
HAL Id: tel-04872379
https://hal.science/tel-04872379v1

Submitted on 8 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of quantum processes by designed external fields
Stéphane Guérin

To cite this version:
Stéphane Guérin. Control of quantum processes by designed external fields. Physics [physics]. Uni-
versité de Bourgogne, 2006. �tel-04872379�

https://hal.science/tel-04872379v1
https://hal.archives-ouvertes.fr
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Laboratoire de Physique de l’Université de Bourgogne
CNRS-UMR 5027

BP 47870 - 21078 Dijon - France





Remerciements

Je remercie tout particulièrement Hans Jauslin pour m’avoir guidé et soutenu patiemment.
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The control of quantum processes and the manipulation of quantum systems are very chal-
lenging tasks with important applications in a large variety of domains: in atomic, molecular
and condensed matter physics, in optics, in information processing, communication and com-
putation through the development of quantum algorithms, and in chemistry with perspectives
of selective control of chemical reactions. External fields can be used to manipulate the internal
level structure of the quantum systems in terms of both level position and population transfer.
This allows one to control their external degrees of freedom, for instance to trap them, and to
couple individual quantum systems to each other.

For this goal, laser sources yielding pulses of high intensity, short duration and controllable
frequencies have been developed. Another source of electromagnetic fields that opens new
possibilities of control are quantum cavity fields with strong coupling and low losses. A good
model for both types of fields, for instance to analyze the exchange of photons with atoms
and molecules, is the single mode harmonic oscillator. The bottom of its spectrum is mainly
involved for the cavity field, and can be ignored for the laser field because of the very large
number of photons available. More recently, a third type of pulsed electric fields (of zero mean
frequency), known as half-cycle pulses, have been produced with applications to orientation of
molecules.

An essential ingredient for quantum information is to both manipulate the internal states
of a single atom (for instance with a laser field), and at the same time to couple a few atoms
(for instance by the use of a cavity field). It is thus essential to formulate in a unified way a
theory incorporating the laser and cavity couplings, in order to describe e.g. the exchange of
photons between laser fields and cavities.

In this manuscript, we focus on one hand on processes induced by adiabatic passage, since
they have very desirable properties of robustness with respect to an imperfect knowledge of
the parameters of the interacting field and the quantum system itself. On the other hand, we
analyze processes by ultra-short pulses inducing sudden effects. They are particularly interest-
ing for the generation of postpulse wave-packets involving many bare states to control external
degrees of freedom, such as the rotation of molecules.

We first formulate in a technical and self-consistent way the theoretical tools of analysis with
a global approach: the adiabatic Floquet theory, the construction of effective Hamiltonians
adapted for adiabatic passage with laser and cavity fields, and propagators appropriate for
sudden dynamics. Such tools allow us to first analyze elementary control processes in simplified
models. The construction of effective Hamiltonians is developed in a systematic way and allows
us to construct more involved models for moderate field intensities (i.e. up to 1013 − 1014

W/cm2).
We are next in position to apply these tools in three domains of control: The selective pop-

ulation transfer in atoms and molecules, the manipulation of their external degrees of freedom,
and quantum information processing by adiabatic passage.

Some of our proposals have been implemented experimentally, such as the complete pop-
ulation transfer by bichromatic fields [154, 155], and the dynamical alternation of alignment
[126].

This manuscript is organized into four main parts.
In the first and second parts, we develop the tools of analysis, which are the adiabatic

Floquet theory, and the construction of effective Hamiltonians, with examples for atoms and
molecules. The adiabatic Floquet theory has the key advantage that it can describe the ex-
change of photons between the laser and atoms and molecules. The analysis gets simplified,
and can be conducted with the use of geometric and topological pictures that allow us to solve
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the Schrödinger equation in a global way, i.e. for a whole set of parameters.
The second part deals in particular with the construction of effective Hamiltonians useful

for adiabatic processes and of propagators for sudden dynamics with ultrashort pulses.
Parts three and four are devoted to applications of these tools for the control of processes

in atoms and molecules by external fields.
In part three, we analyze the control by laser fields of selective population transfer, as

well as its relation with the control of external degrees of atoms and molecules. The analysis
consists first in identifying an internal target state that has the required property, for instance
of deflection, of vibrational localization (e.g. through tunneling), of rotational localization
(alignment), . . . Then one constructs processes that populate the selected target state.

Part four deals with quantum information by adiabatic passage, where we use both laser
and cavity fields. We propose different processes to achieve entanglement, photon Fock states,
and quantum logic gates.
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The aim of parts I and II is to present in a self-contained way a set of theoretical tools that
allow one to analyze the quantum dynamics of atoms or molecules driven by laser pulses, and
to determine pulse designs that lead to specific effects. We have reviewed most of these tools in
[1]. In particular we discuss processes to control the internal excitation of states, like electronic
states or vibrational and rotational states of molecules. The idea is to design the characteristics
of the laser pulse in such a way that if initially the molecule is in a given state, at the end of
the pulse the population will be completely transferred to a selected target state, which can
be an eigenstate or a superposition of them. The parameters of a single pulse that can be
designed are the peak intensity, the shape of the pulse envelope, the carrier frequency and the
chirp, which is a slow variation of the carrier frequency during the pulse. Furthermore one can
use sequences of two or several pulses of different characteristics, acting simultaneously or with
a well-defined delay. An important condition for the successful implementation of a control
process is that it should be robust with respect to variations or imprecisions in the values of the
parameters. For instance, the usual resonant π−pulse technique is not robust for a complete
transfer, since it is achieved only for precise values of the total pulse area that interacts with
the molecule, which is very difficult to fix in an experimental setup. A different approach that
yields much more robust results is based on adiabatic passage. The analysis that we present
here yields an explanation of the principles on which this robustness is based.

The models for the control processes start with the Schrödinger equation for the molecule
in interaction with a laser field that is either treated as a classical or as a quantized electro-
magnetic field. In Chapter 1 we describe the Floquet formalism, and show how it can be used
to establish the relation between the semi-classical model and a quantized representation that
allows one to describe explicitly the exchange of photons. The molecule in interaction with
the photon field is described by a time independent Floquet Hamiltonian, which is essentially
equivalent to the time dependent semi-classical Hamiltonian. The analysis of the effect of the
coupling with the field can thus be done by methods of stationary perturbation theory, in-
stead of the time-dependent one used in the semi-classical description, as shown in part II. In
Chapter 2 we describe the main ideas of adiabatic dynamics and combine it with the Floquet
approach. The essential idea is that if some parameters like the pulse envelope or the frequency
vary sufficiently slowly compared with the other characteristic times of the system, the time
evolution will follow instantaneous eigenstates of the Floquet Hamiltonian. The analysis of
adiabatic dynamics is thus reduced to the determination of eigenvalues and eigenvectors of
Floquet Hamiltonians, as a function of the parameters of the pulse. In Chapter 3 we describe
how the possible transfers of population by adiabatic passage are determined by the topology
of the eigenenergy surfaces defined by varying the parameters of the pulses. The topology is
in turn determined by resonances and quasi-resonances. This topological aspect is the basis
of the robustness of the adiabatic transfer. An important conclusion of this analysis is that
in the adiabatic regime the final result of the process is determined almost exclusively by the
resonances of the Floquet Hamiltonian. The perturbative corrections lead only to small defor-
mations of the path in Hilbert space that is followed while the pulse is in interaction, but they
do not change the target state that is reached at the end.
The different aspects of this approach are illustrated with some simple examples in the corre-
sponding sections.

We analyze the influence of the number of oscillations in a pulse on the adiabatic Floquet
theory, considering the limiting case of pulses with only a few carrier oscillations. We show that
the appearance of multiphoton resonances due to the broadening of the spectrum constitutes
the main limitation of the adiabatic regime.
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Chapter 1

Floquet theory

The Floquet theory can be seen from two different points of view. In the fist one, the Flo-
quet formalism is just a mathematically convenient tool that allows one to transform the
Schrödinger equation with a time-dependent Hamiltonian into an equivalent equation with
a time-independent Hamiltonian. This new equation is defined on an enlarged Hilbert space.
The time dependence has been substituted by the introduction of one auxiliary dynamical
variable for each laser frequency.

The second point of view consists in constructing the Floquet representation starting from
a model in which both the molecule and the field are quantized.

The initial photon state can be a number state (with a not well defined phase) or a linear
combination of number states, for instance a coherent state. We formulate the construction of
coherent states in the Floquet theory and show that choosing one as the initial photon state
allows one to recover the usual semi-classical time dependent Schrödinger equation, with a
classical field of a well defined phase (see Section 1.3).

This Floquet approach provides a physical interpretation of the dynamics in terms of photons
in interaction with the molecule, which is in close analogy to the theory of dressed states in a
cavity (see Section 1.4).

The formalism is developed for the case of an interacting field of a single frequency. It can
be easily extended to the multifrequency case as shown in Section 1.5.

Another approach to determine the spectrum of the quasienergy operator, which uses di-
rectly the evolution operator in the original space, is shown in Section 1.6.

We finally discuss some extensions of the Floquet theory to nonperiodic perturbation in
Section 1.7.

1.1 Floquet formalism from the semi-classical point of

view

In the semi-classical model the molecule is treated quantum mechanically whereas the field is
represented classically. We consider the simplest case of a dipole coupling. The formalism is
easily extended to other types of couplings. The time dependence of the periodic Hamiltonian
is introduced through the time evolution of the initial phase θ + ωt of the field of amplitude E
and frequency ω [2, 3, 4, 5, 6, 7]. The semiclassical Hamiltonian can be e.g. written as

H = H (x, θ + ωt) = H0(x)− µ(x)E cos(θ + ωt), (1.1)

9



10 Chapter 1. Floquet theory

where x symbolizes the degrees of freedom of the atom or molecule, µ(x) is its dipole moment
and H0(x) the Hamiltonian of the free molecule. The semi-classical Schrödinger equation

i~
∂

∂t
ϕ = H (x, θ + ωt)ϕ, ϕ ∈ H (1.2)

is defined on a Hilbert space H, which can be of infinite dimension (e.g. the space of square-
integrable functions H = L2(Rn, dnx), where n is the number of the degrees of freedom of the
molecule) or of finite dimension (e.g. in N -level models H = CN). The initial phase θ appears
as a parameter. One can think of Eq. (1.2) as a family of equations parameterized by the angle
θ. We denote the corresponding family of propagators by U(t, t0; θ), which describe the time
evolution of arbitrary initial conditions ϕ(t0):

ϕ(t) = U(t, t0; θ)ϕ(t0), (1.3)

and satisfy

i~
∂

∂t
U (t, t0; θ) = H (θ + ωt)U (t, t0; θ) , U (t, t; θ) = 1lH. (1.4)

The Floquet Hamiltonian K, also called quasienergy operator, is constructed as follows: We
define an enlarged Hilbert space

K := H⊗L, (1.5)

where L := L2(S1, dθ/2π) denotes the space of square integrable functions on the circle S1 of
length 2π, with a scalar product

⟨ξ1 | ξ2⟩L :=

∫
S1

dθ

2π
ξ∗1(θ)ξ2(θ). (1.6)

This space is generated by the orthonormal basis {eikθ}, k ∈ Z (i.e. all integers). On the
enlarged Hilbert space K the Floquet Hamiltonian is defined as

K = −i~ω ∂

∂θ
+H (θ) . (1.7)

In this expression H (θ) is just the semiclassical Hamiltonian (1.1) but with the phase θ + ωt
taken at the (fixed) initial value θ corresponding to t = 0. The usefulness of the Floquet
Hamiltonian comes from the fact that it is time independent and that the dynamics it defines
on K is essentially equivalent with the one of (1.2). This can be formulated as follows. The
Floquet Hamiltonian K defines a time evolution in K through the equation

i~
∂

∂t
ψ = Kψ, ψ ∈ K = H⊗L. (1.8)

This time evolution can be expressed in terms of a propagator UK(t, t0) characterized by

i~
∂

∂t
UK(t, t0) = KUK(t, t0), UK(t, t) = 1lK, (1.9)

where 1lK is the identity operator in K, i.e. ψ(t) = UK(t, t0)ψ(t0). Since K is time independent,
the propagator can be written as

UK(t, t0, θ) = UK(t− t0, θ) = e−iK(t−t0)/~. (1.10)



1.1. Floquet formalism from the semi-classical point of view 11

In order to establish a relation between U and UK we define the following phase translation
operator Tωt which acts on ξ ∈ L, by

Tωt ξ (θ) = ξ (θ + ωt) (1.11)

and can be expressed as

Tωt = eωt∂/∂θ. (1.12)

We first lift the family of operators U(t, t0; θ) (defined on H) into an operator acting on the
enlarged space K by treating the dependence on θ as a multiplication operator. This operator
is unitary in K. The relation between U and UK can then be expressed by

T−ωt U (t, t0; θ) Tωt0 = UK(t− t0, θ) ≡ e−iK(t−t0)/~ (1.13)

The proof of this relation is given in Appendix A in a more general setting. It implies that if
ψ(t, x, θ) is a solution of (1.8) then we can obtain a solution of (1.2) by ϕ(t, x) = Tωtψ(t, x, θ) =
ψ(t, x, θ + ωt).

The fact that K is time independent opens the possibility to work with eigenfunction ex-
pansions. We consider the case in which K has pure point spectrum, i.e. no continuum. This
is always the case for N-level models with periodic time dependent fields. Further remarks on
other cases are given in Appendix B.

First we lift the initial condition ϕ(t0) for (1.2) to the enlarged space K by taking ϕ(t0)⊗1L.
This form reflects the fact that the initial condition is the same for the whole family of equations
(1.2), i.e. it does not depend on the phase θ. With the eigenvalues and eigenvectors of

Kψν = λνψν , (1.14)

using the inverse of (1.13), the time evolution can be expressed by the eigenfunction expansion

ϕ(t) = U(t, t0 ; θ)ϕ(t0)

= Tωte−iK(t−t0)/~T−ωt0ϕ(t0)⊗ 1L

=
∑
ν

cνe
−iλν(t−t0)/~ψν(x, θ + ωt), (1.15)

where the coefficients cν are determined by the scalar product

cν = ⟨ψν , ϕ(t0)⊗ 1⟩K = ⟨ψ̄ν , ϕ(t0)⊗ 1⟩H, (1.16)

where the subindices K and H specify to which space the scalar product corresponds, and
ψ̄ν :=

∫
S1 dθ/2π ψν(θ) is the average of ψν(θ) over the phase, or equivalently, its constant

Fourier component.
Thus, the determination of the Floquet eigenvectors and eigenvalues allows one to solve the
dynamics of the semiclassical model.

The Floquet eigenelements have a periodic structure: ψν ≡ ψn,k = ψn,0e
ikθ and λν ≡ λn,k =

λn,0 + k~ω, where the index n refers to the molecule’s Hilbert space H (i.e. n = 1, · · · , N if
H = CN), and k are all positive or negative integers. This allows one to classify the Floquet
eigenstates in families labeled by n. The individual members within one family are distinguished
by the index k.
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The eigenfunction expansion can be simplified using only one representative of each family
(e.g. the one with k = 0):

ϕ(t) =
∑
n

c̃n(θ)e
−iλn,0(t−t0)/~ψn,0(x, θ + ωt) (1.17)

with
c̃n(θ) := ⟨ψn,0(θ), ϕ(t0)⟩H (1.18)

The coefficients c̃n(θ + ωt) are functions of θ, and become thus time dependent.

1.2 Floquet theory from quantized cavity dressed states

Although in the semi-classical model the only dynamical variables are those of the molecule, and
that the extended Hilbert space K = H⊗L and the Floquet Hamiltonian K can be thought as
only mathematically convenient techniques to analyse the dynamics, it was clear from the first
work of Shirley [2] that the enlarged Hilbert space should be related to photons. This relation
was made explicit by Bialynicki-Birula [8, 9] and completed in [10]. The construction starts
with a quantized photon field in a cavity of finite volume in interaction with the molecule. The
limit of infinite volume with constant photon density leads to the Floquet Hamiltonian, which
describes the interaction of the molecule with a quantized laser field propagating in free space.
The construction presented below is taken from [10], where further details and mathematical
precisions can be found.

We consider a quantized photon field in a cavity of volume V , of single frequency ω and
polarized in the e⃗ direction, described by the Hamiltonian HL, in interaction with a molecule
characterized by the Hamiltonian HM. For simplicity we consider the simplest situation of a
dipole interaction described by the Hamiltonian [11, 12]

HML = HM +HL +Hint (1.19)

with

HL = ~ωa†a, (1.20a)

Hint = −µ⊗ EV
(
a+ a†

)
, (1.20b)

and µ = µ⃗ · e⃗, where µ⃗ is the dipole moment of the molecule. The mode of the laser with
frequency ω is described by the number operator of a harmonic oscillator, which can be ex-
pressed in terms of the annihilation and creation operators a, a†. They act on the Fock space F
generated by the stationary states |n ⟩, n = 0, 1, 2, . . . of the harmonic oscillator. The coupling
constant is given by

EV =

√
~ω
2ε0V

, (1.21)

where ε0 is the permeability of the vacuum. The states of the coupled system evolve in the
Hilbert space

HML = H⊗F , (1.22)

where we call H the Hilbert space of the molecule and F the Hilbert space of the photons.
We will establish a precise relation between dressed states in a cavity and the Floquet

formalism. We show that the Floquet Hamiltonian K can be obtained exactly from the dressed
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Hamiltonian in a cavity in the limit of infinite cavity volume and large number of photons: K
represents the Hamiltonian of the molecule interacting in free space with a field containing a
large number of photons. We establish the physical interpretation of the operator

Nr = −i
∂

∂θ
(1.23)

in the limit of large number of photons as the relative photon number operator. It characterizes
the relative photon number of the field with respect to the average n̄. The variation of the
average of Nr in the Floquet formalism gives the number of photons gained or lost (depending
on the sign) by the field.

We remark that, with the cavity dressed state model (1.19), the field intensity does not
appear explicitly. It depends on the average number of photons contained in the initial state
of the field. The connection between this model and the Floquet formulation is given by the
following property: Since the radiation is not confined in a cavity, but propagates and interacts
with the molecule in free space, we have to take the limit

V →∞ (infinite cavity volume),

n̄→∞ (large photon number average),

ρ = n̄/V = const (constant photon density).

In this limit, the Hamiltonian HML is identical, up to an additive constant, to the Floquet
Hamiltonian K

HML − ~ωn̄ −→ −i~ω ∂

∂θ
+H0 − µE cos θ ≡ K, (1.24)

where

E =

√
2ρ~ω
ε0

. (1.25)

To show this relation, we use the phase representation of HLM, as formulated by Bialynicki-
Birula [8, 9, 13, 14]. We construct an isomorphism between the Fock space and the space Ln̄,θ de-
fined as a subspace of L = L2

(
S1, dθ

2π

)
, generated by the basis functions

{
| eikθ ⟩; −n̄ ≤ k < +∞

}
:

|n ⟩ ∈ F ←→ | eikθ ⟩ ∈ Ln̄,θ with n̄+ k = n, i.e. k ∈ [−n̄,∞). (1.26)

In the limit n̄→∞ we obtain the whole space

Ln̄,θ
n̄→∞−→ L, and HLM

n̄→∞−→ K = H⊗L. (1.27)

By this isomorphism, the creation, annihilation and photon number operators (a†, a and N)
have a corresponding representation acting on Ln̄,θ, which we denote respectively a†n̄,θ, an̄,θ and
Nn̄,θ:

a† |n ⟩ =
√
n+ 1 |n+ 1 ⟩ ←→ a†n̄,θ =

√
n̄− i ∂

∂θ
eiθ Pn̄, (1.28a)

a |n ⟩ =
√
n |n− 1 ⟩ ←→ an̄,θ = e−iθ

√
n̄− i ∂

∂θ
Pn̄, (1.28b)

N |n ⟩ = a†a |n ⟩ = n |n ⟩ ←→ Nn̄,θ =
(
n̄− i ∂

∂θ

)
Pn̄, (1.28c)
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where Pn̄ =
∑∞

k=−n̄ | eikθ ⟩⟨ eikθ | is the projector on Ln̄,θ. The operator in the coupling term
becomes

an̄,θ + a†n̄,θ = Pn̄

(
e−iθ

√
n̄− i ∂

∂θ
+

√
n̄− i ∂

∂θ
eiθ

)
Pn̄, (1.29)

and the Hamiltonian reads

H
(n̄)
LM = H0(x)⊗ Pn̄ + 1lH ⊗ ~ωNn̄,θ − µ(x)⊗ EV

(
an̄,θ + a†n̄,θ

)
. (1.30)

We remark that this is an exact correspondence, which is just a precise expression of Dirac’s
transformation formalism of quantum mechanics [15, 16]. The explicit writing of the projector
Pn̄ in (1.28) is motivated by the fact that in this way the operators H0(x)⊗ Pn̄, Nn̄,θ, an̄,θ, a

†
n̄,θ

and H
(n̄)
LM are also well defined in the total space L = L2(S1, dθ/2π), and the discussion of the

limit n̄→∞ becomes conceptually clearer.
In [8, 9] the formal hypothesis

−i ∂
∂θ
≪ n̄ (1.31)

is invoked to approximate√
n̄− i ∂

∂θ
=
√
n̄

√
1− i

n̄

∂

∂θ
=
√
n̄+O

(
1√
n̄

)
,

which leads to
(an̄,θ + a†n̄,θ)/

√
n̄

n̄→∞−→
(
e−iθ + eiθ

)
= 2 cos θ. (1.32)

In the limit V → ∞, n̄ → ∞, keeping the photon density ρ = n̄/V constant, we obtain the
interaction term

EV
(
an̄,θ + a†n̄,θ

)
−→

√
2ρ~ω
ε0

cos θ. (1.33)

Introducing the laser intensity per unit surface I

I =
1

2
ε0cE2 = ~ωΦph (1.34)

with the photon velocity c, the field amplitude E and the photon flow Φph = n̄c/V , allows one

to identify the interaction constant of equation (1.33) with E of Eq. (1.24) as E =
√

2ρ~ω/ε0.
We obtain thus the Floquet Hamiltonian K of equation (1.24).

The formal hypothesis (1.31) must be interpreted in relation with the functions on which
−i∂/∂θ acts. The statement is that if all the states

{
| eikθ ⟩

}
that are relevant in the dynamics

are such that |k| ≪ n̄, i.e. if only few photons are exchanged between light and matter compared

to the average photon number n̄ contained in the laser field, then the coupled Hamiltonian H
(n̄)
LM

can be identified with the Floquet Hamiltonian K.
One can give a more precise formulation of this construction, based on the dynamics of the

coupled system. Since H
(n̄)
LM and K are both well defined on H ⊗ L, we can compare the time

evolutions generated by the two Hamiltonians of any initial state ψ0 ∈ H ⊗ L: For N -level
models (H = CN), given any initial state ψ0 ∈ H ⊗ L, the limit of the cavity dressed state
dynamics is identical to the Floquet dynamics :

lim
V,n̄→∞
V/n̄=ρ

e−i(H
(n̄)
LM/~−n̄ω)tψ0 = e−iKt/~ψ0. (1.35)

The proof of this statement is given in [10].
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1.3 Connection with the semiclassical formulation: in-

teraction representation and coherent states

From the formulation of the Floquet formalism given above, we can establish the precise con-
nection between the dynamics in the enlarged space K defined by the Floquet Hamiltonian K,
and the one defined by the semiclassical Hamiltonian in H with a classical description of the
electric field:
The Schrödinger equation of the Floquet Hamiltonian in K, where θ is a dynamical variable,
is equivalent, in an interaction representation, to the semiclassical Schrödinger equation in H,
where θ is considered as a parameter corresponding to the fixed initial phase. The dynamics of
the two models are identical if the initial photon state in the Floquet representation is a coherent
state.

1.3.1 Interaction representation

The Schrödinger equation of the Floquet Hamiltonian in K

i~
∂

∂t
ψ(t) = Kψ(t) (1.36)

can be expressed equivalently in an interaction representation defined by the unitary transfor-
mation

ϕ(t) = U †0r(t)ψ(t), (1.37)

where

U0r(t) = e−ωt∂/∂θ ≡ T−ωt (1.38)

is the free photon field propagator, which is just the translation operator (1.12) used in the
Floquet construction of Section 1.1. Using equation (1.13), we obtain

ϕ(t) = Tωtψ(t) = Tωt UK(t− t0, θ) T−ωt0ϕ(t0)
= U(t, t0; θ)ϕ(t0),

and the evolution equation in this representation becomes

i~
∂

∂t
ϕ(t) = H(θ + ωt)ϕ(t), (1.39)

where we have still ϕ(t) ∈ K, i.e. H(θ + ωt) is still interpreted as an operator acting on the
enlarged Hilbert space K, which with respect to the variable θ is a multiplication operator.

Although this equation looks formally like the semiclassical Schrödinger equation (1.2), we
emphasize that it is still different since it is defined in the enlarged Hilbert space K and the
phase θ does not have a definite value, since it is a dynamical variable on the same footing as x.
In order to recover the semiclassical equation from (1.39) we have to reduce it to an equation
defined in the Hilbert space H. From a mathematical point of view, this can be done by fixing
a particular value of θ, as we did in Section 1.1. Physically this can be achieved, as we show in
the following, by choosing the initial condition of the photon field as a coherent state.
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1.3.2 Coherent states

The coherent states of the photon field can be defined as the eigenvectors of the annihilation
operator

a |α ⟩ = α |α ⟩, α = |α|e−iθ0 . (1.40)

In the usual Fock number state representation they are given, up to a phase factor, by

|α ⟩ = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n ⟩. (1.41)

In the phase representation they can be written as

Φ
(n̄)
θ0

(θ) = eiζe−|α|
2/2

∞∑
n=0

αn

√
n!
ei(n−n̄)θ

= e−|α|
2/2

∞∑
n=0

|α|n√
n!
ei(n−n̄)(θ−θ0) (1.42)

(where ζ is an arbitrary constant phase that we have chosen as ζ = n̄θ0). In order to obtain
the representation of coherent states in Floquet theory we have to take |α| =

√
n̄, since the

average photon number in a coherent state is given by |α|2, and then apply the limit n̄ → ∞.
In Appendix B we show that in this limit the coherent states are represented by a generalized
function Φθ0(θ), which is real, and depends on θ − θ0, where θ0 ∈ S1 is a fixed angle, and

(Φθ0(θ))
2 = 2πδ(θ − θ0). (1.43)

1.3.3 Expectation values for general initial states of the photon field

For a general initial condition of the photon field ξ(θ) ∈ L, we first remark that the evolution
of the initial condition (that we take here at t = t0 = 0) ϕ(x)⊗ ξ(θ) can be obtained from the
one of the initial condition ϕ(x) ⊗ 1 (where the constant function 1 ≡ ei(k=0)θ is the relative
number state of zero photons):

UK(t, θ) (ϕ(x)⊗ ξ(θ)) = T−ωtU(t, 0; θ) (ϕ(x)⊗ ξ(θ))
= ξ(θ − ωt)U(t, 0; θ − ωt) (ϕ(x)⊗ 1)

= ξ(θ − ωt)UK(t, θ) (ϕ(x)⊗ 1) (1.44)

(since U(t, 0; θ) is a multiplication operator with respect to θ).

As a consequence, for any observableM(θ) : K → K that with respect to θ is a multiplication
operator, using Eq. (1.13), we can write the expectation value as

⟨M⟩(t) := ⟨ϕ⊗ ξ |U †K(t, θ)M(θ)UK(t, θ) |ϕ⊗ ξ ⟩K

=

∫ 2π

0

dθ

2π
|ξ(θ)|2⟨ϕ |U †(t, 0; θ)M(θ + ωt)U(t, 0; θ) |ϕ ⟩H

=

∫ 2π

0

dθ

2π
|ξ(θ)|2⟨ϕ(t; θ) |M(θ + ωt) |ϕ(t; θ) ⟩H, (1.45)
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where we denote by ϕ(t; θ) ≡ U(t, 0; θ)ϕ the semiclassical evolution with initial phase θ of the
initial condition ϕ ∈ H.
In particular, for an observable A of the molecule (i.e. A⊗ 1lL) we have

⟨A⟩(t) =
∫ 2π

0

dθ

2π
|ξ(θ)|2⟨ϕ(t; θ) |A |ϕ(t; θ) ⟩H. (1.46)

1.3.4 Expectation values on coherent states; relation with the semi-
classical model

We have stated that we can recover the evolution of the semi-classical model from the Floquet
evolution in the interaction representation by taking initial states in which the photon field is
in a coherent state. This can be formulated more precisely by the following statements:

If we take an initial condition of the form ψ(t = 0) = ϕ(x)⊗ Φθ0(θ), then

i) If A : H → H is an observable of the molecule, then according to Eqs. (1.46) and (1.43)

⟨A⟩(t) = ⟨ϕ(t; θ0) |A |ϕ(t; θ0) ⟩H. (1.47)

The last expression is the expectation value calculated with the semiclassical model with
initial phase θ0. We conclude thus that, if one considers only observables of the molecule,
the Floquet evolution with a coherent state in the initial condition is equivalent to the
semiclassical model.
We remark that a somewhat related construction, linking the evolution from cavity
dressed states directly to the semi-classical model (i.e. without the intermediate level
of Floquet states as we do here) was established in [17].

ii) More generally, ifM(θ) : K → K is an observable that with respect to θ is a multiplication
operator, continuous in θ, then taking for θ a particular value θ0 defines a family of
operators M(θ0) : H → H, parametrized by θ0. Then, according to Eqs. (1.45) and
(1.43)

⟨M⟩(t) = ⟨ϕ(t; θ0) |M(θ0 + ωt) |ϕ(t; θ0) ⟩H. (1.48)

It was remarked in References [2, 8] that in the semiclassical model, if the initial phase θ0 is
not known, one can take a statistical average over the initial phases, with uniform distribution:

Asc(t) :=

∫ 2π

0

dθ0
2π
⟨ϕ(t; θ0) |A |ϕ(t; θ0) ⟩H. (1.49)

From the discussion above, this coincides with the expectation value ⟨A⟩(t) calculated with
the evolution in the Floquet picture of an initial condition of the photon field that is a pho-
ton number eigenstate eikθ (with arbitrary k), that is ⟨A⟩(t) =

∫ 2π

0
dθ0
2π
⟨ϕ(t; θ0) |A |ϕ(t; θ0) ⟩H

according to Eq. (1.46). We have seen on the other hand that the semiclassical evolution with
an initial phase θ0 corresponds, in the Floquet picture, to a coherent state initial condition for
the photon field.
This property is quite remarkable: In the large photon number regime the coherent quantum av-
erage on a number state gives the same result as the incoherent statistical average over coherent
states.
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1.4 Emission and absorption of photons in Floquet the-

ory

1.4.1 Exchanges of photons in Floquet theory

In Floquet theory the exchange of photons can be analyzed from the temporal variation of the
relative photon number. In experiments, one measures for instance the difference in intensity
of the laser pulse before and after the interaction with the molecules. Denoting the initial
condition (at t = t0 = 0) by ϕ(x)⊗ ξ(θ), we describe the exchange of photons by

δ⟨N⟩(t) :=
⟨
ϕ⊗ ξ

∣∣∣∣ U †K(t)(−i ∂∂θ
)
UK(t)

∣∣∣∣ ϕ⊗ ξ⟩
K
−
⟨
ϕ⊗ ξ

∣∣∣∣ −i ∂∂θ
∣∣∣∣ ϕ⊗ ξ⟩

K
(1.50)

and we show below that

δ⟨N⟩(t) =
∫ 2π

0

dθ

2π~ω
|ξ(θ)|2

[
⟨ϕ |H(θ) |ϕ ⟩H − ⟨ϕ(t; θ) |H(θ + ωt) |ϕ(t; θ) ⟩H

]
. (1.51)

In particular, if the photon field is initially in a photon number eigenstate |eikθ ⟩,

δ⟨N⟩(t) =
∫ 2π

0

dθ

2π~ω

[
⟨ϕ |H(θ) |ϕ ⟩H − ⟨ϕ(t; θ) |H(θ + ωt) |ϕ(t; θ) ⟩H

]
. (1.52)

We remark that δ⟨N⟩(t) is independent of the particular k we take, in accordance with the
interpretation as relative photon number.
If the photon field is initially in a coherent state Φθ0(θ) = (2π)1/2δ1/2(θ − θ0), then

δ⟨N⟩cs(t) =
1

~ω

[
⟨ϕ |H(θ0) |ϕ ⟩H − ⟨ϕ(t; θ0) |H(θ0 + ωt) |ϕ(t; θ0) ⟩H

]
. (1.53)

Again, if the precise initial phase θ0 of the coherent state is not known, one can take the
(incoherent) statistical average over all phases θ0:

δ⟨N⟩cs(t) =

∫ 2π

0

dθ0
2π

δ⟨N⟩cs(t)

=

∫ 2π

0

dθ0
2π~ω

[
⟨ϕ |H(θ0) |ϕ ⟩H − ⟨ϕ(t; θ0) |H(θ0 + ωt) |ϕ(t; θ0) ⟩H

]
. (1.54)

This incoherent statistical average over the phases also gives exactly the same result as the
coherent average (1.52) in a photon number state.

We can obtain these relations as follows: Using the definition of the quasi-energy operator
(1.7), we can express δ⟨N⟩(t) in terms of quantities that do not involve the derivative −i∂/∂θ:

δ⟨N⟩(t) =

⟨
ϕ⊗ ξ

∣∣∣∣ U †K(t) K~ω UK(t)

∣∣∣∣ ϕ⊗ ξ⟩
K

−
⟨
ϕ⊗ ξ

∣∣∣∣ U †K(t) H(θ)

~ω
UK(t)

∣∣∣∣ ϕ⊗ ξ⟩
K
−
⟨
ϕ⊗ ξ

∣∣∣∣ −i ∂∂θ
∣∣∣∣ ϕ⊗ ξ⟩

K
.(1.55)

Using the fact that [K,UK ] = 0, U †KUK = 1l and equation (1.7), we can write

δ⟨N⟩(t) =
⟨
ϕ⊗ ξ

∣∣∣∣ H(θ)

~ω

∣∣∣∣ ϕ⊗ ξ⟩
K
−
⟨
ϕ⊗ ξ

∣∣∣∣ U †K(t) H(θ)

~ω
UK(t)

∣∣∣∣ ϕ⊗ ξ⟩
K
, (1.56)
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and since

U †K(t, θ)H(θ)UK(t, θ) = U †(t, 0; θ)TωtH(θ) T−ωtU(t, 0; θ)
= U †(t, 0; θ)H(θ + ωt)U(t, 0; θ), (1.57)

we obtain equation (1.51).
We can also get more precise information on the probability P (L, t) that L photons are

exchanged: If at time t = 0 the photon field is in a photon number eigenstate eikθ and ψ(t =
0) = ψ0 = ϕ⊗ eikθ, then the probability that a measurement performed at time t yields that L
photons have been exchanged, is given by

P (L, t) =
⟨
UK(t)ψ0

∣∣∣ [ 1lH ⊗ | ei(L+k)θ ⟩⟨ ei(L+k)θ |
] ∣∣∣ UK(t)ψ0

⟩
K

=
∑
n

∣∣∣ ⟨ϕn ⊗ ei(k+L)θ
∣∣∣ UK(t)

(
ϕ⊗ eikθ

)⟩
K

∣∣∣2 , (1.58)

where {ϕn} is an arbitrary basis of H.

1.4.2 Invariance with respect to the choice of the origin of the rel-
ative photon number

Due to the relative character of the number operator −i∂/∂θ, all the physical predictions of
the Floquet model must be invariant with respect to a global translation of the relative photon
numbers. We show that this is indeed the case for the properties discussed above.
The probability P (L, t) is independent of the particular initial photon number state chosen, i.e.
it is independent of k since:

UK(t)
(
ϕ⊗ eikθ

)
= U(t, 0; θ − ωt)

(
ϕ⊗ eik(θ−ωt)

)
(1.59)

and thus

P (L, t) =
∑
n

∣∣∣ ⟨ϕn ⊗ eiLθ
∣∣∣ UK(t) (ϕ⊗ 1)

⟩
K

∣∣∣2 . (1.60)

For the average number of exchanged photons δ⟨N⟩(t) it is straightforward to verify that one
obtains the same result for the choice of any initial condition of the photon field of the form

ξ =
∑
k

ck e
i(k+m)θ, with arbitrary translation m. (1.61)

1.4.3 Number of exchanged photons in adiabatic passage with co-
herent states

In adiabatic passage processes with pulsed lasers, as we will discuss in the forthcoming sections,
one often encounters the following particular situation: If the initial condition of the photon
field were a number state, i.e.

ψi = ϕi(x)⊗ eikθ, (1.62)

then at the end of the pulse, the final state would be

ψf = ϕf (x)⊗ ei(k−m)θ, (1.63)
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i.e the photon field would be again in a well-defined number state, and one can state that m
photons had been adsorbed, since according to Eq. (1.60) P (L, tf ) = δL,−m . Since k is the
relative number of photons, if these relations are satisfied for one choice of the initial k they are
also satisfied for all other choices of k ∈ Z. However, in the actual experimental realizations
involving lasers the initial states of the photon field are coherent states instead of number states,
i.e.

ψi = ϕi(x)⊗ Φ. (1.64)

The coherent states can be considered as a coherent superposition of number states of the form

Φ =
∑
k

cke
ikθ, with

∑
k

|ck|2 = 1. (1.65)

In the preceding sections we have taken the limit n̄→∞ in which the coherent states become
a δ1/2(θ − θ0) function. For the discussion of the exchanged photons we consider a large but
finite n̄, such that the coherent state is represented by a sharply peaked function that can be
written as a superposition (1.65). Under this condition, the relations (1.62),(1.63) imply that
the initial condition

ψ(i) = ϕi(x)⊗ ξ(i), with ξ(i) =
∑
k

cke
ikθ, (1.66)

evolves at the end of the pulse to

ψ(f) = ϕf (x)⊗
∑
k

cke
i(k−m)θ = ϕf (x)⊗ e−imθξ(i)(θ). (1.67)

Our aim here is to give a precise meaning to the statement that, also in this process involving
coherent states, m photons have been absorbed: The probability to observe n̄ + k photons at
the initial time ti is

P (i)(n̄+ k) = |ck|2 (1.68)

and at the end of the pulse

P (f)(n̄+ k) = |ck+m|2 = P (i)(n̄+ k +m), (1.69)

which implies P (f)(n̄+ k−m) = P (i)(n̄+ k), i.e. the probability to measure n̄+ k−m photons
at the end is equal to the probability to measure n̄+ k at the beginning of the pulse.
In terms of averages and moments of photon numbers one can make the following statement:
Eqs. (1.66)(1.67) imply that the photon expectation number changes by −m

δ⟨N⟩ = ⟨ψ(f)| − i ∂
∂θ
|ψ(f)⟩ − ⟨ψ(i)| − i ∂

∂θ
|ψ(i)⟩ = −m (1.70)

and the second moment of the relative number of photons at the end of the process is equal to
the one at the beginning:

⟨ψ(f)|
(
−i ∂
∂θ

)2

|ψ(f)⟩ = ⟨ψ(i)|
(
−i ∂
∂θ

)2

|ψ(i)⟩. (1.71)
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1.5 Quasiperiodic Floquet representation

The treatment described in the preceding sections can be easily generalized to the case in
which two (or several) lasers of frequencies ωj, j = 1 . . . d act on the molecule, that leads to
the so-called quasiperiodic Hamiltonian. We introduce the notation ω = (ω1, . . . , ωd), and
θ = (θ1, . . . , θd) which represents the phases at time t = 0 of the d lasers. The semiclassical
Schrödinger equation reads

i~
∂ϕ

∂t
= H(x, θ + ωt)ϕ (1.72)

with, for example in a dipole coupling model with two lasers,

H(x, θ + ωt) = H0(x)− µ(x)E1 cos(θ1 + ω1t)− µ(x)E2 cos(θ2 + ω2t), (1.73)

where x symbolizes the degrees of freedom of the molecule, µ(x) is its dipole moment, E1, E2
the respective amplitudes of the two lasers and H0(x) the Hamiltonian of the free molecule.
The corresponding Floquet Hamiltonian is defined as [18, 19, 20, 21, 6, 7]

K = −i~ω · ∂
∂θ

+H(x, θ), (1.74a)

= −i~
d∑

j=1

ωj
∂

∂θj
− µ(x)E1 cos θ1 − µ(x)E2 cos θ2, (1.74b)

and acts on the enlarged Hilbert space

K = H⊗L⊗ . . .⊗ L︸ ︷︷ ︸
d products

, (1.75)

where L := L2(S1, dθj/2π) denotes the space of square integrable functions on the circle S1

of length 2π. The tensor product L ⊗ . . . ⊗ L is equivalent to L2(T
d, dθ/2π), i.e. the square

integrable functions on the unit torus Td. The relations we have described for the single laser
case extend in most practical cases to the d-laser case just by adapting the notation.

1.6 Unitary Floquet operator

1.6.1 Definition

We define the unitary Floquet operator UF , restricted to the original Hilbert space H, as the
semiclassical propagator on a period T = 2π/ω [22]:

UF := U(T, 0; θ0) : H → H, (1.76)

for a fixed phase θ0 (e.g. θ0 = 0). The obvious property U(nT, 0; θ0) = (UF )
n shows that UF

gives the dynamics ϕ(t) at times that are integer multiples of the period T . We can interpret
UF as the quantum analog of the Poincaré section. The spectra of the operators UF et K are
linked by the following property (in a system of units such that ~ = 1) :

i) If ψ ∈ K is an eigenstate of K : Kψ = λψ, then ∃Φ ∈ H such that

ψ(θ) = eiλθ/ωU ((θ − θ0)/ω, 0; θ0) Φ (1.77a)

= eiλθ/ωU (0,−(θ − θ0)/ω; θ) Φ (1.77b)
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and Φ is an eigenstate of UF :
UFΦ = e−iλTΦ (1.78)

ii) Conversely, if Φ ∈ H is eigenstate of UF : UFΦ = e−iλTΦ then the state ψ ∈ K defined
by Eq. (1.77) is eigenstate of K : Kψ = λψ.

In Eq. (1.77), we have used the property

U(t, s; θ + ωt) = U(t+ a, s+ a; θ). (1.79)

1.6.2 Two-mode quasiperiodic unitary Floquet operator

One can generalize the unitary Floquet operator to the quasiperiodic case as follows [19]. We
define the generalized unitary Floquet operator using the semiclassical propagator on the period
T2 = 2π/ω2 and the phase of the ω2 field fixed to zero:

UF (θ1) := T 1
−T2

U(T2, 0; θ1, 0) : H → H, (1.80)

where U(t, t0; θ1, θ2) is the propagator satisfying

ϕ(t) = U(t, t0; θ1, θ2)ϕ(t0), (1.81)

associated to the quasiperiodic Hamiltonian H(x, θ1, θ2). The one-phase translation operator
is defined as

T 1
−T2

ξ(θ1) = ξ(θ1 − ω1T2) (1.82)

with ξ ∈ L ≡ L2(S1, dθ1/2π). The generalized unitary Floquet operator, acting on K1 ≡ H⊗L
has spectral properties equivalent to the ones of the quasienergy operator. One can generalize
the preceding relations to this case:

i) If ψ ∈ K is an eigenstate of K : Kψ = λψ, then ∃Φ(θ1) ∈ K1 such that

ψ(θ1, θ2) = eiλθ2/ω2T 1
−θ2/ω2

U (θ2/ω2, 0; θ1, 0)Φ(θ1) (1.83a)

=eiλθ2/ω2U (θ2/ω2, 0; θ1 − θ2 ω1/ω2, 0)Φ(θ1 − θ2 ω1/ω2) (1.83b)

=eiλθ2/ω2U (0,−θ2/ω2; θ1, θ2) Φ(θ1 − θ2 ω1/ω2) (1.83c)

and Φ is an eigenstate of UF :
UFΦ = e−iλT2Φ (1.84)

ii) Conversely, if Φ(θ1) ∈ K1 is eigenstate of UF : UFΦ = e−iλT2Φ then the state ψ ∈ K
defined by Eq. (1.83) is eigenstate of K : Kψ = λψ.

1.6.3 Multi-mode quasiperiodic unitary Floquet operator

This can be generalized for the quasiperiodic case with m modes. We define the generalized
unitary Floquet operator, using the semiclassical propagator on the period Tm = 2π/ωm and
the phase of the ωm field fixed to zero

UF (θ1, · · · , θm−1) := T m−1
−Tm

U(Tm, 0; θ1, · · · , θm−1, 0) : H → H, (1.85)



1.7. Extension to non-periodic time dependence 23

where U(t, t0; θ) is the propagator associated to the quasiperiodic Hamiltonian H(x, θ). The
(m− 1)-phase translation operator acts on the m− 1 first phase as

T m−1
−Tm

ξ(θ1, · · · , θm−1) = ξ(θ1 − ω1Tm, , · · · , θm−1 − ωm−1Tm). (1.86)

The generalized unitary Floquet operator, acting on Km−1 ≡ H ⊗ L⊗ . . .⊗ L︸ ︷︷ ︸
m−1 products

has spectral

properties equivalent to the ones of the quasienergy operator:

i) If ψ ∈ K is an eigenstate of K : Kψ = λψ, then ∃Φ(θ1, · · · , θm−1) ∈ K1 such that

ψ(θ) = eiλθm/ωmT m−1
−θm/ωm

U (θm/ωm, 0; θ1, · · · , θm−1, 0)Φ(θ1, · · · , θm−1) (1.87a)

=eiλθm/ωmU (0,−θm/ωm; θ) Φ(θ1 − θm ω1/ωm, · · · , θm−1 − θm ωm−1/ωm) (1.87b)

and Φ is an eigenstate of UF :
UFΦ = e−iλTmΦ (1.88)

ii) Conversely, if Φ(θ1) ∈ K1 is eigenstate of UF : UFΦ = e−iλTmΦ then the state ψ ∈ K
defined by Eq. (1.87) is eigenstate of K : Kψ = λψ.

1.6.4 Application to the numerical calculation of the Floquet spec-
trum

This formulation can be interesting from the practical point of view to determine the Floquet
spectrum numerically. The alternative to the diagonalization of the full quasienergy Hamilto-
nian in a basis of K is as follows: We diagonalize the restricted Floquet matrix UF constructed
in the basis {φi, i = 1..N} in the original Hilbert space H associated to the free system H0. The
ith column of UF contains the solution ϕ(t = T ) of the semiclassical time-dependent Schrödinger
equation (that can be calculated by a numerical simulation in general) with the initial condition
φi and calculated on one period T . This alternative requires thus a diagonalization in a smaller
Hilbert space and N calculations of the semiclassical time-dependent Schrödinger equation on
one period.

1.7 Extension to non-periodic time dependence

The notion of enlarged (or extended) Hilbert space constructed as the tensor product of the
Hilbert space, in which the original Hamiltonian is defined, and the space of square integrable
functions on the circle, first introduced by Sambe [3] in the periodic case, has been extended
by Howland [4] for more general time-dependent Hamiltonians. It allows one to construct a
time-independent extended Hamiltonian, which is the Floquet Hamiltonian in the periodic case.

We have used such a formalism to construct propagators for dynamics by ultrashort pulse,
the so-called impulsive or sudden dynamics [23] (see also Chapter 7).

Moiseyev and collaborators have constructed computational algorithms that take advantage
of this extended space to solve the time dependent Schrödinger equation by time-independent
techniques, incorporating the complete time dependence in the extended space [named (t, t′)
technique] [24].
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Chapter 2

Adiabatic Floquet theory

The models we have discussed so far correspond to continuous (CW) lasers with a fixed sharp
frequency and constant intensity. They can be easily adapted to the case of pulsed lasers that
have slowly varying envelopes [25, 26, 27, 28]. They can furthermore have a slowly rotating
polarization and a chirped frequency, i.e. a frequency that changes slowly with time. The
adiabatic chirped frequency within the Floquet formalism has been treated in [27, 28]. For
periodic (or quasiperiodic) semiclassical Hamiltonians, the Floquet states are the stationary
states of the problem. Processes controlled by chirped laser pulses include additional time de-
pendent parameters (the pulse envelopes, swept frequencies and rotating polarizations), whose
timescales are slow with respect to the optical frequencies. A first step is to relate the usual
semiclassical time dependent Schrödinger equation to the time dependent Floquet Schrödinger
equation, defined as the Schrödinger equation with the Floquet Hamiltonian. Since this equa-
tion does not have the fast optical time dependence we can treat it with adiabatic principles,
by studying the properties of the spectrum of the Floquet Hamiltonian as a function of the
slow parameters.

We first derive the time dependent Floquet Schrödinger equation relevant for processes
induced by chirped laser pulses in the next section. The adiabatic principles to solve this
equation and their consequences are next described, with an analysis of the occurrence of
dynamical and geometric phases (Sections 2.2,2.3,2.4).

The use of adiabaticity in the Floquet dynamics will allow one to induce robust population
transfers as will be described in the next chapter. One of the main aspect is to drive the
system specifically through various resonances. The resonances can be classified as zero-field
and dynamical resonances. The zero-field resonance is defined as an exact resonance identified
when the coupling field is switched off. Such a resonance has an effect on the system even
for a very small field amplitude. The dynamical resonance occurs beyond a threshold of field
amplitude. They are defined and studied in Chapter 5.

For non-resonant processes, the Floquet states are non-degenerate at any time: The dynam-
ics follows, up to a phase, the instantaneous Floquet state whose eigenenergy is continuously
connected to the one associated to the initial Floquet state (Sections 2.2,2.3). This adiabatic
transport can be generalized if more than one Floquet state is involved in the dynamics. Es-
timates from the deviation from a strict adiabatic dynamics are analyzed in Section 2.5 for
non-resonant processes.

The adiabatic evolution for a zero-field resonant process depends on the way how the dy-
namics explores the resonance (Section 2.6). One can describe it on the example of a laser
pulse of resonant (or quasi-resonant) carrying frequency leading to two degenerate (or quasi-
degenerate) Floquet states at early times, such that the dynamics has to be described in the

25
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subspace spanned by these two coupled states. The process can be described as follows: When
the field rises, this degeneracy is dynamically lifted, which induces a sharing of the popula-
tion between the two instantaneous Floquet branches whose eigenenergies are continuously
connected to the initial degenerate ones. This process will be the origin of the creation of co-
herent superposition of states by adiabatic passage (see Section 3.4). We show that this lifting
of degeneracy is instantaneous for one- and two-photon exact resonance processes. These two
branches are next followed adiabatically by the dynamics if the pulse envelopes are slow enough,
in the same way as in non-resonant processes. When the amplitude of pulse later decreases,
the dynamics goes through the inverse process of creation of degeneracy which induces the
interference of the two branches at the very end of the process. One can see in this example
the necessity to consider an adiabatic transport along more than one Floquet state.

An alternative way to explore the zero-field resonance is to chirp a laser pulse which is
switched on and off adiabatically sufficiently far from the resonance. The chirp is such that
the frequency is swept through the resonance when the field is on. The resonance appears in a
quasienergy diagram (as a function of time or as a function of the field parameters) as an avoided
crossing (Section 2.7). This way leads to a qualitatively different description of the adiabatic
evolution, since here a single Floquet state is involved in the dynamics as in non-resonant
processes. An avoided crossing will mainly limit the application of the adiabatic theorem: if the
dynamics is not slow enough, dynamical transitions, so-called non-adiabatic transitions, will
be induced between the Floquet states forming the avoided crossing. A local Landau-Zener
analysis can be invoked to determine this local non-adiabatic transition. Adiabatic passage
along the avoided crossing induces in general a transition with respect to the bare states.

The dynamical resonances, which occur beyond a threshold of field amplitude, also usually
appear as avoided crossings (see Section 5.2).

All these different types of resonances will be characterized geometrically in the next chapter.

2.1 The Floquet Schrödinger equation for chirped laser

pulses of rotating polarization

We consider here for simplicity one chirped laser mode with an additional rotating polarization.
Extension to multimode process is straightforward. The slow parameters of characteristic time
τ are the laser pulse envelope Λ(t), the frequency ω(t), and the dipole moment µ(t) (which
includes the slowly rotating polarization for the dipole coupling of Eq. (1.1)). The time
dependent phase can be written as

θ + g(t), with g(t) = ω(t)t (2.1)

We consider a semiclassical Hamiltonian that depends on these slow parameters

Ĥ [Λ(t),µ(t),ω(t)](t) = H [Λ(t),µ(t)](θ + g(t)). (2.2)

For the dipole coupling with a pulse envelope

E (t) = Λ (t) Emax, (2.3)

chirped frequency ω(t), and rotating polarization µ(t) we take the semiclassical Hamiltonian

Ĥ [Λ(t),ω(t),µ(t)](t) = H0 − E (t)µ (t) cos (θ + ω (t) t) . (2.4)
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The parameter τ is here a measure of the total duration of the pulse. For instance we can take
Gaussian pulses

ΛGaussian (t) = e−(t/τ)
2

(2.5)

of full width at half maximum τFWHM = τ
√
2 loge 2 for the intensity. If we take a pulse of the

form

Λtrig (t) =

{
sin2

(
π t−ti

τ

)
, if t ∈ [ti, ti + τ ]

0 elsewhere,
(2.6)

usually called trig pulse, the parameter τ is the total length of the pulse. We use the square to
ensure the continuity of the first derivative which avoids additional nonadiabatic losses as we
will discuss.

Remark. For some arguments involving adiabatic evolution pulses that have a well-defined
beginning and end present conceptual advantages, since they allow clear-cut statements. For
other considerations (like the Dykhne-Davis-Pechukas analysis needed in Section 3.3) one needs
real analytic pulse shapes, which excludes shapes that are identically zero on the complement of
a finite interval.

We derive the Floquet Hamiltonian K associated to this semiclassical Hamiltonian by start-
ing with the following definition of the corresponding propagator, which is the natural gener-
alization of (1.13)

UK (t, t0; θ) := T−g(t)U (t, t0; θ) Tg(t0), (2.7)

where Tg(t) is the translation operator which acts on L2(S
1, dθ) as Tg(t)ξ (θ) = ξ (θ + g(t)).

The operator U is the propagator of the Schrödinger equation

i~
∂

∂t
U (t, t0; θ) = H [Λ(t),µ(t)] (θ + g(t))U (t, t0; θ) (2.8)

if and only if UK satisfies the Floquet Schrödinger equation

i~
∂

∂t
UK (t, t0; θ) = K [Λ(t),µ(t),ωeff(t)]UK (t, t0; θ) , (2.9)

where

ωeff(t) =
dg

dt
(t) = ω(t) + ω̇t (2.10)

and

K [Λ(t),µ(t),ωeff(t)](θ) = H [Λ(t),µ(t)](θ)− i~ωeff(t)
∂

∂θ
. (2.11)

In terms of states, Eq. (2.7) gives the correspondence between ϕ(t; θ) the solution of Eq.
(2.8) and ψ(t, θ) the solution of Eq. (2.9) [27]:

ϕ(t; θ) = Tg(t)ψ(t, θ) = ψ(t, θ + g(t)). (2.12)

The above result is proved in Appendix A. We point out the appearance of an effective instan-
taneous frequency in the Floquet Hamiltonian (2.11), which is the derivative of the phase of
the field [27].
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We remark that this correspondence between the semiclassical and Floquet dynamics with
additional time dependent parameters is exact (i) without specific requirement on the number
of oscillations of the classical field in the pulse, and (ii) even if these parameters do not have
slow variations. Such slow variations will be convenient to yield robust processes as we will show
below. The number of oscillations in the pulse will be relevant to apply resonant approximations
as we will study.

2.2 Adiabatic evolution – Dynamical and geometric pha-

ses

The preceding analysis is well adapted when one considers slowly varying laser parameters.
One can study the Floquet Schrödinger equation invoking adiabatic principles by analyzing the
Floquet Hamiltonian as a function of the slow parameters.

It is convenient to consider explicitly the time-scale in the slow parameters: Λ(t) =: Λ̃(s)
and ωeff(t) =: ω̃eff(s), where s = t/τ is a reduced time, τ a characteristic time for the slow
parameters and t is the physical time. The slow parameters are gathered in a formal vector

r(s) =
[
Λ̃(s), ω̃eff(s)

]
. The Floquet Schrödinger equation reads

i~
d

dt
|ψ(t)⟩ = Kr(t/τ)|ψ(t)⟩ (2.13a)

or equivalently

i
~
τ

d

ds
|ψ(τs)⟩ = Kr(s)|ψ(τs)⟩. (2.13b)

We denote P (t) =
∑

m∈S

∣∣∣ψr(s)
m

⟩⟨
ψ

r(s)
m

∣∣∣ the projector at time t on S, a subspace of K, in which

we want to apply the adiabatic evolution. The adiabatic theorem can be formulated as:

lim
τ→∞

UK (t, t0; θ)P (t0) = lim
τ→∞

P (t)UK (t, t0; θ) , (2.14)

if the instantaneous eigenenergies λ
r(s)
m ,m ∈ S are far enough from the other eigenenergies for

all time t ≥ t0. Eq. (2.14) means that the dynamics is restricted inside the subspace S in the
adiabatic limit τ →∞.

In terms of eigenvectors, if one assumes a unique (nondegenerate) eigenvector
∣∣∣ψr(s)

m

⟩
asso-

ciated to the eigenenergy λ
r(s)
m , one has P (t) =

∣∣∣ψr(s)
m

⟩⟨
ψ

r(s)
m

∣∣∣ and the preceding formulation

becomes :
If the system is at time t0 = τs0 in the Floquet instantaneous eigenstate ψ(θ, t0) = ψ

r(s0)
m (θ),

then in the adiabatic limit τ →∞ the state solution ψ(θ, t) of (2.13a) is up to a phase given by
the instantaneous Floquet state whose eigenenergy is continuously connected to the initial one
at t0 :

ψ(θ, t) ≃ exp
[
iδr(s)m (t)

]
ψr(s)
m (θ). (2.15)

We remark that the formulation of the adiabatic theorem (2.14) in terms of projectors does not
show any phase. It appears only when we consider the formulation in terms of states.

The phase consists of a sum of dynamical and geometric parts:

δr(s)m (t) = −1

~

∫ t

t0

du λr(u/τ)m + i

∫ r(s)

r(s0)

dr · ⟨ψr
m|∇r |ψr

m⟩K . (2.16)
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This results from incorporating the form of the solution (2.15) in the Schrödinger equation

(2.13a), which gives dδ
r(s)
m /dt = −λr(s)m /~+ i(dr/dt) · ⟨ψr

m|∇r |ψr
m⟩K, and hence Eq. (2.16).

The dynamical phase depends on the trajectory followed in the space parameter and on its
speed. The geometric phase does not depend on its speed. Since the phase of the instantaneous
Floquet states is not uniquely specified at each r, on can always choose the geometric phase as
zero, that is known as parallel transport :

dr

dt
· ⟨ψr

m|∇r |ψr
m⟩K ≡ ⟨ψ

r
m|

d

dt
|ψr

m⟩K = 0. (2.17)

This is equivalent to requiring ⟨ψr
m

∣∣ψr+dr
m

⟩
K = 1 up to second order in r (or equivalently

Im ⟨ψr
m |dψr

m⟩K = 0, using the fact that the bracket is purely imaginary), i.e. to require the
phase invariance of the eigenvectors after an infinitesimal change of the parameters1. However,
the preceding requirement is non-integrable: if one follows a closed loop C in the parameter
space, the eigenvector at the end of the loop will differ in general from the initial one by a
phase γ(C):

⟨ψrinitial
m | ψrfinal

m ⟩K = eiγ(C), γ(C) = i

∮
C
dr · ⟨ψr

m|∇r |ψr
m⟩K (2.18)

This phase, which depends only on the geometry of the loop but not on the speed is the
geometric Berry phase [29]. It is non zero when the eigenvalues have a degeneracy, and can be
evaluated using the Stokes theorem as the flux through C of the magnetic field of a monopole
located at the degeneracy [29]. If only one parameter is varied, this geometric phase is 0. If two
parameters are varied, it can be π (if a degeneracy of the eigenvalues is enclosed by the loop in
the parameter space) or 0 (if not) (see Section 2.4 for an explicit example). If more than two
parameters are varied, it can take any value.

The adiabatic theorem is valid in two quite different situations:
(i) Well separated instantaneous eigenvalues (gap condition) [30, 31, 32] . In this case, if

the initial condition is an instantaneous eigenstate, the evolution in the adiabatic limit follows
the corresponding branch.

(ii) Exact crossing of eigenvalues. In this case the adiabatic evolution follows the initial
branch across the intersection, as if the intersection did not exist [30, 31, 33, 34]. This situation
of exact crossing occurs when the coupling between the states is exactly zero. Concerning the
terminology, such crossing curves are often called diabatic curves. This can be misleading since
in this case of exact crossing, the adiabatic dynamics follows diabatic curves. We remark that
this terminology is more appropriate for the limit case of a thin avoided crossing (associated to
a small coupling) with respect to a fast dynamics, allowing a jump from one (continuous) curve

1The expression “parallel transport” comes from geometry where angles take the role of quantum phases: A
vector which is parallel-transported along a closed path may acquire an angle with respect to its initial direction.
An intuitive classical example of such a situation [see B. Goss Levi, Phys. Today 46, 17 (1993)] is the parallel
transport of a vector along a loop on a sphere. For instance, we define a path starting from the north pole,
getting down to the equator, next going along the equator over a given distance, and finally getting back to
the north pole. The vector stays tangential to the curved surface at all times and is initially oriented in the
direction of the trajectory. It is next transported, remaining parallel to the direction it was pointing at before
each infinitesimal displacement. After completing the loop, the vector goes back to the original point, but is
rotated with respect to its initial direction. A smaller loop leads to a smaller rotation angle. For instance,
when the loop surrounds one eighth of the sphere, the rotation angle amounts to 90◦. The reason for this
rotation is purely geometrical-topological since it is connected to the intrinsic curvature of the sphere. No such
phenomenon would appear if vectors are parallel-transported along a flat manifold, such as a plane or a cylinder.
The rotation angle is related to the integral of the curvature on the surface bounded by the loop.
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to the other one. The topology of such a situation is however different since now the continuous
curves, called adiabatic curves, surround the avoided crossing. This is locally described as a
diabatic dynamics. The adiabatic dynamics through exact crossing can be thus thought as the
limit case of a diabatic dynamics through a thin avoided crossing.

Thus, in both cases in the adiabatic limit the population is carried at all times by a single
branch of instantaneous eigenstates. A quite general formulation of the adiabatic theorem
which imposes only smoothness conditions on the instantaneous eigenprojections without a
priori gap condition, and that contains both cases, has been presented recently by Avron and
Elgart [35, 36].

In the applications to the control of molecular processes the property that is most often
required is that the the population stays on a single branch. The case that is most detrimental
is when two or several branches do not cross but come close to each other, e.g. in the form
of narrowly avoided crossings. In this case, for a finite speed of the parameters there are
nonadiabatic transitions between the branches, i.e. the population spreads among them. This
behavior will be discussed in more detail below.

More than one Floquet state can be involved in the dynamics, for example if the initial
condition is a linear combination of the instantaneous eigenvectors. These Floquet states span
a subspace S and for the case of a subspace of nondegenerate eigenvectors, the adiabatic
transport can be formulated in terms of eigenvectors:

ψ(θ, t) ≃
∑
m∈S

cmexp
[
iδr(s)m (t)

]
ψr(s)
m (θ), (2.19)

where the cm are complex numbers determined by the initial condition

cm =
⟨
exp

(
iδr(s0)m (t0)

)
ψr(s0)
m (θ) | ψ(θ, t0)

⟩
(2.20)

A sketch of an argument that leads to the adiabatic theorem for the Floquet Hamiltonian of a
N−level system is given below in section 2.3.

In the case of globally degenerate eigenstates, Wilczek and Zee have extended the scalar
geometrical phases to a matrix representation, which is known in the literature as non-Abelian
geometric phases [37].

The quantum geometric phase found by Berry [29] has been reformulated by Moore and
Stedman [38] for periodic Hamiltonians in the Floquet formalism, extended by Aharanov and
Anandan [39] for arbitrary cyclic evolution (see also [40]), and by Samuel and Bhandari [41]
for a general noncyclic and non-unitary evolution.

2.3 The adiabatic theorem for Floquet Hamiltonians

We sketch here an argument that leads to the adiabatic theorem for an N−level system with
a Floquet Hamiltonian denoted Kr which generates the Floquet Schrödinger equation [Eq.
(2.13a)]

i~
∂ψ(θ, t)

∂t
= Kr(s)ψ(θ, t). (2.21)

We have to show that in the adiabatic limit up to corrections of order O(1/τ), the evolution is
approximated by

ψ(θ, t) ≃
∑
m∈S

cm exp
[
iδr(s)m (t)

]
ψr(s)
m (θ), (2.22)
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where the cm are complex numbers determined by the initial condition

cm =
⟨
exp

[
iδr(s0)m (t0)

]
ψr(s0)
m (θ) | ψ(θ, t0)

⟩
(2.23)

Let {ψr(s)
m } be an orthonormal basis of instantaneous eigenvectors of Kr(s), which we as-

sume to be sufficiently smooth as a function of s. We define the unitary operator T r(s) :=∑
m |ψ

r(s)
m ⟩⟨ψr(s0)

m |, where s0 is the initial time. This operator transforms the Floquet Hamilto-
nian by

Dr(s) :=
(
T r(s)

)†
Kr(s)T r(s), (2.24)

into an operator Dr(s), which for all s is diagonal in the basis taken at s0, {ψr(s0)
m }. Defining

transformed states by

ψ̃ (θ, s) =
(
T r(s)

)†
ψ (θ, τs) . (2.25)

the Schrödinger equation (2.21) can be rewritten as

i~
τ

∂ψ̃(θ, s)

∂s
=

[
Dr(s) − i~

τ

(
T r(s)

)† ∂T r(s)

∂s

]
ψ̃(θ, s) (2.26)

The last term of the right-hand side of Eq. (2.26) induces the nonadiabatic couplings between
the instantaneous Floquet states (off-diagonal terms, of the form∣∣∣ψr(s0)

ℓ

⟩⟨
ψ

r(s)
ℓ

∣∣∣ ṙ · ∇r

∣∣∣ψr(s)
m

⟩
K

⟨
ψ

r(s0)
m

∣∣∣, ℓ ̸= m) and the geometric phase (real diagonal terms).

In the adiabatic limit τ →∞, one can neglect the nonadiabatic couplings, i.e. the nondiagonal
terms that are of order O(1/τ):

i~
τ

∂ψ̃(θ, s)

∂s
≃
[
Dr(s) − i~

τ
diag(s0)

((
T r(s)

)† ∂T r(s)

∂s

)]
ψ̃(θ, s), (2.27)

where diag(s0) denotes the diagonal part with respect to the initial time basis {ψr(s0)
m }. Develop-

ing ψ(θ, t) at an initial time t0 = τs0 in the eigenvector basis of Kr(s0), spanning the subspace
S :

ψ(θ, τs0) =
∑
m∈S

cmψ
r(s0)
m (θ), (2.28)

one recovers Eq. (2.19). We remark that in many applications the initial time s0 is taken before
the rise of the laser pulse. In this case, since the interaction is off, the initial instantaneous
basis coincides with the eigenvectors of the free molecule multiplied by those of the free field.
The operator Dr(s) of Eq. (2.24) can then be written as

Dr(s) = −i~ω ∂

∂θ
+ dr(s) (2.29)

where dr(s) is an operator in H that is diagonal in the basis of the eigenvectors of the free
molecule.
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2.4 A two-state example with a loop in a two-dimension

parameter space: A two out-of-phase chirped pulse

loop.

In this section, we consider the example of a circuit near a degeneracy of two states in the
parameter space [29, 42] in the context of pulsed-driven two-state system (states |−⟩ and |+⟩)

H(s) =
~
2

[
−∆(s) Ω(s)e−iφ

Ω(s)eiφ ∆(s)

]
. (2.30)

It characterizes a near-resonant process (in the rotating wave approximation) of Rabi frequency
Ω(s) (assumed positive) associated to a field of phase φ at the origin and detuned by ∆(s)
[43, 44]. (Such an Hamiltonian is used as an example all along this chapter, it is studied and
constructed in the next part.) The state evolution ϕ(s) is given by the Schrödinger equation

i~
∂ϕ

∂s
(s) = τH(s)ϕ(s), ϕ(s) =

[
B−(s)
B+(s)

]
∈ C2, (2.31)

with |B−(s)|2 + |B+(s)|2 = 1, the scaled time s = t/τ . We consider the coupling between the
initial si and final sf times with the initial condition: B−(si) = 1, B+(si) = 0.

The adiabatic states Φ±(s) are defined as the eigenstates of H(s), associated to the eigen-
values λ±(s):

H(s)Φ±(s) = λ±(s)Φ±(s) (2.32)

with here

λ±(s) = ±
~
2
δ(s) (2.33)

and

δ(s) =
√

∆2(s) + Ω2(s). (2.34)

The Hamiltonian has two time-dependent parameters when the phase φ is kept fixed.

−1 −0.5 0 0.5 1
−1

−0.5

0
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1
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 sf

 ∆/∆0

 Ω
/∆

0  θ

Fig. 2.1 - Trajectory in the parameter space as a loop encircling the degeneracy (at Ω = ∆ = 0)
and parameterized by the radius ∆0 and the angle θ.
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We consider the trajectory in the space parameter shown in Fig. 2.1. In practice, such a
trajectory can be created by the pulse sequence of two identical chirped near-resonant pulses
but with a decreasing (resp. increasing) chirp for the first (resp. second) pulse and an ad-
ditional relative phase π between the two pulses. Both Rabi frequencies (considered without
loss of generality as real) increases and decreases such that the distance ~δ = ~∆0 between the
eigenvalues is kept fixed (i.e. the detuning is ∆0 when the Rabi frequency is zero): The trajec-
tory is a loop which encircles the degeneracy (at Ω = ∆ = 0). We can rewrite the Hamiltonian

with a single Rabi frequency Ω̃(s) := Ωe−iφ considered first positive (i.e. with φ = 0) and next

negative (i.e. with φ = π), and ∆ = ∆0 cos θ, Ω̃ = ∆0 sin θ with

tan θ = Ω̃/∆, 0 ≤ θ < 2π, (2.35)

The loop is described by θ varying from 0 to 2π with a constant radius ~∆0.
In this case, gathering the adiabatic states in the columns of the unitary matrix T (θ) =

[Φ−(θ),Φ+(θ)] :

T (θ(s)) =

[
cos(θ(s)/2) sin(θ(s)/2)
− sin(θ(s)/2) cos(θ(s)/2)

]
(2.36)

giving

T †(θ(s))τH(s)T (θ(s)) = τ

[
λ− 0
0 λ+

]
(2.37)

we can rewrite the Schrödinger equation as

i~
∂

∂s
ϕA(s) = HA(s)ϕA(s) (2.38)

with

HA(s) =
~
2

[
−τδ(s) −iγ(s)
iγ(s) τδ(s)

]
, (2.39)

the non-adiabatic coupling

γ(s) ≡ dθ(s)

ds
=

˙̃
Ω(s)∆(s)− Ω̃(s)∆̇(s)

∆2(s) + Ω2(s)
, (2.40)

and

ϕA(s) ≡
[
A−(s)
A+(s)

]
= T †(θ(s))ϕ(s) = T †(θ(s))

[
B−(s)
B+(s)

]
. (2.41)

Since A±(s) ≡ ⟨±| ϕA(s)⟩ = ⟨Φ±(θ(s))| ϕ(s)⟩, one can interpret |A±(s)|2 as the population of
the adiabatic states |Φ±(θ(s))⟩. In the adiabatic limit, mathematically defined as τ →∞, the
non-adiabatic coupling γ can be neglected and the dynamics follows the adiabatic states. By
inspection of Eq. (2.39), the condition for adiabatic evolution reads more precisely |γ(s)| ≪
2τδ(s).

Note that the eigenvectors satisfy here the condition of parallel transport (2.17).
One has initially Ω(si)→ 0+ and ∆(si) > 0, i.e. θ(si)→ 0 and ϕA(si) = ϕ(si), hence

A−(si) = B−(si) = 1, A+(si) = B+(si) = 0. (2.42)

In the adiabatic limit, one can directly calculate [without invoking Eq. (2.15)] the solution
from Eq. (2.41) and obtains after the loop

ϕ(sf ) = T (2π)ϕA(sf ) = −eiτ∆0(sf−si)/2
[
1
0

]
, (2.43)
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where the phase factor can be identified as the dynamical phase.
If we now apply the adiabatic theorem [i.e. using Eq. (2.15)], one obtains with the condition

of parallel transport

ϕ(s) = eiτ∆0(s−si)/2Φ−(θ(s)), (2.44)

giving at the end of the process

ϕ(sf ) = eiτ∆0(sf−si)/2eiδgΦ−(θ = 0) = eiτ∆0(sf−si)/2eiδg
[
1
0

]
, (2.45)

where the geometric phase δg can be identified to be π, when we compare Eqs. (2.43) and
(2.45). It corresponds exactly to the phase discontinuity of the eigenvectors between θ = 2π
and θ = 0:

Im log (⟨Φ−(θ = 2π)|Φ−(θ = 0)⟩) = π, (2.46)

as stated by Eq. (2.18).
Alternatively to the parallel transport, we can apply a gauge transform to the eigenvectors:

Φ̃±(θ) = e−iθ/2Φ±(θ) to make them single-valued continuous for all θ. In this case, using

T̃ (θ) =
[
Φ̃−(θ), Φ̃+(θ)

]
, we obtain

i~
∂

∂s
ϕ̃A(s) = H̃A(s)ϕ̃A(s) (2.47)

with

H̃A(s) =
~
2

[
−τδ(s)− θ̇ −iγ(s)

iγ(s) τδ(s)− θ̇

]
. (2.48)

The geometric phase appears here explicitly as
∫ sf
si
ds θ̇/2 =

∫ 2π

0
dθ/2 = π, when we calculate

directly the solution of Eq. (2.47) in the adiabatic limit.
If we had chosen a loop not encircling the degeneracy, we would have found 0 as the Berry

geometrical phase.
The use of three variable parameters give in general a geometric phase of any value [29].
Such a construction has been generalized for a three-state system in [42].

2.5 Non-resonant deviations from adiabaticity: Pertur-

bation theory, superadiabatic schemes and Dykhne-

Davis-Pechukas formula

Deviations from strict adiabatic evolution given by the adiabatic theorem are of the order of
1/τ (in amplitude) and can thus be estimated for short time by time-dependent perturbation
theory in the adiabatic basis, which does not diverge for non-resonant processes, i.e. if there
is no degeneracy nor quasi-degeneracy (appearing as avoided crossings) of the quasienergies.
These deviations can be due (i) to the fact that τ is finite and (ii) to the possible non-smoothness
of the parameters. These cases have been considered in [28] for nonsmooth pulse ends in a two-
level model driven by a non-resonant field. It also shows that the first order correction, which
involves the coupling of the Floquet zone considered with the other zones, captures well the
small deviations, that appear as oscillations (see Section 3.1 of [28]).
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It is however known that in fact the adiabatic passage is in general much more efficient when
considered at the end of the process. This is well understood in two-level systems for which
one has the following result: for smooth analytic parameters and nondegenerate eigenvalues,
the nonadiabatic corrections in the asymptotic adiabatic limit τ → ∞ are of order e−|const.|τ ,
exponential in τ , i.e. beyond all orders in 1/τ at the end of the process.

This result is due to Dykhne [45] and Davis and Pechukas [46] and has been extended to
N−level systems [47]. The conditions of validity of the so-called Dykhne-Davis-Pechukas (DDP)
formula has been established in [48, 49] (see Appendix D). This formula allows one to calculate
in the adiabatic asymptotic limit the probability of the non-adiabatic transitions. This formula
captures for example the result of the Landau-Zener formula, that we study below.

An alternative interpretation of this exponential nonadiabatic corrections has been given
through superadiabatic schemes. The superadiabatic schemes allow one to transform the prob-
lem to more adapted new basis (the so-called superadiabatic basis), where transition amplitudes
proportional to powers of 1/τ are removed. The scheme can be either iterative or by expansion
in power series of 1/τ . This series expansion has been introduced by Berry for parametrically
time-dependent quantum systems [50]. The iterative scheme [51, 52, 53, 54] consists in con-
structing iteratively Schrödinger equations by successive appropriate unitary transformations
of the effective dressed Hamiltonians. In the same spirit as we have done with the transfor-
mation (2.24) [or (2.36)], the first step corresponds to the instantaneous diagonalization (2.24)
of the Hamiltonian giving the new exact Schrödinger equation (2.26), containing nonadiabatic
couplings of first order in 1/τ . The next steps are diagonalizations of the new Hamiltonians
which reduce the nonadiabatic couplings to higher orders. Neither the series nor the iterations
converge in general. However Berry showed that, for this asymptotic series in two-level systems,
an optimal order, corresponding to the minimization of the nonadiabatic couplings, gives an
optimal superadiabatic basis with respect to which the transition amplitude acquires a univer-
sal error-function-like form. It is universal in the sense that it does not depend on the details
of the Hamiltonian. This optimal superadiabatic basis coincides with the free basis (and also
the adiabatic basis) at the beginning and at the end of the process when the fields are off. This
means that if there are no degeneracies or quasi-degeneracies at the beginning and the end of
the process, the adiabatic passage is in fact supported by a superadiabatic transport between the
beginning and the end of the process. The nonadiabatic corrections are then given at the end
of the process by the Berry’s universal error function times an exponential in τ , in agreement
with the DDP analysis [50, 54]. This approach has been successfully applied for a two-level
atom strongly perturbed by a non-resonant field, in the full Floquet representation [28]. The
resonant stimulated Raman adiabatic passage (STIRAP) process in a three-level system (that
is studied below) is an example which has degeneracies of the eigenvalues at the beginning and
the end of the process. It has been shown in [54] through an effective two-level model that in
this case, the nonadiabatic correction at the end of the process is given, in addition to the DDP
exponential term, by a perturbative term, whose dominant contribution is of first order in 1/τ .

Degeneracy and avoided crossing of the eigenvalues can be treated in a specific way, as
shown below. Optimization of adiabatic evolution will be studied in section 3.3 with the use of
geometric arguments.

Nonsmoothness of the parameters usually leads to nonadiabatic corrections in transition
amplitude of order p if the nonsmoothness is characterized by a discontinuous p−th derivative.
Nonsmooth pulse ends can be investigated [55] in the simplified model

H(t) =
~
2

[
0 Ω(t)

Ω(t) 2∆(t)

]
, (2.49)
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where we assume a real and positive Ω, which represents a two-level atom (with states |1⟩ and
|2⟩) interacting with a one-photon quasi-resonant pulse in the rotating wave approximation
[43, 44]. We consider a coupling characterized by a Rabi frequency Ω(t) = Ω0 sin

2(πt/τ),
having discontinuous second derivatives at the beginning and at the end of the pulse. The
frequency of the field is chirped in such a way that the distance between the two eigenenergies
is kept constant: ∆(t) = |t|

t

√
Ω2

0 − Ω2(t) (this choice will appear clearer in Section 3.3). With
this choice the nonadiabatic corrections are due uniquely to the nonsmoothness at the beginning
and at the end. In the adiabatic limit the population mostly transferred from |1⟩ to |2⟩. For
the nonadiabatic corrections in probability at the end of the pulse (i.e. the probability of the
population to return to state |1⟩), the first order nonadiabatic corrections in the adiabatic
asymptotic limit τ →∞, are given, after integrating twice by parts, by

P1 ≈
1

4

(
π

τΩ0

)4

sin2(Ω0τ). (2.50)

This gives, as expected, asymptotic non-adiabatic corrections in probability that scale as (1/τ)4,
since the discontinuity is in the second derivatives.

2.6 Resonant laser fields – Lifting of degeneracy – Gen-

eralized π-pulse

Processes that are resonant at zero field (i.e. with a atomic Bohr frequency that is an integer
multiple of the laser frequency) can be investigated through an effective Hamiltonian of the
model constructed from a multi-level atom driven by a quasi-resonant pulsed and chirped
radiation field (referred to as a pump field). If one considers a n-photon process between the
considered atomic states |1⟩ and |2⟩ (of respective energy E1 and E2), one can construct an
effective hamiltonian with the two dressed states |1; 0⟩ (dressed with 0 photon) and |2;−n⟩
(dressed with −n photons) coupled by the n-photon Rabi frequency Ω(t) (of order n with
respect to the field amplitude) and a dynamical Stark (or light) shift of the energies. It reads
in the two-photon RWA [see Section 6.2.2 and the Hamiltonian (6.61)], where we assume Ω real
and positive for simplicity,

H(t) =
~
2

[
0 Ω(t)

Ω(t) 2∆(t)

]
, (2.51)

with the effective detuning

∆(t) = ∆0(t) + S(t), (2.52)

where S(t) is the relative dynamical Stark shift (of second order) due to the contribution of
the other states and ∆0(t) the detuning associated to the multiphoton near-resonant process,
which is time-dependent if a chirp is applied. The population resides initially in the atomic
state |1⟩.

Note that the Hamiltonian (2.51) is a good approximation for the one- and two-photon
processes (as shown in Section 6.2.2 for the two-photon case), but that it is only a rough
approximation for higher multiphoton processes, since the Stark shifts should contain additional
terms of higher order to be consistent with the order of the effective Rabi frequency.

There is a resonance in this system if there exist times t for which Ω(t) is of the same order
as ∆(t), as described more precisely in Subsection 6.2.2.
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This is the situation we consider, i.e. maxtΩ(t) > ∆ (assuming a constant detuning for
simplicity). The question we address here is the early (or late) dynamics with a pulsed Rabi
frequency, when Ω ∼ ∆, to know if the subsequent dynamics, when Ω(t) > ∆, can be treated
with adiabatic principles and if so how to determine the initial condition. As we will see, it
is in general a superposition of the resonant states. Denoting τ as the characteristic time of
the rising (or falling) of the pulse, we can identify three regimes, depending how fast one goes
through the resonance. The slow dynamics defined by τ∆≪ 1 allows the dynamics to follow at
each time a single Floquet state (see Subsection 2.6.1). The fast dynamics defined by τ∆≪ 1
induces a lifting of degeneracy, leading to a fast dynamical splitting of the dynamics between
the two resonant Floquet states, as analyzed in Subsection 2.6.2. The intermediate regime
τ∆ ∼ 1 induces a non-trivial lifting of quasidegeneracy that should be treated specifically. In
Subsection 2.6.3, we summarize the results that we obtained in Ref. [56].

2.6.1 Adiabatic evolution with a constant detuning

For this model (2.51) we can write the conditions for adiabatic behavior in detail using the
procedure described above: One obtains the transformed Schrödinger equation (2.26):

i
∂

∂t
ψ̃(t) =

1

2

[
−δ(t) −iγ(t)
iγ(t) δ(t)

]
ψ̃(t), (2.53)

with

δ(t) =
√

∆2(t) + Ω2(t) (2.54)

and the nonadiabatic coupling

γ(t) =
Ω(t)∆̇(t)− Ω̇(t)∆(t)

∆2(t) + Ω2(t)
. (2.55)

The conditions for adiabatic evolution are satisfied if the nonadiabatic coupling is much smaller
than the separation of the eigenvalues

|γ(t)| ≪ 2
√
Ω2(t) + ∆2(t). (2.56)

If the detuning is constant, estimating Ω̇(t) ∼ Ω0/τ with Ω0 = maxtΩ(t) and taking Ω0 ∼ ∆,
we obtain that the dynamics is adiabatic if one assumes a large detuning with respect to 1/τ ,
where τ characterizes the length of the pulse:

τ∆≫ 1. (2.57)

The dynamics is thus in this case at all times adiabatic in the sense that it mainly follows the
single dressed eigenstate whose eigenvalue is continuously connected to the one associated to
the initial dressed state. This adiabatic transport results at the end of the pulse in an (almost)
complete return in the initially populated state. It is important to point out that the dynamics
is affected by the resonance in the sense that the excited bare state |2⟩ is highly populated
during the pulse if Ω is of the same order as ∆ or larger at the peak laser amplitude. For
two-level systems, the nonadiabatic small corrections lost to the other eigenstate have been
extensively studied (see for example [57] and references therein).
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2.6.2 Lifting and creation of degeneracy – Instantaneous splitting
and recombination of population

In the opposite case
τ∆≪ 1, (2.58)

a dynamical splitting of the dynamics between the resonant dressed states occurs. One can rein-
terpret the well-known π−pulse formula for a one-photon process and extend it for multiphoton
processes [58, 59]. In the case of an exact n−photon resonance, defined by (2.58), the two rele-
vant dressed states |1; 0⟩ and |2;−n⟩ can be considered, before the rising of the pulse, as exactly
degenerate with respect to the dynamics, associated to the dressed energy E1 = E2−n~ω. The
pulse rising induces a dynamical splitting of the population along two eigenstate branches. The
splitting is instantaneous only in the cases of exact one-photon (n = 1) and two-photon (n = 2)
resonances, since the non-adiabatic coupling is exactly zero. Thus we can calculate exactly the
solution of the Schrödinger equation for the two-level effective Hamiltonian.

The one-photon resonance case induces an equal sharing of the dynamics along the two
eigenstate branches, which allows one to recover the π−pulse formula

P2 ≡ |⟨2;−1| ψ (tf )⟩|2 = sin2 1

2

∫ tf

ti

dt |Ω(t)|. (2.59)

One can generalize it for the exact resonant case n = 2: one has (for α real)

∆(t) = S(t) = αE2(t), Ω(t) = βE2(t), β = |β|e−iφ, (2.60)

and the effective Hamiltonian (2.51) written as

H(t) =
~
2
E2(t)

[
0 β
β∗ 2α

]
. (2.61)

At each time, the time independent unitary transformation (having on its column the dressed
states |ψ+⟩ and |ψ−⟩)

T =

[
cos (ζ/2) − sin (ζ/2)
eiφ sin (ζ/2) eiφ cos (ζ/2)

]
, (2.62)

with

tan ζ = −|β|
α
, 0 ≤ ζ < π, (2.63)

diagonalizes the Hamiltonian H(s):

T †H(t)T =

[
λE+ 0
0 λE−

]
≡ D(t), (2.64)

with

λE± =
~
2
E2
(
α±

√
α2 + |β|2

)
. (2.65)

This can be interpreted as the lifting of the degeneracy

|1; 0⟩ = cos (ζ/2) |ψ+⟩ − sin (ζ/2) |ψ−⟩ , (2.66a)

|2;−2⟩ = e−iφ [sin (ζ/2) |ψ+⟩+ cos (ζ/2) |ψ−⟩] . (2.66b)
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Since the population resides initially in the atomic state |1⟩, one obtains a splitting of the
dynamics along the two dressed states (with non equal weight in general):

|ψ (t)⟩ = cos (ζ/2) exp

[
− i
~

∫ t

ti

du λ
E(u)
+

]
|ψ+⟩ − sin (ζ/2) exp

[
− i
~

∫ t

ti

du λ
E(u)
−

]
|ψ−⟩ . (2.67)

Note that Eq. (2.67) is exact, not an adiabatic approximation, since for the Hamiltonian (2.61)
the nonadiabatic coupling is exactly zero. At the end of the pulse, the inverse mechanism of
instantaneous recombination of population occurs at the creation of degeneracy

|ψ (tf )⟩ =

[
cos γ(tf ) + i

α√
α2 + |β|2

sin γ(tf )

]
|1; 0⟩ − i eiφ|β|√

α2 + |β|2
sin γ(tf ) |2;−2⟩ , (2.68)

with the phase

γ(tf ) =
1

2~

∫ tf

ti

du
[
λ
E(u)
+ − λE(u)−

]
=

1

2

√
α2 + |β|2

∫ tf

ti

dt E2(t). (2.69)

It can be interpreted as an interference of the two branches, with relative weight determined by
γ(tf ), which is equal to half the area between the two eigenvalues. One obtains the generalized
two-photon π−pulse formula:

P2 =
|β|2

α2 + |β|2
sin2

[
1

2

√
α2 + |β|2

∫ tf

ti

dt E2(t)
]
, (2.70)

which means that if √
α2 + |β|2

∫ tf

ti

dt E2(t) = π, (2.71)

one obtains the maximal population transfer to the state |2;−2⟩. There is no complete transfer
except in the limiting case α/|β| → 0. This can be interpreted by the fact that the dynamical
Stark shift [the diagonal element of the Hamiltonian (2.61)] has moved away the states from the
resonance. This process is not robust with respect to the pulse amplitude, since any deviation
will in general change the area.

If one takes an area different from π, it leads to a final coherent superposition of states. For
example, in the case of a one-photon process, one has [using formula (2.68) with α = 0 and
Ω = βE ]

|ψ(tf )⟩ = cos

(∫ tf

ti

dt
|Ω(t)|
2

)
|1; 0⟩ − ieiφ sin

(∫ tf

ti

dt
|Ω(t)|
2

)
|2;−1⟩ . (2.72)

and the area
∫ tf
ti
dt |Ω(t)| = π/2 leads to a superposition of states with equal sharing in proba-

bility

|ψ(tf )⟩ =
1√
2

(
|1; 0⟩ − ieiφ |2;−1⟩

)
. (2.73)

Again, this creation of superposition of states is not robust with respect to the pulse amplitude.
We will study in Section 3.4 a way to create a superposition of states whose coefficients are
robust in probability (i.e. squared absolute value of the coefficients).

We have described the picture with the simplified effective two-level model (2.51). However,
it is still valid in the more general case of a strong field resonant n−multiphoton (n > 2) process,
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although the effective two-level model is rather inaccurate as already mentioned. In this case,
one has to consider the full eigenenergies of the Floquet Hamiltonian that are relevant for the
process (for example calculated numerically), denoted as λ

E(t)
+ and λ

E(t)
− , continuously connected

to the degenerate energies λ
E(ti)
+ = λ

E(ti)
− = E1 = E2−n~ω. The associated Floquet states, which

in general depend on the pulse amplitude, are denoted
∣∣∣ψE(t)+

⟩
and

∣∣∣ψE(t)−

⟩
. The splitting of the

dynamics along the two branches in this case is not instantaneous but in general dynamical.
The splitting does not necessarily coincide with the lifting of the degeneracy. We assume here
that it occurs however approximately instantaneously at a time ts > ti (associated with the
complex coefficients denoted a+ and a− such that |a+|2 + |a−|2 = 1), and that before this time,
the solution is first shifted adiabatically into the Floquet state that is continuously connected
to the initial one [58]:

|ψ (ts)⟩ ≃ exp

(
− i
~

∫ ts

ti

du λ
E(u)
−

) ∣∣∣ψE(ts)1

⟩
(2.74a)

≃ exp

(
− i
~

∫ ts

ti

du λ
E(u)
−

)(
a+

∣∣∣ψE(ts)+

⟩
+ a−

∣∣∣ψE(ts)−

⟩)
, (2.74b)

where we have denoted before the splitting of the dynamics, for t < ts, the Floquet states
∣∣∣ψE(t)1

⟩
and

∣∣∣ψE(t)2

⟩
, continuously connected respectively to |1; 0⟩ and |2;−n⟩, and assumed associated to

the eigenenergies respectively λ
E(t)
− and λ

E(t)
+ . These two branches are next followed adiabatically

if the pulse envelopes are slow enough, which gives (up to an irrelevant global phase):

|ψ (t)⟩ ≃ a+ exp

(
− i
~

∫ t

ts

du λ
E(u)
+

) ∣∣∣ψE(t)+

⟩
+ a− exp

(
− i
~

∫ t

ts

du λ
E(u)
−

) ∣∣∣ψE(t)−

⟩
. (2.75)

When the pulse later falls, the dynamics goes through the inverse process of recombination
which occurs symmetrically at time t′s = tf − ts (if we assume a symmetric envelope) such that∣∣∣ψE(t′s)+

⟩
= a∗+

∣∣∣ψE(t′s)1

⟩
− a−

∣∣∣ψE(t′s)2

⟩
, (2.76a)∣∣∣ψE(t′s)−

⟩
= a∗−

∣∣∣ψE(t′s)1

⟩
+ a+

∣∣∣ψE(t′s)2

⟩
. (2.76b)

The resulting final transfer can be written as [58, 60]

P2 ≃ 4 |a+a−|2 sin2

[
1

2

∫ tf−ts

ts

du
(
λ
E(u)
+ − λE(u)−

)]
. (2.77)

Since in general the relative distance λE+−λE− between the eigenenergies is small at the beginning
and at the end of the pulse (before the splitting of the population and after the recombination),
the formula is well approximated by

P2 ≃ 4 |a+a−|2 sin2

[
1

2

∫ tf

ti

du
(
λ
E(u)
+ − λE(u)−

)]
. (2.78)

Thus the transfer probability depends on (i) the way in which the population is split and recom-
bined and (ii) the difference of the dynamical phases. In the context of complete transfer, the
process has been named generalized or multiphoton π-pulse and has been tested numerically for
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a five-photon resonance in a Morse potential [58]. This formula (2.78) also displays generalized
Rabi oscillations.

We remark that this multiphoton process, like the one-photon process described by Eq.
(2.59) and the two-photon process described by (2.70), are not robust with respect to the pulse
area.

2.6.3 Intermediate quasi-resonant regimes – Dynamical splitting of
population

Here we consider the intermediate quasi-resonant regime (for the one-photon quasi-resonant
process), defined as

τ∆ ∼ 1. (2.79)

This leads to a lifting (or creation) of a quasi-degeneracy, and adiabaticity is not satisfied at
early times, but only at asymptotic times. In this case, the unitary transformation T (2.62) is
time dependent and as a consequence the splitting of population is not instantaneous and leads
to a non trivial dynamics. It has been first studied numerically in, for example, [60, 61], and
more systematically in [56].

Here we summarize the resultats obtained in this paper. We constructe formulas charac-
terizing the dynamics at asymptotic times beyond the lifting of quasi-degeneracy, assuming
adiabatic evolution along the two branches. Pulses with power-law, smooth exponential, and
Gaussian rising are studied. We show that in the case of pulses with amplitude growing linearly
in time, the problem of the lifting of quasi-degeneracy can be interpreted as a half Landau-Zener
process [62].

Considering an early lifting of quasi-degeneracy, a late creation of quasi-degeneracy, and
an adiabatic evolution in between, we have applied these results to obtain the approximate
lineshape (i.e. the transition probability as a function of the detuning for a given pulse) of
various pulsed resonant excitation with a very good approximation. We have recovered in
particular with these tools the well-known lineshape for secant hyperbolic pulses (Demkov-
Rosen-Zener formula) [63, 64] and determined quite precisely the lineshape for trigonometric
pulses.

Note that the lineshape for Gaussian pulses has been recently calculated approximately
using the Dykhne-Davis-Pechukas approach [65].

Here we follow the notation of Section 2.4 (but with a single pulse, not a loop, a constant
detuning ∆(s) = ∆0 > 0 and φ = 0). We assume that the time t = T0 is a characteristic
time beyond which the evolution of the system is adiabatic, i.e. without population transfer
between adiabatic states. Our goal is to find the population transfer during the characteristic
time before adiabaticity. We define the scaled time with respect to it: s ≡ t/T0. We consider
the following models of coupling between the initial si and a final time sf :

(i) power law rising

Ω(s) =

{
Ω0s

n, τ > si
0, s < si,

(2.80)

with si = 0, sf & 1 for an integer n ≥ 1,
(ii) smooth exponential rising

Ω(s) = Ω0e
s (2.81)

with si → −∞, sf & 0, and
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(iii) smooth Gaussian

Ω(s) = Ω0e
−s2 (2.82)

with si → −∞ and sf → +∞.
We assume Ω(s) ≥ 0. We moreover consider for the pulse rising the initial conditions at

time si: B−(si) = 1, B+(si) = 0.
Adiabaticity beyond s ∼ 1 requires

2T0
[
∆2

0 + Ω2
0

]1/2 ≫ n. (2.83)

for a power law coupling, and ∆0 ≪ Ω0 with T0Ω0 ≫ 1 for exponential and Gaussian couplings.

Lifting of quasidegeneracy by linearly rising coupling

The initial condition A−(si) = B−(si) = 1, A+(si) = B+(si) = 0 leads to the amplitudes of the
adiabatic states

A±(s)  
1√
2

(
a∓ be∓iφ

)
e∓i(χ0+ηd(s)) (2.84a)

≡ √
p± e

∓i(χ±+ηd(s)) (2.84b)

with the transition probabilities

p± =
1

2

∣∣a∓ beiφ∣∣ = 1

2

(
1∓

√
1− e−πω2 cosφ

)
, (2.85)

φ = arg Γ

(
1− iω

2

4

)
− arg Γ

(
1

2
− iω

2

4

)
+
π

4
, (2.86)

ω =
T0∆0√
2T0Ω0

, (2.87)

a =
1√
2

√
1 + e−πω2/2, b =

1√
2

√
1− e−πω2/2, (2.88)

(where Γ denotes the Gamma–function) and the phases

χ± = χ0 + arg
(
a∓ beiφ

)
, (2.89)

χ0 = arg Γ

(
1

2
− iω

2

4

)
− ω2

4

(
1− ln

ω2

4

)
, (2.90)

ηd(s) =
T0
~

∫ s

0

ds λ+(s) =
T0
2

∫ s

0

ds
√
∆2

0 + Ω2
0s

2. (2.91)

This result is asymptotically exact. One can interpret
√
p± exp (±iχ±) as the probability am-

plitudes of the adiabatic states from the initial bare state |−⟩ resulting from the lifting of
degeneracy and the splitting of the population. This splitting is accompanied by phase shifts
±χ±. The additional phases ±ηd(τ) given by the time integral of the adiabatic eigenvalues are
thus the dynamical phases of the process.

At s = 1, we have observed already a precision of many digits both in population and phase.
One essential result is that the adiabatic populations p± and the phases χ± depend only on

ω [Eq. (2.87)]. The phases χ+ and χ− go asymptotically to −π/2 and 0 respectively for large
ω. One can remark that χ− is not very different from zero after the lifting of degeneracy for
any detuning. This trend has been numerically checked to occur for any n.
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Lifting of quasi-degeneracy by exponentially rising coupling

In the adiabaticity region where the population of the eigenstates is time independent, with
the initial condition A−(si) = B−(si) = 1, A+(si) = B+(si) = 0 at si → −∞, we obtain the
amplitudes of the adiabatic states

A±(s) 
√
p± e

i(ξ∓ζ(s)) (2.92)

with the transition probabilities

p− =
1

1 + e−πϖ
, p+ =

e−πϖ

1 + e−πϖ
, (2.93)

the instantaneous dimensionless pulse half-area (which is in fact an instantaneous Rabi fre-
quency half-area)

ζ(s) =
T0
2

∫ s

−∞
ds′Ω(s′) =

T0
2
Ω0e

s, (2.94)

the dimensionless detuning

ϖ = T0∆0 (2.95)

and the phase

ξ = arg Γ

(
1

2
+ i

ϖ

2

)
+ϖ ln 2− ϖ

2
ln 2ζ(si). (2.96)

(In practice, si is to be taken as a finite large negative number.) The phase ξ of the amplitudes
is a common phase for the resulting superposition of adiabatic states. There is no additional
relative phase shift during the lifting of degeneracy.

It is remarkable that the transition probabilities depend only on the detuning ∆0T0 (and
not on Ω0). Moreover the preceding dynamical phase is here replaced by a pulse area.

Lifting of quasidegeneracy by power law rising coupling

Asymptotic analysis and perturbation theory allows us to obtain

An,±(s) 
√
pn,± e

∓i(χn,±+ηn(s)) (2.97)

with the transition probabilities

pn,± ≡ |An,±|2 =
1

2

(
1∓

√
1− e−πω2

n cosφn

)
, (2.98)

φn = arg Γ

(
1− iω

2
n

4

)
− arg Γ

(
1

2
− iω

2
n

4

)
+
π

4
, (2.99)

with

ωn ≡ T0∆0

(
1

T0Ω0

) 1
n+1

√
2

[2(n+ 1)]n/(n+1)

Γ
(

n+2
2(n+1)

)
Γ
(

2n+1
2(n+1)

) . (2.100)
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generalizing the ω of the linear rising, and the phases

χn,− =
sin
(
π
2
2n+1
n+1

)
sin
(
π
2
n+2
n+1

) χn,0 + arg
(
an + bne

iφn
)
, (2.101)

χn,+ = χn,0 + n arg
(
an − bneiφn

)
, (2.102)

χn,0 = arg Γ

(
1

2
− iω

2
n

4

)
− ω2

n

4

(
1− ln

ω2
n

4

)
, (2.103)

an =
1√
2

√
1 + e−πω2

n/2, bn =
1√
2

√
1− e−πω2

n/2, (2.104)

ηn(s) =
T0
2

∫ s

0

ds
√

∆2
0 + Ω2

0τ
2n. (2.105)

It is remarkable that the amplitude depends essentially on ωn (and also on the dynamical phase
ηn(s)).

