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Abstract The advent of modern Machine Learning (ML) models necessitates vast amounts
of data and computational power to facilitate accurate predictions. Consequently, these mod-
els undergo training in a distributed manner, wherein numerous compute units are employed,
and the voluminous training data, too extensive to be centralized on a single device, is de-
centralized across users’ devices.

This thesis delves into various aspects concerning the distributed training of models.
Given the escalating scale of computational and data requirements, we initially concentrate
on asynchronous training and decentralized methodologies, which confer robustness as the
scale of the problem expands. Subsequently, we explore the inherent privacy amplification
of decentralized learning and delve into model personalization—an intricate scenario wherein
users may not share identical objectives yet necessitate collaboration.

Keywords: Optimization, statistics, federated, distributed, collaborative, decentralized

Bref résumé Les modèles d’apprentissage automatique modernes exigent d’énormes quan-
tités de données et de puissance de calcul pour effectuer des prédictions précises. Par con-
séquent, ces modèles sont entrainés de manière distribuée: un grand nombre d’unités de calcul
sont nécessaires, et les données utilisées pour l’entraînement, étant trop vastes pour être cen-
tralisées sur une seule machine, sont stockées de manière décentralisée par les utilisateurs.

Cette thèse explore différentes problématiques liées à l’entraînement distribué de mod-
èles. En raison de l’échelle grandissante des ordres de grandeurs des besoins en calcul et en
données nécessaires, nous examinons d’abord les méthodes d’entraînement asynchrones et le
cadre décentralisé. Ensuite, nous abordons les questions liées à la protection des données,
naturellement amplifiées dans le cadre décentralisé, et la personnalisation des modèles, un
scénario plus complexe dans lequel les utilisateurs ne partagent pas nécessairement le même
objectif mais doivent néanmoins collaborer.

Mots-clés: Optimisation, statistiques, fédéré, distribué, collaboratif, décentralisé



Summary

Modern machine learning models demand substantial computational power and extensive
training data, thus requiring distributed approaches for their training. The use of multiple
compute units amplifies processing capabilities, while the decentralization of training data,
often held by users, addresses challenges such as data size surpassing the memory capacity
of individual computers or containing sensitive information that users are hesitant to share.

In this thesis, we delve into distributed and collaborative learning from both optimiza-
tion theory and statistical perspectives. We study the convergence properties of existing
distributed algorithms and address ways to enhance their efficiency, their privacy properties,
and their statistical accuracy.

The first part of this thesis focuses on asynchronous training methods. In synchronous
optimization, compute machines all perform computations and communications at the same
time. If these machines have heterogeneous compute speeds, faster workers will have to wait
for slower ones: this is the straggler problem. An alternative to this is asynchronous opti-
mization, where updates on the model are performed whenever possible, without waiting for
other nodes, leading to more robustness to large-scale training over many compute nodes and
faster algorithms. We study both centralized and decentralized asynchronous optimization
algorithms and provide quantitative asynchronous speedups. For asynchronous decentralized
optimization, we provide a general continuous-time framework (referred to as continuized
framework) to develop asynchronous algorithms that benefit from accelerated communica-
tions and robustness to delayed updates. In the centralized (i.e., in the presence of a central
unit) setting, we study the prevalent asynchronous algorithm and show that provided a slight
modification, it is always faster than its synchronous counterpart.

The second part of the thesis investigates privacy-preserving mechanisms for decentral-
ized learning and personalization strategies. We analyze the privacy properties of decen-
tralized learning algorithms and introduce mechanisms for decentralized optimization that
benefit from decreasing pairwise privacy leaks between nodes as their distance increases in a
communication graph. Additionally, we explore variations of vanilla stochastic optimization
algorithms with Markovian noise, encompassing applications such as decentralized algorithms
with a random-walker that runs through the communication graph and stochastic approxi-
mation problems related to online identification systems. We then delve into model person-
alization in collaborative learning, exploring inherent statistical limits, statistically optimal
algorithms, and personalization strategies based on user or model structural assumptions.

Finally, related to questions that are not central to distributed learning, but to optimiza-
tion of deep networks and statistics in general, the last part of this thesis includes sets of
results on the implicit bias of stochastic gradient descent at the edge of stability for simple
non-convex models, as well as concentration results for random tensors.
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Résumé

Les modèles d’apprentissage automatique contemporains requièrent une puissance de cal-
cul considérable et une quantité de données d’entraînement de grande envergure, parfois éten-
dues à l’ensemble d’Internet, et sont ainsi entrainés de manière distribuée. Cette approche
implique l’utilisation de multiples unités de calcul pour accroître les capacités d’entrainement,
tandis que la décentralisation des données, souvent détenues par les utilisateurs, répond à des
défis tels que la taille des données dépassant la capacité mémoire des ordinateurs individuels
ou la présence d’informations sensibles.

Dans cette thèse, nous explorons l’apprentissage distribué et collaboratif sous les angles
des théories de l’optimisation et des statistiques. Nous examinons les propriétés de con-
vergence des algorithmes distribués existants, explorons des stratégies pour améliorer leur
efficacité, leurs capacités à amplifier la confidentialité des données, et analysons leur préci-
sion statistique.

La première partie de cette thèse se concentre sur les méthodes d’entraînement asyn-
chrones. Dans le cadre de l’optimisation synchrone, toutes les machines effectuent des calculs
et des communications simultanément. Toutefois, dans le cas de vitesses de calcul hétérogènes,
les travailleurs plus rapides doivent attendre les plus lents. Une alternative consiste en
l’optimisation asynchrone, où les mises à jour du modèle sont effectuées sans attendre les
autres nœuds, garantissant ainsi une plus grande robustesse pour l’entraînement à grande
échelle sur de nombreux nœuds de calcul et des algorithmes plus rapides. Nous examinons
à la fois les algorithmes d’optimisation asynchrone centralisés et décentralisés et fournissons
des accélérations asynchrones quantitatives précises. Pour l’optimisation asynchrone décen-
tralisée, nous proposons un cadre général en temps continu (appelé cadre "continuisé") pour
développer des algorithmes bénéficiant de communications accélérées et d’une robustesse ac-
crue aux mises à jour retardées. Dans le cadre centralisé, nous démontrons qu’un algorithme
asynchrone prédominant, moyennant une légère modification, est toujours plus rapide que
son homologue synchrone.

La seconde partie de cette thèse étudie les mécanismes de préservation de la confidentialité
pour l’apprentissage décentralisé et les stratégies de personnalisation. Nous analysons et
introduisons des mécanismes de préservation de la confidentialité des données d’entrainement
pour l’optimisation décentralisée. Nos algorithmes bénéficient de manière quantitative du
cadre décentralisé, ce qui entraîne une diminution des fuites de confidentialité entre paires
de nœuds dans un graphe de communication à mesure que la distance entre ces nœuds
augmente. En lien avec les cadres centralisés et décentralisés, nous explorons des variations
des algorithmes classiques d’optimisation stochastique avec bruit markovien. Nous examinons
également la personnalisation des modèles dans un contexte d’apprentissage collaboratif, en
explorant des algorithmes statistiquement optimaux et des stratégies de personnalisation
basées sur des hypothèses structurelles liées aux utilisateurs ou aux modèles.

Enfin, la dernière partie de cette thèse comprend des ensembles de résultats sur le biais
implicite de la descente de gradient stochastique au bord de la stabilité pour des modèles
non convexes simples, ainsi que des résultats de concentration pour des tenseurs aléatoires.
Ces résultats abordent des problématiques périphériques à l’apprentissage distribué, mais
pertinentes pour l’optimisation des réseaux profonds et les statistiques de manière générale.
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Contributions and outline

We here provide an overall summary of this thesis and its main contributions, by briefly
introducing each chapter. If not explicitly stated otherwise, the contributions of this thesis
are the author’s own. The five parts of this thesis are independent of each other. Within
each part, chapters can be read independently from each other. Each chapter is introduced
and if necessary placed into the context of preceding chapters with specific related works.

Chapter 1. In this opening chapter, we introduce the Machine Learning concepts used
throughout the manuscript and motivate several questions related to distributed learning.
In particular, we start from the basis of supervised learning: we relate the computation
of an estimator to optimization problems and optimization theory, and the generalization
performances of this estimator to statistical learning theory. This leads us to introduce basic
first-order and stochastic first-order optimization methods, and their generalization to the
distributed centralized and decentralized paradigms. We then focus on the settings related
to the contributions of this thesis that we introduce in detail in the distributed learning
framework: asynchronous optimization, personalization, and differentially private learning.

Asynchronous optimization. In Part I, we delve into asynchronous optimization, and our
contributions in this direction are divided into four chapters.

Chapter 2 introduces a novel continuous-time view on Nesterov accelerated scheme, a
close variant of this celebrated algorithm that takes gradient steps at random continuous
times. This new process, referred to as the continuized acceleration, benefits from the best of
both continuous and discrete worlds (respectively analysis-friendliness and easy implementa-
tions), and has applications in decentralized asynchronous optimization. Indeed, accelerating
randomized gossip “à la” Nesterov requires strong synchronization between nodes, which our
continuized variant bypasses. This chapter is based on the paper Continuized accelerations of
deterministic and stochastic gradient descents, and of gossip algorithms [EBB+21], published
at NeurIPS 2021 and written with Raphaël Berthier, Francis Bach, Nicolas Flammarion,
Hadrien Hendrikx, Pierre Gaillard, Laurent Massoulié and Adrien Taylor.

Chapter 3 studies the Asynchronous SGD algorithm, a natural asynchronous version of
Minibatch SGD in the centralized setting. We show that in centralized optimization, compar-
ing the obtained runtimes of Minibatch SGD and its asynchronous counterpart, the optimizer
always benefits from asynchrony, with an explicit quantitative asynchronous speedup. This
chapter is based on the paper Asynchronous SGD beats minibatch SGD under arbitrary de-
lays [MBEW22] published at NeurIPS 2022 and written with Konstantin Mishchenko, Francis
Bach and Blake Woodworth. Konstantin initiated this project. The author’s contribution
was to introduce the delay-dependent stepsizes and to prove Theorem 3.2 (main result under
general assumptions).

Chapter 4 studies asynchronous decentralized optimization with heterogeneous commu-
nication and computation delays, with a focus on delayed gossip algorithms. This chapter
introduces and studies asynchronous algorithms in the continuized framework introduced
in Chapter 2. Our delayed randomized gossip algorithm, and its variant for decentralized
optimization, consist of pairwise delayed communication updates at random times in a com-
munication graph, combined with local asynchronous gradient steps. We explicit a quantita-
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tive asynchronous speedup for delayed randomized gossip that generalizes the asynchronous
speedup aforementioned for asynchronous SGD. This chapter is based on the paper Asyn-
chronous speedup in decentralized optimization [EHM21b], under review for journal publica-
tion, and written with Hadrien Hendrikx and Laurent Massoulié.

Chapter 5 generalizes the analysis of Asynchronous SGD (Chapter 3) to the decentralized
setting, providing general results for an asynchronous version of the Decentralized SGD al-
gorithm. Chapter 5 mainly focuses on asynchronous computations and assumes non-delayed
communications, unlike Chapter 4. We show that the computational asynchronous speedup
of Chapter 3 holds under general decentralized communication assumptions if there are no
communication delays. Furthermore, under communication delays that can be heterogeneous,
we provide asynchronous communication schemes inspired by the theory of Loss Networks
for telecommunication networks, under which the assumptions made in our convergence re-
sults hold. This chapter is based on the paper Asynchronous SGD on Graphs: a Unified
Framework for Asynchronous Decentralized and Federated Optimization [EKM23], published
at AISTATS 2024 and written with Anastasia Koloskova and Laurent Massoulié.

Differentially private and personalized learning. In Part II, we study privacy-preserving
mechanisms for decentralized learning and personalization strategies.

Chapter 6 studies the natural differential privacy amplification properties of decentral-
ization. We introduce and analyze Muffliato, a privacy-preserving mechanism for the de-
centralized mean estimation problem. This mechanism consists of Gaussian noise injection
followed by gossip communications. We introduce a relaxation of Differential Privacy that
takes into account the positions of nodes in a decentralized communication graph and shows
that Muffliato increases the privacy guarantees as the distance between nodes in the graph
increases. We then extend our algorithm to the decentralized optimization setting, replac-
ing the gossip communications of decentralized SGD with our Muffliato mechanism. This
chapter is based on the paper Muffliato: Peer-to-Peer Privacy Amplification for Decentral-
ized Optimization and Averaging [CEBM22] that was published at NeurIPS 2022 and written
with Edwige Cyffers (co-first author), Aurélien Bellet and Laurent Massoulié. The Muffliato
project started while meeting Edwige at Neurips in Paris 2021, who introduced the author to
differential privacy. The contributions of this thesis author in this project are in the design
of the Muffliato mechanism, its extension to decentralization, and the proofs (privacy and
utility) included in the paper and this chapter.

Chapter 7 studies a variant of vanilla SGD: stochastic gradient descent under Markov chain
sampling schemes, where we relax the i.i.d.-ness assumption of the stochastic gradients. The
two main applications are token algorithms — decentralized optimization algorithms where
a “token” performs a random walk on a communication graph while iteratively updating
the current model with local stochastic gradient steps using the information of local nodes
— and online system identification problems. Token algorithms are known to naturally
amplify the differential privacy guarantees through the randomness of the random walker. We
provide black-box lower bounds for SGD under Markovian sampling schemes, study Markov-
Chain SGD under various regularity assumptions, and introduce MC-SAG a variance-reduced
version of MC-SGD, that benefits from improved convergence guarantees. This chapter is
based on the paper Stochastic Gradient Descent under Markovian Sampling Schemes [Eve23]
published at ICML 2023.

Chapter 8 studies the min-max information theoretical limits of personalization, under
the lens of stochastic optimization. We introduce informational lower bounds for the person-
alized collaborative learning problem, showing that users cannot benefit from a collaborative
speedup larger than their number of neighbors in a similarity graph. We then provide algo-
rithms that are based on some gradient filtering strategies, and that match the introduced
lower bounds provided that some similarities are known between agents. If these similari-
ties are not known, we show that they can be estimated and that the induced collaborative
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speedup is still optimal. This chapter is based on the paper On sample optimality in person-
alized collaborative and federated learning [EMS22a] published at NeurIPS 2022 and written
with Kevin Scaman and Laurent Massoulié.

Chapter 9 studies the problem of collaboratively learning shared structures such as low-
rank representations or clustered structures, under a general convex optimization framework.
We show that learning such structures is possible, provided that the number of users col-
laboratively participating is large enough, even if their number of samples is small. Our
approach is based on classical regularization techniques adapted to collaborative empirical
risk minimization. This chapter is based on a work under review, written with Laurent
Massoulié.

Additional contributions of this thesis. The last part of this thesis contains two chapters,
that have no direct link to distributed or collaborative learning. We do not provide the proofs
of this part in the manuscript due to their weaker relation to the broader subject of the thesis.

Chapter 10 provides uniform concentration inequalities for non-isotropic random tensors
with non-linearities. Our concentration inequalities have applications for instance in empirical
mean minimization, where uniform concentrations of Hessians are often required. Related to
distributed learning, our inequalities provide sharper results for statistical preconditioning, a
technique that reduces communication costs. This chapter is based on Concentration of Non-
Isotropic Random Tensors with Applications to Learning and Empirical Risk Minimization
[EM21], published at COLT 2021 and written with Laurent Massoulié.

Chapter 11 studies the implicit bias of stochastic gradient descent over diagonal linear
networks, a simple non-convex linear neural network model that can be analyzed. While the
optimization side of this thesis aimed at proving that we could minimize the empirical risk
efficiently, this does not guarantee that the obtained model has good generalization properties.
It has however experimentally been observed that training using stochastic gradient updates
leads to models that generalize well: they have a beneficial implicit bias. We completely
characterize the solution found by SGD when training diagonal linear networks. Depending
on the initialization scale, the noise level, and the stepsize, the limiting model found by
stochastic gradient descent can perfectly recover sparse solutions. This chapter is based on
(S) GD over Diagonal Linear Networks: Implicit Regularisation, Large Stepsizes and Edge
of Stability [EPGF23], published at NeurIPS 2023 and written with Scott Pesme, Nicolas
Flammarion, and Suriya Gunasekar.

15



Contents

16



Chapter 1

Introduction to Distributed Learning

In the realm of Machine Learning (ML), the fundamental objective is to derive predictions
from existing knowledge. Common ML tasks include addressing linear regression problems,
wherein a model is developed to fit a linear pattern through given data points, or tackling
classification problems, such as discerning between categories like identifying images as ei-
ther cats or dogs based on prior instances. Practical examples of ML applications extend
to domains like weather forecasting for the upcoming day, where predictions are formulated
by using historical weather data spanning decades with the current weather and climate
conditions. Similarly, online recommender systems rely on users browsing histories and pref-
erences to offer personalized suggestions, illustrating how ML seamlessly integrates into daily
experiences for many individuals.

To address these challenges, predictive models undergo a process of training using avail-
able data, referred to as the training set. Within a given class of potential models, the model
demonstrating optimal performance on the training set is typically selected. Subsequently,
the aim is for the trained prediction model to demonstrate accuracy when applied to new,
unseen data. The design of ML prediction models encompasses four fundamental compo-
nents: (i) assembling a sufficiently expressive training set that aligns with the constraints
of the problem, (ii) formulating a class of models within which the prediction model will
be chosen, ensuring they possess desired properties, (iii) efficiently selecting a model from
this class that exhibits superior performance on the training data, and (iv) guaranteeing the
chosen model’s efficacy when applied to previously unseen data.

This thesis primarily concentrates on (iii), with some notable contributions to (iv), empha-
sizing the design of efficient training methods while ensuring robust generalization to unseen
data within stylized scenarios. The focal point is on comprehending contemporary challenges,
particularly in the context of recent ML breakthroughs. Noteworthy achievements, such as
language models adept at solving diverse tasks derived from textual inputs [BCE+23], the
generation of highly realistic videos [Ope24], and the application of generative models to drug
discovery [SSC+18], have been made possible by advancements in architecture, notably the
introduction of new structures like transformers [VSP+17], augmented computational power,
and the development of efficient training methodologies—a core focus of our investigation.

Many prevalent training methodologies hinge on stochastic optimization [BCN18], demon-
strating a remarkable capacity to scale effectively with the burgeoning size of modern models.
This scalability encompasses both the dimension d of the optimization variable (i.e., the num-
ber of model parameters) and the volume of training data, quantified by the number of data
samples m in use. Given that d and m regularly reach the scale of hundreds or thousands of
billions [Cc22, Tc23], the imperative is growing for the adoption of distributed optimization
algorithms. Such algorithms are essential for handling the extensive scale of modern ML
models, with federated learning [MMR+17] representing a specific instance of parallel and
distributed optimization wherein communications and synchrony are restricted, and data
sharing may be limited.

In the introduction of this manuscript, we will introduce the different flavors of distributed
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1.1. Basics of learning and optimization theories

learning we consider in this thesis together with our contributions to the field.

1.1. Basics of learning and optimization theories

In this chapter, we frame ML as an optimization problem and introduce basic concepts of
optimization and learning theories. Note that we only consider supervised learning settings
in the introduction.

The first component of ML is the training data, which we write as {ξi = (ai, bi) , i ∈ [m]},
wherem ∈ N is the number of data samples available, ai’s are the inputs that live in a space A,
and bi’s are their corresponding labels or predictions, that live in B. Given a new a ∈ A, the
goal is to predict its associated label b. In ML, the learning task is formulated as learning a
predictive model φ? : A→ B such that for almost all new inputs a ∈ A and associated label b,
we φ?(a) ≈ b, up to some problem-dependent errors that might be irreducible. This function
φ? is then assumed to lie in a (or in the vacinity of a) set H ⊂ BA that is parameterized by
x ∈ Rd, in the sense that H =

{
ϕ(x; ·) , x ∈ Rd

}
, where ϕ : Rd×A→ B. The primary goal of

the training phase is thus to find the right x ∈ Rd i.e., a model x that satisfies ϕ(x, ·) ≈ φ?.
Finding x such that ϕ(x, ·) ≈ φ? on the whole set A is impossible without any structural

assumption, since we only have access to m data samples {ξi = (ai, bi) , i ∈ [m]}. We will
thus fall back to finding x ∈ Rd such that for all i ∈ [m], we have ϕ(x, ai) ≈ bi; the meaning
of the approximation ≈ may differ depending on the problem. This can be formulated as a
minimization problem: given a loss function ` : B×B→ R+, `(b̂, b) is the loss incurred when
predicting b̂ instead of b: `(b̂, b) = 0 if b̂ = b, and increases when b̂ is far from b. A candidate
for x then is, assuming its existence:

x?ERM ∈ arg min
x∈Rd

{
L(x) =

1

m

m∑
i=1

` (ϕ(x, ai), bi)

}
. (ERM)

This model candidate x?ERM is often referred to as the empirical risk minimizer (ERM) and
L as the empirical risk.

Example 1.1.1. The two following examples are the most commonly studied in ML theory.

1. Binary classification. In binary classification, the inputs ai may lie in a subset of Rp,
while their labels bi are in {−1, 1}: they are binary. In linear binary classification, one
seeks to find x ∈ Rd such that the sign of the scalar product 〈a, x〉 (p = d in this case)
predicts the associated label b with good accuracy. The associated losses are the binary
loss `(〈a, x〉, b) = 1{sign(〈a,x〉)6=b} or the logistic loss `(〈a, x〉, b) = ln (1 + exp (−b〈a, x〉)).

2. Linear regression. In linear regression, the inputs lie in Rd and one seeks x ∈ Rd such
that b ≈ 〈a, x〉: there is a linear relation between inputs a and associated b’s. The
associated loss is the `2 loss, defined as `(〈a, x〉, b) = 1

2(〈a, x〉 − b)2.

Note that instead of minimizing the empirical loss, depending on the structure of the
problem, one may choose to minimize the penalized empirical loss L(x) + λΩ(x) for some
penalty Ω and regularization parameter λ. Such penalties may then lead to either faster
optimization or stronger statistical guarantees.

1.1.1. Minimizing the empirical risk: gradient descent and stochastic gradient descent

The first question that arises now is: how do we effectively minimize L and approximate
the empirical minimizer x?ERM defined in (ERM)? While without any assumption, opti-
mization problems such as (ERM) can be arbitrarily hard to solve, we will consider sets of
assumptions (see Section 1.6) that make iterative methods such as gradient descent effective.
Starting from some initial model x0 ∈ Rd, gradient descent aims at iteratively improving the
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1.1. Basics of learning and optimization theories

model by taking steps in directions where L decreases the most. This can be thought of as
simply going down the valley in the steepest direction when mountaineering and looking for
the lowest point in the area.

Gradient descent. More formally, assuming that L is differentiable, gradient descent per-
forms the following iterations, for k ≥ 0:

xk+1 = xk − ηk∇L(xk) , (GD)

where ηk > 0 is the stepsize or learning rate (depending on the terminology used), and
∇L(xk) is the gradient of L at xk, that points towards larger values of L. Taking a step
−ηk∇L(xk) in the opposite direction should thus decrease the value of L. Gradient descent
is a first-order method : it requires the knowledge and the computation of first-order quantities
related to L (its gradient).

In the general case, the sequence generated by (GD) is not ensured to converge nor
to decrease the loss for arbitrary stepsizes. We recall in a latter section (Section 1.6) sets
of assumptions under which studying gradient descent is possible: (strong-)convexity of L,
smoothness, Lipschitzness, Polyak-Łojasiewicz assumptions, . . . These assumptions may not
be necessarily verified in certain applications (e.g., deep learning applications); optimization
theory however seeks to derive stylized frameworks under which the aforementioned algorithm
and its variants can be studied.

Proposition 1.1.1. Assume that L : Rd → R is convex (for all x, y ∈ Rd, L(x) − L(y) ≥
〈∇L(y), x−y〉) and L−smooth (its gradient is L−Lipschitz). Assume the existence of x?ERM ∈
Rd a minimizer of L. Then, for constant stepsizes ηk ≡ 1

2L , for all K > 0 we have:

L
(

1

K

∑
k<K

xk

)
− L(x?ERM) ≤ 2LB2

K
,

where B2 is an upper bound on ‖x0 − x?ERM‖2.

Proof. Denote x? = x?ERM to ease notations. Developing ek+1 = ‖xk+1 − x?‖2, we have that
ek+1 = ek−2ηk〈∇L(xk), xk−x?〉+η2

k‖∇L(xk)‖2. First, using convexity, −2ηk〈∇L(xk), xk−
x?〉 ≤ −2ηk(L(xk)− L(x?)), and using smoothness, ‖∇L(xk)‖2 ≤ 2L(L(xk)− L(x?)) (see
Section 1.6). Thus, ek+1 − ek ≤ −2ηk(1− Lηk)(L(xk)− L(x?)). Summing over k < K:∑

k<K

2ηk

(
1− Lηk

2

)
(L(xk)− L(x?)) ≤ e0 − eK .

For stepsizes ηk ≡ 1
2L , this leads to 1

K

∑
k<K (L(xk)− L(x?)) ≤ 2Le0

K , and to the desired
result by convexity.

Stochastic gradient descent. Let `′ be the derivative of ` with respect to its first variable.
The gradient of L writes as

∇L(xk) =
1

m

m∑
i=1

`′ (ϕ(x, ai), bi)∇xϕ(xk, ai) ,

where ∇xϕ is the gradient of ϕ with respect to its first variable. Computing ∇L(xk) has a
complexity of m×complexity of computing `′ (ϕ(x, ai), bi)∇xϕ(xk, ai). This complexity in m
can be paralleled, since each `′ (ϕ(x, ai), bi)∇xϕ(xk, ai) can be computed on a different device.
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However, m can be quite large in modern applications. For instance, the MNIST dataset
consists of 60000 digits, while large language models are trained on billions of examples.
Hence, computing ∇L at each iteration can become highly ineffective.

Thus, instead of using all available samples at each iteration, one may alternatively use
stochastic gradient descent (SGD) instead of (GD):

xk+1 = xk − ηkgk , (SGD)

where gk is an unbiased estimate of ∇L(xk) (i.e., E [gk|x0, . . . , xk] = ∇L(xk)) independent of
the previous iterates. Such estimates of the gradients are usually much cheaper to compute,
the most natural one consisting of choosing only a random subset Bk ⊂ [m] sampled uniformly
and independently from the past in all subsets of [m] of a given cardinality, to compute
gk = 1

|Bk|
∑

i∈Bk `
′ (ϕ(xk, ai), bi)∇xϕ(xk, ai), therefore reducing the cost per iteration from

proportional to m to proportional to |Bk| that can be arbitrarily smaller. |Bk| is usually
referred to as the batch size. While this comes at the cost of slower convergence in worst-case
scenarios, in practice using (SGD) instead of (GD) proves to be much faster. We refer the
interested reader to [GG23, GLQ+19] for generic convergence results on the iterates (GD)
and (SGD).

Proposition 1.1.2. Under the assumptions of Proposition 1.1.1, if additionally stochastic gra-
dients satisfy E [gk|Fk] = ∇L(xk) (unbiasedness) and E

[
‖gk −∇L(xk)‖2|Fk

]
≤ σ2 (bounded

variance) where Fk is the filtration up to iteration k, then for all K > 0 and constant stepsizes

ηk ≡ min

(
1

2L ,
√

B2

Kσ2

)
:

E

[
L
(

1

K

∑
k<K

xk

)
− L(x?ERM)

]
≤ 2LB2

K
+ 2

√
σ2B2

K
. (1.1)

Proof. As in the previous proof, let x? = x?ERM. We proceed as in the proof of Proposi-
tion 1.1.1, but with conditional means. E [ek+1|Fk] = ek−2ηkE [〈gk, xk − x?〉|Fk]+η2

kE
[
‖gk‖2|Fk

]
.

First, by linearity of the mean and since xk is Fk−measurable, E [〈gk, xk − x?〉|Fk] = 〈E [gk|Fk], xk−
x?〉 = 〈∇L(xk), xk−x?〉. Then, using the unbiasedness and the bounded variance, η2

kE
[
‖gk‖2|Fk

]
=

η2
kE
[
‖gk −∇L(xk)‖2|Fk

]
+ η2

kE
[
‖∇L(xk)‖2|Fk

]
≤ η2

kσ
2 + η2

kE
[
‖∇L(xk)‖2|Fk

]
. As in the

proof of Proposition 1.1.1, this leads us to, using smoothness and convexity:

E [ek+1|Fk]− ek ≤ −2ηk(1− Lηk)(L(xk)− L(x?)) + η2
kσ

2 .

Taking the mean and summing:∑
k<K

2ηk(1− Lηk)E [L(xk)− L(x?)] ≤ e0 − E [eK ] + σ2
∑
k<K

η2
k .

For constant stepsizes ηk ≡ η ≤ 1
2L ,

1

K

∑
k<K

E [L(xk)− L(x?)] ≤ B2

Kη
+Kσ2η .

We then get the desired result by plugging the value of η (obtained by optimizing the RHS)
in the above equation.
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1.1.2. Generalization to new data for random models: statistical perspectives and general-
ization bounds

Now that we have presented the main ideas behind the minimization of L and the ap-
proximation of x?ERM, what does “generalizing to new and unseen data” mean? Without any
assumption on both the training set (the available data samples ξi = (ai, bi) for i ∈ [m])
and on unseen data on which we want to generalize on, we cannot ensure any guarantee that
our model will perform well. For instance, the training set may only be confined to a small
subspace of the whole space, or the unseen data may be drawn in an adversarial way.

That is where statistical learning theory and its framework comes, and makes the assump-
tion that the samples ξi are drawn i.i.d. from a distribution D, while the “unseen data” is
also drawn from D, independently from the training set. We thus deal with random models,
to be able to derive generalization guarantees. Thus, the average error on this unseen data
writes as:

E(x) = E [`(ϕ(x, a), b)] , ξ = (a, b) ∼ D . (1.2)

The generalization error then writes as:

E(x)− inf
x′
E(x′) , (1.3)

and is thus the optimality gap between x and an optimal model that minimizes E . There are
however other ways to obtain and quantify generalization guarantees for random models, such
as PAC (“probably approximately correct”) learning for instance, that we do not consider in
this manuscript, where we only consider Equation (1.3) as a generalization criterion.

The generalization error of a model x can then be decomposed into two terms: an empirical
optimization error term and a variance error term:{

L(x)−min
x′
L(x′)

}
+ 2

{
sup
x′

∣∣L(x′)− E(x′)
∣∣} .

The first term can be written as L(x) − L(x?ERM) where x?ERM minimizes the empirical
risk (ERM), and determines how well the empirical risk minimizer is approximated. The
second term is a variance term, since for all x′ we have E [L(x′)] = E(x′), and will decrease
as m increases. Due to the supremum taken over all x′, under adequate assumptions, this
variance term will scale as O

(
d
m

)
.

A “good” prediction model x thus minimizes both optimization error and variance error,
which can here be decoupled. However, in the “online” or “one-pass” setting, these can be
the same. If m the number of data samples is very large (larger than the number of epochs
of (SGD) times the batch size, typically), then each data sample will be seen only once.
Consequently, the stochastic gradients gk are in fact stochastic gradients of the generalization
error: E [gk|x0, . . . , xk] = ∇E(xk), since the samples used to compute gk have not been used
before and are independent of the previous k steps. Hence, in that case, stochastic gradient
descent directly minimizes the generalization error, and there is no bias term. Under similar
assumption as for Proposition 1.1.2, we expect the same rate to hold, where this time L is
the smoothness of E , σ2 the variance of new stochastic gradients, and B2 ≥ ‖x0 − x?‖2 where
x? a minimizer E the generalization error is an optimal model.

Different types of arguments exist to upper bound the generalization error (1.3): stability
arguments, Rademacher complexity, etc . . . [BE02, BBL04, BB07]. Overall, under adequate
assumptions (convexity, smoothness, and random samples), the generalization error would
satisfy bounds of the form

E(x̂)− inf
x′
E(x′) ≤

√
Cd

m
, (1.4)

where d is the dimension of the search space, and m the number of samples, and C depends
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on the regularity of `, φ and the law of the samples ξ. Under strong convexity assumptions
of the objective, the rate in Equation (1.4) would be replaced by the faster rate C′d

m .
We present a simplified version here for linear regression with the quadratic loss and

Gaussian data to provide an example of the formalism used throughout the thesis, and to
what we refer to when tackling generalization properties. The proof below — whose main
ideas are very classical but that the author nonetheless finds quite nice in that the approach
is general and can be applied to any problem — also gives the intuition of where the different
factors (dimension d and inverse of the number of samples 1/n) come from. We refer the
interested reader to [Gir21, Wai19] for detailed and pedagogical overviews of high-dimensional
statistics techniques.

Proposition 1.1.3. Assume that data (ai, bi) ∼ D is generated as bi = 〈x?, ai〉 + zi, where
ai ∼ N (0, Id) and zi ∼ N (0, σ2) are independent Gaussians, and x? ∈ Rd satisfies ‖x?‖ ≤ 1.
Assume that the loss ` is the quadratic loss (`(b′, b) = 1

2(b − b′)2) and that the function φ is
linear (ϕ(x, a) = 〈x, a〉). Then, the generalization error (1.3) writes, for any x ∈ Rd:

E(x)− inf
x′
E(x′) =

1

2
‖x− x?‖2 ,

and the regularized empirical risk minimizer defined as

x̂ ∈ arg min
x∈Rd , ‖x‖≤1

{
L(x) =

1

m

m∑
i=1

` (ϕ(x, ai), bi)

}
.

satisfies, with probability 1− δ:

‖x̂− x?‖2 ≤ C max

(
d ln(n) + ln(1/δ)

n
,

√
d ln(n) + ln(1/δ)

n

)
,

where C > 0 is a numerical constant.

Proof. By definition of L, we have L(x̂) ≤ L(x?). This writes as:

1

2n

n∑
i=1

〈ai, x̂− x?〉2 ≤
1

n

n∑
i=1

zi〈ai, x̂− x?〉 .

Since ai’s are standard centered Gaussians, for fixed ∆ ∈ Rd, E
[
〈ai,∆〉2

]
= ‖∆‖2. Random

variables 〈ai,∆〉2 are then independent ‖∆‖2−subexponential random variables. We can thus
use Hanson-Wright inequality [HW71] to bound the deviations of 1

n

∑n
i=1〈ai,∆〉2 around its

mean:

P

(∣∣∣∣∣ 1n
n∑
i=1

〈ai,∆〉2 − ‖∆‖2
∣∣∣∣∣ > c‖∆‖2

(√
λ

n
+
λ

n

))
≤ 2 exp (−λ) .

where c > 0 is some numerical constant. Then, we would like to apply this to ∆ = x̂ − x?.
However, this comes with a twist: x̂ is not independent from the training set, since it has
been constructed as a function of the training set! To use the above deviations, we therefore
need to compute uniform deviations, which are valid for all ∆ ∈ Rd.

We will thus resort to a discretization argument. First, note that the above expression in
the probability is homogeneous in ‖∆‖, so that we can work on the unit sphere. Let Nε ⊂ S
be an ε−net of minimal cardinality of S, the unit sphere of Rd: for all x ∈ S, there exists
x′ ∈ Nε such that ‖x− x′‖ ≤ ε. We know that ln(|Nε|) ≤ d ln(1 + 2/ε) [Dud74]. Using a
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union bound and setting λ = d ln(1 + 2/ε) + t, we have:

P

(
∀∆ ∈ Nε ,

∣∣∣∣∣ 1n
n∑
i=1

〈ai,∆〉2 − 1

∣∣∣∣∣ > c

(√
d ln(1 + 2/ε) + t

n
+
d ln(1 + 2/ε) + t

n

))
≤ 2 exp (−t) .

We want to extend this to S. Let ∆ ∈ S, and ∆′ ∈ Nε such that ‖∆−∆′‖ ≤ ε. The
function x ∈ S 7→ 〈ai, x〉2 is L = 2 maxi ‖ai‖2 Lipschitz. Thus,

∣∣ 1
n

∑n
i=1〈ai,∆〉2 − 1

∣∣ ≤∣∣ 1
n

∑n
i=1〈ai,∆〉2 − 1

∣∣ + Lε. For ε < 1
2L , we thus have that, with probability 1 − 2e−t, for

all ∆ ∈ S,

1

2
− c
(√

d ln(1 + 2/ε) + t

n
+
d ln(1 + 2/ε) + t

n

)

≤ 1

n

n∑
i=1

〈ai,∆〉2

≤3

2
+ c

(√
d ln(1 + 2/ε) + t

n
+
d ln(1 + 2/ε) + t

n

)
,

and in particular, for ∆ = x̂− x? (by renormalizing),

1

n

n∑
i=1

〈ai, x̂− x?〉2 ≥
(

1

2
− c
(√

d ln(1 + 2/ε) + t

n
+
d ln(1 + 2/ε) + t

n

))
‖x̂− x?‖2 .

The proof is not over yet. However, the goal of this introduction is only to give a brief
overview of techniques, so we will only give a sketch of proof for the remaining of this proof,
and refer the interested reader to the books [Gir21, Wai19] for detailed arguments.

First, L is random: we can bound it with high probability using the concentration of χ2

random variables [Ver18] and a union bound over all n random variables. Then, the noise
term 1

n

∑n
i=1 zi〈ai, x̂−x?〉 is bounded exactly as we did for 1

2n

∑n
i=1〈ai, x̂−x?〉2, except that

this time this quantity is centered so only deviations appear.

1.1.3. Implicit regularization: relation between optimization algorithms and generalization

The stochastic gradient descent algorithm (SGD) [RM51] is the foundational algorithm for
almost all neural network training. Though a remarkably simple algorithm, it has led to many
impressive empirical results and is a key driver of deep learning. However, the performances
of first-order optimization algorithms are quite puzzling from a theoretical point of view as
(1) their convergence is highly non-trivial for non-convex models (if the optimization (ERM)
is non-convex) and (2) there exist many solutions to (ERM) for the training objective which
generalise very poorly [ZBH+17].

To explain this second point, the concept of implicit regularisation has emerged: if over-
fitting (fitting all training points perfectly) is harmless in many real-world prediction tasks,
it must be because the optimization process is implicitly favoring solutions that have good
generalization properties for the task. The canonical example is overparametrised linear
regression with more trainable parameters than number of samples: although there are in-
finitely many solutions that fit the samples, GD and SGD explore only a small subspace
of all the possible parameters. As a result, it can be shown that they implicitly converge
to the closest solution in terms of the `2 distance, and this without explicit regularisation
[ZBH+17, GLSS18a], as shown below. Proposition 1.1.4 is an independent contribution of
this manuscript, and differs from previous approaches [ZBH+17, GLSS18a] by showing almost
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sure convergence instead of directly assuming convergence of the iterates.

Proposition 1.1.4. Let us consider the quadratic linear regression problem:

L(x) =
1

2m

m∑
i=1

(〈x, ai〉 − bi)2 ,

for inputs ai ∈ Rd, model x ∈ Rd and labels bi ∈ Rd. In the overparametrised regime, there
exists some x ∈ Rd such that for all i ∈ [m], we have 〈x, ai = bi: such a x is an interpolator
and L(x) = 0. The overparametrised regime will in most cases always happen for dimensions
larger than the number of samples: d� m.

Consider computing the empirical risk minimizer (ERM) via stochastic gradient descent
as in (SGD) initialized at some x0 ∈ Rd for some small enough constant stepsizes ηk ≡ η.
Then, the iterates (xk) will converge almost surely to some interpolating vector x?`2 ( i.e., such
that L(x?`2) = 0) characterized by:

x?`2 ∈ arg min
x?∈Rd ,∀i∈[m] , 〈ai,x?〉=bi

‖x0 − x?‖22 ,

which is an implicit regularization problem.

Proof. The stochastic gradients write as gk = 1
N

∑
i∈Bk aia

>
i (xk − x?) where Bk is drawn

uniformly at random in the subsets of [m] of size N . Let x? be any interpolating vector. Let

L > 0 be such that for all subsets B of [m] of size N , we have
∥∥∥ 1
N

∑
i∈Bk aia

>
i (xk − x?)

∥∥∥2

2
≤

L
N

∑
i∈Bk(xk − x?)aia>i (xk − x?): L is an upper bound on the smoothness of all stochastic

functions sampled. We have, using computations similar to those of Proposition 1.1.1:

‖xk+1 − x?‖2 = ‖xk − x?‖2 + η2

∥∥∥∥∥∥ 1

N

∑
i∈Bk

aia
>
i (xk − x?)

∥∥∥∥∥∥
2

2

− 2η

N

∑
i∈Bk

(xk − x?)aia>i (xk − x?)

≤ ‖xk − x?‖2 +
η2L

N

∑
i∈Bk

(xk − x?)aia>i (xk − x?)

− 2η

N

∑
i∈Bk

(xk − x?)aia>i (xk − x?)

≤ ‖xk − x?‖2 −
η

N

∑
i∈Bk

(xk − x?)aia>i (xk − x?) ,

for η < 1/L. Thus, ‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 and by induction the sequence (xk) is
bounded. Then, summing as in Proposition 1.1.1, we have that, almost surely:

∑
k<∞
Lk(xk) ≤

‖x0 − x?‖2
η

,

where Lk(xk) = η
N

∑
i∈Bk(xk−x?)aia>i (xk−x?). We now would like to show that

∑
k<∞ L(xk) <

∞. We can write ∑
k<K

L(xk) =
∑
k<K

Lk(xk) +MK ,

where MK =
∑

k<K L(xk)−Lk(xk) is a martingale. Now, notice that MK =
∑

k<K L(xk)−∑
k<∞ Lk(xk) ≥ −

∑
k<∞ Lk(xk) ≥ −

‖x0−x?‖2
η , since

∑
k<K L(xk) ≥ 0 and using what we

have proved above. Consequently, MK is a lower bounded martingale, so that using Doob’s
first martingale convergence theorem [Doo90] — a lower bounded supermartingale converges
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almost surely —, MK converges almost surely. We can thus conclude that
∑

k<K L(xk)
converges also almost surely, so that L(xk)→ 0.

Let x?`2 be (uniquely) defined as:

x?`2 ∈ arg min
x?∈Rd , ∀i∈[m] , 〈ai,x?〉=bi

‖x0 − x?‖22 ,

we would like to show that xk → x?`2 . Using KKT conditions of the above problem, we have
that x?`2 − x0 ∈ Span(a1, . . . , an).

For all k ≥ 0, decompose xk as xk = x0 + yk + zk, where yk ∈ Span(a1, . . . , an) and zk ∈
Span(a1, . . . , an)⊥. Notice that for all k, gk ∈ Span(a1, . . . , an), so that zk = 0 for all k. Thus,
we have that xk−x0, x

?
`2−x0 ∈ Span(a1, . . . , an), so that xk−x?`2 ∈ Span(a1, . . . , an). Now, by

definition, the matrix
∑m

i=1 aia
>
i is invertible on Span(a1, . . . , an): since it is symmetric and

positive semi-definite, it is thus positive definite. Hence, there exists µ > 0 such that for all
x ∈ Span(a1, . . . , an), we have

∑m
i=1 x

>aia>i x ≥ µ‖x‖2. Thus, since L(xk) =
∑m

i=1(x?`2 −
xk)
>aia>i (x?`2 − xk), we have L(xk) =

∑m
i=1(x?`2 − xk)

>aia>i (x?`2 − xk) ≥ µ
∥∥x?`2 − xk∥∥2.

Consequently,
∥∥x?`2 − xk∥∥2 → 0 almost surely, as desired.

Although in most chapters in the manuscript we either focus only on optimization guar-
antees (proving that we converge to a minimizer of the empirical risk or generalization error)
or on generalization guarantees of some given estimators, one needs to keep in mind that both
are intertwined, via implicit regularization phenomena. This is particularly the case in mod-
ern machine learning applications, where models are largely overparametrised and infinitely
many perfect interpolators exist, making it difficult to know which ones will generalize well.
The distributed algorithms we consider next are first-order optimization algortihms, and
satisfy black-box first-order assumptions as defined in [Bub15, Section 3.5]. The analysis
provided just above directly extends to this whole class of algorithms and thus to algorithms
developed in latter chapters.

However, quite importantly, it is not always the case that all first-order algorithms, what-
ever their hyperparameters (here the stepsizes and batchsizes), converge to the same solution.
It has frequently been observed that in modern deep learning, parameter-tuning plays not
only plays a crucial role in convergence properties on the training set, but also on the gener-
alization guarantees of the retrieved solution: both are intertwined.

In Chapter 11, we study the implicit regularization of stochastic gradient descent for
simple non-convex models (diagonal linear networks). We highlight that the hyperparameters
of the algorithm (stepsize and batchsize) lead to SGD converging to interpolating solutions
that may vary a lot, which is not the case for the very simple convex model (quadratic linear
regression) considered in the previous example.

1.2. Distributed learning setting

Now that we have introduced the basis of ML theory we require, we are armed to introduce
the distributed learning setting in this section, before highlighting the settings we will consider
in this thesis in latter sections. In distributed learning, the purely sequential nature of first-
order methods such as (GD) or (SGD) above changes. Indeed, we now assume that there
are n computing nodes, that may each compute information in parallel. However, depending
on the assumptions we make — the existence of a central orchestrator, compute nodes that
possess private data, restricted communications, . . .—, the nature of the resulting algorithms
may drastically change.

The common ground of the different flavors of distributed learning we will consider, is
that the problem at hand can be written as follows. The n compute nodes, indexed by i ∈ [n],
each possess a local function fi that may be accessed only at node i. This function fi can
either be the empirical risk associated to the data held by node i, or directly its generalization
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Algorithm 1.1: Distributed SGD
Input: Initialization x0,
stepsizes {ηk}k≥0,
number of epochs K

1 for k = 0 to K − 1 do
2 Server sends xk to all nodes i
3 for all nodes i in parallel do
4 Compute gk,i unbiased

estimate of ∇fi(xk)
5 Send it back to the server

6 Server updates
xk+1 = xk − ηk

n

∑n
i=1 gk,i

Output: xK

Algorithm 1.2: Local SGD
Input: Initialization x0,
stepsizes {ηk,h}k,h≥0,
epochs K, local steps H

1 for k = 0 to K − 1 do
2 i receives yk0,i = xk from server
3 for all nodes i in parallel do
4 for h = 0 to H − 1 do
5 Compute gkh,i and:
6 ykh+1,i = ykh,i − ηk,hgkh,i
7 Send xk+1,i = ykH,i to server

8 xk+1 = 1
n

∑n
i=1 xk+1,i

Output: xK

Figure 1.1 – Distributed algorithms in the centralized setting: Distributed (or Minibatch) SGD and
Federated Averaging (or Local SGD)

error or expected risk with respect to some local data distribution. Correspondingly,

fi(x) =
1

m

m∑
j=1

Fi(x, ξij) , or fi(x) = E [Fi(x, ξ)] where ξ ∼ Di ,

for Di the local distribution of agent i in the latter and ξi1, . . . , ξim its local data samples
in the former case. The function Fi corresponds to Fi(x, ξ) = `(ϕ(x, a), b) for data sample
ξ = (a, b) in the notations of the previous section.

The goal of distributed learning is then to minimize the averaged function f :

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
. (1.5)

In the case where local functions fi are empirical risks, this amounts to minimizing the
empirical risk over all samples {ξij}, while if the local functions are local generalization errors
with respect to some local distributions Di, this amounts to minimizing the generalization
error with respect to the mixture of all local distributions Di. In both cases, a single model
is learnt for all compute nodes, and functions fi can either be heterogeneous or all equal.

Depending on the scenarios, compute nodes may also be referred to as machines, agents
or users.

1.2.1. Central-server (centralized) setting: distributing SGD over different compute nodes

The most basic communication setting is the central-server (or centralized) one: there
exists a central unit that aggregates information from all compute nodes, perform computa-
tions, and communicate with the compute nodes. This is summarized in Figure 1.2 (left):
agents (bottom line) communicate with the server through the communication links. In this
subsection, we present two very classical algorithmic approaches to minimize the objective
defined in Equation (1.5) in a distributed way in the centralized setting, in order to introduce
the decentralized setting in next subsection and to better understand the settings we will
introduce later in this chapter.
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1.2. Distributed learning setting

Distributed SGD (or Minibatch SGD). In the centralized setting, the simplest algorithm
consists in parallelizing the computations of gradients. At each iteration, (i) the server sends
the current model xk to all n agents; (ii) for all i, agent i computes gk,i a stochastic gradient
(an unbiased estimate of ∇fi(xk)) and sends it back to the server; (iii) the server updates
the model by aggregating all stochastic gradients. Note that 1

n

∑n
i=1 gk,i is then an unbiased

stochastic gradient of f = 1
n

∑
i fi. This is summarized in Algorithm 1.1.

Distributed SGD has two advantages: the first one is computational, since all stochastic
gradients computed at each epoch are computed in parallel. The second advantage is that
the variance of the stochastic gradient 1

n

∑n
i=1 gk,i used to update xk is decreased by n the

number of nodes, compared to the variance of each stochastic gradients. We thus expect
the convergence of this algorithm to require less epochs than simply using one stochastic
gradient (that will have a higher variance) at a time: since computes are paralleled, if all
machines compute at the same speed, the time per iteration will be the same, while each
iteration of distributed SGD will be more efficient. If σ2 is an upper bound on the variance of
stochastic gradients gk,i and on the population variance (i.e., E

[
‖gk,i −∇fi(xk)‖2|xk

]
≤ σ2

and 1
nE
[
‖∇fi(xk)−∇f(xk)‖2|xk

]
≤ σ2), and local functions fi are convex and L−smooth

and B2 ≥ ‖x0 − x?‖2 where x? minimizes f , then the expected rate of convergence will be
[GG23]:

E [f(xk)− f(x?)] = O
(
LB2

K
+

√
σ2B2

nK

)
. (1.6)

This can be obtained by directly adapting Proposition 1.1.2. We thus observe a speedup
proportional to n the number of compute nodes in the lower order term (the second term)
compared to vanilla SGD as in Equation (1.1), while each iteration is not expected to take
much longer than SGD that uses only one stochastic gradient gk,i at each epoch. In the case
where compute nodes hold local functions fi that are heterogeneous and that for instance
correspond to empirical risks computed with some local private data of local node i, this
algorithm is naturally distributed. In the case where all data samples are held at the server,
the server itself sends data samples to compute nodes at each iteration to compute stochastic
gradients in parallel: in this configuration, this algorithm is in fact simply a distributed ver-
sion of Minibatch SGD, has a long history [ZWLS10, CSSS11, DGBSX12] and is commonly
used in practice [GDG+17].

Local SGD (or Federated Averaging). The previous algorithm however requires that for
each stochastic gradient step, the server communicates with all nodes. This can become
quite computationally inefficient if communications are more expensive than computations.
Hence the idea behind the Local SGD algorithm (or equivalently, Federated Averaging, de-
pending on the terminology used) summarized in Algorithm 1.2: instead of simply performing
a single stochastic gradient step for each communication, compute nodes perform H ≥ 2 local
stochastic gradient steps [MMR+17, WPS20b, Sti18]. This algorithm benefits from an in-
creased efficiency per iteration. Under similar assumptions as above, we expect the following
rate [KLB+20]:

E [f(xk)− f(x?)] = O

LB2

K
+

[√
LσB2

K

]2/3

+

√
σ2B2

nHK

 . (1.7)

The lower order term (the last one) thus benefits from a speedup proportional to H the num-
ber of local steps compared to Minibatch/distributed SGD (Equation (1.6)) while requiring
the same number of communications.
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1.2. Distributed learning setting

Figure 1.2 – Centralized to decentralized setting

The centralized setting however has one major drawback: all communications happen
between compute nodes and the server. Consequently, if the server fails, the whole procedure
stops. This will happen if the scale of the problem and the number of compute nodes increase
too much: since the server has a limited bandwidth (the rate of data transfer), if the number
of compute nodes become too large, then it will not be able to handle all communications
and will thus stop or slow down the procedures. Indeed, workers will need to wait for the
server to be available, thus loosing the benefits of parallelization.

1.2.2. From centralized distributed learning to decentralized learning and gossip algorithms

The decentralized setting gets rids of a central server, as illustrated in Figure 1.2: compute
nodes communicate with each other in a peer-to-peer fashion. Formally, compute nodes are
assumed to be nodes of an undirected graph G = (V, E) where V = [n] and the edges E
correspond to pairwise communications that are possible only between adjacent nodes in
the graph. In the centralized setting, the server kept a copy xk of the current model and
broadcasted it to compute nodes: this is no longer possible in the decentralized setting.
Thus, compute node that corresponds to node v ∈ V in the graph keeps a local copy xkv of
the current iterate .1

The two key ingredients behind centralized distributed optimization algorithms (such as
Distributed Minibatch SGD or Local SGD, Figure 1.1) are (i) local gradient computations at
the location of compute nodes and eventually local gradient steps; (ii) communication with
the server, that averages the values computed by the nodes. While (i) does not suffer from
decentralization, (ii) can no longer be done in the decentralized setting. Thus, communica-
tions with the server that abstractly consisted of global averagings, now need to be replaced
by local averagings. Since communications can only happen between adjacent nodes in the
graph, these averagings will be made between adjacent nodes. These local communications
are formalized with gossip matrices.

Definition 1.2.1 (Gossip matrix). A gossip matrix on graph G = (V, E) is a symmetric matrix
W ∈ RV×V such that the followings hold.

1. For all v, w ∈ V, W{v,w} ≥ 0;

2. For all v, w ∈ V, W{v,w} > 0 =⇒ {v, w} ∈ E;
1throughout this manuscript, we prefer the notation v ∈ V instead of i ∈ [n] when dealing with nodes in a

communication graph, to highlight the graph dependency. We may however use both notations in some cases.
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1.2. Distributed learning setting

3. For all v ∈ V, we have
∑

w∈VW{v,w} = 1.

A gossip matrix is thus simply a symmetric and bistochastic matrix. Given the commu-
nication graph G, gossip matrices can be easily exhibited, such as W = I − D−A

d where d is
the maximum degree of a node in the graph, D is the diagonal matrix such that Dv,v is the
degree of node v, and A is the adjacency matrix of graph G (A{v,w} = 1 iff {v, w} ∈ E).

The decentralized averaging problem. The decentralized averaging problem consists of com-
puting, in a decentralized way (using only communications along edges of graph G), the mean
of values

{
xv ∈ Rd, v ∈ V

}
held by nodes of the graph. The gossip algorithm is the most nat-

ural algorithm to solve this problem. Given a gossip matrix W , initializing the procedure
with x0

v = xv at node v ∈ V, iterates of the gossip algorithm are obtained by iterating the
following recursion:

∀k ≥ 0 , ∀v ∈ V , xk+1
v =

∑
w∈Nv

W{v,w}x
k
w , (1.8)

where Nv = {w ∈ V | {v, w} ∈ E} are the neighbors of node v in the graph. Due to Points
2. and 3. in Definition 1.2.1, we have

∑
w∈Nv W{v,w} = 1: xk+1

v is obtained by performing a
weighted average of all the values xkw for w adjacent to v in the graph. Hence, Equation (1.8)
corresponds exactly to a local averaging, that consists of an approximation of the global
averaging in the decentralized setting.

Equation (1.8) can be written more compactly in matrix form. Denoting X = (xv)v∈V ∈
RV×d and Xk = (xkv)v∈V ∈ RV×d for k ≥ 0, we simply have:

∀k ≥ 0 , Xk+1 = WXk . (1.9)

This sequence satisfies the following property.

Proposition 1.2.1. Let x̄ = 1
n

∑
v∈V xv the mean to be approximated, and let ρ = min(1 −

λ2, 1 + λn), where λ1 ≥ . . . λn are the eigenvalues of W .Then, for all k ≥ 0,

1

n

∑
v∈V

∥∥∥xkv − x̄∥∥∥2
≤ (1− ρ)2k

n

∑
v∈V
‖xv − x̄‖2 .

Proof. Let 1 ∈ RV be the vector with all entries equal to 1 and X̄ = 1x̄> = (x̄| . . . |x̄)> ∈
RV×d. We have W1 = 1, so that WX̄ = X̄, leading to Xk+1 − X̄ = WXk − X̄ = W (Xk −
X̄). Then,

∑
v∈V x

k+1
v =

∑
v∈V x

k
v since multiplying by W preserves the mean, leading to∑

v∈V x
k
v = nx̄ =

∑
v∈V xv by induction.

Since W is a symmetric bistochastic matrix, using the Perron-Frobenius theorem, its
spectrum consists of eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1, where λ1 = 1 is asso-
ciated to the eigenvector 1. Since Xk − X̄ is orthogonal to 1, we have

∥∥W (Xk − X̄)
∥∥ ≤

maxk≥2 |λk|
∥∥Xk − X̄

∥∥ = (1−ρ)
∥∥xk − X̄∥∥, by definition of ρ. This leads to the desired result

by induction.

Hence, the iterates of the gossip algorithm defined in Equation (1.8) converge to the
desired mean, as long as ρ > 0 and k � ρ−1. For the gossip matrix W = I + D−A

d described
previously, as long as the graph G is connected, ρ > 0 is satisfied. Note that for instance for
the complete graph, this matrix boilds down to W = 11>/n (all entries equal to 1/n), and
ρ = 1: only one iteration is required, since this iteration consists of a global averaging.

The bottleneck of the gossip algorithm as formulated in Equation (1.8) is that at each
iteration, every node needs to communicate with every neighbor: this can be quite costly
and might require heavy synchronization costs. An alternative to this is to use varying
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1.2. Distributed learning setting

communication matrices, that may only activate a few communication edges in the graph at
each round:

∀k ≥ 0 , ∀v ∈ V , xk+1
v =

∑
w∈Nv

W k
{v,w}x

k
w , (1.10)

where
{
W k
}
k≥0

are gossip matrices. This can be written as xk+1 = W kxk. A classical
instance of this is the randomized gossip algorithm proposed by [BGPS06], where W k =
W{vk,wk} for

W{vk,wk} = I − (evk − ewk)(evk − ewk)>

2
,

where (ev) is the canonical basis of RV . In this case, the iteration in Equation (1.10) reads
as

xk+1
v = xkv for v /∈ {vk, wk} ,

xk+1
vk

= xk+1
wk

=
xkvk + xkwk

2
.

This is a local averaging alongside edge {vk, wk}. For gossip with varying matrices, we have
the following proposition, that holds under some randomness assumption on matrices Wk,
that is satisfied for randomized gossip if {vk, wk} is sampled uniformly at random in E .
Proposition 1.2.2. Assume that matrices Wk are random and independent and satisfy the
following mixing property: there exists some ρ′ > 0 such that for all k ≥ 0 and all Y ∈ RV×d,
we have E

[∥∥W k(Y − Ȳ )
∥∥2
]
≤ (1− ρ′)

∥∥Y − Ȳ ∥∥2 where Ȳ = 11>

n y.2 Then,

1

n

∑
v∈V

∥∥∥xkv − x̄∥∥∥2
≤ (1− ρ′)k

n

∑
v∈V
‖xv − x̄‖2 .

Proof. As in previous proposition, we have
∑

v x
k
v = nx̄ for all k, so that X̄ = 11>

n Xk, leading

to E
[∥∥W k(Xk − X̄)

∥∥2|Xk
]
≤ (1 − ρ′)

∥∥Xk − X̄
∥∥2, since W k is independent from previous

matrices W `, ` < k and thus from xk. We then conclude by induction.

We can further explicit what ρ′ will look like for randomized gossip. If {vk, wk} is chosen at
random independently from the past with probability p{vk,wk} (such that

∑
{v,w}∈E p{v,w} =

1), then for all Y ∈ RV such that 〈1, Y 〉 = 0, we have , since W{vk,wk} is an orthogonal
projection:

E
[∥∥W{vk,wk}Y ∥∥2

]
=

∑
{v,w}∈E

p{v,w}Y
>W>{vk,wk}W{vk,wk}Y

=
∑
{v,w}∈E

p{v,w}Y
>W{vk,wk}Y

=
∑
{v,w}∈E

p{v,w}Y
>
(
I − (ev − ew)(ev − ew)>

2

)
Y

=
∑
{v,w}∈E

p{v,w}Y
>Y −

∑
{v,w}∈E

p{v,w}Y
> (ev − ew)(ev − ew)>

2
Y

= ‖Y ‖2 −
∑
{v,w}∈E

p{v,w}(yv − yw)2

2if matrices Wk are deterministic, this boils down to assume that all Wk satisfy the assumption of Propo-
sition 1.2.1 with ρ′ ∼ 2ρ.
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1.2. Distributed learning setting

Table 1.1 – Constants ρ and ρ′ for various simple graphs for respectively constant gossip matrix
W = I−D−A

d for ρ in Proposition 1.2.1 and randomized gossip matrices with edges sampled uniformly
at random for ρ′ in Proposition 1.2.2. n is the number of nodes in the graph. In the second half of the
table, we show the efficiency of each method, that refers to the number of communications performed
per epoch, times ρ−1 or ρ′−1 for respectively gossip with W = I− D−A

d (1) and for randomized gossip
(2).

Graph Expander D-dim. Torus Complete Line Ring

ρ ((1), Prop 1.2.1) O(1) O
(

1

n
2
D

)
1 O

(
1
n2

)
O
(

1
n2

)
ρ′ ((2), Prop 1.2.2) O

(
1
n

)
O
(

1

n1+ 2
D

)
O
(

1
n

)
O
(

1
n3

)
O
(

1
n3

)
Efficiency (1) O(n) O

(
Dn1+ 2

D

)
n2 O

(
n3
)
O
(
n3
)

Efficiency (2) O(n) O
(
n1+ 2

D

)
O(n) O

(
n3
)
O
(
n3
)

= ‖Y ‖2 − Y >∆(p)Y ,

where the matrix ∆(p) is such that Y >∆(p)Y =
∑
{v,w}∈E p{v,w}(yv − yw)2. Then, ρ′ in

Proposition 1.2.2 is exactly the smallest eigenvalue of ∆(p) on the orthogonal of 1. We will
see below that ∆(p) is in fact a graph Laplacian.

From Table 1.1, we thus see that if each iteration of plain gossip (W = I − D−A
d ) or ran-

domized gossip takes the same amount of time, plain gossip will be fastest, since ρ′ is smaller
than ρ, with a multiplicative factor 1/n that can be large. However, comparing the efficiency
of each communication, randomized gossip appears to be better. Overall, the use of plain or
randomized gossip depend on the constraints of the problem and the level of synchronicity
allowed.

From gossip algorithms to decentralized optimization. From gossip algorithms that aim
at approximating the mean operation performed by the central server, how can we derive
decentralized learning algorithms? First, note that the iterations of Minibatch SGD in Algo-
rithm 1.1, that write xk+1 = xk − ηk

n

∑n
i=1 gk,i, are equivalent to:

Xk+1 = W
(
Xk − ηkGk

)
,

where W = 11>

n , X0 ∈ Rn×d is initialized as X0
i = x0, and Gk ∈ Rn×d is the concatenated

matrix of all stochastic gradients (Gki = gk,i). Then, we have that Xk
i = xk for all i ∈ [n].

Similarly, the iterates of Local SGD (Algorithm 1.2) can be written as:

Xr+1 = Wr

(
Xr − ηrGr

)
,

where for r+1 multiple of H we have Wr = 11>

n and else we have Wr = I. Then, for all r+1

multiple of H, Xr+1
i = x r+1

H
. The two centralized distributed algorithms we presented can

thus be naturally cast in a decentralized way (without any need of quantity shared by the
server), involving the gossip matrices W = 11>

n (full communications on the complete graph)
and W = I (no communications at all). These algorithms then correspond to alternating
between communications using gossip matrices and stochastic gradient steps on models held
at node locations.

This leads to the following natural idea for a decentralized version of distributed SGD,
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Figure 1.3 – Distributions of delays in a centralized setting using M = 48 compute nodes [MBEW22]
for asynchronous SGD (Algorithm 1.3).

called Decentralized SGD. Nodes locally hold models xkv , that are iteratively updated as:

xk+1
v =

∑
w∈Nv

W k
{v,w}

(
xkw − gw,k

)
, (1.11)

where gw,k is an unbiased estimate of ∇fw(xkw), and W k a gossip matrix. Denoting Xk, Gk ∈
RV×d the concatenated matrices with Xk

v = xkv and Gkv = gv,k, the iterates of Decentralized
SGD (Equation (1.11)) write as:

Xk+1 = Wk

(
Xk − ηkGk

)
,

which is a direct generalization of the above centralized algorithms to the decentralized set-
ting.

Decentralized SGD as in Equation (1.11) or variants of these iterates have been studied in
several previous works such as [KLB+20, LZZ+17, LHLL15, NOR18]. Overall, decentralized
SGD benefits from paralleled computations (all nodes can compute stochastic gradients in
parallel), and communications do not suffer from a single bottleneck as in the centralized
setting. Under similar assumptions on local functions and stochastic gradients than in Equa-
tion (1.6) and if gossip matrices satisfy the assumptions of Proposition 1.2.2, Decentralized
SGD satisfies [KLB+20]:

E
[
f(x̄K)− f(x?)

]
= O

LB2

ρ′K
+

[√
Lσ

ρ′K

]2/3

+

√
B2σ2

nK

 ,

for x̄K = 1
nK

∑
v∈V,k<K x

k
v , where the graph dependency appears through parameter ρ′: the

more the graph is connected, the larger ρ′ is.

There exist many other decentralized optimization algorithms, that all possess their pros
and cons. We only presented here the simplest version, Decentralized SGD, for its simplicity,
in order to highlight its link with the gossip averaging problem and its graph dependency
through ρ′. We refer the interested reader to the survey [GRB+22] on recent advances in
decentralized optimization.

Now that we have introduced the basics of ML theory and distributed optimization we
require, we can introduce the settings we consider in this manuscript.

1.3. Asynchronous optimization
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1.3. Asynchronous optimization

Algorithm 1.3: Asynchronous SGD
1: Input: initialization x0 ∈ Rd at server, stepsizes ηk > 0
2: Each compute node i ∈ [n] begins calculating gi,0 unbiased stochastic gradient of
∇fi(x0);

3: for k = 1, 2, . . . do
4: Stochastic gradient gik,k−τ(k) — unbiased estimate of ∇fik(xk−τ(k)) arrives from some

worker ik
5: Update: xk = xk−1 − ηkgik,k−τ(k)

6: Send xk to node ik, which begins calculating some unbiased estimate of ∇fik(xk+1)
7: end for

1.3.1. Asynchronous learning in the centralized setting

From what we saw in last section, there are many ways to parallel the minimization of
Equation (1.5) in distributed optimization, both in the centralized or the decentralized setting.
Taking for instance the simplest algorithm — distributed minibatch SGD, Algorithm 1.1 —,
we observe that if the n compute nodes are heterogeneous in terms of computational speed,
then the whole procedure will work at the speed of the slowest node. In Figure 1.3, we see that
in cluster environment, the delays incurred by directly updating the model upon reception
of a stochastic gradient are highly heterogeneous: working at the speed of the slowest node
may thus, in some cases, lead to loose all the benefits of parallelization.

For instance, if n/2 nodes compute stochastic gradients in s− seconds, while the second
half compute stochastic gradients in s+ seconds, each iteration of Algorithm 1.1 will take s+

seconds. If s+ � s−, we would be better off by discarding this half of the compute nodes. The
same phenomenon would happen for Local SGD (Algorithm 1.2). More generally, if node i
computes stochastic gradients in si seconds, given a time budget of S seconds, Algorithm 1.1
will be able to perform a number of iterations of:

Ksynch =
S

smax
,

where smax = maxi∈[n] is the maximal latency. According to Equation (1.6), the time (in
seconds) required to reach a precision ε would then be proportional to

Ssync(ε) = smax max(c1ε
−1 , c2n

−1ε−2) seconds ,

where c1, c2 are constants related to the regularity of the optimization functions and the noise
of the stochastic gradients. This expression is directly proportional to the maximum latency
amongst compute nodes. We clearly see here that Ksynch is not robust to stragglers: compute
nodes that are slower than the others.

The role of asynchronous optimization is thus to derive algorithms and guarantees that
are robust to these stragglers: the performances should not be directly impacted by a few slow
workers. The asynchronous counterpart to Algorithm 1.1 is Asynchronous SGD, presented
in Algorithm 1.3. Every node compute its stochastic gradients at its own speed, and directly
sends it back to the server when computes are finished. Upon reception of a stochastic
gradient from a compute node, the server directly updates its model, and sends back the
updated model to the worker that sent the stochastic gradient.

The advantage of Asynchronous SGD over Algorithm 1.1 is that there is no form of
waiting: machines work at their own speed, whether or not there are straggler nodes. The
drawback is then that in the update of the model, as seen in Algorithm 1.3, the stochastic
gradient used is delayed : it is computed at some model xk−τ(k) instead of xk, leading to
biased updates and thus decreased efficiency.
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However, the existing theoretical guarantees for Asynchronous SGD are disappointing,
and the typical approach to analyzing the algorithm involves assuming that all of the delays
are either the same, τ(k) = τ , or at least upper bounded, τ(k) ≤ τmax [AD11, MPP+17,
LPLJ18, ASS20, SK20]. Forgetting about the statistical rate (the ε−2 dependency in the
number of iterations required), these analyses then show that the number of updates needed
to reach accuracy ε is of order ε−1τmax. In a time window of S seconds, Asynchronous
SGD performs on average

∑n
i=1

S
si

iterations since every iteration takes on average a time(∑n
i=1

1
si

)−1
. τmax is then of order

∑n
i=1

smax
si

, so that previous analyses suggest that asyn-
chronous SGD takes a time proportional to:

Sasynch(ε) = ε−1
n∑
i=1

smax

si

(
n∑
i=1

1

si

)−1

= ε−1smax ,

to reach a precision ε. This leads to no speedup compared to the synchronous algorithms!
This quite unfortunate, and goes against the intuition that asynchronous algorithms

should be faster than their synchronous counterparts. Specifically, suppose we have two
parallel workers—one fast device that needs just 1µs to calculate a stochastic gradient, and
one slow device that needs 1s. If we use these two machines to implement Asynchronous
SGD, the delay of the slow device’s gradients will be 1 million, because in the 1 second that
we wait for the slow machine, the fast one will produce 1 million updates. Consequently, the
analysis based on τmax degrades by a factor of 1 million. But on further reflection, Asyn-
chronous SGD should actually do very well in this scenario, after all, 99.9999% of the SGD
steps taken have gradients with no delay! Even if one update in a million has an enormous
delay, it seems fairly clear that a few badly out-of-date gradients should not be enough to
ruin the performance of SGD—a famously robust algorithm.

Contributions of Chapter 3. A key challenge in asynchronous optimization is thus to provide
provable asynchronous speedups, i.e., guaranteeing that Sasynchronous(ε) � Ssynchronous(ε) in
the presence of stragglers. This is exactly the purpose of Chapter 3, where we prove that
Ssynch(ε)
Sasynch(ε) = 1

n

∑n
i=1

smax
si

= smax
s̄ ≥ 1, where s̄ is the harmonic mean of the si’s, and may

be much smaller than smax in the presence of stragglers. As we will see below, the story in
decentralized communications becomes however more complicated.

1.3.2. Asynchronous and decentralized communications

For decentralized optimization, there are both computation and communication latencies.
Computation ones should not be too different than from the centralized case (this is the
purpose of Chapter 5), and the interesting part of the story comes with communicationz and
delays in the gossip part of Decentralized SGD. The question then is: how can the gossip
averaging algorithm be made asynchronous and what would be its asynchronous speedup ?

First, as in the centralized setting, let s{v,w} be the time a communication takes between
adjacent nodes v and w, and let smax = max{v,w}∈E s{v,w}. For the information to flow from a
node v to another node w in the graph, a time dists(v, w) = infv=u0∼...∼up=w

∑p−1
k=0 s{uk,uk+1}

is necessary: ds(v, w) is the time to reach w from v using the fastest path between them.
Thus, the time required to compute the mean of decentralized values is lower bounded by:

diams = max
(v,w)∈V2

dists(v, w) .

This quantity can be referred to as the graph time-diameter. In the case where all commu-
nication times are the same and equal to τ , this quantity boilds down to τ × diam, where
diam is the diameter of the graph. However, these quantities (graph diameters) are not what
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decentralized algorithms are about.
If delays are all the same, then synchronous algorithms should be able to depend on τdiam

only, and they do: one could consider the simple algorithm that consist of choosing any node
v0 in the graph. Then, all nodes w 6= v0 send their values to this node through the shortest
path between v0 and w: this takes a time at most τdiam for all nodes, and thus the mean
can be computed in a time τdiam. With heterogeneous delays, this is simply replaced by
diams. However, these algorithms are not decentralized: they simply mimic the behavior of
centralized algorithms, the server being replaced by a single compute node, therefore choosing
the worst of both centralized and decentralized worlds.

We are now going to give heuristics that will highlight what the asynchronous speedup
could be for decentralized mean computations through gossip-like communications. As a
synchronous baseline (the equivalent of Algorithm 1.1 for our decentralized mean estimation
problem), we consider the vanilla gossip iterations, with constant matrix W = I − 1

d(D−A).
For d−regular graphs (graphs for which the degree of all nodes is d), we have Wv,w = 1

d .
Now, the graph-dependent quantity in Proposition 1.2.1 is ρ, which can in fact be related to
the smallest non-null eigenvalue of the matrix D−A

d , a weighted graph Laplacian.

Definition 1.3.1 (Weighted graph Laplacian). Let ν = (ν{v,w}){v,w}∈E be non-negative weights.
The Laplacian matrix of graph G with weights ν — referred to as weighted graph Laplacian
with weights ν — is the symmetric matrix ∆(ν) ∈ RV×V such thas:

1. For all v, w ∈ E, ∆(ν)v,w = 0 if {v, w} /∈ E;
2. For all {v, w} ∈ E such that v 6= w, ∆(ν){v,w} = −ν{v,w};
3. For all v ∈ V, ∆(ν)v,v =

∑
w∈Nv\{v} ν{v,w}.

Weighted graph Laplacian matrices are symmetric positive semi-definite matrices and always
satisfy 1 ∈ ker(∆(ν)). If the graph is connected and weights are non-null, 0 has multiplicity 1
as an eigenvalue of ∆(ν). The second smallest non-null eigenvalue of ∆(ν) is thus positive: we
denote it as λ2(ν), and refer to it as the eigengap of the weighted graph Laplacian with weights
ν. A simple computation yields that for all Y ∈ RV , Y >∆(ν)Y = 1

2

∑
{v,w}∈E ν{v,w}(yv−yw)2.

The matrix D−A
d is thus a weighted graph Laplacian, with constant weights equal to 1/d:

D−A
d = ∆(1/d), and ρ is related to λ2(1/d). The time per iteration of synchronous gossip

being smax = max{v,w}∈E s{v,w}, the typical time to wait for convergence (in seconds) for
synchronous gossip is thus Ssynch = ρ−1smax, which writes as:

Ssynch =
d

λ2

(
1

smax

) ,
since λ2(1/d)/smax = λ2(1/smax)/d by linearity of the Laplacian in its weights.

Now, what would be a good first candidate for asynchronous gossip? Historically, asyn-
chronous gossip referred to randomized gossip [BGPS06] previously introduced, where pair-
wise communications happenned at the times of Poisson point processes The asynchronous
model for gossip averagin in [BGPS06] is the following. Each edge {v, w} ∈ E has a clock
that ticks at a Poisson rate of intensity q{v,w} 3. Intensities q{v,w} are frequencies: they are
homogeneous to the inverse of time. Then, at the ticking of the clock of edge {v, w}, the
pairwise averaging with matrix W{v,w} is performed.

Denoting as T{v,w} =
{

0 < T 1
{v,w} < . . . < T `{v,w} < . . .

}
the clock ticking times of edge

{v, w}’s clock, and T =
⋃
{v,w}∈E T{v,w} = {0 = T0 < T1 < . . . < Tk < . . .} all the clock tick-

ings, we know that the clock tickings of T happen at a Poisson rate I =
∑
{v,w}∈E q{v,w}, a

3a Poisson clock of intensity q can be thought as, for now, a clock that has a probability qdt of ticking in
every interval [t, t+ dt), independently of the past, for dt an infinitesimal time increment.
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1.3. Asynchronous optimization

quantity referred to as the global Poisson intensity. Now, for every global clock ticking of T ,
the probability that this corresponds to a clock ticking of edge {v, w} is exactly p{v,w} =

q{v,w}
I .

Writing as (xv(t))t∈R≥0
the variable held by node v ∈ V, indexed in continuous time t ≥ 0,

and by xkv = xv(Tk+) (Tk+ is the right-limit of Tk, and corresponds to the limit Tk + dt for
dt→ 0 with dt > 0), we have that Xk = (xkv)v ∈ RV×d are the iterates of randomized gossip
as written in Equation (1.10), for W k = W{vk,wk}.

But now, what about communication times, where do they appear ? Indeed, so far we have
clocks that tick at random times, but that are not related to any delays, latencies, or physical
constraints. This is where we are going to rely on heuristics and strong approximations, in
order to be able to compare communication times. Since the communication times between
adjacent nodes v and w is s{v,w} (in seconds), then in average in the Poisson model, the time
between two tickings of edge {v, w} should be s{v,w}. Random variables T `+1

{v,w} − T `{v,w} are
i.i.d. exponential random variable of parameter q{v,w}: their mean is thus 1/q{v,w}. In order
to have this quantity equal to s{v,w}, we thus need q{v,w} = 1/s{v,w}.

From the discussion after Proposition 1.2.2, we have that

E
[∥∥∥Xk − X̄

∥∥∥2
]
≤ (1− λ2(p))k

∥∥X − X̄∥∥2
,

leading to the following result.

Proposition 1.3.1. For all t ≥ 0, we have:∑
v∈V
‖xv(t)− x̄‖2 ≤ exp(−λ2(q)t)

∑
v∈V
‖xv − x̄‖2 .

Proof. For t ≥ 0, let k(t) = sup {k ∈ N , Tk < t} = |T ∩ [0, T )| − 1. k(t) is a discrete
Poisson random variable, of parameter It: P (k(t) = k) = e−It (It)k

k! . Since E
[∥∥X(t)− X̄

∥∥2
]

=

E
[∥∥Xk(t) − X̄

∥∥2
]
, we have:

E
[∥∥X(t)− X̄

∥∥2
]

= E
[∥∥∥Xk(t) − X̄

∥∥∥2
]

=
∑
k≥0

P (k(t) = k)E
[∥∥∥Xk − X̄

∥∥∥2
]

≤
∑
k≥0

e−It
(It)k

k!
(1− λ2(p))k

∥∥X − X̄∥∥2

=
∑
k≥0

e−It
(It(1− λ2(p)))k

k!

∥∥X − X̄∥∥2

= e−IteIt(1−λ2(p))
∥∥X − X̄∥∥2

= e−Itλ2(p)
∥∥X − X̄∥∥2

leading to the desired result since Ip = q.

Thus, the typical time to wait before convergence is Sasynch = λ2(p)−1, that writes as:

Sasynch =
1

λ2

(
1
s

) ,
where λ2

(
1
s

)
is the smallest non-null eigenvalue of the graph Laplacian with weight 1

s{v,w}

at edge {v, w}. Compared to Ssynch we thus expect to pay the price of the inverse of the
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1.3. Asynchronous optimization

eigengap of a weighted graph Laplacian too, but with weights 1
s{v,w}

, instead of uniform

weights 1
smax

. The eigengap of weighted Laplacians is a non-decreasing functions of weights:

thus λ2

(
1
s

)
≥ λ2

(
1

smax

)
, leading to an asynchronous speedup!

Our heuristics did not take into account any communication delays or capacity constraints.
However, this heuristics is quite insightful, as it gives us the intuition of what the asynchronous
speedup will look like for asynchronous communications in decentralized algorithms: it should
take the form of the eigengap of a weighted graph Laplacian, with weights that only take into
account local delays, instead of worst-case delays.

Contributions of Chapters 4 and 5. In Chapter 4, we introduce Delayed randomized gossip:
randomized gossip in continuous time as presented here, but with delays. We show that if we
run randomized gossip with communication times that take s{v,w} seconds between adjacent
nodes v and w, for parameters tuned accordingly, the typical time becomes, on d−regular
graphs:

Sasynch =
d

λ2

(
1
d

∑
{u,u′}∼{v,w}

1
s{u,u′}

) ,

where the neighboring relation for edges ({u, u′} ∼ {v, w}) means that {u, u′} and {v, w}
share a node. Since the graph is d−regular, the number of elements in the sum is between
2d+1: 1

d

∑
{u,u′}∼{v,w}

1
s{u,u′}

thus corresponds (up to a factor 2) to a local average of delays,

the local average being taken in the neighborhoods of nodes v and w.
Quite surprinsingly, the same phenomenon as for Asynchronous SGD appears, but lo-

cally in the weights of the graph Laplacian: the dependency on smax of synchronous gossip
is replaced by a dependency on local harmonic mean of local delays in the weights of the
Laplacian.

Furthermore, we extend the previous computational asynchronous speedup for Asyn-
chronous SGD to the decentralized setting in Chapter 5.

1.3.3. Time and iteration counters in the decentralized setting

Finally, there is another huge difference between the decentralized and the centralized
setting, when dealing with asynchronous communications. In both cases, time is continuous
(the physical time).

In the centralized setting, events – updates and computes – can be ordered and counted
as {T1 < . . . < Tk < . . .}, where for instance Tk’s correspond to the updates performed on the
model. The integer k is then denoted as the iteration counter, and is a quantity known by the
central server. This quantity can then be used: it is quite common that stepsizes or iterations
depend on k. Two instances are for instance stepsize schedules that depend on k, the most
simple ones being stepsizes ηk ∝ 1/

√
k to ensure convergence of stochastic updates. A more

sophisticated instance is for instance accelerated gradient schemes and momentum, that will
be of interest to us in a latter chapter (Chapter 2) when accelerating gradient descent.

However, when it comes to decentralized schemes, even though events can still be ordered
and an iteration counter still exists (k in Equation (1.11)) and helps define iterates, this itera-
tion counter is not known by the nodes. Indeed, a node at one end of the graph cannot know if
an update is performed at the other end of the graph. Thus, except if we assume full synchro-
nization, k cannot be used by the nodes to design stepsize schedules or accelerated methods.
This difficulty for instance appears when attempting to accelerate randomized gossip algo-
rithms “à la Nesterov”: naive accelerated schemes [HBM18, CSY06, LR18] indeed require
that whenever a communication between two nodes v, w adjacent in the graph ({v, w} ∈ E)
communicate together, all other nodes in the graph need to perform local modifications to
their values (without requiring communications), or equivalently k needs to be known. While
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1.4. Personalized learning

Figure 1.4 – Next-word prediction requires some degrees of personalization.

such procedures keep the fact that communications are pairwise as in randomized gossip,
asynchrony is breached due to the high synchronicity required.

Contribution of chapter 2. In Chapter 2 we introduce an alternative to the iteration counter
k: instead of using k, algorithms can build on the underlying continuous time t ∈ R, that
can serve as a proxy for k. For instance, stepsize schedules ηk ∝ 1/

√
k can be replaced by

η(t) ∝ 1/
√
t. For acceleration, the alternative to knowing k is there more sophisticated, and

we elaborate further on this in Chapter 2 where we introduce the “continuized” framework to
derive discrete algorithms with an underlying continuous time, and the continuized Nesterov
acceleration to accelerate randomized gossip without relying on a shared iteration counter.

1.4. Personalized learning

Previous considerations aimed at accelerating the process of computing an estimator x̂,
in the form of Equation (ERM) for collaborative empirical risk minimization when samples
are shared accross agents / compute nodes, or more generally x̂ minimizer of the average
of functions fi shared amongst users (Equation (1.5)), that may be generalization errors or
empirical risks. Overall, the common ground is that a single model x̂ is learnt for all agents.

In the generalization bound in Equation (1.4), if each agent i ∈ [n] has m samples, the
total number of samples is nm and the generalization bound decreases with nm, instead of
just m. The benefit of using all samples from all agents thus appears quite obvious: if m
is too small for a single agent to have a statistical meaning — e.g., think of medical tests,
if the number of tests is m = 3, this test does not have any scientific meaning —, then an
estimator based on all nm samples will have increased statistical efficiency. In the large n
limit, minimizing the collaborative objective (1.5) thus leads to satistically accurate model,
trained on the mixture of all distributions, whatever the scale of m (number of local samples
is).

However, as always in ML problems, there are inherent limits to this. Take for instance
the toy model of estimating the mean p of a Bernoulli random variable X ∼ Ber(p), for
an unknown p ∈ (0, 1), based on m i.i.d. samples X1, . . . , Xm ∼ X. We know that the
minimax mean or high probability bounds for estimating p with p̂ as a function of these m
samples, is |p − p̂| = Θ(1/m): one simply cannot hope to beat this bound without using
further information. Thus, if agent i wishes to minimize f1(x) = E

[
(x−X1)2

]
and thus

estimate p, if for instance all other agents have objectives that are not related to estimating
p, the statistical efficiency for estimating p cannot be improved (else, it would mean that
agent 1 could simply generate synthetic tasks that would help, which is provably impossible
[AWBR09]) by collaborating. This approach can be made more rigorous using tools such as
Fano inequality.
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Figure 1.5 – Shared representations in a Multi Layer Perceptron model [CHMS21]. The users share
the red weights of the model, that are stored and updated at the server, while the last layers are
personalized for each user.

From a higher point of view, the fact that statistical efficieny cannot always benefit from
the large pool of all users’ sample can for instance be seen in next-word prediction tasks
(Figure 1.4). Consider the task of predicting the next word of the sentence “I love eating
. . . ”: a model trained on all nm samples would give a single answer. However, all users might
be from different backgrounds. Swiss users might be more likely to answer “gruyère”, Italian
users “pasta” or “pizza” or French users “chocolatine” or “baguette”, not too fall too much on
stereotypes (that ML models might however enforce).

The task of predicting a single model from all users, while benefiting from improved
statistical efficiency on the mixture of all distributions, is thus inefficient in some unfortunate
but however quite frequent cases, medical treatment predictions or other more important
tasks might be some more appealing instances than the one above. In such cases, users
would be better off alone than by simply training a shared model for all. But what if the
number of samples m is too small? That is when a bias-variance tradeoff appears: the bias
comes from the use of other agents’ information: it is biased in the sense that this information
and the samples from other agents is not sampled from the same distribution as the samples
of a given agent. The more collaboration with other agents, the more bias in the computed
model there is. The variance then comes from the increased statistical efficiency: the more
collaboration there is, the more the number of samples the model is based on, and the less
variance there is.

As we saw from the simple problem of mean estimation, assumptions are needed for
collaboration to become useful at some point. There thus have been different set of assump-
tions, backed by empirical evidence, to design algorithms and strategies that guarantee some
kind of collaboration speedup in terms of statistical guarantees. The first set of assump-
tions are similarity assumptions: each agent is assumed to be “close” to a certain number
other agents. This can be formalized as a cluster assumption [JVB08, LSNK17, GCYR20]
on the users or tasks (they form groups, and within each group/cluster the objective is the
same), or as a discrepancy-based assumption (a metric between tasks quantitatively gives
how close they are and thus how an agent can benefit from collaboration with another agent)
[MMRS20, EMS22a, DW22, DKMM23]. Clusters or discrepancies are usually assumed to be
unknown and based on their knowledge tasks become simpler. Under these assumptions, the
objective of the problem then becomes two-fold: first, learn the structure of users i.e., who
is close to whom, to build some form of similarity graph of agents, and then each agents use
the information of neighboring agents in this graph to compute a local model.

Assumptions can also be leveraged on the tasks themselves: they all share some common
structure. The most common structural assumption that is made is the shared representation
assumption: local datasets might be heterogeneous and in very large dimension, leading
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to arbitrarily different tasks, yet high-dimensional data may share some representation in
a much smaller space [BCV13]. Then, low-dimensional representations can be translated
into some structure on local objectives themselves. In the case of learning deep models
for instance, [CHMS21] explain that tasks may share most of the layers (Figure 1.5), while
personalization can be expressed only in the last ones that are user-specific. An instance
of representation assumption that is amenable for statistical analysis purposes is the shared
linear representation assumption for linear quadratic regression: for a given task i, data is
generated according to some noisy linear relation yij = 〈w?i , xij〉+εij for data points (xij , yij),
j ∈ [m] and some w?i to recover. A common assumption is thus to assume that all local heads
w?i ∈ Rd for all agents lie in a small subspace of Rd of dimension r ≪ d.

In both cases – user assumptions or structural assumptions –, there exists a structure
to be learnt that makes the problem at hand much simpler in the sense that it requires a
reduced amount of samples per task to solve. This is typical of meta-learning or learning-
to-learn approaches in deep-learning, where the process of learning itself is being improved
by multiple learning episodes (that consist of the various users’ task in our case) [HAMS20].
Whether a cluster structure, dissimilarity between clients, or a shared representation is known
before solving each client task, the whole procedure becomes much easier.

The contributions of this thesis in these directions are threefold. We formalize the problem
of learning personalized models as generalization and stochastic optimization problems in
Chapters 8 and 9, under respectively user-wise structures or model-wise structures. We
study the problem of jointly learning n models for n agents, based on the local datasets of
these users, while making the kind of assumption described above. More formally, each agent
i indexed by i ∈ [n] has a local data distribution Di, and aims at minimizing its generalization
error, defined as for some loss Fi : Rd × Ξ→ R:

fi(x) = E [Fi(x, ξi)] , x ∈ Rd , ξi ∼ Di .

In order to capture the minimization of each local function and thus personalization, the
objective we want to minimize then writes as:

f(x) =
1

n

n∑
i=1

fi(xi) , x = (x1| . . . |xn) ∈ Rd×n . (1.12)

We will consider two settings in the two chapters of this Part: the online setting and the
classical supervised learning setting, respectively in Chapters 8 and 9.

In the online setting, data samples come one at a time for each agent. At iteration k ≥ 0,
all agents i ∈ [n] access a new sample ξki , independent from the previous ones, and may
update its local model using its own information, and information that other agents may
have shared. The no-collaboration baseline in this setting would then be the online SGD
algorithm:

∀i ∈ [n] , ∀k ≥ 0 , xk+1
i = xki − ηk∇xFi(xki , ξki ) ,

while the full collaboration baseline is Minibatch online SGD, for which xki = xkj for all k:

∀i ∈ [n] , ∀k ≥ 0 , xk+1
i = xki −

ηk
n

n∑
i=1

∇xFi(xki , ξki ) .

This latter algorithm benefits from smaller variance, but may be highly biased on the local
of of users. The algorithms we will consider in Chapter 8 are a midway between these two
opposite paradigms.

In the classical supervised learning setting, each agent has a local dataset of size m,
{ξij}j∈[m] with ξij ∼ Di. Based on the m samples per agent we have, agents will minimize
their empirical risks using collaboration to increase their sample efficiency. We denote as Li
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the empirical risk of agent i, that writes:

Li(x) =
1

m

m∑
j=1

Fi(x, ξij) , x ∈ Rd ,

and as L the global empirical risk:

L(x) =
1

nm

∑
(i,j)∈[n]×[m]

Fi(xi, ξij) , x = (x1| . . . |xn) ∈ Rd×n . (1.13)

By minimizing this empirical risk, we wish to obtain good minimizers for the true test loss
(Equation (9.1)), under adequate assumptions. The no-collaboration baseline estimator here
writes as

∀i ∈ [n] , x̂i ∈ arg min
x∈Rd

Li(x) ,

while the full collaboration baseline is:

∀i ∈ [n] , x̂i ∈ arg min
x∈Rd

L(x) ,

which benefits from all nm samples, but might poorly generalize on local users data distribu-
tions. The goal is thus to regularize this estimator to enforce some form of collaboration. In
both cases, counting k the number of steps to reach precision ε for local objectives or counting
m the number of local data samples required to obtain generalization error ε both amount
to computing the sample complexity required for collaboratively minimizing generalization
errors. For our problem, the structural assumptions described above then read as follows.
Note that Assumption 1.4.3 is in fact a subcase of Assumptions 1.4.2 and 1.4.1.

Assumption 1.4.1 (Similarity assumption). There exist non-negative weights (bij)i,j∈[n] and
minimizers (x?i )i∈[n] of functions (fi)i∈[n] such that for all i, j ∈ [n]:

fi(x
?
j )− fi(x?i ) ≤ bij .

Assumption 1.4.2 (Low rank representation). There exist {w?i }i∈[n] such that for all i w?i
minimizes fi, and the rank of the matrix W ? = (w?1| . . . |w?n) ∈ Rd×n is at most r. Equiva-
lently, there exist an orthonormal matrix U? ∈ Rd×r and V ? = (v?1, . . . , v

?
n) ∈ Rr×n such that

w?i = U?v
?
i for all i ∈ [n].

Assumption 1.4.3 (Clustered clients). There exist {w?i }i∈[n], {c?s}s∈[r] and τ
? : [n]→ [r] such

that for all i, w?i minimizes fi and w?i = c?τ?(i).

Contributions of Chapters 8 and 9. The purpose of these two chapters is to study natural
minimizers under these assumptions, for convex objectives fi. In Chapter 8 we study the on-
line setting under Assumption 1.4.1: we provide information theoretical lower bounds for the
problem and online algorithms that have performances matching these lower bounds. Under
assumptions on users similarity (Assumption 1.4.1), we first provide information-theoretical
lower bounds, that depend on some distance dist between agents distributions Di (Figure 1.6
– under our assumptions, dist(Di,Dj) = bij here). Formally, for some given precision ε, let
Gε = (V, Eε) be the graph on V = [n] with edges {i, j} ∈ Eε iff dist(Di,Dj) ≤ ε. Then,
denoting as Nε(i) the number of neighbors of agent i in this graph, we show that the statis-
tical collaboration speedup cannot be larger than 1

Nε(i) for agent i, therefore confirming the
bias-variance tradeoff intuited above. In Chapter 9 we study the supervised setting under
Assumptions 1.4.2 or 1.4.3.
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Figure 1.6 – Quantities Nε for different distributions and illustration of the similarity graph.

1.5. Private learning

Finally, we introduce the notion of privacy in ML and in particular in distributed learning.
When dealing with users data — that may range from personal data held in cellphones that
can contain passwords, contacts, private messages or bank references, to hospital clinical data
—, for the users to be compliant for their data to be used (or at least for users to be not
too much against their use), it is necessary to ensure that their private informations are not
released to the public.

This is where privacy comes in: privacy can be quantified, strategies that ensure that
data remains private when training models may be quantitatively evaluated in terms of their
privacy preserving properties. But first, from where can data be leaked ? From the ML
algorithms presented previously in this introduction (Algorithms 1.1 to 1.3), their common
ground is that what is being shared to an eventual attacker (the server, someone that may
intercept communications, or someone who sees the model in the end) are gradients, of the
form ∇F (x, (a, b)), computed at some model x ∈ Rd, for some data input and label a, b. Data
samples are thus not shared, and these algorithms are thus naturally private — at least that
is what we would ideally hope for.

There is however a twist: data points can be inferred from gradients, a phenomenon
referred to as deep leakage from gradients [ZH20]. This can in fact be done quite easily,
through an inverse problem formulation. Upon reception of some stochastic gradient G =
∇F (x, (a?, b?)) computed at some model x (known by the attacker, if we assume weights are
shared) for some datapoints a?, b? to unveil, the attacker solves the following inverse problem:

(â, b̂) ∈ arg min
(a,b)

‖∇F (x, (a, b))−G‖2 , (1.14)

using for instance gradient descent (that requires second order information). Such attacks
prove to be quite effective in practice, and show that even if we think that we do not share
our information, it can still be retrieved in unexpected ways.

We thus have to ensure that data remains private, whatever an attacker might be able
to do, a solution brought by Differential Privacy. In Equation (1.14), the attacker sees a
function A(Dn): what an algorithm (here SGD or the intermediate steps of SGD) outputs
when fed with data samples Dn = {(ai, bi), i ∈ [n]}. This algorithm A is usually random:
A(Dn) is thus a random variable. We know for sure that, if for any (a′1, b

′
1), when data sample

(a1, b1) is replaced (a′1, b
′
1) (leading to data set D′n instead of Dn: these datasets differ only

on one data sample) we have A(Dn) ≈ A(D′n), then A does not see the difference between
whatever we put in the first sample: this sample is thus kept private and any strategy such
as Equation (1.14) will provably fail.

This intuition is formalized by Differential Privacy.
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Figure 1.7 – Central DP (left) and Local DP (right)

Definition 1.5.1 (Differential Privacy). Let ε > 0. An algorithm A satisfies ε−Differential
Privacy (ε−DP) if for all pairs of neighboring datasets D ∼ D′ ( i.e., datasets that differ on
only on data sample), for any event S, we have:

P
(
A(D′) ∈ S

)
≤ eεP (A(D) ∈ S) ,

or equivalently, if dP′
dP (where p′ and p are respectively the probability laws of A(D) and A(D′))

satisfies:

log

(
dP′

dP

)
≤ ε almost surely.

Several extensions were developed to relax the definition of DP ((ε, δ)−DP, Rényi DP), but
they all share the same objective. The relaxation we use in our manuscript is the following:
it bounds a milder divergence than the log density.

Definition 1.5.2 (Rényi Differential Privacy). An algorithm A satisfies (α, ε)-Rényi Differen-
tial Privacy (RDP) for α > 1 and ε > 0 if for all pairs of neighboring datasets D ∼ D′:

Dα

(
A(D)||A(D′)

)
≤ ε ,

where for two random variables X and Y , Dα

(
X ||Y

)
is the Rényi divergence between X and

Y :
Dα

(
X ||Y

)
= 1

α−1 ln
∫ (µX(z)

µY (z)

)α
µY (z)dz .

with µX and µY the respective densities of X and Y .

Private mean estimation as a toy problem. When introducing decentralized algorithms and
in particular gossiping, we first presented the averaging problem. This is again what we are
going to do here, by introducing the private mean estimation problem. Suppose our n agents
each hold private values xi ∈ Rd, and that we want to compute the average x̄ = 1

n

∑n
i=1 xi

in a private way, without revealing the xi’s. Then, in order to be private, instead of sending
the values xi’s to the server, users generate some random noise and send x̃i ∼ N (xi, σ

2Id) to
the server. The server then outputs x̂ = 1

n

∑n
i=1 x̃i. Adding Gaussian noise is what we call

the Gaussian mechanism.

Proposition 1.5.1 (Gaussian mechanism, [Mir17]). Let Gσ be the Gaussian mechanism, de-
fined as GσA(D) = A(D) + N (0, σ2Id), for any algorithm A with output values in Rd and
any input sample set D. Define the `2−sensitivity of A as:

∆2(A) = sup
D∼D′

∥∥A(D)−A(D′)
∥∥

2
,
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1.5. Private learning

where the sup is taken over all adjacent datasets D and D′. Then, GσA is (α, α∆2(A)2

2σ2 )−Rényi
differentially private.

Now, as illustrated in Figure 1.7, the level of privacy guaranteed by the added noise
depends on where the malicious node/the attacker is (the little devil in Figure 1.7): is the
server the attacker ? Or does the attacker only observes the output x̂ ? In the first case,
the attacker sees all the values x̃i and we refer to this as Local DP, while in the second case
only their average is observed, a case referred to as Central DP. The latter is of course more
private, and consists in assuming the existence of a central curator.

In local DP, we have A(x1, . . . , xn) = (x̃1, . . . , x̃n) = Gσ(x1, . . . , x̃n), while in central DP
we instead have A(x1, . . . , xn) = x̂ = (x̃1 + . . .+ x̃n)/n = G σ√

n
(x̄). The sensitivities of these

two algorithms differ: if all xi’s are restricted to live in a ball of diameter ∆, then for Local
DP the sensitivity is ∆, while it is ∆/n in Central DP. The ratios sentivity squared divided
by Gaussian noise variance squared are thus respectively equal to ∆2

σ2 and ∆2

nσ2 . Overall,
optimizing over σ2 under RDP constraint, to achieve (α, ε)-RDP, one cannot have better
utility than:

E
[
‖x̂− x̄‖2

]
≤ α∆2

2nε
for local DP ,

E
[
‖x̂− x̄‖2

]
≤ α∆2

2n2ε
for central DP ,

where x̂ is the output of the algorithm. This 1/n gap motivates the study of relaxations of
local DP. Of course, these notions of local and central DP are not specific to private mean
estimation: they directly extend to learning in general, with algorithms such as DP-SGD
[ACG+16, Differentially Private SGD] or other variants: noise is always added in order to
satisfy some DP properties.

What about decentralized algorithms ? There is a huge gap between the performances
in the central DP and local DP settings, given a fixed (α, ε)−RDP budget. As we saw in
previous sections, there is no central curator in decentralized learning. Agents communicate
with each other, and in worst cases, when gossiping to compute private means, the neighbor
of a given agent is malicious. Hence, we cannot hope for better privacy guarantees than Local
DP, if some agents are too curious: this is a shame, since decentralized algorithms are known
for being more privacy preserving than their centralized counterparts, due to the fact that
communications are not centralized to a server that might be malicious.

