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Résumé: Les ontologies de documents, c’est-à-
dire une forme traitable par la machine de la
structure des documents et du discours des doc-
uments, jouent un rôle crucial dans la structura-
tion du lien entre des notions sémantiques et des
documents contenant du texte informel. Dans
de nombreuses disciplines scientifiques comme la
médecine ou la biologie, les ontologies permettent
l’organisation des articles de recherche et leur ac-
cès automatisé. Les champs des mathématiques
et de l’ingénierie représentent un défi particulier
avec des documents qui contiennent à la fois des
éléments textuels formels et informels avec une
structure complexe de liens mutuels et de dépen-
dances de divers types. Les textes peuvent con-
tenir des formules (qui devraient au moins être
correctement typées et si possible sémantique-
ment cohérentes avec les définitions formelles) et
des définitions formelles fondées sur des conven-
tions de nommage qui devraient refléter les expli-
cations informelles. Un accès approfondi aux par-
ties formelles de ce type de documents implique
un cadre capable de prendre en compte des lan-
gages logiques typés, ce qui nécessite d’aller beau-
coup plus loin que les langages ontologiques exis-
tants comme, par exemple, OWL [1, 2].

Le point de départ de ce travail est le langage
ontologique ODL implanté dans Isabelle/DOF [3,
4, 5]. Profondément intégré dans l’assistant de
preuve Isabelle/HOL et son interface PIDE, il
permet à la fois le développement d’ontologies
typées et de documents contenant des définitions,
de la documentation et des preuves formelles pour
des textes mathématiques et d’ingénierie formelle.
Les ontologies génèrent des théories de méta-
informations et les utilisent pour la validation
de contraintes à respecter lors de l’édition des
documents. L’implantation originelle prenait en
charge des liens vers les termes dans des défi-
nitions et des preuves, mais pas les liens entre
les termes, ni l’ajout de méta-informations struc-
turées à l’intérieur et entre des formules ou des
preuves. Le mécanisme de validation des méta-

informations était réduit à des solutions arti-
sanales. En outre, des entités formelles comme
les définitions ou les lemmes ne pouvaient pas
être référencées en tant qu’entités ontologiques.
Ces fonctionnalités sont néanmoins essentielles à
un certain nombre d’applications pour l’échange
d’informations (semi-)formelles entre des prou-
veurs interactifs et automatisés d’une part, et
pour des techniques de recherches sémantiques
avancées axées sur la connaissance dans ces doc-
uments d’autre part.

Cette thèse surmonte ces limitations : Is-
abelle/DOF est étendu par un mécanisme de de-
scription et d’évaluation des méta-informations
à l’intérieur du niveau des termes et des objets
de preuve. Il est donc conçu pour fournir une
intégration « plus profonde » dans des textes
de bibliothèques mathématiques formelles, pour
lesquelles les entités formelles peuvent être ab-
straites et devenir des éléments de document. Les
entités formelles représentant des termes, des déf-
initions ou des théorèmes peuvent être référencées
et utilisées comme des objets ontologiques de
première classe. La nouvelle prise en charge
du polymorphisme pamamétré par des classes
de type permet de généraliser les concepts on-
tologiques. Ces nouvelles fonctionnalités d’Is-
abelle/DOF peuvent exprimer non seulement des
liens entre du texte informel et des concepts on-
tologiques formels mais aussi entre des entités
formelles ou informelles en tant qu’éléments de
documents, permettant ainsi d’affiner le lien en-
tre des éléments de documents et la connaissance
dans des textes mathématiques et d’ingénierie.
Un mécanisme de réification dans Isabelle/DOF
permet d’attacher des méta-données ontologiques
à des objets de preuve pour ajouter de la con-
naissance sur la structure de scripts de preuves et
les tactiques de preuve associées pour prouver un
théorème. Cela pourrait être approprié pour des
techniques d’importation/exportation de preuves
entre assistants de preuve [6, 7].
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Abstract: Document ontologies, i. e., a machine-
readable form of the structure of documents as
well as the document discourse, play a key role
in structuring the link between semantic notions
and documents containing informal text. In many
scientific disciplines such as medicine or biology,
ontologies allows the organization of research pa-
pers and their automated access. There are par-
ticular challenges in the field mathematics and
engineering where documents contain both for-
mal and informal text-elements with a complex
structure of mutual links and dependencies of var-
ious types. Texts may contain formulas (which
should be at least type-correct and if possible se-
mantically consistent with the formal definitions)
and formal definitions based on naming conven-
tions that should reflect informal explanations. A
deeper access into the formal parts of this type of
documents involves a framework that can cope
with typed, logical languages, which requires go-
ing substantially further than existing ontological
languages like, for example, OWL [1, 2].

The starting point of this work was the
ontological language ODL implemented in Is-
abelle/DOF [3, 4, 5]. Deeply integrated into the
interactive theorem proving system Isabelle/HOL
and its front-end PIDE, it allows both the de-
velopment of typed ontologies and of documents
containing definitions, documentation, and for-
mal proofs. The ontologies generate theories of
meta-data and use them for the validation of
constraints which were enforced during document
editing. The original implementation supported
links to terms in definitions and proofs, but not
links between terms, nor the addition of struc-
tured meta-information inside and between for-

mulas or proofs. The validation mechanisms for
meta-information were limited to hand-crafted so-
lutions. Furthermore, formal entities like def-
initions or lemmas could not be referenced as
ontological entities. These features are never-
theless essential for a number of applications
when it comes to the exchange of (semi-)formal
information between interactive and automated
provers on the one hand and to advanced “se-
mantic”, knowledge-oriented search techniques in
these documents on the other hand.

This thesis overcomes these limitations: Is-
abelle/DOF is extended by a description and an
evaluation mechanism of meta-information inside
the level of terms and proof-objects. It is there-
fore designed to provide a “deeper” integration
into formal mathematical library texts, where for-
mal entities can be abstracted and become doc-
ument elements. Formal entities representing
terms, definitions or theorems can be referenced
and used as first class ontological objects. The
new support of type classes parameterized poly-
morphism allows to generalize ontological con-
cepts. These new features in Isabelle/DOF can
express not only links between informal text and
formal ontological concepts but also between for-
mal or informal entities as elements of a docu-
ment, thus improving the linking between doc-
ument elements and knowledge in mathematical
and engineering texts. A reification mechanism in
Isabelle/DOF allows to attach ontological meta-
data to proof objects to add knowledge about the
structure of the proof scripts and associated proof
tactics used to prove a theorem. It should be rel-
evant for import/export techniques of proofs be-
tween theorem provers [6, 7].
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Chapter 1

Introduction

1.1 Context
Documents have greatly evolved in recent history with the digitization of modern
society. Document authors wish to define specific format and generalize over sim-
ilar text, restrict access control for specific document parts using security models,
declare advanced linking mechanism between document elements, target particular
subjects like certifications, and so on.

This lead to the development of document languages that combine literal text
and program source code to gain control at every steps of the document generation,
whether it is parsing, computation, or rendering and presentation. This approach
is computation-driven, in the sense that the main purpose of the document lan-
guage development is motivated by the decision to follow the standard document
generation pipeline.

Another approach is to have semantic notions emerging from document ele-
ments and allow for logical reasoning about them. This approach is logic – resp.
semantics driven and aims to extract knowledge from reasonably well-structured
informal “raw” texts.

With both these approaches arise questions on a formal foundation and the
interest of this foundation regarding its expressiveness and adequacy to the au-
thor wishes. Furthermore, among documents in general and libraries in particular,
formal libraries distinguish themselves when considering semantic concepts. They
come with formal and informal content that can commingle. The formal concepts
and notions require specific handling to give them adequate semantics and struc-
ture; mathematical concepts need to be formalized to form a sound foundation to
build upon, and their semantics should also have a formal representation to allow
advanced handling by users. For example, the notion of definition should have a
formal representation in semantics to offer sound foundations for other semantic
concepts to build upon.

The document calculus [8], a formal model based on the system F typing system

9



1.1. Context

chooses the computational approach and addresses the formal foundation issue. Its
authors also state that it offers foundations for future programming language re-
search and provides examples addressing the expressiveness like the possibility to
model higher-level features like references and reforestation. Using the document
calculus as a foundation for formal libraries implies that each formal concept needs
to be defined from scratch to formalize the higher-level concepts like theorems and
definitions: a logic should be implemented, with axioms and inference rules as
its basis, or specific measures might be required if system F is used directly and
a decidable type inference is wished, design and implementation of conservative
extension should be done to offer a sound system for higher-level concepts like the-
orems, and so on. Basically a lot of technology should be developed from scratch
implying a large overhead to have a sound foundation for formal libraries encoded
inside the document calculus. Using the document calculus also has repercussions
on the expressiveness. For example the formalization of the linking between docu-
ment elements like references is already possible, so it should be possible to define
other links and give them formal semantics. But to express these formal semantics,
we might need to define new formal concepts and extend the document calculus.
The overhead issue arises once again, indirectly this time.

With the semantic and logical approach, the knowledge extraction is a cru-
cial prerequisite for any form of document handling. The extraction could be
represented abstractly as a linking between formal and informal content where
literal text is the latter and formalized concepts giving semantics are the former.
Numerous research efforts summarized under the labels “semantic web” or “data
mining” developed technologies using this abstract representation for advanced
search, classification, “semantic” validation and “semantic” merge. For these tech-
nologies, a key role in structuring this linking is played by ontologies (also called
“vocabulary” in semantic web communities), i. e., a machine-readable form of the
structure of documents as well as the document discourse. Such ontologies can
be used for scientific discourse underlying scholarly articles, the conversion, and
integration of semi-formal content, for advanced semantic search in mathematical
libraries as well as documentation in various engineering domains. In other words,
ontologies generate the meta-data necessary to annotate raw text allowing their
“deeper analysis”, in particular inside mathematical formulas or equivalent formal
content such as programs, UML-models, etc.

For the use case of formal libraries, ontologies play a dual role: we will dis-
tinguish document ontologies from domain ontologies. The former are oriented
towards meta-information used as a document language, i. e., the representation
aspects of a target type-setting technology (e.g., LATEX, HTML). Document on-
tologies have the same purpose as the document calculus, but are more permissive:
the raw text is considered as a document element and any advanced manipulation
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Chapter 1. Introduction

of it is done using attached meta-data. Features like references and reforestation
can be implemented using document ontologies. When it comes to domain ontolo-
gies, they are oriented towards a specific knowledge domain, like mathematics or
engineering, to represent formal entities, whether these entities are document ele-
ments or attached meta-data elements that give formal semantics. We can see here
that the knowledge representation language is left open. Traditional semantic web
ontologies will use languages like description logics to define the Web Ontology
Language (OWL), or other languages presented in the related works.

This leads to another path than the development from scratch when using
the document calculus. Indeed with ontologies, and contrary to the document
calculus, it seems easier to reuse existing technology with its own knowledge rep-
resentation language, that might even already have a formalization of advanced
concepts that could be made available to domain ontologies for formal libraries.
Interactive theorem provers are such technologies: they define and formalize con-
cepts like definitions and theorems and can prove mathematical assertions using
these concepts. Interactive theorem provers offer a full ecosystem from their de-
sign as logical frameworks to large formal libraries developed over the years. And
to be sound these formal libraries are developed on top of primitives specified in
the logical framework, adopting the conservative extension approach. As logical
frameworks for proofs they are of great value for logical reasoning about document
elements specifically for formal libraries. When using the document calculus as a
foundation, it means that a technology with some of the features of a theorem
prover need to be developed to have the same soundness but the proof aspect is
out of scope, i. e. having an environment to prove assertions. Indeed writing the-
orem provers is generally considered a really difficult challenge, and most of them
are the result of large amount of research and development efforts redoubled in
the formalization of large mathematical and engineering libraries. Paulson, who
designed and develops the Isabelle theorem prover, concluded his handbook article
on theorem prover design [9] with the edifying sentence: “Don’t write a theorem
prover. Try to use someone else’s”.

Using a theorem prover for the semantic and logical approach may take several
flavors. An existing ontology language can be used, then a thin layer needs to be
designed that will translate concepts defined in the theorem prover language from
and to the ontology language: by developing this thin layer, existing technologies
are reused and the task seems feasible. But it implies that the formalism of both the
languages should have the same expressiveness. An ontology language like OWL
that is based on description logics, less expressive than First-Order Logic (FOL),
will not be able to express every concepts of Coq, an interactive theorem prover
based on the calculus of inductive constructions in which higher-order concepts
can be defined. Isabelle/DOF [4], a Document Ontology Framework, chose another
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1.1. Context

original approach. The key idea was to develop the framework on top of a theorem
prover, to take advantage of such a technology and the ecosystem it offers, and
to implement ontologies represented inside its logical language. Isabelle/DOF
specifies an Ontology Definition Language (ODL) using the logical language of
the Isabelle theorem prover and as such is deeply integrated within the theorem
prover. It also generates a theory of meta-data in the logical language of Isabelle,
and attaches these meta-data defined in ODL to informal raw text written in the
Isabelle document format, creating a link between informal and formal content.
It has two main benefits. Firstly, ODL can be used as the ontology language
underlying the semantic notions and the theorem prover logical language can be
used for logical reasoning about literal text. We can reuse existing technologies and
focus on formal library specificities. Secondly, as formal concepts like definitions
and theorems already exist directly as formal objects in the logic or at least as
abstract concepts in Isabelle, it may be possible to declare them as elements of an
ontology so that they are used for semantic validation and advanced handling.

Isabelle/DOF is developed with document and domain ontologies in mind: A
previous work [10] was particularly interested in domain ontologies concerning
software developments targeting certifications (such as CENELEC 50128 [11] or
Common Criteria [12]) and played a part in shaping the design of Isabelle/DOF.
Certifications of safety or security-critical systems, albeit responding to the fun-
damental need of the modern society of trustworthy numerical infrastructures are
particularly complex and expensive. A major reason for this is that distributed
labor as occurring in practice requires that complex documents composed of arti-
facts from analysis, design, coding, and verification must preserve coherence under
permanent changes. Moreover, certification processes impose a strong need of
traceability within the global document structure. Last but not least, modifica-
tions and updates of a certified product usually result in a complete restart of the
certification activity since the impact of local changes can usually not be mechan-
ically checked and must be done by manual inspection. Isabelle/DOF turned out
to be a good candidate to model certification documents. It offers an answer to
the particular challenge to the syncing of informal and formal content for formal
libraries: it supports links inside informal text to terms in definitions and proofs.
But links between terms are not supported, nor the addition of structured meta-
information inside and between formulas or proofs. The validation mechanisms for
meta-information are limited to hand-crafted solutions. Furthermore, formal enti-
ties like definitions or lemmas could not be referenced as ontological entities. These
features are nevertheless essential for a number of applications when it comes to
the exchange of (semi-)formal content between interactive and automated provers
on the one hand and to advanced “semantic”, knowledge-oriented search tech-
niques in these documents on the other hand. The goal of this thesis is to extend
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Chapter 1. Introduction

Isabelle/DOF to capture the particularities of formal libraries. To achieve that
an important redesign of the implementation is necessary and novelties must be
developed.

1.2 Contribution
The original version of Isabelle/DOF (called Isabelle/DOF 1.0 here) was designed
with the linking between informal text and formal ontological entities in mind,
and was influenced by certification documents it targeted. With attached ontolog-
ical content, informal text becomes an identifiable element that can be referenced
and a part of the document structure. Certification standards specify the pro-
cess and technical requirements for a specific goal, the development of software for
programmable electronic systems for use in railway control and protection applica-
tions in the case of CENELEC 50128. This process and requirements materialize
through the production of specifications written in documents. So the structure
of the certification documentation expresses the specifications that were added to
the documentation. Isabelle/DOF 1.0 comes with the concept of monitor to check
and enforce the structure of a document. A document containing the specifica-
tions expressed with ontologized informal text can be checked to assert that it is
complete with respect to a certification using a monitor enforcing its structure.

But Isabelle/DOF 1.0 lacks expressiveness to talk about its own concepts and
hence to enable technologies pervasive in ontologies such as advanced semantic
search and validation. An evaluation environment compatible with Isabelle/DOF
1.0 concepts is also required to allow this execution. Isabelle/DOF 1.0 can express
formal concepts like definitions and theorems ontologically, but the ontological
concept can not be linked to the abstract notion specified in the Isabelle theo-
rem prover. Isabelle/DOF 1.0 can use an Isabelle definition in the logical context
but can not talked about Isabelle definitions as a specific group of formal entities:
formal concepts are not identifiable elements in a document. It also lacks the possi-
bility to attach the abstract concept of rule to entities and individuals represented
in the ontology language to make this rule part of a validation process.

To overcome these limitations, The notion of term contexts is introduced. Then
to capture new semantics for the linking between informal or formal entities, Is-
abelle/DOF 1.0 ODL is extended to support parametric polymorphism. Both these
features allow a deeper analysis of Isabelle/HOL where ontological meta-data can
be attached to proof objects. All of these new features lead to a new version of
Isabelle/DOF rebranded as Isabelle/DOF 2.0.
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1.3. Structure of the Thesis

Term Contexts The Isabelle theorem prover uses typed 𝜆-terms as a syntactic
presentation for expressions, formulas, definitions, and rules. Rather than using
a classical programming language, the concept of deep ontologies led us to use
HOL itself and generate the checking-code for references to 𝜆-terms inside 𝜆-terms
via reflection and reification techniques. In particular, this paves the way for a
new context type called term contexts. As a consequence, syntactic categories
that represents higher level concepts like definitions and theorems can contain
ontological references inside their formulas to entities. Furthermore ontological
references can be used in ontological definitions, whether it is a reference to a formal
or an informal abstract concept in the ontology. This allows to reconsider the
linking in Isabelle/DOF 2.0: it does not just combine documents as informal text
with formal ontological concepts, it reconsiders the document that now consists of
document elements and can combine them to capture new semantics.

Polymorphism for Parametric Ontological Classes Isabelle possesses a
type-class polymorphic type system. Isabelle/DOF 2.0 now also supports type-
class polymorphism for its ontological classes. Using the new view on the linking
in Isabelle/DOF 2.0 allowed by term-contexts, polymorphic algebraic structures
can serve as the foundation to define novel semantic concepts for the linking within
formal libraries and then be constrained using type-classes: advanced notions like
provenance or security models can be expressed and used as a basis for a full
management system of formal libraries archives like the AFP.

Deep Isabelle/DOF 2.0 Concepts like types, terms, theorems are defined at
the Isabelle engine top-level and do not exist in Isabelle/HOL as logical objects.
These objects are considered as meta-types in Isabelle/HOL and could be defined
as types in a metalogic. Then, using this metalogic with the help of term-contexts
and polymorphic ontological classes, they could be referenced in ontological classes.
We propose a mechanism to reify meta-types into HOL using Isabelle metalogic,
hence to allow a full integration of meta-types in Isabelle/DOF 2.0 ontologies. New
possibilities like proof terms annotations may be used as the basis to facilitate the
translation of proof terms between Isabelle/HOL and other theorem provers.

1.3 Structure of the Thesis
This thesis is composed of four chapters.

The first chapter sets out the foundations upon which our work is built. It
presents the different layers bottom-up from the underlying logical framework to
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the higher-level Isabelle/DOF 1.0 ontology framework, and associated key con-
cepts. It also presents the ontology examples extracted from existing Isabelle/DOF
2.0 ontologies that will be used to explain our work along this thesis, and the re-
lated works.

The second chapter introduces extensions of Isabelle/DOF 1.0 ODL and the
ontology-controlled environment. The concept of term-contexts, making onto-
logical references pervasive in Isabelle/DOF 2.0, and class invariants are set out
and extension to Isabelle/DOF 1.0 structural constraint mechanism is explained.
These extensions are deeply integrated in Isabelle/HOL. It allows to combine term-
contexts support and Isabelle/HOL programming language properties to define a
query mechanism for advanced search. Finally we show the utility of class in-
variants as first class citizen. They become part of an ontology and the Isabelle
theorem prover can help prove properties on ontologies involving these invariants.

The third chapter explains the new parametric polymorphism support in on-
tological classes. Ontological concepts defined using polymorphism are used to
present diverse semantics: the linking in Isabelle/DOF 2.0 can capture the no-
tion of provenance from database communities reconsidered as information on the
document elements in Isabelle/DOF 2.0. A basic security model for integrated
documents using Isabelle/DOF 2.0 new properties is presented.

The fourth chapter suggests a methodology to introduce formal ontological
meta-data into generated proof objects using a metalogic of Isabelle/HOL [13].
These meta-data could be formalized information on the proof document structure
to help in theorem reconstruction when translating proof terms between theorem
provers.

The last chapter summarizes the achievements made in this thesis and sketches
future extensions.
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Chapter 2

Background

2.1 Introduction
Isabelle/DOF, an Isabelle componenet that we extend, is deeply integrated into
the Isabelle platform. In this chapter we introduce the Isabelle theorem coceived
as an “LCF style prover” and the presentation of its layered structure ranging
from the generic Isabelle/Pure framework to the higher-level Isabelle/HOL based
on the Higher-Order Logic (HOL), up to the Isabelle/Isar framework that adds
a proof-checking environment. Then we set out the concept of axiomatic type
classes, the order-sorted polymorphic type system of Isabelle, which is used exten-
sively by Isabelle theories. Afterwards, we present Isabelle/DOF itself, with its
Ontology Definition Language (ODL) and its ontology-controlled editing environ-
ment. Next, we give a brief overview of Isabelle IDE which recently added support
for an incremental document preparation, and concepts of the Isabelle/Pure API
heavily used internally when extending Isabelle/DOF. After, we explain the tech-
niques for term evaluation in Isabelle, used together by the new implementation
of Isabelle/DOF to generate ontological concepts, and present the ontological ex-
amples that will be used along the development of this thesis. These examples
are already defined using the extensions of Isabelle/DOF. We conclude with a
presentation of related works.

2.2 The LCF Approach
“The Logic for Computable Functions (LCF) approach aims at implementing the
inference rules of a logical calculus within a proof kernel that has the exclusive
right to create theorems” [14]. Edinburgh LCF pioneered this approach and Milner
chose as its basis LCF that Scott proposed. Edinburgh LCF was influential in the
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techniques it introduced like “working in a theory hierarchy, and the central role
of a functional programming language, ML.” [14].

LCF-style systems define the abstract ML type of theorems, thm, and infer-
ence rules of the logical calculus are implemented as ML functions operating on
the concrete representation of values of type thm. The values of type thm are
propositions: for the judgment Γ ⊢Θ 𝜑 which means that the proposition 𝜑 holds
for assumptions Γ in a particular theory Θ, 𝜑 is a value of type thm and ML type
checker guarantees the creation of the proposition of type thm using inference rules.
Thus, there is no need to store the proofs of theorems and only the propositions
are kept as values of the abstract type thm.

Edinburgh LCF introduced the notion of proofs tactics, i. e. instructions that
transforms thms and thus construct eventually proofs, that lead to a polysemic
definition of proof that could be [14]:

• formal deductions of theorems from axioms using the inference rules of a
logical calculus;

• executable code written using tactics or other primitives, expressing the
search for such deductions.

Terms like proof objects and proof terms (or proof scripts) are sometimes used
to distinguished the former from the latter: we’ll stick to these but if the sense is
not inferable from the context.

2.3 The Isabelle/Pure Framework
Isabelle [15] was designed as a generic theorem prover for interactive reasoning in a
variety of logical calculi. So Isabelle can be thought as an instance of the traditional
LCF approach, but where the abstract type thm formalizes a logical framework
or meta-logic, in which other formalism can later be encoded. At its core is the
Pure logic [16], that offers a reusable infrastructure to introduce different calculi,
called objects logics, by specifying their syntax and natural deduction inference
rules, notably, First-Order Logic (FOL), Zermelo-Fraenkel set theory, and Church’s
Higher-Order Logic (HOL).

The Pure logic, also called Isabelle/Pure, is an intuitionistic fragment of HOL
of simply-typed schematically polymorphic 𝜆-terms, consisting in three main lay-
ers. In the following, we introduce Isabelle/Pure’s logical entities relevant in our
context.

The layer of types 𝜏 is defined by:

𝜏 ∶∶= 𝜅 𝜏1 ... 𝜏𝑘 ∣ 𝛼
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where 𝜅 are type constructors with a fixed arity like the constructor of list,
prop is a nullary type constructor for the type of meta level truth values, 𝛼 is a
set of types variables like ′a, ′b, and 𝛼 ⇒ 𝛽 denotes the binary type constructor
for the total function space from 𝛼 to 𝛽. .

Terms t are represented by

t ∶∶= t1 t2 ∣ 𝜆x∶∶ ′𝜏. t ∣ x∶∶ ′𝜏 ∣ c
where:

• c is a set of constant symbols like min or max.

• x is the set of variable symbols like A, B. The notation x∶∶ ′𝜏 is a type assertion
in the language which means “x is required to have the type ′𝜏”. Note that
the syntactic categories x and 𝛼 are disjoint: ′x is a possible type variable.
Variables in the scope of a 𝜆-operator are called bound variables, all others
are free variables.

• 𝜆x. t is called a 𝜆-abstraction, like for example the identity function 𝜆x. x.
A 𝜆-abstraction forms a scope for the variable x.

• t1 t2 is called an application.

The term layer adds some rules like the introduction of the application and
𝜆-abstraction:

Γ ⊢ t ∶∶ 𝜏 ⇒ 𝜎 Γ ⊢ u ∶∶ 𝜏
Γ ⊢ t u ∶∶ 𝜎

Γ, x ∶∶ 𝜏 ⊢ t ∶∶ 𝜎
Γ ⊢ 𝜆x ∶∶ 𝜏. t ∶∶ 𝜏 ⇒ 𝜎

Proofs are abstract derivations and the resulting propositions are terms of the
distinguished type prop [17], containing:

• implication P ⟹ Q, using the built-in meta-level implication constant (⟹),

• and universal meta quantification ⋀x. P x, to capture the idea “x must not
occur free in the assumptions” for quantifier rules.

with additional primitive inference rules like introduction and elimination of
the meta implication and the universal meta quantification:

Γ ⊢ p ∶ ⋀x ∶∶ 𝜏.𝜑 Γ ⊢ t ∶∶ 𝜏
Γ ⊢ p ⋅ t ∶ P{x ↦ t}

Γ, x ∶∶ 𝜏 ⊢ p ∶ 𝜑
Γ ⊢ 𝜆x ∶∶ 𝜏. p ∶ ⋀ x ∶∶ 𝜏. 𝜑

Γ ⊢ p ∶ 𝜑 ⟹ 𝜓 Γ ⊢ q ∶ 𝜑
Γ ⊢ p • q ∶ 𝜓

Γ, h ∶ 𝜑 ⊢ p ∶ 𝜓 Γ ⊢ 𝜓 ∶ prop
Γ ⊢ 𝜆h ∶ 𝜑. p ∶ 𝜑 ⟹ 𝜓
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where 𝜑 and 𝜓 are terms of type prop, ⋅ denotes the application of propositions
to terms, {x ↦ y} denote substitutions, application of a substitution is written
as u{x ↦ y}, and • the application of propositions to propositions. 𝜆x ∶∶ 𝜏. p is
the abstraction over a term variable x of typ 𝜏, and 𝜆h ∶ 𝜑. p ∶ 𝜑 the abstraction
over a proof variable h where h is a proof of the proposition 𝜑. Concluded proofs
become theorems of abstract ML type thm.

Conceptually types are implicit: terms are associated to types by type inference
rules, similar to the Hindley-Milner type system. ′a ⇒ ′b captures the idea of a
term depending on a term, ⋀x. P x the idea of proofs depending on terms and P
⟹ Q proofs depending on proofs, giving the structure of the logic.

Primitive inferences mostly serve foundational purposes. The main reasoning
mechanisms of Isabelle/Pure operate on nested natural deduction rules expressed
as formulas, using ⋀ to bind local parameters and ⟹ to express entailment.

By default the abstract type thm in Isabelle is conceptually equivalent to a
proposition of type prop, meaning in the implementation that a term-value of a
proposition term can be extracted from a theorem object of abstract type thm.

Deviating from the LCF approach, Isabelle can optionally provide an explicit
proof object: A judgment Γ ⊢Θ 𝜑 can be extended to Γ ⊢Θ 𝜓 ∶ 𝜑 where 𝜓 is a proof
for the proposition 𝜑, with 𝜓 and 𝜑 represented as 𝜆-terms. In the implementation,
the proposition 𝜑 of type prop and the proof 𝜓 of abstract ML type proof are
extracted from the theorem object.

2.4 The Isabelle/Isar Framework
“Isabelle/Isar [18, 19] is a generic framework on top of Isabelle/Pure for developing
formal mathematical documents with full proof checking. Definitions, statements
and proofs are organized as theories.” [20] Isabelle declares the abstract ML type
theory alongside the type of theorems. “Type theory makes available the initial
theory of the logical framework and allows for its extension as an acyclic graph
of application theories.” [14] A theory is a document whose concrete syntax looks
like this:

theory Test
imports Main
begin
definition constant = term
theorem name∶statement ⟨proof⟩
end
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“The framework syntax emerges from three main syntactic categories: com-
mands of the top-level Isar engine (covering theory and proof elements), methods
for general goal refinements (analogous to traditional “tactics”), and attributes
for operations on facts (within a certain context).” [21] The interaction between
Isabelle and the user happens through these syntactic categories.

For example, the definition command:

Example 1 Definition of the K combinator

definition K ∶∶ ′a ⇒ ′b ⇒ ′a where K x y ≡ x

updates the theory by adding the constant K and the theorem K x y ≡ x to
the logical context:

consts K ∶∶ ′a ⇒ ′b ⇒ ′a
theorem K_def ∶ K x y ≡ x

The free variables x and y are implicitly generalized. Then the formal content
added by this definition can be used to prove a property on this other definition:

Example 2 Definition of the S combinator

definition S where S x y z ≡ x z (y z)

For that the lemma command can be used:

lemma S_id ∶ S K K x ≡ id x
unfolding K_def S_def id_def by (rule reflexive)

The theorem is stated as a proposition, accompanied by proof text that builds
the corresponding derivation. In that proof, proof commands and proof methods
are used and perform certain reasoning steps. Here, we unfold the definitions of
the theorem K x y ≡ x, S x y z ≡ x z (y z) and id = (𝜆x. x) with the command
unfolding and conclude the proof using the rule method to introduce the rule of
reflexivity x ≡ x.

The theory is updated and the logical context contains the new theorem:

theorem S_id∶ S K K x ≡ id x
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The Isabelle/Isar framework also defines a language for structural proofs, Isar,
to help the one looking at the proof term to understand what is being proved at
a given point. Inside a proof written using Isar, proof methods are still available.

Markup commands like chapter, section, etc. allow to introduce text struc-
turally into documents with text dedicated to plain text internally accepting
markdown-like structure like items and enumeration. The ML command evaluates
the given text as ML source:
ML‹
fun factorial n =

if n <= 1 then 1
else factorial (n−1) ∗ n;

val t = 24 = factorial 4
›

assigns to t the ML value true. These commands are directly declared in Is-
abelle/Pure. Isabelle/Isar also reuses concepts defined in Isabelle/Pure like anti-
quotations. Anti-quotations are semantic macros used in Isabelle commands em-
bedding content referring to formal entities of the logic. They enable some degree
of consistency-checking between a text or an ML source. This “formal content”
inside a text or an ML command is checked within the current theory. For example:
text‹
@{term 𝜆x. x} and term ‹𝜆x. x› are the same term.
As for the formula @{term dist𝑠𝑎𝑓𝑒 = sqrt(d−a⋅(Δt)2)}...
...and we see that the constant const ‹K› is of type typ ‹ ′a ⇒ ′b ⇒ ′a››

@{term"𝜆x. x"} or its short form \<^term>‹𝜆x. x› (pretty printed as term ‹𝜆x.
x› in the example) introduces a term in a text block and makes 𝜆x. x appear in
the final document output. Functions like dist𝑠𝑎𝑓𝑒, sqrt, etc. have to be defined in
the signature of the logical context or background theory of this formula. Isabelle
comes with a couple of hand-programmed anti-quotations to reference formal en-
tities like definitions using @{const ...} and types with @{typ ...}, but also other
higher-level concepts like the abstract ML datatype thm with @{thm ...}, or proof
with @{prf ...}

With this ML command:
ML‹val mk_S = @{const S ( ′a, ′b, ′c)}›

the @{const S ( ′a, ′b, ′c)} ML anti-quotation first checks that the constant S
exist within the theory and then initializes mk_S as the representation in ML of
the constant S in the logic.