Lifting of quasidegeneracy in two-photon processes

The preceding analysis gives arguments to explain that for the two-photon process [i.e. with a
time-dependent diagonal Shark shift in Eq. (2.51)], one expects to be able to compensate (at
least partially) the Stark shift and to populate completely the excited state for a well chosen
∆0 (time-independent). Such compensation has not yet been systematically studied.

2.7 Diabatic versus adiabatic dynamics around eigenen-

ergy crossings and avoided crossings

As mentioned above, an avoided crossing can result from a chirping process or from a dynamical
resonance induced by a field. An avoided crossing appears locally in the spectrum between two
dressed states. One considers in general that the dynamics is globally adiabatic with respect to
the other states in the subspace spanned by the dressed states forming the avoided crossing.
The adiabatic approximation might fail inside this subspace when the dynamics encounters this
avoided crossing.

If the coupling between the two dressed eigenvectors is zero, the eigenvalue crossing ap-
pears as a true crossing. This means that the branches ignore each other and the adiabatic
approximation still holds through the true crossing.

If the coupling is different from zero, the dynamics can either follow the avoided crossing
(adiabatic evolution), cross it (diabatic evolution) or partially cross it, depending on the speed
of the dynamics with respect to the shape of the avoided crossing.

We assume that the model depends on one slow time-dependent parameter, denoted r(t),
and that the shape of the avoided crossing as a function of r is well described around the
avoided crossing r = rc (occurring at time t = tc) by its width h and its curvature C (see Fig.
2.2). We choose the parametrization such that rc = 0. The eigenenergies read

λr± = ±h
√
1 +

( r
δr

)2
. (2.106)

The curvature is defined by

C =

∣∣∣∣∂2λ±∂r2
(r = 0)

∣∣∣∣ = h

(δr)2
. (2.107)
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Fig. 2.2 - Diagram of an avoided crossing of width 2h and of curvature C = h/(δr)2.

We label these two continuous branches by the instantaneous Floquet states ψ
r(t)
− and ψ

r(t)
+ .

The two eigenvalues λr± can be deduced from an effective local dressed Hamiltonian

Heff = h

[
r/δr 1
1 −r/δr

]
, (2.108)

in the basis

ψ1 ≡ ψ
r(t→−∞)
− ≡

[
1
0

]
, ψ2 ≡ ψ

r(t→−∞)
+ ≡

[
0
1

]
. (2.109)

We can approximately characterize the dynamics by linearizing it in time around the avoided
crossing: r(t) = ṙc(t− tc) and apply the Landau-Zener formula [66, 67] to calculate the proba-
bility to jump from the branch ψ− to ψ+ [26]:

P−→+ = exp

(
−πh× δr

ṙc

)
. (2.110)

The asymptotic transition probability P−→+ is higher for (i) a thinner avoided crossing, (ii) a
steeper curvature and (iii) a faster passage.
An avoided crossing gives rise to three qualitatively different regimes, that we can analyze
considering the system starting in the initial state ψ(t→ −∞) = ψ1 :

(a) If the speed is slow enough (ṙc ≪ h × δr), the dynamics is adiabatic, i.e. P−→+ ≈ 0
(meaning that the system goes into the state ψ2 far after the avoided crossing);

(b) If the speed is fast enough (ṙc ≫ h×δr), the dynamics is diabatic, i.e. P−→+ ≈ 1 (meaning
that the system stays in the state ψ1 far after the avoided crossing);

(c) Any intermediate speed leads to a sharing of the dynamics into the two branches, which
gives rise afterwards to two dynamical states which have their own adiabatic evolution.
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Formula (2.110) defines thus the efficiency of the diabatic passage. We remark that the
Landau-Zener formula gives the information for the whole range of gap distances, from the
limit of exact crossings to widely separated ones.

If we apply this analysis locally in the Floquet spectrum, it provides the matching between
the adiabatic evolution far from any avoided crossings and a local adiabatic or diabatic behavior
around them.

We conclude that the only unfavorable situation (with respect to the robustness) is the in-
termediate regime in which the population is split among the branches. In systems encountered
in applications there are often many levels that display exact and avoided crossings of different
sizes. In order to have an adiabatic transfer concentrated on a single branch, it is required to
choose the adiabatic speed in such a way that the population either goes completely across (in
narrow avoided crossings) or completely stays in the same branch by going slowly enough at
wide avoided crossings. This gives a strategy for the design of adapted laser pulses.
We remark that the preceding argument is based on the hypothesis that successive avoided
crossings, involving the same or different branches, can be treated sequentially, independently
of each other. There are cases where several avoided crossings interfere with each other, and
the simple sequential Landau-Zener analysis does not apply (see for example [68]).



Chapter 3

Topology of the quasienergy surfaces -
Elementary processes of population

transfer

In order to achieve a given population transfer between the initial and target states by adiabatic
passage, one has additionally to develop a global picture showing the possible paths that link
these states, to design the appropriate field parameters as a function of time which will allow
the desired adiabatic passage. We will describe how these connectivity properties of the Floquet
states are determined by the topology of the quasienergy surfaces as a function of the time-
dependent external field parameters [69, 70].

Adiabatic passage can result in a robust population transfer if one uses adiabatic variations
of at least two effective parameters of the total laser fields. They can be the amplitude and the
detuning of a single laser (chirping) or the amplitudes of two delayed pulses [stimulated Raman
adiabatic passage (STIRAP), see [71] for a review]. The different eigenenergy surfaces are
connected to each other by conical intersections, which are associated with resonances (which
can be either zero field resonances or dynamical resonances appearing beyond a threshold of
the the field intensities). The positions of these intersections determine the possible sets of
paths that link an initial state and the different target states. The paths can be classified into
topological equivalence classes. Two paths are topologically equivalent if one can be deformed
into the other without cutting it nor leaving the surfaces. All paths linking the initial and
target states that are in the same topology class are equivalent in the adiabatic limit. The
topological aspect is the key of the robustness of the process in the sense that the final transfer
does not depend on the precise shapes or areas of the laser pulses nor on precise tuning of laser
frequencies.

The topology of the surfaces is essentially determined by the resonances, which produce
avoided crossings of surfaces and conical intersections. When the surfaces do not interact
(zero coupling), one can also observe one-dimension intersections. The main ingredients of
adiabatic transport are a global adiabatic passage along one eigenstate combined with local
diabatic evolution near conical intersections (or with local adiabatic evolution through the exact
conical intersections). We will illustrate these properties using several simple examples.

We finally analyze the influence of a very few oscillations in a pulse. We show in a two-level
system with the topological tools that the appearance of multiphoton resonances due to the
broadening of the spectrum constitutes the limitation of the adiabatic Floquet theory.

47
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3.1 Topology of adiabatic passage by a chirped pulse and

SCRAP

The concept of the topology of adiabatic passage can be illustrated in the simple model of an
effective two-level atom interacting with a one-photon or two-photon near-resonant pulse in the
two-photon RWA [see Section 6.2.2 and the Hamiltonian (6.61)]

H(t) =
~
2

[
0 Ω(t)

Ω(t) 2∆(t)

]
, (3.1)

where Ω(t) (assumed here a positive real) stands for a one- or two-photon Rabi frequency of
a pump laser and ∆(t) = ∆0(t) + S(t) is the sum of ∆0(t), the detuning from the one- or
two-photon resonance, and S(t) the dynamical Stark shift produced by the other states. One
can consider two types of processes occurring in this effective two-level system:

(a) Direct chirping: the detuning from the resonance ∆0(t) is time dependent due to an
active sweeping of the laser frequency (see e.g. Ref. [72] for an effective two-photon chirping).
If one considers moreover a one-photon chirp, the dynamical Stark shift S(t) can be neglected.

(b) Stark chirped rapid adiabatic passage (SCRAP): the quasi-resonant laser frequency
(pump laser) is not chirped (the detuning ∆0 is time independent). The effective chirping
results from a total dynamical Stark shift S(t) = SS(t) + SP (t), with SS(t) due to an auxiliary
laser field (non resonant with any levels of the system), referred to as a Stark laser [73, 74] and
SP (t) due to the pump laser itself. If one considers a one-photon quasi-resonance for the pump
laser, the dynamical Stark shift SP (t) can be neglected.

The processes associated to this Hamiltonian (3.1) can be completely described in the dia-
gram of the two eigensurfaces

λ±(Ω,∆) =
~
2

(
∆±

√
Ω2 +∆2

)
(3.2)

which represent the eigenenergies of (3.1) as functions of the instantaneous effective Rabi fre-
quency Ω and the detuning ∆ (see Fig. 3.1). All the quantities are normalized with respect to
a characteristic detuning denoted |∆in|. They display a conical intersection at Ω = 0,∆ = 0
induced by the crossing of the lines corresponding to the states |1; 0⟩ and |2;−1⟩ for Ω = 0 and
varying ∆. In the plane Ω = 0, the states |1; 0⟩ and |2;−1⟩ do not interact. The crossing of
these states in this plane Ω = 0 can be seen consequently as a mute (or passive) resonance.
Thus adiabatic passage through the intersection or diabatic passage near the intersection leaves
the system in the same state. The way of passing around or through this conical intersec-
tion is the key of the successful transfer. Three generic curves representing all the possible
passages with a negative initial detuning − |∆in| are shown in Fig. 3.1. Note that the three
other equivalent curves with a positive initial detuning have not been drawn. The path (a)
corresponds to a direct chirping of the laser frequency from the initial detuning − |∆in| to the
final one + |∆in|. The paths (b) and (c) correspond to SCRAP with ∆0 = − |∆in| for the case
of a one-photon resonant pump. For the path (b), while the quasi-resonant pump pulse is off,
another laser pulse (the Stark pulse, which is far from any resonance in the system) is switched
on and induces positive Stark shifts S(t) > 0 (the Stark pulse frequency is chosen with this
aim). The Stark pulse makes thus the eigenstates get closer and induces a resonance with the
pump frequency . This resonance is mute since the pump pulse is still off, which results in
the true crossing in the diagram. The pump pulse is switched on after the passage through
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Fig. 3.1 - Surfaces of eigenenergies (in units of |∆in|) as functions of Ω/ |∆in| and ∆/ |∆in|
(dimensionless). Three different paths (all starting from the state |1; 0⟩, ∆ = − |∆in| and
Ω = 0), denoted (a), (b) and (c) are depicted: (a) corresponds to a direct chirping, and (b) and
(c) to SCRAP.

the crossing while the Stark pulse decreases. This induces this time the passage through the
non-mute resonance, generally characterized by an avoided crossing (which is located behind
the true crossing in Fig. 3.1, see also Fig. 3.2b). Finally the pump pulse is switched off. As
shown in the diagram, the adiabatic following of the path (b), combining the passage through
the true crossing and through an avoided crossing, induces the complete population transfer
from state |1⟩ to state |2⟩. The path (c) is similar to the path (b) but with the pulse sequence
reversed: It leads exactly to the same effect. In this case, the pump pulse is indeed switched on
first (making the eigenstates repel each other as shown in the diagram) before the Stark pulse
S(t) > 0, which is then switched off after the pump pulse.

In summary, the three paths (a), (b) and (c) represent fully adiabatic passage from state
|1; 0⟩ to state |2;−1⟩; (a) passes around the conical intersection, (b) and (c) pass both once
around the conical intersection and once through it.

We remark that the topology gives information on the dynamics for purely adiabatic passage.
For real pulses of finite duration one has to complement these information with the analysis of
the effects of non-adiabatic corrections.
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Fig. 3.2 - Numerical calculation illustrating the SCRAP process with Gaussian pulses for the
pulse peaks Ω0/|∆in| = 1.5, S0/|∆in| = 2, the delay td|∆in| = 15, and the pulse lengths τp|∆in| =
10, τs|∆in| = 12 (corresponding approximately to the path (b) of Fig. 3.1): (a) Population
histories Pn(t) = |⟨n|ψ⟩|2 for n = 1, 2 as a function of time in units of 1/|∆in|. Population
transfer P2(∞) to the bare state |2⟩ is nearly complete. (b) The associated eigenenergies λ±/~
(3.2) in units of |∆in|. (c) The Rabi frequencies Ω(t) and S(t) (in units of |∆in|) respectively
associated to pump and Stark pulses.

3.2 Robustness of adiabatic passage as a consequence of

the topological properties of the eigensurfaces

The process (a) is robust with respect to fluctuations of the two parameters since it is based
on the passage of the dynamics around the conical intersection. Thus neither a precise path
nor any phase condition are required. Adiabaticity conditions have additionally to be fulfilled
for the success of a path. They are here given by (2.56). In the next subsection, we discuss
optimized paths that minimize this nonadiabatic loss.

The processes (b) and (c) require an additional analysis around the crossing when the
dynamics slightly misses it. One has to consider the neighborhood of the conical intersection
as a thin avoided crossing. In this case, the dynamics meets locally a thin avoided crossing
instead of an exact crossing. This avoided crossing has to be passed diabatically for the success
of the process. The Landau-Zener analysis of Section 2.7 gives an estimation of the efficiency of
the diabatic passage through Eq. (2.110) approximating the local dynamics around an avoided
crossing with the linear time-dependent detuning ∆(t) = ∆̇(tc)(t − tc) ≡ ∆̇c(t − tc) and the
coupling Ω(t) = Ω(tc) ≡ Ωc, with tc the time when the avoided crossing is passed. The condition
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to achieve the diabatic passage locally can thus be formulated as

∆̇c ≫ πΩ2
c/2. (3.3)

Thus adiabatic passage in multi-level systems can be considered in general as global adiabatic
passage combined with local diabatic evolutions near conical intersections. In multi-level sys-
tems, near a conical intersection, where one considers a local ideal diabatic evolution, it is
essential that the evolution also be adiabatic with respect to the other states.

The peak amplitudes, the delay between the two fields and the pulse shapes are chosen
such that the conditions (2.56) and (3.3) are met in the concerned regions. Detailed conditions
to achieve diabatic and adiabatic passage can be found in [74, 75] for the example of delayed
Gaussian pulses.

We remark that if condition (3.3) is not satisfied, which is the case if one misses the conical
intersection in an intermediate regime (Ω2

c ≈ ∆̇c), the Landau-Zener formula shows that the
dynamics splits the population into the two surfaces near the intersection. This gives rise
afterwards to two states which will have their own adiabatic evolution.

In Fig. 3.2, we have performed a numerical calculation of the dynamics corresponding
to the path (b) and which confirms the preceding analysis. We have solved the time depen-
dent Schrödinger equation: i∂ψ/∂t = (H/~)ψ in units of a characteristic detuning |∆in|, with
Gaussian pulses for the pump and Stark lasers of respective characteristic length τ and τs:
Ω(t) = Ω0 exp[−(t− td)2/τ 2] S(t) = S0 exp[−t2/τ 2s ]. The pump is time-shifted by td. Fig. 3.2b
clearly shows a crossing followed by the avoided crossing. Using Gaussian pulses (which are
never zero) imply that we never have true crossings. However, the delay is chosen such that one
has a diabatic passage through the thin avoided crossing which thus appears as a true crossing
in Fig. 3.2b for the scale of the dynamics. We have used τp|∆in| = 10≫ 1 and τs|∆in| = 12≫ 1
to ensure the adiabatic passage condition (2.57) far after the crossing.

3.3 Optimization of adiabatic passage

Since in real experiments the pulses are of finite area, it is useful to analyze the conditions
that will optimize the adiabatic passage, i.e. the conditions that will allow one to minimize the
nonadiabatic losses for models with simple pulse and chirp shapes. Adiabatic passage can be
optimized by inspection of the eigenenergy surfaces as functions of the time-dependent param-
eters of the coupling. A contour plot of the difference of the eigenenergy surfaces exhibits level
lines. In Fig. 3.3, we have displayed level lines (as contours) corresponding to the eigenenergy
surfaces of Fig. 3.1. For this example, they are half circles given by

Ω2 +∆2 = ∆2
0, (3.4)

with radius ∆0 and center Ω = 0, ∆ = 0. The radius ∆0 corresponds to the chirp width for a
one-photon chirping process in a two-level atom.

In [55], it was shown, for a class of two-level models (with analytic pulses), that the passage
along these level lines in the adiabatic regime minimizes the non-adiabatic correction. The anal-
ysis is based on the Dykhne-Davis-Pechukas (DDP) formula [45, 46, 48, 49]. The nonadiabatic
correction that is minimized is the dominant contribution given by the DDP formula [55] (see
Appendix D). Note that if the pulses have some discontinuities, they dominate the nonadiabatic
loss [see Eq. (2.50)], and the level lines do not have any more the preceding optimal property.
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Fig. 3.3 - Contour plot of the difference of the eigenenergies as a function of Ω/|∆in| and
∆/|∆in|. Three different paths have be drawn: an optimal path (a)opt (i.e. on a level line)
corresponding to the topologically equivalent path (a) of Fig. 3.1 (with the final detuning ∆0 =
1.1|∆in|), the path (b) corresponding to the numerical calculation of Fig. 3.2, and a path (b)opt
close to an optimal one corresponding to the numerical calculation of Fig. 3.5.

This means that for a one-photon chirping process, if we choose the pulse shape Λ(t), giving
the Rabi frequency

Ω(t) = Ω0Λ(t), (3.5)

the optimized detuning is then given by

∆(t) = ∆0
|τ |
τ

√
1− Λ2(τ) (3.6)

with

∆0 = Ω0, (3.7)

i.e. such that the distance between the quasienergies is kept constant and equal to ~∆0 during
the process.

The adiabatic criterion is thus reduced to the choice of a level line, which has to be far
enough from the origin. For a one-photon chirping process, this corresponds to the choice of
the chirp width ∆0 such that

∆0τ ≫ 1, (3.8)

with τ the length of the pulse, according to (2.57). In practice one observes that adiabaticity
can be achieved for quite small pulse areas. For instance, for Gaussian pulses Λ(t) = e−t

2
, the

precise adiabaticity condition is ∆0τ ≫ 1/
√
2 ≈ 0.7. For the choice ∆0τ = 3.5(= 5× 0.7), one

observes a nonadiabatic loss in probability of only P1(+∞) ≈ 0.0015 [55].
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Fig. 3.4 - For the gaussian pulse shape, contour map of natural logarithm of the non-adiabatic
corrections at the end of the pulse log[P1(∞)] as a function of the normalized pulse area
TΩ0/2

√
π and the chirp widths T∆0 (dimensionless). Darker points correspond to smaller

P1(∞). The dashed line correponds to the level lines ∆0 = Ω0.

This is shown in Fig. 3.4 constructed for for various Rabi frequencies (3.5) and detunings
(3.6). These trajectories in the space parameter correspond to half ellipses of minor and major
axis of respective length 2∆0 and 2Ω0, centered in Ω = 0, ∆ = 0, and of respective equation(

Ω

Ω0

)2

+

(
∆

∆0

)2

= 1. (3.9)

For Ω0 = ∆0, the trajectories are circles, i.e. on an optimal level line.
Although the choice of a one-parameter family of ellipses for comparison with the circular

level lines is certainly not the most general one, it gives a simple and convenient way of illus-
trating the difference in transfer efficiency. Fig. 3.4 shows the contour plot of natural logarithm
of the non-adiabatic corrections at the end of the pulse log[P1(∞)] as a function of T∆0 and
TΩ0/

√
π. We can observe for ∆0 = 0 (no chirp and zero detuning) oscillations of the popula-

tion between 0 and 1, which correspond to the well known Rabi oscillations. In this model, the
complete population transfer occurs exactly when Ω0 satisfies

TΩ0

∫ +∞

−∞
Λ(τ)dτ = TΩ0

√
π = (2k + 1)π, k integer. (3.10)
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However this population transfer is not robust with respect to the pulse area as can be seen by
the strong gradients of the population along ∆0 = 0 for the (dark) values of Ω0 satisfying Eq.
(3.10).

We remark that the contour lines emerging almost vertically from ∆0 = 0 can be interpreted
as follows: for a given pulse area, the robustness is quite good with respect to ∆0, close to
∆0 = 0, in this model.

The Rabi oscillations extend continuously for ∆0 ̸= 0 with a larger width for larger T∆0.
For larger T∆0, these oscillations become closer to zero in a large region: this corresponds to
the robust almost complete population transfer of the adiabatic regime. As announced, the
line of minimum P1(τf ) converges very fast to the level lines Ω0 = ∆0. We remark that the
minimum pulse area leading to the (non-robust) transfer is obtained for ∆0 = 0 with k = 0 in
Eq. (3.10).

It is important to note that the level lines appear as a boundary between decreasing and
oscillatory regimes for the non-adiabatic correction P1(τf ).
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Fig. 3.5 - As in Fig. 3.2 but for Gaussian pulses giving parameters close to optimal, corre-
sponding to the path (b)opt in Fig. 3.3: pulse peaks Ω0/|∆in| = 1, S0/|∆in| = 2, the delay
td|∆in| = 8.3, and the (smaller) pulse lengths τp|∆in| = 6.7 τs|∆in| = 10. One can note the
almost parallel eigenenergies after the crossing.

This can be applied for the SCRAP process described above. We choose again Gaussian
pulses, but with parameters such that the path is now close to the optimal one, i.e. a level line.
The numerical calculation is shown in Fig. 3.5 and the associated path (b)opt in Fig. 3.3. We
can see that for smaller pulse areas compared to the ones used in Fig. 3.2, we obtain a better
population transfer, which is moreover monotonic.
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3.4 Resonant processes – Creation of coherent superpo-

sition of states – Half-SCRAP
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Fig. 3.6 - Surfaces of eigenenergies (in units of |∆in|) as functions of Ω/ |∆in| and ∆/ |∆in| for
positive ∆. Two paths starting and ending at the conical intersection have been drawn. The
coefficients 1/2 refer to the equal sharing of the lifting of degeneracy in the ∆ = 0−plane. The
dynamics, when starting in the ∆ = 0−plane, leads to this lifting of degeneracy involving the
two paths, and ends with a superposition of states with equal sharing in absolute value and a
relative dynamical phase. The dynamics, when starting in the Ω = 0−plane, leads to a trivial
lifting of degeneracy involving a single path [connected to the initial state, i.e. the lower (upper)
path for the initial state |1; 0⟩ (|2;−1⟩)], and ends with a superposition of states with equal
sharing in absolute value and no relative dynamical phase.

When the processes involve a zero-field resonance, one has to add the ingredient of lifting
of degeneracy. This means that we have to consider the dynamics starting (or ending) near
the conical intersection. This can be seen in Fig. 3.6 where the surfaces of Fig. 3.1 have been
redrawn for positive detunings (case of a one-photon resonance). When the dynamics starts
this way, it is characterized by two adiabatic paths, one on each surface. They will lead in
general to coherent superpositions of states.

An essential point is that the result of the lifting (or creation) of degeneracy depends on
the direction of the dynamics as already discussed in Section 2.6 for the case of one laser.

We study an exact resonant process (∆0 = 0) starting (or ending) thus exactly at the conical
intersection. We consider the cases that can be calculated analytically, with the Hamiltonian

H(t) =
~
2

[
0 Ω(t)

Ω∗(t) 2∆(t)

]
: (3.11)
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(i) a one-photon resonant pump (in this case, the Stark shift SP (t) can be neglected) giving
the detuning ∆(t) = SS(t) and the Rabi frequency Ω(t) = −µE(t)/~, µ = |µ|e−iφ;
(ii) a two-photon resonant pump giving ∆(t) = SP (t)+SS(t) with the effective two-photon Rabi
frequency Ω(t) = βE2(t), β = |β|e−iφ and its associated relative Stark shift SP (t) = αE2(t).

We denote the eigenvalues

λ± =
~
2

(
∆±

√
∆2 + |Ω|2

)
, (3.12)

and the corresponding dressed eigenvectors |ψ±⟩. In the ∆ (assumed positive) direction (i.e.
for Ω = 0), the lifting or creation of degeneracy occurs trivially along a unique surface:

|1; 0⟩ = |ψ−⟩ , (3.13a)

|2;−n⟩ = |ψ+⟩ . (3.13b)

All the other directions lead to a lifting of degeneracy with a sharing of population into the two
surfaces. The one-photon process gives in the Ω direction, or equivalently in the field-amplitude
E direction:

|1; 0⟩ =
1√
2
(|ψ+⟩ − |ψ−⟩) , (3.14a)

|2;−1⟩ =
e−iφ√

2
(|ψ+⟩+ |ψ−⟩) , (3.14b)

which implies a lifting of the degeneracy occurring along the two surfaces with an equal weight.
The lifting of degeneracy of the two-photon process in the field-amplitude E direction does not
occur in the Ω direction due to the Stark shifts, as seen in Section 2.6:

|1; 0⟩ = cos (ζ/2) |ψ+⟩ − sin (ζ/2) |ψ−⟩ , (3.15a)

|2;−2⟩ = e−iφ [sin (ζ/2) |ψ+⟩+ cos (ζ/2) |ψ−⟩] , (3.15b)

with

tan ζ = −|β|
α
, 0 ≤ ζ < π. (3.16)

The creation of degeneracy of the one-photon process is conversely given by

|ψ+⟩ =
1√
2

(
|1; 0⟩+ eiφ |2;−1⟩

)
, (3.17a)

|ψ−⟩ =
1√
2

(
− |1; 0⟩+ eiφ |2;−1⟩

)
, (3.17b)

and the one of the two-photon process by

|ψ+⟩ = cos (ζ/2) |1; 0⟩+ eiφ sin (ζ/2) |2;−2⟩ , (3.18a)

|ψ−⟩ = − sin (ζ/2) |1; 0⟩+ eiφ cos (ζ/2) |2;−2⟩ , (3.18b)

to which dynamical phases have to be added.
We analyze two kinds of paths which, starting in state |1; 0⟩, will lead to a coherent super-

position of states:
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(a) First, lifting of degeneracy in the ∆ direction [according to (3.13a)] giving one dressed
state involved in the dynamics, next adiabatic following on this dressed state along the lower
surface with Ω ̸= 0 and finally creation of degeneracy for decreasing Ω [according to (3.17a) for
the one-photon process and to (3.18a) for the two-photon process]. In Fig. 3.6, a particular
path of the one-photon process has been drawn (i.e. creation of degeneracy for ∆ = 0), yielding
a coherent superposition of states with equal weights in absolute value.

(b) First, lifting of degeneracy in a direction not parallel to the Ω = 0 plane, which gives two
dressed states involved in the dynamics [according to (3.14a) for the one-photon process and
to (3.15a) for the two-photon process], next independent adiabatic following on these dressed
states (along both the lower and upper surface) and finally creation of degeneracy in the ∆
direction [according to (3.13)]. In Fig. 3.6, one can see the two path associated to this (one-
photon) case, yielding also a coherent superposition of states with equal weights in absolute
value.

These two cases are produced by two different sequences: respectively (a) first the Stark
pulse and next the pump pulse (referred to as Stark-pump sequence), and (b) first the pump
pulse and next the Stark pulse (referred to as pump-Stark sequence). The phases associated to
the superposition of states resulting from these two different sequences are not identical. For
the sequence Stark-pump, we start (at time ti) with the lifting of degeneracy |ψ (ti)⟩ = |ψ+⟩,
which leads at the final time tf to (up to an irrelevant global phase)

|ψ (tf )⟩ = cos (ζ/2) |1; 0⟩+ eiφ sin (ζ/2) |2;−n⟩ . (3.19)

For the sequence pump-Stark, we start with the lifting of degeneracy |ψ (ti)⟩ = cos (ζ/2) |ψ+⟩−
sin (ζ/2) |ψ−⟩. Using the adiabatic transport for each branch, the state solution reads at the
end

|ψ (tf )⟩ = cos (ζ/2) |2;−n⟩ − ei
∫ tf
ti

ds (λ+(s)−λ−(s)) sin (ζ/2) |1; 0⟩ . (3.20)

Thus the two sequences lead to the same superposition in probabilities but with different phases.
The sequence pump-Stark leads to an additional non-robust phase difference

∫ tf
ti
ds [λ+(s)− λ−(s)]

coinciding with the dynamical phase difference.
If one considers an initial coherent state for the photon field instead of a photon-number

state, the superpositions of states have the additional optical phase, giving for (3.19)

|ϕ (tf )⟩ = cos (ζ/2) |1⟩+ eiφ sin (ζ/2) e−inωt |2⟩ , (3.21)

and for (3.20)

|ϕ (tf )⟩ = cos (ζ/2) e−inωt |2⟩ − ei
∫ tf
ti

ds (λ+(s)−λ−(s)) sin (ζ/2) |1⟩ , (3.22)

with n = 2 for the two-photon process.
This process leading to a coherent superposition of states has been suggested in [61] and

named half-scrap, since it is very similar to the scrap process except it starts (or ends) in
resonance.

The question of robustness with respect to the detuning for resonant processes has been
studied in [56]. If one considers non exact one-photon resonance ∆ ̸= 0, one obtains, by lifting
of quasi-degeneracy, additional phases and amplitudes different from 1/

√
2, that depend on the

shape of the pulses. Referring to the notations of Subsection 2.6.3, one obtains that robustness
with respect to the detuning is better for power law rising than for the exponential and Gaussian
rising (better for small small and large Ω0). Robustness with respect to the amplitude Ω0 is
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better for smoother rising (and better for the exponential rising, which is independent of Ω0,
than for the Gaussian rising, which is weakly dependent on Ω0).

This half-Scrap could be generalized for a n−multiphoton process (n > 2) in a multi-level
system, with the use of the full quasienergies and Floquet states (calculated numerically).

3.5 Topology of Stimulated Raman adiabatic passage

(STIRAP) and STIRAP-like processes

Fig. 3.7 - Diagram of linkage patterns between three atomic states showing pump (P ) and Stokes
(S) transitions and the various detunings for (a) Λ, (b) ladder and (c) V systems.

The adiabatic passage induced by two delayed laser pulses, the well known process of STI-
RAP [71], produces a population transfer in Λ systems (see Fig. 3.7a). The pump field couples
the transition 1-2 and the Stokes field couples the transition 2-3. It is known that, with the
initial population in state |1⟩, a complete population transfer is achieved with delayed pulses,
either (i) with a so-called counterintuitive temporal sequence (Stokes plulse before pump) for
various detunings as identified in Refs [75, 76], or (ii) with two-photon resonant (or quasi-
resonant) pulses but far from the one-photon resonance with the intermediate state |2⟩, for any
pulse sequence (demonstrated in the approximation of adiabatic elimination of the intermedi-
ate state [77]). Here we analyze the STIRAP process through the topology of the associated
surfaces of eigenenergies as functions of the two field amplitudes. Our results are also valid
for ladder and V systems. We consider the most general situation with a (small) two-photon
detuning.

We also obtain the following results related to STIRAP: (i) We can explain the transfer of
population to state |3⟩ with intuitive (as well as with counterintuitive) specific quasi-resonant
pulses without invoking the approximation of adiabatic elimination. (ii) With specific quasi-
resonant pulses, we can selectively transfer the population to state |2⟩ for an intuitive sequence
or to state |3⟩ for a counterintuitive sequence, and (iii) with an intuitive or counterintuitive
sequence, we can selectively transfer the population to state |2⟩ or to state |3⟩ playing on the
detunings and on the ratio of the peak pulse amplitudes.

We also analyze the counterpart of the preceding processes in V systems (see Fig. 3.7c):
the initial population being in state |2⟩, we show that with specific non-resonant pulses, (i) we
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can selectively transfer the population to state |1⟩ for an intuitive sequence or to state |3⟩ for a
counterintuitive sequence; (ii) we can selectively transfer the population to state |1⟩ or to state
|3⟩ playing on the ratio of the peak pulse amplitudes.

The topology will allow us to classify all the possibilities of complete population transfer by
adiabatic passage for a three-level system interacting with two delayed pulses, as it was done
for the two-level system interacting with a chirped laser pulse.

The most general dressed Hamiltonian in the rotating wave approximation for these pro-
cesses reads [71]

H(t) =
~
2

 0 ΩP (t) 0
ΩP (t) 2∆P ΩS(t)
0 ΩS(t) 2 (∆P −∆S)

 , (3.23)

with Ωj(t), j = P, S (assumed real and positive) the one photon Rabi frequencies associated
respectively to the pump pulse (of carrier frequency ωP ) and the Stokes pulse (of carrier fre-
quency ωS). We have assumed that the states |1⟩ and |3⟩ have no dipole coupling and that
spontaneous emission is negligibly small on the time scale of the pulse duration. The rotat-
ing wave approximation is valid if ~ΩP (t) ≪ |E2 − E1| and ~ΩS(t) ≪ |E3 − E2|, where Ej,
j = 1, 2, 3 are the energies associated to the bare states |j⟩.

The detunings ∆P and ∆S are one-photon detunings with respect to the pump and Stokes
frequencies respectively and

δ = ∆P −∆S (3.24)

is the two-photon detuning.
For Λ, ladder and V systems (see respectively Fig. 3.7a, b and c), the one-photon detunings

∆P , ∆S are respectively defined as

Λ : ~∆P = E2 − E1 − ~ωP , ~∆S = E2 − E3 − ~ωS, (3.25a)

Ladder : ~∆P = E2 − E1 − ~ωP , ~∆S = E2 − E3 + ~ωS, (3.25b)

V : ~∆P = E2 − E1 + ~ωP , ~∆S = E2 − E3 + ~ωS, (3.25c)

which determines the dressed basis in which the dressed Hamiltonian (3.23) has been written:
respectively {|1; 0, 0⟩, |2;−1, 0⟩, |3;−1, 1⟩}, {|1; 0, 0⟩, |2;−1, 0⟩, |3;−1,−1⟩} and
{|1; 0, 0⟩, |2; 1, 0⟩, |3; 1,−1⟩}. In the following, we consider the population of the atomic states.

In what follows we study the topology of the eigenenergy surfaces for various generic sets of
the parameters. The topology depends on the detunings which determine the relative position
of the energies at the origin. We study various quasi-resonant pulses in the sense that the
detunings are smaller than or of the order of the associated peak Rabi frequencies, that is,

∆P . max
t

(ΩP ), ∆S . max
t

(ΩS), (3.26a)

δ . max
t

(ΩP ), δ . max
t

(ΩS). (3.26b)

Such conditions ensure in particular the occurence of STIRAP processes, even without the
strict two-photon resonance condition.

3.5.1 Transfer to a unique state

Allowing large enough amplitudes leads to three generic cases for δ > 0 and three other cases
for δ < 0, which are equivalent by symmetry.
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Fig. 3.8 - Surfaces of eigenenergies (in units of δ) as functions of ΩP/δ and ΩS/δ when the
dressed states (denoted λ1, λ2 and λ3, respectively connected to E1, E2 and E3 for fields off)
are such that λ2 < λ1 < λ3, with ∆P = −δ/2 and ∆S = −3δ/2, The paths (a) and (b)
(constructed with delayed pulses of the same length and peak amplitude) correspond respectively
to the intuitive and counterintuitive pulse sequences in Λ or ladder systems (for which the initial
population resides in state |1⟩).
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Fig. 3.9 - Surfaces of eigenenergies (in units of δ) as functions of ΩP/δ and ΩS/δ for the case
λ1 < λ3 < λ2, with ∆P = 3δ/2 and ∆S = δ/2. The paths (a) and (b) (with pulses of the same
length and peak amplitude) correspond respectively to the intuitive and counterintuitive pulse
sequences in Λ or ladder systems.
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Two typical examples are displayed in Figs. 3.8 and 3.9. In both cases, the surface con-
tinuously connected to the state |2⟩ is isolated from the two other surfaces which present a
conical intersection for ΩS = 0 and for ΩP = 0, respectively. This crossing corresponds to a
mute resonance as described above for chirping. (A resonance is called mute if the frequencies
are in resonance but the corresponding coupling term is zero or small in the Hamiltonian).

The topologies shown on the respective figures 3.8 and 3.9 are generic for the condition

∆P∆S > 0, (3.27)

with respectively
|∆P | < |∆S| and |∆P | > |∆S| . (3.28)

In the following, we describe in detail the case of Fig. 3.8. For the process in Λ or ladder
systems, where the initial population resides in state |1⟩, two different adiabatic paths lead
to the complete population transfer, depending on the pulse sequence. The path denoted (a)
corresponds to an intuitive sequence for the rise of the pulses. The pump pulse is switched
on first, making the levels connected to the states |1⟩ and |2⟩ repel each other (dynamical
Stark shift) until the level connected to |1⟩ crosses the level connected to |3⟩. The Stokes
pulse is switched on after the crossing. Next the two pulses can decrease in any order. The
path (b) is associated to a counterintuitive sequence for the decrease of the pulses. The two
pulses can be switched on in any order. The pump pulse has to decrease through the crossing
when the Stokes pulse is already off. These two results are valid even without application of
adiabatic elimination. The conditions of global adiabaticity are similar to the ones of the chirped
frequency case (2.56). As discussed in Section 2.7, an analysis of the diabatic evolution near
the conical intersections can be made locally with the Landau-Zener approximation (2.110).

The V systems are uninteresting in these cases since the final population comes back to the
state |2⟩ for any pulse sequence.

Another typical example is displayed in Fig. 3.10. The topology shown on this figure is
generic for the condition

∆P∆S < 0. (3.29)

In this configuration, two conical intersections involve the intermediate surface, one with the
lower surface and the other one with the upper surface. This topology gives here more possibil-
ities for transfer: the combined choice of the pulse sequence and the ratio of the peak amplitudes
allows the selective transfer into the two other states.

Figure 3.10 shows that, for the process in Λ (or ladder) systems, two different adiabatic
paths lead to different complete population transfers, depending on the pulse sequence. The
path (a) corresponds to an intuitive pulse sequence (for the decrease of the pulses) and allows
one to populate at the end the state |2⟩. The Stokes and pump pulses can be switched on in any
sequence and the pump pulse is switched off before the Stokes one. The path (b) corresponds
to a counterintuitive pulse sequence (for the rise of the pulses) and allows one to populate at
the end the state |3⟩. The Stokes pulse is switched on before the pump and the Stokes pulse
has to be switched off before the pump. We can thus selectively populate the states |2⟩ or |3⟩
provided the peak amplitudes are sufficiently strong to induce the adiabatic path to cross the
intersection involved.

For the process in V systems, the paths (a) and (c) of Fig. 3.10 show the respective selective
transfer into the states |1⟩ or |3⟩.

Figure 3.11 corresponds to the same topology of Fig. 3.10 but with a different path (a).
Figure 3.11 shows that, for Λ (or ladder) systems, we can selectively populate the states |2⟩
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Fig. 3.10 - Surfaces of eigenenergies (in units of δ) as functions of ΩP/δ and ΩS/δ for the
case λ1 < λ2 < λ3, with ∆P = δ/2 and ∆S = −δ/2. The paths (a) and (b) (with pulses of the
same length and peak amplitude) correspond respectively to the intuitive (transfer to |2⟩) and
counterintuitive (transfer to |3⟩) pulse sequences in Λ or ladder systems leading to the selective
transfer. The paths (a) and (c) correspond to the selective transfer in V systems (for which the
initial population resides in |2⟩), respectively to |1⟩ and |3⟩.

or |3⟩ if the pulse sequences are designed differently in their order and their peak amplitude.
Path (b) corresponds to path (b) of Fig. 3.10 and allows one to populate at the end the state
|3⟩. Path (a) corresponds to a longer pump pulse (still switched on after the Stokes pulse) of
smaller peak amplitude which allows one to populate at the end the state |2⟩. Note that we
can obtain a similar path (a) with a counterintuitive pulse sequence and equal peak amplitudes
if the detuning ∆P is taken smaller so that the crossing for ΩS = 0 is pushed to a higher pump
pulse amplitude ΩP .

For V systems, Fig. 3.11 shows that this selectivity [paths (a) and (c)] also occurs (for any
sequence of the pulses).

Figure 3.12 shows numerical calculations that illustrate some of the predictions of the above
analysis. It displays the populations of the states |2⟩ and |3⟩ at the end of the pulses for
intuitive and counterintuitive sequences with a large pulse area. The boundaries of the areas
of efficient transfer (black areas) are predicted quite accurately by the topology analysis: They
are determined by (i) the straight lines (thick full lines) ∆P = 0 and ∆S = 0 coming from the
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Fig. 3.11 - Surfaces of eigenenergies (in units of δ) with the same parameters as Fig. 3.10
showing the selective transfer with pulses of different peak amplitudes and length. For coun-
terintuitive sequences in Λ or ladder systems, the path (b) [corresponding to the path (b) of
Fig. 3.10] shows the transfer to |3⟩, and the path (a) (with pulses of different length and peak
amplitude) characterizes the transfer to |2⟩. The paths (a) and (c) correspond to the selective
transfer in V systems.

inequalities (3.27) and (3.29) and (ii) the branches of the hyperbolas (dashed lines)

∆S = ∆P −
(Ωmax)

2

4∆P

, (3.30a)

∆P = ∆S −
(Ωmax)

2

4∆S

, (3.30b)

which are determined from the positions of the conical intersections. Figure 3.12 shows that the
efficiency of the robust population transfer to the states |2⟩ or |3⟩ is identical for the intuitive
and counterintuitive sequences except in two regions: (i) areas bounded by ∆P∆S < 0 and
the branches of the hyperbolas, where the population is transferred in a robust way to state
|2⟩ for the intuitive sequence or to state |3⟩ for the counterintuitive sequence and (ii) an area
(smaller for longer pulse areas) near the origin where non adiabatic effects are strong for the
intuitive sequence and where the population transfer depends precisely on the pulse areas of
this intuitive sequence (see the comments below). Non adiabatic effects, which are smaller for
larger pulse areas, also occur near the straight line boundary regions. Non diabatic effects arise
as well near the hyperbolic boundaries.

For the concrete realization with finite pulses of moderate areas, we have to analyze the
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Fig. 3.12 - Transfer efficiencies P2 to |2⟩ (upper row) and P3 to |3⟩ (lower row) as functions of
the the detunings ∆P and ∆S (in units of Ωmax) at the end of the pulses for the intuitive (left
column) and counterintuitive (right column) sequences of delayed sine-squared pulses with the
same peak amplitude Ωmax and a large temporal area Ωmaxτ = 500 (τ is the pulse length and
the delay is τ/2). The efficient population transfers are bounded by ∆P = 0 and ∆S = 0 (thick
full lines) and the branches of hyperbolas (dashed lines). The areas bounded by the full lines are
labelled by the cases 213, 132, 123, . . . (These number sets are associated to the eigenenergies
for zero field amplitudes from the smallest to the biggest, for example 213 means λ2 < λ1 < λ3.)
The three first ones correspond respectively to Figs 3.8, 3.9 and 3.10.
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precise influence of non adiabatic and non diabatic effects. We discuss here these non adiabatic
effects referring to Fig. 3.8 supposing that the detunings are small enough with respect to the
speed of the process to yield non adiabatic transitions:
In the intuitive case, at the beginning of the process, the states |1⟩ and |2⟩ are coupled by
the pump pulse, and thus non adiabatic transitions can occur near the origin between the
surfaces connected to |1⟩ and |2⟩. In the counterintuitive case, at the beginning of the process,
state |1⟩ is not coupled to the other levels and there are no non adiabatic transitions near the
origin. At the end of the process, the adiabatic path ending in |3⟩ is not coupled to the other
levels, implying again absence of non adiabatic transitions near the origin. We thus recover the
well known fact that resonant STIRAP (with very small detunings) is more favorable with a
counterintuitive pulse sequence and leads to Rabi oscillations in the intuitive case.

3.5.2 Transfer to a coherent superposition of states

We study the various superposition of states that can be created by adiabatic passage in a
robust way with respect to variations of the field amplitude, using the topological analysis
with resonances of Section 3.4 (see also Section 2.6 for the case of one laser). This has been
extensively studied in [78]. We assume that one starts (at time t = ti) with a coherent state
for the photon field and in the atomic state |1⟩. We study here the Λ−system. Our results are
easily extended to the other system (ladder and V ), using the appropriate signs accompanying
the field frequencies. We study the creation of a superposition of states at the final time t = tf .

This can be analyzed with the help of Fig. 3.8, where we have taken ∆P = 0. The intuitive
pump-Stokes sequence induces first a lifting of degeneracy with equal sharing between the
dressed states |ψ+⟩ (the upper one, associated to the eigenenergy λ+) and |ψ−⟩ (the lower one,
associated to the eigenenergy λ−) initially connected to |1⟩ and |2⟩. If we assume that the
peak pump field amplitude is beyond the conical intersection, then the branches |ψ−⟩ and |ψ+⟩
respectively connect −|2⟩ and |3⟩ at the end. When ∆S < 0 (as in Fig 3.8), this leads at the
end of the process to the coherent superposition with a dynamical phase (up to an irrelevant
global phase)

|ψ (tf )⟩ =
1√
2

[
|3⟩ − ei

∫ tf
ti

ds (λ+(s)−λ−(s))e−iωS(ti−tf ) |2⟩
]
. (3.31)

When ∆S > 0, we obtain

|ψ (tf )⟩ =
1√
2

[
|3⟩+ e−i

∫ tf
ti

ds (λ+(s)−λ−(s))e−iωS(ti−tf ) |2⟩
]
. (3.32)

The counterintuitive Stokes-pump sequence leads to the transfer to the unique state |3⟩.
If we assume that the peak pump field amplitude is below the conical intersection, then the

branches |ψ−⟩ and |ψ+⟩ respectively connect −|2⟩ and |1⟩ at the end. This leads to coherent
superpositions between the states |1⟩ and |2⟩.

If we have additionally ∆S = 0, the counterintuitive sequence gives the standard STIRAP
(transfer to state |3⟩) and the intuitive sequence induces interferences of the branches at the
end of the processes, that do not lead to robust superposition of states.

We now analyze Fig. 3.9, where we assume ∆S = 0. When ∆P > 0 (as in Fig 3.9), this
leads at the end of the process to the coherent superposition without dynamical phase (but
still with the optical phase):

|ψ (tf )⟩ =
1√
2

[
|3⟩ − e−iωS(ti−tf ) |2⟩

]
. (3.33)
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When ∆S > 0, we obtain

|ψ (tf )⟩ =
1√
2

[
|3⟩+ e−iωS(ti−tf ) |2⟩

]
. (3.34)

The topological analysis thus shows that it is not possible with two quasi-resonant delayed lasers
to end in a superposition of states between the lowest states |1⟩ and |3⟩ in a robust way. We
can remark that in [79], it has been shown that one can create by adiabatic passage such a
superposition, however in a non-robust way in general (except when used in degenerate sub-
magnetic Zeeman states with appropriate elliptic fields), by modifying the end of the STIRAP
process (with the counterintuitive sequence), maintaining a fixed ratio of Stokes and pump
pulse amplitudes.

The numerical calculations of Figure 3.12 show the predicted superpositions of states at
∆P = 0 and ∆S = 0. They also show that a final superposition between |1⟩ and |3⟩ is possible
on some pieces of the hyperbolas (dashed lines). However they are not robust since the equation
of these hyperbolas (3.30) depend on the peak field amplitudes.

3.5.3 Ground-state superpositions

The preceding analysis shows thus that a ground state superposition is topologically inacces-
sible. In [78], we have shown that using an additional Stark laser, we are able to modify the
topology of the energy surfaces (creation or suppression of a conical intersection) in order to
design such ground state superpositions.

In Subsections 8.2.2 and 8.2.3, we recall other existing strategies to generate ground-state
superpositions, which additionally do not transiently populate the excited state.

3.6 Adiabatic Floquet theory for ultrashort pulses

We address here the influence of a small number of oscillations in the pulse so defined as an
ultrashort pulse, and analyze the applicability of the adiabatic Floquet theory and the tools
developed above. We show in the simple two-level model that these tools are still well adapted
even for a very few cycles in the pulse. A particular care must be taken with the resonances
since such an ultrashort pulse has a broad effective spectrum.

It is important to note that the correspondence (2.7) is exact independently of the number
of oscillations in the pulse. We study below the consequences of this correspondence for an
ultrashort pulse.

A small number of oscillations in the pulse signifies a broadening of the spectrum instanta-
neously available (i.e. not chirped) around the mean frequency. We study here the population
transfer by adiabatic passage through the one-photon resonance. We define the number of
oscillations in a pulse by the quantity

p := T
ωeff

2π
(3.35)

with T the pulse length. Adiabatic passage requires in general as shown above TΩmax ≫ 1
giving 2πΩmax/ωeff ≫ 1/p. If we take for instance TΩmax = 2π, we have Ωmax/ωeff = 1/p. Thus
the constraint of a few oscillations in the field implies that Ωmax is of the same order as ωeff .
This condition Ωmax ∼ ωeff prevents to apply the resonant approximation and requires to take
into account the full quasienergy operator.
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We consider a two-level model, |±⟩ of respective energy ±ω0/2, driven by a pulsed and
chirped field. The full Hamiltonian is in this case

H(θ + g(t), t) =
~ω0

2

[
−1 0
0 1

]
+ ~Ω(t) cos(θ + g(t))

[
0 1
1 0

]
, (3.36)

with the atomic Bohr frequency ω0 > 0, the Rabi frequency Ω(t) = µE(t)/~ (considered positive
for simplicity), the dipole moment µ, the electric field envelope E(t) and its phase θ+g(t). The
quasienergy operator reads:

K = −i~ωeff(t)
∂

∂θ
+H(θ, t), ωeff(t) = ġ(t). (3.37)

This operator when normalized by ~ω0 shows two independent parameters ωeff/ω0 and Ω/ω0.
To make the connection with the resonant Hamiltonian, we apply a resonant transformation
(see Chapter 5)

R =

[
1 0
0 e−iθ

]
, (3.38)

assuming that the mean frequency is one-photon quasi-resonant:

R†KR = −i~ωeff
∂

∂θ
+ ~

∆− ω0

2
1l2 +Hr(t) +Hcr(θ, t) (3.39)

with the dressed resonant Hamiltonian characterizing the one-photon resonance, the so-called
rotating wave approximation Hamiltonian:

Hr(t) =
~
2

[
−∆(t) Ω(t)
Ω(t) ∆(t)

]
, (3.40)

the effective detuning
∆ = ω0 − ωeff (3.41)

and the “counter-rotating” (or anti-resonant) Hamiltonian

Hcr(θ, t) = ~Ω(t)
[

0 e−2iθ

e2iθ 0

]
. (3.42)

The associated semi-classical Hamiltonian is Hr(t) + Ĥcr(t) with

Ĥcr(t) =
~Ω(t)
2

 0 e
−2i

[
ω0(t−ti)−

∫ t
ti
ds∆(s)

]
e
2i
[
ω0τ(t−ti)−

∫ t
ti
ds∆(s)

]
0

 . (3.43)

The dressed eigenelements in strong fields can be obtained from the numerical diagonalization
of the Floquet Hamiltonian. Figure 3.13 shows two views of such numerical quasienergy surfaces
(normalized with respect to ω0) as a function of ω/ω0 and Ω/ω0. We denote here ω ≡ ωeff for
simplicity. The complete spectral information is contained in one Floquet zone composed of
two surfaces inside a band of energy of width ~ω. The other surfaces can be constructed using
the periodicity of the spectrum: λn = λ + nω, for any (positive or negative) integer n, for a
given surface λ. In Fig. 3.13 we display two surfaces composing one Floquet zone and an other
shifted surface.
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Fig. 3.13 - Two views of the quasienergy surfaces (in units of ω0) as functions of ω/ω0 and
Ω/ω0 with the notation ω ≡ ωeff .
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Fig. 3.14 - Section (full lines) of the quasienergy surfaces of Fig. 3.13 as functions of Ω/ω0

for ω = 0.8ω0 (i.e. ∆ = 0.2ω0). The dashed lines are the quasienergies in the resonant
approximation (here dressed with various numbers of photons). One can distinguish respectively
the three-photon (five -photon) resonances as avoided crossings around Ω = 1.4ω0 (Ω = 2.7ω0).

Around the one-photon resonance ω ≈ ω0 (for Ω ≪ ω0) one can recognize the surfaces of
Fig. 3.1. For Ω = 0, the horizontal line of energy λ/(~ω0) = −0.5 corresponds to the lower
state of the system. The crossing line corresponds to the upper state dressed with minus one
photon.

One can distinguish in the plane Ω = 0 resonances appearing as crossings at ω = ω0/(2k+1)
with k = 0, 1, 2 · · · For Ω ̸= 0, they become avoided crossings. For ω = ω0/(2k), we have exact
crossings for any Ω, due to the particular symmetry of this model (one can see an example for
k = 1). This means that only odd numbers of photons can be absorbed (or emitted) in such a
system. The maxima of the upper surface correspond to crossings (for any Ω), and the valleys
to avoided crossings (i.e. to resonances). One can observe that for increasing Ω, the position of
the resonances are shifted in the direction of larger ω. This can be interpreted as a Stark shift
of the states. This implies that moving along a straight line with ω ≈ ω0 for growing Ω allows
one to cross dynamically the three-photon resonance. This is shown in Fig. 3.14. Larger Ω
will allow one to cross next the five-photon resonance, and so on. The three-photon resonance
represents thus a boundary that prevents the population transfer.

To achieve the population transfer, we suggest that one use level lines around the one photon
resonance, while keeping a sufficient distance with the next three-photon resonance.

The labeling of the surfaces can be only local due to the multiple crossings. We denote
around the one-photon resonance (ω ≈ ω0) respectively the upper (lower) surface as λ+ (λ−).
Near the one-photon resonance, the surface λ+ (λ−) is connected to the state |+,−1⟩ (|−, 0⟩)
(with the notation |±, k⟩ for the state |±⟩ dressed with k photon) for ω < ω0 and to the state
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|−, 0⟩ (|+,−1⟩) for ω > ω0.
The level lines around the one photon resonance correspond thus to the constant distances

|λ+ − λ−|, as represented in Fig. 3.15 (left). The right part of Fig. 3.15 shows the level lines
around the three-photon resonance.
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Fig. 3.15 - Contour plot of |λ+ − λ−| around the one-photon resonance (left), and around
the three-photon resonance (right). Note the different scales between the two graphs. Four
trajectories (a), (b), (c) and (d) are shown. The dashed line shows the position of the three-
photon resonance.

We use three different trajectories as shown in Fig. 3.15 around the one-photon resonance
ω ≈ ω0, which gives for the dynamics Tω0/2π ≈ p. We choose here roughly 5 oscillations in
the pulse, i.e. Tω0/2π ≈ 5 and Gaussian pulses

Ω(t) = ΩmaxΛ(t), Λ(t) = e−(t/τ)
2

(3.44)

with the estimate T ∼ 2πτ for the pulse duration giving τω0 ≈ 5.
The first trajectory (a) is a level line with ∆0/ω0 = 0.6, where ∆0 ≡ |∆(±∞)|. The

dynamics is such that τ∆0 = 3, which satisfies very roughly the adiabaticity condition [that we
estimate from Section 3.3 as τ∆0 ≫ 0.7, determined in the resonant approximation, see below
Eq. (3.8)]. This trajectory slightly avoids the three-photon resonance. The dynamics is chosen
to begin with ∆(−∞) = ∆0. (We have checked that we have the same final result if we start
with ∆(−∞) = −∆0.) It allows however a very efficient transfer as shown in Fig. 3.16.

The trajectories (b) and (c) follow in their lower parts a level line with ∆0/ω0 = 0.76 and
∆0/ω0 = 0.96 respectively and next cross the three-photon resonance. The trajectory (b) still
allows an efficient transfer, but not (c) which is associated to a three-photon avoided crossing
that is less narrow, as shown in Figs. 3.17 and 3.18. The loss can be analyzed in both cases
in terms of Landau-Zener type non-adiabatic dynamics through the avoided crossing shown in
both figures.

We have tested the limits of these tools using only approximately 2 oscillations in the pulse,
i.e. τω0 = 2. In this case, none of the level lines of Fig. 3.15 can satisfy the adiabatic condition
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Fig. 3.16 - Dynamics along the level line (a) of Fig. 3.15 with ∆(t → −∞) = 0.6ω0 for
a Gaussian pulse Ω(t) = Ωmaxe

−(t/τ)2 and the initial condition |ϕ(t → −∞)⟩ = |−⟩. Upper
frame: Populations Pj := |⟨j|ϕ(t)⟩|2. We obtain P+ ≈ 0.999. Middle frame: the normalized
Rabi frequency (full line) with its envelope (dotted line) and the instantaneous normalized de-
tuning (dashed line). Lower frame: the instantaneous quasienergies. The dynamics follows λ−
[connected to |−, 0⟩ (|+,−1⟩) at early (late) times], slightly avoiding the three-photon resonance
at early times, when the Rabi frequency is small, as shown by the two lowest curves. The lowest
curve indeed is connected to |+,−3⟩ (|−,−2⟩) at early (late) times.

τ∆0 ≫ 0.7. We construct a trajectory (d) with the level line ∆0/ω0 = 1.2 in its lower part,
which satisfies very roughly the adiabatic condition: τ∆0 = 2.4. As shown by Fig. 3.19, the
population transfer is rather good. Here two avoided crossings are consecutively involved in
the dynamics.
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Fig. 3.17 - Same as Fig. 3.16 but for a dynamics along the trajectory (b) of Fig. 3.15 with
∆(t → −∞) = 0.76ω0. We obtain P+ ≈ 0.994. The lower frame shows a very thin avoided
crossing (circled) around the three-photon resonances.
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Fig. 3.18 - Same as Fig. 3.16 but for a dynamics along the trajectory (c) of Fig. 3.15 with
∆(t → −∞) = 0.96ω0. We obtain P+ ≈ 0.929. The lower frame shows a narrow avoided
crossing (circled) around the three-photon resonances.
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Fig. 3.19 - Same as Fig. 3.16 but for a dynamics along the trajectory (d) of Fig. 3.15 with
∆(t→ −∞) = 1.2ω0. We obtain P+ ≈ 0.958.
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Appendix A

Relation between the semi-classical
and the Floquet dynamics

We want to show the relation (1.13) of section 1.1 in a more general setting in which the semi-
classical Hamiltonian can have other time dependent parameters, and in which the frequency
can be chirped. This is the general setting needed for the treatment of adiabatic evolution with
chirped pulses in Section 2.1, Eq. (2.7). We consider a semi-classical Hamiltonian of the form

Hr(t) (Θ(t)) , (A.1)

where r(t) represents a set of parameters that can have an arbitrary time dependence (slow or
not), and Θ(t) = (Θ1(t) . . .Θd(t)) represents d phases corresponding to d lasers acting on the
molecule.

Furthermore we consider a more general form of the time dependence of the phase

Θ(t) = θ + g(t). (A.2)

In the case of a chirped frequency we have e.g. Θ(t) = θ + v(t) t. As mentioned in Section 2.1
the effective instantaneous frequency is defined as ωeff(t) = dΘ(t)/dt = dg(t)/dt = v(t)+ v̇(t) t.
If we define the generalized translation operator(

Tg(t)Ψ
)
(θ) =

(
eg(t)

∂
∂θΨ
)
(θ) = Ψ

(
θ + g(t)

)
, (A.3)

the semiclassical Hamiltonian can be written as

Hr(t) (Θ(t)) = Tg(t)Hr(t)(θ)T−g(t). (A.4)

Proposition. The operator U is the propagator of the semi-classical Schrödinger equation
(lifted to the enlarged space K)

i~
∂

∂t
U (t, t0; θ) = Hr(t) (Θ(t))U (t, t0; θ) , U (t, t; θ) = 1lH, (A.5)

if and only if the operator UK, defined by

UK (t, t0; θ) = T−g(t)U (t, t0; θ) Tg(t0), (A.6)

satisfies

i~
∂

∂t
UK (t, t0; θ) = Kr(t)UK (t, t0; θ) , UK (t, t; θ) = 1lK, (A.7)
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with

Kr(t) = −i~ωeff(t) ·
∂

∂θ
+Hr(t)(θ), (A.8)

where ωeff(t) are the effective instantaneous frequencies

ωeff(t) = dΘ(t)/dt = dg(t)/dt. (A.9)

The Floquet Hamiltonian Kr(t) acts on the enlarged Hilbert space K = H ⊗ L2(T
d, dθ/2π),

where Td is the d-dimensional unit torus.

Proof: We first remark that

∂

∂t
Tg(t) ≡

∂

∂t
eg(t)·

∂
∂θ =

dg(t)

dt
· ∂
∂θ
Tg(t) ≡ Tg(t)ωeff ·

∂

∂θ
(A.10)

We start with (A.5) and invert eq. (A.6)

U (t, t0; θ) = Tg(t)UK (t, t0; θ) T−g(t0). (A.11)

The time derivative of U can be expressed as

∂

∂t
U =

∂

∂t
Tg(t)UKT−g(t0) = Tg(t)ωeff ·

∂

∂θ
UKT−g(t0) + Tg(t)

∂UK

∂t
T−g(t0) (A.12)

which after insertion into (A.5) and using (A.4) yields

i~Tg(t)
(
ωeff ·

∂

∂θ
UK +

∂UK

∂t

)
T−g(t0) = Tg(t)Hr(t)(θ)T−g(t)Tg(t)UKT−g(t0) (A.13)

which by multiplication from the left by T−g(t) and from the right by Tg(t0) yields (A.7). The
inverse implication follows from the same argument run backwards.



Appendix B

The structure of eigenvectors and
eigenvalues of Floquet Hamiltonians.
The concept of dressed Hamiltonian

In this section we show that the Floquet eigenvectors have the following general structure

ψm,k(x, θ) = C(x, θ)
[
ϕB
m(x)⊗ eik·θ

]
, (B.1)

where C(x, θ) is a unitary operator in K, and ϕB
m(x) ∈ H are the eigenvectors of a time and θ

independent operator B acting on H. The eigenvalues can be written in the form

λm,k = λBm + ~k · ω, (B.2)

where λBm are the eigenvalues of B. The eigenelements can thus be classified by two labels: m,
related to the molecule, and k, related to the photon field.

We remark that if λ is an eigenvalue of K with eigenvector ψ, then for any k ∈ Zd, λ+~k ·ω
is also an eigenvalue with corresponding eigenvector eik·θψ. This is an immediate consequence
of the form of K = −i~ω · ∂

∂θ
+H(x, θ). In the periodic case this leads to a periodic structure of

the spectrum. For instance, if we take an N -level model for the molecule, the Floquet spectrum
will consist of a group of N eigenvalues that are repeated at a distance kω for all k ∈ Z, i.e. an
infinite number of times. This periodic structure can be called Floquet zones, or Brillouin zones
in analogy to a similar property in crystals. Although the Floquet Hamiltonian has an infinite
number of eigenvalues and eigenvectors, once N are known, all the others can be constructed
trivially. As the examples in Chapter 9 show, the energies of two different Brillouin zones
can overlap and even lead to resonances that strongly couple the zones, leading to non trivial
physical effects.

In the quasiperiodic case of two or several incommensurate frequencies the Floquet eigenval-
ues cover the real line densely, and the overlap between Brillouin zones is much more intricate.

This structure of the eigenvectors and eigenvalues of Floquet Hamiltonians can be under-
stood by considering an alternative interpretation of the Floquet eigenvalue problem:

We look for a unitary transformation C(x, θ) : H → H (with θ interpreted as a parameter)
such that the semiclassical Schrödinger equation is transformed into an equation with a time-
independent Hamiltonian B, i.e. such that

UB(t, t0; θ) = C(Θ(t))−1U(t, t0; θ)C(Θ(t0)) (B.3)
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satisfies

i~
∂

∂t
UB(t, t0; θ) = BUB(t, t0; θ), (B.4)

where B = B(x) is a constant operator (i.e. independent of t and θ), acting on H. If such a
transformation exists, then

U(t, t0; θ) = C(Θ(t))e−iB(t−t0)/~C(Θ(t0))
−1 (B.5)

and B can be expressed in terms of C(Θ(t)) and H(Θ(t)):

B = C(Θ(t))−1H(Θ(t))C(Θ(t))− i~C(Θ(t))−1
∂C(Θ(t))

∂θ
· dΘ(t)

dt
. (B.6)

Acting with T−ωt from the left on (B.5) and with Tωt0 from the right, one obtains that C induces
a unitary transformation of the Floquet Hamiltonian in the enlarged space K

T−ωtU(t, t0; θ)Tωt0 ≡ e−iK(t−t0)/~

= C(θ)T−ωte−iB(t−t0)/~Tωt0C(θ)−1

= C(θ)e−(i/~)(t−t0)(−i~ω·∂/∂θ+B)C(θ)−1, (B.7)

i.e.

K = C(θ)(−i~ω · ∂
∂θ

+B)C(θ)−1. (B.8)

Hence, the determination of the eigenelements of K in K is reduced to the determination of
those of B in H. When such a transformation C(θ) can be found, the operator B is called
the dressed Hamiltonian. Although it acts only on the molecular Hilbert space H, it contains
the information on the photons, that “dress” the molecule. The transformation C(θ) can be
interpreted as a change of representation. We remark that the transformation C(x, θ), and
thus the dressed Hamiltonian B, is clearly not unique since C(x, θ) can be composed with any
unitary transformation that acts inside H.

We consider only the situation in which B has a purely discrete spectrum : BϕB
m = λBmϕ

B
m.

Since −i~ω ∂
∂θ

commutes with B, and its eigenelements are ~k · ω and eik·θ, k ∈ ZM , we can
conclude that the eigenvalues and eigenvectors of K have the general structure given in Eqs.
(B.2),(B.1). Since the sets of functions

{
ϕB
m

}
and

{
eik·θ

}
are complete orthonormal bases of

their respective spaces H and L2(T
d, dθ/2π), and since C is unitary, we conclude that {ψm,k}

forms a complete basis of K.
In order to arrive at the eigenvalue equation for K we remark that since B is hermitian in H

there is a unitary transformation T that diagonalizes it in a reference base {|fm⟩} of H (which
e.g. in the case of a two-level model can be represented in coordinates by {(1, 0) , (0, 1)}):

T †BT = D =
∑
m

λBm|fm⟩⟨fm|. (B.9)

T can be thought of as a matrix whose columns are the components of the eigenvectors of B
expressed in the basis {fm}:

T =
∑
m

|ϕB
m⟩⟨fm|, (B.10)

which allows one to write

ψm,k(x, θ) = C(x, θ)(T ⊗ 1lL)|fm ⊗ eik·θ⟩. (B.11)
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Inserting (B.9) into (B.8) we obtain

K = C(θ)T (−i~ω · ∂
∂θ

+D)T †C(θ)−1 (B.12)

or

KC(θ)T = C(θ)T (−i~ω · ∂
∂θ

+D). (B.13)

Applying both sides of this operator relation to the elements of the basis fm ⊗ eik·θ and using
the fact that

(−i~ω · ∂
∂θ

+D) |fm ⊗ eik·θ⟩ = (λBm + ~k · ω)|fm ⊗ eik·θ⟩, (B.14)

we arrive at the eigenvalue equation for K:

Kψm,k(x, θ) = λm,kψm,k(x, θ). (B.15)

Remark: Systems for which such a transformation C(x, θ) exists are called reducible. Due to
the Floquet theorem this is always the case for time-periodic Hamiltonians (for finite or infinite
dimensional H). However, in the case of several incommensurate frequencies (quasiperiodic
Hamiltonian) reducibility is not always satisfied, even for finite dimensional H [104, 105][106,
107] [20]. We remark that for finite dimensional H reducibility is equivalent to the property of
K having no continuous spectrum[20].
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Appendix C

Coherent states in the Floquet
representation

In this Appendix we show that the coherent states are represented in Floquet theory by a
generalized function Φθ0(θ), which is real, and depends on θ−θ0, where θ0 ∈ S1 is a fixed angle,
and (

Φθ0(θ)
)2

= 2πδ(θ − θ0). (C.1)

This can be obtained as follows. The photon field coherent states are eigenvectors of the
annihilation operator

a |α ⟩ = α |α ⟩, α = |α|e−iθ0 . (C.2)

In the usual Fock number state representation they are given, up to a phase factor, by

|α ⟩ = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n ⟩. (C.3)

In the phase representation they can be written as

Φ
(n̄)
θ0

(θ) = eiζe−|α|
2/2

∞∑
n=0

αn

√
n!
ei(n−n̄)θ

= e−|α|
2/2

∞∑
n=0

|α|n√
n!
ei(n−n̄)(θ−θ0) (C.4)

(where ζ is an arbitrary constant phase that we have chosen as ζ = n̄θ0). In order to obtain
the representation of coherent states in Floquet theory we have to take |α| =

√
n̄, since the

average photon number in a coherent state is given by |α|2, and then apply the limit n̄→∞.
This can be rigorously done using directly the representation (C.4), as was shown in [10].

Here we discuss an alternative construction, that is formal but gives a useful intuition. We use
an approximate expression of the coherent states for large n̄, obtained in [9], by developing

an̄,θ =
√
n̄ e−iθ

√
1− 1

n̄
i
∂

∂θ
≻̃

n̄→∞

√
n̄ e−iθ

(
1− 1

2n̄
i
∂

∂θ

)
, (C.5)

This leads to the following asymptotic expression [9] for the normalized coherent state corre-

sponding to α =
√
n̄ e−iθ0 , obtained as solution of e−iθ

(
1− i/(2n̄)∂/∂θ

)
Φ

(n̄)
θ0

= e−iθ0Φ
(n̄)
θ0

:

Φ
(n̄)
θ0

≻̃
n̄→∞

1

ν
exp {−2n̄ [1− cos (θ − θ0)− i (sin(θ − θ0)− (θ − θ0))]} (C.6)
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where the normalization constant is

ν2 = e−4n̄I0(4n̄) (C.7)

with I0 a Bessel function, which behaves asymptotically as

I0(4n̄) =

∫ 2π

0

dθ

2π
exp (4n̄ cos θ) ≻̃

n̄→∞

e4n̄

(8πn̄)1/2
. (C.8)

Therefore ∣∣∣Φ(n̄)
θ0

(θ)
∣∣∣2 ≻̃

n̄→∞
(8πn̄)1/2 exp {−4n̄ [1− cos(θ − θ0)]} , (C.9)

noticing that the function exp {−4n̄ [1− cos(θ − θ0)]} behaves like exp{−2n̄(θ− θ0)2} for n̄→
∞, we get ∣∣∣Φ(n̄)

θ0
(θ)
∣∣∣2 ≻̃

n̄→∞
2πδ(θ − θ0) , (C.10)

where δ(θ − θ0) is the usual Dirac delta function.
We remark that since the phase term in (C.4) (or in (C.6)) is odd in θ − θ0, we obtain that

Φ
(n̄)
θ0

(θ)→ Φθ0(θ) with Φθ0(θ) real and(
Φ

(n̄)
θ0

(θ)
)2
−→
n̄→∞

2πδ(θ − θ0). (C.11)

Furthermore, using the well-known properties of the expectation values of Nm on coherent
states, we obtain ⟨

Φ
(n̄)
θ0

(θ)

∣∣∣∣ − i ∂∂θ
∣∣∣∣Φ(n̄)

θ0
(θ)

⟩
L
= 0, for all n̄, (C.12)⟨

Φ
(n̄)
θ0

(θ)

∣∣∣∣ (−i)m ∂m

∂θm

∣∣∣∣Φ(n̄)
θ0

(θ)

⟩
L
−→
n̄→∞

∞, m ≥ 2. (C.13)

The subscripts in the scalar product symbols (⟨ | ⟩L) indicate on which space they act. We
conclude thus that in Floquet theory the photon coherent states are represented by the “square
root of a δ-function”, that we denote by Φθ0(θ) = (2π)1/2δ1/2(θ−θ0). Since we will be interested
in expectation values, only |Φθ0 |2 will appear in our calculations. The formal calculus rules for
δ1/2(θ − θ0) are given in Ref. [10].



Appendix D

Analytic solutions for two-level systems
- Dykhne-Davis-Pechukas formula

We consider in this appendix the scaled Schrödinger equation (setting ~ = 1)

i
∂ϕ

∂s
(s) = τH(s)ϕ(s), ϕ(s) =

[
B−(s)
B+(s)

]
∈ C2, (D.1)

in the basis of the two states {|±⟩}, with the scaled time s = t/τ , the initial condition (at time
si = ti/τ → −∞) B−(si) = 1, B+(si) = 0, and the Hamiltonian

H(s) =
1

2

[
−∆(s) Ω(s)
Ω(s) ∆(s)

]
, ∆,Ω ∈ R (D.2)

with a pulsed Rabi Ω(s) = Ω0Λ(s), Λ(s ± ∞) → 0. The natural question is the calculation
of the transition probability P+ = |B+(sf )|2 at the end of the pulse, and its dependence on
relevant parameters such as the pulse area τΩ0

∫
dsΛ(s), its shape Λ(s), and the detuning

(shape, initial and final values, slope, · · · ). Only few models are analytically solvable, the
most popular ones are described in the following section. An alternative method consists in
calculating the solution approximately. Perturbation theories usually give solutions for weak
Rabi intensities. One can calculate solutions in the adiabatic limit τ → ∞ using an analysis
due to Dykhne, Davis and Pechukas, as described below.

D.1 Analytic solutions

Most popular analytically solvable models include:
(a) The Rabi model [80]

Ω = const, ∆ = const (D.3a)

P+(t) =
Ω2

Ω2 +∆2
sin2

(
1

2

√
Ω2 +∆2 t

)
, (D.3b)

or

∆ = 0 (D.4a)

P+(t) = sin2

(
1

2

∫ t

ti

dtΩ(t)

)
. (D.4b)
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(b) The Landau-Zener model [66, 67]

Ω(s) = Ω0 = const, ∆ = β2s (D.5a)

P+ = e−
π
2
Ω2

0/β
2

. (D.5b)

Effects of finite coupling duration [62] and transition times [81] in this model have been inves-
tigated.

(c) The Demkov- Kunike model [82]

Ω(s) = Ω0 sech(s) ≡ Ω0/ cosh(s), ∆(s) = ∆0 +B tanh(s) (D.6a)

P+ =
cosh(πτB)− cos(πτ

√
Ω2

0 −B2)

cosh(πτB) + cosh(πτ∆0)
, (D.6b)

generalized in Refs. [83], and which includes as special cases the no-crossing Rosen-Zener model
[63] with B = 0 (i.e. with ∆(s) = ∆0 = const):

P+ = sech2

(
1

2
πτ∆0

)
sin2

(
1

2
τ

∫ +∞

−∞
dsΩ(s)

)
= sech2

(
1

2
πτ∆0

)
sin2

(
1

2
πτΩ0

)
, (D.7)

the level-crossing Allen-Eberly model [44] (generalized by Hioe [84]) with ∆0 = 0 (i.e. with
∆(s) = B tanh(s) crossing the resonance at s = 0):

P+ = 1−
cos2

(
1
2
πτ
√

Ω2
0 −B2

)
cosh2

(
1
2
πτB

) (Ω0 > B), (D.8a)

P+ = 1−
cosh2

(
1
2
πτ
√
B2 − Ω2

0

)
cosh2

(
1
2
πτB

) (Ω0 < B), (D.8b)

and the half crossing Bambini-Berman model [85] with ∆0 = B (i.e. with ∆(s) = B[1+tanh(s)]
increasing monotonically from ∆(−∞) = 0 to ∆(+∞) = 2B). Ref. [85] includes other class of
models, in particular with asymmetric pulses. We can also mention the Demkov model [64]

Ω(s) = Ω0e
−|s|, ∆(s) = ∆0 = const (D.9a)

P+ = sech2

(
1

2
πτ∆0

)
sin2

(
1

2
τ

∫ +∞

−∞
dsΩ(s)

)
= sech2

(
1

2
πτ∆0

)
sin2 (τΩ0) , (D.9b)

closely related to the Rosen-Zener model since Ω(s) has the same asymptotic limits.
One can also mention the Nikitin model [86] used in the context of atomic and molecular

collisions with crossings of electronic potential energy as a function of an internuclear distance
as the adiabatic parameter [87].

Using the notion of lifting of quasidegeneracy by a quasiresonant rising pulse, which splits
the population amongst two adiabatic branches, followed by an adiabatic transport along the
two branches, and ended by the symmetrically inverse problem of the creation of degeneracy
when the pulse fails, we have constructed approximate formulas of transition probability for
truncated trigonometric pulses

Ω(τ) = Ω0 sin
2 τ, 0 ≤ τ ≤ π (D.10)

of power law endings (with respect to time) [56].
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D.2 Dykhne-Davis-Pechukas formula

The Dykhne-Davis-Pechukas (DDP) formula [45, 46, 47] allows one to calculate in the adiabatic
asymptotic limit τ →∞ the probability of the non-adiabatic transitions P−(sf ) := |⟨−|ϕ⟩|2 at
the final time sf = tf/τ → +∞ as an exponential decay. It reads in the simplest case1

P−(sf ) 
∣∣eiτD(sc)∣∣2 = e−2τ ImD(sc), (D.11)

where

D (sc) =

∫ sc

0

ds δ(s), δ(s) =
√

∆2(s) + Ω2(s), (D.12)

is the integration of the analytic continuation of the difference of the eigenvalues up to sc, the
relevant complex crossing point of the eigenvalues defined by

δ(sc) = 0, (D.13)

lying in the upper complex s-plane.
The criterion to choose this crossing point (which is not necessarily unique nor the closest

one to the real axis, see below) has been established in [48] and for the cases where many
crossing points are required, the formula (D.11) has been generalized in [49]. The analysis is
based on the Stokes lines defined as the set of points s in the complex plane such that

ImD (s) = ImD (sc) = const. (D.14)

We remark that (i) such Stokes lines are not allowed to cross, (ii) the Stokes line leaves the
crossing point in three different directions with an angle 2π/3 between two consecutive ones.
An algorithm to construct numerically the Stokes line, suggested by A. Joye, is described in
[55]. The crossing points, denoted s

(n)
c , n = 1, N , that one has to take into account are the ones

connected by the Stokes line closest to the real axis. If there are several crossing points on this
Stokes line, it has been shown [49] that one has to replace the term eiτD(sc) of formula (D.11)
by a coherent sum of exponentials, one for each crossing point connected by the lowest Stokes
line:

P−(sf ) 
∣∣∣∣∣

N∑
n=1

eiτD(s
(n)
c )

∣∣∣∣∣
2

. (D.15)

The required hypothesis [48, 49] for the validity of the formulas (D.11) and (D.15) are (i) δ(s)
does not vanish for real s (e.g. no crossing at infinity) and (ii) δ(s) is analytic and single-
valued throughout the region from the real axis to the relevant Stokes line. We remark that for
complex Hermitian Hamiltonians with three time dependent parameters, this formula has to
be completed by geometrical prefactors [48, 50].

1The symbol  means asymptotic limit.



86 Appendix D. Analytic solutions for two-level systems - Dykhne-Davis-Pechukas formula



Part II

Effective Hamiltonians

87
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In atoms or molecules, the total Hilbert space available is much too large with respect to the
dynamics typically considered in this work, in the sense that only a few states will be visited
during the dynamics. Such states are usually termed as essential states or active states and
they will be connected to the initial state (and possibly between each other) by resonances.
The other states will participate in the dynamics in an effective way in the sense that they will
only contribute in a non-resonant way to the coupling, as dynamical Stark shifts. We give here
a systematic construction of the resulting effective Hamiltonians, constructed in the basis of
the essential states and incorporating the perturbative effects of the other states.

This construction features two aspects. First a partitioning of the Hamiltonian by specific
perturbative transformations. For a time-dependent Hamiltonian (with external fields), the
partitioning should be considered taking into account two aspects of the driving field with
respect to the field-free system: (i) the magnitude of the static coupling for each amplitude
of the pulse, and (ii) the speed of the time variation of the coupling, since when it is large, it
increases the available spectrum of the field. We show that it is however sufficient to consider
the magnitude of the static coupling under the conditions of monotonic rising and falling of
the pulse. This partitioning allows one to construct an effective quasienergy operator. Since in
the Floquet representation the Hamiltonian K defined on the enlarged Hilbert space K is time
independent, the perturbative treatment of step (i) can be done by stationary perturbation
theory, instead of the usual time-dependent one. Here we present a general formulation of
stationary perturbation theory based on the iteration of unitary transformations (called contact
transformations or KAM transformations) constructed such that the form of the Hamiltonian
gets simplified. More precisely it allows one to reduce the size ϵ of a perturbation with respect
to a reference Hamiltonian from ϵ to ϵ2 at each iteration. It is conceptually different from
the Rayleigh-Schrödinger perturbation theory, which gives an expansion in powers of ϵ. In
particular the KAM transformation has a superexponential speed of convergence. The results
between the Rayleigh-Schrödinger and KAM perturbation theories are not very different at the
lowest orders, but the latter formulation has the advantage to be formulated in terms of simple
unitary transformations.

Next we determine within the subspace spanned by the essential states an effective dressed
Hamiltonian, i.e. that does not depend on the field variable θ. This step requires as the main
feature the identification and the treatment of the resonances of the system. It can be improved
by additional perturbative transformations. The goal is to construct an effective Hamiltonian
expressed with a closed formula.

The final step (which uses adiabatic principles and the topology of the eigenenergy surfaces)
consists in diagonalizing the effective Hamiltonian. This step can be generally done with closed
formulas only for a low dimensional matrix. However the topological analysis can be efficiently
done even with a numerical calculation of the eigenenergy surfaces.

It is often of interest to use specific one-photon processes (thus of first order in field ampli-
tude) to select the essential states, and to completely neglect the other states acting perturba-
tively with higher orders.

The concept of contact transformation and its application for partitioning is presented in
Chapter 4. We show in particular the connection with the standard “adiabatic elimination”,
that allows us to make a partitioning at the level of the time-dependent Schrödinger equation.

This procedure by contact transformations allows us to detect in a simple way resonances. If
resonances are present, the simple perturbative approach is not enough to capture the relevant
effects. This necessitates to perform a different kind of unitary transformations, that are non-
perturbative and are specifically adapted to the relevant resonances. This can be interpreted as
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a generalization of rotating wave transformations to strong coupling regimes. This is studied
in Chapter 5.

Chapter 6 is devoted to the construction of various effective dressed Hamiltonians for laser-
driven atoms and molecules.

Another approach adapted for an interaction with an ultrashort pulse, where the instan-
taneous spectrum of the Hamiltonian has no particular meaning, consists in constructing di-
rectly the propagator for instance using a time-dependent perturbation theory. Since one
can construct (at least formally) an extended Hilbert space and an associated Floquet-like
time-independent operator for a general time dependence, we can apply the tools of contact
transformation instead of using a time-dependent perturbation theory, as shown in Chapter 7.



Chapter 4

Contact transformations, partitioning,
adiabatic elimination and high
frequency perturbation theory

In this chapter, we first introduce the partitioning technique with the simple two-state system,
showing the static and time-dependent aspects. We next formulate in a general setting the
perturbation theory formulated as an iteration of unitary transformations, namely the contact
transformation. We present its superconvergent formulation: the KAM technique (see Sections
4.2 and 4.3) and study some partial contact transformations (see Section 4.3). We show that
the KAM technique allows us to partition at a desired order operators in orthogonal Hilbert
subspaces in Section 4.4. This formulation is connected to the adiabatic elimination technique in
Sections 4.5 and 4.6. We finally apply the contact transformation to the case of an interaction of
high frequency with respect to the energy differences of the free system and show its connection
with the standard Born Oppenheimer approximation.

4.1 Introduction to partitioning: static and time-depen-

dent aspects

The two aspects of amplitude and speed of the coupling for partitioning can be analyzed in
detail for the two-level system |1⟩, |2⟩ (|1⟩ is the lower state) with the simple Hamiltonian:

H(t) =
~
2

[
−∆ Ω(t)
Ω(t) ∆

]
. (4.1)

The goal is here to give precise conditions to decouple the two states, i.e. to find a unitary
time dependent transformation that transforms the Schrödinger equation into one with approx-
imately diagonal Hamiltonian. We assume a constant (positive) detuning and a (real positive)
pulsed Rabi frequency of the form

Ω(t) = ΩmaxΛ(t) (4.2)

with Ωmax ≡ maxtΩ(t), i.e. 0 ≤ Λ(t) ≤ 1. The goal is to determine the conditions that will
allow one to partition this Hamiltonian. Concerning the amplitudes of the coupling, it is clear
that the partitioning is possible when

ε := Ωmax/∆≪ 1. (4.3)

91
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This partitioning can be formulated with a perturbative transformation T (i.e. not very different
from the identity) yielding to

T †HT = Dp +O(ε3) (4.4)

where the partitioned Hamiltonian Dp has to be diagonal, i.e. has to decouple the two states.
If the initial condition is connected to state |1⟩, we can considered that state |2⟩ has been
eliminated in the sense that its effect has been incorporated in Dp at a given order. We obtain
here

Dp =
~
2

[
−δ(t) 0
0 δ(t)

]
(4.5)

with

δ(t) = ∆

[
1 +

1

2

(
Ω(t)

∆

)2
]
= ∆[1 +O(ε2)]. (4.6)

The additional diagonal terms are the dynamical Stark shifts of leading order ε2. The trans-
formation matrix T is exactly known in this two-state case; when developed with respect to ε,
it reads

T = 1l− 1

2

[
1
4
ε2Λ2 −|ε|Λ
|ε|Λ 1

4
ε2Λ2

]
+O(ε3). (4.7)

Concerning the time-dependent aspect, we have to express the Schrödinger equation using the
above transformation (as we did in the context of the adiabatic evolution). If we define the
state evolution ϕ(t) given by the Schrödinger equation

i~
∂ϕ

∂t
(t) = H(t)ϕ(t), (4.8)

we obtain

i~
∂

∂t
ϕ̃(t) = H̃(t)ϕ̃(t) (4.9)

with

H̃(t) =
~
2

[
−δ(t) −iγ(t)
iγ(t) δ(t)

]
, (4.10)

the state in the new basis

ϕ̃(t) = T †ϕ(t), (4.11)

and the non-adiabatic coupling

γ(t) =
Ω̇(t)∆

∆2 + Ω2(t)
= Λ̇(t)ε[1 +O(ε2)], (4.12)

To consider Dp as the correct effective Hamiltonian at each time for the problem, we thus
need to be able to neglect the non-adiabatic coupling with respect to the distance between the
diagonal elements: ∣∣∣∣γ(t)δ(t)

∣∣∣∣ ∼ |Λ̇(t)|∆
ε≪ 1. (4.13)

One can determine precisely the effect of the non-adiabatic coupling by diagonalizing the new
resulting Hamiltonian (4.10). This procedure is exactly the one that is applied for the adiabatic
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principles (and the construction of a superadiabatic basis) with here ε as the small parame-
ter instead of a slow time. One can here evaluate more simply, using the time dependent
perturbation theory, the probability of loss in the excited state (whatever the speed is):

Ploss ∼ |ε|2 ≪ 1, (4.14)

considering a fast rising of the pulse up to its maximal value, and under the condition that
the rising is monotonic. This excludes fast oscillations of the pulse. This shows that the loss
induced by the non-adiabatic coupling is of the same order as the one induced by the static
partitioning. Thus the validity of the partitioning technique requires only the analysis with
respect to the magnitude of the static coupling under the conditions of monotonic rising and
falling of the pulse.

In the limit defined by Eq. (4.13), one can take into account in the effective Hamiltonian
the effect of the pulse speed, by applying again a perturbative transformation which will give

Dp =
~
2

[
−δc(t) 0

0 δc(t)

]
(4.15)

with a corrected diagonal term (that takes here into account only the first derivative of the
pulse)

δc(t) = δ

[
1 +

1

2

(
γ(t)

δ

)2
]
= ∆

[
1 +

1

2
ε2

(
Λ2(t) +

Λ̇2(t)

∆2

)
+O(ε4)

]
. (4.16)

To use such an effective Hamiltonian, the further approximation T ≈ 1l should be made. We
have exactly T = 1l at the end of the pulse when the coupling vanishes, since the eigenvectors
of the dressed Hamiltonian coincide then with those of the unperturbed one.

The goal of the next sections is to generalize the formulation of partitioning for many-state
systems.

4.2 Perturbation theory formulated as an iteration of

unitary transformations: KAM techniques, contact

transformation and averaging.

We describe in this section an approach to perturbation theory that is based on applying
unitary transformations that simplify the problem. The method is an iterative construction of
unitary transformations that reduce the size of the coupling terms. The method of iterative
unitary transformations can furthermore be adapted to the construction of effective models by
partitioning of degrees of freedom. The idea is to simplify the problem by determining the
most relevant subspace in Hilbert space and to construct a simplified Hamiltonian in which the
coupling with the complement subspace is reduced by suitably chosen unitary transformations.

4.2.1 Iterative perturbation algorithm

We decompose the Hamiltonian with an unperturbed Hamiltonian H0 and a perturbation εV1:

H = H0 + εV1. (4.17)
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The purpose of ε is only to keep track of the different orders, and at the end we can set ε = 1.
The method is defined quite generally, independently of the particular form of H0 and V1. We
assume that V1 is a bounded operator. The idea is to construct a unitary transformation eεW1 ,
with W †

1 = −W1 such that

e−εW1HeεW1 = H0 + εD1 + ε2V2 =: H2, (4.18)

where D1 is a diagonal operator, i.e. satisfying [H0, D1] = 0. Thus the perturbation will
be reduced from order ε to order ε2. Once this is achieved, the approximation of order ε of
the eigenvalues and the eigenvectors is obtained from H0 + εD1, i.e. neglecting ε2V2. The
eigenvectors of H0 + εD1 are the same as those of H0, since the two operators commute. If the
eigenvalues λ

(0)
m of H0 are nondegenerate, and we denote D1 = diag{dm}, then the perturbed

eigenvalues of first order (i.e. neglecting corrections of second order) are

λ(1)m = λ(0)m + εdm, (4.19)

and the corresponding eigenvectors are

|ψ(1)
m ⟩ = eεW1|ψ(0)

m ⟩ (4.20)

with |ψ(0)
m ⟩ = |em⟩, where {|em⟩} is the eigenbasis of H0 in H.

If some eigenvalues of H0 are degenerate, the addition of D1 can lift some degeneracies.
Since the transformed Hamiltonian H2 is of the same general form a the one we started

with (4.17), this procedure can be iterated. The order of the perturbation can thus be reduced
successively from ε to ε2, to ε4, . . . After N iterations the remaining perturbation is of order
ε2

N
= εe

N ln 2
, i.e. we have a superexponential decrease. This type of iterative algorithms are

therefore called superconvergent. We call this procedure a quantum KAM algorithm, since it
is the quantum analogue of the Kolmogorov-Arnold-Moser (KAM) transformations developed
in classical mechanics [88, 89, 90, 91, 92, 93, 94]. When this type of procedure is used to derive
a non-superconvergent polynomial expansion of the eigenvalues, it is known as the van Vleck
perturbation theory [95]. The transformations eεW1 are called contact transformations, or KAM
transformations. One step of the algorithm is roughly equivalent to first order perturbation
theory. The idea is that instead of performing a perturbation calculation of high order, one
can perform several times a calculation of first order. The acceleration of convergence can
be explained by the fact that at each step of the iteration one develops around a different
effective nonperturbed Hamiltonian, that contains already the corrections found in the previous
iterations.

We remark that DN , the diagonal part obtained after N iterations, is a function of ε that
is not a polynomial, since as we will see below the construction involves rational functions and
exponentials. However, if one expands DN as a power series in ε up to a certain order (smaller
than ε2

N
), the result must coincide with the Rayleigh-Schrödinger power series of that order,

since the coefficients of this expansion are unique (even in the case when the series is only
asymptotic, i.e. non convergent). In practice, performing one or two iterations gives already
the main information of the processes we will study.

4.2.2 Construction of the contact transformations

We discuss now how one can construct the transformation for one step in the iterative algorithm.
An equation to determine D1 and W1 can be obtained expanding eq. (4.18) in powers of ε and
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requiring that the terms of order ε cancel out. This leads to the two equations

[H0,W1] + V1 −D1 = 0, (4.21a)

[H0, D1] = 0. (4.21b)

The solution of these equations can be given using the eigenvalues and eigenvectors of H0 which
we will denote by λ0ν and |ν, j⟩ [we represent the index m of (4.19) and (4.20) by an index ν that
labels the different eigenvalues, and j distinguishes different basis vectors corresponding to a
degenerate eigenvalue]. We define a projection operator ΠH0 that extracts from the perturbation
V1 the diagonal component with respect to the eigenbasis of H0:

ΠH0V1 =
∑
ν,j,j′

|ν, j⟩⟨ν, j|V1|ν, j′⟩⟨ν, j′|. (4.22)

With this notation a solution of (4.21) can be written as

D1 = ΠH0V1 = diagonal part of V1, (4.23a)

W1 = −
∑

ν,j,j′,ν′ ̸=ν

|ν, j⟩⟨ν, j|V1|ν ′, j′⟩⟨ν ′, j′|
λ0ν − λ0ν′

. (4.23b)

The solution W1 is not unique, since if A is any operator such that [H0, A] = 0 then W1 + A
is also a solution. The solution (4.23a) is singled out as the unique solution with zero diagonal
blocks, ΠH0W1 = 0 [96].

There are two ways to proceed, depending on what we do with the diagonal part ΠH0V1 of
the perturbation. It can be added to the unperturbed Hamiltonian either after or before the
transformation.

(i) In the first case we take H0 as the unperturbed Hamiltonian and the perturbation V1
has a non-zero projection ΠH0V1, which leads to a term D1 = ΠH0V1 in the solution (4.23a).
In this case the second order perturbation that remains at the end of the transformation takes
the form

ε2V2 =
ε2

2
[V1,W1] +

ε3

3
[[V1,W1],W1] + . . .+ εM

(M − 1)

M !
[. . . [[V1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . .

+
ε2

2!
[D1,W1] +

ε3

3!
[[D1,W1],W1] + . . .+

εM

M !
[. . . [D1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . . (4.24)

We remark that defining an operator LW1 : V 7→ LW1(V ) := [V,W1], the transformation (4.18)
can be expressed as

e−εW1HeεW1 = eLεW1 (H) =
∞∑

M=0

εM
1

M !
(LW1)

M (K) (4.25)

and the above expression (4.24) can be written as

ε2V2 =
∞∑

M=2

εM
(M − 1)

M !
(LW1)

(M−1) (V1) +
∞∑

M=2

εM
1

M !
(LW1)

(M−1) (D1), (4.26a)

=
∞∑

M=2

εM
1

M !
(LW1)

(M−1) ((M − 1)V1 +D1). (4.26b)
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(ii) The second possibility is to define a new unperturbed Hamiltonian H̃D
0 in which the pro-

jection ΠH0V1 of the perturbation is already absorbed :

H̃D
0 = H0 +ΠH0V1. (4.27)

The remaining perturbation V1−ΠH0V1 has zero projection and thus there in no supplementary
D̃1 to be added. In this case the second order perturbation that remains at the end of the
transformation takes the somewhat simpler form

ε2V2 =
ε2

2
[V1,W1] +

ε3

3
[[V1,W1],W1] + . . .+ εM

(M − 1)

M !
[. . . [[V1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . . (4.28)

Both alternatives can be useful; depending on the particular problem one of them can be more
convenient than the other one. As we will see in Section 6, the second version is particularly
adapted to the construction of effective Hamiltonians by the partitioning technique.

4.2.3 Interpretation as an averaging procedure

The perturbation theory outlined above can be interpreted as an averaging procedure [88, 89,
90, 91, 92, 96]: The projector can be expressed as

D1 = ΠH0V1 = lim
τ→∞

1

τ

∫ τ

0

ds e−iH0sV1e
iH0s (4.29)

and

W1 = lim
τ→∞

−i
τ

∫ τ

0

ds′
∫ s′

0

ds e−iH0s(V1 − ΠH0V1)e
iH0s. (4.30)

The term e−iH0sV1e
iH0s in (4.29) is equal to the inverse time evolution that the operator V1

would have in the Heisenberg picture for the dynamics generated by H0. Thus, D1, which is
the term that is added to constitute the approximate effective Hamiltonian H01 := H0 + D1,
can be interpreted as the average of the perturbation with respect to the dynamics generated
by H0.

Another equivalent expression is [97, 98]

D1 = ΠH0V1 = lim
β→0+

β

∫ ∞
0

ds e−βse−iH0sV1e
iH0s (4.31)

and

W1 = −i lim
β→0+

β

∫ ∞
0

ds′ e−βs
′
∫ s′

0

ds e−iH0s(V1 − ΠH0V1)e
iH0s. (4.32)

The relation between these two expression can be thought of as two equivalent realizations of
the time average

Average(f) = lim
β→0+

β

∫ ∞
0

ds′ e−βs
′
f(s′) = lim

τ→∞

1

τ

∫ τ

0

ds′ f(s′). (4.33)

A third alternative expression for W1 is [97, 98]

W1 = lim
β→0+

−i
∫ ∞
0

ds e−βse−iH0s(V1 − ΠH0V1)e
iH0s. (4.34)
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4.3 Partial contact transformation

There are several ways to apply the contact transformation partially. For instance, one can ask
to construct an effective Hamiltonian which is not fully diagonal, but instead block-diagonal.
Within the Floquet theory, this is actually the usual goal: one wants to construct an effective
dressed Hamiltonian (i) in a basis of essential states, and (ii) which does not depend on the θ
variable. This means that we aim (i) to block-diagonalize in this basis of essential states and
(ii) to diagonalize with respect to the θ variable. This construction is discussed in Chapter 6.
The block-diagonalization is formulated in terms of partitioning in the next section.

We can also use another useful block-diagonalization of a Floquet Hamiltonian: the diag-
onalization with respect to the field-free system, and not with respect to θ. This is done in
subsection 4.3.1. We also study in subsection 4.3.2 another partial contact transformation,
which consists in treating only one part of the perturbation.

In both subsections, we start with a Floquet Hamiltonian

K = K0 + ϵV0 + ϵV1 (4.35)

with the perturbation of order ϵ
ϵV := ϵV0 + ϵV1 (4.36)

4.3.1 Block-diagonalization with respect to bare system

Here we assume that ϵV0(θ) is diagonal in the basis of H0 but not in the one of K0 = −i~ω ∂
∂θ

+
H0:

[H0, V0] = 0,

[
−i~ω ∂

∂θ
, V0

]
̸= 0 (4.37)

We assume that V1(θ) has no diagonal element in the basis of the eigenstates of H0: ΠH0V1 = 0.
We want here to partially diagonalize V1 with respect to H0. We thus construct the contact

transformation eϵW1 :

W1 = −
∑

ν,j,ν′ ̸=ν

|ν, j⟩⟨ν, j|V1|ν ′, j′⟩⟨ν ′, j′|
λ
(0)
ν − λ(0)ν′

, W †
1 = −W1, (4.38)

that reduces the size of the perturbation ϵV1 to the order ϵ2:

e−ϵW1KeϵW1 = K0 + ϵD1(θ) + ϵ2V2(θ), [H0, D1] = 0, (4.39)

This leads to the equation

[K0,W1] + V0(θ) + V1(θ) = D1(θ) (4.40)

with the diagonal
D1(θ) = V0(θ). (4.41)

At the second order, we obtain

e−ϵW1KeϵW1 = K0 + ϵV0 +
ϵ2

2
diagH0

[V1,W1] +O(ϵ3), (4.42)

with the diagonal part of a matrix A in a basis |n⟩:

diagH0
A =

∑
n

|n⟩⟨n|A|n⟩⟨n|. (4.43)
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4.3.2 Partial diagonalization of the perturbation

Here we assume that the perturbation V has no diagonal elements in the basis of the eigenvectors
{|ν, j⟩} of K0, i.e.

ΠK0V = 0. (4.44)

We want to extract the dominant contribution of ϵV1 letting ϵV0 unchanged (for instance if V0
is resonant). We thus construct the same transformation as above

eϵW1 , W †
1 = −W1, (4.45)

that reduces the size of the perturbation ϵV1 to the order ϵ2, extracting a diagonal part inde-
pendent of the dynamical variable θ :

e−ϵW1KeϵW1 = K0 + ϵV0 + ϵD1 + ϵ2V2(θ), [K0, D1] = 0, (4.46)

and
D1 = ΠK0V1 = 0. (4.47)

Identifying the power expansion using (4.45), we obtain at the second order

e−ϵW1KeϵW1 = K0 + ϵV0 + ϵ2[V0,W1] +
ϵ2

2
[V1,W1] +O(ϵ3). (4.48)

4.4 Partitioning: General formulation

We develop the standard partitioning technique (see for instance [99, 100, 101, 102]), but with
the use of the iterative KAM perturbation algorithms. We derive an effective Hamiltonian of
second order. The scheme we show can be easily extended to higher orders.