Even though users that are neighbors to malicious nodes cannot apriori do better than
Local DP, since the malicious agent then receives directly all that this node shares, if a node
is further away in the graph, it should be better protected against attacks.

In the Harry Potter series, J.K Rowling introduces Muffliato, invented by Severus Snape
[Sna46] in the margin of its personal version of Libatius Borage’s book on potion making
[Bor76]: it designates a “spell that filled the ears of anyone nearby with an unidentifiable
buzzing”, thereby concealing messages from unintended listeners through noise injection.
Consider now the gossip algorithm as formulated in Equation (1.8), but initialized at noisy
values x̃i ∼ N (xi, σ

2Id) instead of xi, in order to compute x̂ private estimate of x̄ in a
decentralized way. Each node add some noise at initialization — some local buzzing —, and
two nodes that are far away from each other then hear all the buzzing from all the nodes
that are on the paths between these two nodes: gossiping with noisy initial values behaves
exactly like the spell Muffliato!

Contributions of Chapter 6. We introduce a relaxation of Local and Central DP for decen-
tralized learning, coined as pairwise network differential privacy. This new notion of privacy
accounts for the positions of nodes in the communication graph, enabling us to argue that,
for any two nodes u, v, roughly, “node u is private with respect to node v with a privacy loss
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quantified by εu→v”, where the quantity εu→v decreases as the distance between nodes u and
v in the graph increases.

Our notion of privacy thus captures the impact of decentralization in a very natural way,
and the Muffliato block — noise injection with gossip communications — can be added to
decentralized learning algorithms like Decentralized SGD, leading to private decentralized
learning, that then provably benefits from improved privacy guaratantees.

1.6. Additional assumptions and notations used throughout the manuscript

1.6.1. Notations

In the manuscript, we make use of many notations for matrices and sets of matrices. The
most classical one is A ∈ Rp×q: A is a matrix with p rows and q columns. We make also use
of more abstract notations. For V and E finite sets (that usually correspond to graph node
and edge sets), we may for instance write A ∈ RV×d for A ∈ Rn×d where n = |V|, except that
if V 6= [n],the lines of A are indexed by the set V. Notations RE×d or RE×V can also be used
in the same way.

For two symmetric matrices A,B ∈ Rp×p, the notation A � B (resp. A � B) means that
A−B is positive semi-definite i.e. all its eigenvalues are non negative (resp. B−A is positive
semi-definite).

For some vector u ∈ Rp, ‖u‖ =
√∑p

k=1 u
2
k always refers to the `2 norm, ‖u‖p =(∑p

k=1 |uk|p
) 1
p , ‖u‖∞ = maxk=1,...,p |uk| and ‖u‖0 = |{k ∈ [p] : uk 6= 0}|. For two vectors

u, v ∈ Rp, 〈u, v〉 =
∑p

k=1 ukvk is their scalar product. For matrix A ∈ Rp×q, its singular
value decomposition (SVD) is defined as A = P1DP

>
2 where P1 ∈ Rp×r and P2 ∈ Rq×r are

matrices with orthogonal columns, where r = min(p, q), and D = diag(λ1, . . . , λr) ∈ Rr×r is a
diagonal matrix, with diagonal coefficients λ1 ≥ . . . ≥ λr ≥ 0, that are the singular values of
A. The Frobenius norm of A writes as ‖A‖F =

√∑r
k=1 λ

2
k =

√∑
(k,`)∈[p]×[q]A

2
k`, its nuclear

norm ‖A‖∗ =
∑r

k=1 λk, and its operator norm ‖A‖op = λ1. For two matrices A,B ∈ Rp×q,
〈A,B〉 =

∑
(k,`)∈[p]×[q]Ak`Bk` is their scalar product.

1.6.2. Various regularity assumptions

Let f : Rd → R. We here recall definitions related to the regularity of f that will be used
throughout the manuscript, and that are presented more thoroughly in [Bub15] for instance.

Definition 1.6.1 (Convexity). f is convex if for all x, y ∈ Rd and λ ∈ [0, 1], we have f(λx +
(1− λ)y) ≤ λf(x) + (1− λ)f(y). Equivalently, if f is differentiable, it is convex if and only
if its curve is above all its cords: ∀x, y ∈ Rd, f(x) ≥ f(y) + 〈∇f(y), x − y〉. If f is twice
differentiable, f is convex if and only if ∇2f(x) � 0 for all x ∈ Rd.

Definition 1.6.2 (Lipschitz). A function g : Rp → Rq is M−Lipschitz if for all x, y ∈ Rp, we
have ‖g(x)− g(y)‖ ≤ ‖x− y‖. If g is differentiable, this is equivalent to ‖∇g(x)‖op ≤M for
all x ∈ Rd.

Definition 1.6.3 (Strong convexity and smoothness). f is µ−strongly convex and L−smooth
for some 0 ≤ µ ≤ L if:

∀x, y ∈ Rd ,
µ

2
‖x− y‖2 ≤ Df (x, y) ≤ L

2
‖x− y‖2 , (1.15)

where Df is the Bregman divergence of f , defined as:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 .
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If f is twice differentiable, Equation (1.15) is equivalent to:

∀x, y ∈ Rd , µId � ∇2f(x) � LId .

Definition 1.6.4 (Fenchel Conjugate). The Fenchel conjugate of f is denoted by f∗ and defined
on Rd by

f∗(y) = sup
x∈Rd

{〈x, y〉 − f(x)} ∈ R ∪ {+∞} .

An important property of Fenchel conjugates is their link with Bregman divergence. If f
is differentiable, then for all x, y ∈ Rd, we have:

Df (x, y) = Df∗(∇f(y),∇f(x)) .

As a consequence, if f is µ−strongly convex and L−smooth, then f∗ is 1/L−strongly convex
and 1/µ−smooth. Furthermore, this enables us to prove that under strong convexity and
smoothness assumption, we have:

∀x ∈ Rd , 2µ(f(x)− f(x?)) ≤ ‖∇f(x)‖2 ≤ 2L(f(x)− f(x?)) ,

where x? is a minimizer of f . The LHS of the above inequality is a µ−Polyak-Łojasiewicz in-
equality.

Definition 1.6.5 (µ−Polyak-Łojasiewicz). f satisfies the µ−Polyak-Łojasiewicz inequality if it
is minimized at some x? ∈ Rd and:

∀x ∈ Rd , ‖∇f(x)‖2 ≥ 2µ(f(x)− f(x?)) .

When objective f is (strongly) convex, we will be able to obtain an upper bound on
the expected suboptimality gradient-based algorithm’s output x̃ of the form Ef(x̃)− f∗ ≤ ε
for some explicit ε. On the other hand, when the objective is not convex, it is generally
intractable to approximate global minima [NY83] so, as is common in the literature, we
will generally fall back to showing that the algorithm will find an approximate first-order
stationary point of the objective: E‖∇f(x̃)‖2 ≤ ε2.
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Asynchronous communications and
computations

47





Asynchronous optimization and decentralized learning

Asynchronous optimization. Asynchronous optimization has a long history. In the 1970s,
[Bau78] considered shared-memory asynchronous fixed-point iterations, and an early conver-
gence result for Asynchronous SGD was established by [TBA86]. Recent analysis typically
relies on bounded delays [AD11, RRWN11, LHLL15, SK20]. [SYLS16] slightly relax this
to random delays with bounded expectation. [ZMB+18] allowed delays to grow over time,
but only show asymptotic convergence. Some algorithms try to adapt to the delays, but
even these are not proven to perform well under arbitrary delays [ZMW+17b, MIMA18].
For more examples of stochastic asynchronous algorithms, we refer readers to the surveys by
[BNH19, AAF+20]. The goal of Chapter 3 is specifically to have guarantees that are delay-
independent for Asynchronous SGD, and to obtain a wall-clock time asynchronous speedup.

In the online learning setting, [MS14, JGS16] studied an adaptive asynchronous SGD
algorithm. [AHSL21] proved better guarantees on bounded domains by introducing a projec-
tion, with rates depending on the average rather than maximum delay. However, their proof
relies heavily on the assumption of a bounded domain, while ours applies for optimization
over all of Rd. Relatedly, [CDD+21] prove guarantees for Asynchronous SGD that depend
on the average delay, but their results only hold with probability 1

2 .
[MPP+17] proposed and utilized the analysis tool of “virtual iterates” for Asynchronous

SGD under bounded delays. [SK20] extended these results, albeit restricting delays to be
constant, and [LPLJ18] considered lock-free updates. We use a similar proof approach in
Chapters 3 and 5, but with different virtual sequences and eventually different, delay-adaptive
stepsizes.

Decentralized optimization. Gossip algorithms [BGPS06, DKM+10] were initially intro-
duced to compute the global average of local vectors with local pairwise communications
only (no central coordinator), and were generalized to decentralized optimization. Two types
of gossip algorithms appear in the literature: synchronous ones, where all nodes communi-
cate with each other simultaneously [DKM+10, SBB+17, KSJ19, SLWY15], and randomized
ones [BGPS06, NO09]. A third category considers directed (non-symmetric) communica-
tion graphs [XMX+18, AR21] which are much easier to implement asynchronously. In the
synchronous framework, the communication speed is limited by the slowest node (straggler
problem), whereas the classical randomized gossip framework of [BGPS06] assumes commu-
nications to happen instantaneously, and thus does not address the question of how to deal
with delays. Decentralized SGD [KSJ22, LZZ+17, e.g.] consists in iterations where at every
time step, all nodes perform local SGD steps, and communicate their local model with their
neighbors in a graph (that may vary with time, but that needs to mix in an ergodic way).

Decentralized optimization and asynchrony. Combining both decentralization and asyn-
chrony is a challenging problem, and it is only recently that this question has risen a surge
of interest [AR21, BRW+23, LHZQ20, LYW+22, NSD+21, ZY21]. These works are however
restricted to a given communication protocol and static topologies under an i.i.d. sampling
of the nodes or edges that become active [AR21, LHLL15, BRW+23, NSD+21], no commu-
nication delays [LHLL15, BRW+23, NSD+21], or their analyses rely on an upper-bound on
the maximal computation and communication delays [AR21, LZZL18, BRW+23, LHZQ20,
LYW+22, NSD+21, ZY21, WLMJ23]. This latter point is exactly the goal of Chapters 4
and 5: how can we relax the worst case delay dependency and capture quantitatively delay
heterogeneity in the graph and relate it to a wall-clock asynchronous speedup? Similarly
to the asynchronous speedup of Asynchronous SGD described just above, we will quantify
the asynchronous speedup as a graph dependent quantity that takes into account pairwise
communication delays and their heterogeneity.
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Chapter 2

The continuized framework: continuized
Nesterov acceleration and acceleration of

randomized gossip

In this chapter, we introduce the “continuized” framework, that consists of an alternative
to both discrete algorithmic frameworks under which gradient-based algorithms are usually
studied and continuous-time frameworks used in the analysis of gradient flows for instance.
This framework will then be used in subsequent chapters for the design of aynchronous algo-
rithms. The idea behind this framework is to combine the best of both discrete and continuous
worlds: the analysis-friendiness and the elegance of continuous time analyses together with
the direct implementability of discrete algorithms. As a first application of this framework,
we provide the continuized Nesterov acceleration is a close variant of Nesterov acceleration
whose variables are indexed by a continuous time parameter. The two variables continuously
mix following a linear ordinary differential equation and take gradient steps at random times.
As a continuous process, one can use differential calculus to analyze convergence and obtain
analytical expressions for the parameters. A discretization of the continuized process can be
computed exactly with convergence rates similar to those of Nesterov original acceleration.
We show that the discretization has the same structure as Nesterov acceleration, but with
random parameters. We provide continuized Nesterov acceleration under deterministic as
well as stochastic gradients, with either additive or multiplicative noise.

Finally, using our continuized framework and expressing the gossip averaging problem
as the stochastic minimization of a certain energy function, we provide the first rigorous
acceleration of randomized gossip algorithms. In randomized gossip, nodes in a graph G =
(V, E) perform pairwise updates of the form

xv, xw ←−
xv + xw

2

at random Poisson clock tickings. The acceleration of randomized gossip we propose consists
of similar updates at random Poisson clock tickings, together with an underlying continuous
dynamics that allows faster mixing.

2.1. Introduction

In the last decades, the emergence of numerous applications in statistics, machine learn-
ing and signal processing has led to a renewed interest in first-order optimization methods
[BCN18]. They enjoy a low iteration cost necessary to the analysis of large datasets. The
performance of first-order methods was largely improved thanks to acceleration techniques
(see the review by [dST21] and the many references therein), starting with the seminal work
of [Nes83].

Let f : Rd → R be a convex and differentiable function, minimized at x∗ ∈ Rd. We assume
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2.1. Introduction

throughout this chapter that f is L-smooth (Definition 1.6.3) and convex. In addition, we
will sometimes also assume that f is µ-strongly convex for some µ > 0. For the problem
of minimizing f , gradient descent is well-known to achieve a rate f(xk) − f(x∗) = O(k−1)
in the smooth case, and a rate f(xk) − f(x∗) = O((1 − µ/L)k) in the smooth and strongly
convex case. In both cases, Nesterov introduced an alternative method with essentially the
same iteration cost, while achieving faster rates: it converges with rate O(k−2) in the smooth
convex case and with rate O((1−

√
µ/L)k) in the smooth and strongly convex case [Nes03].

These rates are then optimal among all black-box first-order methods that access gradients
and linearly combine them [Nes03, NY83].

Nesterov acceleration relies on several sequences of iterates—two or three, depending
on the formulation—and on a clever blend of gradient steps and mixing steps between the
sequences. Different interpretations and motivations underlying the precise structure of ac-
celerated schemes were approached in many works, including [BLS15, FB15, ASSS16, KF16,
AO17]. A large number of these works studied continuous time equivalents of Nesterov accel-
eration, obtained by taking the limit when stepsizes vanish, or from a variational framework.
The continuous time index t of the limit allowed to use differential calculus to study the
convergence of these equivalents. Examples of studies relying on continuous time interpreta-
tion include [SBC14, KBB15, WRJ16, WWJ16, BJW18, DO19, SDJS18, SDSJ19, ACPR18,
ACR19, ZMSJ18, MJ19].

Continuized Nesterov acceleration. In this chapter, we propose another continuous time
equivalent to Nesterov acceleration, which we refer to as the continuized Nesterov acceleration,
which avoids vanishing stepsizes. It is built by considering two sequences xt, zt ∈ Rd, t ∈ R≥0,
that continuously mix following a linear ordinary differential equation (ODE), and that take
gradient steps at random times T1, T2, T3, . . . . Thus, in this modeling, mixing and gradient
steps alternate randomly.

Thanks to the continuous index t and some stochastic calculus, one can differentiate aver-
aged quantities (expectations) with respect to t. In particular, this leads to simple analytical
expressions for the optimal parameters as functions of t, while the optimal parameters of
Nesterov accelerations are defined by recurrence relations that are complicated to solve.

The discretization x̃k = xTk , z̃k = zTk , k ∈ N, of the continuized process can be computed
directly and exactly: the result is a recursion of the same form as Nesterov iteration, but with
randomized parameters, and performs similarly to Nesterov original deterministic version
both in theory and in simulations.

The continuized framework can be adapted to various settings and extensions of Nesterov
acceleration. In what follows, we study how the continuized acceleration behaves in the
presence of additive and multiplicative noise in the gradients. In the multiplicative noise
setting, our acceleration satisfies a convergence rate similar to that of [JKK+18] and depends
on the statistical condition number of the problem at hand. The two acceleration schemes
are not directly comparable as we work in a continuized setting and only deal with pure
multiplicative noise. Our analysis is nevertheless much simpler, as it closely mimics that of
Nesterov acceleration.

Application to accelerated gossip algorithms. The continuized modeling is natural in asyn-
chronous parallel computing where gradient steps arrive at random times. More importantly,
there are situations where the continuized version of Nesterov acceleration can be practically
implemented while the original acceleration can not. In distributed settings, for instance,
the total number k of gradient steps taken in the network is typically not known to each
particular node; an advantage of the continuized acceleration is that it requires to know only
the time t and not k.

Gossip algorithms typically feature such asynchronous and distributed behaviors [BGPS06].
In gossip problems, nodes of a network aim at computing the global average of all their values
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by communicating only locally (with their neighbors), and without centralized coordination.
In this set-up, pairs of adjacent nodes communicate at random times, asynchronously, and
in parallel, so that the total number of past communications in the network at a given time
is unknown to all nodes. In this chapter, we formulate the gossip problem as a stochastic
optimization problem. Thanks to the continuized formalism, we naturally obtain accelerated
gossip algorithms that can be implemented in an asynchronous and distributed fashion.

Synchronous gossip algorithms rely on all nodes to communicate simultaneously [DKM+10].
Accelerating synchronous gossip algorithms have been studied in previous works, including
SSDA [SBB+17], Chebyshev acceleration [MMS11], Jacobi-Polynomial acceleration [BBG20b].
To that day, acceleration in the asynchronous setting has also been studied in a few works
(see for instance geographic gossip [DSW08], shift registers [LACM13], ESDAC [HBM18], and
randomized Kaczmarz methods [LRR19]). However, no algorithm in an asynchronous frame-
work has been rigorously proven to achieve an accelerated rate for general graphs [DSW08].
Other acceleration schemes [HBM18, LRR19] relied on additional synchronizations between
nodes, such as the knowledge of a global iteration counter. This departs from purely asyn-
chronous operations, hence leading to practical limitation. Our accelerated randomized gossip
algorithm recovers the same accelerated rates of [HBM18], and only requires the knowledge
of a common continuous-time t ∈ R≥0.

In this context, the continuized acceleration should be seen as a close approximation
to Nesterov acceleration, that features both an insightful and convenient expression as a
continuous time process and a direct implementation as a discrete iteration. We thus hope
to contribute to the understanding of Nesterov acceleration. In practice, the continuized
framework is relevant for handling asynchrony in decentralized optimization, where agents of
a network can not share a global iteration counter, preventing accelerated decentralized and
asynchronous methods.

Notations in the continuized framework. The index k always denotes a non-negative integer,
while indices t, s always denote non-negative reals.

2.2. The continuized framework

Let (Xk)k∈N be a Markov chain on a discrete space X , of probability transition matrix P ∈
[0, 1]X×X : for all k ≥ 0 and all x0, . . . , xk, xk+1 ∈ X , we have P (Xk+1 = xk+1 |x0, . . . , xk) =
Pxk,xk+1

. [AF02] introduced the continuized version of the Markov chain, the continuous-time
process (X̃(t))t∈R≥0

such that there exist random times 0 = T0 < T1 < . . . such that for all
t ≥ 0 we have X̃(t) = Xk for all t ∈ [Tk, Tk+1). The random times 0 = T0 < T1 < . . . are
usually a Poisson point process: T1, T2−T1, T3−T2, . . . are independent identically distributed
(i.i.d.), of law exponential with rate 1.

Now, let us consider an algorithm A (e.g., gradient descent iterates) that output a discrete
sequence generated through iterations Ak+1 = Fk(A0, . . . , Ak), where Fk might be random.
The continuized version of A is the continuous-time sequence Ã(t) satisfying Ã(t) = Ak
for all t ∈ [Tk, Tk+1) where 0 = T0 < T1 < . . . are random times. We here see that this
continuous-time sequence can be cast as Ã(Tk+1) = Fk(ÃT0 , . . . , ÃTk).

Up to now, the continuized version of A does not bring new information, since continuous-
time is not used so far. However, as we will see in the following sections, iterations Ã(Tk+1) =
Fk(ÃT0 , . . . , ÃTk) can be generalized to obtain continuized iterates of the form:

∀t /∈ {T0, T1, . . . } , dX̃(t) = φ
({
X̃(s), s < t

})
dt ,

∀k ∈ N , X̃(Tk+1) = F̃k

({
X̃(s), s < Tk+1

})
.

Note that this new formulation is strictly equivalent to the discrete one, as some function
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Fk and discrete iterates can be deduced from this continuous-time process. However, as
illustrated by the continuized version of Nesterov acceleration presented in the subsequent
sections, writing continuous processes lead to much simpler analyses. Finally, when discrete
processes are harder to implement (usually due to synchronization issues), directly working
with the underlying real-world continuous time yields simpler algorithms: this is the approach
we take for accelerating randomized gossip in this chapter, and to study delayed randomized
gossip in Chapter 4.

2.3. Reminders on Nesterov acceleration

For the sake of comparison, let us first recall the classical Nesterov acceleration. To
improve the convergence rate of gradient descent, Nesterov introduced iterations of three
sequences, parametrized by τk, τ ′k, γk, γ

′
k, k ≥ 0, of the form

yk = xk + τk(zk − xk) , (2.1)
xk+1 = yk − γk∇f(yk) , (2.2)
zk+1 = zk + τ ′k(yk − zk)− γ′k∇f(yk) . (2.3)

Depending on whether the function f is known to be convex, or strongly convex with a
known strong convexity parameter, Nesterov provided a set of parameter choices for achieving
acceleration.

Theorem 2.1 (Convergence of accelerated gradient descent). Nesterov accelerated scheme sat-
isfies:

1. Choose the parameters τk = 1 − Ak
Ak+1

, τ ′k = 0, γk = 1
L , γ

′
k =

Ak+1−Ak
L , k ≥ 0, where the

sequence Ak, k ≥ 0, is defined by the recurrence relation

A0 = 0 , Ak+1 = Ak +
1

2
(1 +

√
4Ak + 1) .

Then

f(xk)− f(x∗) ≤
2L‖x0 − x∗‖2

k2
.

2. Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters

τk ≡
√
µ/L

1+
√
µ/L

, τ ′k ≡
√

µ
L , γk ≡ 1

L , γ
′
k ≡ 1√

µL
, k ≥ 0. Then

f(xk)− f(x∗) ≤
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)(
1−

√
µ

L

)k
.

This result can be found as is in [dST21, Sections 4.4.1 and 4.5.3]. In the convex case,
Nesterov acceleration achieves the rate O(1/k2), whereas gradient descent achieves a rate
O(1/k) (see [Nes03, Corollary 2.1.2] for instance). In the strongly convex case, Nesterov
acceleration achieves the rate O((1−

√
µ/L)k), where gradient descent achieves a rate O((1−

µ/L)k) (see [Nes03, Theorem 2.1.15] for instance).
From a high-level perspective, Nesterov acceleration iterates over several variables, alter-

nating between gradient steps (always with respect to the gradient at yk) and mixing steps,
where the running value of a variable is replaced by a linear combination of the other vari-
ables. However, the precise way gradient and mixing steps are coupled is rather mysterious,
and the success of the proof of Theorem 2.1 relies heavily on the detailed structure of the
iterations. In the next section, we try to gain perspective on this structure by developing a
continuized version of the acceleration.
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2.4. Continuized version of Nesterov acceleration

This chapter uses several mathematical notions related to random processes. The fol-
lowing sections expose the results from heuristic considerations of those notions, rigorously
defined in Section 2.A.

We argue that the accelerated iteration becomes more natural when considering two
variables xt, zt indexed by a continuous time t ≥ 0, that are continuously mixing and that take
gradient steps at random times. More precisely, let T1, T2, T3, · · · ≥ 0 be random times such
that T1, T2−T1, T3−T2, . . . are independent identically distributed (i.i.d.), of law exponential
with rate 1 (any constant rate would do, we choose 1 to make the comparison with discrete
time k straightforward). By convention, we choose that our stochastic processes t 7→ xt, t 7→ zt
are càdlàg almost surely, i.e., right continuous with well-defined left-limits xt−, zt− (Definition
2.A.5 in Appendix 2.A). Our dynamics are parametrized by functions γt, γ′t, ηt, η′t, t ≥ 0. At
random times T1, T2, . . . , our sequences take gradient steps

xTk = xTk− − γTk∇f(xTk−) , (2.4)
zTk = zTk− − γ′Tk∇f(xTk−) . (2.5)

Because of the memoryless property of the exponential distribution, in a infinitesimal time
interval [t, t+ dt], the variables take gradients steps with probability dt, independently of the
past. Between these random times, the variables mix through a linear, translation-invariant,
ordinary differential equation (ODE)

dxt = ηt(zt − xt)dt , (2.6)
dzt = η′t(xt − zt)dt . (2.7)

Following the notation of stochastic calculus, we can write the process more compactly in
terms of the Poisson point measure dN(t) =

∑
k≥1 δTk(dt), which has intensity the Lebesgue

measure dt,

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) , (2.8)
dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) . (2.9)

Before giving convergence guarantees for such processes, let us digress quickly on why we
can expect an iteration of this form to be mathematically appealing.

First, to a Markov chain indexed by a discrete time index k, one can associate the so-
called continuized Markov chain, indexed by a continuous time t, that makes transition
with the same Markov kernel, but at random times, with independent exponential time
intervals [AF02]. Following this terminology, we refer to our acceleration (2.8)-(2.9) as the
continuized acceleration. The continuized Markov chain is appreciated for its continuous
time parameter t, while keeping many properties of the original Markov chain; similarly the
continuized acceleration is arguably simpler to analyze, while performing similarly to Nesterov
acceleration.

Second, it can also be compared with coordinate gradient descent methods, that are easier
to analyze when coordinates are selected randomly rather than in an ordered way [Wri15].
Similarly, the continuized acceleration is simpler to analyze because the gradient steps (2.4)-
(2.5) and the mixing steps (2.6)-(2.7) alternate randomly, due to the randomness of Tk, k ≥ 0.

In analogy with Theorem 2.1, we give choices of parameters that lead to accelerated
convergence rates, in the convex case (1) and in the strongly convex case (2). Convergence is
analyzed as a function of t. As dN(t) is a Poisson point process with rate 1, t is the expected
number of gradient steps done by the algorithm. Thus t is analoguous to k in Theorem 2.1.
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2.4. Continuized version of Nesterov acceleration

In the theorem below, E denotes the expectation with respect to the Poisson point process
dN(t), the only source of randomness.

Theorem 2.2 (Convergence of continuized Nesterov acceleration). The continuized Nesterov
acceleration satisfies the following two points.

1. Choose the parameters ηt = 2
t , η
′
t = 0, γt = 1

L , γ
′
t = t

2L . Then

Ef(xt)− f(x∗) ≤
2L‖z0 − x∗‖2

t2
.

2. Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters
ηt = η′t ≡

√
µ
L , γt ≡ 1

L , γ
′
t ≡ 1√

µL
. Then

Ef(xt)− f(x∗) ≤
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
.

We give an elementary sketch of proof below and a complete proof in Appendix 2.B.1.
Many authors have proposed continuous-time versions of Nesterov acceleration using differ-
ential calculus, see the numerous references in the introduction. For instance, in [SBC14], an
ODE is obtained from Nesterov acceleration by taking the joint asymptotic where the step-
sizes vanish and the number of iterates is rescaled. The resulting ODE must be discretized
to be implemented; choosing the right discretization is not straightforward as it introduces
stability and approximation errors that must be controlled [ZMSJ18, SDSJ19, SSZ20].

On the contrary, our continuous time process (2.8)-(2.9) does not correspond to a limit
where the stepsizes vanish.

Remark 2.4.1. A similar Markovian structure can be obtained in a discrete setting by flipping
i.i.d. coins to trigger gradient steps. By denoting p > 0 the probability to trigger a gradient step
when flipping a coin, (i) p = 1 gives the classical setting, and (ii) p→ 0 while renormalizing
time gives our continuized framework. In fact, this setting with updates triggered randomly is
an interpolation between the classical and continuized frameworks, and consists in replacing
exponential random variables by geometric random variables of parameter p for the waiting-
time between updates. We thus believe the convergence guarantees described here and in the
following can be adapted for this discrete scheme.

Sketch of proof for Theorem 2.2. A complete and rigorous proof is given in Appendix 2.B.1.
Here, we only provide the heuristic of the main lines of the proof. The proof is similar to
the one of Nesterov acceleration: we prove that for some choices of parameters ηt, η′t, γt, γ′t,
t ≥ 0, and for some functions At, Bt, t ≥ 0,

φt = At (f(xt)− f(x∗)) +
Bt
2
‖zt − x∗‖2

is a supermartingale. In particular, this implies that Eφt is a Lyapunov function, i.e., a
non-increasing function of t.

To prove that φt is a supermartingale, it is sufficient to prove that for all infinitesimal
time intervals [t, t+ dt], Etφt+dt ≤ φt, where Et denotes the conditional expectation knowing
all the past of the Poisson process up to time t. Thus we would like to compute the first
order variation of Etφt+dt. This implies computing the first order variation of Etf(xt+dt).

From (2.8), we see that f(xt) evolves for two reasons between t and t+ dt:

• xt follows the linear ODE (2.6), which results in the infinitesimal variation f(xt) →
f(xt) + ηt〈∇f(xt), zt − xt〉dt, and
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2.4. Continuized version of Nesterov acceleration

• with probability dt, xt takes a gradient step, which results in a macroscopic variation
f(xt)→ f (xt − γt∇f(xt)).

Combining both variations, we obtain that

Etf(xt+dt) ≈ f(xt) + ηt〈∇f(xt), zt − xt〉dt+ dt (f (xt − γt∇f(xt))− f(xt)) ,

where the dt in the second term corresponds to the probability that a gradient step happens;
note that the latter event is independent of the past up to time t.

A similar computation can be done for Et‖zt − x∗‖2. Putting things together, we obtain

Etφt+dt − φt ≈ dt

(
dAt
dt

(f(xt)− f(x∗)) +Atηt〈∇f(xt), zt − xt〉

−At (f(xt − γt∇f(xt))− f(xt)) +
dBt
dt

1

2
‖zt − x∗‖2

+Btη
′
t〈zt − x∗, xt − zt〉+

Bt
2

(
‖zt − γ′t∇f(xt)− x∗‖2 − ‖zt − x∗‖2

))
.

Using convexity and strong convexity inequalities, and a few computations, we obtain the
following upper bound:

Etφt+dt − φt . dt

((
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2

)
.

We want this infinitesimal variation to be non-positive. Here, we choose the parameters so
that γt = 1/L, and all prefactors in the above expression are zero. This gives some constraints
on the choices of parameters. We show that only one degree of freedom is left: the choice of
the function At, that must satisfy the ODE

d2

dt2

(√
At

)
=

µ

4L

√
At ,

but whose initialization remains free. Once the initialization of the function At is chosen, this
determines the full function At and, through the constraints, all parameters of the algorithm.
As φt is a supermartingale (by design), a bound on the performance of the algorithm is given
by

Ef(xt)− f(x∗) ≤
Eφt
At
≤ φ0

At
.

The results presented in Theorem 2.2 correspond to one special choice of initialization for the
function At.

In this sketch of proof, our derivation of the infinitesimal variation is intuitive and ele-
mentary; however it can be made more rigorous and concise—albeit more technical—using
classical results from stochastic calculus, namely Proposition 2.A.2. This is our approach in
Appendix 2.B.1.
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2.5. Discrete implementation of the continuized acceleration with random parameters

2.5. Discrete implementation of the continuized acceleration with random
parameters

In this section, we show that the continuized acceleration can be implemented exactly
as a discrete algorithm. This contrasts with the discretization of ODEs that introduces
discretization errors; here, we compute exactly

x̃k := xTk , ỹk := xTk+1− , z̃k := zTk ,

with the convention that T0 = 0. The three sequences x̃k, ỹk, z̃k, k ≥ 0, satisfy a recurrence
relation of the same structure as Nesterov acceleration, but with random weights. The
resulting randomized discrete algorithm satisfies performance guarantees similar to those of
Nesterov acceleration.

Theorem 2.3 (Discrete version of continuized acceleration). For any stochastic process of the
form (2.8)-(2.9), we have

ỹk = x̃k + τk(z̃k − x̃k) , (2.10)
x̃k+1 = ỹk − γ̃k∇f(ỹk) , (2.11)
z̃k+1 = z̃k + τ ′k(ỹk − z̃k)− γ̃′k∇f(ỹk) , (2.12)

for some random parameters τk, τ ′k, γ̃k, γ̃
′
k (that are functions of Tk, Tk+1, ηt, η

′
t, γt, γ

′
t).

1. For the parameters of Theorem 2.2.(1), τk = 1−
(

Tk
Tk+1

)2
, τ ′k = 0, γ̃k = 1

L , and γ̃
′
k = Tk

2L .
Then

E
[
T 2
k (f(x̃k)− f(x∗))

]
≤ 2L‖z0 − x∗‖2 .

2. For the parameters of Theorem 2.2.(2), τk = 1
2

(
1− exp

(
−2
√

µ
L(Tk+1 − Tk)

))
,

τ ′k = tanh
(√

µ
L(Tk+1 − Tk)

)
, γ̃k = 1

L , and γ̃
′
k = 1√

µL
. Then

E
[
exp

(√
µ

L
Tk

)
(f(x̃k)− f(x∗))

]
≤ f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2 .

The law of Tk is well known: it is the sum of k i.i.d. random variables of law exponential
with rate 1; this is called an Erlang or Gamma distribution with shape parameter k and
rate 1. One can use well-known properties of this law, such as its concentration around its
expectation ETk = k, to derive corollaries of the bounds above. The performance guarantees
are proved in Appendix 2.B.1.

2.6. Continuized Nesterov acceleration of stochastic gradient descent

We now investigate the design of continuized accelerations of stochastic gradient descent.
We assume that we do not have direct access to the gradient ∇f(x) but to a random estimate
∇f(x, ξ), where ξ ∈ Ξ is random of law P. In the continuized framework, the randomness of
the stochastic gradient and its time mix in a particularly convenient way. For similar reasons,
Latz studied stochastic gradient descent as a gradient flow on a random function that is
regenerated at a Poisson rate [Lat21]. However, this approach has the same shortcomings
as the other approaches based on gradient flows: the subsequent discretization introduces
non-trivial errors. We avoid this problem here.

We keep the algorithms of the same form, replacing gradients by stochastic gradients.
Let ξ1, ξ2, . . . be i.i.d. random variables of law P. We take stochastic gradient steps at the
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2.6. Continuized Nesterov acceleration of stochastic gradient descent

random times T1, T2, . . . ,

xTk = xTk− − γTk∇f(xTk−, ξk) ,

zTk = zTk− − γ′Tk∇f(xTk−, ξk) .

Between these random times, the variables mix through the same ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt .

This can be written more compactly in terms of the Poisson point measure dN(t, ξ) =∑
k≥1 δ(Tk,ξk)(dt,dξ) on R≥0 × Ξ, which has intensity dt⊗ P,

dxt = ηt(zt − xt)dt− γt
∫

Ξ
∇f(xt, ξ)dN(t, ξ) , (2.13)

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ
∇f(xt, ξ)dN(t, ξ) . (2.14)

Here, the discussion depends on the properties satisfied by the stochastic gradients ∇f(x, ξ).
We now focus on functions f is of the following form, typical to least-squares supervised

learning:

∀x ∈ Rd, f(x) = E(a,b)∼P

[
1

2
(b− 〈x, a〉)2

]
, (2.15)

where ξ = (a, b) ∈ Rd × R is random of law P. We assume that our stochastic first order
oracle is the gradient of one realization of the expectation, namely,

∇f(x, ξ) = −(b− 〈x, a〉)a , ξ = (a, b) .

We investigate noiseless—or purely multiplicative—stochastic gradients, in the sense that
almost surely, for ξ = (a, b) ∼ P:

b = 〈x∗, a〉, so that ∇f(x∗, ξ) = 0 . (2.16)

Noiseless stochastic gradients are relevant in several situations, such as coordinate gradi-
ent descent with randomly sampled coordinates [TY09, Nes12, Wri15] (where ∇f(x, ξ) =
m〈∇f(x), ei〉ei with i uniformly random in {1, . . . , d}), over-parameterized regime for least
squares regression [VBS19], function interpolation and gossip algorithms [BBG20c].

For a symmetric non-negative matrix A and a vector x, we denote ‖x‖2A = x>Ax. Let
H = E[aa>] be the Hessian of f . Let R2 be the smallest positive real number such that:

E
[
‖a‖2aa>

]
4 R2H . (2.17)

Further, similarly to [JKK+18], we define the statistical condition number of the problem as
the smallest κ̃ > 0 such that:

E
[
‖a‖2H−1aa

>
]
4 κ̃H . (2.18)

Theorem 2.4 (Continuized acceleration with pure multiplicative noise). Assume that (2.16),
(2.17) and (2.18) hold true. Then the continuized acceleration satisfies the following.

1. Choose the parameters ηt = 2
t , η
′
t = 0, γt = 1

R2 , γ
′
t = t

2R2κ̃
. Then

1

2
E‖xt − x∗‖2 ≤

R2κ̃‖z0 − x∗‖2H−1

t2
.
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2.7. Accelerating Randomized Gossip

2. Assume further that f is µ-strongly convex, i.e., all eigenvalues of H are greater or
equal to µ, where µ > 0. The condition number of f is then defined as κ = R2/µ. For
the parameters ηt = η′t = 1√

κκ̃
, γt = 1

R2 and γ′t = 1
R2

√
κ
κ̃ , we have:

1

2
E‖xt − x∗‖2 ≤

(
1

2
‖x0 − x∗‖2 +

µ

2
‖z0 − x∗‖2H−1

)
exp

(
− t√

κκ̃

)
.

In the strongly convex case, the benefits of this acceleration are similar to those of
[JKK+18] with classical discrete iterates: while stochastic gradient descent with stepsize
1/R2 is easily shown to achieve an exponential rate of convergence 1/κ, the acceleration
enjoys a rate of convergence of 1/

√
κκ̃. Note that from the definitions, κ̃ ≤ κ, thus the

acceleration performs as least as well as the naive algorithm. However, depending on the
distribution of a, the improvement might either be significant or null. We refer the reader to
the rich discussion in [JKK+18] which provides insights on the interpretation of κ̃ and on the
possibility to accelerate. Below, we provide a complementary perspective on the statistical
condition number in the context of gossip algorithms, where it can be interpreted in terms
of effective resistances of graphs.

Albeit more restrictive in terms of assumptions, our analysis is much simpler than that
of [JKK+18], as it relies on a standard Lyapunov function, similar to that of the continuized
acceleration (Theorem 2.2). In Appendix 2.D, we use the same analysis framework to prove
convergence of accelerated coordinate descent, which is another noiseless stochastic method.

2.7. Accelerating Randomized Gossip

The continuized framework allows designing accelerated decentralized algorithms requir-
ing synchronized clocks, but no synchronization of the communications. In this section, we
illustrate this statement in the simple case of gossip algorithms; the more general case of
decentralized optimization is discussed in the next section.

Let G = (V, E) a connected graph representing a communication network of agents. Each
agent v ∈ V is assigned a real number x0(v) ∈ R. The goal of the averaging (or gossip)
problem is to design an iterative procedure allowing each agent of the network to know the
average x̄ = 1

m

∑
v∈V x0(v) using only local communications, i.e., communications between

adjacent agents in the network.
We formalize the communication model of randomized gossip [BGPS06]. Time t is indexed

continuously in R≥0. We generate a Poisson point measure dN(t, e) =
∑

k≥1 δ(Tk,{vk,wk}) with
intensity measure dt⊗P, where dt is the Lebesgue measure on R≥0 and P = (P{v,w}){v,w}∈E
is a probability measure on the set E of edges. For k ≥ 0, Tk is a time at which edge {vk, wk}
is activated : adjacent nodes vk and wk can communicate and perform a pairwise update.
The Poisson point measure assumption implies that edges are activated independently of one
another and from the past: the activation times of edge {v, w} form a Poisson point process
of intensity P{v,w}.

To solve the gossip problem, [BGPS06] proposed the following naive strategy: each agent
v ∈ V keeps a local estimate xt(v) of the average and, upon activation of edge {vk, wk} at
time Tk ∈ R≥0, the activated nodes vk, wk average their current estimates

xTk(vk), xTk(wk) ←− xTk−(vk) + xTk−(wk)

2
.

In this section, we accelerate this naive procedure. Our strategy is to apply Section 2.6 as
follows. Consider the energy function

f(x) =
∑
{v,w}∈E

P{v,w}
2

(x(v)− x(w))2 , x = (x(v))v∈V . (2.19)
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This function is convex, smooth, and writes in the form (2.15):

f(x) = E{v,w}∼P
[

1

2

〈
x, a{v,w}

〉2
]
, (2.20)

where a{v,w} = ev − ew and (ev)v∈V forms the canonical basis of RV . As in Section 2.6, a
stochastic gradient of f is obtained by taking the gradient of one realization of the expectation,
namely:

∇f(x, {v, w}) = 〈x, a{v,w}〉a{v,w} =


x(v)− x(w) at coordinate v,
x(w)− x(v) at coordinate w,
0 at all other coordinates.

(2.21)

As a consequence, a stochastic gradient step with stepsize 1/2 corresponds to a local averaging
alongside edge {v, w}, where {v, w} ∼ P. More generally, the randomized gossip algorithm
as described by [BGPS06] is the stochastic gradient descent:

dxt = −1

2

∫
R≥0×E

∇f(xt, {v, w})dN(t, {v, w}) . (2.22)

Using Section 2.6, we can accelerate this algorithm if we know the strong convexity parameter
of f and the constants R2 and κ̃ as defined in (2.17) and (2.18) respectively. These constants
can be intepreted as graph-related quantities here.

Definition 2.7.1 (Graph-related quantities). The Laplacian matrix L ∈ RV×V of graph G with
weights (P{v,w}){v,w}∈E on the edges is the matrix with entries Lv,w = −P{v,w} if {v, w} ∈ E,
Lv,v =

∑
w∼v P{v,w}, and Lv,w = 0 if {v, w} /∈ E. We denote µgossip the second small-

est eigenvalue of L, corresponding to its smallest positive eigenvalue. For {v, w} ∈ E, let
Reff(v, w) = (e(v) − e(w))>L−1(e(v) − e(w)) be the effective resistance of edge {v, w}, and
Rmax = max{v,w}∈E Reff(v, w) be the maximal resistance in the graph.

The function f is quadratic with Hessian L, and strongly convex with parameter µgossip

on the hyperplane F = {x ∈ RV :
∑

v∈V x(v) = x̄}; hence we use the (perhaps abusive)
notation µgossip throughout. Moreover, the conditions (2.17) and (2.18) are satisfied with
R2 = 2, κ̃ = Rmax.

These parameters being given, the accelerated stochastic gradient descent updates (2.13)-
(2.14) can be instantiated as follows. Each agent v ∈ V keeps two local estimates xt(v), zt(v)
of x̄, initialized at x0(v). Upon activation of edge {vk, wk} at time Tk,

xTk(vk) = xTk(wk) =
xTk−(vk) + xTk−(wk)

2
,

zTk(vk) = zTk−(vk) +
1√

2µgossipRmax

(xTk−(wk)− xTk−(vk)) ,

zTk(wk) = zTk−(wk) +
1√

2µgossipRmax

(xTk−(vk)− xTk−(wk)) .

Between these updates, xt(v) and zt(v) locally mix at all nodes v ∈ V, according to the
coupled ODE:

dxt(v) =

√
2µgossip

Rmax
(zt(v)− xt(v))dt,

dzt(v) =

√
2µgossip

Rmax
(xt(v)− zt(v))dt.
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This algorithm is asynchronous in the sense that it does not require global synchronous
operations: the mixing of local variables does not require any synchronization since parameter
t ∈ R≥0 is available at all nodes independently from the number of past updates, while a
local pairwise update between adjacent nodes v and w only requires a local synchronization.

Theorem 2.5 (Accelerated randomized gossip). Let (xt(v))v∈V,t≥0 be generated with acceler-
ated randomized gossip. For any t ∈ R≥0:

∑
v∈V

1

2
E
[(
xt(v)− x̄

)2] ≤ 2

(∑
v∈V

1

2

(
x0(v)− x̄

)2)
exp

(
−
√
µgossip

2Rmax
t

)
.

Let θARG =
√

µgossip

2Rmax
be the rate of convergence of accelerated randomized gossip, and

θRG = µgossip be the rate of convergence of randomized gossip [BGPS06]. We have θARG ≥
θRG/

√
2. Let us exhibit scenarios over which accelerated randomized gossip gains several

orders of magnitude. Denoting Pmin = min{v,w}∈E P{v,w}, [ESV+11] ensures that for {v, w} ∈
E , PminReff(v, w) ≤ 1, so that Rmax ≤ P−1

min.

Corollary 2.7.1 (Comparison with randomized gossip). Accelerated randomized gossip achieves
a rate satisfying: √

θRGPmin

2
≤ θARG.

Assume furthermore that there exist some constants c > 0 such that for all {v, w} ∈ E,
P{v,w} ≤ cPmin and dv + dw ≤ 2d. Then, with C = 1/

√
2cd:

C

√
θRG

|V| ≤ θARG.

Assume now for simplicity that the Poisson intensities P{v,w} are all equal to 1/|E|. De-
noting |V| = m, on the cyclic and the line graph, this gives us θARG = Ω(1/m2) while
θRG � 1/m3. On a d-dimensional grid, we have θARG = Ω(1/m1+1/d) and θRG � 1/m1+2/d.
However, on graphs with unbounded degrees, no improvements are observed. We thus recover
the same rates as [DSW08] for the graphs they study, but generalized to any network.

2.8. Accelerating Asynchronous Decentralized Optimization

Our continuized framework for accelerating randomized gossip can be extended to the
more general problem of decentralized optimization: each node v in the network G previously
defined holds a function fv : Rd → R, µ-strongly convex and L-smooth. Nodes of the network
collaborate to solve:

min
x∈Rd

{
f(x) =

1

|V|
∑
v∈V

fv(x)

}
. (2.23)

As in gossip averaging, only local communications are allowed. Quantities related to fv
can only be computed at node v. In the case of empirical risk minimization, fv represents
the empirical risk related to node v’s local data. Setting fv(x) = 1

2‖x− x0(v)‖2 leads to the
averaging problem previously described. Similarly to Section 2.7, time is indexed continuously
by t in R≥0, and communications are ruled by the same Poisson point measure dN(t, e) =∑

k≥1 δ(Tk,{vk,wk}) on R≥0 × E .
We first rewrite Problem (2.23) as:

min
X∈R|V|×d, Xu=Xv ∀{u,v}∈E

{
F (X) =

1

|V|
∑
v∈V

fv(Xv)

}
, (2.24)
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where Xv ∈ Rd corresponds to the local parameter of node v, and the equality constraints en-
sures equivalence between (2.23) and (2.24). The constraints are linear and can be expressed
in matrix form as:

A>X = 0, (2.25)

with A ∈ RE×V such that ker(A>) = Span(1, ..., 1) the constant vector. The natural choice
for matrix A is to choose a square root of the Laplacian matrix of graph G. For (ev)v∈V and
(e{v,w}){v,w}∈E the canonical bases of RV and RE , A is thus that for any {v, w} ∈ E :

Ae{v,w} =
√
P{v,w}(ev − ew).

Matrix A then satisfies AA> = L the Laplacian matrix of graph G with weights P{v,w}.
Indeed, if W{v,w} = P{v,w}(ev − ew)(ev − ew)> corresponds to the gossip matrix for edge
{v, w}, A is such that:

AA> =
∑
{v,w}∈E

W{v,w} = L. (2.26)

Then, introducing Lagrange multipliers λ, we obtain through Lagrangian duality that Prob-
lem (2.23) is equivalent to:

max
λ∈RE×d

−F ∗(Aλ), (2.27)

with F ∗ the convex conjugate of F . Following the approach of [HBM18], we then apply
Accelerated Coordinate Descent to this dual problem. Yet, we use the continuized version
of Theorem 2.8, which allows us to remove the global iterations counter on which previous
approaches rely. We see that Problem (2.27) has exactly the right form to apply Theorem 2.8,
leading to the following dual iterations:

dλ
(y)
t = ηt(λ

(z)
t − λ

(y)
t )dt− γt

∫
R≥0×E

R{v,w}
P2
{v,w}

e{v,w}e
>
{v,w}A

>∇F ∗(Aλ(y)
t )dN(t, {v, w}) ,

dλ
(z)
t = η′t(λ

(y)
t − λ

(z)
t )dt− γ′t

∫
R≥0×E

1

P{v,w}
e{v,w}e

>
{v,w}A

>∇F ∗(Aλ(y)
t )dN(t, {v, w}) ,

(2.28)

where P = A†A with A† is the pseudo-inverse of A, R{v,w} = e>{v,w}A
†Ae{v,w}. Now, we

multiply these iterations by A on the left (which is standard), and we rewrite them with the
following iterates:

yt = Aλ
(y)
t , zt = Aλ

(z)
t . (2.29)

Note that yt, zt ∈ R|V|×d, and are thus variables associated with nodes of the graph.

dyt = ηt(zt − yt)dt− γt
∫
R≥0×E

R{v,w}
P2
{v,w}

W{v,w}∇F ∗(yt)dN(t, {v, w}) ,

dzt = η′t(yt − zt)dt− γ′t
∫
R≥0×E

1

P{v,w}
W{v,w}∇F ∗(yt)dN(t, {v, w}) ,

(2.30)

where we recall that W{v,w} = P{v,w}(ev − ew)(ev − ew)> corresponds to the gossip matrix
for edge {v, w}. Besides, the dual gradients ∇F ∗(yt) are such that e>v ∇F ∗(yt) = ∇f∗v (e>v yt),
and so each component can be computed locally at node v.

In summary, the distributed decentralized algorithm writes as follows. Upon activation
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of edge {vk, wk} at time Tk,

G{vk,wk}(Tk) = W{vk,wk}
[
∇f∗((yT−k )vk)−∇f∗((yT−k )wk)

]
yTk(vk) = yT−k

(vk)− γt
R{vk,wk}
P2
{vk,wk}

G{vk,wk}(Tk) ,

yTk(wk) = yT−k
(wk) + γt

R{vk,wk}
P2
{vk,wk}

G{vk,wk}(Tk) ,

zTk(vk) = zT−k
(vk)− γ′tG{vk,wk}(Tk) ,

zTk(wk) = zT−k
(wk) + γ′tG{vk,wk}(Tk) .

(2.31)

Between these updates, yt(v) and zt(v) locally mix at all nodes v ∈ V, according to the
coupled ODE:

dyt(v) = ηt(zt(v)− yt(v))dt,

dzt(v) = η′t(yt(v)− zt(v))dt.

This algorithm can be implemented with local computations and pairwise communications
only, since an update along edge {v, w} only involves the parameters and functions of nodes
v and w. In order to fully describe this algorithm, we need to specify the various parameters.
We do so, with the corresponding rate of convergence, in the following theorem.

Theorem 2.6 (Accelerated asynchronous decentralized optimization). Let

θ′ARG =

√
µgossip/max

{v,w}

R{v,w}
P{v,w}

,

where µgossip is the smallest non-zero eigenvalue of the Laplacian of the graph G, and κ = L/µ.
Denoting (xt(v))v∈V = (∇f∗v (zt(v)))v∈V generated by the accelerated coordinate descent on the
dual of Problem (2.23):

∑
v∈V

1

2
E
[
‖xt(v)− x∗‖2

]
≤ C

(∑
v∈V

1

2
‖x0(v)− x∗‖2

)
exp

(
−θ
′
ARG√
κ
t

)
,

where κ = µ/L is an upper bound on the condition number of f , C is a constant that depends
on the graph and κ, and θ′ARG is the rate of convergence of accelerated randomized gossip on
the graph G.

This algorithm thus features the same communication accelerationg as accelerated ran-
domized gossip, and the same discussion thus applies. However, due to the methodology to
derive the updates, gradients of the dual conjugates f∗v are involved. These quantities are
usually hard to compute, except in simple cases such as quadratic objectives, limiting the
applicatbility of our continuized acceleration framework.

However, the acceleration scheme we developed can be used to accelerate decentralized
SGD using primal local updates: this has been done in the works [NO23, NBO23], that
coupled our accelerated randomized gossip with local SGD steps in the continuized framework.

2.9. Conclusion

In this work, we introduced a continuized version of Nesterov’s accelerated gradients. In a
nutshell, the method has two sequences of iterates which take gradient steps at random times.
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In between gradient steps, the two sequences mix following a simple ordinary differential
equation, whose parameters are picked to ensure good convergence properties of the method.

As compared to other continuous time models of Nesterov acceleration, a key feature of
this approach is that the method can be implemented without any approximation, as the
differential equation governing the mixing procedure has a simple analytical solution. A
discretization of the continuized method corresponds to an accelerated gradient method with
random parameters.

Continuization strategies were introduced in the context of Markov chains [AF02]. Here,
they allow using acceleration mechanisms in asynchronous distributed optimization, where
usually agents are not aware of the total number of iterations taken so far. This is showcased
in the context of asynchronous gossip algorithms, and has further been studied by other
authors [NO23, NBO23] to develop large-scale asynchronous decentralized algorithms.

Finally, the continuized Nesterov acceleration we introduced also proves to be the first
acceleration of quasar convex functions [WW23], a more general class of functions than convex
functions.
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Appendix of Chapter 2

2.A. Stochastic calculus toolbox

In this appendix, we give a short introduction to the mathematical tools that we used
in this chapter. For more details, the reader can consult the more rigorous monographs of
[JS13, IW14, LG16].

2.A.1. Poisson point measures

We fix P a probability law on some space Ξ.

Definition 2.A.1. A (homogenous) Poisson point measure on R≥0×Ξ, with intensity ν(dt,dξ) =
dt⊗ dP(ξ), is a random measure N on R≥0 × Ξ such that

• For any disjoint measurable subsets A and B of R≥0 × Ξ, N(A) and N(B) are inde-
pendent.

• For any measurable subset A of R≥0 × Ξ, N(A) is a Poisson random variable with
parameter ν(A). (If ν(A) =∞, N(A) is equal to ∞ almost surely.)

Proposition 2.A.1. Let N be a Poisson point measure on R≥0 × Ξ with intensity dt⊗ dP(ξ).
There exists a decomposition dN(t, ξ) =

∑
k≥1 δ(Tk,ξk)(dt,dξ) on R≥0×Ξ where 0 < T1 <

T2 < T3 < . . . and ξ1, ξ2, ξ3, · · · ∈ Ξ satisfy:

• T1, T2 − T1, T3 − T2, . . . are i.i.d. of law exponential with rate 1,

• ξ1, ξ2, ξ3, . . . are i.i.d. of law P and independent of the T1, T2, T3, . . . .

Definition 2.A.2. Let N be a Poisson point measure on R≥0 × Ξ with intensity dt ⊗ dP(ξ).
The filtration Ft, t ≥ 0, generated by N is defined by the formula

Ft = σ (N([0, s]×A) , s ≤ t, A ⊂ Ξ measurable) .

2.A.2. Martingales and supermartingales

Let (Ω,F ,P) be a probability space and Ft, t ≥ 0, a filtration on this probability space.

Definition 2.A.3. A random process xt ∈ Rd, t ≥ 0, is adapted if for all t ≥ 0, xt is Ft-
measurable. An adapted process xt ∈ R, t ≥ 0 is a martingale (resp. supermartingale) if for
all 0 ≤ s ≤ t, E[xt| Fs] = xs (resp. E[xt| Fs] ≤ xs).

Definition 2.A.4. A random variable T ∈ [0,∞] is a stopping time if for all t ≥ 0, {T ≤ t} ∈
Ft.

Definition 2.A.5. A function xt, t ≥ 0, is said to be càdlàg if it is right continuous and for
every t > 0, the limit xt− := lims→t,s<t xs exists and is finite.

Theorem 2.7 (Martingale stopping theorem). Let xt, t ≥ 0, be a martingale (resp. super-
martingale) with càdlàg trajectories and uniformly integrable. Let T be a stopping time.
Then EXT = X0 (resp. EXT ≤ X0).
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2.A.3. Stochastic ordinary differential equation with Poisson jumps

The continuized processes are the composition of an ordinary differential equation and
stochastic Poisson jumps. It is thus a piecewise-deterministic Markov process [Dav84, Dav18],
a special case of stochastic models that do not include any diffusion term. The stochastic
calculus of this class of processes is particularly intuitive: there is no Ito correction term as
with diffusive processes.

We fix P a probability law on some space Ξ, N a Poisson point measure on R≥0×Ξ with
intensity dt⊗ dP(ξ), and denote Ft, t ≥ 0, the filtration generated by N .

Definition 2.A.6. Let b : Rd → Rd and G : Rd×Ξ→ Rd be two functions. An random process
xt ∈ Rd, t ≥ 0, is said to be a solution of the equation

dxt = b(xt)dt+

∫
Ξ
G(xt, ξ)dN(t, ξ)

if it is adapted, càdlàg, and for all t ≥ 0,

xt = x0 +

∫ t

0
b(xs)ds+

∫
[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) .

If we consider the decomposition dN(t, ξ) =
∑

k≥1 δ(Tk,ξk)(dt,dξ) given by Proposition 2.A.1,
then ∫

[0,t]×Ξ
G(xs−, ξ)dN(s, ξ) =

∑
k≥1

1{Tk≤t}G(xTk−, ξk) .

Here, we consider only autonomous equations as b and G are a function of xt, but not of
t. However, there is no loss of generality, one can study time-dependent systems by studying
the equation in the variable (t, xt). This trick is used in Appendix 2.B.

Proposition 2.A.2. Let xt ∈ Rd be a solution of

dxt = b(xt)dt+

∫
Ξ
G(xt, ξ)dN(t, ξ)

and ϕ : Rd → R be a smooth function. Then

ϕ(xt) = ϕ(x0) +

∫ t

0
〈∇ϕ(xs), b(xs)〉ds+

∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ) .

Moreover, we have the decomposition∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ)

=

∫ t

0

∫
Ξ

(ϕ(xs +G(xs, ξ))− ϕ(xs)) dtdP(ξ) +Mt ,

where Mt =
∫

[0,t]×Ξ (ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) (dN(s, ξ)− dtdP(ξ)) is a martingale.

This proposition is an elementary calculus of variations formula: to compute the value
of the observable ϕ(xt), one must sum the effects of the continuous part and of the Poisson
jumps. Moreover, the integral with respect to the Poisson measure N becomes a martingale
if the same integral with respect to its intensity measure dt⊗ dP(ξ) is removed.
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2.B. Analysis of the continuized Nesterov acceleration

2.B. Analysis of the continuized Nesterov acceleration

To encompass the proofs in the convex and in the strongly convex cases in a unified way,
we assume f is µ-strongly convex, µ ≥ 0. If µ > 0, this corresponds to assuming the µ-strong
convexity in the usual sense; if µ = 0, it means that we only assume the function to be
convex. In other words, the proofs in the convex case can be obtained by taking µ = 0 below.
In this section, Ft, t ≥ 0, is the filtration associated to the Poisson point measure N .

2.B.1. Noiseless case: proofs of Theorem 2.2 and of the bounds of Theorem 2.3

In this section, we analyze the convergence of the continuized iteration (2.8)-(2.9), that
we recall for the reader’s convenience:

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) ,

dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) .

The choices of parameters ηt, η′t, γt, γ′t, t ≥ 0, and the corresponding convergence bounds
follow naturally from the analysis. We seek sufficient conditions under which the function

φt = At (f(xt)− f∗) +
Bt
2
‖zt − x∗‖2

is a supermartingale.

The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+G(x̄t)dN(t) , b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t) =

 0
−γt∇f(xt)
−γ′t∇f(xt)

 .

We thus apply Proposition 2.A.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) where

ϕ(t, x, z) = At (f(x)− f(x∗)) +
Bt
2
‖z − x∗‖2 ,

we obtain:

φt = φ0 +

∫ t

0
〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t

0
(ϕ(x̄s +G(x̄s))− ϕ(x̄s)) ds+Mt ,

where Mt is a martingale. Thus, to show that ϕt is a supermartingale, it is sufficient to show
that the map t 7→

∫ t
0 〈∇ϕ(x̄s), b(x̄s)〉ds +

∫ t
0 (ϕ(x̄s +G(x̄s))− ϕ(x̄s))) ds is non-increasing

almost surely, i.e.,

It := 〈∇ϕ(x̄t), b(x̄t)〉+ ϕ(x̄t +G(x̄t))− ϕ(x̄t) ≤ 0 .

We now compute

〈∇ϕ(x̄t), b(x̄t)〉 = ∂tϕ(x̄t) + 〈∂xϕ(x̄t), ηt(zt − xt)〉+ 〈∂zϕ(x̄t), η
′
t(xt − zt)〉

=
dAt
dt

(f(xt)− f(x∗)) +
dBt
dt

1

2
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − xt〉

+Btη
′
t〈zt − x∗, xt − zt〉 .

Here, we use that as f is µ-strongly convex,

f(xt)− f(x∗) ≤ 〈∇f(xt), xt − x∗〉 −
µ

2
‖xt − x∗‖2 ,
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and the simple bound

〈zt − x∗, xt − zt〉 = 〈zt − x∗, xt − x∗〉 − ‖zt − x∗‖2

≤ ‖zt − x∗‖‖xt − x∗‖ − ‖zt − x∗‖2

≤ 1

2

(
‖zt − x∗‖2 + ‖xt − x∗‖2

)
− ‖zt − x∗‖2

=
1

2

(
‖xt − x∗‖2 − ‖zt − x∗‖2

)
.

This gives

〈∇ϕ(x̄t), b(x̄t)〉 ≤
(

dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2 (2.32)

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − x∗〉 . (2.33)

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) = At (f(xt − γt∇f(xt))− f(xt))

+
Bt
2

(
‖(zt − x∗)− γ′t∇f(xt)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt))− f(xt) ≤ 〈∇f(xt),−γt∇f(xt)〉+
L

2
‖γt∇f(xt)‖2

= −γt (2− Lγt)
1

2
‖∇f(xt)‖2 .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t)

≤
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 −Btγ′t〈∇f(xt), zt − x∗〉 . (2.34)

Finally, combining (2.32)-(2.33) with (2.34), we obtain

It ≤
(

dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
‖∇f(xt)‖2 .

Remember that It ≤ 0 is a sufficient condition for φt to be a supermartingale. Here, we
choose the parameters ηt, η′t, γt, γ′t, t ≥ 0, so that all prefactors are 0. We start by taking
γt ≡ 1

L (other choices γt < 2
L could be possible but would give similar results) and we want

to satisfy

dAt
dt

= Atηt ,
dBt
dt

= Btη
′
t Atηt = Btγ

′
t , Btη

′
t =

dAt
dt

µ , Btγ
′2
t =

At
L
.

To satisfy the last equation, we choose

γ′t =

√
At
LBt

. (2.35)
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To satisfy the third equation, we choose

ηt =
Btγ

′
t

At
=

√
2Bt
LAt

. (2.36)

To satisfy the fourth equation, we choose

η′t =
dAt
dt

µ

Bt
=
Atηtµ

Bt
= µ

√
At
LBt

. (2.37)

Having now all parameters ηt, η′t, γt, γ′t constrained, we now have that φt is Lyapunov if

dAt
dt

= Atηt =

√
AtBt
L

,
dBt
dt

= Btη
′
t = µ

√
AtBt
L

.

This only leaves the choice of the initialization (A0, B0) as free: both the algorithm and the
Lyapunov depend on it. (Actually, only the relative value A0/B0 matters.) Instead of solving
the above system of two coupled non-linear ODEs, it is convenient to turn them into a single
second-order linear ODE:

d

dt

(√
At

)
=

1

2
√
At

dAt
dt

=
1

2

√
Bt
L
,

d

dt

(√
Bt

)
=

1

2
√
Bt

dBt
dt

=
µ

2

√
At
L
. (2.38)

This can also be restated as

d2

dt2

(√
At

)
=

µ

4L

√
At ,

√
Bt = 2

√
L

d

dt

(√
At

)
. (2.39)

Proof of the first part (convex case) We now assume µ = 0, and we choose the solution
such that A0 = 0 and B0 = 1. From (2.38), we have d

dt

(√
Bt
)

= 0, thus Bt ≡ 1, and
d
dt

(√
At
)

= 1
2
√
L
, thus

√
At = t

2
√
L
. The parameters of the algorithm are given by (2.35)-

(2.37): ηt = 2
t , η

′
t = 0, γ′t = t

2L (and we had chosen γt = 1
L).

From the fact that φt is a supermartingale, we obtain that the associated algorithm
satisfies

Ef(xt)− f(x∗) ≤
Eφt
At
≤ φ0

At
=

2L‖z0 − x∗‖2
t2

.

This proves the first part of Theorem 2.2.
Further, one can apply martingale stopping Theorem 2.7 to the supermartingale φt with

the stopping time Tk to obtain

E [ATk (f(x̃k)− f(x∗))] = E [ATk (f(xTk)− f(x∗))] ≤ EφTk ≤ φ0 = ‖z0 − x∗‖2 .

This proves the formula of Theorem 2.3.1.

Proof of the second part (strongly convex case) We now assume µ > 0. We consider the
solution of (2.39) that is exponential:

√
At =

√
A0 exp

(
1

2

√
µ

L
t

)
,

√
Bt =

√
A0
√
µ exp

(
1

2

√
µ

L
t

)
.

The parameters of the algorithm are given by (2.35)-(2.37): ηt = η′t =
√

µ
L , γ

′
t = 1√

µL
(and

we had chosen γt = 1
L).

From the fact that φt is a supermartingale, we obtain that the associated algorithm
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satisfies

Ef(xt)− f(x∗) ≤
Eφt
At
≤ φ0

At
=
A0(f(x0)− f(x∗)) +A0

µ
2‖z0 − x∗‖2

At

=
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
.

This proves the second part of Theorem 2.2. Similarly to above, one can also apply the
martingale stopping theorem to prove the formula of Theorem 2.3.2.

Remark 2.B.1. In the above derivation, in both the convex and strongly convex cases, we
choose a particular solution of (2.39), while several solutions are possible. In the convex case,
we make the choice A0 = 0 to have a succinct bound that does not depend on f(x0)− f(x∗).
More importantly, in the strongly convex case, we choose the solution that satisfies the relation√
µ
√
At =

√
Bt, which implies that ηt, η′t, γ′t, are constant functions of t, and ηt = η′t. These

conditions help solving in closed form the continuous part of the process

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

which is crucial if we want to have a discrete implementation of our method (for more details,
see Theorem 2.3 and its proof). However, in the strongly convex case, considering other
solutions would be interesting, for instance to have an algorithm converging to the convex one
as µ→ 0.

2.B.2. With Pure Multiplicative Noise: Proof of Theorem 2.4

The proof of this theorem mimics the proof of Theorem 2.2, with a slightly different
Lyapunov function.

We recall that in Section 2.6, the function f is of the form:

∀x ∈ Rd, f(x) = E
[

1

2
(〈a, x〉 − b)2

]
,

where ξ = (a, b) ∈ Rd×R is of law P. Thanks to the noiseless assumption, for H = E
[
aa>

]
,

we also have:
∀x ∈ Rd, f(x) =

1

2
‖x− x∗‖2H .

The Lyapunov function studied in the proof of Theorem 2.2 would then write as, for t ∈ R≥0:

φt =
At
2
‖xt − x∗‖2H +

Bt
2
‖zt − x∗‖2.

An acceleration of stochastic gradient descent using this Lyapunov function has been done
by [VBS19]. In order to have an analysis similar to Nesterov acceleration, the authors make
a strong growth condition, which is too strong for many stochastic gradient problems and
for our application to gossip algorithms. Instead, our analysis requires a bounded statistical
condition number κ̃, and performs a shift in terms of dependency over H: ‖x− x∗‖2H becomes
‖x− x∗‖2, and ‖zt − x∗‖2 becomes ‖zt − x∗‖2H−1 . The new Lyapunov function writes:

φt =
At
2
‖xt − x∗‖2 +

Bt
2
‖zt − x∗‖2H−1 .

As in Theorem 2.2, the proof consists in proving that for carefully chosen parameters, φt is

72



2.B. Analysis of the continuized Nesterov acceleration

a supermatingale. The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ
G(x̄t, ξ)dN(t, ξ) ,

b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 ,

G(x̄t, ξ) =

 0
−γt∇f(xt, ξ)
−γ′t∇f(xt, ξ)

 .

We apply Proposition 2.A.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain:

φt = φ0 +

∫ t

0
Isds+Mt ,

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

Since the Lyapunov function is not the same, we need to explicit here each term. The first
term writes:

〈∇ϕ(x̄t), b(x̄t)〉 =
1

2

dAt
dt
‖xt − x∗‖2 +

1

2

dBt
dt
‖zt − x∗‖2H−1

+Atηt〈xt − x∗, zt − xt〉+Btη
′
t〈H−1(zt − x∗), xt − zt〉.

Mimicking the proof of Theorem 2.2, we write

1

2
‖xt − x∗‖2 ≤ ‖xt − x∗‖2 −

µ

2
‖xt − x∗‖2H−1 ,

and

〈H−1(zt − x∗), xt − zt〉 = 〈zt − x∗, xt − x∗〉H−1 − ‖zt − x∗‖2H−1

≤ 1

2

(
‖xt − x∗‖2H−1 − ‖zt − x∗‖2H−1

)
.

Hence:

〈∇ϕ(x̄t), b(x̄t)〉 ≤
dAt
dt
‖xt − x∗‖2 +

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2H−1

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2H−1 +Atηt〈xt − x∗, zt − xt〉 .

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) =
At
2

(
‖xt − γt∇f(xt, ξ)− x∗‖2 − ‖xt − x∗‖2

)
+
Bt
2

(
‖(zt − x∗)− γ′t∇f(xt, ξ)‖2H−1 − ‖zt − x∗‖2H−1

)
.

Then, expanding and taking expectation over ξ of the first term:

Eξ
[

1

2
‖xt − γt∇f(xt, ξ)− x∗‖2 −

1

2
‖xt − x∗‖2

]
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=
γ2
t

2
Eξ
[
‖∇f(xt, ξ)‖2

]
− γt〈H(xt − x∗), xt − x∗〉

≤
(
R2γ2

t

2
− γt

)
‖xt − x∗‖2H ,

where we used the definition of R2 in Equation (2.17):

Eξ
[
‖∇f(xt, ξ)‖2

]
= (xt − x∗)>E

[
aa>aa>

]
(xt − x∗)

= (xt − x∗)>E
[
‖a‖2aa>

]
(xt − x∗)

≤ R2(xt − x∗)>H(xt − x∗).

The second term writes:

1

2
Eξ
[
‖(zt − x∗)− γ′t∇f(xt, ξ)‖2H−1 − ‖zt − x∗‖2H−1

]
=
γ′t

2

2
Eξ
[
‖∇f(xt, ξ)‖2H−1

]
− γ′t〈xt − x∗, zt − x∗〉

≤ κ̃γ′t
2

2
‖xt − x∗‖2H

− γ′t〈xt − x∗, zt − x∗〉,

where we used the definition of κ̃ in Equation (2.18):

Eξ
[
‖∇f(xt, ξ)‖2H−1

]
= (xt − x∗)>E

[
aa>H−1aa>

]
(xt − x∗)

= (xt − x∗)>E
[
a‖a‖2H−1a

>
]
(xt − x∗)

≤ κ̃(xt − x∗)>H(xt − x∗).

Combining these inequalities gives the following upper-bound on It:

It ≤
(

dAt
dt
−Atηt

)
‖xt − x∗‖2 +

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2H−1

+ (Atηt −Btγ′t)〈xt − x∗, zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2H−1

+
(
κ̃Btγ

′2
t −Atγt

(
2−R2γt

)) 1

2
‖xt − x∗‖2H

Since It ≤ 0 is still a sufficient condition for φt to be a supermartingale, we choose parameters
such that all prefactors are equal to 0. We first take γt = 1

R2 , and we want to satisfy:

dAt
dt

= Atηt ,
dBt
dt

= Btη
′
t Atηt = Btγ

′
t , Btη

′
t =

dAt
dt

µ , Btγ
′2
t =

At
κ̃R2

.

To satisfy that last equality, we choose:

γ′t =

√
At

Btκ̃R2
.

The rest of the proof then follows just as in the proof of Theorem 2.B.1.
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2.C. Proof of Theorem 2.3

By integrating the ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

between Tk and Tk+1−, we obtain that there exists τk, τ ′′k , such that

ỹk = xTk+1− = xTk + τk(zTk − xTk) = x̃k + τk(z̃k − x̃k) , (2.40)
zTk+1− = zTk + τ ′′k (xTk − zTk) = z̃k + τ ′′k (x̃k − z̃k) .

From the first equation, we have x̃k = 1
1−τk (ỹk − τkz̃k), which gives by substitution in the

second equation,

zTk+1− = z̃k + τ ′′k

(
1

1− τk
(ỹk − τkz̃k)− z̃k

)
= z̃k + τ ′k(ỹk − z̃k) ,

where τ ′k =
τ ′′k

1−τk .

Further, from (2.4)-(2.5), we obtain the equations

x̃k+1 = xTk+1
= xTk+1− − γTk+1

∇f(xTk+1−) = ỹk − γTk+1
∇f(ỹk) , (2.41)

z̃k+1 = zTk+1
= zTk+1− − γ′Tk+1

∇f(xTk+1−) = z̃k + τ ′k(ỹk − z̃k)− γ′Tk+1
∇f(ỹk) . (2.42)

The stated equation (2.10)-(2.12) are the combination of (2.40), (2.41) and (2.42).

1. The parameters of Theorem 2.2.(1) are ηt = 2
t , η
′
t = 0, γt = 1

L and γ′t = t
2L . In this

case, the ODE

dxt = ηt(zt − xt)dt =
2

t
(zt − xt)dt ,

dzt = η′t(xt − zt)dt = 0 ,

can be integrated in closed form: for t ≥ t0,

xt = zt0 +

(
t0
t

)2

(xt0 − zt0) = xt0 +

(
1−

(
t0
t

)2
)

(zt0 − xt0) ,

zt = zt0 .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = 1 −
(

Tk
Tk+1

)2
, τ ′′k = 0 and thus

τ ′k =
τ ′′k

1−τk = 0. Finally, γ̃k = γTk = 1
L and γ̃′k = γ′Tk = Tk

2L .

2. The parameters of Theorem 2.2.(2) are ηt = η′t ≡
√

µ
L , γt ≡ 1

L and γ′t ≡ 1√
µL

. In this
case, the ODE

dxt = ηt(zt − xt)dt =

√
µ

L
(zt − xt)dt ,

dzt = η′t(xt − zt)dt =

√
µ

L
(xt − zt)dt ,
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can also be integrated in closed form: for t ≥ t0,

xt =
xt0 + zt0

2
+
xt0 − zt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= xt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(zt0 − xt0) ,

zt =
xt0 + zt0

2
+
zt0 − xt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= zt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(xt0 − zt0) .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = τ ′′k = 1
2

(
1− exp

(
−2
√

µ
L(Tk+1 − Tk)

))
and thus τ ′k =

τ ′′k
1−τk = tanh

(√
µ
L(Tk+1 − Tk)

)
. Finally, γ̃k = γTk = 1

L and γ̃′k = γ′Tk = 1√
µL

.

2.D. Continuized Accelerated Coordinate Descent with arbitrary sampling

In this section, we focus on the following problem:

min
x∈Rd

f(x), (2.43)

where f is of the form f : x 7→ g(Rx) for some function g and projector R ∈ Rd×d (such that
R2 = R). We further assume that f is smooth with respect to some matrix M ∈ Rd×d and
µ-strongly convex with respect to R, i.e.:

µ

2
‖x− y‖2R ≤ f(x)− f(y)−∇f(x)>(x− y) ≤ 1

2
‖x− y‖2M .

Note that µ can be equal to zero, but convergence will be slower in this case. We analyze the
convergence of the following continuized coordinate descent iteration:

dxt = ηt(zt − xt)dt− γt
∫

Ξ

Rξξ
Pξ
∇f(xt, ξ)dN(t, ξ) ,

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ
∇f(xt, ξ)dN(t, ξ) ,

(2.44)

where
∇f(xt, ξ) =

1

Pξ
∇ξf(xt), (2.45)

with the coordinate gradient ∇ξf(xt) = eξe
>
ξ ∇f(xt), with eξ ∈ Rd the unit vector associated

with coordinate ξ ∈ {1, . . . , d} and Pξ and dN are defined as in Section 2.7. Note that
these iterations are slightly different from the previous stochastic gradient iteration since the
stochastic gradient is not the same for xt and zt (same direction but different magnitudes).
The following theorem is a continuized version of [HBM18], which is itself largely based
on [NS17].

Theorem 2.8 (Continuized acceleration of coordinate descent). Assume that the stochastic
gradients are of the coordinate descent form (2.45). Besides, choose parameter L such that:

L ≥ max
ξ∈Ξ

MξξRξξ
P2
ξ

. (2.46)

Then the continuized acceleration (2.44) satisfies the following:
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1. For ηt = 2
t , η
′
t = 0, γt = 1

L , γ
′
t = t

2L ,

Ef(xt)− f(x∗) ≤
2L‖z0 − x∗‖2R

t2
.

2. Assume further that µ > 0 and choose the constant parameters ηt = η′t ≡
√

µ
L , γt ≡ 1

L ,

γ′t ≡ 1√
µL

. Then ,

Ef(xt)− f(x∗) ≤
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2R

)
exp

(
−
√
µ

L
t

)
.

Proof. The proof of this theorem is along the same lines as the proof of Theorem 2.2, and we
only highlight the major differences. The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ
G(x̄t, ξ)dN(t, ξ), b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t, ξ) =

 0

−γt RξξPξ ∇f(xt, ξ)

−γ′t∇f(xt, ξ)

 .

We also consider a slightly different Lyapunov function φt that takes into account the pro-
jector R:

φt = At (f(xt)− f∗) +
Bt
2
‖zt − x∗‖2R

This change of norm is essential to take into account the fact that f is not strongly convex
with respect to the euclidean norm, but only with respect to ‖ · ‖R. We apply Proposition
2.A.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain

φt = φ0 +

∫ t

0
Isds+Mt , (2.47)

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

The computation of the first term remains the same: the inequality (2.32)-(2.33) holds. The
computation of the second term becomes

Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) = At

(
Eξf

(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt)

)
+
Bt
2

(
Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2R − ‖zt − x∗‖2R

)
.

As f is M -smooth,

f

(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt) ≤ 〈∇f(xt),−γt

Rξξ
Pξ
∇f(xt, ξ)〉+

1

2
‖γt

Rξξ
Pξ
∇f(xt, ξ)‖2M .

In the additive case, the variance is bounded by σ2. In this case, we have that:

‖RξξPξ
∇f(xt, ξ)‖2M =

MξξRξξ
P2
ξ

‖∇f(xt, ξ)‖2R ≤ L‖∇f(xt, ξ)‖2R, (2.48)
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and similarly:

〈∇f(xt),−γt
Rξξ
Pξ
∇f(xt, ξ)〉 = −γt

Rξξ
P2
ξ

‖∇ξf(xt)‖2 = γt‖∇f(xt, ξ)‖2R. (2.49)

Thus:

Eξf
(
xt − γt

Rξξ
Pξ
∇f(xt, ξ)

)
− f(xt) ≤ γt(1− γtL)Eξ‖∇f(xt, ξ)‖2R .

Similarly, thanks to the unbiasedness of ∇f(xt, ξ),

Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2R − ‖zt − x∗‖2R
= −2γ′t〈EξR∇f(xt, ξ), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2R
≤ −2γ′t〈∇f(xt), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2R .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) ≤ −Btγ′t〈∇f(xt), zt − x∗〉

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
Eξ‖∇f(xt, ξ)‖2R .

Combining the bounds, we obtain

It ≤
(

dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
1

2
‖zt − x∗‖2R

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖xt − x∗‖2R

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1

2
Eξ‖∇f(xt, ξ)‖2R .

We see that we obtain a result that is very similar to that of the deterministic case. The
choices of parameters of Theorem 2.8 cancel all first five prefactors, and satisfy γt = 1

L ,
AtLγ

2
t = Btγ

′2
t . We thus obtain It ≤ 0 and so φt is a supermartingale, and the rest follows

as in Appendix 2.B.1.

2.E. Proof of Theorem 2.6

Proof. First note that the Hessian of the dual objective writes for some λ ∈ R|E|×d:

A>∇2F ∗(Aλ)A <
1

L
A>A, (2.50)

since F ∗ is L−1 strongly-convex when F is L-smooth [KSST09]. Thus, the dual objective is
µgossip/L strongly convex on the orthogonal of the kernel of A. Similarly, the smoothness of
the dual objective in direction {v, w} is equal to:

M{v,w}{v,w} = e>{v,w}A
>∇2F ∗(Aλ)Ae{v,w} 4

1

µ
e>{v,w}A

>Ae{v,w} =
P{v,w}

2µ
. (2.51)

Thus, we have that:

Ldual = max
{v,w}

M{v,w}{v,w}R{v, w}
P2
{v,w}

=
1

µ
max
{v,w}

R{v, w}
P{v,w}

. (2.52)
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Then, the result follows directly from applying Theorem (2.8), together with the smoothness
of the dual gradients, since:

E
∑
v∈V

1

2
‖∇f∗v (zt(v))− x?‖2 ≤ E

1

2µ
‖Aλ(z)

t −Aλ?‖2 ≤
λmax(AA>)

2µ
E‖λ(z)

t − λ?‖2R . (2.53)
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Chapter 3

The asynchronous speedup of Asynchronous
SGD

The previous chapter introduced the continuized framework: it allows decentralized agents to
share a continous-time clock, bypassing the limits of a shared iteration counters that requires
synchrony between users. However, the continuized acceleration we provided does not cover
delays, a core component of asynchrony. In the following three chapters, we investigate the
effect of communication and computation delays over optimization rates, and in particular
ask the question: when is asynchrony beneficial in terms of compute speed ? We start in the
simplest case: the centralized setting, with homogeneous workers first and then heterogeneous
ones, to first show that Asynchronous SGD is always faster than its synchronous counterpart
(Minibatch SGD), and to provide an explicit asynchronous speedup, that quantifies how faster
asynchrony is in this context. Quantitatively, in order to reach a small given precision ε, for
M machines, where machine m needs sm seconds to compute gradients and communicate
with the server, we show that Asynchronous SGD is

1

M

M∑
m=1

smax

sm

times faster than Minibatch SGD.
The existing analysis of asynchronous stochastic gradient descent (SGD) degrades dramat-

ically when any delay is large, giving the impression that performance depends primarily on
the delay. On the contrary, we prove much better guarantees for the same asynchronous SGD
algorithm regardless of the delays in the gradients, depending instead just on the number of
parallel devices used to implement the algorithm. Our guarantees are strictly better than the
existing analyses, and we also argue that asynchronous SGD outperforms synchronous mini-
batch SGD in the settings we consider. For our analysis, we introduce a novel recursion based
on “virtual iterates” and delay-adaptive stepsizes, which allow us to derive state-of-the-art
guarantees for both convex and non-convex objectives.

3.1. Introduction

In this chapter, we primarily focus on homogeneous workers: they all have access to
stochastic gradients of the same function F . We therefore use the notation m for workers
and denote as M the number of these workers or machines, to emphasize that the setting
slightly differs from other chapters. We consider solving stochastic optimization problems of
the form

min
x∈Rd

{F (x) = Eξ∼Df(x; ξ)}, (3.1)

which includes machine learning (ML) training objectives, where f(x; ξ) represents the loss
of a model parameterized by x on the datum ξ. Depending on the application, D could
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represent a finite dataset of size n or a population distribution. In recent years, such stochastic
optimization problems have continued to grow rapidly in size, both in terms of the dimension
d of the optimization variable—i.e., the number of model parameters in ML—and in terms of
the quantity of data—i.e., the number of samples ξ1, . . . , ξn ∼ D being used. With d and n
regularly reaching the tens or hundreds of billions, it is increasingly necessary to use parallel
optimization algorithms to handle the large scale and to benefit from data stored on different
machines.

There are many ways of employing parallelism to solve Equation (3.1), but the most
popular approaches in practice are first-order methods based on stochastic gradient descent
(SGD). At each iteration, SGD employs stochastic estimates of ∇F to update the param-
eters as xk = xk−1 − γk∇f(xk−1; ξk−1) for an i.i.d. sample ξk−1 ∼ D. Given M machines
capable of computing these stochastic gradient estimates ∇f(x; ξ) in parallel, one approach
to parallelizing SGD is “Distributed SGD”, or “Minibatch SGD” (Algorithm 1.1). This refers
to a synchronous, parallel algorithm that dispatches the current parameters xk−1 to each of
the M machines, waits while they compute and communicate back their gradient estimates
g1
k−1, . . . ,g

M
k−1, and then takes a Minibatch SGD step xk = xk−1 − γk · 1

M

∑M
m=1 g

m
k−1, as

explained in detailed in Section 1.2.1.
However, since Minibatch SGD waits for all M of the machines to finish computing

their gradient estimates before updating, it proceeds only at the speed of the slowest ma-
chine. There are several possible sources of delays: nodes may have heterogeneous hardware
with different computational throughputs [KMA+19, HLA+21], network latency can slow the
communication of gradients, and nodes may even just drop out [RGPP21]. Slower “straggler”
nodes can arise in many natural parallel settings including training ML models using multiple
GPUs [CPM+16] or in the cloud, and sensitivity to these stragglers poses a serious problem
for Minibatch SGD and other similar synchronous algorithms.

3.1.1. Asynchronous SGD

In this work, we consider a different, asynchronous parallel variant of SGD, which we
define in Algorithm 3.1 and which has a long history [NBB01, AD11, ASS20]. For this
method, whenever one of the M machines finishes computing a stochastic gradient, the
algorithm immediately uses it to take an SGD step, and then that machine begins computing
a new stochastic gradient at the newly updated parameters. Because of the asynchronous
updates, the other machines are now estimating the gradient at out-of-date parameters, so
this algorithm ends up performing updates of the form1

xk = xk−1 − γk∇f(xk−τ(k); ξk−τ(k)),

where τ(k) is the “delay” of the gradient at iteration k, which is often much greater than
one. Nevertheless, even though the updates are not necessarily well-aligned with the gra-
dient of F at the current parameters, the delays are usually not a huge problem in prac-
tice [DCM+12]. Asynchronous SGD has been particularly popular in reinforcement learning
applications [MBM+16, NSB+15] and federated learning [CCA+21, NMZ+22], providing sig-
nificant speed-ups over Minibatch SGD.

However and as explained in Section 1.3, the existing theoretical guarantees for Asyn-
chronous SGD are disappointing, and the typical approach to analyzing the algorithm involves
assuming that all of the delays are either the same, τ(k) = τ , or at least upper bounded,
τ(k) ≤ τmax [AD11, MPP+17, LPLJ18, ASS20, SK20]. These analyses then show that the
number of updates needed to reach accuracy ε grows linearly with τmax, which could be very

1Although this algorithm is asynchronous in the sense that different workers will have un-synchronized
iterates, we nevertheless focus on a situation where each SGD step is an atomic/locked update of the param-
eters xk. This is in contrast to methods using lock-free updates, e.g., in the style of Hogwild! [RRWN11],
where different coordinates of the parameters might be updated and overwritten simultaneously by different
workers.
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Algorithm 3.1: Asynchronous SGD
1: Input: initialization x0 ∈ Rd, stepsizes γk > 0
2: Each worker m ∈ [M ] begins calculating ∇f(x0; ξm0 )
3: for k = 1, 2, . . . do
4: Gradient ∇f(xprev(k,mk); ξ

mk
prev(k,mk)) arrives from some worker mk

5: Update: xk = xk−1 − γk∇f(xprev(k,mk); ξ
mk
prev(k,mk))

6: Send xk to worker mk, which begins calculating ∇f(xk; ξ
mk
k )

7: end for

painful for heterogeneous workers, as the toy example in Section 1.3 shows.

3.1.2. The asynchronous speedup of Asynchronous SGD and speedup over Minibatch SGD

We will frequently compare Asynchronous SGD to Minibatch SGD (e.g., Table 3.2), and
to make this comparison easier, suppose for simplicity that each worker requires a fixed time of
sm seconds per gradient computation, so in S seconds, each machine computes S

sm
stochastic

gradients. Importantly, this translates into drastically different numbers of parameter updates
for Asynchronous versus Minibatch SGD: the former takes one step per gradient computed,
while the latter only takes one step for each gradient from the slowest machine. That is,
Asynchronous and Minibatch SGD take

KAsync =
M∑
m=1

S

sm
and KMini = min

1≤m≤M
S

sm
(3.2)

total steps, respectively. So, it is easy to see that Asynchronous SGD takes at least M times
more steps than Minibatch SGD in any fixed amount of time, and even more than that
when the machines have varying speeds. Soon, we will prove guarantees for Asynchronous
SGD that match the guarantee for Minibatch SGD using exactly M times fewer updates,
meaning that our Asynchronous SGD guarantees are strictly better than the Minibatch SGD
guarantees in terms of runtime. Concretely, given a budget time T , Asynchronous SGD is

1

M

M∑
m=1

smax

sm

times faster than Minibatch SGD: this quantitative speedup is what we call the asynchronous
speedup of Asynchronous SGD.

Structure of this chapter. In this chapter, we provide a new analysis for Asynchronous SGD,
described in Section 3.2, which we use to prove better convergence guarantees. In contrast to
the existing guarantees that are based on τmax, ours depend only on the number of workers,
M , and show that Asynchronous SGD is better than the Minibatch SGD algorithm described
earlier. For Lipschitz-continuous objectives, our results in Section 3.3 improve over existing
Asynchronous and Minibatch SGD guarantees, and in the non-smooth, convex setting they
are, in fact, minimax optimal. In Section 3.4, we prove state-of-the-art guarantees for smooth
losses, which are summarized in Table 3.1. We do this by introducing a novel delay-adaptive
stepsize schedule γk ∼ 1/τ(k). The high-level intuition behind our proofs is that, although
some of the gradients may have very large delay, most of the gradients have delay O(M),
which is enough for good performance. Finally, in Section 3.5 we generalize our analysis to
heterogenous objective functions.
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3.1. Introduction

Table 3.1 – Comparison of the convergence rates for smooth objectives in terms of K, the total
number of stochastic gradients used. For Minibatch SGD with R updates with minibatch size M , it
holds K = MR. For simplicity, we ignore all logarithmic and constant terms, including the coefficients
in front of the exponents. The stated rates are upper bounds on E

[
‖∇F (x)‖2

]
in the non-convex case,

and E [F (x)− F ∗] in the (strongly) convex case.

Method and reference Convex Strongly Convex Non-Convex

Minibatch SGD(a)

[GLQ+19]
[KR20]

M
K + σ√

K
e
−µK
LM + σ2

K
M
K + σ√

K

Asynchronous SGD
(fixed delay τ)

[SK20]

τ
K + σ√

K
e
−µK
Lτ + σ2

K
τ
K + σ√

K

Asynchronous SGD
(arbitrary delays)

Our work

M
K + σ√

K
e
−µK
LM + σ2

K
M
K + σ√

K

(a) [GLQ+19] analyzed SGD in the strongly convex regime and [KR20] in the non-convex

regime.

Related works specific to this chapter. Closely related to this chapter, [MPP+17] proposed
and utilized the analysis tool of “virtual iterates” for Asynchronous SGD under bounded
delays. [SK20] extended these results, albeit restricting delays to be constant, and [LPLJ18]
considered lock-free updates. We use the same proof approach, but with a different virtual
sequence and different, delay-adaptive stepsizes.

In a concurrent work, [KSJ22] used a similar technique to ours to study Asynchronous
SGD with potentially unbounded delays. Their bounds are stated using empirical average
of the delays rather than M . Compared to the work of [KSJ22], our theory includes guar-
antees for non-smooth problems as given in Theorem 3.1. They, on the other hand, have an
extra result for the case of constant stepsize and bounded delays without assuming bounded
gradients. Our Theorem 3.2 that covers non-convex, convex, and strongly convex problems
has almost the same delay-adaptive stepsize as their Theorem 8 that covers non-convex func-
tions only. For heterogeneous data, we study standard Asynchronous SGD, whereas [KSJ22]
used a special scheduling procedure to balance the workers, see also the comments after our
Theorem 3.3.

3.1.3. Notation and problem setting

We consider solving the problem (3.1) under several standard [Bub15, see, e.g.,] combina-
tions of conditions on the objective F . We denote the minimum of F as F ∗ = minx F (x), an
upper bound on the initial suboptimality as ∆ ≥ F (x0)−F ∗, and an upper bound on the ini-
tial distance to the minimizer as B ≥ min {‖x0 − x∗‖ : x∗ ∈ arg minx F (x)}. Additionally to
the definitions of Section 1.6, we may also assume the stochastic gradients have σ2-bounded
variance, meaning that for all x, Eξ∼D‖∇f(x; ξ)−∇F (x)‖2 ≤ σ2.

Finally, we mainly focus on “homogeneous” optimization, where each machine computes
each stochastic gradient using an i.i.d. sample ξ ∼ D. This is in contrast to the “heteroge-
neous” setting, where different machines have access to data drawn from different sources,
meaning that stochastic gradients estimated on different machines can have different distri-
butions (see Section 3.5).
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3.2. Analysis of Asynchronous SGD via virtual iterates

Delay notation. The gradients used by Algorithm 3.1 may arrive out of order, so the param-
eters xk at iteration k will often be updated using stochastic gradients ∇f(xj ; ξj) evaluated
at out-of-date parameters xj for j < k − 1; we therefore introduce additional notation for
describing the delays. We use mk ∈ [M ] to denote the index of the worker whose stochastic
gradient estimate is used in iteration k to compute xk. In addition, for each iteration k and
worker m, we introduce

prev(k,m) = max {j < k : mj = m} and next(k,m) = min {j ≥ k : mj = m},

which denotes the index of the last iteration before k when machine m returned a gradi-
ent, and the index of the first iteration after k (inclusive) when machine m will return a
gradient, respectively. Accordingly, at iteration k, machine m is in the process of estimat-
ing ∇f(xprev(k,m); ξ

m
prev(k,m)). We define the current “delay” of this gradient as the number

of iterations that have happened since prev(k,m), i.e., τ(k,m) = k − prev(k,m). Abusing
notation, we shorten to τ(k) = τ(k,mk) for the delay of the gradient used to compute xk.

3.2. Analysis of Asynchronous SGD via virtual iterates

The central idea in our analysis is to focus on a virtual iterate sequence, which tracks,
roughly, how the parameters would have evolved if there were no delays. We note that
this sequence is only used for the purpose of analysis, and is never actually computed. This
technique is related to previous approaches [MPP+17, LPLJ18, SK20], with the key difference
being which virtual sequence we track. Specifically, in addition to x0, . . . ,xK—the actual
sequence of iterates generated by Algorithm 3.1—we introduce the complementary sequence
x̂1, . . . , x̂K which evolves according to

x̂k+1 = x̂k − γ̂k∇f(xk; ξ
mk
k ),

where x̂1 = x0 −
M∑
m=1

γnext(1,m)∇f(x0; ξm0 ) and γ̂k = γnext(k+1,mk) .
(3.3)

This virtual sequence x̂k+1 evolves almost according to SGD (without delays), although we
note that it uses gradients evaluated at xk rather than x̂k. The stepsize used for this update,
γ̂k, is the stepsize that is eventually used by Algorithm 3.1 when it takes a step using the
gradient evaluated at xk. The core of our proofs is showing that xk and x̂k remain close
using the following Lemma:

Lemma 3.2.1. Let {xk} and {x̂k} be defined as in Algorithm 3.1 and (3.3), respectively. Then
for all k ≥ 1

xk − x̂k =
∑

m∈[M ]\{mk}
γnext(k,m)∇f(xprev(k,m); ξ

m
prev(k,m)) .

Proof. First, we expand the update of xk in Algorithm 3.1, and of x̂k in (3.3). Denoting
ek = xk − x̂k,

ek = ek−1 − γk∇f(xprev(k,mk); ξ
mk
prev(k,mk)) + γ̂k−1∇f(xk−1; ξ

mk−1

k−1 )

= e1 −
k∑
j=2

γj∇f(xprev(j,mj); ξ
mj
prev(j,mj)

) +

k−1∑
j=1

γ̂j∇f(xj ; ξ
mj
j )

=

M∑
m=1

γnext(1,m)∇f(x0; ξm0 )−
k∑
j=1

γj∇f(xprev(j,mj); ξ
mj
prev(j,mj)

) +

k−1∑
j=1

γ̂j∇f(xj ; ξ
mj
j ) .

From here, we note that the second term, which comprises all of the gradients used by
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3.3. Convergence guarantees for Lipschitz losses

Algorithm 3.1 to make the first k updates, can be rewritten as:

−
M∑
m=1

γnext(1,m)∇f(x0; ξm0 )1{next(1,m)≤k} −
k−1∑
i=1

γ̂i∇f(xi; ξ
mi
i )1{next(i,mi)≤k} ,

and substituting into the expression for ek above, there are k cancellations and the claim
follows.

How does this help us? For all of our results, our strategy is to show that the virtual iter-
ates x̂k evolve essentially according to SGD (without delays), that ‖xk − x̂k‖ remains small
throughout the algorithm’s execution, and therefore that the Asynchronous SGD iterates xk
are nearly as good as SGD without delays. Lemma 3.2.1 is key for the second step. Whereas
previous work tries to bound ‖xk − x̂k‖ by reasoning about the delays involved in the first k
updates, we observe that xk − x̂k is just the sum of M − 1 gradients, so our bound naturally
incurs a dependence on M , but it is not directly affected by the delays themselves.

3.3. Convergence guarantees for Lipschitz losses

We begin by analyzing Algorithm 3.1 for convex, Lipschitz-continuous losses.

Theorem 3.1. Let the objective F be convex, let f(·; ξ) be G-Lipschitz-continuous for each ξ,
and let there be a minimizer x∗ ∈ arg minx F (x) for which ‖x0 − x∗‖ ≤ B. Then for any
number of iterations2 K ≥ M , Algorithm 3.1 with constant stepsize γk = γ = B/(G

√
KM)

ensures

E

[
F

(
1

K

K∑
k=1

xk

)
− F ∗

]
≤ 3GB

√
M√

K
.

Proof. Let x∗ ∈ arg minx F (x) with ‖x0 − x∗‖ ≤ B. First, we follow the typical analysis of
stochastic gradient descent [Bub15, see, Theorem 3.2, e.g.] by expanding the update of x̂k+1

from (3.3):

E‖x̂k+1 − x∗‖2 = E
[
‖x̂k − x∗‖2 + γ2

∥∥∇f(xk; ξ
mk
k )

∥∥2 − 2γ〈∇F (xk), x̂k − x∗〉
]

≤ E
[
‖x̂k − x∗‖2 + γ2G2 − 2γ[F (xk)− F ∗] + 2γ〈∇F (xk),xk − x̂k〉

]
≤ E

[
‖x̂k − x∗‖2 + γ2G2 − 2γ[F (xk)− F ∗] + 2γG‖xk − x̂k‖

]
.

For the first inequality, we used the convexity of F and that f(·; ξ) being G-Lipschitz implies
‖∇f(x; ξ)‖ ≤ G for all x; for the second, we again used the G-Lipschitzness of f(·; ξ) along
with the Cauchy-Schwarz inequality. Continuing as in the standard SGD analysis, we rear-
range the expression, average over K, apply the convexity of F , and telescope the sum to
conclude:

E

[
F

(
1

K

K∑
k=1

xk

)
− F ∗

]
≤ E

[
‖x̂1 − x∗‖2

2γK
+
γG2

2
+
G

K

K∑
k=1

‖xk − x̂k‖
]
. (3.4)

The first two terms almost exactly match the guarantee of SGD with fixed stepsize γ. The
main difference—and the place where Lemma 3.2.1 and the Lipschitzness of the losses plays
a key role—is in bounding the third term. Since

∥∥∥∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥ ≤ G, we just

2W.l.o.g. we can take M ≤ K because at most K of the workers are actually able participate in the first
K updates of Algorithm 3.1, and machines that do not participate can simply be ignored in the analysis.
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3.3. Convergence guarantees for Lipschitz losses

Table 3.2 – We compare optimization terms in the smooth and convex setting and the resulting
speed-ups in the fixed-computation-speed model of Section 3.1.2. We denote smax = maxm sm and
approximate the maximum delay as τmax =

∑M
m=1 smax/sm. The speedup is the largest factor α such

that Asynchronous SGD attains the same error in S seconds as Minibatch SGD would in αS seconds.

Method # of Updates Optimization Term Speedup

Minibatch SGD R = S
smax

O
(

1
R

)
1

Asynchronous SGD
(prior works) K =

∑M
m=1

S
sm

O
(
τmax
K

)
1

Asynchronous SGD
(our work) K =

∑M
m=1

S
sm

O
(
M
K

)
1
M

∑M
m=1

smax
sm
≥ 1

use the triangle inequality:

‖xk − x̂k‖ =
∥∥∥ ∑
m∈[M ]\{mk}

γ∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥ ≤ (M − 1)γG. (3.5)

Combining this with ‖x̂1 − x∗‖2 =
∥∥∥x0 − γ

∑M
m=1∇f(x0; ξm0 )− x∗

∥∥∥2
≤ 2B2 + 2γ2M2G2,

and plugging in our stepsize in (3.4) completes the proof.

