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M. Georges SKANDALIS Professeur Université Paris Cité
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Institut de Mathématiques de Toulouse
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Velasquez (Bogota).

16. Topological K-theory for discrete groups and Index theory.

Accepted for publication in Bulletin des Sciences Mathématiques.
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Abstract

The goal of this memoir is to present and describe a handful of different index

theorems and index related problems associated to different geometric situations.

The common point of all the results presented here is the use of groupoids and

more particularly deformation groupoids, and the use of algebraic topology tools

(like K-theory, Cyclic (co)homology and others) to state and proof some analytic

index problems. As I will try to settle down, there are many different situations

that can be unified and treated in a relatively common setting by adopting the

groupoid perspective. But beyond the interest of getting an unified treatment

for several problems, I will show how groupoids and deformation groupoids can

be used to get explicit original answers to complex problems in index theory.
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CHAPTER 1

Introduction

1.1. A little story about Index theory

The historical starting point of what it is called today ”Index Theory” is

the so called Atiyah-Singer index theorem that I will now explain. Given a

compact smooth manifold M , an elliptic pseudodifferential operator D has finite

dimensional Kernel and Cokernel. Under these circunstances the Fredholm index

of D is defined as

(1) IndD := dimKerD − dimCokerD

which is then an integer. By the 50’s decade of the last century it was known

by many mathematicians that these indices had very interesting properties (ho-

motopy invariance, invariant under compact operator pertubation, etc.) and

that for some very interesting examples, these indices were related with geomet-

ric/topologic invariants of the manifold. For example the famous Gauss-Bonnet

theorem and the Hirzebruch signature theorem were a couple of known examples

by end of the 50’s. In fact, at the beggining of that decade, Gelfand asked the

question of whether these indices admit a topological computation and hence a

topological formula. The complete answer to this problem was given by Atiyah

and Singer in the 60’s, the Atiyah-Singer index theorem provided a fundamen-

tal link between differential geometry, partial differential equations, differential

topology, operator algebras, and has links to many other fields. But beyond

the index formula and the very numerous applications that Atiyah and Singer

found, the techniques and tools that they developed are at the base of several

modern mathematical branches. Of particular importance for our exposition is

the development of K-theory (topological), indeed, one of the key observations

of Atiyah and Singer is that the map D 7→ IndD is entirely codified by a group

morphism, called the analytic index morphism of M ,

(2) indMa : K0(T ∗M)→ Z

between K-theory groups. To be more precise, if Ell(M) designs the set of

elliptic pseudodifferential operators on M there is a commutative diagram

(3) Ell(M)
Ind //

σ

��

Z

K0(T ∗M)

indMa

;;
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where σ : Ell(M) → K0(T ∗M) associates to an elliptic operator its principal

symbol class and where σ is a surjective map. In fact, Atiyah and Singer showed

that K0(T ∗M) is essentially a quotient of Ell(M). Moreover, once the Fredholm

index codified in a K-theory group morphism they used the entire machinerie of

this generalized cohomology theory to get in particular a topological expression

of the index. Even more, these series of tools/methods allowed Atiyah and

Singer to go further into the study of higher index problems, for example, they

completely solved the case of families of pseudodifferential elliptic operators, this

time the indices were elements of the topological K-theory group of the paremeter

space of the family, the topological index they got is a far generalization of the

so called topological Riemann-Roch theorem. These seminal works appeared

in a series of papers [6], [7], [8], [9], [10] in the 60’s where they started as

well different directions of index problems, for example for real operators, for

the equivariant case under the action of a compact group, for mention some of

them. Index theory was born.

Now, soon after these seminal papers, Index theory grew fast in several

different directions. For example for manifolds with boundary by Atiyah and

Bott ([2]), and by Atiyah, Patodi and Singer ([3],[4],[5]); for regular foliations

by Connes, and by Connes and Skandalis ([42]), for homogeneous spaces by

Atiyah ([11]) and by Connes and Moscovici [41], for discrete groups by Baum

and Connes ([13],[16]); just to mention some directions and some authors.

In many of the different directions that emerged from the original papers

it was clear that the use of classic spaces and classic tools for them were not

enough to solve some of the index problems or even for properly state these

problems. The developement of C∗-algebras and K-theory for C∗-algebras was

crucial to understand new phenomena, related problems and to get some answers

in some cases. Also, the development of Connes noncommutative geometry gave

a completely new perspective that allowed to deal with geometric situations that

were before inaccesible with classic methods, in particular in Connes NCG the

use and further developments of groupoids was essential to do index theory for

groupoids and with groupoids as a tool.

The goal of this memoir is to present and describe a handful of different index

theorems and index related problems associated to different geometric situations.

The common point of all the results presented here is the use of groupoids and

more particularly deformation groupoids, and the use of algebraic topology tools

(like K-theory, Cyclic (co)homology and others) to state and proof some analytic

index problems. As I will try to settle down, there are many different situations

that can be unified and treated in a relatively common setting by adopting the

groupoid perspective. But beyond the interest of getting an unified treatment

for several problems, I will show how groupoids and deformation groupoids can

be used to get explicit original answers to complex problems in index theory.

I proceed now to resume the contents of each chapter:
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1.2. Topological Index theorems using groupoids

In chapter 2, I will start by stating and proving the classic Atiyah-Singer

Index formula by means of deformation groupoids. This proof goes back to

Connes where he introduced the tangent groupoid, a particular deformation

groupoid called now a days the Connes tangent groupoid. As I will try to explain

this proof not only gives a conceptually simple proof of the mentioned formula

but it extends directly to other cases, I will mention in particular the so called

families Index theorem (and families index formula) by Atiyah and Singer, and

the longitudinal Index theorem by Connes and Skandalis for regular foliations.

I will use these famous theorems to motivate part of my own work that I will

start explaining in the next chapter. A small original contribution to the Connes

proof is that I explain and give a proof that the Connes-Thom isormorphism that

appears in Connes proof is actually a usual Thom isomorphism (up to some

Fourier isomorphism). This last part was and is highly accepted among experts

but as far as I am aware there is no written proof of it, I hence added this proof

which is a part of an ongoing work in collaboration with Jean-Marie Lescure and

that we think it will be useful for many different situations.

1.3. Index theory for manifolds with corners

In chapter 3, I discuss my works on index theory for manifolds with corners.

I start by introducing the appropriate groupoids. In fact, in this setting, by

using good Lie groupoids one can approach some index theoretical problems as

in the smooth case of Atiyah-Singer by following the Connes approach. Hence,

after introducing these groupoids and some associated index morphisms rele-

vant for the index theory in this context, I resume, in section 3.2, my paper [29]

in collaboration with Jean-Marie Lescure and Bertrand Monthubert in which,

for the case of a manifold with boundary (baby case of a manifold with cor-

ners), we were able to apply the same kind of Connes approach explained in

the previous section in order to get a cohomological formula for the Fredholm

index of a fully elliptic b-pseudodifferential operator. In section 3.3, I explain

and resume my papers [33] and [34] in collaboration with Jean-Marie Lescure

and Mario Velasquez, in which we computed the K-theory group of the algebra

of b-compact operators associated to a general manifold with corners in terms

of very computable homology groups associated to the manifold with corners.

As I recall, these computations are relevant to understand the global geomet-

ric/topologic obstructions to the Fredholm Perturbartion property of a given

b-elliptic operator.

1.4. Wrong way functoriality and Index theory

In chapter 4, I will discuss the link between the wrong way functoriality

constructions in K-theory and Index theory. I will explain in particular how to

use geometric deformation groupoids to realize such wrong way maps and how

to use them to show their main property, the functorality. As I will explain this
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functoriality is equivalent when it makes sense to a topological index compu-

tation. One of the main interests is that this wrong way functoriality may be

applied in different situations in which one does not have necessarilly topological

index maps. In this section I will focus in the case of wrong way maps asso-

ciated to maps between smooth manifolds under some appropriate action of a

Lie groupoid, the proof of the wrong way functoriality in this context was done,

using deformation groupoids, in my paper [35] in collaboration with Bai-Ling

Wang. In fact, in that paper we proved the functoriality in the more general con-

text of twisted Lie groupoids, I won’t enter on the twisted setting in the present

work. As we also showed in ref.cit., the functoriality allows to define a geometric

group by assembling the different wrong way maps and to define, geometrically,

the so called Baum-Connes assembly map that goes from this geometric group

to the K-theory of the C∗-algebra associated to the Lie groupoid, I will also

explain this in this chapter and its links with index theory. In the last section

I illustrate, by an example, how one can add more ”singular cycles” to the def-

inition of the geometric cycles forming the left hand side of the Baum-Connes

assembly map. For example, thanks again to the use of deformation groupoids,

one can add orbifolds cycles in a very canonical way.

1.5. Topological K-theory for discrete groups and Index theory

In chapter 5, I detail the content of my paper [30] in collaboration with Bai-

Ling Wang and Hang Wang where we studied further the wrong way functoriality

as the last chapter but for the case of discrete groups. Indeed, in this very

interesting case, thanks to previous well known results, we can go further in the

program of computing index formulas. In resumé, for any countable discrete

group Γ (without any further assumptions on it) we first construct an explicit

morphism from the Left-Hand side of the Baum-Connes assembly map, K∗top(Γ),

to the periodic cyclic homology of the group algebra, HP∗(CΓ). This morphism,

called the Chern-Baum-Connes assembly map, allows in particular to give a

proper and explicit formulation for a Chern-Connes pairing

K∗top(Γ)×HP ∗(CΓ) −→ C.

As part of our results we prove that this model for the Baum-Connes left hand

side is indeed isomorphic to the analytic model for the left-hand side of the as-

sembly map. Several theorems are needed to formulate the Chern-Baum-Connes

assembly map. In particular we establish a delocalised Riemann-Roch theorem,

the wrong way functoriality for periodic delocalised cohomology for Γ-proper

actions, the construction of a Chern morphism between the Left-Hand side of

Baum-Connes and a delocalised cohomology group associated to Γ which is an

isomorphism once tensoring with C, and the construction of an explicit cohomo-

logical assembly map between the delocalised cohomology group associated to Γ

and the homology group H∗(Γ, FΓ) (where FΓ is the complex vector space freely

generated by the set of elliptic elements in Γ). This last group H∗(Γ, FΓ) identi-

fies, by the work of Burghelea, as a direct factor of the cyclic periodic homology
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of the group algebra. As part of our results we prove that this model is indeed

isomorphic to the analytic model for the left-hand side of the assembly map. We

conclude this chapter by recalling how to give an explicit index theoretical for-

mula for the above mentioned pairing (without any further assumptions on Γ) in

terms of pairings of invariant forms, associated to geometric cycles and given in

terms of delocalized Chern and Todd classes, and currents naturally associated

to group cocycles using Burghelea’s computation. This gives a complete solu-

tion, for discrete countable groups, to the problem of defining and computing a

geometric pairing between the left hand side of the Baum-Connes assembly map,

given in terms of geometric cycles associated to proper actions of the discrete

group on manifolds, and cyclic periodic cohomology of the group algebra.

1.6. The Chern-Baum-Connes assembly map for Lie groupoids

In section 6, I explain some of the results that are possible to generalize from

the previous section to more general Lie groupoids, this is mainly the content

of my paper [28]. In resumé, for a Lie groupoid G , for which there are Thom

isomorphisms in periodic cyclic (co)homology for appropriate G -vector bundles,

we construct a morphism from the left hand side of the Baum-Connes asssembly

map of G to the periodic cyclic homology group of the Lie groupoid convolution

algebra,

K∗top(G )
ChBC // HP∗(C

∞
c (G )).

This morphism, that we call here the Chern-Baum-Connes assembly map (CBC-

map), is realized by assembling, via geometric pushforward maps in periodic

cyclic homology, Chern-Connes character morphisms associated to G -proper

spinc cocompact manifolds together with an explicit cohomological assembly

map in periodic cyclic homology. The main result behind is the wrong way

functoriality of the pushforward morphisms in periodic cyclic homology. Next,

we show that the CBC-map factors as the Baum-Connes assembly map fol-

lowed by the Chern-Connes character for G if this later morphism extends to

the C∗-algebra K-theory. More generally we show that if for a given periodic

cyclic cocycle on C∞c (G ) the associated pairing extends to the K−theory of the

groupoid C∗-algebra then the composition of the Baum-Connes assembly map

followed by the associated extended morphism coincides with the Connes pairing

of the given periodic cyclic cycle with the Chern-Baum-Connes assembly map.





CHAPTER 2

Topological index theorems using groupoids

2.1. Classic Atiyah-Singer à la Connes

I will now explain how to proof the classic Atiyah-Singer Index theorem us-

ing groupoids and deformation groupoids, this will be the main motivation for

explaining later how to use deformation groupoid techniques in other related

problems and results in geometrical analysis and in algebraic topology, and in

particular how it has been the main starting and guiding point in my own re-

search. The statement of Atiyah and Singer’s index theorem is as follows.

Theorem 2.1.1 (Atiyah-Singer index formula). Let M be a closed smooth

manifold and let D be an elliptic pseudodifferential operator on M (acting be-

tween sections of smooth vector bundles over M). Then the following equality

holds

(4) Inda(D) =

∫
T ∗M

ch([σD]) ∧ TdC(M).

I will now recall and explain some of the ingredients in the last statement in

order to get to the proof.

(i) The analytic index morphism as a deformation index using

the Connes tangent groupoid. In the statement above Inda(D) :=

dimKerD−dimCokerD ∈ Z is the Fredholm index of the elliptic op-

erator D. In fact, as shown by Atiyah-Singer, this index only depends

on the principal symbol class [σD] ∈ K0(T ∗M) and it is computed by

the image of the so called analytic index morphism associated to M :

(5) IndMa : K0(T ∗M) −→ Z.

I will now recall/explain how to interpret this morphism by using the

tangent groupoid of M , a particular case of a deformation groupoid

introduced by Connes in the early 80’s.

The Connes tangent groupoid of a smooth manifold M is, as we

will see below, a particular example of a deformation Lie groupoid.

(6) GtanM := TM
⊔
M ×M × (0, 1]⇒M × [0, 1]

One of the main features of this groupoid C∗-algebra is that it fits in

a short exact sequence

(7) 0 // C∗(M ×M × (0, 1])
i0 // C∗(GtanM )

e0 // C∗(TM) // 0

7
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where e0 is the morphism induced by the restriction of GtanM to the

closed subgroupoid TM ⇒ M and where i0 is the morphism induced

by the inclusion in GtanM of the open dense saturated subgroupoid

M×M×(0, 1]⇒M×(0, 1]. Now, since the algebra C∗(M×M×(0, 1])

is easily seen to be contractible, because of the presence of the interval

(0, 1], and since the K−theory of C∗-algebras has good cohomologi-

cal properties (in particular homotopy invariance and long term exact

sequence), one obtains that the morphism in K-theory induced by e0

(and that we denote the same to avoid too much notation),

(8) K∗(C
∗(GtanM )) ∼=

e0 // K∗(C
∗(TM)),

is an isomorphism. By considering the morphism induced by the re-

striction of GtanM to the closed subgroupoid M ×M × {1} ⇒ M we

can state the following classic but fundamental result whose proof is

a particular case of proposition B.2.1 shown in the general case of Lie

groupoids in the appendix B.2.

Theorem 2.1.2. For M a compact manifold, we have that the

following equality

(9) IndMa =M◦ e1 ◦ (e0)−1 ◦ F

as morphisms from K∗(T ∗M) to Z, where F : K∗(T ∗M) ∼= K∗(C
∗(TM))

is the isomorphism induced by the C∗-algebra isomorphism C0(T ∗M) ∼=
C∗(TM) given by the fiberwise Fourier transform and where M :

K∗(C
∗(M × M)) ∼= Z is the isomorphism induced from the Morita

equivalence of C∗-algebras C∗(M × M) and C. In other words the

following diagram is commutative

(10) K∗(T ∗M)

F ∼=

��

IndMa // Z

K∗(C
∗(TM)) K∗(C

∗(GtanM ))
e0

∼=oo
e1
// K∗(C

∗(M ×M))

∼= M

OO

(ii) The Connes-Thom topological index morphism using a groupoid

cocycle.

Let j : M ↪→ Rn be a smooth embedding with n even. Consider

the following groupoid morphism

(11) M ×M h // Rn

given by h(x, y) = j(y) − j(x), where Rn is seen here as an additive

group. By functoriality of the deformation to the normal cone con-

struction, that gives as a particular example the tangent groupoid, the



9

groupoid morphism

(12) GtanM
htan // Rn

given by htan(x, y, t) = th(x, y) for t 6= 0 and by htan(x, V ) = dxj(V )

for V ∈ TxM , is a Lie groupoid morphism. It is direct exercise to show

that the associated semi-direct product groupoid is free and proper.

In particular this semi-direct product groupoid

(13) GtanM oRn ⇒M × [0, 1]× Rn

is Morita equivalent, as Lie groupoids, to its orbit space Orb(GtanM )

seen as a unit Lie groupoid Orb(GtanM ) ⇒ Orb(GtanM ). Now, a direct

computation gives a well known expression for this orbit space, indeed

there is a canonical diffeomorphism

(14) Orb(GtanM ) ∼= D(Rn,M)

where

(15) D(Rn,M) = N(Rn,M)
⊔

Rn × (0, 1]

is the deformation to the normal cone of the embedding j.

Now, for any groupoid morphism h : G → Rn there is a natural

isomorphism

(16) T : K∗(C
∗(G))→ K∗(C

∗(GoRn))

called the Connes-Thom isomorphism and constructed for the first

time by Connes in [38], in a more general setting, and revisited for

groupoids in [29] using explicit deformation groupoids.

In particular we have the following, trivially commutative, diagram

(17)

K∗(C
∗(TM))

T ∼=
��

K∗(C
∗(GtanM ))

e0

∼=oo
e1

//

T ∼=
��

K∗(C
∗(M ×M))

T ∼=
��

K∗(C
∗(TM oRn))

M ∼=
��

K∗(C
∗(GtanM oRn))

M ∼=
��

e0

∼=oo
e1
// K∗(C

∗((M ×M) oRn))

M ∼=
��

K∗(N(Rn,M)) K∗(D(Rn,M))
e0

∼=oo
e1

// K∗(Rn),

where the isomorphisms M stand for the morphisms induced by the

mentioned groupoid Morita equivalences.

In the diagram above one recognizes by theorem 2.1.2, up to Fourier

and Morita induced isomorphisms, the analytic index morphism of M

at the top of the diagram. As we shall see, the rest of the diagram, that

is the composition of the left vertical morphism followed by the bottom

morphism followed by the right vertical morphism corresponds pre-

cisely to the topological index morphism (up to Fourier and Morita).
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(iii) Connes-Thom versus Thom and the proof of Atiyah-Singer’s

theorem. In the last diagram, it is an easy algebraic topology exercise

to show that the morphism

(18) K∗(N(Rn,M)) K∗(D(Rn,M))
e0

∼=oo
e1
// K∗(Rn)

coincides with the morphism

(19) K∗(N(Rn,M))
i! // K∗(Rn)

induced by an open emdedding of the normal bundle N(Rn,M) in Rn
in topological K-theory.

The rest of the diagram is not completely an exercise, or not an

easy one in any case. Indeed, it is highly accepted among experts that

the left vertical morphism coincides, up to the induced Fourier isomor-

phism, with the classic Thom isomorphism in topological K-theory

and that the right vertical morphism coincides, up to the induced

Morita isomorphism, with the classic Bott isomorphism in topologi-

cal K-theory. As far as I am aware there is no written proof of this

fact. In appendix C, I will write down a complete proof of this fact,

proof which I found together with Jean-Marie Lescure in the setting

of manifolds with corners. The statement is as follows, at least for the

particular case in question.

Proposition 2.1.3 (Carrillo Rouse, Lescure, 2014). Under the no-

tation above the following two diagrams,

(20) K∗(T ∗M)

Th ∼=
��

F
∼=

// K∗(C
∗(TM))

T ∼=
��

K∗(N(Rn,M)) K∗(C
∗(TM oRn))

M

∼=oo

where Th stands for the classic Thom isomorphism associated to the

K-oriented map T ∗M →M → N(Rn,M) (composition of the canoni-

cal projection followed with the zero section); and

(21) K∗(C
∗(M ×M))

T ∼=
��

M
∼=

// Z

B ∼=
��

K∗(C
∗((M ×M) oRn))

M

∼= // K∗(Rn)

where B stands for the Bott periodicity isomorphism, are commutative.

We recall that the topological index morphism defined by Atiyah and Singer,

associated to the embedding j, is the morphism

(22) IndMtop : K0(T ∗M)→ Z
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given as the composition of the Thom isomorphism Th, followed by the shriek

map i! associated to the open embedding of the normal bundle N(Rn,M) in Rn,

followed by the Bott inverse morphism B−1.

As an immediate corollary of the proposition above and of the commutativity

of diagram (33) we have that

Theorem 2.1.4 (Atiyah-Singer index theorem). Let M be a compact mani-

fold. There is an equality

(23) IndMa = IndMtop

as morphisms from K∗(T ∗M) to Z.

As already explained by Atiyah and Singer in the 60’s, the above theorem

immediately implies the index formula in 2.1.1 by a comparison of the topological

index morphism in K-theory above with its analog in de Rham cohomology by

using the Chern character morphism.

2.2. Index theorems for families and foliations

In this section I want to explain two other ”classic” cases under the mirror

of groupoid techniques and particularly with deformation groupoids, these two

cases are the case of families, already treated in the 60’s by Atiyah and Singer,

and the case of regular foliations, treated by the first time by Connes and Skan-

dalis. Of course the foliation case includes the families case. Besides, giving this

interesting example will serve of motivation for the next chapters.

To present the general idea let us consider a Lie groupoid G⇒M . Suppose

there is a groupoid morphism

(24) h : G→ Rn

where n is even and Rn is considered as above as an additive group. By functori-

ality of the deformation to the normal cone construction one gets a Lie groupoid

morphism

(25) htan : Gtan → Rn

explicitly given by htan(γ, t) = th(γ) for (γ, t) ∈ G × (0, 1] and by htan(x, V ) =

A(h)(x, V ) for (x, V ) ∈ AG =
⊔
AxG where A(h) is the Lie algebroid functor

applied to h (so it is given by the differential of h in the normal direction to the

groupoid’s units). In particular we have a trivially commutative diagram

(26) K∗(C
∗(AG))

IndGa

''

T ∼=
��

K∗(C
∗(Gtan))

e0

∼=oo
e1

//

T ∼=
��

K∗(C
∗(G))

T ∼=
��

K∗(C
∗(AGoRn)) K∗(C

∗(Gtan oRn)
e0

∼=oo
e1
// K∗(C

∗(GoRn))
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where the isomorphisms T denote again Connes-Thom isomorphisms. Now,

in order to this abstract index theorem to be useful one needs first that an

interesting morphism h as above exists, and by interesting I mean that the

second row in the diagram above gives a different insight on the computation

of the analytic index morphism, for example in the Atiyah-Singer theorem for

closed manifolds the second row semi-direct product groupoids are all free and

proper and hence Morita equivalent to their orbit space and moreover these orbit

spaces are explicitly computable so one can get an index formula. As I will now

explain, in the case of regular foliations there are good morphisms h that allow

to give a groupoid proof of the longitudinal Connes-Skandalis index theorem.

In the next chapter we will see in more detail other very interesting examples

where this method works at some extent, next we will see other ways of getting

index theorems and/or computing index formulas when one does not have such

nice cocycles.

