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Chapter 1

Context & introduction

1.1 Benefits and challenges of image-guided inter-
ventions

In the last decades, the improvement of medical imaging systems and computers
has led to the development of image-guided interventions. In image-guided inter-
ventions, the clinical team uses medical imaging systems to obtain a detailed image
of the patient’s internal anatomy. Before the intervention, preoperative images are
acquired to plan the surgery. The images are often 3D scans of the patient, offer-
ing a very detailed view of the anatomy and enabling the localization of important
anatomical structures. Due to the accuracy, often sub-millimetric, and the level
of detail 3D scans offer, they are now routinely used to plan interventions (Cleary
et al., 2010). In parallel, intraoperative imaging systems allow clinicians to see
and operate on the internal anatomy of the patient without having to create large
incisions.

Both diagnostic imaging and intraoperative imaging had a positive impact on
clinical practice. In abdominal surgery, intraoperative imaging has made minimally
invasive surgery possible, resulting in fewer complications and reduced postoper-
ative hospital stay, improving safety and quality of care for patients (Alkatout et
al., 2021; Falcoz et al., 2015; Buia et al., 2015). In neurosurgery, preoperative and
intraoperative Magnetic Resonance Imaging (MRI) has significantly improved the
visualization of brain tissue for surgeons, leading to better patient outcomes (Hall
et al., 2003). In orthopedic surgery, fluoroscopic and Computed Tomography (CT)
imaging have improved navigation, reducing reoperation rates (Dea et al., 2016).

The clinical workflow of image-guided procedures is variable, but in many cases,
a 3D CT or MRI scan of the patient is acquired as the first step of the workflow
to plan the intervention. From the preoperative scan, the clinical team localizes
the anatomical sites to operate on and the location of incisions to be performed.
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Then, during the intervention, imaging systems are used to guide the clinicians
by providing information about the location of anatomical structures and surgical
instruments in the operating field. Interventional imaging systems include CT,
Cone-Beam CT (CBCT) and MRI for 3D imaging, and fluoroscopy, ultrasound,
and endoscopy for 2D imaging.

The choice of imaging modalitie(s) depends on the clinical application. For
example, in abdominal endoscopic surgery, several surgical ports (circular openings
a few centimeters in diameter) are created in the patient’s abdominal wall. The
clinical team visualizes the anatomy using an endoscopic camera inserted in one
port, while the other ports are used to insert surgical instruments and perform the
operation. Due to the indirect and partial view of the anatomy and the restricted
surgical openings, endoscopic surgery requires specific training.

Other interventional imaging modalities such as ultrasound, MRI, and X-Ray
based imaging, do not require surgical ports to visualize the patient’s anatomy.
Thanks to these modalities, procedures that do not require incisions have been
developed. Examples of such procedures include percutaneous procedures, where
needle-like tools are inserted through the skin to operate, and angiographic pro-
cedures where a catheter is inserted in the vascular system to reach the treat-
ment site. These modalities are also often used to localize important anatomical
structures, such as tumors, before an incision is performed (Rouze et al., 2016).
With each interventional imaging modality presenting different characteristics, the
choice of modality for a given procedure takes into account factors such as cost,
procedure length, patient and clinician radiation exposure, and ease of performing
the procedure.

As introduced above, endoscopic camera guidance is suited to minimally-invasive
interventions because it offers a direct, optical, view of the patient internal organs
as in conventional, open surgeries. Drawbacks of endoscopic camera guidance in-
clude: surface-only view of the anatomy, limited field of view, and the requirement
of a dedicated camera operator besides the surgeon (Tonutti et al., 2017).

Ultrasound guidance is widely used due to its efficacy and low cost (Kumar
et al., 2009; Harvey et al., 2012; Bisset et al., 2012). Nevertheless, this modality
presents challenges in specific cases: ultrasound imaging of the lung is limited due
to the presence of air in the organ, which blocks the transmission of the ultrasound
beam (Douglas et al., 2001). In the liver, heterogeneity of the parenchyma, among
other factors, limits the visibility of tumors in ultrasound images (M. W. Lee et al.,
2010; Puijk et al., 2018). Other common challenges for ultrasound guidance include
poor visibility, limited field of view (Noble et al., 2011), and operator-dependent
image quality (Findl et al., 2003; Glor et al., 2005).

MRI is a 3D imaging modality, often used in neurosurgery and increasingly
in cardiovascular procedures (Campbell-Washburn et al., 2017). Despite its non-
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ionizing nature and high image quality, its widespread use in interventional settings
is still limited by its high cost, difficulty in operating inside the MRI scanner and
its requirement for non-ferromagnetic surgical equipment (Manhire et al., 2003).

Another 3D imaging modality, CT scan, has been employed in interventional
settings, notably for biopsies. CT-guided biopsy is an incremental procedure
wherein a biopsy needle is percutaneously advanced in millimeter intervals, with
CT image acquisition at each step to verify needle trajectory relative to the tar-
get lesion. CT-guided biopsies are inherently time-consuming processes because
clinicians have to leave the operating room during CT acquisition due to ionizing
radiation (Sarti et al., 2012). Furthermore, a large number of CT scans acquisi-
tions over the course of treatment may result in an increased cancer risk for the
patient, warranting a limited use of this modality in clinical practice (McCollough
et al., 2015).

Fluoroscopy, similarly to CT, is an ionizing imaging modality, where X-Rays
are emitted from a source, traversing the patient before depositing their energy in
a detector. In modern fluoroscopy imaging devices, the detector is a solid-state,
position-sensitive, detector that converts the X-Ray photon energy deposited in
a pixel into an electrical current, much like a digital camera. In CT scans, hun-
dreds of X-rays ’pictures’ of the anatomy are taken to produce a 3D image, while
fluoroscopy provides clinicians with an instantaneous 2D image of the anatomy.
In fluoroscopy, it is also possible to acquire a ‘video’ of the anatomy at a rate
of ∼ 15 Hz for real-time guidance, at the cost of elevated radiation doses for the
patient and clinicians. In cardiovascular interventions, real-time fluoroscopic imag-
ing is an indispensable tool, providing clinicians with a high-resolution view of the
vascular network via contrast agent injection (Celi et al., 2017). Dependence on
contrast agents to visualize vessels is a drawback of X-ray based modalities due to
the notable nephrotoxicity and potential of anaphylactic shock caused by contrast
agents (Mantz et al., 1982; McClennan, 1990; Y.-W. Wu et al., 2016). Further-
more, some fine structures such as tumors or organ boundaries may not be visible
in fluoroscopic images, limiting the usefulness of the modality. Finally, when op-
erating under fluoroscopy guidance, the clinical team is more exposed to radiation
since they do not leave the room during acquisition, contrary to CT guidance, with
non-negligible effects on the clinician’s health (Gislason-Lee et al., 2016).

1.2 Existing solutions to enhance image-guided in-
terventions

First of all, preoperative planning scans of the anatomy remain under-used in
‘conventional’ image-guided procedures. Typically, one imaging modality is used
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before intervention for diagnostic and planning purposes, and another modality
is used for intraoperative guidance, but information from preoperative and intra-
operative images are not combined. While preoperative data is accessible during
the procedure, pre- and intraoperative images still have to be combined mentally
by the clinicians (Maybody et al., 2013). This is due to the necessity of both
images to be aligned, or registered, to be combined properly. Formally, registering
two images requires finding a pixel-to-pixel transform from one image to the other
such that objects in one image become aligned with objects in the other image.
In general, images are acquired from different points of view, and thus rigid align-
ment (i.e. rotation, translation, and scaling) between images is a necessary first
step. Additionally, the anatomy of the patient may be deformed from one image to
another (e.g. due to breathing), requiring deformable registration to be performed.
Finally, the modality of both images may be different, further complicating the
registration task.

Secondly, relating the content in interventional images to the surgical scene
is not straightforward either because interventional images are typically viewed
on a screen above the operating table. This setup requires clinician to perform
mental registration again between the operating field and the images displayed on
the screen. Thanks to developments in the field of computer-aided interventions,
solutions have been developed to alleviate these difficulties, some of them currently
being used in operating rooms.

The SimpliCT (NeoRad BV, Netherlands) laser guidance system, developed to
facilitate needle insertion, represents one such computer-aided navigation technol-
ogy. In (Varro et al., 2004), Varro et al. detail the interventional use of SimpliCT.
The SimpliCT device is a tripod-mounted laser source that is first aligned with the
CT laser guidance. Then, a CT scan is acquired to determine the optimal needle
insertion angle and the SimpliCT guidance laser is set to the determined angle.
Finally, the needle is inserted following the angle given by the SimpliCT device
under suspended breathing. Cited benefits of this product are shorter procedure
times and reduced irradiation (Varro et al., 2004; Kroes et al., 2016). Since no
registration is performed by this product, its use is limited to static anatomies, for
example requiring suspended breathing in abdominal interventions (Varro et al.,
2004).

1.2.1 Augmented and Virtual Reality

With the development of wearable displays for virtual and augmented reality,
applications of these technologies in the operating room have been investigated,
and several reviews have been published (Yoon et al., 2018; Z. Zhao et al., 2021).
These displays are in the form of glasses or screens worn in front of the eyes, such
that the user is always looking at the display. Augmented reality (AR) refers to
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transparent displays that allow the user to view the real world, augmented with
superimposed digital images, while virtual reality (VR) displays show either a
fully virtual scene or a live camera feed of the real world augmented with digital
images. A straightforward application of these technologies in the operating room
is to augment the clinician’s view with information that they would otherwise view
on a separate display.

In anesthesia, it has been reported that using a wearable display to moni-
tor the patient vital signs shortened the time to detect risky situations in simu-
lated (Ormerod et al., 2003; Przkora et al., 2015) and real (D. Liu et al., 2010)
interventions. The MicroOptical (MicroOptical Corporation, USA) head-mounted
display has been developed for orthopedic surgery, to view fluoroscopic images in
augmented reality rather than on the fluoroscopy monitor. In a study (Ortega et
al., 2008), Ortega et al. found that, when using the MicroOptical display, the sur-
geon left the attention of the operative field to view fluoroscopic images less often
(5 times) than without (207 times). The same study, however, found no noticeable
reduction in fluoroscopy time and noted the tripping hazard of the cable connecting
the MicroOptical display to the fluoroscopy monitor. The Google Glass (Google
Inc., USA) product has been used in several studies covering different clinical ap-
plications (Yoon et al., 2018). In most application, this head-mounted display
was used to display various information in augmented reality. In cardiothoracic
transplantation surgery, Google Glass was used to livestream recovery of a lung for
transplant on a patient in a separate location. The transplant clinical team could
evaluate in real-time the organ quality and anatomical suitability, in coordination
with the recovery clinical team. The study authors noted the potential benefits
of the Google Glass’ live streaming functionality in transplant surgery (Baldwin
et al., 2016).

In percutaneous interventions, clinicians have no direct view of the anatomy
and must rely on fluoroscopy, CT, US, or MR images to ensure the needle is
inserted at the correct position and angle. Traditionally, this image guidance is
viewed on a separate screen and is not augmented with preoperative information.
Thus, AR has the potential to improve percutaneous interventions by providing
the surgeon with anatomical information superimposed on the operative scene.

In two studies (De Paolis and Ricciardi, 2018; De Paolis and De Luca, 2019),
an AR headset was used to visualize a preoperative 3D segmentation of the liver,
complete with the vessels and the tumor, superimposed on the patient anatomy
for percutaneous Radiofrequency Ablation (RFA) of liver tumors. The 3D preop-
erative data was rigidly registered to the intraoperative anatomy thanks to radio-
opaque fiducial stickers visible in the preoperative CT scan and on the patient skin.
An optical tracker system, consisting of four infrared cameras, is used to localize
the position of the fiducials in the intraoperative scene for rigid registration of the
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CT data on the intraoperative scene. The authors noted that deformable motion of
the anatomy may occur in abdominal surgery, due to breathing and needle-tissue
interactions, which would invalidate the augmented visualization, but did not im-
plement a solution for this issue. Other studies have also investigated the use of AR
for percutaneous interventions, with a similar lack of deformable registration to
take into account organ motion (Solbiati et al., 2018), (Park et al., 2020)1. Finally,
in (Kuzhagaliyev et al., 2018), Kuzhagaliyev et al.1 evaluated the use of AR, with
the Hololens (Microsoft, USA) platform, to plan and guide needle insertion for
tumor ablation in the pancreas. In this procedure, an ultrasound probe is used to
localize the tumor and define the needle trajectory. After registering the US probe,
needle, and Hololens in a common coordinate system using infrared cameras, the
authors showed, as a proof of concept, that real-time ultrasound images of the
anatomy could be overlaid on the patient for AR ultrasound-guided interventions.
Notably, in this case, only rigid registration is necessary because the ultrasound
probe produces images of the anatomy in real-time during the intervention.

1.2.2 Solutions for bronchoscopic interventions

In contrast with wearable displays, still scarcely used in clinical practice, screens
are ubiquitous in image-guided interventions, being used to monitor vital constants
and display preoperative and intraoperative data. Thus, solutions have been de-
veloped and commercialized to augment information displayed on screens, with
positive impacts on procedure time, especially for less experienced clinicians (Det-
mer et al., 2017; Mert et al., 2012; Vles et al., 2020).

In the lung, Endobronchial Ultrasound (EBUS) is a widely used imaging modal-
ity to identify lung nodules to be diagnosed, by navigating an ultrasound probe
through the bronchia. After identifying nodules, a biopsy is performed by nav-
igating a bronchoscope, a type of endoscopic camera, in the bronchia up to the
nodule site. Since the EBUS images are not registered to the bronchoscopic images,
navigating to the nodule is not trivial.

To solve this problem, Olympus (Tokyo, Japan), commercialized a virtual bron-
choscopic navigation system that uses the preoperative CT scan to build virtually
navigable bronchia. During the intervention, one clinician navigates the real bron-
choscope in the patient’s anatomy while another clinician simultaneously navigates
a virtual bronchoscope in the preoperative anatomy. Thanks to the synchronous
navigation in the real and virtual environments, clinicians can approximately local-
ize the position of the bronchoscope with respect to the preoperative CT anatomy.
One study by Ishida et al. (Ishida et al., 2011) reported a higher diagnostic sensitiv-
ity with virtual bronchoscopic navigation than without. In another, earlier, study,

1Arxiv pre-print
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(Fumihiro Asano et al., 2006), Fumihiro Asano et al. also reported a high diag-
nostic sensitivity for virtual bronchoscopic navigation. Limitations of this method
are the requirement of a dedicated operator for the virtual navigation system and
the possibility of desynchronization between the virtual and real scenes, leading
to erroneous navigation (Asano et al., 2002).

The Archimedes (Broncus Medical, China) system is another, more recent,
product developed for bronchoscopic navigation. Although no work has precisely
detailed how bronchoscopic navigation is performed using Archimedes, the general
navigation process has been presented in several studies (Q. Zhang et al., 2021; Sun
et al., 2022; Lanfranchi et al., 2024). At the start of the intervention, Archimedes
automatically computes the path in the bronchia to the lesion from a preoperative
CT image. During the intervention, the preoperative data is rigidly registered to
the intraoperative anatomy with the help of a positioning board. To reduce the
mismatch between preoperative and intraoperative anatomies, the patients are put
under volume-controlled ventilation. Then, a bronchoscope is matched with the
Archimedes system and navigated to the lesion following preoperative planning
with the help of augmented interventional imaging. In an early study, (Q. Zhang
et al., 2021), Q. Zhang et al. evaluated the efficacy of Archimedes for transbronchial
cryobiopsy. Although the sample size of the study is small (8 patients), the authors
confirmed that Archimedes could be used for navigation in transbronchial cry-
obiopsy. Another study by Sun et al. (Sun et al., 2022) and sponsored by Broncus
Medical, investigated the use of Archimedes for bronchoscopic transparenchymal
nodule access (BTPNA) and transbronchial needle aspiration (TBNA) on 104 pa-
tients. In these procedures, radial EBUS and fluoroscopic images augmented with
a visualization of the tumor were used for guidance. Specific details on the use
of Archimedes and the augmentation of fluoroscopic images were missing, but the
authors reported a high diagnostic sensitivity and acceptable procedure durations.
Finally, (Lanfranchi et al., 2024), Lanfranchi et al. also evaluated Archimedes for
BTPNA and TBNA, and reported results consistent with previous studies.

The LungVision (Body Vision Medical, Israel) system is a CT and fluoroscopy-
based navigation solution developed for bronchoscopic interventions. The system
uses dynamic fluoroscopic acquisition during C-arm rotation to reconstruct an in-
traoperative 3D scan of the patient, a process denoted C-arm Based Computed
Tomosynthesis (CABT). This is an advantage over other solutions relying on more
expensive CBCT devices, as C-arms are more readily available in interventional
suites. Notably, the system makes use of a positioning board embedded with
radio-opaque markers for tomosynthesis and tracking purposes. In (Bawaadam
et al., 2024), Bawaadam et al. detail the clinical workflow of bronchoscopic nav-
igation with LungVision for peripheral lesion biopsy in the lung. First, a series
of fluoroscopic images is acquired to register the intraoperative scene to the pre-
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operative CT. Bronchoscopy equipment is registered to the preoperative anatomy
during this step as well. In this way, the lesion is approximately localized in the
intraoperative scene and the C-arm can be re-positioned to center it on the lesion.
Then, a CABT scan is acquired to precisely localize the lesion in the intraoperative
anatomy. Since the positioning board is visible in both the CABT and fluoroscopic
images, it is possible to correct for motion of the C-arm with respect to the ta-
ble. Navigation inside the bronchia following the path defined in the preoperative
CT is then performed. Once navigation is completed, another CABT scan is ac-
quired, with the bronchoscopy tools in view, to precisely localize the tools with
respect to the lesion. Then, tools are advanced to the lesion and, optionally, a
final CABT image is acquired to confirm the position of the tools in the lesion.
Finally, the biopsy is performed under fluoroscopic guidance. (Bawaadam et al.,
2024), Bawaadam et al. cite several studies (Pritchett, 2021; Cicenia et al., 2021;
Aboudara et al., 2020; Wagh et al., 2021; Hedstrom et al., 2022; Pertzov et al.,
2021) on the lesion localization and diagnostic yield performances of LungVision,
which are comparable with the previously cited Archimedes system.

The Olympus, Archimedes, and LungVision systems cited above have demon-
strated clinical improvements in bronchoscopic interventions. Olympus, which
proposes an innovative virtual navigation system, effectively leverages the preop-
erative CT scan to facilitate navigation, although the application of this concept
to other types of interventions remains unclear. In contrast, the Archimedes sys-
tem’s solution to the problem of preoperative to intraoperative rigid registration
through the use of a positioning board could readily be applied to other types of
interventions, even though specific details on the approach are missing. Finally,
the LungVision system demonstrates the benefits of CBCT-fluoroscopy, which is
an effective and broadly applicable interventional guidance solution, as detailed
below.

1.2.3 CBCT-fluoroscopy navigation

The development of CBCT imaging, combining fluoroscopy and CT capabilities
in a compact device, has made intraoperative augmented fluoroscopy possible.
CBCT imaging devices track the position of the detector and X-ray source relative
to the operating table at all times. Thus, the system can reconstruct 3D CBCT
images from a series of fluoroscopic images acquired during rotation, similarly to
conventional CT acquisition. Furthermore, this internal coordinate system also
allows fluoroscopic images to be augmented with a previously acquired 3D CBCT
scan, since the pose at which the fluoroscopic image was acquired is recorded in the
system. Numerous clinical workflows have employed this capability: in (Schafer
et al., 2020, pp. 654-663), Schafer et al. report that combined CBCT-fluoroscopy
imaging is used for interventions in the vessels of the brain, abdominal organs, and
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the heart, and in orthopedic interventions, tumor ablation procedures, as well as
radiotherapy applications.

For example, in angiographic interventions, where the clinical team inserts a
catheter to operate inside the vessels, fluoroscopy is used to guide the catheter
insertion and visualize the vessels via contrast agents injections. However, con-
trast agent injections are inherently limited due to blood flow dissipating contrast
quickly and nephrotoxicity. Consequently, in practice, parts of the navigation are
performed without contrast, with the help of a roadmap of the vessels. Because
registration between intraoperative 2D and preoperative 3D images is still an ex-
perimental technology, it is not common clinical practice to use a preoperative
roadmap. Thus, the roadmap is obtained intraoperatively via contrast agent in-
jection, either using 2D fluoroscopic acquisition or 3D CBCT acquisition. In this
case, CBCT imaging provides clinicians with a 3D reconstruction of the vessels,
enhancing the visualization of the anatomy and helping navigation. Afterward,
fluoroscopic images can be augmented with the 3D roadmap rigidly superimposed
on the 2D images to help navigation. In addition to improving the interventional
workflow, intraoperative CBCT images may bypass the need for preoperative CT
scans in time-critical interventions such as ischemic stroke treatment (Maier et al.,
2018).

Percutaneous interventions represent another type of intervention where CBCT
imaging is commonly used for guidance. In this type of intervention, the clinician
introduces a needle-like tool under image guidance to reach a target structure.
Here, the clinician’s objective is twofold: accurately reach the target structure
and minimize damage to healthy tissues. Although the imaging modality uti-
lized in percutaneous interventions varies, CBCT imaging has been employed in
interventions such as Transjugular Intrahepatic Portosystemic Shunt placement
(TIPS) (Ketelsen et al., 2016), ultrasound-guided microwave ablation (Floridi et
al., 2017), transthoracic needle biopsy (Choi et al., 2012), and other percutaneous
tumor ablation procedures in the liver, kidney, lung, and muscles (Abi-Jaoudeh
et al., 2015). In these interventions, a CBCT image may be acquired at several
points during the intervention to accurately assess the position of the tool relative
to the target and surrounding structures. Additionally, the CBCT image can also
be used to define a needle insertion trajectory at the start of the intervention.
Then, the clinician can rely on the augmented fluoroscopy guidance showing the
insertion trajectory and relevant anatomical structures to insert the needle with
improved effectiveness.

While intraoperative CBCT guidance represents an improvement over fluoroscopy-
only guidance, a single CBCT acquisition is equivalent in dose to several minutes
of continuous fluoroscopic acquisition (Sailer et al., 2015). Thus, if a preoperative
roadmap is available, it would be beneficial to register it to intraoperative fluo-
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roscopic images to reduce radiation doses. Furthermore, at present, the accuracy
of augmented fluoroscopic guidance is constrained by deformations that arise dur-
ing needle insertion, as there are no comprehensive methods for general 2D/3D
deformable registration. These deformations lead to discrepancies between the
overlaid CBCT data and the fluoroscopic image, as noted in (Wallace et al., 2008).

1.3 Our approach for enhanced fluoroscopy-guided
interventions

We focus here on fluoroscopy-guided interventions and, more specifically, seek to
enhance the information content of fluoroscopic images.

Fluoroscopic images are high-resolution images showing the full internal anatomy
in their field of view, that suffer from low or absent contrast for important anatom-
ical structures such as vessels or tumors. In contrast, these structures are often
visible and segmented in preoperative 3D CT scan images. Consequently, in-
formation from preoperative images could be used to enrich the intraoperative
images, for example by superimposing the preoperative data on intraoperative im-
ages. However, superimposing preoperative data on interventional images requires
a non-linear transformation from the 3D preoperative image space to the 2D intra-
operative image space. Because the correspondence between interventional imag-
ing systems and preoperative image systems is unknown, we must first find the
transform between the preoperative and interventional reference frames, an oper-
ation defined as rigid registration. In the specific context of laparoscopic surgery,
breathing and surgical motions induce a deformation of the abdominal organs.
Recovering this deformation is necessary to obtain the correct transformation be-
tween preoperative data and the intraoperative anatomy, an operation known as
deformable registration. Thus, to propose a solution for augmented fluoroscopy-
guided interventions, we developed a fluoroscopy-to-CT deformable registration
method. Our method offers several key technical and clinical advantages:

• Operates with standard C-arm fluoroscopy equipment, eliminating the need
for additional specialized imaging hardware or intraoperative CBCT acqui-
sition

• Requires only a single preoperative 3D CT scan, avoiding the complexity
and increased radiation exposure of a 4D CT acquisitions

• Has the potential to enhance patient safety by eliminating the need for in-
traoperative contrast agent injection, reducing procedure-related risks while
maintaining visualization quality
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• Represents the first fluoroscopy-to-CT registration method designed for in-
terventions beyond radiotherapy, significantly expanding its clinical applica-
tions

1.3.1 Thesis outline

Chapter 2 begins with an overview of the different types of image registration ap-
proaches, outlining their associated challenges. Then, we introduce deep learning
principles as applied to image registration, presenting a concise review of founda-
tional works in this domain.

Chapter 3 establishes the current state of the art through a comprehensive
review of methods related to our work. This chapter is organized into four key
sections. First, section 3.1 examines tumor localization approaches, aiming to
detect rather than register structures in fluoroscopic images. Section 3.2 covers
2D-3D rigid registration methods, which form an essential preliminary step in any
registration pipeline. Section 3.3 examines fluoroscopy-to-CT deformable regis-
tration methods, which represent the approaches most closely aligned with our
work. These methods, like ours, typically leverage an initial rigid registration as
their foundation. Finally, section 3.4 examines registration methods that inte-
grate biomechanical models as a strategy to both handle incomplete information
and constrain solutions to physically realistic deformations.

Chapter 4 introduces our framework (section 4.2) and presents a series of ex-
perimental validations through published and unpublished works. In section 4.3,
a preliminary study validates our data generation approach, departing from tradi-
tional statistical deformation models-based methods. Section 4.4 reproduces our
first published work, presented at the Hamlyn Symposium on Medical Robotics
(HSMR), demonstrating how our method can replace contrast agent injection for
vessel visualization in fluoroscopy-guided interventions. This is followed by sec-
tion 4.5, which details a comprehensive study submitted for publication in the
Medical Image Analysis journal, validating our method’s capability to recover
intervention-related deformations. The chapter concludes with section 4.6, de-
scribing our work presented at the International Conference on Intelligent Robots
and Systems (IROS), where our method is combined with the method of Valentina
Scarponi, a fellow team member, for fluoroscopy-guided autonomous catheter nav-
igation.

Chapter 5 extends our methodology to incorporate physics-based constraints,
enhancing registration realism. The first section presents a study on physics-based
data generation for realistic deformation prediction, presented at the Data Cu-
ration and Augmentation in Enhancing Medical Imaging Applications (DCAMI)
Workshop of the Computer Vision and Pattern Recognition (CVPR) conference.
In a second section, we present experiments on the incorporation of physical regu-
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larization during training to further improve predictions’ realism. In these experi-
ments, we study different architectural variants of our network and present results
on a simplified, 2D registration problem.

Chapter 6 validates our method on real fluoroscopic images through two ex-
periments. The first evaluates 2D accuracy during respiration using implanted
landmarks in a porcine model, while the second assesses our method’s clinical
applicability for tumor localization on clinical data.

Finally, Chapter 7 concludes the manuscript by summarizing our contributions
and discussing future directions for improving and validating the clinical utility of
our method.
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Chapter 2

Image registration

Image registration is the process of establishing a spatial correspondence between
a fixed and a moving image. The aim of the registration algorithm is to find
the best spatial correspondence according to some criterion (e.g. the overlap of
corresponding anatomical structures). This matching is typically modeled by a
function of coordinates between the fixed and moving image domains. Warping
the moving image with the registration transform makes it possible to superimpose
elements of the moving image onto the fixed image.

In the medical field, it is common to acquire several images of the same patient,
at different points in time. For example, several diagnostic scans of the anatomy
may be acquired over the course of months to years in order to study the evolution
of a pathology. Because patient positioning vary between imaging sessions, rigid
registration must first be performed to establish a global alignment between dif-
ferent image acquisitions. This initial alignment also compensates for changes in
position, orientation, and scale between the imaging coordinate systems, providing
a necessary foundation for subsequent registration steps. In addition, breathing,
bowel movements, cardiac motion, or other sources deform the patient’s internal
anatomy, requiring deformable registration to fully align images. Once the im-
ages are well registered, their contents can be fused to enable a more complete
visualization of the anatomy.

2.1 Image registration: an overview

2.1.1 Unimodal and multi-modal registration

Image registration methods can be split into two broad categories: unimodal reg-
istration, where the imaging modality is the same for all images, and multimodal
registration, where two or more imaging modalities are used across images. Uni-
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modal registration is the most common type of image registration, with works
dating as far back as 1977 (Van den Elsen et al., 1993; Barrow et al., 1977). In
unimodal registration, intensity values represent the same information in both im-
ages, and the registration accuracy can be evaluated by directly comparing the
registered image with the target image. This type of registration is often used to
study the evolution of the anatomy in time.

In multimodal registration, the content, dimensionality and image formation
process can vary across images. Thanks to the differences in image formation pro-
cesses, registering images of different modalities brings complementary information
to clinicians. For example, in MRI, T2∗-weighted images are used to visualize fluids
and bones, and STIR images are used to visualize tumors or inflammation (Brown
et al., 2011). Thus, registering a T2∗-weighted and a STIR image allows to visu-
alize fluids, bones, tumors and inflammation on the same image. An example of
the difference in information content between modalities is illustrated in Fig. 2.1,
where all images were rigidly aligned to combine Cerebral Blood Volume (CBV)
and Apparent Diffusion Coefficient (ADC) with T1 and T2 images (Wuerfel et al.,
2004).

Fluoroscopy to CT registration is an example of multimodal registration be-
tween images of different dimensionalities. In this case, the preoperative, information-
rich 3D image complements the real-time, intraoperative 2D image. However,
while it is desirable to enhance intraoperative 2D images with rich preoperative
3D information, it is also more difficult, owing to the combined modality and
dimensionality difference.

2.1.2 Rigid and deformable registration

As previously mentioned, the image registration process is split into two parts. The
first part, rigid registration, consists of finding a global coordinate transform that
aligns the origin, orientation, and scale of both images. This is best understood by
looking at Fig. 2.2, where the origin, orientation, and scale alignment operations
are illustrated. Mathematically, rigid registration is modeled as an affine transform
between the moving image space and the fixed image space. It is possible to
represent this transform in matrix form as such:[

y
1

]
=

[
R T
0 1

] [
x
1

]
(2.1)

Where x is a point in the moving image space, R is a rotation matrix, T is a
translation vector and y is a point in the fixed image space. Notice that x and y
are expressed as homogeneous coordinate vectors, with an additional component
equal to 1 at the end.
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Figure 2.1: From left to right, T1-weighted, T2-weighted, ADC and CBV MRIs of
a patient brain. Each image is acquired with a different process and shows different
information. This is evidenced by the lesion under the arrow, which is more or less
visible depending on the modality, even though all images in a row were acquired
at the same point in time. This figure was reproduced from (Wuerfel et al., 2004),
with publisher’s permission.

In general, rigid registration is necessary because different imaging devices may
have different reference frames (requiring change of frame correspondence), and the
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Figure 2.2: From top to bottom, origin, orientation, and scale alignment of the
moving image (red) on the fixed image (blue). Note that, in general, the moving
and fixed image domains are different and the contents of both images can overlap
only at the intersection of both domains.

position of the patient may vary across images. Additionally, the resolution of the
imaging device may change, such that the size of objects in terms of pixels is
different across images.

In some specific cases, the structures of interest in the anatomy may not be
deformable, like rigid bones such as the femur or the hip, and rigid registration
is sufficient. However, in general, tissues are deformable to some degree and de-
formable registration is necessary to finely align anatomical structures between
images. A diagram representing the effect of deformable registration is presented
in Fig. 2.3. Contrary to rigid registration, deformable registration cannot be mod-
eled by an affine transform. Instead, the deformable registration transform is
expressed either parametrically or in a discrete form. A parametric registration
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transform can be expressed as:

y = f(x, λ1, . . . , λn)

where {λ1, . . . , λn} are transformation parameters and f a parametric function.
In contrast, a discrete registration transform is represented as an element of a

high-dimensional space, similarly to an image. If the discrete transform is applied
to an N dimensional image, it is represented as an N ×D1×· · ·×DN -dimensional
tensor, where (D1, . . . , DN) are the sizes of the image in each dimension.

While discrete transforms can represent any deformation, even unrealistic ones,
parametric representations can prevent unrealistic deformations by construction,
but are limited in accuracy if too few parameters are employed.

Figure 2.3: Deformable alignment of the moving image (red) on the fixed image
(blue). Objects in the moving image (circle and triangle) have undergone defor-
mations. To superimpose objects in the moving image on the fixed image, the
moving image is deformed (notice the warped grid lines).

2.1.3 Biomechanical model-based registration

Biomechanical model-based registration methods are a special kind of parametric
registration methods that leverage prior knowledge about the physical proper-
ties of objects to guide registration. Directly based on the laws of mechanics,
these methods constrain deformations to respect physical principles, and provide
physically-plausible interpolation in regions where deformation cannot be directly
determined from image data.

A biomechanical model can be represented as a Partial Differential Equation
(PDE) that relates the force applied on an object to its deformation, parameterized
by the physical properties of the object. These properties, such as the Young’s
modulus E (ratio between applied force and deformation) and Poisson’s ratio ν
(expansion perpendicular to applied force), can be measured experimentally.

One of the simplest biomechanical models is the linear model of elasticity,
represented by the Navier-Lamé equations (Modersitzki, 2003, p. 83):

F = µ∇2φ+ (λ+ µ)∇(∇ ·φ) (2.2)
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where F is the force, φ the displacement, and (λ, µ) the experimentally measured
Lamé parameters related to Young’s modulus and Poisson’s ratio.

This equation, derived from Hooke’s law, assumes a linear relationship be-
tween F and φ. However, this approximation only holds for small deformations,
as experimental evidence shows the relationship becomes non-linear with larger de-
formations. To address this limitation, hyperelastic models, such as the Mooney-
Rivlin (Mooney, 1940; Rivlin, 1948) model, were developed, incorporating addi-
tional experimental parameters to better model large deformations.

To solve these PDEs, numerical methods such as the Finite Differences (FD)
method or the Finite Elements Method (FEM) are often used. These methods rely
on a discrete representation of the physical world, and approximate PDEs locally
using simple functions such as polynomials. While these methods can achieve
arbitrary precision with sufficiently fine discretizations, this precision may require
substantial computational costs.

An example of a biomechanical model-based registration procedure is to use
partial information about φ to compute F, where an optimization procedure (de-
tailed in Sec. 2.1.5) is employed to tune F to minimize the model’s energy. The
physical foundation of these methods ensures that the computed deformation field
follows realistic biomechanical behavior everywhere, especially in regions with poor
contrast or missing data where physical principles guide the interpolation of the
deformation field.

However, these methods require prior knowledge about object shape and phys-
ical properties, which may not always be available. For real-time applications,
computational efficiency often necessitates using simpler models (e.g., corotational
models (Felippa, 2000)) or coarser discretization, trading accuracy for speed. De-
spite these limitations, biomechanical model-based methods have proven successful
in registration tasks, validating their ability to accurately represent anatomical de-
formations (Sotiras et al., 2010).

2.1.4 Intensity-based and feature-based registration

Registration methods can be again divided into two main categories: intensity-
based and feature-based methods. Whether a parametric or discrete represen-
tation is used, image registration involves the numerical computation of a set of
parameters from the moving and the fixed images (in discrete representation, these
parameters are simply the elements of the high dimensional representation).

Intensity-based methods compute the parameters of the registration transform
T from the intensity values of IF and IM , the fixed and moving images, respectively.
In intensity-based methods, a cost function L is used to compare the intensity
values of the transformed image IM ◦ T and IF at a set of spatial locations. The
value of the cost function is then used as a proxy to measure the registration error
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and optimize the parameters of T accordingly. One advantage of intensity-based
methods is that the cost function only depends on image intensity values, thus
these methods do not require the extraction of specific features from the images
to work.

Feature-based methods, on the other hand, rely on the prior extraction of fea-
tures from the moving and fixed images. Features may be anatomical landmarks,
represented as a set of points, or anatomical structures, represented as meshes.
The cost function in feature-based methods is then a measure of the distance be-
tween the sets of points or meshes in the transformed image and the fixed image. In
landmarks-based registration, there is a point-to-point correspondence between the
landmarks in the moving and fixed image, and the cost function usually measures
the point-wise distance between both sets of points. In mesh-based registration,
there is usually no point-to-point correspondence between both meshes. Rather,
the cost function is a global measure of the distance between meshes. Compared
to intensity-based methods, feature-based methods are more independent to dif-
ferences in contrast or even modality between images, because the image intensity
values are only used to extract features from the images.

2.1.5 Optimization-based and learning-based registration

To compute the set of parameters λ = {λi} of a transform T given the value l of
a cost function L, an optimization algorithm must be used. The general form of
the optimization algorithm is described by Alg. 1.

Algorithm 1 A generic optimization loop
i← 0
λ← λinit

while i < N & l > threshold do
l← L(T (λ), IM , IF )
λ← optimizer(l, λ)
i← i+ 1

end while

A commonly used optimization algorithm is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (Bonnans et al., 2003a), which uses the value of L and
its gradient with respect to λ, ∇L(λ), to update λ and minimize L.

Traditionally, optimization has been used to directly compute the parameters
λ of a transform T that register a moving image to a fixed image. Depending
on the size of the images, the number of parameters λi, and the computational
complexity of L, the optimization process can take from less than one second to
several hours. Fast methods, like feature-based rigid registration methods, can be
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near-instantaneous due to the low number of parameters involved (6 parameters
for a 3D affine transform) and the low computational complexity of L. On the
contrary, intensity-based, deformable registration methods can take a long time to
compute, especially in 3D, due to the high computational complexity of L, which
requires computing the value of T (x) at a set points x in IM , computing IM ◦T (x)
and then finally computing the value of L.

To remediate to the high computational cost of optimizing λ for each new pair
of IM and IF , learning-based methods have been developed for image registration.
Learning-based methods aim to build a function fθ that computes λ given a pair of
images (IM , IF ), which is called a sample. The parameters θ are computed using
a dataset of images, by optimizing L over θ on the dataset, a process described in
Alg. 2.

Algorithm 2 Learning-based optimization
i← 0
θ ← θinit
while i < N & l > threshold do

(IM , IF )← samplei
λ← fθ(IM , IF )
l← L(T (λ), IM , IF )
θ ← optimizer(l, θ)
i← i+ 1

end while

Before the generalized use of deep neural networks, statistical deformation
models (SDM) have been employed for learning-based registration (Sotiras et al.,
2010). In SDMs, an optimization algorithm (Alg. 1), computes a registration
transform Ti between each moving image i in the dataset and a single fixed image.
Then, the SDM gω(Ti) is defined as the function that, given a set of weights
ω, returns the transformation T =

∑
k ωkTk. In order to reduce the number

of parameters ω, Principal Component Analysis (PCA) is usually performed to
extract the principal components of Ti, although other methods have also been
used (Sotiras et al., 2010; Zhuang et al., 2017). In short, the PCA algorithm finds
the principal components T̃ , each a linear combination of all Ti, that explain the
most variance in the dataset. This means that, by taking a linear combination
of the first k components T̃ , Ti can be approximated with a set precision. In
practice, k is chosen such that Ti is approximated with at least 90%. In some
cases where the variability of Ti is low, k can be as small as 2 or 3. The SDM then
becomes gω(T̃i), with parameters {ω0···k}. Usually, g is simply defined as a linear
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combination of T̃ :

gω(T̃i) =
k∑

i=0

ωiT̃i (2.3)

After constructing the SDM, a new image can be registered to the reference image
by optimizing ωi with Alg. 1. SDM naturally simplifies the registration problem,
since only a few parameters ωi need to be optimized, and a strong prior on the
nature of T is provided.

In fluoroscopy to CT deformable registration, SDMs have been constructed
on experimentally acquired datasets with breathing motion for breathing motion
prediction (see Sec. 3.3.1). However, an important limitation of SDMs is that T is
approximated well only if it is close to the Ti in the dataset used to construct the
SDM. Thus, SDMs cannot be constructed to recover deformations for which there
is little to no data, like intervention-related deformations.

2.2 Deep learning for image registration
To remediate to the slowness of optimization-based methods and the weak gen-
eralization capability of SDMs, deep learning, has recently been massively used.
Deep learning is a kind of machine learning method where the parameters of a
deep neural network are optimized on a training dataset. A deep neural network
is a composition of parametric and non-linear functions. It is usually composed
of at least three layers, each formed by the composition of a parametric function
and a nonlinear activation function (and optionally additional functions). The
term ‘neural’ refers to the analogy between the network layers and neurons in the
brain, with the parameters of the network representing the connections between
the neurons.

2.2.1 Deep neural networks

Deep neural networks are, under some general conditions, universal function ap-
proximators (Hornik, 1991). In general, a N layer deep neural network gθ̂ that
approximates a function f is expressed as:

gθ̂ = σN ◦ gθ̂N ◦ · · · ◦ σ1 ◦ gθ̂1
θ̂ = argmin

θ
L(gθ, f,X)

(2.4)

With θ̂ the optimal parameters of gθ under L on a dataset X. The layer i in
a neural network is formed by the composition of gθi and σi, along with other,
optional, operations such as normalization, dropout, skip connections, . . .
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Input data Output data

Figure 2.4: Schematic representation of a fully connected deep neural network.
The circles represent the data at each layer of the network. The operation of each
layer of the network is represented by the lines. With fully connected layers, each
element in the output depends on each element in the input.

The functions gθi are operators, usually linear, each acting on the previous
layer output, up to the input. The functions σi are activation functions, non-
linear by definition, acting on the output of gθi . Commonly used operators are
affine transformations gθi(x) = Wi · x + Bi and convolutions gθi(x) = Wi ∗ x + Bi

(with ∗ the convolution operator).

There is a great diversity of activation functions, but examples of commonly
used activations σ are ReLU(x) = x if x > 0 else 0, PReLU(x) = x if x >
0 else ax, and GELU(x) ≈ x1

2
(1 + erf( x√

2
)). It is a requirement of the univer-

sal approximation theorem that σ is neither linear nor a polynomial (Mhaskar et
al., 1992).

Neural networks composed of only affine operators are commonly referred to as
‘Fully Connected Neural Networks’ (FCNN) or ‘Multi-Layer Perceptrons’ (MLP).
Neural networks composed of at least one convolution operator are referred to as
‘Convolutional Neural Networks’ (CNN). Other types of networks composed of
a combination of affine, convolution, or other operators have also been proposed,
such as transformers (Dosovitskiy et al., 2020) and graph neural networks (Scarselli
et al., 2008).

Chapter 2. Image registration 32



2.2.2 Automatic differentiation

As introduced in Sec. 2.1.5, optimization algorithms most often require the com-
putation of the gradient of the cost function L with respect to the optimized
parameters θ, ∇θL (Bonnans et al., 2003b). To compute ∇θL, it is possible, if
L has a closed-form expression, to manually derive and code the exact expression
of ∇θL. This approach, however, is quite time-consuming and does not adapt to
changes in the expression of L or gθ. When it is not practical or possible to com-
pute ∇θL in this way, for example if L or gθ do not have a closed-form expression,
numerical differentiation can alternatively be employed.

Numerical differentiation is often implemented with finite differences, expressed
as ∂f

∂x
|x0 = limh→0

f(x0+h)−f(x0)
h

≈ f(x0+h)−f(x0)
h

when h is small, with f a function
of x and x0 a point where f is evaluated. The issue with finite difference is the
necessity of very small h to correctly approximate the gradient, especially in high
dimensions, which in turn leads to a high number of iterations for the optimizer to
converge. Additionally, two evaluations of f must be computed for each parameter
that needs to be differentiated against, leading to high computational costs.

