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À mon père.
Parce que les bulles

c’est de la physique stylée.
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Résumé
La présence de bulles dans des écoulements contribuent à augmenter le mélange, ainsi que les

échanges de matière et de chaleur entre les deux phases. Leur présence est ainsi primordiale dans
un grand nombre de procédés industriels ainsi que dans des contextes environnementaux, carac-
térisés par des écoulements inertiels voire turbulents. Pour quantifier l’impact des bulles, il faut
d’abord comprendre et modéliser leur distribution de taille, et son évolution temporelle. Dans
des environements dilués, où l’évolution de la distribution est contrôlée par la fragmentation, la
distribution présente deux lois de puissance séparées par une taille critique.

Dans un premier temps, nous nous intéressons à l’origine de la taille critique. Celle-ci corres-
pond à la limite entre les bulles stables et instables, appelée échelle de Kolmogorov-Hinze. Les
écoulements turbulents étant intrinsèquement caractérisés par de larges fluctuations, à la fois
de pression et de vitesse, cette taille critique reste mal définie. Ici, nous proposons une nouvelle
définition, probabiliste, de cette limite, qui inclue le temps de résidence des bulles dans les zones
turbulentes. Pour cela, nous étudions numériquement la déformation d’une bulle, d’abord dans
une géométrie d’écoulement modèle puis dans un écoulement turbulent homogène isotrope. Dans
les deux cas, nous montrons que la dynamique de déformation peut être reproduite par une dy-
namique 1D sur le mode de déformation oblate-prolate. En extrapolant la dynamique obtenue
dans le cas turbulent à des bulles qui cassent, nous quantifions la probabilité de fracture en un
temps donné et en déduisons l’évolution de la taille critique au cours du temps.

Dans un second temps, nous nous intéressons à la génération de bulles sous l’échelle de
Kolmogorov-Hinze. En effet, s’il y a un consensus sur l’origine de la distribution des bulles plus
grandes que la taille critique, l’origine de la distribution pour les petites bulles restait à déter-
miner. Grâce à des simulations numériques directes, nous identifions que ces bulles proviennent
de la rupture de filaments gazeux produits lors de la déformation de bulles plus grandes que
l’échelle critique. Nous caractérisons ensuite la production et la fragmentation de ces filaments
dans une géométrie d’écoulement modèle. Nous découvrons que la fragmentation de ligaments
sous contrainte d’étirement conduit à une distribution de taille de bulles en loi de puissance qui
coïncide avec la distribution sous l’échelle critique en turbulence.

Mots clés : bulle, turbulence, fragmentation, déformation, simulations numériques, modélisa-
tion

iv



Abstract
Through their contributions to mixing, gas and heat transfers and aerosol production,

bubbles play a central role in many industrial and environmental contexts, characterized by
inertial flows, possibly turbulent. Understanding the physical processes controlling the bubble
size distribution (BSD) and its temporal evolution, is key to quantify these exchanges. In di-
lute environments, in which breakup dominates, the BSD is characterized by two power laws
separated by a critical size.

We first focus on the origin of this critical size. This size is known to be related to the
Kolmogorov-Hinze scale, the size separating statistically stable, from unstable bubbles in turbu-
lence. As a turbulent flow is characterized by large velocity and pressure fluctuations, this size
is only defined in a statistical sense. We give here a new definition of this critical size, in terms
of survival probability, which includes the residence time of bubbles within turbulent regions.
To do so, we investigate numerically bubble deformations first in a model flow geometry and
then in 3D homogeneous and isotropic turbulence (HIT). In both cases, we find that most of
bubble deformation dynamics can be reproduced by a 1D model of the oblate-prolate mode. By
extrapolating the deformation model obtained in turbulence to breaking bubbles, we deduce the
probability of breaking and the evolution of the critical size in time.

We then investigate the generation of sub-Hinze bubbles. While there is a consensus for the
origin of the power-law scaling for the super-Hinze BSD, the sub-Hinze BSD remained to be
understood. By running DNS of bubbles in turbulence, we identify that sub-Hinze bubbles come
from the fracture of gas filaments produced during the deformations of super-Hinze bubbles.
We characterize filament production in a model flow configuration, as well as filament splitting.
We find that filament breaking under stretching universally produces a power-law distribution,
which coincides with the one obtained below breaking waves. This mechanism explains the origin
of the sub-Hinze BSD.

Keywords : bubble, turbulence, breakup, deformation, numerical simulations, modeling
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Chapter 1
Introduction

De tous temps les hommes ont été fascinés par les bulles.

A friend

Through their contributions to mixing, heat and gas transfers, bubbles are funda-
mental in various industrial and environmental contexts, characterized by inertial
flows. Understanding the physical mechanisms governing the bubble size distribu-
tion (BSD) in turbulent flows is then key when optimizing or quantifying physical
processes driven by bubbles. In this thesis we aim at describing bubble breakups by
means of numerical simulations of bubbles in both 3D homogeneous and isotropic
turbulence and model flows. In this introduction, we recall the theoretical tools
required to describe the evolution of the number of bubbles. We also identify one
relevant flow topology around bubbles in turbulence, with the aim of finding a model
geometry for bubble dynamics.

Abstract
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Chapter 1. Introduction

1 Bubble interactions with turbulence

1.1 Bubbles’ contributions

Figure 1.1 – Bubble fragmentation in a turbulent experiment. Picture from D. Ruth, S. Perrard
and L. Deike.

The word bubble usually refers to two very different configurations: a spherical soap film in
which a liquid separates two gas phases, or a pocket of gas immersed in a denser liquid. In this
manuscript, we focus on the second configuration, illustrated on figure 1.1. As a moving object
in a fluid with an interface, a bubble can contribute to various physical processes of fundamental
and practical interests.

At the bubble interface, gas transfers take place. As a consequence, bubbles are widely
used in industrial contexts to enhance chemical reactions between a gas and a liquid. A typical
example is the bubble column reactor [83, 92, 105, 164]. In these reactors, bubbles are injected
at the bottom of a liquid tank. While rising under the action of buoyancy, chemical reactions
happen at their interface. In environmental contexts, such as oceans, rivers or waterfalls, bubbles
contribute to gas transfers between the atmosphere and the liquid phase [12, 53, 57, 126, 216].
In particular, bubble induced gas transfer is the main pathway for low solubility gases [110],
such as O2, and is therefore essential to the life of the underwater biomass.

Bubbles not only contribute to mass transfer from the gas phase to the liquid phase, they
can also induce a mass flux from the liquid to the gas phase. Indeed, when bursting at an
interface, bubbles produce droplets through either jet drops or film drops [65, 207, 209]. When
bursting happens at the ocean-atmosphere interface, these aerosols play a central role in the
thermodynamics of the atmosphere : as condensation nuclei, they can initiate the formation of
clouds [15, 16, 18].

As a last example, one can highlight the contribution of bubbles to mixing [164]. For instance,
when rising under gravity, bubbles might produce a wake, which creates a local shear. In a cloud
of bubbles, the wakes can interact which enhance agitation and possibly creates turbulence [164].

Bubbles are therefore involved in a variety of physical processes, some of them being il-
lustrated on figure 1.2. As all these phenomenon are bubble-size dependent, when optimizing
industrial processes or modeling a physical mechanism, one needs to know how many bubbles
are present and what is their size, in other words, what is the bubble size distribution (BSD).
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1. Bubble interactions with turbulence

Dissolution Mixing Aerosol production

Figure 1.2 – Examples of three different physical processes involving bubbles.

This BSD evolves under the action of the external flow, as bubbles can, for instance, break
or coalesce. One needs to identify how the BSD changes in time.

In general, one important parameter for bubble dynamics is the ratio between inertial forces
and viscous forces at the bubble scale called the Reynolds number,

Re = Ud

ν
(1.1)

where U is a typical velocity scale, d the bubble volume equivalent diameter and ν, the kinematic
viscosity of the liquid. In the situations described above, both in environmental and industrial
conditions, one can estimate that the Reynolds number is large but finite. In bubble column
reactors for instance, it varies from 1 to several hundreds depending on the regime. Consequently,
the flow around bubbles is either fully turbulent [52, 53] or characterized by large velocity
fluctuations heterogeneously distributed in space and time [164]. As an intermediate step, one
could then model the external flow by a 3D isotropic and homogeneous turbulent flow and
wonders how the BSD evolves in time.

In this thesis, we focus on the interaction between three dimensional turbulence and bubbles,
in order to describe how bubbles break in a turbulent environment. Before introducing the BSD
modelling, we recall a few ingredients of isotropic turbulence.

1.2 Statistical properties of 3D isotropic turbulence

Fluid turbulence is characterized by high fluctuations in both space and time, involving a
large range of temporal and spatial scales. In this paragraph, we recall the main ingredients of
three dimensional isotropic turbulence which will be useful all along the manuscript. We refer
to Pope [142] for a more complete description of the statistical properties of 3D turbulence.

Let us consider a fully turbulent flow in a system of characteristic size L, and characteristic
velocity U . The Reynolds number at the flow scale is ReL = UL/ν ≫ 1. One key feature,
highlighted in particular by Kolmogorov [96], is the presence of eddies of any size. In the
description given by Richardson and illustrated on figure 1.3, energy is continuously injected
in the flow at a certain scale, called the integral length scale Lint, which sets the scale of the
largest eddies in the system. Experimentally this scale is of the order of the object forcing
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Figure 1.3 – Scheme of the Richardson-Kolmogorov cascade. Energy is injected at a large scale
called the integral length scale Lint. This energy is then transferred to smaller scales, the inertial
scales, with a rate ϵ, until energy is completely dissipated at a scale called the Kolmogorov length
scale η.

the flow, for instance the blade dimensions of a propeller. These eddies are characterized by
a velocity scale Uint, close to the root mean square velocity of the turbulent flow urms. The
Reynolds number at the integral length scale is Reint = LintUint/ν ≫ 1. While the energy
is continuously injected into these large structure, it is transferred to smaller scales through
non linear interactions. These smaller eddies, in turn, transfer energy to smaller scales, until
viscosity becomes important, at a scale ℓDI , and dissipates the energy. This is the Richardson-
Kolmogorov turbulent cascade. The scales contained between Lint and ℓDI form the inertial
sub-range, while smaller scales are called the dissipation range.

Since energy is dissipated at small scales and injected at large scales, the rate at which
energy is dissipated ϵ is equal to the rate at which the largest eddies, of size Lint, transfer
energy to smaller scales. One can estimate ϵ from the energy contained in eddies of size the
integral scale which is of the order U2

int. In addition, these eddies are associated with a timescale
tint = Lint/Uint. From dimensional arguments, we therefore obtain that the energy dissipation
rate scales as ϵ = U3

int/Lint, in agreement with experimental observations [142].
In the inertial sub-range, ϵ alone controls the statistics of the flow. In particular, a quantity of

interest for bubbles in turbulence is the averaged second order longitudinal velocity increments
at scale r, U(r), defined such that U2(r) = ⟨δu(r)2⟩, with δu(r) = uL(x, t) − uL(x + r, t),
where uL is the velocity component along the direction of x, and brackets denote ensemble
averages. This velocity encodes speed variation along a line, in the direction of the line. It is
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2. Bubble size distributions

particularly relevant when investigating object deformations by a flow as it quantifies how fast
two points situated on the object surface get closer or away from one another.In a homogeneous
and isotropic turbulent flow, for r lying within the inertial range, ⟨δu(r)2⟩ relates to ϵ and r

through ⟨δu(r)2⟩ = C(ϵr)2/3, where C is a numerical constant. Experimental measures reports
values of C varying between 2 and 2.2 [142]. We choose C = 2 for consistency with Risso et al.
[165]. Using this velocity scale we can then define a Reynolds number at scale r in 3D isotropic
turbulence, which depends on ϵ and ν

Re(r) = ⟨δu(r)2⟩1/2 r

ν
=

√
2ϵ1/3r4/3

ν
(1.2)

and is used to compare turbulent fluctuations between various flow geometries [179, 186]. From
the energy dissipation rate, and the eddy scale r, within the energy cascade, one can also define
a characteristic timescale within the turbulent cascade,

tc(r) = ϵ−1/3r2/3. (1.3)

This timescale is called the eddy turnover time. It corresponds to the typical correlation time,
or equivalently the rotation period of eddies of size r lying within the inertial range of scales.
This timescale is central when discussing bubble deformations and breakup.

The scale at which energy is completely dissipated is called the Kolmogorov length scale η.
It represents the smallest length scale of the flow. The Kolmogorov length scale is defined such
that the Reynolds number at its scale is Reη = 1. From equation (1.2), we deduce the expression
of the Kolmogorov length scale η = (2)−3/8(ν3/ϵ)1/4.

The last relevant length scale is the Taylor micro-scale λ which sets the correlation length
of velocity gradient. In homogeneous and isotropic turbulence, λ =

√
15ν/ϵ urms. The Taylor

Reynolds number Reλ, based on the Taylor micro-scale λ, characterizes the turbulent fluctuations

Reλ = urmsλ

ν
. (1.4)

In this manuscript, we will consider simulations of a homogeneous and isotropic turbulent
flow described by Kolmogorov theory. We will also restrain ourselves to bubble sizes lying within
the inertial range of the turbulent cascade, where inertia dominates over viscous effects.