To understand this result, it is instructive to recall the worst-case performance of KMini
steps of Minibatch SGD [NY83] in the setting of Theorem 3.1:

E[F (xMini)− F ∗] = O
(
GB/

√
KMini

)
. (3.6)

From this, we see that our guarantee for Asynchronous SGD in Theorem 3.1 matches the rate
for KMini = K/M steps of Minibatch SGD. Furthermore, at least in the simplified model of
Section 3.1.2, Asynchronous SGD takes at least M times more steps than Minibatch SGD in
a given span of time, and therefore Theorem 3.1 guarantees better performance than (3.6) in
terms of runtime. Moreover, previous analyses of Asynchronous SGD [SK20, e.g.,] provide
guarantees with τmax replacingM in our bound. Since necessarily τmax ≥M , this means that
our guarantee is never worse than the existing ones and it can be much better, for example,
in a case where one severe straggler results in τmax ≈ K but M � K. In fact, our guarantee
in Theorem 3.1 is minimax optimal in the setting considered [WWS+18, Section 4.3].

Finally, we emphasize that althoughM appears in the numerator of the error guarantee in
Theorem 3.1, this does not mean that the guarantee necessarily degrades when more parallel
workers are added. In particular, adding more workers always means that more gradients will
be calculated in any given amount of runtime. More concretely, in the model of Section 3.1.2
where the machines have fixed speeds, the expression for KAsync = KAsync(S, s1, . . . , sm) in
(3.2) implies that adding an (M + 1)th machine gives a better guarantee whenever sM+1 is
smaller than the harmonic mean of s1, . . . , sM :

sM+1 ≤
(

1

M

M∑
m=1

1

sm

)−1

=⇒ M + 1

KAsync(S, s1, . . . , sM+1)
≤ M

KAsync(S, s1, . . . , sM )
.

Remark 3.3.1. Following the same high-level approach, we can also analyze Algorithm 3.1
with constant stepsizes for non-convex objectives but smooth-Lipschitz losses: such a result is
present in [MBEW22, Theorem 2].
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3.4. Convergence guarantees for non-Lipschitz losses

3.4. Convergence guarantees for non-Lipschitz losses

Now, we analyze smooth but not necessarily Lipschitz-continuous losses. The previous
proofs relied crucially on the gradients being bounded in norm in order to control xk − x̂k.
For general smooth losses, the situation is more difficult because

∥∥∥∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥
could be large. Our solution to this issue is to introduce a new delay-adaptive stepsize
schedule γk ∼ 1/τ(k), which we show allows for sufficient control over ‖xk − x̂k‖. Similar
stepsizes have been considered by [WMFJ22] for the PIAG algorithm, while the stepsizes for
Asynchronous SGD used in previous analyses typically scale with 1/τmax [SK20, e.g.,]. Thus,
our analysis shows that we can get away with a more aggressive stepsize to get better rates.
However, our stepsize choice could be problematic if it were correlated with the noise in the
stochastic gradients because our proofs involve the step:

Eξmk
prev(k,mk)

∼D

[
γk∇f(xprev(k,mk); ξ

mk
prev(k,mk))

]
= γk∇F (xprev(k,mk)).

Therefore, we introduce the following assumption about the relationship between the delays
and data.

Assumption 3.4.1. The stochastic sequences (ξ1, ξ2, . . .) and (τ(0), τ(1), . . .) are independent.

This assumption holds, for example, when it takes a fixed amount of computation to
evaluate any stochastic gradient, and the combination of the (potentially heterogeneous)
computational throughput on the different workers and network latency gives rise to the
delays. However, this can fail to hold, for instance, when training a model with variable-
length inputs, in which case the delays will probably depend on the length of the input
sequences, so it will likely also be related to the gradient noise. The next Theorem shows
our convergence guarantees under Assumption 3.4.1 for Asynchronous SGD with novel delay-
adaptive stepsizes scaling with 1/τ(k):

Theorem 3.2. Suppose F is L-smooth, that Assumption 3.4.1 holds, that B ≥ E‖x0 − x∗‖2 for
some minimizer x∗, and ∆ ≥ EF (x0)−F ∗. Then there exist numerical constants c1, c2, c3, c4

such that:

1. For convex F , K ≥M and γk = min
{

1
4Lτ(k) ,

1
4ML ,

B
σ
√
K

}
Algorithm 3.1 ensures

E [F (x̃K)− F ∗] ≤ c1 ·
(
MLB2

K
+
σB√
K

)
,

where x̃K is a weighted average3 of x1, . . . ,xK .

2. For µ-strongly convex F , K ≥ 3M , and γk = min

 exp
(
−µτ(k)
4ML

)
4Lτ(k) , 1

8ML ,
504 ln

(
e+µ2K2B2

σ2

)
µK


Algorithm 3.1 ensures

E[F (x̃K)− F ∗] ≤ c2 ·
(
MLB2 exp

(
−c3Kµ

ML

)
+

σ2

µK
log

(
e+

µ2K2B2

σ2

))
,

where x̃K is a weighted average of x1, . . . ,xK defined.

3The weight on each iterate xk is proportional to γ̂k, which depends on the eventual delay of ∇f(xk; ξ
mk
k ),

and is thus not yet known at iteration k. However, on line 4 of Algorithm 3.1, the worker could simply return
both its gradient and the point at which it was evaluated, so that the term γ̂kxk can simply be added at
iteration next(k + 1,mk) rather than at iteration k, so there is not need to store all of the previous iterates.
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3.5. Heterogeneous data setting

3. For non-convex F , K ≥ M , and γk = min
{

1
4Lτ(k) ,

1
2ML ,

√
∆

KLσ2

}
Algorithm 3.1 en-

sures

E
[
‖∇F (x̃K)‖2

]
≤ c4 ·

(
ML∆

K
+

√
L∆σ2

K

)
,

where x̃K is randomly chosen from x1, . . . ,xK according to (3.11).

We provide proof of Theorem 3.2.3 in Section 3.D (non-convex setting). The convex
and strongly convex proofs follow the same lines, and we refer the reader to the appendix
of [MBEW22] for convex proofs. To understand the implications of Theorem 3.2, we recall
the guarantees for R steps of Minibatch SGD using minibatches of size M in the setting of
Theorem 3.2, which are (ignoring all constants) [NY83, GL13]: E[F (xMini)− F ∗] ≤ LB2

R +
σB√
RM

in the convex setting, E[F (xMini)− F ∗] ≤ LB2 exp(−µR
L )+ σ2

µRM in the strongly convex

setting, and E‖∇F (xMini)‖2 ≤ L∆
R +

√
L∆σ2

RM in the non-convex setting. Comparing these to
the guarantees for Asynchronous SGD in Theorem 3.2.1–3, we see that up to constants
(and logarithmic factors in the strongly convex case), our results match the guarantees of
R = K/M steps of Minibatch SGD with minibatch sizeM . As discussed in Section 3.1.2, each
update of Minibatch SGD takes the time needed by the slowest machine, meaning that in any
given amount of time, Asynchronous SGD will complete at least M times more updates than
Minibatch would. Therefore, the guarantees in Theorem 3.2 imply strictly better performance
for Algorithm 3.1 than for Minibatch SGD in terms of guaranteed error after a fixed amount
of time, as illustrated in Table 3.2. Figure 3.1 depicts a simple experiment demonstrating
this phenomenon in practice.

The first “optimization” terms in our guarantees match K/M steps of exact gradient
descent, completely irrespective of the delays. In the convex cases, it is likely that these could
be “accelerated” to scale with (K/M)−2 or exp(− K

√
µ

M
√
L

), but at the expense of a more complex
algorithm and analysis. However, by analogy to existing lower bounds [WWS+18, CDHS17]
we conjecture that the optimization terms in Theorem 3.2.1–2 are the best “unaccelerated”
rate we could hope for, and that the optimization term in Theorem 3.2.3 is optimal. Moreover,
despite the delays, the second “statistical” terms in our guarantees are minimax optimal
amongst all algorithms that use K stochastic gradients [NY83, ACD+22]. So, when the
statistical terms dominate the rate, our guarantees are unimprovable in the worst case, and
in fact they even match what could be guaranteed by K steps of SGD without delays.
Furthermore, since the optimization terms decrease faster with K, in a realistic scenario
where M � K, the statistical term will eventually dominate the rate and our algorithm will
have optimal performance with no penalty from the delayed gradients at all.

3.5. Heterogeneous data setting

Finally, we extend our results to the heterogeneous data setting, where each machine
m possesses its own local data distribution Dm, giving rise to a local objective Fm. The
optimization problem in the heterogeneous setting is:

min
x∈Rd

{
F (x) =

1

M

M∑
m=1

Fm(x)

}
, where Fm(x) = Eξ∼Dm [fm(x; ξ)] . (3.7)

In this setting, we define Asynchronous SGD the same way, with worker m having access to
the stochastic gradients ∇fm(·; ξ) and updates taking the form:

xk = xk−1 − γk∇fmk(xprev(k,mk); ξ
mk
prev(k,mk)) . (3.8)

It is generally impossible to show that Asynchronous SGD will work well in this setting.
Specifically, if F2 = · · · = FM = 0, then the time needed to optimize F is entirely dependent
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Figure 3.1 – We ran an experiment on a simple least-squares problem with random data and tuned all
stepsizes. On the left, we see that after a fixed number of gradients are used, Asynchronous SGD is
slightly better than Minibatch SGD but it is also quite unstable, whereas with delay-adaptive stepsizes
it is both fast and stable. On the right, we can see the distribution of the delays (note that y-axis
is in log scale). Additional details about the experiment can be found in Appendix 3.A. Credits to
Konstantin Mishchenko for the figure.

on the speed of the first worker. Moreover, with arbitrary delays, we might only get a single
gradient update from the first worker, leaving us no hope of any useful guarantee. To avoid
this issue and to be able to apply our analysis, we will require that the gradient dissimilarities
between the local functions are bounded and that the identity of the worker used in iteration
k is independent of the gradient noise:

Assumption 3.5.1. There exists ζ ≥ 0 such that ‖∇Fm(x)−∇F (x)‖2 ≤ ζ2 for all m and
x ∈ Rd, E[gk|xk,mk] = ∇Fmk(xk), and E

∥∥∥‖gk −∇Fmk(xk)‖2|xk,mk

∥∥∥ ≤ σ2.

Equipped with the new assumption, we can provide an analogue of Theorem 3.2 for
problem (3.7):

Theorem 3.3. In the setting of Theorem 3.2 with the addition of Assumption 3.5.1, for
γk = min

{
1

8Lτ(k) ,
1

4ML ,
√

∆/(KLσ2)
}
, the updates described in (3.8) ensure for a numerical

constant c:
E
[
‖∇F (x̃K)‖2

]
≤ c ·

(
ML∆

K
+

√
L∆σ2

K
+ ζ2

)
,

where x̃k is randomly chosen from x1, . . . ,xK according to (3.14).

Comparing Theorem 3.3—which we prove in Appendix 3.D—with Theorem 3.2.3, we see
that the exact same rate is achieved in the heterogeneous setting up to the additive term ζ2.
As described above, we cannot really expect good performance for arbitrarily heterogeneous
losses under arbitrary delays, so some dependence on ζ2 is unavoidable. Moreover, in many
natural settings, ζ2 can be quite small. For instance, when heterogeneity arises because a
large i.i.d. dataset is partitioned across the M machines, the degree of heterogeneity ζ2 will
be inversely proportional to the number of samples assigned to each worker. So although
Asynchronous SGD is not well-suited to problem (3.7) in the heterogeneous setting when the
delays can be arbitrarily large, at least under Assumption 3.5.1, it does not totally break
down or diverge.

While Assumption 3.5.1 used in Theorem 3.3 seems unavoidable for studying Asyn-
chronous SGD, it can be circumvented when studying other asynchronous methods. In
particular, [KSJ22] proposed to sample a random worker at each iteration k and add the
current points xk to its list of points for computing the gradient. Under an extra assumption
on the delay pattern, [KSJ22] proved convergence of this method to a point with zero gradi-
ent, without extra errors. Unfortunately, unlike Asynchronous SGD, their method would not
have the speedup shown in Table 3.2, since after a large number of iterations K, all workers
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would be expected to compute roughly K
M gradients. Since this puts the same load on the

slowest worker as Minibatch SGD, the algorithm proposed by [KSJ22] is useful only when
there is no worker that is fundamentally slower than the others. Our theory, in turn, has an
extra ζ2 error term, but does not require waiting for the slow workers.

Conclusion

This chapter studied Asynchronous SGD via a virtual-iterate analysis: we prove that in
a vast variety of settings – convex/Lipschitz, non-convex/Lipschitz/smooth, convex/smooth,
strongly-convex/smooth and non-convex/smooth – the convergence guarantees of Asynchronous
SGD improve over that of Minibatch SGD, irrespectively of the delay sequence. We obtained
these results by leveraging delay-adaptive stepsizes and proving that Asynchronous SGD is
only slowed down by the number of stochastic gradients being computed, rather than the
longest delay. We also extend one of these results to the case of heterogeneous data and show
that Asynchronous SGD can converge to an approximate stationary point with the error
controlled by a data dissimilarity constant.
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Appendix of Chapter 3

3.A. Experimental details and credits for Figure 3.1

To showcase how our theory matches the numerical performance of Asynchronous SGD, we
run experiments on a simple quadratic objective with random data. We run our experiments
on a single node with 48 logical cores and set M = 40. We use the Ray package [MNW+18]
to parallelize the execution and follow the official documentation for the implementation4 of
asynchronous training. All delays appearing in the runs are not simulated and come from
the execution on CPUs. The implementation and the figure have been done by Konstantin
Mishchenko.

3.B. Technical lemmas

Lemma 3.B.1. Under Assumption 3.4.1 and the σ2 variance bound, if γk depends only on k
and τ(k) for each k, then for all k ≥ 1,

E‖xk − x̂k‖2 ≤ 2E

 ∑
m∈[M ]\{mk}

γ2
next(k,m)

[
σ2 + (M − 1)

∥∥∇F (xprev(k,m))
∥∥2
].

Proof. By Lemma 3.2.1, we have

E‖xk − x̂k‖2 = E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇f(xprev(k,m); ξ
m
prev(k,m))

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m)))

∥∥∥∥∥
2

.

Notice that we had to use Young’s inequality to separate expectations from the variance
terms since the variance in the vectors is not independent. The first term can be bounded
using Young’s inequality as follows,

E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥
2

≤
∑
m∈[M ]

γ2
next(k,m)‖∇F (xprev(k,m))‖2.

To bound the second term, assume without loss of generality that prev(k, 1) < prev(k, 2) <

4https://docs.ray.io/en/latest/ray-core/examples/plot_parameter_server.html#
asynchronous-parameter-server-training
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3.B. Technical lemmas

· · · < prev(k,M). In addition, denote

θm = γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m))).

Then, we have for any m

E
[
‖θm‖2

]
= γ2

next(k,m)E‖∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m))‖2 ≤ γ2

next(k,m)σ
2.

Moreover, for any m ∈ [1,M − 1], the stochastic gradient of worker m + 1 has conditional
expectation

E
[
∇f(xprev(k,m+1); ξ

m+1
prev(k,m+1)) | ∇f(xprev(k,m); ξ

m
prev(k,m))

]
= ∇F (xprev(k,m+1)),

so E [θm+1 | θ1, . . . , θm] = 0. This allows us to obtain by induction,

E

‖m+1∑
j=1

θj‖2
 = E

‖ m∑
j=1

θj‖2 + 2〈
m∑
j=1

θj , θm+1〉+ ‖θm+1‖2


≤ E

‖ m∑
j=1

θj‖2 + 2〈
m∑
j=1

θj , θm+1〉

+ γ2
next(k,m+1)σ

2

≤ E

 m∑
j=1

γ̂2
t−τjσ

2 + 2〈
m∑
j=1

θj , θm+1〉

+ γ2
next(k,m+1)σ

2

= E

2〈
m∑
j=1

θj , θm+1〉

+

m+1∑
j=1

γ2
next(k,j)σ

2.

The remaining scalar product is, in fact, equal to zero. Indeed, by the tower property of
expectation,

E

〈 m∑
j=1

θj , θm+1〉

 = E

E
〈 m∑

j=1

θj , θm+1〉 | θ1, . . . , θm


= E

〈 m∑
j=1

θj ,E [θm+1 | θ1, . . . , θm]〉


= 0.

Therefore,

E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)(∇f(xprev(k,m); ξ
m
prev(k,m))−∇F (xprev(k,m)))

∥∥∥∥∥
2

≤
∑

m∈[M ]\{mk}
γ2

next(k,m)σ
2.

Lemma 3.B.1 is very useful whenever stochastic gradients are not guaranteed to be
bounded. If they were bounded, we could immediately show that E‖xk − x̂k‖2 is small
regardless of the delays, as was done in the proof of Theorem 1, see equation (3.5). For
non-Lipschitz losses, however, E‖xk − x̂k‖2 is not guaranteed to be finite, and Lemma 3.B.1
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is required to show that x̂k and xk stay sufficiently close to each other.
The next lemma is a general statement about sequences with delays, which we will use

to bound various error terms in our proofs.

Lemma 3.B.2. For any positive sequences {ak}, {bk}, and {ck}, it holds

K∑
k=1

∑
m∈[M ]\{mk}

akbprev(k,m)cnext(k,m) = b0

M∑
m=1

cnext(1,m)

min {next(1,m)−1,K}∑
j=1

aj

+
K−1∑
k=1

bkcnext(k+1,mk)

min {next(k+1,mk)−1,K}∑
j=k+1

aj .

Proof. The proof follows simply by rewriting the sums several times while manipulating the
definitions of prev and next:

K∑
k=1

∑
m∈[M ]\{mk}

akbprev(k,m)cnext(k,m)

=
K−1∑
j=0

K∑
k=1

M∑
m=1

akbjcnext(k,m)1{m 6=mk}1{j=prev(k,m)}

= b0

K∑
k=1

M∑
m=1

akcnext(k,m)1{m 6=mk}1{0=prev(k,m)}

+
K−1∑
j=1

K∑
k=1

M∑
m=1

akbjcnext(k,m)1{m 6=mk}1{j=prev(k,m)}

= b0

M∑
m=1

cnext(1,m)

min {next(1,m),K}∑
k=1

ak1{m6=mk}

+
K−1∑
j=1

bjcnext(j+1,mj)

min {next(j+1,mj),K}∑
k=j+1

ak1{mj 6=mk}

= b0

M∑
m=1

cnext(1,m)

min {next(1,m)−1,K}∑
k=1

ak +

K−1∑
j=1

bjcnext(j+1,mj)

min {next(j+1,mj)−1,K}∑
k=j+1

ak,

which establishes the claim after exchanging subscripts.

3.C. Proof of Theorem 3.2.3 (non-convex-smooth case)

Throughout this proof, we will refer frequently to γ̂1, . . . , γ̂K , the stepsizes corresponding
to the stochastic gradients ∇f(x1, ξ

m1
1 ), . . . ,∇f(xK , ξ

mK
K ). However, some of these gradients

will not be available when the algorithm ends after K updates—in particular, preciselyM−1
of them are in the process of being calculated when the algorithm terminates. Since those
gradients are never used for updates, the corresponding stepsize γ̂k seems, in some sense,
unneeded. However, our algorithm’s output weights each iterate xk by a term involving γ̂k,
whether or not the gradient ∇f(xk, ξ

mk
k ) becomes available before the algorithm finishes. For

this reason, in order to make the stepsize γ̂k well-defined, we specify τ(k) for k ≥ K, upon
which γ̂1, . . . , γ̂K might depend, according to τ(k) = max {1, min {k,K} − prev(k,mk)}.
This is essentially equivalent to just not incrementing the iteration counter once it reaches
K, although we note that all of the stepsizes γ̂1, . . . , γ̂K can be calculated by the time of the
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Kth update, without needing to wait for the M − 1 in-progress gradients.

Lemma 3.C.1. In the setting of Theorem 3.2.3, with γmax defined as in (3.10)

E

[
L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2
]
≤ E

[
∆

8
+
Lσ2γmax

4

(
Mγmax +

K∑
k=1

γ̂k

)
+

1

8

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

Proof. We start using Lemma 3.B.1 and then Lemma 3.B.2 with ak = γ̂k, bk = σ2 + (M −
1)‖∇F (xk)‖2, and ck = γ2

k :

E

[
L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

≤ L2E

 K∑
k=1

γ̂k
∑

m∈[M ]\{mk}
γ2

next(k,m)

[
σ2 + (M − 1)

∥∥∇F (xprev(k,m))
∥∥2
]

≤ L2γmaxE
[{
σ2 + (M − 1)‖∇F (x0)‖2

} M∑
m=1

γ2
next(1,m) min {next(1,m)− 1, K}

+
K−1∑
k=1

(
σ2 + (M − 1)‖∇F (xk)‖2

)
γ̂2
k(min {next(k + 1,mk)− 1, K} − k)

]
.

From here, note that our choice of stepsize

γk ≤
1

4Lτ(k)

implies

γnext(1,m) ×min {next(1,m)− 1, K} ≤ 1

4L
,

γ̂k × (min {next(k + 1,mk)− 1, K} − k) ≤ 1

4L
.

Plugging these two inequalities into our previous bound, we obtain

E

[
L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

≤ Lγmax

4
E

[(
σ2 +M‖∇F (x0)‖2

) M∑
m=1

γnext(1,m) +

K−1∑
k=1

(
σ2 +M‖∇F (xk)‖2

)
γ̂k

]

≤ E

[
MLγ2

max

4

(
σ2 +M‖∇F (x0)‖2

)
+
Lσ2γmax

4

K∑
k=1

γ̂k +
MLγmax

4

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

Using the fact that γmax ≤ 1/(2ML) and ‖∇F (x0)‖2 ≤ 2L∆ completes the proof.

Lemma 3.C.2. In the setting of Theorem 3.2.3, with γmax defined as in (3.10)

K∑
k=1

γ̂k ≥
Kγmax

9
.
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Proof. First, we note that if τ(k) ≤ 3M , then

γk = min

{
1

6L
,

1

2ML
,

√
∆

KLσ2

}
≥ γmax

3
.

We begin with the observation that

K−1∑
k=1

τ(k,mk) +

M∑
m=1

τ(K,m) ≤
K∑
k=1

M∑
m=1

τ(k,m) ≤ KM. (3.9)

This implies that at most bK/3c of the terms on the left hand side can be larger than 3M .
Furthermore, since the first 3M gradients must have delay less than 3M , the number of terms
with delay greater than 3M is no larger than min {K/3, max {K − 3M, 0}}.

From here, we rewrite:

K∑
k=1

γ̂k =
K−1∑
k=1

γk1{prev(k,mk)>0} +
M∑
m=1

γnext(K,m)1{prev(K,m)>0}

≥
K−1∑
k=1

γk1{prev(k,mk)>0}1{τ(k,mk)≤3M} +

M∑
m=1

γnext(K,m)1{prev(K,m)>0}1{τ(K,m)≤3M}

≥ γmax

3

(
K−1∑
k=1

1{prev(k,mk)>0}1{τ(k,mk)≤3M} +
M∑
m=1

1{prev(K,m)>0}1{τ(K,m)≤3M}

)

≥ γmax

3

(
K +M − 1−

(
min

{
K

3
, max {K − 3M, 0}

}
+M

))
=
γmax

3
max

{
2K

3
− 1, min {3M − 1, K − 1}

}
≥ γmax

3
min

{
K

3
, K − 1

}
.

For K ≥ 2, the Lemma follows directly. For K = 1, we also have M = 1 so all of the delays
are one, and

∑K
k=1 γ̂k = γ̂1 = min

{
γmax,

1
2L

}
≥ Kγmax

9 . Therefore, this inequality holds
either way, completing the proof.

Proof of Theorem 3.2.3. In this proof, we will use γmax to denote the τ(k)-independent terms
in the definition of the stepsize, i.e.,

γmax = min

{
1

2ML
,

√
∆

KLσ2

}
. (3.10)

Next, we use the L-smoothness of F , the definition of x̂k+1 from (3.3), and Assumption 3.4.1:

EF (x̂k+1) ≤ E
[
F (x̂k) + 〈∇F (x̂k), x̂k+1 − x̂k〉+

L

2
‖x̂k+1 − x̂k‖2

]
= E

[
F (x̂k)− γ̂k〈∇F (x̂k)∇F (xk)〉+

Lγ̂2
k

2

∥∥∇f(xk; ξ
mk
k )

∥∥2
]

≤ E
[
F (x̂k) +

(
Lγ̂2

k

2
− γ̂k

2

)
‖∇F (xk)‖2 +

γ̂k
2
‖∇F (x̂k)−∇F (xk)‖2 +

Lσ2γ̂2
k

2

]
≤ E

[
F (x̂k) +

(
Lγ̂2

k

2
− γ̂k

2

)
‖∇F (xk)‖2 +

L2γ̂k
2
‖xk − x̂k‖2 +

Lσ2γ̂2
k

2

]
.
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Since γk ≤ 1
2L for all k, this means

E[F (x̂k+1)− F (x̂k)] ≤ E
[
− γ̂k

4
‖∇F (xk)‖2 +

L2γ̂k
2
‖xk − x̂k‖2 +

Lσ2γ̂2
k

2

]
.

Rearranging and summing over k, this means

1

4
E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
≤ E

[
F (x̂1)− F (x̂K+1) +

L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2 +
Lσ2

2

K∑
k=1

γ̂2
k

]

≤ E

[
∆ +

L2

2

K∑
k=1

γ̂k‖xk − x̂k‖2 +
Lσ2

2

K∑
k=1

γ̂2
k

]
.

Applying Lemma 3.C.1 and rearranging, this gives

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
≤ E

[
9∆ + 2MLσ2γ2

max + 6Lσ2γmax

K∑
k=1

γ̂k

]
.

Therefore, if we choose an output vector x̃K with

P(x̃K = xk) ∝ γ̂k ∀k ∈ [K], (3.11)

then by Lemma 3.C.2,

E
[
‖∇F (x̃K)‖2

]
≤ E

[
9∆ + 2MLσ2γ2

max∑K
k=1 γ̂k

+ 6Lσ2γmax

]

≤ E
[

81∆ + 18MLσ2γ2
max

Kγmax
+ 6Lσ2γmax

]
.

Substituting γmax from (3.10) completes the proof.

3.D. The heterogeneous data setting: proof of Theorem 3.3

The analysis in this section is not too different from that before. The main idea here is
to refine the upper bound on the distance between the virtual and actual iterates, which can
be done using our assumption on bounded data heterogeneity.

Lemma 3.D.1. In the setting of Theorem 3.3, for any k ≥ 1

E‖xk − x̂k‖2 ≤ 2E

 ∑
m∈[M ]\{mk}

γ2
next(k,m)

[
σ2 + 2(M − 1)

(∥∥∇F (xprev(k,m))
∥∥2

+ ζ2
)].

Proof. The argument below is nearly identical to the proof of Lemma 3.B.1. We start with
an analogue of Lemma 3.2.1:

xk − x̂k =
∑

m∈[M ]\{mk}
γnext(k,m)∇fm(xprev(k,m); ξ

m
prev(k,m)) ,

which follows from exactly the same argument. We then use Assumptions 3.4.1 and 3.5.1 in
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the same way as in the proof of Lemma 3.B.1:

E‖xk − x̂k‖2 = E

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇fm(xprev(k,m); ξ
m
prev(k,m))

∥∥∥∥2

≤ 2E

σ2
∑

m∈[M ]\{mk}
γ2

next(k,m) +

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇Fm(xprev(k,m))

∥∥∥∥∥
2


≤ 2E

[
σ2

∑
m∈[M ]\{mk}

γ2
next(k,m) + 2

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)∇F (xprev(k,m))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ ∑
m∈[M ]\{mk}

γnext(k,m)

(
∇Fm(xprev(k,m))−∇F (xprev(k,m)

)∥∥∥∥∥
2]

≤ 2E

[ ∑
m∈[M ]\{mk}

γ2
next(k,m)

[
σ2 + 2(M − 1)

∥∥∇F (xprev(k,m))
∥∥2

+ 2(M − 1)ζ2
]]
.

Lemma 3.D.2. In the setting of Theorem 3.3, with γmax defined as in (3.12)

8L2
K∑
k=1

γ̂k‖xk − x̂k‖2

≤ E

[
∆

4
+ Lγmaxσ

2

(
Mγmax +

K∑
k=1

γ̂k

)
+ ζ2

(
2LM2γ2

max +
1

2

K∑
k=1

γ̂k

)
+

1

2

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

Proof. This follows exactly the same argument as Lemma 3.C.1, just replacing that proof’s
invocation of Lemma 3.B.1 with Lemma 3.D.1:

E

[
8L2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

≤ 16L2E

 K∑
k=1

γ̂k
∑

m∈[M ]\{mk}
γ2

next(k,m)

[
σ2 + 2(M − 1)

(∥∥∇F (xprev(k,m))
∥∥2

+ ζ2
)]

≤ 16L2γmaxE
[(
σ2 + 2M(‖∇F (x0)‖2 + ζ2)

) M∑
m=1

γ2
next(1,m) min {next(1,m)− 1, K}

+

K−1∑
k=1

(
σ2 + 2M(‖∇F (xk)‖2

)
+ ζ2)γ̂2

k(min {next(k + 1,mk)− 1, K} − k)

]
.

The stepsize is chosen so that γk ≤ 1
8Lτ(k) , which implies

γnext(1,m) min {next(1,m)− 1, K} ≤ 1

8L
,

γ̂k(min {next(k + 1,mk)− 1, K} − k) ≤ 1

8L
.
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Therefore,

E

[
8L2

K∑
k=1

γ̂k‖xk − x̂k‖2
]

≤ 2LγmaxE
[(
σ2 + 2M(‖∇F (x0)‖2 + ζ2)

) M∑
m=1

γnext(1,m)

+
K−1∑
k=1

(
σ2 + 2M(‖∇F (xk)‖2

)
+ ζ2)γ̂k

]

≤ LγmaxE

[
Mγmax

(
σ2 + 4LM2∆ + 2Mζ2

)
+ σ2

K∑
k=1

γ̂k + 2M

K∑
k=1

γ̂k(‖∇F (xk)‖2 + ζ2)

]
.

≤ E

[
∆

4
+ Lγmaxσ

2

(
Mγmax +

K∑
k=1

γ̂k

)
+ ζ2

(
2LM2γ2

max +
1

2

K∑
k=1

γ̂k

)
+

1

2

K∑
k=1

γ̂k‖∇F (xk)‖2
]
.

We used here that γk ≤ 1/(8ML) and ‖∇F (x0)‖2 ≤ 2L∆.

Proof of Theorem 3.3. In this proof, we will use γmax to denote the τ(k)-independent terms
in the definition of the stepsize, i.e.,

γmax = min

{
1

4ML
,

√
∆

KLσ2

}
. (3.12)

As in the data-homogeneous setting, we define the virtual sequence x̂k as:

x̂1 = x0 −
M∑
m=1

γnext(1,m)∇fm(x0; ξm0 )

x̂k+1 = x̂k − γ̂k∇fmk(xk; ξ
mk
k ),

γ̂k = γnext(k+1,mk) .

(3.13)

Denote�k= ∇fmk(xk; ξ
mk
k ). Using the L-smoothness of F and Assumptions 3.4.1 and 3.5.1,

we have:

E[F (x̂k+1)− F (x̂k)]

≤ E
[
−γ̂k〈∇F (x̂k),�k〉+

γ̂2
kL

2
‖�k‖2

]
≤ E

[
−γ̂k〈∇F (x̂k),∇Fmk(xk)〉+

γ̂2
kL

2
(‖∇Fmk(xk)‖2 + σ2)

]
≤ E

[
− γ̂k

4
‖∇Fmk(xk)‖2 +

γ̂k
2
‖∇F (x̂k)−∇Fmk(xk)‖2 +

γ̂2
kLσ

2

2

]
≤ E

[
− γ̂k

4
‖∇Fmk(xk)‖2 + γ̂k‖∇F (x̂k)−∇F (xk)‖2 + γ̂kζ

2 +
γ̂2
kLσ

2

2

]
≤ E

[
− γ̂k

8
‖∇F (xk)‖2 + L2γ̂k‖xk − x̂k‖2 +

5γ̂kζ
2

4
+
γ̂2
kLσ

2

2

]
.

For the third inequality, we used that γk ≤ 1
2L for all k. For the fifth, we used that

‖∇F (x)‖2 ≤ 2‖∇Fm(x)‖2 + 2ζ2 for any m and x. Rearranging and summing over k, we
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then have

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]
≤ E

[
8(F (x̂1)− F ∗) +

K∑
k=1

[
8L2γ̂k‖xk − x̂k‖2 + 10γ̂kζ

2 + 4γ̂2
kLσ

2
]]
.

Now, we apply Lemma 3.D.2 to bound the second term on the right hand side:

E

[
K∑
k=1

γ̂k‖∇F (xk)‖2
]

≤ E

[
16(F (x̂1)− F ∗) +

∆

2
+ 2Lγmaxσ

2

[
Mγmax + 2

K∑
k=1

γ̂k

]
+ ζ2

[
4LM2γ2

max + 11

K∑
k=1

γ̂k

]]
.

Therefore, if we choose an output x̃K according to

P(x̃K = xk) ∝ γ̂k ∀k ∈ [K], (3.14)

then E[‖∇F (x̃K)‖2 is less than this previous expression divided by
∑K

k=1 γ̂k. By exactly the
same argument as for Lemma 3.C.2, we can lower bound this sum as:

K∑
k=1

γ̂k ≥
Kγmax

18
.

Therefore, for some constant c (which may change from line to line), we have

E[‖∇F (x̃K)‖2]

≤ c · E
[

(F (x̂1)− F ∗)
Kγmax

+
∆

Kγmax
+ Lγmaxσ

2

[
M

K
+ 1

]
+ ζ2

[
LM2γmax

K
+ 1

]]
≤ c · E

[
(F (x̂1)− F ∗)

Kγmax
+

∆

Kγmax
+ Lγmaxσ

2 + ζ2

]
.

Here, we used that γmax ≤ 1/(4ML) and M ≤ K. To conclude, we bound

E[F (x̂1)− F ∗]

= E

[
F

[
x0 −

M∑
m=1

γnext(1,m)∇fm(x0; ξm0 )

]
− F ∗

]

≤ ∆ + E

−〈∇F (x0),

M∑
m=1

γnext(1,m)∇Fm(x0)〉+
L

2

∥∥∥∥∥
M∑
m=1

γnext(1,m)∇fm(x0; ξm0 )

∥∥∥∥∥
2


≤ ∆ + E
[

1

2L
‖∇F (x0)‖2 + L

∥∥∥∥∥
M∑
m=1

γnext(1,m)∇Fm(x0)

∥∥∥∥∥
2

+
Lσ2

2

M∑
m=1

γ2
next(1,m)

]

≤ 2∆ + E

[
L
[
2‖∇F (x0)‖2 + 2ζ2

]
M

M∑
m=1

γ2
next(1,m) +

MLσ2γ2
max

2

]

≤ 2∆ + E
[
LM2γ2

max

[
4L∆ + 2ζ2

]
+
MLσ2γ2

max

2

]
≤ 3∆ + E

[
Kγmaxζ

2

2
+
KLσ2γ2

max

2

]
.

Plugging this and γmax in above completes the proof.
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Chapter 4

The asynchronous speedup in decentralized
optimization

We now turn to studying the impact of delays on the convergence of decentralized meth-
ods. While the previous chapter studied computation delays in centralized optimization and
showed that asynchrony always benefits the optimizer, through an explicit asynchronous
speedup that involves the harmonic mean of computation latencies, this chapter generalizes
this result to delayed gossip algorithms, in a stylized framework.

In decentralized optimization, nodes of a communication network each possess a local
objective function, and communicate using gossip-based methods in order to minimize the
average of these per-node functions. While synchronous algorithms are heavily impacted by a
few slow nodes or edges in the graph (the straggler problem), their asynchronous counterparts
are notoriously harder to parametrize. Indeed, their convergence properties for networks with
heterogeneous communication and computation delays have defied analysis so far.

In this chapter, we use the continuized framework introduced in Chapter 2 to analyze
asynchronous algorithms in networks with delays. Our approach yields a precise character-
ization of convergence time and of its dependency on heterogeneous delays in the network.
Our continuized framework benefits from the best of both continuous and discrete worlds: the
algorithms it applies to are based on event-driven updates. They are thus essentially discrete
and hence readily implementable. Yet their analysis is essentially in continuous time, relying
in part on the theory of delayed ODEs.

Our algorithms moreover achieve an asynchronous speedup that is the decentralized analog
of that of Chapter 3: the rate of convergence of our delayed decentralized algorithms is
controlled by the eigengap of the network graph weighted by local delays, instead of the
network-wide worst-case delay as in previous analyses. Our methods thus enjoy improved
robustness to stragglers.

4.1. Introduction

We consider solving stochastic optimization problems that are distributed amongst n
agents (indexed by V = [n]) who can compute stochastic gradients in parallel. This includes
classical federated setups, such as distributed and federated learning. Depending on the appli-
cation, agents have access to either same shared data distribution or a different agent-specific
distributions. With communication cost being one of the major bottlenecks of parallel opti-
mization algorithms, there are several directions aimed to improve communication efficiency.
Amongst the others (such as local update steps [Sti18, WPS+20a] and communication com-
pression [AGL+17, KSJ19]), decentralization and asynchrony are the two popular techniques
for reducing the communication time. Decentralization [KLB+20, LZZ+17] eliminates the de-
pendency on the central server—frequently a major bottleneck in distributed learning—while
naturally amplifying privacy guarantees [CEBM22]. Asynchrony [RRWN11, Bau78, TBA86]
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shortens the time per computation rounds and allows more updates to be made during the
same period of time. It aims to overcome several possible sources of delays: nodes may
have heterogeneous hardware with different computational throughputs [KMA+19, HLA+21],
network latency can slow the communication of gradients, and nodes may even just drop
out [RGPP21]. Moreover, slower “straggler ” compute nodes can arise in many natural par-
allel settings, including training ML models using multiple GPUs [CPM+16] or in the cloud;
sensitivity to these stragglers poses a serious problem for synchronous algorithms, that de-
pend on the slowest agent. In decentralized synchronous optimization where communication
times between pairs of nodes may be heterogeneous, the algorithm can even be further slowed
down by straggling communication links.

4.1.1. Decentralized and asynchronous setting

More formally, this chapter studies the following optimization problem:

min
x∈Rd

{
f(x) =

∑
v∈V

fv(x)

}
, (4.1)

where each individual function fv : Rd → R for v ∈ [n] is held by an agent vV, and we
consider asynchronous and decentralized optimization methods that do not rely on a central
coordinator. In the case of empirical risk minimization, fv represents the empirical risk for the
local dataset of node v, and f the empirical risk over all datasets. Another important example,
that plays the role of a toy problem for both decentralized and/or stochastic optimization
is that of network averaging [BGPS06], corresponding to fv(x) = ‖x− cv‖2 where cv is a
vector attached to node v. In this case, the solution of Problem (4.1) reads c̄ = 1

n

∑n
v∈V cv.

We assume that agents are located at the nodes of a connected, undirected graph G =
(V, E) with node set V = [n]. An agent v ∈ V can compute first-order quantities (gradients)
related to its local objective function fv, and can communicate with any adjacent agent in
the graph. Our model of asynchrony derives from the popular randomized gossip model of
[BGPS06]. In this model, nodes update their local values at random activation times using
pairwise communication updates. This asynchronous model makes the idealized assumption
of instantaneous communications, and hence does not faithfully represent practical imple-
mentations. To alleviate this drawback, several works [AR21, SY18, WYL+18, WLHL15,
LCDW16, LZZL18, TSS20, ZY21] introduce communication and computation delays in ei-
ther pairwise updates, or in asymmetric gossip communications.

However, all these works provide convergence guarantees that either require global syn-
chronization between the nodes, or are implicitly determined by an upper bound on the
worst-case delay in the whole graph. Indeed they assume that for some given kmax > 0, for
all edges {v, w} ∈ E , each communication between agents v and w overlaps with at most
kmax other communications in the whole graph. Thus assuming distributed asynchronous
operation where individual nodes schedule their interactions based only on local information,
the kmax constraint can only be enforced by requiring individual nodes to limit their update
frequency to 1/(nτmax), while the resulting algorithms have temporal convergence guarantees
that need to be proportional to τmax. They are thus not robust to stragglers, i.e. slow nodes
or edges in the graph that induce large τmax. Moreover, all these works assume that agents
v or graph edges {v, w} are activated for agent interaction sequentially in an i.i.d. manner,
which can only be unforced with a central coordinator, and can lead to deadlocks.

4.1.2. Graph-dependent asynchronous speedup

We now describe the notion of asynchronous speedup explained in Section 1.3 for central-
ized and decentralized settings. To understand the scope for improvement over methods that
rely on such worst-case delays or over synchronous algorithms, recall that for synchronous
algorithms with updates performed every τmax seconds, for L-smooth and σ-strongly con-
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vex functions fv, the time required to reach precision ε > 0 for 1
n

∑
fv is lower-bounded by

[SBB+17]:
Ω
(
τmaxDiam(G)

√
κ ln(ε−1)

)
, (4.2)

where κ = L/σ is the condition number of the functions fv and Diam(G) is the diameter of
graph G.

In this chapter we seek better dependency on individual delays in the network, as we did
in the previous chapter in the centralized setting. Specifically we consider the following.

Assumption 4.1.1 (Heterogeneous delays). There exist τ{v,w} for {v, w} ∈ E and τ comp
v for

v ∈ V such that communications between two neighboring agents v and w in the graph take
time at most τ{v,w}, and a computation at node v takes time at most τ comp

v .

Under such heterogeneous delay assumptions, how robust to stragglers can decentralized
algorithms be? One can adapt the proof of [SBB+17] to Assumption 4.1.1 to establish the
generalized form of lower bound (4.2):

Ω
(
D(τ)

√
κ ln(ε−1)

)
, (4.3)

where D(τ) = sup(v,w)∈V2 dist(v, w) for:

dist(v, w) = inf
(v=v0,...,vp=w),

∀1≤k≤p, (vk,vk+1)∈E

τ comp
v + τ comp

w +

p−1∑
k=0

τvkvk+1
.

Here dist(v, w) is the time distance between nodes v and w, and D(τ) is the diameter of
graph G for this distance. D(τ) is the generalization of τmaxDiam(G) to the heterogeneous-
delay setting. This lower bound suggests that robustness to stragglers is possible: indeed if a
fraction of the nodes or edges is too slow (large delay τ{v,w}), this may not even impact this
lower bound, since the shortest path between two nodes may always take another route.

We aim at building decentralized algorithms with performance guarantees that enjoy
such robustness to individual delay bounds. However, since we focus on fully decentralized
algorithms, our performance guarantees will not be expressed in terms of some diameter
D(τ) as in (4.3) but instead in terms of some spectral characteristics of the graph at hand1.
Specifically, let us recall the notion of Graph Laplacian.

Definition 4.1.1 (Graph Laplacian). Let ν = (ν{v,w}){v,w}∈E be a set of non-negative real
numbers. The Laplacian of the graph G weighted by the ν{v,w}’s is the symmetric matrix
∆G(ν) with (v, w) entry equal to −ν{v,w} if {v, w} ∈ E,

∑
u∼v ν{u,v} if w = v, and 0 otherwise.

In the sequel ν{v,w} always refers to the weights of the Laplacian, and λ2(∆G(ν)) denotes this
Laplacian’s second smallest eigenvalue.

We thus seek performance guarantees similar to (4.3) with in place of D(τ) the term
λ2(∆G(ν))−1 for some parameters ν{v,w} that depend on delay characteristics local to edge
{v, w}. As a consequence, we highlight the fact that due to this local dependency on the
delays (that no existing work considers), there will always exist graphs and topologies that
keep our rate of convergence constant, while making existing approaches (that all depend on
worst-case delays) fail to converge in a reasonable amount of time.

4.1.3. Related works specific to this chapter

Decentralized optimization and asynchrony. Previous decentralized asynchronous works
are restricted to a given communication protocol and static topologies under an i.i.d. sam-
pling of the nodes or edges that become active [AR21, LHLL15, BRW+23, NSD+21], no

1Note that similar spectral characteristics (albeit based on a single worst-case delay parameter τmax)
appear in [AR21, SY18, WYL+18, WLHL15, LCDW16, SBB+17].
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communication delays [LHLL15, BRW+23, NSD+21], or their analyses rely on an upper-
bound on the maximal computation and communication delays [AR21, LZZL18, BRW+23,
LHZQ20, LYW+22, NSD+21, ZY21, WLMJ23]. This latter point is exactly the goal of this
chapter: how can we relax the worst case delay dependency and capture quantitatively de-
lay heterogeneity in the graph and relate it to a wall-clock asynchronous speedup? Similarly
to the asynchronous speedup of Asynchronous SGD described just above, we will quantify
the asynchronous speedup as a graph dependent quantity that takes into account pairwise
communication delays and their heterogeneity.

We will here deal with asynchrony and delays from a different viewpoint than the refer-
ences cited above, where delays are introduced in the analysis as discrete-time delays that
are uniformly bounded by some given quantity, while our analysis is inspired by time-delayed
ODE systems [Nic01]. Consequently, the assumptions related to delays and asynchrony (such
as Assumption 4.1.1) do not need to be translated into discrete-time ones, as in the above
references. Finally, we believe our continuous time framework to be particularly adequate
for the study and design of asynchronous algorithms, in the decentralized setting as in this
chapter, but also in centralized settings where it may remove the need to introduce a discrete
ordering of events and thus avoid difficulties that lead to unrealistic assumptions, such as the
after/before-read approaches [LPLJ18].

Finally, [WSY+19] study how sparsifying the communication graph can lead to faster
decentralized algorithm. Their approach is different from ours in Section 4.6: they do not
consider asynchronous algorithms with physical constraints (delays and capacity), but syn-
chronous algorithms where sequentially matchings are built in the graph. Yet, we observe
similar phenomenon as theirs in Section 4.6.

Network time protocol (NTP). We here implicitly assume that nodes of the graph are
aware of a global absolute time (continuous-time), which is a feature of the continuized
framework, presented in a subsequent subsection. This is very different from knowing a
global (discrete) iteration counter that tracks the number of updates. The latter is impossible
in a decentralized framework, while the former can be achieved fairly easily, up to some
synchronization errors. In its standard version, the Network Time Protocol (NTP) ensures
that machines connected to internet have access to the global time with a precision of the
millisecond. In our case, in order to achieve better precision, more refined versions of NTPs
can be used, such as [GLY+18], that yields a precision of the order of the nanosecond (10−9

seconds). Hence, up to negligible errors, agents indeed share a global continuous-time clock.

4.1.4. Outline of the chapter

(i) We first consider the network averaging problem, for which we introduce Delayed Ran-
domized Gossip in Section 4.2. Building on the continuized framework introduced in Chap-
ter 2, we analyze Delayed Randomized Gossip in the continuized framework, that allows a
continuous-time analysis of an algorithm even though the latter is based on discrete, hence
practically implementable operations. Our analysis leads to explicit stability conditions that
have the appealing property of being local, i.e. they require each agent to tune its algorithm
parameters to delay bounds in its graph neighborhood.

They ensure a linear rate of convergence determined by λ2

(
∆G(ν)

)
, for weights of order

ν = 1/(
∑
{v′,w′}∼{v,w} τ{v′,w′})

2. This dependency of weights in the Laplacian on local delay
bounds is what we call the asynchronous speedup, since it implies a scaling that is no longer
proportional to τmax.

(ii) Using an augmented graph approach, we propose algorithms that generalize Delayed
Randomized Gossip to solve the decentralized optimization problem in Section 4.4. Under
strong convexity and smoothness assumptions on the local functions fv, we obtain local
stability conditions yielding an asynchronous speedup for this more general setup.

2We write {v, w} ∼ {v′, w′} and say that two edges {v, w}, {v′, w′} are neighbors if they share at least
one node.
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(iii) We further generalize our setup with the introduction of local capacity constraints
in Section 4.5, in order to take into account the fact that nodes or edges cannot handle an
unlimited number of operations in parallel. To that end, we introduce truncated Poisson
point processes in the continuized framework for the analysis.

(iv) The theoretical guarantees for our algorithms in Sections 4.2, 4.4 and 4.5 are all
based on general guarantees for so-called delayed coordinate gradient descent in the con-
tinuized framework, that we present and establish in Section 4.3. These results may be of
independent interest beyond our current focus on decentralized optimization.

(v) Finally, we identify from our stability conditions and convergence guarantees a phe-
nomenon reminiscent of Braess’s paradox (Section 4.6): deleting some carefully chosen edges
can lead to faster convergence. This in turn suggests rules for sparsifying communication
networks in distributed optimization.

This chapter is thus organized in a linear way, where difficulties are added one by one
for pedagogical sake. We start by adding delays in communications (4.2) before providing
the necessary tools for the analysis (4.3). We then build on this to progressively add local
functions (4.4) and local capacity constraints (4.5).

4.2. Delayed Randomized Gossip for Network Averaging

Focusing in this section on the Network Averaging Problem, we introduce Delayed Ran-
domized Gossip and state its convergence guarantees. We first begin with reminders on
randomized gossip [BGPS06].

4.2.1. Randomized gossip

Each agent v ∈ V is assigned a real vector x0(v) ∈ Rd. The goal of the averaging (or gossip)
problem is to design an iterative procedure allowing each agent in the network to estimate
the average x̄ = 1

n

∑n
i=1 x0(v) using only local communications, i.e., communications between

adjacent agents in the network.
In randomized gossip [BGPS06], time t is indexed continuously by R+. A Poisson point

process [Kle14] (abbreviated as P.p.p. in the sequel) P = {Tk}k≥1 of intensity I > 0 on R+

is generated: T0 = 0 and (Tk+1−Tk)k≥0 are i.i.d. exponential random variables of mean 1/I.
For positive intensities (p{v,w}){v,w}∈E such that

∑
{v,w}∈E p{v,w} = I, for every k ≥ 0, at Tk

an edge {vk, wk} is activated with probability p{vk,wk}/I, upon which adjacent nodes vk and
wk communicate and perform a pairwise update. The P.p.p. assumption implies that edges
are activated independently of one another and from the past: the activation times of edge
{v, w} form a P.p.p. of intensity p{v,w}. To solve the gossip problem, [BGPS06] proposed the
following strategy: each agent v ∈ V keeps a local estimate xt(v) of the average and, upon
activation of edge {vk, wk} at time Tk ∈ R+, the activated nodes vk, wk average their current
estimates:

xTk(vk), xTk(wk) ←−
xTk−(vk) + xTk−(wk)

2
. (4.4)

Writing f(x) =
∑
{v,w}∈E

p{v,w}
I f{v,w}(x), for

f{v,w}(x) =
1

2
‖x(v)− x(w)‖2 and x = (x(v))v∈V , (4.5)

we observed in Chapter 2 that local averages (4.4) correspond to stochastic gradient steps on
function f :

xTk ←− xTk− −
K{vk,wk}
p{vk,wk}

∇f{vk,wk}(xTk−) , (4.6)

for step sizes K{vk,wk} =
p{vk,wk}

2 .
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These updates can also be derived from coordinate gradient descent steps. Let A ∈
RV×E be such that for all {v, w} ∈ E , Ae{v,w} = µ{v,w}(ev − ew) for arbitrary µ{v,w} ∈
R, where (e{v,w}){v,w}∈E and (ev)v∈V are the canonical bases of RE and RV . Then, let
g(λ) = 1

2‖Aλ‖
2 for λ ∈ RE×d, so that the coordinate gradient ∇{v,w}g(λ) ∈ Rd writes

∇{v,w}g(λ) = µ{v,w}((Aλ)v − (Aλ)w). Depending on the context, we will either consider
∇{v,w}g(λ) as a vector in Rd, or by an abuse of notation, write ∇{v,w}g(λ) ∈ RD×d the matrix
vector whose rows are all null, except the row corresponding to edge {v, w}, that is equal
to µ{v,w}((Aλ)v − (Aλ)w). This amounts to write ∇{v,w}g(λ) instead of e{v,w}∇{v,w}g(λ)>.
Thus, provided that for some λTk− ∈ RE×d, xTk− − x̄ = AλTk−, the local averaging defined
in Equation (4.4) is equivalent to xTk − x̄ = AλTk , where:

λTk = λTk− −
K{vk,wk}

p{vk,wk}µ
2
{vk,wk}

∇{vk,wk}g(λTk−) , (4.7)

for K{vk,wk} =
p{vk,wk}

2 . Hence, the gossip algorithm of [BGPS06] can be viewed as a simple
block-coordinate gradient descent on variables λ ∈ RE×d indexed by the edges of the graph
instead of the nodes.

Yet, this continuous-time model with P.p.p. activations implicitly assumes instantaneous
communications, or some form of waiting – this was the case also in Chapter 2. Indeed, the
gradient is computed on the current value of the parameter, which is xTk−. In the presence
of (heterogeneous) communication delays (Assumption 4.1.1), a more realistic update uses
the parameter xSk at a previous time Sk < Tk, to account for the time it takes to compute
and communicate the gradient. In this case, the updates write as

xTk ←− xTk− −
K{vk,wk}
p{vk,wk}

∇f{vk,wk}(xSk) . (4.8)

Equivalently, from the point of view of node vk:

xTk(vk)← xTk−(vk)−
K{vk,wk}
p{vk,wk}

(
xSk(vk)− xSk(wk)

)
.

4.2.2. Delays in the continuized framework

Our approach uses the continuized framework (Chapter 2), which amounts to consider
continuous-time evolution of key quantities, with discrete jumps at the instants of Poisson
point processes. This gives the best of both continuous (for the analysis and assumptions)
and discrete (for the implementation) worlds. From now on and for the rest of the chapter,
we assume that Assumption 4.1.1 holds.

While in Section 2.7 in Chapter 2 local P.p.p. were all of the same intensity, we here
relax homogeneity. Edges {v, w} ∈ E locally generate independent P.p.p. P{v,w} of inten-
sity p{v,w} > 0 (random activation times, with i.i.d. intervals, exponentially distributed with
mean 1/p{v,w}). As mentioned previously, P =

⋃
{v,w}∈E P{v,w} is a P.p.p. of intensity

I =
∑
{v,w}∈E p{v,w}, and noting P = {T1 < T2 < . . .}, at each clock ticking Tk, k ≥ 1, an

edge {vk, wk} is chosen with probability p{vk,wk}/I. This time Tk corresponds to a commu-
nication update between nodes vk and wk started at time Tk − τ{vk,wk} 3. Assumption 4.1.1
ensures that the communication started at time Tk − τ{v,w} takes some time τ (k) ≤ τ{vk,wk}
and is thus completed before time Tk so that the update at time Tk is indeed implementable.

3Standard properties of P.p.p. guarantee that the sequence of points of P{v,w} translated by τ{v,w} is a
P.p.p. with the same distribution.
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Algorithm 4.1: Delayed randomized gossip, edge {v, w}
1: Step size K{v,w} > 0 and intensity p{v,w} > 0

2: Initialization T1{v, w} ∼ Exp(p{v,w})

3: for ` = 1, 2, . . . do
4: T`+1{v, w} = T`{v, w}+ Exp(p{v,w}).
5: end for
6: for ` = 1, 2, . . . do
7: At time T`{v, w} − τ{v,w} for, v sends x̂v = xT`{v,w}−τ{v,w}(v) to w and w sends

x̂w = xT`{v,w}−τ{v,w}(w) to v.
8: At time T`{v, w},

xT`{v,w}(v)← xT`{v,w}−(v)−
K{v,w}
p{v,w}

(
x̂v − x̂w

)
,

xT`{v,w}(w)← xT`{v,w}−(w)−
K{v,w}
p{v,w}

(
x̂w − x̂v

)
,

(4.10)

9: end for

Consequently, the sequence (xt)t generated by Algorithm 4.1 writes as:

xTk(v) = xTk−(v) if v /∈ {vk, wk} ,

xTk(vk)← xTk−(vk)−
K{vk,wk}
p{vk,wk}

(
xTk−τ{vk,wk}

(vk)− xTk−τ{vk,wk}(wk)
)
,

xTk(wk)← xTk−(wk)−
K{vk,wk}
p{vk,wk}

(
xTk−τ{vk,wk}

(wk)− xTk−τ{vk,wk}(vk)
)
.

Algorithm 4.1 is the pseudo-code for Delayed Randomized Gossip, from the viewpoint
of two adjacent nodes v and w. The times T`{v, w} for ` ≥ 1 denote the activation times
of edge {v, w}. They follow a P.p.p. of intensity p{v,w}, and are sequentially determined
by adjacent nodes v and w. Exp(p) is an exponential random variable of parameter p. In
Algorithm 4.1, Delayed Randomized Gossip is presented from the local viewpoint of edges
{v, w} ∈ E (T`{v, w} is the `th activation of edge {v, w}), while the equations just above are
a global description of the algorithm (Tk is the kth edges activation in the graph).

Formally, this decentralized and asynchronous algorithm corresponds to a jump process
solution of a delayed stochastic differential equation. Defining N(dt, {v, w}) as the Poisson
measure on R+ × E of intensity Idt ⊗ Up where Up is the probability distribution on E
proportional to (p{v,w}){v,w}∈E (Up({v, w}) = p{v,w}/I), we have:

dxt = −
∫
R+×E

K{v,w}
p{v,w}

∇f{v,w}(xt−τ{v,w})dN(t, {v, w}) . (4.9)

Next section presents convergence guarantees for iterates generated by delayed randomized
gossip.

4.2.3. Convergence guarantees

We begin by recalling the key quantities introduced. (i) The constraints inherent to the
problem are the communication delays, upper-bounded by constants τ{v,w}. (ii) Parameters
of the algorithm are: step sizes K{v,w} > 0 and intensities p{v,w} of the local P.p.p. that
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trigger communications between adjacent nodes v and w. For arbitrary intensities p{v,w} and
delay bounds τ{v,w}, we shall provide local conditions on the step sizes K{v,w} that guarantee
stability and convergence guarantees. This is to be contrasted with the situation –discussed in
Section 4.5– where in addition there are capacity constraints, for which additional conditions
on the intensities p{v,w} are needed to prove convergence.

Theorem 4.1 (Delayed Randomized Gossip). Assume that for all {v, w} ∈ E, we have4:

K{v,w} ≤
p{v,w}

1 +
∑
{v′,w′}∼{v,w} p{v′,w′}

(
τ{v,w} + eτ{v′,w′}

) · (4.11)

Let ν{v,w} ≡ K{v,w}, {v, w} ∈ E, and τmax = max{v,w}∈E τ{v,w}. Let γ > 0 be such that:

γ ≤ min

(
λ2

(
∆G(ν)

)
2

,
1

τmax

)
.

For any T ≥ 0, for (xt)t≥0 generated with delayed randomized gossip (Algorithm 4.1) or
equivalently by the delayed SDE in Equation (4.9), we have:∫ T

0 eγtE
[
‖xt − x̄‖2

]
dt∫ T

0 eγt‖x0 − x̄‖2dt
≤ e− γT2 1 + τmax

T

1− γτmax
. (4.12)

The proof is deferred to a subsequent subsection. Using Jensen inequality then yields the
following corollary: a weighted average of the iterates is decreasing linearly with time. This
is a countinuous-time counterpart of the weighted average considered in most decentralized
optimization algorithms (strongly convex case in [KLB+20], e.g.). Note that this integral is
in fact discrete and can be expressed as a sum, since (xs)s is a jump process. Finally, to
converse this result in discrete time (number of pairwise communications), we just need to
notice that the number of communications that happened before time T ≥ 0 is equal in mean
to T

∑
{v,w}∈E p{v,w}, and concentrates around this value for T large.

Corollary 4.2.1. Under the same assumptions as Theorem 4.1, for (xt)t≥0 generated with
delayed randomized gossip, define (x̃t)t≥0 as the exponentially weighted averaging along the
trajectory of (xt):

x̃t = γ

∫ t
0 e

γsxsds

eγt − 1
.

Then, for all T ≥ 0,

E
[
‖x̃T − x̄‖2

]
≤ e− γT2 ‖x0 − x̄‖2

1 + τmax
T

1− γτmax
.

An essential aspect of Theorem 4.1 lies in the explicit sufficient conditions for conver-
gence it establishes for our proposed schemes, and on how they only rely on (upper bounds
on) individual delays. We now discuss the asynchronous speedup obtained by fine-tuning
algorithm parameters according to delays.

For many graphs of interest such as grids, hypergrids, trees. . . in the large network limit
n → ∞ one has λ2(∆G(ν)) → 05 and so min(λ2(∆G), 1/τmax) = λ2(∆G) should hold. More
precisely, let Λn be the smallest non-null eigenvalue of the Laplacian with weights equal to
1/degree{v,w} (the degree of an edge). Then, if for instance p{v,w} = 1/τ{v,w}, as long as
Λn = O( τmin

dmaxτmax
) (for the line/cyclic graphs, Λn = O(1/n2), for the D−dimensional grid

4Note that {v, w} ∼ {v, w}; constant e is exp(1).
5Networks for which this fails are known as expanders.
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Λn = O(1/n2/D), and this condition will hold in most cases) where dmax is the max degree in

the graph, we have γ =
λ2

(
∆G(ν)

)
2 . However, for small graphs that do not verify the condition

Λn = O( τmin
τmax

), the linear rate of convergence turns into 1
τmax

. Noting that synchronous
gossip has a linear rate of convergence of Λn

τmax
, we still notice an improvement of magnitude

Λn for such graphs, and our decentralized approach behaves as if it were centralized. The
asynchronous speedup consists in having a rate of convergence as the eigengap of the Laplacian
of the graph weighted by local communication constraints: this is thus the case here, with
the term λ2(∆G(K)), where each K{v,w} is impacted only by local quantities.

As mentioned in the introduction, this quantity should be understood as the analogue
in decentralized optimization of the squared diameter of the graph (using time distances)
in (4.3) in centrally coordinated algorithms and as expected, gossip algorithms are affected by
spectral properties of the graph. In Theorem 4.1, these properties reflect delay heterogeneity
across the graph: here, λ2(∆G(K))−1 the mixing time of a random walk on the graph where
jumping from node v to w takes a time τ̃{v,w} = K−1

{v,w}. In contrast, previous analyses (of
synchronous or asynchronous algorithms) involve the mixing time of a random walk with
times between jumps set to a quantity that is linearly dependent on τmax. We refer to this
ratio as the asynchronous speedup.

Equation (4.11) suggests a scaling of p{v,w} ≈ 1/τ{v,w}, giving local weights K{v,w} of
order 1/(degree{v,w}τ{v,w}) where degree{v,w} is the degree of edge {v, w} in the edge-edge
graph. On the other hand, synchronous algorithms are slowed down by the slowest node: the
equivalent term would be of order λ2(∆G(1/(degree{v,w}τmax)). Indeed, for a gossip matrix
W ∈ RV×V (W is a symmetric and stochastic matrix), the equivalent factor in synchronous
gossip [DKM+10] is λ2(∆G(W{v,w}τmax)), and W{v,w} is usually set as 1/degree{v,w}.

4.2.4. A delayed ODE for mean values in gossip

Before proving Theorem 4.1, we provide some intuition for its conditions and the resulting
convergence rate. We do this by studying the means of the iterates, that verify a delayed linear
ordinary differential equation, easier to study than the process itself, for which we provide
stability conditions. Denoting yt = E [xt] ∈ Rn×d, for t ≥ 0, where (xt)t≥0 is generated using
delayed randomized gossip updates (4.8), we have:

dyt
dt

= −
∑
{v,w}∈E

K{v,w}∇f{v,w}(yt−τ{v,w}) , (4.13)

where f{v,w} is defined in Equation (4.5). Indeed, for any t ≥ 0 and dt > 0,

E [xt+dt|xt]− xt = −xt + (1− Idt)xt + o(dt)

+ dt
∑
{v,w}∈E

p{v,w}
(
xt −

K{v,w}
p{v,w}

∇f{v,w}(xt−τ{v,w})
)

= −dt
∑
{v,w}∈E

K{v,w}∇f{v,w}(xt−τ{v,w}) + o(dt) .

Taking the mean, using the linearity of ∇f{v,w}, dividing by dt and making dt→ 0 leads to
the delayed ODE verified by yt = E [xt]. Such delay-differential ODEs are classical [Nic01]
yet their stability properties are notoriously hard to characterize. This is typically attacked
by means of Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin functions [GL09].
Alternatively, sufficient conditions for convergence and stability guarantees on (yt) can be
obtained, under specific conditions, by enforcing stability of the original system after lin-
earizing it with respect to delays [Mas02]. Linearizing in the sense of [Mas02] means making
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the approximation yt−τ{v,w} = yt − τ{v,w} dyt
dt . Under this approximation, we have:

dyt
dt

= −
∑
{v,w}∈E

K{v,w}
(
∇f{v,w}(yt)− τ{v,w}∇f{v,w}(

dyt
dt

)
)
.

For any weights ν{v,w} and vector z,
∑
{v,w} ν{v,w}∇f{v,w}(z) = ∆G(ν)z. Thus the delay-

linearized ODE reads

(Id−∆G({K{v,w}τ{v,w}}))
dyt
dt

= −∆G({K{v,w}})yt . (4.14)

This delay-linearized ODE (4.14) provides intuition on the behavior of E [xt]. Indeed, (4.14)
is stable provided that ρ(∆G({τ{v,w}K{v,w}})) < 1, in which case it has a linear rate of
convergence of order λ2(∆G(

{
K{v,w}

}
).

Even though this stability condition and the rate of convergence are only heuristics, since
(4.14) is obtained through an approximation of the delayed ODE verified by E [xt] (4.13),
this stability condition for the delay-linearized system implies stability of the original delayed
system under assumptions on the matrices and delays involved[Mas02], that hold in our case,
leading to the following

Proposition 4.2.1. Assume that the spectral radius of the weighted Laplacian ∆G({τ{v,w}K{v,w}})
verifies ρ(∆G({τ{v,w}K{v,w}})) < 1. Then the delayed ODE (4.13) is stable.

Consequently, the stability conditions (necessary conditions on step sizes K{v,w} in Equa-
tion (4.11)) obtained in Theorem 4.1 are very natural. Indeed, a simple way to enforce
ρ(∆G({τ{v,w}K{v,w}}) < 1 based on local conditions consists in imposing

∑
j τ{v,w}K{v,w} < 1

for all v. This is a weaker condition than the one stated in Theorem 4.1, but it only gives
stability of the means. Furthermore, the rate of convergence of delayed randomized gossip in
Theorem 4.1, that takes the form of the eigengap of a weighted graph Laplacian, is also that
of any solution of the delay-linearized ODE (4.14).

Proof. For A ∈ RV×E as defined in Section 4.2.1 for non-null weights µ{v,w}, define the
following delayed ODE:

dλt
dt

= −
∑
{v,w}∈E

K{v,w}
µ2
{v,w}

e>{v,w}A
>Aλt−τ{v,w} . (4.15)

For (yt) solution of (4.13), if there exists λ0 such that Aλ0 = y0, then yt = Aλt for all t,
where λt is solution of (4.15) initialized at the value λ0. Then, since AA> is the Laplacian
of graph G with weights µ2

{v,w} > 0, A is of rank n− 1. For all λ, Aλ is in the orthogonal of
R1 (1 ∈ RV is the vector with all entries equal to 1), so that Im(A) is exactly the orthogonal
of R1. Finally, since for (yt) a solution of (4.13), yt − (1>y0)1 is also solution of (4.13) and
takes values in the orthogonal of R1, it is sufficient to prove stability of (4.15).

To that end, we use Theorem 1 of [Mas02]. For z ∈ RE , let D(z) ∈ RE×E be the diagonal
matrix with diagonal equal to z. Let M = D(K

µ2 )A>A. Then, the delayed ODE (4.15) writes
as:

dλt{v, w}
dt

= −
∑

{v′,w′}∈E
M{v,w},{v′,w′}λt−τ{v,w}({v′, w′}) , {v, w} ∈ E ,

an ODE that takes the same form as Equation (7) in [Mas02], for D←{v,w} = τ{v,w}, D→{v,w} = 0

and D{v,w} = τ{v,w}, R = E and with our matrix M . In order to ensure that M is symmetric
and positive semi-definite, we take µ2

{v,w} = K{v,w}, to have M = A>A. The assumptions of
Theorem 1 of [Mas02] are verified, so that the delayed ODE (4.15) is stable if ρ(D(τ)M) < 1.
We then write ρ(D(τ)M) = ρ(D(

√
τ)A>AD(

√
τ) = ρ(AD(

√
τ)(AD(

√
τ))>), and notice that
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AD(
√
τ)(AD(

√
τ))> is the Laplacian of graph G with weights µ2

{v,w}τ{v,w} = K{v,w}τ{v,w},
concluding the proof.

4.2.5. Proof of Theorem 4.1

In the proof, we use the assumed bounds τ{v,w} on actual delays in our algorithm to ensure
that communications between v and w started at a time t − τ{v,w} induce communication
updates at time t. Our algorithms thus behave exactly as if individual communication delays
coincide with these upper bounds τ{v,w}, which allows us to analyze algorithms with constant,
albeit heterogeneous delays.

In contrast an analysis in discrete time would use a global iteration counter, and discrete-
time delays would not be constant,making the analysis either much more involved or unable
to capture the asynchronous speedup described above.

Proof. Theorem 4.1 is obtained by applying a general result on delayed coordinate descent in
the continuized framework that we detail in Section 4.3. Specifically, we consider the function
g(λ) = 1

2‖Aλ‖
2 for λ ∈ RE×d and A ∈ RV×E as defined in Section 4.2.1. As in Section 4.2.4,

there exists λ ∈ RE×d such that x0 − x̄ = Aλ. Let (λt)t≥0 be defined with λ0 = λ, and the
delayed coordinate gradient steps at the clock tickings of the P.p.p.’s:

λTk ← λTk− −
K{vk,wk}
p{vk,wk}

∇{vk,wk}g(λTk−τ{vk,wk}
) .

For all t ≥ 0, we then have xt = x̄ + Aλt, where we recall that the process (xt) follows the
delayed randomized gossip updates (4.10) of Algorithm 4.1. Then, for all t ≥ 0, we have
g(λt) = 1

2‖Aλt‖
2 = 1

2‖xt − x̄‖
2.

The result of Theorem 4.1 follows from a control of E [g(λt)] that is a direct consequence
of Theorem 4.2 in next section with the specific choices m = |E| and coordinate blocks
corresponding to edges. The assumptions of Theorem 4.2 are verified with L{v,w} = 2µ2

{v,w},
M{v,w},{v′,w′} =

√
L{v,w}L{v′,w′}, and strong convexity parameter λ2(∆G(ν{v,w} = µ2

{v,w}))

for the specific choice µ2
{v,w} = K{v,w}, as is shown in Lemmas 4.A.1, 4.A.2, 4.A.3 in the

Appendix, giving us exactly Theorem 4.1.

4.3. Delayed coordinate gradient descent in the continuized framework

Let J be a σ-strongly convex function on RD. For k = 1, ...,m, let Ek be a subspace of
RD, and assume that:

Rd =
m⊕
k=1

Ek , (4.16)

where ⊕ denotes a direct sum of linear spaces. For x ∈ RD, let xk denote its orthogonal
projection on Ek and let ∇kJ := (∇J)k, and assume that the subspaces E1, ..., Em are
orthogonal. For k, ` ∈ [m], we say that k and ` are adjacent and we write k ∼ ` if and only
if ∇k∇`J = ∇2

klJ is not identically constant equal to 0. This induces a symmetric graph
structure on the coordinates k ∈ [m]. In the context of gossip network averaging, m = |E|
and each subspace Ek corresponds to an edge ek = {vk, wk} of the graph; in that context,
we have k ∼ ` if and only if edges ek and e` share a node. In the network averaging problem
previously described, the function J used is g(λ) = 1

2‖Aλ‖ for λ ∈ RE×d the edge variables.
Subspaces are E{v,w} of dimension d for {v, w} ∈ E (and m = |E|) corresponding to variables
of λ associated to edge {v, w}.
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4.3.1. Algorithm and assumptions

Continuized delayed coordinate gradient descent algorithm. For k ∈ [m], let Pk be a P.p.p.
of intensity pk denoting the times at which an update can be performed on subspace Ek. For
t ∈ Pk let εk(t) ∈ {0, 1} be the indicator of whether the update is performed or not. Let
also ηk be some positive step size for k ∈ [m]. Consider then the following continuous-time
process X(t), where Xk(t) (the projection of X(t) on Ek) evolves according to:

dXk(t) = −εk(t)ηk∇kJ((X(t− τk))Pk(dt) , (4.17)

where Pk(dt) corresponds to a Dirac at the points of the P.p.p. Pk. In words, (X(t))t≥0

is a jump process that takes coordinate gradient descent steps along subspaces (Ek)k∈[m]

at the times of independent Poisson point processes (Pk)k∈[m]. We introduced variables
(εk(t))k∈[m],t∈Pk with values in {0, 1} to represent capacity constraints: εk(t) = 0 if the update
at time t ∈ Pk cannot be performed due to some constraint saturation; these variables εk(t)
will be essential in our treatment of communication and computation capacity constraints in
Section 4.5.

Regularity assumptions. J is σ-strongly convex, and Lk-smooth on Ek for k ∈ [m]. Fur-
thermore, there exist non-negative real numbers Mk,` and M`,k for k ∼ ` such that for all
k = 1, ...,m and x, y ∈ RD, we have:

‖∇kJ(x)−∇kJ(y)‖ ≤
∑
`∼k

Mk,`‖x` − y`‖ . (4.18)

When J is Lk smooth on Ek as we assume, the above condition is verified by the choice
Mi,j = Lw, i ∼ j. If ∇kJ is Mk-Lipschitz, Condition (4.18) is verified by the choice Mk,` =
Mk. Assumption (4.18) however allows for more freedom, and is particularly well suited
for our analysis. In particular for decentralized optimization, it will be convenient to take
Mk` =

√
LkL`.

Assumptions on variables εk(t), t ∈ Pk. For t ∈ Pk, random variable εk(t) is σ
(
P` ∩ [t −

τk, t), ` ∈ [m])-measurable, and there exists a constant εk > 0 such that:

E [εk(t)] ≥ εk ,

Furthermore, we assume that εk(t) is negatively correlated with each quantity N`(t− τk, t) =
|P` ∩ [t− τk, t]|, i.e. that for all k, ` ∈ [m],

E [εk(t)N`(t− τk, t)] ≤ E [εk(t)]E [N`(t− τk, t)] . (4.19)

In our subsequent treatment of communication and capacity contraints, we shall see that the
above assumptions are verified for εk(t) the indicator that t is a point a truncated P.p.p. P̃k
defined as follows:

Definition 4.3.1 (Truncated P.p.p.). Let (Pk)1≤k≤m be P.p.p. of respective intensities (pk)1≤k≤m,
(τk)1≤k≤m non-negative delays. Let Nk be the Poisson point measures associated to Pk,
k ∈ [m]. For (Cr)1≤r≤M subsets of [m], we define the truncated Poisson point measures
(Ñ)1≤k≤m of intensities (pk)1≤k≤m and parameters (τk)k, (qk,r)k∈[m],r∈[M ] as:

dÑk(t) = 1{⋂1≤k≤M {
∑
`∈Cr N`([t−τk,t))≤qk,r}}dNk(t) , (4.20)

and we let P̃k be the point process associated to this point measure.
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4.3.2. Convergence guarantees and analysis

The main result of this Section is the following

Theorem 4.2 (Delayed Coordinate Gradient Descent). Under the stated assumptions on regu-
larity of J and on variables εk(t), assume further that the step sizes ηk are given by ηk = Kk

pkLk
where for all k ∈ [m],

Kk ≤
pk

1 +
∑

`∼k p`
(
τkMk,`+eτ`M`,k√

LkL`

) , (4.21)

and let γ ∈ R+ be such that:

γ < min

(
σmin

k

εkKk

Lk
,

1

τmax

)
, (4.22)

where τmax := maxk∈[m] τk. Then for any T > 0 the solution X(t) to Equation (4.17) verifies∫ T
0 eγtE [J(X(t))− J(x?)]dt∫ T
0 eγt

(
J(X(0))− J(x?)

)
dt
≤ e− γT2 1 + τmax

T

1− γτmax
· (4.23)

Proof. We proceed in three steps. The first step consists in upper bounding, for t ≥ 0,
the quantity dE[J(X(t))]

dt . We then introduce in Step 2 a Lyapunov function inspired by the
Lyapunov-Krasovskii functional [GL09]), and by using the result proved in the first step, we
show that it verifies a delayed ordinary differential inequality. The last step then consists in
deriving the desired result from this delayed differential inequality.

Step 1 To bound dE[J(X(t))]
dt , we study infinitesimal increments between t and t + dt for

dt→ 0. This approach is justified by results on stochastic ordinary differential equation with
Poisson jumps, see [Dav84]. For t ≥ 0, let Ft be the filtration induced by Pk ∩ [0, t), k ∈ [m]
i.e., the filtration up to time t. By convention, for non-positive t, we write X(t) = X(0).
The following inequalities are written up to o(dt) terms, that we omit to lighten notations.
Finally, we write

gk,t = ∇kJ(X(t)) , k ∈ [m], t ≥ 0 .

We have, using local smoothness properties of J and the fact that for a P.p.p. P of intensity
p, P(P ∩ [t, t+ dt] = ∅) = (1− p)dt+ o(dt) and P(#P ∩ [t, t+ dt] = 1) = pdt+ o(dt):

E [J(X(t+ dt))− J(X(t))|Ft]
dt

=

m∑
k=1

pk

(
J

(
X(t)− εk(t)Kk

pkLk
gk,t−τk

)
− J(X(t))

)

≤
m∑
k=1

pk

(
− Kk

pkLk
〈εk(t)gk,t−τk , gk,t〉

+
Lk
2

∥∥∥∥εk(t) Kk

pkLk
∇kgk,t−τk

∥∥∥∥2
)
.

First, we rewrite − εk(t)Kk
pkLk

〈gk,t−τk , gk,t〉 as

−εk(t)Kk

pkLk
‖gk,t−τk‖2 −

εk(t)Kk

pkLk
〈gk,t−τk , gk,t − gk,t−τk〉,
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and bound the second term there by

− εk(t)Kk

pkLk
〈gk,t−τk , gk,t − gk,t−τk〉

≤ εk(t)Kk

pkLk
‖gk,t−τk‖ ‖gk,t − gk,t−τk‖

≤ Kk

pkLk
‖εk(t)gk,t−τk‖

∑
`∼k

Mk,`‖X`(t)−X`(t− τk)‖ ,

where we used the Cauchy-Schwarz inequality and then local Lipschitz property (4.18) of
∇kG. Writing

‖X`(t)−X`(t− τk)‖

=

∥∥∥∥∥
∫ t

(t−τk)+

ε`(s)K`

p`L`
g`,s−τ`N`(ds)

∥∥∥∥∥ ,
where N` is the Poisson point measure associated to P`, we have (where we use a triangle
inequality for integrals):

KkMk,`

pkLk
E [‖εk(t)gk,t−τk‖‖X`(t)−X`(t− τk)‖]

≤ E

[∫ t

(t−τk)+

Mk,`
εk(t)Kkε`(s)K`

Lkpkp`L`
‖gk,t−τk‖‖g`,s−τ`‖N`(ds)

]

≤ E

[∫ t

(t−τk)+

1

2

(
K2
kMk,`

p2
kLk
√
LkL`

‖εk(t)gk,t−τk‖2

+
K2
`Mk,`

p2
`L`
√
LkL`

‖ε`(s)g`,s−τ`‖2
)
N`(ds)

]
.

For the first term, since both εk(t) and N`(ds) for s in the integral are independent from
X(t− τk) (and thus from gk,t−τk), and where we write N`(u, v) the number of clock tickings
of P` in the interval [u, v), we obtain:

E

[∫ t

(t−τk)+

1

2

K2
kMk,`

p2
kLk
√
LkL`

‖εk(t)gk,t−τk‖2
]

=
E [N`(t− τk, t)εk(t)]

2

K2
kMk,`

p2
kLk
√
LkL`

E
[
‖gk,t−τk‖2

]
.

Furthermore, using our negative correlation assumption, E [N`(t− τk, t)εk(t)] ≤ E [N`(t− τk, t)]E [εk(t)] =

p`τkE [εk(t)], and since εk(t) and gk,t−τk are independent, E [εk(t)]E
[
‖gk,t−τk‖2

]
= E

[
εk(t)‖gk,t−τk‖2

]
.

For the second term, since the process (ε`(s)g`,s−τ`)s is predictable (in the sense that it
is independent from Nu(ds) for all u), we have

E

[∫ t

(t−τk)+

K2
`Mk,`

2p2
`L`
√
LkL`

‖ε`(s)g`,s−τ`‖2N`(ds)

]

=

∫ t

(t−τk)+

K2
`Mk,`

2p2
`L`
√
LkL`

E
[
‖ε`(s)g`,s−τ`‖2

]
E [N`(ds)]

=

∫ t

(t−τk)+

K2
`Mk,`

2p2
`L`
√
LkL`

E
[
‖ε`(s)g`,s−τ`‖2

]
p`ds .
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Hence,
KkMk,`

pkLk
E [‖εk(t)gk,t−τk‖‖X`(t)−X`(t− τk)‖]

≤ p`τkK
2
kMk,`

2p2
kLk
√
LkL`

E
[
‖εk(t)gk,t−τk‖2

]
+

∫ t

(t−τk)+

K2
`Mk,`

2p2
`L`
√
LkL`

E
[
‖ε`(s)g`,s−τ`‖2

]
p`ds .

Combining all our elements and taking dt→ 0, we hence have:

dE [J(X(t))]

dt
≤ −

m∑
k=1

Kk

Lk

(
1− Kk

2pk

)
E
[
‖εk(t)gk,t−τk‖2

]
+

m∑
k=1

∑
`∼k

p`τkK
2
kMk,`

2pkLk
√
LkL`

E
[
‖εk(t)gk,t−τk‖2

]
+

m∑
k=1

∑
`∼k

∫ t

(t−τk)+

pkK
2
`Mk,`

2p`L`
√
LkL`

E
[
‖ε`(s)g`,s−τ`‖2

]
ds .

(4.24)

Step 2 Now, introduce the following Lyapunov function:

LγT =

∫ T

0
eγtE [J(X(t))− J(x?)]dt ,

that we wish to upper-bound by some constant, where γ is as in (4.22). We have:

dLγT
dT

= J(X(0))− J(x?) + γLγT +

∫ T

0
eγt

dE [J(X(t))]

dt
dt .

Integrating the bound (4.24) on dE[J(X(t))]
dt , we obtain, using

∫ T
0

∫ t
(t−τ)+ h(u)dudt ≤ τ

∫ T
0 h(t)dt

for non-negative h:

dLγT
dT
≤ J(X(0))− J(x?) + γLγT

−
m∑
k=1

Kk

Lk

(
1− Kk

2pk

) ∫ T

0
eγtE

[
‖εk(t)gk,t−τk‖2

]
dt

+
m∑
k=1

Ak

∫ T

0
eγtE

[
‖εk(t)gk,t−τk‖2

]
dt ,

where

Ak =
K2
k

2pkLk

∑
`∼k

p`τkMk,`√
LkL`

+ eγτ`
p`τ`M`,k√
LkL`

.

Remark now that we have

K2
k

2pkLk
+Ak ≤

Kk

2Lk
, k ∈ [m]. (4.25)

Indeed, (4.25) is equivalent to

Kk ≤
pk

1 +
∑

`∼k
(
p`τkMk,`√
LkL`

+ eγτ`
p`τ`M`,k√
LkL`

) ,
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4.3. Delayed coordinate gradient descent in the continuized framework

which follows from the assumed bounds (4.21) on Kk and the fact that γ ≤ 1/τmax, assumed
in (4.22). we then have, using (4.25) and the fact that, by strong convexity, J(X(t))−J(x?) ≤
1

2σ‖∇J(X(t))‖2 = 1
2σ

∑m
k=1 ‖∇gk,t‖2:

dLγT
dT
≤ J(X(0))− J(x?) + γLγT

−
m∑
k=1

Kk

2Lk

∫ T−τk

0
eγ(t+τk)E

[
‖εk(t+ τk)gk,t‖2

]
dt

≤ J(X(0))− J(x?) + γLγT

− min
k∈[m]

(Kkεke
γτk

2Lk

) ∫ T−τmax

0
eγtE

[
m∑
k=1

‖gk,t‖2
]

dt

≤ J(X(0))− J(x?) + γ
(
LγT − L

γ
T−τmax

)
,

where we used the assumption (4.22) that γ ≤ σmink∈[m]

(
Kkεk
Lk

)
.

Step 3 The proof is then concluded by using the following lemma, to control solutions of
this delayed ordinary differential inequality.

Lemma 4.3.1. Let h : R→ R+ a differentiable function such that:

∀t ≤ 0 , h(t) = 0 ,

∀t ≥ 0 , h′(t) ≤ a+ b(h(t)− h(t− τ)) ,

for some positive constants a, b, τ verifying τb < 1. Then:

∀t ∈ R , h(t) ≤ a(t+ τ)

1− τb .

Proof. Let δ(t) = h(t)− h(t− τ). For any t ≥ 0, we have:

δ(t) =

∫ t

t−τ
h′(s)ds

≤
∫ t

t−τ
(a+ bδ(s))ds .

Let c = τa
1−τb (solution of x = τ(a + bx)) and t0 = inf{t > 0|δ(t) ≥ c} ∈ R ∪ {∞}. Assume

that t0 is finite. Then, δ(t) < c for t < t0 and by continuity δ(t0) = c, so that:

c = δ(t0) ≤
∫ t0

t0−τ
(a+ bδ(s))ds

<

∫ t0

t0−τ
(a+ bc)ds = τ(a+ bc) = c ,

as for all s < t0, δ(s) < c. This is absurd, and thus t0 is not finite: ∀t > 0, δ(t) < c, giving us
for all t ≥ 0 h′(t) ≤ a+ bc and thus h(t) ≤ c(t+ τ)/τ .

To conclude the proof of Theorem 4.2, we apply Lemma 4.3.1 to h(T ) = LγT with a =
J(X(0))− J(x?), b = γ and τ = τmax to obtain that for all T > 0,

LγT ≤
(
J(X(0))− J(x?)

) T + τmax

1− τmaxγ
·
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4.4. Extension to decentralized optimization

The result of Theorem 4.2 follows by dividing this inequality by
∫ T

0 eγtdt = eγT−1
γ :∫ T

0 eγtE [J(X(t))− J(x?)]dt∫ T
0 eγt

(
J(X(0))− J(x?)

)
dt
≤ γ

eγT − 1

T + τmax

1− τmaxγ

=
γT

eγT − 1

1 + τmax/T

1− τmaxγ

≤ e−γT/2 1 + τmax/T

1− τmaxγ
,

where we used that for x ≥ 0, e
x−1
x ≥ ex/2.

4.4. Extension to decentralized optimization

Using Theorem 4.2, we are now armed to generalize the delayed randomized gossip al-
gorithm and analysis to more general settings. In this section we extend our results to de-
centralized optimization, going beyond the quadratic objective functions considered network
averaging.

4.4.1. Delayed Decentralized Optimization

Consider the decentralized optimization problem (4.1). We make the following assump-
tions on the individual objective functions fv therein :

each fv, v ∈ V, is σ-strongly convex and L-smooth, (4.26)

see [Bub15] and Section 1.6 for definitions. Let f(z) :=
∑

v∈[n] fv(z) for z ∈ Rd and F (x) =∑
v∈[n] fv(xv) for x = (x1, · · · , xn) ∈ Rn×d where xv ∈ Rd corresponds to node v ∈ [n].

Definition 4.4.1 (Fenchel Conjugate). For any function g : Rp → R, its Fenchel conjugate is
denoted by g∗ and defined on Rp by g∗(y) = supx∈Rp〈x, y〉 − g(x) ∈ R ∪ {+∞}.

Our algorithm for delayed decentralized optimization is built on delayed randomized gos-
sip for network averaging, augmented with local computations. Each node v ∈ V keeps two
local variables: the communication variable xv(t), used to run delayed randomized gossip,
and a computation variable yv(t), used to make local computation updates in the following
way.

1. Local computations. Each node v generates a Poisson point process

Pcomp
v = {T comp

1 (v) < T comp
2 (v), . . .}

of intensity pcomp
v . At the clock tickings T comp

k (v), a local computation update is made
corresponding to a computation started at a time T comp

k (v)− τ comp
v , where τ comp

v is the
upper bound on the time to perform an elementary computation at node v, introduced
in Assumption 4.1.1. Thus by assumption the computation started at time T comp

k (v)−
τ comp
v is completed by time T comp

k (v) so that the update can be performed at that time.
The precise form of this update is given by Equation (4.30).

2. Communications. In parallel of these local computations, a Delayed Randomized Gos-
sip is run on the graph. Dedicated P.p.p. (P{v,w}){v,w}∈E with respective intensities
(p{v,w}){v,w}∈E are associated to communication updates of all network edges, and used
to perform updates as prescribed by Equation (4.10) in Delayed Randomized Gossip.

The resulting Delayed Decentralized Optimization algorithm, or DDO for short, is de-
scribed in Algorithm 4.3 from a local viewpoint and is a combination of Algorithm 4.1 for
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4.4. Extension to decentralized optimization

communication updates along edges {v, w} ∈ E with Algorithm 4.2 for local computation
updates at nodes v ∈ V.

From a global viewpoint, the algorithm is generated as follows. Let {Tk}k≥0 be a P.p.p.
process of intensity

∑
{v,w}∈E p{v,w} +

∑
v∈V p

comp
v . For all k ≥ 0, at time k a communi-

cation or a computation update is performed. With probability proportional to p{v,w} the
communication update (4.10) is performed along edge {v, w} (Tk = T`({v, w}) in that case),
with probability proportional to pcomp

v the computation update (4.30) is performed at node
v (Tk = T comp

` (v) in that case).

4.4.2. Convergence guarantees

The process (x(t), y(t)) ∈ R2n×d defined by algorithm DDO, Algorithm 4.3, satisfies the
following convergence guarantees that generalize Theorem 4.1 to decentralized optimization
beyond the case of quadratic functions.

Theorem 4.3 (Delayed Decentralized Optimization). Under the regularity assumptions (4.26),
assume further that for all v ∈ V and {v, w} ∈ E, we have:

K{v,w} ≤
p{v,w}

1 +
∑
{v′,w′}∼{v,w} p{v′,w′}

(
τ{v,w} + eτ{v′,w′}

)
Kcomp
v ≤ pcomp

v

1 +
∑

w∼v p{v,w}
(
τ comp
v + eτ{v,w}

) . (4.27)

Let τmax := max
(
max{v,w}∈E τ{v,w},maxv∈V τ

comp
v

)
. Then for γ > 0 such that

γ ≤ min

(
σ

4L
λ2

(
∆G(K)

)
,

1

τmax

)
, (4.28)

the process (x(t), y(t)) generated by DDO satisfy∫ T
0 eγtE

[∥∥σ
2x(t)− x̄?

∥∥2
]
dt∫ T

0 eγt
∥∥σ

2x(0)− x̄?
∥∥2

dt
≤ e− γT2 L

σ

1 + τmax
T

1− γτmax
, (4.29)

where x̄? = (x?, . . . , x?)> ∈ Rn×d for x? minimizer of f =
∑

v fv.

DDO is based on a dual formulation and uses an augmented graph representation intro-
duced in [HBM20] to decouple computations from communications, as detailed in the proof.
The dual gradient computations in Algorithm 4.2 can be expensive in general; they could be
avoided by using a primal-dual approach for the computation updates [KGGR21a].

The convergence guarantees we obtain resemble classical ones: Interpreting γ as the recip-
rocal of the time scale for convergence, we recognize in its upper bound (4.28) an “optimization
factor” κ−1

comp := σ/L, and a “communication factor” κ−1
comm = λ2

(
∆G(K)

)
. Our method is

non-accelerated, so the computation factor κcomp, the condition number of the optimization
problem, is expected. The communication factor captures the delay heterogeneity in the
graph as in Delayed Randomized Gossip, leading to the asynchronous speedup discussed in
Section 4.2 after Theorem 4.1.

Previous approaches have considered accelerating decentralized optimization by obtaining√
κcomp instead of κcomp and/or

√
κ′comm instead of κ′comm for κ′comm a communication factor

in the rate of convergence [SBB+17, KSR20, HBM19]. Our result yields a speedup of a
different nature: we obtain a communication factor κcomm that can be arbitrarily larger than
previously considered κ′comm for networks with huge delay heterogeneity.
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4.4. Extension to decentralized optimization

Algorithm 4.2: Local computations, node v
1: Step size Kcomp

v > 0

2: Initialization x0(v) = y0(v) = 0

3: Initialization T comp
1 (v) ∼ Exp(pcomp

v )
4: for ` = 1, 2, . . . do
5: T comp

`+1 (v) = T comp
` (v) + Exp(pcomp

v ).
6: end for
7: for ` = 1, 2, . . . do
8: At time T comp

` (v)− τ comp
v , node v computes gv = ∇φ∗v(yv(T comp

` (v)− τ comp
v )) (takes a

time less than τ comp
v ) and keeps x̂v = xv(T

comp
` (v)− τ comp

v ) in memory, where
φv = fv − σ

4 ‖.‖
2.

9: At time T comp
` (v),

yv(T
comp
` (v))

t←− yv(T comp
` (v)−)− σKcomp

v

pcomp
v

(
gv − x̂v

)
,

xv(T
comp
` (v))

t←− xv(T comp
` (v)−)− Kcomp

v

2pcomp
v

(
x̂v − gv

)
.

(4.30)

10: end for

Algorithm 4.3: DDO
1: Node initializations x0(v) = y0(v) = 0, v ∈ V
2: for v ∈ V and {v, w} ∈ E , asynchronously, in parallel do
3: Communication updates along edge {v, w} according to Algorithm 4.1
4: Local computation updates at node v according to Algorithm 4.2
5: end for
6: Output: σ

2xv(t) at time t and node v.

4.4.3. Proof of Theorem 4.3

Proof. Following the augmented graph approach [HBM20], for each “physical” node v ∈ V,
we associate a “virtual” node vcomp, corresponding to the computational unit of node v. We
then consider the augmented graph G+ = (V+, E+), where V+ = V ∪ Vcomp (for Vcomp =
{vcomp, v ∈ V}) and E+ = E ∪ Ecomp (for Ecomp = {(vcomp), v ∈ V}).

For v ∈ V, function fv is then split (using σ-strong convexity) into a sum of two σ/2-
strongly convex functions: fv = φv+φvcomp where φvcomp(xv) = fv(xv)− σ

4 ‖xv‖
2 and φv(xv) =

φcomm(xv) = σ
4 ‖xv‖

2.
The optimization objective (4.1)

min
x1=...=xn

1

n

n∑
i=1

fv(xv) , x = (x1, . . . , xn) ∈ RV×d

can then be rewritten as

min
x∈RV+

{
F (x) =

∑
v∈V

φv(xv) +
∑

vcomp∈Vcomp

φvcomp(xvcomp)

}
,

under the constraint xv = xw for {v, w} ∈ E+. This constraint can then be rewritten as
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4.4. Extension to decentralized optimization

A>x = 0 for A ∈ RE+×V + such that for all {v, w} ∈ E+, Ae{v,w} = µ{v,w}(ev − ew), as was
done for network averaging, considering the augmented graph instead of the original graph.
Using Lagrangian duality, denoting F ∗A(λ) := F ∗(Aλ) for λ ∈ RE+×d where F ∗ is the Fenchel
conjugate of F , we have:

min
x∈RV+×d,xv=xw,{v,w}∈E+

F (x) = max
λ∈RE×d

−F ∗A(λ).

Thus F ∗A(λ) is to be minimized over the dual variable λ ∈ RE+×d. The rest of the proof is
divided in two steps: in the first, we derive the updates of the DDO algorithm from coordinate
gradient descent steps on dual variables, and in the second step we apply Theorem 4.2 to
prove rates of convergence for these coordinate gradient descent steps on function F ∗A.

The partial derivative of F ∗A with respect to coordinate {v, w} ∈ E+ of λ ∈ RE+×d reads:

∇{v,w}F ∗A(λ) = µ{v,w}(∇φ∗v((Aλ)v)−∇φ∗w((Aλ)w)) .

Consider then the following step of coordinate gradient descent for F ∗A on coordinate {vk, wk} ∈
E+ of λ, performed when edge {vk, wk} is activated at iteration k (corresponding to time tk):

λtk = λtk− −
1

(2σ−1)µ2
{vk,wk}

∇{vk,wk}F ∗A(λtk−τ{vk,wk}
) , (4.31)

corresponding to an instantiation of delayed coordinate gradient descent in the continuized
framework, on function F ∗A, for P.p.p. of intensities (p{v,w}) for {v, w} ∈ E and pcomp

v for
(ivcomp) ∈ Ecomp. Denoting vt = Aλt ∈ RV +×d for t ≥ 0, we obtain the following formula
for updating coordinates vk, wk of v when {vk, wk} activated, irrespectively of the choice of
µ{v,w} in matrix A:

vtk,vk = vtk−,vk −
∇φ∗vk(vtk−τ{vk,wk},vk

)−∇φ∗wk(vtk−τ{vk,wk},wk
)

2σ−1
,

vtk,wk = vtk−,wk +
∇φ∗vk(vtk−τ{vk,wk},vk

)−∇φ∗wk(vtk−τ{vk,wk},wk
)

2σ−1
.

(4.32)

Such updates can be performed locally at nodes v and w after communication between the
two nodes (if {v, w} is a ‘physical edge’), or locally (if {v, w} is ‘virtual edge’). We refer in the
sequel to this scheme as the Coordinate Descent Method. While λ ∈ RE×d is a dual variable
defined on the edges, v ∈ Rn×d is also a dual variable, but defined on the nodes. The primal
surrogate of v is defined as x = ∇F ∗(v) i.e. xv = ∇f∗v (vv) at node v. It can hence be computed
with local updates on v. The decentralized updates of Algorithm 4.3 (computational updates
in Algorithm 4.2, communication updates in Algorithm 4.1) are then direct consequences of
Equation (4.32).

The last step of the proof consists in applying Theorem 4.2 in order to obtain Theo-
rem 4.3. The function F ∗A we introduced satisfies the assumptions of Theorem 4.2 with
coordinate blocks corresponding to edges E+: The regularity assumptions are satisfied with
smoothness parameter L{v,w} = 8µ2

{v,w}σ
−1 and local Lipschitz coefficients M{v,w},{v′,w′} =√

L{v,w}L{v′,w′} for any {v, w}, {v′, w′} ∈ E+, as shown in Lemmas 4.A.1 and 4.A.2 in the
Appendix. F ∗A is moreover σ-strongly convex6 with σ derived using Lemmas 4.A.3 and 4.A.4,
and the weights associated to matrix A are chosen so that µ2

{v,w} =
ε{v,w}K{v,w}σ

2µ2
{v,w}

.

Finally, the output of the algorithm at node v is the primal surrogate of variable xv(t)
(associated to φv), which is equal to ∇φv(xv(t)) = σ

2xv(t).

6In fact, it is strongly convex on the orthogonal of KerA, which suffices for us to conclude since the
dynamics are restricted to this subspace.
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4.5. Handling communication and computation capacity limits

4.5.1. Communication and computation capacity constraints

A given node or edge in the network may be able to handle only a limited number of
communications or computations simultaneously. In Delayed Randomized Gossip and DDO
algorithms, such constraints could be violated when some P.p.p. generates many points in a
short interval. We extend our algorithms and resulting convergence guarantees to take into
account these additional constraints.

In the continuized framework, this constraint can be enforced by truncating the P.p.p. that
handles activations (Definition 4.3.1). We formalize communication and capacity constraints
in Assumption 4.5.1, and show that asynchronous speedup is still achieved in this setting in
Theorem 4.4.

In the previous sections, step size parameters K{v,w},K
comp
v of the algorithms could be

tuned to counterweight the effect of delays for arbitrary intensities p{v,w}. With the intro-
duction of capacity constraints we will see that the local optimizers at every node must also
bound the intensities p{v,w}, p

comp
v based on local quantities. The resulting rate of convergence

is the same as in Theorems 4.1 and 4.3, up to a constant factor of 1/2.
We formalize communication and computation capacity constraints as follows.

Assumption 4.5.1 (Capacity constraints). For some q{v,w}, qcomm
v , qcomp

v ∈ N∗ ∪ {∞}, v ∈ V
and {v, w} ∈ E,

1. Computation Capacity: Node v can compute only qcomp
v gradients in an interval of time

of length τ comp
v ;

2. Communication Capacity, edge-wise limitations: Only q{v,w} messages can be exchanged
simultaneously between adjacent nodes i ∼ j in an interval of time of length τ{v,w};

3. Communication Capacity, node-wise limitations: Node v can only send qcomm
v messages

in any interval of time of length τ comm
v = maxw∼v τ{v,w}.

