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1.1. Sensing systems in nature 

Nature serves as a remarkable model of inspiration when it comes to sensory systems and their 

associated mechanisms. These systems have empowered living organisms to perceive and process 

variations in their environment, thereby providing an estimate of vital information regarding their 

surroundings by responsive reactions to stimuli1. The varieties of sensory responses allow such active 

systems to detect, discriminate and localize environmental objects in addition to assisting in 

communication amongst species members. For instance, the mechanism of echolocation in nocturnal 

animals allows them to navigate and hunt in conditions of darkness by emitting and listening for 

echoes of ultrasonic waves2. In humans, proprioception, often termed as the sixth sense, allows for 

individuals to perceive position and movement of body parts, crucial for coordinated movement and 

overall balance3. Such responses are essential for the performance and maintenance of life sustaining 

activities. Biological sensor systems are therefore highly sensitive and no organism can be imagined 

to function effectively without them. Each of these systems has evolved and continues to adapt to 

fulfill different purposes based on exposure to specific environments. For example, some animals 

have developed over time, defense mechanisms to sense and protect themselves from threats, such as 

the chameleon's ability to camouflage or the emission of fluorescence by soft-bodied organisms like 

octopuses1. For years, scientists have investigated these systems to gain essential insights into the 

underlying mechanism of sensory uptake, transformation and transduction4. These sensors although 

small, are energy efficient and highly sensitive in nature. They exhibit a nature of redundancy, where 

numerous sensory receptor organs operate in parallel, each comprising dozens of receptor cells, such 

as the photoreceptor rod and cone cells of the human retina, that facilitate vision. This parallel 

sampling and processing of sensory information serves to enhance the signal-to-noise ratio by 

averaging and decreases the risk of errors resulting from the malfunction or loss of individual sensory 

elements5. The study of these systems by scientists has also helped to uncover various impressive 

physical principles that have provided rich inspiration for the design of artificial sensors for 

revolutionizing various scientific fields, from medical diagnosis to environmental monitoring and 

beyond.  

Humans are recognized for possessing multiple sensory tools that govern their five primary senses — 

sight (vision), hearing (audition), taste (gustation), smell (olfaction) and touch (somatosensation). 

Among these, humans being visual beings tend to prioritize their sense of sight over all other senses; a 

recent quantitative study of people aged 16-30 revealed that slightly over half of the participants 

would choose to give up their sense of smell to keep a piece of technology6.  However, their sense of 

smell is perhaps the most powerful ability that they rely on for their safety and health and those who 

lose this sense, often realize its crucial role in daily functioning. The human olfactory system 

demonstrates remarkable efficiency in recognizing and distinguishing thousands of distinct odors, 

including both individual and intricate combinations, mere seconds after exposure. This system 
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exhibits a dynamic range spanning from high concentrations down to the parts-per-billion range. The 

specificity of the olfactory system, as compared to other sensory systems in nature, does not arise 

from specific receptors for specific analytes, resembling the traditional lock-and-key model of 

substrate-enzyme interactions. Instead, it relies on the pattern recognition of combined responses 

gathered from several hundred olfactory receptors that can bind numerous odorants with specific 

affinities. While mammalian genetics encodes for approximately 1000 different types of olfactory 

receptors, with humans having ~400 active receptors7, the system is still capable of discrimination of 

thousands of scents by using each of these receptors in a cross-reactive manner. The integration of 

electric responses sent to the brain generates a highly complex, multidimensional pattern that encodes 

the identity of an odorant.  

 

Figure 1.1: Structure and mechanism of transmission of olfactory information to the brain in the 

human olfactory system (adapted from Rinaldi, A.8).  

 

The olfaction process firstly begins with a regulated ―sniffing step‖ to prime itself for detecting 

odors. During the sniffing step, the low molecular weight volatile organic compounds (VOCs) that 

constitute the odorous molecules are inhaled into the olfactory epithelium and partitioned into the 

mucus layer, enabled by the fast and turbulent air flow generated by the normal average breathing 

rate. The mucous layer covering the epithelium protects the sensory olfactory receptor cells (ORCs). 

Notably, as most odorants are hydrophobic, the transport of molecules through aqueous mucus may 

necessitate small, low-molecular weight soluble proteins called odorant binding proteins (OBPs). The 
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ORCs possess transducer bipolar neurons consisting of dendrites at one end (in the epithelium) and 

axons at the other (in the olfactory bulb). The dendritic end of the ORCs hosts non-motile cilia that 

contain the olfactory receptors (ORs), which are seven-domain transmembrane receptors, also referred 

to as G-protein coupled receptors. The binding of odorant molecules to the ORs triggers inwardly 

depolarizing currents that activates the action potentials of the receptor cells. All the cells containing 

each receptor type converge on the olfactory bulb of the brain, boosting the signal-to-noise ratio 

through signal summation. These signals are then transmitted to the higher-level processing centers in 

the brain (olfactory cortex), where they are analyzed to enable identification of the encountered 

odorant (Figure 1.1). The brain does not interpret the singular response of an olfactory receptor, but 

rather the pattern arising from their collective interaction with the VOCs in order to discern an odor. 

This necessitates a training phase to associate a detection pattern to an object, so that it is perceived 

and memorized to enable the persistent discrimination of the multiple odors over time9.  

Therefore, the mammalian olfactory system, in its entirety, is a highly complex yet remarkably 

sensitive and efficient system; and scientists have devoted extensive efforts over many years to mimic 

its capabilities in artificial systems. This has led to the development of artificial olfaction-based 

sensing systems, known as ‗electronic noses‘. These systems replicate the selective combinatorial 

abilities of the human olfactory system using an array of distinct chemical materials that physically 

adsorb gaseous analytes and undergo modulations in their electrical properties upon exposure to a 

vapor containing a mixture of entities. The first artificial olfaction based system was developed by 

Persaud & Dodd in 1982, who constructed an electronic nose with three metal oxide semiconductor 

transducers to sense and discriminate among similar odor mixtures based on steady-state sensor 

signals10. While the performance of such sensors are primarily judged by quantitative properties such 

as sensitivity, resolution, reproducibility and in some cases reversibility, the most crucial aspect 

remains to be sensor selectivity, which ensures detection of the target analyte amidst other interfering 

chemical species. Since then, significant advancements have been made in this field to harness the 

efficiency of nature‘s system in artificial sensor designs, not only in gaseous conditions but also in 

solution phase. This progress has led to the introduction of the terms 'chemical nose' and 'chemical 

tongue' systems, with the former primarily facilitating detection in the gas phase, while also being 

adapted to the solution phase and the latter solely designed for detection in the liquid phase only. The 

common foundational principle underlying the design of these differential sensing systems resulted in 

this methodology being referred to as ‗array-based sensing‘.  

 

1.2. Array-based sensing   

 The ‗array-based sensing‘ approach mirrors the fundamental principles of the human olfactory 

system, employing a set of cross-reactive, non-specific sensors that interact individually with multiple 
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analytes, and through an output signal proportional to the interaction, generate a unique pattern of 

response for each analyte. Consequently, this multidimensional pattern enables molecular recognition 

by comparison to a predetermined library of responses facilitated by pattern recognition. In contrast to 

the traditional lock-and-key design criteria that is adopted in antibody and aptamer-based systems, 

this approach adopts a more flexible, hypothesis free, differential and non-specific design strategy, 

allowing for maximum chemical diversity with minimal number of sensor elements within the array 

to detect a wide cross-section of analytes (Figure 1.2). These pattern recognition-based sensors are 

broadly referred to as chemical nose, chemical tongue or E-tongue systems11.  

 

Figure 1.2: Schematic representation of specific, lock-and-key sensing and differential array-based 

sensing (adapted from Behera, P. et al.12).  

 

The chemical nose sensors, operating on the principle of a lock fitting a number of imperfect keys, are 

often susceptible to interference from chemicals that are either structurally or chemically similar to 

the target analytes. It is precisely this interference or cross-reactivity that these types of differential 

sensors exploit to generate a unique fingerprint that allows the identification and classification of 

different analytes. Consequently, the elements of the array are not required to exhibit individual 

selectivity (i.e. ability to detect one analyte in the presence of other analytes in the sample) towards a 

given analyte and this flexibility enables the sensing of complex analytes or analyte mixtures that 

have not been exhaustively characterized.  

The chemical nose sensor array is assembled by combining multiple sensor elements. Each sensor 

element comprises of two components that are responsible for two essential processes involved in the 

sensing: the recognition element and the transduction element (Figure 1.3). The recognition element 

binds with the target analytes through nonspecific and cross-reactive interactions. Various weak 

forces, such as electrostatic, hydrophobic, π-π, hydrogen bonding and van der Waals interactions, 
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facilitate the recognition element to obtain combinatorial information on all the target analytes13. It is 

also imperative that this element does not rely on specific binding sites, but instead offers a high 

density of multiple cross-reactive binding sites for interaction with the analyte, particularly in the case 

of large and conformationally dynamic analytes. This allows for selectively extracting maximal 

information from such analytes while ignoring the effect of small molecules that are not stable in 

concentration, such as salts, thus generating unique fingerprints of these complex analytes14. 

Moreover, the chemical stability of the recognition element is required to achieve reproducible 

response patterns with the sensor array.  

The transduction element transforms these binding events between the recognition element and the 

analytes into measurable output signals and are typically classified as optical or non-optical in 

nature13. While the optical sensors encompass fluorometric, colorimetric, chemiluminescent, 

scattering-based or refraction-based transducers, the non-optical sensors include thermal, mass, 

potentiometric, amperometric or conductometric sensors, among others15,16. 

 

 

 

 

 

 

Figure 1.3: Schematic representation of individual sensing elements forming the sensor array, with 

recognition and transduction elements (adapted from Lim, S. et al.17). 

 

1.2.1. Recognition elements for array-based sensing 

Chemical nose sensors interact with the surrounding media by creating an interface between 

target analytes and the recognition elements of the array. Careful consideration is essential when 

selecting suitable materials for the recognition elements. While purely biological elements may suffer 

from instability under ambient sensing conditions, synthetic organic and inorganic materials offer 

greater stability for the constructed array. Below are described, different groups of recognition 

elements described in the literature, such as nanomaterials, macrocyclic molecules, supramolecular 

assemblies, polymeric networks etc. 

1) Nanomaterials: They offer a dual advantage when used as recognition elements; they possess 

diverse surface properties to interact with a wide range of samples, and they can also be surface-

modified through fabrication with external recognition units to facilitate binding with target 

analytes.12 Nanomaterials, available in various sizes, shapes and functionalities, have a high surface-

to-volume ratio, providing more sites for interaction with analytes with requiring less sensor material 

Transduction 
element 

Recognition 
element 

Analyte 
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and enhancing the sensitivity of the sensing process18. The most advantageous property of these 

materials is their tunable core properties, achievable through surface engineering techniques applied 

during nanomaterial synthesis, such as adhering, capping, stabilizing, or doping. Additionally, surface 

functionalization can be introduced post-synthesis via covalent or non–covalent interactions to obtain 

divergent surface properties. Furthermore, the intrinsic optoelectronic properties of the nanomaterials 

can be exploited to function as the transducer of the sensor element, providing electromagnetic 

outputs that are induced or modified upon analyte binding. For instance, the variation in plasmonic 

properties of AuNPs can be directly used as a sensor readout19. Changes in the size and aggregation 

properties of AuNPs upon analyte binding result in shifts in plasmon band positions, while the tunable 

fluorescence emission of metal nanoclusters20 and quantum dots21,22 can also serve as effective 

readouts. AuNPs have also been combined with DNA, fluorophores, and enzymes and the promotion 

of aggregation of AuNP or their displacement from the AuNP, triggers signals that provide unique 

patterns for protein identification23,24,25,26. 

 

2) Conjugated polymers: Polymeric recognition elements have been extensively used in the 

development of array-based sensors due to their robustness and versatility. Controlled synthesis using 

diverse monomeric units allows for variations in composition, dimension, and molecular 

architecture27. This synthetic control facilitates easy functionalization with transducer elements like 

fluorophores and enables fine-tuning of hydrophobic and electrostatic properties for analyte 

interactions and control over water solubility. Their highly delocalized structures and unique optical 

and electronic properties enable efficient energy transfer processes, amplifying signals more 

effectively than small molecule fluorophores. Their sensitivity towards conformational and 

environmental changes makes them ideal for detecting subtle variations upon binding to different 

target analytes. Additionally, tunable polymer size allows for the creation of optimally-sized 

recognition surfaces with multiple interaction sites, ensuring the necessary cross-reactivity for analyte 

discrimination28. Conjugated polymers are particularly appealing in biological sensing as they enable 

multiple recognition events over large areas, such as on proteins, bacteria, and cell surfaces. These 

multivalent interactions in polymer design open opportunities for inexpensive diagnostic tools for 

biological macromolecules. The most important polymers for sensor array applications are poly(para-

phenylene ether) PPEs and poly(para-aryleneethynylene) (PAEs)29,30, polyfluorenes31,32, 

polythiophenes33,34 and mixed co-polymers of these polymer types35.  

 

3) Macrocyclic molecules: A wide array of synthetic macrocyclic molecules including crown 

ether, cyclodextrins, calixarenes, cavitands, pillarenes and cucurbiturils, have been synthesized and 

investigated extensively. These macrocyclic receptors feature hydrophobic cavities of varying 

molecular dimensions, serving as recognition sites for a large and diverse group of target analytes. 

They interact with the analytes via intermolecular forces such as hydrogen bonds, salt bridges, π-π 



Chapter 1 

 

24 

 

stacking, van der Waals forces, and hydrophobic interactions36. These molecular receptors are 

produced using highly controlled synthesis protocols, resulting in much more reproducible production 

compared to other recognition elements such as polymers and nanoparticles which are not highly 

stable and are highly heterogeneous in nature. Furthermore their synthetic versatility and strong 

binding affinity for a broad spectrum of analytes, ranging from basic metal ions to complex organic 

molecules, have been extensively adopted for various sensing applications. Their rigid architectures 

with distinct conformational preferences like the π-electron-rich cavities, and separate ion-binding 

sites, provide possibilities for derivatization of these systems with suitable transducers for the 

development of the sensor arrays.  



1.2.2. Transduction mechanisms for array-based sensing 

The transduction element in array-based sensing converts interaction strengths between 

recognition elements and target analytes into measurable signals, enabling the readout of the sensing 

process. These elements operate on various principles, including optical, electrochemical, and 

thermometric methods. The choice of transduction mechanism significantly impacts the sensitivity, 

selectivity, and overall performance of the sensor array. Keeping in line with the scope of this thesis, 

optical transducers will be discussed in details. There are a wide range of optical transduction 

mechanisms, including absorbance, fluorescence, diffusion, scattering, refraction, chemiluminescence 

or photoluminescence. Different regions of the electromagnetic spectrum are employed with different 

transduction techniques, and numerous parameters are assessed for each method, encompassing 

intensity, lifetime, polarization, quantum yield and quenching efficiency.  

Colorimetric: It involves quantitatively measuring absorbance or reflectance, allowing for the easy 

visual observation of output signals. Traditional sensors typically utilize the three- channel visible 

range of red, green and blue (RGB). However, recent sensors have also adopted the use of larger 

number of channels within a narrower spectral range, often incorporating infrared and ultraviolet 

regions of the spectrum. Nonetheless, this method is primarily used by analyzing the discreet RGB 

regions or selecting the highest absorbance peaks in UV-visible spectra. 

Fluorescence: This mechanism has emerged as the most widely adopted method primarily due to its 

higher sensitivity as compared to other methods. As a result, even small quantities of the sensor are 

sufficient for analysis, which is highly advantageous when working with valuable analyte samples for 

clinical applications. It encompasses a range of measurable parameters such as intensity, anisotropy, 

lifetime, emission and excitation spectra, fluorescence decay and quantum yield, providing substantial 

flexibility in adopting this optical method as a transduction mechanism16. Most commonly the 

quenching of intrinsically fluorescent molecules in the presence of an analyte is measured as the 

sensing output signal. In fluorescence, the measurement of output light is made, thereby providing a 
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better signal-to-noise ratio as compared to absorbance measurements where the output is based on the 

ratio of light absorption. However, when an analyte quenches the fluorescence of the sensor, 

subtracting the large background signal of the fluorescent molecule in the absence of the analyte may 

result in low sensitivity, particularly if the quenching effect is minimal. In array methods, this 

substantial background is usually less of an issue because the practical comparison is often made 

between the fluorescence responses of different analytes to the sensor, rather than solely comparing 

the fluorescence response of the analyte to the sensor's emission alone. Nevertheless, turn-on 

fluorescence approaches are a more preferable approach, where the emission intensity of a fluorescent 

molecule increases in the presence of an analyte. The measurement of the signal relative to a dark 

background provides a much better sensitivity37. Due to the limited availability of commercial 

fluorescent dyes, designing fluorescent sensor arrays involves leveraging various parameters from 

fluorescence spectra, such as peak shifts and/or spectral shape changes. Additionally, selecting 

multiple wavelengths from a single sensing element is employed to increase the number of 

dimensions provided by the sensing elements. 

Fluorescent solution-based sensor arrays adopt the use of the microtiter plates (96 wells or more per 

plate) along with spectrophotometric plate readers for high-throughput signal quantification. These 

plate readers are equipped with optical components that deliver excitation light of a specific 

wavelengths to each sample well and detect the specific wavelengths of the light emitted from each 

sample well. These convenient setup conditions further make such fluorescent assays a preferred 

choice for the design of chemical sensor arrays13.  

Surface Enhanced Raman Scattering (SERS): Vibrational spectroscopy is a valuable transduction 

mechanism for organic analytes, as they typically exhibit infra-red and/or Raman signals, which often 

serve as characteristic spectroscopic fingerprints for different analytes38. However, the low efficiency 

of inelastic photon scattering often results in weak signals, limiting its direct application in analyte 

detection39. The presence of nanoparticles or rough surfaces enhances the Raman scattering by the 

creation of a local electromagnetic field, whose enhancement is induced by the plasmon resonance of 

the surfaces referred to as SERS40,41. The enhancement of the Raman signal is dependent on the size, 

shape, orientation and aggregation state of the nanoparticle. The significant enhancement in detectable 

signal, coupled with the unique molecular fingerprints generated, has made SERS a powerful tool for 

the multiplex detection of analytes in array-based sensing. 

 

1.2.3. Design criteria for array-based sensing   

Selection of the appropriate combination of recognition and transduction elements is essential 

for addressing various applications, particularly for creating sensitive systems aimed at rapid analyte 

identification and efficient recognition in challenging and complex media. These elements can be 
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combined by covalent bonding or by weak non-covalent interactions, each with its own set of 

advantages and disadvantages. Sensor designs that employ covalent bonding offer enhanced stability, 

increased sensitivity by minimization of signal loss during transduction and an improved signal-to-

noise ratio owing to reduced chances of non-specific interactions that cause background noise. They 

also demonstrate efficient detection across different analyte concentration ranges with minimal effects 

on performance upon dilution. On the other hand, utilizing weak non-covalent interactions provides 

flexibility in independently optimizing the recognition and transduction elements, allowing for sensor 

development tailored to different analytical needs. In many such configurations, the transducer can be 

reused with different recognition elements, making this approach cost-effective and adaptable for 

different target analytes. Additionally, the dynamic range of the sensor can be expanded by varying 

the affinity of the transducer with respect to different target analytes. This ultimately also allows 

improvements to be made iteratively to the design of the sensor with great ease and contributes to the 

modular nature of such sensor arrays. Since the overall array is highly cross-reactive in nature, 

individual sensor elements may often generate very low output information. Therefore, simultaneous 

analysis by multiple sensor elements becomes crucial to provide a differential response, but this could  

 

Figure 1.4: Schematic representation of the response-space of two sensors S1 and S2. (A) S1 and S2 

are 100% selective. (B) S1 and S2 are 100% cross-reactive to a group of analytes. (C) S1 and S2 are 

cross-reactive, but have certain selectivity towards some analytes. (D) S1 and S2 are cross-reactive 

and have enhanced selectivity towards key analytes, hence expanding the potential response-space 

(adapted from Anzenbacher, P. et al. 42). 
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invariably lead to noise amplification in practical sensing systems. This underscores the importance of 

finding a middle ground between selective and cross-reactive sensor arrays. Anzenbacher et al., has 

very clearly addressed this issue with reference to the response space generated by a hypothetical 

sensor array with two sensors under different conditions. While complete selectivity achieves space 

resolution, it restricts the ability of the two sensor elements to respond only to the analytes they are 

selective for. In the case of complete cross-reactivity, multiple analytes can be detected, but the 

associated lack of resolution makes data extraction difficult. However, the intermediate condition 

where the two sensors are cross-reactive in their response towards certain analytes with a certain 

extent of bias towards some key components, leads to the increase in the space resolution of the array 

(Figure 1.4). Hence, this semi-selectivity of the sensing elements could potentially be the key 

component that increases the discriminatory power of the sensor array and allows a significant 

reduction in the number of sensing elements comprising the  array42. Thus, the optimal number of 

sensing elements in an array is typically determined by striking a balance between acquiring sufficient 

information and maintaining redundancy to minimize noise, and avoiding overfitting during statistical 

analysis. 

 

1.2.4. Pattern-recognition by multivariate statistical analysis 

The interaction between sensing elements and analytes generate fingerprint patterns unique to 

each analyte and the core of an array-based sensor lies in converting these patterns into interpretable 

data. To achieve this, multivariate statistical analysis tools that systemically identify trends and 

predictability in data have been used. In general, there are two classes of statistical methods that are 

adopted for the analysis of cross-reactive sensor arrays: descriptive and classification methods28.  

Descriptive analysis employs unsupervised techniques, where the class of the analyte being detected 

(such as a protein, a cell line, or a disease state) is not specified and the analysis methodology is used 

to identify trends and extract elements that cluster the data as effectively as possible. This technique is 

unbiased towards the analyte class and therefore employs simple algorithms to describe general trends 

in the data. It provides a qualitative evaluation of the extent of separation between the classes and the 

relationship among the different classes identify redundant sensing elements. This type includes the 

Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) methodologies. 

While this approach is useful for evaluating overall trends in the dataset, it is less effective for making 

predictions, thus limiting the sensor's ability to predict unknown analyte patterns.  

In contrast, classification analysis uses supervised techniques that employ provided analyte class 

information to distinguish the fingerprint data according to these classes. An algorithm is developed 

from the primary ―training‖ dataset, which consists of samples with known class, which is then tested 

on an independent secondary ―test‖ dataset, where the class information is withheld from the model. 

The success in classifying this second dataset indicates the model's accuracy in identifying unknown 
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samples and is referred to as the "classification accuracy"11 The most common type is the Linear 

Discriminant Analysis (LDA) methodology. 

Thus, in general classification techniques are supplemented by initial descriptive analysis so as 

to optimize the sensor array before performing the classification of the tested analytes. The most 

commonly utilized statistical techniques for the analysis of array-based sensing data are discussed 

below37: 

Principal Component Analysis (PCA): 

This method reduces the dimensionality of a dataset by consolidating the data into eigenvalues and 

eigenvectors. The eigenvalues represent the variance, with the first principal component (PC) showing 

the maximum variance, followed by others with decreasing variance. Consequently, PCA consolidates 

the dataset into a lower-dimensional space and ranks the new dimensions by importance. Plots of the 

first few PCs facilitate easy visualization and interpretation of the high dimensional datasets15. Thus, 

this method is used to evaluate the importance of different receptors in the assay. A visual inspection 

of the PCA plot enables the detection of close clustering between data points that represent the same 

analyte, but also presents good separation between data points that represent a different analyte class 

(Figure 1.5). 

 

Figure 1.5: Schematic representation of PCA method of determining the center of the sensor data, 

projecting points onto a new vector, and calculating the maximum variance and thus best-fitting line, 

(adapted from Mitchell, L. et al.12). 

 

Hierarchical Clustering Analysis (HCA):  

This method clusters data points based on their relative distances, often using the Euclidean distance 

metric, which measures the distance between two data points in N-dimensions (N being the number of 

different sensor responses). In chemical array analysis, HCA groups analytes hierarchically based on 

differences in response patterns. This can be achieved through an agglomerative ("bottom up") 
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approach, starting with each data point as its own cluster and merging similar clusters (Figure 1.6), or 

a divisive ("top down") approach, starting with all data points in one cluster and splitting them until 

each data point is isolated. This results in a graphical representation in the form a dendrogram. When 

using this method, the researcher must interpret the clustering significance based on the sensing 

application, as the adopted algorithm is only capable of either merging or separating the data into 

clusters based on whether the approach adopted is agglomerative or divisive respectively. 

 

Figure 1.6: Agglomerative clustering uses the Euclidean or simple distance between data points in 

hierarchical clustering analysis as the basis for grouping the data points (adapted from Diehl, K. L. 

et al.37). 

 

Linear Discriminant Analysis (LDA):  

This method is used to classify data and assign unknown analytes to their appropriate classes. The 

method uses array data and analyte classes as inputs to calculate discriminant functions that maximize 

separation between classes while minimizing within-classes separation (Figure 1.7). A successful 

LDA plot shows good separation between different classes. For prediction, a training set with known 

analyte responses is provided to the algorithm. The algorithm learns from this set, enabling it to assign 

unknown analytes to classes based on response similarity to the training set, thereby determining the 

array's predictive power. 
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Figure 1.7: Schematic representation of LDA method of projecting points onto a new vector F1 that 

fulfills the criteria of maximizing the ratio of between-class to within-class variance (adapted from 

Mitchell, L. et al.12)   

 

Artificial Neural Network: This technique consists of layers that can be trained to produce a desired 

response pattern. It includes an input layer that is data from the array (e.g., fluorescence counts or 

RGB color values), one or more hidden layers which are user determined and are adjusted to suit the 

requirement of the sensor system, and an output layer which provides the desired analysis of the 

system (e.g., analyte identification). The training process involves the hidden layers which are 

adjusted to maximize the accuracy of the desired output from the given inputs. Once trained, the ANN 

can predict the identity of an unknown analyte based on its data set. An example of ANN includes 

support vector machines (SVM). 

 

Decision Trees and Random Forest Model: Decision trees are a supervised classification technique 

that mimics a tree structure, where the root and nodes serve as branching points. In decision trees, 

nodes correspond to specific attributes in a dataset, while the branches represent different value ranges 

for those attributes. These value ranges function as partitioning criteria, dividing the dataset based on 

the characteristic represented by each node. Decision trees are effective for handling non-linear 

relationships and interactions between variables, making them particularly useful in complex 

classification tasks. However, they are prone to overfitting, especially with noisy or small datasets43. 

To address the limitations of single decision trees, random forest model was developed, which 

combine multiple decision trees, each built on different subsets of the data and features. This 

ensemble method reduces overfitting and improves classification accuracy and robustness. In a 

random forest, each tree contributes to the classification, with the final class determined by majority 

vote. This method increases the model's stability and generalizability, making it a dependable choice 
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in discriminant analysis.  While decision trees offer a simple solution for discriminant analysis, 

random forests provide a more robust and precise alternative by combining the power of multiple 

decision trees. 

 

1.3. Supramolecular macrocyclic systems for sensing 

The field of Supramolecular Chemistry gained prominence following the Nobel Prize in 

Chemistry awarded to Lehn, Cram and Pederson in 1987, for their contributions in the development of 

structure-specific interactions of high selectivity44, advancing chemistry beyond the molecule. While 

the use of non-covalent interactions for sensing predates the formal establishment of supramolecular 

chemistry, the discovery and exploration of this field has further accelerated the exploration of 

supramolecular-based sensing systems. This led to the emergence of recognition-based sensing 

strategies that utilize non-covalent interactions and molecular recognition for sensor and analyte 

interaction.  The recognition-based sensors are further categorized based on the binding mode 

between the receptor (host) and the indicator (guest), which could be covalently or non-covalently 

linked. While the former involves a covalent connection between the indicators and the receptor, 

wherein analyte binding to the receptor results in output signal change, the latter  relies on  host-guest 

interactions among the receptor, the indicator, and the analyte, and embodies the popular chemical 

sensing method of indicator displacement assays (IDA)45. A variety of macrocyclic synthetic 

receptors including crown ether, cyclodextrins, calixarenes, cavitands, pillarenes and cucurbiturils, 

have been adopted for this purpose. The weak non-covalent interactions associated with these systems 

impart the feature of  reversibility, allowing convenient dissociation and reassembly of the 

supramolecular systems with minimal energy expenditure36. These systems in most cases are 

chemically stable and their cavity size, shape, number and directionality of interactions can be tailored 

in accordance with the supramolecular principles of complementarity, enabling structural recognition 

and preorganization for enhanced binding capabilities46. These molecular receptors have been 

extensively combined with fluorescent indicators due to the high sensitivity, convenience and rapid 

response time for real-time detection associated with fluorescence spectroscopy47.  

 

1.3.1. Structural properties of common macrocyclic host systems 

While numerous macrocyclic compounds have emerged since the first synthesis of crown 

ethers by Charles Petersen in 1967, four of these compounds have been extensively investigated: 

cyclodextrins (CDs) as natural macrocycles, and the other three artificial macrocycles, namely 

calixarenes (C[n]As), cucurbiturils (CB[n]s) and pillarenes. These adaptable compounds show 

considerable potential in various fields such as molecular separation, catalysis, sensing, disease 

diagnosis and drug delivery48–50. Particularly, they have gained considerable popularity in the 
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biomedical field on account of their excellent biocompatibility and capacity for designing stimuli-

responsive supramolecular sytems.49,51–53 

 

Figure 1.8: Chemical structures and structural illustration of common macrocyclic hosts: a) 

cyclodextrins, n = 1–3, b) calixarenes, n = 1–3, c) cucurbiturils, n = 5–8, 10, 13–15, d) pillararenes, 

n = 1–11 (adapted from Lou, X.-Y et al.54). 

 

The properties of the four most commonly investigated macrocyclic systems are given below 45,48: 

a) Cyclodextrins (CDs) 

This series of macrocyclic molecules, first isolated by Villiers in 1891 from bacterial starch digestion 

products55, comprises α-1,4 glycosidic bond linked oligosaccharides. They are produced in significant 

quantities through enzymatic degradation of α-glucosidase and α-amylase in starch precursors like 

potato, rice and corn, making them cost-effective for various applications. The most commonly used 

cyclodextrins (CDs) are α-, β-, and γ-CD, containing 6, 7, and 8 α-d-glucopyranose units, 

respectively. They have a truncated cone structure with two sides (primary & secondary) and a hollow 

cavity. The cavity size depends on the number of glucopyranose units, while all forms have a 

consistent depth of 0.78 nm with the hydroxyl groups of the glucopyranose units oriented outwards, 

making them highly hydrophilic. However, their hydrophobic interior cavity is covered by glycosidic 

oxygen and methinic C–H units, facilitating the complexation of non-polar molecules through 

hydrophobic and van der Waals interactions. This enables encapsulation of guest molecules in 

aqueous conditions. Their natural availability confers them with good water solubility, bioavailability, 

biocompatibility and non-toxicity towards biological systems,56,57 leading to extensive research on the 

preparation of CD-based supramolecular systems for biological applications.  
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b) Calix[n]arenes (C[n]As) 

Calixarenes represent the third generation of macrocyclic molecules following crown ethers and CDs. 

Synthesized from phenols and formaldehyde, CAs feature phenolic units linked by methylene bridges. 

Even-numbered C[n]As (n=4, 6, 8) are synthesized in a one-step process and are easily purified, 

making them widely studied. Odd-numbered C[n]As (n=5, 7, 9) are harder to synthesize and less 

common. CAs have a corn-shaped structure with a hollow cavity and two rims: a hydrophilic lower 

rim with phenolic oxygen and a hydrophobic upper rim with methyl groups. Their cavity sizes vary 

based on the number of phenolic units. The rims can be functionalized to tailor recognition properties 

towards specific analytes. Complex formation is driven by an array of forces including hydrophobic 

effects, π- π stacking, cation- π, CH- π and by hydrogen bonding and electrostatic interactions, which 

are enabled by modifying the substituent groups at the upper rim. Unlike CDs, the bare macrocycles 

are less usable for biomedical studies due to their lower solubility and higher hydrophobicity. 

Therefore, CAs are often modified by sulfonation, carboxylic acid conjugation and functionalization 

by polar groups to prepare water soluble forms58–60. These water soluble derivatives exhibit low 

toxicity and are biocompatible for biomedical applications such as drug solubilization, biosensing and 

nanomedicine
61–65

, thus serving as a viable alternative to CDs and having wide–range applications. 

 

c) Cucurbit[n]urils (CB[n]s) 

Cucurbit[n]urils are macrocyclic containers composed of glycouril units linked by methylene bridges, 

resembling the shape of a pumpkin. They feature two hydrophilic carbonylated rims and a 

hydrophobic cavity, with a consistent depth of 0.91nm across all members, while the diameter varies 

depending on the number of monomeric glycouril units. They distinguish themselves from other 

macrocycles by their remarkable host-guest binding constants, which surpass those of CDs and CAs66. 

The structural features of the CBs provide them with high affinity toward cationic guests67, while 

nonpolar fragments of the guest molecules are stabilized by complex formation within the 

hydrophobic cavity68. Additionally, positively charged species can be encapsulated by ion-dipole 

interactions facilitated by the carbonyl entry and hydrogen bonding between protonated molecules 

and the carbonyl portals. Variation in the portal size leads to different recognition properties among 

the different members. The remarkable host-guest properties of CBs allow them to interact with 

diverse analytes in aqueous media, including drug molecules, amino acids, peptides, carbohydrates, 

and proteins69. 

 

d) Pillar[n]arenes 

Pillararenes represent a new class of [1n] paracyclophane-like macrocycles developed by Ogoshi et 

al., in 2008. They are synthesized by the condensation of 1,4-dialkoxybenzenes with 

paraformaldehyde, resulting in hydroquinone units linked by methylene bridges at para-position. 

Pillararenes have a pillar-shaped structure with alkoxy groups at the edges of both cavities. Their 
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rigid, electron-rich structures and tunable cavity sizes make them excellent for molecular recognition 

applications70,71. In comparison to traditional hosts, pillar[n]arenes offer several advantages due to 

their highly symmetrical and rigid structures, which afford selective binding to guests. Furthermore, 

they allow for facile functionalization with different substituents on all benzene rings or selectively on 

specific positions, enabling the fine-tuning of their host-guest binding properties.  Their solubility in 

organic solvents further makes them a suitable supplement to CDs and CBs with comparable cavity 

size72. The versatility of functionalization of their aromatic units and their exceptional host-guest 

properties have propelled pillararenes into the spotlight, garnering increasing attention in the field of 

host-guest chemistry73,74. 

  

1.3.2. Differential sensing using macrocyclic host systems 

Recognition based sensors primarily utilize non-covalent interactions between the analyte and 

the recognition element of the sensor to facilitate detection. There has been a focused effort to identify 

new, simpler base materials for building such sensor libraries. Over the past few decades, 

supramolecular chemistry has emerged as a refined approach for building multifunctional materials, 

making it a preferred choice for the development of chemical nose sensor systems. The effectiveness 

of using macrocyclic host-guest systems for differential sensing has been illustrated in several 

examples in literature. These studies highlight the use of the broad-spectrum recognition properties of 

various macrocycles to enhance cross-reactivity and improve information extraction, leading to 

innovative applications and significant advancements in this field45.  These recognition-based sensor 

systems are further classified based on the nature of the binding mode between the recognition and 

transduction element as follows: 

 

Recognition-based sensing – covalently linked type 

The sensing systems formed by covalently linking the transducer to the macrocycle, demonstrates 

excellent stability and capability to detect analytes across a wide concentration range. It removes the 

dependence of their association on concentration, with a resistance towards dilution and competitive 

binding of non-target analytes75.  

The following section provides a few examples of this kind of system: 

 A fluorescent sensor array composed of calixpyrrole chemosensors embedded in hydrophilic 

polyurethane films was constructed for the detection of anionic carboxylate drugs. The sensors 

utilized a common octamethylcalix[4]pyrrole (OMCP) receptor covalently conjugated to seven 

different fluorophores. The structural design of the sensors initiates an intramolecular partial charge 

transfer (IPCT) cascade, due to the presence of electron withdrawing groups in the fluorophores  



Chapter 1 

 

35 

 

 

Figure 1.9: Illustration of recognition-based sensing, with covalent bonding between the fluorophore 

and the recognition receptor (adapted from Kr mer, J. et al.76).  

 

attached to the OMCP via a vinyl branch. The IPCT results in anion binding-induced changes in 

fluorescence, resulting in the detection of fourteen carboxylate drugs. In addition to these seven 

sensors, a tripodal turn-on fluorescent sensor prepared from (2,4,6-triethyl-1,3,5-trimethylamino) 

benzene with selectivity for aliphatic carboxylates and phosphates was employed to increase signal 

variability of the sensor array. This sensor remains flexible in the resting state, but forms a stable 

bowl-shape complex upon interaction with anions making it rigid and increasing the radiative 

dissipation of its excited state energy by fluorescence turn-on signals. Despite the seven chemosensors 

sharing similar receptor units, the varied covalently attached fluorophores facilitated the classification 

and quantification of the carboxylate drugs in human urine due to their differential responses77.  

 In the field of protein structure sensing, Agasti et al., have adopted a direct sensing strategy 

by synthesizing a library of CB[7] molecules covalently linked to a group of fluorescent dyes. This 

strategy leverages the optical response of the fluorophores to their nearby microenvironment when 

CB[7] recognizes the chemical and topological features of diverse protein structures. This sensor 

detected conformational changes in proteins and differentiated the diverse self-assembled forms of 

specific amyloid-β aggregates. Thus, providing a versatile platform for analyzing misfolding and 

aggregation states in pathology-associated proteins78.  

 A well-designed pillararene-based sensor array has also been developed using a similar 

covalent strategy for the recognition of highly similar neurotransmitters. Tian et al., created a 

supramolecular fluorescent probe where the upper and lower edges of pillar[5]arene were covalently 

modified with boric acid and coumarin-derivatized fluorescent recognition groups, respectively. This 

sensor was designed to discriminate three major categories of neurotransmitters namely catechol-type, 

monoamine-type, and charged neurotransmitters. The boric-acid-derived naphthalimide group 

interacts with catechol-type neurotransmitters through a condensation reaction, while the aldehyde-

based coumarin derivative forms a Schiff base with the monoamine-type neurotransmitters, and the 

charged neurotransmitters are attracted by the electron-rich cavity of pillarene through electrostatic 

interaction. This careful molecular design allows this single sensing molecule to generate different 
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fluorescence patterns at two wavelengths by means of these diverse interactions, facilitating the 

identification of neurotransmitters in biofluids, living neurons, and tissues79. 

 Other ―turn-on‖ sensors have also been developed using cyclodextrin derivatives where 

fluorescence increases by the formation of host-analyte complexes. These sensors use a rigid spacer 

between CDs and a fluorophore, preventing self-inclusion complexes and resulting in suppressed 

fluorescence due to the hydrophilic environment. When a hydrophobic guest molecule is included in 

the CD cavity, the fluorophore is positioned closer to a more hydrophobic environment, thereby 

enhancing its fluorescence emission. ―Turn-on‖ type fluorescent chemical sensors such as 4-amino-7-

nitrobenz-2-oxa-1,3-diazole-CD80, napthol-CD81 and hydroxyquinoline-CD81 conjugates have been 

well-studied.  

Recognition-based sensing – non-covalently linked (IDA) 

This approach employs the non-covalent interactions between macrocycle receptors, optical 

transducers and analytes. This mainly involves the indicator displacement approach (IDA) that has 

been the most commonly adopted strategy for differential sensing with macrocyclic systems. In a 

standard IDA setup, the receptor initially binds with an indicator to form the sensing ensemble. Upon 

introducing the analyte, the indicator is displaced from the ensemble. Typically, the free and bound 

indicators exhibit distinct optical properties (colorimetric or fluorescent), leading to a measurable 

signal change for the detection of analytes. 

 

Figure 1.10: Illustration of recognition-based sensing, with non-covalent interactions between the 

fluorophore and the recognition receptor (adapted from Kr mer, J. et al.76). 

 

 Hof et al., constructed a simple chemical sensor array using different sulfonated CAs and 

fluorescent dyes based on IDA. Two types of sensor arrays were developed either employing a single 

calixarene host PSC6 (p-sulfonatocalix[6]arene) and a dye molecule, or using a set of three calixarene 

hosts (PSC6, PSC4, and PSC4(Br)) and the dye molecule, with fluorescence fingerprints generated by 

varying pH and/or organic co-solvent conditions. These arrays were initially validated by the 

recognition of structurally similar lysines, followed by those with varying degrees of methylation, 

using dye displacement facilitated by incorporation of the modified lysine residues into the PSC 

through cation-π interactions incorporated. This sensor array has shown promise in distinguishing 



Chapter 1 

 

37 

 

lysine methylation statuses in synthetic peptides and histone peptides bearing trimethyllysine 

modifications but having different peptide sequences. Additionally, it effectively discriminates the 

post-translational modifications associated with arginine82. 

 Recent advancements in the use of self-folding and deep cavitands as synthetic receptors, 

have led to their use in cavitand-based sensing applications. A fluorescence displacement system with 

a self-aggregating and water soluble cavitand was proposed for detecting trimethylated lysine peptides 

and determining histone demethylase activity. The strong affinity between a tetracarboxylated 

cavitand and a selected fluorophore was employed for the selective detection of trimethylated peptide 

targets. Fluorescence quenching in this system arises from encapsulation by the macrocyclic cavitand 

and the aggregation of complexes, thereby bringing the fluorophore moieties into close proximity. 

The addition of trimethylated lysine was observed to cause a significant recovery of the fluorescence 

signal, allowing the systems to differentiate between unmethylated and trimethylated peptides, based 

on the replacement of hard NH3
+ ions with softer, less hydrogen-bonded NMe3

+. This characteristic 

further allows the system to monitor histone demethylation processes. Upon the introduction of a 

histone demethylase and its cofactors, the demethylation process causes a decrease in the observed 

fluorescence signal. The demethylated product has weak affinity for the cavity and cannot compete 

with the probe, thereby enabling the sensing of this process83,84.  

 The rapid identification and classification of nucleic acid secondary structures is both 

necessary and challenging. To address this, a deep cavitand-based sensor array was developed to 

differentiate G-quadruplex (G4) topologies. This innovative approach utilized five synthetic cavitand 

hosts and two cationic fluorescent dyes as reporter pairs, forming a 12-component sensor array. The 

dyes engage in a competitive binding equilibrium between cavitands and DNA, sometimes even 

forming a ternary complex with the dye, G4 and cavitand. These complex and cross-reactive 

interactions generate a unique fluorescence response for each G4 structure, allowing the easy 

differentiation of various topologies and even different G4 structures of the same fold type. This work 

introduces a novel concept in sensing, moving beyond the traditional IDA-based host guest 

complexation to include a wider range of recognition and sensing mechanisms, ultimately yielding 

more comprehensive and satisfactory results85. 

 A more recent example that is not based on the above described common macrocycles 

involves the use of an array of computationally designed de novo peptides as alternative synthetic 

receptors for differential sensing. These self-assembling α-helical barrels (αHBs) are oligomers of five 

or more helical peptides that form coiled structures with central solvent-accessible channels. These 

channels can be predictably altered in size, shape and chemistry and can contain environment-

sensitive dyes that fluoresce upon binding. When exposed to analytes, these dye-loaded barrels cause 

unique fluorophore displacement patterns. These fluorimetric fingerprints have been used to train 

machine-learning models that correlate the patterns with specific analytes for discrimination of 
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various biomolecules, drinks, and diagnostically relevant biological samples. While αHBs are similar 

to other synthetic receptors in their ability to bind various analytes, they also offer the advantages of 

being water-soluble, thermally stable, and reliably constructed based on design rules and established 

sequence-to-structure relationships. 

 In addition to these examples, the development of multifunctional units for sensor arrays has 

been a major advancement in the field. Coassemblies of cyclodextrins with various amphiphilic 

calixarenes have been utilized to create distinct receptors. Upon complexation with corresponding 

dyes, these receptors have been formulated into versatile sensing units. This type of sensing unit 

effectively combines the recognition and assembly properties inherent in supramolecular chemistry. 

The tunability of these sensing units, including component ratios and environmental factors, allows 

for the construction of numerous sensor array units using a limited number of compounds, 

significantly reducing the synthetic workload. The coassemblies incorporating two macrocycles 

exhibit heteromultivalent recognition, making them suitable for analyzing biological macromolecules 

and complex systems86. 

 

Fluorophore -appended macrocycle sensing or Intramolecular Indicator Displacement Assay 

(IIDA) 

In addition to these general sensing systems, there has been an emergence of a slightly different 

approach, involving covalent fluorophore-appended macrocycle sensor arrays. These arrays feature 

host-fluorophore conjugates which via a flexible linker form self-inclusion complexes. In the presence 

of a competitive guest, the fluorophore is excluded from the inside to the outside of the cavity. While 

the host-fluorophore conjugate exhibits strong emission properties in the self-inclusion state due to the 

encapsulation within the hydrophobic environment of the macrocyclic cavity, the exclusion of the 

fluorophore from the cavity to the bulk weakens the emission and generates a ―turn-off‘ response87. 

Cyclodextrin systems carrying covalently tethered fluorophores such as dansyl88, naphthyl89, pyrene90  

 

Figure 1.11: Illustration of intramolecular indicator displacement assays with covalent bonding 

between recognition receptor and fluorophore and non-covalent interaction based displacement of 

analyte (adapted from Kr mer, J. et al.76). 
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and anthracene91 have been extensively studied for a long time by many researchers and a number of 

such turn-off fluorescent chemical sensors have been reported.  

 More recently, Biedermann et al., have extensively developed this approach and have 

reported the use of the CB[7] macrocycle system for the development of such unimolecular host-dye 

conjugates with hydrophilic and flexible linkers. They firstly designed and synthesized novel CB[7]-

berberine chemosensors for the selective micromolar detection of Parkinson‘s drug amantadine in 

urine and saliva over potential interferents such as polyamines (cadaverine, spermidine, and spermine) 

or the steroid nortestosterone92. The study paved the way for the group to explore the use of this 

approach in designing differential sensing systems. They synthesized a novel nitrobenzofuran 

functionalized CB[7]-dye conjugate (CB[7]-NBD) that was reported for the differential sensing of 

fourteen bioorganic analytes via salt-adaptive behavior in biofluids such as urine, saliva and blood 

serum. The selectivity of this array was introduced and tuned by the addition of metal cations, which 

in combination with the non-charged and weakly binding NBD dye, can engage in secondary 

interactions when higher binding analytes are bound in the cavity of CB[7]. Unique response of the 

sensor-analyte complexes were observed upon the addition of different concentration and type of 

salts. This led to the development of a salt-addition assay, which could be transferable to other 

macrocyclic receptors with inherent inorganic anionic or cationic binding tendencies75.  

 This strategy was also adopted by Nau et al., for the development of a FRET-based specific 

DNA sensing system using CB[7] host covalently attached to a fluorescein dye as the energy acceptor. 

DAPI, a non-covalently bound dye and a known DNA minor groove binder, served as the energy 

donor. When DAPI was encapsulated within the CB[7] host, the close proximity of the tethered 

fluorescein resulted in FRET emission upon excitation at 360 nm. Upon addition of DNA, DAPI 

bound to the DNA instead of CB[7], disrupting the FRET process and altering fluorescence 

emissions. This macrocyclic system thus enabled the quantitative detection of DNA via ratiometric 

fluorescence sensing93. 

Thus, the diverse macrocyclic receptors exhibit rich binding characteristics, offering numerous 

opportunities for the development of array based sensing systems. The systems formed by covalently 

linking the optical transduction element to the macrocycle, eliminates the concentration dependency 

of their association, thereby enabling the detection of analytes across a broad concentration range. 

Conversely, non-covalent linkage-based sensing systems offer advantages such as compatibility with 

commercially available probes, modular construction, and enhanced adaptability for improved pattern 

recognition. Both types of macrocyclic sensing systems have been employed to detect and 

differentiate a variety of analytes, including ions, small molecules, and biological macromolecules. 

Thus, these growing advancements demonstrate the significant potential of macrocyclic receptors in 

designing and creating effective sensing platforms for a wide range of applications. 

 

 



Chapter 1 

 

40 

 

1.4. Biomedical application of array-based sensors 

The versatility of cross-reactive sensor arrays has resulted in their use across various fields, 

including the detection of explosives, monitoring of industrial effluents like volatile organic 

compounds, tracking environmental pollutants, and ensuring quality control of food, beverages, and 

drugs. However, this thesis will focus on the application of array-based sensing systems in the field of 

biomedical sciences, where numerous applications related to human health have emerged. 

The creation of reliable assays for recognizing multiple analytes using specific receptors is 

fundamental to the field of biomedical sciences. Conventional lock-and-key strategies that have been 

adopted include capture of the concentration of specific biomarkers or bioanalytes by enzyme-linked 

immunosorbent assays (ELISA), histopathology or bioimaging. These enzyme and antibody assays 

rely on the costly development of specific antibodies94,95 by the prior identification and clinical 

validation of pertinent biomarkers present in invasively or non-invasively collected biological 

samples. Emerging ―omics‖ methods applied to body fluids or biological specimens provide 

information on a large number of biomarkers or bioanalytes expression levels and, combined with 

bioinformatic tools, offer characteristic signatures useful for identification. However, these assays are 

time-consuming, expensive, and labor-intensive, often requiring modifications such as surface 

immobilization of biomarkers, that reduce their affinity and specificity96. Despite their theoretically 

high specificity, their performance often drops under unpredictable cross-reactive biological 

environments, including unprecedented variations in the target such as sequence changes, deletions or 

insertions.97 In contrast, selectivity-based array sensor systems use molecular receptors that are cost-

effective, easily scalable, and tunable for recognizing a wide range of targets. These systems offer a 

complementary yet powerful alternative to the use of antibodies, proteins and aptamers for molecular 

recognition98. A primary advantage of the differential sensing approach over traditional biosensors 

that target specific biomarkers is the potential to discriminate complex mixtures of analytes (as in the 

case of a mixture of odorant molecules). Notably, the selectivity of these synthetic receptors allows 

the possibility for the distinction of multiple structurally similar analytes from one another99–101. This 

is facilitated by the cross-reactivity of the sensing elements that form the sensor array, avoiding the 

challenges associated with designing high specificity based sensing elements. The differential sensor 

array considers the simultaneous interaction of multiple analytes with an entire system, enabling the 

monitoring of overall changes in complex mixtures, a feature which is particularly well-suited for the 

analysis of biological systems. Cross-reactive arrays have the advantage of also being hypothesis-free, 

where the individual interactions between sensors and analytes do not need to be fully understood to 

interpret results. This facilitates the rapid development of sensor arrays to address the analytical 

challenges in the field of biomedical sciences28. These sensing arrays have thus been adopted to 
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address more and more complexed challenges faced in biomedical applications, from protein 

discrimination to disease diagnostic, as reviewed below (Figure 1.12). 

 

 

 

Figure 1.12: Array-based sensing for biomedical applications: From protein detection to cellular 

profiling and tackling challenges of disease diagnosis in human body fluids. 
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1.4.1. Discrimination of basic biomolecules: Proteins 

Proteins are essential components of the human body, playing vital roles in maintaining various 

metabolic processes. Their physiological functions, such as recognition, enzymatic activity, ion 

transport, and signal transduction, highlight their importance. Their content, abundance and structure 

in human body fluids are finely tuned to preserve the physiological conditions of human beings. 

Abnormal protein concentration levels in biofluids such as blood, serum, urine or in cells and tissues 

provide essential information regarding the onset of a pathological condition. Thus, monitoring global 

protein changes is critical in medical diagnosis, staging, prognosis or treatment selection102,103.  

Therefore, the development of array-based sensors was initiated for the detection of these important 

biomolecules. The developed arrays have used fluorogenic sensors combined with various recognition 

elements to create unique response patterns upon binding of the target proteins. While some methods 

use multi-element cross-reactive receptors for pattern recognition, others create environment-sensitive 

sensor arrays that respond to changes in solvents, probe concentration, pH, or ionic concentrations. 

Additionally, multi-wavelength cross-reactive single-system sensors are also being employed104.  

In general, the detection of proteins using sensor arrays has been done in simple physiological buffers, 

where interference from other biomolecules is minimal. This allows the array to be trained in the 

detection and classification of a wide range of analytes under simple and straightforward matrix 

conditions. To stimulate the complex conditions found in biological mixtures, where multiple 

interfering bioanalytes, including non-target proteins, are often present in much higher concentration, 

sensor arrays have been tested with proteins spiked into more complex matrices such as human blood 

and serum samples. Furthermore, the detection of variable concentration ranges of individual proteins 

associated with disease states could also be effective for the identification and monitoring of progress 

of a disease state. In addition to monitoring individual protein levels, it is also crucial to detect the 

formation of misfolded proteins, their aggregates, and other higher-order structures, which could 

enable the early diagnosis of diseases associated with such protein structure abnormalities, like 

Alzheimer‘s disease78. Thus, the overall progress in array-based sensors has enabled the differential 

sensing of proteins under various practical conditions, addressing key challenges in biomedical 

research and clinical practice
104

. 

 

1.4.2. Discrimination and evaluation of cellular characteristics   

The absence of universal biomarkers due to perturbations such as disease or exposure to 

environmental stimuli makes characterizing cells challenging. The diversity and complexity of 

cellular surfaces along with their total bio-molecular content makes them ideal targets for array-based 

sensing, which is a crucial tool for understanding global proteomic changes, rapid diagnostic 

assessment and disease treatment. The key advantage being that once a training dataset is established, 

it becomes feasible to develop evaluation systems to identify cellular statuses that have not yet been 
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elucidated13. Array-based cell sensing successfully classifies a wide range of cells, including both 

prokaryotes like bacteria and eukaryotes11. 