Application theories contain definitions, proofs, ML-code, and text elements
that commingle and form an integrated document.
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2.5 Isabelle/HOL
“Isabelle/HOL [22] is based on Higher-Order Logic, a polymorphic version of
Church’s Simple Theory of Types. HOL can be best understood as a simply-
typed version of classical set theory. The logic was first implemented in Gordon’s
HOL system [23]. It extends Church’s original logic [24] by explicit type variables
(naive polymorphism) and a sound axiomatization scheme for new types based on
subsets of existing types.” [20] It is an implementation of HOL as an extension of
Isabelle/Pure: types of Isabelle/Pure are identified with types in Isabelle/HOL,
taking advantage of the default type-inference mechanism of Isabelle/Pure. Is-
abelle/HOL introduces a distinguished Boolean type bool with constants True and
False denoting truth values in connection with the usual logical connectives like
(∧), (⟶), ¬, as well as the object logical quantifiers ∀ and ∃ . In contrast to
FOL, quantifiers may range over arbitrary types, including total functions f ∶∶
′a ⇒ ′b. Isabelle/HOL is centered around extensional equality (=)∶∶ ′a ⇒ ′a ⇒
bool. Extensional equality means that two functions f and g are equal if and only
if they are point-wise equal. Isabelle/HOL is more expressive than FOL, since
among many other things, induction schemes can be expressed inside the logic. To
define new concepts, Isabelle/HOL provides specification constructs through the
syntactic categories of commands. It defines new commands for a more comfort-
able interface to the user to define derived definition schemes which internally are
mapped down to primitive ones [25].

The primitive way of introducing new types in Isabelle/HOL is the typedef
specification construct. The declaration:

typedef ′a dlist = {xs∶∶ ′a list. distinct xs}
morphisms list_of_dlist Abs_dlist

proof
show [] ∈ {xs. distinct xs} by simp

qed

defines the dlist type of distinct lists as a subset of list type restricted by the
invariant distinct xs that uses the primitive recursive function distinct defined in
the HOL.List theory. The command generates a proof obligation that the type
is inhabited. The newly introduced type is accompanied by a pair of morphisms
to relate it to the representing set over the old type. The explicit morphisms
specification allows to provide alternative names. In our case the list_of_dlist
constant will translate a dlist to a list and Abs_dlist will abstract a list to a dlist.

To define new induction schemes, Isabelle/HOL provides the datatype specifi-
cation, which will generate a set of logical rules when introducing the list datatype:

datatype ′a list = Nil ([]) ∣ Cons ′a ′a list (infixr # 65)
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The datatype command allows for the specification of concrete mixfix anno-
tations: for Cons a (Cons b Nil), the user may use the alternative [a, b].

Isabelle/HOL also offers the primrec construct to define primitive recursive
functions over datatypes:

primrec append ∶∶ ′a list ⇒ ′a list ⇒ ′a list (infixr @ 65) where
append_Nil∶ [] @ ys = ys ∣
append_Cons∶ (x#xs) @ ys = x # xs @ ys

The specification constructs function and fun defines functions by general
wellfounded recursion with pattern matching where fun adds automated proof
support for pattern matching and termination. For example:

fun successively ∶∶ ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool where
successively P [] = True ∣
successively P [x] = True ∣
successively P (x # y # xs) = (P x y ∧ successively P (y#xs))

Here primrec is unusable because the pattern matching P [x] of the second
equation is not a primitive pattern of the list datatype.

2.6 Axiomatic Type Classes
Isabelle possesses an order-sorted polymorphic type system [26, 27] (see [20], pp
250, for an introduction). This feature emerged from the genericity of Isabelle,
whose support of polymorphic type variable could not be allowed in a logical
framework. Indeed “some types are intrinsic to the framework itself and other
types might be unsuitable to a particular object-logic. In FOL, the type of x
in ∀ x. 𝜑 x must not involve functions or Booleans” [14] (recall the bool type
introduced by Isabelle/HOL).

Order-sorted polymorphism introduces a hierarchy of sorts on types. Sorts add
a further level of logical expressions : a sort s is an intersection of finitely many
type classes C : s ∶∶= C1 ∩ ... ∩ C𝑛 where C1, ... C𝑛 are collection of types.
This means that we can not only express genericity on a meta-level, but also that
type-variables 𝛼, 𝛽, 𝛾, ... can be constrained in a judgement 𝛼 ∶∶ C where C is a
type class.

The judgement 𝛼∶∶{C1,...,C𝑛} is a notation for 𝛼∶∶s, where s is a sort. When
combined with axioms, axiomatic type classes can be understood as an abstract
interface to types, imposing operations and properties over them. For example,
the type class constraint 𝛼∶∶order may constrain the possible instances of 𝛼 to
those who possess an ordering operation ord ∶∶ 𝛼 ⇒ 𝛼 ⇒ bool which must satisfy
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the properties of reflexivity, transitivity and anti-symmetry. When declaring that
a concrete type, say int, is an instance of order, which is to say that the judgement
int∶∶order holds, this results in the obligation to define ord by a concrete operation,
say ≤ ∶∶ int ⇒ int ⇒ bool, and proof obligations that this definition satisfies the
required properties on ord-types. Thus, it is possible to define once and for all the
operation sort ∶∶ (𝛼∶∶order) list ⇒ (𝛼∶∶order) list, prove a bunch of theorems over
it, and inherit them for the special case sort ∶∶ int list ⇒ int list automatically,
without reproving them.

Isabelle/Pure provides a syntax for axiomatic types class:

Isabelleclass semigroup_add =
fixes plus ∶∶ ′a ⇒ ′a ⇒ ′a (infixl + 65)
assumes add_assoc∶ (a + b) + c = a + (b + c)

The class command introduces a semigroup_add type class that specifies a
(+) operation using the fixes statement and an axiom add_assoc as a property for
this operation using the assumes statement. The operation is lifted to a constant
+ ∶∶ ′a ⇒ ′a ⇒ ′a in the logical context where ′a is constrained by the type class
( ′a∶∶semigroup_add) and a theorem add_assoc∶ (a + b) + c = a + (b + c) where
free variables a, b, and c are implicitly generalized and also constrained by the
type class due to the association of the (+) operation to the semigroup_add type
class.

Isabelle provides the instantiation command:

Isabelleinstantiation bool ∶∶ semigroup_add
begin

to make the bool type an instance of the semigroup_add type class. The
instantiation consists in first the specification of the operation and second proving
that it satisfies the axiom. The specification of the (+) operation is given by a
definition:

Isabelledefinition plus_bool∶ a + b = (a ∨ b)

Then the proof environment is introduced by the instance command:

Isabelleinstance proof
fix a b c ∶∶ bool
show a + b + c = a + (b + c)

by (induct a) (auto simp∶ plus_bool) qed

The proof uses plus_bool that was just defined to prove the add_assoc axiom
still holds for the bool type.
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Figure 2.1: The Ontology Environment Isabelle/DOF.

2.7 The Isabelle/DOF Framework
Isabelle/DOF [10] extends Isabelle/HOL core (see Figure 2.1) by a number of con-
structs, allowing for the specification of formal ontologies (righ-hand side); addi-
tionally, it provides documentation constructs (left-hand side) for text-, definition-,
term-, proof-, code-, and user-defined elements that enforce document conformance
to a given ontology.

Isabelle/DOF1 is a new kind of ontological modeling and document validation
tool. In contrast to conventional languages like OWL and development environ-
ments such as Protégé [2], it brings forward the concept of deep ontologies, i. e.,
ontologies represented inside a logical language such as HOL rather than a con-
ventional programming language like Java. Deep ontologies generate theories of
strongly typed meta-information specified in HOL-theories allowing both efficient
execution and logical reasoning about meta-data. They generate their own par-
ticular form of anti-quotations to be used inside ML-code and texts. Deeply inte-
grated into the Isabelle ecosystem [28], thus permitting continuous checking and
validation, they also allow for ontology-aware navigation inside large documents
with both formal and informal content.

Isabelle/DOF provides a strongly typed Ontology Definition Language (ODL)
(Figure 2.1, right-hand side). ODL provides the usual concepts of ontologies as
they are often implemented. To draw a parallel with OWL and OWL API [29]:

• entities are defined using the concept of document class or domain class
(using the doc_class and onto_class commands, respectively),

1The official releases are available at https://zenodo.org/record/6810799, the developer
version at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF.
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• data properties will be attributes specific to classes (attributes might be
initialized with default values), and

• a special link, the reference to a super-class, establishes an is-a relation
between classes.

The following command:

Example 3 Definition of an author

Isabelledoc_class author0 =
name ∶∶ string

introduces the ontological concept of author0 with its name attribute. Seman-
tically, classes have a strong similarity to HOL’s extensible records [20] used to
represent them logically. The types of attributes are HOL-types, and concrete val-
ues for attributes are just HOL-terms, i.e. 𝜆-terms over the signature of imported
HOL-theories. Here the attribute type is specified as a string, a type declared in
the HOL.String theory file. A default value ′′Church ′′ for the name attribute can
be specified:

Isabelledoc_class author =
name ∶∶ string <= ′′Church ′′

Using the is−a relation, a localized author can extend the ontological class
author:

Example 4 Definition of a localized author

Isabelledoc_class loc_author = author +
localization ∶∶ string

The loc_author will inherit the name attribute from the superclass author.
As a consequence of the logical representation, for each class, there will be a

HOL type for the instances of a class. Therefore, class definitions allow for formal
links to and between ontological concepts:

Isabelledoc_class introduction =
authored_by ∶∶ author set

The author class is used inside the introduction class to type its authored_by
attribute. Since ODL specification elements are just another kind of command
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in Isabelle/HOL, they can be arbitrarily mixed with standard HOL specification
constructs like inductive datatype definitions:

Isabelledatatype role = developer ∣ verifier ∣ validator

onto_class requirement =
long_name ∶∶string option
is_concerned∶∶role set

In our example, the enumeration for roles is used by a simplified version of
CENELEC’s requirement to enforce a separation of author groups in a process
(see section 2.11).

The underlying Isabelle/DOF theory provides types for Isabelle types, terms,
and theorems as well as specific means to denote them when referring to them in
meta-data.

To define instances of these ontological concepts, Isabelle/DOF, as a document
centric framework, extends Isabelle text-command using Isabelle/Pure ML API
and defines the text∗-command to add ontological concepts to informal text. This
command is part of the ontology-controlled editing environment (Figure 2.1, left-
hand side):

text∗[label∶∶cid, attrib_def 1,… ,attrib_def 𝑛]‹… annotated text … ›

The ontological definition is given between [...]-brackets, where cid is an iden-
tifier of an ontological class introduced in an ontology, with attributes at-
trib_def 1,… ,attrib_def 𝑛 belonging to this class defined in ODL. For example:

Isabelletext∗[church∶∶loc_author ,
name= ′′Alonzo Church ′′,
localization= ′′Paris ′′]‹ Author description ...›

defines the church instance of the ontological class loc_author with the at-
tributes name and localization and associates it to the text inside the ‹...›-brackets.
Here the name attribute might be omitted and the default value ′′Church ′′ will
then be used. When declaring an instance, unspecified attributes are possible
and leads to instance definitions strongly typed but left undefined for evaluation.
Later, attribute values of instances can be updated using the update_instance∗
command:

Isabelle
update_instance∗[church∶∶loc_author , localization∶= ′′Madrid ′′]
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Now the localization attribute-value of the church instance will be the string
′′Madrid ′′. The text part of a text∗ command can also be left empty giving the
basic syntax to define instances of ontological concepts not associated with text.
Additional ontological markup commands like chapter∗, section∗, etc., equiv-
alent to Isabelle/Isar markup commands, allow to make structural presentation
concepts in document ontological elements, using the same [...]-brackets.

Isabelle/DOF ML∗-command extends Isabelle ML-command to annotate code in
the same way.

Using Isabelle/DOF the abstract notion of definition can be specified and give
semantics to an informal explanation of safety using annotation:

text∗[safe∶∶Definition, name= ′′safety ′′]‹Our system is safe if the following holds ...›

When declaring the Definition class, anti-quotations are generated, allowing to
refer to the safe instance in another text element:

text∗[use_safe]‹As stated in @{Definition ‹safe›}, ...›

where Isabelle/DOF checks on-the-fly that the reference safe is indeed defined in
the document and has the right type (it is not an Example, for example), generates
navigation information (i.e. hyperlinks to safe as well as the ontological description
of Definition in the Isabelle IDE) as well as specific documentation markup in the
generated PDF document, e.g.:

As stated in Def. 3.11 (safety), ...

where the underline may be blue because the layout description configured for
this ontology says so. Moreover, this is used to generate an index containing, for
example, all definitions. It should be noted that the Definition class defines an
ontological concept of definition and then can be used to associate meta-data to an
informal definition as text, but no linking to the concept of definition specified with
the Isabelle/Isar command is possible, as only Isabelle/Isar definition instances are
exposed as formal entities.

Isabelle/DOF implements a feature to handle meta-level datatypes like thm,
typ, term. They are declared axiomatically and can be specified using anti-
quotations like @{thm ...}, @{typ ...}, @{term ...} inside a 𝜆-term. Lists of
theorems of type thm can then be used as attribute-value for ontological class
instances:
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(a) A Text-Element as Result. (b) Referencing a Result.

Figure 2.2: Referencing a Result.

Isabelleonto_class result =
elements ∶∶ term list
properties ∶∶ thm list

text∗[res1∶∶result, properties=[@{thm ′′HOL.refl ′′}],
elements = [@{term ‹H ⟶ H ›}]]

‹The resource has been deleted›

The elements attribute of the res1 instance is a list with one element, the term
H ⟶ H, specified using the term anti-quotation, and its properties attribute a
list with only the reflexivity axiom specified using the thm anti-quotation. These
anti-quotations serve as abstract references: they are checked but remain empty
syntactic categories.

Figure 2.2 shows an ontological annotation of a result and its referencing via an
antiquotation @{result res1}; the latter is generated from the above class definition.
Undefined or ill-typed references were rejected, and the high-lighting displays the
hyperlinking which is activated with a click. The class-definition of result and its
documentation is also just a click away.

As Isabelle/DOF is based on the idea of “deep ontologies”, a logical repre-
sentation for an instance is generated, i. e. a 𝜆-term, which is used to represent
those meta-data. For this purpose, Isabelle/DOF uses Isabelle/HOL’s record sup-
port [20].

For the loc_author example, this means that the church instance is represented
by:

• the record term (∣name = ′′Alonzo Church ′′, localization = ′′Paris ′′∣) and
the corresponding record type (∣name∶∶string, localization∶∶string∣),

• while the resulting selectors were written name (r ∶∶loc_author), localization
(r ∶∶loc_author) where r is the record term.

Isabelle/DOF implements the concept of monitor classes [28], which are classes
that may refer to other classes via a regular expression in an accepts clause.
Semantically, monitors introduce a behavioral element into ODL and enforce the
structure in a document. For example, with the following definition:
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Isabelledoc_class title =
short_title ∶∶ string option <= None

doc_class author =
name ∶∶ string <= ′′Church ′′

doc_class text_document =
style ∶∶ string
accepts (title ∼∼ {∣author ∣}+)

we specify that a document must start with a title element and then must have
at least one author.

Isabelle/DOF also proposes a syntax for class invariant:

Isabelledoc_class author =
name ∶∶ string
invariant name_nempty ∶∶ 𝜆𝜎. name 𝜎 ≠ ′′′′

to declares invariants but they can currently only be specified in ML.

2.8 The Isabelle IDE
Wenzel introduced the document-oriented Prover IDE (PIDE) approach in [30, 31,
32, 33]. The main principles of PIDE are as follows [14]:

• the prover supports document edits an markup reports natively. Interaction
works via protocol commands that take regular prover commands as data
(e.g. definition, theorem).

• The editor connects the physical world of editor input events and GUI paint-
ing to the mathematical document-model of the prover.

“Isabelle/Jedit is the main application of the PIDE framework and the default
user-interface for Isabelle.” [34], based on the jEdit text editor. Recently the sup-
port of interactive document preparation was added to PIDE, and is accessible via
the Isabelle/jEdit Document panel.

A screenshot of the editing environment is shown in Figure 2.3. It supports
incremental continuous PDF generation which improves usability. Currently, the
granularity is restricted to entire theories (which have to be selected in the docu-
ment panel). The response times can not (yet) compete with a Word- or Overleaf
editor, though, which is mostly due to the checking and evaluation overhead (the
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Figure 2.3: A Screenshot while editing this Paper in Isabelle/DOF with Preview.

turnaround of this chapter is about 20 s). However, we believe that better par-
allelization and evaluation techniques will decrease this gap substantially for the
most common cases in future versions.

2.9 The Isabelle/Pure API
In the following we present several concepts of the Isabelle/Pure framework. Most
of these concepts emerge at every level of Isabelle, and they are implicitly or
explicitly used to build and extend the frameworks, and some are only accessible via
Isabelle/Pure ML API. We also give hints on how the new version of Isabelle/DOF
uses Isabelle/Pure ML API.

2.9.1 Contexts
From [21], “A logical context represents the background that is required for formu-
lating statements and composing proofs. It acts as a medium to produce formal
content, depending on earlier material (declarations, results etc.)”. We used the im-
age of a judgment Γ ⊢Θ 𝜑 to describe derivations from inference rules in section 2.2,
where the proposition 𝜑 is derivable from assumptions Γ in a particular theory Θ.
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The same image can describe Isabelle/Pure derivations where Θ holds global dec-
larations of polymorphic type constructors, term constants, and axioms, and Γ
covers locally fixed type variables, term variables, and hypotheses. “Isabelle/Isar
elevates Θ to a theory context and Γ to a proof context, both supporting arbitrar-
ily typed data, being introduced by the user at compile time” [35]. Then using this
generic data management, an object logic like Isabelle/HOL (in its implementa-
tion of Higher-Order Logic) adds specific components for automated reasoning like
a classical reasoner and derived specification mechanisms like recursive functions.
Isabelle/DOF extends Isabelle/HOL in the same way and acts as a component for
document ontologies. It uses the Isabelle/Pure ML API to extend Isabelle syntax
and documentation support, but also to offer the same level of integration in the
IDE; and it represents its notions using Isabelle/HOL object logic. Depending of
the notions it introduces and the implementation of the Isabelle/Isar framework,
it has to deal with either a theory context, a proof context or the disjoint sum of
either, a generic context; and it uses them to update the logical context data.

2.9.2 Name Spaces
“A name space manages a collection of long names, together with a mapping
between partially qualified external names and fully qualified internal names (in
both directions)” [21]. Name spaces use bindings that specify details about the
prospective long name and the original source position in a document. Separate
name space exist for each kind of formal entity, fact (theorems, lemmas, etc.), con-
stant, type constructor, type class and implement the fact that for example, the
syntactic categories c of constants and 𝛼 of type variables are disjoint. It is the
mechanism that will allow to fully integrate Isabelle/DOF notions in Isabelle/HOL
and the IDE. By using name spaces for Isabelle/DOF concepts, the Isabelle engine
can infer which kind of Isabelle/DOF entity a name refers to, and Isabelle/HOL
and Isabelle/DOF entities can commingle. For example, the concept of ontological
class instance previously only used internal data to present this logical entity to
the user. But it was impossible to define two instances with the same name within
an integrated document of application theories as they were considered as global
entities, even so these entities were defined in two different theory files. More gen-
erally, Isabelle/DOF did not use name spaces for any formal entity, even in its core
principle like anti-quotations. Using name spaces for ontological class data allow a
deeper integration in Isabelle. Name spaces also carry original positions extracted
from the bindings and can generate markup for reporting to the IDE. Name spaces
are central to the extension of Isabelle/DOF to support term anti-quotations and
term-contexts. Isabelle/DOF data model implementation was entirely rewritten
to use name spaces.
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Figure 2.4: author Pop-Up indicates that it is an Instance of the Ontological Class
Formal Entity.

2.9.3 Markups
To fully integrate Isabelle/DOF in the IDE, and allow code navigation and pop-
up information, Isabelle/DOF uses Isabelle/Pure ML API to carry code position
and markup. “The standard way to provide the required position markup for
input works via the outer syntax parser wrapper Parse.inner_syntax, which is
already part of Parse.typ, Parse.term, Parse.prop” [21]. It means that Isabelle
uses the content stored in name spaces entities to generate the reporting to the
IDE. Isabelle/DOF uses a mixture of positions transported through the code from
the parsed token and markups generated from name spaces to report to the IDE
and allow code navigation and pop-up information for Isabelle/DOF entities. For
example with the following definition:

Isabelletext∗[auth1∶∶author ,
name = ′′Church ′′]‹Informal description of the author @{author ‹auth1›}›

we get source code navigation and pop-up for the ontological class author. In
Figure 2.4, when hovering over author with the mouse, we get the formal entity
information of the class in the pop-up.

2.9.4 Configuration Options
A configuration option is a named optional value of some basic type (Boolean,
integer, string) that is stored in the context [21]. Isabelle/DOF uses configuration
options to parameterize ontology definition declarations, change the integration in
the IDE, modify behavioral elements of the ontology language, etc.

2.10 Term-Evaluations in Isabelle
Besides the powerful, but relatively slow rewriting-based proof method simp, there
are basically two other techniques for the evaluation of terms:
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• evaluation via reflection into ML [36] (eval), and

• normalization by evaluation [37] (nbe).
The former is based on a nearly one-to-one compilation of datatype specifica-

tion constructs and recursive function definitions into ML datatypes and functions.
The generated code is directly compiled by the underlying ML compiler of the Is-
abelle platform. This way, pattern-matching becomes natively compiled rather
than interpreted as in the matching process of simp. Aehlig et al [37] are reporting
on scenarios where eval is five orders of magnitude faster than simp. In special
applications, e.g., the verification of security protocols, eval can reduce the running
time from several hours to a few seconds, compared to simp [38]. However, eval is
essentially restricted to ground terms. nbe is not restricted to ground terms but
lies in its efficiency between simp and eval.

2.11 Ontology Examples
ODL can be used to specify both document and domain ontologies; in the se-

quel, we will discuss the example paper𝑚 in Figure 2.5 for the former and cenelec𝑚

in Figure 2.6 for the latter. For the purpose of the presentation, we chose these
fragments from existing ontologies of the Isabelle/DOF distribution. The ontol-
ogy paper𝑚 introduces document classes which are typical for the structure of
a mathematical paper framing the canonical sequence “definition-theorem-proof”.
Attributes like short_title were typed with HOL types from the Isabelle library,
and default values like None for class-instances can be declared. ODL can refer to
any predefined type from the HOL library, e. g., string, int as well as parameterized
types, e. g., option, list. Isabelle/DOF now also supports polymorphic variables in
these types in order to support class schemata (see chapter 4. For example, in Doc-
ument_Ontology_Example.affiliation, the precise format specification is left open
due to the fact that publishers like Elsevier or ACM have very different require-
ments to represent them; thus, polymorphism is a means to increase reusability by
abstraction.

35



2.11. Ontology Examples

Isabelledoc_class title = short_title ∶∶ string option <= None
doc_class affiliation =

journal_style ∶∶ ′𝛼
doc_class author =

affiliations ∶∶ ′𝛼 affiliation list
name ∶∶ string
email ∶∶ string <= ′′′′

invariant ne_name ∶∶ name 𝜎 ≠ ′′′′

doc_class text_element =
authored_by ∶∶ ( ′𝛼 author) set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ (level 𝜎) ≠ None ∧ the (level 𝜎) > 1

doc_class introduction = text_element +
authored_by ∶∶ ( ′𝛼 author) set <= UNIV
invariant author_finite ∶∶ finite (authored_by 𝜎)

doc_class technical = text_element +
formal_results ∶∶ thm list

doc_class definition = technical +
is_formal ∶∶ bool

doc_class theorem = technical +
assumptions ∶∶ term list <= []
statement ∶∶ term option <= None

doc_class conclusion = text_element +
resumee ∶∶ (definition set × theorem set)
invariant is_form ∶∶ (∃ x∈(fst (resumee 𝜎)). definition.is_formal x) ⟶

(∃ y∈(snd (resumee 𝜎)). is_formal y)
doc_class article =

style_id ∶∶ string <= ′′LNCS ′′

accepts (title ∼∼ {∣author ∣}+ ∼∼ {∣introduction∣}+
∼∼ {∣{∣definition ∼∼ example∣}+ ∣∣ theorem∣}+ ∼∼ {∣conclusion∣}+)

Figure 2.5: A Basic Document Ontology: paper𝑚
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As for the domain ontology fragment cenelec𝑚 shown in Figure 2.6, the defini-
tion proceeds as an extension of the paper𝑚 ontology providing elements such as
introductions, conclusions, formal and informal definition elements, etc. Note that
cenelec𝑚 is a very condensed version of some aspects of one artefact out of 27 in
CENELEC EN 50128, the software requirements specification (SRS). As our model
of the standard is 70 kB long and contains 1800 LOC, we will restrict ourselves
to present zooms into certain chosen aspects in this thesis. The model heavily
uses class invariants (see section 3.3) to offer an environment where document cer-
tifications are dynamically checked along the development of the documentation
triggering errors or warnings to assist in the fulfillment of the CENELEC EN 50128
certification requirements.

Since ODL specification elements are just another kind of command in Isabelle,
they can be arbitrarily mixed with standard HOL specification constructs like in-
ductive datatype definitions — in our example, the enumeration for role’s, a sim-
plified version of CENELEC’s requirement to enforce a separation of author groups
in a process. The Isabelle/DOF command class_synonym introduces equivalent
names for classes; it also generates a type_synonym for the types induced by the
ODL class, but is aware of the implicit type variables.

Note that the concept of definition appears in both ontologies. This is a con-
sequence of the fact that this entity and similar common rhetoric constructions,
like assumption or consequence, appear in many domains with slightly different
meanings and document representations; a mathematician may have a different
understanding of these terms than a lawyer or an engineer. ODL support of name
spaces allow for a separation of these.

2.12 Related Works
In the introduction, ontologies are presented through the prism of documents.

More generally, Gruber suggests the following definition: “In the context of com-
puter and information sciences, an ontology defines a set of representational primi-
tives with which to model a domain of knowledge or discourse.” But the methodol-
ogy used to define the ontology language to formally represent an ontology highly
influences the design of the language. For example, semantic networks [39] and
frames systems [40] influenced the definition of Description Logics: the notion of
individuals is reused to refine their definition as a formalism “that represents the
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Isabelleimports paper𝑚

onto_class ′a SR = ′a requirement +
formal_definition ∶∶ thm list

class_synonym ′a safety_requirement = ′a SR

onto_class ′a FR = ′a requirement +
formal_definition ∶∶ thm list

class_synonym ′a functional_requirement = ′a FR

onto_class ′a definition = ′a text_element + — terminological definition.
is_formal ∶∶ bool

datatype ass_kind = informal ∣ semiformal ∣ formal

onto_class ′a assumption = ′a text_element +
assumption_kind ∶∶ ass_kind <= informal

onto_class ′a ASS = ′a assumption +
is_concerned ∶∶ role set <= UNIV

class_synonym ′a application_constraint = ′a ASS

onto_class ′a EC = ′a assumption +
assumption_kind ∶∶ ass_kind <= formal

class_synonym ′a exported_constraint = ′a EC
onto_class ′a SRAC = ′a EC +

assumption_kind ∶∶ ass_kind <= formal
formal_repr ∶∶ thm list

class_synonym ′a safety_related_application_constraint = ′a SRAC

datatype kind = expert_opinion ∣ argument ∣ proof

onto_class ′a result = ′a technical +
evidence ∶∶ kind
property ∶∶ ′a theorem list <= []
invariant has_property ∶∶ evidence 𝜎 = proof ⟷ property 𝜎 ≠ []

Figure 2.6: A Basic Domain Ontology: cenelec𝑚

38



Chapter 2. Background

knowledge of an application domain (the “world”) by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world descrip-
tion).” [41] Another example in [42] follows the methodology of using an ontology
for controlling the semantics of a conceptual model, proposed by [43]. The authors
define K-DTT, a two-layered language based on the calculus of construction with
inductive types and the Coq language using type classes. The ontological layer is
then shaped by a reference ontology using a methodology that associates univer-
sals to general entities and particulars to instances, i. e. individuals. The concepts
of an ontology are represented in the underlying constructive logic. The authors
also argue that Object-Oriented (OO) languages or the formalism of conceptual
graphs lack expressiveness for logical or contextual reasoning, taking the example
of F-Logic [44] as a tentative to add some logic to OO languages. Isabelle/DOF’s
underlying ontology definition language ODL tries to offer the best of both world,
expressiveness of both OO languages, like with F-logic, and logical background
for reasoning, like with K-DTT. It has many similarities with F-Logic [44] and
its successors Flora-2 [45], ObjectLogic — with Ontoroker [46]2 as a commercial
ObjectLogic implementation —, and Ergo [47]. Isabelle/DOF also defines an OO
language and shared features include object identity, complex objects, inheritance,
polymorphic types, query methods, and encapsulation principles. Flora-2 adds a
reification mechanism where statements inside ${...} are reified and made accessi-
ble, similar to constants name for definitions in Isabelle/HOL and to ontologized
term in Isabelle/DOF using the term∗ command (see section 3.2). Specific fea-
tures like negation as failure in F-logic or defeasible reasoning in Ergo should be
implementable using HOL functions and then could integrate queries as specified
in Isabelle/DOF (see section 3.5). Motivated by the desire for set-theoretic model-
ing, F-logic and its successors possess syntax for some higher-order constructs but
base themselves on first-order logic; this choice limits the potential for user-defined
data-type definitions and proofs over classes significantly. Originally designed for
object-oriented databases, F-Logic became mostly used in the area of the Seman-
tic Web. In contrast, Isabelle/DOF represents an intermediate layer between the
logic HOL and its implementing language ML (having its roots as a meta-language
for theorem provers). This “in-between”, where ontological concepts, like with K-
DTT, are represented in the logic, and where an Isabelle/DOF ontology defines
a theory of meta-data, allows for both executability and logical reasoning over
meta-data generated to annotate formal terms and texts (see section 2.7 and sec-
tion 3.2).

Other knowledge modeling languages originally targeting the semantic web
are available like RDF [48] and OWL [49], and come with a query language,

2https://www.semafora-systems.com/ontobroker-and-ontostudio-x
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SPARQL [50], for the former and a rule language, SWRL [51], and a query lan-
guage, SQWRL [52], for the latter. These modeling languages are limited to a
subset of first-order logic (using description logics formalism) or first-order logic
(for OWL-Full) and the query languages provide query capabilities. Reasoners
(for instance Pellet [53] or FaCT++ [54]) have been proposed to extend reason-
ing capabilities, and the ontology development platform Protégé [2] was extended
with the PROMPT plugin [55] to address the ontology matching problem [56]
with ontology mapping and merging features. But it lacks an advanced proof
environment and a strongly type logic to define mapping function that allows
statements like invariants preservation (see section 3.6). WSML [57] is the latest
offspring of semantic web languages for handling semantic web services. WSML
is based on different logical formalisms, namely, Description Logics, First-Order
Logic and Logic Programming. Indeed “the most basic and least expressive variant
is WSML-Core, which is based on DLP [58] as a least common denominator for de-
scription logic formalisms on the one hand and logic programming and rule-based
systems on the other hand.” [59] Then WSML-DL extends WSML-core towards
the Description Logics paradigm, WSML-Flight extends WSLM-core with such
features as meta-modeling, constraints and non-monotonic negation and is based
on F-logic and WSML-Rule is an extension of WSML-Flight in the direction of
Logic Programming. Finally WSML-Full aims at reuniting extensions under the
same First-Order umbrella. “Specification of the semantics of WSML-DL and
WSML-Full constitutes future work.” [57]

The ISO 13584 (PLIB) Standard series [60] defines a model and an exchange
format for digital libraries of technical components. A ontology model has been
defined with a logical model specified in [61] and a PLIB ontology was proposed
in [62]. Both the logical model and the PLIB ontology are specified using the
EXPRESS language which became an ISO standard [63, 64]. EXPRESS, seen
as an OO language share many similarities with ODL. EXPRESS can declare
rules, i. e. specifications of one or more constraints on or between entity values,
similar to invariants in Isabelle/DOF. EXPRESS is similar to programming lan-
guages such as Pascal but unlike K-DTT or ODL it does not rely on a logic for
reasoning. Further formal specification and meta-programming were nevertheless
investigated [65] which should help reasoning on the structural schema of knowl-
edge.

In the introduction, we have defined a domain ontology as knowledge of a
specific domain formally represented in the modeling language, ODL in our case.
[66] refines the definition of a domain ontology using three criteria (an ontology
should be formal, consensual and have the capability to be referenced) and dis-
tinguishes it from a conceptual model that is context dependent. Following this
definition, ontologies defined in Isabelle/DOF should be able to fullfill the criteria:
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they are based on a formal theory, and we consider the concensual and capability
to be referenced criteria as a technical limitation. Domain ontologies defined in
Isabelle/DOF already satisfy common consensual criterion requirements: context
definition is enriched by ontological concepts as they are logical objects and sep-
aration between concept definition and data structure prescription is allowed by
using Isabelle/HOL proof environment with built-in specification constructs, and
Isabelle/DOF ODL language with polymorphism and axiomatic type classes sup-
port. Then domain ontologies in Isabelle/DOF could become fully consensual with
multi instantiation requirement depending on the serialization capabilities and an
associated technology allowing them to be updated online. And they could have
the capability to be referenced by associating a unique identifier (whether it is a
URI or a UUID) to every ontological concepts.