Let (M,F ) be a regular foliation, that is F ⊂ TM is an integrable sub-vector

bundle. Under these circumstances there is a well known Lie groupoid (the so

called holonomy groupoid, see for example [103] or [76])

(27) H(M,F )⇒M

that is s-connected and integrates the foliation, more precisely the Lie algebroid

of H(M,F ) is AH(M,F ) = F with anchor map given by the inclusion of F in

TM . For getting the cocycle h as above we consider as Atiyah-Singer and as

Connes-Skandalis, an embedding j : M ↪→ Rn for which we will assume n even.

With this in hand we let

(28) h : H(M,F )→ Rn

as h(γ) = j(s(γ)) − j(t(γ)) where s, t are the source and target Lie groupoid

structural maps for H(M,F ). Now, a direct computation gives that in this

case A(h) : F → Rn is just given by the differential of j restricted to F . In

particular, a complete analog computation as the smooth manifold case shows

that the associated semi-direct crossed product groupoid

(29) F oRn ⇒M × Rn

is free and proper and even more its orbit space is diffeomorphic to the total

space of the normal bundle NF →M to F in Rn. On the other hand the semi-

direct product groupoid H(M,F ) o Rn is not necessarily free and proper but

isomorphic to the product groupoid H(M,F ) × Rn. Applying (26) in this case
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together with the previous remarks and applying again the result in the Connes-

Thom versus Thom appendix we get the following commutative diagram

(30)

K∗(F ∗)

Ind
(M,F )
a

**
F
∼=

//

Th

∼=

++

K∗(C
∗(F ))

T ∼=
��

K∗(C
∗(H(M,F )tan))

e0

∼=oo
e1

//

T ∼=
��

K∗(C
∗(H(M,F )))

T ∼=
��

B∼=

uu

K∗(C
∗(F oRn))

M ∼=
��

K∗(C
∗(H(M,F )tan oRn)

e0

∼=oo
e1
// K∗(C

∗(H(M,F ) oRn))

∼=
��

K∗(NF )
ι

// K∗(C
∗(H(M,F )× Rn))

where the isomorphism Th at the left is the Thom isomorphism associated to

the K-oriented map F ∗ →M → NF (canonical projection follwoed by the zero

section), the isomorphism B at the right is the Bott isomorphism and where ι

is just the morphism fitting the diagram.

The commutatvity of the diagram above, and hence the fact that the longi-

tudinal analytic index in the top can be decomposed as the Thom isomorphism

followed by ι followed by the Bott inverse map, is precisely the content of the

so called Connes-Skandalis Longitudinal Index theorem for regular folia-

tions.

The particular case of families. When in the example above the foliation

is given by the fibers of a surjective submersion φ : M → B we can further in the

above diagram. Indeed, in this case the holonomy groupoid in question writes

(31) M ×φM ⇒M

and it is Morita equivalent to B (as a unit groupoid B ⇒ B), but even more the

semidirect product groupoid

(32) (M ×φM)tan oRn ⇒M × [0, 1]× Rn

is free and proper (direct computation) and its orbit space can be identified
with the deformation to tne normal cone space D(B×Rn,M) associated to the

injective immersion M
(φ,j)→ B × Rn. Hence, in this case we get the following
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commutative diagram
(33)

K∗(T∗φM)
F

∼=
//

Ind
φ
a

**

Th

∼=

))

K∗(C
∗(TφM))

T ∼=

��

K∗(C
∗((M ×φ M)tan))

e0

∼=oo
e1

//

T ∼=

��

K∗(C
∗(M ×φ M)

T ∼=

��

M

∼=
// K∗(B)

B

∼=

ss

K∗(C
∗(ToRnφM o Rn))

M ∼=

��

K∗(C
∗(GtanM o Rn))

M ∼=

��

e0

∼=oo
e1

// K∗(C∗((M ×φ M) o Rn))

M ∼=

��
K∗(N(B × Rn,M))

i!

55K∗(D(B × Rn,M))
e0

∼=oo
e1

// K∗(B × Rn)

where the morphism in the bottom is the pushforward morphism in topological

K-theory associated to (an) the embedding of N(B × Rn,M) in B × Rn.

The commutatvity of the diagram above, and hence the fact that the families

analytic index in the top can be decomposed as the Thom isomorphism followed

by i! followed by the Bott inverse map, is precisely the content of the so called

Atiyah-Singer families Index theorem.

As for the case of a single closed smooth manifold, the above K-theoretical

theorem gives the following theorem, by comparing topological K-theory with

de Rham cohomology via the Chern character.

Theorem 2.2.1 (Atiyah-Singer index formula for families). For D ∈ Ψ∗φ(M)

a vertical elliptic operator, the following equality holds

(34) chB(Indφa([σD])) = φ!(chM ([σD]) ∧ TdC(T ∗φM))

where chB denotes the Chern character of B, chM the Chern character of T ∗φM

and where φ! : H∗c (T ∗φM) → H∗c (B) denotes the morphism in de Rham coho-

mology with compact supports given by integration of forms along the fibers of

φ.



CHAPTER 3

Index theorems for manifolds with corners

3.1. Basics on Index theory for manifolds with corners

We will consider compact manifolds X with embedded corners [71]: we thus

may fix once for all a smooth compact manifold X̃ and smooth maps ρ1, ..., ρn :

X̃ −→ R such that:

(i) X =
⋂

1≤j≤n ρ
−1
j ([0,+∞)) ⊂ X̃

(ii) SettingHj = ρ−1
j ({0})∩X, j = 1, . . . , n, we require that {dρj1 , ..., dρjk}

has maximal rank at any point of Hj1 ∩ . . . ∩ Hjk for any 1 ≤ j1 <

· · · < jk ≤ n.

We assume for simplicity that all the boundary hypersurfaces Hj of X are con-

nected, as well as X itself.

The so-called Puff groupoid [78] is then defined by:

(35) G(X̃, (ρi)) = {(x, y, λ1, ..., λn) ∈ X̃ × X̃ × Rn : ρi(x) = eλiρi(y)}.

This is a Lie subgroupoid of X̃ × X̃ ×Rk. The Puff groupoid is not s-connected,

denote by Gc(X̃, (ρi)) its s-connected component.

Definition 3.1.1 (The b-groupoid). The b−groupoid Γb(X) of X is by def-

inition the restriction to X of the s-connected Puff groupoid (35) considered

above, that is

(36) Γb(X) := Gc(X̃, (ρi))|X ⇒ X

The b−groupoid was introduced by B. Monthubert in [78] in order to give a

groupoid description for the Melrose’s algebra of b-pseudodifferential operators.

We summarize below the main properties we will be using about this groupoid:

Theorem 3.1.2 (Monthubert [78]). Let X be a manifold with corners as

above, we have that

(i) Γb(X) is a C0,∞-amenable groupoid.

(ii) It has Lie algebroid A(Γb(X)) =b TX, the b-tangent bundle of Melrose.

(iii) Its C∗−algebra (reduced or maximal is the same since amenability)

coincides with the algebra of b-compact operators. The canonical iso-

morphism

(37) C∗(Γb(X)) ∼= Kb(X)

is given as usual by the Schwartz Kernel theorem.

(iv) The pseudodifferential calculus of Γb(X) coincides with compactly sup-

ported b-calculus of Melrose.

15
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See also [61] or [79] for further details on the above theorem, for the Lie

algebroid part an explicit explanation can be found in [47].

Remark 3.1.3. To simplify, in the present paper, we only discuss the case

of scalar operators. The case of operators acting on sections of vector bundles

is treated as classically by considering bundles of homomorphisms.

We will now introduce the several index morphisms we will be using, mainly

the Analytic and the Fredholm index. In all this section, X denotes a compact

and connected manifold with embedded corners.

3.1.1. Ellipticity and Analytical Index morphisms. The analytical

index morphism (of the manifold with embedded corners X) takes it values in

the group K0(Kb(X)). It can be defined in two ways. First, we may consider

the connecting homomorphism I of the exact sequence in K-theory associated

with the short exact sequence of C∗-algebras:

(38) 0 // Kb(X) // Ψ0
b(X)

σb // C(bS∗X) // 0.

Then, if [σb(D)]1 denotes the class inK1(C(bS∗X)) of the principal symbol σb(D)

of an elliptic b-pseudodifferential D, we define the analytical index Indan(D) of

D by

Indan(D) = I([σb(D)]1) ∈ K0(Kb(X)).

Secondly, we can in a first step produce a K0-class [σb(D)] out of σb(D):

(39) [σb(D)] = δ([σb(D)]1) ∈ K0(C0(bT ∗X))

where δ is the connecting homomorphism of the exact sequence relating the

vector and sphere bundles:

(40) 0 // C0(bT ∗X) // C0(bB∗X) // C(bS∗X) // 0.

Next, we consider the exact sequence coming with the adiabatic deformation of

Γb(X):

(41) 0 // C∗(Γb(X)× (0, 1]) // C∗(Γtanb (X))
r0 // C∗(bTX) // 0,

in which the ideal is K-contractible. Using the shorthand notation K0
top(

bT ∗X)

for K0(C∗(bTX)), we set:

(42) IndaX = r1 ◦ r−1
0 : K0

top(
bT ∗X) −→ K0(Kb(X))

where r1 : K0(C∗(Γtanb (X))) → K0(C∗(Γb(X))) is induced by the restriction

morphism to t = 1. Applying a mapping cone argument to the exact sequence

(38) gives a commutative diagram

(43) K1(C(bS∗X))

δ ''

I // K0(Kb(X))

K0
top(

bT ∗X)

IndaX

77
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Therefore we get, as announced:

(44) Indan(D) = IndaX([σb(D)])

The map IndaX will be called the Analytic Index morphism of X. A closely

related homomorphism is the Boundary analytic Index morphism, in which the

restriction to X × {1} is replaced by the one to ∂X × {1}, that is, we set:

(45) Ind∂X = r∂ ◦ r−1
0 : K0(C0(bT ∗X)) −→ K0(C∗(Γb(X)|∂X)),

where r∂ is induced by the homomorphism C∗(Γtanb (X)) −→ C∗(Γb(X))|∂X . We

have of course

(46) Ind∂X = r1,∂ ◦ IndaX

if r1,∂ denotes the map induced by the homomorphism C∗(Γb(X)) −→ C∗(Γb(X)|∂X).

Since r1,∂ induces an isomorphism between K0 groups (proposition 5.6 in [33]),

both indices have the same meaning.

3.1.2. The noncommutative tangent space, full ellipticity and the

Fredholm Index morphism. The second index morphism will be related to

the longitudinal fully ellipticity. First consider the Fully Elliptic deformation

groupoid

(47) (Γb(X))FE ⇒ X∂

defined to be the open saturated subgroupoid of Γb(X)tan given by its restriction

to X∂ := (X × [0, 1]) \ ∂X × {1}. Then it induces a K-theory morphism

(48) K0(C∗(TncX)
bIndFred// K0(C∗r (

◦
X ×

◦
X)) ∼= Z

given as the composition

(49) K0(C∗(TncX)) K0(C∗((Γb(X))FE)
e1 //

r

≈oo K0(C∗r (
◦
X ×

◦
X)) ∼= Z

where

Tnc(X)⇒ X∂

is by definition the saturated closed subgroupoid of (Γb)
FE given as the comple-

ment of the open dense saturated subgroupoid

(
◦
X ×

◦
X)× (0, 1]⇒

◦
X × (0, 1].

We will relate the above index with the full symbol σF , for this we briefly recall

how this symbol is defined. Consider the following commutative diagram of
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C∗−algebras

(50) 0

��

C∗(
◦
X ×

◦
X)

��
0 // C∗(Γb(X))

��

// bΨ0(X)
σ //

��

C(bS∗X) //

��

0

0 // C∗(Γb(X)|∂(X))

��

// Ψ0(∂(X)
σ // C(bS∗X|∂(X))

��

// 0

0 0

By direct diagram chasing there is an induced short exact sequence

(51)

0 // C∗(
◦
X ×

◦
X) // bΨ0(X)

σF // C(bS∗X)×C(bS∗X∂(X))
bΨ0(Γb(X)|∂(X)) // 0

In fact, an operator D ∈ bΨ0(X) is said to be fully elliptic if σF (D) is invertible.

In [64] (the statement also appears in [73]) it is proved that full ellipticity is

equivalent to Fredholmness on any b-Sobolev spaces Hs
b (X).

We want next to show that the connecting morphism in K-theory associated

to the above short exact sequence, that by definition computes the Fredholm

index of a fully elliptic operator, factorizes through the deformation index above

defined by the Fully Elliptic groupoid. For this we will define

δnc : K1(C(bS∗X)×C(bS∗X∂(X))
bΨ0(Γb(X)|∂(X))→ K0(C∗(Tnc(X))

and call it the Noncommutative symbol morphism. Consider the following com-

mutative diagram of C∗−algebras

(52)

0

��
C∗((Γb(X))FE)

��
0 // C∗((Γb(X))tan)

��

// Ψ0((Γb(X))tan)
σ //

��

C(bS∗X × [0, 1]) //

��

0

0 // C∗(Γb(X)|∂(X))

��

// Ψ0(Γb(X)|∂(X))
σ // C(bS∗F |∂(X))

��

// 0

0 0
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that induces a short exact sequence
(53)

0 // C∗((Γb(X))FE) // Ψ0((Γb(X))tan))

σ
F ′ // C(bS∗X × [0, 1])×

C(bS∗X|∂(X))
bΨ0(Γb(X)|∂(X))

// 0

Remember that in K−theory the evaluation at t = 1 in [0, 1] induces the inden-

tity

K1(C(bS∗X×[0, 1])×C(bS∗X|∂(X))
bΨ0(Γb(X)|∂(X))) −→ K1(C(bS∗X)×C(bS∗X|∂(X))

bΨ0(Γb(X)|∂(X))).

Hence we can consider the connecting morphism of the above short exact se-

quence as a map

(54) K1(C(bS∗X)×C(bS∗X|∂(X))
bΨ0(Γb(X)|∂(X)))

δF−→ K0(C∗((Γb(X))FE))

Definition 3.1.4 (Noncommutative symbol). The Noncommutative symbol

morphism

(55) δnc : K1(C(bS∗X)×C(bS∗F |∂(X))
bΨ0(Γb(X)|∂(X)))→ K0(C∗(Tnc(X)))

is the morphism given by the composition of the connecting morphism δF followed

by the isomorphism r : K0(C∗((Γb(X))FE)) → K0(C∗(Tnc(X))) induced from

the restriction as a closed subgroupoid.

By definition of fully ellipticity every Fully elliptic operator has a Noncom-

mutative symbol in K0(C∗(Tnc(X))).

The following proposition justifies the terminology.

Proposition 3.1.5. The deformation index induced by the Fully Elliptic

groupoid fits the following commutative diagram

(56)

K1(C(bS∗X)×C(bS∗F |∂(X))
bΨ0(Γb(X)|∂(X)))

δ //

δnc ++

K0(C∗r (
◦
X ×

◦
X))

K0(C∗(Tnc(X)))

bIndFred

66

where δ is the connecting morphism associated to the full principal short exact

sequence (51) and δnc is the non commutative symbol constructed above.

Proof. It is enough to apply the six term short exact sequence in K-theory

to the following commutative diagram
(57)

0 // C∗((Γb(X))FE)

e1

��

// Ψ0((Γb(X))tan))

e1

��

σ
F ′ // C(bS∗X × [0, 1])×

C(bS∗X|∂(X))
bΨ0(Γb(X)|∂(X))

e1

��

// 0

0 // C∗(
◦
X ×

◦
X)) // bΨ0(Γb(X))

σF // C(bS∗X)×
C(bS∗X|∂(X))

bΨ0(Γb(X)|∂(X))
// 0

�

Definition 3.1.6. The index morphism bIndFred is called the Fredholm in-

dex morphism associated to the manifold with corners X.
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3.1.3. Obstruction to full ellipticity and Fredholm perturbation

property. In order to analyse the obstruction to full ellipticity, we introduce

Fredholm Perturbation Properties, following the terminology introduced in [83].

Definition 3.1.7. Let D ∈ Ψm
b (X) be elliptic. We say that D satisfies:

• the Fredholm Perturbation Property (FP) if there is R ∈ Ψ−∞b (X)

such that D +R is fully elliptic.

• the stably Fredholm Perturbation Property (SFP) if D ⊕ 1H satisfies

(FP) for some identity operator 1H .

• the stably homotopic Fredholm Perturbation Property (HFP) if there

is a fully elliptic operator D′ with [σb(D
′)] = [σb(D)] ∈ K0(C∗(bTX)).

We also say that X satisfies the (resp. stably) Fredholm Perturbation Prop-

erty if any elliptic b-operator on X satisfies (FP) (resp. (SFP)).

Property (FP) is stronger than property (SFP) which in turn is equivalent

to property (HFP) by [49, Proposition 4.3]. In [82], Nazaikinskii, Savin and

Sternin characterized (HFP) for arbitrary manifolds with corners using an index

map associated with their dual manifold construction. In [33] the result of

[82] is rephrased in terms of deformation groupoids with the non trivial extra

contribution of changing (HFP) by (SFP) thanks to [49, Proposition 4.3]:

Theorem 3.1.8. Let D be an elliptic b-pseudodifferential operator on a

compact manifold with corners X. Then D satisfies (SFP) if and only if

Ind∂X([σb(D)]) = 0 in K0(C∗(Γb(X)|∂X)).

In particular, if D satisfies (FP) then its boundary analytic index vanishes.

This motivates the computation of K∗(C
∗(Γb(X))) ∼= K∗(C

∗(Γb(X)|∂X))

but also the computation of the index morphisms introduced above. As far as

I am aware, before the computations we did with Jean-Marie Lescure, the only

general computations known were for smooth manifolds and smooth manifolds

with boundary. In fact, for the latter the obstruction group always vanishes so

the immediate interesting question is to compute the associated Fredholm index,

this is the content of the next section.

3.2. Manifolds with boundary and cohomological formula for APS

indices

In a series of papers [3, 4, 5], Atiyah, Patodi and Singer investigated the

case of non-local elliptic boundary value problems. They showed that under some

boundary conditions (the now so-called APS boundary conditions), Dirac opera-

tors (among a larger class of first order differential operators) become Fredholm

on suitable spaces and they computed the index. To the characteristic form from

the closed smooth case they added a correction term, called the eta invariant,

which is determined by an appropriate restriction of the operator to the bound-

ary : this is a spectral invariant, measuring the asymmetry of the spectrum.

However, a cohomological formula expressing the APS index as an integration

of some characteristic form on the boundary is impossible. Roughly speaking,
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the non locality of the chosen boundary condition prevents us to express this

spectral correction term with a local object, like a density on the boundary. In

other words, applying directly the methods of Atiyah-Singer cannot yield the

result in the APS index problem. However, we will see that the use of some

noncommutative spaces, associated with groupoids, will give us the possibility

to understand the computation of the APS index using classic algebraic topology

methods (K-theory and cohomology).

In [29], we follow Connes’ groupoid approach to obtain a cohomological

formula for the index of a fully elliptic (pseudo)differential operator on a closed

manifold with boundary. For the case of such a manifold, let us describe woth

more details the b-groupoid and other associated groupoids.

Let X be a manifold with boundary. We denote, as usual,
◦
X the interior

which is a smooth manifold and ∂X its boundary, that we suppose for simplicity

to have a single connected component. Let

(58) Γb(X)⇒ X

be the groupoid of the b-calculus, where

Γb(X) =
◦
X ×

◦
X
⊔
∂X × ∂X × R,

with groupoid structure given as a family of pair groupoids and the (additive)

group R. It is a continuous family groupoid with the topology explicity described

in [78]

Consider

Γb(X)tan = A(Γb(X))
⊔

Γb(X)× (0, 1]⇒ X × [0, 1]

its tangent groupoid.

Take now the open subgroupoid of Γb(X)tan obtained by restriction to XF :=

X × [0, 1] \ (∂X × {1})

Γb(X)F = A(Γb(X))× {0}
⊔ ◦
X ×

◦
X × (0, 1]

⊔
∂X × ∂X × R× (0, 1)⇒ XF .

By definition
◦
X×

◦
X×(0, 1] is a saturated, open dense subgroupoid of Γb(X)F .

This leads to a complementary closed subgroupoid of Γb(X)F :

(59) TncX ⇒ X∂ ,

where X∂ := XF \
◦
X × (0, 1] = X ∪

∂X×{0}
∂X × [0, 1).

The groupoid TncX, called here ”The noncommutative tangent space of X”,

was introduced in [45] in the framework of pseudomanifolds with isolated sin-

gularities and used for Poincaré duality purpose. It was later used again in [46]

to derive an index theorem and reintroduced in [79] in the framework of man-

ifolds with boundary. Note also that TncX is denoted by T FCX in [48] where

it is generalized to the case of stratified spaces, or equivalently, manifolds with

(iterated) fibred corners.
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Deformation groupoids like Γb(X)F induce index morphisms. Indeed, its

algebra comes equipped with a restriction morphism to the algebra of TncX and

an evaluation morphism to the algebra of
◦
X ×

◦
X (for t = 1). Indeed, we have a

short exact sequence of C∗-algebras

(60) 0 // C∗(
◦
X ×

◦
X × (0, 1]) // C∗(Γb(X)F )

e0 // C∗(TncX) // 0

where the algebra C∗(
◦
X ×

◦
X × (0, 1]) is contractible. Hence applying the K-

theory functor to this sequence we obtain an index morphism

(61) bIndFred = (e1)∗ ◦ (e0)−1
∗ : K0(C∗(TncX)) −→ K0(C∗(

◦
X ×

◦
X)) ≈ Z.

As we saw in the last section, this index computes indeed the Fredholm index of

those elliptic operators on X satisfying the APS boundary condition, and hence

we call it The Fredholm index morphism of X.

A first task in order to follow the Atiyah-Singer approach would be to com-

pute the morphism indF by topological means. For instance, using an appropri-

ate embedding into a space in which the computation could follow in an easier

way. This idea has been already followed up in [46] in the framework of manifolds

with conical singularities, using a KK-equivalent version of the noncommutative

tangent space TncX. There, the authors use embeddings into euclidean spaces to

extend the construction of the Atiyah-Singer topological index map, thanks to a

“Thom isomorphism“ between the noncommutative tangent space of the singu-

lar manifold and of its singular normal bundle, and then get an index theorem

in the framework of K-theory. Here, we follow a different approach and we are

going to extend the Atiyah-Singer topological index map using Connes’ ideas on

tangent groupoid actions on euclidean spaces; moreover we investigate the coho-

mological counterpart of the K-theoretic statement of the index theorem. Note

also that the index map considered here coincide, through KK-equivalences,

with the index maps considered in [61] and in [46].

Consider an appropriate embedding (i.e., respecting the boundary)

(62) i : X ↪→ RN−1 × R+

of X into RN−1×R+. Following Connes, we use it to define a continuous family

groupoid morphism

(63) h : Γb(X)→ RN

where we see RN as an additive group and we assume N even. This morphism

induces an action of Γb(X) on X × RN and an induced deformation action of

Γb(X)F on XF × RN (coming from an induced morphism hF ). We have the

following result:

Proposition 3.2.1. The semi-direct groupoid (Γb(X)F )hF := Γb(X)F ohF

RN is a free proper groupoid.

In [29] we explain how the Connes-Thom isomorphism links the K-theory of

a groupoid with the K-theory of a semi-direct groupoid as above. For instance,
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the new semi-direct groupoid (Γb(X)F )hF defines as well an index morphism and

this one is linked with the index (61) by a natural isomorphism, the so called

Connes-Thom isomorphism, thus giving the following commutative diagram

(64)

K0(C∗(TncX))

indF

((

C T ≈
��

K0(C∗(Γb(X)F ))

C T ≈
��

e0

≈
oo e1 // K0(C∗(

◦
X ×

◦
X)) ≈ Z

C T ≈
��

K0(C∗((TncX)h0))

indhF

77
K0(C∗((Γb(X)F )hF ))

e0

≈
oo e1 // K0(C∗((

◦
X ×

◦
X)h1))

where h0 and h1 denote the respective restricted actions of TncX and
◦
X ×

◦
X on

RN .