Identification of cancerous cell subtypes: Diagnosis of certain cancers such as the aggressive triple-

negative breast cancer, is challenging due to the poor or absent expression of associated 

biomarkers105,106. Early and accurate diagnosis is essential for effective treatment, leading to the 

development of array-based sensors to detect and differentiate non-cancerous, cancerous, and 

metastatic cell lines, offering an alternative to traditional biomarker strategies. These systems have 

also been modeled to detect circulating tumor cells (CTCs), which are associated with cancer 

metastasis and have poor prognosis using conventional antibody-based techniques107. Sensor arrays 

have detected  these CTC‘s at low concentrations by spiking cancer cell lines into matrices with 

peripheral blood mononuclear cells108. While most array systems target cells with genotypic 

differences; by differentiating between different cancer cell lines or between metastatic and non-

metastatic lines, systems capable of discriminating cells from diverse genetic backgrounds as well as 

varying degrees of metastasis have also been tested11. 

Monitoring cellular differentiation processes of stem cells: Stem cells, known for their ability to 

differentiate into different cell types, are increasingly used in clinical trials, particularly in cancer 

treatment and regenerative medicine. They are steadily becoming fundamental in addressing 

challenges associated with modern medicine. Array-based sensors have been developed to non-

invasively detect these cells, including targeting cancer stem cells (CSCs). These cells form small 

solid tumors that possess stem cell characteristics like self-renewal, differentiation and tendency to 

populate new tumors. They remain resistant towards chemotherapy and cause the recurrence of 

tumors and metastasis, thus making them key therapeutic targets. While most cell sensing studies 

employ cell-damaging techniques to analyze cells, noninvasive analytical approaches which do not 

require analysis of cells directly are preferred. Therefore, characteristic components secreted by cells 

into the culture medium are being extensively used as analytes. These secreted molecules, collectively 

known as the "secretome," are crucial for identifying cellular characteristics109,110. Thus, pattern-based 

sensing systems have utilized this secretome to monitor cellular differentiation without damage to 

cells111. 

Cell-based screening for chemotherapeutics and therapeutic discovery: Cell-based screening 

methodologies are essential tools in drug discovery and risk assessments, offering a cost-effective and 

practical alternative to animal testing112. Cell viability assays predict cellular dysfunctions or death 

from acute drug exposure113, but long-term, low dose drug exposures cause subtler cellular 

modifications and phenotypic responses114. These phenotypic signatures serve as sensitive indicators 

of drug effects, surpassing conventional cell-viability and biomarker methods, which are costly and 

require multi-step processing, limiting their use in high-throughput detection115. Hypothesis-free array 
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based sensing enhances sensitivity to early and subtle phenotypic changes. Thus, this approach is used 

for high-throughput investigations in chemical safety assessments and for evaluating drug efficacy 

and off-target effects for drug discovery11. 

 

1.4.3. Discrimination and evaluation of body fluids for disease 

diagnosis 

Points of care (POC) diagnostics are rapidly expanding to create simple, portable, reliable and 

cost-effective bioassay readouts for clinical biomarkers/analytes. This approach aims to improve the 

efficiency and accessibility of healthcare with a gradual shift towards the realization of personalized 

medicine116. However, achieving this goal necessitates minimizing size and operational complexity 

while ensuring analytical efficiency meets clinically relevant detection thresholds. Developing 

comprehensive arrays for POC diagnostics requires detecting diverse biomarkers and analytes, each 

with dissimilar technical requirements. Ideally, the sensor design would rely only on one common 

technique for assay readouts, enabling direct analysis of body fluids such as blood, urine, saliva, sweat 

samples etc. with minimal user intervention and simple readouts for easy analysis. Most current 

clinical diagnostics fail to meet these criteria because conventional methodologies are often complex, 

labor-intensive, and require specialized training to operate expensive instruments117.  

The major analytes in diagnostics typically fall into three groups: proteins, nucleic acids, and small 

molecules. Of these, proteins like enzymes, antibodies, hormones are the commonly targeted as 

analytes in POC diagnostics. The low concentration of these protein biomarkers (pM-μM range) in 

various body fluids requires detection by methods like the enzyme-linked immunosorbent assay 

(ELISA), which has emerged as the gold standard over the past few decades, utilizing antibodies for 

their specificity and affinity. However, antibodies present challenges such as stability issues, 

variability between batches, and high production costs, limiting their suitability for POC assays. 

Therefore, there's a growing focus on approaches that enable high-throughput and simultaneous 

monitoring of multiple proteins rather than individual ones to ensure accurate diagnostics26,118. Thus 

cross-reactive sensor arrays have emerged as viable alternatives for high-throughput and hypothesis-

free detection of bio-analytes that stage a diseased state. Initial investigations utilized six different Au 

nanoclusters (NC) with varied surface properties and fluorescence characteristics to discriminate 

between proteins. This array was subsequently evaluated for clinical relevance by effectively 

distinguishing serum samples from breast cancer, rectal cancer, and healthy individuals without 

overlap119. Subsequent research has expanded on these findings, developing sensor arrays aimed at 

identifying, categorizing, and distinguishing various diseases in bodily fluids. 
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1.5. State of the Art: Biomedical Applications of array-based 

sensing  

 Rotello et al., have extensively developed array-based sensing strategies based on gold 

nanoparticles and polymers to address the biomedical applications discussed previously. Firstly they 

developed a prototype sensor using six cationic AuNP‘s with different structures and an anionic poly 

(p-phenyleneethynylene) (PPE) polymer (Figure 1.13a)25. The electrostatic complexation of the 

AuNP‘s and polymer results in the quenching of the polymer fluorescence through energy transfer 

(―OFF state‖). The addition of protein analytes disrupts the AuNP-polymer by competitive binding, 

leading to a recovery of the polymer fluorescence (―ON state‖). The differential interaction between t 

 

Figure 1.13: Schematic illustration of array-based sensors based on AuNP-fluorescent polymer/GFP 

conjugates. a) Competitive binding between protein and quenched polymer-AuNP complexes leads to 

the restoration of fluorescence b) Generation of fluorescence fingerprint response patterns for 

individual proteins. c) Competitive binding between protein and nanoparticle−GFP complexes 

leading to the fluorescence ‘ON’ state (adapted from Saha, K. et al.19). 

 

 

 

a) 

b) 

c) 
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the proteins and nanoparticles results in the generation of a fingerprint fluorescence response pattern 

for each protein (Figure 1.13b) that was characterized by LDA. Using the same principle, AuNP-

green fluorescent protein complexes were designed to detect and identify proteins at very low 

concentration (500 nM) in undiluted human serum (Figure 1.13c)118. Furthermore, the AuNP-

conjugated polymer systems have been employed for rapid and effective differentiation between 

normal, cancerous, and metastatic cells120–122. The fluorescence responses analyzed by LDA were 

capable of distinguishing (1) different cell types; (2) normal, cancerous, and metastatic human breast 

cells; and (3) isogenic normal, cancerous, and metastatic murine epithelial cell lines.  

 The group also reported an enzyme-AuNP conjugate based array for protein detection with 

improved sensitivity through enzymatic activity. In this approach the AuNP are combined with β-

galactosidase (β-Gal) through electrostatic interaction, inhibiting the β-Gal enzymatic activity. The 

addition of proteins, displaces the β-Gal from the AuNPs thereby restoring its enzymatic activity 

towards a fluorogenic substrate 4-methylumbelliferyl-β-D-galactopyranoside, resulting in an 

amplified readout of the protein analyte binding26(Figure 1.14). 

 

Figure 1.14: Schematic illustration of β-galactosidase (β-Gal) and cationic AuNPs based sensor 

array. The displacement of β-Gal from the β-Gal/AuNP complex by protein analytes, restores the 

catalytic activity of β-Gal toward the fluorogenic substrate 4-methylumbelliferyl-β-D-

galactopyranoside, resulting in an amplified signal for detection (adapted from Miranda, O. R. et al 

26). 

 

 To demonstrate the utility of array based sensing for profiling of the mechanism of 

chemotherapeutic drug action, they also developed a multichannel sensor platform. The sensor 

consists of a three-channel anionic fluorescent protein platform [Enhanced green fluorescent protein 

(EGFP), Enhanced blue fluorescent protein (EBFP), tandem dimer Tomato (tdTomato)] complexed to 

a cationic benzyl-functionalized AuNP. These complexes upon interaction with cells generate a turn-

on fluorescence signal by the release of the fluorescent proteins (Figure 1.15). This nanosensor has 

been utilized to screen 15 chemotherapeutics with different molecular mechanisms to generate a 
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training set of fluorescence fingerprints. The sensor displayed an overlap for drugs with similar 

mechanisms and could efficiently discriminate between apoptotic and necrotic drug groups. In 

addition, the sensor could also predict unknown mechanisms and determine mechanistic correlations 

between individual drugs and their combinations123 

 

  

Figure 1.15: a) Schematic illustration of three channel nanosensor fabricated from benzyl-

functionalized AuNP- fluorescence protein complexes b) Drug screening workflow adopted with the 

nanosensor array to generate fluorescence responses for pattern recognition. c) Heatmap and HCA 

performed on og-transformed average of the fluorescence responses, showing the degree of 

association of the tested drugs. d) LDA-based clustering of fluorescence responses of reference drugs 

(adapted from Rana, S. et al.124). 

.  

a) 
 

 

b) 

c) 
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 Furthermore, the group expanded the application of the array based sensors towards 

developing a robust, multiplexed fluorescent polymer-based sensor platform for detecting liver 

fibrosis from serum samples with clinically relevant accuracy (Figure 1.16). This sensor array is 

composed of a poly(oxanorborneneimide) (PONI) random copolymer scaffold featuring benzoate 

monomers for dye molecule conjugation. Three PONI-polymer sensing elements, each bearing 

pyrene, dapoxyl and PyMPO dyes, were utilized to generate a four channel sensor array from a single 

fluorescence measurement. The array displayed variations in fluorescence intensity upon the addition 

of protein analytes due to changes in pH, ionic strength and supramolecular interaction of the dyes. 

The array was initially tested for the successful identification of protein spiked in human serum 

samples. Subsequently, it was evaluated for its ability to fingerprint liver fibrosis from patient serum 

samples. A training model was developed for the diagnostic test of healthy, mild-moderate or severe 

fibrosis using a train set of 50 samples, achieving an accuracy of 60%, while the remaining 15 

samples of the test set were identified by the model with an accuracy of 66.7%. The robustness, 

accuracy and sensitivity of this array-based approach, without the need for complex instrumentation, 

makes it a favorable method as compared to other biomarker- based detection methods. Thus 

providing a new avenue for establishing a point-of-care disease diagnostic approach for liver 

fibrosis125. 

 

Figure 1.16: a) Schematic illustration of fluorescence fingerprint generation for discriminant 

analysis for liver fibrosis detection from serum-polymer interaction using an array based sensing 

approach. b) Polymer structure with three conjugated fluorophores and mechanism of action of the 

responsive fluorophores generating a four channel sensing array (adapted from Peveler, W. et al.125). 

 

 Agasti et al., utilized different fluorophore-labeled single stranded DNA (ssDNA) complexed 

with cationic surface-functionalized AuNPs to create a robust multichannel array-based sensing 

platform. The total protein content of cells in different states, obtained from lysates, interacts 

differentially with the cationic AuNP due to their unique surface amino acid residue signatures. 

    

 

 

a) 
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Initially, the interaction with the AuNP quenches the fluorescence of the ssDNA, but the presence of 

protein lysates competes with this interaction, regenerating the fluorescence fingerprint response. This 

enables the discrimination of cells based on their proteomic signatures. The identification of cell states 

by this multichannel sensor was further investigated by employing small-molecule autophagy 

modulators to induce alterations in the global cellular state. The high accuracy of discrimination 

obtained between inducers and inhibitors further demonstrated the potential of such multichannel 

sensing systems for high-throughput drug screening126. 

 

Figure 1.17: a) Schematic illustration of the operating principle of the turn-on unimolecular 

fluorescent ID probes. b) Schematic illustration of the Aβ aggregation states c) chemical structure of 

ID probe (2) d) the LDA map of the patterns generated by 2 upon interaction with the different 

aggregation states monitored at seven representative emission channels (adapted from Motiei, L. et 

al.127). 

 Margulies et al., initiated the development of unimolecular combinatorial fluorescent 

molecular sensors, termed as ID-probes that integrate various non-specific fluorescent probes that 

emit at different wavelengths onto a single molecular platform. The differential binding of analytes to 

the different fluorophores generate unique emission fingerprints (ID) for analyte identification and 

  

a) 

b) 
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classification (Figure 1.17a). A ID-probes consisting of an amino proline scaffold appended to three 

fluorophores, namely thioflavin T (ThT), sulforhodamine B (SRB), and sulfo-Cy5 (sCy5)  that serve 

as FRET donor, acceptor/donor and acceptor respectively was designed (Figure 1.17c). Two site-

specific amyloid recognition groups: bis-KLVFF peptide and thioflavin T (ThT) that can interact with 

Aβ aggregates were incorporated into the ID-probe128. The changes occurring in the various Aβ 

aggregation states were effectively differentiated in a single solution by this probe (Figure 1.17b, d). 

In addition aggregates that were generated from different alloforms, through distinct pathways or 

from distinct amyloidogenic proteins were also successfully discriminated128. The group also designed 

a unimolecular fluorescent probe that incorporated four fluorescent dyes (nitrobenzoxadiazole, Nile 

red, cyanine 5.5, and cyanine 7) and three specific binders for various protein families. This probe 

was synthesized to enable the analysis of specific protein populations in their natural environment and 

their combination in complex mixtures129. 

 Jiang et al., fabricated an array-based sensing system comprising of 12 fluorescent molecules 

developed using conjugated polymers (functionalized PPE units) and small molecular dyes (Nile red, 

anilinonaphthalene-8-sulfonic acid (ANS)). The interaction of the protein with these sensing elements 

via electrostatic and hydrophobic interactions perturbs their fluorescence properties, generating 

unique fingerprint patterns. While Nile red is sensitive to the polarity of its environment and interacts 

with the hydrophobic residues of the proteins, ANS majorly engages through electrostatic interactions 

between its negatively charged sulfonate groups and the positively charged amino acids of the target 

proteins. A proof-of-concept was established by testing this sensor with proteins known to be related 

with urinary diseases such as HSA, transferrin, lysozyme, IgG, myoglobin and acid phosphatase in 

physiological buffer. The sensor‘s fluorescence intensity fold change was analyzed by pattern 

recognition algorithms to generate a discrimination accuracy of 100%. Evaluating each sensing 

element's contribution to this performance allowed the original 12-unit sensor array to be optimized 

down to a 3-unit array. This optimized array was further utilized for the quantitative analysis of single 

proteins and protein mixtures (binary and ternary) in both PBS and urine, with good discrimination 

and correlation with varying protein concentrations. Subsequently, the array was applied to urine 

samples collected from clinical patients with different urinary disease such as tubular injury (TI), 

nephropathy (Nep), diabetic nephropathy (DN) and systemic lupus erythematosus (SLE) along with 

samples from healthy patients (Figure 1.18). The sensor array exhibited high accuracy of 

discrimination among the different diseases and enabled precise prediction of unknown urine samples 

in a blind test. This development marks a significant advance in non-invasive, point-of-care diagnostic 

technologies, offering a rapid, sensitive, and cost-effective method for detecting and monitoring 

urinary system diseases through the analysis of urine samples130. 
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Figure 1.18: a) Schematic illustration of the three-unit fluorescence sensor array which interacts 

differentially with proteins in urine to realize the discrimination of protein profiles of urine samples. 

Discrimination or urine samples from patients suffering from urinary system diseases and healthy 

people as presented by b) a LDA plot and c) hierarchical clustering dendrogram based on the 

fluorescence variations of the optimized sensor array with urine samples (adapted from Shen, Y. et 

al.130). 

 Shouzhuo et al., describe the creation of a multichannel fluorescence sensor array for sensing 

human gut microbiota using a recognition engineering strategy. The array employs antimicrobial 

agent (vancomycin, bacitracin, and lysozyme) functionalized gold nanoclusters (AuNCs) with 

different emission wavelengths and gluconamide-modified Ti3C2 MXenes (transition metal carbides) 

as signal reporters. Each antimicrobial agent targets specific components on bacterial cell walls, such 

as D-Ala-D-Ala moieties, pyrophosphate groups, and polysaccharides. Ti3C2 MXenes, a two-

dimensional nanomaterial, efficiently quench the fluorescence of nearby AuNCs through energy 

transfer due to their strong light absorption and excellent quenching effect. When the AuNCs and 

Ti3C2 MXenes are combined, their close interaction brought about by hydrogen bond interactions 

leads to fluorescence quenching of the AuNCs through energy transfer. In the presence of gut-derived 

bacteria, the fluorescence signals of the AuNCs change due to competitive binding between the 

AuNCs and bacteria towards MXenes (Figure 1.19a). The varying fluorescence responses create a 

discriminative fingerprint map of the gut microbiota using pattern recognition algorithms. This sensor 

array also successfully distinguished colorectal cancer (CRC) patients from healthy individuals in a 



Chapter 1 

 

52 

 

cohort of 20 samples, demonstrating its potential as a robust and simple platform for clinical analysis 

and cancer diagnostics (Figure 1.19b-d). 

 

 

Figure 1.19: a) Schematic illustration of multichannel fluorescence sensor array for gut microbiota 

sensing. b) Heat map and resulting HCA dendrogram of the fluorescence fingerprints of the feces 

samples from colorectal cancer patients and healthy individuals (C1-C4: sensor channels) c) 

Canonical score plot of LDA for the discrimination of individual CRC patients and healthy 

individuals. d) Receiver operator curve indicating the performance of the diagnostic ability of the 

sensor array towards CRC (adapted from Liu, Z. et al.131). 
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1.6. Conclusions 

Cross-reactive chemical nose sensing arrays have seen rapid advancements over the past few 

decades, greatly enhancing their ability for the identification and discrimination of structurally similar 

analytes in both simple and complex media. The hypothesis-free nature of this strategy has established 

its applicability as a mainstream tool for evaluation of analytes that are challenging to differentiate by 

conventional analytical methods. These chemical nose-based sensing arrays have been employed to 

create unique fingerprints of proteins, cells and for the diagnosis of diseased state from healthy ones. 

While traditional, specific sensing approaches continue to be fundamental to biological assays; array-

based sensing is gradually becoming more significant in biomedical sciences. The performance of 

these cross-reactive sensors are constantly being improved by the adoption of advanced design 

strategies and multifaceted statistical methodologies, offering benefits such as ease of operation, low 

cost and high-throughput detection. Nevertheless, there still remain few challenges that need to be 

addressed for these arrays to achieve versatile and practical applicability, and current research in this 

field is focused on overcoming these issues. 

 The fabrication of sensing elements that produce differential responses, along with the 

selection of appropriate statistical models, is crucial for the development of high-quality and efficient 

sensor arrays. The utilization of multivariate analysis to analyze developed probe designs will enable 

a better understanding of sensor design principles and will aid in the creation of more efficient cross-

reactive sensor receptors. The diversity of available chemical materials will benefit from this 

feedback, facilitating the extension of the sensor library. When combined with high-throughput and 

automated analytical platforms, this approach can be scaled up to the level of big data analysis, 

enabling the identification and classification of complex analytes. To translate this sensing technology 

to clinical settings, it is essential to combine the outputs of sensor arrays with specific sensors that 

employ antibodies, aptamers and similar specific recognition elements. Additionally, adopting 

―omics‖ methodologies is crucial for enhancing the applicability of this technology in clinical 

diagnostics. These integrations will lead to the understanding of what the sensor array is actually 

interacting with, leading to mutual improvements in both biomarker discovery and sensor array 

functionality. Such a strategy paves the way for large scale and rigorous screening for disease 

fingerprinting, which, when paired with robust statistical analysis, can yield more reliable 

conclusions. Finally, efforts are needed for the miniaturization and commercialization of these sensor 

arrays. This will enable the development of portable, accurate and integrated systems that will 

contribute to the transition from lab-based research to simple, robust, real-time point-of care 

diagnostics in clinical settings. Thus, while numerous challenges remain in this field of sensing, there 

are also exciting developments and promising science and technology waiting for the near future, with 

significant application potential in various fields including biomedicine, food safety, environmental 

monitoring and so on. 
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In this thesis, the synthetic host-guest interaction directed by the macrocycle cucurbit[n]uril has 

been employed to develop selective chemical nose sensor arrays for application in disease diagnosis. 

Chapter 2 explores the design, conception and characterization of a bimodal recognition driven 

fluorescence sensor array for pattern recognition of proteins. Chapter 3 will provide an overview of 

the statistical approaches and streamlined methodologies that will be adopted in the discrimination 

studies of the TPA-CB[n] sensor arrays. Chapter 4 addresses the use of the developed sensor for the 

optical fingerprinting of body fluids, establishing proof-of concept studies for diagnosis of disease 

models: Phenylketonuria (PKU) and Preeclampsia (PE). Chapter 5 highlights the preparation and 

optimization of analytical platforms for high-throughput sensing analysis. Chapter 6 delves into the 

further development of a colorimetric sensor array and its potential applicability in the discrimination 

of pharmaceutical products. Finally, Chapter 7 demonstrates the utility of a library of cucurbit[7]uril- 

fluorophore conjugates in developing a methodology study towards the diagnosis of SARS-Cov-2 in 

human serum. The final Chapter 8 provides an outline of the entire project and addresses the future 

perspectives of the project and the field of array-based sensing. 
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2.1. Introduction 

Array-based sensing has rapidly emerged as a useful approach for profiling macromolecular 

analytes in complex biosystems. This strategy requires the design of spatially separated sensing 

elements, each equipped with distinct recognition and transduction components, to provide multiple 

outputs required for fingerprinting various analytes. The recognition elements are expected to provide 

a broad spectrum of interaction modes with the analytes, while the transduction elements are expected 

to translate these binding interactions into interpretable output signals, thereby maximizing sensitivity 

to subtle changes in the complex patterns generated by different analytes. Thus, the core of chemical 

nose sensing lies in the meticulous and efficient design of the sensing elements to address specific 

analytical challenges. This design process is crucial for achieving non-specific, reliable and 

reproducible hypothesis-free sensing. 

Host-guest chemistry has evolved as a tool of interest to enable the development of such versatile and 

robust sensing elements for array- based sensing. Host receptors are engineered to interact with 

analytes through a range of non-covalent interactions, including hydrogen bonding, hydrophobic 

interactions, and electrostatic forces. The guest molecules, on the other hand, are modified to function 

as transducers in these systems. This modification typically involves incorporating optically active 

molecules, which can be either covalently or non-covalently linked to the macrocyclic receptors. This 

design allows for sensitive and effective real-time monitoring of fingerprints generated by the 

analytes. Consequently, the integration of host-guest chemistry into array-based sensing platforms 

offers improved flexibility in sensor design and adaptability to a wide range of analytical contexts. 

We propose to utilize the molecular recognition properties of the macrocyclic receptor family of 

cucurbit[n]urils as recognition elements, in combination with the conjugated system of triphenylamine 

derivatives as transduction elements to design and optimize an optical chemical nose sensing array 

with application in diagnosis of complex disease models. 

 

2.2. Macrocyclic family of Cucurbit[n]urils (CB[n])  

Cucurbit[n]urils (CB[n]) are a family of rigid macrocyclic host molecules formed by the 

condensation reaction between glycouril and paraformaldehyde under acidic conditions (HCl/H2SO4, 

80-100°C). This reaction was first reported by Eberhard Meyer and Robert Behrend in 1905132,133.  

However, it wasn‘t until 1981 that the product was crystallized from the condensation reaction, 

featuring glycouril with methylene groups acting as bridges between adjacent units134. The 

resemblance of this structure to a pumpkin (belonging to the cucurbitaceae family) resulted in the 

naming of this family as cucurbit[n]uril, with n indicating the number of glycouril building blocks that 

constitute the macrocycle. While CB[6] garnered significant attention in the 1980s and 1990s for its 
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ability to facilitate non-covalent binding, it was mainly between 2000 to 2002 that Kim135 and 

Day136,137 modified the existing reaction conditions and synthesised the other members of the family 

i.e. CB[5], CB[7], CB[8] and CB[10] (Figure 2.1). The modified synthesis under milder and 

kinetically controlled conditions yields CB[6] as the major product (~60%), while the other members 

are obtained in lower yields (CB[5] (~15%), CB[7] (~15%) and CB[8] (~5%)), along with trace 

quantities of other higher order members of the family138.  

 

Figure 2.1: Synthesis of CB[n] homologues by condensation of glycouril and paraformaldehyde. 

Space-filling models of CB[5] −CB[8] shows an increase in size while maintaining a constant height 

across the macrocycles (adapted from Barrow, S.J. et al.138). 

 

2.2.1. Structural and thermodynamic properties of CB[n] 

 Structural properties of CB[n] homologues 

 The CB[n] family features characteristic structural properties; they are highly symmetric 

pumpkin shaped structures with open ends. The two portals of the barrel structure are lined with 

ureido carbonyl groups that provide entry to the internal cavity which is hydrophobic in nature. CB[n] 

molecules possess an equatorial plane of symmetry, making the two portals identical, with the portal 

being almost 2 Å narrower than the middle of the cavity. This structural feature creates a constrictive 

environment ensuring the slow dissociation of molecules enclosed within the inner cavity139, whose 

size spans and exceeds that of the cyclodextrins especially in the case of higher members of the 
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family140. The electrostatic potential map of CB[n] displays high electron density along the carbonyl 

groups, highlighting their cation-receptor functionality. The absence of functional groups or electrons 

pointing towards the inside of the cavity explains the high hydrophobicity of the cavity141. The rigid 

structure of these macrocycles facilitates the easy measurement of the cavity parameters, where all the 

CB[n] (n = 5-8 and 10) have the same height at 9.1 Å, but show increasing width with increase in the 

number of monomeric units. This cavity enables the encapsulation of smaller guest molecules based 

on complementarity in size and volume with the CB[n] to form inclusion host-guest complexes. While 

the lower order homologues (CB[5], CB[6], CB[7]) form 1:1 binary complexes, the higher order 

members of the series form 1:2 homoternary or 1:1:1 heteroternary complexes. The host-guest 

complexes are stabilized by variable modes of interactions which are both polar and non-polar in 

nature. The polar interaction includes hydrophilic interactions such as ion-dipole, hydrogen bonding, 

dipolar interactions between the carbonyl groups and polar moieties of guest molecules, while the 

nonpolar interactions involve hydrophobic reactions of the cavity with hydrophobic guest moieties 

(Figure 2.2). 

 

Figure 2.2: Structural properties of CB[n] homologues depicting regions important for molecular 

recognition (adapted from Aleńković, M. and Ńekutor, M.142). 

 

Rebek and Mecozzi established the concept of packing coefficient (PC), representing the ratio of the 

size of the guest to the size of the host cavity volume, which is an estimate of the steric goodness of fit 

for the formation of host-guest complexes143. A PC value of 55% has been primarily identified to give 

the best binding affinities for the selected host-guest pair, while other values are associated with lower 

affinities. This concept has been successfully applied to predict the stability of CB[n] inclusion 
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complexes with representative sets of known guest molecules. An average value of 47% for CB[5], 

58% for CB[6], 52% for CB[7], and 53% for CB[8] were obtained, aligning with the ideal packing 

solution of 55%144.  

 Role of water in CB[n] host-guest complexation 

CB[n] has been exploited for applications in different fields of research based on their ability to 

form association complexes with various guests, including small molecules, drugs, amino acids, 

peptides, saccharides, dyes, hydrocarbons, per fluorinated hydrocarbons and even high molecular 

weight molecules such as proteins (e.g., human insulin)140,145. However, the first guest molecule that 

was proven to be experimentally encapsulated within the hydrophobic cavity of CB[6] was water. 

Depending on the specific member of the homologous series, CB[n] can form inclusion complexes 

with 2 (CB[5]) to 22 (CB[10]) water molecules. Various studies have highlighted  the significance of 

host-guest size complementarity, hydrophobic effect (entropic gain from water release upon binding) 

and ion- dipole interactions in rationalizing CB[n] complexation140,146,147. Despite this, the 

exceptionally strong binding of the CB[n] complexes, even with uncharged guests, remained unclear.  

 

Figure 2.3: Schematic illustration of release of high energy water molecules from the cucurbit[n]uril 

cavity upon binding of hydrophobic guest molecules (adapted from Barrow, S.J. et al.138). 

Biedermann et al., investigated the presence of additional factors, specifically the confinement of 

water molecules within the CB[n] cavity prior to guest inclusion. These confined water molecules 

possess properties that are very different from the bulk. These molecules exhibit high energy as a 

result of the limited tendency for hydrogen bond formation and due to the weak dispersion 

interactions with the weakly polar CB[n] cavity. In aqueous conditions the release of these high-

energy water molecules from the cavity of the host molecule upon complexation with a guest, 

primarily contributes to the overall hydrophobic nature of the CB[n] cavity and the high-affinity 

binding of such host-guest complexes. Molecular dynamic (MD) simulations and isothermal titration 

calorimetry (ITC) was adopted to demonstrate this solvent effect, highlighting, the release of 

enthalpically and entropically unfavourable high-energy water, from the CB[n] cavity upon host-guest 

complexation. This release of the frustrated water molecules to the bulk, increases the overall 
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enthalpy of the host-guest association (Figure 2.3), which is supported by the exothermic binding 

results obtained in the ITC titrations of CB[7] host with neutral solvents such as DMSO, DMF, 

acetone etc. 

 Thermodynamics of CB[n] host-guest complexation 

 The most remarkable feature of the CB[n]s is their high affinity for certain organic molecules, 

often exceeding the benchmark of the strongest non-covalent interaction ever measured of avidin-

biotin at approximately 1015 M-1 148,149.  

Binding enthalpy: While the subtler nature of CB[n] host-guest interactions with even neutral guest 

molecules was studied (ferrocene, adamantane and bicycle[2.2.2]octanes)150, it was observed that the 

enthalpy of interaction for the positively charged derivatives of these guests remained  nearly identical 

despite significant differences in their total charges. This phenomenon can be attributed to strong 

coulombic attraction between the positively charged substituents and the negatively charged CB[n] 

rims, counterbalanced by the loss of solvation energy upon host-guest binding. Thus, ion-dipole 

interactions in water are not the primary driving force of the host –guest interaction and the loss of 

solvation may or may not outweigh the coulombic attraction151. Additionally, the complementarity in 

the size and shape of the CB[n] and its guest favours van der Waals interactions, which have a much 

stronger and significant impact on the binding affinity. However, it should be noted that due to the 

low polarizability of CB[n], interactions between hydrophobic guests and the bulk should slightly be 

more favourable as compared to those with the cavity, and the dispersion interactions between the 

guest and the cavity are relatively weak. It has thus been suggested that the driving force for the host-

guest complexation is primarily the release of ‗frustrated‘ water molecules from the CB[n] cavity, 

representing a non-classical enthalpic hydrophobic effect144. This has been corroborated by the 

negative enthalpy of binding of some guests towards CB[7] as compared to CD‘s . 

Binding entropy: The change in configurational entropy upon host-guest complexation does not 

depend on the charge of the guest and the rigidity of the CB[n], with constrained encapsulation of 

guests leading to higher binding affinities151,152. While flexible guest molecules suffer from entropic 

penalties on complexation, more rigid guests display entropically favourable complexation.  For these 

guest molecules, the total binding entropy, as measured by ITC, becomes less favourable with the 

addition of positively charged units. Therefore, the contribution of configurational entropy can be 

disregarded, and the only parameter that has a drastic effect on the binding affinity is the difference in 

solvation entropy caused by ejection of water molecules from CB[n] upon guest binding. This 

observation diverges from the common enthalpy-entropy compensation model seen in most 

supramolecular systems, where gains in binding enthalpies are compensated by losses in binding 

entropies leading to narrower binding affinities147. This deviation is primarily observed in CB[7] 

systems resulting in broader range of binding affinities. 
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 Thus, in summary the high binding affinities observed with CB[n] are majorly due to: (1) the 

ability of guests and their substituents, especially positively charged ones that are close to the CB[n] 

portal to return as many hydration water molecules as possible to the bulk upon binding. This process 

is both enthalpically and entropically favourable, (2) the structural rigidity of the CB[n] and some 

select guest molecules, (3) the minimal loss of solvation energy upon encapsulation and (4) the 

favourable ion-dipole interactions between positively charged guest and the carbonyl rims of the 

CB[n]153. Thus, the calculations for ultrahigh binding affinity guests show a high enthalpic gain over 

negligible and negative entropic effect making the molecular recognition process by the CB[n] 

thermodynamically favourable154. 

 

2.2.2. Properties of CB[n] for sensing applications 

 The members of the cucurbit[n]uril family have been extensively studied for their utility as 

chemical sensors. In such systems there exists a thermodynamic equilibrium between the bound and 

free states of CB[n] and the amount of complex formation depends on the concentration and affinity 

of CB[n] to the analyte of interest. Given that most organic analytes of biological interest such as 

proteins, peptides, hormones, DNA, drugs typically occur in aqueous media at the concentration range 

of mM to nM, CB[n] based sensors with affinities generally within this range are well-suited for the 

detection of these analytes. These CB[n] macroycles possess unique properties that facilitate their use 

for sensing applications155: 

1. High affinity hosts: The CB[n] family exhibits high binding affinities that are typically in the range 

of 103 – 109 M for various organic molecules. As discussed in detail earlier, this can be attributed to 

the release of water molecules from the confined hydrophobic cavity upon binding of different guest 

molecules and ensures their interaction with a variety of analytes. 

2. Charge selectivity: Organic molecules that possess complementary size–wise fit into the cavities of 

the different members of the CB[n] family tend to have appreciable affinities in water. Exceptions are 

mainly observed in the case of guests with negatively charged groups, which are not stabilized by ion-

dipole interactions with the carbonyl portals of CB[n]. Therefore, the macrocycles possess higher 

affinities for positively charged analytes as compared to the neutral ones, often by a factor of 10-100. 

3. Size selectivity: The rigid structure of CB[n] allows for constrictive and size-selective binding of 

analytes, which is crucial for designing selective sensors.  

4. Fast Kinetics: To facilitate the development of sensors for diagnostic applications, it is essential to 

adopt systems that have rapid response times to shorten assay periods and enable faster reaction 

monitoring for point-of-care applications. The rate of complex formation with CB[7] and CB[8] have 

been observed to be fast (~107 M-1 s-1), falling short by only 2-3 magnitudes with respect to the 

diffusion limit of 109 M-1 s-1. Although some tight complexes with CB[6] exhibit slower kinetic rates, 

using higher members of the homologous series can improve the kinetics. 
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5. Wide applicability: The members of the CB[n] family exhibit several other beneficial properties 

that are practically relevant to their use in sensor development. Firstly, the CB[n] are inert to a number 

of common chemicals, enabling their use in a wide range of reaction media, including medium at 

different pH levels, and in the presence of cofactors/co-reagents. They are also redox-inert, making 

them suitable for the setup of redox-based sensing systems for redox-active analytes. Additionally, 

they are photochemically inert, allowing their use in sensing applications involving the presence of 

strong light sources and lasers. Importantly, CB[n]‘s have been identified as biologically non-toxic 

and can be adapted for use in biologically relevant conditions.  

6. Functionalization with transducers: For the design of an effective sensor, the CB[n] mediated 

complexation of an analyte has to be coupled to a transducer. Kim et al., pioneered the 

functionalization of CB[n] with reactive functional groups to improve solubility and enable the 

synthesis of tailor-made CB[n] derivatives156. This advancement aided in the covalent conjugation of 

optical transducers like fluorophores, to the spectroscopically dark CB[n]. Additionally, with non-

modified CB[n], the use of spectrally active guest molecules as transducers by indicator displacement 

or associative binding assays (ABA) has widened the scope of utilizing CB[n] for development of 

CB[n]-based sensing strategies.  

 However, the nature of the coupling adopted for the sensor design is often limited by the 

inherent characteristics of each member of the CB[n] family. CB[5] has a smaller cavity size, limiting 

its ability to bind a narrower range of guest molecules. In contrast, CB[7] has a larger cavity size, 

making it capable of binding a wider variety of guests. It is also water-soluble and more amenable to 

chemical functionalization. On the other hand, CB[6] and CB[8] present challenges due to their lower 

solubility, which complicates functionalization efforts. Therefore,with regards to the size of the cavity  

CB[6] and CB[7] are preferred for developing IDA sensors, while CB[8] uniquely enables the design 

of ABA systems with 2:1 host-guest complexes157. 

 

2.2.3. Analyte binding properties of CB[n] homologues 

While the general properties of CB[n] that make them suitable as recognition elements were 

covered in the previous section, the specific variations in these properties among different family 

members and how these variations influence the selection of analytes they can potentially interact  

with are discussed in detail below: 

Binding properties of CB[5] : CB[5] is the smallest member of the cucurbit[n]uril family, with a 

portal diameter of 2.4 Å and a cavity volume of 82 Å3. Consequently, CB[5] primarily encapsulates 

gas molecules such as noble gases, methane, ethane and small molecules like methanol and 

acetonitrile. Crystallographic evidence also supports the encapsulation of chloride or nitrate ions. The 

carbonyl groups along the portals also allow CB[5] to bind cationic species, facilitating the formation 

of portal complexes with alkali, alkaline earth and ammonium cations, in addition to 
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hexamethylenetetramine which acts as a lid on the carbonyl portals. Due to its inability to bind large 

organic molecules, CB[5] is well-suited for the development of size selective gas sensors. However, 

these CB[5] sensor systems still lack appropriate signal transduction mechanisms for effective sensor 

set-ups.  

 

Binding properties of CB[6] :  

The next member of the series, CB[6], is the most abundant homologue, featuring a portal diameter of 

3.9 Å. It is known to bind both aliphatic and aromatic hydrocarbons along with small cyclic and 

polycyclic aromatic hydrocarbons. However, its insolubility in organic solvents and sparing solubility 

in water constrains its application in sensor designs. Despite this, it most commonly forms stable 

compounds with aliphatic amines, where strong electrostatic interactions with the carbonyl portals and 

the release of water molecules from the cavity stabilize the formed complexes. Thus, the most stable 

complex is formed for an optimal length of the aliphatic chain, such that the amine groups remain 

positioned in close proximity to the portals. The surrounding medium significantly influences the 

complex formation by CB[6]. Higher stability is observed in the solution phase as compared to the gas 

phase, due to the additional H-bonding with water molecules in solution, whereas in the gas phase, 

only ion-dipole interactions are predominant. Further, in the gas phase, the guest molecules undergo 

structural distortion to maximize the ion-dipole interactions with the portal, however this requirement 

is compensated in solution through H-bonding. Thus, CB[6] is best suited for binding small organic 

molecules or large organic species with suitable side chains. 

Binding properties of CB[7] :  

The third member of the family, CB[7], possesses a larger cavity that allows it to form inclusion 

complexes with bulkier guest molecules beyond the simple aliphatic chains and gas molecules 

typically encapsulated by CB[5] and CB[6]. With a portal diameter of 5.4 Å, cavity diameter of 7.3 Å 

and cavity volume of 279 Å3, CB[7] can encapsulate a broader range of guests while exhibiting highly 

favorable binding parameters. They are general binders for most organic compounds and display an 

appreciable affinity for the aromatic side chain residues of peptides and proteins (Tryptophan (Trp), 

Tyrosine (Tyr) and Phenylalanine (Phe)). The binding affinities within the CB[n] family are highest 

for CB[7] due to its excellent cavity-filling effects, which facilitate the expulsion of high-energy water 

molecules from the macrocyclic core. However, CB[7] is not preferred for guests that are too small, as 

this leads to incomplete water release from the cavity, or for very large guests that cause steric 

repulsion. Additionally, CB[7] has significantly higher water solubility (30 mM) compared to other 

family members, making it more suitable for developing cucurbit[n]uril-based sensors. Though not an 

ideal representation of the entire family, CB[7] also exhibits a good degree of biocompatibility as 

demonstrated in studies that have highlighted the binding of CB[7] to a range of biologically relevant 

molecules such as peptides, proteins, dyes, neurotransmitters at sub-nanomolar concentrations. 
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Binding properties of CB[8] :  

CB[8] is 1.7 times larger than CB[7], with a cavity volume of 479 Å3, and its binding parameters 

parallel those of other members of the family. They display strong binding affinities towards bulky 

amphiphilic positively charge guest molecules, including natural and artificial steroids and drug 

molecules. Due to their larger cavity, CB[8] encapsulates guests with larger aliphatic chains by the 

formation of U-shaped conformations, whereas in CB[7] a significant portion of the guest molecule 

remains protruding outside the macrocyclic cavity. Additionally, CB[8] possesses the unique ability to 

bind two guest molecules simultaneously within its cavity, resulting in the formation of homo (2:1) 

and hetero-ternary (1:1:1) complexes with appropriate guest molecules. These features make CB[8] 

particularly useful in designing complex sensor systems that require the detection and analysis of 

larger and more complex molecules 

 While the CB[n] family offers extensive and valuable properties for its role as a recognition 

element in the proposed sensor array, it remains crucial to evaluate new optical transducer elements in 

the context of developing an effective sensor design. These transducer elements must thus be capable 

of interacting with CB[n] receptors and providing appropriate transduction for fingerprint generation, 

facilitating the identification and discrimination of target analytes. Therefore, a group of conjugated 

triphenylamine derivatives have been considered as suitable optical transduction elements. 

 

2.3. Triphenylamine derivatives: structure and properties 

2.3.1 Structural properties  

Vinyl-triphenylamine derivatives (TPA‘s) are a group of fluorogenic molecules recognized for 

their high two-photon absorption properties. They feature a central triphenylamine electron-rich donor 

core, with two or three conjugated linkers terminating in acceptor groups. The molecular geometry of 

central TPA is influenced by two opposing forces: the resonance stabilization of the π-electron system 

and the steric repulsion between protons of adjacent phenyl groups. While resonance stabilization 

promotes the delocalization of π-electrons, favoring a planar structure with D3h symmetry, the steric 

repulsions are mitigated by tilting away from the molecular plane. This results in a propeller-like 

structure with C3 symmetry, making the phenyl-substituted branches non-coplanar and forming a 

three-dimensional configuration. This unique structure is highly sought after for the design of π-

conjugated systems with non-linear absorption properties158. The central core of the TPA exhibits 

unique radical characteristics and significant steric hindrance. The lone pair on the central nitrogen 

atom contributes to the role of TPA core as a donor, while the addition of electron acceptor groups at 

the branches induces strong intramolecular charge transfer. This enables the formation of octupolar 

structures in the three-branched derivatives and V-shaped structures with a strong quadrupolar 

character in the two-branched derivatives159 (Figure 2.4).  
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These derivatives are synthesized by functionalization of the TPA core by classical cross coupling 

(Heck, Sonogashira) or Wittig reactions, allowing the creation of versatile π-conjugated  

 

 

Figure 2.4: General structure of quadrupolar and octupolar structure with D-π-A branches based on 

triphenylamine donor core exhibiting intramolecular charge transfer transitions (adapted from 

Mantooth, S.M. et al.160).  

 

multi-branched systems with diverse optical properties. However, these synthesized derivatives with 

extended π-conjugated systems, are large in size and water-insoluble, which is often considered to be 

a significant drawback for their use in biological applications primarily as imaging probes. In this 

context, small cationic electron acceptors have been introduced at the terminals of the branches, 

which not only help in maintaining a relatively modest size but also improve overall water 

solubility161. The most commonly incorporated cationic acceptors include π-deficient heteroaromatic 

rings such as pyridine, quinoxaline, 1,3,5-triazine, benzimidazole and triazole moieties162. 

 

2.3.2 Photophysical properties 

 The vinyl linkers that connects the donor to the acceptors, plays a crucial role in determining 

the photoluminescence properties of TPA derivatives by imparting a certain degree of conformational 

flexibility to the system. This flexibility influences how the molecule behaves upon photoexcitation, 

where the excited state can relax through two primary pathways: radiative processes, such as 

fluorescence emission, or through non-radiative mechanisms like internal molecular rotation. The 

latter typically occurs around the σ-bonds of the vinyl linkers, which are particularly sensitive to the 

surrounding microenvironment of the probe. The degree of intramolecular rotation around these bonds 

can significantly affect the optical properties of the TPA derivatives. By altering the 

microenvironment—such as changing the solvent viscosity or synthesizing more rigid molecular 

frameworks—the intramolecular rotation can be restricted. This phenomenon, known as restriction in 

intramolecular rotation (RIR), is critical as it directly modulates the optical properties of the molecule. 
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Enhanced RIR often leads to increased fluorescence efficiency, as it reduces the non-radiative decay 

pathways, allowing more energy to be released as light. Therefore, controlling the flexibility of the 

vinyl linker and the surrounding environment is essential for fine-tuning the photophysical behaviour 

of these compounds for specific applications. 

.  

2.3.3 Interactions with (bio)molecules            

 Interaction with DNA: The incorporation of cationic groups as terminal acceptors in the TPA 

derivatives not only enhances the solubility but also provides a functional motif that is well-suited for 

interacting with the grooves of DNA double helices, facilitating these derivatives to function as DNA-

binding probes. The absorption of the TPA-based octupolar systems TP-1Py, TP-2Py and TP-3Py 

with one, two or three arms terminating in pyridinium moieties were investigated by Allain et al., in 

the presence of duplex DNA. The study revealed that the interaction with DNA induces significant 

fluorescence enhancement in TP-2Py and TP-3Py, accompanied by red shifts in absorption maxima, 

clearly indicating the binding of these TPA derivatives to DNA. The observed DNA-induced 

fluorescence enhancement was attributed to restriction in intramolecular rotation (RIR) caused by the 

stacking or anchorage of the TPA molecules within the DNA grooves. This anchorage immobilizes 

the molecule, thereby reducing its internal flexibility and enhancing fluorescence. Additionally, the 

sequestration of the probe within the hydrophobic grooves of DNA, away from the polar aqueous 

environment, likely contributes to this fluorescence increase, as highly polar solvents such as water 

are known to significantly reduce quantum yield values.  

Interestingly, it was also observed that the bis and tris derivatives exhibit similar binding affinities 

with the DNA duplex, suggesting that only two branches are buried within the DNA, while the third 

arm of the tris derivative remains outside the helical structure. This remaining arm undergoes 

rotational de-excitation, leading to reduced quantum yields for TP-3Py compared to TP-2Py. Based on 

the shape of the TPA derivatives, it was proposed that these molecules are likely to be involved in 

surface binding by inserting into the minor grooves of the DNA, which is typical for arc-shaped, 

nonplanar molecules. However, partial intercalation of the extra helical single branch of the tris 

derivative cannot be entirely ruled out
161

. 

Interaction with proteins:  Dumat et al. demonstrated that the introduction of variable terminal 

acceptor groups could regulate the affinity of the derivatives towards other biomolecules like proteins 

(human serum albumin). This interaction was accompanied by an enhancement in fluorescence 

quantum yield and a blue-shifted emission wavelength.159 Gong et al., reported a ~ 40- fold 

enhancement of their triphenylamine-based all-organic compounds upon addition of proteins like egg 

albumin and fetal bovine serum (FBS).163 The rationale behind this behaviour was elucidated through 

numerical docking simulations, suggesting that this observation results from the TPA derivative being 

enclosed within the hydrophobic core of bovine serum albumin.  
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 Interaction with macrocycles: More recently, attempts have been made to utilize host-guest 

complexation with different macrocyclic hosts like cyclodextrin and cucurbit[n]uril, to impose a 

structural confinement of fluorogenic guest molecules to suppress non-radiative relaxation and 

improve the luminescence quantum yield and the lifetime of the photoexcited states164. This strategy 

was extended to the TPA derivatives and the secondary ammonium salts of a TPA derivative was 

probed for its ability to form inclusion complexes with CB[7], β-CD, and dibenzo-24-crown-8 by 

monitoring the emission response of the TPA derivative165 (Figure 2.5a). Further, a 1–

naphthylmethylamine terminated TP derivative has been reported for its characteristic inclusion 

complex formation with CB[7] and β-CD hosts. These complexes exhibit a rare dual emission 

property in solution at room temperature, with a lower and higher energy band arising from a locally 

excited state and an intramolecular charge transition respectively. The formation of two distinctly 

different inclusion complexes based on the different host shapes, electrostatic surface potentials and 

cavity polarities results in dissimilar luminescence properties166 (Figure 2.5b). 

 

Figure 2.5: Schematic illustration of  a) restricted conformational flexibility of TPA mediated by host-

guest formation with hosts CB[7], β-CD, and dibenzo-24-crown-8 (adapted from Mandal, A.K. et 

al.165), b) Tuning emission responses of a TPA derivative with a 1–naphthylmethylamine acceptor 

group by host-guest complexation with CB[7] and β-CD, resulting in an unusual dynamic inclusion 

phenomena (adapted from Gangopadhyay, M. et al.166). 

 

 Thus, the integration of TPA derivatives as optical transducers with CB[n] receptors 

provides a comprehensive sensor design that could be further investigated and optimized to develop 

the proposed sensor array. 

 

a) b) 
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2.4. Results and Discussion: TPA-CB[n] fluorescent array-based 

sensor 

2.4.1. Design strategy for construction of sensor array 

Herein, our sensor array was designed initially by utilizing the macrocyclic host CB[n] as the 

recognition element and a library of TPA derivatives as the transduction elements.  

TPA, featuring terminal positively charged acceptor groups, encapsulate within the hydrophobic 

cavity of CB[n] via host-guest interactions. This encapsulation provides the structural confinement 

needed to enhance radiative de-excitation by RIR, thereby promoting the function of the TPA as 

optical transduction elements. It enables the TPA to be engaged in competitive indicator displacement 

assays in the presence of analytes, further modulating their optical properties and generating a distinct 

optical response that is characteristic of the interacting analytes and suitable to design a sensor array.  

While alternative dye molecules could have also been utilized for this purpose, the structure of the 

TPA derivatives was hypothesized to undergo partial encapsulation within the CB[n] cavity, thereby 

providing uncomplexed regions as additional binding sites for analytes. This feature leverages the 

tendency of TPA derivatives to interact with biomolecules like DNA or proteins and, hence, provides 

an orthogonal recognition scaffold for interacting analytes.  

By exploiting this possible bimodal interaction of the TPA derivatives and their complex with CB[n], 

we hypothesised the possibility of bringing additional modes of interactions for the analytes while 

doubling the number of output channels for each sensing element of the sensor array (TPA and 

TPA+CB[n]), by retaining a limited number of sensing elements in the array (Figure 2.6).  

 

 

Figure 2.6: Schematic illustration of bimodal recognition of analytes using a macrocyclic 

fluorescence-based sensor array. Fluorescence emission of TPA is modulated sequentially by 

restriction in intramolecular rotation first by TPA alone and then by TPA-CB[n] host-guest complex.  
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2.4.2. Diversity of library of triphenylamine derivatives  

The recognition elements of the proposed sensor array were selected from an available library 

of TPA derivatives synthesized by Dr. Delphine Naud-Martin from the team of Dr. Florence 

Mahuteau-Betzer (Institut Curie) (Table 2.1). 

 

Table 2.1: Chemical structures and diversity of the library of TPA derivatives used for the 

development of fluorescence based sensor array. 

 

Name Structure Name Structure 

TP_2Pyo 

 

AcriPy 

 

TP_3Pyo 

 

Acri_3Py 

 

DV_2Py 

 

PhenazPy 

 

DV_3Py 

 

SulfoxPy 

 

 

A variety of donor cores, including the fundamental triphenylamine backbone, along with the 

acridane, phenazasiline and phenothiazine derivatives were evaluated. The atoms added to the central 

core of these derivatives play an important role in determining their photophysical properties, as 

indicated by molecular modeling calculations conducted on a few quadrupolar members of the library. 

The study revealed that the major contribution to the charge transfer transition of these derivatives 

from the ground state (S0) to the first excited state (S1) comes from the HOMO to LUMO transition. 

While the electronic density of the HOMO is predominantly located on the donor core, the LUMO is 

located on the branches of the derivative. This remains consistent with the quadrupolar design of the 
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A-π-D-π-A system. Since the energy levels of the LUMO in these systems shows only slight 

variations, the energy difference (ΔE) of the HOMO-LUMO gap is primarily influenced by the energy 

of the HOMO.Although the shape of the HOMO is similar across these derivatives, the inductive 

effect of the atoms added to modify the central core significantly determines the ΔE and, 

consequently, the absorption wavelength of the corresponding derivative. For instance, the inductive 

effect of the electron-attracting groups of phenothiazine derivatives lowers the energy of the HOMO 

orbitals, while the electron-donating groups of triphenylamine, acridane and phenazasiline tend to 

increase their energy. This results in a larger HOMO-LUMO energy gap for the former, accompanied 

with a decrease in the maximum absorption wavelength and a corresponding decrease in the HOMO-

LUMO energy gap for the latter, with an associated increase in the maximum absorption wavelength. 

Furthermore, this variation in absorption wavelength inversely affects the fluorescence quantum yield, 

leading to corresponding changes in the brightness of the respective TPA derivative167. This variation 

in photophysical properties essentially facilitates the introduction of diversity in the sensor units by 

the generation of differential optical outputs across a wide range of emission wavelengths. This, in 

turn, is known to improve the differentiating index of the array168, potentially offering more 

information on sensor-analyte interactions, without the overlapping of generated optical outputs.  

These central donor cores are coupled through vinyl linkers that vary in length, featuring single or 

double C=C bond to the terminal pyridinium acceptor moiety either at the ortho- or para- positions. 

The binding of the organic cationic group of pyridinium derivatives with the CB[n]‘s has been well-

studied169. For instance in CB[6] complexes with alkylpyridinium cations, the alkyl chain is 

encapsulated within the cavity, while the charged nitrogen interacts with the carbonyl portals170,171. 

Similarly, CB[7] forms inclusion complexes with the alkyl chain of 4-naphthyl-N-alkylpyridinium 

cations172 and one of the alkyl chains of dialkyl-4,4′-bipyridiniums (viologens) when the alkyl chain 

are longer173. For derivatives with bulky substituents linked to the pyridinium ring N atom, CB[7] 

encapsulates only the pyridinium ring, whereas CB[8] fully encapsulates the large guest174. 

Furthermore, CB[8] can bind a pair of stacked N-benzylpyridinium175 or 4-aryl-N-

methylpyridinium176 derivative guests in its cavity. Studies on the complexes of such bulky 

pyridinium cations with CB[7] and CB[8] has led to the conclusion that the CB[n] hosts encapsulate 

these guests or shuttles along them, depending on the substitution of the bulky pyridinium moiety, the 

length of the alkyl chain of the guest and the cavity size of the host177,178.  