2 Bubble size distributions

In order to quantify to contribution of bubbles to any physical mechanism one must know
what is the bubble size distribution (BSD) and how it evolves in time. In this section, we first
recall the theoretical framework modelling the evolution of the BSD in time, before highlighting
some open questions related to bubble breakup.

2.1 Modelling the bubble size distribution

The bubble size distribution is described in terms of the number density of bubbles N (V, x, t),
defined such that N (V, x, t)dV d3x is the number of bubbles with volume in the range dV about
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V and in the spatial range d3x around x, at time t. Note that another convention is to describe
bubble size in terms of a volume-equivalent diameter d. The two approaches are equivalent
provided we enforce N (V, x, t)dV d3x = N (d, x, t)ddd3x. In this section, we choose to describe
bubbles size in terms of bubble volume V to alleviate notations (especially when describing
coalescence and breakups) but we might use d in other chapters. The temporal evolution of the
number density of bubbles at a given position x in time, is given by the conservation equation [87,
157, 215]

∂tN (V, x, t) + ∇ · [u(V, x, t)N (V, x, t)] + ∂V [R(V, x, t)N (V, x, t)] = S[N ](V, x, t) (1.5)

where, u is the mean velocity of bubbles of volume V at position x at time t, R(V, x, t) is the
rate of volume change and S[N ](V, x, t) is a generic source term accounting for birth and death
of bubbles of size V induced by coalescence and breakup and involves N itself. In words, the
number density of bubbles of volume V at position x, N , evolves in time due to the advection of
bubbles by the surrounding flow (second term of the left hand side, lhs), a continuous evolution
of bubble volumes (third term), or physical processes inducing discrete volume changes (right
hand size). This equation is also known as number density transport equation or the population
balance equation (PBE) and is a generalization of Smoluchowski’s coagulation equation [184].
For simplicity and to alleviate notations, we will consider here that the flow and the bubble
distribution are homogeneous. From now on we therefore drop all the spatial dependency and
remove the advection term ∇· [u(V, x, t)N (V, x, t)] from the PBE. Note however that the contri-
bution of the advective term must be retained as soon as there is a mean flow, as is the case for
instance in turbulent jet experiments (for instance [118, 199]). Let us first examine the physical
origin of R and S.

The rate of change of bubble volume R originates from two main thermodynamic effects

• Gas compressibility.

• Phase change (dissolution).

These effects involve a single bubble continuously changing size. On the contrary, the source
term S encompasses physical mechanisms involving at least two bubbles and generating fluxes
between discrete sizes. The two main sources terms are

• Bubble coalescence, associated with a flux from small to large sizes.

• Bubble breakup, associated with a flux from large to small sizes.

To close the PBE, one needs to model each of these four contributions. We first examine
the relevance of each term for the PBE of bubbles in turbulence and introduce the modeling
strategies.

Gas compressibility: Volumetric oscillations are characterized by the Minnaert frequency,
given by

fM (d) = 1
πd

√
3δP0

ρ
(1.6)
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2. Bubble size distributions

where d is the bubble volume-equivalent diameter, δ the polytropic factor, P0 the ambient
pressure and ρ the liquid density. The typical turbulent timescale at size d is given by the eddy
turnover time of eddies of size d, tc(d) = ϵ−1/3d2/3. The volumetric modes will be excited by
turbulence, provided the two time scales are of the same order of magnitude, that is

fM (d)tc(d) = 1
πϵ1/3d1/3

√
3δP0

ρ
∼ 1. (1.7)

Let us estimate fM tc for an air bubble (polytropic coefficient δ = 1.4) in water (density ρ =
1000 kg.m−3), at ambient pressure (P0 = 100kPa). Typical values of the energy dissipation rate
range from 10−2, for bubble induced turbulence [92], to 10 m2.s−3, below breaking waves [52].
For bubbles of size ranging from 100 µm to 1 cm, we obtain

1 ≪ 14 ≤ fM (d)tc(d) ≤ 530, (1.8)

the smallest value of fM tc being obtained for the largest bubble size and energy dissipation rate,
therefore in a flow where we expect bubbles to be smaller than 1 cm. Hence in turbulence,
turbulent timescales are always at least one order of magnitude larger than the period of bubble
volumetric oscillations. The latter are never significantly excited by the flow. From now on, we
thus neglect compressible effects for bubbles in turbulence.

Gas dissolution: Boussinesq [23] and Levich et al. [108] theoretically investigated the diffusive
gas transfer of a bubble rising in a quiescent pure liquid, under the assumption of negligible
volume variation. They showed that the gas transfer rate kL depends on the gas diffusivity in
the liquid D, the bubble diameter d and the rising speed Ur through

kL = 2√
π

√
UrD

d
. (1.9)

In practice, gas dissolution also depends on the gas concentration in the liquid. The smaller the
gas concentration, the faster the gas dissolution. Detsch [58] studied the dissolution of rising
air bubbles in quiescent clear and sea water. For bubbles of size ranging from 100 µm to 1
mm he found that the bubble diameter decreases linearly in time. The rate of change of bubble
diameter varies between 1 µm.s−1 for bubbles rising in clear water with an air saturation of 80%,
and 4 µm.s−1 at 20% of saturation. Similar values were found in sea water. As a consequence,
he measured that 200 µm bubbles dissolve after approximately 3.3 min in clear and sea water
and 700 µm bubbles dissolve in about 15 min.

This picture can be modified in the presence of a turbulent surrounding flow as turbulence
enhances mixing close to the bubble interface and can therefore enhance dissolution. Farsoiya
et al. [68] studied numerically the dissolution of gas bubbles in a turbulent environment. They
found that bubble radius shrinks linearly in time, as in the quiescent case. They showed that
the decrease rate kL, also called transfer rate, depends on turbulence intensity and follows
kL = 0.65 Sc

−1/2(ϵν)1/4, where Sc = ν/D is the Schmidt number, the ratio between the liquid
viscosity ν and the gas diffusivity in the liquid D. This relation is measured in a clean liquid
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(when no gas is initially dissolved into the liquid), whereas in both industrial and environmental
contexts, a large quantity of gas is usually already present. Oceans, for instance, are known to
be supersatured in O2. The obtained value of the transfer rate will therefore be an upper bound
for the real value obtained under realistic conditions. We can nevertheless estimate kL for an air
bubble in water. Air is mainly composed of nitrogen (N2, 80%) and di-oxygen (O2, 20%), whose
Schmidt numbers in water are 240 and 440 respectively. For ϵ ranging from 10−2, to 1 m2.s−3

we obtain that kL ranges from 0.4 to 1 mm.s−1 for N2 and 0.3 to 1 mm.s−1 for O2. According
to these transfer rates, a one millimeter bubble dissolves in more than 1 s. In a turbulent flow
of energy dissipation rate ranging from 10−2, to 1 m2.s−3, this dissolution time corresponds to
20 to 100 eddy turnover time at the scale of a 1 mm bubble.

Dissolution becomes important when considering long timescales and small bubbles, which
do not break. In this thesis, we restrain ourselves to relatively short timescales, given by the
eddy turnover time, so that we can neglect dissolution.

It follows from the two last sections that, when investigating BSD evolution on timescales
given by turbulence, one can neglect both compressibility effects and dissolution. We then
assume R = 0 in the PBE. We now discuss coalescence and breakups.

Coalescence: The flux associated with the coalescence of bubbles of size V0 with bubbles of
size V − V0, creating a bubble of size V is generally written as [102, 111, 112, 174]

Φc(V0, V, t) = λc(V − V0, V0)h(V − V0, V0)N (V − V0, t)N (V0, x, t) (1.10)

where λc(V1, V2) is the collision frequency of bubbles of size V1 and V2, and h(V1, V2) is the
collision efficiency which quantifies the number of collisions effectively leading to coalescence.
The source terms associated with coalescence then are written as,

Sc[N ](V, t) = 1
2

∫ V

0
Φc(V0, V, t)dV0 −

∫ ∞

0
Φc(V, V0 + V, t)dV0 = Sbirth

c − Sdeath
c . (1.11)

The first term is a birth term encoding the increase in number of bubbles of size V due to the
coalescence of two smaller bubbles of size V0 and V − V0 respectively. The 1/2 factor avoids
to double count each coalescence event. The second term is a death term, accounting for the
coalescence of bubbles of size V with any other bubble. This death term is alternatively written
as

Sdeath
c = κc(V )N (V, t) (1.12)

where κc(V ) is the coalescence rate of bubbles of size V with any other bubble and reads
κc(V ) =

∫∞
0 λc(V, V0)h(V, V0)N (V0)dV0.

We refer to Kolev [95] and Liao et al. [112] for reviews on coalescence models. For a coa-
lescence to occur, two bubbles must interact. As a consequence, in all models, the coalescence
frequency depends on the gas volume fraction: when volume fraction is low, the probability that
two bubbles collide is low. Since coalescence is quadratic in the bubble size distribution (see the
expression of the flux, equation (1.10)), coalescence is the dominant mechanism at large volume
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fraction of air. This is typically the case in emulsions, or dense regimes in bubble columns. In
these cases, the BSD reaches a stationary state resulting from the competition between breakup
and coalescence.

Breakup: The flux Φb from size V0 to V originating from the breakup of the bubble of size
V0 is written as [102, 111, 121],

Φb(V0, V, t) = m(V0)f(V0, V )κb(V0)N (V0, t). (1.13)

Here m(V0) is the average number of child bubbles produced by the breakage of bubbles of size
V0, f(V0, V ) is the probability density to create a bubble of size V from a bubble of size V0, also
called the breakup kernel, and κb(V0) is the breakup frequency of bubbles of size V0. Note that
here, conversely to the coalescence flux, Φb depends linearly on N . It follows from the expression
of the flux that the source terms associated with bubble breakup can also be decomposed in
terms of two integral quantities:

Sb[N ](V, t) =
∫ ∞

V
Φb(V0, V, t)dV0 − 1

m(V )

∫ V

0
Φb(V, V0)dV0 = Sbirth

b − Sdeath
b . (1.14)

The first integral encodes the increase of the number of bubbles at size V due to the breakage of
larger bubbles. The second term, is a death term, which represents the decrease of the number
of bubbles of size V due to their own breakage. As before, this death term can be written in a
simpler form, noticing that by definition,

∫ V
0 f(V, V0)dV0 = 1,

Sdeath
b = 1

m(V )

∫ V

0
m(V )f(V, V0)κb(V )N (V, t)dV0 = κb(V )N (V, t). (1.15)

At this point, we refer to the following reviews [102, 111, 121, 138] for the different modeling
strategies of the breakup kernel and breakup rate. Starting from initially large bubbles, or
potentially a single bubble, breakup is a central ingredient controlling the BSD. As breakup
occurs on very short timescales, in dilute environments, it first creates a quasi stationary BSD,
which eventually evolves due to dissolution, at longer time scales.

Conclusion: BSD in dilute medium In dilute environments, when neglecting the bubble
volume change due to gas dissolution and compressibility, the PBE retains only terms related
to bubble breakup

∂tN (V, t) =
∫ ∞

V
Φb(V0, V, t)dV0 − κb(V )N (V, t) (1.16)

which holds in homogeneous settings. Breakup modeling is the subject of this thesis. We aim
at identifying, from numerical data, the breakup rate κb and the different breaking mechanisms
controlling the breakup kernel f(V0, V ). The different modeling strategies for the breakup rate
and the breakup kernel are reviewed in the introduction of parts I and II respectively (chapters 4
and 8). We start by reviewing some open questions related to bubble breakup.
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2.2 Open questions in bubble breakup

In most applications, breakup cannot be neglected. The bubble size distribution will result
from the competition between breakups and other physical mechanisms. There is one situation
however where breakup alone controls the BSD: this is the case of dilute environment. This
setting allows us to further investigate breakup processes.

2.2.1 Bubble size distribution in dilute regimes

In dilute environments, bubble breakup alone controls the bubble size distribution. Such
a dilute environments in observed for instance below breaking waves. Indeed, when the wave
overturns it entrains an air cavity which then fragments into multiple bubbles. The impact
between the wave crest and the water surface creates an intense flow which develops, in one
wave period, into a fully 3D flow [132]. At latter times, most of the wave energy has been
dissipated but turbulent regions remain underwater, allowing an efficient bubble fragmentation.
This phase, which lasts about two wave periods [132], is called the acoustic phase by Deane
et al. [52]. Most of bubble fragmentation occur during this phase and the noise originating from
volumetric oscillations is intense. After approximately two wave periods, energy is completely
dissipated and only remains in the liquid a quiescent plume of bubbles rising to the surface. The
whole process, from the wave breaking to the quiescent plume, lasts few seconds.