Now, the proposition above tells us that the orbit space of (Γb(X)F )hF is a

nice space and moreover that this semi-direct groupoid is Morita equivalent to

its orbit space. This means that the index morphism indhF can be computed,

modulo Morita equivalences, as the deformation index morphism of some space.

More precisely, denoting by BhF the orbit space of (Γb(X)F )hF , by Bh0 the

orbit space of (TncX)h0 and by Bh1 the orbit space of (Γb(X)F )hF we have

an index morphism between K-theory of spaces (topological K-groups, no more

C∗-algebras if one does not like it!)

(65) indBhF
: K0(Bh0) K0(BhF )

e0

≈
oo e1 // K0(Bh1)

from which we would be able to compute the Fredholm index.

In order to describe them we need to introduce a new space, but let us first

motivate this by looking at the situation when ∂X = ∅ (following [39] II.5). In

this case, the orbit space of (Γb(X)F )hF can be identified with the deformation

to the normal cone of the embedding X ↪→ RN , that is a C∞-cobordism between

the normal bundle to X in RN , N(X), and RN itself:

(66) BAS := N(X)
⊔

(0, 1]× RN .

In this picture we also see the orbit space of (TX)h0 which identifies with

N(X) and the orbit space of (X ×X)h1 which identifies with RN .

Still, in this boundaryless case (∂X = ∅), this space BAS gives in K-theory

a deformation index morphism

indBAS
: K0(N(X)) K0(BAS)

e0

≈oo e1 // K0(RN )

which is easily seen to be the shriek map associated to the identification of N(X)

as an open subset of RN .
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In the boundary case, the normal bundle is not the right space, we know for

instance that the APS index cannot be computed by an integration over this

space due to the non-locality of the APS boundary condition. One has then to

compute the orbit spaces, in fact the orbit space of (TncX)h0 identifies with the

singular normal bundle:

(67) Nsing(X) := N(X)× {0}
⊔

RN−1 × (0, 1)

which is the C∞-manifold obtained by gluing the normal bundle N(X)1 associ-

ated to the embedding (62) and

D∂ := N(∂X)× {0}
⊔

RN−1 × (0, 1)

the deformation to the normal cone associated to the embedding ∂X ↪→ RN−1,

along their common boundary (the gluing depending on a choice of a defining

function of the boundary of X). The orbit space of (
◦
X×

◦
X)h1 is easily identified

with RN .

Finally the orbit space of (Γb(X)F )hF is homeomorphic to a space looking

as

(68) BF := Nsing(X)
⊔

(0, 1]× RN ,

where more precisely we prove the following

Proposition 3.2.2. The locally compact space BF admits an oriented C∞-

manifold with boundary structure of dimension N + 1.

The last proposition is essential to explicitly compute the index (65) above

once the explicit identifications are performed, indeed BF is an oriented cobor-

dism from Nsing(X) to RN , we can hence apply a Stoke’s theorem argument to

obtain the following:

Proposition 3.2.3. The index morphism of the deformation space BF can

be computed by means of the following commutative diagram:

K0(Nsing(X))

indBF

((

∫
Nsing(X) ch(·)

''

K0(BF )
(e0)∗

≈
oo

(e1)∗ // K0(RN )

∫
RN ch(·)

xxR

The index theorem is the following:

Theorem 3.2.4. [K-theoretic APS] Let X be a manifold with boundary,

consider an embedding of X in RN as in 62. The Fredholm index morphism

indFred : K0(C∗(TncX)) → Z decomposes as the composition of the following

three morphisms

1which is an honest vector bundle over X.
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(i) A Connes-Thom isomorphism C T :

K0(C∗(TncX))
C T−→ K0(Nsing(X)),

(ii) The index morphism of the deformation space BF :

K0(Nsing(X))
indBF // K0(RN )

(iii) the usual Bott periodicity isomorphism:

K0(RN )
Bott−→ Z.

In other terms, the following diagram is commutative

K0(C∗(TncX))

C T ≈
��

indFred // Z

K0(Nsing(X))
indBF

// K0(RN )

Bott≈

OO

As discussed above, the three morphisms of the last theorem are computable,

and then, exactly as in the classic Atiyah-Singer theorem the last theorem allows

to conclude that, given an embedding i : X ↪→ RN as above, any fully elliptic

operator D on X with ”non commutative symbol” [σD] ∈ K0(C∗(TncX)) gives

rise to the following formula:

Cohomological formula for the Fredholm index

(69) IndexFred(D) =

∫
Nsing(X)

Ch(C T ([σD]))

where
∫
Nsing(X) is the integration with respect to the fundamental class of

Nsing(X). In the last section of [29] we perform an explicit description for

C T ([σD]) ∈ K0(Nsing(X)).

The manifold Nsing(X) (see (67) above) already reflects an interior contri-

bution and a boundary contribution. In particular, picking up a differential form

ωD on Nsing(X) representing Ch(C T ([σD]), we obtain:

(70) IndexFred(D) =

∫
N (X)

ωD +

∫
D∂

ωD.

The first integral above involves the restriction of ωD to N (X), which is related

to the ordinary principal symbol of D. More precisely, the principal symbol

σpr(D) of D provides a K-theory class of C∗(A∗(Γb(X))), that is a compactly

supported K-theory class of the dual of the Lie algebroid of Γb(X) or in other

words of the b-cotangent bundle bT ∗X, and by functoriality of both the Chern

character and Thom-Connes maps, we have

[(ωD)|N (X)] = Ch(C T ([σpr(D)]).
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The second integral can thus be viewed as a correction term, which contains the

eta invariant appearing in APS formula and which also depends on the choice

of the representative ωD ∈ Ch(C T ([σD])).

Our approach and results are not only a groupoid interpretation of the

Atiyah-Patodi-Singer formula. A serious comparison between both formulas

has to be done. For instance, as we mentioned above, there is a relation be-

tween the second integral on (70) and the so called eta invariant. For deeply

understanding this, we need to explicitly describe the Chern character of the

C T ([σD] ∈ K0(Nsing(X)), for which one might need to use the Chern char-

acter computations done mainly by Bismut in [22]. Also, the second integral

comes from the part of the b-groupoid corresponding to the boundary,

∂X × ∂X × R× (0, 1),

and this groupoid’s algebra is related with the suspended algebra of Melrose

([72]), a relation between this integral and the Melrose and Melrose-Nistor ([70]),

becomes then very interesting to study.

3.3. Index theory for Manifolds with corners of general codimension

In general, as I tried to motivate at the begining of this section, one of

the first problems one can encounter is to understand the obstruction group

K0(C∗(Γb(X))) and the associated indices. For manifolds with corners of general

codimension this is part of the program I started to work out with Jean-Marie

Lescure and with Mario Velasquez. As we showed, the computation of the

above mentioned K-theory groups was done in terms of a very naturally and

computable homology theory. I explain now these computations.

3.3.1. Conormal homology and Geometric obstructions for Fred-

holm perturbation problems. Conormal homology is introduced (under a

different name) and studied in [24]. In [33], a slighty different presentation of

this homology is given, after the observations that it coincides with the E2 page

of the spectral sequence computing K∗(C
∗(Γb(X))) and that it should provide

easily computable obstructions to various Fredholm perturbations properties.

We just briefly recall the definition of the chain complex and of the differential

of conormal homology (see [24, 33] for more details).

With the same notation as above, the chain complex C∗(X) is the Z-module

where Cp(X) is generated by

(71) {f ⊗ ε ; f ∈ Fp and ε is an orientation of Nf}.

Here Nf = (TfX/Tf)∗ is the conormal bundle of f ⊂ X. Note that this bundle

is always trivializable with ei = dρi, i ∈ I(f) as a preferred global basis, and

oriented by εI(f) = ∧i∈I(f)ei or its opposite. We define the differential δ∗ :

C∗(X)→ C∗−1(X) by

(72) δp(f ⊗ ε) =
∑

g∈Fp−1,
f⊂g

g ⊗ ei(g,f)
yε
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where the index i(f, g) corresponds to the defining function ρi(f,g) defining f in g

and where y denotes the contraction of exterior forms. The conormal homology

of X, denoted by Hcn
∗ (X) is defined to be the homology of (C∗(X), δ∗). Even

and odd groups are called periodic conormal homology:

(73) Hpcn
0 (X) = ⊕p≥0H

cn
2p (X) and Hpcn

1 (X) = ⊕p≥0H
cn
2p+1(X).

The case up to codim 3:

Let us recall the group isomorphisms

(74) K∗(Γb(X))
T

∼=
// Hpcn
∗ (X)

we gave in [33] for mwc X of codimension up to 3 for ∗ = 0, 1 (even, odd). The

presentation we will give below slightly differs from the original one presented in

[33], in fact in ref.cit. the isomorphisms were given from the periodic conormal

groups to the K-theory groups. We will give some detailed review since we will

use it in the sequel.

1A. Codim(X) = 0: The only face of codimension 0 is X (we are always

assuming X to be connected). The isomorphism

(75) K0(A0)
T0

∼=
// Hcn

0 (X)

is simply given by sending the rank one projector pX chosen above to X.

1B. Codim(X) = 1: Consider the canonical short exact sequence

0 // A0
// A1

// A1/A0
// 0

That gives the following exact sequence in K-theory

0 // K1(A1) // K1(A1/A0)
d1 // K0(A0) // 0

from which K1(A1) ∼= ker d1. By theorem 5.27 and corollary 5.35 in [33], we

have the following commutative diagram

K1(A1/A0)

T1,0 ∼=
��

d1 // K0(A0)

T0
∼=
��

Ccn1 (X)
δ1

// Ccn0 (X).

Then there is a unique isomorphism

(76) K1(Γb(X)) = K1(A1)
T1

∼=
// Ker δ1 = Hpcn

1 (X)

fitting the following commutative diagram

0 // K1(A1) //

T1
∼=
��

K1(A1/A0)

T1,0 ∼=
��

d1 // K0(A0)

T0
∼=
��

// 0

0 // Ker δ1
// Ccn1 (X)

δ1

// Ccn0 (X) // 0.
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1C. Codim(X) = 2: Let us start by defining the isomorphism for the even

group K0(A2). In fact, as shown in proposition 5.40 in [33] the morphism

(77) K0(A2)
r // K0(A2/A0)

induced by restriction to the boundary is an isomorphism. Now, let us consider

the canonical short exact sequence

0 // A1/A0
// A2/A0

// A1/A0
// 0

that gives the following exact sequence in K-theory

0 // K0(A2/A0) // K0(A2/A1)
d2 // K1(A1/A0) // 0

from which K0(A2/A0) ∼= ker d2. Again, by 5.27 a,d 5.35 in [33], we have the

following commutative diagram

K0(A2/A1)

T2,1 ∼=
��

d2 // K1(A1/A0)

T1,0∼=
��

Ccn2 (X)
δ2

// Ccn1 (X).

Then there is a unique isomorphism

(78) K0(Γb(X)|X1) = K0(A2/A0)
T2

∼=
// Ker δ2 = Hcn

2 (X)

fitting the following commutative diagram

0 // K0(A2/A1) //

T2
∼=
��

K0(A2/A1)

T2,1 ∼=
��

d2 // K1(A1/A0)

T1,0 ∼=
��

// 0

0 // Ker δ2
// Ccn2 (X)

δ2

// Ccn1 (X) // 0.

Let us now recall the isomorphism T2 : K1(A2)→ Hpcn
1 (X) for X of codimension

2 in odd K-theory. In this case

Hpcn
1 (X) = Hcn

1 (X) =
Ker δ1

Im δ2
.

Consider the following commutative diagram of short exact sequences

(79) 0 // 0 // A2/A1
// A2/A1

// 0

0 // A0

OO

// A2

OO

// A2/A0

OO

// 0

0 // A0

OO

// A1

OO

// A1/A0

OO

// 0.
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By applying K-theory to it we get (at least the opart that concerns us here)

(80) K0(A2/A1)

��

Id

=
// K0(A2/A1)

d2

��
0 // K1(A1) //

��

K1(A1/A0)

��

d1 //

��

K0(A0)

Id=

��
0 // K1(A2)

��

// K1(A2/A0)

��

// K0(A0)

0 0

As shown in [33] p.554-555 the isomorphism

(81) K1(A2)
T2 // Ker δ1

Im δ2

is then obtained, by a classic chase diagram argument using the previous dia-

gram, as the unique isomorphism fitting the following commutative diagram

(82) 0 0

K1(A2)

OO

T2

∼=
// Ker δ1
Im δ2

OO

K1(A1)

OO

T1

∼=
// Ker δ1

q

OO

K0(A2/A1)

OO

T2,1

∼= // Ccn2 (X)

δ2

OO

where q : Kerδ1 → Kerδ1
Imδ2

denotes the canonical quotient projection.

1D. Codim(X) = 3: Consider the following commutative diagram of short

exact sequences

(83) 0 // 0 // A3/A2
// A3/A2

// 0

0 // A1/A0

OO

// A3/A0

OO

// A3/A1

OO

// 0

0 // A1/A0

OO

// A2/A0

OO

// A2/A1

OO

// 0.
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By applying K-theory to it we get (at least the opart that concerns us here)

(84) K1(A3/A2)

��

Id

=
// K1(A3/A2)

d3

��
0 // K0(A2/A0) //

��

K0(A2/A1)

��

d2 //

��

K1(A1/A0)

Id=

��
0 // K0(A3/A0)

��

// K0(A3/A1)

��

// K1(A1/A0)

0 0

and then we get an isomorphism

(85) K0(A3/A0) ∼=
Ker d2

Imd3

and by indcution as before the isomorphism

(86) K0(A3/A0) ∼= Hcn
2 (X) :=

Ker δ2

Im δ3
.

For conclude the even case we just recall that in general the morphism K0(Ad)→
K0(Ad/A0) induced by restriction to the boundary, is an isomorphism for every

d ≥ 1. We get then an isomorphism

(87) T3 : K0(A3)
∼=−→ Hcn

2 (X).

To get the isomorphism from K1(A3), consider the short exact sequence:

0 // A2
// A3

// A3/A2
// 0.

We compare its associated six term short exact sequence in K-theory with the

one in conormal homology to get

(88)

K0(A2)

T2

∼=ww

// K0(A3)

T3

∼=yy

// 0

��

yy
Hpcn

0 (X2) // Hpcn
0 (X3) // 0

��

K1(A3/A2)

T3,2

∼=

ww

OO

K1(A3)

?

yy

oo K1(A2)

T2

∼=yy

oo

Hpcn
1 (X3, X2)

OO

Hpcn
1 (X3)oo Hpcn

1 (X2)oo

where we need now to define an isomorphism ?. In fact, if we can define a

morphim such that the diagrams are commutative then by a simple Five lemma
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argument it would be an isomorphism. Let us first check that the diagram

(89) K1(A3/A2)

T3,2 ∼=
��

∂ // K0(A2)

T2
∼=
��

Hpcn
1 (X3, X2)

∂
// Hpcn

0 (X2)

is commutative. For this consider the following commutative diagram of short

exact sequences

(90) 0 // A1
//

��

A1
//

��

0

��

// 0

0 // A2

��

// A3

��

// A3/A2

��

// 0

0 // A2/A1
// A3/A1

// A3/A2
// 0.

that implies that the connecting morphism K1(A3/A2)
∂→ K0(A2) followed by

the morphism K0(A2) → K0(A2/A1) coincides with the connecting morphism

K1(A3/A2)
∂→ K0(A2/A1). Now, the two latter morphisms are compatible with

the analogs in conormal homology via the isomorphisms described above and

the morphism K0(A2) → K0(A2/A1) is injective (since K0(A1) = 0), hence the

commutativity of diagram 89 above follows.

For defining ?, it is now enough to choose a splitting for the morphism

K1(A3)→ im j → 0,

where j is the canonical morphism j : K1(A3)→ K1(A3/A2) (remember all the

groups K∗(Ap/Ap−1) are torsion free).

The general codimension case:

For X a mwc of any codimension we cannot proceed as above, in fact, an

integral (with integer coefficients) computation as above seems very difficult

or perhaps impossible in general from codimension 4 as shown by the recent

examples computed by Velasquez and Schick. Still, with Jean-Marie Lescure

and Mario Velasquez we constructed an explicit morphism

(91) Tev/odd : Kev/odd(Kb(X)) −→ Hcn
ev/odd(X)⊗Q

that becomes an isomorphism when tensoring with Q and that factors through

an integer computation in the low codimensional cases explained above. I will

sketch the main parts to get this isomorphism, the main motivation was the

proof of Atiyah-Singer explained in the last section, and as I will expalin further

below it gives not only the computation of the K-theory groups above but it

gives as well some index theorems for manifolds with corners.

The first ingredient is an embedding

ι : X̃ ↪→ RN−n
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with N even and n still denoting the number of boundary hypersurfaces of X.

Consider the groupoid morphism

(92) h : X̃ × X̃ × Rn → RN−n × Rn = RN

given by

h(x, y, (λi)i) = (ι(x)− ι(y), (λi)i).

The monomorphism2 of groupoids h induces a semi-direct product groupoid

(93) (X̃ × X̃ × Rn) oRN ⇒ X̃ × RN .

A very simple and direct computation gives that this groupoid is free (that is,

has trivial isotropy subgroups) and proper, the freeness comes from the fact h is

a monomorphism of Lie groupoids (indeed h(x, y, (λi)i) = 0 implies x = y and

λi = 0 for all i), and the properness of the map

(X̃ × X̃ × Rn) oRN (t,s)−→ (X̃ × RN )2

can be verified by a direct computation.

Now, as shown by Tu in [95] proposition 2.10, a topological groupoid G⇒ Z

is proper iff the associated map (t, s) is closed and the stabilizers are quasi-

compact. In particular, since Γb(X) is a closed subgroupoid of X̃ × X̃ ×Rn and

since the induced groupoid morphism

(94) Γb(X)
h−→ RN

is a groupoid monomorphism, since it is the restriction to a subgroupoid of a

monomorphism, we obtain that:

Proposition 3.3.1. The semi-direct product groupoid

(95) Γb(X) oRN ⇒ X × RN

is free and proper.

By [95] (section 2), the space of orbits X×RN/Γb(X)oRN is then Hausdorff

and locally compact. We let:

Definition 3.3.2 (The orbit space OX). We denote by

(96) OX := Orb(Γb(X) oRN )

the Orbit space associated with the groupoid Γb(X) oRN ⇒ X × RN .

By classic groupoid’s results recalled for instance in [29] section 2, we have

the following

Proposition 3.3.3. There is an isomorphism

(97) CTh : K∗(C
∗(Γb(X))) −→ K∗top(OX)

given by the composition of the Connes-Thom isomorphism

CT : K∗(C
∗(Γb(X))) −→ K∗(C

∗(Γb(X) oRN ))

2A groupoid morphism h : G→ RN is a monomorphism if h(γ) = 0 implies γ is a unit of

G.
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and the isomorphism

µ : K∗(C
∗(Γb(X) oRN )) −→ K∗top(OX)

induced from the groupoid Morita equivalence between Γb(X)oRN and OX (seen

as a trivial unit groupoid).

Later on the paper we will need to apply the Chern character morphism to

the topological space OX (to its topological K-theory) and for this we will justify

in this section that this space has indeed the homotopy type of a CW-space, in

fact this space inherits from X × RN a manifold with corners structure as we

will now explain.

Consider the s-connected Puff groupoid, recalled in (35),

(98) Gc(X̃, (ρi))⇒ X̃.

It is a Lie groupoid and the semi-direct product groupoid

(99) Gc(X̃, (ρi)) oh RN ⇒ X̃ × RN

induced by the morphism h defined in (92) is a free proper Lie groupoid by

exactly the same arguments applied to Γb(X) above. By classic results on Lie

groupoid theory, the orbit space

(100) OX̃ := Orb(Gc(X̃, (ρi)) oh RN )

inherits from X̃ × RN a structure of a C∞-manifold. A good reference for

this is the nice extended survey of Crainic and Mestre, [44], that clarifies and

explains very interesting results on Lie groupoid theory that were confusing in

the literature, in particular they explain the role of the linearization theorem

for proper Lie groupoids (theorem 2 in ref.cit.) on the local structure of such

groupoids and on their orbit spaces.

We will now give the defining functions onOX̃ whose positive parts will define

OX . For this, denote, as in sections above, a vector v = (v′, v′′) ∈ RN−n × Rn.

A simple and direct computation shows that, for i = 1, ...n, the C∞-map

(101) (x, v) 7→ ρi(x)ev
′′
i

induces a well defined C∞-map

(102) ρ̃i : OX̃ → R.

Using the map (112) and the induced homeomorphisms on the faces (110) one

can get that

(103) OX =
⋂

i=1,...,n

{ρ̃i ≥ 0}.

Finally, a simple computation yields

(104) d(x,A)Ri(W,V ) = eA
′′
i dxρi(W ) + eA

′′
i V ′′i ρi(x)

where Ri = ρ̃i ◦ p (with p : X̃ × RN → OX̃ the quotient map), (W,V ) ∈
TxX̃ × TARN , and since p is a submersion we obtain that {dρ̃j1 , ..., dρ̃jk} has
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maximal rank at any point of H̃j1 ∩ . . . ∩ H̃jk for any 1 ≤ j1 < · · · < jk ≤ n,

where Hj = ρ̃−1
j ({0}) ∩OX .

In conclusion we obtain that OX is a manifold with embedded corners defined

by the defining functions ρ̃1, ..., ρ̃n, the set of its faces of a given codimension is

in bijection with the set of faces of X the corresponding codimension. As proved

above, each face is homeomorphic to an euclidean space.

Now, it is a classic fact, for example see corollary 1 in [74], that any topo-

logical separable manifold as OX has the homotopy type of a countable CW -

complex. This is all we will need in the following sections.

The space OX is a quotient space X ×RN/ ∼ where the relation is given as

follows (x,A) ∼ (y,B) iff there is γ = ((x, y), (λi)i) ∈ Γb(X) with B = h(γ) +A.

We denote by π : X × RN −→ OX the quotient map. This map is open [95,

Prop. 2.11].

The space X is naturally filtrated. Indeed, denote by Fp the set of connected

faces of codimension p (and d the codimension of X). For a given face f ∈ Fp,
we define the index set I(f) of f to be the unique tuple (i1, . . . , ip) such that

1 ≤ i1 < . . . < ip ≤ n and

(105) f ⊂ Hi1 ∩ . . . ∩Hip

where we recall that Hj = ρ−1
j ({0}) ⊂ X. The filtration of X is then given by:

(106) Xj =
⋃
f∈F

d−j≤codim(f)≤d

f

Then:

(107) Fd = X0 ⊂ X1 ⊂ · · · ⊂ Xd = X.

and setting Yp = π(Xp × RN ), we get a filtration of OX :

(108) Y0 ⊂ Y1 ⊂ · · · ⊂ Yd−1 ⊂ Yd = OX

For any index set I we let:

(109)

RNI := {(y, x) ∈ RN−n × Rn+ ; xi = 0 if i ∈ I and xi > 0 otherwise } ⊂ RN

and we write RNf instead of RNI(f). We are going to define a map

Q : X × RN −→ RN−n × Rn+,

smooth and compatible with the equivalence relation on X×RN , whose quotient

map q : OX −→ RN−n × Rn+ induces homeomorphisms:

(110) π(f × RN ) ' RNf

for any face f and

(111) π((f ∪ g)× RN ) ' RN(f,g) := RNf ∪ RNg

for any pair (f, g) ∈ Fp × Fp−1 such that f ⊂ g.
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For that purpose, we write for convenience eA for (eA1 , . . . , eAk) and ρ.v

for (ρ1v1, . . . , ρkvk) for all k and A, ρ, v ∈ Rk. Also, we use the notation v =

(v′, v′′) ∈ RN−n × Rn for any v ∈ RN . We then define

(112) x ∈ X, v ∈ RN , Q(x, v) = (ι(x) + v′, ρ(x).ev
′′
).