Additionally, the number of branches also contributes to the diversity of the TPA derivatives, as 

observed in the interaction with DNA. The host-guest encapsulation of the TPA with CB[n] could 

result in the encapsulation of all or just some branches of the bis and tris derivatives, leaving behind 

un-complexed branches that may contribute to additional interactions with analyte molecules and 

enhance the bimodal recognition properties of the sensor array system. 
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 Thus, these structural properties of the selected TPA derivatives significantly contribute to their 

ability to function as effective guests for complexation with cucurbit[n]urils and play a crucial role in 

the development of an efficient fluorescence-based sensor array. 

 

2.4.3. Characterization of TPA-CB[n] complexation 

Then, we  experimentally investigated the interaction of the library of TPA derivatives with the 

macrocyclic family of the CB[n]‘s165,166,179,180. The host-guest complexation between TPA and CB[n] 

was expected to be driven by hydrophobic interactions between the inner cavity of CB[n] and the 

aromatic moieties of TPA, as well as ion–dipole interactions between the carbonyl groups lining the 

CB[n] portals and the protonated amines of TPA. The TPA-CB[n] interaction was anticipated to 

constrain TPA and influence the process of electron-transfer in the excited states, resulting in tuneable 

photophysical properties, such as shift in absorption wavelength and enhancement of fluorescence 

quantum yields181. We, therefore, evaluated the photophysical characteristics of the library of TPA 

derivatives with three different members of the CB[n] family, CB[6], CB[7] and CB[8], using UV-

visible and fluorescence spectroscopy.  

 

2.4.3.1 Modulation of TPA absorbance properties by complexation 

with CB[n] 

We firstly analysed the absorbance spectra of the eight free TPA (5 µM) derivatives followed 

by their complex with CB[n]‘s (150 µM) scanned over a wavelength range of 400-650 nm in aqueous 

solution. A distinct absorption band was observed for the different TPA derivatives, which can be 

attributed to the triphenylamine-based π-π* transition, with high molar extinction coefficient around 

50,000 M-1 cm-1 and wavelength maxima between 430 to 490 nm. The absorption maxima remained 

unchanged in the presence of CB[6] (Figure 2.7), suggesting a lack host-guest complexation, possibly 

due to the larger size of the derivatives as compared to the size of the hydrophobic cavity of CB[6].  

However, a significant red-shift in the absorption maxima wavelength was observed in the presence of 

CB[7] (~25-40 nm) and CB[8] (~60-70 nm), a hallmark indicating the formation of host-guest 

complexes (Figure 2.8, 2.9). This could be attributed to the strong electron absorbing effect of 

carbonyl in the CB[n] hosts, which can neutralize the positive charge of the pyridinium. This 

neutralization enhances the electron-withdrawing away from the triphenylamine core, inducing the 

spectral red-shift. Meanwhile, between CB[7] and CB[8], the larger cavity of CB[8] could potentially 

enable the encapsulation of two TPA derivatives within its cavity, leading to a stable aggregation of 

the guests to form a π-π complex and resulting in a more pronounced red-shift. The variation in the 

absorbance properties for the library of TPA derivatives is provided in Table 2.2. 
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Thus, the distinct modulation in the absorbance properties of the TPA derivatives leads to two 

key conclusions. Firstly, the wavelength shift confirms the successful host-guest complexation of 

TPA with CB[7] and CB[8], while no such complexation is observed  with CB[6], as indicated by the 

negligible wavelength shift in the absorbance spectra of the TPA‘s with CB[6]. Secondly, a 

significant wavelength shift was observed for the TPA complexes with CB[8], and this large shift was 

identified as an ideal feature for the development of a differential sensor array. This insight led to the 

development of a colorimetric sensing array that exploits the variation in the absorbance properties of 

selected TPA- CB[7] and TPA-CB[8] systems. The details of this colorimetric array will be discussed 

in Chapter 6 of this thesis. 

 

Table 2.2: Shift in absorbance maxima of TPA derivatives upon complexation with CB[6], CB[7] and 

CB[8] 

 

Name 
λ max(abs) 

(TPA) 

Δ λ(abs) 

(TPA+CB[6]) nm 

Δ λ(abs) 

(TPA+CB[7]) nm 

Δ λ(abs) 

(TPA+CB[8]) nm 

TP_2Pyo 460 nm 0 40 66 

TP_3Pyo 452 nm 0 42 60 

DV_2Py 488 nm 0 23 60 

DV_3Py 486 nm 18 21 62 

Acri_3Py 486 nm 0 40 60 

PhenazPy 472 nm 0 42 67 

AcriPy 486 nm 0 39 71 

SulfoxPy 430 nm 8 27 44 
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Figure 2.7: a) UV-visible absorbance spectra of library of TPA derivatives scanned over wavelength 

range of 400-650 nm. Blue trace corresponds to the absorbance spectra of free TPA derivative at (5 

µM) while the red trace corresponds to the complex of the respective TPA derivative with CB[6] (150 

µM). 

 

Figure 2.8: a) UV-visible absorbance spectra of library of TPA derivatives scanned over wavelength 

range of 400-650 nm. Blue trace corresponds to the absorbance spectra of free TPA derivative at (5 

µM) while the red trace corresponds to the complex of the respective TPA derivative with CB[7] (150 

µM). 
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Figure 2.9: a) UV-visible absorbance spectra of library of TPA derivatives scanned over wavelength 

range of 400-650 nm. Blue trace corresponds to the absorbance spectra of free TPA derivative at (5 

µM) while the red trace corresponds to the complex of the respective TPA derivative with CB[8] (150 

µM). 

 

2.4.3.2 Modulation of TPA fluorescence emission properties by 

complexation with CB[n] 

We then proceeded to analyze the fluorescence emission spectra of the TPA library with the 

CB[n] hosts. To ensure a consistent comparison of fluorescence enhancement with the three CB[n]‘s, 

and considering the observed subtle or pronounced bathochromic shift in the absorption wavelength 

induced by complexation, we selected the isosbestic wavelength between the absorption spectra of 

TPA and TPA-CB[n] complexes as the excitation wavelength for the fluorescence emission 

measurements. The fluorescence emission spectra of the TPA derivatives in the presence of the CB[n] 

hosts showed variable responses. CB[6] induced a negligible change in fluorescence intensity (Figure 

2.10). A small increase or even a decrease was observed in the presence of CB[8] (Figure 2.12). This 

behaviour could be explained by the possibility that, initially, the addition of CB[8] to the solution of 

TPA leads to the formation of a 2:1 complex, accompanied with an increase in fluorescence emission. 

However, this enhancement reaches its maxima at a specific concentration of CB[8] beyond which the 

fluorescence emission is often decreased due to the prevalence of 1:1 complexes as opposed to 2:1 

complexes when CB[8] is present in excess. This shift in complexation may trigger complex 

photophysical mechanisms that alter the fluorescence properties of the TPA derivatives resulting in 

the observed behaviour. In contrast, a significant fluorescence enhancement was monitored in the 
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presence of CB[7] (~5-50 fold) suggesting efficient encapsulation of TPA‘s within CB[7] for the 

formation of a 1:1 complex,  leading to enhanced restriction in intermolecular rotation and higher 

radiative de-excitation (Figure 2.11).  The superior fluorescence enhancement of TPA derivatives 

depicted in the investigation of the photophysical properties, coupled with the better water solubility 

criterion, established CB[7] as the optimal choice for the complexation of TPA‘s in the context of 

developing a fluorescence-based sensor array. The variation in the fluorescence properties for the 

library of TPA derivatives with CB[7] is provided in Table 2.3. This sensor array will be discussed in 

detail in the remainder of this chapter, as well as in Chapter 4 and Chapter 5 of this thesis. 

 

Table 2.3: Shift in fluorescence emission maxima and extent of fluorescence enhancement of TPA 

derivatives upon complexation with CB[7]. 

 

Name 
λ isosbestic  

(nm) 

λmax(ems) 

(TPA) (nm) 

λ max(ems) 

(TPA+CB[7]) 

(nm) 

Δ λ(ems) 

Fluorescence 

enhancement at  

λmax(ems) 

(TPA+CB[7]) 

TP_2Pyo 471 664 644 -20 21.5 

TP_3Pyo 472 660 658 -2 18.8 

DV_2Py 487 764 701 -63 7.5 

DV_3Py 497 714 704 -10 7.4 

Acri_3Py 497 676 654 -22 3.4 

PhenazPy 486 660 640 -20 38.7 

AcriPy 497 680 665 -15 29.7 

SulfoxPy 444 590 552 -38 36.7 
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Figure 2.10: Normalized fluorescence intensity recorded at the emission maxima of the TPA 

derivatives at 5 µM in the presence of CB[6] at 150 µM. Excitation wavelengths correspond to 

isosbestic point indicated in Table 2.3. Blue trace corresponds to the emission spectra of free TPA 

derivative while the red trace corresponds to the complex of the respective TPA derivative with 

CB[6]. 

 

Figure 2.11: Normalized fluorescence intensity recorded at the emission maxima of the TPA 

derivative library at 5 µM in the presence of CB[7] at 150 µM. Blue trace corresponds to the 

emission spectra of free TPA derivative while the red trace corresponds to the complex of the 

respective TPA derivative with CB[7] . 
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Figure 2.12: Normalized fluorescence intensity recorded at the emission maxima of the TPA 

derivative library at 5 µM in the presence of CB[8] at 150 µM. Blue trace corresponds to the 

emission spectra of free TPA derivative while the red trace corresponds to the complex of the 

respective TPA derivative with CB[8]. 
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2.4.4. Construction and characterization of a fluorescent based sensor 

array 

 Constructing an optimized sensor array requires careful consideration of factors like the 

dimension of the sensor array, the sensitivity of the output signals and the chemical diversity among 

the recognition elements. This ensures that the sensor array is equipped to interact with analytes by 

multiple binding modes to ensure identification and classification of even subtle variations among 

analytes in complex sensing conditions. 

2.4.4.1. Selection of TPA-CB[7] sensing elements  

  

 After the initial optical characterizations, the most promising candidates were selected from the 

eight members of the TPA library. This selection was based on the degree of their fluorescence 

enhancement properties and the chemical structure of their acceptor/donor scaffolds.  

The enhancement of the fluorescence intensity of each TPA derivative upon addition of CB[7] was 

monitored and the derivatives with the maximal fluorescence enhancement during host-guest 

complexation were selected (Figure 2.13b). This significant enhancement was expected to provide a 

higher signal-to-noise ratio and reduced background signal to account for the possible decrease in 

fluorescence in the presence of analytes with higher binding affinities that could engage in 

competitive displacement of the TPA derivatives.  

The DV_2Py and DV_3Py derivatives, featuring two double bonds along their vinyl branches were 

not selected due to their limited fluorescence enhancement with CB[7]. This could be attributed to the 

greater ease of rotation around two double bonds as opposed to one, which reduces RIR and 

consequently, fluorescence enhancement. This narrowed the selection to the two remaining 3-arm 

derivatives, TP_3Pyo and Acri_3Py. Additionally, two 2-arm derivatives, PhenazPy and Sulfoxy, 

with the highest fluorescence enhancement were also selected. Notably, the 3-arm derivatives 

provided an ortho (TP_3Pyo) and a para (Acri_3Py) terminal methyl pyridinium derivative to the 

sensor array (Figure 2.13c), that most likely introduce diversity in the extent of interaction within the 

CB[7] cavity based on their different binding affinities and, consequently, influence the displacement 

in the presence of the analyte molecules.  

The photophysical and CB[7] binding properties of this optimized sensor array was further 

investigated to establish the suitability of these TPA-CB[7] pairs for the development of the 

macrocyclic fluorescence based sensor array. 
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Figure 2.13: a) Schematic illustration of fluorescence enhancement resulting from the restriction in 

intramolecular rotation provided by the host-guest interaction of TPA derivatives with CB[7]. b) 

Normalized fluorescence intensity recorded at the emission maxima of the TPA derivative library at 5 

µM in the presence of CB[7] at 150 µM. c) Chemical structures of the triphenylamine derivatives 

selected for the optimized sensor array. 

 

2.4.4.2. Optical characterization of optimized sensor array 

To further elucidate the differences in the nature and strength of the intermolecular forces 

driving the host-guest complexation, it is essential to determine the dissociation constants (Kd) of the 

TPA-CB[7] complexes. This information is crucial for understanding the range of binding affinities of 

various target analytes that can be considered to facilitate the design of efficient IDA systems. 

We firstly examined the effect of addition of increasing concentration of CB[7] on the absorption of 

the four selected TPA derivatives. The main absorption peak for TP_3Pyo, Acri_3Py, PhenazPy and 

SulfoxPy was observed at 452, 486, 472 and 430 nm respectively. With the maximal addition of 250 

µM of CB[7], the peak position of the absorbance maxima was shifted to 488, 524, 512 and 458 nm 
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with a Δλ value of  36, 38, 40 and 28 nm accompanied with change in colour of the aqueous solution 

(Figure 2.14). 

 

Figure 2.14: UV-visible absorbance spectra of a) TP_3Pyo, b) Acri_3Py, c) PhenazPy and d) 

SulfoxPy in the presence of increasing concentration of added CB[7] ( serially diluted from 250 µM 

to 0.9765 µM). Blue trace corresponds to the absorbance spectra of free TPA derivative at (10 µM) 

while the red trace corresponds to the complex of the respective TPA derivative with CB[7] at 

maximum concentration (250 µM). 

   

This was followed by the fluorescence titration of the derivatives in order to estimate a range of 

magnitude of dissociation constants for the corresponding TPA-CB[7] complexes formed. The global 

dissociation constant Kd (Figure 2.15, middle panel) can be extracted from the fluorescence plot and 

Kd of the TPA derivatives with CB[7] were determined to be 95.07 μM, 37.79 μM, 14.84 μM and 

8.13 μM with 95% confidence intervals of [77.19 to 118.90], [21.03 to 72.41], [12.16 to 18.17] and 

[6.08 to 10.93], for TP_3Pyo, Acri_3Py, PhenazPy and SulfoxPy respectively.  

We observed that the two-arm derivatives, PhenazPy and SulfoxPy have a slightly lower Kd as 

compared to the three-arm derivatives. In addition, the higher Kd of TP_3Pyo as compared to 
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Acri_3Py could be ascribed to the higher affinity of the terminal para substituted pyridinium in 

Acri_3Py as compared to the ortho substitution in TP_3Pyo. The Kd of the TPA-CB[7] complexes fall 

within the micromolar range, which indicates a sufficiently high affinity of the TPA for CB[7] as 

compared to other possible low binding interferents. This desired range, ensures an effective 

competition between TPA and potential bioanalytes, as expected in a typical IDA, with the 

equilibrium maintained at an ideal balance between a higher concentration of TPA-CB[7] complex in 

the absence of the analytes, while allowing for a possible displacement of TPA in the presence of 

analytes with higher affinity155. We further compared these obtained Kd values to the values extracted 

from the EC50 determination, which represents the concentration of CB[7] required to complex half 

of the TPA binding sites, irrespective of the stoichiometry (Figure 2.15, far right panel) and obtained 

similar values. A comparison of the Kd values obtained from the fluorescence titrations of the TPA- 

CB[7] complexes are presented in Table 2.4. 

  

Table 2.4: Dissociation constant and EC50 values determined for the host-guest complexation of 

TPA-CB[7] sensing elements . 

 

 Kd (μM) 

95% 

Confidence 

interval 

EC50 (μM) 

95% 

Confidence 

interval
 

R
2
 

TP_3Pyo 95.07 77.19 to 118.90 54.03 
48.18 to 60.70 

 
0.9945 

Acri_3Py 37.79 21.03 to 72.41 30.52 
22.32 to 42.13 

 
0.9525 

PhenazPy 14.84 12.16 to 18.17 11.22 
9.539 to 13.20 

 
0.9864 

SulfoxPy 8.13 6.08 to 10.93 5.88 
4.522 to 7.656 

 
0.9608 

 

 

Based on these experiments, the concentration of the TPA derivatives for the sensing was maintained 

at 5 μM to facilitate the fluorescence measurement variation in the presence of several analytes in 

multiple replicates to ensure efficient statistical analysis for analyte classification and discrimination. 

Fluorescence titrations with CB[7] at this TPA concentration revealed a saturation of fluorescence 
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enhancement around 125 μM, thus prompting the selection of a concentration of 100 μM for all 

subsequent analysis. 

We further utilized the fluorescence titrations to analyse the stoichiometry of the TPA-CB[7] 

interactions using the continuous variation method. This method better known as the Job plot has been 

a common method to determine the stoichiometry of interactions during the process of host-guest 

complexation. However recent concerns from various groups have challenged the utility of this 

method in analysing supramolecular binding interactions, especially those involving the formation of 

more than one type of complex at equilibrium182–184. These challenges were evident in our results 

when applying this method to the TPA-CB[7] system. While theoretically, the formation of CB[7] 

complexes could reach a maximum of 2:1 or 3:1, based on the number of terminal pyridinium groups 

available in the multi-branched 2-arm and 3-arm systems respectively, we failed to obtain Job plots to 

support this, particularly for the 3-arm derivatives. Therefore, the Job plot can only be used for 

additional positive confirmation once the equilibrium association constants for both 1:1 (K1) and 1:2 

(K2) host-guest complexes have been established by other titration experiments and it is not suitable 

for analysing more complex supramolecular systems like the TPA-CB[7] system. Thus, we have 

explored the utilization of other methodologies to establish the various parameters associated with the 

TPA-CB[7] host-guest binding interactions. 
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Figure 2.15: Fluorescence titration of a) TP_3Pyo, b) Acri_3Py, c) PhenazPy and d) SulfoxPy (5 µM) 

by CB[7] (250 – 3.96 µM serially diluted). Middle panel represents the corresponding binding 

isotherms obtained by plotting the fluorescence enhancement I/Io versus concentration of CB[7] for 

determination of dissociation constant (Kd). Far right panel represents EC50 determination from full 

dose-response curves of the TPA derivatives. 
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2.4.4.3. Determination of binding parameters by Isothermal titration 

calorimetry (ITC)  

Introduction              

The process of host-guest binding is fundamentally a molecular association phenomenon, 

resulting in either the release or consumption of heat from the surrounding environment. These 

energetic variations can be measured and provide valuable insights into the characteristics of the 

interaction185. Isothermal titration calorimetry (ITC) has emerged as a powerful technique that offers 

comprehensive thermodynamic185 and even kinetic186 profiling in a single experiment. ITC requires no 

chemical modifications, allowing for direct measurement of the binding constant, stoichiometry, and 

heat of reaction. Additionally, ITC provides indirect access to other thermodynamic parameters such 

as entropic binding contributions and Gibbs free energy187. It is essentially suitable for determination 

of binding  

 

Figure 2.16: a) Schematic illustration of an isothermal titration calorimeter. b) Titration profile 

generated for an ITC experiment. The recorded power is plotted as a function of time, with each peak 

representing the heat generated upon injection of the ligand into the receptor solution in the 

calorimetric cell or vice-versa (upper panel). The titration curve is generated by the integration of 

peaks, depicting the heat of binding as a function of molar ratio (lower panel). Non-linear least-

squares analysis allows determination of the parameters ΔH, n, and Ka (adapted from Song, C. et 

al.188 and Callies, O. et al.189 ). 

 

 

a) b) 
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affinities in the micromolar to nanomolar range190. The general procedure of the experiment consists 

on the titration of ligand aliquots into a receptor solution, and the heat that is released (exothermic 

reaction) or taken up (endothermic reaction) is monitored in relation to a reference cell (Figure 2.16a). 

To further resolve cooperativity challenges, primarily observed in macromolecules, reverse titrations 

are also performed to produce reliable results191.  

The output of the ITC experiment is represented as a plot of power required to maintain constant 

temperature as a function of time, with each peak indicating the thermal effects caused by the 

injection of the ligand to the receptor solution (or inversely). The area under each peak represents the 

heat energy changes upon injection. As the titration progresses and the binding site become more 

saturated, the heat variations decrease. When the titration reaches adequate saturation, the observed 

peaks with constant values will ultimately represent only the corresponding dilution heats, which are 

used for background analysis of the binding data (Figure 2.16b). The available raw data needs to be 

fitted into a suitable model that considers the nature of the ligand-receptor interaction. This fitting 

process is typically performed using the Wiseman isotherm (Equation 1). Wiseman et al.192 

demonstrated that a parameter, c, defined as the product of the binding affinity Ka and the 

concentration of receptor or ligand [cell] in the calorimetric cell, must fall within the range of 1 to 

1000 for the reaction to be accurately characterized by ITC.   

The variable n denotes the number of binding sites per molecule in the ITC cell device or the 

stoichiometry of binding interactions.                                                       

                                                                                                                                                  (1) 

The integration of the generated peaks provides a titration curve from which various thermodynamic 

and kinetic properties can be derived. The amplitude of the peaks is proportional to the enthalpy of the 

interaction (ΔH), the inflection point indicates the corresponding stoichiometry (n), and the slope 

yields the binding affinity (Ka) or dissociation constant (Kd = 1/Ka) in case of sigmoidal titration 

curves (Figure 2.16b). Using the van‘t Hoff relationship, the Gibbs free energy can also be determined 

based on its link to Ka (           ). Interpreting the calorimetric data reveals the nature of the 

physical phenomena driving the ligand-receptor interaction. Large favourable enthalpic contributions 

are primarily attributed to van der Waals interactions, hydrogen bonding, or electrostatic interactions, 

while unfavourable enthalpic contributions are associated with the desolvation of polar groups. Large 

entropy contributions indicate changes in the solvation of lipophilic and/or hydrophobic groups, 

which originate from the release of water molecules from the binding pocket upon complexation. 

Conversely, conformational changes that involve the loss of degrees of freedom are generally 

unfavourable in entropic terms193. While conventional crystallography techniques enable the study of 

bimolecular interactions between receptors and ligands, a deeper analysis of the binding affinity 

among the species is elucidated from the thermodynamics of the association. 
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 Therefore, ITC has emerged as a suitable tool to analyse host- guest complexation by directly 

measuring the binding enthalpy and the binding affinities in addition to the stoichiometry of the 

formed inclusion complexes. 

 ITC titrations of TPA derivatives and CB[7 

 Thus, to determine these parameters and assess the stoichiometry of interaction we performed 

direct titrations by injecting CB[7] into the ITC device cell containing TPA derivatives in triplicates, 

establishing the binding enthalpy per mole of CB[7]. The raw ITC data was analysed by two or three 

site binding model i.e. the "ABBB three symmetric sites model", the "ABB two symmetric sites 

model", and the ―AB heteroassociation model‖.  The quality of the models employed for analysis is 

represented by curves calculated from average value of the three replicates in each thermogram at a 

confidence interval of P=95% (Figure 2.17). Initially, the TPA thermograms were analysed with 1:3 

and 1:2 binding models. 

 

Figure 2.17: Isothermal titration calorimetry of TPA derivatives by CB[7] at 25°C and titrations 

curves calculated with one binding site (TP_3Pyo, Acri_3Py, PhenazPy) or two binding sites 

(SulfoxPy) from average values. Inset represents the raw thermogram. 
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However, cooperativity factors between the symmetric binding sites had to be refined to fit the data. 

This resulted in high negative cooperativity between the first and subsequent binding sites, which had 

very low affinities to be reliably titrated.   

Consequently, the thermograms were analysed with a 1:1 binding model except for Sulfox-Py which 

had two titratable CB[7] binding sites. We hypothesized that the binding of CB[7] at the first site 

modified the electronic and structural properties of the TPA derivatives at the remaining sites. Indeed, 

the partial delocalization of positive charge from a terminal pyridinium group towards the core 

nitrogen atom can stabilize the first binding of CB[7] by electrostatic interactions with positively 

charged nitrogens of the pyridinium and of the central core. The first binding results in an asymmetric 

distribution of positive charges, which in turn prevents charge delocalisation from the subsequent 

binding sites. This hypothesis also implies a partial sp2 hybridization of the central nitrogen and 

creation of a rigid molecular skeleton with a planar structure, which favours charge delocalization at 

all the terminal pyridinium moieties (Figure 2.18). Considering the complete TPA library, it is 

noteworthy to analyse that the tricyclic core are more prone to higher affinity for CB[7] (Table 2.5). 

Regarding TP_3Pyo, its lower affinity could result from the restriction due to the steric hindrance by 

the proximity of the ortho hydrogens on the phenyl substituents of the central nitrogen, and due to 

unfavourable entropy of binding well characterized by ITC.  Interestingly, the sulfoxide derivative can 

bind on both branches which may be due to the sulfoxide‘s ability to act as second mesomeric +M 

donor, allowing a second charge delocalization, once the first binding site is occupied. 

 

Figure 2.18: Schematic illustration of the hypothesized effect of changes in charge distribution on the 

electronic and structural properties of the TPA derivatives, resulting in highly negative cooperativity 

between the first and subsequent CB[7] binding events, as indicated by ITC titrations. 

According to the measured thermodynamics of binding, all TPA derivatives exhibited negative 

cooperativity and the exhibited behaviour that can be classified broadly into three sets: 

Partial delocalization of + ve charge  

δ+ sp
2

 

Asymmetric + ve charge distribution 
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a) Acridane and phenazasiline derivatives displayed high negative cooperativity, indicating that 

the second site was not significantly bound within the concentration range used. The binding 

was driven by both favorable enthalpy (exothermic reaction) and entropy of binding within 

the same intensity range, suggesting a decrease in the hydrophobic solvent-exposed surface 

on both guest and host upon binding. 

b) For the phenothiazine derivative, SulfoxPy, two sequential bindings were observed. Like the 

acridane and phenazasiline derivatives, both enthalpy and entropy were found to be 

favourable and of comparable magnitude for the first binding site. In the two-binding sites 

model, the anticipated statistical relationship of                in the absence of 

cooperativity indicated negative cooperativity for SulfoxPy (Kd1 and Kd2 refer to the 

macroscopic dissociation constants for the first and the second binding respectively). 

c) The unmodified triphenylamine derivatives namely TP-2Py, TP-3Py (structure presented in 

Table 2) along with TP_3Pyo exhibited unfavourable entropy of binding, partially 

compensated by a more favourable enthalpy of binding compared to the other derivatives, 

resulting in sub-millimolar affinities. The low affinity of these compounds made quantitative 

comparison difficult due to the thermograms being recorded with very low ―c‖ factors 

(Wiseman factor).  

The unfavourable entropy variation during CB[7] binding, exceed the favourable entropy 

contribution due to the burial of the pyridinium derivative in the hydrophobic cavity of CB[7], which 

we interpret as a reduction of conformational space of the bound unmodified triphenylamine 

derivatives. These complementary results are in accordance with our hypothesis of a charge 

delocalization from pyridinium derivative toward the central nitrogen upon first binding, and 

structural constraints induced by its resulting partial sp2 hybridization. CB[7] binding must be 

enhanced by the presence of two positively charged nitrogen in the vicinity of the partial negatively 

charged carbonyl functions on both sides of CB[7]. For the group of unmodified triphenylamine 

derivative, the unfavourable entropy of binding resulted from the transition of unconstraint structures 

in unbound state toward constrained and planar structures in bound state. For other derivatives 

(acridane, phenazasiline, phenothiazine) the flattening of the tricyclic core upon binding did not 

significantly reduce the conformational entropy, and the overall favourable entropy was dominated by 

the hydrophobic effect. 
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Table 2.5: Thermodynamics of triphenylamine derivatives binding with CB[7] measured by 

isothermal titration calorimetry. Numbers of titrations are indicated as ‘n’. Uncertainties were 

calculated with 95% confidence.  

 

Name 
(No. of 

titrations) 
Structure 

Kd1 
(µM) 

∆H°1 

(kcal.mol-1) 
-T∆S°1 

(kcal.mol-1) 
Kd2 
(µM) 

∆H°2 

(kcal.mol-

1) 

-T∆S°2 
(kcal.mol-

1) 

Acri_3Py 

(n=2) 

 46.4 

[31.7; 

67.6] 

-3.7 

[-4.2; -3.3] 

 

 

-2.2 

[-2.7; -1.7] 

 

 

   

Phenaz_Py
 

(n=3) 

 
 

12.5 

[9.5; 16.5] 

-3.4 

[-3.6; -3.2] 

-3.3 

[-3.6; -3.1] 
   

 

Sulfox_Py
 

(n=3) 

 

 

  
1.9 

[0.8; 4.8] 

-3.8 

[-4.3; -3.6] 

-4.0 

[-4.5; -3.3] 

118 

[35; 

204] 

-2.3 

[-3.8; 

1.1] 

-3.1 

[-6.5; -

1.4] 

 

TP_2Py
64 

(n=3) 

 

 

 

422 

[314; 565] 

-11.7 

[-14.9;-

9.5] 

7.1 

[4.9; 10.4] 
   

 

TP_3Py
 

(n=3) 

 

 

 

 

 

179 

[162; 197] 

-9.3 

[-9.7; -9.0] 

4.2 

[3.9; 4.6] 
   

TP_3Pyo
 

(n=4) 

 

 352 

[287; 521] 

-9.4 

[-12.1; -

7.6] 

4.7 

[2.9; 7.4] 
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2.4.5. Interaction of TPA and CB[7] with (bio)molecules 

2.4.5.1 Interaction of TPA derivatives with protein   

 Building upon previous findings indicating that optical properties such as fluorescence 

emission of the TPA derivatives are modulated through interactions with proteins, we examined the 

variations in the fluorescence emission of the library of TPA derivatives in the presence of different 

commonly available proteins. Differential fluorescence responses of the TPA derivatives were 

monitored with seven proteins, namely BSA, catalase, lysozyme, chymotrypsin, amylase, peroxidase 

and pepsin in comparison to the free TPA in solution (Figure 2.19). The fluorescence emissions 

increased by 2 to 20 fold for protein such as catalase, or remained unaffected as in the case of 

lysozyme. A hypsochromic shift was also observed upon interaction with the proteins (max 20 nm). 

This could be attributed to the docking of the TPA derivatives on the protein surface and pockets 

through a combination of weak interactions. Consistent with prior reports, we hypothesized that the 

docking of the derivatives was most effective when it occurred at the hydrophobic patches of the 

proteins. This docking is expected to decrease hydrogen bonding of the nitrogen core with the 

surrounding water molecules, enhancing electron flow in the conjugation system and resulting in an 

increase of fluorescence. It also confirms that geometrical confinement hinders torsional motions of 

the TPA upon binding and enhances fluorescence. 

 

Figure 2.19: Fluorescence response patterns of a) two-arm PhenazPy and b) three-arm TP_3Pyo at 5 

µM in the presence of a diverse range of proteins (catalase, BSA, lysozyme, chymotrypsin, amylase, 

peroxidase, pepsin at 0.625 mg/mL) monitored at excitation wavelength of 486 nm and 476 nm 

respectively. 
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To further highlight the importance of hydrophobic interactions between TPA and proteins, we 

investigated the impact of the number of surface exposed hydrophobic residues of proteins on the 

fluorescence variation of the TPA. On a set of selected protein crystal structures, PyMol (The PyMOL 

Molecular Graphics System, Version 4.6 Schrödinger, LLC software) was employed to visualize and 

count the solvent-accessible surface residues and among them, the hydrophobic residues. It was 

expected that these residues would have a higher likelihood of interacting with the hydrophobic group 

of the TPA. 

 

 

Figure 2.20: a) Visual analysis of surface hydrophobicity of proteins by PyMOL (color_h.py). Red: 

hydrophobic residues, white: hydrophilic residue. b) Evaluation of the number of surface exposed 

hydrophobic residues for different proteins generated using a PyMOL script (findsurfaceresidues.py) 

with a 2.5 Å2 cutoff, c) Schematic illustration of fluorescence modulation arising from the interaction 

of TPA derivatives with the hydrophobic patches or pockets of a protein. 
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Firstly, the hydrophobic regions of the proteins BSA, catalase, lysozyme, chymotrypsin, amylase, 

peroxidase and pepsin were visualized by using the PyMOL script (color_h.py) in accordance with the 

Eisenberg‘s scale of hydrophobicity (Figure 2.20a). The exposed surface residues of the crystal 

structure were then generated by using the PyMOL script (findsurfaceresidues.py) with a 2.5A2 

cutoff. The estimated numbers of surface exposed residues were grouped according to the nature of 

the amino acids (hydrophobic, polar, basic and acidic) for each protein to enable better quantitative 

analysis of the residues and their effect on interaction with the TPA derivatives. Catalase, with the 

highest hydrophobic residue count, increased the fluorescence of the TPA derivatives to a larger 

extent as compared to lysozyme or peroxidase, with the lowest hydrophobic residue count, which 

caused negligible or weak enhancement as compared to the free derivative in solution (Figure 2.20b). 

These results highlight the potential use of TPA derivatives as attractive scaffolds for the design of a 

fluorescent sensor array for protein recognition due to their radiative properties which are sensitive to 

the association with hydrophobic patches of proteins (Figure 2.20c) in addition to their optical 

transduction properties. 

 

2.4.5.2 Interaction of TPA –CB[7] with biomolecules 

CB[7] has been extensively studied for its ability to interact with wide range of guest 

molecules, with affinities ranging from micromolar to attomolar levels. It forms highly stable 1:1 

complexes with simple three-dimensional molecules such as adamantanes and diadamantanes, 

bicyclooctanes and ferrocene derivatives (Figure 2.21). The diadamantane diammonium ion exhibits 

the highest binding at Ka = 7.2 × 1017 M-1 in D2O. Often these affinities approach or exceed the 

strongest non-covalent interaction found in nature, as in the case of the biotin–avidin pair. 

Additionally CB[7] also interacts with various classes of neutral and cationic species including 

biomolecules like amino acids, peptides and proteins.  

 

Figure 2.21: Structure of compounds displaying a range of binding affinities as indicated by the Ka 

values.( adapted from Alnajjar, M. A. et al.)195 



Chapter 2 

 

94 

 

The reversible nature of the host-guest complexation and the variable binding affinities of the 

encapsulated guest molecules lead to the formation of different kind of complexed states:  

a) Guests with Ka in the nanomolar or higher range, form highly stable complexes, 

characterized by a maximum forward rate constant value (kon) and extremely low backward rate 

constant value (koff);  

b) Guest with lower Ka in the associated state can be displaced by guest of higher binding 

affinities. This displacement can be either complete or partial, depending on the difference in their Ka 

values and the number of binding sites on the guest molecule. 

Keeping these interactions in mind, we mechanistically expected that the interaction of analytes with 

TPA-CB[7] complexes may be driven by the interaction of analytes with TPA, the interaction of 

analytes with the outer surface of CB[7] and the competitive displacement of encapsulated TPA by 

analytes.  

 

To validate these different modes of interactions, we considered different competitive analytes. First, 

it was observed that the fluorescence enhancement of the TPA‘s on complexation with CB[7] 

decreased drastically upon addition of the CB[7] high-affinity binder adamantylamine ADA.145 The 

latter completely displaces TPA‘s from the CB[7] cavity, consequently reversing the inclusion-

induced fluorescence. No residual fluorescence of TPA was observed, showing that ADA does not 

interact with TPA and acts only as a TPA competitor (Figure 2.22).   
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Figure 2.22: (a) Schematic illustration of decrease in fluorescence resulting from the displacement of 

TPA derivatives from their complex with CB[7] in the presence of high affinity binder adamantane 

(ADA). Fluorescence intensity variation upon formation of TPA-CB[7] complex by b) Acri_3Py, c) 

TP_3Pyo, d) PhenazPy e) SulfoxPy (5 µM) and CB[7] (100 µM) and corresponding changes in the 

presence of ADA (250 µM) monitored over 30mins at λem= 620 nm for Acri_3Py, TP_3Pyo, PhenazPy 

and 540 nm for SulfoxPy. 

 

CB[7] is also known to encapsulate amino acids with diverse affinities. In particular, CB[7] has been 

noted for its selectivity toward aromatic amino acids: phenylalanine (Phe), tryptophan (Trp) and 

tyrosine (Tyr) at pH 7. Its highest affinity is observed with Phe, Ka ranging from 105 M-1 to 106 M-1.196 

Considering this, we evaluated the extent and effect of interaction of amino acids on the fluorescence 

of TPA-CB[7] complexes. We subjected the TPA-CB[7] complexes to representative amino acids  

and observed a decrease in fluorescence upon interaction with the aromatic amino acid (Phe). No (or 

less) change was recorded in the case of the other amino acids like Arg, and Lys (Figure 2.23). Again, 

the free TPA derivatives were observed to have no significant alterations in their fluorescence 

intensity in the presence of any of the amino acids. This demonstrated the displacement of the TPA  
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Figure 2.23: (a) Schematic illustration of variation in fluorescence resulting from the displacement of 

TPA derivatives from CB[7] in the presence of aromatic amino acid like phenylalanine . Fluorescence 

intensity variation upon formation of TPA.CB[7] complex by b) Acri_3Py, c) TP_3Pyo, d) PhenazPy 

e) SulfoxPy (5 µM) and CB[7] (100 µM) and corresponding changes in the presence of amino acids 

Arg, Phe, Lys at λem= 620 nm for Acri_3Py, TP_3Pyo, PhenazPy and 540 nm for SulfoxPy. 

derivative from its complex with CB[7] in the presence of a stronger binder like Phe and confirmed 

the retention of the function of  CB[7] as a recognition element even after complexation with TPA. 

These findings also suggest that while the larger protein moieties are more effective in interacting 

with the TPA‘s even in the absence of CB[7] to promote radiative de-excitation, the smaller size of 

the amino acids fails to generate the necessary structural confinement for the same effect.  

Furthermore, it is observed that a complete displacement of TPA does not occur in the presence of 

amino acids, unlike with ADA. This suggests that only partial displacement occurs due to the lower 
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binding affinity of the amino acids such as Phe towards CB[7] as compared to ADA, resulting in the 

retention of the fluorescence signal generated by the partially CB[7] complexed TPA derivatives . 

 

 

Figure 2.24: (a) Schematic illustration of displacement assay resulting from the interaction of TPA 

derivatives and their complex with CB[7] in the presence of protein insulin. Fluorescence intensity 

variation of TPA and TPA-CB[7] complexes of  b) Acri_3Py, c) TP_3Pyo, d) PhenazPy e) SulfoxPy (5 

µM) with CB[7] (100 µM) in the presence of insulin  (10, 25, 75, 100 and 120 µM) at λem= 620 nm for 

Acri_3Py, TP_3Pyo, PhenazPy and 540 nm for SulfoxPy. 

Similarly, the fluorescence response of the TPA-CB[7] complexes were monitored by a displacement 

assay in the presence of insulin. The binding of which has been previously documented by Urbach et 

al., who reported the incorporation of the N-terminal Phe residue of insulin within the hydrophobic 

cavity of CB[7] with a binding constant (Ka) of 1.5 ×106 M-1.197 Initially, we demonstrated that the 

a) 

b) c) 

d) e) 
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free TPA derivatives underwent a fluorescence enhancement upon interaction with increasing 

concentrations of insulin and further additions were stopped after reaching a plateau in the 

fluorescence intensity. This is indicative of the ability of TPA to interact with the surface exposed 

hydrophobic residues of the protein. The addition of insulin to the TPA-CB[7] complexes elicited 

varied responses for the 2-arm and 3-arm derivatives (Figure 2.24). An initial fluorescence 

enhancement followed by no further increase in intensity was observed for the 3-arm derivatives. 

However, for the 2-arm derivatives a significant decrease in fluorescence emission due to the 

competitive displacement of the TPA from the CB[7] by insulin similar to Phe was observed.  

These biomolecular interactions with the TPA-CB[7] complexes validated the sustained 

functionality of CB[7] as a recognition element even after complex formation with the TPA 

derivatives. It has also demonstrated the diversity in binding interactions that CB[7], TPA and 

CB[7]/TPA offer, contributing to the sensor design of the developed fluorescence sensor array. These 

results establish the effectiveness of the proposed sensor design and support its potential for non-

specific sensing of biomolecules. 

 

2.5. Conclusions 

In summary, we have investigated the use of macrocyclic host-guest interactions to develop a 

fluorescence-based sensor array utilizing the conjugated system of triphenylamine derivatives and the 

members of the cucurbit[n]uril family. This chapter presents an extensive study of the photophysical 

and binding properties of the TPA derivatives and their modulation in combination with the various 

CB[n] hosts, ultimately establishing the suitability of CB[7] and CB[8] for the development of 

fluorescent and colorimetric sensor arrays, respectively. The TPA derivatives have been identified for 

their potential to function effectively as the transducers of the sensor array. This functionality is 

primarily attributed to the restriction in intramolecular rotation that occurs upon host-guest 

complexation, thereby modulating their photophysical properties. Moreover, these derivatives have 

been shown to interact with analytes such as proteins, thereby serving as orthogonal recognition 

scaffolds. This dual functionality facilitates the development of a bimodal recognition macrocyclic 

sensor array, effectively doubling the number of sensor channels while retaining a limited number of 

essential sensing elements. The fluorescence sensor array has been optimized by the selection of four 

specific TPA derivatives with the CB[7] hosts. The unique structural features and strong molecular 

recognition capabilities of CB[7] make it particularly effective in forming stable host-guest complexes 

with TPA derivatives. We have further characterized the binding properties of the TPA-CB[7] system 

and established the thermodynamic and kinetic parameters associated with the binding interactions 

using isothermal titration calorimetry (ITC), providing valuable insights into the binding affinities, 

stoichiometry, and enthalpic and entropic contribution of these interactions. 
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2.6. Materials and Methods 

2.6.1 Synthesis and characterization spectra of unpublished TPA 

derivatives  

**All synthesis were performed by Dr. Delphine Naud-Martin from the group of Dr. Florence 

Mahuteau-Betzer (Institut Curie) 

Synthesis of Acri_3Py 

 

Compound 2 [880771-61-9]: To a stirred solution of acridane (1) (500 mg, 1.75 mmol, 1 eq.) in 

CHCl3 (6 mL) cooled to 0°C, a solution of bromine (888 mg, 5.5 mmol, 3.15 eq.) in CHCl3 (6 mL) 

was added drop wise. The resultant mixture was stirred at 0°C for 5 h. The reaction mixture was 

quenched by adding water carefully. The resulting organic layer was then extracted with 

dichloromethane. Organic phases were combined, dried and concentrated to afford the expected 

product as a white powder (620 mg, 1.18 mmol, η=68%). 1
H NMR (300 MHz, CDCl3) δ 7.77 (d, J = 

8.5 Hz, 2H), 7.51 (d, J = 2.0 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 7.07 (dd, J = 8.5, 2.0 Hz, 2H), 6.12 (d, 

J = 8.5 Hz, 2H), 1.63 (s, 6H), 13
C NMR (75 MHz, CDCl3) δ 139.6, 134.7, 132.8, 131.8, 129.5, 128.3, 

122.8, 115.8, 113.8, 36.4, 31.0. 

Acri
n
-3Py: In a dry and degassed triethylamine/DMF (2:1, v/v, 5mL) mixture, Pd(OAc)2 (4.5 mg, 

0.02 mmol, 0.1 eq.) and P(o-tol)3 (12 mg, 0.04 mmol, 0.2 eq.) were introduced and stirred 15 min. 

Mixture was degassed then compound (2) (105 mg, 0.2 mmol,1 eq.) and 4-vinylpyridine (84 mg, 0.8 

mmol, 4 eq.) were added. The mixture was stirred at 90°C under argon overnight. DCM was 

introduced and the organic layer was washed with water and saturated NaHCO3 and dried over 

MgSO4. The crude was purified by flash chromatography on silica gel (DCM/MeOH, 100:0 to 95:5) 

to give Acri
n
-3Py as an orange powder (75 mg, 0.12mmol, η=63%). MS(ESI+): m/z 595.3 [M+H]+, 

1
H NMR (300 MHz, CDCl3) δ 8.63 (d, J=5.5Hz, 2H), 8.53 (d, J=5.0, 4H), 7.83 (d, J=8.0Hz, 2H), 

7.65 (s,2H), 7.47 – 7.09 (m, 14H), 6.88 (d, J=16.0Hz, 2H), 6.34 (d, J=8.5 Hz, 2H), 1.80 (s, 6H), 13
C 

NMR (75 MHz, CDCl3) δ 150.3, 150.0, 145.1, 144.2, 140.7, 136.6, 133.0, 131.9, 131.4, 130.3, 129.6, 

129.2, 127.6, 125.4, 124.8, 123.1, 121.0, 120.6, 114.7, 36.1, 31.8. 
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Acri_3Py: A large excess of iodomethane (0.31 mL, 5.0 mmol,100 eq.) was added to a solution of 

Acri
n
-3Py (30 mg, 0.05 mmol, 1 eq.) in a MeOH/DCM (1:1) mixture (4.0 mL). The reaction was 

stirred at r. t. overnight. Et2O was introduced to get a precipitate which was filtered to give Acri_3Py 

as a dark red powder (43 mg, 0.042 mmol, η=90%). MS(ESI+): m/z 213.4 [M-3I-]3+, 1
H NMR (300 

MHz, DMSO-d6) δ 8.93 (d, J = 6.5 Hz, 2H), 8.79 (d, J = 6.5 Hz, 4H), 8.30 (d, J = 6.0 Hz, 2H), 8.25 – 

8.07 (m, 7H), 8.01 - 7.97 (m, 4H), 7.70 (d, J = 16.5 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.51 – 7.35 (m, 

4H), 6.31 (d, J = 8.5 Hz, 2H), 4.30 (s, 3H), 4.22 (s, 6H), 1.80 (s, 6H), 13
C NMR (75 MHz, DMSO-d6) 

δ 152.9, 152.1, 145.3, 144.8, 140.9, 140.9, 140.7, 139.2, 135.9, 131.3, 131.0, 130.4, 128.6, 127.6, 

126.6, 124.9, 123.8, 122.8, 120.2, 114.7, 47.1, 46.7, 35.9, 32.3, 3.  

Synthesis of TP-3DVPy  

 

Compound 4: [925452-63-7] Under argon atmosphere, acrolein diethyl acetal (1.1 mL, 7.2 mmol, 9 

eq.), tetrabutylammonium acetate (1.2 g, 4 mmol, 5 eq.), potassium carbonate (500 mg, 3.6 mmol, 4.5 

eq.), potassium chloride (180 mg, 2.4 mmol, 3 eq.) and palladium diacetate (16 mg, 0.07 mmol, 0.09 

eq.) were successively added to a solution of trisiodotriphenylamine (3) (500 mg, 0.8 mmol, 1eq.) in 

degazed dry DMF (10 mL). The reaction mixture was stirred for 15 h at 90°C. After being cooled, the 

reaction mixture was quenched with 10 mL of HCl 2N and extracted three times with CH2Cl2. The 

combined organic fractions were washed with brine once and dried over MgSO4. The crude was 

purified by flash chromatography on silica gel (Cyclohexane/ethyl acetate, 80:20 to 70:30) to give the 

expected product as a yellow powder (136 mg, 2.6 mmol, η=41%). MS(ESI+): m/z 408.4 [M+H]+, 

1
H NMR (300 MHz, CDCl3) δ 9.66 (d, J = 7.5, 3H), 7.50 (d, J = 8.5, 6H), 7.42 (d, J = 16.0, 3H), 

7.15 (d, J = 8.5, 6H), 6.63 (dd, J = 7.6, 16.0, 3H), 13
C NMR (75 MHz, CDCl3) δ 193.5, 151.7, 148.8, 

130.1, 129.8, 127.6, 124.6. 

 

TP
n
-3DVPy: Under argon atmosphere, 4-pyridinylphosphonate (75.9 mg, 0.33 mmol, 3.3 eq.) and 

sodium hydride 60% in oil (52 mg, 0.74 mmol, 7.5 eq.) were added in dry THF (3mL). After 15 min 

stirring, trisaldehyde (4) (40 mg, 0.1 mmol, 1 eq.) in dry THF (2 mL) was added and the resulting 

mixture was stirred at room temperature for 18h in the dark. Water was introduced dropwise to 

quench the reaction and the resultant mixture was extracted three times with dichloromethane. 

Organic layer was washed twice with brine and dried over MgSO4. After partial evaporation, addition 

of drops of Et2O afforded TP
n
-3DVPy as an orange powder (55 mg, 0.09 mmol, η= 89%). 
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MS(ESI+): m/z 633.2 [M+H]+, 1
H NMR (300 MHz, CDCl3) δ 8.52 (d, J = 4.0 Hz, 6H), 7.36 (d, J = 

8.0 Hz, 6H), 7.30 – 7.21 (m, 6H), 7.19 – 6.99 (m, 9H), 6.94 – 6.80 (m, 3H), 6.73 (d, J = 15.0 Hz, 3H), 

6.54 (d, J = 15.0 Hz, 3H), 13
C NMR (75 MHz, CDCl3) δ 150.2, 147.0, 144.8, 135.2, 133.8, 131.9, 

127.9, 127.2, 124.4, 120.6 

TP-3DVPy: A large excess of iodomethane (0.31 mL, 5.0 mmol, 100 eq.) was added to a solution of 

TP
n
-3DVPy (30 mg, 0.05 mmol) in a MeOH/DCM (1:1) mixture (4.0 mL). The reaction was stirred 

at r.t. overnight. Et2O was introduced to get a precipitate which was filtered to give TP-3DVPy as a 

dark red powder (45 mg, 0.04 mmol, η= 90%). MS(ESI+): m/z 226.1 [M-3I-]3+, 1
H NMR (300 MHz, 

CDCl3): δ 8.78 (d, J =6.5 Hz, 6H), 8.11 (d, J =6.5 Hz, 6H), 7.82 (dd, J =10.5 Hz, J =15.5 Hz, 3H), 

7.61 (d, J =7.5 Hz, 6H), 7.24-7.03 (m, 12H), 6.86 (d, J =15.5 Hz, 3H), 4.21 (s, 9H), 13
C NMR (75 

MHz, DMSO-d6) δ 152.3, 146.9, 144.8, 142.1, 139.8, 131.4, 129.0, 127.1, 126.0, 124.2, 123.0, 46.8.  

 

Synthesis of TP-2DVPy  

 

Compound 6: Under argon atmosphere, acrolein (0.17 mL, 2.6 mmol, 4 eq.), tetrabutylammonium 

chloride (358 mg, 1.29 mmol, 2 eq.), potassium acetate (5.33 mg, 0.032 mmol, 0.05 eq.) and 

palladium diacetate (7 mg, 0.03 mmol, 0.05 eq.) were successively added to a solution of 

diiodotriphenylamine (5) (400 mg, 0.64 mmol, 1eq.) in NMP (14 mL). The mixture was then heated at 

90 °C for 75 min. After being cooled, the reaction mixture was poured into a half-concentrated 

aqueous solution of NaHCO3 and extracted three times with CH2Cl2. The combined organic fractions 

were washed with brine once, dried over MgSO4, and concentrated under reduced pressure. The 

resulting solution in NMP was directly loaded onto a column packed with silica gel and eluted with 

Et2O-pentane (15:85, v/v) to give the expected product as a yellow powder (197 mg, 0.56 mmol, 

η=86%). MS(ESI+): m/z 354.3 [M+H]+, 1
H NMR (300 MHz, CDCl3) δ 9.67 (d, J = 7.5 Hz, 2H), 

7.46 (d, J = 8.5 Hz, 4H), 7.41 (d, J = 16.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.23 – 7.08 (m, 7H), 6.63 

(dd, J = 16.0, 7.5 Hz, 2H), 13
C NMR (75 MHz, CDCl3) δ 193.8, 152.2, 149.7, 146.0, 130.1, 130.0, 

128.6, 127.1, 126.6, 125.6, 123.4. 

TP
n
-2DVPy: Under argon atmosphere, 4-pyridinylphosphonate (100 mg, 0.44 mmol, 2.2 eq.) and 

sodium hydride 60% in oil (69 mg, 1 mmol, 5 eq.) were added in dry THF (3mL). After 15 min 

stirring, dialdehyde (6) (70 mg, 0.2 mmol, 1 eq.) in dry THF (3 mL) was added and resulting mixture 

was stirred at room temperature for 18h in the dark. Water was introduced dropwise to quench the 

reaction and the resultant mixture was extracted three times with dichloromethane. Organic layer was 

washed twice with brine and dried over MgSO4, filtered and concentrated to dryness. The crude 
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residue was purified by dissolution in a minimal amount of dichloromethane and precipitated with 

Et2O afforded TP
n
-2DVPy as an orange powder (62 mg, 0.12 mmol, η= 62%). MS(ESI+): m/z 504.4 

[M+H]+, 1H NMR (300 MHz, CDCl3) δ 8.53 (d, J = 5.5 Hz, 4H), 7.35 (d, J = 8.5 Hz, 4H), 7.29 (m, 

6H), 7.18 – 7.03 (m, 9H), 6.92 – 6.81 (m, 2H), 6.73 (d, J = 15.5 Hz, 2H), 6.54 (d, J = 15.5 Hz, 2H), 

13
C NMR (75 MHz, CDCl3) δ 150.0, 147.5, 147.0, 145.0, 135.5, 134.1, 131.3, 129.6, 128.9, 127.8, 

126.8, 125.3, 124.0, 123.8, 120.7. 

TP-2DVPy: A large excess of iodomethane (0.37 mL, 6.0 mmol, 100 eq.) was added to a solution of 

TP
n
-2DVPy (31 mg, 0.06 mmol) in a MeOH/DCM (1:1) mixture (4.0 mL). The reaction was stirred 

at r.t. overnight. Et2O was introduced to get a precipitate which was filtered to give TP-2DVPy as a 

dark red powder (22 mg, 0.028 mmol, η= 45%). MS(ESI+): m/z 266.9 [M-2I-]2+, 1
H NMR (300 

MHz, DMSO-d6) δ 8.78 (d, J = 6.0 Hz, 4H), 8.11 (d, J = 6.0 Hz, 4H), 7.94 – 7.74 (m, 2H), 7.59 (d, J 

= 7.5 Hz, 4H), 7.45 - 7.37 (m, 2H), 7.27 – 6.96 (m, 11H), 6.86 (d, J = 14.5 Hz, 2H), 4.22 (s, 6H), 13
C 

NMR (75 MHz, DMSO-d6) δ 152.3, 147.5, 146.0, 144.0, 142.1, 140.0, 130.6, 129.9, 128.8, 126.6, 

125.7, 125.6, 123.1, 123.0, 119.2, 46.7, HRMS (ESI) m/z [C38H35 N3I]
+ calculated: 660.1876, found: 

660.1884. 