Taking into account these constraints in the analysis boils down to replacing P.p.p. pro-
cesses (P{v,w}){v,w}∈E , (Pcomp

v )v∈V of intensities (p{v,w}), (pcomp
v ) in the DDO algorithm, by

truncated Poisson point processes (P̃{v,w}, P̃comp
v ) (see Definition 4.3.1).

More precisely, for every edge {v, w} ∈ E (resp. node v ∈ V), let n{v,w}(t) be the
number of communications occurring along {v, w} between times t − τ{v,w} and t (resp.
ncomm
i,j the number of communications node v is involved in between times t and t − τ{v,w},
ncomp
v the number of computations node v is involved with between times t and t − τ comp

v ).
Without capacity constraints, these quantities are discrete Poisson random variables (of mean
p{v,w}τ{v,w} for n{v,w}(t), e.g.).

4.5.2. Convergence guarantees

As in Section 4.4, we consider communication and computation update rules as in Al-
gorithm 4.3 (DDO algorithm). In the presence of capacity constraints, a communication
alongside edge {v, w} ∈ E at a clock ticking t ∈ P{v,w} occurs and does not break the com-
munication capacity constraints if and only if n{v,w}(t) < q{v,w} (for edge-wise limitations),
ncomm
v,w (t) < qcomm

v and ncomm
w,v (t) < qcomm

w (for node-wise limitations) are satisfied.
Under capacity constraints, we have the following guarantees for our algorithm, defined

as in Algorithm 4.3 (Algorithm 4.1 for communications and Algorithm 4.2 for local compu-
tations), where communications and computations that violate the capacity constraints are
dropped.
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Theorem 4.4. Assume for any v ∈ V and {v, w} ∈ E:

cpcomp
v τ comp

v ≤ qcomp
v ,

cp{v,w}τ{v,w} ≤ q{v,w},
c
∑
w∼v

p{v,w}τ
comm
v ≤ qcomm

v ,
(4.33)

where c = 1/(1−
√

ln(6)/2) is a numerical constant. Then, if the assumptions of Theorem 4.3
described in Equation 4.27 additionally hold, for γ verifying

γ ≤ min

(
σ

8L
λ2

(
∆G(ν{v,w} = K{v,w})

)
,

1

τmax

)
,

we have: ∫ T
0 eγtE

[∥∥σ
2x(t)− x̄?

∥∥2
]
dt∫ T

0 eγt
∥∥σ

2x(0)− x̄?
∥∥2

dt
≤ e− γT2 L

σ

1 + τmax
T

1− γτmax
.

The same guarantees as without the capacity constraints thus hold, up to a constant factor
1/2 in the rate of convergence. The conditions on the activation intensities (4.33) suggest
that graph sparsity is beneficial: for qcomm

v small, 2
∑

w∼v p{v,w}τ
comm
v ≤ qcomm

v translates
into p{v,w} scaling with the inverse of the edge-degree of {v, w}, so large degrees thus slow
down the convergence. The new conditions (4.33) are easily enforced with the natural choice
of intensities p{v,w} (resp. p

comp
v ) of order 1/τ{v,w} (resp. τ

comp
v ).

Taking qcomm
v = 1, we recover the behavior of loss networks [Kel91a], where a node cannot

concurrently communicate with different neighbors. Gossip on loss networks was previously
studied in [EHM20], to obtain some form of asynchronous speedup. Comparatively, our
present algorithms are structurally simpler and their analysis in the continuized framework
yields faster convergence speeds.

4.5.3. Proof of Theorem 4.4

Proof. The algorithm under capacity constraints is obtained by applying coordinate gradient
descent in the continuized framework to the same dual problem as in Section 4.4, but with
random variables “εk(t)” that are not taken constant equal to 1. Here, for {v, w} ∈ E and
t ∈ P{v,w}, we have

ε{v,w}(t) = 1{n{v,w}(t)<q{v,w} , ncomm
v (t)<qcomm

v , ncomm
w (t)<qcomm

w } ,

while for v ∈ V and t ∈ Pcomp
v ,

εvvcomp(t) = 1{ncomp
v <qcomp

v } .

We apply Theorem 4.2 as in the proof of Theorem 4.3, leading to the same stability conditions
on the step sizes K{v,w},K

comp
v , while the rate of convergence is multiplied by a lower bound

ε on all E
[
ε{v,w}(t)

]
and E

[
ε{v,vcomp}(t)

]
. Let us finally compute such a lower bound ε.

For {v, w} ∈ E , n{v,w}(t) is stochastically dominated by Z{v,w} a Poisson random variable
of parameter p{v,w}τ{v,w}, while ncomm

v (t) and ncomm
w (t) are respectively dominated by Zv

and Zw, Poisson random variables of parameters τ{v,w}
∑

u∼v p{u,v} and τ{v,w}
∑

u∼w p{u,w},
so that:

E
[
ε{v,w}(t)

]
≥ P

(
Z{v,w} < q{v,w} , Zv < qcomm

v , Zw < qcomm
w

)
≥ 1− P(Z{v,w} ≥ q{v,w})− P(Zv ≥ qcomm

v )− P (Zw ≥ qcomm
w ) .
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We now prove that P(Z{v,w} ≥ q{v,w}),P(Zv ≥ qcomm
v ), P (Zw ≥ qcomm

w ) are all inferior to 1/6.
For P(Z{v,w} ≥ q{v,w}), using that for Z a Poisson variable of parameter µ and x ≥ 0,

P(Zµ ≥ µ+ x) ≤ e
−x2

µ+x ,

we have P(Z{v,w} ≥ q{v,w}) ≤ e
−

(q{v,w}−p{v,w}τ{v,w})
2

q{v,w} ≤ e−2(1−1/c)2 if q{v,w} ≥ 2, and this
quantity is equal to 1/6, by definition of c. Then, if q{v,w} = 1, using P(Zµ ≥ 1) = 1− e−µ,
we have that P(Z{v,w} ≥ q{v,w}) ≤ p{v,w}τ{v,w} ≤ 1/c ≤ 1/6. We proceed in the same way for
P(Zv ≥ qcomm

v ), P (Zw ≥ qcomm
w ). Hence, E

[
ε{v,w}(t)

]
≥ 1/2 under our assumptions on the

Poisson intensities. Similarly, we prove that E
[
ε{v,vcomp}(t)

]
≥ 1/2, and this concludes the

proof.

4.6. Braess’s Paradox and Experiments

In this section, we investigate how the local step sizes K{v,w} and Poisson intensities
p{v,w} used in Theorems 4.1, 4.3 and 4.4 should be tuned for a fixed choice of communication
delays. Consider the line graph with constant delays τv,v+1 = τ . Add edge (1, n) in order to
close the line, with a delay τ1n = τ ′ with arbitrarily large τ ′. If the added Poisson intensity
p1n satisfies τ1np1n →∞, then according to Theorem 4.1, we have K12 → 0 and Kn−1,n → 0.
Consequently, since γ = O(∆G(K)), we have γ → 0: the weighted graph becomes close to
disconnected. By adding an edge to the graph, the convergence speed of delayed randomized
gossip is degraded.

In order to alleviate the phenomenon, we would need to virtually delete the edge, by
setting p1n = 0. Figure 4.1 illustrates this phenomenon in the more general setting: one
can sparsify the communication graph by solving a regularized optimization problem over
the p{v,w} in order to maximize λ2(∆G(K)) (K being a function of p), leading to both faster
consensus and smaller communication complexity (and thus lower energy footprint).

In road-traffic, removing one or more roads in a road network can speed up the over-
all traffic flow. This phenomenon, called Braess’s paradox [EK10], also arises in loss net-
works [BKT97]. In our problem, this translates to removing an edge {v, w} with a non-
negligible Poisson intensity p{v,w}. We take G1 a dense Erdős-Rényi random graph (Fig-
ure 4.1a) of parameters n = 30, p = 0.75. Delays τ{v,w} are taken equal to 0.01 with prob-
ability 0.9, and to 1 with probability 0.1. Initially, intensities are set as p(1)

{v,w} = 1/τ{v,w}.
Maximizing:

λ2

(
∆G

( p{v,w}
1 +

∑
{v′,w′}∼{v,w} pkl(τ{v,w} + eτ{v′,w′})

))
− ω

∑
{v,w}∈E

p{v,w}τ{v,w}

over (p{v,w}){v,w}, we obtain intensities p(2) and a graph G2 (Figure 4.1b), sparser than G1:
we delete edges that have a null intensity (i.e. such that p(2)

{v,w} = 0). We then run our de-
layed gossip algorithm for initialization x0 a Dirac mass (x0(v) = Ii=i0), on G1 (blue curves)
and G2, for the choice of K{v,w} as in Theorem 4.1. The green curve is the synchronous
gossip algorithm [DKM+10] on G1, to illustrate the asynchronous speedup, where each it-
eration takes a time τmax = 1. In Figure 4.1d, the error to the consensus is measured as a
function of the continuous time, while it is measured in terms of number of updates in Fig-
ure 4.1c and in terms of energy (defined as

∑
k:Tk<t

τ{vk,wk} at time t: the energy consumed
by a communication is assumed to be proportional to the time the communication took) in
Figure 4.1e.

As expected, in terms of number of updates in the whole graph and energy spent, the
sparser graph is more effective: slow and costly edges were deleted. Perhaps more surprising,
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(a) – Graph G1 (E-R) (b) – Graph G2 (after spar-
sification)

(c) – Continuous time

(d) – Number of updates in the whole
graph

(e) – Energy spent

Figure 4.1 – Experiments and Braess’s paradox.

but supported by our theory (Theorem 4.3) and the resulting Braess’s paradox, this also
holds in Figure 4.1d: even though in the same amount of time, less updates are made in
the sparser graph G2 than in G1, delayed randomized gossip is still faster on G2 than G1.
Making less updates and deleting some communications make all other communications more
efficient.

We believe that this phenomenon could be exploited for efficient design of large scale
networks, beyond the maximization the spectral gap regardless of physical constraints as
in [YYC+21] for instance.

Conclusion

We introduced in this chapter a novel analysis framework for the study of algorithms in the
presence of delays, establishing that an asynchronous speedup can be achieved in decentralized
optimization. Our results hold for explicit choices of algorithm parameters based on local
network characteristics. They derive from the continuous-time analysis and assumptions
handled in our continuized framework. The explicit conditions and convergence rates we
obtain allow us to further discuss counter-intuitive effects akin to the Braess paradox, such
as the possibility to speed up convergence by suppressing communication links. Although
the algorithm requires dual updates, a fully primal algorithm could be obtained by using
Bregman gradients [HBM20] or a primal-dual formulation [KSR20] or maybe more simply,
by using the results from next chapter.

126



Appendix of Chapter 4

4.A. Additional technical lemmas

x

4.A.1. Regularity of F ∗A

For σ-strongly convex and L-smooth functions f1, . . . , fn on Rd and for A ∈ RV×E such
that Ae{v,w} = µ{v,w}(ev − ew) for {v, w} ∈ E , define F ∗A : RE×d → R as:

F ∗A(λ) =
1

n

∑
v∈V

fv((Aλv)) , λ ∈ RE×d .

Lemma 4.A.1. For any {v, w} ∈ E, F ∗A is L{v,w} := 4µ2
{v,w}σ

−1-smooth on E{v,w} the subspace
of coordinates {v, w} ∈ E.

Proof. Let h{v,w} ∈ Rd and λ ∈ RE×d. Using the σ−1-smoothness of f∗v and f∗w:

F ∗A(λ+ e{v,w}h
>
{v,w})− F ∗A(λ) = f∗v ((A(λ+ e{v,w}h{v,w})

>)v)− f∗v ((Aλ)v)

+ f∗w((A(λ+ e{v,w}h
>
{v,w}))w)− f∗w((Aλ)w)

≤ 〈∇{v,w}F ∗A(λ), e{v,w}h
>
{v,w}〉

+
σ−1

2

∥∥∥(Ae{v,w}h
>
{v,w})v

∥∥∥2
+
σ−1

2

∥∥∥(Ae{v,w}h
>
{v,w})w

∥∥∥2
,

concluding the proof, as
∥∥∥(Ae{v,w}h>{v,w})v

∥∥∥2
= 2µ2

{v,w}
∥∥h{v,w}∥∥2.

Lemma 4.A.2. For any {v, w} ∈ E, any λ, λ′ ∈ RE+×d:∥∥∇{v,w}F ∗A(λ)−∇{v,w}F ∗A(λ′)
∥∥ ≤ ∑

{v′,w′}∼{v,w}
M{v,w},{v′,w′}

∥∥λkl − λ′kl∥∥, (4.34)

where M{v,w},{v′,w′} =
√
L{v,w}L{v′,w′} and L{v,w} = 4µ2

{v,w}σ
−1, L{v′,w′} = 4µ2

{v′,w′}σ
−1.

Proof. Since ∇{v,w}F ∗A(λ) = (Ae{v,w})>((∇g∗v((Aλ)v)−∇g∗w((Aλ)w)), we have:∥∥∇{v,w}F ∗A(λ)−∇{v,w}F ∗A(λ′)
∥∥

=
∥∥(Ae{v,w})

>((∇f∗v ((Aλ)v)−∇f∗v ((Aλ′)v)

−∇f∗w((Aλ)w) +∇f∗w((Aλ′)w))
∥∥

≤
∥∥Ae{v,w}∥∥(∥∥∇f∗v ((Aλ)v)−∇f∗v ((Aλ′)v)

∥∥
+
∥∥∇f∗w((Aλ)w)−∇f∗w((Aλ′)w)

∥∥)
≤
√

2|µ{v,w}|
(
σ−1
v

∥∥(Aλ)v − (Aλ′)v
∥∥+ σ−1

w

∥∥(Aλ)w − (Aλ′)w
∥∥)
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=
√

2|µ{v,w}|
(
σ−1
v

∥∥∥∥∥∑
u∼v

µ{u,v}(λ{u,v} − λ′{u,v})
∥∥∥∥∥

+σ−1
w

∥∥∥∥∥∑
u∼w

µ{u,w}(λ{u,w} − λ′{u,w})
∥∥∥∥∥
)

≤
√

2|µ{v,w}|
(
σ−1
v

∑
u∼v
|µ{u,v}|

∥∥∥λ{u,v} − λ′{u,v}∥∥∥)

+σ−1
w

∑
u∼w
|µ{u,w}|

∥∥∥λ{u,w} − λ′{u,w}∥∥∥)

)

≤
√

2|µ{v,w}|
(√

σ−1
v + σ−1

w

√
σ−1
v + σ−1

k

∑
u∼v
|µ{u,v}|

∥∥∥λ{u,v} − λ′{u,v}∥∥∥)

+

√
σ−1
v + σ−1

w

√
σ−1
l + σ−1

w

∑
u∼w
|µ{u,w}|

∥∥∥λ{u,w} − λ′{u,w}∥∥∥)

)
≤

∑
{v′,w′}∼{v,w}

√
L{v,w}L{v′,w′}

∥∥∥λ{v′,w′} − λ′{v′,w′}∥∥∥,
where L{v,w}, L{v′,w′} as in Lemma 4.A.1.

Lemma 4.A.3 (Strong convexity). The strong convexity parameter σA of F ∗A on the orthogonal
of ker(A) is lower bounded by L−1λ2(∆G(µ2

{v,w})), where we recall that λ2(∆G(µ2
{v,w})) is the

graph Laplacian with weights µ2
{v,w}.

Proof. Let λ, λ′ ∈ RE×d. For v ∈ V, by L−1-strong convexity of f∗v :

f∗v ((Aλ)v)− f∗v ((Aλ′)v) ≥ 〈∇f∗v ((Aλ′)v), (A(λ− λ′))v〉

+
1

2L
‖(A(λ− λ′))v‖2.

Summing over all v ∈ V and using ∇F ∗A(λ′) = A>(∇vf∗v ((Aλ′)v))v∈V leads to:

F ∗A(λ)− F ∗A(λ′) ≥ 〈∇F ∗A(λ′), λ− λ′〉+
1

2L
‖A(λ′ − λ‖2

≥〈∇F ∗A(λ′), λ−λ′〉+λ+
min(ATA)

4
‖λ−λ′‖∗2.

where ‖.‖∗ is the euclidean norm on the orthogonal of Ker(A). Finally, notice that AA> =
∆G(µ2

{v,w}) and has same eigenvalues as A>A.

4.A.2. The smallest positive eigenvalue of the augmented graph’s weighted Laplacian matrix

Let G = (V,E) be the “physical” graph, augmented as G+ = (V +, E+), where V + =
V ∪ {vcomp, v ∈ V} and E+ = E ∪ {(ivcomp), v ∈ V} as in Section 4.4.

Lemma 4.A.4. For ν+ = (ν{v,w}){v,w}∈E+ non negative weights, the smallest positive eigen-
value of the Laplacian of the augmented graph G+ with weights ν+ satisfies:

λ2

(
∆G+(ν+)

)
≥ 1

4
min

(
λ2

(
∆G(ν)

)
, min
v∈V

νivcomp

)
,
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where λ2

(
∆G(ν)

)
is the smallest eigenvalue of the original graph, with weights ν = (ν{v,w}){v,w}∈E .

Proof. Let m = minv∈V νivcomp and λ = λ2

(
∆G(ν)

)
. For any X = (x, y) ∈ RV + , we have:

X>∆G+(ν+)X =
∑

{v,w}∈E+

ν{v,w}(Xv −Xw)2

= x>∆G(ν)x+
∑
v∈V

ν{v,vcomp}(xv − yv)2

≥ λ
∥∥x− X̄∥∥2

+m‖x− y‖2 .

Then, for c > 0 sufficiently small such that for any z, z′ ∈ R, λz2 +m(z − z′)2 ≥ cz2 + cz′2,
we have X>∆G+(ν+)X ≥ c

∥∥X − X̄∥∥2 and so λ2

(
∆G+(ν+)

)
≥ c. Let us now compute such

a value c, to conclude this proof.
For z, z′ ∈ R,

λz2 +m(z − z′)2 − cz2 + cz′2

= (λ+m− c)z2 + (m− c)z′2 − 2mzz′

=

(√
λ+m− cz − m√

λ+m− cz′
)

+

(
m− c+

m2

λ+m− c

)
z′ ,

and this quantity is non-negative as long as c ≤ min(λ,m)/4.
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Chapter 5

From Asynchronous SGD to Decentralized
Asynchronous SGD

In previous chapters, we have studied asynchronous computations and communications, in the
centralized setting (Chapter 3) and in the decentralized setting in the continuized framework
(Chapter 4). However, this latter chapter suffers from practicability issues that we rightfully
acknowledged: computations involve gradients of Fenchel conjugates. We attack the practi-
cability issue in this chapter, by introducing algorithms that are as natural as possible, and
analyze the corresponding sequence of iterates.

This chapter is inspired by [KLB+20] that provided a unified analysis of synchronous
decentralized SGD algorithms, under generic communication schemes. We combine the ideas
introduced by [KLB+20] with those of Chapter 3, in order to introduce a generic frame-
work – that we call Asynchronous SGD on graphs – to study asynchronous and decentralized
SGD algorithms. As opposed to the previous chapter, computations only involve local (de-
layed) SGD steps, while communications are first assumed to be non-delayed. However, the
generality of our assumptions then allows us to handle communication delays through the
introduction of loss network communication schemes, that prevent communication updates
from overwriting over each other. The resulting algorithm enjoys an asynchronous speedup
similar to that of Chapter 4, in the form of a graph eigengap with local weights only involving
local delays.

Our general algorithmic framework covers asynchronous versions of many popular algo-
rithms including SGD, Decentralized SGD, Local SGD, FedBuff [NMZ+22], thanks to its
relaxed communication and computation assumptions. We provide rates of convergence un-
der much milder assumptions than previous decentralized asynchronous works, while still
recovering or even improving over the best know results for all the algorithms covered.

5.1. Introduction

We consider solving stochastic optimization problems that are distributed amongst n
agents (indexed by a set V) who can compute stochastic gradients in parallel. This includes
classical federated setups, such as distributed and federated learning. Depending on the
application, agents have access to either same shared data distribution or a different agent-
specific distributions. In recent years, such stochastic optimization problems have continued
to grow rapidly in size, both in terms of the dimension d of the optimization variable—i.e., the
number of model parameters in machine learning—and in terms of the quantity of data—i.e.,
the number of data samples m being used over all agents. With d and m regularly reaching
the hundreds or thousands of billions [Cc22, Tc23], it is increasingly necessary to use parallel
optimization algorithms to handle the large scale.

With communication cost being one of the major bottlenecks of parallel optimization al-
gorithms, there are several directions aimed to improve communication efficiency. Amongst
the others (such as local update steps [Sti18, WPS+20a] and communication compression
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[AGL+17, KSJ19]), decentralization and asynchrony are the two popular techniques for reduc-
ing the communication time. Decentralization [KLB+20, LZZ+17] eliminates the dependency
on the central server—frequently a major bottleneck in distributed learning—while naturally
amplifying privacy guarantees [CEBM22]. Asynchrony [RRWN11, Bau78, TBA86] shortens
the time per computation rounds and allows more updates to be made during the same period
of time. It aims to overcome several possible sources of delays: nodes may have heterogeneous
hardware with different computational throughputs [KMA+19, HLA+21], network latency can
slow the communication of gradients, and nodes may even just drop out [RGPP21]. More-
over, slower “straggler ” compute nodes can arise in many natural parallel settings, including
training ML models using multiple GPUs [CPM+16] or in the cloud; sensitivity to these
stragglers poses a serious problem for synchronous algorithms, that depend on the slowest
agent. In decentralized synchronous optimization where communication times between pairs
of nodes may be heterogeneous, the algorithm can even be further slowed down by straggling
communication links.

Combining both decentralization and asynchrony is a challenging problem, and it is only
recently that this question has received attention [AR21, BRW+23, LHZQ20, LYW+22,
EHM21a, ZY21, NSD+21]. These works are however restricted to a given communication
protocol and static topologies [AR21, LHLL15, BRW+23, EHM21a, NSD+21], no communi-
cation delays [LHLL15, BRW+23, NSD+21], or their analyses rely on an upper-bound on the
maximal computation delay [AR21, LHLL15, BRW+23, LHZQ20, LYW+22, NSD+21, ZY21,
WLMJ23]. In this work we aim to circumvent these shortcomings. We study an asynchronous
version of decentralized SGD in a unified framework that relaxes overly strong communication
assumptions imposed by prior works. Our framework covers time-varying topologies, arbi-
trary computation orders and local update steps. We prove an improved rates of convergence
under such a weaker communication assumptions, covering and improving asynchronous ver-
sions of many common distributed and federated algorithms.

5.1.1. Outline of this chapter

(i) We introduce AGRAF SGD (Asynchronous SGD on graphs), a unified formulation of
an asynchronous version of the synchronous Decentralized SGD as formulated by [KLB+20].
One of the strengths of AGRAF SGD is that it formally takes the form of a simple sequence
(Equation (5.3)), allowing for an effective theoretical analysis, while covering asynchronous
versions of many distributed algorithms such as Asynchronous SGD, Decentralized SGD,
FedAvg or FedBuff.

(ii) We analyze the AGRAF SGD sequence under various combinations of convexity,
non-convexity, smoothness and Lispchitzness assumptions. We use a relaxed communication
assumption that only imposes that the different topologies mix in a given window of time,
while our computation assumption depends on whether the local functions are homogeneous
or heterogeneous. In special cases, our rates recover best known rates of Minibatch SGD,
Asynchronous SGD or Decentralized SGD, while for Asynchronous Decentralized SGD, our
rates improve the previous works by up to factors of order n2, under relaxed assumptions (as
summarized in Table 5.1).

(iii) Finally, we show that AGRAF SGD allows to efficiently handle communication delays
in decentralized optimization, by introducing Decentralized SGD on Loss Networks. We show
that the assumptions required in our analysis are satisfied by this algorithm, giving explicit
rates of convergence that depend on the underlying graph topology, pairwise communication
delays, and each device computation time.

Related works specific to this chapter. Closely related to our analysis techniques, [MPP+17]
proposed and utilized the analysis tool of virtual iterates for Asynchronous SGD under
bounded delays, extended by [KSJ22, MBEW22] who proved that Asynchronous SGD per-
forms well under arbitrary delays. We adapt this proof approach to decentralized optimiza-
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tion in order to obtain some robustness towards large delays and introduce a different virtual
sequence for the averaged model over all the nodes.

The closest asynchronous and decentralized works to ours [LHLL15, BRW+23] proposed
asynchronous versions of decentralized SGD where at each iteration, one node vk is sampled
independently from the past (with fixed probabilities), and this node performs a local stochas-
tic gradient step and an averaging operation with its neighbors. We extend their sequence
and results to a more general (due to relaxed communication and computation assumptions)
asynchronous version of decentralized SGD, that keeps the “unified” point of view of the work
of [KLB+20].

[NBO23] considers the continuized framework of Chapter 2 for communication acceler-
ation on time-varying topologies with local stochastic gradient steps: while their work is
communication efficient, they do not consider computation or communication delays.

5.2. AGRAF Algorithmic Framework

In this section we present AGRAF SGD—our algorithmic framework for asynchronous
decentralized SGD—and give examples of existing popular algorithms that it can cover.

5.2.1. Asychronous SGD on graphs

We consider a connected undirected graph G = (V, E)1 on a set of nodes V = {1, . . . , n}.
Let the function fv : Rd → R of agent v ∈ V be defined as

fv(x) := E [Fv(x, ξv)] ξv ∼ Dv , x ∈ Rd , (5.1)

where Dv is some local distribution. Let the global objective function f : Rd → R be defined
as follows, and consider the optimization problem

min
x∈Rd

{
f(x) :=

∑
v∈V

qvfv(x)

}
, (5.2)

for some non-negative weights (qv) that sum to 1. We classically assume that node v in
the graph has access to unbiased stochastic gradients of fv (of the form Fv(x, ξv)). The
standard goal of decentralized optimization is to minimize f using only local computations
and communications (only neighboring nodes in the graph can communicate).

Notations. Standard small letters (x, g, y, z, etc) are for vectors in Rd. Capital letters
(mostly W ) are for matrices in RV×V . Bold letters x,g, . . . are for concatenated vectors
in RV×d, that we write as x = (xv)v∈V . For some vector x ∈ Rd, we denote x ∈ RV×d the
concatenated vector such that xv = x for all v ∈ V. 1 ∈ RV is the vector with all entries
equal to 1. For x ∈ RV×d, we denote x̄ = 1

n11
>x, where n = |V|.

In this chapter we study a general scheme for asychronous SGD on graphs (AGRAF)
which is summarized in Algorithm 5.1: workers asynchronously perform local SGD steps
(lines 3-4), while an underlying linear communication algorithm is running without incurring
communication delays (line 7). A linear communication algorithm on graph G implies that
any communication update can be formulated as x+ = Wx− where x+,x− ∈ RV×d are
respectively the global state after and before the communication update, and W ∈ RV×V is
a communication matrix with Wv,w being zero for disconnected nodes v, w, i.e. Wv,w 6= 0 iff
{v, w} ∈ E .

Since every agent asynchronously works at their own speed and communicates in a de-
centralized way, there is no global state. Keeping track of a global ordering of the iterates
involving both computation and communication updates is thus a challenge. In the next

1Since we consider varying topologies, this graph should be thought as the union of graphs considered over
time.
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Algorithm 5.1: Asynchronous SGD on graph G (AGRAF SGD)
1: Input: x̄0 ∈ Rd, xv = x̄0 for v ∈ V initialized local variables, stepsize γ > 0
2: for v ∈ V, do
3: Upon finishing computation of a stochastic gradient ∇F (x̃v, ξ̃v) at some previous

local current state x̃v,
xv ←− xv − γ∇Fv(x̃v, ξ̃v) .

4: Compute ∇Fv(xv, ξv) for ξv ∼ Dv independently from the past, at current state xv.
5: end for
6: while procedure still running do
7: Run any linear communication algorithm on graph G incurring no communication

delay.
8: end while

subsection we address this challenge and propose a way to effectively cast Algorithm 5.1
into equations with ordered updates. This reformulation is a key novelty. It allows for an
improved theoretical analysis with better rates together with relaxed communication and
computations assumptions, allowing AGRAF SGD to cover asynchronous versions of many
popular distributed and federated algorithms.

5.2.2. The sequence studied

We denote by T0 = 0 the initialization time of the algorithm and by {0 < T1 < T2 < . . .}
the times at which the local computation updates are made. Note that these are physical
(continuous) times, and that several agents may possibly finish their local computations at
the same time Tk. We also assume that computational updates are atomic. For some time T ,
we denote as T− the left limit (limt→T,t<T ) and T+ the right limit (limt→T,t>T ). For time
t ∈ R+ (physical time), let xv(t) ∈ Rd denote the state of the local variable at time t, and let
x(t) = (xv(t))v∈V . For k ≥ 0 and v ∈ V, let xkv denote the state of the local variable at node
v at time Tk+ i.e., xkv = xv(Tk+) = limt→Tk,t>Tk xv(t) and let xk = (xkv)v∈V .

Communication updates. For k ≥ 0, none to plenty of communication updates may have
happened between the computational update times Tk and Tk+1. We encode these communi-
cation updates by a single matrix Wk: Wk is thus the product of all communication matrices
corresponding to communication updates between times Tk and Tk+1. Hence, we can write:

x(Tk+1−) = Wkx(Tk+) .

If no communication happened between two gradients computed, we have Wk = Id. If
there are r communications between times Tk+ and Tk+1− that happened at times Tk <
Tk,1 < . . . < Tk,r < Tk+1, denoting by Wk,r the communication matrix corresponding to
communication updates at time Tk,r, we have Wk = Wk,r · . . . ·Wk,2 ·Wk,1. Note that for
r = 0 this product is taken equal to Id.

Computation updates. For k ≥ 1, let Ik ⊂ V be the set of nodes that finish computing
stochastic gradients ∇Fv(x̃kv , ξ̃kv ) for v ∈ Ik at time Tk−. The computation updates, that are
assumed to be atomic, then read:

xv(Tk+) = xv(Tk−)− γ∇F (x̃kv , ξ̃
k
v ) , v ∈ Ik ,
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where x̃kv = x
k−1−τ(k,v)
v and ξ̃kvk = ξ

k−1−τ(k,v)
vk , for τ(k, v) ≥ 0 the delay of this update that

corresponds to the number of computation updates performed by other nodes during the
computation of the local stochastic gradient.

The sequence studied. Combining communication and computation updates, the sequence
generated by Algorithm 5.1 follows the following recursion:

xk+1 = Wkx
k − γgk , (5.3)

where gkw = 0 for v /∈ Ik, and gkv = ∇Fv(xk−τ(k,v)
v , ξ

k−τ(k,v)
v ).

What is important to keep in mind is that the iterates xk+1 are taken at the time just
after computation updates (time Tk+) so that k denotes the number of computation updates.
Ik is the set of nodes that perform computation updates at iteration k, it can be any subset of
V, and∑k<K |Ik| denotes the total number of stochastic gradients computed up to iteration
K by all the agents. The matrix Wk encodes all communications that happened between the
k-th and (k + 1)-th computation updates (there can be any number such communications,
the more there are the more (Wk) will mix).

5.2.3. AGRAF SGD is the right formulation of Asynchronous Decentralized SGD

Recall that the Decentralized SGD algorithm [KSJ22, e.g.] consists in iterations of the
form:

xk+1
v =

∑
w∼v

W
(k)
{v,w}x

k
w − γ∇Fv(xkv , ξkv ) , ∀v ∈ V , (5.4)

for communication matrices (W (k))k satisfying Assumption 5.3.2. The question thus arises:
how can Decentralized SGD be turned into an asynchronous algorithm? Previous works
[LHLL15, BRW+23] proposed and analyzed schemes that take the following form: at each
iteration, one node vk is sampled independently from the past (with fixed or lower bounded
probability), and this node performs a local stochastic gradient step together with an av-
eraging operation with its neighbors in the graph. This results in updates of the form of
AGRAF SGD, for Ik = {vk} and Wk a matrix that depends on vk and that mixes (in mean)
independently from the past (E [Wk|W0, . . . ,Wk−1] mixes well).

Leaving the analyses aside, this prior approach is too restrictive: (i) communication as-
sumptions do not allow varying topologies that may mix but only in the long run, which
may particularly be the case for asynchronous algorithms, and (ii) computation assumptions
do not allow for more than one worker to update their value at the same time; having a
sampling assumption restricts the type of delays that the algorithm can handle; and nodes
that compute should not necessarily be correlated to communicating edges since this forbids
the use of several local SGD steps.

AGRAF SGD thus appears as a natural way to make Decentralized SGD asynchronous:
nodes are not forced to all perform computations at the same time as in eq. (5.4), and having
the relaxed communication assumption (Assumption 5.3.2) allows any communication order,
especially when one considers Wk as a concatenation of all communications that may happen
between two consecutive computations.

5.2.4. Some examples covered by AGRAF

We now give a few examples of algorithms (i.e. communication and computation sched-
ules) that can be cast as AGRAF SGD. The three first are degenerate cases.

Minibatch SGD and Asynchronous SGD are obtained by setting Wk = 1
n11

>, and Ik = V
and Ik = {vk} for some node vk respectively.
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Decentralized (local) SGD. Set Ik = V and (Wk)k a sequence of gossip matrices to obtain
Decentralized SGD [RNV10]. Note that in that case there are no computation delays, since
this algorithm is inherently synchronous and all nodes perform updates at the same time. As
done in [KLB+20], periodic communications are possible, allowing to recover algorithms with
several local gradient steps between each communication round, such as Local (Decentralized)
SGD [Sti18] or FedAvg [MMR+17].

Asynchronous Decentralized SGD. As explained in Section 5.2.3, AGRAF SGD covers
Asynchronous Decentralized SGD beyond particular instances previously studied [LHLL15,
BRW+23]. Furthermore, since we make relaxed communication/computation assumptions,
we cover more general decentralized algorithms that allow local gradient steps between com-
munications, varying topologies, and arbitrary computations. As such, together with covering
an asynchronous version of Decentralized SGD (5.4), we also cover asynchronous versions of
FedAvg orLocal SGD, together with FedBuff [NMZ+22].

Asynchronous SGD on Loss Networks. If communication latencies are not negligible com-
pared to computational ones, designing an algorithm that is asynchronous and decentralized
becomes much more challenging, as the naive implementation might lead to deadlocks. In or-
der to handle non-negligible communication delays, we use loss networks [Kel91b] to enforce
that the edges adjacent to “busy” nodes are prohibited to be used for communicating2. This
enables us to design communication/computation schemes that fit in the AGRAF frame-
work, while not violating the physical delay constrains. We introduce these Loss Networks in
Section 5.5.2: we define them more thoroughly, and provide their ergodic mixing properties
with explicit constants that depend on the graph topology and local communication and
computation delays.

5.3. Assumptions and Notations

We consider solving the problem (5.2) under several standard [Bub15, see, e.g.,] combina-
tions of conditions on the objective F . We denote the minimum of f as f∗ = minx∈Rd f(x), an
upper bound on the initial suboptimality ∆ ≥ f(x̄0)− f∗, and an upper bound on the initial
distance to the minimizer D ≥ min {‖x0 − x∗‖ : x∗ ∈ arg minx f(x)} that we assume to exist.
‖·‖ denotes the Euclidean norm. When Fv and fv are convex, we do not necessarily assume
they are differentiable, but we abuse notation and use ∇fv(x) and ∇Fv(x; ξ) to denote an
arbitrary subgradient at x. The loss Fv is B-Lipschitz-continuous if for each x, y and ξ, we
have |Fv(x; ξ)−Fv(y; ξ)| ≤ B‖x− y‖. The objective fv is L-smooth if it is differentiable and
its gradient is L-Lipschitz-continuous. We assume the stochastic gradients have σ2-bounded
variance3.

Assumption 5.3.1 (Noise). There exists σ2 such that for all x and v ∈ V, we have E [∇xFv(x, ξv)] =

∇fv(x) and E
[
‖∇fv(x)−∇xFv(x, ξv)‖2

]
≤ σ2, where ξv ∼ Dv.

5.3.1. Graph, communications and mixing.

We now formulate the communication assumptions we will make. For k ≥ 0, as opposed
to some previous Asynchronous Decentralized SGD analyses [LHLL15, BRW+23], we do not
want to assume thatWk mixes well in mean (i.e., that the spectral gap of E [Wk|W0, . . . ,Wk−1]
is non-null or some other related assumption), since Wk may possibly be the identity matrix.

2Loss Networks were initially introduced by F. Kelly to model telecommunication networks, where the
same mobile phone cannot initiate another phone call while being busy with another call. In our case, phone
calls should be thought as communicating with a neighbor.

3which can easily be generalized to E
[
‖∇fv(x)−∇xFv(x, ξv)‖2

]
≤ σ2 + δ2‖∇fv(x)‖2.
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We use the least restrictive assumption under which convergence of (synchronous) decen-
tralized SGD is established [KLB+20], by assuming that if we wait enough communication
updates, a consensus will ultimately be achieved.

Assumption 5.3.2 (Ergodic mixing). Wk ∈ [0, 1]V×V is symmetric, Wk1 = 1, and there exist
ρ, kρ > 0 such that we have ∀k ∈ N and ∀x ∈ RV :

E
[∥∥∥W (k:k+kρ)x− x̄

∥∥∥2
|Fk
]
≤(1− ρ)2‖x− x̄‖2, (5.5)

where for k, ` ≥ 0, W (k,`) = W`−1 . . .Wk+1Wk, and Fk = σ(xs,gs−1,Ws−1, s ≤ k) is the
filtration up to step k.

This assumption makes it possible to consider any “reasonable” communication scheme.
In the rest of the chapter, when assuming that Assumption 5.3.2 holds for some constants
(ρ, kρ), we write ρ̄ = e−1

e
ρ
kρ

(with e = exp(1)), and this quantity is used in our main results.

5.3.2. Heterogeneous and homogeneous settings, sampling assumptions.

Assuming that the sequence of nodes (Ik)k≥0 that iteratively perform local updates is
arbitrary makes it possible to encompass all possible computation orderings and cover arbi-
trary delays. It is much more general than assuming that Ik = V for all k (decentralized
SGD) or Ik = {vk} for vk sampled independently from the past, as assumed in most previous
asynchronous decentralized works [LHLL15, BRW+23]. However, if functions fv are not all
equal and if the sequence vk is arbitrary, convergence to the global function f cannot be
assured (some of the nodes v might simply never appear during training). We therefore need
to make some sampling assumption if we assume that local functions can be heterogeneous.
We will thus assume either one the two following assuptions: (i) the heterogeneous setting
where local functions fv can be different, but where we make some node-sampling assumption
for computations, and (ii) the homogeneous setting, where computations can be arbitrary,
but functions fv are all the same. Note that it is classical in asynchronous optimization to ei-
ther assume (i) or (ii); for instance, Asynchronous SGD with arbitrary orderings is proved to
converge only under such assumptions [MBEW22, KSJ22]. However, Asynchronous Decen-
tralized works only assume that the sampling assumption (i) holds. Formally, we summarize
these into the following two assumptions.

Assumption 5.3.3 (Heterogeneous setting). There exists ζ2 such that the population variance
satisfies: ∑

v∈V
qv‖∇fv(x)−∇f(x)‖2 ≤ ζ2 , ∀x ∈ Rd . (5.6)

There exists p = (pv)v∈V ∈ [0, 1]V such that the sequence (1v∈Ik)k≥0 is i.i.d. distributed,
with P (v ∈ Ik) = pv for all k ≥ 0, v ∈ V. We denote κp = pmax

p̄ , pmax = maxv pv and
p̄ = 1/n

∑
v∈V pv Furthermore, we assume that p is proportional to q: p = βq, and since∑

v qv = 1, we thus have β = np̄.

Assumption 5.3.4 (Homogeneous setting). All functions fv satisfy fv ≡ f . No assumption on
(Ik)k≥0.

5.4. General Convergence Analysis

We now turn to our main results: convergence guarantees for AGRAF SGD, under a
variety of regularity assumptions and settings. Note that in almost all cases, our rates do not
depend on any upper bound on the maximal delays, which is a key feature of our analysis.
This is also the case for asynchronous SGD [KSJ22, MBEW22] or a recent asynchronous
decentralized SGD work [BRW+23]. In this section, while presenting the results, we will only
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compare our results to degenerate baselines such as minibatch SGD, asynchronous SGD or
decentralized SGD, in order to give simple arguments to show that our rates have expected
order of magnitudes, leaving more complex comparisons and applications to be developed
in Section 5.5. We first start with convex-Lipschitz losses. In this section, all the rates are
obtained for a constant stepsize γ, explicited in the proofs in the Appendix.

Theorem 5.1 (Lipschitz-convex rate). Assume that f is convex and that for almost all (i.e.,
with probability 1) ξ ∼ Dv Fv(·, ξ) is B-Lipschitz for some B > 0, let D2 ≥ ‖x0 − x?‖2, and
FK = E

[
f
(

1∑
k<K |Ik|

∑K−1
k=0

∑
v∈Ik x

k
v

)
− f(x?)

]
.

1. In the homogeneous setting (Assumption 5.3.4),

FK = O
(√

B2D2nρ̄−1∑
k<K |Ik|

)
.

2. In the heterogeneous setting (Assumption 5.3.3),

FK = O
(√

B2D2∑
k<K |Ik|

× n√pmax(
√
κp + ρ̄−1)

)
.

We thus recover the well-known rate of minibatch SGD for convex-Lipschitz losses, for
ρ̄ = Θ(1) and |Ik| = n, leading to the optimal rate O(

√
B2D2/K) [NY83]. Asynchronous

SGD has also been studied under such assumptions, with the rate O(
√
B2D2n/K) that we

recover here (ρ̄ = 1 and |Ik| = 1) [MBEW22], that is minmax optimal [WWS+18]. No rates
under the given assumptions existed for Decentralized (local) SGD, that thus exhibits a rate
of O(

√
B2D2ρ̄−1/K). Finally, adding the sampling assumption not only enables to handle

heterogeneous functions, but also leads to improved rates: for well balanced weights (pv ≈ p̄
and κp ≈ 1) we have n

√
p̄ρ̄−1 instead of nρ̄−1, which can improve the rate by a factor 1/

√
n if

O(1) agents compute at the same time, which is usually the case in the asynchronous setting.
This phenomenon (better rates under the sampling assumption) appears in all our other rates
below.

Theorem 5.2 (Lipschitz-smooth-convex rate). Assume that f is convex, for almost all ξ ∼ D,
F (·, ξ) is B-Lipschitz for some B > 0, fv is L-smooth, Assumption 5.3.1 holds, and let
D2 ≥ ‖x0 − x?‖2. In the homogeneous setting,

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)


= O

(
Lρ̄−1nD2∑
k<K |Ik|

√
σ2B2∑
k<K |Ik|

+

(
D2n

√
L (B2 + ρ̄−1σ2)∑
k<K |Ik|

) 2
3


For Lipschitz-smooth functions, setting ρ̄−1 = 1 and |Ik| = 1, we recover the exact same

rates as Asynchronous SGD under arbitrary delays, recently derived by [MBEW22, KSJ22],
and that do not depend on any upper bound on the delays. These rates are thus extended
to the more general AGRAF SGD algorithm.

Theorem 5.3 (Smooth-convex). Assume that f is convex, all fv are L-smooth, and let D2 ≥
‖x0 − x?‖2.
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1. In the homogeneous setting,

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)


= O

(
LD2(nρ̄−1 +

√
nτmax)∑

k<K |Ik|
+

√
Dσ2∑
k<K |Ik|

+

[
D2
√
Lσ2n2ρ̄−1∑
k<K |Ik|

]2/3
 ,

where τmax ≥ supk<K,v∈V
∑τ(k−1,v)

`=k |I`| is an upper bound on the maximal compute delay.

2. In the heterogeneous setting,

E

[
f

(
1

K

∑
k<K

x̄k

)
− f(x?)

]

= O

LD2√κp
(

1
p̄ + (ρ̄

√
p̄)−1

)
K

+

√
D2(σ2 + ζ2)

np̄K

+

[
D2
√
Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

 .

Removing the Lipschitz assumption, we are still able to recover and extend the rates
of Asynchronous SGD with constant stepsizes. Note that under no sampling assumption,
this rate depends on

√
nτmax instead of n as in the previous two theorems; however, this

dependency is still better than depending on τmax since we always have τmax ≥ n. We
expect to be able to remove this dependency by the use of varying stepsizes as was done for
Asynchronous SGD (where stepsizes scale as 1/(Lτ(k)), inversely proportional to the actual
delay). However, such stepsizes cannot be used in a fully decentralized setting, since a given
node cannot be aware of the iteration counter k and thus of the delay τ(k). Note also that in
the sampling case, we have E

[∑
k<K |Ik|

]
= np̄K, so that the statistical rate is still reached.

These comments also applies to the non-convex and smooth setting below, for which we fall
back to showing that the algorithm will find an approximate first-order stationary point of
the objective. We recover, as in the convex-smooth case just above, the exact same rates as
[KLB+20] for Decentralized (local) SGD.

Theorem 5.4 (Non-convex and smooth rates). Assume that the functions fv are L-smooth.

1. In the homogeneous setting,

E

[
1∑

k<K |Ik|
∑
k<K

|Ik|
∥∥∥∇f(x̄k)

∥∥∥2
]

= O
(
LF0(

√
nτmax+nρ̄−1)

K
+

(
Lσ2F0

K

) 1
2

+

(
LσnF0

K
√
ρ̄

) 2
3

)
.
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Table 5.1 – We compare the number of iterations required to reach the statistical regime O(σ2/
∑
k<K |Ik|) (if

it is reached) of previous Asynchronous Decentralized SGD works [LHLL15, BRW+23] with our rates. Strong
communication assumption : Assumption 5.3.2 with kρ = 1 and Wk independent from the past; Sampling
assumption : Ik = {vk} with vk i.i.d. sampled or P(v ∈ Ik) = pv i.i.d. sampled. (a) [BRW+23] reaches
O(ρ̄−2

√
σ2/K) instead, after O(n2ρ̄−4) iterations.

Reference
Communication

Assumption
Computation
Assumption

Regularity
# iterations before
statistical regime

[LHLL15] Strong Sampling Smoothness O(max(n4ρ̄−4, τ4
max))

[BRW+23] Strong Sampling Smoothness N.A.(a)

Theorem 5.2.1 (convex) Assumption 5.3.2 Arbitrary Smooth-Lipschitz, Homogeneous O(n4ρ̄−2)

Theorem 5.4.1 Assumption 5.3.2 Arbitrary Smooth, Homogeneous O(max(n4ρ̄−2, nτmax))

Theorem 5.4.2 Assumption 5.3.2 Sampling Smoothness O(n2ρ̄−4)

2. In the heterogeneous setting,

E

[
1

K

∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2
]

= O
(
LF0
√
κp(1

p̄ + (ρ̄
√
p̄)−1)

K
+

(
L(σ2 + ζ2)F0

K

) 1
2

+

(
LnF0

√
σ2pmaxρ̄−1 + ζ2pmaxρ̄−2

K

) 2
3

 .

Remark 5.4.1 (Heterogeneous without sampling). So far, the heterogeneous setting was only
considered under a sampling assumption. In fact, generalizing [MBEW22, Theorem 4] to
AGRAF SGD, under both heterogeneous functions with population variance ζ2 (as in eq. (5.6))
and arbitrary ordering of the updates, the exact same rate as Theorem 5.4.1 up to an addi-
tional term O(ζ2) could be obtained.

5.5. Applications

5.5.1. Better rates for Asynchronous Decentralized SGD

A first direct application of our theory is a better analysis of Asynchronous Decentralized
SGD. Comparing our analysis with those of [LHLL15, BRW+23], we highlight that our work
handles arbitrary computation orders and delays in the homogeneous settings, as opposed to
[LHLL15, BRW+23] that are only valid for kρ = 1 in Assumption 5.3.2 (which means that at
any step k, conditionally on the current state, the graph of edges that can be sampled must
be connected) and under a sampling assumption. In both homogeneous and heterogeneous
cases, our communication assumptions are much less restrictive. Furthermore, under simi-
lar computation and regularity assumptions as [LHLL15, BRW+23] (sampling and smooth
losses, see last line of Table 5.1), our convergence bound (Theorem 5.3.2) reaches a statistical
rate

√
σ2/

∑
k<K |Ik| after

∑
k<K |Ik| = O(n2ρ̄−4), while [BRW+23] does not reach such a

statistical rate and [LHLL15] reaches this rate after K = O(max(n4ρ̄−4, τ4
max)) iterations.

For the sake of comparison, we take p̄ of order 1 in our rates.

5.5.2. Asynchronous Decentralized SGD on Loss Networks

The previous considerations and the AGRAF SGD rates hold as long as there is no
communication delay. The following question then arises: given a communication graph
G = (V, E) with communication delays τ{v,w} and computation delays τv for v ∈ V and
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{v, w} ∈ E , can we reverse-engineer and build communication/computation schemes that fit
in the AGRAF SGD framework and that do not break the communication and computation
constraints? Can we analyze such a scheme and prove that it mixes well (in the sense that
Assumption 5.3.2 holds, for explicit values of ρ, kρ) ?

Overview of the Loss Network scheme. Starting with Ik = {vk, wk} ∈ E , and commu-
nication matrices Wk corresponding to an averaging along the edge {vk, wk} as a baseline
(i.e., Wk = IV − (evk−ewk )(evk−ewk )>

2 where (ev) is the canonical basis of RV) as a baseline,
choosing a sequence Ik such that there is no induced communication delays becomes tricky.
While assuming that {vk, wk} is sampled independently from the past with fixed probabil-
ity [LHLL15] is amenable for the analysis (since then Assumption 5.3.2 directly holds for
kρ = 1), this can incur communication delays if for instance the same node is sampled in two
consecutive updates.

To alleviate this issue, we remove the independence between sampled edges in the following
way: we impose that nodes that are already involved in a communication are tagged as busy,
and that busy nodes cannot be involved in new communications. Then once a node finishes
a computation, it can then choose a new neighbor (who is not busy) to start communicating
with. Doing so, the induced communication matrices are no longer independent, as they follow
a Markov process. This scheme is inspired by Loss-Networks, introduced in [Kel91b] to model
telecommunication networks, in which an edge in the graph models a phone communication
that can happen; since a phone cannot make several calls in parallel, once involved in a
communication with some neighboring node it cannot be called by another neighbor while
it is busy; this is exactly the same process we use, phone calls being replaced by model
communications.

[BGPS06] consider a model (without any delay) for gossip algorithms, where updates
are that of Equation (5.15) without the gradient steps, and these updates happen at the
times of Poisson point processes (a P.p.p. of intensity p{v,w} for an update along {v, w}).
Consequently, Wk is independent from the past, and P

(
Wk = W{v,w}

)
∝ p{v,w}.

The P.p.p. model considered in [BGPS06] where the updates are performed at the times
of Poisson point processes is particularly amenable to analysis, but it assumes that commu-
nications and computations are done instantaneously. Thus, actual implementations differ
from its underlying assumptions, unless further synchrony is assumed. To alleviate this issue,
with pairwise communications ruled by point processes as a baseline, we consider a protocol
in which nodes are tagged as busy when they are already engaged in an update, and com-
munications between busy nodes are forbidden. Our model is inspired from classical Loss
Network models [Kel91b], in which edges are activated following the same procedure as in
the P.p.p. model, with a P.p.p. of intensity p{v,w}. Note that we do not consider these in-
tensities to be constraints of the problem, but rather parameters of the algorithm, that can
be tuned. Each node has an exponential clock of intensity pv = 1

2 =
∑

w∼v p{v,w}. At each
clock-ticking, if v is not busy, it selects a neighbor w with probability p{v,w}/

∑
u∼v p{u,v}.

If w is not busy, v and w compute and exchange information, becoming busy for a duration
τ ′{v,w}. We can think of this procedure as classical gossip on an underlying random graph
that follows a Markov-Chain process. The difference between our communication model on
Loss Networks and the P.p.p. model lies in that in our case, Wk is not independent on the
past. In fact, we have:

P ({vk, wk} = {v, w}|Fk) =
1{v,w not busy at time Tk}p{v,w}∑

{u,u′}∈E 1{u,u′ not busy at time Tk}p{u,u′}
,

leading to complicated intricacies between the matrices (Wk)k, that we need to handle.
Proving Theorem 5.5 requires to show that there exist ρ, kρ (that need to be computed)
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such that for any k ≥ 0, x ∈ RV ,

E
[∥∥∥W{vk+kρ−1,wk+kρ−1} · . . . ·W{vk,wk}(x− x̄)

∥∥∥2
|Fk
]
≤ (1− ρ)2‖x− x̄‖2 .

How to schedule such a process ? If nodes start a new communication right after they finish
their last one, the process can end up in deadlock and thus does not mix at all: this is for
instance the case on the cycle or line graphs with an even number of nodes [Kel91b]. We thus
need to introduce some randomness and some waiting times. We proceed as follows and use
exponential random waiting times as in [Kel91b].

(i) Once a node v finishes a communication, it waits a time Tv ∼ Exp(pv) (exponential
random variable, of intensity pv).

(ii) If v is still not busy after this waiting time, v samples some neighboring node w ∼ v
with probability p{v,w}

pv
to communicate with, for

∑
w∼v p{v,w} = pv.

(iii) If w is busy, this procedure restarts at (i), else both v and w become busy and
can communicate. Once they are busy, they cannot communicate with other nodes. The
communication between v and w consists in averaging local values by setting xv, xw to (xv +
xw)/2. When this is done, they each perform a local (eventually delayed) gradient step, and
then become non-busy. Overall, the kth update reads:

xk+1
vk

=
xkvk + xkwk

2
− γ∇Fvk

(
xk−τ(vk,k)
vk

, ξk−τ(vk,k)
vk

)
, (5.7)

and similarly at node wk. The procedure described just above ((i)-(ii)-(iii)) to sample pairs of
nodes that iteratively perform computations and pairwise communications can be instantiated
locally, provided nodes know when their neighbors in the graph are busy — this can be
relaxed by adding some “busy-checking” operation. However, the key challenge here lies in
that the communication matrices (Wk)k≥0 induced by the updates Equation (5.7) are not
independent, and analyzing some form of ergodic mixing time becomes highly non-trivial.
Still, using the randomness introduced in this procedure through the exponential waiting
times and the sampling of neighbors, we are able to prove that Assumption 5.3.2 holds, for
values of ρ, kρ that depend on the physical delays.

Assumption 5.5.1 (Loss Network assumptions). There exist τv, τ{v,w} ∈ R>0
4 for v ∈ V, {v, w} ∈

E > 0 such that a communication between v and w takes a time at most τ{v,w}, and computing
a stochastic gradient at node v takes a time at most τv.

The updates of decentralized SGD on loss networks write as:
xk+1
vk

=
xkvk + xkwk

2
− γ∇Fvk

(
xk−τ(vk,k)
vk

, ξk−τ(vk,k)
vk

)
xk+1
wk

=
xkvk + xkwk

2
− γ∇Fwk

(
xk−τ(wk,k)
wk

, ξk−τ(wk,k)
wk

) , (5.8)

leading to xk+1 = Wkx
k − γgk, for Wk = W{vk,wk} = IV − (evk−ew−k)(evk−ew−k)>

2 , and gk the
corresponding delayed gradients. Note then that this takes the same form as the AGRAF
SGD sequence.

Theorem 5.5. Under Assumption 5.5.1, assume that

p{v,w} = min

(
1

maxu∼v τ ′{u,w}
,

1

2(max(dv, dw)− 1)τ ′{v,w}

)
,

4τv, τ{v,w} are physical continuous-time delays.
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where dv is the degree of node v and τ ′{v,w} = τ{v,w} + max(τv, τw). Let Λ be the spectral gap
(smallest non-null eigenvalue of the weighted Laplacian) of the graph G with weights

λ{v,w} =
minu∼{v,w} p{v,w}

d
∑

e∈E pe
, {v, w} ∈ E ,

where d is the max degree in the graph. Then, Assumption 5.3.2 is verified for ρ
kρ

= Õ(Λ).

Given a graph G with physical communication and computation latencies
{
τv, τ{v,w}

}
(Assumption 5.5.1), we are thus able to exhibit a communication scheme that satisfies com-
munication and computation constraints, while still fitting in the framework of AGRAF SGD
under the assumptions used in our convergence rates. Crucially, the mixing constant Λ ex-
plicitly depends on the graph and the delays, through the smallest non-null eigenvalue of the
weighted graph Laplacian, with explicit weights λ{v,w} on the edges. These weights depend
on local delays: having straggler nodes or edges do not slow down communication or compu-
tations, if there are fast edges/nodes that are dense enough in the graph. To further highlight
the importance of having weights λ{v,w} that only depend on the local delays, this can be put
in perspective of Asynchronous SGD, that is proved to depend only on the averaged com-
putation delay 1

n

∑
v∈V

1
τv

rather than the max delay [KSJ22, MIMA18]. For decentralized
optimization over a given graph, depending on the averaged communication delays wouldn’t
make sense since all communication paths need to be taken into account; hence, the coun-
terpart to the mean delay in the graph is a weighted Laplacian, with weights on edge {v, w}
that are function of local delays, instead of a max delay which is the asynchronous speedup
[EHM21a].

Our proof of Theorem 5.5 follows three main steps: i) Deriving convergence results for
more general communication schemes than loss networks, under deterministic assumptions
on the activations. ii) Adapting Step i) to stochastic assumptions on the delays. iii) Deriving
high-probability upper-bounds on the delays between two activations in loss networks in order
to fall under the assumptions of Step i).

Conclusion

We introduced a unifying framework for studying asynchronous and decentralized algo-
rithms; our analysis recovers and improves over that of previous asynchronous decentralized
SGD works, while being much more general. The flexibility of our framework furthermore en-
ables us to leverage an asynchronous speedup under communication and computation delays,
by the introduction of Loss Networks and new analysis tools, thus providing a non-trivial
sampling scheme that still satisfies the ergodic mixing property introduced by [KLB+20].

143



5.5. Applications

144



Appendix of Chapter 5

5.A. Equivalence of two ergodic mixing assumptions

The following assumption is a consequence of Assumption 5.3.2: if Assumption 5.3.2 holds
for some τ, ρ, then Assumption 5.A.1 holds for ρ̄ = c ρτ where c is some numerical constant.
In fact, as we prove in Proposition 5.A.1, they are both equivalent, but the following proves
to be easier to handle in the analysis.

Assumption 5.A.1. Wk1 = 1 and there exist ρ̄ such that we have ∀k, ` ∈ N and ∀x ∈ RV :

E

[∥∥∥∥W (k:k+`)x− 1

n
11>x

∥∥∥∥2

|Fk
]

≤ 2(1− ρ̄)2`

∥∥∥∥x− 1

n
11>x

∥∥∥∥2

.

(5.9)

Proposition 5.A.1. Assumptions 5.3.2 and 5.A.1 are equivalent, in the following sense.

1. If Assumption 5.3.2 holds for some ρ ∈ [0, 1] and for some kρ ∈ N∗, then Assump-
tions 5.A.1 holds for ρ̄ = c ρkρ , for c > 0 some numerical constant.

2. If Assumption 5.A.1 holds for some ρ̄ ∈ [0, 1], then Assumption 5.3.2 holds for any

ρ ∈ (0, 1) and kρ =
⌈ 1

2
ln(2) ln(1−ρ)

ln(1−ρ̄)

⌉
(∝ ρ

ρ̄ for ρ, ρ̄ small).

Proof. We first prove 1. Assume that Assumption 5.3.2 holds for some ρ, kρ. If Assump-
tion 5.3.2 holds for ρ it holds for any ρ′ < ρ, so that we can assume without loss of generality
that ρ ≤ 1−

√
2. Let k, ` ∈ N and x ∈ RV . Using Assumption 5.3.2 b `kρ c, we have that:

E

[∥∥∥∥W (k:k+`)x− 1

n
11>x

∥∥∥∥2

|W0, . . . ,Wk

]
≤ (1− ρ)2b`/kρc

∥∥∥∥x− 1

n
11>x

∥∥∥∥2

.

Thus, (1−ρ)2b`/kρc ≤ (1−ρ)2(`/kρ−1) ≤ 1
(1−ρ)2 (1−ρ)2`/kρ . Then, 1

(1−ρ)2 ≤ 2 and (1−ρ)2`/kρ ≤
e−2`ρ/kρ ≤ (1− c ρkρ )2` for c ∈ (0, 1) some numerical constant (c = e−1

e ), since ρ
kρ
≤ 1.

We now prove 2. Assume that Assumption 5.A.1 holds for ρ̄ > 0, and let ρ > 0. We have:

E

[∥∥∥∥W (k:k+`)x− 1

n
11>x

∥∥∥∥2

|W0, . . . ,Wk

]
≤ (1− ρ)2

∥∥∥∥x− 1

n
11>x

∥∥∥∥2

,

provided that ` satisfies:
2(1− ρ̄)2` ≤ (1− ρ)2 .

This is satisfied for:

` ≥
1
2 ln(2) ln(1− ρ)

ln(1− ρ̄)
,

and thus Assumption 5.5 holds for ρ and kρ =
⌈ 1

2
ln(2) ln(1−ρ)

ln(1−ρ̄)

⌉
.
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5.B. Preliminaries for our convergence rates

For k ≥ 0, , and for any k ≥ 0 and v ∈ V:

next(k, v) = inf {` ≥ k , v ∈ I`} , prev(k, v) = sup {` < k , v ∈ I`} ∪ {0} ,
τ(k, v) = k − prev(k + 1, v) .

In other words, at a given iteration k, next(k, v) is the iteration at which the node v will
finish computing its current gradient, prev(k, v) is the iteration at which the node v started
computing its current gradient, and τ(k, v) is the current computational delay of node v at
time k.

Let also x̄k = 1
n

∑
v∈V x

k
v ∈ Rd and gk = (1v∈Ik∇Fv(x

prev(k,v)
v , ξ

prev(k,v)
v ), so that xk+1 =

Wkx
k − γgk.

5.B.1. Virtual iterate sequence to handle delays

As in [MBEW22], the delay analysis relies on the study of a virtual sequence. Noticing
that x̄k+1 = x̄k − γ

n

∑
v∈Ik g

t−τ(k,v)
v and mimicking the analysis of asynchronous SGD, we

introduce the sequence
{
x̂k, k ≥ 1

}
that lives in Rd, defined through the following recursion:

x̂k+1 = x̂k − γ

n

∑
v∈Ik

gkv , x̂1 = x̄0 −
γ

n

∑
v∈V

g0
v .

We then have, for all k ≥ 1:

x̂k − x̄k = −γ
n

∑
v∈V\Ik

gprev(k,v) .

The difference
∥∥x̂k − x̄k∥∥ can thus be easily bounded.

Lemma 5.B.1 (Virtual iterates control). If stochastic gradients are bounded by a constant
B > 0, we have: ∥∥∥x̂k − x̄k∥∥∥ ≤ γB . (5.10)

In the general case,

E
[∥∥∥x̂k − x̄k∥∥∥2

]
≤ 2γ2

n

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2
])

. (5.11)

Proof. Equation (5.10) is proved using a triangle inequality, while Equation (5.11) is a direct
application of [SK20, Lemma 15].

5.B.2. Consensus control

Lemma 5.B.2 (Consensus control). We have:

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
≤ 2γ2σ2ρ̄−1

∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2
]

(5.12)

≤ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xkv)∥∥∥2

]
. (5.13)
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If the stochastic gradients are bounded by some B > 0,∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
≤ 2γ2B2

ρ̄2

∑
k<K

|Ik| . (5.14)

Proof. Under Assumption 5.3.2, we can bound the variations of xk− x̄k (here, x̄k = 11>xk).
Using Cauchy-Schwarz inequality, for am > 0 scalars and bm ∈ Rp vectors, we have:∥∥∥∥∥∑

m

bm

∥∥∥∥∥
2

≤
(∑

m

a−1
m

)(∑
m

am‖bm‖2
)
.

We now apply this to xk − x̄k = −γ∑k
m=0W

(m:k)(g̃m −¯̃gm) to obtain:

E
∥∥∥xk − x̄k

∥∥∥2
= E

∥∥∥∥∥γ
k∑

m=0

W (m:k)(g̃m −¯̃gm)

∥∥∥∥∥
2


≤ γ2
k∑

m′=0

(1− ρ̄)k−m
′

k∑
m=0

(1− ρ̄)−(k−m)E
[∥∥∥W (m:k)(g̃m −¯̃gm)

∥∥∥2
]

≤ 2γ2 1

ρ̄

k∑
m=0

(1− ρ̄)k−mE
[
‖g̃m‖2

]

leading to, if stochastic gradients are bounded by B:

E
∥∥∥xk − x̄k

∥∥∥2
≤ 2γ2B2

ρ̄

∑
`<k

(1− ρ̄)k−`|I`| ,

and thus: ∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
≤ 2γ2B2

ρ̄2

∑
k<K

|Ik| .

We also have, using a bias-variance decomposition (not exactly, since the gm are not inde-
pendent, but using the martingale version as in [SK20, Lemma 15]):

E
∥∥∥xk − x̄k

∥∥∥2
= E

∥∥∥∥∥γ
k∑

m=0

W (m:k)(g̃m−τ(m) −¯̃gm)

∥∥∥∥∥
2


≤ 2γ2σ2
∑
`<k

(1− ρ̄)k−`|I`|+
4γ2

ρ̄

k∑
m=0

(1− ρ̄)k−m
∑
v∈Im

E
[∥∥∥∇fv(x(m−τ(m,v))

v )
∥∥∥2
]
,

so that:∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
≤ 2γ2σ2ρ̄−1

∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2
]
.
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5.C. Loss Networks analysis

In this section, we prove Theorem 5.5 and provide some more information on loss networks.
The updates of decentralized SGD on loss networks write as:

xk+1
vk

=
xkvk + xkwk

2
− γ∇Fvk

(
xk−τ(vk,k)
vk

, ξk−τ(vk,k)
vk

)
xk+1
wk

=
xkvk + xkwk

2
− γ∇Fwk

(
xk−τ(wk,k)
wk

, ξk−τ(wk,k)
wk

) , (5.15)

leading to xk+1 = Wkx
k − γgk, for Wk = W{vk,wk} = IV − (evk−ew−k)(evk−ew−k)>

2 , and gk the
corresponding delayed gradients. Note then that this takes the same form as the AGRAF
SGD sequence.

Definition 5.C.1 (Poisson point process (P.p.p.)). A Poisson point process of intensity p > 0
is a random discrete subset P of R≥0 that can be written as P = {T0 < T1 < . . . < Tk < . . .},
where (Tk − Tk−1)k≥1 are i.i.d. exponential random variables of mean 1

p .

[BGPS06] consider a model (without any delay) for gossip algorithms, where updates
are that of Equation (5.15) without the gradient steps, and these updates happen at the
times of Poisson point processes (a P.p.p. of intensity p{v,w} for an update along {v, w}).
Consequently, Wk is independent from the past, and P

(
Wk = W{v,w}

)
∝ p{v,w}.

The P.p.p. model considered in [BGPS06] where the updates are performed at the times
of Poisson point processes is particularly amenable to analysis, but it assumes that commu-
nications and computations are done instantaneously. Thus, actual implementations differ
from its underlying assumptions, unless further synchrony is assumed. To alleviate this issue,
with pairwise communications ruled by point processes as a baseline, we consider a proto-
col in which nodes are tagged as busy when they are already engaged in an update, and
communications between busy nodes are forbidden. Our model is inspired from classical Loss
Network models [Kel91b], in which edges are activated following the same procedure as in the
P.p.p. model, with a P.p.p. of intensity p{v,w}. Note that we do not consider these intensities
to be constraints of the problem, but rather parameters of the algorithm, that can be tuned.
Each node has an exponential clock of intensity pv 1

2 =
∑

w∼v p{v,w}. At each clock-ticking,
if v is not busy, it selects a neighbor w with probability p{v,w}/

∑
u∼v p{u,v}. If w is not

busy, v and w compute and exchange information, becoming busy for a duration τ ′{v,w}. We
can think of this procedure as classical gossip on an underlying random graph that follows a
Markov-Chain process. The difference between our communication model on Loss Networks
and the P.p.p. model lies in that in our case, Wk is not independent on the past. In fact, we
have:

P ({vk, wk} = {v, w}|Fk) =
1{v,w not busy at time Tk}p{v,w}∑

{u,u′}∈E 1{u,u′ not busy at time Tk}p{u,u′}
,

leading to complicated intricacies between the matrices (Wk)k, that we need to handle.
Proving Theorem 5.5 requires to show that there exist ρ, kρ (that need to be computed)

such that for any k ≥ 0, x ∈ RV ,

E
[∥∥∥W{vk+kρ−1,wk+kρ−1} · . . . ·W{vk,wk}(x− x̄)

∥∥∥2
|Fk
]
≤ (1− ρ)2‖x− x̄‖2 .

Our proof of Theorem 5.5 follows three main steps: i) Deriving convergence results for
more general communication schemes than loss networks, under deterministic assumptions
on the activations. ii) Adapting Step i) to stochastic assumptions on the delays. iii) Deriving
high-probability upper-bounds on the delays between two activations in loss networks in order
to fall under the assumptions of Step i).
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5.C.1. Descent lemma under deterministic assumptions on the activations

We consider general activation processes P{v,w}, where we define P{v,w} as P{v,w} =
{Tk : {vk, wk} = {v, w}}, and these times are called activation times of edge {v,w}. When
edge {v, w} is activated, the update described in (5.15) is performed. The delay of an edge is
defined as its (random) waiting time between two activations. Two ergodicity-like conditions
on the delays are needed: (i) edges activated regularly enough and (ii) incident edges must
not be activated too many times.

We now formally introduce these assumptions. We consider discrete time in this section:
more precisely, k ∈ N stands for the k-th edge activation.

Definition 5.C.2. Consider a communication scheme with edge-activation point processes
P{v,w}. Let k = 0, 1, 2, ... index the consecutive edge activations. Let ` ∈ N, {v, w} and
{u, u′} ∈ E. Let k{v,w} < `{v,w} such that k{v,w} ≤ k < `{v,w} be consecutive activation times
(in discrete time) of {v, w}. Denote T{v,w}(k) = `{v,w} − k{v,w} − 1 the total number of edge
activations between the two consecutive activations of {v, w}. Denote N({u, u′}, {v, w}, k)
the number of activations of edge {v, w} in the activations {s{v,w}, s{v,w} + 1, ..., t{v,w} − 1}.
Assumption 5.C.1 (Delay Assumptions). There exist T ∈ N∗, a, b > 0, and `{v,w} > 0, {v, w} ∈
E such that, for the quantities and the communication scheme in Definition 5.C.2:

1. For all k ∈ N, all edges are activated between iterations k and k + T − 1.

2. ∀k ≥ 0,∀({v, w}) ∈ E, T{v,w}(k) ≤ a`{v,w}: ({v, w}) is activated at least every a`{v,w}
activations.

3. ∀k ≥ 0, ∀({v, w}), ({u, u′}) ∈ E such that ({u, u′}) ∼ ({v, w}), N({u, u′}, {v, w}, k) ≤
d b`{v,w}`{u,u′}

e.

Assumption (1) is implied by Assumption (2) if T = max({v,w}) `{v,w}. Taking `{v,w}
as a deterministic upper-bound on the delays of edge ({v, w}) between two activations in
continuous time is sufficient to have Assumption (2) and (3), with some normalizing constant
a, and b such that `{v,w}/b is a lower-bound on these delays.

The main technical difficulty lies in the fact that at a defined activation time t, some
nodes are not available: at any time k ≥ 0,

∑
({v,w})∈E not busyWk usually differs from∑

{v,w} p{v,w}W{v,w} (and
∑

({v,w})∈E not busyWk may have a null spectral gap) as in Markov-
Chain Gradient Descent [Eve23], thus making an analysis such as in the P.p.p. model impos-
sible. To alleviate this difficulty, in order to make sure that all edges are taken into account
when performing the averaging, the Lyapunov function Λk that we study considers the value
of the objective for T consecutive activation times. It is defined as follows:

∀k ∈ N,Λk(x) =
1

T

k+T−1∑
`=k

∥∥∥W (0,`)(x− x̄)
∥∥∥2
, x ∈ RV .

The first step of the proof of Theorem 5.5 consists in proving the following.

Theorem 5.6. Consider a general communication scheme as in Definition 5.C.2, that satisfies
Assumption 5.C.1 for constants `{v,w}, a, b > 0,. Let γ be the smallest positive eigenvalue of
the Laplacian of the graph G with weights:

ν{v,w} = C`−1
{v,w} min

{u,u′}∼{v,w}

`{u,u′}
`{v,w}

, {v, w} ∈ E ,

where C = 1
2a+8d2

maxab
. Then we have, for all k, ` ∈ N:

Λk+`(x) ≤ (1− γ)` Λk(x) .
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Proof. We fix x ∈ RV , k, `. To prove this intermediate theorem, we need to study every
matrix multiplication involved. At iteration k, not every coordinates is available, hence the
need to study the impact of T multiplications together.

A gradient step alongside edge {v, w} only involves edges in its neighborhood (thanks
to the sparsity of the matrix A), a key element that will need to be explicited. The proof
involves three main steps.

Before that, we need to introduce edge dual variables. Matrix multiplications by matrices
like W{v,w} aim at minimizing the function F (y) = 1

2

∑
v∈V(yv − xv)2, which is minimized at

y = x̄. A standard way to deal with the constraint x1 = ... = xn, is to use a dual formulation,
by introducing a dual variable λ ∈ RE indexed by the edges. We first introduce a matrix
A ∈ RV×E such that Ker(A>) = Vect(I) where I is the constant vector (1, ..., 1)>. A is chosen
such that:

∀{v, w} ∈ E,Ae{v,w} = µ{v,w}(ev − ew). (5.16)

for some non-null constants µ{v,w}. We define µ{v,w} = −µ{v,w} for this writing to be consis-
tent. This matrix A is a square root of the laplacian of the graph weighted by ν{v,w} = µ2

{v,w}.
The constraint x1 = ... = xn can then be written A>x = 0. The dual problem reads as follows:

min
y∈RV ,A>y=0

F (y) = min
y∈RV

max
λ∈RE

F (y)− 〈A>y, λ〉.

Let F ∗A(λ) := F ∗(Aλ) = FA(λ) for λ ∈ RE×d where F ∗ is the Fenchel conjugate of F . Now,
notice that for our particular form of F , we in fact have F ∗ = F . The dual problem reads

min
y∈RV ,y1=...=yn

F (y) = max
λ∈RE

−FA(λ).

Thus F ∗A(λ) is to be minimized over the dual variable λ ∈ RE .
We now make a parallel between pairwise operations between adjacent nodes in the net-

work and coordinate gradient steps on F ∗A. As F ∗A(λ) = maxy∈RV −F (y) + 〈Aλ,y〉, to any
λ ∈ RE a primal variable y ∈ RV is uniquely associated through the formula ∇F (y) = Aλ.
The partial derivative of F ∗A with respect to coordinate {v, w} ∈ E of λ reads :

∇{v,w}F ∗A(λ) = (Ae{v,w})
>∇F ∗(Aλ) = µ{v,w}(∇g∗v((Aλ)v)−∇g∗w((Aλ)w)) ,

where we denote gv(y) : 1
2(y − xv)2. Consider then the following step of coordinate gradient

descent for F ∗A on coordinate {v, w} of λ, performed when edge {v, w} is activated at iteration
k (corresponding to time Tk), and where U{v,w} = e{v,w}e>{v,w}:

λk+1 = λk+1 −
1

µ2
{v,w}

U{v,w}∇{v,w}F ∗A(λk). (5.17)

Denoting yk = Aλk ∈ RV , we obtain the following formula for updating coordinates v and w
of y when {v, w} activated:

yv,k+1 = yv,k −
1

2
(yvk − ywk) =

1

2
(yvkywk) = yw,k+1 . (5.18)

Thus, yk+1 = Wky
k is equivalent to λk+1 = λk − 1

2µ2
{vk,wk}

∇{vk,wk}F ∗A(λk), which is easier to

study. Also, notice that this is the consensus distance exctly: F ∗A(λ) = F (y) for y = Aλ.
Hence, Λk(x) = F (yk) = F ∗A(λk) here yk = Aλk is obtained with the recursion λk+1 =

λk − 1
2µ2
{vk,wk}

∇{vk,wk}F ∗A(λk), with initialisation y0 = x: we thus study this sequence.
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Step 1: First, notice that F ∗A is µ2
{v,w}-smooth along every coordinate {v, w}, so that using

local smoothness, for all {v, w} ∈ E and λ ∈ RE , for γ ≤ 1
2µ2
{vk,wk}

, we have:

F ∗A(λ−∇{v,w}F ∗A(λ))− F ∗A(λ) ≤ 1

4µ2
{v,w}

∥∥∇{v,w}F ∗A(λ)
∥∥2
. (5.19)

Applying Equation (5.19), where {v`, w`} is the `th activated edge:

F ∗A(λ`+1)− F ∗A(λ`) ≤ − 1

4µ2
{v`,w`}

‖∇{v`,w`}F ∗A(λ`)‖2 . (5.20)

Hence, summing:

Λk+1 ≤ Λk −
1

T

∑
k≤`<k+T

1

4µ2
{v`,w`}

‖∇{v`,w`}F ∗A(λ`)‖2 , (5.21)

Notice that:

1

T

∑
k≤`<k+T

∑
{v,w}∈E

‖∇{v,w}F ∗A(λ`)‖2 =
1

T

∑
k≤`<k+T

‖∇F ∗A(λ`)‖2 ≥ σAΛt (5.22)

σA is the strong convexity parameter of F ∗A which is equal tolower bounded by λ+
min(ATA),

which itself is exactly the smallest positive non-null eigenvalue of the graph Laplacian with
weights µ2

{v,w}. Hence, if an inequality of the type

C

T

1

T

∑
k≤`<k+T

∑
{v,w}∈E

‖∇{v,w}F ∗A(λ`)‖2 ≤ 1

4µ2
{v`,w`}

‖∇{v`,w`}F ∗A(λ`)‖2 (5.23)

holds, we have using strong convexity:

Λk+1 ≤ Λk −
C

T

∑
k≤`<k+T

‖∇F ∗A(λ`)‖2 ≤ (1− CσA)Λk . (5.24)

We thus need to tune correctly the µ2
{v,w} and C in order to have (5.23) verified.

Step 2: We are looking for necessary conditions for (5.23) to hold. In the left term, every
coordinate is present at each time `. However, in the right hand side of the inequality,
just the activated one is present. We will need to compensate this with a bigger factor in
front of the gradients. In order to compare these quantities, we need to introduce upper
bound inequalities on ‖∇{v,w}F ∗A(λ(s))‖2, that only make activated coordinates intervene.
Let s ∈ {t, ..., t+T −1}, and suppose that there exists t ≤ r ≤ s < r+ t{v,w} ≤ t+T −1 such
that {v, w} is activated at times r and r+ t{v,w}. Thanks to the asumption on T , either one
of these integers exists. If the other one doesn’t, replace it with t for r, and by t+ T − 1 for
r + t{v,w}. Thanks to our asumptions, we know that t{v,w} ≤ a`{v,w}. We have the following
basic inequalities:

‖∇{v,w}F ∗A(λ(s))‖2 ≤ (‖∇{v,w}F ∗A(λ(r))‖+ ‖∇{v,w}F ∗A(λ(s))−∇{v,w}F ∗A(λ(r))‖)2

≤ 2(‖∇{v,w}F ∗A(λ(r))‖2 + ‖∇{v,w}F ∗A(λ(s))−∇{v,w}F ∗A(λ(r))‖2).

The quantity ‖∇{v,w}F ∗A(λ(s))−∇{v,w}F ∗A(λ(r))‖2 then needs to be controlled. We use the
following lemma.
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Lemma 5.C.1. For λ, λ′ ∈ RE , and {v, w} ∈ E, we have:

‖∇{v,w}F ∗A(λ)−∇{v,w}F ∗A(λ′)‖2 (5.25)

≤ 8d{v,w}µ
2
{v,w}

∑
({u,u′})∼({v,w})

µ2
{u,u′}‖λ{u,u′} − λ′{u,u′}‖2. (5.26)

Proof. First, notice that ∇{v,w}F ∗A(λ) = µ{v,w}(∇g∗i ((Aλ)v)−∇g∗j ((Aλ)w)). Then:

‖∇f∗v ((Aλ)v)−∇f∗v ((Aλ′)w)‖ = ‖(A(λ− λ′))v‖ (smoothness)

= ‖
∑

{u,u′}∼{v,w}
µ{u,u′}(λ− λ′){u,u′}‖

≤
∑

{u,u′}∼{v,w}
µ{u,u′}‖(x− x′){u,u′}‖

Conclude by taking the square and summing for v and w.

Using this with λ = λ(s) and λ′ = λ(r):

‖∇{v,w}F ∗A(λ(s))‖2 ≤ 2‖∇{v,w}F ∗A(λ(r))‖2 (5.27)

+ 2d{v,w}
∑

r<k<r+t{v,w}

N(({vk, wk}), {v, w}, k)
µ2
{v,w}

2µ2
{vk,wk}

‖∇{vk,wk}F ∗A(λ(k))‖2 (5.28)

≤ 2‖∇{v,w}F ∗A(λ(r))‖2 (5.29)

+ 2d{v,w}
∑

r<k<r+t{v,w}

⌈
b
`{v,w}
L{vk,wk}

⌉ µ2
{v,w}

µ2
{vk,wk}

‖∇{vk,wk}F ∗A(λ(k))‖2 (5.30)

The advantage of this last expression is that only activated quantities are present on the right
hand side.

Step 3: The last step of the proof consists in summing the last inequality for t ≤ ` < t+ T ,
{v, w} ∈ E. When summing, each ‖∇{vk,wk}F ∗A(λ(k))‖2 appears on the right hand-side of
the inequality, with a factor upper-bounded by (here instead of {vk, wk} we write ({v, w})):

2a`{v,w} + 2d{v,w}
∑

{u,u′}∼{v,w}
a`{u,u′}

⌈
b`{u,u′}
`{v,w}

⌉ µ2
{u,u′}
µ2
{v,w}

. (5.31)

We want the expression above multiplied by C defined in Step 1 to be upper-bounded by
1

4µ2
{v,w}

, in order for (5.23) to be verified. This is possible if and only if:

C

4a`{v,w}µ
2
{v,w} + 4d{v,w}

∑
{u,u′}∼{v,w}

a

⌈
b`{u,u′}
`{v,w}

⌉
`{u,u′}µ

2
{u,u′}

 ≤ 1

2
, (5.32)

where C is defined in step 1 of the proof. This is equivalent to:

C

a`{v,w}µ2
{v,w} + d{v,w}

∑
{u,u′}∼{v,w}

a
b`2{u,u′}
`{v,w}

µ2
{u,u′}

 ≤ 1

8

if ∀{u, u′} ∼ {v, w}, `{v,w} ≤ b`{u,u′},
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where we bounded
⌈
b
`{v,w}
`{u,u′}

⌉
by 2

b`{v,w}
`{u,u′}

here. We here see that in this case, if

µ2
{v,w} =

1

2`{v,w}
× min
{u,u′}∼{v,w}

`{u,u′}
`{v,w}

(5.33)

with 8a+ 8d2
maxb ≤ C−1, our inequality holds. However, our inequality on the ceil operator

seems not to work in the general case. Let’s take {u, u′} a neighbor of {v, w} such that `{v,w} >

b`{u,u′}. As `{v,w} > b`{u,u′}, we have d b`{u,u′}`{v,w}
e = 1, leading to ad b`{u,u′}`{v,w}

e`{u,u′}µ2
{u,u′} =

a`{u,u′}µ2
{u,u′} ≤ a ≤ ab. Hence, our result still holds.

Conclusion: We have our result for C = 1
2a+8d2

maxab
and a laplacian weighted with local

communication constraints: µ2
{v,w} = 1

2`{v,w}
× min{u,u′}∼{v,w}

`{u,u′}
`{v,w}

. The final rate thus
depends on the smallest eigenvalue of the laplacian weighted by:

1

2a+ 8d2
maxab

1

Lmax

1

2`{v,w}
× min
{u,u′}∼{v,w}

`{u,u′}
`{v,w}

. (5.34)

This ends the proof of Theorem 5.6.

5.C.2. Adding stochasticity

We now prove the following result.

Theorem 5.7 (Adding Stochasticity ). Assume that, for all k ∈ N, there exists a Fk+T−1-
measurable event Ak, such that P(Ak|Fk) ≥ 1

2 almost surely, and that under Ak, Assumption
5.C.1 holds for all k ≤ ` ≤ k + T − 1. Then, we have the following bound on Λk(x):

E[Λk(x)] ≤
(

1

4
(1− γ)T/3 +

3

4

)d k
2T
e
E[Λ0] ,

where γ is defined in Theorem 5.6.

Proof. Using the same arguments as in the proof of Theorem 5.6, we obtain:

E[Λt+1 − Λt|Ft, At] ≤ −σΛt. (5.35)

However, this is not enough to conclude. Under ACt , we only know that Λt+1 ≤ Λt (our local
coordinate gradient steps cannot increase distance to the optimum). Hence:

E[Λt+1|Ft] ≤ (1− σIAt)Λt. (5.36)

And then, by induction:

E[Λt] ≤ E[PtΛ0], where Pt =
t−1∏
s=0

(1− σIAs). (5.37)

However, no direct bound on Pt exists. The interdependencies on the events At make it
impossible for an induction to prove a bound of the form ≤ (1−σ/2)t. However, the logarithm
of the product seems easier to study:

log(Pt) = log(1− σ)

t−1∑
s=0

IAs , (5.38)

giving us E log(Pt) ≤ log(1 − σ)t/2, as P(At) ≥ 1/2. We are thus going to make a study in
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probability. For t ∈ N, let Xt = 1
T

∑t+T−1
s=t IAs . Using Markov-type inequalities conditionnaly

on Ft gives:

P(Xt ≥ 1/3|Ft) + 1/3P(Xt ≤ 1/3|Ft) ≥ E[Xt|Ft] ≥ 1/2 =⇒ P(Xt ≥ 1/3|Ft) ≥ 1/4. (5.39)

Thus, we have: E[
∏t+T−1
s=t (1− IAsσ)|Ft] ≤ 1

4(1− σ)T/3 + 3
4 . We then know how to control T

consecutive factors of the product Pt. Skipping the next T terms, we have:

E

[
t+3T−1∏
s=t

(1− IAsσ)

]
= E

[
t+T−1∏
s=t

(1− IAsσ)

t+2T−1∏
s=t+T

(1− IAsσ)

t+3T−1∏
s=t+2T

(1− IAsσ)

]
(5.40)

≤ E

[
t+T−1∏
s=t

(1− IAsσ)
t+3T−1∏
s=t+2T

(1− IAsσ)

]
(5.41)

≤ E

[
t+T−1∏
s=t

(1− IAsσ)EFt+2T

{
t+3T−1∏
s=t+2T

(1− IAsσ)

}]
(5.42)

as in the last right hand side, the first big product is Ft+2T -measurable (our asumption on the
As states that they are Fs+T−1-measurable). Then, using inequality E

[∏t+T−1
s=t (1− IAsσ)|Ft

]
≤

1
4(1− σ)T/3 + 3

4 twice, with t and t+ 2T , we get:

E

[
t+3T−1∏
s=t

(1− IAsσ)

]
≤ E

[
t+T−1∏
s=t

(1− IAsσ)

(
1

4
(1− σ)T/3 +

3

4

)]

≤
(

1

4
(1− σ)T/3 +

3

4

)2

.

Proceeding the same way by induction leads us to:

E[Pt] ≤
(

1

4
(1− σ)T/3 +

3

4

)bt/(2T )c
, (5.43)

which is the desired bound.

From the proof, we thus have the following corollary.

Corollary 5.C.1. Assume that, for all k ∈ N, there exists a Fk+T−1-measurable event Ak,
such that P(Ak|Fk) ≥ 1

2 almost surely, and that under Ak, Assumption 5.C.1 holds for all
k ≤ ` ≤ k + T − 1. Then, we have the following bound on Λk(x), for any k ≥ 0:

E [Λk+2T (x)|Fk] ≤
(

1

4
(1− γ)T/3 +

3

4

)
E[Λk(x)|Fk] .

where γ is defined in Theorem 5.6.

5.C.3. Expliciting the constants in the loss networks model we consider

We now need to compute and tune the constants introduced in Theorem 5.6 for the
assumptions of Theorem 5.7 to hold in our Loss Network model. We begin by the following
lemma, inspired by queuing theory arguments, that upper bound the probability that an edge
stays inactivated for a long period of time.

Note that we here come back to continuous time, to study the loss network model. What
is important to keep in mind is that an edge cannot be occupied for a time longer than τ ′{v,w}.
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Lemma 5.C.2. Let δ ∈ (0, 1). For any t0 ≥ 0, {v, w} ∈ E, if the Poisson intensities are such
that p{v,w} = 1

2 max(di,dj)−1(τ ′{v,w})
−1 and τ ′max({v, w}) = max{u,u′}∼{v,w} τ ′{u,u′}, let:

`{v,w} =
log(δ−1)

log(1− (1− e−1)e−1)
(p−1
{v,w} + τ ′max({v, w})) .

We have:
P({v, w} not activated in [t0, t0 + `{v,w}]|Ft0) ≤ δ. (5.44)

Proof of Lemma 5.C.2. Let {v, w} ∈ E and t0 ≥ 0 fixed. We use tools from queuing the-
ory [Tan95, M/M/∞/∞ queues] in order to compute the probability that edge {v, w} is
activable at a time t or not. More formally, we define a process N{v,w}(t) with values in
N, such that N{v,w}(t0) = 1 if {v, w} non-available at time t0 and 0 otherwise. Then,
when an edge {u, u′} such that {u, u′} ∼ {v, w} is activated, we make an increment of 1 on
N{v,w}(t) (a customer arrives). This customer stays for a time τ ′{u,u′} and when he leaves,
N{v,w} is decreased by 1. Thus N{v,w} ≥ 0 a.s., and if N{v,w} = 0, then edge {v, w} is
available. For t ≥ max{u,u′}∼{v,w} τ ′{u,u′} + t0, N{v,w}(t) follows a Poisson law of parameter∑
{u,u′}∼{v,w} p{u,u′}τ

′
{u,u′}. For any t ≥ max{u,u′}∼{v,w} τ ′{u,u′} + t0:

P({v, w} available at time t|Ft0) ≥ P(Ni(t) = 0) = exp(−
∑

{u,u′}∼{v,w}
p{u,u′}τ

′
{u,u′}).

That leads to taking p{u,u′} = 1
2

1
max(dk,dl)−1(τ ′{u,u′})

−1 for all edges, in order to have

P({v, w} available at time t|Ft0) ≥ 1/e.

Then, P({v, w} rings in [t, t+ p−1
{v,w}]) = 1− e−1, giving:

P({v, w} activated in [t0, t0 + τ ′max({v, w}) + p−1
{v,w}]|Ft0)

= P({v, w} rings in [t, t+ p−1
{v,w}])

× P({v, w} available at time t|Ft0 ,
{v, w} rings at a time t ∈ [t0 + τ ′max({v, w}), t0 + τ ′max({v, w}) + p−1

{v,w}])

≥ (1− e−1)e−1,

where we use the memoriless property of exponential random variables. Take k ∈ N such
that (1− (1− e−1)e−1)k ≤ δ, leading to k = log(6|E|)/ log(1− (1− e−1)e−1). Let

`{v,w} = k(p−1
{v,w} + τ ′max({v, w})).

Then we have a.s.:

P({v, w} not activated in [t0, t0 + `{v,w}]|Ft0) ≤ δ. (5.45)

Let t ∈ N be fixed, and Bt be the event: "in the activations t, t+1, ..., t+T−1, all edges are
activated". Let then Ct({v, w}, s) for t ≤ s < t+T be the event min(T{v,w}(s), t+T−s, s−t) ≤
a`{v,w} and Dt({u, u′}, {v, w}, s) be the event N({u, u′}, {v, w}, s) ≤ db`{v,w}/`{u,u′}e, where
N({u, u′}, {v, w}, s) is the number of activations of {u, u′} between two activations of {v, w},
around time s, where we only take into account the activations between activations t and
t+ T − 1. Let then At = Bt ∩ (∩{u,u′},{v,w}∈E,t≤s<t+TCt({v, w}, s) ∩Dt({u, u′}, {v, w}, s)).

We want P(At) ≥ 1/2 for correct constants a, b, T and `{v,w} (that can differ from τ ′{v,w})
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in order to apply Theorems 5.6 and 5.7. Note that this event is Ft+T−1-measurable, as de-
sired. We first study the length of time `{v,w} edge {v, w} must wait in order to be activated
with high probability (high meaning more that 1− 1

12|E|). This result is Lemma 5.C.2. Then,
we use this length to determine the constants T, a, b, `{v,w} needed.

Lemma 5.C.3. For any continuous time t0 ≥ 0, {v, w} ∈ E, if p{v,w} = 1
2 max(di,dj)−1(τ ′{v,w})

−1

and τ ′max({v, w}) = max{u,u′}∼{v,w} τ ′{u,u′}, let `{v,w} = log(6|E|)
log(1−(1−e−1)e−1)

(p−1
{v,w}+τ

′
max({v, w})).

We have, almost surely:

P({v, w} not activated in [t0, t0 + `{v,w}]|Ft0) ≤ 1

6|E| . (5.46)

Proof of Lemma 5.C.2. Let {v, w} ∈ E and t0 ≥ 0 fixed. We use tools from queuing the-
ory [Tan95] (M/M/∞/∞ queues) in order to compute the probability that edge {v, w}
is activable at a time t or not. More formally, we define a process N{v,w}(t) with val-
ues in N, such that N{v,w}(t0) = 1 if {v, w} non-available at time t0 and 0 otherwise.
Then, when an edge {u, u′}, {u, u′} ∼ {v, w} is activated, we make an increment of 1 on
N{v,w}(t) (a customer arrives). This customer stays for a time τ ′{u,u′} and when he leaves
we make N{v,w} decrease by 1. We have N{v,w} ≥ 0 a.s., and if N{v,w} = 0, {v, w} is
available. For t ≥ max{u,u′}∼{v,w} τ ′{u,u′} + t0, N{v,w}(t) follows a Poisson law of parameter∑
{u,u′}∼{v,w} p{u,u′}τ

′
{u,u′}. For any t ≥ max{u,u′}∼{v,w} τ ′{u,u′} + t0:

P({v, w} available at time t|Ft0) ≥ P(Ni(t) = 0) = exp(−
∑

{u,u′}∼{v,w}
p{u,u′}τ

′
{u,u′}). (5.47)

That leads to taking p{u,u′} = 1
2

1
max(dk,dl)−1(τ ′{u,u′})

−1 for all edges, in order to have

P({v, w} available at time t|Ft0) ≥ 1/e .

Then, P({v, w} rings in [t, t+ p−1
{v,w}]) = 1− e−1, giving:

P({v, w} activated in [t0, t0 + τ ′max({v, w}) + p−1
{v,w}]|Ft0) = P({v, w} rings in [t, t+ p−1

{v,w}])

(5.48)
× P({v, w} available at time t|Ft0 , {v, w} rings at a time (5.49)

t ∈ [t0 + τ ′max({v, w}), t0 + τ ′max({v, w}) + p−1
{v,w}]) (5.50)

≥ (1− e−1)e−1, (5.51)

where we use the fact that exponential random variables have no memory. Take k ∈ N
such that (1 − (1 − e−1)e−1)k ≤ 1

6|E| , leading to k ≈ log(6|E|)/ log(1 − (1 − e−1)e−1). Let
`{v,w} = k(p−1

{v,w} + τ ′max({v, w})). Then we have a.s.:

P({v, w} not activated in [t0, t0 + `{v,w}]|Ft0) ≤ 1

6|E| . (5.52)

Bounding T : A direct application of Lemma 5.C.2 leads, with L = max{v,w} `{v,w}, to:

T = 2
∑
{v,w}

L

τ ′{v,w}
. (5.53)
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Indeed, for all {v, w}, not being activated in activations t, t+ 1, ..., t+T − 1 means not being
activated for a continuous interval of time of length more than `{v,w}. Hence:

P(∃({v, w}) ∈ E : ({v, w}) not activated in {t, ..., t+ T − 1}|Ft) (5.54)

≤
∑

{v,w}∈E
P(({v, w}) not activated in {t, ..., t+ T − 1}|Ft) (5.55)

≤
∑

{v,w}∈E
P(({v, w}) not activated in [t, t+ `{v,w}]|Ft) (5.56)

≤ |E| × 1

6|E| (5.57)

= 1/6. (5.58)

Bounding T{v,w}: Applying Lemma 5.C.2 with 12|E|T instead of 6|E| leads to controlling
all the inactivation lengths by a length `′{v,w}, with a probability more than 1− 1/(12|E|T ).
Let {v, w} ∈ E and s ∈ N, t ≤ s < t + T . Let α > 0 to tune later. Denote by δ{v,w}(s)
the (random) inactivation time of {v, w}, around iteration s. Note that conditionnaly on the
inactivation period δ{v,w}(s), T{v,w}(s) is dominated in law by a Poisson variable of parameter
Iδ{v,w}(s), hence line (5.62):

P(T{v,w}(s) ≥ α`′{v,w}|Ft) (5.59)

≤ P(T{v,w}(s) ≥ α`′{v,w}|Ft, δ{v,w} ≤ `′{v,w})× P(δ{v,w} ≤ `′{v,w}) (5.60)

+ P(δ{v,w} ≥ `′{v,w}) (5.61)

≤ P(Poisson(I`′{v,w}) ≥ α`′{v,w}) +
1

12|E|T (where I =
∑
{v,w}∈E

p{v,w}) (5.62)

≤ 1

12|E|T +
1

12|E|T (5.63)

=
1

6|E|T , (5.64)

for some α > 0 big enough, to determine with the following large deviation inequality:

Lemma 5.C.4 (A Large Deviation Inequality on discrete Poisson variables.). Let Z ∼ Poisson(λ),
for some λ > 0. Then, for all u ≥ 0:

P(Z ≥ u) ≤ exp(−u+ λ(e− 1)). (5.65)

This large deviation leads to taking α = 2eI for (5.63) to be true. Finally, we get:

P(T{v,w}(s) ≥ α`′{v,w}|Ft) ≤
1

6|E|T . (5.66)

Bounding N({u, u′}, {v, w}, s): If δ{v,w}(s) ≤ `′{v,w}, this random variable is dominated by a
Poisson variable of parameter p{u,u′}`′{v,w}. Hence, still with Lemma 5.C.4, with probability
more than 1− 1

12|E|2T , we can bound N({u, u′}, {v, w}) by e log(12|E|2T ) + p{u,u′}`{v,w}(e−
1) ≤ 2ep{u,u′}L{v,w}.

Explicit writing of the union bound onACt : ACt = BC
t ∪(∪{u,u′},{v,w}∈E,t≤s<t+TCt({v, w}, s)C∪

Dt({u, u′}, {v, w}, s)C) ∈ Ft+T−1. Thanks to the previous considerations, we have that
PFt(BC

t ) ≤ 1/6 with (5.58), PFt(Ct({v, w}, s)C) ≤ 1
6|E|T with (5.66) and P(Dt({u, u′}, {v, w}, s)C |Ft) ≤

1
6|E|2T , for the following constants and weights:
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• τ̃ ′
−1
{v,w} = p{v,w} = min( 1

τ ′max({v,w}) ,
1

2(max(di,dj)−1)
1

τ ′{v,w}
);

• T = 2I max{v,w}∈E ˜τ ′{v,w}
log(6|E|)

log(1−(1−e−1)e−1)
;

• a = 2eI log(6|E|T )
log(1−(1−e−1)e−1)

;

• b = 2e log(6|E|T )
log(1−(1−e−1)e−1)

.

The union bound is the following:

PFt(ACt ) ≤ PFt(BC
t ) +

∑
s,{v,w}

PFt(Ct({v, w}, s)C)

+
∑

s,{v,w}
PFt(∪{u,u′}Dt({u, u′}, {v, w}, s)C)

≤ 1/6 + |E|T/(6|E|T )× 2

≤ 1/2.