It is easy to check that Q : X × RN −→ RN−n × Rn+ is a surjective submersion,

compatible with the equivalence relation. We denote by q : OX −→ RN−n ×Rn+
the quotient map. For any f ∈ F∗, one can check that

(113)

f×RN = Q−1(RNf ) and ∀x, y ∈ f, v, w ∈ RN , Q(x, v) = Q(y, w) ⇐⇒ (x, v) ∼ (y, w).

It follows that q|f and q|f∪g provide the homeomorphisms (110) and (111). We

have proved:

Proposition 3.3.4. For any pair (f, g) ∈ Fd−q × Fd−q−1 such that f ⊂ g,

we have a commutative diagram:

(114) (Yq \ Yq−1)f

≈q|f
��

// (Yq+1 \ Yq−1)f∪g

≈ q|f∪g
��

RNf // RN(f,g)

where the vertical maps are homeomorphisms, the horizontal maps are the in-

clusions and:

(115) (Yq \ Yq−1)f := π(f × RN ) ; (Yq+1 \ Yq−1)f∪g := q((f ∪ g)× RN )

This will be used to compute the singular cohomology groups of OX , which

requires the understanding of the inclusions Yq \ Yq−1 ↪→ Yq+1 \ Yq−1 and more

specifically how they look like around a given face f ∈ Fd−q with respect to a

given g ∈ Fd−q−1 with f ⊂ g.

We can expect the same difficulties in computing K∗(OX) as the ones en-

countered in computing K∗(C
∗(Γb(X)) (using the spectral sequence associated

with the corresponding filtrations). Instead, the spectral sequence argument be-

comes simpler for the (singular) cohomology of OX with compact support. In

this section we follow the notations used in [69, Sec. 2.2]

The spectral sequence associated to the filtration considered in the last sub-

section will allow to give a very explicit cohomological computation because of

proposition 3.3.4.

Explicitly we associate a cohomological spectral sequence to the filtration

108. It can be done by considering the exact couple

(116) A =
⊕
p,n

Hn(Yp), E =
⊕
p,n

Hn(Yp, Yp−1),

with the usual maps ip,n : Hn(Yp+1)→ Hn(Yp), jp,n : Hn(Yp)→ Hn+1(Yp+1, Yp)

and kp,n : Hn+1(Yp+1, Yp)→ Hn+1(Yp+1).
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Denote by (Ep,qr (X), dp,qr ) the associated spectral sequence to the exact cou-

ple (116), this spectral sequence converges to

(117) E∞p,q(X) ∼= Fp−1(Hp+q(OX))/Fp(H
p+q(OX)),

where Fp(H
p+q(OX)) = ker(Hp+q(OX)

i∗−→ Hp+q(Yp)) and i : Yp → OX is the

inclusion, see for instance theorem 2.6 in [69]. We have the following result.

Proposition 3.3.5. The spectral sequence (Ep,qr (OX), dp,qr ) collapses at the

page two and moreover, for r = 0, ..., d

(118) HN−r(OX) ∼=
⊕

p+q=N−r
Ep,q2 (OX).

Proof. From the exact couple we know that

Ep,q1 (X) = Hp+q(Yp, Yp−1)

and a simple application of the long exact sequence axiom and of proposition

3.3.4 gives

Ep,q1 (X) =

{
Z|Fd−p| if q = N

0 if q 6= N

On the other hand the first differential is defined as

(119) dp,q1 = jp,n ◦ kp,p+q−1 : Hp+q(Yp, Yp−1)→ Hp+q+1(Yp+1, Yp).

The page E2 has only one non trivial row, which is given by the cohomology

of the complex:

(120) 0→ E0,N
1 Z|Fd| → · · · → Ed−1,N

1 Z|F1| → Ed,N1 Z→ 0.

It implies that

Ep,q∞ (X) = Ep,q2 (X).

Now, for the next part of the statement we need to identify the associated graded

group with the singular cohomology of OX with compact support. The proof of

that fact is very similar to the identification of cellular cohomology with singular

cohomology.

Indeed, let us consider the long exact sequence of the pair (Yp, Yp−1) in

singular cohomology with compact support

(121) · · · → Hk(Yp, Yp−1)→ Hk(Yp)→ Hk(Yp−1)→ Hk+1(Yp, Yp−1)→ · · · .

Because of the fact that Yp/Yp−1 is homeomorphic to a finite disjoint union of

RN−d+p for p = 0, ..., d we have that the morphisms (induced from the canonical

inclusions)

(122) Hk(Yp)→ Hk(Yp−1)

are isomorphisms for k > N − d + p and for k ≤ N − d + p − 2, injective for

k = N − d+ p− 1 and surjective for k = N − d+ p. A direct computation gives

that, for r = 0, .., d,

(123) FpH
N−r(OX) = HN−r(OX) for p = −1, ..., d− r − 1,
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and

(124) FpH
N−r(OX) = 0 for p = d− r, ..., d.

The statement (118) above follows now by (117).

�

We will construct an explicit isomorphism

(125) Hev/odd(OX)
B−→ Hpcn

ev/odd(X)

where in the left hand side Hev/odd stands for singular cohomology (with compact

supports) with integer coefficients. For this it will be enough, after the last

proposition, to explicitly compute the first differentials dp,N−d1 , (119) above.

We start by fixing an α ∈ H1(R) with α 7→ 1 under the connecting map

(which is an isomorphism) associated to the inclusion of {0} in R+. Let now

β ∈ H1(R) be such that (α, β) 7→ 1.

Let f ∈ Fp, there is a canonical homeomorphism φf : RNf → RN−p where

RN−p is the usual euclidean space. We let βf ∈ HN−p(RNf ) be the generator

given by the image of (β, ..., β) ∈ (H1(R))N−p by the product isomorphism

(126) H1(R)⊗ · · · ⊗H1(R)
∼= // HN−p(RN−p),

where in the left hand side there are exactly N − p copies of H1(R), followed by

the isomorphism in cohomology

(127) HN−p(RN−p)
(φf )∗

∼=
// HN−p(RNf )

induced by φf .

By construction, for every p = 0, ..., d we have a basis (βf )f∈Fp ofHN−p(Yd−p, Yd−p−1)

via the isomorphism induced from proposition 3.3.4. We can now prove the fol-

lowing

Proposition 3.3.6. With the notations above we have that for f ∈ Fd−p
and g ∈ Fd−p−1 with f ⊂ g the following holds:

(128) dp,N−d1 (βf ) = σ(f, g) · βg,

where σ(f, g) = (−1)j−1 with j the place of the coordinate in the multi-index

I(f) whose associated index i(f, g) and correspondant defining function ρi(f,g)
defines f in g.

Proof. By construction the differential

dp,N−d1 : HN−d+p(Yp, Yp−1)→ HN−d+p+1(Yp+1, Yp)

is given by the connecting morphism in cohomology associated to the inclusion

Yp \ Yp−1 ↪→ Yp+1 \ Yp−1.

Hence, by proposition 3.3.4, we are led to compute the connecting morphism

(129) HN−d+p(RNf )
d(f,g)−→ HN−d+p+1(RNg )
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associated to the canonical inclusion

RNf ↪→ RN(f,g).

Now, it is just a simple algebraic topology exercise to show that

d(f,g)(βf ) = σ(f, g) · βg
from which we conclude the proof. �

From the last two propositions we obtain the following corollary.

Corollary 3.3.7. For every p = 0, ..., d the isomorphism HN−p(Yd−p, Yd−p−1)→
Ccnp (X) given in a basis by βf 7→ f ⊗ εI(f) induces an isomorphism

(130) Bp : HN−p(OX) −→ Hcn
p (X).

In particular, since N is even there are induced isomorphisms between the peri-

odic versions

(131) Bev/odd : Hev/odd(OX) −→ Hcn
ev/odd(X).

I can state the main theorem of [34]

Theorem 3.3.8. For every connected manifold with corners X there are

morphisms

(132) Tev/odd : Kev/odd(Kb(X)) −→ Hcn
ev/odd(X)⊗Q

inducing rational isomorphisms. Explicitly, T∗ is given by the composition of

(i) The Connes-Thom isomorphism

(133) CTh : K∗(Kb(X))→ K∗top(OX),

(ii) the Chern character morphism

(134) K∗top(OX)
ch−→ Hev/odd(OX)⊗Q,

which is a rational isomorphism and

(iii) the natural isomorphism

(135) B∗ ⊗ Id : H∗(OX)⊗Q −→ Hpcn
∗ (X)⊗Q,

described above.



CHAPTER 4

Wrong way functoriality, index theory and the

Baum-Connes assembly map

The K-theory functor for topological spaces is a contravariant functor, that

is for f : X → Y a continuous map there is a naturally associated morphism

f∗ : K∗(Y )→ K∗(X)

induced from the pullback of vector bundles. As we will se below, for appropriate

f one can define a so called shriek map

f ! : K∗(X)→ K∗(Y )

whose main property is going to be the functoriality, that is (f ◦ g)! = f ! ◦ g!

whenever it makes sense. This is what it is called ”Wrong way functoriality”

in the litterature. Now, the construction of these shriek maps is based in some

examples already disussed in this work. For example if M is a smooth manifold,

its analytic index morphism

Inda : K0(T ∗M)→ Z ∼= K0({pt})

is going to be the shriek map

p! : K0(T ∗M)→ Z ∼= K0({pt})

associated to the smoooth map

p : T ∗M → {pt}.

In the case of smooth manifolds (without actions of groups or other structures)

it is easy to see that in order to get the topological index formula from the

wrong way functoriality it is enough to have two more examples, the shriek map

associated to the zero section map s0 : M → E of a spin vector bundle

s0! : K∗(M)→ K∗(E)

given as the Thom isomorphism in K-theory, and the shriek map associated to

an inclusion j;U →M ′ of an open subset U of M ′,

j! : K∗(U)→ K∗(M ′)

given as the canonical extension by zero. Indeed, the topological index theorem

of Atiyah-Singer is a particular case of the wrong way functoriality by decom-

posing the projection p as p = q ◦ j ◦ s0 where q! is a computable analytic index

morphism (it is the Bott inverse morphism for RN ).

As suggested by the previous discussion, for a general smooth map f : M →
M ′ (K-oriented) one may use essentially the topological index for families of

39
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Atiyah and Singer to get the shriek map f !. This is indeed possible and it is

still possible in slighter more general situations, for example one may use the

Connes-Skandalis longitudinal to construct f ! : K∗(M)→ K∗(M ′/F ) associated

to a (generalized) K-oriented smooth map f : M → M ′/F from a manifold

M to the space of leaves of a regular foliation (M ′, F ), so here K∗(M ′/F ) :=

K∗(C
∗(M ′, F )). However, it is not in general possible to count with topological

indices to help define these shriek maps. In fact, in the next section I will

describe how to use deformation groupoids to get wrong way funtoriality in a

very large context that will as well allow, as we will see in the next chapters,

to get very interesting applications. The use of deformation groupoids for get

shriek maps as described below it is contained in my paper [35] and it is largely

inspired from a fundamental paper on the subject by Hilsum and Skandalis, [57],

where they use for deformation groupoids to define some shriek maps associated

to some maps between spaces of leaves of regular foliations.

4.1. Wrong way functoriality via deformation groupoids

Let G ⇒M be a Lie groupoid. A G -manifold P is a smooth manifold P with

a momentum map πP : P →M , which is assumed to be an oriented submersion,

and a right action of G on P : P o G → P given by (p, γ) = p ◦ γ such that

(p ◦ γ1) ◦ γ2 = p ◦ (γ1 · γ2)

for any (γ1, γ2) ∈ G (2). Here P o G = {(p, γ) ∈ P × G |πP (p) = r(γ)}. We will

denote by T vP the vertical tangent bundle associated to πP . A G -manifold P

is called G -proper if the map

P o G −→ P × P

defined by (p, γ) 7→ (p, p ◦ γ) is proper. Then the induced action groupoid

P o G ⇒ P

with s(p, γ) = p, r(p, γ) = p ◦ γ is a proper Lie groupoid.

Notation: In what follows, given a Lie groupoid H we will denote by

K∗(H ) the K-theory group of its reduced C∗-algebra K∗(C
∗
r (H )).

Let P,N be two G -manifolds and f : P −→ N be a smooth G -equivariant

map such that the bundle Tf := T vP ⊕ f∗T vN has a G − spinc structure, that

is such that f is K-oriented. Using only geometric deformation groupoids, we

will construct a morphism, called the shriek map f!

(136) K∗(P o G )
f! // K∗(N o G )

The main result of [35] is the functoriality of this shriek map. .

The construction of the shriek map (136) follows the lines of Connes con-

struction, II.6 in [39]. It is divided in two steps.

Step 1. The first step is the G -equivariant Thom isomorphism associated

to the vector bundle Tf → P .



41

(137) K∗(P o G )
T // K∗(Tf o G ).

Step 2. The second step is to consider the groupoid immersion

(138) P
f×4 // N ×M (P ×M P ).

The associated deformation groupoid is Df ⇒ D
(0)
f where

(139) Df := Tf × {0}
⊔
N ×M (P ×M P )× (0, 1] and

(140) D
(0)
f = f∗T vN × {0}

⊔
N ×M P × (0, 1]

Notice that N ×M (P ×M P ) and N are Morita equivalent groupoids with the

Morita equivalence given by the canonical projection.

The functoriality of the deformation to the normal cone construction yields

an action of G on Df .

We can hence consider the deformation index morphism associated to DfoG

:

(141) K∗(Tf o G )
Df // K∗(N ×M (P ×M P ) o G )

m∼=
��

K∗(N o G )

where we denoted Df instead of Df×4 for keeping the notation short, and m is

the isomorphism defined by the Morita equivalence between N×M (P×M P )oG

and N o G .

Definition 4.1.1 (Pushforward morphism). Let P,N be two manifolds and

f : P −→ N be a smooth G K-oriented G -map. We let

(142) K∗(P o G )
f! // K∗(N o G )

be the morphism given by the composition of the morphisms given in the two last

steps.

The wrong way functoriality theorem of [35] can be stated.

Theorem 4.1.2. The above push-forward morphism is functorial, that means,

if we have a composition of smooth G -maps between G−manifolds as above:

(143) P
f−→ N

g−→ L,

then the following diagram commutes

K∗(P o G )
(g◦f)! //

f! ''

K∗(Lo G )

K∗(N o G )

g!

77
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In fact, the last theorem above is a particular case of theorem 4.2 in [35]

because in there we stated and prove it for twisted Lie groupoids. The proof

in ref.cit is perhaps very long and involved to read but the main idea behind

was to have the proof for G = {pt} and use the deformation to the normal cone

functoriality to be able to pass to more general cases.

4.2. The Baum-Connes assembly map or assembling pushforwards

As I tried to explain above the wrong way functoriality implies some topo-

logical index theorems in some very interesting cases. Now, the functoriality

also has a deep consequence, it allows to assembly different pushforwards maps

and to assembly different higher indices. This is the content of the so called

Baum-Connes assembly map. Here I will describe a geometric version of it that

uses the above wrong way functoriality, in the next chapter I will discus further

the very interesting case of discret groups for which we have more results at the

present time. The starting point is to define the left hand side of the geometric

Baum-Connes map.

Definition 4.2.1 (Topological K-theory for Lie groupoids). Let G ⇒ M .

The topological K-theory group associated to G is the abelian group denoted by

K∗top(G ) with generators given by the cycles (P, x) where

(1) P is a smooth co-compact G -proper spinc manifold,

(2) πP : P → M is the smooth momentum map which supposed to be an

oriented submersion, and

(3) x ∈ K∗(P o G ),

and the equivalence relations

(144) (P, x) ∼ (P ′, g!(x))

where g : P → P ′ is a smooth G -equivariant map (in particular πP ′ ◦ g = πP ).

Now, to get the Baum-Connes assembly map it is enough to remark that for

P a smooth co-compact G -proper spinc manifold as above the same constructio

of the shriek map πP ! : K∗(P o G )→ K∗(G ) makes sense, i.e. when N = {pt}.
We can state the theorem resuming this discussion.

Theorem 4.2.2. [Geometric Baum-Connes assembly map for Lie groupoids]

Let (P, x) be a geometric cycle over G . Let µG (P, x) = (πP )!(x). Then µG (P, x)

only depends upon the equivalence class of the cycle (P, x). Hence we have a well

defined assembly map

(145) µG : K∗top(G ) −→ K∗(G ).

Let us give an example of computation of the above assembly map.

Proposition 4.2.3. Let G ⇒M be a Lie groupoid, and let CG be the category

of proper G -manifolds as above and homotopy classes of smooth G -equivariant

maps. Then if Q is a final object for CG one has an isomorphism

(146) K∗top(G )
µQ

∼=
// K∗(Qo G ).
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Moreover the following commutative diagram

(147) K∗top(G )

µG %%

µQ

∼=
// K∗(Qo G )

(πQ)!xx
K∗(G )

Proof. Let (P, x) be a geometric cycle over G . By hypothesis there is a

G -equivariant map qP : P → Q since Q is a final object in CG . We define µQ by

(148) µQ([P, x]) = (qQ)!(x)

which is well defined by theorem 4.1.2 above.

We will explicitly define the inverse. Let y ∈ K∗(Qo G ), we define βQ(y) ∈
K∗top(G ) to be the class of the cycle (Q, y).

In one direction, µQ(βQ(y)) = y is obvious, and in the other direction,

βQ(µQ([P, x])) = [Q, (qP )!(x)] = [P, x].

The commutativity of diagram (147) follows immediately from wrong way

functoriality. �

Examples 4.2.4.

(1) The most basic example in which the last proposition applies is when the

groupoid G ⇒ M is proper with M/G compact and M spinc. This covers the

case of (spinc) orbifold groupoids. Then we have an explicit isomorphism

(149) K∗top(G )
µM

∼=
// K∗(G ).

(2) A very interesting example where one can apply the computation above is the

following (Connes book [39] 10.β): Let G be a connected Lie group and let L

be a maximal compact subgroup of G, by a result of Abels and Borel ([1]), the

homogeneous space Q = L \G is a final object of CG. Then, assuming L \G has

a G-spinc structure 1, there is an explicit isomorphism

(150) K∗top(G)
µL\G

∼=
// K∗((L \G) oG, ).

Note that the action of G on the homogeneous space L\G is transitive, hence the

groupoid L\GoG is transitive as well. Now, we know (proposition 5.14 in [76])

transitive groupoids are Morita equivalent to Lie groups, and more explicitly one

Lie group model could be given by an isotropy group. In our case, it is easy to

check that the isotopry group of the class of the identity (L \GoG)[e] identifies

canonically with L. Hence, the canonical inclusion L ↪→ L \GoG given by

l 7→ ([e], l)

is a Morita equivalence of groupoids (proposition 5.14 (iv) in [76]). Using (150)

and the Morita equivalence just described, we can obtain an isomorphism

(151) K∗top(G)
µL

∼=
// K∗(L)

1If this is not the case some twistings will appear, see [35].
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such that

(152) K∗top(G)

µG %%

µL

∼=
// K∗(L)

i!zz
K∗(G)

is a commutative diagram where i : L ↪→ G is the inclusion.

This particular example is very interesting, in particular for its relation with

representation theory. Recently, it has been a great amount of interest in this

examples for several kind of groups and there has been several authors that have

been using deformation groupoids to attack or solve some questions. See for

example the recent papers [37] and [94], together with the references there in for

a general view point.

4.3. An orbifold refinement of the Baum-Connes assembly map

Another application of the use of deformation groupoids in the definition

of the Baum-Connes assembly map is that there is not too much extra cost to

add in the definition of the geometric cycles forming the BC left hand side more

”singular cylces”, for example we can easily add orbifolds as I will now explain.

Consider two proper étale groupoids X1 ⇒ M1 and X2 ⇒ M2. Suppose we

have a smooth map

(153) X1

����

f // X2

����
M1

f0

// M2

If the above map is an immersion of groupoids, Hilsum and Skandalis con-

struction in [57] gives an element f ! ∈ KK∗(X1,X2) under the assumption that

the normal bundle N(X2,X1) admits a spinc structure. Their construcion uses

deformation groupoids and it inspired our work for the general case. In fact, in

the general case one can consider, as in the case of manifolds, the immersion of

Lie groupoids

f ×∆ : X1 → X2 × (M1 ×M1)

and get f ! : K∗(X1)→ K∗(X2) by using the associated deformation groupoid

to f×∆. In fact, our construction works, verbatim, in the presence of an external

Lie groupoid action of a given Lie groupoid G ⇒M . Thus, if f is an equivariant

K−oriented G -map we get a shriek map

(154) f ! : K∗(X1 o G )→ K∗(X2 o G )

using the exact same deformation groupoid together with the functoriality of the

deformation to the normal cone construction to get the associated semi-direct

product groupoid given by the action of G .

The wrong way functoriality gives first the assembled group
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Definition 4.3.1 (Topological K-theory for Lie groupoids, an orbifold re-

finement). Let G ⇒ M . The Orbifold topological K-theory group associated to

G is the abelian group denoted by K∗top,orb(G ) with generators given by the cycles

(P, x) where

(1) X is a smooth co-compact G -proper spinc orbifold,

(2) πX : X → M is the smooth momentum map which supposed to be a

submersion, and

(3) x ∈ K∗(Xo G ),

and the equivalence relations

(155) (X1, x) ∼ (X2, g!(x))

where g : X1 → X2 is a smooth G -equivariant map.

One gets then the corresponding Baum-Connes assembly map

Theorem 4.3.2. [Geometric Baum-Connes assembly map for Lie groupoids,

the Orbifold version] Let (X, x) be an orbifold cycle over G . Let µorbG (X, x) =

(πX)!(x). Then µorbG (X, x) only depends upon the equivalence class of the cycle

(X, x) in K∗top,orb(G ). Hence we have a well defined assembly map

(156) µorbG : K∗top,orb(G ) −→ K∗(G ).

We have the following result relating the two assembly maps, its proof is

immediate from the defintions and wrong way functoriality.

Proposition 4.3.3. Let G ⇒ M be a Lie groupoid. There is a canonical

group morphism

(157) λ : K∗top(G )→ K∗top,orb(G )

sending the class of a manifold cycle (M,x) to the class of the orbiolfd cycle

(M,x). It fits the following commutative diagram

(158) K∗top,orb(G )
µorbG // K∗(G )

K∗top(G )

λ

OO

µG
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.

The details of this section will appear in a forthcoming paper where I will go

further and prove (for the moment a conjecture) that the morphism λ above is

an isomorphism, I will besides study the orbifold version in the very intersting

case of discrete groups.





CHAPTER 5

Topological index theory for discrete groups and the

Chern-Baum-Connes pairing formula

Let Γ be a countable discrete group. In [13, 14, 15], Baum and Connes

initiated a program on index theory for Γ-manifolds that lead to the so-called

Baum-Connes assembly map associated to the group Γ and to the ensuing Baum-

Connes conjecture that states that the assembly map is an isomorphism. The

conjecture is at the present time still open, even though it has been proved (or

in some cases just the injectivity or the surjectivity) for a large class of groups.