[67] focus on engineering domain and emphasizes its particularity when it comes
to system design models: the authors argue that system design models are richer
than document oriented models targeting the semantic web. We argue otherwise
in the introduction when considering formal library texts. Document ontologies
targeting mathematical and engineering domain require modeling languages able
to represent formal concepts defined in a logical language. The defined engineering
domain ontology will be used to annotate the formal library document in the later
case and the designed system model in the former. Both will require contextual
properties and associated proofs to validate the document or the system design
model. Then the authors notably show how to define and exploit domain ontolo-
gies in Event-B [68] to enrich design models where the definition of the linking
between ontological concepts and entities in the design model is represented by
annotations formalized as relation definitions. This offer a very parametric notion
of the linking. Isabelle/DOF takes another approach where the linking is specified
by extended syntactic categories, i. e. Isabelle/DOF commands, and specific on-
tological concepts are attached as meta-data. The definition of the linking might
require more work with Isabelle/DOF when new declared entities must also be
considered as document elements.

The idea of annotations as relations serve as the basis of several approaches
interested in engineering domain to enrich design models with properties and con-
straints. A first approach [69] aims at using an event-B context to model an
ontology and then extending the context to instantiate the ontology. Using this
approach, a methodology was proposed [70] to generate Event-B models from
OWL ontologies and the resulting architecture was then extended [71] to describe
engineering ontologies that can be found in ontologies description languages like
OntoML [72], an ontology markup language, part of PLIB.

Another approach is used in [73] where a framework is defined in which generic
components are developed using an ontology modeling language formalized as an
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Event-B theory [74], and specific components formalize a system behavior, leading
to reusable domain-specific knowledge ontologies by defining data types. Then
domain ontologies are instantiated using an Event-B context and the instance
properties and related constraints are attached to system design models using
annotations defined as typing relations.

Regarding the use of formal methods to formalize standards, Mendil et al. [75]
use the framework for formalizing standard conformance through formal modeling
of standards as ontologies. The proposed approach was exemplified on the AR-
INC 661 standard. In another case, the Event-B method was proposed by Fotso et
al. [76] for specifications of the hybrid ERTMS/ETCS level 3 standard, in which
requirements are specified using SysML/KAOS goal diagrams. The latter were
translated into Event-B, where domain-specific properties were specified by on-
tologies. These works are essentially interested in expressing ontological concepts
in a formal method but do not explicitly deal with the formalization of invari-
ants defined in ontologies. The question of ontology matching is not addressed.
Another work along the line of certification standard support is Isabelle/SACM
[77], which is a plug-in into Isabelle/DOF in order to provide specific support for
the OMG Structured Assurance Case Meta-Model. The use of Isabelle/SACM
guarantees well-formedness, consistency, and traceability of assurance cases, and
allows a tight integration of formal and informal evidence of various provenance.

Let us now move away from domain ontology. Abstract reasoning about
formal framework objects while still working within the logical language of the
frameworks, i. e. introspective reasoning3, is most commonly achieved by defin-
ing a meta-model. Riviere et al. propose an Event-B-based modeling framework,
EB4EB [79], that allows for the explicit manipulation of Event-B features using
meta modeling concepts. Using Event-B theories, objects of the Event-B frame-
work like the design model that specify an event-transition system or theorems
are represented using deep embedding, i. e. data types, and can be instantiated
using deep or shallow embedding to exploit this framework, like defining a trace
semantics to validate proof obligations formalized as Event-B operators that check
the behavior of the design model [80]. METACoq [81] is an ambitious project
that targets meta-programming in Coq, that is “writing programs (in a meta-
language) that produce or manipulate programs (written in an object language).”
For that, in addition to reified terms and typing judgements METACoq also reifies
Coq commands like Definition and Lemma using a monad. METACoq is used by
other projects like ConCert [82] to define a framework for smart contract verifica-
tion. It is worth noting that Coq proofs are already objects of the formalism and

3We use this term instead of the “reflective reasoning” vocabulary to not mislead the reader
so he does not confuse it with a common acceptation of the term reflection in computer science
since [78].
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theorems are constants. Dedukti [6] and its successor Lambdapi [7], are logical
frameworks using the expressive 𝜆Π-calculus modulo theory logical language that
can be used as a proof checker. Many tools have been developped to translate
proofs of interactive theorem provers to Dedukti. Some efforts to use Dedukti
as a meta-programming language4 were made, where they were interested in the
normal form of some terms. Abstract reasoning in Isabelle/DOF is not so much
interested in meta-programming than in adding information to objects of the logic.
So it can follow the conservative extension approach: abstract objects like terms
and types are reified using the metalogic and as others objects like definitions are
formalized as 𝜆-terms, they are already objects of the logic that can be annotated.

Isabelle/DOF is tuned towards systems with a document-centric view on code
and semi-formal text as is prevailing in proof-assistants. Not limited to, but cur-
rently mostly used as a document-ontology framework, it has similarity with other
documentation generation systems such as Javadoc [83, 84], Doxygen or ocamldoc
[85, chap. 19]. These systems are usually external tools run in batch-mode over
the sources with a fixed set of structured comments similar to Isabelle/DOF anti-
quotations. In contrast, our approach foresees freely user-definable anti-quotations,
which are in the case of references automatically generated. Furthermore, we
provide a flexible and highly configurable LATEX backend. Indeed Isabelle/DOF
is interested in the presentation aspect: ontological concepts can be associated
with presentation requirements and specifications. Isabelle/DOF can ontologize
document elements like figures and slides, by adding meta-data to informal but
structured text and linking the structured element to the LATEX backend for pre-
sentation.

Obvious future applications for supporting the link between formal and infor-
mal content, i.e. between information and knowledge, consist in advanced search
facilities in mathematical libraries such as the Isabelle Archive of Formal Proofs
[86]. The latter passed the impressive numbers of 730 articles, written by 450
authors at the beginning of 2023. Related approaches to this application are
a search engine like http://shinh.org/wfs which uses clever text-based search
methods in many formulas, which is, however, agnostic of their logical context and
of formal proof. Related is also the OAF project [87] which developed a common
ontological format, called OMDoc/MMT, and six export functions from major in-
teractive theorem prover systems into it. Limited to standard search techniques
on this structured format, the approach remains agnostic on logical contexts and
an in-depth use of typing information.

4https://github.com/Deducteam/Dedukti/tree/meta
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Chapter 3

Term-Contexts and Isabelle/DOF
Extension

3.1 Introduction
As Isabelle offers a document-centric view to the formal theory development pro-
cess, this led to strong documentation generation mechanisms over the years, using
built-in text and code anti-quotations. Isabelle commands serve as an interface to
initialize and update the logical context and setup the environment within an in-
tegrated document, that is the acyclic graph of application theories. For example,
a text command will setup the syntax, the parsers, the markup information, the
annotations, the document elements, and so on, i. e. not only the logical elements
but also the environment that may be involved when writing informal text. We
call this setup a context, as an instance of the environment and logical context of a
theory that is later refined as a theory context or a proof context. The text com-
mand introduces a text-context where its content, as informal text, can also have
checked text anti-quotations and other user-defined macros like abstracted latex
macros. The ML-command introduces its own ML-context to allow ML code to be
parsed, interpreted and enrich the background theory within the same integrated
document, and supports its own checked ML anti-quotations.

The Isabelle/DOF commands text∗ and ML∗ can already be used to refer to
our ontological concepts whether it is an ontological class, an ontological class
instance, or an ontological attribute. Isabelle/DOF also offers references to some
meta-level objects when inside a 𝜆-term, like theorems and types, but these anti-
quotations are empty syntactic categories and not ratable.

These features are not sufficient to allow advanced data handling pervasive
in ontologies like classification and semantic validation. The ontological concepts
should be made available inside 𝜆-terms so they can reference each other instances.
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Then an instance will be able to use other instances as an attribute-value. Fur-
thermore, ontological and meta-level concepts should be ratable. Then advanced
data handling become concrete. From these considerations emerge the concept of
term-context, i. e. annotations to be made inside ratable 𝜆-terms.

In this chapter, first we explain how term-contexts were implemented in Is-
abelle/DOF and how it can be integrated in the Isabelle framework by abstracting
over Isabelle/Isar commands. Formal elements of formal libraries can now be
reconsidered as document elements and become components in ontology classifica-
tion and semantic validation. Then we explain the class invariant implementation
which shares similarities with SWRL [51], with the important difference that they
are made first citizen inside HOL object logic. The next section describes the ex-
tension of Isabelle/DOF monitors to work with term-contexts and expose relevant
structural content for the definition of the linking in a document. Afterwards, we
show how the combination of term-contexts and Isabelle/HOL offer a framework
for advanced search inside Isabelle/DOF ontologies similar to SQWRL [52]; with
Isabelle/DOF we are not limited to semantic queries, and we illustrate how Isabelle
as a theorem prover can be used for semantic validation by proving morphisms on
ontologies.

3.2 Term-Contexts
Term-contexts are introduced by the mean of Isabelle/DOF commands that ex-
tends Isabelle commands. Their content is not text nor ML code but 𝜆-terms.
They come in two kinds: proper commands that update the logical context or help
structuring a document, and diagnostic commands that print, check or evaluate
𝜆-terms.

For instance:

Example 5 Examples of term∗ and value∗ commands with term anti-quotations

Isabelleterm∗‹ @{thm ′′HOL.refl ′′}›
value∗‹ @{thm ′′HOL.refl ′′} = @{thm ′′HOL.sym ′′} ›

The term∗ and value∗ Isabelle/DOF diagnostic commands are equivalent to
Isabelle term and value commands respectively and extend the editing environ-
ment of Isabelle/DOF with new documentation constructs (recall Figure 2.1).
They both parse and type-check a 𝜆-term, and the latter also compiles and exe-
cutes the 𝜆-term. Their content is 𝜆-terms that may comprise term anti-quotations
treated by a refined process involving some or all of the following steps:
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• parsing and typechecking of the term in HOL context. The logical context
may be a theory context, a proof context, or a generic context, depending
on the kind of the command,

• ontological validation of the term:

– the arguments of term anti-quotations are parsed and checked,
– checks resulting from ontological invariants were applied,

• generation of markup information for the navigation in the IDE,

• elaboration of term anti-quotations: depending on the anti-quotation specific
elaboration function, the anti-quotations containing references were replaced
by the object they refer to, and

• evaluation: HOL expressions were compiled and the result executed.

As we want to be able to have advanced treatment like classification, evaluation
of an object referenced by a term anti-quotation should return a result, whether
it is a reference to a meta-type or an ontological instance.

In the previous implementation, meta-types were declared as abstract enti-
ties making their evaluation impossible. Indeed, Isabelle code evaluation uses the
term_of axiomatic type class to make 𝜆-terms allowed type instances for the eval-
uation process. But Isabelle/DOF meta-types were declared as axiomatic types
using typedecl: this command just declares a new type constructor and does make
it a term_of type class instance. Using the datatype command, newly defined
meta-types can be evaluated:

Isabelledatatype thm = Isabelle_DOF_thm string (@{thm _})

The datatype thm defines a type but also declares the term anti-quotation as
a constructor (Isabelle_DOF_thm) that takes a string argument and adds the
notation @{thm _} where _ is a placeholder for the argument. The datatype
command also declares its type as an instance of the term_of type class making
terms of type thm ratable.

In Example 5, the term∗ command parses and type-checks this 𝜆-term as
usual; logically, as we just saw, the @{thm ′′HOL.refl ′′} term anti-quotation is
predefined by Isabelle/DOF as a constant Isabelle_DOF_thm. The validation
will check that the string ′′HOL.refl ′′ is indeed a reference to the theorem in the
HOL-library, notably the reflexivity axiom. The type-checking of term∗ will infer
thm for this expression. Now, if we look at the value∗ command: this time the
type-checking will infer bool for this expression and then will replace each term
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anti-quotation by a constant representing a symbolic reference to a theorem; code-
evaluation will compute False for this command. Note that this represents a kind
of referential equality, not a “very deep” ontological look into the proof objects (in
our standard configuration of Isabelle/DOF). Further, there is a variant of value∗,
called assert∗, which additionally checks that the term-evaluation results in True.

For the ontological instances, the integration to the evaluation process can
reuse the elaboration process just defined.

First, ontological instances should generate ratable values. We saw in sec-
tion 2.7 that unspecified attributes make ontological instances left undefined
and then not ratable. Also, in Isabelle/DOF the logical representation of an
instance, i. e., the record value, can be updated after its declaration using the
update_instance∗ command. The implementation of both ODL and the editing
environment need to be updated. For ODL, the idea is to generate a record value
that is sufficiently defined to be processed by the code evaluation but still compat-
ible with Isabelle/DOF instance update mechanism. For that Isabelle/DOF now
uses a combination of term evaluation techniques in order to evaluate the instance
record value. For example:

Isabelletext∗[church1∶∶loc_author ]‹ Author description ...›

The church1 instance declaration of the loc_author defined in Example 4 does
not specify any attribute-value. Then it inherits the default value for its name
attribute from its Background.author superclass but the localization attribute is
left unspecified. Isabelle/DOF will define this attribute as a term variable. The
record value of the church1 instance is:

(∣name = ′′Church ′′,
localization = Background_loc_author_localization_Attribute_Not_Initialized∣)

where its localization attribute-value

Background_loc_author_localization_Attribute_Not_Initialized

is a term variable whose type is string. To obtain this result, we use a generic
way to generate record value that integrates well with Isabelle/DOF. The record
package used internally by Isabelle/DOF generates HOL constants when declaring
a record. Among them, the make constant allows to declare a record value in a
functional way by taking each attributes as arguments in their declaration order.
A first default record value is generated with only term variables as attributes
using the make constant. This way an instance declared without any attributes
specified and without default value inherited from its class hierarchy is ratable.
For example:
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Isabelledoc_class loc_author0 = author0 +
localization ∶∶ string

text∗[church2∶∶loc_author0]‹ Author description ...›

Here the attributes of the church2 instance are left unspecified and no default
value were specified in the class hierarchy: neither author0 defined in Example 3
nor loc_author0 specify a default value for the name attribute. The record value
generated is:

(∣name = Invariants_loc_author0_name_Attribute_Not_Initialized,
loc_author0.localization =

Invariants_loc_author0_localization_Attribute_Not_Initialized∣)

where each attribute-value is a well typed term variable. This record value is rat-
able using nbe. Then if default values were specified in the class hierarchy, they
are used to update the record value reusing Isabelle/DOF update record mecha-
nism as if its was the result of the Isabelle/DOF update_instance∗ command for
example. Then specified attributes in the instance declaration are used to once
again update the record value. Record value with attributes left unspecified are
now always ratable using nbe. And if the record value is totally specified, then it
is considered a ground term and eval is used.

The implementation of the generation of record values exposed a flaw in Is-
abelle/DOF implementation. By default Isabelle/DOF allows to overwrite at-
tributes for example to specify new default value:

Isabelledoc_class author1 = Background.author +
name ∶∶ string <= ′′Alonzo Church ′′

text∗[church3∶∶author1]‹ Author description ...›

Here the author1 class overwrites the name attribute of the author class and
specify a new default value ′′Alonzo Church ′′. But for the logical representation,
the name attribute is still an attribute of the Background.author class, so a way
to distinguished both the classes should be found to allow distinct logical repre-
sentation. The previous Isabelle/DOF implementation used a cumulative tagging
system. The internal value for an instance would be:

(∣(tag0 = tv0, attrib00 = v00, ..., attrib0𝑛 = v0𝑛),
(tag0 = tv0, tag1 = tv1, attrib10 = v10, ..., attrib1𝑛 = v1𝑛),
..., (tag0 = tv0, tag1 = tv1, ..., tag𝑛 = tv𝑛, attribn0 = vn0, ..., attribn𝑛 = vn𝑛)∣)

where attrib00 = v0, ..., attrib0𝑛 = v𝑛 are attributes attrib00...attrib0𝑛 of the
super class with their values v00...v0𝑛. Superclass attributes are tagged using the
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attribute tag0 with value tv0. attrib10 = v10, ..., attrib1𝑛 = v1𝑛 are attributes
attrib10...attrib1𝑛 of the first subclass with their values v10...v1𝑛. The subclass
attributes are tagged with tag0 = tv0, tag1 = tv1, and so on. When a subclass
only overwrites attributes of its superclass, tag attributes are used to distinguished
them internally. For example the internal value of the record value for the church3
instance was:

(∣author_tag_attribute = tv0, name = ′′Alonzo Church ′′,
author_tag_attribute = tv0, author1.tag_attribute = tv1∣)

We can see the issue: The differentiation relies on all the class hierarchy of inter-
nal tag attributes. As the author1 class does not declare any new attribute, the
differentiation between the class is done using the second author_tag_attribute
and the author1.tag_attribute attributes. This lead to bloated record values and
difficulties to generate them when using the make constant.

The new concept of virtual class is introduced to allow a clean generation of
record values. Now the author1 class, as it does not define any new attribute
but only overwrites attributes from its class hierarchy, is considered a virtual class
internally. Record values generation of virtual classes are treated specifically: only
the tag attribute of this class is used to distinguish it from its superclass. For
example, the internal record value of the church3 instance is now:

(∣author_tag_attribute = tv0, name = ′′Alonzo Church ′′,
author1_tag_attribute = tv1∣)

So virtual classes exist logically as separate class to generate ratable record values
and for the user they are fully ontological class. The introduction of virtual classes
and the new mechanism of record values generation allows Isabelle/DOF class
instances to always be ratable.

Once ontological instances are ratable, ontological classes should generate their
own term anti-quotations. Term anti-quotations for ontological classes are declared
as constants in Isabelle/HOL and are typed with the type of the logical record
representation. For example:

Isabellevalue∗‹ @{loc_author ′′church1 ′′}›

The value∗ command will replace the term anti-quotation by the record value
of the church1 instance of type loc_author. The record value is ratable because its
type is an instance of the term_of type class. Indeed this type was declared by
the record package used internally that instantiates the type properly. Ontological
class term anti-quotations integrate fully in Isabelle/HOL by reusing the concept
of name spaces.
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Let’s suppose that we are writing a theory that inherits two ontologies from
different theories. These ontologies define ontological concepts using the same
name but with different semantics. Isabelle/DOF will generate name spaced term
anti-quotations so the user can use both definition concepts at the same time. For
example:

Isabellevalue∗‹ @{Theory1.definition ′′Theory3.def1 ′′} =
@{Theory2.definition ′′Theory4.def1 ′′}›

The ontology in Theory1 and the one in Theory2 both define the concept of
definition. The first term anti-quotation refers to the def1 instance declared in
Theory3 as an instance of the ontological class definition declared in Theory1 and
the second to the def1 instance of the Theory4 theory instantiating the definition
of Theory2. In the standard configuration of Isabelle/DOF, the value∗ command
will result in False because both the instances have different types.

Name spaced anti-quotations reproduce for term-contexts the concept of name
space pervasive in Isabelle. But contrary to anti-quotations in text-contexts and
ML-contexts, term anti-quotations are terms defined in HOL as constants and
exist in the logical context. So both unqualified and qualified anti-quotations
must be declared and then internally mapped to the formal entity when they
are elaborated. To reference instances of the class Theory1.definition declared in
the Theory1 theory, two term anti-quotations are generated: @{definition ...} and
@{Theory1.definition ...}. When in the theory Theory1 where the definition on-
tological class is declared, both term anti-quotations reference the same formal
entity. When in a theory that imports the theory Theory1 where the class was
declared, whenever a new definition ontological class is declared, @{definition ...}
will reference an instance of the new class, and @{Theory1.definition ...} an in-
stance of the class declared in the imported Theory1 theory. Internally the name
space of the ontological class formal entities is used to map the term anti-quotation
to the right formal entity.

With ratable record values of ontological class instances and term anti-
quotations for ontological concepts and meta-types, we are now able to add and
evaluate meta-data of abstract concepts.

The interaction in Isabelle/Isar happens through commands. But this syntac-
tic category can be used for other purpose like abstract objects definition. In fact,
the text∗ command of Isabelle/DOF does exactly that: it associates ontological
concepts as meta-data to informal text. It means that the command is now consid-
ered as an abstract object. Meta-data are the abstract representation in the HOL
object logic of a document element, the abstract object in Isabelle/DOF that is an
Isabelle/Isar command. In the same way, value∗ as a command used for evalua-
tion semantically amounts to the outcome of some evaluated 𝜆-term, and term∗ is
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semantically a 𝜆-term document element in Isabelle/DOF. In Isabelle/HOL, the
equivalent commands are used for diagnostic, so they do not influence the log-
ical context or the document structure. But in Isabelle/DOF, as they become
document elements objects, they can play a role in the document treatment, and
meta-data information associated to these commands are also associated to the
logical meaning of those commands. Both value∗ and term∗ can extend the
ontology-controlled editing environment. To become objects that can be refer-
enced in ontological definitions, term∗ and value∗ support the [...] option to be
associated with an ontological class and become ontological instances. This option
is not only a prerequisite to support the linking between informal and formal infor-
mation, as with the text∗ command, it also allows to make commands document
elements and associate these document elements with their content, whether it is
formal or informal.

Extending Isabelle/Isar commands by adding ontological definitions can be
used in a systematic manner to define new abstract objects in Isabelle/DOF: this
is an abstraction over commands pattern. For example, the commands:

Isabelledoc_class oterm =
is_formal ∶∶ bool

doc_class otheorem =
is_formal ∶∶ bool
assumptions ∶∶ oterm list <= []
statement ∶∶ term option <= None

term∗[reflterm∶∶oterm]‹s = t›

text∗[secreq∶∶otheorem,
assumptions = [@{oterm ‹reflterm›}],
statement = Some @{term ‹P s ⟹ P t›}]

‹The ontological notion @{otheorem ‹secreq›} ...›

define the instances reflterm and secreq. The assumptions attribute of the
otheorem class instance secreq is a list with a single element, the instance reflterm
referenced using a term anti-quotation. We can link the formal term referenced
by the id reflterm to an informal representation of a theorem, the instance secreq.
Semantically, oterm class instances are equivalent to the concept of definition in
Isabelle/HOL. As definitions in Isabelle/HOL are declared as constants that can
be referenced, the oterm class is not of great interest but with Isabelle/DOF we
can abstract a step further. For that, higher level objects like definitions need
special care. Consider the following commands:
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Isabelledoc_class odef =
is_formal ∶∶ bool

doc_class otheorem2 =
is_formal ∶∶ bool
assumptions ∶∶ odef list <= []
statement ∶∶ term option <= None

definition∗[reflterm2∶∶odef ] reflterm2 where ‹reflterm2 s t ≡ s = t›

text∗[secreq2∶∶otheorem2,
assumptions = @{instances_of ‹odef ›},
statement = Some @{term ‹P s ⟹ P t›}]

‹The assumptions term- ‹assumptions @{otheorem2 ‹secreq2›}› of the ontoligical
notion @{otheorem2 ‹secreq2›} ...›

The newly defined Isabelle/DOF command definition∗ extends the standard
Isabelle/Pure definition command. Using the abstraction over commands pat-
tern, definition∗ can have attached meta-data and becomes an abstract object
in Isabelle/DOF, that is a document element in Isabelle/DOF. Meta-data give
semantics to this abstract object linked to the formal content of the definition
that exists in the logical context. Now we can have references to definitions using
this command: new term anti-quotations can be defined to semantically amount
to a list of odef definitions, like @{instances_of ‹odef ›}. Here, by using ontology
meta-data, we can reference abstract concepts like list of definitions of the same
type, unlike in Isabelle/HOL where only definitions instances as formal entities
can be referenced. The reflterm2 definition becomes not only a constant in Is-
abelle/HOL but also a document element that can be used for advanced handling
like linking formal definitions existing as formal entities in Isabelle/HOL to in-
formal document element like secreq2. Definition objects that exist in the logical
context as constants are enriched using ontology meta-data. Isabelle/DOF now
allows advanced handling over higher-level formal concepts like definitions.

The attentive reader may have noticed that for these examples the term anti-
quotations were not only used in the command content but also in its ontological
definition: the ontological definition is also made aware of the term-context. The
[...] option of each command augments the logical context by adding ontological
elements, so a command, when elaborating the term anti-quotation, may need
to be aware of its own ontological information. The is done by adding ontolog-
ical elements to the logical context before parsing the command content. The
text content of the secreq2 instance contains a text anti-quotation term_. This
anti-quotation is also aware of the term-context and allows to specify the term oth-
eorem2.assumptions @{otheorem2 ′′secreq2 ′′} that contains a term anti-quotation

53



3.2. Term-Contexts

that references its own ontological definition.
The elements referenced using term anti-quotations may also used term anti-

quotations. The otheorem2.assumptions attribute-value of the secreq2 instance is
specified using the term anti-quotation @{instances_of ‹odef ›} leading to nested
term anti-quotations in the term_ text anti-quotation. Because expressions with
nested term anti-quotation can become quite complex, a double strategy is cho-
sen: the elaboration of the term anti-quotation uses an eager evaluation to add
only term-values with fully resolved term anti-quotations in the logical context,
but terms with non-elaborated term anti-quotations can be made available for
debugging via a lazy evaluation using a configuration option.

The meta-type term anti-quotation @{thm ...} allows to refer to theorems but
meta-data can not be attached to it and then its use for advanced handling is lim-
ited. Ontological commands lemma∗, theorem∗, etc. were added to Isabelle/DOF
editing environment to have abstract theorems objects that can take part as doc-
ument elements into ontological definitions.

In Isabelle/DOF formal concepts used by formal libraries are no more simply
abstract entity instances that may be referenced, they become fully integrated
document elements with formal content, and can take part in ontological defini-
tions. The first concept that comes in mind for formal libraries may be references
to ontologized formal concepts like definitions, using the definition∗ command,
or theorems using lemma∗ theorem∗, etc. But by using ontologies, the semantics
of the concept is left open: any kind of document treatment is possible and it can
be formally expressed using ontological definitions.

The resolution of each term anti-quotations follows the same pattern we just
presented, but each concept it refers to needs special care with regard to markup.
Term anti-quotations are designed using markup and binding to integrate fully in
the IDE. For example the @{otheorem2 ′′secreq2 ′′} term anti-quotation is made
clickable to allow navigation in the IDE and basic markup information will pop-up
when the pointer passes over. Dynamic information along the elaboration process
is also integrated in the IDE.

We illustrate this integration in the IDE using some class instances of the
paper𝑚 and cenelec𝑚 ontologies defined with the text∗ command, as in Figure 3.1.
In the instance intro1, the term antiquotation @{author ‹church›}, or its equivalent
notation @{author ′′church ′′}, denotes the instance church of the class author,
where ′′church ′′ is a HOL-string referring to an author text element in the global
context. As explained earlier, one can also reference a class instance in a term∗
command as a term anti-quotation. In the command term∗‹@{author ‹church›}›
the term @{author ‹church›} is type-checked (see Figure 3.2).
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Isabelletext∗[church∶∶author , email=‹church@lambda.org›]‹... text›

text∗[intro1∶∶introduction, authored_by={@{author ‹church›}},
level=Some 0]‹... text›

text∗[safety∶∶theorem, assumptions = [@{term ‹s = t›}],
statement = Some @{term ‹t = s›}]‹... text›

text∗[security∶∶theorem, assumptions = [@{term ‹t = s›}],
statement = Some @{term ‹P s ⟹ P t›}]‹... text›

text∗[proof1∶∶ ′a result, evidence = proof ,
property=[@{theorem ‹safety›}, @{theorem ‹security›}],
level = Some 2,
authored_by = {@{author ‹church›}}]‹... text›

text∗[proof2∶∶ ′a result, evidence = proof ,
property=[@{theorem ‹security›}, @{theorem ‹safety›}],
level = Some 2,
authored_by = {@{author ‹church›}}]‹... text›

Figure 3.1: Some Instances referring to Figure 2.5.

(a) Here, church is an existing Instance. (b) The Instance churche is not defined.

Figure 3.2: Type-Checking of Antiquotations in a Term-Context.
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(a) The Evaluation succeeds. (b) The Evaluation fails.

Figure 3.3: Evaluation of Antiquotations in a Term-Context.

Figure 3.4: Evaluation of an Attribute of two Class Instances.

The command value∗‹email @{author ‹church›}› validates @{author
‹church›} and returns the attribute-value of email for the church instance, i. e.
the HOL-string ′′church@lambda.org ′′ (see Figure 3.3).

Referential equality is the standard interpretation for the meta-types, that is
objects considered a types in Isabelle’s metalogic. But for other concepts like
ontological classes, the structural equality is directly possible. In the case of class
instances, since term anti-quotations are basically uninterpreted constants, class
instances can be compared logically. The assertion in the Figure 3.4 fails: the
property attribute of class instances proof1 and proof2 is not equivalent because the
lists sorting differs. When assert∗ evaluates the term, the term anti-quotations
@{theorem ‹safety›} and @{theorem ‹security›} are checked against the global
context such that the strings ‹safety› and ‹security› denote existing theorem class
instances.

Abstraction over Isabelle/Isar commands pattern reuse already existing ab-
stract entities with formal or informal content and make them document elements,
and the introduction of the term-context allows to integrate document elements
into ontological concepts using term anti-quotations. The is the first building block
to define a framework for formal libraries.

3.3 Invariants
In semantic web communities, the limited expressivity of OWL drove diverse

efforts, particularly with respect to properties (attributes in Isabelle/DOF). Rules
languages [88, 89] were proposed like SWRL [51] whose purpose is a sound rule
language by extending OWL with Horn-like rules. SQWRL [52] is a query lan-
guage built on SWRL and uses its semantics foundation. SQWRL queries can be
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stored in OWL ontologies. Used together with OWL, SWRL and SQWRL offer
an expressive environment for advanced search and classification. Isabelle/DOF
was extended with the same idea in mind to use the same foundation for rules and
queries. The counterpart of SWRL in Isabelle/DOF are class invariants. Orig-
inally restricted to checking function in ML, this limited their integration in an
ontology definition and their usage with the Isabelle/Isar framework for semantic
validation. The idea is to make invariants first class citizen in the HOL object
logic; then reuse the Isabelle/Isar framework and Isabelle/DOF term-context and
abstraction over commands pattern to match SQWRL features and do more. In-
deed, as first class citizen, invariants are now parts of the theory of an ontology,
and can become elements in proofs scripts. Through the support of term-contexts,
term anti-quotations can also be used when specifying invariants constraints using
the common HOL syntax.

To become first class citizen, class invariants are reified as follows: The invari-
ant is declared as a 𝜆-term with a reserved placeholder symbol for the future class
instance it will be checked against, then a 𝜆-abstraction is applied and updated
as an equivalence over the name of the invariant and finally declared as a con-
stant using a definition. Invariants are now a fully integrated part of an ontology
definition and will play a key role in advanced handling like semantic validation
and semantic merge. Indeed, like class attributes invariants are also inherited by
subclasses. They were introduced by the keyword invariant in a class definition
(recall Figure 2.5). The ne_name invariant of the author class, where the place-
holder is the 𝜎 symbol, checks that the name attribute of an author instance is
not an empty string. The term name 𝜎 ≠ [] is first abstracted to obtain 𝜆𝜎. name
𝜎 ≠ []. Then the generated equivalence gives:
ne_name ≡ 𝜆𝜎. name 𝜎 ≠ []

The equivalence is used as the 𝜆-term of a definition whose representation in
Isabelle/Isar is:

Isabelledefinition ne_name where ne_name 𝜎 ≡ name 𝜎 ≠ ′′′′

In the same way, the authors_req invariant defined by the term authored_by
𝜎 ≠ {} is equivalent to the definition:

Isabelledefinition authors_req where authors_req 𝜎 ≡ authored_by 𝜎 ≠ {}

It enforces that a text_element instance has at least one author. Following the
constraints proposed in [10], one can specify that any instance of a result class
finally has a non-empty property list, if its kind is proof (see the has_property
invariant). The is_form invariant specify the relation between the sets of definition
and theorem document elements for the resumee attribute of the conclusion class
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and forces a theorem to be tagged as formal if its related definition also is. By
relying on the implementation of extensible records in Isabelle/HOL [20], one can
reference an instance attribute using its selector function. For example, in the
is_form invariant, resumee 𝜎 denotes the resumee attribute-value of the future
conclusion class instance.