Figure 1.4, extracted from Deane et al. [52], shows the bubble size distribution measured
below breaking waves, averaged during the acoustic phase. We observe two regimes, separated
by a sharp limit for a critical bubble size dh ∼ 1 mm. For bubbles larger than a millimeter, the
BSD exhibits a steep d−10/3 scaling. On the contrary, for bubbles smaller than 1 mm the slope
is shallower and follows d−3/2. This shape of the bubble size distribution is preserved until the
end of the acoustic phase, as shown by the upper curve of the inset plot, figure 1.4. At latter
times, during the quiescent phase, (lower curve in inset), we still observe two power-law scalings
for the bubble size distribution. However, the transition size as well as the exponents differ:
the critical size decreases, and both exponents significantly increase. The BSD evolves due to
differential rising speeds (larger bubbles rise faster) and dissolution. In open oceans, Deane
et al. [52] reported similar BSD during the quiescent phase, namely two power-law regimes with
a transition occurring around 1 mm in size.

To summarize, the BSD below breaking waves evolves following two steps:

1. The acoustic/active phase: Most of bubble fragmentation occurs during this period, cre-
ating a BSD characterized by two power-law scalings separated by a characteristic length
scale.

2. The quiescent phase: The flow energy has been mostly dissipated. The BSD created
during the active phase is the initial condition of this second phase. The BSD evolves due
to preferential rising.

As the overall shape of the BSD during the quiescent phase completely originates from the
aging of the BSD generated during the active phase, the key question is then to understand
what controls the BSD in the fragmentation phase. In particular, we aim at identifying origin
of the two power-law scalings and the critical transition size.

12



2. Bubble size distributions

Figure 1.4 – Extracted from Deane et al. [52]. Bubble size distribution measured below breaking
waves during the acoustic phase. The BSD exhibits two power-law scaling: r−10/3 for r > 1
mm, and r−3/2 for r < 1 mm. The inset compares the BSD at the beginning of the quiescent
phase (crosses) and 1.5 s latter. Both slopes increase significantly between these two times.

2.2.2 Critical size - Kolmogorov and Hinze’s original idea

As the Reynolds number at the bubble scale is large and the flow turbulent, Deane and Stokes
suggested that the critical bubble size could result from the stability of bubbles in isotropic
turbulence, as originally investigated by Kolmogorov and Hinze. In a turbulent environment,
for bubble size lying within the inertial range of the turbulent cascade, Kolmogorov [97] and
Hinze [84] suggested that breakup was primarily controlled by the interaction between the bubble
and eddies of its size. The central idea is that a bubble is likely to break when the turbulent
forcing due to pressure differences across the bubble, is strong enough to overcome the restoring
capillary forces. The former has magnitude ρU2d2, while the latter is of order γd, where U a
typical velocity scale and γ the surface tension between the gas and the liquid. The ratio between
these two forces define the Weber number, We = ρU2d/γ. The typical velocity U scales as the
mean-square longitudinal velocity increment ⟨δu2(d)⟩1/2 of the undisturbed flow, over a distance
d. In homogeneous and isotropic turbulence, for d in the inertial range, the mean velocity
increment is related to the average energy dissipation rate ϵ through ⟨δu2(d)⟩ = 2(ϵd)2/3 [96].
This results in defining the Weber number in homogeneous and isotropic turbulence as

We = 2ρϵ2/3d5/3

γ
. (1.17)

At low Weber number, capillary forces are strong enough to prevent breakup, while large Weber
number bubbles can be easily broken. The limit between the two regimes sets the value of the
critical Weber number Wec which is of order unity. This critical Weber number defines the
critical bubble size dh above which a bubble is likely to break through Wec = We(dh) [84, 165].
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This critical size, called the Kolmogorov-Hinze scale, reads

dh =
(Wec

2

)3/5 (γ

ρ

)3/5
ϵ−2/5. (1.18)

Deane and Stokes noticed that the Kolmogorov-Hinze scale coincides with the critical size sepa-
rating the two power-law regimes in the BSD (figure 1.4). They concluded that the critical size
in the BSD separates bubbles into two categories: bubbles larger than dh (super-Hinze bubbles)
can still break and their distribution follows N (d) ∝ d−10/3, while bubbles smaller than dh

(sub-Hinze bubbles) cannot break anymore and the BSD follows N (d) ∝ d−3/2.
This explanation gives a physical argument of the origin of the critical size. However, it is

not predictive. Indeed, experimentally-reported values of Wec varies between 0.5 and 8 [84, 118,
123, 165, 180, 199], corresponding to a numerical prefactor (Wec/2)3/5 varying between 0.4 and
2.3. Such variability has several origins: Due to turbulent fluctuations, the Kolmogorov-Hinze
scale is a soft limit between breaking and non-breaking bubbles: any bubble can encounter a
large enough pressure fluctuation which will break it. It follows that the breakup probability
varies continuously with bubble Weber number from 0 (for very small bubbles, very low We) to
1 (for very large bubbles, very large We). It would be interesting to know how this probability
evolves with We. In addition, another key quantity is the residence time of bubbles within the
turbulent zone. Indeed, the survival probability depends on the time spent by the bubble within
the turbulent zone. In experiments, this time corresponds to the observation time, which can be
controlled by the bubble rising dynamics, advection speed, or the presence of non homogeneous
regions for instance. Under breaking waves, it corresponds to the time during which turbulence
is sustained. More generally, taking into account time in the analysis could give a hint to explain
the variability of BSD shape. On the same line, turbulence is rarely homogeneous in natural
environments, and one must quantify the time spent in each region to predict accurately bubble
breakup. In this thesis we therefore propose to answer the following question:

Q1: How can we more properly define a critical Weber number in turbulence?

To answer this question, we will quantify the breakup probability depending on the physical
parameters controlling the dynamics (namely, Weber and Reynolds number) as a function of
time. To do so, in part I, we focus on bubble deformations and model the breakup probability.

2.2.3 Origin of the two power-law scalings

Qualitatively, the Kolmogorov-Hinze scale separates bubbles which are still likely to break
(d > dh), from bubbles which cannot break anymore. Both scalings should therefore be assessed
independently.

The power-law scaling for the large bubble size can be recovered from dimensional analy-
sis [52]. If we assume that the BSD originates from the fragmentation of bubbles, with average
air injection rate Q (dimensions m3.s−1) due to turbulence only, characterized by its energy
dissipation rate ϵ, (dimensions m2.s−3), by dimensional analysis the number density of bubbles
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3. From turbulence to model flows

at scale d is written as
N (d) ∝ Qϵ−1/3d−10/3 (1.19)

where N is defined such that N (d)dd is the number of bubbles of size d and is therefore of
dimension m−1. Physically, the BSD of super-Hinze bubbles is driven by a balance between air
injection and bubble fragmentation, controlled by turbulence at scale d.

Up to now, there is no argument supporting the sub-Hinze bubble size distribution while
these bubbles are of tremendous importance. Indeed, at the ocean-atmosphere interface, it has
been showed that these small bubbles represent a large fraction of the surface of exchange. Their
contribution to gas exchanges between the atmosphere and the oceans cannot be neglected. Ad-
ditionally, when rising to the surface and bursting, they efficiently produce droplets, which play
a central role in cloud formation. From dimensional considerations, another physical mechanism,
which needs to be identified, must be taken into account in order to explain the N ∝ d−3/2. We
therefore ask the following question, which will be the subject of part II:

Q2: What physical mechanism produces the sub-Hinze bubbles and controls their BSD?

Answering this question has a general interest which goes beyond the oceanic context. Indeed,
when other mechanisms are relevant, such as coalescence or dissolution, the BSD of small bubbles
will result from a competition between the different physical processes.

3 From turbulence to model flows

In this thesis, together with the investigation of bubbles in turbulence, we propose to study
bubble deformations and fragmentation in model configurations. These studies allow us to
extract the dominant physical mechanism for bubble dynamics in more controlled flows. Building
on the review from Meneveau [127] and references therein, we first describe the dominant local
flow topologies in turbulence. Then, we identify the ones relevant for bubble deformations and
breakup.

3.1 Main local flow topologies in single phase turbulence

The dynamics of a bubble, or more generally of a particle, is driven by the local velocity field
u(x, t). Depending on the local flow geometry, a large variety of displacement and deformations
can be obtained. In this thesis, we want to identify the flow geometries driving bubble deforma-
tions and breakup. In general, one can characterize the local flow geometry around an arbitrary
position x0 by linearizing the velocity field u(x, t) around this point (provided the flow is not
singular). The linear approximation of the velocity component ui reads

ui(x, t) = ui(x0, t) + Ai,j(x0, t)(xj − x0j) + ... (1.20)

where Ai,j are components of the velocity gradient tensor A defined by

Ai,j = ∂xj ui. (1.21)
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Assuming the bubble moves with the local velocity ui(x0, t), A will drive deformations.

3.1.1 Strain rate and rotation rate tensor

A first natural decomposition of the velocity gradient tensor decomposes A into its symmetric
S and antisymmetric Ω parts. The symmetric tensor S is the strain rate tensor which encodes
the stretching and compression directions of the velocity. As a real, symmetric tensor, it is
diagonalizable in an orthogonal basis. In addition, as antisymmetric matrix are traceless Tr(Ω) =
0. We deduce the expression of the trace of S

Tr(S) = Tr(A) = ∂xiui. (1.22)

Since we consider incompressible flows, A is also traceless which imposes that

λ1 + λ2 + λ3 = 0 (1.23)

where λi∈[1,3] are the three real eigenvalues of S. They are associated with three eigenvectors e1,
e2 and e3. By convention, we assume λ1 > λ2 > λ3. It follows from equation (1.23) that λ1 ≥ 0
and e1 represents the main stretching direction, λ3 ≤ 0 and e3 encodes the main compression
direction. The last eigenvalue λ2 can have both signs.

The antisymmetric part of A, Ω is the rotation rate tensor which encodes the direction and
the intensity of the local vorticity ω = ∇ × u = ωeω, where ω ≥ 0 is the vorticity intensity and
eω is the unit vector along the vorticity direction.

Bubbles might be affected by both vorticity and strain. Therefore, it is interesting to look
at the relative orientation of vorticity with respect to the three directions e1, e2 and e3. This
is done by measuring the probability density function of the angle between the two vectors,
or equivalently the norm of the scalar product between the two unit vectors |eω · ei|. When
the norm is 1, the vectors are aligned, when it is zero, the two vectors are orthogonal to each
others. Ashurst et al. [7] measured the probability density function (pdf) of these three norms
in a DNS of isotropic turbulence. As reported on figure 1.5a (adapted from Meneveau [127]),
they reported a preferential alignment between the intermediate eigenvector e2 and vorticity.
On the contrary, e3 tends to be orthogonal to eω, and no preferential alignment is found with
e1 (the pdf is flat). These results were latter confirmed by experimental investigations (see for
instance [134, 195]).

This flow structure is valid around any arbitrary point in turbulence. Yet, as bubbles have a
finite size, they are sensitive to coarse-grained velocity gradients at their scale. Masuk et al. [123]
using Particle Image Velocimetry (PIV) measurements, investigated the flow structure around
bubbles. They found that the flow alignments are preserved in the presence of a bubble and
when coarse-graining at the bubble scale, suggesting that the flow structure is weakly affected
by the presence of the bubble. In the next section, we identify the predominant flow topologies
using orientation-invariant scalars of the velocity gradient tensor.
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3. From turbulence to model flows

Figure 1.5 – Adapted from Meneveau [127]. a) Pdf of the norm of the scalar product between
straining directions and vorticity direction. We have the following correspondence with the main
text: α̂ = e1, β̂ = e2, γ̂ = e3 and ω̂ = eω. This subfigure is adapted by Meneveau from Ashurst
et al. [7]. b) Joint pdf of R and Q measured by Gulitski et al. [80] in an atmospheric boundary
layer at high Reynolds number. Schemes represent the main flow topology in each zone. The
solid blue line separates vorticity free flows (below the line) from flows where vorticity is non
zero (above the line).

3.1.2 Local flow topology - RQ plane

For this part, we mostly rely on the paper by Chong et al. [44] and Cantwell [29]. In the previ-
ous section, we described the flow field by decomposing velocity into stretching/compression and
vorticity. These information can be summarized, for an incompressible flow, into two orientation-
invariant scalars. As a 3x3 matrix, the eigenvalues of A, are solution of the characteristic
equation

det[A − λI] = 0, (1.24)

where det is the determinant, and I the identity matrix. For a 3x3 matrix the characteristic
equation rewrites

λ3 + Pλ2 + Qλ + R = 0 (1.25)

where

P = − Tr[A] (1.26)

Q = 1
2
[
Tr[A]2 − Tr

[
A2
]]

(1.27)

R = − det[A] = 1
3
[
−P 3 + 3PQ − Tr

[
A3
]]

(1.28)

where Tr is the trace. The three quantities (P, Q, R) fully characterize the flow structure. As A
is traceless (the flow is incompressible), P = 0 and only two parameters remain R = − Tr

[
A2]/2
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and Q = − Tr
[
A3]/3. Depending on the values of R and Q, the three eigenvalues of A can be

either all real roots or a pair of complex conjugate roots and a real root. In the RQ-space, on
the line separating these two domains, the three roots are real and two are equal. One can show
that this line, separating real roots from complex roots, is solution of

D = 27
4 R2 + Q3 = 0 (1.29)

where D is the discriminant of A. For D > 0, A has complex eigenvalues , there is vorticity in
the flow, while for D < 0 the three eigenvalues are real [29], A is symmetric. Figure 1.5b shows
the R-Q plane with the prevalent flow geometry in each region. The blue line indicates the
separation given by equation (1.29), which we call separatrix. One can distinguish four regions
corresponding to four flow topologies:

• Below the separatrix and R ≤ 0: There are three real eigenvalues, two of them being negative:
the flow stretches along one direction e1 and compresses along the two other directions (bottom
left scheme).