The rate of convergence γ is then defined as the smallest non null eigenvalue of the laplacian
of the graph, weighted by:

ν{v,w} =
p{v,w}min{u,u′}∼{v,w}

τ ′{v,w}
τ{u,u′}

8a(1 + d2b)
(5.67)

=
min{u,u′}∼{v,w} p{u,u′}

c1 ln(6|E|T )(1 + d2 ln(6|E|T )2)
∑
{u,u′}∈E p{u,u′}

(5.68)

5.C.4. Concluding

What we have proved so far, is that for any k ≥ 0, any x ∈ RV , we have:

E [Λk+2T (x)|Fk] ≤
(

1

4
(1− γ)T/3 +

3

4

)
E[Λk(x)|Fk] ,

where γ is defined in Equation (5.67). Then, Λk+2T (x) ≥ 1
2

∥∥W (0,k+2T )(x− x̄)
∥∥2 and Λk(x) ≤

1
2

∥∥W (0,k)(x− x̄)
∥∥2, so that applying this for k = 0, almost surely conditionned on F0,

E
[∥∥∥W (0,2T )(x− x̄)

∥∥∥2
|F0

]
≤
(

1

4
(1− γ)T/3 +

3

4

)
E[‖x− x̄‖2|F0] ,

Now, noticing that our analysis holds almost surely for any configuration F0, doing a time
translation and starting from a configuration Fk for any k, we get that:

E
[∥∥∥W (k,k+2T )(x− x̄)

∥∥∥2
|Fk
]
≤
(

1

4
(1− γ)T/3 +

3

4

)
E[‖x− x̄‖2|Fk] ,

so that Assumption 5.3.2 holds for ρ = 1
4(1 − (1 − γ)T/3), kρ = 2T , and hence ρ

kρ
=

O(γ), which leads to Theorem 5.5: γ is the eigengap of the graph, with weights of order
Õ(

min{u,u′}∼{v,w} p{u,u′}
d2
∑
{u,u′}∈E p{u,u′}

).
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5.D. Proof of Theorem 5.1: Convex-Lipchitz case

5.D.1. Homogeneous setting, Lipschitz (bounded gradients) and convex without sampling

Proof. Studying the virtual sequence, we expand:

E
[∥∥∥x̂k+1 − x?

∥∥∥2
]

= E

∥∥∥x̂k − x?∥∥∥2
− 2γ

n

∑
v∈Ik
〈∇fv(xkv), x̂k − x?〉+

γ2

n2

∥∥∥∥∥∥
∑
v∈Ik

gkv

∥∥∥∥∥∥
2

≤ E
[∥∥∥x̂k − x?∥∥∥2

− 2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x?〉+

2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x̄k〉

+
2γ

n

∑
v∈Ik
〈∇fv(xkv), x̄k − x̂k〉

]
+
γ2B2|Ik|2

n2
,

where we used the Lipschitz assumption, Egkv = ∇fv(xkv) and boundness of gradients. Denote:

T1 = −2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x?〉

T k2 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x̄k〉

T3 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), x̄k − x̂k〉 .

Using convexity of f ,

T1 ≤ −
2γ

n

∑
v∈Ik

(f(xkv)− f(x?)) .

Using the Lipschitz assumption and Equation (5.10) that controls
∥∥x̄k − x̂k∥∥, we bound T3::

T3 ≤
2γ2B2|Ik|

n
.

Using the Lipschitz assumption and our consensus bound from Equation (5.14), we bound
T k2 : ∑

k<K

T k2 ≤
∑
k<K

2γB

n

√∑
v∈Ik

E
[
‖xkv − x̄k‖2

]
≤
∑
k<K

2γB

n

√
E
[
‖xk − x̄k‖2

]
≤
∑
k<K

γ2B2

nρ̄
+
ρ̄

B
E
[∥∥∥xk − x̄k

∥∥∥2
]

≤ 3γ2B2

nρ̄

∑
k<K

|Ik| .
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Consequently, denoting η = γ
n and summing over k < K,

2η
∑
k<K

∑
v∈Ik

E
[
f(xkv)− f(x?)

]
≤ E

[∥∥x̂0 − x?
∥∥2
]

+ η2B2
(
E|Ik|+ 2n+ 3nρ̄−1

) ∑
k<K

|Ik|

≤ E
[∥∥x̂0 − x?

∥∥2
]

+ η2B2
(
3n+ 3nρ̄−1

) ∑
k<K

|Ik| .

Dividing by 2η
∑

k<K |Ik|,

E

 1∑
k<K |Ik|

∑
k<K

∑
v∈Ik

f
(
xkv

)
− f(x?)

 ≤ E
[∥∥x̂0 − x?

∥∥2
]

2η
∑

k<K |Ik|
+
ηB2

2
(3n+ 3nρ̄−1) ,

and

E
[∥∥x̂0 − x?

∥∥2
]
≤
∥∥x0 − x?

∥∥2 − 2η
∑
v∈V
〈∇f(x0), x0 − x?〉+ η2G2/n

≤
∥∥x0 − x?

∥∥2
+ η2B2/K ,

provided that K ≥ n. Optimizing over η, we obtain that for η =
√

D2

2KB2(3n+2nρ̄−1)
,

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)

 ≤ 2

√
2B2D2(3n+ 2nρ̄−1)∑

k<K |Ik|
.

5.D.2. Lipschitz (bounded gradients) and convex with sampling

Proof. Taking the proof just above, we still have

E
[∥∥∥x̂k+1 − x?

∥∥∥2
]
≤ E

[∥∥∥x̂k − x?∥∥∥2
+ T k1 + T k2 + T3

]
+
γ2B2|Ik|2

n2
.

We have, using convexity and then Lipschitzness:

T k1 = −2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x?〉

≤ −2γ

n

∑
v∈Ik

pvfv(x
k
v)− f(x?)

= −2γ

n

∑
v∈Ik

pvfv(x̄
k)− f(x?) + fv(x

k
v)− f(x̄k)

≤ −2γ

n

∑
v∈Ik

fv(x̄
k)− f(x?)−B

∥∥∥xkv − x̄k∥∥∥ ,
so that

E
[
T k1

]
≤ −2γp̄

n
(Ef(x̄k)− f(x?)) +

2γB

n

∑
v∈V

pv

∥∥∥xkv − x̄k∥∥∥
≤ −2γp̄

n
(Ef(x̄k)− f(x?)) +

2γBpmax

n

√
n
∥∥∥xk − x̄k

∥∥∥ .
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We then have that:∑
k<K

2γBpmax

n

√
n
∥∥∥xk − x̄k

∥∥∥ ≤ 2
√

2
γ2B2pmax√

n

√
K
∑
k<K

|Ik| .

Then,

T3 ≤
2γ2B2

n
.

We handle the consensus term differently. For some α > 0 to be fix later, and taking the
expectation conditionnally on xk,∑

k<K

E
[
T k2

]
≤
∑
k<K

∑
v∈Ik

E
[
γ2

nα

∥∥∥∇f(xkv)
∥∥∥2

+
α

n

∥∥∥xkv − x̄k∥∥∥2
]

≤
∑
k<K

γ2B2|Ik|
αn

+
α

n

∑
v∈V

pv

∥∥∥xkv − x̄k∥∥∥2

≤ γ2B2

αn

∑
k<K

|Ik|+
αpmax

n

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2

≤
(
γ2B2

αn
+
αpmax

n

2γ2B2

ρ̄2

)∑
k<K

|Ik| .

We set α = 1/
√
pmaxρ̄−2, so that:

∑
k<K

E
[
T k2

]
≤ 2

γ2B2

n2
×√pmaxnρ̄

−1 ×
∑
k<K

|Ik| .

The rest of the proof then follows as before, and we obtain

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)


= O


√√√√ B2D2∑

k<K |Ik|
(n+ (pmax)1/2nρ̄−1 + n3/2pmax

√
K∑

k<K |Ik|
)

 .

To conclude, we notice that nK∑
k<K |Ik|

is of order 1/p̄ where p̄ = 1
n

∑
v∈V .

5.E. Proof of Theorem 5.2: smooth-Lipschitz-convex rates

5.E.1. Smooth-Lipschitz-convex rates without sampling, homogeneous case

Proof. As before, we have:

E
[∥∥∥x̂k+1 − x?

∥∥∥2
]
≤ E

[∥∥∥x̂k − x?∥∥∥2
+ T1 + T k2 + T3

]
+
γ2σ2|Ik|+ γ2E

∥∥∥∑v∈Ik ∇fv(x
k
v)
∥∥∥2

n2
,

with

T1 = −2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x?〉
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T k2 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x̄k〉

T3 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), x̄k − x̂k〉 .

First, using convexity of fv ≡ f ,

T1 ≤ −
2γ

n

∑
v∈Ik

(fv(x
k
v)− fv(x?)) = −2γ

n

∑
v∈Ik

(f(xkv)− f(x?)) .

Using Assumption 5.A.1 we have, where C > 0 can be arbitrary:

E
[
T k2

]
≤ 2γ

n

∑
v∈Ik

E
[∥∥∥∇f(xkv)

∥∥∥∥∥∥xkv − x̄k∥∥∥]

≤ Cγ

n

∑
v∈Ik

E
[∥∥∥∇f(xkv)

∥∥∥2
]

+
γ

Cn
E

∑
v∈Ik

∥∥∥xkvk − x̄k∥∥∥2


≤ 2LCγ

n

∑
v∈Ik

E
[
(f(xkv)− f(x?))

]
+

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]
.

We also have:

T3 ≤
γ

n

(
C
∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

+
1

C

∥∥∥x̄k − x̂k∥∥∥2)
≤ γ

n

(
2LC

∑
v∈Ik

(f(xkv)− f(x?)) +
γ2B2

C
|Ik|
)
.

Thus,

2γ

n

∑
v∈Ik

(Ef(xkv)− f(x?))

≤ −E
[∥∥∥x̂k+1 − x?

∥∥∥2
]

+ E
[∥∥∥x̂k − x?∥∥∥2

]
+
γ2σ2|Ik|
n2

+
2γ2L|Ik|

n2

∑
v∈Ik

(Ef(xkv)− f(x?))

+
2LCγ

n

∑
v∈Ik

E
[
(f(xkv)− f(x?))

]
+

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]

+
γ

n

(
2LC

∑
v∈Ik

(f(xkv)− f(x?)) +
γ2B2

C
|Ik|
)
.

Summing over k < K and using Lemma 5.B.2, we obtain:

2γ

n

∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) ≤ E
[∥∥x̂0 − x?

∥∥2
]

+
γ2σ2

n2

∑
k<K

|Ik|+
2γL

n

(
2C + γ

) ∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?))

+
∑
k<K

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]

+
γ3B2

Cn

∑
k<K

|Ik|

≤ E
[∥∥x̂0 − x?

∥∥2
]

+
γ2σ2

n2

(
1 +

2γρ̄−1n

C

) ∑
k<K

|Ik|+
∑
k<K

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]
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+
γ3B2

Cn

∑
k<K

|Ik|+
2γL

n

(
2C + γ +

4γ2

ρ̄2

) ∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) .

Hence, provided that 2C + γ + 4γ2

ρ̄2 ≤ 1
2L , which is verified for C = 1

8L and γ ≤ 1
4L × 1

1+2ρ̄−1 ,
we have:

γ

n

∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) ≤ E
[∥∥x̂0 − x?

∥∥2
]

+
γ2σ2

n2

(
1 + 16Lγρ̄−1n

) ∑
k<K

|Ik|+
8Lγ3B2

n

∑
k<K

|Ik| ,

leading to, for η = γ/n:

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)

 ≤ E
[∥∥x̂0 − x?

∥∥2
]

η
∑

k<K |Ik|
+ ησ2 + η2

(
16Lσ2n2ρ̄−1 + 8LB2n2

)
.

Optimizing over η ≤ 1
4L × 1

n(1+2ρ̄−1)
, we thus obtain that:

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)


=O

 LD2nρ̄−1∑
k<K |Ik|

+

√
Dσ2∑
k<K |Ik|

+

[
D2
√
LB2n2 + Lσ2n2ρ̄−1∑

k<K |Ik|

]2/3
 .

5.E.2. Smooth-Lipschitz-convex rates with sampling, heterogeneous case

Proof. We have:

E
[∥∥∥x̂k+1 − x?

∥∥∥2
]
≤ E

∥∥∥x̂k − x?∥∥∥2
− 2γ

n

∑
v∈Ik
〈∇fv(xkv), x̂k − x?〉

+
γ2σ2|Ik|+ γ2E

∥∥∥∑v∈Ik ∇fv(x
k
v)
∥∥∥2

n2
,

and we will handle the middle term differently than before. Using −2γ
n

∑
v∈Ik〈∇fv(x

k
v), x̂

k −
x?〉 = −2γ

n

∑
v∈Ik〈∇fv(x

k
v), x

k
v − x?〉 − 2γ

n

∑
v∈Ik〈∇fv(x

k
v), x̂

k − xkv〉 and then convexity for
the first term and smoothness for the second, we obtain:

− 2γ

n

∑
v∈Ik
〈∇fv(xkv), x̂k − x?〉

≤ −2γ

n

∑
v∈Ik

fv(xkv)− fv(x?)− 2γ

n

∑
v∈Ik

fv(x̂
k)− fv(xkv)−

L

2

∥∥∥xkv − x̂k∥∥∥2


= −2γ

n

∑
v∈Ik

fv(x̂
k)− fv(x?) +

γL

n

∑
v∈Ik

∥∥∥xkv − x̂k∥∥∥2
.

Taking the expectation wrt Ik:

E

−2γ

n

∑
v∈Ik
〈∇fv(xkv), x̂k − x?〉

 ≤ −2γ

n

∑
v∈V

pv
(
fv(x̂

k)− fv(x?)
)

+
γL

n

∑
v∈V

pv

∥∥∥xkv − x̂k∥∥∥2
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≤ −2γnp̄

n

(
f(x̂k)− f(x?)

)
+

2γLpmax

n

∥∥∥xk − x̄k
∥∥∥2

+
γL

n

∑
v∈V

pv

∥∥∥x̂k − x̄k∥∥∥2

≤ −2γnp̄

n

(
f(x̂k)− f(x?)

)
+

2γLpmax

n

∥∥∥xk − x̄k
∥∥∥2

+ 2γLp̄
∥∥∥x̂k − x̄k∥∥∥2

.

Then, for the variance term, we need to bound E
∥∥∥∑v∈Ik ∇fv(x

k
v)
∥∥∥2
. For any (zv)v∈V ,

we have E
[∥∥∥∑v∈Ik zv

∥∥∥2
]

= E
[∑

v,v′∈V 1v∈V1v′∈V〈zv, zv′〉
]

=
∑

v 6=v′∈V 1v∈Vpvpv′〈zv, zv′〉 +∑
v∈V pv‖zv‖2 ≤

∑
v∈V pv‖zv‖2 +

∥∥∑
v∈V pvzv

∥∥2. And finally, using convexity of the squared
norm,

∥∥∑
v∈V pvzv

∥∥2 ≤ np̄∑v∈V pv‖zv‖2. Hence, we have

EIk

∥∥∥∥∥∥
∑
v∈Ik
∇fv(xkv)

∥∥∥∥∥∥
2

≤
∑
v∈V

pv

∥∥∥∇fv(xkv)∥∥∥2
+

∥∥∥∥∥∑
v∈V

pv∇fv(xkv)
∥∥∥∥∥

2

.

Thus, plugging this in the first inequality,

2γnp̄

n

(
Ef(x̂k)− f(x?)

)
≤ E

[∥∥∥x̂k − x?
∥∥∥2
−
∥∥∥x̂k+1 − x?

∥∥∥2
]

+ E

γ2σ2|Ik|+ γ2E
∥∥∥∑v∈Ik ∇fv(x

k
v)
∥∥∥2

n2


+ E

[
2γLpmax

n

∥∥∥xk − x̄k
∥∥∥2

+ 2γLp̄
∥∥∥x̂k − x̄k∥∥∥2

]
= E

[∥∥∥x̂k − x?
∥∥∥2
−
∥∥∥x̂k+1 − x?

∥∥∥2
]

+
γ2σ2np̄+ γ2

∑
v∈V pvE

∥∥∇fv(xkv)∥∥2
+ γ2

∥∥∑
v∈V pv∇fv(xkv)

∥∥2

n2

+ E
[

2γLpmax

n

∥∥∥xk − x̄k
∥∥∥2

+ 2γLp̄
∥∥∥x̂k − x̄k∥∥∥2

]
.

Then, using smoothness, we have that f(x̄k)− f(x?) ≤ f(x̂k)− f(x?) + 〈∇f(x̂k), x̂k − x̄k〉+
L
2

∥∥x̄k − x̂k∥∥ ≤ 2(f(x̂k)− f(x?)) + 2L
∥∥x̄k − x̂k∥∥2, leading to:

2γnp̄

n

(
Ef(x̄k)− f(x?)

)
≤ 4γnp̄

n

(
Ef(x̂k)− f(x?)

)
+

4Lγnp̄

n

∥∥∥x̄k − x̂k∥∥∥2

≤ 2E
[∥∥∥x̂k − x?

∥∥∥2
−
∥∥∥x̂k+1 − x?

∥∥∥2
]

+
2γ2σ2np̄+ 2γ2

(∑
v∈V pvE

∥∥∇fv(xkv)∥∥2
+
∥∥∑

v∈V pv∇fv(xkv)
∥∥2
)

n2

+ E
[

4γLpmax

n

∥∥∥xk − x̄k
∥∥∥2

+ 8γLp̄
∥∥∥x̂k − x̄k∥∥∥2

]
.

We have
∥∥x̂k − x̄k∥∥2 ≤ γ2B2. Now,∑

v∈V
pv

∥∥∥∇fv(xkv)∥∥∥2
≤ 2

∑
v∈V

pv

∥∥∥∇fv(xkv)−∇fv(x̄k)∥∥∥2
+ pv

∥∥∥∇fv(x̄k)∥∥∥2

≤ 2L2pmax

∥∥∥xk − x̄k
∥∥∥2

+ 2
∑
v∈V

pv

∥∥∥∇fv(x̄k)∥∥∥2
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≤ 2L2pmax

∥∥∥xk − x̄k
∥∥∥2

+ 2np̄
∥∥∥∇f(x̄k)

∥∥∥2
+ 2np̄ζ2 .

Then, ∥∥∥∥∥∑
v∈V

pv∇fv(xkv)
∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∑
v∈V

pv∇fv(x̄k)
∥∥∥∥∥

2

+ 2

∥∥∥∥∥∑
v∈V

pv(∇fv(xkv)−∇fv(x̄k))
∥∥∥∥∥

2

≤ 2(np̄)2
∥∥∥∇f(x̄k)

∥∥∥2
+ 2(np̄)

∑
v∈V

pv

∥∥∥(∇fv(xkv)−∇fv(x̄k))
∥∥∥2

≤ 2(np̄)2
∥∥∥∇f(x̄k)

∥∥∥2
+ 2(np̄)

∑
v∈V

pvL
2
∥∥∥xkv − x̄k∥∥∥2

≤ 2(np̄)2
∥∥∥∇f(x̄k)

∥∥∥2
+ 2(np̄)pmaxL

2
∥∥∥xk − x̄k

∥∥∥2

Thus, this leads to:

2γnp̄

n

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥∥x̂k − x?
∥∥∥2
−
∥∥∥x̂k+1 − x?

∥∥∥2
]

+
2γ2(σ2 + 2ζ2)np̄+ 8γ2n2p̄2

∥∥∇f(x̄k)
∥∥2

n2

+ E
[(4γLpmax

n
+

2γ2L2pmax(1 + np̄)

n

)∥∥∥xk − x̄k
∥∥∥2

+ 8γLp̄
∥∥∥x̂k − x̄k∥∥∥2

]
.

We now use the following lemma.

Lemma 5.E.1. For stepsizes γ ≤ ρ̄
4L
√
pmax

, we have:

∑
k<K

E
[∥∥∥xk − x̄k

∥∥∥2
]
≤ 4γ2σ2ρ̄−1np̄K+8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+16γ2ρ̄−2np̄
∑
k<K

(∥∥∥∇f(x̄k)
∥∥∥2

+ζ2
)
.

Proof of the lemma. Denoting CK =
∑

k<K E
[∥∥xk − x̄k

∥∥2
]
and using Lemma 5.B.2, we have

Ck ≤ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

E

∑
v∈Ik

∥∥∥∇fv(xk−τ(k,v)
v )

∥∥∥2


≤ 2γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
4γ2

ρ̄2

∑
k<K

∑
v∈V

pvE
[∥∥∥∇fv(xkv)∥∥∥2

]
,

using
∑

k<K

∑
v∈Ik

∥∥∥∇fv(xk−τ(k,v)
v )

∥∥∥2
≤∑k<K

∑
v∈Ik

∥∥∇fv(xkv)∥∥2
+
∑

v∈V
∥∥∇fv(x0

v)
∥∥2. Then,∑

v∈V pvE
[∥∥∇fv(xkv)∥∥2

]
≤ 2

∑
v∈V pvE

[∥∥∇fv(x̄k)∥∥2
]
+2
∑

v∈V pvE
[∥∥∇fv(x̄k)−∇fv(xkv)∥∥2

]
≤

2np̄ζ2 + 2np̄E
∥∥∇f(x̄k)

∥∥2
+ 2L2pmaxE

∥∥xk − x̄k
∥∥2, which leads to:

CK ≤ 2γ2σ2ρ̄−1np̄K + 4γ2ρ̄−2
∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+ 8γ2ρ̄−2np̄
∑
k<K

(∥∥∥∇f(x̄k)
∥∥∥2

+ ζ2
)

+ 8γ2L2pmaxρ̄
−2CK ,

leading to the desired result for γ ≤ ρ̄
4L
√
pmax

.
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Using Lemma 5.B.1 and Lemma 5.E.1, we thus have:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥x̂0 − x?
∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+ E

[(4γLpmax

n
+

2γ2L2pmax

n

) ∑
k<K

∥∥∥xk − x̄k
∥∥∥2
]

+ 8γ3LB2p̄K

≤ 2E
[∥∥x̂0 − x?

∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+ +8γ3LB2p̄K

+
6γLpmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+ 16γ2ρ̄−2np̄
∑
k<K

(∥∥∥∇f(x̄k)
∥∥∥2

+ ζ2
)]

= 2E
[∥∥x̂0 − x?

∥∥2
]

+
(
8γ2Lp̄+ 96γ3L2pmaxp̄ρ̄

−2
) ∑
k<K

E
[
f(x̄k)− f(x?)

]
+

2γ2(σ2 + 2ζ2)p̄K

n

+ γ3K
(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)

+
48γ2Lpmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2
.

Hence, for stepsizes satisfying 8γLp̄ + 96γ2L2pmaxp̄ρ̄
−2 ≤ p̄, which is verified for γ ≤

min
(

1
16L ,

ρ̄
14L
√
pmax

)
, we obtain:

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤

2E
[∥∥x̂0 − x?

∥∥2
]

γp̄
+

2γ(σ2 + 2ζ2)K

n
+ γ2K

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 96Lζ2pmaxρ̄
−2
)

+
48γLpmaxρ̄

−2

np̄

∑
v∈V

∥∥∇fv(x̄0)
∥∥2
.

Optimizing over γ ≤ min
(

1
16L ,

ρ̄
14L
√
pmax

, ρ̄L

)
, this leads to:

1

K

∑
k<K

(
Ef(x̄k)− f(x?)

)
=O

LD2
(

1
p̄ +

√
pmax

p̄2 ρ̄−1
)

K
+

[
D2
√
LB2 + Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

+

√
D2(σ2 + ζ2)

np̄K
+
ρ̄−1 pmax

p̄

K

1

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

)
.

5.F. Proof of Theorem 5.3: smooth-convex case

5.F.1. Homogeneous without sampling

Proof. As before, we have:

E
[∥∥∥x̂k+1 − x?

∥∥∥2
]
≤ E

[∥∥∥x̂k − x?∥∥∥2
+ T1 + T k2 + T3

]
+
γ2σ2|Ik|+ γ2E

∥∥∥∑v∈Ik ∇fv(x
k
v)
∥∥∥2

n2
,
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5.F. Proof of Theorem 5.3: smooth-convex case

with

T1 = −2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x?〉

T k2 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), xkv − x̄k〉

T3 =
2γ

n

∑
v∈Ik
〈∇fv(xkv), x̄k − x̂k〉 ,

We will bound T1, T2 as in the proof with the Lipschitz assumption. For the term T3, using
convexity and Lemma 5.B.1:

ET3 ≤
γ

n

(
C
∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

+
1

C
E
∥∥∥x̄k − x̂k∥∥∥2)

≤ γ

n

(
2LC

∑
v∈Ik

(f(xkv)− f(x?)) +
2γ2

Cn
|Ik|(σ2 +

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2
)
)

≤ 2γ2

Cn2
|Ik|σ2 +

γ

n

(
2LC

∑
v∈Ik

(f(xkv)− f(x?)) +
2γ2

Cn
|Ik|

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2)
.

for γ ≤ 1/(nL). Then,

∑
k<K

|Ik|
∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2
≤
∑
v∈V

∑
k<K:v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

next(v,k+1)−1∑
`=k

|I`|

≤ τmax

∑
v∈V

∑
k<K:v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

≤ 2Lτmax

∑
v∈V

∑
k<K:v∈Ik

f(xkv)− f(x?) ,

where τmax is an upper bound on the maximal compute delay defined as τmax ≥ supk<K
∑next(v,k+1)−1

`=k |I`|.

Thus,

2γ

n

∑
v∈Ik

(Ef(xkv)− f(x?)) ≤ −E
[∥∥∥x̂k+1 − x?

∥∥∥2
]

+ E
[∥∥∥x̂k − x?∥∥∥2

]

+
γ2σ2|Ik|
n2

+
2γ2L|Ik|

n2

∑
v∈Ik

(Ef(xkv)− f(x?))

+
2LCγ

n

∑
v∈Ik

E
[
(f(xkv)− f(x?))

]
+

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]

+
2γ2L

Cn2
|Ik|σ2 +

γ

n

(
2LC

∑
v∈Ik

(f(xkv)− f(x?)) +
2γ2

Cn
|Ik|

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2)
.
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Summing over k < K, using Lemma 5.B.2 and our bound on T3, we obtain:

2γ

n

∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) ≤ E
[∥∥x̂0 − x?

∥∥2
]

+
3γ2σ2

n2

∑
k<K

|Ik|

+
2γL

n

(
2C + γ +

2τmaxγ
2

Cn

) ∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?))

+
∑
k<K

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]

≤ E
[∥∥x̂0 − x?

∥∥2
]

+
γ2σ2

n2

(
1 +

2γρ̄−1n

C

) ∑
k<K

|Ik|+
∑
k<K

γ

Cn
E
[∥∥∥xk − x̄k

∥∥∥2
]

+
γ3B2

Cn

∑
k<K

|Ik|

+
2γL

n

(
2C + γ +

2τmaxγ
2

Cn
+

4γ2

ρ̄2

) ∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) ,

using Lemma 5.E.1 to handle the sum of the terms
∥∥xk − x̄k

∥∥2.

Hence, provided that 2C + γ + 2τmaxγ2

Cn + 4γ2

ρ̄2 ≤ 1
2L , which is verified for C = 1

8L and
γ ≤ 1

4L × 1

1+2ρ̄−1+4
√
τmax/n

, we have:

γ

n

∑
k<K

∑
v∈Ik

(Ef(xkv)− f(x?)) ≤ E
[∥∥x̂0 − x?

∥∥2
]

+
γ2σ2

n2

(
3 + 16Lγρ̄−1n

) ∑
k<K

|Ik| ,

leading to, for η = γ/n:

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)

 ≤ E
[∥∥x̂0 − x?

∥∥2
]

η
∑

k<K |Ik|
+ 3ησ2 + η216Lσ2n2ρ̄−1 .

Optimizing over η ≤ 1
4L × 1

n(1+2ρ̄−1)+4
√
nτmax

, we thus obtain that:

E

f
 1∑

k<K |Ik|
K−1∑
k=0

∑
v∈Ik

xkv

− f(x?)


=O

LD2(nρ̄−1 +
√
nτmax)∑

k<K |Ik|
+

√
Dσ2∑
k<K |Ik|

+

[
D2
√
Lσ2n2ρ̄−1∑
k<K |Ik|

]2/3
 .

5.F.2. Heterogeneous setting under sampling

Proof. As in the Lipschitz case, we have:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥x̂0 − x?
∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+ E

[
6γLpmax

n

∑
k<K

∥∥∥xk − x̄k
∥∥∥2
]

+ 8γLp̄E

[∑
k<K

∥∥∥x̄k − x̂k∥∥∥2
]
.
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Since losses are no longer assumed to be Lipschitz, we cannot bound this last term E
[∑

k<K

∥∥x̄k − x̂k∥∥2
]

by γ2B2. However, using Lemma 5.B.1,

E

[∑
k<K

∥∥∥x̄k − x̂k∥∥∥2
]
≤ 2γ2σ2K

n
+

2γ2

n
E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2
]
.

Then,

E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2
]

=
∑
v∈V

∑
k<K

E
[∥∥∥∇fv(xkv)∥∥∥2

1v∈Ik(next(k, v)− k)

]
=
∑
v∈V

∑
k<K

E
[∥∥∥∇fv(xkv)∥∥∥2

× 1

pv
× pv

]
=
∑
v∈V

∑
k<K

E
[∥∥∥∇fv(xkv)∥∥∥2

]
≤ 1

pmin

∑
v∈V

∑
k<K

pvE
[∥∥∥∇fv(xkv)∥∥∥2

]
.

since the random variables
∥∥∇fv(xkv)∥∥2, 1v∈Ik and next(k, v)−k are independent, E [1v∈Ik ] =

pv (Bernoulli random variable) and E [next(k, v)− k] = 1
pv

(geometric random variable).

And then, as we proved before,
∑

v∈V
∑

k<K pvE
[∥∥∇fv(xkv)∥∥2

]
≤ 2L2pmax

∥∥xk − x̄k
∥∥2

+

2np̄
∥∥∇f(x̄k)

∥∥2
+ 2np̄ζ2. Consequently,

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥x̂0 − x?
∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+ E

[(6γLpmax

n
+

32γ3L3p̄pmax

npmin

) ∑
k<K

∥∥∥xk − x̄k
∥∥∥2
]

+
16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin

≤ 2E
[∥∥x̂0 − x?

∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+ E

[
12γLpmax

n

∑
k<K

∥∥∥xk − x̄k
∥∥∥2
]

+
16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin
.

provided that γ ≤
√

6pmin

32L2pmax
. Plugging Lemma 5.E.1 in here, we obtain:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥x̂0 − x?
∥∥2
]

+
2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∥∇f(x̄k)

∥∥∥2
]

+
16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin
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+
12γLpmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+ 16γ2ρ̄−2np̄
∑
k<K

(∥∥∥∇f(x̄k)
∥∥∥2

+ ζ2
)]

= 2E
[∥∥x̂0 − x?

∥∥2
]

+
(
8γ2Lp̄+ 192γ3L2pmaxp̄ρ̄

−2 + 64γ3L2p̄
pmax

pmin

) ∑
k<K

E
[
f(x̄k)− f(x?)

]
+

2γ2(σ2 + 2ζ2)p̄K

n
+ γ3K

(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)

+
96γ3Lpmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2
.

For 8γ2Lp̄+192γ3L2pmaxp̄ρ̄
−2+64γ3L2p̄pmax

pmin
≤ γp̄ which is verified for γ ≤ min

(
1

24L ,
ρ̄

24L
√
pmax

, 1

14L
√
pmax
pmin

)
,

we have:

γp̄
∑
k<K

(
Ef(x̄k)− f(x?)

)
≤ 2E

[∥∥x̂0 − x?
∥∥2
]

+
96γ3Lpmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
2γ2(σ2 + 2ζ2)p̄K

n
+ γ3K

(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)
,

and thus:

1

K

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤

2E
[∥∥x̂0 − x?

∥∥2
]

p̄γK
+

96γ2Lpmaxρ̄
−2

np̄K

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
2γ(σ2 + 2ζ2)

n
+ γ2

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 96Lζ2pmaxρ̄
−2
)
.

Now, we use∑
v∈V

∥∥∇fv(x̄0)
∥∥2 ≤

∑
v∈V

∥∥∇f(x̄0)
∥∥2

+ ζ2 ≤
∑
v∈V

2L(f(x0)− f(x?)) + ζ2 ,

so that

96γ2Lpmaxρ̄
−2

np̄K

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 ≤ 192γ2L2pmaxρ̄

−2

p̄K
(f(x0)− f(x?)) +

96ζ2γ2Lpmaxρ̄
−2

p̄K

≤ 192γ2L2pmaxρ̄
−2

p̄

1

K

∑
k<K

(
Ef(x̄k)− f(x?)

)
+

96ζ2γ2Lpmaxρ̄
−2

p̄K

≤ 1

2

1

K

∑
k<K

(
Ef(x̄k)− f(x?)

)
+ 96ζ2γ2Lpmaxρ̄

−2 ,

for K ≥ 1
p̄ and γ ≤ 1ρ̄

384L

√
p̄

pmax
. Thus,

1

2K

∑
k<K

(
Ef(x̄k)− f(x?)

)
≤

2E
[∥∥x̂0 − x?

∥∥2
]

p̄γK

+
2γ(σ2 + 2ζ2)

n
+ γ2

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 192Lζ2pmaxρ̄
−2
)
.

170
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Optimizing over admissible γ’s leads to:

1

K

∑
k<K

(
Ef(x̄k)− f(x?)

)
= O

LD2
(

1
p̄

√
pmax

pmin
+
√

pmax

p̄2 ρ̄−1
)

K

+

√
D2(σ2 + ζ2)

np̄K
+

[
D2
√
LB2 + Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

 .

5.G. Proof of Theorem 5.4: smooth non-convex case

5.G.1. Homogeneous without sampling

Proof. Using L-smoothness and a virtual sequence x̂ defined in Section 5.B.1, we have

Ek+1f(x̂k+1) ≤ f(x̂k)− γ

n

∑
v∈Ik

〈
∇f(x̂k),∇f(xkv)

〉
︸ ︷︷ ︸

:=T1

(5.69)

+
Lγ2

2n2

σ2|Ik|+ E

∥∥∥∥∥∥
∑
v∈Ik
∇f(xkv)

∥∥∥∥∥∥
2 (5.70)

We separately estimate the middle term as

T1 = −γ
n

∑
v∈Ik

〈
∇f(x̂k),∇f(xkv)

〉
= −γ

n

∑
v∈Ik

〈
∇f(x̄k),∇f(xkv)

〉
+
γ

n

∑
v∈Ik

〈
∇f(x̄k)−∇f(x̂k),∇f(xkv)

〉
≤ γ

n

∑
v∈Ik

(
−1

2

∥∥∥∇f(x̄k)
∥∥∥2
− 1

2

∥∥∥∇f(xkv)
∥∥∥2

+
L2

2

∥∥∥xkv − x̄k∥∥∥2
)

+
γ

n

∑
v∈Ik

(
1

4

∥∥∥∇f(xkv)
∥∥∥2

+ L2
∥∥∥x̄k − x̂k∥∥∥2

)
≤ − γ

4n

∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2
− |Ik|γ

2n

∥∥∥∇f(x̄k)
∥∥∥2

+
L2γ

2n

∑
v∈Ik

∥∥∥xkv − x̄k∥∥∥2
+
γL2|Ik|

n

∥∥∥x̄k − x̂k∥∥∥2

where we used that for any vectors a, b ∈ Rd it holds that −〈a, b〉 = −1
2‖a‖

2 − 1
2‖b‖

2 +
1
2‖a− b‖

2 and also it holds that 2〈a, b〉 ≤ γ‖a‖2 +γ−1‖b‖2 for any γ > 0 and we chose γ = 2.
We further use Lemma 5.B.1 to estimate the last term

T1 ≤ −
γ

4n

∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2
− |Ik|γ

2n

∥∥∥∇f(x̄k)
∥∥∥2

+
L2γ

2n

∥∥∥xk − x̄k
∥∥∥2

+
2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2
])
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Putting this estimate of T1 back into (5.69) we get

Ek+1f(x̂k+1) ≤ f(x̂k) +
Lγ2σ2|Ik|

2n2
+
Lγ2

2n

∑
v∈Ik

E
∥∥∥∇f(xkv)

∥∥∥2

− γ

4n

∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2
− |Ik|γ

2n

∥∥∥∇f(x̄k)
∥∥∥2

+
L2γ

2n

∥∥∥xk − x̄k
∥∥∥2

+
2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2
])

Using that γ < 1
4L we estimate

Ek+1f(x̂k+1) ≤ f(x̂k)− γ

8n

∑
v∈Ik

∥∥∥∇f(xkv)
∥∥∥2
− |Ik|γ

2n

∥∥∥∇f(x̄k)
∥∥∥2

+
L2γ

2n

∥∥∥xk − x̄k
∥∥∥2

+
2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2
])

+
Lγ2σ2|Ik|

2n2

Taking the full expectation and summing over all the iterations k, we get∑
k<K

|Ik|γ
2n

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?)− γ

8n

∑
k<K

∑
v∈Ik

E
∥∥∥∇f(xkv)

∥∥∥2
+
L2γ

2n

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2

+
Lγ2σ2

∑
k<K |Ik|

2n2
(1 + 4Lγ) +

2L2γ3

n2

∑
k<K

∑
v∈V
|Ik|E

[∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2
]

For the third term we use Lemma 5.B.2, and for the last term we use that

∑
k<K

|Ik|
∑
v∈V

∥∥∥∇f(xprev(v,k)
v )

∥∥∥2
≤
∑
v∈V

∑
k<K:v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

next(v,k+1)−1∑
`=k

|I`|

≤ τmax

∑
v∈V

∑
k<K:v∈Ik

∥∥∥∇f(xkv)
∥∥∥2

where τmax is an upper bound on the maximal compute delay defined as τmax ≥ supk<K
∑next(v,k+1)−1

`=k |I`|.
For estimating the third term with Lemma 2, we also use that∑

k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2
]
≤
∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xkv)∥∥∥2

]

We therefore get∑
k<K

|Ik|γ
2n

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?)− γ

8n

∑
k<K

∑
v∈Ik

E
∥∥∥∇f(xkv)

∥∥∥2
+
L2γ

2n
2γ2σ2ρ̄−1

∑
k<K

|Ik|

+
2L2γ3

nρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇f(xkv)

∥∥∥2
]

+
Lγ2σ2

∑
k<K |Ik|

2n2
(1 + 4Lγ) +

2L2γ3

n2
τmax

∑
k<K

∑
v∈Ik

E
∥∥∥∇f(xkv)

∥∥∥2
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We further use that the stepsize γ < 1
8L(
√

n
τmax

+ ρ̄)

∑
k<K

|Ik|γ
2n

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?) +

L2

n
γ3σ2ρ̄−1

∑
k<K

|Ik|+
Lγ2σ2

∑
k<K |Ik|

n2

Therefore,

∑
k<K

|Ik|E
∥∥∥∇f(x̄k)

∥∥∥2
≤ 2n

γ
(f(x0)− f?) + 2L2γ2σ2ρ̄−1

∑
k<K

|Ik|+
2Lγσ2

∑
k<K |Ik|
n

Denoting T =
∑

k<K |Ik| and tuning over the stepsize γ, we get

1∑
k<K |Ik|

∑
k<K

|Ik|E
∥∥∥∇f(x̄k)

∥∥∥2
≤ 16LF0(

√
nτmax + nρ̄−1)

T
+ 4

(
Lσ2F0

T

) 1
2

+ 4

(
LσnF0

T
√
ρ̄

) 2
3

where F0 = (f(x0)− f?).

5.G.2. Heterogeneous with sampling

Proof. Using L-smoothness of f ,

Ek+1f(x̂k+1) ≤ f(x̂k)− γ

n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(xkv)

〉
︸ ︷︷ ︸

:=T1

(5.71)

+
Lγ2

2n2

σ2E|Ik|+ E

∥∥∥∥∥∥
∑
v∈Ik
∇fv(xkv)

∥∥∥∥∥∥
2 (5.72)

We separately estimate the T1 term

T1 = −γ
n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(xkv)

〉
= −γ

n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(x̄k)

〉
+
γ

n

∑
v∈Ik

E
〈
∇f(x̂k),∇fv(x̄k)−∇fv(xkv)

〉
= −γp̄

〈
∇f(x̂k),∇f(x̄k)

〉
+
γ

n

∑
v∈Ik

E
〈
∇f(x̂k),∇fv(x̄k)−∇fv(xkv)

〉
≤ γp̄

(
−1

2

∥∥∥∇f(x̂k)
∥∥∥2
− 1

2

∥∥∥∇f(x̄k)
∥∥∥2

+
L2

2

∥∥∥x̂k − x̄k∥∥∥2
)

+
γ

n

1

2
np̄
∥∥∥∇f(x̂k)

∥∥∥2
+
L2

2
E
∑
v∈Ik

∥∥∥xkv − x̄k∥∥∥2


Since E

∑
v∈Ik ∇fv(x̄

k) = np̄∇f(x̄k), and E|Ik| = np̄. We further use that E
∑

v∈Ik
∥∥xkv − x̄k∥∥2

=∑
v∈V pv

∥∥xkv − x̄k∥∥2 ≤ pmax

∥∥xk − x̄k
∥∥2. Therefore,

T1 ≤ −
γp̄

2

∥∥∥∇f(x̄k)
∥∥∥+

γp̄L2

2

∥∥∥x̂k − x̄k∥∥∥2
+
γL2pmax

2n

∥∥∥xk − x̄k
∥∥∥2
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Putting this back to (5.71) and summing it up over K, we get

γp̄

2

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?) +

γp̄L2

2

∑
k<K

E
∥∥∥x̂k − x̄k∥∥∥2

+
γL2pmax

2n

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
+
Lγ2σ2p̄K

2n

+
Lγ2

2n2

∑
k<K

E

∥∥∥∥∥∥
∑
v∈Ik
∇fv(xkv)

∥∥∥∥∥∥
2

We use calculations from Section 5.E.2 to further estimate the last term

E

∥∥∥∥∥∥
∑
v∈Ik
∇fv(xkv)

∥∥∥∥∥∥
2

≤
∑
v∈V

pv

∥∥∥∇fv(xkv)∥∥∥2
+

∥∥∥∥∥∑
v∈V

pv∇fv(xkv)
∥∥∥∥∥

2

∑
v∈V

pv

∥∥∥∇fv(xkv)∥∥∥2
≤ 2L2pmax

∥∥∥xk − x̄k
∥∥∥2

+ 2np̄
∥∥∥∇f(x̄k)

∥∥∥2
+ 2np̄ζ2 . (5.73)

∥∥∥∥∥∑
v∈V

pv∇fv(xkv)
∥∥∥∥∥

2

≤ 2(np̄)2
∥∥∥∇f(x̄k)

∥∥∥2
+ 2(np̄)pmaxL

2
∥∥∥xk − x̄k

∥∥∥2

We therefore get

γp̄

2

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?) +

γp̄L2

2

∑
k<K

E
∥∥∥x̂k − x̄k∥∥∥2

+
γL2pmax

2n

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2
+
Lγ2σ2p̄K

2n

+
Lγ2

n2

(
(L2pmax + (np̄)pmaxL

2)
∥∥∥xk − x̄k

∥∥∥2
+ (np̄+ (np̄)2)

∥∥∥∇f(x̄k)
∥∥∥2

+ np̄ζ2

)
≤ (f(x0)− f?) +

γp̄L2

2

∑
k<K

E
∥∥∥x̂k − x̄k∥∥∥2

+
γL2pmax

2n

[
1 + 2Lγ

(
1

n
+ p̄

)]∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2

+
Lγ2p̄Kσ2

2n
+
Lγ2np̄(1 + np̄)

n2

∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+
Lγ2p̄ζ2K

n

We further use Lemma 5.B.1 to estimate the term with E
∥∥x̂k − x̄k∥∥2:

E
[∥∥∥x̂k − x̄k∥∥∥2

]
≤ 2γ2

n

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2
])
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And we use calculations from Section 5.F.2 estimating

E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2
]
≤ 1

pmin

∑
v∈V

∑
k<K

pvE
[∥∥∥∇fv(xkv)∥∥∥2

]
.

And (5.73) to estimate the last term. Therefore we get∑
k<K

E
[∥∥∥x̂k − x̄k∥∥∥2

]

≤ 2γ2

n

(
σ2K +

1

pmin

∑
k<K

2L2pmax

∥∥∥xk − x̄k
∥∥∥2

+ 2np̄
∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+ 2np̄ζ2K

)

And

γp̄

2

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?)

+
γL2pmax

2n

[
1 + 2Lγ

(
1

n
+ p̄

)
+

4γ2L2p̄

pmin

] ∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2

+
Lγ2p̄Kσ2

2n
(1 + γL) +

Lγ2np̄(1 + np̄+ 2γLnp̄/pmin)

n2

∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+
Lγ2p̄ζ2K

n
(1 + 2np̄γL)

We further use that γ < min
{

1
4L ,

√
p̄

4L
√
pmin

}
γp̄

2

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?) +

γL2pmax

n

∑
k<K

E
∥∥∥xk − x̄k

∥∥∥2

+
Lγ2p̄Kσ2

2n
(1 + γL) + 3Lγ2p̄

∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+
Lγ2p̄ζ2K

n
(1 + 2np̄γL)

We further use Lemma 5.E.1:

γp̄

2

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ γL2pmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+16γ2ρ̄−2np̄
∑
k<K

(∥∥∥∇f(x̄k)
∥∥∥2

+ ζ2
)]

+
Lγ2p̄Kσ2

2n
(1 + γL) + 3Lγ2p̄

∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+
Lγ2p̄ζ2K

n
(1 + 2np̄γL) + (f(x0)− f?)

≤ (f(x0)− f?) + 4γ3L2pmaxp̄ρ̄
−1Kσ2 +

8γ3L2pmaxρ̄
−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2
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+
Lγ2p̄Kσ2

2n
(1 + γL)

+ Lγ2p̄(3 + 16γLρ̄−2pmax)
∑
k<K

∥∥∥∇f(x̄k)
∥∥∥2

+
2Lγ2p̄ζ2K

n
(1 + 8ρ−2nγLpmax)

Taking the stepsize γ < min{ 1
24L ,

ρ̄
16L
√
pmax
} we get:

γp̄

4

∑
k<K

E
∥∥∥∇f(x̄k)

∥∥∥2
≤ (f(x0)− f?) + 4γ3L2pmaxp̄ρ̄

−1Kσ2

+
8γ3L2pmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
2Lγ2p̄Kσ2

2n

+
2Lγ2p̄ζ2K

n
(1 + 8ρ−2nγLpmax)

We conclude as in the smooth convex case by tuning the stepsize and getting rid of the
8γ3L2pmaxρ̄−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2.
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Chapter 6

Muffliato: differentially-private decentralized
learning

In the first part of this manuscript, we have focused on asynchrony and decentralization, two
components of optimization that are becoming increasingly popular in machine learning, for
their scalability and efficiency.

Intuitively, decentralization should also provide better privacy guarantees, as nodes only
observe the messages sent by their neighbors in the network graph. But formalizing and
quantifying this gain is challenging: existing results are typically limited to Local Differential
Privacy (LDP) guarantees that overlook the advantages of decentralization.

Informally, for a decentralized learning scheme over a graph G = (V, E), we would ideally
like to exhibit privacy guarantees of the form “node u is private with respect to node v with a
privacy loss quantified by εu→v”, where the quantity εu→v quantifies privacy leaks from u to
v, and decreases as the distance between nodes u and v in the graph increases.

In this chapter, we aim at filling this gap in the literature and introduce pairwise network
differential privacy, a relaxation of LDP that captures the fact that the privacy leakage
from a node u to a node v may depend on their relative position in the graph. We then
analyze the combination of local noise injection with (simple or randomized) gossip averaging
protocols on fixed and random communication graphs. We also derive a differentially private
decentralized optimization algorithm that alternates between local gradient descent steps and
gossip averaging.

Our results show that our algorithms amplify privacy guarantees as a function of the
distance between nodes in the graph, matching the privacy-utility trade-off of the trusted
curator, up to factors that explicitly depend on the graph topology. Remarkably, these
factors become constant for expander graphs. Finally, we illustrate our privacy gains with
experiments on synthetic and real-world datasets.

6.1. Introduction

Training machine learning models traditionally requires centralizing data in a single server,
raising issues of scalability and privacy. An alternative is to use Federated Learning (FL),
where each user keeps her data on device [MMR+17, KMA+19]. In fully decentralized FL,
the common hypothesis of a central server is also removed, letting users, represented as nodes
in a graph, train the model via peer-to-peer communications along edges. This approach im-
proves scalability and robustness to central server failures, enabling lower latency, less power
consumption and quicker deployment [LS07, BGPS06, SBB+17, NCTV19, AS19, LZZ+17,
KLB+20].

Another important dimension is privacy, as a wide range of applications deal with sensi-
tive and personal data. The gold standard to quantify the privacy leakage of algorithms is
Differential Privacy (DP) [DR14]. DP typically requires to randomly perturb data-dependent
computations to prevent the final model from leaking too much information about any in-
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dividual data point (e.g., through data memorization). However, decentralized algorithms
do not only reveal the final model to the participating nodes, but also the results of some
intermediate computations. A standard solution is to use Local Differential Privacy (LDP)
[KLN+08, DJW13], where random perturbations are performed locally by each user, thus
protecting against an attacker that would observe everything that users share. From the
algorithmic standpoint, local noise addition can be easily performed within decentralized
algorithms, as done for instance in [HMV15, BGTT18, CYH+19, ZKL18, XZW21]. Unfortu-
nately, LDP requires large amounts of noise, and thus provides poor utility.

In this chapter, we show that LDP guarantees give a very pessimistic view of the privacy
offered by decentralized algorithms. Indeed, there is no central server receiving all messages,
and the participating nodes can only observe the messages sent by their neighbors in the
graph. So, a given node should intuitively leak less information about its private data to nodes
that are far away. We formally quantify this privacy amplification for the fundamental brick of
communication at the core of decentralized optimization: gossip algorithms. CallingMuffliato
the combination of local noise injection with a gossip averaging protocol, we precisely track
the resulting privacy leakage between each pair of nodes. Through gossiping, the private
values and noise terms of various users add up, obfuscating their contribution well beyond
baseline LDP guarantees: as their distance in the graph increases, the privacy loss decreases.
We then show that the choice of graph is crucial to enforce a good privacy-utility trade-off
while preserving the scalability of gossip algorithms.

Our results are particularly attractive in situations where nodes want stronger guarantees
with respect to some (distant) peers. For instance, in social network graphs, users may
have lower privacy expectations with respect to close relatives than regarding strangers. In
healthcare, a patient might trust her family doctor more than she trusts other doctors, and
in turn more than employees of a regional agency and so on, creating a hierarchical level of
trust that our algorithms naturally match.

6.1.1. Contributions and outline of the chapter

(i) Inspired by the recent definitions of [CB20], we introduce pairwise network DP, a relax-
ation of Local Differential Privacy which is able to quantify the privacy loss of a decentralized
algorithm for each pair of distinct users in a graph.

(ii)We proposeMuffliato1, a privacy amplification mechanism composed of local Gaussian
noise injection at the node level followed by gossiping for averaging the private values. It offers
privacy amplification that increases as the distance between two nodes increases. Informally,
the locally differentially private value shared by a node u is mixed with other contributions, to
the point that the information that leaks to another node v can have a very small sensitivity
to the initial value in comparison to the accumulated noise.

(iii) We analyze both synchronous gossip [DKM+10] and randomized gossip [BGPS06]
under a unified privacy analysis with arbitrary time-varying gossip matrices. We show that
the magnitude of the privacy amplification is significant: the average privacy loss over all the
pairs in this setting reaches the optimal privacy-utility trade-off of a trusted aggregator, up
to a factor d√

λW
, where λW is the weighted graph eigengap and d the maximum degree of

the graph. Remarkably, this factor can be of order 1 for expanders, yielding a sweet spot in
the privacy-utility-scalability trade-off of gossip algorithms. Then, we study the case where
the graph is itself random and private, and derive stronger privacy guarantees.

(iv) Finally, we develop and analyze differentially private decentralized Gradient Descent
(GD) and Stochastic Gradient Descent (SGD) algorithms to minimize a sum of local objective
functions. Building on Muffliato, our algorithms alternate between rounds of differentially
private gossip communications and local gradient steps. We prove that they enjoy the same

1The name is borrowed from the Harry Potter series: it designates a “spell that filled the ears of any-
one nearby with an unidentifiable buzzing”, thereby concealing messages from unintended listeners through
noise injection.
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6.2. Setting and Pairwise Network Differential Privacy

privacy amplification described above for averaging, up to factors that depend on the regu-
larity of the global objective.

(v) We demonstrate the usefulness of our approach and analysis through experiments on
synthetic and real-world datasets and network graphs. We illustrate how privacy is amplified
between nodes in the graph as a function of their distance, and show how time-varying random
graphs can be used to split the privacy loss more uniformly across nodes in decentralized
optimization.

6.1.2. Related work

Gossip algorithms and decentralized optimization. Gossip algorithms [BGPS06, DKM+10]
were introduced to compute the global average of local vectors through peer-to-peer com-
munication, and are at the core of many decentralized optimization algorithms. Classical
decentralized optimization algorithms alternate between gossip communications and local
gradient steps [NO09, KSJ19, KLB+20], or use dual formulations and formulate the consen-
sus constraint using gossip matrices to obtain decentralized dual or primal-dual algorithms
[SBB+17, HBM19, EHM20, EBB+21, KGGR21b, AS19]. We refer the reader to [NOR18]
for a broader survey on decentralized optimization. Our algorithms are based on the general
analysis of decentralized SGD in [KLB+20].

LDP and privacy amplification mechanisms. Limitations of LDP for computing the aver-
age of the private values of n users have been studied, showing that for a fixed privacy
budget, the expected squared error in LDP is n times larger than in central DP [CSS12a].
More generally, LDP is also known to significantly reduce utility for many learning problems
[ZMW17a, WGX18], which motivates the study of intermediate trust models. Cryptographic
primitives, such as secure aggregation [DKM+06, SCR+11, BIK+17, CSS12b, JWEG18,
BBG+20a, SBR20] and secure shuffling [CSU+19, EFM+19, BBGN19, GGK+20, FMT20], as
well as additional mechanisms such as amplification by subsampling [BBG18] or amplification
by iteration [FMTT18a], can offer better utility for some applications, but cannot be easily
applied in a fully decentralized setting, as they require coordination by a central server.

Privacy amplification through decentralization. The idea that decentralized communica-
tions can provide differential privacy guarantees was initiated by [BGH20] in the context of
rumor spreading. Closer to our work, [CB20] showed privacy amplification for random walk
algorithms on complete graphs, where the model is transmitted from one node to another
sequentially. While we build on their notion of Network DP, our work differs from [CB20] in
several aspects: (i) our analysis holds for any graph and explicitly quantifies its effect, (ii)
instead of worst-case privacy across all pairs of nodes, we prove pairwise guarantees that are
stronger for nodes that are far away from each other, and (iii) unlike random walk approaches,
gossip algorithms allow parallel computation and thus better scalability.

6.2. Setting and Pairwise Network Differential Privacy

We study a decentralized model where n nodes (users) hold private datasets and commu-
nicate through gossip protocols, that we describe in Section 6.2.1. In Section 6.2.2, we recall
differential privacy notions and the two natural baselines for our work, central and local DP.
Finally, we introduce in Section 6.2.3 the relaxation of local DP used throughout this chapter:
the pairwise network DP.

6.2.1. Gossip Algorithms

We consider a connected graph G = (V, E) on a set V of n users. An edge {u, v} ∈ E
indicates that u and v can communicate (we say they are neighbors). Each user v ∈ V holds
a local dataset Dv and we aim at computing averages of private values. This averaging step
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6.2. Setting and Pairwise Network Differential Privacy

is a key building block for solving machine learning problems in a decentralized manner, as
will be discussed in Section 6.4. From any graph, we can derive a gossip matrix.

Definition 6.2.1 (Gossip matrix). A gossip matrix over a graph G is a symmetric matrix
W ∈ Rn×n with non-negative entries, that satisfies W1 = 1 i.e. W is stochastic (1 ∈ Rn is
the vector with all entries equal to 1), and such that for any u, v ∈ V, Wu,v > 0 implies that
{u, v} ∈ E or u = v.

The iterates of synchronous gossip [DKM+10] are generated through a recursion of the
form xt+1 = Wxt, and converge to the mean of initial values x0 ∈ Rn at a linear rate e−tλW ,
with λW defined below.

Definition 6.2.2 (Spectral gap). The spectral gap λW associated with a gossip matrix W is
minλ∈Sp(W )\{1}(1− |λ|), where Sp(W ) is the spectrum of W .

The inverse of λW is the relaxation time of the random walk on G with transition probabil-
ities W , and is closely related to the connectivity of the graph: adding edges improve mixing
properties (λW increases), but can reduce scalability by increasing node degrees (and thus
the per-iteration communication complexity). The rate of convergence can be accelerated to
e−t
√
λW using re-scaled Chebyshev polynomials, leading to iterates of the form xt = Pt(W )x0

[BBG20b].

Definition 6.2.3 (Re-scaled Chebyshev polynomials). The re-scaled Chebyshev polynomials
(Pt)t≥0 with scale parameter γ ∈ [1, 2] are defined by second-order linear recursion:

P0(X) = 1 , P1(X) = X , Pt+1(X) = γXPt(X) + (1− γ)Pt−1(X) , t ≥ 2 . (6.1)

6.2.2. Rényi Differential Privacy

Differential Privacy (DP) quantifies how much information the output of an algorithm A
leaks about the dataset taken as input [DR14]. DP requires to define an adjacency relation
between datasets. In this work, we adopt a user-level relation [MRTZ18] which aims to protect
the whole dataset Dv of a given user represented by a node v ∈ V. Formally, D = ∪v∈VDv
and D′ = ∪v∈VD′v are adjacent datasets, denoted by D ∼ D′, if there exists v ∈ V such that
only Dv and D′v differ. We use D ∼v D′ to denote that D and D′ differ only in the data of
user v.

We use Rényi Differential Privacy (RDP) [Mir17] to measure the privacy loss, which
allows better and simpler composition than the classical (ε, δ)-DP. Note that any (α, ε)-RDP
algorithm is also (ε+ ln(1/δ)/(α− 1), δ)-DP for any 0 < δ < 1 [Mir17].

Definition 6.2.4 (Rényi Differential Privacy). An algorithm A satisfies (α, ε)-Rényi Differen-
tial Privacy (RDP) for α > 1 and ε > 0 if for all pairs of neighboring datasets D ∼ D′:

Dα

(
A(D)||A(D′)

)
≤ ε , (6.2)

where for two random variables X and Y , Dα

(
X ||Y

)
is the Rényi divergence between X and

Y :
Dα

(
X ||Y

)
= 1

α−1 ln
∫ (µX(z)

µY (z)

)α
µY (z)dz .

with µX and µY the respective densities of X and Y .

Without loss of generality, we consider gossip algorithms with a single real value per
node (in that case, Dv = {xv} for some xv ∈ R), and we aim at computing a private
estimation of the mean x̄ = (1/n)

∑
v xv. The generalization to vectors is straightforward,

as done subsequently for optimization in Section 6.4. In general, the value of a (scalar)
function g of the data can be privately released using the Gaussian mechanism [DR14, Mir17],
which adds η ∼ N (0, σ2) to g(D). It satisfies (α, α∆2

g/2σ
2)-RDP for any α > 1, where
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6.2. Setting and Pairwise Network Differential Privacy

∆g = supD∼D′ ‖g(D) − g(D′)‖ is the sensitivity of g. We focus on the Gaussian mechanism
for its simplicity (similar results could be derived for other DP mechanisms), and thus assume
an upper bound on the L2 inputs sensitivity.

Assumption 6.2.1. There exists some constant ∆ > 0 such that for all u ∈ V and for any
adjacent datasets D ∼u D′, we have ‖xu − x′u‖ ≤ ∆.

The Gaussian mechanism then satisfies the following basic property.

Lemma 6.2.1 (Gaussian mechanism). For α > 1, noise variance σ2, sensitivity ∆ > 0 and
x, y ∈ R such that |x− y| ≤ ∆, we have:

Dα

(
N (x, σ2) || N (y, σ2)

)
≤ α∆2

2σ2
.

In central DP, a trusted aggregator can first compute the mean x̄ (which has sensitivity
∆/n) and then reveal a noisy version with the Gaussian mechanism. On the contrary, in
local DP where there is no trusted aggregator and everything that a given node reveals can
be observed, each node must locally perturb its input (which has sensitivity ∆), deteriorating
the privacy-utility trade-off. Formally, to achieve (α, ε)-DP, one cannot have better utility
than:

E
[∥∥xout − x̄

∥∥2
]
≤ α∆2

2nε
for local DP , and E

[∥∥xout − x̄
∥∥2
]
≤ α∆2

2n2ε
for central DP ,

where xout is the output of the algorithm. This 1/n gap motivates the study of relaxations
of local DP.

6.2.3. Pairwise Network Differential Privacy

We relax local DP to take into account privacy amplification between nodes that are
distant from each other in the graph. We define a decentralized algorithm A as a randomized
mapping that takes as input a dataset D = ∪v∈V(Dv) and outputs the transcript of all
messages exchanged between users in the network. A message between neighboring users
{u, v} ∈ E at time t is characterized by the tuple (u,m(t), v): user u sent a message with
content m(t) to user v, and A(D) is the set of all these messages. Each node v only has a
partial knowledge of A(D), captured by its view :

Ov
(
A(D)

)
= {(u,m(t), v) ∈ A(D) such that {u, v} ∈ E} .

This subset corresponds to direct interactions of v with its neighbors, which provide only an
indirect information on computations in others parts of the graph. Thus, we seek to express
privacy constraints that are personalized for each pair of nodes. This is captured by our
notion of Pairwise Network DP.

Definition 6.2.5 (Pairwise Network DP). For f : V × V → R+, an algorithm A satisfies
(α, f)-Pairwise Network DP (PNDP) if for all pairs of distinct users u, v ∈ V and neighboring
datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ f(u, v) . (6.3)

We note εu→v = f(u, v) the privacy leaked to u from v and say that u is (α, εu→v)-PNDP
with respect to v if only inequality (6.3) holds for f(u, v) = εu→v.

By taking f constant in Definition 6.2.5, we recover the definition of Network DP [CB20].
Our pairwise variant refines Network DP by allowing the privacy guarantee to depend on u
and v (typically, on their relative position in the graph). We assume that users are honest
but curious: they truthfully follow the protocol, but may try to derive as much information
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as possible from what they observe. We refer to Appendix 6.D for a natural adaptation of
our definition and results to the presence of colluding nodes and to the protection of groups
of users.

In addition to pairwise guarantees, we will use the mean privacy loss

εv =
1

n

∑
u∈V\{v}

f(u, v) ,

to compare with baselines LDP and trusted aggregator by enforcing ε = maxv∈V εv ≤ ε.
The value εv is the average of the privacy loss from all the nodes to v and thus does not
correspond to a proper privacy guarantee, but it provides a convenient way to summarize
our gains, noting that distant nodes — in ways that will be specified — will have better
privacy guarantee than this average, while worst cases will remain bounded by the baseline
LDP guarantee provided by local noise injection.

6.3. Private Gossip Averaging

In this section, we analyze a generic algorithm with arbitrary time-varying communication
matrices for averaging. Then, we instantiate and discuss these results for synchronous com-
munications with a fixed gossip matrix, communications using randomized gossip [BGPS06],
and with Erdös-Rényi graphs.

6.3.1. General Privacy Analysis of Gossip Averaging

We consider gossip over time-varying graphs (Gt)0≤t≤T , defined as Gt = (V, Et), with
corresponding gossip matrices (Wt)0≤t≤T . The generic Muffliato algorithm AT for averaging
x = (xv)v∈V corresponds to an initial noise addition followed by T gossip steps. Writing
W0:t = Wt−1 . . .W0, the iterates of AT are thus defined by:

∀v ∈ V, x0
v = xv + ηv with ηv ∼ N (0, σ2), and xt+1 = Wtx

t = W0:t+1(x+ η) . (6.4)

Note that the update rule at node v ∈ V writes as xt+1
v =

∑
w∈Nt(v)(Wt)v,wx

t
w where Nt(v)

are the neighbors of v in Gt, so for the privacy analysis, the view of a node is:

Ov
(
AT (D)

)
=
{(
W0:t(x+ η)

)
w
| {v, w} ∈ Et , 0 ≤ t ≤ T − 1

}
∪ {xv} . (6.5)

Theorem 6.1. Let T ≥ 1 and denote by PT{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps
with communication along edge {v, w}. Under Assumption 6.2.1, AT is (α, f)-PNDP with:

f(u, v) =
α∆2

2σ2

∑
w∈V

∑
t∈PT{v,w}

(W0:t)
2
u,w

‖(W0:t)w‖2
. (6.6)

Proof of Theorem 6.1. We need to bound the privacy loss that occurs from the following
view:

Ov
(
AT (D)

)
=
{(
W0:t(x+ η)

)
w
| {v, w} ∈ Et , 0 ≤ t ≤ T − 1

}
∪ {xv} .

We have:

Dα

(
Ov(AT (D)) || Ov(AT (D′))

)
≤

T−1∑
t=0

∑
w∈Nt(v)

Dα

((
W0:t(x+ η)

)
w
||
(
W0:t(x

′ + η)
)
w

)
.

We have (W0:t(x
′+η))w−(W0:t(x+η))w ∼ N ((W0:t(x

′+η))w−(W0:t(x+η))w, σ
2‖(W0:t)w‖2)

with a sensitivity verifying |(W0:t(x
′))w−(W0:t(x))w|2 ≤ ∆2(W0:t)

2
u,w under Assumption 6.2.1
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and D ∼u D′. Thus, using Lemma 6.2.1, we have:

Dα

((
W0:t(x+ η)

)
w
||
(
W0:t(x

′ + η)
)
w

)
≤ α∆2

2σ2

(W0:t)
2
u,w

‖(W0:t)w‖2
,

leading to the desired f(u, v). The mean privacy loss is then obtained by summing the above
inequality for u 6= v and t < T :

εv =
1

n

∑
u6=v

f(u, v) ≤ 1

n

∑
u∈V

α∆2

2σ2

∑
w∈V

∑
t∈PT{v,w}

(W0:t)
2
u,w

‖(W0:t)w‖2

=
1

n

α∆2

2σ2

∑
t∈PT{v,w}

∑
w∈V

∑
u∈V

(W0:t)
2
u,w

‖(W0:t)w‖2

=
1

n

α∆2

2σ2

∑
t∈PT{v,w}

∑
w∈V

1

=
α∆2Tv
2nσ2

,

where Tv =
∑

w∈V |PT{v,w}| is exactly the number of communications node v is involved in,
up to time T .

This theorem gives a tight computation of the privacy loss between every pair of nodes
and can easily be computed numerically (see Section 6.5). Since distant nodes correspond
to small entries in W0:t, Equation 6.6 suggests that they reveal less to each other. We will
characterize this precisely for the case of fixed communication graph in the next subsection.

Another way to interpret the result of Theorem 6.1 is to derive the corresponding mean
privacy loss:

εv =
α∆2Tv
2nσ2

, (6.7)

where Tv is the total number of communications node v was involved with up to time T .
Thus, in comparison with LDP, the mean privacy towards v is n/Tv times smaller. In other
words, a node learns much less than in LDP as long as it communicates o(n) times.

6.3.2. Private Synchronous Muffliato

We now consider Muffliato over a fixed graph (Algorithm 6.1). Note that we use gossip
acceleration (see Definition 6.2.3). We start by analyzing the utility of Muffliato, which
decomposes as an averaging error term vanishing exponentially fast, and a bias term due to
the noise.

Theorem 6.2 (Utility analysis). Let λW be the spectral gap of W . Muffliato (Algorithm 6.1)
verifies, for any t ≥ T stop:

1

2n

∑
v∈V

E
[∥∥xtv − x̄∥∥2

]
≤ 3σ2

n
, where T stop =

1√
λW

ln

(
n

σ2
max

(
σ2,

1

n

∑
v∈V
‖xv − x̄‖2

))
.

Proof of Theorem 6.2. The desired result is a direct consequence of the following convergence
bound.

Proposition 6.3.1 (Utility analysis). For any T ≥ 0, the iterates (xT )T≥0 of Muffliato (Algo-
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Algorithm 6.1: Muffliato
Input: local values (xv)v∈V to

average, gossip matrix W on
a graph G, in T iterations,
noise variance σ2

1 γ ← 2
1−
√
λW (1−λW

4
)

(1−λW /2)2

2 for all nodes v in parallel do
3 x0

v ← xv + ηv where
ηv ∼ N (0, σ2)

4 for t = 0 to T − 1 do
5 for all nodes v in parallel do
6 for all neighbors w defined by

W do
7 Send xtv, receive xtw
8 xt+1

v ← (1− γ)xt−1
v +

γ
∑

w∈Nv Wv,wx
t
w

Algorithm 6.2: Randomized Muf-
fliato
Input: local values (xv)v∈V to

average, activation intensities
(p{v,w}){v,w}∈E , in T
iterations, noise variance σ2

1 for all nodes v in parallel do
2 x0

v ← xv + ηv where
ηv ∼ N (0, σ2)

3 for t = 0 to T − 1 do
4 Sample {vt, wt} ∈ E with

probability p{vt,wt}
5 vt and wt exchange xtvt and x

t
wt

6 Local averaging:

xt+1
vt = xt+1

wt =
xt+1
vt +xt+1

wt
2

7 For v ∈ V \ {vt, wt}, xt+1
v = xtv

rithm 6.1) verify, for λW defined in Definition 6.2.2 and x̄ = 1
n

∑
v∈V xv ∈ RD:

1

2n

∑
v∈V

E
[∥∥xTv − x̄∥∥2

]
≤
(

1

n

∑
v∈V
‖xv − x̄‖2 +Dσ2

)
e−T

√
λW +

Dσ2

n
. (6.8)

Proof of Proposition 6.3.1. For t ≥ 0 and y ∈ RV×D, using results from [BBG20b], we have,
for a vector y ∈ RV×D such that

∑
v∈V yv = 0, ‖Pt(W )y‖2 ≤ 2(1−√λW )2‖y‖2. In particular:∥∥∥Pt(W )(y − ȳ1>)

∥∥∥ ≤ 2(1−
√
λW )t

∥∥∥y − ȳ1>∥∥∥2
,

where 1 is the vector with all entries equal to 1. Since

xt = Pt(W )
(
x+N (0, σ2IV×D)

)
, t ≥ 0 ,

we obtain that, for η ∼ N (0, σ2IV×D) and η̄ = 1
n

∑
v∈V ηv1

> ∈ RV×D, using bias-variance
decomposition twice:

1

2
E
[∥∥xt − x̄∥∥2

]
=

1

2
E
[∥∥∥Pt(W )(x(0) − x̄)

∥∥∥2
]

=
1

2
E
[
‖Pt(W )(x+ η − x̄− η̄)‖2

]
+

1

2
E
[
‖Pt(W )η̄‖2

]
≤ (1−

√
λW )tE

[
‖x+ η − x̄− η̄‖2

]
+
Dσ2

2n

≤ (1−
√
λW )t

(
E
[
‖x− x̄‖2

]
+ nDσ2

)
+
Dσ2

2n
.

The precision 3Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , Dσ2

)
≤
√
λW
−1

ln

(
n

Dσ2
max

(
Dσ2,

1

n

∑
v∈V
‖xv − x̄‖2

))
.
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Table 6.1 – Utility of Muffliato for several topologies under the constraint ε ≤ ε for the classic
gossip matrix where Wv,w = min(1/dv, 1/dw) and dv is the degree of node v. Õ(·) hides constant and
logarithmic factors. Recall that utility is Õ(α∆2/nε) for LDP and Õ(α∆2/n2ε) for central DP.

Graph Arbitrary Expander C-Torus Complete Ring

Algorithm 6.1 Õ
(

α∆2d
n2ε
√
λW

)
Õ
(
α∆2

n2ε

)
Õ
(
α∆2C
n2−1/Cε

)
Õ
(
α∆2

nε

)
Õ
(
α∆2

nε

)
Algorithm 6.2 Õ

(
α∆2

n2ελW

)
Õ
(
α∆2

n2ε

)
Õ
(

α∆2

n2−2/Cε

)
Õ
(
α∆2

n2ε

)
Õ
(
α∆2

nε

)

For the privacy guarantees, Theorem 6.1 still holds as accelerated gossip can be seen as
a post-processing of the non-accelerated version. Thanks to the fixed graph, we can derive a
more explicit formula.

Corollary 6.3.1. Algorithm 6.1 satisfies (α, εTu→v(α))-PNDP for node u with respect to v, with:

εTu→v(α) ≤ α∆2n

2σ2
max
{v,w}∈E

W−2
v,w

T∑
t=1

P
(
Xt = v|X0 = u

)2
,

where (Xt)t is the random walk on graph G, with transitions W .

This result allows us to directly relate the privacy loss from u to v to the probability that
the random walk on G with transition probabilities given by the gossip matrix W goes from
u to v in a certain number of steps. It thus captures a notion of distance between nodes
in the graph. We also report the utility under fixed mean privacy loss ε = maxv∈V εv ≤ ε
in Table 6.1 for various graphs, where one can see a utility-privacy trade-off improvement of
n
√
λW /d, where d is the maximum degree, compared to LDP. Using expanders closes the gap

with a trusted aggregator (i.e., central DP) up to constant and logarithmic terms. Remark-
ably, graph topologies that make gossip averaging efficient (i.e. with big

√
λW /d), such as

exponential graphs or hypercubes [YYC+21], are also the ones that achieve optimal privacy
amplification (up to logarithmic factors). In other words, privacy, utility and scalability are
compatible.

6.3.3. Private Randomized Muffliato

Synchronous protocols require global coordination between nodes, which can be costly
or even impossible in some settings. On the contrary, asynchronous protocols only require
separated activation of edges: they are thus are more resilient to stragglers nodes and faster
in practice. In asynchronous gossip, at a given time-step a single edge {u, v} is activated
independently from the past with probability p{u,v}, as described by [BGPS06, EBB+21]. In
our setting, randomized Muffliato (Algorithm 6.2) corresponds to instantiating our general
analysis with W t = W{vt,wt} = In− (evt − ewt)(evt − ewt)>/2 if {vt, wt} is sampled at time t.
The utility analysis is similar to the synchronous case.

Theorem 6.3 (Utility analysis). Let λ(p) be the spectral gap of graph G with weights (p{v,w}){v,w}∈E .
Randomized Muffliato (Algorithm 6.2) verifies, for all t ≥ T stop:

1

2n

∑
v∈V

E
[∥∥xtv − x̄∥∥2

]
≤ 2σ2

n
, where T stop =

1

λ(p)
ln

(
n

σ2
max

(
σ2,

1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2
))

.

Proof of Theorem 6.3. As in the synchronous case, we prove a more general convergence
result that holds for D-dimensional inputs.
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Proposition 6.3.2 (Utility analysis). For any T ≥ 0, the iterates (xT )T≥0 of randomized
Muffliato (Algorithm 6.2) verify:

1

2n

∑
v∈V

E
[∥∥xTv − x̄∥∥2

]
≤
(

1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2
+Dσ2

)
e−Tλ2(p) +

Dσ2

n
. (6.9)

Proof of Proposition 6.3. For t ≥ 0 and y ∈ RV×D, using results from [BGPS06], we have:

E
[∥∥∥W (t)(y − ȳ1>)

∥∥∥2
]
≤ (1− λ(p))t

∥∥∥y − ȳ1>∥∥∥2
,

where 1 with the vector with all entries equal to 1 and ȳ = 1
n

∑
v∈V yv. The rest of the proof

follows as in the proof of Theorem 6.2 with two bias-variance decompositions.

The precision 2Dσ2

n is thus reached for

T stop
(
W, (xv)v∈V , σ2

)
≤ λ(p)−1 ln

(
n

Dσ2
max

(
Dσ2,

1

n

∑
v∈V
‖xv − x̄‖2

))
. (6.10)

In terms of privacy, randomized Muffliato satisfies the following guarantees, obtained by
applying Theorem 6.1.

Corollary 6.3.2. After T iterations of randomized Muffliato, and conditionally on the edges
sampled, node u ∈ V is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ≤ α∆2

2σ2

∑
w∼v

∑
t∈PT{v,w}

(W0:t)
2
uw

‖(W0:t)w‖2
.

Taking the mean over u 6= v yields:

ε̄v =
1

n

∑
u∈V\{v}

εTu→v(α) ≤ α∆2

2nσ2
Tv ,

where Tv =
∑

t<T

∑
w∼v 1{{v,w}={vt,wt}} the number of communications node v is involved in

up to time T .

Note that Tv is a Binomial random variable of parameters (T, πv) where πv =
∑

w∼v p{v,w}.
To compare with synchronous gossip (Algorithm 6.1), we note that activation probabilities
can be derived from a gossip matrix W by taking p{u,v} = 2W{u,v}/n implying that λ(p) =
2λW /n, thus requiring n times more iterations to reach the same utility as the synchronous
applications of matrix W . However, for a given time-horizon T and node v, the number of
communications v can be bounded with high probability by a T/n multiplied by a constant
whereas Algorithm 6.1 requires dvT communications. Consequently, as reported in Table 6.1,
for a fixed privacy mean εv, Algorithm 6.2 has the same utility as Algorithm 6.1, up to
two differences: the degree factor dv is removed, while

√
λW degrades to λW as we do not

accelerate randomized gossip (see Remark 6.3.1 below). Randomized gossip can thus achieve
an optimal privacy-utility trade-off with large-degree graphs, as long as the spectral gap is
small enough.

Remark 6.3.1 (Accelerating Randomized Muffliato). For simplicity, Randomized Muffliato
(Algorithm 6.2) is not accelerated, while Muffliato (Algorithm 6.1) uses Chebychev accelera-
tion to obtain a dependency on

√
λW rather than λW . Thus, and as illustrated by Table 6.1,
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Algorithm 6.2 does not improve over Algorithm 6.1 for all values of d (maximum degree), n
and λW . However, Algorithm 6.2 can be accelerated using the continuized version of Nes-
terov acceleration we developed in Chapter 2 [EHM20, EBB+21, see also], thus replacing
λ(p) in the expression of T stop in Theorem 6.3, by

√
λ(p)/(dn). Doing so, using randomized

communications improve privacy guarantees over Algorithm 6.1 for all graphs considered in
Table 6.1.

6.3.4. Erdös-Rényi Graphs

So far the graph was considered to be public and the amplification only relied on the
secrecy of the messages. In practice, the graph may be sampled randomly and the nodes
need only to know their direct neighbors. We show that we can leverage this through the
weak convexity of Rényi DP to amplify privacy between non-neighboring nodes. We focus on
Erdös-Rényi graphs, which can be built without central coordination by picking each edge
independently with the same probability q. For q = c ln(n)/n where c > 1, Erdös-Rényi
graphs are good expanders with node degrees dv = O(log n) and λW concentrating around 1
[HKP19]. We obtain the following privacy guarantees.

Theorem 6.4 (Muffliato on a random Erdös-Rényi graph). Let α > 1, T ≥ 0, σ2 ≥ ∆2α(α−1)
2

and q = c ln(n)
n for c > 1. Let u, v ∈ V be distinct nodes. After running Algorithm 6.1 with

these parameters, node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ≤


α∆2

2σ2
with probability q ,

α∆2

σ2

Tdv
n− dv

with probability 1− q .

Proof of Theorem 6.4. Theorem 6.4 is a consequence of a more general result, that we in-
stantiate below (Theorem 6.5), before introducing notations and the class of random graphs
we consider.

We fix all nodes, and in particular u the attacked node, and v the observer. We assume
that G is drawn randomly. Edges {v, w} are drawn independently from one another. The
result we prove below is just slightly more general than Theorem 6.4 that is recovered for
P ({u, v} ∈ E) = q (Erdös-Rényi random graph).

We make the following assumption: node v is only aware of its direct neighbors in the
topology of graph G, and conditionally on {v}∪N (v), the law of the graph is invariant under
any permutation over the set V \ ({v} ∪ N (v)).

Theorem 6.5 (Muffliato with a random graph). Let α > 1, T ≥ 0, σ2 ≥ ∆2α(α−1)
2 and let

the above assumptions on G be satisfied. After running Algorithm 6.1 with these parameters,
node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ≤


α∆2

2σ2
with probability P ({u, v} ∈ E) ,

α∆2

σ2

Tdv
n− dv

with probability 1− P ({u, v} ∈ E) .

Proof of Theorem 6.5. If {u, v} ∈ E , we cannot do better than εTu→v ≤ α∆2

2σ2 : v only sees
x

(0)
u +N (0, σ2) and then next messages can be seen as post-processing of this initial message

and thus do not induce further loss. This happens with probability P ({u, v} ∈ E).
Now, we reason conditionally on {v} ∪ N (v) and u /∈ N (v). Using the averaged for-
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6.4. Private Decentralized Optimization

mula (6.6), we have:

1

n

 ∑
w∈N (v)

α∆2

2σ2
+

∑
w∈V\(N (v)∪{v})

εTw→v(α)

 ≤ α∆2dvT

2nσ2
.

Here we adapted the proof of the formula: to obtain the right-handside, a value εTw→v bigger
than α∆2

2σ2 was taken, so that the formula above is also true. Then, using the fact that node v
only sees its neighbors, we can use Lemma 6.A.1 that allows us to take the mean conditionally
on v ∪N (v) (for σ2 ≥ ∆2α(α−1)

2 ), leading to

1

n

 ∑
w∈N (v)

α∆2

2σ2
+

∑
w∈V\(N (v)∪{v})

E
[
εTw→v(α) | v ∪N (v)

] ≤ α∆2dvT

nσ2
.

In fact, we write it with the expected value, but all nodes are equal since node v only
sees its neighbors. Using the invariance under permutation of E

[
εTw→v(α)v ∪N (v)

]
over

w ∈ V \ (N (v) ∪ {v}), we have that:

1

n

 ∑
w∈N (v)

α∆2

2σ2
+ (n− dv)εTu→v

 ≤ α∆2dvT

nσ2
.

Rearranging this inequality gives the result.

This result shows that with probability q, u and v are neighbors and there is no amplifi-
cation compared to LDP. The rest of the time, with probability 1 − q, the privacy matches
that of a trusted aggregator up to a degree factor dv = O(log n) and T = Õ(1/

√
λW ) = Õ(1)

[HKP19]. In particular, if several rounds of gossip averaging are needed, as in the next section
for SGD, changing the graph mitigates the privacy loss of the rounds where two nodes are
neighbors thanks to the rounds where they are not.

6.4. Private Decentralized Optimization

We now build upon Muffliato to design decentralized optimization algorithms. Each node
v ∈ V possesses a data-dependent function φv : RD → R and we wish to privately minimize
the function

φ(θ) =
1

n

∑
v∈V

φv(θ) , with φv(θ) =
1

|Dv|
∑
xv∈Dv

`v(θ, xv) , θ ∈ RD , (6.11)

where Dv is the (finite) dataset corresponding to user v for data lying in a space Xv, and
`v : RD × Xv → R a loss function. We assume that φ is µ-strongly convex, and each φv is
L-smooth, and denote κ = L/µ. We note that our results can be extended to the general con-
vex and smooth setting. Denoting by θ? the minimizer of φ, for some non-negative (ζ2

v )v∈V ,
(ρ2
v)v∈V and all v ∈ V, we assume:

‖∇φv(θ?)−∇φ(θ?)‖2 ≤ ζ2
v , E

[
‖∇`v(θ?, xv)−∇φ(θ?)‖2

]
≤ ρ2

v , xv ∼ Lv ,

where Lv is the uniform distribution over Dv. We write ρ̄2 = 1
n

∑
v∈V ρ

2
v and ζ̄2 = 1

n

∑
v∈V ζ

2
v .

We introduce Algorithm 6.3, a private version of the classical decentralized SGD algo-
rithm studied in [KLB+20]. Inspired by the optimal algorithm MSDA of [SBB+17] that
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6.4. Private Decentralized Optimization

Algorithm 6.3: Muffliato-SGD and Muffliato-GD

Input: initial points θ0
v ∈ RD, number of iterations T , step sizes ν > 0, noise variance

σ2, gossip matrices (Wt)t≥0, local functions φv, number of communication
rounds K

1 for t = 0 to T − 1 do
2 for all nodes v in parallel do
3 Compute θ̂tv = θtv − ν∇θ`v(θtv, xtv) where xtv ∼ Lv
4 θt+1

v = Muffliato
(
(θ̂tv)v∈V ,Wt,K, ν

2σ2)

alternates between K Chebychev-accelerated gossip communications and expensive dual gra-
dient computations, our Algorithm 6.3 alternates between K Chebychev-accelerated gossip
communications and cheap local stochastic gradient steps. This alternation reduces the total
number of gradients leaked, a crucial point for achieving good privacy. Note that in Al-
gorithm 6.3, each communication round uses a potentially different gossip matrix Wt. In
the results stated below, we fix Wt = W for all t and defer the more general case to Ap-
pendix 6.C, where different independent Erdös-Rényi graphs with same parameters are used
at each communication round.

Remark 6.4.1. Our setting encompasses both GD and SGD. Muffliato-GD is obtained by
removing the stochasticity, i.e., setting `v(·) = φv(·). In that case, ρ̄2 = 0.

Theorem 6.6 (Utility analysis of Algorithm 6.3). For suitable step-size parameters, for a total
number of T stop computations and T stopK communications, with:

T stop = Õ
(
κ
)
, and K =

⌈√
λW
−1

ln

(
max

(
n,

ζ̄2

Dσ2 + ρ̄2

))⌉
,

the iterates (θt)t≥0 generated by Algorithm 6.3 verify E
[
φ(θ̃out)− φ(θ?)

]
= Õ(Dσ

2+ρ̄2

µnT stop ) where

θ̃out ∈ RD is a weighted average of the θ̄t = 1
n

∑
v∈V θ

t
v until T stop.

For the following privacy analysis, we need a bound on the sensitivity of gradients with
respect to the data. To this end, we assume that for all v and xv, `v(·, xv) is ∆φ/2 Lipschitz2.

Theorem 6.7 (Privacy analysis of Algorithm 6.3). Let u and v be two distinct nodes in V.
After T iterations of Algorithm 6.3 with K ≥ 1, node u is (α, εTu→v(α))-PNDP with respect
to v, with:

εTu→v(α) ≤
T∆2

φα

2σ2

K−1∑
k=0

∑
w:{v,w}∈E

(W k)2
u,w

‖(W k)w‖2
. (6.12)

Thus, for any ε > 0, Algorithm 6.3 with T stop(κ, σ2, n) steps and for K as in Theorem 6.6,
there exists f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ≤ ε and E
[
φ(θ̃out)− φ(θ?)

]
≤ Õ

(
αD∆2

φd

µn2ε
√
λW

+
ρ̄2

nL

)
,

where d = maxv∈V dv.

The term ρ̄2

nL above (which is equal to zero for Muffliato-GD, see Remark 6.4.1) is privacy
independent. It is typically dominated by the first term, which corresponds to the utility

2This assumption can be replaced by the more general Assumption 6.C.1 given in Appendix 6.C.
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loss due to privacy. Comparing Theorem 6.7 with the results for Muffliato (Table 6.1 in
Section 6.3.2), the only difference lies in the factor D∆2

φ/µ. Note that ∆2
φ plays the role of

the sensitivity ∆2, and D appears naturally due to considering D-dimensional parameters.
On the other hand, µ is directly related to the complexity of the optimization problem
through the condition number κ: the easier the problem, the better the privacy-utility trade-
off of our algorithm. Regarding the influence of the graph, the same discussion as after
Corollary 6.3.1 applies here. In particular, for expander graphs like the exponential graph of
[YYC+21], the factor d/

√
λW is constant. In this case, converting to standard (ε, δ)-DP gives

Õ
( D∆2

φ

µn2ε2

)
, recovering the optimal privacy-utility trade-off of central DP [BST14, WYX17]

up to logarithmic factors. Remarkably, we achieve this optimal rate under a near-linear
gradient complexity of T stop(κ, σ2, n)n = Õ(κn) and near-linear total number of messages
T stop(κ, σ2, n)Kn = Õ(κn).

Remark 6.4.2 (Time-varying graphs). The analysis of Muffliato-GD/SGD presented in this
section (Theorems 6.6 and 6.7) assumes constant gossip matrices Wt = W . A more general
version of these results is presented in Appendix 6.C to handle time-varying matrices and
graphs. This can be used to model randomized communications (as previously described for
gossip averaging in Section 6.3.3) as well as user dropout (see experiments in Appendix 6.E).
Time-varying graphs can also be used to split the privacy loss more uniformly across the
different nodes by avoiding that nodes have the same neighbors across multiple gossip compu-
tations. We illustrate this experimentally for decentralized optimization in Section 6.5, where
we randomize the graph after each gradient step of Muffliato-GD.

6.5. Experiments

In this section, we show that pairwise network DP provides significant privacy gains in
practice even for moderate size graphs. We use synthetic graphs and real-world graphs for
gossip averaging. For decentralized optimization, we solve a logistic regression problem on
real-world data with time-varying Erdos-Renyi graphs, showing in each case clear gains in
privacy compared to LDP.

Averaging on synthetic graphs. We generate synthetic graphs with n = 2048 nodes and
define the corresponding gossip matrix according to the Hamilton scheme. Note that the
privacy guarantees of Muffliato are deterministic for a fixed W , and defined by Equation 6.4.
For each graph, we run Muffliato for the theoretical number of steps required for convergence,
and report in Figure 6.1a the pairwise privacy guarantees aggregated by shortest path lengths
between nodes, along with the LDP baseline for comparison. Exponential graph (generalized
hypercube): this has shown to be an efficient topology for decentralized learning [YYC+21].
Consistently with our theoretical result, privacy is significantly amplified. The shortest path
completely defines the privacy loss, so there is no variance. Erdos-Renyi graph with q =
c log n/n (c ≥ 1) [ER59], averaged over 5 runs: this has nearly the same utility-privacy trade-
off as the exponential graph but with significant variance, which motivates the time-evolving
version mentioned in Remark 6.4.2. Grid: given its larger mixing time, it is less desirable
than the two previous graphs, emphasizing the need for careful design of the communication
graph. Geometric random graph: two nodes are connected if and only if their distance is
below a given threshold, which models for instance Bluetooth communications (effective only
in a certain radius). We sample nodes uniformly at random in the square unit and choose
a radius ensuring full connectivity. While the shortest path is a noisy approximation of the
privacy loss, the Euclidean distance is a very good estimator as shown in Appendix 6.E.

Averaging on real-world graphs. We consider the graphs of the Facebook ego dataset
[LM12], where nodes are the friends of a given user (this central user is not present is the
graph) and edges encode the friendship relation between these nodes. Ego graphs typically
induce several clusters corresponding to distinct communities: same high school, same uni-
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Figure 6.1 – (a) Left: Privacy loss of Muffliato in pairwise NDP on synthetic graphs (best, worst and
average in error bars over nodes at a given distance), confirming a significant privacy amplification
as the distance increases. (b) Middle: Privacy loss of Muffliato from a node chosen at random on a
Facebook ego graph, showing that leakage is very limited outside the node’s own community. (c) Right:
Privacy loss and utility of Muffliato-GD when using different Erdös-Rényi graphs after each gradient
step, compared to a baseline based on a trusted aggregator.

versity, same hobbies... For each graph, we extract the giant connected component, choose
a user at random and report its privacy loss with respect to other nodes. The privacy loss
given by LDP is only relevant within the cluster of direct neighbors: privacy guarantees with
respect to users in other communities are significantly better, as seen in Figure 6.1b. We
observe this consistently across other ego graphs (see Appendix 6.E). This is in line with one
of our initial motivation: our pairwise guarantees are well suited to situations where nodes
want stronger privacy with respect to distant nodes.

Logistic regression on real-world data. Logistic regression corresponds to minimizing
Equation 6.11 with loss function `(θ;x, y) = ln(1 + exp(−yθ>x)) where x ∈ Rd and y ∈
{−1, 1}. We use a binarized version of UCI Housing dataset.3 We standardize the features
and normalize each data point x to have unit L2 norm so that the logistic loss is 1-Lipschitz
for any (x, y). We split the dataset uniformly at random into a training set (80%) and a test
set and further split the training set across users. After each gradient step of Muffliato-GD,
we draw at random an Erdös-Rényi graph of same parameter q to perform the gossiping step
and run the theoretical number of steps required for convergence. For each node, we keep
track of the privacy loss towards the first node (note that all nodes play the same role). We
report the pairwise privacy loss for this node with respect to all others for n = 2000 and
n = 4000 in Figure 6.1c (top). We see that, as discussed in Remark 6.4.2, time-varying
graphs are effective at splitting the privacy loss more uniformly across nodes: the privacy
gains over LDP are clear with respect to all nodes. As captured by our theory, these gains
increase with the number of nodes n in the system, and they also concentrate better around
the mean. We compare the utility of Muffliato-GD to a federated learning alternative which
uses the same parameters but aggregates noisy model updates using a trusted central server
rather than by gossiping. As seen in Figure 6.1c (bottom), both approaches behave similarly
in terms of accuracy across iterations.

Conclusion

We showed that gossip protocols amplify the LDP guarantees provided by local noise in-
jection as values propagate in the graph. Despite the redundancy of gossip that, at first sight,
could be seen as an obstacle to privacy, the privacy amplification turns out to be significant:

3https://www.openml.org/d/823
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it can nearly match the optimal privacy-utility trade-off of the trusted curator. From the
fundamental building block — noise injection followed by gossip — that we analyzed under
the name Muffliato, one can easily extend the analysis to other decentralized algorithms, such
as the dual approach proposed in [SBB+17]. Our results are motivated by the typical rela-
tion between proximity in the communication graph and lower privacy expectations. Other
promising directions are to assume that closer people are more similar, which leads to smaller
individual privacy accounting [FZ21], to design new notions of similarity between nodes in
graphs as done in personalization [EMS22a] that match the privacy loss variations, and to
study privacy attacks [PRT22].
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Appendix of Chapter 6

6.A. Preliminary Lemmas and Notations

For the privacy analysis when the graph is private and randomly sampled, we use the
following result on the weak convexity of the Rényi divergence [FMTT18b].

Lemma 6.A.1 (Quasi-convexity of Rényi divergence [FMTT18b]). Let (µi)i∈I and (νi)i∈I be
probability distributions over shared space, such that for all i ∈ I, we have Dα(µi||νi) ≤
c/(α − 1) for some c ∈ (0, 1]. Let ρ be a distribution over I and µρ and νρ be obtained by
sampling i from ρ, and outputing a sample from µi and νi. Then, we have:

Dα(µρ||νρ) ≤ (1 + c)E [Dα(µi||νi) | i ∼ ρ] .

In the following, we will use the notation u ∼ v to denote that two nodes u and v are
neighbors.

6.B. Proofs of Section 6.3

6.B.1. Privacy Analysis (Corollary 6.3.1)

Proof of Corollary 6.3.1. For a fixed gossip matrix W , we have W0:t = W t, so that Theo-
rem 6.1 reads:

f(u, v) =
α∆2

2σ2

∑
t<T

∑
w:{v,w}∈E

(W t)2
u,w

‖(W t)w‖2
.

Since W is bi-stochastic, (W t)2
u,w

‖(W t)w‖2
≤ n × (W t)2

u,w = nP
(
Xt = u|X0 = w

)2, using Cauchy-
Schwarz inequality.

Summing over the neighbors w ∼ v, we obtain, for t < T :

∑
w∼v

α

2σ2

∑
w:{v,w}∈E

(W t)2
u,w

‖(W t)w‖2
≤ αn

2σ2

∑
w∼v

P
(
Xt = u|X0 = w

)2
≤ αn

2σ2

(∑
w∼v

P
(
Xt = u|X0 = w

))2

≤ αn

2σ2

1

minw∼vW 2
v,w

(∑
w∼v

Wv,wP
(
Xt = u|X0 = w

))2

≤ αn

2σ2

1

minw∼vW 2
v,w

P
(
Xt+1 = u|X0 = v

)2
,

where the last line is obtained by observing that:∑
w∼v

Wv,wP
(
Xt = u|X0 = w

)
= P

(
Xt+1 = u|X0 = v

)
,
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by conditioning on the first step of the random walk. This leads to Corollary 6.3.1.

6.B.2. First Line of Table 6.1

The results in the first line of Table 6.1 are obtained by observing that v is involved
in dvT communications up to time T , leading to ε̄v = α∆2dvT

2σ2n2 . Using Theorem 6.2, we

have a utility of 3σ2/n for T stop = λ
−1/2
W ln

(
n
σ2 max

(
σ2, 1

n

∑
v∈V

∥∥x0
v − x̄

∥∥2
))

steps. Thus,

imposing ε̄v ≤ ε for a fixed ε > 0 gives us σ2 = α∆2dT stop

2σ2n2 , leading to a utility of

Õ
( α∆2d

2σ2
√
λW

)
.

We then instantiate this formula on graphs with known spectral gaps, as described for instance
in [MW89].

6.B.3. Second line of Table 6.1

We now explain how we obtain the second line of Table 6.1. Note that a choice p{v,w} =
2Wv,w/n for some given gossip matrix W yields probability activations. For the sake of
comparison with Muffliato with a fixed matrix, we place ourselves in this case. This leads to
πv = 2/n, so that

E [ε̄v] =
α∆2T

2n2σ2
,

and for any C > 0,

P (Tv − ETv ≥ C) ≤ exp
(
− C2

T

)
,

using Hoeffding’s inequality. We take as time-horizon T = T stop ≥ 1/λ(p) defined in Theo-
rem 6.3, leading to

P (Tv − ETv ≥ C) ≤ exp
(
− C2λW

n

)
, E [ε̄v] = Õ(

α∆2

2nσ2λW
) ,

since λ(p) = 2λW
n in our case.

The same methodology as in the synchronous case (imposing ε̄v ≤ ε for the time horizon
T stop, deriving σ2 from this and thus the resulting utility) leads to the second line of Table 6.1.

6.C. Differentially Private Decentralized Optimization

We consider Algorithm 6.3 with general time-varying matricesWt. We assume that for all
t ≥ 0, λWt ≥ λ for some fixed λ > 0. An instance of this setting is to sample different Erdös-
Rényi random graphs at each communication round and adapt Wt accordingly. Such graphs
have a spectral gap that concentrates around 1, so that for λ = 1/2, with high probability
λWt ≥ λ will be verified [HKP19].

6.C.1. Proof of Theorem 6.6 (Utility Analysis)

As before, we have a more general convergence result.

Theorem 6.8 (Utility analysis of Algorithm 6.3). Let K ≥
⌈√

λ
−1

ln
(

max
(
n, ζ̄2

Dσ2+ρ̄2

))⌉
.

For a suitable choice of step size parameters, the iterates (θt)t≥0 generated by Algorithm 6.3
verify:

E
[
φ(θ̃T )− φ(x?)

]
≤ Õ

(
ρ̄2 +Dσ2

nµT
+ L

∥∥θ0 − θ?
∥∥2
e−

T
2κ

)
,
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where θ̃T =
∑
t<T ω

tθ̄t∑
t<T ω

t is a weighted average along the trajectory of the means θ̄t = 1
n

∑
v∈V θ

t
v.

The proof of Theorem 6.8 is a direct consequence of Theorem 2 in [KLB+20], and espe-
cially the formula in their Appendix A.4. We apply their result with ρ̄2 +Dσ2 instead of their
σ̄2, τ = 1 (no varying topology), and p such that 1− p = 2(1−

√
λ)K ≤ 2 min( 1

n ,
Dσ2+ρ̄2

ζ̄2 ).

6.C.2. Proof of Theorem 6.7 (Privacy Analysis)

The function Lipschitzness can in fact be replaced by a more general assumption.

Assumption 6.C.1. We assume that, for some ∆2
φ > 0, for all v in V, and for all adjacent

datasets D ∼v D′ on v, we have:

sup
θ∈RD

sup
(xv ,x′v)∈Dv×D′v

∥∥∇x`(θ, xv)−∇x`(θ, x′v)∥∥2 ≤ ∆2
φ .

Theorem 6.9 (Privacy analysis of Algorithm 6.3). Let (Wt)0≤t<T be a sequence of gossip
matrices of spectral gap larger than λ. Let u and v be two distinct nodes in V. After T
iterations of Algorithm 6.3 with K ≥ 1, node u is (α, εTu→v(α))-PNDP with respect to v, with:

εTu→v(α) ≤
∆2
φα

2σ2

T−1∑
t=0

K−1∑
k=0

∑
w:{v,w}∈Et

(W k
t )2
u,w∥∥(W k

t )w
∥∥2 . (6.13)

Thus, for any ε > 0, Algorithm 6.3 with T stop(κ, σ2, n) steps and for K as in Theorem 6.6,
there exists f such that the algorithm is (α, f)-pairwise network DP, with:

∀v ∈ V , εv ≤ ε and E
[
φ(θ̃out)− φ(θ?)

]
≤ Õ

(
αD∆2

φd̄

n2µε
√
λ

+
ρ̄2

nL

)
,

where d̄ = supv∈V d̄v for d̄v = 1
T

∑
t<T |{w ∈ V : {v, w} ∈ Et}| the mean degree of node v

throughout time.