Class invariants support constraints on the superclasses attributes using record
package properties. To explain how this works, we first need to explain how the
is−a class relation is done. Internally it uses the is−a relation of the record
package that defines the notion of fixed and schematic records, supported at the
level of terms and types. We already saw fixed records in section 2.7. A schematic
record is represented by the record term

(∣x = a, y = b, ... = m∣)

and the corresponding record type

(∣x ∶∶ A, y ∶∶ B, ... ∶∶ M ∣)

where “...” is a notation for possibly further fields, called the more part. “Fixed
records are special instances of record schemes, where “...” is properly terminated
by the () ∶∶ unit element. In fact, (∣x = a, y = b∣) is just an abbreviation for
(∣x = a, y = b, … = ()∣).” [20] “For convenience, (𝛼1, … , 𝛼𝑚) t is made a type
abbreviation for the fixed record type (∣c1 ∶∶ 𝜎1, … , c𝑛 ∶∶ 𝜎𝑛∣) of a record t, likewise
is (𝛼1, … , 𝛼𝑚, 𝜁) t_scheme made an abbreviation for (∣c1 ∶∶ 𝜎1, … , c𝑛 ∶∶ 𝜎𝑛, …
∶∶ 𝜁∣).” [20]

If a record t ′ of type (𝛼1, … , 𝛼𝑚, 𝜁) t ′_scheme extends a record t of type 𝜓
t_scheme, then (𝛼1, … , 𝛼𝑚, 𝜁) t ′_ext is an abbreviation for 𝜓, meaning (𝛼1, … ,
𝛼𝑚, 𝜁) t ′_scheme and ((𝛼1, … , 𝛼𝑚, 𝜁) t ′_ext) t_scheme are the same type. We
can see the is−a relation emerging from the schematic record type. A constant of
type (𝛼1, … , 𝛼𝑚, 𝜁) t_scheme ⇒ 𝛽 accepts terms of type ((𝛼1, … , 𝛼𝑚, 𝜁) t ′_ext)
t_scheme as arguments, i. e., a term of type (𝛼1, … , 𝛼𝑚, 𝜁) t ′_scheme where t ′

extends t.
To support constraints on superclasses attributes, the type of the 𝜆-term ele-

ments of the invariants are updated: types of subterms like selectors of superclasses
are rewritten to the schematic type of the current class.

Let’s see an example:

Isabelledoc_class ′a loc_author = ′a author +
localization ∶∶ string
invariant ne_email ∶∶ email 𝜎 ≠ ′′′′

The loc_author class is a subclass of the author class defined in Figure 2.5,
and specify the constraint in its class invariant ne_email that the email attribute
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of its instances must not be empty. In the ne_email invariant the 𝜎 symbol, as a
placeholder for the future instance of the class loc_author, is of type ′a loc_author.
But the selector email that returns the email attribute value of the class loc_author
is generated when declaring the class author, so its type is ′a author_scheme ⇒
string. The type of the subterm 𝜎 and the type of the subterm email are updated
to ′a loc_author_scheme. As the type ′a loc_author_scheme is the same as the
type ( ′a loc_author_ext) author_scheme, and also an instance of the type scheme
′a author_scheme, the email selector accepts the future instance represented by
the 𝜎 symbol as an argument and the overall 𝜆-term is well typed.

Using type rewriting, attributes selectors of any class in the class hierarchy of
the current class may appear in a class invariant. Term rewriting also enables the
support of invariants constraints on attributes of attributes, i. e., on attributes of
ontological classes whose type is another ontological class. For example:

Isabelledoc_class ′𝛼 text_element =
authored_by ∶∶ ′𝛼 author set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ the (level 𝜎) > 1
and ne_emails ∶∶ ∀ x ∈ authored_by 𝜎. email x ≠ ′′′′

We have added the ne_emails invariant to the text_element class that declares
a constraint on the email attribute of the elements of its authored_by attribute
which is a set of author classes.

Invariants are also aware of the term-context and term anti-quotations are
allowed in their declaration. Here is a small example that extends the previous
one:

Isabelletext∗[church∶∶ ′a author , email=‹church@lambda.org›]‹›

text∗[scott∶∶ ′a loc_author , email=‹scott@domain.org›]‹›

doc_class ′𝛼 text_element =
authored_by ∶∶ ′𝛼 author set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ the (level 𝜎) > 1
and ne_emails ∶∶ ∀ x ∈ authored_by 𝜎. email x ≠ ′′′′

and n_church ∶∶ ∀ x ∈ authored_by 𝜎. email x ≠ email @{author ‹church›}

text∗[text_el1∶∶ ′𝛼 text_element,
authored_by={@{loc_author ‹scott›}}]‹›
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The n_church invariant enforces each email attribute-value of authored_by
attribute elements of the text_el1 instance to be inequal to the email attribute
of the church instance, referenced in the invariant using the term anti-quotation
@{author ‹church›}.

The value of each attribute defined for the instances is checked at run-time
against their class invariants. Recall that classes also inherit the invariants from
their super-classes. As the result class defined in Figure 2.6 is a subclass of the
text_element class, it inherits its invariants. In Figure 3.5, we attempt to specify
a new instance res1 of this class However, the invariant checking triggers an error
because the authors_req invariant forces the authored_by attribute to be a non-
empty set and as its value was not set in the res1 instance definition, res1 inherits
the default value from the text_element class which is the empty set.

The invariant checking mechanism uses configuration options to let the user
choose the kind of checking he wishes. Basic proof tactics can be enabled involving
unfolding commands, most commonly needed when invariants involve inductive
predicates over algebraic structures, and the auto tactic. To make the choice with
configuration options possible, an errors handling cascade is used: artificial terms
and theorems are constructed to fill the gap along the cascade and shape the
mechanism, leading to choices parametererized by configuration options to change
the behavior of the checking. First the invariant is evaluated using the standard
evaluation mechanism with nbe or eval. It might fail mainly due to a Wellsortedness
error. This opens the next step in the errors cascade and introduce the proof tactics
checking. This checking is not the first one used as it relies on simp, slower but
more powerful than nbe or eval. At this step unfolding commands and the auto
tactic are used. But simp generates theorems and not terms, so to integrate the
errors cascade and allow the checking mechanism to go to the next step, artificial
trivial theorems are generated to lure the type system.

For example:

Isabelletext∗[introduction1∶∶ ′a introduction,
authored_by = {@{author ‹church›}}]‹›

When declaring the introduction1 ontological instance, the default checking
(the evaluation using nbe or eval) of the author_finite invariant defined in the
introduction class will fail. The evaluation of a 𝜆-term that uses the finite induc-
tive predicate requires its argument to be an instantiation of the finite axiomatic
type class, but the argument, the attribute-value {@{author ′′church ′′}} of the
introduction1 ontological instance does not instantiate the finite type class. So,
the invariant is passed to the proof tactics method and then checked: the invariant
definition is unfolded and the auto tactic finishes the proof. Then an artificial the-
orem is generated and serves as pattern matching in the error cascade to validate
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Figure 3.5: Inherited Invariant Violation.

the invariant.
Invariant declarations can lead to confusing behavior even with basic speci-

fication. The choice has been made to be permissive in definition specifications
and rather give some feedback when a declaration triggers an error. With the
introduction1 instance declaration, if the definition of the level_req invariant were
to be the term 1 < the (level 𝜎) instead of the term level 𝜎 ≠ None ∧ 1 < the
(level 𝜎), a Match exception would be triggered. As the level attribute-value is not
specified in the introduction1 instance, the default value None inherited from the
text_element class is used and the invariant checking mechanism triggers a Match
exception: indeed the 1 < the (level 𝜎) will be reduced to 1 < the None which is
well typed but not ratable. This exception comes with contextual information to
help debugging.

Class invariants in Isabelle/DOF are fully integrated in Isabelle whether it is
inside HOL object logic as first class citizens or in the IDE using errors cascade
handling and configuration options.

Before explaining how an equivalent to SQWRL is shaped, another important
feature of Isabelle/DOF, monitor classes, should be available for advanced search
and validation of documents due the structure they enforce.

3.4 Monitors Extension
Monitors classes, in addition to enforcing the structure in a document, also

generate traces of ontological classes involved in the monitor accept clause. They
could be of substantial value as information for formal libraries, for example when
helping to define best practices to shape their content. So making monitor traces
available for advanced document handling by using the term-context is an added-
value. It involves several steps:

• enhance the structural configuration possibilities

• make traces ratable

• make the term-context aware of monitors traces using term anti-quotations

The structural constraint that could be enforced were informally specified but
never fully implemented. The idea is to have two clauses for the monitor classes,
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the accepts clause that specifies the order, specified by a regular expression, in
which classes instances have to appear in the document, and a rejects clause with
a list of ontological classes. This allows specifying ranges of admissible instances
along the class hierarchy:

• a superclass in the reject list and a subclass in the accept expression forbids
instances superior to the subclass, and

• a subclass S in the reject list and a superclass T in the accept expression
allows instances of superclasses of T to occur freely, instances of T to occur
in the specified order and forbids instances of S.

A class is considered a subclass of itself in the following.
The accepts clause regular expression is compiled via an implementation of

the Functional-Automata of the AFP [90] into a deterministic automaton. So
each time a class instance is declared in the monitor we might advance one step
in the automaton depending on the algorithm explained just above. To allow
the structural checking to be configurable using configuration options, the first
accepted class fa for the current class instance 𝜄 declared in the monitor at the
step 𝜑 is extracted from the alphabet of classes 𝛼 available at this step 𝜑 in the
automaton, that is at this specific step in the regular expression of the accepts
clause. fa is the most direct super class of 𝜄 in 𝛼. In the same way, the first rejected
class fr of the current instance is extracted from the reject list 𝜚: this is the most
direct superclass of 𝜄 in 𝜚. Then cases on the fact that fa and fr are inhabited
or not are checked to allow configuration options to be used to parameterize the
structural constraint.

Example 6 Monitor example with accepts and rejects clauses
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Isabelledoc_class mon_head =
tmhd ∶∶ int

doc_class mon_A = mon_head +
tmA ∶∶ int

doc_class mon_B = mon_A +
tmB ∶∶ int

doc_class mon_C = mon_A +
tmC ∶∶ int

doc_class mon_D = mon_B +
tmD ∶∶ int

doc_class mon_E = mon_D +
tmE ∶∶ int

doc_class monitor_M =
tmM ∶∶ int
rejects mon_A
accepts mon_head ∼∼ mon_B ∼∼ mon_C

open_monitor∗[monitor_M0∶∶monitor_M ]

text∗[mon_A0∶∶mon_A]‹›
text∗[mon_head0∶∶mon_head]‹›
text∗[mon_E0∶∶mon_E ]‹›
text∗[mon_C0∶∶mon_C ]‹›

close_monitor∗[monitor_M0]

In Example 6, the accepts clause of the monitor_M monitor class uses the
sequence constructor ∼∼ of regular expressions to enforce the structure of the
document that must start with an instance of the mon_head class or one of its
subclasses, followed by an instance of the mon_B or one of its subclasses, and so
on, and the rejects clause rejects instances of the mon_A or one of its subclasses
at each step in the sequence. mon_A0 is the first ontological instance declared in
the monitor instance monitor_M0, opened using the open_monitor∗ command.
So we are at the first step 𝜑0 in the automaton of the accepts clause regular
expression of the monitor class monitor_M : the alphabet 𝛼 of accepted classes
at this step is composed of the sole class mon_head. mon_A0 is an instance of
an instance of mon_A: The fa of mon_A0 is mon_head, as it is a superclass of
mon_A0 and mon_head is in 𝛼. But the fr of mon_A0 is mon_A as it is the
sole class in 𝜚 and mon_A is a superclass of mon_A (recall we consider a class
to be a subclass of itself). So the instance is rejected by the algorithm, and we
stay at the step 𝜑0 in the automaton. Both fa and fr are inhabited, giving access
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to a specific choice parameterized by the configuration option to trigger an error
or a warning in the IDE for this rejected instance. Next we look at the instance
mon_head0. This time the instance is accepted at the step 𝜑0 because its class
mon_head is a superclass of the rejected class mon_A, and we move to step 𝜑1
in the automaton. Here 𝛼 is composed of one class, the class mon_B. mon_E0 is
an instance of the class mon_E. The fa of mon_E0 is mon_B at step 𝜑1 but its
fr is empty as the mon_E0 class is not a subclass of mon_A. This gives access
to another choice for another configuration option. mon_E0 is accepted and we
move to the final step of the automaton. At the end the monitor is closed by the
close_monitor∗ command.

As monitors may span several theory files, they were extended to supports
name spaces. It means that monitors clauses may refer to equivalent ontological
concepts with different semantics already defined in other theories and mix them.
For example:

Isabelledoc_class monitor_M =
tmM ∶∶ int
rejects Theory1.mon_A
accepts test_monitor_head ∼∼ test_monitor_B ∼∼ test_monitor_C

The new rejects clause definition will reject instances of the ontological class
mon_A defined in the theory file Theory1, but still accepts mon_A instances
defined in the current theory in the previous example as mon_A is a subclass of
mon_head.

To constrain further the structure, invariants can be specified when opening the
monitor instance, when closing it, or at each step an instance is declared inside
the monitor. For now this type of invariants needs to be specified in ML but
through traces generation and computation they can be exposed and add valuable
information to the context. The computation of traces computation are possible
at the ML level, but to have computable traces at the Isabelle/Isar level, they are
reified. For that rejects and accepts clauses must generate ratable objects for
the logical context. In the previous implementation, logical objects were declared
as constants but were not computable. In Example 6, the clause rejects mon_A
generated a constant mon_A (recall that syntactic categories like constants and
types are disjoint, so mon_A can be a constant and a type) using the equivalent
of the consts command in Isabelle/Isar, and an abstract type doc_class for their
type. But this declaration does not generate code and leads to traces that are not
ratable. The new generation mechanism redefines the abstract type as a datatype
with a type constructor. We saw that the datatype command make terms ratable.
Then the same mechanism as the invariant reification is used to make the constant
ratable: the constant is generated as an HOL string of type doc_class using the
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datatype constructor, and lifted to a regular expression in HOL as an Atom of
the language giving a constant of type doc_class rexp. This constant is declared
as a definition that generates an associated theorem automatically added to the
logical context, and adds a code equation for the code generation. This gives a
fully computable constant. Next the constants list of the classes declared in the
clauses are reified as HOL lists, and added as an hidden attribute to the instance.
At the end, we get a fully computable trace class-attribute accessible by a classical
selector of the ontological class, but it is still not possible to reference a trace
attribute of a specific instance for further treatment.

We need to make the term-context aware of the abstract concept of an in-
stance trace: A term anti-quotation is generated that will checks that the instance
name argument is indeed a monitor class instance. Its elaboration could be left
to the interpretation. In the current implementation, to allow an easy evalua-
tion of rexp 𝜆-terms and keep legibility in the output trace attribute, term anti-
quotations are elaborated as HOL string lists. For example when evaluating the
trace attribute of the monitor_M0 monitor instance using the @{trace_attribute
′′monitor_M0 ′′} term anti-quotation just after the declaration of the mon_A0
instance, that is when we are still inside the monitor, we get the list [ ′′mon_A ′′],
and when the monitor is closed, we obtain the list [ ′′mon_A ′′, ′′mon_head ′′,
′′mon_E ′′, ′′mon_C ′′].

3.5 Queries in Isabelle/DOF
Evaluation of terms in Isabelle/Isar is done using the value diagnostic com-

mand, and value∗ in Isabelle/DOF. Also, Isabelle/HOL implements commands
like primrec and fun offering a logical language similar to functional programming
languages. The combination of term anti-quotations elaborated to objects they re-
fer to and Isabelle/HOL functional programming language capabilities paves the
way for a new mechanism to query the “current” instances presented as a HOL list.
Using functions defined in HOL, arbitrarily complex queries can therefore be de-
fined inside the logical language on document objects defined through abstraction
over Isabelle/Isar commands and evaluated using value∗. Contrary to SQWRL,
queries in Isabelle/DOF do not need to support a select operator, as any ratable
𝜆-terms can be the content of the value∗ command and every concepts defined
in Isabelle/DOF are represented as 𝜆-terms in HOL using reification mechanisms.
value∗ is aware of the term-context so all the term anti-quotations defined in the
previous sections are at disposal in the logical context. Thus, to get the property
list of the result class instances, it suffices to process this meta-data via mapping
the property selector over the result class:
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Isabellevalue∗‹map (property) @{instances_of ‹ ′a result›}›

Analogously we can define an arbitrary filter function, for example the HOL
filter definition on lists:

Isabellefun filter ∶∶ ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list
where filter P [] = []

∣ filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

to get the list of the result class instances whose evidence is a proof :
Isabellevalue∗‹filter (𝜆𝜎. evidence 𝜎 = proof ) @{instances_of ‹ ′a result›}›

Queries on other Isabelle/DOF concepts like monitor classes are possible as
their generated traces are also presented as a list of string. For this monitor
specification:

Isabelledoc_class doc_monitor =
ok ∶∶ unit
accepts [[introduction]] ∼∼ {∣result∣}+ ∼∼ [[conclusion]]

one can define an is−in function in HOL to check the trace of a document
fragment against a regular expression:

Isabelledefinition word_test ∶∶ ′a list ⇒ ′a rexp ⇒ bool (infix is−in 60)
where w is−in rexp ≡ DA.accepts (na2da (rexp2na rexp)) (w)

definition example_expression
where example_expression

≡ {∣⌊ ′′introduction ′′⌋ ∣∣ ⌊ ′′result ′′⌋ ∣∣ ⌊ ′′conclusion ′′⌋∣}∗

value∗‹ (map fst @{trace_attribute ′′monitor1 ′′}) is−in example_expression ›

Here, the term anti-quotation @{trace_attribute ′′monitor1 ′′} denotes the
instance trace of monitor1. It is checked against the regular expression exam-
ple_expression. example_expression is compiled using is−in into a deterministic
automaton. On the latter, the above acceptance test is still reasonably fast.

This example show the benefit of defining queries inside the logical language.
Isabelle/HOL commands like definition and function are reused to develop
personalized queries, giving the power of programming languages. The queries
themselves are 𝜆-terms, so their checking can be delegated to the Isabelle engine
and through abstraction over the value∗ command, Isabelle/DOF can be used to
generate meta-data to annotate them and define an ontology of reusable queries
associated to other ontology domains. The queries meta-data could even be proofs
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over the evaluation outcome, using term anti-quotations that reference theorems
specified with lemma∗ or theorem∗ commands.

Contrary to SQWRL, in Isabelle/DOF we are not limited to queries outcome
checking. Indeed Isabelle/DOF generates a theory of meta-data that can be used
inside Isabelle/HOL environment to prove properties on ontologies.

3.6 Proving Morphisms on Ontologies
The Isabelle/DOF framework does not assume that all documents refer to the

same ontology. Each document may even build its local ontology without any
external reference. It may also be based on several reference ontologies (e. g., from
the Isabelle/DOF library). Making a relationship between a local ontology and
reference ontologies is a way to express that the content referencing a local ontology
is not “far away” from a domain reference ontology.

Since ontological instances possess representations inside the logic, the relation-
ship between a local ontology and a reference ontology can be represented by a
formalized morphism. More precisely, the instances of local ontology classes may
be mapped via conversion functions to one or several other instances belonging
to another ontology. Since an instance representation as well as the conversion
functions are constructed inside HOL, it is possible to prove formally once and
for all that the morphism preserves the invariants for all meta-data. This means
that morphisms may provably be injective, surjective, bijective, and thus describe
abstract relations between ontologies.

To illustrate invariance preservation of a morphism, we zoom into the paper𝑚

example where authors for specific journals were defined. The example addresses
the common problem that publishers require slightly different meta-data which
might be a nuisance for an author when addressing a paper to a different journal.
Our zoom refines the concept of author locally:

Isabelledoc_class title = short_title ∶∶ string option <= None
doc_class affiliation =

journal_style ∶∶ ′𝛼
doc_class author =

affiliations ∶∶ ′𝛼 affiliation list
firstname ∶∶ string
surname ∶∶ string
email ∶∶ string <= ′′′′

invariant ne_fsnames ∶∶ firstname 𝜎 ≠ ′′′′ ∧ surname 𝜎 ≠ ′′′′

We specialize authors in the following:
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Isabelledoc_class acm_author = acm author +
orcid ∶∶ int
footnote ∶∶ string

doc_class elsevier_author = elsevier author +
short_author ∶∶ string
url ∶∶ string
footnote ∶∶ string

Each class inherits the affiliations attribute from the author class and defines
a list of affiliations as specified by the journal. In our example, elsevier_author
and acm_author implement the specification of an Elsevier article or of an ACM
article respectively. Also, each class inherits the author name attribute and the
ne_name invariant that enforces its name to be non empty.

As a local ontology, it may have different meanings and document represen-
tations when compared to paper𝑚, which “live” together in the same document
but in different name-spaces. This ontology defines a specific author class else-
vier_author that implements an Elsevier article author. It inherits the firstname
and surname attributes from the local author class. It also inherits the ne_fsnames
invariant that requires that firstname and surname are non-empty.

Using this ontology we are now able to update Elsevier article authors from the
local ontology to ACM article authors from the reference ontology, for example.
And if all the specification of an Elsevier article were to be defined in our local
ontology, we would be able to convert the meta-data of an entire Elsevier article
to an ACM article. To update an Elsevier article author, we define a relationship
between the local ontology and the paper𝑚 ontology using conversion functions
(also called mapping rules in the ATL framework [91] or in the EXPRESS-X lan-
guage [65]). These rules are applied to define the relationship between one class
of the local ontology to one or several other class(es) described in our paper𝑚

ontology. In our case, our morphism is represented by three conversion functions,
addressing the conversion of base-data, the affiliation and finally the authors. The
base-data conversion of the Elsevier enumeration type in the local ontology to the
ACM enumeration in the reference ontology is defined as follows:
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Isabelle
doc_class elsevier =

organization ∶∶ string
address_line ∶∶ string
postcode ∶∶ int
city ∶∶ string

definition elsevier_to_acm_morphism ∶∶ elsevier ⇒ acm
(_ ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟 [1000]999)

where 𝜎 ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟 = (∣ tag_attribute = 1∶∶int,
position = ′′no position ′′, institution = organization 𝜎,
department = 0, street_address = address_line 𝜎,
city = elsevier .city 𝜎, state = 0, country = ′′no country ′′,

postcode = elsevier .postcode 𝜎 ∣)

The more high-level conversions concerning the affiliation is detailed as:
Isabelledefinition

elsevier_aff_to_acm_aff_morphism ∶∶ elsevier affiliation ⇒ acm affiliation
(_ ⟨acm ′_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟

′_𝑎𝑓𝑓 [1000]999)
where 𝜎 ⟨acm_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑓𝑓 = (∣ tag_attribute = 1∶∶int,

journal_style = (affiliation.journal_style 𝜎) ∣> (𝜆x. x ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟) ∣)

where (∣>) is simply a reverse application combinator. The top-level conversion
for the author looks as follows:

Isabelledefinition acm_name where acm_name f s = f @ ′′ ′′ @ s

definition elsevier_author_to_acm_author_morphism
∶∶ elsevier_author ⇒ acm_author

(_ ⟨acm ′_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟
′_𝑎𝑢𝑡ℎ [1000]999)

where 𝜎 ⟨acm_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑢𝑡ℎ = (∣ tag_attribute = 1∶∶int,
affiliations = (author .affiliations 𝜎)

∣> map (𝜆x. x ⟨acm_aff ⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑓𝑓) ,
name = acm_name (firstname 𝜎) (surname 𝜎),
email = author .email 𝜎, orcid = 0,
footnote = elsevier_author .footnote 𝜎 ∣)

These definitions specify how affiliation and elsevier_author meta data repre-
sentations are mapped to affiliation and acm_author objects as defined in paper𝑚.
The acm_author name attribute-value is derived from the elsevier_author first-
name and surname attributes using a parsing function acm_name that follows
the ACM journal author specification. This mapping shows that the structure of
a local (user) ontology may be arbitrarily different from the one of a standard
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ontology it references to.

In order to support morphisms, we implemented a high-level syntax for this:

onto_morphism (elsevier_author) to acm_author ..

where the “..” stands for a standard proof attempt consisting of unfolding the
invariant predicates and a standard auto proof. This syntax also cover more general
cases such as :

onto_morphism (A1, ..., A𝑛) to X 𝑖 and (D1, ..., D𝑚) to Y 𝑗

were tuples of instances belonging to classes (A1, ..., A𝑛) can be mapped to in-
stances of another ontology.

After defining the mapping rules, we have to deal with the question of invariant
preservation. The following nearly trivial proof for a simple but typical example
is shown below:

Isabellelemma elsevier_inv_preserved ∶
ne_fsnames_inv 𝜎 ⟹ ne_name_inv (𝜎 ⟨acm_auth⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟_𝑎𝑢𝑡ℎ)
unfolding ne_fsnames_inv_def ne_name_inv_def

elsevier_author_to_acm_author_morphism_def
by (simp add∶ combinator1_def acm_name_def )

After unfolding the invariant and the morphism definitions, the preservation proof
is automatic. The advantage of using the Isabelle/DOF framework compared to
approaches like ATL or EXPRESS-X is the possibility of formally verifying the
mapping rules, i. e., proving the preservation of invariants once and for all rather
than converting data and then relying on a post-hoc check.

3.7 Conclusion
Abstracting over Isabelle/Isar commands lifts abstract formal concepts like def-
initions and theorems to Isabelle/DOF. Using term-contexts with term anti-
quotations, they become document elements and can take part in the definition
of the linking inside a formal document for structural validation using monitors
or when proving morphisms on ontologies for semantic validation. Inside queries
defined in HOL they are used for advanced search and the queries outcome can
serve as a testing framework to help in the validation of a certification, for ex-
ample. Class invariants in Isabelle/DOF are first class citizen in HOL and as
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Isabelle/DOF is defined in HOL, they can be components of a Isabelle/DOF on-
tology. Also, queries in Isabelle/DOF are 𝜆-terms, and as such they can become
ontological objects through abstraction over the term∗ command. Both can be
embedded in the ontology and produce an integrated ontology where ontologi-
cal concepts, invariants and queries commingle and are reconsidered as generic
concepts to broaden the notion of an ontology.
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Chapter 4

Parametric Polymorphic Classes
for Ontologies

4.1 Introduction
Isabelle/DOF initial goal was to define an ontology language to help in structuring
the linking between formal and informal content. The linking was thought as a
coupling between informal text and formalized concepts represented in HOL object
logic.

The new approach of term-context adds the possibility to use term anti-
quotations inside ontological declarations using abstraction over commands pat-
tern for commands that extend the editing environment on the one hand, and inside
ontological definitions for default values of doc_class and onto_class commands
in ODL on the other hand. This lead to a new meaning for the linking itself. Now
ontological concepts can embed meta-data of informal and formal content recon-
sidered as document elements and these meta-data can contain references to other
document elements. The linking is extended from a linking between document el-
ements and their ontological definitions to a linking between document elements.
We are able to specify semantics for the linking between documents elements by
means of ontological meta-data.

This coincides with the overall objective of this work which is to express
the machine-checkable linking between document element objects in formal li-
braries, whether they represent formal or informal content. The first version of
Isabelle/DOF was implemented using non-polymorphic records to represent on-
tological classes logically. The idea was that the HOL-types pool in the main
HOL library could be extended using HOL theories in the AFP to capture new
semantic linkings as ontologies are developed. But would polymorphic support in
Isabelle/DOF be somehow beneficial for formal libraries?
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A first use that comes in mind is a pragmatic one: we mention in section 2.11
the reusability by abstraction. We would like to emphasize that, even if it is a
very pragmatic example, it should not be underestimate as it reduces the burden
when developing ontologies, increases their legibility, and simplifies their usage by
giving a modular framework when extending them. In Figure 2.5, the ontology
is modular in the sense that the format specification of the affiliation class is left
open to the user, so it can be specified later reusing another ontology or defining
its own definition of the journal style. In section 3.4, we propose an elaboration
of monitors traces by representing them as HOL string lists, and add that the
elaboration could be left to the interpretation. Because the trace attribute term
anti-quotation is implemented in ML, giving the possibility to users to choose
the elaboration of term anti-quotations would require extra work, but this is the
same idea: leave interpretation open to the user. Could the linking between docu-
ment elements be left open? And how to constrain ontological concepts to conform
to some properties but let the user choose the final implementation? Axiomatic
type classes offer exactly the type of abstract interface to answer these issues. If
Isabelle/DOF were to support parametric polymophism (polymorphism parame-
terized by axiomatic type classes), the linking represented by meta-data could be
left open to the interpretation. First, a user will have the possibility to choose
the abstract representation of the concept through the type selection of the on-
tological class attributes, even when types are not ground, for example by using
abstract algebraic structure. So he will be able to specify further an abstract defi-
nition by enforcing its structure and then constrain its properties using axiomatic
type classes. Secondly, choosing how to evaluate the ontological instances of the
concepts becomes feasable. The types can be left abstract until instances are eval-
uated, and then the user can choose between different evaluations according to the
semantics he wants to give to the ontological concepts when in a specific context
of interpretation.

Another consideration is that substantial HOL theories make extensive
use of axiomatic type classes, like the Analysis library of Isabelle/HOL
HOL-Analysis [92]. To use concepts defined in these libraries, Isabelle/DOF should
support axiomatic type classes. The support of parametric polymorphism in Is-
abelle/DOF will not be beneficial to formal libraries only but to any document,
regardless of its content.

In this chapter, we explain how we use the original manner Isabelle treats terms
and variables to facilitate type inference as a basis to offer parametric polymor-
phism to ontological classes and maintain the usual experience when developing
ontologies in Isabelle/Jedit editor. Then we show through the notion of provenance
that emerged in data-base communities how parametric polymorphic classes in-
crease Isabelle/DOF expressive power and allow to define new semantics for the
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Figure 4.1: The Type Unification Process triggers an Error.

linking between document elements in an ontology. Finally, we explain how this
new polymorphic property is able to capture the notion of security models to of-
fer an access-control model for the integrated document model promoted by the
Isabelle framework.

4.2 Polymorphism Implementation
The syntactic category of commands in Isabelle often allows the specification of
types in two ways: in the main type specification and inside the specification itself.
In Example 1, the definition command specifies the type of the K combina-
tor whereas in Example 2, the type of the S combinator is inferred from the
definition content. The type specification can be composed of type variables
with attached sorts and ground types, and types variables with sorts and ground
types can also be attached to terms inside the definition content. Isabelle will
check that the type specification matches the types attached to terms inside the
definition content. For example:

definition K ∶∶ ′a∶∶one ⇒ ′b ⇒ ′a where K x (y∶∶int) ≡ x

will trigger an error explaining that the type unification has failed (see Figure 4.1).
It comes from the type specification ′a ⇒ ′b ⇒ ′a that does not match the type
of the content where y is a term variable with the ground type int, and not a type
variable. The following definition will not fail:

definition K ∶∶ ′a∶∶one ⇒ int ⇒ ′a where K x (y∶∶int) ≡ x

The specification of the one axiomatic type class for the ′a type variable does
not trigger an error because its corresponding term variable x in the definition
content does not come with a type specification, so the most general type for x
will be inferred from the definition content and then during the type unification
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process, the generated term Polymorphic_Classes.K x y ≡ x will have an x term
variable of type ′a∶∶one.

“The Pure logic represents the idea of variables being either inside or outside
the current scope by providing separate syntactic categories for fixed variables
(e.g. x) vs. schematic variables (e.g. ?x).” [21] To facilitate type inference, Isabelle
treats type variables with additional care. “In principle, term variables depend on
type variables, which means that type variables would have to be declared first.
For example, a raw type-theoretic framework would demand the context to be
constructed in stages as follows: Γ = 𝛼∶ type, x∶ 𝛼, a∶ A(x𝛼).” [21] Isabelle will
first fix term variables x “without specifying a type and the first occurrence of x
in a specific assigns its most general type, which is then maintained consistently
in the context. The above example becomes Γ = x∶ term, 𝛼∶ type, A(x𝛼), where
type 𝛼 is fixed after term x, and the constraint x ∶∶ 𝛼 is an implicit consequence
of the occurrence of x𝛼 in the subsequent proposition.” [21]

It is implemented through the separation of the parsing and the checking of
terms. The parsing will generate type constraints for terms variables with dummy
types “_” assigned, and then the checking will check the validity of the types
constraints against the type specification (the type specified with the definition
command, for example) and will infer the final type of the terms variables.

The Isabelle/Isar commands for the record package allow for the same specifi-
cation of types. To not disorient users, parametric polymorphic classes implemen-
tation in Isabelle/DOF should also support this. With ontological classes, it is even
required as internally they use the record package for their logical representation.
The record command:

record (𝛼1, … , 𝛼𝑚) t = 𝜏 + c1 ∶∶ 𝜎1 … c𝑛 ∶∶ 𝜎𝑛

defines a record where the types variables of 𝜏, the optional parent record, and 𝜎𝑖,
the types of the fields, need to be covered by the (distinct) parameters 𝛼1, … , 𝛼𝑚,
i. e., 𝛼1, … , 𝛼𝑚 parameters are mandatory.

The support for parametric polymorphic classes in Isabelle/DOF is two fold:
on the one hand, support in ontological classes definition through the doc_class
and onto_class commands of ODL, on the other hand support in the abstraction
over Isabelle/Isar commands pattern, i. e., support by Isabelle/DOF commands
that extend Isabelle/Isar commands like text∗, definition∗, lemma∗, theorem∗,
etc., i. e. the ontology-controlled editing environment. For the abstraction over
commands pattern, the behavior is similar to Isabelle/Pure definition command,
but for ontological classes, the behavior is similar to a mixture of the record package
commands and the definition command.