• Below the separatrix and R ≥ 0: There are three real eigenvalues two of them being positive:
the flow is compressing along one direction e3 and stretches along the two other directions
(bottom right scheme).

• Above the separatrix and R ≤ 0: Two eigenvalues are complex conjugates. The flow consists
of a spiraling around one stretching direction, focusing on some plane (top left scheme).

• Above the separatrix and R ≥ 0: Two eigenvalues are complex conjugate. The flow consists of
a spiraling along a compression direction, expanding in the other directions (top right scheme).

On the separatrix, the three eigenvalues are real and two of them are equal. These geometries
correspond to axi-symmetric straining flows, either stretching (R ≤ 0) or compressing (R ≥ 0)
along the axis of symmetry.

All these flow topologies are not equally represented in a turbulent flow. Cantwell [30] was
the first to measure the joint pdf of R and Q, in a direct numerical simulation. He showed that
the pdf has a very peculiar shape, being skewed toward the right branch of the separatrix, defined
by Q = −3/22/3R2/3, called the Vieillefosse tail in reference to his analytical work [203, 204].
This flow feature has been recovered both numerically and experimentally by several authors
[45, 80, 139, 194] (subset of references given in [127]). An example of this joint pdf is given
on figure 1.5b, also adapted from Meneveau [127]. The figure shows the experimental joint pdf
from Gulitski et al. [80], measured in an atmospheric boundary layer at high Reynolds number.
While the upper part (Q > 0) is mostly symmetric with respect to R = 0, the probability is
larger in the lower right quadrant.

The flow topology at a bubble scale r can be obtained by coarse-graining the velocity gradient
tensor over a region of scale r [40, 137]. This coarse-grained tensor, A′, is defined by

A′
ij = 1

Γ

∫
Γ

Aijd3x (1.30)

where Γ is a volume of characteristic size r. As before, we can define the same corresponding
invariants R′ and Q′. Figure 1.6, adapted from Naso et al. [137] shows the evolution of the RQ
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3. From turbulence to model flows

a) c)b)

Figure 1.6 – Adapted with permission from Naso et al. [137]. Isocontours of the joint pdf of R
and Q plane for the coarse-grained velocity gradient tensor in a DNS of isotropic turbulence. The
velocity gradient tensor is coarse-grained at the scale a) r = Lint (injection scale), b) r = Lint/8
(inertial range) c) r = 2η (viscous range). Isocontours are spaced logarithmically and separated
by factors of e.

plane, for the coarse-grained velocity tensor, as a function of r, measured in a DNS of isotropic
turbulence at Reλ = 130, with Lint/η ∼ 100. The two axis show the normalized values of R′

and Q′ respectively, defined by R⋆ = R′/⟨Tr
[
(S′)2

]3/2
⟩ and Q⋆ = Q′/⟨Tr

[
(S′)2

]
⟩ respectively,

where S′ is the symmetric part of A′. At the integral scale, (figure 1.6a, r = Lint), the joint
pdf is nearly symmetric with respect to R⋆ = 0. This symmetry is lost for scales within the
inertial range (figure 1.6b, r = Lint/8), for Q⋆ < 0. As for the local velocity gradient tensor,
the probability is larger on the right branch of the separatrix. Two directions of stretching are
more likely than two directions of compression. This effect is much more pronounced in the
dissipative range, for r ≈ η (figure 1.6c).

We conclude that, for bubble sizes lying within the inertial range of turbulence, vorticity is
combined with two directions of stretching or compression with equal probability. In the absence
of vorticity, flows with two stretching directions are more likely than flows with two compressing
directions.

3.2 Relevant flow geometries for bubble breakup

In the previous section we have identified the main flow topologies around bubbles in tur-
bulence when their size lies within the inertial range. Nevertheless, flow configurations are not
equally efficient in deforming and breaking bubbles. As a consequence, only a few flow geometries
might be relevant for bubble dynamics.

One way to assess the relative efficiency of local flows is to investigate the relative orientation
between the bubble shape and the stretching, compressing and vorticity direction. In turbulence,
bubbles tend to elongate in one preferential direction, before potentially breaking. Several
examples are given on figure 1.7. This kind of deformations and breakup lies in the cigar-shape
type identified by Hinze [84].

One can envision two flow geometries around these bubbles: either a stretching along the
longest bubble axis or a vorticity dominated field, with a vorticity vector aligned with the bubble
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Figure 1.7 – Examples of bubble deformations and breakup in turbulence. a) Pictures taken by
Daniel Ruth of a centimetric air bubbles in water, in isotropic turbulence. Evolution from left
to right, top to bottom. b) Adapted from Rodríguez-Rodríguez et al. [170]. Deformations and
breakup of a bubble of diameter 2.5 mm, at the centreline of a turbulent water jet. Temporal
evolution from left to right, top to bottom. c) Adapted from Masuk et al. [123]. Six views of
the same air bubble, taken by six high speed cameras, of a millimetric bubble, in a turbulent jet
facility.
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4. Outline of the manuscript

a) b)

�d1 ̂r1

�d3 ̂r3

Figure 1.8 – Adapted from Masuk et al. [124]. a) Schematic representation of deformed bubble
and coarse-grained flow surrounding it. The bubble longest axis defines r1. The shortest axis
defines r3. b) Pdf of the relative orientation between bubble axes and the local strain and
vorticity.

main axis. Masuk et al. [124] correlated the coarse-grained flow geometry with the bubble shape.
In particular, they measured the relative orientation between the local strain and vorticity and
the direction of the longest, r1, and shortest, r3, bubble axis, defined on figure 1.8a. These two
vectors, r1 and r3 are defined by the furthest (resp. closest) interface point from the bubble
center of mass, and are therefore not orthogonal. Figure 1.8b, adapted from [124], shows the pdf
of the relative orientation between the bubble and its surrounding flow (therefore coarse-grained
at the bubble scale). It clearly appears that the main bubble axis r1 aligns with the principal
straining direction (maximum at r1 · e3 = 1), while being preferentially orthogonal to the main
compressing direction (maximum at r1 · e1 = 0). Strikingly, no preferential alignment is found
with the vorticity direction. The shortest bubble axis, on its side, aligns with the principal
compressing direction. These results suggest that the most relevant flow geometries lie in the
lower left quadrant of the RQ plane, below the separatrix, which surprisingly correspond to the
most unlikely flows. In this region, vorticity is unimportant and one finds two directions of
compression and one direction of stretching. In addition, as noticed by Rodríguez-Rodríguez
and co-authors [162, 170], the breakup dynamics is fast compared to the other time scales thus
we can reasonably assume that the flow is axi-symmetric.

We conclude that, as a first approximation, it is not necessary to include vorticity in the
study. One of the most relevant model flow geometry for bubble deformations and breakup is
therefore the uniaxial straining flow.

4 Outline of the manuscript

In this thesis, we aim at answering the two identified questions: Q1 How can we more
properly define a critical Weber number in turbulence? Q2 What physical mechanism produces
the sub-Hinze bubbles and controls their BSD? To do so, we propose to analyse numerically
bubble deformations and breakup in both a model flow (the uniaxial straining flow) and DNS
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of isotropic turbulence.
Part I is devoted to Q1, namely, defining the probability for a bubble to break depending on

the main control parameters. To do so, we first describe bubble deformation and breakup in the
model geometry (chapter 5). Then, we extend our study to bubble deformations in turbulence
(chapter 6). Along the line, we will define a breakup rate, κb, for the population balance equation
(chapter 7).

Part II addresses Q2 and focuses on the sub-Hinze bubble generation. We first identify the
origin of sub-Hinze bubbles in turbulence (chapter 9). Then, we describe more precisely their
production in the more controlled situation of a uniaxial straining flow (chapter 10). Doing so,
we obtain elements to constrain the expression of the breakup kernel f(V0, V ) of the population
model equation.

Before addressing the two main questions, we first describe in details the two numerical
set-up used in this thesis (chapter 2), and the theoretical tools (chapter 3).

22



Chapter 2
Numerical configurations: Principle and
convergence study 1

On top we find the experimentalists, then the numericists and
at the very bottom people doing machine learning.

A chairman

In this chapter we present the numerical solver that we use, the Basilisk Flow solver
and its specific features. Then we introduce the two numerical set-ups studied in this
thesis. The first one is the uniaxial straining flow configuration used in chapters 5
and 10. The second one is a direct numerical simulation of a bubble in a turbulent
flow, investigated in chapters 6, 7 and 9.
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1 Basilisk flow solver: A brief overview

In this thesis, bubble dynamics and breakup are investigated by means of numerical simula-
tions using the flow solver Basilisk (http://basilisk.fr). In this section, we recall the numerical
methods implemented in Basilisk.

1.1 General considerations

Basilisk [86] is a free open source software written in C, first developed by S. Popinet, and
then collaboratively by other authors to solve partial differential equations [2, 143, 144]. Several
solvers are implemented, using the finite volume implementation, including the Navier-Stokes
solver, that we use in this work. The interface between the gas and the liquid is represented using
a sharp Volume-Of-Fluid implementation (VOF) [143], coupled with a robust implementation
of height functions based interface curvature computation [144]. The accuracy of the solver
has been largely demonstrated in complex multiphase flows, including wave breaking [56, 132],
splashing [116, 190], bubble bursting [16] or liquid rim fragmentation [4].

In practice, the interface is tracked using the volume fraction C(x, t) of liquid in each cell
of the computational domain, with C = 1 in the liquid, C = 0 in the gas, and 0 < C < 1 in
interfacial cells. The liquid density and dynamic viscosity are ρ and µ respectively (and ν = µ/ρ

the liquid kinematic viscosity). We define the gas-liquid density and viscosity ratios ρR and µR

respectively, so that the gas density and viscosity read ρ.ρR and µ.µR. The density and dynamic
viscosity in each cell then write ρ(C) = ρ(C + ρR(1 − C)) and µ(C) = µ(C + µR(1 − C)).
Both fluids are incompressible. We denote by γ the surface tension coefficient between the two
phases, κ the local curvature and n the interface normal. We solve the one-fluid formulation of
the Navier-Stokes equations, with variable density and viscosity

ρ(C) [∂tu + u · ∇u] = −∇P + ∇ · [2µ(C)D] + γκδSn + f (2.1)

∂tρ(C) + ∇ · [ρ(C)u] = 0 (2.2)

∇ · u = 0 (2.3)

where D = (∇u + ∇uT )/2 is the deformation tensor, δS is a Dirac function which concen-
trates the surface tension force at the interface [144], and f is a possible volumetric force whose
expression varies among chapters.

1.2 Adaptive mesh refinement

Basilisk is based on an adaptive quad-octree grid, allowing to save computational time
while resolving all the important length scales of each problem [143–145]. The grid adaptation
algorithm is explained in great details in Van Hooft et al. [197]. Refinement is controlled by two
parameters: the maximum refinement level Le and the criterion used to refine. The maximum
refinement sets the minimum grid size as ∆ = L/2Le, where L is the box size. The refinement
criterion can be seen as the maximum error tolerated when refining/coarsening the grid. In
both simulations presented in this thesis, we evaluate the error on both the velocity field and
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2. A model flow configuration: the uniaxial straining flow

the curvature of the interface. This choice allows us to minimize the error on the surrounding
flow field as well as on the interfacial forces. Note that when the criterion is too restrictive, we
obtain a regular grid of size the minimum grid size while a too coarse criterion does not allow
any grid refinement. In practice, to test the numerical convergence of our simulations, we fix
the refinement criteria and vary the maximum level Le.

1.3 Numerical parameters shared among chapters

While the numerical set-up varies between chapters, some parameters will be shared among
them.

The force is f = 0 in the stagnation point flow (chapters 5 and 10), while it is f(x, t) =
CAu(x, t), with A a constant, in the turbulence case (chapters 6, 7, 9), to maintain homogeneous
and isotropic turbulence in the liquid phase [172]. In all chapters we have ρR = 850, the water-
air density ratio. In turbulent simulations, chapters 6, 7 and 9, we use µR = 25, close to the
water-air ratio of 55. This choice eases the numerical computation, as it thickens the viscous
boundary layer, which usually scales as

√
ν. The boundary layers are therefore easier to resolve

numerically. For consistency with these chapters, the value µR = 25 is also used in the stagnation
point simulation in chapter 5. However, we use the value µR = 55 in chapter 10, for a better
description of satellite bubbles generation.

2 A model flow configuration: the uniaxial straining flow

We have seen that one of the most relevant geometry for bubble deformations and breakup in
turbulence is the uniaxial straining flow. In this section, we present the numerical configuration
and verify numerical convergence for the single and the two phase simulation.

2.1 Physical setting

In a homogeneous and isotropic turbulent flow, bubbles are submitted to various flow con-
figurations and intensities. As emphasized in the previous chapter, the uniaxial straining flow is
among the most relevant flow geometries for bubble deformations and breakup, as schematized
on figure 2.1. In this work, we aim at mimicking bubble deformations induced by this flow
geometry, for bubbles of size close to the stability threshold, the Kolmogorov-Hinze scale dh.