**All relevant spectra are found in the Annexe of the Thesis 

2.6.2 Protein visualization and determination of solvent exposed 

hydrophobic residues on protein surfaces 

On Pymol (download xxx), run the following script 

Script: 

run findSurfaceResidues.py 

fetch (protein PDB file), async=0  

findSurfaceResidues doShow=1, cutoff=2.5 

## (Iterate to return names of residues and corresponding number) 

iterate exposed_res_02, resn, resi  

 

2.6.3 UV- Visible and fluorescence spectroscopy 

Primary stocks of the TPA derivatives (5mM) were prepared through weighing of synthesized, 

purified solid product and dissolution in DMSO and were stored at -20°C. All working solutions of 

TPA were diluted in milliQ water. For the CB[n] derivatives, the sparingly soluble nature of CB[6] 

required the preparation of primary stock solutions (300μM) in 500mM KCl, while CB[7] (3mM) and 

CB[8] (300μM) were prepared in milliQ water and were stored at 4°C. All working solutions of 

CB[n] were diluted in milliQ water. 
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Absorbance spectra were recorded on a TECAN SPARK CYTO400 spectophotometer using a 

Corning UV-transparent half area 96-well plate. As the instrument automatically adjusts the length of 

the optical path crossed to 1cm (according to Beer-Lambert‘s law), no manual corrections were 

required and the absorbance values recorded could therefore, in theory be found by any other 

measuring device under the same conditions. Spectra were recorded with a wavelength scan ranging 

from 400-650 nm with an incremental step size of 2 nm. All measurements were performed in 

triplicates. The absolute absorbance of the TPA and TPA-CB[n] complexes were treated by 

background subtraction of control values and normalized for visualization on GraphPad Prism version 

10.0 for Windows, GraphPad Software, www.graphpad.com. 

Fluorescence emission spectra were recorded on the same instrument using Corning black polystyrene 

half-area 96-well plates. The measurements were made with an incremental step size of 4nm, 

excitation wavelength was set at the isosbestic point obtained from the absorbance spectra of TPA and 

TPA-CB[n] spectra and a suitable emission range was set (~λexc+ 40 nm) up till 850 nm to avoid any 

superposition between λexc and λems. 

 

Preparation of protein solutions and measurement of fluorescence spectra with TPA’s 

Protein stock solutions at 10mg/mL were prepared by dissolution of commercially available solid 

products (Details provided in Materials and Methods of Chapter 3) in 1X phosphate buffered saline 

(10X PBS –Sigma Aldrich). The interaction of proteins with the TPA derivatives was recorded by 

adding 40l of the TPA solutions at 5M to the microplate, followed by the addition of 2.5l of 

protein solutions to obtain a final concentration of 0.625mg/mL. The plate was incubated for 10 

minutes and the fluorescence spectra were then recorded. The fluorescence intensity of the TPA with 

protein solution was plotted for visualization on GraphPad Prism version 10.0 for Windows, 

GraphPad Software, www.graphpad.com. 

 

2.6.4. Isothermal Titration Calorimetry  

Isothermal calorimetric titrations were conducted using the Microcal™ ITC200 instrument at 25°C. 

CB[7] concentrations were determined through weighing and dilution, while TPA derivative  

concentrations were obtained from triplicate absorbance measurements using the SpectraMax 

Quickdrop® spectrophotometer at the maximum absorbance wavelength. The typical titration scheme 

included an initial injection of 0.5 µL, followed by 15 main injections of 2.54 µL, with an 

equilibration time of 210s. The reference power was set at 5µcal/s, and the stirring speed was 

maintained at 800 rpm. For each TPA, the raw ITC data were integrated in Nitpic and analysed 

globally in Sedphat198–200. Two or three binding models were applied to analyze the data: the "ABBB 

three symmetric sites model", the "ABB two symmetric sites model", and the ―AB heteroassociation 

model‖. Fixed stoichiometry (1:3, 1:2, or 1:1) required refining a concentration correction factor for 

http://www.graphpad.com/
http://www.graphpad.com/
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the TPA, which was constrained to be between 0.8 and 1.2; the binding enthalpy was normalized by 

setting the CB[7] concentration correction to 1.000. Confidence intervals were estimated at the 

P=95% confidence level with F-statistics-based error surface contours implemented in SEDPHAT, 

using the optimized correction factors of the dyes. Finally, Gussi201 was employed to produce 

illustrations of the thermograms. 
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Data management and statistical analysis for pattern recognition in 

array-based sensing  
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3.1. Introduction 

Cross-reactive array-based sensors employ a collection of low specificity receptors to interact 

with a wide range of analytes present in complex mixtures generating unique fingerprints. Regardless 

of the type of signal outputs generating these fingerprints, this sensing approach produces a large 

amount of raw data that is not easy to manage and interpret by simple visual inspection. Analysis 

using basic calibration techniques such as simple linear regression for every single analyte does not 

provide useful information from the raw data. Thus, chemometric methods of data analysis have been 

established to alleviate this challenge of data management and analysis37.  

Chemometrics refers to the chemical discipline that utilizes mathematical and statistical approaches 

that employ formal logic to extract information from chemical systems by data-driven means. The 

characteristics of the chemometric approach can be better understood when compared to classical 

methods of data extraction in chemical systems. The classical approach focuses on understanding the 

impact of various factors, identifying which ones are dominant and which are negligible. In contrast, 

the chemometric approach does not require an understanding of these effects; instead, it aims for 

objectives such as prediction, pattern recognition, and classification. The classical approach is 

reductionist, examining one factor at a time and isolating effects as much as possible. On the other 

hand, the chemometric approach employs multivariate methods, considering all variables 

simultaneously and fitting the model to the data. When constructing a model to fit the data, the 

conclusions should align with the information contained within the data. This differs significantly 

from the classical approach, where the model is based on theory and data is used to validate the 

model. While these two approaches are complementary, they cannot be substituted by each other. 

Consider blood tests of healthy and ill patients. If one feature is examined at a time, all features might 

fall within the healthy limits, yet a patient could still be ill. Conversely, some healthy patients might 

exhibit extreme values. By analysing a large number of patients and considering all features 

simultaneously, healthy and  ill patients can typically be distinguished using multivariate chemometric 

methods202.  

Hence the chemometric method offers unique data insights that are otherwise inaccessible and 

involves two main ideas that are crucial for analysing data generated by cross-reactive sensor arrays: 

prediction and pattern recognition.  

 Prediction refers to making a declaration on the basis of observation, experience, or scientific 

reason. It involves not only temporal processes but also other aspects, for example, the 

prediction of the toxicity of a compound based on similar compounds. Even without a causal 

model, predictions using black box models can be valuable. 

 Pattern recognition involves identifying patterns in the data. A pattern is a natural or chance 

configuration, of traits, tendencies, or other observable characteristics of data.  Although the 
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recognition of patterns may happen automatically, the process is difficult to define. In 

chemometrics, patterns are often simplified to clusters (groupings), separators, thresholds and 

outliers.  

In addition to chemometric methodologies, which primarily focus on the statistical analysis and 

interpretation of fingerprint data generated by sensor arrays, the initial preparation, organization, and 

management of the substantial volumes of raw data produced by these arrays are critical steps in the 

overall process of array-based sensing systems. Streamlining this data management process is not 

only vital for the effective adoption of sensor arrays in various applications but also needs to be 

developed in a highly efficient manner to enable robust sensing. This ensures that the system can 

handle large datasets reliably, allowing for scalability and adaptability to different sensing 

environments and challenges. 

Thus, this chapter will provide a detailed discussion on the streamlined methodology employed 

for data acquisition, management and analysis used to evaluate the optical fingerprints generated by 

the TPA-CB[n] sensor arrays. By elaborating each of these stages, we aim to highlight the robustness 

and efficacy of the developed methodology, demonstrating its crucial role in ensuring accurate and 

reliable analysis of the optical fingerprints. This discussion will highlight the technical aspects while 

also illustrating how these methodologies contribute to the broader objectives of this study, such as 

the development of diagnostic tools for multifactorial disease. 

 

3.2. From data management to statistical treatment of 

fingerprints 

The process from recording sensor-analyte interactions to classifying analyte fingerprint output 

signals involves two primary steps: data management and chemometric analysis. While data 

management appears to be only a single step process, transitioning from signal measurement to 

feature extraction for statistical analysis, it is a highly challenging task that encompasses data 

acquisition, organisation and pre-processing. Therefore, this step lays the foundational groundwork 

for the high-throughput operation of the sensor array. The chemometric analysis on the other hand 

involves a series of steps involved in the process of pattern recognition, including dimensionality 

reduction, exploratory data analysis, classification, and clustering. Ultimately, together, these 

processes lead to the development of a classification model that accurately describes the data and the 

nature of the sensor array-analyte behaviour for the specific application being investigated. This 

workflow is tailored to the nature of data output collected from the transducing elements. An 

overview of this process is represented in Figure 3.1. 
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Figure 3.1: Schematic illustration depicting the workflow adopted in chemometric analysis of array-

based fingerprinting data (adapted from Anzenbacher, P. et al.42).  

 

3.2.1. Design of sensing experiments 

The first step of developing the workflow for analysing the data generated by the TPA-CB[n] 

fluorescence sensor array was to design a consistent experimental protocol to ensure that the nature 

and structure of the data output was compatible with the development of an automated pipeline using 

R coding.  

 

 

Figure 3.2: Schematic illustration of protocol established for sensing and data treatment of obtained 

fluorescence fingerprint for discrimination of proteins by TPA-CB[7] sensor array. 

 

Initially, an experimental plan was formulated to capture the bimodal recognition events of the TPA-

CB[7] sensor  in a time-efficient and effective manner. We recorded the complete emission spectra of 
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all the TPA‘s (5 μM, 40 μl) in the array after adding the analyte spiked in physiological buffer or 

serum (2.5 μl) in six replicates within a 96 well half-area microplate. This provides the fingerprint 

corresponding to the first recognition event of [TPA + analyte channel] as (I1[λi]). Subsequently, 

CB[7] was added to the same wells before recording the fluorescence spectra once again to obtain the 

fingerprint corresponding to the second recognition event [TPA + analyte + CB[7] channel] as  (I2[λi]) 

(Figure 3.2).  This protocol was established after evaluating the effects of different sequences of 

CB[7] and analyte addition to the microwells. We observed that adding CB[7] either before or after 

the analyte (proteins- BSA, lysozyme, peroxidase and chymotrypsin) did not impact the nature of the  

fluorescence response of TPA (PhenazPy) recorded (Figure 3.3).  Therefore, to efficiently measure 

both recognition events in the same well, we decided to add the CB[7] after recording the first event. 

 

Figure 3.3: Fluorescence intensity variations of TPA derivative PhenazPy (5 μM) in the presence of 

proteins BSA, globulin, lysozyme, peroxidase and chymotrypsin (5 mg/ml) and CB[7] (100 μM) with 

different sequential additions (TP + Protein + CB[7]) and (TP + CB[7] + Protein), showing no 

impact on the fluorescence response recorded at λems=620 nm. 

 

 Then, having established the protocol to strictly follow for the measurement, we then focused on 

designing the layout of the 96 well microplates to keep them consistent for the development of the 

R code. As seen in Figure 3.4, the edges of the 96 well plates were not considered for any 

measurements to avoid the ‗edge effect‘ arising during multiple fluorescence measurements due to 

increased evaporation rate at the circumferential wells as compared to the centrally located wells 

on the plate. Each of the plates were assigned for a single TPA derivative, with the vertical 

columns corresponding to the six replicates for nine analyte being tested (indicated as analyte 1, 2, 

3... etc.). For more than nine analytes, two plates were utilized for each TPA derivatives. 
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Figure 3.4: 96-wellplate layout design adopted for sensing experiments: a) first recognition event 

corresponds to the first sensing channel [TPA + analyte], b) second recognition event corresponding 

to the second sensing channel [TPA + protein + CB[7] measured  in the same well so as to maintain 

consistency for the development of a streamlined data management and statistical analysis workflow. 

 

 While these parameters were optimized to enable the automation of the statistical analysis, it is 

important to also consider the experimental setup to avoid any design flaws that might introduce 

artificial trends during the analysis. Ensuring identical conditions and uniform parameters for the 

sensing of each analyte is crucial.   

 When testing clinical samples, it is also essential to include both diseased and healthy patient 

samples on the same plate and not physically separate them onto two different plates. This 

approach helps avoid any potential experimental bias during the development of the classification 

model. 
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 It is also crucial to understand the difference between technical and experimental replicates to 

estimate the benefits of each type and prevent false discrimination patterns and incorrect 

conclusions. Technical replicates involve data derived from the same stock solutions, helping to 

evaluate pipetting accuracy and the homogeneity of analyte stock solutions. In contrast, 

experimental replicates require the entire experiment to be repeated from start to finish, ensuring 

that discrimination patterns are not based on irrelevant features such as the type of experimental 

microplate used or the storage conditions of stock solutions. 

 

3.2.2. Management of generated fluorescence response data 

3.2.2.1. Data extraction from generated raw optical fluorescence 

fingerprint 

The fluorescence responses recorded for the two recognition events of the optical fingerprinting 

experiments were arranged, from the raw data, into a response matrix containing columns 

corresponding to the number of features detected (number of wavelengths at which the fluorescence 

emission intensity were measured for each TPA and TPA-CB[7] pair) and the number of rows 

corresponding to the number of recorded replicates for each of the different analytes (Figure 3.5). This 

extraction generates a collection of such response matrices corresponding to each of the four TPA 

derivatives and their complexes with CB[7]. The four TPA‘s have wavelengths recorded from 492 to 

750 nm (130λ), 518 to 750 nm (117λ), 506 to 750 nm (123λ), and 464 to 750 nm (144λ),  for 

TP_3Pyo, Acri-_3Py, PhenazPy and SulfoxPy respectively with  a wavelength step of 2 nm , adding 

up to a total of 1028 features for the dataset. An extra column with the description of the analytes is 

added for listing the classifier description for analysis by supervised statistical analysis such as the 

LDA. 

  

3.2.2.2. Pre-processing of response data 

The generated optical response data in some instances can be used in its raw form i.e. 

unprocessed and with absolute values. However, if the data is pre-treated, careful consideration is 

required to determine the appropriate treatment that is needed for the extracted data. Multiple pre- 

processing methods should be evaluated before the final application to ensure the best-suited one for 

the data. Often incorrectly selected methods lead to complications during the development of the final 

classification models, making it difficult to distinguish whether classifier features are due to pre-

processing or the nature of the sensor array. Several methods such as relative scaling, background 

subtraction, signal averaging, linearization, auto-scaling and range scaling have been adopted in 

 



Chapter 3 

 

113 

 

 

Figure 3.5: Schematic representation of response matrix extracted from the fluorescence fingerprint 

data generated by the TPA-CB[7] sensor array. 

literature. For the TPA-CB[7] sensor array, pre-processing aimed to improve overall sensing 

resolution by normalizing through subtraction of the mean fluorescence intensity of controls, which 

corresponds to the fluorescence emission intensity of TPA and TPA-CB[7] complex upon the addition 

of matrix like PBS or human serum, without the spiked analyte. Based on the number of wavelengths 

recorded for the four TPA and TPA-CB[n] complexes we obtained a final pre-processed data matrix 

with dimension of [N×1028] with N = number of analytes × number of replicates for each analyte. 

This kind of a normalization approach is often employed for qualitative sensing applications, since 

some of these methods result in the elimination of the concentration dependence of the sensor 

response intensity. Thus, this approach is relatively less suitable for quantitative predictions. 

However, while this normalization approach mitigates the impact of concentration, it does not fully 

eliminate the potential variability introduced by the excitation light used during the measurement of 

fluorescence emission from the TPA-CB[n] sensing elements. A more effective strategy would thus 

involve considering the ratio of the fluorescence emission change in the presence of analytes.  

The number of replicate measurements is also crucial, requiring a balanced compromise between the 

size of the array and the amount of information generated from multiple replicates. Nowadays, 

limiting replicates is less critical as a time-saving measure due to the advent of high-throughput 

automated analytical platforms that have reduced the time required for preparation and readout of 

arrays.       
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3.2.3. Multivariate statistical analysis of fingerprint response data 

 The pre-processed data obtained from the data management workflow is formulated in a 

structured format, ready for in-depth analysis through the application of various pattern recognition 

methods. In this section, the different approaches employed for the identification, classification, and 

discrimination of the tested analytes will be discussed in details. Additionally, a detailed examination 

of the corresponding general R code functions utilized in the analysis will be provided and each 

method will be explored in terms of its application, effectiveness, and how it contributes to the overall 

analysis, offering a thorough understanding of the techniques used to interpret the sensor array data in 

the following chapters.  

3.2.3.1. Data sampling methods 

The development of pattern recognition models involves three key steps: model selection, training and 

validation. The selection of an appropriate model is based on the nature of dataset and the 

classification problem at hand. Once selected, the model trains to identify patterns within the data, 

often involving feature engineering and adjustments to enhance performance of the model. Finally, 

the accuracy of the model is validated by testing its ability to perform on unseen data to ensure the 

reliability of the model. This evaluation of model accuracy is assessed by two fundamental 

techniques: cross-validation and bootstrapping, which are data sampling techniques that generate 

subsets of the pre-processed data for the training and testing of the developed pattern recognition 

model.   

 

Figure 3.6: Schematic representation of the development and cross validation of classification model 

using the hold-out and leave-one-out cross validation methodologies. 
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Cross-validation: This technique involves the partitioning of the pre-processed dataset into subsets. 

The model is trained on one subset, known as the training set, and evaluated on the remaining subsets, 

known as test sets. This process is repeated multiple times, and the prediction results of the model are 

averaged to estimate its overall performance. The commonly used cross-validation methods that were 

adopted for analysing pre-processed TPA-CB[n] datasets are (Figure 3.6): 

 Hold-out cross-validation: This is the simplest and most common cross-validation approach, 

where the dataset is randomly split to assign 70% to a training set and the remaining 30 % is 

assigned to the test set. The model is firstly trained using the training set followed by the 

validation of the model using the test set. This process is repeated multiple times and the 

results are averaged  

 

 Leave-one-out cross validation: In this approach only a single training set is analysed and one 

observation is removed at a time, and the model is recalculated using the remaining samples. 

The removed sample is then used to test the class prediction by the developed model. The 

most common approach is the Leave-One-Out (LOO) or jackknife cross-validation, where a 

single observation is left out at a time203. This process is repeated until all the observations in 

the dataset are left out and classified. Alternatively, for large datasets, ʋ-folds cross-validation 

is used, where ʋ -parts of the dataset is taken out and the rest is used to calculate the model. 

This process repeats ʋ times, and the classification accuracies are averaged. 

Bootstrapping: This technique involves resampling the data with replacement, meaning that some 

data points may appear multiple times in the resampled dataset, while others may not be included at 

all. The model is trained on this resampled dataset and then evaluated on the remainder of the dataset. 

The samples that are left out during the resampling are called the out-of-bag (OOB) samples and the 

error generated by the model in making predictions on the OOB samples is referred to as the OOB 

error rate. This resampling process is repeated numerous times to ensure a comprehensive evaluation, 

and the results from these multiple iterations are averaged to provide a more accurate and reliable 

estimate of the model's overall performance. 

The application of these sampling techniques, along with their role in the development of pattern 

recognition models, will be highlighted in the discussion of each multivariate technique in the 

following sections of this chapter. 
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3.2.3.2. Random Forest Algorithm 

There has been a gradual and emerging adoption of new pattern recognition algorithms that 

have been adopted for the analysis of chemical sensor arrays, like the random forest (RF) algorithms. 

RF is an ensemble learning method, where a set of classifiers are set-up and the aggregated prediction 

of the classifiers is used to identify the most popular result. RF can be imagined as a congregation of  

 

Figure 3.7: Schematic representation of random forest algorithm workflow for classification (adapted 

from Adyasha, M. et al.). 

 

decision trees and each tree is created from a bootstrap sampling method. This method is robust and 

reduces variance especially in noisy datasets, while avoiding over fitting of data points. This approach 

although complex enables fast training, strong generalization ability, and adaptability to unbalanced 

datasets and multi-classification problems that are common among array-based systems204. 

We firstly applied the random forest algorithm to our processed response datasets. The steps involved 

in the development of the model are described below205: 

 Random observation selection: Every tree in the random forest is trained on approximately 2/3rd 

(63.2%) of the total training data. Observations are selected randomly with replacement from the 

original data and are set as the training dataset for the growth of each decision tree. 

 Random feature selection: Few of the predictor features (m) are selected in random out of all the 

features and the best features from m is used to create a split at the node to proceed with the 

decision tree. The value of m is kept constant throughout the process. 

 Calculation of misclassification rate: For each decision tree created, the remaining dataset (36.8%) 

is used to calculate the misclassification rate – ‗out of bag (OOB) error rate‘. Aggregated errors 
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from all the decision trees are then utilized to determine the overall OOB error rate for the 

classification of the sensor array analytes. For example, if 200 trees are used, one observation on 

average will be out of the bag for about 0.37×200 = 74 trees 

 Classification of test dataset: Each tree generates a classification of the type of analyte on the 

leftover test dataset. This classification is considered over all the trees in the forest and the major 

vote is considered as the prediction on the test set. For example if 500 trees are fitted with the 

model, a case is out of the bag in 200 of them: 160 trees could classify this as analyte 1 and 40 

trees could classify them as analyte 2, in this case the maximum vote is predicted as analyte 1 for 

this observation with a probability of 160÷200 = 0.8. 

These steps are fundamental to the random forest algorithm and ensure that the model benefits from 

both the robustness of bootstrapping and the reduction of over fitting through feature randomness and 

aggregation. 

Function: 

The R package utilized for the application of the random forest algorithm to the pre-processed data is 

randomForest 

The general function for the classification algorithm is: 

# Load the library 

library(randomForest) 

 

# Train the random forest model 

model <- randomForest(target ~ ., data=training_data, ntree=500, 

mtry=2,  nodesize=1, maxnodes=NULL, importance=TRUE)     

 

# Predict on the test set 

predictions <- predict(model, newdata=test_data) 

# Evaluate the model for classification by generation of confusion matrix 

conf_matrix <- table(predictions, test_data$target) 

print(conf_matrix) 

# Calculate accuracy of classification 

accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix) 

print(paste("Accuracy: ", accuracy)) 

 

This function has a number of hyperparameters that need to be modified to achieve an efficient 

classification: 

ntree: Number of trees to grow, with a default value of 500 
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mtry: Number of variables randomly sampled at each split, with the default being the square root of 

the number of features for the classification model 

nodesize: Minimum size of terminal nodes, with a default of 1 for the classification model  

maxnodes: Maximum number of terminal nodes. If not specified, trees are grown to the maximum 

number possible 

importance: Each decision tree in the forest has its own out-of-bag (OOB) observation that was 

not used during its construction. This OOB sample is utilized to evaluate the importance of a feature. 

Initially, the prediction accuracy on the OOB sample is assessed. Then, the values of the feature of 

interest are randomly shuffled, while other features remain unchanged. The change in prediction 

accuracy due to this shuffling is measured, and the mean decrease in accuracy across all trees is 

reported as the feature's importance. This importance measure reflects how much the removal of the 

feature impacts the accuracy of the model. If a feature has minimal predictive power, shuffling may 

inadvertently improve accuracy due to random noise, potentially resulting in slightly negative 

importance scores, which are effectively treated as zero importance206(Figure 3.8c). 

 

Results of analysis by random forest model:  

The output of the random forest model, as depicted in Figure 3.8a, illustrates the 

hyperparameters used, including the number of trees and the number of variables considered at each 

split during the tree-building process. The results also display the OOB error rate, which reflects the 

errors made in predictions by the model on out-of-bag samples. Additionally, a confusion matrix is 

provided to evaluate the performance of the model by comparing the labels predicted by the model 

(e.g. healthy or unhealthy) against the actual labels. To determine the optimal number of decision 

trees for accurate prediction by the classification model, it is essential to stabilize the plot of the error 

rates of the model in comparison to the number of trees generated (Figure 3.8b). As expected, fewer 

trees in the model correlate with higher error rate. However, with an increase in the number of trees, 

the error rate eventually stabilizes. A lower and stable OOB error rate suggests a well-performing 

model. Thus, a balance must be struck between utilizing numerous trees to attain a stable prediction 

and using fewer trees to achieve efficiency.  

Thus, upon applying the random forest algorithm, we generated the classification error rate for the 

entire pre-processed dataset [N×1024]. This required the recording of the full emission spectra of the 

TPA and TPA-CB[7] sensing elements, thus we reduced the number of recorded wavelengths to ten 

per TPA and TPA-CB[7] pair with a dimension of  [N×80], and subsequently to five wavelengths 

each with a dimension of  [N×40]. At each stage, the random forest algorithm was applied, and 

variations in the overall classification error rate of the analytes across different media were 

documented. The hyperparameters were optimized for all the discrimination experiments with 

ntree=20,000 and mtry=0. For the final dataset [N×40], which included features corresponding 
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Figure 3.8: Representation of results and plots obtained from random forest algorithm. a) Output 

results generated by the classification model on R. b) Stabilization plot of the OOB error rate with the 

increase in the number of trees. c) Feature importance plot depicting the contribution of the features 

with high importance to the classification by the random forest model, where the features are ranked 

by their contributions to classification accuracy (MeanDecreaseAccuracy)207. 

 

. . . . .  

 
Overall 
Analyte 1 
Analyte 2 
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to five wavelengths for each TPA and TPA-CB[7] pair, the importance function was used to 

identify the top 16 features or wavelengths that most significantly contributed to the accurate 

classification of target analytes under the given conditions to generate a dataset with dimensions of 

[N×16]. This refined dataset was then exported for further analysis using other multivariate statistical 

methods, as discussed further.  

 

3.2.3.3. Linear discriminant analysis (LDA) 

The datasets generated from the processing by the random forest analysis were analysed by 

LDA analysis. This analysis was performed by both the streamlined R code and the software Systat 

13, Version 13.2.01. 

 The LDA analysis enables the dimensionality reduction of the fingerprint data obtained from the 

sensor array. The analysis generates a new lower dimensional space described by the canonical 

discriminant factors or canonical functions which best describe the likeness and differences between 

the target analytes. The first discriminant function is the linear combination of variables that best 

distinguishes among the groups. The second discriminant function, orthogonal to the first, is the next 

best combination, and so forth. The first discriminant function can be expressed as: 

LDF = c + a1x1 + a2x2 + …. + anxn 

where a1 through an are discriminant coefficients, x1 through xn are discriminating variables, and c is a 

constant. The coefficients for each variable in each discriminant function indicate the contribution of 

that variable to the discrimination between groups; the larger the standardized coefficient, the greater 

the contribution. The maximum number of functions generated is equal to the total number of 

observations minus one or the number of features whichever is smaller208. 

Function: 

The R package utilized for the application of the random forest algorithm to the pre-processed data is 

MASS 

The general function for the supervised classification LDA model utilizing the train and test 

validation is: 

# Load the library 

library(Mass) 

 

# Load a generic placeholder for describing the datasets  

lda_train_test <- function(train_data, train_labels, test_data, 

test_labels) { 

# Fit the LDA model by grouping the dataset by the labels given to the different analytes to 

enable classification and discrimination by the applied model 

lda_model <- lda(train_data, grouping = train_labels) 
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# Predict the class labels for the test data 

 predictions <- predict(lda_model, test_data)$class 

   

# Calculate the accuracy of the model 

accuracy <- mean(predictions == test_labels) 

   

 # Return the accuracy 

return(accuracy) 

} 

# Call the function 

accuracy <- lda_train_test(train_data, train_labels, test_data, 

test_labels) 

print(paste("Accuracy:", accuracy)) 

 The lda_train_test function takes four arguments: 

train_data: Training data as a data frame or matrix. 

train_labels: Corresponding labels for the training data. 

test_data: Test data as a data frame or matrix. 

test_labels: Corresponding labels for the test data. 

 

The general function for the supervised classification LDA model utilizing the LOOCV validation is: 

# Load the library 

library(Mass) 

 

# Load a generic placeholder for describing the datasets  

lda_loocv <- function(data, labels) { 

# Perform LDA with Leave-One-Out Cross-Validation (CV=True) 

model <- lda(data, grouping = as.factor(labels), CV = TRUE) 

   

# Compute the classification error rate 

error_rate <- mean(model$class != labels) 

   

# Print the model summary 

print(model) 
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Results of analysis by LDA: 

The dataset was also analyzed using Systat software with leave-one-out cross-validation. This 

software like other typical statistical programs automatically creates a two-dimensional plot using the 

canonical functions or factors (LD1 and LD2) that most contribute to the model's discrimination. 

While this usually produces a good plot, it may not always be the optimal visual representation of the 

LDA analysis. In such cases, other canonical functions generated by the analysis should be 

considered, and alternative plots, like a three-dimensional plot, should be created to observe the 

distinct clusters of different analytes. Therefore, it is important to carefully consider all canonical 

functions to visually represent the discriminated data in the most effective way possible. Each plot is 

represented by canonical functions or factors along the axes, along with the percentage that each 

function contributes to the overall classification of multiple analytes. This percentage is derived from 

the eigenvalue generated by the model, which reflects the relative ability of that specific function to 

capture the most differences among the various analyte classes (Figure 3.9a-b)209. The clustered 

analyte data is also displayed with confidence ellipses (95%), which help in identifying how close 

each sample is to the centroid. The centroid serves as the reference point for calculations, ensuring 

that the distances between different analyte clusters are maximized, while the distances between 

replicates within the same cluster are minimized. Additionally, the LDA provides a confusion matrix 

that shows accurate classifications on the main diagonal and misclassifications on the off-diagonal of 

the matrix, allowing easy identification of analytes that are commonly misclassified (Figure 3.9d)210.  

The efficiency of this methodology has therefore made LDA the most commonly used 

supervised technique in recent sensor array applications.  The above two approaches have primarily 

been adopted to streamline the data management and statistical analysis of the fluorescence based 

TPA-CB[7] sensor array. The associated results of the discrimination study with this pipeline with 

different analyte sensing will be further discussed in Chapter 4 of this thesis. 
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Figure 3.9: Different representations of canonical score plots generated by Systat software include: 

a) A two-dimensional plot showcasing canonical factors 1 and 2, highlighting their contributions to 

the classification model, with distinct clusters for different analytes and a 95% confidence interval. b) 

Three- dimensional plot of the canonical factors 1, 2 and 3 for better visualisation of the non-

overlapping clusters of the analytes c) The LDA analysis for a two-class classification model is 

illustrated as a histogram with normal distributions fitted to the averaged replicates of each data 

class, while a box plot shows the range of canonical scores obtained from the LDA. d) Jackknifed 

classification matrix demonstrating the accuracy of the classification model in identifying different 

analyte classes. 
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3.2.3.4. Receiver Operating Characteristic curves (ROC) 

The receiver operating characteristic curve (ROC) analysis is a statistical tool that is used in 

medicine to access the accuracy of diagnostic tests.  In general, a diagnostic classification test 

typically yields a binary outcome indicating whether the tested patient sample is non-diseased (Dx=0) 

or diseased (Dx=1). The classification accuracy is estimated by firstly measuring the disease status of 

each patient without error and comparing it to the gold standard (GS), which is the true status of the 

patient that is available from clinical follow-up, surgical verifications or autopsy. However, the 

fundamental measures of diagnostic accuracy are sensitivity (or true positive rate; TPR) - which is the 

probability that the test correctly classifies a diseased subject as positive and specificity (or true 

negative rate; TNR) - which is the probability that the test correctly classifies a non-diseased subject 

as negative. These parameters are represented in a confusion matrix or decision matrix (Figure 3.10a), 

where the four possible outcomes of a binary classification are represented as true positive, false 

positive, true negative and false negative. 

 

Figure 3.10: a) Decision matrix or confusion matrix generated from the diagnostic test results and 

the gold standard, to facilitate the plotting of the Receiver Operating Characteristic curve to 

determine diagnostic accuracy of a given diagnostic test. b) Three hypothetical ROC curves 

representing the diagnostic accuracy of the gold standard (line A; AUC=1) on the upper and left axes 

in the unit square, a typical ROC curve (curve B; AUC=0.85), and a diagonal line corresponding to 

random chance (line C; AUC=0.5). As diagnostic test accuracy improves, the ROC curve moves 

toward curve A (adapted from Zou, K. H. et al.211). 

The ROC curve is generated by plotting the sensitivity (sensitivity = True positive / (false negative + 

true positive)) on the y axis against (1- specificity) on the x axis (specificity = true negative / (true 

negative + false positive). The 45° diagonal line connecting the coordinates (0,0) to (1,1) corresponds 

to the ROC curve indicating the possibility of a random chance of the diagnostic test making a right 

a) b) 
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classification, while the ROC curve of the gold standard is the line connecting the coordinates (0,0) to 

(0,1) and (0,1) to (1,1).  

In general, the ROC curves lie between these two extreme cases and the area under the curve (AUC) 

represents the average diagnostic accuracy across the total set of subjects that have been tested. The 

AUC takes value from 0 to 1, with 0 indicating a perfectly inaccurate test and a value of 1 indicating a 

perfectly accurate diagnostic test. In general, an AUC of 0.5 suggests no discrimination (i.e., ability to 

diagnose patients with and without the disease or condition based on the test), 0.7 to 0.8 is considered 

acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered outstanding212. With 

improvement in the diagnostic ability of a test the ROC curve moves to curve A as indicated in Figure 

3.10b, while the AUC approaches 1. The AUC is often presented with a 95% confidence interval due 

to variability in the sample data which does not have fixed values but is rather influenced by statistical 

errors. This interval provides a range of plausible values for the AUC, accounting for statistical errors. 

For a test to be statistically significant, the lower bound of the 95% confidence interval for the AUC 

must be greater than 0.5213.  

We have also adopted this statistical approach to evaluate the diagnostic capability of the 

TPA-CB[7] sensor array in a proof-of-concept study for diagnosing the disease model of 

preeclampsia. To achieve this, LDA analysis assigns a single score to each patient sample, which is 

subsequently utilized to construct the ROC curve using the Graphpad Prism software (version 10.0). 

The area under the ROC curve (AUROC) is then calculated to evaluate the clinical significance of the 

diagnostic test using the TPA-CB[7] sensor array.  

 

3.2.3.5. Principal Component Analysis (PCA) 

 We have also streamlined the development of another statistical approach (PCA-LDA routine) 

for the analysis of the TPA-CB[n] colorimetric array that will be discussed in chapter 5 of this thesis. 

An overview of the workflow will be discussed in this section.  

PCA is an unsupervised statistical treatment used for the dimensionality reduction of fingerprint data 

generated from a sensor array, in such a way that the maximal variance of the data is retained in the 

dataset. It rotates and combines the original dataset by generating orthogonal eigenvectors for new 

orthogonal axes that result in the apparent shifting of the data points to be centered around the origin 

of each axis. This is the main advantage of the PCA, as it is often not necessary that the most 

important features of a dataset are those with the greatest variance, and the combination of variables 

that yields the most variance-explaining vector is not always obvious. In large datasets, such as those 

with spectroscopically obtained fingerprints, there is often significant redundancy among features, 

mostly wavelengths. PCA eliminates this redundancy by identifying collinear features and 

representing them on a single orthogonal axis. Essentially, PCA finds the axes that best fit the n 

dimensional data space and projects them into a simpler space. The contributions of each sensing 
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element to the PCs are represented as vectors on specific plots known as ‗loading plots‘, from which 

the ones with lowest contributions/loading of similar and highly correlated loadings can be identified 

and removed without affecting the overall discrimination of the array.  

Thus, this approach was used in the development of the LDA-PCA routine. An initial LDA and PCA 

analysis is performed on the fingerprint generated from the TPA-CB[n] colorimetric based sensor 

array. While the LDA analysis provides an initial percentage of classification error, the PCA analysis 

identifies the sensors that contribute least to discrimination, based on the dimensions of the analysis. 

Using this information, the features that contribute least to the discrimination are excluded. A 

subsequent LDA analysis is then conducted without these excluded features to determine if the 

percentage of classification error decreases. This iterative process continues until no further 

improvement in discrimination is observed. This facilitated the optimization of the array into a more 

efficient and experimentally convenient array with the highest accuracy of discrimination and reduced 

dimensions, enabling efficient data treatment time (Figure 3.11). 

 

 

Figure 3.11: Representation of the LDA-PCA routine adopted for the analysis of the colorimetric 

TPA-CB[n] sensor array indicating the improvement in the LOOCV error rate of LDA discrimination 

by excluding non-contributing features identified by PCA. 

 

The R package utilized for the application of the to the pre-processed data is  

FactoMineR and factoextra. 

The general function for the unsupervised classification by PCA is: 

# Load the library 

library(FactoMineR) 

library(factoextra) 

 

# Load a generic placeholder for describing the dataset and allows for optional scaling  

perform_pca <- function(data, scale_data = TRUE, graph = TRUE) { 
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# Perform PCA and display the PCA graphs 
pca_result <- PCA(data, scale.unit = scale_data, graph = graph) 

   

# The variance explained by each PC is extracted 
explained_variance <- pca_result$eig 

   

# Return a list containing the PCA results and explained variance 
list( 

pca_result = pca_result, 

explained_variance = explained_variance 

) 

} 

 

 This LDA-PCA routine allowed for the reduction of a 33-channel colorimetric sensor array to 

an 18-channel array while maintaining complete and accurate discrimination of the tested analytes. 

Thus, these two techniques are most effective when used in conjunction to optimize the analysis of the 

sensor array. 

 

3.3. Conclusions 

The analysis of the high-dimensional data generated during array-based sensing necessitates 

the development of a precise and efficient methodology for processing and statistical analysis. To 

address this, we have created an automated process for data management and analysis using R. 

Initially, we optimized the experimental design and data acquisition protocols for both fluorescence 

and colorimetric TPA-CB[n] sensor arrays. This included the measurement of appropriate controls 

and their integration into the data management and preparation process. Following this, the generated 

raw data was meticulously extracted and processed to enhance the resolution of the output signal. 

Multivariate statistical analysis has been applied to the pre-processed data to identify the most 

distinctive features of the sensor array that best discriminate the different analytes. By leveraging 

these identified classifiers, we implemented pattern-recognition algorithms such as random forest and 

linear discriminant analysis (LDA). These algorithms facilitate the streamlined identification, 

classification, and discrimination of analytes by the TPA-CB[n] sensor array across different sensing 

applications under different experimental conditions. 

 

3.4. Materials and Methods 

All R codes utilized for the discrimination studies will be provided in the Annexe of this thesis.
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Optical fingerprinting for diagnostic applications: Proteins and 

disease models 

 

 

 

 

 

 

 

 

  



Chapter 4 

 

131 

 

4.1. Introduction 

Proteins form vital constituents of the human body, serving as crucial components in various 

physiological processes. They play an integral role in cellular physiology, being meticulously 

regulated and affected during disease conditions. As such, proteins are an important class of 

biomolecular targets that can be utilized as invaluable biomarkers for diagnosing and monitoring 

pathological conditions, as well as evaluating the efficacy of treatments. The development of 

advanced protein sensing technologies is therefore a promising route toward more accurate and 

comprehensive protein analysis and disease diagnostics. Such advancements have great potential in 

revolutionizing the emerging fields of precision and personalized medicine, enabling more tailored 

and effective healthcare solutions214.   

However, detecting proteins poses a greater challenge compared to other biomarker species. Unlike 

nucleic acids, proteins cannot be directly amplified or targeted using base-pair complementarity. To 

achieve the necessary specificity and sensitivity, protein detection assays generally rely on surface 

capture of target molecules by affinity reagents such as in ELISA, which are time-consuming, 

expensive and may also lead to false-positive results. This approach also falls short when dealing with 

diseases for which no specific biomarkers have been identified, as well as for the early diagnosis of 

diseases that are highly multifactorial and linked to changes in multiple biomarkers in body fluids. 

Developing multiple antibody-based affinity capture probes to target these biomarkers is a 

challenging task, and these probes may often lack the sensitivity required to detect very low 

concentration changes that are observed in the early stages of a diseased state215. 

Array–based profiling offers an attractive complement to such specific biomarker-focused strategies. 

The selective interactions of the sensor elements with biomolecules present in body fluids facilitate 

diagnosis even in the absence of specific disease biomarkers. These arrays can non-invasively capture 

holistic differences in body fluids by generating cross-reactive signals for multiple analytes at once, 

effectively capturing the compositional diversity of biomolecules encoded in unique fingerprint 

signatures, rather than being limited to specific target molecules. This approach enhances the accuracy 

for early disease diagnostics
216

. Effective global fingerprinting of human serum with these arrays 

necessitates training them to recognize a wide range of structurally similar analytes, such as amino 

acids, carbohydrates, and proteins, and ultimately healthy or diseased state.  

Therefore, with these aspects in mind, we propose to train the developed TPA-CB[7] sensor 

array in the identification and classification of proteins in both simple and complex matrix, followed 

by the fingerprinting of artificial urine and human serum sample to establish a proof-of-concept for 

the application of this system for non-invasive diagnosis of diseases from body fluids. 

 



Chapter 4 

 

132 

 

4.2. Results and Discussion: Protein fingerprinting 

To evaluate the ability of the sensor array to interact with analytes by the displacement of TPA 

encapsulated within CB[7], we assessed the fluorescence modulations of the four selected TPA‘s and 

their corresponding TPA-CB[7] complexes with a few model proteins. The chemical and topological 

features on the surface of proteins provide essential information about their identity, as these features 

depend on the solvent-exposed amino acid residues217. CB[7], as a recognition scaffold combines 

multiple orthogonal binding interactions (encapsulation within hydrophobic cavity, H-bonding, 

electrostatic, dipolar interaction) to provide a complex target probing mechanism. This is achieved via 

primary recognition by direct interaction with amino acids such as Phe, Tyr, and Trp, paired with 

secondary effects arising from the three-dimensional geometric arrangement of adjacent residues that 

participate in secondary interactions196,197,218,219. This mechanism results in varying binding affinities 

of different proteins with CB[7], leading to differential displacement of encapsulated TPA, inducing 

variations in their fluorescence and resulting in the development of unique fingerprint responses.  As 

detailed in Chapter 3, this generated fingerprint response will be evaluated using two primary 

statistical methods: the random forest algorithm, which will produce an error rate of protein 

classification, and LDA analysis, which will offer a two or three-dimensional plot showing the 

accuracy percentage in discriminating the protein analytes. 

4.2.1. Sensitivity of TPA-CB[7] sensor array toward proteins 

To this end, we initially evaluated the fluorescence response of the sensor array across a range 

of concentrations, from 200 mg/ml serially diluted to 0 mg/ml, using representative protein analytes – 

BSA and trypsin spiked in 1X PBS. Considering that the total protein concentration in serum is 

approximately 60-80 mg/mL, with 50% being albumins and 40% globulins220 and the remaining 10% 

corresponding to other proteins, this initial test was performed across a broader concentration range to 

determine the sensitivity of the assay, i.e. the concentration range over which the TPA-CB[7] sensor 

array exhibited efficient discrimination ability. This experiment also enabled us to select a suitable 

and consistent analyte concentration for all future discrimination experiments. We firstly recorded the 

complete emission spectra for each TPA‘s (5 μM, 40 μL) in the array after the addition of the various 

concentrations of the two proteins (2.5 μL), in six replicates in a microplate. Subsequently, CB[7] 

(100 μM, 10 μL) was added to each well, and the fluorescence spectra were recorded again. The 

fluorescence emission intensity (I) at few specific wavelengths for each of the TPA-CB[7] sensing 

elements were selected for further statistical analysis (Figure 4.1a). These included fluorescence 

intensity at wavelengths close to the emission maxima wavelength, at 600, 620 nm for TP-3Pyo and 

AcriPy; 590, 620 nm for PhenazPy; and 540 nm for SulfoxPy, under two conditions: (TPA + protein) 

and (TPA + protein + CB[7]). This approach generated a 14λ channel-based unique fluorescence 
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fingerprint for each concentration. An example of fingerprint with BSA is represented by the heatmap 

in Figure 4.1b. While the heatmap presents a visual representation of the fluorescence fingerprint, it 

does not provide suitable information regarding the extent of discrimination by the TPA-CB[7] sensor 

array between the different concentrations being tested.  Thus, this fluorescence fingerprint was 

analyzed using a straightforward LDA analysis based on the absolute values of fluorescence emission 

intensities measured. From the canonical score plot of the first two discriminant factors obtained from 

the dimensionality reduction of the fluorescence response fingerprint, two linear ranges were 

extracted for BSA, one from 0 to 12.5 mg/mL (Figure 4.2a-c) and one from 25 to 200 mg/mL and a 

single linear range was extracted from 0.39 to 12 mg/mL for trypsin (Figure 4.2d-f). We used these 

results with BSA and trypsin to choose a low concentration of 0.625 mg/mL for all protein samples in 

subsequent discrimination studies. This concentration was chosen to ensure that the sensor array could 

detect low protein concentration modulation, facilitating its use for diagnostic purposes where protein 

variations in the secretome might undergo only subtle changes amidst a background of numerous 

other interfering proteins during the early stages of a disease state. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: a) Fluorescence emission spectra of TP-3Pyo and corresponding complex with CB[7] in 

the presence of protein BSA at a concentration of 200 mg/ml (green and red resp.)  and 0 mg/ml as 

represented by controls with the addition of 1X PBS alone (purple and blue resp.). The dotted lines 

represent the wavelengths (600 and 620 nm) chosen for the generation of the fluorescence fingerprint 

of the sensor array. b) Heatmap representing the fluorescence fingerprint generated by the TPA-

CB[7] sensor array with different concentrations of BSA. 

 

b) a) 
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Figure 4.2: Canonical score plot of the first and second factors of fluorescence fingerprint obtained 

with TPA-CB[7] sensor array against varying concentrations of proteins a) BSA, d) trypsin 

(200mg/ml serially diluted to 0mg/ml). b) Plot of first discriminant factor versus concentration of b) 

BSA and e) trypsin along with the corresponding linear detection range for c) BSA and f) trypsin with 

the TPA-CB[7] sensor array. 
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4.2.2. Discrimination of proteins in physiological buffer 

a. Fluorescence modulation of sensor array with proteins 

 In this section, we aimed to monitor the fluorescence response patterns generated by the four 

different TPAs and their corresponding TPA-CB[7] complexes with a few model proteins spiked in 

phosphate-buffered saline. This evaluation was intended to assess if the sensor array was capable of 

generating differential interactions with various protein analytes.  

Thus, the fluorescence emission spectra of a three-arm derivative (Acri_3Py) and a two-arm 

derivative (PhenazPy), along with their respective CB[7] complexes, were measured alone and in the 

presence of few proteins (here catalase and peroxidase spiked in PBS, 0.625 mg/mL) to analyse their 

interactions.  

- As shown in Figure 4.3a-b, the expected increase in the fluorescence emission of the TPA 

derivatives upon complexation with CB[7] was observed due to restriction in intramolecular 

rotation, with approximately 4-fold and 40-fold increases for Acri_3Py and PhenazPy, 

respectively. 

- The addition of the proteins to the TPA derivatives resulted in variations in their fluorescence 

properties. This can be attributed to the interaction of the TPA derivatives with the hydrophobic 

solvent exposed residues of the proteins. The extent of the variation was dependent on the specific 

protein as seen in Figure 4.3c.  While peroxidase enhanced the fluorescence of both derivatives to 

the same extent, catalase resulted in a greater enhancement with PhenazPy as compared to 

Acri_3Py. 

- Furthermore, it was observed that the CB[7] complex of the TPA derivatives exhibited a decrease 

in fluorescence emission with both the proteins (Figure 4.3a-b). This behaviour indicates the 

competitive displacement of the TPA derivative from the cavity of CB[7] by the proteins. 

Furthermore, the emission maxima wavelength observed after the displacement remain nearly 

identical to those seen when proteins interact with TPA alone, suggesting that residual interactions 

between the proteins and the TPA derivatives persist even after the displacement. 

- The fluorescence decrease in the Acri_3Py-CB[7] complex was noticeably more pronounced with 

peroxidase than catalase, indicating the potentially higher binding affinity of peroxidase to CB[7] 

as compared to catalase, leading to a larger extent of displacement of TPA from the CB[7] cavity.  

- A significant hypsochromic shift was also observed upon addition of proteins to the TPA or TPA-

CB[7] complex. This is primarily due to the binding of the TPA derivatives along the hydrophobic 

regions of the proteins. This binding shields the TPA derivatives from the surrounding water 

molecules, leading to a reduction in polarity that can be correlated to the blue-shift of the emission 

wavelength.159  
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Figure 4.3:  Modulations in the fluorescence emission spectra of a) Acri_3Py and b) PhenazPy 

(5µM) and their complex with CB[7] (100µM) in the presence of the proteins catalase and 

peroxidase (0.625 mg/mL). c) Output parameters (ΔI: change in fluorescence intensity; Δλ: shift 

in wavelength of emission maxima; ΔAUC: change in area under the fluorescence emission 

curve) extracted from the fluorescence emission spectra in Acri_3Py and PhenazPy. 

550 600 650 700 750

0

250

500

750

1000

1250

1500

Wavelength (nm)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y

Acri_3Py

Acri_3Py + CB[7]

Acri_3Py + Catalase

Acri_3Py + Catalase +
CB[7]

Δλ

ΔI

ΔAUC

550 600 650 700 750

0

250

500

750

1000

Wavelength (nm)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y

Acri_3Py

Acri_3Py + CB[7]

Acri_3Py + Peroxidase

Acri_3Py + Peroxidase
+ CB[7]

Δλ

ΔI

ΔAUC

550 600 650 700 750

0

1000

2000

3000

4000

5000

Wavelength (nm)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y

PhenazPy

PhenazPy + CB[7]

PhenazPy + Catalase

PhenazPy + Catalase
+ CB[7]

Δλ

ΔI

ΔAUC

550 600 650 700 750

0

1000

2000

3000

4000

5000

Wavelength (nm)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y

PhenazPy

PhenazPy + CB[7]

PhenazPy + Peroxidase

PhenazPy + Peroxidase
+ CB[7]

ΔI

Δλ

ΔAUC

a) 

b) 

c) 



Chapter 4 

 

137 

 

Thus, from these results we could infer that the interaction of each protein with TPA and TPA-CB[7] 

modifies the associated complexation equilibrium and creates specific modulations in the 

photophysical properties of the TPA derivatives. These alterations in the optical properties result in 

unique fluorescence patterns or fingerprints which are characteristic of each of the tested protein 

analytes. A representation of this kind of differential fluorescence fingerprint generated by the TPA-

CB[7] sensor array with proteins - catalase, peroxidase and lysozyme is shown in Figure 4.4. While 

the whole fluorescence emission spectra of the TPA-CB[7] sensing elements were registered in the 

presence of the proteins, we only used at this stage the fluorescence intensity variation ΔI measured at 

λems= 620nm for Acri_3Py, TP_3Pyo, PhenazPy and 540nm for SulfoxPy respectively, as discussed in 

section 4.2.1. The ΔI  is calculated such that ΔI = I-I0, with I corresponding to the fluorescence 

intensity of TPA or TPA-CB[7] in the presence of protein and I0 corresponding to the fluorescence 

intensity of  TPA in the presence of PBS only. The combined ΔI variations generated by the four TPA 

derivatives has been considered to obtain a heatmap representing the fluorescence fingerprint of each 

of the tested proteins Figure 4.4b 

 

Figure 4.4: a) Fluorescence emission intensities of proteins catalase, peroxidase and lysozyme with 

four TPA derivatives and their corresponding complexes with CB[7] measured at λems= 620nm for 

Acri_3Py, TP_3Pyo, PhenazPy and 540nm for SulfoxPy respectively. b) Heatmap depicting the 

unique fluorescence fingerprint of each of the proteins as generated by the TPA-CB[7] sensor array. 
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b. Discrimination of a set of proteins by sensor array 

Since, we observed differential fluorescence responses for various proteins with the different 

TPA‘s, we further assessed the discrimination performance of the developed sensor array. This 

involved evaluating its ability in discriminating a wider range of proteins by the generation, reduction 

and statistical analysis of their fluorescence fingerprints.  

We spiked 14 biologically relevant proteins with a wide range of molecular weights and isoelectric 

points (Materials and methods), at a concentration of 0.625 mg/mL in 1X PBS and examined the 

fluorescence response of each element of the sensor array. Again, we firstly recorded the complete 

emission spectra of all the TPA‘s in the array in the presence of the 14 proteins (I1[λi]) in six 

replicates in a microplate. Subsequently, CB[7] was added to the wells before recording the 

fluorescence spectra once again (I2[λi]). This protocol was designed to measure the two recognition 

events effectively (TPA + Proteins and TPA + CB[7] + Protein) in a timely manner, so as to obtain  

maximum replicates to ensure robust statistical analysis. Thus, the background correction of the 

fluorescence intensity for the determination of ΔI was done by considering I0 corresponding to the 

fluorescence intensity of TPA or TPA-CB[7] upon addition of PBS without any spiked protein. This 

approach generates a large fluorescence based dataset and to effectively handle the large volume of 

data at this stage, a pipeline of R codes has been established to automatically organise and format this 

raw fluorescence fingerprint data (Figure 4.5). In a first attempt, since we retained the whole 

registered fluorescence emission spectra, the streamlined data treatment generates here, a dataset with 

dimensions of [84 × 1028] (6 replicates of 14 proteins × number of wavelengths for each sensor 

element (whole spectra)), which was then used for subsequent analysis.  

 

 

Figure 4.5: Schematic illustration of protein sensing by TPA and TPA+ CB[7] fluorescence sensor 

array by bimodal recognition interactions. 