We consider the dynamics of a system defined on a Hilbert space H of dimension N , by a
time-independent HamiltonianH. We consider situations in which the Hilbert space can be split
into two orthogonal subspaces H = H0 ⊕H1, that are only weakly coupled by H. Introducing
the projectors P j into these subspaces, H0 = P 0H and H1 = P 1H, the Hamiltonian can be
separated into four parts:

H = H00 +H11 +H01 +H10 with H ij := P iHP j , H01 = (H10)†. (4.49)

We can represent this partition symbolically in matrix form as

H =

(
H00 H01

H10 H11

)
. (4.50)

The idea is that the coupling H01 +H10 is small with respect to the other relevant energies of
|H11 −H00|. We think of it as being of order ε. We introduce the notation

εV1 := H01 +H10 = ε(H̃01 + H̃10). (4.51)

where ε is a formal parameter, that is useful to keep track of the orders of the different terms,
and it is meant to reflect the fact thatH01+H10 is small. Once the formulas for the perturbative
procedure are obtained, ε can be set equal to 1. The whole construction can be made without
introducing ε. Its role is exclusively as an intuitive aid to follow the construction. We will show
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that the effective Hamiltonian of second order (connected with an initial condition in H0) reads
as

H00
eff = H00 +

ε2

2
P 0
[
H̃01W 10

1 + (H̃01W 10
1 )†

]
P 0, (4.52)

with W 10
1 defined in Eq. (4.63c). In terms of the eigenvalues and eigenvectors of H00 restricted

to the subspace P 0H, which we denote by λ00n and |n00⟩, and those of H11 restricted to the
subspace P 1H which we denote by λ11m and |m11⟩, it becomes

H00
eff = H00 − 1

2

∑
n,ñ

|ñ00⟩

[∑
m

⟨ñ00|H01|m11⟩⟨m11|H10|n00⟩
(

1

λ11m − λ00n
+

1

λ11m − λ00ñ

)]
⟨n00|.

(4.53)

The goal is to find a unitary transformation S that transforms H into block-diagonal form,
at least to some order of approximation:

S†HS =

(
H00 +D00

1 0
0 H11 +D11

1

)
. (4.54)

The idea is in general that instead of diagonalizing by perturbation methods the complete
Hamiltonian, one first reduces it approximately to block-diagonal form, singling out a block
H00+D00

1 , of small dimension, that is the most relevant part for the dynamics of a particularly
chosen initial condition. The Hamiltonian H00+D00

1 is called the effective Hamiltonian for the
considered process. Since it is of small dimension it can often be analyzed in detail with non-
perturbative methods (for example by exact diagonalization). The sub-block should contain
all the states with which the initial state is mainly coupled by the dynamics. These states are
called essential states. In other words, within each of the initial diagonal blocks the couplings
can be strong, but the couplings between the blocks should be small. We assume in particular
that the spectrum of H00 is well separated from the one of H11 by a minimal distance between
eigenvalues denoted ∆λmin. We require that the norm of the coupling H01 +H10 between the
two blocks is small with respect to ∆λmin.

We thus construct a unitary transformation of the form eεW1 , with W †
1 = −W1 such that

e−εW1(H00 +H11 + εV1)e
εW1 = H00 +H11 +D1 + ε2V2, (4.55)

where D1 = D00
1 + D11

1 , with Dii
1 = P iD1P

i, i = 0, 1, and V2 is a remaining coupling term
that is of order ε2. We will use the notation D1 =: εD̃1. Expansion of the exponentials and
extractions of the non block-diagonal terms leads to the equations that D1 and W1 are required
to fulfill:

[H00 +H11,W1] + V1 − D̃1 = 0, (4.56a)[
P 0, D00

1

]
= 0, (4.56b)[

P 1, D11
1

]
= 0. (4.56c)

Defining

W ij
1 := P iW1P

j, (4.57)

and acting with the projectors P 0 and P 1 from the left and from the right in the four possible
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combinations, equation (4.56a) can be decomposed in four independent equations:

H00W 01
1 −W 01

1 H11 + H̃01 = 0, (4.58a)

H11W 10
1 −W 10

1 H00 + H̃10 = 0, (4.58b)

D00
1 = 0, (4.58c)

D11
1 = 0. (4.58d)

Equations (4.58c) (4.58d) are a direct consequence of the fact that V1 ≡ H01 + H10 have
zero diagonal blocks and mean that D1 = 0. We remark that equations (4.58a)-(4.58d) do
not impose any condition on the components W 00

1 and W 11
1 , which can therefore be chosen

arbitrarily. The choice that leads to the simplest expressions isW 00
1 = 0 andW 11

1 = 0. The two
other components W 10

1 , W 01
1 are uniquely determined. In close analogy with the construction

of Section 4.2.2, we define the projector Π by

ΠV := P 0V P 0 + P 1V P 1. (4.59)

A solution of equations (4.56a)(4.56b) is given by

D̃1 = ΠV1 = 0 (4.60)

and

W 01
1 = lim

τ→∞

−i
τ

∫ τ

0

ds′
∫ s′

0

ds e−iH
00sH̃01eiH

11s, (4.61a)

= lim
β→0+

−i
∫ ∞
0

ds e−βs e−iH
00sH̃01eiH

11s (4.61b)

with
W 10

1 = −
(
W 01

1

)†
. (4.62)

This solution can be expressed in terms of the eigenvalues and eigenvectors of H00 and of H11 :

W1 = W 01
1 +W 10

1 , (4.63a)

W 01
1 = −

∑
n,m

|n00⟩⟨n00|H̃01|m11⟩⟨m11|
λ00n − λ11m

, (4.63b)

W 10
1 = −

∑
n,m

|m11⟩⟨m11|H̃10|n00⟩⟨n00|
λ11m − λ00n

. (4.63c)

Since D1 = 0, we conclude that there is no contribution to the diagonal blocks in the first
iteration, i.e. of first order in ε, and in analogy with Eq. (4.28), the remaining coupling term
can be written as

ε2V2 =
ε2

2
[V1,W1] +

ε3

3
[[V1,W1],W1] + . . .+ εM

(M − 1)

M !
[. . . [[V1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . . (4.64)

We can obtain an effective Hamiltonian of second order with little supplementary effort: We
first extract from the block-diagonal part of ε2V2 the term

B2 :=
ε2

2
[V1,W1], (4.65)
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which is the only one that carries the lowest power ε2. Since P 1[V1,W1]P
0 = 0 and P 0[V1,W1]P

1 =
0, the term of power ε2 has no off-block-diagonal part. Thus we can write

e−εW1(H00 +H11 + εV1)e
εW1 = H00 +H11 +

ε2

2
[V1,W1] + ε3V3 (4.66)

with

ε3V3 =
ε3

3
[[V1,W1],W1] + . . .+ εM

(M − 1)

M !
[. . . [[V1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . . (4.67)

or, symbolically, in matrix notation

H2 = e−εW1

(
H00 H01

H10 H11

)
eεW1

=

H00 + ε2

2

(
H̃01W 10

1 −W 01
1 H̃10

)
0

0 H11 + ε2

2

(
H̃10W 01

1 −W 10
1 H̃01

)+ ε3V3

=

H00 + ε2

2

[
H̃01W 10

1 + (H̃01W 10
1 )†

]
0

0 H11 − ε2

2

[
(W 10

1 H̃01)† +W 10
1 H̃01

]+ ε3V3. (4.68)

Thus we find the effective Hamiltonian (4.52) that gives the eigenvectors and eigenvalues of
order ε2 (and corrections of order ε3).

Remark. In fact we can show that while the next order correction for the eigenvectors is
indeed of order ε3, the one for the eigenvalues is of order ε4. The term of order ε3 in (4.67)
is [[V1,W1],W1] which has zero block-diagonal projection, since the product of two off-block-
diagonal operators is block-diagonal, and the product of an off-block-diagonal operator with a
block-diagonal operator is off-block-diagonal. Symbolically we can represent this by( )( )

=

( )
,

( )( )
=

( )
(4.69)

and shown for arbitrary operators A and B by(
P 0AP 1 + P 1AP 0

) (
P 0BP 1 + P 1BP 0

)
= P 0AP 1BP 0 + P 1AP 0BP 1 (4.70)

and (
P 0AP 0 + P 1AP 1

) (
P 0BP 1 + P 1BP 0

)
= P 0AP 0BP 1 + P 1AP 1BP 0 (4.71)

The fact that the term of order ε3 in (4.67) is off-block-diagonal implies that, if we perform
a second unitary transformation eε

3W3, there will be no term of order ε3 in the diagonal block
projection D3, and thus the next order correction for the diagonal block, and therefore for
eigenvalues, will be of order ε4 (given by ε4[[[V1,W1],W1],W1]/8).

4.5 Relation with adiabatic elimination

In the literature a different technique has been widely used to construct effective Hamiltonians,
based on the partitioning technique combined with an approximation procedure known as



102 Chapter 4. Contact transformations

adiabatic elimination for the time-dependent Schrödinger equation (see Ref. [43], p. 1165). In
this section we show that the effective Hamiltonian constructed by adiabatic elimination can
be recovered from the above construction by choosing the reference of the energy appropriately.
Our stationary formulation allows us moreover to estimate the order of the neglected terms,
and to improve the approximation to higher orders in a systematic way.

The idea in the method of adiabatic elimination is that the time evolution of the components
inH1 oscillates very rapidly with respect to the evolution of the components inH0. This justifies
the substitution of the time dependent components in H1 by some average values. This leads
then to an effective Hamiltonian in H0 that takes the form [see Ref. [43], p. 1166, Eq. (18.7-7),
where there is a sign misprint]

H00
eff,ae = H00 −H01

(
H11

)−1
H10. (4.72)

This equation can be obtained from Eq. (4.52) as follows. Denoting by λ00max the largest
eigenvalue of H00, we can write the denominator of W 10

1 (4.63c) as

λ11m − λ00n = (λ11m − λ00max) + (λ00max − λ00n ). (4.73)

The condition that the time evolution of the components in H1 oscillate very rapidly with
respect to the evolution of the components in H0 can be formulated by an inequality between
the eigenvalues:

λ00max − λ00n ≪ λ11m − λ00max. (4.74)

Thus the expression (4.63c) can be approximated by

W 10
1 ≈ −

∑
n,m

|m11⟩⟨m11|H̃10|n00⟩⟨n00|
λ11m − λ00max

= −
∑
n,m

|m11⟩⟨m11|
(
H11 − λ00max1l11

)−1
H̃10|n00⟩⟨n00|

= −
(
H11 − λ00max1l11

)−1
H̃10, (4.75)

which gives for the effective Hamiltonian (4.52):

H00
eff ≈ H00 −H01

(
H11 − λ00max1l11

)−1
H10. (4.76)

Choosing the reference of energy λ00max = 0 allows us to recover Eq. (4.72).
We remark that in the approach by adiabatic elimination a further approximation is implic-

itly made, since the eigenvectors (or the initial conditions) when it is applied to dynamics are
not transformed with eεW1 . This amounts to the approximation eεW1 = 1l+εW1+ . . . ≈ 1l. This
does not produce a big difference when adiabatic elimination is applied to adiabatic processes
with laser pulses, since the initial and final eigenvectors of the perturbed Hamiltonian coincide
with those of the unperturbed one.

4.6 High frequency partitioning

We here construct a high frequency perturbation theory adapted to the partitioning setup, which
is another way to obtain the result of adiabatic elimination. We consider a partition represented
symbolically in matrix form as

H =

(
H00 − λ00max1l00 H01

H10 f (H11 − λ00max1l11)

)
, (4.77)
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in a regime where f →∞. Defining ϵ := 1/f , we decompose accordingly as

Ĥ := H/f =

(
0 0

0 Ĥ11

)
+ ϵ

(
Ĥ00 H01

H10 0

)
=: Ĥ0 + ϵV̂1, (4.78)

where we have simplified the notation by defining Ĥ00 := H00 − λ00max1l00 and Ĥ11 := H11 −
λ00max1l11. We construct a unitary transformation exp(ϵW1) such that

e−ϵW1(Ĥ0 + ϵV̂1)e
ϵW1 = Ĥ0 + ϵD1 + ϵ2V2 (4.79)

with the condition [
P 1, D1

]
= 0, (4.80)

where P 1 is the projection into the subspace corresponding to the 11-block. We remark that
defining the projector into the orthogonal complement, P 0 := 1l − P 1, the condition (4.80)
implies that also [P 0, D1] = 0, which leads to

D1 = P 1D1P
1 + P 0D1P

0. (4.81)

As before, the generator W1 can be chosen such that P 1W1P
1 = 0, P 0W1P

0 = 0, and

D1 = P 1V̂1P
1 + P 0V̂1P

0 = P 0V̂1P
0 =

(
Ĥ00 0
0 0

)
. (4.82)

The generator W1 is determined by the equation

[Ĥ0,W1] + V̂1 −D1 = 0. (4.83)

From the general procedure described in the preceding sections, W1 = W 01
1 + W 10

1 can be
written e.g. as

W 01
1 = lim

β→0+
−i
∫ ∞
0

ds e−βsH01eiĤ
11s, W 10

1 = −
(
W 01

1

)†
. (4.84)

Alternatively we can write explicitly the equation (4.83), which in the present case becomes

0 =

[(
0 0

0 Ĥ11

)
,

(
0 W 01

1

W 10
1 0

)]
+

(
0 H01

H10 0

)
=

(
0 −W 01

1 Ĥ11

Ĥ11W 10
1 0

)
+

(
0 H01

H10 0

)
(4.85)

which leads to the solution

W 01
1 = H01

(
Ĥ11

)−1
, (4.86a)

W 10
1 = −

(
W 01

1

)†
= −

(
Ĥ11

)−1
H10, (4.86b)

and thus to the remaining corrections of order ϵ2 of the form

H2 = e−ϵW1

(
Ĥ00 H01

H10 fĤ11

)
eϵW1

=

(
H00 + ϵ2

2
(H01W 10

1 −W 01
1 H10) ϵ2

2
Ĥ00W 01

1

− ϵ2

2
W 10

1 Ĥ00 H11 + ϵ2

2
(H10W 01

1 −W 10
1 H01)

)
+ ϵ3V3. (4.87)
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After a second transformation of the form exp(ϵ2W2) designed to eliminate the non-block-
diagonal terms of order ϵ2, one obtains an effective Hamiltonian of second order for the 00-block
of the form

H00
eff = H00 − λ00max1l00 −H01

(
H11 − λ00max1l11

)−1
H10. (4.88)

We remark that, as opposed to Eqs. (4.68)- (4.52), in this construction two unitary transfor-
mations are needed to obtain the effective eigenvectors to second order (after the first trans-
formation, where keeping only the diagonal blocks in (4.87) yields the eigenvalues to second
order, but not the eigenvectors).

4.7 High frequency perturbation theory

A variation of the procedures described above can be applied to situations in which the fre-
quency ω of the perturbation is high with respect to the internal frequencies of the considered
system [103]. We start with a Floquet Hamiltonian of the form

K = −i~ω ∂

∂θ
+H0(x) + V1(x, θ) (4.89)

where x symbolizes the degrees of freedom of the molecule. Since we are interested in the limit
~ω →∞, we define a small parameter ϵ := 1/(~ω) and we rewrite

K = ~ωK̂ (4.90)

with

K̂ = −i ∂
∂θ

+ ϵ (H0 + V1) . (4.91)

The eigenvectors of K are the same ones as those for K̂, and the eigenvalues just have to be
multiplied by ~ω. The difference with the preceding discussion is that here H0 and V are both
of order ϵ. Thus we take as the unperturbed Floquet Hamiltonian just

K̂0 := −i
∂

∂θ
. (4.92)

If the frequency is large compared with the frequencies of the system, there will not be any
resonances. We can thus proceed with the iterative perturbative KAM algorithm by first
determining a unitary transformation eϵW1(x,θ), with W †

1 = −W1 such that

e−ϵW1K̂eϵW1 = K̂0 + ϵD1 + ϵ2V2 =: K2, (4.93)

where D1 is a θ-independent operator such that [K̂0, D1] = 0. Thus the perturbation will be
reduced from order ϵ to order ϵ2. The generatorW1 of the contact transformation is determined
by the equations

[K0,W1] +H0 + V1 −D1 = 0, (4.94a)

[K0, D1] = 0. (4.94b)

The equation (4.94a) can be written as

−i∂W1

∂θ
+H0 + V1 −D1 = 0, (4.95)
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whose general solution is given by

W1 = −i
∫ θ

dθ (H0 + V1 −D1) + C, (4.96)

where C is an arbitrary θ-independent operator acting on H, which one can choose as C = 0.
Since W1(x, θ) is a multiplication operator acting on functions of the angle θ, it must be
necessarily 2π-periodic. This condition determines D1 uniquely in terms of the average

V1 :=

∫ 2π

0

dθ

2π
V1(x, θ) (4.97)

as
D1 = H0 + V1. (4.98)

Thus we obtain

W1(x, θ) = −i
∫ θ

dθ (V1(x, θ)− V1(x)). (4.99)

We remark that the solution (4.98), (4.99) of Eqs. (4.94) can be obtained from the general
equations (4.29), (4.30).

This contact transformation eϵW1 can be interpreted, in the case where [V1(x, θ), V1(x, θ
′)] =

0, for all θ, θ′, as the unitary transformation which allows one to diagonalize exactly the Hamil-
tonian ~ωK̂0 + V1(x, θ) with respect to θ, taking x as a parameter. We obtain λ

(0)
k = V1 + k~ω

(k positive or negative integer) for the eigenvalues associated to the eigenvectors χ(θ, x) =
exp(ϵW1(x, θ) + ikθ). We remark that if V1 = 0, the eigenvalues do not depend on the variable
x.

Adapting the equation (4.26b) the remaining perturbation of order ϵ2 can be written as

ϵ2V2 =
∞∑

M=2

εM
1

M !
(LW1)

(M−1) ((M−1) (H0 + V1)+D1) =
ϵ2

2!
[V1+V1+2H0,W1]+ϵ

3 . . . , (4.100)

In the particular case where [V1(x, θ), V1(x, θ
′)] = 0 Eq. (4.100) reduces to ϵ2V2 = ϵ2[H0,W1] +

ϵ3 . . . We can apply a second contact transformation eϵ
2W2 (with respect to K̂0),

W2 = −i
∫ θ
dθ (V2−V2), which averages this rest (4.100) with respect to θ and leads to correction

of order ϵ3. In the basis of the eigenvectors χ(θ, x) of ~ωK̂0 + V1(x, θ), the non-diagonal
terms V2 − V2 of this remaining term (4.100) can be seen as the couplings between the states

corresponding to the eigenvalues λ
(0)
k and the diagonal terms V2 will lead to geometrical phases

for the dynamics (see Section 2.2). We thus obtain the effective high frequency Hamiltonian
HHF (independent of θ) of order ϵ2

HHF(x) = H0(x) + V1(x) + V2(x). (4.101)

We remark that the standard Born-Oppenheimer approximation, allowing one to separate
the fast electronic motion with respect to the slow vibrational motion of the nuclei of molecules,
can be thought as a high frequency perturbation theory. For the Born-Oppenheimer, we identify
formally K0 with the kinetic energy of the electrons and ϵ with the mass of the electrons. As
we stated above, the approximation consists in first applying a contact transformation which
diagonalizes exactly with respect to the electronic coordinates, keeping the nuclei coordinates
as parameters, and next in neglecting the non-diagonal coupling between the eigenvalues (which
are associated to the electronic states).
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Chapter 5

Nonperturbative treatment of
resonances: Resonant transformations

Resonant effects that prevent convergence of the perturbation theory and that appear as small
denominators has to be treated specifically. We present here such tools here and introduce the
resonant transformations (RT).

The properties that we have stated in the preceding chapter allow us to analyze the situation
in which there are resonances. The analysis of resonances involves two aspects: The first one is
the determination of degenerate eigenvalues of an unperturbed Hamiltonian K0, and the second
one the detection of terms in the perturbation V1 that couple these degenerate modes. We show
that the projectors of type ΠK0 can be used to detect resonant terms in the coupling operators
V1. This is an alternative to another formulation that consists in writing down formally a
Fourier series of the generator W1 of the KAM transformation and detecting diverging terms,
i.e. terms with zeros in the denominator and a finite numerator.

This leads to distinguish two types of resonances: the resonances induced by the field that
occur beyond a threshold of the field, and resonances that occur for an arbitrary small value
of the field. These are called respectively (i) the dynamical resonances (or equivalently field
induced resonances or nonlinear resonances) and (ii) the zero-field resonances.

The zero-field resonances can be identified with respect to the system energy levels and the
field frequency when the field is off. They are usually one- or two-photon resonances. The
one-photon resonance is of first order with respect to the field amplitude in the sense that
the degeneracy of the eigenvalues is lifted linearly with the field amplitude. The two-photon
resonance is of second order since the degeneracy of the eigenvalues is lifted quadratically
with the field amplitude. Multiphoton resonances (with more than two-photon) are more
complicated since they are generally accompanied by dynamical shifts of second order before
the actual occurrence of the resonance at a higher order. They are in general dynamical.

The dynamical resonance is due in general to dynamical Stark shifts. This is the case
for instance for a (one-photon) resonant strong field driving a two-level system. A large field
amplitude induces a Stark shift that allows multiphoton resonances (with an odd number of
photons in atoms due to the selection rules). The first dynamical resonance encountered is a
three-photon resonance. The dynamical Stark shift can be also due to an additional field, as
in the process described in Chapter 9.

For very small field amplitudes, the multiphoton resonances can be treated by time-dependent
perturbation theory combined with the rotating wave approximation (RWA) [11]. In strong
field, all types of resonances can be treated by the concept of the rotating wave transformation,
combined with an additional stationary perturbation theory (such as the KAM techniques ex-
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plained above). It will allow one to construct an effective Hamiltonian in a subspace spanned
by the resonant dressed states, degenerate at zero field.

To illustrate the effects of these two types of resonances, we consider the simplest concrete
example of a two-level system driven by a strong field:

K = K0 + V, K0 = −i~ω
∂

∂θ
+
β

2

(
1 0
0 −1

)
, V = ε cos θ

(
0 1
1 0

)
, (5.1)

with ε and β real and positive.

5.1 Zero-field resonances

We consider the one-photon resonant case β = ω. There is a one photon resonance in K0, since
its eigenvalues are λ0m,k = mβ

2
+ kω; m ∈ {−1,+1}, k ∈ Z, and therefore λ0−1,k+1 = λ0+1,k,

i.e. all the eigenvalues are degenerate of order two. The degeneracy eigenspaces are spanned
by the vectors

ψ0
−1,k+1 = ei(k+1)θ ⊗

(
0
1

)
and ψ0

+1,k = eikθ ⊗
(
1
0

)
. (5.2)

The projector ΠK0 applied on the coupling term yields

ΠK0V ≡ Vresonant =
ε

2

(
0 e−iθ

eiθ 0

)
. (5.3)

This resonant term cannot be eliminated by the KAM transformation. Instead we can treat it
with a different type of transformation. We define a unitary transformation

R1 =

(
1 0
0 eiθ

)
, (5.4)

that can be interpreted as a transformation that leaves unchanged the upper state, and dresses
the lower state with +1 photon. Note that we could have used alternatively the transformation

R′1 =

(
e−iθ 0
0 1

)
(5.5)

that leaves unchanged the lower state, and dresses the upper state with -1 photon. As opposed
to the KAM type transformation eεW , the transformation R1 is not close to the identity. It is
named resonant transformation (RT) (or equivalently rotating wave transformation) in contrast
with the usual RWA for which only the resonant terms are kept, and the counter-rotating terms
are neglected. It is defined in such a way that

R†1VresonantR1 =
ε

2

(
0 1
1 0

)
, (5.6)

i.e. the resonant term becomes θ-independent. Thus

R†1KR1 = −iω
∂

∂θ
+
ε

2

(
0 1
1 0

)
+
ε

2

(
0 e+i2θ

e−i2θ 0

)
+
ω

2
1lK. (5.7)
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This Floquet Hamiltonian can be further simplified by diagonalizing the constant matrix with

T1 =
1√
2

(
1 −1
1 1

)
:

K ′ = T †1R
†
1 K R1T1 = −iω

∂

∂θ
+
ε

2

(
1 0
0 −1

)
+
ε

2

(
cos(2θ) i sin(2θ)
−i sin(2θ) − cos(2θ)

)
+
ω

2
1lK (5.8)

This transformed Floquet Hamiltonian can now be decomposed into a renormalized unperturbed
part

K ′0(ε) = −iω
∂

∂θ
+
ε

2

(
1 0
0 −1

)
+
ω

2
1lK (5.9)

(which is explicitly ε-dependent), and a perturbation

V ′ =
ε

2

(
cos(2θ) i sin(2θ)
−i sin(2θ) − cos(2θ)

)
. (5.10)

In this form, the part of the perturbation that is left is not resonant anymore (for small ε),
and we can apply KAM type transformations to eliminate it iteratively. This procedure is
an adaptation of the technique developed by H. Eliasson to study the problem of localization
in quasiperiodic potentials [104] and extended further to problems that are close to the one
discussed here [105, 106, 107, 108, 109].

The RWA consists in neglecting V ′. If we considers additionally a detuning ∆ = β−ω, Eq.
(5.7) becomes (before diagonalization)

R†1KR1 = −iω
∂

∂θ
+

1

2

(
∆ ε
ε −∆

)
+
ε

2

(
0 e+i2θ

e−i2θ 0

)
+
ω

2
1lK. (5.11)

and the effective RWA Hamiltonian reads (see e.g. [43, 44])

HRWA =
1

2

(
∆ ε
ε −∆

)
. (5.12)

This RWA Hamiltonian is a good approximation when the rest can be made negligible, i.e.
far below the occurring of resonances by this rest. In this case, we can indeed average the
Hamiltonian with respect to θ. This applies when ε,∆≪ β (or ω).

5.2 Dynamical resonances

5.2.1 Floquet Hamiltonian

As we have stated, the Floquet Hamiltonian (5.8) has no terms that are resonant if we take
small enough ε, and the iteration of the KAM procedure converges. However, if we take ε large
enough, we encounter new resonances, that are not present at zero or small fields, i.e. there
are not related to degeneracies of the unperturbed eigenvalues of K0 that lead to the zero-field
resonances we have discussed in the previous subsection. These new resonances are related to
degeneracies of the new effective unperturbed operator K ′0(ε), which appear at some specific
finite values of ε. These are the dynamical resonances.

In the present case, the first nontrivial dynamical resonance (for ω > 0) appears at ε = 2ω =
2β, since the eigenvalues ofK ′0(ε) are of the form λ0

′
m,k(ε) = mε/2+kω; m ∈ {−1,+1}, k ∈ Z,
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and thus λ0
′
−1,k+2(ε = 2ω) = λ0

′
+1,k(ε = 2ω), i.e. all the eigenvalues are degenerate of order

two at the resonant amplitude ε = 2ω. This dynamical resonance can be interpreted as a two-
photon resonance with respect to the effective Hamiltonian K ′0, and a three-photon resonance
with respect to the original Hamiltonian K0. The degeneracy eigenspaces are spanned by the
vectors

ψ0
−1,k+2 = ei(k+2)θ ⊗

(
0
1

)
and ψ0

+1,k = eikθ ⊗
(
1
0

)
. (5.13)

Again, we can detect the resonant terms of the perturbation V ′ by applying the projector
ΠK′

0(ε=2ω):

ΠK′
0(ε=2ω)V

′ ≡ V ′resonant = −
ε

4

(
0 e−i2θ

ei2θ 0

)
. (5.14)

We notice that the eigenvalues of K ′0(ε) are also degenerate at ε = ω. But since there are no
terms in V ′ with modes e±iθ, we have ΠK′

0(ε=ω)V
′ = 0. This degeneracy does not give rise to

an actual resonance. One can call it an inactive resonance. An equivalent way of stating this
is that in the calculation of W for the perturbation analysis, the degeneracy of the eigenvalues
leads to a zero in the denominator, but the corresponding numerator is identically zero.

As before, if we want to eliminate the perturbation by a KAM iteration for values of ε & 2ω,
we first have to deal with the resonant term (5.14). This can be done as above by using a
transformation, that is not close to the identity, of the form

R2 =

(
1 0
0 ei2θ

)
. (5.15)

The transformed Floquet Hamiltonian becomes

R†2K
′R2 = −iω

∂

∂θ
+H ′′0 +

ε

4

(
2 cos(2θ) ei4θ

e−i4θ −2 cos(2θ)

)
+

3

2
ω1lK, (5.16)

with

H ′′0 =
ε

2

(
(1− 2ω/ε) −1/2
−1/2 −(1− 2ω/ε)

)
. (5.17)

As before, the constant part H ′′0 can be diagonalized by a transformation (which depends on ε,
but not on θ):

T2 =
1

d

(
α+ + ε/2− ω ε/4
−ε/4 α+ + ε/2− ω

)
, (5.18)

where α± = ±(ω2+ε25/16−εω)1/2 are the eigenvalues ofH ′′0 and d = [(α++ε/2−ω)2+ε2/16]1/2.
The transformed Floquet Hamiltonian can thus be written as

K ′′ = T †2R
†
2T
†
1R
†
1 K R1T1R2T2

= −iω ∂

∂θ
+
(
ω2 + 5ε2/16− εω

)1/2(1 0
0 −1

)
+
ε

4
V ′′ +

3ω

2
1lK, (5.19)

where

V ′′ = T †2

(
2 cos(2θ) ei4θ

e−i4θ −2 cos(2θ)

)
T2. (5.20)

This transformed Floquet Hamiltonian is non resonant for values of ε up to a certain amplitude
ε > 2ω, and the KAM iteration based on Eq. (5.19) can be expected to converge.
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5.2.2 The cavity electrodynamics model

We apply the preceding formalism to the problem of a two-level atom interacting with a single
mode of a quantized field beyond the resonant approximation (the resonant approximation in
this model is known as the Jaynes-Cumming model [110]) [111].
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We construct a nonperturbative approach based on quantum averaging combined
with resonant transformations to detect the resonances of a given Hamiltonian and
to treat them. This approach, which generalizes the rotating-wave approximation,
takes into account the resonances at low field and also at high fieldsnonlinear
resonancesd. This allows us to derive effective Hamiltonians that contain the quali-
tative features of the spectrum, i.e., crossings and avoided crossings, as a function
of the coupling constant. At a second stage the precision of the spectrum can be
improved quantitatively by standard perturbative methods like contact transforma-
tions. We illustrate this method by determining the spectrum of a two-level atom
interacting with a single-mode quantized field. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1864252g

I. INTRODUCTION

Some important features of classical and quantum systems are determined by resonances of
the system which cannot be treated by perturbative approaches. In the vicinity of resonances the
perturbative formulas display small denominators that lead to the divergence of the perturbative
expansions. A widely used model that incorporates a one-photon resonance is the Jaynes-
Cummings Hamiltonian extracted from the full dressed Hamiltonian that describes a two-level
system coupled with a single mode of a quantized field.1 Its counterpart for an interaction with a
semiclassical laser field is the RWA Hamiltoniansrotating-wave approximationd.2

In this article we give a systematic method that allows us to construct effective Hamiltonians
and determine their spectrum by treating the resonances with an adaptation of resonant transfor-
mations that were introduced in Ref. 3 in the context of laser-driven quantum systems in the
Floquet representation. The semiclassical model with several incommensurate frequencies4 has
been treated by different methods in Refs. 5–8.

The goal is to obtain the spectrum for a whole interval of values of a parameter like the
coupling constant. This is needed, e.g., in applications where the coupling changes adiabatically,9

corresponding, e.g., to envelopes of laser pulses or to transversal spatial profiles of cavity fields.
The method is based on the detection of resonances by a projector derived from quantum aver-
aging. We illustrate it on the problem of a two-level atom interacting with a quantized field and
show that a treatment of all the relevant resonances of the system in a given range of parameters
allows us to reproduce with good accuracy the spectrum of this system. The treatment of the
resonances yields the qualitative structure of the spectrum—the crossings and avoided

adElectronic mail: amniyatm@u-bourgogne.fr
bdElectronic mail: sguerin@u-bourgogne.fr
cdElectronic mail: jauslin@u-bourgogne.fr
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5.2. Dynamical resonances 113

crossings—as a function of the coupling constant. Once this main structure is obtained, one can
systematically improve the quantitative accuracy of the spectrum by applying perturbative meth-
ods. We use contact transformations with a Kolmogorov-Arnold-MosersKAM d iteration,3 which
are particularly efficient due to its superconvergent properties.

The paper is structured as follows. In Sec. II, we describe the method of resonance analysis
and the construction of effective Hamiltonians. Section III contains the presentation of the model
and some preliminary considerations. In Sec. IV, taking into account the resonances of this model
in the weak-coupling regime, we extract the effective Hamiltonians by quantum averaging tech-
niques and resonant transformations. In the weak-coupling regime we have to iterate this proce-
dure several times to derive the essential structure of the spectrum in larger ranges of the coupling
constant. In Sec. V we extract the effective Hamiltonians in the strong-coupling regime where the
qualitative properties of the spectrum can be globally obtained by some preliminary unitary trans-
formations and one resonant transformation which treats the zero-field resonances. We obtain an
accurate approximation valid for all values of the coupling constant that contains all the qualitative
structures. Finally, in Sec. VI we give some conclusions.

II. PRINCIPLE OF THE METHOD

We consider a HamiltonianH=H0+eV, whereH0 is the referencesunperturbedd Hamiltonian,
eV is the perturbation, ande is an ordering parameter. The first analysis of this problem is in terms
of perturbation theory: we look for a KAM-type unitary transformationeeW close to the identity
that allows us to reduce the order of the perturbation frome to e2:

e−eWHeeW = H0 + eD + e
2V2. s1d

eD is a remaining term of ordere that satisfiesfH0,Dg=0. The unknownW andD are solutions
of the following equations:3,10

fH0,Wg + V = D, s2ad

fH0,Dg = 0. s2bd

The remaining perturbation of ordere2 is given by

e
2V2 = o

m=2

`

e
m

m!
ssm − 1dLW

m−1V + LW
m−1Dd, s3d

whereLW is defined as

LWB = fB,Wg. s4d

The solutions of Eqs.s2d can be written in terms of averaging:3,11

D = V̄ ; PH0
V ª lim

t→`

1

t
E

0

t

dse−iH0sVeiH0s = o
n,j,j8

un, jlkn, juVun, j8lkn, j8u, s5ad

W = lim
t→`

− i

t
E

0

t

dsE
0

s

ds8e−iH0s8sV − PH0
VdeiH0s8 = − o

n,j,j8,n8Þn

un, jlkn, juVun8, j8lkn8, j8u

E
n

s0d − E
n8

s0d ,

s5bd

wheren labels the different eigenvaluesE
n

s0d of H0, and j is a degeneracy index which distin-
guishes different basis vectorsun , jl of the degeneracy eigenspace. The operatorPH0

is the pro-
jector on the kernel of the applicationA° fH0,Ag. We remark that the integral representation of
D ,W in Eqs.s5d can be also well defined in cases whereH0 has a continuum spectrum. We can
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114 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

iterate the KAM procedure takingH0+eD as the new reference Hamiltonian ande2V2 as the new
perturbation. The units are chosen such that"=1. In the following discussion, we do not write
explicitly the ordering parametere.

A resonance is defined as a degeneracy of an eigenvalueE
n

s0d of H0 and is said to beactive if
the perturbationV has nonzero matrix elements in the degeneracy subspace ofE

n

s0d: kn , juVun , j8l
Þ0 for somej , j8. Otherwise the resonance is calledpassive or mute. Equations5bd shows that in
the case of quasi-resonancesas opposed to exact resonanced where the denominator would be
different from zero but very small with respect to the numerator,W can be very large, and thus the
expansion cannot be expected to converge. The method we present here is a construction designed
to avoid such divergences. We remark that the concept of resonance is defined intrinsically forH0,
while the distinction between active and passive depends on the relation betweenH0 andV. The
analysis of the resonances thus involves three aspects:

• Decomposition of the Hamiltonian intoH=H0+V. Different decompositions can be consid-
ered for different regimes of the parameters ofH.

• Determination of degenerate eigenvalues ofH0.
• Detection of the resonant terms in the perturbationV that couple these degenerate

eigenstates.

The resonant terms ofV can be detected by projectors of typePH0
that extract a block-diagonal

part of V relative to H0, where the blocks are generated by the degeneracy subspaces. In the
absence of active resonances, when all the eigenvalues ofH0 are nondegenerate or when the
resonances are mute, the matrix representation ofPH0

V is in fact diagonal in the eigenbasis ofH0.
In the presence of active resonances, the block-diagonal effective Hamiltonian that takes into
account the considered resonance of the original Hamiltonian can be written as

Heff = H0 + PH0
V. s6d

We will call the transformation that diagonalizesHeff resonant transformation sRTd. The Hamil-
tonianH=Heff+sV−PH0

Vd is transformed under RTsdenotedRd as follows:

H1 = R
†HR = R

†Heff
R + R

†sV − PH0
VdR ¬ H1

s0d + V1, s7d

whereH1
s0d is defined as the new renormalized reference Hamiltonian andV1 is the new perturba-

tion. The effect ofPH0
V in s6d is to lift the degeneracy ofH0. This can happen in two ways: either

the active resonance is transformed into a passive onese.g., in the case of zero-field resonancesd

or the resonance disappears completelyswhen a crossing is transformed into an avoided crossingd.
The new HamiltonianH1 can, however, have other resonances at different values of the coupling
parameter. IfH1

s0d+V1 does not have any other active resonance in the considered range of the
coupling constant, we can, at a second stage, improve the spectrum by a KAM-type perturbative
expansion which is expected to converge. If there are other active resonances, we have to iterate
the renormalization procedure by applying another RT. We remark that there are cases of multi-
photon resonances where the active resonances appear only after applying one or several contact
transformations.

III. DESCRIPTION OF THE MODEL AND PRELIMINARY CONSIDERATIONS

We consider as an illustration a two-level atom interacting with a single mode of a quantized
field described by

H = vsa†a + 1/2d ^ 12 +
v0

2
1 ^ sz + gsa + a†d ^ sx, s8d

wherea, a† are the annihilation and creation operators for the field mode with the commutation
relationfa ,a†g=1=on=0

` unlknu, sz,sx are Pauli matrices, and12 is the 232 identity matrix. Herev
is the frequency of the field mode,v0 is the energy difference of the two atomic states, andg is the
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5.2. Dynamical resonances 115

dipole-coupling between the field mode and the atom. This Hamiltonian acts on the Hilbert space
K=F ^ H whereH=C2 is the Hilbert space of the atom generated byu6l seigenvectors ofszd and
F is the Fock space of the field mode generated by the orthonormal basishunl ;n=0,1,2, . . .j, n
being the photon number of the field.

For this system there is a parity operator

P = eipa†a
^ sz = o

n=0

`

s− 1dnunlknu ^ sz, s9d

with the properties

fP,Hg = 0, P = P†, P2 = 1
K

; 1 ^ 12. s10d

As a consequence, the eigenstates ofH can be separated into two symmetry classes, even or odd,
underP:

Pufn,±l = ± ufn,±l, Hufn,±l = En,±ufn,±l. s11d

The parity operator also commutes with any operator that depends only onN=a†a andsz.
In spite of the simple form ofs8d, its exact solutions are not known. This can be related to the

fact that the classical limit of this model is nonintegrable.12 This model is of great interest as a
physical model in quantum optics13–16and quantum chaos.17,18Some approximate solutions of this
model have been studied among many others in Refs. 19 and 20 using different formalisms.

The conceptual framework for the solution of this system based on the construction of unitary
transformations can be described as follows: First, we decompose the Hamiltonian in two terms as
H=H0+V. Depending on the considered ranges of the parameters of the system, different decom-
positions may be considered.H0 is a priori an operator that is a regular function exclusively of the
operatorsN andsz. The operatorsN andsz can be considered in the present model as quantum
analogs of classicalglobal actions,21 andH0 can be labeledintegrable. The perturbationV con-
tains functions that involve also the other operatorsa ,a†,sx ,sy. The goal is to determine a unitary
transformationU, which should be expressed in terms of well-behaved regular functions of
a ,a†,sx ,sy ,sz, such that

U†sH0sN,szd + Vsa,a†,sx,sy,szddU = H8sN,szd, s12d

whereH8 is a regular functionf exclusively of the action operatorsN ,sz: H8sN ,szd= fsN ,szd.
With this transformation the eigenvectors ofH can be expressed asufn,±l=Usunl ^ u± ld and the
corresponding eigenvalues asEn,±= fsn , ±1d whereNunl=nunl andszu± l= ± u± l.

We remark that in our context the important property for singling out the operatorsN ,sz is
that they commute with each other and their spectrum and eigenvectors are explicitly available.
The question of whether for a given model there exists a regular unitary transformationU that
accomplishes the above requirement is, to our knowledge, an open problem.

Most of the perturbative approaches can be interpreted as methods to find approximations of
the transformationU. The presence of resonances is one of the central difficulties in the construc-
tion of U, as will be made precise below. In this paper we discuss an iterative approach that
consists of constructing first some approximations ofU that take into account the dominating
effects of a certain number of resonances. The transformations involved in this stage are far from
the identity and have a clearly nonperturbative character. Once we have a transformation that takes
into account the main effect of a set of resonances that are relevant in a considered interval of the
coupling constantg, a perturbative approachslike the KAM, Van Vleck, or other types of the
contact transformationd can be applied to improve the approximation quantitatively. The transfor-
mations involved in this second stage can be considered as deformations of the identity, since they
can be written in the formeW. This stage cannot be implemented if the resonances are not taken
care of beforehand. Indeed the perturbative formulations diverge close to resonances due to the
appearance ofsmall denominators as can be seen in Eq.s5bd.
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116 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

As in classical mechanics, the construction of the transformationU leading to a Hamiltonian
that contains only action variables can often be considered in two steps:U=U1U2. In the first step,
which is calledreduction, the Hamiltonian is transformed byU1 into a form that contains func-
tions ofsz ,sx ,sy andN, but not ofa anda†. The degree of freedom of the field is made trivial and
the number of nontrivial degrees of freedom is thus reduced by one. When we apply this reduction
to the effective Hamiltonians6d, we obtain areduced effective Hamiltonian. We remark that in the
literature, this “reduced effective Hamiltonian” is often called simply “effective Hamiltonian.” In
the second step, the reduced Hamiltonian is transformed underU2 into a form that contains
functions of onlyN andsz. For the models8d, the reduction step corresponds to diagonalization in
the Fock space and the second step corresponds to diagonalization in the atomic Hilbert space
which in this case is trivial. The construction of the RT is based on this reduction procedure.

IV. EFFECTIVE HAMILTONIANS IN THE WEAK-COUPLING REGIME

In this section we consider the Hamiltonians8d at resonancev0=v in the weak coupling
regime, so thatH can be decomposed as follows:

H = H0 + V,

H0sN,szd = vsN + 1/2d ^ 12 +
v0

2
1 ^ sz, s13d

Vsa,a†,sx,gd = gsa + a†d ^ sx.

The eigenvalues and eigenvectors ofH0 are

En,±
s0d = vsn + 1/2d ±

v0

2
,

ufn,±
s0d l = un, ± l = unl ^ u ± l, s14d

un, + l = Sunl

0
D, un,− l = S 0

unl
D .

For v0=v there is a one photon resonance which corresponds to the degeneraciesEn,+
s0d =En+1,−

s0d .
The degeneracy eigenspaces are spanned by the vectorsufn,+

s0d
l andufn+1,−

s0d
l. The resonant part ofV

is obtained bys5ad:

Vres ª PH0
V = o

n=0

`

sun, + lkn, + uVun + 1,−lkn + 1,− u + un + 1,−lkn + 1,− uVun, + lkn, + ud

= gS 0 a

a† 0
D , s15d

where we have used the relations

a = o
n=0

`

În + 1unlkn + 1u, a† = o
n=0

`

În + 1un + 1lknu. s16d

The effective Hamiltonian containing the one-photon resonance is the so-called Jaynes-Cummings
Hamiltonian that can be written as
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5.2. Dynamical resonances 117

H0
eff = HJC = H0 + PH0

V = vsN + 1/2d ^ 12 +
v

2
1 ^ sz + gS 0 a

a† 0
D . s17d

HJC is a good approximation ofs8d for low energies in the limitg!v0, uv−v0u!v0. In this limit,
the so-called counter-rotating termsgs 0

a
a†

0
d can be discardedsrotating-wave approximationd. H can

thus be written asH=H0
effsN ,a ,a†,sx ,sy ;gd+sV−PH0

Vd. Next we transformH0
eff by a resonant

transformationR1 to a regular function of exclusively the action operatorsN ,sz. Every resonant
transformation is performed in two steps. To diagonalizeH0

eff in the Fock spacesthe reduction step
of the RT denotedR1d we define a transformation in such a way that the following condition is
satisfied:

R1
†VresR1 = fsNd ^ sx, s18d

where f is a regular function ofN which has to be determined. We require furthermore that
R1

†H0R1 stays a function of onlyN andsz. A suitable transformation satisfying these conditions is

R1 ª Ssaa†d−1/2a 0

0 1
D ; 1o

n=0

`

unlkn + 1u 0

0 1
2 . s19d

This transformation is not unitary butisometric:22

R1R1
† = 1

K
, R1

†R1 = 1
K

− Su0lk0u 0

0 0
D , s20d

where we have used the identitya†sN+1d−1a=1− u0lk0u. Applying this transformation on the
resonant term gives

R1
†VresR1 = ga†saa†d−1/2a ^ sx = gÎN ^ sx s21d

andH is transformed underR1 as

HR1
= R1

†HR1 = vN ^ 12 + gÎN ^ sx + gS0 A†

A 0
D , s22d

where

A = asaa†d−1/2a = o
n=0

`

În + 1unlkn + 2u, s23d

with the properties

AA† = aa†, A†A = a†a − 1 + u0lk0u. s24d

To each eigenvectorufl of H corresponds an eigenvectorR1
†ufl of HR1

, since

HR1
R1

†ufl = R1
†HR1R1

†ufl = lR1
†ufl. s25d

We remark thatR1
†uflÞ0 ∀ uflPK. Every eigenvalue of the original HamiltonianH is also an

eigenvalue of the transformed HamiltonianHR1
. However, sinceR1u0, +l=0, there is a difference

in the spectrum betweenH andHR1
: HR1

has an extra zero eigenvalue with eigenvectoru0, +l. The
spurious eigenvalue can be detected and eliminated after applying the transformation. Indeed,
sinceu0, +l is not coupled to any vector in its orthogonal complement, one can eliminate it from
the rest of the calculation by taking the projection ofHR1

into the orthogonal complement
HR1,'s0,+d=P's0,+dHR1

P's0,+d with P's0,+d=1K
− u0, +lk0, +u. This difference between unitary and
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118 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

isometric transformations was not taken into account in Ref. 23 in diagonalizing the Jaynes-
Cummings Hamiltonian.

The second step of the RT is the diagonalization ofR1
†H0

effR1=vN ^ 12+ÎN ^ sx in the atomic
Hilbert space. This can be performed by ap /2 rotation around they-axis:

T = e−isp/4dsy =
1
Î2

S1 − 1

1 1
D , s26d

with the properties

T†
sxT = sz, T†

szT = − sx. s27d

However, since the spurious eigenvectoru0, +l can be separated andu0,−l is already an eigen-
vector ofR1

†H0
effR1, the transformationT must be applied only on the subspace withnù1 photons.

The complete transformationsdenotedT1d reads thus

T1 = P0 ^ 12 + P'0 ^ T, s28d

where

P0 = u0lk0u, P'0 = o
n=1

`

unlknu. s29d

Applying T1 gives

H1 ª T1
†R1

†HR1T1 = H1
s0dsN,sz;gd + V1sa,a†,sz,sx,sy ;gd, s30d

with

H1
s0d = vN ^ 12 + gÎN ^ sz,

V1 =
g

2
SA'0 + A'0

† − A'0 + A'0
†

A'0 − A'0
† − A'0 − A'0

† D +
g
Î2

S 0 u2lk0u

u0lk2u − u2lk0u − u0lk2u
D , s31d

where

A'0 = P'0AP'0 = o
n=1

`

În + 1unlkn + 2u, s32d

and use has been made of the relations

AP0 = P0A† = 0, P0AP'0 = u0lk2u. s33d

The first RT is thus the combination ofR1T1. Since the transformationR1 dresses the upper atomic
state bys−1d photon,15

R1=R1T1 can be called a one-photon RT.
H1

s0d is in fact the diagonalized Jaynes-Cummings Hamiltonian in the resonant case with the
eigenvalues

E1,sn,±d
s0d sgd = vn ± gÎn, n = 0,1,2, . . . . s34d

The eigenvalues and therefore the degeneracies ofH1
s0d depend on the coupling constantg. For

small enoughg and low energies,H1
s0d does not have other degeneracies besides the ones atg

=0 for which the new perturbationV1 does not have resonant terms, and we can apply a finite
number of KAM-type transformations to improve quantitatively the precision of the spectrum by
iteration. We apply a finite number of KAM-type transformations with a cutoff in energy to
improve iteratively the precision of the spectrum at small energies. This iteration cannot be
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5.2. Dynamical resonances 119

expected to converge for all values ofg in an interval f0,g0g, because of the presence of a
countable number of resonances at high energies at arbitrarily small values ofg. A single KAM
transformationswhich is essentially equivalent to second-order perturbation theoryd already gives
quite good precision, as shown in Fig. 1sbd for g /v0,0.25 for energies smaller than 10v0. If we
take large enoughg or larger energies, we encounter new resonances which appear at some
specific finite values ofg. These resonances are calledfield-induced resonances or nonlinear
resonances. For larger values of the couplingfg /v0<0.3 for the shown energy interval in Fig.
1sbdg, where we encounter nonlinear resonances, the KAM iteration diverges. The eigenvalues of
H1

s0d are degenerate atgn=v / sÎn+În+1d asE1,sn,+d

s0d
sgnd=E1,sn+1,−d

s0d
sgnd. But the corresponding reso-

nant terms inV1 are zero due to paritysmute resonancesd. The next degeneracies appear at

gn = 2v/sÎn + În + 2d, s35d

as

E1,sn,+d
s0d sgnd = E1,sn+2,−d

s0d sgnd, s36d

which have been marked by circles in Fig. 1sad. All the other resonances are mute. There is an
infinite family of nonlinear resonances located at different values of the couplinggn. We observe
from s35d that for higher energies the nonlinear resonances appear for arbitrary small coupling
slimn→`gn=0d. We can extract the resonant terms corresponding to the whole family in a single

FIG. 1. Comparison of exact numerical eigenvaluessdashed linesd of s8d for one-photon resonancev=v0 with the
approximate onesssolid linesd obtained aftersad one one-photon RT given bys34d and sbd one one-photon RT plus one
iteration of KAM-type perturbative expansion. The divergence observed aroundg /v0=0.3 in panelsbd is due to the active
nonlinear resonances ofH1

s0d that occurred at the degeneracies marked by circles in panelsad. One can see clearly that the
locations of these resonances depend onn according to Eq.s35d.
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120 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

step by working with the combined projectoronPH
1
s0d

sgnd. The resonant terms inV1 corresponding
to the degeneraciess36d are

o
n

PH1
s0dsgndV1 = −

g

2
S 0 A'0

A'0
† 0

D −
g
Î2

S0 0

0 u2lk0u + u0lk2u
D , s37d

and the new effective Hamiltonian is thus

H1
eff = vN ^ 12 + gÎN ^ sz + o

n

PH1
s0dsgndV1. s38d

To diagonalizeH1
eff, it can be decomposed according to three orthogonal subspaces:

H1
eff = Ps0,2,−dH1

effPs0,2,−d + Ps0,+dH1
effPs0,+d + P'H1

effP' = H1
effPs0,2,−d + H1

effPs0,+d + H1
effP',

s39d

where the projectors, which commute withH1
eff, are defined by

Ps0,2,−d = S0 0

0 u0lk0u + u2lk2u
D, Ps0,+d = Su0lk0u 0

0 0
D ,

P' = 1
K

− Ps0,2,−d − Ps0,+d =1
o
n=1

`

unlknu 0

0 o
n=1,Þ2

`

unlknu2 , s40d

which leads to

H1
effPs0,+d = 0, H1

effPs0,2,−d = Fs2v − gÎ2du2lk2u −
g
Î2

su2lk0u + u0lk2udGS0 0

0 1
D ,

H1
effP' = v1

o
n=1

`

nunlknu 0

0 + o
n=1,nÞ2

`

nunlknu2 + g1
o
n=1

`

Înunlknu 0

0 o
n=1,nÞ2

`

Înunlknu2
−

g

2
S 0 A'0

A'0
† 0

D . s41d

H1
effPs0,2,−d can be directly diagonalized by

Rs0,2,−d = Ps0,2,−dS0 0

0 cosusu2lk2u − u0lk0ud − sinusu2lk0u + u0lk2ud
DPs0,2,−d, s42d

where the angleu is defined by the relation

tan 2u =
gÎ2

2v − gÎ2
, 0 ø u ,

p

2
, s43d

and the corresponding eigenvalues are
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5.2. Dynamical resonances 121

E1,s0,+d
eff = 0, E1,sn=0,2,−d

eff = v −
g
Î2

±
1

2
Îs2v − gÎ2d2 + 2g2. s44d

The reduction step of the second RT to diagonalizeH1
effP' in the Fock space can be defined

as

R2,' ª P'SsA'0A'0
† d−1/2A'0 0

0 1
DP' =1

o
n=1

`

unlkn + 2u 0

0 o
n=1,Þ2

`

unlknu2 s45d

with the properties

R2,'R2,'
† = P', R2,'

† R2,' = P' − Su1lk1u + u2lk2u 0

0 0
D . s46d

Equations45d shows thatR2,' dresses the upper atomic state bys−2d photons. ThereforeR2,' can
be called a two-photon RT. SinceR2,'u1, +l=0=R2,'u2, +l, the spectrum ofR2,'

† H1
effP'R2,' has

two extra zero eigenvalues relative to the spectrum ofH1
effP'. Applying R2,' gives

R2,'
† H1

effP'R2,' = v1
o
n=3

`

sn − 2dunlknu 0

0 o
n=1,Þ2

`

nunlknu2 + g1
o
n=3

`

În − 2unlknu 0

0 − o
n=1,Þ2

`

Înunlknu2
− g/2o

n=3

`

În − 1unlknu ^ sx. s47d

Combining the transformations on the different subspaces we can write the transformation that
diagonalizesH1

eff in the Fock space as

R2 = R2,' + Rs0,2,−d + Ps0,+d. s48d

At the right-hand side ofs47d, the three matrices have entries that commute with each other so we
can diagonalize the sum of them in the atomic Hilbert spacesthe second step ofR2,'d as if they
had scalar entries. The eigenvalues ofR2,'

† H1
effP'R2,' are thus

E1,sn=1,−d
eff = v − g, E1,sn=1,+d

eff = 0, E1,sn=2,+d
eff = 0,

E1,snù3,±d
eff = vsn − 1d +

g

2
sÎn − 2 −Înd ±

1

2
fs− 2v + gsÎn − 2 +Îndd2 + g2sn − 1dg1/2. s49d

As it can be seen froms49d, there are two extra zero eigenvalues which have been added byR2,'

to the spectrum ofH1
eff.

Figures 2sad and 2sbd compare respectively the exact spectrum ofH calculated numerically
with the spectrum ofH0

eff=HJC given bys34d and ofH1
eff given bys49d ands44d. The crossings of

the exact spectrum are all among the eigenvalues with different parities. It is found that the
spectrum ofH0

eff coincides with the exact one only in the range of quite small coupling. The
spectrum ofH1

eff has been modified with respect to the one ofH0
eff by transforming the encircled

crossings between eigenvalues with the same parity into avoided crossings in the smallg region.
This procedure to treat resonances can be iterated to take into account other resonances appearing
at larger values ofg. Figures 2sad–2sed show how the combination of a one-photon RT and
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122 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

consecutive two-photon RTs lift the artificial degeneracies smarked by circlesd of the effective
Hamiltonians. The successive steps, which we have implemented numerically, transform eigen-
value crossings into avoided crossings. We observe that these RTs also produce an improvement of
the approximations of the spectrum. Figure 2sfd shows the effect of a KAM transformation after
the fourth two-photon RT which improves quantitatively the result of Fig. 2sed. The divergence of
the KAM transformation close to g=1 in Fig. 2sed is due to the presence of active resonances at
larger values of g.

V. EFFECTIVE HAMILTONIANS IN THE STRONG-COUPLING REGIME

In this section we use quantum averaging techniques and RT to obtain the effective Hamilto-
nians of s8d by starting the analysis from the strong-coupling regime. We derive a formula that
reproduces the spectrum quite accurately in the whole range of g and for all energies. We consider
an alternative decomposition of the Hamiltonian s8d in a way suggested by the strong coupling
regime g@v0.0,

FIG. 2. Comparison of the exact numerical eigenvalues sdashed linesd of s8d for one-photon resonance v=v0 with the
approximate ones ssolid linesd obtained respectively after sad one one-photon RT given by s34d, sbd one one-photon RT plus
one two-photon RTs given by s49d, scd one one-photon RT plus two two-photon RTs, sdd one one-photon RT plus three
two-photon RTs, sed one one-photon RT plus four two-photon RTs, sfd one one-photon RT plus four two-photon RTs plus
one iteration of KAM-type perturbative expansion. The divergence of the KAM transformation observed close to g /v0

=1 in panel sfd is due to the presence of active resonances at larger values of g.
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5.2. Dynamical resonances 123

H = H0 + V,

H0 = vsN + 1/2d ^ 12 + gsa + a†d ^ sx, s50d

V =
v0

2
1 ^ sz

which can be interpreted as the system of a quantized field plus the coupling term perturbed by the
two-level atom. We will use this decomposition as an alternative starting point. As it will be seen
later, this approach will allow us to obtain the spectral data for the whole range of values of the
couplinggP f0,`d. We remark that in this decomposition,H0 contains all the unbounded opera-
tors of the complete model and that the perturbationV is a bounded operator. In this case
H0sN ,a ,a†,sz ,sx ;gd is integrable since we can explicitly transform it into a form involving a
regular function exclusively of the action operatorsN ,sz fgiven below in Eq.s55dg. To transform
H0 to a function of action operators, first we diagonalize the termgsa+a†d ^ sx in the atomic
Hilbert space by the transformations26d:

T†HT = vsN + 1/2d ^ 12 + gsa + a†d ^ sz −
v0

2
1 ^ sx. s51d

Next we apply a second unitary transformation,

U = Se−sg/vdsa†−ad 0

0 esg/vdsa†−ad
D , s52d

to transformvsN+1/2d ^ 12+gsa+a†d ^ sz into a function of onlyN ,sz sin this case only ofNd:

H1 ª U†T†HTU = FvsN + 1/2d −
g2

v
G ^ 12 −

v0

2
S 0 e2sg/vdsa†−ad

e−2sg/vdsa†−ad 0
D , s53d

where use has been made of the commutation relations amonga, a†, N, and the Hausdorff
formula:

eBCe−B = C + fB,Cg +
1

2!
fB,fB,Cgg + ¯ . s54d

We decomposeH1 as

H1 = H1
s0d + V1,

H1
s0d = U†T†H0TU = FvsN + 1/2d −

g2

v
G ^ 12, s55d

V1 = − v0/2S 0 e2sg/vdsa†−ad

e−2sg/vdsa†−ad 0
D .

The effective Hamiltonian of the system for strong-coupling regime can thus be written as

H1
eff = H1

s0d + PH1
s0dV1. s56d

The eigenvalues ofH1
s0d have a twofold degeneracy for every value ofn as
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124 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

E1,sn,±d
s0d = vsn + 1/2d −

g2

v
. s57d

The average ofV1 relative toH1
s0d is thus

PH1
s0dV1 = o

n=0

`

hun, + lkn, + uV1un,− lkn,− u + un,− lkn,− uV1un, + lkn, + uj

= −
v0

2 o
n=0

`

fnunlknu ^ sx, s58d

with

fn = knues−2g/vdsa†−adunl = knues+2g/vdsa†−adunl = e−2g2/v2
knues−2g/vda†

es+2g/vdaunl

= e−2g2/v2So
j=0

n
s− 2g/vd j

j!
Î n!

sn − jd!
kn − juDSo

i=0

n
s+ 2g/vdi

i!
Î n!

sn − id!
un − ilD

= e−2g2/v2

o
j=0

n
s2g/vd2js− 1d j

sj!d2

n!

sn − jd!
= e−2g2/v2

LnS4g2

v
2 D s59d

where theLn are the Laguerre polynomials. We remark that in the limit of a large photon number
sn→`d, fn can be expressed as a zeroth-order Bessel functionJ0s4gÎn /vd.15 H1 can be reorga-
nized as

H1 = H1
eff + sV1 − PH1

s0dV1d,

H1
eff = SvsN + 1/2d −

g2

v
D ^ 12 −

v0

2
F ^ sx, s60d

sV1 − PH1
s0dV1d = −

v0

2
S 0 G − F

G† − F 0
D ,

where

G = es+2g/vdsa†−ad, F = o
n=0

`

fnunlknu. s61d

H1
eff can easily be diagonalized by applying the transformations26d that diagonalizessx:

H2 ª T†H1T = H2
s0d + V2, s62d

with

H2
s0d = T†H1

effT = SvsN + 1/2d −
g2

v
D ^ 12 −

v0

2
F ^ sz, s63d

and

V2 = T†sV1 − PH1
s0dV1dT = − v0/4SG + G† − 2F G − G†

− G + G† − G − G† + 2F
D . s64d

The eigenvalues ofH2
s0d are therefore

042311-13 Quantum averaging and resonances: Two-level J. Math. Phys. 46, 042311 ~2005!

Downloaded 14 Mar 2006 to 193.52.246.230. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5.2. Dynamical resonances 125

E2,sn,±d
s0d = vsn + 1/2d −

g2

v
7

v0

2
e−2g2/v2

LnS4g2

v
2 D , s65d

which is the same result obtained in Refs. 17, 19, and 20 by other methods. Figure 3 compares the
exact numerical spectrum ofs8d with the approximations65d for the resonant casev=v0. One can
see that for large enoughg, the formulas65d reproduces the spectrum well. It is not very accurate
for small values ofg because of the presence of the one-photon zero-field resonances that we
analyze as follows. In the limitg→0, we have

H2
s0d,g→0

 vsN + 1/2d ^ 12 −
v

2
1 ^ sz,

V2
g→0
 gS 0 a − a†

− sa − a†d 0
D . s66d

Thus degeneracies ofH2
s0d,g→0 occur as

E2,sn,+d
s0d,g→0 = E2,sn−1,−d

s0d,g→0 . s67d

They are made active by the resonant terms ofV2
g→0:

FIG. 3. Comparison of exact numerical eigenvaluessdashed linesd of s8d as a function of the coupling constant in the
resonant casesv=v0d, with the approximate eigenvaluesssolid linesd obtained froms65d.
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126 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

V2,res
g→0 = PH2

s0d
g→0V2

g→0 = − gS0 a†

a 0
D . s68d

The transformationsthe reduction step of the RTd which transforms this resonant term to a regular
function of N is

R1 ª S1 0

0 saa†d−1/2a
D = 1

1 0

0 o
n=0

`

unlkn + 1u2 , s69d

with the properties

R1R1
† = 1

K
, R1

†R1 = 1
K

− S0 0

0 u0lk0u
D . s70d

We remark that the definition ofR1 depends on the type of resonant terms. The reduction step of
the RT presented here is different froms19d. The Hamiltonian transformed under this RT has an
extra zero eigenvalue corresponding to spurious eigenvectoru0, 2l, while for the Hamiltonian
transformed unders19d, the extra zero eigenvalue corresponds tou0, 1l. Applying R1 on H2 gives

H3 ª R1
†H2R1 = SvN −

g2

v
D ^ 12 + R1

†V2R1

+1
v

2
s1 − o

n=0

`

fnunlknud 0

0 −
v

2
s1 − o

n=1

`

fn−1unlknud − Sv

2
+

g2

v
Du0lk0u2 . s71d

Next, we takeH3
s0d=vN ^ 12 and the rest ofH3 as V3. SinceH3

s0d has a twofold degeneracy as
E3,sn,+d

s0d =E3,sn,−d

s0d , the average ofV3 relative toH3
s0d is thus

PH3
s0dV3 =1

v

2
−

g2

v
−

v

2 o
n=0

`

fnunlknu o
n=1

`

−
g
În

e−2g2/v2
Ln−1

s1d S4g2

v
2 Dunlknu

o
n=1

`

−
g
În

e−2g2/v2
Ln−1

s1d S4g2

v
2 Dunlknu − Sv

2
+

g2

v
Ds1 − u0lk0ud +

v

2 o
n=1

`

fn−1unlknu2 ,

s72d

where we have used the relation16

kmue±s2g/vdsa†−adunl =Î n!

m!
S±2g

v
Dm−n

e−s2g2/v2dLn
sm−ndS4g2

v
2 D , s73d

with Ln
sm−nd

sxd the associated Laguerre polynomials andmùn. The new effective Hamiltonian can
thus be written as

H3
eff = vN ^ 12 + PH3

s0dV3. s74d

Since all the entries ofH3
eff commute withN, it can be diagonalized in the atomic Hilbert space as

if its entries were scalars. The eigenvalues ofH3
eff are thus
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5.2. Dynamical resonances 127

E3,s0,−d
eff = 0, E3,s0,+d

eff =
v

2
−

g2

v
−

v

2
e−2g2/v2

,

E3,snù1,±d
eff = nv −

g2

v
−

v

4
e−2g2/v2SLnS4g2

v
2 D − Ln−1S4g2

v
2 DD

±
1

2
FSv −

v

2
e−2g2/v2SLnS4g2

v
2 D + Ln−1S4g2

v
2 DDD

2

+
4g2

n
e−4g2/v2SLn−1

s1d S4g2

v
2 DD

2G1/2

.

s75d

The zero eigenvalue is the extra spurious one that has been added by the RT to the spectrum.
Figure 4 compares the exact numerical spectrum ofs8d and the approximations75d which has
treated the zero-field resonances by a RT. The figure shows that treating all the active resonances
of the system allows us to obtain all the qualitative features of the spectrum in the whole range of
the coupling constant and for all energies. At a second stage, since we have treated all the active
resonances, we can improve further this spectrum quantitatively by a KAM-type perturbative
iteration.

VI. CONCLUSIONS

We have presented a nonperturbative method based on the quantum averaging technique to
determine the spectral properties of systems containing resonances. It consists in the construction
of unitary or isometric transformations that leads to an effective reduced Hamiltonian. These
transformations are composed of two qualitatively distinct stages. The first one consists of non-

FIG. 4. Comparison of exact numerical spectrum ofs8d sdashed linesd as a function of the coupling constant in the resonant
casesv=v0d, with the quite accurate results75d which has treated the zero-field resonances by a RTssolid linesd.
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128 Chapter 5. Nonperturbative treatment of resonances: Resonant transformations

perturbative transformationssRTsd that are adapted to the structure of the resonances. Their role is
to construct a first effective Hamiltonian that contains the main qualitative features of the
spectrum—crossings and avoided crossings—in a given range of the coupling parameter. The
diagonalized form of this effective Hamiltonian, which depends parametrically on the coupling
constant, is then taken as a new reference Hamiltonian around which one can apply perturbative
techniques to improve the quantitative accuracy of the spectrum. We formulate the perturbative
approach in terms of a KAM-type iteration of contact transformations. Similar results can be
obtained with other formulations of perturbation theory.

We have illustrated the method with a model of a two-level atom interacting with a single
mode of a quantized field. The method can be applied to more general systems with several field
modes. It can also be adapted to the treatment of semiclassical models in which the field is
described as a time-dependent function.

We have analyzed the resonances in two regimes of weak and strong coupling. The results we
obtained in the weak-coupling regime can be expected to be applicable to quite general models.
The analysis of the strong-coupling regime of this model leads to results that are valid for all
values of the coupling and for all energies. The possibility to obtain such a global result is due to
a particular property of the model, and one cannot expect to obtain it for general models. The
particular property is that the part we selected as the reference HamiltonianH0 in the strong-
coupling regime contains all the unbounded operators of the complete model and is explicitly
solvable. The term that was left to be treated by RT and perturbation theory is a bounded operator.
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Chapter 6

Effective dressed Hamiltonians for
laser-driven atoms and molecules

We combine here the general ideas of the iterative perturbation algorithms by unitary transfor-
mations and of the resonant transformation, to construct effective models within the Floquet
theory.

When considering the stationary Floquet Hamiltonian K = −i~ω ∂
∂θ

+ H(θ), H(θ) =
H0 + εV (θ), describing the dynamics of a quantum (atomic or molecular) system H0, illumi-
nated by a strong photon field (of one frequency), we have to extend the preceding partitioning
to the enlarged space K = H⊗L. This is in practice done in two steps:

(i) First we identify a set of atomic (or molecular) essential states, connected with the initial
condition, whose population will be appreciable during the dynamics. This means that these
states are in multiphoton resonance (or quasi-resonance). This allows one to split the Hilbert
space into two orthogonal subspaces H = H0 ⊕ H1, and thus the enlarged Hilbert space also
into two orthogonal subspaces

K = (H0 ⊗ L)⊕ (H1 ⊗ L) = K0 ⊕K1. (6.1)

We next partition the Floquet Hamiltonian with respect to these atomic blocks. We obtain
effective Floquet Hamiltonians inside each block.

(ii) The second step is the construction of an effective dressed Hamiltonian, independent of
the θ−variable, inside the block connected to the initial condition. This can be done by the
KAM iterations combined by the resonant transformation techniques to treat the resonances.
The second step depends on the specific problem that is treated.

This is calculated for single-mode and two-mode fields.
We review the one- and two-photon processes occurring in atoms (Section 6.2) and treat

some of these in diatomic molecules (Section 6.3). In atoms, we recover known effective Hamil-
tonians (see for instance [43]), but using the fully time independent formulation. This is sys-
tematically extended for molecules where we determine original effective Hamiltonians that will
be used for the control related to the alignment of molecules in Chapter 10.

6.1 Partitioning Floquet Hamiltonians

We formulate in a general way the first step for partitioning the Floquet Hamiltonian up to
the second order. The free Hamiltonian is defined on a Hilbert space H of dimension N . We
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assume that the Hamiltonian H(θ) features two distinct weakly coupled sets of states, such
that it can be separated into four parts, represented symbolically in matrix form as

K =

(
K00

0 + εV 00(θ) εV 01(θ)
εV 10(θ) K11

0 + εV 11(θ)

)
, (6.2)

with

Kii
0 = −i~ω ∂

∂θ
⊗ 1lHi +H ii

0 , (6.3a)

V = V 00 + V 11 + V 01 + V 10, (6.3b)

H0 = H00
0 +H11

0 . (6.3c)

In the enlarged space, the splitting can be interpreted as two weakly coupled subspaces K0 and
K1.

We construct a unitary transformation of the form eεW1 , with W †
1 = −W1 such that

e−εW1(K00
0 +K11

0 + εV )eεW1 = K00
0 +K11

0 + εD1(θ) + ε2V2(θ), (6.4)

where D1 = D00
1 +D11

1 , with Dii
1 = P iD1P

i, i = 0, 1, and giving the remaining coupling

ε2V2 =
ε2

2
[V,W1] +

ε3

3
[[V,W1],W1] + . . .+ εM

(M − 1)

M !
[. . . [[V,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . .

+
ε2

2!
[D1,W1] +

ε3

3!
[[D1,W1],W1] + . . .+

εM

M !
[. . . [D1,W1],W1], . . .]︸ ︷︷ ︸

M−1 commutators

+ . . . (6.5)

Since we have here a block-diagonal perturbation, we can choose

D1 = V 00 + V 11, (6.6)

which in this case is not necessarily zero, as opposed to Eqs (4.58). This leads to W 00 = 0 =
W 11. We obtain a Floquet Hamiltonian of second order, in matrix notation

K2 = e−εW1(K00
0 +K11

0 + εV )eεW1

=

(
K00 + εV 00 + ε2

2

[
V 01W 10

1 + (V 01W 10
1 )†

]
ε2

2
(V 00W 01

1 −W 01
1 V 11)

ε2

2
(V 11W 10

1 −W 10
1 V 00) K11 + εV 11 − ε2

2

[
(W 10

1 V 01)† +W 10
1 V 01

])
+O(ε3). (6.7)

We obtain the effective Floquet Hamiltonian (assuming that the initial condition is connected
to the block K0) of second order:

K00
eff = −i~ω ∂

∂θ
⊗ 1lH0 +H00

0 + εV 00 +
ε2

2

[
V 01W 10

1 + (V 01W 10
1 )†

]
. (6.8)

The next corrections of order ε3 are given by ε3

3
[[V1,W1],W1]+

ε3

3!
[[D1,W1],W1]. The particular

case
V 00 + V 11 = 0, (6.9)

leads toD1 = 0, and to corrections for the eigenvalues of order ε4, given by ε4[[[V,W1],W1],W1]/8.
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It is convenient to calculate the term of order ε2 of the effective Floquet Hamiltonian by
expansion of V 01 and W 10

1 in Fourier series. The perturbation can be indeed written as

V (θ) =
∑
ℓ

Ṽℓ e
iℓθ. (6.10)

Writing W1 in the basis of eigenvectors |n, k⟩ of K0, denoting the corresponding eigenvalues
λ0n,k = En + k~ω with En the eigenvalues of H0 :

W1 =
∑

n,m,k,k′,(m,k′) ̸=(n,k)

|n, k⟩⟨n, k|V (θ)|m, k′⟩⟨m, k′|
λ0m,k′ − λ0n,k

, (6.11)

gives

W1 =
∑

n,m,k,k′,ℓ

|n⟩⟨n|Ṽℓ|m⟩⟨m| ⊗ [|k⟩⟨k|eiℓθ|k′⟩⟨k′|]
Em + k′~ω − (En + k~ω)

=
∑
n,m,ℓ

|n⟩⟨n|Ṽℓ|m⟩⟨m|
Em − En − ℓ~ω

⊗ eiℓθ, (6.12)

since ∑
k

|k⟩⟨k − ℓ| = e+iℓθ. (6.13)

We can thus expand W1 in the Fourier modes

W1 =
∑
ℓ

W̃1,ℓ e
iℓθ, W̃1,ℓ =

∑
n,m

|n⟩⟨n|Ṽℓ|m⟩⟨m|
Em − En − ℓ~ω

. (6.14)

Defining W ij
1 := P iW1P

j, and choosing W 00
1 = 0 and W 11

1 = 0, we obtain as before, in terms
of the eigenvalues and eigenvectors (in the enlarged space) of K00 and of K11:

W1 = W 01
1 +W 10

1 , (6.15a)

W 01
1 =

∑
ℓ

W̃ 01
1,ℓ e

iℓθ, W̃ 01
1,ℓ =

∑
n,m

|n00⟩⟨n00|Ṽ 01
ℓ |m11⟩⟨m11|

E11
m − E00

n − ℓ~ω
, (6.15b)

W 10
1 =

∑
ℓ

W̃ 10
1,ℓ e

iℓθ, W̃ 10
1,ℓ =

∑
n,m

|m11⟩⟨m11|Ṽ 10
ℓ |n00⟩⟨n00|

E00
n − E11

m − ℓ~ω
(6.15c)

with

Ṽ 10
ℓ =

(
Ṽ 01
−ℓ

)†
, W̃ 10

1,ℓ = −
(
W̃ 01

1,−ℓ

)†
. (6.16)

We remark that the denominators of W1 allow us to detect resonant states of the subspace H1

that should be thus included in the subspace H0 in the partitioning.
We obtain for the second order effective Floquet Hamiltonian

K00
eff = −i~ω ∂

∂θ
⊗ 1lH0 +H00

0 + εV 00

−ε
2

2

∑
n,ñ,ℓ,ℓ′,m

(
ei(ℓ+ℓ′)θ

E11
m − E00

n + ℓ~ω
+

ei(ℓ+ℓ′)θ

E11
m − E00

ñ − ℓ′~ω

)
×|ñ00⟩⟨ñ00|Ṽ 01

ℓ′ |m11⟩⟨m11|Ṽ 10
ℓ |n00⟩⟨n00|. (6.17)
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We can easily extend this formula to the multifrequency case by adapting the notations: ω → ω,
θ → θ, ℓ→ ℓ, and ℓ′ → ℓ′ (see also Section 1.5):

K00
eff = −i~ω · ∂

∂θ
⊗ 1lH0 +H00

0 + εV 00

−ε
2

2

∑
n,ñ,ℓ,ℓ′,m

(
ei(ℓ+ℓ′)·θ

E11
m − E00

n + ℓ · ~ω
+

ei(ℓ+ℓ′)·θ

E11
m − E00

ñ − ℓ
′ · ~ω

)
×|ñ00⟩⟨ñ00|Ṽ 01

ℓ′ |m
11⟩⟨m11|Ṽ 10

ℓ |n00⟩⟨n00|. (6.18)

6.2 Effective Hamiltonian in atoms for one- and two-

photon processes

We consider an atom, of Hamiltonian H0, illuminated by a laser, such that two atomic states
|a⟩ and |b⟩ (of respective energies Ea = ~ωa and Eb = ~ωb giving H00

0 = diag[Ea, Eb] in the
basis {|a⟩, |b⟩}) are in (one- or two-photon) quasi-resonance. The coupling is made through the
electric dipole moment −→µ = −e

∑
i
−→r i, with

−→r i the position of each electron i and −e the
elementary electric charge (with the origin of the axis taken in the nucleus):

K = −i~ω ∂

∂θ
+H0 −−→µ ·

−→
E . (6.19)

Since we consider a general linearly or elliptically polarized field, we have to consider two
manifolds of degenerate states for a given J , labeled {|a(Ja,ma)⟩} and {|b(Jb,mb)⟩}. We omit
below the mention of the angular and magnetic quantum numbers when unnecessary.

In practice, one very often considers a transition of a single electron (of position denoted
−→r ), which should be then taken into account as the unique contribution in the summation
−→µ = −e−→r . As a consequence, we have ⟨n|−→µ |n⟩ = −→0 , n = a, b, since the atomic states have a
well-defined symmetry, and the components of the moment dipole are odd functions.

We first recall the results for one-photon resonant processes, for linearly and elliptically
polarized fields (see for instance [43] and more recently [112]).

6.2.1 RWA for a linearly or elliptically polarized one-photon reso-
nant field

We assume a near-resonant laser field of frequency ω:

ωa + ω +∆ = ωb, (6.20)

linearly polarized along the z axis, or elliptically polarized in the plane x−y (see Appendix A):

linear :
−→
E = E cosωt−→e z (6.21a)

elliptic :
−→
E =

E√
2
sinα

 cos(ωt+ η/2)
sin(ωt+ η/2)

0

+
E√
2
cosα

 cos(ωt− η/2)
− sin(ωt− η/2)

0

 .(6.21b)

with the angles −π
4
≤ α < 3π

4
(α = π/2 for the left circularly polarized field, and α = 0 for

the right circularly polarized field) and the relative phase 0 ≤ η < 2π between the two circular
fields.
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In this resonant case, as shown below the leading order is of first order in field amplitude
and can be obtained directly by the RWA. We can neglect higher orders that would be obtained
by the preceding partitioning method.

Selection rules

We recall the selection rules, using the spectroscopic notation n 2S+1XJ , where n is the principal
quantum number of the considered electron, X = S, P,D, · · · for respectively the total orbital
quantum number L = 0, 1, 2, · · · , S is the total spin quantum number, 2S+1 is the multiplicity
of the state, and |L− S| ≤ J ≤ L+ S:

∆S = 0 (6.22a)

∆L = 0,±1 (6.22b)

∆J = 0,±1 (but J = 0→ J = 0 forbidden) (6.22c)

parity change of
∑
i

ℓi (6.22d)

where ℓi is the orbital quantum number of the electron i. The two first rules concerning S and
L are approximate (better for light elements); they presume that the angular momenta L⃗ and S⃗
are well defined, i.e. that the coupling between each other is weak. The two last rules are exact.
The last rule is known as the Laporte rule, which is due to the fact that the eigenfunctions of
the total orbital angular momentum are either odd or even with an electronic inversion (i.e.
replacement of all r⃗i by −r⃗i) and that the dipole moment is odd. Since, as mentioned above,

we consider a single active electron (i.e. a coupling between the l⃗i not too strong) of orbital
quantum number denoted ℓ (and the other one in the ground state 1s), we have

∑
i ℓi = ℓ, and

the combination of the second and fourth selection rules becomes

∆L = ∆ℓ = ±1. (6.23)

Concerning the magnetic quantum number mJ of the considered electron, such that |mJ | ≤ J ,
and which gives the degeneracy of the state, we have

∆mJ = 0,±1, and for ∆J = 0, ∆mJ = ±1, (6.24)

as detailed below.

Quasienergy operator

For the linear polarization along the z axis (usually denoted π, or with the symbol (0) when
we refer to the associated standard components of the dipole moment, see below), the Floquet
Hamiltonian reads

K(0) = −i~ω ∂

∂θ
+H0 − µzE(t) cos θ. (6.25)

In the case of elliptic polarization, it reads

K(ell) = −i~ω ∂

∂θ
+H0 +

E(t)
2

[
µ+1 sinα e−i(θ+η/2) − µ−1 cosα e−i(θ−η/2) + c.c.

]
, (6.26)
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where c.c. denotes the complex conjugate (and the transpose for the operators), with the so-
called standard (or spherical) components µq, q = ±1, 0 of the dipole moment:

µ±1 = ∓
µx ± iµy√

2
(µ†+1 = −µ−1), µ0 = µz. (6.27)

The use of such a decomposition of an elliptic field into two circular fields and the standard com-
ponents are well adapted to treat one-photon resonant cases. Particular circular polarizations
are for α = π/2, denoted σ+:

K(+) = −i~ω ∂

∂θ
+H0 −

E(t)
2

(µ−1e
i(θ+η/2) − µ+1e

−i(θ+η/2)) (6.28)

and for α = 0, denoted σ−:

K(−) = −i~ω ∂

∂θ
+H0 −

E(t)
2

(µ−1e
−i(θ−η/2) − µ+1e

i(θ−η/2)). (6.29)

In the resonant approximation (see below), the Hamiltonian K(+) will allow an absorption of a
σ+ photon and an emission of a σ− photon; the Hamiltonian K(−) will allow an absorption of
a σ− photon and an emission of a σ+ photon.

Wigner-Eckart theorem

The angular part of the matrix elements of the dipole moment can be calculated by the Wigner-
Eckart theorem:

⟨Jb,mb|µq|Ja,ma⟩ = ⟨Ja1maq|Jbmb⟩⟨Jb||µ||Ja⟩ = ⟨Ja1maq|Jbmb⟩
(Jb||µ||Ja)√

2Jb + 1
(6.30a)

= (−1)Ja−1+mb

(
Jb Ja 1
−mb ma q

)
(Jb||µ||Ja) (6.30b)

= (−1)Jb−mb

(
Jb 1 Ja
−mb q ma

)
(Jb||µ||Ja) (6.30c)

selection rule : mb = ma + q, (6.31)

with the two standard definitions of the reduced matrix elements (independent of the m num-
bers) ⟨Jb||µ||Ja⟩ and (Jb||µ||Ja) connected each other by ⟨Jb||µ||Ja⟩ = (Jb||µ||Ja) /

√
2Jb + 1, and

connected to the transition strength S(Ja, Jb) = S(Jb, Ja) by S(Ja, Jb) = | (Jb||µ||Ja) |2/(ea0)2,

⟨Ja1maq|Jbmb⟩ the Clebsch-Gordan coefficients, and the three-j symbols

(
j1 j2 j
m1 m2 m

)
(whose values are unchanged after an even permutation, and multiplied by (−1)j1+j2+j af-
ter an odd permutation or after multiplying the lower row by −1). Other quantum numbers
needed for the complete definition of the states have been omitted here for simplicity. This
allows one to determine the selection rules between the m values and to calculate the ratio
between these couplings.

Linear polarization

For a linear polarization, we thus have ma = mb and the effective RWA Hamiltonian writes in
the basis {|Ja⟩, |Jb⟩}

H
(0)
eff =

~
2

(
0 Ωba(t)

Ωba(t) 2∆

)
(6.32)



6.2. Effective Hamiltonian in atoms for one- and two-photon processes 135

with the one-photon Rabi frequency (assumed real)

Ωba(t) = −E(t)⟨b(Jb,mb = ma)|µz|a(Ja,ma)⟩/~. (6.33)

This approximation holds when

partitioning : |Ωba| ≪ |∆m|, |2ω +∆m| (6.34a)

resonant approximation : |Ωba|, |∆| ≪ ω (6.34b)

with the single resonant one-photon detunings with respect to the other states than a and b
(i.e. m ̸= a, b) defined as

∆m = ωm − ωa − ω, (6.35)

the anti-resonant detunings 2ω+∆m. Such conditions have to persist for the resonant elliptical
polarization processes studied below.

Elliptic polarization

For an elliptic polarization, mb = ma ± 1 states are a priori involved in the resonance for a
given ma leading to a multi-state linkage. We assume in what follows that ωa < ωb. In this
case, the circular σ+ (resp. σ−) term proportional to sinα (resp. cosα) in (6.26) is resonant
allowing an absorption of one-photon from |a⟩ to |b⟩ with mb = ma + 1 (resp. mb = ma − 1).

These circular and linear resonant processes are symbolized in Fig. (6.1).

πσ+ σ−

|Ja,mb + 1⟩|Ja,mb⟩|Ja,mb − 1⟩

|Jb,mb⟩

Fig. 6.1 - Schematic representation of resonant processes by linear π and circular σ± pulses
with Jb = Ja, Ja ± 1.

Example 1. Λ system: STIRAP by adiabatic rotation of polarization We consider
the Λ-system: Ja = 1, Jb = 0, for instance the states 2 3S1 - 2

3P0 in metastable helium (see Fig.
6.2). The elliptic polarization allows one to connect |Ja = 1,ma = −1⟩ and |Ja = 1,ma = +1⟩
to |Jb = 0⟩ with the couplings

⟨0, 0|µ+1|1,−1⟩ = ⟨0, 0|µ−1|1, 1⟩ = (Jb||µ||Ja) /
√
3 = −⟨0, 0|µz|1, 0⟩, (6.36)

using

(
j j 0
m −m 0

)
= (−1)j−m

√
2j+1

. This gives the effective RWA Hamiltonian in the basis {|Ja =

1,ma = −1⟩, |Jb = 0⟩, |Ja = 1,ma = +1⟩}

Heff =
~
2

 0 Ω∗ba(t) sinα eiη/2 0
Ωba(t) sinα e−iη/2 2∆ −Ωba(t) cosα eiη/2

0 −Ω∗ba(t) cosα e−iη/2 0

 (6.37)
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with the Rabi frequency that can be evaluated here for the linear polarization:

Ωba(t) = −E(t)⟨b(Jb = 0)|µz|a(Ja = 1,ma = 0)⟩/~. (6.38)

Such Hamiltonian shows that one can generate STIRAP processes (see Section 8.2), i.e. transfer
population from state |1,−1⟩ to state |1,+1⟩ by using (i) two different delayed (but overlapping)
σ− (first) and σ+ (next) fields of fixed polarization or (ii) an elliptic pulse of rotating angle α
from α = 0 to α = π/2.

σ+ σ−

|1,+1⟩

|0, 0⟩

|1,−1⟩

∆

Fig. 6.2 - Linkage of the Λ system (example 1).

Example 2. V system We consider Ja = 0, and Jb = 1 (with ωa < ωb), for instance
respectively the states 2 1S0 - 2

1P1 (or 2
3P0 - 2

3S1) in metastable helium (see Fig. 6.3). The
elliptic polarization allows one to connect |Ja = 0⟩ to |Jb = 1,mb = −1⟩ and |Jb = 1,mb = +1⟩
with the respective couplings

⟨1,−1|µ−1|0, 0⟩ = ⟨1, 1|µ+1|0, 0⟩ = (Jb||µ||Ja) /
√
3 = ⟨1, 0|µz|0, 0⟩. (6.39)

This leads to the following effective RWA Hamiltonian in the basis {|Jb = 1,mb = −1⟩, |Ja =
0⟩, |Jb = 1,mb = +1⟩}

Heff =
~
2

 2∆ −Ωba(t) cosα eiη/2 0
−Ω∗ba(t) cosα e−iη/2 0 Ω∗ba(t) sinα eiη/2

0 Ωba(t) sinα e−iη/2 2∆

 (6.40)

with the Rabi frequency that can be evaluated here for the linear polarization ma = mb = 0:

Ωba(t) = −E(t)⟨b(Jb = 1,mb = 0)|µz|a(Ja = 0)⟩/~. (6.41)

We remark that a circular polarization is state-selective and allows a two-level approximation
in such a system.

6.2.2 Two-photon single-mode processes

We here consider a two-photon transition between the states of energy Ea = ~ωa and Eb =
~ωb > Ea:

ωa + 2ω + δ = ωb (6.42)

with no intermediate single-photon resonances.
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σ− σ+

|1,+1⟩

|0, 0⟩

|1,−1⟩
∆ ∆

Fig. 6.3 - Linkage of the V -system (example 2).

We distinguish below processes that couple one initial state to a single state [when the
polarization linear or circular (σ− or σ+)], with the ones that couple the initial state to a
subspace of states (when the polarization is elliptic, and not linear nor circular).

We first partition the Floquet Hamiltonian such that the states |a⟩ and |b⟩ span the Hilbert
subspace H0 and the other atomic states {|1⟩ , · · · |N⟩} the Hilbert subspace H1.

The interaction can be written in general with the use of cartesian components:

−→µ =
3∑

i=1

µi
−→e i,

−→
E =

3∑
i=1

Ei cos(ωt+ ϕi)
−→e i. (6.43)

From Eq. (6.17), we obtain for the diagonal elements (n = a, b):

⟨n|K00
eff |n⟩ = −i~ω ∂

∂θ
+ ⟨n|H00

0 |n⟩ −
1

2

−→
E (t, θ) · ⟨n|

⇒
α (ω)|n⟩ ·

−→
E (t, θ)

− i
4

∑
i̸=j

EiEj sin(ϕi − ϕj)⟨n|αij|n⟩ (6.44)

with the effective induced dipole moment in the H0 subspace

−→µ 0
eff(ω) =

1

2

∑
n,n′=a,b

|n′⟩⟨n′|
⇒
α (ω)|n⟩⟨n|

−→
E (t, θ), (6.45)

and the components of the dynamical (i.e. frequency dependent) electronic polarizability tensor
⇒
α in the H0 subspace

⟨n′|αij(ω)|n⟩ =
∑
m̸=a,b

[
⟨n′|µi|m⟩⟨m|µj|n⟩
~(ωm − ωn − ω)

+
⟨n′|µj|m⟩⟨m|µi|n⟩
~(ωm − ωn′ + ω)

]
. (6.46)

Note that the indices ij are interchanged in the second summation. These matrix elements
have the properties

⟨n′|αij(ω)|n⟩ = ⟨n|αji(ω)|n′⟩∗ = ⟨n′|αji(−ω)|n⟩. (6.47)

For atoms, the electronic polarizability tensor that connects the same electronic states is diag-
onal:

⟨n|αij|n⟩ = αiδij, (6.48)
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with αi = α for all i in a spherical s-state. This finally leads to the simple form

⟨n|K00
eff |n⟩ = −i~ω

∂

∂θ
+ ⟨n|H00

0 |n⟩ −
1

2

−→
E (t, θ) · ⟨n|

⇒
α (ω)|n⟩ ·

−→
E (t, θ). (6.49)

We remark that the result (6.49) is valid for any field polarization and quantum axis.

Selection rules

The selection rules for this two-photon process are thus

∆S = 0 (6.50a)

∆L = ∆l = 0,±2 (6.50b)

∆J = 0,±2 (6.50c)

∆mJ = 0,±2 (6.50d)

As mentioned above, we have µaa = µbb = 0. The selection rules entail furthermore µba = 0 for
a two-photon transition. A linear polarized field (along the z) direction will give ∆mJ = 0. A
circular σ+ (resp. σ−) in the x− y plane will give ∆m = +2 (resp. ∆m = −2).

Effective Hamiltonian with a linear or circular field: The two-photon RWA

We consider here two-photon processes by a linear or circular pulse, as shown in Fig. 6.4. The
quantum axis is chosen as the z-axis. The standard components for the dipole moment are
here appropriate for the circular fields, as shown below.

σ−

σ−

σ+

σ+

|Ja,ma⟩|Ja,ma⟩

π

π

|Ja,ma⟩

|Jb,ma⟩ |Jb,ma + 2⟩|Jb,ma − 2⟩

Fig. 6.4 - The three linkage patterns for a two-photon process with a linear or circular field
with Jb = Ja, Ja ± 2.

Construction of the effective dressed Hamiltonian. Denoting the matrix elements µ
(q)
nn′

with q = 0,+,− respectively for the linear π, circular σ+, and circular σ− polarizations, and
applying Eq. (6.17), we obtain for the second order effective Floquet Hamiltonian

K
(q)
eff = −i~ω ∂

∂θ
+H00

0 + E2V (q)
2 (θ) (6.51)
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with

V
(q)
2 (θ) =

(
V

(q)
2,aa(θ) V

(q)
2,ba

∗
(θ)

V
(q)
2,ba(θ) V

(q)
2,bb(θ)

)
, (6.52)

the diagonal elements from Eq. (6.49)

E2V (q)
2,nn = −1

2
⟨n|
−→
E (t, θ)·

⇒
α (ω) ·

−→
E (t, θ)|n⟩, (6.53a)

and the coupling which reads for the linear polarization

V
(0)
2,ba = − 1

8~
∑
m ̸=a,b

µ
(0)
bmµ

(0)
ma

∑
ℓ,ℓ′∈{−1,1}

(
ei(ℓ+ℓ′)(θ+ϕ0)

ωm − ωa + ℓω
+

ei(ℓ+ℓ′)(θ+ϕ0)

ωm − ωb − ℓ′ω

)
. (6.53b)

ϕq is the phase of the field of polarization q = −, 0,+, defined for the circular fields as

ϕ± = ±η/2. (6.54)

This gives for the diagonal elements for the linear polarization

V
(0)
2,nn = −1

4
⟨n|αzz(ω)|n⟩ cos2(θ + ϕ0), (6.55a)

and for the elliptic polarization

V
(q)
2,nn = −1

4
⟨n|
[
αxx(ω) cos

2(θ + ϕq) + αyy(ω) sin
2(θ + ϕq)

]
|n⟩. (6.55b)

The non-diagonal perturbation term V
(q)
2,ba can be calculated for q = ±1 using the definition of

the circular perturbations in Eqs. (6.28) and (6.29). Although we do not explicitly indicate this,
the sums should also include a principal-value integral over continuum states. To determine an
effective dressed Hamiltonian (i.e. independent of θ) from the second order perturbation term
(6.52), we next apply a contact transformation consisting in averaging the Hamiltonian (6.51)
with respect to K0 := −i~ω∂/∂θ+H00

0 , i.e. in diagonalizing it with respect to θ and to the basis

{|a⟩, |b⟩}. Since V (q)
2 (θ) =

∑
ℓ∈{−2,··· ,2} Ṽ

(q)
2,ℓ e

iℓθ, this could be done usingW
(q)
2 (θ) =

∑
ℓ W̃

(q)
2,ℓ e

iℓθ

satisfying (6.14), with, for example, the b, a component of the mode ℓ = −2

E2⟨b|W̃ (q)
2,−2|a⟩ =

−Ω(q)
ba e
−2iϕq

ωa − ωb + 2ω
, (6.56)

where we denote the effective two-photon Rabi frequency

Ω
(q)
ba = − E

2

4~2
∑
m̸=a,b

(
µ
(q)
bmµ

(q)
ma

ωm − ωa − ω
+

µ
(q)
bmµ

(q)
ma

ωm − ωb + ω

)
. (6.57)

It reads for the linear polarization

Ω
(0)
ba = −E

2

4~
⟨b|αzz(ω)|a⟩ (6.58)

and for the elliptical polarization (here written with cartesian components, see below for the
standard components)

Ω
(±)
ba = −E

2

8~
[⟨b|αxx(ω)|a⟩ − ⟨b|αyy(ω)|a⟩ ± i(⟨b|αxy(ω)|a⟩+ ⟨b|αyx(ω)|a⟩)] . (6.59)
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We emphasize that the electronic polarizability tensor that connects different electronic states
(generally of different symmetry) is not diagonal in general.
This leads to a quasi-divergence of the W which occurs when the numerator is equal or larger
than the denominator in absolute value. It is due to the quasiresonance ωb − ωa − 2ω = δ and
occurs thus when |Ωba| & |δ|. We thus apply instead the two-photon RT

R2 = diag[1, exp(−2iθ)], (6.60)

giving the effective Hamiltonian as the part of R†2KeffR2 independent of θ, by averaging with

respect to θ [this corresponds to applying the contact transformation exp(EW (q)
θ ) with W

(q)
θ =

−i
∫ θ
(
R†2V

(q)
2 (θ)R2 −R†2V

(q)
2 (θ)R2

)
and f(θ) = ( 1

2π
)
∫ 2π

0
dθ f(θ)], retaining terms up to E2.

With this procedure, the diagonal elements of the effective Hamiltonian are thus simply given
by the averaging with respect to θ of the diagonal elements (6.44) of the Hamiltonian (6.17).

The effective dressed Hamiltonian (independent of θ) finally reads (with the energy reference
Ea = 0)

Heff =
~
2

(
2S

(q)
a Ω

(q)
ba

∗
e2iϕq

Ω
(q)
ba e
−2iϕq 2(S

(q)
b + δ)

)
(6.61)

with the effective two-photon Rabi frequency (6.57) and the Stark (or light) shift of the state
n reading for the linear polarization

S(0)
n = −E

2

4~
⟨n|αzz(ω)|n⟩ = −

E2

2~2
∑
m̸=a,b

|µ(0)
nm|2

ωm − ωn

(ωm − ωn)2 − ω2
(6.62)

and for the elliptical polarization

S(±)
n = −E

2

8~
[⟨n|αxx(ω)|n⟩+ ⟨n|αyy(ω)|n⟩] . (6.63)

This approximation holds when

partitioning : |Ω(q)
ba | ≪ |∆m|, |2ω +∆m| (6.64a)

resonant approximation : |Ω(q)
ba |, |δ| ≪ 2ω (6.64b)

with the resonant one-photon detunings (m ̸= a, b)

∆m = ωm − ωa − ω, (6.65)

and the anti-resonant detunings 2ω +∆m.
We can furthermore approximate the effective two-photon Rabi frequency as

Ω
(q)
ba ≈ −

E2

2~2
∑
m̸=a,b

µ
(q)
bmµ

(q)
ma

ωm − ωa − ω
, (6.66)

neglecting the correction of the order δ/(ωm − ωa − ω), when

|δ| ≪ |∆m|, (6.67)
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i.e. when the two-photon detuning is much smaller than any one-photon detuning with the
intermediate states (in absolute value). This approximation is implicitly present in the condi-
tions (6.64) to get the effective Hamiltonian (6.61), if we take into account that a non-negligible

population transfer occurs when Ω
(q)
ba & δ.

This effective Hamiltonian (6.61) constructed by the combination of a partitioning of the
Floquet Hamiltonian, of a two-photon RT, and of a final θ−averaging can be seen as a two-
photon RWA, which extends the usual (one-photon) RWA [43, 44]. We have thus rederived a
well-known result, using stationary techniques that allows us to estimate easily the order of the
neglected terms. This method allows us also to calculate higher order corrections.

One important point is that the extension to the two-photon RWA leads to a Stark shift that
is of the same order of the Rabi frequency in field amplitude, and that cannot be consequently
neglected. This Stark shift can be seen as an effect that moves away from the resonance, and
that thus should be compensated by the detuning to preserve the resonance (see for instance
[76, 113]).