We first estimate the value of the Reynolds number at the Kolmogorov-Hinze scale. We recall
that in homogeneous and isotropic turbulent flow, for a bubble size lying within the inertial range
of the turbulent cascade, the Reynolds number at the bubble scale is written as

Ret = ⟨δu(d)2⟩1/2d

ν
=

√
2ϵ1/3d4/3

ν
. (2.4)

In the oceans for instance, below breaking waves, ϵ ≈ 1 m2.s−3 and the Kolmogorov-Hinze
scale lies between 500 µm to 1 mm [52]. It follows that the Reynolds number at the Kolmogorov-
Hinze scale ranges from 50 to 150. We therefore focus on Reynolds number varying between 10
and 800.

25



Chapter 2. Numerical configurations: Principle and convergence study

 z

 r

 R(θ)
 θ

Figure 2.1 – Scheme of a bubble (in blue) is a uniaxial straining flow. The horizontal z-axis
is the axis of symmetry. The vertical r-axis denotes the radial direction. Arrows qualitatively
illustrate the direction of the surrounding flow.

In the following, we build a numerical experiment imitating bubble deformations induced by
straining regions. In chapter 5 we investigate the deformation and breakup dynamics of a bubble
in a uniaxial straining flow. In chapter 10 we focus on the generation of satellite bubbles. Let us
first explain the principle of the numerical simulations, before testing the numerical convergence
of each step in sections 2.2 and 2.3.

We solve the axi-symmetric Navier-Stokes equations in a cylindrical domain of size L = 10R0

(R0 = d/2), with left-right symmetry, ie z ∈ [0, L] and r ∈ [0, L] (schematized on figure 2.2).
Imposing left-right symmetry allows us to maintain the bubble at the center of the stagnation
point flow and therefore to focus on bubble deformations. We first create a uniaxial (axi-
symmetric) straining flow whose velocity field is written as,

u(r, z) = Ezez − 1
2Erer (2.5)

where E ≥ 0 is the typical shear amplitude, ez and er are unit vectors of the axi-symmetric
coordinate system (z, r) (defined on figure 2.1). The velocity field is associated with the following
pressure field,

P (r, z) = −1
8ρE2r2 − 1

2ρE2z2 + P0 (2.6)

where P0 is a constant. Both the velocity field and the pressure field are bi-polar.
We then inject a spherical bubble of diameter d, radius R0 = d/2, at the center of the stag-

nation point flow and let the bubble evolve. Physically, this numerical experiment corresponds
to a bubble quickly transported or suddenly submitted to a new straining region. Gas-liquid
density ratio is ρR = 850, close to the air-water ratio. As discussed earlier, gas-liquid dynamic
viscosity ratio is µR = 25 in chapter 5 and 55 in chapter 10, close to the air-water ratio. Both
phases are assumed incompressible, immiscible and non condensible.

Bubble dynamics is controlled by two dimensionless numbers. The first relevant dimension-
less number is the Weber number which compares inertia and capillary forces at the bubble
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Figure 2.2 – Numerical domain (not at scale). The bottom axis (z-axis) is the axis of symmetry.
The vertical (r-axis) is the radial direction. The initially spherical bubble is schematized by the
grey region of radius R0. Grey errors schematize the direction of the flow.

scale. It is based on the characteristic velocity U = Ed at the bubble scale,

We = ρU2d

γ
= ρE2d3

γ
. (2.7)

At low Weber number, bubbles are mainly rigid and do not break while they break at large
enough Weber number. The second relevant parameter is the Reynolds number

Re = Ud

ν
= Ed2

ν
, (2.8)

which compares inertia and viscous force. To make the analogy with turbulent configurations,
we vary Re in an intermediate range, between 10 and 800. Note that one could use alternatively
one of these two dimensionless number the Ohnesorge number Oh =

√
We/ Re = ν

√
ρ/(dγ)

which thus, does not include the straining rate but only the material and geometrical properties
of the bubble. While the Ohnesorge number plays an important role in the final stage of a fluid
breakup [26, 64], it is more relevant in our configuration to use dimensionless numbers that
involve the inertia of the flow.

The next two sections detail the numerical configuration and the choice of numerical param-
eters. We fist check numerical convergence for the single phase simulation, before investigating
grid independence for bubble deformations and breakup.

2.2 Flow creation

We first run single phase simulations to obtain a uniaxial straining flow at a given Reynolds
number. We call these single phase simulations, precursors. To create the uniaxial straining
flow, we use Dirichlet boundary conditions for the velocity field at r = L (inflow) and Neumann
condition at z = L (outflow), and conversely for the pressure. Starting from a fluid at rest,
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Chapter 2. Numerical configurations: Principle and convergence study

the velocity field converges in a typical time 1/E, to the straining flow. To vary the Reynolds
number, we vary the numerical value of E, which changes the boundary conditions. Another
relevant choice is to change the value of ν while keeping E constant.

We test the numerical convergence for the precursor simulations by comparing the total
kinetic energy in the box in the absence of a bubble to the predicted value when varying the
maximum level of refinement Le. Given the theoretical velocity field in a stagnation point flow
we get the theoretical density of kinetic energy

Kth = 1
πL3

∫ L

0
dx

∫ L

0
dy

1
2ρu2 = 11

48E2L2. (2.9)

We denote K the experimental density of kinetic energy in the precursor simulations. The
mismatch between K and Kth defines the error

error = 100.
|K − Kth|

Kth
. (2.10)

Figure 2.3a shows an example of the typical temporal evolution of the density of kinetic energy
for three maximum levels of refinement Le, at Reynolds Re = 200. The kinetic energy starts
from 0 and quickly reaches a plateau after a typical time t ∼ 1/|E|. The plateau value depends
on the maximum level of refinement Le and converges to Kth as Le increases. The error is less
than 1% as soon as Le > 7. Figure 2.3b displays the error for the six different values of Re
ranging from 10 to 800, as a function of Le. As soon as Le ≥ 7, the error is less than 1%. In
what follows, we fix the level of refinement to Le = 9, which fixes the minimum grid size ∆ to
L/29. If the grid were of constant cell size ∆, the number of points would be 5122.

Note that, as the theoretical velocity field (equation 2.5) is independent of the viscosity
we should, in theory, be able to run a single precursor simulation with an arbitrary value of
ν. Then, we would change Re by changing ν. However, we do observe differences between
precursor simulations when changing Re (figure 2.3b). Therefore, we preferred to run one
precursor simulation per value of the Reynolds number.

2.3 Bubble’s injection

For each Reynolds number precursor simulation, we extract a snapshot of the stationary
state. Then, we inject a spherical, or ellipsoidal, bubble of volume equivalent radius R0 = L/10
at the stagnation point (r = z = 0, see figure 2.2), by changing locally density and viscosity.
The boundary conditions at the bubble interface are initially not fulfilled, nevertheless the code
adapts in a few time steps to restore a solution. This time corresponds to a much shorter time
than all physical time scales considered here, namely the bubble breakup time and period of
oscillations. In addition, this bubble injection method has been successfully used to study bubble
dynamics in other flows [141, 167]. During this second phase, to maintain the stagnation point
flow we do not change the boundary conditions compared to the precursors simulations.

We test numerical convergence separately for chapters 5 and 10. Indeed, studying bubble
deformations and breakup (chapter 5) involve resolving numerically the bubble period and the
bubble scale. These time and length scales are much larger than the ones associated with satellite
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Figure 2.3 – a) Typical temporal evolution of the kinetic energy for different maximum levels of
refinement at Re = 200. A stationary state is reached after approximately 1/|E|, with an error
smaller than 1% for all Le on the total kinetic energy. b) Error (in %), defined in equation (2.10),
as a function of the maximum level Le and for all the Reynolds numbers. Points corresponding
to different Re have been horizontally shifted for readability reasons. As soon as Le ≥ 7 the
relative error is less than 1%.

bubble generation (chapter 10). Therefore, it is easier to guaranty numerical convergence for
the bubble dynamics than for the satellite bubble generation and we use a different numerical
resolution for the two problems.

Numerical convergence test for bubble dynamics: In chapter 5 we investigate bubble
deformations and breakup. We therefore test numerical convergence on a metric quantifying
bubble deformations, together with bubble dimensionless lifetime ET . We follow bubble defor-
mations by computing the amplitude of the second Rayleigh mode x2, encoding oblate-prolate
oscillations

x2 = 1
2

√
5
π

∫ π/2

0

R(θ)
R0

(3 cos(θ)2 − 1) sin(θ)dθ (2.11)

with the angle θ and the local radius R(θ) defined on figure 2.1. Figure 2.4a shows the temporal
evolution of the amplitude of the oblate prolate mode x2 as a function of the dimensionless
time for Le ∈ [9, 10, 11] for a breaking bubble at We = 8 and Re = 400. Before 0.5ET , the
three evolutions are linear in time and indistinguishible. However, as time grows, we observe
a second linear regime and the slope differs for level Le = 9, compared to the other levels
of refinement. The end of each curve corresponds to the breakup time ET , also reported on
figure 2.4b as a function of Le. We observe a significant variation of 3.7% between level 9 and
level 10. Conversely, the bubble lifetime only differs from 0.05% between level 10 and 11. We
conclude that, as soon as Le ≥ 10, bubble deformations and lifetime are grid converged. If the
grid were of constant cell size, ∆, the number of points would be 10242 corresponding to 102.4
points per bubble equivalent radius.

Numerical convergence test of satellite bubbles: Bubbles do not break on the axis of
symmetry in the uniaxial straining flow. Besides, they pinch-off at a position which depends
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Figure 2.4 – a) Evolution of the amplitude of the second Rayleigh mode x2 as a function of time
at We = 8 and Re = 400. b) Evolution of the bubble lifetime at Re = 400 and We = 8 the
maximum level of refinement Le.

on both the Reynolds and the Weber number. By convention, we call filament the volume
encapsulated in the first satellite bubble. Indeed the first pinch-off can be followed by several
others, which will break this satellite bubble into smaller pieces instead of the largest one. In the
study reported in chapter 10, we want to resolve numerically the generation of satellite bubbles
and in particular, the evolution of their volume with the two controlling parameters. We verify
numerical convergence by following the evolution of the filament volume as a function of the
refinement level Le. Figure 2.5a shows an example of the evolution of the filament volume Vf

divided by the parent volume V0 = 4/3πR3
0, as a function of Le, for We = 400 and Re = 200.

The filament volume is orders of magnitude smaller than the parent bubble volume. Therefore,
the minimum grid size must be largely decreased compared to the previous case. The relative
difference between level 12 and 13 is 63%, while it is 14% between level 13 and 14, corresponding
to a relative difference in bubble equivalent radius of 18% and 4.5% respectively. Note that levels
12, 13 and 14 correspond to a resolution 19.2, 32.7 and 62 points per filament volume-equivalent
radius respectively (and 409.6, 819.2, 1638.4 points per initial bubble radius respectively). The
simulation at Re = 200 and We = 400 is actually one of the most challenging numerically, as
can be seen on figure 2.5b, which represents the evolution of the filament volume with We and
Re. The Reynolds number is color-coded, while symbols represent the level of refinement. As
soon at Vf /V0 ≥ 2e − 4, we do not observe any quantitative difference between points at level
12 and 13. These cases correspond to large We, and Reynolds number lower than 100. As cases
at level 13 are time consuming, by default, we run all simulations at level 12. Level 13 is used
when Vf /V0 ≤ 10−4.

2.4 Table of the physical and numerical parameters

We summarize in table 2.1 the definition of the controlling parameters as well as the numerical
values used in chapter 5 and 10.
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Figure 2.5 – a) Evolution of the filament volume as a function of Le, for a case at We = 400
and Re = 200. b) Evolution of the filament volume as a function of the Weber number. The
Reynolds number is color-coded, while symbols encode the level of refinement.

Chapter 5 10
We ρE2d3/γ -
Re Ed2/ν -

R0/L 1/10 -
µR 25 55
ρR 850 -

R0/∆ 102.4 ≥ 409.6

Table 2.1 – Summary of the physical and numerical values used along this thesis. A dash "-"
denotes that the definition or value is shared among chapters.

3 Single bubble in HIT

Together with the simplified geometry, we run direct numerical simulations of a single bubble
in homogeneous, isotropic and statistically stationary turbulent flow. In this section, we describe
the numerical set-up.

