a benchmark for futur
research. We evaluate the performance of our mixture-of-experts (MOE-CI) and compare
it both to the different expert combinations (MOE, MOE-C, MOE-I) to the state-of-the
art approach [Wehbi et al., 2022] and our previous approach (TEM). The results (Table
10.4) are similar to those obtained on the private dataset. Indeed, the integration of an
expert trained at the label level significantly improves performance on the related metric
compared to the state-of-the-art, and thus improves the processing of repositioning the
reconstructed handwriting after pen-up movements. The proposals associated to each
expert improve the robustness of mixture-of-experts, both the temporal context that
reflects physics and dynamics to enhance the touching expert model, or refining the pen-
up expert model with 3D labeled samples for improved pen-up movements predictions.
These consistent results shows that the public dataset is relevant to be used as benchmark.
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Table 10.4 – Fréchet distance computed for our mixture-of-experts and state-of-the-art
methods trained on the KIHT-Public dataset, and evaluated on the test set.

Evaluation [Wehbi et al., 2022] TEM-C MOE MOE-I MOE-C MOE-CI
Label level 0.583 0.354 0.336 0.331 0.321 0.320
Stroke level 0.127 0.096 0.101 0.100 0.097 0.096

10.4 Conclusion

We introduce a mixture-of-experts approach where two models are tailored on a spe-
cific task. The first expert model is designed to predict touching strokes, processing
2-dimensional signals input. The second expert model focuses on predicting trajectory
repositioning between touching strokes, handling 3-dimensional inputs due to pen-up
movements. To optimize this second expert for pen-up movements, we fine-tuned it using
data collected on an inclined plane to leverage variations in the height dimension during
training. Our experiments on two datasets show that our mixture-of-experts framework
surpasses the performance of the two leading state-of-the-art methods. This is particu-
larly true of long sequences such as equations or sentences, in which pen-up movement is
the most common component. And a more marginal effect on characters that are mainly
made up of touching.

This work is dedicated to the handwriting reconstruction from data written on a tablet
using the Digipen. As the Digipen can be used for learning to write in classroom, we will
be interested in processing data from children whose dynamics are different from those of
adults. This will be the subject of the next chapter.

10.5 Related publications

This mixture-of-expert approach is in submission to the Pattern Recognition journal.
We also present it as part of a global article presenting the project by the four partners
[Harbaum et al., 2024].
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Chapter 11

DOMAIN ADAPTATION METHODS TO

PROCESS CHILDREN DATA

11.1 Introduction

Although the Digipen stylus can be used on any surface and by different users, our
first approaches focused on the reconstruction of handwriting from data written by adults
on tablets. In fact, while collecting labelled adult data on a tablet is not a problem, it’s
more complicated to collect data from children as it is necessary to contact schools and
have all parents sign parental authorizations. This requires additional time compared to
collecting from adults. This is why we have less data for children.

Using the Digipen in another experimental context, e.g. on data written by children,
or on another surface, e.g. on paper, leads to different input signals. On the one hand,
children’s handwriting are of variable speed and hesitant gestures depending on the as-
sertiveness in the handwriting. On the other hand, handwriting on paper produces noisier
signals due to friction than when the user writes on a tablet.

The KIHT project’s application objective is to help people learn to write with a pencil
that embeds AI, and to have a generic model whatever the user. This means having a
generic model capable of handling multiple cases. As different inputs can produce the
same writing trace, so it makes sense to build a shared representation that can be used
for reconstruction. This leads us to consider a domain adaptation method for dealing
with the different domains of data and capture the differences to build a single common
representation of the signals. To our knowledge, no domain adaptation method addresses
handwriting trajectory reconstruction from different sources, e.g. from adults vs children.

In this context, we present a domain adaptation approach designed to enhance the
adaptability of our model to deal with the different data sources. For the first adaptation
approach, we will focus on our TEM-C model, which addresses the core of the writing.
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Part II, Chapter 11 – Domain adaptation methods to process children data

Initially trained on data acquired from tablets by adults, our model aims to effectively
handle an additional types of data: handwriting acquired from tablets by children.