In order to always use the exact expression of ∇θL without having to derive
and code it explicitly, solving the above issues, automatic differentiation has been
increasingly used in the last decade, being almost ubiquitous in the deep learning
field (Baydin et al., 2018). Automatic differentiation leverages the fact that, in
many problems, ∇θL does in fact have a closed-form expression, even if it is very
long. In order to avoid having to code it manually, the chain rule of derivation
∂gθN ◦···◦gθ1

x
=

∂gθ1
∂x

∏n
i=2

∂gθi
∂gθi−1

, is employed to compute ∇θL automatically. Prac-
tically, in programming frameworks supporting automatic differentiation such as
PyTorch (Paszke et al., 2017), this means that for every differentiable function g
programmed in the framework, its derivative g′ is also programmed. Then, when
computing L(gθ, f, x), the output value ωi of each gθi is stored, and∇θL is obtained
by successively evaluating each ∂gθi

∂gθi−1
= g′θi(ωi−1).

2.2.3 Statistical learning

In statistical learning methods, one wishes to minimize L over a dataset X,
as opposed to classical optimization-based methods, which aim to minimize L
over a single data sample. Using gradient descent to minimize L over the whole
dataset would normally require computing its gradient on the whole dataset, i.e.
∇θ|XL =

∑
x∈X ∇θL(gθ, f, x). With this formulation, one iteration of the opti-

mization algorithm would take O(|X|) evaluations of L. Considering that, often,
both O(|X|) and the number of iterations required for convergence are > 103, it
is not practical to compute ∇θ|XL in this way.
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Rather, deep learning algorithms employ stochastic gradient descent (SGD)
methods to minimize L over X. In SGD methods, ∇θ|XL ≈ ∇θ|BL where
B = {xk, . . . , xk+b} is a randomly sampled batch of b samples in X. It has been
demonstrated that, given some assumptions about L, the expected value of L after
T iterations is bounded by ||θ̂||ρ√

T
(Shalev-Shwartz et al., 2014), with ρ the Lipschitz

constant of L. In other words, SGD algorithms optimize the parameters θ of a deep
neural network on a dataset in an efficient, but stochastic, way, whereas classical
optimization algorithms optimize θ on a dataset in a deterministic, but expensive,
way.

A very commonly used SGD algorithm is the Adam (Kingma et al., 2014)
algorithm, described in Alg. 3. Adam (from adaptive moment estimation) uses the

Algorithm 3 Adam (Adaptive Moment Estimation)
Require: η: Learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: L(θ, · · · ): Objective function depending on the parameters θ
1: θ ← θinit: Initial parameter vector
2: m0 ← 0 (Initialize 1st moment vector)
3: v0 ← 0 (Initialize 2nd moment vector)
4: i← 0 (Initialize timestep)
5: while i < N & l > threshold do
6: i← i+ 1
7: l← L(θi−1, · · · )
8: gi ← ∇θl (Get gradients w.r.t. objective at timestep i)
9: mi ← β1 ·mi−1 + (1− β1) · gi (Update biased first moment estimate)

10: vi ← β2 · vi−1 + (1− β2) · g2i (Update biased second raw moment estimate)
11: m̂i ← mi/(1− βi

1) (Compute bias-corrected first moment estimate)
12: v̂i ← vi/(1− βi

2) (Compute bias-corrected second raw moment estimate)
13: θi ← θi−1 − η · m̂i/(

√
v̂i + ϵ) (Update parameters)

14: end while
15: return θi (Resulting parameters)

first and second momentum of ∇θL to update the learning rate η depending on the
previous values of ∇θL. The learning rate of the optimizer is a key hyperparameter
in learning-based problems. If η is too high, the optimization can fail entirely and
if it is too small, the optimization can take a very long time. A common range
for η is 10−3 > η > 10−6. (β1, β2) are also hyperparameters of Adam, although
they are usually set to their default values, 0.9 and 0.999 respectively. Despite
lacking proofs on its convergence, Adam is a widely used algorithm due to its
strong empirical performances over other optimizers.
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Additionally, in order to better constrain the values of θ and obtain more
consistent neural network outputs, regularization is often employed. When using
regularization, L is modified such that L(θ, · · · ) := Ldata(θ, · · · ) + λLreg(θ) where
λ is the regularization weight and Lreg is a cost function that depends only on θ
and penalizes some characteristic of θ, for example its L2 norm. Because vanilla
L2 regularization is not effective in Adam, AdamW, an alternative algorithm based
on Adam, was proposed in (Loshchilov et al., 2017) and widely used since, leading
to improved performances. Another source of improvement is to use a learning
rate scheduler to vary the value of η during the learning process. Usually, but not
always, η is set to a relatively high value at the start of the learning, leading to a
quick minimization of L, and then decayed to optimize θ more finely.

Both the regularization of θ (integrated into AdamW) and the decay of η require
setting at least 1 additional hyperparameter each. With the multiplication of the
number of hyperparameters, related to the optimization algorithm or the design of
the network, finding optimal hyperparameter values has become a non-negligible
problem in deep learning. A commonly employed, albeit very costly, method to
find the best combination of hyperparameters is to run the learning algorithm
again and again while varying the value of one hyperparameter at a time, until
many combinations of hyperparameter values have been tested.

Thanks to statistical learning methods, extensive datasets and massively par-
allel computing, it has become possible to train neural networks with billions of
parameters. This large number of parameters allows deep neural networks to rep-
resent very complicated transformations. Numerous, substantial, improvements
have been brought about with the development of deep neural networks, notably
in the field of image processing, which is one of the first domains revolutionized
by deep neural networks. In the next section, a short overview of deep learning
techniques developed for image processing and, specifically, for image registration,
is proposed. This section focuses on deep learning methods for 3D-3D registration,
since most deep learning-based registration methods in the literature have been
developed for this application. A more complete review of deep learning-based
fluoroscopy to CT deformable registration methods is available in Chap. 3.

2.2.4 Deep learning for 3D-3D registration

In the early 2010s, Convolutional Neural Networks revolutionized the field of
image processing (Ciresan et al., 2011; Krizhevsky et al., 2017) with substan-
tially improved performances, improving even upon previous deep learning ap-
proaches (Ranzato et al., 2006). Since then, CNNs have been increasingly em-
ployed for medical image registration, offering drastically improved speed and
achieving state-of-the-art performances in many cases (Fu et al., 2020). Initially,
CNN-based registration methods have been mostly applied to 3D-3D brain MRI
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deformable registration (G. Wu et al., 2015; Simonovsky et al., 2016; Ghosal et al.,
2017).

Brain MRI deformable registration is an important area of research in registra-
tion, with applications to neurodegeneration quantification (B. B. Avants et al.,
2008) and brain shift compensation (Gerard et al., 2017). On the IXI (I. Dataset,
n.d.) and ADNI (A. Dataset, n.d.) MRI datasets, Ghosal et al. (Ghosal et al., 2017)
reported improvements over baseline demons algorithm (Thirion, 1998) between
4.3 and 13.6% in SSIM (Structural Similarity Index Measure) when combining the
demons algorithm with a CNN. The fully CNN-based method in (Balakrishnan et
al., 2019) reported similar performances to the baseline SyN (B. B. Avants et al.,
2008) registration algorithm on a collection of datasets. However, the CNN-based
method presents a 20,000x speed-up over SyN, thanks to its efficient GPU imple-
mentation and its non-iterative nature, with a registration time < 1 s, as opposed
to 160 min for SyN. Finally, new deep learning approaches based on transform-
ers (Dosovitskiy et al., 2020), a novel kind of network architecture using linear
layers, show promises to improve upon the baseline SyN registration method on
both MRI and CT registration tasks (J. Chen et al., 2022; Y. Tang et al., 2022),
while maintaining runtimes on the order of 1 s.

However, while deep learning-based registration methods have shown superior-
ity to traditional methods, they are still scarcely used in practice due to a lack of
tools adapted to clinical applications, a lack of large-scale clinical studies on their
effectiveness and accuracy in clinical practice, and a lack of publicly available
datasets for tasks other than brain MRI registration (X. Chen et al., 2021). While
deformable 3D-3D registration methods represent a valuable diagnostic tool, their
use in an interventional setting is limited by 3D imaging devices requirements. In-
terventional 3D scans acquisitions necessitates interventional suites equipped with
3D imaging devices, can not be performed simultaneously with operational manip-
ulation and, in the case of repeated CT scans, can expose the patient to important
radiation doses. This motivates the development of 2D-3D registration methods,
which are the focus of the following chapter.
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Chapter 3

State of the art in 2D-3D
deformable registration

Due to the previously mentioned drawbacks of 3D imaging, 2D imaging is often
preferred in interventional settings. Optical modalities such as monoscopic, stereo-
scopic and endoscopic imaging, as well as ultrasound imaging and fluoroscopy are
commonly used 2D imaging modalities for image guided interventions.

Compared to other modalities, fluoroscopic images offer a large field of view
and fully show the internal anatomy of the patient, at the cost of a small but non-
negligible radiation dose for the patient and the clinicians. Common fluoroscopy
guided procedures include endovascular procedures, where fluoroscopy is used to
follow a catheter in the vessels, percutaneous procedures where fluoroscopy is used
to visualize a needle inserted through the skin and orthopedic procedures where
fluoroscopy is used to image and operate on the bones (Rehani et al., 2010).

An important issue with fluoroscopic images is the lack of contrast between
tissues of similar density. This lack of contrast prevents clinicians from clearly dis-
tinguishing anatomical structures in the fluoroscopic image. In orthopedic surgery,
this issue is mitigated by the important difference in density between bones and
surrounding tissues.

In other types of interventions, clinicians often rely on contrast agent injection
to increase the contrast between anatomical structures of interest and surrounding
tissues. However, this solution introduces its own set of complications. Due to their
nephrotoxicity (McClennan, 1990), contrast agents may only be used in limited
quantities during procedures. Furthermore, blood flow causes the contrast effect
to dissipate rapidly, necessitating repeated injections to maintain visibility.

As an alternative, radio-opaque markers may be implanted near target struc-
tures, although at the cost of an additional procedure prior to the operation and
potential complications.

A way to mitigate these issues is to increase the information displayed in the
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fluoroscopic images. This is the goal of 2D-3D deformable registration methods,
wherein a preoperative, information-rich, 3D image is registered to an intraopera-
tive, real-time, 2D image. Since preoperative CT scans are routinely acquired in
many interventions and share the same image formation process as fluoroscopic
images, fluoroscopy to CT registration naturally emerge as a solution to enhance
fluoroscopy-guided interventions.

An alternative approach to registration is direct structure localization. While
such approaches prove valuable in procedures like diagnostic angiography, where
no preoperative CT images are available, it may not suit interventions that would
benefit from preoperative information visualization.

The next sections will present state-of-the-art methods aiming to enhance
fluoroscopy-guided interventions. This literature review will most notably focus on
2D-3D fluoroscopy to CT deformable registration methods, since these methods
are closest to this thesis work.

First, section 3.1 presents 2D localization methods for fluoroscopy-guided in-
terventions. Section 3.2 then provides an overview of 2D-3D rigid registration
methods, a necessary first step in the registration process. A thorough review of
state-of-the-art 2D-3D deformable registration methods is presented in section 3.3.
Finally, section 3.4 targets biomechanical model-based registration methods, which
could be used in fluoroscopy to CT registration to better handle the insufficient
information content of fluoroscopic images.

3.1 2D localization

3.1.1 2D marker-based localization

Commercial systems such as the CyberKnife®(Adler et al., 1997) have been de-
veloped to perform marker-based 3D tumor tracking. This system uses biplane
orthogonal fluoroscopic image acquisitions to track, in 3D, the position of a marker
implanted near the tumor. The error of this tracking system was found to be < 4
mm during 95% of tracking in a liver radiotherapy study (Winter et al., 2015).
However, using markers to track tumors is not an optimal solution, since marker
implantation requires an additional invasive procedure and can be unreliable due
to possible migration of the markers (Kitamura et al., 2002). Nevertheless, sys-
tems like the CyberKnife® remain widely employed due to a lack of alternative,
clinically approved products.
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3.1.2 2D markerless localization

The Bayesian approach presented in (Shieh et al., 2017) tackles the problem of 3D
markerless tumor localization using a combination of an extended Kalman filter
and a template matching algorithm. The method works on a time series of CBCT
projections, producing a 3D tumor position distribution Pi for each image i in
the series, computed using the previous distribution Pi−1 and a patient-specific
respiratory motion model. This approach achieved a mean 3D error comprised
between 1.6 and 2.9 mm in a retrospective study on 13 cases. The error was
measured using implanted markers as reference, which were removed from the
image for inference. The computation time was greater than 1 second, which is
not compatible with real-time applications. While the accuracy of this method
is promising, it relies on a 3D respiratory motion model computed using the full
CBCT time series, making this method unsuitable for clinical use.

In (Hirai et al., 2019), Hirai et al. developed a Neural Network based marker-
less tumor localization method from fluoroscopic images. The training data was
obtained from Digitally Rendered Radiographs (DRRs) generated from planning
4D-CT augmented by rigid translations and deformations at the global and local
scale. The network input is a set of sub-images cropped from the input fluoroscopic
image, and its output is a 2D target probability map. The weighted average of
the target probability map is the predicted tumor position in 2D. The 3D tumor
position is then obtained using the 2D prediction of the network on two orthog-
onal input images. The network is an encoder-decoder CNN with 25 layers. The
accuracy achieved by this method was 2.18 ± 0.89 mm (3D euclidean distance) for
a computation time of 39.8 ± 3.7 ms. These results show that, through the use of
two orthogonal fluoroscopic images, markerless 3D tumor localization in real-time
is possible.

In (W. Zhao et al., 2019), W. Zhao et al. used a modified version of the VGG16
network (Simonyan et al., 2014) (named after the VGG research team) to localize a
tumor in fluoroscopic images. First, features are extracted from three fluoroscopic
images, acquired at two orthogonal and an oblique incidence are acquired. Then,
an additional three-layer CNN is employed to generate region proposals and their
respective score from the feature maps. Finally, the features corresponding to these
region proposals are input to five successive fully connected layers to obtain the
planning target bounding box on the fluoroscopic image. The network is trained
and tested on the same patient specific 4DCT, which does not allow to evaluate its
performances in a realistic clinical setting. On synthetic data, the authors report
a mean error < 2.6 mm for a computation time between 100 and 200 ms. While
this level of accuracy is comparable with marker-based methods, this method is
not real-time.

The method in (Zhang, X. Huang, Wang, et al., 2020) uses a U-Net architec-
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ture combined with intensity-based registration and patient-specific biomechanical
modeling to accurately localize liver tumors. The number of projections required,
20, requires non-standard intraoperative imaging equipment, thus limiting the clin-
ical applicability of the method.

In (Y. Yan et al., 2024), Y. Yan et al. developed a method to perform lung
tumor tracking from dual plane color fluoroscopic acquisition. The pair of color
fluoroscopic images are first converted to grayscale fluoroscopic images using a
style transfer U-net. Then, the images are further processed by another U-net to
suppress bones. Finally, a third U-net is used to detect the tumor in images. The
authors train and test on a dataset of preoperative 4D-CT data and intraopera-
tive color fluoroscopic images for the style transfer network and report accuracies
between 0.41 and 1.1 mm for 7 patients and from 6 to 10 mm for the other 3
patients. In these last 3 cases, the cause of failure was identified by the author to
be the partial overlap between the tumor and the liver in the fluoroscopic images.
The accuracy of the method is evaluated by comparing the predicted tumor region
and the manually annotated tumor region.

While localization methods demonstrate potential in radiotherapy applications,
their utility may be reduced in other procedures. For example, in lung nodule re-
section procedures, pneumothorax renders fine anatomical structures invisible in
fluoroscopic and sometimes CBCT images (Rouzé, 2022) In percutaneous proce-
dures, surgically induced deformations might also reduce the accuracy of these
methods, trained solely on respiratory deformations. Finally, these methods do
not merge preoperative data with intraoperative images, as opposed to 2D-3D
registration methods that are presented in Sec. 3.2 and Sec. 3.3.

3.2 2D-3D rigid registration

As introduced in Sec. 2.1.2, the first step in image registration is rigid registration.
In 2D-3D rigid registration, one wants to compute a 3D affine + 3D-2D projec-
tive transformation that aligns a 3D volume to a 2D image. Seminal works used
intensity-based optimization methods, such as BFGS, Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) or Bound Optimization BY Quadratic Approx-
imation (BOBYQA), to solve this problem (D. C. Liu et al., 1989; Berger et al.,
2016; Hansen et al., 2003; Powell et al., 2009). Other solutions are feature-based
methods, that rely on the detection of either anatomical (Wunsch et al., 1996; Be-
nameur et al., 2003) or artificially implanted (Gall et al., 1993; T. S. Tang et al.,
2000) landmarks.

One of the first, if not the first, deep learning method for rigid 2D-3D regis-
tration was proposed in 2012 (Gouveia et al., 2012). It uses 6 separate MLPs to
model the 6 Degrees Of Freedom (DOF) of the rigid transformation from a fluoro-
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scopic image. The input fluoroscopic image is first pre-processed to extract global
image features, which are then input to the 6 MLPS to compute the rigid trans-
form. It is validated on synthetic digital subtraction angiography images, which are
contrast-enhanced fluoroscopic images processed to only show contrast-enhanced
vessels without the surrounding anatomy. Recently, CNN-based methods have
been tested on real neurological digital subtraction angiography images, with an
average error ranging from 5.8 to 6.3 mm (D.-X. Huang et al., 2024) between pro-
jected vessel positions and ground truth (manually annotated) positions. 2D-3D
rigid registration methods have also been validated on real fluoroscopic images of
the hip (Jaganathan et al., 2023; Gao, Killeen, et al., 2023; Gao, Feng, et al., 2023;
Gopalakrishnan, Dey, et al., 2024) and the spine (M. Chen, Z. Zhang, Gu, Ge,
et al., 2024; M. Chen, Z. Zhang, Gu, and Kong, 2024). Finally, a rigid registration
approach robust to non-rigid motion has also been developed and validated on real
fluoroscopic images, with a mean accuracy of 14.1 mm in 2D Projection Distance
(PD) (B. C. Lee et al., 2022).

These advancements show the potential of such methods for robust pose recov-
ery as a first step in the registration pipeline, before applying deformable registra-
tion to recover organs’ deformations.

3.3 2D-3D deformable registration

A common objective of many existing fluoroscopy-to-CT deformable registration
methods is the compensation of either respiratory or cardiac motion in fluoroscopy-
guided interventions. Consequently, these 2D-3D deformable registration use a
Statistical Deformation Model (SDM) as an inductive bias to recover deformations,
contrary to 3D-3D registration methods that most commonly do not employ an
SDM to model deformations. Another point common to the majority of 2D-3D de-
formable registration methods in the literature is that they are often not validated
on real fluoroscopic images, but rather on synthetic fluoroscopic images generated
from a CT volume. This is due to the fact that the ‘ground truth’ registration
transform can not be known when registering a (moving) CT to a fluoroscopic im-
age, except in the case where the fluoroscopic image is paired with another (fixed)
CT, in which case it is possible to compare the moving CT after registration to
the fixed CT.

3.3.1 Breathing SDM-based registration methods

In the following methods, a cyclical breathing motion pattern is extracted using
registration from a preoperative 4DCT. Then, a PCA is computed from the DVFs
representing the breathing motion, and the first components that explain more
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than ≃ 95 % of the variance are kept to form build a breathing motion SDM, as
detailed in 2.1.5.

In (C.-R. Chou, Frederick, et al., 2013), linear operators are optimized at test
time to minimize the difference between the 2D projection of the deformed volume
and the 2D image. First, an SDM is built from the preoperative 4DCT, keeping
the first 3 components of the PCA. Then, at test time, the parameter estimation is
performed in 4 iterations: at each iteration, K parameters of the SDM are sampled,
for which the corresponding deformations and then projections of the preoperative
CT are computed. Then, the difference between each projection and the input
image is computed, and a linear regression is performed to find the combination
of parameters that minimize the difference. Finally, the CT is transformed by
the parameters found in the previous iteration and the process is repeated. The
method is tested on experimentally acquired CBCT scans of 5 lung radiotherapy
patients, which provide a 3D ground truth along with 2D fluoroscopic images.
Before deformable registration, the CBCT are first registered to the preoperative
CT. The authors report a mean Target Registration Error (mTRE) of 2.7 mm and
1 mm in 3D and 2D, respectively, for an average registration time of 2.6s on a 128-
core Nvidia GeForce 9800 GTX GPU, potentially enabling real-time capabilities
on modern hardware.

The method presented in (C.-R. Chou and Pizer, 2013) is similar to the previ-
ous method, except in the way the relationship between the SDM parameters and
the fluoroscopic image is modeled. In this method, both a decision forest and a
linear regression are optimized on a large number of samples at training time. The
decision forest is a classification model, used here to estimate the most probable
SDM parameters from a fluoroscopic image. A linear regression is then computed
between image features and SDM parameters. Then, at test time, the input fluo-
roscopic image is first classified using the decision forest, and the associated SDM
parameters are computed using the linear regression. The method was validated
in the same way as in (C.-R. Chou, Frederick, et al., 2013), with a similar mTRE
and a faster runtime of ≃ 70 ms, making it suitable for real-time applications.

In contrast with previous methods, (M. D. Foote et al., 2019) is one of the
first method to employ deep learning for 2D-3D deformable registration. In this
method, a ‘rank-constrained diffeomorphic density matching’ algorithm (detailed
in (M. Foote et al., 2017)) is used to extract the breathing motion from a preop-
erative 4DCT. DRRs are then generated by sampling the PCA components and
projecting the deformed CT volume to form a training dataset. A DenseNet (Ian-
dola et al., 2014) CNN is then trained on this dataset to predict the value of the
PCA components from the input DRR. Unfortunately, the model is validated on
DRRs generated from the same 4DCT that was used to compute the PCA, so the
performance of the method on unseen data is unknown.
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In (Nakao et al., 2022), Nakao et al., proposed a deep learning framework to
predict the deformation of abdominal organ meshes from a fluoroscopic image.
Different from other methods, the displacement is only predicted at the surface of
the organs and the displacement inside the organs remains unknown, which could
hinder the capability of this method to predict the position of small structures such
as tumors. In this method, a CNN is used to map an input fluoroscopic image to
a 2D projection of the 3D DVF that would register the preoperative anatomy to
the intraoperative anatomy. Then, a Graph Convolutional Network (GCN) is used
to compute the 3D displacement for each vertex of the preoperative organ meshes
from the projected DVF. The network is trained and tested on a DRR dataset
generated from 124 3DCTs and 35 4DCTs, each manually annotated. The 4DCT
scans are used to build a statistical atlas of deformation, from which a training
dataset is built by varying the value of the first two PCA components. Notably, 12
4DCT scans were kept out of the PCA to test the method on unseen deformations.
Additionally, the method was tested with random pose changes (translations of up
to 17 mm but no rotations) and found to be robust to uncertainty in the pose.
The method is able to predict abdominal organ shapes, with an average accuracy
in 3D ranging from 3.5 mm to 6.1 mm at the organ surface, from an average initial
displacement of 5.2 to 9.4 mm, depending on the organs.

The method presented in (Shao, Jing Wang, et al., 2022) combines statistical
motion recovery similar to above methods with a Finite Element Method (FEM)
to perform 2D-3D registration of the liver. Similarly to the previous method, a
network formed by the combination of a CNN and a GCN is trained on a PCA-
generated DRR dataset to predict the displacement at the surface of the liver.
Then, the surface displacement of the liver mesh is used as a boundary condition
for the FEM which models the liver as a hyperelastic solid and computes the in-
ternal liver deformation by iteratively minimizing the stress. The authors report
an average 3D tumor tracking accuracy of 1.1 mm, from an average initial dis-
placement of 6.1 mm. While the FEM is a physically accurate way of recovering
deformations, it suffers from a slower runtime, that the authors did not report,
compared to purely deep learning based approaches, making it unsuitable for real-
time applications. Furthermore, as in (M. D. Foote et al., 2019), the method was
validated on the same 4DCT that was used for training, so its performances on
unseen data remain unknown.

Finally, in a recent work (Wijesinghe, 2024), Wijesinghe presented two methods
to recover volumetric organ mesh deformation from a fluoroscopic image. In a
variant, a CNN is used to extract features from the input fluoroscopic image, which
are then passed to a Graph Neural Network (GNN) to predict the deformation
of the preoperative liver mesh. In the second variant, an MLP autoencoder is
trained to encode the organ mesh deformation into a latent space and then decode
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it with minimal error. Then, a CNN containing a self-attention layer extracts
features from the image, which are then input to another MLP to predict the
latent representation of the organ deformation, to be compared against the latent
representation obtained via the now frozen autoencoder, considered here as ground
truth. At test time, the CNN and the two MLPs are used to obtain first the
latent representation and then the actual deformation from the input image. Both
methods employ a separately trained CycleGAN (J.-Y. Zhu et al., 2017) network to
perform style transfer between synthetic DRR images and real fluoroscopic images
to improve similarity between synthetic training data and real testing data, as a
way to bridge the domain gap. Additionally, the pose was varied during training
by rotating the camera around the superior-inferior axis in a 360° arc. While
the method is trained and tested on synthetic data generated with a PCA from
a 4DCT, as in previous methods, reporting mTRE values below 1 mm, it was
also qualitatively validated on real fluoroscopic images, showing a good agreement
between projected organ shape and image content. Unfortunately, quantitative
results on real images were not available.

3.4 Biomechanical model-based registration meth-
ods

The methods presented so far, with the notable exception of (Shao, Jing Wang,
et al., 2022), have parameterized the registering transform as a purely geometrical
transform. However, these approaches suffer from a lack of realism because, in
the real world, deformations are subject to physical constraints such as resistance
to compression, stretching, tearing and the absence of self-intersections. More
generally, physical laws impose heavy constraints on the type of deformations that
are possible for deformable solids like internal organs. In order to respect these
constraints, biomechanical model-based registration methods have been developed.
These methods follow the general principles detailed in Sec. 2.1.3. In the next
paragraphs, a few such methods are presented.

In (Broit, 1981), Broit developed the first biomechanical model-based registra-
tion method, where brain images are modeled using a linear elasticity model (see
Eqn. 2.2), and forces are optimized to perform registration. This work introduces
the use of anatomy atlases for registration, by first computing a mean anatomy is
computed on an image dataset and then registering every subject in the atlas to
the mean anatomy.

In (Rabbitt et al., 1995), Rabbitt et al. presented one of the first methods to
use a hyperelastic model for registration. The hyperelastic model is linearized by
its Gâteau-Taylor series term and the FEM is used to compute the energy of the
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deformation on a regular grid around the object. Newton’s method is then used to
minimize the energy of the deformation between the two images to be registered.

In (Pennec et al., 2005), a new, invertible, variation of the St. Venant-Kirchoff
elastic energy, dubbed Riemannian Elasticity, is proposed. In the St. Venant-
Kirchoff model, the elastic energy depends on the Euclidean distance between the
strain tensor of the deformation and the identity. The authors propose to replace
the Euclidean distance with the Riemannian distance, which is the squared dis-
tance between the logarithm of the strain tensor and the logarithm of the identity
(which is equal to zero). The authors show that with this new formulation, the
deformation between a rest state and a deformed state has the same energy as the
inverse deformation, a desirable property in elasticity. Additionally, the authors
compute the mean and covariance matrix of the logarithmic strain on a population
of organs to build a statistical Riemannian elasticity energy, a less computationally
intensive operation in this new formulation. Unfortunately, the authors did not
validate this statistical method on data. Instead, they showed that registration
performances on a brain MRI dataset are equivalent between Riemannian elastic-
ity and standard St. Venant-Kirchoff elasticity, at the cost of a three-fold increase
in computation time for Riemannian elasticity.

In order to remediate to the slow computation of Riemannian elasticity while
keeping the invertibility of the registering transform, Yanovski et al. (Yanovsky
et al., 2008) propose another variation of the St. Venant-Kirchoff energy. Starting
from the St. Venant-Kirchoff energy as a function of the strain matrix, itself a func-
tion of the product between the displacement and its Jacobian, the authors note
that the direct minimization of the energy is computationally expensive. Instead,
they replace the displacement-Jacobian product in the energy by a new, unknown
variable V to be optimized, with a penalty on the distance between V and the
displacement-Jacobian product. In the paper, the authors only provide qualita-
tive results on a pair of brain MRI images, the quantitative accuracy remaining
unknown.

Biomechanical model-based methods have also been designed for specific clini-
cal applications such as Video-Assisted Thoracoscopic Surgery (VATS) procedures.
In VATS procedures, the intervention is performed by the clinician through surgical
ports created in the abdominal cavity. These ports break the pressure equilibrium
in the intrapleural space, leading to lung collapse, a phenomenon known as pneu-
mothorax. Due to pneumothorax and change of pose of the patient from supine in
the preoperative scan to lateral decubitus during the intervention, the localization
of the nodule becomes unknown. In current surgical practice, this issue is resolved
by intraoperative localization of the nodule using an interventional CBCT scan-
ner (Rouzé, 2022). However, manual nodule localization using a CBCT scanner is
a time-consuming process, that is prone to failure due to poor visibility of some
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lung nodules. While this issue can be mitigated by preoperative fiducial implan-
tation, it is at the cost of additional intervention time, radiation exposure and
invasiveness. Another solution for intraoperative nodule localization is registra-
tion between the preoperative CT scan (containing the nodule segmentation) and
the intraoperative CBCT scan.

In a seminal work (P. Alvarez, Rouzé, et al., 2021), P. Alvarez, Rouzé, et al.
proposed a biomechanical model-based registration method tailored to this appli-
cation. The authors used a poroelastic constitutive law to model the lung in the
context of deformations as extreme as pneumothorax. In this work, the deforma-
tion between the preoperative CT and intraoperative CBCTs is modeled in two
parts. First, the deformation induced by the pose change between the CT and
the first CBCT (acquired before pneumothorax) is recovered using an intensity-
based method, and refined using the biomechanical lung model. Specifically, in the
intensity-based registration part, rigid registration is first performed by segmenting
the intraoperative spine and registering it with the preoperative spine. Then, the
parameters of a B-spline deformation model are optimized with the Normalized
Cross Correlation (NCC) similarity metric between intraoperative and preopera-
tive scans. Finally, this initial intensity-based deformation is applied as a Dirichlet
boundary condition on the surface of the lung finite element mesh and the internal
deformation is computed using the FEM poroelastic model. The second part of the
method handles the registration of the CBCT acquired after pneumothorax. As
in the first part, the two images are first rigidly registered. Then, the parameters
of a novel pneumothorax model are optimized to register the lung before and after
pneumothorax. In this model, the pneumothorax effect is simulated by applying
a hydrostatic pressure as a Dirichlet boundary condition on the lung surface. In
the simulation, this causes the lung to shrink due to the evacuation of fluid in the
poroelastic model. Additionally, a prior elastic registration is performed between
the airways before and after pneumothorax. The resulting displacement is applied
as Dirichlet boundary conditions to corresponding nodes in the lung model. Fi-
nally, a gravitational load is applied on the whole model. The parameters that are
optimized to perform the registration are the material properties of the lung and
the displacement of the diaphragm acting on the lung. The authors validate the
method on 5 cases, and used anatomical landmarks to measure the registration
accuracy. After rigid registration, the average pose change deformation was mea-
sured to be between 6.8 and 25.8 mm, depending on the case. After deformable
registration of the pose change, the mean TRE was between 1.0 and 2.7 mm. For
the pneumothorax registration, the initial average deformation was between 19.5
and 37.7 mm and the mean TRE after deformable registration was between 4.9
and 14.3 mm. These results show that biomechanical model-based registration in
the context of large deformations and solid-fluid interactions is a very challenging
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problem, that this seminal work managed to partially solve thanks to a multi-step
approach.

In a related work (Lesage et al., 2020), Lesage et al., modeled the lung as a
hyperelastic Ogden material, with a range of parameters obtained from a previous
study on the mechanical characteristics of porcine lungs. The method performs
registration between two CT scans, before and after pneumothorax. First, the
airways, bronchi and thoracic cavity were segmented in both CT scans and regis-
tered using the Morfeus linear elasticity biomechanical model (Brock et al., 2005).
Then, these registered structures were added to the lung model and their position
were used a Dirichlet boundary conditions, partially constraining the shape of the
lung. Finally, the lung model was subject to gravity and the nodes at the top of
the lung were subject to pressure to simulate the pneumothorax effect, with nodes
corresponding to the airways outside the lung set to fixed positions, and the sim-
ulation was set to run until sufficient deflation was obtained. The authors varied
the material parameters and the applied pressure for each patient, and reported
the best mean TREs, which range from 6.0 to 16.0 mm. When using the best
overall set of parameters for all patients, the accuracy ranged from 8.0 to 9.3 mm,
excluding one patient.
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Chapter 4

Domain-agnostic 2D-3D deformable
registration

4.1 Introduction

As previously mentioned, the existing literature on 2D-3D deformable registration
focuses on motion management for image-guided radiotherapy. In this context,
a planning 4D CT image of the patient is often available, allowing to derive a
respiratory motion model to train a neural network on DRRs exhibiting respiratory
motion. Additionally, with some exceptions, methods in the literature are not
validated on real fluoroscopic images due to the difficulty of obtaining ground
truth.

In contrast with the existing literature, we aim to develop a 2D-3D fluoroscopy
to CT registration method suitable for all fluoroscopy-guided interventions. In this
context, the preoperative image is a 3D CT volume and the intraoperative deforma-
tion to recover is a combination of anatomical (i.e. respiratory) and intervention-
related deformations. Consequently, unlike state-of-the-art 2D-3D fluoroscopy to
CT registration methods, we cannot rely on a patient-specific respiratory motion
model to recover anatomical deformations during the intervention.

Instead, we draw inspiration from another line of work (Shen et al., 2019;
Yikun Zhang et al., 2021; J. Guo et al., 2024) focusing on volume reconstruction
from a few fluoroscopic projections. Notably, in (Shen et al., 2019) Shen et al.
showed that a single fluoroscopic image was sufficient to reconstruct a 3D volume
of the patient with an acceptable accuracy. In this work, an encoder extracts 2D
features from an input fluoroscopic image, which are then transformed into 3D
features and then decoded to output a reconstructed CT volume of the patient.
Specifically, the encoder is a CNN based on the ResNet architecture (K. He et al.,
2016), which groups convolutional layers into residual blocks. A residual block is
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a sequence of N (N = 1 in (Shen et al., 2019)) convolutional layers processing
the input sequentially, with a residual connection to add the input of the block to
the output of the block. This operation has been shown to improve performances
and mitigate the vanishing gradient problem (K. He et al., 2016; Szegedy et al.,
2017; F. He et al., 2020). In this work, the kernel size and stride parameters of the
encoder are set up such that every two layers in the encoder doubles the number
of channels while halving the spatial resolution, resulting in a compression of the
data by a factor of two. Every other layer in the encoder keeps the number of
feature and the spatial resolution constant. The authors performed an ablation
study to determine the optimal number of layers in the encoder and found that
1+10 layers offered the best performances, with the first layer transforming the
input grayscale image into a 256-channel, half resolution feature map.

Following the encoder, a transformation module is used to transform 2D fea-
tures into 3D features. This module applies a reshape operation in which the
number of channels is divided by two to form an additional spatial dimension.
Finally, the decoder, a 3D CNN which does not use skip connections, upsamples
the 3D features to output a high resolution predicted CT volume. Inversely to
the encoder, the decoder doubles the spatial resolution and halves the number
of channels at every other layer. The key point of this architecture is the direct
transformation of 2D features into 3D features, which enables the prediction of a
3D image from a 2D input.

The authors demonstrate that this 2D-3D architecture is able to reconstruct
a 3D volume of the patient from a single fluoroscopic image, using a synthet-
ically generated patient-specific dataset composed of pairs of CT volumes and
corresponding DRRs of the patient. The training dataset is generated by translat-
ing, rotating, and deforming the original CT volume of the patient and rendering
DRRs images from the transformed CT volumes. Unfortunately, the authors did
not elaborate on the process used to produced deformed CT volumes. While the
predicted 3D volumes resemble ground truth volumes, fine anatomical structures
are either not recovered or misshapen. Nonetheless, this work serves as a proof
of concept for our application, demonstrating that dense 3D information can be
recovered from a single-view 2D fluoroscopic image.

Inspired by the success of this approach, and its relevance to our application,
we build our 2D-3D registration network upon this architecture, with incremental
improvements to raise the accuracy of the method. As in (Shen et al., 2019), our
architecture is also split into an encoder, transformation module and decoder part.
However, instead of reconstructing a 3D volume from the fluoroscopic image, our
goal is to register preoperative 3D CT data to intraoperative fluoroscopic images.
To achieve this, we modify the last layer of the decoder to output a 3D Deforma-
tion Vector Field (DVF) that registers the CT volume to the fluoroscopic image.
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The 3D DVF is represented as a 3-channel 3D volume, with each channel repre-
senting the displacement of voxels along one of the three anatomical axes. Using
a discrete DVF representation allows for arbitrary deformations, even unfeasible
ones presenting self-intersections. This is why, in traditional, iterative registra-
tion methods, such as (Thirion, 1998; Trouve et al., 2005; B. B. Avants et al.,
2008), parametric representations are used. However, more recent, learning-based,
single-shot registration methods using fully convolutional networks or transformer
networks, have shown that registration could be performed efficiently, with limited
self-intersections, using a discrete representation of deformations (De Vos et al.,
2017; Shan et al., 2017; Miao et al., 2018; Balakrishnan et al., 2019; J. Chen
et al., 2022; Y. Zhu et al., 2022). Thus, given the real-time requirements of our
application, we adopt a discrete representation of deformations as well.

These single-shot registration methods are often trained in a self-supervised
manner, using pairs of clinically acquired 3D images. The network predicts a DVF
to register a ‘moving’ 3D image to a ‘fixed’ 3D image, and an image intensity-
based loss function is used to optimize its parameters. In our context, the goal
is instead to register a moving 3D image to the anatomy observed in a fixed 2D
image, which is an ill-posed problem, as multiple 3D images can correspond to
a single 2D projection. Due to this ill-posedness, training a 2D-3D deformable
registration network on pairs of clinically-acquired 2D and 3D images may not be
feasible.

However, deep learning is not constrained by the availability of real training
data. In fact, it is a relatively common approach to generate large amounts of
synthetic data to train a neural network (Hoffmann et al., 2021; Tobin et al.,
2017; Dahmen et al., 2019; Hu et al., 2023; Doersch et al., 2019) to perform tasks
where few or no labeled data are available. This strategy is employed in much
of the literature on deep learning-based 2D-3D registration, where synthetic 2D
projections are generated from clinically acquired 3D volumes to create a paired
2D-3D synthetic dataset. From there, the learning objectives vary between target
localization, DVF estimation, or volume reconstruction (see Sec. 3.1, and 3.3 for
an overview of such methods).

In this chapter, our baseline 2D-3D deformable registration method is pre-
sented and evaluated through several (published and unpublished) works. Sec. 4.2
details the domain agnostic data generation method and neural network architec-
ture, with three key contributions. First, we propose a novel registration method
able to recover deformations commonly encountered in fluoroscopy-guided inter-
ventions, moving beyond the limitations of existing methods focused on respiratory
motion. In this aspect, our main contribution is the domain agnostic data genera-
tion method (Sec. 4.2.2), which eliminates the need for prior knowledge of motion
during the procedure, making the registration agnostic to the domain of defor-
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mations. Second, we developed and evaluated a novel backprojection module for
2D-3D registration that transforms 2D features into 3D features while considering
projective geometry (Sec. 4.2.3.1). Third, we propose a novel loss combination
(Sec. 4.2.3.2), specifically designed for 2D-3D deformable registration, where the
network is supervised in projective space rather than anatomical space, leading to
improved performances.

Then, Sec. 4.3 presents an initial study on 2D-3D deformable registration that
compares our domain agnostic data generation method with the traditional PCA-
based data generation method employed in the literature.

In Sec. 4.4, a follow-up study demonstrating the potential of the method to
reduce the need for contrast agent injection in percutaneous interventions is pre-
sented. The presented data generation method and neural network are similar to
the work in Sec. 4.3 but the clinical application and experimental results differ.
This study was published in the proceedings of the 2023 Hamlyn Symposium on
Medical Robotics (HSMR):

Francois Lecomte et al. (2023). “Enhancing fluoroscopy-guided in-
terventions: a neural network to predict vessel deformation without
contrast agents”. In: The Hamlyn Symposium on Medical Robotics.
The Hamlyn Centre, Imperial College London London, UK, pp. 75–76

In Sec. 4.5, a study submitted for publication (November 2023) in the Medical
Image Analysis (MedIA) journal is partially reproduced. This study utilizes the
most recent version of our method, presented in Sec. 4.2. Compared to previous
works, we perform a more thorough experimental validation of our method. No-
tably, it is evaluated for the first time on real, surgically induced deformations
of porcine animal models. This work also includes a comparison between our
method and a state-of-the-art 2D-3D deformable registration on breathing motion
prediction and intervention-related deformation prediction.

Finally, in Sec. 4.6, our method is used in combination with a deep reinforce-
ment learning algorithm, developed by V. Scarponi et al., for autonomous catheter
navigation. The deep reinforcement learning navigation algorithm and our 2D-3D
registration network are trained separately and are combined during evaluation,
with the registration network being used to update the vessel model in real-time
during navigation. In the study, synthetic results show that autonomous naviga-
tion is possible in the liver and heart, with improved success rates when using our
registration method to update the vessel model during navigation. This study,
co-authored with V. Scarponi et al., was presented at the 2024 International Con-
ference on Intelligent Robots and Systems (IROS):

Valentina Scarponi, François Lecomte, et al. (Oct. 2024). “Au-
tonomous Guidewire Navigation in Dynamic Environments”. In: 2024
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IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

4.2 Deep learning framework

The contents of this section are reproduced from the ‘Method’ section of the pre-
viously mentioned study to be published in the MedIA journal. In each study,
differences with the method presented below are clearly indicated. This section
is structured as follows: Sec. 4.2.1 provides an overview of the method and clini-
cal workflow, Sec. 4.2.2 presents our synthetic data generation process, Sec. 4.2.3
presents our deep learning approach, and Sec. 4.2.4 presents the data augmenta-
tion technique used to better handle the domain gap between synthetic and real
fluoroscopic images. An additional section, not presented in the MedIA study,
Sec. 4.2.5, details the pre- and post-processing steps applied to the input and
output of the network.

4.2.1 Overview

Our framework is based upon the most common steps of fluoroscopy-guided inter-
ventions, outlined in Fig. 4.1.

First, a preoperative CT scan is acquired and structures of interest are seg-
mented. The intervention can then be planned by the clinicians. We assume that
the pose of the C-arm with respect to the patient is determined during this step.
During the intervention, the C-arm is positioned as per planning and is used for
intra-operative image guidance.

In the context of image-guided liver therapies, contrast agents are injected
before acquiring the preoperative CT. From the preoperative Contrast Enhanced
CT scan (CECT), the vessel tree is segmented to obtain a 3D segmentation volume.
Using the CECT and the planned C-arm pose, we generate a synthetic training
dataset composed of synthetic deformations and synthetic fluoroscopic images, as
described in Sec.4.2.2 and as shown in Fig. 4.1..