 



Chapter 4 

 

139 

 

Statistical analysis: Complete fluorescence fingerprint dataset 

The initially generated dataset with dimensions of [84 × 1028] has been evaluated by a random 

forest algorithm, which provides a discrimination error rate of 2.4 % among the 14 proteins, 

corresponding to 2 confusions among the 84 predictions made for the 14 proteins (6 replicates × 14 

proteins).  

The registration of the complete emission spectra during the course of the above fluorescence 

experiments enabled the comparison of discrimination rates obtained by taking into consideration  

 

Figure 4.6: Canonical score plot of the first and second factors of fingerprint response obtained 

based on a) shift in maximum wavelength of emission (Δλ) and b) area under fluorescence emission 

spectra of the TPA-CB[7] sensor array elements in the presence of 14 proteins spiked in 1X PBS.  

 

other variable output parameters such as shift in the maximum emission wavelength (Δλ) or area 

under the curve (AUC). While these outputs reduce the dataset dimensions from [84 × 1028] to [84 × 

8], considering two outputs for each TPA/CB[7] pair, they still require the time-consuming 

measurement of the complete emission spectra to extract these parameters. We analysed the 

discrimination accuracy of the 14 proteins by using either Δλ or AUC as different outputs. While the 

analysis with AUC allows a complete discrimination with an accuracy of 100% over the 14 proteins 

(Figure 4.6b), using only Δλ was found to be non-discriminant with an accuracy of 38% (Figure 4.6a).  

  

Statistical analysis: Reduced fluorescence fingerprint dataset 

Therefore, instead of relying on these output parameters, we systematically reduced the number 

of features of the dataset based on the fluorescence intensity variations, to enable faster fluorescence 

measurements with multiple replicates and improve the resolution of the output signal by reduction in 

noise generated by features that are non-discriminant towards the protein analytes. 
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To achieve this systematically, we adopted two main steps: 

Increase the step between wavelengths to register the fluorescence emission spectra: When a 

complete emission spectrum is recorded, for instance, for SulfoxPy, the spectrum is registered 

between 464 to 750 nm with a step of 2 nm, generating 144 measurements per spectral scan. 

Similarly, for TP_3Pyo, Acri_3Py, and PhenazPy, there are 130, 117, and 123 measurements per 

spectral scan, respectively. To reduce the dataset, we initially decided to increase the step between 

each consecutive wavelength by selecting only five wavelengths for each spectrum. This would 

reduce the time of measurement and resulted in a reduced dataset with dimension of [84 × 40]. It was 

observed that by reducing the size of the original dataset to this dimension there was no effect on the 

discrimination accuracy of the 14 proteins spiked in PBS. 

 

Figure 4.7: a) Canonical score plot of the first and second factors of fluorescence response pattern 

calculated by LDA for the identification of 14 proteins in 1X PBS with 16λ channels with adjoining 

box plot highlighting the circled region to depict clearer separation between overlapped classification 

clusters. b) Three-dimensional canonical score plot of the first three discriminant factors of the 

corresponding reduced fluorescent spectral fingerprint [84 × 16]. c) LDA classification accuracy 

represented by the Jackknifed classification matrix for the reduced dataset. 
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Selection of wavelengths contributing most significantly towards discrimination: From this 

reduced dataset with the selected 40 wavelengths, the 16 most important wavelengths for the 

discrimination were identified by the ‗importance‘ function of the randomForest package on R as 

discussed in Chapter 3. The random forest analysis using this reduced dataset [84 × 16] provided a 

good discrimination rate of 97.6% in PBS. This dataset was also evaluated statistically by LDA. The 

leave-one-out cross-validation was evaluated and the plot of the first and second determinant factors, 

with a 95% confidence ellipse, discriminated the proteins spiked in PBS with an accuracy of 98% 

(Figure 4.7a). The circled region indicates an apparent overlap among four protein clusters, however 

the box plot alongside the canonical score plot clearly represents the extent of separation among these 

proteins against their corresponding LDA 3 scores. Further clarification in the extent of discrimination 

of the 14 proteins can be visualised with the three-dimensional plot of the LD 1, LD 2 and LD 3 as 

indicated in Figure 4.7b.   

These results clearly demonstrate the sensor array's ability to discriminate diverse protein 

analytes at low concentrations in a physiological buffer. However, to enhance its utility, it is essential 

to evaluate the array's performance in more complex matrix systems, especially in the presence of 

other interfering biomolecules. By assessing the sensor array under these conditions, we can better 

understand its robustness and expand its applicability to real-world sensing challenges. 

 

4.2.3. Discrimination of proteins in complex matrix:  serum and 

treated serum 

a. Protein discrimination in complete human serum by sensor array 

To address the utility of the system for clinical and diagnostic applications, we tested the TPA-

CB[7] sensor array with the same set of proteins spiked in more complex media as compared to 

simple PBS. Specifically, we spiked the 14 proteins into complete human serum, which comprises a 

diverse array of biomolecules including proteins, antibodies, lipids, nutrients, metabolic substances, 

and more. The fluorescence fingerprints of these proteins were obtained by following the same 

streamlined used in the previous discrimination experiments conducted in PBS.  

Statistical analysis: Complete fluorescence fingerprint dataset 

Following the same protocol used for discrimination in PBS, we spiked the proteins into 

complete human serum to achieve a final concentration of 0.625 mg/mL upon addition to the TPA 

derivatives. Fluorescence emission spectra for the two recognition events were recorded for each 

protein in six replicates, resulting in a fluorescence fingerprint dataset with dimensions of [84 × 

1028]. This dataset was initially analysed using the random forest algorithm, which accurately 

discriminated the proteins with an error rate of 3.6%. As anticipated, there was a slight decrease in 
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discrimination accuracy compared to PBS, which can be attributed to the complexity of the serum 

matrix and the notably high concentration of albumin and immunoglobulins (IgG), which together 

constitute approximately 80-90% of the total serum protein concentration.  

Statistical analysis: Reduced fluorescence fingerprint dataset 

We further processed this data using the streamlined R code to generate a reduced dataset with 

dimensions of [84 × 40], based on the selection of five wavelengths for each TPA-CB[7] sensor pair. 

It was observed that this reduction in dataset size had a limited negative impact on the discrimination 

error rate, which increased to 7.1% when analysed using the random forest algorithm. This indicates 

that while the reduced dataset still provided reliable results, some degree of accuracy was 

compromised compared to the full dataset. We then identified the 16 wavelengths that contributed 

most significantly to the discrimination of the [84 × 40] reduced dataset by the ‗importance‘ function 

with the random forest algorithm. The analysis of this further reduced dataset. 

 

Figure 4.8: a) Canonical score plot of the first and second factors of fluorescence response pattern 

calculated by LDA for the identification of 14 proteins in complete human serum with 16λ channels 

with adjoining box plot highlighting the circled region to depict clearer separation between 

overlapped classification clusters. b) Three-dimensional canonical score plot of the first three 

discriminant factors of the corresponding reduced fluorescent spectral fingerprint [84 × 16]. c) LDA 

classification accuracy represented by the Jackknifed classification matrix for the reduced dataset. 
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revealed an increased discrimination error rate of 8.3%. This further indicated that the reduction in the 

number of features in the dataset compromised the accuracy in discrimination, particularly in the 

already challenging matrix of complete human serum. This dataset was also evaluated statistically by 

LDA. The leave-one-out cross-validation of the reduced dataset [84 × 16] was evaluated and the plot 

of the first and second determinant factors, with a 95% confidence ellipse discriminated the proteins 

spiked in serum with an accuracy of 99% (Figure 4.8a). Further clarification in the extent of 

discrimination of the 14 proteins can be visualised with the three-dimensional plot of the LD 1, LD 2 

and LD 3 as indicated in Figure 4.8b. The accuracy of discrimination between the two methods, 

random forest and LDA, differs and cannot be directly compared. This difference arises from the 

distinct approaches these methods employ. LDA is less flexible in handling complex data because it 

requires a normal data distribution and assumes an equal covariance matrix. In contrast, random forest 

does not require any hypothesis about data distribution and is less sensitive to noise. Therefore, while 

comparisons can be made for LDA and random forest individually under different conditions, they 

cannot be compared directly with each other. 

 

b. Protein discrimination in treated human serum by sensor array 

The presence of interfering biomolecules in complete human serum may have contributed to 

the decreased accuracy in discrimination of the spiked proteins. Consequently, we anticipated that the 

removal of excess proteins would enable better discrimination of the spiked protein analytes, which 

are present at a much lower concentration (0.625 mg/mL). To achieve this, we depleted the serum 

samples of Human Serum Albumin (HSA) and IgG using the High Select HSA/Immunoglobulin 

Depletion Resin, which is optimized to remove over 95% of both IgG and albumin. The proteins were 

then spiked into this pre-treated serum and evaluated using the TPA-CB[7] sensor array. 

Statistical analysis: Complete fluorescence fingerprint dataset  

The fluorescence fingerprint generated from the array was firstly analysed by the developed 

random forest algorithm. A recovery in the discrimination error rate to 2.4% was obtained in 

comparison to the discrimination in complete human serum. 

Statistical analysis: Reduced fluorescence fingerprint dataset 

We further reduced the dataset of the protein fingerprints and observed that decreasing the 

dataset size to [84 × 40] did not negatively impact the discrimination rate in the case of treated serum. 

In fact, an improvement in the discrimination rate to 1.4% was observed. These 40 wavelengths were 

further reduced using the ‗importance‘ function, resulting in a dataset with dimensions of [84 × 16]. 

Random forest analysis of this further reduced dataset achieved perfect discrimination with a 0% error  
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Figure 4.9: a) Discrimination accuracy determined by the streamlined data treatment and analysis 

methodology adopted in this study for the discrimination of 14 proteins spiked in different matrix.  

Representation of feature ranking based on contribution to the overall classification accuracy. The 

features have been obtained with the application of random forest model on the reduced fluorescence 

spectral dataset of top sixteen wavelengths [84 X 16] for b) PBS, c) human serum and d) treated 

serum. The figure also illustrates the contribution of these features individually towards classification 

of the 14 analytes (TP 6 = TP-3Pyo, TP 9 = Acri-3Py, TP 14 = PhenazPy, TP 18 = SulfoxPy)207. 

rate. Additionally, leave-one-out cross-validation of the reduced dataset using LDA yielded a 

discrimination accuracy of 100% for the 14 proteins spiked in depleted serum. While serum depletion 

enhances protein discrimination accuracy by removing excess proteins, this method has limitations, 

particularly in diagnostic applications of the sensor array. The process of depleting individual samples 

from a large cohort can be time-consuming and may introduce errors into the experimental protocol, 

potentially compromising reliability and reproducibility. 

Thus, The developed TPA-CB[7] sensor array demonstrated remarkable potential for distinguishing a 

variety of proteins at low concentrations in both simple media, such as PBS, and more complex 

media, like human serum, containing high concentrations of interfering proteins such as HSA and 

b) 

c) 

a) 

d) 
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IgG. The discrimination accuracies across these different conditions and an overview of the results 

from the streamlined data treatment and statistical analysis by random forest and LDA are illustrated 

in Figure 4.9a. Furthermore, the selected wavelengths in the reduced dataset with dimensions of [84 × 

16] and the extent of their contributions to the discrimination of each of the 14 protein analytes are 

shown for each of the tested matrix; PBS, complete serum and treated serum Figure 4.9b-d.  Among 

the three groups, 44% of the wavelengths from the 16-wavelength reduced dataset were shared by all 

three groups, while another 44% were common to two out of the three groups. 

These findings emphasize the underlying selectivity mechanism of the array-based system, 

highlighting its effectiveness in sensing multiple analytes with a limited number of sensor elements. 

This capability allows the system to detect overall changes in the composition of various complex 

mixtures and generate distinct fluorescence fingerprints, even in the presence of interfering 

substances. 

 

4.3. Fingerprinting of disease models: Phenylketonuria 

The biomolecular composition of body fluids reflects the onset, severity and progression of 

diseased states. Thus, detecting subtle alterations in biomolecular components, such as amino acids 

and proteins, holds great potential for the design and development of diagnostic methodologies. The 

cross-reactive nature of the chemical nose strategy can thus be a suitable choice to rapidly sense 

global proteomic changes and profile complex body fluid matrix like blood or urine. To demonstrate 

the capability of the TPA-CB[7] sensor array for such clinical and diagnostic applications, we tested 

the sensor array for the discrimination of disease models by profiling body fluid mimics such as 

artificial urine diluents and true clinical samples such as human serum collected from diseased/ 

healthy patients. The proof-of-concept of these diagnostic approaches will be discussed in the 

following sections of this chapter. 

 

4.3.1. Phenylketonuria: State of the art diagnosis 

Phenylalanine (Phe) is an essential amino acid acquired through the consumption of protein-

rich foods or dietary supplements. It is crucial for the biosynthesis of other amino acids and the 

maintenance of the structure and function of various proteins and enzymes in the human body. Most 

dietary Phe is converted into tyrosine (Tyr), which is then converted into several other products, 

including neurotransmitters such as dopamine, serotonin, epinephrine and norepinephrine. These 

neurotransmitters play essential roles in coordination, movement, mood regulation and cognitive 

functions221.  

The autosomal recessive metabolic disorder of phenylalanine metabolism is called Phenylketonuria 

(PKU), and is also known as phenylalanine hydroxylase (PAH) deficiency. This disorder is linked to a 
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defective mutation in the gene that encodes for the enzyme phenylalanine hydroxylase, which 

converts phenylalanine (Phe) to tyrosine through hydroxylation. PKU leads to the toxic accumulation 

of Phe in body fluids, which can cross the blood-brain barrier and also be converted into 

phenylketones such as phenylpyruvate, phenylacetate, and phenylacetate, which are excreted in the 

urine. If not diagnosed and treated early during the process of neonatal screening, this elevated Phe 

can cause intellectual disability, behavioural and psychiatric problems, microcephaly, motor deficits, 

eczematous rash, autism, seizures, and developmental problems222,223. The severity of PKU depends on 

the degree of enzyme activity, ranging from a complete absence to a milder form with some enzyme 

functionality but still unusually high Phe levels.  

The conventional treatment of PKU primarily focuses on dietary restriction to limit the consumption 

of excess Phe-rich foods. During this treatment, assessing patient blood Phe levels is crucial for 

evaluating the effectiveness of the dietary control224–226. Most screening methods for monitoring the 

Phe levels use blood plasma, including enzymatic commercial assay kits, tandem mass spectrometry 

and high-pressure liquid chromatography (HPLC). Although these methods provide high sensitivity 

and accuracy, they require laborious and time consuming sample preparation, skilled technicians and 

highly sophisticated and expensive testing apparatus/reagents. These laboratory tests often cannot be 

carried out in resource-limited situations for real-time monitoring. Therefore developing more 

accessible testing methodologies under various settings is critical227. Additionally, the analysis of Phe 

in urine is preferred over blood, since urine-testing is non-invasive and has a higher concentration of 

Phe than blood228. Consequently, there is a need for improved methods that are simple, inexpensive 

and capable of offering rapid determination of phenylalanine in human urine. In the last few years 

fluorescence and colorimetric-based sensors227,229,230 have played a significant role in the monitoring 

of PKU and digital-imaging with paper based techniques having evolved as a cost-effective approach. 

Weiss et al. were pioneers in developing a dehydrogenase-based biosensor to monitor Phe levels in 

human urine without requiring additional reagents. The sensor consisted of a carbon paste electrode 

incorporating NAD, phenylalanine dehydrogenase (PDH), uricase, and 3,4-dihydroxybenzaldehyde 

(3,4-DHB), all thoroughly mixed into the paste. In this setup, 3,4-DHB served as a base-stable 

electron mediator. This mediator interacts with the electrode surface, generating two redox species 

that catalytically oxidize NADH. This biosensor holds a distinct advantage as it can be effortlessly 

regenerated through polishing, owing to its preparation with carbon paste. The reported limit of 

detection (LOD) with this system for Phe was determined to be 0.5 mM231. Further, Sun et al. 

developed hybrid nanoflowers using phenylalanine ammonia-lyase (PAL), an enzyme substitute for 

PAH, to provide a semi-quantitative measure of Phe concentration in urine samples. The 

PAL@Ca3(PO4)2 hybrid nanoflowers (PAL@NF) were prepared by combining PAL and Ca2+. This 

paper-based biosensor demonstrated the ability to detect Phe concentration in urine samples with good 

linearity in the range of 60 to 2400 μM, achieving a response time of approximately 10 min232.  
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We anticipated that the global compositional changes in urine under such diseased conditions 

would provide an ideal scenario for the utilizing the cross-reactive nature of the chemical nose 

strategy to rapidly sense these variations, facilitating the development of an easy diagnostic strategy. 

Particularly, the competitive displacement of TPA‘s by amino acids from their CB[7] complexes, as 

described earlier would be a suitable system to facilitate the sensing of Phe in the complexity of the 

urine matrix of this disease model. Therefore, we used a non-biological diluent that mimics human 

urine and spiked it with varying concentration of Phe to develop a proof-of-concept for the utilization 

of the TPA-CB[7] sensor array in the diagnostic sensing of PKU. 

 

4.3.2. Setup of PKU sample cohort using artificial urine diluent 

 To utilize an array based system for diagnostic application, it is crucial to train the sensing 

elements to identify and classify analytes within a highly heterogeneous sample pool. This step is 

essential because the classification accuracy for both known and unknown samples indicates the 

effectiveness of the algorithm and whether the system requires further training or additional sensing 

elements. Achieving algorithms with accurate predictive power can be challenging, as they require a 

large number of samples to create an effective training set28.  A large dataset allows the model to more 

accurately identify underlying patterns, leading to better generalization when encountering unseen 

new data. It also ensures statistical reliability concerning class means and variances, and captures 

variability, making the developed model robust enough to handle different scenarios effectively. In 

classification tasks, such as disease diagnosis, it is essential that each class is adequately represented 

by a large sample set to provide a balanced representation and avoid the risk of overfitting, where the 

model learns the noise in the dataset rather than the actual class signal. It further ensures proper 

division of data into training and testing sets, which are essential for tuning the mode and assessing 

overall performance of the model. However, to acquire such a large cohort of clinical samples that are 

meticulously collected and recorded with their corresponding clinical and biological patient data and 

disease outcomes, has made the process of accessing these cohorts highly challenging.  

Thus, to address this issue and proceed with a proof-of-concept study demonstrating the 

disease diagnostic capability of the TPA-CB[7] array, we have mimicked the disease model of PKU 

as it is clinically presented in patient urine samples. We used a non-biological diluent that mimics 

human urine, spiked with different concentrations of L-phenylalanine comparable to healthy levels, 

mild and severe forms of PKU. The Sigmatrix Urine diluent (Sigma Aldrich) is primarily a buffer 

solution containing calcium chloride, magnesium chloride, potassium chloride, sodium chloride, 

sodium phosphate, sodium sulfate, urea and creatinine with sodium azide as a preservative. By using 

this diluent instead of human urine, we envisioned the set-up of a large cohort of samples that could 

enable the training of the sensor array towards the future possible detection of PKU from patient urine 

samples. We spiked the artificial urine with various concentrations of Phe (2 mM serially diluted to 
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7.8 μM). This range covers the threshold values for the disease, where urinary Phe levels are 

maintained below 3 mM during dietary-therapy treatment and usually close to the typical reference 

range of 61-314 μM in physiological conditions168,230,233. 

 

4.3.3. Optical fingerprinting of L-phenylalanine in artificial urine         

We anticipated that the previously described competitive displacement of TPA‘s by amino 

acids from their CB[7] complexes would facilitate the sensing of Phe in the context of the 

phenylketonuria disease model. Since we previously observed minimal fluorescence modulation of 

the TPA‘s in the presence of amino acids (Chapter 2), we generated fluorescence fingerprints of the 

artificial urine samples spiked with various Phe concentrations (9 concentrations × 6 replicates for 

each concentration) using only the four TPA-CB[7] complexes of sensor array and did not take into 

consideration the sensing elements corresponding to the TPA channels alone.  

Statistical analysis: Complete fluorescence fingerprint dataset 

The fluorescence fingerprints of the different Phe concentrations were obtained by firstly 

recording the complete emission spectra of the four TPA-CB[7] on addition of the urine diluent as 

(I0[λi]) in six replicates. It is important to note that the spectra closely resemble those recorded in PBS, 

with fluorescence emission intensities falling within the same range. Following this, Phe spiked 

artificial urine samples were added, before recording the fluorescence spectra once again (I1[λi]), 

including control samples of the artificial urine without Phe. The ΔI was calculated for all the six 

replicates of each concentration, at each wavelength, such that ΔI[λi] = I1[λi]-I0[λi]. This generated a 

fluorescence fingerprint dataset with dimensions of [54 × 514] (6 replicates of 9 Phe concentrations × 

number of wavelengths for each sensor element). This dataset was firstly analysed by the random 

forest algorithm to obtain a discrimination error rate of 7.4%. 

Statistical analysis: Reduced fluorescence fingerprint dataset 

 Similar to the previous analysis, we reduced the size of the dataset To achieve this, we first 

increased the step between each consecutive wavelength, selecting only five wavelengths for each 

spectrum. This would reduce the time of measurement and resulted in a reduced dataset with 

dimension of [54 × 40]. However, it was observed that this reduction led to a significant increase in 

the discrimination error rate, doubling it to 14.8%. Consequently, reducing the number of features 

compromised the accuracy of discrimination between different Phe concentrations, indicating that 

using the complete dataset is more advisable for this study. To refine the dataset further, we identified 

the 16 most significant wavelengths among the spectra contributing to the maximum discrimination of 

Phe using the ‗importance‘ function. This generates a dataset with dimensions of [54 × 16]. Applying 

the random forest algorithm to this refined dataset resulted in an error rate of 7.4%, which was 
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comparable to that obtained with the complete dataset. This reduced dataset [54 × 16] was also 

evaluated statistically by LDA. The leave-one-out cross-validation of the reduced dataset was 

evaluated and the plot of the first and second determinant factors, with a 95% confidence ellipse 

discriminated the different Phe concentration spiked in artificial urine with an accuracy of 93% 

(Figure 4.10a-b).  

 

Figure 4.10: Clinical applications of the TPA-CB[7] sensor array: a) Discrimination accuracy 

determined by the streamlined data treatment and analysis methodology adopted in this study for the 

discrimination of phenylalanine spiked in artificial urine. b) Canonical score plot for the first and 

second factors of fluorescence response patterns calculated by LDA with 16λ channel. c) Plot of first 

discriminant factor versus concentration of Phe tested d) Linear range of variation of LD1 with Phe 

concentration (7.8 µM to 125 µM), extrapolation of LDA scores to determine concentration of 

unknown solutions with table indicating the identification of unknown concentrations from linear fit.  
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We further evaluated the linear range across which the TPA-CB[7] showed efficient discrimination 

ability by analysing the linear variation of the first determinant LDA score with Phe concentration. It 

appears that a good linear fit with r2= 0.97 covers the range of concentration between 7.8 μM and 125 

μM (Figure 4.10c). To evaluate the reliability of the sensor to detect Phe concentrations, we further 

utilized this linear fit to identify two unknown Phe solutions (90 μM and 20 μM). The extrapolation of 

their respective LDA scores from the linear fit accurately predicted the concentrations as shown in the 

table in Figure 4.10c, (right panel). 

The results presented here show that the proposed array based sensing has a dynamic range 

for the detection of Phe, spanning from the disease threshold range to very low micromolar 

concentrations. Therefore, this approach could be explored for the direct detection of PKU in patient 

urine samples, offering a less invasive, faster, and simpler alternative to standard blood-based 

methods for monitoring the control of the disease by dietary restrictions. 

 

4.4. Fingerprinting of disease model: Preeclampsia 

 

4.4.1. Preeclampsia: State of the art diagnosis 

 Preeclampsia (PE) is a multifactorial pregnancy related disorder characterized by 

hypertension and proteinuria after 20 weeks of gestation234–236. It affects 2 to 7% of pregnancies and is 

associated with maternal and perinatal mortality and morbidity, with both short- and long-term 

consequences for mother and child. PE can lead to serious and unpredictable adverse outcomes and is 

one of the major causes of extreme prematurity and maternal deaths globally. Due to the lack of 

specific biomarkers or adequate combination of biomarkers, predicting pregnancy outcomes after 

diagnosis is highly challenging. This limitation restricts the panel of therapeutic strategies available to 

clinicians and often results in unexpected emergency situations. No curative treatment exists, and 

although symptomatic management has improved, preeclampsia remains one of the top five causes of 

maternal deaths in developed countries. 

The etiology of preeclampsia remains unclear, as no single causal factor links all theories due to its 

multifactorial and polymorph nature. It is classically associated with abnormal remodeling of the 

utero-placental vascularization but can also result from placental senescence, activation of coagulation 

in the intervillous space, infections, and fetal hydrops237. Preeclampsia involves significant 

quantitative and qualitative biological changes in maternal blood, with the placenta releasing high 

amounts of proteins238–240, lipids241 and nucleic acids. Additionally, it is also associated with protein 

misfolding and oxidation of proteins and lipids. The presentation of the disease is highly variable. It is 

typically diagnosed by the presentation of hypertension and proteinuria after 20 weeks of gestation. 

Even with conservative management, the mother and fetus may still face severe complications such as 
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eclampsia, HELLP (Hemolysis, Elevated Liver enzymes, Low Platelet count) syndrome, kidney 

failure, stroke for the mother; and prematurity, lung problems for the baby. The time from initial 

diagnosis to these complications and the severity of the disease can vary significantly between 

patients.  

The follow-up of preeclamptic patients is complicated by the difficulty in distinguishing between 

women at low risk of perinatal complications (for which ambulatory surveillance is sufficient and 

avoiding unnecessary intervention) from those at high risk requiring more intensive management and 

close follow-up. Maternal factors used as severity criteria by some international clinical practice 

guidelines242,243 are not uniform and do not reliably identify women at high risk of developing 

maternal complications244,245. To date, no biomarker profile satisfactorily predicts preeclampsia 

progression and outcomes246. Hence, classical methods targeting specific biomarkers, typically 

antibody-based assays, are not well suited to address the complexity of PE. Instead, holistic and 

untargeted approaches that rely on the global analysis of the serum, that contains thousands of 

different proteins, may provide richer data on the various physiological, dysfunctional or pathological 

states of the patient. These methods can detect subtle changes in the balance between several 

biomolecules (proteins, hormones, ions) in the serum, potentially offering more comprehensive 

insights into the condition.  

We therefore tested the developed TPA-CB[7] sensor array as a non-specific serum–based 

diagnostic strategy for the identification and discrimination of a cohort of serum samples collected 

from preeclamptic and healthy patients. We hypothesized that the selective interactions of the sensor 

array, which allows the discrimination of proteins within complex matrices like serum, would also 

generate unique fluorescence fingerprints for each patient sample. These fingerprints could then be 

correlated with the multifactorial nature of the diseased state, reflecting the global proteomic 

variations present in the serum of PE patients as compared to healthy patient samples.  

 

4.4.2. Fingerprint of PE samples by four TPA with CB[7]  

We conducted a proof-of-concept study to demonstrate the application of the TPA-CB[7] 

sensor array as a diagnostic tool for non-specifically identifying the diseased preeclampsia (PE) state 

in human serum samples. The sensor was tested using serum from five PE patients and twelve non-PE 

patients, all being a subset of the APHERESE cohort (NCT03188900). Detailed clinical information 

for these selected samples can be found in the Materials and Methods section of this Chapter. 

The samples were classified based on the levels of two specific biomarkers: soluble fms-like tyrosine 

kinase 1 (sFlt-1) and placental growth factor (PlGF). In preeclampsia, the circulating maternal serum 

levels of these biomarkers show characteristic changes, with sFlt-1 levels typically increased and 

PlGF levels decreased. Currently, a high sFlt-1 to PlGF ratio is associated with an increased risk of 
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preeclampsia and is considered a better predictor of risk than either biomarker alone247. Thus, based 

on the sFlt-1 to PlGF ratio provided in the clinical details, we selected 17 serum samples with relevant 

sFlt-1 to PlGF ratio for testing with the TPA-CB[7] sensor array  (PE samples ratio : 200-300; non-PE 

samples ratio: 0-15). This selection ensured that the samples represented both the PE and non-PE 

states efficiently, enabling a comprehensive evaluation of the sensor array's diagnostic capability. 

 

a. Preeclampsia discrimination in patient serum samples by sensor array 

Statistical analysis: Complete fluorescence fingerprint dataset 

We firstly recorded the complete emission spectra of all the TPA‘s (5 μM, 40 μL) in the array 

after the addition of the serum samples of the PE and healthy patients (2.5 μL), in three replicates in a 

microplate (I1[λi]). Subsequently, CB[7] (100 μM, 10 μL) was added to each well, and the 

fluorescence spectra were recorded again (I2[λi]). This generated a complete fluorescence dataset with 

dimensions of [51 × 824] (3 replicates of 17 patient serum samples × number of wavelengths for each 

sensor element), where each of the replicates of the 17 samples are considered as individual data 

points for classification by the two-class classification model. This dataset was firstly analysed by the 

random forest algorithm to obtain a discrimination error rate of 3.9%. 

Statistical analysis: Reduced fluorescence fingerprint dataset 

We further reduced the dataset by increasing the step between each consecutive wavelength, 

selecting only four wavelengths for each spectrum. This resulted in a reduced dataset with dimension 

of [51 × 32]. However, it was observed that this reduction led to no change in the discrimination error 

rate, of 3.9% as analysed by the random forest algorithm. This indicated that the reduced dataset 

retained all the features that were essential to make an accurate discrimination between the different 

patient serum samples. To refine the dataset further, we identified the 16 most significant wavelengths 

contributing to the maximum discrimination of the patient samples using the ‗importance‘ function to 

generate a dataset with dimensions of [51 × 16]. Applying the random forest algorithm to this refined 

dataset resulted in an error rate of 5.9%, indicating that the reduction in the number of features has 

almost no effect on the discrimination accuracy. (Figure 4.11a). This reduced dataset was also 

analysed using Linear Discriminant Analysis (LDA). A plot of the first and second determinant 

factors displayed the discrimination of the 17 serum samples, achieving a classification accuracy of 

96% (Figure 4.11b).  

We further analysed the accuracy and sensitivity in the performance of our sensor system in 

prediction of PE through the Receiver Operator Characteristic (ROC) curve analysis (Figure 4.11c) 

and the area under the ROC curve (AUROC). While an AUCROC ≥ 0.75 is generally considered to 
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be clinically relevant for a diagnostic test, our ROC yielded an AUC=1, signifying the efficient ability 

of the sensor array to distinguish healthy patients from those with preeclampsia. 

 

Figure 4.11: Clinical applications of the TPA-CB[7] sensor array: a) Discrimination accuracy 

determined by the streamlined data treatment and analysis methodology adopted in this study for the 

discrimination of PE disease in patient serum samples. b) Histogram marked with a normal 

distribution fitted to complete data analyzed by LDA with three replicates for PE and healthy serum 

samples and a box plot of combined samples in each group. c) ROC analysis of the two-group sensing 

by TPA-CB[7] sensor  with corresponding AUC=1 with corresponding jackknifed classification 

matrix for the discrimination of 17 serum samples in triplicates depicts a classification accuracy of 

96%. 

 

b. Preeclampsia discrimination in mis-assigned patient serum samples by sensor array 

To validate the robustness and eliminate possible bias in the treatment of the fluorescence 

fingerprint data by the developed random forest algorithm and LDA classification model, we 
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deliberately partially mis-assigned serum samples, by labeling PE samples as non-PE and vice versa. 

This resulted in 60% mis-assignment of the samples, which was then used to analyse the variation in 

the results of the statistical analysis. 

Statistical analysis: 

We firstly analysed the complete fluorescence dataset with dimensions of [51 × 824] with 

random forest algorithm to obtain a discrimination error rate of 47.1%. The reduction in the dataset to 

[51 × 32] does not improve the discrimination error rate (error rate of 43.1%). To refine the dataset 

further, we identified the 16 most significant wavelengths using the ‗importance‘ function to generate 

a dataset with dimensions of [51 × 16]. Applying the random forest algorithm to this refined dataset 

resulted in an error rate of 33.3% (Figure 4.12a). While an improvement was observed, the error rate 

 

Figure 4.12: Clinical applications of the TPA-CB[7] sensor array: a) Discrimination accuracy 

determined by the streamlined data treatment and analysis methodology adopted in this study for the 

discrimination of PE disease in mis-assigned patient serum samples. b) Histogram marked with a 

normal distribution fitted to complete data analyzed by LDA with three replicates for mis-assigned PE 

and healthy serum samples and a box plot of combined samples in each group. Jackknifed 

classification matrix for the discrimination of 17 serum samples depicts a classification accuracy of 

51%. 

still remained too high to make an accurate discrimination among the different samples. The reduced 

dataset was also analysed using LDA, which produced a plot of the first and second determinant 

factors displaying the discrimination of the 17 serum samples with a classification accuracy of 51% 

(Figure 4.12b). This decrease in accuracy due to sample mis-assignment highlighted the robustness of 
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the original model developed with our TPA-CB[7] sensor array, confirming its capability to 

effectively discriminate and classify serum samples from PE and healthy patients.  

 

While this initial proof-of-concept analysis indicates promising potential for utilizing this 

sensor in diagnosing preeclampsia (PE), the current sample size used in the study is inadequate to 

thoroughly validate predictive power of the sensor array. The small sample cohort studied limits the 

ability to generalize the findings and assess the robustness of the diagnostic performance. Thus, 

access to the entire cohort established for the study is crucial, but administrative limitations have 

made this difficult and time-consuming.  Therefore, to more accurately establish the diagnostic 

capabilities of the sensor array, it is essential to conduct testing with a substantially larger and more 

diverse clinical sample cohort along with the use of high-throughput analytical platforms for efficient 

sensing. This expanded testing will provide a more definitive assessment of the potential of the TPA-

CB[7] array for clinical application in diagnosing PE.  

 

4.5. Conclusion 

In conclusion, we have demonstrated the effectiveness of the developed TPA-CB[7] sensor 

array in optically fingerprinting bioanalytes. By leveraging the molecular recognition properties of the 

CB[7] macrocycle and TPA derivatives, along with the fluorescence properties of TPA, we have 

showcased the ability of the sensor array to discriminate a variety of proteins as model analytes spiked 

in both simple and complex matrices like human serum. Additionally, the sensor system exhibited a 

strong capability to discriminate pathological diseased states, such as phenylketonuria and 

preeclampsia, in both artificial urine and human serum. The treatment and statistical analysis of the 

generated raw data were streamlined using R coding, ensuring consistent and effective analysis. These 

overall results validate the potential utility of the array in fingerprinting actual clinical specimens and 

highlight its selectivity toward the global proteomic alterations associated with multifactorial diseases 

such as preeclampsia in the complex milieu of body fluids. 
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4.6. Materials and Methods 

1. Physiochemical properties of protein used in the discrimination study 

Proteins MW 

(kDa) 

pI Commercial Source 

Peroxidase from horseradish 44.0 7.2 Sigma Aldrich, 77332 

Pepsin from porcine gastric mucosa 35.0 1.0 Sigma Aldrich, P7000 

Diastase (from fungi) - - Sigma Aldrich, 1036040050 

α-amylase from hog pancreas 51-54 

form I: 5.95 

form II: 5.25 

Sigma Aldrich, 10080 

Lipase from Aspergillus niger 45.0 - Sigma Aldrich, 62301 

Lysozyme from chicken egg white 14.6 11.0 
Hampton Research, 

HR7-108 

Myoglobin from equine skeletal 

muscle 
17.6 7.3; 6.8 Sigma Aldrich, M0630 

Phosphatase, Acid from porcine 69.0 - Sigma Aldrich, P3752 

Pancreatin from porcine pancreas - - Sigma Aldrich, P1750 

Catalase, from bovine liver 250.0 5.4 Sigma Aldrich, C1345 

α-Chymotrypsin from bovine pancreas 25.0 8.75 Sigma Aldrich, C4129 

Bovine serum albumin 66.3 4.8 Sigma Aldrich, A4503 

Fetuin, from fetal calf serum 48.4 3.3 Sigma Aldrich, F3004 

Dispase II (neutral protease, grade II) - - Roche, 11760200 
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2. Protocol for discrimination of proteins spiked in 1X PBS, serum and depleted serum 

For the sensing experiments with the 14 proteins, 40l of 5M solution of the four TPA derivatives in 

water were taken in six replicates in a 96 well, half area microplate. To this solution, 2.5l of 

10mg/mL solution of the respective proteins spiked either in 1X PBS, serum or depleted serum were 

added to the wells. The plate was incubated for 10 minutes and the fluorescence spectras (I1[λ]) were 

recorded after initial shaking of the plate for 10 seconds in the microplate reader at the excitation 

wavelengths indicated in Table S1. After this measurement, 10ul of 500M solution of CB[7] in 

water was added to the wells and the plates were incubated for 10 minutes before the fluorescence 

spectras were measured again (I2[λ]). Control spectras were recorded with the addition of 1X PBS, 

serum or depleted serum in the absence of spiked protein to the TPA derivatives, followed by the 

addition of CB[7]. Similar protocols were adopted for experiments with the disease models. 

 

3. Depletion of human serum  

The Thermo Fisher Scientific High Select HSA/immunoglobulin depletion resin (Cat. No. A36367) 

was utilized for the process of pre-treatment of human serum samples used for the discrimination of 

the 14 protein analytes. This depletion step involves the process of reducing the albumin and antibody 

components that are known to be abundantly present in human plasma samples, mainly IgG and 

albumin. The kit has been optimized for the removal of >95% removal of both these components by 

highly specific immobilized anti-HSA and anti-immunoglobulin antibodies (IgG, IgA, IgM, IgD, and 

IgE). 

 The provided resin slurry stored at 4℃ filled into the spin column and equilibrated to room 

temperature  

 Centrifuged the column at 500 rpm for 1 minute to remove the excess buffer of the slurry 

from the column 

 Then, 120l of the human serum sample was added directly to the resin in the column and 

gently end-over-end mixed several times with occasional vortexing at room temperature for 

10 minutes to homogenous the mixture 

 The spin column was then placed into a 15mL collection tube and centrifuged at 1000 × g for 

2 minutes  

 The collected filtrate contained the depleted serum sample which was stored at -20℃ and 

spiked with proteins to be used for the sensing experiments 
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4. Preeclampsia: Clinical data of patient samples from APHERESE cohort 

Table S3: Library of serum samples from the APHERESE cohort used for discrimination 

studies with TPA-CB[7] sensor array  

N° inclusion GROUP DOB 
Age at 

inclusion 

Date of 

collection 
PlGF sFlt1 

Ratio 

sFlt&/PlGF 

001-0009-

DH 
Healthy 5/1/1983 29 SA + 3 6/20/2017 783 2679 3.421456 

001-0038-

RZ 
Healthy 12/2/1990 31 SA + 3 8/8/2017 788 974 1 

001-0055-

PM 
Healthy 5/11/1985 27 SA + 6 8/31/2017 7197 906 0 

001-0151-LI Healthy 6/8/1983 28 SA + 4 4/16/2018 671 1513 2 

001-0152-

SA 
Healthy 4/21/1977 30 SA + 2 4/17/2018 560 1274 2 

001-0159-

OM 
Healthy 1/4/1988 29 SA 4/26/2018 727 2115 3 

001-0170-IN Healthy 5/10/1984 30 SA + 1 5/15/2018 1781 2043 1 

001-0197-

BA 
Healthy 11/7/1985 28 SA 6/26/2018 559 4400 8 

001-0199-

TM 
Healthy 9/15/1984 29 SA + 4 7/2/2018 300 1045 3 

001-0232-

SA 
Healthy 11/28/1985 30SA+5 11/14/2018 127 1887 15 

001-0233-

NC 
Healthy 7/26/1983 30SA+6 11/14/2018 535 3856 7 

001-0113-

FN 
Healthy 9/5/1983 30 SA + 6 1/16/2018 1067 1559 1 

001-0096-TS PE 9/18/1986 30 SA + 3 12/19/2017 41.6 16611 399 

001-0134-

SN 
PE 6/6/1989 30 SA + 3 2/11/2018 26.1 9448 362 

001-0226-

CT 
PE 11/20/1985 31SA+6 10/18/2018 40.1 7649 191 

001-0227-PI PE 8/8/1978 31SA 10/24/2018 33.7 10228 304 

001-0241-

KV 
PE 10/30/1977 27SA+6 12/19/2018 38.8 10182 262 
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5. Ethical Declaration and Biological Samples 

The local ethics committee (Comité de Protection des Personnes Ile de France 3) approved the studies 

of the human serum sample from the APHERESE case/control prospective study 

(http://www/clinicaltrials.gov unique identifier: NCT03188900). All patients gave written consent and 

non-opposition form for participation in these studies and to the use of their serums for research 

purposes. After centrifugation of the blood (1,000 × g for 15 min at 4°C), supernatant was transferred 

into a clean polypropylene tube, aliquoted and stored at - 80°C. The serum samples were used after 

one year of conservation in accordance with French law. Serum total proteins and total HCG were 

measured using the Cobas analyzer (Roche Diagnostic, Meylan, France). 
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Optimization of analytical platform for throughput analysis: use of 

droplet microfluidic platform and pipetting robot  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

 

162 

 

5.1. Introduction 

The application of sensor arrays in diagnostic settings requires rigorous evaluation to ensure 

their effectiveness in distinguishing among large cohorts of clinical samples. Such evaluations 

demand substantial volumes of both the sensing elements and analytes to create sufficient replicate 

data, which are crucial for thorough analysis and for validating the diagnostic capabilities of the 

sensor array. To address these requirements, it is important to develop a sophisticated analytical 

system that is not only automated and miniaturized but also capable of high-throughput analysis. This 

system must handle the complexities associated with the analysis of large sample sets and the 

substantial dimensions inherent to sensor arrays. To fulfil this need, we have engineered a droplet-

based microfluidic device tailored specifically for the TPA-CB[n] sensor array, focusing on its 

optimization for efficient performance. Additionally, we have also investigated the integration of a 

pipetting robot to refine the experimental design, aiming to minimize variability and ensure uniform 

sampling conditions. This approach enhances reproducibility in the fingerprint generation process by 

the sensor array, ensuring consistent and reliable results. By combining such analytically advanced 

technologies with the TPA-CB[n] sensing system, we aim to significantly improve the precision and 

scalability of the sensor array for applications such as diagnostic testing. 

 

5.2. Results and Discussion: Droplet-based microfluidic platform 

Microfluidics over the years has enabled high-throughput and inexpensive analysis through 

parallel liquid handling and reaction miniaturization. An emerging subcategory of microfluidics is 

droplet-microfluidics. Unlike continuous flow systems, droplet-based systems focus on creating 

discrete volumes with the use of immiscible phases. It provides an alternative approach for generation 

of large scale and parallel chemical or biological reactions without increasing the device size or 

complexity248. This approach involves the compartmentalization of aqueous solutions as droplets in 

oil in a controlled manner and at high frequency (Hz to kHz).  

The droplet-based microfluidics approach offers several significant benefits. Reactions occur in very 

small sample volumes which can be reduced from milliliters and microliters to nanoliters and 

femtoliters, while reducing reaction times to a few seconds or lesser. This method minimizes analyte 

dilution within droplets, providing a stable microenvironment and delivering highly reliable 

information for long-term monitoring. It facilitates high-throughput generation and detection of 

numerous droplet reactors, enabling large-scale screening of samples and reaction conditions, which 

is particularly useful in applications like directed evolution and drug discovery. The flexibility in 

droplet manipulation allows for automation of multistep reactions, including generation, merging, 

splitting, and sorting. The possibility to aliquot samples and reagents into independent compartments 

prevents undesired cross-contaminations, evaporation, and non-specific adsorption onto channel 
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surfaces. Overall, this approach is cost-effective, as a single device can generate millions of droplets, 

significantly reducing research costs249.  

To evaluate and optimize the TPA-CB[7] chemical nose sensor array for high-throughput screening of 

analyte samples, a droplet microfluidic platform was engineered and implemented together with the 

team of Dr. Stephanie Descroix (Institut Curie) in order to develop a miniaturized version of the 

sensor array with the aim to make hundreds of measurements simultaneously with rapid analysis and 

detection. 

 

5.2.1. Experimental set-up of droplet microfluidic platform 

The platform is established based on the ‗plug format‘ previously developed by the group, with 

minor modifications and adjustments250. In this set-up generated droplets are kept separated by oil in a 

confined capillary. It is composed of different parts and is fully controlled by a computer station to 

allow automated droplet experiments. The different parts and setup of the developed platform are 

shown in Figure 5.1.  

The platform includes a pipetting arm-robot (Rotaxys, Cetoni, Germany, Figure 5.1a-b, No.1) coupled 

with one high-precision syringe pump (Nemesys, Cetoni, Germany) mounting a 250 µL syringe (SGE 

Analytical Science, UK) (Figure 5.1a-b, No.3). The motorized pipettor arm is connected to the syringe 

by a circular polytetrafluoroethylene (PTFE) tubing (0.3 mm inner diameter x 0.6 mm outer diameter, 

113 cm long) (BohlenderTM PTFE tubing, Sigma Aldrich, USA). This material is an ideal choice for 

various microfluidic applications where precision, chemical compatibility and reliability are essential, 

due to its chemical resistance, non-stick properties, thermal stability, flexibility, durability, and semi-

transparency. The droplets are generated by pipetting alternatively the water and oil phase solutions 

from a 384-wells microplate (Nonbinding surface (NBS)TM, Corning, USA). The NBS of the plate 

prevents undesirable non-specific interactions between the plate surface and the sensing elements or 

analytes being examined, thereby preserving their integrity and concentration. This is especially 

crucial when working with low volumes of valuable samples.  The carrier oil is fluorinated (FC-40, 

3MTMFluorinertTM, Belgium) with 2% w/w of a fluorinated surfactant (1H, 1H, 2H, 2H-perfluoro-1-

decanol (PFD), Fluorochem, UK). The microplate is placed on a home-made holder placed below the 

motorized pipetting arm (Figure 5.1a-b, No.1). The holder could be moved in X, Y, Z directions by a 

manual stage (Thorlabs Inc., USA). Once the pipetting PTFE tubing is aligned with the reference 

well, the QmixElements software (QmixElements V5.0, Cetoni, Germany) controlling the motion of 

the pipettor‘s arm and the syringe could be operated. Thus, the PTFE tubing is moved from one well 

to another, pipetting in each one the desired volume of sample and inserting between each water 

droplet an oil plug. The QmixElements software also allows the possibility to program different 

protocols of confined droplets with determined order and desired number of iterations. 
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An optical epifluorescence microscope (Model Nikon Eclipse ti with 4X objective, Nikon, Japan) was 

used for fluorescence measurements. It is equipped with an optical fiber coupled to a mercury lamp 

(Nikon Intensilight C-HGFIE, Nikon, Japan) and a CoolSNAPTM HQ2 CCD camera (Teledyne 

Photometrics, Tucson, AZ, USA). The image processing is performed by the NIS Elements AR 

software (NIS Elements V5.11.02, Nikon, Japan) (Figure 5.1a-b, No.4). The acquisition frame rate is 

varied between 1fps and 10fps according with the applied flow rate, in order to enable visualization of 

the flowing droplets. In addition, the microscope is equipped with optical filter cubes (Bandpass filter 

cubes, Nikon, Japan) that are chosen to match the required spectral excitation and emission 

characteristics.  

 

5.2.2. Optimization of the microfluidic platform for the TPA-CB[n] 

working model 

The platform was designed with the goal of integrating multiple functionalities, including 

droplet generation, merging, and online optical detection, all specifically optimized for the unique 

requirements of our TP-CB[n] sensor array. The following section provides a detailed description of 

each of these functionalities. 

Droplet generation: 

The advantage of droplet microfluidic systems lies in their ability to produce uniform droplets 

and particles, making precise control over droplet size, shape, and monodispersity critically important. 

Aqueous droplets in a capillary channel of oil are generated by the use of specific channel geometries 

or by programmed pipetting. The use of a fluorinated carrier oil phase (FC-40) in combination with a 

fluorinated surfactant (PFD) at an optimized concentration assures complete wetting of the fluorinated 

tubing preventing any cross-contamination during the pipetting. The fluorinated oil also reduces the 

risk of molecule diffusion from the aqueous phase droplet into the continuous oil phase because the 

aqueous droplet is surrounded by a thin lubrication film of the continuous phase. This combination 

further helps in obtaining stable droplets and avoiding non-specific adsorption of the sensing elements 

or analytes at the water-oil surface.  

The aqueous droplet containing the TPA-CB[7] sensor elements or the analyte sample are generated 

as confined droplets with a volume of 100 to 200 nl at a flow rate of 0.2 μL/s in fluorinated oil 

containing 2% PFD, by the pipettor arm from solutions in a 384 well microplate. These confined 

droplets provide a lot of flexibility in the development of a pipetting protocol, since the order, volume 

and content of the droplets as well as the oil gap separating two consecutive droplets could be 

customised by adjusting the pipetting sequence. The black 384-well microplate with V-bottom shape 

was chosen to store the solutions during the experiments instead of the traditional 96-flat wells plate 
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commonly used with this kind of motorized pipettors to perform the assay with reduced volume of 

sample. The 384-wells microplate allows working volumes between 10-40 μL rather than the standard 

75-200 μL for the 96-wells microplate, resulting in a 5 to 7.5-fold volume reduction of the sample 

required to start an experiment. By programming the inter-well distance and the Z-well dimension as 

a step of the droplet generation sequence, the 384-wells plate was configured to be compatible with 

the pipettor robot. Considering the volume capacity of a single well and the volume of the droplets, it 

is possible to generate from a single solution of 40 μL of the sensing element or analyte, about 400 

droplets of 100 nL or 200 droplets of 200 nL which would be ideal for the set-up of the sensing 

experiments on this platform. 

Droplet merging:    

Containment within the generated droplets provides an effective method to keep droplets 

containing the sensing elements and analytes separate, facilitating their controlled merging to allow 

effective interaction between the TPA-CB[7] sensors and the different analytes, thereby preventing 

the generation of unreliable data. Controlled coalescence of droplets is thus crucial for the automated 

applicability of the microfluidic platform in evaluating the TPA-CB[7] sensor array.  

 

Figure 5.2:  Schematic illustration of droplet based microfluidic platform. The analyte and sensor 

droplets are generated by alternatively pipetting the water phase solution and oil from a microplate 

and a passive merging/coalescence strategy is adopted for the interaction of sensor elements of the 

array with analytes. The inset shows the merging of the droplets as monitored by recording their 

fluorescence intensity. 

Droplet merging can be achieved through either active or passive processes. After generating 

individual confined droplets of the sensing elements and analytes in a deterministic order (discussed 

in Section 5.2.3), we adopted a passive merging approach within the capillary, utilizing the difference 

in the velocity of droplets with varying surface interfacial tensions depending on their content (Figure 
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5.2). This method is a simpler alternative to active merging strategies with no needs of external 

equipment or channels with specific geometric features. As previously reported, when a confined 

droplet is transported by a carrier fluid, its speed depends on the interfacial tension (γ) between the 

two liquids. Lower interfacial tension (γ) results in higher speeds250. This effect was exploited to 

induce  droplet contact and thus their merging after a travelled distance as shown in the sequence of 

images in Figure 5.2. 

Optical detection: The droplet microfluidic platform is also incorporated with an optical microscopic 

set-up for the detection of the fluorescence of the sensor element inside the different droplets. After 

the generation and merging of the droplets, they are transported along the PTFE tubing of the 

capillary towards the microscope for fluorescence measurements. These measurements are performed 

through a detection window or region of interest (ROI) (50 x 50 μm2) defined at the center of the 

tubing with the aim to record the highest fluorescence intensity emitted by the droplet (Figure 5.3). In 

this way, it is possible to continuously record the emitted fluorescence signal in the ROI which is then 

collected by the camera and processed by the Imaging NIS Elements AR software (NIS Elements 

 

Figure 5.3: a) Representative image of generated fluorescent droplet. The red square represents the 

region of interest (ROI) where fluorescence is measured. b) Plot of the fluorescence intensity as a 

function of the time obtained upon image processing. When the droplet crosses the ROI a peak is 

generated. The plateau of the peak represents the highest fluorescence intensity emitted by the droplet 

at several times with a given wavelength range. 

V5.11.02, Nikon, Japan). The flow rate of the droplets passing in front of the camera was evaluated at 

0.02, 0.05 and 0.1 μL/s to assure a correct acquisition of images. Afterwards, the fluorescence 

intensity was recorded at the optimized rate of 0.02 μL/s in the ROI as function of the acquisition 

time. Initially, a constant background value is measured, then, when the droplet crosses the ROI a 

Droplet train in the PTFE tubing   

 

 

Background  

Before ROI  

ROI Plateau 

After ROI 

Background  

a) b) 

ROI 
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peak is observed as shown in Figure 5.3b. The maximum of the peak, which is usually observed as a 

plateau, was considered as the fluorescence intensity of the droplet and is detected within a specific 

range of wavelengths determined by the cutoff of the emission bandpass filter cube. The acquired data 

were then exported in excel format for further analysis. Since large data files were generated after the 

image processing and the analysis was time-consuming, a dedicated MATLAB program was 

developed to facilitate this task (Materials & Methods). 

 

5.2.3. Optimization of protein-sensing element interactions  

With the successful initial optimization of various parameters of the droplet microfluidic 

platform, we conducted preliminary droplet tests using the four TPA derivatives and their complexes 

with CB[7] to evaluate the variation in their fluorescence response upon interaction with a model 

protein, BSA.  

 

 Design of droplet  merging experiment with protein analyte (BSA): 

We designed an experimental plan to replicate the discrimination experiments previously 

performed on the microplate reader onto the droplet microfluidic platform. We programmed 

individual droplets of the sensing elements and analytes, each with a volume of 100 nL, to merge and 

form larger droplets of 200 nL, resulting in a half dilution of the initial concentrations. Thus, to 

achieve a final concentration of 5 μM of TPA, 100 μM of CB[7] and 600 mg/mL of BSA in the final 

merged droplets, we prepared a primary stock concentration of 10 μM, 200 μM and 1200 mg/mL of 

TPA, CB[7] and BSA respectively, to be added to dedicated wells of the 384 well microplate.  