One of the main reasons this conjecture became an important source of research

is that it implies some other important conjectures in geometry, topology and

analysis, for example, to mention the most famous ones, the Novikov conjecture,

the stable Gromov-Lawson conjecture, the modified trace conjecture and the

Kadison-Kaplansky conjecture; See for instance [59, 58, 39]. The assembly

map in question is the group morphism

(159) µ : K∗top(Γ) −→ K∗(C
∗
r (Γ))

constructed in the last chapter applied to the discrete group Γ. This assem-

bly morphism has been studied extensively in recent years in the context of

higher secondary invariants, Gromov-Lawson indices, problems related to (ex-

istence and classification of) positive scalar curvature metrics and surgery on

manifolds, for example see [20], [21], [36], [50], [56], [89], [102] or [106], just

to mention some recent developments related in some way to our work. For

a general overview of the Baum-Connes assembly map the reader may consult

[55], [75], [98].

Now, in the original papers of Baum and Connes, ref.cit., the cycles for the

left hand side consist of classes of couples (M,x), where M is a Γ-proper, spinc,

cocompact manifold and x is an element of the equivariant K-theory group1

K∗Γ(M) and the equivalence relation is generated by being equal up to a Γ-

family index, to be more precise, if f : M → N is an appropriate Γ-equivariant

map between manifolds as above, then we shall have (M,x) ∼ (N, f!(x)) where

the shriek map f! is a Γ-family K-theoretical index morphism. In the original

papers of Baum and Connes the assembly was then defined to be

[M,x] 7→ πM !(x) ∈ K∗(C∗r (Γ))

1A model for this can be the K-theory group of the C∗-algebra C∗r (M o Γ) associated to

the action groupoid M o Γ.
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where πM !(x) is the Γ-higher index associated to the projection πM : M → {∗}.
Now, even if Baum and Connes gave the fundamental ideas and directions to

follow, not all proofs were completed, but just sketched. For example, in those

papers the well-definedness of the left hand side groups was sketched and not

proved. The fact that it is well-defined is a consequence of the wrong way

functoriality theorem proved in a more general context in [35]. This wrong way

functoriality also implies that the originally defined Baum-Connes assembly map

is well-defined.

After the original formulation mentioned in the work of Baum and Connes,

several different directions occurred; In fact, the assembly map was formalised

some years later by Baum, Connes and Higson in [16] using the powerful tool of

Kasparov’s KK-theory to properly define a “Left hand side” and the assembly

map, with the time other models for this left hand side also entered into the

game (Baum-Douglas model, Lück model). The emergence of KK-theory led to

deep and powerful results on the injectivity and surjectivity of the assembly map

and allowed to establish several properties. One of the main motivations of the

original ideas of Baum-Connes was to be able to give geometric formulas for the

higher index, to be able to use classical topological tools for computing higher

analytical indices, however actual index formulae computations of the assembly

map are rare, for example in [13] Baum and Connes sketched a construction of a

Chern character from the left hand side that would eventually lead to an actual

pairing with higher currents or higher traces. In [30] we overcome this problem

and fill this gap by constructing a Chern character type morphism

(160) K∗top(Γ)
chtopµ // HP∗(CΓ)

that will be called the Chern-Baum-Connes assembly map because it is con-

structed by assembling as Baum-Connes, and as will be detailed below, different

Chern characters. We hence complete the program on the Chern character for

discrete groups as stated in [13] and [14] by Baum and Connes. Besides, this

geometric approach allows us to continue this program by first comparing the

models we use in our work with the more common analytic models used in the lit-

erature and second by giving a complete solution, for countable discrete groups,

to the problem of defining and computing a geometric pairing between the left

hand side of the Baum-Connes assembly map, given in terms of geometric cy-

cles associated to proper actions of the discrete group, and the cyclic periodic

cohomology of the group algebra. We now explain in more details the contents

of our work.

For a Γ-proper manifoldM , there are periodic delocalised cohomology groups

H∗Γ,deloc(M), even and odd, that might be defined by periodizing the de Rham

cohomology of the so-called inertia groupoid (for more details see appendix A

or section 3 in [30]). In fact, one justification of why this is the correct group to

consider is because there is a Γ-Chern character morphism
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(161) chΓ
M : K∗Γ(M) −→ H∗Γ,deloc(M)

given explicitly as the composition of the Connes-Chern character2

(162) Ch : K∗Γ(M) −→ HP∗(C
∞
c (M o Γ)).

followed by an isomorphism

(163) HP∗(C
∞
c (M o Γ))

TX

∼=
// H∗Γ,deloc(M).

explicitly described in [97] by Tu and Xu, and recalled in one of the appendices

in [30]. In fact, Tu and Xu proved even more in [97] that the Chern character

(161) is an isomorphism up to tensoring with C.

From our perspective there are two major technical problems in index theory

for Γ-proper actions on smooth manifolds:

(i) Relate different Γ-proper actions and their pairings as above. Explic-

itly this means being able to prove (and give sense to) Riemann-Roch

type theorems and pushforward functoriality for such actions and then

being able to assemble these results to give an explicit formulation of

a pairing

(164) K∗top(Γ)×HP ∗(CΓ)→ C

that only depends on the group Γ and that contains/exhausts all pos-

sible index pairings for Γ-proper smooth cocompact manifolds.

(ii) Compute explicit index formulas for the pairing above. In particu-

lar, as we will discuss below, the cyclic periodic cohomology groups

HP ∗(CΓ) can be computed explicitly, by the work of Burghelea [25],

in terms of group cohomology groups associated to the centralizers

of elliptic and non elliptic elements. The problem of computing an

explicit formula for the pairing above can be stated as giving a geo-

metric/topological expression for the pairings

(165) 〈[M,x], τ〉 ∈ C

for a geometric cycle [M,x] ∈ K∗top(Γ) and a group cocycle τ in a group

cohomology (that only depends on its conjugacy class) of some elliptic

element (as we will see it is zero for non-elliptic elements). There are

several particular cases computed in the literature, for free and proper

actions and localised at the unit cocycle by Connes and Moscovici

[40], for particular Connes-Moscovici cocyles by Ponge and Wang in

[92, 91], for some delocalised traces but under some extra hypothesis

on the extensibility of the cocycles by the two last named authors in

[101], for mention some of them, see also [88, 86]. We are certainly

aware of several other computations but as far as we know there is

2Defined a priori in K∗(C
∞
c (M o Γ)) but C∞c (M o Γ) ⊂ C∗(M o Γ) is stable under

holomorphic calculus since the action is proper.
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not a general and systematic procedure or formula that computes the

above pairing.

In this chapter we will recall how to completely solve the two problems above.

The complete proofs can be found in my paper [30]. In order to be more precise,

we need to introduce some terminology and explain what are the results leading

to the solution of these problems.

5.1. Pushforward maps in periodic delocalised cohomology and

delocalised Riemman-Roch theorem

Let f : M −→ N be a Γ-equivariant C∞-map between two Γ-proper cocom-

pact manifolds M and N . We defined in [30] definition 3.2 (see definition 6.2.1

for a definition in a slighter general case) a pushforward (shriek) map in periodic

delocalised cohomology

(166) f! : H
∗−rf
Γ,deloc(M) −→ H∗Γ,deloc(N),

where rf is the rank of the vector bundle Tf = TM ⊕ f∗TN , and under the

assumption that T ∗f admits a spinc-structure, in other words, f is Γ-equivariant

and K-oriented. The construction of these shriek maps follows the same lines

of the shriek maps in K-theory constructed in [35] (following the ideas pro-

posed originally in [15] and [39]). Indeed we use f to construct an appropriate

deformation groupoid that allows to define f! as a composition of a Thom iso-

morphism followed by a deformation morphism, see Section 3 in [30] for more

details.

A very important and fundamental point to remark is that to be able to ap-

ply constructions similar to those used in K-theory one needs, besides suitable

groupoids, appropriate smooth subalgebras of the C∗-algebras of the correspond-

ing groupoids, in particular appropriate enough to have the right exact sequences

that lead to classical arguments in algebraic topology (the homotopy invariance,

periodicity, six term exact sequences, etc.). In our case we explained in Ap-

pendices A and B in [30] which are the main groupoids used in this paper and

which algebras we are using in each case when applying cohomology (mainly

periodic cyclic (co)homology) to them, see also appendix D. In Appendix C of

[30] we construct and study the deformation index type morphisms applied to

those algebras/groupoids in periodic cyclic (co)homology.

The first main result of this chapter is that these cohomological pushforward

maps are compatible with the K-theoretical pushforward maps (defined in [35])

via a twisted Chern character. The result states as follows (Theorem 3.4 in [30]):

Theorem 5.1.1 (Delocalised Riemman-Roch). Let f : M −→ N be a Γ-

equivariant, K-oriented C∞-map between two Γ-proper cocompact manifolds M
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and N . The following diagram is commutative

(167) K
∗−rf
Γ (M)

ch
TdΓ
M
��

f! // K∗Γ(N)

ch
TdΓ
N

��
H
∗−rf
Γ,deloc(M)

f!

// H∗Γ,deloc(N).

In the above statement the twisted Chern character chTdΓ
M

is the morphism

(168) chTdΓ
M

: K∗Γ(M) −→ H∗Γ,deloc(M)

given by x 7→ chΓ
M (x) ∧ TdΓ

M , where TdΓ
M is a delocalised Todd class, re-

called/defined in Section 3.2 in [30].

5.2. Delocalised cohomology wrong way functoriality, Chern

character for discrete groups

In order to assembly the above delocalised Riemann-Roch diagram, we need

to establish first the functoriality of the pushforward maps in delocalised co-

homology. This again is done by using appropriate deformation groupoids,

appropriate smooth subalgebras associated to them and classic cohomological

properties that allows to adapt to this setting the K-theoretical analog proof.

The result (Theorem 4.1 [30]) states as follows:

Theorem 5.2.1 (Pushforward functoriality in delocalised cohomology). Let

f : M −→ N and g : N −→ L be Γ-equivariant, K-oriented C∞-maps between

Γ-proper cocompact manifolds as above. Then

(169) (g ◦ f)! = g! ◦ f!

as morphisms from H∗Γ,deloc(M) to H
∗+rg◦f
Γ,deloc (L) (rg◦f = rf + rg mod 2).

One of the first things one can do with such a result is to assemble the

groups H∗Γ,deloc(M) by using the pushforward maps and in an essential way

the pushforward functoriality. For ∗ = 0, 1 mod 2, we can consider the abelian

groups

(170) H∗top(Γ) = lim−→
f!

H∗Γ,deloc(M).

where the limit is taken over the Γ-proper cocompact spinc manifolds of dimen-

sion equal to ∗ modulo 2.

Equivalently it can be defined as the abelian free group with generators

(M,ω) with M a Γ-proper cocompact spinc manifold and ω ∈ H∗Γ,deloc(M) with

dimension of M equal to ∗ modulo 2, and the equivalence relation generated by

ω ∼ f!(ω) for f : M → N as above.

As a direct consequence of the two theorems above together with the push-

forward functoriality in K-theory (Theorem 4.2 in [35]) we can assemble the

twisted Chern characters and get the following Chern character for any discrete

group Γ (Theorem 4.5 in [30]):
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Theorem 5.2.2 (Chern character for discrete groups). For any discrete

group Γ, there is a well defined Chern character morphism

(171) chΓ : K∗top(Γ) −→ H∗top(Γ)

given by

(172) chΓ([M,x]) = [M, chΓ
M (x) ∧ TdΓ

M ].

Furthermore, it is an isomorphism once tensoring with C.

5.3. The Chern-Baum-Connes assembly map and the Chern-Connes

pairing formula for discrete groups

In [100] Voigt constructs a Chern character from bivariant equivariant Kas-

parov theory to the equivariant bivariant cohomology theory defined previously

by Baum and Schneider in [12]. He obtained in particular a Chern character

from the analytic left hand side model of Baum and Connes and some delocalised

Baum and Schneider cohomology group. In principle his Chern character and

ours should coincide for formal reasons (at least it is expected to be like that), it

would be very interesting to explore this relation. Another related Chern char-

acter was constructed by Matthey in [68] following the related works of Lück

in [66] and [65], in these papers the analytic model is used as well. Even if

we do not compare our Chern morphisms with that by Matthey3, we follow in

Section 6 the ideas and results of Matthey on the delocalization of the Baum-

Connes assembly map. Now, there is however a big difference on the approaches

and techniques developed for these in principle different Chern characters but

also in the actual computation in terms of cycles, the Chern character in the

Theorem above is computed explicitly in terms of cycles and of the delocalised

Todd classes thanks to the delocalised Riemann-Roch theorem and the wrong

way functorialities in K-theory and in equivariant cohomology. This will play a

major role in the actual computation of index pairing formulas developed below.

To describe what follows we need to give more details on the periodic delo-

calized cohomology groups H∗Γ,deloc(M) for a Γ-proper cocompact spinc manifold

M . In fact, since the action of Γ on M is proper, and for ∗ = 0, 1 mod 2, the

associated periodic delocalised cohomology groups can be given, as explained in

appendix D in [30], by

(173) H∗Γ,deloc(M) :=
⊕

〈g〉∈〈Γ〉fin

∏
k=∗mod 2

Hk
c (Mg o Γg),

where 〈Γ〉fin stands for the set of conjugacy classes of finite order elements (called

elliptic elements as well) of Γ with a fixed finite order element g of its conjugacy

class, Γg = {h ∈ Γ : hg = gh} is the centralizer of g; and where Mg o Γg
stands for the action groupoid associated to the canonical action by conjugation

of the centralizer Γg = {h ∈ Γ : hg = gh} on the fixed point submanifold

Mg = {x ∈M : x ·g = x}, and Hk
c (MgoΓg) stands for the compactly supported

3It would be very interesting but it is out of the particular subject of the present article.
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de Rham groupoid cohomology as reviewed in the next section. For these groups,

we prove in Section 6 Lemma 6.1 in [30] that the canonical integrations along

the fibers of the canonical groupoid projections

(174) Mg o Γg −→ Γg,

(175) πMg ! : Ωn
c (Mg × Γpg) −→ CΓpg,

with p ∈ N and n = dimMg, given by

(176) πMg !(ω)(γ) :=

∫
Mg

ω(m, γ)

for γ ∈ Γpg and for ω ∈ Ωn
c (Mg × Γpg), induce a well-defined morphism

(177) H∗Γ,deloc(M)
πM ! // H∗(Γ, FΓ),

for every M of dimension n = ∗,mod 2, and where

(178) H∗(Γ, FΓ) :=

 ⊕
〈g〉∈〈Γ〉fin

⊕
k=∗mod 2

Hk(Γg;C)


is the group homology of Γ with coefficients in the complex vector space FΓ gen-

erated by the elliptic elements (See Appendix C of Matthey [68] for a discussion

of this isomorphism that uses the Shapiro’s Lemma).

Section 6 of [30]is mainly dedicated to prove, through several lemmas and

propositions of independently interest, the following theorem.

Theorem 5.3.1. The maps

(179) H∗Γ,deloc(M)
πM ! // H∗(Γ, FΓ),

induce a well-defined cohomological assembly map

(180) µFΓ : H∗top(Γ) −→ H∗(Γ, FΓ)

given by

(181) µFΓ([M,ω]) = πM !(ω).

There are also other models in the literature for a cohomological assembly

map as in Theorem 5.3.1. See for example [43] and [53] for more formal con-

structions. The novelty of our construction (see Section 5) is that it is given

explicitly in terms of cohomological pushforward maps and based on the wrong

way functoriality. It would be of course interesting to compare the above assem-

bly to the previous ones, since for example in the above cited papers the authors

get very interesting properties related to index theory. In our case, the assembly

map from Theorem above will allow, as explained below, to give index formulas

for the pairing between periodic cyclic cohomology and topological K-theory for

discrete groups.
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Now, the periodic cyclic homology groups of CΓ have been computed. Indeed

Burghelea showed in [25] that there are isomorphisms

(182) HP ∗(CΓ) ∼=

 ∏
〈g〉∈〈Γ〉fin

⊕
k=∗mod 2

Hk(Γg;C)

⊕ ∏
〈g〉∈〈Γ〉∞

T ∗(g,C)

where 〈Γ〉∞ stands for the set of conjugacy classes of infinite order elements) of

Γ, g ∈ Γ is a fixed element (of infinite order for the second factor) of its conjugacy

class; and where T ∗(g,C) are some limit groups depending on the cohomology

groups of Ng, the quotient group of the centralizer Γg = {h ∈ Γ : hg = gh} by the

subgroup generated by g, but that will not be explicitly described in this paper

or its sequel since this factor will not enter in our index formula computations.

In fact, by Burghelea’s work [25] there is a morphism

(183) B : H∗(Γ, FΓ) // HP∗(CΓ)

which is an isomorphism onto its image as a direct factor. In particular, we can

consider the assembly map

(184) µΓ : H∗top(Γ) −→ HP∗(CΓ)

given by the composition of the cohomological assembly map µFΓ of the theorem

above followed by Burghelea’s morphism B.

We are ready to state the final theorem that combines all the above men-

tioned results and gives an explicit formula for the index pairing. For this, note

that there are canonical morphisms (for every g of finite order)

(185) Hk(Γg;C)
π∗g−→ Hk(Mg o Γg)

induced from the canonical groupoid projection πg : MgoΓg → Γg. As we justify

in Section 6 in [30] these pullback morphisms are in duality with the morphisms

induced by integration along the fibers described in the last theorem. This finally

leads to the following theorem (see Theorems 6.7 and 6.8 in [30]) that gives an

index theoretical geometric formula for the pairing.

Theorem 5.3.2 (The Chern assembly map). For any discrete group Γ, there

is well-defined morphism

(186) K∗top(Γ)
chΓ
µ // HP∗(CΓ)

given by the composition of the Chern character

(187) chΓ : K∗top(Γ) −→ H∗top(Γ)

followed by the cohomological assembly

(188) µΓ : H∗top(Γ) −→ HP∗(CΓ).

The morphism induces a well-defined pairing

(189) K∗top(Γ)×HP ∗(CΓ)→ C
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computed in every g-component (with respect to Burghelea’s decomposition above)

by

(190) 〈[M,x], τg〉 = 〈chgM (x) ∧ TdMg , π∗g(τg)〉

where the right hand side corresponds the pairing between Γg-invariant forms

and currents on Mg. The morphism chΓ
µ will be called the Chern-Baum-Connes

assembly map of the group Γ.

We remark that the Chern-Baum-Connes assembly map in the Theorem

above is explicitly computed in terms of cycles and delocalised Todd classes. It

would be interesting to compare our Chern assembly with the ones obtained by

other constructions. For example, as observed by Engel and Marcinkowski in

[53], one can use Yu’s algebraic assembly map [105] to get as well a Chern-

Baum-Connes assembly map. One can also use the cohomological assembly

map studied by Cortiñas and Tartaglia in [43]. As far as we know there are

no comparison results about these, in principle different, models for the Chern

assembly map.

Also, relating the K-theoretical assembly map with the cohomological as-

sembly map is also part of the program of studying secondary invariants. For

example, in [89], Piazza, Schick and Zenobi used noncommutative de Rham the-

ory and delocalised versions of it to produce some long surgery exact sequences

in homology and they obtained very deep results on the study of higher rho in-

variants by mapping the K-theoretical surgery sequence to the homological one.

It would be also very interesting to relate our constructions to theirs and study

secondary invariants. For example, in [90], Piazza and Zenobi used groupoid

techniques in a crucial way to study some related problems for singular spaces.

Another related work in this direction can be found in [36].

There are several reasons for which we decided to state the final result above

in terms of a pairing with cyclic periodic cohomology instead of just finishing

the paper with the delocalized group homology version:

(i) An important part of the techniques developed in this paper apply to

more general groups or groupoids. Computations such as the one by

Burghelea for discrete groups are not so common, but several examples

of geometric cyclic cocycles are known in many different situations.

One could expect to extend some index theoretic formulas to some

other settings by using the techniques of the present paper.

(ii) For geometric/topological applications, it would be interesting to ex-

plore the injectivity of the cohomological assembly maps µFΓ and µΓ.

In principle, there are no analytic obstructions for this kind of prob-

lems. In fact, there are at least two models of similar cohomological

assembly maps of this kind, both using periodic cyclic theory, in which

the injectivity was proved under general assumptions on the group; See

[43] and [105]. A comparison of their work with our cohomological

assembly maps would be very interesting.



56

(iii) Given a periodic cyclic class τ ∈ HP ∗(CΓ), by pairing with K-theory,

it gives rise to a morphism ϕτ : K∗(CΓ) → C; Sometimes it makes

sense to replace the domain by the K-theory groups of larger algebras

(for example, the algebra RΓ considered by Connes and Moscovici

in [40]). If the morphism ϕτ extends to K∗(C
∗
r (Γ)) (or at least to

appropriate smooth subalgebras) then one can consider the pairing

(191) 〈µBC(x), τ〉

with x ∈ K∗top(Γ) and µBC the K-theoretical Baum-Connes assembly

map. Note that extending the morphisms ϕτ is a very hard problem.

For example, for classes localized at identity, this would imply the

Novikov conjecture on the homotopy invariance of higher signatures.

On the other hand, for x ∈ K∗top(Γ) and any τ as above, our pairing,

〈chΓ
µ(x), τ〉, is defined (and computed explicitly by Theorem 6.8 in

[30]) and in all known cases we have

(192) 〈chΓ
µ(x), τ〉 = 〈µBC(x), τ〉,

whenever the right hand side makes sense and whenever it has been

computed. This rises a very interesting question, in general, if ϕτ
extends, do we have the equality (192)?

(iv) In recent years, very interesting articles have appeared on the study

of higher secondary invariants, surgery sequences and cyclic cocycle

pairings and the very interesting and fruitful relations between these

three topics were developed; For example, just to mention some of

them: [20], [21], [36], [89] and [104]. All these works are certainly

closely related to our present paper and it would be highly interesting

to explore some relations with these results.
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Chern-Baum-Connes assembly map for Lie groupoids

In this chapter we resume the contents of my paper [28]. For a given Lie

groupoid G ⇒ P , we study of the hypothetical existence of a commutative

diagram of assembled morphisms

(193) K∗top(G )

Chtop
��

µBC // K∗(C
∗
r (G ))

ChCO
��

H∗top(G )
µHP

// HP∗(C
∞
c (G ))

where ChCO would be the hypothetical extension of the Chern-Connes character

ChCO : K∗(C
∞
c (G ))→ HP∗(C

∞
c (G )).

In this work we will use geometric deformation groupoids and associated

pushforward morphism in periodic cyclic (co)homology to construct two mor-

phisms above Chtop and µHP for a large class of Lie groupoids1. Additionally,

the composition will yield a morphism

ChBC : K∗top(G )→ HP∗(C
∞
c (G ))

that we will call the Chern-Baum-Connes assembly map and that will satisfy

that the above diagram (193) commutes if the Chern-Connes character for G

extends to the C∗-algebra K−theory groups as above.

Now, the existence of the extension morphism ChCO in the right of the

diagram (193) is a very hard analytic problem, unknown in general for discrete

groups and for many interesting Lie groupoids, and possibly not true for some

other examples. For having a more flexible version of the extension problem

above we will see in our main theorem below, theorem 6.0.3, that if for a given

periodic cyclic cocycle on C∞c (G ) the associated pairing extends to theK−theory

of the reduced C∗-algebra then the composition of the Baum-Connes assembly

map followed by the associated extended morphism coincides with the Connes

pairing of the given periodic cyclic cycle with the Chern-Baum-Connes assembly

map.

To develop this program, an important and fundamental point to remark is

that to be able to apply constructions in periodic cyclic theory similar to those

used in K-theory one needs, besides suitable groupoids, appropriate smooth

1That we conjecture to be all the Lie groupoids, see next remark, but that contains at least

all foliation groupoids (Morita equivalent to an étale groupoid), discrete and compact groups

for example.
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subalgebras of the C∗-algebras of the corresponding groupoids. In particular

appropriate enough to have the right exact sequences that lead to classic argu-

ments in algebraic topology (use of homotopy invariance, periodicity, six term

exact sequences, etc.). In appendix D we explain which are the main groupoids

used in this paper and which algebras we are using in each case when applying

periodic cyclic (co)homology to them. In section 6.1 we construct and study

the deformation index type morphisms applied to those algebras/groupoids in

periodic cyclic (co)homology.