3.1 Physical setting

We consider an initially spherical gas bubble, of diameter d, immersed in a homogeneous
and isotropic turbulent flow. For bubble size lying within the inertial range of the turbulent
cascade, where the flow is scale invariant, bubble dynamics is primarily controlled by the Weber
number We = ρU2d/γ, where U is a characteristic velocity, which balances inertial and capillary
forces. According to Kolmogorov and Hinze [84, 97], bubbles are primarily deformed by eddies
of bubble size, so that U is the average longitudinal velocity increment at the bubble scale,
U2 = ⟨δu(d)2⟩, with δu(d) = uL(r, t) − uL(r + d, t), where uL is the velocity component along
the direction of d. In a homogeneous and isotropic turbulent flow, for d lying within the inertial
range, ⟨δu(d)2⟩ relates to ϵ, the energy dissipation rate and d through ⟨δu(d)2⟩ = C(ϵd)2/3,
where C is a numerical constant. Experimental measures reports values of C varying between
2 and 2.2 [142]. We choose C = 2 for consistency with Risso et al. [165]. Eventually, the
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Weber number of bubbles of size lying within the inertial range of a homogeneous and isotropic
turbulent flow is written as,

We = 2ρϵ2/3d5/3

γ
. (2.12)

Low Weber number bubbles do not break, while large bubbles can be easily deformed and
break. Viscous effects are quantified by the Reynolds number at the bubble scale Re(d) = Ud/ν.
Similarly, for bubbles within the inertial range of turbulence, the Reynolds number is written as

Re =
√

2ϵ1/3d4/3

ν
. (2.13)

As for the uniaxial straining flow, the numerical simulation is performed in two steps. We
first create a statistically stationary turbulent flow in a square periodic box of size L3. We call
these single phase simulation precursor simulations. Then we inject a spherical bubble at the
center of the simulation, while maintaining turbulence. As turbulence is intrinsically fluctuating,
for every turbulent state and Weber number, we perform several simulations starting from
different statistically equivalent turbulent flow configurations. To do so, we use several initial
flow snapshots separated by at least one eddy turnover time or at the bubble scale tc(d) to
ensure statistical independence. In chapter 6 and 7, snapshots are separated by at least 6tc(d).
In chapters 6, 7 and 9, we use ρR = 850 and µR = 25.

3.2 Single phase simulation

We create a homogeneous and isotropic turbulent flow by solving the 3D single phase Navier-
Stokes equation, with an additional linear forcing,

f(x, t) = CAu(x, t), (2.14)

following the method introduced by Rosales and Meneveau in 2005 [172]. Such an approach
has been used previously by several authors in various multiphase flow contexts such as the
interaction between turbulence and a fixed solid sphere [136], a rising bubble in turbulence [193]
or evaporation and mixing in two phase turbulent flows [62]. The numerical constant A controls
the turbulence intensity. We set its value to 0.1. The velocity field is multiplied by the liquid
volume fraction C to ensure forcing in the liquid phase only. Note that in the single phase
simulation C = 1 everywhere. A linear forcing induces a mean flow which grows in time.
Therefore, to prevent divergence of the kinetic energy, at each time step, we remove the average
velocity at every point in space. This procedure ensures to have a homogeneous and isotropic
turbulent flow. This method has been previously implemented and provided as an example on
the Basilisk website. Starting from an isotropic "ABC" flow the velocity field converges to a
turbulent state after a transient.

Turbulence statistics: We monitor the temporal evolution of the flow by following several
statistical quantities associated with the turbulent state: the density of kinetic energy K, the
dissipation rate ϵ, and the Taylor Reynolds number Reλ. The density of kinetic energy, which
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Figure 2.6 – Temporal evolution of turbulent statistics in precursor simulations as a function
time in units of the eddy turnover time at the integral length scale τ . Data corresponding to
Reλ = 55 are in blue shades, while Reλ = 38 correspond to red shades. a) Density of kinetic
energy, b) energy dissipation rate, c) Taylor Reynolds number, c) Number of grid points. Black
dotted lines denotes the number of grid points for an equivalent regular grid.

quantifies velocity fluctuations in the flow, is defined as

K = 1
2V

∫
ρu2(x, t)d3x = 3

2ρu2
rms, (2.15)

where urms is the root mean square of the velocity and the factor 3 comes from the flow isotropy.
The mean energy dissipation rate per unit mass quantifies the rate of energy exchange between
scales. It is defined through

ϵ = ν

V

∫
(∂iuj + ∂jui)2d3x. (2.16)

Finally, the Taylor Reynolds number quantifies the flow fluctuations. It is based on the correla-
tion length of velocity gradients, the Taylor micro-scale, λ =

√
15ν/ϵ urms in homogeneous and

isotropic turbulence [142]. The Taylor Reynolds number is then defined by

Reλ = urmsλ

ν
. (2.17)

Note that A = ϵ/(3u2
rms) [172]. Therefore, prescribing the value of A to a constant imposes

a constant eddy turnover time at the integral scale τ = u2
rms/ϵ. We change the value of Reλ

by changing the value of the kinematic viscosity ν. Decreasing ν decreases the Taylor micro-
scale, as well as the Kolmogorov length scale η = ν3/4/ϵ1/4, below which viscous effects become
important. Therefore, the two values of Reλ might need two different refinement levels.
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Figure 2.6 shows the temporal evolution of K, ϵ and Reλ as a function of time for different
maximum levels of refinement. Blue and red range of colors correspond to two different numerical
values of the liquid kinematic viscosity leading to two different stationary values of Reλ. Time
is made dimensionless using the eddy turnover time τ = u2

rms/ϵ averaged over the statistically
stationary period. After 10τ , every flow converges to a statistically stationary state. Blue
curves correspond to Reλ ≈ 55, while red curves correspond to Reλ = 38. Note that for some
simulations (for instance Reλ = 55, Le = 9) we use as flow initial conditions a flow snapshot at
a lowest resolution instead of starting from an ABC flow. This procedure saves computational
time and avoids flow divergence that might happen during the inertial kinetic energy growth
at the beginning of the simulation. As we have fixed to value of A to 0.1 in all simulations,
the statistically stationary values of both ϵ and K are the same in all simulations, even when ν

varies. We do not observe significant differences between different levels of refinement for each
Reλ, except at Reλ = 55 and Le = 6. For this configuration the average density of kinetic
energy is smaller than at larger resolution. This effect can be understood by looking at the
total number of points N in the simulation, as a function of time reported on figure 2.6d. We
observe that the number of grid points increases until it reaches its stationary value at the
instant when the density of kinetic energy and dissipation rate are maximum. At Reλ = 55 and
Le = 6, the number of grid points increases until it reaches (26)3, corresponding to the number
of grid points of a regular grid with grid size (∆)3. Therefore, in this case, the maximum error
that we prescribe is not respected. In all other cases, the number of grid points is well lower
than the number of points in the equivalent regular grid. We note that more points are present
in simulations at Reλ = 55, consistently with the existence of smaller scales in the flow. We
conclude that the adaptive algorithm perform well as soon as Le ≥ 7: we resolve the smaller
scales in the flow while saving computational time.

To choose between levels of refinements greater that 7, we compute the number of grid points
per Kolmogorov length. To resolve the dissipative scales we must have at least two points per
Kolmogorov scales. An effective resolution at Le = 8, corresponds to 2 and 1.19 points per
Kolmogorov length η at Reλ = 38 and 55 respectively. We therefore run precursor simulations
at level 8 for Reλ = 38 and Le = 9 at Reλ = 55 (leading to 2.39 points per Kolmogorov
length). Note that these resolutions correspond to 25.0 and 35.3 points per Taylor micro-scale
at Reλ = 38 and 55 respectively (at Le = 8 and 9 respectively).

Structure functions: The turbulent state can be more precisely assessed by looking at the
longitudinal DLL(r) and transverse DNN (r) structure functions, defined by

DLL(r) = 1
3
∑

i

⟨(ui(x, t) − ui(x + rei, t))2⟩ (2.18)

DNN (r) = 1
6
∑
i ̸=j

⟨(ui(x, t) − ui(x + rej, t))2⟩ (2.19)

where ei is the unit vector along the ith direction. In a homogeneous and isotropic turbulent flow,
we expect DLL(r) = C2(rϵ)2/3 and DNN (r) = 4/3DLL(r) with C2 ≈ 2 a universal numerical
constant [142]. Figure 2.7a shows DLL and DNN compensated by their theoretical values as a
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Figure 2.7 – Structure functions at Reλ = 55 a) Longitudinal and transverse structure functions
normalized by their respective scaling in homogeneous and isotropic turbulence, as a function
of r normalized by the Kolmogorov lengthscale η. The bubble size diameter (dashed line) lies
within the inertial range of scales. The solid black line corresponds to DLL ∝ r2, which holds
for small values of r. b) Transverse scaling as a function of its isotropic expression DNN |iso.
Both values are normalized by (ϵη)2/3. The solid black line is the purely isotropic scaling.

function of r/η, for a precursor simulation at Reλ = 55 and Le = 9 (see [167] for the same plot
at Reλ = 38). Although the inertial range is limited due to limited value of Reλ, we do observe
the Kolmogorov scaling and the relation between DLL and DNN is verified. In addition, the
black dashed line shows that the bubble diameter lies within the inertial range of the turbulent
cascade, where turbulence is reasonable.

Eventually, we use structure functions to verify flow homogeneity and isotropy. Indeed, in a
homogeneous and isotropic flow, DNN is uniquely determined by DLL through [142]

DNN |iso = DLL + r

2∂rDLL. (2.20)

This relation must hold also for limited values of Reλ. Figure 2.7b shows DNN as a function of
DNN |iso, both normalized by (ϵη)2/3, for Reλ = 55 (again, see [167], for Reλ = 38). The relation
holds perfectly confirming the homogeneity and isotropy of the turbulent flow in the precursor
simulations.

3.3 Two phase simulation

Similarly to the uniaxial straining flow, we output snapshots of the statistically stationary
turbulent state and use these snapshots as flow initial condition. We inject a spherical bubble
of diameter d = 0.13L, at the center of the numerical domain by changing the volume fraction
C from 1 to 0. We also set the initial velocity inside the bubble to zero to guaranty that no
breakup occur due to the initial inside flow. In practice, we tested several set of initial conditions
and we find no dependency of bubble breakup in the initialization procedure. Indeed, the solver
relaxes in a few time steps after initialization.
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Figure 2.8 – Figure extracted from Perrard et al. [141]. Temporal evolution of the radius
standard deviation ζΩ as a function of the dimensionless time t/tc for fives Weber numbers
We = 3, 6, 15, 30, 45 (a to e) and Reλ = 38. We observe an excellent agreement between level 9
(blue) and level 10 (red) simulations at all We.

Numerical convergence test for bubble deformations: To quantify bubble deformations,
we parameterize bubble surface by its local radius R(θ, ϕ), in the comoving reference frame,
where (θ, ϕ) are the usual polar and azimuthal angles of the spherical coordinate system. We test
numerical convergence of bubble shapes by computing the bubble average surface deformation
ζΩ as a function of time,

ζΩ = 1
4π

∫ [
R(θ, ϕ) − R̄

]2
dΩ (2.21)

where dΩ = sin(θ)dθdϕ and R̄ = 1/(4π)
∫

R(θ, ϕ)dΩ. Figure 2.8 (extracted from [141]) shows
five typical temporal evolution of ζΩ at Reλ = 38 for five different Weber number (3, 6, 15, 30
and 45), computed at level 9 (in blue) and level 10 (in red). Time is in units of the eddy turnover
time at the bubble scale tc(d) = ϵ−1/3d2/3. We observe an excellent agreement between the two
levels of refinement at all Weber number. We therefore fix the maximum level to 9. This choice
corresponds to 68 points per bubble equivalent diameter and the equivalent number of points
on a regular grid would be (512)3.

Numerical convergence test for bubble breakup: An in-depth study of numerical con-
vergence for bubble breakup can be found in Rivière et al. [167]. In this paragraph, we recall
the main elements. As the breakup study (chapter 9) is performed at Reλ = 38, we focus on
this value of Reλ in this paragraph.

Since turbulence is a fluctuating state, we must verify that the statistics of breakup are grid
converged instead of checking that each simulation is grid converged. Indeed, small differences
lead to dramatic differences between cases in turbulence and changing Le for the same set of
initial conditions can lead to dramatic differences in bubble breakup dynamics. To check grid
convergence of breakup statistics, we run ensembles of simulations at Le = 9 and Le = 10.
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We 3 3 6 6 15 15 30 30 45 45
Le 9 10 9 10 9 10 9 10 9 10

# runs 27 3 39 15 20 10 20 10 20 6

Table 2.2 – Number of runs per ensemble used in figure 2.9.
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Figure 2.9 – Average dimensionless bubble lifetime ⟨T ⟩/tc(d), in a turbulent flow at Reλ = 38,
as a function of We at two refinements levels (9 and 10) for the first bubble breakup. Data at
level 10 have been shifted to the right for readability reason. Errorbars encode the standard
deviation.

We first check numerical convergence for the initial bubble lifetime T , as a function of We.
Figure 2.9 shows the evolution of the ensemble averaged lifetime ⟨T ⟩ of the initial bubble, in
units of the eddy turnover time at the bubble scale tc(d) as a function of We, for the two levels
of refinements Le = 9 and 10. Level 10 data are shifted to the right for readability reason.
The error bars encode the standard deviation of the lifetime. The exact number of runs per
ensemble used in this plot can be found in table 2.2. We find no significant differences between
the two levels of refinements (within the errorbars), at all Weber number. As a consequence,
we consider that bubble lifetime is converged at level 9. This level corresponds to 68 points per
bubble equivalent diameter.