The neural network is then trained on the synthetic dataset (see Sec. 4.2.3).
Next, during the intervention, a fluoroscopic image of the patient is acquired with-
out contrast agents. The fluoroscopic image is processed in real time by the net-
work to compute the deformation between the preoperative CT scan and the in-
traoperative anatomy. The deformation computed by the network is used to warp
the preoperative vascular tree. Finally, the warped tree can be projected on top of
the fluoroscopic image (i.e., augmented fluoroscopy) using ray-casting techniques,
to obtain a result similar to the image in the lower right part of Fig. 4.1.
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Neural network training

Neural network prediction

Figure 4.1: Overview of the proposed method. First, the intervention is planned
from a 3D CT scan of the patient, where structures of interest are segmented, and
the C-arm pose is determined (top left). Second, the neural network is trained on
non-rigid deformations of the 3D CT and synthetic fluoroscopic images (top, mid-
dle, and right). Here, non-rigid deformations are represented schematically in 2D
(in reality, deformations are 3D vector fields), with color to indicate the amplitude
of the displacement. Third, during the intervention, the C-arm is positioned, and
a fluoroscopic image is acquired (bottom left). Fourth, the network computes the
deformation from the fluoroscopic image (bottom middle) and the warped vessel
tree is used to augment the fluoroscopy (bottom right).

4.2.2 Data generation

To train the network to estimate a deformation ϕ from a non-contrasted fluo-
roscopy p, we generate a training dataset composed of pairs of synthetic ϕi and pi.
To generate synthetic non-contrasted fluoroscopic images, we first transform the
preoperative Contrast Enhance CT image ICE into a non-contrasted CT image I
via inpainting ((Barnes et al., 2009)). This operation preserves the information
outside the segmentation and removes as much contrast information as possible.
We can then generate deformed, non-contrasted CT images I ′i from I.

For each sample of the dataset, the process goes as follows: The deformation
ϕi is generated using a sum of randomized Gaussian kernels (Sec. 4.2.2.1). Then,
the deformed CT image I ′i is generated from I and ϕi (Sec. 4.2.2.2). Finally,
following (4.4), we generate synthetic fluoroscopic images pi from I ′i. (Sec. 4.2.2.3).
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4.2.2.1 Deformation generation

A non-rigid deformation is defined on the 3D image I(x) by ϕ(x) : R3 → R3 with
x a point in the image volume and ϕ(x) = x + φ(x), with φ(x) a displacement
vector field. We restrict the region where ϕ is defined to a sub-region of the volume,
which will be referred to as the field domain. The key characteristics we seek
in the displacement field are smoothness and invertibility. A good candidate for
producing such displacement fields is the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework ((Trouve et al., 2005)), which demonstrated very
good performance in non-rigid registration problems ((Durrleman et al., 2014)).
In this framework, the non-rigid deformation ϕ that registers an image I to an
image I ′ is obtained by integrating a velocity field V(t,x) over time, following a
set of differential equations to drive the evolution of V(t, x).

The authors demonstrate that V(t,x) can be expressed as:

V(t,x) =

Ncp∑
k=1

αk(t) ·Kk(x,yk(t)) (4.1)

where Kk(t) are elements of a Reproducing Kernel Hilbert Space, such as Gaussian
kernels, located at the Ncp control points yk ∈ R3 and associated with weights αk ∈
R3. The Displacement Vector Field (DVF) φ is then given by φ(x) =

∫ 1

0
V(t,x)dt.

In our framework, we instead directly compute the DVF φ(x) by randomiz-
ing the control points yk, covariance matrices σk ∈ R3×3 and weights αk of the
Gaussian kernels.

φ(x) =

Ncp∑
k=1

αk ·K(x,yk, σk) (4.2)

To sample yk, we generate a set of random points in the field domain. We discard
points that are within a threshold distance ∆y of each other to prevent sharp
variations in φ, and re-generate rejected points until the desired number of control
points is obtained. αk are sampled from a 2D uniform distribution and then
multiplied by a random common scaling factor between 0 and 1 to ensure samples
with small overall displacements are represented in the dataset. Finally, σk is
generated as Ncp × 3 × 3 i.i.d variables with values between 15% and 30% of
the size of the field domain. While this new formulation does not preserve the
diffeomorphic nature of ϕ by construction, we can compute its spatial Jacobian J
and verify that it is positive, and if not, regenerate ϕ, thus ensuring diffeomorphic
deformations.

4.2.2.2 Image warping
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As stated above, we model the non-rigid deformations of the anatomy as coordinate
transforms ϕ(x). The warped CT image I ′(x) = I ◦ ϕ(x) is obtained by linearly
interpolating the values of I at x′ = ϕ(x):

I ′(x) =
∑

z∈Z(x′)

I ′(z)
∏

d∈{0,1,2}

(1− |x′
d − zd|) (4.3)

where z are the 8 voxels nearest to x′, d iterating through the 3 spatial components
of x′ and z, and z, x and x′ expressed in voxel coordinates. This operation is known
as backward warping.

4.2.2.3 Digitally Reconstructed Radiographs

We generate Digitally Reconstructed Radiographs (DRR) using the DeepDRR
framework ((Unberath et al., 2018)).

This framework models the C-arm as a pinhole camera, parameterized by a
projection matrix P composed of an intrinsic matrix H ∈ R3×3 and an extrinsic
matrix E ∈ R3×4. E is obtained from the planned pose of the C-arm and H is
obtained from the characteristics of the C-arm detector panel. In the DeepDRR
framework, the fluoroscopic image p observed during the intervention is approxi-
mated by:

p(u) ≈
∫

I ′(x)dlu (4.4)

With lu(x) = P · x the ray connecting the point u ∈ R2 on the detector plane to
the emission source.

Eqn. (4.4) shows that p(u) is invariant to shifts of the distribution of I(x)
along the path of the ray, as long as the integral of I(x) is preserved. This means
that displacements collinear to the projection rays cannot be directly observed in
the projection image, since such displacement do not incur changes in

∫
I ′(x)dlu,

leaving the intensity of the projected image unchanged. A direct consequence
of this result is that, in fluoroscopic images or DRRs, it is impossible to recover
displacements along the direction of projection.

4.2.3 Network architecture

Our method relies on a fully convolutional architecture derived from ResNet ((K.
He et al., 2016)). The key characteristic of our network is the direct translation
from a dense 2D input to a dense 3D output (see Fig. 4.2). The encoder part of
our network produces 2D feature maps that are transformed by a backprojection
module into 3D feature maps. The backprojection module samples the 2D feature
maps using a regular grid in voxel space to obtain 3D feature maps, as described in
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Sec. 4.2.3.1. This module uses the projection matrix P to relate spatial locations
in the 2D feature maps to locations in the 3D feature maps. The decoder part of
our network then transforms the 3D feature maps into a displacement field φ̂.

In the encoder, the first layer transforms the grayscale 256× 256 input image
into feature maps of shape 96× 128× 128. Then, five ResNet blocks composed of
two convolutional layers, each followed by a BatchNorm and a PReLU activation,
process the data, with each block dividing the spatial resolution and multiplying
the number of features by two. Finally, the last convolutional layer is applied
without changing the number of features or resolution, to obtain 2D feature maps
of shape 1536 × 8 × 8. After the encoder, the backprojection module transforms
the features from 2D projective space to 3D anatomical space, as described in
Sec. 4.2.3.1, to obtain 3D features of shape 768 × 4 × 2 × 4, conserving the total
number of features in the process. In the decoder, 10 deconvolutional layers are
employed to decode these 3D features into a 3D displacement field of shape 3×128×
64×128. These layers are not set up in ResNet blocks, with the number of features
and spatial resolution being halved and doubled every two layers, respectively, and
the last layer transforming the 24-dimensional feature map into a 3-dimensional
displacement field.

During training, a reprojection loss Lφ2D and a 2D dice loss Ls2D are used to op-
timize the network parameters in a supervised manner, as described in Sec. 4.2.3.2.

The network is implemented in PyTorch 2.4.1, with a memory footprint of
∼ 335 MB. A forward pass is computed in 12 ms on an Nvidia RTX 4090 GPU.
The Adam algorithm ((Kingma et al., 2014)) was used to optimize the network
weights. The network was trained for 5 epochs, using the One Cycle learning rate
schedule ((Smith et al., 2019)) to vary the learning rate η, with ηmax = 5.10−3.
Training the network for more epochs (and a proportionally larger scheduler step
size) did not lead to increased performance.

4.2.3.1 Backprojection module

Inspired by the LiftReg network ((L. Tian et al., 2022)), we designed a backpro-
jection module to handle 2D-3D spatial correspondence. An important difference
between the LiftReg network and our approach is that we backproject the feature
maps instead of backprojecting the input image. This largely reduces the number
of parameters and inference time of the network because the encoder is composed
of 2D convolutional layers instead of 3D convolutional layers.

Depending on the pose of the C-arm, the input projection image may be ori-
ented arbitrarily with respect to the preoperative CT volume. The goal of this
module is to ensure that the value of the displacement field at a voxel x will be
determined by the value of the pixel at the coordinate u = Px.

The backprojection module (in green in Fig. 4.2) contains no trainable param-
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Figure 4.2: The encoder part of the network compresses the image into a low-
resolution, high-dimensional feature space. The 2D features are backprojected to
3D using the projection matrix in the backprojection module. In the decoder, the
network upscales the feature maps into a 3D displacement field. After the network,
the loss is computed on the displacement of grid points projected in 2D space and
on the warped vessels segmentation, projected in 2D space.

eters and relies on the projection matrix P, obtained from the pose of the C-arm
camera, to sample 3D features from 2D features via trilinear interpolation. The
2D feature map F is a tensor of shape (N,C,H,W ), which can be treated as a
batch of N 3D images with (C,H,W ) dimensions. Since convolutions are approx-
imately local operations, the (H,W ) dimensions span the same spatial extent as
the input 2D image. The channel dimension C is treated as a pseudo depth di-
mension, where each channel represents a different image plane. This is the first
step in Fig. 4.3. It is important to note that these 3D features are not in the same
space as the preoperative 3D anatomical image, because the input of the network
is a perspective projection of the anatomy. Thus, these features must be mapped
to the preoperative anatomical space by performing a backprojection operation.
First, a regular grid of 3D points G is sampled in the bounding box of the region
covered by the projection. This is the second step in Fig. 4.3. The grid G, of
shape (3, C,H,W ), can be converted to 2D coordinates using the projection ma-
trix P by computing Gu = PG. To index the pseudo-depth dimension C of F ,
the first coordinate of Gu is set to an array of values varying from 0 to 1 along C.
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Finally, F can be interpolated using Gu to transform the 2D projective features
into 3D features F3D aligned with the preoperative anatomical space. Elements of
F3D outside of F are simply set to 0 since they are not visible in the projection.
This is the last step in Fig. 4.3. F3D is further transformed by splitting the first
dimension into a spatial and a channel dimension, to form a 5D feature map of
shape (C3D, D,H,W ). After the backprojection, F3D is input in the decoder (in
red in Fig. 4.2) to predict a displacement field in the same space as the preoperative
anatomy.

Figure 4.3: The 2D feature maps are reshaped into a volume in ray space. The
volume is then sampled using ray space coordinates to obtain a volume in voxel
space. Volume elements that are outside of the projection are set to zero.

4.2.3.2 Loss computation

Before computing the loss, we first mask the prediction and ground truth to exclude
locations that are not visible in the image or outside the body. Because of the
finite size of the detector, p is restricted to the domain Ωp, defined by the size of the
C-arm detector. This implies that the network can only predict φ̂ at the points x
that have a projection in the 2D domain Ωp: {x | ∃ t ∈ R,∃u ∈ Ωp, tPx+x0 = u}
with x0 the origin of the C-arm camera matrix. Thus, we restrict the computation
of L to the voxels that have a projection in Ωp. Furthermore, the displacement at
locations outside the body cannot (and should not) be recovered by the network
due to the lack of contrast at those voxels, which typically contain air. Thus, we
build a body mask using TotalSegmentator ((Wasserthal et al., 2023)), and warp
it with the ground truth displacement field to mask out locations that are not in
the deformed body.

We formulate the loss function L as combination of two losses:

L = Lφ2D(φ2D
i , φ̂i

2D) + λLs2D(P2D(Is ◦ ϕi),P2D(Is ◦ ϕ̂i)) (4.5)

φ2D
i and φ̂i

2D are the ground truth and predicted displacements, respectively,
projected in the image plane. P2D(Is ◦ ϕi) and P2D(Is ◦ ϕ̂i) are the ground truth
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and predicted segmentations, projected in the image plane. Lφ2D is the Mean
Square Error (MSE) on the projected displacement, and Ls2D is the Soft Dice
loss ((Milletarì et al., 2016)) on the projected segmentation.

To compute Lφ2D , a 3D grid of points defined on the field domain is first
warped with the predicted and ground truth displacement fields. Then, the warped
3D points are projected using P to obtain warped 2D points. Finally, Lφ2D is
computed between the ground truth and predicted 2D points.

To compute Ls2D , the vessels segmentation is warped with the predicted and
ground truth displacement fields. Then, the fully differentiable renderer Diff-
DRR ((Gopalakrishnan and Golland, 2022)) is used to obtain 2D projections of
the warped segmentations. Finally, Ls2D is computed between the ground truth
and predicted 2D segmentations.

This novel combination of loss in 2D image space is better suited to the clinical
objective of visualizing 3D preoperative data registered on 2D intraoperative im-
ages. In contrast, supervising the network in 3D anatomical space does not take
into account the fact that there is a loss of information in the 2D image formation
process (see Sec. 4.2.2.3). Furthermore, since our objective is not 3D volume re-
construction but rather augmented fluoroscopy, we do not supervise on 3D image
intensity values. The performance impact of this loss over alternative formulations
is studied in Sec. 4.5.3.7.

4.2.4 Data augmentation

To improve the network robustness to changes in input image appearance unrelated
to deformations, such as the ‘sim-to-real’ domain gap, we used a data augmentation
method described in ((Grimm et al., 2021), post-processing section). This data
transformation is a composition of perturbations, each successively applied at ran-
dom to the input with a probability of 50%. Perturbations include noise addition,
smoothing, and contrast change. In ((Grimm et al., 2021)), authors demonstrate
that this approach enables a 2D-3D rigid registration network trained on DRRs
to perform well on real fluoroscopic images. In this work, we find that this data
augmentation scheme improves the generalization capabilities of the network (see
Sec. 4.5.3.9).

4.2.5 Data processing

To improve the training of our deep neural network and generate appropriate
ground truth data for the loss function detailed in Sec. 4.2.3.2, several processing
steps are required. These steps focus on properly integrating 2D-3D geometrical
information into the training process. They are performed during training initial-
ization (Sec. 4.2.5.1), before the network prediction (Sec. 4.2.5.2), and prior to loss
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computation (Sec. 4.2.5.3).

4.2.5.1 Training initialization

First, the DRR projection parameters, CT volume geometry, and segmentation
volume used to compute Ls2D are loaded. The grid of coordinates used to com-
pute Lφ2D is then created in the field domain. At this stage, the input data
transformation is also initialized, which includes optional operations such as crop-
ping, rotation, padding, flipping, standardization or normalization, resizing, and
data augmentation (Sec. 4.2.4). By default, this transformation rotates the input
90° counterclockwise, such that DRRs correspond to the projection matrix, ap-
plies standardization (subtracting the dataset mean and dividing by its standard
deviation), resize the input to (256, 256), and applies data augmentation. Experi-
ments revealed that a (256, 256) resolution provided better performance compared
to other resolutions, and standardization, a common machine learning practice,
also slightly improved results. When resizing, the projection matrix is adjusted
by scaling the focal length and optical center to match the new image dimen-
sions. At this point, the 3D coordinates G and 2D coordinates Gu, used in the
backprojection module, are computed.

We also generate an input mask to exclude parts of the image that show volume
regions outside the field domain. This is achieved by tracing rays between a grid
of 2D image points and the center of projection using the projection matrix and
calculating the rays’ intersections with the planes delimiting the field domain.
Points corresponding to rays that do not pass through the field domain or cross
‘forbidden planes’ are added to the mask, which ensures that discontinuities in the
displacement field remain invisible in the image (as illustrated in Fig. 4.4). The
input mask can be combined with additional masks, such as to replicate the X-ray
beam collimation of testing data.

From the 2D input mask, a corresponding 3D mask is generated for use in the
backprojection module and before loss computation. This 3D mask is created by
sampling the 2D mask at each coordinate Gu, to verify whether the projection of
each G point falls within the mask. Finally, the segmentation volume used in Ls2D

is loaded.

4.2.5.2 Data pre-processing

Before each prediction, the input data transformation and input mask are applied
to the input DRR. The coordinates G are then warped using the ground truth
displacement field to sample the body segmentation at deformed coordinates. As
mentioned in Sec. 4.2.3.2, the deformed body segmentation is added to the 3D
mask to remove voxels outside the body from the loss computation.
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Crossed volume planes Masked DRR

Figure 4.4: From left to right, a DRR generated with a randomized pose, a vi-
sualization of planes crossed by projections rays, the DRR with the input mask
applied. To visualize the crossed planes, each plane was assigned an integer ID,
such that each sum of two planes had a unique value, and the sum of crossed planes
was plotted for each ray. The red lines were added to make the interpretation of
the figure easier and underline that regions where the rays cross forbidden planes
are removed. In the DRR on the left, we can see that these forbidden regions
correspond to regions where the ‘outside’ of the CT volume is partially visible.

4.2.5.3 Data post-processing

Before computing the loss, the 3D mask is applied to both the predicted and
ground truth displacement fields to ensure that subsequent computations are re-
stricted to regions in the mask. Then, the ground truth and predicted warped 2D
segmentation P2D(Is ◦ϕi) and P2D(Is ◦ ϕ̂i) are rendered by tracing rays from the
center of projection to the projection plane through the segmentation volume. In
the rendering process, rays are traced from the center of projection to the projec-
tion plane through the segmentation volume. For each ray, Ns = 64 points are
uniformly sampled within the segmentation bounding box, avoiding regions out-
side the segmentation to conserve memory and increase resolution. These points
are then warped by the ground truth or predicted displacement fields, and the seg-
mentation is sampled at the warped positions. The final rendered segmentation,
s2D (or ŝ2D) is computed by summing the sampled values along each ray. This
process is similar to the DiffDRR (Gopalakrishnan and Golland, 2022) rendering
procedure, with the addition of an intermediate warping step.

Finally, the input mask is applied to both s2D and ŝ2D, and ϕi and ϕ̂i are
converted from voxels to millimeter for the loss computation.
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4.3 Domain-agnostic data generation enables ro-
bust registration

4.3.1 Introduction

Deformable registration between 2D and 3D medical images remains a critical
challenge in image-guided interventions. While significant advances have been
made in radiotherapy applications (Shieh et al., 2017; Zhang, X. Huang, and
Wang, 2020; Hirai et al., 2019; M. D. Foote et al., 2019), where statistical models
derived from 4D CT scans effectively handle respiratory motion (see Sections 3.1.2
and 3.3.1), there is a pressing need to address more complex, intervention-specific
deformations.

Surgical tumor removal, a primary cancer treatment modality, presents unique
challenges for deformable registration. Unlike respiratory motion in radiother-
apy, surgical deformations are largely unpredictable, arising from direct tissue
manipulation by clinicians. These arbitrary deformations cannot be captured by
conventional statistical models based on preoperative imaging. Currently, no 2D-
3D deformable registration method adequately addresses the real-time tracking
of tumor position under such conditions. Thus, the objective of this study is to
propose an approach that overcomes these limitations by estimating diffeomorphic
displacement fields in real-time without relying on statistical deformation models.

Our approach uses fluoroscopy as the intraoperative imaging modality to ad-
dress scenarios requiring real-time deformation recovery. To reduce the need for
preoperative 4D CTs of the patient, and to make the method as generic as possi-
ble, we propose a domain randomization solution to generate displacement fields
using only a 3D preoperative CT. Our data generation is based on the large de-
formation diffeomorphic metric mapping (LDDMM) framework (Sec. 4.3.2.2) to
enforce smooth and invertible displacement fields. As in previous works, we gen-
erate DRRs to simulate intraoperative fluoroscopic images (Sec. 4.3.2.2). These
images serve as input to a ResNet-based fully convolutional network that learns
the mapping between DRRs and 3D displacement fields (Sec. 4.3.2.1). The com-
puted deformation field enables real-time tracking of internal structures, such as
tumors, by warping preoperative CT data or derived 3D meshes (Sec. 4.3.3).

4.3.2 Preliminary approach to domain-agnostic registration

This study employs the method presented in Sec. 4.2 with some modifications,
summarized below. The data generation and loss computation processes are unique
to this work.
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4.3.2.1 Network architecture

In this work, the network architecture presents the following differences with the
architecture detailed in Sec. 4.2.3:

• The network input is a DRR of the deformed anatomy subtracted with the
DRR of the preoperative anatomy.

• The network doesn’t yet employ backprojection but rather a reshape oper-
ation (denoted as the ‘NoBackproj’ variant in Sec. 4.5.3.6) to transform 2D
features to 3D features, which is less accurate.

• ‘Adversarial Noise Layers’ (ANL) (You et al., 2019) are employed in the
network after the activation functions, with the goal to regularize the latent
space. However, as we later found that these layers did not bring performance
improvements, we did not use ANL in further experiments.

• In this work, an MSE between the ground truth displacement field and the
predicted displacement is used to optimize the network parameters, with the
displacement in the direction perpendicular to the projection set to 0.

• No learning rate scheduler is used.

• The number of filters in the first convolutional layer is 64 instead of 96.

• 6 encoder and decoder layers are used instead of 10

• The shape of the predicted and ground truth displacement fields is (64, 32, 64)
instead of (128, 64, 128).

• The domain randomization data augmentation described in Sec. 4.2.4 was
not used.

4.3.2.2 Data generation

To train our network, we generate a synthetic dataset composed of DRRs paired
with 3D displacement fields, which are used to deform the preoperative CT. From
the deformed CT Scans, we generate DRRs using the DeepDRR algorithm (Un-
berath et al., 2018). We detail below these different steps and motivate our choices.

Deformation generation: The general framework behind generating and ap-
plying deformations is detailed in the first paragraph of Sec. 4.2.2.1. The exact
process used to generate the synthetic training dataset in this work is different
from the process in Sec. 4.2.2.1, and is detailed below.
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Domain randomization: First, we recall that, as in Sec. 4.2.2.1, the displace-
ment field φ(x) is computed on a grid of points x in the field domain via Eqn. 4.1.
However, instead of generating displacement fields in one step, φ(x) is computed
iteratively. At each step t, random σk(t) and αk(t) are sampled around initial
(randomly set) mean values and the corresponding displacement field v(t) is com-
puted from these parameters. Then, the deformed points x(t + 1) = x(t) + v(t)
are computed and the process is repeated until reaching a set number of steps.

With this process, the total displacement field is given by φ(x) = x(tmax) −
x(t0). Computing φ(x) in this way provides takes advantage of theoretical guar-
antees demonstrated by the LDDMM framework (Trouve et al., 2005). It is also
possible to numerically verify that the displacement field computed at each step
is a diffeomorphism by checking that ∥vt(xt)∥W 1,inf < 1 where ∥vt∥W 1,inf,(RN,RN ) =
supx∈RN (|vt(xt)|RN + |∇vt(xt)|RN×RN ) which ensures that the final displacement
φ(x) is a diffeomorphism as well (Allaire, 2006).

However, in practice, using this process over the process detailed in Sec. 4.2.2.1
didn’t significantly improve the quality of the generated displacement fields. Thus,
due to the cost associated with computing φ(x) iteratively as well as the result-
ing lack of closed form solution for φ(x) with this approach, the process detailed
in Sec. 4.2.2.1 was used in later works. Another notable difference with the de-
formation generation process in this work is that no global scaling is applied to
φ(x) with the consequence that small global deformations are not appropriately
represented in the dataset.

PCA-based deformations: In clinical scenarios when a 4D-CT is available
preoperatively, it can be beneficial to leverage an a priori knowledge about the
type of deformations that the organ undergoes. Using a registration method based
on the LDDMM framework, such as SyN (B. B. Avants et al., 2008) implemented
in ANTs (Brian B. Avants et al., 2011), we can compute a set of DVFs from the
4D-CT. Following the idea proposed in Chou et al. (C. R. Chou et al., 2012) and
Foote et al. (M. D. Foote et al., 2019), we compute a PCA over the time series of
diffeomorphic deformations obtained from the 4D-CT. A new set of deformation
fields is then generated by sampling the PCA deformation subspace. We keep the 3
first PCA components (which explain 90% of the variance). The associated weights
are randomly sampled between ±150%, ±130% and ±110% of their respective
maximum value to generate the DVF dataset.

4.3.3 Results & discussion

We present here an evaluation of our results on a series of lung CTs. Using the
4D-CT we can compare the 2 variants of our method, i.e. the PCA-based and the
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Parameter considered Validation loss value
(H,W ) = (128, 128); (Hout, Dout,Wout) = (32, 16, 32) 49.22
(H,W ) = (256, 256); (Hout, Dout,Wout) = (64, 32, 64) 38.41

Nconv = 6 38.41
Nconv = 10 53.69

Table 4.1: Ablation study resulting in the following set of parameters offering
the best compromise between computation time, memory usage and accuracy:
Nconv = Ndeconv = 6, C0 = 64, H = W = 256, Hout = Wout = 64, Dout = 32.

Domain Randomization based data generation techniques, on increasingly large
deformations.

Experimental setup: The validation dataset (Hugo et al., 2017) includes 10
CT volumes (512 × 512 × 142 voxels) with a voxel size of 0.98 × 0.98 × 3mm3.
In each volume we selected a region of interest (ROI) large enough to contain the
lungs, with additional margins to accommodate anatomical displacements. The
dimensions of the ROI are 243 × 164 × 79 voxels. The DVFs in the Domain
Randomization dataset were computed at a resolution of 64× 32× 64. The basis
displacements were first computed at full resolution and then downsampled to a
64 × 32 × 64 size before applying the PCA transform. The corresponding DRR
were generated with an initial resolution of 960×960 pixels and were subsequently
downsampled to a 256 × 256 size. The DRR corresponding to the undeformed
CT volume was subtracted to all the DRRs in the dataset to better correlate the
information content in the image with the information from the DVF. A total
of 20,000 samples were used to train our network for 45 epochs, with a learning
rate initialized at 5.10−5 and multiplied by 0.9 each time the validation loss would
plateau for 5 epochs. The training converged in 37 hours on an Nvidia GeForce
GTX 1080 Ti. Table 4.1 presents the optimal hyperparameters found for our
network.

Results: Our results are summarized in Table 4.2. We can quickly see that using
the added information available in the 4D-CT provides better registration results
on both the full image and TRE. This is similar to what can be observed in (M. D.
Foote et al., 2019), and it is no surprise, as the training data is very close to the
problem characteristics. Yet, in this context, our approach leads to better results
than the state of the art. In Foote et al. (M. D. Foote et al., 2019), the max
registration error on the time series is 9.55 mm, whereas our method achieves a
max error of 2.22 mm.
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Phase PCA-based variant DR-based variant
# mean (max) error mean (max) error
0 0.16 (0.95) 0.57 (2.04)
1 0.16 (1.03) 0.94 (3.54)
2 0.28 (1.69) 1.39 (6.14)
3 0.28 (2.22) 1.64 (7.26)
4 0.25 (1.4) 1.92 (9.05)
5 0.28 (1.68) 2.08 (9.09)
6 0.21 (1.13) 2.12 (10.78)
7 0.3 (2.2) 1.76 (8.27)
8 0.25 (1.83) 1.25 (5.06)
9 0.21 (1.51) 0.76 (2.74)

PCA-based variant DR-based variant
mean TRE mean TRE

0.0 0.8
1.52 1.85
1.24 3.02
2.11 2.97
0.86 2.96
1.65 2.76
1.38 3.16
1.12 1.97
0.72 1.84
1.31 1.71

Table 4.2: Summary of our results. The table on the left presents the registration
errors on the entire volume, for the problem optimized data set generation (column
2) and the generic training data set based on domain randomization (column 3).
The table on the right presents mean target registration errors (TRE) for the
same variants of our method. Note that each row corresponds to a phase of
the respiratory cycle, and therefore rows number #4 and #5 have the largest
deformation.

However, since a 4D-CT is needed to obtain such results, this method may only
be applied to a reduced set of clinical scenarios. For all other scenarios where only
a preoperative CT is available, table 4.2 shows that our Domain Randomization
method performs very well (average registration error below 2.5 mm and TREs
below 3.2 mm) while trained on completely generic displacement fields.

Discussion: The objective of this work was to propose an accurate real-time
2D-3D registration method for fluoroscopy-guided interventions without fiducial
markers. We show that this ill-posed problem can be solved via deep learning
when associated with an efficient data generation pipeline. Our method leverages
Domain Randomization combined with a diffeomorphic displacement field gener-
ation, and only requires routinely acquired images as opposed to other methods
in the state-of-the-art, thus improving its applicability to various clinical settings.
Our results show that the proposed method can estimate a 3D displacement field,
even for structures deep into the tissues, with an average accuracy of 1.44 mm. We
also show that our framework can be extended leverage 4D-CT preoperative data.
Using the additional displacement information contained in such time series, we
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Figure 4.5: Illustration of a tumor tracking over a respiratory cycle. Images, from
left to right, correspond to phases 0, 2, 4, 6, and 8 of the time series described
previously. The tumor location is accurately updated at a frequency of 20Hz.

obtain an even higher accuracy of 0.24 mm. This level of accuracy is obtained at an
update rate of about 20 Hz, sufficient for all clinical applications. An illustration
of tumor tracking during respiratory motion is illustrated in figure 4.5.
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4.4 Vessel deformation prediction without contrast
agents

4.4.1 Introduction

The evolution of image-guided procedures has transformed medical imaging from
a purely diagnostic tool into an essential component of therapeutic interventions.
This transformation has given rise to specialized fields such as interventional radi-
ology, therapeutic endoscopy, and minimally invasive image-guided surgery, where
improved outcomes have driven widespread adoption (Epstein et al., 2013). X-
ray-based imaging, particularly fluoroscopy, serves as the cornerstone of these pro-
cedures, offering real-time visualization capabilities crucial for precise navigation.
However, the current reliance on contrast agents for vessel visualization presents
significant clinical challenges. The nephrotoxicity of intravascular contrast media
limits the injectable volume (Mamoulakis et al., 2017), while the transient nature
of contrast enhancement creates procedural inefficiencies and interruptions in real-
time guidance. These limitations highlight a pressing need for contrast-free vessel
visualization methods that can maintain continuous, real-time tracking of vascular
structures during interventions.

This study addresses this clinical need and evaluates the use of our proposed
deep learning approach for predicting vessel deformation in fluoroscopic imaging
without contrast enhancement. The objective of this work is to enable continuous,
real-time vessel visualization during fluoroscopy-guided procedures, potentially im-
proving both safety and efficiency while reducing the procedural dependence on
contrast agents. We demonstrate our method’s capability to predict respiratory-
induced hepatic vein deformations from synthetic fluoroscopic images, with de-
tailed results presented in Sec. 4.4.2.

The data generation process employed in this work is identical to the data
generation process described in the previous work (Sec. 4.3.2.2). The network
architecture presents the following differences with the architecture detailed in
Sec. 4.2.3:

• The network input is a DRR of the deformed anatomy subtracted with the
DRR of the preoperative anatomy. In future studies, we remove this sub-
traction operation since it did not lead to improved performances.

• The network doesn’t yet employ backprojection but rather a reshape oper-
ation (denoted as the ‘NoBackproj’ variant in Sec. 4.5.3.6) to transform 2D
features to 3D features, which is less accurate.

• In this work, an MSE between the ground truth displacement field and the
predicted displacement is used to optimize the network parameters, with the
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displacement in the direction perpendicular to the projection set to 0.

• No learning rate scheduler is used.

• The number of filters in the first convolutional layer is 64 instead of 96.

• 6 encoder and decoder layers are used instead of 10

• The shape of the predicted and ground truth displacement fields is (64, 32, 64)
instead of (128, 64, 128).

• The domain randomization data augmentation described in Sec. 4.2.4 was
not used.

4.4.2 Results

A human liver CT obtained from a patient of the Paul Brousse hospital in Paris
was used to generate a 10,000 sample dataset, split into 8,000 training samples and
2,000 validation samples. The maximum amplitude of deformation in the dataset
was 22 mm and 40 mm in the LR direction and SI direction respectively.

The testing dataset was generated from the same 3D CT, this time using
BSpline transforms tailored to mimic a breathing motion. Specifically, inhale and
exhale phases and sliding motion of the organs against the bones were modeled.
In this case, the maximum amplitude was 10 mm and 25 mm for the SI and LR
directions. The dataset contains 5 inhale/exhale periods for a total of 50 samples.

The accuracy of the network was measured via the reprojection distance (RPD)
metric. Hepatic veins were deformed using the ground truth and the predicted
displacement fields. The deformed mesh points were projected onto the image
plane and the 2D RPD error was measured.

The mean RPD error on the testing dataset was 2.7 ± 1.9 mm while the mean
RPD displacement was 7.7 ± 3.9 mm. Figure 4.8 shows the distribution of the
error on the hepatic veins. Figure 4.7 shows an example of image augmentation by
our method. A full video is available at https://mimesis.inria.fr/project/
augmented-fluoroscopy/.

4.4.3 Discussion

Even though the testing data were generated differently from the training data,
the prediction of the network still reduced the error from 7.7 to 2.7 mm. These
results validate our Domain Randomization approach, as the network learns to
map a deformed fluoroscopy to a displacement field, and generalizes well on the
testing data. This constitutes an advantage over other methods that might use
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Figure 4.6: The average RPD error of our method on the testing data against the average
RPD displacement.

Figure 4.7: Augmented DRR at full inspiration (left), and full expiration (right), with
the predicted hepatic veins position.
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Figure 4.8: The average RPD error in mm on the hepatic veins position on the testing
dataset.

a patient-specific motion prior obtained from a 4D-CT to train a neural network
to predict deformations from a fluoroscopic image. A limitation arising from 2D
fluoroscopy is that the displacement perpendicular to the image plane is not visible
and thus cannot be predicted, but this is mitigated by the fact that the resulting
error is also not visible on the augmented image.
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4.5 2D-3D registration of intervention-related de-
formations

4.5.1 Introduction

The challenge of tracking anatomical structures during interventional procedures
can be reduced to a 2D-3D registration problem, where real-time fluoroscopic im-
ages (2D) must be accurately mapped to preoperative CT volumes (3D) despite
complex, intervention-induced tissue deformations. This registration problem is
especially critical in liver interventions, where accurate tracking of vascular struc-
tures and tumors through tissue deformation directly impacts procedural safety
and efficacy.

The liver, a complex solid organ, houses three distinct vascular systems and
the biliary tree. It is unfortunately targeted by a wide variety of diseases, includ-
ing tumors, both primary (affecting the liver itself) and secondary (resulting from
diseases in other organs). The evolution of image-guided techniques has signif-
icantly improved diagnostic, theragnostic, and therapeutic procedures ((Epstein
et al., 2013)). These new techniques have also reduced invasiveness and enriched
the information available for guiding the interventions.

Liver therapies guided by imaging techniques can be categorized into three pri-
mary groups of procedures: those targeting the liver parenchyma, those involving
vascular structures, and those related to the biliary tree. The most performed
procedures for each group are; for the parenchyma: liver or tumor biopsy, and
tumoral ablation; for the vessels: portal or hepatic vein embolization, transjugu-
lar intrahepatic portosystemic shunt (TIPS), and transarterial chemoembolization
(TACE); and for the biliary system: cholangiography, cholecystostomy, biliary
drainage, endocanalicular biopsy, and stent placement.

X-ray-based imaging is one of the most frequently used imaging modalities for
guiding the above-mentioned liver therapies. It includes CT, 2D fluoroscopy, and
3D fluoroscopy (i.e., cone-beam CT). However, low tissue contrast is a prominent
limitation of X-ray-based imaging, requiring the injection of contrast agents (CA)
into the bloodstream to enhance contrast between structures, enabling recognition,
and thus, facilitating the procedures. During procedures, the liver is subject to
deformations caused by cardiac and breathing motion, and the instrumentation
performed by the clinician. This means that, in the absence of contrast injection,
their position becomes indeterminate, with a lack of context, leading to risks of
unintended damage. However, the volume of CA that can be injected during an
intervention is limited due to its potential toxic effects when injected intravascular,
notably nephrotoxicity ((Mamoulakis et al., 2017)). Furthermore, the rapid dissi-
pation of the contrast effect after injection makes the visualization of low-contrast
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tissues only possible shortly after injection. Consequently, while fluoroscopy offers
real-time capabilities, this transient contrast effect renders fluoroscopy most of the
time an asynchronous image guidance method, available either before or after any
gesture.

Therefore, the objective of this work is to predict the motion of intrahepatic
structures (e.g., vessels, tumors, liver segments) in fluoroscopy-guided interventions
without the need for CA injection. It is a challenging task due to the poor contrast
between the structures and the surrounding tissue in fluoroscopic images. This
task is further complicated in clinical settings where organs are deformed due to
surgical manipulations or needle-based (percutaneous) interventions. Thus, we
propose a domain-agnostic 2D-3D deformable registration method able to recover
arbitrary deformations of the anatomy from a single fluoroscopic image. Our
approach is based on the generation of a randomized, synthetic dataset to train
a neural network that predicts deformations. Using a preoperative CT scan as
a prior to generate a bespoke training dataset, our approach has the potential
to provide real-time guidance in fluoroscopy-guided interventions while avoiding
contrast agent injection, thus enhancing the safety and efficiency of procedures.

4.5.2 Previous works

Outside of the medical field, extracting 3D information from one or several 2D
projective images is a widely encountered problem. Some works adopt a global
approach, aiming to recover a 3D scene from a single 2D optical image (Yin et al.,
2022). Other works focus on reconstructing a 3D mesh of an object from one
or more 2D projections (N. Wang et al., 2018; Salvi et al., 2020; L. Li et al.,
2021). In the medical field, 3D CT, along with MRI scans, are ubiquitous as they
bring crucial information to clinicians. However, CT scans incur a non-negligible
radiation dose for the patient and are not a real-time image modality. This is why
a variety of works (Shen et al., 2019; You Zhang, 2021; Lei, Z. Tian, T. Wang,
Roper, et al., 2021; C.-W. Chang et al., 2022; Lei, Z. Tian, T. Wang, Axente,
et al., 2022) tackle the problem of 3D CT reconstruction from one or few 2D
fluoroscopic images. Since reconstructing a 3D image from a few projections is an
ill-posed problem, some of these works rely on a previously acquired CT image.
These approaches are, however, not well adapted to our problem because they
aim to reconstruct a full CT volume rather than update preoperative data for
intra-operative visualization.

A similar problem is often tackled in radiotherapy, where the position of a tu-
mor from the 3D preoperative CT scan must be updated to follow the breathing
motion of the patient. This problem has been solved with success by tracking an
implanted radio-opaque marker near the tumor in a bi-plane fluoroscopic image
while the patient breathes ((Adler et al., 1997; Seppenwoolde et al., 2011)). How-
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ever, marker implantation requires an additional procedure, potentially leading
to complications. This is why more recent works (presented in Sec. 3.1) aim to
directly predict the tumor location from two or more fluoroscopic images

Another, more general, approach is to predict a displacement field to update
the position and shape of preoperatively segmented structures. Like our approach,
such methods are referred to as 2D-3D deformable registration methods. A com-
prehensive state of the art of these methods is proposed in Sec. 3.3.

While previous works, particularly single-plane methods, have demonstrated
the feasibility of 2D-3D fluoroscopy to CT real-time registration in radiotherapy,
a critical gap remains in addressing arbitrary deformation recovery in other inter-
ventional procedures. These deformations result not only from respiratory motion
but also from the mechanical influence of surgical instruments on tissue, lead-
ing to complex and unpredictable changes. Traditional approaches for tracking
anatomical structures in fluoroscopy-guided interventions have relied on markers
or contrast agents, posing limitations and potential risks. Meanwhile, all existing
markerless 2D-3D tracking methods are based on pre-established motion models,
suitable only for scenarios where the movement, such as periodic breathing, is
known in advance. Thus, no solution exists for contrast-free, real-time tracking of
anatomical structures in fluoroscopy-guided interventions.

This work directly addresses this unmet need by validating our domain-agnostic
method for single-view 2D-3D deformable registration (section. 4.2) on an experi-
mentally acquired porcine dataset with intervention-related deformations and two
synthetic human datasets with intervention-related and breathing-induced defor-
mations. Additionally, we performed a sensitivity analysis to evaluate the impact
of the backprojection module and loss function on performance. Our results under-
score the clinical relevance of our method, demonstrating real-time, contrast-free
tracking of intrahepatic vessels, which could reduce the need for contrast agents
in fluoroscopy-guided interventions. With this approach, we aim to contribute to
the development of safer, more broadly applicable markerless and contrast-free
tracking solutions for fluoroscopy-guided interventions.

4.5.3 Results

We present here several results to demonstrate the robustness, accuracy, and gener-
icity of our method.

4.5.3.1 Datasets description

Our method was evaluated on three datasets:

1. A clinically acquired porcine dataset, with four pairs of CECTs, before and
after intervention-related deformations.
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2. A breathing motion dataset, composed of a baseline, clinically-acquired pre-
operative CECT, and 50 deformed CTs replicating 5 breathing motion se-
quences.

3. A needle insertion dataset, composed of the same baseline CECT as the
breathing motion dataset and 50 deformed CTs mimicking deformations in-
duced by needle insertion.

These datasets are designed to evaluate the ability of our method to recover
deformations that would occur during interventions, either due to breathing, or
caused by the interaction between surgical tools and tissues. The testing data
inputs are DRRs generated from the deformed CTs, with the deformed vessel
segmentations serving as ground truth.

With the first dataset (the IHUdeLiver10 dataset, in Sec. 4.5.3.3), we evalu-
ated our method on DRRs generated from CT scans acquired after interventions.
In our experiments, we used four pairs of {baseline; deformed} CECTs experi-
mentally acquired on four different porcine subjects, to illustrate the flexibility
of our approach to recover various intervention-related deformations. Specifically,
the four samples we used represent the following interventional scenarios: needle-
tissue interactions, inter-fractional motion and laparoscopic surgery, respectively.
As opposed to other publicly available datasets, this dataset allows us to evaluate
the ability of our method to recover real, intervention-related deformations. A
limitation of this dataset is that, due to contrast agent dissipation, the deformed
intrahepatic vessels do not match the rest intrahepatic vessels in the number and
length of vessels. We mitigate this issue by manually processing the segmentations
to obtain vessel trees as similar as possible.

To completely eliminate this uncertainty, we further validate our method on
a clinically acquired human CECT, with synthetic deformations (Sec. 4.5.3.4 and
Sec. 4.5.3.5). We created two datasets to evaluate our method on both natu-
rally occurring and intervention-related deformations. With the breathing mo-
tion dataset, our objective is to show that our method can compete with other
works specifically designed for breathing motion recovery. The needle insertion
dataset allows us to perform an accurate, quantitative assessment of our method
on intervention-related deformations without experimental sources of errors. The
process of generating these datasets is described below.