The implementation relies on the separation of parsing and checking in Isabelle:
a bit like the markups support in the IDE described in subsection 2.9.3, parsed
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terms are carried through the code until they have to be checked. A subsidiary
goal was to extend the support of term anti-quotations inside default values of
ontological class declarations.

A polymorphic ontological class definition intertwines the covering of distinct
parameters with the unification process for default values. For example, with this
class definition:

Isabelledoc_class ′a∶∶one relation_one =
rel ∶∶ ′a <= 1

First, the covering is checked: the ′a parameter declared with the class one is
covered by the type of the relation_one.rel attribute. As the type of the attribute
is specified without a class, then the type inference will infer the most general type
′a∶∶one for the type of the relation_one.rel attribute.

Then the type unification process will infer the type ′a∶∶one for the default value
1∶∶ ′a of the relation_one.rel attribute: the term 1∶∶ ′a is a constant of type ′a∶∶one
and this type is consistent with the type ′a∶∶one inferred for the relation_one.rel
attribute.

To check the validity of the default values types, a pattern involving type
unification over prop terms is used. First the default term-value is parsed to
generate the type constraints, then term anti-quotations in this parsed term are
elaborated. Next, a prop parsed term is generated as a meta-equivalence (an
Isabelle/Pure equivalence) over the name of the attribute lifted as a free variable
term and the parsed term, and finally the prop term is checked to trigger the
type unification process. For the type unification process to fully type the term
using type inference, the prop is first typed with dummy types and then its type
is inferred from the context updated with the type of the attribute and the type
constraints in the default term value using the internal checking mechanism. So the
parsed prop becomes a fully typed and checked term. If the checking is successful,
then the default value is considered well typed.

In the end, we obtain well types default values and dynamic checking with
errors triggered and reported in the IDE.

The following declaration:

Isabelledoc_class ′a∶∶one relation_one =
rel ∶∶ ′a∶∶zero <= 1

will fail and trigger an error because the sort constraint of the relation_one.rel
attribute type, consisting of only the zero class, is inconsistent with the parameter
′a∶∶one constraint, consisting of only the one class.

The following declaration:
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Isabelledoc_class ′a relation_one =
rel ∶∶ ′a <= 1∶∶int

will also fail. The default value of the relation_one.rel attribute specifies a
type constraint for the 1∶∶ ′a constant: it must be of type int. Internally, the
default value is parsed giving the term (_type_constraint_∶∶int⇒int) 1∶∶_. The
_type_constraint_ function is generated during the parsing and is used to enforce
the type constraint over the 1∶∶ ′a constant, as specified in the default value 1.
Then the following prop term is generated: rel∶∶_ ≡ (_type_constraint_∶∶int⇒int)
1∶∶_ or its curryfied variant (≡) rel∶∶_ ((_type_constraint_∶∶int⇒int) 1∶∶_). The
relation_one.rel attribute is then added to the context as a term variable typed
with the type specified in the class declaration, i. e., the type variable ′a, and the
type unification process tries to infer the type of the prop term. It finds in the
context the relation_one.rel free term variable with a fixed type ′a and infer the
type ′a ⇒ prop for the term (≡) relation_one.rel. It will also infer the term 1
from the term (_type_constraint_∶∶int⇒int) 1∶∶_. Then it tries to infer the type
of the full term but fails because the argument of (≡) relation_one.rel, the term 1,
is not of type ′a and an error is triggered and reported in the IDE. The declaration
must be updated for the type unification to succeed:

Isabelledoc_class relation_one =
rel ∶∶ int <= 1∶∶int

Here, the parameter becomes useless as the relation_one.rel attribute type is
now ground, so the covering is not necessary.

The type unification over prop term pattern is used whenever a term in Is-
abelle/DOF commands needs to be checked and well typed.

Regarding the editing environment, the polymorphic ontological instance defi-
nition is simpler. We saw in section 3.2 that when an ontologial class instance is
declared, a default record value is generated with only term variables as attributes.
This record value checking also uses the prop term pattern: the default record value
constructed using the make constant is only parsed and a meta-equivalence term is
constructed using the record value. The meta-equivalence is checked in a context
updated with the type of the class. If the checking succeeds, the default record
value is extracted from the prop term giving a fully typed and checked default
record value.

For the following instance:

Example 7 Declaration of an instance that specifies its type

Isabelletext∗[one_inst∶∶int relation_one]‹›
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The default record value of the one_inst instance will be:

(∣ one_rel_Attribute_Not_Initialized ∶∶ int ∣)

The term variable one_rel_Attribute_Not_Initialized was typed as an int. As
a default value is specified for the relation_one.rel attribute in the relation_one
class, it is used to update the record value of the one_inst instance. Like in
the definition command, the type declaration in the text∗ command is a type
specification for the class instance: the int relation_one is used when updating
the instance record value with the default value. The default value of the rela-
tion_one.rel attribute is the constant 1∶∶ ′a that is considered by Isabelle to also
denotes the integer 1, so the type unification will infer the record value:

(∣ 1 ∶∶ int ∣)

The record value has a fixed type that is used to infer the type of the record
value updated with the parsed terms obtained from the default values declared in
the class, the attributes specified in the instance declaration using Isabelle/DOF
commands or with the update_instance∗ command.

The instance:

Isabelletext∗[one_inst2∶∶int relation_one, rel = 2]‹›

is well typed as the value 2∶∶ ′a of type ′a can be used as a int, the type declared
in the type specification int relation_one of the one_inst2 instance.

Keeping the support of term anti-quotations in polymorphic Isabelle/DOF
commands was first thought to be a simple task. Term anti-quotations of meta-
types like thm reference fully-typed constant representing symbolic references in
the standard configuration of Isabelle/DOF. At first glance, having term anti-
quotations with ground types seems like a good behavior to integrate them with
polymorphic ontological classes, because the type of a term anti-quotation will
help the dynamic checking in the IDE.

For example:

Isabelledoc_class ′a∶∶one relation_thm =
rel ∶∶ ′a <= @{thm ‹refl›}

The declaration of the relation_thm fails and the type unification process trig-
gers an error explaining that the type thm of the default value is not compatible
with the default type ′a of the relation_one.rel attribute.

Term anti-quotations were first thought as references to be used inside com-
mands content and specification: so they were supposed to reference checkable and
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ratable elements. For example the evaluation of the relation_one.rel attribute of
the one_inst instance in Example 7:

Isabellevalue∗‹rel @{relation_one ‹one_inst›}›

will return the int 1.
But with the support of parametric polymorphism, term anti-quotations can

also be references to ontological class instances that have attributes whose types
are polymorphic.

So the element referenced by the term anti-quotation should take part in the
type unification process over prop pattern when a term anti-quotation is used
inside Isabelle/DOF commands specification.

For example with these declarations:

Isabelledoc_class ′a embed_int =
embedded ∶∶ ′a

text∗[embed_inst∶∶ ′a∶∶numeral embed_int, embedded = 4]‹›

doc_class ′a relation_one_ant =
rel ∶∶ ′a <= embedded @{embed_int ‹embed_inst›}

the term anti-quotation @{embed_int ′′embed_inst ′′} is a reference to the
embed_inst instance and the default value of relation_one_ant class should be
reduced to the term 4∶∶ ′a∶∶numeral. Also the type of the relation_one.rel attribute
is ′a∶∶type where type is the most general class assigned by default to type variable.
With the current implementation of term anti-quotations, the type unification
fails. Indeed, the term anti-quotation references a record value whose type is ′a
embed_int, so still a polymorphic type, but its type variable ′a is fixed. This
allows the checking and the evaluation of 𝜆-terms with term anti-quotations with
term∗ and value∗ for example, but for the polymorphism this fixed type variables
will conflict with other fixed type variables added to the context for the type
unification process. For the relation_one_ant class declaration, the fixed type
variable ′a∶∶numeral of the term @{embed_int ′′embed_inst ′′} will conflict with
the fixed type variable ′a∶∶type of the relation_one.rel attribute.

Term anti-quotations should behave like constants declared with the
definition command. We saw in section 2.4 that a definition command gen-
erates a constant and a theorem. Types variables of this theorem are generalized
as schematic variables, allowing the type unification to instantiate the term of the
definition with the right type. For example:

Isabelledefinition one_inst where one_inst ≡ 1
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the definition one_inst will generate the constant one_inst of type ′a∶∶one
and the theorem one_inst_def ∶ one_inst ≡ 1∶∶? ′a∶∶one where the type of 1∶∶ ′a is
generalized as a schematic variable. When evaluating the term:

Isabellevalue‹(𝜆x. x∶∶int) one_inst›

first the following term is generated using the type constraint: one_inst. Then
the evaluation will substitute the constant one_inst with the term it references
and instantiate the term by replacing its schematic variable with the new type of
the constant, i. e., int. Finally value return 1.

As we saw in section 3.2 the record value of class instances is constructed
starting from a default record value with only free term variables for the record
fields. But it also implicitly carries the type of each attribute that is later used by
the type checking when updating the record with default values declared in the
class or with attribute-values specified in the instance declaration with text∗ for
example. With the support of polymorphic term anti-quotation, the record-value
now plays two roles: on the one hand it has to have fixed type variables so it can
be used to store well typed default values declared in the class and to construct
well typed record values when declaring an instance, and on the other hand it has
to have schematic variables so that when used as the elaboration of term anti-
quotations appearing inside 𝜆-terms of Isabelle/DOF commands, for example in
default values of class attributes, they can take part in the type unification process
when the default value is evaluated before it is stored for a later usage.

Having fully integrated polymorphic term anti-quotations implies major
changes to the current implementation of Isabelle/DOF, and is not yet finalized.
In the meantime, a quick workaround can be used by embedding a term anti-
quotation in a definition using the Isabelle/DOF command definition∗.

Parametric polymorphic ontological classes allow to express new concepts that
will integrate well with queries written using Isabelle/HOL functional program-
ming capabilities. The relational algebra of relational databases through algebraic
structures and the definition of queries share similarities with expressing the link-
ing between informal and formal document elements and advanced search that
Isabelle/DOF targets. An interesting field of research in data-base communities is
the data provenance [93, 94] that describes origins of data and its history, i. e., the
process by which it arrived in a database. Diverse algebraic structures have been
proposed to express the provenance of data used in results of queries or virtual
tables (cf. [95, 96]) and among them polynomials [97].

In the following we show how parametric polymorphic classes can capture the
notion of provenance and how it relates to the linking in Isabelle/DOF.
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4.3 Modeling “Provenance” in ODL
The provenance semiring [97] introduced the algebraic structure of semirings as
a mathematical framework to cover diverse notions of provenance, such as the
Boolean provenance [95] and the why provenance [93], or the notion of a security
model [98].

The Boolean provenance is captured by the Boolean semiring ({⊥, ⊤}, ⊥, ⊤,
∨, ∧) and tells if a tuple exists when a subdatabase is selected: tuples are annotated
by a Boolean function over ℬ, the finite set of Boolean events, a function of the
form: (ℬ → {⊥, ⊤}) → {⊥, ⊤}. The valuation denotes a possible world of the
database.

The Boolean provenance is understood in Isabelle/DOF in the same way. The
document, composed of document element-objects generated using the abstraction
over command pattern, can be considered as a database and the tuples as document
elements, and Boolean provenance as meta-data give information of the document
elements to consider.

Defining the Boolean semiring ({⊥, ⊤}, ⊥, ⊤, ∨, ∧) in Isabelle/DOF is
straightforward by making the bool type an instance of the axiomatic type class
semiring. First we instantiate the bool type:
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Isabelleinstantiation bool ∶∶ semiring
begin

definition plus_boolean_def ∶ i + j = (i ∨ j)

definition times_boolean_def ∶ i ∗ j = (i ∧ j)

instance
proof
fix i j k ∶∶ bool have (i ∨ j ∨ k) = (i ∨ (j ∨ k)) by simp
then show i + j + k = i + (j + k)

unfolding plus_boolean_def by simp
have (i ∨ j) = (j ∨ i) by auto
then show i + j = j + i

unfolding plus_boolean_def by simp
have (i ∧ j ∧ k) = (i ∧ (j ∧ k)) by simp then show i ∗ j ∗ k = i ∗ (j ∗ k)

unfolding times_boolean_def by simp
have ((i ∨ j) ∧ k) = ((i ∧ k) ∨ (j ∧ k)) by auto
then show (i + j) ∗ k = i ∗ k + j ∗ k

unfolding plus_boolean_def times_boolean_def by simp
have (k ∧ (i ∨ j)) = ((k ∧ i) ∨ (k ∧ j)) by auto
then show k ∗ (i + j) = k ∗ i + k ∗ j

unfolding plus_boolean_def times_boolean_def by simp
qed

end

We provide definitions for the operations (+) and (∗) to match the boolean
constants (∨) and (∧) and prove the associative, commutative and distributive
properties. Then we define the 0∶∶ ′a and 1∶∶ ′a of the bool type in the Boolean
semiring where 0∶∶ ′a is ⊥, i. e., False and 1∶∶ ′a is ⊤, i. e., True:
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Isabelleinstantiation bool ∶∶ zero
begin
definition zero_bool_def ∶

0 = False
instance ..
end

instantiation bool ∶∶ one
begin
definition one_bool_def ∶

1 = True
instance ..
end

Now we can declare a default provenance class that will embed the abstract no-
tion of Boolean provenance and make queries on the document over some Boolean
events to learn which document elements are to be considered:

Isabelledoc_class ′a b_relation =
rel ∶∶ ′a∶∶semiring

Then we can extend the paper𝑚 ontology so that a Polymor-
phic_Classes.text_element has a new b_text_element.relation attribute (for
legibility, we prefix the new defined classes with b_, mimicking the Boolean
provenance class definition):

Isabelledoc_class ( ′𝛼, ′𝛽) b_text_element =
relation∶∶ ′𝛽 b_relation
authored_by ∶∶ ′𝛼 author set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ (level 𝜎) ≠ None ∧ the (level 𝜎) > 1

doc_class ( ′𝛼, ′𝛽) b_introduction = ( ′𝛼, ′𝛽∶∶semiring) b_text_element +
authored_by ∶∶ ( ′𝛼 author) set <= UNIV

doc_class ( ′𝛼, ′𝛽) b_conclusion = ( ′𝛼, ′𝛽∶∶semiring) b_text_element +
resumee ∶∶ (( ′𝛼, ′𝛽∶∶semiring) definition set × ( ′𝛼, ′𝛽∶∶semiring) theorem set)
invariant is_form ∶∶ (∃ x∈(fst (resumee 𝜎)). definition.is_formal x) ⟶

(∃ y∈(snd (resumee 𝜎)). is_formal y)

and we can declare some instances:
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Isabelletext∗[relb1∶∶bool b_relation, rel=b1]‹›

text∗[relb2∶∶bool b_relation, rel=b2]‹›

text∗[relb3∶∶bool b_relation, rel=b3]‹›

text∗[ch∶∶elsevier author , name= ′′Church ′′]‹›
text∗[sc∶∶elsevier author , name= ′′Scott ′′]‹›

text∗[intro1∶∶(elsevier , bool) b_introduction,
relation=@{b_relation ‹relb1›}, authored_by={@{author ‹ch›}, @{author

‹sc›}}]‹›

text∗[intro2∶∶(elsevier , bool) b_introduction,
relation=@{b_relation ‹relb2›}, authored_by={@{author ‹ch›}, @{author

‹sc›}}]‹›

text∗[intro3∶∶(elsevier , bool) b_introduction,
relation=@{b_relation ‹relb3›}, authored_by={@{author ‹ch›}}]‹›

text∗[conclu1∶∶( ′a, bool) b_conclusion, relation=@{b_relation ‹relb1›}]‹›

text∗[conclu2∶∶( ′a, bool) b_conclusion, relation=@{b_relation ‹relb2›}]‹›

The b_text_element.relation relational attribute can be used to select between
two different document content flavors: the document elements can be embed-
ded in a monitor instance and an ML invariant can be written to select ele-
ments using the value of the b_text_element.relation attribute, or a query can
be made over the Polymorphic_Classes.text_element instances to filter over the
b_text_element.relation attribute-value:

Isabellevalue∗‹@{instances_of ‹(elsevier , bool) b_introduction›}
∣> filter (𝜆x. relation x = @{b_relation ‹relb1›})›

This way we select the b1 version of the document. With further work a
wrapper for the parser could be written that understands this type of query and
generate flavors of the document targeting different requirements.

We can also know in which Polymorphic_Classes.introduction class instances
a specific author is declared by projecting over an author name. First we define a
small definition to get a pair composed of the name of the author and the list of
b_text_element.relation attribute-values:
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Isabelledefinition bool_proj where
bool_proj auth_name l = l ∣> filter (𝜆x. ∃ y ∈ authored_by x. name y =

auth_name)
∣> map (rel) ∣> (𝜆x. Pair auth_name x)

The bool_proj definition is then used to filter the Polymor-
phic_Classes.introduction instances whose sec_text_element.authored_by
attribute contains the author ′′Scott ′′:

Isabellevalue∗‹@{instances_of ‹(elsevier , bool) b_introduction›}
∣> bool_proj ′′Scott ′′›

The query returns only the two b_relation record value of the in-
stances Polymorphic_Classes.intro1 and Polymorphic_Classes.intro2
as Polymorphic_Classes.intro3 does not declare the sc author in its
sec_text_element.authored_by attribute.

So one can choose between Polymorphic_Classes.intro1 and Polymor-
phic_Classes.intro2 to select the introduction he wants for his document to have
′′Scott ′′ as an author.

The polymorphic type of the relation_one.rel attribute of the b_relation class
can be shaped using algebraic structures to capture other semantics, similarly to
the provenance semiring that uses polynomials to capture the notion of how prove-
nance [97]. The how provenance explains how a query result has been computed.

To capture an equivalent notion of how provenance in Isabelle/DOF, we also
use polynomials, more precisely multivariate polynomials. Recall that a multi-
variate polynomial structure (A,X ,∗,+) over a set of coefficients A and a set of
indeterminates X forms wrt. the multiplicative and additive operations a polyno-
mial semiring. As a consequence, polynomials such as:

P(x) = a𝑛 ∗ x𝑛 + ... + a1 ∗ x1 + a0

or even more generally:
𝑃 ′(𝑥1...𝑥𝑚) = ∑ 𝑎𝑖1𝑖2…𝑖𝑚

𝑥𝑖1
1 𝑥𝑖2

2 … 𝑥𝑖𝑚𝑚

can be represented in this structure and will have a normal form which per-
mits their comparison via partial orders. Moreover, multivariate polynomials are
substitutive, i. e. an equality like x1 = P(x2) can be used to eliminate the variable
x1 in P ′ and to compute again a normal form. A set of such equalities allows
therefore to reduce multivariate polynomials to one based only on a subset of base
multivariates.

In our context, we will mostly use � or � for the coefficients A; the inde-
terminates can be interpreted by instances id’s or arbitrary labels used to define
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groups over them. An interpretation of the coefficients � and the (∗)-operator by
the logical conjunction (∧) and the (+) by the disjunction (∨) leads to a collapse
of the polynomials to disjunctive normal-forms (DNF) which can be easily inter-
preted by “this concept depends on the concept (x1 and x2) or x3”, for example.
More general interpretations than the latter allow for expressing weights on the
these dependencies. Isabelle/DOF support of parametric polymorphism opens a
new path to use multivariate polynomials to express the linking between a doc-
ument element and others where the indeterminates 𝑥𝑖1

1 , 𝑥𝑖2
2 , … 𝑥𝑖𝑚𝑚 will capture

some kind of document element references, the coefficients 𝑎𝑖1𝑖2…𝑖𝑚
the “linking

flavor” of each monomial, and the exponents 𝑖1, 𝑖2, … 𝑖𝑚 will capture a specific
“weight” of a reference (an indeterminate) within each monomial.

By leaving open the concrete computational structure for a multivariate poly-
nomial (A,X ,∗,+) at the moment of the creation of a document element, we can
express various forms of the linking within a single class attribute and postpone
the decision of the concrete computational structure at a later stage, for example,
at the point where a concrete query is formulated.

This constitutes a new form of abstract representation of dependency using
an axiomatic type class, possibly reinforced by class invariants. Using paramet-
ric polymorphism, we construct an executable type for multivariate polynomial
structures (A,X ,∗,+):

( ′𝜈∶∶linorder , ′𝛼∶∶semiring) mpoly

where ′𝜈 corresponds to the set of multivariates (assumed to be orderable for
reasons of normal-form computations) and where ′𝛼 corresponds to the coeffi-
cients. On a true semiring structure this type captures precisely the notion of
how provenance and tracks how document elements relate to each other along the
declaration of the instances. Note that this is a significantly more fine-grained ap-
proach than using invariants over instance relations captured by the product type
as with the resumee attribute of the conclusion class constrained by the is_form
invariant (cf. Figure 2.5).

The executable multivariate polynomials theory in the AFP is not directly
usable as it does not define multivariate polynomials as a type, so they can not be
constrained by an axiomatic type class. But we will use it indirectly to make our
polynomials executable. For that we follow the data refinement principle [99]: an
abstract type is replaced by a more concrete one in the generated code, to make
abstract types efficiently executable. The mpoly type is specified as a subtype over
the concrete list type using an invariant in a typedef command:

Isabelletypedef (overloaded) ( ′v, ′a) mpoly =
{p. (mpoly_inv∶∶(( ′v∶∶linorder × nat) list × ′a∶∶zero) list ⇒ bool) p}
by (rule exI [of _ Nil], auto simp∶ mpoly_inv_def )
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The mpoly_inv invariant is declared using the definition command:

Isabelledefinition mpoly_inv ∶∶ (( ′v∶∶linorder × nat) list × ′a∶∶zero) list ⇒ bool
where mpoly_inv p ≡ (∀ c ∈ snd ‘ set p. c ≠ 0) ∧ distinct (map fst p)

It checks that the coefficients are not null and that each element in a monomial
is unique.

The representation, i. e., the concrete type of the polynomial is similar to the
representation of polynomials in the AFP theory. This way we can use the Lifting
and Transfer packages [100] to automate the construction of the abstract type
mpoly. “The Lifting package defines new constants on the abstract level, which is
done by lifting terms from the concrete level to the abstract level” [99] and “the
Transfer package helps to prove theorems on the abstract level (mainly properties
of the lifted constants), which is done by transferring the goals on the abstract
level to goals on the concrete level.” [99]

When making the abstract type mpoly an instance of the axiomatic type class
semiring, we will be able to define new constant definitions for the abstract type,
lift them to the concrete type list and prove properties by reusing definitions
specified in the polynomials AFP theory.

First, the lifting infrastructure for mpoly is set up:

Isabellesetup_lifting type_definition_mpoly

To facilitate the evaluation, we consider the abstraction function var_mpoly
of type (( ′𝜈∶∶linorder × nat) list × ′𝛼∶∶semiring_0) list ⇒ ( ′𝜈∶∶linorder ,
′𝛼∶∶semiring_0) mpoly which converts a list of indeterminates indexed by their
exponents and pondered by a coefficient into our type-constructor providing an ef-
ficient representation for multivariate polynomials ( ′𝜈, ′𝛼) mpoly. The var_mpoly
constant, considered a pseudo-constructor, is defined by lifting its definition using
the lift_definition command:

Isabellelift_definition var_mpoly ∶∶ (( ′v∶∶linorder × nat) list × ′a∶∶zero) list ⇒ ( ′v, ′a)
mpoly

is 𝜆 p. if mpoly_inv p then p else []
by (auto simp∶ mpoly_inv_def )

This will define the new constant var_mpoly with the abstract type (( ′v ×
nat) list × ′a) list ⇒ ( ′v, ′a) mpoly using a corresponding operation on the repre-
sentation type specified by the term 𝜆p. if mpoly_inv p then p else []. var_mpoly
will be used in pattern matching on the left-hand side of theorems.

Then the code generator is set up to view the constant as a constructor with
the command:
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Isabellecode_datatype var_mpoly

Now we can instantiate the mpoly as a semiring:

Isabelleinstantiation mpoly ∶∶ (type, type) semiring

We are asked to give specifications for the two operations of the semiring (+)
and (∗). (+) uses a function Polymorphic_Classes.poly_add in its corresponding
operation and is then lifted to the concrete type.

Isabellefun poly_add ∶∶
(( ′v∶∶linorder × nat) list × ′a∶∶ semiring_0) list ⇒
(( ′v∶∶linorder × nat) list × ′a) list ⇒
(( ′v∶∶linorder × nat) list × ′a) list where
poly_add [] q = q

∣ poly_add ((m,c) # p) q = (case List.extract (𝜆 mc. fst mc = m) q of
None ⇒ (m,c) # poly_add p q

∣ Some (q1,(_,d),q2) ⇒ if (c+d = 0) then poly_add p (q1 @ q2) else (m,c+d)
# poly_add p (q1 @ q2))

lift_definition plus_mpoly∶∶ ( ′v∶∶linorder , ′u∶∶semiring_0)mpoly ⇒
( ′v, ′u)mpoly ⇒ ( ′v, ′u)mpoly

is 𝜆 p q. poly_add p q

For (+) we define a function poly_times which uses the monom_mult_list
function defined in the AFP theory that multiply two monomials:

Isabellefun poly_times ∶∶
(( ′v∶∶linorder × nat) list × ′a∶∶ semiring_0) list ⇒
(( ′v∶∶linorder × nat) list × ′a) list ⇒
(( ′v∶∶linorder × nat) list × ′a) list where
poly_times [] q = []

∣ poly_times p [] = p
∣ poly_times ((m,c) # p) q =

(let mon_list = q ∣> map (𝜆 x. let (m1, c1) = x ;
mon = monom_mult_list m m1 ;
coef = c ∗ c1

in (mon, coef ))
in mon_list @ (poly_times p q))

lift_definition times_mpoly∶∶ ( ′v∶∶linorder , ′u∶∶semiring_0)mpoly ⇒
( ′v, ′u)mpoly ⇒ ( ′v, ′u)mpoly

is 𝜆 p q. poly_times p q
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The new definitions of (+) and (∗) for mpoly as a type instance of a semir-
ing axiomatic type class are then used to prove alternative code equations using
pattern matching on our pseudo-constructor var_mpoly:

Isabellelemma plus_mpoly_code [code]∶
var_mpoly x + var_mpoly y = var_mpoly(poly_add x y)

lemma times_mpoly_code [code]∶
var_mpoly x ∗ var_mpoly y = var_mpoly(poly_times x y)

These lemmas will be used instead of the original definition of the operations
when evaluating terms. For example, var_mpoly x + var_mpoly y will be trans-
lated to var_mpoly (Polymorphic_Classes.poly_add x y) when using diagnostic
commands like value∗.

Now we zoom into our paper𝑚 example and present an alternative specification
of the definition class:

Isabelledoc_class ′𝛼 relation =
rel ∶∶ ′𝛼∶∶semiring

doc_class ( ′𝛼, ′𝛽) text_element = ′𝛽∶∶semiring relation +
authored_by ∶∶ ′𝛼 author set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ (level 𝜎) ≠ None ∧ the (level 𝜎) > 1

doc_class ( ′𝛼, ′𝛽) technical = ( ′𝛼, ′𝛽∶∶semiring) text_element +
id ∶∶ nat
formal_results ∶∶ thm list

doc_class ( ′𝛼, ′𝛽) definition = ( ′𝛼, ′𝛽∶∶semiring) technical +
is_formal ∶∶ bool

The definition class inherits the parametric polymorphic rel attribute from the
relation class.

It is now possible to specify relations between definition instances and other
document elements:
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Isabelletext∗[def1∶∶( ′𝛼, (nat, int) mpoly) definition,
rel = var_mpoly [([((id @{theorem ‹safety›}), 1)], 1∶∶int)]

∗ var_mpoly [([((id @{theorem ‹security›}), 1)], 1∶∶int)]
+ var_mpoly [([((id @{result ‹proof1›}), 1)], 1∶∶int)]

∗ var_mpoly [([((id @{result ‹proof2›}), 1)], 1∶∶int)]]‹... text ...›

value∗‹rel @{definition ‹def1›}›

In our example, the indeterminates of the polynomial will be instances of the-
orem identifiers. We use nat for the identifiers and int for the coefficients, so the
type of the def1 instance we just declared is ( ′𝛼, (nat, int) mpoly) definition. id
@{theorem ′′safety ′′} refers to the safety theorem instance identifier. The evalu-
ation of the def1 instance rel attribute gives:

var_mpoly [([(123, 1), (456, 1)], 1), ([(789, 1), (987 , 1)], 1)]

The value can be understood as follows: the annotated text will depend on the Poly-
morphic_Classes.safety instance and the Polymorphic_Classes.security instance
or the Polymorphic_Classes.proof1 instance and the Polymorphic_Classes.proof2
instance, where and is expressed using the (∗) operator and or using the (+) op-
erator of the semiring when declaring the rel attribute-value of def1. Intuitively,
the or is justified by the wish to offer consistently either a more abstract or a more
concrete (proof-object based) representation of the dependence on other document
elements.

As Polymorphic_Classes.proof1 and Polymorphic_Classes.proof2 are result
class instances, they also inherit the rel attribute, and could also have specified
relations that should be checked as well. For a certification purpose, this process
could be automated and we are sure that the checking process will end due to the
directed acyclic graph architecture of the document and the ordered declaration
of the instances enforced by the parsing process. The relation can always be spec-
ified independently from being a formal or informal document element, where the
checking of informal document elements has to be delegated to humans during the
certification validation process.

4.4 An Access-Control Model for Integrated Is-
abelle/HOL Documents

One might object that the suggested integrated document model underlying our
approach is incompatible with the reality of industrial projects, where their part-
ners will need to enforce strategies to protect their intellectual property. However,
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Top_Secret

SecretConfidentialRestricted

Unclassified

Figure 4.2: The Lattice of Security Labels.

a system having access to the integrated document is fundamental for mechanisms
to ensure global consistency. A way out of this dilemma are fine-grained access
control models allowing decisions on individual text elements for any user role. In
this section, we show how such a fine-grained security model can be built with the
existing mechanisms of ODL. 1

Parametric polymorphism opens ways to implement security and integrity mod-
els based on lattices, such as Bell-LaPadula-like access control models. The key is
to provide a sec attribute that is to define the basic access control status. This
can also be useful when targeting certifications where roles and responsibilities of
the involved entities (person, group, organization) are identified.

The sec attribute is implemented using a lattice class and declares the security
label of the document element. The document elements sec attributes can be
computed to express the minimum security level required to access a collection of
document elements associated with each others, whether it is by the is−a relation
of the class inheritance or by other means, like the how provenance just presented,
or by looking at the instance attributes. First we declare the security labels using
a datatype:

Isabelledatatype security = Unclassified ∣ Restricted ∣ Confidential
∣ Secret ∣ Top_Secret

Then we make the security datatype a lattice class instance using max_sec and
min_sec that define the order relation of the datatype constructors:

1Note that our current front-end Isabelle/jEdit does not support access-restriction function-
ality; however, we consider this as a current technical limitation.
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Isabelledefinition min_sec where
min_sec a b ≡ (if a = b then a

else if a = Top_Secret then b
else if b = Top_Secret then a
else Unclassified)

definition max_sec where
max_sec a b ≡ (if a = b then a

else if a = Unclassified then b
else if b = Unclassified then a
else Top_Secret)

instantiation security ∶∶ lattice
begin

definition inf_security where inf i j ≡ min_sec i j

definition sup_security where sup i j ≡ max_sec i j

definition less_eq_security where i ≤ j ⟷ max_sec i j = j

definition less_security where (i∶∶security) < j ⟷ i ≤ j ∧ i ≠ j

instance
...

The 0 of the semiring is defined as Top_Secret by making the security datatype
an instance of the 0 class:

Isabelleinstantiation security ∶∶ zero
begin

definition zero_security_def ∶
0 = Top_Secret

...

and the 1 is defined as Unclassified, reflecting the additive and multiplicative
identities of the lattice.

The resulting lattice is shown in Figure 4.2 where security labels are ordered
from less sensitive (Unclassified) to most sensitive (Top_Secret). Finally, we add
syntactic definitions for the (+) and (∗) operators.
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Isabelleinstantiation security ∶∶ plus
begin
definition plus_security where (i∶∶security) + j = min_sec i j
instance ..
end

instantiation security ∶∶ times
begin
definition times_security where (i∶∶security) ∗ j = max_sec i j
instance ..
end

The (∗) operator can be understood as read access where document users may
read document elements only at or below their own security level, while the (+)
operator gives write access on document elements for users with a higher security
level.