To facilitate effective merging and to monitor bimodal recognition events, we pre-prepared the TPA-

CB[7] complex in the microplate, thus avoiding the need for merging of three droplets (TPA, CB[7], 

and BSA) to generate the second recognition event (TPA + CB[7] + protein). Using the 

QmixElements software, we generated sequences of consecutive droplet merging of TPA and TPA + 

CB[7] with BSA droplets spiked in 1X PBS. The fluorescence of the droplets was measured by using 

the FITC filter cube with an excitation wavelength of 480 nm and an adjoining band range of 30 nm. 

The experiments were repeated several times to ensure reproducibility in the merging approach. We 

also evaluated the effect of the oil plug volume (8-50 nL) and the flow rate (0.2 to 0.6 µL/s) of the 

continuous phase on the merging efficiency. During the initial tests, we achieved good reproducibility 

of droplet merging at a flow rate of 0.5 µL/s with a 10 nL oil plug. These parameters were adopted for 

all future experiments.  

Additionally, we tested the effect of the sequence of merging of the sensing elements and analytes on 

the variation in fluorescence intensity. We found that the sequence (TPA -› BSA or BSA -› TPA) did 

not impact the measured output (Figure 5.4). However, we observed that the possible high interfacial 

surface tension of the BSA droplet reduced its velocity, and using a sequence where the BSA droplet 
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trailed the sensing element droplet did not achieve 100% consistency in merging for long trains of 

droplets with multiple merges corresponding to the multiple replicates. Thus, we determined that 

adding the analyte droplet in front of the sensing element enabled more efficient merging.  

We also observed that while the fluorescence of AcriPy, TP-3Py, and PhenazPy was easily detectable 

at a final concentration of 5 μM and in the complexed form at a final concentration of 100 μM CB[7], 

emission signal saturation was observed for SulfoxPy at the same concentration. Consequently, all 

further experiments with SulfoxPy were conducted at a final concentration of 2 μM for the derivatives 

and 40 μM for CB[7] in the SulfoxPy + CB[7] complex.  

 

Figure 5.4: Fluorescence response of TP-3Pyo monitored in the presence of BSA in a train of three 

consecutive merged droplets with variation in sequence a) BSA trailed by TP-3Pyo droplet, b)TP-

3Pyo trailed by BSA droplet. c) Statistical analysis indicating the standard deviation and associated 

percentage of coefficient of variation calculated with the three droplets considered as individual 

replicates. 

  

 Droplet merging with PhenazPy + CB[7] in the presence of BSA 

We tested several controls to assess the fluorescence variation of TPA and CB[7] in the 

presence of BSA, as well as to monitor the effect of merging on the dilution of the sensing element 

droplets and the corresponding impact on their fluorescence emission. While these test experiments 
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were performed for all the TPA derivatives of the sensor array, representative results with PhenazPy 

and CB[7] are discussed below: 

Merging of PhenazPy and CB[7] with BSA: 

The droplets (100 nL) of PhenazPy and complex of PhenazPy + CB[7] were merged with the 

droplets of BSA and the fluorescence emission detected with the microfluidic platform were 

compared with the results previously obtained on the 96 well microplate. As seen in Figure 5.5, 

similar variations in fluorescence intensities were observed indicating no change occurs in the sensing 

process at lower volumes of the TPA derivatives with CB[7] and protein analytes. 

 

Figure 5.5: a) Fluorescence variation of droplets of PhenazPy and PhenazPy + CB[7] upon merging 

with analyte BSA. b) Fluorescence variation of PhenazPy and PhenazPy + CB[7] recorded on a 96-

well microplate compared to that obtained on the microfluidic platform as indicated by the blue, 

green and red circles. c) Background subtracted fluorescence intensities of the PhenazPy and 

PhenazPy + CB[7] droplets merged with BSA as measured on the microfluidic platform. 
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Variation of fluorescence emission with change in concentration of TPA: 

The test experiments with the proteins were programmed such that individual droplets of the 

sensing elements and analytes at doubled concentration, each with a volume of 100 nL, merge and 

form larger droplets of 200 nL, resulting in a half dilution of the initial concentrations. We thereby 

monitored controls to establish the variation in the fluorescence of the PhenazPy at these 

concentrations, by using test droplets of PhenazPy at 5 μM and 10 μM at a volume of 200 nL. This 

was also monitored by using test droplets of TPA + CB[7] at a concentration of (10 + 200) μM and (5 

+ 100) μM . As expected we observed a decrease in fluorescence signals with corresponding decrease 

in concentration. Furthermore, results with the premixed and merged droplets of TPA + CB[7] 

emphasize the minimal interaction of the TPA derivatives with the microplate as well as the capillary 

tubing, preserving sample integrity and concentration (Figure 5.6a, corresponding peaks represented 

by double sided arrow). 

Comparison of fluorescence of merged and pre-mixed TPA-CB[7] complex droplets: 

To avoid the complexities involved in triplet droplet merging to monitor the second recognition 

event of the TPA + CB[7] interaction with proteins, we pre-mixed the TPA-CB[7] solution to form  

 

Figure 5.6: a) Variation of fluorescence intensities with concentration and pre-mixing of the 

PhenazPy and PhenazPy + CB[7] complex as determined by generated control droplets. b) 

Background subtracted fluorescence intensities of the PhenazPy and PhenazPy + CB[7] control 

droplets. 

 

PhenazPy + CB[7]  droplet generated by 
merging and from pre-mixed solutions 

b) a) 
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the host-guest complex in the microplate at a doubled concentration of (10 + 200 μM) prior to the 

droplet generation step. We then merged the pipetted droplet of this solution (100 nL) with the analyte 

BSA droplet (100 nL) to dilute the TPA+ CB[7] and obtain the final required concentration. To ensure 

that this pre-mixing did not affect the detected fluorescence signal, we monitored the fluorescence 

variation between the TPA + CB[7] droplets formed by merging individual TPA and CB[7] droplets 

and a single droplet directly pipetted from the pre-mixed host-guest complex solution in the 

microplate. We observed that the recorded fluorescence intensity was consistent in both cases, with no 

significant variations. As a result, all subsequent experiments for measuring the second recognition 

event were conducted using the TPA+CB[7] pre-mixed on the microplate (Figure 5.6a, corresponding 

peaks compared by a box bracket). 

 

5.2.4. Discrimination of proteins on droplet microfluidic platform  

Discrimination of proteins in PBS: 

To demonstrate the potential of this developed droplet microfluidic approach, we used the 

TPA-CB[7] sensor array in the droplet format to discriminate 6 proteins spiked in 1X PBS- catalase, 

peroxidase, fetuin, myoglobin, BSA and pepsin spiked. The droplets are generated in a specific 

sequence to establish consistent merging of the individual droplets. By pipetting from the 384-

microwell plate, the droplet of protein was generated first followed by the droplet of the sensing 

element of the array (TPA or the premix complex of TPA + CB[7] ). This sequence was repeated 

multiple times creating a train of droplets corresponding to 20 replicates for the interaction of each 

sensing element with each tested protein analyte (Figure 5.7a). 

The fluorescence emission signal was then analysed by the MATLAB software to obtain the 

background subtracted fluorescence fingerprint for each analyte. This fingerprint was analysed by 

LDA using the Systat software. The canonical score plots of the first and second discriminant factors 

that were produced by the LDA analysis using leave-one-out cross validation, displayed the clear 

discrimination of the six proteins with 95% classification accuracy (Figure 5.7b). Thus, the 

microfluidic platform enabled the consistent merging of the long train of droplets effectively with no 

complications even in the presence of multiple proteins.  

 

Discrimination of proteins in complete human serum: 

 To further test the capability of the microfluidic system in discriminating more complex 

matrices, we proceeded to test the ability of the system to differentiate the 6 proteins spiked in 

complete human serum with no modifications. The droplets were generated in the same manner as 

with the proteins spiked in PBS, with the protein droplet preceding the droplet of the sensing element, 

which is either the TPA or the pre-mixed TPA+CB[7] complex.  This sequence was repeated to create   
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Figure 5.7: a) Pipetting sequence of droplet generation and merging to develop a train of multiple 

replicates, with protein analyte droplets preceeding the sensing element droplets to facilitate merging. 

b) Canonical score plot for the first and second factors of fluorescence response patterns calculated 

by LDA for the identification of 6 proteins in 1X PBS based on fluorescence fingerprint generated on 

droplet microfluidic platform. c) Three-dimensional canonical score plot of fluorescence response 

patterns calculated by LDA for the identification of 6 proteins spiked in human serum generated on 

the platform. 
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a train of droplets corresponding to 5 replicates for the interaction of each sensing element and the 

tested protein. The fluorescence emission signal were analysed by the MATLAB software, and the 

obtained fluorescence fingerprints were then subjected to LDA analysis using the Systat software. The 

generated canonical score plot of the first and second significant factors displayed the discrimination 

of the 6 proteins with 87% classification accuracy (Figure 5.7c). 

  

While the platform facilitated the generation of multiple replicates, a decrease in discrimination 

accuracy of the proteins was observed. This could be attributed to the manner of acquisition of 

fluorescence emission signals using this platform. Specifically, the fluorescence maximum observed 

as the ROI plateau is detected within a specific range of wavelengths as determined by the filter cutoff 

of the selected bandpass filter cube. Nevertheless, we have been able to successfully demonstrate the 

utility of the droplet based microfluidic platform to assess analytes with reduced volumes(~5-7.5 fold 

reduction from 96 well plate) and increased number of technical replicates (20-30 replicates). The 

establishment of this platform is a first crucial step for advancing the application of such chemical 

nose sensors for application in diagnostics accompanied by advanced statistical analysis. 

 

5.2.5. Development of microfluidic chip for improvement of droplet 

merging strategy 

 Testing the droplet microfluidic platform with various protein analytes revealed that the 

passive merging strategy exhibited different merging behaviors based on the nature of the proteins 

and the sequence of droplet generation. This variation is due to the inherent interfacial tension of each 

protein in droplet form, which influences the droplet's velocity. This issue resulted in making the 

process challenging to reproduce consistently over time and space, which is a key requirement for any 

automatable and high-throughput analytical platform. 

We therefore proposed to develop a microfluidic chip to be integrated into the droplet platform, 

designed to facilitate consistent active mechanical droplet merging within the channel of the chip.  

 

Design strategy and fabrication of microfluidic chip: 

The proposed microfluidic chip was primarily designed to facilitate the entry and control the 

confinement of droplets, thereby forcing their merging within a channel located in the central region 

of the chip Figure 5.8a. The chip was intended to be incorporated along the capillary tube, before the 

path leading to the camera used for fluorescence detection. Upon entering the chip, the droplet 

velocity was expected to decrease, promoting systematic and automated merging—a critical step for 

transitioning to a microfluidic-based automated analytical system. 



Chapter 5 

 

175 

 

The chip features a central channel formed by the strategic arrangement of solid pillars that create 

barriers to guide the entering droplets along the central channel. The pillars are aligned along the outer 

edge of the chip at a suitable distance to prevent droplets from entering and getting retained at the 

edges and ensuring that they are directed exclusively into the central channel (Figure 5.7a). The chips 

were fabricated by 3D-printing using a biocompatible resin material DS 3000, which allows for the 

creation of multiple designs by varying the number, shape, and size of these pillar. This resulted in 

different patterns on the chip, with variation in the central channel thickness and shape as shown in 

Figure 5.8b. For each design, channel thicknesses of 120 μm and 240 μm were produced. 

Additionally, the outlet of the chip was designed with different structures, ranging from angular to 

bulb-shaped, to prevent the pinching and splitting of the merged droplets as they exit the central 

channel and re-enter the capillary. The outlet channels of the chip were designed to fit the dimensions 

of the capillary tubing, which were inserted into the openings and secured with adhesive glue around 

the edges of the tubing. The assembly was then cured at 80°C for 15 minutes before finalizing the 

microfluidic setup. 

 

 

Figure 5.8: a) Schematic illustration of the microfluidic chip integrated with the droplet microfluidic 

capillary, featuring a central channel formed by different pillar arrangements on either side of the 

channel. b) Different designs of fabricated microfluidic chips with variation in the shape and 

thickness of the central channel to facilitate droplet constriction and merging. 

Droplet merging with fabricated microfluidic chip: 

a) 

b) 

Design 1 Design 2 

Design 3 Design 4 

Design 5 Design 6 
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The robustness, efficiency, and reproducibility of droplet merging across different chip designs 

were first assessed using food colouring solutions to enhance the visibility of the merging process 

within the chip. A series of 100 nL droplets were sequentially generated by the pipetting robot 

through the QmixElements software. Various parameters were optimized with these test droplets, 

including the flow rate of the droplets and the volume of the oil plug between merging droplets, as 

well as between consecutive merged droplets. It was found that design 5, which featured a central 

channel with a thickness of 120 μm, achieved the highest merging efficiency. This was observed at a 

flow rate of 0.3 μL/sec, with an oil plug volume of 1.8 μL between merging droplets and 10 μL 

between consecutive merged droplets. These settings were effective in preventing the occurrence of 

badly controlleddroplet merging within the chip (Figure 5.9). 

 

Figure 5.9: Designed microfluidic chip (design 5) that facilitates merging by constriction of two 

smaller dye solution droplets (100 nL) into a single larger droplet (200 nL), which then moves into 

the capillary for detection by the camera. 

 

However, it was noted that in some instances, droplets became trapped around the pillars, 

necessitating high-pressure flushing of oil to remove them. To address this issue, the microfluidic chip 

channels were silanized with a 5% solution of (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane to 

enhance their hydrophobicity. The silane solution, prepared in mineral oil, was flushed through the 

channel and allowed to incubate for 10 minutes before being expelled with air. The channels were 

then dried at 80°C for 15 minutes. This silanization treatment significantly reduced droplet retention 

around the pillars, and all subsequent chips were treated using this protocol.  

After optimizing these parameters using the test droplets we proceeded to evaluate the chips with 

droplets containing TPA derivatives and PBS to assess their performance under conditions more 

relevant for the intended application of the sensor array. While design 5 (Figure 5.8b) of the 

microfluidic chip successfully facilitated droplet merging, even with the TPA derivatives, it failed to 

generate consistent and reproducible merging for long trains of droplets. We encountered several 

recurring issues throughout the testing process such as: 
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- Droplet splitting: As droplets entered the channel of the microfluidic chip, they often split, 

likely due to pressure build-up caused by constrictions in the channel. These constrictions 

were probably the result of blockages from residual glue or resin material. 

- Air bubble formation: During droplet entry into the channel, air bubbles frequently formed. 

This was attributed to an improper seal of the capillary tubing at the channel inlet, which 

compromised the integrity of the setup. 

- Retention of silane material: Residual silane material along the channel walls occasionally led 

to blockages or caused droplets to split, further disrupting the merging process. 

- Oil leakage: A significant challenge was the leakage of oil from the chip‘s plug during 

cleaning and reuse. This issue was mainly due to inadequate sealing and ineffective curing of 

the glue used to secure the capillary tubing. 

 

Improvement and further optimization of microfluidic chip: 

These identified issues of the droplet system require further investigation and optimization to 

minimize sample and reagent consumption while maintaining droplet stability and detection 

robustness on this platform. While the microfluidic platform provides a promising way forward for 

the testing of large-scale cohorts using the TPA-CB[7] sensor array, further fine-tuning and 

refinement of the chip design and preparation protocols is necessary to make the process more robust 

and efficient to facilitate automation without the need for constant monitoring of the droplet merging.  

A possible approach to addressing these challenges could involve altering the fabrication material of 

the microfluidic chip. By transitioning to polymer-based materials, the need for glue to attach the 

capillary tubing could be eliminated. Instead, the tubing could be inserted flexibly into the polymer, 

providing a more secure and adaptable connection. This change would allow for easier re-silanization 

and enable the chip to be reused multiple times without complications. 

Furthermore, adopting polymer-based materials could help resolve several recurring problems. It 

could reduce the incidence of droplet splitting at the channel entry by minimizing the chances of 

blockages and pressure build-up. Additionally, achieving a more secure seal would decrease the 

formation of air bubbles, thereby improving the chip's overall reliability. This material change could 

greatly enhance the performance and durability of the microfluidic chip, thus making it more efficient 

and consistent for sensing applications. 

Thus, given the challenges encountered with the droplet microfluidic system, we subsequently 

explored additional approaches to improve the throughput and efficiency of the TPA-CB[7] sensor 

array. This led us to investigate the use of a pipetting robot platform, which will be discussed in detail 

in the following section. 
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5.3. Pipetting robot platform  

To enhance the automation and high-throughput capabilities of the TPA-CB[7] sensor array, we 

explored the integration of a pipetting robot into the developed experimental workflow. We employed 

the Gilson Pipetmax robot in collaboration with the team of Dr. Florence Mahuteau-Betzer (Institut 

Curie) to investigate this approach, which offers precise and reliable liquid sample handling. This 

advanced automation tool allows for the use of a 384-well plate format, significantly increasing the 

throughput of the sensing protocol by allowing the rapid and simultaneous processing of multiple 

analytes on a single microplate with lesser volumes. By leveraging this technology, we aimed to 

streamline the experimental workflow, reducing the volume of sensing elements and analytes needed, 

and ultimately validating the sensor array with greater efficiency and accuracy.  

 

5.3.1. Protein Discrimination using the TPA-CB[7] sensor array with 

pipetting robot platform 

To validate the use of a pipetting robot for efficient processing and high-throughput sensing by 

improving the accuracy, reproducibility, and consistency of a large number of processed samples we 

firstly proceeded to the discrimination of proteins on this automated platform. 

 

Experimental design and plate layout for pipetting robot protocol: 

We carefully designed a plate layout allowing the development of an automated program for 

the Gilson Pipetmax pipetting robot. The plate layout was carefully designed to align with the robotic 

requirements, ensuring efficient and error-free plate preparation (Annexe). The robot operates by 

transferring solutions of the analytes or sensing elements from a 96-well plate into alternating rows of 

the final 384-well plate. This design, therefore, allows for the testing of only 12 analytes at a time, 

corresponding to the 12 columns of the 96-well plate, within a single program. To maximize 

efficiency, we divided the 384-well plate into two halves, each containing 12 columns. This setup 

facilitated the simultaneous testing of 11 analytes along with a PBS control, using two TPA-CB[7] 

sensing elements, enabling more streamlined and organized testing. The TPA derivatives were used at 

a final concentration of 5 μM with a volume of 20 μL per well, CB[7] at 100 μM with a volume of 10 

μL per well, and proteins at a final concentration of 0.625 mg/mL with a volume of 2.5 μL, 

maintaining the parameters from previous experiments. A single 384-wellplate was processed by the 

platform in approximately 35-40 minutes.  Following this, the fluorescence emission spectra of the 

sensing elements were measured to generate unique fingerprints for the selected protein analytes. The 

complete emission spectra were recorded for all TPA-CB[7] sensing elements, covering the ranges of 

495 to 739 nm (62λ), 520 to 740 nm (56λ), 510 to 740 nm (59λ) and 467 to 739 nm (69λ) with a step 



Chapter 5 

 

179 

 

of 4 nm for TP_3Pyo, Acri_3Py, PhenazPy and SulfoxPy respectively. Consequently, the 

fluorescence fingerprint dataset was then processed using the streamlined data preparation, treatment, 

and statistical analysis strategy discussed in Chapter 3 of this thesis 

 

Statistical analysis: Complete and reduced fluorescence fingerprint dataset 

The streamlined treatment generates a dataset with dimensions of [88  492] (8 replicates of 

11 proteins  number of wavelengths for each sensor element) for subsequent analysis. This dataset 

was evaluated using a random forest algorithm, which yielded a discrimination error rate of 0% 

among the 11 proteins.  

We systematically reduced the number of features of the dataset to [88  50] by selecting 

fluorescence intensities at intervals of every ten wavelengths recorded for each TPA-CB[7] pair in the 

sensor array. This reduction did not affect the discrimination accuracy of the 11 proteins as 

determined by the random forest algorithm. This dataset was also evaluated statistically using LDA, 

where the leave-one-out-cross validation plot of the first and second determinant factors, with a 95% 

confidence ellipse discriminated the proteins spiked in PBS with an accuracy of 100%. The 

discrimination was performed in two experimental replicates to further validate the efficiency of this 

approach, achieving a discrimination accuracy of 100 % in both trials individually (Figure 5.10a). The 

canonical score plots for the first trial is shown in Figure 5.10b. The LDA plot displays highly 

compact clustering of the protein replicates within each cluster, emphasizing the minimal spread and 

close proximity of the identical data points. This indicates a high efficiency of reproducibility by 

eliminating anomalies due to pipetting errors and maintaining consistency across all replicates. 

 

Figure 5.10: a) Table of discrimination rates generated by random forest and LDA algorithm for the 

two experimental replicates. b) Canonical score plot for the first and second factors of fluorescence 

response patterns calculated by LDA for the identification of 11 proteins in 1X PBS with 50λ channel 

with the dataset generated from trial 1. 

11
10
9
8
7
6
5
4
3
2
1

-50 0 50 100 150

LD1 (58.4%)

-30

-20

-10

0

10

20

30

40

50

L
D

2
 (

2
7

.5
%

)

Lysozyme
Diastase
Phosphatase
Chymotrypsin
Peroxidase
Lipase
Myoglobin
Pepsin
Pancreatin
BSA
Catalase
Lysozyme 

VAR(1)

-50 0 50 100

SCORE(1)

-30

-20

-10

0

10

20

30

40

S
C

O
R

E
(2

)

11
10
9
8
7
6
5
4
3
2
1

-50 0 50 100 150

LD1 (58.4%)

-30

-20

-10

0

10

20

30

40

50

L
D

2
 (

2
7

.5
%

)

a) b) 
100%  



Chapter 5 

 

180 

 

 

Cross-validation of developed LDA model: 

To ensure the robustness and accuracy of the developed Linear Discriminant Analysis (LDA) 

model, we performed cross-validation using datasets from the two independent trials. In the first step, 

we used the initial dataset to train the LDA model, focusing on correctly identifying the 11 different 

protein analytes based on their unique fluorescence emission spectra. Once the model was trained, we 

proceeded to the validation phase, where the second dataset, which had not been used in the training 

process, was introduced as a test set. This step was critical in assessing the model's ability to 

generalize and accurately predict the identity of protein analytes in new, unseen data. By comparing 

the predictions made by the LDA model against the actual labels in the test dataset, we could evaluate 

the performance of the developed model. The results of this cross-validation process were promising; 

with the LDA model achieving a prediction error of just 5.11%. This low error rate indicates that the 

model is highly effective in distinguishing between the 11 protein analytes, demonstrating both the 

reliability of the LDA approach and the quality of the dataset used for training and testing.  

Therefore, the pipetting robot proved to be effective and time-saving approach as compared to 

the manual pipetting protocol. Each sensing element (TPA, TPA + CB[7] ) with the 11 proteins and 

PBS control could be prepared on a microplate in 35-40 minutes, while manual pipetting requires 

significantly more time. This efficiency allows for the testing of a large cohort of samples in a single 

day, unlike the extended duration needed for manual pipetting. Thus, this approach could pave the 

way for high-throughput sensing using the TPA-CB[7] sensor array, significantly enhancing the 

efficiency and scalability of such systems for applications in diagnostic testing. 

 

5.4. Conclusion 

 In summary, the development of the droplet microfluidic platform and the implementation of 

the pipetting robot have collectively advanced the efficiency and scalability of sensing using the TPA-

CB[7] sensor array. The microfluidic platform enabled precise control over droplet generation and 

merging, facilitating the utility of reduced volumes for the systematic interaction of sensing elements 

with analytes. Despite challenges in achieving reproducible droplet merging, the integration of a 

microfluidic chip and optimization of experimental parameters has laid a strong foundation for future 

improvements.  

The pipetting robot on the other hand demonstrated remarkable accuracy, reproducibility, and time-

efficiency in the preparation of 384-well plates containing the sensing elements and analytes. 

Transitioning from a 96-well to a 384-well plate system, the robot enabled high-throughput analysis 

with minimal pipetting errors and high consistency, allowing larger number of analytes to be 

processed in significantly less time as compared to manual pipetting. Collectively, these approaches 
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highlight the promise of automated, miniaturized systems in enhancing high-throughput analysis of 

array-based sensors, especially offering promising pathways for future applications in clinical and 

research settings. 

 

5.5. Materials and Methods 

1. Analysis of fluorescence fingerprint generated by the droplet microfluidic platform 

 MATLAB software based ‗Fluo Droplets Analyzer – v0.5.1‘ developed by Giacomo 

Gropplero at IPGG, Institut Curie was utilized to analyse the fluorescence emission signals generated 

upon droplet merging between the sensing elements and protein analytes. This software parses output 

excel sheets generated by the image processing NIS Elements AR software to provide the background 

subtracted fluorescence intensity of each droplet plateau which collectively forms the fluorescence 

fingerprint for each tested analyte. 

 

The user-interface of the software is shown below: 

 

 

 

 

 

 

 
 

 

1. The excel output from the NIKON NIS elements software is uploaded  

2. The excel sheet is pre-processed to for the analysis and is presented as a graph of the raw data 

on the user screen. 

3. The dropdown indicates the choice for the x axis in the format of [m:s] for time , while 

intensity is selected as the y axis. The parameters are selected and a raw graph is generated as 

shown below 

 

 

 

 

 
 

 

 

1 

2 

3 

4 

5 

6 

7 

8 



Chapter 5 

 

182 

 

 

4. The background filtering range is selected by using the ‗background end‘ and ‗background 

start‘ lines shown in blue and green respectively.  

5. The ‗background noise threshold‘ is varied to adjust the extent of baseline removal that is 

required so as to detect all the necessary peaks. 

6. The signal to noise ratio can be adjusted at the ‗noise filtering‘ tab to obtain relevant values at 

the plateau, a general range from 10-25 is maintained to prevent making the peaks too sharp 

for determination of the peak intensity. 

 

7. The ‗peak detection‘ tab generates the different peaks and their corresponding intensity values 

averaged across the plateau. In some cases the peak intensity is below the threshold, this can 

be adjusted by the ‗minimum prominence‘ tab to identify all the necessary peaks. 
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8. The output graph and corresponding peak intensities can then be saved as a ‗csv‘ file for 

further statistical analysis. 
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Host-guest based colorimetric sensor array for discrimination of 

pharmaceutical compounds 
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6.1. Introduction 

 In recent years, colorimetric sensor arrays have emerged as a powerful and versatile tool in 

the field of chemical and biological sensing, gaining considerable attention for their broad range of 

applications. A primary benefit of colorimetric sensor arrays is their simplicity—these systems are 

designed to produce easily interpretable colour changes in response to specific analytes. This 

simplicity translates into a cost-effective solution for complex detection tasks, as they do not require 

expensive or sophisticated instrumentation. Additionally, they offer rapid discrimination, which is 

particularly valuable in time-sensitive situations, with detection of optical signals achievable through 

the use of a basic UV−visible absorption spectrophotometer or even by visual inspection. This 

flexibility makes colorimetric sensor arrays accessible to a diverse range of users, from specialized 

laboratories to field environments where advanced equipment may be unavailable. As a result, 

colorimetric sensor arrays have been employed in various applications, such as detecting 

explosives251, volatile organic compounds (VOCs)37, environmental monitoring252,253, and for 

healthcare diagnostics254,255.  

With these advancements in mind, our objective was to harness the TPA-CB[n] system for the 

development of a colorimetric sensing platform. The optical properties of TPA derivatives when 

involved in host-guest complexation with various members of the CB[n] family were investigated in 

Chapter 2 of this thesis. While the fluorescence modulations of the system have been extensively 

studied for creating a fluorescence-based sensor array, the variations in absorbance properties of TPA 

derivatives upon host-guest complexation with CB[n] will be investigated in this chapter. These 

absorbance variations which are a distinctive feature of host-guest complexation, offer a 

straightforward and effective optical transduction mechanism with potential utility for the detection of 

analytes in a time-efficient manner through an indicator displacement approach. In this study, a 

comprehensive library of TPA derivatives were analysed with different members of the CB[n] family, 

CB[6], CB[7] and CB[8]. The most promising TPA-CB[n] combinations, identified by their 

wavelength shifts upon host-guest complexation, were chosen to construct the colorimetric sensor 

array. This assembled sensor array was designed to discriminate analytes that interact with CB[n], 

especially those capable of displacing TPA from its TPA-CB[n] complex, resulting in a modification 

of the optical properties of TPA and the generation of unique colorimetric fingerprints for effective 

array-based sensing of the target analytes. Additionally, a streamlined LDA-PCA routine was 

developed for the efficient statistical analysis of the generated optical fingerprints. We applied this 

array to discriminate a specific class of pharmaceutical compounds that are designed to interact with 

the cavity of CB[n], based on their chemical structure. This newly developed array thereby provides a 

potential tool for addressing issues related to drug counterfeiting and enhancing the reliability of 

pharmaceutical quality control. 
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6.2. Results and Discussion: TPA-CB[n] colorimetric sensor array 

6.2.1. Characterization of TPA-CB[n] complexes  

 Building on the optical characterization results from an initial library of 8 TPA derivatives 

described earlier, we aimed to explore a more comprehensive library of 19 TPA derivatives with 

Carlos Gonzalez Galindo (M2 internship) in collaboration with the team of Dr. Florence Mahuteau-

Betzer (Institut Curie). The structures of these additional derivatives are provided in Table 6.1 with 

fourteen 2-arm derivatives and five 3-arm derivatives. In addition to the previously discussed TPA 

derivatives, the remaining compounds feature a range of different donor cores and terminal acceptor 

groups. These include analogs with a rigid N-phenylcarbazole-based donor core, such as Cbz_2Py and 

Cbz_3Py, which have vinyl linkers that end in pyridinium acceptor groups. Another derivative, Cbz-

2ox5Py, substitutes the original TPA structure‘s double bond with a 2,5-diaryloxazole group. 

Moreover, TPA analogs with pyridinium units replaced by a more extended π-deficient heterocyclic 

N-benzimidazolium moiety specifically, TP_2Bzim and TP_3Bzim have also been considered. 

Additionally, the library has been further expanded to include 2-arm derivatives featuring donor 

moieties such as 9-silafluorene, phenothiazine, and phenoxazine. 

 

Table 6.1: Chemical structures and diversity of the library of TPA derivatives used for the 

development of colorimetric sensor array 

Name Structure Name Structure 

TP_2Pyo 

 

AcriPy 

 

TP_3Pyo 

 

Acri_3Py 

 

DV_2Py 

 

PhenazPy 
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DV_3Py 

 

SulfoxPy 

 

TN2Py 

 

Cbz_2ox5Py 

 

DN_2Py 

 

SiFluoL 

 

SulfonPy 

 

PhenoxPy 

 

Cbz_2Py 

 

Cbz_3Py 
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TP_2Bzim 

 

TP_3Bzim 

 

AcriPySulfo 

 

 

 We firstly titrated the different TPA derivatives at 5 μM with increasing concentrations of 

CB[6], CB[7] and CB[8] up to 150 μM and evaluated the variations in the absorbance spectra 

registered between a wavelength range of 400 to 650 nm. As noted earlier, limited variations in the 

UV-visible spectra of the TPA derivatives upon complexation with CB[6] was observed. More 

prominent red-shift in wavelength was observed with CB[7] and CB[8], attributed to the electron 

absorbing effect of carbonyl in the CB[n] hosts, which can neutralize the positive charge of the  

 

Figure 6.1: Normalized absorbance spectra of a) 2-arm (DN_2Py) and b) 3-arm (Cbz_3Py) TPA 

derivatives at 5 μM recorded on titration with increasing concentration of CB[6], CB[7] and CB[8] 

in water. 

a) 

b) 
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pyridinium. This neutralization enhances the electron-withdrawal away from the triphenylamine core, 

inducing the spectral red-shift. This behavior is represented with a 2-arm and a 3-arm derivative, 

where the maximum shift in λmax among all the TPA-CB[n] pairs of 60 nm was observed for Cbz-3Py 

upon complexation with CB[8] (Figure 6.1a-b). Based on these initial results, we also observed that 

the absorbance titrations did not indicate the formation of different intermediate TPA-CB[n] 

complexes based on the TPA to CB[n] ratio used, but rather suggested the formation of a single and 

stable complex at the saturation point of absorbance. This finding is supported by previous literature 

reports, where NMR titrations of TPA derivatives with CB[8] showed no effect of increasing 

concentration on the stable host-guest complex formed181. Thus, from the absorbance titrations, we 

established the optimal CB[n]/TPA ratio for the 2-arm and 3-arm derivatives to be 5:1, with TPA at 5 

μM and CB[n] at 25 μM. This ratio was utilized for all future experiments and provided an effective 

compromise between using minimal amount of sensor, while achieving significant absorbance and 

maximal λmax shift.  

  

 

Figure 6.2: Visual comparison of absorbance variation of 2-arm (PhenoxPy) and 3-arm derivative 

(TP_3Pyo) upon complexation with CB[7] or CB[8] indicating a larger bathochromic shift for the 

CB[8] complex as compared to the CB[7] complex and almost no shift for CB[6]. 

 

 

a) 

b) 
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6.2.1.1. Selection of TPA-CB[n] sensing elements for colorimetric 

sensor array 

To select and assemble the final TPA-CB[n] sensing elements of the colorimetric sensor array, 

we evaluated from the previous experiments the wavelength shift of the TPA derivatives with the 

CB[n] (n= 6, 7, 8) at a concentration of 150 μM. The goal was to identify the TPA-CB[n] pairs that 

exhibited the largest bathochromic shifts (Figure 6.2), under the premise that a greater wavelength 

shift would ensure greater sensitivity in detecting analytes capable of partially or completely 

displacing TPA from the CB[n] cavity. To evaluate this the spectrum recorded at the highest CB[n] 

concentration (150 μM) was chosen to ensure that the λmax was captured at complete complexation of 

TPA-CB[n] (Table 6.2). From the spectra we observed negligible bathochromic shift for the 

complexes of TPA with CB[6], thus we focused on investigating the absorbance properties of the 19 

derivatives primarily in complexation with the larger members, CB[7] and CB[8], and did not proceed 

with CB[6] for the development of the sensor array. The final TPA-CB[n] sensing elements were 

chosen primarily based on their bathochromic shifts, while also ensuring diversity in the variable sizes 

presented by the CB[7] and CB[8] hosts. This diversity is essential for facilitating differential 

interactions and variable binding affinities of the same analyte with different sensing elements, 

resulting in the generation of unique colorimetric fingerprints. Consequently, 11 TPA-CB[n] 

complexes were chosen to form the sensor array, with five CB[7] and 6 CB[8] complexes (Table 6.2, 

highlighted cells). Although a larger number of complexes could have been selected, increasing the 

number of sensing elements in the array would result in longer experimental time and more complex 

data management. Thus, this selection balanced the need for sensitivity and specificity with practical 

considerations of experimental efficiency. 

 

Table 6.2: Δλmax shift determined from UV-visible absorbance spectra of 19 TPA derivatives (with 

alternative sample naming) complexed with CB[6-8].  

 

TPA derivative 

λmax 

(TPA alone) 

(nm) 

Δλmax 

(CB[6]/TPA) 

(nm) 

Δλmax 

(CB[7]/TPA) 

(nm) 

Δλmax 

(CB[8]/TPA) 

(nm) 

TN2Py (TP1) 461 12 0 54 

DN_2Py (TP2) 458 0 26 68 

Cbz_2Py(TP3) 431 25 25 65 

Cbz_3Py (TP4) 420 20 27 60 

TP_2Pyo (TP5) 457 0 40 66 

TP_3Pyo (TP6) 452 0 42 60 
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DV_2Py (TP7) 484 0 23 60 

DV_3Py (TP8) 488 18 21 62 

Acri_3Py (TP9) 485 0 40 60 

Cbz_2ox5Py (TP10) 398 0 24 50 

SiFluoL (TP11) 409 12 26 57 

TP2Bzim (TP12) 433 0 10 0 

TP3Bzim (TP13) 434 24 10 0 

PhenazPy (TP14) 471 0 42 67 

AcriPySulfo (TP15) 487 0 20 32 

AcriPy (TP16) 488 0 39 71 

PhenoxPy (TP17) 530 34 24 75 

SulfoxPy (TP18) 430 8 27 44 

SulfonPy (TP19)  423 4 28 39 

 

 

6.2.1.2. Characterization of binding affinity of sensor array 

UV-visible absorbance titrations of the selected TPA–CB[n] combinations were further 

conducted to assess the binding affinity of their complexation with CB[7] / CB[8]. The absorbance 

spectra were monitored at two distinct wavelengths for each TPA-CB[n] combination, the λmax for 

TPA derivative alone and the λmax for the TPA-CB[n] complex. Two representative TPA derivatives, 

TP_2Pyo and TP_3Pyo, titrated with CB[8] and CB[7], are shown in Figure 6.3. The absorbance at 

500 nm for TP_3Pyo and 524 nm for TP_2Pyo, corresponding to the λmax of the TPA-CB[n] complex, 

was first plotted against the concentration of CB[7]/CB[8]. The data were fitted using a one-site 

binding, non-linear regression model, yielding global dissociation constants (Kd) of 13.85 μM and 

4.01 μM respectively (Figure 6.3).  

This approach was applied to all the 11 sensing elements of the sensor array and an overview of the 

results are presented in Table 6.3. The calculated binding affinities ranged from 104 M-1 to 105 M-1 for 

the 11 sensing elements of the array. This range supports the strategic design of the sensor array for 

interactions with potential analytes, as commonly seen in a typical IDA. This range of binding 

affinities also significantly contributes to the dynamic range of the sensor array since larger the 

difference between the lowest and highest affinity TPA guests with CB[n], the wider the range of 

analytes that can be detected by the array using the IDA approach. 
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It was observed that the TPA derivatives selected with CB[8] have a lower Kd value compared to 

those selected with CB[7], indicating a slightly higher binding affinity of TPA towards CB[8]. Among 

the 2-arm derivatives with CB[8], TP_2Pyo with a terminal ortho-pyridinium group exhibited a 

slightly higher Kd value compared to the TPA derivative with a para-pyridinium group.. A similar 

trend was noted with the 3-arm derivative complexes with CB[7], where TP_3Pyo exhibited a slightly 

higher Kd value compared to Acri_3Py. This pattern was also observed in their respective 2-arm 

derivatives (TP_2Pyo and AcriPy). 

 

Figure 6.3: UV-visible titration of a) TP_3Pyo and b) TP_2Pyo (5 μM ) in aqueous solution by CB[7] 

and CB[8] respectively (0.8 to 150 μM). The binding curves were obtained by plotting the variation in 

the absorbance for c) TP_3Pyo and d) TP_2Pyo with increasing concentration of CB[7] and CB[8] 

added. The absorbance was monitored at the λmax at TPA + CB[n] with triplicate measurements for 

determination of the dissociation constant (Kd). 

 

 

 

 

a) b) 

c) d) 
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Table 6.3: Binding affinity parameters for the 11 sensing elements of the colorimetric sensor array 

determined by UV-visible titrations monitored at (λmax) at TPA-CB[n] 

 

 

6.2.2. Optical fingerprinting by TPA-CB[n] sensor array  

To assess the optical fingerprinting potential of the optimized TPA-CB[n] colorimetric sensor 

array, we conducted a preliminary test to firstly determine the concentration of analyte required to 

maximally displace the TPA derivatives from their complex with CB[n]. We analysed the variations 

in the UV-visible spectra of DN_2Py and TP_2Pyo with CB[8] in the presence of varying 

concentrations of adamantanol, a high-affinity small molecule binder of CB[8] (Ka = 2.3×1010 M-1)67 

The concentrations of the TPA derivatives and CB[8] were fixed at 5 μM and 25 μM, respectively, 

while the concentration of adamantanol was varied between 10 μM and 100 μM. The results showed 

that TP_2Pyo exhibited complete displacement from CB[8] at lower concentrations of adamantanol, 

whereas DN_2Py required a much higher concentration of adamantanol —beyond 100 μM— for 

complete displacement (Figure 6.4). This behaviour is also consistent with the Kd values determined 

in the previous section, where DN_2Py demonstrated a higher binding affinity to CB[8] as compared 

to TP_2Pyo. Thus, based on this experiment, a concentration of 100 μM was selected as the optimal 

analyte concentration for TPA displacement in all subsequent experiments. This concentration was 

chosen to ensure that the system remains within the detection range for most biomolecules. 

CB[7] 

Wavelength (λmax) at TPA-

CB[n]  

 (nm) 

Kd 

(μM) 

Ka 

(M-1) 

TP_2Pyo 500 9.96 1.00×105 

TP_3Pyo 500 13.85 7.22×104 

Acri_3Py 520 10.21 9.79×104 

PhenazPy 516 10.69 9.35×104 

AcriPy 520 7.09 1.41×105 

CB[8] 

Wavelength (λmax) at TPA-

CB[n]  

(nm) 

Kd 

(μM) 

Ka 

(M-1) 

DN-2Py 530 2.39 4.18×105 

Cbz-2Py 490 2.05 4.88×105 

TP_2Pyo 524 4.01 2.49×105 

PhenazPy 540 2.43 4.12×105 

AcriPy 560 3.34 2.99×105 

PhenoxPy 620 2.91 3.44×105 
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Figure 6.4: UV-visible titration of a) TP_2Pyo and b) DN_2Py (5 μM) complex with CB[8] (100 μM) 

upon addition of adamantanol (10 -100 μM), with blue indicating the absorbance spectra of TPA 

derivative alone and red indicating the saturated complex of TPA-CB[8] derivatives. 

 

6.2.2.1. Interaction of colorimetric sensor array with small molecules 

The sensing ability of the sensor array was then evaluated using a group of eight molecules, 

including amino acid, protein, and small molecules known to form host-guest complexes with CB[n]s 

with a range of affinity constant from 1010 to 104 M-1. These molecules were chosen due to the 

hydrophobic nature of their aromatic groups or the presence of positive charges, both of which 

enhance their interaction with the CB[n] hosts. A comprehensive list of the selected molecules, along 

with their corresponding association constants with CB[7], is provided in Table 6.4. 

We proceeded by adding the TPA derivatives and CB[n] to a UV-transparent half-area 96-well plate, 

ensuring that the final concentrations were maintained at 5 μM and 25 μM, respectively. After this, 

the initial absorbance spectra were recorded. Following this, the analytes were introduced to the wells 

in three replicates to achieve a final concentration of 100 μM, and the absorbance spectra were 

measured again. The shift in the maximum absorbance wavelength was monitored for each analyte, 

generating a unique colorimetric fingerprint with dimensions of [24 × 11] (3 replicates for each of the 

8 analytes × 11 sensing elements, with 5 using CB[7] and 6 using CB[8]). In the heatmap representing 

the colorimetric fingerprint (Figure 6.5a) it is evident that while certain sensing elements contribute 

significantly to discrimination, as indicated by the broader dynamic range of their corresponding 

colour variations across the 8 analytes, others make a much smaller contribution. It can also be 

seenthat the minimal and maximal wavelength shift corresponds to the analytes glycine (purple) and 

adamantanol (yellow) which can be correlated to their corresponding association constants. In order to 

identify these non-contributing sensing elements and develop an effective discrimination model, this 

data was then analysed using the LDA-PCA routine, as detailed in Chapter 3 of this thesis. 
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Table 6.4: List of analytes tested with the TPA-CB[n] colorimetric sensor array including amino acid, 

protein and small molecules and their associated Ka with CB[7] 

 

Statistical data analysis of colorimetric fingerprint data 

First, the obtained fingerprint dataset was analysed using LDA with leave-one-out cross-validation, 

yielding a discrimination error rate of 21%. Next, Principal Component Analysis (PCA) was 

employed to assess the contribution and quality of each sensing element in the sensor array towards 

the discrimination process. PCA revealed that only six sensing elements were necessary to effectively 

distinguish the 8 analytes: PhenazPy + CB[7], DN_2Py + CB[8], TP_2Pyo + CB[8], PhenazPy + 

CB[8], AcriPy + CB[8], and PhenoxPy + CB[8] as indicated in the scree plot in Figure 6.5b. The first 

step of the PCA analysis involves computing the eigenvalues for each principal component, reflecting 

the amount of variance in the data captured by each component. These eigenvalues are then expressed 

as a percentage of the total variance, represented by the sum of the eigenvalues of all the principal 

components. This percentage is visualized in a linear scree plot, where the x-axis represents the 

Analyte Structure Ka 

Adamantanol 

 

2.3×1010 M-1 

Amantadine 

 

1.0×1010 M-1 

Insulin 

 

1.5×106 M-1 

Tryptophan 

 

3.7×105 M-1 

Tyrosine 

 

2.7×105 M-1 

Hexamethylenediamine 
 

8.9×104 M-1 

Glycine 
 

102  M-1 

Tyramine 
 

- 
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different components, and the y-axis shows the percentage of variance explained by each component. 

This plot therefore helps in the determination of the optimal number of  principal components 

required for effective discrimination, typically identified by the point where the plot exhibits a distinct 

change in slope. Using this insight, the original fingerprint dataset was reduced to a dimension of [24 

× 6] by considering only the sensing elements that contribute to the first two dimensions of the scree 

plot. Upon reanalysis with LDA, the discrimination error rate was significantly reduced to 4.2% 

(Figure 6.5c). This outcome demonstrated the effectiveness of the LDA-PCA routine in optimizing 

the combination of sensing elements for discriminating the analytes, while eliminating non-

contributing features that added noise and hindered accurate discrimination.  

 

Figure 6.5: a) Heatmap illustrating the colorimetric fingerprint generated by the TPA-CB[n] sensor 

array with 11 sensing elements in response to various analytes (small molecules, amino acid, 

protein). b) PCA analysis showing the contribution of each sensing element toward the discrimination 

of the analytes in a scree plot. c) Table depicting improvement in discrimination accuracy achieved 

through LDA by removing non-contributing sensing elements identified by PCA, resulting in a final 

accuracy of 95.8% using 6 sensing elements. The final optimized and contributing sensing elements 

have been highlighted on the heatmap. 

 

Notably, it was observed that the TPA-CB[8] sensing elements (5 TPA-CB[8] pairs) 

contributed to a larger extent towards the discrimination as compared to CB[7] (1 TPA-CB[7] pair). 

Thus, these overall results demonstrate the sensor array's capability to generate distinct optical 

 

a) b) 

c) 

LDA-PCA 

routine 
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colorimetric fingerprints, which can effectively discriminate between analytes that have the potential 

to bind with CB[n] hosts. 

 

6.2.2.2. Interaction of colorimetric sensor array with pharmaceutical 

molecules 

 Pharmaceuticals encompass a diverse array of molecules, including organic compounds, 

peptides, proteins, and nucleic acids, each with specific pharmacological mechanisms and therapeutic 

effects. As the pharmaceutical industry continues to expand, so does the counterfeit drug industry. 

Beyond the intellectual property concerns related to patent and trademark infringement, counterfeit 

medicines pose significant risks to both the economy and public health. In countries with weak 

regulatory systems, the absence of a reliable and quality-controlled medicine supply creates an 

environment where falsified and substandard drugs can thrive. These counterfeit drugs can lead to 

poisoning, untreated diseases, disease progression, and in severe cases, death256–258. Since 1970, the 

World Health Organization (WHO) has emphasized the principle of essential medicines as a 

cornerstone for an effective and equitable healthcare system. However, within this list259, the group of 

anaesthetic medicines260 are often overlooked, resulting in supply shortages and increased instances of 

counterfeiting, largely due to the high cost of standard medications. To combat and detect falsified 

and substandard anaesthetic drugs, various quantitative techniques have been employed, such as 

HPLC, Raman spectroscopy, near-infrared spectroscopy, fluorescence spectroscopy, and mass 

spectrometry261–263. While these methods are generally effective in identifying counterfeit and 

substandard drugs, they often require complex sample preparation, and the high cost of the equipment 

limits their accessibility in low- and middle-income countries. Additionally, these techniques are not 

well-suited for high-throughput screening263. The chemical nose strategy has emerged as an 

alternative strategy in the field of drugs counterfeit264 and has been employed for the successful 

discrimination of non-steroidal anti-inflammatory drugs265, carboxylate drugs266 and antimalarial 

tablets267.  

We proposed to use the developed colorimetric assay to identify a group of pharmaceutical 

anaesthetic molecules bearing chemical structural properties such as aromatic rings and protonated 

amine groups. These features were expected to facilitate their interaction with the TPA-CB[n] system 

to produce distinct colorimetric fingerprint outputs that allow for the identification and classification 

of these compounds. We hypothesized that by training the sensor array towards these anaesthetic 

molecules, we could extend the potential use of this system towards counterfeit drug detection 

applications. For this purpose, we selected a group of six commercially purchased pharmaceutical 

molecules, detailed in Table 6.5. These molecules were chosen due to their easy availability and their 

documented encapsulation within CB[n] hosts, as reported in the literature. 



Chapter 6 

 

199 

 

Table 6.5: Structure and binding properties of anaesthetic molecules tested with TPA-CB[n] 

colorimetric sensor array  

 

We firstly measured the absorbance spectra of the 11 TPA-CB[n] pairs added to a UV-

transparent half-area 96 well plate with final concentrations maintained at 5 μM and 25 μM, 

respectively. The initial absorbance spectra were recorded [ATPA-CB[n]]. Following this, the six 

anaesthetic molecules spiked in 1X PBS were added to the well in eight replicates to achieve a final 

concentration of 100 μM, and the absorbance spectra were measured again [Aanalyte].From these 

measurements we extracted three main output sensing channels for each TPA-CB[n] pair (Figure 6.6): 

 

i) Absorbance variation at the maximum absorbance wavelength for the TPA/CB[7-8] complex 

after analyte addition [Abs(analyte) λ(TPA-CB[8]) – Abs λ(TPA-CB[n])], abbreviated as Abs CB[n]-

TPA (λ) 

ii) Absorbance variation at the maximum absorbance wavelength for TPA after analyte addition 

[Abs(analyte) λ(TPA) – Abs λ(TPA)] abbreviated as Abs 2 CB[n]-TPA (λ) 

Anaesthetic molecule Chemical structure Ka with CB[7]
23

 

Lidocaine 

 

- 

Tetracaine 

 

 

1.5 × 104  M-1 

Ethyl-p-aminobenzoate 

 

2.2 × 104  M-1 

Prilocaine 
 

2.6 × 104  M-1 

Dibucaine 

 

1.8 × 105  M-1 

Procaine 

 

3.5 × 104  M-1 
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iii)   Maximum absorbance wavelength shift of the TPA/CB[7-8] complex after analyte addition 

[(λmax)analyte-(λmax)TPA-CB[n]] abbreviated as λ CB[n]-TPA 

 

Figure 6.6: a) Representative UV-visible spectra of PhenazPy – CB[8] sensing element in the 

presence of anaesthetic molecule lidocaine. b) Three-sensor channels are extracted from each TPA-

CB[n] sensing element pair as indicated by the parameters measured in the plot ([Aanalyte- ATPA-CB[n]], 

[Aanalyte - ATPA] and [(λmax)analyte-(λmax)TPA-CB[n]]). 

a) 

b) 
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Thus, with 3 channels considered for each of the 11 sensing elements, a total of 33 sensing channels 

were obtained from the sensor array. A total of 22 channels correspond to the absorbance variations 

while the remaining 11 channels correspond to the wavelength shift registered in the presence of the 

analytes. This colorimetric fingerprint of the analytes generates a dataset with dimension of [48 × 33] 

(8 replicates for each of the 6 analytes × 3 channels for each of the 11 TPA-CB[n] sensing elements). 

This fingerprint data is represented in a heat map in Figure 6.7 corresponding to the two different sets 

of signal outputs extracted to obtain the colorimetric fingerprint. 

 

Figure 6.7: Heatmap illustrating the colorimetric fingerprint generated by a) absorbance variations 

(2 channels × 11), where Abs CB[n]-TPA (λ) = [Abs (analyte) λ (TPA-CB[8]) – Abs λ(TPA-CB[n])] and Abs 2 

CB[n]-TPA (λ) =[Abs(analyte) λ(TPA) – Abs λ(TPA)] and b) λmax variations of the 11 TPA-CB[n] sensing 

elements (1 channel × 11) in response to the six anaesthetic molecules,  

 

Statistical data analysis of colorimetric fingerprint data 

The generated dataset was analysed by the LDA-PCA routine that has been streamlined for the 

developed colorimetric sensor array. The dataset was firstly analysed using Linear Discriminant 

Analysis (LDA) with leave-one-out cross-validation, yielding a discrimination error rate of 3.5%. 

However, it is possible to observe from the heatmap that some sensor channels yielded redundant 

responses, either by producing similar outputs for different analytes or by generating the same 

response for different sensor channels (e.g., Abs 2 CB[8]-TP2 and Abs 2 CB[8]-TP3). This 

redundancy hindered accurate discrimination. To address this, PCA was utilized to identify and 

remove the non-contributing sensing elements. The scree plot generated from the PCA indicated that 

a) b) 
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only 18 sensing elements were necessary for effective discrimination of the anaesthetic molecules. Of 

these, 8 channels corresponded to wavelength shifts, while 10 channels reflected absorbance 

variations in response to the analytes. Consequently, the original dataset was refined to a dimension of 

[48 × 18]. When reanalysed using LDA, the refined dataset yielded a discrimination error rate of 0%, 

achieving perfect discrimination of the analytes. 

 

Figure 6.8: a) Heatmap illustrating the colorimetric fingerprint of the six anaesthetic molecules 

generated by the reduced 18 channel TPA-CB[n] sensor array with 8 channels corresponding to the 

λmax variations and 10 channels corresponding to the absorbance variations. b) PCA analysis showing 

the contribution of each sensing element toward the discrimination of the analytes in a scree plot for 

the reduction of 33-channel sensor array. c) Table depicting improvement in discrimination accuracy 

achieved through LDA by removing non-contributing sensing elements identified by PCA, resulting in 

a final accuracy of 100% using 18 sensing elements. 

 

 
 

 

a) 

b) c) 
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This successful application of the TPA-CB[n] sensor array marks a promising step toward 

developing a sensor array capable of detecting counterfeit anaesthetic drugs. With further refinements 

the array would allow discrimination of similar products from different regions, identification of 

adulterated products and the assessment of drug quality. The key advantage of this system lies in its 

ability to produce rapid results using only a spectrophotometer. However, further investigations are 

necessary before the sensor array can be effectively applied to testing drugs available on the market. 