Next, to give a detailed description of the contents of the paper we start by

introducing the class of Lie groupoids that we will consider, which we believe to

be all Lie groupoids, see remark below. Let G ⇒ P be a Lie groupoid, we will say

that G satisfies the Thom isomorphism property in periodic cyclic (co)homology

or simply that it is a HP-Thom Lie groupoid if the following two properties are

satisfied

(i) For every E → M G -spinc proper vector bundle there is an unique

isomorphism

(194) T G
E : HP∗(C

∞
c (M o G )) −→ HP∗+rE (Sc(E o G ))

where ∗ + rE = ∗ + rank(E) mod 2 (see section ?? for the definition

of Sc(E o G )), such that the following diagram commutes

(195) K∗(C
∞
c (M o G ))

ChCO
��

T G
E

∼=
// K∗+rE (Sc(E o G ))

ChCO
��

HP∗(C
∞
c (M o G ))

T G
E

∼= // HP∗+rE (Sc(E o G ))

where the morphism T G
E on the top is the Thom isomorphism2 in K-

theory of the correspondent algebras and where the vertical morphisms

stand for the correspondent Chern-Connes characters.

(ii) For every E → M G -spinc proper vector bundle there is an isomor-

phism

(196) T EG : HP∗+rE (Sc(E o G )) −→ HP∗(C
∞
c (M o G ))

where ∗+ rE = ∗+ rank(E) mod 2, such that the following property

is satisfied

• For every ω ∈ HP∗(M o G ) and every δ ∈ HP∗+rE (Sc(E o G ))

the following equality of Connes pairings holds

(197) 〈ω, T EG (δ)〉 = 〈T G
E (ω), δ〉.

Remark 6.0.1. Some important points to remark about this Thom isomor-

phism hypothesis in periodic cyclic (co)homology:

2In principle the Thom isomorphism in K-theory is defined for the correspondent C∗-

algebras, but in this particular case the smooth algebras are stable under holomorphic calculus

since we are assuming proper action.
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• If it exists, the above Thom isomorphism in periodic cyclic homology

is more like a twisted Thom isomorphism. Indeed, in the cases where

geometrical computations are avalaible (e.g. classic spaces case or dis-

crete groups case for instance), the cohomological Thom isomorphism

does not commute with the K-theoretical Thom isomorphism via the

Chern character. However, it does commute under the presence of

appropriate Todd classes. In this paper we will use for simplicity the

terminology Thom isomorphism for the above morphism.

• The Thom isomorphism in K-theory above holds in all generality, it

can be obtained by some descent procedure from the classic topological

K-theory Thom isomorphism for spaces by using for example the work

of Le Gall on groupoid equivariant KK-theory, see [62]. For more

details the reader can see appendix A.2 in [35].

• As far as the author knows, there is no proof of the Periodic Cyclic

(co)homology Thom isomorphism for general Lie groupoids. It is cer-

tainly highly expected to be true in all generality.

• Some interesting cases in which the above property of being HP-Thom

is known to hold are

(i) Foliation groupoids, that is, Lie groupoids which are Morita equiv-

alent to étale groupoids. This can be seen using for example

the work of Tu and Xu for proper etale groupoids, [97], together

with the Lie groupoid Morita invariance of the Periodic Cyclic

(co)homology, see for example [87]. This case covers the cases of

discrete groups and holonomy groupoids of regular foliations.

(ii) Compact Lie groups, for example by following the work of Block

and Getzler in [23].

As for the K-theoretical case and the discrete group case developed in [35]

and [30], the above Thom property, together with the use of appropriate defor-

mation groupoids algebras plays a fundamental role to have:

• A pushforward morphism

(198) HP∗(C
∞
c (M o G ))

f !−→ HP∗(C
∞
c (N o G ))

for appropriate maps f : M → N between G−manifolds, definition

6.2.1;

• the pushforward functoriality for the morphisms above, theorem 6.2.2;

• an assembled group

(199) H∗top(G ) := lim−→
f!

HP∗(C
∞
c (M o G )),

with manifolds M being G -proper spinc cocompact, and an assembled

Chern character (corollary 6.2.4)

(200) Chtop : K∗top(G ) −→ H∗top(G )
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given by

(201) Chtop([M,x]) = [M,ChMCO(x)].

where ChMCO : K∗(C
∞
c (M o G )) → HP∗(C

∞
c (M o G )) is the Chern-

Connes character;

• a cohomological assembly map (theorem 6.2.5)

(202) µHP : H∗top(G ) −→ HP∗(C
∞
c (G )),

that is explicitly given by

(203) µHP ([M, τ ]) = πM !(τ).

where πM : M → P is the G−momentum map given by the G -action

on M ; and

• the commutativity of diagram (193) if the Chern-Connes of G extends

to the K-theory of the C∗-algebra.

We summarize the last results in the following theorem.

Theorem 6.0.2. For any HP-Thom Lie groupoid G there is a well defined

morphism

(204) K∗top(G )
ChBC // HP∗(C

∞
c (G ))

given by the composition of the Chern character

(205) Chtop : K∗top(G ) −→ H∗top(G )

followed by the cohomological assembly

(206) µHP : H∗top(G ) −→ HP∗(C
∞
c (G )),

inducing a well-defined pairing

(207) K∗top(G )×HP ∗(C∞c (G ))→ C

given by

(208) 〈[M,x], τ〉 := 〈πM !(ChMCO(x)), τ〉.

Moreover, the commutativity of diagram (193) holds if the Chern-Connes char-

acter morphism for G extends to K∗(C
∗
r (G )).

We call the morphism ChBC above the Chern-Baum-Connes assembly map

of the Lie groupoid G .

The construction of the assembly map above includes of course the case of

discrete groups. Now, for discrete groups, the assembly map we constructed in

[?] is in principle different, in fact in that paper we use the fact that an explicit

computation for the periodic cyclic (co)homology groups is known in terms of

group cohomology groups to give a more geometric description in that case and

a formula for the index pairing. We will study elsewhere the relation between

these two assembly maps, this would be very interesting since for the assembly

map studied in this paper we have an explicit relation with the Baum-Connes
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map, theorem above and below, while in [30] we obtained explicit index formulas

for the Connes pairing.

We conclude this introduction with one of the main result of this chapter,

theorem 6.2.7.

Theorem 6.0.3. Let G ⇒ P be a Lie groupoid satisfying the Thom iso-

morphism property in periodic cyclic (co)homology and let τ ∈ HP∗(C
∞
c (G )).

Suppose that the morphism

(209) ϕ̃τ : K∗(C
∞
c (G )) −→ C

induced from the pairing with HP∗(C
∞
c (G )) (via the Chern-Connes character)

extends to a morphism

(210) ϕτ : K∗(C
∗
r (G )) −→ C.

Then, for every [M,x] ∈ K∗top(G ) we have

(211) ϕτ (µBC([M,x])) = 〈ChBC([M,x]), τ〉.

One of the main interest of the theorem above is that for every (HP-Thom)

Lie groupoid, and for every periodic cyclic cocycle, the right hand side of the

formula above always makes sense.

6.1. Deformation morphisms in periodic cyclic (co)homology

Let f : M −→ N be a G -equivariant C∞-map between two G−manifolds

M and N . We consider the G−vector bundle Tf := TπM ⊕ f∗TπN over M as

the previous section. We are going to use deformation groupoids to construct a

morphism

(212) If : HP∗(S (Tf o G )) −→ HP∗(C
∞
c ((M ×P M)×P N) o G )).

Consider the deformation groupoid

(213) Df := Tf
⊔

((M ×P M)×P N)× (0, 1]

over

(214) f∗TπN
⊔

(M ×P N)× (0, 1]

given as above as the normal groupoid associated to the G -map

M
∆×f−→ (M ×P M)×P N.

As we already discussed above, the action of G on (M ×P M) ×P N (diagonal

on M ×P M) leaves invariant the image of M by ∆ × f and then we have, by

functoriality of the deformation to the normal cone construction, an induced

semi-direct product groupoid

Df o G ⇒ f∗TπN
⊔

(M ×P N)× (0, 1].

The following result follows directly from proposition 4.6 and lemma 5.5 in

[32].
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Proposition 6.1.1. For a G -map f : M → N as above the restriction to

zero, or equivalently to the closed subgroupoid Tf oG of Df oG , induces a short

exact sequence

(215) 0 // J // Sc(Df o G )
e0 // Sc(Tf o G ) // 0

where J = λ ·Sc(Df o G ) for λ : Df o G → [0, 1] the canonical projection.

As an immediate consequence of the homotopy invariance and of the six

term short exact sequence for periodic cyclic homology we have the following

corollary.

Corollary 6.1.2. With the notations of the last proposition we have that

(216) HP∗(J) = 0

and

(217) (e0)∗ : HP∗(Sc(Df o G ))→ HP∗(Sc(Tf o G ))

is an isomorphism.

Definition 6.1.3. For a G -map as above we consider the morphism

(218) If : HP∗(Sc(Tf o G )) −→ HP∗(C
∞
c ((M ×P M)×P N) o G )).

given as the composition of (e0)−1
∗ followed by (e1)∗. We call it the deformation

morphism associated to the the G -map f .

6.2. Wrong way functoriality in Periodic cyclic homology and the

Chern-Baum-Connes assembly map

6.2.1. Wrong way functoriality in Periodic Cyclic theory. In this

section we will only work with Lie groupoids satisfying the Thom isomorphism

property as defined in the introduction.

Definition 6.2.1 (Pushward maps in Periodic cyclic homology). Let G ⇒
P be a HP-Thom Lie groupoid. Let f : M −→ N be a G -equivariant, K-

oriented, C∞-map between two G−proper cocompact manifolds M and N . Let

rf := rank(Tf ). We define the morphism

(219) f! : HP∗−rf (C∞c (M o G )) −→ HP∗(C
∞
c (N o G )).

as the composition of the following morphisms

• The Thom isomorphism in Periodic cyclic homology

(220) Th : HP∗−rf (C∞c (M o G )) −→ HP∗(Sc(T
∗
f o G )),

• the isomorphism

(221) F : HP∗(Sc(T
∗
f o G )) −→ HP∗(Sc(Tf o G ))

induced from the Fourier algebra isomorphism,
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• the deformation morphism

(222) If : HP∗(Sc(Tf o G )) −→ HP∗(C
∞
c (((M ×P M)×P N) o G )),

and

• the isomorphism induced from the Morita equivalence (isomorphism by

Proposition 3.6 in [87]) of groupoids ((M ×P M)×P N)oG ∼ N oG

(223) M : HP∗(C
∞
c (((M ×P M)×P N) o G )) −→ HP∗(C

∞
c (N o G )).

As in the case of K-theory groups, we can prove that the above-defined

pushforward morphisms are functorial. This is one of our main results, stated

as follows:

Theorem 6.2.2 (Pushforward functoriality in Periodic cyclic homology). Let

G ⇒ P be a HP-Thom Lie groupoid. Let f : M −→ N and g : N −→ L be G

K-oriented C∞-maps between G−proper cocompact manifolds. Then

(224) (g ◦ f)! = g! ◦ f!

as morphisms from HP∗(C
∞
c (M o G )) to HP∗+rg◦f (C∞c (L o G )) (rg◦f = rf +

rg mod 2).

The proof of the theorem above follows exactly the same steps of the proof

of theorem 4.1 in [30] or Theorem 4.2 in [35] and is based on (co)homological

properties of the periodic cyclic homology groups as homotopy invariance, Thom

isomorphism (here by hypothesis), Lie groupoid Morita invariance, and natural-

ity.

The above wrong way functoriality theorem allows us to consider the follow-

ing assembled groups.

Definition 6.2.3. For a HP-Thom Lie groupoid G ⇒ P and for ∗ =

0, 1 mod 2 we can consider the abelian group

(225) H∗top(G ) = lim−→
f!

HP∗(M o G ).

where the limit is taken over the G proper cocompact spinc manifolds with sub-

mersive moment map and of fiber dimension (the rank its vertical tangent bun-

dle) equal to ∗ modulo 2.

Equivalently it can be defined as the free abelian group with generators (M, τ)

with M a G proper cocompact spinc manifold and τ ∈ HP∗(C∞c (M o G )), and

the equivalence relation generated by τ ∼ f!(τ) for f : M → N as above.

The following is an immediate corollary of the push-forward functoriality

theorems in K-theory (Theorem 4.2 in [35]) and in periodic cyclic homology,

Theorem 6.2.2 above.

Corollary 6.2.4. For any HP-Thom Lie groupoid G , there is a well-defined

Chern character morphism

(226) Chtop : K∗top(G ) −→ H∗top(G )
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given by

(227) Chtop([M,x]) = [M,ChMCO(x)].

Now, the push-forward construction above and its functoriality might be

slightly more general. In particular, N does not have to be G -proper to define a

similar morphism in cyclic periodic homology. Indeed, if f : M → N is G -map

between two G -manifolds with M proper and Tf carrying a G -proper, G − spinc
vector bundle structure, then we can consider the pushforward map

(228) f! : HP∗(C
∞
c (M o G ))→ HP∗(C

∞
c (N o G ))

defined as in Definition 6.2.1. The pushforward functoriality theorem can be

applied in the same way to prove that if

(229) M
f

!!
g

��

N

M ′
f ′

==

is a commutative diagram of G -equivariant maps between two G -manifolds with

M , M ′ proper and Tf , Tf ′ having G − spinc vector bundle structures, then the

following diagram is commutative

(230) HP∗(C
∞
c (M o G ))

f!

))
g!

��

HP∗(C
∞
c (N o G ))

HP∗(C
∞
c (M ′ o G ))

f ′!

55

.

Besides the case when N is also G -proper there is also the very interesting

case when N is a point. In particular we can define πM ! for the moment map

πM of M a G -proper spinc cocompact manifold as above.

We have the following theorem whose proof follows the same steps as Theo-

rem 6.2.2 together with the observation leading to (230).

Theorem 6.2.5. The assembly of the above morphisms µtopM gives rise to a

well defined morphism

(231) µtop : H∗top(G ) −→ HP∗(C
∞
c (G )),

that is explicitly given by

(232) µtop([M, τ ]) = πM !(τ).

where πM : M → P is the G−momentum map given by the G -action on M .
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6.2.2. The Chern-Baum-Connes assembly map for Lie groupoids.

We summarise the last results in the following theorem.

Theorem 6.2.6. For any HP-Thom Lie groupoid G there is a well defined

morphism

(233) K∗top(G )
ChBC // HP∗(C

∞
c (G ))

given by the composition of the Chern character

(234) chtop : K∗top(G ) −→ H∗top(G )

followed by the cohomological assembly

(235) µtop : H∗top(G ) −→ HP∗(C
∞
c (G )),

inducing a well-defined pairing

(236) K∗top(G )×HP ∗(C∞c (G ))→ C

given by

(237) 〈[M,x], τ〉 := 〈πM !(ChMCO(x)), τ〉.

Moreover, the commutativity of diagram (193) holds if the Chern-Connes char-

acter morphism for G extends to K∗(C
∗
r (G )).

We call the morphism ChBC above the Chern-Baum-Connes assembly map

of the Lie groupoid G .

The construction of the assembly map above includes of course the case of

discrete groups. Now, for discrete groups, the assembly map we develop in [?]

is in principle different. Indeed, in that paper we use the fact that an explicit

computation for the periodic cyclic (co)homology groups is known in terms of

group cohomology groups to give a more geometric description in that case and a

formula for the index pairing. We will study elsewhere the relation between these

two assemblies. This is interesting because for the Chern-Baum-Connes assembly

studied in this paper we can answer the question raised in the introduction of

comparing this assembly map with the Baum-Connes assembly map whenever

this makes sense. Indeed, we have the following theorem.

Theorem 6.2.7. Let G ⇒ P be a Chern-Thom Lie groupoid and let τ ∈
HP∗(C

∞
c (G )). Suppose that the morphism

(238) ϕ̃τ : K∗(C
∞
c (G )) −→ C

induced from the pairing with HP∗(C
∞
c (G )) (via the Chern-Connes character)

extends to a morphism

(239) ϕτ : K∗(C
∗
r (G )) −→ C.

Then, for every [M,x] ∈ K∗top(G ) we have

(240) ϕτ (µBC([M,x])) = 〈ChBC([M,x]), τ〉.
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Proof. Let M
πM−→ P be a G -proper spinc manifold, x ∈ K∗(M o G ) and

τ ∈ HP∗(C∞c (G )) satisfying the extension property in the statement above. We

have to show that

(241) ϕτ (πM !(x)) = 〈πM !(ChMCO(x), τ)〉

where on the left hand side πM ! stands for the K-theoretical pushforward (the

pairing makes sense by the extension hypothesis), and where on the right hand

side πM ! stands for the cyclic periodic homology pushforward and ChMCO(x) for

the Chern-Connes character of x.

Let us consider the morphism

(242) π∗M : HP ∗(C∞c (G )) −→ HP ∗(C∞c (M o G ))

given as the composition of the following morphisms

• The isomorphism

(243) HP ∗(C∞c (G ))
M
≈
// HP ∗(C∞c ((M ×P M) o G ))

induced from the canonical groupoid Morita equivalence,

• the morphism

(244) HP ∗(C∞c ((M ×P M) o G ))
(e1)∗

// HP ∗(Sc(G
tan
M o G ))

induced from the evaluation at t = 1 morphism,

• the isomorphism

(245) HP ∗(Sc(G
tan
M o G ))

(e∗0)−1

// HP ∗(Sc(T
πM o G ))

induced from the evaluation at t = 0 morphism,

• the isomorphism

(246) HP ∗(Sc(T
πM o G ))

F
≈
// HP ∗(Sc(T

∗
πM o G ))

induced from the Fourier algebra isomorphism Sc(TπMoG ) ≈ S(T ∗πMo
G ),

• the equivariant Thom isomorphism

(247) HP ∗(Sc(T
∗
πM o G ))

Th

≈
// HP ∗(C∞c (M o G ))

By a direct computation, for getting the equality (241), it is enough to prove

the following two points

A. For every ω ∈ HP∗(M o G ) and for every δ ∈ HP ∗(C∞c (G )) the

following equality holds

(248) 〈ω, π∗M (δ)〉 = 〈πM !(ω), δ〉.

B. For every x ∈ K∗(M × G ) the following equality holds

(249) ϕτ (πM !(x)) = 〈x, π∗M (τ)〉

where 〈x, π∗M (τ)〉 := 〈ChMCO(x), π∗M (τ)〉.
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Proof of A. Since both morphisms, πM ! and π∗M are defined by composi-

tions of Thom isomorphisms, Morita isomorphisms and morphisms induced from

algebra morphisms, the equality (248) follows immediately from the following

general properties of Connes’ pairing:

Naturality: Given a morphism of algebras φ : A→ B we have that

(250) 〈φ∗(a), b〉 = 〈a, φ∗(b)〉

for every a ∈ HP∗(A) and every b ∈ HP ∗(B). This property is quite

standard and holds in all generality.

Thom invariance: Given a G -spinc vector bundle E → M we have that for every ω ∈
HP∗(MoG ) and every δ ∈ HP∗+rE (Sc(EoG )) the following equality

of Connes pairings holds

(251) 〈ω, T EG (δ)〉 = 〈T G
E (ω), δ〉.

This property holds by hypothesis since we are assuming G to be a

HP-Thom Lie groupoid.

Morita invariance: For a G -manifold M as above if we denote by

(252) MHP∗ : HP∗(C
∞
c ((M ×P M) o G )) −→ HP∗(C

∞
c (G ))

and by

(253) MHP ∗ : HP ∗(C∞c (G )) −→ HP ∗(C∞c ((M ×P M) o G ))

the canonical isomorphisms induced from the Lie groupoid Morita

equivalence

(M ×P M) o G −→ G ,

we have that the following equality holds

(254) 〈MHP∗(µ), ρ〉 = 〈µ,MHP ∗(ρ)〉

for every µ ∈ HP∗(C∞c ((M ×P M)oG )) and every ρ ∈ HP ∗(C∞c (G )).

This property holds, by a direct computation, at least in this case

since the morphism induced at the level of cycles consists in integrat-

ing the (M ×P M) part along the diagonal. The fact that these are

isomorphism follows from proposition 3.6 in [87].

Proof of B. By the properties above, naturality, Morita invariance, and Thom

invariance of the Connes pairing, we have the following commutative diagram
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(255)

K∗(C
∗(M o G ))

πM !

''

Th ∼=

��

K∗(C
∞
c (M o G ))

j

∼=
oo

〈·,π∗M (τ)〉
//

Th∼=

��

C

=

��
K∗(C

∗(TπM o G )) K∗(Sc(TπM o G ))
j

∼=
oo

〈·,(e∗0)−1(e∗1(MHP∗ (τ)))〉 // C

=

��
K∗(C

∗(DπM o G ))

e0 ∼=

OO

e1

��

K∗(Sc(DπM o G ))

e0

OO

e1

��

joo
〈·,e∗1(MHP∗ (τ))〉 // C

=

��
K∗(C

∗((M ×P M) o G ))

MK ∼=

��

K∗(C
∞
c ((M ×P M) o G ))

joo

MK∞

��

〈·,MHP∗ (τ)〉 // C

=

��
K∗(C

∗(G ))

ϕτ

77K∗(C
∞
c (G ))

joo 〈·,τ〉 // C

where the morphisms denoted by j are the morphisms induced by the canonical

inclusion of algebras, and where we are using the hypothesis that ϕτ extends the

pairing morphism given by τ , i.e. the commutativity of the last bottom diagram.

Also we recall that the two first morphisms j on the top are isomorphisms

because M is a G -proper spinc manifold. Now, the proof of B follow by direct

diagram chasing if the morphisms

(256) (e0)∗ : K∗(Sc(DπM o G )) −→ K∗(Sc(TπM o G ))

are surjective. This last statement follows from the fact that we are assuming

that TπM is a G -spinc proper vector bundle, in particular with an invariant

G−metric. Indeed, one can use the local structure of the deformation to the

normal cone DπM around TπM as in appendix C of [30]. This completes the

proof of B and of the theorem. �

One of the main interests of the theorem above is that the right hand side of

the formula above always makes sense, for every (HP-Thom) Lie groupoid and

for every periodic cyclic cocycle.



APPENDIX A

Lie groupoids and differentiable stacks

A.1. Basics on Lie groupoids and differentiable stacks

In this section, we review the notion of Lie groupoids.

Let us recall what a groupoid is:

Definition A.1.1. A groupoid consists of the following data: two sets G

and G (0), and maps

(1) s, r : G → G (0) called the source map and target map respectively,

(2) m : G (2) → G called the product map (where G (2) = {(γ, η) ∈ G × G :

s(γ) = r(η)}),

together with two additional maps, u : G (0) → G (the unit map) and i : G → G

(the inverse map), such that, if we denote m(γ, η) = γ · η, u(x) = x and i(γ) =

γ−1, we have

(i) r(γ · η) = r(γ) and s(γ · η) = s(η).

(ii) γ · (η · δ) = (γ · η) · δ, ∀γ, η, δ ∈ G whenever this makes sense.

(iii) γ · x = γ and x · η = η, ∀γ, η ∈ G with s(γ) = x and r(η) = x.

(iv) γ · γ−1 = u(r(γ)) and γ−1 · γ = u(s(γ)), ∀γ ∈ G .