The new specification of the result ontological class, sec_result, now has a sec
attribute inherited from sec_relation:

Isabelledoc_class ( ′a, ′b) sec_relation =
rel ∶∶ ′a∶∶semiring
sec ∶∶ ′b∶∶lattice

doc_class ( ′𝛼, ′𝛽, ′𝛾) sec_text_element = ( ′𝛽∶∶semiring, ′𝛾∶∶lattice) sec_relation
+

authored_by ∶∶ ′𝛼 author set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by 𝜎 ≠ {}
and level_req ∶∶ (level 𝜎) ≠ None ∧ the (level 𝜎) > 1

doc_class ( ′𝛼, ′𝛽, ′𝛾) sec_technical = ( ′𝛼, ′𝛽∶∶semiring, ′𝛾∶∶lattice)
sec_text_element +

id ∶∶ nat
formal_results ∶∶ thm list

doc_class ( ′𝛼, ′𝛽, ′𝛾) sec_result = ( ′𝛼, ′𝛽∶∶semiring, ′𝛾∶∶lattice) sec_technical +
evidence ∶∶ sec_kind
property ∶∶ ( ′𝛼, ′𝛽, ′𝛾) sec_theorem list <= []
invariant has_property ∶∶ evidence 𝜎 = proof ⟷ property 𝜎 ≠ []

In this setting, we can specify access control as follows:
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Isabelletext∗[proof3∶∶( ′𝛼, (nat, int) mpoly, security) sec_result,
id = 789,
evidence = proof ,
property=[@{sec_theorem ‹safety2›}, @{sec_theorem ‹security2›}],
level = Some 2, authored_by = {@{author ‹church2›}},
sec = Unclassified]‹... text›

The proof3 instance sec attribute-value is Unclassified, and its property at-
tribute is a list of sec_theorems that also have a security level. We can have a
coarse grain policy where access control to proof3 will use only its sec attribute-
value. Then every user with a security level above Unclassified will be able to read
all proof3 information, including the information of every entry in its property at-
tribute. With a more fine grain policy, the sec attribute-value of each property list
element will also be checked. The sec attribute-value of the security2 instance is
Confidential, so a user with an Unclassified security level should be able to access
proof3 information but not security2 information when querying proof3 property
attribute. With the following query:

Isabellevalue∗‹property @{sec_result ‹proof3›}
∣> filter (𝜆x. statement x = statement @{sec_theorem ‹security2›})›

the access control checking mechanism should compute the involved instances se-
curity level using the (∗) operator for read access:

Isabelle

value∗‹sec @{sec_result ‹proof3›} ∗ sec @{sec_theorem ‹security2›}›

which evaluates to Confidential. Whether the access control is coarse or fine grain,
a user with an Unclassified security level will not be able to make this query
because he can not access security2 information.

4.5 Conclusion
Parametric polymorphic classes are used to extend the expressiveness in Is-
abelle/DOF. By separating the parsing and checking mechanisms, the declara-
tion of default values in doc_class and onto_class commands of ODL can be
integrated in the Isabelle/PIDE environment and allow the declaration of type
constraints and type specifications in the usual manner. The Isabelle/DOF the-
ory of meta-data extended with term anti-quotations is used to prove constraints,
enforced through axiomatic type classes. These constraints apply to extensions of
the linking semantics between document elements. Extensions are possible using
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axiomatic type classes only: the security model for the integrated document model
relies only on the lattice class defined in Isabelle/HOL HOL.Lattices theory. To
express the dependence between document elements, similar to the provenance
concept, polymorphic attribute types are refined by algebraic structures which are
constrained by other algebraic structures represented by classes. A fine-grained de-
pendence can be expressed using polynomial semirings where weights can be given
to each document element depending on others, and multiple linking flavors can be
expressed in one single attribute-value. In both cases, parametric polymorphism
lets the choice to the user: he can choose the security model he wishes by speci-
fying another axiomatic type class, and he can change the meaning of the linking
by choosing the refinement he desires. By polymorphism the linking is becoming
parametric and thus more flexible: we do not need to specify concepts taking part
in the linking using their internal structure, but only their relations. So the link-
ing could serve as an element to differentiate ontology patterns: the difference will
be specified by declaring properties on the linking itself. For example to specify
a pattern that allows to define a link between two document elements, we could
define morphism definitions and projection functions and obtain an equivalent to
the prod product type in Isabelle/HOL.
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Chapter 5

Deep Isabelle/DOF

5.1 Introduction
The straightforward way to reason about a logic is by specifying a metalogic.

With an expressive logic, objects which are defined can be represented directly
within this logic, hence giving a metalogic with the same logical language. Typi-
cally, with typed logics, logical objects will be represented using deep embedding
and specification constructs to interact with the development environment. De-
pending on the goal of the metalogic and the typed logic itself, the metalogic might
define the abstract objects of the logic like types and terms and it might propose
meta specification constructs to offer a full meta-programming environment [81].
Nipkow et al. [13] formalize a metalogic for Isabelle/HOL in HOL, using deep
embedding for types, terms, and proofs and shallow embedding for theories. The
newly defined objects using deep embedding are parts of a theory: they exist as
logical objects within a theory and can therefore become inhabitants of meta-level
datatypes as specified by Isabelle/DOF and change the semantics of the meta-
level anti-quotations. It is now possible to not only check these anti-quotations
but also to elaborate a type, a term or a theorem to its representation in the logic
using the formalized metalogic. For proof assistants, “each system comes with its
own logical formalism, its own mathematical language, its own proof language and
proof format, its own libraries.”[101] So the same principles are used to translate
abstract objects from a formalism to another, with the help of shallow embedding
in addition to deep embedding [101]. The mixed ideas of the translation between
formalisms, meta-level objects and the possibility to reference them, and metalogic
within the logic lead to the consideration of proposing a methodology to help in
the translation of theorems between theorems provers by using an ontology.

Theorems declared in proof assistants that implement HOL as the underlying
logic generally do not need to store the proofs objects, following the LCF approach,
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as the only way to construct objects of the abstract type thm is by using primitive
inference rules. [17] added proof objects generation to Isabelle/HOL by using an
abstract ML type proof, providing explicit proof objects, represented using 𝜆-terms
in the spirit of the Curry-Howard isomorphism. The main drawback is that it leads
to enormous proof objects for realistic applications consisting of primitive infer-
ences rules linked by the reasoning mechanisms expressed in the proof inductive
datatype. So [17] also comes with compression techniques where proofs objects of
theorems used to prove a proposition can be discharged, using elaborated proof
reconstruction mechanisms, and leading to proof objects of reasonable size. But
proofs assistants also use tactics (methods in Isabelle/HOL lingua) to write proofs,
and generally provide to the user a tactic language (for instance [102, 103] for Coq
and [104] for Dedukti) to extend the body of tactics by defining his own tactics.
For Isabelle/HOL, Eisbach [105] is such a language, “more pricely an infrastruc-
ture for defining new proof methods out of existing ones”. [106]. Information on
the tactics used in proof scripts (recall the difference between proof scripts and
proof objects explained in section 2.2) is mostly lost when the proof object is re-
constructed, at least with Isabelle/HOL, as it consists only of primitive inference
rules. The specific structure of the proof inductive type and the specific structure
of the proof object part corresponding to a specific method give hints to translate
proof scripts from one formalism to another formalism, using pattern matching on
the structure of the proof object. But even though, information on specific meth-
ods defined using the tactic language will be lost. Translating proof objects from
one formalism to another allows to reuse already proven theorems as facts, but
proof scripts reconstruction seems difficult to achieve with the loss of information.
To facilitate sharing between proof assistants, Paulson et al. [14] advocates for a
common language “offering portability of proofs exactly as today’s programming
languages offer portability between different machine architectures.” But they also
stress the difference of meaning between common existing instructions in the im-
plementation of the Lean project [107] compared to the Isabelle Isar language.
The keyword here is meaning. Even with a common language, its seems difficult
to minimize explicit references to the underlying logical language and framework
when proving theorems, if we compare for example subtype definitions in HOL
where type are inhabited to a dependent type theory where type definitions can
depend on terms. Proof systems offer declarations that might be specific to a
system but accommodate well the proof development of this system. And what
about the tactic language that also might use code specific to a proof assistant,
using for example low level access to the underlying implementation language like
ML? Which meaning should be given to user defined proof methods in Eisbach
when translating them to Lean? Is this even possible? Ontologies might be an an-
swer: a reference domain ontology could be defined which specify the semantics of
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the proof language instructions and the proof tactics. It will be formal, consensual
and have the capability to be referenced, so that its formalized knowledge is shared
and usable by each proof assistant. It also implies that each proof assistant should
implement a thin layer that proposes the formalization of this knowledge in its
logical language, i. e. an ontology language.

In this chapter, we first explain how proof objects are reconstructed from the-
orem abstract objects. This will help in understanding why and how we can reify
proof objects, a process that is illustrated in the next section, where we use a
metalogic of Isabelle/HOL to formalize Isabelle/DOF meta types and meta-level
term anti-quotations in HOL: anti-quotations are now inhabited by reified objects
allowing a definitional equality evaluation. Then we expose the methodology that
we use to recreate the proof script structure: reified meta-data is used as an object
to shape the structure of the proof object and meta-data as information is used
to help in the proof object reconstruction by referring to a domain ontology. It
might be relevant for import/export techniques of proofs scripts between theorem
provers.

5.2 Proof Objects in Isabelle
Berghofer, in [17], added LCF style proof objects to Isabelle core, and an ML level
API to manipulate and reconstruct proof objects from abstract ML type thms.
The reconstruction consists in retrieving proof information of a theorem abstract
object, implemented as an ML datatype. A theorem of type thm represents a
proven proposition: a simplified version of the datatype is:

ML
datatype thm = Thm of
deriv * (*derivation*)
{cert: Context.certificate, (*background theory certificate*)
...
prop: term} (*conclusion*)

and deriv = Deriv of
{...
body: Proofterm.proof_body}

The second part of the datatype is composed of a proposition that is recorded
as a term (the prop attribute of the record) and associated with an immutable
certificate of the background theory, i. e. the logical context that is required for
formulating statements and composing proofs. The certificate is used internally to
generate or extract certified types and terms, that is abstract datatypes “that guar-
antee that their values have passed the full well-formedness (and well-typedness)
checks, relative to the declarations of type constructors, constants etc. in the back-
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ground theory.” [21] This mechanism allows to use the same mechanism to generate
new theorems reusing other theorems or new definitions. Indeed, we saw in sec-
tion 2.4 that the Isabelle/HOL definition command defines a constant and its
associated theorem. So a definition declaration can follow the conservative exten-
sion approach and derives its theorem from a bootstrapped axiomatized version.
The mechanism to declare a new definition theorem is encoded as ML functions
that are added as operations to a local theory abstract datatype. A local theory
is merely an alias for a proof context: this is one of the reasons why we must deal
with proof contexts when implementing the abstract over command pattern for
Isabelle/DOF commands like definition∗ (see subsection 2.9.1 and section 3.2),
as we want to reuse the internal mechanisms of Isabelle/HOL. The operations
happen outside of the inference kernel but use internally the theorem proving ML
API to convert the proposition term into a theorem of type thm, by enforcing the
term to pass all the checking mechanisms. Schematically, the theorem certificate
is used to get the theory abstract datatype that represent the logical context, then
the theory is switched to a local theory. When the local theory is initialized the
operations are added as ML functions to the local theory datatype and then are
used to define the constant and theorem definition.

The first part of the theorem datatype is the derivation where we can find
the body attribute whose type is proof_body. We can see here how proof terms
are intertwined with theorems. The proof_body is a datatype that is composed of
the proof object of the theorem of type proof and an ordered list of the theorems
involved in the proof with the following simplified version:

ML
datatype proof_body = PBody of
{oracles: ((string * Position.T) * term option) Ord_List.T,
thms: (serial * thm_node) Ord_List.T,
proof: proof}

And the simplified version of the proof datatype is defined as:
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ML
datatype proof =

MinProof
| PBound of int
| Abst of string * typ option * proof
| AbsP of string * term option * proof
| op % of proof * term option
| op %% of proof * proof
| PAxm of string * term * typ list option
| PThm of thm_header * thm_body

where Abst implements the abstraction over terms, % the application of propo-
sitions to terms, where AbsP implements the abstraction over proofs, and %% the
application of propositions to propositions (see section 2.3). PAxm represents ax-
ioms as proof objects and PThm theorems. So schematically, a proof term object
of a theorem is a PThm object that embeds a proof_body, using the thm_body
datatype (not shown), with a list of theorems that are linked using the proof
datatype constructors. And theorems within the list are representations of theo-
rems of type thm, using the thm_node datatype (not shown), similar to the thm
datatype. Once again the prop terms of the theorems pass all the checking mech-
anisms. The reconstruction mechanism of proof objects extracts theorems objects
from the proof_body of a thm datatype and represents them within proof term
objects as thm_nodes.

This little dive into the implementation helps to understand why we can safely
use the reconstruction mechanism to reify proof objects.

We can now use the ML API to reconstruct the proof object of a theorem
encoded in ML. For example the proposition:

[[A; B]] ⟹ B ∧ A

means that if we have a proof for A and a proof for B (using the meta-level impli-
cation (⟹)), then we have a proof for B ∧ A. A proof that uses the conjunction
introduction lemma [[?P; ?Q]] ⟹ ?P ∧ ?Q could yield the proof object:

𝜆(H ∶ ?A) Ha∶ ?B. conjI ⋅ ?B ⋅ ?A • Ha • H

by reusing the notation of the section 2.3 for proof terms, the notation of the
section 4.2 for schematic variables, and where the proof term conjI that denotes
the proof of the conjunction introduction theorem is applied to the schematic terms
variables ?A and ?B considered as propositions, and then to the proofs Ha and H
of these terms, reflecting the (⟹) applications. A more realistic example would
involves an Isabelle/HOL proof method, giving the proof script:
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Isabellelemma rconjI ∶ ‹A ⟹ B ⟹ B ∧ A›
by simp

Here the simp method is used to call the simplifier. The proof object of rconjI
is slightly more complex:

𝜆(H ∶ ?A) Ha∶ ?B.
equal_elim ⋅ True ⋅ ?B ∧ ?A •
(symmetric ⋅ TYPE(prop) ⋅ ?B ∧ ?A ⋅ True •

(combination ⋅ TYPE(bool) ⋅ TYPE(prop) ⋅ Trueprop ⋅ Trueprop ⋅ ?B ∧ ?A ⋅ True
• (reflexive ⋅ TYPE(bool ⇒ prop) ⋅ Trueprop) •

(transitive ⋅ TYPE(bool) ⋅ ?B ∧ ?A ⋅ True ∧ True ⋅ True •
(combination ⋅ TYPE(bool) ⋅ TYPE(bool) ⋅ (∧) ?B ⋅ (∧) True ⋅ ?A ⋅ True •

(combination ⋅ TYPE(bool) ⋅ TYPE(bool ⇒ bool) ⋅ (∧) ⋅ (∧) ⋅ ?B ⋅ True • (reflexive ⋅
TYPE(bool ⇒ bool ⇒ bool) ⋅ (∧)) • (Eq_TrueI ⋅ ?B • Ha)) •

(Eq_TrueI ⋅ ?A • H )) •
(eq_reflection ⋅ TYPE(bool) ⋅ True ∧ True ⋅ True • arity_type_bool •

(simp_thms_25 ⋅ True))))) •
(equal_elim ⋅ True ⋅ (?B ⟹ True) • (symmetric ⋅ TYPE(prop) ⋅ (?B ⟹ True) ⋅

True • (implies_True_equals ⋅ ?B)) •
(equal_elim ⋅ True ⋅ (?A ⟹ True) • (symmetric ⋅ TYPE(prop) ⋅ (?A ⟹ True) ⋅

True • (implies_True_equals ⋅ ?A)) • TrueI • H ) •
Ha)

It involves primitives rewriting rules like symmetric and combination that help
in the construction of primitive rules but also proof terms of theorems like
simp_thms(25) for the theorem (?P ∧ ?P) = ?P. It might not seem obvious
looking at the proof object but the simp method is encoded in ML and as a pro-
gram follows a pattern that yields in our case to a proof of the proposition [[A; B]]
⟹ B ∧ A.

We can make it more visible with the following lemma:

Example 8 The cons_list theorem

Isabellelemma cons_list ∶ a#xs = [a]@xs
apply (subst List.append.append_Cons)
apply (subst List.append.append_Nil)
apply (rule refl)
done

The proof object reconstructed from the proof script is still small and legible
and has roughly the following pattern:
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𝜆g∶ G A B .
(𝜆H ∶ A . H ) •
((𝜆g ′∶ G B C .

(𝜆H ∶ B . H ) •
(HOL.refl ⋅ C • g ′)) • g)

where G is composed of proof rewriting rules, A is the main goal a#xs = [a]@xs,
B is the subgoal ?a # ?xs = ?a # [] @ ?xs after the application of the subst
List.append.append_Cons rule, and C is the subgoal ?a # ?xs = ?a # ?xs after
the application of the subst List.append.append_Nil rule (recall that • denotes
the application of proof terms to proof terms). It gives the representation of the
proof that is built step by step in a backward manner where any proof state is
represented as a proof object of the form:

𝜓1 ⟹ ⋯ ⟹ 𝜓𝑛 ⟹ 𝜑

where 𝜑 is the proposition to be proved and 𝜓1, … , 𝜓𝑛 are the remaining subgoals.
For the proof object above we have the following theorem:

(C ⟹ B) ⟹ (B ⟹ A) ⟹ A

So if we have a proof of the subgoal ?a # ?xs = ?a # ?xs and a proof of the
subgoal ?a # ?xs = ?a # [] @ ?xs, then we have a proof of the main goal, that is
the proposition a#xs = [a]@xs, and we have a theorem represented by the term:

(?a # ?xs = ?a # ?xs ⟹ ?a # ?xs = ?a # [] @ ?xs)
⟹ (?a # ?xs = ?a # [] @ ?xs ⟹ ?a # ?xs = [?a] @ ?xs)
⟹ a#xs = [a]@xs

For the goal a#xs = [a]@xs and the subgoal ?a # ?xs = ?a # [] @ ?xs, the
proof object has the form:

equal_elim ⋅ (?a # ?xs = [?a] @ ?xs ⟹ ?a # ?xs = [?a] @ ?xs) ⋅ (?a # ?xs = ?a #
[] @ ?xs ⟹ ?a # ?xs = [?a] @ ?xs) •
(combination ⋅ TYPE(? ′a list) ⋅ TYPE(prop) ⋅ (𝜆fooabs. (?a # ?xs = fooabs ⟹ ?a #

?xs = [?a] @ ?xs)) ⋅ (𝜆fooabs. (?a # ?xs = fooabs ⟹ ?a # ?xs = [?a] @ ?xs)) ⋅ [?a]
@ ?xs ⋅ ?a # [] @ ?xs •

(reflexive ⋅ TYPE(? ′a list ⇒ prop) ⋅ (𝜆fooabs. (?a # ?xs = fooabs ⟹ ?a # ?xs =
[?a] @ ?xs))) •
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(eq_reflection ⋅ TYPE(? ′a list) ⋅ [?a] @ ?xs ⋅ ?a # [] @ ?xs • (arity_type_list ⋅
TYPE(? ′a) • (Pure.PClass type_class ⋅ TYPE(? ′a))) • (append_Cons ⋅ TYPE(? ′a) ⋅
?a ⋅ [] ⋅ ?xs • (Pure.PClass type_class ⋅ TYPE(? ′a))))) •
(𝜆H ∶ ?a # ?xs = [?a] @ ?xs. H ) •
PROOF

where PROOF is a proof object representing a proof for the subgoal ?a # ?xs
= ?a # [] @ ?xs. The first part of the proof object amounts to the proof object
of the first substitution subst List.append.append_Cons in the proof script. The
application of the first substitution using the subst method yields the subgoal ?a #
?xs = ?a # [] @ ?xs that can be seen in the second term to which the equal_elim
proof is applied. This subgoal is used to prove the main goal that appears right
after as (𝜆H ∶ ?a # ?xs = [?a] @ ?xs. H ). PROOF itself is composed of the
subgoals B and C and has the same form:

equal_elim ⋅ (?a # ?xs = ?a # [] @ ?xs ⟹ ?a # ?xs = ?a # [] @ ?xs) ⋅ (?a # ?xs =
?a # ?xs ⟹ ?a # ?xs = ?a # [] @ ?xs) •

(combination ⋅ TYPE(? ′a list) ⋅ TYPE(prop) ⋅ (𝜆fooabs. (?a # ?xs = ?a # fooabs
⟹ ?a # ?xs = ?a # [] @ ?xs)) ⋅ (𝜆fooabs. (?a # ?xs = ?a # fooabs ⟹ ?a # ?xs =
?a # [] @ ?xs)) ⋅ [] @ ?xs ⋅ ?xs •

(reflexive ⋅ TYPE(? ′a list ⇒ prop) ⋅ (𝜆fooabs. (?a # ?xs = ?a # fooabs ⟹ ?a #
?xs = ?a # [] @ ?xs))) •

(eq_reflection ⋅ TYPE(? ′a list) ⋅ [] @ ?xs ⋅ ?xs • (arity_type_list ⋅ TYPE(? ′a)
• (Pure.PClass type_class ⋅ TYPE(? ′a))) • (append_Nil ⋅ TYPE(? ′a) ⋅ ?xs •
(Pure.PClass type_class ⋅ TYPE(? ′a))))) •

(𝜆H ∶ ?a # ?xs = ?a # [] @ ?xs. H ) •
PROOF ′

where PROOF ′ is a proof of the subgoal ?a # ?xs = ?a # ?xs. The second
substitution subst List.append.append_Nil in the proof script is applied to the
subgoal ?a # ?xs = ?a # [] @ ?xs. In the PROOF ′ proof object, which appears
right after the main goal (𝜆H ∶ ?a # ?xs = [?a] @ ?xs. H ), we find the proof object
which amounts to the second substitution subst List.append.append_Nil . Again,
in the second term to which the equal_elim proof is applied, we can find the new
subgoal ?a # ?xs = ?a # ?xs. If this subgoal is proven, it can be used to prove
the old subgoal (𝜆H ∶ ?a # ?xs = ?a # [] @ ?xs. H ). Then the last application in
the proof script rule refl concludes the proof and its proof object is:

HOL.refl ⋅ TYPE(? ′a list) ⋅ ?a # ?xs • (arity_type_list ⋅ TYPE(? ′a) • (Pure.PClass
type_class ⋅ TYPE(? ′a)))
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As expected, the two substitutions follow exactly the same pattern. By looking
at the proof object, two observations can be made. Firstly, the pattern of the
proof object is the representation of the method semantics. To acknowledge this
semantics, meta-data could be attached to the proof object using an ontology. For
example, using a tag system described in an ontology, one can attach this tag to
the proof object to help in the identification of patterns that represent methods.
In fact, by using an ontology, any kind of meta-data can be attached to a proof
object. Secondly, handling of proof objects at the ML level needs to take into
account not only proofs, terms and types as we can see in the proof datatype but
also sorts. The previous lemma proves a proposition on the algebraic structure
of lists with elements of unspecified types. So its proof object includes schematic
type variables for which a sort may be specified.

5.3 Meta Types Reification and Term Anti-
Quotations

To represent proof terms in HOL, we need an environment that will give a for-
mal representation of the proof datatype in HOL. In the chapter introduction,
we mentionned that Nipkow et al. [13] have already formalized a metalogic for
Isabelle/HOL in HOL. The implementation uses deep embedding allowing to rep-
resent types, terms, and proofs directly in HOL. The implementation in HOL of
these abstract types share a lot of similiraties with the ML implementation. The
abstract type typ implementation in ML is as follows:

ML
(*Indexnames can be quickly renamed

by adding an offset to the integer part,
for resolution.*)

type indexname = string * int;

(*Types are classified by sorts.*)
type class = string;
type sort = class list;
type arity = string * sort list * sort;

(*The sorts attached to TFrees and TVars specify
the sort of that variable.*)

datatype typ = Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort;
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and its counterpart in HOL in the metalogic is:

Isabelletype_synonym name = String.literal
type_synonym indexname = name × int

type_synonym class = String.literal

type_synonym sort = class set
abbreviation full_sort ≡ ({}∶∶sort)

datatype variable = Free name ∣ Var indexname

datatype typ =
is_Ty∶ Ty name typ list ∣
is_Tv∶ Tv variable sort

Type and type variables are implemented in the same way where schematic
types variables are considered as names indexed by an integer, an int in ML for
the ML implementation and the int from Isabelle/HOL library for the metalogic.
The only noticeable difference comes from the implementation of sorts where sorts
in ML use lists as in HOL they use the Isabelle/HOL implementation of sets. For
example, the type int in Isabelle/HOL is encoded in ML as follows:

Type (Int.int, [])

It uses the Type constructor of the ML datatype and defines it using the string
Int.int as name and then associates it with an empty list as it does not take any
parameter. In the metalogic the type int is encoded in HOL and its representation
is:

constT STR ′′Int.int ′′

where constT is defined as an abbreviation:

Isabelleabbreviation constT name ≡ Ty name []

and STR ′′Int.int ′′ encodes the HOL string ′′Int.int ′′ as a String.literal as re-
quired by the implementation. The Isabelle/HOL ′a list data type has a parameter
and then is encoded as:

Type (List.list, [ ′a])

It uses the associated type list to store the types of the parameters. In the same
way in the metalogic:
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Ty STR ′′List.list ′′

[Tv (Free (String.Literal True True True False False True False STR ′′a ′′))
(insert STR ′′HOL.type ′′ full_sort)]

the associated list is used to add the parameter type. We can also see that the
default class type, which is the default class added by the Isabelle kernel to any
polymorphic term whose class is not specified, is added to the set of sorts of the
polymorphic parameter, using the insert constant.

Terms in ML and in the metalogic are also pretty similar. In ML:

ML
datatype term =

Const of string * typ
| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string*typ*term
| op $ of term*term;

Bound variables are implemented as de Bruijn indices [108] using the Bound
constructor and every other constructor parameter is associated with a string that
will end up being the term itself. For example, the term 𝜆x. x whose term variable
x is bound is represented in ML as follows:

Abs (x, ′a, Bound 0)

The bound variable is encoded with Bound 0. In the metalogic, the term datatype
is quasi equivalently declared:

Isabelledatatype term =
is_Ct∶ Ct name typ ∣
is_Fv∶ Fv variable typ ∣
is_Bv∶ Bv nat ∣
is_Abs∶ Abs typ term ∣
is_App∶ App term term (infixl $ 100)

The proof type implementations are the most different ones. Indeed the meta-
logic does not need to cope with the implementation of theorems objects and can
focus on the proof object, giving a much simpler implementation:
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Isabelledatatype proofterm = PAxm term tyinst list
∣ PBound nat
∣ Abst typ proofterm
∣ AbsP term proofterm
∣ Appt proofterm term
∣ AppP proofterm proofterm
∣ OfClass typ class
∣ Hyp term

The main drawback is that the meta proof type does not store axioms and the-
orems names. This information is lost but it is not the purpose of the proof terms
in the metalogic that aim at mirroring proof terms generated by Isabelle/HOL,
and are not designed to record proofs in the inference system [13]. However this
information could be attached as meta-data if we are using an ontology.

The translation of types and terms is straightforward thanks to the identical
structure in ML and in the metalogic. Isabelle/DOF meta-level anti-quotations
for types and terms (see section 2.7) can now be treated as fully inhabited ele-
ments. The new implementation of meta-level anti-quotations uses the reification
mechanism and the refined process (see section 3.2) can now also elaborate types
and terms to their representation in HOL using the metalogic. This opens the pos-
sibility to compute terms with types and terms in the logic that no more involve
a referential equality but a definitional equality:

Isabellevalue∗‹@{typ ‹int›} = @{typ ‹int›}›

The computation of the term @{typ ‹int›} = @{typ ‹int›} by the value∗
command returns True but this time the two types are evaluated. The new meta-
level anti-quotations are fully integrated in Isabelle/DOF: ontologies can be defined
to express knowledge about types and terms defined in HOL. Ontologies for formal
domain like mathematics or engineering can represent this knowledge and queries
on this elements can be made. This is an important aspect for advanced search in
libraries: it allows to define queries and ontologies with an introspective purpose.
For example, meta-data expressing knowledge about the defined types in a theory
can be attached to a formal theory of multivariate polynomials. If we plan to
use multivariate polynomials in a theory and we want to constrain them using
axiomatic classes, we would like to know if multivariate polynomials are defined as
a type (see section 4.3). By querying the ontology, we would find that polynomials
are represented in two ways, as trees and as sums of monomials multiplied by some
coefficient, and that the computation of monomials is only defined for the second
form. But the second form is specified as a type synonym, not compatible with
type instantiation mechanisms, so we must use the first representation for type
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instantiation. So we would find that there is no easy way to use the multivariate
polynomial theory in the library for type instantiation of axiomatic classes like
semiring for which specifications of the two operations (+) and (∗) is required.
Then, if the polynomials as sums of monomials are defined in another theory, we
would be able to prove that we need to import the two theories in our theory to
instantiate polynomials as semiring as we plan.

Another aspect is ontology definitions to express knowledge about the logic
itself. For example, we can now express that a logical language like FOL must not
involve distinguished types for Booleans and functions as these types are unsuit-
able.

The translation of proof terms is not as straightforward. In [13], the authors
are interested in generating code for a proof checker, and they consider proved
lemmas as axioms in the translation, but as we aim at expressing knowledge about
proof scripts through their structure, we need to keep proof terms intact in the
translation. A proof term of a theorem can not be translated to a proof term of an
axiom as we will lose all information. It implies that we need to reify a proof term
with its structure unspoiled. In [17], Berghofer distinguished proof objects and
partial (or implicit) proof objects, where the latter have been compressed, giving
proof objects with omitted information denoted by placeholders _, and provides
reconstruction mechanisms. For example, the partial proof object of the symmetric
meta-rewriting rule is represented as follows:

symmetric ⋅ TYPE(? ′a) ⋅ _ ⋅ _

and the reconstructed proof object as:

symmetric ⋅ TYPE(? ′a) ⋅ ?x ⋅ ?y

where the schematic variables have been instantiated. As we are interested in the
proof structure and not so much in the arguments, partial proofs seems more suit-
able because they will have a less enormous size when extracting proofs from the
realistic applications. But their representation, when compressed, erase valuable
information that is tightly tied to their representation in the metalogic. If we look
at the encoding of the previous proof object in ML, we can observe the differences
with its partial version. The partial term is encoded as follows:

PAxm (Pure.symmetric,
Const (Pure.imp, prop ⇒ prop ⇒ prop) $ (Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop)

$ Var ((x, 0), ? ′a) $ Var ((y, 0), ? ′a)) $
(Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop) $ Var ((y, 0), ? ′a) $ Var ((x, 0), ? ′a)),

NONE) %
NONE % NONE
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The PAxm type list value is NONE, meaning left unspecified. This type list is the
list of the schematic type variable occurring in the axiom proposition, i. e. in the
term:

Const (Pure.imp, prop ⇒ prop ⇒ prop) $ (Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop) $ Var
((x, 0), ? ′a) $ Var ((y, 0), ? ′a)) $

(Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop) $ Var ((y, 0), ? ′a) $ Var ((x, 0), ? ′a))

As the compression algorithm keeps the proposition term intact, the type list
can be replaced by NONE and can be reconstructed from the partial term. In
the metalogic, the PAxm constructor also has a type list argument, but it is not
simply a type list but a tyinst list, where tyinst is defined as a type synonym:

Isabelletype_synonym tyinst = (variable × sort) × typ

tyinst is used to encode type substitution for axioms in the metalogic as an
association list instead of a function used for the rest of the metalogic implemen-
tation. Type substitution assigns a type to each type variable and sort pair. For a
PAxm, the tyinst list is used internally to check the validity of a type against the
theory and therefore that type instantiation is possible. Consequently, the tyinst
list is mandatory in a PAxm of the metalogic, which means that if we want to
translate axioms in the logic to axioms in the metalogic, the type list of PAxms
in the logic need to be inhabited before the translation happens. Because of this
limitation and to keep the translation simple, we choose to use full proof terms
and not partial ones. The full proof term object of the previous example is:

PAxm (Pure.symmetric,
Const (Pure.imp, prop ⇒ prop ⇒ prop) $ (Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop)

$ Var ((x, 0), ? ′a) $ Var ((y, 0), ? ′a)) $
(Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop) $ Var ((y, 0), ? ′a) $ Var ((x, 0), ? ′a)),

SOME [? ′a]) %
SOME (Var ((x, 0), ? ′a)) % SOME (Var ((y, 0), ? ′a))

where we can see that the type list of the proposition is now inhabited with the
schematic type variable occurring in the proposition term. We are now able to
translate proof terms and keep their structure.

The @{thm ‹...›} term anti-quotation is updated to use the reification mech-
anism and now it can be used to reference a theorem or its proof term object
depending on the context.