Proof of Theorem 6.9. The information leaked by u to v up to iteration T of Algorithm 6.3
consists in the T (stochastic) gradients locally computed at node u and gossiped through the
graph, using the Muffliato algorithm. Using Theorem 6.1 (with Assumption 6.2.1 satisfied
using Assumption 6.C.1) and a post processing inequality, round of communication t leads
to a privacy leak of:

∆2
φα

2σ2

K−1∑
k=0

∑
w:{v,w}∈Et

(W k
t )2
u,w∥∥(W k

t )w
∥∥2 ,

where Et are the edges of the graph drawn at time t. We obtain the first inequality of
Theorem 6.7 by summing this over t < T .

For the second inequality, we have, by summing:

εv =
1

n

∑
u6=v

εTu→v(α) ≤
KTd̄v∆

2
φα

2nσ2
≤
KTd̄∆2

φα

2nσ2
.

In order to reach a precision Dσ2+ρ̄2

n , are required T = O(κ ln(Dσ2/n)) iterations. Using
K = Õ(1/

√
λ), we have:

εv = O
(
d̄∆2

φα

2nσ2
κ
√
λ
−1

ln(Dσ2/n)

)
.

197



6.D. Extensions to Collusion and Group Privacy

Taking σ2 such that
d̄∆2

φα

2nσ2 κ
√
λ
−1

ln(σ2/n) = ε yields the desired result.

6.D. Extensions to Collusion and Group Privacy

In this section, we discuss natural extensions of our privacy definitions to the case of
colluding nodes, and to group privacy.

6.D.1. Presence of Colluding Nodes

Definitions The notions of pairwise network DP we introduced in Section 6.2.3 can naturally
be extended to account for potential collusions. For V ⊂ V a set of colluding nodes, we define
the view of the colluders as:

OV
(
A(D)

)
=
⋃
v∈V
OV
(
A(D)

)
,

or equivalently as:

OV
(
A(D)

)
= {(u,m(t), v) ∈ A(D) such that {u, v} ∈ E , v ∈ V } .

Below, P(V) denotes the powerset of V.
Definition 6.D.1 (Pairwise Network DP with colluders). For f : V×P(V)→ R+, an algorithm
A satisfies (α, f)-pairwise network DP if for all users u ∈ V, pairs of neighboring datasets
D ∼u D′, and any potential set of colluders V ∈ V such that u /∈ V , we have:

Dα

(
OV (A(D)) || OV (A(D′))

)
≤ f(u, V ) . (6.14)

We note f(u, V ) = εu→V the privacy leaked to the colluding nodes V from u and say that u
is (α, εu→V )-PNDP with respect to V if only inequality (6.14) holds for f(u, V ). Finally, if
for a function f : V ×P(V)→ R, inequality (6.14) holds for all (u, V ) ∈ V ×P(V) such that
u /∈ V , we say that A is (α, f)-pairwise NDP.

This definition quantifies the privacy loss of a node u with respect to the collusion of
any possible subset V of nodes, and thus generalizes the definition of the main text (which
corresponds to restricting V such that |V | = 1).

The proofs of this section are actually direct consequences of the proof techniques of our
results without colluders, by replacing Ov (the view of a colluder) by OV (the view of the
colluding set). Roughly speaking, V can be seen as a unique abstract node, resulting from
the fusion of all its nodes.

Adapting Theorem 6.1 and the Resulting Corollaries For w ∈ V and V ∈ P(V), let Pt{V,w} =

{s < t : ∃v ∈ V , {v, w} ∈ Es} the times (up to time t) at which an edge {v, w} for any v ∈ V
is activated i.e. the times at which there is a communication between w and a colluder. For
t ≥ 0 and V ⊂ V, let Nt(V ) be the neighbors in Gt of the colluders set V , defined as:

Nt(V ) = {w ∈ V \ V | ∃v ∈ V , {v, w} ∈ Et} .

For T ≥ 1,
∑

t<T |Nt(V )| is thus the total number of communications in which colluders are
involved with.

Theorem 6.10. Assume that Assumption 6.2.1 holds. Let T ≥ 1, u ∈ V and V ⊂ V such that
u /∈ V , and α > 1. Then the algorithm AT is (α, f)-PNDP with::

f(u, V ) ≤ α∆2

2σ2

∑
w∈V

∑
t∈PT{V,w}

(W0:t)
2
u,w

‖(W0:t)w‖2
. (6.15)
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Consequently, there exists f such that AT is (α, f)-PNDP with:

εV =
1

n

∑
u∈V\V

f(u, V ) ≤ α∆2

2nσ2

∑
t<T

|Nt(V )| , (6.16)

where
∑

t<T |Nt(V )| is the total number of communications a colluding set V is involved with,
up to time T .

We now consider the synchronous Muffliato algorithm (Algorithm 6.1) with colluders.

Corollary 6.D.1. Let u ∈ V and V ∈ P(V) such that u /∈ V , α > 0. After T iterations of
Algorithm 6.1, node u is (α, εTu→V (α))-PNDP with respect to V , with:

εTu→V (α) ≤ αn

2σ2
max
w∼V

W−2
v,w

T∑
t=1

P
(
Xt ∈ V |X0 = u

)2
,

where (Xt)t is the random walk on graph G, with transitions W , and w ∼ V if w /∈ V and if
there exists v ∈ V such that {v, w} ∈ E .

Corollary 6.D.2. There exists f : V × P(V) → R+ such that Algorithm 6.1 after T steps is
(α, f)-PNDP with the following privacy-utility guarantees for any V ⊂ V:

εV =
1

n

∑
u∈V\V

f(u, V ) ≤ ε ,
1

2n

∑
v∈V

E
[∥∥xout

v − x̄
∥∥2
]
≤ Õ

(
α

dV ∆2

εn2
√
λW

)
,

where xout is the output of Algorithm 6.1 after T stop(x,W, σ2) steps for σ2 = dV ∆2

2αε , and Õ
hides logarithmic factors in n and ε. dV is the degree of set V , defined as the number of
w ∈ V \ V such that there exists v ∈ V , {v, w} ∈ E.

Corollary 6.D.3 (Muffliato on a random graph with collusions). Let α > 1, T ≥ 0, σ2 ≥
∆2α(α−1)

2 and q = c ln(n)
n for c > 1. Let u ∈ V and V ∈ P(V) such that u /∈ V . After

running Algorithm 6.1 on an Erdos Rényi random graph of parameters (n, q) and under the
assumptions of Theorem 6.4, node u is (α, εTu→v(α))-PNDP with respect to colluders V , with:

εTu→V (α) ≤


α

2σ2
with probability 1− (1− q)|V |

α

σ2

TdV
n− dV

with probability (1− q)|V |
.

Compensating for Collusions with Time-Varying Graph Sampling We now consider the
decentralized optimization problem of Section 6.4 in the presence of colluders, and analyze
its privacy with time-varying graph sampling as in Appendix 6.C.2.

The motivation for this is that, if the graph is fixed, node u will suffer from poor privacy
guarantees (the same as in LDP) with respect to the colluding set V as soon as u is in N (V ) =
N0(V ) (i.e., one of colluders in V is a neighbor of u). Even if the graph is sampled randomly,
this will happen with probability that increases with |V |. In contrast, for time-varying
random graphs sampled independently at each communication round and for sufficiently
many communication rounds (i.e., large enough condition number κ), it becomes unlikely
that u is in Nt(V ) for many rounds t, and therefore the privacy guarantees with respect to
V can improve.

Below, we consider Algorithm 6.3 with time-varying graphs (and associated gossip ma-
trices (Wt)t≥0) sampled in an i.i.d. fashion at each communication round as Erdös-Rényi
graphs of parameters n, q = c ln(n)

n for some c > 1, such that they verify λWt ≥ λ > 0 for
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all t (as noted before, this happens with high probability for λ of order 1 [HKP19]). In this
context, we have the following result.

Proposition 6.D.1. Let α > 1, T ≥ 0, σ2 ≥ ∆2α(α−1)
2 . Let u ∈ V and V ∈ P(V) such that

u /∈ V . After running Algorithm 6.3 under the assumptions described above and the function
assumptions of Theorem 6.7, node u is (α, εTu→v(α))-PNDP with respect to colluders V , with:

εTu→V (α) ≤
∆2
φα

σ2

T stop∑
t=0

βt + (1− βt)
K|Nt(V )|
n− |Nt(V )| ,

where T stop = Õ(κ) and K = Õ(1/
√
λ) (see Theorem 6.6), (βt)t are i.i.d. Bernoulli random

variables of parameter P (∃v ∈ V , {u, v} ∈ Et) = 1− (1− q)|V |, and |Nt(V )| is the number of
neighbors of V in the graph sampled at iteration t, of order c|V | ln(n)

n .

Discussion Generally speaking, our bounds degrade in presence of colluding nodes. This is
a fundamental limitation of our approach that considers only privacy amplification due to
decentralization. By definition, our privacy guarantees can only provide amplification as long
as the view of the attackers is smaller than the one of the omniscient attacker considered
in local differential privacy, i.e OV (AT ) ( AT . A condition for having equality corresponds
to observing all messages that are transmitted. In the case of a fixed graph, this can be
characterized by the fact that V contains a dominating set for the graph. For Erdos Rényi
graphs or exponential graphs, there exists dominating sets of size O(log n), thus it is mean-
ingless to expect guarantees for all possible sets of colluding nodes of that size. However, if
some/most colluding nodes are actually far from the target node u in the graph, then good
privacy amplification can still be achieved. This can be precisely measured by Equation 6.15.

6.D.2. Group Privacy

Symmetrically to the problem of collusions, where there are several attackers, one can
study group privacy, where privacy guarantees are computed towards a group rather than
a single individual. This is useful when some users have correlated data (e.g., close family
members). The usual notion of group privacy [DR14, see e.g.,] would provide a guarantee
against all groups of users of a given size. However, this standard definition would provide
pessimistic guarantees in some cases as it does not take advantage of the fact that groups
may correspond to specific subgraphs. Hence, we propose the following definition.

Definition 6.D.2 (Group Pairwise Network DP). For f : V × P(V) → R+, an algorithm A
satisfies (α, f)-group pairwise network DP if for all set of users U ⊂ V, pairs of neighboring
datasets D ∼U D′, and any vertex v ∈ V, we have:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ f(U, v) . (6.17)

The modifications of the theorems are similar to the case of collusion, summing over the
nodes in U (instead of summing over the nodes in V for the case of collusion). The following
theorem gives the general case corresponding to Theorem 6.1. The other results can be
adapted in the same way.

Theorem 6.11. Let T ≥ 1 and denote by PT{v,w} = {s < T : {v, w} ∈ Es} the set of time-steps
with communication along edge {v, w}. Under Assumption 6.2.1, AT is (α, f)-group PNDP
for with:

f(U, v) =
α∆2

2σ2

∑
w∈V

∑
t∈PT{v,w}

∑
u∈U (W0:t)

2
u,w

‖(W0:t)w‖2
. (6.18)

Note that in some configurations, this bound bound is clearly sub-optimal, as summing
does not take into account cases where the information gathered by some of the nodes in the
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Figure 6.2 – Level of the privacy loss for each node (color) with respect to a fixed node in the graph.
These graphs corresponds to the graphs used in Figure 6.1a: from left to right, exponential graph,
Erdos-Renyi graph, geometric random graph and grid.
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Figure 6.3 – Privacy loss for the exponential graph with respect to the number of nodes n (following
powers of 2).

group can be seen as a post-processing of information received by other nodes in the group.
In such cases, analyzing group privacy by considering a modified graph where the nodes in
the group are merged into a single node, with edge/weights adjusted accordingly, would yield
better results.

6.E. Additional Numerical Experiments

6.E.1. Extra Synthetic graphs

Figure 6.1a summarizes the result of Muffliato according to the shortest path length.
However, other characteristics of the topology can play a role in the privacy leakage. Thus,
we show the graph representation for each of the synthetic graphs we considered in Figure 6.2.

We also report in Figure 6.3 how privacy guarantees improve when n increases for the
exponential graph. We see that privacy guarantees improve with n: distance between nodes
increases, but also the number of nodes with whom the contribution of a specific node is
mixed. This is especially significant for pairs of nodes that are not direct neighbors but at
short distance of each other.

6.E.2. Proof of Fixed Privacy Loss for Exponential Graphs

For an exponential graph, the pairwise privacy loss is fully determined by the shortest
length path, i.e f(u, v) = g(d(u, v)) where d : V → N is the function that returns the length
of the shortest path between u and v.

This result is a consequence of the invariance per vertex permutation in the hypercube.
For the hypercube with 2m vertices, each vertex can be represented by a m-tuple in {0, 1},
where there is an edge if and only if two vertices share all values of their tuple but one. Let
us now fix two pairs of vertices (u, v) and (u′, v′) with the same distance between them. To
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Figure 6.4 – Privacy towards all the nodes as function of the Euclidean distance in a random geometric
graph. We see a high level of correlation between the Euclidean distance and the privacy loss.

prove that their privacy loss is the same, it is sufficient to exhibit an graph isomorphism Φ
that sends (u, v) on (u′, v′).

By construction, d(u, v) corresponds to the number of coordinates that differ between
their tuple, and the same holds for (u′, v′). The set of equal coordinates Fix(u, v) is thus of
the same size m− d(u, v) than Fix(u′, v′). Hence we can construct a bijective function b of
the coordinates that is stable for the set of fixed coordinates

b(Fix(u, v)) = Fix(u′, v′) b({1, 2, . . . ,m} \ Fix(u, v)) = {1, 2, . . . ,m} \ Fix(u′, v′)

Finally, noting that 0 and 1 play the same role, we match each coordinate accordingly to
the value defined by our couple. We thus define our isomorphism per coordinate Φ(w) =
(Φ1(w), . . . ,Φm(w)) with Φi(w) = s(wb−1(i)) where s is the identity function if ub−1(i) = ui
and the swap function otherwise. This function is clearly an isomorphism: by construction it
is a bijection, and the edges still exist if and only if the vertices differ on only one coordinate.
We have Φ(u) = u′ and Φ(v) = v′ and thus the privacy loss is equal between the two pairs of
vertices.

6.E.3. Random Geometric Graphs

Geometric graphs are examples of possible use cases of Pairwise Network Differential Pri-
vacy. Constructing edges when nodes are at a distance below a given threshold naturally
models short-range wireless communications such as Bluetooth. In this situation, the Eu-
clidean distance between nodes is a convenient indicator for setting the privacy loss. Indeed,
it is a parameter that we can measure, and it can match the users expectations in terms
of privacy loss. For instance, if direct neighbors in the graph correspond to people within 5
meters around the sender, some information are bound to be available to them independently
of what may be revealed by the communication itself: sensitive attributes such a gender, age,
or overall physical fitness are leaked simply from physical proximity. However, the user might
have stronger privacy expectations for people far away. Hence, having privacy guarantees as
function of the Euclidean distance can be particularly interesting.

Our experiments show that the privacy loss is extremely well correlated to the Euclidean
distance, as represented in Figure 6.4. It is thus possible to design algorithms where one could
impose Pairwise Network DP for a function f(u, v) = g(‖zu − zv‖) where g is a non-increasing
function and zu and zv are the geolocation of nodes u and v.
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Figure 6.5 – Privacy loss on the 9 other Facebook Ego graphs, following the same methodology as in
Figure 6.1b.

6.E.4. Facebook Ego Graphs

We report figure on the other nine graphs of the Facebook Ego dataset, following the
same methodology and scale. Across these graphs, we can see that privacy losses depending
on visible communities is consistent through datasets, and become more consistent as the
number of nodes increase.

6.E.5. Logistic Regression on Houses Dataset

We report in Table 6.2 the parameters used in the experiments of Figure 6.1c.

6.E.6. Modeling User Dropout using Time-Varying Graphs

In Theorem 6.1, we analyzed the very generic case where the gossip matrix is arbitrary at
each time-step. Then, for deriving the convergence rate and obtaining closed-form privacy-
utility trade-offs and using acceleration, we focused on fixed gossip matrices until the conver-
gence of each gossip averaging step. In this subsection, we show empirically that we can still
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Table 6.2 – Parameter for the logistic regression

Parameters Value

# of trials 10
Step-size 0.7
# of nodes 2000 or 4000
probability of edges q log(n)/n
score Mean accuracy
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(a) – Privacy dropout
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(b) – Error dropout

Figure 6.6 – Simulation (10 runs) of a dropout scenario (with different levels of dropout) with n =
1000, where at each gossip step an Erdös-Renyi graph with parameter p = 0.002 over the set of
available users. (a) Left: Privacy loss of a node across iterations ;(b) Right: Convergence of the same
runs to the mean.

reach a good privacy-utility trade-offs when the gossip matrix change at each communication.
In particular, our experiment focuses on modelling user dropouts. Specifically, at each

time step, the availability of each node is modeled by an independent Bernouilli random
variable and we draw a new Erdos Renyi graph over the set of available nodes. We assume
that at each step, each node has the same given probability to be active so as to ensure
convergence to the mean of the values. One could design more sophisticated dropout models,
as long as the contributions of nodes remain balanced.

We vary the expected level of available nodes at each step from 10 to 90%. Note that
the number of iterations needed for convergence becomes stochastic: we thus set an arbitrary
number of iterations experimentally, and average several runs. For simplicity, we do not
perform gossip acceleration. We report several runs at each dropout level in Figure 6.6a,
and report the privacy loss and its standard deviation at each dropout level in Table 6.3.
As expected, the convergence time increases with the proportion of inactive users, but the
achievable privacy-utility trade-off is not significantly impacted. Therefore, our approach
scales gracefully difficulty to the situations where there is dropout.
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Table 6.3 – Total Privacy loss in function of dropout

Dropout Privacy loss

No dropout (1.7± 0.6)× 10−2

10% dropout (1.8± 0.6)× 10−2

50% dropout (1.5± 0.7)× 10−2

90% dropout (1.4± 0.6)× 10−2
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Chapter 7

Stochastic gradient descent under Markovian
sampling schemes

All the decentralized algorithms considered so far are gossip based decentralized algorithms or
variations of gossip algorithms. Their advantage is that they allow to parallel computations,
while performing underlying communications all over the graph. However, gossipping is not
the only communication solution: instead, one might consider a random-walker in the graph
– a token – that consists of the model to be updated. Once at some node location, the
token updates the value of the model using the node’s local data and when this is done,
the updated model continues its random walk. Such algorithms have been used as privacy
preserving algorithms and studied as such [CB20].

These token random-walk based algorithms differ from gossip algorithms, and are linked
to a variation of vanilla stochastic gradient descent where the optimizer only has access to
a “Markovian sampling scheme”: Markov chain SGD. These schemes encompass applications
that range from decentralized optimization with a random walker (token algorithms), to RL
and online system identification problems.

This chapter focuses on obtaining rates of convergence for these methods under the least
restrictive assumptions possible on the underlying Markov chain and on the functions op-
timized. We first unveil the theoretical lower bound for methods that sample stochastic
gradients along the path of a Markov chain, making appear a dependency in the hitting
time of the underlying Markov chain. We then study Markov chain SGD (MC-SGD) under
much milder regularity assumptions than prior works. We finally introduce MC-SAG, an
alternative to MC-SGD with variance reduction, that only depends on the hitting time of the
Markov chain, therefore obtaining a communication-efficient token algorithm.

7.1. Introduction

In this chapter, as explained above, we consider a stochastic optimization problem that
takes root in decentralized optimization, estimation problems, and Reinforcement Learning.
Consider a function f defined as:

f(x) = Ev∼π [fv(x)] , x ∈ Rd , (7.1)

where π is a probability distribution over a set V, and fv are smooth functions on Rd for all v
in V. Classicaly, this represents the loss of a model parameterized by x on data parameterized
by v. If i.i.d. samples (vt)t≥0 of law π and their corresponding gradient estimates (∇fvt) were
accessible, one could directly apply SGD-like algorithms, that have proved to be efficient
in large scale machine learning problems [BCN18]. We however consider in this chapter
a different setting: we assume the existence of a Markov chain (vt) of state space V and
stationary distribution π. The optimizer may then use biased stochastic gradients along the
path of this Markov chain to perform incremental updates. She may for instance use the
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Markov chain SGD (MC-SGD) algorithm, defined through the following recursion:

xt+1 = xt − γ∇fvt(xt) . (7.2)

Being “ergodically unbiased”, such iterates should behave closely to those of vanilla SGD. The
analysis is however notoriously difficult, since in (7.2), variable xt and the current state of
the Markov chain vt are not independent, so that E [∇fvt(xt)|xt] can be arbitrarily far from
∇f(xt). This chapter focuses on analyzing algorithms that incrementally sample stochastic
gradients alongside the Markov chain (vt), motivated by the following applications.

7.1.1. Token algorithms

Traditional machine learning optimization algorithms require data centralization, raising
scalability and privavy issues, hence the alternative of Federated Learning, where users’ data
is held on device, and the training is orchestrated at a server level. Decentralized optimization
goes further, by removing the dependency over a central entity, leading to increased scalability,
privacy and robustness to node failures, broadening the range of applications to IoT (Internet
of Things) networks. In decentralized optimization, users (or agents) are represented as nodes
of a connected graph G = (V, E) over a finite set of users V (of cardinality n). The problem
considered is then the minimization of

f(x) =
1

n

∑
v∈V

fv(x) , x ∈ Rd , (7.3)

where each fv is locally held by user v ∈ V, using only communications between neighboring
agents in the graph. There are several known decentralized algorithmic approaches to mini-
mize f under these constrains. The prominent one consists in alternating between communi-
cations using gossip matrices [BGPS06, DKM+10] and local gradient computations, until a
consensus is reached. These gossip approaches suffer from a high synchronization cost (nodes
in the graph are required to perform simultaneous operations, or to be aware of operations
at the other end of the communication graph) that can be prohibitive if we aim at removing
the dependency on a centralized orchestrator. Further, a high number of communications
are required to reach consensus, whether all nodes in the graph (as in synchronous gossip) or
only two neighboring ones (as in randomized gossip) communicate at each iteration. To alle-
viate these communication burdens, based on the original works of [LS07, JRJ07, JRJ10], we
study algorithms based on Markov chain SGD: a variable x performs a random walk on graph
G, and is incrementally updated at each step of the random walk, using the local function
available at its location. This approach thus boils down to the one presented above with the
function defined in (7.1), where V is the (finite) set of agents, π is the uniform distribution
over V, and (vt) is the Markov chain consisting of the consecutive states of the random walk
performed on graph G. The random walk guarantees that every communications are spent
on updating the global model, as opposed to gossip-based algorithms, where communications
are used to reach a running consensus while locally performing gradient steps.

These algorithms are referred to as token algorithms: a token (that represents the model
estimate) randomly walks the graph and performs updates during its walk. There are two
directions to design and analyze token algorithms. [JRJ07] designed and analyzed its algo-
rithm using, based on SGD with subdifferentials and a Markov chain sampling (consisting
of the random walk). Following works [DAJJ11, SSY18] tried to improve convergence guar-
antees of such stochastic gradient algorithms with Markov chain sampling, under various
scenarii (mirror SGD e.g.). However, all these analyses rely on overly strong assumption:
bounded gradients and/or bounded domains are assumed, and the rates obtained are of the
form τmix/T +

√
τmix/T for a number T of steps, where τmix is the mixing time of the under-

lying Markov chain. More recently, [DL22] obtained similar rates under similar assumptions
(bounded losses and gradients), but without requiring any prior knowledge of τmix, using
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adaptive stepsizes.
A more recent approach consists in deriving token algorithms from Lagrangian duality

and from variants of coordinate gradient methods or ADMM algorithms with Markov chain
sampling. [MYH+20] introduce the Walkman algorithm, whose analysis works on any graph,
and obtain rates of τ2

mixn
T to reach approximate-stationary points, while [Hen22] introduced

a more general framework, but whose analysis only works on the complete graph (and is
thus equivalent to an i.i.d. sampling). The analysis of [Hen22] can however be extended to
arbitrary graph, by performing gradient updates every τmix steps of the random walk (thus
mimicking i.i.d.-ness), obtaining a a dependency on τmixn, making their algorithm state of
the art for these problems. Altenatively, [WLYZ22] studies the algorithm stability of MC-
SGD in order to derive generalization upper-bounds for this algorithm, and [SLW22] provides
and studies adaptive token algorithms. Recently, and concurrently to this work, [Doa23] also
studies MC-SGD without smoothness; however, their dependency on the mixing time of the
random walk (in their Theorem 1) scales as exp(cτmix): this is prohibitive as soon as the
mixing time becomes larger than O(1).

In summary, current token algorithms and their analyses either rely on strong noise and
regularity assumptions (e.g. bounded gradients), or suffer from an overly strong dependency
on Markov chain-related quantities (as in [MYH+20, Hen22]).

The token algorithms we consider are to be put in contrast with consensus-based de-
centralized or gossip algorithms (with fixed gossip matrices [DKM+10] or with randomized
pairwise communications [BGPS06]) considered in the previous chapters. They originally
were introduced to compute the global average of local vectors through peer-to-peer commu-
nication. Among the classical decentralized optimization algorithms, some alternate between
gossip communications and local steps [NO09, KSJ19, KLB+20], others use dual formulations
and formulate the consensus constraint using gossip matrices to obtain decentralized dual or
primal-dual algorithms [SBB+17, HBM19, EBB+21, KGGR21b, AS19], and benefit from nat-
ural privacy amplification mechanisms [CEBM22]. Other approaches include non-symmetric
communication matrices [AR21] that are more scalable. We refer the reader to [NOR18] for a
broader survey on decentralized optimization. The works we relate to in this line of research
are [KLB+20], where a unified analysis of decentralized SGD is performed (the “gossip equiv-
alent” of our algorithm MC-SGD), and in particular contains rates for convex-non-smooth
functions, and [YJY19], that performs an analysis of decentralized SGD with momentum in
the smooth-non-convex case, which is the “gossip equivalent” of our algorithm MC-SAG.

7.1.2. Reinforcement Learning problems and online system identification

In several applications (RL, time-series analysis e.g.), a statistician may have access to
values (Xt)t≥0 generated sequentially along the path of a Markov chain, observations from
which she wishes to estimate a parameter For instance, [KNJN21] consider a sequence of
observations Xt+1 = A?Xt + ξt for ξt i.i.d. centered noise, and A? to estimate, and aim
at finding Â minimizing the MSE E

[∥∥∥∑t<T (Â−A?)X
∥∥∥] where X ∼ π is the stationary

distribution. Studying this problem under the lens of stochastic optimization, this boils down
to building efficient strategis for SGD under Markov chain sampling, beyond the case of linear
mean-squared regressions studied in [KNJN21]. While optimal offline policies have extensively
been studied in this setting [JP19, SMT+18], online algorithms that take the form of SGD-
like algorithms have received little attention, and only focus on the case of quadratic losses
and Markov chain as described above (i.e., Markov chains of the form Xt+1 = A?Xt + ηt).
Under these specific assumptions, [NWB+20] prove that a dependency on τmix for MC-SGD
is inevitable, while using reverse-experience replay, [KNJN21] obtains sample-optimal online
algorithms. Their algorithm however require to store a number of iterates that grow linearly
with τmix.

The convergence guarantees we prove in the sequel for SGD under Markov chain sam-
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pling fit in this online framework, and refine previous analyses by removing strong regularity
assumptions such as bounded iterates or bounded gradients [SSY18], or strong assumptions
on the Markovian structure data and least-squares problems [NWB+20, KNJN21].

Finally, note that in our setting, the iterates of the algorithms considered (denoted as
(xk)k≥0) and the Markov chain (vk)k≥0 are dependent of each other. More precisely, (vk)k≥0

is a Markov chain whose states do not depend on the iterate sequence, while xk is (v`)`≤k−1-
measurable. This setting is sometimes referred to as exogenous Markov noise [Rus86]. An-
other line of works, pioneered by [BMP90], considers Markov transitions for (vk) where
vk+1|vk is sampled using a Markov transition kernel Px0,...,xk−1

that is directly linked to
the iterates. This orthogonal line of work of stochastic approximation with Markovian noise
is related to sampling (through the MCMC algorithm), adaptive filtering, and other related
problems that involve exploration [BR85, AMP05, AM06, FMSV16, BL23]. Our work aims
at finding precise rates of convergence as in the convex or non-convex optimization literature
[Bub15, CDHS21], under the mildest assumptions on the exogenous Markov-chain (vk)k≥0.

7.1.3. Outline of this chapter

In this chapter, we analyze theoretically stochastic gradient methods with Markov chain
sampling (such as MC-SGD in Equation (7.2)), and aim at deriving complexity bounds under
the mildest assumptions possible. We first derive in Section 7.3 complexity lower bounds
for such methods, making appear τhit as the Markov chain quantity that slows down such
algorithms.

We then study MC-SGD under various regularity assumptions in Section 7.4: we remove
the bounded gradient assumption of all previous analyses, obtain rates under a µ-PL assump-
tion, and prove a linear convergence in the interpolation regime, where noise and function
dissimilarities only need to be bounded at the optimum.

In the data-heterogeneous setting (functions fv that can be arbitrarily dissimilar) and in
the case where V (the state space of the Markov chain) is finite, we introduce MC-SAG in
Section 7.5, a variance-reduced alternative to MC-SGD, that is perfectly suited to decentral-
ized optimization. Using time adaptive stepsizes, this algorithm has a rate of convergence of
τhit/T and thus matches that of our lower bound, up to acceleration.

We discuss in Section 7.6 the implications of our results. In particular, we prove that
random-walk based decentralization is more communication efficient than consensus-based
approaches; prior to our analysis, this was only shown empirically [MYH+20, JRJ10]. Further,
our results formally prove that using all gradients along the Markov chain trajectory leads
to faster rates; as in the previous case, this was only empirically observed before [SSY18].
These two consequences are derived from the fact that MC-SAG depends only on τhit rather
than the traditionally used quantity nτmix, that can be arbitrarily bigger (Table 7.2).

7.2. Markov chains preliminaries

7.2.1. Definitions and notations

We refer the interested reader to [LPW06] for a thorough introduction to Markov chain
theory. In this section, we define mixing, hitting and cover times for a Markov chain on a
finite space set V of cardinality n. However, note that these definitions can be extended to
the more general setting where V is infinite (either countable or not). In this chapter, all
results that involve only the mixing time of the Markov chain (the results from Section 7.4)
easily generalize to infinite state spaces.

Definition 7.2.1. Let P ∈ RV×V be a stochastic matrix ( i.e. Pv,w ≥ 0 for all v, w ∈ V
and

∑
w∈V Pv,w = 1 for all v ∈ V). A time-homogeneous Markov chain on V of transition

matrix P is a stochastic process (Xt)t≥0 with values in V such that, for any t ≥ 0 and
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w, v0, . . . , vt−1, v ∈ V,

P (Xt+1= w|Xt=v,Xt−1 =vt−1, . . . , X0 =v0) = Pv,w .

A Markov chain of transition matrix P is irreducible if, for any v, w ∈ V, there exists t ≥ 0
such that (P t)vw > 0. A Markov chain of transition matrix P is aperiodic if there exists t0 > 0
such that for all t ≥ t0 and v, w ∈ V, (P t)v,w > 0. Any irreducible and aperiodic Markov
chain on V admits a stationary distribution π, that verifies πP = π. It finally holds that, if P
is reversible (πvPv,w = πwPw,v for all v, w ∈ V), denoting as λP = 1−maxλ∈Sp(P )\{1} |λ| > 0
the absolute spectral gap of P , where Sp(P ) is the spectrum of P , for any stochastic vector
π0 ∈ RV : 1 ∥∥π0P

t − π
∥∥
π
≤ (1− λP )t‖π0 − π‖π .

If the chain is not reversible, there is still a linear decay, but in terms of total variation
distance rather than in the norm ‖·‖π (Chapter 4.3 of [LPW06]). In the sequel, (vt)t≥0 is any
irreducible aperiodic Markov chain of transition matrix P on V of stationary distribution π
(not necessarily the uniform distribution on V).

Furthermore, we define the graph G = (V, E) over the state space V through the relation
{v, w} ∈ E ⇐⇒ Pv,w > 0 for v and w two distinct states. Consequently, the Markov chain
(vt)t can also be seen as a random walk on graph G, with transition probability P . In the
random walk decentralized optimization case, this graph coincides with the communication
graph. In the sequel, for t ≥ 0 and v ∈ V, E [·|vt = v] and P (·|vt = v) respectively denote the
expectation and probability conditioned on the event vt = v. Similarly for πt a probability
distribution on V, E [·|vt ∼ πt] and P (·|vt ∼ πt) refers to conditioning on the law of vt.

Definition 7.2.2 (Mixing, hitting and cover times). For w ∈ V, let τw = inf {t ≥ 1 | vt = w} be
the time the chain reaches w (or returns to w, in the case v0 = w). We define the following
quantities.

1. Mixing time. For ε > 0, the mixing time τmix(ε) of (vt) is defined as, where dTV is the
total-variation distance:

τmix(ε) = inf
{
t ≥ 1 | ∀π0 , dTV(P tπ0, π) ≤ ε

}
,

and we define the mixing time τmix as τmix = τmix(πmin/2), where πmin is the stationary
distribution. 2 where πmin = minv∈V πv.

2. Hitting and cover times. The hitting time τhit and cover time τcov of (vt) are defined
as:

τhit = max
(v,w)∈V2

E [τw|v0 = v] ,

τcov = max
v∈V

E
[
max
w∈V

τw|v0 = v

]
.

The mixing time is the number of steps of the Markov chain required for the distribution of
the current state to be close to the stationary probability π. Starting from any arbitrary v0,
the hitting time bounds the time it takes to reach any fixed w, while the cover time bounds the
number of steps required to visit all the nodes in the graph.

Under reversibility assumptions, we defined the relaxation time of the Markov chain as
τrel = 1/λP .

1we write ‖z‖2π =
∑
v∈V πvz

2
v for z ∈ RV , and ‖·‖ always stands for the Euclidean norm

2this definition of mixing time is not standard: [LPW06] define it as τmix(1/4), [MYH+20] define it as we
do; however, as explained in Chapter 4.5 of [LPW06], these definitions are equivalent up to a factor ln(1/πmin)
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7.2.2. Relation between mixing, hitting and cover times

We first begin by the two following lemmas, that compare the three quantities introduced
above: mixing, hitting and cover times. The first one is very classical, and bounds the
mixing time in terms of 1/λP , in the case where the chain is reversible; we provide a proof for
completeness. The second lemma we provide bounds the hitting time of the Markov chain
with the mixing time. This result is somewhat less classical, and is not present in the classical
Markov chain literature surveys.

Lemma 7.2.1 (τmix and λP ). For any ε > 0, if the chain is reversible:

τmix(ε) ≤
⌈

1

λP
ln(ε−1π−1

min)

⌉
,

so that τmix ≤
⌈

1
λP

ln(π−2
min/2)

⌉
.

Proof. We have:

dTV(P tπ0, π) =
1

2

∑
w∈V
|(P tπ0)w − πw|

≤ 1

2πmin

∑
w∈V

πw|(P tπ0)w − πw|

≤ 1

2πmin

√
‖P tπ0 − π‖2π

≤ (1− λP )t

2πmin
‖π0 − π‖π

≤ (1− λP )t

πmin
,

so that |(P t)v,w − πw| ≤ ε for t ≥ λ−1
P ln(π−1

minε
−1/2).

Lemma 7.2.2 (Mixing times and hitting times).

τhit ≤ 2π−1
minτmix ,

so that if π is the uniform distribution over V, τhit ≤ 2nτmix.

Proof. for any v, w ∈ V,

E [τw|v0 = v] =
∑
k≥1

P (τw ≥ k|v0 = v)

≤
∑
`≥0

P (τw > `τmix|v0 = v) .

Then, for ` ≥ 0,

P (τw > (`+ 1)τmix|v0 = v) = P (τw > (`+ 1)τmix|τw > `τmix, v0 = v)P (τw > `τmix|v0 = v) ,

and, conditioning on v`τmix
, P (τw > (`+ 1)τmix|τw > `τmix, v`τmix

) ≤ P
(
v(`+1)τmix 6= w|v`τmix

)
.

By definition of τmix, we have that P
(
v(`+1)τmix 6= w|v`τmix

)
≤ (1− πw/2), so that:

P (τw > (`+ 1)τmix|v0 = v) ≤ (1− πw/2)P (τw > `τmix|v0 = v) ,
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and P (τw > `τmix|v0 = v) ≤ (1− πw/2)` by recursion. Finally,

E [τw|v0 = v] ≤ τmix

∑
`≥0

(1− πw/2)`

≤ 2τmix

πw
,

concluding the proof by taking the maximum over w.

Matthews’ bound for cover times The following result bounds the cover time of the Markov
chain: it is in fact closely related to its hitting time, and the two differ with a most a factor
ln(n). This surprising result is proved in a very elegant way in the survey [LPW06], using
the famous Matthews’ method [Mat88].

Theorem 7.1 (Matthews’ bound for cover times). The hitting and cover times of the Markov
chain verify:

τcov ≤
(
n−1∑
k=1

1

k

)
τhit .

A bound on the hitting time of regular and symetric graphs Using results from [Rao12],
we relate the hitting time of symmetric regular graphs (in a sense that we define below) to
well-known graph-related quantities: number of edges |E|, diameter δ and degree d.

Lemma 7.2.3 (Bounding hitting times of regular graphs). Let (vt) be the simple random walk
on a d-regular graph G of diameter δ, that satisfies the following symetry property: for any
{u, v}, {v, w} ∈ E, there exists a graph automorphism that maps v to w. Then, we have:

τhit ≤
2|E|δ
d

Proof. Using Theorem 2.1 of [Rao12], for {v, w} ∈ E , we have

E [τw|v0 = v] =
2|E|
d

,

where |E| is the number of edges in the graph. Let v and w in V, at distance δ′ ≤ δ.
There exists nodes v = v(0), v(1) . . . , v(δ′ − 1), v(δ′) = w such that for all 0 ≤ s < δ′,
{v(s), v(s+ 1)} ∈ E , and by using the Markov property:

E [τw|v0 = v] ≤
∑
s<δ′

E
[
τv(s+1)v0 = v(s)

]
≤ δ2|E|

d
.

7.3. Oracle complexity lower bounds under Markov chain sampling

In this section, we provide oracle complexity lower bounds for finding stationary points
of the function f defined in (7.3), for a class of algorithms that satisfy a “Markov sampling
scheme”. For a given Markov chain (vt) on V, we consider algorithms verifying the following
procedural constraints, for some fixed initializationM0 = {x0} an then for t ≥ 0,

1. A iteration t, the algorithm has access to function fvt and may extend its memory:

Mt+1 = Span({x , ∇fvt(x) , x ∈Mt}) .
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2. Output: the algorithm specifies an output value xt ∈Mt.

We call algorithms verifying such constraints “black box procedures with Markov sampling (vt)”.
Such procedures as well as the result below are inspired by the distributed black-box pro-
cedures defined in [SBB+17]. We use the notation a(·) = Ω(b(·)) for ∃C > 0 such that
a(·) ≥ Cb(·) in the theorem below, and classically consider the limiting situation d→∞, by
assuming we are working in `2 =

{
(θk)k∈N ∈ RN :

∑
k θ

2
k <∞

}
.

Theorem 7.2. Assume that τv (see Definition 7.2.2) has finite second moment for any v ∈ V.
Let ∆, B > 0, L > 0 and µ > 0, denote κ = L/µ. Let x0 be fixed.

1. Non-convex lower bound: there exist functions (fv)v∈V such that f =
∑

v∈V πvfv is L-
smooth, and f(x0)−minx f(x) ≤ ∆ and such that for any T and any Markov black-box
algorithm that outputs xT after T steps, we have:

‖∇f(xT )‖2 = Ω

(
L∆

(τhit

T

)2
)
.

2. Convex lower bound: there exist functions (fv)v∈V such that f =
∑

v∈V πvfv is convex
and L-smooth and minimized at some x? that verifies

∥∥x0 − x?
∥∥2 ≤ B2, and such that

for any T and any Markov black-box algorithm that outputs xT after T steps, we have:

f(xT )− f(x?) = Ω

(
LB2

(τhit

T

)2
)
.

3. Strongly convex lower bound: there exist functions (fv)v∈V such that f =
∑

v∈V πvfv is
µ-strongly convex and L-smooth and minimized at some x? that verifies

∥∥x0 − x?
∥∥2 ≤

B2, and such that for any T and any Markov black-box algorithm that outputs xT after
T steps, we have:

f(xT )− f(x?) = Ω

(
LB2 exp

(
− T√

κτhit

))
.

Proof overview, non-convex case. For x ∈ `2 and k ∈ N, denote by x(k) its kth coordinate.We
split the function defined in Section 3.2 of [CDHS21] (inspired by the “most difficult func-
tion in the world” of [Nes14]) between two nodes v, w ∈ V maximizing E [τw|v0 = v], by
setting πvfv(x) = 1

2

∑
k≥1 2x(2k)2 − 2x(2k− 1)x(2k) + 1

2αx(0)2 − bx(0) + α
2 and πwfw(x) =

1
2

∑
k≥0 2x(2k+1)2−2x(2k+1)x(2k) for some b, α > 0. Then, defining T0 = τv and for t ≥ 0,

T2k+1 = inf {t ≥ T2k | vt = w} and
T2k+2 = inf {t ≥ T2k+1 | vt = w} ,

so that any black box procedure with Markov sampling vt with x0 = 0 satisfies, for any
t ≤ Tk, xt ∈ Span(e0, . . . , ek−1) (where (ei) is the canonical basis of `2) for any k ≥ 0.
Consequently, for t ≤ Tk, one has, using results from [CDHS21]:

‖∇f(xt)‖2 ≥
L∆

16k2
.

For any t ≥ 0, there exists some k(t) ≥ 0 such that Tk(t) ≤ t < Tk(t)+1, yielding E
[
‖∇f(xt)‖2

]
≥

E
[

L∆
16k(t)2

]
≥ L∆

16E[k(t)]2
using Jensen inequality. Finally, we prove a bound of the form

Ek(t) = O(t/τhit), concluding the proof.
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A complete proof can be found in Appendix 7.A. The hitting time of the Markov chain
bounds the mean time it takes to reach any other state in the graph, starting from any point
in V. Making no other assumptions than smoothness, having rates that depend on this hitting
time is thus quite intuitive.

7.4. Analysis of Markov-Chain SGD

We have shown in last subsection that, in order to reach an ε-stationary point with
Markov sampling, the optimizer is slowed down by the hitting time of the Markov chain;
this lower bound being worst-case on the functions (fv), we here add additional similarity
assumptions, that are still milder than classical ones in this setting [SSY18].Studying the
iterates generated by (7.2), we obtain in this section a dependency on τmix, provided bounded
gradient dissimilarities (Assumptions 7.4.1 and 7.4.3).

We here assume that (vt)t≥0 is a Markov chain on V of invariant probability π (not
necessarily the uniform measure on V). Our analysis of Markov chain SGD does not rely
on finite state spaces: V is not assumed to be finite (it can be any infinite countable, or
continuous space). In this section, the function f studied is defined as

f(·) = Ev∼π[fv(·)] ,

as in (7.1). Consequently, for the MC-SGD algorithm for decentralized optimization over a
given graph G to minimize the averaged function over all nodes (as in (7.3)), π needs to be
the uniform probability over V.

We first derive convergence rates under smoothness assumptions with or without a µ-PL
inequality that holds, before improving our results under strong convexity assumptions, under
which we prove a linear convergence rate in the interpolation regime. We finally add local
noise (due to sampling, or additive gaussian noise to enforce privacy) in the final paragraph
of this Section.

7.4.1. Analysis under bounded gradient dissimilarities

Assumption 7.4.1. There exists (σ2
v)v∈V such that for all v ∈ V and all x ∈ Rd, we have3:

‖∇fv(x)−∇f(x)‖2 ≤ σ2
v ,

and we denote σ̄2 = Ev∼π
[
σ2
v

]
and σ2

max = maxv∈V σ2
v .

Assumption 7.4.2. Each fv is L-smooth, f is lower bounded, its minimum is attained at some
x? ∈ Rd.

Theorem 7.3 (MC-SGD). Assume that Assumptions 7.4.1 and 7.4.2 hold, and let ∆ ≥ f(x0)−
f(x?) + σ2

max/L.

1. For a constant time-horizon dependent step size γ ( i.e., γ is a functiion of T ), the
iterates generated by Equation (7.2) satisfy, for T ≥ 2τmix ln(τmix): 4

E‖∇f(x̂T )‖2 =Õ
(

∆Lτmix

T
+

√
L∆σ̄2τmix + σ̄2

√
T

)
,

where x̂T is drawn uniformly at random amongst x0, . . . ,xT−1.

2. If f additionally verifies a µ-PL inequality (for any x ∈ Rd, ‖∇f(x)‖2) ≥ 2µ(f(x) −
f(x?))), for a constant time-horizon dependent step size γ, the iterates generated by

3this assumption could be replaced by a more relaxed noise assumption of the form ‖∇fv(x)−∇f(x)‖2 ≤
M‖∇f(x)‖2 + σ2

v
4Õ hides logarithmic factors
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Equation (7.2) satisfy, for T ≥ 2τmix ln(τmix) a numerical constant c > 0, and κ = L/µ,
with FT = E [f(xT )− f(x?)]:

FT ≤ e−
cT

κτmix ln(T ) ∆ + Õ
(
τmixσ̄

2

µT

)
,

The proof of Theorem 7.3 is quite tedious, and is deferred to Appendix 7.B, where we
enforce a delay of order τmix and rely on recent analyses of delayed SGD and SGD with biased
gradients. As explained in the introduction, removing the bounded gradient assumption
present in previous works [JRJ10, SSY18, DAJJ11] that study Markov chain SGD (in the
mirror setting, or with subdifferentials), and replacing it by a much milder and classical
assumption of bounded gradient dissimilarities [KKM+20], we thus still managed to obtain
similar rates. Further, if f verifies a µ-PL inequality (if for any x ∈ Rd, ‖∇f(x)‖2) ≥
2µ(f(x)−f(x?))), we have an almost-linear rate of convergence: this is the first rate under µ-
PL or strong convexity assumptions for MC-SGD-like algorithms, that we even refine further
in next subsection.

7.4.2. Tight rates and linear convergence in the interpolation regime

We now study MC-SGD under the following assumptions, to derive faster rates, that only
depend on the sampling noise at the optimum. The interpolation regime – often related to
overparameterization – refers to the case where there exists a model x? ∈ Rd minimizing all
fv for v ∈ V, leading to σ2

? = 0 in Assumption 7.4.4, and to a linear convergence rate below.

Assumption 7.4.3. Functions fv are L-smooth and µ-strongly convex. We denote κ = L/µ.

Assumption 7.4.4 (Noise at the optimum). Let x? be a minimizer of f . We assume that for
some σ? ≥ 0, we have for all v ∈ V:

‖∇fv(x?)‖2 ≤ σ2
? .

Theorem 7.4 (Unified analysis). Under Assumptions 7.4.3 and 7.4.4, the sequence generated
by (7.2) satisfies, if γL < 1:

E
[
‖xT − x?‖2

]
≤ 2(1− γµ)T ‖x0 − x?‖2

+ 2
γ3TL

µ

∑
0≤s≤T

(1− γµ)T−sE

∥∥∥∥∥∥
∑
s≤t<T

∇fvt(x?)

∥∥∥∥∥∥
2 .

In the interpolation regime, ∇fv(x?) = 0 for all v ∈ V, so that:

E
[
‖xT − x?‖2

]
≤ 2(1− γµ)T ‖x0 − x?‖2 .

Proof of Theorem 7.4. Fix some y0 ∈ Rd and let (yt) be defined with the recursion

yt+1 = yt − γ∇fvt(x?, ξt) .

We now introduce and prove the following lemma.

Lemma 7.4.1. For any yt ∈ Rd and t ≥ 0, denoting yt+1 = yt − γ∇fvt(x?), we have:

‖xt+1 − yt+1‖2 ≤ (1− γµ)‖xt − yt‖2 + γL‖yt − x?‖2 .

Proof of Lemma 7.4.1. Denote ft = fvt(·). We expand:

‖xt+1 − yt+1‖2 = ‖xt − yt‖2 − 2γ〈∇ft(xt)−∇ft(x?),xt − yt〉+ γ2‖∇ft(xt)−∇ft(x?)‖2 .
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Using the three points equality as [MKR20], we have:

−2γ〈∇ft(xt)−∇ft(x?),xt − yt〉 = −2γDft(yt,xt)− 2γDft(xt,x
?) + 2γDft(yt,x

?) .

First, −2γDft(yt,xt) ≤ −γµ‖xt − yt‖2 using strong convexity. Then, −2γDft(xt,x
?) cancels

the term γ2‖∇ft(xt)−∇ft(x?)‖2 ≤ 2γ2LDft(xt,x
?) for γ ≤ 1/L, using smoothness of ft.

And finally, using smoothness again, 2γDft(yt,x
?) ≤ γL‖yt − x?‖2, concluding the proof.

Unrolling Lemma 7.4.1, we have, for a fixed time horizon T :

‖xT − yT ‖2 ≤ (1− γµ)T ‖x0 − y0‖2 + γL
∑
t<T

(1− γµ)T−t‖yt − x?‖2 .

This is possible, since the descent lemma is deterministic, in the sense that no expectations
are taken so far. Since we want control over the distance to the optimum, we wish to have
yT = x?, leading to:

y0 = x? + γ
∑
t<T

∇fvt(x?, ξt) , ys = x? + γ
∑
s≤t<T

∇fvt(x?, ξt) , s < T .

We thus have:

E‖xT − x?‖2 ≤ 2(1− γµ)T

E‖x0 − x?‖2 + γ2E

∥∥∥∥∥∑
s<T

∇fvs(x?)
∥∥∥∥∥

2


+ γ3L
∑
t<T

(1− γµ)T−tE

∥∥∥∥∥∥
∑
t≤s<T

∇fvs(x?)

∥∥∥∥∥∥
2 .

The result in Theorem 7.4 is in fact true irrespectively of the sequence (vt) chosen: it
does not require (vt) to specifically be a Markov chain. This property is used in the next
Corollary, that also highlights the fact that by studying distance to the optimum, a condition
number is lost in the process. This is the case in many previous analyses of other different
algorithms (e.g., Bregman/Mirror-SGD [DEH21] or SGD with random-resfhuffling [MKR20],
which is in fact a particular instance of MC-SGD, that our analysis recovers), that study
distances to the optimum (with respect to some mirror map, in the case of Mirror SGD), and
therefore obtain an extra κ factor in the noise term. Theorem 7.4 is proved by generalizing
the proof technique of [MKR20] to arbitrary orderings and for unbounded time horizons.

Remark 7.4.1 (Random resfhuffling). A special case of Theorem 7.4 is SGD with random
reshuffling. By analyzing SGD with random-reshuffling as SGD with a Markovian ordering
(on an extended state space), Theorem 1,2 also recover rates for SGD with random reshuffling
for which we have τmix = n. Moreover, since Theorem 7.4 generalizes Theorem 1 of [MKR20],

we also recover their rate as a special case by bounding each term E
[∥∥∥∑s≤t<T ∇fvt(x?)

∥∥∥2
]
.

We specify Theorem 7.4 under a Markovian sampling scheme in next corollary: the noise
term at the optimum takes the form τmix/T .

Corollary 7.4.1 (MC-SGD, interpolation). Under Assumptions 7.4.3 and 7.4.4, for T ≥ 1
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and for a well chosen stepsize γ > 0, the iterates generated by (7.2) satisfy:

E
[
‖xT − x?‖2

]
≤ 2e−

T
κ ‖x0 − x?‖2

+ Õ
(
Lτmix

(
1
4

)
σ2
?

µ3T

)
.

Proof of Corollary 7.4.1. This corollary is a consequence of Theorem 7.4 and the following
lemma.

Lemma 7.4.2. For any T ≥ 1, we have:

E

∥∥∥∥∥∑
t<T

∇fvt(x?)
∥∥∥∥∥

2
 ≤ Tσ2

? + σ2
?

∑
t<T

dTV(P tv0,·, π
?) + 2σ2

?

∑
s<t<T

dTV(t− s) ,

where dTV(r) = sup {dTV((P r)v,·, π?) , v ∈ V} for r ∈ N, so that:

E

∥∥∥∥∥∑
t<T

∇fvt(x?)
∥∥∥∥∥

2
 ≤ σ2

?

(
4τmix(1/4) + T (1 + 8τmix(1/4))

)
.

Proof. We have:

E

∥∥∥∥∥∑
t<T

∇fvt(x?)
∥∥∥∥∥

2
 = E

(∑
t<T

∇fvt(x?)
)>(∑

t<T

∇fvt(x?)
)

=
∑
t<T

E
[
‖∇fvt(x?)‖2

]
+ 2

∑
s<t<T

E [〈∇fvs(x?),∇fvt(x?)〉] .

Denote G? = (∇fv(x?))v∈V ∈ RV×d. For the first term above,∑
t<T

E
[
‖∇fvt(x?)‖2

]
=
∑
t<T

E
[
‖G?,vs‖2

]
=
∑
t<T

(
σ2
? +

∑
v∈V

(
P (vt = v)− πv

)
‖G?,v‖2

)
≤ Tσ2

? + σ2
?

∑
t<T

dTV(P tv0,·, π
?) .

Finally, ∑
s<t<T

E [〈∇fvs(x?),∇fvt(x?)〉] =
∑
s<t<T

E [〈G?,vs ,G?,vt〉]

=
∑
s<t<T

∑
v,w∈V

(P s)v0,v(P
t−s)v,wG>?,vG?,w

=
∑
s<t<T

∑
v,w∈V

(P s)v0,v

(
(P t−s)v,w −

1

n

)
G>?,vG?,w

≤
∑
s<t<T

∑
v,w∈V

(P s)v0,v

∣∣(P t−s)v,w − 1

n

∣∣σ2
?

= σ2
?

∑
s<t<T

∑
v∈V

(P s)v0,v

∑
w∈V

∣∣(P t−s)v,w − 1

n

∣∣
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≤ σ2
?

∑
s<t<T

dTV(t− s) ,

where dTV(r) = sup {dTV((P r)v,·, π?) , v ∈ V} for r ∈ N.
We finally bound

∑
t<T dTV(t). Using Chapter 4.5 of [LPW06], we have τmix(ε) ≤

(log2(ε−1) + 1)τmix(1/4), so that for any t ≥ 0, dTV(t) ≤ 2−t/τmix(1/4)+1. Hence,∑
t<T

dTV(t) ≤ 2

1− 2−1/τmix(1/4)
≤ 4τmix(1/4) ,

and ∑
s<t<T

dTV(t− s) ≤ 4Tτmix(1/4) ,

concluding the proof.

This result is stronger than Theorem 7.3.2, for (i) noise amplitude and gradient dissimi-
larities only need to be bounded at the optimum; (ii) the “optimization term” (the first one) is
not slowed down by the mixing time. This comes at the cost of strong convexity assumptions,
stronger than a µ-PL inequality for f . The term τmixσ?

T cannot be removed in the general
case, as next proposition shows. Hence, since the two other terms have optimal dependency
in terms of Markov-chain and noise related quantities, our analysis ends up being sharp.

Corollary 7.4 together with the following proposition are an extension of [NWB+20],
who proved similar results for MC-SGD with constant stepsize on least square problems on
Markovian data of a certain form (for linear online system identification).

Proposition 7.4.1. For any V (such that |V| ≥ 2) and τ > 1, there exists a Markov chain on
V of relaxation time τ , functions (fv)v∈V and x0 ∈ Rd such that given any stepsize γ, the
iterates of Equation (7.2) output xT for any T > 0 verifying ‖xT − x0‖2 = Ω̃(τσ2

?/T ), and
the assumptions of Theorem 7.4 hold.

7.4.3. MC-SGD with local noise

In the two previous subsections, we analyzed SGD with Markovian sampling schemes,
where the stochasticity only came from the Markov chain (vk)k≥0. We now generalize the
analysis and results to SGD with both Markovian sampling, and local noise, by studying the
sequence:

xt+1 = xt − γtgt . (7.4)

We now formulate the form stochastic gradients gt can take.

Assumption 7.4.5. For all v ∈ V, the function fv satisfies fv(x) = E [Fv(x, ξv)] for all x ∈ Rd,
where ξv ∼ Dv. Furthermore, there exists a Markov-chain (vt)t≥0 such that for all t ≥ 0,

gt = ∇xFvt(xt, ξt) ,

where ξt ∼ Dvt |vt is independent from v0, . . . , vt−1 and ξ0, . . . , ξt−1.

A direct consequence of Assumption 7.4.3 is that E [gt|xt, vt] = ∇fvt(xt). Two main
applications of Assumption 7.4.3 are:

1. Local sampling. If fv(x) = 1
m

∑m
i=1 fv,i(x) (agent v has m local samples), agent m may

use only a batch B ⊂ [m] of its samples, leading to stochastic gradients gt in (7.4) of
the form:

gt =
1

|Bt|
∑
i∈Bt
∇fvt,i(xt) ,
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for random batches (Bt)t≥0.

2. Differential privacy. Adding local noise (e.g., additive Gaussian random noise) enforces
differential privacy under suitable assumptions. A private decentralized token algorithm
is then Differentially Private MC-SGD (DP-MC-SGD), with iterates (7.4) where gt
satisfies

gt = ∇fvt(xt) + ηt , (7.5)

where (vt) is the Markov chain (random walk performed by the token on the communi-
cation graph), and ηt ∼ N (0, σ2

t Id) is sampled independently from the past, to enforce
differential privacy.

Under Assumption 7.4.3, a direct generalization of Theorem 7.4 and Corollary 7.4.1 is the
following.

Theorem 7.5 (MC-SGD with local noise). Assume that Assumptions 7.4.5,7.4.4 holds, each
Fv(·, ξ) is µ-strongly convex L-smooth, and there exists σ2

local such that:

E
[
‖gt −∇fvt(xt)‖2|xt, vt

]
≤ σ2

local .

Then, for a well chosen γ > 0, the iterates generated by (7.4) satisfy:

E
[
‖xT − x?‖2

]
≤ 2e−

T
κ ‖x0 − x?‖2

+ Õ
(

L

µ3T

(
σ2

local + τmix

(1

4

)
σ2
?

))
.

Importantly, and as one would have expected, local noise is not impacted by the mixing
time of the underlying random walk. While we did not pursue in this direction, this observa-
tion could easily be made under other regularity assumptions, and such a result would hold
for instance under the assumptions of Theorem 1 or 2. While Differentially Private MC-SGD
sounds appealing for performing decentralized and differentially private optimization, we here
only provided a utility analysis, the privacy analysis being left for future works.

7.5. Analysis of Markov-Chain SAG

Algorithm 7.1: Markov Chain SAG (MC-SAG)
1: Input: x0 ∈ Rd, hv ∈ Rd for v ∈ V and h̄0 ∈ Rd, stepsizes γt > 0, v0 ∈ V
2: for t = 0, 1, . . . do
3: Compute ∇fvt(xt)
4: h̄t+1 = h̄t + 1

n

(
∇fvt(xt)− hvt

)
5: xt+1 = xt − γth̄t+1

6: hvt ←− ∇fvt(xt)
7: Sample vt+1 ∼ Pvt,·
8: end for

After providing convergence guarantees for the most natural algorithm (MC-SGD) under
a Markov chain sampling on the set V, we prove that one can achieve a rate of order 1/T
(rather than the 1/

√
T previously obtained) in the smooth setting, by applying the variance

reduction techniques present in [SLRB17], that first introduced the Stochastic Averaged Gra-
dient algorithm, together with a time-adaptive stepsize policy described below. Our faster
rate with variance reduction leads of a dependency on τhit instead of τmix; since we do not
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make any other assumption other than smoothness, this is unavoidable in light of our lower
bound (Theorem 7.2).

MC-SAG The MC-SAG algorithm is described in Algorithm 7.1. The recursion leading
to the iterate xt can then be summarized as, for stepsizes (γt)t≥0, under the initialization
hv = ∇fv(x0) and h̄ = ∇f(x0):

xt+1 = xt −
γt
n

∑
v∈V
∇fv(xdv(t)) , (7.6)

where for v ∈ V, we define dv(t) = sup {s ≤ t | vs = v} as the last previous iterate at which v
was the current state of the Markov chain. By convention, if the set over which the supremum
is taken is empty, we set dv(t) = 0. We handle both the initialization described just above
for hv, h̄ and arbitrary initialization in our analysis below.

In the same way that MC-SGD reduces to vanilla SGD if (vt) is an i.i.d. uniform sampling
over V, MC-SAG boils down to the SAG algorithm [SLRB17] in that case and under the
initialization hv = ∇fv(x0) and h̄ = ∇f(x0). In a decentralized setting, nodes keep in mind
their last gradient computed (variable hv at node v). At all times, h̄t is an average of these
hv over the graph, and is, in the same way as xt, updated along the random walk. The
MC-SAG algorithm is thus perfectly adapted to decentralized optimization.

Time-adaptive stepsize policy To obtain our convergence guarantees, a time-adaptive step-
size policy (γt) is used, as in Asynchronous SGD [MBEW22] to obtain delay-independent
guarantees. For t ≥ 0, let the stepsize γt be defined as:

γt =
1

2L
(
τhit + maxv∈V(t− dv(t))

) . (7.7)

Denoting τt = maxv∈V(t− dv(t)), this quantity can be tracked down during the optimization
process. Indeed, if agent vt receives τt−1 together with (xt, h̄t), she may compute τt as:

τt = max
(
τt−1 + 1 , t− dvt(t)

)
,

where t − dvt(t) is the number of iterations that took place since the last time the Markov
chain state was vt. Hence, if agents keep track of the number of iterations, the adaptive
stepsize policy (7.7) can be used in Algorithm 7.1, as long as agent vt sends (τt, t) to vt+1,
yielding the following result.

We now present the convergence results for MC-SAG. (vt) is in this section assumed to
be a Markov chain on V of finite hitting time τhit. Importantly, the next Theorem does not
require any additional assumption on (vt) such as reversibility, or even that it has a stationary
probability that is the uniform distribution: the non-symmetric but easily implementable
transition probabilities Pv,w = 1/(dv + 1) for w = v or w ∼ v can be used here, as well
as non-reversible random walks than can have much smaller mixing and hitting times. The
function f studied is here independent of the Markov chain, and is defined as in (7.3), the
uniformly averaged function over all states v ∈ V (or over all agents in the network).

Theorem 7.6 (MC-SAG). Assume that Assumption 7.4.2 holds and that the Markov chain
has a finite hitting time (for an arbitrary invariant probability).

1. Under the initialization:
hv = ∇fv(x0) ,

h̄ = ∇f(x0) ,

using the adaptive stepsize policy defined in Equation (7.7), the sequence generated by
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Algorithm 7.1 satisfies, for any T > 0:

E
[
min
t<T
‖∇f(xt)‖2

]
≤ 8L

(
f(x0)− f(x?)

)τhit ln(n)

T
.

2. Under any arbitrary initialization that satisfies h̄ = 1
n

∑
v∈V hv, using the adaptive step-

size policy defined in Equation (7.7), the sequence generated by Algorithm 7.1 satisfies,
for any T > 0:

E
[
min
t<T
‖∇f(xt)‖2

]
≤ 16L∆

τhit ln(n)

T
,

where
∆ = f(x0)− f(x?) +

1

8n

∑
v∈V
‖∇fv(x0)− hv‖2 .

Theorem 7.6 is proved in Appendix 7.6. Up to the logarithmic factor in n, the rates in
Theorem 7.6 are the non-accelerated versions of the lower-bound in Theorem 7.2.

Proof of Theorem 7.6.1. We begin classically by proving a descent lemma. This lemma is
deterministic, in the sense that not means E are present, and it therefore does not use the
Markovian properties of the Markov chain. MC-SAG uses biased gradients, even in the case
where vt are i.i.d., since the algorithm SAG [SLRB17] is inherently biased (making it unbiased
leads to the SAGA iterations [DBLJ14]).

Let Gt = h̄t+1 for t ≥ 0, so that xt+1 = xt − γtGt. We recall that for v ∈ V and t ≥ 0,
pv(t) is the next time (strictly) the chain hits node v, while dv(t) is either the last time the
chain was at the state v (if that happened), or 0 in v has not yet been visited.

Lemma 7.5.1. Assume that f is L-smooth. Then, for any t ≥ 0, we have:

f(xt+1)− f(xt) ≤ −
γt
2
‖∇f(xt)‖2 −

γt
4
‖Gt‖2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

.

Proof of Lemma 7.5.1. For t ≥ 0 and v ∈ V, let pv(t) = inf {s > t|vs = v} and dv(t) =
sup {s ≤ t|vs = v} be the next and the last previous iterates for which vt = v (dv(t) = 0 by
convention, if v has not yet been visited). Denote Ft = E [f(xt)− f(x?)]. We have, using
smoothness:

f(xt+1) ≤ f(xt)− γt〈∇f(xt),Gt〉+
γ2
t L

2
‖Gt‖2

Together with 〈∇f(xt),Gt〉 = 1
2(‖∇f(xt)‖2 + ‖Gt‖2 − ‖∇f(xt)−Gt‖2), we obtain:

f(xt+1) ≤ f(xt)−
γt
2
‖∇f(xt)‖2 + ‖Gt‖2 − ‖∇f(xt)−Gt‖2 +

γ2
t L

2
‖Gt‖2

≤ f(xt)−
γt
2
‖∇f(xt)‖2 −

γt
4
‖Gt‖2 +

γt
2
‖∇f(xt)−Gt‖2 ,

as long as γt ≤ 1/(2L). We thus need to upperbound the bias ‖∇f(xt)−Gt‖2. We have:

‖∇f(xt)−Gt‖2 =

∥∥∥∥∥ 1

n

∑
v∈V
∇fv(xdv(t))−∇fv(xt)

∥∥∥∥∥
2

≤ 1

n

∑
v∈V

∥∥∇fv(xdv(t))−∇fv(xt)
∥∥2
.
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Fix some v in V. We have
∥∥∇fv(xt)−∇fv(xdv(t))

∥∥2 ≤ L2
∥∥∥∑t−1

s=dv(t) γsGs

∥∥∥2
, leading to:

f(xt+1)− f(xt) ≤ −
γt
2
‖∇f(xt)‖2 −

γt
4
‖Gt‖2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

.

We begin with

f(xt+1)− f(xt) ≤ −
γt
2
‖∇f(xt)‖2 −

γt
4
‖Gt‖2 +

γtL
2

2n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

,

as a starting point. For v ∈ V,

γt

∥∥∥∥∥∥
t−1∑

s=dv(t)

L2γsGs

∥∥∥∥∥∥
2

≤
t−1∑

s=dv(t)

(t− dv(t))L2γtγ
2
s‖Gs‖2

≤
t−1∑

s=dv(t)

Lγ2
s‖Gs‖2 ,

since γt ≤ 1/(L(t− dv(t))). Summing for t < T , we obtain:

∑
t<T

γt
2
‖∇f(xt)‖2 ≤ F0 −

∑
t<T

γt
2
‖Gt‖2 +

∑
t<T

1

2n

∑
v∈V

t−1∑
s=dv(t)

Lγ2
s‖Gs‖2 .

Then,

∑
t<T

t−1∑
s=dv(t)

Lγ2
s‖Gs‖2 =

∑
s<T

‖Gs‖2Lγ2
s (pv(s)− s) .

For γs ≤ 1/(2Lτhit), we have E
[
‖Gs‖2γ2

s (pv(s)− s)
]
≤ 1

2E
[
‖Gs‖2γs

]
, so that:

∑
t<T

γt
2
‖∇f(xt)‖2 ≤ F0 +

∑
t<T

(
−γt

2
‖Gt‖2 +Kt

)
,

where Kt = 1
4n

∑
v∈V ‖Gt‖2Lγ2

t (pv(t)− t) verifies E [Kt|Ft] ≤ ‖Gt‖2γt/4 since γt ≤ 1/(2τhit),
where Ft is the filtration up to time t:

E [Kt|Ft] = E

[
1

4n

∑
v∈V
‖Gt‖2Lγ2

t (pv(t)− t)|Ft
]

=
1

4n

∑
v∈V
‖Gt‖2Lγ2

t E [(pv(t)− t)|Ft]
(
Gt , γt are Ft-measurable

)
≤ 1

4n

∑
v∈V
‖Gt‖2Lγ2

t τhit

(
since E [(pv(t)− t)|Ft] = E [(pv(t)− t)|vt] ≤ τhit

)
≤ 1

8
γt‖Gt‖2

(
since γt ≤ 1/(2τhit)

)
.
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Finally,

E
[
min
t<T
‖∇f(xt)‖2

]
≤ E

[
2F0∑
t<T γt

]
+ E

∑t<T

(
−γt

2 ‖Gt‖2 +Kt

)
∑

t<T γt

 .
We now use the following Lemma 7.5.2.

Lemma 7.5.2. Let (at)t≥0, (bt)t≥0 be two sequences of real-valued random variables. Let (Ft)t≥0

be a filtration. Assume that bt is positive and Ft-measurable for all t, and that E [at|Ft] ≤ 0.
Then, denoting

HT =

∑T
t=0 at∑T
t=0 bt

,

the sequence (E [HT ])T≥0 is non-increasing, so that E [HT ] ≤ 0 for all T .

Proof. For fixed T ≥ 1, we have, using the fact tha bt is FT measurable for t ≤ T

E [HT |FT ] =
E [aT |FT ] +

∑
t<T E [at|FT ]∑

t≤T bt

≤
∑

t<T E [at|FT ]∑
t≤T bt

≤
∑

t<T E [at|FT ]∑
t<T bt

,

using E [aT |FT ] ≤ 0 and bT > 0. Consequently, taking the mean, we obtain E [HT ] ≤
E [HT−1].

Using both Lemma 7.5.2 and the above bound on E [Kt|Ft], our last term is non-positive.
Using Jensen inequality, we have:

E
[
min
t<T
‖∇f(xt)‖2

]
≤ 2F0

T 2

∑
t<T

E
[
γ−1
t

]
.

Since γ−1
t = 2L(τhit + supv∈V(t − dv(t))), we have

∑
t<T E

[
γ−1
t

]
≤ 2LT (τhit + τcov) using

Lemma 7.5.3 below, concluding the proof.

Lemma 7.5.3. For t ≥ 0 and v ∈ V, let pv(t) = inf {s > t|vs = v} and dv(t) = sup {s < t|vs = v}
be the next and the last previous iterates for which vt = v (dv(t) = 0 by convention, if v
has not yet been visited). Assume that (vt) has stationary distribution π. For t ≥ 0, let
At = supv∈V

(
t− dv(t)

)
and Bt = supv∈V

(
pv(t)− t

)
. We have:

E [Bt|vt = v] ≤ τcov , ∀v ∈ V ,

and for T ≥ 1: ∑
t<T

E [At] ≤ Tτcov .

Proof. The first bound on Bt is obtained using the Markov property of the chain, and by
definition of τcov. We have:

E [At] =

t−1∑
k=0

P (At ≥ k) .
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For t ≥ 0 fixed, we denote d = infv dv(t), so that At = t − d. We then have the equality
between the following events:

{At ≥ k} = {t− d ≥ k} = {d ≤ t− k} = {Bt−k ≥ k} ,

that all coincide with the event “there exists some v ∈ V such that for all t − k ≤ s ≤ t,
vs 6= v”. Summing over t < T :∑

t<T

E [At] =
∑
t<T

∑
k<t

P (Bt−k ≥ k)

=
∑
`<T

∑
s<T−`

P (B` ≥ s)

≤
∑
`<T

∑
s≥0

P (B` ≥ s)

≤
∑
`<T

E [B`]

≤ Tτcov .

Proof of Theorem 7.6.2. Starting from

f(xt+1)− f(xt) ≤ −
γt
2
‖∇f(xt)‖2 −

γt
4
‖Gt‖2

+
γtL

2

n

∑
v∈V

∥∥∥∥∥∥
t−1∑

s=dv(t)

γsGs

∥∥∥∥∥∥
2

+
γt1t<τ̃cov

n

∑
v∈V
‖∇fv(x0)− hv‖2 ,

and mimicking the proof with initialization, we obtain that for γ−1
t = 4L(τhit + supv∈V(t −

dv(t))), we have

E
[
min
t<T
‖∇f(xt)‖2

]
≤ 2F0

T 2

∑
t<T

E
[
γ−1
t

]
+

2E [τ̃cov]

T

1

n

∑
v∈V
‖∇fv(x0)− hv‖2 ,

and we conclude the proof by noticing that E [τ̃cov] ≤ τcov.

7.6. Discussion of our results

7.6.1. Communication efficiency: comparison of our results with consensus-based approaches

We summarize the communication efficiencies in Table 7.1 (in terms of total number of
communications required to reach an ε-stationary point), of classical gossip-based decentral-
ized gradient methods (non-accelerated, since no accelerated method is known under our
regularity assumptions). We consider the algorithm of [YJY19] (decentralized SGD with mo-
memtum, state of the art decentralized gossip-based algorithm for this problem) with fixed
communication matrix W on the graph G together with the Walkman algorithm [MYH+20]
and our algorithms, for a Markov chain with transition matrix P . For the sake of compar-
ison, we take as gossip matrix W = P .Consequently as shown in Table 7.1, our algorithm
(MC-SAG) always outperforms non-accelerated gossip-based decentralized gradient descent al-
gorithms in terms of number of communications required to reach ε-stationary points. Note
that we do not claim the “overall superiority” of our approach over classical decentralized
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optimization algorithms (the latter benefit from parallelization while ours do not), but a
superiority in terms of communication efficiency.

Table 7.1 – Number of communications required (# comm. below) to obtain an ε-stationary point x
(verifying ‖∇f(x)‖2 ≤ ε). Logarithmic/constant factors hidden.

A B Our work

# comm. ε−1|E|τmix ε−1nτ2
mix

ε−2τmix
c

ε−1τhit
d

A: [YJY19].
B: [MYH+20].
c MC-SGD under Assumption 7.4.1.
d MC-SAG.

Table 7.2 – Hitting and mixing times of some known graphs, for the simple random walk.

Cycle d-dim. torus Complete graph

τhit O(n2) O(n1+ 1
d ) O(n)

nτmix O(n3) O(n1+ 2
d ) O(n)

The dependency on the quantity τhit we obtain (under no other assumptions than smooth-
ness) is always better than the dependency on nτmix of previous works (using gossip commu-
nications or a random walker), since τhit ≤ 2nτmix always holds. As illustrated in Table 7.2 on
some known graphs, this inequality is rather loose when the connectivity decreases (i.e. the
mixing time increases), so that the speedup our results lead to is even more effective on
ill-connected graphs; the difference between the two can scale up to a factor n. In fact, we
proved in Section 7.2.2 that for d-regular and symetric graphs, we have:

τhit ≤
2|E|Diam(G)

d
,

where Diam is the diameter of G. The dependency nτ2
mix obtained in [MYH+20] (the only

work that does not make bounded gradient assumptions) is prohibitive when graph connec-
tivity decreases (n3 on the grid, n5 on the cycle). Our analysis does not rely on a reversibility
assumption of the Markov chain, so that non symetric random walks can be used, therefore
accelerating mixing; on the cycle for a non-symmetric random walk for instance, the hitting
time decreases to O(n).

7.6.2. Using all gradient along the trajectory of (vt) is provably more efficient

[SSY18] empirically motivated through empirical evidence the use of all gradients ∇fvt
sampled along the trajectory of the Markov chain rather than waiting for the chain to mix
before every stochastic gradient step in order to mimic the behavior of vanilla SGD. However,
their rates (as well as those of [JRJ10, DAJJ11] and ours for MC-SGD) are functions of
S = T/τmix, and of order 1/S+ 1/

√
S. These are exactly what one would obtain, by waiting

for τmix steps of the chain in order to have an approximate uniform sampling before each
update! Consequently, there are no theoretical ground or evidence for using all the gradients
along the trajectory of the Markov chain with these results, other than by doing so, one
does not do worse than waiting for the chain to mix to mimic vanilla SGD. This is exactly
the approach taken by [Hen22]: a gradient step is performed every τmix random walk steps.
This is where MC-SAG and its guarantees that depend on T/τhit come in place. Under our
assumptions, the rate of SAG for finding approximate stationary points when waiting for the
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chain to mix before using a stochastic gradient is of order n/S = nτmix/T where S = T/τmix

is the number of stochastic gradients used. We obtain τhit/T instead: hence, in cases where
τhit = o(nτmix), using all stochastic gradients along the trajectory of the Markov chain -
instead of waiting for mixing before performing a stochastic gradient step - provably helps.
Hence, we here provided a realistic scenario where using all stochastic gradients proves to
accelerate the rate; this was previously noticed in another setting with RER-SGD (SGD with
reverse-experience replay, [KNJN21]).

7.6.3. Running-time complexity and robustness to “stragglers”

The total time it takes to run random walk-based decentralized algorithms depends on
Tv→w, the time it takes to compute a gradient at v, and then the communication time to send
it to w. Using ergodicity of the Markov chain, the time timeMC(T ) it takes to run MC-SAG
or MC-SGD for T iterations verifies:

timeMC(T )

T
→

∑
(v,w)∈V2

πvPv,wTv→w ,

where the limit is a weighted sum of the local computation/communication times, with
weights summing to 1. Random-walk based decentralized algorithms are therefore robust
to slow edges or nodes (“stragglers”), a property that synchronous gossip algorithms do not
verify (their time complexity depends on maxv,w Tv→w), while studying asynchronous gossip
is notoriously difficult (see Chapters 4 and 5).

Conclusion

Without variance reduction and under bounded data-heterogeneity assumptions, SGD
under MC sampling is slowed down by a factor τmix, due to increased sampling variance.
Using variance-reduction techniques, we obtain faster rates, that depend on τhit rather than
nτmix, which one would have expected by directly extending known results in the i.i.d. setting
to our MC sampling schemes. Leveraging such a dependency yields a fast token algorithm
(MC-SAG), robust to both ill-connectivity of the graph and data-heterogeneity.
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Appendix of Chapter 7

7.A. Lower bound

We prove the smooth non-convex version of Theorem 7.2; the convex cases are proved
in a similar way using exactly the same arguments, and the “most difficult function in the
world”, as defined by [Nes14], rather than the one used by [CDHS21], albeit the two are
closely related.

Proof of Theorem 7.2. For x ∈ `2 and k ∈ N, denote by x(k) its kth coordinate. We split the
function defined in Section 3.2 of [CDHS21] (inspired by the “most difficult function in the
world” of [Nes14]) between two nodes v, w ∈ V maximizing E [τw|v0 = v], by setting πvfv(x) =
1
2

∑
k≥1 2x(2k)2 − 2x(2k − 1)x(2k) + 1

2αx(0)2 − bx(0) + α
2 and πwfw(x) = 1

2

∑
k≥0 2x(2k +

1)2 − 2x(2k + 1)x(2k) for some b, α > 0. Then, we define T0 = τv and for t ≥ 0,

T2k+1 = inf {t ≥ T2k | vt = w} and
T2k+2 = inf {t ≥ T2k+1 | vt = w} .

The second step of the proof is somewhat classical, and consists in observing that the black-
box constraints of the algorithm together with the construction of the functions fv and fw
defined in the proof sketch of Section 7.3 imply that:

if vt = v and

{
Mt ⊃ Span(ei, i ≤ 2k − 1) then Mt+1 ⊃ Span(ei, i ≤ 2k) ,

Mt ⊂ Span(ei, i ≤ 2k) then Mt+1 ⊂ Span(ei, i ≤ 2k) ,

if vt = w and

{
Mt ⊃ Span(ei, i ≤ 2k) then Mt+1 ⊃ Span(ei, i ≤ 2k + 1) ,

Mt ⊂ Span(ei, i ≤ 2k + 1) then Mt+1 ⊂ Span(ei, i ≤ 2k + 1) ,

if vt /∈ {v, w}, then Mt =Mt+1 .

In other words, even dimensions are discovered by node v, while odd ones are discovered
by node w. The dimension Re0 is discovered by node v thanks to the term −be0. Using
Theorem 1 of [CDHS21], for a right choice of parameters α, b > 0, f is L-smooth and satisfies
f(x0)− infx f(x) ≤ ∆, together with, any k and any x ∈Mt ⊂ Span(ei, i ≤ 2k),

‖∇f(x)‖2 =
L∆

16k2
.

This lower bound proof technique is explained in a detailed and enlightening fashion in
Chapter 3.5 of [Bub15].

Then, the final and more technical step of the proof consists in upper bounding Ek(t). If
(Tk+1 − Tk)k≥0 were independent from k(t), using E [Tk+1 − Tk] = τhit for k even, we would
directly obtain t ≥ E

[
Tk(t)

]
≥ E [k(t)] − 1)τhit/2. However, these random variables are not

independent: since tail effects can happen, we need a finite second moment for hitting times,
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and the proof is a bit trickier. First, note that:

E [k(t)] =
∑

0≤k≤t
P (k(t) ≥ k) =

∑
0≤k≤t

P (Tk ≤ t) .

Let (X`)`≥0 be i.i.d. random variables of same law as τw conditioned on v0 = v. We have
E [X`] = E [τw|v0 = v] = τhit, and var (X`) < ∞ (by assumption). Let Sk =

∑k−1
`=0 X` (Sk

has the same law as
∑k−1

`=0 T2k+1 − T2k ), so that, using the Markov property of (vt), Tk
stochastically dominates Sbk/2c. Hence, P (Tk ≤ t) ≤ P

(
Sbk/2c ≤ t

)
. Then, using Chebychev

inequality, for any ` ≥ 0 and for t such that `τhit ≥ t, we have:

P (S` ≤ t) = P (S` − `τhit ≤ t− `τhit)

= P
(
(S` − `τhit)

2 ≤ (t− `τhit)
2
)

≤ `var (X0)

(t− `τhit)2
.

We then have:

E [k(t)] ≤ 2
∑

0≤`≤t/2
P (S` ≤ t)

= 2
∑

0≤`≤2t/τhit

P (S` ≤ t) + 2
∑

2t/τhit≤`≤t/2
P (S` ≤ t)

≤ 4t

τhit
+ 2

∑
2t/τhit≤`≤t/2

`var (X0)

(t− `τhit)2
.

We finally show that the second term stays bounded:∑
2t/τhit≤`≤t/2

`

(t− `τhit)2
=

1

τ2
hit

∑
0≤`≤t/2−2t/τhit

`+ 2t/τhit

(`+ t/τhit)2

=
1

τ2
hit

∑
0≤`≤t/2−2t/τhit

`

(`+ t/τhit)2
+

2

τ2
hit

∑
0≤`≤t/2−2t/τhit

t/τhit

(`+ t/τhit)2
.

First, using a comparison with a continuous sum, we have:∑
0≤`≤t

`

(`+ t/τhit)2
≤
∑

0≤`≤t

1

(`+ t/τhit)
≤ ln(

t

t/τhit
) = ln(τhit) ,

since for a, x > 0,
∫ ax

0
ydy

(y+a)2 ≤
∫ ax

0
dy

(y+a) = ln(x). Finally, using
∑

`≥1
1

(a+`)2 ≤
∫∞

0
dy

(y+a)2 =
1
a , we bound the second sum as:

∑
0≤`≤t/2−2t/τhit

t/τhit

(`+ t/τhit)2
≤ τhit

t
+ 1 .

Wrapping our arguments together, we end up with:

E [k(t)] ≤ 4t

τhit
+

2var (τv)

τ2
hit

(ln(τhit) + 1 +
τhit

t
) .

For t big enough, we end up with E [k(t)] ≤ 5t/τhit, so that since E‖∇f(xt)‖2 ≥ L∆/(16E [k(t)]2)
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as explained in the main text, we have:

‖∇f(xt)‖2 = Ω

(
L∆τ2

hit

t2

)
.

7.B. Markov chain stochastic gradient descent: proof of Theorem 7.3

The following proofs in this Appendix section are valid for finite as well as infinite state
spaces V.

We start by proving the following bound on E
[
‖∇fvt(xt)‖2

]
. Note that this bound can

be used for any t ≥ τmix.

Lemma 7.B.1. For t ≥ 0 and if vt ∼ πt for dTV(πt, π) ≤ πmin/2, we have:

E
[
‖∇fvt(xt)‖2

]
≤ 3σ̄2 + 2E

[
‖∇f(xt)‖2

]
.

Proof of the Lemma. We have for any v ∈ V that P (vt = v) ≤ πv + πv/2 = 3πv/2, so that

E
[
‖∇fvt(xt)‖2

]
≤ 2E

[
‖∇fvt(xt)−∇f(xt)‖2

]
+ 2E

[
‖∇f(xt)‖2

]
≤ 2

∑
v∈V

P (vt = v)σ2
v + 2E

[
‖∇f(xt)‖2

]
= 3σ̄2 + 2E

[
‖∇f(xt)‖2

]
.

The proof borrows ideas from both the analyses of delayed SGD [MPP+17] and SGD with
biased gradients [EMS22b], thus refining MC-SGD initial analysis [JRJ10]. While a biased
gradient analysis would not yield convergence to an ε-stationary point for arbitrary ε (at
every iterations, biases are non-negligible and can be arbitrary high), by enforcing a delay τ
(of order τmix) in the analysis, we manage to take advantage of the ergodicity of the biases.

7.B.1. Smooth non-convex case of Theorem 7.3

Proof of Theorem 7.3.1. Denoting Ft = Ef(xt)− f(x?), we have using smoothness:

Ft+1 − Ft ≤ −γE [〈∇fvt(xt),∇f(xt)〉] +
γ2L

2
E
[
‖∇fvt(xt)‖2

]
.

For the first term on the righthandside of the inequality, assuming that t ≥ τ for some τ > 0
we explicit later in the proof:

E [−γ〈∇fvt(xt),∇f(xt)〉] = E [−γ〈∇fvt(xt−τ ),∇f(xt−τ )〉] + E [−γ〈∇fvt(xt),∇f(xt)−∇f(xt−τ )〉]
+ E [−γ〈∇fvt(xt)−∇fvt(xt−τ ),∇f(xt−τ )〉] .

First, we condition the first term on the filtration up to time t− τ :

E [−γ〈∇fvt(xt−τ ),∇f(xt−τ )〉] = E [−γ〈Et−τ∇fvt(xt−τ ),∇f(xt−τ )〉]
≤ −γ

2
E
[∥∥Et−τ∇fvt−τ (xt)

∥∥2
]

+
γ

2
E [‖∇f(xt−τ )− Et−τ∇fvt(xt−τ )‖]

− γ

2
E
[
‖∇f(xt−τ )‖2

]
.
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Then, for τ ≥ τmix(πminε), using the following lemma, we have, for ε < 1/2:

E [−γ〈Et−τ∇fvt(xt−τ ),∇f(xt−τ )〉] ≤ −γ
4
E
[
‖∇f(xt−τ )‖2

]
+ γε2σ̄2 .

Lemma 7.B.2. For τ ≥ τmix(επmin) and t ≥ τ ,

E
[
‖Et−τ∇fvt(xt−τ )−∇f(xt−τ )‖2

]
≤ 2ε2E

[
‖∇f(xt−τ )‖2

]
+ 2ε2σ̄2 .

Proof of the Lemma. We have:

E
[
‖Et−τ∇fvt(xt−τ )−∇f(xt−τ )‖2

]
= E

∥∥∥∥∥∑
v∈V

(P (vt = v|xt−τ )− πv)∇fv(xt−τ )

∥∥∥∥∥
2


≤ ε2
∑
v∈V

πvE
[
‖∇fv(xt−τ )‖2

]
,

where we used |P (vt = v|xt−τ ) − πv| ≤ επv and convexity of the squared Euclidean norm.
For that last term,∑

v∈V
πvE

[
‖∇fv(xt−τ )‖2

]
≤
∑
v∈V

2πv

(
E
[
‖∇f(xt−τ )‖2

]
+ σ2

v

)
= 2E

[
‖∇f(xt−τ )‖2

]
+ 2σ̄2 ,

concluding the proof of the Lemma.

Using gradient Lipschitzness and writing xt−xt−τ = −γ∑t−1
s=max(t−τ,0)∇fvs(xs), we have:

E [−γ〈∇fvt(xt),∇f(xt)−∇f(xt−τ )〉] ≤ γ2LE

‖∇fvt(xt)‖
∥∥∥∥∥∥

t−1∑
s=max(t−τ,0)

∇fvs(xs)

∥∥∥∥∥∥


≤ γ2L

2
(τE

[
‖∇fvt(xt)‖2

]
+

t−1∑
s=max(t−τ,0)

E
[
‖∇fvs(xs)‖2

])
.

Similarly,

E [−γ〈∇fvt(xt)−∇fvt(xt−τ ),∇f(xt−τ )〉] ≤ γ2L

2
(τE

[
‖∇f(xt−τ )‖2

]
+

t−1∑
s=max(t−τ,0)

E
[
‖∇fvs(xs)‖2

])
.

Wrapping things up, we obtain, for t ≥ τ and τ ≥ τmix:

Ft+1 − Ft ≤ −
γ

4
E
[
‖∇f(xt−τ )‖2

]
+ γε2σ̄2

+
γ2L

2

(
(τ + 1)E

[
‖∇fvt(xt)‖2

]
+ τE

[
‖∇f(xt−τ )‖2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
‖∇fvs(xs)‖2

])
≤ −γ

4
E
[
‖∇f(xt−τ )‖2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2

+
γ2L

2

(
(τ + 1)E

[
‖∇f(xt)‖2

]
+ τE

[
‖∇f(xt−τ )‖2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
‖∇f(xs)‖2

])
.
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Summing for τ ≤ t < T :

1

T

∑
τ≤t<T

E
[
‖∇f(xt−τ )‖2

]
≤ 4Fτ

γT
+

1

T

∑
τ≤t<T

6γLτ
(
E
[
‖∇f(xt)‖2

]
+E

[
‖∇f(xt−τ )‖2

])
+2
(
2ε2+γ(3τ+1)

)
σ̄2 ,

leading to, for γ ≤ 1
12Lτ :

1

T

∑
t<T−τ

E
[
‖∇f(xt)‖2

]
≤ 4Fτ

γT
+

6γLτ

T

∑
T−τ≤t<T

E
[
‖∇f(xt)‖2

]
+ 2
(
2ε2 + γ(3τ + 1)

)
σ̄2 .

(7.8)

We now prove that for any t ≥ 0, we have supt≤s≤t+τ E
[
‖∇f(xs)‖2

]
≤ 4E

[
‖∇f(xt)‖2

]
+

8γ2L2τ2σ2. Let t ≤ s < t+ τ .

E
[
‖∇f(xs)‖2

]
≤ 2E

[
‖∇f(xt)‖2

]
+ 2E

[
‖∇f(xs)−∇f(xt)‖2

]
≤ 2E

[
‖∇f(xt)‖2

]
+ 2L2γ2E

[
s−1∑
r=t

‖∇fvr(xr)‖2
]

≤ 2E
[
‖∇f(xt)‖2

]
+ 4L2γ2τ

s−1∑
r=t

E
[
‖∇f(xr)‖2

]
+ σ̄2

≤ 2E
[
‖∇f(xt)‖2

]
+ 4L2γ2τ2( sup

t≤s≤t+τ
E
[
‖∇f(xs)‖2

]
+ σ̄2) ,

leading to the desired result for γ ≤ 1/(8Lτ). Plugging this in (7.8):

1

T

∑
t<T−τ

E
[
‖∇f(xt)‖2

]
≤ 4Fτ

γT
+

24γLτ

T

∑
T−τ≤t<T

E
[
‖∇f(xt−τ )‖2

]
+
τ

T
4L2γ2τ2σ̄2 + 2

(
2ε2 + γ(3τ + 1)

)
Lσ̄2 .

Now, for γ = min(1/(48Lτ),
√
F0/(TLτσ̄2)), ε = 1/

√
T , and so τ = τmix ln(T ), we have:

1

T

∑
t<T−τ

E
[
‖∇f(xt)‖2

]
≤ 196τLFτ

T
+ 7

√
LF0σ̄2

T
. (7.9)

We now upper bound Fτ . For any t and γ < 1/(2L),

Ft+1 − Ft ≤
γ

2
E
[
‖∇f(xt)−∇fvt(xt)‖2

]
≤ γσ2

max/2 ,

where the first inequality is a simplified version of the descent lemma with biased gradient at
the beggining of this proof, and the second inequality uses the initialization properties of v0.
Thus, we obtain Fτ ≤ F0 + γτσ2

max/2 ≤ F0 + σ2
max/L for our choice of γ. We thus conclude

by plugging this in (7.9) applied for T + τ instead of T , yielding the desired result.

The condition for the upper-bound we proved above to be true, namely T ≥ τ =
τmix ln(T ), is always satisfied for T ≥ 2τmix ln(τmix). Indeed, if T ≤ τ2

mix, then τmix ln(T ) ≤
2τmix ln(τmix) ≤ T , and otherwise we have τmix ln(T ) ≤

√
T ln(T ) ≤ T . This concludes the

proof, and x̃0 in the Theorem corresponds to xτ .
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7.B.2. Under a µ-PL inequality

Proof of Theorem 2.2. We start from:

Ft+1 − Ft ≤ −
γ

4
E
[
‖∇f(xt−τ )‖2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2

+
γ2L

2

(
(τ + 1)E

[
‖∇f(xt)‖2

]
+ τE

[
‖∇f(xt−τ )‖2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
‖∇f(xs)‖2

])
.

If f satisfies a µ-PL inequality, then −E
[
‖∇f(xt−τ )‖2

]
≤ −2µFt−τ , so that, for some α ∈

(0, 1):

Ft+1 − Ft ≤ −
αγµ

4
Ft−τ −

(1− α)γ

8
E
[
‖∇f(xt−τ )‖2

]
+ γε2σ̄2 + (3τ + 1)

γ2L

2
σ̄2

+
γ2L

2

(
(τ + 1)E

[
‖∇f(xt)‖2

]
+ τE

[
‖∇f(xt−τ )‖2

]
+ 2

t−1∑
s=max(t−τ,0)

E
[
‖∇f(xs)‖2

])
.

For t ≥ 0, let Pt = (1 − αγµ/4)−t. We multiply the above expression by Pt+1 and sum for
t < T , hoping for cancellations. For T ≥ τ :∑
τ≤t<T

Pt+1

(
Ft − Ft+1 −

αγµ

4
Ft−τ

)
=
∑

τ≤t<T
Pt+1

(
(1− αγµ

4
)Ft − Ft+1 +

αγµ

4
(Ft − Ft−τ )

)
=
∑

τ≤t<T
PtFt −

∑
τ+1≤t≤T

PtFt

+
αγµ

4

∑
τ≤t<T

Pt+1Ft −
αγµ

4

∑
τ≤t<T

Pt+1Ft−τ

≤ PτFτ − PTFT +
αγµ

4

∑
τ≤t<T

Pt+1Ft −
Pταγµ

4

∑
0≤t<T−τ

Pt+1Ft

≤ PτFτ − PTFT +
αγµ

4

∑
T−τ≤t<T

Pt+1Ft

≤ PτFτ − PTFT +
αγ

8

∑
T−τ≤t<T

Pt+1E
[
‖∇f(xt)‖2

]
,

using the µ-PL inequality. For t ≥ 0, we denote Rt = E
[
‖∇f(xt)‖2

]
. We now handle the

“Rt” terms.

−
∑

τ≤t<T

(1− α)γ

8
Pt+1Rt−τ +

∑
τ≤t<T

γ2L

2

(
(τ + 1)Pt+1Rt + τPt+1Rt−τ + 2

t−1∑
s=t−τ

Pt+1Rs
)

≤ −
∑

0≤t<T−τ

(1− α)γ

8
Pt+τ+1Rt

+
γ2L

2

(τ + 1)
∑

τ≤t<T
Pt+1Rt + τ

∑
0≤t<T−τ

Pt+1Rt + 2τ
∑
t<T

RtPt+τ


= −

∑
0≤t<T−τ

Pt+1Rtγ
((1− α)

8
Pτ −

γL

2
(2τ + 1 + 2τPτ−1)

)
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+
γ2L

2

∑
T−τ≤t<T

(
(τ + 1 + 2τPτ−1)

)
Pt+1Rt

≤ −
∑

0≤t<T−τ

(1− α)γ

16
Pt+τ+1Rt

+
(1− α)γ

16β

∑
T−τ≤t<T

Pt+1Rt ,

if γ satisfies γ ≤ 1−α
8βL(5τ+1) and Pτ ≤ 2, for some β ≥ 1. Since for γµ ≤ 1, Pτ ≤ eτµγ , Pτ ≤ 2

can be ensured with γ ≤ 1
2τL . All in one, we have:

0 ≤ PτFτ − PTFT + γ
(α

8
+

1− α
16β

) ∑
T−τ≤t<T

Pt+1Rt

−
∑

0≤t<T−τ

(1− α)γ

16
Pt+τ+1Rt

+
(
γε2σ̄2 + (3τ + 1)

γ2L

2
σ̄2
) ∑
τ≤t<T

Pt+1 .

Using what we proved in the previous proof, we have Rt ≤ 4Rt−τ + 8γ2L2τ2σ2 for T − τ ≤
t < T , so that:

γ
(α

8
+

1− α
16β

) ∑
T−τ≤t<T

Pt+1Rt ≤ 4γ
(α

8
+

1− α
16β

) ∑
T−2τ≤t<T−τ

Pt+τ+1Rt

+ 8γ2L2τ2σ2γ
(α

8
+

1− α
16β

) ∑
T−2τ≤t<T−τ

Pt+τ+1 .

Consequently, for 4γ
(
α
8 + 1−α

16β

)
≤ 1−α

16 γ, which can be ensured with α = 1/16 and β = 8, we
have:

0 ≤ PτFτ − PTFT +
1

8
γ3L2τ2σ2

∑
T−2τ≤t<T−τ

Pt+τ+1

+
(
γε2 + (3τ + 1)

γ2L

2

)
σ̄2

∑
τ≤t<T

Pt+1 ,

so that:

FT ≤ Fτ/PT−τ + γ2σ̄2L
( ε2

Lγ
+

3τ + 1

2
+
γLτ2

8

)∑
t≤T Pt
PT

≤ 2Fτ/PT +
2γσ̄2

µ
L
( ε2

Lγ
+

3τ + 1

2
+
γLτ2

8

)
≤ 2Fτ/PT +

2γσ̄2

µ
L(

ε2

Lγ
+

1

2
+ 2τ) .

Finally, using Fτ ≤ F0 + σ2
max/L, if γ ≤ 1

64(5τ+1) where τ = τmix(ε):

FT ≤ 2(F0 + σ2
max/L)(1− γµ

8
)T +

2γσ̄2

µ
(
ε2

Lγ
+

1

2
+ 2τ)
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We thus choose ε =
√

1/T so that τ ≤ τmix ln(T ), and stepsize γ = min(8 ln(T (F0+σ̄2)/σ̄2)
µT , 1

64(5τ+1)),
leading to the desired result for c = 64 × 6 = 384. The same discussion than in the smooth
non-convex proof regarding the condition T ≥ τ applies here.

7.B.3. Proof of Proposition 7.4.1

Proof. Consider the graph G on the set of nodes V = {0, 1}, with probability transitions
p01 = p10 = p and p00 = p11 = 1−p, for some small p ∈ (0, 1). The relaxation time τmix(1/4)
of this graph scales as 1/p.

Consider now f0(x) = 1
2(x−1)2 and f1(x) = 1

2(x+1)2 for x ∈ R, so that x? = 0. For (vt)
a Markov chain with the given transition probabilities, started at v0 following the uniform
(stationary) distribution on V, let xt be generated with MC-SGD: xt+1 = xt−γ∇fvt(xt) and
x0 = 1, i.e.,

xT = (1− γ)T − γ
∑
t<T

(1− γ)T−t−1ζt ,

where ζt ∈ {−1, 1} takes value 1 if vt = 0 and value −1 if vt = 0. We have:

E
[
(xT − x?)2

]
= (1− γ)2T + γ2

∑
s<t<T

(1− γ)2T−t−s−2E [ζsζt] .

We compute this second term, and show that it is non-negative for p ≤ 1/2 and of order γ
4p ,

so that to reach a given precision ε > 0, is required γ ≤ 4pε and thus to make the first term
small, T must verify T = Ω(1/(2pε)), concluding our reasonning.

For s < t, we have E [ζsζt] = 2P (vt−s = v0|v0 ∼ π?)−1/ Denoting zk = P (vk = v0|v0 ∼ π?),
we have zk+1 = pzk + (1 − p)(1 − zk) and z0 = 1, so that zk = 1

2(1 + (1 − 2p)k) for k ≥ 0.
This leads to:

γ2
∑
s<t<T

(1− γ)2T−t−s−2E [ζsζt] = γ2 (1− γ)(1− 2p)

1− (1− γ)(1− 2p)

×
(

1− (1− γ)2T

1− (1− γ)2
− (1− 2p)

(1− γ)T − (1− 2p)T

2p− γ (1− γ)T
)

For ε → 0, in order to have E
[
(xT − x?)2

]
≤ ε, is required (1 − γ)T ≤ ε so that γT → ∞.