Connection with the standard components of the polarizabilities. One can relate
the two-photon Rabi frequency and the Stark shifts to the standard components of the tensor
electronic polarizability operator, extending the definition of the polarizability components αij

(6.46) to the standard components αqq′ :

Ω
(q)
ba = −E

2

4~
⟨b|αqq(ω)|a⟩, (6.68a)

S(q)
n = (−1)q+1E2

4~
⟨n|α−qq(ω)|n⟩, (6.68b)

using the correspondence

α++ + α−− = αxx − αyy, (6.69a)

α++ − α−− = i(αxy + αyx), (6.69b)

α+− + α−+ = −(αxx + αyy), (6.69c)

α+− − α−+ = i(αxy − αyx). (6.69d)

Increasing the coupling and related approximations. We can remark that in order to
have a large two-photon Rabi frequency, one can approach the frequency to a single photon
resonance:

ωa + ω +∆a0 = ω0 (6.70)

with the effective Hamiltonian (6.61) still valid as long as Ωba ≪ ∆a0. If one assumes addition-
ally that the contribution of the other states are negligible:

∆a0 ≪ ∆am,∆am + δ, (6.71)

where {∆am,m ∈ H1,m ̸= 0} are all the other single-photon detunings, we obtain (if δ ≪ ∆a,0)

Ω
(q)
ba ≈ −

E2

2~2
µ
(q)
b0 µ

(q)
0a

∆a0

, S(q)
n ≈ −

E2

4~2
|µ(q)

n0 |2

∆a0

, (6.72)

and the effective Hamiltonian

H
(q)
eff ≈

~
2

(
− E2

2~2∆a0
|µ(q)

a0 |2 − E2
2~2∆a0

(
µ
(q)
b0 µ

(q)
0a

)∗
e2iϕq

− E2
2~2∆a0

µ
(q)
b0 µ

(q)
0a e
−2iϕq − E2

2~2∆a0
|µ(q)

b0 |2 + 2δ

)
. (6.73)
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If we have µ
(q)
a0 = µ

(−q)
b0 , then the Stark shift is the same for both states, and has consequently

no relative effect (but would give a global phase for the dynamics).

Effective Hamiltonian for an elliptic field

From an initial state |a(Ja,ma)⟩, a two-photon process by an elliptic field of the form

−→
E =

E√
2
sinα

 cos(ωt+ η/2)
sin(ωt+ η/2)

0

+
E√
2
cosα

 cos(ωt− η/2)
− sin(ωt− η/2)

0

 (6.74)

can induce transitions in a chainwise-connected multistate system · · · ↔ |a(Ja,ma − 4)⟩ ↔
|a(Ja,ma − 2)⟩ ↔ |a(Ja,ma)⟩ ↔ |a(Ja,ma + 2) ↔ |a(Ja,ma + 4)⟩ ↔ · · · by Raman-type
processes, and also in the excited state {· · · , |b(Jb,ma−4)⟩, |b(Jb,ma−2)⟩, |b(Jb,ma)⟩, |b(Jb,ma+
2), |b(Jb,ma + 4)⟩, · · · } (see Fig. 6.5).

σ−

σ+

σ+

σ−

σ+

σ−

σ−

σ+

|ma − 4⟩ |ma − 2⟩ |ma⟩ |ma + 2⟩ |ma + 4⟩

· · ·

|Ja⟩

· · ·

|Jb⟩ |ma − 4⟩ |ma − 2⟩ |ma⟩ |ma + 2⟩ |ma + 4⟩

Fig. 6.5 - Chainwise-linked multistate system with Jb = Ja, Ja ± 2 for an elliptically polarized
field interaction.

To construct the effective dressed Hamiltonian, we follow the procedure described above:
The off-block-diagonal coupling term of the ba component is given by the mode ℓ = −2 of the
effective Floquet Hamiltonian (6.17), and the block-diagonal term (n = a, b) by the θ-averaged
diagonal term of (6.17):

⟨b|H(ell)
eff |a⟩ = −E1

8~
⟨b|
[
2(α++(ω)e

−iη sin2 α+ α−−(ω)e
iη cos2 α)

−(α−+(ω) + α+−(ω)) sin 2α
]
|a⟩, (6.75a)

⟨n|H(ell)
eff |n⟩ = En −

E2

8~
⟨n|
[
(α++(ω)e

−iη + α−−(ω)e
iη) sin 2α

−2(α−+(ω) sin2 α+ α+−(ω) cos
2 α)
]
|n⟩ (6.75b)

= En −
E2

4~
⟨n|
[
α++(ω) cos η sin 2α− α+−(ω)

]
|n⟩ (6.75c)

where −2~ω should be added for ⟨b|H(ell)
eff |b⟩.
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The block-diagonal terms of Eq. (6.75c) proportional to E2 can be here interpreted as
Stark shifts of the respective subspaces |a(Ja)⟩ and |b(Jb)⟩, and also as Raman couplings be-
tween the states of the respective degenerate-level manifolds that span the two subspaces.
Such block-diagonal terms are thus referred below to as Raman-Stark terms. Within each
diagonal block, the term proportional to sin 2α is the off-diagonal coupling, characterizing an
absorption of a photon σ+ (σ−) and an emission of a photon σ− (σ+). The next term is the
Stark shift. This leads to the tridiagonal effective block-Hamiltonian in the {· · · , |n(Jn,ma −
2)⟩, |n(Jn,ma)⟩, |n(Jn,ma + 2)⟩, · · · } basis (here written for n = a):

⟨a|H(ell)
eff |a⟩ =

~
2



. . . . . . . . . . . . . . .

. . . 2Sma−2 Ω∗ma−2→ma
eiη sin 2α 0

. . .
. . . Ωma−2→mae

−iη sin 2α 2Sma Ω∗ma→ma+2e
iη sin 2α

. . .
. . . 0 Ωma→ma+2e

−iη sin 2α 2Sma+2
. . .

. . . . . . . . . . . . . . .


(6.76)

with

Ωm→m+2 = −E
2

4~
⟨a(Ja,m+ 2)|α++(ω)|a(Ja,m)⟩, (6.77a)

Sm =
E2

4~
⟨a(Ja,m)|α+−(ω)|a(Ja,m)⟩. (6.77b)

For η = 0 (giving an ellipse of semiaxes a and b, see Appendix A), the Hamiltonian becomes

⟨a|H(ell,η=0)
eff |a⟩ = Ea −

E2

4~
⟨a|
[
αxx(ω)a

2 + αyy(ω)b
2
]
|a⟩. (6.78)

Alternative expression for the Raman-Stark terms [114]

One can determine a simple form for the Raman-Stark terms, of the most general expression

(6.75b), decomposing the electric field in terms
−→
E (±) associated respectively to the positive

frequency and to the negative frequency as

−→
E (+) :=

−→
Ee−iωt,

−→
E (−) :=

−→
Ee+iωt =

(−→
E (+)

)⋆
. (6.79)

Following the convention of Born and Wolf [115], we define

−→e ± = ∓ 1√
2
(−→e x ± i−→e y) (6.80)

and obtain for the circularly polarized fields

−→
E

(+)
± = ∓−→e ±

E
2
e−i(ωt±η/2). (6.81)

One obtains for any field polarization [114, 43]

⟨n|Heff|n⟩ = En −
−→
E (−)·

⇒
α ·
−→
E (+). (6.82)

Note that in this expression, the scalar product is done without additional complex conjugation.
This expression is still valid when the polarizability is non-diagonal, as considered in Eq.

(6.75b).
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6.2.3 Two-mode processes

We now consider various two-photon transitions with two different photons ω1 and ω2 between
the states Ea = ~ωa and Eb = ~ωb:

ladder : ωa + ω1 + ω2 + δ = ωb, (6.83a)

Raman : ωa + ω1 − ω2 + δ = ωb (6.83b)

with no intermediate single-photon resonances. In the general case of elliptically polarized
pulses, the diagonal elements of the interaction cannot take the simple form (6.49).

We distinguish here again processes that couple one initial state to a single state (when a
single polarization or two different circular polarizations for the two photons are considered),
with the ones that couple the initial state to a subspace.

Two-mode processes with a single polarization

The field contains two modes of a single polarization

linear (q = 0 or z)
−→
E (t, ω1t, ω2t) =

∑
j=1,2

Ej(t) cos(ωjt+ ϕj)
−→e z, (6.84a)

circularσ+ (q = +)
−→
E (t, ω1t, ω2t) =

∑
j=1,2

Ej(t)√
2

[cos(ωjt+ ϕj)
−→e x + sin(ωjt+ ϕj)

−→e y] ,(6.84b)

circularσ− (q = −)
−→
E (t, ω1t, ω2t) =

∑
j=1,2

Ej(t)√
2

[cos(ωjt+ ϕj)
−→e x − sin(ωjt+ ϕj)

−→e y] .(6.84c)

The considered two-photon processes are here (i) ladder processes similar to the ones shown
in Fig. 6.4, but with different frequencies for the two photons, and (ii) a Raman process with
π-polarized pulses. The selection rules are as for the two-photon RWA. We obtain (ϵ is here to
keep track of the different order; it corresponds to E1 or E2, and the second order ϵ2 to quadratic
terms in Ej, j = 1, 2)

K
(q)
eff = −i~ω1

∂

∂θ1
− i~ω2

∂

∂θ2
+H00

0 + ϵ2V
(q)
2 (θ1, θ2) (6.85)

with for the linear field

ϵ2V
(0)
2,nn = − 1

2~
∑
j=1,2

Ej cos2(θj + ϕj)
∑
m̸=a,b

(
|µ(0)

nm|2

ωm − ωn − ωj

+
|µ(0)

nm|2

ωm − ωn + ωj

)

−1

~
E1E2 cos(θ1 + ϕ1) cos(θ2 + ϕ2)

∑
m̸=a,b

(
|µ(0)

nm|2

ωm − ωn − ω2

+
|µ(0)

nm|2

ωm − ωn + ω1

)
(6.86a)

ϵ2V
(0)
2,ba = − 1

8~
∑
m̸=a,b

µ
(0)
bmµ

(0)
ma

∑
ℓ,ℓ′

E (0)ℓ E
(0)

ℓ′

(
ei(ℓ+ℓ′)·θ

ωm − ωa + ℓ · ω
+

ei(ℓ+ℓ′)·θ

ωm − ωb − ℓ′ · ω

)
(6.86b)

with ℓ, ℓ′ ∈ {(−1, 0), (1, 0), (0,−1)(0, 1)}, and

E (0)ℓ ≡
{
E1 for ℓ = (±1, 0)
E2 for ℓ = (0,±1) (6.87)
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Static polarizabilities. We remark that only if we consider static polarizabilities (i.e. ω →
0), we recover a simple form of the effective interaction −1

2

−→
E (t, θ1, θ2)·

⇒
α (0) ·

−→
E (t, θ1, θ2)) with

an induced dipole by the two fields:

ϵ2V
(0)
2,nn = − 1

2~
[E1 cos(θ1 + ϕ1) + E2 cos(θ2 + ϕ2)]

2 ⟨n|α00(0)|n⟩ (6.88a)

ϵ2V
(0)
2,ba = − 1

2~
[E1 cos(θ1 + ϕ1) + E2 cos(θ2 + ϕ2)]

2 ⟨b|α00(0)|a⟩. (6.88b)

Such a consideration with static polarizabilities can be relevant only for Raman processes.

Resonant approximation. The resonant approximation leads to the effective Hamiltonian

Heff =
~
2

(
2S

(q)
a Ω

(q)
ba

∗
ei(ϕ1±ϕ2)

Ω
(q)
ba e
−i(ϕ1±ϕ2) 2S

(q)
b + δ

)
, (6.89)

where the symbol ± corresponds to + (−) for the ladder (Raman) process, with the effective
two-photon Rabi frequency [where the condition |δ| ≪ |∆j,m| extending (6.67), and here again
implicitly present in the approximations, has been taken into account]

ladder : Ω
(q)
ba = −E1E2

4~
⟨b|αqq(ω1)|a⟩, (6.90a)

Raman : Ω
(z)
ba = −E1E2

4~
⟨b|αzz(ω1)|a⟩, (6.90b)

and the Stark shift of the state n due to both fields

S(q)
n = (−1)(q+1)

∑
j=1,2

E2j
4~
⟨n|α−qq(ωj)|n⟩. (6.91)

This approximation holds when

partitioning : Ω
(q)
ba | ≪ |∆j,m|, |ω1 + ω2 +∆j,m| (6.92a)

resonant approximation : |Ω(q)
ba |, |δ| ≪ ω1 ± ω2 (6.92b)

where the symbol ± corresponds to + (−) for the ladder (Raman) process, with the single
resonant one-photon detunings (m ∈ H1, j = 1, 2)

∆j,m = ωm − ωa − ωj. (6.93)

Two-mode processes with two circular polarizations

The field contains two modes of different circular polarizations:

−→
E (t) =

E1(t)√
2

[cos(ω1t+ η1/2)
−→e x + sin(ω1t+ η1/2)

−→e y]

+
E2(t)√

2
[cos(ω2t− η2/2)−→e x − sin(ω2t− η2/2)−→e y] . (6.94)

This allows one to consider the schemes shown in Fig. 6.6.
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σ1+

σ1+

σ2−

σ2−

σ1+ σ2−

σ2−
σ1+

|Jb,ma + 2⟩

|Ja,ma⟩

|Ja,ma⟩

|Jb,ma⟩
δ δ

δ

Fig. 6.6 - The ladder (left) and Raman (right) linkage patterns for two-mode processes with
two circular polarizations with Jb = Ja, Ja ± 2.

We obtain

Heff =
~
2

(
2Sa Ω∗bae

i(η1∓η2)/2

Ωbae
−i(η1∓η2)/2 2Sb + δ

)
(6.95)

with the Rabi frequency

ladder : Ωba =
E1E2
4~
⟨b|α−+(ω1)|a⟩, (6.96a)

Raman : Ωba = −E1E2
4~
⟨b|α++(ω1)|a⟩, (6.96b)

and the Stark shift of the state n due to both fields

Sn =
E21
4~
⟨n|α−+(ω1)|n⟩+

E22
4~
⟨n|α+−(ω2)|n⟩. (6.97)

The symbol ∓ corresponds to − (+) for the ladder (Raman) process. These systems, when
considered with intermediate one-photon quasi-resonant states and with two independent paths
of controllable relative phase, lead to interesting interference effects [116, 117].

Two-mode processes with two elliptic polarizations

With two elliptic fields of the form, j = 1, 2:

−→
E j =

Ej√
2
sinαj

 cos(ωjt+ ηj/2)
sin(ωjt+ ηj/2)

0

+
Ej√
2
cosαj

 cos(ωjt− ηj/2)
− sin(ωjt− ηj/2)

0

 , (6.98)

the process can be of ladder-type, similar to the one shown in Fig. 6.5 but with two different
colors. The coupling from Ja to Jb is made by all the possible combinations with the two colors:
σ+,1 − σ+,2, σ−,1 − σ−,2, σ+,1 − σ−,2, and σ−,1 − σ+,2; the Raman-Stark term of each subspace
Jn, n = a, b, by a single color: σ+,1− σ−,1 and σ+,2− σ−,2. The process of Raman-type leads to
the same combinations for the Raman-Stark term and coupling from Ja to Jb.
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The off-block-diagonal coupling term of the ba component is given by the mode ℓ1 = −1, ℓ2 =
−1 of the effective Floquet Hamiltonian (6.18) for the ladder process, and by the mode ℓ1 =
−1, ℓ2 = +1 for the Raman process:

ladder: ⟨b|H(ell)
eff |a⟩ = −E1E2

4~
⟨b|
[
α++e

−i(η1+η2)/2 sinα1 sinα2 + α−−e
i(η1+η2)/2 cosα1 cosα2

−α−+ sinα1 cosα2e
−i(η1−η2)/2 − α+− cosα1 sinα2e

i(η1−η2)/2
]
|a⟩, (6.99a)

Raman: ⟨b|H(ell)
eff |a⟩ = −E1E2

4~
⟨b|
[
α++e

−i(η1+η2)/2 sinα1 cosα2 + α−−e
i(η1+η2)/2 cosα1 sinα2

−α−+ sinα1 sinα2e
−i(η1−η2)/2 − α+− cosα1 cosα2e

i(η1−η2)/2
]
|a⟩, (6.99b)

where we have shortened the notation αij ≡ αij(ω1). We have used the approximation

ladder : ωa + ω1 ≈ ωb − ω2, (6.100a)

Raman : ωa + ω1 ≈ ωb + ω2 (6.100b)

to involve the polarizability with the single frequency dependence ω1.

The block-diagonal term (n = a, b) is determined by the θ-averaged diagonal term of (6.18),
which extends Eq. (6.75b) for two fields:

⟨n|H(ell)
eff |n⟩ = En −

∑
j=1,2

{E2j
4~
⟨n|
[
α++(ωj) cos ηj sin 2αj − α+−(ωj)

]
|n⟩
}
, (6.101)

where −~(ω1+ω2) [resp. ~(ω2−ω1)] should be added for ⟨b|H(ell)
eff |b⟩ in the ladder (resp. Raman)

process.

Alternative expression for the effective Raman Hamiltonian

One can extend the simple form of the Raman-Stark terms (6.82) to the two-mode process in
the resonant approximation as follows [43]:

⟨b|Heff|a⟩ = −
−→
E

(−)
2 · ⟨b|

⇒
α (ω1)|a⟩ ·

−→
E

(+)
1 ei(ω1−ω2)t, (6.102a)

⟨n|Heff|n⟩ = En −
∑
j=1,2

−→
E

(−)
j · ⟨n|

⇒
α (ωj)|n⟩ ·

−→
E

(+)
j . (6.102b)

Beyond the resonant approximation. If we have |Eb−Ea| ≪ |Em−Ea,b±~ω1,2| (relevant
for the Raman process), which can be interpreted as a quasi-degenerate subspace {|a⟩, |b⟩}
with respect to the electronic states involved in the polarizability, and if the coupling ⟨b|Heff|a⟩
(6.102a) calculated above (i.e. with the resonant approximation) is larger or the same order
than |Eb − Ea|, the Hamiltonian cannot be treated with the resonant approximation, and the
coupling becomes

⟨b|Heff|a⟩ = −
−→
E (−) · ⟨b|

⇒
α (ω1)|a⟩ ·

−→
E (+). (6.103)



148 Chapter 6. Effective dressed Hamiltonians for laser-driven atoms and molecules

6.3 Effective Hamiltonian in diatomic molecules

To determine an effective dressed Hamiltonian characterizing a molecule excited by strong laser
fields, we have to apply the standard construction of the free effective Hamiltonian (such as
the Born-Oppenheimer approximations) [118, 119], taking into account the interaction with
the field non-perturbatively (if resonances occur). This leads to four different time-scales in
general: (i) for the motion of the electrons, (ii) for the vibrations of the nuclei, (iii) for the
rotation of the nuclei, and (iv) for the frequency of the interacting field. It is well known that
it is a good strategy to take into account the time scales from the fastest to the slowest one.

6.3.1 The Born-Oppenheimer free Hamiltonian

In molecules, the Born-Oppenheimer approximation allows one to decouple first the electronic
motion from the nuclear vibrational and rotational motions, and next the nuclear vibrational
motion from the rotational motion.

Solving the Schrödinger equation H0Ψ = EΨ with respect to the electron coordinates r =
{−→r1 ,−→r2 · · · } with −→r i the position of each electron i gives rise to the electronic states Ψn(r,R) =
⟨r |n(R)⟩, n = 0, · · · , Ne, where the electronic scalar product is defined as ⟨n(R) |n′(R)⟩r =∫
dr Ψ∗n(r,R)Ψn′(r,R). The electronic states have respective energies {E(e)

n (R)} as functions
of the nuclear coordinates, characterized by R ≡ (R,Θ, φ) with R the internuclear distance
and Θ, φ the spherical coordinates of the molecular axis (with the origin taken at its center of
mass). We assume a finite number of Ne+1 bound electronic states. This gives in the electronic
state basis

H0 = T (n) + diag
[
E

(e)
0 (R) , E

(e)
1 (R) , · · · , E(e)

Ne
(R)
]

(6.104)

where
T (n) = T

(n)
vib (∂/∂R) + T

(n)
rot (R, ∂/∂Θ, ∂/∂φ) (6.105)

is the kinetic energy of the nuclei with

T
(n)
vib = − ~2

2m

∂2

∂R2
(6.106a)

T
(n)
rot = B(R)Ĵ2 =

~2

2mR2

[
− 1

sinΘ

∂

∂Θ

(
sinΘ

∂

∂Θ

)
− 1

sin2 Θ

∂2

∂φ2

]
(6.106b)

=:
~2

2mR2
(TΘ + Tφ), (6.106c)

B(R) = ~2/2I(R) the rotational “constant” defined through the principal moment of inertia
I(R) = mR2, Ĵ2 the angular momentum operator and m = m1m2/(m1+m2) the reduced mass
of the two atoms of respective masses m1 and m2.

The Born-Oppenheimer approximation consists precisely in neglecting the nucleus kinetic
energies that are nondiagonal with respect to this electronic basis of eigenvectors. This approx-
imation is well justified thanks to the ratio of electronic and nucleus masses. The ground state
electronic surface is usually well approximated by a Morse potential:

E
(e)
0 (R) = D[1− e−β(R−Re)]2, (6.107)

with Re the equilibrium distance between the nuclei (for which the energy is chosen as zero)
and D the dissociation energy (see below in Subsection 6.3.4 for details of the Morse potential
spectrum).
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Taking Θ and φ as parameters, we next diagonalize T
(n)
vib +E

(e)
n (R) and denote the eigenval-

ues by E
(v)
n,0, . . . , E

(v)
n,Nv

and the basis of eigenvectors by {|n, v = 0⟩ , |n, v = 1⟩ , · · · |n, v = Nn,v⟩}
where we assume Nn,v + 1 bound vibrational states for a given n electronic state. The Born-

Oppenheimer approximation consists here in neglecting the terms of T
(n)
rot that are nondiagonal

with respect to this vibrational basis of eigenvectors (rigid rotor approximation). This approx-
imation is well justified, at least for the lowest vibrational states, since there the vibrational
motion is of small amplitude and much faster than the rotational motion. The first (diagonal)
correction leading to a non-rigid rotor can be obtained by a contact transformation from the
small nondiagonal terms and leads to a centrifugal force term of the form −Dn,vĴ

4, Dn,v > 0.
We can finally diagonalize with respect to the rotational coordinates. We obtain the 2J +1

degenerate eigenvalues and the associated eigenvectors

E
(r)
n,v,J = E(v)

n,v +Bn,vJ(J + 1)−Dn,v[J(J + 1)]2 (6.108a)

⟨φ,Θ|n, v, J,M⟩ = |n, v⟩ ΞM
J (Θ) eiMφ (6.108b)

with the mean rotational constants in the n electronic state and the v vibrational state:

Bn,v = ⟨n, v|B|n, v⟩ ≈ Bn,e − αn,e

(
v +

1

2

)
, αn,e ≪ Bn,e (6.109a)

Dn,v ≈ Dn,e + βn,e

(
v +

1

2

)
, βn,e ≪ Dn,e (6.109b)

J = 0, 1, · · · , |M | ≤ J and the normalized associated Legendre polynomial ΞM
J (Θ). The

constant Dn,e (which is D0,e = 4B3
e/ω

2
e in the ground electronic state) is very small compared to

Bn,e and can often be neglected. The constant Bn,e is the rotational constant at the equilibrium
in the n electronic state; it is large compared to the constant αn,e when we consider the lowest
vibrational states, since in this case the change in internuclear distance by the vibration is
small compared to the internuclear distance itself. In the ground electronic state, the constant
α0,e/B0,e has been empirically found to be slightly larger than ωexe/ωe.

Electronic angular momentum and spin effects. We have so far considered only the
rotation of the nuclei for which the moment of inertia about the internuclear axis is necessarily
0. This leads to a simple rotator, i.e. with a single moment of inertia perpendicular to the
internuclear axis, of spectrum

Es.r. = B(R)J(J + 1). (6.110)

However the electronic cloud yields an additional moment of inertia, very small with respect
to the nuclear one, owing to the smallness of the mass of the electrons. But since the electrons
rotate much more rapidly, the associated angular momentum is of the same order than the
angular momentum associated to the nuclei. Thus a more correct model would require consid-
ering additionally this electronic moment of inertia leading to a symmetric top rotor, i.e. a rotor
with two different moments of inertia I(n) (about the axis orthogonal to the internuclear axis,
essentially due to the nuclei alone, i.e. I(n) ≈ I to a very good approximation) and I(e) (about

the internuclear axis, only due to the electrons), and to a total angular momentum J⃗ = R⃗+ L⃗

with R⃗ the nuclear rotational angular momentum and L⃗ the electronic orbital angular momen-
tum (if the electronic spin is neglected). The total angular part should thus read in a given
electronic state n:

T
(n)
rot + T (e)

n = B(R)(J2
x + J2

y ) +B(e)
n J2

z (6.111)
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with the z axis defined along the internuclear axis and the rotational constant B(e) (independent
of R) associated to the moment of inertia I(e). The spectrum of this symmetric top rotor is
[120]

Es.t.r. = B(R)J(J + 1) + (B(e)
n −B(R))Λ2

n ≈ B(R)J(J + 1) +B(e)
n Λ2

n, (6.112)

with Λn (|Λn| ≤ J integer) the projection of L⃗ (i.e. of J⃗) on the internuclear axis in the

electronic state n and B
(e)
n ≫ B(R). The electronic states are labeled following the values

of Λ: Λ = 0, 1, 2, 3, · · · respectively corresponds to the state Σ,Π,∆,Φ · · · . The rotational
spectrum is at the lowest order of approximation doubly degenerate for Λn ̸= 0, owning to the
two possible signs of Λn(the degeneracy is in fact lifted by considering further coupling, such as
the Σ-Π coupling, called Λ-doubling). At the lowest order of approximation, this shows a shift
in a given electronic state with respect to the simple rotor, which is global for the rovibrational
structure.

We have to consider as well the electronic spin, which leads to a fine structure due to the
spin-orbit coupling. If we consider the ground electronic state, which is very often (but not
always, see below) a 1Σ state (as is studied in the next sections), i.e. a singlet state (S = 0)
associated to Λ0 = 0 (the case for molecules with closed shells), the simple rotor is exact [Eq.
(6.106b)]. The Σ states are generally associated to the so-called Hund’s case (b), corresponding
to a weak spin-orbit coupling. Furthermore, in the Born-Oppenheimer approximation, we
assume that the electronic orbital angular momentum is strongly coupled to the internuclear
axis. This is assumed in the Hund’s cases (a) and (b). Only in highly excited rotational states,
for fast moving nuclei, we expect a breakdown of this approximation.

When there is one (or more) electron outside the closed shell, one has to consider its spin S⃗
(of projection Σ on the internuclear axis) and electronic orbital angular momentum, leading to

the total angular momentum J⃗ = R⃗+L⃗+S⃗, of projection on the internuclear axis Ω = Λ+Σ. For
alkakine-earth mono-halogenides with a 2Σ1/2 ground state corresponding to a single electron
outside a closed shell (such as CaF), we have J = S = 1/2 (i.e. Λ = 0). In this case, the total
angular part reads (the ground vibrational state is considered)

⟨n = 0, v = 0|T (n)
rot + T (e)

n |n = 0, v = 0⟩ = BN̂2 + γsrŜN̂ (6.113)

with N̂ = Ĵ − Ŝ (see for instance [121]). Since γsr ≪ B (weak coupling between the spin
and the internuclear axis), the rotational spectrum consists of a simple rotor (described by
the quantum number N) with a doublet spin rotation splitting (ρ−doubling) for rotationally
excited states: J = 1/2, 3/2 for N = 1, J = 3/2, 5/2 for N = 2, · · ·

Other standard examples of rotational structures more complicated than simple rotators
are [122]: (i) the O2 molecule (with two unpaired electrons outside a closed shell), of ground
state 3Σ, i.e. with Λ = 0, S = 1, giving a triplet splitting J = N − 1, N,N + 1 for N > 0
(which is small since the spin is weakly coupled to the internuclear axis) to the simple rotor
structure (described by the quantum number N); (ii) the NO molecule (with a single unpaired
electron outside a closed shell: S = 1/2), of ground state consisting of two non degenerate
states 2Π1/2,

2Π3/2, i.e. with L = 1 and Λ = ±1. This is close to Hund’s case (a), associated
to a strong coupling with the molecular axis of both the electronic orbital angular momentum
and the electronic spin.

The nuclear spin, symmetry and statistics The spins of the nuclei generates an ad-
ditional angular momentum denoted I⃗, giving the total angular momentum F⃗ = J⃗ + I⃗,
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|J − I| ≤ F ≤ J + I. The resultant value Ii of the angular momentum of the atom i fol-
lows the rules: (i) half-integer for nuclei with an odd mass number, (ii) integral for nuclei with
an even mass number but an odd charge number, (iii) zero for nuclei with an even mass num-
ber and an even charge number. The associated hyperfine interaction leads to an additional
splitting. This splitting is not explicitly considered in this work. We remark that it can be
used to define qubits in quantum information (see for instance [121]).

For homonuclear molecules (I1 = I2), the nuclear spin adds a symmetry to the molecule
by an exchange of the nuclei. The consideration of the total symmetry of the molecular state
allows one to determine statistics weights that have to multiply the thermal weights for the
rotational states.

We classify the rotational levels of the molecule according the behavior of the total eigen-
function, considered in the Born-Oppenheimer approximation as a product of an electronic, a
vibrational, a rotational and a nuclear spin contribution. The following particular symmetries
are considered: (i) parity, given by the electronic inversion (i.e. replacement of all electronic
coordinates by their opposite); (ii) symmetry by electronic reflection, given by the reflection
of the electrons at a plane through the internuclear axis (σv reflection); (iii) symmetry of per-
mutation of nuclear spin states ; (iv) symmetry of nucleus exchange, given by the exchange of
the labels of the two nuclei. The inversion (i) allows one to classify the electronic states as g
(unchanged function by the inversion) or u (opposite function by the inversion). The reflection
(ii) allows one to classify the Σ electronic states as + (unchanged function by the reflection)
or − (opposite function by the reflection): σv|Σ±⟩ = ±|Σ±⟩. The vibrational contribution is
not involved in the symmetries (i) and (ii). The vibrational ground state is not involved in
the symmetries (iii) and (iv), but the excited ones are. The symmetry of the permutation (iii)

is given by the multiplet states due to the total nuclear spin I⃗ = I⃗1 + I⃗2 of the two atoms:
0 ≤ I ≤ 2I1.

The symmetry of nucleus exchange (iv) is equivalent to the sequence [123]: (0) rotation
of the molecule by π about a perpendicular axis (C2 rotation), (i) electronic inversion, (ii) σv
reflection, and (iii) permutation of nuclear spin states.

The relevant rule to be used here is the Pauli principle for the nuclei: The state is totally
anti-symmetric (resp. symmetric) with the exchange of the nucleus labels (iv) when they are
fermions (resp. bosons). This defines a spin degeneracy factor gJ for each J .

Following the above sequence, we obtain (denoting +1 for symmetric and −1 for antisym-
metric): (0) (−1)J for the simple rigid rotor (Λ = 0 is considered) and (−1)v for the vibration,
(i) ±1 according to whether the electronic state is g or u, (ii) ±1 according to whether the
electronic state is Σ±.

For I1 = I2 = 0 nuclear spins (bosons), the total function has to be symmetric. In the
case of a Σ+

g electronic ground state, such as CO2 molecules (not diatomic, but linear and
symmetric about the C atom, i.e. having a similar behavior with the homonuclear diatomic
molecules apart the multimode vibrations), only the even J exist and are thermally populated
in the v = 0 state. In the case of a Σ−g electronic ground state, such as O2 molecules, only the
odd J are thermally populated in the v = 0 state.

If the nuclear spins are different from 0, we have to determine the symmetry of the multiplet
states. For instance, the H2 molecule (Σ+

g electronic ground state) is composed of fermions since
I1 = I2 = 1/2: It has to be associated to an antisymmetric function. The permutation of the
spins leads to three symmetric states, thus associated to the odd (antisymmetric) J , and to
a single state antisymmetric, thus associated to the even (symmetric) J . Hence, we have
gJ=2p = 1 and gJ=2p+1 = 3 with an integer p ≥ 0 in the v = 0 state. The N2 molecule (Σ+

g
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electronic ground state) is composed of bosons since I1 = I2 = 1: It has to be associated to a
symmetric function. It leads to six symmetric states and three antisymmetric states with the
permutation of the spins. Hence, we have gJ=2p = 6 and gJ=2p+1 = 3 with an integer p ≥ 0
in the v = 0 state. More generally, one can show that the ratio of the symmetric over the
antisymmetric states with the permutation of the spins is

N+

N−
=
I1 + 1

I1
. (6.114)

Thermal distribution of the states. We will consider that only the rotational states of
the ground vibrational state is thermally populated (i.e. in thermal equilibrium), which is true
at a very good approximation for light diatomic molecules up to room temperature (293◦ K).
Examples of the ratio of the number of molecule in the first to that the zeroth vibrational level
are at T=300◦ K: 3× 10−5 for CO, 0.07 for Cl2, 0.36 for I2.

For a given temperature T , we have thus to consider a statistical ensemble of molecules with
J0, M0 distributed according to the Boltzmann weights (independent of M0 and normalized∑∞

J0=0

∑J0
M0=−J0 ρJ0 = 1):

ρJ0 =
gJ0e

−B̃J0(J0+1)∑∞
J=0 gJ(2J + 1)e−B̃J(J+1)

(6.115)

with gJ0 the spin degeneracy factor as defined above, the Boltzmann constant k = 1.38× 10−23

J/K, and the normalized (dimensionless) rotational constant

B̃0 =
B0

kT
. (6.116)

We will consider below dynamical processes (during or after an interaction with a laser field)
occurring on a timescale so short that the thermal equilibrium will not be recovered. This will
allow us to use the time-dependent Schrödinger equation to describe such a dynamics with a
statistical averaging with the Boltzmann weights ρJ0 for each dynamics |ψJ0,M0(t)⟩ generated
from the initial condition |J0,M0⟩.

6.3.2 The selection rules

One can consider one- or multi-photon resonances between electronic states, as we did in atoms,
with selection rules depending on the symmetry of the electronic states. Taking into account
the rovibrational structure, we have to evaluate the components of the total dipole moment
−→µ = −e

∑
i
−→r i+ e

∑
s Zs

−→
R s with

−→
R s denoting the location of the nucleus of charge Zse, using

the eigenvectors determined in the Born-Oppenheimer approximation:

−→µ =
∑
n,n′

|n(R)⟩−→µ nn′(R) ⟨n′(R)| , −→µ nn′(R) = ⟨n(R)| −→µ |n′(R)⟩r . (6.117)

−→µ 00(R) is the permanent dipole moment of the ground electronic state, also denoted as
−→µ 00(R) ≡ −→µ 0(R). If the molecule is homopolar, −→µ 0(R) =

−→
0 . The couplings from the

ground vibronic state |n = 0, v = 0⟩ to an excited one |n′, v′⟩ involves as a first approximation
the Franck-Condon factors S(n′)(v′) := |⟨n′, v′|0, 0⟩|2 corresponding to the overlap integral be-
tween the two vibrational states in their respective electronic states (times the electric dipole
moment for the electronic transition taken independent of the location of the nuclei µn′0 in this
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approximation), thus associated to the rotational selection rule [the same applies on N instead
of J for the Hund’s case (b)]:

∆J = 0,±1 (but not J = 0→ J = 0) and for Ω = 0→ Ω = 0, ∆J = ±1. (6.118)

The P -, Q- and R-branches are respectively defined for ∆J = −1, ∆J = 0 and ∆J = +1. The
Q-branch is allowed only if at least one of the two electronic states considered is such that Λ ̸= 0
(where Λ is the projection of the electronic orbital angular momentum on the internuclear axis).

Other relevant selection rules read [118, 119]:

g → u, Σ+ → Σ+, Σ− → Σ−, (6.119a)

∆Λ = 0,±1 and ∆S = 0 [Hund’s cases (a) and (b)], (6.119b)

∆Ω = 0,±1 [Hund’s case (c)] (6.119c)

∆Σ = 0 [Hund’s case (a)] (6.119d)

We remark that the selection rule on Λ corresponds exactly to the selection rule for ML for
atoms, standing for a very strong field able to break the spin-orbit coupling or for S = 0. For
diatomic molecules, the transitions ∆Λ = 0 holds for a transition moment lying in the direction
of the internuclear axis, so-called parallel transition. The transitions ∆Λ = ±1 holds for a
transition moment perpendicular to the internuclear axis, so-called perpendicular transition.
Two-photon transitions has been studied for instance in [124].

Within a single electronic state, the selection rules of the vibration-rotation transitions
(where the rotational constant weakly changes between closest vibrational states) due (i) to
the permanent dipole moment (infrared one-photon transition) of a polar molecule are

one photon : ∆v = ±1, ∆J = (0),±1, (but not J = 0→ J = 0) (6.120)

and (ii) to the (anisotropic) polarizability (Raman transition)

Raman : ∆v = ±1, ∆J = 0, (±1),±2, (but not J = 0→ J = ±1) (6.121)

The transitions in parenthesis refer to as transitions for the symmetric top rotor, i.e. when
Λ ̸= 0 (see below). The vibrational selection rule ∆v = ±1 is in both cases approximate:
the transition moment associated to ∆v = ±1 is much larger than the one associated to
∆v = ±2, itself much larger than the one associated to ∆v = ±3, and so on. For infrared
one-photon transition, the Q-branch (∆J = 0) is allowed only when the molecule possesses
angular momentum parallel to the internuclear axis, i.e. only if Λ ̸= 0 (diatomic molecule as a
symmetric top). For Raman transition, the P - and R-branches are allowed only if Λ ̸= 0.

The selection rules of the pure rotational transition within a single vibronic state (allowed
for the one-photon process only when the molecule is heteronuclear, i.e. possesses a permanent
dipole moment) are

one photon : ∆J = (0),±1, ∆M = 0,±1, (6.122)

Raman : ∆J = 0, (±1),±2, ∆M = 0,±1. (6.123)

The transitions in parenthesis refer to as transitions for the symmetric top rotor, i.e. when
Λ ̸= 0 (see above). We have added the rules on M , valid for all the case above. These rules are
analyzed in details below.



154 Chapter 6. Effective dressed Hamiltonians for laser-driven atoms and molecules

We study below molecule in its ground electronic state only as 1Σ state (molecules with
closed shells), i.e. Λ = 0, S = 0 [corresponding to an exact Hund’s case (b) with J ≡ N ]. The
symmetric top will not thus be taken into account: we will model the diatomic molecule as a
simple rotor [Eq. (6.106b)].

We consider below a field of low frequency with respect to the electronic excitation such that
the excited electronic states will be taken into account through polarizability-type coupling.

We will study vibrational excitations by one-photon and two-photon (with a two-mode field)
processes.

A high field frequency with respect to the vibrations and consequently also with respect to
the rotations will lead to Raman rotational excitations in the ground vibrational state of the
ground electronic state (i.e. the ground vibronic state).

6.3.3 The Floquet Hamiltonian

The Floquet Hamiltonian of the molecule driven by a field
−→
E (t, ωt) (of frequency ω), in the

dipole coupling approximation, can be written as

K = −i~ω ∂

∂θ
+H0 −−→µ ·

−→
E (t, θ) (6.124)

For a process with a multimode laser, the Floquet Hamiltonian is (see Section 1.5)

K = −i~ω · ∂
∂θ

+H0 −−→µ ·
−→
E (t, θ). (6.125)

6.3.4 Resonant single-photon excitations: Rotationless model

We can use infrared linearly polarized laser pulses (of amplitude E) adapted to climb the
vibrational ladder with a selection of a specific target vibrational state, since Tvib ∼ 10 fs is the
timescale of the vibrational motion. However picosecond timescale chirped fields will not be in
general selective with respect to the rotation with Trot ∼ 1− 10 ps as timescale of the motion
(Trot ≈ 1 ps for very light molecules as H2). Applying the preceding tools, we consider thus
below the construction of a rotationless model (i.e. for Θ = 0) in the ground electronic state
driven by a linearly polarized field.

The Floquet Hamiltonian reads in this case

K = −i~ω ∂

∂θ
+H

(vib)
0 − µ0E cos θ (6.126)

For simplicity, one considers the N + 1 lowest bound states {|0⟩ , |1⟩ , · · · , |N⟩}, associated to
the energies E0 < E1 < · · · < EN of a Morse potential coupled by a field whose effective
frequency is one-photon near-resonant: ~ωeff ≈ E1 − E0 ≈ E2 − E1 ≈ · · · ≈ EN − EN−1. The
effective Hamiltonian in the resonant approximation, that takes into account the one-photon
near resonances of one Floquet zone reads as a tridiagonal matrix:

Heff =
~
2


0 Ω0,1 0 · · · 0

Ω0,1 2∆1 Ω1,2
. . .

...

0 Ω1,2 2∆2
. . . 0

...
. . . . . . . . . ΩN−1,N

0 · · · 0 ΩN−1,N 2∆N

 (6.127)
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with

∆v :=
Ev − E0

~
− vωeff = v [ωe + (v + 1) a− ωeff] , (6.128)

the Rabi frequency (assumed real and positive without loss of generality)

Ωi,j = −E(t) ⟨i|µ0 |j⟩ /~, (6.129)

the (constant) anharmonicity a ≡ −ωexe:

a := [(ωv+1 − ωv)− (ωv − ωv−1)] /2 = −~ω2
e/4D (6.130)

withD the dissociation energy, and the frequency ωe related to the energy of the Morse potential
(6.107):

En = ~ωe

(
v +

1

2

)
+ ~a

(
v +

1

2

)2
, v = 0, · · · , Int

(√2mD
β~

− 1

2

)
(6.131)

with ωe = β
√
2D/m, and Int(·) corresponding to the integer part function. This effective

Hamiltonian is valid for moderate field intensities Ωi,j ≪ ωe (in practice not larger than 1013

W/cm2 to avoid ionization), for small detunings and anharmonicity |∆v| , |a| ≪ ωe and for N
significantly smaller than the total number of bound states.

We will se that the alignment of the molecule by a non-resonant field will allow us to transfer
the rovibrational population selectively.

6.3.5 Raman processes in the ground vibronic state by a single linear
or elliptic laser: Rotational excitations

We assume that the frequency of the laser is such that no excited electronic state is coupled by
a one- or two-photon resonance with the ground electronic state.

Effective Hamiltonian in the ground electronic state

The partitioning is in this case as follows: the electronic state |n = 0⟩ spans the Hilbert subspace
H0

e and the other electronic states {|1⟩ , · · · |Ne⟩} the Hilbert subspace H1
e. The dipole moment

can be decomposed into diagonal and non-diagonal parts: respectively −→µ nn and −→µ nn′ , n ̸=
n′. Denoting −→µ nn′ = [µ1,nn′ , µ2,nn′ , µ3,nn′ ] in a cartesian coordinate system (of unit vectors
−→e 1,
−→e 2,
−→e 3) to be defined, and applying Eq. (6.44), we obtain for the second order effective

Floquet Hamiltonian connected to the ground electronic state

K
(e)
eff = −i~ω ∂

∂θ
+T (n)+E

(e)
0 −−→µ 0 ·

−→
E (t, θ)− 1

2

−→
E (t, θ)·

⇒
α0 ·
−→
E (t, θ)− i

4

∑
i ̸=j

EiEj sin(ϕi−ϕj)α0,ij

(6.132a)
or equivalently [from Eq. (6.82)]

K
(e)
eff = −i~ω ∂

∂θ
+ T (n) + E

(e)
0 −−→µ 0 ·

−→
E (t, θ)−

−→
E (−)·

⇒
α0 ·
−→
E (+) (6.132b)

with the dynamical electronic polarizability tensor
⇒
α0 (ω) (here denoted

⇒
α0 for simplicity) in

the ground electronic state, already encountered for atoms, of components

α0,ij =
∑
m̸=0

(
µi,0mµj,m0

E
(e)
m − E(e)

0 + ~ω
+

µj,0mµi,m0

E
(e)
m − E(e)

0 − ~ω

)
(6.133)
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and a linearly or elliptically polarized field (see Appendix A) in general written as

−→
E (t, ωt) =

3∑
i=1

Ei cos(ωt+ ϕi)
−→e i. (6.134)

This allows us to define an effective dipole moment −→µ eff as the sum of the permanent and
induced dipole moments in the ground electronic state:

−→µ eff = −→µ0 +
1

2

⇒
α0 ·
−→
E (t, ωt), (6.135)

such that the effective Floquet Hamiltonian can be written as

K
(e)
eff = −i~ω ∂

∂θ
+ T (n) + E

(e)
0 −−→µ eff ·

−→
E (t, θ)− i

4

∑
i̸=j

EiEj sin(ϕi − ϕj)α0,ij. (6.136)

Unlike in atoms, the polarizability tensor that couples the ground state with itself is not diagonal
(except if we consider the molecular frame), leading to the additional sum term. However, as
shown below in Eq. (6.139), the polarizability tensor is real symmetric in the laboratory frame.
This entails that the sum term of Eqs. (6.132a) and (6.136) is zero for a field linearly polarized
along the z-axis of the laboratory frame or for a field elliptically polarized in the x− y plane.
For these two cases of interest, the effective Floquet Hamiltonian reads

K
(e)
eff = −i~ω ∂

∂θ
+ T (n) + E

(e)
0 −−→µ eff ·

−→
E (t, θ). (6.137)

For a linear molecule, when the system of coordinates is chosen such that the third axis is
along the molecular axis, the electronic polarizability tensor (in the molecular frame) is diagonal
(but anisotropic as opposed to atoms):

⇒
αM (R) = diag

[
α⊥(R), α⊥(R), α∥(R)

]
. (6.138)

Transforming the polarizability into the laboratory frame:

⇒
αL=

ᾱ+∆α(sin2Θcos2 φ− 1/3) ∆α sin2Θcosφ sinφ −∆α sinΘ cosΘ cosφ
∆α sin2 Θcosφ sinφ ᾱ+∆α(sin2 Θsin2 φ− 1/3) −∆α sinΘ cosΘ sinφ
−∆α sinΘ cosΘ cosφ −∆α sinΘ cosΘ sinφ ᾱ+∆α(cos2Θ− 1/3)


(6.139)

with the average polarizability ᾱ ≡ ᾱ(R) = (2α⊥(R) + α∥(R))/3 and the anisotropic polariz-
ability

∆α ≡ ∆α(R) = α∥(R)− α⊥(R) > 0, (6.140)

we obtain the effective Floquet Hamiltonian in the ground electronic state of the linear molecule

(i) for a linearly polarized laser
−→
E (t, ωt) = E(t) cos(ωt+ ϕ)−→e z:

K
(e)
eff = −i~ω ∂

∂θ
+ T (n) + E

(e)
0 (R)− µ0(R)E(t) cosΘ cos(θ + ϕ)

−1

2

(
α⊥(R) + ∆α(R) cos2Θ

)
E2(t) cos2(θ + ϕ), (6.141)
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(ii) for an elliptically polarized field of general form (with A2 +B2 = 1)

−→
E (t, ωt) = E(t)[A cos(ωt+ ϕx)

−→e x +B cos(ωt+ ϕy)
−→e y], (6.142a)

≡ Ex(t, ωt)
−→e x + Ey(t, ωt)

−→e y, (6.142b)

K
(e)
eff = −i~ω ∂

∂θ
+ T (n) + E

(e)
0 (R)− µ0(R) sinΘ(Ex(t, θ) cosφ+ Ey(t, θ) sinφ)

−1

2

[
α⊥(R)(E

2
x(t, θ) + E2

y(t, θ)) + ∆α(R) sin2 Θ(Ex(t, θ) cosφ+ Ey(t, θ) sinφ)
2]

(6.143)

with ∆α(R) = α⊥(R) − α∥(R), where Θ ∈ [0, π], φ ∈ [0, 2π[ are the angles of the usual
spherical coordinates of origin at the center of mass of the molecule, and we recall that R is
the internuclear distance.

It is usually a good approximation to consider the static electronic polarizability [i.e. Eq.
(6.133) with ω = 0] instead of the dynamical one when we are in the limit of a low frequency
with respect to the electronic states:

E(e)
n − E

(e)
0 ≫ ~ω. (6.144)

Effective Hamiltonian in the ground vibrational state

Using the Born-Oppenheimer approximation (or equivalently the high frequency approximation,
see Section 4.7) to effectively eliminate the fast vibrational motion with respect to the slow
rotational one, we can obtain the Hamiltonian for the rotation of the free molecule in the
ground electronic state by diagonalizing with respect to the vibrations of the nuclei (described
here by the internuclear distance R), taking the angles Θ and φ as parameters.

We assume that the laser frequency is far from any resonance between the ground vibrational
state and the excited ones, such that the partitioning is very similar to the one made with the
electronic states: the vibrational state |v = 0⟩ spans the Hilbert subspace H0

v and the other
vibrational states {|1⟩ , · · · |Nv⟩} the Hilbert subspace H1

v. We obtain for the second order
effective Floquet Hamiltonian connected to the ground vibrational state of the ground electronic
state for the linear field:

K
(v)
eff = −i~ω ∂

∂θ
+ T

(n)
rot,00 + E

(v)
0,0 − µ0,00E cosΘ cos(θ + ϕ)

−1

2

[
α⊥,00 + (∆α00 + α

(v)
0 ) cos2Θ

]
E2 cos2(θ + ϕ) (6.145)

with E
(v)
0,0 = ⟨v = 0|E(e)

0 |v = 0⟩R and α
(v)
0 the effective polarizability in the ground vibrational

state induced by the other vibrational states, given by

α
(v)
0 =

∑
v ̸=0

(
|µ0,0v|2

E
(v)
v − E(v)

0 + ~ω
+

|µ0,0v|2

E
(v)
v − E(v)

0 − ~ω

)
, (6.146)

where we have denoted T
(n)
rot,vv′ := ⟨v|T

(n)
rot |v′⟩R , µ0,vv′ = ⟨v|µ0(R) |v′⟩R , α∥,vv′ = ⟨v|α∥(R) |v′⟩R ,

α⊥,vv′ = ⟨v|α⊥(R) |v′⟩R and ∆αvv′ = α∥,vv′ − α⊥,vv′ . We have µ0,00 = µ0(Re). It is usually a

good approximation to take only the contribution of the first excited vibrational state E
(v)
1 in

the summation of α
(v)
0 since the higher couplings are much smaller: µ0,01 ≫ µ0,02 ≫ µ0,03 · · ·
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Moreover, for usual laser of wavelength far from one-photon vibrational resonances, we have
∆α00 ≫ α

(v)
0 .

For an elliptically polarized field, we obtain a similar result with α
(v)
0 adding to ∆α00 (see

below for the final result).

Effective Hamiltonian for Raman rotational excitations

We now consider the rotational coordinates for the free Hamiltonian in the ground vibrational
state of the ground electronic state and suppose that the field is able to populate a priori many
rotational states, which we treat thus as essential states.

Neglecting T
(n)
rot,vv′ for v ̸= v′ according to the Born-Oppenheimer approximation, we approx-

imate the ground vibronic state as a rigid rotor with the vibrational energies independent of the
rotational coordinates (higher corrections corresponding for example to centrifugal distortion

can be obtained from the non-diagonal terms T
(n)
rot,vv′ for v ̸= v′):

T
(n)
rot,00 := B0Ĵ

2, B0 = ⟨v = 0|B|v = 0⟩R. (6.147)

Choosing E
(v)
0,0 = 0, we obtain the effective Floquet Hamiltonian

K
(v)
eff = −i~ω ∂

∂θ
+B0Ĵ

2 + V
(v)
eff (θ,Θ) . (6.148)

Below we determine for different cases of field polarization in the ground vibrational state
the dressed Hamiltonian H

(v)
d , that is decoupled from the photon field variable θ, i.e. satisfying

K̃
(v)
eff ≡ S†K

(v)
eff S = −i~ω ∂

∂θ
+H

(v)
eff (6.149)

with a perturbative transformation S to be defined. The dressed Hamiltonian is written as

H
(v)
eff = B0Ĵ

2 + V (Θ, φ) (6.150)

with the (dressed) potential V (Θ, φ) [see Eqs. (6.159), (6.161), (6.162), (6.165), and (6.166)].

Linear polarization. For the case of linear field (and not considering anymore ϕ since it will
not have any effect), we obtain

V
(v)
eff (θ,Θ) = −µ0,00E cosΘ cos θ − 1

2

[
α⊥,00 + (∆α00 + α

(v)
0 ) cos2Θ

]
E2 cos2 θ. (6.151)

We consider the high frequency limit with respect to the rotation

~ω ≫ B0, (6.152)

and apply the results of Section 4.7 with the Hamiltonian written as

K
(v)
eff /~ω = −i ∂

∂θ
+ ϵ
[
B0Ĵ

2 + V
(v)
eff (θ,Θ)

]
, (6.153)

with the small parameter ϵ := 1/(~ω) and identifying the quantities of Section 4.7: x ≡ Θ, H0 ≡
B0Ĵ

2, V1 ≡ V
(v)
eff . We first apply the contact transformation S1 = exp (ϵW1) with W1 (Θ, θ) =



6.3. Effective Hamiltonian in diatomic molecules 159

−i
∫ θ

(V
(v)
eff − V

(v)

eff )dθ and the average with respect to θ: V
(v)

eff (Θ) = 1
2π

∫ 2π

0
dθ V

(v)
eff (θ,Θ) .

Splitting Ĵ2 := TΘ + Tφ, we obtain the exact result (i.e. the terms of order ϵn, n > 3, are
exactly zero):

S†1
K

(v)
eff

~ω
S1 = −i

∂

∂θ
+ ϵ
(
B0Ĵ

2 + V
(v)

eff

)
+ ϵ2B0 [TΘ,W1] +

ϵ3

2
B0 [[TΘ,W1] ,W1] . (6.154)

We apply again a contact transformation S2 = exp (ϵ2W2) withW2 (Θ, θ) = −i
∫ θ (

V2 − V 2

)
dθ,

and
V2 = B0 [TΘ,W1] +

ϵ

2
B0 [[TΘ,W1] ,W1] , (6.155)

which averages with respect to θ and gives, to second order in 1/~ω,

S†2S
†
1

K
(v)
eff

~ω
S1S2 = −i

∂

∂θ
+ϵ
(
B0Ĵ

2 + V
(v)

eff

)
+ϵ2B0[TΘ,W1]+ϵ

3

(
B0

2
[[TΘ,W1] ,W1] +B0[TΘ,W2]

)
.

(6.156)
A final contact transformation S3 of the same type allows one to obtain

S†3S
†
2S
†
1

K
(v)
eff

~ω
S1S2S3 = −i

∂

∂θ
+ ϵ
(
B0Ĵ

2 + V
(v)

eff

)
+ ϵ2B0[TΘ,W1]

+ϵ3
(
B0

2
[[TΘ,W1] ,W1] +B0[TΘ,W2]

)
. (6.157)

We calculate

V
(v)

eff = −E
2

4

[
α⊥,00 + (∆α00 + α

(v)
0 ) cos2Θ

]
, [TΘ,W1] = 0, (6.158a)

W1 =
iE2

8

[
α⊥,00 + (∆α00 + α

(v)
0 ) cos2 Θ

]
sin 2θ + iEµ0,00 cosΘ sin θ, (6.158b)

[[TΘ,W1] ,W1] = −2
(
∂W1

∂Θ

)2

, (6.158c)

=
E4

64

(
∆α00 + α

(v)
0

)2
sin2 2Θ + µ2

0,00E2 sin2 Θ (6.158d)

and obtain the dressed potential of second order in 1/~ω and of second order in field amplitude
E [103]

V (Θ, φ) = −E
2

2

[
α∥,00 + α

(v)
0

2
−

(
∆α00 + α

(v)
0

2
+
B0µ

2
0,00

(~ω)2

)
sin2Θ

]
. (6.159)

Since we consider a linear polarization, the coupling does not depend on the angle φ and
we can thus consider this Hamiltonian (6.159) acting on a state of the form ψ(θ, φ; t) =
ϕ(θ; t)eiMφ/

√
2π, with M the preserved projection of the angular momentum Ĵ on the field

polarization axis, which leads to

K̃
(v)
eff,M = −i~ω ∂

∂θ
+B0TΘ + VM (Θ, φ) (6.160)

with

VM (Θ, φ) =
M2

sin2 Θ
− E

2

2

[
α∥,00 + α

(v)
0

2
−

(
∆α00 + α

(v)
0

2
+
B0µ

2
0,00

(~ω)2

)
sin2 Θ

]
. (6.161)

The effective potential (6.159) has been used to show the adiabatic alignment of molecules by
a laser field (see for example [125, 103]).
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Elliptic polarization. For an elliptically polarized laser (6.142), a similar calculation gives

V (Θ, φ) = −E
2

4

[
α⊥,00 + (∆α00 + α

(v)
0 ) sin2Θ

(
A2 cos2 φ+B2 sin2 φ+ AB sin 2φ cosϕ

)]
+
E2

2

B0µ
2
0,00

(~ω)2
[
cos2 Θ(A2 cos2 φ+B2 sin2 φ) + sin2Θ(A2 sin2 φ+B2 cos2 φ)

]
(6.162a)

= −E
2

4

[
α⊥,00 + (∆α00 + α

(v)
0 )
(
A2 cos2Θx +B2 cosΘy + AB sin2Θsin 2φ cosϕ

)]
+
E2

2

B0µ
2
0,00

(~ω)2
[
cos2 Θ(A2 cos2 φ+B2 sin2 φ) + sin2Θ(A2 sin2 φ+B2 cos2 φ)

]
(6.162b)

with ϕ = ϕy − ϕx, and where we have introduced the (squared) direction cosines with respect
to the three axis

cos2Θx ≡ sin2Θcos2 φ, (6.163a)

cos2 Θy ≡ sin2Θsin2 φ, (6.163b)

cos2 Θz ≡ cos2 Θ, (6.163c)

of property
cos2Θx + cos2 Θy + cos2 Θz = 1. (6.164)

Such Hamiltonian has been used to show the dynamical alternation of alignment (with
ϕ = π/2, which gives η = 0 for the ellipse, i.e. A ≡ a and B ≡ b, see Appendix A) [126] (see
also Section 10.3).

Circular polarization. The particular case of a circular field (ϕ = π/2, A2 = B2 = 1/2)
gives

V (Θ, φ) = −E
2

8

[
α∥,00 + α

(v)
0 − (∆α00 + α

(v)
0 ) cos2Θ

]
+
E2

4

B0µ
2
0,00

(~ω)2
, (6.165)

which shows a potential independent of φ, very similar to the linear one [Eq. (6.161) with
the selection rule ∆M = 0], except the factor 1/2, the sine become a cosine, and the term
proportional to µ2

0,00 which appears now as a constant not multiplying cos2Θ. As a consequence,
this term will not be involved in alignment processes by circularly polarized fields. More
importantly, the maxima and the minima are reversed with respect to the linear polarization.

Variable linear polarization. We consider the particular case of a linear field with a variable
polarization in the plane (x, y) (given by ϕ = 0):

V (Θ, φ) = −E
2

4

[
α⊥,00 + (∆α00 + α

(v)
0 ) sin2 Θ(A cosφ+B sinφ)2

]
+
E2

2

B0µ
2
0,00

(~ω)2
[
cos2Θ(A2 cos2 φ+B2 sin2 φ) + sin2 Θ(A2 sin2 φ+B2 cos2 φ)

]
.

(6.166)

One can notice the difference between the effective Hamiltonians for an elliptic field (with for
instance ϕ = π/2) and a variable linear polarization only due to the crossed term AB sin 2φ.
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Such potential has been used to induce an optical centrifuge that can rotationally accelerate
diatomic molecules from low angular momentum states to the rotational dissociation [127,
128, 129, 130]. This aim is obtained when the linear polarization is adiabatically rotated (for
instance with a linear chirp ϕ(t) = βt2/2). Such a field can be generated by a combination of
two counter-rotating circularly polarized beams of opposite relative frequency chirp:

−→
E (t, ωt) = E(t) cosωt[A(t)−→e x +B(t)−→e y], A(t) ≡ cos(ϕ(t)) (6.167a)

=
E(t)
2

[cos(ωt+ ϕ(t))−→e x + sin(ωt+ ϕ(t))−→e y]

+
E(t)
2

[cos(ωt− ϕ(t))−→e x − sin(ωt− ϕ(t))−→e y] . (6.167b)
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Chapter 7

Construction of propagators for
short-pulse-driven quantum dynamics

In this chapter, we present the time-dependent contact transformations adapted to the treat-
ment of intense and short pulsed interactions. This allows one in particular to go beyond the
impulsive regime, where the time dependence of the interaction is considered as a δ-function,
and to take into account the duration of the pulse. We have first formulated it using an ex-
tended space where the Hamiltonian is time independent [23]. Instead of using an extended
space, we formulate in this paper [131] the derivation in a simpler way, by stating the perturba-
tion iterations directly at the level of the evolution operator in the original Hilbert space. We
show in particular that there is a freedom in choosing secular terms and we use it to optimize
the accuracy of the approximation. We apply this formulation to the unitary KAM supercon-
vergent technique and improve the accuracy by several orders of magnitude with respect to the
Magnus expansion. This work has been developed in Ref. [132]. It has been applied for the
orientation of molecules by a strong short pulse of area different from zero [133].
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Optimized time-dependent perturbation theory for pulse-driven quantum dynamics
in atomic or molecular systems
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We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions.
We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation.
We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders
of magnitude with respect to the Magnus expansion.

DOI: 10.1103/PhysRevA.68.051402 PACS number~s!: 42.50.Hz, 31.15.Md, 03.65.2w, 02.30.Mv

Perturbation theory when combined with a specific treat-
ment for resonances is quite well understood in classical and
quantum mechanics for time-independent systems. This in-
cludes also time-periodic driven systems for which the peri-
odicity can be treated by Floquet theory in a way that yields
a time-independent formulation@1,2#. One knows that reso-
nances yield divergent terms that appear as small denomina-
tors, which have to be specifically removed. The counterpart
of the concept of resonance for time-dependent systems is
generally associated to secular terms whose size grows with
time ~see Ref.@3# and references therein!.

With the advent of short (.10 fs) and intense
(1013–1015 W/cm2) laser pulses, atomic or molecular sys-
tems can be strongly perturbed in a timescale shorter than
characteristic times corresponding to the free evolution of
the system and adiabatic theories are not applicable~see,
e.g., Ref.@4#!. The goal of this paper is to formulate a time-
dependent perturbation theory well adapted for perturbations
localized in time.

The conceptual framework of perturbation theory can be
described as follows: The Hamiltonian of the considered sys-
tem can be decomposed as the sum of two termsH15H0
1eV1. The first termH0 is assumed to have a structure
simple enough to lead to explicitly known solutions for its
associated propagatorUH0

(t,t0). The termeV1 is supposed

to be small with respect toH0, in a sense specified below.
Time-independent perturbation theories can be equivalently
formulated at the level of eigenvectors or operators@5#. A
large class of these approaches amounts to construct a uni-
tary transformationT such that

T†H1T5He
1e8V8, ~1!

where He is still of simple structure@i.e., its propagator
UHe(t,t0) can be explicitly computed# ande8V8 is a pertur-
bation whose size is smaller than the original one. To com-

pute the transformationT explicitly, one represents it in gen-
eral either~i! in terms of some power series

T5e2iW, W5(
k

ekWk , ~2!

or ~ii ! by an iterative construction as a composition of trans-
formations

T5)
k

e2iekWk. ~3!

These procedures generally differ. The former one is referred
to as the time-independent Poincare´—Von Zeipel technique,
which has been shown to be equivalent to the usual
Rayleigh-Schro¨dinger perturbation theory@6#. The latter pro-
cedure includes the Van Vleck technique~for which ek
5ek) and the superconvergent Kolmogorov-Arnold-Moser
~KAM ! expansion~whereek5e2k21

andWk is ek dependent!
@7#. The perturbative procedure converges if the remaining
perturbatione8V8 can be made to go to zero, as the number
of terms in the power series~2! or as the number of compo-
sitions in Eq.~3! goes to infinity.

In this description one has to state precisely what class of
HamiltoniansHe can be considered simple. For the first or-
der or the first iteration, one considersHe

5H01eD1 with
the condition thatD1 should becompatible with H0 in the
sense that if the propagator ofH0 is known, that ofH0
1eD1 can also be obtained explicitly. In the case of time-
independent Hamiltonians the condition of compatibility is

@H0 ,D1#50. ~4!

For the case of time-dependent Hamiltonians, we show that
the condition of compatibility can be generalized to

@H0~ t !,D1~ t !#5i
]D1

]t
. ~5!
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The construction of transformations of the type of Eqs. ~2! or
~3! involves finding the generator 2ieW1(t) of the transfor-
mation T1(t), that is the solution to

i@W1~ t !,H0~ t !#1V1~ t !2D1~ t !5
]W1

]t
. ~6!

This equation, together with the constraint ~5!, are usually
called cohomology equations in the time-independent case
@8# and are here generalized to the time-dependent case.
These cohomology equations are exactly of the same form
for higher orders or successive iterations.

Here we formulate the time-dependent perturbation theory
by transforming directly the evolution operator instead of
considering the perturbed Hamiltonian as is usually done in
time-independent theory. We obtain perturbative corrections
to the full propagator in the form of a product of propagators
which exhibit free parameters appearing through the general
solutions of related differential equations. We recover in par-
ticular the Magnus expansion @9# as a special case of the
time-dependent Poincaré—Von Zeipel theory. This extension
also gives the precise correspondence between time-
independent resonances and time-dependent secular terms. In
the context of pulsed perturbations with a finite duration, the
secular terms need not be eliminated. We show the remark-
able result that they can be used to improve the convergence
of the method at a given order. This optimization is achieved
without any a priori knowledge of the solution by locating
the minimum of a given eigenvalue as a function of the
relevant free parameters that are identified. The efficiency of
the method is illustrated on a two-level system driven by a
short intense pulse.

Perturbation theory, resonances and secular terms. We
consider the Hamiltonian H1(t)5H0(t)1eV1(t), where
H0(t) is associated to a known propagator UH0

(t ,t0). The
formulation is presented here for the superconvergent KAM
method, consisting in iterations of transformations which are
exactly of the same form at each step. The first iteration
involves a unitary operator T1(t) which transforms the
propagator UH1

(t ,t0) according to

T1
†
~ t !UH1

~ t ,t0!T1~ t0!5UH2
~ t ,t0!, ~7!

into a propagator UH2
(t ,t0) associated with the sum H2(t) of

an effective Hamiltonian H1
e(t)[H0(t)1eD1(t) which con-

tains contributions up to order e and a remainder e2V2(t).
This new propagator, generated by a sum of two Hamilto-
nians, can be written as the product

UH2
~ t ,t0!5UH

1
e~ t ,t0!R2~ t ,t0!, ~8!

where R2(t ,t0) is the unitary operator associated with the
Hamiltonian e2UH

1
e(t0 ,t)V2(t)UH

1
e(t ,t0). Similarly we can

factorize UH
1
e(t ,t0)5UH0

(t ,t0)S1(t ,t0), where S1(t ,t0) is a

unitary operator related to eD1(t)

i
]

]t
S1~ t ,t0!5eUH0

~ t0 ,t !D1~ t !UH0
~ t ,t0!S1~ t ,t0!. ~9!

The full propagator reads

UH1
~ t ,t0!5T1~ t !UH0

~ t ,t0!S1~ t ,t0!R2~ t ,t0!T1
†
~ t0!,

~10!

which yields the first-order KAM approximation for R2(t ,t0)
replaced by the identity. In this construction the only restric-
tion on the Hamiltonian eD1(t) is that it be of order e .
Hence we have the freedom to choose the Hamiltonian in Eq.
~9! as t-independent, giving

D1~ t !5UH0
~ t ,t0!D1~ t0!UH0

~ t0 ,t ! ~11!

with D1(t0) arbitrary, which is the general solution of Eq.
~5!. This allows one to obtain the solution of Eq. ~9! as

S1~ t ,t0!5exp@2i~ t2t0!eD1~ t0!# . ~12!

Differentiating Eq. ~10! and substituting T1(t)
5exp@2ieW1(t)# leads to Eq. ~6!. The rest involves a
series of k nested commutators that reads

e2V2~ t !5 (
k51

`
1

~k11 !!
ikek11

3†W1~ t !,•••@W1~ t !,kV1~ t !1D1~ t !#•••‡.

It has exactly the same structure at each iteration which is
useful for applications, particularly when high-order compu-
tations are needed.

Iterating the time-dependent KAM algorithm reduces the
size of the remaining perturbation in a superconvergent way
from order e2n21

to e2n
at step n. The time-dependent Van

Vleck technique would allow one to reduce the size of the
remaining perturbation from order en to en11. These meth-
ods, in the formulation presented here, are unitary upon trun-
cation. The superconvergent character of the KAM algorithm
has been shown numerically by applying the method to a
two-level system perturbed by a short time-dependent inter-
action @10#.

The time-independent problem, i.e., the problem of find-
ing a transformation T1 that enables one to simplify the time
independent Hamiltonian H1 according to T1

†HT15H0

1eD11e2V2, is recovered when one conveniently chooses
the transformation T1 as time independent. In this case all
the operators, and in particular D1 and W1, are time inde-
pendent and the standard cohomology equations are recov-
ered: @H0 ,D1#50 and V12D11i@W1 ,H0#50. Their solu-
tions can be determined using the following key property @8#:
W1 exists if and only if PH0

(D12V1)50, where PH0
is the

projector in the kernel of the application A°@A ,H0# ~for an
operator A acting on the same Hilbert space as H0). The
projector PH0

applied on an operator A captures thus all the

part B of A which commutes with H0 : @B ,H0#50. The
unique solution D1 allowing W1 to exist and satisfying Eq.
~4! is thus
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D15PH0
V1[ lim

T→`

1

T E
0

T

e2itH0V1e itH0. ~13!

The resonances are associated with terms of V1 which com-
mute with H0. Application of Eq. ~13! can be interpreted as
an averaging of V1 with respect to H0 which allows one to
extract resonances.

For the time-dependent problem, the general solution of
Eq. ~6! reads @up to a term UH0

(t ,t0)B1UH0
(t0,t) with B1

any constant self-adjoint operator that we set to 0 for sim-
plicity#:

W1~ t !5E
t18

t

dsUH0
~ t ,s !@V1~s !2D1~s !#UH0

~s ,t !, ~14!

with t18 any real number. Defining the average

P2V1[ lim
t→`

1

t
E

t2t

t

dsUH0
~ t ,s !V1~s !UH0

~s ,t !, ~15!

one can show the following property: if W1(t) is bounded
for negative infinite times, then P2(V12D1)50. This is
satisfied by D15P2V1, the only solution compatible with
Eqs. ~5! and ~15!. This means that the averaging D1
5P2V1 allows one to remove secular terms at negative in-
finite times. We remark that this definition of the average
~15! can be in fact recovered from the formal calculation of
the KAM average PK0

V1 ~13! with respect to K05

2i (]/]t) 1H0 in an extended space, which includes time as
a coordinate @10,11#. This gives the precise correspondence
between the resonances of stationary problems and the secu-
lar terms of time-independent problems.

We now consider a class of perturbations V1(t) that are
arbitrary for t i,t,t f , and constant otherwise where one has
@UH0

(t ,t8),V1(t)#50 for t ,t8<t i and t ,t8>t f . This in-
cludes many physical situations such as a pulsed perturbation
switched on at t i and off at t f . For this class of systems, Eq.
~15! becomes P2V15UH0

(t ,t i)V(t i)UH0
(t i ,t), which is a

particular solution of Eq. ~5! corresponding to the choice
D1(t0)[UH0

(t0 ,t i)V(t i)UH0
(t i ,t0) in Eq. ~11!. An

alternate definition of the average: P1V1

5limt→` (1/t) * t
t1tdsUH0

(t ,s)V1(s)UH0
(s ,t) would give a

different averaging P1V15UH0
(t ,t f)V(t f)UH0

(t f ,t) and
would allow one to remove secular terms at positive infinite
times. Generally one cannot remove simultaneously the
secular terms at negative and positive large times. This
shows a conceptual difference between stationary resonances
and secular terms associated with perturbations localized in
time. Furthermore, it suggests that the averaging such as Eq.
~15! is not appropriate, but that a definition which combines
the two definitions gives a new secular term that could im-
prove the convergence of the algorithm. This suggests to
work with the general solution ~11! of Eq. ~5!, written with
the perturbation evaluated at a free time t1 as the arbitrary
operator

D1~ t !5UH0
~ t ,t1!V1~ t1!UH0

~ t1 ,t !. ~16!

The free t1 can then be chosen to minimize the rest after the
first iteration, as described below.

One has n such free parameters tk , k51, n for n iterations
of the KAM algorithm. There is only one such free param-
eter for the time-dependent Poincaré-Von Zeipel and Van
Vleck methods that are order by order techniques. An inter-
esting result is that we recover the Magnus expansion from
the time-dependent Poincaré—Von Zeipel in the particular
case of Dk50 and tk85t0 with k51,n .

Optimization of the perturbation theory. After one itera-
tion, the rest R2(t ,t0) defined in Eq. ~8! is associated with a
second-order operator through R2(t ,t0)[e2ie2G2(t) with
G2(t0)50. The closer R2(t ,t0) is to the identity, the smaller
the correction terms are, i.e., the more accurate the approxi-
mation is. We evaluate the lowest-order contribution to
e2G2(t) as

e2G2
(2)

~ t !5e2E
t0

t

duUH
1
e~ t0 ,u !V2~u !UH

1
e~u ,t0!. ~17!

It is this operator that has to remain small for the algorithm
to converge. The size of an operator A can be characterized
by the norm uuAuu5supuucuu51uuAcuu with c in the appropriate
Hilbert space. For an Hermitian matrix this norm reduces to
the largest of the absolute values of its eigenvalues.

In order to improve the accuracy we thus seek to mini-
mize l2(t), the largest of the absolute values of the eigen-
values of e2G2

(2)(t), with respect to the free parameters. To
optimize the KAM algorithm, we have at our disposal two
free parameters tk and tk8 at each iteration. We expect that the
parameters tk will significantly affect the convergence of the
algorithm, as they are related to secular terms.

Perturbation theory for short intense pulses. We consider
a system described by the Hamiltonian Ĥ ~autonomous or
not! and perturbed by a time-dependent Hamiltonian V̂(s)
whose characteristic duration is t . The perturbation is as-
sumed to satisfy @ V̂(s),V̂(s0)#50, ;s ,s0 which is realized
in many situations of interest. We define a sudden parameter
e as follows. A dimensionless time t and dimensionless op-
erators H and V(t) are defined through s[tt , Ĥ[\vH , and
V̂(s)[ (\/t) V(t), leading to the dimensionless Schrödinger
equation i(]/]t) U(t ,t0)5$V(t)1eH%U(t ,t0), where the
sudden parameter is defined as e[vt . To apply the pertur-
bation theory described above we can then identify H0(t)
[V(t) and V1[H . This formulation is suited to treat intense
short pulses.

Illustration on a pulsed-driven two-level system. We con-
sider the case where H0(t)5V(t)s1 and V15s3 with V(t)
a pulse that is switched on at t i and off at t f , and sk the
Pauli matrices. Notice that, as discussed above, the role of
the perturbation and reference Hamiltonian is interchanged.
The pulse area A[* t i

t fV(u)du is a dimensionless parameter

that can be fixed independently of the sudden parameter e .
The error between the numerical solution of the Schrödinger
equation at the end of the pulse and the result of n iterations
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is defined as Dn[uuUH1
(t f ,t i)2UH1

(n)(t f ,t i)uu. We use the

pulse shape V(t)52A sin2(pt) for 0<t<1, and 0 else-
where.

Figure 1 shows a comparison of the first-order Dyson,
first-order Magnus, and one-iteration KAM methods as a
function of t1 for a nonperturbative area chosen to produce
comparable errors D1 for the Magnus and nonoptimized (t1
5t0) KAM techniques. The lower panel displays l2 the larg-
est of the absolute values of the eigenvalues of e2G2

(2)(t f)
defined in Eq. ~17!. We clearly see that the error of the first
KAM iteration is correctly estimated by this eigenvalue l2
and, in particular, minimized when l2 is minimized, i.e., for
the value t1

!. It is worth noting that modifying t1 covers
almost three orders of magnitude in the error, a situation that
is not restricted to this particular value of A. The optimized
solution provides an improvement of the accuracy of almost
two orders of magnitude with respect to the Magnus calcu-
lation.

Figure 2 displays a comparison of the second-order
Dyson, second-order Magnus, and two-iteration KAM meth-
ods as a function of t2 for t15t1

!. It is seen that the Dyson
approach is not applicable in this context of strong field as
the second order performs worse than the first one. Figure 2
also shows that the second KAM iteration can be enhanced
by at least four orders of magnitude with an appropriate
choice of t1 and t2. This optimized second KAM iteration
provides an improvement of more that five orders of magni-
tude with respect to the second-order Magnus technique.
Higher iterations of the KAM technique can also be opti-
mized and produce still better improvement owing to its su-
perconvergent character.

In conclusion, we have presented an optimized perturba-
tion theory for pulse-driven systems, which applies to a wide
class of processes controlled by intense femtosecond laser
pulses. The optimization reduces to the evaluation of eigen-
values and is therefore easy to implement. We anticipate that
this approach will be usefull in the context of the laser con-
trol of atomic and molecular processes, such as phase space
localisation of Rydberg electron @12#, or alignment and ori-
entation of molecules @4#.
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FIG. 1. ~a! Natural logarithm of the error D1 for the first-order
Dyson expansion ~dashed line!, the first-order Magnus expansion
~dotted line!, and the first KAM iteration ~solid line!; and ~b! largest
eigenvalue of e2G2

(2)(t f) as a function of t1, for A51, e50.5 and
t185t0.

FIG. 2. Natural logarithm of the error D2 for the second-order
Dyson expansion ~dashed line!, the second-order Magnus expansion
~dotted line!, and the second KAM iteration ~solid line! with the
same parameters as Fig. 1 and t15t1

!'0.39.
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Appendix A

Elliptic polarization

We study in this appendix a field

−→
E = Ex

−→e x + Ey
−→e y (A.1)

of general elliptic polarization (in the plane x − y). It can be constructed from the ellipse of
equation (

EX

a

)2

+

(
EY

b

)2

= E2 (A.2)

(i.e. with
−→
E = EX

−→e X + EY
−→e Y , {EX = Ea cosωt, EY = ±Eb sinωt} , (A.3)

the normalized semiaxes a, b ∈ [0, 1], a2 + b2 = 1, and the two signs distinguishing the two
possible senses in which the end point of the electric vector may describe the ellipse) in a frame
(0X, 0Y ), rotated of an angle η/2 (0 ≤ η < 2π) about the z-axis from the axis (0x, 0y) (see
Fig. A.1):

−→
E = E

 cos(η/2) − sin(η/2) 0
sin(η/2) cos(η/2) 0

0 0 1

 a cosωt
±b sinωt

0

 . (A.4)

η/2
x

y

a

b

X
Y

−A A
−B

B

Fig. A.1 - Ellipse described by an elliptically polarized field.
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We can also write it as

−→
E = E

A cos(ωt+ ϕx)
B cos(ωt+ ϕy)

0

 (A.5)

with (see for instance [115]) a2 + b2 = A2 +B2 = 1,

A2 = a2 cos2(η/2) + b2 sin2(η/2), (A.6a)

B2 = b2 cos2(η/2) + a2 sin2(η/2), (A.6b)

tan δ =
B

A
, 0 ≤ δ ≤ π/2, (A.6c)

tan η = tan 2δ cos(ϕy − ϕx) =
2AB

A2 −B2
cos(ϕy − ϕx), (A.6d)

tanχ = ∓ b
a
, −π/4 < χ ≤ π/4 for a > b, (A.6e)

sin 2χ = sin 2δ sin(ϕy − ϕx), i.e. ∓ ab = AB sin(ϕy − ϕx). (A.6f)

We have the same energy density for the linear and elliptic fields for a given E .
It can be also decomposed as the sum of left (rotating anti-clockwise1, proportional to

a± b, denoted σ+) and right (rotating clockwise, proportional to a∓ b, denoted σ−) circularly
polarized fields, with the relative phase η:

−→
E = E a± b

2

 cos(ωt+ η/2)
sin(ωt+ η/2)

0

+ E a∓ b
2

 cos(ωt− η/2)
− sin(ωt− η/2)

0

 (A.7)

It is convenient in this case to use an angle α for the parametrization of the ellipticity:

sinα =
a± b√

2
cosα =

a∓ b√
2

− π

4
≤ α <

3π

4
, (A.8)

such that

−→
E =

E√
2
sinα

 cos(ωt+ η/2)
sin(ωt+ η/2)

0

+
E√
2
cosα

 cos(ωt− η/2)
− sin(ωt− η/2)

0

 . (A.9)

One recovers for instance the linear polarization along the x−axis (y−axis) for α = π/4 (α =
−π/4) and η = 0. The left and right circularly polarized fields are respectively for α = π/2
and α = 0: −→

E + ≡
−→
E (α = π/2),

−→
E − ≡

−→
E (α = 0). (A.10)

Thus apart a global phase (which comes to change the origin of time), one can express any
elliptic field by Eq. (A.9) defining the angles −π

4
≤ α < 3π

4
and 0 ≤ η < 2π. The angle α

allows one to characterize the ellipticity, and is related to the axial ratio by

b

a
=
|1− tanα|
1 + tanα

. (A.11)

We also have

AB cos(ϕy − ϕx) =
1

2
sin 2α sin η, AB sin(ϕy − ϕx) =

1

2
cos 2α. (A.12)

1We adopt here the common convention in optics, opposite to the one used in elementary particle physics



Part III

Control processes in atoms and
molecules by laser fields
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Chapter 8

Elementary processes of population
transfer with constraints

As an alternative to the non-robust π-pulse (or generalized π-pulse) techniques, the development
of efficient and robust schemes based on adiabatic passage for selective population transfer have
opened new opportunities for coherent control of atomic and molecular processes. Atoms and
molecules prepared in well-defined quantum states or in a coherent superposition of states,
are essential in various fields of contemporary quantum physics. Applications can be found
in control of chemical reactions [134], design of atom mirrors, beam splitters, and atomic
interferometers in atomic optics [135, 136], manipulation of atomic wave packets in laser cooling
experiments [137], creation of photon-number Fock states in cavity QED [228], conversion
of an atomic condensate to a molecular one in Bose-Einstein Condensation (BEC) through
photoassociation [139], construction of quantum gates, quantum teleportation, and quantum
cryptography [140], control of localization and suppression of tunneling [141, 142, 143].

We however remark that in general adiabatic passage is time and energy consuming since it
requires a large pulse area, and that can be detrimental for some applications. For instance in
quantum computation, we need very precise and fast gates. The accuracy requires to implement
a method of reduced sensitivity to the relaxation of the atoms and the cavity photons. In this
case, it can be of interest to use fast methods i.e. based on π-pulses, if the pulses can be well
controlled, with respect to the slow adiabatic passage. We notice that the question of sensitivity
to the relaxation can be solved in adiabatic passage by using dark states immune to relaxation,
as shown in Section 8.2.

More generally speaking, one can thus require additional constraints for processes of pop-
ulation transfer. Here we study the constraints of (i) minimization of the total pulse area, or
(ii) the absence of transient population in intermediate lossy states.

Such requirements can be studied using optimal control techniques (see e.g. [144, 145]). It
has been in particular shown that STIRAP emerges from an optimal control theory algorithm
with the use of a penalty function on the population of the intermediate state [146]. Using the
approach of geometric control theory [147], Boscain et al. have shown that the π pulse strategy
emerges naturally as the strategy which minimizes the pulse area [148].

In this chapter we describe processes for population transfer with such constraints, in partic-
ular (i) π-pulse type transfers that minimize the pulse area, and (ii) adiabatic passage techniques
that allow one to transfer the population without transient population in lossy intermediate
states, i.e. STIRAP [71], fractional STIRAP [79], and tripod STIRAP [149, 150].

We remark that these techniques can be used in the context of cavity QED by replacing
one or two laser fields by cavity-mode fields.
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|1>

|3>

|2>

Ω

Ω

∆ ∆P S

S

P

Fig. 8.1 - Linkage pattern scheme of the STIRAP technique.

8.1 Elementary population transfers minimizing the pul-

se area

With the use of an approach of geometric control theory [147], it has been shown that the π
pulse strategy emerges naturally as the strategy which minimizes the pulse area. field [148].
This shows in particular that an additional controllable time-dependent frequency (chirping)
does not improve the minimization. The π-pulse strategy is also the one which minimizes the
fluence (i.e. the integral of the squared pulse) for a given transfer time, or equivalently the one
which minimizes the transfer time with a given constraint on the field amplitude. It has been
found in this Ref. [148] the counterpart of the “π-pulse transfer” in three-level systems driven
by two resonant fields, i.e. the pulse parametrization which minimizes the total pulse area ℓ
(defined as the integral of the squared root of the sum of the squared field amplitudes). It has
been found ℓ =

√
3π/2 as the minimum.

8.2 Adiabatic transfer without transient population of

excited states - Dark states

8.2.1 STIRAP

We recall that the technique of stimulated Raman adiabatic passage (STIRAP) uses the co-
herence of two pulsed laser fields to achieve a complete population transfer from an initially
populated state |1⟩ to a target state |3⟩ via an intermediate state |2⟩ (see Fig. 8.1). In this
configuration one assumes that the states |1⟩ and |3⟩ (which are usually ground states) are
metastable, i.e., with negligible spontaneous emission in the considered time scale. The excited
state |2⟩ has a relatively short lifetime, due to spontaneous emission. Instead of applying the
pulses in the intuitive sequence, where the pump pulse (linking the states |1⟩ and |2⟩) precedes
the Stokes pulse (linking the states |2⟩ and |3⟩), the Stokes pulse precedes the pump pulse
(as the so called counterintuitive pulse ordering). If the condition of two-photon resonance is
satisfied, if there is sufficient overlap of the two pulses, and if the pulses are sufficiently strong
such that the time evolution is adiabatic, then the complete population transfer occurs between
the states |1⟩ and |3⟩, without populating the state |2⟩.
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Construction of the effective Hamiltonian

We write the Hamiltonian of a three-level atom with Λ-configuration coupled with the pump and
Stark pulses in the resonant (or rotating wave) approximation, i.e. discarding the anti-resonant
(or counter-rotating) terms, as (in units such that ~ = 1)

H =

 ω1
1
2
ΩP (t)e

+i(ωP t+θP ) 0
1
2
ΩP (t)e

−i(ωP t+θP ) ω2
1
2
ΩS(t)e

−i(ωSt+θS)

0 1
2
ΩS(t)e

+i(ωSt+θS) ω3

 , (8.1)

where ωi, i = 1, 2, 3 are the energies of the atomic bare states, Ωi(t) = −µEi(t), i = P, S
are the Rabi frequencies of the laser pulses, and ωi, θi, i = P, S are respectively the carrier
frequency and the phase of the laser pulses. We have used here a simplified notation omitting
the factor 1/2 for the Rabi frequencies (or equivalently defining them with this factor 1/2). The
effective Hamiltonian of the system can be obtained by applying the following rotating wave
transformation on H (written here in the time representation),

R(t) =

 1 0 0
0 e−iωP t 0
0 0 e−i(ωP−ωS)t

 , (8.2)

which leads to the effective Hamiltonian:

Heff(t) = R†HR− iR†∂R
∂t

=

 0 1
2
ΩP (t)e

+iθP 0
1
2
ΩP (t)e

−iθP ∆P
1
2
ΩS(t)e

−iθS

0 1
2
ΩS(t)e

+iθS ∆P −∆S

 , (8.3)

where we have shifted the origin of the energy by ω1, and used the detunings

∆P = ω2 − ω1 − ωP , ∆S = ω2 − ω3 − ωS. (8.4)

The relation between the state vector |Ψ(t)⟩ corresponding to H(t), and the state vector |Φ(t)⟩
corresponding to Heff(t) can be established by |Ψ(t)⟩ = R(t)|Φ(t)⟩.

An essential condition for the STIRAP process is the two-photon resonance between the
states |1⟩ and |3⟩ which means ∆P = ∆S = ∆. Then the three instantaneous eigenstates of
Heff (the adiabatic states) are given by

λ±(t) =
1

2

(
∆±

√
∆2 + Ω2

P (t) + Ω2
S(t)

)
, λ0(t) = 0

|ϕ−(t)⟩ =

 sinϑ cosφeiθP

− sinφ
cosϑ cosφeiθS

 |ϕ0(t)⟩ =

 cosϑeiθP

0
− sinϑeiθS

 |ϕ+(t)⟩ =

 sinϑ sinφeiθP

cosφ
cosϑ sinφeiθS


(8.5)

where the mixing angles ϑ(t) and φ(t) are defined by

tanϑ(t) =
ΩP (t)

ΩS(t)
, ϑ(t) ∈ [0, π], (8.6a)

tan 2φ(t) =

√
Ω2

P + Ω2
S

∆
, φ(t) ∈ [0, π/2]. (8.6b)
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The STIRAP technique is based on the use of the zero-eigenvalue adiabatic state |ϕ0(t)⟩,
which is a superposition of the initial state |1⟩ and the final state |3⟩. This adiabatic state
has no component of the excited state |2⟩, and hence it has no possibility of spontaneous
emission during the adiabatic evolution (dark state). For the counterintuitive Stokes-pump
pulse sequence, we have:

lim
t→ti

ΩP

ΩS

= 0, lim
t→tf

ΩP

ΩS

=∞. (8.7)

This leads to ϑ(ti) = 0 and ϑ(tf ) = π/2, and

|1⟩ ti←t←−− |ϕ0(t)⟩
t→tf−−−→ |3⟩. (8.8)

Thus, the state |ϕ0(t)⟩ connects adiabatically the initial state |1⟩ to the target state |3⟩ at the
end of the interaction.

Condition of global adiabaticity

In order to achieve a complete population transfer from |1⟩ to |3⟩, we have to force the system
to stay in the dark state during the whole process, without nonadiabatic transitions to other
adiabatic states. This adiabatic condition requires that the coupling between each pair of
adiabatic states is negligible compared to the difference between the energies of these states.
With respect to the dark state |ϕ0(t)⟩, the adiabatic condition reads

|λ0 − λ±| ≫
∣∣∣⟨dϕ0

dt

∣∣∣ϕ±⟩∣∣∣. (8.9)

In the case of one-photon resonance (∆ = 0, φ(t) = π/4), the adiabaticity condition simplifies
and becomes √

Ω2
P + Ω2

S ≫
∣∣∣dϑ
dt

∣∣∣ ∼ 1

T
, (8.10)

where T is the pulse duration. Assuming that the pump and Stokes pulses have the same peak
Rabi frequency Ω0, this condition can be roughly written as

Ω0T ≫ 1. (8.11)

Hence, adiabaticity requires a large pulse area. Therefore, the conditions for STIRAP process
are:
(i) Two-photon resonance between the initial state and the target state,
(ii) Counterintuitive pulse sequence of Stark-pump,
(iii) Large pulse area.

Implementation of one-qubit phase gate

There is an interesting application of the STIRAP technique in an implementation of one-qubit
phase gates [151]. Figure 8.2 represents the corresponding linkage pattern where the qubits are
stored in the atomic bare states |0⟩ and |1⟩. The state |0⟩ is decoupled from the others, and
thus is a stationary state during the gate operation (|0⟩ → |0⟩). The operation of a one-qubit
phase gate of phase γ,

UP =

(
1 0
0 eiγ

)
, (8.12)
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Ω
P

Fig. 8.2 - Linkage pattern scheme for construction of a quantum phase gate. The qubits are
stored in the states |0⟩ and |1⟩.

is expressed using the initial state |ψi⟩ = α|0⟩+ β|1⟩ as follows:

|ψi⟩ → |ψf⟩ = UP |ψi⟩ = α|0⟩+ eiγβ|1⟩. (8.13)

The effective Hamiltonian of this system is given by (8.3), where detunings are zero ∆P =
∆S = 0. The dark state |ϕ0⟩ can be written as

|ϕ0(t)⟩ =
1√

Ω2
P + Ω2

S

(ΩSe
iθS |1⟩ − ΩP e

iθP |3⟩). (8.14)

The quantum phase gate is implemented in two stages by an STIRAP and then by a reverse
STIRAP with different Stokes pulses Ω

(1)
S and Ω

(2)
S (see Fig. 8.3). The dark state (8.14) indicates
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Fig. 8.3 - Pulse sequences (dimensionless) for two STIRAP Processes required for implementing
a one-qubit phase gate.

that the result of the first STIRAP is to transfer the population from the state |1⟩ into |3⟩ as

|1⟩ → |ϕ0(t)⟩ → −e−i(ωP−ωS)(tf−ti)ei(θP−θ
(1)
S )|3⟩, (8.15)

where ti, tf are the starting and ending times of the first STIRAP, and we have included the
effect of the transformation (8.2). The result of the second STIRAP (with ΩP arriving before

Ω
(2)
S ) is

−|3⟩ → |ϕ0(t)⟩ → ei(θ
(2)
S −θP )|1⟩. (8.16)



178 Chapter 8. Elementary processes of population transfer with constraints

Hence, the overall effect of the two STIRAP processes on the initial state of the system is:

α|0⟩+ β|1⟩ → α|0⟩+ eiγβ|1⟩, (8.17)

with
γ = θ

(2)
S − θ

(1)
S + (ωS − ωP )(tf − ti). (8.18)

We emphasize the presence of an optical phase (ωS−ωP )(tf−ti) in γ. The control of this phase
is in practice very difficult. This phase can be eliminated by taking ωS = ωP , which implies
that the ground states |1⟩, |3⟩ must be degenerate . For instance, the linkage pattern can be
formed by the sublevels in the J = 1 ↔ J ′ = 0 transition by using a linearly polarized pump
pulse and a circularly σ− polarized Stokes pulse. The states |0⟩, |1⟩, |3⟩ correspond respectively
to Zeeman sublevels |J = 1, m = −1, 0, 1⟩, and the state |2⟩ to |J ′ = 0, m = 0⟩.

This has been generalized in [151] to generate any one-qubit gate as a general propagator
of SU(2) symmetry.

The concrete realization of this process is discussed in Section 15.1.

8.2.2 Fractional STIRAP

Fractional STIRAP (f-STIRAP) is a variation of STIRAP, which allows one the creation of any
preselected coherent superposition of two states. As in STIRAP, the Stokes pulse linking the
initially unpopulated states |2⟩, |3⟩ arrives before the pump pulse linking the initially populated
state |1⟩ to the excited state |2⟩, but unlike STIRAP where the Stokes pulse vanishes first, here
the two pulses vanish simultaneously while maintaining a constant finite ratio of amplitudes.
As a result, a coherent superposition of states |1⟩, |3⟩ is created, in which the ratio of the
probability amplitudes of these states is proportional to the turn-off ratio between the pump
and Stokes pulses. The f-STIRAP has been shown to increase the coherence between the lower
states of Λ-systems in nonlinear optics experiments [152].

The system is assumed to be initially in the state |1⟩,

|Ψ(ti)⟩ = |1⟩, (8.19)

and we wish to transform it at the end of the interaction into the coherent superposition

|Ψ(tf )⟩ = cosα|1⟩ − sinα eiφ|3⟩. (8.20)

The possibility of creation of this coherent superposition arises from the following behavior of
the dark state (8.14) for the counterintuitive Stokes-pump pulse sequence:

lim
t→ti

ΩP

ΩS

= 0, lim
t→tf

ΩP

ΩS

= tanα. (8.21)

This leads to the initial and the final mixing angles ϑ(ti) = 0 and ϑ(tf ) = α, and

|1⟩ ti←t←−− |ϕ0(t)⟩
t→tf−−−→ cosα eiθP |1⟩ − sinα eiθS |3⟩. (8.22)

Thus, the state |ϕ0(t)⟩ connects adiabatically the initial state |1⟩ to the target superposition
state cosα|1⟩ − sinα eiφ|3⟩ at the end of interaction, with

φ = θS − θP . (8.23)
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Fig. 8.4 - Stokes-pump Pulse sequence and populations as function of the time for the half-
STIRAP process with Rabi frequencies given by Eq. (8.24).

The special case of φ = π and α = π/4, known as half-STIRAP, leads to |1⟩ → 1√
2
(|1⟩ + |3⟩)

and |3⟩ → α|1⟩+β|2⟩+γ|3⟩. The two-photon resonance between the states |1⟩, |3⟩ is necessary
for f-STIRAP as for STIRAP. The optical phase factor e−i(ωS−ωP )t is eliminated in a degenerate
linkage pattern ω1 = ω3.

The f-STIRAP scheme proposed Vitanov et al [79] is made robust by realizing the condition
(8.21) in Zeeman sublevels for the states 1 and 3: |1⟩ ≡ |m = −1⟩, |3⟩ ≡ |m = +1⟩, with the
excited state |2⟩ ≡ |m = 0⟩ and by using polarized pulses: one is of σ− polarization associated
to the Rabi frequency Ω0e

−(t+τ)2/T 2
, and another one with the time-dependence Ω0e

−(t−τ)2/T 2

of elliptic polarization cosα σ− + sinα σ+. This scheme is as robust as STIRAP, and leads
to the Rabi frequencies of the pump (with σ+ polarization) and Stokes (with σ− polarization)
pulses as

ΩP (t) = Ω0 sinα e−(t−τ)
2/T 2

,

ΩS(t) = Ω0e
−(t+τ)2/T 2

+ Ω0 cosα e−(t−τ)
2/T 2

. (8.24)

Figure 8.4 (lower panel) shows the time evolution of the populations in the f-STIRAP process.
The pulse shapes (upper panel) are defined by Eq. (8.24) with α = π/4, τ = 0.7T , and
Ω0 = 20/T . The population evolves smoothly from initially populated state |1⟩ to the coherent
superposition 1√

2
(|1⟩ − |3⟩) at the end of process.

8.2.3 Tripod STIRAP

The tripod STIRAP technique, first proposed by Unanyan et al [149], is an extension of STI-
RAP in which a third laser pulse (the Control) couples the excited state |2⟩ to a fourth ground
state |4⟩ (see Fig. 8.5). Such a four-level system with three control parameters features an
additional non trivial geometric phase. In this section we show, following Ref. [149], that for a
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Fig. 8.5 - Linkage pattern scheme of the tripod STIRAP technique.

proper sequence of pump, Stokes, and control pulses, tripod STIRAP allows one to create not
only a coherent superposition of states |1⟩ and |3⟩, but also to construct coherently one-qubit
rotation and phase gates in the subspace of |1⟩ and |3⟩.

Construction of the effective Hamiltonian

The Hamiltonian of the tripod system in the resonant approximation can be written as

H(t) =
1

2


0 ΩP (t)e

i(ωP t+θP ) 0 0
ΩP (t)e

−i(ωP t+θP ) 2ω2 ΩS(t)e
−i(ωSt+θS) ΩC(t)e

−i(ωCt+θC)

0 ΩS(t)e
+i(ωSt+θS) 0 0

0 ΩC(t)e
+i(ωCt+θC) 0 0

 ,

(8.25)
where the energy of the ground states |1⟩, |4⟩, |3⟩ is taken as zero. In the resonant case: ω2 =
ωP = ωS = ωC = ω, the effective Hamiltonian of the system is obtained by applying the
rotating wave transformation

R(t) =


1 0 0 0
0 e−i(ωt+θP ) 0 0
0 0 e−i(θP−θS) 0
0 0 0 e−i(θP−θC)

 , (8.26)

as

Heff(t) = R†HR− iR†∂R
∂t

=
1

2


0 ΩP (t) 0 0

ΩP (t) 0 ΩS(t) ΩC(t)
0 ΩS(t) 0 0
0 ΩC(t) 0 0

 . (8.27)

The relation between the state vector |Ψ(t)⟩ corresponding to H(t), and the state vector |Φ(t)⟩
corresponding to Heff(t) can be established as |Ψ(t)⟩ = R(t)|Φ(t)⟩. In the subspace of |1⟩ and
|3⟩, the transformation R is reduced to a one-qubit phase gate

R→ UP =

(
1 0
0 eiγ

)
, γ = θS − θP . (8.28)
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Construction of the adiabatic Hamiltonian

The next step of the analysis is to find the degenerate dark states (with null eigenvalues and
zero component along the excited state |2⟩) of the effective Hamiltonian. Since in the adiabatic
evolution of this system its dynamics follows simultaneously two dark states, we prefer to
calculate the corresponding propagator in the adiabatic approximation. The dark states are

|ϕ1(t)⟩ =


cosϑ(t)

0
− sinϑ(t)

0

 , |ϕ2(t)⟩ =


sinϑ(t) sinφ(t)

0
cosϑ(t) sinφ(t)
− cosφ(t)

 , (8.29)

and the other instantaneous eigenvectors are

|ϕ3(t)⟩ =
1√
2


sinϑ(t) cosφ(t)

1
cosϑ(t) cosφ(t)

sinφ(t)

 , |ϕ4(t)⟩ =
1√
2


sinϑ(t) cosφ(t)

−1
cosϑ(t) cosφ(t)

sinφ(t)

 , (8.30)

where the mixing angles are given by

tanϑ(t) =
ΩP (t)

ΩS(t)
, tanφ(t) =

ΩC(t)√
Ω2

P (t) + Ω2
S(t)

. (8.31)

The angle ϑ(t) is the mixing angle used in standard STIRAP, and φ(t) is an additional mixing
angle related to the control pulse.