The new meta-type anti-quotations implementation with inhabited logical ob-
jects does not only extend the usage of domain ontologies as we explained above,
it also give rise to a new consideration of the term anti-quotations themselves.
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Indeed, now that meta-types are represented as terms, meta-type anti-quotations
should be able to derive the object from embedded 𝜆-terms, and therefore should
support embedded term anti-quotations. For example, if we have a simple onto-
logical class ctag that specifies the notion of proof tag:

Example 9 A class with proof tagging information

Isabelledoc_class ctag =
proof_tag ∶∶ int <= 1

and the instance inst_tag:

Example 10 A ctag class instance

Isabelletext∗[inst_tag∶∶ctag, proof_tag = 2]‹›

we can get the value of the inst_tag instance proof_tag attribute using the
term anti-quotation @{ctag ′′inst_tag ′′} and the value∗ command:

Isabellevalue∗‹proof_tag @{ctag ‹inst_tag›}›

which returns the value 2. But we would like to get the representation of the
term in the logic to use it as information in an ontology using a @{term ‹...›}
anti-quotation. For that, the @{term ‹...›} treatment is updated to support anti-
quotation cascading. The following evaluation:

Isabellevalue∗‹@{term ‹proof_tag @{ctag ‹inst_tag›}›}›

will returns the value 2 represented as a 𝜆-term in the logic using the metalogic
notation:

Ct STR ′′Num.numeral_class.numeral ′′ (constT STR ′′Num.num ′′ → constT STR
′′Int.int ′′)
$ (Ct STR ′′Num.num.Bit0 ′′ (constT STR ′′Num.num ′′ → constT STR ′′Num.num ′′)
$ Ct STR ′′Num.num.One ′′ (constT STR ′′Num.num ′′))

This term is typed as Core.term, the type of terms in the metalogic, and the
@{term ‹...›} anti-quotation refined process now elaborates the term. This comes
in contradiction with the distinction between terms and values we made in sec-
tion 3.2, where only values are elaborated. Similarly to the syntactic category
of commands in Isabelle/HOL that are considered in Isabelle/DOF as abstract
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objects, meta-level term anti-quotations are references to objects of the metalogic
represented in the HOL, and as such a @{value ‹...›} term anti-quotation is in-
troduced with the same behaviour as the value∗ command so that the @{term
‹...›} anti-quotation could mimic the term∗ command. This gives rises to another
questioning: should the evaluation with value∗ of the terms @{term ‹proof_tag
@{ctag ‹inst_tag›}›} and @{value ‹proof_tag @{ctag ‹inst_tag›}›} returns the
same object? Evaluation is interpreted as an exhaustion process, where both the
terms gives the same value, and the @{value ‹...›} anti-quotation is implemented
identically to the value∗ command, i. e. it is compatible with eval and nbe eval-
uation techniques.

In the same manner, another type anti-quotation should be added to allow
type references using pattern matching. For example, let’s suppose that we have
a list of functions types ′a ⇒ ′b and we want to update this list of types to a list
of product types ′a × ′b. We would like to specify a type constructor constant,
using the definition∗ command, that will be used to constructs types in the
metalogic:

Isabelledefinition dest_funT
where dest_funT f ≡ @{Type ‹fun A B => ‹(A, B)››}

The dest_funT definition should take a typing function as an argument and
return the product type. But here we are limited by the implementation of term
anti-quotations. Indeed, we saw in section 3.2 that term anti-quotation arguments
are HOL strings, thus the type @{Type ‹fun A B => ‹(A, B)››} can not be under-
stood as a function type whose arguments depends on the definition instantiation:
the string ”fun A B => ‹(A, B)›” supposes that the construction of the new type
will depend on the value of its arguments. For the type int ⇒ int as argument,
the const dest_funT will return the representation in the metalogic of the type int
× int. But by using a string we can not abstract over the arguments and we loose
the possibility to bind term variables using a lambda abstraction for the variables.
To declare dest_funT we must redefine it as a function like the following:

Isabellefun dest_funT
where dest_funT (Ty t [A, B]) = (let x = String.implode ′′fun ′′ in case t of x

⇒ (A, B))

where the pattern matching is done directly at the logical level. Extending the
type anti-quotation would require a major update in the design where types become
dependent on terms, which is not supported for now by the implementation.

The support of cascading term anti-quotation for the @{value ‹...›} and @{term
‹...›} anti-quotation gives us sufficient expressiveness to reference terms in HOL
extracted from an Isabelle/DOF ontology that can then be used as meta-data.
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5.4 Proof Objects with Meta-Data
As lemmas are used to prove propositions on arbitrarily complex mathematical
objects, advanced handling of proof scripts with attached meta-data can take sev-
eral forms. Indeed , we might consider the final structure of a proof object or we
might consider adding meta-data during the reconstruction process incrementally,
or mixing both, depending on the meta-data we want to attach. We saw that proof
script structure information is lost when reconstructing proof objects. To get back
this structure, the idea is to use ontological meta-data to divide a proof object in
several sub proof objects that represent each application of a proof method. We
get the following pattern:

(PROOF1 ⋅ DATA1) • ⋯ • (PROOF𝑛 ⋅ DATA𝑛)

where meta-data of methods is attached to a subproof object representing the proof
method step by applying subproof proof terms to meta-data terms represented as
terms of the metalogic. This way, the structure of the proof is reconstructed, and
by using pattern matching proof objects corresponding to proof methods can be
used to reconstruct proof methods with the help of meta-data accessible directly
in the proof object.

Recovering the structure of the proof script can use both approaches, pattern
matching over the final structure of the proof object or incremental proof recon-
struction. The latter implies an update of Isabelle/Isar commands, because in
a theorem abstract object, the proof information contained in the proof body is
stored as inferences rules, and the structure of the proof script is already lost. In
fact, the incremental approach is quite complex: it would require modifications of
code deeply integrated in Isabelle/Pure inference kernel in two fold. On the one
hand, Isabelle/Isar commands need to be updated or new commands must be writ-
ten and on the other hand methods code also need to be updated or new methods
need to be written. It comes from the fact that Isabelle/Isar commands and meth-
ods are deeply intertwined when it comes to the generation of proof terms. The
proof term generation happens when generating an abstract theorem datatype but
this process uses already defined methods. So if we attach meta-data to methods,
we need to store this information so it can later be used by the proof term genera-
tion process triggered by Isabelle/Isar commands. For example, the method name
is stored directly after the parsing of an apply command in an ML structure rep-
resenting a method. This name is then used to retrieve the method that is already
declared in the logical context. To be sure to add meta-data information to the
right method proof object, the reified ontological concepts need to be carried using
the logical context through the code until the proof term is generated. We already
told that the generation process happens when constructing the abstract theorem
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datatype. But the process also happens during the evaluation of the method.
Therefore the meta-data information need to be conveyed to the core of Isabelle.
This implementation is not yet done but we can draw an example for a specific
method like subst with the apply command. The method subst∗ is equivalent to
the subst method but also accepts ontological concept declarations similarly to
Isabelle/DOF commands. We also define a new apply∗ command equivalent to
apply but compatible with methods with attached meta-data. We can update the
cons_list theorem in Example 8:

Isabellelemma cons_list ∶ a#xs = [a]@xs
apply (subst List.append.append_Cons)
apply∗ (subst∗[nil_info∶∶ctag, proof_tag = 4] List.append.append_Nil)
apply (rule refl)
done

The nil_info class instance is added to the logical context when the substi-
tution is applied with the apply∗ command. More precisely, when applying the
substitution, first the method is parsed and the subst∗ method instantiation is up-
dated with the ontological meta-data, then the method is retrieved and is applied.
The application of the method code carries the meta-data and when the theorem
is generated, the meta-data is reified and added to the subproof term representing
the proof step. The proof object with ontological information will then have the
form:

PROOF1 • (𝜆H ∶ ?a # ?xs = [?a] @ ?xs. H )
• ((PROOF2 • (𝜆H ∶ ?a # ?xs = ?a # [] @ ?xs. H ) • PROOF3) ⋅ DATA)

where PROOF1 is the proof object for the subgoal (𝜆H ∶ ?a # ?xs = [?a] @
?xs. H ), PROOF2 the proof object for the subgoal (𝜆H ∶ ?a # ?xs = ?a # []
@ ?xs. H ), PROOF3 the proof object for the refl rule, and DATA the nil_info
instance represented as a term in the metalogic. We can see that the full proof
term (PROOF2 • (𝜆H ∶ ?a # ?xs = ?a # [] @ ?xs. H ) • PROOF3) is applied to
the DATA term to recreate the structure of the proof script.

The other approach we propose to recreate the proof script structure is pattern
matching. Like in section 3.5, we will use a combination of term anti-quotations
and Isabelle/HOL functional programming language capabilities. We show in the
following through an example how this can be done using pattern matching over
the structure of a proof object using the systematic pattern of subproof terms that
represent proof script steps. We can use the @{value ‹...›} term anti-quotation
that can reify terms and supports term anti-quotation cascading. We can define an
HOL function using a fun∗ command similar to the Isabelle/HOL fun command
with the additional ability to process term anti-quotations. For example with the
following definition:
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Isabellefun∗ pattern where
pattern (PAxm ((Ct a (Ty ba [constT bb, (Ty bc [constT bd, constT be])])) $ c $

d) [((Var e, f ), constT g), ((Var h, i), j)]) =
(if be = STR ′′prop ′′

then (Appt (PAxm ((Ct a (Ty ba [constT bb, (Ty bc [constT bd,
constT be])])) $ c $ d) [((Var e, f ), constT g), ((Var h, i), j)])

(@{value ‹proof_tag @{ctag ‹inst_tag›}›}))
else (PAxm ((Ct a (Ty ba [constT bb, (Ty bc [constT bd, constT

be])])) $ c $ d) [((Var e, f ), constT g), ((Var h, i), j)]))
∣ pattern x = x

the pattern function is used to update proof objects using the @{value
‹proof_tag @{ctag ‹inst_tag›}›} term anti-quotation. The pattern matching will
match the reflexive theorem ?x ≡ ?x whose representation in ML is as follows:

PAxm (Pure.reflexive, Const (Pure.eq, ? ′a ⇒ ? ′a ⇒ prop) $ Var ((x, 0), ? ′a)
$ Var ((x, 0), ? ′a), NONE)

% NONE

If the Pure.eq contant is indeed of type prop, then the proof object is updated
by constructing a new proof object using the Appt constructor of the proofterm
datatype of the metalogic to add the elaborated term anti-quotation term. Thus,
we get a proof term with the form:

PROOF ⋅ DATA

where PROOF is the axiom and DATA is the reified value of the term anti-
quotation @{value ‹roof_tag @{ctag ‹inst_tag›}›}.

We can then use the value∗ command to evaluate a term that uses the pattern
function:

Isabellevalue∗‹pattern
(PAxm (mk_eq ′ propT Core.A Core.B ⟼ Core.A ⟼ Core.B)

[((Var (String.Literal True True True False False True False STR ′′a ′′,
0), full_sort), constT STR ′′Int.int ′′)

, ((Var (String.Literal True True True False False True False STR
′′b ′′, 0), full_sort), propT)])›

Here the argument of the pattern function matches and the value∗ command
returns the value:

Appt
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(PAxm (mk_eq ′ propT Core.A Core.B ⟼ Core.A ⟼ Core.B)
[((Var (String.Literal True True True False False True False STR ′′a ′′, 0), full_sort),

constT STR ′′Int.int ′′), ((Var (String.Literal True True True False False True False
STR ′′b ′′, 0), full_sort), propT)])

(Ct STR ′′Num.numeral_class.numeral ′′ (constT STR ′′Num.num ′′ → constT STR
′′Int.int ′′) $ (Ct STR ′′Num.num.Bit0 ′′ (constT STR ′′Num.num ′′ → constT STR
′′Num.num ′′) $ Ct STR ′′Num.num.One ′′ (constT STR ′′Num.num ′′)))

∶∶ proofterm

First the term anti-quotation is elaborated and returns the proof_tag attribute-
value of the inst_tag instance declared in Example 10, i. e. the value 2 reified in
the metalogic, and then the new term is constructed. We can see in the output
that the value 2 represented in the metalogic by the term:

Ct STR ′′Num.numeral_class.numeral ′′ (constT STR ′′Num.num ′′ → constT STR
′′Int.int ′′)
$ (Ct STR ′′Num.num.Bit0 ′′ (constT STR ′′Num.num ′′ → constT STR ′′Num.num ′′)

$ Ct STR ′′Num.num.One ′′ (constT STR ′′Num.num ′′))

is indeed the second term argument of the Appt constructor, and the resulting
term is of type proofterm.

Proof terms with attached meta-data can then be passed to other proof as-
sistants. By parsing the proof term, the structure of the proof script could be
extracted using meta-data terms that may be tagged with specific identifier to
distinguished them from classical terms of the proof object. Then the meta-data
can be extracted from the proof object and the ontological knowledge can help
in reconstructing the proof script step from the subproof object using a reference
domain ontology.

5.5 Conclusion
The reification mechanism allows to reason over meta types in Isabelle/DOF. Using
the metalogic tteerms, types and theorems are now objects formalized in HOL, and
thus the semantics of meta-level term anti-quotations becomes pretty similar to
Isabelle/DOF diagnostic commands like value∗ and term∗. Both are used to
embed terms and introduce a specific logical context for checking or evaluation.
Meta-level term anti-quotations allow for ontology definitions that will represent
knowledge with introspective components on the theories of Isabelle/HOL but also
on the object logic itself. The meta-level anti-quotation for thms can be used to
extract and reconstruct proof objects, and we are sure the proof object is a correct
representation of the theorem because we use the ML API that certify that the
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generated elements of the proof object have passed the full well-formedness checks.
So we can define domain ontologies with types, terms, and theorems objects and
then use them to add knowledge to proof objects by adding ontological elements to
a proof object. We use this process to recreate the structure of the proof script. As
a consequence, a proof object with attached meta-data can be transfered to another
proof assistant: it embeds both the original structure of the proof script and the
information to recreate the proof script by looking at the meta-data. Because
the proof object is encoded in a logical language, meta-programming capabilities
of another proof assistant could be used to reflect the meta-data and the proof
object and thus reconstruct the proof script by referring to the domain ontology.
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Conclusion

6.1 Achievements
In this thesis we presented an extension of Isabelle/DOF, an ontology framework
deeply integrating continuous-check/continuous-build functionality into the formal
development process in HOL. The novel feature of term-contexts in Isabelle/DOF,
which permits term anti-quotations elaborated in the parsing process, paves the
way for the abstract specification of meta-data constraints as well as the possibility
of advanced search in the meta-data of document elements. It reconsiders syntac-
tic categories like commands in Isabelle/HOL: they become document elements
with ontological meta-data using an abstraction pattern, and term anti-quotations
are used to reference these documents. Term-contexts increase the possibility to
reason on the document: properties on ontologies representing the knowledge of
documents can be proved, reflecting document properties on their structure and
their semantics. They also contribute to a better understanding of the notion of an
integrated document: queries can be made to retrieve document elements and dis-
criminate over the type of the elements, i. e. whether they are formal or informal,
which logical objects they represent, etc. The abstracted pattern can be general-
ized to define ontologies that will represent knowledge but also meta-knowledge
like properties on knowledge.

Isabelle/DOF ODL language is extended to support parametric polymorphic
classes. It increases the expressiveness of Isabelle/DOF and permits a deeper in-
tegration into Isabelle/HOL. Thus, the generic caculus of axiomatic type classes
is available and users can specify constraints for ontological class attributes using
axiomatic class specifications from the Isabelle/HOL libraries of the AFP. Poly-
morphic classes also introduce a new possibility to describe the structure of a docu-
ment: dependencies between document elements can be specified that redefine the
notion of linking in Isabelle/DOF. The linking is not only defined between formal

119



6.2. Future Work

ontological concepts and informal text but between document elements using term-
contexts. The linking can be specified to represent the structure of dependencies or
to represent dependencies between specific document element instances. The mod-
eling of “provenance” exemplifies the multiple notions that can be associated to
the linking when using polymophism. The proposed security model is a first step
in building access-control for integrated documents. Organizations that involve
multiple decentralized stakeholders and develop safety or security-critical systems
targeting certification should benefit from this model, as certification standards
such as CENELEC 50128 [11] or Common Criteria [12] often define the concept
of role that implies a security model.

The reification mechanism that uses a metalogic of Isabelle/HOL enables meta-
level term anti-quotations as references to objects in HOL. Term anti-quotations
semantics blends into Isabelle/DOF diagnostic commands semantics and a new
meaning emerge where meta-level term anti-quotations are not just references to
empty syntactic categories but to terms that are checked or evaluated and support
cascading term anti-quotations. They also open ways to define ontologies with
introspective support: an ontology can represent knowledge about formal elements
of theories like theorems and prove properties on them, and ontologies can also
represent knowledge about object logic to give information about this logic par-
ticularities. The reification mechanism also enables proof terms rewriting. We
propose a methodoly that uses this possibility to embed ontological information
into proof objects. The added meta-data should help in proof script reconstruc-
tion: a proof assistant using a different proof script language and a different tactic
language could use a domain ontology as reference to understand how the embed-
ded meta-data can be used to reconstruct a theorem using its own languages. And
it could infer the structure of the theorem by looking at the structure of the proof
object that recreates the structure of the theorem using meta-data as subproof
objects.

6.2 Future Work
The ideas for future extensions fall into two categories: extensions of the Is-
abelle/DOF framework and interaction with external tools and environments.

6.2.1 Extension of the Isabelle/DOF Framework
An important aspect of Isabelle/DOF is the possibility to prove properties on
ontologies. For now very few proofs were written to certify the behavior of Is-
abelle/DOF, and the examples are handcrafted without considering ontologies as
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meta objects to find general properties on ontologies and prove them. A major
exploration should be done to have an eyesight of the full potential that the gen-
eration of a theory of meta-data offers. Also the new understanding of document
elements as objects of ontologies should be investigated to better understand the
implications. There should be potential properties on the new linking definition.

The support of parametric polymorphic allow to specify complex algebraic
structure for the linking between document elements. This should be extended to
support interaction with the IDE: then this new linking could help in integrating
rejects and accepts clauses of monitors as simple class attributes. This way
monitors could be redefined as simple ontological classes with an attribute that
specify constraints on the structure of the document, and the support of structural
constraints could be extended to support any type of computational model in
addition to regular expression such as CSP [109].

Class invariants in Isabelle/DOF only support 𝜆-terms as input source and
derive a theorem from it. We are thinking of extending invariants to support the-
orems as input. This way, the generation of theorems asserting properties on class
attributes could be simplified and delegated to the standard proof environment by
using proof scripts. The implementation might be complex due to the incremental
parsing process: a theorem can be referenced in a class if it is already written,
so we might have to support theorem definitions when declaring a new class or
maybe use a mechanism similar to the declare_reference∗ command which will
only generate the theorem from the proof script when the checking of invariants
is triggered, that is when declaring a class instance.

We saw in section 5.3 that the implementation of term anti-quotations does
not permit to generalize every meta-level term anti-quotations to support as input
source a specific embedded ML declaration that depends on the value of its argu-
ments. We need to have a better understanding of Isabelle/HOL parsing system
to know if it is possible to redefine term anti-quotations as we wish.

Adding support for polymorphism entails a dual role for a record value that
is referenced by a term anti-quotation (see section 4.2). We plan to work on a
new design for polymorphic term anti-quotations where they will have the same
behavior as definitions in Isabelle/HOL: they should be added to the logical context
with schematic type variables and these schematic variables should be fixed when
the term anti-quotation is elaborated.

The support of proof scripts with ontologized methods is for now just a proof
of concept. It requires a lot of code duplication that needs to be imported from
Isabelle implementation to be modified: we should investigate mechanisms that
will avoid the code duplication too, but we are not optimistic because the proof
object generation is deeply burried into Isabelle inference kernel. We have not
found an API entry to have access to this code and modify it without using du-
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plication. Maybe it would require an update of the Isabelle ML API to allow such
modifications.

The main ontology languages like OWL support multiple inheritance. This
might represent a challenge if we try to convert OWL-like ontologies to Is-
abelle/DOF which only supports single inheritance. The support of multiple
inheritance in Isabelle/DOF would imply a major redesign of Isabelle/DOF. If
wee keep with Isabelle/HOL records, we might offer a single inheritance but with
support for class attributes with extended properties. We draw our inspiration
from [110] that proposes classes whose attributes support values of two class in-
stances with different types if the two instances inherit from the same super class
at the same level in the class hierarchy. A true multiple inheritance support entails
the extension of the record package. Another approach might be to look at the
implementation of axiomatic classes in Isabelle/HOL that form an order sorted
algebra with multiple inheritance support.

6.2.2 Tool Interactions
To allow an interaction between theorem provers targeting theorem import/ex-
port techniques, we mention a domain ontology of reference. To be consensual, its
definition should involve stakeholders of several proof assistants to reach an agree-
ment regarding the categories that should be defined and how they need to be
defined. The main aspects to consider seem to be the logical language and and the
specification constructs that should be natively used the proof script language and
the tactic language. The ontology spares the burden of needing a fully formalized
language for proof scripts and tactics but should use formalized concepts associ-
ated with each language to help in proving properties on these languages. The
choice of the ontology language is also important. We argue that Isabelle/DOF
ODL could be implemented by a proof assistant with little effort if the proof assis-
tant uses a logical language as expressive as HOL. Meta level types will require a
metalogic for the proof assistant. Furthermore, if the proof assistant benefits from
advanced meta-programming features like Coq with METACoq [81], a mechanism
similar to term anti-quotations could be implemented, with the drawback of using
the metalogic specifications instead of the logic ones and thus requiring reflective
mechanisms when evaluating terms.

The major interaction that should be developed is access to the AFP. AFP
libraries are available for consultation online, so using Isabelle/DOF we should
be able to query remote libraries. But the main usage of the online access is
consultation, so a deeper integration into the AFP is desirable. As a first step,
Isabelle/DOF has been accepted in the AFP meanwhile as an ordinary component.
We should deploy an testing environment that exposes semantic information in
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addition to document elements. Is can simply be a server that stores AFP theories
such Isabelle/DOF itself and exposes semantic concepts. This deployed service
will serve as an example to explain what can be done with Isabelle/DOF. We
need to think about the design that will suit our needs: a thorough review of the
Distributed Assertion Management Framework [111] should help us in the choice
of technologies we plan to favor.

123



6.2. Future Work

124



Bibliography

[1] B. Parsia, B. Motik, P. Patel-Schneider, OWL 2 web ontology language
structural specification and functional-style syntax (second edition), W3C
recommendation, W3C, https://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/ (Dec. 2012).

[2] M. A. Musen, The protégé project: A look back and a look forward, AI
Matters 1 (4) (2015) 4–12. doi:10.1145/2757001.2757003.
URL https://doi.org/10.1145/2757001.2757003

[3] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, B. Wolff, Using the isabelle on-
tology framework, in: F. Rabe, W. M. Farmer, G. O. Passmore, A. Youssef
(Eds.), Intelligent Computer Mathematics, Springer International Publish-
ing, Cham, 2018, pp. 23–38.

[4] A. D. Brucker, B. Wolff, Isabelle/dof: Design and implementation, in: P. C.
Ölveczky, G. Salaün (Eds.), Software Engineering and Formal Methods,
Springer International Publishing, Cham, 2019, pp. 275–292.

[5] A. D. Brucker, B. Wolff, Using ontologies in formal developments target-
ing certification, in: W. Ahrendt, S. L. T. Tarifa (Eds.), Integrated Formal
Methods - 15th International Conference, IFM 2019, Bergen, Norway, De-
cember 2-6, 2019, Proceedings, Vol. 11918 of Lecture Notes in Computer
Science, Springer, 2019, pp. 65–82. doi:10.1007/978-3-030-34968-4_4.
URL https://doi.org/10.1007/978-3-030-34968-4_4

[6] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois,
F. Gilbert, P. Halmagrand, O. Hermant, R. Saillard, Dedukti: a logical
framework based on the 𝜆Π-calculus modulo theory, CoRR abs/2311.07185
(2023). arXiv:2311.07185, doi:10.48550/ARXIV.2311.07185.
URL https://doi.org/10.48550/arXiv.2311.07185

[7] G. Hondet, F. Blanqui, The new rewriting engine of dedukti (system de-
scription), in: Z. M. Ariola (Ed.), 5th International Conference on For-
mal Structures for Computation and Deduction, FSCD 2020, June 29-July

125

https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.1007/978-3-030-34968-4_4
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
http://arxiv.org/abs/2311.07185
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.48550/arXiv.2311.07185
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35


Bibliography

6, 2020, Paris, France (Virtual Conference), Vol. 167 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 35:1–35:16. doi:
10.4230/LIPICS.FSCD.2020.35.
URL https://doi.org/10.4230/LIPIcs.FSCD.2020.35

[8] W. Crichton, S. Krishnamurthi, A core calculus for documents: Or, lambda:
The ultimate document, Proc. ACM Program. Lang. 8 (POPL) (jan 2024).
doi:10.1145/3632865.
URL https://doi.org/10.1145/3632865

[9] L. C. Paulson, Designing a theorem prover, CoRR cs.LO/9301110 (1993).
URL https://arxiv.org/abs/cs/9301110

[10] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, B. Wolff, Using the Is-
abelle ontology framework: Linking the formal with the informal, in:
Conference on Intelligent Computer Mathematics (CICM), no. 11006 in
Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 2018.
doi:10.1007/978-3-319-96812-4_3.
URL https://www.brucker.ch/bibliography/abstract/brucker.
ea-isabelle-ontologies-2018

[11] Bs en 50128:2011: Railway applications – communication, signalling and
processing systems – software for railway control and protecting systems,
Standard, Britisch Standards Institute (BSI) (Apr. 2014).

[12] Common criteria for information technology security evaluation (version
3.1, release 5), available at https://www.commoncriteriaportal.org/cc/.
(2017).

[13] S. Roßkopf, T. Nipkow, A formalization and proof checker for is-
abelle’s metalogic, J. Autom. Reason. 67 (1) (2023) 1. doi:10.1007/
S10817-022-09648-W.
URL https://doi.org/10.1007/s10817-022-09648-w

[14] L. C. Paulson, T. Nipkow, M. Wenzel, From LCF to isabelle/hol, Formal As-
pects Comput. 31 (6) (2019) 675–698. doi:10.1007/S00165-019-00492-1.
URL https://doi.org/10.1007/s00165-019-00492-1

[15] L. C. Paulson, Isabelle: The next 700 theorem provers, CoRR cs.LO/9301106
(1993).
URL https://arxiv.org/abs/cs/9301106

126

https://doi.org/10.4230/LIPICS.FSCD.2020.35
https://doi.org/10.4230/LIPICS.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.1145/3632865
https://doi.org/10.1145/3632865
https://doi.org/10.1145/3632865
https://doi.org/10.1145/3632865
https://arxiv.org/abs/cs/9301110
https://arxiv.org/abs/cs/9301110
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://doi.org/10.1007/978-3-319-96812-4_3
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.commoncriteriaportal.org/cc/
https://doi.org/10.1007/s10817-022-09648-w
https://doi.org/10.1007/s10817-022-09648-w
https://doi.org/10.1007/S10817-022-09648-W
https://doi.org/10.1007/S10817-022-09648-W
https://doi.org/10.1007/s10817-022-09648-w
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/S00165-019-00492-1
https://doi.org/10.1007/s00165-019-00492-1
https://arxiv.org/abs/cs/9301106
https://arxiv.org/abs/cs/9301106


Bibliography

[16] L. C. Paulson, The foundation of a generic theorem prover, J. Autom. Rea-
son. 5 (3) (1989) 363–397. doi:10.1007/BF00248324.
URL https://doi.org/10.1007/BF00248324

[17] S. Berghofer, Proofs, programs and executable specifications in higher order
logic, Ph.D. thesis, Technical University Munich, Germany (2003).
URL https://mediatum.ub.tum.de/601727

[18] M. Wenzel, Isar - A generic interpretative approach to readable formal proof
documents, in: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin-Mohring,
L. Théry (Eds.), Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs’99, Nice, France, September, 1999, Proceedings, Vol.
1690 of Lecture Notes in Computer Science, Springer, 1999, pp. 167–184.
doi:10.1007/3-540-48256-3\_12.
URL https://doi.org/10.1007/3-540-48256-3_12

[19] M. Wenzel, Isabelle, isar - a versatile environment for human readable formal
proof documents, Ph.D. thesis, Technical University Munich, Germany
(2002).
URL http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/
wenzel.pdf

[20] M. Wenzel, The Isabelle/Isar Reference Manual, part of the Isabelle distri-
bution. (2020).

[21] M. Wenzel, The Isabelle/Isar Implementation, part of the Isabelle distribu-
tion. (2023).

[22] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL—A Proof Assistant
for Higher-Order Logic, Vol. 2283 of LNCS, Springer, 2002. doi:10.1007/
3-540-45949-9.

[23] M. J. C. Gordon, T. F. Melham (Eds.), Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic, Cambridge University Press,
1993.

[24] A. Church, A formulation of the simple theory of types, Journal of Symbolic
Logic 5 (2) (1940) 56–68. doi:10.2307/2266170.

[25] F. Haftmann, Code generation from specifications in higher-order logic,
Ph.D. thesis, Technical University Munich (2009).
URL http://mediatum2.ub.tum.de/node?id=886023

127

https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/BF00248324
https://mediatum.ub.tum.de/601727
https://mediatum.ub.tum.de/601727
https://mediatum.ub.tum.de/601727
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.2307/2266170
http://mediatum2.ub.tum.de/node?id=886023
http://mediatum2.ub.tum.de/node?id=886023


Bibliography

[26] T. Nipkow, Order-sorted polymorphism in Isabelle, in: G. Huet, G. Plotkin
(Eds.), Workshop on Logical Environments, 1993, pp. 164–188.

[27] T. Nipkow, C. Prehofer, Type reconstruction for type classes, Journal of
Functional Programming 5 (2) (1995) 201–224.

[28] A. D. Brucker, B. Wolff, Isabelle/DOF: Design and implementation, in:
P. C. Ölveczky, G. Salaün (Eds.), Software Engineering and Formal Methods
(SEFM), no. 11724 in Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, 2019. doi:10.1007/978-3-030-30446-1_15.
URL https://www.brucker.ch/bibliography/abstract/brucker.
ea-isabelledof-2019

[29] M. Horridge, S. Bechhofer, The OWL API: A java API for OWL ontologies,
Semantic Web 2 (1) (2011) 11–21. doi:10.3233/SW-2011-0025.
URL https://doi.org/10.3233/SW-2011-0025

[30] M. Wenzel, Isabelle as document-oriented proof assistant, in: J. H. Daven-
port, W. M. Farmer, J. Urban, F. Rabe (Eds.), Intelligent Computer Math-
ematics - 18th Symposium, Calculemus 2011, and 10th International Con-
ference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings, Vol.
6824 of Lecture Notes in Computer Science, Springer, 2011, pp. 244–259.
doi:10.1007/978-3-642-22673-1\_17.
URL https://doi.org/10.1007/978-3-642-22673-1_17

[31] M. Wenzel, READ-EVAL-PRINT in parallel and asynchronous proof-
checking, in: C. Kaliszyk, C. Lüth (Eds.), Proceedings 10th International
Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen,
Germany, July 11th, 2012, Vol. 118 of EPTCS, 2012, pp. 57–71. doi:
10.4204/EPTCS.118.4.
URL https://doi.org/10.4204/EPTCS.118.4

[32] M. Wenzel, Asynchronous user interaction and tool integration in is-
abelle/pide, in: G. Klein, R. Gamboa (Eds.), Interactive Theorem Prov-
ing - 5th International Conference, ITP 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceed-
ings, Vol. 8558 of Lecture Notes in Computer Science, Springer, 2014, pp.
515–530. doi:10.1007/978-3-319-08970-6\_33.
URL https://doi.org/10.1007/978-3-319-08970-6_33

[33] M. Wenzel, Interaction with formal mathematical documents in is-
abelle/pide, in: C. Kaliszyk, E. C. Brady, A. Kohlhase, C. S. Coen (Eds.),
Intelligent Computer Mathematics - 12th International Conference, CICM

128

https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://doi.org/10.1007/978-3-030-30446-1_15
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.4204/EPTCS.118.4
https://doi.org/10.4204/EPTCS.118.4
https://doi.org/10.4204/EPTCS.118.4
https://doi.org/10.4204/EPTCS.118.4
https://doi.org/10.4204/EPTCS.118.4
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-030-23250-4_1


Bibliography

2019, Prague, Czech Republic, July 8-12, 2019, Proceedings, Vol. 11617
of Lecture Notes in Computer Science, Springer, 2019, pp. 1–15. doi:
10.1007/978-3-030-23250-4\_1.
URL https://doi.org/10.1007/978-3-030-23250-4_1

[34] M. Wenzel, Isabelle/jEdit, part of the Isabelle distribution. (2023).

[35] M. Wenzel, B. Wolff, Building formal method tools in the Isabelle/Isar frame-
work, in: K. Schneider, J. Brandt (Eds.), TPHOLs 2007, no. 4732 in LNCS,
Springer, 2007, pp. 352–367. doi:10.1007/978-3-540-74591-4_26.