Breathing motion dataset: To create a semi-synthetic test dataset that rep-
resents breathing motion, we used a data generation process different from the
training data generation process. First, the thorax bones and liver were segmented
automatically using TotalSegmentator (Wasserthal et al., 2023). A 3D grid of con-
trol points was also created, covering the image at a resolution of 20mm in every
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direction. A random displacement, biased to have a large vertical component, was
generated uniformly for each control point. This displacement was then projected
on the vectors tangential and orthogonal to the liver at each control point. Then,
a distance map was built from the thorax bones segmentation and used to fil-
ter the displacement at control points. For each control point, if its distance to
the bones was inferior to 10mm, the tangential component was set to 0 and the
orthogonal component was set to 10% of its value. This models both the sliding
motion of organs against bones and outward motion during breathing. Finally, the
full displacement field was scaled by a factor varying between 0 and 1 following
a cos4 schedule to replicate a breathing pattern. To interpolate this displacement
smoothly at every voxel, B-splines were used instead of linear interpolation to bet-
ter handle the discontinuous nature of the displacement between control points.
We generated five 10-phase synthetic 4D-CT with this process for a total of 50
samples. It is important to note that these deformations are generated in a com-
pletely different way than the training data, which is fully randomized, so our
method is not biased to favor the reconstruction of these deformations.

Needle insertion dataset: Due to the action of surgical tools on the organ,
intraoperative liver motion can be large, with displacements of up to 60mm (Heiz-
mann et al., 2010). In this dataset, we simulated the insertion of a synthetic needle
2mm in diameter 50mm into the liver over the course of 50 time steps. The am-
plitude of displacement was 30mm along the direction of needle insertion. This
displacement was applied at control points inside the liver that were closer than
80mm to the tip of the needle. With this approach, the deformation remained cen-
tered on the needle tip during insertion. A Deep Inspiration Breath Hold (DIBH)
motion was also added, with the internal organs slowly moving upwards as the
lungs slightly compress over the course of the breath hold.

4.5.3.2 Experimental setup

Sections 4.5.3.3, 4.5.3.4, and 4.5.3.5 present the results of our method on the IhuDe-
Liver10 dataset, the breathing motion dataset and the needle insertion dataset,
respectively. A sensitivity analysis (section 4.5.3.6) was also performed to evaluate
the impact of the proposed loss function and backprojection module on the IHUde-
Liver10 dataset. Even though our method is agnostic to the choice of anatomical
target structure, the portal vein tree was chosen as the target for both the porcine
and human datasets, due to its clinical relevance, as introduced in Sec. 4.5.1. Here,
the proposed application of our method is to replace contrast injection by super-
imposing the predicted vessel shape on fluoroscopic images. Thus, to evaluate the
accuracy of our method, we measure the 2D Dice coefficient between the deformed
and predicted vascular trees projected on the fluoroscopic image plane.
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The parameters for the data generation were not tuned between the use cases
and are common for all cases. The networks were trained from scratch for each
case. The voxel resolution was different for each CT, but was always < 1mm3.
The DVFs were generated at a resolution of 128 × 64 × 128 (in LR-AP-SI order)
to reduce memory usage and processing time. To deform the baseline CT, the
DVFs were upsampled linearly to the shape of the field domain before warping.
The virtual C-arm was positioned automatically such that the liver was in the
center of the projection, with a margin of (100., 50., 100.) mm around the liver
bounding box to ensure the liver is always visible in the projection. The DRRs
were generated at a resolution of 512 × 512 pixels, with a pixel size of 0.67mm,
and downsampled to 256 × 256 before being input to the network. We did not
observe performance gains when processing the input image at full resolution and
downsampling reduced memory usage and computing time. The field domain was
set to the bounding box of the projection in the volume. The number of random
control points in the ROI was set to Ncp = 30. This number was chosen arbitrarily
to provide enough variability in the generated displacement fields. We did not
study the impact of this parameter on network performance. The norm of the
generated displacement vectors was comprised between 0 and 100mm, in order to
cover sufficiently large deformations. For each baseline CT, 20, 000 samples were
generated and randomly split into 18, 000 training samples and 2, 000 validation
samples. Generating each training dataset took approximately 10 hours and 80
GB on a computer equipped with an Nvidia RTX 4090 GPU. Thus, due to time
and space constraints, we did not generate a greater number of training samples.

4.5.3.3 Porcine dataset

The IHUdeLiver10 1 is a comprehensive collection of high-quality liver CT images,
primarily focusing on organ deformations in 10 swine subjects undergoing various
image-guided procedures. Specifically, four cases were selected from the dataset
based on their procedures and the ensuing deformations. The deformation mech-
anism was needle-tissue interactions in subjects 1 and 2, inter-fractional motion
in subject 3, and deformations before and after laparoscopic surgery in subject
4. Each case is composed of pairs of {baseline; deformed} multi-phase contrast-
enhanced CT scans (MPCECT). Each MPCECT includes a non-contrasted phase
and a portal-enhanced phase (after injection). Portal phases were processed by
a liver surgeon with extensive knowledge of swine anatomy, including a detailed
segmentation of the portal tree.

To remove contrast information, both the baseline and deformed scans were in-
painted. As the contrast injections of baseline and deformed CTs were performed

1IHUdeLiver10 will be released at https://doi.org/10.57745/EUBXGH
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Subject id 2D Dice
Registered Baseline

1 0.651 0.416
2 0.694 0.558
3 0.655 0.278
4 0.593 0.476

Table 4.3: Accuracy of our method on the vessel tree registration for each subject
in the porcine dataset.

at different times, the number and size of branches do not match. To alleviate
this issue, we used the vascular modeling toolkit ((Izzo et al., 2018)) plugin in 3D
Slicer ((Fedorov et al., 2012)), to compute the centerlines of each portal tree. We
then voxelized the centerlines using a constant diameter of ∼ 5mm. Finally, the
same surgeon removed vessels that were absent from either the baseline or the de-
formed scan, ensuring that the Dice coefficient was computed between comparable
structures.

We evaluated the network’s performance for each case by separately generating
a training dataset and evaluating its performance on the deformed CT. We used
the optimal parameters detailed in Sec. 4.5.3.6 for each case. We report the 2D
Dice coefficient before and after registration in Table 4.3. On this dataset, we
obtain a mean Dice of 0.649± 0.036, from 0.432± 0.102 before registration.

4.5.3.4 Breathing motion dataset

During an intervention, the deformation of the anatomy is either introduced by
the clinician or by physiology, such as breathing. In the above experiment, we
evaluated the ability of our method to recover deformations caused by the clini-
cian’s action on the anatomy. In this experiment, we evaluate the ability of our
method to recover another important type of deformation occurring during inter-
ventions, respiratory motion. Fig. 4.9 shows an example of three phases in the
testing dataset (left), overlaid with the vessel centerlines deformed by the network
prediction (right).

We compare our method with the IGCN+ method (Nakao et al., 2022), devel-
oped for 2D-3D breathing motion prediction. This approach uses a U-net CNN
to extract the 3D motion of an organ as a 2D, 3-component deformation field.
This 2D motion is then projected onto the organ mesh, and a Graph Convolu-
tional Network is used to compute the motion on the occluded parts of the organ.
In (Nakao et al., 2022), the networks are trained and tested on a private 4DCT
dataset composed of several cases. Here, we train IGCN+ following the imple-
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mentation described in (Nakao et al., 2022)2, on a dataset generated from the first
4DCT in the breathing motion dataset. Specifically, we used a PCA on the first
two motion components of the dataset as in (Nakao et al., 2022) to generate the
training dataset composed of ground truth 2D 3 components deformation fields
and ground truth deformed organ meshes. In this case, the ‘organ’ on which the
IGCN+ method was trained and evaluated is the portal vein tree.

2Original implementation available at https://github.com/meguminakao/IGCN
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Figure 4.9: From top to bottom, DRR images of samples 0, 2, and 5 of the
breathing motion dataset overlaid with the displacement field (left) and with the
predicted vessel centerlines (right). The length and color of the arrows represent
the magnitude of the displacement field. The vessel centerlines are colored for
visualization purposes.

The performance of both methods was evaluated by measuring the 2D Dice
coefficient between the ground truth and predicted portal veins segmentations.
Fig 4.10 shows the performance of our method versus the IGCN+ method on the
breathing motion dataset. On this dataset, our method obtained a mean Dice
after registration of 0.863± 0.047 and the IGCN+ method obtained a mean Dice
after registration of 0.879± 0.044, from 0.651± 0.074 before registration.
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Figure 4.10: 2D Dice of our method and the IGCN+ method on the test set for
each sample in the dataset. While the IGCN+ method obtains a slightly better
performance on this problem thanks to the high similarity between its training and
testing data, our method achieves an excellent result despite the lack of similarity
between the training data and the testing data.

4.5.3.5 Needle insertion dataset

On this dataset, we evaluate the ability of our method to recover surgically induced
deformations. In this dataset, the amplitude of displacement ranged from 0 to
≈ 30mm over the course of the needle insertion. We used the same weights as in the
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Figure 4.11: 2D Dice for each sample in the test set. Our method (blue) obtains
similar performances on the needle insertion dataset and breathing motion dataset.
In contrast, the IGCN+ method (orange) fails on this task due to being trained
solely on breathing motion, performing only slightly better than no registration
(red). Our method is also robust to the presence of surgical tools, such as needles,
in the image when trained accordingly. The performance of our method is similar
when trained and tested with needles in the image (green) and without (blue).

above experiment for both our network and the IGCN+ network. Fig 4.11 shows
the performance of our method and the IGCN+ method on the needle insertion
dataset. On this dataset, our method demonstrated very similar performances as in
the breathing motion dataset, with a mean Dice after registration of 0.800±0.006,
while the IGCN+ performances were largely degraded, with a mean Dice after
registration of 0.696±0.023, nearly the same as before registration (0.688±0.031).

We also evaluated whether our model could be trained to be robust to the
presence of a needle in the image, as it occurs in percutaneous interventions. To
train the network, we randomly overlaid needles of varying diameters and positions
on the input images during training. The translation varied from 0 to 50mm
around the initial position of the needle in the liver and the rotations between 0
and 0.3π. For testing, we rendered the needle as it was inserted into the liver. This
training and testing process is specific to the variant denoted ‘Ours with visible
needle’ in Fig. 4.11. With visible needles, the performance of our method is very
similar, with a mean dice of 0.805± 0.009.
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4.5.3.6 Sensitivity analysis

In order to determine common parameters for all datasets, we designed several
experiments to explore optimal design choices. These experiments were performed
on the porcine dataset. We first explored 4 design choices for the loss function: 1)
Mean Squared Error (MSE) loss between the predicted and ground truth displace-
ment field 2) Reprojection MSE loss between the predicted and ground truth dis-
placement field 3) Reprojection MSE loss + 3D soft Dice loss between the predicted
and ground truth 3D segmentations 4) Reprojection MSE loss + 2D soft Dice loss
between the predicted and ground truth 2D segmentations (see Sec. 4.2.3.2 for loss
computation details).

In 5), we performed a hyperparameter search to determine the optimal value
of the mixing coefficient λ between the reprojection loss and the 2D soft Dice loss.

We also evaluated the impact of the Backprojection module (described in
Sec. 4.2.3.1) over other design choices such as 2D-3D reshape without pooling
and 2D-3D reshape with average pooling. These variants are denoted Back-
proj, NoBackproj, and NoBackproj-AvgPool respectively. In the NoBackproj and
NoBackproj-AvgPool variants, the reshape was performed such that the spatial
size of features input to the decoder was the same as in the Backproj variant. For
the NoBackproj variant, this resulted in 3072 (instead of 768) 3D feature maps,
and due to memory constraints, the batch size was reduced from 12 to 3. For
the NoBackproj-AvgPool variant, average pooling was performed on the spatial
dimensions before reshaping, such that the 3D feature map shape was the same as
in the Backproj variant.

Finally, we compared the performances of the network with and without the
data augmentation process described in Sec. 4.2.4.

For each case, the network was trained from scratch and the performance of
each network was measured at the last epoch.
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4.5.3.7 Loss comparison

Figure 4.12: 2D Dice for each case in the porcine test dataset, for experiments
1) to 4), where different loss functions are used to train the network. The loss
function used in 4) has the best average performances across cases.

Figure 4.13: Prediction Dice values for
all porcine test samples, with varying
λ. Compared to other values, λ = 0.5
is the most robust across cases.

Figure 4.14: Prediction Dice values for
all porcine test samples of the NoBack-
proj, NoBackproj-AvgPool, and Back-
proj variants. The Backproj variant ob-
tains the best results across variants.
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Fig. 4.12 shows the results of experiments 1), 2), 3), and 4) where our proposed loss
combination is compared against alternatives. Fig. 4.13 shows the results of exper-
iment 5), where different values of the hyperparameter λ for our loss combination
are compared. Based on this experiment, we chose λ = 0.5 for other experiments,
because it was the most robust across cases. Other values of λ demonstrated
suboptimal performances for at least one case and were thus rejected.

4.5.3.8 2D-3D translation

To transform 2D feature maps into 3D feature maps, an additional dimension must
be introduced. Fig. 4.14 illustrates the performance difference between the three
design choices for the 2D to 3D transformation of the feature maps. Fig. 4.15
shows the mean difference between the displacement field predicted for the base
input and the displacement fields predicted for 100 perturbed inputs, projected on
the input image.

Figure 4.15: In this experiment, the network input is perturbed in a small square
with random noise. For each of the NoBackproj, NoBackproj-AvgPool, and Back-
proj variants, the mean output perturbation is measured and projected on the
image. The circles represent the radius in which the output perturbation is at
least 0.5mm. The Backproj variant shows the least spatial extension of the per-
turbation, demonstrating great spatial correspondence between variations in the
input and output.
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Figure 4.16: 2D Dice with and without data augmentation, for each case in the
porcine test dataset. The network always performs better when data augmentation
is used.

4.5.3.9 Data augmentation

As introduced in 4.2.4, we used a data augmentation scheme to improve the ro-
bustness of the network to changes in image appearances. Fig. 4.16 shows the
performance difference between the network trained with and without the pro-
posed data augmentation scheme.

Based on the results of this sensitivity analysis, the parameters we used to
measure the performance of our network on the porcine and human datasets are
L = Lφ2D + λLs2D with λ = 0.5, use of Backprojection to transform 2D feature
maps to 3D, and data augmentation to improve network robustness to appearance
changes.

4.5.4 Discussion

In this work, we presented a fluoroscopy to CT registration method to recover
both breathing and surgically induced deformations. We evaluated our method
on a porcine dataset representing common types of deformation in the context of
image-guided liver therapy. Table 4.3 demonstrates the potential of our method
for contrast-free, fluoroscopy-guided liver therapies. On this dataset, our method
was able to recover the shape of the vascular trees for three different types of
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intervention-related deformations with good accuracy.

Our results in Fig. 4.10 on the breathing dataset additionally showed that
our method is able to recover breathing motion without requiring preoperative
4D-CT acquisition for training data. We obtain comparable performances with a
state-of-the-art method, IGCN+, which was trained on patient-specific breathing
motion. Our results in Fig. 4.11 show that, thanks to its domain-agnostic training
process, our method is able to register a surgically induced deformation with good
accuracy, while the IGCN+ method, trained on breathing motion, fails on this
unseen deformation. This validates our domain-agnostic approach in the context
of fluoroscopy-guided interventions, as it is able to recover intervention-related
deformations, which can potentially be of large amplitudes ((Heizmann et al.,
2010)). We also demonstrated in Fig. 4.11 that training the network with needles
randomly overlaid on the input image makes it robust to the presence of a needle
in the image at inference time, as occurs during percutaneous interventions.

We performed a sensitivity analysis in Sec. 4.5.3.6 to justify and evaluate the
impact of our design choices. We measured the performance improvement ob-
tained when formulating the segmentation recovery as a training objective using
a combination of a 2D reprojection loss and a 2D soft Dice loss. Fig. 4.12 shows
that the greatest improvement is obtained when replacing the 3D MSE loss with
the 2D reprojection loss. Adding the 2D soft Dice loss brings an additional mod-
erate performance improvement. An explanation for this result is that the 2D
Dice loss Ls2D specifically targets the registration accuracy on the vessels, while
the loss Lφ2D aims to indiscriminately recover the displacement field everywhere,
teaching the network the relationship between the 2D input and associated 3D
motion. In Fig. 4.13, an hyperparameter search was presented to determine the
best mixing coefficient λ between the two losses. Our criterion for hyperparameter
selection was that our method should perform comparably across all cases, rather
than maximize average performance. Thus, we chose λ = 0.5 as this value offered
the best compromise between average performance and robustness across cases.
Fig. 4.16 validates the effectiveness of the data augmentation method proposed
in (Grimm et al., 2021) for our application, with important performance improve-
ments on some cases. We hypothesize that slight changes in image appearance due
to inter-fractional anatomical variations, caused, for example, by the digestive pro-
cess, may induce prediction errors that are mitigated by this data augmentation
approach.

Finally, we evaluated whether our back projection layer was useful to translate
2D features into 3D features. A natural choice would be to use the C channels of
the feature maps as a depth dimension. However, Fig. 4.14 clearly illustrates that
this approach is too naive and leads to performance degradation. To respect the
projective aspect of the 2D-3D transformation, the Backproject module introduced
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in Sec. 4.2.3.1 transforms the 2D feature maps using the projection matrix. This
introduces a direct correspondence between a position x in the volume and a pixel
u = Px, which can be observed by randomly perturbing the input at a position u
and measuring the change in the output displacement field. In Fig. 4.15, only the
Backproj variant displays a local perturbation of the displacement field around the
perturbed input, while the NoBackproj and NoBackproj-AvgPool variants display
global perturbations of the displacement field. This indicates that the Backproj
variant indeed incorporates a 2D-3D spatial correspondence.

While we used the Dice coefficient to evaluate our method, care must be taken
to interpret the value of the Dice coefficient of thin structures such as blood vessels.
For example, a Dice of 0.6 may seem low when compared with other values in
the state of the art, but this value is highly influenced by the small size of the
vessels and the differences in the acquisition of the baseline and deformed vessel
trees. Notably, the lengths of corresponding branches in the baseline and deformed
vessel trees are different, which affects the Dice coefficient. It is, in turn, more
informative to look at the relative change before and after registration to evaluate
results. Fig. 4.17 shows how the value of the 2D Dice coefficient changes when the
intrahepatic vessels and the liver are translated. Due to their long and thin shape,
the Dice metric varies far more rapidly for the intrahepatic vessels than the liver.
This is showcased in the top right part of Fig. 4.17, which shows how a small shift
(5mm translation) affects alignment for the liver and intrahepatic vessels.

Even though our results show that our method has the potential to enable
augmented fluoroscopy-guided interventions, challenges remain before it can be
used in the operating room. First, in this study, we did not validate the effec-
tiveness of our method on real fluoroscopic images, as no paired fluoroscopy/CT
datasets were readily available to test our deformable registration method. Ob-
taining a fluoroscopic image with a perfectly corresponding CT scan volume is not
easily done due to practical constraints, but it could be the subject of future work
with the use of a robotized CBCT device. However, other works focusing on rigid
registration problems demonstrated that specialized synthetic training techniques
could be used to bridge the domain gap between DRR images and fluoroscopic
images (Grimm et al., 2021; Gao, Killeen, et al., 2023; Jaganathan et al., 2023)
reporting clinically relevant performances. In our case, using the data augmenta-
tion technique in (Grimm et al., 2021), originally developed to bridge this domain
gap, improved performances even though DRRs were used as testing data.

Additionally, while our method is suitable for augmenting fluoroscopic images
in real-time, it is still limited by the weak depth information in the fluoroscopy.
To remediate this, a biomechanical model of the organ (in this case the liver)
could be used to generate physically accurate training data. The biomechanical
model could also be used in the loss to guide the prediction of the network towards
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Figure 4.17: This figure illustrates how the Dice coefficient evolves when 2 shapes,
initially perfectly overlapped, are progressively misaligned. We particularly em-
phasize how the Dice value evolves as a function of the shift when the shape is a
relatively large structure (e.g. an organ) and when the shape is a thin structure
(e.g. blood vessels). This puts our results into perspective: a Dice value of 0.65
(obtained on the porcine dataset) would correspond to a Dice of 0.92 on a whole
organ, while a Dice value of 0.81 (obtained on the breathing motion dataset) would
correspond to a Dice of 0.96 on the liver.

physically plausible displacements.
Finally, while we used a soft Dice loss in our loss function, application-specific

losses, such as the Centerline Boundary Dice Loss (Shi et al., 2024) specifically
designed for vascular structures, could be used for potentially improved perfor-
mances.

Moving forward, our focus will be allocated to refine the method’s accuracy
by incorporating a physics-based deformation model. Additionally, we plan to
evaluate its performance using real fluoroscopic images, aiming to validate and
enhance its practical applicability in diverse clinical settings.
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4.6 Fluoroscopy-guided autonomous guidewire nav-
igation

4.6.1 Introduction

Navigating a catheter and guidewire through the vascular system in a safe and
efficient manner is crucial to minimize the patient’s and clinician’s exposure to
X-ray radiation from the fluoroscopic imaging system. This task demands a thor-
ough understanding of the anatomy, superior device control, and a comprehensive
grasp of fluoroscopic visualization. However, even seasoned clinicians may take
considerable time to reach specific targets. Robotic systems can potentially en-
hance this process (Puschel et al., 2022). Yet, these robots are still master-follower
systems that operate the devices based on the clinician’s inputs. To further assist
the clinician, current research is shifting towards the creation of autonomous and
semi-autonomous systems. Among the semi-autonomous systems, Zhang et al. (J.
Zhang et al., 2024) proposed an algorithm to maintain the tip of a robotized bron-
choscope at the center of the airways. This AI-based algorithm uses both broncho-
scopic images and human commands as inputs and predicts a corrective motion.
Autonomous systems generally rely on Deep Reinforcement Learning (DRL) and
use fluoroscopic images to predict a control action (rotation and translation) to
be executed at the device’s proximal end. Some research trains and applies the
learned control entirely in simulated environments (W. Tian et al., 2023). Other
studies train the neural controller using images of the phantom where the navi-
gation will later be performed (S. Wang et al., 2022; Kweon et al., 2021) while
others perform the training in a simulated environment and then use images of the
phantom during navigation (Karstensen, Behr, et al., 2020).

The limitations of current research are two-fold. Using fluoroscopic images as
input to the neural network can cause uncertainties about the orientation of the
tip, leading to prediction errors. Also, the training process does not generalize
well and requires individual training for each patient. As reported in (Miranda
et al., 2023; Kirk et al., 2023), learning controllers that can perform tasks in both
familiar and unfamiliar environments remains a significant challenge in DRL.

To tackle this problem in the context of endovascular procedures, Kweon et
al. (Kweon et al., 2021) suggested a segment-wise learning method to speed up
training using human demonstrations, transfer learning, and weight initialization.
However, this method still necessitates network training each time the environment
is altered or expanded. Similarly, in the research conducted by Karstensen et al.
(Karstensen, Ritter, et al., 2023), the controller performance dropped from a 75%
success rate in navigating known anatomies to 29% when real patient vessels were
used. Chi et al. (Chi, J. Liu, et al., 2018; Chi, Dagnino, et al., 2020) proposed
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different strategies to obtain an optimal control of the device. In (Chi, Dagnino,
et al., 2020), they used a generative adversarial imitation learning method aimed
at learning the catheterization of different arteries, with a success rate of about
70% when the aortic type was altered. In (Chi, J. Liu, et al., 2018), they trained a
statistical model to perform the cannulation of the innominate aorta and applied
the same controller to variations of the aortic arch type. This technique reported
an average 98% success rate in new but very similar geometries, using human
demonstrations for each new task.

Recently, we proposed a DRL method that achieves excellent generalization
thanks to a specific training strategy (Scarponi, Duprez, et al., 2024). Using a set
of only 4 bifurcation shapes, and a shape-invariant observation space, the learned
controller was able to navigate complex, unseen anatomies. Three main assump-
tions were made: the vessels have a nearly constant radius, the bifurcations always
have 2 exit vessels, and the anatomy is not moving or deforming during naviga-
tion. The first assumption is not a limitation of the method but a consequence of
using a unique guidewire during the navigation. With a constant tip shape, only
vessels of a compatible diameter can be accessed. Branching patterns with one
entry vessel and two exit vessels were chosen as bifurcation is the most common
pattern (Singh et al., 2017).

This study addresses the third assumption (static anatomy) and proposes two
main contributions: a training strategy able to learn a control of the device even
when the vascular anatomy is moving and/or deforming (see Sec. 4.6.2.1), and a
method to estimate the motion of the anatomy from single view fluoroscopy images
(see Sec. 4.6.2.2). The combination of these two contributions makes it possible
to automatically navigate across a moving anatomy under fluoroscopic imaging,
even without injecting a contrast agent. Our results (see Sec. 4.6.3) illustrate the
genericity of the training, and the excellent performance of our method, even when
applied to complex, deforming anatomies only observed through 2D fluoroscopic
imaging.

4.6.2 Guidewire control in dynamic environments

4.6.2.1 Learning to navigate dynamic environments

Our objective is to develop a generalized neural controller able to control the mo-
tion, in particular the rotation, of a guidewire through a complex, deforming vascu-
lar tree, from its insertion point until a given target is reached (see Fig. 4.22, 4.24),
while it is advanced at a variable speed. This control is performed at the proximal
end of the device, and accounts for both the device and anatomy deformations
during navigation. Our learning method relies on five main elements: 1) an effi-
cient DRL algorithm; 2) a fast and accurate simulated environment that can be
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updated based on external input; 3) an observation space robust to affine trans-
formations of the anatomy; 4) a specific reward function; 5) an optimal choice of
training anatomies. They are described below.

Training algorithm Reinforcement Learning (RL) constitutes one of the areas
of machine learning. In this specific branch, an agent learns to achieve specific goals
by interacting through its actions with an environment. The problem is usually
formulated as a Markov Decision Process (Bellman, 1957), i.e. (S,A, P, r, γ), in
which γ ∈ [0, 1] defines the discount factor, and S and A represent a set of states
and actions respectively. Each action at ∈ A induces a transition in the system
from the current state st ∈ S to the next state st+1 ∈ S, and is chosen by a
policy π, mapping states to actions S → A. The probability density of the next
state st+1 ∈ S given the current state st ∈ S and action at ∈ A is denoted by
P (st+1|st, at). For each transition, the agent receives a reward r(at, st). The agent
observes the environment through the observation space Ω, which constitutes a
total or partial description of the environment itself.

As in our previous work (Scarponi, Duprez, et al., 2024), we adopted in this
study the Soft Actor-Critic (SAC) algorithm, which outperformed previous al-
gorithms (Haarnoja et al., 2018) such as the deep deterministic policy gradient
(DDPG), largely used for autonomous catheter navigation (W. Tian et al., 2023;
Karstensen, Behr, et al., 2020). In Eqn. (4.6) the objective function of the SAC
algorithm is reported, in which the entropy term H(π(·|st)) is introduced. This
term, which constitutes the main novelty of SAC algorithm, promotes the ex-
ploration of the environment and discourages the repetition of actions that may
exploit inconsistencies in the approximated Q-function.

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))]. (4.6)

Here ρπ(st) and ρπ(st, at) represent respectively the state and state-action marginals
of the trajectory distribution induced by a policy π(at|st).

Simulation of the training environment The virtual environment used to
train the DRL algorithm is based on a physics-based simulation of the device and
its interactions with the vessel walls. We developed our simulator using the open-
source SOFA framework (Faure et al., 2012) and relying on Timoshenko beam
theory (Bitar et al., 2015) to model the physics of the guidewire. The system to
be solved is reported in Equation (4.7) in its matrix form.

(M− dt2K)∆v = dt · f(x(t)) + dt2 ·Kv(t), (4.7)
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where M represents the mass matrix, K the stiffness matrix and dt the time step.
v and ∆v denote the velocity and the velocity variation respectively and f , which
is a function of the current positions x(t), represents the internal and external
forces applied to the system.
The interactions between the vessel wall and the guidewire are computed using a
constraint-based approach and the position of the vascular anatomy is updated at
each time step based on the current fluoroscopic image (see Sec. 4.6.2.2). Equation
(4.7) then becomes:

(M + dt
df

dẋ
+ dt2

df

dx
)∆v = −dt(f + dt

df

dx
v) + dtHTλ, (4.8)

where HTλ is the vector of constraint forces, with H containing the constraint
directions arising from the collision detection, and λ the Lagrange multipliers.
The physics of the guidewire model is then corrected by computing the contact
force λ using a Gauss-Seidel algorithm (Jourdan et al., 1998).

Using a Block Tridiagonal solver, the navigation of the virtual device is simu-
lated at 90 frames per second, maintaining both short training times (Sec. 4.6.3)
and a sufficient level of accuracy (2.0 ± 0.9 mm error between the simulated
guidewire and the shape of a scanned guidewire inserted inside a vascular phan-
tom).

Reinforcement learning strategy As illustrated in Scarponi et al. (Scarponi,
Duprez, et al., 2024), the definition of the observation space, and choice of the
training geometries, are essential to learn a generalizable control. In this work, we
keep a similar strategy: we train the RL algorithm on a set of bifurcation patterns,
unrelated to the test anatomies. This local vascular shape is represented by both
a surface mesh and a centerline. The only assumption about the training shapes is
that the diameter of the vessels is nearly constant and that they have a Y-shaped
topology.

We then extend the work from (Scarponi, Duprez, et al., 2024) in two ar-
eas. First, we augment the training database by introducing shape variations of
the training anatomy during the training process (i.e. similar to sim-to-real ap-
proaches). This shape variation is continuous throughout space and time, to avoid
discontinuities in the displacement field that would cause errors in the simulation.
Second, we formalize the shape generation process by making it procedural, rather
than handcrafted. We characterize the 3D vessel shape from its centerline C from
which it is extruded. C is defined as C(ϕi, νj) with i ∈ {1, 2} and j ∈ {1, .., 6},
where ϕ1 and ϕ2 define the angles between the bifurcation branches and νj are
the tangent of the centerline shape at each endpoint (see Fig. 4.18). Starting from
the simplest geometry (a Y-shaped bifurcation with straight branches) we progres-
sively deform this shape into a series of other shapes, by varying smoothly ϕi and
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Figure 4.18: Procedural training shape generation process. a) Centerline C(ϕi, νj)
of the vessel with i ∈ {1, 2} and j ∈ {1, .., 6}. ϕ1 and ϕ2 are the angles between
the bifurcation branches and νj are the tangents to the centerline shape at each
endpoint. b) 3D shape of the vessel obtained by extrusion of the centerlines C.

νj and maintaining a constant vessel diameter. Fig. 4.19 illustrates this process.
Let’s call B the set of all the bifurcation shapes we generate through our process.
We split B into a series of N subsets Bk of random length, such that ∪Nk=1Bk = B.
Each subset Bk represents a different range of shape variations, from small defor-
mations to large ones. These shape variations are then used as training anatomies
during the learning processes of our neural controller. For each training episode, a
target is randomly selected, as well as a subset Bk of the varying training anatomy.
The initial rotation of the guidewire around its axis and its orientation relative to
the centerline are chosen randomly to enhance the exploration of the environment
and, during each episode, the velocity of the device is also randomly modified.

Nearly shape-invariant observation space To enforce generalization of the
learned control, we proposed as in (Scarponi, Duprez, et al., 2024) an observation
space that is rotation and translation invariant, but also shows little sensitivity
to the shape variation of the bifurcation. This is achieved by defining observa-
tions that are relative to the position of the device in the environment. In this
work, we expand the observation space by adding elements that permit to navi-
gate geometries that are different both in shape and size, with the sole caution of
using a guidewire compatible with the vessel diameter. The observation space Ω
is constructed as follows:

Ω = {ζt, ζt−ndt, λt, λt−ndt, at, ω, dv}
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Figure 4.19: Examples of Bk subsets. Each subset Bk represents a range of bi-
furcation shape variation and ∪Nk=1Bk = B, where B defines the complete set of
bifurcation shapes considered in this work.

• Let ti, i ∈ {1, . . . , N} be the tangent vector at the coordinate xi along the tip
of the guidewire, and cj, j ∈ {1, . . . , N} the tangent vector of the centerline
at position xj = xi + h. We define ζi = ti · ci ∀ i ∈ {1, . . . , N}. To
handle dynamic environments, ci must be updated. This does not require
changing the observation space defined in (Scarponi, Duprez, et al., 2024) but
necessitates estimating this change from live images during an intervention.
Our method for handling this challenge is described in Sec. 4.6.2.2.

• We then define ζm = [ζ1, ζ2, . . . , ζN ]m, with m ∈ {t; t− ndt}.

• λt and λt−ndt represent the distance between the tip of the guidewire and the
target at time t and t− ndt, normalized with respect to the initial distance
to the target λ0. λ0 is defined as the target distance at the entrance of the
bifurcation region.

• at is the action that determines the transition of the system from st−ndt to
st.

• ω = kp ·wp, where kp and wp are the projections of the vectors k and w onto
a plane Γ perpendicular to the centerline of the branch leading to the target
(see Fig. 4.20b). k represents the radial vector of curvature located in the
middle of the curved tip, and w is the vector describing the direction of the
wrong branch. To be robust to different vessel dimensions, both in terms of
vessel diameter and exit branch length, the proper choice of w and Γ normal
vector (nΓ) is crucial. w norm is proportional to the vessel diameter and its
starting point is fixed at the center of the bifurcation, while nΓ magnitude is
proportional to the squared diameter of the vessel and it originates from the
projection of the guidewire distal end onto the centerline (see Fig. 4.20b).
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• dv = v · c, where v describes the current velocity of the guidewire and c the
tangent to the centerline near the tip of the guidewire (see Fig. 4.20c).

It is important to notice that all the parameters used to build the observation
space can be computed in both the virtual (training) environment and in a real
setup. The vessel geometry can be retrieved from preoperative images and up-
dated intraoperatively (see Sec. 4.6.2.2) and the tip shape of the guidewire can
be reconstructed from Fiber Bragg Gratings (FBG) data (Al-Ahmad et al., 2020)
using an optical fiber embedded in the catheter or guidewire.

Reward function Another key element to learning the optimal action is the
engineering of the reward function. We design our reward function as the weighted
sum of three terms:

r(st, at) =
2

1 + e5(ω−0.1)
− 1︸ ︷︷ ︸

a

+0.5 (1− λt)︸ ︷︷ ︸
b

+(−0.2|at|)︸ ︷︷ ︸
c

,

where part a of the reward function encourages the agent to obtain a tip direction
kp opposite to wp (see Fig. 4.20). This function is a modified version of the sigmoid
activation function. The output of part a is a decreasing function taking its values
in [−1; 1] ∈ R. Part b of the reward increases as the target is approached, while
part c discourages the agent from rotating the instrument when it is unnecessary.

Figure 4.20: Observation space: 1) dot product between ti (tangents to the tip of
the device) and cj, describing the downstream centerline, with i ∈ {1, 2, 3} and
j ∈ {1, 2, 3} (a), 2) normalized distance between the tip of the guidewire and the
target, 3) chosen action, 4) dot product between kp, describing tip’s direction, and
wp, describing the direction of the branch that does not lead to the target (b) 5)
dot product between v, describing the velocity of the guidewire and c, describing
the centerline (c).

Chapter 4. Domain-agnostic 2D-3D deformable registration 96



4.6.2.2 3D vascular motion estimation from fluoroscopic images

The observation space Ω described previously includes the relative position of the
device tip with respect to the vessel centerline and target, among other things.
When the shape and position of the vessels are changing (e.g. due to cardiac or
respiratory motion) we must update this information such that the neural con-
troller can perform optimally.

To recover this motion, it is necessary to use a real-time imaging modality
that presents sufficient contrast between the vessels and the surrounding tissue.
Fluoroscopy is the only imaging modality that meets these criteria and is currently
used in the vast majority of endovascular interventions. However, it requires the
injection of a contrast agent to be able to visualize vessels in the image, and it
provides only a two-dimensional image.

Various methods have been devised to overcome this limitation and recover 3D
motion from a single fluoroscopy, mostly in the context of free-breathing radio-
therapy (Wei et al., 2020; Nakao et al., 2022; Shao, Y. Li, et al., 2023). While
these methods demonstrate clinically relevant target localization accuracy, their
use of a statistical motion model to generate training data limits them to recover-
ing predetermined motion patterns, which can restrict their clinical applicability.
Moreover, the accuracy of these methods to recover the shape of vessels has not
yet been evaluated.

Fluoroscopy-based vessel motion prediction In this work, the network ar-
chitecture presents the following differences with the architecture detailed in Sec. 4.2.3:

• In this work, an MSE between the ground truth displacement field and the
predicted displacement is used to optimize the network parameters, with the
displacement in the direction perpendicular to the projection set to 0, and
no learning rate scheduler is used.

• A Cosine Annealing learning rate scheduler (Loshchilov et al., 2016), which
decays the learning rate following a cosine schedule, was used.

• 6 encoder and decoder layers are used instead of 10

• The shape of the predicted and ground truth displacement fields is (64, 32, 64)
instead of (128, 64, 128).

• The domain randomization data augmentation described in Sec. 4.2.4 was
not used.

The data generation process is identical to the data generation process de-
scribed in Sec. 4.2.2.
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Figure 4.21: Visualization of the coronary motion during a cardiac cycle. The
heart volume varies by about 12% in 1 second during a cardiac cycle.

4.6.3 Results

We illustrate the performance of our neural controller and fluoroscopy-based mo-
tion estimation in two examples. The first one is a typical example of endovascular
navigation, where a guidewire is advanced in the coronary arteries of a beating
heart. In the second example, we show a scenario where a guidewire is advanced
through the venous system of the liver, as done during the diagnosis and treatment
of portal hypertension. Based on the method described in Sec. 4.6.2.1 and using
Stable Baselines3’s SAC implementation (Raffin et al., 2021), we train the neural
controller using a learning rate of 10−4, a buffer size of 10,000 and a batch size
of 256. The discount factor is set to 0.98 and the entropy coefficient is learned
during the training. The actor and the critic networks are composed of three 256-
neuron layers and the model, updated at every time step, is trained for 175,000
time steps, with a dt of 0.01 s. The whole training process only requires 6 hours of
computation on an Intel(R) Core(TM) i7-13700KF processor with 32 GB of RAM.
The training anatomies are generated as explained in Sec. 4.6.2.1 with a constant
vessel diameter of 4mm. A suitable guidewire is used to navigate the anatomies,
with a 4.5mm long tip and a tip curvature of 0.38mm−1. For each anatomy and
test case, the controller is evaluated on a total of 100 episodes, where an episode
is defined as the navigation from the insertion point to the target location. An
episode is considered successful if the guidewire, steered by the controller, reaches
the target location. Four and five distinct target locations were chosen for respec-
tively the heart and the liver, each involving the navigation of a minimum of 2
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Figure 4.22: Illustration of the different paths and targets the neural controller
needs to navigate. The insertion point is shown in orange, and the randomly
selected targets are shown in green. An example of a path is depicted as a dotted
line.

and a maximum of 4 bifurcations. For each test episode, a random target and a
random starting rotation of the guidewire were chosen. We report in Table 4.4 the
percentage of successful episodes for each test.

4.6.3.1 Navigation in coronary arteries during cardiac motion

In this example, we demonstrate the ability of our neural controller to navigate a
dynamic environment without prior training on either this anatomy or this partic-
ular deformation (see Fig 4.21). The heart model was reconstructed from Magnetic
Resonance imaging data but the motion was generated synthetically, allowing to
know the shape of the vascular tree and the centerline position at each time step.
In this case, since the dimensions of the anatomy are similar to the dimensions
of the training geometries, with an entry diameter of 3.8mm, the same guidewire
used during the training is adopted. The efficacy of the controller is tested in three
different scenarios: a static case, in which the anatomy is not moving, a dynamic
case in which the heart is beating, but the location of the centerline is not up-
dated and a dynamic case in which the heart is beating and the position of the
centerline is updated. For this anatomy, we selected 4 targets shown in Fig. 4.22
and randomly chose one for each of the 100 test episodes. In all test cases, our
controller proves its ability to navigate the coronaries both in static (90% success
rate, Table 4.4 a) and dynamic (97% success rate, Table 4.4 c) conditions, main-
taining its performance also when navigating the anatomy without any knowledge
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about vessel deformation (89% success rate, Table 4.4 b).

4.6.3.2 Navigation in hepatic veins during respiratory motion

In this section, we focus on a different clinical context, such as the endovascular
treatment of hepatic venous outflow obstruction (Ghibes et al., 2023) or the en-
dovascular treatment of portal hypertension (Golowa et al., 2012). The key differ-
ence when compared to the previous scenario is that, in this case, the vascular tree
motion caused by the breathing of the subject is unknown, engaging ourselves in a
true clinical scenario, in which the moving anatomy is only visible in fluoroscopic
images, in 2D. Using the neural network described in Sec. 4.6.2.2, we estimate, in
real-time, the 3D position of the vessels’ centerlines. Using a patient’s abdominal
CT scan, a training dataset, composed of 18,000 samples, was generated and used
to train the motion prediction neural network, as described in Sec. 4.2.2. The test
dataset contains a series of fluoroscopic images covering 5 inhale/exhale periods for
a total of 50 samples. The main direction of motion is along the Inferior-Superior
(IS) and Antero-posterior (AP) axes, with a small motion in the Left-Right (LR)
direction, and a sliding motion of the organs against the thoracic cage. The trained
network was evaluated using the Target Registration Error (TRE) on the hepatic
veins centerlines and the hepatic veins mesh. Across the testing dataset, the mean
displacement was 8.74 ± 4.06mm and 8.66 ± 4.05mm while the mean TRE was
3.74 ± 2.33mm and 3.84 ± 2.37mm for the centerlines and the hepatic veins re-
spectively. This error is not similar in each direction, since the motion along the
direction perpendicular to the image plane is more difficult to estimate compared
to the other two directions. This is reflected in the error of the network, which
was, on average, below 2mm for the IS and LR directions and, on average, below
2.6mm for the AP direction.

We report in Table 4.4 the success rate of our controller, in similar conditions
as presented for the heart: a static case, a dynamic case without centerline update,
and a dynamic case in which the updated position of the anatomy is reconstructed
from non-contrasted fluoroscopic images, thanks to our neural network. Given the
dimension of the anatomy, a different guidewire, with a 6.5mm-long tip and a tip
curvature of 0.26mm−1 is used. For this second test anatomy, we chose 5 different
target locations, as shown in Fig. 4.24, and randomly selected one for each of
the 100 test episodes. In this more complex context, our controller demonstrates
its efficacy with an 89% success rate (Table 4.4 d) in the static scenario, which
is maintained when transitioning to dynamic conditions. In this case, the agent
reports a success rate of 93% (Table 4.4 f), while it shows an important performance
drop (24% success rate, Table 4.4 e) when trying to navigate the dynamic anatomy
without any information regarding the movement of the vessels (no centerline
update in the observation space Ω). This shows the significance of our 3D vascular
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Figure 4.23: Left: fluoroscopic image seen by the neural network. Right: preop-
erative position and shape of the liver and its venous system (opaque colors) and
prediction of the 3D shape (in semi-transparent color) of both the liver shape and
its vascular tree. The centerlines of the veins are also predicted, in real-time, and
used by the neural controller.

motion estimation.