The unitary transformation between the atomic bare states and the adiabatic states is

T (t) =


cosϑ(t) sinϑ(t) sinφ(t) 1√

2
sinϑ(t) cosφ(t) 1√

2
sinϑ(t) cosφ(t)

0 0 1√
2

− 1√
2

− sinϑ(t) sinφ(t) cosϑ(t) 1√
2
cosϑ(t) cosφ(t) 1√

2
cosϑ(t) cosφ(t)

0 − cosφ(t) 1√
2
sinφ(t) 1√

2
sinφ(t)

 (8.32)

Hence, the Hamiltonian in the basis of adiabatic states can be written as

T †HeffT − iT †∂T
∂t

=


0 −iϑ̇ sinφ(t) −i√

2
ϑ̇ cosφ(t) −i√

2
ϑ̇ cosφ(t)

iϑ̇ sinφ(t) 0 i√
2
φ̇ i√

2
φ̇

+i√
2
ϑ̇ cosφ(t) −i√

2
φ̇ 1

2
Ω(t) 0

+i√
2
ϑ̇ cosφ(t) −i√

2
φ̇ 0 −1

2
Ω(t)

 , (8.33)

where

Ω(t) =
√

Ω2
P (t) + Ω2

S(t) + Ω2
C(t). (8.34)

The dynamics corresponding to this Hamiltonian is given by i ∂
∂t
|Υ(t)⟩ =

(
T †HeffT − iT † ∂T

∂t

)
|Υ(t)⟩.

The relation between |Φ(t)⟩, the state vector corresponding to Heff(t), and |Υ(t)⟩ is established
by the unitary transformation T (t) as

|Φ(t)⟩ = T (t)|Υ(t)⟩. (8.35)

In the adiabatic limit, which we assume to be applicable, the time derivative of the mixing
angles ϑ(t) and φ(t) is small compared to the splitting of eigenvalues given by Ω(t). Under
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this condition there is negligible nonadiabatic coupling of the adiabatic states |ϕ1(t)⟩ or |ϕ2(t)⟩
to the states |ϕ3(t)⟩ and |ϕ4(t)⟩. Therefore, in the adiabatic limit we must take into account
only transitions between degenerate adiabatic states. This leads to the adiabatic dynamics
i ∂
∂t
|Υ(t)⟩ = Had(t)|Υ(t)⟩ with

Had(t) =


0 −iϑ̇ sinφ(t) 0 0

+iϑ̇ sinφ(t) 0 0 0
0 0 1

2
Ω(t) 0

0 0 0 −1
2
Ω(t)

 . (8.36)

This Hamiltonian commutes with itself at different times, since it can be diagonalized by a time
independent transformation. The corresponding propagator thus reads

Uad(t, ti) = e
−i

∫ t
ti
dsHad(s)

=


cosΘ(t) − sinΘ(t) 0 0
sinΘ(t) cosΘ(t) 0 0

0 0 e−iδ(t) 0
0 0 0 e+iδ(t)

 , (8.37)

where δ(t) = 1
2

∫ t

ti
dsΩ(s) is the dynamical phase, and Θ(t) is the geometrical phase:

Θ(t) =

∫ t

ti

ds ϑ̇(s) sinφ(s). (8.38)

Using |Υ(t)⟩ = Uad(t, ti)|Υ(ti)⟩, Equation (8.35) leads to

|Φ(t)⟩ = T (t)Uad(t, ti)T
†(ti)|Φ(ti)⟩ = U eff(t, ti)|Φ(ti)⟩, (8.39)

where we have defined the effective propagator of the system as

U eff(t, ti) := T (t)Uad(t, ti)T
†(ti). (8.40)

At the final step, we have to consider the transformation R(t) to obtain the propagator corre-
sponding to H(t) as

|Ψ(t)⟩ = R(t)U eff(t, ti)R
†(ti)|Ψ(ti)⟩. (8.41)

Implementation of one-qubit quantum gates by geometric phase

In this subsection we show that an adapted sequence of pump, Stokes, and control pulses in
tripod STIRAP, results an implementation of one-qubit phase and rotation gates in a relatively
robust (in a sense specified below) and coherent way [150].

Taking the pulse sequence such that

ϑ(ti) = ϑ(tf ) = 0, φ(ti) = φ(tf ) =
π

2
, (8.42)

leads to the effective propagator

U eff(tf , ti) =


cosΘ(tf ) 0 − sinΘ(tf ) 0

0 cos δ(tf ) 0 −i sin δ(tf )
sinΘ(tf ) 0 cosΘ(tf ) 0

0 −i sin δ(tf ) 0 cos δ(tf )

 . (8.43)
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The matrix representation of U eff(tf , ti) in the subspace of the bare states |1⟩, |3⟩ is decoupled
from the other states |2⟩, |4⟩. Therefore, if the initial state of the system is |Ψ(ti)⟩ = |1⟩, the
state vector of the system at the end of the evolution is

|Ψ(tf )⟩ = R(tf )U
eff(tf , ti)|1⟩ = Uf |1⟩, (8.44)

where Uf is the propagator of the system in the subspace spanned by |1⟩, |3⟩ defined as

Uf =

(
cosΘ(tf ) − sinΘ(tf )
sinΘ(tf ) cosΘ(tf ) e

i(θS−θP )

)
. (8.45)

The propagator Uf is a one-qubit phase gate for Θ(tf ) = 0, and a one-qubit rotation gate
for θS = θP . Starting from the initial state |3⟩, the final state of the system is a coherent
superposition

|Ψ(tf )⟩ = − sinΘ(tf )|1⟩+ ei(θS−θP ) cosΘ(tf )|3⟩. (8.46)

The geometrical phase Θ(tf ) can be expressed as

Θ(tf ) =

∫ tf

ti

ds ϑ̇(s) sinφ(s)

=

∮
C
sinφ dϑ

=

∮
C

ΩC(ΩSdΩP − ΩPdΩS)

(Ω2
P + Ω2

S)
√
Ω2

P + Ω2
S + Ω2

C

, (8.47)

where C is a closed path in a three dimensional space of the three time-dependent parameters
ΩP ,ΩS,ΩC . The corresponding path of the system in this space, starts from the point ΩP =
ΩS = ΩC = 0, and ends at the same point. For a quantitative analysis of the geometrical
phase Θ(tf ), we assume a Gaussian time-dependence of the Rabi frequencies which satisfies the
condition (8.42),

ΩP (t) = P0e
−(t/T )2 ,

ΩS(t) = S0e
−[t/(2T )]2 ,

ΩC(t) = C0e
−[(t−τ)/(4T )]2 . (8.48)

In general, Θ(tf ) depends on three parameters: the ratio of peak Rabi frequencies P0/S0,
C0/S0, and the time delay τ between the control pulse and the two other pulses. Figure 8.6
shows that for τ = 0, the final population of the system remains in the initially populated state
|1⟩, i.e. Θ(tf ) = 0. In order to transfer the population into a superposition of the states |1⟩
and |3⟩ [non-zero Θ(tf )] at the end of tripod-STIRAP process, having a non-zero time delay is
essential (see Fig. 8.7). Although this technique is robust against variations of pulse areas, of
detunings from resonances, and of pulse shapes, the control of pulses to obtain a predetermined
value of Θ(tf ) is expected in practice to be difficult.

Implementation of one-qubit quantum gates using static phases

An alternative process on the same system, but with a different pulse sequence, to generate one-
qubit quantum gate in a robust way (comparable to STIRAP robustness) has been proposed
[151]. It uses the static phases of the laser instead of geometric phases (see chapter 15).
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Fig. 8.6 - The sequence of the pump, Stokes, and control Gaussian-shaped pulses (8.48), without
time-delay between them, for tripod-STIRAP process which satisfies the conditions (8.42), and
the corresponding populations as function of time. We observe at the end of process that the
system is in the state |1⟩, which means Θ(tf ) = 0.
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Fig. 8.7 - As in Fig. 8.6, but with a time delay between the control pulse and pump-Stokes
pulses. This time delay is necessary to transfer the population into a superposition of the states
|1⟩ and |3⟩ [non-zero Θ(tf )] at the end of tripod-STIRAP process.



Chapter 9

Bichromatic adiabatic passage beyond
the resonant approximation

In this chapter, we analyze the population transfer induced by a bichromatic adiabatic passage.
In a two-level system, this means that we use two fields of different frequencies that are both
near resonant with the transition. Technically we cannot apply a simple resonant approximation
since we have to construct it with a single frequency. In three-state systems, both fields are
near resonant with both transitions [153].

Such bichromatic fields induce in the system remarkable properties of multiphoton transfer.
For a sufficiently high field amplitude, the system can indeed absorb some photons of one mode
and emit these photons to the other mode when the two fields partially overlap. Adiabatic
passage allows the control of such multiphoton transfers [69]. The adiabatic Floquet theory is
thus here relevant to study these effects.

The technique to generate experimentally the two near resonant frequency with a con-
trollable relative phase through a controlled Doppler shift has been proposed in [154]. The
experimental implementation has been realized for the first step, i.e. the complete transfer
population (absorption of one photon) [155].

Bichromatic effects with CW lasers in population trapping have been also investigated in
[156].

We here first construct the effective bichromatic quasienergy operator in Section 9.1.

We show in Section 9.2 the application of this effect to the deflexion of a two-state atomic
beam, which is controlled through the topological quantization of the absorption and emission
of the photons. The atomic beam encountering two counterpropagating fields, when absorbing
from one field to emitting to the other field, will be indeed deflected by the conservation of the
global momentum of the system atom+fields.

Bichromatic STIRAP is studied in Section 9.3.

9.1 The effective quasienergy operator

We study processes with two fields of different carrier frequencies ω1 and ω2 which act in reso-
nance (or in quasi-resonance) on the same atomic transition, which are referred to as bichromatic
processes. They induce dynamical resonances in the system due to the beat frequency

δ = ω1 − ω2. (9.1)

185
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We consider Hamiltonians of the form

H(ωt+ θ) = H0 − d ·

[
2∑

j=1

ejEj(t) cos(ωjt+ θj)

]
(9.2)

where H0 is the Hamiltonian of the free atomic system of energies Eℓ, ℓ = 1, · · · , N associated
to the states {|ℓ⟩} spanning the Hilbert space H = CN on which H0 and the dipole moment
operator d act. The total electric field, containing two carrier frequencies ω = (ω1, ω2), is
characterized by unit polarization vectors ej, smooth pulse-shaped envelope functions of time
E(t) = [E1(t), E2(t)] and the initial phases θ = (θ1, θ2). The interaction is thus characterized by

the time-dependent Rabi frequencies Ω
(mℓ)
j (t) = −⟨m |d · ej| ℓ⟩ Ej(t)/~, j = 1, 2 when the fre-

quency ωj is quasi-resonant between the states |m⟩ and |ℓ⟩. One additionally assumes that the

fields are weak enough such that |~Ω(mℓ)
j (t)| ≪ |Eℓ − Em| for all times, meaning that the nonres-

onant terms can be neglected. The fields are however sufficiently strong such that, for some |m⟩
and |ℓ⟩, the peak Rabi frequency is comparable to the beat frequency: maxt

∣∣∣Ω(mℓ)
j (t)

∣∣∣ ∼ |δ|.
The resonant terms with respect to the frequency difference δ will be kept, since they will
produce dynamical resonances.

In the Floquet representation

K = −i~ω · ∂
∂θ

+H(θ), (9.3)

the effective Hamiltonian will be derived with the following change of variables{
θ = θ1 − θ2
θa = θ2

, (9.4)

giving {
∂/∂θ1 = ∂/∂θ

∂/∂θ2 = ∂/∂θa − ∂/∂θ
and

K = −i~ω2
∂

∂θa
− i~δ ∂

∂θ
+H(θ). (9.5)

We will apply specific rotating wave transformations R that will allow us to identify reso-
nant terms and to eliminate the nonresonant ones. We obtain an effective one-mode Floquet
Hamiltonian of the form

Keff = −i~δ ∂
∂θ

+Heff(θ) ≃ R†KR, (9.6)

that will take into account non trivial resonant bichromatic effects with respect to the frequency
δ. Although the field intensities are moderate, the system exhibits dynamical resonances that
in the case of a single laser are usually encountered only in a strong-field regime.

The dynamics of the atom+field system is determined by the effective one-mode time de-
pendent Schrödinger equation

i~
∂

∂t
ψ(θ, t) = Keff(t)ψ(θ, t), (9.7)

where ψ(θ, t) is a N -element column vector. The exact solution will thus be approximated by
Rψ(θ, t).

These bichromatic resonances and their consequences will be studied in two- and three-level
systems.
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9.2 Two-level systems – Topological quantization of atomic

beam deflection

9.2.1 The effective Hamiltonian

Fig. 9.1 - Diagram of linkage patterns between two atomic states.

We consider a two-level system (E2 > E1) [69] driven by two quasi-resonant fields of de-
tunings ∆j ≡ (E2 − E1)/~ − ωj, j = 1, 2, as depicted in Fig. 9.1. We assume that the dipole
moment couples only the two levels: ⟨1 |d · ej| 1⟩ = ⟨2 |d · ej| 2⟩ = 0. The two characteristic
Rabi frequencies denoted Ωj(t) = −⟨1 |d · ej| 2⟩ Ej(t)/~, j = 1, 2 involve the same transition
1− 2. In the basis {|1⟩, |2⟩}, the Hamiltonian reads

H(θ) =

[
E1 0
0 E2

]
+ ~ (Ω1(t) cos θ1 + Ω2(t) cos θ2)

[
0 1
1 0

]
. (9.8)

The beat frequency is here δ ≡ ω1 − ω2 = ∆2 − ∆1. We study the non-perturbative regime
|δ| . maxt |Ωj(t)| ≪ (E2 − E1)/~, j = 1, 2.

We use the rotating wave transformation dressing the state |2⟩ with minus one ω1− photon:

R =

[
1 0
0 e−iθ1

]
. (9.9)

Applying this transformation to the Floquet Hamiltonian (9.3) gives

R†KR = −i~ω · ∂
∂θ

+
~
2

[
0 Ω1

Ω1 2∆1

]
+

~Ω2

2

[
0 e−i(θ1−θ2)

ei(θ1−θ2) 0

]
+
~Ω1

2

[
0 e−2iθ1

e2iθ1 0

]
+

~Ω2

2

[
0 e−i(θ1+θ2)

ei(θ1+θ2) 0

]
, (9.10)

which can be approximated, after the transformation (9.4), by the effective Floquet Hamiltonian
[157]

Keff = −i~δ ∂
∂θ

+
~
2

[
0 Ω1

Ω1 2∆1

]
+

~Ω2

2

[
0 e−iθ

eiθ 0

]
. (9.11)

Since −i~ω2∂/∂θa is decoupled from the rest of the Floquet Hamiltonian, it acts trivially and
can be omitted. This effective model is valid only if two different frequencies are assumed.
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The derivative term represents the relative number of photon pairs, one ω1-photon minus one
ω2-photon. Thus the absorption of one “effective photon” of frequency δ in the effective model
(9.11) corresponds in the complete model (9.3) to the absorption of one photon of frequency ω1

and the emission of one photon of frequency ω2. If the two laser fields are counterpropagating,
perpendicularly to the atomic beam, this double photon exchange results in a net transfer of
momentum to the atom of ~(ω1 + ω2)/c which manifests as a deflection of the beam.

The second term of the effective Hamiltonian (9.11) is the usual RWA Hamiltonian (associ-

ated to the ω1 field), with eigenvalues 2λ0± = ~∆1 ± ~
√
(∆1)

2 + (Ω1)
2. The third term can be

viewed as a perturbation of this RWA Hamiltonian.
The analysis of the dynamics consists of (i) the calculation of the quasienergy surfaces of

the effective quasienergy operator as a function of the two Rabi frequencies Ω1 and Ω2, (ii)
the analysis of their topology, and (iii) the application of adiabatic principles to determine the
dynamics of processes in view of the topology of the surfaces.

9.2.2 Eigenenergy surface topology

In the following, we will consider for simplicity the case ∆1 = −∆2 so that δ = −2∆1. For
frozen values of the two fields Ω1 and Ω2, we calculate Floquet states and quasienergies by
diagonalizing Keff. The eigenelements can be labelled with two indices: one, denoted n, refers
to the levels of the atom, and another one denoted k, refers to the relative photon numbers.
The index k stands for the number of the ω1-photons absorbed and the number of ω2-photons
emitted. The eigenvalues and eigenvectors have the following property of periodicity:

λn;k,−k = λn;0,0 + k~δ, |n; k,−k⟩eff = |n; 0, 0⟩eff exp (ikθ) .

The eigenelements appear as two families, each of which consists of an infinite set of eigenvalues
with equal spacing ~δ. The eigenstates of Keff, |1; k,−k⟩eff and |2; k,−k⟩eff, can thus be labelled
by |1; k,−k⟩ and |2;−1 + k,−k⟩, k ∈ Z in the original basis of (9.3). If one starts with the
initial state |ni; 0, 0⟩, the state |nf ; k1, k2⟩ at the end of the process will characterize the atom in
the state |nf⟩ with emission of ki photons of frequency ωi if ki > 0 or absorption of ki photons
if ki < 0, i = 1, 2.

On Fig. 9.2, we display eigenenergy surfaces, calculated numerically, as functions of the
scaled Rabi frequencies Ω1/δ and Ω2/δ, assumed positive without loss of generality. Together
with the adiabatic analysis, the topology of these surfaces gives insight into the various atomic
population and photon transfers that can be produced by choosing appropriately the temporal
evolution of the pulses. The process starts in the state |1; 0, 0⟩, i.e. the lowest atomic state with
zero ω1 and ω2 photons. Its energy is shown as the starting point of various paths. We define
the transfer state as the Floquet eigenvector which is adiabatically followed, i.e. on which the
population resides during the dynamics. There are two infinite families of quasienergy surfaces,
that are constructed by the translations by ~δk, k ∈ Z of two surfaces. Any two neighboring
surfaces have points of contact that are conical intersections. In the present model all the points
of intersection are located either at the line Ω1 = 0 or at the line Ω2 = 0, corresponding to the
situations where only one of the laser fields is interacting with the atom. Besides these true
crossings, the quasienergy surfaces display avoided crossings. These true crossing and avoided
crossings are associated with dynamical resonances as we will show below.

Three kinds of adiabatic paths can occur in this topology, as shown in Fig. 9.2 which
displays three examples of adiabatic paths leading to three different final atomic population
and photon transfers. They are labelled as (a), (b) and (c).
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Fig. 9.2 - Quasienergy surfaces (in units of δ) as functions of Ω1 and Ω2 for δ = −2∆1 = 2∆2.
Three different paths (denoted a, b and c) depending on the temporal evolution of the pulses are
depicted.

For the curve (a), the shifts of the eigenvalues are smaller than the energy of the first
intersections. As a consequence, the path stays on a single surface, and at the end the system
returns to the initial state, without any final transfer of photons nor of the atomic population.

The curve (b) corresponds to shifts that are larger than the first intersections. The crossing
of the first intersection as Ω1 increases with Ω2 = 0 brings the population into the first upper
quasienergy surface. Turning on and increasing the amplitude Ω2 (while Ω1 decreases) moves the
path across this surface. When the second field Ω2 decreases, the curve crosses an intersection
(with Ω1 = 0) that brings the system to the third level surface, on which the curve stays until
the end of the pulse Ω2. The transfer state is finally connected to state |1; 1,−1⟩: there is
no transfer of atomic population, but one ω2-photon has been absorbed and one ω1-photon
has been emitted at the end of the process. This path is produced with two delayed pulses
of approximately the same peak amplitudes. Two dynamical resonances occur in this system.
Each is crossed twice, appearing as one true crossing and one avoided crossing. This appears
clearer in the temporal representation of the quasienergies shown in Fig. 9.4b (see below for
details of the dynamics). They can be described as follows: the field 1 dynamically shifts the
eigenvalues which become resonant with the field 2. This resonance is mute when the field 2
is off (left true crossing) and becomes effective when the field 2 is on (left avoided crossing).
The second dynamical resonance occurs symmetrically from dynamical Stark shift due to field
2 which makes the eigenvalues resonant with the field 1. The topology shows the connection of
the adiabatic paths related to the preceding dynamical resonances.
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Fig. 9.3 - Same figure as 9.2, but for stronger field amplitudes

If the field amplitudes are taken even larger, such that two dynamical resonances are crossed
(corresponding to the true crossings when Ω1 rises with Ω2 = 0 and when Ω2 decreases with
Ω1 = 0), the final state is |1; 2,−2⟩, i.e. there is no atomic population transfer but an absorption
of two ω2-photons and an emission of two ω1-photons. This path is shown in Fig. 9.3. This
kind of process can be generalized to paths yielding the connectivity of the transfer state to
|1; k,−k⟩, i.e. the emission of k ω1-photons and the absorption of k ω2-photons (k positive
for pulse 1 before pulse 2 and negative for pulse 2 before pulse 1), with no atomic population
transfer.

The path (c) in Fig. 9.2 involves a crossing of one conical intersection of the two described
above. The first resonance is crossed by the rising pulse 1 (with Ω2 = 0). The second pulse is
chosen with a smaller peak amplitude in order to avoid the passage through the resonance that
would lead the system to the third level surface. This leads to an atomic population transfer,
accompanied with absorption of one ω2 -photon, since the path ends at |2; 0,−1⟩. This can be
generalized for upper and lower paths: the connectivity leads to |2;−1+k,−k⟩, with k positive
(pulse 1 before smaller pulse-2 amplitude) or negative or zero integer (pulse 2 before smaller
pulse-1 amplitude).

The topology of the quasienergy surfaces thus shows which appropriate delays and peak
amplitudes induce desired atomic population and photon transfers. In the adiabatic regime,
these loops can be classified into topologically inequivalent classes. If the evolution is adiabatic,
all paths of a given class lead to the same end effect. This property underlies the robustness of
the process.



9.2. Two-level systems – Topological quantization of atomic beam deflection 191

9.2.3 Analytical construction of the quasienergies

Fig. 9.4 - (a) Rabi frequencies (in units of δ) from squared trig function envelopes. (b)
Quasienergy curves (in units of δ), corresponding to the path b of Fig. 9.2 (Ωmax = 1.5δ)
from formula (9.12) (dotted lines) and exact numerical result (full line). The arrow indicates
the adiabatic path (thick line).

With the technique combining the rotating wave transformations and contact transforma-
tions developed in Section 5, one can treat accurately the dynamical resonances and construct
approximately the quasienergies. If we take into account the first two dynamical resonances by
appropriate RWT’s [associated with the path (b)], one obtains the following explicit expression
for the quasienergy surfaces

λ±,k
~

=
∆1

2
+ kδ ∓

[
1

4

(√
A− δ

)2
+

(
ε2Ω1λ

0
−
)2

~2A

] 1
2

(9.12)

with A =
{[

(∆1)
2 + (Ω1)

2]1/2 − δ}2

+4
(
ελ0−/~

)2
and 2ε = −Ω2/

√
(∆1)

2 + (Ω1)
2. Figure 9.4b

displays these eigenvalues as functions of time for the dynamics described below. They are in
close agreement with the exact eigenvalues calculated numerically from the Hamiltonian (9.11).
The explicit consideration of the small perturbative corrections from the full model (9.3) by
contact transformations does not change the topology of the surfaces in the sense that the
conical intersections are not removed but only slightly shifted.

This systematic method can also be applied to treat the next dynamical resonances occurring
for higher field amplitudes.

9.2.4 Dynamics and topological quantization of the number of ex-
changed photons

The path described above can be constructed by two smooth pulses, associated to the Rabi
frequencies Ω1(t) and Ω2(t), with a time delay τ . To a sequence of such pulses corresponds
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a closed loop in the parameter plane Ω1 and Ω2. Each of the two black curves (labelled a
and b) correspond to a sequence of two smooth pulses of equal length T and equal peak Rabi
frequencies Ωmax ≡ maxt [Ω1(t)] = maxt [Ω2(t)], separated by a delay such that the pulse 1 is
switched on before the pulse 2. This path has been redrawn as a function of time on Fig. 9.4b,
using sin2 envelopes of length T = 100/δ and a delay of τ = T/3, shown on Fig. 9.4a. Details
of this dynamics of bichromatic processes, in particular in relation with the initial condition
for the photon field, are given and discussed in the next subsection. The path (c) needs two
pulses with different peak amplitudes.
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Fig. 9.5 - Comparison of the number k of effective photons emitted at the end of the process
[Eq. 9.13] (dashed line) with the average number of effective photons from the exact numerical
result (full line) . The plateaux labelled (a) and (b) refer to the two paths of Fig. 9.2 for pulse
length T = 100/δ and delay τ = T/3.

For equal peak amplitudes, we display in Fig. 9.5 the final average effective number k
of exchanged photons as a function of the peak Rabi frequencies, calculated numerically by
solving the Floquet time-dependent Schrödinger equation. This shows the consequence of the
topology described above. Since the connectivity of the transfer state to |1; k,−k⟩ is based
on the crossings, we can determine analytically the final number of effective photons k as a
function of the peak Rabi frequencies Ωmax/δ (taken equal) in the purely adiabatic regime:

k = Integer part of

√
(Ωmax/δ)

2 + (∆1/δ)
2. (9.13)

It predicts the adiabatic plateaux of Fig. 9.5, that can be interpreted as a topological quanti-
zation of the number of exchanged photons. The dips are due to nonadiabatic Landau-Zener
transitions when the pulse overlap is in the neighborhood of the intersections. With a configu-
ration of counterpropagating laser fields, perpendicular to an atomic beam, this translates into
the possibility of deflection of the beam by the quantized transfer of a momentum k~(ω1+ω2)/c.

9.3 Three-level systems: Bichromatic STIRAP

The full semi-classical Hamiltonian (9.2) contains

H0 =

 E1 0 0
0 E2 0
0 0 E3

 , d =

 0 d12 0
d21 0 d23

0 d32 0

 , (9.14)
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Fig. 9.6 - Diagram of linkage patterns between three atomic states (full horizontal lines), show-
ing pump (P or 1) and Stokes (S or 2) laser frequencies.

which are respectively the Hamiltonian of the free three-level system, acting on the Hilbert space
H = C3 spanned by the vector set {|1⟩, |2⟩, |3⟩}, and the dipole moment operator (coupling
transitions 1-2 and 2-3, but not 1-3). We take for simplicity equal coupling for the transitions
1-2 and 2-3. The system is characterized by the time-dependent Rabi frequencies ~Ω1(t) =
−⟨1|d · e1|2⟩E1(t) = −⟨2|d · e1|3⟩E1(t) and ~Ω2(t) = −⟨1|d · e2|2⟩E2(t) = −⟨2|d · e2|3⟩E2(t).
We consider the situation where the frequency ω1 is one-photon quasi-resonant with the 1-2
transition, and the frequency ω2 is one-photon quasi-resonant with the 2-3 transition. We study
the intermediate field intensities regime

|δ| . max
t

[|Ω1(t)|, |Ω2(t)|]≪ (E2 − E1)/~, (E3 − E2)/~. (9.15)

In particular we consider Λ−systems, depicted in Fig. 9.6, where the lasers 1 and 2 are
respectively called pump and Stokes lasers. We use here resonant frequencies ~ω1 = E2 − E1,
~ω2 = E2 −E3 so that the two-field combination maintains the two-photon resonance between
the states |1⟩ and |3⟩, as for the usual STIRAP process [71]. We have thus here δ ≡ ω1 − ω2 =
(E3 − E1) /~. The main results of this part can be found in [153, 158, 109].

9.3.1 The effective Hamiltonian

To obtain the effective Floquet Hamiltonian, we apply the rotating wave transformation (RWT)

R(θ) =

 1 0 0
0 e−iθ1 0
0 0 ei(θ2−θ1)

 , (9.16)

to obtain (setting E1 = 0 as the reference of the energies)

R†KR = −i~ω · ∂
∂θ

+
~
2

 0 Ω1 0
Ω1 0 Ω2

0 Ω2 0

+ V1(θ) (9.17)
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with

V1(θ) =
~
2

 0 Ω1e
−2iθ1 0

Ω1e
2iθ1 0 Ω2e

2iθ2

0 Ω2e
−2iθ2 0

+
~
2

 0 Ω2e
−i(θ1+θ2) 0

Ω2e
i(θ1+θ2) 0 Ω1e

i(θ1+θ2)

0 Ω1e
−i(θ1+θ2) 0


+
~
2

 0 Ω2e
−i(θ1−θ2) 0

Ω2e
i(θ1−θ2) 0 Ω1e

−i(θ1−θ2)

0 Ω1e
i(θ1−θ2) 0

 . (9.18)

The usual RWA consists in neglecting the θ-dependent operator V1. The first term of V1 (9.18)
contains the counter-rotating terms of the pump laser on the 1-2 transition and of the Stokes
laser on the 2-3 transition. The next two terms correspond to the interactions of the pump laser
on the 2-3 transition and of the Stokes laser on the 1-2 transition. Following the hypothesis
(9.15), we neglect the first two terms and keep the last term which becomes large (see [109] for
details) when maxt [|Ω1(t)|, |Ω2(t)|] approaches or overcomes |δ|. The (approximate) effective
one-mode Floquet Hamiltonian is thus

Keff = −i~δ ∂
∂θ

+
~
2

 0 Ω1 0
Ω1 0 Ω2

0 Ω2 0

+
~
2

 0 Ω2e
−iθ 0

Ω2e
iθ 0 Ω1e

−iθ

0 Ω1e
iθ 0

 . (9.19)

The derivation term is the relative number operator for pairs of photons, one pump-field photon
minus one Stokes-field photon. The second term is the well-known RWA Hamiltonian (dressed
Hamiltonian used in the usual STIRAP) and the third one can be viewed as a perturbation of
this RWA Hamiltonian.

We choose to have zero pump and Stokes photon at the beginning of the process. The
initial condition is thus |1; 0, 0⟩, which corresponds here to |ψ(t = ti)⟩ = |1; 0⟩ for the effective
one-mode Schrödinger equation (9.7). At each value of Ω1 and Ω2, the eigenvalues of Keff can
be decomposed as λn;−k,k = λn;0,0 − kδ = λn;0,0 − kω1 + kω2 and their respective eigenvec-
tors as |n;−k, k⟩eff = |n; 0, 0⟩eff exp[−ikθ]. The eigenstates of Keff |1;−k, k⟩eff, |2;−k, k⟩eff and
|3;−k, k⟩eff can thus be respectively labelled by |1;−k, k⟩, |2;−1− k, k⟩ and |3;−1− k, k + 1⟩
k ∈ Z in the original basis of (9.3). If one starts with the initial state |ni; 0, 0⟩, the state
|nf ; k1, k2⟩ at the end of the process will characterize the atom in the state |nf⟩ with emission
of ki photons of frequency ωi if ki > 0 or absorption of ki photons if ki < 0, i = 1, 2. The eigen-
values appear as three families with periodic replicas (with period 2π/δ) and yield one-mode
Floquet zones which can interact each other.

9.3.2 Eigenenergy surface topology

In Fig. 9.7, we display quasienergy surfaces, calculated numerically, as functions of the scaled
Rabi frequencies Ω1/δ and Ω2/δ (assumed positive without loss of generality). The process
starts in the state |1; 0, 0⟩, i.e. the lowest atomic state with zero ω1 and ω2 photons. Its energy
(which is zero in Fig. 9.7) is shown as the starting point of various paths. There are three
infinite families of quasienergy surfaces, constructed by the translations by ~δk, k ∈ Z of three
surfaces. The surfaces exhibit conical intersections between two neighbours. In the present
model all the points of intersection are located either at the line Ω1 = 0 or at the line Ω2 = 0,
corresponding to the situations where only one of the laser fields is interacting with the atom.
Besides these true crossings, the quasienergy surfaces display avoided crossings. These crossings
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Fig. 9.7 - Quasienergy surfaces (in units of δ) as functions of Ω1/δ and Ω2/δ. Three character-
istic paths are shown, all starting at the same state of energy zero, and with a sequence of pulses
Ω1 - Ω2 of different peak amplitudes: path (a) corresponding to a STIRAP-like process, whose
dynamics is shown in Figs 9.8 and 9.9, is of relatively small amplitude and makes a small loop in
a single eigenenergy surface; path (b) giving a superposition of states (|1;−1, 1⟩+ |2;−2, 1⟩)/

√
2

(of energy −δ); and path (c) giving a STIRAP-like process accompanied with three ω1− photons
absorbed and three ω2− photons emitted, whose dynamics is shown in Figs 9.10 and 9.11.
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and avoided crossings are also associated with dynamical resonances of the same type as the
ones shown above in the two-level system.

The lifting of the degeneracy in the Ω1 or Ω2 directions is the same as in the case of the
usual STIRAP, since this lifting of degeneracy occurs for very small field intensities: The lifting
of degeneracy is such that the state solution is adiabatically connected to |1; 0, 0⟩ in the Ω2

direction. We study below the conditions yielding complete population transfer from |1⟩ to |3⟩,
for pulses in counterintuitive orders, i.e. for delayed Ω1 (pump pulse) switching on after Ω2

(Stokes pulse).
Figure 9.7 shows that for maxtΩ1(t) ∼ maxtΩ2(t) < δ, we recover a STIRAP-type path (de-

noted as path a), i.e. connecting |1; 0, 0⟩ to |3;−1, 1⟩. The creation of degeneracy is indeed such
that the middle state (connected to the energy zero) is adiabatically connected to |3;−1, 1⟩ in
the Ω1 direction. The upper and lower states (connected to the energy zero) are respectively con-
nected to the superpositions of states: (|1; 0, 0⟩+ |2;−1, 0⟩) /

√
2 and (|1; 0, 0⟩ − |2;−1, 0⟩) /

√
2,

in the Ω1 direction. In the case of path a, the last term of the Hamiltonian (9.19) can be seen
as a small perturbation of the RWA Hamiltonian of the standard resonant STIRAP. This has
been studied in details in [109]. The effect of this perturbation is a distortion of the path (see
Fig. 9.9b for a time evolution of this path). The dynamics associated to this path is studied
below.

Increasing the intensity of Ω2, we obtain a path (path b in Fig. 9.7) connecting |1; 0, 0⟩
to the superposition of states (|1;−1, 1⟩+ |2;−2, 1⟩) /

√
2 (of energy −δ). Increasing again the

intensity of Ω2, we obtain a path (path c) connecting |1; 0, 0⟩ to |3;−3, 3⟩ (of energy −2δ).
This is similar to the usual STIRAP in the sense that this path allows one to transfer the
atomic population from |1⟩ to |3⟩, however with the nontrivial effect of an absorption of three
ω1−photons and an emission of three ω2−photons. For higher intensities of Ω2 we can generalize
the preceding connections. In summary, the topology shows two kinds of adiabatic connections:
(i) from |1; 0, 0⟩ to (|1;−(2k + 1), 2k + 1⟩+ |2;−(2k + 2), 2k + 1⟩) /

√
2 and (ii) from |1; 0, 0⟩ to

|3;−(2k + 1), 2k + 1⟩, k ≥ 0.

9.3.3 Dynamics

We study the dynamics for the complete transfer to state |3⟩. The dynamics is considered
either with the semiclassical Schrödinger equation

i~
∂

∂t
ϕ(t) = Heff(t)ϕ(t), (9.20)

with the effective time dependent Hamiltonian, constructed with Keff (9.19)

Heff =
~
2

 0 Ω1 + Ω2e
−iδt 0

Ω1 + Ω2e
iδt 0 Ω2 + Ω1e

−iδt

0 Ω2 + Ω1e
iδt 0

 (9.21)

or with the Floquet Schrödinger equation (9.7) with the effective time dependent quasienergy
Hamiltonian (9.19). We recall that the semiclassical Schrödinger equation (9.20) is equivalent
to the Floquet Schrödinger equation (9.7) with a coherent state as the initial condition for the
photon field. Studying the Floquet Schrödinger equation (9.7) with a number state as the initial
condition for the photon field allows one to characterize the dynamics by each path considered
above. It is important to note that in these examples the information on the number of photons
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exchanged with the system, obtained from the calculation with the number state as the initial
condition, is still valid at the end of the pulse for a coherent state as an initial condition.

We consider two specific conditions, one for which the semiclassical and the Floquet ap-
proaches are equivalent (which is the case for the STIRAP configuration) with respect to the
number of photons exchanged at the end of the process, and another one for which the Floquet
theory brings the additional information of multiphoton processes.

To ensure that the interactions have a finite duration, we consider truncated sin2 envelopes.
Time and frequency are scaled with respect to δ. The scaled pulse length is set to T = 100/Ω0

and the delay τ = 0.33T . The pulses have to be applied in the so-called counterintuitive order:
the ω2− Stokes pulse precedes the ω1− pump pulse with the delay τ . To fulfill the standard
adiabatic condition, the relevant Rabi frequencies Ω have to be sufficiently large ΩT ≫ 1.
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Fig. 9.8 - From the semiclassical Schrödinger equation, (a) population histories Pn(t) for n =
1, 2, 3 with δ = 2Ω0 and Ωmax = Ω0 (top frame) and excitation by trig function pulse envelopes
(of length T = 100/Ω0 and delay 0.33T ) with pump (full line) before Stokes (dashed line) shown
in bottom frame (b). Population transfer P3(∞) to bare state |3⟩ is nearly complete.

For the parameters δ = 2Ω0 and Ωmax = Ω0, corresponding to the path (a) on the surfaces
in Fig. 9.7, we show in Fig. 9.8 the solution of the semiclassical Schrödinger equation (9.20).
It features a STIRAP-like process inducing a complete population transfer for this choice of
the delays. Two zones of the quasienergy spectrum associated to the surfaces of Fig. 9.7 are
pictured as a function of time in Fig. 9.9b. We notice that the state |1; 0, 0⟩ is adiabatically
connected to the final target state |3;−1, 1⟩. This implies a complete population transfer from
the bare state |1⟩ to the bare state |3⟩ with absorption of one pump photon and emission of
one Stokes photon at the end of the process.

This is confirmed by the numerical solution of the Floquet Schrödinger equation (9.7) with
a number state as the initial condition for the photon field |1; 0, 0⟩: It shows that the solution
statevector ψ(t) (the transfer state, which in the bare basis is given by Rψ(θ, t)) mainly projects
on the transfer eigenvector during the process. Additional informations of the Floquet solution
during time are shown on Fig. 9.9a and 9.9c. Figure 9.9a displays the probabilities of being in
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Fig. 9.9 - From the Floquet Schrödinger equation, with the same parameters as in Fig. 9.8,
(a) population histories Pn(t) for n = 1, 2, 3 (top frame), (c) photon histories (bottom frame),
associated to the quasienergy spectrum in middle frame (b). The arrow characterizes the transfer
eigenvector. Vertical lines indicate where the pump pulse starts and the Stokes pulse ends.

the bare states 1, 2 and 3:

Pn =
∑
kP ,kS

|⟨n; kP , kS|R|ψ(t)⟩K|2, n = 1, 2, 3 (9.22a)

=
1

(2π)2

∫ 2π

0

dθ1

∫ 2π

0

dθ2 |⟨n|Rψ(t)⟩H|2. (9.22b)

Figure 9.9c shows the respective probabilities of one and two ω1− pump photon absorption
PP,−1, PP,−2, and of one ω2− Stokes photon emission and absorption PS,1, PS,−1, defined with
the respective formulas of the probabilities of ℓ ω1− photons emissions and of ℓ ω2− photons
emissions

PP,ℓ =
∑
n,k2

|⟨n; ℓ, k2|R|ψ(t)⟩K|2, (9.23a)

PS,ℓ =
∑
n,k1

|⟨n; k1, ℓ|R|ψ(t)⟩K|2. (9.23b)

The other probabilities of photon emissions or absorptions are negligible. During the process,
we remark that small transient ω1− and ω2− photon absorption probabilities arise. An early
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ω2− photon absorption is observed, coinciding exactly with the (negative) shift of the transfer
eigenvector. The first effects of the ω2− pulse are indeed (i) to split the unpopulated Floquet
states connected to |2⟩ and |3⟩, and (ii) to produce a Stark shift of the Floquet state connected
to |1⟩ (the early part of the transfer state), which is equivalent to a partial absorption of a ω2−
photon. Symmetrically, a late ω1− photon absorption occurs. It is due to a (positive) Stark
shift of the Floquet state connected to |3⟩ (the late part of the transfer state). Arising near the
end of the process, for which one ω1− photon has already been absorbed, it leads to a partial
absorption of a second ω1− photon. At the end of the process the complete population transfer
from state |1⟩ to state |3⟩ is accompanied by the loss of a ω1− photon and the gain of a ω2−
photon. Thus the final result is not different from the semiclassical result.

Comparing Figs. 9.8a and 9.9a, we notice that, as expected, the solution of the Floquet
Schrödinger equation, with a number state as initial condition for the photon field, averages
the solution of the semiclassical Schrödinger equation, with respect to the formula (9.22b).

We now study the situation when the detuning from the transition frequencies satisfies
δ < Ωmax so that different Floquet zones cross.

To that effect, we choose the parameters δ = 2Ω0 and Ωmax = 4.4Ω0, corresponding to the
path c on the surfaces in Fig. 9.7. As shown on Fig. 9.10, the solution of the semiclassical
Schrödinger equation (9.20) leads to nearly complete population transfer from state |1⟩ to state
|3⟩. The analysis of the surfaces shows that the state |1; 0, 0⟩ connects |3;−3, 3⟩. Thus the
complete population transfer from the bare state |1⟩ to the bare state |3⟩ must be accompanied
with absorption of three pump photons and emission of three Stokes photons at the end of
the process. This is confirmed by the numerical solution of the Floquet Schrödinger equation
(9.7) with the initial state as a number state for the photon field |1; 0, 0⟩, shown in Fig. 9.11a:
the statevector ψ(t) approximately projects on the transfer eigenvectors during the process. It
shows the probabilities of being in the bare states 1, 2 and 3. Figure 9.11c shows the respective
probabilities of one, two, three and four ω1− photon absorptions, of one ω2− photon absorption,
and of one, two and three ω2− photon emissions, calculated with the formulas (9.23). The other
probabilities of photon emissions or absorptions are negligible. As in the preceding case, we
observe an early Stokes photon absorption and a late pump photon absorption characterizing
Stark shifts of the Floquet state connected to |1⟩ and the one connected to |3⟩ respectively.
Moreover in this case the field is so strong that it induces absorption (respectively emission) of
one, two and then three pump (respectively Stokes) photons. The complete population transfer
from state |1⟩ to state |3⟩ is now accompanied by the loss of three ω1− photons and the gain
of three ω2− photons at the end of the process.
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Fig. 9.10 - From the semiclassical Schrödinger equation, (a) population histories Pn(t) for
n = 1, 2, 3 with δ = 2Ω0 and Ωmax = 4.4Ω0 and (b) pulse excitation. Population transfer P3(∞)
to bare state |3⟩ is nearly complete.
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PS,1 and PP,−2 ≈ PS,2), associated to the Floquet spectrum in middle frame (b).



Chapter 10

Control of alignment and orientation of
molecules

The control of the external degrees of freedom1 of a quantum object necessitates the manip-
ulation of its internal states by an external field. One important aspect is the control of the
rotation of the molecule, i.e. of the alignment with respect to a given axis, or the orientation
when the two directions of the alignment for a polar molecule are considered [159].

In this chapter, we analyze and construct various processes to align and orient molecules,
during an appropriate field or after the field (named postpulse or field-free alignment). The
strategy is in two steps. First we identify specific quantum states as aligned (or oriented) states,
that we name target states, next we construct appropriate external fields to reach such states.
Important aspects are the robustness of the process with respect to the thermal averaging.

In particular, it is known that a non-resonant short pulse allows one to align quite efficiently.
Here we analyze in detail such an alignment and study this efficiency with an approximate
solvable model in terms of target state. We show that its counterpart for orientation by a
short pulsed electric field is not so efficient. We present alternative processes that allow us to
orient efficiently during or after the pulse. A short elliptic pulse is also shown to alternate the
direction of alignment dynamically.

The degree of alignment with respect to a reference axis is measured through the quantum
average of the observable constructed with the direction cosine ⟨cos2Θ⟩, where Θ is the angle
between the reference axis and the molecular axis. When the molecule is aligned ⟨cos2Θ⟩ → 1.

Two basic strategies can be developed to align and orient molecules by rotational excita-
tions through Raman processes using vibrationally non-resonant pulses. The effective dressed
Hamiltonian for this process is of the form:

H = B0Ĵ
2 + V (Θ, φ) (10.1)

with the potential V (Θ, φ), a function of the field amplitude squared, such as the ones con-
structed in Subsection 6.3.5 [see Eqs. (6.159), (6.162), (6.165), and (6.166)]. We consider here
for simplicity a cold molecule, i.e. in the rotational state |J = 0⟩ before switching the field.

Adiabatic pulses, turned on slowly compared with the rotational periods, i.e. of character-
istic duration τ satisfying

τ ≫ ~/B0, (10.2)

1Such a nomenclature refers to the classical mechanics. Internal degree in freedom refers to the motion of the
molecule with respect to its frame (i.e. vibration), and external degree in freedom with respect to a laboratory
frame (i.e. translation and global rotation).
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allow the dynamics to follow the eigenstate of H connected to the initial one [125, 160]. This
eigenstate is the state of minimum potential energy V , when we consider initially |J = 0⟩. The
eigenvectors of the dressed Hamiltonian are called pendular states and are labeled with J̃ . Their
associated energies as a function of the field amplitude form of curves that are continuously
connected to the bare states |J⟩.

Fig. 10.1 - Contour plot (darker areas correspond to smaller values of V ) of the potential
(6.162) (where the term or order 1/(~ω)2 has been neglected for simplicity) on the sphere for
(i) the upper row: ϕ = 0 (linear field) and a = 1 (left), a = 1/

√
2 (middle), a = 0 (right); (ii)

the lower row: ϕ = π/2 and a = 1 (left, linear), a = 1/
√
2 (middle, circular), a = 0 (right,

linear).

A qualitative picture can be thus made by the analysis of the minima of V (Θ, φ). Fig.
10.1 shows a contour plot of the potential (6.162) as functions of Θ and φ on the sphere for
various parameters of a and ϕ . This shows that, when the field is adiabatically switched on,
the alignment during the interaction with the field is closely related to the polarization of the
field . In particular, the molecule aligns along the axis of polarization of a linear field since the
effective potential is in this case a double-well potential whose minima are in the directions of
the field polarization. The wells are deeper and thinner for a stronger field, and less deep and
larger for a higher M [125, 160]. This has been demonstrated experimentally in [161]. In the
case of a subsequently adiabatic rotation of polarization, the alignment follows the polarization
axis. On the other hand, the molecule delocalizes in the plane of the ellipse of an elliptic field,
following its shape when it is deformed adiabatically. For instance a linear field of polarization
rotating from x to y allows the molecule to rotate from x to y while the field is on. On the
other hand, an elliptic field of variable half axis for instance from a = 1, b = 0 to a = 0, b = 1
allows also the molecule to rotate form x to y, but passing through a completely delocalized
state in the x− y plane when the field is circular (a = b = 1/

√
2).

An alternative strategy consists in using an ultrashort pulse, i.e. satisfying

τ ≪ ~/B0, (10.3)

which creates a large superposition of rotational states. This results in a field-free postpulse
transient alignment occurring periodically in time due to revivals of rotational wavepackets, as
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long as the coherence of the process is preserved [162, 160, 163]. This has been experimentally
demonstrated in [164, 165, 166].

The dynamics induced by an ultrashort pulse can be interpreted as follows. An intense and
short linearly polarized pulse allows one to populate high J states, with constantM0 for a given
initial |J0,M0⟩ state (belonging to the set of states that are thermally populated at a given
temperature) [see Eq. (6.159)]. The final state |φ(J0,M0)⟩ can be thus decomposed in the |J⟩
basis: |φ(J0,M0)⟩ =

∑
J cJ |J⟩ with non-negligible coefficients cJ such that J ≫M0. This entails

that J⃗ is approximately included and delocalized in a plane orthogonal to the field axis (say z

axis). After the pulse, J⃗ is a constant of motion since we have id⟨J⃗⟩
dt

= ⟨[H0, J⃗ ]⟩ = 0. If one

considers the classical limit of a molecule orthogonal to J⃗ and rotating about J⃗ , the molecule is,
in the two extreme cases, aligned for some time along the z axis, and delocalized for some time in
the x−y plane. A simplified model developed below shows that the final states |φ(J0,M0)(t)⟩ for
most J0 andM0 have approximately the same phases when they represent aligned or delocalized
molecules. These rephasing times occurs thus for the extrema of the potential V .

In summary, a strong and short pulse allows the molecule to visit dynamically the extrema
of the potential after the pulse, while an adiabatic pulse allows the visit only of the minimum
of the potential during the pulse.

Classically, a field linearly polarized along z gives a torque to the molecule, which rotates
subsequently in a plane orthogonal to J⃗ , which is in the x−y plane in the limit of a strong field
(its precise direction depends on the initial condition of the rotor). The classical average cos2Θ

on a period of rotation is thus: 1
T

∫ T

0
dt cos2Θ(t) = 1/2. In quantum mechanics we expect the

same value for the average of cos2 Θ but interpreted as the double average: 1
T

∫ T

0
dt ⟨cos2 Θ⟩(t) =

1/2.

To obtain oriented molecules (when the direction of the alignment is considered), the
molecule has to interact with the field through its permanent dipole moment. The degree
of orientation can be quantified by ⟨cosΘ⟩. Such a coupling by a permanent dipole moment
can be obtained with a constant static field switched on adiabatically [167, 168]. However such
static fields cannot be intense and do not allow an efficient orientation. When such static fields
are combined with an intense non-resonant laser pulse, a significant orientation can be reached
as shown theoretically [169] and experimentally [170], however still during the static field on. It
has been proposed to use a short Half-cycle pulse (HCP) [171, 172] to obtain significant orien-
tation in field-free conditions. Such an asymmetric pulse is made of fast rising and decreasing
ramps of large area, followed by a long and weak field of area of same absolute value but of
opposite sign, such that the total area made by the electric field is zero (as required to propa-
gate in the free space). The latter part of the HCP can be generally neglected since it is weak.
Such an HCP can be experimentally produced with quite high amplitudes [173, 174, 175].

We have shown [176] that a higher efficiency can been obtained by adiabatic passage, i.e.
during the field (see Section 10.4) using a 2+1 process originally suggested in this context in
Ref. [177, 178].

The problem of efficiency of alignment and orientation in particular in field-free conditions
is intensively studied. We can give a precise formulation in terms of the concept of optimal
target states, which are states in a finite dimensional subspace, identified as corresponding to
well aligned (or oriented) molecules. Once identified, the goal is to reach these states by an
appropriate process [179, 180]. In the case of alignment through the anisotropic polarizability,
the optimal target states are defined as the states which give the largest value of ⟨cos2 Θ⟩
projected in an Hilbert subspaceHN ∈ H of dimension N spanned by the lowest even rotational
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states |J⟩, J = 0, 2, · · · , 2(N − 1) (for |J = 0⟩ as initial condition) . The target state gives thus
the most efficient aligned state in a given Hilbert subspace HN of dimension N . For a given
N , the target state can be simply expressed as the eigenstate of cos2N Θ ≡ ΠN cos2ΘΠN with the
largest eigenvalue, where ΠN =

∑N−1
J=0 |J⟩⟨J | the projector on HN . We remark that considering

a finite subspace yields an operator with discrete spectrum.

On the other hand a higher intensity can populate higher J levels during the interaction
with the field. This leads to a choice of the subspace HN that depends on the field intensity.
The duration of the alignment, which is another aspect of interest, is expected to be larger if
the dynamics stays within a space HN of smaller dimension.

All these aspects of the target states can be rephrased for molecular orientation with the
use of the observable cosΘ and the Hilbert subspace HN ∈ H of dimension N spanned by the
lowest rotational states |J⟩, J = 0, 1, · · · , N − 1.

Thus a good strategy of alignment (or orientation) can be formulated as (i) generating a
subspace HN by an appropriate field intensity for a chosen duration of alignment, and (ii)
manipulating the state within HN such that it becomes at a certain time the optimal target
state. In practice, these two requirements are not independent. One expects that one cannot
choose N too small if one wants to obtain a large degree of alignment.

One cannot expect that a short single laser field allows one to reach exactly the target state:
Indeed it does not, but only allows one to approach it (see the section below). It is also known
that a single HCP (resp. impulsive non-resonant excitation) leads to an intrinsic saturation of
the orientation (resp. alignment) in a rigid rotor model as a function of the field amplitude
[172] (resp. [181]).

On the other hand, the adiabatic switching of a field allows one in principle to reach a target
state since the dynamics is described by the lowest eigenvector of

H = B0Ĵ
2 + V (Θ, φ)→ V (Θ, φ) ∼ −I cos2Θ (10.4)

in the limit of high field intensities I, which corresponds thus to the highest eigenvector of
cos2 Θ (i.e associated to its highest eigenvalue).

Two strategies have been proposed to overcome the saturation. Since alignment by adiabatic
passage does not show a saturation in principle, one can use an asymmetric field adiabatically
switched on, that will align efficiently, combined with a sudden switch off, that will leave
the molecule aligned recurrently preserving the efficiency obtained by the adiabatic process
[163, 182]. This has been named the switched wave packet strategy.

On the other hand a sequence of multiple impulsive non-resonant laser pulses (HCPs) have
been shown to enhance the alignment [181] (orientation [179, 180, 183]), since they allow one to
approach much better the target state as demonstrated in the context of orientation [179, 180].

We have presented another strategy consisting of a combination of a HCP and a non-resonant
laser pulse [184], named hybrid pulse. Another strategy could be the use of an asymmetric 2+1
field adiabatically switched on [176] combined to a sudden switch off.

Another important point consists in enhancing the coupling (through the polarizability or
the permanent dipole moment) by the use of a near-resonant process. Near-resonant alignment
has been studied in the impulsive regime [163] and in the context of electronic resonances
[185]. Since the detunings in the impulsive regime are negligible in a first approximation, this
alignment has been shown to be similar (however with a more favorable scaling due to the
one-photon coupling by the dipole moment) to the nonresonant alignment. In particular the
saturation as a function of the field intensity is still present in the impulsive regime. We study
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below the use of a vibrational near resonant process to enhance the alignment by a single laser
field, and the orientation by a (2+1) process.

This chapter is organized as follows: We first characterize the alignment and orientation
using a solvable model in Section 10.1. The concept of target state is defined, and the saturation
of the postpulse alignment induced by short pulses is shown. We next briefly summarize various
methods to measure the alignment in Section 10.2. The dynamical field-free two-direction
alignment alternation of linear molecules by elliptic laser pulses is presented in Section 10.3.
Adiabatic orientation by a 2+1 process is studied in Section 10.4. We next show in Section
10.5 that the adiabatic alignment and orientation can be enhanced by the use of vibrational
resonances. We finally show in Section 10.8 an efficient postpulse orientation by an hybrid
pulse.

10.1 Characterization or alignment and orientation -

Solvable model, target state and saturation

10.1.1 Characterization of alignment

We consider an initial condition at t = ti as a pure state eigenvector of H0 : |ψJ0,M0⟩(t = ti) =
|J0,M0⟩ and an interaction between times ti and tf through the polarizability, that preserves
the quantum number M0. The state vector of the free molecule evolves as

ψJ0,M0(t > tf ) = exp [−iH0(t− tf )/~]ψJ0,M0(tf ) (10.5)

with ψJ0,M0(Θ, φ, t) = ϕJ0,M0(Θ, t) exp(iM0φ). After the field interaction, one can expand the
state solution as

|ψJ0,M0(t)⟩ =
∑
J

cJ0,M0

J ei[D(J(J+1))2−BJ(J+1)]t/~ |J,M0⟩ (10.6)

with

cJ0,M0

J =
∣∣∣cJ0,M0

J

∣∣∣ eiθJ0,M0
J ,

∑
J

|cJ |2 = 1. (10.7)

If the interaction is made only through the polarizability (and cos2 Θ), the J are all either odd
or even since only the matrix elements ⟨J,M0| cos2Θ |J,M0⟩ and ⟨J + 2,M0| cos2Θ |J,M0⟩ are
different from zero. One can calculate the quantity characterizing the alignment (neglecting
the centrifugal distortion for simplicity):

⟨
cos2 Θ

⟩
J0,M0

(t) =
∑
J

αJ,M0

∣∣∣cJ0,M0

J

∣∣∣2 + 2
∑
J

βJ,M0R
[
cJ0,M0

J+2 cJ0,M0

J eiωJ t
]

(10.8a)

=
∑
J

αJ,M0

∣∣∣cJ0,M0

J

∣∣∣2 + 2
∑
J

βJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+2

∣∣∣ cos [ωJt+ θJ0,M0

J − θJ0,M0

J+2

]
(10.8b)

where R (·) denotes the real part and c is the complex conjugate of c, with

ωJ = 2B (2J + 3) /~, (10.9)
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Fig. 10.2 - ⟨cos2 Θ⟩ as a function of t/T for CO2 molecule (B ≈ 0.39 cm−1) for T = 11

K (corresponding to B̃ ≈ 0.051, giving initially non negligible thermally populated states up
to J0 = 12), the peak field intensity I = 12 TW/cm2 and the full width at half maximum
TFWHM = 100 fs. The full numerical calculation (full line) and the sudden approximation [see
Eq. (10.25b)] (dashed line) are almost undistinguishable. tp, p = 0, · · · , 3 are referred to as the
revival times.

αJ,M0 the Stark shift of the |J,M0⟩ state and βJ,M0 the coupling |J,M0⟩
 |J + 2,M0⟩ defined
as

αJ,M0 = ⟨J,M0| cos2Θ |J,M0⟩ (10.10a)

=
1

3
+

2

3

J(J + 1)− 3M2
0

(2J + 3)(2J − 1)
, (10.10b)

βJ,M0 = ⟨J + 2,M0| cos2 Θ |J,M0⟩ (10.10c)

=
1

2J + 3

√
(J + 1−M0)(J + 2−M0)

(2J + 1)(2J + 5)

√
(J + 1 +M0)(J + 2 +M0). (10.10d)

Eqns. (10.8) show that each J-component of ⟨cos2 Θ⟩J0,M0
(t) oscillates periodically with the

period π~/ [B(2J + 3)], and thus that ⟨cos2 Θ⟩J0,M0
(t) oscillates periodically with the common

period T = π~/B. The average ⟨cos2 Θ⟩J0,M0
(t) oscillates around the quantity

∑
J αJ,M0 |cJ |

2

which corresponds to the permanent or mean alignment. This quantity is expected to go to
1/2 when the alignment is efficient (see the comment above about the classical dynamics of
the rigid rotor). Through this general expression (10.8b), one can define the alignment (planar
delocalization) which occurs when the second summation is larger (smaller) than 0, such that
⟨cos2 Θ⟩J0,M0

(t) is larger (smaller) than
∑

J αJ,M0 |cJ |
2.

Equation (10.8b) shows that the rephasing of the signal and thus a transient significant
alignment or planar delocalization occurs for a given initial condition J0 M0 if the phase θ

J0,M0

J −
θJ0,M0

J+2 is independent of J :

θJ0,M0

J − θJ0,M0

J+2 = ∆J0,M0 (10.11)
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with −π ≤ ∆J0,M0 < π (independent of J). Since all the J are either even or odd, the
summation for ⟨cos2Θ⟩ accumulates indeed for all J only around four specific times tp = pT/4
in one period, leading to four main transient peaks of alignment and planar delocalization, called
revivals [162].

The accumulation in the summation of Eq. (10.8b) gives more precisely extremal values
when the cosine can be ±1 for specific times and for all J , i.e. when ∆J0,M0 = kπ/2, k positive
or negative integer. For example, when ∆J0,M0 = −π/2, one obtains for ⟨cos2 Θ⟩J0,M0

(i) a

value of
∑

J αJ,M0

∣∣∣cJ0,M0

J

∣∣∣2 at t = t0 = 0 and t = t2 = T/2, with a maximum right before

t = t0 = 0 and right after t = t2 = T/2 and a minimum right after t = t0 = 0 and right before
t = t2 = T/2, (ii) a local maximum (resp. minimum) at t = t3 = 3T/4 for even (resp. odd) J ,
and a local minimum (resp. maximum) at t = t1 = T/4 for even (resp. odd) J . This example
will be shown below to be approximately the case when a short nonresonant pulse interaction
is used (see Fig. 10.2).

We remark that, if we take into account even and odd J , only two revivals appear around
pT/2.

All the revivals described above are preserved at any temperature if the phases θJ0,M0

J −θJ0,M0

J+2

are additionally independent of the initial condition characterized by J0,M0:

θJ0,M0

J − θJ0,M0

J+2 = ∆. (10.12)

We recall that taking into account the temperature T , we have to consider a statistical ensemble
of molecules with different initial conditions J0, M0 distributed according to the Boltzmann
weights (independent of M0 and normalized

∑∞
J0=0

∑J0
M0=−J0 ρJ0 = 1):

ρJ0 =
gJ0e

−B̃J0(J0+1)∑∞
J=0 gJ(2J + 1)e−B̃J(J+1)

(10.13)

with gJ0 the nuclear spin degeneracy factor, the Boltzmann constant k = 1.38×10−23 J/K, and
the normalized (dimensionless) rotational constant

B̃ =
B

kT
. (10.14)

The alignment is characterized by

⟨
cos2 Θ

⟩
(t) ≡

∞∑
J0=0

ρJ0

J0∑
M0=−J0

⟨
cos2 Θ

⟩
J0,M0

(t), (10.15a)

=
∑
J

(
∞∑

J0=0

ρJ0

J0∑
M0=−J0

αJ,M0

∣∣∣cJ0,M0

J

∣∣∣2)

+ 2
∑
J

(
∞∑

J0=0

ρJ0

J0∑
M0=−J0

βJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+2

∣∣∣) cos [ωJt+∆] . (10.15b)

Depending on the value of the spin degeneracy factor, one expects the cancelation of some
revivals. For instance, if the gJ0 can only be even, as in CO2 molecules (or only odd), the four
revivals appear. If the gJ0 can be even and odd with the same value: g2k+1 = g2k, as in CO
molecules, the revivals at times t1 and t3 vanish. If the gJ0 can be even and odd with different
values, as in NO molecules (for which g2k = 2g2k+1), the revivals at times t1 and t3 partially
vanish.



208 Chapter 10. Control of alignment and orientation of molecules

10.1.2 Characterization of orientation

We can reformulate the preceding arguments for the orientation problem, with an interaction
(that preserves the quantum number M0) through the permanent dipole moment and cosΘ.
We obtain

⟨cosΘ⟩J0,M0
(t) = 2

∑
J

γJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+1

∣∣∣ cos [2B (J + 1) t/~+ θJ0,M0

J − θJ0,M0

J+1

]
(10.16)

with

γJ,M0 = ⟨J + 1,M0| cosΘ |J,M0⟩ , (10.17a)

=

√
(J + 1)2 −M2

0

4(J + 1)2 − 1
. (10.17b)

The J-components of ⟨cosΘ⟩J0,M0
(t) oscillate periodically with the period π/([2B(J + 1)], and

thus ⟨cosΘ⟩J0,M0
(t) oscillates periodically with the common period T = π/B around 0. The

orientation is defined when ⟨cosΘ⟩J0,M0
(t) is different from 0, and its sign gives the direction

of orientation.
The orientation is significant when the phase θJ0,M0

J − θJ0,M0

J+1 = ∆J0,M0 is independent of J :

θJ0,M0

J − θJ0,M0

J+1 = ∆J0,M0 . (10.18)

The summation for ⟨cosΘ⟩ accumulates for all J (which are here any positive or zero integer)
only around t = pT , with p an integer:

⟨cosΘ⟩J0,M0 (pT ) = 2
∑
J

γJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+1

∣∣∣ cos [2 (J + 1) pπ +∆J0,M0
]
. (10.19)

On one period T , this gives one maximum and one minimum located around t = 0 for ∆J0,M0 ̸=
0, π. For ∆J0,M0 = 0 (π), we have one maximum (minimum) with an optimum accumulation.
Here again, the orientation is robust with respect to the temperature when θJ0,M0

J − θJ0,M0

J+1 are
additionally independent of the initial condition characterized by J0,M0:

θJ0,M0

J − θJ0,M0

J+1 = ∆. (10.20)

An interaction with a short half cycle pulse (HCP) gives, as shown below, the phase ∆ ≈ −π/2
(for a positive field amplitude) and yields ⟨cosΘ⟩ of the form presented in Fig. 10.3 with a
symmetric orientation along two directions at different times roughly around t = 0 (and t = T )
for a strong field.

10.1.3 Target state: Definitions

We assume that the dynamics is mainly in a subspace HN of dimension N spanned by the
states {|Jmin⟩, |Jmin + 2⟩, · · · , |Jmax − 2⟩, |Jmax⟩} with N = (Jmax − Jmin)/2 + 1 for interaction
through the polarizability. The maximal value of ⟨cos2Θ⟩J0,M0

(tp) is reached when the values

cJ0,M0

J are such that
Jmax−2∑
J=Jmin

βJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+2

∣∣∣ (10.21)
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Fig. 10.3 - ⟨cosΘ⟩ as a function of t/T for KCl molecule (B ≈ 0.13 cm−1) for T = 3.5 K

(corresponding to B̃ ≈ 0.053), the peak amplitude E0 = 4 × 107 V/m of the HCP and the full
width at half maximum TFWHM = 450 fs. Numerics (full line), sudden approximation [see Eq.
(10.36)] (dashed line).

is maximal. This is equivalent to requiring that the state solution |ψJ0,M0(t)⟩ is at a certain
time the largest eigenvector of the operator ⟨cos2 Θ⟩, i.e. associated to its largest eigenvalue.
This state is identified as the optimal aligned state in the subspace HN .

When we consider the interaction through the dipole moment, we assume that the dynamics
is mainly in a subspaceHN of dimension N spanned by the states {|Jmin⟩, |Jmin+1⟩, · · · , |Jmax−
1⟩, |Jmax⟩} with N = Jmax − Jmin + 1, and the maximal value of

∣∣∣⟨cosΘ⟩J0,M0 (tp)
∣∣∣ is reached

when the values cJ0,M0

J are such that

Jmax−1∑
J=Jmin

γJ,M0

∣∣∣cJ0,M0

J cJ0,M0

J+1

∣∣∣ (10.22)

is maximal. This is equivalent to requiring that the state solution |ψJ0,M0(t)⟩ is at a certain time
the largest or smallest eigenvector of the operator ⟨cosΘ⟩, i.e. associated to its respectively
largest or smallest eigenvalue. This state is identified as the optimal oriented state in the
subspace HN .

This notion of target state has been extended for a thermal ensemble in [186].

10.1.4 Alignment dynamics by an ultrashort non-resonant laser pulse

We consider a nonresonant short pump pulse

−→
E p(t) =

−→e E0
√

Λ(t) cosωt (10.23)

of frequency ω, pulse intensity envelope 0 ≤ Λ(t) ≤ 1 centered at t = 0 and of duration Tp, peak
amplitude E0 and fixed polarization vector −→e in the sudden (or impulsive) regime Tp ≪ B/~.
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For simplicity we considerM = 0 and use the interaction (6.161), at the lowest order in 1/(~ω),
neglecting α

(v)
0 : α

(v)
0 ≪ α∥,∆α00, and simplify the notation by omitting the indices 0:

V (Θ, φ) = −E
2(t)

4

(
α⊥ +∆α cos2 Θ

)
(10.24)

with E = E0
√

Λ(t).

The sudden approximation

The propagator can be approximately written as [187]

U(t, ti) = U0(t, tc)UVU0(tc, ti) (10.25a)

= eiγ⊥AB(t−ti)/~e−iBĴ2(t−tc)/~ei2ζ cos
2 ΘeiBJ2(ti−tc)/~ (10.25b)

with U0 the free propagator, UV the propagator during the interaction considered as a δ(t)-
distribution (allowing one to neglect BĴ2 during the interaction), tc the center of the pulse
(here tc = 0),

γ⊥ =
E20
4B

α⊥, ∆γ =
E20
4B

∆α, (10.26a)

ζ = A∆γ

2
=
E20∆α
8~

∫ tf

ti

dtΛ(t), (10.26b)

A =
B

~

∫ tf

ti

dtΛ(t). (10.26c)

The last term characterizes the normalized area of the pump intensity envelope. The additional
phase eiγ⊥AB(t−ti)/~ independent of J will not affect the quantity ⟨cos2 Θ⟩J0,M0

(t). We obtain
for non-polar linear molecules and for Gaussian pulses of full width at half maximum TFWHM

(in intensity)

ζ ≈ ∆α[Å
3
]× I[TW/cm2]× TFWHM[ps] (10.27)

with I the peak intensity. For the CO2 molecule (B ≈ 0.39 cm−1), this leads to ζCO2 ≈
2.22× I[TW/cm2]× TFWHM[ps].

Numerics

Numerics shows the following additional features:
(i) At low temperature, the highest peak of ⟨cos2Θ⟩ as a function of time occurs around t2

(for a sufficiently high intensity pulse area), it is the highest for J0 = 0.
(ii) At higher temperature, the highest peak of ⟨cos2 Θ⟩ as a function of time occurs at t3

(resp. t1) if even (resp. odd) J0 are considered (for a sufficiently high intensity pulse area).
(iii) The maximum alignment maxt ⟨cos2Θ⟩J0,M0

shows an asymptotic plateau as a function
of the intensity pulse area.

(iv) for a given initial J0 > 0, the peaks are of larger duration when |M0| is smaller.
The last point can be understood if we remark that for large J0, |M0| with J0 ∼ |M0| one

has

βJ0,M0 →
1√
2J0

. (10.28)
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Fig. 10.4 - ⟨cos2Θ⟩ as a function of t/T for CO2 molecule for T = 0 K, the peak field intensity
I = 12 TW/cm2 and the full width at half maximum TFWHM = 100 fs: numerics (full line),
impulsive approximation (dashed line), with the solvable model (large dotted line), and the opti-
mal solution for N = 4 with the optimal state determined with the solvable model of subsection
10.1.6 (thin dotted line). The sudden approximation is almost undistinguishable from the full
numerics.

This means that the coupling ⟨J0 + 2,M0| cos2 Θ |J0,M0⟩ decreases as J0 grows from 0 to |M0|.
This suggests that one analyze the limit of large J defined as J ≫ |M0| for the populated states,
which will allow us to construct an analytic solvable model that was proposed by T. Seideman
[188, 163] (see below). This model is expected to be more appropriate for strong fields when
population transfer in large J is expected. This model will allow us to explain the saturation.

Adding the small centrifugal diagonal term in Eq. (10.8) will slightly change the frequency
of the oscillations, which will shift the revivals more significantly for larger times.

Figure 10.2 corresponds to ζ ≈ 2.66 and T = 11 K. Figure 10.4 shows a situation corre-
sponding to the same ζ and T = 0 K, which is the case that gives approximately the maximum
alignment by this process maxt ⟨cos2 Θ⟩ (t) ≈ 0.915. It is well approximated by

⟨
cos2Θ

⟩
(t) ≈ 0.5 + 0.5[0.19 sin (6Bt/~− 0.42π) + 0.4 sin (14Bt/~− 0.07π)

+ 0.19 sin (22Bt/~− 0.03π) + 0.037 sin (30Bt/~− 0.02π)], (10.29)

which except for J = 0 shows that ∆ ≈ −π/2.

This short non-resonant pulse is quite efficient. Starting with a cold molecule, one obtains
here maxt ⟨cos2Θ⟩ (t) ≈ 0.91, which corresponds to an angle Θ ≈ 17◦.
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Fig. 10.5 - Amplitudes |aJ | (upper graph) and phases ϕJ (lower graph) of the Fourier compo-
nents of ⟨cos2 Θ⟩ (t) defined in Eq. (10.30), in the conditions of Fig. 10.2.

Fourier decomposition

To determine the phases ∆J0,M0 associated to the dynamics shown in Fig. 10.2, we have
calculated the Fourier components |aJ | and ϕJ of ⟨cos2Θ⟩ (t) defined as⟨

cos2Θ
⟩
(t) =: C0 +

∑
J

|aJ | cos(ωJt+ ϕJ). (10.30)

The phase shown in Fig. 10.5 are close to π/2, except for the first one.

Angular distribution

The angular distributions are shown in Fig. 10.6. The molecule is well aligned for ⟨cos2Θ⟩
larger than the permanent alignment, and delocalized in the x−y plane when ⟨cos2 Θ⟩ is smaller
than the permanent alignment. We notice the remarkable feature that the molecule shows a
superposition of the alignment and the planar delocalization at a time when ⟨cos2Θ⟩ is equal
to the superposition: |S⟩ = 1√

2
(|A⟩ + |D⟩) where |A⟩, |D⟩, and |S⟩ denote respectively the

aligned, delocalized, superposed states.

Alignment features as a function of the intensity area

The alignment generated by a short pulse has to be characterized by ζ, i.e. by the pulse
intensity for a given pulse area. This degree of alignment is better for high intensity up to a
saturation, as can be seen in Fig. 10.7, which shows the permanent alignment C (from which
1/3 has been subtracted) and maxt⟨cos2Θ⟩(t)−1/3−C as a function of the peak intensity (see
also the subsection 10.1.6 for more details).
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Fig. 10.6 - Angular distribution of the state solution in the conditions of Fig. 10.2 for t/π = 1/4
(left) t/π = 3/8 (middle), t/π = 3/4 (right).

It allows us to conclude that for low intensities

⟨cos2Θ⟩(t)− 1/3 ≈ βζ2 + κζf(t) ≈ κζf(t), (10.31)

where, for given molecule and temperature, κ and β are constant and f(t) is a specific function
independent of ζ. We can notice that the regime of low intensities extends the result of the
perturbative regime, even if it is not itself a perturbative regime (usually defined as a small
population transfer), since it can show a non negligible alignment (max⟨cos2Θ⟩(t) ≈ 0.45 for
I = 30 TW/cm2). We also have βζ2 ≪ κζ, which shows that the permanent alignment is
negligible for low intensities. For moderate intensity, Fig. 10.7 shows that the permanent
alignment is linear with the peak field intensity, which leads to

⟨cos2Θ⟩(t)− 1/3 ≈ [δ + κf(t)]ζ. (10.32)

We can thus conclude that at low and moderate intensities (i.e. below the saturation of align-
ment), ⟨cos2Θ⟩(t)− 1/3 is approximately proportional to ζ.

10.1.5 Orientation dynamics by a half cycle pulse

We study the interaction with a half-cycle pulse (HCP) in the ground electronic state, in the
sudden regime, considering only the high amplitude part:

E(t) = E0Λ(t) (10.33)

of shape 0 ≤ Λ(t) ≤ 1, centered at t = 0, of duration Tp, and of peak amplitude E0. The
effective Hamiltonian reads in this case

Heff = BĴ2 − µ0,00E0Λ(t) cosΘ, (10.34)
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Fig. 10.7 - Permanent alignment C ≡
∑

J

(∑∞
J0=0 ρJ0

∑J0
M0=−J0 αJ,M0

∣∣∣cJ0,M0

J

∣∣∣2) − 1/3 and

max⟨cos2Θ⟩(t) − 1/3 − C as a function of the peak pump Gaussian intensity of τFWHM = 0.1
ps in CO2 at T = 293 K (dotted lines). The former varies as the squared intensity (full fitting
line) approximately up to I = 30 TW/cm2 and is linear for higher intensities. The latter is
linear (full fitting line) for moderate intensities. Similar dependencies can be found for other
linear molecules and temperatures.
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Fig. 10.8 - ⟨cosΘ⟩ as a function of t/T for KCl molecule for T = 0 K, the peak amplitude
E0 = 107 V/m and the full width at half maximum TFWHM = 450 fs. Numerics (full line),
impulsive approximation (dashed line), approximative model (see Subsection 10.1.6, large dotted
line). These calculations are very close. The optimal solution is shown for N = 5 with the
optimal state determined with the solvable model of subsection 10.1.6 (thin dotted line).

if we assume that
|µ01E0| ≪ E

(e)
1 − E

(e)
0 , |µ0,01E0| ≪ E

(v)
1 − E

(v)
0 (10.35)

i.e. that the electric field cannot respectively populate the first excited electronic state E
(e)
1

through the electric dipole moment µ01 (that can be estimated at the equilibrium of the nuclei

in the Franck-Condon principle) and the first excited vibrational state E
(v)
1 . The propagator is

in this case in the sudden approximation

U(t, ti) = e−iBJ2t/~eiξ cosΘ (10.36)

with

ξ =
µ0,00E0

~

∫ tf

ti

dtΛ(t). (10.37)

We obtain for Gaussian pulses of full width at half maximum TFWHM (in amplitude)

ξ ≈ 6.73× 10−8µ0,00[D]× E0[V/m]× TFWHM[ps]. (10.38)

Typical values of the dipole moment in the ground vibronic state go from for CO molecule:
µ0,00 ≈ 0.11 D (B ≈ 1.92 cm−1 ≈ 8.76×10−6 u.a.) to for KCl: µ0,00 ≈ 10.3 D (B ≈ 0.13 cm−1).

Numerics

Starting with a cold molecule in J = 0, Fig. 10.8 shows ⟨cosΘ⟩ obtained by numerical
simulation for ξ ≈ 3.12 and τB/~ ≈ 0.011 [which corresponds to a half-cycle of amplitude
107 V/m (experimentally reachable) for the KCl molecule]. With such a field one obtains
maxt ⟨cosΘ⟩ (t) ≈ 0.65, which corresponds to an angle Θ ≈ 50◦ showing an oriented molecule.
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Adding the thermal averaging is not favorable since the initial condition J = 1 mainly orients
in the other direction with respect to the initial condition J = 0. The thermal averaging shifts
thus the peaks towards t = 0, π.

We conclude that orientation by the strategy by one half-cycle leads to a noticeable orien-
tation, but of a limited efficiency, essentially due to thermal averaging.

Orientation features as a function of the HCP amplitude

One observes that maxt |⟨cosΘ⟩| increases linearly with the field amplitude from low to in-
termediate field amplitudes. Next it saturates approximately at maxt |⟨cosΘ⟩| ≈ 0.75 for a
molecule initially cold (see Fig. 2 in section 10.8).

10.1.6 A solvable model in the limit of large J

Definition

We evaluate below the target state for alignment and orientation in an approximate solvable
model. Within this model, we calculate ⟨cos2Θ⟩J0,M0

(t) induced by a short non-resonant pulse
interaction, and ⟨cosΘ⟩J0,M0

(t) by a HCP in the limit of large J , i.e.

J ≫ |M0| (10.39)

for the populated states. This leads to

αJ,M0 → 1/2, βJ,M0 → 1/4, γJ,M0 → 1/2, (10.40)

i.e. to the same Stark shifts for all the J levels [188, 163]. (We will simplify the notation
denoting |J⟩ ≡ |J,M0⟩.) This model is expected to be more appropriate for strong fields when
population transfer to large J is expected. When M0 = 0, this is a good approximation for
βJ,M0 and γJ,M0 already when J = 1: β0,0 ≈ 0.298, β1,0 ≈ 0.262, β2,0 ≈ 0.256, . . . γ0,0 ≈ 0.577,
γ1,0 ≈ 0.516, γ2,0 ≈ 0.507, . . . and for αJ,M0when J = 2: α0,0 = 1/3, α1,0 = 0.6, α2,0 ≈ 0.524,
α3,0 ≈ 0.511. . . In this limit, one obtains

⟨
cos2Θ

⟩
J0,M0

(t) =
1

2
+

1

2

∑
J

∣∣∣cJ0,M0

J cJ0,M0

J+2

∣∣∣ cos [ωJt+ θJ0,M0

J − θJ0,M0

J+2

]
, (10.41)

⟨cosΘ⟩J0,M0
(t) =

∑
J

∣∣∣cJ0,M0

J cJ0,M0

J+1

∣∣∣ cos [ω′Jt+ θJ0,M0

J − θJ0,M0

J+1

]
, (10.42)

with ωJ = 2B (2J + 3) /~, ω′J = 2B (J + 1) /~, which shows that the mean (permanent) align-
ment goes to 1/2 in this limit. This approximation is not very accurate for the transitions
|J = 0⟩ 
 |J = 2⟩, |J = 0⟩ 
 |J = 1⟩ , but allows one to determine quite precisely the target
state, and to reproduce the main features of ⟨cos2 Θ⟩ generated a short non-resonant pulse
interaction, and ⟨cosΘ⟩ generated by an HCP, even if the initial condition is a cold molecule
|J0 = 0⟩. This calculation generalizes the one made in Refs [188, 163] for the initial condition
|ϕ(ti = 0)⟩ = |J0 = 0⟩ .

We first consider even J . We define the operator (with even positive or zero integer J)

C = C0 + V/2, (10.43)
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with

C0 =
1

2

∑
J even

|J⟩ ⟨J | , (10.44a)

V =
1

2

∑
J even

(|J − 2⟩ ⟨J |+ |J + 2⟩ ⟨J |) , |−2⟩ = 0. (10.44b)

Since this gives in the basis {|0⟩ , |2⟩ , |4⟩ , · · · }

C =
1

4


2 1 0 · · ·
1 2 1

. . .

0 1
. . . . . .

...
. . . . . . . . .

 , (10.45)

using the limit (10.40), we can substitute cos2 Θ by the operator C.
For an interaction with the permanent dipole moment, we define the operator

B =
1

2

∑
J

(|J − 1⟩ ⟨J |+ |J + 1⟩ ⟨J |) , |−1⟩ = 0. (10.46)

Since this gives in the basis {|0⟩ , |1⟩ , |2⟩ , · · · }

B =
1

2


0 1 0 · · ·
1 0 1

. . .

0 1
. . . . . .

...
. . . . . . . . .

 , (10.47)

using the limit (10.40), we can substitute cosΘ by the operator B.

The target state

With this model, we can determine exactly the target state for the orientation problem

|χN,±⟩ =
√

2

N + 1

Jmax∑
J=Jmin

(±1)J−Jmin+1 sin

[
π
J − Jmin + 1

N + 1

]
|J⟩, (10.48)

and for the alignment problem (i.e. with only even or odd J)

|χN⟩ =
√

2

N + 1

Jmax∑
J=Jmin

sin

[
π
(J − Jmin) /2 + 1

N + 1

]
|J⟩, (10.49)

whose coefficients form a half-period-sine shape, peaked around the average value between Jmin

and Jmax. This leads to

⟨χN,±| cosN Θ|χN,±⟩ = ± cos

(
π

N + 1

)
, (10.50a)

Jmax−1∑
J=Jmin

∣∣∣cJ0,M0

J cJ0,M0

J+1

∣∣∣ = cos

(
π

N + 1

)
, (10.50b)
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and

⟨χN | cos2N Θ|χN⟩ =
1

2

[
1 + cos

(
π

N + 1

)]
, (10.51a)

Jmax−2∑
J=Jmin

∣∣∣cJ0,M0

J cJ0,M0

J+2

∣∣∣ = cos

(
π

N + 1

)
, (10.51b)

giving the maximum as a function of N for the orientation:

max
t
| ⟨cosΘ⟩J0,M0

(t)| = cos

(
π

N + 1

)
, (10.52)

and for the alignment:

max
t

⟨
cos2 Θ

⟩
J0,M0

(t) =
1

2

[
1 + cos

(
π

N + 1

)]
. (10.53)

We have checked that, for any value ofN , the target state associated to the maximum eigenvalue
(in absolute value) of cos2N Θ (resp. cosN Θ) for the alignment (orientation) problem, obtained
with this solvable model is very close to the exact (numerical) eigenstate.

This implies that the value of the angle corresponding to the alignment is always smaller than

the one corresponding to the orientation for a given N , since
√

1
2

[
1 + cos

(
π

N+1

)]
> cos

(
π

N+1

)
,

i.e. the alignment given by the target state is more efficient than the orientation for a given N .
We have reported in Fig. 10.9 the theoretical maximum (10.52) for different N with

Jmin = 0, comparing it with the equal weight solution (all the cJ0,M0

J equal to 1/
√
N) and

random coefficient solution averaged (the |cJ0,M0

J |2 are uniformly randomly distributed). Fig-
ure 10.9 shows that, as expected, maxt | ⟨cosΘ⟩J0,M0

(t)| eventually reaches one for sufficiently

many populated states whatever are the coefficient cJ0,M0

J . However for more and more popu-
lated states, this maximum become more and more narrow. It is thus of interest to maximize
maxt | ⟨cosΘ⟩J0,M0

(t)| with a number of populated states as small as possible to have a broader
maximum.

Dynamics by an impulsive non-resonant laser pulse

The propagator can be decomposed as

ei2ζC = eiζeiζV , (10.54)

where we have exactly

eiζV =
∑

J,J ′ even

uJ
′

J (ζ) |J⟩ ⟨J ′| , (10.55)

with for ζ > 0, defining u−2J = 0,

uJ
′

J (ζ) = ei
π
4
(J−J ′)J − J ′ + 2

ζ
JJ/2−J ′/2+1(ζ) + uJ

′−2
J+2 (ζ), (10.56a)

= ei
π
4
(J−J ′) 2

ζ

J ′/2∑
n=0

(−1)n anJan(ζ), (10.56b)

an = J/2− J ′/2 + 1 + 2n, (10.56c)
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Fig. 10.9 - Theoretical maximum maxt[⟨cosΘ⟩ (t)] as a function of the size N of the subspace
HN spanned by the N lowest rotational states: optimum given by Eq. (10.52) (full line), square

root of the optimum given by Eq. (10.53)
√

1
2

[
1 + cos

(
π

N+1

)]
(dotted dashed line), equal weight

solution (dashed line), random coefficients (dotted line), and the numerical simulation obtained
for a half-cycle interaction at T = 0 (circles).

and JJ(·) the bessel functions of integer (positive or negative) order. The diagonal operator ei2ζ
gives only an additional phase independent of J , which does not contribute in the calculation
of ⟨cos2 Θ⟩ (t).

If the initial condition is |ϕ(ti = 0)⟩ = |J0⟩, the solution reads

|ϕ(t)⟩ = ei(ABγ⊥t/~+ζ)
∑
J even

uJ0J (ζ) e−iBJ(J+1)t/~ |J⟩ (10.57a)

with

uJ0J (ζ) = ei
π
4
(J−J0) 2

ζ

J0/2∑
n=0

(−1)n anJan(ζ) = ei
π
4
(J−J0)[J(J−J0)/2(ζ) + J(J+J0)/2+2(ζ)], (10.58a)

an = J/2− J0/2 + 1 + 2n. (10.58b)

The diagonal operator ei(ABγ⊥t/~+ζ) gives only an additional phase independent of J , which
does not contribute in the calculation of ⟨cos2Θ⟩ and can be thus ignored in the calculation.

If a cold molecule is considered (J0 = 0), one obtains [162]

u0J(ζ) = ei
π
4
J J + 2

ζ
JJ/2+1(ζ) = ei

π
4
J [JJ/2(ζ) + JJ/2+2(ζ)]. (10.59)

If we now consider odd J , the preceding results can be trivially extended as follows

uJ
′

J (ζ) = ei
π
4
(J−J ′) 2

ζ

(J ′−1)/2∑
n=0

(−1)n anJan(ζ). (10.60)
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Fig. 10.10 - Postpulse distribution of the dynamics in J in the conditions of Fig. 10.4.

If a cold molecule is considered, Eq. (10.59) leads to⟨
cos2 Θ

⟩
0,0

(t) =
1

2
+

2

ζ2

∑
J even

(J/2 + 1)JJ/2+1(ζ) (J/2 + 2)JJ/2+2(ζ) sin (ωJt) . (10.61)

We thus obtain in (10.8b) the following phases

θ0,0J − θ
0,0
J+2 =

π

2
(sgn

[
JJ/2+1(ζ)

]
− sgn

[
JJ/2+2(ζ)

]
− 1) (10.62a)

= ±π/2 (10.62b)

with the sign function sgn(x) = +1 if x ≥ 0 and −1 otherwise. Detailled analysis of this
expression shows that since the Bessel functions JJ/2+1(ζ) have the same sign for all even J for

ζ . 3.83, we have in this case θ0,0J − θ
0,0
J+2 = −π/2 for all even J. In this case, the components

of the sines have all the same signs (positive) and will thus accumulate for all J only around
t = tp ≡ pT/4 = pπ/4B, with p an integer: one obtains for ⟨cos2 Θ⟩0,0 a value of 0.5 at
t = t0 = 0 and t = t2 = T/2, the main maximum at t = t3 = 3T/4 [sin (ωJt) = 1], the main
minimum at t = t1 = T/4 [sin (ωJt) = −1]. Around t = T/2, one obtains a local maximum (for
t < T/2) and a local minimum (for t > T/2) that can be evaluated by expanding sin (ωJt).

The comparison between the full numerical calculation and the use of this solvable model
is made in Fig. 10.4 for a strong field, which transfers efficiently the population from J = 0.
(This postpulse distribution in J is shown in Fig. 10.10.) One observes only a global qualitative
similarity in Fig. 10.4. The duration of the alignment revivals are well predicted. The main
point is that the maximum alignment is quantitatively well predicted but not on the right peak.
This feature is observed for strong fields near the saturation of alignment, as shown below. This
is preserved for other temperature. We conclude that this solvable model is quite well adapted
to analyze the maximum of alignment and its duration for strong field.

Saturation of alignment

Since we have the approximate asymptotic value

S0 :=
2

ζ2

∞∑
k=1

kJk(ζ) (k + 1)Jk+1(ζ) →
ζ→∞

0.424413, (10.63)
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Fig. 10.11 - maxt ⟨cos2Θ⟩0,0 as a function of ζ for the second peak (near t2) (dashed lines) and
for the third peak (at t3) (full lines) obtained with the full model (10.24) with no centrifugal
distortion (thick lines) and the approximate model [where cos2Θ is substituted by C (10.45)]
(thin lines).

this model shows a saturation of the maximum alignment as a function of ζ induced by a short
non-resonant pulse: ⟨

cos2 Θ
⟩
0,0

(t3) ≃ 0.924413. (10.64)

Figure 10.11 displays the maximum of the third peak ⟨cos2Θ⟩0,0 (t3) and the maximum of the

second peak around t2 : maxt∼t2 ⟨cos2 Θ⟩0,0 as a function of ζ. This shows that the model is
accurate for the second peak and quantitatively a bit inaccurate for the third peak, but however
shows its saturation. This confirms the preceding conclusion, that the maximum alignment is
quantitatively well predicted within this model but not on the right peak.

This saturation value is already approximately obtained for modest (however still in the
strong field regime) values of ζ: we obtain ⟨cos2 Θ⟩0,0 (t3) ≃ 0.911 for ζ = 3, corresponding to

I = 13.5 TW/cm2 in the CO2 molecule for TFWHM = 0.1 ps. The alignment saturation is thus
already reached in this case for values of ζ . 3.83 satisfying θ0,0J − θ

0,0
J+2 = −π/2. This explains

the remarkable efficiency of the alignment for cold molecules.

For a thermal ensemble, we have to consider a set of initial conditions. The solution (10.56)
shows that the phase in (10.8b) is θJ0,M0

J − θJ0,M0

J+2 = ±π/2 for any J0,M0 and consequently that
the alignment is expected to be efficient for any initial condition at the third (resp. first) peak
at t3 (resp. t1) where sin [2B (2J + 3) t/~] = 1 (resp. sin [2B (2J + 3) t/~] = −1) if we consider
even (resp. odd) J0, and robust with respect to the thermal averaging, if the sine contributions
do not cancel. Indeed, for an initial condition J0, we obtain in the limit of strong field the
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Fig. 10.12 - maxt
∑+J0

M0=−J0 ⟨cos
2 Θ⟩J0,M0

−1/3 for J0 = 4 as a function of ζ for the second peak
(near t2) (dashed lines) and for the third peak (at t3) (full lines) obtained with the full model
(10.24) with no centrifugal distortion (thick lines) and the approximate model [where cos2 Θ is
substituted by C (10.45)] (thin lines).

following minimum and maximum

⟨
cos2Θ

⟩
J0,M0

(t1) 


1
2
−

J0/2∑
n=0

(−1)n Sn, for even J0

1
2
+

(J0−1)/2∑
n=0

(−1)n Sn, for odd J0

(10.65a)

⟨
cos2Θ

⟩
J0,M0

(t3) 


1
2
+

J0/2∑
n=0

(−1)n Sn, for even J0

1
2
−

(J0−1)/2∑
n=0

(−1)n Sn, for odd J0

(10.65b)

with

Sn =
2

ζ2

∞∑
k=1

kJk(ζ) (k + 2n+ 1)Jk+2n+1(ζ). (10.66)

The main contributions are associated to the phase θJ0,M0

J − θJ0,M0

J+2 = −π/2. We obtain a
saturation of the Sn in the limit of strong ζ with the approximate values: S0 → 0.42, S1 → 0.086,
S2 → −0.013, S3 → 0.006, · · · , limn→∞ Sn = 0. The expressions (10.65) show thus a saturation
for any J0: For J0 = 2: ⟨cos2 Θ⟩J0,M0

(t3) → 0.84, for J0 = 4: ⟨cos2 Θ⟩J0,M0
(t3) → 0.825, for

J0 = 6: ⟨cos2 Θ⟩J0,M0
(t3) → 0.82. This peak thus quickly saturates as a function of J0, at

⟨cos2 Θ⟩J0,M0
(t3) ≃ 0.82, meaning that the alignment saturation is expected to occur below and

close to 0.82 for moderately cold to hot molecules.
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Fig. 10.13 - Same as in Fig. 10.12 for J0 = 16.

Figs. 10.12 and 10.13, in the case of even J0, display the maximum of the third peak
⟨cos2 Θ⟩J0 (t3) :=

∑+J0
M0=−J0 ⟨cos

2 Θ⟩J0,M0
(t3) and the maximum of the second peak around t2 :

max∼t2 ⟨cos2 Θ⟩J0 as a function of ζ respectively for J0 = 4 (corresponding to the most initially
populated states at T = 20 K for the CO2 molecule) and J0 = 16 (corresponding to T = 296 K).
This shows that the saturation of the third peak is very well predicted by the model and that
this saturation occurs at a stronger fields for higher temperatures. The model is quantitatively
quite inaccurate for the second peak, but however shows its saturation.

Comparison of the dynamics with the target state

We show the comparison of the dynamics by a sudden laser pulse with the optimal solution
calculated in the preceding solvable model in Fig. 10.4. The solvable model and the target
state are remarkably close for the subspace dimension N = 4. We calculate indeed using the
approximate dynamics (with the solvable model) |⟨χ4|ψapprox(t3)⟩2 ≈ 0.88 at the third peak. We
calculate, using the exact (numerical) dynamics: |⟨χ4|ψ(texact ≈ t2)⟩2 ≈ 0.83 at the maximum
of ⟨cos2 Θ⟩ (t).

Dynamics by an HCP

The propagator can be written as

eiξB =
∑
J,J ′

uJ
′

J (ξ) |J⟩ ⟨J ′| , (10.67)
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with for ξ > 0 and uJ,−1 = 0

uJ
′

J (ξ) = 2ei
π
2
(J−J ′)J − J ′ + 1

ξ
JJ−J ′+1(ξ) + uJ+1,J ′−1(ξ), (10.68a)

= ei
π
2
(J−J ′)2

ξ

J ′∑
n=0

(−1)n anJan(ξ), (10.68b)

an = J − J ′ + 1 + 2n, (10.68c)

For ξ < 0, since
JJ(ξ) = JJ(|ξ|)e−iπJ , (10.69)

we have

uJ
′

J (ξ) = 2e−i
π
2
(J−J ′)J − J ′ + 1

|ξ|
JJ−J ′+1(|ξ|) + uJ+1,J ′−1(ξ), (10.70a)

= e−i
π
2
(J−J ′) 2

|ξ|

J ′∑
n=0

(−1)n anJan(|ξ|), (10.70b)

an = J − J ′ + 1 + 2n. (10.70c)

This can be summarized for all ξ by

uJ
′

J (±|ξ|) = e±i
π
2
(J−J ′) 2

|ξ|

J ′∑
n=0

(−1)n anJan(|ξ|). (10.71)

If the initial condition is |ϕ(ti = 0)⟩ = |Ji⟩, the solution reads right after the pulse

|ϕ(tf )⟩ ≡ eiξB |ϕ(ti)⟩ , (10.72a)

=
∑
J

uJiJ (ξ) |J⟩ . (10.72b)

If additionally Ji = 0, one obtains

|ϕ(tf )⟩ =
∑
J

u0J(ξ) |J⟩ , (10.73a)

u0J(± |ξ|) = 2e±i
π
2
J J + 1

|ξ|
JJ+1(|ξ|). (10.73b)

This approximation gives ∆J0,M0 = −π/2 for positive area ξ, ∆J0,M0 = +π/2 for negative area
ξ, and

⟨cosΘ⟩J0,M0
(t) ≃ 4 sgn(ξ)

∑
J

(J + 1)
JJ+1(ξ)

ξ
(J + 2)

JJ+2(ξ)

ξ
sin [2B (J + 1) t/~] . (10.74)

The comparison between the full numerical calculation and the use of this solvable model is
made in Fig. 10.8. One observes a very good agreement, better than for alignment by a short
non-resonant pulse. We conclude that this solvable model is very well adapted to analyze the
orientation in strong field.
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Comparison of the dynamics with the target state

We show the comparison of the dynamics by a sudden laser pulse with the optimal solution
calculated in the preceding solvable model in Fig. 10.8. The solvable model and the target
state are quite close for the subspace dimension N = 5, but not so than for the alignment by
the sudden non-resonant pulse. We calculate indeed using the approximate dynamics (with
the solvable model) |⟨χ5|ψapprox(t)⟩2 ≈ 0.79 at the peak of orientation. We calculate, using the
exact (numerical) dynamics: |⟨χ5|ψ(texact ≈ t2)⟩2 ≈ 0.80 at the maximum of ⟨cos2 Θ⟩ (t).

Saturation of orientation

Using the same arguments as for alignment, we conclude that the orientation is expected to
saturate in a very similar way. Since the phases are not favorable (i.e. ∆ ≈ π/2), the value of
the saturation will be lower than the theoretical one. In particular, for a cold molecule, using
(10.63), we expect the saturation at

max
t
| ⟨cosΘ⟩J0,M0

(t)| < 0.848. (10.75)

We obtain numerically maxt | ⟨cosΘ⟩J0,M0
(t)| ≈ 0.75.

10.1.7 Perturbation theory from low to moderate intensities

One can calculate beyond the standard time-dependent perturbation theory, expanding the
sudden approximation propagator (10.25b) in Bessel functions:

ei2ζ cos
2 Θ = eiζ

[
J0(ζ) + 2

∞∑
n=1

inJn(ζ) cos(2nΘ)

]
(10.76)

using the iterative formula to express cos(2nΘ) as a function of cos2(Θ) of known matrix
elements:

even n : cos(2nΘ) = 2n−1(2 cos2Θ− 1)n − 1

2
Cn

n/2 −
n/2−1∑
ℓ=1

Cn
n/2−ℓ cos(4ℓΘ), (10.77a)

odd n : cos(2nΘ) = 2n−1(2 cos2Θ− 1)n −
(n−1)/2∑

ℓ=1

Cn
(n−1)/2+ℓ cos(2(2ℓ− 1)Θ). (10.77b)

We obtain at the lowest order (appropriate for low intensities, but which allows non-negligible
population transfers as opposed to the standard time-dependent perturbation theory)

ei2ζ cos
2 Θe−iζ |J0,M0⟩ = [J0(ζ) + 2iJ1(ζ)(2αJ0,M0 − 1)] |J0⟩

+ 4iJ1(ζ) (βJ0,M0 |J0 + 2⟩+ βJ0−2,M0 |J0 − 2⟩) , (10.78)

i.e. apart the irrelevant global phase

cJ0,M0

J0
≈ J0(ζ) + 2iJ1(ζ)(2αJ0,M0 − 1), (10.79a)

cJ0,M0

J0+2 ≈ 4iJ1(ζ)βJ0,M0 , cJ0,M0

J0−2 ≈ 4iJ1(ζ)βJ0−2,M0 . (10.79b)
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Developing the Bessel functions as functions of ζ:

J0(ζ) ≈ 1− ζ2

4
+O(ζ4), (10.80a)

J1(ζ) ≈
ζ

2
+O(ζ3), (10.80b)

one recovers at the relevant lowest order the squared form of the permanent alignment, and
the linear form of the peak alignment as a function of the field intensity at the lowest order as
numerically shown in Fig. 10.7.