This includes training the array to recognize varying concentrations of additive molecules, 

establishing a clear linear detection range, and making other essential optimizations to ensure its 

accuracy and reliability in real-world applications. 

 

6.3. Conclusion 

In conclusion we have developed a colorimetric sensor array using an extended library of TPA 

derivatives and their complexes with CB[7] and CB[8]. By harnessing the variations in the absorbance 

properties of the TPA derivatives upon host-guest complexation, followed by the addition of analytes, 

we have demonstrated the ability of the sensor array to discriminate a small group of few diverse 

molecules such as amino acids, proteins and small molecules. Furthermore, the array was effectively 

applied to distinguish commonly used anaesthetic drugs by extracting distinct output parameters from 

the absorbance spectra of the sensor array to create a colorimetric fingerprint. This result highlights 

the potential of this sensor array for counterfeit detection applications. Furthermore, the data treatment 

and statistical analysis of the colorimetric fingerprint was streamlined through the development of a 

combined LDA-PCA algorithm, which was designed to exclude non-contributing sensing elements, 

thereby enhancing the overall discrimination performance of the sensor array by LDA.  
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6.4. Materials and Methods 

1. Protocol for discrimination of analytes by colorimetric sensor array  

Stock solutions of commercial analytes were prepared in 1X PBS, while pharmaceutical molecules 

were dissolved in DMSO due to solubility requirements. 

For the sensing experiments with the different analytes, 25 l of 10 M solution of TPA derivatives 

with 25 l of 50 M CB[7] or CB[8] solution  in water were taken in UV-transparent 96-well plates 

were purchased from Corning. To this solution, 2.5l of corresponding analyte solutions were added 

to obtain a final concentration of 100 M spiked in 1X PBS.  The UV-visible absorbance spectra were 

recorded on a TECAN SPARK CYTO400 spectrophotometer from 400 to 650 nm. Control spectra 

were recorded with the addition of 1X PBS in the absence of spiked analyte to the TPA-CB[n] 

complexes. 

 

2. R codes for LDA-PCA routine 

All R codes utilized for the discrimination studies will be provided in the Annexe of this thesis. 
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 Macrocyclic fluorescence based sensor array:  

A methodological study for the diagnosis of the SARS-CoV-2 

infection in human serum  
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The work presented in this chapter is based on the following article: 

“A methodological study for the diagnostic of the SARS-CoV-2 infection in human serum with a 

macrocyclic sensor array” 

Sensors and Diagnostics, 2024, 3, 863-871. 

Bosco, M. S.; Topcu, Z.; Pradhan, S.; Sossah, A.; Tsatsaris, V.; Vauloup-Fellous, C.; Agasti, S.S.; 

Rozenholc, Y.; Gagey-Eilstein, N. 

7.1. Presentation of the study 

7.1. 1 Abstract 

 

The global outbreak of COVID-19 caused by SARS-CoV-2 has underscored the urgent need 

for rapid and sensitive diagnostic methods. While conventional nasopharyngeal swab-based tests face 

limitations in accuracy and turnaround time, alternative approaches leveraging blood samples hold 

promise. The alterations in blood composition induced by SARS-CoV-2 infection present an 

opportunity for novel diagnostic strategies, yet identifying specific biomarkers for diagnosis remains 

challenging. Therefore, a hypothesis-free diagnostic approach, based on the ‗Chemical Nose‘ sensing 

method is proposed as a potential blood-based diagnostic strategy. This strategy focuses on detecting 

global changes in blood composition using an array-based sensing system combined with machine 

learning algorithms. In our study a host-guest-based direct sensing approach utilizing cucurbit[7]uril 

(CB[7]) as a receptor scaffold covalently conjugated to fluorophore moieties has been employed to 

develop the sensor array. This CB[7]-FL array selectively binds to various biomolecules in patient 

blood samples by a range of non-specific binding modes, generating unique fluorescence outputs that 

are characteristic of the interacting biomolecule.  We have utilized this array to differentiate serum 

samples from healthy pregnant patients and SARS-CoV-2 infected pregnant patients with clinically 

relevant accuracy. Our study not only serves as a proof-of concept for potential clinical diagnosis, but 
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also provides a meticulous methodology to use this CB[7]-FL array-based sensor to monitor and 

analyse the fluorescence signals and fingerprints obtained from a small set of serum samples towards 

each sensor element of the CB[7]-FL array. This study therefore offers a streamlined methodology 

involving design of experiments, data extraction, treatment and analysis to run these types of chemical 

nose experiments, with key considerations to be kept in mind when using such chemical nose sensor 

arrays to diagnose more complex diseases and their associated severity and outcomes. 

 

7.1.2. Covalently linked vs. Host-guest based sensing strategy 

The strategy of host-guest based sensing, as discussed in previous chapters has been widely 

employed for developing IDA‘s. This approach allows ready access to libraries of fluorescent dyes 

with minimal synthetic efforts and less stringent selection criteria. The tunable optical properties and 

the ability to use several indicators with the same macrocyclic host based on variable binding 

affinities, enables generation of diversity in the recognition process with easy operation and 

controllable parameters. Despite these advantages, and the exhibition of high binding affinities and 

fast binding kinetics in deionized water, this approach has some drawbacks. For the creation of 

effective competitive binding conditions in IDA‘s, the binding affinity and working concentration of 

the indicator and analyte need to be finely tuned. Additionally, the presence of salts can significantly 

impact the non-covalent interactions that facilitate host-guest complexation, either through 

competitive or cooperative binding of cations to the carbonyl groups of the CB[n] portal, potentially 

causing the dissociation of weakly binding analytes. The non-covalent complexes formed between 

CB[n] and receptor dyes in IDA are further susceptible to dissociation upon dilution, similar to other 

biomolecular non-covalent complexes. Consequently, while IDA based sensing systems are highly 

effective for sensing in deionized water or minimal buffer conditions, they requires adjustments to 

address possible complications that could arise in saline media or biofluids, which could complicate 

the sensing process92.  

These limitations have led to the exploration of an alternative design strategy, which involves the 

covalent integration of the indicator dye and the macrocyclic receptor into a single, non-dissociable 

unimolecular chemosensor. For instance, emissive naphthalene units have been incorporated 

covalently into the cavity walls of cucurbit[n]uril derivatives, enabling them in detecting addictive 

over-the-counter drugs in human urine, which has high and variable salt concentrations269. However, 

using these systems requires the adoption of laborious synthesis, clever chemical design, and the 

selection of appropriate indicators that do not compete with CB[7] to create effective sensor libraries. 

This makes it challenging to introduce new recognition units with ease and enhance diversity in the 

recognition process of the sensor array. However, despite these drawbacks, the covalent tethering 

keeps the macrocycle and the dye in close proximity, ensuring a consistently high local concentration 

of the dye even upon dilution. This proximity in the case of intramolecular dye encapsulation systems 
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(IIDA) maximises the abundance of host-dye inclusion complex in the absence of the analyte, thus 

facilitating sensitive detection by displacement of the dye upon addition of the target analyte. 

Additionally, simple covalently bound dye molecules that produce unique optical outputs due to 

changes in their microenvironment upon analyte binding to the macrocycle, provide richer analyte 

information. This is because the generated sensing response is not solely related to the absolute 

binding affinity of the analyte but also depends on the different modes of interaction with the analyte. 

This allows for straightforward optimization of assay performance through concentration 

modifications across a wide range of concentrations as compared to the host-guest systems. The 

overall design of these systems thus makes them resistant towards dilution and competitive salt 

binding, making them suitable for use in biofluids270 

  

Figure 7.1: CB[7]-FL encoded library consisting of seven different fluorophores (Coumarin, 

Fluorescein, Bodipy, TAMRA, Cy3, Cy5 and SiR) covalently conjugated with CB[7] as the sensor 

elements of the macrocyclic sensor array (adapted from Agasti et al.217). 

 

7.1.3. Background of developed CB[7]-fluorophore sensor array 

Agasti et al.,217 have developed one such covalently-linked sensing array with CB[7] covalently 

tethered with a library of fluorescent reporters. The recognition of the chemical and topological 

features of biomolecules by CB[7] brings the tethered fluorophore into close proximity, thereby 

reporting the nature of its microenvironment in the presence of analytes through changes in the optical 

signature of the fluorophore. To achieve this design, the group synthesized a library of seven 

covalently conjugated CB[7]-FL reporter probes for fingerprinting biomolecular surfaces (Coumarin, 

Fluorescein, Bodipy, TAMRA, Cy3, Cy5 and SiR) (Figure 7.1). Amine-functionalized CB[7] was 
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synthesized in a two-step process from monohydroxylated CB[7] and then reacted with N-

hydroxysuccinimide ester derivatives of the selected dyes to obtain a single point of conjugation of 

CB[7] with a yield of  25-54%. 

The orthogonal mechanisms driving the photophysical changes of the different fluorophore 

conjugates were also probed in this study. Cy3 exhibits a restricted trans-to-cis isomerization 

mechanism, while SiR is influenced by a ground-state deactivation process, coupled with its nature to 

exist in equilibrium between a non-fluorescent spirolactone form and a fluorescent zwitterionic form. 

Cy5 was projected to undergo variations similar to Cy3, based on its trans-to-cis photoisomerization, 

alongside the additional possible formation of electronically coupled dye aggregates. TAMRA and 

Bodipy are expected to be influenced by the quenching effects of neighboring amino acids (Trp, Tyr, 

His) via static and collisional mechanisms with the dye molecule, while coumarin is susceptible to pH 

or static quenching mechanisms by surrounding amino acids. Consequently, the environmental 

sensitivity of the fluorophores in the vicinity of proteins provided this study a powerful strategy in 

interrogating their surfaces. The conjugated fluorophore system has been utilized to fingerprint 

diverse protein analytes as well as analyze the changes in the structural features for a given protein. 

Additionally, the energy landscape of protein folding and aggregation pathway, including native, 

aggregated, misfolded and fibrillary states have been fingerprinted. Importantly, the sensor has 

demonstrated the ability to discriminate between diverse amyloid structures of the Aβ42 peptide 

associated with Alzheimer‘s disease from other protein sequences with 100% accuracy. The sensor 

was ultimately assessed for its capacity to discriminate clinically relevant information from patient 

blood samples, fingerprinting the serum of pregnant women vs. controls as a proof-of-principle study 

to demonstrate the clinical capability of the CB[7]-FL sensor array.  

 

7.1.4. Diagnostic application of CB[7]-FL sensor array 

Leveraging the recognition properties of the CB[7]-FL moieties, coupled with their 

compatibility with biological media facilitates their utilization for analyte detection  in complex media 

like blood serum. Considering the earlier study and the documented alterations in the blood 

biochemistry among SARS-CoV-2 infected patients, we proposed that this CB[7]-FL sensor array 

could also be efficient in differentiating clinical serum samples from patients infected or not by 

SARS-CoV-2, with clinically relevant accuracy. Serum samples from pregnant women were obtained 

from the COVIPREG study conducted in nine maternities in the Paris area during the first two waves 

of the COVID-19 pandemic (04/28/2020 to 01/13/2021) before vaccines were available. The primary 

objective of this study was to evaluate SARS-CoV-2 excretion at maternal sites during delivery and 

postpartum, and to assess materno-fetal transmission following World Health Organization (WHO) 

guidelines. We selected serum samples from 12 SARS-CoV-2 infected women, confirmed by 

nasopharyngeal RT-PCR, and 14 healthy controls. To minimize inter-individual variability and 
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emphasize blood composition changes due to SARS-CoV-2 infection, we selected women in their 

third trimester of pregnancy (36 ± 4.3 weeks‘ gestation (WG) for the infected group and 37.4 ± 4.3 

WG for the control group) without other known disease conditions. Among the infected group, 66.5% 

(8 of 12) were symptomatic with breathing difficulties, and 17% (2 of 12) required hospitalization. 

The methodology and feasibility of the CB[7]-FL array-based sensing approach were 

thoroughly evaluated and documented through the analysis of fluorescence signals and fingerprints 

obtained from the small set of serum samples from pregnant women, both infected and not infected 

with SARS-CoV-2. This study not only provides an additional proof-of-concept for potential clinical 

diagnosis using the CB[7]-FL array but also offers a comprehensive, step-by-step methodology and a 

ready-to-use protocol for designing experiments, conducting measurements, and performing data 

extraction, processing, and analysis. The approach emphasizes a deeper understanding of the chemical 

nose strategy, encouraging a move beyond the use of general black-box statistical tools. This detailed 

methodology is particularly significant as it lays the groundwork for researchers to replicate and 

expand upon the study. Notably, the development of a pipeline of R-codes has streamlined the data 

processing, curing, formatting, and analysis directly from the raw fluorescence fingerprints, making 

the approach more accessible and user-friendly. Currently, the exploration of the chemical nose 

strategy for clinical diagnosis is hampered by the limited access to large sample cohorts and the 

challenges associated with big data management. These obstacles pose significant difficulties for 

researchers and clinicians in the field, restricting the broader application of this innovative approach. 

However, the extended applicability and utility of this analysis protocol could serve as a valuable tool, 

enabling more collaborative studies between researchers and clinicians. By facilitating the assessment 

of this hypothesis-free chemical diagnosis method with larger and more diverse cohorts, this protocol 

has the potential to advance the field significantly and contribute to the diagnosis of multifactorial 

disease. 
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A methodological study for the diagnosis of the
SARS-Cov-2 infection in human serum with a
macrocyclic sensor array†

Monica Swetha Bosco,ab Zeki Topçu,d Soumen Pradhan,fg Ariadne Sossah,a

Vassilis Tsatsaris,ac Christelle Vauloup-Fellous,e Sarit S. Agasti, fg

Yves Rozenholc‡d and Nathalie Gagey-Eilstein ‡*ab

This article reports the methodology and the proof of concept of a blood-based diagnostic strategy for the

SARS-CoV-2 infection. The proposed method relies on the non-specific/selective array-based sensing

strategy mimicking the human olfactory system using a cucurbit[7]uril macrocycle receptor conjugated

with a library of environmentally sensitive fluorophores. The study cohort includes 26 samples, i.e. 12 cases

and 14 controls. Statistical analysis methods such as linear discriminant and random forest were able to

successfully classify and discriminate the two groups with almost 90% accuracy. This diagnostic result

highlights the methodology and confirms the potential of this non-specific/selective sensing approach for

non-invasive clinical diagnosis.

1. Introduction

Since the end of 2019, the COVID-19 disease has been an
ongoing threat spreading worldwide, with more than 600
million infections and more than 6 million deaths.1 On March
11, 2020, it was classified as a global pandemic by the World
Health Organization (WHO). Therefore, its diagnosis is
considered indispensable to prevent and control the spreading
of the disease. Currently, two types of diagnostic tests, based
on nasopharyngeal or nasal swabs, are widely used: i) nucleic
acid amplification tests based on polymerase chain reaction
(PCR) technology that detect viral RNA; ii) antigen tests based
on lateral flow immunoassays (LFAs) that detect viral proteins

(i.e. spike, envelope or nucleotide proteins). The accuracy,
specificity, and sensitivity of a test as well as the time between
the test and results are the main criteria to control the
spreading of the disease. Antigen detection can provide results
within 15 min with low accuracy and is subject to delivering
false negatives, particularly when used in people with no signs
or symptoms of the infection (up to 45% of false negatives).2

This drawback results in high risk of virus dissemination.
Consequently, PCR tests are often used for the confirmation of
antigen tests and, therefore, might not suffer from false
negatives. Even if the analytical performance of PCR tests
approaches 100% by detecting 500–5000 RNA copies per mL,
clinical performance approaches only 80% sensitivity due to
biological and pre-analytical factors, particularly sample
collection. Nasal and nasopharyngeal swabs are partly
responsible for false negatives since the quality of specimen
collection may be low and viral loads in the sample are neither
homogeneous nor stable within the time of infection.
Moreover, the delay between sampling and results can extend
from 24 to 48 h due to time-consuming laboratory procedures
that require certified laboratories, trained operators, and
expensive equipment.3 While nasopharyngeal swabs are still
the widely used specimen, many works explore diagnosis
methods based on specimens from other types of samples such
as the upper respiratory tract (throat and deep throat saliva),
lower respiratory tract (sputum and bronchoalveolar lavage
fluid), nasopharynx, feces, and blood.4–11 Herein, we propose a
diagnostic strategy for the SARS-CoV-2 infection based on
blood samples whose sampling method, stability, and
homogeneity are highly controlled.
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Blood serologic tests to detect host-derived antibodies
against viruses (IgM and IgG) are not efficient for diagnosing
acute COVID-19 but rather previous infection and/or
vaccination. For initial diagnoses based on viral RNA
detection, the US-CDC does not recommend the use of blood
samples.12 However, SARS-CoV-2 infection is still responsible
for pronounced changes in the blood composition. Many
reviews investigate routine biochemical, immunological but
also inflammatory or nucleic acid biomarkers as a promising
avenue for early diagnosis and prediction of prognosis of
COVID-19.13–16 A proteomic and metabolomic study found
that 105 proteins and 373 metabolites were differentially
expressed in the sera of COVID-19 patients compared to the
control.17 However, no specific blood biomarker, even built
as a combination of expressions, has been still clinically
validated so far. Diagnostic strategy using proteomic or/and
metabolomic signatures would have been too expensive to
build for routine purpose. Routine blood parameters such as
hematological (lymphocyte and neutrophil count),
inflammatory (C-reactive protein), biochemical like (albumin,
lactate dehydrogenase, alanine and aspartate
aminotransferase and alkaline phosphatase) have been
described as dysregulated in SARS-Cov-2 infected patients.18

Combining appropriate cutoffs for certain of these blood
parameters could help in identifying COVID-19 positive
patients but with a low accuracy.3 Also, when used in a
machine learning model, they can help to differentiate the
status of patients with 82–86% accuracy and 92–95%
sensitivity.19 However, this strategy requires many blood
parameters to be measured and therefore remains slow and
expensive if transposed at the population level. Hence, the
“Chemical Nose” hypothesis-free machine learning
diagnostic strategy looking for global blood change
composition rather than changes of some specific
biomarkers or a combination of those will be suitable for a
low-cost blood-based diagnostic strategy.

The “Chemical Nose” strategy mimics the human olfactory
system using a set of non-specific sensors to sense the
components of a simple or complex mixture, whose outputs
are the inputs of one machine learning algorithm. Each
sensor selectively binds to sample analytes based on
electrostatic, hydrophobic, H-bonding or host–guest
interactions. Recognition event between the sensor and the
analyte is translated into an optical signal through the
transduction element. It generates a pattern of outputs
(fingerprint) for each analyte. Finally, the patterns are
classified (unsupervised approach) and eventually identified
(supervised approach) using one machine learning
algorithm.20–22 This “Chemical Nose” strategy has been
successful applied in “fingerprinting” pure proteins, protein
folding states or cancerous cell lines among others, thus
allowing their classification and identification.23–27 It also
has the potential to be developed for clinical diagnostics.
Indeed, since the onset, progression and outcomes of a
disease modify the blood composition,28 sensing and
fingerprinting blood samples with the set of non-specific

sensors would allow samples classification/identification with
regard to their physiological or pathological status. Using a
set of fluorophore conjugated polymers, Rotello et al.
described the classification of healthy, mild or severe liver
fibrosis patients, from a cohort of blood samples, with
clinically relevant specificity and accuracy ([ROC-AUC] =
0.89).29 A FRET-based polymer sensor array has also been
used to discriminate cancerous or healthy mice by serum
fingerprinting.30 Recently, as a proof of concept, we
demonstrated the use of a set of fluorophore-conjugated
cucurbit[7]uril (CB[7]-FL) to discriminate the serum of
pregnant women vs. the control.25 Using a hydrophobic cavity
with orthogonal H-bonding and electro-static/dipolar
interaction utilizing two symmetry-equivalent uridyl carbonyl
portals, CB[7] is an interesting receptor scaffold for
examining biomolecules. Not only does it possess host–guest
binding property toward a wide range of guest molecules but
the H-bonding and electro-static/dipolar recognition
elements provides an additional target probing
mechanism.31–33 Moreover, these CB[7]-FL moieties offer a
good compatibility with biological media due to good water
solubility and strong fluorescence, easily detected in complex
media.

Given the reported blood biochemistry changes in blood
samples of SARS-CoV-2 infected patients, we hypothesized
that this CB[7]-FL sensor array could be efficient in
differentiating serum samples from patients infected or not
infected by SARS-CoV-2, with clinically relevant accuracy.
Herein, we propose, not only an additional proof-of concept
for potential clinical diagnosis but, above all, a step-by step
precise methodology to use this CB[7]-FL array-based sensor
to monitor and analyse the fluorescence signals and
fingerprints obtained from a small set of serum samples of
pregnant women infected or not infected by SARS-CoV-2
towards each CB[7]-FL (Scheme 1). This work can be of high
interest for researchers and clinicians who are interested in
the assessment of hypothesis-free chemical diagnosis for
clinical diagnosis with cohorts of large size.

2. Material and methods
2.1. Participants and samples

Cohorts. All blood samples were collected in the frame of
the COVIPREG study,34 with approval from the national
ethics comity, the CPP SUD MEDITERRANEE (No. 2020-
A00924-35) on April 23rd, 2020. The trial is recorded in the
clinical trial registry as NCT04355234. COVIPREG study is a
prospective study conducted in France in 9 maternities of
Paris area during the first two waves of COVID-19 pandemic
(inclusion between 04/28/2020 and 01/13/2021) and before
vaccine availability. All patients have signed a consent form
to the use of their serums for research purposes. Serum
samples were collected in pregnant women the same day they
declared a positive SARS-CoV-2 nasopharyngeal RT-PCR.

Protocol. After centrifugation of the blood (1000 × g for 15
min at 4 °C), supernatant was transferred into a clean
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polypropylene tube, aliquoted, frozen within 48 hours and
stored at −80 °C until analysis. The control serum samples
were used after one year of conservation in accordance with
French law.

Subsampling. Our subsampling of the cohort is composed
of 26 samples. The case group is composed of 12 samples
whereas the control group is composed of 14 samples,
collected from pregnant women in the pre-pandemic period
(January 2019). Case vs. control were chosen to be aligned on
gestational age. The baseline characteristics of the patients
are provided in Table 1 and detailed characteristics for each
patient are given in Table S1.†

2.2. CB[7]-FL synthesis

Conjugated cucurbit[7]urils were synthesized as described in
previous publications.25,35

2.3. Array methodology

100 nM solution of each CB[7]-FL was freshly prepared in 10
mM sodium phosphate buffer (pH 7.4). The concentration of
the stock solution is controlled by Beer–Lambert law before
further dilution. In the wells of a white, half-well, non-
binding-surface plate (Corning®, Product Number: 3642), 25
μL of the desired CB[7]-FL solution was added. Fluorescence
emission at the respective emission wavelength in each well
(I(S−)) was recorded on a microplate reader (PerkinELmer®,
EnSpire) by exciting the fluorophores at their respective
excitation wavelength. Emission and excitation wavelengths

for each CB[7]-FL are given in Table S2.† Next, 5 μL of pure
serum was added to each fluorophore solutions, except in the
control wells where 5 μL of PBS were added instead.
Subsequently, after orbital stirring in the microplate reader
and temperature control (25 °C), fluorescence emission (I(S+)
for sample wells and I(PBS+) for control wells) was recorded
using the same excitation/emission wavelengths. Six
consecutive measurements (each 5 min apart) were taken.
Experiments were performed as replicates of four for each
serum sample.

2.4. Data and feature extraction

R codes were written to 1/ read and arrange the raw data in a
.csv file; 2/ build the “before and after serum addition”
variation of fluorescence tables for each CB[7]-FL and 3/
combine theses tables into one dataset made of 26 samples
(12 cases and 14 controls) and 8 variables (the sample status
and the 7 CB[7]-FL features with FL = Cy3, Cy5, TMR, SiR,
Coum, Fluo, Bdp). These codes can be found in Annex 1 of
ESI.† They are named respectively ‘lecture-raw-data.R’, ‘read-
plate-data.R’ and ‘build-data.R’.

2.5. Data statistical analysis

The 7 variables for each sample in the two groups were
compared and analyzed using different strategies of
statistical analysis. Homemade R code (https://cran.r-project.
org) was used and can be found in Annex 2 of ESI† (‘Covid
_analysis.R’).

Scheme 1 CB[7]-FL encoded library for fingerprinting serum samples of pregnant women infected or not infected by SARS-CoV-2. Analysis of the
obtained serum-based fingerprints via machine learning algorithms to enable the differentiation of disease or healthy states.

Table 1 Baseline clinical and pathological characteristics of the infected and control groups

Confirmed infected group Control group

n 12 14
Gestational age
Mean (std) 36.5 (4.3) 37.4 (3.4)
Median (range) 38.5 (28–40) 38 (28–41)
Days of infection before sampling N (std) 6.08 (6.05) Not applicable
Breathing symptoms 8 yes, 4 no Not applicable
Hospitalization with oxygen and ICU 2 yes, 10 no Not applicable
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3. Results and discussions

The hypothesis-free approach using the CB[7]-FLs sensor
array was exploratorily tested to determine whether it could
“fingerprint” SARS-Cov2 infection in serum sample and later
provide a potentially clinically PoC relevant assay. To this
aim, we explored this sensor array-based diagnosis strategy
by assessing a precise methodology, including the choice of
clinical samples, careful design of experiments, observation
and calculation of the fluorescence change, automatized data
extraction and organization as well as statistical method
comparison for serum samples' discrimination.

3.1. Clinical samples

Serum samples of pregnant women from the COVIPREG
cohort34 were used, among which we selected 12 infected by
SARS-Cov-2 and 14 healthy controls. For the proof-of-concept
of our strategy and since we do not have access to a large
number of samples, we selected patients showing good
clinical homogeneity in order to reduce inter-individual
variability and therefore highlight variations in the blood
composition, which could be expected from SARS-Cov2-
infection. Therefore, we selected samples from women that
were not known to suffer from other diseases and that were
in their third trimester of pregnancy (36 ± 4.3 week of
gestation (WG) for the infected group and 37.4 ± 4.3 of WG
for the control group). Among the SARS-Cov2 infected group,
66.5% (8 over 12) were symptomatic with breathing
symptoms and 17% (2 over 12) needed hospitalization.
Clinical and biological data of the 26 patients of the two
groups are presented in Table 1 (see also Table S1† for
individual data).

3.2. Design of experiments

To run the sensing experiment, each of the seven element of
the CB[7]-FL sensor array were mixed individually towards
each serum sample in the wells of a microplate.

Initially, the complete emission spectra of each CB[7]-FL
was recorded on the addition of serum and serum spiked
with biologically relevant proteins (1.6 mg mL−1). In some
cases, significant fluorescence decrease was observed, with a
more pronounced sensitivity of BDP, TMR, Cy5 and SiR.
These modifications highlight the ability of CB[7]-FLs to
detect subtle changes in complex matrix such as serum
(Fig. S1†).

The choice of a half-well microplate has been made to
minimize the needed volume of CB[7]-FL as well as serum.
Indeed, with seven CB[7]-FLs to be tested, with
measurements in quadruplicate, and with 26 sera to assess,
the needed volume of each serum is 140 μL and the volume
of 100 nM solution of CB-FL was more than 2.5 mL. The
concentration of 100 nM has been fixed after preliminary
studies and provide sufficient fluorescent signal, even after
addition of the serum. For reproducibility concerns, this
concentration has to be carefully controlled before

experiments.25 Non-binding microplates were preferably used
to avoid the adsorption of hydrophobic CB[7] on the well
surface. To assess this phenomena, six consecutive
measurements (each 5 min apart) were taken. The signal was
stable overtime, as shown in Fig. S3.† Therefore, the mean of
the six measurements overtime was used for the analysis. To
test all the samples in quadruplicate, two microplates were
necessary for each CB[7]-FL. To avoid an artificial
discrimination due to samples position on the microplate,
COVID+ and control samples were positioned on both plates,
as shown in Fig. S4.†

3.3. Calculation of fluorescence change

Fluorescence signals of the fluorophore (FL) registered in
quadruplicate before and after serum addition constitutes
the output, and combining all the FL fluorescence changes
later provides the fluorescence pattern for each sample. For
each sample and each CB[7]-FL, the output, ΔI , is calculated
as the mean over the quadruplicate of the changes in
fluorescence at emission wavelength after and before serum
addition in each well as given by the formula

ΔI ¼ mean ΔIð Þ ¼ mean I Sþð Þ −mean I S−ð Þ
� �� �

¼ mean I Sþð Þ
� �

−mean I S−ð Þ
� �

where I(S+) is the fluorescence intensity in each well after

addition of serum, I(S−) is the fluorescence intensity before
addition of serum in the corresponding well, and mean(I(S−))
is the mean of the fluorescence intensities of the
quadruplicate corresponding well before addition of serum.
The generated data table is given in the ESI† (Table S3).

Obviously, it is impossible to discriminate two groups of
samples (COVID+ vs. control) only by looking at the
fingerprint on the heatmap plot (Fig. 1a). However, we
observe that the mean of CB[7]-Cy5 for each of the two groups
are significantly different (p < 0.05) (Fig. 1b). Individual
values for each serum in each group are also plotted on
Fig. 1c and S5.† These graphs offer a better visualization of
the fluorescence variation and particularly differences
between the two groups for CB[7]-Cy5. We can also observe
the good reproducibility between the four replicates.

3.4. Statistical method for serum samples discrimination

Based on the data of fluorescence variations for each CB[7]-
FL (Table S3†), statistical analysis methods have been
evaluated towards the discrimination of the two groups of
samples.

3.4.1. Random Forest analysis. Initially, Random Forest
was used. Due to the low number of samples, splitting the
data into train and test subset of data was not pertinent.

Using all features (7 CB[7]-FL), the classification rate for
the 26 samples (12 COVID+ and 14 COVID−) evaluated using
the out-of-the-bag strategy is 84.6%, with a predictive positive
value of 74.5% and a negative predictive value of 92.9%.
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Thanks to the use of Random Forest, we get an estimation of
the feature importance in the classification: CB[7]-Cy5 brings

the highest contribution, followed by CB[7]-SiR and CB[7]-
TMR (Fig. 2a).

Fig. 1 a/ Heatmap plot fingerprinting each serum sample. b/ Means of fluorescence response of each CB[7]-FL against the two groups COVID+
(blue) and control (light purple). The symbol * indicates p value for the t-test used for comparison of the means smaller than 0.05. c/ Individual ΔI
value (y axis) for each replicate (black, red, green and blue circles) of each serum and each CB[7]-FL for the two plates and dispatched such as 1–6:
COVID samples, 7–13: control samples, 14: control well.
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We next used Random Forest with combinations of these
3 most important features. It appears that the couple of
features Cy5 and SiR or Cy5 and TMR offers estimated
classification rate of 88.5% of error of discrimination and a
predictive positive value of 83.4% and a negative predictive
value of 92.9% (Fig. 2b and c). Stabilizations of the error rates
with the number of trees are shown in Fig. S6.†

As an additional evidence toward the use of this type of
non-specific sensor array for clinical sample classification, we
also combined this dataset with the previous dataset
discriminating pregnant and non-pregnant samples.25

Pregnant samples from these two different data sets are
discriminated with 97.1% of discrimination. Then, the
samples of pregnant women infected by SARS-COV-2 were
tested along with the pregnant and non-pregnant groups.
When keeping the most important features (Cy5, Bdp, SiR,
TMR, Cy3), only 6.9% of error of discrimination was obtained
with a positive predictive value of 75% (Fig. S6 and Table
S4†). These results provide additional evidence that the

sensor array strategy may be suitable for clinical diagnosis
even if it is, of course, still mandatory to have access to big
size clinical cohorts.

LDA analysis. We also used linear discriminant analysis
(LDA) model combined with leave-one-out strategy for
discrimination rate estimation. The histogram showing the
LDA scores distribution within the two groups is given in Fig.
S8.† When using all the features, the two groups can be
discriminated with 77% accuracy (to compare with the 84.6%
of the Random Forest) (Fig. 3a). Again, coefficients of linear
discriminant analysis confirmed that Cy5, SiR and TMR have
the highest weight in the discrimination. Using these three
variables, the accuracy of discrimination is improved to 85%
(88.5% for Random Forest) (see Fig. 3b). As for the Random
Forest, the predictive positive value is better than the predictive
negative value. We carefully looked to the misassigned COVID+
samples and tried to correlate the results to clinical data from
Table S1.† However, no correlation was observed whatever the
considered clinical data (Fig. 3c).

Fig. 2 a/ Confusion matrix for random forest on the whole variables and importance of each feature in the random forest algorithm of
discrimination. b/ Error rate of discrimination for random forest run with the most important variables. c/ Confusion matrix for the random forest
runs with Cy5 and SiR features.

Fig. 3 a/ Confusion matrix for LDA runs with the whole variables and b/ runs with the most important variables. c/ Prediction table for individual
samples. Misclassified samples are highlighted in red.
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4. Conclusion

With a small case-control cohort of SARS-CoV-2 infected
serum samples, this work highlights the strategy of training a
non-specific sensing array to discriminate clinical samples. It
offers the proper methodology, including the design of
experiments, data extraction, treatment and analysis to run
these types of chemical nose experiments and alert the
readers to the particular points of attention to take care of
when using chemical nose sensor array. From a statistical
point-of-view, even if with the small size of our cohort, we
demonstrate that a such strategy is efficient to discriminate
SARS-CoV-2 infected samples from control samples. By
implementing a step-by-step protocol, the methodology can
be easily adapted to extract and take into account relevant
experimental variables on large cohorts. Linear discriminant
analysis clearly shows some lack of performance; however,
more machine learning oriented strategy such as Random
Forest seems to be well adapted to implement a strategy of
training a non-specific sensing array, thanks to its flexibility,
the out-of-the-bag error rate estimation, which does not
require a train/test approach, and opportunity to retrieve
feature (sensor) importance. Despite the higher expected
variability in larger cohort, one can anticipate that these
properties of the Random Forest will help to keep high
discrimination performances. The available R-codes to extract
and process from raw data is made available and can be
easily tuned to new clinical samples. From a chemical point-
of-view, our first results shows the promising efficacy of the
macrocyclic-based non-specific CB[7]-FL sensor array to
discriminate the two health states between SARS-CoV-2
infected serum and control and that such an approach may
constitute a strategy of diagnosis based on blood-serum
samples. Interestingly, starting from a fixed size sensor array,
using the knowledge regarding importance of each feature
could ultimately lead to the reduction of the sensor array
dimension, providing a cheaper and easier point-of-care test.
From a clinical point-of-view, we can point out that two (over
the 3) false negative patients were asymptomatic (see Fig. 3c)
and therefore wonder about the result of the SARS-Cov2 PCR
test that may be subjected to some error. To conclude, we
would like to point out that within a larger and clinically
well-documented cohort, the proposed strategy could be used
not only to diagnose the clinical binary status but also more
complex disease outcomes like severity and eventual
complications.
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Table S1: Detailed clinical informations for each samples 

N° 
sample

Covid 
status

Age WG*
Days between 

symptoms and test
Breath 

symptoms
Hospitalization

Oxygen 
need

ICU

1 I 40 40 0 Y Y Y Y

2 I 31 40 4 Y N N N

3 I 37 35 5 Y N N N

4 I 28 39 0 Y N N N

5 I 31 40 1 Y N N N

6 I 36 37 16 Y N N N

7 I 31 29 16 N N N N

8 I 32 28 11 Y N N N

9 I 32 40 11 N N N N

10 I 31 33 1 Y Y Y Y

11 I 25 38 1 N N N N

12 I 28 39 7 N N N N

1 NI 39 40

2 NI 27 40

3 NI 19 40

4 NI 30 38

5 NI 37 38

6 NI 31 38

7 NI 30 39

8 NI 42 38

9 NI 38 39

10 NI 31 41

N.A
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11 NI 44 36

12 NI 26 36

13 NI 23 28

14 NI 43 33

*WK = Week of Gestation

B. Sensing Covid in clinical specimen

Table S2: Excitation and emission wavelengths used for each CB[7]-FL.

FL in CB[7]-FL λexcitation (nm) λemission (nm)

Bodipy 500 515

Coumarin 418 433

Cyanine 3 515 560

Cyanine 5 630 650

Fluorescein 500 515

Silicorhodamine 645 660

TAMRA 554 574
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Figure S1: Effect of complex matrix on fluorescence of CB[7]-FL. Variation in the fluorescence emission 
spectra of a/ CB[7]-BDP b/ CB[7]-TMR after addition of proteins in serum matrix (1.6 mg/mL) and control 
(serum only). c/  Histogram of the fluorescence emission at em max of  CB-BDP, CB-TMR, CB-Cy3, CB-Cy5, 
CB-Cou and CB-SiR, in presence of serum before or after addition of proteins (BSA, pepsin and lysozyme) 
at 1.6 mg/mL. * indicate significant differences (p-value < 0.05)
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Figure S2: Stability of the fluorescence signals with different CB-[FL] during the 30 min of measurements
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Figure S3: Microplates organization – 1+, 2+, 3+, 4+, 5+, 6+, 7+, 8+, 9+, 10+, 11+, 12+ are Covid+ samples 
and 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14- are control samples. Black positions in B11 to E11 
are CB[7]-FL with PBS only instead of serum.

Table S3: Data of Fluorescence modulation,  of CB-FLs against serum samples (1: Sars-Cov2 infected ∆̅𝐼,

serum samples, 2: control serum samples) 
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Figure S4: Fluorescence modulation after addition of serum in each well. Covid+ samples are on the left, 
Control sample on the middle and control well on the right.
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Figure S5: Stabilization of the error rates for the random forest on all the variables (a) and only on the 
important variables, Cy5 and SiR (b)

Table S4: Data of Fluorescence modulation,  of CB-FLs against serum samples (P: Pregnant (2 ∆̅𝐼,

combined datasets), NP: Non pregnant, Covid: Sars-Cov2 infected serum samples) 

CB_Cy5 CB_Bdp CB_SiR CB_TMR CB_Cy3 CB_Coum
P -3446,389 -187206,58 -11550,542 -81514,96 -13957,375 -165789,67
P -3144,542 -142263,46 -11617 -36797,79 -674,5833 -116576,04
P -3051,792 -104629,06 -11148,292 -33746,67 19119,2083 -112677,75
P -3065,583 -121953,79 -11212,583 -33059,08 7781,375 -110793,17
P -3088,042 -54591,83 -10803,667 -28357,79 21856,6667 -92565,33
P -3033,333 -140930,46 -10807,667 -35957,21 -678,5833 -112764,12
P -2963,917 -139832,83 -11263,083 -32212,75 7531,5 -131591,54
P -2039,042 -193913,33 -7026,778 -27855,54 16352,1111 -99345,79
P -2251,75 -128953,67 -7304,5 -28776,29 18264,875 -92031,04
P -1820,583 -140275,71 -6886,792 -24953,92 23421,25 -96240,96
P -2043,917 -184890,71 -6803,792 -20248,42 14094,1667 -90600,38
P -2107,333 -247232,75 -6136,542 -27620,29 7224,625 122156,88
P -2010,708 -145756,29 -6547,708 -21355,75 14840,125 -89371,08
P -1868,292 -168824,88 -6823,208 -25259,67 14415,5 -89789,21
P 1690,06 -88540,52 -5319,65 -8902,73 32807,21 -52670,48
P 1525,73 -85174,19 -5827,48 -10058,06 34345,21 -59142,98
P 1543,4 -77320,19 -6016,65 -8264,9 34334,38 -57700,98
P 1678,23 -73041,52 -5907,81 -5588,56 35764,04 -53545,81
P 1516,06 -74916,19 -6016,81 -8062,4 34382,38 -56137,65
P 1664,23 -90913,69 -5774,48 -7884,73 32524,71 -52595,65
P 1626,06 -67777,19 -5828,31 -9456,06 37104,38 -46513,98
P 1694,23 -77103,02 -6039,98 -9610,9 32856,21 -45789,65
P 1638,56 -68564,52 -6225,81 -10059,73 40317,88 -46861,98
P 1821,73 -63000,19 -6324,65 -9297,23 36709,38 -46239,48
P 1653,4 -68675,19 -6608,65 -9320,06 34823,38 -45587,65
P 1820,23 -72750,02 -6123,15 -9089,73 36033,04 -44187,31
P 1685,06 -95091,69 -6108,65 -7551,4 39311,04 -50310,81
P 1719,4 -92602,35 -6180,98 -8938,23 38436,38 -53123,31
P 1695,9 -91944,85 -6410,81 -7931,23 39311,38 -52402,98
P 1603,23 -94356,19 -6442,98 -7990,9 39081,54 -52295,81
P 1719,23 -96028,35 -6719,31 -7742,23 39747,21 -50034,31
P 1824,56 -88318,52 -6539,98 -7524,23 39579,38 -51266,81
P 1638,06 -93054,85 -6579,31 -8051,4 38059,21 -52160,81
P 1735,9 -98695,02 -6543,48 -8264,9 40313,88 -54326,31
P 1725,06 -96420,52 -6796,15 -7756,4 41745,54 -54301,65
P 1839,9 -92472,35 -6877,65 -7556,73 41340,38 -53055,15
P 1926,73 -95547,85 -6739,81 -7609,06 40231,54 -52496,81
P 1809,73 -102659,02 -6559,48 -7050,9 40872,88 -50680,15
P 1883,73 -102128,02 -6475,65 -8007,9 36731,38 -65553,48
P 1967,4 -105015,69 -6945,48 -8148,9 37092,21 -69410,81
P 1952,9 -98213,02 -6901,48 -8637,06 39244,21 -64575,15
P 1865,06 -98316,69 -6790,65 -10028,73 36665,38 -66733,98
P 1940,9 -104259,85 -6792,65 -8346,06 38603,21 -66893,31
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P 1986,4 -96352,35 -6371,15 -8262,23 38085,04 -65476,15
P 2852,6 -86423,44 -4708,81 -13964,25 24509,75 -54130,4
P 2806,44 -86354,94 -4810,15 -13986,75 28210,75 -54654,4
P 2707,77 -86210,94 -4803,65 -13551,25 22747,92 -53321,4
P 2738,6 -86888,6 -4756,31 -13707,58 22496,08 -53053,56
P 2780,1 -86822,44 -4764,65 -13038,92 23144,08 -52723,23
P 2808,44 -84545,6 -4764,98 -13831,25 22237,25 -53559,23
P 2775,94 -75756,6 -5163,98 -5608,75 42138,75 -31130,9
P 3218,6 -75496,44 -5320,48 -6188,92 46812,42 -32529,23
P 3286,6 -77256,6 -5553,98 -5756,92 38543,92 -30847,23
P 4042,77 -78086,1 -5198,98 -5715,75 39119,25 -31317,4
P 4090,77 -79526,77 -5503,65 -6332,58 41220,75 -32222,56
P 3306,27 -78002,27 -5033,81 -5949,08 36943,92 -30601,73
NP 1863,06 -132815,69 -6410,15 -7433,56 38167,54 -59593,81
NP 1711,23 -125201,02 -6701,65 -8707,4 38356,54 -59085,31
NP 1886,06 -130831,02 -6763,98 -8596,73 38317,88 -59245,98
NP 1747,4 -125199,52 -6847,81 -7313,4 36398,71 -60088,48
NP 1989,73 -131704,69 -6839,81 -7156,23 38962,38 -57306,81
NP 1885,73 -131921,02 -6710,65 -6876,73 41057,88 -58338,98
NP 1964,4 -120134,85 -6626,65 -15123,4 24781,71 -76338,31
NP 1792,56 -120444,02 -6770,81 -15315,4 25153,21 -78879,65
NP 1949,4 -125060,52 -7287,65 -14868,06 24917,71 -80286,65
NP 2031,23 -119649,02 -6635,31 -15919,06 30390,54 -80713,65
NP 2047,4 -122046,19 -6998,48 -15043,23 28651,38 -77786,48
NP 1910,73 -118153,52 -7327,31 -14571,73 30095,21 -78445,48
NP 1931,4 -162399,19 -4454,65 -6509,06 40340,38 -73221,48
NP 1881,56 -178452,35 -4645,65 -7782,56 41036,21 -75121,15
NP 1827,73 -164926,52 -4803,15 -7622,73 41667,54 -76412,98
NP 1855,73 -173629,69 -4776,15 -7657,9 41996,88 -74895,15
NP 1889,4 -166619,19 -4669,15 -6716,73 54340,71 -72779,98
NP 1917,73 -149115,35 -4863,65 -6902,9 42758,21 -75225,31
NP 2244,4 -132602,02 -4441,48 -10666,9 54362,54 -65376,81
NP 2128,23 -124045,35 -4683,31 -12516,06 61515,54 -67507,31
NP 2312,56 -122827,02 -4781,98 -11967,9 48499,71 -66178,98
NP 2175,9 -123014,69 -4877,98 -11959,4 41833,04 -66063,98
NP 2090,73 -123506,69 -4784,65 -12788,73 40323,04 -64876,48
NP 2347,73 -120813,02 -4733,31 -11226,73 38655,88 -63284,31
NP 2128,73 -157387,85 -4472,31 -10704,23 45957,04 -67993,98
NP 2132,73 -155890,52 -4859,65 -10197,9 44088,38 -66203,15
NP 2069,23 -147190,19 -4761,98 -10349,9 40534,71 -64789,15
NP 2166,73 -145353,19 -4892,31 -11381,4 39208,71 -64387,81
NP 1998,56 -131797,69 -5149,15 -11420,06 38016,71 -65861,81
NP 2161,56 -120526,02 -4667,65 -11264,73 36441,21 -62606,81
NP 2498,44 -105088,77 -8875,98 -7632,92 46298,42 -46085,9
NP 3000,77 -102449,1 -8994,81 -7468,92 43131,25 -46287,23
NP 2133,77 -101896,94 -8792,15 -8336,92 36052,08 -48313,23
NP 2073,44 -105028,44 -8905,81 -7039,75 43603,25 -47071,4
NP 2884,94 -102947,6 -8882,31 -7446,42 38290,75 -44894,06
NP 3259,44 -103547,6 -8788,15 -6952,75 36692,75 -45425,73
NP 2947,27 -119070,27 -4643,65 -6228,25 51104,58 -62738,23
NP 3719,77 -121121,1 -4696,65 -6441,42 47888,08 -61390,56
NP 3003,27 -119983,77 -4811,48 -6591,08 45047,42 -58682,73
NP 2703,44 -119158,44 -4588,65 -6180,42 48608,25 -58685,9
NP 3009,27 -119665,94 -4431,48 -5429,75 39946,58 -56622,9
NP 3855,77 -117609,44 -4790,31 -6017,92 40124,08 -66290,9
NP 4967,1 -129962,1 -4687,31 -11029,08 43143,58 -51114,9
NP 5111,6 -127439,1 -4442,31 -10623,08 42798,75 -50427,4
NP 4487,44 -129477,6 -4635,15 -10932,92 42302,42 -51303,73
NP 4198,94 -129285,27 -4813,31 -11291,42 35822,42 -50653,9
NP 5128,6 -128218,44 -4603,15 -9688,92 39779,42 -51592,23
NP 4369,94 -125100,77 -4354,48 -9077,25 48471,58 -50071,9
Covid -1088,583 -100977,38 -6286,167 -24584,42 34368,25 -37362,04
Covid -1722,708 -335107,08 -6319 -88688,42 34368,25 -159768,08
Covid -1596,042 -68893,33 -6640,625 -23434,75 45036,4167 -92973
Covid -1464,5 -133037,46 -6412,75 -29726,62 17072,875 -101560,67
Covid -1840,083 -203599 -5843,042 -26606,33 8662,875 -104554,62
Covid -1672,292 -185874,92 -5735,375 -30772,83 9921,5833 -113050,88
Covid -2052,708 -96936,25 -10645,208 -33003,96 14218,375 -110928,12
Covid -2226,083 -75001,71 -10648,708 -30618,96 16230,75 -88250,88
Covid -2508,292 -135989,33 -11085,125 -51040,96 2282,375 -140846,12
Covid -2690,083 -104084,04 -10669,417 -33807,46 -148,2083 -90749,29
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Covid -2693,25 -173953,54 -10146,208 -60229,29 3774,75 -150597,96
Covid -2173,542 -134602,83 -10245,5 -31619,71 4471,1667 -115489,79

Figure S6: Discrimination of Pregnant (P) Non-pregnant (NP) and Sars-COV-2 pregnant (Sars-COV-2 P) 
clinical samples from two sets of experiments. a/ Explanation of the different cohorts and combination b/ 
Confusion matrix for discrimination of P and NP with the random forest analysis using the whole variables. 
c/ Confusion matrix for discrimination of P, NP and Sars-COV-2 P with the random forest analysis using the 
whole variables and the most important variables.

a/                                                                                                   b/

OOB estimate of error rate : 2.9 %
P NP

P 54 2
NP 1 47

c/

ALL - OOB estimate of error rate : 12.1 % Cy5, Bdp, SiR, TMR, Cy3
OOB estimate of error rate : 6.9 %

P NP P Sars-COV-2 P NP P Sars-COV-2
P 51 2 3 52 2 2
NP 1 47 0 1 47 0
P Sars-COV-2 4 0 8 3 0 9

Figure S7: LDA models for the 2-group “control versus covid” model. The histogram is marked with normal 
distributions fitted to the full data consisting of average of replicates for each serum sample. The box-plot 
depicts the max/min of canonical scores obtained from the LDA. 
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Figure S8: Diagnosis of Covid-19 samples based on serum response toward the CB[7]-FL sensor array. A/ 
Box plot of the first canonical score of the training (70% of the samples) and test set (30% of the samples). 
The horizontal line in the boxes represents the median and the bottom and top of the boxes represent the 
25th and 75th percentiles, respectively. B/ ROC curves for the array-based sensor in patients with Covid-19 
(Co) compared with control (Cont). () is for normal data and () is for scrambled data.
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Annex 1 : R-code for the data extraction

 Lecture-raw-data
rows.letters = LETTERS[2:7] # B,C,D,...,G
cols.info = 3:12
n.rows = length(rows.letters)
n.cols = 10
n.cycles = 6

raw.folder = '../Raw Data Covid'
out.folder = '../Table Data Covid'
ref.folder = '../Ref Data Covid'

if (!dir.exists(out.folder)) dir.create(out.folder)
if (!dir.exists(ref.folder)) dir.create(ref.folder)

list.dir = dir(raw.folder,all.files=F,recursive=F,full.names=T)

for (name in list.dir) { # read directory content
  out.name = gsub(raw.folder,out.folder,name) # directory for output
  if (!dir.exists(out.name)) dir.create(out.name)
  
  list.file = list.files(path=name,pattern="*.csv",full.names=T)
  
  for (file in list.file) { # read each file
    print(paste('processing of',file))
    X = read.csv(file, header=F, blank.lines.skip=FALSE, stringsAsFactors=FALSE)
    if (dim(X)[2]==1) X = read.csv(file, header=F, blank.lines.skip=FALSE, stringsAsFactors=FALSE, sep=';')
    IntensityArray = array(0,dim=c(n.rows,n.cols,n.cycles),dimnames=list(rows.letters,1+(1:n.cols),1:n.cycles))
    i = tps = 1
    for (line in 1:dim(X)[1]) { # read line by line the file
      champs = X[line,] # get the contents of the line
      # print(champs[1])
      if (!(champs[1] %in% rows.letters)) next() # forget non intensity line
      # here we are on intensity line
      intensities = as.numeric(champs[cols.info])
      # print(intensities)
      IntensityArray[i,,tps] = intensities
      i = i+1
      
      if (champs[1]==rows.letters[n.rows]) {i=1; tps=tps+1}
      if (tps==n.cycles+1) break() # too many cycles read // stop
    }

    if (grepl('Coum',file)) print(IntensityArray)
    
    save(IntensityArray,file=gsub(raw.folder,out.folder,gsub('.csv','.rda',file)))
    
    if (grepl('Cy3',file)) { # we deal with NA's on experiment 2569 Cy3 (1) I1
      print(file)
      ref.name = gsub(raw.folder,ref.folder,name) # directory for output
      if (!dir.exists(ref.name)) dir.create(ref.name)
      founded = FALSE
      while (!founded) {
        line = line+1
        old.champs = champs
        champs = X[line,]
        if (length(old.champs)<=9 | length(champs)<=9) next()
        founded = ((old.champs[9]=='Wavelength') & (as.numeric(champs[9])==560)) 
      }
      
      line = line+6
      Ref560Array = array(0,dim=c(n.rows,n.cols),dimnames=list(rows.letters,1+(1:n.cols)))
      i = 1
      for (l in line:(line+5)) {
        champs = X[l,]
        intensities = as.numeric(champs[cols.info])
        Ref560Array[i,] = intensities
        i = i+1
      }
      
      save(Ref560Array,file=gsub(raw.folder,ref.folder,gsub('.csv',' ref560.rda',file)))
    }  }  }

 read-plate-data.R
the.method = 'Fatio'

plate2table = function(plate) {
  # print(plate)
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  table  = rbind(plate[1:6,1:4], plate[1:6,4+(1:4)], plate[1:4,9], plate[1:4,10]) 
  rownames(table) = c(LETTERS[1:13],0)
  colnames(table) = 1:4
  # print(table)
  table
}

# directory des fichiers .rda
in.folder = '../Table Data Covid'

# directory des fichiers resultats
out.folder = sub('Table','Treated',in.folder)

if (!dir.exists(out.folder)) dir.create(out.folder)

list.dir = dir(in.folder,all.files=F,recursive=T,full.names=T)
list.I0 = grep('I0.rda',dir(in.folder,all.files=F,recursive=T,full.names=T), value=T)
list.I1 = grep('I1.rda',dir(in.folder,all.files=F,recursive=T,full.names=T), value=T)

for (name in list.I1) 
{ # read directory content
  
  load(name)
  
  # get name of output sub-folder and create it if not existing
  in.sub.folder = substr(name,gregexpr('/',name)[[1]][2],gregexpr('/',name)[[1]][3])
  out.sub.folder = paste0(out.folder,in.sub.folder)
  fluo = gsub('/','',in.sub.folder); fluo = gsub(' ','',fluo)
  print(fluo) 

  if (!dir.exists(out.sub.folder)) dir.create(out.sub.folder) 
  
  MeanIntensityArray = apply(IntensityArray,1:2,mean,na.rm=TRUE,trim=0.1)
 
   IntensityTable = array(dim=c(14,4,dim(IntensityArray)[3]))
  for (i in 1:dim(IntensityArray)[3]) IntensityTable[,,i] = plate2table(IntensityArray[,,i])
  
  # Reorganize in a table instead of a plate // 4 values per line // control is the last line
  I = plate2table(MeanIntensityArray)
  
  bool = apply(I,1,function(l) all(is.nan(l))) # check for line made only of NaN
  if (any(bool)) {
    ref = sub('.rda',' ref560.rda',sub('Table','Ref',name))
    print(paste('use',ref))
    load(ref)
    I[bool,] = plate2table(Ref560Array)[bool,] # get line from ref
  }
  
  I.mean = rowMeans(I,na.rm=T)  # mean over replicates
  
  # we deal with changes in the plate numbering from I1 to I0 in order to find I0 name
  last.barre = rev(gregexec('/',name)[[1]][1,])[1]
  end.name = substring(name,last.barre)
  next.white = gregexec(' ',end.name)[[1]][1,][1]
  end.name = substring(end.name,next.white+1)
  new.end = sub('I1','I0',end.name)
  
  # Do same for the associated control plate
  name.I0 = grep(new.end,list.I0,fixed=T,value=T)
  load(name.I0)
  MeanIntensityArray = apply(IntensityArray,1:2,mean,na.rm=TRUE,trim=0.1) # variance 1/6 - If only NA's create NaN
  IntensityTable0 = array(dim=c(14,4,dim(IntensityArray)[3]))
  for (i in 1:dim(IntensityArray)[3]) IntensityTable0[,,i] = plate2table(IntensityArray[,,i])
  I0 = plate2table(MeanIntensityArray) 
  I0.mean = rowMeans(I0,na.rm=T)  # mean over replicates

  out.name = paste0(out.sub.folder,substring(name,gregexpr('/',name)[[1]][3]+1))
  out.name = gsub('.rda',paste0('-',the.method,'.rda'),out.name)
  if (the.method=='Eatio') {
    Eatio.all = I - I0.mean 
    Eatio.mean = I.mean - I0.mean 
    Eatio.sd = apply(Eatio.all,1,sd,na.rm=T) 
  }
  use.all = eval(parse(text=paste(the.method,'all',sep='.')))
  use.mean = eval(parse(text=paste(the.method,'mean',sep='.')))
  use.sd = eval(parse(text=paste(the.method,'sd',sep='.')))
  covid.status = as.factor(c(rep(1,l=6),rep(-1,l=7))) # 6 first are covid+
  
  save(fluo, I, I0, use.all,use.mean,use.sd, covid.status, file=out.name)
  
  }

 build-data.R
the.method = 'Eatio'

# directory des fichiers .rda
in.folder = '../Treated Data Covid'

# directory des fichiers resultats
out.folder = sub('Treated','Tree',in.folder)
if (!dir.exists(out.folder)) dir.create(out.folder)

list.dir = dir(in.folder,all.files=F,recursive=T,full.names=T,pattern = paste0('*-',the.method,'.rda'))

232



sample1 = sample2 = fluo1 = fluo2 = NULL
for (name in list.dir) { # read directory content
  print(name)
  tmp = load(name)
  if (grepl('(1)',name,fixed=T)) {
    sample1 = cbind(sample1,use.mean[names(use.mean)!='0'])
    fluo1 = c(fluo1,fluo)
    covid1 = covid.status
  } else {
    sample2 = cbind(sample2,use.mean[names(use.mean)!='0'])
    fluo2 = c(fluo2,fluo)
    covid2 = covid.status
  } 
}
samples = rbind(sample1[,order(fluo1)],sample2[,order(fluo2)]) 
colnames(samples) = fluo1[order(fluo1)]
covid.status = c(covid1,covid2)
rownames(samples) = covid.status
  
save(samples,covid.status,file=paste0(out.folder,'/',the.method,'-covid-19-fluo-data.rda'))

Annex 2: R-code for the data analysis 

library('randomForest')
library('FactoMineR')
library('plotly')
library('MASS')
library('plot3D')
library('ggplot2')
library('e1071')
library('caTools')
library('caret')
library('factoextra')

the.method = 'Eatio'

#Preparing the data
load(paste0('../Tree Data Covid/',the.method,'-covid-19-fluo-data.rda'))
n.data = dim(samples)[1]
the.data <- data.frame(covid.status, samples)

#### RANDOM FORESTS OOB ####
tree.full = randomForest(covid.status~., data=samples, ntree=50000, mtry=2, importance=T, proximity=T)
tree.full

importance(tree.full)
plot(tree.full)
legend('right',col=c(3,2,1),pch=16,legend = c('OOB','Covid -', 'Covid +'))
varImpPlot(tree.full)

tree.ok = randomForest(covid.status~Cy5+SiR, data=samples, ntree=50000, importance=T)
tree.ok
importance(tree.ok)
plot(tree.ok)
legend('right',col=c(3,2,1),pch=16,legend = c('OOB','Covid -', 'Covid +'))
varImpPlot(tree.ok)

##### LDA using lOCV  #####
the.data <- data.frame(samples)
mLDA <- lda(covid.status~., data=the.data, CV=F)
mLDA
plot(mLDA)
mean(mLDA!=the.data$covid.status)
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8.1 Introduction  

Array-based sensing or differential sensing inspired by nature provides an alternative approach 

to existing analyte detection technologies that employ a ―lock-and-key‖ principle. This strategy brings 

together the molecular design of selective cross-reactive receptors, each with varying degrees of 

selectivity, and machine learning methodologies. The receptors generate a pattern of responses when 

exposed to different analytes. The collective data from these patterns are then analyzed using 

advanced chemometric methodologies, such as pattern recognition algorithms and multivariate 

statistical techniques, to accurately identify analytes or subtle differences between consistent mixtures 

of analytes. As a result, array-based sensing holds significant potential for a wide range of 

applications, from environmental monitoring to medical diagnostics, where detecting a diverse array 

of compounds with high accuracy is crucial. 