4.6.4 Discussion

As illustrated by the results in Table 4.4, our new controller demonstrates its ability
to navigate new complex anatomies, composed of various subsequent bifurcations,
different in shapes and dimensions, with a mean success rate of 95% in the dynamic
anatomies. This is very significant compared to the probability of reaching the
designated targets when taking random actions which would lead to an average
success rate of 15% for the two scenarios we have considered. This value can be
obtained by considering the set Z = {z1, z2, . . . , zN} of N different targets, each
requiring the successful navigation of a number, bzi , of bifurcations. The mean
probability of successfully reaching the target is equal to 1

N

∑N
j=1 1/2

bzj .
We compared our new controller with the agent described in our previous

work (Scarponi, Duprez, et al., 2024), trained for 150,000 time steps of 0.01 s
on anatomies with a 4mm diameter, consistent with the diameter of the train-
ing anatomies used in this work, allowing to use the same guidewire. The new
controller outperforms our previous version in terms of both robustness to ves-
sel motion (Table 4.4 c) and robustness to variations in vessel dimensions (Table
4.4, Liver). The important performance loss shown by (Scarponi, Duprez, et al.,
2024) when navigating the liver anatomy, can be explained by the difference in
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Table 4.4: Navigation results summary, in heart and liver.

Heart

Conditions
Success rate [%]

(Scarponi, Duprez, et al., 2024) Our method Random
Statica 100% 90%

15.6%Dynamic, no centerline updateb 68% 89%
Dynamic, centerline updatec 82% 97%

Liver

Conditions
Success rate [%]

(Scarponi, Duprez, et al., 2024) Our method Random
Staticd 36% 89%

15%
Dynamic, no centerline updatee 50% 24%
Dynamic, centerline updated

50% 93%
with our NN predictionf

the dimension of the liver geometry, whose entry vessel presents a diameter of
7mm, which almost doubles the diameter of the training anatomies. The high
success rate obtained by our controller in the liver’s static conditions (Table 4.4 d)
demonstrates the adaptability of our new training strategy to anatomies presenting
various bifurcation shapes and dimensions. However, when navigating a dynamic
environment, the performances of the controller critically drop if the centerlines
are not updated (see Table 4.4 e). Our neural network allows computing the new
position of the vessels, thus reducing the difference between the real anatomy and
the anatomy observed by the controller. In these conditions, our controller demon-
strates its ability to navigate various dynamic anatomies both when a synthetic
movement is generated (Table 4.4 c) and when the anatomy moves following real
vessel movements (Table 4.4 f).

4.6.5 Conclusion

In this study, we presented a neural controller, based on a deep reinforcement learn-
ing approach, able to navigate a guidewire in complex, unseen, moving anatomies
with various dimensions. In addition, we proposed a method for estimating the
3D motion of the anatomy from single-view fluoroscopy images, even without the
injection of a contrast agent. The combination of these two contributions makes
it possible to automatically perform endovascular navigation in close to real-world
conditions, as illustrated in two scenarios: a beating heart and a liver deformed

Chapter 4. Domain-agnostic 2D-3D deformable registration 102



Figure 4.24: Liver venous system with 5 different targets. The controller has
to navigate the moving anatomy from the insertion point (in orange) until the
designated target, randomly chosen among the possible targets, in green.

under breathing motion. Our method makes it possible to reach random targets
within these anatomies with an average success rate of 95%. To the best of our
knowledge, this has never been achieved before.

Although our method already accounts for certain real-world conditions (use
of actual anatomies generated from patient data, motion estimation from fluo-
roscopy), a natural future development of this work will consist in testing the
neural controller in a vascular phantom. This will require the use of an FBG-
based shape sensing method to reconstruct the shape of the guidewire, and an
access to an endovascular robot to apply the action taken by the controller to the
device. We have already started working on the shape reconstruction from FBG
data, and we will first assess the robustness of our controller in a rigid phantom.

4.7 Conclusion

Across the above studies, we thoroughly evaluated our domain-agnostic 2D-3D
deformable registration framework. These works show that real-time 2D-3D reg-
istration in fluoroscopy-guided interventions is feasible, without requiring fiducial
markers or preoperative statistical deformation models.

In our first study (section 4.3), we demonstrated that domain-agnostic data
generation enable deformation recovery more robustly than PCA-based data gen-
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eration. The advantage of this approach is that it requires only routinely acquired
images, a single preoperative 3D CT and a single-plane fluoroscopy at test time,
making it readily applicable to various clinical settings.

Our work on vessel deformation prediction (section 4.4) served to validate the
clinical viability of our approach, demonstrating its capability to augment fluoro-
scopic images. A key finding was that the network generalized well to testing data
generated differently from the training data. While we identified a limitation in
predicting displacement perpendicular to the image plane, this is mitigated by the
fact that the resulting out-of-plane error is not visible in the augmented image.

Section 4.5 extended this work beyond breathing motion to handle various
intervention-related deformations. This work best demonstrates the key strength
of our approach, its adaptability to situations where deformation is unpredictable.
Through extensive experiments, we validated our approach on experimental and
synthetic data, and, in our sensitivity analysis, we measured the impact on perfor-
mances of each component of our method. In our comparative study, we showed
that our method performs competitively to the state-of-the-art in breathing motion
recovery, and outperforms it in intervention-related deformation recovery.

Finally, in section 4.6, we integrated our work with V. Scarponi et al.’s guidewire
navigation approach. Thanks to the vessels shape and position updates provided
by our neural network, the success rate in moving anatomies was increased from
24% to 93%.

Our next steps, presented in chapters 5 and 6, will be to improve the realism
of our predicted deformations, and more thoroughly validate our method on real
fluoroscopic images.
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Chapter 5

Physics-informed 2D-3D deformable
registration

5.1 Introduction

The field of medical image registration first incorporated physics-based methods
when Broit (Broit, 1981) introduced a linear elastic model for brain image registra-
tion in 1981. This pioneering work laid the foundation for subsequent biomechan-
ical model-based registration methods. Since then, several biomechanical model-
based registration methods have been published, a summary of which is proposed
in Sec. 3.4. The advantage of these approaches is the incorporation of prior knowl-
edge about the physical behavior of organs to deal with incomplete information.
In our case, the lack of information manifests as a lack of contrast in fluoroscopic
image, and in the ill-posedness of our problem, 2D-3D deformable registration.

In Sec. 5.2, our study on the use of the FEM to generate randomized, physically
regularized deformations to train a 2D-3D registration network is reproduced. The
study reports improved accuracy for the network trained on physically regularized
deformations when tested on physically accurate deformations. Additionally, it
assesses network performance on one sample of the IHUDeLiver10 dataset, which
consists of pairs of CT scans of porcine subjects before and after intervention-
related deformations. The key difference between the method used in this study
and our baseline method, presented in Sec. 4.2, lies in the post-processing phys-
ical regularization step applied to generated displacement fields. This study was
presented at the Data Curation and Augmentation in Enhancing Medical Imaging
Applications (DCAMI) workshop of CVPR 2024 and was subsequently published
in the workshop proceedings:

François Lecomte et al. (June 2024). “Beyond Respiratory Mod-
els: A Physics-enhanced Synthetic Data Generation Method for 2D-
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3D Deformable Registration”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pp. 2413–2421

In Sec. 5.3, we investigated the use of physics-based regularizers to enhance
the realism of predicted deformations. First, we attempted to render the net-
work prediction automatically differentiable with respect to spatial coordinates,
to avoid using approximations in the regularization. Then, we evaluated using
physics-based regularizers to train our network in conjunction with the loss on the
displacement field.

5.2 Physics-based synthetic data generation for de-
formable registration

5.2.1 Introduction

We have previously presented several studies on domain-agnostic 2D-3D deformable
registration (Chap. 4), where we generate randomized, diffeomorphic displace-
ment fields (Sec. 4.2.2.1) to train our deformable 2D-3D registration network
(Sec. 4.2.3). While this method ensures important geometric properties such as
non-self-intersection (J > 0), it relies solely on geometrical constraints and does
not guarantee physically realistic deformations. This limitation becomes partic-
ularly significant in our context of fluoroscopy-guided abdominal interventions,
where real organs follow specific physical laws that restrict their possible defor-
mations. The challenge is especially pronounced in regions with homogeneous
CT intensity values, where the network must interpolate deformation fields from
information gathered in high-contrast areas.

To address this, we propose incorporating physical constraints to regularize the
displacement field generation process, a novel approach in fluoroscopy to CT de-
formable registration, where, traditionally, statistical deformation models derived
from respiratory motion have been used (see Sec. 3.3.1). While maintaining most
aspects of our previous methodology (Sec. 4.2), this study introduces an additional
deformation post-processing step (detailed in Sec. 5.2.2) that ensures the physical
plausibility of generated displacement fields within the organ of interest (in this
case, the liver).

Furthermore, we implement several architectural modifications to our network
compared to the version described in Sec. 4.2.3:

• In this work, only the reprojection loss presented in Sec. 4.2.3.2 was used.

• A Cosine Annealing learning rate scheduler (Loshchilov et al., 2016), which
decays the learning rate following a cosine schedule, was used.
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• 8 encoder and decoder layers are used instead of 10

• The shape of the predicted and ground truth displacement fields is (64, 32, 64)
instead of (128, 64, 128).

• The domain randomization data augmentation described in Sec. 4.2.4 was
not used.

In all experiments, the network was trained for 30 epochs, with the learning rate
set at 5.10−5, which took approximately 2 hours on an Nvidia RTX 4090 GPU.

5.2.2 Physically-regularized displacement fields

While random DVFs generated with our baseline method are smooth and diffeo-
morphic, they may still incompletely represent the range of possible deformation
during the fluoroscopy-guided intervention, which is the consequence of two main
factors.

First, the parameters for the Gaussian kernels are sampled independently for
each kernel, meaning that in any given DVF, there will be both large and small
deformations. This is potentially different from real deformations, which may in
some cases be small throughout the domain. Obtaining such a small deformation
DVF from our randomized generation process is very unlikely, since it would require
all realizations for αk to produce small values. To remediate this, the generated
DVF is multiplied by a scaling factor between -1 and 1, which ensures that samples
with overall small displacements are better represented in the dataset.

Second, since the DVF generation process is stochastic, there is no guarantee
that a body deforming under the influence of such DVF respects the conservation
laws of physics. We therefore correct the DVF with a biomechanical model.

We are only interested in the deformation of the liver’s internal structures (e.g.
tumor, vessels), and therefore correct the DVF only inside the region occupied
by the liver, hereafter denoted by Ω. To that end, in a preprocessing step, we
first perform the liver segmentation and meshing to obtain a tetrahedral mesh
representing the liver domain Ω. Then, the displacement inside the liver U is
computed as the solution to the nonlinear elastostatic problem:

−2∇ · ∂Ψ
∂C

= 0, in Ω (5.1)

where C = FT F is the right Cauchy-Green deformation tensor, Ψ is the strain
energy density function, and the gradient of deformation tensor F is related to the
displacement field U via F = ∇U+ I.
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The liver is modeled as a hyperelastic Neohookean solid with strain energy
density function:

Ψ =
λ

4
(J2 − 1− 2 ln(J)) +

µ

2
(IC − 3− 2 ln(J)), (5.2)

where J = det(F), IC = tr(C) is the first invariant of the right Cauchy-Green
deformation tensor, and µ and λ are the so-called Lamé parameters.

The Finite Element Method (FEM) was used to solve the elastostatic prob-
lem (5.1), with Dirichlet boundary conditions extracted from the DVFs prescribed
at the liver boundary. The corrected DVF is then obtained by composing the
physically accurate displacement solution U from (5.1) inside the liver, and the
DVF outside the liver. Since all the liver’s boundary is constrained, we used µ = 1
and λ = 0 for all our biomechanical simulations.

5.2.3 Results

In order to validate our data generation approach, we evaluated the performances
of a neural network trained on synthetic data, for two different registration con-
texts.

The first context was extracted from an open-source swine liver deformation
dataset, IHUDeLiver101. IHUDeLiver10 is composed of ten pairs of {baseline;
deformed} Contrast Enhanced CT scans (CECT), experimentally acquired on ten
different porcine subjects. For both images in each pair of CECT in the dataset,
the portal vessel trees were segmented by an expert clinician, and serve to evaluate
the registration accuracy. For each subject, the deformation of the anatomy was
the result of a surgical procedure. Thus, this dataset contains realistic intervention-
related deformations of the anatomy, which can be used to validate the effectiveness
of our synthetic data generation approach. To transform the Contrast Enhanced
CTs into regular, non-contrasted CTs, we used image inpainting (Barnes et al.,
2009) to remove as much of the contrast effect due to contrast agents as possible.
The preoperative CT, baseline CT, was used to generate the training dataset,
while the post-operative CT, deformed CT, was used to generate a test sample to
evaluate the registration performance of the network. In this work, we only used
one pair of experimentally acquired CT-Scans from the IHUDeLiver10 dataset
(sample number 8). The deformation in the deformed CT of sample number 8
was induced by a surgical manipulation of the anatomy, reproducing deformations
that may arise in a surgical intervention.

1IHUdeLiver10, along with data processing code, will be released at https://doi.org/10.
57745/EUBXGH
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The second context was generated synthetically, in order to test the accuracy
of the method in a more controlled setting, less dependent on anatomical particu-
larities that may influence the performance of the network. The baseline synthetic
CT is composed of a cube of the same volume and at the same position as the liver
of the first test case, surrounded by voxels with a constant intensity corresponding
that of skin tissue. Inside the cube, the voxel intensities alternate along a checker-
board pattern, with tiles of side length 13.75 mm. The intensity values remain
constant within each tile, but they gradually increase across tiles along the cube’s
main diagonal. For this case, the test samples were generated by setting constant
Dirichlet boundary conditions on the left and right faces of the cube (while leaving
the remaining faces stress-free), and solving the elastostatic problem (5.1) using
the FEM with an hexahedral mesh of side length 10 mm. The displacement on
the left face of the cube was set to 0, while the displacement on the right face of
the cube was set to -40 mm, -20 mm, +20 m and +40 mm along the Left-Right
(LR) axis, respectively. To generate the test samples, the cube was modeled as
a hyperelastic Mooney-Rivlin solid, instead of the simpler NeoHookean solid used
to generate the training data, in order to avoid bias regarding the choice of the
hyperelastic model in the test data. The deformed mesh was then used to interpo-
late displacements on the CT image and produce the deformed CT scans. A DRR
was then generated for each deformed CT scan, as described before.

For both registration contexts, the C-arm pose P was defined such that the
projection is centered on the liver, and the viewing direction of the C-arm was
aligned with the Antero-Posterior (AP) anatomical axis. In the following experi-
ments, each dataset contains 18000 training samples and 2000 validation samples.
Since the proposed use of the method is augmented anatomical visualization on
2D fluoroscopic images, all errors were measured on the 2D image plane after
projection with the operator P .

For the liver registration context, no point-to-point correspondences were avail-
able between the baseline and the deformed vessel trees, and we therefore chose
the Earth mover’s distance (EMD) metric to evaluate the registration accuracy.
For the second registration context, the points of the cube mesh were used to mea-
sure registration accuracy directly. Since this test case is generated synthetically
and the points are paired between the baseline and deformed images, we used the
reprojection distance metric (RPD) which measures the euclidean distance after
projection (using P) on the image plane.

The Figs. 5.1 and 5.2 show the baseline and deformed DRRs for the liver and
synthetic contexts, respectively.
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Figure 5.1: On the left, the DRR associated with the baseline CT and on the right
the DRR associated with the deformed CT.

Figure 5.2: On top, the DRR associated with the baseline CT and on the bottom
the DRRs associated with the deformed CTs, for displacements of -40 mm, -20 mm,
+20 m and +40 mm (from left to right).

5.2.3.1 Registration accuracy

We evaluated the registration accuracy of the network trained using the synthetic
data generation process described above.
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The network was trained from scratch for each of the two test cases described
above. For each test case, two training datasets were generated following Sec. 4.2.2.1,
with and without the physical regularization step described in Sec. 5.2.2, in order
to evaluate the effect of physics-based regularization.

For each test case, the registration accuracy of the network on the test sample(s)
was measured every 3 training epoch. The tables 5.1 and 5.2 report the registration
accuracy of the networks on the IHUDeLiver10 test sample and synthetic cube test
samples respectively.

Epoch Phy Nophy
3 4.0 4.3
6 5.5 3.6
9 6.8 4.7
12 4.0 3.9
15 4.2 4.7
18 3.4 3.7
21 4.3 3.3
24 2.8 3.7
27 3.7 5.2
30 3.6 3.9

Table 5.1: Registration accuracy on the test sample every 3 epochs for networks
trained with physically regularized (Phy) and not physically regularized (Nophy)
data generation for the IHUDeLiver10 test case.

Beyond the 2D registration accuracy measurements presented in Tables 5.1
and 5.2, we extended our evaluation to examine performance in 3D space for both
test cases, in Tables 5.3 and 5.4.

5.2.3.2 Ablation study

We performed two experiments on the IHUDeLiver10 test case to evaluate the
impact of the data generation post-processing on the network performances. The
architecture and training procedure of the network is the same for each experiment.

In the first experiment, three datasets were generated. The first dataset, termed
“Base”, was generated using the data generation process described above but with-
out the post-processing described in Sec. 5.2.2. The second dataset, termed “Base
+ scale” was generated in the same way, but with the scaling post-processing and
without the physical regularization. Finally, the third dataset, termed “Base +
scale + phy” was generated using the full data generation process, with scaling
and physical regularization, as described in Sec. 5.2.2.
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Stretching
amount
(mm)

-40 -20 20 40

Epoch Phy Nophy Phy Nophy Phy Nophy Phy Nophy
3 17.79 19.83 5.81 7.74 5.10 6.55 18.61 20.46
6 25.91 24.77 4.96 5.72 4.87 5.55 19.51 22.16
9 14.13 17.55 3.50 5.22 3.82 6.33 17.49 21.71
12 15.02 17.66 4.20 4.69 4.32 5.64 17.52 19.75
15 16.67 17.67 4.26 5.04 4.29 5.98 17.84 20.05
18 17.18 19.61 5.12 6.38 4.39 7.45 18.36 21.03
21 18.50 21.20 4.28 6.47 4.34 7.73 19.28 20.19
24 18.31 21.17 4.48 7.86 4.32 7.25 18.86 21.28
27 18.81 21.46 4.42 8.39 4.68 8.13 19.87 20.92
30 18.83 22.42 4.40 8.82 5.25 7.99 20.13 21.68

Table 5.2: Registration accuracy on test samples every 3 epochs for networks
trained with physically regularized (Phy) and not physically regularized (Nophy)
data generation for the synthetic cubes test cases.

EMD 2D CD 2D EMD 3D CD 3D
Before reg. 6.2 4.7 6.9 6.1
After reg. 2.8 2.0 4.7 4.1

Table 5.3: Earth Mover’s distance (EMD) and Chamfer distance (CD) before and
after registration on the sample 8 of the IHUDeLiver10 dataset, in mm.

The best registration performance for each dataset was 3.8 mm for the “Base”
dataset, 3.3 mm for the “Base + scaling” dataset and 2.8 mm for the “Base +
scaling + phy” dataset. In Fig. 5.3, the registration error of the network on the
test sample is measured every 3 epochs.

In the second experiment, we used the “Base + scaling + phy” dataset to
evaluate the effect of the number of training samples on the performances of the
network. For each training run, only a portion of the dataset was used to train
the network, from 0.1% to 100%. The results of this experiment are presented in
Fig. 5.4.
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Stretching amount (mm) mean TRE mean RPD
−40 11.35 (21.96) 14.13 (30.19)
−20 3.49 (10.77) 3.50 (14.91)
20 3.49 (10.53) 3.82 (14.70)
40 12.90 (20.91) 17.49 (29.28)

Table 5.4: Target Registration Error (TRE), in 3D, and Mean Reprojection dis-
tance (RPD), in 2D, on the synthetic cube dataset, in mm, with the error before
registration in parentheses.

Figure 5.3: Each of the blue, orange and green curve shows the accuracy of the
network every 3 epochs, for different data generation processes. In blue, the accu-
racy for the dataset generated following Sec. 4.2.2.1. In orange, the accuracy for
the dataset generated with random scaling of the DVFs. In green, the accuracy
for the dataset generated with the scaling and the physical regularization.
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Figure 5.4: The red, purple, brown, blue, orange and green curves show the accu-
racy of the network every 3 epochs for dataset sizes of 18, 180, 1800, 14400 and
18000 respectively.

5.2.3.3 Qualitative results

The Fig. 5.5 shows the prediction of the best performing network, trained on
physically regularized data for 24 epochs on the sample 8 from IHUDeLiver10
dataset. In most cases, the predicted vessel tree branches superpose well with
the ground truth branches. Note that due to the experimental data acquisition
process, the length of the branch is not the same between the baseline vessel tree
and deformed vessel tree, making the numerical comparison between the predicted
and ground truth vessel trees harder to evaluate.

The Fig. 5.6 shows the prediction of the best performing network, trained on
physically regularized data for 9 epochs on the synthetic cube dataset. Displace-
ments of +20 and −20 mm are well recovered, but larger displacements of −40
and 40 mm show that the network may be biased against large displacements.
This may be due to the fact that larger displacements are less represented in the
training dataset than smaller displacements.
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Figure 5.5: The vessel tree centerlines extracted from the deformed CT (in green)
are overlaid on the DRR image generated from the deformed CT of the sample
number 8 of the IHUDeLiver10 dataset. In blue, the vessel tree centerlines ex-
tracted from the baseline CT and deformed by the network prediction.

Figure 5.6: Top row: stretching of the cube of -40 mm (left) and -20 mm (right),
with the ground truth mesh in green and the predicted mesh in blue. Bottom row:
stretching of the cube of +40 mm (left) and +20 mm (right), with the ground
truth mesh in green and the predicted mesh in blue.
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5.3 Physics-based regularization

Building upon our physically regularized datasets from Section 5.2.3, we explored
several approaches to further enhance the physical realism of predicted deforma-
tions. Our investigations focused on two main directions: improving the net-
work architecture to enable efficient physics-based regularization and incorporating
physics-based regularization during training.

An often-used regularizer, used to enforce smoothness, is the bending energy
regularizer Lbending = ||∇F||2, with F the gradient of the displacement field. As
shown in previous studies (P. Alvarez and Cotin, 2024), this regularizer, while
effective for smoothness, tends to penalize the magnitude of deformations and
may lead the network to predict overly small deformations. To address this, Al-
varez et al. propose a physically-motivated regularizer based on the hyperelastic
strain energy density function of a NeoHookean material. This regularizer, L∇·P
(Eqn. (5.4)), is based on the law of conservation of linear momentum (Eqn. (5.3),
reproduced from (P. Alvarez and Cotin, 2024)).

∇ ·
(
∂Ψ

∂F

)
= ∇ ·P

=
λ

2
(2JF−T∇J + (J2 − 1)F−T ) + µ(∇ · F−∇ · F−T )

= 0

(5.3)

With Ψ the NeoHookean strain energy density function and F the gradient of
deformation, introduced in Eqn 5.2, P the linear momentum, λ and µ the Lamé
parameters of the material, and J = det(F) the spatial jacobian.

L∇·P = ||∇ ·P|| (5.4)

For both of these regularizers, it is necessary to compute the spatial deriva-
tives of the predicted deformation field. With our original architecture, spatial
derivatives cannot be computed using automatic differentiation, but rather, must
be approximated, for example using finite differences.

In Sec. 5.3.1, experiments are presented to render the network predictions au-
tomatically differentiable with respect to spatial coordinates, eliminating the need
for derivative approximations in regularization. Then, in Section 5.3.2, we present
our experimental results on incorporating physics-based regularization into the loss
function.
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5.3.1 Network architecture enhancement

In the first experiment, we developed a PointWiseDecoder variant that replaces the
conventional decoder with a fully connected network. The fully connected network
accepts a batch of spatial coordinates and outputs displacements at those coor-
dinates, rendering predictions automatically differentiable with respect to spatial
coordinates. To have the prediction depend on image features as well, we sample
the feature map output by the transform module at the given spatial coordinates,
and concatenate these features to the coordinates, before processing the concate-
nated tensor with the fully connected network. Another potential advantage of
this variant is the possibility to train it only at specific points, such as the mesh
points of an organ of interest, and simplify the network’s task. Although inspired
by Implicit Neural Representation approaches commonly used for solving physical
equations (such as PINNs networks (Cai et al., 2021)), or even for deformable
registration by (Wolterink et al., 2022), Wolterink et al., the PointWiseDecoder
variant obtained inferior performances to our baseline architecture, and we thus
discontinued experiments on this variant. A possible explanation for the lower
performance of this variant is the inability of a point-wise fully connected network
to learn the mapping between coordinates and image features to a displacement
field due to the lack of a long-range attention mechanism.

While Implicit Neural Representation approaches typically train networks to fit
a single function (such as solving partial differential equations in PINNs or approx-
imating displacement fields in (Wolterink et al., 2022)), our scenario presents a dis-
tinct challenge. Our network must learn to predict mappings between pairs of func-
tions, specifically from spatial coordinates and their encoded features to displace-
ment vectors: (x, Encoder(x))→ φ(x). However, our use case is different, as the
network needs to predict the mapping between two functions, ((x, Encoder(x))→
φ(x)).

To reconcile our approach with the Implicit Neural Representation framework,
we explored using a HyperNetwork architecture (see (Ha et al., 2016)) to dynam-
ically adjust the weights of the fully connected decoder, given the image features
as input. In this way, for each sample, the decoder weights represent a single func-
tion, the displacement field to approximate. We implemented the HyperNetwork
using fully connected layers that process feature maps from our 2D-3D transform
module. Following (El Hadramy et al., 2024), El Hadramy et al., the network pre-
dicts a correction to the weights of the fully connected decoder. However, despite
multiple attempts, this variant failed to achieve training convergence.

Given these challenges, we reverted to our original fully convolutional archi-
tecture for subsequent experiments, using finite differences to approximate spatial
derivatives of predicted deformations.
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5.3.2 Physics-based training regularization

We conducted extensive physical regularization experiments on both porcine and
synthetic cube datasets (presented in Sec. 5.2.3), utilizing P. Alvarez’s PyTorch
implementation of L∇·P . Our experiments involved:

• Testing multiple regularization weights to balance Lφ2D and L∇·P .

• Applying L∇·P selectively using a mask where L∇·P ≃ 0 in the ground truth
displacement field.

• Attempting pre-training with Lφ2D alone to avoid early divergence of L∇·P
when J → 0.

• Implementation of a linear elasticity model of the liver for deformation reg-
ularization (Eqn. (5.5)).

Despite these various approaches, we were unable to achieve simultaneous conver-
gence of both L∇·P and Lφ2D during training.

Llin
∇·P = ||∇ ·Plin||

= ||(λ+ µ)(∇ · FT ) + µ∇ · F||
(5.5)

To check that L∇·P could indeed be used as a regularizer outside the Implicit
Neural Representation framework, we designed a simplified registration experi-
ment, where the goal is to perform register a binary 2D image, in the shape of a
liver slice. The 2D slice underwent physically-regularized random deformations,
generated as described in Sec. 5.2.2, using a 2D FEM implementation of the Neo-
Hookean material. For deformation prediction, we designed a simplified variant
of our original 2D-3D CNN architecture. The network maintained an encoder-
decoder structure but omitted the 2D-3D transformation module, operating in 2D
space only, with both encoder and decoder comprising eight convolutional layers
each. We trained the network on a dataset composed of 18,000 training samples,
as in previous experiments, and used a batch size of 32. The network was trained
for 10 epochs with a fixed learning rate of 10−3.

In our first experiment, we attempted direct network training using a combi-
nation of MSE loss on the displacement field and either the L∇·P hyperelasticity
regularizer, or the Llin

∇·P linear elasticity regularizer, testing various regularizer
weights. We scaled the network prediction by 10−4 to ensure small initial predic-
tions after weight initialization, preventing L∇·P divergence, and applied a mask
to compute predictions only in the organ region. This approach proved unsuc-
cessful, and Fig. 5.7 illustrates why: ∇ · P values grow rapidly for non-physical
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deformations, with displacement predictions at scale 10−3 resulting in ∇·P values
at scale 101. Without prediction scaling, some ∇ ·P values become undefined due
to negative J values for large, random deformations, leading to NaN values in the
loss function. Moreover, since L∇·P grows non-linearly with displacement ampli-
tude, using a small regularization weight proved insufficient for joint minimization
of both L∇·P and MSE loss during training.

Figure 5.7: Values of L∇·P of the predicted displacement field at weight initializa-
tion.

In our second experiment, to address the issue of large L∇·P values disrupting
training, we initially trained the network using only MSE loss on the displacement
field for 10 epochs. We then continued training with either L∇·P or Llin

∇·P . Training
with L∇·P failed to converge regardless of regularization weight. However, training
with Llin

∇·P successfully converged, with Llin
∇·P minimized without increasing MSE

loss, as shown in Fig. 5.8. This experiment used a regularization weight of 1 ·10−5,
to account for scale differences between the MSE loss and Llin

∇·P , and a reduced
learning rate from 1 · 10−3 to 1 · 10−4.

In our third experiment, we retrained the network trained with Llin
∇·P using

L∇·P with a regularization weight of 1 · 10−5 and a further reduced learning rate
of 2 · 10−5. This approach successfully minimized L∇·P without increasing MSE
loss, as demonstrated in Fig. 5.9. This experiment demonstrates that L∇·P can
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Figure 5.8: Values of the MSE loss and Llin
∇·P during retraining.

indeed be used to regularize training, although requiring two pre-training steps,
first using an MSE and then a linear elasticity regularization.

Finally, we trained the network from scratch using only MSE loss, replicating
the training process of the L∇·P -trained network to enable meaningful comparison.
Fig. 5.10 shows the measured L∇·P values for network predictions on the validation
dataset in each case. Additionally, Fig. 5.11 provides a qualitative comparison of
network predictions with and without regularization.

5.4 Discussion and conclusion
Physics-based synthetic data generation
In Sec. 5.2.3.1, the registration accuracy of the network trained on synthetic defor-
mations was evaluated with and without physical regularization. On the porcine
test case from the IHUDeLiver10 dataset, the best registration performance is
2.8 mm, obtained at epoch 24 for the network trained on physically regularized
data. However, the accuracy of the network does not improve monotonically dur-
ing training, suggesting that early stopping may be necessary to obtain the best
registration performances on the test set. Additionally, while the physical regular-
ization generally improves performances, it is not true for all epochs. Finally, this
experiment would need to be repeated on the full IHUDeLiver10 dataset to better
appreciate the registration performances of the method.

On the synthetic cube test case, the difference in accuracy between the networks
trained on physically regularized and not physically regularized data is more clear,
with the physically regularized method performing almost always better. This
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may be related to the relative lack of contrast of the synthetic dataset, with each
tile of the checkerboard pattern being of constant intensity. Without contrast, the
deformation inside the tile can only be inferred from the deformation of the tile
edges. With the physical regularization, the network might be able to learn to
better interpolate the displacement inside the tile from the displacement at the
edges of the tile. Again, while there is no monotonic convergence, the best results
are still obtained with the physically regularized data.

In Sec. 5.2.3.2, the first ablation study experiment shows the importance of
adjusting the synthetic training data distribution to better match the testing data
distribution. Despite its simplicity, removing the “scaling” transformation resulted
in very poor registration performances, with the network failing to converge. On
the other hand, the addition of the biomechanical regularization, which induces
a non-negligible additional computational cost, improved the registration perfor-
mance by a modest amount, and only at some training epochs. However, there
are other aspects to take into consideration for physically regularized registration,
namely choosing the right biomechanical model with the right parameters, and
choosing physically plausible boundary conditions. In our cases, while the random
DVF is smooth and diffeomorphic, it does not respect the conservation laws of
physics. Due to this, the surface of the organ may be subject to physically im-
plausible deformations, giving rise to unrealistically high strain energy inside the
organ. However, despite these limitations, the best performance is attained by the
network trained on the physically regularized dataset, with a clinically relevant
accuracy of 2.8 mm (from 6.2 mm before registration).

The second ablation study experiment sheds some light on the number of train-
ing samples necessary to learn the 2D-3D registration task. We found that net-
works trained with 18 or 180 samples consistently produced errors above 4 mm.
Performance significantly improved with larger training sets, with optimal results
achieved using 18,000 samples. Notably, networks trained on 1,800 to 18,000 sam-
ples showed comparable performance levels, suggesting that increasing the dataset
size beyond 18,000 would offer limited performance gains. This indicates that fac-
tors such as network architecture, training strategy, and data generation method-
ology may be more crucial for improving performance than increasing dataset size.

Finally, 3D errors measurements in Tables 5.3 and 5.4 reveal that while regis-
tration improves the overall alignment, the 3D accuracy falls below the 2D perfor-
mance levels. This limitation stems from the 2D image-based training approach:
since out-of-plane motion remains invisible in the 2D training images, it isn’t cap-
tured by the loss function, leaving the network insensitive to deformations in this
direction. This limitation stems from the inherent loss of information in the 3D to
2D projection operation, fundamentally limiting our registration approach. Since
out-of-plane motion information is lost in this projection process, the network’s
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loss function cannot account for deformations in this direction. While this lim-
itation is acceptable for our target application of interventional augmented 2D
visualization, biomechanical regularization could be employed in the loss function
as well to better estimate out of plane motion.

Physics-based regularization
Our investigation into making network predictions spatially differentiable yielded
inconclusive results (Sec. 5.3.1). While this property would theoretically facilitate
physical regularizer computation and potentially eliminate training instabilities,
it represents a novel approach not yet thoroughly explored in literature. Particu-
larly, a specifically designed network architecture able to capture long-range spatial
relationships in the displacement field could be employed to tackle this problem.

In Sec. 5.3.2, we implemented and used physical regularizers to train our 2D-
3D deformable registration network, without success. The challenges encountered
suggest difficulties in combining physical regularization with the complexities of
2D-3D deformable registration. We thus redirected our investigation to a simpler
2D registration problem.

Initial attempts to train from scratch with physical regularization proved un-
successful, highlighting the inherent difficulties in simultaneously optimizing reg-
istration accuracy and physical plausibility. However, we achieved encouraging
results through an incremental training approach. This strategy involved first
training a network to predict reasonably smooth displacement fields, then pro-
gressively incorporating physical constraints. We first retrained with the more
stable linear elasticity regularizer (Llin

∇·P ), followed by the hyperelastic regularizer
(L∇·P ). This sequential approach successfully produced physically plausible and
smooth predicted deformations, particularly valuable in regions lacking contrast
information, as demonstrated in our visual comparison in Fig. 5.11. Our quan-
titative analysis in Fig. 5.10 revealed that while training with Llin

∇·P alone could
achieve generally physically plausible predictions, the more accurate L∇·P regular-
izer yielded superior results

The failure of direct integration of physical regularization in our 2D-3D reg-
istration network, combined with the eventual success in the simplified 2D case,
indicates that the complexity of simultaneous 2D-3D registration and physical
constraint learning may exceed our current architecture and training procedure
capabilities.

This work demonstrates that physical regularization can improve network pre-
dictions, though our investigation reveals it’s not a straightforward process. Our
preliminary results, especially in 2D experiments, highlight the potential benefits
of this approach in contexts with limited information, such as low-contrast images
or binary 2D representations. Future research could focus on incorporating phys-
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ical constraints directly into the network architecture, potentially guaranteeing
the physical realism of predicted deformations even before training. This archi-
tectural approach, as proposed in emerging work on Physics-Augmented Neural
Networks (Linden et al., 2023), might offer a more robust solution than post-hoc
regularization. Additionally, developing more stable training procedures and in-
vestigating methods to extend successful 2D approaches to full 2D-3D registration
problems remain important areas for investigation.
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Figure 5.9: Values of the MSE loss and L∇·P during retraining.

Figure 5.10: Histogram of L∇·P of network predictions on the validation dataset
for different training setups.
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Figure 5.11: Qualitative comparison between network predictions with and with-
out retraining with L∇·P .
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Chapter 6

2D-3D deformable registration in
the real world

6.1 Introduction

Fluoroscopy-guided interventions currently rely on CBCT-fluoroscopy imaging as
the gold standard for accurate anatomical localization. CBCT devices, as dis-
cussed in section 1.2.3, are employed to capture multiple 3D scans throughout the
intervention. In fluoroscopy mode, these CBCT scans can be rigidly registered
and superimposed onto real-time fluoroscopic images to provide enhanced guid-
ance. When deformations occur, this enhanced guidance becomes outdated and
another CBCT acquisition is required to update it, causing significant radiation
exposure over the course of the intervention. Thus, a transition to fluoroscopy-
only augmented guidance would offer several significant advantages over the cur-
rent CBCT-fluoroscopy approach, notably, reduced radiation exposure, continuous
real-time updates of augmented visualizations, and no dependency on costly CBCT
equipment.

However, transitioning to fluoroscopy-only guidance requires an accurate, real-
time 2D-3D deformable registration algorithm. Before our 2D-3D deformable reg-
istration approach could be used for fluoroscopy-only augmented guidance, two
primary challenges must be overcome. The first involves determining the pose of
the fluoroscopic imaging device relative to the preoperative CT anatomy. To find
this pose, 2D-3D rigid registration approaches have been developed over the years,
as presented in 3.2. In our experiments, we used one such approach, DiffPose,
developed by (Gopalakrishnan, Dey, et al., 2024), Gopalakrishnan, Dey, et al., to
estimate the pose of experimentally acquired fluoroscopic images.

The second challenge lies in bridging the domain gap between synthetic Dig-
itally Reconstructed Radiographs (DRRs) and actual fluoroscopic images. This
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gap manifests in multiple image characteristics, including:

• Variations in contrast and exposure

• Different noise patterns and resolution

• Anatomical discrepancies between preoperative and intraoperative states due
to:

– Bowel movements
– Changes in patient positioning
– Partial lung atelectasis
– etc. . .

To enhance our network’s robustness to these variations, we used domain random-
ization to augment the input images during training (see Sec. 4.2.4).

To validate our approach, we conducted experiments on two experimentally
acquired datasets. Given inherent limitations about ground truth deformations in
both datasets, our evaluation remains semi-quantitative. The common elements
of our experimental setup are detailed in Section 6.1.

Section 6.3 presents our evaluation using a porcine dataset featuring radio-
opaque markers, where respiratory motion induces anatomical deformation in the
fluoroscopic images. Since this dataset does not contain ground truth CT scans
associated with deformed fluoroscopic images, we are only able to evaluate the 2D
accuracy of our method, rendering the evaluation semi-quantitative in nature.

Section 6.4 describes our experiments with clinical data obtained from mini-
mally invasive lung interventions at Rennes CHU. This dataset comprises a preop-
erative CT scan, two intraoperative CBCT volumes, and their associated fluoro-
scopic projections. While the presence of a nodule in both CT and CBCT volumes
provides a reference point for registration evaluation, two significant challenges af-
fect our assessment. Firstly, the ground truth poses of fluoroscopic projections
relative to the preoperative CT volume are unavailable. Secondly, the preopera-
tive and intraoperative volumes exist in different reference frames, necessitating
an additional, error-prone, 3D-3D rigid registration step to enable the computa-
tion of errors in 3D. These limitations collectively constrain our ability to perform
fully quantitative validation, leading us to characterize our experimental results as
semi-quantitative.

6.2 Experimental setup
For each dataset, we first estimated the pose of the real fluoroscopic images with
respect to the preoperative CT, as detailed in Sec. 6.2.1. Then, using the estimated
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poses, we generated synthetic datasets from the preoperative CT image, following
the process described in Sec. 4.2.2 and 6.4.1 for the porcine and interventional
datasets, respectively. The accuracy of our method was evaluated across several
variations, with results presented in Sec. 6.3.1 and 6.4.2.

6.2.1 Pose estimation

Initial pose estimation was based on anatomical landmarks, specifically the spine
and ribs, visible in the fluoroscopic images. For the porcine experiment (Sec. 6.3),
the central position of the spine and horizontal orientation of the ribs indicated an
anteroposterior projection axis. In the clinical experiment, presented in Sec. 6.4,
we selected the projection halfway in the fluoroscopic sequence, acquired along
a semicircular trajectory around the patient, as the reference projection. In this
projection, the spine’s left-sided position and shortened, curved rib segments sug-
gested a Left-Right projection axis.

We refined these initial pose estimates through a three-step process:

1. Manual refinement using the DiffDRR renderer (Gopalakrishnan and Gol-
land, 2022), iteratively adjusting translation and rotation parameters until
the generated DRR visually matched the reference fluoroscopic image as
closely as possible.

2. Initial automated refinement using DiffPose (Gopalakrishnan, Dey, et al.,
2024) For this step, we trained a ResNet18 convolutional neural network on a
synthetic dataset generated with randomized poses near the initial estimate.
This step failed, and we thus used the pose found manually to initialize the
next step.

3. Final refinement using DiffPose’s iterative optimization module. This step
employed the DiffDRR renderer to automatically optimize pose parameters
by minimizing a structural similarity index measure (SSIM)-based loss.

This three-step process achieved high accuracy for the porcine dataset, with
generated DRRs closely matching the fluoroscopic images. For the clinical dataset,
this process failed and we used the pose found manually. The final estimated poses
are shown in Fig. 6.1. The resulting poses served as baselines for data generation,
as detailed in Sec. 4.2.2 and 6.4.1.

6.3 Experiments on a porcine model
For this experiment, an experimentally acquired porcine dataset comprising a pre-
operative CT scan with 12 implanted radio-opaque markers and a sequence of 74
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Figure 6.1: DRRs generated with poses estimated from fluoroscopic images for the
porcine (top) and clinical (bottom) datasets.

fluoroscopic images captured during breathing was used. This dataset contains a
pre-operative CT scan, with 12 implanted radio-opaque markers, Following pose
estimation (Sec. 6.2.1), we evaluated several variations of our method on this
dataset (Sec. 6.3.1).

6.3.1 Results and discussion

Since the markers are present in both the CT and fluoroscopic images, they can be
used to measure the registration accuracy of our method in 2D. This constitutes a
semi-quantitative evaluation, because, unfortunately, we do not have access to the
3D positions of the markers during breathing. A potential solution would be to
acquire and temporally synchronize a 4D CT sequence with the fluoroscopic image
sequence.
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Figure 6.2: Network accuracy for varying numbers of total training epochs. ‘Be-
fore’ refers to the initial error between markers in the preoperative data and ground
truth markers.

To automatically extract the marker’s positions in fluoroscopic images, we used
the Segment Anything (SAM) pretrained model (Kirillov et al., 2023). Given the
manual annotation of marker positions in one image, SAM automatically seg-
mented the markers in all other images in the sequence. Markers positions were
defined as segmentation centroids, and verified through visual inspection. To en-
sure accuracy, we plotted the temporal evolution of markers’ vertical and horizontal
positions and eliminated frames showing abrupt position changes. This methodol-
ogy successfully identified the positions of eight liver-implanted markers in 73 out
of 74 frames.