For moderate intensities, a good approximation consists in (i) keeping the first Bessel func-
tions, for instance the first three: J0(ζ), J1(ζ), and J2(ζ), that allows a precise calculation
of the probability amplitudes on the states |J0,M0⟩, |J0 ± 2,M0⟩, and |J0 ± 4,M0⟩, and in
(ii) calculating the largest contribution of the other probability amplitudes assuming that
J2(ζ) ≪ J3(ζ) ≪ J4(ζ) ≪ · · · The latter calculation is conducted by noticing that, using
the expansion (10.76), the largest probability amplitude on the state |J0 + 2n,M0⟩ is given by
the operator cos2nΘ, i.e.

⟨J0 ± 2n|

[
2
∞∑

m=3

imJm(ζ) cos(2mΘ)

]
|J0⟩ ≈ 22ninJn(ζ)⟨J0 ± 2n| cos2nΘ|J0⟩. (10.81)

We finally obtain (omitting the irrelevant global phase)

cJ0,M0

J0
≈ J0(ζ) + 2iJ1(ζ)(2αJ0,M0 − 1) + 2J2(ζ)(8αJ0,M0 − 8α2

J0,M0
− 8β2

J0,M0
− 8β2

J0−2,M0
− 1),

(10.82a)

=
2

ζ
J1(ζ) + 2iJ1(ζ)(2αJ0,M0 − 1) + 16J2(ζ)(αJ0,M0 − α2

J0,M0
− β2

J0,M0
− β2

J0−2,M0
− 3/16)

(10.82b)

cJ0,M0

J0+2 ≈ 4iJ1(ζ)βJ0,M0 + 16J2(ζ)βJ0,M0(1− αJ0,M0 − αJ0+2,M0) (10.82c)

cJ0,M0

J0−2 ≈ 4iJ1(ζ)βJ0−2,M0 + 16J2(ζ)βJ0−2,M0(1− αJ0,M0 − αJ0−2,M0) (10.82d)

cJ0,M0

J0+2n ≈ 22ninJn(ζ)βJ0,M0βJ0+2,M0 · · · βJ0+2(n−1),M0 , n > 1, (10.82e)

cJ0,M0

J0−2n ≈ 22ninJn(ζ)βJ0−2,M0βJ0−4,M0 · · · βJ0−2n,M0 , n > 1. (10.82f)

If we assume αJ0,M0 ≈ 1/2, and βJ0±2n,M0 ≈ 1/4 for all n ≥ 0 (which implicitly means that
J0 →∞, such that the bottom of the rotational spectrum is ignored), we simply obtain

cJ0,M0

J0±2n ≈ inJn(ζ), n ≥ 0. (10.83)

We remark that in the limits J0 → ∞, αJ0,M0 = 1/2, and βJ0±2n,M0 = 1/4, this latter solution
is in fact exact after the full summation of the expansion (10.76).

10.1.8 A model for moderately cold to hot molecules

When the temperature is sufficiently high such that the maximum initial population (2J0+1)ρJ0
is located at J0 ≫ 0 (i.e. from moderately cold to hot molecules), from the preceding analysis,
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we can calculate the solution, ignoring the bottom of the rotational spectrum (omitting the
irrelevant global phase):

|ψJ0,M0(t)⟩ ≈
∑

∆J≥|M0|−J0

i|∆J |/2J|∆J |/2(ζ)e
−iB(J0+∆J)(J0+∆J+1)t/~ |J0 +∆J,M0⟩ . (10.84)

We obtain in that case⟨
cos2 Θ

⟩
J0,M0

(t) =
1

2
+

1

2

∑
n∈Z

J|n|(ζ)J|n+1|(ζ) sin (ωJ0+2nt) . (10.85)

Such an approximation has been used for the control of alignment by shaped laser pulses in
[189]. This approximation allows us to show in particular that for an intermediate regime of
field intensities (∼ 1013 − 1014 W/cm2), the resulting alignment signal after two short pulses
is obtained by superposing the two signals that would be obtained if the molecule experienced
the two pulses independently.

This approximation leads for the saturation

max
t
|
⟨
cos2 Θ

⟩
J0,M0

(t)| = 1

2
+
∑
n≥0

J|n|(ζ)J|n+1|(ζ) ≈ 0.82, (10.86)

consistent with what obtained earlier.

10.2 Measuring alignment

Most of the quantitative measurement of alignment have been realized by breaking the molecule
through multi-electron dissociative ionization (MEDI) (see for instance [164, 190]). In the align-
ment experiment of Ref. [161], the probe was implemented by low laser intensity through a
resonant dissociation followed by the ionization of the fragments. In these works, the quan-
titative characterization of the alignment, i.e. the evaluation of ⟨cos2Θ⟩, is deduced from
the angular distribution of the ionized fragments. Such breaking of the molecule induces an
additional alignment which is difficult to separate from the alignment due to the pump field.

An alternative method suggested in [165, 166] consists in measuring a signal proportional
to the difference between ⟨cos2 Θ⟩ and its isotropic value 1/3 (or its square), and thus to access
directly the measure of the alignment, without breaking the molecule. This has been referred
to as non-intrusive measurement techniques. The first method of this type, that was proposed
in [165], is based on a weak field polarization spectroscopy technique [191]. This technique has
been related to a measurement by a weak probe of the birefringence induced by the alignment
of the molecular sample [166].

Another non-intrusive method that was recently developed in [192] is a technique based
on the cross defocusing of a time-delayed probe pulse produced by the spatial distribution of
aligned molecules. Field-free alignment leads indeed to a spatial gradient of the time dependent
refractive index as a result of the rotational response. The effect can be seen as the creation
in the medium of a time-dependent nonlinear lens. Next, a weak probe pulse crosses the pump
pulse at the focus and experiences refractive-index gradient, from which one can extract the
degree of alignment.
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10.3 Field-free two-direction alignment alternation by

elliptic laser pulses

In this article [126], we show that a linear molecule subjected to a short specific elliptically
polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the
orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by
measuring the optical Kerr effect along two different axes using the defocusing technique. The
conditions ensuring an optimal field-free alternation of high alignments along both directions
are derived.
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(Received 31 January 2005; published 5 August 2005)

We show that a linear molecule subjected to a short specific elliptically polarized laser field yields
postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis
of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two
different axes. The conditions ensuring an optimal field-free alternation of high alignments along both
directions are derived.
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Preparing controlled alignment of molecules is of con-
siderable importance for a large variety of processes (see
[1] for a review). It is well established theoretically and
experimentally that the alignment of a linear molecule
along the axis of a linearly polarized field can be of two
types: adiabatic alignment during the interaction with the
field, or transient alignment revivals after a short pulse. The
latter is in general preferred for further manipulations since
it offers field-free aligned molecules. The adiabatic align-
ment has been extended to three dimensional alignment of
an asymmetric top molecule [2].

A natural subsequent question was to generate an align-
ment of a linear molecule with dynamically varying direc-
tions. This question has been studied using a field of slowly
spinning polarization axes which allows one to spin the
axis of alignment and thus the molecule itself [3]. This
effect, demonstrated experimentally [4], has been analyzed
using classical and quantum models [5], and in terms of
adiabatic passage through level avoided crossings [6]. The
analysis shows that the molecule can exhibit a classical
rotational motion while the field is on. In this Letter we
show a fundamentally different process in which a linear
molecule can dynamically alternate from one direction to
another under field-free conditions. This purely quantum
effect is induced by a suitable short elliptically polarized
pulse. The two directions of the alternation are the major
axis and the direction orthogonal to the plane of the ellipse.
The result can be explained using the following qualitative
analysis. It is known that a linear rigid molecule in its
ground vibronic state (of rotational constant B) driven by a
nonresonant linearly polarized field (of amplitude E) leads
to the Hamiltonian H � H0 � Vint with H0 � BJ2, Vint �
�E2��cos2�=4 (up to a �-independent constant), the po-
larizability anisotropy ��> 0, and � the polar angle be-
tween the field polarization axis and the molecule’s axis.
This leads to periodic field-free sequences of revivals that
mainly correspond to alternate alignment along the field
axis and planar delocalization orthogonal to the field axis
[1]. We emphasize that unlike the alignment along an axis,

the planar delocalization is a specific quantum effect re-
sulting from the fact that the linear polarization does not
break the planar symmetry orthogonal to the field axis. The
effects of alignment and planar delocalization persist after
thermal averaging since, for each molecule, the wave
packet produced with different initial conditions allowed
by the thermal Boltzmann distribution keeps the same
periodicity. This has been established theoretically and
experimentally [7,8]. The use of a circular polarization
leads to a similar Hamiltonian: Vint � E2��cos2�0=8 (up
to a �-independent constant) with here �0 the polar angle
between the axis orthogonal to the field polarization and
the molecule axis: the revivals show an alternation between
planar delocalization (in the plane of the field polarization)
and alignment along its orthogonal direction [1]. Hence,
we deduce that in contrast to the adiabatic case, where the
alignment is in the direction of the minimum of the induced
potential (� � 0; 
 and �0 � 
=2 for, respectively, linear
and circular polarization), a short pulse induces transient
alignment (or planar delocalization) in the directions of the
extrema of the induced potential. This suggests that an
elliptical polarization can provide an alignment along its
major axis (as a linear polarization would do) and an
alignment orthogonal to the ellipse’s plane (as a circular
polarization would do.) We establish the validity of this
scheme by first calculating explicitly the effective
Hamiltonian. We then identify the optimal parameters of
the elliptical polarization that allow for the alternation of
highest alignments between the two directions.

We consider a linear (nonpolar) molecule subjected to
an elliptically polarized laser field

~E�t� � E�t�� ~exa cos!t� ~eyb sin!t� (1)

of amplitude E�t�, optical frequency !, and where a rep-
resents the half-axis of the ellipse along the x axis (whereas
b corresponds to the y axis) with a2 � b2 � 1. When no
excited electronic states and vibrational states are reso-
nantly coupled, the Hamiltonian is given by [9]
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H � H0 �
1

2

~E�t� � ~~� ~E�t�; (2)

with ~~� the dynamical polarizability tensor which includes
the contribution of the excited electronic states. If we
consider frequencies that are low with respect to the ex-
cited electronic states, the dynamical polarizabilities are
well approximated by the static ones. In the limit of high
frequency with respect to the rotation and far from vibra-
tional resonances [10], we obtain the effective Hamiltonian
Heff�t� � H0 � Vint with

Vint � �
��

4
E2�t�sin2�z

�
�a2 � b2�cos2�z � b2

�
; (3)

with �z the azimuthal angle and �z the polar angle,
with the choice of the quantum axis along the z axis
orthogonal to the ellipse plane �x; y�. Noting that the nor-
malized associated Legendre functions �m

j ���, i.e., the

�-dependent part of the spherical harmonics jj;mi, are
not necessarily orthogonal to each other when the sets of
indices �j;m� are different, we obtain

hj0; m0jcos2�zsin
2�zjj;mi � �m0;mfA

j
m�j0;j � Bj0

m�j0;j�2 � Bj
m�j0;j�2g � �m0;m�2fC

j
m�j0;j � Dj

m�j0;j�2 � Dj0

�m0�j0;j�2g

� �m0;m�2fC
j
m0�j0;j � Dj

�m�j0;j�2 � Dj0

m0�j0;j�2g: (4)

The coefficients Aj
m  �1� �cj

m�
2 � �cj�1

m �2�=2 and Bj
m 

�cj�1
m cj

m=2 are related to �z only, featuring the standard
quantity cj

m  ��j � m��j � m�=�2j � 1��2j � 1��1=2, in
contrast to the following coefficients due to both angles:
Cj

m ���j�m��j�m� 1��j�m� 2��j�m� 1��1=2=
2�2j� 1��2j� 3� and Dj

m  ��j � m � 4�!=f�2j � 1��
�2j � 5��j � m�!g�1=2=4�2j � 3�. We use a laser pulse of
short duration that can be treated in the sudden approxi-
mation, where the intensity of the field is characterized by
the dimensionless parameter [11,12] � � ��

4@

R
dtE2�t�.

To analyze the alignments along the two axes, in addi-
tion to hcos2�zi�t�  h ��z; �z; t�jcos

2�zj ��z; �z; t�i one
can consider the observable hcos2�zi�t�  h ��z; �z; t� �
jcos2�zj ��z; �z; t�i, where j ��z; �z; t�i is the state of
the molecule given by the Schrödinger equation. How-
ever, it is more appropriate to introduce the observ-
ables hcos2�xi�t�  hcos2�zsin

2�zi�t� and hcos2�yi�t�

hsin2�zsin
2�zi�t�, �x (�y) corresponding to the polar angle

with respect to the x axis (y axis). This is motivated by the
fact that these observables are closely related to the ex-
perimental measurements and the fact that they will allow
us to identify the ellipticity leading to quantitatively
equivalent alignments along both the major axis (x or y)
of the polarization ellipse and the z axis orthogonal to the
ellipse. Because of the relation �i�x;y;zhcos

2�ii�t� � 1, the

alignment alternation can be measured with any pair of
observables among fhcos2�ii�t�; i � x; y; zg. Figure 1 dis-
plays the temporal behavior of these thermally averaged
quantities for an elliptically polarized field interacting with
a molecule at the dimensionless temperature ~T :� kT=B �
20 (an initial statistical ensemble of even values of j is
considered). This amounts to having T � 11 K for a CO2

molecule. Here a2 � 1=3 and � � 11:1 (corresponding
approximately to a pulse of peak intensity I �
25� 1012 W=cm2 and of duration $FWHM � 100 fs for
CO2). During each rotational period $rot we can identify
four revivals for both hcos2�yi�t� and hcos2�zi�t�. The

revivals occur around the times tn � n$rot=4 for both
expectation values, as is the case for a linear polarization.
The localization properties of the rotational wave packet

are however fundamentally different. Near the highest
peaks of hcos2�zi�t� (at the times t1, slightly after t2 and
also slightly before t4), the molecule is predominantly
aligned along the z direction (small �z), i.e., orthogonally
to the polarization ellipse. This state is represented in
spherical coordinates at time t � t1  $rot=4 in Fig. 2
(left panel). At the highest peaks of hcos2�yi�t� (slightly

before t2, at the time t3 and also slightly after t4), coincid-
ing with the minima of hcos2�zi�t�, the molecule is aligned
along the major axis (small �y and �z close to 
=2). A

representation of the molecular state is displayed at time
t � t3  3$rot=4 in Fig. 2 (right panel).

As will be discussed below, the alignments revivals are
quantitatively similar in both the y and z directions for the
particular value a2 � 1=3. The quantities hcos2�zi�t� and
hcos2�yi�t� displayed in Fig. 1 are symmetric with respect

to the approximate value 0.36, implying that hcos2�xi�t� is
close to 1=3 for all times. The angular distributions shown
in Fig. 2 for t � $rot=4 and t � 3$rot=4 are superposable
upon rotation.

Between the revivals, when the averaged observables are
approximately flat as a function of time, locally near the
times t � �2p � 1�$rot=8 (with integer p), it is remarkable
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FIG. 1 (color online). Expectation values of the observables
cos2�z (full line) and cos2�y (dashed line) for a2 � 1=3, � �

11:1, and ~T � 20, as a function of normalized time.
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that the state of the molecule is approximately an equal
weight superposition of the two aligned states, as illus-
trated in Fig. 2 (middle panel). This can be interpreted as an
extension of a recent proposal made in the linearly polar-
ized case [13], where fractional revivals at odd multiples of
$rot=8 are shown to combine aligned (along the linear
polarization axis) and antialigned (delocalized in the plane
orthogonal to the axis) components with equal weights. In
the current elliptic case, both components correspond to
aligned states.

So far we have considered a2 � 1=3. We now turn to the
question of determining the value of this parameter giving
an optimal two-direction alignment alternation, in the
sense that both alignments correspond to similar (i.e.,
superposable upon rotation) delocalized angular distribu-
tion. Choosing a � alin  0 (a � 1) gives a linear polar-
ization along the y axis (x axis).

The circular polarization is obtained with a2 � b2 �

a2
circ

 1=2. The optimal value is obtained when the max-

ima (over time) of both expectation values hcos2�zi and
hcos2�yi for a2 < 1=2 (hcos2�xi for a2 > 1=2) are equal. In

Fig. 3 we plot these maxima as a function of a2. The
intersection points are near a2 � 1=3 (corresponding to
the ellipticity chosen for Figs. 1 and 2) and a2 � 2=3.
This can be understood by rewriting the interaction term
(3) in terms of the observable cos2�y rather than cos2�z:

Vint � �
��

4
E2�t���1 � 2a2�cos2�y � a2sin2�z�: (5)

When the ellipticity is chosen such that 1 � 2a2 � a2, i.e.,
a2 � 1=3, the directions �y and �z play a symmetric role.

Notice from (5) that the minima in one direction corre-
spond to the maxima in the other direction. In the sudden
regime, both types of extrema are visited equivalently in
contrast to the adiabatic case. The ellipticity a2 � 1=3 can
be interpreted as the best compromise between linear and
circular polarizations with the remarkable feature that the
angular distribution associated with the highest revivals are
similar in both directions (see Fig. 2). It is worth noting that
this value is not the arithmetic average of a2

circ
and a2

lin
. The

case a2 � 2=3 involves the direction �x instead of �y. In

Fig. 3 we also recognize the case of a circular polarization
for a2 � 1=2 where the alignment along z is large whereas
the maxima of hcos2�xi and hcos2�yi are equal, reflecting

the fact that the rotational wave packet is delocalized for all
times in the �x; y� plane.

We have demonstrated the effect experimentally in CO2

molecules at room temperature by measuring the optical
Kerr effect along the two orthogonal directions, x and y
respectively (both orthogonal to the z direction of propa-
gation of the beam). The measurements have been per-
formed with a Ti:sapphire chirped-pulse amplifier
producing 100-fs pulses at 1 kHz. Recently it has been
shown [14] that measuring the defocusing of a time-
delayed weak probe pulse produced by a spatial distribu-
tion of aligned linear molecules yields a signal propor-
tional to �hcos2�i�t� � 1=3�2, with � the angle between the
molecular axis and the direction of the probe field.
Choosing the polarization of the probe either in the y or
x direction, we can thus obtain �hcos2�ii�t� � 1=3�2 [shown
in Figs. 4(a) and 4(c)], where �i is the angle between the
molecular axis and the i axis (i � x; y). From these we can
deduce hcos2�yi and hcos2�xi which characterize the align-

ment along the major and minor axes of the ellipse, re-
spectively, [Figs. 4(b) and 4(d)]. The shape and amplitude
of the recorded signal are in good agreement with the
theoretical predictions. The quasi-isotropic feature of the
alignment along the x axis mentioned above for this spe-
cific ellipticity is confirmed by this experiment, where a
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FIG. 3 (color online). Maximum over time of hcos2�zi (dashed
line), hcos2�yi (full thick line), and hcos2�xi (full thin line) with

� � 11:1 and ~T � 20, as a function of a2.

FIG. 2 (color online). Representation of the molecular state in spherical coordinates fr  j ��z; �z; t�j
2, �z; �zg for a2 � 1=3, � �

11:1, ~T � 20, at times t � $rot=4 (left panel), t � 3$rot=8 (middle panel), and t � 3$rot=4 (right panel). The polarization ellipse of the

field ~E is sketched in the �x; y� plane.
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signal close to zero is observed in Fig. 4(c). The alignment
along the z axis, characterized by hcos2�zi�t� [Fig. 4(e)],
can be deduced from the other two observables through the
relation �i�x;y;zhcos

2�ii�t� � 1. The results of Figs. 4(b)

and 4(e) show clearly the experimental alternation of the
alignment predicted theoretically and represented in Fig. 1.
It should be noted that the experimental signal related to
the measurement of �hcos2�xi�t� � 1=3�2 is found to be
minimum for the ellipticity a2 � 1=3, as predicted by the
model. As discussed above, the fact that hcos2�xi�t� � 1=3
(in a strong field) is a clear-cut signature of optimal align-
ments in the two other directions. An exhaustive experi-
mental investigation with other ellipticities has been
performed and shows strong modifications of both shape
and amplitude of the recorded signals, in agreement with
numerical simulations.

In conclusion, we have shown, both theoretically and
experimentally, that a linear molecule subjected to a short
specific elliptically polarized laser field can be aligned,
alternatively, at specific times along the orthogonal axis

and the major axis of the ellipse. Contrary to the adiabatic
case where only the minima of the induced potential are
populated, for short pulses all the extrema of the potential
are dynamically visited and appear as revivals. The control
of this field-free two-direction alignment alternation is a
challenging perspective that could find applications in
nanotechnology; for instance to generate a 3D molecular
switch [1]. In the context of quantum information, the
advantage of an elliptic polarization over a linearly polar-
ized field employed in a recent proposal [15], is to have a
superposition of alignments along two axes, instead of a
superposition of an alignment and a planar delocalization.
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FIG. 4 (color online). Field-free alignment of an ensemble of
CO2 molecules (T � 296 K, P � 4� 104 Pa) produced by an
elliptically polarized pump field [a2 � 1=3, see Eq. (1)] of peak
intensity 25 TW=cm2 and pulse duration $FWHM � 100 fs. Cross
defocusing signal recorded as a function of delay with the probe
field linearly polarized along (a) the y axis (major field axis) and
(c) the x axis (minor field axis). In (a) and (c), the theoretical
results (thick lines) are shown as mirror images of the experi-
mental ones. Corresponding observables (b) hcos2�yi and

(d) hcos2�xi. (e) hcos2�zi along the propagation z axis deduced
from (b) and (d). The isotropic values 1=3 are indicated with
dashed lines.
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10.4 Adiabatic orientation 2+1 [176]

We show that two overlapping linearly polarized laser pulses of frequencies ω and its second
harmonic 2ω can strongly orient linear polar molecules, by adiabatic passage along dressed
states. The resulting robust orientation can be interpreted as a laser-induced localization in
the effective double well potential created by the fields, which induces a preliminary molecular
alignment. The direction of the orientation can be selected by the relative phase of the fields.
We use an excited vibrational state to generate a controllable and enhanced hyperpolarizability
(of third order in field amplitude) in the ground vibronic state (see also the next section for
more details).
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Orientation of Polar Molecules by Laser Induced Adiabatic Passage
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We show that two overlapping linearly polarized laser pulses of frequencies v and its second harmonic
2v can strongly orient linear polar molecules, by adiabatic passage along dressed states. The resulting
robust orientation can be interpreted as a laser-induced localization in the effective double well potential
created by the fields, which induces a preliminary molecular alignment. The direction of the orientation
can be selected by the relative phase of the fields.

DOI: 10.1103/PhysRevLett.88.233601 PACS numbers: 42.50.Hz, 32.80.Lg, 33.80.–b

Introduction.— Intense laser fields offer a rich variety of
control processes, allowing us to manipulate the internal
and external degrees of freedom of molecules (see, for
example, the recent works [1–4]).

In particular a strong nonresonant linearly polarized
laser field allows one to align small molecules along the
electric field axis through their anisotropic polarizability
[5,6]. One approach is to use an ultrashort pulse which
creates a superposition of rotational states. This results in
a field-free transient alignment occurring periodically in
time due to revivals of rotational wave packets, as long as
the coherence of the process is preserved [7–9].

On the other hand, nanosecond pulses have been shown
theoretically [8] and experimentally [10] to yield align-
ment during the pulse (adiabatic alignment). The laser
field has to be turned on slowly compared with the ro-
tational periods in order to induce an adiabatic transport
along a dressed state. This process has been interpreted as
a rigid rotor dressed by an effective double-well potential
whose minima are in the directions of the field polariza-
tion. The wells are deeper and thinner for a stronger field
[5,8]. One considers the initial state to be J � 0, M � 0

and linear polarized fields. The projection M of the rota-
tional angular momentum along the field axis is a constant
of motion. The eigenvectors of the dressed Hamiltonian
are called pendular states and are labeled with J̃. Their
associated eigenenergies as a function of the field ampli-
tude form curves that are continuously connected to the
bare states jJ�. The lowest ones are well localized in
the wells and correspond thus to the molecular alignment.
The molecular population initially in the rotational state
jJ � 0� is adiabatically carried along the pendular state
jJ̃ � 0� whose eigenenergy is continuously connected to
the state jJ � 0�. This process can be interpreted as Stark
shifts that align the molecules.

Strong electrostatic fields have been shown to yield mo-
lecular orientation for molecules through their permanent
dipole moment [11,12]. Its combination with a coherent
laser field has been proved theoretically to enhance signifi-
cantly this orientation [4,13]. The additional electrostatic
field indeed allows one to break the double-well symmetry
induced by the laser field favoring one well with respect
to the other one. Another technique using extremely short

electrical pulses has been shown also to give orientation
[14]. Lasers resonant with the first excited vibrational state
can induce a modest transient orientation [15].

The purpose of this article is to show that an off-resonant
pulse of frequency v when accompanied by its second har-
monic 2v, can transform the adiabatic alignment of mole-
cules into orientation during the pulse. These two pulses
induce a hyper-Raman type process. More precisely, the
orientation is successful if the alignment can be obtained
by each laser pulse taken separately and if the hyper-
Raman three-photon coupling between the pendular states
jJ̃ � 0� and jJ̃ � 1� (whose eigenenergy is continuously
connected to the state jJ � 1�� allows adiabatic passage
along the dressed states. The relative phase between the
two pulses allows us to choose the direction of the orien-
tation. This new mechanism we propose is robust with
respect to all the pulse parameters, including the relative
phase. The orientation is more efficient if the hyper-Raman
coupling is assisted by a near resonant vibrational state
(see Fig. 1). This mechanism can be interpreted as a natu-
ral dynamical laser-induced localization in the double-well
alignment potential as follows.

The first step consists in identifying oriented states:
Since the fields create a symmetric effective double well
potential, the two lowest pendular states jJ̃ � 0� and jJ̃ �

1� are quasidegenerate and are, respectively, symmetric
and antisymmetric. The two lowest states come closer
to degeneracy for stronger fields. Thus the states �jJ̃ �

0� 1 jJ̃ � 1���
p

2 and �jJ̃ � 0� 2 jJ̃ � 1���
p

2 are well

FIG. 1. Coupling scheme.

233601-1 0031-9007�02�88(23)�233601(4)$20.00 © 2002 The American Physical Society 233601-1



10.4. Adiabatic orientation 2+1 [176] 235

VOLUME 88, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 2002

localized in one of the wells and can thus be identified as
“oriented pendular states” if the field is strong enough.

The second step consists in finding the pulse parameters
which will carry in a robust way the dynamics into one of
these oriented states from the initial state jJ � 0�. For in-
creasing fields, the induced pendular states jJ̃ � 0� and
jJ̃ � 1� come closer to the degeneracy and the hyper-
Raman process �2v, v�, initially off resonant, comes
closer to the three-photon resonance. This gives rise to a
dynamical resonance which is characterized, as a function
of the field amplitudes, by an avoided crossing. Far after
this avoided crossing, we will show that the two dressed
branches will be identified with a very good approxima-
tion as the previously defined oriented states if the relative
phase f between the two fields is not close to p�2�modp�.
Thus under this condition, the adiabatic passage along
this avoided crossing will yield molecular orientation.
Choosing f around either 0 or p will allow control of the
direction of the orientation in a robust way.

We will develop more precisely the strategy for orien-
tation described above and will show numerically the effi-
ciency of this strategy on the example of HCN molecules.

The strategy for orienting.—We consider a linear polar
molecule, modeled as a rigid rotor, in its ground electronic
and vibrational state, subject to a laser field. The molecule
interacts with the field through its permanent dipole mo-
ment m0�R�, coupling the vibrations (of coordinate R) with
one-photon processes, and, if one considers its frequency
sufficiently far from any resonances with the excited elec-
tronic states, through its polarizability, coupling the vibra-
tions by Raman processes. The dynamical polarizability
includes the components ak�R� and a��R�, respectively,
parallel and perpendicular to the molecular axis. The Ham-
iltonian between vibrational blocks Hy0,y � �y0jHjy�, of
energy Ey and of rotational constant By, reads in this
case [6]

Hy 0y � �Ey 1 ByJ
2�dy 0,y 2 m0,y 0yE�t� cosu

2
1

2
E

2�t� ��a�,y 0y 2 ak,y 0y � sin2
u 1 ak,y 0y� ,

(1)

with m0,y 0y � �y0jm0jy�, a�,y 0y � �y0ja�jy�, ak,y 0y �

�y0jakjy�, J the angular momentum. u is the polar angle
between the molecular axis and the direction of the field
E�t� � E0

p

L�t� cosvt, with v the carrier frequency, E0

the peak amplitude, and L�t� the envelope of the field
intensity. It is a good approximation to choose ak and
a� as the static polarizabilities when the laser frequencies
are far red detuned from the excited electronic states (i.e.,
low frequencies with respect to the electronic surfaces). If
additionally the field is off resonant between the ground
and the excited vibrational states, the dressed Hamiltonian
in the ground vibrational state can be approximated in the
high frequency limit (with respect to the rotational constant
B0) [16] as

H
eff
00 � E0 1 B0J

2
1 E

2
0L�t�a00�v� , (2)

with

ayy�v� � a
eff
yy

�v� sin2
u 2 ak,yy�4 (3)

and

a
eff
yy

�v� �

B0jm0,yyj2
2�h̄v�2

1
ak,yy 2 a�,yy

4
. (4)

For linear molecules (ak . a�), the rigid rotor B0J
2 is

thus effectively subject to a double-well potential, with
minima at u � 0 and u � p for M � 0 [5]. This potential
is deeper and thinner for stronger fields. The condition for
adiabatic transport has been identified as

t ¿ h̄�B0 (5)

by Ortigoso et al. [8], with t characterizing the pulse du-
ration. In practice, if we consider smooth pulses, such as
Gaussian pulses of shape L�t� � exp�2�t�t�2�, the adia-
batic regime is already well attained for B0t � 5h̄. For a
given pulse amplitude E0, the dimensionless quantity which
characterizes the alignment regime is [8]

g � E
2
0a

eff
00 �v��B0 . (6)

Already for g � 30, one obtains in the adiabatic regime
�cos2

u� � 0.8.
In the dressed state representation as a function of the

field intensity, stronger fields induce pendular states jJ̃ �

0� and jJ̃ � 1�, of respective dressed energies l0 and l1

becoming closer to degenerate as shown as dashed lines
in Fig. 2, meaning a more efficient alignment. We have
found numerically that, under the condition g # 30, this
degeneracy can be quite well represented by

l1 2 l0 � 2B0 exp�20.17g� . (7)
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FIG. 2. The dressed energies as a function of the field intensity
I1 for the example of HCN (see text for details) characterizing
(i) the process of alignment with one field (dashed lines) and
(ii) the process of orientation with the two fields (full lines).
The two energies have been represented relative to their average
[i.e., lj 2 �l1 1 l2��2]. They can be approximately labeled
before the avoided crossing by the pendular states, and after by
the oriented states.
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The exponential law can be obtained from a semiclassical
treatment of the tunnel splitting. Note that for g . 30, the
degeneracy follows the law l1 2 l0 	 exp�2a

p
g� [17].

As already noticed in the introduction, the oriented states
are well identified: they are characterized by the linear
combinations �jJ̃ � 0� 6 jJ̃ � 1���

p
2. The goal is now

to reach this state by adiabatic passage. We use the hyper-
Raman coupling with the combination of the two lasers
�v, 2v� giving the total electric field E�t� � E1�t� 3

cosvt 1 E2�t� cos�2vt 1 f�, with E1�t� � E01L�t�,
E2�t� � E02L�t�, and f the relative phase. The frequen-
cies are detuned by D � E1 2 E0 2 2h̄v from the first
excited vibrational state (see Fig. 1). The detuning D

is chosen as small as possible and negative to prevent
any detrimental multiphoton vibrational resonance (with
other low vibrational states). Since we have in general
m0,00 � m0,11 and �ak,��00 � �ak,��11, the Hamiltonian
(1) becomes in the high frequency limit and in the quasi-
resonant approximation (rotating wave approximation)
[18] (where the constant energy E0 has been omitted)

H
eff
00 � B0J

2
1 E

2
1a00�v� 1 E

2
2a00�2v� , (8a)

H
eff
11 � B1J

2
1 E

2
1a11�v� 1 E

2
2a11�2v� 1 D , (8b)

H
eff
01 � �Heff

10 ��
� 2

m0,01

2
E2e

if cosu

2 E
2
1

µ

a�,01 2 ak,01

8
sin2

u 1
ak,01

8

∂

. (8c)

The pendular states are defined as the eigenvectors of the
Hamiltonian (8a) when the coupling (8c) is zero. This cou-
pling between the two pendular states jJ̃ � 0� and jJ̃ � 1�
gives initially and for sufficiently low field a three-photon
off-resonant process. For stronger fields, the Stark shifts in
H

eff
00 make jJ̃ � 0� and jJ̃ � 1� become closer to degen-

eracy (alignment process) until the three-photon hyper-
Raman coupling has a non-negligible effect. This leads to
a dynamical resonance characterized by an avoided cross-
ing of the eigenvalues l̃6 of the Hamiltonian (8) (full lines
in Fig. 2).

After a standard adiabatic elimination, the effective two-
level avoided crossing between jJ̃ � 0� and jJ̃ � 1� can
take the following approximate form, in the basis of the
pendular states 
jJ̃ � 0�, jJ̃ � 1��:

H̃
01

�

∑

l0 1 s0 kE
2
1E2 cosf

kE
2
1E2 cosf l1 1 s1

∏

, (9)

with l1 2 l0 as in Eq. (7) with g � �E2
1a

eff
00 �v� 1

E
2
2a

eff
00 �2v���B0, k the three-photon coupling strength,

and sj , j � 0, 1 the additional dynamical Stark shifts of
the pendular state jj� induced by the three-photon process,
and which depend on the field amplitudes and on the fre-
quency v. The Hamiltonian (9) shows that, when the rela-
tive laser phase is f � p�2�modp�, the coupling vanishes
and the two levels become decoupled. In this case, we re-
cover the process of alignment (represented in the dressed
energy diagram of Fig. 2 by the dashed lines) without any

orientation. This can be interpreted as destructive inter-
ferences of the two fields with respect to the orientation.
The strongest coupling is obtained when f is 0 or p.

If we consider a strong field, we have l1 ! l0 (aligned
molecule). Furthermore, we consider additionally jDj ¿
B0, B1, so that one has s0 � s1. This means that the
three-photon coupled jJ̃ � 0� and jJ̃ � 1� states experi-
ence the same Stark shifts because the fields act very simi-
larly on these states. Under these considerations, beyond
the avoided crossing, the dressed states read

jJ̃6� �

1p
2

�jJ̃ � 0� 6 sgn�cosf�jJ̃ � 1�� , (10)

where sgn�cosf� is 1 (respectively 21) for positive (re-
spectively negative) cosf and where jJ̃1� (respectively
jJ̃2�) connects the field-free state jJ � 1� (respectively
jJ � 0�). The two dressed states, beyond the avoided cross-
ing, are thus the oriented states previously identified. Thus
passing adiabatically along the avoided crossing will lead
to an oriented molecule. Any nonidentical Stark shifts be-
tween the pendular states in the Hamiltonian (9) would give
different linear combinations and would be detrimental for
the orientation by adiabatic passage. On the opposite situa-
tion, passing very fast (diabatic passage), meaning that the
coupling is ignored, would lead to jJ̃ � 0�, the aligned
state without orientation, meaning that the oriented states
jJ̃1� and jJ̃2� would be equally populated beyond the
avoided crossing. We thus remark that this avoided cross-
ing has different properties from the Landau-Zener avoided
crossing, especially concerning the diabatic passage.

In summary the guideline to achieve the orientation in
the ground vibrational state is as follows: One has to
apply sufficiently strong fields such that g ¿ 1 to ensure
alignment. These fields have to be adiabatically switched
on such that the avoided crossing is passed adiabatically.
The laser frequencies have to be chosen with a negative
detuning D with an absolute value as small as possible such
that the excited vibrational state assists the three-photon
transition. On the other hand, the detuning D has to be
large enough, such that jDj ¿ B0, B1, to ensure parallel
Stark shifts.

Illustration on HCN.—We illustrate the strategy for the
orientation of the bond C—H (B0 � 1.46 cm21) of the
molecule H—C———N. As in [15], we neglect the stretching
motion CN and the bending motion. Accurate couplings
calculated by ab initio methods can be found in [18]. We
make the calculation with the laser fundamental frequency
v � 1706 cm21 leading to D � 2200 cm21. We have
checked that it is a good approximation to consider as the
effective Hamiltonian the first two vibrational states. The
overlapping pulses are Gaussian of duration t � 800 ps.
They have peak intensities I1 � 3 3 1012 W�cm2 for the
field of frequency v and I2 � 1012 W�cm2 for the second
harmonic field. The relative phase f � p is chosen. Here
tB0�h̄ * 220 has been required at this intensity to satisfy
adiabatic passage. Note that this is a more restrictive
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condition than for the simple alignment where tB0�h̄ * 5

is enough.
The results are collected in Fig. 3, where �cos2

u� �t� and
�cosu� �t�, the usual measures of alignment and orientation,
respectively, have been plotted as a function of time. One
can observe a preliminary alignment which becomes for
higher field an orientation (�cosu� �t� � 0.9) during ap-
proximately 1 ns. This orientation occurs efficiently be-
yond the field threshold I

th
1 � 1.4 3 1012 W�cm2 given

by the position of the avoided crossing of Fig. 2, i.e., af-
ter the dynamics has passed the avoided crossing. This
can be seen in the bottom of Fig. 3 where the projections
j�J̃jC�t��j2 on the pendular states jJ̃ � 0� and jJ̃ � 1� of
the state solution jC�t�� have been plotted. The alignment
becomes orientation when these projections are approxi-
mately 1�2.

The orientation that is obtained is robust with respect
to the pulse parameters (phases, amplitudes, delay, and
frequencies). Changing the relative phase f from p to
0 flips the orientation of the molecule, whose efficiency at
the peak intensities is well approximated by

�cosu� � 0.9�21 1 2Q�f 2 p�2�� , (11)

where Q�f� is the Heaviside step function (1 if f . 0,
1�2 for f � 0, and 0 otherwise). The orientation is lost
only when f comes very close to p�2.

Conclusion.— In summary, we have shown that two
overlapping laser pulses of frequency v and 2v allow us to
orient very efficiently a polar molecule by adiabatic pas-
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FIG. 3. (a) �cos2
u� �t� (dashed line), �cosu� �t� (thick full line)

and the Gaussian amplitude L�t� (thin full line) as a function
of time. The position of the avoided crossing of Fig. 2 is rep-
resented by the vertical dotted lines. (b) The projection of the
dynamics in the pendular states jJ̃ � 0� (full line) and jJ̃ � 1�
(dashed line).

sage. This result is general in the sense that it can be
applied for many different linear polar molecules. The
main differences of the technique we propose with respect
to other schemes is that it avoids the use of a static field
and that it is induced by nanosecond pulses, in the vibra-
tional infrared domain. One achieves orientation while the
laser is in interaction. We have considered the example
of the molecule HCN to illustrate the mechanism. Other
molecules such as CO could be candidates to validate ex-
perimentally the mechanism we propose.
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10.5 Enhanced alignment and orientation by resonance

Here we study the adiabatic alignment of a polar molecule by a field that is vibrationally
quasi-resonant. In the adiabatic regime, the detunings play in general a crucial role and are
expected to qualitatively change the mechanism of alignment. We show in particular that in this
regime the resonant field much enhances the efficiency of the alignment and (2+1) orientation
with respect to a nonresonant field by analytical and numerical analysis. We show that the
quasi-resonant field leads to a dressed state as a vibrational pendular state, made of a specific
combination of rovibrational states.

For intermediate intensities, the quasi-resonant process dominates for the alignment through
the permanent dipole moment. Larger intensities allow the polarizability to come into play,
and to efficiently align with the use of the dipole moment and the polarizability.

10.5.1 Alignment

The model and analysis

We consider the vibrational states {|v⟩, v = 0, 1, · · · } of one vibrational mode of a linear polar
molecule in its ground electronic state. Each vibrational state is modeled as a rigid rotor.
The molecule is subject to a linearly polarized laser field of low frequency with respect to
the excited electronic states, i.e. far red-detuned from any resonances with them. We thus
consider the interaction through its permanent dipole moment µ0(x), coupling the vibrations (of
coordinate x) with one-photon processes, and through its polarizability, coupling the vibrations
by Raman processes.The dynamical polarizability includes the components α∥(x) and α⊥(x),
respectively parallel and perpendicular to the molecular axis. The polarizability in the Born-
Oppenheimer approximation corresponds to a Raman coupling through excited electronic states
in the ground electronic state. It is a good approximation to choose α∥ and α⊥ as the static
polarizabilities when the laser frequencies are far red-detuned from the excited electronic states.
The Hamiltonian Hv′,v = ⟨v′|H|v⟩, of energy Ev and of rotational constant Bv, reads in this
case

Hv′v =
(
Ev +BvJ

2
)
δv′,v − µ0,v′vE(t) cos(ωt+ ϕ) cos θ

+ E2(t) cos2(ωt+ ϕ)
(
∆αv′v sin

2 θ − α∥,v′v
)
/2. (10.87)

with µ0,v′v = ⟨v′|µ0|v⟩, α⊥,v′v = ⟨v′|α⊥|v⟩, α∥,v′v = ⟨v′|α∥|v⟩, ∆αv′v = α∥,v′v − α⊥,v′v, and J the
angular momentum. θ is the angle between the molecular axis and the direction of the aligning
field of amplitude E(t) = E0

√
Λ(t), carrier frequency ω and initial phase ϕ, with E0 the peak

amplitude and 0 ≤ Λ(t) ≤ 1 the envelope of the field intensity.

Nonresonant field. If the field frequency is far blue-detuned from the (lower) excited vibra-
tional states, the effective (dressed) Hamiltonian in the ground vibrational state (of energy E0)
can be approximated in the high frequency limit (with respect to the rotational constant B0)
as

HHF
00 = E0 +B0J

2 + V0 (10.88)

with

V0 =
1

4
E2(t)

(
∆αeff

00(ω) sin
2 θ − α∥,00

)
(10.89)
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and

∆αeff
vv(ω) = ∆αvv +

2Bv |µ0,vv|2

(~ω)2
. (10.90)

For linear molecules (α∥ > α⊥), the rigid rotor B0J
2 is thus effectively subject to a double-

well potential of the form sin2 θ, with minima at θ = 0 and θ = π for the magnetic quantum
number M = 0 [125] (see an example in Fig. 10.14). This potential becomes deeper and more
narrow for stronger fields. The condition for adiabatic transport is estimated with respect to
the smaller detuning 6B0 of the two-photon process between the rotational states [160]:

τ ≫ ~/6B0, (10.91)

with τ characterizing the pulse duration. In practice, one can consider that adiabatic passage is
achieved when the observable ⟨cos2 θ⟩ that is a quantitative measure of the degree of alignment
is back at the end of the pulse to its isotropic value 1/3 without oscillating. This condition is
very restrictive in the sense that even a small loss ϵ of population to the upper state |J = 2⟩
induces final oscillations of ⟨cos2 θ⟩ of amplitude of the order of

√
ϵ. If we consider smooth

pulses, such as gaussian pulses with intensity of the shape Λ(t) = e−4 log 2(t/τ)
2
(where τ is here

the full width at half maximum), the adiabatic regime is well attained for τB0 & 3~ (i.e. when
the final oscillations of ⟨cos2 θ⟩ are of amplitude less than approximately 0.01). For a given
pulse amplitude E , the dimensionless quantity characterizing the alignment regime is

γ = E2∆αeff
00(ω)/4B0, (10.92)

through the approximative formula [125]

⟨cos2 θ⟩ → 1− 1/
√
γ (10.93)

in the limit of low temperature T , such that kT/B0 ≪ 1, and high field regime: γ ≫ 1. Already
for γ = 30, one obtains in the adiabatic regime ⟨cos2 θ⟩ ≈ 0.82.

Resonant field. We now study a field quasi-resonant between the ground state and the first
excited vibrational state, with a detuning ~∆ = E1 − E0 − ~ω. Since the polarizability in the
Born-Oppenheimer approximation corresponds to a Raman coupling through excited electronic
states, considering a resonant process through vibrational states in the ground electronic state
does not drastically change its value. We thus still use the static polarizability. We first consider
for simplicity a model including only those two vibrational states. In Section B, we will present
numerical simulations including the effects of all vibrational states. The Hamiltonian (10.87)
becomes in the high frequency limit and in the resonant approximation:

H =

[
B0J

2 + 1
4
E2(t)

(
∆αeff

00 sin
2 θ − α∥,00

)
−1

2
E(t)µ0,01e

iϕ cos θ
−1

2
E(t)µ0,01e

−iϕ cos θ B1J
2 + 1

4
E2(t)

(
∆αeff

11 sin
2 θ − α∥,11

)
+ ~∆

]
.

(10.94)
To obtain the counterpart of the effective double-well potential V0 (10.89) driving the alignment
in this resonant case, we use the fact that B0 ≈ B1, α∥,00 ≈ α∥,11, and α⊥,00 ≈ α⊥,11. For the
CO molecule, the relative differences between B0 and B1, α∥,00 and α∥,11, α⊥,00 and α⊥,11 are
of the order of 1%.

We first consider the simplest case of exact vibrational resonance ∆ = 0, which will be shown
below to give the most efficient alignment. We block-diagonalize the effective Hamiltonian
(10.94):

H̃ := S†1HS1 = B0J
2 +

[
V1,+ 0
0 V1,−

]
(10.95)
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with the transformation from the bare to the adiabatic (with respect to the vibration) basis

S1 =
1√
2

[
eiϕ eiϕ

−1 1

]
(10.96)

and the dressed potentials

V1,± =
1

4
E2(t)

(
∆αeff

00 sin
2 θ − α∥,00

)
± 1

2
E(t)µ0,01 cos θ. (10.97)

Each potential V1,+ (V1,−) allows the molecule to orient towards θ = π (θ = 0). The connection

of the initial state with the adiabatic state is made through the transformation S1: ψ̃ = S†1ψ,

where ψ and ψ̃ are respectively the state of the system in the bare and in the adiabatic basis. It
shows that, if the molecule is initially in the ground state |v = 0, J = 0⟩, half of the population
is trapped in the potential V1,− and half in V1,+. The global alignment is given by

⟨cos2 θ⟩ = 1

2

(
⟨cos2 θ⟩1,− + ⟨cos2 θ⟩1,+

)
, (10.98)

where ⟨cos2 θ⟩1,i, i = ± corresponds to the adiabatic alignment that would be effectively
obtained in the potential V1,i (with a single vibrational state). Since we have ⟨cos2 θ⟩1,− =
⟨cos2 θ⟩1,+, we finally obtain:

⟨cos2 θ⟩ = ⟨cos2 θ⟩1,±. (10.99)

We can estimate the condition for adiabatic transport using the smallest detuning of the one-
photon process between the rovibrational states (i.e. to avoid Rabi oscillations):

τ ≫ ~/ |2B0 + ~∆| . (10.100)

We remark that this condition cannot be satisfied for ~∆ ∼ −2B0, i.e. when the field is exactly
resonant between the rovibrational states |v = 0, J = 0⟩ and |v = 1, J = 1⟩.

In summary, if the molecule is initially in the ground state |v = 0, J = 0⟩, the resonant adi-
abatic transport splits first instantaneously the state with equal weights in the two vibrational
states 1√

2
(eiϕ|v = 0⟩+ |v = 1⟩) and 1√

2
(eiϕ|v = 0⟩ − |v = 1⟩), each next subject to the potential

V1,− and V1,+ respectively, and the global alignment is half of the sum of the alignment obtained
in each potential. For any phase ϕ, this alignment is the same as the one obtained in a single
effective vibrational state with the potential (10.97) (taking the plus or minus contribution).
This leads to a more favorable scaling than the non resonant potential V0 (10.89) (linear in the
amplitude E instead of the intensity E2, see Fig. 10.14).

We can remark that in the limit of high alignment efficiency (in practice for ⟨cos2 θ⟩ & 0.7),
the alignment dynamics can be approximately characterized by a single dressed potential

V1 =
1

4
E2(t)

(
∆αeff

00 sin
2 θ − α∥,00

)
− 1

2
|E(t)µ0,01 cos θ|. (10.101)

Figure 10.14 displays this potential for the CO molecule.
During this adiabatic alignment, the wavepacket is thus a vibrational pendular state, which

is made of a specific combination of rotational states of both rotors. If we align a cold molecule
initially in the state v = 0, J = 0 by an adiabatic rising, and if the field is next switched off (i)
adiabatically, the molecule returns to the state v = 0, J = 0, or (ii) suddenly, the molecule will
show periodic revivals, as described in Ref. [163] for a prior non-resonant adiabatic rising.
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Fig. 10.14 - Non-resonant (10.89) (dashed line) and approximate resonant (10.101) (full line)
dressed potentials for the CO molecule with I = 10 TW/cm2. The resonant potential is much
deeper and leads thus to more aligned molecules.

We remark that if the molecule is initially prepared in the state 1√
2
(eiϕ|v = 0, J = 0⟩+ |v =

1, J = 0⟩) [resp. 1√
2
(eiϕ|v = 0, J = 0⟩ − |v = 1, J = 0⟩)], it is subject to the potential V1,−

(resp. V1,+) by the resonant process. In this case the molecule is oriented towards θ = 0 (resp.
θ = π).

When the process is near-resonant (with a detuning ∆), one can make a similar analysis
with the potentials

V1,± =
1

4
E2(t)

(
∆αeff

00 sin
2 θ − α∥,00

)
+

1

2

[
~∆±

√
(~∆)2 + (E(t)µ0,01 cos θ)2

]
.(10.102)

In this case the transformation is however time-dependent and the adiabatic analysis is not so
straightforward (see Section 2.6).

If we now suppose thatN+1 vibrational states are near-resonant, we have to consider a more
general effective Hamiltonian [see appendix 10.6, Eq. (10.114)]. The preceding analysis can be
directly extended in the exact resonant case with the following additional approximations: (i)
the Ωvv+1 are taken equal for all v: ΩN−1N ≈ · · · ≈ Ω01 =: Ω0, (ii) the limit of a small detuning
∆ and a small anharmonicity a: Ω0 ≫ N(∆ + (N − 1)a), and (iii) B0 ≈ B1 ≈ · · · ≈ BN .
In this case, we can block-diagonalize the effective Hamiltonian and determine the associated
transformation. The resulting potentials have also a part that scales as the field amplitude
leading in general to a more efficient alignment than the non-resonant case.

Numerics

We show the relevance of the preceding qualitative analysis by numerical simulations using
the effective Hamiltonian (10.94) with the parameters of the CO molecule using the ab initio
calculations of Ref. [193].

Figure 10.15 shows dynamical simulations of ⟨cos2 θ⟩ = ⟨ψ(t)| cos2 θ|ψ(t)⟩ with |ψ(t)⟩ so-
lution of the time dependent Schrödinger equation, for a rising γ(t) and as a function of the
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Fig. 10.15 - Dynamical contour plot of ⟨cos2 θ⟩ for an increasing field of intensity envelope
Λ(t) = e−4 log 2(t/τ)

2
with the full width half maximum τ = 25 ps [giving here τB0 ≈ 9 and

satisfying thus the adiabatic condition (10.100) for ∆ & 0], and of peak intensity I = 10
TW/cm2, as a function of the laser intensity parameterized by γ (10.92) (γ = 30 corresponds
to the approximative field intensity 10 TW/cm2 for the CO molecule) and ∆. Only the two
lowest vibrational states have been taken into account.

initial detuning ∆. The alignment efficiency is better (i.e. larger ⟨cos2 θ⟩) for a lighter plot.
In Fig. 10.15, only the two lowest vibrational states are considered. The figure features three
regimes of different alignment efficiency. The higher part ∆ ≥ 0 (corresponding to a laser fre-
quency below the vibrational resonance) shows an efficient alignment, which becomes better for
a larger field amplitude and for a process closer to the vibrational resonance (i.e. for ∆ closer
to approximately 0), as expected from the above analysis. This result is obtained provided
that the adiabaticity condition (10.100) is still satisfied by taking sufficiently long pulses. This
condition excludes an exact resonance between any rovibrational states. For the part ∆ < 0
(corresponding to a laser frequency above the vibrational resonance), one can see a much weaker
alignment. For approximately 0 < ∆τ . −200, the contour plot shows a complicated pattern
due to Rabi oscillations between rovibrational states. For such a small negative detuning, some
rotational states associated to v = 0 become indeed resonant with the ones associated to v = 1.
For approximately ∆τ > −200, the detuning is large enough (in absolute value) to prevent
the resonances and Rabi oscillations between rovibrational states. Such a regime can be well
approximated by neglecting the resonant part of the effective Hamiltonian, i.e. taking into
account only the non-resonant polarizability. This approximation is obviously better for higher
|∆|. We recover in this case the well-known non-resonant alignment, with better efficiency for
higher field amplitude.

However, in general, one cannot ignore the higher excited vibrational states, and since the
vibrational anharmonicity is negative, one expects additional detrimental resonances from the
rotational structure of these states. Fig. 10.16 shows dynamical simulations of ⟨cos2 θ⟩ when
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Fig. 10.16 - Same as Fig. 10.15, but for a full account of the vibrational structure. The straight
(dashed and dotted) lines correspond to the plots of Fig. 10.17
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Fig. 10.17 - Dynamical plot of ⟨cos2 θ⟩ for an increasing field intensity (same as in Fig. 10.16)
as a function of γ (10.92) for τ∆ = 127 (dashed line), τ∆ = 240 (dotted line), and the far from
resonance case (full line). The dashed and dotted lines correspond to the lines of Fig. 10.16
.
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the complete vibrational structure is taken into account (the ten lowest vibrational states of
the CO molecule have been used here; addition of higher vibrational states do not change the
result). When we compare Figs. 10.15 and 10.16, one can see that the consideration of the
full vibrational structure shifts the efficiency region to higher values of ∆. The well-known
non-resonant alignment (not shown in Fig. 10.16) is recovered for a large negative ∆. Two
strategies can be considered from a detailed inspection of Fig. 10.17: (i) If a modest alignment
is desired, one can use a quite low value of ∆ (see one example in Fig. 10.17, dashed line),
which requires a modest field intensity with respect to the non-resonant case (full line); (ii) A
stronger alignment can be obtained for a larger ∆ and a larger field amplitude (dotted line),
still more efficiently than for the non-resonant case.
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Fig. 10.18 - Dynamical contour plot of |⟨cos θ⟩| for increasing fields with the full width half
maximum τ = 1.33 ns of peak intensities I1 = 10 TW/cm2, I2 = 2 TW/cm2 (giving here
τB0 ≈ 480), and ϕ = π, as a function of γ (determined for I1) and ∆, with a full account of
the vibrational states. The straight (dashed and dotted) lines refer to the plots of Fig. 10.19.

10.5.2 2+1 Orientation

We consider a 2+1 hyper-Raman coupling with the combination of the two lasers (ω, 2ω)
giving the total electric field E(t) = E1(t) cosωt + E2(t) cos(2ωt + ϕ), with E1(t) = E01Λ(t),
E2(t) = E02Λ(t), and ϕ the relative phase

We recall [176] that the orientation is obtained by adiabatic passage along the dressed
(pendular) state |J̃ = 0⟩ connected to the initial state |J = 0⟩, when the dynamics goes beyond
the three-photon avoided crossing generated by the 2+1 hyper-Raman coupling, leading to one
of the oriented states (|J̃ = 0⟩ ± |J̃ = 1⟩)/

√
2. The relative phase ϕ allows to choose the

direction of orientation of the molecule. Detailed calculations giving the effective Hamiltonian
that is used in our calculations, can be found in Appendix 10.7.
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Fig. 10.19 - Dynamical plot of ⟨cos θ⟩ for an increasing field intensity (same as in Fig. 10.18) as
a function of γ for τ∆ = 104 (dashed line), τ∆ = 1.6×104 (dotted line), and the non-resonance
case (full line). The dashed and dotted lines correspond to the lines of Fig. 10.18.

Figures 10.18 and 10.19, the counterpart of Figs. 10.15 and 10.16 for orientation, show
that the orientation efficiency by adiabatic passage is improved, when the 2+1 coupling is such
that the one photon coupling is near resonant with the vibrational ladder. This extends to
orientation processes the improvement of alignment shown in the preceding section.

As it was the case for alignment, one can use specific detunings that give (i) a quite efficient
orientation for a modest field amplitudes (dashed line of Fig. 10.19) or (ii) a more efficient
orientation but for higher field amplitudes (dotted line of Fig. 10.19).

10.5.3 Conclusion

We have shown that vibrationally resonant fields strongly improve the alignment and the 2+1
orientation by adiabatic passage, when only one dressed rovibrational state is populated during
the dynamics. The resulting aligned and oriented states are specific vibrational pendular states.
We have numerically shown this improvement using the parameters of the CO molecule. We
expect similar results with weaker field amplitudes for other diatomic molecules of larger dipole
moment.

10.6 Appendix A: Effective Hamiltonians for vibrationally

resonant alignment

We extend the calculation of the non-resonant Raman effective Hamiltonian in Subsection
6.3.5 to the case where N vibrational states are quasi-resonant. When two vibrational states
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are consider, the Floquet Hamiltonian is of the form

K/~ω = −i ∂
∂θL

+ ϵ

[
H00 H01

H10 H11

]
. (10.103)

We define the transformations

Tn ≡
[
Tn,0 0
0 Tn,1

]
, Tn,v ≡ eϵ

nWn,v . (10.104)

The three iterations described above give here

T †3T
†
2T
†
1 (K/~ω)T1T2T3 =

[
K4,0 V4,01
V †4,01 K4,1

]
(10.105)

with

K4,v := T †3,vT
†
2,vT

†
1,v (K0+ϵHv,v)T1,vT2,vT3,v

= K0 + ϵHvv + ϵ2V2,v +O(ϵ4), (10.106a)

V2,v = B0[J
2,W1,v]− ϵ

(
∂W1,v

∂θ

)2

, (10.106b)

V4,01 = ϵe−ϵ
3W3,0e−ϵ

2W2,0H01e
ϵ(W1,1−W1,0)eϵ

2W2,1eϵ
3W3,0 , (10.106c)

and

W1,v(θL) = −i
∫ θL

dθ′L (Hvv(θ
′
L)−Hvv), (10.107a)

W2,v(θL) = −i
∫ θL

dθ′L (V2,v(θ
′
L)− V2,v). (10.107b)

Resonant approximation. In the case of two near resonant vibrational states with the
aligning laser (associated with the detuning ~∆ = E1 − E0 − ~ω), the non-diagonal element
can be expanded as a function of ϵ and E from which we can extract the resonant term . The
other non-resonant terms are discarded (resonant approximation), which leads to:

T †3T
†
2T
†
1KT1T2T3

≃
[

~ωK4,0 −1
2
µ0,v′vEeiϕ cos θ

−1
2
µ0,v′vEe−iϕ cos θ ~ωK4,1 − ~ω

]
, (10.108)

where

K4,v = −i
∂

∂θL
+ ϵ
(
Ev +HHF

v

)
+O(ϵ4, E3) (10.109)

with

HHF
v = BvJ

2 +
1

4
E2
(
∆αeff

vv sin
2 θ − α∥,vv

)
. (10.110)

and

∆αeff
vv = ∆αvv + 2Bv |µ0,vv|2 / (~ω)2 . (10.111)
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This gives the effective Hamiltonian for the two vibrational quasi-resonant states (where the
constant energy E0 has been omitted):

H =

[
HHF

0 −~
2
Ω01e

iϕ

−~
2
Ω01e

−iϕ HHF
1 + ~∆

]
(10.112)

with the Rabi frequency
Ωvv+1 = µ0,vv+1E cos θ/~. (10.113)

This result can be extended to N + 1 vibrational states in a direct way:

H =


HHF

0 −~
2
Ω01e

iϕ 0 · · · 0

−~
2
Ω01e

−iϕ HHF
1 + ~∆ −~

2
Ω12e

iϕ . . .
...

0 −~
2
Ω12e

−iϕ HHF
2 + 2~(∆ + a)

. . . 0
...

. . . . . . . . . −~
2
ΩN−1Ne

iϕ

0 · · · 0 −~
2
ΩN−1Ne

−iϕ HHF
N +N~(∆ + (N − 1)a)

 ,
(10.114)

if one considers the vibrational states as eigenstates of a Morse potential associated to the
anharmonicity

a := [(Ev+1 − Ev)− (Ev − Ev−1)] /2~ = −~ω2
e/4D (10.115)

with D the dissociation energy, and the frequency ωe related to the eigenenergies of the Morse
potential: Ev = ~ωe (v + 1/2) + ~a (v + 1/2)2 , and Bv = Be − αe(v + 1/2), v = 0, · · · , N .

Block-diagonalization. We can block-diagonalize with respect to the vibration the pre-
ceding effective Hamiltonian considering that the Ωvv+1 are approximately equal for all v:
ΩN−1N ≈ · · · ≈ Ω01 =: Ω0, in the limit of a small detuning ∆ and a small anharmonicity a:
Ω0 ≫ N(∆ + (N − 1)a), and for B0 ≈ B1 ≈ · · · ≈ BN . We obtain with these approximations:

S†NHSN ≈ B0J
2 + diag [VN,0VN,1 · · ·VN,N ] (10.116)

with the adiabatic potentials (n = 0, · · · , N)

VN,n =
1

4
E2(t)

(
∆α00 sin

2 θ − α∥,00
)
+ cos

[
n+ 1

N + 2
π

]
E(t)µ0,01 cos θ (10.117)

and the transformation SN =
[
S
(m,n)
N

]
m=0,N ;n=0,N

from the bare to the adiabatic basis with the

matrix elements

S
(m,n)
N =

√
2

N + 2
ei[(N−m)ϕ+mπ] sin

[
(n+ 1)(m+ 1)

N + 2
π

]
. (10.118)

The global alignment is given by

⟨cos2 θ⟩ =
N∑

n=0

∣∣∣S(n,0)
N

∣∣∣2 ⟨cos2 θ⟩N,n, (10.119)

where ⟨cos2 θ⟩N,n corresponds to the adiabatic alignment that would be effectively obtained in
the potential VN,n (with a single vibrational state).



248 Chapter 10. Control of alignment and orientation of molecules

10.7 Appendix B: Effective Hamiltonians for 2+1 Ori-

entation

We construct the effective Hamiltonian for the orientation with a 2+1 hyper-Raman coupling
given by the combination of the two lasers (ω1 ≡ ω, ω2 ≡ 2ω) giving the total electric field
E(t) = E1(t) cosωt+E2(t) cos(2ωt+ϕ), with E1(t) = E01Λ(t), E2(t) = E02Λ(t), and ϕ the relative
phase. In the basis of the vibrational states |v⟩, the Floquet operator reads:

⟨v′|K |v⟩ = δv′v

(
−i~ω1

∂

∂θ1
− i~ω2

∂

∂θ2

)
+Hv′v(θ1, θ2) (10.120)

with

Hv′v(θ1, θ2) =
(
Ev +BvJ

2
)
δv′v − µ0,v′v

(∑
j=1,2

Ej cos θj

)
cos θ

+
1

2

(∑
j=1,2

Ej cos θj

)2 (
∆αv′v sin

2 θ − α∥,v′v
)
. (10.121)

Here we extend the preceding analysis to the (2+1) process: we determine the effective Hamilto-
nian with the two approximations: (i) the two field high frequency approximation with respect
to the rotational states (~ω ≫ Bv), and (ii) the resonant approximation (rotating wave approx-
imation) simultaneously for the two fields: the 2ω field (ω field) is one-photon (two-photon)
near-resonant between the two vibrational states.

We remark that we describe below the formulation for two fields of arbitrary high frequencies
ω1 and ω2. Since here these frequencies are commensurable, we could have used instead a
formulation with a single frequency.

Single vibrational state

We study first a single vibrational state, i.e. the Floquet operator ⟨0|K |0⟩. We define the
small parameter ϵ := 1/(~ω1) and consider

K/~ω1 = K0 + ϵH00(θ1, θ2) (10.122)

with the unperturbed Floquet Hamiltonian

K0 := −i
∂

∂θ1
− iω2

ω1

∂

∂θ2
. (10.123)

We can apply the iterative perturbative KAM algorithm (T1 = eϵW1):

T †1 (K/~ω1)T1 = K0 + ϵD1 + ϵ2V2 := K2 (10.124)

with [K0, D1] = 0 and

−i∂W1

∂θ1
− iω2

ω1

∂W2

∂θ2
+H00(θ1, θ2)−D1 = 0. (10.125)
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This two-frequency problem has to be treated by a two-mode Fourier series:

Wj =
∑
n1,n2

W
(n1,n2)
j ei(n1θ1+n2θ2), j = 1, 2. (10.126)

The averaging formulates thus as

D1 = H00 :=

(
1

2π

)2 ∫ 2π

0

dθ1

∫ 2π

0

dθ2 H00(θ1, θ2) (10.127a)

= E0 +B0J
2 +

1

4

(∑
j=1,2

E2j

)(
∆α00 sin

2 θ − α∥,00
)
. (10.127b)

We finally obtain for the effective high frequency Hamiltonian HHF
0 of order ϵ2 and E2

HHF
0 = B0J

2 +
1

4

∑
j=1,2

E2j
(
∆αeff

00,j sin
2 θ − α∥,00

)
(10.128)

with
∆αeff

00,j = ∆α00 + 2B0 |µ0,00|2 / (~ωj)
2 . (10.129)

Two near-resonant vibrational states

We extend the preceding calculation using the resonant approximation for both fields and obtain
the effective Hamiltonian

H =

[
HHF

0 H01

H∗01 HHF
1 + ~∆

]
(10.130)

with

HHF
v = BvJ

2 +
1

4

∑
j=1,2

E2j
(
∆αeff

vv,j sin
2 θ − α∥,vv

)
, (10.131a)

H01 = −
µ0,01

2
E2eiϕ cos θ +

1

8
E21
(
∆α01 sin

2 θ − α∥,01
)
, (10.131b)

and
∆αeff

vv,j = ∆αvv + 2Bv |µ0,vv|2 / (~ωj)
2 . (10.132)

This result can be extended to more than two vibrational states in a quite direct way: We
obtain the Hamiltonian of the form (10.114), with the terms (10.131a) on the diagonal, and
the off-diagonal terms

Hvv+1 = H∗v+1v = −
µ0,vv+1

2
E2eiϕ cos θ +

1

8
E21
(
∆αvv+1 sin

2 θ − α∥,vv+1

)
. (10.133)

10.8 Postpulse orientation by hybrid pulse [184]

We show that a combination of a half-cycle pulse and a short nonresonant laser pulse produces
a strongly enhanced postpulse orientation. Robust transients that display both efficient and
long-lived orientation are obtained. The mechanism is analyzed in terms of optimal oriented
target states in finite Hilbert subspaces and shows that hybrid pulses can prove useful for other
control issues.



250 Chapter 10. Control of alignment and orientation of molecules

Efficient and Long-Lived Field-Free Orientation of Molecules by a Single Hybrid Short Pulse
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We show that a combination of a half-cycle pulse and a short nonresonant laser pulse produces a
strongly enhanced postpulse orientation. Robust transients that display both efficient and long-lived
orientation are obtained. The mechanism is analyzed in terms of optimal oriented target states in finite
Hilbert subspaces and shows that hybrid pulses can prove useful for other control issues.
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Laser controlled processes such as molecular alignment
and orientation are challenging issues that have received
considerable attention both theoretically and experimen-
tally [1]. Whereas strong nonresonant adiabatic pulses can
exhibit efficient alignment and orientation only when the
pulse is on [2–4], linear polar molecules can be oriented
under field-free conditions after the extinction of a short
half-cycle pulse (HCP) [5,6]. Its highly asymmetrical tem-
poral shape imparts a sudden momentum kick through the
permanent dipole moment of the molecule, which orients
it. This extends the use of a permanent static field (com-
bined with pulsed nonresonant laser fields) [7,8]. Similar to
the alignment process by a nonresonant short pulse [9]
(measured by hcos2�i, with � the angle between the axis
of the molecule and the polarization direction of the laser
field), the orientation by a HCP (measured by hcos�i)
increases as a function of the field amplitude until it
reaches a saturation at hcos�i � 0:75, which corresponds
to an angle cos�1hcos�i � 41�. Overcoming this satura-
tion has been theoretically proved with the use of trains of
laser pulses (HCP kicks) in the case of alignment [9]
(orientation [10]). For applications, it is of importance to
reach an efficient orientation. Another crucial point that
has received less attention so far [10,11] is the duration
during which the orientation is above a given threshold,
which one would like to keep as long as possible. An
important step made in [10] was to establish a priori the
two oriented target states (of opposite direction) in a given
finite subspace generated by the lowest rotational states.
These target states are optimal in the sense that they lead,
respectively, to the maximum and minimum values of
hcos�i in this given subspace. The choice of a suitable
small dimension of the subspace allows one to generate
an oriented target state of relatively long duration. The
identification of such an optimal target state opens, in
particular, the possibility to use standard optimization
procedures (see, e.g., [12]).

One of the main challenges consists now in reaching
such an optimal target state in a subspace of low dimen-
sion, characterizing a long-lived and efficient orientation,
by a simple external field in a robust way and to ensure the
persistence of this effect with respect to thermal averaging

of finite temperature. We propose in this Letter a process
that possesses such properties. By superimposing a pump
laser field to a half-cycle pulse, we show that the maximal
orientation reached after the pulse is significantly beyond
the one induced by a HCP, and furthermore that it displays
a larger duration. We obtain, in particular, the saturation
hcos�i � 0:89, which corresponds to the angle
cos�1hcos�i � 27�. This efficient and long-lived orienta-
tion is obtained by adjusting only two parameters: the
amplitudes of the laser and the HCP fields. We obtain
robust regions of the parameters generating this
orientation.

We show that this process allows one to approach an
optimal target state in one step. Under the action of a single
hybrid pulse, the number of rotational states that are sig-
nificantly populated remains finite and controllable. This
generates a finite dimensional subspace in which an opti-
mal target state can be constructed. When the dimension of
this subspace increases, the associated optimal state yields
a higher orientation efficiency while its duration decreases.
By choosing appropriate intensities of the pump laser field
and of the half-cycle pulse, we can both select and reach
the target state with the desired efficiency and duration.

We consider a linear molecule in its ground vibronic
state described in the 3D rigid rotor approximation. The
effective Hamiltonian including its interaction with a HCP
simultaneously combined with a pump laser field of re-
spective amplitudes EHCP�t� and EL�t� is given by

Heff�t� � BJ2 � aHCP�t� cos�� aL�t�cos
2�; (1)

where B is the rotational constant, aHCP � 	0EHCP with
	0 the permanent dipole moment, and aL � �
E2

L
=4 with

�
 the polarizability anisotropy. Note that �
 is positive
for linear molecules, which gives positive values for
aL, whereas the sign of aHCP is determined by the sign of
the HCP amplitude EHCP. The dynamics of the system is
readily determined with the help of the propagator in
the impulsive regime, where the duration � of the pulse
is much smaller than the rotational period �rot �  �h=B
[13]. For the process we suggest here, in the dimension-
less time s � t=�rot whose origin coincides with the
extinction time of the pulse, the propagator reads
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U�s; 0� � e�iJ2seiAHCP cos�eiALcos
2�. The parameters

AHCP �
1

�h

R
dtaHCP�t� and AL � 1

�h

R
dtaL�t� are, respec-

tively, the total dimensionless areas of the HCP amplitude
and of the laser intensity.

We first consider the case of a cold molecule whose state
after the pulse reads j��s�i � U�s; 0�jj � 0i, where jji
stands for the spherical harmonics Ym

j with m � 0.

The orientation is measured by the expectation value
hcos�i�s� � h��s�j cos�j��s�i. It is well known that it is
a periodic function (of unit period), which exhibits peaked
revivals corresponding to molecular orientation along the
field direction [5,6]. The maximal field-free orientation is
displayed in Fig. 1 by plotting the maximum of jhcos�ij
reached over a period as a function of the total areas AL and
AHCP at zero rotational temperature, calculated with the
above propagator. The case of a single HCP coincides with
the ordinate axis. In the absence of the laser pulse, it is seen
that the maximal orientation saturates to a value of
hcos�i � 0:75. In the presence of a simultaneous pump
laser pulse, one observes a wide two-dimensional plateau
as well as an island which are both associated with an
orientation much higher than the saturation limit of a single
high intensity HCP. The plateau is relatively flat in a large
two-dimensional region centered approximately around
the line AHCP � 2:5AL, implying that one can robustly
reach a high efficiency for the orientation with a moderate
HCP intensity. The island observed around AHCP � 1:25
and AL � 3:7 indicates that it is also possible to overcome
the above saturation by combining a HCP of intensity
slightly above unity with a laser pulse of high intensity.

The direction of the orientation can be chosen by the
sign of the amplitude of the HCP. Expressing the observ-

able in terms of the projections cj � hjj��0�i of the wave

function right after the pulse onto the rotational states jji

leads to hcos�i�s� � 1

2

P
c?j cj
1e

�2i�j
1�s 
 c:c: The co-

efficients cj can be calculated for the above propagator in

the approximation hjj cos�jj� 1i ’ 1=2, which is more
accurate for j  0 (one has h0j cos�j1i � 0:58,
h1j cos�j2i � 0:52, h2j cos�j3i � 0:51; � � � ). This shows
that the sign of each product c?j cj
1, and hence of

hcos�i, changes with the sign of AHCP. For positive AHCP,
the expectation value corresponding to maxsjhcos�ij is
positive on the island and negative on the plateau. We
show below that the high orientation efficiency obtained
in the region along the line AHCP � 2:5AL has the remark-
able property to approach very closely an optimal state as
defined in [10], which combines the orientation of high
efficiency and of long duration.

The upper panel of Fig. 2 compares the maximal value
of jhcos�ij as a function of AHCP (i) without the laser and
(ii) along the straight line AHCP � 2:5AL seen in Fig. 1.
This shows that the saturation of hcos�i � 0:75 obtained
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with the HCP alone is significantly overcome (up to
hcos�i � 0:89) when the HCP is associated with the laser
of appropriate area. The upper panel of Fig. 2 also illus-
trates the duration of the orientation defined as the time
during which jhcos�ij � 0:5 (see also Fig. 3). It is seen that
the duration of the revival can be as large as about 18% of
the rotational period. The properties displayed in Fig. 2 are
robust with respect to the parameters AHCP and AL, which
need not be in a strict 2.5 ratio.

The efficiency of the obtained oriented state and its large
duration are explained in terms of an optimal state as
defined in [10]. We recall that the optimal states corre-
spond to the two states that, respectively, minimize and
maximize the projection of cos� in the finite subspace H N

spanned by the N lowest rotational states j0i; j1i; . . . ; jN �

1i, namely, cos�N�� � �N cos��N with the projector
�N �

P
N�1
j�0

jjihjj. Considering a finite subspace yields

an operator that has a discrete spectrum, whose eigenvec-
tors are readily calculated and for which the duration of the
orientation provided by these states can be computed.
Furthermore, the controllability of the system can be com-
pletely analyzed [14,15]. For a given dimension N, the two
optimal states are the eigenvectors associated, respectively,

with the smallest and the largest eigenvalues of cos�N��. In
the approximation hjj cos�jj� 1i ’ 1=2 one obtains

j��N�
� i ’

�������������
2

N 
 1

s
XN�1

j�0

��1�j
1 sin

�

j
 1

N 
 1

�
jji; (2)

giving the approximate optimal orientation

h��N�
� jcos�N��j��N�

� i ’ � cos

�


N 
 1

�
: (3)

The (relative) duration � of the orientation is defined as the
time during which jhcos�ij � � for the revival of maxi-
mum efficiency, with � arbitrarily chosen as 1=2. We can

determine the duration �N for the state j��N�
� i given in (2)

by summing the above expression for hcos�i�s� and ex-
panding the result to second order around its extremum,
obtaining

�N �
2



�������������������������������������������������
1

�N
�1� �= cos�



N 
 1
��

s

; (4)

where �N � 
�N 
 1�2 � �N 
 1� with 
 � 2=3� 1=2.
The shape of �N as a function of N is similar to the dashed
curve on the upper panel of Fig. 2, independently of the
specific value of �. In particular, the decrease of this
duration for large N is due to the factor �N .

Finding a process that drives the system to an optimal

state ��N�
� is of interest since it guarantees an efficient

orientation together with a large duration if the dimension
N of the subspace H N generated by the dynamics is
relatively low [10]. The lower panel of Fig. 2 shows that
the HCP-laser combination of appropriate areas leads in a
single step to a wave function that is remarkably close to

the optimal state j��N�
� i (more than 90% for 1:5< AHCP <

5). Figure 2 also indicates how the dimension N of the
embedding subspace can be chosen by the value of AHCP
with AL � AHCP=2:5. Notice the linear character of this
necessarily stepwise function. In the island region of Fig. 1,
the dynamics also generates a state close to an optimal one:

jh��6�

 j��smax�ij

2 � 0:86 for AHCP � 1:25 and AL � 3:7.
For comparison, we note that the same optimal states are
reached in [10] by a different process involving 15 short
HCP kicks sent at specific times and with a low amplitude
in order to remain in a given subspace.

Figure 3 shows an example of orientation, measured by
hcos�i, as a function of time for a point on the straight line
in Fig. 1 (AHCP � 3). The result is close to that given by the

optimal state ��5�
� , whose minimum is taken at the mini-

mum of hcos�i generated by the hybrid pulse. In this case,

we obtain jh��5�
� j��smax�ij

2 � 0:93 (with less than 2% of
the total population outside the subspace H 5.) The maxi-
mum orientation (in absolute value) jhcos�ij � 0:9 occurs
at s � 0:9. One can observe a relatively large duration of
the orientation. In contrast to the case of a sole HCP, the
presence of the laser pulse of appropriate area (AL �
AHCP=2:5) allows us to obtain, immediately after the pulse,
projections cj on the rotational states whose moduli are

very close to the moduli of the corresponding components
of both optimal states. The phases of these projections just
after the pulse generally differ from those of the compo-
nents of the optimal states, but are brought by the free
evolution closer to those of one or the other optimal state.
In the case of the plateau region, the set of phases after the

pulse leads to the state ��N�
� for positive AHCP and thus

yields a minimal value for hcos�i. This analysis extends to
the island region where revivals of opposite sign are ob-
served. As discussed above, by changing the sign of AHCP
while keeping AL fixed, one obtains orientation revivals of

0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

〈c
o

s
θ

〉

FIG. 3. Orientation as a function of dimensionless time for
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� with a time translation (dashed line).
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the same absolute values but opposite sign. The direction
of the orientation can thus be controlled by the sign of the
HCP pulse.

Considering the effect of temperature amounts to statis-
tically averaging over the solutions of the Schrödinger
equation with different initial conditions jj;mi weighed
by a Boltzmann factor. Figure 4 shows the maximal ori-
entation, measured by the appropriate expectation value of
cos�, as a function of the field parameters for a dimension-
less temperature ~T � kT=B � 5 (which corresponds to
T � 5 K for the LiCl molecule). Notice that the island
disappears while the region around the straight line AL �
AHCP=2:5 persists. The efficient and long-lived orientation
revivals are therefore robust with respect to thermal aver-
aging and to the field parameters. The efficiency is lower
than at T � 0 K for the same field amplitudes, but one can
recover the same value by increasing the amplitudes along
the straight line.

In conclusion, we have shown that a combination of a
half-cycle pulse and a short nonresonant laser pulse of
appropriate amplitudes leads to efficient and long-lived
revivals of orientation beyond the known saturation.
Furthermore, this is achieved in a controllable manner
since the desired target state can be chosen in a set of
optimal target states defined in Hilbert subspaces of low
dimension and be reached with a projection larger than
90% by a single hybrid pulse. As an illustration, the ground
state of a KCl molecule with rotational constant B �
0:13 cm�1 (�rot � 128 ps) and dipole moment 	0 �
10:3 D gives AHCP � 3 for a pulse duration of 2 ps and a
HCP amplitude of 100 kV=cm. To be on the optimal line of
Figs. 1 or 4 requires AL � 1:2, which corresponds to a peak
intensity I � 1011 W=cm2 for the laser field. These pa-

rameters lead to maxsjhcos�ij � 0:85 and a duration of
approximately 1=8 of the rotational period for a cold
molecule (see Fig. 3), and to maxsjhcos�ij � 0:73 and a
duration of approximately 1=20 of the rotational period for
T � 5 K. The interest of hybrid pulses is not limited to
molecular orientation but extends to optimization issues of
a large class of systems where symmetries need to be
broken or selectively addressed (e.g., the control of tunnel-
ing). The central element consists in using an external field
that plays independently on couplings of different symme-
tries. In order to drive the dynamics even closer to an
optimal target state, standard optimization algorithms can
be used for trains of these hybrid pulses (with, for instance,
the delays and/or the relative amplitudes between the
kicks, or even a delay between the HCP and laser pulses)
and should require only a low number of hybrid pulses
since the first step already brings the system very close to
the target state.
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Guérin, and H. R. Jauslin, Phys. Rev. A 69, 033402 (2004).

[11] J. Ortigoso, Phys. Rev. Lett. 93, 073001 (2004).
[12] O. Atabek and C. M. Dion, in Quantum Control:

Mathematical and Numerical Challenges, CRM
Proceedings and Lecture Notes Vol. 33 (AMS,
Providence, 2003), pp. 1–21.

[13] N. E. Henriksen, Chem. Phys. Lett. 312, 196 (1999).
[14] V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz,

and A. Peirce, Phys. Rev. A 51, 960 (1995).
[15] H. Fu, S. G. Schirmer, and A. I. Solomon, J. Phys. A 34,

1679 (2001).

A
L

A
H

C
P

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 4 (color online). Same as Fig. 1 for the dimensionless
temperature ~T � 5.
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Chapter 11

Selective control of rovibrational
population transfer in molecules

Adiabatic passage for the rovibrational selective excitation is a promising method. However,
except for light molecules such as H2 or HF , one cannot achieve this selective population transfer
using picosecond chirped pulses, since the population is in general spread into a set of rotational
states due to the nanosecond timescale of the rotational motion. It is difficult to construct an
experimental setup to generate a direct chirping in a pulse of nanosecond duration, i.e. with a
narrow spectrum.

In this paper [194], we show that postpulse rovibrational state selectivity of molecules can be
achieved by picosecond chirped adiabatic passage if an additional adiabatic aligning nonresonant
laser field is used.
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State-selective chirped adiabatic passage on dynamically laser-aligned molecules

S. Thomas, S. Guérin,* and H. R. Jauslin
Laboratoire de Physique, UMR 5027 CNRS, Université de Bourgogne, BP 47870, 21078 Dijon, France

(Received 30 July 2002; published 3 January 2005)

We show that rovibrational state selectivity can be achieved by chirped adiabatic passage of molecules that
areadiabatically alignedby a nonresonant laser field. We develop the tools to design the appropriate frequency
and amplitude modulations that allow us to select a given route in the Hilbert space that leads to a final
complete excitation of the chosen state, by infrared or by Raman processes. This method allows us to select a
given vibrational state in a well-defined rotationalJ state.

DOI: 10.1103/PhysRevA.71.013402 PACS number(s): 42.50.Hz, 32.80.Bx, 32.80.Lg

I. INTRODUCTION

Selective excitation of the states of atoms and molecules
by laser pulses is of considerable importance for the control
of processes involving internal and external degrees of free-
dom [1,2].

A very promising method is the adiabatic passage by
sweeping the laser frequency(chirping), which is robust with
respect to variations of the field amplitude and frequency.
This type of adiabatic passage can be induced by a one-
photon infrared chirp[3] or by a Raman chirp[4]. The chirp-
ing technique is nowadays well developed in femto- and pi-
cosecond time scales(see, e.g., Ref.[5]). The vibrational
excitation by adiabatic passage has been widely studied theo-
retically for models that do not include rotation(e.g., in Refs.
[3], [4], [6], and[7]). It is well known that if one uses pico-
second chirped pulses, the population is in general spread
into a set of rotational states[8–10] due to the nanosecond
time scale of the rotational motion. Only for very light mol-
ecules(such as H2 and HF) this rotational time scale is of the
order of picoseconds and the rovibrational selectivity can be
achieved(see, for instance, Ref.[11], where nonrobust mul-
tiphotonp pulses on a picosecond time scale have been used
and Ref. [12] for rotational branching in H2 by Raman
chirped adiabatic passage). A rotational model that includes
the spontaneous Raman processes has recently been studied
[13].

On the other hand, alignment of molecules in their ground
vibronic state by laser-induced adiabatic transport alongthe
pendular dressed statescan be achieved in general during
nanosecond time scales[14–17]. This approach needs a
strong nonresonant linearly polarized laser field which
couples the rotational states(of rotational constantB0) of the
ground vibronic state by two-photon Raman processes
through its anisotropic polarizabilityDa. One considers the
molecular population initially in the rotational stateuJ=0l,
with projection M =0 of the rotational angular momentum
along the field axis(which is a constant of motion). This
leads to an effective rigid rotor dressed by a double-well
potential whose minima are in the directions of the field
polarization. The wells are deeper and thinner for a stronger

field. The eigenvectors of the dressed Hamiltonian are called
pendular states. Their associated eigenenergies(labeled by a

positive integerJ̃) as a function of the field amplitude form
curves that are continuously connected to the energies asso-
ciated to the bare statesuJl. They form two families(even

and oddJ̃) of near-degenerate eigenvalues. The lowest ones
are well localized in the wells and correspond thus to mo-
lecular alignment. When the laser field is turned on slowly
with respect to the two-photon detuning 6B0/" between the
statesuJ=2l and uJ=0l, i.e., when[15]

6B0/" @ 1/Ta, s1d

with Ta the duration of the aligning laser pulse, the dressed
molecule isadiabatically carried along the pendular state

uJ̃=0l.
In this paper, we show for a model including the vibration

and rotation that we can selectively populate a given rovibra-
tional state by chirped adiabatic passage while the molecule
is dynamically aligned by an additional nanosecond laser.
The mechanism we propose is as follows: The molecule is
first adiabatically aligned by a nanosecond pulse. When this
pulse is at its maximum, one uses picosecond chirped adia-
batic passage to transfer the population to the excited pen-
dular vibrational state, which is adiabatically reconnected to
the desired vibrational state when the aligning nanosecond
pulse falls down.

A classical-mechanical interpretation could lead to the
idea that a well aligned molecule along a given axis would
not be subjected to rotation and that the rotational structure
could be consequently neglected from the model. We give
below a precise quantum-mechanical formulation of this
statement.

We develop a systematic procedure to design the appro-
priate pulse parameters(frequency and amplitude) to achieve
the complete transfer to a given allowed rovibrational state.
This procedure is based on the topology of the dressed ener-
gies as a function of the pulse parameters. It allows us to
identify qualitatively the various adiabatic ways to achieve
the transfer[18]. The adiabatic passage is quantitatively op-
timized with the use of specific time-dependent pulse param-
eters.

We first develop the tools of vibrational selectivity on a
rotationless model before considering the complete rovibra-*Electronic address: Stephane.Guerin@u-bourgogne.fr
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tional problem. We illustrate the mechanisms on the example
of CO molecules.

II. TOOLS FOR VIBRATIONAL SELECTIVITY
BY ADIABATIC PASSAGE: ROTATIONLESS MODEL

In this section we apply the general tools reviewed in Ref.
[18] for the vibrational selectivity by adiabatic passage in-
duced by chirped laser fields in rotationless molecules. The
rotational degree of freedom is considered in the next sec-
tion. These tools are based on the adiabatic theorem which
states that the dynamics follows approximately the instanta-
neous eigenvectors associated to eigenvalues continuously
connected to the initial one when the Hamiltonian is per-
turbed sufficiently slowly. When this principle is extended to
a quantum system(here a molecule) dressed by a laser field
that is pulsed and whose frequency is swept, one has to con-
sider the adiabatic transport, or the so-called adiabatic pas-
sage, along eigenvectors of the dressed system molecule
+laser field(the so-called Floquet states) as functions of the
envelope amplitude and of the instantaneous frequency of
the field[6,7]. This leads to surfaces of associated eigenval-
ues(the so-called quasienergies) as functions of the two field
parameters(amplitude and frequency). Inspection of the to-
pology of the surfaces allows us(i) to analyze the various
transfers that are permitted by adiabatic transport, and(ii ) to
design the appropriate laser parameters that will drive the
dynamics to a desired state. This has been applied to atomic
beam deflection[19], to population transfer in two- and
three-level systems[20], and to the production of entangled
states[21]. Paths that optimize the nonadiabatic losses have
been identified in two-level systems: they correspond to level
lines of the eigenenergy surfaces[22]. In this section we
extend this study to multilevel systems and show the remark-
able efficiency of the process along level lines.

Adiabatic passage is of great interest for state selectivity
since it allows population transfers that are robust with re-
spect to fluctuations of the field parameters and with respect
to partial knowledge of the system, provided that resonant
effects are taken into account. The key of robustness comes
from the classification of topologically equivalent curves that
connect the same states in the adiabatic limit. In order to
study the surfaces of quasienergies, it is therefore generally
sufficient to consider effective Hamiltonians that incorporate
the resonances. We illustrate below these principles on a few
vibrational states that are near-resonant with a chirped laser
field.

A. Model

We consider a one-mode vibrational potentialVsxd (e.g.,
the ground electronic state of a diatomic molecule), associ-
ated to the vibrational coordinatex, giving the vibrational
Hamiltonian

H0sxd = Tvibs]xd + Vsxd, s2d

with Tvib the vibrational kinetic energy. We denote byunl the
eigenvectors ofH0sxd associated to the eigenenergies"vn.
The vibrational mode is coupled to a field of the form

Estd cosffstd+ug (where the carrier oscillations and the en-
velope parts are considered independently) through m0sxd,
the dipole moment in the ground electronic state of the mol-
ecule (permanent dipole moment, nonzero for heteropolar
molecule):

H„x,t,fstd + u… = H0sxd − m0sxdEstd cosffstd + ug, s3d

with the amplitudeEstd=E0ÎLstd, andE0, Lstd, fstd, respec-
tively, the peak amplitude, the shape(ranging between 0 and
1) of the field intensity, the time-dependent phase, andu an
additional constant phase(that is used to apply conveniently
the Floquet theory). We have here considered that the field is
linearly polarized, with the polarization axis parallel to the
dipole moment of the rotationless molecule. The instanta-
neous Floquet(or quasienergy) operator characterizing the
molecular Hamiltonian dressed by the field reads

K = − i"veffstd
]

] u
+ Hsx,t,ud

= − i"veffstd
]

] u
+ H0sxd − m0sxdEstd cosu, s4d

where the effective(also called instantaneous) frequency co-
incides to the derivative of the phase

veffstd ;
df

dt
std. s5d

The operator −i"veffstd] /]u in Eq. (4) characterizes the laser
photon field operator in the sense that it can be derived from
the photon number associated to a cavity-quantized field
when the field is taken outside the cavity in the free space
and contains a large average number of photons[23]. Its
eigenvectors are denoted byukl wherek is a positive or nega-
tive integer that characterizes the relative number of photons
with respect to its average. We remark that if we define a
time-dependent frequencyvstd as fstd;vstdt, then the ef-
fective frequency readsveffstd=v̇stdt+vstd, where v̇

;dv /dt.
The quasienergy surfaces are formed by the eigenvalues

of this Floquet Hamiltonian as functions of the parameters
veff andE. They can be calculated(at least numerically) for
any given potentialVsxd. One can label the Floquet eigen-
vectors asun ;kl, associated to the quasienergiesln,k with the
indices n and k, respectively, related to the free molecule
H0sxd and to the photon field. The quasienergies can be ar-
ranged in zones ofquasidegenerate quasienergies, associated
to quasiresonance between the molecule and the field, that
are periodic since we haveln,k+,

=ln,k+,"veff for any posi-
tive or negative integer,. For simplicity, one considers the
N+1 lowest bound stateshu0l , u1l ,… , uNlj, associated to the
energiesE0,E1, ¯ ,EN of a Morse potential coupled by
a field whose effective frequency is one-photon near-
resonant:"veff<E1−E0<E2−E1< ¯ <EN−EN−1. The ef-
fective Hamiltonian in the resonant approximation, that takes
into account the one-photon near resonances of one Floquet
zone, reads as a tridiagonal matrix:
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258 Chapter 11. Selective control of rovibrational population transfer in molecules

Heff =
"

23
0 V0,1 0 ¯ 0

V0,1 2D1 V1,2 � ]

0 V1,2 2D2 � 0

] � � � VN−1,N

0 ¯ 0 VN−1,N 2DN

4 , s6d

with

Dn ª
En − E0

"
− nveff = nfv0 + sn + 1da − veffg, s7d

the Rabi frequency(assumed real and positive without loss
of generality)

Vi,j = − Estdkium0ujl/", s8d

the (constant) anharmonicity

a ª fsvn+1 − vnd − svn − vn−1dg/2" = − "v0
2/4D, s9d

with D the dissociation energy, and the frequencyv0 related
to the energy of the Morse potential:En="v0sn+ 1

2
d+"asn

+ 1
2

d2, n=0,… ,N. This effective Hamiltonian is valid for
moderate field intensitiesVi,j !v0 (in practice not larger
than 1013 W/cm2 to avoid ionization), for small detunings
and anharmonicityuDnu, uau!v0 and for N significantly
smaller than the total number of bound states.

This Hamiltonian can be technically obtained in the Flo-
quet picture as follows: We apply the unitary resonant trans-
formationRsud;diagf1,e−iu ,… ,e−isN−1dug to the Floquet op-
erator which allows to write the resonant terms asu

independent plus a nonresonantu-dependent restV2:

R†sudKRsud = − i"veffstd
]

] u
+ Heff + V2sud. s10d

The resonant transformationRsud allows to dress the bare
statesu0l with 0 photon,u1l with minus one photon,unl with
minus n photons, and so on. The state corresponding to a
bare stateunl dressed byk photons, when the field is off,
readsun ;klE=0= unl ^ eiku. The restV2sud contains terms, cou-
pling the Floquet zones, that become of orderOsE2d after the
application of perturbation theory. Since they are perturba-
tive, their highest-order effects can be incorporated as Stark
shifts. However, in the range of intensities considered here,
they can be neglected with respect to the coupling Rabi fre-
quency inHeff which is of orderOsEd.

B. Surfaces of quasienergy

Figure 1 displays the quasienergy surfacesln,k in units of
"v0 connected to the three lowest vibrational states, as func-
tions of the effective frequencyveff and the field amplitudeE
taken as independent parameters. We have chosen the CO
molecule for which a.−6.033310−5 a.u. and v0
.0.009 89 a.u., using anab initio dipole moment[24].
These surfaces show the different connectivities that are to-
pologically allowed by adiabatic passage. The topology is
determined by the resonances characterized by the crossings
(labeled as A, B, and A2) of the curves atE=0 [correspond-
ing to the crossings of the diagonal elements of Eq.(6)].

Intersection A is determined by the crossing between the first
and second diagonal elements which occurs atveff

sAd=v0
+2a, intersection B by the crossing between the second and
third diagonal elements:veff

sBd=v0+4a, and intersection A2
by the crossing between the first and third diagonal elements:
veff

sA2d=v0+3a. Thus the crossings A, B, and A2 characterize,
respectively, a one-photon resonance between the bare states
u0l and u1l, a one-photon resonance betweenu1l and u2l, and
a two-photon resonance betweenu0l and u2l. For EÞ0, the
crossings become avoided crossings. The labelsu0;0l, u1;
−1l, u2;−2l of Fig. 1 stand for the straight lines in the plane
E=0. The slope of these lines labeled byun ;kl corresponds to
the relative number of photons:]ln,k /]veffuE=0/"=k. Three
topologically inequivalent paths are shown in Fig. 1 and give
an insight into the state selectivity in this model. Path(a),
going around crossing A, allows the population transfer from
state u0;0l to u1;−1l, i.e., the population transfer from the
bare stateu0l to u1l with absorption of one photon. Both
paths (b) and (c) allow the population transfer from state
u0;0l to u2;−2l, i.e., the population transfer from the bare
stateu0l to u2l with absorption of two photons. Since path(b)

goes around A and B, it can be described as a succession of
two sequential one-photon processes. Since path(3) goes
around A2, it corresponds to a direct two-photon process.

C. Optimization of population transfer using
level lines

In addition to the topology, the success of adiabatic pas-
sage requires to find parameters that induce negligible nona-

FIG. 1. (Color online) The first three quasienergy surfaces(in
units of "v0), eigenvalues ofHeff (6), as functions of the effective
frequency(normalized byv0) and the field amplitudeE (in atomic
units, with the correspondence amplitude-intensityE=5
310−3 a.u.↔ I<0.877 TW/cm2) calculated from the Hamiltonian
(6) for the CO molecule. Paths(a) and(b) correspond to a transition
from the stateu0l to the statesu1l andu2l with absorption of one and
two photons, respectively, for decreasing frequency chirp. Path(c)

corresponds to a transition from the stateu0l to the stateu2l with
absorption of two photons for increasing frequency chirp.
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diabatic losses. The representation of the surfaces as contour
plots of level lines allows to guide this search.

1. Sequential one-photon processes

Figure 2 shows the contour plot of the distance between
the upper closest neighbor surfaces. Note that we have taken
into account in this figure six states and six surfaces. The
consecutive one-photon resonances at zero field correspond-
ing to crossings appear in dark zones(one recovers intersec-
tions A and B). The crossings are separated at 2a /v0 in this
diagram. ForE=0, the line at the right of intersection A
corresponds to stateu0;0l; the segment between A and B
corresponds to stateu1;−1l; the segment between B and C to
stateu2;−2l and so on for statesun ;−nl.

Optimal adiabatic passage which gives the minimal nona-
diabatic loss for a given peak intensity and a smooth sym-
metric pulse shape has been shown to follow a level line for
two-level systems[22]. This corresponds to parallel quasien-
ergies at all times. This can be applied for population transfer
from u0l and u1l, using a level line that connects these two
states. In this case, the only remaining parameter in the con-
tour diagram is the detuning at the beginning of the process
at time ti: Di;D1st= tid. The additional condition that guar-
antees a negligible nonadiabatic loss can be expressed as

uDiuT @ 1, s11d

whereT is the characteristic duration of the pulse shape(that
is given and assumed to be symmetric for simplicity). For a
Gaussian pulse,T can be taken as the full width at half maxi-
mum, and it has been shown in Ref.[22] that the condition
(11) is more preciselyuDiuT@Îln 2/2<0.42 in this case.
Figure 3 displays numerical simulations for a Gaussian
pulse, which shows very efficient and monotonic population
transfer already forDiT=−2.7.

Population transfer fromu0l to statesuN.1l cannot be
achieved by the following of a single level line with a single
pulse by the use of the contour of Fig. 2. One has to connect
two pieces of level lines, one connecting the initial state, the
other one connecting the final desired state. If the goal is to
reach the stateuNl, one can choose as aboveDi;D1st= tid

such thatuDiuT@1 andD f ;DNst= t fd at the final timet f. One
has to choose the way in which we leave and reach the level
lines and a peak Rabi frequency. One can chooseD f =Di.
Adiabatic arguments impose to leave and reach the level
lines as slowly as possible, which implies a peak Rabi fre-
quencyVmax=maxnøN,tVn−1,nstd such thatVmax. uDiu. Fig-
ures 4 and 5 show numerics of population transfer to, respec-
tively, the statesu2l and u4l. The success of the transfer
requires a peak Rabi frequency larger than the one used for

FIG. 2. (Color online) Contour plot of the distance between the
upper closest neighbor surfaces of Fig. 1 as a function of the nor-
malized effective frequency and the field amplitudeE. Paths(a) and
(b) correspond to the ones of Fig. 1.