11.2 DANN-based method for handwriting reconstruc-
tion

The variability of handwriting sources complicates the task of handwriting reconstruc-
tion. Children handwriting poses a unique challenge due to the ongoing development of
graphomotor skills, resulting in dynamic and inconsistent handwriting patterns as children
learn to write. This translates into longer signal sequences than adults and a wider range
of possible values (Fig. 11.2). Moreover, children’s writing is slower, with inconsistent flu-
ency marked by pauses and irregular accelerations, larger letter sizes, and more frequent
pencil lifts complicating the reconstruction using a model trained on tablet-acquired data.

Our goal is to establish a unified model for all users, requiring a method that enables
a shared representation for both source and target features. Based on the state of the
art, we have observed that Domain-Adversarial Training of Neural Networks (DANN)
effectively achieve this and have been successfully applied across various fields. Domain-
Adversarial Training of Neural Networks [Ganin et al., 2016] are specialized neural network
architectures designed to address the challenge of domain shift, where a model trained on
one domain (source) is expected to perform well on a different but related domain (target).
These networks operate by learning features that are domain-invariant, meaning they are
useful and generalizable across both domains. This is typically achieved through a shared
feature extractor on which additional components are built: a domain classifier and a task-
specific classifier. The domain classifier is trained to determine the domain of the input
data, whereas the task-specific classifier focuses on predicting the label of the dedicated
task. In our context, the task-specific classifier is trained to reconstruct the handwriting
trajectory.

The training process employs adversarial techniques by reversing the domain clas-
sifier’s gradients during backpropagation, prompting the feature extractor to produce
domain-invariant features that enhance performance on the target domain without need-
ing extensive labeled data.
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11.2. DANN-based method for handwriting reconstruction

Figure 11.1 – Visualization of the x component of the Digipen’s rear accelerometer over
time in seconds, from left to the right: a F from adult on tablet, a F from children on
tablet. We notice that the same pattern is written but not with the same fluency due to
the different level of automation of handwriting (adult vs child), which results in slower
writing for children and a jerky gesture that results in greater acceleration amplitude.

Figure 11.2 – Data visualization with the Multidimensional Scaling (MDS) method, we
can see that children’s data on tablets (in red) takes on a wider range of values due to
their handwriting which is still being learned.

11.2.1 Application

In this work, the reconstruction part of the DANN is the TEM-C from the previous
chapter 9. Then we have slice the baseline model as follows: the 4 blocks of the non-causal
TCN is the feature extractor (in green in Fig. 11.3). Each TCN block is composed of 2
convolutions with dilation 1 and 2 respectively and a kernel size of 3. The next two dense
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Part II, Chapter 11 – Domain adaptation methods to process children data

layers refer to the label predictor (in blue in Fig. 11.3) which in our context corresponds to
the trajectory reconstruction. The domain classifier (in pink in the Figure 11.3), is made
up of a max polling layer followed by a dense layer with 256 neurons using the ReLU
activation function, and then another dense lyaer with a single neuron using a sigmoid
activation function.

In our case study, we want to process both adult handwriting on a tablet (source) and
children handwriting on a tablet (target). During training, we provide mixed matches to
two model branches: (1) the feature extractor and the label predictor (green + blue in
Fig. 11.3) pre-trained on adult data, and (2) a feature extractor and domain classifier
(green + pink in Fig. 11.3).
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Figure 11.3 – DANN in our use case.

11.3 Experimental results

We experiment our approach on two datasets, one for adult tablet data (9629 samples),
another for children tablet data (3910 samples). Each dataset contains characters, words,
word groups, equations, and shapes. We compute the Fréchet distance to evaluate the
quality of reconstruction on children’s handwriting. We trained a DANN with children
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and adult data with a Feature extractor and trajectory reconstruction model pretrained on
adult data. We compared the DANN qualitatively (Fig. 11.4) and quantitatively (Table
11.1) to the following methods: baseline model trained on adult data and fine-tuned on
children data and the baseline model trained from scratch on children data.

Table 11.1 – Comparison of reconstruction methods between training from scratch, fine
tuning and domain adaptation method on children test data with the Fréchet distance.

Model TEM-C DANN
Pretraining Data ∅ ∅ Adult Adult
Training Data Adult Children Children Adult & Children
Fréchet distance 0.470 0.345 0.348 0.349

Figure 11.4 – Comparison of reconstruction methods on children test data, on the first
line the ground truth, on the second the Baseline Model trained on adult data, on the
third the Baseline Model trained on child data, then the Baseline Model trained on adult
data and fine-tuned on child data, on the last line the DANN pretrain on adult data.