8.2. Comprehensive overview of the project  

My Ph.D. project has focused on the development of optical sensor arrays utilizing macrocyclic 

host-guest interactions facilitated by the family of cucurbit[n]urils (CB[n]) macrocycles and 

conjugated multibranched triphenylamine (TPA) derivatives.  

 

The constructed sensor array consists of a set of sensor elements constituted of recognition elements 

and optical transducers. The CB[n]s were employed as scaffolds for analyte interactions, utilizing 

their hydrophobic cavities of different sizes for shape-based molecular recognition in combination 

with orthogonal H-bonding and electrostatic/dipolar interaction through uridyl carbonyl portals. The 

dynamic nature of supramolecular chemistry allows the use of the TPA derivatives as optical 
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transduction elements through competitive host-guest-driven indicator displacement assay with 

CB[n]s. The encapsulation of TPA inside the cavity of CB[n], stabilized by the interaction of its 

pyridinium acceptor groups with the C=O portals of the macrocycle, modulates its photophysical 

properties by effectively restricting the intermolecular rotation of the vinyl double bonds in the TPA 

branches. This restriction reduces radiationless decay channels and enhances fluorescence emission, 

thus optimizing the role of TPA as optical transducers in the sensor array. The interaction of analytes 

with these sensor elements leads to differential displacement of the TPA from the CB[n]s, resulting in 

further optical modulation of these derivatives. Additionally, the TPA derivatives offer additional 

orthogonal binding sites for interaction with hydrophobic regions of analytes, by docking onto the 

hydrophobic surfaces and pockets by a combination of weak interactions, thus pairing the two 

properties of transduction and recognition together to develop a bimodal recognition sensor array. 

These diverse interactions between analytes and the developed macrocyclic sensor array produce 

distinct, analyte-specific optical signatures, which could then be processed and analysed for 

identification and classification purposes. 

The variation in the optical properties of the TPA-CB[n] system upon interaction with analytes was 

thoroughly studied, leading to the development of both macrocyclic fluorescence and colorimetric 

sensor arrays. 

 The fluorescence sensor array has been constructed with four TPA-CB[7] complexes and has 

been validated by the successful generation, identification and classification of a diverse group of 

protein analytes spiked in simple physiological buffer and complex human serum. This strategy was 

further expanded to demonstrate the capability of the sensor array to predict pathological status from 

more complex body fluid samples. As a proof-of-concept, the sensor array effectively differentiated 

between healthy controls and samples from two separate disease models: a metabolic disorder 

phenylketonuria (PKU) and the pregnancy-related disorder preeclampsia (PE). This diagnostic 

fingerprinting by the sensor array was demonstrated in artificial urine and clinical patient serum, 

respectively. These findings highlight the potential of this sensor array as a non-invasive diagnostic 

tool, capable of detecting multifactorial diseases by profiling global proteomic changes rather than 

relying solely on disease-specific biomarkers. 

 Additionally, a colorimetric array was developed using macrocyclic TPA-CB[7] and TPA-

CB[8] complexes. This array successfully discriminated and classified common anaesthetic drug 

molecules that interact with CB[n]s, based on variations in absorbance facilitated by IDA. The ability 

of this array to provide quick and accurate identification of these drug molecules based on simple 

output parameters, highlights it‘s potential for applications in counterfeit drug detection, where timely 

and precise substance identification is essential. 

 To assess the capability of the developed sensor array in discriminating different analytes based 

on their unique optical fingerprints, it is crucial to develop effective data management and 
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chemometric strategies. These strategies are necessary to transform the complex transduced 

fingerprints into interpretable data. To tackle this challenge, a streamlined R program-based pipeline 

was created. This pipeline automates data management processes, including raw data extraction, 

formatting, and processing. Additionally, it handles statistical analysis for constructing dimensionality 

reduction and pattern recognition algorithms. Techniques such as LDA, PCA and random forest 

models were implemented to generate informative and non-redundant numerical representations of the 

processed fingerprint signals. These representations facilitate pattern recognition through suitable 

algorithms, enabling the identification, discrimination, and classification of different analyte classes.  

 To further facilitate the ability of the sensor arrays to discriminate samples in large-scale 

cohorts particularly in applications like disease diagnosis, high-throughput and automated analytical 

platforms were explored. A droplet microfluidic platform was developed to enable controlled 

compartmentalization of nanoliter aqueous droplets of the sensor elements and analytes within an 

immiscible carrier fluid. By merging these individual droplets, the platform facilitates the detection of 

optical fingerprints generated by the sensor array, while significantly reducing the required sample 

volumes. This reduction in volume is especially advantageous when working with precious or limited 

analytes, such as clinical samples, as it allows for a larger number of replicates to be tested, thereby 

improving the reliability and robustness of the analysis. A pipetting robot platform was also integrated 

into the experimental workflow to provide automated, precise, and reliable handling of reduced 

sample volumes. This automation minimizes pipetting errors and ensures high consistency across 

experiments, enabling the processing of a larger number of analytes in significantly less time and 

enhancing high-throughput utility of the array-based sensors. 

Additionally, by exploiting the covalent strategy of integration of recognition and transduction 

elements into a single, non-dissociable unimolecular chemosensor, we employed a developed library 

of seven covalently conjugated CB[7]-fluorophore (CB[7]-FL) reporter pairs to discriminate non-

invasively clinically relevant information from patient blood samples. The CB[7] molecules recognize 

the chemical and structural features of biomolecules, bringing the tethered fluorophore into close 

proximity, which then alters its optical signature in response to analytes, revealing the nature of the 

microenvironment. This strategy was adopted to propose a proof-of-concept for potential clinical 

diagnosis of SARS-CoV-2 from a small set of serum samples of pregnant women infected or not 

infected by SARS-CoV-2 towards each CB[7]-FL. Moreover, a comprehensive, step-by-step 

methodology and a ready-to-use protocol was proposed for designing experiments, conducting 

measurements, and performing data extraction, processing, and analysis using the chemical nose. This 

approach aimed to deepen the understanding of the chemical nose strategy, encouraging researchers to 

move beyond the use of general black-box statistical tools, thus facilitating the application of this 

hypothesis-free methodology for potential use with larger and more diverse cohorts, particularly for 

the diagnosis of multifactorial diseases. 



                                                                                                                                      Chapter 8 

 

239 

 

8.3. Future perspectives of the project 

 The research presented in this thesis paves the way for several promising avenues of future 

exploration. While the development of the optical sensor array based on CB[n]-TPA interactions has 

shown significant potential, there remain opportunities for further improvement and expansion. 

Expansion of host-guest strategy for sensor design  

 While the macrocyclic host family of cucurbit[n]urils has been explored extensively, further 

optimization of the developed sensor array could benefit from exploring other macrocyclic host 

families such as cyclodextrins, crown ethers, calixarenes, and pillar[n]arenes. These alternative hosts 

offer distinct molecular encapsulation properties due to their unique shapes and charge preferences. 

Exploring these options could provide complementary or improved recognition capabilities compared 

to CB[n]s, enabling the detection of a broader spectrum of analytes with varying binding affinities and 

structural characteristics. This includes a wide range of substances such as charged amino acids, 

neurotransmitters, carbohydrates, lipids, and oligonucleotides. These analytes are crucial for 

maintaining healthy metabolic conditions, and their levels can indicate global changes associated with 

disease states. Thus, utilizing these macrocyclic hosts could extend the application of the sensor array 

to biofluids for the diagnosis of disease states associated with these analytes. Furthermore, 

introduction of other optical guest transducers in addition to the TPA derivatives could allow for the 

generation of improved IDA or ABA based transduction mechanisms. This addition could lead to the 

generation of more complex and informative output signals, providing richer data for the pattern 

recognition of analytes.  

High-throughput measurements and automation of experimental workflow 

 The design of the droplet microfluidic platform has proven effective in enhancing the 

throughput of sensor array analyses. However, further advancements in the merging techniques are 

essential to ensure the reliability and high- throughput of this platform for analysis of large cohort of 

samples by the sensor array with minimal manual intervention. The integration of the microfluidic 

chip along the capillary could be the way to achieve this; however extensive testing and optimization 

are necessary to identify the most suitable materials for the fabrication of these chips. This is essential 

to ensure consistent merging and prevention of issues such as droplet splitting, air bubble formation, 

and oil leakage, while still being compatible with the sensor elements and analytes. 

Application to clinical diagnosis 

Although an initial proof-of-concept has been demonstrated for the disease models of 

phenylketonuria and preeclampsia using a small sample set, testing with larger cohorts is still 
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necessary. This will allow for a thorough evaluation of the reproducibility and robustness of the 

developed sensor array, and aid in identifying relevant classifiers for efficient pattern recognition. 

Such extensive testing is crucial for translating this sensing strategy into a viable clinical diagnostic 

tool. The clinical sample cohort used for the disease model of preeclampsia (APHERESE) consists of 

samples from 241 patients with 150 healthy and 91 preeclamptic patients, of whom 30% presented 

with very severe form of the disease. High-throughput analysis of this complete cohort on the 

developed analytical platforms will provide a robust approach for studying such a large and well-

documented cohort of preeclamptic samples. With thorough supervised and unsupervised data 

analysis, there is a high likelihood of developing a reliable classifier not only for differentiation 

between preeclamptic and healthy patients but with access to clinical and biological patient data and 

disease outcomes, predictions between the severe and mild forms of the preeclamptic samples also be 

evaluated. Thus, this powerful methodology, with appropriate adaptation, holds significant potential 

for addressing a range of clinical challenges associated with various multifactorial diseases. 

8.4. Conclusions and future directions 

Array-based sensing methods have shown significant promise in addressing various sensing 

challenges by using collections of semi-selective receptors combined with chemometric analysis. 

They are particularly effective in discriminating between structurally similar analytes and complex 

analyte mixtures without needing to fully characterize each component, which is especially 

advantageous for detecting mixtures that are difficult or impossible to analyse comprehensively, such 

as explosive mixtures or bacterial metabolites. This capability and predictive power makes array-

based sensing a powerful alternative to the traditional, highly specific techniques. However, to enable 

broader applications beyond controlled environments, several challenges must be addressed moving 

forward. 

 Unlike the mammalian olfactory system, which provides qualitative information about odours 

and is less dependent on concentration, many artificial arrays exhibit significant concentration 

dependence. This can lead to misidentification of analytes if the system is not trained across a range 

of concentrations. Moreover, if the response pattern of the array is not sufficiently unique for each 

analyte within the desired concentration range, or if there is even slight changes in the composition of 

the mixture—such as the addition of new components or unanticipated interferents — this can 

confuse the system and compromise the accuracy of the assay. 

 To enhance the reliability and applicability of array-based sensing systems, several conditions 

must be fulfilled. The responses of analytes to the array must be reproducible, and the system must be 

able to match responses from unknown analytes to those in the training set accurately. This requires 

that the sensor array possesses sufficient semi-selectivity for the range of analytes of interest. If the 

sensors are too non-selective, the data will have low dimensionality, limiting the system's ability to 
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discriminate between different analytes effectively. Therefore, gaining a deeper understanding of 

sensor principles through multivariate analysis will offer valuable feedback for probe design, aiding in 

the development of more effective cross-reactive probes. 

 

 Proper training of the array-based system is crucial for its success. The system can only 

identify analytes based on the information provided during training. Therefore by combining this 

library with high-throughput and automated measurement systems, the amount of information can be 

considerably scaled up, potentially reaching the so-called big data level. Advanced analysis of big 

data using sophisticated machine learning, deep learning, and artificial intelligence technologies will 

allow pattern-recognition-based sensors to accurately identify challenging analytes with high 

complexity or only subtle differences, to quantify and predict unknown analytes. 

In summary, while array-based sensing has made significant strides in various sensing 

applications, further work is needed to address the challenges of predictive power, concentration 

dependence, and the identification of complex mixtures. Future research should aim to Future 

research should aim to optimize training processes, improve the reproducibility and selectivity of 

sensor arrays, and develop strategies to handle interferents effectively. These advancements will be 

crucial for the practical deployment of array-based sensing technologies in real-world settings.
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Chapter 2 

Appendix 1: Characterization of TPA derivatives 

1H NMR spectra of 2 in CDCl3 (300 MHz):  

 

 

 

 

 

 

 

 

 

13C APT NMR spectra of 2 in CDCl3 (75 MHz): 
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LC-MS of 2 

 

1
H NMR spectra of Acrin_3Py in CDCl3 (300 MHz): 
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13C APT NMR spectra of Acrin-3Py in CDCl3 (75 MHz): 

 

 

 

 

 

 

 

 

 

LC-MS of Acrin-3Py 
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13C APT 
1H NMR spectra of Acrin-3Py in CDCl3 (75 MHz): 

 

LC-MS of Acrin-3Py 

 

 

 

 

 

 

 

 

 

1H NMR spectra of Acri-3Py in DMSO-d6 (300 MHz): 
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13C APT NMR spectra of Acri-3Py in DMSO-d6 (75 MHz): 
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LC-MS of Acri-3Py 

 

1H NMR spectra of 4 in CDCl3 (300 MHz): 
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13C NMR spectra of 4 in CDCl3 (75 MHz): 

 

 

 

 

 

 

 

 

 

LC-MS of 4 
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1H NMR spectra of TPn-3DVPy in CDCl3 (300 MHz): 

 

13C NMR spectra of TPn-3DVPy in CDCl3 (75 MHz):  
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LC-MS of TPn-3DVPy 

 

 

 

 

 

 

 

 

 

1H NMR spectra of TP-3DVPy in DMSO-d6 (300 MHz): 
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13C APT NMR spectra of TP-3DVPy in DMSO-d6 (75 MHz):  

 

LC-MS of TP-3DVPy 
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1H NMR spectra of 6 in CDCl3 (300 MHz): 

 

 

 

 

 

 

 

 

 

13C APT NMR spectra of 6 in CDCl3 (75 MHz): 
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LC-MS of 6 

 

1H NMR spectra of TPn-3DVPy in CDCl3 (300 MHz) 
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13C APT NMR spectra of TPn-3DVPy in CDCl3 (75 MHz): 

 

 

 

 

 

 

 

 

 

LC-MS of TPn-3DVPy: 
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1H NMR spectra of TP-2DVPy in DMSO-d6 (300 MHz):  

 

 

 

 

 

 

 

 

 

13C APT NMR spectra of TP-2DVPy in DMSO-d6 (75 MHz): 

 

 

 

 

 

 

 

 

 

LC-MS of TP-2DVPy: 
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Chapter 4 

Appendix 2: R-code for analysis of 14 proteins in PBS, serum and treated 

serum 
 

# Repl.by.Proteins is a list with 4 components namely â..6â, â..8â, â..14â, â..18â�™ 

#  

# Each component, for example Repl.by.Proteins[[â..6â..]], is a table n x 13 x 17  

# It has for colnames : Â« MeasA.WavelengthEms Â», Â« B Â», Â« C Â», Â« D Â», Â« E Â», Â« F Â», Â« G Â», Â« 

B-CB7 Â», Â« C-CB7 Â», Â« D-CB7 Â», Â« E-CB7 Â», Â« F-CB7 Â», Â« G-CB7 Â»  

# 

# MeasA.WavelengthEms is the wavelength and over columns measures the signal intensity at a given 

wavelength 

#  

# It provides 6 replicates ('A','B','C','D','E','F','G') under two conditions (with or without CB7) for the     

17 proteins of interest 

# 

# Finally, Repl.by.Proteins provides 6 replicates with or without CB7 for 4 components (â..6,â..8â,   

â..4â,â..18â) that is 6 replicates for 2 x 4 = 8 conditions 

 

library(abind) 

library(stringr) 

 

input.dir = '../Fluorescence Data_TPcomps_27_01_2022/' 

ncol.1 = 11 

ncol.2 = 10 

sub.dirs = paste0(input.dir,c('TP 6','TP 9','TP 14','TP 18')) 

 

proteins_ctrl = c('Peroxidase','Pepsin','Diastase','Amylase','Lipase','Lysozymme','g-Glogulin','Myoglobin', 

                 'Phosphatase','Ctrl.1','Pancreatin','Catalase','Chymotrypsin','BSA','Trypsin','Kidrolase', 

                 'Fetuin','Dispase','Ctrl.2') 

 

use.serum = FALSE 

if (use.serum) sub.dirs = paste0(sub.dirs,'_Serum') 

 

read_exp = function(name,use.CB7=F) { 

  if (!use.CB7) name = str_remove(name,'_CB7') 

  tmp = read.csv(name,skip=8,sep=',',header=T) 

  stop = which(grepl('Basic',tmp$Well)) 

  tmp = tmp[-(stop:dim(tmp)[1]),] 

  smp = tapply(tmp$Well,tmp$Well,function(w) 

subset(tmp,tmp$Well==w)[,c("MeasA.WavelengthEms","MeasA.Result")]) 

   

  all_wells = str_sub(names(smp),1,1) 

  wells = unique(all_wells) 

  all.proteins = NULL 

  for (well in wells) { 

    tmp.protein = NULL 

    for(i in which(all_wells==well)) 

      tmp.protein = abind(tmp.protein,smp[[i]],along=3) 

    if (is.null(all.proteins)) { 

      all.proteins = tmp.protein 

    } else all.proteins = abind(all.proteins,tmp.protein[,-1,,drop=F],along=2) 

  } 

  dimnames(all.proteins)[[2]] = c('Wavelength','B','C','D','E','F','G') 

  # print(head(all.proteins)) 

  all.proteins = apply(all.proteins,1:3,as.numeric) 

   

  all.proteins 

}  

 

All = NULL 

for (sub.dir in sub.dirs) { 

  files = list.files(sub.dir,pattern='*_CB7.csv',recursive=T,full.names=T) 

  name = str_split(files,'/')[[1]][3] 

  print(name) 

  # read the good lines in name 

  All[[name]] = abind(read_exp(files[1]),read_exp(files[2]),along=3) 

  All[[paste0(name,'_CB7')]] = abind(read_exp(files[1],use.CB7=T),read_exp(files[2],use.CB7=T),along=3) 

  if (dim(All[[paste0(name,'_CB7')]])[3]==17) # the controls in CB7 are missing, thanks to Monika 

    All[[paste0(name,'_CB7')]] = abind(All[[paste0(name,'_CB7')]][,,1:9],All[[name]][,,10,drop=F], 

                                       

All[[paste0(name,'_CB7')]][,,10:17],All[[name]][,,19,drop=F],along=3) 

} 

 

for (i in 1:length(All)) dimnames(All[[i]])[[3]] = proteins_ctrl 

 

normalized.with.controls = function(TP) { 

  TP[,2:7,1:9] = TP[,2:7,1:9] - apply(TP[,2:7,10,drop=F],1,mean) 

  TP[,2:7,11:18] = TP[,2:7,11:18] - apply(TP[,2:7,19,drop=F],2,mean) 

  TP = TP[,,-c(10,19)] 

} 
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All.norm = lapply(All,normalized.with.controls) 

 

prepare.table =function(TP.name) { 

  TP = All.norm[[TP.name]] 

  out = NULL 

  for (i in 1:dim(TP)[3]) { 

    new = t(TP[,-1,i]) 

    rownames(new) = rep(dimnames(TP)[[3]][i],l=dim(new)[1]) 

    out = rbind(out, new) 

  } 

  colnames(out) = paste(str_remove(TP.name,' '),TP[,1,1]) 

  out 

} 

 

All.in.table = NULL 

for (name in names(All.norm)) All.in.table = cbind(All.in.table,prepare.table(name)) 

 

 

save(All,All.norm,All.in.table,file='Repl-by-Proteins.rda') 

 

df=data.frame(id=c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8,8,

8,8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,14,14,

14,15,15,15,15,15,15,16,16,16,16,16,16,17,17,17,17,17,17), 

 

protname=c("peroxidase","peroxidase","peroxidase","peroxidase","peroxidase","peroxidase","pepsin","pepsin",

"pepsin","pepsin","pepsin","pepsin","diastase","diastase","diastase","diastase","diastase","diastase","amyl

ase","amylase","amylase","amylase","amylase","amylase","lipase","lipase","lipase","lipase","lipase","lipase

","lysozyme","lysozyme","lysozyme","lysozyme","lysozyme","lysozyme","globulin","globulin","globulin","globu

lin","globulin","globulin","myoglobin","myoglobin","myoglobin","myoglobin","myoglobin","myoglobin","phospha

tase","phosphatase","phosphatase","phosphatase","phosphatase","phosphatase","pancreatin","pancreatin","panc

reatin","pancreatin","pancreatin","pancreatin","catalase","catalase","catalase","catalase","catalase","cata

lase","chymotrypsin","chymotrypsin","chymotrypsin","chymotrypsin","chymotrypsin","chymotrypsin","BSA","BSA”

,"BSA","BSA","BSA","BSA","trypsin","trypsin","trypsin","trypsin","trypsin","trypsin","kidrolase","kidrolase

","kidrolase","kidrolase","kidrolase","kidrolase","fetuin","fetuin","fetuin","fetuin","fetuin","fetuin","di

spase","dispase","dispase","dispase","dispase","dispase")) 

 

A <- cbind(df, All.in.table) 

A <- A[,-1] 

 

save(A, All,All.norm,All.in.table,file='Repl-by-Proteins.rda') 

 

########################################################################################################### 

 

#### PBS, serum, pretreated serum and 14 proteins #### 

 

load("C:/Users/natha/Desktop/ANR PEfingerprint/shared datas/TPA paper/R-files/Repl-by-Proteins.rda") 

 

A_16 = A[-(37:42),] 

A_14 = A_16[-(73:84),] 

 

save(A_14,file='Repl-by-14Proteins.rda') 

 

library("readxl") 

library('ggplot2') 

library('randomForest') 

library('MASS') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

 

ind.var = grep('TP',names(A_14))  

 

#### RANDOM FORESTS OOB whole spectra #### 

 

prot.forest = randomForest(A_14[ind.var], 

as.factor(A_14$protname),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

########################################################################################################### 

 

#### create sub folder with selected wavelengths  

 

####~10(13) & 5(26) wavelengths for each TP/ TP + CB combination 

 

 

protname = A_14[,1] 

subset_col = seq(2, ncol(A_14), by=26) 

sub_wl = cbind(protname, A_14[,subset_col]) 

 

ind.var = grep('TP',names(sub_wl)) 
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#####LDA#### 

 

whole.data=as.data.frame(sub_wl) 

 

n.whole.data=dim(whole.data)[1] 

n.train=round(0.7*n.whole.data) 

 

ind=sample(n.whole.data,n.train,replace = FALSE) 

n.s8=dim(sub_wl)[1] 

 

 

library(MASS) 

model.lda = lda(sub_wl[2:41], as.factor(whole.data$protname),CV=TRUE) # using leave-one-out cross-

validation 

mean(model.lda$class!=whole.data$protname) 

model.lda 

 

#define data to plot 

lda_plot <- cbind(whole.data[2:41], predict(model.lda)$x) 

 

#create plot 

ggplot(lda_plot, aes(LD1, LD2,color=whole.data$protname)) +  geom_point(size = 3) + 

  stat_ellipse(level = 0.95, geom = "polygon", alpha = 0.2) + 

  labs(x = "LDA Score 1", y = "LDA Score 2", color = "Group") + 

  theme_bw() 

 

#### train and test#### 

set.seed(31) 

 

error.rates.lda=replicate(1000,{ 

   

  Ind.train=sample(n.whole.data,n.train,replace=F) 

  model.lda.train=lda(whole.data[,2:41],as.factor(whole.data$protname),subset=Ind.train)   

  mean(predict(model.lda.train,whole.data[-Ind.train,2:41])$class!=whole.data$protname[-Ind.train]) 

   

}) 

mean(error.rates.lda) 

 

#### RANDOM FORESTS OOB for 10/5 wavelengths #### 

 

library("readxl") 

library('ggplot2') 

library('randomForest') 

library('MASS') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

 

prot.forest = randomForest(sub_wl[ind.var], 

as.factor(sub_wl$protname),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

the.good.var = names(sort(importance(prot.forest)[,'MeanDecreaseAccuracy'],decreasing = T)[1:16]) 

mini.foret = randomForest(sub_wl[,the.good.var],as.factor(sub_wl$protname),ntree=10000,importance=TRUE) 

mini.foret 

varImpPlot(mini.foret) 

 

 

####write output CSV for Systat with 5 WL#### 

 

write.csv (sub_wl, "5_wl_PBS.csv", row.names = FALSE) library('readxl') 
 

Appendix 3: R-code for analysis of different concentrations for 

Phenylketonuria model 

 

library('writexl') 

library('ggplot2') 

library('e1071') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

library('randomForest') 

library('FactoMineR') 
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library('plotly') 

library('MASS') 

library('plot3D') 

library('reshape2') 

library('dplyr') 

library('tidyr') 

 

 

TP_Phen = read_excel("Phen_discrimination_I_Io.xlsx") 

colnames(TP_Phen)[1] <- "conc" 

TP_Phen = TP_Phen[-c(55:108),] 

 

ind.var = grep('TP',names(TP_Phen))  

 

#### RANDOM FORESTS OOB #### 

 

prot.forest = randomForest(TP_Phen[ind.var], 

as.factor(TP_Phen$conc),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

########################################################################################################### 

#### create sub folder with selected wavelengths  

 

####~10(13) & 5(26) wavelengths for each TP/ TP + CB combination 

 

conc = TP_Phen[,1] 

subset_col = seq(2, ncol(TP_Phen), by=26) 

sub_wl = cbind(conc, TP_Phen[,subset_col]) 

 

ind.var = grep('TP',names(sub_wl)) 

 

#####LDA########## 

whole.data=as.data.frame(sub_wl) 

 

n.whole.data=dim(whole.data)[1] 

n.train=round(0.7*n.whole.data) 

 

ind=sample(n.whole.data,n.train,replace = FALSE) 

n.s8=dim(sub_wl)[1] 

 

 

library(MASS) 

model.lda = lda(sub_wl[2:21], as.factor(whole.data$conc),CV=TRUE) # using leave-one-out cross-validation 

mean(model.lda$class!=whole.data$conc) 

model.lda 

 

#### train and test #### 

 

set.seed(31) 

error.rates.lda=replicate(1000,{ 

   

  Ind.train=sample(n.whole.data,n.train,replace=F) 

  model.lda.train=lda(whole.data[,2:21],as.factor(whole.data$conc),subset=Ind.train)   

  mean(predict(model.lda.train,whole.data[-Ind.train,2:21])$class!=whole.data$conc[-Ind.train]) 

   

}) 

mean(error.rates.lda) 

 

#### RANDOM FORESTS OOB for 10/5 wavelengths #### 

 

library("readxl") 

library('ggplot2') 

library('randomForest') 

library('MASS') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

 

prot.forest = randomForest(sub_wl[ind.var], 

as.factor(sub_wl$conc),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

the.good.var = names(sort(importance(prot.forest)[,'MeanDecreaseAccuracy'],decreasing = T)[1:16]) 

mini.foret = randomForest(sub_wl[,the.good.var],as.factor(sub_wl$conc),ntree=10000,importance=TRUE) 

mini.foret 

varImpPlot(mini.foret) 

 

 

#####write output CSV for Systat with 5 WL#### 
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write.csv(sub_wl, "5_wl_Phen_5wl_I_Io.csv", row.names = FALSE) 

 

########################################################################################################### 

#### LDA to identify predicted vs identified class #### 

 

####train set 

 

Phen_Train = read_excel("Phen_Train_I_Io.xlsx") 

colnames(Phen_Train)[1] <- "conc" 

ind.var = grep('TP',names(Phen_Train))  

 

conc = Phen_Train[,1] 

subset_col = seq(2, ncol(Phen_Train), by=26) 

sub_wl = cbind(conc, Phen_Train[,subset_col]) 

ind.var = grep('TP',names(sub_wl)) 

 

whole.data=as.data.frame(sub_wl) 

n.whole.data=dim(whole.data)[1] 

n.train=round(0.7*n.whole.data) 

ind=sample(n.whole.data,n.train,replace = FALSE) 

n.s8=dim(sub_wl)[1] 

 

####Test set 

 

Phen_Test = read_excel("Phen_Test_I_Io.xlsx") 

colnames(Phen_Test)[1] <- "conc" 

ind.var = grep('TP',names(Phen_Test))  

 

conc = Phen_Test[,1] 

subset_col = seq(2, ncol(Phen_Test), by=26) 

sub_wlt = cbind(conc, Phen_Test[,subset_col]) 

ind.var = grep('TP',names(sub_wlt)) 

 

####train and test aet prediction 

 

set.seed(51) 

error.rates.lda <- replicate(1000, { 

  ind.train <- sample(nrow(whole.data), size = nrow(whole.data), replace = FALSE) 

  ind.test <- sample(nrow(sub_wlt), size = nrow(sub_wlt), replace = FALSE) 

   

  model.lda.train <- lda(whole.data[ind.train, 2:21], as.factor(whole.data$conc[ind.train])) 

  test_predictions <- predict(model.lda.train, newdata = sub_wlt[ind.test, 2:21]) 

   

  mean(test_predictions$class != sub_wlt$conc[ind.test]) 

}) 

 

mean_test_error <- mean(error.rates.lda) 

cat("Mean Test Error:", mean_test_error, "\n") 

conf_matrix <- table(Actual = sub_wlt$conc[ind.test], Predicted = test_predictions$class) 

print(conf_matrix) 

 

####prediction confusion matrix 

 

ind.train <- sample(nrow(whole.data), size = nrow(whole.data), replace = FALSE) 

ind.test <- sample(nrow(sub_wlt), size = nrow(sub_wlt), replace = FALSE) 

 

model.lda.train <- lda(whole.data[ind.train, 2:21], as.factor(whole.data$conc[ind.train])) 

test_predictions <- predict(model.lda.train, newdata = sub_wlt[ind.test, 2:21]) 

 

mean(test_predictions$class != sub_wlt$conc[ind.test]) 

 

conf_matrix <- table(Actual = sub_wlt$conc[ind.test], Predicted = test_predictions$class) 

print(conf_matrix) 

 

 

 

Appendix 4: R-code for analysis of different concentrations of 

Preeclampsia samples 

library('readxl') 

library('writexl') 

library('ggplot2') 

library('e1071') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

library('randomForest') 

library('FactoMineR') 

library('plotly') 

library('MASS') 

library('plot3D') 
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library('reshape2') 

library('dplyr') 

library('tidyr') 

 

TP_PE = read_excel("PE_nonPE_data_TP 6,9,14,18_wl selection.xlsx", sheet=1) 

ind.var = grep('w',names(TP_PE))  

 

#### RANDOM FORESTS OOB #### 

 

prot.forest = randomForest(TP_PE[ind.var], 

as.factor(TP_PE$ID),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

########################################################################################################### 

#### create sub folder with selected wavelengths  

 

####~10(13) & 5(26) wavelengths for each TP/ TP + CB combination 

 

 ID = TP_PE[,1] 

subset_col = seq(2, ncol(TP_PE), by=26) 

sub_wl = cbind(ID, TP_PE[,subset_col]) 

 

ind.var = grep('w',names(sub_wl)) 

 

####LDA#### 

 

whole.data=as.data.frame(sub_wl) 

 

n.whole.data=dim(whole.data)[1] 

n.train=round(0.7*n.whole.data) 

 

ind=sample(n.whole.data,n.train,replace = FALSE) 

n.s8=dim(sub_wl)[1] 

 

 

library(MASS) 

model.lda = lda(sub_wl[2:33], as.factor(whole.data$ID),CV=TRUE) # using leave-one-out cross-validation 

mean(model.lda$class!=whole.data$ID) 

model.lda 

 

#### train and test#### 

 

set.seed(31) 

error.rates.lda=replicate(1000,{ 

   

  Ind.train=sample(n.whole.data,n.train,replace=F) 

  model.lda.train=lda(whole.data[,2:33],as.factor(whole.data$ID),subset=Ind.train)   

  mean(predict(model.lda.train,whole.data[-Ind.train,2:33])$class!=whole.data$ID[-Ind.train]) 

   

}) 

mean(error.rates.lda) 

 

#### RANDOM FORESTS OOB for 10/5 wavelengths #### 

 

library("readxl") 

library('ggplot2') 

library('randomForest') 

library('MASS') 

library('caTools') 

library('caret') 

library('factoextra') 

library('tidyverse') 

 

prot.forest = randomForest(sub_wl[ind.var], 

as.factor(sub_wl$ID),ntree=20000,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = TRUE) 

prot.forest 

importance(prot.forest) 

plot(prot.forest) 

varImpPlot(prot.forest) 

 

the.good.var = names(sort(importance(prot.forest)[,'MeanDecreaseAccuracy'],decreasing = T)[1:16]) 

mini.foret = randomForest(sub_wl[,the.good.var],as.factor(sub_wl$ID),ntree=10000,importance=TRUE) 

mini.foret 

  varImpPlot(mini.foret) 

 

####write output CSV for Systat with 5 WL#### 

 

  write.csv(sub_wl, "TP_PE_nonPE_16wl_corrected.csv", row.names = FALSE) 
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Chapter 5 

Appendix 5: R-code for analysis of proteins on droplet microfluidics 

platform 

library(ggplot2) 

library(randomForest) 

library(e1071) 

library(caTools) 

library(caret) 

 

train = read_xlsx("../Data/Train set_TP_CB_prot_1_2.xlsx") 

test=read_xlsx('../Data/Test set_TP_CB_prot_1_2.xlsx') 

test =as.data.frame(test) 

train =as.data.frame(train) 

 

n=dim(train)[1] 

ind=sample(n,n,replace = FALSE) 

 

colnames(train)=c("id","tpsix","tpsixcb","tpnine","tpninecb","tpfourteen","tpfourteencb", "tpeighteen", 

"tpeighteencb") 

colnames(test)=c("id","tpsix","tpsixcb","tpnine","tpninecb","tpfourteen","tpfourteencb", "tpeighteen", 

"tpeighteencb") 

 

train[2:9]  <- lapply(train[2:9], as.numeric) 

test[2:9] <- lapply(test[2:9], as.numeric) 

train[1]  <- lapply(train[1], as.factor) 

test[1] <- lapply(test[1], as.factor) 

 

#### RANDOM FORESTS #### 

 

library(randomForest) 

 

L=randomForest(as.factor(train$id)~.,data=train[-

1],ntree=1500,mtry=2,replace=FALSE,importance=TRUE,proximity=TRUE, do.trace = F) 

L 

predict(L,newdata=test[-1]) 

mean(as.factor(predict(L,newdata=test[-1])!=test$id)) 

mean((Id.test.predict)!=as.factor(test$id)) 

 

#### LDA#### 

 

library(MASS) 

 

model.lda = lda(train[2:9],as.factor(train$id),CV=TRUE) # using leave-one-out cross-validation 

mean(model.lda$class!=train$id) 

 

set.seed(31) 

error.rates.lda=replicate(1000,{ 

   

  Ind.train=sample(n,n,replace=F) 

  model.lda.train=lda(train[,2:9],as.factor(train$id),subset=Ind.train)   

  mean(predict(model.lda.train,test[,2:9])$class!=test$id) 

   

}) 

 

mean(error.rates.lda) 

 

model.lda.train=lda(train[,2:9],as.factor(train$id))   

 

 

model.lda.test=predict(model.lda.train,test[-1]) 
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Appendix 6: Protocol for sensing of protein on 384-wellplate using the 

pipetting protocol 

Initial test condition:  

2 TPA TP derivatives  

1 Cucurbit[7]uril CB[7] derivative  

12 analytes A  (11 proteins + 1 PBS control) 

 

Final conditions in the well of a 384-well fluorescent plate:  

2nd step: V= 32.5 μL, TP 20 μL + 10 μL Water or 10 μL CB[7] + 2.5 μL analyte A  

Read the final fluorescence  

Consumables used  

1 micronic tube plate (V=1.4 ml per tube)  

1 96-well conical-bottom plate (GREINER 651201)  

1 384-well plate for fluorescence  

Boxes of 20μL tips  

Boxes of 200 μL tips for 384-well plates  

 

1) Plate contents Reagents and Analytes  

 

REAGENT plate (micronic 96-well plate) 

 1 2 3 4 5 6 7 8 9 10 11 12 

A TP1 TP2 Water CB[7]         

B TP1 TP2 Water CB[7]         

C TP1 TP2 Water CB[7]         

D TP1 TP2 Water CB[7]         

E TP1 TP2 Water CB[7]         

F TP1 TP2 Water CB[7]         

G TP1 TP2 Water CB[7]         

H TP1 TP2 Water CB[7]         

 

TP well filled with 650 μL of TPA derivative solution = total volume 650*8 = 5.2 mL  

Water well filled with 500 μL of water = total volume 500*8= 4 mL  

CB[7] well filled with 500 μL of CB[7] = a total volume of 500*8= 4 mL  
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ANALYTICS plate (96-well conical-bottom plate)  

Each well is filled with a solution of at least 30 μL of analyte A. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

B A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

C A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

D A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

E A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

F A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

G A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

H A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

 

2) Positioning the plates on the robot  
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3) Program  

Add 20 μL TP1 to the final plate: Take 200μL then dispense 20 μL (10 times) and repeat the 

operation 2 times following the plate plan below. Return excess TP1 to the micronic plate and discard 

the tips in the waste garbage can. 

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

 

Add 20 μL TP2 to the final plate: Take 200μL from each tip, then dispense 20 μL per well (10 times) 

and repeat the operation 2 times, following the plate plan below. Return excess TP1 to the micronic 

plate and discard the tips. 
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Add 10 μL of water to the final plate: Take 200 μL per tip then dispense 10 μL per well into the TP 

solutions according to the plate plan below then dispose of the tips in the waste garbage can with the 

excess water + Take 40 μL per tip then dispense 10 μL per well into the TP solutions then dispose of 

the tips in the waste garbage can with the excess water. 

Note: addition to TP solutions preferred, as the addition above leaves drops on the tip of the tips and 

so the 10 μL was not added. 
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Add 10 μL of CB[7] to the final plate: Take 200 μL per tip then dispense 10 μL per well into the TP 

solutions then dispose of the tips in the garbage can with the excess water + Take 40 μL per tip then 

dispense 10 μL per well into the TP solutions then dispose of the tips in the garbage can with the 

excess water  

Note: addition to TP solutions preferred, as the addition above leaves drops on the tip of the tips and 

so the 10 μL was not added. 

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

 

Add 2.5 μL of ANALYZERS to the final plate: Take 2.5 μL from each tip, then dispense 2.5 μL per 

well into the previous solutions and dispose of the tips in the waste garbage can. Change tips for each 

column 
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

 

Note: Eliminate the vacuum-dispense mixing step, as this leaves a few drops on the tips when the 

plates are lifted. The plates will now need to be shaken on an orbital shaker before fluorescence 

reading.  

Run time: approx. 38 min  

4) Final plate layout for fluorescence measurements 

Schematic illustration of 384-well plate layout prepared using the pipetting robot for the 

discrimination of 11 proteins spiked in 1X PBS. 
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Detailed 384-well plate layout prepared using the pipetting robot:  
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Chapter 6 

Appendix 7: R-code for PCA analysis of 8 analytes with 11-channel sensor array 

library (Facto Mine R)  

library (factoextra)  

library (caret) 

library (glmnet) 

library (dplyr)  

library ("corrplot") 

 

data = read.csv2("PCA_ 5 -0806.csv ", header = TRUE, strings As Factors = TRUE) 

data = data [c(1:24),c(2:12)] # to extract variables  

group = data [c(1:24),1] 

group 

 

# list of functions 

fviz _eig(res.pca , addlabels = TRUE , ylim = c(0,100))# contribution to dimension 

fviz _cos2(res.pca , choice = "var", axes = 1:2) # quality of representation 

 

var = get_pca_var (res.pca) 

head(var$contrib , 11) # Contribution in number 

corrplot (var$cos2, is.corr = FALSE)# quality representation for each dimension 

corrplot (var$contrib, is.corr = FALSE) # contribution for each dimension 

 

 

Appendix 8: R-code for LDA analysis of 8 analytes with 11-channel sensor 

array 

library (' e1071 ') 

library (' caret ') 

library (' factoextra ') 

library (' tidyverse ') 

library (' random Forest')  

library (' Facto Mine R')  

library (' plotly ') 

library (' MASS ') 

library (' plot 3 D ') 

library (' car ') 

 

df <- read.csv2("PCA_05 -0806.csv", header = TRUE, strings As Factors = TRUE) 

 

# Extract group labels and variable data 

group_labels <- rep (1:8, each = 3) # Assume 8 groups, each represented by 3 lines  

variables <- df [1:24, c(2:12)] 

 

# Initialize vectors to store predicted classes and error rates “leave one out”  

classes_predites <- vector("character", length(group_labels)) 

rate_errors <- numeric (length(group_labels)) 

rate_errors_groups <- numeric (8) # Initialize a vector to store the error rate for each group 

 

# Perform cross validation leave one out  

 

for (i in 1:length (group_labels)) { 

# Omit i th sample for test 

 

data_training <- variables [-i,]  

labels_training <- group_labels [-i]  

sample_test <- variables [i,] 

 

# Train the LDA model 

model_lda <- lda (data_training, tags_training) 

 

# Predict test sample class 

class_predict <- predict (modele_lda , echantillon_test)$class 

 

# Store the predicted class and calculate the error rate  

classes_predicted [i] <- class_predicted 

rate_errors [i] <- class_predicted ! = group_labels [i] 

 

# Calculate the error rate for each group  

if (classe_ predite ! = group_labels [i]) { 

   rate_errors_groups [group_labels [i]] <- rate_errors_groups[group_labels [i]] + 1 

} 

} 

 

# Calculate the overall leave - one - out error rate 

rate_error_leave_one_out <- mean (rate_error) 

 

# Calculate the error rate for each group  
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rate_errors_ groups <- rate_errors_groups / 3 

 

# Display predicted classes and error rate leave one out  

cat ("Predicted classes :n") 

print (classes_predicted) 

cat ("Leave-One-Out Error Rate:", rate_error_leave_one _out , "n") 

 

# Display the error rate for each group 

cat ("Error rate per group :n") 

for (i in 1:8) { 

cat ("Group", i, ": ", rate_errors_groups [i], "\n") 

} 

 

# ###### GRAPH ######### 

# Perform LDA on the entire dataset  

modele_lda_tout <- lda (variables, group_labels) 

 

# Get LDA scores for all samples  

scores_lda <- predict (modele_lda_tout)$x 

 

# Create a data frame with LDA scores and group labels 

data <- data.frame (LDA1 = scores_lda [,1] , LDA2 = scores_lda [,2] , LDA3 = scores_lda [,3] , Group = 

factor (group_labels)) 

 

# Get group names from group labels 

group <- df[c (1 : 24) ,1] 

names_groups <- levels (factor (group)) 

names_groups 

 

palette_personnalisee <- c(" # 0000 FF", "# FF 0000 ", " #00 FF00 ", "# FFA 500 ", "# FF 00 FF ", " #00 

FFFF ", "# FFFF 00 ", " #800080 ")  

 

## Create a graph 

ggplot(data, aes(x = LDA1,y = LDA2,color = Group)) + 

geom_point (size=3) + 

stat_ellipse (level = 0.95, geom = " polygon ", alpha = 0.2) +  

labs (x = " Score LDA 1 ", y = " Score LDA 2 ", color = " Group ") + 

scale_color_manual (values = palette_personnalisee , labels = names_groups) 

+ theme _bw () 

 

# ####### GRAPH 3 D ######## 

# Create an interactive 3D graph from plotly 

plot_ly(data, x =~LDA1, y =~LDA2, z =~LDA3, color = ~ Group, colors = palette_personnalisee) %>% 

add_markers (size = 4, opacity = 0.8 , text = ~ Group) % >% 

layout(scene = list (xaxis = list (title = "Score LDA 1"), 

                             yaxis = list (title = "Score LDA 2"),  

                             zaxis = list (title = "Score LDA 3")), 

margin = list (l = 0 , r = 0 , b = 0 , t = 0) , 

legend = list (x = 1 , y = 0.8)) % >% 

config (display Mode Bar = T) 

 

Appendix 9: Optimization routine using PCA and LDA for biomolecule 

discrimination with sensors.  

Example of discrimination of 8 biomolecules with 12 sensors 

rm(list =ls ()) 

 

# Load necessary libraries  

library (MASS) # For LDA  

library (Facto Mine R) # For PCA 

library (factoextra) # To visualize PCA results  

 

# Read data 

df <- read.csv2 (" Shift for RT.csv ", header = TRUE , stringsAsFactors = TRUE)  

 

#Extract group labels and variable data 

group _ labels <- rep (1:8 , each = 4) # Assuming 8 groups, each represented by 4 lines 

variables <- df[c(1:32) , c(2:12)] # Assuming that the variables are in columns 2 to 12 

 

# Define a function for LDA analysis with leave - one - out validation  

lda _analysis <- function (data, labels) { 

predicted_classes <- vector ("character", length(labels)) # Initialize vector to store predicted 

classes 

 

# Perform cross validation leave - one - out  

for (i in 1:length (labels)) { 

 

# Omit the i-th sample for tests  
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training_data <- data [-i,] 

training_labels <- labels [-i]  

test_sample <- data [i,, drop = FALSE] 

 

# Train the LDA model 

lda _model <- lda (training_data, training_labels) 

# Predict the class of the test sample  

predicted_class <- predict (lda_model, test_sample$class 

 

# Store predicted class  

predicted_classes [i] <- predicted_class 

} 

 

# Calculate the error rate 

error_rate <- mean(predicted_classes ! = labels) 

 

return(list(predicted_classes = predicted_classes, error_rate = error_rate)) 

} 

 

# Define a function for PCA analysis  

pca _analysis <- function ( data , labels ) { 

res.pca <- PCA (data, scale.unit = TRUE, graph = FALSE) # Perform PCA  

coords <-as.data.frame ( res.pca$ind$coord) 

pca _data <- cbind (coords, group = labels) # Combining PCA results with group labels 

return(list(pca = res.pca, pca_data = pca_data)) 

} 

 
# Perform initial LDA analysis 

lda_result <- lda_analysis (variables, group_labels)  

best_error_rate <- lda_result$error_rate 

best_sensor_array <- colnames (variables) 

 

# Perform initial PCA analysis 

pca_result <- pca_analysis (variables, group_labels) 

var <- get_pca_var ( pca_result$pca ) # Get information on PCA variables 

fviz_eig (pca_result $pca, addlabels = TRUE, ylim = c(0,100)) # Plot eigenvalues 

fviz_cos2 (pca_result$pca , choice = "var", axes = 1:2)  

 

# Iterate on different numbers of sensors to remove 

for (num_sensors _to_remove in 1:4) { 

 

#Perform LDA analysis with the current number of sensors to be deleted 

variables_subset <- data.frame (variables, check.names = FALSE) 

best_error_rate_subset <- Inf 

best_sensor_array_subset <- colnames (variables_subset) 

 

while (ncol (variables_subset) > num_sensors _to_ remove) { 

# Obtain sensors with the lowest contribution to dimensions 

var_contrib <- var$contrib [, 1] 

min_contrib_indices <- order (var_contrib) [1: num_sensors _to_ remove] 

sensors _to_ remove <- colnames (variables_subset)[min_contrib_indices] 

 

#Remove sensors from variables 

variables_subset <- subset (variables_subset , select = - c(min_contrib_indices)) 

 

# Perform LDA analysis with leave - one - out validation and new sensor set 

training_data <- as.matrix (variables_subset) 

lda_result <- lda_analysis (training _data , group_labels) 

 

# Check whether the new sensor array improves the error rate 

if (lda_result$error_rate < best_error_rate_subset) { 

best_error_rate_subset <- lda_result$error_rate 

best_sensor_array_subset <- colnames (variables_subset) 

} else { 

# No improvement, stop deleting sensors 

break 

} 

} 

 

# Check whether the current number of sensors to be removed has resulted in a better error rate 

if (best_error_rate_subset < best_error_rate) { 

best_error_rate <- best_error_rate_subset 

best_sensor_array <- best_sensor_array_subset 

} 

} 

# Display the best sensor array and the corresponding error rate  

cat ("Best sensorarray:", best_sensor_array , "\ n") 

 

cat ("Best Error Rate:", best_error _rate , "n")
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