Our method was evaluated through four experiments on this dataset. In the
first experiment, we investigated the relationship between network performance
and training duration. As introduced in Sec. 4.2.3, we used the OneCycleLR
policy to vary the learning rate during training. With this policy, over the course
of training, the learning rate follows a cosine curve, starting from η = ηmin = ηmax

104
,

increasing to η = ηmax and then decreasing back to ηmin. When the number
of epochs varies, the period of the cosine changes in consequence such that η
always follows the same curve during training. The results of this experiment are
summarized in Fig. 6.2, where the 2D error on the landmarks is measured for
different numbers of training epochs. Optimal performance was achieved with 10
epochs, though using a non-optimal batch size of 16, as we will see in the last
experiment.

The second experiment addressed an implementation issue discovered during
feature map visualization. We identified that the 2D to 3D feature reshape oper-
ation in the backprojection module wasn’t correctly preserving the 3D mask (see
Fig. 6.3). This is due to the fact the depth dimension can be split into a depth and
a feature dimension in two different ways, either with the feature dimension first
or last. Depending on this choice, the output of the reshape operation is largely
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Figure 6.3: From left to right, the 3D mask used in backprojection, the 3D features
after backprojection, masking, and reshaping (see Sec. 4.2.3.1), and the 3D features
after backprojection, masking, and reshaping with the fix implemented. This
experiment was performed with four decoder layers to increase the resolution of
feature maps and make visualization easier.

different. The fix consists in splitting the depth dimension into a depth dimension
first and a feature dimension last rather than feature first and depth last.

Consequently, we implemented a fix to modify the reshape operation in the
backprojection module. We also hypothesized that masking the feature maps after
backprojection could potentially remove important information, and we added an
option to disable the masking operation to test this hypothesis. Since this effect
is more prevalent at higher resolutions, this comparison between architectures was
performed with only four decoder layers, to increase the initial 3D feature maps
resolution to (32, 16, 32) instead of (4, 2, 4) with ten decoder layers. We tested three
configurations: the original implementation (NoFix), a corrected version (Fix), and
a version with disabled post-backprojection masking (FixNoMask), using a batch
size of 16 each time. This experiment supported our hypothesis, as the median 2D
error improved from 4.5mm (NoFix) to 3.4mm (Fix) and 3.4mm (FixNoMask).
However, with ten decoder layers, FixNoMask performed worse (3.8mm) compared
to NoFix (3.1mm), suggesting that a change of architecture of the network could
improve the performances of the FixNoMask variant, to keep both a high spatial
resolution after backprojection and a sufficient number of layers in the decoder. To
achieve this, in the decoder, the features could be spatially upsampled by a factor
of two only once every four layers instead of every two layers, effectively increasing
the spatial resolution of backprojected features for a fixed output resolution.

In a third experiment, we tried to address the consistent registration failure for
one marker in all experiments. In DRRs generated from the preoperative CT, this
marker is superimposed with partially full intestines, while in the test fluoroscopic
images, the intestines show a different appearance, leading to a change in image
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Figure 6.4: From left to right, a DRR generated from the preoperative CT, a fluo-
roscopic image from the test set, the same fluoroscopic images with superimposed
preoperative (blue) and ground truth (green) marker positions. The red circle
highlights the region around the marker for which registration fails, which shows
a difference in image appearance possibly unrelated to a deformation.

appearance at the marker position. Furthermore, the marker position in the test
images never coincides with the preoperative position, suggesting that a shift has
occurred, either of the marker relative to the liver (migration) or of the liver in
this region. A comparison between a preoperative DRR and a testing fluoroscopic
image is presented in Fig. 6.4, with the aforementioned marker highlighted. To
check if the change in appearance was responsible for the systematic error on the
position of this marker, we generated a new training dataset with randomized
intensity perturbations to simulate changes in image appearance unrelated to de-
formations. To create these perturbations, for each sample, 0 to 10 cubic regions
of uniform low or high intensity and randomized radii were created in the CT data
before deformation and DRR rendering. Intensity values in the liver, the organ of
interest here, were preserved. An example of a DRR containing perturbations is
presented in Fig. 6.5. The goal of this training dataset was to make the network
more robust to changes in image intensities unrelated to deformations, such as the
stomach or intestine contents changing due to digestion. This hypothesis was not
verified after the training process, which led to a median 2D error of 4.2mm, sug-
gesting that the registration failure might stem from actual marker displacement
rather than appearance changes. In the future, experiments on the failure modes
of our method would be necessary to better define the clinical use cases of our
method.

Finally, in a fourth experiment, we studied the impact of batch size on per-
formance. To train our network, we have access to either an Nvidia RTX 4090
(24 GB memory) supporting batch size 16, or an Nvidia GeForce GTX 1080 Ti
(11 GB memory) limited to batch size 7. On the first GPU, we were able to use
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Figure 6.5: A DRR generated with randomized perturbations to simulate image
intensity changes unrelated to deformations. Perturbations are cubic regions of
varying sizes with uniform intensities and are meant to simulate intensity changes
due to anatomical processes such as digestion.

a maximal batch size of 16, while on the second GPU, the batch size had to be
reduced to 7. Previous research shows conflicting conclusions about batch size im-
pact on CNN performance, with some works concluding that accuracy diminishes
with increasing batch sizes (F. He et al., 2019; Kandel et al., 2020), and others
drawing the opposite conclusion (Radiuk, 2017). This experiment aims at deter-
mining the optimal batch size for our application, in terms of performance of the
trained network on testing data. The results of this experiment are reported in
Fig. 6.6, and show that, optimal results are obtained with a batch size of 7, with
an improved median error of 2.4mm, from 3.1mm with a batch size of 16.

6.4 Experiments on clinical data

In this experiment, we utilized a clinically acquired dataset from a patient un-
dergoing lung nodule resection. This dataset includes a pre-operative CT scan,
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Figure 6.6: Network accuracy for different batch sizes.

showing a nodule in the upper part of the right lung, and an intraoperative CBCT
scan with associated fluoroscopic images, acquired at the start of the intervention.
The patient’s position differs between the scans: in the CBCT scan, the patient is
in the lateral decubitus position (lying on their left side), while in the preoperative
CT scan, the patient is in the supine position (lying on their back). This patient
pose change induces a deformation of the anatomy, which has been the subject
of prior 3D-3D registration approaches by Alvarez et al. (P. Alvarez, Chabanas,
et al., 2022; P. Alvarez, Rouzé, et al., 2021; P. A. Alvarez, 2020) and Boussot et
al. (Boussot et al., 2023; Boussot et al., 2022). To test the ability of our method to
recover this deformation from a single fluoroscopic image, we used the fluoroscopic
images associated with the CBCT scan as test data. These images were acquired
sequentially while the CBCT device rotated approximately 130 deg around the pa-
tient. To recover the pose of these images, we selected the image from the middle
of the sequence, which was acquired at an angle perpendicular to the operating ta-
ble. We then performed the pose estimation process described in Sec. 6.2.1 on this
image, which yielded suboptimal results (see Fig. 6.1), possibly due to differences
in image appearance between DRR images and fluoroscopic images. To expand
the testing dataset and assess our method’s robustness to different poses, we also
used fluoroscopic images within a 30 deg range around the recovered pose (along
the rotation axis), and computed the corresponding poses. The following sections
(Sec. 6.4.1 and Sec. 6.4.2) will provide details on the training data generation
process and present the experimental results.

6.4.1 Data generation

As previously mentioned, each test fluoroscopic image in this dataset is acquired
with a different pose. Additionally, the pose estimation process did not yield
optimal results, making it necessary for the network to be robust against pose
variations. To achieve this, training DRRs were generated with poses varying
around the previously found poses. Two datasets were generated: P020_p30 and
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P020_small.
The P020_p30 dataset was generated with large variations around the poses

generated in the 30 deg range around the base pose, with translation amplitudes
following a half-normal distribution (standard deviation σ = 100mm, amplitudes
above 2 ∗ σ filtered out) and translation directions generated uniformly as points
on the surface of a sphere. Rotations were generated in the same way, in the
axis-angle representation, with the rotation amplitudes following the half-normal
distribution (σ = 0.3π rad, amplitudes above 2 ∗ σ filtered out) and the rotation
direction generated uniformly on the sphere. For each sample, the virtual C-arm
camera was first rotated with the generated pose before deforming and rendering
the CT volume (as described in Sec. 4.2.2). Examples of samples obtained with
this process, as input to the network, are presented in Fig. 6.7.

The P020_small dataset was generated in the same way as the ‘P020_p30’
dataset, except that the standard deviations of the distributions were reduced to
σ = 50mm for the translation amplitudes, and σ = 0.15π rad for the rotation
amplitudes, with poses generated around the baseline pose only. Examples of
samples obtained with this process, as input to the network, are presented in
Fig. 6.8.

6.4.2 Results and discussion

We performed five experiments to test our method on this dataset.
In the first experiment, we trained the NoFix variant of our network on the

P020_p30 dataset with a batch size of 12 rather than 7 and a learning rate of
5 ·10−3, which are not the optimal parameters found above as this experiment was
performed before the above experiments on the porcine dataset. We obtained a 3D
target registration error of 6.6mm± 2.0mm on the 80 test fluoroscopic images in
the 30 deg range, from 5.08mm± 0mm before registration. In 2D, we obtained a
reprojection error of 9.9mm±3.3mm, from 7.4mm±0.46mm before registration.

Since the results were not satisfying, we tried to improve our method by lever-
aging more prior information about the content of the input image. To augment
the network input, we used the lightweight variant of the MedSAM network devel-
oped by (Ma et al., 2024), Ma et al. to automatically create 2D lung segmentation
masks. MedSAM is a transformer neural network based on the SAM pretrained
model (Kirillov et al., 2023), fine-tuned on 1.5 million medical images distributed
among ten different modalities. We further fine-tuned MedSAM on the P020_p30
dataset, which only contains 18 000 training samples, with as input a DRR image
with a bounding box prompt covering the entire image, and, as a target, ground
truth projected lung segmentations, using the loss combination proposed in the
original work (Ma et al., 2024). We then used the fine-tuned MedSAM model to
create 2D lung segmentation masks for each sample in the P020_p30 dataset.

Chapter 6. 2D-3D deformable registration in the real world 136



Figure 6.7: DRRs from the P020_p30 dataset. The DRRs are shown as input
to the network after regions outside the field domain were masked and domain
randomization was applied. Since regions outside the field domain show disconti-
nuities in the displacement field, they must be masked when they appear in the
projection, causing a loss of information in the image (see Sec. 4.2.5). Due to the
large pose variations, some DRRs contain very little information (none in some
cases) about the region of interest.
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Figure 6.8: DRRs from the P020_small dataset, shown as input to the network.
Thanks to the smaller pose variations, most image remain centered on the region
interest (the right lung).
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Thus, in our second experiment, we trained our network as in the first exper-
iment, except for the network input which contained both a DRR and the lung
segmentation mask predicted by MedSAM. After training, we obtained a 3D error
of 7.4mm± 2.7mm and a 2D error of 11.3mm± 4.6mm.

In the third experiment, we trained the network once more with the lung seg-
mentation mask as additional input, this time removing the masking operation
after backprojection. Since the pose is changing in this dataset, as opposed to
the porcine dataset, masking the features after backprojection may have a greater
impact on the learning process, as it may remove too much information for the
backpropagation process. In this experiment, we obtained improved results with a
3D error of 5.7mm± 2.4mm and a 2D error of 7.4mm± 4.2mm. The deformable
registration performed by the network still does not improve on the prior registra-
tion, but this is the first experiment in which the network does not substantially
degrade accuracy.

In the fourth experiment, we kept the same parameters as the previous ex-
periment, except that we trained the network on the P020_small dataset instead,
performing the same steps as before with MedSAM, including retraining, to gener-
ate input masks. In this experiment, we obtained a 3D error of 13.4mm± 2.7mm
and a 2D error of 21.9mm ± 4.6mm. Since the results were much worse than in
previous experiments, we did not perform any further experiments on this dataset.
It is possible that, in this dataset, the pose range did not cover the poses of test
images, causing the network to fail.

Finally, in the last experiment, we used the optimal parameters found in
Sec. 6.3.1 and did not use the segmentation mask in the input, as results were
not clear on whether it improved performances or not. We obtained a 3D error
of 10.1mm± 2.4mm and a 2D error of 16.5mm± 4.0mm. It is hard to interpret
the results of this experiment, as the previously found optimal parameters do not
seem to be effective here. It is also possible that the network architecture is not
able to handle change of poses or that more training would be required for the
network to learn this harder task.

The accuracy and parameters used in each experiment are summarized in ta-
ble 6.1.

6.5 Conclusion

The experiments conducted on both porcine and clinical datasets provide valuable
insights into the capabilities and limitations of the proposed registration method.
In the porcine model experiments, the method achieved promising results with a
median 2D error of 2.4 mm when using optimal parameters (10 training epochs and
a batch size of 7). An implementation issue in the backprojection module was iden-
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Experiment Dataset Input Batch size bp. mask bp. fix η 2D error (mm) 3D error (mm)
No reg. NA NA NA NA NA NA 7.4 5.1
Baseline P020_p30 DRR 12 Yes No 5 · 10−3 9.9 6.6
Input seg. P020_p30 DRR + seg. 12 Yes No 5 · 10−3 11.3 7.4
No bp mask P020_p30 DRR + seg. 12 No No 5 · 10−3 7.4 5.7
P020_small P020_small DRR + seg. 12 No No 5 · 10−3 21.9 13.4
Optimal param. P020_p30 DRR 7 No Yes 1 · 10−4 16.5 10.1

Table 6.1: Accuracy obtained for each experiment on the clinical dataset. ‘reg.’ is
short for registration, ‘seg.’ for segmentation, ‘bp.’ for backprojection, ‘param.’
for parameters and η refers to the learning rate.

tified and addressed, leading to improved performance in certain configurations (4
layers variant), but slightly decreased performances in others (10 layers variant),
warranting further investigations. This experiment also highlighted the potential
sensitivity of our method to unexpected appearance changes as evidenced by the
consistent failure to register one marker positioned in a region showing changes
in intestines content. Attempts to improve robustness through randomized inten-
sity perturbations during training did not resolve this limitation, suggesting the
alternate possibility of actual marker displacement rather than appearance-related
issues.

The clinical experiments presented more significant challenges, particularly in
handling the combined uncertainty on fluoroscopic image pose and CBCT to CT
frame of reference change, rendering the experimental results hard to interpret.
Using a pretrained ‘foundation’ model did not help to improve the results, despite
its extensive training on real fluoroscopic image. Removing the ‘masking’ opera-
tion of features slightly helped, suggesting that the network might require more
features to handle the combined rigid and deformable transformation between pre-
operative and intraoperative data. Our experiments on the P020_small dataset
led to substantially worse performance, indicating the importance of maintaining
sufficient pose variation during training. Finally, our last experiment using the
optimal parameters found for the porcine dataset did not lead to improved per-
formances, preventing us from drawing conclusions about the optimality of these
parameters.

These findings highlight both the potential and current limitations of the
method, particularly in bridging the gap between simulation and real clinical ap-
plication. Future work should focus on creating a more controlled experimental
testing dataset with available ground truth poses, for example through the use of
a fluoroscopic registration phantom, as illustrated by Fig. 6.9. This next step will
be particularly critical to help improve our method towards clinical use.
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Figure 6.9: DRR of a 3D printed phantom at the initial camera pose (left), after
pose optimization (middle) and corresponding fluoroscopic image (right).
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Chapter 7

Conclusion & future directions

The increasing adoption of minimally invasive procedures has heightened the im-
portance of intraoperative navigation solutions in clinical practice. While these
procedures offer substantial patient benefits, they present unique challenges to
clinicians, with significantly more complex visualization and manipulation during
interventions.

Modern clinical workflows often integrate multiple imaging modalities, each
serving distinct purposes throughout the intervention process. In the preoperative
phase, three-dimensional modalities such as CT scans and MRI enable precise
diagnosis and intervention planning, providing clinicians with detailed anatomical
structure segmentation. During the intervention, real-time, 2D modalities are
often preferred, due to their real-time capabilities.

Several approaches have emerged to harness the advantages of both 3D and 2D
modalities, notably virtual bronchoscopy (section 1.2.2) and CBCT fluoroscopy
(section 1.2.3). While these solutions have enhanced clinical practice, they retain
certain limitations. Virtual bronchoscopy, though effective, remains confined to
bronchoscopic procedures. CBCT fluoroscopy, while broadly applicable, exposes
both patients and clinicians to higher radiation doses due to repeated scan acqui-
sitions.

Conventional fluoroscopy provides real-time 2D anatomical visualization with
relatively low radiation exposure. However, this modality exhibits poor contrast
in certain organs, rendering some anatomical structures, like vessels, invisible. In
current clinical practice, vessel visualization in fluoroscopic images is enabled by
contrast agent injection. Yet, contrast agents are a suboptimal solution: they
are nephrotoxic at high doses and provide only temporary visualization, as they
dissipate with blood flow.

To address these limitations, we developed a versatile fluoroscopy-based inter-
ventional guidance technique. Our approach leverages preoperative CT data to
enhance intraoperative fluoroscopic images through an innovative deep learning
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framework. As detailed in section 4.6.2, we employ a patient-specific preoperative
CT scan to train a deep neural network to recover deformations from fluoroscopic
images. Our framework seamlessly integrates into existing clinical workflows, re-
quiring minimal training time (≈ one day) after preoperative CT scan acquisition,
and no modifications to the interventional workflow.

Our methodology overcomes the limitations of existing 2D-3D deformable reg-
istration frameworks, which primarily target radiotherapy applications. Thanks
to our domain-agnostic data generation framework (section 4.2.2), we are able to
train a 2D-3D deformable registration deep neural network to recover arbitrary
deformations. This capability renders our approach suitable to clinical contexts
where intervention-related deformations occur, such as needle-based percutaneous
procedures.

We validated our approach through comprehensive studies on both simulated
(chapter 4) and real (chapter 6) fluoroscopic images. Preliminary experiments
(section 4.3) demonstrated our domain-agnostic data generation’s superiority over
PCA-based methods, enabling our neural network to recover both arbitrary and
breathing-induced deformations. A subsequent study (section 4.4) presents ev-
idence of the clinical utility of our method through its ability to render vessels
visible in fluoroscopic images, eliminating the need for contrast agent injection.
We then improved, and more thoroughly evaluated our method in another study,
presented in section 4.5, where we validated its ability to recover intervention-
related deformations. The usefulness of our framework was further demonstrated
through successful integration with an autonomous endovascular navigation sys-
tem (section 4.6), significantly improving navigation success rates.

Chapter 5 explores the integration of biomechanical models to enhance the
performance of our method. Such models, which have previously been used to
model deformable organs in registration, employ physical parameters and par-
tial shape information to predict complete organ configurations. Our initial in-
vestigation (section 5.2) examined the use of biomechanical models to generate
physically accurate training deformations. Further experiments (section 5.3) ex-
plored biomechanical model-based regularization for ensuring physical plausibility.
While initial attempts at developing a spatially differentiable network architecture
(section 5.3.1) and implementing biomechanical model-based regularization (sec-
tion 5.3.2) proved challenging, subsequent experiments with a simplified 2D reg-
istration problem demonstrated the potential of our biomechanical model-based
regularizer in improving prediction realism and plausibility.

The final chapter 6 presents our method’s evaluation on real fluoroscopic im-
ages. This semi-quantitative validation was difficult to set up, due to uncertainties
on the ground truth 3D position of landmarks for the experiment on a porcine
model, and on the pose of fluoroscopic images for the experiment on clinical data.
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Nevertheless, the first experiment on the porcine model (section 6.3) showed that
our method could successfully recover breathing motion for most landmarks, while
the second experiment (6.4) on clinical data remained inconclusive.

To advance the clinical implementation of our method, a critical initial priority
lies in conducting more comprehensive evaluation and enhancing the reliability of
our network predictions on real fluoroscopic images. Our experimental findings
in chapter 6 revealed that non-deformation related anatomical variations, such
as changes in intestines content, may be responsible for inaccurate predictions.
Despite our implementation of domain randomization techniques to address this
challenge, our results remained inconclusive regarding their effectiveness.

A solution to this issue could be to refine our data generation process to sim-
ulate such anatomical changes. This could be achieved through automated organ
segmentation followed by the generation of independent, organ-specific, deforma-
tions and intensity changes. Alternatively, we could enhance our data generation
framework by leveraging large online databases of clinical CT scans to create a
training dataset encompassing a broader spectrum of anatomical variations.

Modernizing our network architecture presents another avenue for improving
prediction accuracy. Throughout this thesis work, we deliberately maintained our
focus on convolutional networks, considering the rapid evolution of neural architec-
tures and their increasing computational demands. However, recent developments
in transformer architectures have demonstrated superior performance compared to
convolutional neural networks when sufficient data and computational resources
are available. The development of a large-scale ‘foundation model’ specifically
designed for deformable 2D-3D registration could represent a significant advance-
ment, requiring substantial initial investment, but potentially offering improved
performance through subsequent fine-tuning for patient-specific and application-
specific scenarios.

While our attempts to incorporate biomechanical model-based regularization
for enhancing prediction realism and plausibility showed promise, our findings in
chapter 5 indicate the need for further development in this direction. A promis-
ing approach would involve the integration of physical constraints directly within
the network architecture, following the principles of ‘physics-augmented neural
networks’ (PANNs) (Linden et al., 2023). Such approach would also provide addi-
tional guarantees on the network’s predictions, enhancing its reliability in a clinical
setting.

Our experimental results have successfully demonstrated the capability of our
approach to recover deformations from single fluoroscopic images in real-time,
extending beyond the limitations of breathing motion-specific solutions. While
multiple research directions remain to be explored for full clinical implementation,
our current results provide strong evidence of our method’s ability to effectively
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recover deformations from clinical fluoroscopic images. These achievements estab-
lish a solid foundation for future developments while confirming the immediate
practical utility of our approach.
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Résumé

Introduction

Grâce au développement des techniques d’imagerie interventionnelle, les interven-
tions mini-invasives, dans lesquelles l’opération est réalisée via des incisions de
petite taille, se généralisent. De telles interventions sont désirables, car elles en-
traînent moins de complications et un temps d’hospitalisation réduit.

Dans une intervention guidée par imagerie, un scan 3D du patient est sou-
vent acquis avant l’opération, à des fins de diagnostic et de planification. Pendant
l’opération, des images sont acquises pour guider l’équipe clinique et leur permettre
d’opérer de façon mini-invasive. Cependant, les modalités d’imagerie intervention-
nelles n’apportent qu’une information limitée, et ne permettent pas de voir en
détail certaines structures anatomiques. À l’inverse, les modalités préopératoires
comme le Computed Tomography (CT) scan permettent de localiser précisément,
en 3D, la plupart des structures anatomiques.

Dans cette thèse, nous développons une solution pour améliorer les interven-
tions guidées par fluoroscopie. Notre solution est basée sur le recalage déformable
pour fusionner les informations préopératoire en 3D avec les images intervention-
nelles 2D. Grâce à cette fusion, les images interventionnelles peuvent être aug-
mentées en temps réel avec des informations précises, mises à jour pour suivre
les mouvements de l’anatomie. En effet, pendant l’intervention, l’anatomie est
déformée par des mouvements anatomiques tels que la respiration, mais aussi par
l’interaction des instruments chirurgicaux avec les tissus. Afin de corriger ces dé-
formations et de permettre une fusion 2D-3D précise, une opération de recalage
déformable est donc nécessaire.

Il existe des solutions, récemment développées et ayant fait l’objet d’études
cliniques, pour augmenter l’information disponible dans les images intervention-
nelles. Cependant, celles-ci sont basées sur un recalage rigide ne prenant pas en
compte les déformations, ou sur l’acquisition d’images 3D lors de l’intervention,
qui ne permettent pas une visualisation en temps réel. Dans le cas particulier de
la radiothérapie, des solutions de recalage déformable 2D-3D en temps réel ont
été développées, mais elles ne prennent en compte que le mouvement respiratoire,
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obtenu à partir de scans préopératoires 4D. Il n’existe donc pas de solution de
recalage 2D-3D déformable pour les interventions guidées par fluoroscopie. Une
telle solution éviterait en premier lieu l’acquisition de scans 3D interventionnels,
réduisant l’exposition aux radiations et la durée de l’intervention. D’autre part,
cette solution permettrait aussi de réduire ou supprimer l’injection d’agents de
contraste pendant l’intervention, diminuant ainsi les risques de toxicité pour le
patient tout en améliorant la visualisation de l’anatomie par l’équipe clinique.

Le premier chapitre de cette thèse introduit en détail le contexte clinique,
présentant les avantages potentiels des interventions guidées par imagerie aug-
mentées. Ce chapitre présente les solutions existantes pour augmenter les images
interventionnelles, et plus particulièrement les solutions développées pour les in-
terventions guidées par imagerie fluoroscopique.

Dans le second chapitre, le domaine scientifique du recalage d’image est présenté.
En première partie de ce chapitre, il est fait état des différentes catégories de méth-
odes de recalage d’image et de leurs domaines d’application. La seconde partie
présente brièvement le paradigme des méthodes de réseaux de neurones profonds
appliqués au recalage d’image. Une courte présentation de l’historique des méth-
odes de réseaux de neurones profonds appliqués au recalage d’image 3D-3D, le cas
le plus étudié dans la littérature, est proposée à la fin de ce chapitre.

Le troisième chapitre présente un état de l’art des méthodes de recalage dé-
formable 2D-3D appliquées aux images fluoroscopiques, ainsi qu’un état de l’art
des méthodes de recalage intégrant un modèle biomécanique.

Le quatrième chapitre présente le cœur de la méthode de recalage déformable
développée durant cette thèse. Tout d’abord, le fonctionnement de la méthode
et son insertion dans le processus interventionnel existant sont décrits en général.
Notre méthode est basée sur l’utilisation du scan préopératoire pour la génération
automatique de données d’entraînement. Ces données permettent d’entraîner de
façon robuste, en un temps court, un réseau de neurone spécifiquement développé
pour le recalage déformable 2D-3D. Le réseau de neurones entraîné est ensuite util-
isé pour recaler, en temps réel, les données préopératoire sur les images interven-
tionnelles. Le processus de génération de données d’entraînement, qui représente
une contribution majeure de cette thèse, est tout d’abord décrit en détail. En-
suite, l’architecture du réseau de neurones pour le recalage déformable 2D-3D est
présentée. La suite du chapitre présente les travaux effectués pour développer et
valider notre approche. Parmi les travaux présentés dans ce chapitre, deux articles
ont été publiés dans des conférences internationales et un article est en cours de
relecture pour publication dans le journal Medical Image Analysis.

Le cinquième chapitre présente le travail effectué pour améliorer la méthode
par l’utilisation d’un modèle d’organe biomécanique. L’objectif est ici de rendre
le recalage plus réaliste en prenant en compte les lois de comportement biomé-
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caniques des organes. Ce travail a donné lieu à la publication d’un article dans un
‘Workshop’ de la conférence internationale Computer Vision and Patter Recogni-
tion (CVPR).

Le sixième chapitre présente les expériences effectuées pour tester notre méth-
ode sur des images fluoroscopiques expérimentales. De par les contraintes d’acqui-
sition d’images, il est difficile d’évaluer quantitativement la précision du recalage
déformable sur des images fluoroscopiques expérimentales. Les résultats présentés
dans ce chapitre sont donc qualitatifs et semi-quantitatifs, mais permettent cepen-
dant d’évaluer l’efficacité de la méthode dans un contexte proche du contexte
clinique.

Le dernier chapitre clôt ce travail de thèse et en résume les contributions.
Un plan est également proposé, présentant les directions dans lesquels il serait
intéressant de poursuivre le développement de la méthode pour s’approcher d’une
utilisation clinique.

Le recalage d’images

Le recalage d’image est le processus qui établit une correspondance spatiale entre
deux images. La transformation trouvée lors de ce processus permet de déformer
l’image dite ‘mobile’ (IM) pour la superposer à l’image dite ‘fixe’ (IF ). Cette
technique est utile dans le domaine médical, où il est courant d’acquérir plusieurs
images du même patient à différents points dans le temps. En effectuant le recalage
entre ces images, il est par exemple possible d’étudier l’évolution d’une pathologie.
La position du patient variant entre les sessions d’imagerie, un recalage rigide doit
d’abord être effectué pour établir un alignement global entre les différentes acqui-
sitions d’images. Cet alignement initial compense également les changements de
référentiels entre les différents appareils d’imagerie, fournissant une base nécessaire
pour les étapes de recalage ultérieures. En raison de processus physiologiques (res-
piration, mouvements cardiaques, ...), ou opératoires (action des cliniciens sur les
organes), il est de plus nécessaire d’effectuer un recalage déformable pour aligner
complètement les images.

Vue d’ensemble

Une première façon de catégoriser les méthodes de recalage est de les séparer en
deux catégories : les méthodes de recalage unimodales et les méthodes de recalage
multimodales. Dans le cas du recalage unimodal, la modalité d’imagerie est la
même pour toutes les images, comme par exemple pour les méthodes développées
pour recaler des scans CT. À l’inverse, dans le cas du recalage multimodal, les
images sont acquises dans des modalités différentes. Notre méthode s’inscrit dans
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cette catégorie en recalant un scan CT avec une image fluoroscopique, un problème
plus difficile à résoudre que le recalage entre deux images de même modalité et
de même dimensionalités, mais combinant les avantages des deux modalités pour
visualiser sur les images fluoroscopiques les informations issues du CT.

Il est également possible de distinguer les méthodes de recalage en fonction
de la nature de la transformation utilisée, qui peut être rigide ou déformable.
Bien que recherchant une transformation plus simple (affine), le recalage rigide
est une première étape indispensable dans le processus de recalage. Le recalage
déformable, quant à lui, prend en compte les déformations de l’anatomie, à travers
l’utilisation de transformation non-linéaires. Ces transformations peuvent être
définies à l’aide de paramètres ou bien par un champ de déplacement dense.

Une catégorie particulière de méthodes paramétriques utilise des modèles biomé-
caniques pour guider le recalage, par la prise en compte des paramètres physiques
de l’organe. Ces modèles contraignent le recalage à respecter les lois de la mé-
canique, permettant ainsi d’extrapoler de façon réaliste la déformation dans les
parties non observées de l’organe. Le modèle biomécanique d’élasticité linéaire
est simple mais inexact pour les grandes déformations, motivant l’utilisation de
modèles hyperélastiques, plus complexes mais plus précis. Les modèles biomé-
caniques, décrits par des équations différentielles, nécessitent l’utilisation de méth-
odes numériques telles que la méthode des éléments finis (MEF) ou la méthode
des différences finies (MDF). Ces méthodes, bien que précises, sont coûteuses en
temps de calcul, nécessitant l’utilisation d’approximations pour les applications
temps réel. Malgré ces contraintes, les méthodes biomécaniques ont été utilisées
avec succès pour le recalage d’images médicales.

Les méthodes de recalage se distinguent également entre approches basées sur
l’intensité et approches basées sur les caractéristiques. Les premières utilisent les
intensités des pixels dans les images, tandis que les secondes utilisent des carac-
téristiques extraites des images, telles que des maillages d’organes. Ces dernières,
bien que plus robustes aux différences entre les images, nécessitent une étape non-
triviale de pré-traitement pour extraire les caractéristiques.

Un point commun entre la plupart des méthodes de recalage est l’utilisation
d’une fonction de coût L minimisée par un algorithme d’optimisation pour trouver
la transformation de recalage T . Traditionnellement, l’algorithme d’optimisation
est utilisé pour effectuer le recalage entre deux images, nécessitant dans cer-
tains cas plusieurs heures de calcul. Pour pallier cette limitation, les méthodes
d’apprentissage cherchent à minimiser la fonction de coût sur une base de don-
nées d’images, calculant à travers ce processus les paramètres θ d’une fonction fθ
qui associe T à (IM , IF ). Ainsi, une fois le processus d’apprentissage terminé, fθ
permet de calculer rapidement la transformation de recalage entre deux images.

Les méthodes basées sur Modèle de Déformation Statistique (MDS) constituent
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un exemple de méthodes d’apprentissage largement utilisées pour le recalage. Le
fonctionnement général des méthodes basées sur un MDS est le suivant :

1. À partir d’un ensemble de N images, on définit une image fixe de référence
associée à un ensemble d’images à recaler.

2. Après avoir calculé la transformation de recalage entre l’image de référence
et chaque image de l’ensemble, on obtient un ensemble de transformations
Ti pour i ∈ {1, . . . , N}.

3. Ensuite, l’Analyse en Composantes Principales (ACP) est souvent utilisée
pour représenter Ti avec k composantes principales.

4. En pratique, k est petit, avec par exemple k = 3 pour un mouvement respi-
ratoire.

5. Pour recaler une nouvelle image avec l’image de référence, il suffit d’optimiser
k paramètres pour obtenir la transformation de recalage, fonction des k com-
posantes principales.

La limitation des méthodes basées sur un MDS est qu’elles ne permettent pas
de retrouver une transformation qui ne soit pas une combinaison linéaire des trans-
formations de l’ensemble d’apprentissage. Cette contrainte restreint très fortement
les transformations possibles, ce qui est utile pour retrouver des déformations con-
nues a priori (respiration, mouvement cardiaque), mais ne permet pas de retrouver
des transformations arbitraires (déformations causées par l’action d’un instrument
chirurgical).

L’apprentissage profond pour le recalage d’images

Pour surmonter les limitations des méthodes de recalage traditionnelles, les méth-
odes basées sur l’apprentissage profond ont récemment été utilisées de façon mas-
sive. L’apprentissage profond est une approche d’apprentissage automatique, dans
laquelle les paramètres d’un réseau de neurones artificiel sont optimisés sur une
base de données. Un réseau de neurones artificiel est une composition de fonc-
tions paramétriques et non linéaires. Il est généralement composé d’au moins
trois couches, chacune formée par la composition d’une fonction paramétrique et
d’une fonction d’activation non linéaire (et éventuellement de fonctions supplé-
mentaires). Ces réseaux, qui permettent en théorie d’approximer n’importe quelle
fonction, ont permis de résoudre de nombreux problèmes complexes avec une ef-
ficacité supérieure aux méthodes traditionnelles. Ils sont généralement entraînés
à l’aide de la différentiation automatique, qui permet l’utilisation de l’algorithme
de propagation du gradient pour trouver les paramètres θ du réseau minimisant
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L. Cette méthode, basée sur le calcul des dérivées, est étonnamment efficace
lorsqu’une grande quantité de données est disponible, permettant l’utilisation de
réseaux pouvant avoir des milliards de paramètres, disposant d’une capacité de
représentation jusqu’ici inégalée. Cette capacité de représentation est particulière-
ment utile pour le recalage d’images, où la transformation fθ associant T à (IM , IF )
est potentiellement de très grande complexité.

Les premières méthodes d’apprentissage profond pour le recalage d’images ont
été proposées dans les années 2010. La plupart de ces méthodes ont été développées
pour le recalage unimodal d’images médicales 3D, n’apportant pas nécessairement
des performances supérieures, mais accélérant le processus de recalage jusqu’à 20
000 fois par rapport aux méthodes itératives traditionnelles, pour une précision
équivalente. Cette caractéristiques les rend particulièrement intéressantes pour
notre application, le recalage déformable 2D-3D en temps réel.

État de l’art du recalage déformable 2D-3D

Les modalités d’imagerie 2D sont utilisées dans les interventions en raison de leurs
capacité à fournir une visualisation en temps réel de l’anatomie. La fluoroscopie
est une modalité 2D qui présente l’avantage d’offrir un large champ de vision et de
montrer l’anatomie interne complète du patient. Elle est utilisée notamment pour
suivre les cathéters lors des procédures endovasculaires, visualiser les aiguilles dans
les procédures percutanées et guider les opérations orthopédiques.

Une limitation majeure des images fluoroscopiques est le manque de contraste
entre les tissus de densité similaire, ce qui rend difficile la distinction des struc-
tures anatomiques. Pour pallier cette limitation, des agents de contraste peu-
vent être injectés ou des marqueurs radio-opaques implantés, mais, comme évoqué
précédemment, ces solutions ne sont pas idéales.

Pour apporter une visualisation de structures anatomiques en continu sans
risques pour le patient, les méthodes de recalage déformable 2D-3D superposent
des informations issues d’une image 3D préopératoire à une image 2D peropératoire
en temps réel. Nous nous plaçons dans le contexte clinique où l’image préopératoire
est un scan CT et l’image peropératoire est une image fluoroscopique.

Il convient tout d’abord de noter que le recalage déformable n’est pas la seule
façon d’améliorer la visualisation de structures anatomiques sur des images fluo-
roscopiques. En effet, des méthodes de localisation sans marqueurs existent égale-
ment pour le traitement de tumeurs par radiothérapie (Shieh et al., 2017; Hirai et
al., 2019; W. Zhao et al., 2019; Zhang, X. Huang, Wang, et al., 2020; Y. Yan et al.,
2024). Cependant, ces méthodes ne permettent pas d’incorporer d’informations
préopératoires et sont donc moins versatiles que les méthodes de recalage.

Une autre catégorie de méthodes de recalage 2D-3D concerne l’estimation de
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pose, ou recalage rigide, adaptée à la visualisation de structures rigides, telles
que les structures osseuses (D. C. Liu et al., 1989; Berger et al., 2016; Hansen
et al., 2003; Powell et al., 2009; Wunsch et al., 1996; Benameur et al., 2003; Gall
et al., 1993; T. S. Tang et al., 2000; Gouveia et al., 2012; D.-X. Huang et al.,
2024; Jaganathan et al., 2023; Gao, Killeen, et al., 2023; Gao, Feng, et al., 2023;
Gopalakrishnan, Dey, et al., 2024; M. Chen, Z. Zhang, Gu, Ge, et al., 2024; M.
Chen, Z. Zhang, Gu, and Kong, 2024; B. C. Lee et al., 2022). Ces méthodes
sont également nécessaires en tant qu’étape préliminaire au recalage déformable,
et montrent une précision souvent inférieure au millimètre, mais échouent parfois
à converger vers un recalage correct.

La majorité des méthodes de recalage déformable 2D-3D dans la littérature se
concentrent sur la compensation des mouvements respiratoires ou cardiaques (C.-R.
Chou, Frederick, et al., 2013; C.-R. Chou and Pizer, 2013; C.-R. Chou, Frederick,
et al., 2013; M. D. Foote et al., 2019; Nakao et al., 2022; Shao, Jing Wang, et al.,
2022; Wijesinghe, 2024). Ces méthodes utilisent pour la plupart un MDS issu
d’un CT 4D préopératoire ou d’une base de données de CT 4D. Cette limitation à
l’estimation de mouvement périodiques à partir de données 4D rend ces méthodes
peu adaptées au recalage déformable 2D-3D dans le cadre de déformations liées à
l’action des cliniciens sur les organes.

Afin d’améliorer la précision de notre méthode, nous nous intéressons également
aux approches basées sur des modèles biomécaniques. Ces approches utilisent un
modèle élastique (Broit, 1981) ou hyperélastique (Rabbitt et al., 1995; Pennec
et al., 2005; Yanovsky et al., 2008; P. Alvarez, Rouzé, et al., 2021; Lesage et al.,
2020) pour modéliser la déformation de l’organe. Parmi ces méthodes, certaines ont
été développées pour le recalage d’images CBCT interventionnelles du poumon (P.
Alvarez, Rouzé, et al., 2021; Lesage et al., 2020), qui subit de grandes déformations
dues au phénomène de pneumothorax lors de l’incision du thorax.

Recalage déformable 2D-3D agnostique au domaine

Afin de développer une méthode de recalage déformable 2D-3D adaptée aux in-
terventions guidées par fluoroscopie, notre méthode s’écarte des méthodes ex-
istantes, qui utilisent un MDS pour la génération des données d’apprentissage.
S’inspirant des méthodes de reconstruction de volume CT à partir d’images flu-
oroscopiques (Shen et al., 2019; Yikun Zhang et al., 2021; J. Guo et al., 2024),
notre approche se base sur les résultats de Shen et al. (Shen et al., 2019), qui ont
montré qu’il était possible de reconstruire un volume 3D à partir d’une seule image
fluoroscopique, avec une précision limitée.

Le réseau de neurones utilisé dans la méthode de Shen et al. est un réseau
de neurones convolutif (RNC) utilisant l’architecture ResNet (K. He et al., 2016).
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Dans cette architecture, des connections directes sont ajoutées entre les couches
du réseau afin de faciliter la propagation des gradients et donc l’apprentissage.
Pour prédire un volume 3D à partir d’une image fluoroscopique 2D, l’image fluoro-
scopique en entrée est d’abord transformée par l’encodeur du réseau, composée de
11 couches de convolution, en un tenseur de ‘feature maps’, une représentation ab-
straite de l’image de faible résolution spatiale, riche en informations. Ces ‘feature
maps’ sont ensuite transformées de 2D en 3D par un module de transformation
qui ne contient pas de paramètres mais réordonne l’ensemble de ‘feature maps’ 2D
pour former un ensemble réduit de ‘feature maps’ 3D. Finalement, le décodeur du
réseau, composé de 11 couches de convolution, transforme ces ‘feature maps’ 3D
en un volume 3D de haute résolution spatiale.

Cette architecture présente l’avantage de la simplicité en transformant directe-
ment une image fluoroscopique 2D en un volume CT 3D grâce au module de trans-
formation 2D-3D. L’architecture que nous utilisons est basée sur l’architecture
proposée par Shen et al., avec quelques différences. Comme l’objectif de notre
approche est de superposer les informations issues du volume préopératoire avec
l’image fluoroscopique plutôt que de reconstruire un volume 3D, nous avons modi-
fié la dernière couche du décodeur pour produire un champ de déplacement 3D au
lieu d’un volume 3D, cette approche ayant déjà été employée par des méthodes de
recalage 3D (De Vos et al., 2017; Shan et al., 2017; Miao et al., 2018; Balakrishnan
et al., 2019; J. Chen et al., 2022; Y. Zhu et al., 2022).

Etant donné le manque de base de données réelles pour le recalage déformable
2D-3D, contenant des paires d’images fluoroscopiques et de volumes CT, nous
avons développé un processus de génération de données synthétiques. A partir d’un
scan CT préopératoire auquel nous appliquons des déformations aléatoires, nous
obtenons une base de données d’images fluoroscopiques synthétiques contenant des
déformations. Cette approche permet d’entraîner le réseau de neurones à retrouver
une déformation du CT à partir d’une image fluoroscopique.

La section suivante présente notre méthode de recalage déformable 2D-3D,
évaluée à travers plusieurs études. Notre principale contribution est notre approche
de génération de données agnostique au domaine, qui permet de s’affranchir des
connaissances préalables sur les mouvements pendant les interventions guidées
par fluoroscopie. Nous avons également amélioré l’architecture proposée par Shen
et al. en utilisant un module de rétroprojection pour transformer les ‘feature
maps’ 2D en ‘feature maps’ 3D en prenant en compte les informations de pose.
Nous avons aussi introduit une nouvelle fonction de coût pour superviser le réseau
dans l’espace projectif, prenant en compte la perte d’informations induite par la
projection. Les études présentées démontrent la supériorité de cette approche par
rapport aux méthodes basées sur un MDS pour la prédiction de déformations non
périodiques, et son potentiel pour réduire l’utilisation d’agents de contraste lors
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des interventions percutanées.

Méthode développée

Notre méthode s’intègre dans la pratique clinique existante tel qu’illustré par la
Fig. 7.1.