Table 11.1 shows that methods integrating children data perform the best overall.
Specifically, all the methods trained on children’s data improve the Baseline Model trained
only on adult data. The advantage of DANN is that it keeps a common representation
of adult and children’s features, and table 11.2 shows that it performs well in both areas,
making it a 2-in-1 solution, unlike from scratch and fine tuning models (Table 11.1).
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Table 11.2 – Comparison of reconstruction methods between training from scratch, fine
tuning and domain adaptation method on adult test data with the Fréchet distance.

Model TEM-C DANN
Pretraining Data ∅ ∅ Adult Adult
Training Data Adult Children Children Adult & Children
Fréchet distance 0.332 0.378 0.386 0.364

Table 11.2 shows that the DANN performs better than the two other approaches, making
it a 2-in-1 solution. Regarding the qualitative analysis (Fig. 11.4), we observe that
the trajectory reconstruction using the DANN is quite satisfactory and it seems closest
to the ground truth than using the other approaches on those examples. The unique
representation shared by the two data sources seems help the model in the trajectory
reconstruction, especially on the pen-up part. Additionally, this work is still in progress
and the DANN has potential for further improvement.

11.4 Conclusion

This study shows the benefits of retaining knowledge from one domain (adults on
tablet) and moving on to a second (children on tablet). Future improvements to this study
include several key areas for exploration. First, we plan to study the impact of padding
strategies in a batch, which may affect performance by ensuring uniformity across inputs.
Additionally, investigating how to create and structure batches optimally could lead to
more efficient training and better generalization. We also aim to explore adaptability
as a function of age, to assess the gradation of difficulty in adapting to a domain, as
measured by the writing expertise gap. . Finally, the role of the lambda parameter will
be further studied, particularly focusing on its impact on model performance and devising
an adaptive lambda approach that dynamically adjusts the weight of each branch over
time for enhanced DANN performance. We also want to investigate domain adaptation
on various handwriting surfaces, such as data from tablets to data written on paper.

11.5 Related publications

This initial work on adapting domain to data led to a publication at ICDAR’s ADAPDA
Workshop [Imbert et al., 2024], and a poster at the SIFED symposium [Imbert et al.,
2023].
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GENERAL CONCLUSION

Summary of contributions and results

The first challenge of this thesis was acquiring data, as none with the current Digipen
version was available at the start. Our initial contribution was to establish a data acquisi-
tion protocol using the digital pen developed by the Stabilo company, called Digipen and
the acquisition app developed again by Stabilo. During this thesis we collected two private
datasets and make public parts of them to public 1 two datasets to the research commu-
nity that allows for testing and refinement of handwriting reconstruction algorithms for
future research. These datasets are valuable due to their variability in character words,
sentences, equations, and geometric shapes, enhancing their utility beyond merely the
quantity of data. We were able to train our models on 11811 data, while the public
database on which we also produced results contains 2761 data.

Once the data was collected, the next step was to determine how best to utilize it.
The primary goal of the project is to develop a low-cost pencil for use in classrooms to
aid in learning to write. However, "low cost" also implies noisy signals to deal with. Ad-
ditionally, constraints on model training required the sensor and ground truth sequences
to be of equal length. We have proposed a complete preprocessing chain to prepare the
data that will be provided as input to a neural network. To address the discrepancies in
sampling rates between the Digipen and the tablet, as well as synchronization issues, we
introduced a Dynamic Time Warping (DTW) based alignment as a preprocessing step to
align a sensor signal and a trajectory trace in time.

To create a complete pipeline, we needed to supplement our preprocessing with a neu-
ral network. Given our context, the network needed to handle a limited amount of data
and be lightweight enough to be embedded easier in the Digipen. Therefore, we opted for
a Temporal Convolutional Network (TCN)-based architecture. Our experiments across
several datasets demonstrated that the TEM-C architecture trained on touching strokes

1. https://www-shadoc.irisa.fr/irisa-kiht-s-and-kiht-public-datasets/
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with context outperformed the Convolutional Neural Network (CNN) architecture pro-
posed in [Wehbi et al., 2022], while the DTW preprocessing improves the performance of
both the CNN and TCN compared to a linear alignment [Wehbi et al., 2022].