For simplicity, we denote a groupoid by G ⇒ G (0). A strict morphism f from a

groupoid H ⇒H (0) to a groupoid G ⇒ G (0) is given by maps

H

����

f // G

����
H (0)

f0

// G (0)

which preserve the groupoid structure, i.e., f commutes with the source, target,

unit, inverse maps, and respects the groupoid product in the sense that f(h1 ·
h2) = f(h1) · f(h2) for any (h1, h2) ∈H (2).

In this work we will only deal with Lie groupoids, that is, a groupoid in

which G and G (0) are smooth manifolds, and s, r,m, u are smooth maps (with s

and r submersions, see [67, 85]).

A.1.1. The Hilsum-Skandalis category. Lie groupoids form a category

with strict morphisms of groupoids. It is now a well-established fact in Lie

groupoid’s theory that the right category to consider is the one in which Morita

equivalences correspond precisely to isomorphisms. We review some basic defi-

nitions and properties of generalized morphisms between Lie groupoids, see [96]

section 2.1, or [57, 81, 76] for more detailed discussions.

69



70

Definition A.1.2 (Generalized homomorphisms). Let G ⇒ G (0) and H ⇒
H (0) be two Lie groupoids. A generalized groupoid morphism, also called a

Hilsum-Skandalis morphism, from H to G is given by principal G -bundle over

H , that is, a right principal G -bundle over H (0) which is also a left H -bundle

over G (0) such that the the right G -action and the left H -action commute, for-

mally denoted by

f : H // G

or by

H

����

Pf

|||| !!

G

����
H (0) G (0).

if we want to emphsize the bi-bundle Pf involved.

Notice that a generalized morphism (or Hilsum-Skandalis morphism), f :

H // G , is given by one of the three equivalent data:

(i) A locally trivial right principal G -bundle Pf over H as Definition

A.1.2.

(ii) A 1-cocycle f = {(Ωi, fij)}i∈I on H with values in G . Here a G -valued

1-cocycle on H with respect to an indexed open covering {Ωi}i∈I of

H (0) is a collection of smooth maps

fij : H Ωi
Ωj
→ G ,

satisfying the following cocycle condition: ∀γ ∈ Hij and ∀γ′ ∈ Hjk

with s(γ) = r(γ′), we have

fij(γ)−1 = fji(γ
−1) and fij(γ) · fjk(γ′) = fik(γ · γ′).

We will denote this data by f = {(Ωi, fij)}i∈I .
(iii) A strict morphism of groupoids

HΩ =
⊔
i,j H Ωi

Ωj

����

f // G

����⊔
i Ωi

// G (0).

for an open cover Ω = {Ωi} of H (0).

Associated to a G -valued 1-cocycle on H , there is a canonical defined prin-

cipal G -bundle over H . In fact, any principal G -bundle over H is locally trivial

(Cf. [76]).
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Example A.1.3. (i) (Strict morphisms) Consider a (strict) morphism

of groupoids

H

����

f // G

����
H (0)

f0

// G (0)

Using the equivalent definitions 2. or 3. above, it is obviously a gen-

eralized morphism by taking Ω = {H (0)}. In terms of the language of

principal bundles, the bi-bundle is simply given by

Pf := H (0) ×f0,t G ,

with projections tf : Pf → H (0), projection in the first factor, and

sf : Pf → G (0), projection using the source map of G . The actions

are the obvious ones, that is, on the left, h · (a, g) := (t(h), f(h) ◦ g)

whenever s(h) = a and, on the right, (a, g) · g′ := (a, g ◦ g′) whenever

s(g) = t(g′).

(ii) (Classic principal bundles) Let X be a manifold and G be a Lie group.

By definition a generalized morphism between the unit groupoid X ⇒
X (that is a manifold seen as a Lie groupoid all structural maps are

the identity) and the Lie group G ⇒ {e} seen as a Lie groupoid is

given by a G-principal bundle over X.

As the name suggests, generalized morphism generalizes the notion of strict

morphisms and can be composed. Indeed, if P and P ′ are generalized morphisms

from H to G and from G to L respectively, then

P ×G P
′ := P ×G (0) P ′/(p, p′) ∼ (p · γ, γ−1 · p′)

is a generalized morphism from H to L . Consider the category GrpdHS with

objects Lie groupoids and morphisms given by isomorphism classes of generalized

morphisms. There is a functor

(257) Grpd −→ GrpdHS

where Grpd is the strict category of groupoids.

Definition A.1.4 (Morita equivalent groupoids). Two groupoids are called

Morita equivalent if they are isomorphic in GrpdHS.

We list here a few examples of Morita equivalence groupoids.

Example A.1.5 (Pullback groupoid). Let G ⇒ G (0) be a Lie groupoid and

let φ : M → G (0) be a map such that t ◦ pr2 : M ×G (0) G → G (0) is a submersion

(for instance if φ is a submersion), then the pullback groupoid φ∗G := M ×G (0)

G ×G (0) M ⇒M is Morita equivalent to G , the strict morphism φ∗G → G being

a generalized isomorphism. For more details on this example the reader can see

[76] examples 5.10(4).
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Example A.1.6 (The basic example: the Čech groupoid). Given a Lie

groupoid H ⇒ H (0) and an open covering {Ωi}i of H (0), the canonical strict

morphism of groupoids HΩ −→ H is a Morita equivalence. It corresponds to

the pullback groupoid by the canonical submersion tiΩi →H (0).

Example A.1.7 (Foliations∼ étale groupoids). One main example to have in

mind will be the holonomy groupoid associated to a regular foliation. Let M be a

manifold of dimension n. Let F be a subvector bundle of the tangent bundle TM .

We say that F is integrable if C∞c (F ) := {X ∈ C∞c (M,TM) : ∀x ∈M,Xx ∈ Fx}
is a Lie subalgebra of C∞c (M,TM). This induces a partition of M in embedded

submanifolds (the leaves of the foliation), given by the solution of integrating F .

The holonomy groupoid of (M,F ) is a Lie groupoid

GM ⇒M

with Lie algebroid AG = F and minimal in the following sense: any Lie groupoid

integrating the foliation, that is having F as Lie algebroid, contains an open

subgroupoid which maps onto the holonomy groupoid by a smooth morphism of

Lie groupoids. The holonomy groupoid was constructed by Ehresmann [51] and

Winkelnkemper [103] (see also [26], [54], [85]).

A.2. Lie groupoid cohomology

In this section we will describe some (co)homology groups associated to Lie

groupoids and some properties we use on this work. The first three subsections

are reviews of classic material, we are going to follow the nice paper/survey by

K. Behrend “Cohomology of Stacks”, [17], for more details and proofs the reader

can look at the more complete source [18].

A.2.1. The de Rham cohomology. Let G ⇒ M be a Lie groupoid, we

denote as usual by G(p) the manifold of p-composables arrows. In particular,

M = G(0) and G(1) = G. For every p ∈ N there are p+ 1 structural maps

G(p) ∂i−→ G(p−1)

for i = 0, .., p, given by:

∂0(γ1, ..., γp) = (γ2, ..., γp),

∂p(γ1, ..., γp) = (γ1, ..., γp−1),

and, for i = 1, ..., p− 1,

∂i(γ1, ..., γp) = (γ1, ..., γi ◦ γi+1, ..., γp).

A direct computation shows that ∂2 = 0 where

∂ : Ωq(G(p−1)) −→ Ωq(G(p))

is given by ∂ :=
∑

i=0,...,p(−1)i∂∗i . For a fixed q, (Ωq(G(·)), ∂) is then a complex.

The exterior de Rham derivative d : Ωq → Ω(q+1) connects the various complexes
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with each other. These lead to a double complex

(258)
...

...
...

Ω2(G(0))
∂ //

d

OO

Ω2(G(1))

d

OO

∂ // Ω2(G(2))

d

OO

∂ // · · ·

Ω1(G(0))
∂ //

d

OO

Ω1(G(1))

d

OO

∂ // Ω1(G(2))

d

OO

∂ // · · ·

Ω0(G(0))
∂ //

d

OO

Ω0(G(1))

d

OO

∂ // Ω0(G(2))

d

OO

∂ // · · ·

with associated total complex

(259) CndR(G) :=
⊕
p+q=n

Ωq(G(p))

and total differential δ : CndR(G)→ Cn+1
dR (G) given by

(260) δ(ω) = ∂(ω) + (−1)pd(ω),

for ω ∈ Ωq(G(p)).

Definition A.2.1 (The de Rham cohomology of a Lie groupoid). The com-

plex (C•dR(G), δ) is called the de Rham complex of the Lie groupoid G⇒M. Its

cohomology groups

(261) Hn
dR(G) := Hn(C•dR(G), δ)

are called the de Rham cohomology groups of G⇒M .

Remark A.2.2. As proved in [17], the above groups are invariant under

Morita equivalence of Lie groupoids and hence they define groups associated to

the corresponding stacks.

A.2.2. Cohomology with compact supports. Let G ⇒ M be a Lie

groupoid. Consider the following two numbers

r = dimG(1) − dimG(0) and n = 2dimG(0) − dimG(1) = dimG(0) − r.
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Let Ωq
c(G(p)) be the space of differential forms on G(p) with compact support.

Consider the double complex

(262) · · ·
∂! // Ωn+3r

c (G(2))
∂! // Ωn+2r

c (G(1))
∂! // Ωn+r

c (G(0))

· · ·
∂! // Ωn+3r−1

c (G(2))
∂! //

d

OO

Ωn+2r−1
c (G(1))

−d

OO

∂! // Ωn+r−1
c (G(0))

d

OO

· · ·
∂! // Ωn+3r−2

c (G(2))
∂! //

d

OO

Ωn+2r−2
c (G(1))

−d

OO

∂! // Ωn+r−2
c (G(0))

d

OO

...

d

OO

...

−d
OO

...

d

OO

where the vertical differential is the usual exterior derivative d and where the

horizontal differential is defined in terms of

(263) ∂! :=
∑
i

(−1)i(∂i)!

with (∂i)! : Ωq+r
c (G(p))→ Ωq

c(G(p−1)) is obtained by integration along the fibers

of the structural map ∂i.

In fact, for γ ∈ Ωq
c(G(p)), the horizontal differential is given by

γ 7→ (−1)p∂!γ.

The associated total complex is given by

(264) Cνc (G) :=
⊕

j=0,...,ν

Ωn+(j+1)r−ν+j
c (G(j))

with total differential

(265) δ(γ) = ∂!(γ) + (−1)pd(γ), for γ ∈ Ωq
c(G

(p)).

Definition A.2.3 (The de Rham cohomology with compact supports of

a Lie groupoid). The complex (C•c (G), δ) is called the compactly supported de

Rham complex of the Lie groupoid G⇒M. Its homology groups

(266) Hν
c (G) := Hν(C•c (G), δ)

are called the compactly supported de Rham cohomology groups of G⇒M .

A.2.2.1. Currents and Poincaré duality. Given γ ∈ Ωq(G(p)) and ω ∈ Ωpr−q+dimG(0)

c (G(p)),

the form

(267) γ ∩ ω ∈ ΩdimG(0)
(G(0))

defined in [17] page 12, allows to define for every such an γ ∈ Ωq(G(p)) a current

(268) Cγ : Ωpr−q+dimG(0)

c (G(p))→ R

given by

(269) Cγ(ω) :=

∫
G(0)

γ ∩ ω
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Example A.2.4. Let G = M o Γ ⇒ M be the transformation Lie groupoid

associated to the action (by diffeomorphisms) of a discrete countable group Γ

on a smooth manifold M with dimM = n. Let p ∈ N and let f ∈ CΓp. We

set γ := π∗f ∈ Ω0
c(M × Γp) where π : M × Γp → Γp is the projection on the

second factor. Let ω ∈ Ωn
c (M × Γp), in this example the form γ ∩ ω ∈ Ωn

c (M) is

explicitly given by

(270) π1!(ω ∧ f)

where π1 : M ×Γp →M is the projection in the first coordinate. In other words,

for m ∈M we have

(271) (ω ∩ π∗f)(m) =
∑
g∈Γp

f(g) · ω(m, g).

We can consider in particular the current defined by f ∈ CΓp,

(272) Cf (ω) :=

∫
M
ω ∩ π∗f.

Following from Behrend’s paper [17], one can check that the above pairing

gives a well defined pairing on cohomology

(273) Hk
dR(G)×Hn−k

c (G)→ R,

which is perfect (Proposition 19 in [17]), hence giving Poincaré Duality, under

the assumption that both G(1) and G(0) have compatible (via s and t) finite good

covers. This assumption holds whenever the groupoid is associated to a proper

cocompact action.

A.2.3. The de Rham cohomology with fiberwise rapidly decreasing

support. For some particular groupoids one might consider a slight generaliza-

tion of the above compactly supported cohomology and pairing. We will detail

here a particular example we use in this work. Let E → M be a Γ-equivariant,

proper vector bundle. We consider the action groupoid

G := E o Γ⇒ E.

Let Ωq
sch(G(p)) be the space of differential forms on G(p) ∼= E×Γp with compact

horizontal support (i.e. in the direction of the base M) and with a Schwartz

condition along the fibers of E. The differentials ∂! of Equation (263) above

are still well defined in Ω∗sch(G(p)). We can hence consider the analog of the de

Rham cohomology with compact supports, we call it the de Rham cohomology

with Schwartz support

Hν
sch(E o Γ) := Hν(C•sch(E o Γ), δ).

A.3. Differentiable stacks

A differentiable stack, denoted as [M/G], is the Morita equivalence class of

some Lie groupoid G⇒M , see [19] or [18] for further details.

Several of the objects we define and use in this work are differentiable stacks

invariants in the sense that they can be defined for a Lie groupoid and that
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Morita equivalent groupoids give rise to the same (or isomorphic) invariant. For

example the K-theory groups of the groupoid C∗−algebras, the periodic cyclic

groups of the groupoid convolution algebras or the Lie groupoid cohomology are

examples of such invariants. But also the topological groupoid K-theory groups

defined in chapter 4 together with the geometric Baum-Connes assembly, see

[35]. Another example of this is the Chern-Baum -Connes assembly map, the

proof of this last statement follows the same lines of the proof in [35] and will

be developed somewhere else.

Now, even if not explicitly stated in this work or in the most part of my arti-

cles, the differentiable stack point of view has been a guiding point in my own re-

search. This is why I wanted to end this appendix with this small note/section.



APPENDIX B

Deformation groupoids

B.1. Deformation Lie groupoids

In this paper we deal with Lie groupoids for which we are going to use the

notation G⇒M , see [67, 85] for more details on Lie groupoids.

In this section we want to recall some particular groupoids that will be used

in this paper, their construction/definition is based on the deformation to the

normal cone construction to be recalled in the following.

Let M be a C∞ manifold and X ⊂M be a C∞ submanifold. We denote by

N (M,X) the normal bundle to X in M . We define the following set

D(M,X) := (N (M,X)× 0)
⊔

(M × R∗) .(274)

The purpose of this section is to recall how to define a C∞-structure on D(M,X).

This is more or less classical, for example it was extensively used in [57].

Let us first consider the case where M = Rp × Rn−p and X = Rp × {0} (

here we identify X canonically with Rp). We denote by q = n − p and by Dn
p

for D(Rn,Rp) as above. In this case we have that Dn
p = Rp ×Rq ×R (as a set).

Consider the bijection ψ : Rp × Rq × R→ Dn
p given by

(275) ψ(x, ξ, t) =

{
(x, ξ, 0) if t = 0

(x, tξ, t) if t 6= 0

whose inverse is given explicitly by

ψ−1(x, ξ, t) =

{
(x, ξ, 0) if t = 0

(x, 1
t ξ, t) if t 6= 0

We can consider the C∞-structure on Dn
p induced by this bijection.

We pass now to the general case. A local chart (U , φ) of M at x is said to

be an X-slice if

1) U is an open neighborhood of x in M and φ : U → U ⊂ Rp ×Rq is a

diffeomorphsim such that φ(x) = (0, 0).

2) Setting V = U ∩ (Rp × {0}), then φ−1(V ) = U ∩X , denoted by V .

With these notations understood, we have D(U, V ) ⊂ Dn
p as an open subset.

For x ∈ V we have φ(x) ∈ Rp × {0}. If we write φ(x) = (φ1(x), 0), then

φ1 : V → V ⊂ Rp

is a diffeomorphism. Define a function

(276) φ̃ : D(U ,V )→ D(U, V )

77
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by setting φ̃(v, ξ, 0) = (φ1(v), dNφv(ξ), 0) and φ̃(u, t) = (φ(u), t) for t 6= 0. Here

dNφv : Nv → Rq is the normal component of the derivative dvφ for v ∈ V . It is

clear that φ̃ is also a bijection. In particular, it induces a C∞ structure on DU
V .

Now, let us consider an atlas {(Uα, φα)}α∈∆ of M consisting of X−slices. Then

the collection {(D(Uα,Vα), φ̃α)}α∈∆ is a C∞-atlas of D(M,X) (Proposition 3.1

in [32]).

Definition B.1.1 (Deformation to the normal cone). Let X ⊂ M be as

above. The set D(M,X) equipped with the C∞ structure induced by the atlas of

X-slices is called the deformation to the normal cone associated to the embedding

X ⊂M .

One important feature about the deformation to the normal cone is the

functoriality. More explicitly, let f : (M,X)→ (M ′, X ′) be a C∞ map f : M →
M ′ with f(X) ⊂ X ′. Define D(f) : D(M,X) → D(M ′, X ′) by the following

formulas:

1) D(f)(m, t) = (f(m), t) for t 6= 0,

2) D(f)(x, ξ, 0) = (f(x), dNfx(ξ), 0), where dNfx is by definition the map

(N (M,X))x
dNfx−→ (N (M ′, X ′))f(x)

induced by TxM
dfx−→ Tf(x)M

′ and N (M ′, X ′) is the normal bundle of

X ′ in M ′.

Then D(f) : D(M,X) → D(M ′, X ′) is a C∞-map (Proposition 3.4 in [32]).

In the language of categories, the deformation to the normal cone construction

defines a functor

(277) D : C∞2 −→ C∞,

where C∞ is the category of C∞-manifolds and C∞2 is the category of pairs of

C∞-manifolds.

We briefly discuss here the deformation groupoid of an immersion of groupoids

which is called the normal groupoid in [57].

Given an immersion of Lie groupoids G1
ϕ→ G2, let GN

1 = N (G2,G1) be the

total space of the normal bundle to ϕ, and (G
(0)
1 )N be the total space of the

normal bundle to ϕ0 : G
(0)
1 → G

(0)
2 . Consider GN

1 ⇒ (G
(0)
1 )N with the following

structure maps: The source map is the derivation in the normal direction dNs :

GN
1 → (G

(0)
1 )N of the source map (seen as a pair of maps) s : (G2,G1) →

(G
(0)
2 ,G

(0)
1 ) and similarly for the target map.

The deformation to the normal cone construction allows us to consider a C∞

structure on

Gϕ :=
(
GN

1 × {0}
)⊔

(G2 × R∗) ,

such that GN
1 × {0} is a closed saturated submanifold and so G2 × R∗ is an

open submanifold. The following result is an immediate consequence of the

functoriality of the deformation to the normal cone construction.
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Proposition B.1.2 (Hilsum-Skandalis, 3.1, 3.19 [57]). Consider an immer-

sion G1
ϕ→ G2 as above. Let Gϕ0 :=

(
(G

(0)
1 )N × {0}

)⊔ (
G

(0)
2 × R∗

)
be the defor-

mation to the normal cone of the pair (G
(0)
2 ,G

(0)
1 ). The groupoid

(278) Gϕ ⇒ Gϕ0

with structure maps compatible with the ones of the groupoids G2 ⇒ G
(0)
2 and

GN
1 ⇒ (G

(0)
1 )N , is a Lie groupoid with C∞-structures coming from the deforma-

tion to the normal cone.

The Lie groupoid above will be called the normal groupoid associated to φ,

besides the article of Hilsum and Skandalis in which it appeared for the first

time, these kind of groupoids were extensively used in [35], see also the recent

article [77] for more details on these groupoids.

One of the motivations of these kind of groupoids is to be able to define

deformation indices. Indeed, restricting the deformation to the normal cone

construction to the closed interval [0, 1] and since the groupoid G2 × (0, 1] is an

open saturated subgroupoid of Gϕ (see 2.4 in [57] or [93] for more details), we

have a short exact sequence of C∗−algebras

(279) 0→ C∗(G2 × (0, 1]) −→ C∗(Gϕ)
ev0−→ C∗(GN

1 )→ 0,

with C∗(G2 × (0, 1]) contractible. Then the 6-term exact sequence in K-theory

provides the isomorphism

(ev0)∗ : K∗(C
∗(Gϕ)) ∼= K∗(C

∗(GN
1 )).

Hence we can define the index morphism

Dϕ : K∗(C
∗(GN

1 )) −→ K∗(C
∗(G2))

between the K-theories of the maximal C∗-algebras as the induced deformation

index morphism

Dϕ := (ev1)∗ ◦ (ev0)−1
∗ : K∗(C

∗(GN
1 )) ∼= K∗(C

∗(Gϕ)) −→ K∗(C
∗(G2)).

As we will see in these appendices, with the use of appropriate algebras, one

can construct similar deformation morphisms in cyclic periodic (co)homology.

Another important example that will be used in this paper is constructed

from the example of normal groupoid above and the functoriality of the defor-

mation to the normal cone construction. Indeed, one can for instance consider

the classic and most famous example of normal groupoid, the so-called tangent

or Connes groupoid of a manifold M , it is indeed the normal groupoid associated

to the inclusion

M →M ×M
of the diagonal, seen as a unit groupoid, in the pair groupoid of the manifold.

Up to a (non canonical) identification of the normal bundle of this inclusion with

the tangent bundle TM the Connes tangent groupoid takes the following form

GtanM = TM
⊔

(M ×M)× (0, 1]⇒M × [0, 1].
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Now, in the presence of an action of a group Γ on M one can consider the

associated diagonal action on M ×M . Since this action preserves the diagonal

it is an immediate consequence of the functoriality of the deformation to the

normal cone construction that there is an induced action of Γ on the tangent

groupoid GtanM inducing a semi-direct deformation groupoid

GtanM o Γ⇒M × [0, 1]

explicitly described in these appendices.

B.2. Pdo calculus for groupoids and deformation groupoids

Let G ⇒ M be a Lie groupoid with compact base M . Besides different

C∗-algebras associated to the smooth convolution algebra C∞c (G ) there several

other convolution algebras and their completions. Of particular importance for

index theory, for every Lie groupoid there is an algebra of pseudodifferential

operators (in this work, classic homogeneous operators, properly supported)

(280) Ψ∞(G )

whose regularising part coincides with the smooth convolution algebra,

(281) Ψ−∞(G ) = C∞c (G ),

and for which one has en extension of the classic pseudodifferential calculus. One

of the main properties is that it contains the quasi-inverses (inverses modulo

regularising/smoothing operators) of the elliptic differential operators generated

naturally by the vector fields defining the Lie algebroid.

In particular, there is a pdo short exact sequence of C∗-algebras

(282) 0 // C∗(G ) // Ψ0(G )
σ // C(S∗G ) // 0.

where Ψ0(G ) denotes as usual the completion of Ψ0(G ) as bounded operators on

some appropriate L2-spaces. For more details, proofs and further developments

on pseudodiffrential calculus and convolution opertaros on Lie groupoids see for

example [84], [80], [63], [99].

By definition, an operator D ∈ Ψ0(G ) is elliptic if σ(D) is invertible. In this

case D defines canonically an element in K1(C(S∗G )), let us denote it by δ(D).