Neural network training

Neural network prediction

Figure 7.1: Présentation de notre approche. La première étape est la planification
de l’intervention à partir d’un scan CT préopératoire, où les structures d’intérêt
sont segmentées et la pose du C-arm est déterminée (en haut à gauche). La
seconde étape est l’entraînement du réseau de neurones à prédire une déformation
du CT 3D à partir d’une image fluoroscopique synthétique (en haut, au milieu et à
droite). Ici, les déformations sont représentées schématiquement en 2D (en réalité,
les déformations sont des champs vectoriels 3D), la couleur indiquant l’amplitude
du déplacement. Ensuite, lors de l’intervention, le C-arm est positionné et une
image fluoroscopique est acquise (en bas à gauche). Enfin, le réseau de neurones
est utilisé pour prédire la déformation du CT 3D à partir de l’image fluoroscopique
(en bas, au milieu), permettant d’obtenir une image fluoroscopique augmentée (en
bas, à droite).

Le processus de génération de données est basée sur l’utilisation du scan CT
préopératoire, éventuellement injecté pour segmenter les vaisseaux. La pose du C-
arm par rapport au CT préopératoire est également supposée connue, comme dans
d’autres approches de la littérature. En pratique, cette hypothèse n’est pas vérifiée,
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mais il est possible de combiner notre approche avec une méthode de recalage
rigide 2D-3D pour obtenir la pose intraopératoire, et d’autre part, d’introduire
des variations de pose dans le processus de génération de données pour se passer
de cette hypothèse. Néanmoins, comme il s’agit ici de démontrer la faisabilité du
recalage déformable 2D-3D pour les interventions guidées par fluoroscopie, nous
conservons dans un premier temps cette hypothèse.

Tout d’abord, le scan CT préopératoire injecté est traité pour enlever les infor-
mations de contraste des vaisseaux en remplaçant les voxels autours des vaisseaux
par des voxels d’intensité moyenne dans l’organe (‘inpainting’). Ensuite, une base
de données d’entraînement est générée en appliquant des déformations au CT
préopératoire, puis en générant des images fluoroscopiques synthétiques à partir
des CT déformés. Ces données sont utilisées pour entraîner le réseau à prédire
la déformation du CT à partir de l’image fluoroscopique synthétique, dans le but
d’augmenter, lors de l’intervention, les images fluoroscopiques avec les informations
issues du CT préopératoire.

Pour générer des déformations agnostiques au domaine, nous cherchons à générer
aléatoirement des déformations lisses et inversibles, deux propriétés vérifiées pour
les déformations réelles. Le ‘Large Deformation Diffeomorphic Metric Mapping
(LDDMM)’ (Trouve et al., 2005) est une méthode développée pour produire de
telles déformations dans le cadre du recalage d’images. Dans le LDDMM, la dé-
formation ϕ qui recale une image I vers une image I ′ est obtenue en intégrant un
champ de vitesse V(t,x) gouverné par un ensemble d’équations différentielles. Il
a été démontré (Durrleman et al., 2014) qu’il était possible d’exprimer V(t,x) par
l’équation suivante :

V(t,x) =

Ncp∑
k=1

αk(t) ·Kk(x,yk(t)) (7.1)

où Kk(t) sont des éléments d’un espace de Hilbert à noyau reproduisant. Il est
donc possible d’utiliser des noyaux gaussiens pour représenter Kk(t), situés aux
Ncp points de contrôle yk ∈ R3 et pondérés par les coefficients αk(t) ∈ R3. Le
champ de déplacement est alors obtenu en calculant φ(x) =

∫ 1

0
V(t,x)dt.

Plutôt que d’optimiser les paramètres αk et yk pour le recalage, nous générons
des valeurs aléatoires des points de contrôle yk, matrices de covariance σk ∈ R3×3

et poids αk des noyaux gaussiens. Les points yk sont d’abord générés aléatoirement
puis filtrés pour ne garder que les points conservant une distance minimale, afin
d’éviter d’obtenir des noyaux trop proches les uns des autres, ce qui pourrait
entraîner des variations trop rapides de φ(x). Les coefficients αk sont générés à
partir d’une distribution uniforme sphérique en 3D puis multipliés par un facteur
commun entre -1 et 1 pour garantir que des champs de déplacement faibles partout
seront générés. Finalement, les paramètres σk sont générés de façon uniforme avec
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des valeurs entre 15% and 30% de la taille du volume. Bien que cette formulation
ne garantisse pas que ϕ soit difféomorphique, on vérifie en pratique que la valeur
du jacobien spatial J est positive pour garantir le difféomorphisme.

Pour générer des images fluoroscopiques synthétiques, nous utilisons l’algorithme
DeepDRR (Unberath et al., 2018), qui modélise le C-arm comme une caméra util-
isant des rayons X pour former des images. A partir d’un scan CT I(x) , l’image
fluoroscopique synthétique p est obtenue par l’équation suivante :

p(u) ≈
∫

I(x)dlu (7.2)

avec lu(x) = P·x le rayon qui connecte le point u ∈ R2 sur le plan de détection à la
source de rayons X, P la matrice de projection et I(x) l’intensité du scan CT à la
position x ∈ R3. Cette équation montre que p(u) est invariant aux transformations
de I(x) qui préservent la valeur de l’intégrale. Cela signifie qu’une déformation
déplaçant des voxels le long d’un rayon de projection ne modifie pas la valeur de
l’intégrale, rendant une telle déformation inobservable dans l’image.

L’architecture de notre réseau, comme évoqué plus haut, est dérivée de (Shen
et al., 2019), et est représentée par la figure 7.2. Après le calcul des ‘feature
maps’ par les 10 couches de convolution, celles-ci sont transformées en 3D par
le module de transformation 2D-3D. En prenant en compte la pose P de l’image
fluoroscopique par rapport au scan CT, ce module permet de faire correspondre le
champ de déplacement à la position x dans le référentiel du CT aux informations
extraites du pixel u à la position u = Px dans l’image fluoroscopique. Le module
de transformation 2D-3D ne nécessite pas de paramètres à apprendre et utilise une
grille de points en 3D G pour interpoler la valeur des feature maps aux positions
2D correspondantes Gu = PG. Dans ce module, les ‘feature maps’ 2D sont
considérées comme une succession de plans image à différentes profondeurs le long
des lignes de projection. Après rétroprojection en 3D, on obtient un volume 3D
formé par interpolation de feature maps 2D dans le cône de projection, avec des
valeurs nulles en dehors. Pour obtenir des ‘feature maps’ 3D à partir de ce volume,
la dimension de profondeur est divisée en deux pour obtenir plusieurs volumes,
formant les feature maps. Finalement, ces ‘feature maps’ sont traitées par le
décodeur pour obtenir la prédiction du champ de déplacement.

Pour entraîner le réseau, nous utilisons une combinaison L de fonctions de coût,
en prenant soin de masquer les voxels non visibles dans l’image fluoroscopique ou
en dehors de l’anatomie.

L = Lφ2D(φ2D
i , φ̂i

2D) + λLs2D(P2D(Is ◦ ϕi),P2D(Is ◦ ϕ̂i)) (7.3)

Le premier terme de cette combinaison, Lφ2D , pénalise l’erreur sur le déplacement
dans l’espace 2D plutôt que dans l’espace 3D. En effet, tous les déplacements ne
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Figure 7.2: L’encodeur du réseau convertit l’image en un ensemble de ‘feature
maps’ de basse résolution spatiales. Les ‘features maps’ 2D sont rétroprojetées
en 3D à l’aide de la matrice de projection dans le module de rétroprojection. Le
décodeur du réseau convertit les ‘feature maps’ 3D en un champ de déplacement.
Le champ de déplacement prédit est ensuite utilisé pour calculer la fonction de
coût sur les points de grille projetés dans l’espace 2D et sur la segmentation des
vaisseaux projetés dans l’espace 2D.

sont pas observables dans l’image fluoroscopique, et ne peuvent donc pas être prédit
sans informations supplémentaires. De plus, cette fonction de coût est naturelle-
ment adaptée à notre objectif, la visualisation en 2D d’informations anatomiques
3D, dont la projection doit être exacte. Le deuxième terme, Ls2D , permet de min-
imiser l’erreur en 2D au niveau des structures anatomiques d’intérêt, en utilisant
le coefficient de Dice entre les segmentations déformées prédites et de référence.

Pour améliorer la robustesse du réseau aux changements d’apparence entre les
images fluoroscopiques synthétiques d’entraînement et les images fluoroscopiques
réelles, nous utilisons une méthode d’augmentation de données décrite dans la
section ‘post-processing’ de (Grimm et al., 2021). Cette méthode consiste à ajouter
différentes sortes de bruit de façon aléatoire aux images d’entraînement, rendant
ainsi le réseau plus robuste aux changements d’apparence.

Le processus d’entraînement nécessite de plus diverses transformations des don-
nées. Lors de l’initialisation, nous chargeons les paramètres de projection DRR,
la géométrie du volume CT, la segmentation utilisée pour Ls2D . La transforma-
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tion appliquée aux images en entrée est également définie, ainsi que les variables
dépendantes de la pose, utilisées à chaque itération. Cette transformation inclut
l’application d’un masque dépendant de la pose, servant à exclure les régions de
l’image montrant les limites du volume CT. Ce masque en 2D permet de cal-
culer le masque en 3D, évoqué ci-dessus, qui définit les voxels visibles dans l’image
fluoroscopique.

Ensuite, au début de chaque itération, la transformation définie plus haut est
appliquée aux images en entrée et le masque 3D correspondant à l’intérieur de
l’anatomie est mis à jour avec le champ de déplacement de référence.

Enfin, après la prédiction, nous appliquons le masque 3D aux champs de dé-
placement, déformons puis effectuons le rendu des segmentations en 2D avec une
technique de lancer de rayons adaptée de DiffDRR (Gopalakrishnan and Golland,
2022). Finalement, les champs de déplacement sont convertis en millimètres et le
masque utilisé pour l’image d’entrée est appliqué aux segmentations projetées s2D
avant le calcul de L.

Afin d’évaluer la précision de notre méthode, nous avons réalisé plusieurs études
à partir de scans CT de patients ou de modèles porcins. Dans ces expériences, le
réseau est d’abord entraîné en générant des images fluoroscopiques synthétiques à
partir d’un volume CT préopératoire selon le processus décrit précédemment. Puis,
la précision du réseau est mesurée sur une ou plusieurs images fluoroscopiques syn-
thétiques générées à partir d’un volume CT différent du même patient ou modèle
porcin, pour lequel la position des structures anatomiques est connue.

Étude préliminaire

Dans une étude préliminaire, nous avons comparé notre méthode de génération de
données avec une méthode de génération de données basée sur un MDS. Le réseau
utilisé dans cette étude n’intègre pas encore le module de rétroprojection proposé,
et utilise une fonction de coût sur le déplacement 3D, masquant la composante
du champ de déplacement parallèle à l’axe de la caméra. D’autres différences
concernent également le processus de génération et d’augmentation de données,
ainsi que les résolutions spatiales utilisées et le processus d’entraînement.

Cette étude utilise un volume CT 4D issu de la base de données présentée
dans (Hugo et al., 2017) et montrant un mouvement respiratoire à travers 10 vol-
umes 3D. Le premier volume est utilisé pour générer les données d’entraînement
agnostiques au domaine, tandis que les 9 autres sont utilisés pour évaluer la pré-
cision du réseau. Le MDS, d’autre part, est généré à partir des 9 volumes CT en
les recalant au premier volume CT avec l’algorithme de recalage 3D SyN (B. B.
Avants et al., 2008) puis en extrayant les trois composantes principales du mou-
vement par ACP. En variant la valeur des coefficients de ces composantes, des
déformations proches du mouvement respiratoire sont générées pour entraîner le
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réseau. Comme dans d’autres études utilisant un MDS, comme par exemple (M. D.
Foote et al., 2019) réalisée sur la même base de données, cette approche présente
un biais puisqu’elle teste le réseau sur le même mouvement respiratoire que celui
utilisé pour générer les données d’entraînement.

Malgré ce biais défavorable à notre approche agnostique au domaine, qui n’utilise
pas de MDS, nous obtenons des résultats comparables avec ceux de (M. D. Foote
et al., 2019) en testant sur des images fluoroscopiques issues du CT 4D (mouve-
ment respiratoire). Nous obtenons également une erreur maximale améliorée de
2, 22 mm (9, 55 mm dans (M. D. Foote et al., 2019)).

Cette étude préliminaire nous a permis de valider notre approche de génération
de données en principe et de montrer qu’il n’était pas nécessaire d’utiliser un MDS,
et donc un CT 4D, pour entraîner un réseau pour le recalage déformable 2D-3D.

Visualisation des vaisseaux sans contraste

Dans une seconde étude, présentée à la conférence internationale ‘Hamlyn Sympo-
sium on Medical Robotics 2023’ (HSMR), nous avons évalué la capacité de notre
méthode à remplacer l’injection d’agents de contraste pour la visualisation des
vaisseaux du foie dans les images fluoroscopiques :

Francois Lecomte et al. (2023). “Enhancing fluoroscopy-guided in-
terventions: a neural network to predict vessel deformation without
contrast agents”. In: The Hamlyn Symposium on Medical Robotics.
The Hamlyn Centre, Imperial College London London, UK, pp. 75–76

Les données d’entraînement sont générées de la même manière que dans l’étude
précédente, à partir d’un volume CT préopératoire d’un patient de l’hôpital Paul
Brousse à Paris, dans lequel les veines hépatiques ont été segmentées. L’architecture
du réseau présente des différences par rapport à l’étude précédente, mais la fonc-
tion de coût est la même. Comme un CT 4D n’est pas disponible dans ces données
cliniques, nous avons créé un mouvement respiratoire synthétique pour générer
les données de test. Nous avons mesuré la précision du réseau sur un nuage de
points issu de la segmentation des veines hépatiques dans l’espace projectif 2D.
L’amplitude moyenne du mouvement respiratoire en 2D est de 7, 7±3, 9 mm, tan-
dis que la précision moyenne du réseau est de 2, 7± 1, 9 mm, validant la capacité
de notre méthode à retrouver la position des veines hépatiques en 2D avec une
précision < 3 mm lors du mouvement respiratoire. Une vidéo montrant les résul-
tats de cette étude est disponible à cette adresse : https://mimesis.inria.fr/
project/augmented-fluoroscopy/. La figure 7.3 montre la visualisation obtenue
avec notre méthode lors du mouvement respiratoire.
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Figure 7.3: Images fluoroscopique synthétiques augmentées avec la position prédite
des veines hépatiques lors de l’inspiration (gauche), et de l’expiration (droite)

Recalage des déformations interventionnelles

La troisième étude que nous avons réalisée, plus détaillée, a été soumise à pub-
lication dans le journal ‘Medical Image Analysis’. Cette étude utilise la dernière
version de notre méthode, présentée dans la section 7, et évalue la capacité de
notre méthode à compenser les déformations respiratoires et arbitraires pouvant
survenir lors d’une intervention. Nous utilisons une base de données expérimen-
tale, acquise sur des modèles porcins avant et après intervention, ainsi que des
données générées de façon synthétique pour mesurer les performances de notre
méthode pour la prédiction de la position des veines hépatiques dans les images
fluoroscopiques.

La base de données expérimentale, nommée IHUdeLiver10, est constituée de 10
paires de volumes CT pré- et post-intervention, acquises sur des modèles porcin.
Nous utilisons quatre paires de volumes dans cette base de données, représentant
les scénarios suivants : interactions d’une aiguille avec les tissus, mouvements
anatomiques entre l’acquisition préopératoire et peropératoire, et chirurgie laparo-
scopique. Contrairement aux base de données disponibles dans la littérature, cette
base de données contient des paires de volumes CT avant et après intervention, per-
mettant d’évaluer la précision de méthodes conçues pour un usage interventionnel.
Cependant, l’acquisition de volumes CT après injection d’agents de contraste ne
produisant pas de résultats reproductibles, les arbres vasculaires diffèrent entre les
deux volumes de chaque paire. Pour diminuer l’impact de ce problème et obtenir
des arbres vasculaires comparables entre les données pré- et post-intervention,
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Sujet n° Dice 2D
Recalé Non recalé

1 0,651 0,416
2 0,694 0,558
3 0,655 0,278
4 0,593 0,476

Table 7.1: Précision de notre méthode pour le recalage 2D-3D des veines hépatiques
pour chaque sujet de la base de données de modèles porcins.

nous avons manuellement modifié les arbres vasculaires en enlevant les branches
n’étant pas présentes dans les deux arbres. Pour chaque paire de cette base de
données, nous avons généré une base de données d’entraînement à partir du vol-
ume CT pré-intervention, et une image fluoroscopique synthétique de test à partir
du volume CT post-intervention. Après entraînement, nous avons mesuré le co-
efficient de Dice entre la projection en 2D des veines hépatiques prédites et des
veines hépatiques réelles pour chaque volume CT de test, et reporté les résultats
dans le tableau 7.1. En moyenne, notre méthode obtient un coefficient de Dice de
0, 649± 0, 036, avec un coefficient de Dice de 0, 432± 0, 102 avant recalage.

Pour évaluer notre méthode sur des données pour lesquelles la correspondance
entre les arbres vasculaires avant et après intervention est parfaite, nous avons
utilisé un volume CT pré-intervention acquis en routine clinique et nous avons ap-
pliqué des déformations synthétiques. La première base de données synthétiques
vise à répliquer un mouvement respiratoire, comme dans l’étude précédente. Sur
cette base de données, nous avons évalué les performances de notre réseau de neu-
rones, entraîné sur des données agnostiques au domaine, ainsi que les performances
de la méthode IGCN+ (Nakao et al., 2022), développée pour la compensation du
mouvement respiratoire. Sur les 50 images de test, représentant cinq périodes res-
piratoires, notre méthode obtient un coefficient de Dice moyen de 0, 86 ± 0, 05,
tandis que la méthode IGCN+, spécifiquement entraînée sur le mouvement respi-
ratoire, obtient un coefficient de Dice moyen de 0, 88 ± 0, 04 (coefficient de Dice
moyen de 0, 65± 0, 07 avant recalage).

La seconde base de données synthétiques de test vise à répliquer une déforma-
tion induite par l’insertion d’une aiguille dans le foie. Sur les 50 images de test,
notre méthode obtient un coefficient de Dice moyen de 0, 80 ± 0, 01, variant peu
avec l’amplitude de déformation, tandis que la méthode IGCN+, entraîné sur le
mouvement respiratoire, échoue à compenser cette déformation, obtenant un coef-
ficient de Dice moyen de 0, 70± 0, 02, comparable au coefficient de Dice moyen de
0, 69± 0, 03 avant recalage. Nous avons également vérifié que notre méthode obte-
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nait des performances similaires lorsqu’une aiguille était visible dans l’image, en
ajoutant des aiguilles superposées aléatoirement aux images d’entraînement pour
rendre le réseau de neurones robuste à la présence d’aiguilles dans l’image.

Afin de définir les meilleurs paramètres pour l’architecture du réseau et la
fonction de coût, nous avons réalisé une analyse de sensibilité sur la base de données
expérimentale IHUdeLiver10. Nous avons d’abord testé différentes fonction de
coût :

• Erreur quadratique moyenne (EQM) entre le champ de déplacement prédit
et de référence en 3D

• EQM entre le champ de déplacement prédit et de référence projetés en 2D
(EQM 2D)

• EQM 2D + fonction de coût basée sur le Dice entre les segmentations 3D
prédites et de référence.

• EQM 2D + fonction de coût basée sur le Dice entre les segmentations 2D
prédites et de référence.

Parmi ces différentes fonctions de coût, la fonction de coût combinant l’EQM en
2D et le Dice en 2D (équation 7.3) donne les meilleurs résultats. Suite à ces
résultats, nous avons testé différentes valeurs pour le paramètre de combinaison
λ de la fonction de coût combinée, et nous avons obtenu les meilleurs résultats
avec λ = 0, 5. Nous avons également comparé les variantes de notre réseau avec
et sans rétroprojection pour transformer les ‘feature maps’ 2D en 3D et obtenu les
meilleurs résultats avec la rétroprojection. Finalement, nous avons aussi montré
qu’utiliser l’augmentation de données (section 7) améliorait les performances de
notre réseau, même si cette méthode a été développée pour pallier le changement
d’apparence entre les images synthétiques et réelles.

Cette étude a permis de valider de façon approfondie l’utilité de notre méthode
pour les interventions guidées par fluoroscopie, et sa superiorité dans ce cadre par
rapport aux méthodes existantes. Grâce à l’analyse de sensibilité, nous avons pu
améliorer les performances de notre méthode et valider les choix d’architecture et
de fonction de coût.

Navigation endovasculaire autonome
La dernière étude de cette section concerne l’application de notre méthode à la nav-
igation endovasculaire autonome. En utilisant notre méthode pour compenser les
déformations induites par la respiration ou le mouvement cardiaque, nous avons pu
améliorer le taux de succès de la méthode de navigation endovasculaire autonome
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développée par V. Scarponi et al. de 24% à 93%. Cette étude a donné lieu à une
présentation à la conférence internationale International Conference on Intelligent
Robots and Systems 2024 (IROS).

Valentina Scarponi, François Lecomte, et al. (Oct. 2024). “Au-
tonomous Guidewire Navigation in Dynamic Environments”. In: 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

Recalage déformable 2D-3D biomécanique

Les méthodes de recalage basées sur la physique permettent d’incorporer des
connaissances a priori sur le comportement des organes pour pallier le manque
d’information dans les images médicales. Notre objectif est ici d’incorporer un
modèle biomécanique à notre méthode pour rendre les déformations prédites plus
précises et réalistes. Nous avons exploré deux approches pour intégrer des con-
traintes physiques dans notre méthode de recalage 2D-3D. La première utilise la
méthode des éléments finis pour générer des déformations physiquement plausi-
bles lors de l’entraînement du réseau, améliorant ainsi sa précision sur des cas
réels. Cette approche a été présentée dans le ‘workshop’ Data Curation and Aug-
mentation in Enhancing Medical Imaging Applications (DCAMI) de la conférence
internationale CVPR 2024.

François Lecomte et al. (June 2024). “Beyond Respiratory Mod-
els: A Physics-enhanced Synthetic Data Generation Method for 2D-
3D Deformable Registration”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, pp. 2413–2421

La seconde approche vise à régulariser directement les prédictions du réseau pen-
dant l’entraînement via des contraintes biomécaniques. Les expériences montrent
qu’une régularisation en plusieurs étapes, utilisant d’abord l’élasticité linéaire puis
l’hyperélasticité, permet d’obtenir des déformations plus réalistes tout en main-
tenant la précision du recalage.

Génération de données physiquement réalistes

Dans notre première approche, le champ de déformation généré aléatoirement est
corrigé par un modèle biomécanique pour garantir le respect des lois physiques à
l’intérieur du foie. Cette correction s’appuie sur un modèle hyperélastique néo-
Hookéen résolu par éléments finis, avec des conditions aux limites de Dirichlet au
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bords du foie garantissant la continuité avec le champ de déplacement aléatoire
à l’extérieur du foie. Le champ final combine la solution physiquement réaliste à
l’intérieur du foie avec le champ de déplacement original à l’extérieur, assurant
des déformations réalistes pour les structures anatomiques d’intérêt comme les
tumeurs et les vaisseaux.

Nous avons validé expérimentalement cette approche sur une paire de volumes
CT issue de la base de données IHUdeLiver10 ainsi que sur des données synthé-
tiques. Le volume CT synthétique consiste en un cube de taille similaire au foie du
modèle porcin, avec un motif en damier d’intensités croissantes. Des déformations
ont été appliquées en imposant des déplacements de -40 mm à +40 mm sur une
face du cube, modélisé comme un solide hyperélastique de Mooney-Rivlin. Cette
approche permet d’évaluer la précision de la méthode indépendamment des par-
ticularités anatomiques, tout en utilisant un modèle constitutif différent de celui
employé pour l’entraînement.

Pour évaluer la précision du recalage, nous avons utilisé deux métriques dif-
férentes adaptées à chaque contexte : la distance de Wasserstein en 2D pour le
modèle porcin où les correspondances point à point n’étaient pas disponibles, et
la distance point à point moyenne pour le cube synthétique. La figure 7.4 montre
les déformations de test pour le cube synthétique.

Figure 7.4: En haut, la fluoroscopie synthétique générée à partir du cube non
déformé, et en bas, les fluoroscopies synthétiques générées à partir du cube déformé
avec des déplacements de -40 mm, -20 mm, +20 mm et +40 mm (de gauche à
droite).

Nos résultats montrent de meilleures performances pour les réseaux entraînés
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avec la correction biomécanique du champ de déplacement sur les deux datasets,
avec une erreur minimale de 2, 8 mm avec données régularisées contre 3, 7 mm
sans régularisation (distance de Wasserstein) pour le modèle porcin. Pour le
modèle synthétique, les gains de performances vont de −4, 6% à +50, 1%, avec
une moyenne de +19, 0% (distance point à point). Ces résultats valident l’utilité
d’introduire un modèle biomécanique pour corriger les déformations générées aléa-
toirement et ainsi obtenir de meilleures données d’entraînement pour le réseau.

Régularisation physique pendant l’entraînement

Pour notre seconde approche visant à incorporer les contraintes physiques pour
obtenir des déformations prédites réalistes, nous avons exploré deux directions
principales : l’amélioration de l’architecture du réseau pour permettre une régular-
isation physique efficace, et l’incorporation de la régularisation physique pendant
l’entraînement.

Un régularisateur couramment utilisé pour imposer la régularité est le régular-
isateur de ‘bending energy’ Lbending = ||∇F||2, avec F le gradient du champ de
déplacement. Bien que produisant des déformations lisses, ce régularisateur tend
à pénaliser l’amplitude des déformations. Pour pallier ce problème, nous avons
utilisé un régularisateur basé sur la fonction de densité d’énergie de déformation
hyperélastique d’un matériau néo-Hookéen. Ce régularisateur, L∇·P , est basé sur
la loi de conservation de la quantité de mouvement linéaire.

Pour ces deux régularisateurs, il est nécessaire de calculer les dérivées spatiales
du champ de déformation prédit. Avec notre architecture d’origine, les dérivées
spatiales ne peuvent pas être calculées en utilisant la différentiation automatique,
mais doivent plutôt être approximées, par exemple en utilisant les différences finies.

Dans une première expérience, nous avons développé une variante nommée
‘PointWiseDecoder’ de notre architecture, utilisant des couches ‘fully connected’
pour rendre les prédictions différentiables par rapport aux coordonnées spatiales,
en s’inspirant des méthodes de représentation neuronale implicite. Le réseau ac-
cepte en entrée des coordonnées spatiales et les ‘feature maps’ interpolées à ces
positions pour prédire les déplacements correspondants. Bien que cette approche
présente l’avantage théorique de pouvoir entraîner le réseau uniquement sur des
points d’intérêt comme le maillage d’un organe, elle a obtenu des performances
inférieures à notre architecture de base. Cette limitation peut s’expliquer par
l’absence de mécanisme d’attention à longue portée, le réseau traitant les déplace-
ments point à point.

Notre seconde approche a été d’utiliser une architecture de type HyperNet-
work (Ha et al., 2016) pour ajuster dynamiquement les paramètres des couches
‘fully connected’ décrites précédemment en fonction des ‘feature maps’, dans l’objectif
de réintroduire une attention à longue portée. Comme nous n’avons pas pu
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obtenir la convergence de cette variante lors de l’entraînement, nous avons conservé
l’architecture convolutionelle initiale et utilisé les différences finies pour approximer
les dérivées spatiales des déformations prédites.

Afin d’améliorer le réalisme des déformations prédites par le réseau de neurones,
nous avons mené de nombreuses expériences de régularisation physique sur les jeux
de données porcins et de cubes synthétique présentés ci-dessus. Nos expériences
ont porté sur :

• Le test de plusieurs poids de régularisation pour équilibrer Lφ2D et L∇·P .

• L’application sélective de L∇·P en utilisant un masque où L∇·P ≃ 0 dans le
champ de déplacement de référence.

• La tentative de pré-entraînement avec uniquement Lφ2D pour éviter la di-
vergence précoce de L∇·P quand J → 0.

• L’implémentation d’un modèle d’élasticité linéaire du foie pour la régulari-
sation des déformations avec Llin

∇·P .

Malgré ces différentes approches, nous n’avons pas réussi à obtenir une convergence
simultanée de L∇·P et Lφ2D pendant l’entraînement.

Pour vérifier qu’il était effectivement possible d’utiliser ce régularisateur physique
pendant l’entraînement, nous avons mené des expériences sur un cas simplifié de
recalage 2D. Dans ces expérience, l’objectif était de recaler une image binaire 2D
représentant une coupe du foie ayant subi des déformations physiques (modèle néo-
Hookéen). Nous avons utilisé une version simplifiée de notre architecture, opérant
uniquement en 2D avec une structure encodeur-décodeur classique. Cette expéri-
ence a permis de valider l’approche de régularisation physique sur un cas simple
avant d’envisager son application au cas plus complexe du recalage 2D-3D.

Dans notre première expérience, nous avons tenté d’entraîner directement le
réseau en utilisant une combinaison de fonction de coût quadratique sur le champ
de déplacement et de L∇·P . Malgré l’utilisation d’un facteur d’échelle pour équili-
brer les deux fonctions de coût, nous n’avons pas pu obtenir la convergence de
l’entraînement. Cela est probablement dû au fait que la valeur de ∇ · P évolue
de façon hautement non linéaire avec l’amplitude de déformations pour les défor-
mations non physiques, contrairement à la fonction de coût quadratique, rendant
difficile la minimisation conjointe.

Pour notre seconde expérience, nous avons développé une stratégie d’entraînement
en plusieurs étapes pour incorporer des contraintes biomécaniques pendant l’entraînement
du réseau. Cette approche consiste à entraîner d’abord le réseau avec une fonc-
tion de coût quadratique, puis à poursuivre l’entraînement en ajoutant Llin

∇·P , puis
finalement avec L∇·P . Cette stratégie en plusieurs étapes permet d’obtenir la con-
vergence de l’entraînement en combinant la fonction de coût sur le déplacement et
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L∇·P . Grâce à l’utilisation de la régularisation physique, le réalisme des déforma-
tions prédites est amélioré de façon significative, comme illustré par la figure 7.5.

Figure 7.5: Comparaison qualitative entre les déformations prédites avec et sans
L∇·P .

Expériences sur images fluoroscopiques réelles
Pour valider notre méthode sur des images fluoroscopiques réelles, nous avons
réalisé des expériences sur deux jeux de données. La première base de données,
acquise sur un modèle porcin, contient un scan CT préopératoire avec 12 marqueurs
radio-opaques implantés et une séquence de 74 images fluoroscopiques acquises
pendant la respiration. La seconde base de données, acquise en routine clinique,
contient un scan CT préopératoire, deux volumes CBCT peropératoires et les
images fluoroscopiques associées.

Pour ces deux bases de données, nous avons d’abord estimé la pose des images
fluoroscopiques par rapport au CT préopératoire en utilisant un processus en trois
étapes :

1. Raffinement manuel de la pose avec DiffDRR, en ajustant itérativement les
paramètres de translation et rotation jusqu’à obtenir une correspondance
visuelle satisfaisante entre l’image fluoroscopique et le DRR.

2. Raffinement automatique initial avec DiffPose (Gopalakrishnan, Dey, et al.,
2024), en entraînant un réseau de neurones convolutif ResNet18 sur des don-
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nées synthétiques générées avec des poses aléatoires autour de l’estimation
initiale.

3. Raffinement final avec le module d’optimisation itérative de DiffPose, util-
isant DiffDRR pour optimiser automatiquement les paramètres de pose en
minimisant une fonction de coût basée sur l’indice de similarité structurelle
(SSIM).

Ce processus en trois étapes a permis d’obtenir des DRR correspondant étroite-
ment aux images fluoroscopiques pour le jeu de données porcin. Pour le jeu
de données clinique, ce processus a échoué et nous avons utilisé la pose trouvée
manuellement à l’étape 1. Ensuite, nous avons généré des données d’entraînement
synthétiques à partir du CT préopératoire en utilisant les poses estimées.

Sur la base de données porcine, nous avons obtenu une erreur médiane de 2,4
mm en 2D sur la position des marqueurs radio-opaques. Cette erreur a été obtenue
après plusieurs expériences visant à optimiser les paramètres d’entraînement du
réseau : nous avons utilisé la procédure d’entraînement OneCycleLR pour accélerer
la convergence de l’entraînement, nous avons résolu une erreur dans le module de
rétroprojection, sans amélioration des performances, et nous avons étudié l’impact
de la taille du batch sur les performances du réseau. Nos expériences ont notam-
ment montré qu’un changement d’apparence des images dû à la présence d’intestins
partiellement remplis pouvait être la cause l’échec du recalage pour un marqueur.
Pour résoudre ce problème, nous avons essayé d’ajouter des variations d’intensité
dans les images d’entraînement et ainsi améliorer la robustesse du réseau, mais
cela n’a pas amélioré ses performances.

Sur la base de données clinique, les résultats sont plus difficiles à interpréter en
raison de l’incertitude sur la pose des images fluoroscopiques et du changement de
référentiel entre le CT préopératoire et les volumes CBCT. Pour les améliorer, nous
avons employé le modèle pré-entraîné MedSAM (Ma et al., 2024) pour augmenter
l’image en entrée du réseau avec une segmentation 2D estimée du poumon, sans
succès. Nous avons également essayé différents paramètres pour le réseau et des
données d’entraînement avec plus ou moins de variations de pose, sans obtenir de
performances satisfaisantes. Nous avons obtenu une erreur de 5,7 mm (5,1 mm
avant recalage) en 3D sur la position d’un nodule pulmonaire, mais cette erreur
est à relativiser car elle dépend fortement de la précision du recalage rigide 3D-3D
entre le CT préopératoire et les volumes CBCT, et de l’estimation de pose des
images fluoroscopiques.

Ces expériences ont permis de valider le potentiel de notre méthode pour les
interventions guidées par fluoroscopie, tout en mettant en évidence certaines limi-
tations, notamment dues au changement d’apparence dans les images ne résultant
pas d’une déformation et à la difficulté d’estimer la pose des images fluoroscopiques
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réelles. Pour poursuivre le développement de la méthode vers une utilisation clin-
ique, il sera nécessaire de créer une base de données de test plus contrôlée, dans
laquelle la pose des images fluoroscopiques serait connue avec précision.

Conclusion
L’adoption croissante des procédures mini-invasives a renforcé l’importance des
solutions de navigation peropératoire dans la pratique clinique.

Notre méthode de recalage déformable 2D-3D s’intègre naturellement dans le
flux de travail clinique existant, exploitant le scan CT préopératoire pour aug-
menter les images fluoroscopiques peropératoires. Notre approche de génération
de données agnostique au domaine permet d’entraîner un réseau de neurones à
retrouver des déformations arbitraires, dépassant ainsi les limitations des méth-
odes existantes focalisées sur le mouvement respiratoire.

Les études que nous avons menées sur données synthétiques et réelles ont per-
mis de valider le potentiel de notre approche pour de futures applications cliniques.
Dans une première étude, nous avons démontré la supériorité de notre méthode de
génération de données agnostique au domaine par rapport à un modèle de déforma-
tion statistique. Les études suivantes ont confirmé son utilité clinique, notamment
pour la visualisation des vaisseaux sans agents de contraste et la compensation
des déformations liées aux interventions. L’intégration réussie avec un système de
navigation endovasculaire autonome a également démontré son potentiel pratique.

L’incorporation de modèles biomécaniques a permis d’améliorer les perfor-
mances de notre méthode en générant des données d’entraînement physiquement
réalistes. De plus, les expériences sur un problème simplifié de recalage 2D ont mis
en avant le potentiel de la régularisation biomécanique pour améliorer le réalisme
des déformations prédites, soulignant le besoin de poursuivre les recherches dans
cette voie.

Enfin, nous avons mené des expériences sur des données cliniques, montrant que
notre processus d’entraînement sur des données synthétiques permettait au réseau
de neurones de prédire la déformations dans des images fluoroscopiques réelles.
Ces expériences ont également mis en évidence certaines limitations de notre ap-
proche, notamment la nécessité d’une base de données de test plus contrôlée pour
poursuivre le développement de notre méthode.

Pour progresser vers une implémentation clinique, plusieurs axes de développe-
ment sont envisagés :

• L’amélioration de la robustesse aux variations anatomiques non liées aux
déformations, via un processus de génération de données plus sophistiqué

• La modernisation de l’architecture du réseau, notamment par l’utilisation de
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transformers et le développement de modèles fondamentaux pour le recalage
2D-3D

• L’intégration plus poussée des contraintes physiques dans l’architecture du
réseau, suivant par exemple les principes des ‘physics-augmented neural net-
works’ (PANNs) (Linden et al., 2023).

Bien que plusieurs directions de recherche restent à explorer pour une implé-
mentation clinique complète, nos résultats actuels fournissent une base solide pour
les développements futurs tout en confirmant le potentiel de notre approche.

Chapter 7. Conclusion & future directions 171





Bibliography

Abi-Jaoudeh, Nadine et al. (2015). “Clinical experience with cone-beam CT naviga-
tion for tumor ablation”. In: Journal of Vascular and Interventional Radiology
26.2, pp. 214–219.

Aboudara, Matt et al. (2020). “Improved diagnostic yield for lung nodules with
digital tomosynthesis-corrected navigational bronchoscopy: initial experience
with a novel adjunct”. In: Respirology 25.2, pp. 206–213.

Adler, John R. et al. (1997). “The Cyberknife: A frameless robotic system for
radiosurgery”. In: Stereotactic and Functional Neurosurgery. Vol. 69. Issue: 1-4
ISSN: 10116125, pp. 124–128.

Al-Ahmad, Omar et al. (2020). “Improved FBG-Based Shape Sensing Methods
for Vascular Catheterization Treatment”. In: IEEE Robotics and Automation
Letters 5.3, pp. 4687–4694.

Alkatout, Ibrahim et al. (2021). “The development of laparoscopy—a historical
overview”. In: Frontiers in surgery 8, p. 799442.

Allaire, Grégoire (2006). “Conception optimale de structures”. In: Conception op-
timale de structures. Publisher: Springer Berlin Heidelberg.

Alvarez, Pablo, Matthieu Chabanas, et al. (2022). “Measurement and analysis of
lobar lung deformation after a change of patient position during video-assisted
thoracoscopic surgery”. In: IEEE Transactions on Biomedical Engineering 70.3,
pp. 931–940.

Alvarez, Pablo and Stéphane Cotin (2024). “Deformable Image Registration with
Stochastically Regularized Biomechanical Equilibrium”. In: 2024 IEEE Inter-
national Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1–5.

Alvarez, Pablo, Simon Rouzé, et al. (Apr. 2021). “A hybrid, image-based and
biomechanics-based registration approach to markerless intraoperative nodule
localization during video-assisted thoracoscopic surgery”. In: Medical Image
Analysis 69, p. 101983.

Alvarez, Pablo A (2020). “Lung deformation estimation using a hybrid image-
based/biomechanics-based approach for the localization of pulmonary nodules
during video-assisted thoracoscopic surgery”. PhD thesis. Université de Rennes.

173



Asano, F et al. (2002). “Virtual bronchoscopy in navigation of an ultrathin bron-
choscope”. In: J Jpn Soc Bronchol 24.6, pp. 433–8.

Asano, Fumihiro et al. (2006). “A virtual bronchoscopic navigation system for
pulmonary peripheral lesions”. In: Chest 130.2, pp. 559–566.

Avants, B. B. et al. (Feb. 2008). “Symmetric Diffeomorphic Image Registration
with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neu-
rodegenerative Brain”. In: Medical image analysis 12.1. Publisher: NIH Public
Access, p. 26. issn: 13618415.

Avants, Brian B. et al. (Feb. 2011). “A Reproducible Evaluation of ANTs Simi-
larity Metric Performance in Brain Image Registration”. In: NeuroImage 54.3.
Publisher: NIH Public Access, p. 2033. issn: 10538119.

Balakrishnan, Guha et al. (2019). “Voxelmorph: a learning framework for de-
formable medical image registration”. In: IEEE transactions on medical imaging
38.8, pp. 1788–1800.

Baldwin, Andrew CW et al. (2016). “Through the looking glass: real-time video
using ‘Smart’technology provides enhanced intraoperative logistics”. In: World
journal of surgery 40, pp. 242–244.

Barnes, Connelly et al. (2009). “PatchMatch: A randomized correspondence algo-
rithm for structural image editing”. In: ACM Trans. Graph. 28.3, p. 24.

Barrow, Harry G et al. (1977). “Parametric correspondence and chamfer matching:
Two new techniques for image matching”. In: Proceedings: Image Understanding
Workshop. Science Applications, Inc, pp. 21–27.

Bawaadam, Hasnain et al. (2024). “Integration of adjunct imaging for peripheral
lung nodule sampling: a comprehensive review”. In: AME Medical Journal 9.

Baydin, Atilim Gunes et al. (2018). “Automatic differentiation in machine learning:
a survey”. In: Journal of machine learning research 18.153, pp. 1–43.

Bellman, Richard (1957). “A Markovian Decision Process”. In: Journal of Mathe-
matics and Mechanics 6.5, pp. 679–684. issn: 00959057, 19435274.

Benameur, Said et al. (2003). “3D/2D registration and segmentation of scoli-
otic vertebrae using statistical models”. In: Computerized Medical Imaging and
Graphics 27.5, pp. 321–337.

Berger, Martin et al. (2016). “Marker-free motion correction in weight-bearing
cone-beam CT of the knee joint”. In: Medical physics 43.3, pp. 1235–1248.

Bisset, RAL, Ali N Khan, et al. (2012). Differential diagnosis in abdominal ultra-
sound. Elsevier India.

Bitar, Ibrahim et al. (2015). “A review on various formulations of displacement
based multi-fiber straight Timoshenko beam finite elements”. In: Proc. CIGOS.

Bonnans, J. Frédéric et al. (2003a). “Numerical Optimization: Theoretical and
Practical Aspects”. In: 1st ed. Springer. Chap. Newtonian Methods, pp. 51–66.
isbn: 3540001913; 9783540001911.

Bibliography 174



— (2003b). “Numerical Optimization: Theoretical and Practical Aspects”. In: 1st ed.
Springer. Chap. General Introduction, pp. 10–12. isbn: 3540001913; 9783540001911.

Boussot, Valentin and Jean-Louis Dillenseger (2022). “Modèle statistique pour la
prédiction de la déformation du poumon pendant la chirurgie thoracique vidéo-
assistée”. In: RITS (Recherche en Imagerie et Technologies pour la Santé) 2022.

— (2023). “Statistical model for the prediction of lung deformation during video-
assisted thoracoscopic surgery”. In: Medical Imaging 2023: Image-Guided Pro-
cedures, Robotic Interventions, and Modeling. Vol. 12466. SPIE, pp. 182–191.

Brock, KK et al. (2005). “Accuracy of finite element model-based multi-organ
deformable image registration”. In: Medical physics 32.6Part1, pp. 1647–1659.

Broit, Chaim (1981). Optimal registration of deformed images. University of Penn-
sylvania.

Brown, Mark A and Richard C Semelka (2011). MRI: basic principles and appli-
cations. John Wiley & Sons.

Buia, Alexander, Florian Stockhausen, and Ernst Hanisch (2015). “Laparoscopic
surgery: a qualified systematic review”. In: World journal of methodology 5.4,
p. 238.