One of the biggest challenges was modeling untracked and complex pen-up trajecto-
ries, where ground truth is lost when the pen is raised too high. To address this, we
proposed an approach of a mixture of experts—one specialized for the touching phase
and another for the pen-up phase. We refined the pen-up expert model by a fine tuning
on data acquired from inclined planes. This fine-tuning allowed the network to better
adapt to variations in pen-up height, leading to more robust predictions for the pen-up
segments and more qualitative reconstructions.

Another key challenge involved the variability between writers. Writing is a complex
motor task requiring coordinated movements of the fingers, wrists, and arms. There are
inherent differences between the handwriting gestures of children and adults. Children’s
handwriting tends to be slower and less precise compared to adults, largely due to devel-
opmental factors as they are still refining their motor skills and coordination. To develop
a unique model capable of processing data from both adults and children, we began ex-
ploring domain adaptation techniques, and especially a Domain-Adversarial Training of
Neural Networks (DANN), to learn a common representation for both groups. We propose
a DANN network based on the TEM-C proposed previously with an additional head for
the domain classifier. The preliminary results shows that DANN outperforms the other
two approaches when both child and adult data are considered, making it a 2-in-1 solution.

The objective of our work was to design a model capable of reconstructing the trajec-
tory of the Digipen digital pen, with the flexibility to be used by both adults and children
on any type of support.

We focused on adult data collected from a tablet, as it is easier to acquire and allowing
us to get a ground truth. Through our various studies, we developed a comprehensive pre-
processing pipeline and explored various models, investigating different research avenues
such as mixtures of experts and domain adaptation.

We successfully provided a solution to the problem and demonstrated the effectiveness
of the proposed approaches in comparison to the current state of the art. These approaches
can be adapted to other contexts, such as for children or on paper, with appropriate
training data.
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Perspective

Our current use of MSE as a loss function offers simplicity in terms of calculus and
enables fast training and inference times, allowing the network to be embedded in some-
thing as compact as a pencil. However, it does not account for the dynamic nature of
handwriting. It would be worthwhile to explore optimized versions of DTW like losses,
as these could better capture the temporal dynamics of handwriting while maintaining
reasonable computational efficiency. I’m thinking in particular of a Fréchet loss (differen-
tiable Fréchet distance) like what has been done for the DTW (the soft DTW [Cuturi et
al., 2018]. Any performance gains achieved through improved loss functions could benefit
our mixture-of-experts and domain adaptation methods.

The second area of focus is the treatment of pen-up movements, which represents the
most complex aspect of the handwriting process. Exploring alternative approaches to
pen-up movements could lead to more effective solutions.

Looking ahead, several promising strategies could enhance the effectiveness and ro-
bustness of our handwriting trajectory reconstruction approach. One key improvement
would be integrating 3D data into our neural network models. Currently, we rely solely
on the projection in the (x, y) plane as the ground truth, but by incorporating a 3-
dimensional ground truth (x, y, z). Incorporating full 3D kinematic information could
provide a more comprehensive representation of the handwriting process, particularly
during pen-up movements. This enhancement has the potential to significantly improve
the quality of pen-up movements predictions.

Additionally, reconstructing the entire pen-up trajectory poses significant challenges.
Focusing instead on the repositioning vector between strokes may offer a more practical
solution. By accurately modeling these repositioning movements without addressing the
full complexity of pen-up movements, we can simplify the reconstruction process while
still capturing essential aspects of the pen’s motion. This approach could streamline the
model and reduce computational overhead without compromising the quality of the re-
constructed handwriting.

A final area of focus is domain adaptation. While we have started exploring adult-
to-child adaptation, the next step would be to refine the two branches of the mixture-
of-experts. We are continuing with the adult/children model and have begun exploring
an adult-tablet/adult-paper model. Next, we aim to develop a child-paper model and
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potentially even a comprehensive model that classifies across four categories: adult vs
child, and tablet vs paper.
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PERSONAL PUBLICATIONS

Article in an international peer-reviewed journal (+
presentation at ICDAR 2023 – Journal Track)

Swaileh, Wassim et al. (2023), « Online Handwriting Trajectory Reconstruction from
Kinematic Sensors using Temporal Convolutional Network », in: International Journal
on Document Analysis and Recognition, doi: 10.1007/s10032-023-00430-1, url:
https://inria.hal.science/hal-04076399.