Similarly to the previous uniaxial straining flow, we want to resolve bubble fragmentation.
Due to the large computational cost of each ensemble, increasing the resolution is not accessible.
Instead, we adopt another strategy and look for the minimum number of grid points necessary for
a bubble to be resolved, ie we look for the minimum bubble size resolved in our simulations. To
do so we consider simpler numerical simulations: bubble breakup in a freely decaying turbulent
flow. For these simulations, when we inject the bubble, we also stop forcing the flow, by setting
A = 0. The Weber number is then defined at the initial instant, while the effective Weber
number decreases as turbulence decays. The panel in figure 2.10a, (extracted from Rivière et
al. [167]), shows an example of bubble deformations and breakup at We = 15, Reλ = 38 and
Le = 9. Colors indicate grid size at the interface, with warmer colors denoting smaller cell size.
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Figure 2.10 – Figure from W. Mostert, extracted from Rivière et al. [167]. a) Sequence of
breakup for a bubble in a freely decaying turbulence. The initial bubble Weber number is 15,
the initial Taylor Reynolds number is 38. The level of refinement is Le = 9. Colors indicate
grid size on the bubble interface with warmer colors indicating smaller cell sizes. b) The same
simulation at Le = 10. c) Evolution of the bubble equivalent diameters in the same simulations
for Le = 9 (in blue) and Le = 10 (in red), as a function of time in units of tc(d0). Dashed lines
indicate the resolution of 8 grid points, 8∆, at each level. Dotted line indicate 4∆.

Note that more points are present in regions where curvature is higher as expected from the
adaptive mesh refinement criterion. In spite of the flow decay, the bubble is initially largely
deformed and breaks, creating two large bubbles and an elongated structure. As the largest
child bubble is still very deformed, another sequence of breakups follows creating large bubbles,
of size comparable to the initial bubble size, as well as tiny ones. The same sequence of breakups
is recovered when increasing the resolution from level 9 to level 10, as illustrated on the panel b.
Nevertheless we note some differences on the size of tiny bubbles. Note that these bubbles are
resolved with only a few grid points and might therefore not be grid converged. This fact can
be more properly assessed by computing the volume-equivalent diameter of every child bubble.
Figure 2.10c shows the bubble volume-equivalent diameter of every bubble in the simulation,
normalized by the initial bubble diameter d0, as a function of time, in units of tc. Level 9
data are in blue, while level 10 data are in red. Sizes above dashed lines are larger than 8∆,
while dotted lines indicate the 4∆ limit. For both levels, the initial bubble breaks at t ≈ tc

producing two large bubbles larger than 8∆9, with excellent quantitative agreement between
the two resolutions.

The sequence of latter breakups is also very similar between the two resolutions. The number
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and the size of child bubbles larger than 8∆ (at Le = 9) are close between the two levels of
refinements. Figure 2.10 only shows an example for one initial turbulent snapshot but tests
with several other initial configurations draw the same conclusions: the first breakup is always
grid-converged, with lifetime differences smaller than 10%. This fact is consistent with our
previous observations of statistical convergence of the first breakup in forced turbulence. The
latter breakup sequence, in decaying turbulence, creates the same number of child bubbles for
both resolutions (for child sizes larger than 8∆ at Le = 9). Their sizes agree within 10%. We
are therefore confident that bubbles are size larger than 8 grid points at Le = 9 are statistically
grid converged.

3.4 Table of the physical and numerical parameters

We summarize in table 2.3 the physical and numerical parameters used in the rest of this
thesis.

Chapter 6 & 7 9
Reλ 55 38
Re 124 62
d/L 0.13 -
d/λ 1.9 1.36
d/η 28.5 16.9
µR 25 -
ρR 850 -

d/∆ 68 -

Table 2.3 – Summary of the numerical and physical parameters used along chapters. The dash
"-" indicates that the value does not change between chapters.
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Chapter 3
Analytical tools

Many Russians worked on this subject.
What is your contribution?

A chairman

In this chapter, we introduce two analytical tools which will be useful all along the
manuscript. First, the spherical harmonics decomposition, which will be widely used
in part I. Then we explain how we reconstruct family trees, knowing the position
and volume of bubbles at each time step. The algorithm is used in part II.
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1 Spherical harmonics decomposition

In part I, we aim at describing bubbles deformations to infer the likelihood of breakup. To
quantify bubble deformations, we decompose bubble radius into the real spherical harmonics
base. In this section, we detail a few characteristics of the spherical harmonics and the compu-
tation of the modes’ amplitude in both the axi-symmetric and the 3D turbulent case.

1.1 General considerations

The (complex) spherical harmonics base {Ỹ m
ℓ } is an orthonormal base defined on the surface

of a sphere. This base is therefore adapted for problems with spherical symmetries. The base
is indexed by two integers: the principal number ℓ ≥ 0 and the secondary number m ∈ J−ℓ, ℓK.
Each value of ℓ is associated with 2ℓ + 1 harmonics. Each harmonic depends on θ and ϕ, the
usual colatitude and longitude of the spherical coordinate system. It can be expressed in terms
of the associated Legendre polynomial P m

ℓ

Ỹ m
ℓ (θ, ϕ) =

√
2ℓ + 1

4π

(ℓ − m)!
(ℓ + m)! P m

ℓ (cos θ)eimϕ. (3.1)

From the complex base, one can define the real spherical harmonics base {Y m
ℓ } through

Y m
ℓ =


i√
2(Ỹ m

ℓ − (−1)mỸ −m
ℓ ) if m < 0

Ỹ 0
ℓ if m = 0
1√
2(Ỹ −m

ℓ + (−1)mỸ m
ℓ ) if m > 0.

(3.2)

Figure 3.1 illustrates the shape of the first spherical harmonics (ℓ, m), for ℓ ∈ J0, 3K and every
m. Spherical harmonics on the same row share the same ℓ-value. Spherical harmonics on the
same column share the same m-value. The ℓ = 0 mode corresponds to radial oscillations. The
three ℓ = 1 modes correspond to translation along the three directions. For ℓ ≥ 2, the value of ℓ

can be see qualitatively as the number of poles. The ℓ = 2 modes correspond to oblate/prolate
shapes. The ℓ = 3 modes have a triangular shape etc... For a given ℓ, modes −|m| and |m|
share the same shape up to a rotation and a change of sign.

In part I, we describe the bubble shape in a reference frame following the bubble. We
decompose the local bubble radius R(θ, ϕ) in the real spherical harmonics base,

R(θ, ϕ) = R0

1 +
∞∑

ℓ=2

ℓ∑
m=−ℓ

xℓ,m(t)Y m
ℓ (θ, ϕ)

 (3.3)

where R0 is a constant, by incompressibility. We compute the amplitude of each mode amplitude
xℓ,m in time through

xℓ,m =
∫∫

R(θ, ϕ)Y m
ℓ (θ, ϕ) sin(θ)dθdϕ (3.4)

by orthonormality of the basis. We denote dΩ = sin(θ)dθdϕ the solid angle.
Note that the three modes ℓ = 1 are not present in the shape decomposition, equation (3.3).

This absence comes out of the choice of the reference frame. This choice allows us to decouple
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(0, 0)

(1, -1) (1, 0) (1, 1)

(2, -1) (2, 0) (2, 1)(2, -2) (2, 2)

(3, -1) (3, 0) (3, 1)(3, -2) (3, 2)(3, -3) (3, 3)

Figure 3.1 – Illustration of the shape of the real spherical harmonics for ℓ ∈ J0, 3K and every
m. Each line corresponds to a value of ℓ, while each column corresponds to a value of m. The
amplitude of the deformations are exaggerated for clarity.

bubble deformations (modes ℓ ≥ 2), from bubble displacements (modes ℓ = 1).
It is worth mentioning that all this description presumes that we can parameterize the local

radius in terms of the two angles θ and ϕ. This assumption systematically falls down close to
bubble breakup or when the bubble is dramatically deformed.

Caveats: Even though the real spherical harmonics base has been successfully used to de-
scribe bubble deformations both theoretically and experimentally, one shall remember that this
decomposition is not intrinsic to the bubble shape. In particular, the value of each coefficient
depends on the definition of the reference frame. More precisely:

• The decomposition depends on the choice of origin of the reference frame. Shifting the ref-
erence frame changes all the coefficients. To overcome this difficulty, in the computation of
the spherical harmonics, we define the origin as the point which cancels the amplitude of the
three modes ℓ = 1. This choice ensures that the origin is defined define unambiguously at all
times and that coefficients xℓ,m only describe bubble deformations.

• The decomposition is not invariant under rotation. A rotation of the reference frame (while
keeping the origin fixed) changes the value of all coefficients such that ℓ ≥ 1. Nevertheless,
rotating the reference frame redistributes energy of each mode (ℓ, m) over the modes sharing
the same value of ℓ. The dimensionless energy contained in the modes ℓ,

∑
m x2

ℓ,m for a
given ℓ is invariant under rotation. In this work, we choose to keep the reference frame
orientation constant. As a consequence, we cannot test the statistics associated with the
different m-geometries. Other authors may have done a different choice. Roa et al. [169]
rotated dynamically the reference frame in order to maximize, at each time step, the amplitude
of the mode (2, 0).
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1. Spherical harmonics decomposition

1.2 Local radius decomposition in the axi-symmetric case

In the model flow of the axi-symmetric straining flow, the decomposition only retains axi-
symmetric modes, which correspond to m = 0. As we impose symmetry with respect to the
z = 0 plane, we can choose (r, z) = (0, 0) as the origin for the radius decomposition. This choice
automatically enforces x1,0 = 0 without special treatment. In the real spherical harmonics base,
the local radius, which now depends on θ only, can be written as

R(θ) = R0

(
1 +

∞∑
ℓ=2

xℓ,0(t)Y 0
ℓ (θ, 0)

)
. (3.5)

The spherical harmonics coefficients are computed using

xℓ,0 = 4π

∫ π/2

0
R(θ)Y 0

ℓ (θ, 0) sin θdθ. (3.6)

The 2π prefactor comes from the ϕ-integration. The factor 2 from the integration between π/2
and π which gives the same value by symmetry with respect to the z = 0 plane. We compute
the integral using a trapezoidal rule.

1.3 Local radius decomposition in 3D

We have developed and described the algorithm to compute the spherical harmonics decom-
position in our previous work [141]. We recall here the method.

Discretization points are not spread uniformly on the surface of the bubble (see figure 3.2,
left panel). In particular, more points are dynamically added to the regions of large curvature.
To accurately compute the coefficients xℓ,m one has to precisely estimate the solid angle dΩ
associated with each point ri. This estimation is illustrated on figure 3.2. We first project all
the interfacial points onto a unit sphere (center panel). Then, we compute the Voronoi diagram of
the points on the sphere, using a function based on a robust Delaunay triangulation [32], already
implemented in Python. The Voronoi diagram associates to each point a region containing all
the points closest to this point than to any other points. The area of each polygon, computed
using a shoelace formula, gives an estimate of dΩi. We found that the numerical error on the
total solid angle

∑
i dΩi, which should sum up to 4π, is less than 0.1%. From them, we estimate

the angular integral of any function f(r), defined on the bubble surface, using∫∫
dΩf(r) =

∑
i

f(ri)dΩi. (3.7)

The right panel of figure 3.2 illustrates the projection of the Voronoi diagram onto the initial
bubble shape. As expected from the adaptive algorithm of Basilisk, regions of larger curvatures
are characterized by smaller surfaces.

To validate the computation procedure, we first checked the orthonormality of the spherical
harmonics, for ℓ ∈ [0, 10], all m using a set of 900 points, typical of the number of points in the
DNS, randomly distributed on a unit sphere. We found a typical error of 0.1 % for ℓ < 5, which
increases for larger values of ℓ. We then tested, the accuracy of the computation on synthetic
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Figure 3.2 – Extracted from our previous work [141]. Illustration of the computation of the local
solid angles using a Voronoi diagram. Left: A deformed bubbles. Blue points are interfacial
points. Center: Projection of the surface onto a sphere of radius 1. The colored area are the
Voronoi surfaces associated with each point. Right: Projection of the Voronoi diagram onto the
initial bubble shape.

shapes, using again a set of 900 points randomly distributed. We found that the relative error
is about 0.5 % of the largest non-zero harmonic coefficient for ℓ ≤ 5. In practice, an accurate
estimate of the coefficients is obtained for ℓ ≤ 5. Note that, in order to minimize the error,
we first compute the coefficient associated with Y 0

0 , x0,0. We then subtract its contribution,
computing the other coefficients using R(θ) − R0x0,0Y 0

0 .
As highlighted earlier the decomposition depends on the origin of the frame of reference and

we define the center as the point for which the three harmonics ℓ = 1 vanish. For DNS data, the
position of this point is found recursively as follows: At each time step, we start from an initial
guess. From this center, we compute the Voronoi diagram and the solid angles associated with
each point. Using these solid angles, we then compute the value of the three harmonics ℓ = 1,
while moving the center position. As each harmonic ℓ = 1 presents a symmetry of revolution,
each of them depends on one coordinate of the center position. We therefore perform three,
one dimensional gradient descents, one for each value of m, which gives us a new guess for the
position of the center. From this new center, we compute the new solid angles value and start
the whole process again. The recursion stops when the center displacement between two steps
is less than 2.5.10−6R0. This condition ensures that |x1,m| < 4.10−6 for all values of m.