Under γT →∞, we have

γ2
∑
s<t<T

(1− γ)2T−t−s−2E [ζsζt] ∼
γ

4p
.

Finally, to reach precision ε, this quantity needs to be upper-bounded by ε(1 + o(1)), so that
γ ≤ 4pε−1(1 + o(1)) is necessary. Plugging this in (1 − γ)2T ≤ ε yields T = Ω̃(pε−1), the
desired result.

7.C. With local noise: proof of Theorem 7.5

The proof follows the exact same steps as the proof of Theorem 7.4.

Proof. First, note that, using Lemma 15 in [SK20], we have:

E

∥∥∥∥∥∑
t<T

∇xFvt(x
?, ξt)

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥∑
t<T

∇fvt(x?)
∥∥∥∥∥

2
+ 2Tσ2

local .

We then have the following lemma, proved exactly as in the previous section.
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Lemma 7.C.1. For any yt ∈ Rd and t ≥ 0, denoting yt+1 = yt − γ∇xFvt(x
?, ξt), we have:

‖xt+1 − yt+1‖2 ≤ (1− γµ)‖xt − yt‖2 + γL‖yt − x?‖2 .

This leads to:

‖xT − yT ‖2 ≤ (1− γµ)T ‖x0 − y0‖2 + γL
∑
t<T

(1− γµ)T−t‖yt − x?‖2 ,

for
y0 = x? + γ

∑
t<T

∇xFvt(x
?, ξt) , ys = x? + γ

∑
s≤t<T

∇xFvt(x
?, ξt) , s < T .

We thus have:

E‖xT − x?‖2 ≤ 2(1− γµ)T

E‖x0 − x?‖2 + γ2E

∥∥∥∥∥∑
s<T

∇xFvs(x
?, ξs)

∥∥∥∥∥
2


+ γ3L
∑
t<T

(1− γµ)T−tE

∥∥∥∥∥∥
∑
t≤s<T

∇xFvs(x
?, ξs)

∥∥∥∥∥∥
2 .

To conclude, we use the first inequality of this proof, and Lemma 7.4.2, and proceed as in
the proof of Theorem 7.4 and Corollary 7.4.1.
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Chapter 8

Sample optimality in personalized
collaborative learning

In personalized federated learning, each member of a potentially large set of agents aims at
training a model minimizing its loss function averaged over its local data distribution. In
this chapter, we study this problem under the lens of stochastic optimization, focusing on
a scenario with a large number of agents, that can each only access very few data samples
from their local data distribution. Specifically, we prove novel matching lower and upper
bounds on the number of samples required from all agents to approximately minimize the
generalization error of a fixed agent. We provide strategies matching these lower bounds,
based on a gradient filtering approach: given prior knowledge on some notion of distance
between local data distributions, agents filter and aggregate stochastic gradients received
from other agents, in order to achieve an optimal bias-variance trade-off. Finally, we quantify
the impact of using rough estimations of the distances between local distributions of agents,
based on a very small number of local samples.

8.1. Introduction

An ideal approach for personalization would take the best of both worlds: increased
statistical efficiency by using more samples, while keeping local generalization errors low.
This raises the fundamental question: what is the optimal bias/variance tradeoff between
personalization and coordination, and how can it be achieved?

We formulate the personalized federated learning problem, studying it under the lens of
stochastic optimization [BCN18]. Consider n ∈ N∗ agents denoted by integers 1 ≤ i ≤ n,
each desiring to minimize its own local function fi : Rd → R, while sharing their stochastic
gradients. Since only a limited number of samples are locally available, we focus on stochastic
gradient descent-like algorithms, where agents each sequentially compute stochastic gradients
gki such that E

[
gki
]

= ∇fi. In order to reduce the sample complexity, i.e. the number of
samples or stochastic gradients required to reach small generalization error, agents thus need
to use stochastic gradients from other agents, that are biased since in general E

[
gki
]
6= ∇fj .

The algorithms we propose in this chapter are based on a gradient filtering approach:
upon reception of stochastic gradients (gkj )j , agent i filters these gradients and aggregates
them using some weights λj into

∑
j λjg

k
j , in order to achieve some bias/variance trade-off.

8.1.1. Outline of the chapter

In this chapter, we consider an oracle model where at each step k = 1, 2, . . . , all agents
may draw a sample according to their local distribution. We aim at computing the number
of stochastic gradients sampled from all agents, required to reach a small generalization
error, in terms of biases (distances between functions or distributions), regularity, and noise
assumptions. The oracle model, main assumptions and problem formulations are given in
Section 8.2. Our main contributions are then as follows.
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(i) In Section 8.3 we prove information theoretic lower bounds: to reach a target gener-
alization error ε > 0 for a fixed agent i, no algorithm can achieve a reduction in the number
of oracle calls by a factor larger than the total number of agents ε-close –in a suitable sense–
to agent i.

(ii) We next study a naive strategy based on weighted gradient averaging algorithms,
coined all-for-one, that matches this lower bound, at the cost of high communication and
storage requirements.

(iii) We then propose in Section 8.5 a parallel extension of the simple weighted gradient
averaging algorithm that yields an efficient algorithm for collaborative generalization error
minimization problems. In this algorithm, agents compute stochastic gradients at their local
estimate, and broadcast it to other agents who may use these to update their own estimates.
For xk = (xk1, . . . , x

k
n) where xki is the local estimate of agent i at iteration k, updates of the

all-for-all algorithm write as:

xk+1 = xk − ηWgk ,

where gk = (gk1 , ..., g
k
n) for an unbiased stochastic gradient gki of function fi, a step size η, and a

carefully chosen symmetric matrixW . Agent i thus uses stochastic gradients that are doubly
biased, as gradients of a “wrong function” fj instead of fi computed at a “wrong location” xkj
instead of xki . Interestingly, note that the All-for-all algorithm is not a gossip algorithm
per se (see e.g. [SBB+19]), since the matrix W is not doubly-stochastic: gradients are not
aggregated with weights that sum to 1. Moreover, W depends on the distance between local
agents distributions, and thus requires either prior information on the local distributions, or
estimating these distances as a pre-processing step.

(iv) We finally study in Section 8.6 the impact of estimating, based on a very limited
number of samples, the matrix W to use in the All-for-all algorithm. Under a mixture
model assumption on the agents, we obtain that for a bounded – up to logarithmic factors
– number of samples per agent, any arbitrary small generalization can be reached, with an
optimal collaboration speedup in terms of the number of agents in each mixture of the mixture
model.

8.1.2. Related works

Federated Learning is a paradigm in machine learning where training is done collabora-
tively among several agents, taking into account privacy constraints [MMR+17, KMRR16,
KMA+19, WMK+19]. A central task is the training of a common model for all agents, for
which both centralized approaches orchestrated by a server and decentralized approaches with
no central coordinator [NOR18] have been considered. The algorithms we propose in this
chapter are well suited for a decentralized implementation.

As observed in [HHHR20], training a common model for all users can lead to poor gener-
alization on certain tasks such as e.g. next-word prediction. To improve both accuracy and
fairness, personalized models thus need to be learnt for each agent [LSBS20, MSS19, YBS21].
Approaches to personalization include fine-tuning [CCD21, KBT19], transfer learning tech-
niques [TJJ20, WMK+19, DHK+21], using shared-representation models [CHMS21]. Person-
alization in FL can also be formulated as the training of local models with a regularization
term that enforces collaboration between users [HHHR20] or with a meta-learning approach
[FMO20, JKRK19, CLD+18]. We refer the interested reader to [KKP20] for a broader survey
of Personalized Federated Learning.

While the goal of personalization is to minimize local generalization errors, the above
cited works do not provide theoretical guarantees over the sample complexity to obtain small
local errors, but instead control errors on a regularized problem, in terms of communication
rounds or full gradients used, and not in terms of samples used. [DKM20, MMRS20] among
others provide generalization errors under a statistical learning framework that depend on
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VC-dimensions and on distances between each local data distribution and the mixture of
all datasets. [DK21a, DK21b] study the bias-variance trade-off between collaboration and
personalization for mean estimation in a game-theoretic framework. [CKS+21, GHKJ21,
BGHJ21] also concurrently frame personalization as a stochastic optimization problem with
biased gradients and are the works closest to ours. They consider the training of a single
agent with biased gradients from another group of agents dedicated to this agent, and obtain
performance guarantees in terms of distance between individual function fi and the average
n−1

∑
j fj . In contrast, we obtain more general performance bounds based on distance bounds

between all pairs of functions fi, fj (or equivalently, pairs of local distributions), in the case
where all agents desire to minimize their local objective; our “bias assumption” is also milder.
In addition, we prove matching lower bounds, and study under a mixture model the statistical
efficiency of our approach.

Concurrently, [DW22] use similar dissimilarity notions (Integral Probability Metrics, al-
beit with respect to different function spaces) to show upper-bounds that closely resemble ours
of Theorem 8.3, when training over mixtures of distributions (without algorithmic solutions
as the all-for-all algorithm), together with insights on who to collaborate with for agents.
These results, obtained in a different framework than ours (hypothesis and VC-dimension
bounds, rather than our stochastic optimization framework), fall into the frame of our lower
bound (and match it up to constant factors), form an orthogonal line of work.

Finally, data-heterogeneity has long been a challenge in Federated optimization, as for
instance noted in the analyses and performances of the Local SGD algorithm [KMR20,
WPS20b]. Many algorithmic solutions have been proposed to counterweight this effect
[KKM+20, MJPH21] (non-exhaustive list). Yet this line of work studies the effect of data-
heterogeneity on the convergence guarantees of FL algorithms that train one global model,
irrespectively of the local generalization property of this trained global model. Our work
is orthogonal, and focuses on data-heterogeneity as a challenge for statistical meaning (lo-
cal generalization) of the model(s) trained, as opposed to related works that study data-
heterogeneity as a challenge in distributed or federated learning to design fast and scalable
algorithms. Putting into perspective these two views on the challenge data-heterogeneity in
FL seems however necessary, and stresses its importance.

8.2. Problem Statement and Assumptions

We now detail our objectives and the necessary technical assumptions. We consider
general stochastic gradient methods and formulate our problem, assumptions and algorithms
accordingly.

8.2.1. Problem setting

Let Di for 1 ≤ i ≤ n be a probability distribution on a set Ξ (agent i’s local distribution,
not its empirical distribution), F : Rd×Ξ→ R a loss function. We assume that the function
fi that agent i aims at minimizing is the generalization error on agent i’s local distribution:

fi(x) = Eξi∼Di [F (x, ξi)] , x ∈ Rd . (8.1)

We coin this problem as collaborative generalization error minimization (GEM). At every
iteration k = 1, 2, . . ., agent i may access unbiased i.i.d. estimates gki (x) of ∇fi(x):

gki (x) = ∇xF (x, ξki ) , ξki ∼ Di , x ∈ Rd , 1 ≤ i ≤ n .

Counting the number of stochastic gradients used in the whole set of agents to reach a
precision ε for fi thus reduces to computing the number of samples required from all agents
to obtain local generalization error ε for agent i. To specify the information shared between
agents via access to stochastic gradients, we define the following oracle, that lets at every
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iteration all agents sample a stochastic gradient. After K oracle queries, each agent will
have sampled K stochastic gradients for a total of nK in the whole set of agents. Let{

(ξk1 , . . . , ξ
k
n), k ≥ 0

}
a sequence of i.i.d. random variables of law D1 × · · · × Dn. Given the

initial shared knowledge S0, at iterations k = 1, 2, . . .,

1. For all 1 ≤ j ≤ n, agent j samples ξkj chooses some ykj ∈ Rd as a Sk−1-measurable function.

2. The shared memory is extended: Sk = Sk−1 ∪
{
gkj (ykj ), ξkj , 1 ≤ j ≤ n

}
.

3. Agent j outputs xkj as a Sk-measurable function.

For fixed target precision ε > 0, the objective is to find, using Tε samples from all agents
in total - corresponding to Kε = Tε/n oracle calls -, models with local generalization error
ε. Throughout this chapter, we assume that each function fi is minimized over Rd, and we
denote by x?i such a minimizer. We further consider the following two standard assumptions.

Assumption 8.2.1 (Noise). There exists σ2 > 0 such that for all 1 ≤ i ≤ n and x ∈ Rd,

Eξi∼Di‖∇xF (x, ξi)−∇fi(x)‖2 ≤ σ2 .

Assumption 8.2.2 (Regularity). Functions fi are µ-strongly convex and L-smooth [Bub15].

8.2.2. Distribution-based distances

We first introduce extensions of classical Integral Probability Metrics (IPMs, [SGF+10]) to
multivariate functions, i.e. pseudo-distances on the set of probability measures parameterized
by a set H of functions, fixed in the sequel.

Definition 8.2.1. For H a set of functions from Ξ to Rd and D,D′ two probability distributions
on Ξ, we define:

dH(D,D′) = sup
h∈H

∥∥E [h(ξ)− h(ξ′)
]∥∥ ,

where ξ ∼ D and ξ′ ∼ D′. dH is a pseudo-distance on the set of probability measures on Ξ.

This family of pseudo-distances contains a large number of standard distances between
distributions, including total variation (with the set of 1-locally bounded functions, functions
that send any ball of radius 1 in a ball of radius 1), the Wasserstein distance (with the set
of 1-Lipschitz functions), maximum mean discrepancies (with the unit ball of a RKHS), or
even a simple distance between means of the distributions (with the set of 1-Lipschitz affine
functions), developed further in Section 8.6.

Assumption 8.2.3 (Distribution-based dissimilarities). For some non-negative weights (bij)1≤i,j≤n,
we have dH(Di,Dj) ≤ bij for all 1 ≤ i, j ≤ n. We further assume that either of the following
holds.

1. (Weak dissimilarities). For all 1 ≤ i ≤ n,
(
ξ ∈ Ξ 7→ ∇xF (x?i , ξ)

)
∈ H.

2. (Strong dissimilarities). For all x ∈ Rd,
(
ξ ∈ Ξ 7→ ∇xF (x, ξ)

)
∈ H.

The “weak dissimilarities” assumption is of course easier to satisfy than the “strong”
version, and our results will ultimately depend only on the weak assumption. Under As-
sumption 8.2.3 (weak version) and Assumption 8.2.2, we have

fi(x
?
j )− fi(x?i ) ≤ b2ij/(2µ) ,

which motivates our use of distribution-based dissimilarity assumptions.
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8.3. Information-theoretic lower bound on the sample complexity

In this section, we prove lower bounds on the total number of stochastic gradients required
from all agents, to reach ε-generalization for a given agent. Our lower bounds apply to
collaborative GEM, i.e. functions (fi)1≤i≤n of the form (8.1), for shared loss function F and
user distributions D1, . . . ,Dn.

An oracle φ : Rn×d → I is a random function that answers some φ(x) ∈ I where I is
an information set, for every query x ∈ Rn×d. We adapt the definitions of [ABRW12] of
sample complexity for SGD to our personalization problem. Formally, the first-order oracle
we defined in Section 8.2 and that we write as φ

(
(Di)i=1,...,n, F

)
for shared loss function F

and user distributions D1, . . . ,Dn, returns for x ∈ Rn×d:

φ
(
(Di)i, F

)
(x) =

(
i, xi, ξi, F (xi, ξi), g

k
i (xi)

)
1≤i≤n

,

where ξi ∼ Di. Given distributions and a loss function
(
(Di)i, F

)
, we denote by M the set

of all methods M = (MK)K≥0: for any K ≥ 0, MK makes K oracle calls from oracle
φ
(
(Di)i, F

)
(while using T = NK stochastic gradient samples from all agents), and returns

xKi ∈ Rd for agent i as a measurable function of the K oracle calls. For a set D of couples of
distributions and loss function

(
(Dj)j , F

)
defining functions (fi)1≤i≤n, we are interested in

lower-bounding:
inf
M∈M

sup
((Dj)j ,F )∈D

Kεi
(
M,

(
(Dj)j , F

))
,

where Kεi
(
M,

(
(Dj)j , F

))
is the number of oracle calls required to reach generalization error

ε > 0 for agent i, and writes as:

Kεi
(
M,

(
(Dj)j , F

))
= inf

{
K ∈ N∗ such thatE

[
fi(x

K
i )− min

x∈Rd
fi(x)

]
≤ ε
}
.

We now define the set D we consider for our lower bounds. Let b = (bij)1≤i,j≤n be non-
negative weights that verify the triangle inequality – namely, bij ≤ bik + bkj for all i, j, k
–, and let r, µ, L, σ > 0. DLµ(r, b, σ) is the set of all

(
(Di)1≤i≤n, F

)
, such that the functions

fi parameterized by these tuples of distributions and shared loss function verify Assump-
tions 8.2.1, 8.2.2 and 8.2.3 for σ2, µ,L > 0 and b, such that ‖x?i ‖ ≤ r for all 1 ≤ i ≤ n, and
such that fi(x?j ) − fi(x?i ) ≤ b2ij/(2µ). We use the notation a(·) = Ω(b(·)) for ∃C > 0 such
that a(·) ≥ Cb(·).
Theorem 8.1 (IT lower bound). Let ε ∈ (0, 1/16), (bij) verifying the triangle inequality,
r, σ > 0. Assume that the function set H contains the all 1-Lipschitz affine functions and
that dH ≤ dTV. For any i ∈ {1, . . . , n}:

inf
M∈M

sup

((Dj)j ,F )∈DL=1/r2

µ=1/r2
(r,b,σ)

Kεi
(
M,

(
(Dj)j , F

))
= Ω

(
r2σ2

ε
× 1

N ε
i ( b

2

4µ)

)
,

where N ε
i ( b

2

4µ) =
∑

j 1{b2ij≤4µε} is the number of agents j verifying b2ij ≤ ε.

The proof of this lower bound (see below) builds on lower bounds based on Fano’s inequal-
ity [DW13] for stochastic gradient descent [ABRW12] or for information limited statistical
estimation [ZDJW13, DR19] that we summarize below, adapted to personalization. Theo-
rem 8.1 states that, given the knowledge of (bij), σ2, µ = L, there exist difficult instances of
the problem that satisfy all three Assumptions 8.2.1, 8.2.2 and 8.2.3, such that the number
of oracle calls needed to obtain a generalization error of ε for an agent i is lower-bounded by
the right hand side of the equation in Theorem 8.1.
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The factor Cσ2r2ε−1 is reminiscent of stochastic gradient descent, and is present in [ABRW12]:
without cooperation, this is the sample complexity of SGD for a fixed agent. Cooperation
appears in the factor 1/N ε

i (b/(4µ)): the sample complexity is inversely proportional to the
number of agents j that have distributions similar to that of i. One cannot hope for better
than a linear collaboration speedup proportional to agents 4µε-close to i in terms of the dis-
tance dH. Theorem 8.1 is a worst-case lower bound, so that a collaboration speedup could be
leveraged even for small ε, but this would require making stronger additional assumptions.

8.3.1. General framework to prove lower bounds [ABRW12]

The idea is that, when optimizing a function f(x) = E [F (x, ξ)] and finding a good
approximation of a minimizer x?, we learn some information on the distribution D over
which samples are drawn. In order to prove lower bounds, we construct a loss function F ,
and distributions Dα1 , . . . ,Dαn , where α is a random parameter. We argue that minimizing the
objective function up to a certain precision gives a good estimator (quantified) of the random
seeds α. Then, using Fano inequality, we bound the efficiency of such an estimator in terms
of number of oracle calls, obtaining a lower bound on the sample complexity. This approach
is inspired by [ABRW12], who prove IT-lower bounds for stochastic gradient descent. We
adapt their proof technique to the personalized and multi-agent setting.

Constructing difficult loss functions For any two functions f, g : Rd → R, we define the
discrepancy measure ρ(f, g) as:

ρ(f, g) = inf
x∈Rd

{
f(x) + g(x)− inf

y∈Rd
f(y)− inf

y∈Rd
g(y)

}
,

which is a pseudo metrics. Now, for a finite set V of parameters, let G(δ) =
{
gδα , α ∈ V

}
be

a set of functions indexed by V, that depend on δ (fixed in the set). The dependency in δ of
each gα ∈ G(δ) is left implicit in the following subsections. We define:

ψ(δ) = inf
f,g∈G(δ),f 6=g

ρ(f, g) .

Minimizing is Bernoulli parameters identification The two following lemmas justify that
optimizing a function gα ∈ G(δ) to a precision of order ψ(δ) is more difficult than estimating
the parameter α.

Lemma 8.3.1 ([ABRW12]). For any x ∈ Rd, there can be at most one function gα in G(δ)
such that:

gα(x)− inf
Rd
gα <

ψ(δ)

3
.

Lemma 8.3.2 ([ABRW12]). Assume that for some fixed but unknown α ∈ V there exists a
method MK based on the data φ = {X1, ..., XK} that returns xK (function of φ) satisfying
an error of:

E
[
gα(xK)− min

x∈Rd
gα(x)

]
<
ψ(δ)

9
,

where the mean is taken over the randomness of both the oracle Φ, the methodMK and α ∈ V
if random. Then, there exists a hypothesis test α̂ : φ→ V such that:

max
α∈V

Pφ
(
α̂ 6= α

)
≤ 1

3
.

Suppose now that the parameter α in the previous Lemma is chosen uniformly at random
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in V. Let α̂ : φ→ V be a hypothesis test estimating α. By Fano inequality [CT05], we have:

P
(
α̂ 6= α) ≥ 1− I

(
φ, α

)
+ ln(2)

ln(|V|) , (8.2)

where I
(
φ, α

)
is the mutual information between φ and α, that we need to upper-bound.

Combining Fano inequality with Lemmas 8.3.1 and 8.3.2, fixing a target error ε = ψ(δ), we
obtain a lower bound on theKε the number of oracle calls required to reach an ε generalization
error:

1

3
≥ Pφ

(
α̂ 6= α

)
≥ 1− I

(
φKε , α

)
+ ln(2)

ln(|V|) ,

where φKε is the information contained in Kε oracle calls. If we have an equality of the form
I
(
φKε , α

)
= KεI

(
φ1, α

)
, this gives:

Kε ≥
2
3 ln(|V|)− ln(2)

I(φ1, α)
. (8.3)

Playing with the different parameters δ, α,V gives lower bounds. We refer the interested
reader to Chapter 2 in [CT05] for Fano inequality and mutual information.

8.3.2. Applying this to prove Theorem 8.1

Proof of Theorem 8.1. For simplicity, assume that r2 = d and σ2 = 1. Let δ > 0 a free
parameter. Let V = {α1, . . . , αL} ⊂ {−1, 1}d be a subset of the hypercube such that for all
k 6= l,

1

2

d∑
i=1

|αki − αli| ≥
d

4
,

i.e. V is a d/4-packing of the hypercube. We know that we can set |V| ≥ (2/
√
e)d/2. Without

loss of generality, we prove a lower bound in the case where the agent that desires to minimize
its local function is indexed by 1.

Let:
F (x, ξ) =

1

2
‖x− ξ‖2 ,

for x, ξ ∈ Rd and, for fixed δ > 0 and any α ∈ V:

gα(x) =
1

2d

d∑
k=1

(
x2
k + 1− 2

(1

2
+ αkδ)xk

)
, x ∈ X .

We keep the same notations as last subsection (ψ(δ), ρ). We have:

ρ(gα, gβ) =
δ2

d

d∑
k=1

|αk − βk| ,

leading to ψ(δ) ≥ δ2/4 since V is a d/4-packing of the hypercube.

For any i = 1, . . . , n, let Di be the probability distribution on {0, 1}d of the following
random variable:

Ber
(1

2
+ δiαk

)
εk where δi = (δ − bi1)+ ,

where s+ = max(0, s) for s ∈ R, k is taken uniformly at random in {1, . . . , d}, (εk) is the
canonical basis of Rd, and Ber(p) is a Bernoulli random variable, independent of k.
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The mutual information is thus, in our case:

I(φK , α) ≤ C1KN δ
1 (
√
b)δ2 ,

where we use the fact that I
(
Ber
(

1
2 + 1b1i≤δαkδi

)
, αk
)
≤ C1δ

2 for some constant C1 > 0, for
δi ≤ 1/4. Setting the target precision as ε = δ2/4, we obtain:

Kε ≥ C ′
d

εN ε
1 (4b)

.

The loss function and distributions built verify our regularity assumptions for µ = 1/d,
L = 1/d, noise σ2 ≤ 1.

We first verify that for all 1 ≤ j, k ≤ n, we have fj(x?k) − fj(x?j ) ≤ b2kj . We first notice
that x?j = 1

d

(
1
2 + δjαl

)
1≤l≤d, so that:

fj(x
?
k)− fj(x?j ) =

1

d

∥∥x?j − x?k∥∥2

= (δi − δk)2

≤ (b1j − b1k)2

≤ |b1j − b1k|2

≤ b2jk ,

since the weights b verify the triangle inequality. Under the assumptions of Theorem 8.1 on
H, we have, in terms of distribution-based distances:

dH(Di,Dj) ≤ |δi − δj | ≤ bij .

The minimum of each gα is attained at xα = 1
2 + δα, we thus need to assume that r is of

order
√
d, and a rescaling leads to the dependency in r. The dependency in σ2 for σ2 > 1 is

obtained by taking D′i = Ber(1/σ2)σ2Di. In this case, we have a noise amplitude of order σ2

instead of order 1, and a factor 1/σ2 appears in the mutual information.

8.4. The All-for-one algorithm: parallel weighted gradient averagings

After providing lower complexity bounds in Theorem 8.1, we present in this section a
naive algorithmic approach based on weighted gradient averagings (WGA), that proves to
be sample-optimal. Each agent i keeps n shared local models xk1, . . . , xkn, where xkj estimates
x?j at iteration k (the knowledge of xkj needs to be shared by all agents). At each iteration
k, when a sample ξkj is obtained at agent j, it is used by that agent to compute unbiased
estimates of ∇fj(xki ) for all i ∈ [n]. The iterates of the WGA algorithm write as, where
λij ≥ 0 are such that

∑
j λij = 1 for all 1 ≤ i ≤ n:

xk+1
i = xki − η

n∑
j=1

λijg
k
j (xki ) , (8.4)

for some step size η > 0. We call this algorithm that consists in performing n parallel WGA
algorithms All-for-one (AFO), since every iteration of each gradient averaging for a given
node i requires all the other nodes to compute one stochastic gradient for i. WGA is thus
equivalent to training models on the mixture of distributions (Dj)j with weights (λij)j for all
i.

Theorem 8.2. Let (xki )1≤i≤n, k≥0 be generated with (8.4), and assume that Assumptions 8.2.1,
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8.2.2 and 8.2.3 (strong version) hold. For any K ≥ 0 and 1 ≤ i ≤ n, and for η as in Equation
(8.5),1

E
[
fi(x

K
i )− fi(x?i )

]
≤
(
fi(x

(0)
i )− fi(x?i )

)
e−

K
2κ + Õ

κσ2

µK

∑
1≤j≤n

λ2
ij

+
∑

1≤j≤n
λij

b2ij
µ
.

Let ε > 0. For a specific choice of λij =
1{b2ij<ε/2}
N εi (2b2/µ)

, WGA (8.4) satisfies E
[
fi(x

Kε(i)
i )− fi(x?i )

]
≤

ε for a number of oracle calls of:

Ki(ε) = Õ
(
κσ2

µε

1

N ε
i (2b2/µ)

)
,

where N ε
i is previously defined in Theorem 8.1.

Since the oracle complexity of the WGA algorithm matches that of our lower bound, this
proves that our lower bound is optimal. However, this algorithm may be difficult to use in
practice: (i) the choice of λij is an explicit function of distribution distances (bij) (defined
in Assumption 8.2.3) that can be (statistically speaking) as hard to compute as solving our
optimization problem; and (ii) the memory requirements and computation/communication
costs of WGA can be prohibitive for large n and large ε (they scale with N ε

i for agent i).
Note that the strong version of Assumption 8.2.3 used in Theorem 8.2 can be replaced by a
more classical uniform bound of the form ‖∇fi −∇fj‖ ≤ bij .

We first begin by solving this latter issue – an algorithmic one – in the next section, by
introducing and studying the All-for-all algorithm. We discuss (i) in Section 8.6, where
we provide scenarii over which statistical theoretical guarantees can be derived on the error
made by estimating these distribution distances using only a few samples.

Proof of Theorem 8.2. We begin by proving the following descent lemma.

Lemma 8.4.1. Let F : Rd → R be L-smooth and µ-strongly convex and G : Rd → R be
differentiable. Consider the iterates generated by:

yk+1 = yk − ηgk ,

where E
[
gk|yk

]
= ∇G(yk) and E

[∥∥gk −∇G(yk)
∥∥2|yk

]
≤ σ2

g . Then, we have, where y?

minimizes F , as long as η ≤ 1/L:

E
[
F (yk+1)− F (y?)

]
≤ (1− ηµ)E

[
F (yk)− F (y?)

]
+
η

2
E
[∥∥∥∇F (yk)−∇G(yk)

∥∥∥2
]

+
η2σ2

gL

2

Proof Lemma 8.4.1. We use smoothness of F :

E
[
F (yk+1)− F (yk)

]
≤ −ηE

[
〈gk,∇F (yk)〉

]
+
η2L

2
E
[∥∥∥gk∥∥∥2

]
.

Then, using E
[∥∥gk∥∥2

]
≤ E

[∥∥∇G(yk)
∥∥2
]
+σ2

g , and−ηE
[
〈gk,∇F (yk)〉

]
= −ηE

[
〈∇G(yk),∇F (yk)〉

]
=

−η
2E
[∥∥∇G(yk)

∥∥2
+
∥∥∇F (yk)2

∥∥− ∥∥∇G(yk)−∇F (yk)
∥∥2
]
, we obtain that:

E
[
F (yk+1)− F (yk)

]
≤ −η

2
E
[∥∥∥∇F (yk)

∥∥∥2
]
− η

2
E
[∥∥∥∇G(yk)

∥∥∥2
](

1− ηL
)

1Õ hides logarithmic and constant factors
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+
η

2
E
[∥∥∥∇F (yk)−∇G(yk)

∥∥∥2
]

+
σ2
gη

2L

2
.

Finally, we conclude using −η
2E
[∥∥∇F (yk)

∥∥2
]
≤ ηE

[
F (yk)− F (y?)

]
and η < 1/L.

Let i ∈ [n]. To prove Theorem 8.2, we now use Lemma 8.4.1 to study the sequence
yk = xki with F = fi, G =

∑
j λijfj := fλ and gk =

∑
j λijg

k
j (xki ). For all x ∈ Rd, using

Assumption 8.2.3:∥∥∥∇fi(x)−∇fλ(x)
∥∥∥2
≤

n∑
j=1

λij‖fi(x)− fj(x)‖2

=
n∑
j=1

λij‖E [∇xF (x, ξi)]− E [∇xF (x, ξj)]‖2

≤
n∑
j=1

λijb
2
ij ,

since ∇xF (x, ·) ∈ H and dH(Di,Dj) ≤ bij . Then, using the independence (conditionally on
xki ) of the (gkj )j and E

[
gkj (xki )|xki

]
= ∇fj(xki ):

E

∥∥∥∥∥∥
∑
j

λijg
k
j (xki )−

∑
j

λij∇fj(xkj )

∥∥∥∥∥∥
2 =

∑
j

E
[∥∥∥λij(gkj −∇fj(xkj ))∥∥∥2

]
≤
∑
j

λ2
ijσ

2 .

Consequently,

E
[
fi(x

k+1
i )− fi(x?i )

]
≤ (1− ηµ)E

[
fi(x

k
i )− fi(x?i )

]
+
η

2

n∑
j=1

λijb
2
ij +

η2σ2L

2

n∑
j=1

λ2
ij .

Writing Hk = (1− ηµ)−kE
[
fi(x

k
i )− fi(x?i )

]
, unrolling the recursion leads to:

HK ≤ H0 +
η

2

∑
k<K

(1− ηµ)−k
n∑
j=1

λijb
2
ij +

∑
k<K

(1− ηµ)−k
η2σ2L

2

n∑
j=1

λ2
ij .

Finally, using
∑

k<K(1− ηµ)−k ≤ (1−ηµ)−K

ηµ , we have:

E
[
f(xKi )− f(x?i )

]
≤ (1− ηµ)K(f(x0

i )− f(x?i )) +
ησ2L

2µ

n∑
j=1

λ2
ij +

1

2µ

n∑
j=1

λijb
2
ij .

Using (1− ηµ)K ≤ e−Kηµ, we optimize of η. For

ηi = min

{
1

2L
,

1

µK
ln

(
2µ2K(f(x0

i )− f(x?i ))

σ2L
∑

j λ
2
ij

)}
, (8.5)

we obtain:

E
[
f(xKi )− f(x?i )

]
≤ (f(x0

i )− f(x?i ))e
−K/κ

+
σ2L

µ2K
ln

(
2µ2K(f(x0

i )− f(x?i ))

σ2L
∑

j λ
2
ij

)∑
j

λ2
ij +

1

2µ

n∑
j=1

λijb
2
ij ,
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leading to the first part of Theorem 8.2. For the second part, we simply plug the expression
of λij in the proven formula.

8.5. The All-for-all algorithm

Algorithm 8.1: All-for-all algorithm
1: Step size η > 0, matrix W ∈ Rn×n, initialization x0

1 = . . . = x0
n ∈ Rd (x0

i at agent i).
2: for k = 0, 1, 2, . . .K − 1 do
3: Agents 1 ≤ j ≤ n compute gkj (xkj ) and broadcast it to all agents i such that Wij > 0.
4: For i = 1, . . . , n, update:

xk+1
i = xki − η

∑
j :Wij>0

Wijg
k
j (xkj ) .

5: end for Return xKi for agent i

In this section, we present the All-for-all algorithm (AFA), an adaptation of the
weighted gradient averaging algorithm. For 1 ≤ i ≤ n, initialize x0

i = x0 ∈ Rd. At iteration
k, let xki ∈ Rd be agent i’s current estimate of x?i , and denote xk = (xki )1≤i≤n ∈ Rn×d.
For a step size η > 0 and a matrix W ∈ Rn×n with non-negative entries (remarkably and
as discussed later, W will not necessarily verify

∑
jWij = 1), iterates of the all-for-all

algorithm are generated with Algorithm 8.1. In Theorem 8.3, we control the averaged local
generalization error amongst all agents:

F k =
1

n

n∑
i=1

fi(x
k
i )− fi(x?i ) , k ≥ 0 .

Theorem 8.3 (All-for-all algorithm). Let K > 0, η > 0, and W a matrix of the form
W = ΛΛ> for some stochastic matrix Λ = (λij)1≤i,j≤n. Assume that Assumptions 8.2.1,
8.2.2 and 8.2.3 (weak version) hold. For a certain choice of η detailed in the proof, the
iterates (xki )k≥0,1≤i≤n generated with Algorithm 8.1 verify:

1

K

∑
k<K

E
[
F k
]
≤ LB2

K
+ 2

√√√√B2σ2

NK

∑
1≤i,j≤n

λ2
ij

+
1

n

∑
1≤i,j≤n

λij (fj(x
?
i )− fi(x?i )) ,

where B2 ≥ 1
n

∑n
i=1

∥∥∥x(0)
i − x?i

∥∥∥2
and if µ > 0:

E
[
FK
]
≤ F 0e−

K
2κ + Õ

 κσ2

Kµn

∑
1≤i,j≤n

λ2
ij


+

1

n

∑
1≤i,j≤n

λij (fj(x
?
i )− fi(x?i )) .

As for the AFO algorithm, we can deduce from this result the number of oracle calls
required by the All-for-all algorithm to reach an averaged ε-generalization, under the
idealistic setting where the distribution-based distances bij are accessible.
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Corollary 8.5.1. Let ε > 0. Under the same assumptions as in Theorem 8.3, for a choice

of matrix W = ΛΛ> where λij =
1{b2ij/µ<ε}
N εi (b2/µ)

, the All-for-all algorithm (Algorithm 8.1)

returns (xKi )1≤i≤n satisfying 1
n

∑n
i=1 fi(x

Kε
i )− fi(x?i ) ≤ ε, for a number of oracle calls satis-

fying:

Kε ≤ 2 max

(
κσ2

εµ

1

n

n∑
i=1

1

N ε
i (b2/µ)

, κ

)
ln
(
ε−1F 0

)
.

Denoting Kε(i) the oracle complexity of the WGA algorithm - that matches the lower
bound -, we observe that the All-for-all algorithm reaches an averaged ε-generalization
with an number of oracle calls Kε, of Kε ≤ 1

n

∑
iKε(i). The speedup in comparison with a

no-collaboration strategy (all agents locally performing SGD) is 1
n

∑
i

1
N εi (b2/µ)

: the mean of
all local speedups.

Remark 8.5.1. In Theorem 8.3, as its proof shows, the quantities b2ij/(2µ) in the last term
can in fact be replaced by the quantities fi(x?j ) − fi(x?i ), that control how well the optimal
model for j generalizes for i, and the bias induced by All-for-all iterations is a weighted
average of these quantities. Note that in our lower bound (Theorem 8.1), we enforce that the
functions considered are required to satisfy fi(x?j )− fi(x?i ) ≤ b2ij/(2µ). We believe this notion
of function proximity that we leverage to be the weakest achievable in our setting; no prior
work uses such a mild proximity assumption.

Perhaps surprisingly, matrixW is in general not a gossip matrix (i.e. such thatW1 = 1):
agent i does not aggregate a convex combination of stochastic gradients, but a combination
with scalars that do not necessarily sum to 1. We thus cannot say that the all-for-all
algorithm acts as if, in parallel, each agent i trains a model on the mixture of distributions
Dj with weights Wij . In fact, as the analysis shows below, agent i trains a model on the
mixture of distributions, with weights λij , if Λ is a stochastic square root of matrix W
(ΛΛ> = W ), as in the AFO algorithm. In order to account for inter-dependencies between
agents that do not directly share information, the all-for-all gradient filtering uses weights
Wij to aggregate information, instead of λij . Propagating information using a matrix W ,
that induces a similarity graph GW on {1, . . . , n}, such that (ij) ∈ EW if Wij > 0, is quite
natural [VBT17, BGTT18]; yet, ours is the first analysis to give such precise generalization
error bounds, through the use of a stochastic optimization framework.

In comparison to Theorem 8.3, the classical personalized FL approaches that consider
personalized local models of the form xi = x̄−δi, where x̄ is some global quantity shared by all
agents, perturbed (and personalized) by some local quantity δi (e.g. averaging between local
and a global models), can be seen as the special instances where, for all i, we have λii = 1−αi
and λij = αi

n−1 if i 6= j for some αi, and leads to bias terms of the form 1
n

∑
i

αi
N−1

∑
j 6=i bij

[DKM20, MMRS20, FMO20]. Full and naive collaboration (a single model trained for all
users) corresponds to λij = 1/n for all i, j, and leads to a bias term of 1

N2

∑
i,j bij . The

degrees of freedom offered by our matrix W (and by coefficients λij) enable pairwise agent
adaptation, and tighter generalization guarantees and bias/variance tradeoffs.

Proof of Theorem 8.3. We recall that for a stochastic matrix Λ, we defined

fΛ(y) =
1

n

n∑
i=1

fi
( n∑
j=1

λijyj
)
, y = (y1, . . . , yn) ∈ Rn×d .

Then, yΛ is defined as a minimizer of fΛ, and we write x? = (x?1, . . . , x
?
n) where x?i is the

minimizer of fi.
We first begin with the following simple lemmas.
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Lemma 8.5.1. If Assumption 8.2.3 (weak version) holds, then for all i, j = 1, . . . , n, we have:

fi(x
?
j )− fi(x?i ) ≤

b2ij
2µ

.

Proof. Using strong-convexity of fi and ∇fi(x?i ):

fi(x
?
j )− fi(x?i ) ≤

1

2µ

∥∥∇fi(x?j )∥∥2

=
1

2µ

∥∥∇fi(x?j )−∇fi(x?i )∥∥2

=
1

2µ

∥∥E [∇xF (x?j , ξi)
]
− E

[
∇xF (x?j , ξi)

]∥∥2

≤
b2ij
2µ

,

where the last inequality is deduced using the weak version of Assumption 8.2.3.

Lemma 8.5.2. If Λ is a stochastic matrix,

fΛ(yΛ)− f̄(x?) ≤ 1

n

∑
1≤i,j≤n

λij
(
fi(x

?
j )− fi(x?i )

)
.

Proof. Writing the optimality of yΛ gives:

fΛ(yΛ) ≤ fΛ(x?)

=
1

n

∑
i

fi(
∑
j

λijx
?
j )

≤ 1

n

∑
1≤i,j≤n

λijfi(x
?
j ) ,

where we used convexity of each fi. Then, subtracting f̄(x?) and using stochasticity of Λ:

fΛ(yΛ)− f̄(x?) ≤ 1

n

∑
1≤i,j≤n

λij(fi(x
?
j )− fi(x?i )) .

We are now armed to prove Theorem 8.3. Recall that xk ∈ Rd×n is defined through the
recursion:

xk+1 = x− k − ηWGk(xk) .

We define the virtual iteration yk ∈ Rd×n as:

y0 = x0 , yk+1 = yk −∇fΛ(yk) .

Since ∇fΛ(yk) = Λ>∇f̄(λyk), we have that:

y0 = x0 , yk+1 = yk − Λ>∇f̄(Λyk) ,

and, multiplying by Λ:

Λy0 = Λx0 , Λyk+1 = Λyk − ΛΛ>∇f̄(Λyk) .
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Since x0
i = x0

j for all i, j, we have that Λx0 = x0 = y0 = Λy0. Then, since by definition we
have that ΛΛ> = W , we notice that the iterates x̃k = Λyk satisfy:

x̃0 = x0 , x̃k+1 = x̃k −W∇f̄(x̃k) .

This is the same recursion as satisfied by xk with the same initialization: we can conclude that
x̃k = xk for all k. We have the following bias-variance decomposition, where the inequality
is a consequence of Lemma 8.5.2:

F k = f̄(xk)− f̄(x?)

= fΛ(yk)− fΛ(yΛ) + fΛ(yΛ)− f̄(x?)

≤ fΛ(yk)− fΛ(yΛ) +
1

n

∑
1≤i,j≤n

λij
b2ij
2µ

.

We thus need to upper-bound the optimization term fΛ(yk) − fΛ(yΛ). We recall that yk
verifies the recursion:

yk+1 = yk − η∇GkΛ(yk) ,

for

GkΛ(y) =
1

n

( n∑
i=1

λijg
k
i ((Λyk)i))

)
1≤j≤n ,

that verifies:

E
[
GkΛ(y)

]
= ∇fΛ(y) ,

E
[∥∥∥GkΛ(y)−∇fλ(y)

∥∥∥2
]
≤ σ2

N2

∑
1≤i,j≤n

λ2
ij .

The function fΛ is however not necessarily strongly convex. However, since ∇2fΛ(y) =
Λ>∇2f̄(Λy)Λ and f̄ is L/n-smooth and µ/n-strongly convex, fΛ is L/n-relatively smooth
and µ/n-relatively strongly convex [BBT17] with respect to 1

2‖y‖
2
W = 1

2y
>Wy. Note also

that the spectral radius of W is 1, since Λ is stochastic. For the storngly convex case, we use
Lemma 8.B.1 that we prove in the appendix of this chapter, while for the convex case we can
use classical SGD analysis with our noise and smoothness parameters [GG23, Theorem 5.3].
This leads to, if µ > 0:

E
[
fΛ(yK)− fΛ(yΛ)

]
≤ (fΛ(y0)− fΛ(yΛ))e−

K
2κ

+
κσ2

Kµn
ln

(
2µ2K(fΛ(y0)− fΛ(yΛ))

σ2L
∑

i,j
1
nλ

2
ij

) ∑
1≤i,j≤n

λ2
ij ,

for a choice of stepsizes of:

η = min

{
1

2L
,

1

µK
ln

(
2µ2K(fΛ(y0)− fΛ(yΛ))

σ2L
∑

i,j
1
nλ

2
ij

)}
, (8.6)

while if µ = 0:

E

[
fΛ
( 1

K

∑
k<K

yk
)
− fΛ(yΛ)

]
≤ L

K

1

n

n∑
i=1

∥∥∥x(0)
i − x?i

∥∥∥2
+2

√√√√ 1

NK

n∑
i=1

∥∥∥x(0)
i − x?i

∥∥∥2σ2

n

∑
1≤i,j≤n

λ2
ij
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8.6. Estimation of dH(Di,Dj) as a pre-processing step

for γ = min

1/(2L),

√
L
n

∑n
i=1

∥∥∥x(0)
i −x?i

∥∥∥2

K σ2

n

∑
1≤i,j≤n λ

2
ij

 concluding the proof.

After providing the optimization tools and results to answer for the shortcomings of
weighted gradient averagings, we now turn to quantifying the impact of the use of estimated
values b̂ij of bij , in order to close the loop.

8.6. Estimation of dH(Di,Dj) as a pre-processing step

The sample complexity of estimating the distances dH(Di,Dj) depends on the complexity
of the function space H. While the estimation of Wasserstein or total variation distances
are usually hard (in O(1/S1/d) where d is the ambient dimension and S the number of
samples available for the estimation, see e.g. [WB19]), maximum mean discrepancy (MMD)
distances often exhibit lower sample complexities in O(1/

√
S) [SGF+10]. Moreover, explicit

assumptions on the loss function can also provide low sample complexities, as shown below
for quadratic loss functions. Yet, the results presented in this section can be generalized
beyond linear models with squared losses, as long as concentration inequalities for controlling
how far empirical distributions are from the true distribution in terms of distance dH are
known.

In order to formulate statistical results for the estimation of the pairwise distribution-
based distances dH(Di,Dj), we need to make additional structural assumptions, on both
H and the distributions. Inspired by [CHMS21], we focus on analyzing an instance of our
general GEM setting for quadratic losses and linear models, under which the generalization
error of a given agent i writes as:

fi(x) =
1

2
E
[(
a>i x− bi

)2]
, x ∈ Rd ,

where zi = (ai, bi) is a random variable on Rd × R. The stochastic gradients thus write as
∇xF (x, ξi) = (a>i x− bi)ai for zi = (ai, bi), and are thus linear functions of ξi = ziz

>
i . Hence,

Assumption 8.2.3 (weak version) is satisfied for H the set of D?-Lipschitz and affine functions,
where D? bounds all ‖x?i ‖ for 1 ≤ i ≤ n, leading to:

dH(Di,Dj) ≤ D?‖E [ξi]− E [ξj ]‖ .

We make the following assumption on the law Di of the random variables ξi: they are non-
isotropic subgaussian random variables, that thus benefit from concentration inequalities that
are dimension-independent [EM21, KL17].

Assumption 8.6.1. For some non-negative symetric matrix Σ and all 1 ≤ i ≤ n, ξi are centered
and Σ-subgaussian:

P
(
ξ>i y ≥ u

)
≤ exp

(
− u2

2y>Σy

)
, ∀y ∈ R(d+1)2

, ∀u > 0 ,

and we denote as ν2 the largest eigenvalue of Σ, and deff =
‖Σ‖2
ν2 its effective dimension.

Importantly, note that deff can be arbitrarily smaller than the ambient dimension - for the
MNIST dataset, deff is less than 3, while the ambient dimension is 712 [EM21]. Depending
on a smaller dimension is also an assumption that [CHMS21] use in their work by exploiting
shared representations.

We now formulate a structural assumption on the set of agents: there are M clusters
C1, . . . , CM of C agents each (to ease notations, with a total number of agents n = MC).
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8.6. Estimation of dH(Di,Dj) as a pre-processing step

Within each cluster, agents distributions share the same objective, and clusters are “well-
separated”. These models are popular for modelling population heterogeneity and provide
a formal framework for clustering problems; we refer the interested reader to [MM10] for a
detailed survey on the subject.

Assumption 8.6.2 (Well-separated clusters of agents). For M,C ≥ 1, n writes as n = MC
and there exists {C1, . . . , CM} a partition of {1, . . . , n}, µ1, . . . , µm such that for all 1 ≤
m ≤ M , |Cm| = C and for all i, j ∈ Cm, we have E [ξi] = E [ξj ] = µm. We denote ∆2 =

minm 6=m′ ‖µm − µm′‖2 and assume that ∆2 > 0.

When distribution-based distances were given (as in Corollary 8.5.1), Algorithm 8.1
achieved the optimal collaboration speedup, linear in 1/C under Assumption 8.6.2 and for
small enough target precision ε. The cluster model is thus the natural baseline for our prob-
lem. In the case where agents estimate with whom to collaborate as we do in the sequel,
reaching this collaboration speedup of 1/C will hence prove the effectiveness of the approach.

We assume that agents possess a limited number of samples. More precisely, for 1 ≤ i ≤ n
and S,K ≥ 1, agent i possessesK+S i.i.d. samples of drawn fromDi, S of which are dedicated
to estimating who to collaborate with, the K remaining dedicated to the optimization process
i.e. to running All-for-all iterations for a number K of oracle calls.

For 1 ≤ i ≤ n, let µ̂i be an estimation of E [ξi] made with S i.i.d. samples ξi,1, . . . , ξi,S ,
and for 1 ≤ i, j ≤ n let b̂ij be the following estimation of dH(Di,Dj):

µ̂i =
1

S

S∑
s=1

ξi,s , b̂ij = ‖µ̂i − µ̂j‖ .

Computing these distances can be done using only Õ(N) communications (rather than the
n2 communications of a naive approach) by performing randomized gossip communications
[BGPS06] on the complete graph.

Theorem 8.4 (All-for-all with estimated biases). Assume that Assumptions 8.2.1, 8.2.2,
8.2.3 (for some unknown biases bij), 8.6.1 and 8.6.2 hold. Under the setting described, let Λ̂
be the stochastic matrix with entries

λ̂ij =
1{b̂2ij≤u}∑n
F=1 1{b̂2iF≤u}

,

for some u > 0 that verifies u ≥ 4ν2deff
S . The All-for-all algorithm with W = Λ̂Λ̂> outputs

(xKi )1≤i≤n verifying, where bmax = maxi,j bij:

E
[
FK
]
≤ F 0e−

K
2κ + Õ

(
κσ2

Kµ

( 1

C
+ Ce−

Su
8ν2
))

+
2D?2bmaxe

−Smax(∆2−2u,2u2)

8ν2 + 4u21{2u≥∆}
µ

,

where the mean is taken over both biases estimates (b̂ij) and gradient estimates (gki ).

Corollary 8.6.1. Under the same assumptions as Theorem 8.4 and for ε > 0, the All-for-
all algorithm with estimated biases as described above reaches an averaged generalization
error of ε as long as:

S = Ω̃
(ν2deff

∆2

)
, C = Ω̃

(ν2deff

ε

)
, KC = Ω̃

(κσ2

εµ

)
, K = Ω̃

(
κ
)
.

Forgetting about the logarithmic factors, only a bounded number of local samples for
each user (S and K) are required to reach an averaged arbitrarily small generalization error
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8.7. Numerical illustration of our theory

ε > 0, in the limit with an arbitrary large number of agents (n and C). Indeed, due to our
regularity assumptions, K – the number of samples kept for the optimization problem – is
required only to be of order κ, the condition number of the problem. The number of samples
S used for estimating the biases is required to be of order ν2

1deff/∆
2, the “signal-to-noise”

ratio of our mixture model [MM10, SSR06], a natural quantity to depend on. Corollary 8.6.1
hence shows that the optimal collaboration speedup is achieved, up to logarithmic factors:
in order to reach an arbitrary small generalization error ε > 0, are only required constant
orders for S and K (the number of samples locally available) if the number of agents is large
enough i.e. if n = Ω̃(M/ε), where M is the number of clusters i.e. we have a linear speedup
in the clusters population. We numerically illustrate our theory in Appendix 8.7 on synthetic
datasets, with clustered agents (as in this section), as well as in a setting where agents are
distributed according to a more general “distribution of agent”.

A closely related work [GCYR20] also studies a model where agents verify a cluster
structure as described in Assumption 8.6.2 for quadratic losses and linear models. Yet, we
highlight several differences between their approach and ours. First, [GCYR20] perform an
online clustering of the agents, as opposed to our pre-training hierarchical approach. While
the results we obtain in Theorem 8.4 and Corollary 8.6.1 and those of [GCYR20] have the
same linear speedup in the number of agents, ours require no initialization condition. Finally,
our algorithm is decentralized, thus leading to improved scalability (especially in terms of
the number of clusters) and privacy [CEBM22], if of interest. Finally, not being restricted to
clusters in the analysis of the All-for-all algorithm leads to a better collaboration speedup
and fairness (in the sense that performance does not impact a few agents) in a non-clustered
scenario, where an approach based on clusters would be highly non-optimal for agents that
are at the border of the inferred clusters.

8.7. Numerical illustration of our theory

(a) – Agents in unknown clusters (b) – Agents i.i.d. distributed

Figure 8.1 – All-for-all algorithm in practice

To test the robustness of our theory, we build toy problems from synthetic datasets,
placing ourselves in the scenario we considered throughout this chapter: a large number of
agents with heterogeneous data, that each have too few samples available from their local
data distribution in order to reach a small generalization error on their own.

In Figure 8.1, we consider n = 500 agents, and a quadratic loss function F (x, ξ = (a, b)) =
1
2(a>x − b)2, for x, a ∈ Rd (d = 100) and µ ∈ Rd. For i = 1, . . . , 500, the distribution Di
of ξi = (aia

>
i , aibi) as a centered Gaussian random variable of covariance matrix Σi for ai,

and bi is the sign of a>i u for some fixed u ∈ Rd, flipped with probability 0.2. In both figures,
each agents have 10 samples available for the optimization phase (K = 10 oracle calls),
corresponding to a total number of samples used of n×K = 5000. We computed and showed
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8.7. Numerical illustration of our theory

the 500 steps of all ten oracle calls, each step corresponding to the use of the stochastic
gradient of a single agent.

The dotted lines represent our baselines. The blue one is the All-for-all algorithm
with matrix W exactly as in Corollary 8.5.1 with bij = ‖Σi − Σj‖. The orange dotted line
consists in the no-collaboration baseline: each agents performs SGD on its own without
sharing information (corresponds to W = In). The green dotted line corresponds to the
“single-model” approach without personalization: one model is trained for all agents, using
SGD and all samples from all agents (corresponding to W = 1

n11
>). The choice of the

algorithm for the single model approach without collaboration is in fact unimportant, since
all algorithms would reach the same asymptotic bias here. The full lines (red, violet and
brown) correspond to estimating the pairwise distances from empirical distributions (as in
Section 8.6), using respectively S = 1, S = 3 and S = 5 samples.

In Figure 8.1a, we consider M = 10 (unkonwn) clusters C1, . . . , CM . All i ∈ Cm have
the same covariance matrix Σm, equal to Id/

√
d + eme

>
m, where em is the m-th element of

the canonical basis of Rd. In Figure 8.1b, Σi = Diag(u
(i)
1 , . . . , u

(d)
1 )/
√
d where the (u

(i)
F ) are

i.i.d. uniformly distributed in [0, 1]. Performing rough estimations of the pairwise distance
between agents’ local distributions thus appears to be quite robust in both our settings. In the
“cluster” setting, this was predicted by our theory, and the numerical results are compelling.
In the “i.i.d.” setting, using very few samples for the estimation also appears to be very
efficient.

Conclusion

In this chapter, we quantified in terms of function and distribution biases, stochastic
gradient noise, target precision ε > 0 and functions regularity parameters, the benefit of col-
laboration between agents for shared minimization using stochastic gradient algorithms. Our
lower bound (Theorem 8.1) states that, under prior knowledge on the distances between local
distributions, the collaborative speedup can be linear only in the first phase of the optimiza-
tion when the generalization error is large compared to the distances between distributions.
More specifically, for a given agent i, the collaboration speedup is linear in the number of
agents that are ε-close to i. Moreover, we show that the All-for-one algorithm allows such
a speedup and is thus sample optimal. However, this algorithm requires high computation
and communication capacities, a drawback that can be mitigated by the use of a novel algo-
rithm called All-for-all, that benefits from the same collaboration speedup while being
cheaper to deploy. Finally, we studied the impact of estimating distances between distribu-
tions as a pre-processing step to the optimization phase; under a mixture model assumptions
on the agents, we obtain an optimal collaboration speedup.
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Appendix of Chapter 8

8.A. Proof of Theorem 8.4

We first start by recalling that, for a Σ-subgaussian random variable ξ, using Theorem 1
from [HKZ12], we have for any t ≥ 0:

P
(
‖ξ‖2 ≥ deffν

2 + 2
√
‖Σ‖2t+ 2ν2t

)
≤ e−t .

Consequently, for u ≥ max(ν2deff , ‖Σ‖22/ν2), we have:

P
(
‖ξ‖2 ≥ 4u

)
≤ e−

u
2ν2 .

Remarking that ‖Σ‖
2
2

ν2 = ν2
∑

k
ν4
k
ν4 ≤ ν2

∑
k
ν2
k
ν2 = ν2deff , where ν2

k are the eigenvalues of Σ,
this condition on u is in fact u ≥ ν2deff .

Proof of our Theorem. From Theorem 8.3, we have, conditionally on the S samples used in
estimating biases:

E
[
FK |Λ̂

]
≤ F 0e−

K
2κ + Õ

 κσ2

Kµn

∑
1≤i,j≤n

λ̂2
ij

+
1

n

∑
1≤i,j≤n

λ̂ij
b2ij
2µ

.

We hence need to bound E
[∑

i,j λ̂
2
ij

]
and E

[∑
i,j λ̂ijb

2
ij

]
, and start by assuming that u ≥

4
S ν

2deff .
First, denoting bmax = maxi,j bij , we have:

E

∑
i,j

λ̂ijb
2
ij

 =
∑
i,j

E
[
λ̂ijb

2
ij

]
=

∑
i,j: b2ij>4u

E
[
λ̂ijb

2
ij

]
+

∑
i,j: b2ij≤4u

E
[
λ̂ijb

2
ij

]
≤ b2maxP

(
b̂2ij ≤ u|b2ij > 4u

)
+ 4u21{4u2≥∆} .

Using a triangle inequality, that gives us 2‖µ̂i − µ̂j − E [µ̂i − µ̂j ]‖2 ≥ b2ij−2b̂2ij , P
(
b̂2ij ≤ u|b2ij > 4u

)
≤

P
(
‖µ̂i − µ̂j − E [µ̂i − µ̂j ]‖2 ≥

b2ij−2u

2

)
. Then, since each ξi and ξj are Σ-subgaussian (and

independent), µ̂i − µ̂j − E [µ̂i − µ̂j ] is 4Σ/S subgaussian2, so that using our assumption on

2indeed, using the subgaussian norm ‖·‖ψ2
, for real-valued independent random variables X1, . . . , XS and

any β > 0, E
[
eβ

1
S

∑S
s=1Xs

]
=
∏
s E
[
e
β
S
Xs
]
≤
∏
s E
[
e
Cψ2

β2

S2 ‖Xs‖ψ2

]
= E

[
e
Cψ2

β2

S2

∑S
s=1 ‖Xs‖ψ2

]
, so that
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8.B. SGD under strong-convexity and smoothness assumptions

u, we can use Theorem 1 of [HKZ12]:

P
(
b̂2ij ≤ u|b2ij > 4u

)
= P

(
b̂2ij ≤ u|b2ij > max(4u,∆2)

)
≤ 2e−

Smax(2u,∆2−2u)

8ν2 .

Then, for 1 ≤ i ≤ n, let N̂i =
∑n

j=1 1{b̂ij≤u}. Fix 1 ≤ m ≤M . We have:

P
(
∀i ∈ Cm, ‖µ̂i − µm‖2 ≤ u

)
= 1− P

(
∃i ∈ Cm, ‖µ̂i − µm‖2 > u

)
≥ 1− 2Ce−

Su
8ν2 ,

so that E
[∑

i∈CM
∑

1≤j≤n λ
2
ij

]
= E

[
1
C

∑
i∈Cm

1
N̂i

]
≤ 1

C + 2Ce−
Su
8ν2 , concluding the proof. We

then prove the resulting corollary by taking u = ∆/4, and the condition on u translates into
S ≥ 16ν

2deff
∆2 .

8.B. SGD under strong-convexity and smoothness assumptions

Lemma 8.B.1 (SGD, s.c. and smooth). Define ‖x‖2A = x>Ax for some non-negative and
symmetric matrix A. Let f : X → R µ-relatively strongly convex and L-relatively smooth
with respect to 1

2‖x‖
2
A. Let (ft, gt)t≥0 be first order oracle calls such that for all t ≥ 0:

∀x ∈ X ,


E [ft(x)] = f(x) ,

E [gt(x)] = ∇f(x) ,

E
[
‖gt(x)−∇f(x)‖2

]
≤ σ2 ,

for some σ > 0. Let LA be the largest eigenvalue of A, and assume that LA ≤ 1 (our result
generalizes to any LA). Let (xt)t≥0 be generated with:

∀t ≥ 0 , xt+1 = xt − ηgt(xt) ,

for a fixed stepsize 1
2L ≥ η > 0, and assume that all the iterates lie in X . Assume that f is

minimized over X at some interior point x?. We have for any T > 0:

E
[
f(xT )− f(x?)

]
≤ e−ηµT

(
f(x0)− f(x?)

)
+
ηLσ2

µ
.

For fixed T > 0, setting η = min
(
1/(2L), 1

µT ln(f0µ2T
Lσ2 )

)
gives:

E
[
f(xT )− f(x?)

]
≤ e− µ

2L
T
(
f(x0)− f(x?)

)
+
Lσ2

µ2T
ln
(f0µ

2T

Lσ2

)
.

Thus, for fixed target precision ε > 0, using stepsize ηε = min
( µε

2Lσ2 ,
1

2L

)
and setting Tε =

dln
(
ε−1(f(x0)− f(x?))

)
1
ηεµ
e, we have:

f

(
1

Tε

∑
t<Tε

xt

)
− f(x?) ≤ ε ,

∥∥∥ 1
S

∑S
s=1 Xs

∥∥∥
ψ2

≤ 1
S2

∑S
s=1 ‖Xs‖ψ2

, and we apply this to the random variables µ̂i>y
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with a number of oracle calls

Tε ≤ max

(
2Lσ2

εµ2
,
2L

µ

)
ln
(
ε−1(f(x0)− f(x?))

)
.

Proof. For some t ≥ 0, denoting ft = E
[
f(xt+1)− f(x?)

]
, using relative smoothness, unbi-

asedness of the stochastic gradients and then relative strong convexity:

ft+1 − ft ≤ −ηE
[∥∥∇f(xt)

∥∥2
]

+
η2L

2
E
[
‖gt‖2A

]
≤ −ηE

[∥∥∇f(xt)
∥∥2
]

+
η2LLA

2
E
[
‖gt‖2

]
≤ −η

(
1− ηLLA

2

)
E
[∥∥∇f(xt)

∥∥2
]

+
η2LLAσ

2

2
.

Using relative strong convexity of f , we have:∥∥∇f(xt)
∥∥2 ≥ 1

LA

∥∥∇f(xt)
∥∥2

A

≤ 2µ

LA
ft ,

yielding, for η < 1/(LLA)

ft+1 − ft ≤ −2η
µ

LA
ft +

η2LLAσ
2

2
.

Then, for some T > 0 and since LA ≤ 1, sum the above inequality multiplied by (1− ηµ)−t−1:

∑
0≤t≤T−1

(1− ηµ)−t−1 ft+1 − (1− ηµ)−t ft ≤
η2Lσ2

2

∑
0≤t≤T−1

(1− ηµ)−t−1

≤ η2Lσ2

2

(1− ηµ)−t−1

ηµ
,

leading to the desired result.
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Chapter 9

Meta-learning of shared structures for personalized learning

In the previous chapters, we studied the limits of collaborative learning based on similarity
between agents, and provided decentralized algorithms that used gradient filtering between
agents. However, this leaves open the question of collaboratively learning without knowing
these similarities in the general setting. In this chapter, we thus study for the same collabora-
tive learning problem, a different set of assumptions and its role on an eventual collaborative
speedup.

Motivated by multi-task and meta-learning approaches, we consider the problem of learn-
ing structure shared by tasks or users, such as shared low-rank representations or clustered
structures. While all previous works focus on linear regression, we consider more general
convex objectives, where the structural low-rank and cluster assumptions are expressed on
the optima of each function. We show that under mild assumptions such as Hessian concen-
tration and noise concentration at the optimum, rank and clustered regularized estimators
recover such structure, provided the number of samples per task and the number of tasks
are large enough. We then study the problem of recovering the subspace in which all the
solutions lie, in the setting where there is only a single sample per task: we show that in that
case, the rank-constrained estimator can recover the subspace, but that the number of tasks
needs to scale exponentially large with the dimension of the subspace. Finally, we provide
polynomial-time algorithms via nuclear norm constraints.

Notation for this chapter. As opposed to the previous chapter, we here do not consider the
online setting, but directly study estimators computed from existing samples. There are thus
no algorithms, and the tools used are more related to multi-task and meta learning communi-
ties. To highlight these differences, the notation used for models differ in this chapter: local
models are referred to as wi ∈ Rd instead of xi.

9.1. Introduction

In this chapter, we study the problem of jointly learning n models for n agents, based on
the local datasets of these users, while making the kind of assumption described above. More
formally, each agent i indexed by i ∈ [n] has a dataset of size m, {ξij}j∈[m] with ξij ∼ Di and
Di its local distribution, and wishes to minimize its generalization error, defined as for some
loss Fi : Rd × Ξ→ R:

fi(w) = E [Fi(w, ξi)] , w ∈ Rd , ξi ∼ Di .

In order to capture the minimization of each local function and thus personalization, the
objective we want to minimize then writes as:

f(W ) =
1

n

n∑
i=1

fi(wi) , W = (w1| . . . |wn) ∈ Rd×n . (9.1)

261



9.1. Introduction

Based on the m samples per agent we have, we denote as L the empirical risk, that writes:

L(W ) =
1

nm

∑
(i,j)∈[n]×[m]

Fi(wi, ξij) , W = (w1| . . . |wn) ∈ Rd×n . (9.2)

By minimizing this empirical risk, we wish to obtain good minimizers for the true test loss
(Equation (9.1)), under adequate assumptions. For our problem, the structural assumptions
described above then read as follows. Note that Assumption 9.1.2 is in fact a subcase of
Assumption 9.1.1.

Assumption 9.1.1 (Low rank representation). There exist {w?i }i∈[n] such that for all i w?i
minimizes fi, and the rank of the matrix W ? = (w?1| . . . |w?n) ∈ Rd×n is at most r. Equiva-
lently, there exist an orthonormal matrix U? ∈ Rd×r and V ? = (v?1, . . . , v

?
n) ∈ Rr×n such that

w?i = U?v
?
i for all i ∈ [n].

Assumption 9.1.2 (Clustered clients). There exist {w?i }i∈[n], {c?s}s∈[r] and τ
? : [n]→ [r] such

that for all i, w?i minimizes fi and w?i = c?τ?(i).

The purpose of this chapter is then to study natural minimizers under these assumptions,
for convex objectives fi. Typical instances are linear quadratic regression, for which ξij =
(xij , yij) where xij ∼ N (0, Id) and yij = 〈w?i , xij〉 + zij for independent label noise zij ∼
N (0, ε2), and Fi(w, (x, y)) = 1

2(w>x−y)2, or generalized linear models (GLMs) – that include
classification with the logistic loss – for which Fi(w, ξij = (xij , yij) = `i(〈w, xij〉, yij). Under
the generality of our assumptions (that we develop in a later section), estimators that are
specific to instances of our problem cannot be considered (such as Method of Moments (MoM)
estimators [TJJ21, DFHT22] for linear quadratic regression). We hence restrict ourselves to
low-rank estimators defined as, or that seek to approximate the following:

Ŵ ∈ arg min
{
L(W )

∣∣∣ rank(W ) ≤ r
}
,

and to counterparts of such estimators in the clustered setting. This chapter focuses on
deriving generalization guarantees for such estimators, as well as for some approximations of
these estimators.

9.1.1. Related works

Multi-task learning. Multi-task learning (MTL) is a general approach to improve general-
ization guarantees of single tasks knowledge of other tasks as an inductive bias [Car97]. On
the theory side, some structural properties need to be made in order to show the advantage of
MTL, such as a small variance between tasks [CBLPP22, DCGP19], a shared sparse support
for multi-task feature recovery [AEP06, LPTG09], and finally a low rank structure that takes
the form of a lower dimensional linear representation [BKF22].

Meta-Learning of linear representations. Motivated by empirical evidence in deep-learning
tasks [BCV13, CHMS21], linear representations are a simple yet insightful proxy for theoret-
ical works to model simple structures. We describe in this paragraph theoretical advances
in estimating such linear representations: it is to be noted that all previous works focus on
the quadratic linear regression setting, much simpler than ours, that fits a general convex
framework. [TJJ21] shows it is impossible to estimate a representation of dimension r ≪ d,
if the total number of samples nm satisfies nm = O(rd). [RT11, DHK+21] study the lowrank
estimator as we define it, and show that the representation is learnt if the total number of
samples satisfies nm � rd with m � d samples per task: such a large number of sam-
ples per task is prohibitive, since under such assumptions collaboration is no longer needed.
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Convex relaxations via nuclear norm regularization have then been studied [BKF22, RT11]
and provably learn the representations provided that n � d and m �

√
rd. Finally, a

long line of work relaxes the rank constrain by factorizing the matrix W as W = AB> where
A ∈ Rd×r and B ∈ Rn×r, an approach known as Burer-Monteiro factorization [BM03, BM04].
[TJJ21] showed in the quadratic regression setting with random inputs, that the local min-
ima induced by Burer-Monteiro factorization all led to estimating the linear representation,
provided that nm� r4d with m� r4. Then, algorithms based on alterative minimizations
[CHMS21, TJNO21] require nm � r2d and m � r2, together with an initialization with
non-trivial alignment with the ground truth representation. Finally, algorithms specific to
meta-learning such as MAML or ANIL [CMOS22, YBF23] or even FedAvg [CHMS22] can
learn the representation if the model is parameterized using a Burer-Monteiro factorization if
the number of samples is large enough, even if the rank is mispecified [YBF23]. All the afore-
mentioned works study the linear quadratic regression setting with random inputs. Going
beyond this simplified setting to learn linear representations is thus of upmost interest, and
[CHS+23] is to our knowledge the first work to do so, by studying 2-layered ReLU networks
in a multi-task setting. Our work also goes in this direction: we relax the assumptions to the
general convex setting. Such relaxations have also been considered in the compressed sensing
literature, such as [ANW12] that studied Iterative Thresholding algorithms under general
restricted strong convexity and smoothness assumptions.

Learning clusters of clients. Clustering historically refers to partitioning data points into a
few clusters, a task related to multi-class classification. It provides a theory-friendly frame-
work to study and more importantly develop similarity based algorithms when in multi-task,
collaborative, or federated learning, the agents are assumed to forms clusters of similar users
[SMS20]. Clustered agents can be enforced by regularized objectives [MMRS20, JVB08,
ZCY11], iterative clustering algorithms [GCYR20]. Providing generalization guarantees and
a collaborative speedup under a cluster assumption for our problem is however a challeng-
ing problem. [GCYR20] proves that provided a sufficiently good initialization (with non-
negligible signal, which amounts to assume that clusters are already learnt), the clusters can
be learnt with a speedup proportional to clusters’ population, while [EMS22a] build a sim-
ilarity graph and obtains similar results without any assumption on the initialization, but
with degraded dimension dependency.

9.1.2. Outline of this chapter

We first introduce our setting and assumptions in Section 9.2.1: the mild noise assump-
tions (concentration of the noise at the optimum) and the pointwise concentration of Hessians
we introduce are a core contribution of this chapter. We study rank-constrained and clustered-
contrained estimators in Section 9.3 to upper bound the sample complexity of minimizing
each function and learning the global structure, with applications to few-shot learning on a
new task in Section 9.3.4. We then study the recovery of the subspace in the degenerate
case where m = 1 (only one sample per agent) via rank-constraint, and show that it is still
feasible, but requires a larger number of tasks (that scales exponentially with r). Finally, we
relax the rank constraint into a nuclear norm constraint, and provide statistical guarantees
for the obtained estimator, that can be efficiently computed.

9.2. Setting, assumptions and notations

Notations. For w ∈ Rd, ‖w‖2 =
∑d

k=1w
2
k is its squared Euclidean norm and ‖w‖1 =∑d

k=1 |wk| is `1−norm. ForW ∈ Rd×n with singular values λ1, . . . , λp, ‖W‖2F =
∑

(i,k)∈[n]×[d]W
2
ki

=
∑p

k=1 λ
2
k is its squared Frobenius norm, ‖W‖op = maxk∈[p] |λk| is its operator norm,

and ‖W‖∗ =
∑p

k=1 |λk| is its nuclear norm. For some differentiable function g : X → R
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on X ⊂ Rd, we define its Bregman divergence Dg : X × X → R as: for all w,w′ ∈ X ,
Dg(w,w

′) = g(w)− g(w′)−〈∇g(w′), w−w′〉. Id is the identity matrix in Rd. For symmetric
matrices A,B, A � B means that all the eigenvalues of B −A are non-negative.

9.2.1. Main assumptions

We here describe the assumptions we make on local tasks fi: note that we go well beyond
the classical linear regression with quadratic loss setting, where local functions are assumed
to be of the fi(w) =

∑
j(〈w, xij〉 − yij)2, for noisy labels yij = 〈xij , w?i 〉 + εij and random

inputs and noise xij , εij .

Assumptions on local functions fi and Fi. Besides using Assumptions 9.1.1 and 9.1.2 alter-
natively, that implicitly assume that each fi is lower-bounded and minimized at some w?i ,
we will make use of the following regularity assumption on the local objectives fi and losses
Fi throughout the chapter. For all i ∈ [n], ‖w?i ‖ ≤ B, for some B > 0. Each fi is assumed
to be µ-strongly convex and L-smooth (with eventually µ ≥ 0, which amounts to convexity)
[Bub15]: for all w ∈ Rd, the inequality µ

2‖w − w′‖
2 ≤ Dfi(w,w

′) ≤ L
2 ‖w − w′‖

2, which can
be equivalently written as µId � ∇2fi(w) � LId, if fi is twice differentiable. We also assume
that each Fi is convex in its first argument, and respectively that ∇2Fi and ∇Fi are H− and
L′−Lipschitz in their first arguments.

Noise at the optimum. We now need to assume that noise at the optimum is not too large,
wihch we quantify through a noise constant σ2

? as follows.

Assumption 9.2.1. For all i ∈ [n], the random variable ∇wFi(w?i , ξi) for ξi ∼ Di is a σ2
?-

multivariate subexponential random variable, in the sense that for all w ∈ Rd, 〈∇wFi(w?i , ξi), w〉
is σ2

?B‖w‖ subexponential:

∀t ≥ 0 , P (〈∇wFi(w?i , ξi), w〉 ≥ t) ≤ exp

(
− t

σ2
?B‖w‖

)
.

This assumption essentially describes the noise at the optimum. In the case of linear
quadratic regressions i.e. if ξij = (xij , yij) where xij ∼ N (0, Id) and yij = 〈w?i , xij〉+ zij for
independent label noise zij ∼ N (0, ε2), the gradient at the optimum reads ∇wFi(w?i , ξij) =
zijxij , and thus Assumption 9.2.1 holds for σ2

? = ε. For GLMs, we have ∇wFi(w?i , ξij) =
`′i(〈w?i , xij〉, yij)xij , so that the same holds.

Hessian concentration. Finally, we will assume that the Hessian of local functions concen-
trate fast enough as the number of samples increase, in the following way.

Assumption 9.2.2. For all i ∈ [n], for all w,w1, w2 ∈ Rd, the random variable 〈w1,∇2Fi(w, ξi)w2〉
is a σ2‖w1‖‖w2‖-subexponential random variable:

∀t ≥ 0 , P
(
〈w1,∇2Fi(w, ξi)w2〉 ≥ t

)
≤ exp

(
− t

σ2‖w1‖‖w2‖

)
.

Such an assumption simply quantifies concentration of Hessians around their means, and
will be used to control quantities such as 1

nm

∑
ij〈w′i,∇2Fi(wi, ξij)w

′′
i 〉− 1

n

∑
i〈w′i,∇2fi(wi)w

′′
i 〉.

This assumption holds for linear quadratic regression and GLMs, for which respectively
∇2Fi(wi, (xij , yij) = xijx

>
ij and ∇2Fi(wi, (xij , yij) = `′′i (〈xij , wi〉, yij)xijx>ij , provided that

`′′ is bounded.
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9.2.2. Principal angle distance

Under Assumption 9.1.1, provided that the low rank representation U? is known, the
problem becomes statistically easier. Therefore, one of the goals will be to learn this or-
thogonal matrix, and we thus need to introduce the right metric to quantify the distance
between two orthonormal projections (or between two subspaces). For two subspaces of Rd
of dimension r, the principal angles between these two subspaces quantify how close they are
[YL16]. Let V,V ′ be two linear subspaces of Rd, of dimension r, and let P, P ′ be the respec-
tive orthogonal projections onto these subspaces. The matrix (Id−P )P ′ is of rank at most r,
and its singular values satisfy 1 ≥ λ1 ≥ . . . ≥ λr ≥ 0: there exists Θ = (θ1, . . . , θr) ∈ [0, π/2]r

such that λi = sin(θi) for i ∈ [r]. We thus have (Id−P )P ′ = A sin(Θ)B>, where A,B ∈ Rd×r
are orthonormal matrices. Θ = (π/2 ≥ θ1 ≥ . . . ≥ θr ≥ 0) are the principal angles between
the two subspaces V,V ′ (or equivalently, between their projections).

Definition 9.2.1 (Principal angle distance). Let V,V ′ be two subspaces of Rd of dimension at
most r, of principal angles Θ. We define the sine principal angle distances between V and V ′
as:

dist2
F (V,V ′) =

r∑
k=1

sin2(θk) , dist2
ρ(V,V ′) = sin2(θ1) . (9.3)

Equivalently, we will also write dist2(P, P ′) for the same quantity. Note that we have dist2
F ≤

rdist2
ρ.

Now, for U,U ′ ∈ Rd×r with orthonormal columns, P = UU> and P ′ = U ′U ′> are
two orthogonal projectors onto subspaces of dimension r: we also write dist(U,U ′) for the
corresponding distance between the subspaces.

9.2.3. Baselines without collaboration, in idealized cases, and structured regularization

The simple baseline we should compare ourselves to – and that we desire to outperform
–, is the no-collaboration estimator Ŵbad defined as

Ŵbad = (ŵ1, . . . , ŵn) , ŵi ∈ arg min
‖w‖≤B

1

m

m∑
j=1

Fi(w, ξij) ,

where the ŵi are thus found without collaboration and yields a performance of

f(Ŵbad) = O
(√

d

m

)
, or

1

n

n∑
i=1

‖ŵi − w?i ‖2F = O
(
d

m

)
.

if fi are respectively assumed to be convex or strongly convex. Such an estimator that does not
use collaboration thus requiresm = Ω(d) samples per agent [Wai19, e.g., for linear regression].
Our ultimate goal is thus to leverage collaboration in order to obtain much faster statistical
rates, and we therefore need to go beyond the basic estimator Ŵbad ∈ arg minL(W ).

The most natural way to do so is to enforce collaboration via some structural regulariza-
tion, by making local models wi interdependent. Under Assumption 9.1.1, we therefore want
to find the following low-rank estimator:

Ŵlow rank ∈ arg min

{
L(W )

∣∣∣ rank(W ) ≤ r , max
i∈[n]
‖wi‖ ≤ B

}
, (9.4)

while if we work under the clustered assumption Assumption 9.1.2, we are looking for:

Ŵclustered ∈ arg min

{
L(WC,π)

∣∣∣C ∈ Rd×r , π : [n]→ [r] , max
i∈[n]
‖wi‖ ≤ B

}
, (9.5)
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where for C = (c1| . . . |cr) ∈ Rd×r and π : [n]→ [r] we write WC,π ∈ Rd×n the matrix whose
row is cπ(i).

A first question arising is thus: how do these estimators behave i.e., how many samples
m and agents n are required to find the true minimizers w?i ? We answer these in Sections 9.3
and 9.4 However interesting it might be since it gives an optimistic baseline for our problem,
answering this question may not be satisfactory: the estimators defined in Equations (9.4)
and (9.5) are solutions of non-convex problems that may be NP hard to compute directly,
although many heuristics exist to compute the estimators defined in Equations (9.4) and (9.5):
hard-thresholding algorithms, Bureir-Monteiro factorisations, clustering algorithms, etc. We
will thus resort to tricks that consist in convex relaxations of the problems (Section 9.5) in
order to obtain polynomial-time algorithms.

9.3. Statistical bounds on rank-regularized and clustered estimators

In this section, we first provide statistical upper bounds on the performances of the low
rank estimator defined in (9.4). [TJJ21, Theorem 5] states that for a particular instance
of our problem (quadratic linear regression with isotropic gaussian data and noise), for a
number of samples per user m and a number of user n, any estimator Û of U? that is based
on these nm samples, must satisfy

dist2
ρ(Û , U

?) = Ω

(
rd

nm

)
.

Hence, under Assumption 9.1.1 or Assumption 9.1.2 we need at least a total number of
samples greater than rd in order to learn U?, and thus at least as much to learn W ?. The
bounds we prove next for the low rank estimator is optimal in the sense we recover U? and
W ? provided that nm � rd (up to log factors), but it however requires m (the number of
samples per task) to be larger than r to be non trivial: we will thus wonder how we can relax
this assumption using the more restrictive clustered assumption and the associated estimator
defined in Equation (9.5). Finally, we will prove in next section that if m is smaller than r
(which is the case in the 1-sample per agent case), the low rank estimator may still recover
the linear representation U? but if and only if the number of agents is exponentially large,
therefore making the problem much harder.

9.3.1. Preliminary lemmas

We first begin by stating the ingredients that lead to our generalization bounds on the
lowrank and cluster estimators. Due to their generality, we believe they can be of independent
interest. The estimators we study in this section take the form:

Ŵ ∈ arg min
W∈W

L(W ) ,

where we recall that L(W ) = 1
nm

∑
(i,j)∈[n]×[m] Fi(wi, ξij) , W = (w1| . . . |wn) ∈ Rd×n, as

defined in Equation (9.2), and where W a subset of Rd×n that contains W ? in its interior.
What we can first notice then is that L(Ŵ ) ≤ L(W ?) by definition of W ?, leading to:

DL(Ŵ ,W ?) ≤ 〈∇L(W ?),W ? − Ŵ 〉 ,

where Dg is the Bregman divergence of some function g. Recalling that E [L(W )] = f(W ) =
1
n

∑n
i=1 fi(wi) for some fixed W and that W ? minimizes f , we thus obtain f(Ŵ )− f(W ?) ≤

〈∇L(W ?),W ? −W 〉+Df−L(W,W ?), leading to:

f(Ŵ )− f(W ?) ≤ sup
W∈W

|〈∇L(W ?),W ? −W 〉|+ sup
W∈W

|Df−L(W,W ?)| ,
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where we introduce the suprema in order to deal with the fact that Ŵ and L (the nm samples)
are not independent. In order to prove that Ŵ performs well, we thus need to control both
terms of the RHS. The first term is a noise term, since E [∇L(W ?)] = ∇f(W ?) = 0, and we
will use Assumption 9.2.1 to control the deviations (uniformly over W). For the second term
(the Bregman divergence of the difference), noting that E [Df−L(W,W ?)] = D0(W,W ?) = 0,
we will bound the deviations using our Hessian concentration assumption (Assumption 9.2.2),
uniformly over W. The following proposition shows the type of concentration we require.

Lemma 9.3.1. Assume that for some constants α, β > 0 we have for all W ∈ W:

|〈∇L(W ?),W ? −W 〉| ≤ ασ2
? sup
i∈[n]
‖wi − w?i ‖22 + σ2

?

√
α

n
‖W −W ?‖2F sup

i∈[n]
‖wi − w?i ‖22 ,

and for all (W,W ′) ∈ W2,

∣∣Df−L(W,W ′)
∣∣ ≤ βσ2 sup

i∈[n]

∥∥wi − w′i∥∥2

2
+ σ2

√
β

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖22 .

Then, if 4B2 ≥ supW,W ′∈W supi∈[n] ‖wi − w′i‖22, we have:

f(Ŵ )− f(W ?) ≤ 4B2(ασ2
? + βσ2 +

√
ασ2

? +
√
βσ2) .

Furthermore, if each fi is µ−strongly convex,

1

n

n∑
i=1

‖ŵi − w?i ‖22 ≤ 16µ−1B2(ασ2
? + βσ2) + 64µ−2B2(ασ4

? + βσ4) .

Proof. We have:

f(Ŵ )− f(W ?) ≤ sup
W∈W

|〈∇L(W ?),W ? −W 〉|+ sup
W∈W

|Df−L(W,W ?)|

≤ 4B2(ασ2
? + βσ2) + 2Bσ2

?

√
α

n

∥∥∥W ? − Ŵ
∥∥∥2

F
+ 2Bσ2

√
β

n

∥∥∥W ? − Ŵ
∥∥∥2

F
.

For the first part,
∥∥∥W ? − Ŵ

∥∥∥2

F
≤ nB2. For the second part, we have f(Ŵ ) − f(W ?) ≥

µ
2n

∥∥∥W ? − Ŵ
∥∥∥2

F
, leading to

1

n

∥∥∥W ? − Ŵ
∥∥∥2

F
≤ 8µ−1B2(ασ2

? + βσ2) + 4µ−1B(
√
ασ2

? +
√
βσ2)

√
1

n

∥∥∥W ? − Ŵ
∥∥∥2

F
.

Using x2 ≤ ax+ b and x ≥ 0 implies x2 ≤ 2a2 + 2b, we obtain that

1

n

∥∥∥W ? − Ŵ
∥∥∥2

F
≤ 16µ−1B2(ασ2

? + βσ2) + 32µ−2B2(
√
ασ2

? +
√
βσ2)2

≤ 16µ−1B2(ασ2
? + βσ2) + 64µ−2B2(ασ4

? + βσ4)

We are now armed, simply with this lemma combined to the two concentration lemmas
below, to study estimators such as those defined in Equation (9.4) (low rank estimator) and
Equation (9.5) (clustered estimator).
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Lemma 9.3.2 (Noise concentration). Let ∆ ∈ Rd×n, t > 0. We have:

P (|〈∇L(W ?),∆〉| > t) ≤ 2 exp

(
−c1 min

(
nmt

σ2
? supi∈[n] ‖∆i‖2

,
nmt2

σ4
?
n ‖∆‖

2
F supi∈[n] ‖∆i‖2

))
.

Proof. Remark that we have:

〈∇L(W ?),∆〉 =
1

nm

∑
i,j

〈∇wFi(w?i , ξij),∆i〉 ,

and using Assumption 9.2.1, 〈∇wFi(w?i , ξij),∆i〉 are i.i.d. σ2
? supi ‖∆i‖2 subexponential cen-

tered random variables. By Hanson-Wright inequality [HW71, RV13], we have our result.

Lemma 9.3.3. Let W,W ′ ∈ Rd×n, t > 0. We have:

P
(∣∣Df−L(W,W ′)

∣∣ > t
)
≤

8H supi∈[n] ‖wi − w′i‖
t

× exp

(
−c2 min

(
nmt

σ2 supi∈[n] ‖wi − w′i‖2
,

nmt2

σ4

n ‖W −W ′‖
2
F supi∈[n] ‖wi − w′i‖2

))
.

Proof. Using Taylor’s second order equality, there exists W̃ = λW + (1 − λ)W ′ ∈ [W,W ′]
(for λ ∈ [0, 1]) such that

DL̂n,m−f (W,W ′) =
1

2

∥∥W −W ′∥∥2

∇2(L̂n,m−f)(W̃ )

=
1

nm

∑
ij

(wi − w′i)>
(
∇2
wwFi(w̃i, ξij)−∇2fi(w̃i)

)
(wi − w′i) .

The subtlelty here lies in the fact that W̃ depends on the samples ξij , preventing us from
directly using concentration results. We will thus prove concentration of

1

nm

∑
ij

(wi − w′i)>
(
∇2
wwFi(∆i, ξij)−∇2fi(∆i)

)
(wi − w′i) ,

for some fixed ∆i ∈ Rd×n. (wi−w′i)>∇2
wwFi(∆i, ξij)(wi−w′i) is ‖wi − w′i‖2σ2−subexponential

(Assumption 9.2.2) and thus, by a centering Lemma, since

(wi − w′i)>∇2fi(∆i)(wi − w′i) = E
[
(wi − w′i)>∇2

wwFi(∆i, ξij)(wi − w′i)
]
,

and thus (wi−w′i)>
(
∇2
wwFi(∆i, ξij)−∇2fi(∆i)

)
(wi−w′i) is a c‖wi − w′i‖2σ2−subexponential

random variable. Using Hanson-Wright inequality [HW71]:

P

∣∣∣∣∣∣ 1

nm

∑
ij

(wi − w′i)>
(
∇2
wwFi(∆i, ξij)−∇2fi(∆i)

)
(wi − w′i)

∣∣∣∣∣∣ > t


≤ 2 exp

(
−c2 min

(
nmt

σ4 supi∈[n] ‖wi − w′i‖2
,

nmt2

σ4

n ‖W −W ′‖
2
F supi∈[n] ‖wi − w′i‖2

))
.

We however want such a bound over sup∆∈[W,W ′]

∣∣∣ 1
nm

∑
ij(wi − w′i)>

(
∇2
wwFi(∆i, ξij)−∇2fi(∆i)

)
(wi − w′i)

∣∣∣.
The quantity in the sup here is 2H supi∈[n] ‖wi − w′i‖ Lipschitz in ∆i. Since {W + λ(W ′ −W ), λ ∈ [0, 1]} =
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[W,W ′],taking an ε−net of [0, 1] (of size ≤ 2/ε),

P

(
∀∆ ∈ [W,W ′] ,

∣∣∣∣∣∣ 1

nm

∑
ij

(wi − w′i)>
(
∇2
wwFi(∆i, ξij)−∇2fi(∆i)

)
(wi − w′i)

∣∣∣∣∣∣
> t+ 2H sup

i∈[n]

∥∥wi − w′i∥∥ε
)

≤ 4

ε
exp

(
−c2 min

(
nmt

σ4 supi∈[n] ‖wi − w′i‖2
,

nmt2

σ4

n ‖W −W ′‖
2
F supi∈[n] ‖wi − w′i‖2

))
.

Thus, for ε = t
2H supi∈[n] ‖wi−w′i‖ , we have our result.

9.3.2. Generalization properties of the low-rank estimator

Although the underlying non-convex optimization problem does not seem possible to
solve in polynomial time, efficient approximations exist. One approach is the Burer-Monteiro
factorization [BM03, BM04], which involves parameterizing Ak as Ak = BkCk with Bk ∈ Rd×r
and Ck ∈ Rr×d. This method relaxes the constraint to a convex set but results in a non-
convex function. Another approach is hard-thresholding, which use projected (S)GD on the
non-convex constraint set [BD09, FS18].

Theorem 9.1. Assume that Assumption 9.1.1 holds (underlying low rank assumption). Then,
with probability 1− 4e−r(d+n) − 4e−nmd,

f(Ŵlow rank)− f(W ?) = Õ
(
B2(σ2 + σ2

?)

√
r(d+ n)

mn

)
.

and, if each fi is µ−strongly convex with µ > 0,

1

n

∥∥∥Ŵlow rank −W ?
∥∥∥2

F
= Õ

(
B2(σ4 + σ4

?)
r(d+ n)

µ2mn

)
.

The low rank estimator hence only needs nm = Ω̃(rd) samples, under the condition
m = Ω̃(r), in order to recover good performances. In the strongly convex case, we recover all
the w?i , and thus we can recover the subspace, reaching the optimal rd sample complexity,
but with the additional m � r condition, which is expected since without this condition,
recovering the local heads is impossible. The dependency on d is expected, but can easily be
replaced by an effective dimension deff using more refined concentration results for Hessians
[EM21]. One question that arises is then: can we hope to recover the underlying subspace
even for small m < r ? We do this in next subsection, by further assuming that agents form
clusters of agents (this is a particular instance of low rank). Then, in Section 9.4, we show
that in a special case (noiseless linear regression with quadratic loss), we can recover the
subspace even with m = 1.

9.3.3. Generalization properties of the clustered estimator

Recall that we defined the clustered estimator Ŵclustered in Equation (9.5), the underlying
optimization problem being still non-convex. The following Theorem is proved exactly as in
the low rank case.

Theorem 9.2. Assume that Assumption 9.1.2 holds (underlying low rank assumption). Then,

with probability 1−4e−n−4e−nmd, we have f(Ŵclustered)−f(W ?) = Õ
(
B2(σ2 + σ2

?)
√

rd
mn + 1

m

)
,
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and if each fi is µ−strongly convex, we have 1
n

∥∥∥Ŵclustered −W ?
∥∥∥2

F
= Õ

(
B2(σ4 + σ4

?)
1
µ2

(
rd
mn + 1

m

))
.

In this case, we thus only needmn� rd andm� 1 in order to obtain good generalization,
therefore bypassing them� r constraint of the lowrank estimator. However, due to our proof
techniques, this was expected. Indeed, in Lemma 9.3.1, the uniform upper bounds on the
quantities considered scale withW the set over which we optimize over: the large this set, the
worse the bounds. Hence, restricting the set from low rank matrices to clustered matrices, we
expect better uniform upper bounds. Quantitatively, these uniform upper bounds depend on
the metric entropy of the sets considered [Lor66, Dud74]. For low rank matrices as considered
in Theorem 9.1, the minimum size of an ε−net of the search set scales as

(
9
ε

)cr(d+n) [CP11],
leading to an ε−entropy of O(r(d+ n) ln(1/ε)). Dividing this metric entropy by the number
of samples, we obtain rd

nm + r
m , a bound that cannot vanish for m < r. However, in the case

of clustered matrices, we can see the search set as [r][n] × Rd×r, leading to an ε− entropy
of n ln(r) +O(rd ln(1/ε)). Dividing by the number of samples, we hence obtain a bound of
order rd

nm + ln(r)
m : for r such that ln(r) ≪ r (i.e. for r � 1), we can thus obtain vanishing

bounds even for m≪ r.

9.3.4. Few-shot learning on a new task and meta-learning of the linear representation

Under both Assumption 9.1.1 and 9.1.2, there respectively exist matrices U?, C? ∈ Rd×r
such that users optima can be written as w?i = U?v?i for local heads v?i ∈ Rr and w?i = C?P ?i
for P ? ∈ Rr×n local cluster identification. In both cases, learning this d× r matrix simplifies
the problem: learning them makes the problem much easier for learning a new task that
shares the same structure. The following result [TJJ21, Lemma 16] shows that when we
learn W ?, we indeed learn this shared representation, as expected.

Lemma 9.3.4. Assume that Assumption 9.1.1 holds and that we have access to some Ŵ ∈ Rd×n

of rank at most r such that 1
n

∥∥∥Ŵ −W ?
∥∥∥2

F
≤ ε. Then, writing Ŵ = Û V̂ for Û ∈ Rd×r with

orthogonal columns, we have dist2
F (Û ,U?)
r ≤ ε

ν2 , where ν2 = r
nσr(V

?V ?,>) is the smallest
eigenvalue of r

nV
?V ?,> = r

n

∑n
i=1 v

?
i v
?,>
i =∈ Rr×r.

Note that for well-conditioned matrix W ?, we expect ν2 = Ω(1) (this is the case for
instance if we choose v?i ∼ N (0, Ir/r)). Hence, if the active n agents learn their local optima,
the whole pool of agents has access to the shared representation U?, up to a small error δ.
Then, a new agent may take advantage of this to perform few-shot learning : with only a few
samples, the (n+ 1)−th agent may learn its local optimizer, as we show next.

Proposition 9.3.1. Assume that Assumption 9.1.1 holds and that based on the nm samples
(ξij)i∈[n],j∈[m] of the n users, an estimator Û of U? satisfying dist2

ρ(Û , U
?) ≤ δ2 has been

learnt. Let a (n+1)−th agent have m′ samples (ξn+1,j)j∈[m′] from some distribution Dn+1 that
desires to minimize its local generalization error fn+1(w) = E [Fn+1(w, ξn+1)], ξn+1 ∼ Dn+1.
Assume that fn+1, Fn+1 satisfy the assumptions of Section 9.2.1 and that fn+1 is minimized
at some w?n+1 = U?v?n+1 for some v?n+1 ∈ Rr that satisfies

∥∥v?n+1

∥∥ ≤ B. Then, with probability
1− e−m′r, the estimator

v̂n+1 ∈ arg min

 1

m′

m′∑
j=1

Fn+1(Ûv, ξn+1,j) | v ∈ Rr , ‖v‖ ≤ B

 , (9.6)

satisfies fn+1(Û v̂n+1)−fn+1(W ?
n+1) = Lδ2

2 +Õ
(
B2(σ2 + σ2

?)
√

r
m′

)
, and if fn+1 is µ−strongly

convex,
∥∥v̂n+1 − v?n+1

∥∥2
= Lδ2

µ + Õ
(
B2

µ2 (σ4 + σ4
?)

r
m′

)
.
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Hence, if a reprensentation has been learnt with enough precision, an incoming agent only
needs m′ � r samples to perform few-shot learning. However, as highlighted by our previous
bounds and in particular by Equation (9.4), up to now the representation is only learnt by
learning beforehand the whole matrix W ? of concatenated heads. The following question
thus arises: can we meta-learn the linear representation U? without learning local heads w?i
? Aside from the fact that having many tasks with few samples is often easier than having
more samples from existing tasks, this question has other interests in practice. For instance,
being able to learn the representation with only one sample per agent will inherently be more
private, since then users only need to share a single random sample from their dataset that
is thus kept private.

9.4. Low-rank estimators with only 1 sample per user

We here study under Assumption 9.1.1 if the linear representation U? can be learnt if
we only have 1 sample per agent: m = 1. This case lies in the meta-learning-without-
learning setting: for each task, it is illusory to want to minimize the local objective fi
and to find w?i wether or not a low dimensional linear representation is learnt; yet learning
this representation may help for future tasks, and quite often it is easier to obtain many
tasks with few samples per task, than tasks with many samples. However, this setting is
quite challenging, since no concentration result will hold. For presentation sake we focuse
on m = 1 in this section; however, our arguments easily generalize to m ≤ (1 − ε)r for
ε > 1/r. To simplify the analysis, we here fall back to studying noisy linear regression with
quadratic loss, for which Fi(w, ξij = (xij , yij)) = 1

2(〈xi, w〉 − yi)2, where ξij = (xij , yij)) for
yij = 〈w?i , xij〉 and xij ∼ N (0, Id). We furthermore assume that there exists λ > 0 such that
1
n

∑n
i=1w

?
iw

?>
i ≥ λB2

r U?U?>, and that all w?i are of norm B. For λ = Ω(1) this means that
the local heads span all directions of the low-rank subspace.

Theorem 9.3. Assume that Assumption 9.1.1 holds. Let Ŵ be any solution of the optimization
problem defined in Equation (9.4), and let Û ∈ Rd×r be the orthogonal projection on its image.
Let ε ∈ (0, 1). There exist constants c, C > 0 such that with probability 1− e−rdn,

if n ≥ Cd ln(d)e
cr
λε , then

1

r
dist2

F (Û , U) ≤ ε .

Proof of Theorem 9.3. In this proof, we assume that there is only one sample per task: m = 1.
To simplify notations, we thus write yi = 〈w?i , xi〉. The following notion of “admissibility”
for some orthogonal matrix is then introduced: a matrix is said admissible if it satisfies the
same properties as U?.

Definition 9.4.1. We say that some orthogonal matrix U ∈ Rd×r is δ-admissible for δ ∈ (0, 1]
if there exists v1, . . . , vn ∈ Rr such that for all i ∈ [n] we have yi = 〈Uvi, xi〉 and δ‖vi‖ ≤ B .

We now compute the probability that some given matrix U is admissible.

Proposition 9.4.1. Assume that the Gaussian random design holds. Let U ∈ Rd×r be an
orthogonal matrix, let ε = dist2

F (U,U?), and assume that ε > 0. Furthermore, assume that
(i) for all i ∈ [n], ‖w?i ‖ = B and (ii) there exists λ > 0 such that 1

n

∑n
i=1w

?
iw

?>
i ≥ λB2

r U?U?>.
Then there exist constants c1, c2 > 0 such that if δ ≥ 1− λε

4 , we have:

P (U is δ-admissible) ≤ exp
(
−c1ne

− c2r
λε

)
.

Proof. Notice the following.
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Lemma 9.4.1. We have the following equivalence:

U is δ-admissible ⇐⇒ ∀i ∈ [n] ,
∥∥∥U>xi∥∥∥

2
≥ δ|yi|

B
.

Thus, P (U is δ-admissible) =
∏n
i=1 P

(∥∥U>xi∥∥2
≥ δ|yi|

B

)
, by independence of the samples.