Cai, Shengze et al. (2021). “Physics-informed neural networks (PINNs) for fluid
mechanics: A review”. In: Acta Mechanica Sinica 37.12, pp. 1727–1738.

Campbell-Washburn, Adrienne E et al. (2017). “Real-time MRI guidance of cardiac
interventions”. In: Journal of Magnetic Resonance Imaging 46.4, pp. 935–950.

Celi, Simona et al. (2017). “Multimodality imaging for interventional cardiology”.
In: Current pharmaceutical design 23.22, pp. 3285–3300.

Chang, Chih-Wei et al. (2022). “A deep learning approach to transform two or-
thogonal X-ray images to volumetric images for image-guided proton therapy”.
In: Medical Imaging 2022: Image Processing. Vol. 12032. SPIE, pp. 484–490.

Chen, Junyu et al. (2022). “Transmorph: Transformer for unsupervised medical
image registration”. In: Medical image analysis 82, p. 102615.

Chen, Minheng, Zhirun Zhang, Shuheng Gu, Zhangyang Ge, et al. (2024). “Fully
Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image
Fusion”. In: arXiv preprint arXiv:2402.02498.

Chen, Minheng, Zhirun Zhang, Shuheng Gu, and Youyong Kong (2024). “Em-
bedded Feature Similarity Optimization with Specific Parameter Initialization
for 2D/3D Medical Image Registration”. In: ICASSP 2024-2024 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp. 1521–1525.

Chen, Xiang et al. (2021). “Deep learning in medical image registration”. In:
Progress in Biomedical Engineering 3.1, p. 012003.

Chi, Wenqiang, Giulio Dagnino, et al. (2020). “Collaborative Robot-Assisted En-
dovascular Catheterization with Generative Adversarial Imitation Learning”.

Bibliography 175



In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2414–
2420.

Chi, Wenqiang, Jindong Liu, et al. (June 2018). “Learning-based endovascular
navigation through the use of non-rigid registration for collaborative robotic
catheterization”. In: International Journal of Computer Assisted Radiology and
Surgery 13 (6), pp. 855–864. issn: 18616429.

Choi, Jin Woo et al. (2012). “C-arm cone-beam CT–guided percutaneous transtho-
racic needle biopsy of small (≤ 20 mm) lung nodules: diagnostic accuracy and
complications in 161 patients”. In: American Journal of Roentgenology 199.3,
W322–W330.

Chou, Chen Rui and Stephen Pizer (2012). “Real-Time 2D/3D Deformable Regis-
tration Using Metric Learning”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 7766 LNCS. Publisher: Springer, Berlin, Heidelberg ISBN:
9783642366192, pp. 1–10. issn: 03029743.

Chou, Chen-Rui, Brandon Frederick, et al. (2013). “2D/3D image registration us-
ing regression learning”. In: Computer Vision and Image Understanding 117.9,
pp. 1095–1106.

Chou, Chen-Rui and Stephen Pizer (2013). “Local Regression Learning via Forest
Classification for 2D/3D Deformable Registration”. In.

Cicenia, Joseph et al. (2021). “Augmented fluoroscopy: a new and novel navigation
platform for peripheral bronchoscopy”. In: Journal of Bronchology & Interven-
tional Pulmonology 28.2, pp. 116–123.

Ciresan, Dan Claudiu et al. (2011). “Convolutional neural network committees
for handwritten character classification”. In: 2011 International conference on
document analysis and recognition. IEEE, pp. 1135–1139.

Cleary, Kevin and Terry M Peters (2010). “Image-guided interventions: technology
review and clinical applications”. In: Annual review of biomedical engineering
12.1, pp. 119–142.

Dahmen, Jessamyn and Diane Cook (2019). “SynSys: A synthetic data generation
system for healthcare applications”. In: Sensors 19.5, p. 1181.

Dataset, ADNI (n.d.). ADNI Dataset. http://adni.loni.usc.edu/.
Dataset, IXI (n.d.). IXI Dataset. https : / / brain - development . org / ixi -

dataset/.
De Paolis, Lucio Tommaso and Valerio De Luca (2019). “Augmented visualization

with depth perception cues to improve the surgeon’s performance in minimally
invasive surgery”. In: Medical & biological engineering & computing 57, pp. 995–
1013.

De Paolis, Lucio Tommaso and Francesco Ricciardi (2018). “Augmented visuali-
sation in the treatment of the liver tumours with radiofrequency ablation”. In:

Bibliography 176

http://adni.loni.usc.edu/
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/


Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization 6.4, pp. 396–404.

De Vos, Bob D et al. (2017). “End-to-end unsupervised deformable image registra-
tion with a convolutional neural network”. In: Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support: Third Inter-
national Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS
2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada,
September 14, Proceedings 3. Springer, pp. 204–212.

Dea, Nicolas et al. (2016). “Economic evaluation comparing intraoperative cone
beam CT-based navigation and conventional fluoroscopy for the placement of
spinal pedicle screws: a patient-level data cost-effectiveness analysis”. In: The
Spine Journal 16.1, pp. 23–31. issn: 1529-9430.

Detmer, Felicitas J et al. (2017). “Virtual and augmented reality systems for renal
interventions: A systematic review”. In: IEEE reviews in biomedical engineering
10, pp. 78–94.

Doersch, Carl and Andrew Zisserman (2019). “Sim2real transfer learning for 3d
human pose estimation: motion to the rescue”. In: Advances in Neural Infor-
mation Processing Systems 32.

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Transformers
for image recognition at scale”. In: arXiv preprint arXiv:2010.11929.

Douglas, Bruce R, J William Charboneau, and Carl C Reading (2001). “Ultrasound-
guided intervention: expanding horizons”. In: Radiologic Clinics of North Amer-
ica 39.3, pp. 415–428.

Durrleman, Stanley et al. (Nov. 2014). “Morphometry of anatomical shape com-
plexes with dense deformations and sparse parameters”. In: NeuroImage 101,
pp. 35–49. issn: 10538119.

El Hadramy, Sidaty, Nicolas Padoy, and Stéphane Cotin (2024). “HyperU-Mesh:
Real-time deformation of soft-tissues across variable patient-specific parame-
ters”. In.

Epstein, Andrew J et al. (2013). “Impact of minimally invasive surgery on medical
spending and employee absenteeism”. In: JAMA surgery 148.7, pp. 641–647.

Falcoz, Pierre-Emmanuel et al. (Apr. 2015). “ Video-assisted thoracoscopic surgery
versus open lobectomy for primary non-small-cell lung cancer: a propensity-
matched analysis of outcome from the European Society of Thoracic Surgeon
database”. In: European Journal of Cardio-Thoracic Surgery 49.2, pp. 602–609.
issn: 1010-7940.

Faure, Francois et al. (June 2012). “SOFA: A Multi-Model Framework for Inter-
active Physical Simulation”. In: Soft Tissue Biomechanical Modeling for Com-
puter Assisted Surgery. Vol. 11. Springer, pp. 283–321. isbn: 978-3-642-29013-8.

Bibliography 177



Fedorov, Andriy et al. (2012). “3D Slicer as an image computing platform for the
Quantitative Imaging Network”. In: Magnetic resonance imaging 30.9, pp. 1323–
1341.

Felippa, Carlos A (2000). “A systematic approach to the element-independent coro-
tational dynamics of finite elements”. In.

Findl, Oliver et al. (2003). “Influence of operator experience on the performance
of ultrasound biometry compared to optical biometry before cataract surgery”.
In: Journal of Cataract & Refractive Surgery 29.10, pp. 1950–1955.

Floridi, Chiara et al. (2017). “Clinical impact of cone beam computed tomogra-
phy on iterative treatment planning during ultrasound-guided percutaneous
ablation of liver malignancies”. In: Medical oncology 34, pp. 1–8.

Foote, Markus et al. (2017). “Rank Constrained Diffeomorphic Density Motion Es-
timation for Respiratory Correlated Computed Tomography”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 10551 LNCS. Publisher: Springer,
Cham ISBN: 9783319676746, pp. 177–185. issn: 16113349.

Foote, Markus D. et al. (2019). “Real-Time 2D-3D Deformable Registration with
Deep Learning and Application to Lung Radiotherapy Targeting”. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics) 11492 LNCS. Publisher:
Springer Verlag, pp. 265–276.

Fu, Yabo et al. (Oct. 2020). “Deep learning in medical image registration: A re-
view”. In: Physics in Medicine and Biology 65.20. arXiv: 1912.12318 Publisher:
IOP Publishing Ltd. issn: 13616560.

Gall, Kenneth P et al. (1993). “Experience using radiopaque fiducial points for
patient alignment during radiotherapy”. In: International Journal of Radiation
Oncology* Biology* Physics 27, p. 161.

Gao, Cong, Anqi Feng, et al. (2023). “A fully differentiable framework for 2d/3d
registration and the projective spatial transformers”. In: IEEE transactions on
medical imaging.

Gao, Cong, Benjamin D Killeen, et al. (2023). “Synthetic data accelerates the de-
velopment of generalizable learning-based algorithms for X-ray image analysis”.
In: Nature Machine Intelligence 5.3, pp. 294–308.

Gerard, Ian J et al. (2017). “Brain shift in neuronavigation of brain tumors: A
review”. In: Medical image analysis 35, pp. 403–420.

Ghibes, P. et al. (2023). “Endovascular treatment of symptomatic hepatic venous
outflow obstruction post major liver resection”. In: BMC Gastroenterol 23.1.

Ghosal, Sayan and Nilanjan Ray (2017). “Deep deformable registration: Enhancing
accuracy by fully convolutional neural net”. In: Pattern Recognition Letters 94,
pp. 81–86.

Bibliography 178



Gislason-Lee, Amber J et al. (2016). “Impact of latest generation cardiac inter-
ventional X-ray equipment on patient image quality and radiation dose for
trans-catheter aortic valve implantations”. In: The British journal of radiology
89.1067, p. 20160269.

Glor, Fadi P et al. (2005). “Operator dependence of 3-D ultrasound-based compu-
tational fluid dynamics for the carotid bifurcation”. In: IEEE transactions on
medical imaging 24.4, pp. 451–456.

Golowa, Yosef and Jacob Cynamon (2012). “Endovascular Treatment of Portal
Hypertension”. In: Haimovici’s Vascular Surgery. John Wiley & Sons, Ltd.
Chap. 85, pp. 1095–1106. isbn: 9781118481370.

Gopalakrishnan, Vivek, Neel Dey, and Polina Golland (2024). “Intraoperative
2d/3d image registration via differentiable x-ray rendering”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11662–11672.

Gopalakrishnan, Vivek and Polina Golland (2022). “Fast auto-differentiable digi-
tally reconstructed radiographs for solving inverse problems in intraoperative
imaging”. In: Workshop on Clinical Image-Based Procedures. Springer, pp. 1–
11.

Gouveia, Ana R et al. (2012). “3D-2D image registration by nonlinear regression”.
In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).
IEEE, pp. 1343–1346.

Grimm, Matthias et al. (2021). “Pose-dependent weights and domain randomiza-
tion for fully automatic X-ray to CT registration”. In: IEEE transactions on
medical imaging 40.9, pp. 2221–2232.

Guo, Jiaqi et al. (2024). “RN-SDEs: Limited-Angle CT Reconstruction with Resid-
ual Null-Space Diffusion Stochastic Differential Equations”. In.

Ha, David, Andrew Dai, and Quoc V Le (2016). “Hypernetworks”. In: arXiv
preprint arXiv:1609.09106.

Haarnoja, Tuomas et al. (2018). Soft Actor-Critic Algorithms and Applications.
Hall, WA et al. (2003). Costs and benefits of intraoperative MR-guided brain tumor

resection. Springer.
Hansen, Nikolaus, Sibylle D Müller, and Petros Koumoutsakos (2003). “Reducing

the time complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES)”. In: Evolutionary computation 11.1, pp. 1–18.

Harvey, CJ et al. (2012). “Applications of transrectal ultrasound in prostate can-
cer”. In: The British journal of radiology 85.special_issue_1, S3–S17.

He, Fengxiang, Tongliang Liu, and Dacheng Tao (2019). “Control batch size and
learning rate to generalize well: Theoretical and empirical evidence”. In: Ad-
vances in neural information processing systems 32.

Bibliography 179



He, Fengxiang, Tongliang Liu, and Dacheng Tao (2020). “Why resnet works? resid-
uals generalize”. In: IEEE transactions on neural networks and learning systems
31.12, pp. 5349–5362.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

Hedstrom, Grady and Ajay A Wagh (2022). “Combining real-time 3-D imaging
and augmented fluoroscopy with robotic bronchoscopy for the diagnosis of pe-
ripheral lung nodules”. In: Chest 162.4, A2082.

Heizmann, Oleg et al. (2010). “Assessment of Intraoperative Liver Deformation
During Hepatic Resection: Prospective Clinical Study”. In: World Journal of
Surgery 34, pp. 1887–1893.

Hirai, Ryusuke et al. (Mar. 2019). “Real-time tumor tracking using fluoroscopic
imaging with deep neural network analysis”. In: Physica Medica 59. Publisher:
Associazione Italiana di Fisica Medica, pp. 22–29. issn: 1724191X.

Hoffmann, Malte et al. (2021). “SynthMorph: learning contrast-invariant registra-
tion without acquired images”. In: IEEE transactions on medical imaging 41.3,
pp. 543–558.

Hornik, Kurt (1991). “Approximation capabilities of multilayer feedforward net-
works”. In: Neural networks 4.2, pp. 251–257.

Hu, Xuemin et al. (2023). “How simulation helps autonomous driving: A survey
of sim2real, digital twins, and parallel intelligence”. In: IEEE Transactions on
Intelligent Vehicles.

Huang, De-Xing et al. (2024). “Real-Time 2D/3D Registration via CNN Regression
and Centroid Alignment”. In: IEEE Transactions on Automation Science and
Engineering.

Hugo, Geoffrey D. et al. (Feb. 2017). “A longitudinal four-dimensional computed
tomography and cone beam computed tomography dataset for image-guided
radiation therapy research in lung cancer”. In: Medical physics 44.2. Publisher:
NIH Public Access, p. 762. issn: 00942405.

Iandola, Forrest et al. (2014). “Densenet: Implementing efficient convnet descriptor
pyramids”. In: arXiv preprint arXiv:1404.1869.

Ishida, Takashi et al. (2011). “Virtual bronchoscopic navigation combined with
endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a
randomised trial”. In: Thorax 66.12, pp. 1072–1077.

Izzo, Richard et al. (2018). “The vascular modeling toolkit: a python library for the
analysis of tubular structures in medical images”. In: Journal of Open Source
Software 3.25, p. 745.

Bibliography 180



Jaganathan, Srikrishna et al. (2023). “Self-Supervised 2D/3D Registration for X-
Ray to CT Image Fusion”. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 2788–2798.

Jourdan, Franck, Pierre Alart, and Michel Jean (1998). “A Gauss-Seidel like algo-
rithm to solve frictional contact problems”. In: Computer Methods in Applied
Mechanics and Engineering 155.1, pp. 31–47. issn: 0045-7825.

Kandel, Ibrahem and Mauro Castelli (2020). “The effect of batch size on the gen-
eralizability of the convolutional neural networks on a histopathology dataset”.
In: ICT express 6.4, pp. 312–315.

Karstensen, Lennart, Tobias Behr, et al. (2020). “Autonomous guidewire naviga-
tion in a two dimensional vascular phantom”. In: Current Directions in Biomed-
ical Engineering 6.1.

Karstensen, Lennart, Jacqueline Ritter, et al. (Sept. 2023). “Recurrent neural net-
works for generalization towards the vessel geometry in autonomous endovas-
cular guidewire navigation in the aortic arch”. In: Int. Journal of Computer
Assisted Radiology and Surgery 18 (9), pp. 1735–1744.

Ketelsen, Dominik et al. (2016). “Three-dimensional C-arm CT-guided transjugu-
lar intrahepatic portosystemic shunt placement: Feasibility, technical success
and procedural time”. In: European radiology 26, pp. 4277–4283.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980.

Kirillov, Alexander et al. (2023). “Segment anything”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4015–4026.

Kirk, Robert et al. (2023). “A Survey of Zero-shot Generalisation in Deep Rein-
forcement Learning”. In: Journal of Artificial Intelligence Research 76, pp. 201–
264.

Kitamura, Kei et al. (2002). “Registration accuracy and possible migration of in-
ternal fiducial gold marker implanted in prostate and liver treated with real-
time tumor-tracking radiation therapy (RTRT)”. In: Radiotherapy and Oncol-
ogy 62.3, pp. 275–281. issn: 01678140.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2017). “ImageNet classi-
fication with deep convolutional neural networks”. In: Communications of the
ACM 60.6, pp. 84–90.

Kroes, Maarten W et al. (2016). “The use of laser guidance reduces fluoroscopy
time for C-arm cone-beam computed tomography-guided biopsies”. In: Cardio-
vascular and Interventional Radiology 39, pp. 1322–1326.

Kumar, Ajay and Alwin Chuan (2009). “Ultrasound guided vascular access: effi-
cacy and safety”. In: Best Practice & Research Clinical Anaesthesiology 23.3,
pp. 299–311.

Bibliography 181



Kuzhagaliyev, Timur et al. (2018). “Augmented reality needle ablation guidance
tool for irreversible electroporation in the pancreas”. In: Medical imaging 2018:
Image-guided procedures, robotic interventions, and modeling. Vol. 10576. SPIE,
pp. 260–265.

Kweon, Jihoon et al. (2021). “Deep Reinforcement Learning for Guidewire Navi-
gation in Coronary Artery Phantom”. In: IEEE Access 9, pp. 166409–166422.

Lanfranchi, Filippo et al. (2024). “Use of the Archimedes navigation system to di-
agnose peripheral pulmonary lesions: preliminary Italian results”. In: Frontiers
in Oncology 14.

Lecomte, Francois et al. (2023). “Enhancing fluoroscopy-guided interventions: a
neural network to predict vessel deformation without contrast agents”. In: The
Hamlyn Symposium on Medical Robotics. The Hamlyn Centre, Imperial College
London London, UK, pp. 75–76.

Lecomte, François et al. (June 2024). “Beyond Respiratory Models: A Physics-
enhanced Synthetic Data Generation Method for 2D-3D Deformable Registra-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 2413–2421.

Lee, Brian C et al. (2022). “Breathing-Compensated Neural Networks for Real
Time C-Arm Pose Estimation in Lung CT-Fluoroscopy Registration”. In: 2022
IEEE 19th International Symposium on Biomedical Imaging (ISBI). IEEE,
pp. 1–5.

Lee, Min Woo et al. (2010). “Targeted sonography for small hepatocellular carci-
noma discovered by CT or MRI: factors affecting sonographic detection”. In:
American Journal of Roentgenology 194.5, W396–W400.

Lei, Yang, Zhen Tian, Tonghe Wang, Marian Axente, et al. (2022). “Fast 3D imag-
ing via deep learning for deep inspiration breath-hold lung radiotherapy”. In:
Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and
Modeling. Vol. 12034. SPIE, pp. 628–633.

Lei, Yang, Zhen Tian, Tonghe Wang, Justin Roper, et al. (2021). “Deep learning-
based 3D image generation using a single 2D projection image”. In: Medical
Imaging 2021: Image Processing. Vol. 11596. SPIE, pp. 516–521.

Lesage, Anne-Cécile et al. (2020). “Preliminary evaluation of biomechanical mod-
eling of lung deflation during minimally invasive surgery using pneumotho-
rax computed tomography scans”. In: Physics in Medicine & Biology 65.22,
p. 225010.

Li, Lei and Suping Wu (2021). “Dmifnet: 3d shape reconstruction based on dynamic
multi-branch information fusion”. In: 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, pp. 7219–7225.

Bibliography 182



Linden, Lennart et al. (2023). “Neural networks meet hyperelasticity: A guide to
enforcing physics”. In: Journal of the Mechanics and Physics of Solids 179,
p. 105363.

Liu, David et al. (2010). “Monitoring with head-mounted displays in general anes-
thesia: a clinical evaluation in the operating room”. In: Anesthesia & Analgesia
110.4, pp. 1032–1038.

Liu, Dong C and Jorge Nocedal (1989). “On the limited memory BFGS method
for large scale optimization”. In: Mathematical programming 45.1, pp. 503–528.

Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regularization”.
In: arXiv preprint arXiv:1711.05101.

— (2016). “Sgdr: Stochastic gradient descent with warm restarts”. In: arXiv preprint
arXiv:1608.03983.

Ma, Jun et al. (2024). “Segment Anything in Medical Images”. In: Nature Com-
munications 15, p. 654.

Maier, IL et al. (2018). “Diagnosing early ischemic changes with the latest-generation
flat detector CT: a comparative study with multidetector CT”. In: American
Journal of Neuroradiology 39.5, pp. 881–886.

Mamoulakis, Charalampos et al. (2017). “Contrast-induced nephropathy: Basic
concepts, pathophysiological implications and prevention strategies”. In: Phar-
macology & therapeutics 180, pp. 99–112.

Manhire, A et al. (2003). “Guidelines for radiologically guided lung biopsy”. In:
Thorax 58.11, pp. 920–936.

Mantz, J-M et al. (1982). “Le choc anaphylactique: Résultats d’une enquête na-
tionale portant sur 1047 cas”. In: La Revue de Médecine Interne 3.4, pp. 331–
338.

Maybody, Majid, Carsten Stevenson, and Stephen B Solomon (2013). “Overview of
navigation systems in image-guided interventions”. In: Techniques in vascular
and interventional radiology 16.3, pp. 136–143.

McClennan, Bruce L (1990). “Preston M. Hickey memorial lecture. Ionic and non-
ionic iodinated contrast media: evolution and strategies for use.” In: AJR.
American journal of roentgenology 155.2, pp. 225–233.

McCollough, Cynthia H et al. (2015). “Answers to common questions about the
use and safety of CT scans”. In: Mayo Clinic Proceedings. Vol. 90. 10. Elsevier,
pp. 1380–1392.

Mert, Ayguel et al. (2012). “Brain tumor surgery with 3-dimensional surface nav-
igation”. In: Operative Neurosurgery 71, ons286–ons295.

Mhaskar, Hrushikesh N and Charles A Micchelli (1992). “Approximation by su-
perposition of sigmoidal and radial basis functions”. In: Advances in Applied
mathematics 13.3, pp. 350–373.

Bibliography 183



Miao, Shun et al. (2018). “Dilated FCN for multi-agent 2D/3D medical image
registration”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1.

Milletarì, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi (2016). “V-Net: Fully
Convolutional Neural Networks for Volumetric Medical Image Segmentation”.
In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571.

Miranda, Victor et al. (2023). “Generalization in Deep Reinforcement Learning for
Robotic Navigation by Reward Shaping”. In: IEEE Transactions on Industrial
Electronics, pp. 1–8.

Modersitzki, Jan (2003). Numerical methods for image registration. OUP Oxford.
Mooney, Melvin (1940). “A theory of large elastic deformation”. In: Journal of

applied physics 11.9, pp. 582–592.
Nakao, Megumi, Mitsuhiro Nakamura, and Tetsuya Matsuda (2022). “Image-to-

Graph Convolutional Network for 2D/3D Deformable Model Registration of
Low-Contrast Organs”. In: IEEE Transactions on Medical Imaging 41.12, pp. 3747–
3761.

Noble, J Alison, Nassir Navab, and H Becher (2011). “Ultrasonic image analysis
and image-guided interventions”. In: Interface focus 1.4, pp. 673–685.

Ormerod, DF, B Ross, and A Naluai-Cecchini (2003). “Use of an augmented reality
display of patient monitoring data to enhance anesthesiologists’ response to
abnormal clinical events”. In: Medicine Meets Virtual Reality 11. IOS Press,
pp. 248–250.

Ortega, G et al. (2008). “Usefulness of a head mounted monitor device for view-
ing intraoperative fluoroscopy during orthopaedic procedures”. In: Archives of
orthopaedic and trauma surgery 128, pp. 1123–1126.

Park, Brian J et al. (2020). “3D Augmented reality-assisted CT-Guided inter-
ventions: system design and preclinical trial on an abdominal phantom using
HoloLens 2”. In: arXiv preprint arXiv:2005.09146.

Paszke, Adam et al. (2017). “Automatic differentiation in pytorch”. In.
Pennec, Xavier et al. (2005). “Riemannian elasticity: A statistical regularization

framework for non-linear registration”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, pp. 943–950.

Pertzov, Barak et al. (2021). “The LungVision navigational platform for peripheral
lung nodule biopsy and the added value of cryobiopsy”. In: Thoracic Cancer
12.13, pp. 2007–2012.

Powell, Michael JD et al. (2009). “The BOBYQA algorithm for bound constrained
optimization without derivatives”. In: Cambridge NA Report NA2009/06, Uni-
versity of Cambridge, Cambridge 26, pp. 26–46.

Pritchett, Michael A (2021). “Prospective analysis of a novel endobronchial aug-
mented fluoroscopic navigation system for diagnosis of peripheral pulmonary le-

Bibliography 184



sions”. In: Journal of Bronchology & Interventional Pulmonology 28.2, pp. 107–
115.

Przkora, Rene et al. (2015). “Evaluation of the head-mounted display for ultrasound-
guided peripheral nerve blocks in simulated regional anesthesia”. In: Pain Medicine
16.11, pp. 2192–2194.

Puijk, Robbert S et al. (2018). “Percutaneous liver tumour ablation: image guid-
ance, endpoint assessment, and quality control”. In: Canadian Association of
Radiologists Journal 69.1, pp. 51–62.

Puschel, A, C Schafmayer, and J Groß (2022). “Robot-assisted techniques in vas-
cular and endovascular surgery”. In: Langenbecks Arch Surg 407.5, pp. 1789–
1795.

Rabbitt, Richard D et al. (1995). “Mapping of hyperelastic deformable templates
using the finite element method”. In: Vision Geometry IV. Vol. 2573. SPIE,
pp. 252–265.

Radiuk, Pavlo M (2017). “Impact of training set batch size on the performance of
convolutional neural networks for diverse datasets”. In.

Raffin, Antonin et al. (2021). “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”. In: Journal of Machine Learning Research 22.268, pp. 1–8.

Ranzato, Marc’Aurelio et al. (2006). “Efficient learning of sparse representations
with an energy-based model”. In: Advances in neural information processing
systems 19.

Rehani, MM et al. (2010). “Radiological protection in fluoroscopically guided pro-
cedures performed outside the imaging department”. In: Annals of the ICRP
40.6, pp. 1–102.

Rivlin, Ronald S (1948). “Large elastic deformations of isotropic materials IV. Fur-
ther developments of the general theory”. In: Philosophical transactions of the
royal society of London. Series A, Mathematical and physical sciences 241.835,
pp. 379–397.

Rouze, Simon et al. (2016). “Small pulmonary nodule localization with cone beam
computed tomography during video-assisted thoracic surgery: a feasibility study”.
In: Interactive CardioVascular and Thoracic Surgery 22.6, pp. 705–711.

Rouzé, Simon (2022). “Localisation de nodules pulmonaires en chirurgie mini-
invasive assistée par ordinateur”. PhD thesis. Université de Rennes 1, pp. 62–
63.

Sailer, Anna M et al. (2015). “Radiation exposure of abdominal cone beam com-
puted tomography”. In: Cardiovascular and interventional radiology 38, pp. 112–
120.

Salvi, Andrey et al. (2020). “Attention-based 3D object reconstruction from a single
image”. In: 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, pp. 1–8.

Bibliography 185



Sarti, Marc, William P Brehmer, and Spencer B Gay (2012). “Low-dose techniques
in CT-guided interventions”. In: Radiographics 32.4, pp. 1109–1119.

Scarponi, Valentina, Michel Duprez, et al. (2024). “A zero-shot reinforcement learn-
ing strategy for autonomous guidewire navigation”. In: International Journal
of Computer Assisted Radiology and Surgery, pp. 1–8.

Scarponi, Valentina, François Lecomte, et al. (Oct. 2024). “Autonomous Guidewire
Navigation in Dynamic Environments”. In: 2024 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS).

Scarselli, Franco et al. (2008). “The graph neural network model”. In: IEEE trans-
actions on neural networks 20.1, pp. 61–80.

Schafer, Sebastian and Jeffrey H Siewerdsen (2020). “Technology and applications
in interventional imaging: 2D X-ray radiography/fluoroscopy and 3D cone-
beam CT”. In: Handbook of medical image computing and computer assisted
intervention. Elsevier, pp. 625–671.

Seppenwoolde, Yvette et al. (2011). “Treatment precision of image-guided liver
SBRT using implanted fiducial markers depends on marker-tumour distance”.
In: Article in Physics in Medicine and Biology.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learn-
ing: From theory to algorithms. Cambridge university press.

Shan, Siyuan et al. (2017). “Unsupervised end-to-end learning for deformable med-
ical image registration”. In: arXiv preprint arXiv:1711.08608.

Shao, Hua-Chieh, Yunxiang Li, et al. (2023). “Real-time liver motion estimation via
deep learning-based angle-agnostic X-ray imaging”. In: Medical physics 50.11,
pp. 6649–6662.

Shao, Hua-Chieh, Jing Wang, et al. (2022). “Real-time liver tumor localization via a
single x-ray projection using deep graph neural network-assisted biomechanical
modeling”. In: Physics in Medicine & Biology 67.11, p. 115009.

Shen, Liyue, Wei Zhao, and Lei Xing (2019). “Patient-specific reconstruction of
volumetric computed tomography images from a single projection view via
deep learning”. In: Nature Biomedical Engineering 3.11. Publisher: Springer
US ISBN: 4155101904, pp. 880–888. issn: 2157846X.

Shi, Pengcheng et al. (2024). “Centerline Boundary Dice Loss for Vascular Seg-
mentation”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 46–56.

Shieh, Chun Chien et al. (Mar. 2017). “A Bayesian approach for three-dimensional
markerless tumor tracking using kV imaging during lung radiotherapy”. In:
Physics in Medicine and Biology 62.8. Publisher: Institute of Physics Publish-
ing, pp. 3065–3080. issn: 13616560.

Simonovsky, Martin et al. (2016). “A deep metric for multimodal registration”. In:
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016:

Bibliography 186



19th International Conference, Athens, Greece, October 17-21, 2016, Proceed-
ings, Part III 19. Springer, pp. 10–18.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Singh, S. et al. (2017). “Anatomic study of the morphology of the right and left
coronary arteries”. In: Folia Morphologica 76.4, pp. 668–674. issn: 1644-3284.

Smith, Leslie N and Nicholay Topin (2019). “Super-convergence: Very fast training
of neural networks using large learning rates”. In: Artificial intelligence and
machine learning for multi-domain operations applications. Vol. 11006. SPIE,
pp. 369–386.

Solbiati, Marco et al. (2018). “Augmented reality for interventional oncology:
proof-of-concept study of a novel high-end guidance system platform”. In: Eu-
ropean radiology experimental 2, pp. 1–9.

Sotiras, Aristeidis, Christos Davatzikos, and Nikos Paragios (2010). “Deformable
Medical Image Registration: A Survey”. In: IEEE transactions on medical imag-
ing.

Sun, Jiayuan et al. (2022). “Efficacy and safety of virtual bronchoscopic navigation
with fused fluoroscopy and vessel mapping for access of pulmonary lesions”. In:
Respirology 27.5, pp. 357–365.

Szegedy, Christian et al. (2017). “Inception-v4, inception-resnet and the impact of
residual connections on learning”. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 31. 1.

Tang, Thomas SY, Randy E Ellis, and Gabor Fichtinger (2000). “Fiducial reg-
istration from a single X-Ray image: a new technique for fluoroscopic guid-
ance and radiotherapy”. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2000: Third International Conference, Pittsburgh, PA,
USA, October 11-14, 2000. Proceedings 3. Springer, pp. 502–511.

Tang, Yucheng et al. (2022). “Self-supervised pre-training of swin transformers for
3d medical image analysis”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 20730–20740.

Thirion, J-P (1998). “Image matching as a diffusion process: an analogy with
Maxwell’s demons”. In: Medical image analysis 2.3, pp. 243–260.

Tian, Lin et al. (2022). “LiftReg: Limited Angle 2D/3D Deformable Registration”.
In: Medical Image Computing and Computer Assisted Intervention–MICCAI
2022: 25th International Conference, Singapore, September 18–22, 2022, Pro-
ceedings, Part VI. Springer, pp. 207–216.

Tian, Wei et al. (2023). “A DDPG-Based Method of Autonomous Catheter Navi-
gation in Virtual Environment”. In: Proc. International Conference on Mecha-
tronics and Automation, pp. 889–893.

Bibliography 187



Tobin, Josh et al. (2017). “Domain randomization for transferring deep neural
networks from simulation to the real world”. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, pp. 23–30.

Tonutti, Michele et al. (2017). “The role of technology in minimally invasive
surgery: state of the art, recent developments and future directions”. In: Post-
graduate medical journal 93.1097, pp. 159–167.

Trouve, Alain et al. (2005). “Computing Large Deformation Metric Mappings via
Geodesic Flows of Diffeomorphisms”. In: International Journal of Computer
Vision 61.2, pp. 139–157.

Unberath, Mathias et al. (Sept. 2018). “DeepDRR – A Catalyst for Machine Learn-
ing in Fluoroscopy-Guided Procedures”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 11073 LNCS, pp. 98–106. issn: 16113349.

Van den Elsen, Petra A, E-JD Pol, and Max A Viergever (1993). “Medical image
matching-a review with classification”. In: IEEE Engineering in Medicine and
Biology Magazine 12.1, pp. 26–39.

Varro, Zoltan, Julia K Locklin, and Bradford J Wood (2004). “Laser navigation
for radiofrequency ablation”. In: Cardiovascular and interventional radiology
27, pp. 512–515.

Vles, MD et al. (2020). “Virtual and augmented reality for preoperative planning
in plastic surgical procedures: a systematic review”. In: Journal of Plastic,
Reconstructive & Aesthetic Surgery 73.11, pp. 1951–1959.

Wagh, A, E Ho, and K Hogarth (2021). “Combining the use of robotic bron-
choscopy with augmented fluoroscopy to diagnose peripheral pulmonary le-
sions”. In: Clin Oncol 6, p. 1811.

Wallace, Michael J et al. (2008). “Three-dimensional C-arm cone-beam CT: appli-
cations in the interventional suite”. In: Journal of Vascular and Interventional
Radiology 19.6, pp. 799–813.

Wang, Nanyang et al. (2018). “Pixel2mesh: Generating 3d mesh models from single
rgb images”. In: Proceedings of the European conference on computer vision
(ECCV), pp. 52–67.

Wang, Shuang et al. (2022). “Study on Autonomous Delivery of Guidewire Based
on Improved YOLOV5s on Vascular Model Platform”. In: 2022 IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO), pp. 1–6.

Wasserthal, Jakob et al. (2023). “TotalSegmentator: robust segmentation of 104
anatomic structures in CT images”. In: Radiology: Artificial Intelligence 5.5.

Wei, Ran et al. (2020). “Real-time tumor localization with single x-ray projection
at arbitrary gantry angles using a convolutional neural network (CNN)”. In:
Physics in Medicine & Biology 65.6, p. 065012.

Bibliography 188



Wijesinghe, W Okandapola Kankanamalage Isuru Suranga (2024). “Intelligent
image-driven motion modelling for adaptive radiotherapy”.

Winter, Jeff D et al. (2015). “Accuracy of robotic radiosurgical liver treatment
throughout the respiratory cycle”. In: International Journal of Radiation On-
cology* Biology* Physics 93.4, pp. 916–924.

Wolterink, Jelmer M, Jesse C Zwienenberg, and Christoph Brune (2022). “Im-
plicit neural representations for deformable image registration”. In: Interna-
tional Conference on Medical Imaging with Deep Learning. PMLR, pp. 1349–
1359.

Wu, Guorong et al. (2015). “Scalable high-performance image registration frame-
work by unsupervised deep feature representations learning”. In: IEEE trans-
actions on biomedical engineering 63.7, pp. 1505–1516.

Wu, Yi-Wei et al. (2016). “Prevention and management of adverse reactions in-
duced by iodinated contrast media”. In: Ann Acad Med Singapore 45.4, pp. 157–
164.

Wuerfel, Jens et al. (2004). “Changes in cerebral perfusion precede plaque forma-
tion in multiple sclerosis: a longitudinal perfusion MRI study”. In: Brain 127.1,
pp. 111–119.

Wunsch, Patrick and Gerhard Hirzinger (1996). “Registration of CAD-models to
images by iterative inverse perspective matching”. In: Proceedings of 13th In-
ternational Conference on Pattern Recognition. Vol. 1. IEEE, pp. 78–83.

Yan, Yongxuan et al. (2024). “Markerless Lung Tumor Localization From Intraop-
erative Stereo Color Fluoroscopic Images for Radiotherapy”. In: IEEE Access
12, pp. 40809–40826.

Yanovsky, Igor et al. (2008). “Unbiased volumetric registration via nonlinear elas-
tic regularization”. In: 2nd MICCAI workshop on mathematical foundations of
computational anatomy.

Yin, Wei et al. (2022). “Towards accurate reconstruction of 3d scene shape from
a single monocular image”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 45.5, pp. 6480–6494.

Yoon, Jang W et al. (2018). “Augmented reality for the surgeon: systematic re-
view”. In: The international journal of medical robotics and computer assisted
surgery 14.4, e1914.

You, Zhonghui et al. (2019). “Adversarial Noise Layer: Regularize Neural Net-
work by Adding Noise; Adversarial Noise Layer: Regularize Neural Network by
Adding Noise”. In: 2019 IEEE International Conference on Image Processing
(ICIP). ISBN: 9781538662496.

Zhang, Jingyu et al. (2024). “AI co-pilot bronchoscope robot”. In: Nature commu-
nications 15.1, p. 241.

Bibliography 189



Zhang, Quncheng et al. (2021). “Combination of the Archimedes Navigation Sys-
tem and cryobiopsy in diagnosis of diffuse lung disease”. In: Journal of Inter-
national Medical Research 49.7, p. 03000605211016665.

Zhang, Y, X Huang, and J Wang (2020). “Automatic Cone Beam Projection-Based
Liver Tumor Localization by Deep Learning and Biomechanical Modeling”. In:
International Journal of Radiation Oncology, Biology, Physics 108.3, S171.

Zhang, Y, X Huang, J Wang, et al. (Nov. 2020). “Automatic Cone Beam Projection-
based Liver Tumor Localization by Deep Learning and Biomechanical Model-
ing”. In: International Journal of Radiation Oncology, Biology, Physics 108.3.
Publisher: Elsevier, S171. issn: 0360-3016.

Zhang, Yikun et al. (2021). “CLEAR: comprehensive learning enabled adversarial
reconstruction for subtle structure enhanced low-dose CT imaging”. In: IEEE
Transactions on Medical Imaging 40.11, pp. 3089–3101.

Zhang, You (2021). “An unsupervised 2D–3D deformable registration network
(2D3D-RegNet) for cone-beam CT estimation”. In: Physics in Medicine & Bi-
ology 66.7, p. 074001.

Zhao, Wei et al. (2019). “Markerless pancreatic tumor target localization enabled
by deep learning HHS Public Access”. In: Int J Radiat Oncol Biol Phys 105.2,
pp. 432–439.

Zhao, Zhuo et al. (2021). “Augmented reality technology in image-guided ther-
apy: State-of-the-art review”. In: Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine 235.12, pp. 1386–1398.

Zhu, Jun-Yan et al. (2017). “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE international con-
ference on computer vision, pp. 2223–2232.

Zhu, Yongpei and Shi Lu (2022). “Swin-voxelmorph: A symmetric unsupervised
learning model for deformable medical image registration using swin trans-
former”. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, pp. 78–87.

Zhuang, Xiahai and Yipeng Hu (2017). “Statistical Deformation Model: Theory
and Methods”. In: Statistical Shape and Deformation Analysis. Elsevier, pp. 33–
65.

Bibliography 190





Titre: Amélioration des Procédures Guidées par Fluoroscopie à l’aide d’un Réseau de Neurones pour
le Recalage Déformable des Organes
Mots clés: Recalage déformable, recalage 2D-3D, fluoroscopie, Réseaux de Neurones Convolutifs,
génération de données synthétiques

Résumé: Dans les interventions guidées par
fluoroscopie, le manque de contraste empêche la
visualisation directe des structures anatomiques
essentielles. Les solutions existantes présentent
des inconvénients significatifs: l’utilisation de
CBCT augmente l’exposition aux radiations, tan-
dis que les agents de contraste présentent des
risques de toxicité pour les patients. Les tech-
niques de recalage fluoroscopie-CT pourraient ré-
soudre ces problèmes, mais la littérature exis-
tante s’est principalement concentrée sur la com-
pensation du mouvement respiratoire. Or, pen-
dant les interventions, l’action des cliniciens sur
les organes est également source de déforma-
tions, rendant ces approches de recalage ineffi-
caces. Pour répondre à ces défis, nous présen-
tons une méthode de recalage déformable 2D-3D
en temps réel adaptée aux interventions guidées
par fluoroscopie. Notre approche par apprentis-

sage profond s’intègre dans la pratique clinique
courante, avec un temps d’entraînement minimal
après l’acquisition du scanner préopératoire. Grâce
à notre processus de génération de données agnos-
tique, le réseau de neurones entraîné est capable
de compenser des déformations arbitraires, en ex-
ploitant les informations de pose avec son mod-
ule de rétroprojection 2D-3D. Les expériences sur
des images fluoroscopiques simulées ont montré la
capacité de notre méthode à apporter une visuali-
sation en temps réel des vaisseaux sans agents de
contraste. Sur des images fluoroscopiques réelles,
notre méthode permet de compenser le mouve-
ment respiratoire avec une précision médiane de
2,4 mm. Ces résultats démontrent le potentiel de
la méthode proposée, établissant une base pour de
futurs développements tout en motivant la con-
duite d’une validation clinique plus aboutie.

Title: Enhancing Fluoroscopy-Guided Procedures with Neural Network-Based Deformable Organ Reg-
istration
Keywords: Deformable registration, 2D-3D registration, fluoroscopy, Convolutional Neural Networks,
Synthetic data generation

Abstract: In fluoroscopy-guided interventions,
the lack of contrast prevents direct visualization
of essential anatomical structures. Existing so-
lutions have significant drawbacks: the use of
CBCT increases radiation exposure, while contrast
agents present toxicity risks for patients. Fluo-
roscopy to CT registration has the potential to
alleviate these issues, but existing literature has
primarily focused on respiratory motion compensa-
tion. Yet, during interventions, clinicians’ actions
on organs are an additional source of deformation,
rendering these registration approaches ineffective.
To address these challenges, we present a real-
time 2D-3D deformable registration method tai-
lored to fluoroscopy-guided interventions. Our pro-
posed deep learning approach seamlessly integrates

into existing clinical workflows, with minimal train-
ing time after preoperative CT scan acquisition.
Thanks to our novel domain-agnostic data genera-
tion framework, the trained neural network can re-
cover arbitrary deformations, leveraging pose infor-
mation through its 2D-3D feature backprojection
module. Experiments on simulated fluoroscopic
images demonstrated our method’s ability to pro-
vide real-time vessel visualization without contrast
agents. On real fluoroscopic images, our method
compensates for respiratory motion with a median
accuracy of 2.4 mm. These results demonstrate
the potential of the proposed method, establishing
a foundation for future developments while moti-
vating more comprehensive clinical validation.
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