Consider now the K-theory connecting morphism

(283) IG : K1(C(S∗G )) −→ K0(C∗(G ))

associated to the short exact sequence above. Associated to an elliptic operator

D ∈ Ψ0(G ) as above, the element

IG (δ(D)) ∈ K0(C∗(G ))

is called the analytic index of D. It is quite well known that it is given by

the classical Connes-Skandalis type idempotent in the presence of a parametrix.

However, it is not so classic, even if highly admittted that this index morphism
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can be computed in terms of the tangent groupoid of G , we state and prove the

following result.

Proposition B.2.1. Let G ⇒ M be a Lie groupoid with compact base M .

The following diagram

(284) K1(C(S∗G ))

IAG

��

IG // K0(C∗(G ))

K0(C∗(AG ))
(e0)−1

∗ ◦(e1)∗

55

is commutative, where IAG is the connecting map associated to the Lie algebroid

(considered as a Lie groupod using its vector bundle structure).

Proof. Given the Lie groupoid G ⇒M we may consider the following two

Lie groupoids, the Lie algebroid (considered as a Lie groupod using its vector

bundle structure)

(285) AG ⇒M

and the tangent groupoid

(286) G tan ⇒M × [0, 1].

Now, consider the following commutative diagram

(287) 0 // C∗(AG ) // Ψ0(AG ) // C(S∗G ) // 0

0 // C∗(G tan)

e0

OO

e1

��

// Ψ0(G tan)

e0

OO

e1
��

// C(S∗G × [0, 1]) //

e0

OO

e1

��

0

0 // C∗(G ) // Ψ0(G ) // C(S∗G ) // 0

that links the pdo short exact sequences of these three groupoids. The right

vertical line is of this form since the Lie algebroid of AG ⇒ M identifies with

AG (the anchor is not the same but we do not need this) and the Lie algebroid of

G tan ⇒M × [0, 1] identifies with AG × [0, 1] (again the anchor is interesting but

we do not need it here). To conclude it is enough to apply the K−theory functor

of C∗-algebras to the entire diagram above together with the fact that the K-

theory morphisms associated to the right vertical morphisms are the identity in

K−theory by homotopy invariance. �

To put the above proposition in a more familiar way, we consider the follow-

ing diagram
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(288) EllG
δ //

pr

��

K1(C(S∗G ))

IAG

��
K0
top(A

∗G )
F

∼= // K0(C∗(AG ))

where EllG denotes the set of elliptic G -operators (one admits operators ct-

ing between sections of vector bundles), pr denotes the map that associates, to

such an elliptic operator, the principal symbol class in the topological K-theory

group K0
top(A

∗G ) = K0(C0(A∗G )), and where F stands for the isomorphism

induced from the algebra isomorphism C0(A∗G ) ∼= C∗(A∗G ) given by the fiber-

wise Fourier isomorphism. By classic properties of pseudodifferential calculus

the diagram above is commutative, even more the vertical maps are surjective.

In any case, thanks to proposition above we get that the morphism

(289) IndG
a : K0

top(A
∗G ) −→ K0(C∗(G ))

given by the composition of the isomorphism F above followed by the defor-

mation index ((e0)−1
∗ ◦ (e1)∗) computes indeed the analytic index of elliptic G -

operators. We call the morphism IndG
a the analytic index morphism of the

groupoid G .



APPENDIX C

Connes-Thom vs Thom

Let G ⇒M be a locally compact groupoid.

We consider RN as an additive group, hence a one unit groupoid. Suppose

we have an homomorphism of groupoids

(290) G
h−→ RN .

This gives rise to an action (say, a right one) of G on the space M ×RN and

thus to a new semi-direct groupoid:

(291) Gh := (M × RN ) o G : G × RN ⇒M × RN

which has the following structural maps:

• The source and target maps are given by

s(γ,X) = (s(γ), X + h(γ)) and r(γ,X) = (r(γ), X)

• The multiplication is defined on composable arrows by the formula

(γ,X) · (η,X + h(γ)) := (γ · η,X).

Then it is obviously a groupoid with unit map u(m,X) = (m,X) (h(m) = 0

since h is an homomorphism), and inverse given by (γ,X)−1 = (γ−1, X + h(γ))

(again since we have a homomorphism, h(γ) + h(γ−1) = 0).

Remark C.0.1. For the trivial homomorphism h0 = 0, the associated groupoid

is just the product groupoid

G × RN ⇒M × RN .

If G is provided with a Haar system, then the semi-direct groupoid Gh in-

herits a natural Haar system such that the C∗-algebra C∗(Gh) is isomorphic to

the crossed product algebra C∗(G ) oh RN where RN acts on C∗(G ) by auto-

morphisms by the formula: αX(f)(γ) = ei·(X·h(γ))f(γ), ∀f ∈ Cc(G ), (see [39],

propostion II.5.7 for details). In particular, in the case N is even, we have a

Connes-Thom isomorphism in K-theory ([39], II.C)

(292) K0(C∗(G ))
C T

≈
// K0(C∗(Gh))

which generalizes the classical Thom isomorphism, and which is natural with

respect to morphisms of algebras.

Since we will need to compute explicitly the morphism induced by the ho-

momorphism we propose an alternative construction of Connes-Thom which

can be computed in our context. More precisely we want to work directly with

83
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the groupoid algebras C∗(Gh) without passing through the isomorphism with

C∗(G ) oh RN .

Given the morphism G
h−→ RN we consider the product groupoid G×[0, 1]⇒

M × [0, 1] of the groupoid G with the space [0, 1] and we define

H : G × [0, 1] −→ RN ,

the homomorphism given by

H(γ, t) := t · h(γ).

This homomorphism gives a deformation between the trivial homomorphism

and h, more precisely in [29] lemma 2.8 we proved:

Lemma C.0.2. Denote by GH := (G × [0, 1])H the semi-direct groupoid as-

sociated to the homomorphism H. For each t ∈ [0, 1] we denote by (GH)t the

restriction subgroupoid GH |M×{t}×RN . We have the following properties:

(i) (GH)0 = G × RN
(ii) (GH)1 = Gh
(iii) (GH)|(0,1] ≈ Gh×(0, 1] and in particular C∗((GH)|(0,1]) ≈ C∗(Gh×(0, 1])

is contractible.

The last lemma gives rise to a short exact sequence of C∗-algebras ([57, 93]):

(293) 0→ C∗(Gh × (0, 1])→ C∗(GH)
e0→ C∗(G × RN )→ 0,

where e0 is induced by the evaluation at zero. This defines a deformation index

morphism

(294) Dh : K∗(C
∗(G × RN ))→ K∗(C

∗(Gh)).

The natural map GH → [0, 1] gives to GH the structure of a continuous field of

groupoids over [0, 1] and if G is assumed to be amenable, we get by [60] that

C∗(GH) is the space of continuous sections of a continuous field of C∗-algebras.

Then, the deformation index morphism above coincides with the morphism of

theorem 3.1 in [52].

Definition C.0.3. Let G be a groupoid together with a homomorphism h

from G to RN (with N even). Consider the morphism in K-theory

(295) K∗(C
∗(G ))

C T h−→ K∗(C
∗(Gh)),

given by the composition of the Bott morphism

K∗(C
∗(G ))

B−→ K∗(C
∗(G × RN )),

and the deformation index morphism

K∗(C
∗(G × RN ))

Dh−→ K∗(C
∗(Gh)).

We will refer to this morphism as the Connes-Thom map associated to h.

In fact, Elliot, Natsume and Nest proved that this morphism coincides with

the usual Connes-Thom isomorphism, theorem 5.1 in [52]. We can restate their

result in our framework as follows:
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Proposition C.0.4 (Elliot-Natsume-Nest). Let (G , h) be an amenable con-

tinuous family groupoid (or amenable locally compact groupoid with a continu-

ous Haar system) together with a homomorphism on RN (N even). Then the

morphism C T h : K∗(C
∗(G )) → K∗(C

∗(Gh)) coincides with the Connes-Thom

isomorphism. In particular, it satisfies the following properties:

(i) Naturality.

(ii) If G is a space (the groupoid equals its set of units), then C T h is the

Bott morphism.

At some point we will need to recover from our Connes-Thom isomorphism

the classic Atiyah-Singer integrand, therefore we need to relate, at least in a very

particular case, this Connes-Thom isomorphism with the classic Thom isomor-

phism. We enounce the result in the following proposition:

Proposition C.0.5. [Thom as Connes-Thom] Let X be a C∞ manifold

(probably with corners) together with an embedding j : X ↪→ RN with N an

even integer. Let NX the normal bundle to X associated to the embedding j.

Consider the groupoid morphism

h : TX −→ RN

given by h(x, V ) = dxj(V ), where TX ⇒ X is seen as a groupoid using its vector

bundle structure. Then we have

(i) The crossed product groupoid TX ×h RN is morita equivalent to the

space NX . In particular there is a Connes-Thom isomorphism

(296) K∗(TX)
C T

≈
// K∗(NX).

(ii) Let NX
p−→ X the vector bundle projection. Consider the pullback

vector bundle p∗(NX ⊕ TX) over NX . The total space of this vector

bundle identifies canonically with the total space of the vector bundle

π∗(NX ×NX) over TX. We have then a Thom isomorphism

(297) K∗(TX)
T

≈
// K∗(p∗(NX ⊕ TX)).

(iii) We have a vector bundle isomorphism p∗(NX ⊕ TX) ≈ NX ×RN and

the following commutative diagram

(298) K∗(TX)

T
��

C T // K∗(NX)

K∗(NX × RN )

B−1

77

where B stands for the usual Bott isomorphism. In other words C T =

B−1 ◦T .

Proof. We will use several morphisms (with the correspondent crossed

products) on different groupoids, we start by enounce them. We remark that

in all four cases the morphism will be denoted by h to keep the notation short,
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more important the morphisms h are all injective and define proper free crossed

product groupoids (again by using proposition 2.14 in [95]).

(i) The groupoid morphism

h : TX −→ RN

given by h(x, V ) = V , where TX ⇒ X is seen as a groupoid using its

vector bundle structure.

The correspondant free proper groupoid TX×hRN is Morita equiv-

alent to the space NX .

(ii) Consider the pullback groupoid diagram

(299) ∗p∗TX

����

q // TX

����
NX

// X.

In particular there is an induced groupoid morphism

h :∗ p∗TX → RN

given by h(n1, (x, V ), n2) = V .

Remember ∗p∗TX
q−→ TX is a Morita equivalence between these

two groupoids. Hence, the correspondant free proper groupoid ∗p∗TX×h
RN is also Morita equivalent to the space NX .

(iii) The algebroid of the groupoid ∗p∗TX above is easily seen to be the

pullback vector bundle p∗(TX ⊕NX)→ NX over NX . As a groupoid,

it has an induced morphism

h : p∗(TX ⊕NX)→ RN

given by h(n, V,N) = V +N .

The correspondant free proper groupoid p∗(TX ⊕ NX) ×h RN is

also Morita equivalent to the space NX , an easy computation of the

orbit space confirms it.

(iv) From the precedent two points, if we consider the tangent groupoid,

T ⇒ NX × [0, 1] of the groupoid ∗p∗TX above, there is an induced

morphism

h : T → RN .

The correspondant free proper groupoid T ×hRN is Morita equiv-

alent to the space NX × [0, 1], an easy computation of the orbit space

confirms it.

For every morphism h above we have the associated morphism H and the

respective Morita equivalences. In fact, it is now immediate that the following

diagram between K−theory groups is commutative:
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TX
B // TX × RN (TX × [0, 1])×H RN

e0,too
e1,t // TX ×h RN

M // NX

∗p∗TX

M

OO

B // ∗p∗TX × RN

M

OO

(∗p∗TX × [0, 1])×H RN

M

OO

e0,too
e1,t // ∗p∗TX ×h RN

M

OO

M // NX

M

OO

T

e0,s

��

e1,s

OO

B // T × RN

e0,s

��

e1,s

OO

(T × [0, 1])×H RN

e0,s

��

e1,s

OO

e0,too
e1,t // T ×h RN

e0,s

��

e1,s

OO

M // NX × [0, 1]

e0

��

e1

OO

p∗(NX ⊕ TX)
B // p∗(NX ⊕ TX)× RN (p∗(NX ⊕ TX)× [0, 1])×H RN

e0,too
e1,t // p∗(NX ⊕ TX)×h RN

M // NX

where

• at each time (because lack of space) we have only putted the groupoid

instead of itsK-theory group (ex: T in the diagram stands forK0(C∗(T ))),

• the morphisms B stand for the respective Bott periodicity isomor-

phisms,

• the morphisms M stand for the respective Morita isomorphisms (the

induced morphism in K-theory by the Morita equivalences of groupoids),

and

• the morphisms denoted by ei,s or ei,t, for i = 0, 1, are the ones induced

by the evaluation morphisms at i with respect to variable s (the pa-

rameter used in the morphism H) or t (the deformation parameter of

the tangent groupoid).

Now we need to recognize in the diagram the morphisms we are looking for:

• The morphism on top line gives by definition the Connes-Thom iso-

morphism (together with the Morita equivalence)

C T : K0(TX)→ K0(NX).

• By identifying the space p∗(NX ⊕ TX) with π∗(TX ⊕ TX) (where π :

TX → X is the canonical projection) we have by theorem 6.4 in [46]1

that the vertical left hand side morphism is the Thom isomorphism

K0(TX)
T→ K0(p∗(NX ⊕ TX)).

• The vertical morphism on the right hand side gives the identity

Id : K0(NX)→ K0(NX).

• Finally, in the bottom line morphism we have to recognize the mor-
phism

(300)

K0(p∗(NX ⊕ TX)× RN ) K0((p∗(NX ⊕ TX)× [0, 1])×H RN )
e0,too

e1,t // K0(p∗(NX ⊕ TX)×h RN )
M // K0(NX)

As a vector bundle over NX , p∗(NX ⊕TX) is the trivial bundle NX ×
RN (NX is by definition the normal bundle of X in RN ). Under this

1in this paper, the authors explicitely compute the morphism K0(p∗(NX ⊕ TX)) →
K0(TX) showing that it is precisely the inverse of the Thom isomorphism
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identification, the morphism h : NX×RN → RN is given by h(n,X) =

X and hence the induced crossed product groupoid is nothing more

that the translation action groupoid of RN on RN over NX . Then, the

morphism (300) is the Bott inverse isomorphism

K0(p∗(NX ⊕ TX)× RN ) = K0((NX × RN )× RN )
B−1

// K0(NX)

We conclude by the commutativity of the big diagram above that

C T = B−1 ◦T .

�



APPENDIX D

Semidirect product groupoids and algebras used in

this article

In this appendix we will describe explicitly the main groupoids we use in

the present article as well as the associated algebras. For more details on Lie

groupoids, generalized morphisms and particularly deformation Lie groupoids

and their use in index theory the reader can see [35], [57] or [30].

D.1. Semi-direct product groupoid algebras

Let G ⇒ P be a Lie groupoid and M be a G -manifold with moment map

πM : M → P that we will always assume to be a submersion, we can consider

the following groupoids and algebras:

• The semi-direct groupoid M o G : It is the groupoid

(301) M o G ⇒M

with M o G = {(m, γ) ∈ M × G : πM (m) = t(γ)} and with structure

maps

(i) Source and target maps defined by

s(m, g) = m · g, t(m, g) = m,

(ii) groupoid product

(m, g) · (mg, h) := (m, gh),

(iii) unit map

u(m) = (m,πM (m)),

where πM (m) ∈ G is the unit element associated to the groupoid

structure on G , and

(iv) inverse map

(m, g)−1 := (mg, g−1).

For this groupoid we will usually consider the usual groupoid convo-

lution algebra of complex valued compactly supported C∞-functions

C∞c (M o G ).

• The semi-direct groupoid (M ×P M)oG : It is the groupoid asso-

ciated to the diagonal action on M ×P M, given by

(302) (M ×P M) o G ⇒M

89
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with (M×PM)oG = {(m′,m, γ) ∈M×M×G : πM (m) = πM (m′) =

t(γ)} and with structure maps

(i) Source and target maps defined by

s(m,n, γ) = n · γ, t(m, , n, γ) = m,

(ii) groupoid product

(m,n, γ) · (nγ, l, η) := (m, lG−1, γη)

(iii) unit map

u(m) = (m,m, πM (m)),

where πM (m) ∈ G is the unit element associated to the groupoid

structure on G , and

(iv) inverse map

(m,n, γ)−1 := (nγ,mγ, γ−1).

For this groupoid we will usually consider the usual groupoid convo-

lution algebra of complex valued compactly supported C∞-functions

C∞c ((M ×P M) o G ).

• The semi-direct groupoid TπM o G : It is the groupoid associated

to the infinitesimal action of G on the vertical tangent space TπM :=

KerdπM , it is given by

(303) TπM o G ⇒M

with TπM o G = {((m,V ), γ) ∈ TπM × G : πM (m) = t(γ)} and with

structure maps

(i) Source and target maps defined by

s(m,V, γ) = m · γ, t(m,V, γ) = m,

(ii) groupoid product

(m,V, γ) · (mγ,W, η) := (m, dm(Rγ)(V ) +W,γη),

where Rγ : π−1
M (t(γ)) → π−1

M (s(γ)) stands for the right action by

γ,

(iii) unit map

u(m) = (m, 0m, πM (m)),

where πM (m) ∈ G is the unit element associated to the groupoid

structure on G , 0m ∈ (TπM)m is the origin vector, and

(iv) inverse map

(m,V, γ)−1 := (mγ,−dmRγ(V ), γ−1).
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For this groupoid we will usually consider the Schwartz type groupoid

convolution algebra of complex valued C∞- fiber rapidly decreasing

functions with compact support in direction of the base and in the

G -direction, Sc(TπM o G ). To be more precise an element in this

algebra is a C∞, complex valued function f on TπM × G such that

f(V, γ) = 0 for γ outside a compact subset of G and such that the

functions fγ : TMt(γ) → C, where TMt(γ) = π−1(t(γ)), defined by

fγ(V ) := f(V, γ) are in the Schwartz type space Sc(TMt(γ)) defined

in [27] Definition 4.6.

The algebra product is given as the convolution product of C∞c (TπMo
G ) where the groupoid under consideration is the groupoid TπMoG ⇒
M as above, the product is well-defined since we are taking fiberwise

Schwartz functions, see [27] for more details.

Remark D.1.1. For a G−vector bundle E → M we can consider

the analog algebra Sc(E o G ).

• The semi-direct deformation groupoid DfoG : Let f : M −→ N

be a G -equivariant C∞-map between two G− manifolds M and N , we

consider the G−vector bundle Tf := TπM ⊕ f∗TπN over M and the

deformation groupoid

(304) Df : Tf
⊔

(M ×P M)×P N × (0, 1]⇒ f∗TπN
⊔

(M ×P N)× (0, 1]

given as the normal groupoid associated to the G -map

M
∆×f−→ (M ×P M)×P N.

Here the G -action on (M×PM)×P N preserves the image of M under

the previous map ∆ × f . Hence, by functoriality of the deformation

to the normal cone construction, we have an action of G on Df with

moment map πf : Df → P given by the composition of the deformation

map of the pair couple ((M ×P M) ×P N,M) → (P, P ). This is

canonically induced from the moment maps of M and N , followed by

the first projection D(P, P ) = P×[0, 1]→ P (where D(·, ·) denotes the

deformation to the normal cone). This induces a semi-direct product

Lie groupoid

(305) Df o G ⇒ f∗TπN
⊔

(M ×P N)× (0, 1]

with Df o G = {(A, γ) ∈ Df × G : πf (A) = t(γ)}. The groupoid

structure is given fiberwisely over [0, 1] as the groupoid structure of

((M ×P M)×P N) o G ⇒M ×P N

for t 6= 0, and at t = 0 the groupoid structure is

(TπM ⊕ f∗TπN) o G ⇒ f∗TπN.

This groupoid is a LIE groupoid and we could consider its convolu-

tion algebra but we will need a slightly larger algebra, indeed for this
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groupoid we consider the Schwartz type algebra Sc(Df o G ) as an

immediate generalisation of the Schwartz type algebra for the tangent

groupoid defined in [27]. More precisely an element in Sc(Df o G ) is

a C∞-function f : Df o G → C such that fγ = f(·, γ) : (Df )γ → C
is zero for all γ outside a compact set of G , and all of them belong to

the vector space Sc((Df )γ) defined in [27] Section 4.2, where (Df )γ
is the deformation to the normal cone associated to the immersion in-

duced by f ( since it commutes with the moment maps) of π−1
M (t(γ)) in

π−1(t(γ)) where πM is the G -moment map of M and π the G -moment

map of (M ×P M) ×P N . The convolution product in this algebra is

induced by the groupoid product in Df o G .

The fundamental property of this algebra is to be an intermediate

algebra

(306) C∞c (Df o G ) ⊂ Sc(Df o G ) ⊂ C∗r (Df o G )

such that the canonical evaluation morphisms yield

(307) Sc(Df o G )|t=0 = Sc(Tf o G )

and

(308) Sc(Df o G )|t=1 = C∞c (((M ×P M)×P N) o G ).

Moreover, as seen below, there is a short exact sequence of the

form.

(309) 0 // J // Sc(Df o G )
e0 // Sc(Tf o G ) // 0.

As we will see in the next section, the above kernel algebra J has trivial

Cyclic periodic (co)homology groups and hence the evaluation at t = 0

will induce isomorphisms in these (co)homology groups.

D.2. Schwartz type algebras for G -vector bundles and the fiberwise

Fourier isomorphism

We already introduced in the last section some algebras that use Schwartz

functions in a certain way. In this section we want to explain the reason of

using Schwartz algebras in the present article and some important facts related

to these algebras.

Given a G -proper equivariant vector bundle E → M there are two kinds

of Schwartz algebras considered in this article. As sets they are the same, the

vector space of complex valued C∞-functions rapidly decreasing in the direction

of the vector bundle fibers, with compact support in direction of the base and

in the G -direction, denoted by Sc(E o G ).

Now, there are two different algebra products in these spaces depending

on which groupoid one is considering. Indeed, if one considers the semi-direct

product groupoid

E o G ⇒M



93

associated to the G -vector bundle structure, then there is a convolution product

(Sc(E o G ), ∗) using this groupoid structure. On the other hand, one might

consider the action groupoid

E o G ⇒ E

associated to the G -space E. In this case there is a product algebra (Sc(EoG ), ·)
that uses the groupoid structure of this action groupoid. These two algebras are

not the same at all. In the context of this paper, we use both examples, for the

semi-direct product groupoid

TπM o G ⇒M,

and for the action groupoid

T ∗πM o G ⇒ T ∗πM,

or for the bundles Tf and T ∗f respectively. As in the classical case when G is the

trivial group we have a Fourier type algebra isomorphism

(Sc(TπM o G ), ∗) ∼= (Sc(T
∗
πM o G ), ·),

which indeed is a particular case of the following proposition.

Proposition D.2.1. Given a G -proper equivariant vector bundle E → M ,

we have the following two properties:

(i) The fiberwise Fourier transform gives an algebra isomorphism

(310) (Sc(E o G ), ∗) ∼= (Sc(E
∗ o G ), ·).

(ii) The convolution algebra (Sc(E o G ), ∗) is stable under holomorphic

calculus as a subalgebra of (C∗r (E o G ), ∗).

The proof of the above two statements is quite classical, for instance one can

follow the same lines as the proof of Proposition 4.5 in [32].

Now, one important consequence for us is that, in the above situation, we

have the following isomorphisms

(311) HP∗(Sc(E
∗ o G ), ·) ∼= HP∗(Sc(E o G ), ∗)

and

(312) HP ∗(Sc(E
∗ o G ), ·) ∼= HP ∗(Sc(E o G ), ∗),

induced by the Fourier algebra isomorphism.
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Paris Sér. I Math., 325(2):193–198, 1997.
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