[36] F. Haftmann, T. Nipkow, Code generation via higher-order rewrite systems,
in: M. Blume, N. Kobayashi, G. Vidal (Eds.), Functional and Logic Program-
ming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April
19-21, 2010. Proceedings, Vol. 6009 of Lecture Notes in Computer Science,
Springer, 2010, pp. 103–117. doi:10.1007/978-3-642-12251-4_9.
URL https://doi.org/10.1007/978-3-642-12251-4_9

[37] K. Aehlig, F. Haftmann, T. Nipkow, A compiled implementation of nor-
malisation by evaluation, J. Funct. Program. 22 (1) (2012) 9–30. doi:
10.1017/S0956796812000019.
URL https://doi.org/10.1017/S0956796812000019

[38] A. V. Hess, S. Mödersheim, A. D. Brucker, A. Schlichtkrull, Performing
security proofs of stateful protocols, in: 34th IEEE Computer Secu-
rity Foundations Symposium (CSF), Vol. 1, IEEE, 2021, pp. 143–158.
doi:10.1109/CSF51468.2021.00006.
URL https://www.brucker.ch/bibliography/abstract/hess.
ea-performing-2021

[39] M. R. Quillian, Word concepts: A theory and simulation of some basic
semantic capabilities, Behavioral Science 12 (5) (1967) 410–430. arXiv:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bs.3830120511,
doi:https://doi.org/10.1002/bs.3830120511.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/bs.
3830120511

[40] M. Minsky, A framework for representing knowledge, Tech. rep., USA (1974).

[41] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation and
Applications, 2nd Edition, Cambridge University Press. doi:10.1017/
CBO9780511711787.

129

https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-540-74591-4_26
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1017/S0956796812000019
https://www.brucker.ch/bibliography/abstract/hess.ea-performing-2021
https://www.brucker.ch/bibliography/abstract/hess.ea-performing-2021
https://doi.org/10.1109/CSF51468.2021.00006
https://www.brucker.ch/bibliography/abstract/hess.ea-performing-2021
https://www.brucker.ch/bibliography/abstract/hess.ea-performing-2021
https://onlinelibrary.wiley.com/doi/abs/10.1002/bs.3830120511
https://onlinelibrary.wiley.com/doi/abs/10.1002/bs.3830120511
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bs.3830120511
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bs.3830120511
https://doi.org/https://doi.org/10.1002/bs.3830120511
https://onlinelibrary.wiley.com/doi/abs/10.1002/bs.3830120511
https://onlinelibrary.wiley.com/doi/abs/10.1002/bs.3830120511
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787


Bibliography

[42] R. Dapoigny, P. Barlatier, Modeling ontological structures with type classes
in coq, in: H. D. Pfeiffer, D. I. Ignatov, J. Poelmans, N. Gadiraju (Eds.),
Conceptual Structures for STEM Research and Education, 20th Interna-
tional Conference on Conceptual Structures, ICCS 2013, Mumbai, India,
January 10-12, 2013. Proceedings, Vol. 7735 of Lecture Notes in Computer
Science, Springer, 2013, pp. 135–152. doi:10.1007/978-3-642-35786-2\
_11.
URL https://doi.org/10.1007/978-3-642-35786-2_11

[43] G. Guizzardi, H. Herre, G. Wagner, On the general ontological foundations
of conceptual modeling, in: S. Spaccapietra, S. T. March, Y. Kambayashi
(Eds.), Conceptual Modeling - ER 2002, 21st International Conference on
Conceptual Modeling, Tampere, Finland, October 7-11, 2002, Proceedings,
Vol. 2503 of Lecture Notes in Computer Science, Springer, 2002, pp. 65–78.
doi:10.1007/3-540-45816-6\_15.
URL https://doi.org/10.1007/3-540-45816-6_15

[44] M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and
frame-based languages, J. ACM 42 (4) (1995) 741–843. doi:10.1145/
210332.210335.
URL https://doi.org/10.1145/210332.210335

[45] G. Yang, M. Kifer, C. Zhao, Flora-2: A rule-based knowledge representation
and inference infrastructure for the semantic web, in: R. Meersman, Z. Tari,
D. C. Schmidt (Eds.), On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE - OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November
3-7, 2003, Vol. 2888 of Lecture Notes in Computer Science, Springer, 2003,
pp. 671–688. doi:10.1007/978-3-540-39964-3\_43.
URL https://doi.org/10.1007/978-3-540-39964-3_43

[46] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker: Ontology based
access to distributed and semi-structured information, in: R. Meersman,
Z. Tari, S. M. Stevens (Eds.), Database Semantics - Semantic Issues in Multi-
media Systems, IFIP TC2/WG2.6 Eighth Working Conference on Database
Semantics (DS-8), Rotorua, New Zealand, January 4-8, 1999, Vol. 138 of
IFIP Conference Proceedings, Kluwer, 1999, pp. 351–369.

[47] B. N. Grosof, M. Kifer, T. Swift, P. Fodor, J. Bloomfield, Ergo: A quest
for declarativity in logic programming, in: D. S. Warren, V. Dahl, T. Eiter,
M. V. Hermenegildo, R. A. Kowalski, F. Rossi (Eds.), Prolog: The Next 50
Years, Vol. 13900 of Lecture Notes in Computer Science, Springer, 2023, pp.

130

https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/3-540-45816-6_15
https://doi.org/10.1007/3-540-45816-6_15
https://doi.org/10.1007/3-540-45816-6_15
https://doi.org/10.1007/3-540-45816-6_15
https://doi.org/10.1145/210332.210335
https://doi.org/10.1145/210332.210335
https://doi.org/10.1145/210332.210335
https://doi.org/10.1145/210332.210335
https://doi.org/10.1145/210332.210335
https://doi.org/10.1007/978-3-540-39964-3_43
https://doi.org/10.1007/978-3-540-39964-3_43
https://doi.org/10.1007/978-3-540-39964-3_43
https://doi.org/10.1007/978-3-540-39964-3_43
https://doi.org/10.1007/978-3-031-35254-6_18
https://doi.org/10.1007/978-3-031-35254-6_18


Bibliography

224–236. doi:10.1007/978-3-031-35254-6\_18.
URL https://doi.org/10.1007/978-3-031-35254-6_18

[48] D. Brickley, R. Guha, RDF schema 1.1, W3C recommendation, W3C,
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/ (Feb. 2014).

[49] M. Krötzsch, P. Hitzler, B. Parsia, P. Patel-Schneider, S. Rudolph,
OWL 2 web ontology language primer (second edition), W3C recommen-
dation, W3C, https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
(Dec. 2012).

[50] E. Prud’hommeaux, A. Seaborne, SPARQL query language for RDF,
W3C recommendation, W3C, https://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/ (Jan. 2008).

[51] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Groso-
fand, M. Dean, SWRL: A semantic web rule language combining OWL
and RuleML, W3C Member Submission, last access on Dez 2008 at:
http://www.w3.org/Submission/SWRL/ (May 2004).
URL http://www.w3.org/Submission/SWRL/

[52] M. J. O’Connor, A. K. Das, SQWRL: A query language for OWL, in:
R. Hoekstra, P. F. Patel-Schneider (Eds.), Proceedings of the 5th Inter-
national Workshop on OWL: Experiences and Directions (OWLED 2009),
Chantilly, VA, United States, October 23-24, 2009, Vol. 529 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2009.
URL https://ceur-ws.org/Vol-529/owled2009_submission_42.pdf

[53] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical
OWL-DL reasoner, J. Web Semant. 5 (2) (2007) 51–53. doi:10.1016/J.
WEBSEM.2007.03.004.
URL https://doi.org/10.1016/j.websem.2007.03.004

[54] D. Tsarkov, I. Horrocks, Fact++ description logic reasoner: System descrip-
tion, in: U. Furbach, N. Shankar (Eds.), Automated Reasoning, Third Inter-
national Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, Vol. 4130 of Lecture Notes in Computer Science, Springer,
2006, pp. 292–297. doi:10.1007/11814771\_26.
URL https://doi.org/10.1007/11814771_26

[55] N. F. Noy, M. A. Musen, The PROMPT suite: interactive tools for ontology
merging and mapping, Int. J. Hum. Comput. Stud. 59 (6) (2003) 983–1024.
doi:10.1016/J.IJHCS.2003.08.002.
URL https://doi.org/10.1016/j.ijhcs.2003.08.002

131

https://doi.org/10.1007/978-3-031-35254-6_18
https://doi.org/10.1007/978-3-031-35254-6_18
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://ceur-ws.org/Vol-529/owled2009_submission_42.pdf
https://ceur-ws.org/Vol-529/owled2009_submission_42.pdf
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.1016/J.WEBSEM.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/11814771_26
https://doi.org/10.1016/j.ijhcs.2003.08.002
https://doi.org/10.1016/j.ijhcs.2003.08.002
https://doi.org/10.1016/J.IJHCS.2003.08.002
https://doi.org/10.1016/j.ijhcs.2003.08.002


Bibliography

[56] J. Euzenat, P. Shvaiko, Ontology Matching, Second Edition., Springer, 2013.
doi:10.1007/978-3-642-38721-0.

[57] Web service modeling language (wsml), Tech. rep., W3C,
https://www.w3.org/submissions/WSML/ (Jun. 2005).

[58] B. N. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs:
combining logic programs with description logic, in: G. Hencsey, B. White,
Y. R. Chen, L. Kovács, S. Lawrence (Eds.), Proceedings of the Twelfth In-
ternational World Wide Web Conference, WWW 2003, Budapest, Hungary,
May 20-24, 2003, ACM, 2003, pp. 48–57. doi:10.1145/775152.775160.
URL https://doi.org/10.1145/775152.775160

[59] G. i. Stephan, H. i. Pascal, A. i. Andreas, Knowledge Representation and
Ontologies, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 51–105.
doi:10.1007/3-540-70894-4_3.
URL https://doi.org/10.1007/3-540-70894-4_3

[60] ISO Central Secretary, Industrial automation systems and integration - parts
library - part 1: Overview and fundamental principles, Standard ISO 13584-
1:2001, International Organization for Standardization, Geneva, CH (2001).
URL https://www.iso.org/standard/25103.html

[61] ISO Central Secretary, Industrial automation systems and integration - parts
library - part 24: Logical resource: Logical model of supplier library, Stan-
dard ISO 13584-24:2003, International Organization for Standardization,
Geneva, CH (2003).
URL https://www.iso.org/standard/34070.html

[62] G. Pierra, Context-explication in conceptual ontologies: the PLIB approach,
in: R. Jardim-Gonçalves, J. Cha, A. Steiger-Garção (Eds.), Enhanced Inter-
operable Systems. Proceedings of the 10th ISPE International Conference
on Concurrent Engineering (ISPE CE 2003), July 26-30, 2003, Madeira,
Portugal, A. A. Balkema Publishers, 2003, pp. 243–253.

[63] ISO Central Secretary, Industrial automation systems and integration - prod-
uct data representation and exchange - part 11: Description methods: The
express language reference manual, Standard ISO 10303-11:2004, Interna-
tional Organization for Standardization, Geneva, CH (2003).
URL https://www.iso.org/standard/38047.html

[64] D. Schenck, P. Wilson, Information Modeling: The EXPRESS Way, Oxford
University Press, 1994. doi:10.1093/oso/9780195087147.001.0001.
URL https://doi.org/10.1093/oso/9780195087147.001.0001

132

https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1145/775152.775160
https://doi.org/10.1145/775152.775160
https://doi.org/10.1145/775152.775160
https://doi.org/10.1145/775152.775160
https://doi.org/10.1007/3-540-70894-4_3
https://doi.org/10.1007/3-540-70894-4_3
https://doi.org/10.1007/3-540-70894-4_3
https://doi.org/10.1007/3-540-70894-4_3
https://www.iso.org/standard/25103.html
https://www.iso.org/standard/25103.html
https://www.iso.org/standard/25103.html
https://www.iso.org/standard/34070.html
https://www.iso.org/standard/34070.html
https://www.iso.org/standard/34070.html
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/38047.html
https://www.iso.org/standard/38047.html
https://doi.org/10.1093/oso/9780195087147.001.0001
https://doi.org/10.1093/oso/9780195087147.001.0001
https://doi.org/10.1093/oso/9780195087147.001.0001


Bibliography

[65] Y. A. Ameur, F. Besnard, P. Girard, G. Pierra, J. Potier, Formal specifica-
tion and metaprogramming in the EXPRESS language, in: SEKE’95, The
7th International Conference on Software Engineering and Knowledge Engi-
neering, June 22-24, 1995, Rockville, Maryland, USA, Proceedings, Knowl-
edge Systems Institute, 1995, pp. 181–188.

[66] S. Jean, G. Pierra, Y. A. Ameur, Domain ontologies: A database-oriented
analysis, in: J. Filipe, J. Cordeiro, V. Pedrosa (Eds.), Web Information
Systems and Technologies, International Conferences, WEBIST 2005 and
WEBIST 2006. Revised Selected Papers, Vol. 1 of Lecture Notes in Busi-
ness Information Processing, Springer, 2006, pp. 238–254. doi:10.1007/
978-3-540-74063-6\_19.
URL https://doi.org/10.1007/978-3-540-74063-6_19

[67] Y. A. Ameur, D. Méry, Making explicit domain knowledge in formal system
development, Sci. Comput. Program. 121 (2016) 100–127. doi:10.1016/J.
SCICO.2015.12.004.
URL https://doi.org/10.1016/j.scico.2015.12.004

[68] J. Abrial, L. Mussat, Introducing dynamic constraints in B, in: D. Bert
(Ed.), B’98: Recent Advances in the Development and Use of the B Method,
Second International B Conference, Montpellier, France, April 22-24, 1998,
Proceedings, Vol. 1393 of Lecture Notes in Computer Science, Springer, 1998,
pp. 83–128. doi:10.1007/BFB0053357.
URL https://doi.org/10.1007/BFb0053357

[69] K. Hacid, Y. A. Ameur, Strengthening MDE and formal design models by
references to domain ontologies. A model annotation based approach, in:
T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal Methods,
Verification and Validation: Foundational Techniques - 7th International
Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, Vol. 9952 of Lecture Notes in Computer Science, 2016, pp.
340–357. doi:10.1007/978-3-319-47166-2\_24.
URL https://doi.org/10.1007/978-3-319-47166-2_24

[70] L. Mohand-Oussaïd, I. Aït-Sadoune, Formal modelling of domain constraints
in event-b, in: Y. Ouhammou, M. Ivanovic, A. Abelló, L. Bellatreche (Eds.),
Model and Data Engineering - 7th International Conference, MEDI 2017,
Barcelona, Spain, October 4-6, 2017, Proceedings, Vol. 10563 of Lecture
Notes in Computer Science, Springer, 2017, pp. 153–166. doi:10.1007/
978-3-319-66854-3\_12.
URL https://doi.org/10.1007/978-3-319-66854-3_12

133

https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1016/J.SCICO.2015.12.004
https://doi.org/10.1016/J.SCICO.2015.12.004
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1007/BFb0053357
https://doi.org/10.1007/BFB0053357
https://doi.org/10.1007/BFb0053357
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-3-319-66854-3_12


Bibliography

[71] I. Aït-Sadoune, L. Mohand-Oussaïd, Building formal semantic domain
model: An event-b based approach, in: K. Schewe, N. K. Singh (Eds.),
Model and Data Engineering - 9th International Conference, MEDI 2019,
Toulouse, France, October 28-31, 2019, Proceedings, Vol. 11815 of Lecture
Notes in Computer Science, Springer, 2019, pp. 140–155. doi:10.1007/
978-3-030-32065-2\_10.
URL https://doi.org/10.1007/978-3-030-32065-2_10

[72] ISO Central Secretary, Industrial automation systems and integration - parts
library - part 32: Implementation resources: Ontoml: Product ontology
markup language, Standard ISO 13584-32:2010, International Organization
for Standardization, Geneva, CH (2010).
URL https://www.iso.org/standard/50639.html

[73] I. Mendil, Y. Aït-Ameur, N. K. Singh, G. Dupont, D. Méry, P. A. Palanque,
Formal domain-driven system development in event-b: Application to inter-
active critical systems, J. Syst. Archit. 135 (2023) 102798. doi:10.1016/J.
SYSARC.2022.102798.
URL https://doi.org/10.1016/j.sysarc.2022.102798

[74] M. J. Butler, I. Maamria, Practical theory extension in event-b, in: Z. Liu,
J. Woodcock, H. Zhu (Eds.), Theories of Programming and Formal Methods
- Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, Vol.
8051 of Lecture Notes in Computer Science, Springer, 2013, pp. 67–81. doi:
10.1007/978-3-642-39698-4\_5.
URL https://doi.org/10.1007/978-3-642-39698-4_5

[75] I. Mendil, Y. Aït-Ameur, N. K. Singh, D. Méry, P. A. Palanque, Stan-
dard conformance-by-construction with event-b, in: Formal Methods for
Industrial Critical Systems - 26th International Conference, FMICS, Paris,
France, Vol. 12863 of LNCS, Springer, 2021, pp. 126–146. doi:10.1007/
978-3-030-85248-1_8.

[76] S. J. T. Fotso, M. Frappier, R. Laleau, A. Mammar, Modeling the hybrid
ERTMS/ETCS level 3 standard using a formal requirements engineering
approach, in: Abstract State Machines, Alloy, B, TLA, VDM, and Z - 6th
International Conference, ABZ, Southampton, UK, Vol. 10817 of LLNCS,
Springer, 2018, pp. 262–276. doi:10.1007/978-3-319-91271-4_18.

[77] S. Foster, Y. Nemouchi, M. Gleirscher, R. Wei, T. Kelly, Integration of
formal proof into unified assurance cases with isabelle/sacm, Formal Aspects
Comput. 33 (6) (2021) 855–884. doi:10.1007/s00165-021-00537-4.
URL https://doi.org/10.1007/s00165-021-00537-4

134

https://doi.org/10.1007/978-3-030-32065-2_10
https://doi.org/10.1007/978-3-030-32065-2_10
https://doi.org/10.1007/978-3-030-32065-2_10
https://doi.org/10.1007/978-3-030-32065-2_10
https://doi.org/10.1007/978-3-030-32065-2_10
https://www.iso.org/standard/50639.html
https://www.iso.org/standard/50639.html
https://www.iso.org/standard/50639.html
https://www.iso.org/standard/50639.html
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1016/J.SYSARC.2022.102798
https://doi.org/10.1016/J.SYSARC.2022.102798
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/s00165-021-00537-4
https://doi.org/10.1007/s00165-021-00537-4
https://doi.org/10.1007/s00165-021-00537-4
https://doi.org/10.1007/s00165-021-00537-4


Bibliography

[78] D. P. Friedman, M. Wand, Reification: Reflection without metaphysics, in:
R. S. Boyer, E. S. Schneider, G. L. S. Jr. (Eds.), Proceedings of the 1984
ACM Conference on LISP and Functional Programming, LFP 1984, Austin,
Texas, USA, August 5-8, 1984, ACM, 1984, pp. 348–355. doi:10.1145/
800055.802051.
URL https://doi.org/10.1145/800055.802051

[79] P. Riviere, N. K. Singh, Y. A. Ameur, EB4EB: A framework for reflexive
event-b, in: 26th International Conference on Engineering of Complex Com-
puter Systems, ICECCS 2022, Hiroshima, Japan, March 26-30, 2022, IEEE,
2022, pp. 71–80. doi:10.1109/ICECCS54210.2022.00017.
URL https://doi.org/10.1109/ICECCS54210.2022.00017

[80] P. Rivière, N. K. Singh, Y. Aït-Ameur, Reflexive event-b: Semantics and
correctness the eb4eb framework, IEEE Transactions on Reliability (2022)
1–16doi:10.1109/TR.2022.3219649.

[81] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze,
G. Malecha, N. Tabareau, T. Winterhalter, The metacoq project, J. Au-
tom. Reason. 64 (5) (2020) 947–999. doi:10.1007/S10817-019-09540-0.
URL https://doi.org/10.1007/s10817-019-09540-0

[82] D. Annenkov, J. B. Nielsen, B. Spitters, Concert: a smart contract certifi-
cation framework in coq, in: J. Blanchette, C. Hritcu (Eds.), Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, ACM,
2020, pp. 215–228. doi:10.1145/3372885.3373829.
URL https://doi.org/10.1145/3372885.3373829

[83] B. Venners, J. Gosling, Visualizing with JavaDoc, https://www.artima.
com/articles/analyze-this#part3, [Online on artima.com; accessed 23-
02-2023] (2003).

[84] O. Corp., The Java API Documentation Generator, https://docs.oracle.
com/javase/1.5.0/docs/tool, [Online on artima.com; accessed 23-02-
2023] (2011).

[85] I. N. de Recherche en Informatique et en Automatique, The OCaml Man-
ual - Release 5, https://v2.ocaml.org/manual/ocamldoc.html, [Online
on artima.com; accessed 23-02-2023] (2022).

[86] M.Eberl and G. Klein and A. Lochbihler and T. Nipkow and L. Paulson
and R. Thiemann (eds), Archive of Formal Proofs, https://afp-isa.org,
Accessed: 2022-03-15 (2022).

135

https://doi.org/10.1145/800055.802051
https://doi.org/10.1145/800055.802051
https://doi.org/10.1145/800055.802051
https://doi.org/10.1145/800055.802051
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/TR.2022.3219649
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/S10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/3372885.3373829
https://www.artima.com/articles/analyze-this#part3
https://www.artima.com/articles/analyze-this#part3
https://docs.oracle.com/javase/1.5.0/docs/tool
https://docs.oracle.com/javase/1.5.0/docs/tool
https://v2.ocaml.org/manual/ocamldoc.html
https://afp-isa.org


Bibliography

[87] M. Kohlhase, F. Rabe, Experiences from exporting major proof assistant
libraries, J. Autom. Reason. 65 (8) (2021) 1265–1298. doi:10.1007/
s10817-021-09604-0.
URL https://doi.org/10.1007/s10817-021-09604-0

[88] I. Horrocks, P. F. Patel-Schneider, A proposal for an owl rules language, in:
S. I. Feldman, M. Uretsky, M. Najork, C. E. Wills (Eds.), Proceedings of
the 13th international conference on World Wide Web, WWW 2004, New
York, NY, USA, May 17-20, 2004, ACM, 2004, pp. 723–731. doi:10.1145/
988672.988771.
URL https://doi.org/10.1145/988672.988771

[89] M. Krötzsch, S. Rudolph, P. Hitzler, Description logic rules, in: M. Ghallab,
C. D. Spyropoulos, N. Fakotakis, N. M. Avouris (Eds.), ECAI 2008 - 18th
European Conference on Artificial Intelligence, Patras, Greece, July 21-25,
2008, Proceedings, Vol. 178 of Frontiers in Artificial Intelligence and Appli-
cations, IOS Press, 2008, pp. 80–84. doi:10.3233/978-1-58603-891-5-80.
URL https://doi.org/10.3233/978-1-58603-891-5-80

[90] T. Nipkow, Functional automata, Archive of Formal Proofshttps://
isa-afp.org/entries/Functional-Automata.html, Formal proof devel-
opment (March 2004).

[91] Eclipse Foundation, Atl - a model transformation technology, Accessed:
2022-03-15.
URL https://www.eclipse.org/atl/

[92] J. Breitner, B. Huffman, N. Mitchell, C. Sternagel, Certified hlints with
isabelle/holcf-prelude, CoRR abs/1306.1340 (2013). arXiv:1306.1340.
URL http://arxiv.org/abs/1306.1340

[93] P. Buneman, S. Khanna, W. C. Tan, Why and where: A characterization of
data provenance, in: J. V. den Bussche, V. Vianu (Eds.), Database Theory -
ICDT 2001, 8th International Conference, London, UK, January 4-6, 2001,
Proceedings, Vol. 1973 of Lecture Notes in Computer Science, Springer, 2001,
pp. 316–330. doi:10.1007/3-540-44503-X\_20.
URL https://doi.org/10.1007/3-540-44503-X_20

[94] J. Cheney, L. Chiticariu, W. C. Tan, Provenance in databases: Why, how,
and where, Found. Trends Databases 1 (4) (2009) 379–474. doi:10.1561/
1900000006.
URL https://doi.org/10.1561/1900000006

136

https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1007/s10817-021-09604-0
https://doi.org/10.1145/988672.988771
https://doi.org/10.1145/988672.988771
https://doi.org/10.1145/988672.988771
https://doi.org/10.1145/988672.988771
https://doi.org/10.3233/978-1-58603-891-5-80
https://doi.org/10.3233/978-1-58603-891-5-80
https://doi.org/10.3233/978-1-58603-891-5-80
https://isa-afp.org/entries/Functional-Automata.html
https://isa-afp.org/entries/Functional-Automata.html
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
http://arxiv.org/abs/1306.1340
http://arxiv.org/abs/1306.1340
http://arxiv.org/abs/1306.1340
http://arxiv.org/abs/1306.1340
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006
https://doi.org/10.1561/1900000006


Bibliography

[95] T. Imieliński, W. Lipski, Incomplete information in relational databases, J.
ACM 31 (4) (1984) 761–791. doi:10.1145/1634.1886.
URL https://doi.org/10.1145/1634.1886

[96] Y. Amsterdamer, D. Deutch, V. Tannen, Provenance for aggregate queries,
in: M. Lenzerini, T. Schwentick (Eds.), Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2011, June 12-16, 2011, Athens, Greece, ACM, 2011, pp. 153–164.
doi:10.1145/1989284.1989302.
URL https://doi.org/10.1145/1989284.1989302

[97] T. J. Green, G. Karvounarakis, V. Tannen, Provenance semirings, in:
L. Libkin (Ed.), Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 11-13, 2007,
Beijing, China, ACM, 2007, pp. 31–40. doi:10.1145/1265530.1265535.
URL https://doi.org/10.1145/1265530.1265535

[98] P. Senellart, Provenance and probabilities in relational databases, SIGMOD
Rec. 46 (4) (2017) 5–15. doi:10.1145/3186549.3186551.
URL https://doi.org/10.1145/3186549.3186551

[99] F. Haftmann, A. Krauss, O. Kuncar, T. Nipkow, Data refinement in is-
abelle/hol, in: S. Blazy, C. Paulin-Mohring, D. Pichardie (Eds.), Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings, Vol. 7998 of Lecture Notes in Computer Sci-
ence, Springer, 2013, pp. 100–115. doi:10.1007/978-3-642-39634-2\_10.
URL https://doi.org/10.1007/978-3-642-39634-2_10

[100] B. Huffman, O. Kuncar, Lifting and transfer: A modular design for quo-
tients in isabelle/hol, in: G. Gonthier, M. Norrish (Eds.), Certified Pro-
grams and Proofs - Third International Conference, CPP 2013, Melbourne,
VIC, Australia, December 11-13, 2013, Proceedings, Vol. 8307 of Lecture
Notes in Computer Science, Springer, 2013, pp. 131–146. doi:10.1007/
978-3-319-03545-1\_9.
URL https://doi.org/10.1007/978-3-319-03545-1_9

[101] C. Keller, B. Werner, Importing HOL light into coq, in: M. Kaufmann,
L. C. Paulson (Eds.), Interactive Theorem Proving, First International Con-
ference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, Vol.
6172 of Lecture Notes in Computer Science, Springer, 2010, pp. 307–322.
doi:10.1007/978-3-642-14052-5\_22.
URL https://doi.org/10.1007/978-3-642-14052-5_22

137

https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-642-14052-5_22
https://doi.org/10.1007/978-3-642-14052-5_22
https://doi.org/10.1007/978-3-642-14052-5_22


Bibliography

[102] D. Delahaye, A tactic language for the system coq, in: M. Parigot,
A. Voronkov (Eds.), Logic for Programming and Automated Reasoning, 7th
International Conference, LPAR 2000, Reunion Island, France, November
11-12, 2000, Proceedings, Vol. 1955 of Lecture Notes in Computer Science,
Springer, 2000, pp. 85–95. doi:10.1007/3-540-44404-1\_7.
URL https://doi.org/10.1007/3-540-44404-1_7

[103] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, V. Vafeiadis, Mtac:
a monad for typed tactic programming in coq, in: G. Morrisett, T. Uustalu
(Eds.), ACM SIGPLAN International Conference on Functional Program-
ming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, ACM, 2013,
pp. 87–100. doi:10.1145/2500365.2500579.
URL https://doi.org/10.1145/2500365.2500579

[104] R. Cauderlier, Tactics and certificates in meta dedukti, in: J. Avigad,
A. Mahboubi (Eds.), Interactive Theorem Proving - 9th International Con-
ference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, Vol. 10895 of Lecture
Notes in Computer Science, Springer, 2018, pp. 142–159. doi:10.1007/
978-3-319-94821-8\_9.
URL https://doi.org/10.1007/978-3-319-94821-8_9

[105] D. Matichuk, T. C. Murray, M. Wenzel, Eisbach: A proof method lan-
guage for isabelle, J. Autom. Reason. 56 (3) (2016) 261–282. doi:10.1007/
S10817-015-9360-2.
URL https://doi.org/10.1007/s10817-015-9360-2

[106] D. Matichuk, T. C. Murray, M. Wenzel, The Eisbach User Manual, part of
the Isabelle distribution. (2023).

[107] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, J. von Raumer, The
lean theorem prover (system description), in: A. P. Felty, A. Middeldorp
(Eds.), Automated Deduction - CADE-25 - 25th International Conference
on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings,
Vol. 9195 of Lecture Notes in Computer Science, Springer, 2015, pp. 378–388.
doi:10.1007/978-3-319-21401-6\_26.
URL https://doi.org/10.1007/978-3-319-21401-6_26

[108] N. de Bruijn, Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser
theorem, Indagationes Mathematicae (Proceedings) 75 (5) (1972) 381–392.
doi:https://doi.org/10.1016/1385-7258(72)90034-0.

138

https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1007/978-3-319-94821-8_9
https://doi.org/10.1007/978-3-319-94821-8_9
https://doi.org/10.1007/978-3-319-94821-8_9
https://doi.org/10.1007/978-3-319-94821-8_9
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/S10817-015-9360-2
https://doi.org/10.1007/S10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0


Bibliography

URL https://www.sciencedirect.com/science/article/pii/
1385725872900340

[109] S. Taha, L. Ye, B. Wolff, HOL-CSP Version 2.0, Archive of Formal
Proofshttp://isa-afp.org/entries/HOL-CSP.html (Apr. 2019).

[110] A. D. Brucker, B. Wolff, An extensible encoding of object-oriented data
models in hol, J. Autom. Reason. 41 (3-4) (2008) 219–249. doi:10.1007/
S10817-008-9108-3.
URL https://doi.org/10.1007/s10817-008-9108-3

[111] F. A. Wardani, K. Chaudhuri, D. Miller, Formal reasoning using dis-
tributed assertions, in: U. Sattler, M. Suda (Eds.), Frontiers of Com-
bining Systems - 14th International Symposium, FroCoS 2023, Prague,
Czech Republic, September 20-22, 2023, Proceedings, Vol. 14279 of Lecture
Notes in Computer Science, Springer, 2023, pp. 176–194. doi:10.1007/
978-3-031-43369-6\_10.
URL https://doi.org/10.1007/978-3-031-43369-6_10

139

https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/s10817-008-9108-3
https://doi.org/10.1007/s10817-008-9108-3
https://doi.org/10.1007/S10817-008-9108-3
https://doi.org/10.1007/S10817-008-9108-3
https://doi.org/10.1007/s10817-008-9108-3
https://doi.org/10.1007/978-3-031-43369-6_10
https://doi.org/10.1007/978-3-031-43369-6_10
https://doi.org/10.1007/978-3-031-43369-6_10
https://doi.org/10.1007/978-3-031-43369-6_10
https://doi.org/10.1007/978-3-031-43369-6_10

	1 Introduction
	1.1 Context
	1.2 Contribution
	1.3 Structure of the Thesis

	2 Background
	2.1 Introduction
	2.2 The LCF Approach
	2.3 The Isabelle/Pure Framework
	2.4 The Isabelle/Isar Framework
	2.5 Isabelle/HOL
	2.6 Axiomatic Type Classes
	2.7 The Isabelle/DOF Framework
	2.8 The Isabelle IDE
	2.9 The Isabelle/Pure API
	2.9.1 Contexts
	2.9.2 Name Spaces
	2.9.3 Markups
	2.9.4 Configuration Options

	2.10 Term-Evaluations in Isabelle
	2.11 Ontology Examples
	2.12 Related Works

	3 Term-Contexts and Isabelle/DOF Extension
	3.1 Introduction
	3.2 Term-Contexts
	3.3 Invariants
	3.4 Monitors Extension
	3.5 Queries in Isabelle/DOF
	3.6 Proving Morphisms on Ontologies
	3.7 Conclusion

	4 Parametric Polymorphic Classes for Ontologies
	4.1 Introduction
	4.2 Polymorphism Implementation
	4.3 Modeling ``Provenance'' in ODL
	4.4 An Access-Control Model for Integrated Isabelle/HOL Documents
	4.5 Conclusion

	5 Deep Isabelle/DOF
	5.1 Introduction
	5.2 Proof Objects in Isabelle
	5.3 Meta Types Reification and Term Anti-Quotations
	5.4 Proof Objects with Meta-Data
	5.5 Conclusion

	6 Conclusion
	6.1 Achievements
	6.2 Future Work
	6.2.1 Extension of the Isabelle/DOF Framework
	6.2.2 Tool Interactions