We have yi = 〈Uv?i , xi〉, leading us to consider the decomposition U> = U>P ?i +U>(Id−P ?i ),
where P ?i = p?i p

?>
i ∈ Rd×d is the orthogonal projector onto the span of w?i , for p

?
i =

w?i
‖w?i ‖2

.

Thus,
∥∥U>xi∥∥2

=
∥∥U>P ?i xi + U>(Id − P ?i )xi

∥∥
2
≤
∥∥U>P ?i xi∥∥2

+
∥∥U>(Id − P ?i )xi

∥∥
2
. We now

assume for simplicity that B = 1. We have:

P
(∥∥∥U>xi∥∥∥

2
≥ δ|yi|

B

)
≤ P

(∥∥∥U>(Id − P ?i )xi

∥∥∥
2
≥ δ|〈w?i , xi〉| −

∥∥∥U>P ?i xi∥∥∥
2

)
≤ P

(∥∥∥U>(Id − P ?i )xi

∥∥∥
2
≥ δ|〈w?i , xi〉| −

∥∥∥U>p?i ∥∥∥
2
|〈p?i , xi〉|

)
= P

(∥∥∥U>(Id − P ?i )xi

∥∥∥
2
≥
(
δ −

∥∥U>p?i ∥∥2

‖w?i ‖2

)
|〈w?i , xi〉|

)
,

since U>P ?i xi = 〈p?i , xi〉U>p?i = 1

‖w?i ‖〈w
?
i , xi〉U>p?i .

We now notice that
∥∥U>(Id − P ?i )xi

∥∥
2
and |〈w?i , xi〉| are independent random variables,

using the Gaussian random design assumption and the fact that w?i is by definition in the
orthogonal of the span of (Id − P ?i ). We have U>(Id − P ?i )xi ∼ N (0, U>(Id − P ?i )U) and
since U>(Id − P ?i )U � U>U = Ir, the random variable

∥∥U>(Id − P ?i )xi
∥∥2

2
is stochastically

dominated by Zi a χ2
r random variable of dimension r independent of 〈w?i , xi〉. Then, writing

zi = 〈w?i , xi〉2 (a χ2
1 random variable), we have that zi and Zi are independent, and:

P
(∥∥∥U>xi∥∥∥

2
≥ δ|yi|

)
≤ P (Zi ≥ αizi) ,

where αi = max

(
0, δ − ‖U

>p?i ‖2

‖w?i ‖2

)2

. To upper-bound P (Zi ≥ αizi), we lower bound P (Zi ≤ αizi).
For Zi = a1 + . . .+ ar where (ai) are independent χ2

1 random variables,

P (Zi ≤ αizi) ≥ P (Zi ≤ r/2, αizi ≥ r/2)

= P (Zi ≤ r/2)P (αizi ≥ r/2)

≥ P (a1 ≤ 1/2)r P (αizi ≥ r/2)

≥ P (a1 ≤ 1/2)r
2

rαi
e
− r

4αi

≥ 2

rαi
e
− c′r
αi

≥ e−
cr
αi .

Thus,

P
(∥∥∥U>xi∥∥∥

2
≥ δ|yi|

B

)
≤ 1− e−

cr
αi ,

and

P (U is δ-admissible) ≤
n∏
i=1

(
1− e−

cr
αi

)
,
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for αi = max

(
0, δ − ‖U

>p?i ‖2

‖w?i ‖2

)2

.

In order to use this without too much trouble, we now make the following assumptions
about the norm of each vector w?i and about the diversity of the direction they span: (i) for
all i ∈ [n], ‖w?i ‖2 = 1 and (ii) 1

n

∑n
i=1 p

?
i p
?>
i � L

r U
?U?> for some λ > 0.

Our goal is now to lower bound the αi’s. Using (i), we can simplify each αi as αi =

max
(
0, δ −

∥∥U>p?i ∥∥2

)2. Then, we have

1

n

n∑
i=1

∥∥∥U>p?i ∥∥∥2

2
=

1

n

n∑
i=1

p?>i UU>p?i

=
1

n

n∑
i=1

p?>i p?i −
1

n

n∑
i=1

p?>i
(
U?U?> − UU>

)
p?i

= 1− 1

n

n∑
i=1

Tr
(
p?>i
(
Id − UU>

)
p?i

)
= 1− 1

n

n∑
i=1

Tr
(
p?i p

?>
i

(
Id − UU>

))
= 1− Tr

( 1

n

n∑
i=1

p?i p
?>
i

(
Id − UU>

))
≤ 1− λ

r
Tr
(
U?U?>

(
Id − UU>

))
= 1− λ

r
Tr
((
Id − UU>

)
U?U?>

)
= 1− λ

r
dist2

F (U,U?)

= 1− λε ,

where we used dist2
F (U,U?) = ‖(I − P )P ?‖2F = Tr((I − P )P ?((I − P )P ?)>) = Tr((I −

P )P ?(I − P )) = Tr((I − P )P ?), where P = UU> and P ? = U?U?>. Hence, since for all i
we have

∥∥U>p?i ∥∥2

2
≤ 1, using 1

n

∑n
i=1

∥∥U>p?i ∥∥2

2
≤ 1− λε, we have that:

1− λε ≥ 1

n

n∑
i=1

∥∥∥U>p?i ∥∥∥2

2

≥ (1− λε/2)
|
{
i :
∥∥U>p?i ∥∥2

2
≥ 1− λε/2

}
|

n

= (1− λε/2)

1−
|
{
i :
∥∥U>p?i ∥∥2

2
≤ 1− λε/2

}
|

n

 ,

so that |
{
i :
∥∥U>p?i ∥∥2

2
≤ 1− λε/2

}
| ≥

(
1 − 1−λε

1−λε/2

)
n = λε/2

1−λε/2n ≥ λεn
2 : at least λεn

2 of the

αi’s are thus smaller than max(0, λε2 − (1− δ)) ≤ λε
4 if δ ≥ 1− λε

4 . This leads to:

P (U is δ-admissible) ≤
n∏
i=1

(
1− e−

cr
αi

)
≤
(

1− e−C
′r
λε

)λεn
2 ≤ exp

(
−c1ne

− c2r
λε

)
.

Now that we have proved Proposition 9.4.1, we can state our feasibility bound on the
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number of tasks when there is only one sample per task. The estimator we build is quite
simple. We define it as any Û that satisfies

Û ∈
{
U ∈ Rd×r orthonormal such that ∀i ∈ [n] , B

∥∥∥U>xi∥∥∥ ≥ |yi|} ,
and this set is not empty since it contains U?. In fact, any Û built from the image of some

Ŵ ∈ arg min {L(W ) , rank(W ) ≤ r , ‖wi‖2 ≤ B} ,

is in this set.
We finally conclude by proving our theorem. Let U =

{
U ∈ Rd×r : U is orthonormal,dist2

F (U,U?) ≥ ε
}

and let Uη be an η-net of U of minimal cardinality. We know that we have |Uη| ≤ ecrd ln(1/η).
For U ∈ U , there exists Uη ∈ Uη such that ‖U − Uη‖ ≤ η, and for any i ∈ [n],∥∥∥U>xi∥∥∥ ≤ ∥∥∥U>η xi∥∥∥+

∥∥∥(U − Uη)>xi
∥∥∥ ≤ ∥∥∥U>η xi∥∥∥+ η‖xi‖ .

Thus, if Uη is not δ-admissible for some δ, there exists i such that
∥∥U>η xi∥∥ ≤ δ|yi|, and thus∥∥∥U>xi∥∥∥ ≤ δ|yi|+ η‖xi‖ < |yi| ,

provided that η < |yi|
‖xi‖(1− δ).

Let thus δ = 1 − λε
4 and η < mini∈[n]

|yi|
‖xi‖(1 − δ). With high probability, we have η of

order 1√
d
λε (up to constant and log factors). As above, let Uη be an η-net of U (of cardinality

less than ecrd ln(1/η)). Using an union bound over Uδ and proposition 9.4.1:

P (∃U ∈ Uδ admissible) ≤ |Uδ| exp
(
−c1ne

− c2r
λε

)
≤ exp

(
crd ln(1/δ)− c1ne

− c2r
λε

)
.

Hence, if n ≥ e
c2r
λε

c1
rd(1 + c ln(1/δ)), we have that with probability 1− e−rdn, all elements of

Uδ are not admissible.
We now place ourselves on this event of probability 1 − e−rnd. Let U ∈ U . In light of

section 9.4, there exists i ∈ [n] such that
∥∥U>xi∥∥ ≤ yi: U is not admissible. Since U? is

1-admissible, the set
{
U ∈ Rd×r orthonormal and admissible

}
is non empty. Let thus Û be

any matrix satisfying

Û ∈
{
U ∈ Rd×r orthonormal such that ∀i ∈ [n] ,

∥∥∥U>xi∥∥∥ ≥ |yi|} .
Since this set does not intersect U , we have 1

rdist2
F (Û , U?) ≤ ε, concluding our proof.

We now prove Proposition 9.4.2. Without loss of generality, assume that B = 1. Let
U ∈ Rd×r with orthogonal columns such that the span of U is in the orthogonal of the span
of U?. We have that:

P (U is admissible) = P
(
∀i ∈ [n],

∥∥∥U>xi∥∥∥2

2
≥ y2

i

)
.

Since span of U is in the orthogonal of the span of U?,
∥∥U>xi∥∥2

2
and y2

i are independent
random variables, of respective laws χ2

r and χ2
1. This leads to:

P (U is admissible) = P
(
χ2
r ≥ χ2

1

)n
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≥ P
(
χ2
r ≥ r/2

)n P (χ2
1 ≤ r/2

)
.

Then, by χ2−concentration, P
(
χ2
r ≥ r/2

)
= 1 − P

(
χ2
r − r < −r/2

)
≥ 1 − e−c1r. Similarly,

P
(
χ2

1 ≤ r/2
)
≥ 1− e−c2r, leading to:

P (U is admissible) ≥ (1− e−c1r)n(1− e−c2r)n

≥ exp(−ne−c3r)) .

Thus, for n < C ′ec
′r, we have that this probability is greater than 7/8.

Hence, it is possible to learn the subspace even in the regime where it is informationally
impossible to learn local solutions w?i . However, this requires n >> decr agents in total. The
proof of this result differs drastically from that of Equation (9.4) and theorem 9.2 or proofs
related such as that of [BKF22, RT11]. Indeed, with only one sample per agent, concentration
results on the quantities considered (empirical losses mainly) will necessarily fail if we consider
all possible local heads. Our approach thus only considers shared representations U : we
compute the probability that a given representation is admissible, and extend this to all
possible representations.

Note that results on algorithms such as Method of Moments [DFHT22, TJJ21] can be
applied in the m < r case. As mentioned in the introduction, since these methods are only
specific to linear regression with quadratic losses, we do not consider them. Hence, even
though such a setting is considered in this section, its purpose is to provide result for the
low-rank estimator (Equation (9.5)) in this m = 1 setting. Our result shows that the low-
rank estimator can indeed learn the representation, provided a number of tasks that scale
exponentially large with r. The following proposition however suggests that this is necessary
for our low rank estimator.

Proposition 9.4.2. There exist constants c′, C ′ > 0 such that if n ≤ C ′ec′r with probability 7/8
there exist solutions Ŵ of the optimization problem Equation (9.4) such that the orthonormal
projection Û on the image of Ŵ are orthogonal to U? i.e. 1

rdist2
F (Û , U?) = 1.

9.5. Convex relaxation via nuclear norm constraint

So far, except for the few-shot learning objective (9.6), the optimization problems con-
sidered to obtain the shared representation are the minimization of convex functions over
non-convex constraint sets: low-rank matrices or clustered matrices. Despite the existence of
heuristics to approximate solutions of these non-convex problems that are efficient in prac-
tice, there is no algorithm yet that can provably approximate solutions of Equations (9.4)
and (9.5) in polynomial time. The objective of this section is thus to provide a convex re-
laxation of Equation (9.4) and prove generalization error bounds for the obtained relaxed
estimator. Let, for some κ > 0 that satisfies κ ≥ λ1(W ?)

λr(W ?) for λ1(W ?) and λr(W ?) largest and
r−largest singular values of W ?:

Ŵ = arg min

{
L(W ) , W ∈ Rd×n , sup

i
‖wi‖ ≤ B , ‖W‖∗ ≤ κB

√
nr

}
, (9.7)

and let ŴSVD be the top-s SVD of Ŵ (the best rank s approximation of Ŵ in Frobenius
norm), for some s ∈ [min(d, n)] to be determined. As opposed to the previous estimators,
the obtained optimization problem consists of a convex objective minimized over a convex
set. Importantly, notice that W ? lies in the optimization set W. Two algorithms of choice to
compute Ŵ are: (i) projected gradient descent (a.k.a. soft thresholding algorithm) onto the
setW, that provably leads to recover Ŵ since both objectives and constraint sets are convex.
This involves projections on the ball {W : ‖W‖∗ = 1}, that have the algorithmic cost of
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O(min(n2d, nd2) (doing an SVD of matrices in Rd×n) plus that of `1−projections [DSSSC08],
and (ii) Frank-Wolfe algorithm, that avoids such projections [Jag13], by iteratively performing
line-searches along the direction of gradients, leading to optimizing linear functions over
extreme-points of W. The following results is derived from Theorem 9.5 that studies the
relaxed estimator (9.7) under ad-hoc assumptions, as previously done in Lemma 9.3.1 for
general estimators.

Theorem 9.4. Assume that the assumptions of Theorem 9.1 hold and that each fi is µ-strongly
convex. With probability 1− 4e−n − 4e−nmd − e−md, if s =

√
r(d+ n), the relaxed estimator

Ŵ satisfies:

1

n

∥∥∥ŴSVD −W ?
∥∥∥2

F
= Õ

(
κ2B2L

µ

√
r

d+ n
+
B2((1 + κ2)σ2 + (1 + κ)σ2

?)

µ

√
r(d+ n)

m

)
.

In this rate, the last term dominates, and the sample efficiency appears to be worse than
for the non-convex low-rank estimator (Theorem 9.1). Indeed, for the right-hand side to
vanish, we require n � d, which was also the case for the low-rank estimator, but we also
need that m �

√
rd, as opposed to m � r previously: this appears to be the cost of our

relaxation. Note that similar rates were obtained by [BKF22] for linear quadratic regression.
However, this m �

√
rd condition, although being worse than m � r, is still much milder

than the no-collaboration rate (Section 9.2.3), that requires m � d. In fact, the condition
m�

√
rd is exactly the geometric mean of the no-collaboration rate m� d and the idealized

low-rank rate m� r: it is a trade-off between statistical and computational efficiency.

Conclusion

In this chapter, we provided extensions to a well-studied problem: learning low-rank
subspaces in multi-task or meta learning. While all existing works considered linear quadratic
models, we relaxed this assumption to a more general convex setting, allowing to grasp other
important problems, such as classification problems. We provided the first bounds for learning
the subspace for the low rank estimator in the 1 sample per task setting, and highlighted the
fact that few samples per task form a challenging statistical problem. Finally, we studied
a nuclear norm relaxation for the rank constraint, and proved that this relaxation perfectly
interpolates between the number of samples required by optimal rank-regularized estimator
and the no-collaboration setting via their geometric mean.
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Appendix of Chapter 9

9.A. Proof of Theorems 9.1 and 9.2

Proof of Theorem 9.1

Proof. Let W =
{
W ∈ Rd×n | rank(W ) ≤ r,maxi∈[n] ‖wi‖ ≤ B

}
. We begin with the two

following lemmas, from which Theorem 9.1 is directly derived.

Lemma 9.A.1. With probability 1− 2er(d+n) − 2enmd, we have that, for all ∆ ∈ W,

|〈∇L(W ?),∆〉| ≤ C1σ
2
?

r(d+ n) ln
(
σ2
?nmd
r(d+n)

)
nm

sup
i∈[n]
‖∆i‖2

+ C1σ
2
?

√√√√r(d+ n) ln
(
σ2
?nmd
r(d+n)

)
nm

1

n
‖∆‖2F sup

i∈[n]
‖∆i‖2 .

Proof of Lemma 9.A.1. Let W ′ =
{
W ∈ Rd×n | rank(W ) ≤ r,maxi∈[n] ‖wi‖ = B

}
(by homo-

geneity of the result, we can impose maxi∈[n] ‖wi‖ = B). Let Wε be an ε−net of W ′: we
know that we can have |Wε| ≤ ecr(d+n) ln(B/ε). Using Lemma 9.3.2,

P

(
|〈∇L(W ?),∆〉| ≥ C ′1σ2

?t sup
i∈[n]
‖∆i‖2 + C ′1σ

2
?

√
t

n
‖∆‖2F sup

i∈[n]
‖∆i‖2

)
≤ 2 exp (−nmt) .

Thus,

P

(
∃∆ ∈ Wε , |〈∇L(W ?),∆〉| ≥ C ′1σ2

?t sup
i∈[n]
‖∆i‖2 + C ′1σ

2
?

√
t

n
‖∆‖2F sup

i∈[n]
‖∆i‖2

)
≤ 2 exp (−nmt+ cr(d+ n) ln(B/ε)) .

Then, |〈∇L(W ?),∆〉| is supi,j ‖∇Fi(w?i , ξij)‖-Lipschitz in ∆. Since ∇Fi(w?i , ξij) are indepen-
dent σ2

? (multivariate) subexponential random variables. Thus, with probability 1− 2e−nmd,
we have supi,j ‖∇Fi(w?i , ξij)‖ ≤ σ2

?d ln(nm). Hence, using that Wε is and ε−net of W,

P

(
∃∆ ∈ W ′ , |〈∇L(W ?),∆〉| ≥ εσ2

?d ln(nm) + C ′1σ
2
?t sup
i∈[n]
‖∆i‖2 + C ′1σ

2
?

√
t

n
‖∆‖2F sup

i∈[n]
‖∆i‖2

)
≤ 2 exp

(
−nmt+ cr(d+ n) ln(B/ε) + 2e−nmd

)
.

We conclude by taking t = cr(d+n)(1+ln(B/ε))
nm for ε = 1

σ2
?d ln(nm)

Br(d+n)
nm .

Lemma 9.A.2. With probability 1− 2er(d+n) − 2enmd, we have that, for all (W,W ′) ∈ W2,∣∣Df−L(W,W ′)
∣∣
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≤ C2σ
2 sup
i∈[n]

∥∥wi − w′i∥∥2
ln

(
nm(LB + σ2

?nmd)

σ2Br(d+ n)

)
r(d+ n)

nm
ln

(
HBnm

r(d+ n)

)

+ C2σ
2

√
1

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖2 ln

(
nm(LB + σ2

?nmd)

σ2Br(d+ n)

)
r(d+ n)

nm
ln

(
HBnm

r(d+ n)

)
.

Proof of Lemma 9.A.2. Let W ′ = {(W,W ′) ∈ W, supi ‖wi − w′i‖ = B}. Using Lemma 9.3.3,

P

[∣∣Df−L(W,W ′)
∣∣ > C2σ

2 sup
i∈[n]

∥∥wi − w′i∥∥2
t ln

(
H supi∈[n] ‖wi − w′i‖

t

)

+C2σ
2

√
σ4

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖2t ln

(
H supi∈[n] ‖wi − w′i‖

t

) ]
≤ 2 exp (−nmt) .

Hence,

P

[
∃(W,W ′) ∈ W2

ε ,
∣∣Df−L(W,W ′)

∣∣ > C2σ
2 sup
i∈[n]

∥∥wi − w′i∥∥2
t ln

(
H supi∈[n] ‖wi − w′i‖

t

)

+C2σ
2

√
σ4

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖2t ln

(
H supi∈[n] ‖wi − w′i‖

t

) ]
≤ 2 exp (−nmt+ 2cr(d+ n) ln(B/ε)) .

|Df−L(W,W ′)| is (LB + supi,j ‖∇Fi(w?i , ξij)‖)−Lipschitz in W and in W ′, so that, since Wε

is an ε−net of W,

P

[
∃(W,W ′) ∈ W ′ ,

∣∣Df−L(W,W ′)
∣∣ > C2σ

2 sup
i∈[n]

∥∥wi − w′i∥∥2
t ln

(
H supi∈[n] ‖wi − w′i‖

t

)
+ 2ε(LB + sup

i,j
‖∇Fi(w?i , ξij)‖)

+ C2σ
2

√
σ4

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖2t ln

(
H supi∈[n] ‖wi − w′i‖

t

) ]
≤ 2 exp (−nmt+ 2cr(d+ n) ln(B/ε)) .

Then, since with probability 1 − 2e−nmd we have supi,j ‖∇Fi(w?i , ξij)‖ ≤ σ2
?nmd, taking

t = (2c ln(B/ε)+1)r(d+n)
nm and ε = σ2B2r(d+n)

nm
1

LB+supi,j ‖∇Fi(w?i ,ξij)‖ , we have ou result.

Finally, we conclude the proof using Lemma 9.3.1.

Proof of Theorem 9.2

Proof. Same as Theorem 9.1, but the ε−net cardinality scales as rn × ecrd ln(1/ε).
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9.B. Proof of Theorem 9.4

9.B.1. A general result

Theorem 9.5. Assume that each fi is µ-strongly convex and that for some constants α, β > 0,
for all W,W ′,∆ ∈ Rd×n of rank at most s ≥ 2r, we have

|〈∇L(W ?),∆〉| ≤ ασ2
? sup
i∈[n]
‖∆i‖22 + σ2

?

√
α

n
‖∆‖2F sup

i∈[n]
‖∆i‖22 ,

and

∣∣Df−L(W,W ′)
∣∣ ≤ βσ2 sup

i∈[n]

∥∥wi − w′i∥∥2

2
+ σ2

√
β

n
‖W −W ′‖2F sup

i∈[n]
‖wi − w′i‖22 .

Assume furthermore that L satisfies DL(W,W ′) ≤M ‖W−W ′‖2F
n for all W,W ′ ∈ Rd×n. Then,

We have:

1

n

∥∥∥ŴSVD −W ?
∥∥∥2

F
≤ 2Mκ2r

µs
+

4B

µ

[
σ2
?

(
α

s
+

√
α

ns

)]
κ
√
nr

+
16B2βσ2

µ
+

8B2σ2
?

µ

(
α+
√
α
)
.

Proof. Importantly, notice that W ? lies in the optimization set

W =

{
W ∈ Rd×n

∣∣ sup
i
‖wi‖ ≤ B , ‖W‖∗ ≤ κB

√
nr

}
.

Indeed, by assumption we first have that supi ‖w?i ‖ ≤ B, and ‖W ?‖∗ ≤ rλmax(W ) ≤ κ
√
rn.

The scaling of κ then comes from the fact that if W ? is of rank r and is well-conditioned (its
largest and r−largest singular values λ1(W ?) and λr(W

?) have a bounded ratio), we have
(i) rλr(W ?)2‖W ?‖2F =

∑
i ‖w?i ‖22 ≤ nB2 leading to λ and (ii) ‖W ?‖∗ ≤ rλ1(W ?), so that if

κ ≥ λ1(W ?)
λr(W ?) , we have ‖W ?‖∗ ≤ rλ1(W ?) ≤ κrλr(W ?) ≤ κB√nr. We have:

DL(Ŵ ,W ?) ≤ 〈∇L̂(W ?),W ? − Ŵ 〉 .

We first bound the noise term 〈∇L̂(W ?),W ? − Ŵ 〉. Let ∆ = W ? − Ŵ and ∆ =
∑K

k=1 for
K ≤ dmin(n,d)

s e be its s-shelling decomposition, defined as follows.

Definition 9.B.1. Let W ∈ Rp×q and s ∈ N∗. Let W =
∑min(p,q)

k=1 σkuvv
>
k be the singular

value decomposition of W , where σ1 ≥ σ2 ≥ . . . ≥ 0. The top-s-SVD of W , abbreviated as
SVDs(W ) is defined as SVDs(W ) =

∑s
k=1 σkuvv

>
k .

Definition 9.B.2. Let W ∈ Rp×q and s ∈ N∗. Let W =
∑

k≥1 ∆(k) be the “shelling decompo-
sition” of W , where the sequence of matrices (∆(k))k≥1 is defined as:

1. ∆(1) = SVDs(W );

2. Recursively, for k ≥ 2, ∆(k) = SVDs(W −
∑

`<k ∆(`)).

Note that ∆(k) = 0 for k ≥ dmin(p, q)/se.

Lemma 9.B.1. For any W ∈ Rp×q and s ∈ N∗, writing W =
∑

k≥1 ∆(k) the shelling decom-
position of W , we have:
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∑
k≥2

sup
i∈[q]

∥∥∥∆
(k)
i

∥∥∥
2
≤ ‖W‖∗

s
,

and ∑
k≥2

∥∥∥∆(k)
∥∥∥
F
≤ ‖W‖∗√

s
.

We thus have:

〈∇L̂(W ?),W ? − Ŵ 〉 ≤
∑
k≥1

〈∇L̂(W ?),∆k〉

≤
∑
k≥1

ασ2
? sup
i∈[n]
‖∆i‖22 + σ2

?

√
α

n
‖∆‖2F sup

i∈[n]
‖∆i‖22

≤ 4B2
(
ασ2

? + σ2
?

√
α
)

+
∑
k≥2

ασ2
? sup
i∈[n]
‖∆i‖22 + σ2

?

√
α

n
‖∆‖2F sup

i∈[n]
‖∆i‖22

≤ 4B2σ2
?

(
α+
√
α
)

+ σ2
?‖∆‖∗

(
α

s
+B

√
α

ns

)
= ε0 ,

where ε0 is defined by this last equality. Then, we have that ‖∆‖∗ ≤ 2κ
√
nr, and thus

ε0 ≤ 4B2σ2
?

(
α+
√
α
)

+ 2κ
√
nrσ2

?

(
α

s
+B

√
α

ns

)
.

We now need to lower boundDL(Ŵ ,W ?). Let Ŵ =
∑K

k=1 ∆̂k be its s-shelling decomposition,
and let ∆̃k = ∆̂k for k ≥ 2 and ∆̃1 = ∆̂1 −W ?. Let ∆̃ = Ŵ −W ? =

∑
k ∆̃k. We have:

DL(Ŵ ,W ?) = DL(W ? + ∆̃,W ?)

= DL(W ? +
K∑
k=1

∆̃k,W ?)

= DL(W ? + ∆̃1 +

K∑
k=2

∆̃k,W ?)

≥ DL(W ? + ∆̃1 +
K∑
k=2

∆̃k,W ?)

≥ 2DL(W ? +
1

2
∆̃1,W ?)−DL(W ? −

K∑
k=2

∆̃k,W ?)

≥ 2DL(W ? +
1

2
∆̃1,W ?)− 1

K − 1

K∑
k=2

DL(W ? − (K − 1)∆̃k,W ?) ,

where we used twice the convexity of DL(W ? + ·,W ?).
Then,

DL(W ? +
1

2
∆̃1,W ?) = Df (W ? +

1

2
∆̃1,W ?) +DL−f (W ? +

1

2
∆̃1,W ?)

≥ Df (W ? +
1

2
∆̃1,W ?)− σ2

(
β sup

i
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i

∥∥∥2

2
+

√
β

n

∥∥∥∆̃1
∥∥∥2

F
sup
i

∥∥∥∆̃1
i

∥∥∥2

2

)
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≥ Df (W ? +
1

2
∆̃1,W ?)− σ2

(
4B2β + 2B

√
β

n

∥∥∥∆̃1
∥∥∥2

F

)
,

and using the property with constant M :

DL(W ? −
K∑
k=2

∆̃k,W ?) ≤ M

n
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K∑
k=2

∆̃k
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2

F

≤ M‖W ?‖2∗
ns

≤ Mκ2r

s

Now, wrapping everything up,

2(f(W ? + ∆̃1/2)− f(W ?)) ≤ Mκ2r

s
+ 2

[
σ2
?

(
α

s
+B

√
α

ns
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+ σ2

(
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∥∥∥∆̃1
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)
+ 4B2σ2

?

(
α+
√
α
)
.

Then, if each fi is µ strongly convex, f is µ/n strongly convex and:

µ

n

∥∥∥∆̃1
∥∥∥2

F
≤ Mκ2r

s
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σ2
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(
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Thus,

1

n

∥∥∥ŴSVD −W ?
∥∥∥2

F
≤ 2Mκ2r

µs
+

4

µ

[
σ2
?

(
α

s
+B

√
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)]
κ
√
nr
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16B2βσ2
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+

8B2σ2
?
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(
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√
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.

9.B.2. Proof of Theorem 9.4

The first two assumptions of Theorem 9.5 are satisfied with high probability for α, β =

Õ( s(d+n)
nm ), as proved in the proof of Theorem 9.1. We now prove that the third and last

assumption is satisfied for M = L+ Õ(σ2d/m) with high probabiliy.

Proof.

Lemma 9.B.2. With probability 1− e−cmd, for all i ∈ [n], for all w,w′ ∈ Rd,

DLi(w,w
′) ≤

(
L+ c′σ2 d

m
ln(dHB2/σ2)

)∥∥w − w′∥∥2

Proof. We have, for some v ∈ [w,w′]:

DLi(w,w
′) =

1

2

∥∥w − w′∥∥2

∇2Li(v)
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=
1

m

∑
j

(w − w′)>∇2Fi(v, ξij)(w − w′) .

Assume that ‖w − w′‖ = 1. Now, all (w − w′)>∇2Fi(v, ξij)(w − w′) are σ2−subexponential
and independent, of mean (w − w′)>∇2fi(v)(w − w′) ≤ L, leading to:

P

∑
j

(w − w′)>∇2Fi(v, ξij)(w − w′) ≥ mL+ σ2t

 ≤ 2 exp

(
−cmin(

t2

m
, t)

)
,

so that:

P

 1

m

∑
j

(w − w′)>∇2Fi(v, ξij)(w − w′) ≥ L+ σ2t

 ≤ 2 exp
(
−cmmin(t2, t)

)
.

Using discretization arguments as before, both on v ∈ [w,w′] parameterized by some λ ∈ [0, 1]
and on w,w′, we get that, with probability 1− e−cmd, for all w,w′ such that ‖w‖, ‖w′‖ ≤ B,

DLi(w,w
′) ≤

(
L+ c′σ2 d

m
ln(dHB2/σ2)

)∥∥w − w′∥∥2
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Chapter 10

Concentration of random tensors and of Hessians,
applications to preconditionning

Dimension is an inherent bottleneck to some modern learning tasks, where optimization meth-
ods suffer from the size of the data. In this chapter, we study non-isotropic distributions of
data and develop tools that aim at reducing these dimensional costs by a dependency on
an effective dimension rather than the ambient one. Based on non-asymptotic estimates of
the metric entropy of ellipsoids -that prove to generalize to infinite dimensions- and on a
chaining argument, our uniform concentration bounds involve an effective dimension instead
of the global dimension, improving over existing results. We show the importance of taking
advantage of non-isotropic properties in learning problems where uniform concentration of
Hessians is required. In particular, we improve state-of-the-art results in statistical precondi-
tioning for communication-efficient distributed optimization, where we additionally provide
stochastic updates in the Bregman framework.

Other applications such as randomized smoothing or robustness of neural networks are
also present in [EM21], the paper from which this chapter is based. We refer the reader to
the associated paper for proofs, that are not included in the manuscript.

10.1. Introduction

The sum of i.i.d. symmetric random tensors of order 2 and rank 1 (i.e. symmetric random
matrices of rank 1) is studied in probability and statistics both for theoretical and practical
interests, the most classical application being covariance estimation. The empirical mean of
such matrices follows theWishart distribution [Wis28, Uhl94]. [MP67] proved the convergence
in law of their spectrum when the number of observations and the dimension are of the same
order. Machine Learning applications however require non-asymptotic properties, such as
concentration bounds for a potentially large finite number of observations and finite dimension
[Tro11, T+15, DGJ17, Min17], to control the eigenvalues of sums of independent matrices,
namely: ∥∥∥∥∥ 1

n

n∑
i=1

aia
>
i − E

[
aa>

]∥∥∥∥∥
op

= sup
‖x‖≤1

1

n

n∑
i=1

x>
(
aia
>
i − E

[
aa>

])
x (10.1)

for a, a1, ..., an i.i.d. random variables in Rd.

10.1.1. Contributions and overview of this chapter

Our main contribution consists in new tools for the control of quantities generalizing
(10.1). More precisely, for r ≥ 2, f1, ..., fr Lipschitz functions on R, a, a1, ..., an i.i.d. random
variables in Rd, and B the d-dimensional unit ball, we derive in Section 10.2 concentration

285



10.1. Introduction

bounds on:

sup
x1,...,xr∈B

 1

n

∑
i∈[n]

(
r∏

k=1

fk(a
>
i xk)− E

[
r∏

k=1

fk(a
>xk)

]) . (10.2)

We thereby extend previous results in three directions. i) Matrices are tensors of order
2, which we generalize by treating symmetric random tensors of rank 1 and order r ≥ 2
(Section 10.2.3). ii) We consider non linear functions fi of scalar products 〈ai, x〉, motivated
by Empirical Risk Minimization. (10.2) can thus be seen as the uniform maximum deviation
of a symmetric random tensor of order r and rank 1, with non-linearities f1, ..., fr. iii) Finally,
by observing that data are usually distributed in a non-isotropic way (the MNIST dataset
lies in a 712 dimensional space, yet its empirical covariance matrix is of effective dimension
less than 3 for instance), we generalize classical isotropic assumptions on random variables
ai by introducing a non-isotropic counterpart:

Definition 10.1.1 (Σ-Subgaussian Random Vector). A random variable a with values in Rd is
Σ -subgaussian for Σ ∈ Rd×d a positive-definite matrix if:

∀t > 0,∀x ∈ B,P(|a>x| > t) ≤ 2 exp

(
−1

2

t2

x>Σx

)
. (10.3)

A gaussian N (0,Σ) is for instance Σ-subgaussian. Note however that in the general case,
Σ is not equal to the covariance matrix. The aim is then to derive concentration bounds on
(10.2) (Section 10.2) that involve an effective dimension of Σ: a quantity smaller than the
global dimension d, that reflects the non-isotropic repartition of the data:

Definition 10.1.2 (Effective Dimension deff(r)). Let Σ ∈ Rd×d a symmetric positive semi-
definite matrix of size d × d, where d ∈ N∗. Let σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

d ≥ 0 denote its ordered
eigenvalues. For any r ∈ N∗, let deff(r) be defined as follows:

deff(r) :=
d∑
i=1

(
σi
σ1

) 2
r

=
Tr(Σ1/r)∥∥Σ1/r

∥∥
op

. (10.4)

This notion generalizes intrinsic dimension in [T+15] and stable rank in [Ver11b, Ver14],
both obtained for r = 1.

Chaining Argument and Metric Entropy of Ellipsoids: Control of (10.2) involves a chaining
argument ([BLM13], Chapter 13). In the simplest version of chaining, in order to bound a
random variable of the form supt∈T Xt, one discretizes the set of indices T and approximates
the value supt∈T Xt by a supremum taken over successively refined discretizations. To exploit
the non-isotropic properties of Σ-subgaussian random variables, we apply chaining based on
a covering of the unit ball B with ellipsoids. Our approach yields similarities with that of
[Zho17], who uses chaining with ellipsoids for a different purpose (control of eigenvectors). In
section 10.2.3, in the setting where f1 = ... = fr = Id, control of (10.2) reduces to controlling
the operator norm of empirical tensors. This can be done using our bounds on the ε-entropy
of ellipsoids, without the use of chaining.

In Section 10.3, we present results on the number of balls of fixed radius ε needed to cover
an ellipsoid in dimension d. The logarithm of this quantity is often called the ε-entropy of
an ellipsoid. [DPP04] studied the limit d→∞, while we provide non-asymptotic estimates.
Furthermore, we extend these results to ellipsoids in infinite dimension, obtaining bounds on
metric entropy in terms of power-law norm decay. We believe these technical results (both in
finite and infinite dimension) to be of strong practical and theoretical interests: the bridge
between covering numbers and suprema of random subgaussian processes is rather thin due
to Dudley’s inequality [Dud67]. Bounding metric entropy of ellipsoids is thus a step towards
uniform bounds on more general random variables than the one we consider in (10.2).
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10.1.2. Applications in Learning Problems and ERM

We show the relevance of our concentration bounds through the following applications.

Operator Norm Of Tensors Setting f1 = ... = fr = Id yields the operator norm of the
empirical tensor 1

n

∑
i a
⊗r
i −Ea⊗r in (10.2). In Section 10.2.3 we derive precise large deviation

bounds on such tensors involving the effective dimension deff(r), improving on previous works
[BLN20, PVZ17] which depended on the global dimension. Optimal concentration inequalities
on rank 1 symmetric tensors (i.e. of the form a⊗r) are not known. We refer the interested
reader to [Ver20] for the study of rank 1 tensors of the form a1 ⊗ ...⊗ ar where a1, ..., ar are
i.i.d. random variables, a different problem than ours. In [EM21], we apply these bounds to
the study of the Lipschitz constant of two-layered neural networks with polynomial activation,
elaborating on the results in [BLN20].

Concentration of Hessians and Statistical Preconditioning For ` a twice differentiable func-
tion on R and Hessian-Lipschitz, let f(x) = 1

n

∑n
i=1 `(a

>
i x). Then,

∇2f(x) =
1

n

n∑
i=1

`′′(a>i x)aia
>
i ,

and setting r = 3, f1 = `′′, f2 = f3 = Id in (10.2) yields supx∈B
∥∥∇2f(x)− E[∇2f(x)]

∥∥
op
.

Controlling such quantities is relevant in optimization when studying functions that have an
empirical risk structure. Methods such as statistical preconditioning [SSZ14] take advantage
of the i.i.d. structure of the observations, as we illustrate in Section 10.4. Our results improve
on the state of the state-of-the-art [HXB+20], establishing guarantees based on deff(r) rather
than d.

Randomized Smoothing We also present applications of our results to non-isotropic ran-
domized smoothing in [EM21].

Organization of the chapter We first present our 3 main uniform concentration bounds
in Section 10.2: control of (10.2) and of the same quantity but un-centered (both using
chaining), and a more precise control of (10.2) in the case where f1 = ... = fr = Id (control
of empirical mean of symmetric random tensors of rank 1 ann order p). In section 10.3, we
provide bounds on the metric entropy of ellipsoids in terms of effective dimension. We also
investigate the case of infinite dimension with the notion of spectral dimension. The last two
sections present two applications of the results presented in Section 10.2. In Section 10.4, we
apply Theorem 10.1 to control uniform deviation of Hessians, in order to prove that statistical
preconditioning methods naturally adapt to the underlying effective dimension.

10.2. Main Theoretical Results

10.2.1. Concentration Bound With Centering

Theorem 10.1 (Concentration With Centering). Let r ≥ 2 and d, n ≥ 1 integers. Let Σ ∈
Rd×d a positive-definite matrix and a, a1, ..., an i.i.d. Σ−subgaussian random variables. Let
deff(s), s ∈ N∗ be defined as in (10.4). Let f1, ..., fr be 1-Lipshitz continuous functions on R
such that fi(0) = 0 for i ∈ [n]. For all k = 1, ..., r, let Bk > 0 such that:

∀x ∈ B,∀i ∈ [n], |fk(a>i x)| ≤ Bk almost surely. (10.5)
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Let B = B1...Bk. Define the following random variable:

Z := sup
x1,...,xr∈B

 1

n

∑
i∈[n]

(
r∏

k=1

fk(a
>
i xk)− E

[
r∏

k=1

fk(a
>xk)

]) . (10.6)

Then, for any λ > 0 and for some universal constant Cr, the following large-deviation bound
holds:

P

(
Z ≥ Crσr1

(
1

n

λ+ deff(r) ln(d)(
σ−r1 B

)2/r−1
+

√
λ+

√
deff(1) ln(d)√
n

))
≤ e−λ. (10.7)

10.2.2. Concentration Bound Without Centering

Theorem 10.2 (Concentration Without Centering). Let r ≥ 2 and d, n ≥ 1 integers. Let
Σ ∈ Rd×d a positive-definite matrix and a, a1, ..., an i.i.d. Σ−subgaussian random variables
(10.3). Let deff(s), s ∈ N∗ be defined as in (10.4). Let f1, ..., fr be 1-Lipshitz continuous
functions on R such that fi(0) = 0 for i ∈ [n]. For all k = 1, ..., r, let Bk > 0 such that:

∀x ∈ B, ∀i ∈ [n], |fk(a>i x)| ≤ Bk almost surely.

Let B = B1...Bk. Define the following random variable:

Y := sup
x1,...,xr∈B

1

n

∑
i∈[n]

r∏
k=1

fk(a
>
i xk). (10.8)

Then, for any λ > 0 and for some universal constant Cr, the following large-deviation bound
holds:

P
(
Y ≥ σr1Cr

(
1 +

deff(r) ln(d) + λ

n
(σ−r1 B)1−2/r

))
≤ e−λ. (10.9)

Remark 10.2.1. Assumptions (10.5) in Theorem 10.1 can be replaced by high-probability
bounds on the random variables a1, ..., an in the following way. If we denote R = supi=1,...,n ‖ai‖,
we always have Bk ≤ R and B ≤ Rr using Lipshitz continuity of functions fk. Furthermore,
a Chernoff bound gives with probability 1− δ:

R2 ≤ 4σ2
1(2deff(1) + ln(1/δ) + ln(n)),

yielding, with probability 1− δ, where Z is defined in (10.6):

Z ≤ Crσr1

(
ln(δ−1) + deff(r) ln(d)

n

(
deff(1) + ln(δ−1) + ln(n)

) r
2
−1

+

√
ln(δ−1) +

√
deff(1) ln(d)√
n

)
.

The same reasoning applies to Theorem 10.2 in the case without centering.

Remark 10.2.2. Theorems 10.1 and 10.2 assume that the functions fk are 1-Lipshitz and that
the supremum is taken over B the centered unit ball. By considering Lk-Lipshitz functions
and a ball B(x0, ρ), one obtains the same bound, up to a factor ρL1...Lr.

10.2.3. Concentration of Non-Isotropic Random Tensors

In this section, we provide a concentration bound on the empirical mean of symmetric
random tensors of rank 1, involving an effective dimension. In [EM21], we exploit this result
to derive some results on the robustness of two-layered neural networks with polynomial
activations. Methods such as in [PVZ17, BLN20], which do not rely ellipsoids, cannot yield
results as sharp as ours, as detailed in the full version paper [EM21].

288



10.2. Main Theoretical Results

Definition 10.2.1 (Tensor). A tensor of order p ∈ N∗ is an array T = (Ti1,...,ip)i1,...,ip∈[d] ∈ Rdp.
T is said to be of rank 1 if it can be written as:

T = u1 ⊗ · · · ⊗ up

for some u1, ..., up ∈ Rp.
Scalar product between two tensors of same order p is defined as:

〈T, S〉 =
∑
i1,...,ip

Ti1,...,ipSi1,...,ip, giving the norm: ‖T‖2 =
∑
i1,...,ip

T 2
i1,...,ip .

We define the operator norm of a tensor as:

‖T‖op = sup
‖x1⊗...⊗xp‖≤1

〈T, x1 ⊗ ...⊗ xp〉.

Definition 10.2.2 (Symmetric Random Tensor of Rank 1). A symmetric random tensor of
rank 1 and order p is a random tensor of the form:

T = X⊗p, (10.10)

where X ∈ Rd is a random variable. We say that T is Σ-subgaussian if X is a Σ-subgaussian
random variable.

We wish to bound the operator norm of tensors of the form T = 1
n

∑n
i=1 Ti, where T1, ..., Tn

are i.i.d. subgaussian random tensors of rank 1 and order p, using a dependency in an effective
dimension rather than the global one. We have:

‖T − ET‖op =
1

n
sup

x1,...,xp∈S

n∑
i=1

{
p∏

k=1

〈ai, xk〉 − E

[
p∏

k=1

〈ai, xk〉
]}

.

This quantity can be upper-bounded using chaining as in Theorem 10.1. However, using a
simpler argument inspired by [BLN20] and our bounds on the metric entropy of ellipsoids,
we have the following.

Theorem 10.3 (Non-Isotropic Concentration Bound on Random Tensors). Let T1, ..., Tn be
i.i.d. random tensors of order p, rank 1, symmetric and Σ-subgaussian. Let T = 1

n

∑n
i=1 Ti.

With probability 1− δ for any δ > 0 and universal constant Cp > 0, we have:

‖T − ET‖op ≤ Cpσ
p
1

√(
deff + ln(d) + ln(δ−1)

)p+1
ln(n)p

n
.

Equivalently, for any λ > 0:

P

‖T − ET‖op ≥ Cpσ
p
1

√(
deff + ln(d) + λ

)p+1
ln(n)p

n

 ≤ e−λ.
This concentration bound is similar to those of [Zhi21, Ver11a, GR07], up to logarithmic
factors we lose in our approach. Yet, even though our proof is quite straightforward, we
obtain results similar to some using much more involved and sophisticated arguments. We
next present the upper-bounds on the number of balls needed to cover an ellipsoid we use to
prove the concentration bounds with chaining (Theorems 10.1 and 10.2) or without (Theorem
10.3). We believe these technical results to be of independent interest due to the strong link
between metric entropy and uniform concentration bounds.
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10.3. Covering Balls with Ellipsoids and Metric Entropy

10.3.1. Metric Entropy of an Ellipsoid

Definition 10.3.1 (Ellipsoid and ε-Entropy). Given a vector b = (b1, . . . , bd) with b1 ≥ · · · ≥
bd > 0, the ellipsoid Eb is defined as

Eb =

x ∈ Rd :
∑
i∈[d]

x2
i

b2i
≤ 1

 .

The ε-entropy Hε(Eb) of ellipsoid Eb is the logarithm of the size of a minimal ε-covering (or
ε-net in information theory terminology) of Eb. More formally:

Hε(Eb) = ln

(
min

{
|A| : A ⊂ Rd, Eb ⊂

⋃
x∈A
B(x, ε)

})
, (10.11)

where B(x, ε) is the Euclidean ball of radius ε. The unit entropy is the ε-entropy for ε = 1.

Given an ellipsoid Eb, define the following quantities:

Kb =

mb∑
i=1

ln(bi) and mb =
∑
i∈[d]

1bi>1. (10.12)

Provided that:

ln(b1) = o

(
K2
b

mb ln(d)

)
, (10.13)

[DPP04] (Theorem 2 in their article) prove the following asymptotic equivalent of H1(Eb)
when d→∞:

H1(Eb) ∼ Kb. (10.14)

However, we need non-asymptotic bounds onH1(Eb). Using techniques introduced in [DPP04],
we thus establish Theorem 10.4, whose proof appears [EM21], together with an extension to
ellipsoids in infinite dimension.

Theorem 10.4 (Unit Entropy of an Ellipsoid in Fixed Dimension). One has, for some universal
constant c > 0, the following bound on the unit entropy of ellipsoid Eb:

H1(Eb) ≤ Kb + c
[
ln(d) +

√
ln(b1)mb ln(d)

]
.

This theorem gives the following corollary, bounding the number of ellipsoids required to
cover the unit ball, directly linked with the number of balls required to cover an ellipsoid
thanks to a linear transformation.

10.3.2. Coverings of the Unit Ball With Ellipsoids

Corollary 10.3.1. Let ε > 0. Let random vector a ∈ Rd satisfy subgaussian tail assumption
(10.3) for matrix Σ, with spectrum σ2

1 ≥ · · · ≥ σ2
d > 0. Then there exists a collection Nε of

vectors in S1 the unit sphere of Rd such that, for all x ∈ S1, there exists y = Πεx ∈ Nε such
that

‖x− y‖2Σ := (x− y)>Σ(x− y) ≤ ε2σ2
1, (10.15)

and the covering Nε verifies

ln(|Nε|) ≤ Hε :=

mε∑
i=1

ln

(
σi
εσ1

)
+ c

[
ln(d) +

√
ln(ε−1) ln(d)mε

]
, (10.16)
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where

mε =
d∑
i=1

1σi>εσ1 (10.17)

and c is some universal constant. Furthermore, we have:

Hε ≤ ln(ε−1) +
min

(
d− 1, ε−

2
r
deff(r)−1

e

)
2/r

ln

(
max(e, ε−

2
r
deff(r)− 1

d− 1
)

)
+ c

[
ln(d) +

√
ln(ε−1) ln(d)mε

]
,

and
mε ≤ 1 + (deff(r)− 1)ε−

2
r .

This last bound on Hε is a core technical lemma behind Theorems 10.1 and 10.2 . It is

to be noted that Hε is not linear in an effective dimension. Indeed, for ε ≤ Cr
(

d−1
deff(r)−1

)r/2
,

our expression is linear in d. This difficulty is the non-asymptotic equivalent of [DPP04]’s
assumption in (10.13).

10.3.3. Ellipsoids in Infinite Dimension

We here define ellipsoids in infinite dimension and upper-bound asymptotically their ε-
entropy in terms of spectral dimension. Although not used in the applications described in the
present article, uniform concentration of infinite-dimensional random vectors that satisfy an
infinite-dimensional subgaussian property require results such as the one we provide below.

Let V be a separable real Hilbert space (e.g. RN, `2([0, 1])).

Definition 10.3.2 (Ellipsoids in Hilbert Spaces). Let A a self-adjoint and semi-definite positive
operator on V i.e. such that ∀(x, y) ∈ V2, we have 〈A(x), y〉 = 〈x,A(y)〉 ≥ 0. We define the
ellipsoid EA ⊂ V by:

EA =

{
x ∈ V :

∥∥∥A†(x)
∥∥∥2
≤ 1

}
,

where A† is the pseudo-inverse of A.

This notion generalizes Definition 10.3.1: taking V = Rd and A = Diag(b1, ..., bd), we
have EA = Eb. We next define the spectral dimension of an ellipsoid. We recall that if
A is a self-adjoint and semi-definite positive operator on V, there exists a Hilbert basis of
eigenvectors of A, and the eigenvalues of A are non-negative.

Definition 10.3.3 (Spectral Dimension and Effective Dimension). Let EA an ellipsoid in V,
where A is a self-adjoint and semi-definite positive operator. Assume that the eigenvalues of
A can be ordered as a decreasing sequence (bi)i∈N∗. EA is of spectral dimension d ∈ R+,∗ if∑

i∈N∗ b
2
i <∞ and when n→∞: ∑

i≥n+1

b2i = O
(
n−

2
d
)
.

The effective dimension of ellipsoid EA is then
∑

i∈N∗ b
2
i .

The right notion of dimension for the control of metric entropy in infinite dimension is
the spectral dimension, as shown in the next proposition: the ε-entropy of an ellipsoid scales
as the spectral dimension in infinite dimension.

Proposition 10.3.1. Let EA be an ellipsoid in V, of spectral dimension d > 0. We have, when
ε→ 0:

Hε(EA) ≤ d ln
(
ε−1
)2(

1 + o(1)
)
,
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where Hε(EA) is the number (possibly infinite) of balls of radius ε required to cover EA.

10.4. Statistical Preconditioning: Bounding Relative Condition Numbers and
Uniform Concentration of Hessians

In this section, we present an application of Theorem 10.1 to optimization. Essentially,
we show that statistical preconditioning-based optimization automatically benefits from low
effective dimension in the data, thus proving a conjecture made in [HXB+20].

10.4.1. Large Deviation of Hessians

Let f be a convex function defined on Rd. We assume that the following holds, which is
true for logistic or ridge regressions.

Assumption 10.4.1 (Empirical Risk Structure). Let ` : R → R convex, twice differentiable
such that `′′ is ‖`′′‖Lip-Lipschitz. Let n ∈ N∗, some convex functions `j : R→ R, j ∈ [n] such
that ∀j ∈ [n], `′′j = `′′ and i.i.d. Σ-subgaussian random variables (aj)j∈[n]. We assume that:

∀x ∈ Rd, f(x) =
1

n

n∑
j=1

`j(a
>
j x). (10.18)

Proposition 10.4.1. Denote Hx the Hessian of f at some point x ∈ Rd and H̄x its mean. We
have:

Hx =
1

n

n∑
i=1

`′′(a>i x)aia
>
i , and H̄x = Ea

[
`′′(a>1 x)a1a

>
1

]
.

Let:
Z = sup

‖x‖≤1

∥∥Hx − H̄x

∥∥
op
. (10.19)

With probability 1− δ, we have, with C a universal constant:

Z ≤ Cσ3
1

∥∥`′′∥∥
Lip

(
(deff(3) ln(d) + ln(1/δ))

√
deff(1) + ln(n/δ)

n
+

√
ln(1/δ) +

√
deff(1) ln(d)√
n

)
.

Previous works [HXB+20] obtained:

C ′σ3
1

∥∥`′′∥∥
Lip

(d+ ln(1/δ))
√
deff(1) + ln(n/δ)√
n

[
1√
d

+
1√
n

]
. (10.20)

In order for this bound to be of order 1, n was required to be of order the whole dimension
d, while we only need n to be of order deff(3).

10.4.2. Statistical Preconditioning

Consider the following optimization problem:

min
x∈Rd

Φ(x) := F (x) + ψ(x), (10.21)

where F (x) = 1
n

∑n
j=1 fj(x) has a finite sum structure and ψ is a convex regularization

function. Standard assumptions are the following:

∀x, σF Id ≤ ∇2F (x) ≤ LF Id. (10.22)

We focus on a basic setting of distributed optimization. At each iteration t = 0, 1, ..., the
server broadcasts the parameter xt to all workers j ∈ {1, ..., n}. Each machine j then com-
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putes in parallel ∇fj(xt) and sends it back to the server, who finally aggregates the gradients
to form∇F (xt) = 1

n

∑
j ∇fj(xt) and use it to update xt in the following way, using a standard

proximal gradient descent, for some parameter ηt ≤ 1/LF :

xt+1 ∈ arg min
x∈Rd

{
〈∇F (xt), x〉+ ψ(x) +

1

2ηt
‖x− xt‖2

}
. (10.23)

Setting ηt = 1/LF yields linear convergence:

Φ(xt)− Φ(x∗) ≤ LF (1− κ−1
F )t‖x0 − x∗‖2. (10.24)

In general, using an accelerated version of (10.23), one obtains a communication complexity
(i.e. number of steps required to reach a precision ε > 0) of O(κ

1/2
F ln(1/ε)) (where κF = LF

σF
)

that cannot be improved in general. Statistical preconditioning is then a technique to improve
each iteration’s efficiency, based on the following insight: considering i.i.d. datasets leads to
statistically similar local gradients ∇fj . The essential tool for preconditioning is the Bregman
divergence.

Definition 10.4.1 (Bregman divergence and Relative Smoothness). For a convex function
φ : Rd → R, we define Dφ its Bregman divergence by:

∀x, y ∈ Rd, Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (10.25)

For convex functions φ, F : Rd → R, we say that F is relatively LF/φ-smooth and σF/φ-
strongly-convex if, for all x, y ∈ Rd:

σF/φDφ(x, y) ≤ DF (x, y) ≤ LF/φDφ(x, y), (10.26)

or equivalently:
σF/φ∇2φ(x) ≤ ∇2F (x) ≤ LF/φ∇2φ(x), (10.27)

We consequently define κF/φ =
LF/φ
σF/φ

the relative condition number of F with respect to φ.

Taking φ = 1
2‖.‖

2 gives Dφ = 1
2‖.‖

2 and thus yields classical smoothness and strong-
convexity definitions. The idea of preconditioning is then to replace 1

2ηt
‖x− xt‖2 in (10.23)

by Dφ(x, y) for a convenient function φ which the server has access to, leading to:

xt+1 ∈ arg min
x∈Rd

{
〈∇F (xt), x〉+ ψ(x) +

1

ηt
Dφ(x, xt)

}
. (10.28)

With ηt = 1/LF/φ, the sequence generated by (10.28) satisfies:

Φ(xt)− Φ(x∗) ≤ LF/φ(1− κ−1
F/φ)t. (10.29)

Hence, the effectiveness of preconditioning hinges on how smaller κF/φ is compared to κF .
Next subsection presents how our large deviation bound of Hessians (Proposition 10.4.1)
comes into place. The better φ approximates F , the smaller κF/φ and the more efficient each
iteration of (10.28) is.

10.4.3. Main Results in Statistical Preconditioning

We furthermore assume that F (x) = f(x) + λ
2‖x‖

2 where f verifies Assumption 10.4.1
and λ > 0. Assume that the server has access to an i.i.d. sample ã1, ..., ãN of the same law as
the aj ’s and to functions ˜̀

1, ..., ˜̀
N such that ˜̀′′

i = `′′. Define f̃(x) = λ
2‖x‖

2 + 1
N

∑N
i=1

˜̀
i(a
>
i x).
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The preconditioner φ is chosen as, for some µ > 0:

φ(x) =
λ

2
‖x‖2 +

1

N

N∑
i=1

˜̀
i(ã
>
i x) +

µ

2
‖x‖2, (10.30)

Parameter µ > 0 is chosen such that, with high probability:

∀x ∈ Domψ,
∥∥∥∇2f̃(x)−∇2F(x)

∥∥∥
op
≤ µ. (10.31)

For such a µ > 0, we have: LF/φ ≤ 1, σF/φ ≥ (1 + 2µ/λ)−1 and κF/φ ≤ 1 + 2µ
λ . Recall that

for t = 0, 1, 2, ..., we have ‖xt − x∗‖2 ≤ C(1− κF/φ)t.

Proposition 10.4.2 (Statistical Preconditioning: Non-Isotropic Results). Assume that for all
x ∈ Domψ, ‖x‖ ≤ R. Under Assumption 10.4.1, with probability 1− δ, we have:

sup
‖x‖≤R

∥∥∥∇2f̃(x)−∇2F (x)
∥∥∥ ≤ CRσ3

1

∥∥`′′∥∥
Lip

(
(deff(3) ln(d) + ln(1/δ))

√
deff(1) + ln(n/δ)

n

+

√
ln(1/δ) +

√
deff(1) ln(d)√
n

)
.

If µ is taken as this upper bound, then we control the rate of convergence in (10.29) with:

κF/φ = 1 + Õ

{
Rσ3

1‖`′′‖Lip

λ
max

(√
deff(1)√
n

,

√
deff(1)deff(3)

n

)}
, (10.32)

where Õ hides logarithmic factors in d, n and δ−1.

Contrast this with known results:

Remark 10.4.1 (Statistical Preconditioning: Isotropic Results). Still under Assumption 10.4.1,
[HXB+20] obtained:

κF/φ = 1 + Õ

{
Rσ3

1‖`′′‖Lip

λ
max

(√
d

n
,
d3/2

n

)}
. (10.33)

The only parameter required is an upper-bound on deff(3) and deff(1) in order to tune
µ. Simply knowing that data are distributed according to a highly non-isotropic subgaussian
law can thus improve the efficiency of statistical preconditioning, by decreasing drastically
estimates of κF/φ and the number of samples required in the preconditioning function.
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Chapter 11

(S)GD over diagonal linear networks and edge of stability

In this chapter, we investigate the impact of stochasticity and large stepsizes on the implicit
regularisation of gradient descent (GD) and stochastic gradient descent (SGD) over 2-layer
diagonal linear networks. We prove the convergence of GD and SGD with macroscopic
stepsizes in an overparametrised regression setting and provide a characterisation of their
solution through an implicit regularisation problem. Our characterisation provides insights
on how the choice of minibatch sizes and stepsizes lead to qualitatively distinct behaviors in
the solutions. Specifically, we show that for sparse regression learned with 2-layer diagonal
linear networks, large stepsizes consistently benefit SGD, whereas they can hinder the recovery
of sparse solutions for GD. These effects are amplified for stepsizes in a tight window just
below the divergence threshold, known as the "edge of stability" regime.

This chapter is based on [EPGF23]; we refer the interested reader to the paper for the
proofs that are not included in this manuscript. This chapter is to be put in perspective of
Proposition 1.1.4 in the introduction chapter. The analysis and the results provided here are
of the same flavor but for a non-convex model, and explicitly provide implicit regularization
problems that are hyperparameters and trajectory dependent, highlighting a clear relation
between generalization and optimization parameters hypertuning.

11.1. Introduction

The stochastic gradient descent algorithm (SGD) [RM51] is the foundational algorithm for
almost all neural network training. Though a remarkably simple algorithm, it has led to many
impressive empirical results and is a key driver of deep learning. However the performances of
SGD are quite puzzling from a theoretical point of view as (1) its convergence is highly non-
trivial and (2) there exist many global minimums for the training objective which generalise
very poorly [ZBH+17].

To explain this second point, the concept of implicit regularisation has emerged: if over-
fitting is harmless in many real-world prediction tasks, it must be because the optimisation
process is implicitly favoring solutions that have good generalisation properties for the task.
The canonical example is overparametrised linear regression with more trainable parameters
than number of samples: although there are infinitely many solutions that fit the samples,
GD and SGD explore only a small subspace of all the possible parameters. As a result, it
can be shown that they implicitly converge to the closest solution in terms of the `2 distance,
and this without explicit regularisation [ZBH+17, GLSS18a].

Currently, most theoretical works on implicit regularisation have primarily focused on
continuous time approximations of (S)GD where the impact of crucial hyperparameters such
as the stepsize and the minibatch size are ignored. One such common simplification is to
analyse gradient flow, which is a continuous time limit of GD and minibatch SGD with an
infinitesimal stepsize. By definition, this analysis does not capture the effect of stepsize
or stochasticity. Another approach is to approximate SGD by a stochastic gradient flow
[Woj21, PPVF21], which tries to capture the noise and the stepsize using an appropriate
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Figure 11.1 – Noiseless sparse regression with a diagonal linear network using SGD and GD, with
parameters initialized at the scale of α = 0.1 (Section 11.2). The test losses at convergence for various
stepsizes are plotted for GD and SGD. Small stepsizes correspond to gradient flow (GF) performance.
We see that increasing the stepsize improves the generalisation properties of SGD, but deteriorates
that of GD. The dashed vertical lines at stepsizes γ̃SGD

max and γ̃GD
max denote the largest stepsizes for which

SGD and GD, respectively, converge. See Section 11.2 for the precise experimental setting.

stochastic differential equation. However, there are no theoretical guarantees that these
results can be transferred to minibatch SGD as used in practice. This is a limitation in our
understanding since the performances of most deep learning models are often sensitive to the
choice of stepsize and minibatch size. The importance of stepsize and SGD minibatch size
is common knowledge in practice and has also been systematically established in controlled
experiments [KMN+17a, ML18, GGP+22].

In this work, we aim to expand our understanding of the impact of stochasticity and step-
sizes by analysing the (S)GD trajectory in 2-layer diagonal networks (DLNs). In Figure 11.1,
we show that even in our simple network, there are significant differences between the nature
of the solutions recovered by SGD and GD at macroscopic stepsizes. We discuss this behavior
further in the later sections.

The 2-layer diagonal linear network which we consider is a simplified neural network
that has received significant attention lately [WGL+20, VKR19, HWLM21, PVRF22]. De-
spite its simplicity, it surprisingly reveals training characteristics which are observed in much
more complex architectures, such as the role of the initialisation [WGL+20], the role of
noise [PPVF21, PVRF22], or the emergence of saddle-to-saddle dynamics [Ber22, PF23]. It
therefore serves as an ideal proxy model for gaining a deeper understanding of complex phe-
nomenons such as the roles of stepsizes and of stochasticity as highlighted in this chapter.
We also point out that implicit bias and convergence for more complex architectures such as
2-layer ReLU networks, matrix multiplication are not yet fully understood, even for the sim-
ple gradient flow. Therefore studying the subtler effects of large stepsizes and stochasticity
in these settings is currently out of reach.

11.1.1. Main results and chapter organisation

The overparametrised regression setting and diagonal linear networks are introduced in
Section 11.2. We formulate our theoretical results (Theorems 11.1 and 11.2) in Section 11.3:
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we prove that for macroscopic stepsizes, gradient descent and stochastic gradient descent over
2-layer diagonal linear networks converge to a zero-training loss solution β?∞. We further pro-
vide a refined characterization of β?∞ through a trajectory-dependent implicit regularisation
problem, that captures the effects of hyperparameters of the algorithm, such as stepsizes and
batchsizes, in useful and analysable ways. In Section 11.4 we then leverage this crisp charac-
terisation to explain the influence of crucial parameters such as the stepsize and batch-size on
the recovered solution. Importantly our analysis shows a stark difference between the gen-
eralisation performances of GD and SGD for large stepsizes, hence explaining the numerical
results seen in Figure 11.1 for the sparse regression setting. Finally, in Section 11.5, we use
our results to shed new light on the Edge of Stability (EoS ) phenomenon [CKL+21].

11.1.2. Related works

Implicit bias. The concept of implicit bias from optimization algorithm in neural net-
works has been studied extensively in the past few years, starting with early works of
[Tel13, NTS14, KMN+17a, SHN+18]. The theoretical results on implicit regularisation
have been extended to multiplicative parametrisations [GWB+17, GLSS18b], linear net-
works [JT19], and homogeneous networks [LL19, JT20, COB19]. For regression loss on
diagonal linear networks studied in this work, [WGL+20] demonstrate that the scale of the
initialisation determines the type of solution obtained, with large initialisations yielding min-
imum `2 norm solutions—the neural tangent kernel regime [JGH18] and small initialisation
resulting in minimum `1 norm solutions—the rich regime [COB19]. The analysis relies on
the link between gradient descent and mirror descent established by [GHS20] and further
explored by [VKR20, WR20]. These works focus on full batch gradient, and often in the
inifitesimal stepsize limit (gradient flow), leading to general insights and results that do not
take into account the effects of stochasticity and large stepsizes.

The effect of stochasticity in SGD on generalisation. The relationship between stochasticity
in SGD and generalisation has been studied in various works [MHB16, HHS17, CS18, KLY18,
WME18]. Empirically, models generated by SGD exhibit better generalisation performance
than those generated by GD [KMN+17b, JKA+17, HLT19]. Explanations related to the
flatness of the minima picked by SGD have been proposed [HS97]. Label noise has been shown
to influence the implicit bias of SGD [HWLM21, BGVV20, DML21, PVRF22] by implicitly
regularising the sharp minimisers. Recently, studying a stochastic gradient flow that models
the noise of SGD in continuous time with Brownian diffusion, [PPVF21] characterised for
diagonal linear networks the limit of their stochastic process as the solution of an implicit
regularisation problem. However similar explicit characterisation of the implicit bias remains
unclear for SGD with large stepsizes.

The effect of stepsizes in GD and SGD. Recent efforts to understand how the choice of
stepsizes affects the learning process and the properties of the recovered solution suggest that
larger stepsizes lead to the minimisation of some notion of flatness of the loss function [SL18,
KMN+17b, NRSS22, JKA+18, WME18, MMS21], backed by empirical evidences or stability
analyses. Larger stepsizes have also been proven to be beneficial for specific architectures or
problems: two-layer network [LWM19], regression [WZBG21], kernel regression [BMR22] or
matrix factorisation [WCZT22]. For large stepsizes, it has been observed that GD enters an
Edge of Stability (EoS) regime [CKL+21], in which the iterates and the train loss oscillate
before converging to a zero-training error solution; this phenomenon has then been studied
on simple toy models [ABC+22, ZWW+23, CB22, DNL23] for GD. Recently, [AVPVF22]
presented empirical evidence that large stepsizes can lead to loss stabilisation and towards
simpler predictors.
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11.2. Setup and preliminaries

Overparametrised linear regression. We consider a linear regression over inputs X that
write as X = (x1, . . . , xn) ∈ (Rd)n and outputs y = (y1, . . . , yn) ∈ Rn. We consider
overparametrised problems where input dimension d is (much) larger than the number of
samples n. In this case, there exists infinitely many linear predictors β? ∈ Rd which per-
fectly fit the training set, i.e., yi = 〈β?, xi〉 for all 1 ≤ i ≤ n. We call such vectors
interpolating predictors or interpolators and we denote by S the set of all interpolators
S = {β? ∈ Rd s.t. 〈β?, xi〉 = yi,∀i ∈ [n]}. Note that S is an affine space of dimension
greater than d − n and equal to β? + span(x1, . . . , xn)⊥ for any β? ∈ S. We consider the
following quadratic loss: L(β) = 1

2n

∑n
i=1(〈β, xi〉 − yi)2, for β ∈ Rd.

2-layer linear diagonal network. We parametrise regression vectors β as functions βw of
trainable parameters w ∈ Rp. Although the final prediction function x 7→ 〈βw, x〉 is linear
in the input x, the choice of the parametrisation drastically changes the solution recovered
by the optimisation algorithm [GLSS18b]. In the case of the linear parametrisation βw = w
many first-order methods (SGD, GD, with or without momentum) converge towards the same
solution and the choice of stepsize does not impact the recovered solution beyond convergence.
In an effort to better understand the effects of stochasticity and large stepsize, we consider
the next simple parametrisation, that of a 2-layer diagonal linear neural network given by:

βw = u� v where w = (u, v) ∈ R2d . (11.1)

This parametrisation can be viewed as a simple neural network x 7→ 〈u, σ(diag(v)x)〉 where
the output weights are represented by u, the inner weights is the diagonal matrix diag(v),
and the activation σ is the identity function. In this spirit, we refer to the entries of w =
(u, v) ∈ R2d as the weights and to β = u � v ∈ Rd as the prediction parameter. Despite the
simplicity of the parametrisation (11.1), the loss function F over parameters w = (u, v) ∈ R2d

is non-convex (and thus the corresponding optimization problem is challenging to analyse),
and is given by:

F (w) = L(u� v) =
1

2n

n∑
i=1

(yi − 〈u� v, xi〉)2 . (11.2)

Mini-batch SGD. We minimise F using mini-batch SGD: let w0 = (u0, v0) and for k ≥ 0,

wk+1 = wk − γk∇FBk(wk) , where FBk(w) =
1

2b

∑
i∈Bk

(yi − 〈u� v, xi〉)2 , (11.3)

where γk are stepsizes, Bk ⊂ [n] are mini-batches of b ∈ [n] distinct samples sampled uniformly
and independently, and ∇FBk(wk) are minibatch gradients of partial loss over Bk, FBk(w) =
LBk(u� v) defined above. Classical SGD and full-batch GD are special cases with b = 1 and
b = n, respectively. For k ≥ 0, we consider the successive prediction parameters βk = uk�vk
built from the weights wk = (uk, vk). We analyse SGD initialised at u0 =

√
2α ∈ Rd>0 and

v0 = 0 ∈ Rd, resulting in β0 = 0 ∈ Rd independently of the chosen weight initialisation α 1.

Experimental details. We consider the noiseless sparse regression setting where (xi)i∈[n] ∼
N (0, Id) and yi = 〈β?`1 , xi〉 for some s-sparse vector β?`1 . We perform (S)GD over the DLN

1In [EPGF23], we show that the (S)GD trajectory with this initialisation exactly matches that of another
common parametrisation βw = w2

+−w2
− with initialisation w+,0 = w−,0 = α. The second layer of our diagonal

linear network is set to 0 in order to obtain results that are easier to interpret. However, our proof techniques
can be applied directly to a general initialisation, at the cost of additional notations in our Theorems.

298



11.3. Implicit bias of SGD and GD

with a uniform initialisation α = α1 ∈ Rd where α > 0. Figure 11.1 and Figure 11.2
(left) correspond to the setup (n, d, s, α) = (20, 30, 3, 0.1), Figure 11.2 (right) to (n, d, s, α) =
(50, 100, 4, 0.1) and Figure 11.3 to (n, d, s, α) = (50, 100, 2, 0.1).

Notations. Let H = ∇2L = 1
n

∑
i xix

>
i denote the Hessian of L, and for a batch B ⊂ [n] let

HB = ∇2LB = 1
|B|
∑

i∈B xix
>
i denote the Hessian of the partial loss over the batch B. Let L

denote the “smoothness” such that ∀β, ‖HBβ‖2 ≤ L‖β‖2, ‖HBβ‖∞ ≤ L‖β‖∞ for all batches
B ⊂ [n] of size b. A real function (e.g, log, exp) applied to a vector must be understood
as element-wise application, and for vectors u, v ∈ Rd, u2 = (u2

i )i∈[d], u � v = (uivi)i∈[d]

and u/v = (ui/vi)i∈[d]. We write 1, 0 for the constant vectors with coordinates 1 and 0

respectively. The Bregman divergence [Bre67] of a differentiable convex function h : Rd → R
is defined as Dh(β1, β2) = h(β1)− (h(β2) + 〈∇h(β2), β1 − β2〉).

11.3. Implicit bias of SGD and GD

We start by recalling some known results on the implicit bias of gradient flow on diag-
onal linear networks before presenting our main theorems on characterising the (stochastic)
gradient descent solutions (theorem 11.1) as well as proving the convergence of the iterates
(theorem 11.2).

11.3.1. Warmup: gradient flow

We first review prior findings on gradient flow on diagonal linear neural networks. [WGL+20]
show that the limit β∗α of the gradient flow dwt = −∇F (wt)dt initialised at (u0, v0) =
(
√

2α,0) is the solution of the minimal interpolation problem:

β∗α = arg min
β?∈S

ψα(β?) , where ψα(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi
α2
i

)−
√
β2
i + α4

i + α2
i

)
. (11.4)

The convex potential ψα is the hyperbolic entropy function (or hypentropy) [GHS20]. De-
pending on the structure of the vector α, the generalisation properties of β?α highly vary. We
point out the two main characteristics of α that affect the behaviour of ψα and therefore also
the solution β?α.

1. The Scale of α. For an initialisation vector α we call the `1-norm ‖α‖1 the scale of the
initialisation. It is an important quantity affecting the properties of the recovered solution
β?α. To see this let us consider a uniform initialisation of the form α = α1 for a scalar value
α > 0. In this case the potential ψα has the property of resembling the `1-norm as the scale
α vanishes: ψα ∼ ln(1/α)‖.‖1 as α→ 0. Hence, a small initialisation results in a low `1-norm
solution which is known to induce sparse recovery guarantees [CRT06]. This setting is often
referred to as the “rich” regime [WGL+20]. In contrast, using a large initialisation scale leads
to solutions with low `2-norm: ψα ∼ ‖.‖22/(2α2) as α→∞, a setting known as the “kernel” or
“lazy” regime. Overall, to retrieve the minimum `1-norm solution, one should use a uniform
initialisation with small scale α [WGL+20, Theorem 2].

2. The Shape of α. In addition to the scale of the initialisation α, a lesser studied
aspect is its “shape”, which is a term we use to refer to the relative distribution of {αi}i
along the d coordinates [AMN+21]. It is a crucial property because having α → 0 does
not necessarily lead to the potential ψα being close to the `1-norm. Indeed, we have that
ψα(β)

α→0∼ ∑d
i=1 ln( 1

αi
)|βi|, therefore if the vector ln(1/α) has entries changing at different

rates, then ψα(β) is a weighted `1-norm. In words, if the entries of α do not go to zero
“uniformly", then the resulting implicit bias minimizes a weighed `1-norm. This phenomenon
can lead to solutions with vastly different sparsity structure than the minimum `1-norm
interpolator.
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11.3.2. Implicit bias of (stochastic) gradient descent

In theorem 11.1, we prove that for an initialisation
√

2α ∈ Rd and for arbitrary stepsize
sequences (γk)k≥0 if the iterates converge to an interpolator, then this interpolator is the
solution of a constrained minimisation problem which involves the hyperbolic entropy ψα∞
defined in (11.4), where α∞ ∈ Rd is an effective initialisation which depends on the trajectory
and on the stepsize sequence. Later, we prove the convergence of iterates for macroscopic
step sizes in theorem 11.2.

Theorem 11.1 (Implicit bias of (S)GD). Let (uk, vk)k≥0 follow the mini-batch SGD recursion
(11.3) initialised at (u0, v0) = (

√
2α,0) and with stepsizes (γk)k≥0. Let (βk)k≥0 = (uk�vk)k≥0

and assume that they converge to some interpolator β?∞ ∈ S. Then, β?∞ satisfies:

β?∞ = arg min
β?∈S

Dψα∞ (β?, β̃0) , (11.5)

where Dψα∞ is the Bregman divergence with hyperentropy potential ψα∞ of the effective ini-
tialisation α∞, and β̃0 is a small perturbation term. The effective initialisation α∞ is given
by,

α2
∞ = α2 � exp

(
−
∞∑
k=0

q
(
γk∇LBk(βk)

))
, (11.6)

where q(x) = −1
2 ln((1−x2)2) satisfies q(x) ≥ 0 for |x| ≤

√
2, with the convention q(1) = +∞.

The perturbation term β̃0 ∈ Rd is explicitly given by β̃0 = 1
2

(
α2

+ − α2
−
)
, where q±(x) =

∓2x− ln((1∓ x)2), and α2
± = α2 � exp (−∑∞k=0 q±(γk∇LBk(βk))).

Trajectory-dependent characterisation. The characterisation of β?∞ in Theorem 11.1 holds
for any stepsize schedule such that the iterates converge and goes beyond the continuous-
time frameworks previously studied [WGL+20, PPVF21]. The result even holds for adaptive
stepsize schedules which keep the stepsize scalar such as AdaDelta [Zei12]. An important
aspect of our result is that α∞ and β̃0 depend on the iterates’ trajectory. Nevertheless,
we argue that our formulation provides useful ingredients for understanding the implicit
regularisation effects of (S)GD for this problem compared to trivial characterisations (such as
e.g., minβ ‖β − β?∞‖). Importantly, the key parameters α∞, β̃0 depend on crucial parameters
such as the stepsize and noise in a useful and analysable manner: understanding how they
affect α∞ and β̃0 coincides with understanding how they affect the recovered solution β?∞
and its generalisation properties. This is precisely the object of Sections 11.4 and 11.5 where
we discuss the qualitative and quantitative insights from Theorem 11.1 in greater detail.

The perturbation β̃0 can be ignored. We have that under reasonable assumptions on the
stepsizes, that |β̃0| ≤ α2 and α∞ ≤ α (component-wise). The magnitude of β̃0 is therefore
negligible in front of the magnitudes of β? ∈ S and one can roughly ignore the term β̃0. Hence,
the implicit regularisation eq. (11.5) can be thought of as β?∞ ≈ arg minβ?∈S Dψα∞ (β?, 0) =
ψα∞(β?), and thus the solution β?∞ minimises the same potential function that the solution
of gradient flow (see Equation (11.4)), but with an effective initialisation α∞. Also note that
for γk ≡ γ → 0 we have α∞ → α and β̃0 → 0, recovering the previously known result for
gradient flow (11.4).

Deviation from gradient flow. The difference with gradient flow is directly associated with
the quantity

∑
k q(γk∇LBk(βk)). Also, as the (stochastic) gradients converge to 0 and

q(x)
x→0∼ x2, one should think of this sum as roughly being

∑
k∇LBk(βk)

2: the larger this
sum, the more the recovered solution differs from that of gradient flow. The full picture
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of how large stepsizes and stochasticity impact the generalisation properties of β?∞ and the
recovery of minimum `1-norm solution is nuanced as clearly seen in fig. 11.1.

11.3.3. Convergence of the iterates

Theorem 11.1 provides the implicit minimisation problem but says nothing about the
convergence of the iterates. Here we show under very reasonable assumptions on the stepsizes
that the iterates indeed converge towards a global optimum. Note that since the loss F is
non-convex, such a convergence result is non-trivial and requires an involved analysis.

Theorem 11.2 (Convergence of the iterates). Let (uk, vk)k≥0 follow the mini-batch SGD re-
cursion (11.3) initialised at u0 =

√
2α ∈ Rd>0 and v0 = 0, and let (βk)k≥0 = (uk � vk)k≥0.

Recall the “smoothness” parameter L on the minibatch loss defined in the notations. There
exist B > 0 verifying B = Õ(minβ?∈S ‖β?‖∞) and a numerical constant c > 0 such that for
stepsizes satisfying γk ≤ c

LB , the iterates (βk)k≥0 converge almost surely to the interpolator
β?∞ solution of Equation (11.5).

In fact, we can be more precise by showing an exponential rate of convergence of the
losses as well as characterise the rate of convergence of the iterates as follows.

Proposition 11.3.1 (Quantitative convergence rates). For a uniform initialisation α = α1 and
under the assumptions of Theorem 11.2, we have:

E [L(βk)] ≤
(

1− 1

2
γα2λb

)k
L(β0) and E

[∥∥βk − β?αk∥∥2
]
≤ C

(
1− 1

2
γα2λb

)k
,

where λb > 0 is the largest value such that λbH � EB[HB],

C = 2B(α2λ+
min)−1

(
1 + (4Bλmax)(α2λ+

min)−1
)
L(β0) ,

and λ+
min, λmax > 0 are respectively the smallest non-null and the largest eigenevalues of H,

and β?αk is the interpolator that minimises the perturbed hypentropy hk of parameter αk, as
defined in Equation (11.7) in the next subsection.

The convergence of the losses is proved directly using the time-varying mirror structure
that we exhibit in the next subsection, the convergence of the iterates is proved by studying
the curvature of the mirror maps on a small neighborhood around the affine interpolation
space.

11.3.4. Sketch of proof through a time varying mirror descent

As in the continuous-time framework, our results heavily rely on showing that the iterates
(βk)k follow a mirror descent recursion with time-varying potentials on the convex loss L(β).
To show this, we first define the following quantities:

α2
k = α+,k � α−,k and φk =

1

2
arcsinh

(
α2

+,k − α2
−,k

2α2
k

)
∈ Rd ,

where α±,k = α exp
(
−1

2

∑k−1
i=0 q±

(
γ`∇LB`(β`)

))
∈ Rd. Finally for k ≥ 0, we define the

potentials (hk : Rd → R)k≥0 as:

hk(β) = ψαk(β)− 〈φk, β〉. (11.7)

Where ψαk is the hyperbolic entropy function defined Equation (11.4). Now that all the
relevant quantities are defined, we can state the following proposition which explicits the
time-varying stochastic mirror descent.
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Proposition 11.3.2. The iterates (βk = uk�vk)k≥0 from Equation (11.3) satisfy the Stochastic
Mirror Descent recursion with varying potentials (hk)k:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk(βk) ,

where hk : Rd → R for k ≥ 0 are defined Equation (11.7). Since ∇h0(β0) = 0 we have:

∇hk(βk) ∈ span(x1, . . . , xn). (11.8)

Theorems 11.1 and 11.2 and proposition 11.3.1 follow from this key proposition: by
suitably modifying classical convex optimization techniques to account for the time-varying
potentials, we can prove the convergence of the iterates towards an interpolator β?∞ along
with that of the relevant quantities α±,k, αk and φk. The implicit regularisation problem
then directly follows from: (1) the limit condition ∇h∞(β∞) ∈ Span(x1, . . . , xn) as seen from
eq. (11.8) and (2) the interpolation condition Xβ?∞ = y. Indeed, these two conditions exactly
correspond to the KKT conditions of the convex problem eq. (11.5).

11.4. Analysis of the impact of the stepsize and stochasticity on α∞

In this section, we analyse the effects of large stepsizes and stochasticity on the implicit
bias of (S)GD. We focus on how these factors influence the effective initialisation α∞, which
plays a key role as shown in Theorem 11.1. From its definition in eq. (11.6), we see that
α∞ is a function of the vector

∑
k q(γk∇LBk(βk)). We henceforth call this quantity the gain

vector. For simplicity of the discussions, from now on, we consider constant stepsizes γk = γ
for all k ≥ 0 and a uniform initialisation of the weights α = α1 with α > 0. We can then
write the gain vector as:

Gainγ = ln

(
α2

α2∞

)
=
∑

k

q(γ∇LBk
(βk)) ∈ Rd .

Following our discussion in section 11.3.1 on the scale and the shape of α∞, we recall the link
between the scale and shape of Gainγ and the recovered solution:

1. The scale of Gainγ , i.e. the magnitude of ‖Gainγ‖1 indicates how much the implicit
bias of (S)GD differs from that of gradient flow: ‖Gainγ‖1 ∼ 0 implies that α∞ ∼ α
and therefore the recovered solution is close to that of gradient flow. On the contrary,
‖Gainγ‖1 >> ln(1/α) implies that α∞ has effective scale much smaller than α thereby
changing the implicit regularisation eq. (11.5).

2. The shape of Gainγ indicates which coordinates of β in the associated minimum weighted
`1 problem are most penalised. First recall from Section 11.3.1 that a uniformly large
Gainγ leads to ψα∞ being closer to the `1-norm. However, with small weight initialisa-
tion α→ 0, we have,

ψα∞(β) ∼ ln(
1

α
)‖β‖1 +

d∑
i=1

Gainγ(i)|βi| , (11.9)

In this case, having a heterogeneously large vector Gainγ leads to a weighted `1 norm
as the effective implicit regularisation, where the coordinates of β corresponding to the
largest entries of Gainγ are less likely to be recovered.

11.4.1. The scale of Gainγ is increasing with the stepsize

The following proposition highlights the dependencies of the scale of the gain ‖Gainγ‖1
in terms of various problem constants.
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Proposition 11.4.1. Let Λb, λb > 0 2 be the largest and smallest values, respectively, such that
λbH � EB

[
H2
B
]
� ΛbH. For any stepsize γ > 0 satisfying γ ≤ c

BL (as in theorem 11.2),
initialisation α1 and batch size b ∈ [n], the magnitude of the gain satisfies:

λbγ
2
∑
k

EL(βk) ≤ E [‖Gainγ‖1] ≤ 2Λbγ
2
∑
k

EL(βk) , (11.10)

where the expectation is over a uniform and independent sampling of the batches (Bk)k≥0.

The slower the training, the larger the gain. eq. (11.10) shows that the slower the training
loss converges to 0, the larger the sum of the loss and therefore the larger the scale of Gainγ .
This means that the (S)GD trajectory deviates from that of gradient flow if the stepsize
and/or noise slows down the training. This supports observations previously made from
stochastic gradient flow [PPVF21] analysis.

The bigger the stepsize, the larger the gain. The effect of the stepsize on the magnitude of
the gain is not directly visible in eq. (11.10) because a larger stepsize tends to speed up the
training. For stepsize 0 < γ ≤ γmax = c

BL as in Theorem 11.2 we have that:

∑
k

γ2L(βk) = Θ

(
γ ln

(
1

α

)∥∥β?`1∥∥1

)
. (11.11)

eq. (11.11) clearly shows that increasing the stepsize boosts the magnitude ‖Gainγ‖1 up until
the limit of γmax. Therefore, the larger the stepsize the smaller is the effective scale of α∞.
In turn, larger gap between α∞ and α leads to a larger deviation of (S)GD from the gradient
flow.

Large stepsizes and Edge of Stability. The previous paragraph holds for stepsizes smaller
than γmax for which we can theoretically prove convergence. But what if we use even big-
ger stepsizes? Let (βγk )k denote the iterates generated with stepsize γ and let us define
γ̃max = supγ≥0{γ s.t. ∀γ′ ∈ (0, γ),

∑
k L(βγ

′

k ) < ∞}, which corresponds to the largest step-
size such that the iterates still converge for a given problem (even if not provably so). From
Proposition 11.4.1 we have that γmax ≤ γ̃max. As we approach this upper bound on conver-
gence γ → γ̃max, the sum

∑
k L(βγk ) diverges. For such large stepsizes, the iterates of gradient

descent tend to “bounce” and this regime is commonly referred to as the Edge of Stability. In
this regime, the convergence of the loss can be made arbitrarily slow due to these bouncing
effects. As a consequence, as seen through Equation (11.10), the magnitude of Gainγ can be
become arbitrarily big as observed in fig. 11.2 (left). In this regime, the recovered solution
tends to dramatically differ from the gradient flow solution, as seen in fig. 11.1.

Impact of stochasticity and linear scaling rule. Assuming inputs xi sampled from N (0, σ2Id)

with σ2 > 0, we obtain E [‖Gainγ‖1] = Θ
(
γ σ

2d
b ln

(
1
α

)
‖β?`1‖1

)
, w.h.p. over the dataset. The

scale of Gainγ decreases with batch size and there exists a factor n between that of SGD
and that of GD. Additionally, the magnitude of Gainγ depends on γ

b , resembling the linear
scaling rule commonly used in deep learning [GDG+17].

By analysing the magnitude ‖Gainγ‖1, we have explained the distinct behavior of (S)GD
with large stepsizes compared to gradient flow. However, our current analysis does not
qualitatively distinguish the behavior between SGD and GD beyond the linear stepsize scaling

2Λb, λb > 0 are data-dependent constants; for b = n, we have (λn,Λn) = (λ+
min(H), λmax(H)) where

λ+
min(H) is the smallest non-null eigenvalue of H; for b = 1, we have mini ‖xi‖22 ≤ λ1 ≤ Λ1 ≤ maxi ‖xi‖22.
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Figure 11.2 – Left: the scale of Gainγ explodes as γ → γ̃max for both GD and SGD. Right: β?sparse is
fixed, we perform 100 runs of GD and SGD with different feature matrices, and we plot the d coordi-
nates of Gainγ (for GD and SGD) on the x-axis (which is in log scale for better visualisation). The
shape of GainSGD

γ is homogeneous whereas that of GD is heterogeneous with much higher magnitude
on the support of β?sparse. The shape of GainGD

γ is proportional to the expected gradient at initialisation
which is (β?sparse)

2.

rules, in contrast with fig. 11.1. A deeper understanding of the shape of Gainγ is needed to
explain this disparity.

11.4.2. The shape of Gainγ explains the differences between GD and SGD

In this section, we restrict our presentation to single batch SGD (b = 1) and full batch
GD (b = n). When visualising the typical shape of Gainγ for large stepsizes (see Figure 11.2 -
right), we note that GD and SGD behave very differently. For GD, the magnitude of Gainγ is
higher for coordinates in the support of β?`1 and thus these coordinates are adversely weighted
in the asymptotic limit of ψα∞ (per (11.9)). This explains the distinction seed in fig. 11.1,
where GD in this regime has poor sparse recovery despite having a small scale of α∞, as
opposed to SGD that behaves well.

The shape of Gainγ is determined by the sum of the squared gradients
∑

k∇LBk(βk)
2,

and in particular by the degree of heterogeneity among the coordinates of this sum. Precisely
analysing the sum over the whole trajectory of the iterates (βk)k is technically out of reach.
However, we empirically observe for the trajectories shown in Figure 11.2 that the shape is
largely determined within the first few iterates as formalized in the observation below.

Observation 11.4.1.
∑

k∇LBk(βk)
2 ∝ E[∇LBk(β0)2] .

In the simple case of a Gaussian noiseless sparse recovery problem (where yi = 〈β?sparse, xi〉
for some sparse vector β?sparse), we can control these gradients for GD and SGD as:

∇L(β0)2 = (β?sparse)
2 + ε , for some ε verifying ‖ε‖∞ <<

∥∥β?sparse

∥∥2

∞ , (11.12)

Ei0 [∇Li0(β0)2] = Θ
(
‖β?sparse‖221

)
. (11.13)

The gradient of GD is heterogeneous. Since β?sparse is sparse by definition, we deduce from
eq. (11.12) that ∇L(β0) is heterogeneous with larger values corresponding to the support
of β?sparse. This means that Gainγ has much larger values on the support of β?sparse. The
corresponding weighted `1-norm therefore penalises the coordinates belonging to the support
of β?sparse, which hinders the recovery of β?sparse.

The stochastic gradient of SGD is homogeneous. On the contrary, from eq. (11.13), we have
that the initial stochastic gradients are homogeneous, leading to a weighted `1-norm where
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the weights are roughly balanced. The corresponding weighted `1-norm is therefore close to
the uniform `1-norm and the classical `1 recovery guarantees are expected.

Overall summary of the joint effects of the scale and shape. In summary we have the
following trichotomy which fully explains Figure 11.1:

1. for small stepsizes, the scale is small, and (S)GD solutions are close to that of gradient
flow;

2. for large stepsizes the scale is significant and the recovered solutions differ from GF:

• for SGD the shape of α∞ is uniform, the associated norm is closer to the `1-norm
and the recovered solution is closer to the sparse solution;

• for GD, the shape is heterogeneous, the associated norm is weighted such that it
hinders the recovery of the sparse solution.

In this last section, we relate heuristically these findings to the Edge of Stability phe-
nomenon.

11.5. Edge of Stability: the neural point of view

In recent years it has been noticed that when training neural networks with ‘large’ step-
sizes at the limit of divergence, GD enters the Edge of Stability (EoS) regime. In this regime,
as seen in Figure 11.3, the iterates of GD ‘bounce’ / ’oscillate’. In this section, we come
back to the point of view of the weights wk = (uk, vk) ∈ R2d and make the connection be-
tween our previous results and the common understanding of the EoS phenomenon. The
question we seek to answer is: in which case does GD enter the EoS regime, and if so,
what are the consequences on the trajectory? Keep in mind that this section aims to pro-
vide insights rather than formal statements. We study the GD trajectory starting from a
small initialisation α = α1 where α << 1 such that we can consider that gradient flow
converges close to the sparse interpolator β?sparse = βw?sparse

corresponding to the weights

w?sparse = (
√
|β?sparse|, sign(β?sparse)

√
|β?sparse|) (see Lemma 1 in [PF23] for the mapping from

the predictors to weights for gradient flow). The trajectory of GD as seen in fig. 11.3 (left)
can be decomposed into up to 3 phases.

First phase: gradient flow. The stepsize is appropriate for the local curvature (as seen in
Figure 11.3, lower right) around initialisation and the iterates of GD remain close to the tra-
jectory of gradient flow (in black in fig. 11.3). If the stepsize is such that γ < 2

λmax(∇2F (w?sparse))
,

then it is compatible with the local curvature and the iterates can converge: in this case GF
and GD converge to the same point (as seen in fig. 11.1 for small stepsizes). For larger
γ > 2

λmax(∇2F (w?sparse))
(as is the case for γGD in fig. 11.3, lower right), the iterates cannot

converge to β?sparse and we enter the oscillating phase.

Second phase: oscillations. The iterates start oscillating. The gradient of F writes∇(u,v)F (w) ∼
(∇L(β) � v,∇L(β) � u) and for w in the vicinity of w?sparse we have that ui ≈ vi ≈ 0 for
i /∈ supp(β?sparse). Therefore for w ∼ w?sparse we have that ∇uF (w)i ≈ ∇vF (w)i ≈ 0 for
i /∈ supp(β?sparse) and the gradients roughly belong to Span(ei, ei+d)i∈supp(β?sparse). This means
that only the coordinates of the weights (ui, vi) for i ∈ supp(β?sparse) can oscillate and similarly
for (βi)i∈supp(β?sparse) (as seen Figure 11.3 left).
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Figure 11.3 – GD at the EoS. Left: For GD, the coordinates on the support of β?sparse oscillate and
drift towards 0. Right, top: The GD train losses saturate before eventually converging. Bottom:
GF converges towards a solution that has a high hessian maximum eigenvalue. GD cannot converge
towards this solution because of its large stepsize: it therefore drifts towards a solution that has a
curvature just below 2/γ.

.

Last phase: convergence. Due to the oscillations, the iterates gradually drift towards a
region of lower curvature (fig. 11.3, lower right, the sharpness decreases) where they may
(potentially) converge. theorem 11.1 enables us to understand where they converge: the
coordinates of βk that have oscillated significantly along the trajectory belong to the support
of β?sparse, and therefore Gainγ(i) becomes much larger for i ∈ supp(β?sparse) than for the
other coordinates. Thus, the coordinates of the solution recovered in the EoS regime are
heavily penalised on the support of the sparse solution. This is observed in Figure 11.3 (left):
the oscillations of (βi)i∈supp(β?sparse) lead to a gradual shift of these coordinates towards 0,
hindering an accurate recovery of the solution β?sparse.

SGD in the EoS regime. In contrast to the behavior of GD where the oscillations primarily
occur on the non-sparse coordinates of ground truth sparse model, for SGD we see a different
behavior. For stepsizes in the EoS regime, just below the non-convergence threshold: the
fluctuation of the coordinates occurs evenly over all coordinates, leading to a uniform α∞.
These fluctuations are reminiscent of label-noise SGD [AVPVF22], that have been shown to
recover the sparse interpolator in diagonal linear networks [PVRF22].

Conclusion

This chapter studied the effect of stochasticity along with large stepsizes when training
DLNs with (S)GD. We showed convergence of the iterates as well as explicitly characterise
the recovered solution by exhibiting an implicit regularisation problem which depends on the
iterates’ trajectory. In essence the impact of stepsize and minibatch size are captured by the
effective initialisation parameter α∞ that depends on these choices in an informative way.
We then used our characterisation to explain key empirical differences between SGD and
GD and provide further insights on the role of stepsize and stochasticity. In particular, our
characterisation explains the fundamentally different generalisation properties of SGD and
GD solutions at large stepsizes as seen in Figure 11.1: without stochasticity, the use of large
stepsizes can prevent the recovery of the sparse interpolator, even though the effective scale
of the initialization decreases with larger stepsize for both SGD and GD. We also provide
insights on the link between the Edge of Stability regime and our results.

We refer the interested reader to [EPGF23] for proofs of the results stated in this chapter
and for more details.
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Conclusion and perspectives

In this thesis, we have studied different flavours of distributed and collaborative learning,
through the lenses of optimization theory for first-order methods, and statistical perspectives.

The first part of this thesis considered the acceleration of training algorithms: how to
reach a global minima or approximate stationary points as fast as possible in wall-clock time.
The first chapter of this part considered algorithmic improvements: making each iteration of
gradient descent or of gossip algorithms as efficient as possible through mometum-based accel-
eration techniques. The three following parts directly considered wall-clock time acceleration
and asynchronous techniques. Bridging these two perspectives — algorithmic acceleration
and asynchronous speedups — remains open and is technically difficult to achieve, due to
the non-robustness of accelerated algorithms to update changes. While we provided first
quantitative asynchronous speedups for decentralized optimization, it remains to implement
such algorithms in a large-scale setting in the training of large models. It is also unclear what
communications are best in asynchronous environments: are our delayed gossip updates of
Chapters 4 and 5 a good idea or is there better to do ?

The second part of this thesis then focused on privacy and personalization. On the privacy
side, we introduced the first decentralized privacy-preserving mechanism: Muffliato. It serves
as a building block for decentralized learning algorithms. There are many research directions
to follow in this direction, the first direct ones being to improve the privacy analysis of
Chapter 6, that we believe to be suboptimal due to its redundancy in the analysis and to
the fact that our analysis is not taylored for optimization updates. Then, smarter privacy
preserving decentralized mechanisms may exist, such as variations ofMuffliato with correlated
noise injections that anneal themselves on the long run, or clever communication randmoness
analysis. On the personalization side, we provided optimal algorithms under similarity or
structural assumptions. However, the assumptions we make in the two related chapters
(Chapters 8 and 9) are convex optimization assumptions, therefore neglecting modern deep
learning applications. Extending our analyses and ideas to the non-convex worlds remains
an open and interesting question.

Finally, the last part of this thesis is not directly related to distributed optimization.
It however puts the previous chapters in perspective of the implicit regularisation analysis
we perform in Chapter 11: all previous chapters considered generalization or optimization
separately, which may not always be the best approach in non-convex optimization. Bridging
the gap between this chapter and the previous ones through generalization guarantees of our
proposed distributed optimization algorithms would be an interesting question.
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ABSTRACT 
 
The advent of modern Machine Learning (ML) models necessitates vast amounts of data 
and computational power to facilitate accurate predictions. Consequently, these models 
undergo training in a distributed manner, wherein numerous compute units are employed, 
and the voluminous training data, too extensive to be centralized on a single device, is 
decentralized across users' devices. This thesis delves into various aspects concerning 
the distributed training of models. Given the escalating scale of computational and data 
requirements, we initially concentrate on asynchronous training and decentralized 
methodologies, which confer robustness as the scale of the problem expands. 
Subsequently, we explore the inherent privacy amplification of decentralized learning and 
delve into model personalization—an intricate scenario wherein users may not share 
identical objectives yet necessitate collaboration. 

MOTS CLÉS 
 
Optimisation, statistiques, fédéré, distribué, collaboratif, décentralisé 

RÉSUMÉ 
 
Les modèles d'apprentissage automatique modernes exigent d'énormes quantités de 
données et de puissance de calcul pour effectuer des prédictions précises. Par 
conséquent, ces modèles sont entrainés de manière distribuée: un grand nombre 
d'unités de calcul sont nécessaires, et les données utilisées pour l'entraînement, étant 
trop vastes pour être centralisées sur une seule machine, sont stockées de manière 
décentralisée par les utilisateurs. Cette thèse explore différentes problématiques liées à 
l'entraînement distribué de modèles. En raison de l'échelle grandissante des ordres de 
grandeurs des besoins en calcul et en données nécessaires, nous examinons d'abord les 
méthodes d'entraînement asynchrones et le cadre décentralisé. Ensuite, nous abordons 
les questions liées à la protection des données, naturellement amplifiées dans le cadre 
décentralisé, et la personnalisation des modèles, un scénario plus complexe dans lequel 
les utilisateurs ne partagent pas nécessairement le même objectif mais doivent 
néanmoins collaborer. 

KEYWORDS 
 
Optimization, statistics, federated, distributed, collaborative, decentralized 
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