FIG. 3. (Color online) Numerical simulation of the probabilities
Pn= ukn u1lu2 (upper frame) of the dynamics associated to the path
(a) of Figs. 1 and 2 for a Gaussian intensity pulse shapeLstd
=e−4 ln 2st / Td2 (lower frame, dashed line) with DiT<−2.7, of peak
intensity I<3.131010 W/cm2, and the associated effective fre-
quency(lower frame, full line, in units ofv0).

FIG. 4. (Color online) Same as Fig. 3 but with the dynamics
associated to the path(b) of Figs. 1 and 2 withDiT<−7.5 and the
peak intensityI<0.1731012 W/cm2.
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260 Chapter 11. Selective control of rovibrational population transfer in molecules

the single level line for the transfer to stateu1l. One notices
that all the chirps designed for sequential one-photon pro-
cesses with a Gaussian envelope have roughly the shape of a
hyperbolic tangent curve.

2. Direct multiphoton processes

Figure 1 shows that the path(c) corresponds to a direct
two-photon process between the statesu0l and u2l, in the
sense that it goes around the conical intersection A2, the
crossing between the first and third diagonal elements of the
effective Hamiltonian(6). Figure 6 shows the contour plot of
the distance between the two lowest surfaces of Fig. 1
around crossing A2. One can see that level lines now connect

the statesu0l and u2l. One remarks that these level lines are
slightly bent, due to the Stark shifts associated to this direct
multiphoton process. Figure 7 shows the contour plot of the
distance between the two lower closest surfaces, connected
to statesu0l and u4l at zero field, corresponding to a four-
photon process between these states. The level lines are more
bent for this high-order multiphoton process.

Figures 8 and 9 show numerics for population transfer to,
respectively, statesu2l and u4l by direct multiphoton adia-
batic passage. One can see that the population transfer is
monotonic unlike their counterparts obtained by sequential
one-photon processes. It is more efficient in the sense that
smaller duration and field amplitude is required to allow the

FIG. 5. (Color online) Same as Fig. 3 but with the dynamics
associated to the path(d) of Fig. 2 with DiT<−6.6 and the peak
intensity I<0.7531012 W/cm2.

FIG. 6. (Color online) Contour plot of the distance between the
lower closest neighbor surfaces of Fig. 1 as a function of the nor-
malized effective frequency and the field amplitudeE0. The paths
(c) refer to the ones of Fig. 1.

FIG. 7. (Color online) Contour plot of the distance between the
two lower closest surfaces, connected to statesu1l and u5l at zero
field, as a function of the normalized effective frequency and the
field amplitudeE0. The white path is an example of a four-photon
dynamics.

FIG. 8. (Color online) Same as Fig. 3 but with the dynamics
associated to the path(c) of Figs. 1 and 6 withDiT<3.3 and the
peak intensityI<0.1131012 W/cm2.
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transfer by adiabatic passage. This multiphoton process,
however, requires in general a nonmonotonic chirp to follow
the level line. We remark that numerical calculations for this
multiphoton process include second order Stark shifts given
by the diagonal(parallel) polarizability [see the diagonal of
the Hamiltonian(14)]. The difference of the resulting calcu-
lations with and without this Stark effect is nonsignificant
(less than 1%). This justifies to use here only the dominant
one-photon resonant terms in the Hamiltonian(6).

The two different paths corresponding to the sequential
process with twice one-photon and the direct two-photon
process have been identified and experimentally tested be-
tween electronic atomic states in Ref.[25].

D. Adiabatic passage by Raman chirping

We now investigate the selectivity of adiabatic passage by
Raman chirping[4] using the topology tools. We assume that
the frequencies of the pump and Stokes pulses of the Raman
transitions are far detuned(low frequency) from any excited
electronic states and also far detuned from any excited vibra-
tional states. The Hamiltonian that has to be considered reads
in this case(with both frequencies chirped)

H„x,t,fPstd + uP,fSstd + uS… = H0sxd − m0sxdE −
aisxd

2
E

2,

s12d

with aisxd the polarizability parallel to the molecular axis,
and the field decomposed in the pump(index P) and Stokes
(index S) fields, of time-dependent phase, peak amplitude,
and intensity pulse-shape, respectively,f jstd, E0j and L jstd,
j=P ,S:

E ª EPstd cosffPstd + uPg + ESstd cosffSstd + uSg, s13d

EPstd=E0PÎLPstd, ESstd=E0SÎLSstd. The additional constant
phasesuP anduP allow a convenient formulation of the two-
mode Floquet theory(see below). The effective Hamiltonian,

that takes into account the Raman two-photon near reso-
nances of one Floquet zone in the ground electronic state, is
again a tridiagonal matrix:

Heff = "3
S0 V0,1 0 ¯ 0

V0,1 D1 + S1 V1,2 � ]

0 V1,2 D2 + S2 � 0

] � � � VN−1,N

0 ¯ 0 VN−1,N DN + SN

4
s14d

with in this case

Dn ª
E0 − En

"
+ nveff = − nfv0 + sn + 1da − veffg, s15d

the effective frequency

veffstd ;
dfP

dt
std −

dfS

dt
std, s16d

the Rabi frequency

Vi,j = − EPstdESstdkiuaiujl/", s17d

and the relative Stark shifts

Si = − fEP
2std + ES

2stdgkiuaiuil/". s18d

It is a good approximation to use the static polarizabilities
instead of the dynamical ones when the frequencies are far
red detuned from any excited electronic states(i.e., low fre-
quencies with respect to the electronic states).

We obtain technically this effective Hamiltonian starting
with the two-mode Floquet Born-Oppenheimer Hamiltonian,

K = − i"fPstd
]

] uP
− i"fSstd

]

] uS
+ Hsx,t,uP,uSd, s19d

which itself results from a static perturbation theory of the
full field+molecule (whose axis is assumed parallel to the
field polarization) with respect to the electronic coordinates,
in the Born-Oppenheimer approximation, up to the second
order in field amplitude[18]. We take into account the con-
tribution of the excited electronic states through the parallel
polarizabilityaisxd by applying the unitary resonant transfor-
mation Rªdiagf1,eisuS−uPd ,… ,eisN−1dsuS−uPdg, which allows
us to write

R†KR = − i"fP
]

] uP
− i"fS

]

] uS
+ Heff + OsEP,S

3 d. s20d

In this Raman process with the use of frequencies far blue
detuned between vibrational states(e.g., with visible light),
the vibrational contribution to the Stark shifts and to the
coupling is generally negligible compared to the electronic
contribution. The resulting effective Hamiltonian(14) does
not depend on the values of the field frequencies as a first
approximation.

The tools presented in the preceding subsections can be
applied for the selectivity by Raman chirping. The results
will be very similar both for sequential Raman two-photon

FIG. 9. (Color online) Same as Fig. 3 but with the dynamics
associated to the path of Fig. 7 withDiT<4.2 and the peak intensity
I<0.6431012 W/cm2.
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processes as for direct higher multiphoton processes(such as
four,six,… photon processes), since the effective Hamil-
tonian (14) has the same form as Eq.(6) apart from addi-
tional non-negligible Stark shifts, that will bend the level
lines of the contour plots of differences of quasienergy sur-
faces. This will lead in general to a nonmonotonic chirping
for efficient following of level lines.

III. ROVIBRATIONAL SELECTIVITY BY ADIABATIC
PASSAGE OF AN ADIABATICALLY ALIGNED MOLECULE

In this section we consider the complete rovibrational
molecule, and the state selectivity when the molecule is adia-
batically aligned. More precisely, we first adiabatically align
the molecule with a nonresonant linear polarized nanosecond
pulse, apply next a picosecond chirped field that will transfer
the population among the resulting dressed vibrational pen-
dular states, and finally switch off the aligning laser adiabati-
cally to reconnect the bare rovibrational states. We first ana-
lyze the selection rules of the vibrational pendular states,
show the different possibilities of climbing, and construct the
Hamiltonian of the model. We next present the state selec-
tivity scenario by one-photon infrared and Raman chirpings.

A. Conditions of selectivity

One considers that the rovibrational structure of the mol-
ecule is made as a first approximation of uncoupled rigid
rotors (of respective rotational constantsB

v
), one for each

vibrational statev=0,1,… . The effective Hamiltonian asso-
ciated to an isolated vibrationv of the molecule dressed by a
nonresonant aligning laser of amplitudeEa reads in the high-
frequency limit (with respect to the rotational structure)

[14,26]

H
vv

nr = B
v
J2 + Ea

2sDa
vv

sin2
Q − ai,vv

d/4, s21d

with Q the polar angle between the molecular axis and the
direction of the nonresonant field,Da

v8v
=ai,v8v

−a',v8v
,

a',v8v
=kv8ua'uvl, ai,v8v

=kv8uaiuvl. J is the angular momen-
tum. It consists then ofan effective double well potential for
each vibrational state. The central point is that for an ideally
strong aligning field, the pendular eigenenergies of each ef-
fective double well potential have a structure of two families
labeled by even and oddJ, of doubly near-degenerate pen-
dular ladders of large spacing E

v,J̃+2−E
v,J̃,2 sEa

ÎDaB
v

−B
v
J̃d [14], which become approximately harmonic

"v
v

srot−aligd
,2Ea

ÎDaB
v

for large amplitudeEa and low J̃.
This is shown in Fig. 10 which displays the pendular ener-
gies as a function of the dimensionless quantity characteriz-
ing the alignment efficiency

ga = Ea
2
Da00/4B0. s22d

As expected, we can observe for increasingga the statesuJ̃

=2kl and uJ̃=2k+1l, k=0,1,2,…, becoming near degener-
ate by pairs and the formation of an harmonic ladder for the

lowest J̃ of increasing spacing.
If one considers infrared one-photon dipolar transitions

(for heteronuclear molecules), the selection rules areDJ̃

= ±1, ±3, ±5,… [14] with Dv= ±1 (if one assumesB
v+1

<B
v
). For a picosecond chirping applied while the molecule

is dynamically aligned, in the ideal situation of a very effi-
cient alignment with infinite spacings"v

v

srot−aligd, the climb-
ing of the vibrational ladder would occur following the se-

quence with alternatingJ̃=0 andJ̃=1. We would obtain the
following sequence, considering the states at the end of the
pulses: uv=0,J=0l→ uv=1,J=1l→ uv=2,J=0l→ uv=3,J
=1l→ . . ., which is the one one would obtain in the rotation-
less model. The same arguments can be applied for a Raman

chirping, with selection rulesDJ̃=0, ±2, ±4,… and Dv

=0, ±1, which gives forDv= ±1 the climbing sequence with

the sameJ̃ : uv=0,J=0l→ uv=1,J=0l→ uv=2,J=0l→ . . ..
However, the study of a concrete situation requires an

aligning nanosecond laser pulse of peak intensity not larger
than 1013 W/cm2 to avoid ionization. This peak intensity
gives an upper limit for the spacing"v0

srot−aligd of the pen-
dular double harmonic ladder, that has to be characterized.
Achieving the rovibrational climbing requires to prevent the
rotational spreading, which is possible when the field ampli-
tude satisfies

2Ea
ÎDaB0/" @ 1/Tc, s23d

where Tc is the pulse duration of the chirped picosecond
pulse(the full width half maximum for Gaussian pulses). For
instance, for CO, we have 2ÎDaB0/"<0.011 a.u., which
already requiresIa,1013 W/cm2 for the intensity of the
aligning field to satisfy the condition(23) with Tc,1 ps.
This condition has to be compared with the intrinsic condi-
tion [see Eq.(1)]

6B0/" @ 1/Tc s24d

required to avoid the rotational spreading in absence of
aligning laser, which can be satisfied only for very light mol-
ecules in the picosecond regime of chirping[12]. The align-

FIG. 10. (Color online) First lowest pendular energiesEJ̃

−EJ̃=0 of the ground vibronic state as functions ofÎga for a non-
resonant field. The values ofJ indicate the connection of the lines
whenga=0.

STATE-SELECTIVE CHIRPED ADIABATIC PASSAGE… PHYSICAL REVIEW A 71, 013402(2005)

013402-7



263

ment can be well quantified by the observablekcos2Ql,
which reads in the strong-field limit[14]

kcos2Ql → 1 − 1/Îga. s25d

This shows that satisfying the condition(23) will lead to a
well aligned moleculekcos2Ql,0.9 for a typical rotational
constantB0,1 cm−1 of linear molecules(we have for CO:
B0<1.92 cm−1) and Tc,1 ps. The use of a rotationless
model withQ=0 would be in this case a quite good approxi-
mation to study the vibrational climbing.

We use in the following a complete model for vibration
and rotation to show the feasibility of the state selectivity of
an aligned molecule. Four particular strategies can be imple-
mented with such a model:(i) a one-photon chirped infrared
scheme with an additional aligning nanosecond laser allow-
ing to climb the vibrational ladder and to end in the isotropic
stateJ=0 (for evenv) or in J=1 (for oddv) at the end of the
pulses: uv=0,J=0l→ uv=1,J=1l→ uv=2,J=0l→ uv=3,J
=1l→ uv=4,J=0l→¯, and (ii ) a chirped Raman scheme,
with one of the two lasers acting also as the aligning nano-
second laser, allowing us to follow the particular sequences
uv=0,J=0l→ uv=0 or 1,J=0 or 2l→ uv=0 or 2,J
=0,2 or 4l→ uv=3,J=0,2,…or 6l→ uv=4,J=0,2,…or 8l
→¯, i.e., at the end of the pulses(a) to climb the rotational
ladder in the samev, (b) to climb the vibrational ladder and
to end up inJ=0, or (c) to climb the vibrational and rota-
tional ladders.

B. Model

The molecule is subjected to an aligning nonresonant field
«astd cossvat+uad, of fixed carrier frequencyva and ampli-
tude «astd=«0aÎLastd, and to a chirped fieldEcstd cossfcstd
+ucd, of time-dependent phasefcstd and amplitudeEcstd
=E0cÎLcstd. The peak amplitudes and the envelopes(taken
as Gaussian) for the aligning and chirped fields are respec-
tively denotedE0a, Lastd, E0c, Lcstd. To construct the effec-
tive dressed Hamiltonian for the nonresonant aligning field,
we will apply a high-frequency contact transformation
[18,26] to the Born-Oppenheimer Floquet Hamiltonian,

K = − i"va
]

] ua
− i"fcstd

]

] uc
+ H0sx,Q,wd

− m0sxdfEastd cosua + Ecstd cosucg cosQ

+ fDasxd sin2
Q − aisxdg/2

3 fEastd cosua + Ecstd cosucg
2, s26d

where

H0sx,Q,wd ª Tvibs]xd + BsxdTrotsQ,]Q,]wd + Vsxd, s27d

with Q the polar angle between the molecular axis and the
direction of the linear polarized fields(in the same direction),
w the azimuthal angle,Trot the rotational kinetic energy,B the
rotational constant, andDa=ai−a'. ai anda' are the static
polarizabilities, respectively, parallel and perpendicular to
the molecular axis(since we consider low frequencies with
respect to the electronic states). We will consider M =0,

which is invariant for linear polarized fields. We will next
use the one-photon resonant approximation for the infrared
chirp and the two-photon resonant approximation for the Ra-
man chirp [18]. The effective Hamiltonian between vibra-
tional blocksH

v8v
=kv8uHuvl, of energy"v

v
and of rotational

constantB
v
=kvuBuvl, reads thus[18,27]

H
vv

= B
v
J2 + a

vv
sEa

2 + Ec
2d + "D

v
std, s28ad

H
v8Þv

= − "V
v8v

std/2, s28bd

with (terms of second order in 1/"v have been neglected)

a
v8v

= sDa
v8v

sin2
Q − ai,v8v

d/4, s29d

where we have denotedm0,v8v
=kv8um0uvl. The Stark shifts

a
vv

sEa
2+Ec

2d allow the alignment of the molecule. The quan-
tities m0,v8v

, a',v8v
, and ai,v8v

have been calculated for the
CO molecule from theab initio calculations of Ref.[24]. For
the one-photon infrared chirp, the Rabi frequencies read

V
v8v

std = m0,v8v
Ecstd cosQ/", s30d

and the detunings areD
v
=v

v
−v0−vdfc /dt=vfv0+sv+1da

−dfc /dtg [see Eq.(7)]. For the Raman process, one has

V
v8v

std = 2EaEcav8v
/", s31d

and D
v
=v0−v

v
+vswa−dfc /dtd=−vfv0+sv+1da−sva

−dfc /dtdg [see Eq.(15)].

C. State selectivity by infrared chirping

Considering that the molecule is aligned, we can study the
transfer by chirped adiabatic passage between the pendular
vibrational states. This is done using the tools described in
the preceding section: We consider the surfaces of the sta-
tionary dressed energies(of the aligned molecule) as a func-
tion of the two parameters: intensity and effective frequency
of the chirped laser, and construct in this diagram the path
connecting the initial state with the given final one(if the
connection exists). This is well visualized using contour
plots of differences of some surfaces. We show in Fig. 11, for
the CO molecule, the contour plot of the difference of the

closest neighboring surfaces, connected touv=0,J̃=0l, uv

=1,J̃=1l, uv=2,J̃=0l, …, uv=6,J̃=0l, uv=7,J̃=1l when the
chirped field is off:Ec=0. We can construct an appropriate
path connecting the initial stateuv=0,J=0l to a final chosen
path. A path(a), as a level line, is shown to go from the

vibrational pendular stateuv=0,J̃=0l to uv=1,J̃=1l. This
path has been shown to be optimal, in the sense that the
nonadiabatic losses are minimized on a level line. To achieve
adiabatic passage we have to use a level line satisfying

D1Tc @ 1. s32d

The appropriate time-dependent chirp is designed from the
chosen path in the parameter space and the given pulse en-
velope.

The path(b) of Fig. 11 connectsuv=0,J̃=0l to uv=6,J̃
=0l, which is the final state chosen here. We use a Gaussian
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264 Chapter 11. Selective control of rovibrational population transfer in molecules

intensity envelope of full width at half maximumTc<4 ps.
We start at the detuningDi =1.6310−4 a.u. and end atD f
=2.1310−3 a.u. The chirp designed from path(b) with the
Gaussian envelope has roughly the shape of a hyperbolic
tangent curve(see Sec. II C 1, Figs. 3–5). Figure 12 displays
the population history with the complete laser sequence: the
nanosecond laser(with a Gaussian intensity envelope of full
width at half maximumTa<0.4 ns) is first switched on;
while it is at its maximum, the chirping laser with the param-

eters determined above from path(b) is applied and induces
transitions among the pendular vibrational states; finally the
nanosecond laser is switched off to reconnect the pendular
states to the rotational states. The almost complete transfer
from uv=0,J=0l to uv=6,J=0l occurs. The figure shows the
projections of the time-dependent state on the molecular bare
states. This corresponds to a monotonic adiabatic transfer
between the two vibrational pendular states involved in the
process.

We remark that the process allowing adiabatic passage
from uv=0,J=0l to uv=1,J=1l (not shown) leads to a final
non-negligible permanent alignment of the molecule with a
value of kcos2 ul=0.6. Adiabatic passage to higherv and J
leads to smallerkcos2 ul valuess*0.5d.

It is important to note that climbing the rotational ladder
while climbing the vibrational one, following the sequence

uv=0,J̃=0l, uv=1,J̃=3l, uv=2,J̃=4l, uv=3,J̃=7l, …, i.e.,

with alternatingDJ̃=1 and DJ̃=3, is theoretically possible
but would require a specific nonmonotonic large chirp for

this highly anharmonic sequence ofJ̃.
We remark that we could have also used a multiphoton

chirp instead of sequential one-photon steps, but with a non-
monotonic chirp, as explained in the preceding section for
the rotationless model.

D. State selectivity by Raman chirping

The state selective transfer can also be implemented using
a Raman process: one of the lasers of the Raman process, of
fixed frequency, aligns the molecule and the second laser is
chirped to produce the adiabatic passage. We have tested this
scheme numerically, choosing a path in parameter space that

connectsuv=0,J̃=0l to uv=6,J̃=0l. We have also obtained
in this case close to 100% transfer efficiency withI0c
=4.4 TW/cm2.

One could also achieve efficiently with a nonmonotonic
chirp the selective climbing ofv and J: uv=0,J=0l→ uv
=1,J=2l→ uv=2,J=4l→ . . .→ uv ,J=2vl.

IV. CONCLUSION

We have developed systematic tools to transfer population
by adiabatic passage induced by chirped frequencies using
quasienergy surfaces as functions of the field parameters. We
have shown that, in a realistic model including rotation, the
alignment of molecules during a nanosecond laser pulse can
be used for an efficient rovibrational state selectivity. In ad-
dition to leading the molecule to a given vibrational state,
this method offers the possibility to obtain either an isotropic
molecule inJ=0 or a molecule in a well-defined anisotropic
J.0 state.
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FIG. 11. Contour plot of the difference of the neighboring
infrared-laser dressed energy surfaces of the aligned molecule for
ga=24 (corresponding to the peak intensityI0a<8 TW/cm2 for CO
molecules and givingkcos2Ul<0.79). Darker zones characterize

closer surfaces. Two appropriate paths connectinguv=0,J̃=0l with,

respectively,(a) uv=1,J̃=1l and (b) uv=6,J̃=0l are shown.

FIG. 12. (Color online) Population history with the peak inten-
sity I0c=5.6 TW/cm2 and the chirp designed from the path(b) of
Fig. 11: the curves represent the projectionsP

v,J= ukv ,Jucstdlu2 of
the statecstd, solution of the time-dependent Schrödinger equation,
on the bare molecular statesuv ,Jl. The inset displays details of the
population history during the picosecond time scale of the chirped
laser.
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Chapter 12

Control of localization and suppression
of tunneling by adiabatic passage

In this paper [141], we generalize the idea of orientation of molecules by adiabatic 2+1 processes
to generate a state superposition of nearly degenerate states. This is applied to the challenging
problem of localization of tunneling starting with a ground state delocalized wavepacket. As
opposed to the orientation problem, the field amplitude needs here to be of quite specific value.
The process is however robust with respect to the pulse area.

We show that this 2+1 process allows us to control the tunneling dynamics (see Fig. 4).
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Control of Localization and Suppression of Tunneling by Adiabatic Passage
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We show that a field of frequency ! combined with its second harmonic 2! driving a double-well
potential allows us to localize the wave packet by adiabatic passage, starting from the delocalized
ground state. The relative phase of the fields allows us to choose the well of localization. We can
suppress (and restore) the tunneling subsequently by switching on (and off) abruptly the fields at well-
defined times. The mechanism relies on the fact that the dynamics is driven to an eigenstate of the
Floquet Hamiltonian which is a localized state.

DOI: 10.1103/PhysRevLett.93.223602 PACS numbers: 42.50.Hz, 03.65.Xp, 73.40.Gk

Generating and controlling coherent superpositions of
states is of great interest, in particular, for the recent
developments of quantum computing [1]. Quantum tun-
neling is a natural example of superpositions of states,
which correspond to spatially localized states. An impor-
tant goal is to achieve the control of driven tunneling (see,
e.g., [2] for a review). Practical realizations can be con-
sidered in coupled multiquantum dot systems that can be
now built experimentally [3]. Enhancement of tunneling
by a nonresonant [4,5] or resonant [6] pulse-shaped field,
and the coherent destruction of tunneling (CDT) [7–11]
by a cw field are well established. The CDT as shown in
[7,8] occurs when the field amplitude allows one to pre-
serve the two bare states j1i and j2i as eigenstates of the
Floquet Hamiltonian (dressed by the field) and to make
the associated quasienergies cross such that the tunneling
time between the two states becomes infinite when the
field is on. The CDT has been differently obtained in
[10,11], when one of the localized states is an eigenstate
of the Floquet Hamiltonian, which requires the coupling
to an asymmetric excited electronic surface jei of similar
amplitudes: jhej�j1ij � jhej�j2ij with � the coupling
operator. The CDT by two fields of different frequencies
has been investigated in [12]. The CDT proposed so far in
the literature is only partially controlled in the sense that
one does not know the state of the system, i.e., the phase �
of the stopped superposition j1i � ei�j2i, since the initial
tunneling state is generally unknown. This can be cir-
cumvented if one can also control the localization from
the initial unlocalized ground state j1i. It has been nu-
merically shown in [13] that the localization is possible
by the use of a pulse quasiresonant between the two
tunneling states, however, under very restrictive condi-
tions of field amplitudes, frequencies, and also absolute
phases.

In this Letter we show a novel mechanism based on
adiabatic passage that allows us to control the localization
(i.e., with the knowledge of the localization time). This
process is robust in the sense that it requires the control of
the peak field amplitudes and frequencies but not of the
absolute phase of the total field, nor of their pulse areas.

Using subsequently the fields but suddenly switched on
and off, we propose a consistent scheme of control from
localization to suppression of tunneling. The mechanism
is formulated as the preparation of one of the coherent

superpositions j�i � �j1i � j2i	=
���

2
p

in a system of two
near-degenerate bare states fj1i; j2ig of opposite parity.
The key elements of the process are (i) the superpositions
j�i become eigenstates of the Floquet Hamiltonian for
specific field amplitudes and (ii) the pulse shapes allow us
to reach one of the eigenstates from the ground state j1i by
adiabatic passage. Adiabatic passage provides thus a tech-
nique to prepare the system in a localized state at a well-
defined time. More precisely, a field of an appropriate
frequency ! combined with its second harmonic 2!,
coupling the states j1i and j2i by a three-photon process
(initially near-resonant, detuned by the energy difference
� between the two states), will induce dynamical Stark
shifts that will compensate the detuning � for specific
field amplitudes. Adiabatic passage from the initial delo-
calized state j1i leads thus to one of the localized states
whose localization is controlled by the relative phase of
the two fields. The dynamics stays localized as long as the
field amplitudes stay subsequently constant.

This localized state can then be used for other con-
trolled manipulations such as the controlled switching on
and off of the tunneling. In particular, the tunneling
effect can start if the fields are switched off suddenly
(more precisely, on a time scale Toff satisfying �Toff 
1). The tunneling can be suppressed again if the fields are
switched on again but suddenly, at a precisely determined
time given by the period of the free tunneling. The wave
packet can be alternatively redelocalized by adiabatic
passage if the fields are switched off adiabatically.

We first introduce an effective model to analyze the
qualitative aspects of the mechanism, and then we imple-
ment the strategy in a complete model with a double-well
potential.

The key to be able to localize with the laser field
consists first in noticing that the two localized states
j�i are eigenstates of the Floquet Hamiltonian. This
leads then to a strategy to reach them by adiabatic trans-
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port. This can be formulated by considering first the
effective two-level system (in a resonant approximation)

Heff�t	 � �h
0 ��t	ei’

��t	e�i’ 	�t	
� �

(1)

in the bare basis fj1i; j2ig, where we assume that the Rabi
frequency ��t	 and the dynamical detuning (including
the relative Stark shift) 	�t	 are both real such that
��t	> 0 and at early times ���1	 � 0, 	��1	 �
� > 0, without loss of generality. In the adiabatic limit,
the propagator contains on its columns the instantaneous
eigenvectors of (1): j �i � ei’ cos��=2	j1i � sin��=2	j2i,
j �i � sin��=2	j1i � e�i’ cos��=2	j2i, Heff�t	 � � �h

2
�

�	�t	 �
��������������������������������

	2�t	 � 4�2�t	
p

� �. It reads

U�t;�1	 � e�i���t	 sin��t	
2

ei�’����t	� cos��t	
2

�e�i�’����t	� cos��t	
2

e�i���t	 sin��t	
2

 !

;

(2)

tan��t	 � � 2��t	
	�t	 ; 0 � ��t	<�; (3)

combined with the dynamical phases

���t	 �
1

2

Z t

�1
ds�	�s	 �

���������������������������������

	2�s	 � 4�2�s	
q

�: (4)

We emphasize that the phases of the eigenvectors have
been chosen as usual to satisfy the parallel transport:
h �j@=@tj �i � 0, leading to a zero geometric phase if
one considers a nonclosed trajectory in the parameter
space. We can thus generate by adiabatic passage the
coherent superposition j�i when � � �=2, i.e., for

��t	 � j	�t	j (5)

and for a controllable phase ’. Starting from either state
j1i or j2i [with initially ���1	 � � here], we can gen-
erate by adiabatic passage the coherent superposition j�i
or j�i (i.e., with � going from � to �=2) by choosing the
phase as’ � 0 or’ � �. Since j�i are eigenstates of the
Hamiltonian (1), if � is suddenly switched off, the tun-
neling will start from the well-defined localized state
previously prepared. Next, if � is suddenly switched
on, again the tunneling will stop in the state j i �
a�j�i � a�j�i in which it is at the switching time. In
particular, the tunneling can be stopped in one well if we
choose a switching time when a� � 1 (or a� � 1).

We implement this strategy in a tunneling system
driven by two off-resonant pulse-shaped fields, of fre-
quencies ! and its second harmonic 2! (Fig. 1), of
amplitudes E1�t	 and E2�t	, respectively, and of relative
phase �, leading to the total field E�t	 � E1�t	 cos!t�
E2�t	 cos�2!t��	. The effective Hamiltonian can be
written in the three-photon resonant approximation as

Heff�t	 � �h
0 j�jE2�t	E1�t	2ei’

j�jE2�t	E1�t	2e�i’ �� S�t	
� �

(6)

with

’ � �� arg��	; arg��	 � 0 or �; (7)

where the energy difference between the states j2i and j1i
is denoted by � and the relative Stark shift S�t	 (which is
of second order in the field amplitudes) [14]. The off
diagonal term j�jE2�t	E1�t	2ei’, of third order in field
amplitude, is a three-photon coupling between the states
j1i and j2i. The construction ofHeff�t	 requires in practice
additional states in the model, which are taken into
account by standard techniques of partitioning (or adia-
batic elimination) [14,15]. This allows one to determine
the coefficient � and the relative Stark shift S�t	, which
can both be chosen as real without loss of generality (see
below for a concrete model). The Stark shifts will depend
on the position of these additional states and on their
couplings with j1i and j2i. For instance, a single addi-
tional state j3i of energy E3 coupled with the state j2iwith
the coupling element �23, by the field of frequency !,
with a positive detuning: �h	23 :� E3 � E2 � �h! > 0,
will repel down the state j2i (of �j�23E1j2=4	23). Identi-
fying (1) and (6) leads to 	�t	 � �� S�t	 and ��t	ei’ �
j�jE2�t	E1�t	2ei’. The condition (5) is well satisfied for
the particular field amplitudes such that

	 � �� S � 0 (8)

or for strong fields such that j�jE2E
2
1 � j�� Sj. This

latter condition is not considered in this work since in
practice it requires generally very strong fields that would
produce destructive processes, such as ionization. The
condition (8) is expected to occur for specific values of
field amplitudes if the frequency ! is appropriately
chosen such that the Stark shift satisfies S�t	< 0.

We illustrate the proposed mechanism to manipulate
coherently the tunneling in the standard symmetric

double-well model potential Ĥ0 � p2=2� x2=2� x4=
�64D	 (with D � 2 to approximately model the NH3 tun-
neling), expressed here in dimensionless units. Choosing
the polarization of the lasers in the x direction, we obtain

for the driven Hamiltonian Ĥ�t	� Ĥ0�xE�t	. The 2� 1
field shows a bias for� � �=2 that allows the breaking of
symmetry. Without loss of generality, we can choose a

FIG. 1 (color online). Schematic diagram of the energy levels:
E1; E2 are the energies of the two bare states j1i; j2i. The arrows
represent the fields of frequencies ! and 2!.
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basis such that j�i and j�i represent the localization in
the left and right wells, respectively: j�i � jLi, j�i �
jRi. We choose the appropriate frequency !�1:71�
10

14
Hz which is a one-photon near resonance between

states j2i and j3i, and a two-photon near resonance be-
tween states j1i and j6i (see Fig. 1). The coefficient � and
the Stark shift S�t	 can be estimated by partitioning,
using the one-photon near resonances for simplifica-
tion, under the condition �max  	nr, where 	nr char-
acterizes the minimum detuning associated to the one-
photon near resonances and �max is the peak Rabi fre-
quency. We obtain here that � is proportional to
�16�23�36 and � < 0; i.e., arg��	 � �. The dynamics
can be considered as adiabatic inside the subspace
spanned by fj1i; j2ig if 	nrT � 1, where T stands for a
characteristic duration of the pulse [e.g., the full width
half maximum (FWHM) for a Gaussian pulse]. The adia-
batic dynamics can be characterized by the quasienergy
representation (associated to the Floquet Hamiltonian
with the double-well driven potential) (see, e.g., [15] for
a review of adiabatic dynamics for Floquet Hamiltonians)
as a function of the two field amplitudes for a given
frequency ! (see Fig. 2). One can see a (dark) region of
avoided crossing for moderate field amplitudes, which
corresponds approximately to the amplitudes for which
the condition (8) is satisfied. This avoided crossing can be
intuitively understood as follows: The Stark shifts, which
are the elements of lowest order in the field amplitudes,
push the two Floquet eigenenergies, connected to the bare
states j1i and j2i, closer to each other. They subsequently
repel since they are coupled (by the three-photon reso-
nance) approximately when the effective 	 becomes zero.
A choice of the envelope and peak fields correspond to a
specific path in Fig. 2. An additional condition on the
speed of the dynamics, which is determined by numerical
simulation, has also to be fulfilled to reach adiabatically
this avoided crossing.

To achieve localization, we use nanosecond super-
Gaussian ramps of shape ��t	 � exp���t=#	8� (here of
FWHM 55.8 ns), which include a quasiplateau [see
Fig. 4(b), left frame; note that the width of the rising of
this super-Gaussian pulse is approximately 15 ns, which
gives here for the adiabatic factor �T � 565), and of peak
intensities 51 and 740 GW=cm2 for I1 and I2, respectively.
They allow (i) the use of the effective Hamiltonian (6)
and (ii) adiabatic passage until the avoided crossing. The
choice of the relative phase � allows one to choose the
well of localization.

As shown in Fig. 3, we obtain the localization of the
wave packet from the initial state j2i in the right (left)
well for � � 0 (� � �). The localization is quite robust
with respect to the relative phase �: We have observed
numerically that the localization probability decreases
from 1 to 0.97 when the relative phase is taken as 2.83
instead of �. Figure 4(a) (left frame) shows the localiza-
tion for a population initially prepared in state j1i. The
population is localized in the left (right) well for � � 0

(� � �). Depending on the initial state, we create the
target localized state by choosing the relative phase of the
two pulses.

To control the subsequent starting and suppression of
the tunneling oscillations, we use suddenly switched
pulses since the localized states are eigenstates of the
Floquet Hamiltonian (see Fig. 4). In practice this is ob-
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FIG. 2 (color online). Contour plot of the difference of the
quasienergies connected to the bare states j2i and j1i. The
darker region is the considered line of avoided crossings. The
white straight line corresponds to the dynamics used to achieve
localization.

FIG. 3. (a) Numerical simulation of the localization of the
populations as a function of time, respectively P1 (P2) of the
states j1i (j2i) in the full (dotted) line with j2i as initial
condition. The � lines represent the population PL localized
on the left for the phases � � 0 and � � �. (b) Floquet
eigenvalues &1; &2, respectively, connected to the bare energies
E1 and E2, as functions of the intensity of the pulse 2 for a fixed
value of the intensity of the pulse 1: I1 � 0:51� 10

11
W=cm2.

The inset shows an enlargement of the avoided crossing of the
Floquet eigenvalues.
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tained with Gaussian ramps of short FWHM Ts such
that �Ts  1 and 	nrTs � 1 to avoid the appearance
of other resonances. The population is initially pre-
pared in the left well by adiabatic passage (see the left
frame of Fig. 4). Tunneling (of period 176 ps) starts
when the fields are suddenly switched off (Ts � 2 ps is
used, which gives here �Ts � 0:08 and 	nrTs � 6). After
three and a half periods, the pulses suddenly switched on
(with the same intensities used to localize) induce the
suppression of the tunneling and the localization in the
right well. This result is in agreement with the CDT by
two fields of different frequencies predicted in the con-
text of classical mechanics and with numerical quan-
tum simulations of a localized initial Gaussian wave
packet [12]. Since we have localized the wave packet,
we have access to the subsequent times of localization,
and we can thus start and suppress the tunneling at
controlled times. Reversing time in Fig. 3 and in the
left frame of Fig. 4 shows that the wave packet can be
alternatively redelocalized by adiabatic passage in state
j1i or j2i if the fields are switched off adiabatically
when the wave packet is in state j�i or j�i. The choice
of the final state is made by the appropriate choice of the
phase � � 0 or � � �, depending on the state before
switching off.

This process of localization by adiabatic passage does
not depend on the absolute phase of the total field, nor on
the ramp area.

In conclusion, we have shown that it is possible to
achieve the localization and suppression of tunneling by
adiabatic passage. This controlled switching process can
be adapted to the molecular alignment versus orientation.
In this context, alignment is obtained by the Stark shifts
induced by the two fields and oriented molecules corre-
spond to localized states [16]. The tunneling, which is an
oscillation between the two possible orientations, can be
obtained by switching off one of the two fields, the other
one maintaining the alignment. This scheme of controlled

tunneling, reinterpreted as controlled manipulation of
superposition of states, can have applications in the con-
text of quantum computing.

We acknowledge the financial support by the ACI
Photonique and by the Conseil Régional de Bourgogne.

*Electronic address: nicolas.sangouard@u-bourgogne.fr
†Electronic address: sguerin@u-bourgogne.fr

[1] D. Bouwmeester, A. K. Ekert, and A. Zeilinger,
The Physics of Quantum Information: Quantum

Cryptography, Quantum Teleportation, Quantum

Computation (Springer, Berlin, 2000).
[2] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[3] R. H. Blick, D. Pfannkuche, R. J Haug, K. von Klitzing,

and K. Eber, Phys. Rev. Lett. 80, 4032 (1998).
[4] W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927

(1990); Phys. Rev. A 45, 3637 (1992).
[5] M. Holthaus, Phys. Rev. Lett. 69, 1596 (1992).
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Miniaturizing well known processes governed by classical mechanics has the natural obsta-
cles of quantum effects, such as the superposition principle, entanglement, and measurement
processes. Another point of view consists in taking advantage of these effects to create new
faster processes [195, 196, 197, 198, 199]. This is the starting point of quantum computation,
and more generally of quantum information. It has been shown in particular that some clas-
sical slow algorithms can be made fast using quantum procedure. This has been first realized
by Deutsch and Jozsa (who constructed an algorithm that decides if all possible results of a
function are either identical or equally distibuted between two values) [200]. An algorithm of
much more practical relevance formulated by P. Shor consists in finding the prime factors of an
N -digit number [201]. The Shor’s factoring algorithm factorizes in a time of order N3 , much
faster than the known classical counterparts factorizing in a time beyond any powers of N . One
can also cite the Grover search algorithm [202], which can find in a database of N items the
one that meets a specific criterion in a time of order

√
N , faster than the classical computer,

which has been shown to find it in a time of order N .
A quantum computation requires in particular to replace the classical bit by a quantum

bit, or qubit, represented by a two-state system |0⟩ and |1⟩. The state of the qubit can be any
superposition of the two states and can be represented by a vector on the Bloch sphere. A
system composed of two qubits can have the key property of entanglement, such as one of the
four Bell States

|ψ⟩ = 1√
2
(|00⟩ − |11⟩), (12.1)

for a two qubit system, where the first (second) qubit stand at the first (second) position. Such
superpositions are expected to perform many operations in parallel. The main difficulty is to
preserve the coherence of the system during a sufficiently long time to complete the calculation.
The qubits should thus be well isolated from the environment.

A quantum computer can be represented as a register, for instance of ions trapped by
electromagnetic potentials (radio-frequency Paul trap) [203]. One has to be able to be initialize
the register, to execute some specific logic operations, and to have a readout. All these tasks
can be achieved by addressing individually the qubits with external fields (see for instance
the implementation of the Deutsch-Jozsa algorithm [200] on an ion-trap quantum computer
[204]). The logical gate requires a coupling between the qubits which should not change the
population when the addressing external fields are off. In the case of trapped ions, such a
coupling is obtained through the translational collective motion in the trap [205].

Another method to couple separate atoms or ions coherently is to use cavity quantum
electrodynamics (CQED) [207]. In the case of atoms, it is very difficult to trap them inside the
cavity. It can be however realized using a standing wave dipole-force trap [208]. Instead of free
atoms, it has been proposed to use atoms of a specific crystal put in the cavity and combined
with magnetic fields [209].

It has been proposed to implement the quantum information protocols by laser manipulation
of atomic ensembles containing a large number of identical atoms [210] (using for instance laser-
cooled atoms confined in a magnetic optical trap). Such an ensemble is easier to address than
a single atom. It allows one to store information with robustness against some practical noise
(loss of an atom for instance), and provides strong collective couplings with external fields (such
as a quantum cavity fields) with respect to a single atom.

The register could be itself an isolated molecule or an ensemble of molecules with the qubits
as some specific states. A well known system is the nuclear spins of a large molecule as qubits,
and the computing is realized by nuclear magnetic resonance (NMR) in liquid medium. One
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advantage is the weak interaction of the nuclear spins with the environment. The spins interact
through J-coupling and the dipole coupling; the latter averages to zero in an isotropic liquid.
They are driven by radio frequency pulses of specific areas, giving transitions of π-pulse type.
The Shor algorithm has been implemented in a specific molecule with the use of five 19F and
two 13C nuclear spins to factorize 15 [211].

One can also mention proposals in solid state systems, such as Cooper pairs [212] or quantum
dots as qubits (see for instance [213, 214]).

One could think more generally of each register as a node of a quantum network, with
traveling particles that ferry information to communicate between the registers. Such particles
can be ideally single photons, where the information is stored in their polarization, for instance
σ±, and that can interact with the atoms of the register to encode or decode the information
[215, 216].

More generally, quantum communications deals with sending quantum states from one place
to another in such a way that they arrive intact. One of the most important applications is
quantum cryptography, which deals with the generation and the transmission of a secure key in
order to convey a secret message in a quantum way [217]. Typical protocols use single photons
as qubits.

The preceding discussion highlights important processes that are required for quantum
information, such as entanglement, generation of single photons, and logic quantum gates.

We address in the following chapters these three subjects independently.
Important aspects are the robustness with respect to the external fields and to the details

of the model. We explore thus new processes using adiabatic passage techniques.
An important requirement is to avoid the decoherence of the system by decoupling it from

the environment. An elegant method consists in using specific decoherence-free subspaces
dressed by the external fields [218], for instance made of metastable ground states and thus
immune to losses from spontaneous emission. The state carrying the dynamics in such a
decoherence-free subspace is known as a dark state. We focus thus on models that possess such
properties, and take benefit from adiabatic passage which allows us to control the dynamics
using dark states.

In particular, we show in chapter 13 a process to generate photon number states (Fock
states) by adiabatic passage. In chapter 14, we show various processes by adiabatic passage
that allow us to entangle spins, photons and atoms. Chapter 15 is devoted to quantum gates
for single and two qubits.



Chapter 13

Generating multi-photon Fock states
by bichromatic adiabatic passage

Many different types of single-photon sources have been proposed and realized using the con-
trolled excitation of single molecules [219, 220] or of single nitrogen-vacancy centers in diamond
nanocrystals [221], controlled injection of carriers into a mesoscopic quantum well [222] and us-
ing pulsed excitation of semiconductor quantum dots [223, 224].

In the context of cavity QED, single-photon Fock states have been produced by a Rabi
π-pulse in a microwave cavity [225, 226] and by the STIRAP technique in an optical cavity
[227] based on the scheme proposed in [228] where the Stokes pulse is replaced by a mode of
a high-Q cavity. The STIRAP process has also been studied in a system of a four-level atom
interacting with a cavity mode and two laser pulses, with a coupling scheme which generates
two degenerate dark states [229]. In all these cavity QED schemes one atom interacts with a
single-mode high-Q cavity and generates one photon. As the atoms pass through the cavity one
by one, more photons can be added to the cavity mode. Recently the generation of two-photon
Fock state has been proposed [230] and realized [231] by a single two-level atom interacting with
a superconducting cavity which sustains two non-degenerate orthogonally polarized modes. The
photons are transferred from the source mode into the target mode of the cavity by a third-
order Raman process. However this scheme is not robust with respect to the velocity of the
atoms. Also a very recent scheme for producing of Fock states with a large number of photons
has been proposed using the Raman excitation of a three-level atom which requires in practice
a compensation of a dynamical stark shift and non-robust pulse area techniques [232].

In the article [233] presented below, we extend the resonant STIRAP process with the
Stokes pulse as a mode of a high-Q cavity [227, 228], to a bichromatic process (here in two-
state systems), similar to the one we presented in chapter 9 with the use of laser pulses, but
using a cavity field instead of one of the fields. In this context, this allows us to generate
multi-photon Fock states, where the number of photons is controlled in a robust way by the
peak amplitude of the fields.

In this process, atoms are used as mediators that extract photons from the maser field to
release them to the cavity.
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Generation of multiphoton Fock states by bichromatic adiabatic passage: Topological analysis
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We propose a robust scheme to generate multi-photon Fock states in an atom-maser-cavity system using
adiabatic passage techniques and topological properties of the dressed eigenenergy surfaces. The mechanism is
an exchange of photons from the maser field into the initially empty cavity by bichromatic adiabatic passage.
The number of exchanged photons depends on the design of the adiabatic dynamics through and around the
conical intersections of dressed eigenenergy surfaces.
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I. INTRODUCTION

Over the past few years, new sources of antibunched light
that are able to emit a single photon in a given time interval
have been the subject of intense theoretical and experimental
research. The driving force behind the development of these
nonclassical sources is a range of novel applications in quan-
tum information theory which builds on the laws of quantum
mechanics to transmit, store, and process information in var-
ied and powerful ways. Advances in this field rely on the
ability to manipulate coherently isolated quantum objects
while eliminating incoherent interactions with the surround-
ing environment. Single photon states act as elementary
quantum bits(qubits) in quantum cryptography[1–3] and
teleportation of a quantum state[4] where their entangled
states enable the secure transmission of information.

Many different types of single-photon sources have been
proposed and realized using the controlled excitation of
single molecules[5,6] or of single nitrogen-vacancy centers
in diamond nanocrystals[7], the controlled injection of car-
riers into a mesoscopic quantum well[8], and using the
pulsed excitation of semiconductor quantum dots[9,10].

In the context of cavity QED, single-photon Fock states
have been produced by a Rabip-pulse in a microwave cavity
[11,12] and by the stimulated Raman adiabatic passage
(STIRAP) technique in an optical cavity[13] based on the
scheme proposed in[14] where the Stokes pulse is replaced
by a mode of a high-Q cavity. The STIRAP process has also
been studied in a system of a four-level atom interacting with
a cavity mode and two laser pulses, with a coupling scheme
which generates two degenerate dark states[15]. In all these
cavity QED schemes one atom interacts with a single-mode
high-Q cavity and generates one photon. As the atoms pass
through the cavity one by one, more photons can be added to
the cavity. Recently the generation of two-photon Fock state
has been proposed[16] and realized[17] by a single two-
level atom interacting with a superconducting cavity which

sustains two nondegenerate orthogonally polarized modes.
The photons are transferred from the source mode into the
target mode of the cavity by a third-order Raman process.
However, this scheme is not robust relative to the velocity of
atoms. Also a recent scheme for producing of large Fock
states has been proposed using the Raman excitation of a
three-level atom which requires in practice a compensation
of a dynamical Stark shift and nonrobust pulse area tech-
nique [18].

In this paper we propose a robust scheme in which a
two-level atom interacts counterintuitively[19] with a
single-mode high-Q cavity and a delayed maser field that are
both near-resonant with the atomic transition, allowing us to
produce a controlled number of photons in the cavity de-
pending on the design of the adiabatic passage. This process
is referred to as a bichromatic adiabatic passage since two
near-resonant interacting fields act on a single transition. A
related work involving exchange of photons between two
laser fields through a bichromatic process can be found in
Ref. [20]. The transfer of photons from the maser field into
the cavity field is based on the adiabatic passage between
two dressed states which are the eigenstates of the coupled
atom-maser-cavity system. This process is robust because it
does not depend on the precise velocity of the atom or on the
precise tuning of the maser and the cavity frequencies. The
dynamics of the process, under the adiabatic conditions, can
be described completely by the topology of the dressed
eigenenergy surfaces. This topological aspect is the key to
the robustness of the process. Our method is based on the
calculation of the dressed eigenenergy surfaces of the effec-
tive Hamiltonian as a function of the two Rabi frequencies
associated to the maser and the cavity fields, and the appli-
cation of adiabatic principles to determine the dynamics of
the process in view of the topology of the surfaces[21].

The paper is structured as follows. In Sec. II, we use the
Floquet formalism and the phase representation of the cre-
ation and annihilation operators to construct the effective
Hamiltonian of the atom-maser-cavity system. Eigenenergy
surfaces of the effective Hamiltonian are displayed in Sec. III
as a function of the normalized Rabi frequencies of the cav-
ity and the maser fields. We demonstrate how the analysis of
these surfaces allows us to design different adapted adiabatic
paths leading to different photon transfers into the cavity
field without changing the atomic population at the end of
the interaction. Section IV is devoted to the numerical simu-
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lation of the evolution governed by the effective Hamiltonian
and the final probabilities of the one and two-photon transfer
states. Finally, in Sec. V we give some conclusions and in-
dicate conditions for experimental implementation.

II. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN

We consider a two-level atom of upper and lower states
u+l and u−l and of energy differenceE+−E−=v0 as repre-
sented in Fig. 1. We use atomic units in which"=1. The
atom in its lower state is released from a source of atoms and
falls through a high-Q cavity with velocityv. The atom first
encounters the vacuum mode of the cavity with frequency
vC and waistWC and then the maser beam with frequency
vM and waistWM. Both the maser and the cavity fields are
near-resonant with the atomic transition. The distance be-
tween the crossing points of the cavity and the maser axis
with the atomic trajectory isd. The traveling atom encoun-
ters time dependent and delayed Rabi frequencies of the cav-
ity and the maser fields:

Gstd = − mÎ vC

2e0Vmode
e−svt/WCd2,

Vstd = − mEM e−fsvt − dd/WMg2, s1d

wherem, Vmode, EM are, respectively, the dipole moment of
the atomic transition, the effective volume of the cavity
mode and the amplitude of the maser field. The detuning of
the maser and the cavity fields from the atomic transition are
Di=v0−vi , i=C ,M. We take the frequencies of the fields
such that their differenced=vC−vM is positive and very
small with respect tovC andvM. Also we assume

maxhuGstdu,uVstduj ! v0. s2d

Under these conditions, the counter-rotating terms can be
discarded in the rotating-wave approximation(RWA). The
semiclassical Hamiltonian of the atom-maser-cavity system
can thus be written as

Hst,u0 + vtd = vCa†a12 + Sv0 0

0 0
D + GstdS 0 a

a† 0
D

+ Vstd/2S 0 e−isu0+vtd

eisu0+vtd 0
D , s3d

wherea ,a† are the annihilation and creation operators of the
cavity field,12 is the 232 identity matrix and the phaseu0 is
the initial phase of the maser field. The periodic time depen-
dencesu0+vtd of the Hamiltonian(3) has been explicitly
written for the convenient application of the Floquet theory
below. The energy of the lower atomic state has been taken
as 0. This Hamiltonian acts on the Hilbert spaceH ^ F

whereH=C2 is the Hilbert space of the atom generated by
u± l andF is the Fock space of the cavity mode generated by
the orthonormal basishunl ;n=0,1,2, . . .j with n the photon
number of the cavity field. The dynamics of system is deter-
mined by the Schrödinger equation,

i
]

] t
fstd = Hst,u0 + vtdfstd, s4d

where fstdPH ^ F with initial condition f0=fst0d= u−l

^ un=0l. We can think of Eq.(4) as a family of equations
parametrized by the phaseu0. The time-dependent Hamil-
tonian (3) contains two different time scales: the periodT
=2p /v characterizing fast oscillations of the maser field and
Tint<WM /v<WC /v characterizing the slow change of the
field amplitudes Gstd ,Vstd. The fast periodic time-
dependence can be taken into account by use of Floquet
theory which consists inlifting the dynamics into an enlarged
Hilbert space[22],

K ª H ^ F ^ L, s5d

whereLªL2sS1,du /2pd denotes the space of square inte-
grable functions of dynamical variableu on the circleS1 of
length 2p, with a scalar product

kf1uf2l
L

ª E
0

2p du

2p
f1
*sudf2sud. s6d

This space is generated by the orthonormal basisheiku ;k
PZj. One can interpretk as the relative photon number with

respect to the(large) average photon numberk̄ of the maser
field. The evolution equation in the enlarged Hilbert space
reads as

i
]

] t
cst;ud = Kst;udcst;ud, s7d

with the Floquet Hamiltonian

Kst;ud = − ivM
]

]u
12 + Hst;ud. s8d

The operator −is] /]ud can be interpreted as the relative pho-
ton number operator of the maser field[23]. The only time
dependence of the Floquet Hamiltonian is from the slow
variation of the field amplitudes.

FIG. 1. Experimental configuration and level scheme of the
atom.
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The relation betweenf and c can be established as fol-
lows: if cst ;ud is a solution of (7) with initial condition
cst0;ud=f0 ^ 1

L
, then

fstd = cst,u0 + vtd s9d

is a solution of(4) with the initial conditionfst0d=f0. 1
L

is
the basis functioneiku with k=0. In Eq.(9), taking the fixed
value ofu0 for the dynamical variableu meansreturning into
the original Hilbert spaceH ^ F.

The eigenvectors of the zero-field Floquet Hamiltonian
are u±,n ,kl= u± l ^ unl ^ eiku which form an orthonormal ba-
sis of the enlarged Hilbert spaceK. We remark that if at the
end of interactiont= t f, the solution of (7) has a form
cst f ;ud=x ^ eiku then fst fd=xeiksu0+vtfd and the probability
for the solution of(4) to be found in the final statesu±,nl,
i.e., ukfst fd u±,nlu2= ukx u±,nlu2, will not depend on the optical
phaseu0+vt f of the semiclassical Hamiltonian(3).

The evolution of(7) due to slow field amplitudes will be
treated in the enlarged Hilbert space by adiabatic principles.
We first show that the dynamics of(8) under the bichromatic
interaction can be described by an effective Hamiltonian. We
start by applying to the Floquet Hamiltonian(8) the unitary
transformation,

R = Se−iu 0

0 1
D , s10d

which yields

K8 = R†KR

= vCa†a12 − ivM
]

]u
12 + S DM Vstd/2

Vstd/2 0
D + Gstd

3S 0 a eiu

a†e−iu 0
D . s11d

The third term ofK8, denotedHRWA, is the so-called RWA
Hamiltonian, associated to the maser field and the atom. Its
eigenvalues are 2l±

s0d=DM ±ÎsDMd2+sVd2. To simplify and
decouple the Hamiltonian(11), we use the phase representa-
tion of a anda† as formulated by Bialynicki-Birula[24]:

a → e−iwÎ− i
]

]w
, a†

→Î− i
]

]w
e+iw, a†a → − i

]

]w
,

s12d

which gives

K8 = − ivC
]

]w
12 − ivL

]

]u
12 + HRWA + Gstd

31
0 e+isu−wd Î− i

]

]w

Î− i
]

]w
e−isu−wd 0 2 . s13d

Defining the new variables

z ª w − u, h ª u, s14d

we have

]

]w
=

]

]z
,

]

]u
=

]

]h
−

]

]z
. s15d

The eigenbasis of (−is] /]wd− is] /]ud) is heinweiku ;n
=0,1,2, . . . ,k=0, ±1, ±2, . . .j which can be written as

einweiku = einsz+hdeikh = einzeisn+kdh = einzeimh, s16d

where m : =n+k=0, ±1, ±2, . . .. Substituting(15) in (13)

gives

K8 = − isvC − vMd
]

]z
12 − ivM

]

]h
12 + HRWA + Gstd

31
0 e−iz Î− i

]

]z

Î− i
]

]z
e+iz 0 2 . s17d

We can define new operators as

b ª e−izÎ− i
]

]z
, b†

ªÎ− i
]

]z
e+iz, s18d

which verify the standard commutation relationsfb ,b†g=1.
The new bosonic operatorb that corresponds to the process
of creation of a cavity photon and associated annihilation of
a maser photon can be intuitively interpreted as the transfor-
mation of a maser photon into a cavity photon. The Hamil-
tonian (17) can thus be expressed as

K8 = − ivM
]

]h
12 + Heff, s19d

whereHeff is the reduced effective Hamiltonian,

Heffstd = db†b12 + S DM Vstd/2

Vstd/2 0
D + GstdS 0 b

b† 0
D .

s20d

K8 is defined on the Hilbert space generated by the orthonor-
mal basis hu± l ^ einz

^ eimh ;n=0,1,2, . . . ;m=0, ±1,
±2, . . .j andHeff is defined on the Hilbert space generated by
the orthonormal basishu± l ^ einz ;n=0,1,2, . . .j where n is
the number of exchanged photons from the maser field into
the cavity field.

III. TOPOLOGY OF THE DRESSED EIGENENERGY
SURFACES

The dressed eigenenergy surfaces ofK8 (19) can be cal-
culated numerically and can be displayed as a function of the
normalized Rabi frequenciesG /d and V /d. These surfaces
are grouped in families for different values ofm, each of
which for zero fields consists an infinite set of eigenvalues
with equal spacingDM. In what follows, we study them=0
family only which meansk=−n (kPZ is the relative photon
number of the maser field andnù0 is the photon number of
the cavity field). The labeling of the dressed eigenenergy
surfaces can be performed in terms of the eigenvectors of the
zero-field original Hamiltonian,

GENERATION OF MULTIPHOTON FOCK STATES BY… PHYSICAL REVIEW A 70, 013807(2004)
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K8sV = 0,G = 0d = Sdb†b − ivM
]

] h
D12 + SDM 0

0 0
D ,

s21d

with eigenvalues

E+,n,m8 sV = 0,G = 0d = dn + mvM + DM ,

E−,n,m8 sV = 0,G = 0d = dn + mvM . s22d

Since the eigenvectors ofK andK8 are related by the trans-
formation (10) as uwl=Ruwl8, the correspondence between
the eigenvalues of the zero-field effective Hamiltonian and
the eigenvectors of the original zero-field Hamiltonian are

E8sV = 0,G = 0d+,n,m=0 ⇔ u+ ,nl8 = u+ ,n,− n − 1l,

E8sV = 0,G = 0d−,n,m=0 ⇔ u− ,nl8 = u− ,n,− nl. s23d

Figure 2 represents them=0 family of the eigenenergy
surfaces ofK8 as a function of the instantaneous normalized
Rabi frequenciesG /d and V /d. Any two neighboring sur-
faces have conical intersections on the planeG=0 and also
on the planeV=0 (except the first surface), corresponding to
the situations where only one of the fields(maser or cavity)
is interacting with the atom. The topology of these surfaces,
determined by the conical intersections, presents insight into
the various atomic population and photon transfers from the
maser field into the cavity field that can be produced by
designing an appropriate path connecting the initial and the
chosen final states. Each path corresponds to a choice of the

envelope of the pulses. In the adiabatic limit, when the
pulses vary sufficiently slowly, the solution of the time-
dependent dressed Schrödinger equation follows the instan-
taneous dressed eigenvectors, following the path on the sur-
face that is continuously connected to the initial state. We
start with the dressed stateu−,0,0l, i.e., the lower atomic
state with zero photons in the cavity field. Its energy is
shown in Fig. 2 as the starting point of the various paths. The
paths shown in Fig. 2 describe accurately the dynamics if the
time dependence of the envelopes is slow enough according
to the Landau-Zener[25,26] and Dykhne-Davis-Pechukas
[27,28] analysis. If two(uncoupled) eigenvalues cross, the
adiabatic theorem of Born and Fock[29] shows that the dy-
namics follows diabatically the crossing. This implies that
the various dynamics shown in Fig. 2 are a combination of a
global adiabatic passage around the conical intersections and
local diabatic evolutions through(or in the neighborhood) of
conical intersections of the eigenenergy surfaces[30].

We consider the action of two smooth pulses, associated
with the Rabi frequenciesGstd and Vstd, which act on the
two-level atom with a time delayt=d /v. Figure 2 shows two
examples of the adiabatic paths of different peak amplitudes
of the Rabi frequencies and leading to two different photon
transfers into the cavity field without changing the atomic
population at the end of the interaction. Each of the two
black paths[labeled(a) and(b)] corresponds to a sequence of
two smooth pulses, shown in Figs. 3(a) and 3(c), of equal
length Tint and different peak Rabi frequenciesVmax,Gmax,
separated by a delay such that the cavity pulse interacts be-
fore the maser pulse.

For the path(a), the dynamics goes through the first in-
tersection(on theV=0 plane) between the first and the sec-
ond surfaces, but not the second intersection between the
second and the third surface. The crossing of the first inter-
section asG increases withV=0, brings the dressed system
into the second eigenenergy surface. Turning on and increas-
ing the amplitudeV (while G decreases) moves the path
across this surface. When the maser field decreases, the
curve crosses another intersection between the second and
the third surface(with G=0) that brings the system to the
third surface, on which the path(a) stays until the end of the
pulseV. The transfer state is finally connected to the state
u−,1,−1l: there is no final transfer of atomic population, but
onevM photon has been absorbed from the maser field and
one vC photon has been emitted into the cavity field at the
end of the process. The path(b) allows the dynamics(on the
V=0 plane) to go through the second intersection, but not
the third intersection. The next two intersections of the path
(b) are located(on the planeG=0) between the third and the
fourth and between the fourth and the fifth eigenenergy sur-
faces and the system is finally connected to the stateu−,2,
−2l: there is again no final transfer of atomic population, but
two vM photons have been absorbed from the maser field
and twovC photons have been emitted into the cavity field at
the end of the process. If the peak amplitudes are taken even
larger such thatn conical intersections(dynamical reso-
nances) are crossed whenG rises withV=0 and thenn in-
tersection are crossed whenV decreases withG=0, the final
state of the system will beu−,n ,−nl, i.e., the emission of
n vC photons into the cavity field and the absorbtion ofn vM

FIG. 2. The first five eigenenergy surfaces(in units ofd) of Heff

as functions ofG andV for d=2DM =−2DC. The termG has been
added toEeff for clarity of display. The solid paths(a),(b) corre-
spond to adiabatic evolutions which start from theu−,0,0l state and
end atu−,1,−1l and u−,2,−2l, respectively.
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photons from the maser field, with no final atomic population
transfer. The analysis of the eigenenergy surfaces allows one
to determine adapted amplitudes of the Rabi frequencies
which will permit to transfern photons into the cavity field
in a robust way.

IV. NUMERICAL SIMULATION

The time evolution of the system for each family of the
eigenenergy surfaces is given by the Schrödinger equation

i
]

] t
Fstd = HeffstdFstd. s24d

The time dependence of the Rabi frequencies are delayed
Gaussians of the form(1). Figures 3(a) and 3(c) show the
profile of the Rabi frequencies as functions of time for one-
photon and two-photon transfer with an interaction time(full
width at half maximum) Tint=66/d and a time delayt

=57/d. The adapted amplitudes of the Rabi frequencies for
n-photon sn=1,2d transfer correspond to the paths(a) and
(b) in Fig. 2. The condition for global adiabaticity
uDM,CuTint=sd /2dTint=33@1 is well satisfied. Figures 3(b)

and 3(d) present the time evolution of populations calculated
numerically by solving(24). The atom-maser-cavity system
in the initial stateu−,0,0l with the suitable forms of Rabi
frequencies[Figs. 3(a) and 3(c)] evolves to the finale states
u−,1,−1l and u−,2,−2l, respectively, with probabilities of
P−,1,−1= uk−,1,−1uFst fdlu

2=0.99 and P−,2,−2= uk−,2,
−2uFst fdlu

2=0.98.
Figure 4 displays the contour plot of the final population

as a function of the normalized Rabi frequencies for one- and

two-photon transfers. The white regions represent the
adapted values of the Rabi frequencies for which the final
probability of one- and two-photon transfers are maximal.
This figure shows that the bichromatic adiabatic passage is
more robust with respect to the maser Rabi frequency than
with respect to the cavity one. The reason comes back to the
special structure of the dressed eigenenergy surfaces in Fig.
2. We can see that on theG=0 plane, between the first sur-
face and the second one there is not any intersection and
between thenth surface and its neighboring surfaces there
are sn−1d intersections, i.e., after thesn−1dth intersection
there are no others. On the other hand on theV=0 plane, as
the value ofG increases, the distance between neighboring
intersections decreases. In general, as the distance of conical
intersections between neighboring surfaces decreases, the ro-
bustness of the adiabatic passage is also decreased.

V. DISCUSSION AND CONCLUSIONS

Using the topological properties of dressed eigenenergy
surfaces of the effective Hamiltonian of the atom-maser-
cavity system, we have determined adiabatic paths to transfer
n photons from the maser field into the cavity field to gen-
erate an-photon Fock state. The realization of parameters
satisfying the conditions of the proposed scheme appears
feasible with progressive improvements to experiments with
high-Q microwave cavities. In this analysis we have assumed
that the interaction time between the two-state atom and the
fields is short compared to the cavity lifetimeTcav and the
atom’s excited state lifetimeTat, i.e., Tint!Tcav,Tat, which

FIG. 3. (a) and (c) Normalized Rabi frequencies with different values of amplitudes for one-photon and two-photon transfers as a
function of time.(b) and (d) Time evolution of the populations for one- and two-photon transfers.
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are essential for an experimental setup and avoiding decoher-
ence effects. In the microwave domain, the radiative lifetime
of circular Rydberg states—of the order ofTat=30 ms—are
much longer than those for noncircular Rydberg states. The
typical value of the cavity lifetime is of the order ofTcav
=1 ms(corresponding toQ=33108) and the upper limit of
interaction time isTint=100ms (atom with a velocity of
100 m/s with the cavity mode waist ofWC=6 mm) [31].
The condition of global adiabaticityGmax Tint@1 for the
typical value of Gmax<0.15 MHz [31] is well satisfied
sGmax Tint<15d. Numerics(Figs. 3 and 4) shows additionally
that the diabatic dynamics through the conical intersections
of Fig. 2 is also satisfied.

Moreover the decay rate of the cavity is scaled with the
number of photons present in the cavitysTint!Tcav/nd which

suggests the need to cavities with higherQ factor for pro-
ducing large Fock states. Closed cavities withQ=431010

and longer decay timeTcav=0.3 s may also be used[32]. The
external field can be introduced in these cavities as it is done
currently in experiments related to the measurement of the
phase diffusion process[33].
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Chapter 14

Entangling spins, photons and atoms
by adiabatic passage

One of the striking non-classical aspects of a quantum system made of N objects is entangle-
ment, for which the state vector of the system cannot be written, in any basis, as a tensor
product of independent substates. The generation and the controlled manipulation of entan-
gled states of N -particle systems is fundamental for the study of basic aspects of quantum
theory [234, 235]. The idea is to apply a set of controlled coherent interactions to the particles
(atoms, ions, photons) of the system in order to bring them into a tailored entangled state.
The physics of entanglement provides the basis of applications such as quantum information
processing and quantum communications. Very recently teleportation of quantum states has
been realized [236, 237] using atom-atom entanglement following the proposal of Bennett et al.
[238]. Particles can then be viewed as carriers of quantum bits of information and the realiza-
tion of engineered entanglement is an essential ingredient of the implementation of quantum
gates [239].

Most experimental realizations of entanglement have been implemented with photons. Al-
though the individual polarization states of photons are easily controlled, and their quantum
coherence can be preserved over many kilometers of an optical fiber [240], photons cannot be
stored for long times, and manipulations of collective entangled states present considerable
difficulties even when the photons are confined in the same cavity. The creation of long lived
entangled pairs with atoms, on the other hand, is a relatively recent pursuit which may provide
reliable quantum information storage. The entangled state of a pair of two-level atoms using
pulse area techniques in a microwave cavity has been realized by Hagley et al. [241] based on
the proposal of Cirac and Zoller [242] (see appendix A). However the pulse area technique is
not robust with respect to the velocity of the atoms and the exact-resonance condition. Re-
cently a different scheme has been proposed [229] to entangle two atoms using a tripod STIRAP
technique in a four-level atom-cavity-laser system in which one of the pulses corresponds to the
field of a cavity-mode. Manipulation of entanglement of two atoms in this scheme, however,
requires to control a geometric phase via an integral of Hamiltonian parameters over a closed
path in parameter space which is difficult in experimental implementations. The generation of
atom-photon entanglement has also been proposed in [243] in a tripod-like laser-atom-cavity
system which sustains two cavity modes.

The f-STIRAP is a variation of STIRAP which allows the creation of any preselected coher-
ent superposition of the two degenerate ground states (see Subsection 8.2.2). As in STIRAP,
the Stokes pulse linking the initially unpopulated states |e⟩ and |g2⟩, arrives before the pump
pulse linking the initially populated state |g1⟩ to the excited state |e⟩, but unlike STIRAP where
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the Stokes pulse vanishes first, here the two pulses vanish simultaneously while maintaining a
constant finite ratio of amplitudes. The advantage of STIRAP is its robustness with respect to
the precise tuning of pulse areas, pulse delay, pulse widths, pulse shapes, and detunings. Since
f-STIRAP requires a precise ratio of pulse endings, it is not as robust as STIRAP if two different
Stokes and pump pulses are used. However in specific circumstances where two laser pulses,
one with elliptic polarization and another with σ− circular polarization are used, f-STIRAP can
be made as robust as STIRAP [79]. In f-STIRAP as in STIRAP, if the evolution is adiabatic
(for instance with a slow transit of atoms across cw fields), the dynamics of the system follows
an adiabatic dark state which does not involve the excited atomic state |e⟩. Therefore this
technique is immune to the detrimental consequences of atomic spontaneous emission. The
STIRAP technique has interesting applications in the generation of coherent superposition of
Fock states [228, 138] and of maximally polarization-entangled photon states [244] in an optical
cavity.

14.1 Adiabatic creation of entangled states by a bichro-

matic field designed from the topology of the dres-

sed eigenenergies

In this section, we propose a simple method for entangling two spins by a bichromatic process
[245], using a model introduced in [246]. The bichromatic property is used to show nonintuitive
possibilities of entanglement.
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Preparation of entangled pairs of coupled two-state systems driven by a bichromatic external field is studied.
We use a system of two coupled spin-1

2 particles that can be translated into a three-state ladder model whose
intermediate state represents the entangled state. We show that this entangled state can be prepared in a robust
way with appropriate fields. Their frequencies and envelopes are derived from the topological properties of the
model.

DOI: 10.1103/PhysRevA.66.032311 PACS number~s!: 03.67.2a, 42.50.Hz, 03.65.Ta

I. INTRODUCTION

Entanglement is a key concept in various contemporary
areas of active research in quantum physics. It explicitly
demonstrates the nonlocal character of quantum theory, hav-
ing potential applications in quantum communication, cryp-
tography, and computation@1#. The preparation of an en-
tangled state is of great interest for both fundamental and
applied reasons. During the last few years various methods
for preparation of entangled states of atomic systems have
been proposed and some of them experimentally demon-
strated@2,3#.

Although a quantum system can be manipulated by tai-
lored sequences of resonant pulses of precise area, in particu-
lar, p and p/2 pulses, respectively, for the complete inver-
sion and the equal weight coherent superposition, deviations
from the precise pulse area and from resonance can lead to
significant errors. Adiabatic passage techniques provide
much greater robustness against fluctuations in the interac-
tion parameters. The stimulated Raman adiabatic passage
~STIRAP! method@4# has been proposed for the creation of
an entangled state of two three-level atoms in a QED cavity
@5# and forL atomic systems@6#.

In this paper we propose a simple method for entangling
two subsystems driven by pulse-shaped external fields. For
definiteness, we take these to be two identical spins interact-
ing with each other and driven by radio-frequency fields.
This system can be translated in a three-level ladder model
with the intermediate level corresponding to the entangled
state@7#. The goal is to populate completely this entangled
state at the end of the pulses by adiabatic passage. The most
efficient couplings are obtained with two near one-photon
resonant fields. We will show that unlike in the STIRAP
process, one- and two-photon detunings are required to
populate most efficiently the intermediate level.

We show furthermore that bichromatic effects play an im-

portant role, due to the small anharmonicity of the system.
The anharmonicity of the equivalent three-level ladder sys-
tem is determined by the interaction of the spins. It can be in
general small enough such that the standard rotating wave
approximation~RWA!, allowing to assign each field to a
unique transition, cannot be applied. In this case one needs to
take full account of the bichromatic effects~see, e.g., Ref.
@8#!. We will show robust regions of field parameters that
will generate the entangled state by adiabatic passage below
and beyond the standard RWA.

In Sec. II, we describe the model of the two-spin system
driven by a bichromatic external field and how it leads to an
equivalent three-level system. In Sec. III, we show the result
of numerical simulations, for which we develop in later sec-
tions a detailed interpretation by constructing adapted effec-
tive Hamiltonians that take into account the dominating reso-
nant or quasiresonant effects. In Sec. IV, we derive the
Floquet Hamiltonian required to study the system of spins
dressed by the external fields. Sections V and VI are devoted
to derive relevant effective dressed Hamiltonians for differ-
ent regions of parameters, respectively, in the weak field re-
gime ~below the RWA! and in the strong field regime~be-
yond the RWA!. We finally conclude in Sec. VII.

II. THE MODEL: TWO-SPIN SYSTEM
IN EXTERNAL FIELDS

We consider two-spin-1
2 particles of the same gyromag-

netic ratiom, coupled by a magnetic dipolar interaction. In a
time-dependent magnetic fieldB(t)5@Bx(t),By(t),Bz#, the
Hamiltonian of this system reads (\51),

Ĥ~ t !5Ĥ01mB~ t !•~ Ŝ11Ŝ2!, ~1!

where

Ĥ054j Ŝ1
z

^ Ŝ2
z
2j~ Ŝ11 ^ Ŝ221 Ŝ12 ^ Ŝ21! ~2!

is the part describing the magnetic dipolar spin-spin interac-
tion, with j the magnetic dipolar interaction constant,Ŝk

5@ Ŝk
x ,Ŝk

y ,Ŝk
z
# the kth spin operator (k51,2), andŜk65 Ŝk

x

6i Ŝk
y . We assume that the static magnetic fieldBz in the z
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direction is strong enough (umBzu@uju) so that the Hamil-
tonian Ĥ0 ~2! is justified for this case of identical gyromag-
netic ratio m .

We first construct the general equivalent three-level model
driven by external fields and next derive the approximate
Hamiltonian that takes into account the bichromatic effects
by improving the standard rotating wave approximation.

We remark that the effective Hamiltonian we obtain in Eq.
~11! applies also to a spin interaction of the form Ĥ08

54z Ŝ1
z

^ Ŝ2
z .

A. The three-level model

In the spin product state space $um&1um&2% (m5↓ ,↑),
where the states u↓&k and u↑&k denote, respectively, the spin-
down and spin-up states of the kth spin, a complete basis of
orthonormalized eigenstates of Ĥ0 is given by

u↓↓&[u↓&1u↓&2 , ~3a!

u↓↑
1&[

1

A2
@ u↓&1u↑&21u↑&1u↓&2], ~3b!

u↑↑&[u↑&1u↑&2 , ~3c!

u↓↑
2&[

1

A2
@ u↓&1u↑&22u↑&1u↓&2]. ~3d!

In this basis, the Hamiltonian ~1! with Ĥ0 of Eq. ~2! can be
exactly expressed in the block-matrix form

H~ t !5FHc~ t ! 0

0 0G , ~4!

where

Hc53
j2bz

1

A2
~bx1iby! 0

1

A2
~bx2iby! 22j

1

A2
~bx1iby!

0
1

A2
~bx2iby! j1bz

4
~5!

with b[@bx ,by ,bz#5mB. The state u↓↑
2& is thus decou-

pled from the other states; it describes the evolution of a
spin-0 singlet in a time-dependent magnetic field. This de-
coupling justifies our choice of the basis. The other three
states u↓↓& , u↓↑

1&, and u↑↑& are coupled by the transverse
(xy) magnetic field. To complete the definition of the prob-
lem, we suppose that initially the two-spin system is in the
unentangled state u↓↓&. Our goal is to establish the condi-
tions leading to the most efficient robust transfer into the
entangled state u↓↑

1&.

We consider the case when the spin system interacts with
a constant magnetic field in the z direction and two radio-
frequency fields of respective frequencies v1 and v2 in the x
direction,

bz5const, ~6a!

bx5V1~ t !cos~v1t1u1!1V2~ t !cos~v2t1u2!, ~6b!

by50, ~6c!

where we assume positive V1 and V2. The state vector f(t)
is solution of the Schrödinger equation i(d/dt)f(t)
5Hc(t)f(t) with the Hamiltonian Hc(t) ~5! written in the
basis $u↓↓&,u↓↑

1& ,u↑↑&%. When the radio-frequency fields
are off (bx50)), we have thus the following energies E

↓↓

[j2bz , E
↓↑

1[22j , and E
↑↑

[j1bz . Without loss of
generality we assume j,0 and bz.0, leading for a strong
enough static magnetic field Bz such that bz5mBz.3uju to
a ladder configuration E

↓↓
,E

↓↑
1,E

↑↑
, whose anharmonic-

ity is given by

a[@~E
↑↑

2E
↓↑

1!2~E
↓↑

12E
↓↓

!#/253j . ~7!

We apply near resonant fields v1'E
↓↑

12E
↓↓

, v2'E
↑↑

2E
↓↑

1, i.e., with the detunings D1 and D2,

v1[23j1bz2D1 , ~8a!

v2[3j1bz2D2 . ~8b!

B. The bichromatic rotating wave approximation

According to the RWA, one can neglect nonresonant
counter-rotating terms under the conditions v1,2@V1,2 . The
rotating wave transformation

R5F e2iE
↓↓

t 0 0

0 e2i(E
↓↓

1v1)t 0

0 0 e2i(E
↓↓

1v11v2)t
G ~9!

leads to the state vector f̃(t)5R†f(t) ~whose coefficients
have the same absolute values as the ones of f) that satisfies
the Schrödinger equation

i
d

dt
f̃~ t !5H̃c~ t !f̃~ t !, ~10!

with the Hamiltonian H̃c5R†HcR2i(]R†/]t)R, where only
the quasiresonant terms have been kept,

H̃c5
1

2 F
0 V1 0

V1 2D1 V2

0 V2 2~D11D2!
G

1
1

2 F
0 e2idtV2 0

e idtV2 0 e idtV1

0 e2idtV1 0
G . ~11!
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The frequency

d[v12v2526j1D22D1 ~12!

characterizes the coupling ambiguity @8#. Note that the stan-
dard RWA, for which V1 ,V2!udu, corresponds to keeping
only the first term in the Hamiltonian ~11! if the field 1 ~field
2! is resonant with the 1-2 transition ~2-3 transition!. The full
Hamiltonian H̃c allows both fields to couple the two transi-
tions when the field amplitudes V1 and V2 are not small
compared to udu. The competing coupling schemes are de-
picted in Fig. 1 . Two limit channels can thus be exhibited,
each of which can be given by a standard RWA: the channel
A shown in the left part of Fig. 1 ~channel B shown in right
part of Fig. 1! corresponds to the situation when the field 1
~field 2! couples only the 1-2 transition and the field 2 ~field
1! couples only the 2-3 transition.

The standard RWA can be made if Vmax!uau, where Vmax
is the peak Rabi frequency for V i , i51,2. Furthermore,
adiabatic passage will require the standard condition Vmaxt
@1, where t represents the time of interaction. A standard
weak interaction j of the order of 100 Hz will thus require a
time of interaction of the order of 1 s to satisfy both the RWA
and the adiabatic passage condition, which is of the order of
the spin relaxation time. Thus a weak interaction requires to
take into account the bichromatic effects ~with a larger peak
Rabi frequency to shorten the time of interaction! in order to
avoid the relaxation effects.

We will study more precisely in Secs. V and VI the vari-
ous regimes that occur in this system. The problem of pre-
paring the entangled state u2&[u↓↑

1& is thus reduced to the
study of the population transfer into the intermediate level in
the ladder system driven by the Hamiltonian H̃c ~11!.

The populations given by the Schrödinger equation ~10!
are invariant under the following transformation T:

D1→D11d , ~13a!

D2→D22d , ~13b!

d→2d , ~13c!

V1
V2 . ~13d!

We indeed obtain R̃†(TH̃c)R̃2i(]R̃†/]t)R̃5H̃c , with the
unitary transformation

R̃5F 1 0 0

0 e2idt 0

0 0 1
G . ~14!

III. NUMERICAL RESULTS

In this section, we describe the numerical results that are
obtained by solving the Schrödinger equation ~10!, for which
we will present a detailed theoretical analysis in the follow-
ing sections.

Figures 2 and 3 display the population of the state u2& at
the end of a sequence of delayed Gaussian pulses of the same
lengths and the same peak amplitudes,

V1~ t !5V0exp@2~ t1t !2/T2# , ~15a!

V2~ t !5V0exp@2~ t2t !2/T2# , ~15b!

for various normalized peak amplitudes V0 /d and detunings
D/d , where we have chosen

D[D15D2 . ~16!

We have considered this restriction of the parameters be-
cause it gives preferentially large regions of good population

FIG. 1. Diagram of linkage patterns between the three states
showing the different couplings. Note that D1 and D2 have been
chosen negative here.

FIG. 2. Contour map of population transfer efficiency P2(`) for
varying peak Rabi frequency V0 /d and varying detuning D/d ~with
D5D15D2) for the sequence 1. White areas correspond to high
efficiency transfer ~close to 1! to the entangled state. Dark areas
correspond to low efficiency transfer ~close to 0! to the entangled
state u2&. The dashed lines separate different regions labeled A , D ,
and D8, associated with different effective Hamiltonians con-
structed in Secs. V and VI. The regimes of good population transfer
are bounded by full lines predicted from the topological analysis.
The crosses labeled (a1), (a18), (d1), and (d18) refer to parameters
leading to high efficiency. They also refer to the pathways shown,
respectively, in Figs. 6, 7, 8, and 9. Besides regions A and D, we
have displayed the corresponding linkage patterns, respectively, for
D50 and D52d .
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transfer. This will be justified in Secs. V and VI. Note that
the case D152D2 is irrelevant since it corresponds to a
two-photon resonance between the product states u↓↓& and
u↑↑& . We could have considered equivalently the restriction
D25D112d in accordance with the symmetry ~13!. The two
possible orderings of pulses have been considered: the se-
quence 1 of Fig. 2 ~the sequence 2 of Fig. 3! corresponds to
the v1 pulse ~the v2 pulse! being switched on first, with the
delay t51.7T (t521.7T). Global adiabaticity is ensured
by the choice of a large pulse area V0T550.

One can distinguish three islands of robust high transfer
~white regions!. Specific parameters characterizing these is-
lands are labeled by (a), (a8), (d), and (d8), with the sub-
script 1 or 2, respectively, for Figs. 2 or 3 @except (a2) which
is outside the regions of high transfer#. These islands of high
transfer are analyzed in the following sections by using the
dressed Hamiltonian corresponding to H̃c ~11! and the adia-
batic properties of the dynamics. We will characterize differ-
ent regimes and associate them with different effective
dressed Hamiltonians. We will show that the islands of good
transfer can be understood from the topological properties of
the appropriate effective dressed Hamiltonian.

We will show the following results.
~i! Regions ~a! correspond to a STIRAP-like process as-

sociated with the channel A ~see Fig. 1! that is perturbed ~in
the sense of non-resonant perturbation theory! by the channel
B. Note that the restriction D25D112d would have given a
STIRAP-like process associated with the channel B per-
turbed by the channel A.

~ii! Regions ~d! ~in the weak field regime, i.e., V1 ,V2
,udu) correspond to an effective two-level SCRAP-like
~Stark chirped rapid adiabatic passage! process @9,10#.

~iii! Regions (d8) ~in the strong field regime, i.e.,
V1 ,V2*udu) correspond to an effective two-level bichro-
matic SCRAP process ~with additional Stark shifts! as de-
scribed in Ref. @11#.

IV. THE FLOQUET DRESSED HAMILTONIAN

In this section we derive the Floquet Hamiltonian describ-
ing the full Hamiltonian of the spin system dressed by the
strong fields. It will allow to predict and interpret the various
processes occurring in this system by adiabatic passage.

It is convenient to use the adiabatic Floquet theory in
order to study the Hamiltonian H̃c ~11! since its time depen-
dence contains a characteristic frequency d . The Floquet
Hamiltonian corresponding to H̃c is @8,13#

K[V1 ,V2]
52i\d

]

]u

1
1

2 F
0 V11e2iuV2 0

V11e iuV2 2D1 V21e iuV1

0 V21e2iuV1 2~D11D2!

G .

~17!

We have formulated this Floquet Hamiltonian in a way
which derives naturally from the theory of quantized dressed
states in a cavity @12#. The Floquet Hamiltonian allows to
take into account the photon exchanges between the atom
and the fields. It is formally constructed on the initial phases
u1 and u2 of the fields which are treated as dynamical vari-
ables acting on the photonic Hilbert space L5L2(du1/2p)
^ L2(du2/2p), where each L2(du i/2p) is the Hilbert space
of 2p-periodic functions of the angle u i @11#. Since we have
applied a bichromatic rotating wave approximation, only the
frequency d5v12v2, associated with the dynamical vari-
able u[u12u2 is left in the effective Hamiltonian. The ef-
fective Floquet Hamiltonian K ~17! acts thus on the Hilbert
space spanned by the three states $u1&,u2&,u3&% tensored by
the effective photonic Hilbert space L2(du/2p). This photo-
nic Hilbert space allows to take into account the exchanges
of the group of v1-v2 photons. The eigenstates of K are
families of three states denoted u1;k ,2k&, u2;k21,2k&, and
u3;k21,2k21& with k a positive or negative integer. The
corresponding eigenvalues l1;k ,2k , l2;k21,2k and
l3;k21,2k21 have the following periodicity property:
ln;k1 ,k2

5ln;k121,k2111\d , for n51,2,3. The notation

un;k1 ,k2& characterizes ~when the fields are off! the state un&
dressed by the field of k1 v1 photons and of k2 v2 photons.
The integers k1 and k2 characterize thus relative photon
numbers of the respective fields of frequency v1 and v2.
The initial state is denoted u1;0,0& . The problem can be for-
mulated as follows: we look for robust adiabatic connections
between the initial state u1;0,0& and the final state u2;k21,
2k& for some positive or negative integer k.

The Floquet Hamiltonian ~17! depends parametrically on
the pulse shapes and the detunings. The possible connections
depend on the topology of the eigenenergy surfaces of Eq.
~17! as functions of the field envelopes V1 and V2 for given
detunings D1 and D2 @11,14#. The topology is characterized
by true crossings which occur generically when one of the
fields is off. We will study in the following the topology of K
using different effective dressed Hamiltonians corresponding

FIG. 3. Contour map of population transfer efficiency P2(`) for
varying peak Rabi frequency V0 /d and varying detuning D/d for
the sequence 2. The cross labeled (a2) in one region of low effi-
ciency and the ones labeled (a28), (d2), and (d28) in the regions of
high efficiency refer to the pathways shown, respectively, in Figs. 6,
7, 8, and 9.
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to different regimes. These regimes will depend on the
ranges of the detunings and of the field amplitudes.

In the next sections we will calculate the eigenenergy sur-
faces for different relevant cases, using a numerical diago-
nalization of Eq. ~17!. This can be done either by discretiza-
tion of the angle u or equivalently by using a restricted finite
basis of the complete basis $e iku,kPZ% of the photonic Hil-
bert space L2(du/2p). Effective Hamiltonians will be deter-
mined in the appropriate regions, which give good approxi-
mations for these numerical surfaces, and provide an analytic
explanation of the different domains where adiabatic transfer
is efficient.

We classify the different regimes and construct effective
dressed Hamiltonians by determining in the Hamilonian K
~17! which terms are resonant ~or quasiresonant! and which
are only perturbative. The resonant terms are treated by an
adapted unitary transformation which allows an explicit di-
agonalization, whereas the perturbative terms can be treated
by stationary pertubation theory. This technique has been
presented in Ref. @15#. Note that for a simple RWA two-level
system of Rabi frequency V and detuning D , the perturba-
tive regime is such that V!uDu and the resonant regime such
that V*uDu. We classify the different regimes as functions
of the ranges of the field amplitudes and of the detunings.

In the following, we have normalized all the quantities
with respect to d .

V. WEAK-FIELD REGIME

The weak-field regime occurs when V1(t),V2(t),d .
Note that when one has D15D2 additionally, this regime
coincides with a strong spin coupling since we have then
6uju.V1(t),V2(t). In this case of weak-field regime, we
can intuitively analyze the different regimes with respect to
the range of the detunings using the diagram of linkage pat-
terns ~Fig. 1!. Six relevant regimes ~bounded by dashed

lines! have been collected in Fig. 4, depending on the qua-
siresonances.

(A) The transition 1-2 is quasiresonant with v1 and per-
turbed by v2, 2-3 is quasiresonant with v2 and perturbed by
v1.

(B) 1-2 is quasiresonant with v2 and perturbed by v1,
2-3 is quasiresonant with v1 and perturbed by v2.

(C) 1-2 and 2-3 are both quasiresonant with v2, and per-
turbed by v1.

(D) 1-2 is quasiresonant with v2 and perturbed by v1,
2-3 is perturbed by v2 and v1.

(C̃) 1-2 and 2-3 are both quasiresonant with v1, and per-
turbed by v2.

(D̃) 1-2 is quasiresonant with v1 and perturbed by v2,
2-3 is perturbed by v1 and v2.

In the exact resonant cases, we have represented the re-
gimes A, C, and D in Fig. 5.

As shown schematically in Fig. 4, the above regimes can
be roughly bounded by

D156d/2, D1523d/2, D256d/2, D253d/2.
~18!

By the symmetry ~13!, we recover the regime B from the
regime A, C̃ from C, D̃ from D ~exchanging additionally V1
and V2).

The regimes A and B are STIRAP-like regimes; D and D̃
are SCRAP-like regimes.

We do not consider other regimes where the state u1& is
almost not depopulated by adiabatic passage.

The line D52d/2 appears as a dashed line in Figs. 2 and
3, where the restriction D15D2 has been considered.

A. Regime A

When the transition 1-2 is quasiresonant with the fre-
quency v1 and the transition 2-3 quasiresonant with the fre-
quency v2, the process can be analyzed as the channel A
perturbed ~in the sense nonresonant perturbation theory! by
the channel B. We refer to it as the regime A as shown in
Figs 2 and 3, where it is roughly bounded by the dashed lines
D52d/2, D5d/2 ~not shown!, and V05d . This regime is
approximately characterized by the following effective
Hamiltonian in the basis $u1;0,0&, u2;21,0&, u3;21,21&%
@13#:

FIG. 4. Schematic diagram of the regimes for a weak-field re-
gime as a function of the normalized detunings D1 /d and D2/d .
The restriction D25D1 has been used for Figs. 2 and 3.

FIG. 5. Diagram of linkage patterns for the three regimes ~in the
resonant case!: A (D15D250), C (D152d ,D250), and D (D1

52d ,D252d).
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H̃c
A

5
1

2 3
2

~V2!2

2~d1D1!
V1 0

V1 2D11
~V2!2

2~d1D1!
1

~V1!2

2~d2D2!
V2

0 V2 2~D11D2!2
~V1!2

2~d2D2!

4 , ~19!

which corresponds to the Hamiltonian characterizing the
channel A with additional time dependent Stark shifts ~on the
diagonal! induced by the channel B. Note that this effective
Hamiltonian is less precise for bigger V1 or V2 approaching
d .

1. Topology of the channel A in the RWA limit

Before analyzing the dynamics given by this Hamiltonian
~19!, we recall the results in the limit case of a very weak-
field V1(t),V2(t)!d obtained in Ref. @14#. In this case the
perturbative terms can be neglected and the Hamiltonian be-
comes

H̃c
A
→

1

2 F
0 V1 0

V1 2D1 V2

0 V2 2~D11D2!

G . ~20!

This resulting effective Hamiltonian corresponds to the chan-
nel A alone. The topology of the energy surfaces of this
Hamiltonian has been analyzed in Ref. @14#. It has been
shown that the adiabatic transfer to state u2& is topologically
allowed for

D1D2.0. ~21!

The topological analysis shows moreover that for the se-
quence 1 the region of this process is bounded in the param-
eter space by the curves

V052AD1~D11D2! ~22!

and for the sequence 2 by the curves ~22! and

V052AD2~D11D2!. ~23!

2. Topology of the channel A perturbed by the channel B

Taking now into account the perturbation by the channel
B @Hamiltonian ~19!# leads to two kinds of topology as
shown in Figs. 6 and 7, where the surfaces of quasienergies
as functions of the normalized Rabi frequencies V1 /d and
V2 /d , respectively, for D5D15D252d/20 and D5D1

5D252d/4 have been displayed. The eigenvalues of Eq.
~19! ~not shown! fit these surfaces well except in Fig. 7 when
V1;d and V2;d because of an additional dynamical reso-
nance ~i.e., a resonance occuring beyond a threshold of the
field amplitudes! @15,8# which involves the surface con-
nected with u3;0,22& ~which corresponds to the surface con-
nected to u3;21,21& and translated of d) and the surface
right below.

Figure 6 shows that the two conical intersections, one
occurring for V150, the other one for V250, determine the
boundary of the adiabatic connection between the initial state
u1;0,0& and the target state u2;21,0&. A detailed analysis of
the dynamics through the conical intersections can be found
in Ref. @14#. We summarize here the main results using an
example of a crossing occurring for V150: if the dynamics
goes exactly through the crossing, where V1 is exactly zero,
then adiabatic passage through the intersection occurs along

FIG. 6. Quasienergy surfaces ~in units of d) as functions of
V1 /d and V2 /d for D15D252d/20. The path denoted a1 ~se-
quence 1!, for V050.35d , connects the states u1& and u2& with the
absorption of one v1 photon. The path denoted a2 ~sequence 2!, for
V050.35d , connects the states u1& and u3& with the absorptions of
one v1 photon and of one v2 photon.
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a smooth line. If the dynamics slightly misses the crossing,
i.e., for a specific V1Þ0, it encounters instead a thin
avoided crossing. It is expected to be passed diabatically,
i.e., with a jump from one branch to the other, for a suffi-
ciently small V1 with respect to the speed of the passage,
according to a local Landau-Zener analysis. Thus the
Landau-Zener analysis provides the matching between the
adiabatic evolution far from the conical intersection and the
diabatic behavior near the intersection. Note that a too large
V1 with respect to the speed of the passage would lead either
~i! to an undesirable splitting of the population along the two
surfaces near the intersection, followed by an adiabatic evo-
lution of these two states, or ~ii! for a larger V1, to an adia-
batic evolution staying on the initial surface.

For the sequence 1, the conical intersection occurring for
V150 is favorable for this adiabatic connectivity. The path
denoted a1 ~also corresponding to the cross a1 of Fig. 2! is
an example for the complete transfer. However, for the se-
quence 2, the conical intersection occurring for V150 is
also favorable but the one occurring for V250 is detrimental
since it makes u1;0,0& connect to u3;21,21&. The path de-
noted a2 is an example for the complete transfer to u3;21,
21& ~also corresponding to the cross a2 of Fig. 3!.

For a bigger detuning ~in absolute value!, the topology is
different as shown in Fig. 7. The previous conical intersec-
tion occurring for V250 has now disappeared and another
one involving the surfaces connected to u1;0,0& and u3;0,
22& has appeared. The two conical intersections, the one
occurring for V150 and the other one for V250, are in-
volved for the adiabatic connection between the initial state

u1;0,0& and the target state u2;21,0&. More precisely, for the
sequence 1, these two conical intersections determine the
boundary of this adiabatic connection; the path denoted a18

~also corresponding to the cross a18 of Fig. 2! is an example
for the complete transfer. However, for the sequence 2 only
the conical intersection occurring for V150 binds now the
adiabatic connection; the path denoted a28 is an example for
the complete transfer ~also corresponding to the cross a28 of
Fig. 3!.

Using the effective Hamiltonian ~19!, the position of the
previous conical intersections, for V150 and V250, re-
spectively, lead to the three boundaries for the sequence 1,

D5
V2

16d
@25V26A9~V2!2

132d2# , ~24a!

V15A2~d2D !@2~d1D !2A2~d1D !# . ~24b!

The delay between the pulses has been chosen sufficiently
large such that it is a good approximation to consider that the
adiabatic connectivity is quite well described by the value of
the peak amplitudes. Thus we have displayed these bound-
aries in Fig. 2 as full lines, with V25V0 for Eq. ~24a! and
with V15V0 for Eq. ~24b!. They globally determine the
boundary of the lower and upper part of the island of good
transfer of the regime A observed in the numerical computa-
tion. This island is crossed by the line of resonance D50
around which the transfer to u2& depends on the pulse areas,
as shown by small oscillating islands.

For the sequence 2, the conical intersections involved
give the following boundaries:

D5
V2

16d
@25V22A9~V2!2

132d2# , ~25a!

V15A~d2D !@4D1d6Ad~d18D !# , for D,0.
~25b!

These curves are displayed in Fig. 3, with V25V0 for Eq.
~25a! and with V15V0 for Eq. ~25b!. They give a good
prediction of the island of good transfer of the regime A
observed numerically.

For the two sequences, the islands of good transfer to the
state u2& of the regime A occur with absorption of one v1
photon.

B. Regime B

This regime is characterized by the transition quasireso-
nant 1-2 with the frequency v2 and the quasiresonant transi-
tion 2-3 with the frequency v1. This process can be analyzed
as the channel B perturbed ~in the sense of nonresonant per-
turbation theory! by the channel A and is described by the
effective Hamiltonian H̃c

B
5TH̃c

A ,

FIG. 7. Quasienergy surfaces as functions of V1 /d and V2 /d
for D15D252d/4. The two different paths, denoted a18 and a28 ~for
V050.7d) depending on the sequence of the pulses connect the
states u1& and u2& with the absorption of one v1 photon.
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H̃c
B
5

1

2F
2

~V1!2

2D1
V2 0

V2 2~D11d !1
~V1!2

2D1
2

~V2!2

2D2
V1

0 V1 2~D11D2!1
~V2!2

2D2

G . ~26!

The regions of high transfer efficiency to the state u2& are bounded in the same manner as in the regime A by the lines ~24! and
~25! to which we apply the transformation T ~13!.

C. Regime C

The regime C is characterized by a mixture of regimes A and B for which the transitions 1-2 and 2-3 are both quasiresonant
with the same frequency v2. As long as the v1 field is perturbative for both transitions, we have the following effective
Hamiltonian:

H̃c
C

5
1

2F
2

~V1!2

2D1
V2 0

V2 2~D11d !1
~V1!2

2D1
2

~V1!2

2~D22d !
V2

0 V2 2~D11D21d !1
~V1!2

2~D22d !

G , ~27!

in the basis $u1;0,0& , u2;0,21& ,u3;0,22&%. No efficient transfer is observed in this regime.

D. Regime D

This regime is such that the only quasiresonance is between the states 1 and 2 with v2. In this case, in the basis $u1;0,0&,
u2;0,21&, u3;0,22&% we can construct an effective Hamiltonian from the previous one @Eq. ~27!# considering that the v2 field
is perturbative for the transition 2-3,

H̃c
D

5
1

2F
2

~V1!2

2D1
V2 0

V2 2~D11d !1
~V1!2

2D1
2

~V1!2

2~D22d !
2

~V2!2

2D2
0

0 0 2~D11D21d !1
~V1!2

2~D22d !
1

~V2!2

2D2

G . ~28!

We can remark that this Hamiltonian is valid for the field
amplitude V2 below the position of the resonance occurring
between the transition 2-3 and the v2 field that can be esti-
mated by

V2
r [2AD2~D11D21d ! and D112D21d<0.

~29!

This limit is represented as the bent dashed line crossing the
figure horizontally in Figs. 2 and 3 ~with V05V2

r ). Below
this limit, one is allowed to decouple the states u2;0,21& and
u3;0,22& from the Hamiltonian ~27!. A more detailed analy-
sis of this regime shows that a dynamical resonance between
the transition 1-2 and the v1 field, induced by the v2 field
occurs approximately for

V25V2
dr[A2D1~D112d !. ~30!