Conference Paper

Harbaum, Tanja et al. (2024), « KIHT: Kaligo-based Intelligent Handwriting Teacher »,
in: DATE 2024, Valencia, Spain, url: https://inria.hal.science/hal-04359877.

Imbert, Florent et al. (2024), « Domain adaptation for handwriting trajectory reconstruc-
tion from IMU sensors », in: ICDAR 2024 Workshops, ADAPDA, Athènes, Greece,
url: https://hal.science/hal-04605593.

Serdyuk, Alexey et al. (2023), « Towards the on-device Handwriting Trajectory Recon-
struction of the Sensor Enhanced Pen », in: IEEE 9th World Forum on Internet of
Things, Aveiro, Portugal, url: https://inria.hal.science/hal-04358219.

Communication at the SIFED symposium in France
without proceeding

Imbert, Florent et al. (2022), « Toward Deep Neural Network for Pen Trajectory Re-
construction from Kinematic Sensors », in: Symposium International Francophone sur
l’Ecrit et le Document (SIFED’2022), Rennes, France, url: https://hal.science/
hal-03895960.
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Conference poster at the SIFED symposium in France
without proceeding

Imbert, Florent et al. (2023), « Domain Adaptation for Pen Trajectory Reconstruction
from Kinematic Sensors », in: Poster, url: https://inria.hal.science/hal-
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Titre : Conception d’une architecture de réseaux de neurones profonds dédiée à la synthèse
d’écriture manuscrite à partir de capteurs cinématiques d’un stylo numérique.

Mot clés : Écriture manuscrite en ligne, reconstruction de trajectoire, stylo numérique, Inertial

Measurement Units, réseau de neurones profonds, adaptation de domaine.

Résumé : Cette thèse vise à reconstruire
la trace de l’écriture manuscrite en ligne à
partir d’un stylo numérique Stabilo équipé de
capteurs cinématiques. Nous proposons un
pipeline de traitement associant les signaux
des capteurs à la trajectoire d’écriture, utili-
sant le Dynamic Time Warping pour l’aligne-
ment et une architecture inspirée des Tem-
poral Convolutional Networks. En outre, nous
présentons une approche de mélange d’ex-
perts (MOE) pour améliorer la compréhen-
sion de chaque aspect de l’écriture manus-
crite, comprenant un modèle d’expert pour les

touchés de crayon et un modèle d’expert pour
les trajectoires plume haute. La variation des
signaux capturés entre les adultes et les en-
fants, due aux différences de vitesse et de
confiance dans les gestes d’écriture manus-
crite, constitue un défi important. Nous y re-
médions par une approche d’adaptation au
domaine. Par ailleurs, nous fournissons un
nouvel ensemble de données de référence pu-
bliques pour soutenir les recherches et les
comparaisons futures dans le domaine de la
reconstruction de l’écriture manuscrite.

Title: Design of a deep neural network architecture dedicated to handwriting gesture synthesis
from kinematic sensors coming from a digital pen.

Keywords: Online Handwriting, Trajectory Reconstruction, Digital Pen, Inertial Measurement

Units, Deep Neural Network, domain adaptation

Abstract: This thesis focuses on a digital pen
equipped with kinematic sensors, and its aim
is to reconstruct the in-line trace of handwrit-
ing. We introduce a new processing pipeline
that associates pen sensor signals with the
corresponding writing trajectory. Based on
Dynamic Time Warping to align the signals
and an architecture inspired by Temporal Con-
volutional Networks Additionally, we present
a Mixture-Of-Experts (MOE) approach to en-
hance the focus and understanding of each

aspect of handwriting, comprising a touching
expert model for pencil touches and a pen-up
expert model for pen trajectories. A signifi-
cant challenge is the variation in captured sig-
nals between adults and children, due to dif-
ferences in speed and confidence in handwrit-
ing gestures. We address this through a do-
main adaptation approach. Furthermore, we
introduce a new public benchmark dataset to
support future research and comparisons in
the field of handwriting reconstruction.
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