It is obtained when the difference of the dressed eigenvalues
connected to u1;0,0& and u2;0,21& ~calculated without the
Stark shifts! compensates the difference of the frequencies d .
This additional resonance is described as dynamical since it
occurs beyond a threshold of the v2 field amplitude. It is
represented as the bent dashed line crossing the figure verti-
cally ~which separates the regimes D and D8) in Figs. 2 and
3 with V05V2

dr . The Hamiltonian ~28! is thus approxi-
mately valid before the dynamical resonance ~30!.

Below this dynamical resonance, this Hamiltonian ~28! is
very similar to the one describing the Stark chirped rapid
adiabatic passage between the states u1;0,0& and u2;0,21&
@9#. The pump of this process is here V2 and the Stark pulse
V1. We have here V2 acting additionally as a Stark pulse.

It is important to note that when D152d , the field v2 is
exactly in resonance with the transition 1-2, and it cannot
induce any complete population transfer from u1& to u2& .
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Below this boundary ~plotted as a full line in Figs. 2 and 3!,
i.e., for D1,2d , the topology does not allow the transfer
from u1& to u2&. Above this boundary (D1.2d), the trans-
fer is possible as shown by the surfaces of quasienergies ~for
D5D15D259d/10) in Fig. 8. The eigenvalues of Eq. ~28!
~not shown! fit well these surfaces below the dynamical
resonances V2,V2

r . Figure 8 shows that the conical inter-
section for V250 between the surfaces connected to u1;0,0&
and the target state u2;0,21& determines the boundary of
the adiabatic connection between these states. This charac-
terizes a transfer to the state u2& with absorption of one v2
photon. This boundary is calculated from the effective
Hamiltonian ~28!,

V152AD
D2

2d2

2d2D
. ~31!

It is plotted in Figs. 2 and 3 as a full line in the region D and
determines the boundary of the upper island of good transfer
of this region.

The cases beyond the dynamical resonance are studied in
the following section.

VI. STRONG-FIELD REGIMES

The strong-field regime occurs when V1(t),V2(t)*d .
For D15D2, this corresponds to a weak spin coupling since
one has then 6uju&V1(t),V2(t). More resonances occur in
this case and the previous effective Hamiltonians are no
longer valid. We will study in detail the interesting regime
D8 which gives quite large areas of transfer to state u2&.

This regime is located below the resonance ~29! and be-

yond the dynamical resonance ~30!, when the transition 1-2
is quasiresonant with both the v1 and v2 fields and when the
transition 2-3 is not resonant with either the v1 field or the
v2 field. This regime is thus characterized by the effective
dressed Hamiltonian,

KD852id
]

]u
1

1

2F
0 V21e iuV1 0

V21e2iuV1 2~D11d !2
~V1!2

2~D22d !
2

~V2!2

2D2
0

0 0 2~D11D21d !1
~V1!2

2~D22d !
1

~V2!2

2D2

G . ~32!

It is equivalent to a two-level system driven by a bichromatic
field @11# with additional Stark shifts. The surfaces of
quasienergies as functions of the normalized Rabi frequen-
cies V1 /d and V2 /d ~for D5D15D2527d/5) are dis-
played in Fig. 9. This figure shows that the two conical in-
tersections, one for V150 and one for V250, determine the
boundary of the adiabatic connection between the initial state
u1;0,0& and the target state u2;1,22&. We calculate the
boundaries using the effective Hamiltonian ~32!, which are
plotted as full lines in Figs. 2 and 3,

V152A~D2d !@2d2D22Ad~2d2D !# , ~33a!

V252AD@d2D2Ad~d24D !# . ~33b!

This process corresponds to a multiphoton transfer to the
state u2&, with absorption of two v2 photons and emission of
one v1 photon.

The analysis of the topology allows to improve the trans-
fer efficiency. It shows indeed that a v1 field amplitude
weaker than the v2 field amplitude is better in this regime
since the conical intersection for V150 occurs for a smaller
value than the one for V250.

This process of a two-level system driven by a bichro-
matic field studied in Ref. @11# shows that the transfer can
still occur for a stronger field ~i.e., for a weaker spin cou-
pling!, but with absorption of more than two v2 photons and
emission of more than one v1 photon. This result is shown in
Fig. 10 where strong field white islands can be observed. The

FIG. 8. Quasienergy surfaces as functions of V1 /d and V2 /d
for D15D2529d/10. Two different paths ~denoted d1 and d2) for
V050.8d connect the states u1& and u2& with the absorption of one
v2 photon.
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lower white islands correspond to good population transfer
to the entangled state u2;k21,2k&, with k51,2,3,4 from left
to right.

VII. CONCLUSION

In a system of two interacting identical spins in an exter-
nal bichromatic field, we have determined the choices of
laser pulses which can give a maximal final population in the
entangled state. The proposed strategies are robust with re-
spect to the external parameters. We have found that in the
parameter space it is possible to find large regions where the
quantum system can be transferred to the entangled state
with a high efficiency. These regions of good transfer have
been characterized by the topology of the surfaces of dressed
states as functions of the parameters.

The implementation of the scheme we propose in this
paper can be realized for different physical systems. An ex-
ample could be of the type similar to the one used in Ref.
@16# for the realization of two-qubit phase gates. The simi-
larity of our model with the nuclear magnetic resonance
scheme of Ref. @16# is the adiabatic evolution. The Berry
adiabatic phase gate operation was, however, realized for
different nuclei i.e. with different gyromagnetic constants. In
this case the two-particle states are represented through a
four-level quantum system ~see, e.g., Ref. @17#!. In the
present paper we propose instead to use identical spins to
generate an entangled state through a simpler effective three-
level system.

The methods employed here are quite general and can be
applied for a large variety of systems. We anticipate interest-
ing applications of this method in quantum computing and
quantum communication.

ACKNOWLEDGMENTS

We acknowledge support by INTAS 99-00019 and the
Conseil Régional de Bourgogne. S.G. acknowledges support
from a CNRS project ‘‘jeunes chercheurs’’ and thanks the
Institute of Physics of the National Academy of Sciences of
Armenia in Ashtarak for kind hospitality. R.U. thanks for
support by the Alexander Von Humboldt Foundation and
l’Université de Bourgogne for kind hospitality. The authors
thank N. Vitanov for useful discussions.

@1# C. Williams and S. Clearwater, Explorations in Quantum Com-
puting ~Springer-Verlag, New York, 1998!.

@2# E.S. Fry, T. Walther, and S. Li, Phys. Rev. A 52, 4381 ~1995!;
J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 ~1995!; E.
Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J.M.
Raimond, and S. Haroche, ibid. 79, 1 ~1997!; B.E. King, C.S.
Wood, C.J. Myatt, Q.A. Turchette, D. Leibfried, W.M. Itano,
C. Monroe, and D.J. Wineland, ibid. 81, 1525 ~1998!; Q.A.
Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried,
W.M. Itano, C. Monroe, and D.J. Wineland, ibid. 81, 3631
~1998!.

@3# A. So”rensen and K. Mo”lmer, Phys. Rev. Lett. 82, 1971 ~1999!;
C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, C.J. Myatt,
M. Rowe, Q.A. Turchatte, W.M. Itano, D.J. Wineland, and C.
Monroe, Nature ~London! 404, 256 ~2000!.

@4# N.V. Vitanov, M. Fleischhauer, B.W. Shore, and K. Bergmann,
Adv. At., Mol., Opt. Phys. 46, 55 ~2001!.

@5# T. Pellizzari, S.A. Gardiner, J.I. Cirac, and P. Zoller, Phys. Rev.
Lett. 75, 3788 ~1995!.

@6# I.V. Bargatin, B.A. Grishanin, and V.N. Zadkov, Phys. Rev. A
61, 052305 ~2000!.

@7# R. Unanyan, N.V. Vitanov, and K. Bergmann, Phys. Rev. Lett.

FIG. 9. Quasienergy surfaces as functions of V1 /d and V2 /d
for D15D2527d/5. Two different paths ~denoted d18 and d28) for
V053d/2 connect the states u1& and u2& with the absorption of two
v2 photons and the emission of one v1 photon.

FIG. 10. Contour map of population transfer efficiency P2(`)
as in Fig. 2, but for stronger field amplitudes.
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14.2 Preparation of atom-photon, atom-atom and pho-

ton-photon entanglement by adiabatic passage –

Decoherence-free entanglement

In subsection 14.2.1, we first review various entanglements between atom and photons that can
be generated by traveling atoms or photons when they interact with cavities adiabatically. This
can be viewed as the counterpart of processes already known but with the use of non-robust
π-pulse techniques, as reviewed in appendix A.

The adiabatic techniques offer the additional feature of decoherence-free processes when the
fields (laser and cavity fields) have appropriate sequences. This is shown in subsection 14.2.2
for the preparation of atom-atom entanglement.

14.2.1 Preparation of atom-photon, atom-atom and photon-photon
entanglement by adiabatic passage [247]
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Atom-photon, atom-atom, and photon-photon entanglement preparation
by fractional adiabatic passage
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We propose a relatively robust scheme to generate maximally entangled states ofsid an atom and a cavity
photon,sii d two atoms in their ground states, andsiii d two photons in two spatially separate high-Q cavities. It
is based on the interaction via fractional adiabatic passage of a three-level atom traveling through a cavity
mode and a laser beam. The presence of optical phases is emphasized.

DOI: 10.1103/PhysRevA.71.023805 PACS numberssd: 42.50.Dv, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

One of the nonclassical aspects of a quantum system
made ofN parts is entanglement, for which the state vector
of the system cannot be written, in any basis, as a tensor
product of independent substates. The generation and the
controlled manipulation of entangled states ofN-particle sys-
tems is fundamental for the study of basic aspects of quan-
tum theory f1,2g. The idea is to apply a set of controlled
coherent interactions to the particlessatoms, ions, photonsd
of the system in order to bring them into a tailored entangled
state. The physics of entanglement provides the basis of ap-
plications such as quantum information processing and quan-
tum communications. Very recently teleportation of quantum
states has been realizedf3,4g using atom-atom entanglement
following the proposal of Bennettet al. f5g. Particles can
then be viewed as carriers of quantum bits of information
and the realization of engineered entanglement is an essential
ingredient of the implementation of quantum gatesf6g.

Most experimental realizations of entanglement have been
implemented with photons. Although the individual polariza-
tion states of photons are easily controlled, and their quan-
tum coherence can be preserved over many kilometers of an
optical fiberf7g, photons cannot be stored for long times, and
manipulations of collective entangled states present consid-
erable difficulties even when photons are confined in the
same cavity. The creation of long-lived entangled pairs with
atoms, on the other hand, is a relatively recent pursuit which
may provide reliable quantum information storage. The en-
tangled state of a pair of two-level atoms using pulse area
technique in a microwave cavity has been realized by Hagley
et al. f8g based on the proposal of Cirac and Zollerf9g.
However, the pulse area technique is not robust with respect
to the velocity of the atoms and the exact-resonance condi-
tion. Recently a different scheme has been proposedf10g to
entangle two atoms using a tripod stimulated Raman adia-
batic passagesSTIRAPd technique in a four-level atom-
cavity-laser system in which one of the pulses corresponds to
the field of a cavity mode. Manipulation of entanglement of

two atoms in this scheme, however, requires to control a
geometric phase via an integral of Hamiltonian parameters
over a closed path in parameter space which is difficult in
experimental implementations. The generation of atom-
photon entanglement has also been proposed in Ref.f11g in a
tripodlike laser-atom-cavity system which sustains two cav-
ity modes.

In L-type systems, fractional STIRAPsf-STIRAPd is a
variation of STIRAPf12g which allows the creation of any
preselected coherent superposition of the two degenerate
ground statesf13g. As in STIRAP, the Stokes pulse linking
the initially unpopulated statesuel andug2l, arrives before the
pump pulse linking the initially populated stateug1l to the
excited stateuel, but unlike STIRAP where the Stokes pulse
vanishes first, here the two pulses vanish simultaneously
while maintaining a constant finite ratio of amplitudes. The
f-STIRAP has been shown to increase the coherence between
the lower states ofL systems in nonlinear optics experiments
f14g. The advantage of STIRAP is the robustness of its con-
trol with respect to the precise tuning of pulse areas, pulse
delay, pulse widths, pulse shapes, and detunings. Since
f-STIRAP requires a precise ratio of pulse endings, it is not
as robust as STIRAP if two different pulses are used. How-
ever, in specific circumstances where a laser of elliptic po-
larization can be used, f-STIRAP can be made as robust as
STIRAPf13g. In f-STIRAP as in STIRAP, if the evolution is
adiabaticsfor instance with a slow transit of atoms across cw
fieldsd, the dynamics of the system follows an adiabatic dark
state which does not involve the excited atomic stateuel.
Therefore this technique is immune to the detrimental con-
sequences of atomic spontaneous emission. The STIRAP
technique has interesting applications in the generation of
coherent superposition of Fock statesf15,16g and of maxi-
mally polarization-entangled photon statesf17g in an optical
cavity.

In this paper we consider neutral three-levelL-type atoms
with twofold degenerate ground statesug1l, ug2l and an ex-
cited stateuel. The qubits are stored in the two ground states
of the atoms. Our scheme to create the entangled states is
based on the resonant interaction of the atoms with an optical
cavity mode and a laser field as follows:

sid Atom-photon entanglement: the first atom initially in
the ground stateug1l interacts with the cavity modesinitially

*Electronic address: amniyatm@u-bourgogne.fr
†Electronic address: sguerin@u-bourgogne.fr
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300 Chapter 14. Entangling spins, photons and atoms by adiabatic passage

in the vacuum stated and the laser field in the frame of
f-STIRAP with the cavity-laser sequencesmeaning that the
atom meets first the cavityd.

sii d Atom-atom entanglement: when the first atom has left
the interaction region, the second atom initially in the ground
stateug2l interacts with the laser-cavity sequence in the frame
of STIRAP. After the creation of an entangled state of the
atoms, the cavity mode is left in the vacuum state which is
not entangled with the two atoms. Therefore the decoherence
effect of the cavity damping does not affect the atom-atom
entanglement before and after the interaction. The cavity
damping must be negligible only during the time of entangle-
ment preparation.

siii d Photon-photon entanglement: after the interaction of
the atom with the first cavity and the laser field in the frame
of f-STIRAP, the same atom interacts with the same laser
field and the second cavity in the frame of STIRAP. At the
end of the interaction, the atomic state factorizes and is left
in the ground stateug2l.

II. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN

Figure 1 represents the linkage pattern of the atom-cavity-
laser system. The laser pulse associated to the Rabi fre-
quencyVstd couples the statesug1l and uel, and the cavity
mode sStokes pulsed with Rabi frequencyGstd couples the
statesuel and ug2l. The Rabi frequenciesVstd and Gstd are
chosen real and positive without loss of generality. These
two fields interact with the atom with a time delay, each of
the fields is in one-photon resonance with the respective tran-
sition. The semiclassical Hamiltoniansi.e., with a classical
laser fieldd of this system in the rotating-wave approximation
can be written in the atomic basishug1l , uel , ug2lj sin units of
"d as

Hstd = vCa†a + 3
0 VstdeisvLt+wLd 0

Vstde−isvLt+wLd
ve Gstda

0 Gstda† 0
4 ,

s1d

where asa†d is the annihilationscreationd operator for the
cavity mode,ve is the energy of the atomic excited state
svg1

=vg2
=0d, vC, vL are the carrier frequencies of the cav-

ity mode and the laser field respectivelyvC=vL=ve, andwL
is the initial phase of the laser field. The time dependence of
Vstd andGstd comes from the motion of the atom across the
laser and cavity fields and the time origin is defined below.

The HamiltonianHstd is block diagonal in the manifolds
hug1,nl , ue ,nl , ug2,n+1l ; n=0,1,2,…j, wheren is the num-
ber of photons in the cavity mode,ue ,nl;uel ^ unl and unl is
a n-photon Fock state. The vectorug2,0l is not coupled to
any other ones, i.e.,ug2,0l is astationary state of the system.
One can thus restrict the problem to the projection of the
Hamiltonian in the subspacehug1,0l , ue ,0l , ug2,1lj:

HPªPHP, s2ad

P = ug1,0lkg1,0u + ue,0lke,0u + ug2,1lkg2,1u, s2bd

if one considers the initial stateug1,0l. The associated dy-
namics is determined by the Schrödinger equation
is] /]tduCstdl=HPstduCstdl. The effective Hamiltonian can be
written as

Heff = R†HPR − iR†]R

]t
, s3ad

Rstd = ug1,0lkg1,0u + e−ivLtsue,0lke,0u + ug2,1lkg2,1ud,

s3bd

which reads in the basishug1,0l , ue ,0l , ug2,1lj

Heffstd = 3
0 VstdeiwL 0

Vstde−iwL 0 Gstd

0 Gstd 0
4 , s4d

with the corresponding dynamics is] /]tduFstdl
=HeffstduFstdl. The relation betweenuCl and uFl is estab-
lished by unitary transformationR as uCl=RuFl.

III. ATOM-PHOTON ENTANGLEMENT

The system is taken to be initially in the stateug1,0l,

uFs− `dl = ug1,0l = uCs− `dl s5d

and we will transform it at the end of interaction into the
atom-photon entangled state

uFst → + `dl = cosqug1,0l − e−iwL sinqug2,1l, s6ad

uCst → + `dl = cosqug1,0l − e−isvLt+wLd sinqug2,1l,

s6bd

whereq is a constant mixing angles0øqøp /2d. It is im-
portant to notice the presence of the generally unknown ab-

FIG. 1. Experimental configuration and the linkage pattern of
atom-cavity-laser system with a two-photon resonance between
statesug1,nl and ug2,n+1l.
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14.2. Preparation of entanglement with atoms and photons by adiabatic passage 301

solute phasevLt+wL in the resulting entangled states6bd.
This optical phase factor was not taken into account by Par-
kins et al. in the generation of an arbitrary superpositions of
Fock statesf15g. This phase that changes rapidly as a func-
tion of the time, is expected to be uncontrollable in practice.

One of the instantaneous eigenstatessthe dark stated of
Heffstd which corresponds to a zero eigenvalue, and therefore
to a zero dynamical phase, is

uDstdl =
1

ÎV
2std + G2std

fGstdug1,0l − Vstde−iwLug2,1lg.

s7d

As in f-STIRAP, the cavity-mode pulse comes first and is
followed after a certain time delay by the laser pulse, but the
two pulses vanish simultaneously, that can be asymptotically
formulated as

lim
t→−`

Vstd

Gstd
= 0, lim

t→+`

Vstd

Gstd
= tanq. s8d

The dark states7d has consequently the limitsuDs−`dl

= ug1,0l and uDs+`dl=cosqug1,0l−e−iwL sinqug2,1l with
such a pulse sequence and allows thus one to generate a
coherent superposition of states by adiabatic passage. It
should be emphasized that this formulation in terms of as-
ymptoticss8d does not describe correctly what occurs at the
beginning and the ending of f-STIRAP for a concrete real-
ization which is not strictly adiabatic. In particular, using this
asymptotics would give a failure of f-STIRAP for Gaussian
pulsessconsidered belowd, which do not asymptotically give
a constant ending ratio for any delay and pulse width. The
inspection of the nonadiabatic couplingsf13g shows that
what matters is that the Rabi frequency amplitudes end in a
constant ratio in a time interval where they are non-
negligible, and Eq.s8d has to be understood in this sense.
The goal in the following is to show that such a pulse se-
quence can be designed in a cavity by an appropriate choice
of the parameters.

In an optical cavity, the spatial variation of the atom-field
coupling for a Hermite-Gauss TEMmn mode is given by

Gmnsx,y,zd = G0HmSÎ2x

WC
DHnSÎ2y

WC
D

3 e−sx2+y2d/WC
2

cosS2pz

l
D , s9d

whereG0=mÎvC / s2e0Vmoded with m, Vmode respectively the
dipole moment of the atomic transition and the effective vol-
ume of the cavity mode. The transverse distribution is deter-
mined by Hermite polynomialsHm, Hn and the cavity waist
WC f18g. The standing wave along the cavityz axis gives rise
to a coss2pz /ld dependence of the mode with the wave-
lengthl. A particular transverse mode is selected by adjust-
ing the cavity length. We consider the maximum coupling
mode TEM00 resonant with theuel↔ ug2l transition of the
atom

Gsx,y,zd = G0e−sx2+y2d/WC
2

cosS2pz

l
D . s10d

Figure 2 shows a situation where an atom initially in the state
ug1l falls with velocity v son they=0 plane andz=z0 lined
through an optical cavity initially in the vacuum stateu0l and
then encounters the laser beam, which is parallel to they axis
sorthogonal to the cavity axis and the trajectory of the atomd.
The laser beam of waistWL is resonant with theuel↔ ug1l
transition. The distance between center of the cavity and the
laser axis isd. The traveling atom encounters the time de-
pendent and delayed Rabi frequencies of the cavity and the
laser fields as follows:

Gstd = G0e−svtd2/WC
2

cosS2pz0

l
D , s11ad

Vstd = V0e−z0
2/WL

2
e−svt − dd2/WL

2
, s11bd

where the time origin is defined when the atom meets the
center of the cavityx=0. The appropriate values ofz0 andd
that lead to the f-STIRAP process can be extracted from a
contour plot of the final populationPug1,0lªukg1,0uFs+`dlu2

as a function ofz0 andd that we calculate numericallyssee
Fig. 3d. The white dot in Fig. 3 shows values ofz0 andd to
obtain a f-STIRAP process withq.p /4 scalled half-
STIRAPd. It has been chosen such that at the end of interac-
tion Pug1,0l. Pug2,1l.0.5 andPue,0l.0.

Figure 4 showssad the cavity-laser pulse sequence of half-
STIRAP for the first atom, andsbd the time evolution of
populations which shows half-half population for the states
ug1,0l, ug2,1l and zero population for the stateue ,0l at the
end of the interaction. This case corresponds to the genera-
tion of the maximally atom-photon entangled state
1/Î2sug1,0l−e−isvLt+wLdug2,1ld by adiabatic passage. Assum-
ing Gaussian pulse profiles forVstd and Gstd of widths TL

=WL /v and TC=WC /v, respectively, we have the sufficient
condition of adiabaticityf13g:

V0TL,G0TC @ 1. s12d

FIG. 2. The geometry of the cavity mode and the laser fields in
the xy plane with different waistssWC.WLd, and the trajectory of
the first atom. The specific values ofz0 andd are chosen such that
the atom interacts with the fields via f-STIRAP with the sequence
cavity-laser.
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302 Chapter 14. Entangling spins, photons and atoms by adiabatic passage

We remark that the caseq=p /2 corresponds to the stan-
dard STIRAP with the final state uCst→ +`dl=
−e−isvLt+wLdug2,1l, i.e., to the generation of a single-photon
Fock state in the cavity mode without population transfer to
the atomic excited state at the end of interaction. Here the
optical phase factor appears as an irrelevant global phase
factor. A one-photon Fock state has been produced in such a
way in an optical cavity via STIRAP by Hennrichet al. f19g
based on the proposal of Refs.f15,20g. A robust scheme for
the generation of multiphoton Fock states in a microwave
cavity via bichromatic adiabatic passage has been proposed
in Ref. f21g.

IV. ATOM-ATOM ENTANGLEMENT

In this section we consider a situation where the first atom
has been entangled with the cavity mode via f-STIRAP as
described by Eq.s6bd, and the second atom initially in the
ground stateug2

s2d
l is going to interact with thesame laser and

cavity-mode fields but through a STIRAP processssee Fig.
5d. The superscript labels the two atoms. The state of the
atoms2d-atoms1d-cavity system after entanglement of the
atoms1d reads

FIG. 4. sad Rabi frequencies of the cavity
mode and the laser field for the first atom corre-
sponding to the same pulse parameters and the
specific valuesz0=31.9mm, d=30.2mm of the
white dot in Fig. 3.sbd Time evolution of the
populations for the trajectory of the first atom
which represents a half-STIRAP.

FIG. 3. Top panel: contour plot of the final
population u

1
2 −Pug1,0lu as a function ofz0 and d

sblack areas correspond to approximately half
population transferd with the pulse parameters as
WL=20 mm, WC=30 mm, v=2 m/s,l=780 nm,
V0=50sv /WLd, G0=50sv /WCd. Bottom panel:
the same plot for the population of the excited
state Pue,0lªuke ,0uFs+`dlu2 where black areas
correspond to approximately zero population
transfer. The white dot shows specific values of
z0 andd used in Fig. 4 to obtain a half-STIRAP
process.
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uCstdl = ug2
s2dlscosqug1

s1d,0l − e−isvLt+wLd sinqug2
s1d,1ld.

s13d

The second atom moves on the linez=0 in the same plane
ssee Fig. 5d as the first one such that the two atoms experi-
ence the same optical phaseeivt of the laser field. It encoun-
ters time-dependent and delayed Rabi frequencies given by

Gs2dstd = G0e−fvst − tdg2/WC
2
, s14ad

V
s2dstd = V0e−fvst − td + dg2/WL

2
, s14bd

wheret is the time delay between the two atoms. By stan-
dard STIRAP, with the sequence of laser-cavityssee Fig. 6d,

we can transfer the population from the initial stateug2
s2d ,1lto

the final stateug1
s2d ,0l. On the other hand the stateug2

s2d ,0l is
stationary with respect to this STIRAP process. Using the

transformationRs2dstd= ug1
s2d ,0lkg1

s2d ,0u+e−ivLtsues2d ,0lkes2d ,0u

+ ug2
s2d ,1lkg2

s2d ,1ud, this results in

ug2
s2d,0l → ug2

s2d,0l, − e−isvLt+wLdug2
s2d,1l → ug1

s2d,0l.

s15d

Hence if the second atom encounters the laser field before
the cavity field in the frame of a standard STIRAP, the final
state of the atoms2d-atoms1d-cavity system will be

uCs+ `dl = cosqug2
s2d,0lug1

s1dl + sinqug1
s2d,0lug2

s1dl

= u0lscosqug2
s2dlug1

s1dl + sinqug1
s2dlug2

s1dld. s16d

Since the cavity-mode state factorizes and is left in the
vacuum state, there is no projection noise when one traces
over the unobserved cavity field, and the cavity is ready to
prepare another entanglement. We can manipulate this en-
tanglement coherently to reach the maximal atom-atom en-
tanglement by tuning the ratio of fields such that tanq=1 in
the f-STIRAP stage, as shown in Figs. 3 and 4.

Figure 6 shows the successful STIRAP process for the
second atomsmoving along the linez=0d that allows one to
generate the entangled states16d.

The generation of atom-atom entanglement with the two
atoms interacting simultaneouslyst=0 in Fig. 5d with the
cavity mode, that can be described by a two-atom dark state
presented in Ref.f22g, will be discussed elsewhere.

V. PHOTON-PHOTON ENTANGLEMENT

In Refs. f23–25g among many others, different schemes
have been proposed to entangle two and three microwave

FIG. 5. The proposed geometry of the cavity and the laser fields
in xz plane as well as the trajectory of the atoms for generation of
atom-atom entanglement. The second atom initially in the ground
stateug2l arrives at the center of the cavity with a time delayt. This
atom encounters the sequence laser cavity on the linez=0.

FIG. 6. sad Rabi frequencies of the fields for
the second atom traveling on the linez=0 with
the same parameters of Fig. 4.sbd Time evolution
of the populations.
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cavities through the interaction with a Rydberg atom. A
method of generating particular entangled states of two cavi-
ties appeared as an intermediate step in the teleportation pro-
cedure proposed by Davidovichet al. f26g. Here we propose
another scheme to entangle two optical cavities interacting
with an atom. We consider a situation where an atom has
been entangled with the first single-mode cavity via a
f-STIRAP technique as described in Sec. II, and it interacts
next with another single-mode optical cavity, initially in the
vacuum state, and the same laser fieldssee Fig. 7d. The dis-
tance z0 between the axis of motion of the atom and the
center of the first cavity, ensures having an f-STIRAP pro-
cess for the first cavity. Hence the state of the cavitys2d-atom-
cavitys1d system after the f-STIRAP process is

uCstdl = u0s2dlscosqug1,0
s1dl − e−isvLt+wLd sinqug2,1

s1dld,

s17d

where the superscripts denote the number of cavities. If the
atom interacts with the second cavity in the frame of a stan-
dard STIRAP and the atom encounters the cavity mode be-
fore the laser pulse, since the stateug1,0s2dl evolves to
ug2,1s2dl and the stateug2,0s2dl does not change during the
interaction:

ug1,0
s2dl → − e−isvLt+wLdug2,1

s2dl,

ug2,0
s2dl → ug2,0

s2dl, s18d

the final state of the system will besup to an irrelevant com-
mon phase factord

uCs+ `dl = ug2lscosqu1s2d,0s1dl + eia sinqu0s2d,1s1dld,

s19d

wherea=2psx0
2+z0

2d1/2/l is the phase shift of the laser field
due to the optical path difference between the two cavities.
Since the atomic state factorizes and is left in the ground

stateug2l, the atom does not have spontaneous emission and
it could be used to prepare another entanglement.

VI. DISCUSSIONS AND CONCLUSIONS

We have proposed a robust scheme to generate atom-
photon, atom-atom, and photon-photon entanglement, using
a combination of f-STIRAP and STIRAP techniques inL

systems. This scheme is robust with respect to variations of
the velocity of the atomv, of the peak Rabi frequenciesG0,
V0 and of the pulse detunings, but not with respect to the
parametersd, z0. For given values ofWC, WL, the adapted
values ofd and z0 in the f-STIRAP process can be deter-
mined from a contour plot of the final populations as ex-
plained in Sec. III.

The presence of optical phases in the case of atom-photon
entanglement, expected to be uncontrollable, was empha-
sized. In the case of atom-atom entanglement the optical
phase is not present, as long as the two atoms move in the
same plane perpendicular to the propagation direction of the
laser beam.

Dissipation in the form of spontaneous emission and cav-
ity damping is another important practical issue. The adia-
batic passage technique is robust against the effects of spon-
taneous emission, as the excited atomic state is never
appreciably populated. Cavity damping is certainly a prob-
lem as its effects come into play as soon as the cavity mode
is excited, leading to a degradation of the adiabatic transfer.
In this analysis we have assumed that the interaction time
between the atom and the fieldsTint<WC /v<WL /v is short
compared to the cavity lifetimeTcav, which are essential for
an experimental realization.

Since the decay rate of the cavity scales with the number
of photons present in the cavitysTint!Tcav/nd, our scheme
involving only one cavity photon requiresTint!Tcav. In a
real experiment, it is desirable that the entangled states are as
long-lived as possible. This requires in the optical domain,
whereTint<15 ms, a cavity lifetime ofTcav@15 ms. This is
beyond the currently available optical cavities whereTcav
<1 ms. One could still consider the generation of atom-atom
entanglement in an optical cavity using a two-atom dark state
of the type presented in Ref.f22g which does not require
such a stringent constraint for the cavity lifetime. In the mi-
crowave domain, cavities with a photon lifetime of 1 msf27g
and of 0.3 sf28g have been made. The upper limit of inter-
action time isTint=100ms satom with a velocity of 100 m/s
with the cavity mode waist ofWC=6 mmd. The condition of
global adiabaticityG0 Tint@1 for the typical value ofG0
<0.15 MHz f27g is well satisfiedG0Tint<15. The proposed
schemes of entanglement generation could be implemented
in a microwave cavity by using a maser field and atomic
Rydberg states.
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FIG. 7. Proposed setup for entangling of two photons generated
in two optical cavities interacting with a three-level atom and a
laser field, and the schematic pulse sequences. The atom interacts
with the first cavity via f-STIRAP in the same conditions of Fig. 2
and next with the second cavity via standard STIRAP with the
sequence cavity laser in each one. The propagation direction of the
laser beams are perpendicular to the planexz as in Fig 1.
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14.2.2 Decoherence-free creation of atom-atom entanglement in cav-
ity via fractional STIRAP [248]
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We propose a robust and decoherence insensitive scheme to generate controllable entangled states of two

three-level atoms interacting with an optical cavity and a laser beam. Losses due to atomic spontaneous

transitions and to cavity decay are efficiently suppressed by employing fractional adiabatic passage and ap-

propriately designed atom-field couplings. In this scheme the two atoms traverse the cavity-mode and the laser

beam in opposite directions and become entangled in the free space outside the cavity. We also show that the

coherence of a traveling atom can be transferred to the other one without populating the cavity mode.
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I. INTRODUCTION

The physics of entanglement provides the basis of appli-
cations such as quantum information processing and quan-
tum communications. Particles can then be viewed as carri-
ers of quantum bits of information and the realization of
engineered entanglement is an essential ingredient of the
implementation of quantum gates �1�, cryptography �2�, and
teleportation �3�. The creation of long-lived entangled pairs
of atoms may provide reliable quantum information storage.
The idea is to apply a set of controlled coherent interactions
to the atoms of the system in order to bring them into a
tailored entangled state. The problem of controlling entangle-
ment is thus directly connected to the problem of coherent
control of population transfer in multilevel systems.

In the context of cavity QED, one of the main obstacles to
realize atom-atom entanglement is the decoherence resulting
from the cavity decay. Additionally, the cavity couples to an
excited state of the atom that undergoes spontaneous emis-
sion. Regarding these considerations, in recent years several
schemes to entangle atoms �4,5� and to implement quantum
gates �6–10� using optical cavities have been proposed. Very
recently another scheme to entangle two traveling atoms in
the atoms-cavity-laser system via adiabatic passage has been
proposed in Ref. �11�. However, this scheme requires one to
turn off the laser field when the two atoms have equal cou-
pling with the cavity mode, which is very difficult from the
experimental point of view. Moreover, this scheme requires
one to compensate a dynamical Stark shift which is also very
difficult in a real experiment. To avoid decoherence effects, it
is most convenient to design transfer strategies that do not
populate the decoherence channels during the time evolution
of the system.

In this paper we propose an alternative way to entangle
two traveling atoms interacting with an optical cavity and a
laser beam, based on three-level interactions in a � configu-
ration. This method is based on the coherent creation of su-

perposition of atom-atom-cavity states via fractional stimu-
lated Raman adiabatic passage �f-STIRAP� �12� that keeps
the cavity mode and the excited atomic states unpopulated
during the whole interaction. In Ref. �13�, using f-STIRAP
and a one-atom dark state, a robust scheme to generate atom-
atom entanglement was proposed, where the two traveling
atoms encounter the cavity mode one by one. Here, the two
atoms enter simultaneously into the cavity in such a way that
the system follows a two-atom dark state that allows us to
keep additionally the cavity mode empty.

II. CONSTRUCTION OF THE MODEL

We consider the situation described in Fig. 1, where the
two atoms move in planes orthogonal to the z axis as fol-
lows:

z1 = z0, x1 = − x0 + v1t cos �1, y1 = − y0 + v1t sin �1,

z2 = 0, x2 = x0 + v2�t − ��cos �2,

y2 = − y0 + v2�t − ��sin �2, �1�

where �xi ,yi ,zi� , i=1,2 are the coordinates of the ith atom

�x0 ,y0�0�, � is the time delay of the second atom with re-

*Electronic address: amniyatm@u-bourgogne.fr
†Electronic address: sguerin@u-bourgogne.fr
‡Electronic address: jauslin@u-bourgogne.fr

FIG. 1. �Color online� Geometrical configuration of the atoms-

cavity-laser system in the proposed scheme. The propagation direc-

tion of the laser beam is parallel to the y axis and perpendicular to

the page.
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308 Chapter 14. Entangling spins, photons and atoms by adiabatic passage

spect to the first one, �i is the angle that the ith atom con-
structs with the positive direction of the x axis ��1

� �0,� /2�,�2� �� /2 ,���, and vi is the velocity of the ith

atom. Since the laser field propagates in the direction of the
y axis, the time-dependent optical phase of the laser field,
taking into account the Doppler shift, seen by each atom is

�1�t� = �Lt − kv1t sin �1, �2�t − �� = �Lt − kv2�t − ��sin �2,

�2�

where k is the wave-vector magnitude of the laser field. Fig-
ure 2 represents the linkage pattern of the atom-cavity-laser
system. The laser pulse associated with the Rabi frequency
��t� couples the states �g1� and �e�, and the cavity-mode with

Rabi frequency G�t� couples the states �e� and �g2�. The Rabi

frequencies ��t� and G�t� are chosen real without loss of

generality. These two fields interact with the atom with a
time delay, each of the fields is in one-photon resonance with
the respective transition. The semiclassical Hamiltonian of
this system in the resonant approximation where

��0�, �G0� 	 �e,�C, ���1/�t�, ���2/�t� , �3�

with �0 ,G0 the peak values of the Rabi frequencies, can then
be written as �
=1�

H�t� = �
i=1,2

��e�e�ii	e� + �Gi�t�a�e�ii	g2� + H.c.�

+ ��i�t�e
i�i�t��g1�ii	e� + H.c.�
 + �Ca†a , �4�

where the subscript i on the states denotes the two atoms, a
is the annihilation operator of the cavity mode, �e is the
energy of the atomic excited state ��g1

=�g2
=0�, and �C is

the frequency of the cavity mode taking resonant �C=�L

=�e which implies kvi sin �i	�L. In the following we con-
sider the state of the atom1-atom2-cavity system as
�A1,A2,n� where �A1,A2=g1 ,e ,g2
, and �n=0,1
 is the

number of photons in the cavity mode.
Regarding Fig. 2, the subspace S generated by the states

��g1 ,g2 ,0� , �e ,g2 ,0�, �g2 ,g2 ,1� , �g2 ,e ,0�, �g2 ,g1 ,0�
 is decou-
pled under H from the rest of the Hilbert space of the system.
If we consider the initial state of the system as �g1 ,g2 ,0�, the
Hamiltonian of the system in the subspace S will be

HP�t� ª PHP =�
0 �1�t�e+i�1�t� 0 0 0

�1�t�e−i�1�t�
�e G1�t� 0 0

0 G1�t� �C G2�t − �� 0

0 0 G2�t − �� �e �2�t − ��e−i�2�t−��

0 0 0 �2�t − ��e+i�2�t−�� 0

� , �5�

where P is the projector on the subspace S. The effective Hamiltonian is thus given by

Heff
ª R†HPR − iR†

�R

�t
= 

0 �1�t� 0 0 0

�1�t� kv1 sin �1 G1�t� 0 0

0 G1�t� kv1 sin �1 G2�t − �� 0

0 0 G2�t − �� kv1 sin �1 �2�t − ��

0 0 0 �2�t − �� k�v1 sin �1 − v2 sin �2�

� , �6�

where the unitary transformation R is

R =�
1 0 0 0 0

0 e−i�1�t� 0 0 0

0 0 e−i�1�t� 0 0

0 0 0 e−i�1�t�

0 0 0 0 e−i��1�t�−�2�t−���

� . �7�

The dynamics of the system is governed by the Schrödinger
equation i� /�t���t��=Heff�t����t��.

An essential condition for the STIRAP and f-STIRAP pro-
cesses is the four-photon resonance between the states
�g1 ,g2 ,0� and �g2 ,g1 ,0� which means:

�� ª k�v1 sin �1 − v2 sin �2�� 	 ��0�, �G0� . �8�

This condition can be achieved by control of the velocity of
atoms, and of the deflection angles of the atoms �i=1,2. Nu-
merics shows that, in practice, the condition �8� is satisfied
for � ��0 ,G0
 /100. Assuming this condition allows one to

consider ��kv1 sin �1�0 in Eq. �8�, if we additionally as-
sume v1�v2�v. In this case � is the delay of arrival at the
center of the cavity �x=y=0� of the second atom with respect

to the first one.

III. ATOM-ATOM ENTANGLEMENT

The system is taken to be initially in the state �g1 ,g2 ,0�,
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���ti�� = �g1,g2,0� . �9�

The goal is to transform it at the end of interaction into an
atom-atom entangled state

���t f�� = cos ��g1,g2,0� + sin ��g2,g1,0�

= �cos ��g1,g2� + sin ��g2,g1���0� , �10�

where � is a constant mixing angle �0���� /2�, and the

cavity-mode state factorizes and is left in the vacuum state.
The qubits are stored in the two degenerate ground states of
the atoms. The decoherence due to atomic spontaneous emis-
sion is produced if the states ��e ,g2 ,0� , �g2 ,e ,0�
 are popu-

lated, and the cavity decay occurs if the state �g2 ,g2 ,1� is
populated during the adiabatic evolution of the system.
Therefore we will design the Rabi frequencies
��1�t� ,G1�t� ,�1�t� ,G2�t�
 in our scheme such that these

states are not populated during the dynamics. We remark that
we will use a resonant process without any adiabatic elimi-
nation.

One of the instantaneous eigenstates �the two-atom dark
state� of Heff�t� which corresponds to a zero eigenvalue is

�10�

�D�t�� = C�G1�2�g1,g2,0� − �1�2�g2,g2,1� + G2�1�g2,g1,0�� ,

�11�

where C is a normalization factor. The possibility of
decoherence-free generation of atom-atom entanglement
arises from the following behavior of the dark state:

lim
t→ti

�1�t�

�2�t�
= 0, �D�ti�� � �g1,g2,0� , �12a�

lim
t→tf

�1�t�

�2�t�
= tan � ,

�D�t f�� � cos ��g1,g2,0� + sin ��g2,g1,0� , �12b�

ti � t � t f, G1�t� � G2�t� � �1�t�,�2�t� ,

�D�t�� � �2�t��g1,g2,0� + �1�t��g2,g1,0� . �12c�

Equations �12a� and �12b� are known as f-STIRAP condi-
tions �12,13�, and the condition �12c� guarantees the absence
of population in the state �g2 ,g2 ,1� during the time evolution
of the system �14,15�. Equation �12b� means that the Rabi
frequencies fall off in a constant ratio, during the time inter-
val where they are non-negligible. We remark that this for-
mulation opens up the possibility to implement f-STIRAP
with Gaussian pulses. The goal in the following is to show
that such a pulse sequence can be designed in a cavity by an
appropriate choice of the parameters.

In an optical cavity, the spatial variation of the atom-field
coupling for the maximum coupling TEM00 mode, resonant
with the �e�↔ �g2� atomic transition, is given by

G�x,y,z� = G0e−�x2+y2�/WC
2

cos�2�z

�
� , �13�

where WL is the waist of the cavity mode, and
G0=−���C / �2�0Vmode� with � and Vmode, respectively, the

dipole moment of the atomic transition and the effective vol-
ume of the cavity mode. The spatial variation of the atom-
laser coupling for the laser beam of Fig. 1 is

��x,z� = �0e−�x2+z2�/WL
2

, �14�

where WL is the waist of the laser beam, and �0=−�E /2
with E the amplitude of the laser field. Figure 1 shows a
situation where the first atom, initially in the state �g1�, goes
with velocity v �on the y=0 plane at the z=z0 line� through
an optical cavity initially in the vacuum state �0� and then
encounters the laser beam, which is parallel to the y axis
�orthogonal to the cavity axis and the trajectory of the atom�.
The laser beam is resonant with the �e�↔ �g1� transition. The
distance between the center of the cavity and the laser axis is
d. The second atom, synchronized with the first one �=0,
moves with the same velocity v on the y=0 plane at z=0 in
the opposite direction with respect to the first atom. The
traveling atoms encounter the time-dependent and delayed
Rabi frequencies of the cavity mode and the laser fields as
follows:

G1�t� = G0e−�vt�2/WC
2

cos�2�z0

�
� , �15a�

�1�t� = �0e−z0
2
/WL

2

e−�vt − d�2/WL
2

, �15b�

G2�t� = G0e−�vt�2/WC
2

, �15c�

�2�t� = �0e−�vt + d�2/WL
2

, �15d�

where the time origin is defined when the atoms meet the
center of the cavity at x=y=0. The appropriate values of z0

and d that lead to the f-STIRAP process can be extracted
from a contour plot of the final population P�g1,g2,0��t f�

ª �	g1 ,g2 ,0 ���t f���
2 as a function of z0 and d that we calcu-

lated numerically �see Fig. 3�. The white dot in Fig. 3 shows
values of z0 and d to obtain an f-STIRAP process with �

�� /4 �called half-STIRAP�. It has been chosen such that at
the end of interaction P�g1,g2,0��t f�� P�g2,g1,0��t f��0.5, and the

FIG. 2. Linkage pattern of the system corresponding to the ef-

fective Hamiltonian.
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populations of the other states of the subspace S are zero.
Figure 4 shows for parameter values associated to the

white dot in Fig. 3, �a� the time dependence of the Rabi
frequencies of half-STIRAP for two atoms, and �b� the time
evolution of the populations which shows that the population
is split at 50% among the states �g1 ,g2 ,0� , �g2 ,g1 ,0� and is
almost zero for the other states of S during the interaction for
G0�3�0. This case corresponds to the generation of the
maximally atom-atom entangled state 1 /�2��g1 ,g2 ,0�

+ �g2 ,g1 ,0�� by adiabatic passage. We see in Fig. 4 that the
overall time for entanglement to be completed is approxi-
mately the duration of the crossing of the first atom with the
laser field. Assuming Gaussian pulse profiles for ��t� and

G�t� of widths TL=WL /v and TC=WC /v, respectively, the

sufficient condition of adiabaticity is

�0TL,G0TC � 1. �16�

The state �g2 ,g2 ,0� is the stationary state of the system. If
the second atom enters inside the cavity before the first one
���0�, we can transfer completely the population from the

state �g1 ,g2 ,0� to �g2 ,g1 ,0� without populating the other

states of S during the dynamics �see Fig. 5�. In particular,
given that the first atom initially is prepared in a coherent
superposition of the ground states ��g1�+��g2�, that the sec-
ond atom is initially in the state �g2�, and that the cavity-
mode is initially in the vacuum state, a two-atom STIRAP
will coherently map this superposition onto the second atom:

��g1,g2,0� + ��g2,g2,0� → ��g2,g1,0� + ��g2,g2,0� .

�17�

IV. CONCLUSIONS

In summary, we have proposed a robust and decoherence-
free scheme to generate atom-atom entanglement, using the
f-STIRAP technique in � systems. This scheme is robust
with respect to variations of the velocity of the atoms v, of
the peak Rabi frequencies G0 ,�0, and of the field detunings,
but not with respect to the parameters d ,z0, describing the
relative positions of the laser beam and the cavity, shown in
Fig. 1. Our scheme can be implemented in an optical cavity
with G0����. The necessary condition to suppress the
cavity decoherence is G0��0 which is satisfied in practice
for G0�3�0 �see Figs. 4 and 5�. For given values of
WC ,WL, the adapted values of d and z0 in the f-STIRAP
process can be determined from a contour plot of the final
populations. Decoherence channels are suppressed during the
whole evolution of the system. In this scheme, as opposed to
other schemes �4–10�, we do not need to fix the atoms inside
the optical cavity nor to apply two laser beams for each of
the individual atoms.
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FIG. 3. Top panel: contour plot at the final time t f of �
1

2

− P�g1,g2,0��t f�� as a function of z0 and d �black areas correspond to

approximately half population transfer� with the pulse parameters as

WL=20 �m, WC=40 �m, v=2 m/s, �=780 nm, �0=20�v /WL�,

and G0=100�v /WC�. Bottom panel: The same plot for the sum of

the final populations in intermediate states P�e,g2,0��t f�+ P�g2,g2,1��t f�

+ P�g2,e,0��t f� where black areas correspond to approximately zero

population. The white dot shows specific values of z0 and d used in

Fig. 4 to obtain a half-STIRAP process.

FIG. 4. �Color online� �a� Rabi frequencies of the cavity-mode

and the laser field for two atoms. �b� Time evolution of the popu-

lations which represents a two-atom half-STIRAP. The population

of the states ��e ,g2 ,0� , �g2 ,e ,0��g2 ,g2 ,1�
 is almost zero during the

whole dynamics.

FIG. 5. �Color online� �a� Rabi frequencies of the cavity-mode

and the laser field for two atoms with the pulse parameters as v

=2 m/s, WL=20 �m, WC=40 �m, �=780 nm, �0=2 MHz, G0

=6.5 MHz, z0=5.5 �m, d=6 �m, and �=−9 �s. �b� Time evolu-

tion of the populations which represents a two-atom STIRAP. We

observe that the states ��e ,g2 ,0� , �g2 ,e ,0��g2 ,g2 ,1�
 are not popu-

lated during the whole dynamics.
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Chapter 15

Quantum gates by adiabatic passage

Quantum information (QI) processing requires the construction of specific quantum logic gates
in a controllable way [195]. A universal set of gates, which can generate all possible operations,
is not unique [198]. A convenient set consists of the general single-qubit gate corresponding
to a transition matrix of the U(2) group, or more precisely, if we discard an irrelevant global
phase factor, to a transition matrix of the SU(2) group, and a two-qubit gate, such as the
controlled-NOT or the controlled-phase gates [195, 249].

Experimental implementations of QI algorithms suffer from inaccuracies in the gate opera-
tions originating from imperfect knowledge of the system and the interaction parameters, which
reduce the fidelity of QI processing. Adiabatic passage techniques provide powerful, efficient
and robust tools for overcoming these uncertainties. A particularly successful example is stim-
ulated Raman adiabatic passage (STIRAP) [71], which has been used for complete or partial
population transfer between the two lower states in Λ systems, or more generally between two
metastable states. Another concern in QI processing is the decoherence that may occur, for
instance, through spontaneous emission from intermediate excited states. STIRAP again is
an elegant solution since it allows one to transfer the population between the two lower states
(supposed to be ground or long lived metastable states) without transiently populating the
excited state. This is possible because the population is trapped at all times in a dark state,
confining the quantum dynamics to a spontaneous-emission-free subspace. It is thus natural to
construct a qubit from two such metastable states and use STIRAP for QI processing.

Various generalizations and extensions of STIRAP have been proposed and demonstrated.
One of these extensions, tripod-STIRAP [149], has been considered for realizations of quantum
gates using geometric phases [150, 250]. Such schemes allow one to generate a geometric
phase without fragile dynamical phases [251], which are sensitive to all interaction parameters.
However, this holonomy process requires the control of the area bounded by a curve in the
parameter space that defines the geometric phase, and hence it is not as robust as STIRAP.
Recently a general SU(2) gate has been proposed [151] that uses the relative phase of the driving
fields, which can be controlled very precisely (see Section 8.2.1, paragraph “Implementation of
one-qubit phase gates”). An extension to two-qubit gates has been proposed [206] by using a
cavity to couple the qubits [207]. Such proposals feature robust processes without dynamical
and geometric phases and make use of spontaneous-emission-free dark states.

In Section 15.1, we describe a realistic experimental situation with elliptically polarized
pulsed laser fields and real atomic systems with Zeeman sublevels, where one-qubit quantum
gates can be operated [252]. We also propose an alternative implementation of a generalized
rotation gate constructed by using a combination of two non-resonant f-STIRAP processes with
elliptically polarized laser fields. This combination allows one to compensate the dynamical

313
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phase produced by one f-STIRAP.

In Section 15.2, we describe the construction of two qubit quantum gates, with the particular
example of the SWAP gate, which interchanges the values of the two qubits [253]. The system
is constituted of atoms trapped in CQED with strong couplings [207, 206]. Such a system
represents a challenging technology, but has the advantages of (i) clean and strong (since
resonant) qubit coupling, without additional detrimental Stark shifts, and of (ii) allowing a
decoherence-free adiabatic dynamics in specific dark states.

The construction of the SWAP gate that we present does not require a composition of
elementary gates from a universal set. We propose to employ direct techniques adapted to the
preparation of this specific gate.

We have extended this process in such a system to construct an entangling CNOT gate
[254], and generalized CU gate [255].

15.1 Single qubit quantum gates [252]
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Abstract

We propose and analyse experimentally feasible implementations of single-qubit quantum gates based on stimulated Raman adiabatic

passage (STIRAP) between magnetic sublevels in atoms coupled by elliptically polarized pulsed laser fields, in part based on a proposal

by Kis and Renzoni [Z. Kis, F. Renzoni, Phys. Rev. A 65 (2002) 032318]. These techniques require only the control of the relative phase

of the driving fields but do not involve any dynamical or geometric phases, which makes it independent of the other interaction details:

detuning, pulse shapes, pulse areas and pulse durations. The suggested techniques are immune to spontaneous emission since the qubit

manipulation proceeds through non-absorbing dark states. We also propose an alternative technique using compensation of dynamical

Stark shifts by two consecutive non-resonant fractional-STIRAP processes.

� 2006 Elsevier B.V. All rights reserved.

PACS: 03.67.Lx; 03.65.Vf; 32.80.Qk

1. Introduction

Quantum information (QI) processing requires the con-

struction of specific quantum logic gates in a controllable

way [2]. A universal set of gates, which can generate all

possible operations, is not unique [3]. A convenient set

consists of the general single-qubit gate corresponding

to a transition matrix of the U(2) group, or more pre-

cisely, if we discard an irrelevant global phase factor, to

a transition matrix of the SU(2) group, and a two-qubit

gate, such as the controlled-NOT or the controlled-phase

gates [2,4].

Experimental implementations of QI algorithms suffer

from inaccuracies in the gate operations originating from

imperfect knowledge of the system and the interaction

parameters, which reduce the fidelity of QI processing.

Adiabatic passage techniques [5,6] provide powerful, effi-

cient and robust tools for overcoming these uncertainties.

A particularly successful example is stimulated Raman

adiabatic passage (STIRAP) [7], which has been used

for complete or partial population transfer between the

two lower states in K systems, or more generally between

two metastable states. Another concern in QI processing

is the decoherence that may occur, for instance, through

spontaneous emission from intermediate excited states.

STIRAP again is an elegant solution since it allows to

transfer the population between the two lower states

(supposed to be ground or long lived metastable states)

without transiently populating the excited state. This is

possible because the population is trapped at all times

in a dark state, confining the quantum dynamics to a

spontaneous-emission-free subspace. It is thus natural to

construct a qubit from two such metastable states and

use STIRAP for QI processing.

Various generalizations and extensions of STIRAP

have been proposed and demonstrated [7]. One of these

extensions, tripod-STIRAP [8], has been considered for

0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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realizations of quantum gates using geometric phases

[9,10]. Such schemes allow one to generate a geometric

phase without fragile dynamical phases [11], which are

sensitive to all interaction parameters. However, this hol-

onomy process requires the control of the area bounded

by a curve in the parameter space that defines the geomet-

ric phase, and hence it is not as robust as STIRAP.

Recently a general SU(2) gate has been proposed [1] that

uses the relative phase of the driving fields, which can be

controlled very precisely. An extension to two-qubit gates

has been suggested [12] by using a cavity to couple the

qubits [13]. Such proposals feature robust processes with-

out dynamical and geometric phases and make use of

spontaneous-emission-free dark states.

In this paper, we describe a realistic experimental situa-

tion with elliptically polarized pulsed laser fields and real

atomic systems with Zeeman sublevels, where one-qubit

quantum gates can be operated. We also suggest an alter-

native implementation of a generalized rotation gate con-

structed by using a combination of two non-resonant

fractional-STIRAP (f-STIRAP [14]) processes with ellipti-

cally polarized laser fields. This combination allows one

to compensate the dynamical phase produced by one

f-STIRAP.

This paper is organised as follows. In Section 2 we

describe the implementation of the Kis–Renzoni gate [1]

in a tripod system formed by the magnetic sublevels of

the j = 1 – j = 0 transition. In Section 3 we propose an

experimentally feasible realisation of the phase gate. In

Section 4 we suggest a novel implementation of the rota-

tion gate. In Section 5 we discuss the feasibility of the

experimental implementations. Finally, a summary of our

results is presented in Section 6.

2. Implementation of the Kis–Renzoni gate with Zeeman

sublevels

The qubit is composed of two degenerate states |0i and
|1i of the same parity, which are coupled to each other by

a two-photon transition via some excited state |ei. For the
construction of the proposed quantum gates, we consider

an additional, ancillary state |ai, which is degenerate with

the qubit states |0i and |1i and has the same parity. Such

a system can be formed most conveniently by coupling

two atomic levels with angular momenta j = 1 and j = 0

by three laser fields of linear (p) and circular (r+ and

r�) polarizations. The four Zeeman sublevels provide

the necessary states for the gate operations. The axis of

quantization has been selected by the preparation of the

initial state. To be specific, we shall assume that states

|0i and |1i are the m = �1 and m = 1 sublevels of the

j = 1 level, respectively, and state |ai is the m = 0 sublevel,

as shown in Fig. 1. We remark that one can use for the

qubit alternatively any other pair of the three j = 1 suble-

vels, as shown below.

In the basis {|0i, |1i, |ai, |ei}, the Hamiltonian reads in

the rotating wave approximation [15]

H ¼
�h

2

0 0 0 X0

0 0 0 X1

0 0 0 Xa

X�
0 X�

1 X�
a 2D

2

6

6

6

4

3

7

7

7

5

; ð1Þ

where D is the one-photon detuning.

A robust implementation of the general single qubit gate

by adiabatic passage has been proposed by Kis and Renz-

oni [1]. It requires in particular identical time dependencies

of two pulse shapes that we implement by a single specific

elliptically polarized pulse. This gate allows one to transfer

the qubit state onto any desired point of the Bloch sphere

by using two consecutive STIRAPs with Rabi frequencies

X0ðtÞ ¼ XðtÞ cos v; ð2aÞ

X1ðtÞ ¼ XðtÞeig sin v; ð2bÞ

XðjÞ
a ðtÞ ¼ Xaðt � sðjÞÞe�iuðjÞ

ð2cÞ

with XðtÞ ¼ X0

ffiffiffiffiffiffiffiffiffi

KðtÞ
p

. In the present implementation the

laser pulses X0(t) and X1(t) are, respectively, r+ and

r� polarized. Because they must have the same time depen-

dence, they can be produced by just one elliptically polar-

ized laser pulse of intensity envelope K(t) and amplitude

X0; then the mixing angle v is related to the ellipticity of

this pulse and g to the angle of rotation of the polarization

ellipse. This allows both to reduce the number of pulsed

fields required (which makes it easier to implement) and

to fulfill automatically the requirement for the same time

dependence of X0(t) and X1(t). Then s(j) is the delay

between the elliptically polarized pulse and the linearly

polarized pulse XðjÞ
a (of peak amplitude Xa), and u(j) is

the phase of the linearly polarized pulse at step j

(j = 1,2). X(t) and Xa(t) are assumed real and positive with-

out loss of generality.

The system is initially in a given superposition of the two

states |0i and |1i of the qubit. The elliptically polarized

pulse allows us to connect the bare-state basis

{|0i, |1i, |ai, |ei} to the basis {|Ci, |NCi, |ai, |ei}, where

jCi ¼ cos vj0i þ eig sin vj1i; ð3aÞ

jNCi ¼ � sin vj0i þ eig cos vj1i ð3bÞ

are states that are, respectively, coupled and non-coupled

to the excited state |ei. In this latter basis, the first STIRAP

with the linearly polarized pulse first (s(1) > 0) transfers the

,

, , ,

Fig. 1. Symbolic representation of a Zeeman system used for the

implementation of a single-qubit gate with the states denoted by |j,mi.

For each transition the Rabi frequencies of the fields and their polarisa-

tions are displayed.
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population of the coupled state to the ancillary state. This

population comes back to the coupled state with a reverse

STIRAP (s(2) < 0). In the adiabatic limit, the overall evolu-

tion matrix is

with u = u(2) � u(1), which represents a general matrix of

SU(2) up to an irrelevant global phase factor, producing

thus the general one-qubit quantum gate. The process is

most efficient for an exact single-photon resonance

(D = 0), but it is not required, as long as the pulse areas

are sufficiently large to enforce adiabatic evolution, as in

standard STIRAP.

The important feature of this scheme is that it requires

only the control of the relative laser phases u(j) and g

and it is thus robust with respect to the field amplitudes,

the interaction duration, and the single-photon detuning D.

The Rabi frequencies (2) are particularly suitable for the

choice of the qubit to implement the gate in a robust way.

Other choices of the qubit require to adapt the direction of

propagation and the polarization of the fields to preserve

the robustness. Using the spherical coordinates (of unit

vectors er,eh,eu), we decompose the electric field (in complex

notation), orthogonal to the direction of propagation

defined along er, as E ¼ Eþeþ þ E�e� þ Ezez ¼ Ehe
ið/h�xtÞ

eh þ Eue
ið/u�xtÞeu, where E+, E� and Ez are, respectively,

associated to the r+, r�, and p polarizations, with

Eþ ¼ � e�iu

ffiffiffi

2
p Ehe

i/h cos h� iEue
i/u

� �

e�ixt
; ð5aÞ

E� ¼ eiu
ffiffiffi

2
p Ehe

i/h cos hþ iEue
i/u

� �

e�ixt
; ð5bÞ

Ez ¼ �Ehe
ið/h�xtÞ sin h: ð5cÞ

One can see that a single pulse can be used to produce any

combination (E+/E�) (setting h = 0), (E+/Ez) (setting Eh

cosh = Eu and /u = /h + p/2), (E�/Ez) (setting Ehcosh =

Eu and /u = /h � p/2).

3. The phase gate

As an example of the general unitary transformation (4)

described above, we consider the phase gate Ph(u), which

corresponds to a rotation on the Bloch sphere around the

z-axis. Applied to the qubit {|0i, |1i} the phase gate rotates

the phase of state |1i by an angle u, as described by the

matrix

Ph uð Þ ¼ 1 0

0 eiu

� �

: ð6Þ

The phase gate is a particular case of the general one-qubit

quantum gate (4): Ph(u) = U(u,p/2,0). It can therefore be

implemented by using a sequence of two STIRAP pro-

cesses, each involving a linearly polarized pulse and a circu-

larly polarized pulse, and operating on the three-state

subsystem {|ai, |ei, |1i}. State |0i is unaffected by the phase

gate (6). Within the subsystem {|ai, |ei, |1i} only state |1i is

populated before the gate operation, partly or completely,

depending on the state of the qubit. The first STIRAP, with

the p-field (Stokes) preceding the r�-field (pump), transfers

the population of state |1i to |ai. Then the second STIRAP,

with now the r�-field (Stokes) preceding the p-field

(pump), returns the population from state |ai to |1i. This
pulse sequence is depicted in the upper frame of Fig. 2.

The associated phases u
p
, ur� are defined such that the p

and r� electric-field amplitudes read EiðtÞ ¼ Ei;max
ffiffiffiffiffiffiffiffiffi

KðtÞ
p

cosðxit � uiÞ ði ¼ p; r�Þ, with K(t) the intensity

pulse shape and Ei;max the peak amplitude of the field i.

The p and r� fields are exactly in two-photon resonance.

The adiabatic condition is satisfied when Xi,maxT � 1,

where Xi,max is the peak Rabi frequency of the field i and

T is the characteristic duration of the pulse [e.g. the full-

width-at-half-maximum (FWHM) for Gaussian pulses].

The combination of the two STIRAPs leads to the phase

gate (6) between states |0i and |1i with the phase

u ¼ uð2Þ
p

� uð2Þ
r�

þ uð1Þ
r�

� uð1Þ
p
: ð7Þ
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Fig. 2. Numerical simulation of the double-STIRAP process (using pulses

of Gaussian intensity of FWHM T, a pump–Stokes delay T/2, and a delay

1.5T between the two STIRAPs) for the generation of the phase u = p/2 in

state |1i, initially and finally fully populated, with XmaxT = 10 (where Xmax

is the peak Rabi frequency, which is here the same for all fields),

uð1Þ
p

¼ p=2;uð2Þ
p

¼ p, and uð1Þ
r�

¼ uð2Þ
r�

¼ �p=4. Upper frame: pump (full

lines) and Stokes (dashed lines) Rabi frequencies (in units of 1/T). Middle

frame: Populations Pj :¼ |hj|wi|2 with |wi the state of the dynamics, j = 1

(full line), a (dashed line), e (dotted line) (Pe could be reduced for larger

XmaxT). Lower frame: Phases /j :¼ arg(hj|wi), with u � /1(+1).

Uðu; v; gÞ ¼ eiu=2
eiu=2 cos2 vþ e�iu=2 sin

2
v �ie

�ig
sin v=2 sin g=2

�ie
ig
sin v=2 sin g=2 e�iu=2 cos2 vþ eiu=2 sin

2
v

" #

ð4Þ
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Fig. 2 shows a numerical simulation for the generation of

the phase u = p/2. This scheme requires p fields that do

not overlap with each other, whereas the r� fields can over-

lap if they have the same phases, uð2Þ
r�

¼ uð1Þ
r�
. We obtain

numerically u � 0.4998p.

As shown in Fig. 3, we can obtain this phase gate using

only three fields instead of four, with a single r� field and

two p fields in the sequence p – r� – p; then the r� will

serve as pump in the first STIRAP and as Stokes in the sec-

ond STIRAP. This requires a longer r� field since it has to

overlap with both p fields, which are not allowed to overlap

with each other. In this case, u ¼ uð2Þ
p

� uð1Þ
p
, independently

of the r� phase. We obtain here u � 0.4999p.

Such a use of a single elliptically polarized pulse instead

of two intermediate pulses applies also to the generation of

the general single-qubit gate (4).

Following Ref. [12], one can interpret this phase gate in

terms of a geometric phase using the scheme of Ref. [10],

which involves time-dependent phases making a closed

loop in the parameter space. This requires to reinterpret

the two p fields of Fig. 2 as a single field of bipulse shape

[associated to the Rabi frequency Xb(t)] with a time-depen-

dent phase U(t). It takes the constant value uð1Þ
p

during the

first STIRAP, next changes to uð2Þ
p

while the amplitude of

Xb(t) is zero, and stays constant during the second STI-

RAP. Then the phase associated to this process reads

uð2Þ
p

� uð1Þ
p

�
Z

dt
dU

dt
sin

2
hðtÞ; ð8Þ

with tan hðtÞ ¼ XbðtÞ=Xr�ðtÞ. In the case of a closed loop of

the parameters, requiring uð2Þ
p

¼ uð1Þ
p
, only the geometric

phase »dU sin2h is left, requiring the control of the closed

curve h(U) [10]. In the proposed double-STIRAP phase

gate, we have instead static phases uð2Þ
p

6¼ uð1Þ
p

and
R

dt dU
dt

sin
2
hðtÞ ¼ 0, since the phase U of the Xb(t) field

jumps (virtually) only when its amplitude is zero.

This double-STIRAP phase gate has therefore a consid-

erable advantage over the previous proposals because

experimentally it will be easier to control the static relative

phase between the two p polarized fields than a closed

curve h(U) in the parameter space. The proposed realiza-

tion with magnetic sublevels is particularly suitable for this

static phase control because all laser pulses can be delivered

from the same laser pulse by beam splitters, polarizers and

delay lines. Hence, owing to the robustness of STIRAP

against variations in pulse areas and the single-photon

detuning, intensity and frequency fluctuations of the laser

cannot affect the gates appreciably.

4. The generalized rotation gate by non-resonant fractional

STIRAP

We consider now the construction of the generalized

rotation gate, defined as

Rða;/Þ ¼ cos a ei/ sin a

�e�i/ sin a cos a

� �

: ð9Þ

It generalizes the ordinary rotation gate with the additional

phase parameter /. We propose to use two consecutive

fractional STIRAP processes [14], the second one compen-

sating the dynamical phase resulting from the first one (of

reversed sequence). For the realization of this gate, we cou-

ple only the three states |0i, |1i and |ei by elliptically polar-

ized fields (see Fig. 1), i.e. Xa = 0 in Eq. (1). We first recall

the f-STIRAP process and calculate the associated propa-

gator: If the population is initially in state |0i, f-STIRAP

allows a partial adiabatic transfer of the population be-

tween the states |0i and |1i if the pulses are switched on

counterintuitively (Stokes–pump sequence, with in this case

the Rabi frequencies for the pump and Stokes fields,

respectively, denoted XP�rþ and XS�r�) and switched off

in a given constant ratio: XP=XS !
t!þ1

tan a [14]. In order

to obtain a robust process, one can use a variation of this

procedure with the following polarizations [14]: one laser is

r� polarized and the other one is elliptically polarized:

r�cosa + r+sina, such that the Rabi frequencies for the

resulting pump and Stokes fields now read, respectively,

XrþðtÞ ¼e�i/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kel:ðt � sÞ
p

X0 sin a; ð10aÞ
Xr�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Kr�ðtÞ
p

X0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kel:ðt � sÞ
p

X0 cos a; ð10bÞ
with Kr�ðtÞ and Kel.(t) being the intensity envelopes of the

r� and elliptically polarized pulses respectively, s > 0

the delay between them, and / the relative static

phase. The elliptically polarized pulse starting and finishing

after the r� polarized pulses, produces the falling off of the

effective pump and Stokes fields in the prescribed ratio. The

robustness of such a process has been extensively studied in

Ref. [14].

To construct the rotation gate (9), we consider a large

detuning D for the Hamiltonian (1) such that the excited

state can be adiabatically eliminated. Under the conditions

[16]
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Fig. 3. Same as Fig. 2, but with a single r� pulse 50% longer and 33%

higher.
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ðX0T Þ
2
� DT � X0T � 1; ð10cÞ

the propagator between the beginning and the end of the
process (times ti and tf, respectively) reads thus in the basis
{|0i, |1i}

Uðtf ; tiÞ ¼
cos a ei/e�iA� sin a

�e�i/ sin a e�iA� cos a

� �

; ð11Þ

with the dynamical phase

A� ¼

Z

tf

ti

dt

2
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ X2
rþ
ðtÞ þ X2

r�
ðtÞ

q

� �

: ð12Þ

Eq. (11) shows that a generalized rotation gate between
states |0i and |1i with a single f-STIRAP would require
A� = 0, i.e. to cancel the dynamical phase A�. This cannot
be implemented in a robust manner. We show below that
the compensation of the dynamical phase can be achieved
in a robust manner by combining two f-STIRAPs as fol-
lows: The first pulse sequence is in fact a reversed f-STI-
RAP with the elliptic and r� pulses starting with the
constant ratio Xrþ=Xr� !

t!�1
cot a and ending such that

the r� pulse vanishes first. Then the propagator at the
end of this reversed f-STIRAP (starting and ending at times
respectively ti and tf) reads in the basis {|0i, |1i}

U 1 tf ; tið Þ ¼
e�iA� 0

0 1

� �

Rða;/Þ: ð13Þ

The second pulse sequence is the standard f-STIRAP de-
scribed above. The propagator of this f-STIRAP reads
(with variables denoted with primes)

U 2ðt
0
f ; t

0
iÞ ¼ Rða;/Þ

1 0

0 e�iA0
�

� �

: ð14Þ

The resulting operation is associated to the propagator

Uðt0f ; tiÞ ¼ U 2U 1 ¼ Rða;/Þ
e�iA� 0

0 e�iA0
�

� �

Rða;/Þ; ð15Þ

which is the rotation gate R(2a,/) (up to an irrelevant glo-
bal phase) under the condition A� ¼ A

0
�. This condition is

satisfied if the f-STIRAP and reversed f-STIRAP have the
same characteristics, i.e. the same pulse shapes, peak ampli-
tudes, pulse durations, and a reversed delay with the same
absolute values. Fig. 4 shows a numerical simulation for
the generation of the Hadamard gate R(2a = p/4, / = 0).

5. Experimental implementation

As a realistic atomic level scheme, we consider the 23S1–
23P0 transition in metastable helium, of linewidth
C = 107 s�1 (see for instance [17]). The Rabi frequencies
are X � 108

ffiffi

I
p

s�1 with the field intensities I in W/cm2.
We obtain beyond the resonant approximation using the
polarizability an upper estimate for the relative Stark shifts
(in absolute value) as S � 100I s�1. Taking into account the
loss of the intermediate state requires for adiabatic passage
X0Tp � 1 and (X0Tp)

2 � CTp, satisfied for X0 � C.

For the resonant processes, we can for instance consider
Tp = 1 ls (typical in beam experiments) with I = 100
W/cm2 which gives X0 � 109 s�1, X0Tp = 103 and an esti-
mate of the phases SmaxTp � 10�2 � 2p. They can there-
fore be neglected.

The preceding scheme with a robust dynamical compen-
sation A� ¼ A

0
� could be realistically tested for instance in

an atomic beam experiment with cw laser fields and mir-
rors, as the one described in Ref. [18], allowing a counter-
propagation of the first sequence (see Fig. 5). In such a
beam experiment the field amplitude and the speed of the
beam have to stay constant between the two sequences.
The angle 2a of the rotation requires only the control of
the polarization of the fields.
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Fig. 4. Numerical simulation of the double f-STIRAP process (using

elliptically polarized pulses of Gaussian intensity of FWHM T and a

circular-r� delay T/2, and a delay 2T between the two f-STIRAPs) for the

generation of the Hadamard gate, with X0T = 50, DT = 350 [satisfying at

best the condition (10c)], /rþ
¼ /r�

, /0
rþ

¼ /0
r�
. Upper frame: pump (full

lines) and Stokes (dashed lines) Rabi frequencies (in units of 1/T). Middle

frame: Populations Pj :¼ |hj|wi|2, j = 1 (full line), 0 (dashed line), e (dotted

line) for the initial state |w(�1)i = |1i. We obtain P0 � 0.496. Lower

frame: Populations for the initial state |w(�1)i = |0i. We obtain

P1 � 0.496.

Fig. 5. Scheme of fields of circular (light) and elliptic (shaded) polariza-

tion used with an atomic beam to implement the rotation gate.
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As opposed to the preceding configuration, the general

single qubit gate of Ref. [1] requires a three-dimensional

scheme in beam experiments, since the p-linear pulse has

to propagate orthogonally to the r fields.

6. Conclusion

In conclusion, we have described and discussed robust

techniques to generate the single-qubit phase and

rotation gates in the same system using sequences of

two STIRAPs (for the phase gate) and two f-STIRAPs

(for the rotation gate). The phase of the phase gate is

generated by the static relative phase of two pump laser

fields of the two STIRAPs, which is readily controllable

experimentally. The angle of the rotation gate is con-

structed by maintaining a constant ratio of the field

amplitudes of standard and reversed f-STIRAP, either

at the beginning or at the end of the process, which

can be achieved in a robust manner by using elliptically

polarized fields.
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Fast SWAP gate by adiabatic passage
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We present a process for the construction of a SWAP gate which does not require a composition of elemen-

tary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this

specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense

that spontaneous emission and cavity damping are avoided.

DOI: 10.1103/PhysRevA.72.062309 PACS number�s�: 03.67.Lx, 32.80.Qk

I. INTRODUCTION

The perspective of a high computational power generates
intense efforts to build quantum computers. The quantum
logical gates, which are one of the essential building blocks
of a quantum computer, have received a lot of attention.
They act on qubits, whose states ideally should be insensitive
to decoherence, easily prepared and measured. Moreover, the
construction of logical gates requires a robust mechanism
with respect to fluctuations of experimental parameters. The
usual approach consists in creating a set of universal gates
�1� such that all logical quantum gates can, in principle, be
obtained from the composition of gates belonging to this set.
The universal sets �U2� �2� and �U1, CNOT� �3� where UN is

a general unitary matrix in SU�2N� have played a central role

in quantum computation. However, this generic construction
usually requires compositions of many elementary gates.
This entails an accumulation of decoherence and of other
detrimental effects, which become a considerable obstacle
for a practical implementation.

In this paper, we propose a technique to build a fast
SWAP gate obtained by a scheme based on adiabatic passage
with an optical cavity. It does not use the composition of
gates but aims instead at the construction of a specific gate in
such a way that losses and decoherence effects remain as
small as possible. This direct method is faster, i.e., it involves
considerably fewer individual steps than the composition of
elementary gates build independently. It is thus less exposed
to losses and decoherence processes.

We chose a representation of qubits by atomic states
driven by adiabatic fields in a configuration that is particu-
larly insensitive to decoherence. Indeed, the decoherence due
to spontaneous emission can be avoided if the dynamics fol-
lows a dark state, i.e., a state without components on lossy
excited states. Moreover, the adiabatic principles provide the
robustness of the method with respect to partial knowledge
of the model and against small variations of field parameters.
To implement the gates in a robust manner, one has to con-
trol precisely the parameters that determine the action of the
gates. We therefore do not use dynamical phases, requiring
controllable field amplitudes, nor geometrical phases, requir-
ing a controllable loop in the parameter space �4–7�. We use

instead static phase differences of lasers, which can be easily
controlled experimentally.

In this context of atomic qubits manipulated by adiabatic
laser fields, a mechanism has been proposed in Ref. �8� to
implement by four pulses all one-qubit gates, i.e., a general
unitary matrix U1 in SU�2� in a tripod system �4,5�. In Ref.
�9�, five-level atoms are fixed in a single-mode optical cavity
and are addressed individually by a set of laser pulses �10�.
The authors proposed sequences of seven pulses to build a
two-qubit controlled-phase gate �C-phase���� and a two-

qubit controlled-NOT gate �CNOT�. The configuration of the
five-level atoms is defined by adding a second excited state
to the tripod system �see Fig. 2�a��. Since in the tripod, all
one-qubit gates can be constructed �8�, one thus has a mecha-
nism to implement the universal set �U1, C-phase���� �11�

from which all quantum gates can be deduced. For instance,
the SWAP gate, which interchanges the values of two qubits,
requires three CNOT gates �12�, or can be decomposed into
six Hadamard gates and three C-phase��� gates �see Fig. 1�,

which corresponds to at least 21 pulses in this system.
Since in the experimental implementation of each gate

there are always losses, due to uncontrolled interactions or
decoherence, it is useful to design direct implementations of
specific gates instead of relegating them to a superposition of
many elementary gates.

II. SYSTEM

We propose an alternative mechanism based on adiabatic
passage along dark states for the construction of the SWAP
gate, which compared to the composition into C-phase and
Hadamard gates, or into CNOT gates of Ref. �9�, has the
advantage to involve a much smaller number of pulses and
thus to operate in a shorter time. This mechanism is

*Electronic address: nicolas.sangouard@u-bourgogne.fr

FIG. 1. Decomposition of the SWAP gate from C-phase���

gates and Hadamard �H� gates on the two qubits.
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decoherence-free in the sense that, in the adiabatic limit and
under the condition of a cavity Rabi frequency much larger
than the laser Rabi frequency, the excited atomic states and
the cavity mode are not populated during the dynamics. We
emphasize that the goal here is not to create an alternative
universal set of gates offering the possibility to construct an
arbitrary gate, but to prepare specific logical quantum gates
in a fast way.

We assume that the atoms are fixed inside an optical cav-
ity �Fig. 2�b��. The proposed mechanism is implemented in
the five-level extension of the tripod-type system in which
the universal gate of Refs. �8,9� can be implemented �Fig.
2�a��.

We will use a notation, e.g., in Figs. 2 and 3, involving
two kets: the left one labels the state of the atoms �a single or
a pair� and the right one the photon number of the cavity
field. The three ground states �for instance Zeeman levels�
�0��0�, �a��0�, and �1��1� are coupled to the excited state �e��0�,
respectively, by two lasers associated to the Rabi frequencies
�0 and �a, and by a single mode cavity associated to the
Rabi frequency g. The upper state �u� is only used to imple-
ment a general one-qubit gate. We assume that the polariza-
tions and the frequencies are such that each field drives a
unique transition by a one-photon resonant process. As a
consequence, the Stark shifts, which would add detrimental
phases, can be neglected here. �Some estimates are presented
below.� The atomic states �0� and �1� represent the computa-

tional states of the qubit. The ancillary state �a� will be used
for the swap operation. The atomic register is fixed in the
single-mode optical cavity �see Figs. 2�a� and 2�b��. Each
atom �labelled by k� of the register is driven by a set of two

pulsed laser fields ��0
�k�

�t� and �
a

�k�
�t�� and by the cavity

mode g�k� which is time independent.

III. MECHANISM

We propose a mechanism to prepare a SWAP gate with
the help of a simple interaction scheme. The SWAP gate acts
on two qubits as follows. The initial state ��i� of the atoms in
the cavity, before interaction with the lasers, is defined as

��i� = ��00��0� + ��01��0� + ��10��0� + ��11��0� , �1�

where the indices s1, s2 of the states of the form �s1s2��0�
denote, respectively, the state of the first and second atom,
and �0� is the initial vacuum state of the cavity-mode field.
� ,� ,� ,� are complex coefficients. The swap gate exchanges
the values of the two qubits leading to the output state

FIG. 2. �Color online� �a� Schematic representation of the five-

level atom. Arrows show the laser �full arrows� and cavity �dashed

arrows� couplings to perform the swap gate �thick arrows� and the

general one qubit gate �thin arrows�. �b� Representation of the

atomic register trapped in a single-mode optical cavity. The atoms

are represented by circles, the laser fields by dashed arrows.

FIG. 3. Schematic representation of the four steps of the con-

struction of the SWAP gate. For each step, the intial state is repre-

sented by an empty circle, whereas the final state is symbolized by

a full black circle.

SANGOUARD et al. PHYSICAL REVIEW A 72, 062309 �2005�
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��o� = ��00��0� + ��01��0� + ��10��0� + ��11��0� . �2�

The main idea to construct this gate is represented in Fig. 3.
It consists of exchanging the values of the qubits by the use
of an ancillary ground state. Adiabatic passage along dark
states �i.e., with no components in the atomic excited states
and a negligible component in the excited cavity states� will
be used.

The four steps can be summarized as follows:
�1� The population of �10��0� is completely transferred

into �a1��0� by the use of two resonant pulses �
a

�1�
, �0

�2�

switched on and off in a counterintuitive pulse sequence �i.e.,

�
a

�1�
before �0

�2�
�. After the interaction, the state becomes

��1� = ��00��0� + ��01��0� + ��a1��0� + ��11��0� . �3�

�2� With a similar technique, the population of �01��0� is
transferred into �10��0� by the use of the counterintuitive se-

quence of two pulses �0
�2�

, �0
�1�

leading to the state

��2� = ��00��0� + ��a1��0� + ��10��0� + ��11��0� . �4�

�3� The population of �a1��0� is transferred into �1a��0� by

the use of the sequence �
a

�2�
, �

a

�1�
giving

��3� = ��00��0� + ��1a��0� + ��10��0� + ��11��0� . �5�

�4� The population of �1a��0� is transferred into �01��0� by

the use of the sequence �0
�1�

, �
a

�2�
. As a result, the system is

in the state

��4� = ��00��0� + ��01��0� + ��10��0� + ��11��0� , �6�

which coincides with the output state of the SWAP gate.
In what follows, we give the instantaneous eigenvectors

connected with the initial condition and that are thus adia-
batically followed by the dynamics for the four steps. We
show that they are associated with dark states with no com-
ponent in the atomic excited states and a negligible compo-
nent in the excited cavity states.

Since the lasers do not couple the atomic state �1�, the
state �11��0� of the initial condition �1� is decoupled from the
other ones. The other states of �1� are connected to two or-
thogonal decoupled subspaces denoted H7 and H16 of di-
mension 7 and 16, respectively. For each step, one ground
state �0� or �a� of each atom is coupled by a laser field to the
excited state, and the other one is not coupled to the excited
state. To summarize the calculation of the instantaneous
eigenstates for the four steps, we introduce the following
notation: the state coupled by a laser field is labeled �L�i��
��0�i�� or �a�i��� and the noncoupled state �N�i�� ��a�i�� or �0�i���.
The index i=1,2 labels the atom i. The instantaneous eigen-
states in each subspace H7 and H16 can be characterized as
follows: in H7, the states �N�1�1��0� and �1N�2���0� are not
coupled by the lasers and thus do not participate to the dy-
namics. Only the atomic dark state �i.e., without component
in the excited atomic states� �10�,

�	7� 
 g�1�
�

�2��L�1�1��0� + g�2�
�

�1��1L�2���0� − �
�1�

�
�2��11��1� ,

�7�

�where the normalization coefficient has been omitted� par-
ticipates in the dynamics. The first step, associated with

L�1�	a, L�2�	0, �
�1�	�

a

�1�
, �

�2�	�0
�2�

leads to the initial
and final connections symbolically written as �10��0�→ �	7�
→ �a1��0� �see Fig. 3�. The second, third, and fourth steps
give, respectively, the connections �01��0�→ �	7�→ �10��0�,
�a1��0�→ �	7�→ �1a��0�, and �1a��0�→ �	7�→ �01��0�. We de-
termine four atomic dark states in the subspace H16 con-
nected to the state �00��0� of the initial condition �1�,

�	16�1�� 
 �
�2��N�1�1��1� − g�2��N�1�L�2���0� , �8a�

�	16�2�� 
 g�1�g�2�
2�L�1�L�2���0� − g�2�
�

�1�
2�1L�2���1�

− g�1�
�

�2�
2�L�1�1��1� + �
�1�

�
�2��11��2� , �8b�

�	16�3�� = �N�1�N�2���0� , �8c�

�	16�4�� 
 �
�1��1N�2���1� − g�1��L�1�N�2���0� . �8d�

The state �00��0� is connected initially and finally to the dark
state �	16�n�� at the nth step. The phase term of the final state

is equal to one: �i� the optical phase is null since the popu-
lated atomic states are degenerate, �ii� the dynamical phase is
reduced to zero since the eigenvalues associated to each dark
state are null, and �iii� the geometric phase is equal to zero.
Indeed, at every time ��	d��s��d /ds�	d�s��=0��	d��s�� and

�	d�s�� being two different or identical dark eigenstates�

since for �	d��s��= �	d�s��, the phase of the lasers is constant

during each step and for �	d��s��� �	d�s��, the dark states

belong to orthogonal subspaces.
Since the dynamics follows atomic dark states, the excited

atomic state is never populated �in the adiabatic limit�. More-
over, the projections of the dark states into the excited cavity
photon states can be made negligible if g�i�

��
�i� �15�. In this

case, the mechanism we propose is a decoherence-free
method in the sense that the process is not sensitive to spon-
taneous emission from the atomic excited states and to the
lifetime of photons in the optical cavity.

We present the numerical validation of the mechanism
proposed for the construction of the SWAP gate. We show in
Fig. 4, the time evolution of four initial states: in �a� and �d�
the population of the initial states �00��0� and �11��0�, respec-
tively, stays in these states after the interaction with the eight
pulses, in �b� and �c� the population of the initial states
�01��0� and �10��0� are exchanged. In �e�, we show the Rabi
frequencies associated to each pulses. The laser Rabi fre-

quencies are all chosen of the form ��t�=�maxe
−�t / Tp�2

. Since

the four steps of the mechanism can be seen as double-
STIRAPs �13,14�, each STIRAP involving one laser and the
cavity, the amplitudes of the coupling must satisfy
�maxTp ,gTp�1 to fulfill the adiabatic conditions. The delay
between two pulses of the same step is chosen equal to 2
�0.6Tp to minimize the nonadiabatic losses �16�. Moreover,
the condition g��max guarantees that the cavity mode is
negligibly populated during the interaction with the pulses.

IV. DISCUSSION

We notice that the two identical pulses �0
�2�

used succes-
sively in the first and second step can be replaced by a single
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pulse. The process we propose then requires the use of only
seven adiabatic pulses.

As a realistic atomic level scheme, we consider the
2 3S1-23P0 transition in metastable helium, of linewidth 

=107 s−1 �see for instance �17��. The Rabi frequencies are
��108
I s−1 with the field intensities I in W/cm2. We ob-
tain beyond the resonant approximation using the polariz-
ability an upper estimate for the Stark shifts �in absolute
value� as S�100I s−1. Taking into account the loss of the
intermediate state requires ��maxTp�2

�Tp for adiabatic

passage, which is satisfied for �maxTp�1 and �max�. We
use �maxTp=10 corresponding to, e.g., I=104 W/cm2 and

Tp=1 ns, which gives �max�1010 s−1 and an estimate of the
phases SmaxTp�10−3

�2�. They can therefore be neglected.
The swap method we have presented can be extended to

build a CNOT gate. The process is composed of six steps:
We first transfer the population of the state �1� of the second
atom in the ancillary state �a� by STIRAP using two addi-
tional resonant laser fields with the upper state �u�. The next
four steps allow us to interchange the populations of the
states �10��0� and �1a��0� by a similar swap method like the
one shown in this paper. The last step transfers back the
population of the ancillary state �a� of the second atom in
state �1�. The population transfers are realized by adiabatic
passage along dark states. We thus obtain a direct and
decoherence-free method for the creation of the CNOT gate
that requires the use of 11 pulses. In comparison to the
method proposed in Ref. �9�, this technique does not use
f-STIRAP �in which the ratio of two pulses has to be con-
trolled �16��. A specific system �such as Zeeman states� is not
necessarily required to guarantee the robustness of the tech-
nique.

V. CONCLUSION

In conclusion, we have proposed to use a mechanism
adapted to the construction of a specific gate instead of rely-
ing on compositions of a large number of elementary gates.
We have illustrated this idea by the construction of a SWAP
gate in a system where all one-qubit gates and the C-phase
gate can be built. This technique requires the use of a cavity
and seven pulses in a double-STIRAP configuration instead
of 21 pulses when the SWAP gate is created from the com-
position of elementary gates. It is robust against variations of
amplitude and duration of the pulses and of the delay be-
tween the pulses. Moreover, it constitutes a decohence-free
method in the sense that the excited states with short life-
times are not populated and the cavity mode has no photon
during the process. We conclude by noticing that this tech-
nique allows one to entangle the qubits on which it acts by
manipulating the phase of the pulses. In this case, we get the
composition of gates that could offer interesting possibilities
to execute rapid quantum algorithms in which this composi-
tion is required.

Work is in progress to generalize this fast method to other
gates. This requires other pulse sequences and involves dif-
ferent dark states.

�1� A. Galindo and M. A. Martin-Delgado, Rev. Mod. Phys. 74,

347 �2002�.

�2� D. P. DiVincenzo, Phys. Rev. A 51, 1015 �1995�.

�3� A. Barenco C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.

Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurt-

er,Phys. Rev. A 52, 3457 �1995�.

�4� R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann,

Opt. Commun. 155, 144 �1998�.

�5� R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A

59, 2910 �1999�.

�6� L.-M. Duan, J. I. Cirac, and P. Zoller, Science 292, 1695

�2001�.

�7� R. G. Unanyan and M. Fleischhauer, Phys. Rev. A 69,

050302�R� �2004�.

�8� Z. Kis and F. Renzoni, Phys. Rev. A 65, 032318 �2002�.

�9� H. Goto and K. Ichimura, Phys. Rev. A 70, 012305

�2004�.

�10� T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys.

FIG. 4. �Color online� Numerical simulation exhibiting the

populations for the initial conditions: �a� �00��0�, �b� �01��0�, �c�

�10��0�, and �d� �11��0�. The states which are populated during the

interaction with the pulses or between two steps are indicated. �e�

Rabi frequencies. The parameters used are �maxTp=10, gTp=25.

The delay between two pulses of the same steps is 1.2Tp.

SANGOUARD et al. PHYSICAL REVIEW A 72, 062309 �2005�

062309-4



326 Chapter 15. Quantum gates by adiabatic passage



Appendix A

π-pulse technique in microwave cavity

In this Appendix we review the π-pulse technique in a microwave cavity [242, 225, 241] in order
to explain by a simple method the ideas of:

1 Generation of single-photon Fock state,

2 Creation of atom-photon entanglement,

3 Transfer of coherence from atom into a cavity mode,

4 Transfer of coherence between two atoms,

5 Creation of atom-atom entanglement,

6 Creation of photon-photon entanglement.

The experimental realization of these ideas is not easy due to the non-robust character of
the π-pulse technique.

The Hamiltonian of a two-level atom (corresponding e.g. to circular Rydberg states) inter-
acting with a single-mode high-Q cavity is given by the Jaynes-Cummings Hamiltonian in the
rotating-wave approximation (in units such that ~ = 1):

H(t) = ωCa
†a 12 +

(
ωe 0
0 ωg

)
+G(t)

(
0 a
a† 0

)
, (A.1)

where G(t) is the Rabi frequency of the cavity mode. (The Rabi frequency is often alternatively
defined as twice the G factor in the literature.) This Hamiltonian is block-diagonal in the
subspaces Sn with n = 0, 1, 2, · · · spanned by vectors {|e, n⟩, |g, n + 1⟩}. The state |g, 0⟩ is
a stationary state of the system. If the initial state of the system is |e, 0⟩ or |g, 1⟩, then the
effective Hamiltonian of the system in the subspace S0 will be

Heff(t) =

(
δ G(t)

G(t) 0

)
, (A.2)

where we have shifted the reference of energy to ωC + ωg, and δ is the detuning from the
one-photon resonance δ = ωe − ωg − ωC . An essential condition for the π-pulse technique is
the exact one-photon resonance δ = 0. In this case, the propagator corresponding to Heff(t) is
given by

U(t) = cosA(t) 12 − i sinA(t) σx, (A.3)

where σx is the pauli matrix, and

A(t) :=

∫ t

0

G(s)ds, (A.4)
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is the pulse area. Hence, the time evolution of the system for A(tf ) = π/2 and with different
initial conditions will be as follows:

|e, 0⟩
A1(tf )=π/2
−−−−−−→ −i|g, 1⟩, (A.5)

|g, 1⟩
A1(tf )=π/2
−−−−−−→ −i|e, 0⟩. (A.6)

1 Equation (A.5) indicates that if the atom, initially in the excited state |e⟩, enters into a
microwave cavity initially in the vacuum state and if we control the velocity of the atom such
that the pulse area equals π/2, then we can transfer the atomic excitation to the cavity field
by generating a single-photon Fock state.

2 For A(tf ) = π/4 the final state of the system will be a maximally entangled atom-photon
state:

|e, 0⟩
A1(tf )=π/4
−−−−−−→ 1√

2
(|e, 0⟩ − i|g, 1⟩). (A.7)

3 If the atom is initially in a coherent superposition α|e⟩ + β|g⟩, the final state of the
system for A(tf ) = π/2 will be

(α|e⟩+ β|g⟩)|0⟩
A(tf )=π/2
−−−−−−→ |g⟩(−iα|1⟩+ β|0⟩), (A.8)

since |g, 0⟩ → |g, 0⟩. This means that the interaction has transferred the coherence from the
two-level atom to a cavity-mode field by a π/2-pulse technique.

4 This coherence can then be transferred to a second two-level atom initially in the state
|g⟩ (with the same velocity as the first atom) which crosses the cavity after a time delay with
the reverse process of the one performed on the first atom:

|g, g⟩(−iα|1⟩+ β|0⟩)
A(tf )=π/2
−−−−−−→ −α|g, e, 0⟩+ β|g, g, 0⟩

= |g⟩(−α|e⟩+ β|g⟩)|0⟩. (A.9)

5 To create atom-atom maximal entanglement [242] we suppose that the initial state of
the combined system is |e, g, 0⟩. Two atoms enter successively into the cavity with different
pulse areas. The combined system is left in the final state

|e, g, 0⟩
A1(tf )=π/4
−−−−−−→ 1√

2
(|e, g, 0⟩ − i|g, g, 1⟩)

A2(tf )=π/2
−−−−−−→ 1√

2
(|e, g, 0⟩ − |g, e, 0⟩), (A.10)

which corresponds to a pair of atoms in a maximally entangled atomic state with an empty
cavity. The cavity field which starts and ends up in the vacuum state and remains at the end
of the process uncorrelated from the atoms, acts as a catalyst for the atom-atom entanglement.

6 One can also entangle two photons in two spatially separate microwave cavities by an
atom, initially in the state |e⟩, which enters successively into two empty cavities. Hence the
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initial state of the combined system is |e, 0, 0⟩, where the second (third) symbol in the ket refers
to the photon number in the first (second) cavity. If the duration of the interaction of the atom
with the first and the second cavity is controlled such that A1(tf ) = π/4 and A2(tf ) = π/2, the
state of the combined system will evolve as follows:

|e, 0, 0⟩
A1(tf )=π/4
−−−−−−→ 1√

2
(|e, 0, 0⟩ − i|g, 1, 0⟩)

A2(tf )=π/2
−−−−−−→ 1√

2
(−i|g, 0, 1⟩ − i|g, 1, 0⟩)

=
−i√
2
|g⟩(|0, 1⟩+ |1, 0⟩), (A.11)

which represents a pair of photons maximally entangled in two cavities in the presence of an
atom in its ground state.
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In this manuscript, we have presented in a self-contained way tools and strategies for the
control of atomic and molecular processes by external fields with parameters specifically de-
signed to achieve particular goals. Control of selective population transfer, of the external
degrees of freedom (atomic deflection, tunneling localization, and alignment of molecule), and
applications to quantum information processing have been studied.

The techniques can be divided in two classes: adiabatic passage, adapted for moderately
short pulses and that leads to specific processes while the field is on or right after the pulse, and
processes induced by short pulses that yield specific postpulse effects. For adiabatic passage,
geometric analysis of the eigenenergies of the complete system (quasienergies) as functions of the
parameters allows one to establish robust strategies of population transfer. On the other hand,
short pulses allow one to prepare a specific superposition that subsequently evolves inducing
desirable properties, such as revivals of alignment.

In these two classes it is required (i) to define a target state that has the desired properties,
and (ii) to construct a process that allows one to reach the target state. For the adiabatic
regime, the target state can be in general easily related to a dressed potential, in terms of
eigenstates (e.g. for the state selectivity) or in geometric terms (alignment or tunneling effect
for instance). In the sudden regime, the target state is not directly connected to the potential,
but rather related to an observable that characterizes the goal to achieve (for instance cos2Θ
for the alignment, where Θ is the angle between the molecular axis and a reference axis).

One of the main points to construct strategies in the adiabatic regime consists in inducing in
the system resonances by choosing appropriate frequencies. These resonances determine indeed
the essential aspects of the geometry and the topology of the quasienergies, that determine the
possible strategies. Particular care must be taken to construct effective Hamiltonians that in-
corporate the relevant resonances. The perturbative effects that slightly modify the resonances
are not so important since they do not change the final effect provided that adiabaticity is
preserved.

The global perspective of this work consists in extending these tools for more complex
systems, especially the adiabatic techniques, taking benefits of its robustness.

In particular, the extension of the adiabatic techniques to open quantum systems, i.e. to
quantum systems coupled to an external environment, is of interest since adiabatic processes
require relatively long times, where decoherence, such as dephasing (i.e. loss of phase) and
spontaneous emission may take place. These decoherence effects are of importance in particular
in quantum information processings.

The passage to open systems is made by replacing the Schrödinger equation by a master
equation which depends on the environment. A widely studied class is the linear Lindblad
equation, which assumes a Markovian bath with small correlation times [256]. It is associated
to a Lindblad generator (LG) which generalizes the Hamiltonian to open systems, and the
adiabatic passage is expected to occur along a set of eigenvectors of this LG. It has been
argued that this is not generally the case, when the LG is not diagonalizable, and that the
Jordan blocks take then the role of the eigenvectors [257]. However it is not yet clear whether
this occurs for relevant physical situations.

An other extension of our tools can be made when a continuum of the field-free spectrum is
considered. In this case, the natural construction consists in applying a complex-scaling rotation
of the quasienergy operator that will allow one to describe the resonances in the continuum
with squared integrable functions (see for instance [258]).

Concerning quantum information, robust adiabatic techniques that avoid geometrical phases,
have not been fully exploited in particular to construct logical gates and algorithms. They could
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be applied for instance in trapped ion systems, where a particular control of Stark shifts is re-
quired.

Alignment by strong fields of molecules will be analyzed for more complex systems, such
as asymmetric top molecules (see for instance [259] and [260]), molecules interacting with its
environment (e.g. through collision [261]), and molecules trapped in solids [262].
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S. Guérin, L. P. Yatsenko, T. Halfmann, B. W. Shore, and K. Bergmann, Phys. Rev. A 58,
4691 (1998).

[77] D. Grischkowsky, M. M. T. Loy, P. F. Liao, Adiabatic following model for two-photon
transitions: Nonlinear mixing and pulse propagation, Phys. Rev. A 12, 2514 (1975).
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Laser Cooling with Adiabatic Transfer, Phys. Rev. Lett. 76, 2432 (1996).

[138] A.S. Parkins, P. Marte, P. Zoller, O. Carnal, and H.J. Kimble, Quantum-state mapping
between multilevel atoms and cavity light fields, Phys. Rev. A 51, 1578 (1995).

[139] J. Javanainen and M. Mackie, Probability of photoassociation from a quasicontinuum
approach, Phys. Rev. A 58, R789 (1998).

[140] D. Bouwmeester, A.K. Ekert, and A. Zeilinger. The Physics of Quantum Information:
Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin,
2000.
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