2 Family trees in turbulence

In part II, we investigate bubble fragmentation. In particular, we aim at identifying the
breaking mechanisms leading to the formation of sub-Hinze bubbles. To identify the origin of
sub-Hinze bubbles, we decompose the fragmentation cascade into binary events. This decom-
position is always possible as no two events can happen exactly at the same time. We call the
breaking bubble the parent bubble and the product of this fragmentation the two child bubbles.

Basilisk does not follow bubbles in time. Therefore, the connection between the parent
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bubble and the two child bubbles must be reconstructed a posteriori.

2.1 Algorithm principle

At each time step, we output the volume Vi and the position of the center of mass xi of
every bubble. In between two breakups, individual bubbles are tracked in space and time using
the Python package trackpy [5] based on the Crocker-Grier algorithm [49].

When a bubble breaks, the number of bubbles increases by one between two time steps. We
identify the parent, at position x0, of volume V0 and the two child bubbles, at position x1 and
x2 and volumes V1 and V2 by looking at the three bubbles satisfying the two following relations

V0 = V1 + V2 (3.8)

x0V0 = x1V1 + x2V2 (3.9)

up to some error. Note that the parent bubble is define at step j while the two child bubbles
exist at step j +1. The first relation is the conservation of mass. The second relation relates the
center of mass of the child bubbles with the position of the parent bubble. Each criterion has
been manually adjusted and tested on simple situations to validate the algorithm robustness.
Trees are also manually checked afterward to verify the associations and add missing links, from
bubbles position and volume.
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PART I

FROM DEFORMATIONS TO BREAKUP -
BREAKUP RATE
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Chapter 4
Modelling bubble deformations in turbulence
- Introduction

This is a purely academic problem.

A reviewer

The main objective of part I is to find an expression of the breakup rate of bubbles
in turbulence. From this breakup rate we could deduce an expression for the critical
Weber number as a function of the residence time. To do so, we investigate the bubble
deformation dynamics in the model flow as well as in turbulence. We aim at finding
reduced dynamics from which we can infer breakup statistics. In this introductory
chapter we first review the bubble deformations strategies in both quiescent and
turbulent flows. Then we expose the usual strategies to model the breakup rate and
how they differ from our approach. We finally give an outline of part I.
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1. Deformable objects in turbulence

1 Deformable objects in turbulence

From a theoretical point of view, bubble deformations and breakup in turbulence are one
over many examples of the interaction between a turbulent flow and a deformable object. From
plants oscillations in the wind [50], to disks [202] and fibers deformations in water [25, 173], many
studies have aimed at finding a reduced dynamics for the amplitude of the relevant spatial modes
of deformations, in the form of a damped harmonic oscillator, randomly forced by turbulence.
The objective can be either to understand the object deformations, as in the case of crops,
whose growth is influenced by the wind, or to understand a distribution of fragment sizes, as
for the microplastic size distribution in the oceans. A usual approach to describe the object
deformations is to model all the coefficients of an ordinary differential equation, as well as the
statistics of a random forcing term that model the turbulent forcing. Dislocation typically occurs
when a given deformation threshold or stress is exceeded.

In this part, we choose another approach. We propose to directly measure the coefficients
of the reduced dynamics as well as the effective forcing from the deformations of bubbles. We
expect the forcing to be stationary in the model configuration, and stochastic in turbulence.

We first review the bubble oscillation dynamics in quiescent flows and their phenomenolog-
ical extensions to turbulent flows. We eventually show how to capture bubble breakup from
deformation model and review other breakup rate modeling.

2 Modeling bubble deformations

2.1 Bubble dynamics in quiescent flows

Rayleigh et al. [159] investigated the oscillation dynamics of inviscid drops in vacuum and
bubbles in a quiescent inviscid flow. In the linear limit of deformation, the local radius of a
bubble (or a drop) can be decomposed into axi-symmetric modes using the basis of Legendre
functions, which are indexed by the integer ℓ ∈ [2, ∞]. Rayleigh showed that the amplitude
of each mode ℓ follows an harmonic oscillator equation, with a characteristic natural frequency
written as

ω2
ℓ = 8(ℓ − 1)(ℓ + 1)(ℓ + 2) γ

ρd3 (4.1)

for bubbles, with fℓ = ωq
ℓ /(2π) the characteristic frequency. Latter on, Lamb [101] extended this

work to gas bubbles oscillating in a liquid of low kinematic viscosity, ν. He found that bubbles’
modes oscillate at the Rayleigh frequency with a damping rate λℓ, defined by

λℓ = 8(ℓ + 2)(2ℓ + 1) ν

d2 , (4.2)

for bubbles of negligible inertia and viscosity. In three dimensions, bubble shape can be decom-
posed into the real spherical harmonics base, Y m

ℓ (θ, ϕ) introduced in chapter 3 where θ and ϕ are
the co-latitude and longitudinal angles in spherical coordinates. The axi-symmetric modes of
Rayleigh and Lamb correspond to m = 0. We denote the dimensionless amplitude of the modes
in the spherical harmonics base by xℓ,m. The dynamics found by Lamb [101] and Rayleigh et al.
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[159] applies to each spherical harmonics mode amplitude xℓ,m, so that they follow a damped
harmonic oscillator equation with natural frequency ωℓ and damping rate λℓ independent of m,

ẍℓ,m + λℓẋℓ,m + ω2
ℓ xℓ,m = 0. (4.3)

When time is made dimensionless using the natural frequency ωℓ, this equation reads,

x′′
ℓ,m + p(ℓ)Oh x′

ℓ,m + xℓ,m = 0 (4.4)

where p(ℓ) = 2
√

2(ℓ+2)(2ℓ+1)/[(ℓ−1)(ℓ+1)(ℓ+2)]1/2 and, ′ stands for derivative with respect
to the dimensionless time ωℓt. The Ohnesorge number Oh = µ/

√
ργd with µ = νρ compares

viscous to capillary effects, and controls the quality factor Qℓ = ωℓ/λℓ ∼ Oh−1 ℓ−1/2 of the Lamb
oscillations.

To estimate the damping rate of small oscillations, Lamb [101] computed the velocity gradi-
ents of the irrotational inviscid velocity field. Doing so, he underestimated the dissipation rate,
as shown latter by Miller et al. [130], as most of the dissipation takes place within the bubble
boundary layer, even when viscosity is low. Another approach is given by the normal-mode
analysis [34, 35, 161], for the spherical harmonics modes. This theory predicts an evolution
of the bubble natural frequency and damping rate with the Ohnesorge number. No explicit
formulation can be however derived: one needs to solve a characteristic equation for each value
of Oh. This approach correctly takes into account viscous effects but only holds at long times,
presumably when oscillations have already been completely damped, and do not describe tran-
sient dynamics. Miller et al. [130] demonstrated that, in the limit of vanishing viscosity, the
normal-mode solution converges to the irrotational one in the bubble case. For drops, the same
demonstration has been done by Chandrasekhar [34] and Reid [161].

Latter on, Prosperetti [149, 150] unified the two approaches by studying the initial-value
problem of a drop or a bubble oscillating is an initially quiescent flow. He demonstrated that,
regardless of the value of Oh, the damped harmonic oscillator dynamics of Lamb [101] holds
at short times compared to the viscous timescale, t ≪ R2

0/ν, where R0 = d/2 is the bubble
equivalent radius. On the other hand, the normal mode description of Chandrasekhar [34] holds
at long times, t ≫ R2

0/ν. At intermediate timescales, Prosperetti [149, 150] demonstrated that
the dynamics is more complex due to the existence of a memory term in the equation of motion
of the modes, which couples the dynamics with the past evolution.

2.2 Bubble deformations in turbulence

For a bubble immersed in a turbulent flow, additional dimensionless parameters may control
the deformation. Let us consider a bubble of negligible inertia and viscosity, equivalent diameter
d, immersed in a fluid of density ρ, dynamic viscosity µ, with surface tension γ. When the
surrounding flow field is an homogeneous and isotropic turbulent flow, characterized by an energy
dissipation rate ϵ, and an integral length scale Lint, the Buckingham’s Π theorem predicts that
the dynamics is controlled by three dimensionless numbers. Choosing a set of dimensionless
numbers which decouples viscous effects from capillary effects, we obtain that a generic measure
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of shape deformation δ can be written as,

δ

d
= F

(
We(d), Re(d), d

Lint

)
. (4.5)

where F is a dimensionless function. The Weber number We(d) = 2ρϵ2/3d5/3/γ compares inertial
and capillary forces at the bubble scale. The Reynolds number Re(d) =

√
2ρϵ1/3d4/3/µ balances

inertial and viscous forces at the bubble scale. Finally, the ratio d/Lint is the scale separation
between the bubble scale and the integral length scale. Note that using ϵ and d we can define a
characteristic velocity U =

√
2(ϵd)1/3 = ⟨δu2(d)⟩1/2, the velocity increment at the bubble scale in

homogeneous and isotropic turbulence [142]. When the bubble size lies within the inertial range
of the turbulent cascade, the surrounding flow is scale invariant and we expect the dynamics to
be independent of d/Lint. The bubble dynamics will then be primarily controlled by the Weber
number. In the presence of gravity g, one must also include the Bond number Bo = ρgd2/γ,
comparing gravity to capillary effects. For simplicity, we will not consider gravity in this study.
This assumption is valid for bubble diameter smaller than the capillary length

√
γ/(ρg) ∼ 2 mm.

In practice, looking at temporal evolution of bubble deformation, our model may describe shape
oscillations slightly above the capillary length.

In this work we focus on bubbles which do not break, corresponding to a bubble size d

within the inertial range of the turbulent cascade and d < dh. For a typical turbulent flow
with ϵ = 1 m2s−3, and Wec ≈ 3, dh = (Wecγ/(2ρϵ2/3))3/5 ≈ 8 mm and Re(dh) ≈ 2300. Note
that Re(dh) ∼ ρ1/5γ4/3/(ϵ1/5µ) decreases as ϵ increases for a given pair of liquid-gas. It is worth
mentioning that, as a consequence, an increase of the global Reynolds number of the flow induces
more viscous effects at the Hinze scale.

To model bubble deformations in turbulence, Risso et al. [165] introduced a forced linear
damped oscillator equation to describe the dynamics of sub-Hinze bubbles. They assumed that
the deformed radius R(t) evolves following

R̈ + λṘ + ω2R = Fex(t) (4.6)

where λ is a damping rate, ω a natural frequency and Fex(t) an instantaneous forcing from
turbulence. Bubble deformations and breakup are mainly controlled by the second spherical
harmonics modes ℓ = 2, which correspond to oblate-prolate oscillation [141, 158, 165]. As a
consequence, as a first guess, they used the Rayleigh natural frequency of mode 2, ω = ω2,
equation (4.1), and the Lamb damping rate λ = λ2, equation (4.2), even though these values
only hold in a quiescent irrotational flow. Then, following the original idea from Kolmogorov
[97] and Hinze [84], they assumed that the turbulent forcing from turbulence scales as the
square of the instantaneous velocity increment at the bubble scale δu(d, t)2, leading to a forcing
Fex(t) = Kd−1δu(d, t)2 from dimensional analysis, where K is a numerical constant of order
1. Doing so, they assumed that the presence of the bubble does not strongly affect the flow
properties, so that the flow statistics correspond to the single fluid case. Expressing length in
units of d, and time in units of 1/ω2, equation (4.6) is written as

r′′ + 20
√

2/3 Oh r′ + r = K̃We(t) (4.7)
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where K̃ is also a numerical constant and We(t) = 2ρδu(d, t)2d/γ is the instantaneous bubble
Weber number. This model is essentially the same as equation (4.4), with an additional random
forcing term. This equation has been widely used for bubbles [100, 122, 123, 158] and drops [71,
82, 115, 169] oscillations in turbulence with the adequate expressions of the damping rate and
natural frequency.

However, there is no guarantee that the bubble natural frequency and damping rate remain
unchanged compared to the quiescent case. They may a priori depend on both Re and We.
Indeed, surrounding flows are known to modify the natural frequency and the damping rate.
For instance, for bubbles in a uniaxial inviscid straining flow, Kang et al. [91] showed that the
flow couples modes ℓ = 2 and 4, inducing a reduction linear in We, of the mode ℓ = 2 natural
frequency at linear order. In addition, in inertial flows, bubble deformations are primarily driven
by Eulerian pressure increments at the bubble scale [154], which do not share the same statistics
than velocity increments squared.

2.3 From deformations to breakup

A linear model cannot capture breakup. However, Risso et al. [165] noticed that the average
bubble deformation increases linearly with We, up to the threshold for bubble breakup. This
observation suggests that a linear dynamics could describe bubble deformations up to this point.
The breakup time is then time taken to reach the critical value from which we can define a
breakup rate κb.

Note that this approach differs from the modeling strategies reviewed in Lasheras et al. [102]
and Liao et al. [111]. As emphasized by Liao et al. [111], the main approach is to model breakup
induced by turbulent fluctuations or collisions with eddies. They classified breakup rate model
into four distinct categories, plus a last one combining the previous approaches. The first one
considers that drops/bubbles break when their kinetic energy is larger than some critical value.
In the second category, drops/bubbles break when the velocity fluctuations at the particle size is
larger than some value. In the third and fourth categories, it is the kinetic energy or the inertial
force of the bombarding eddy respectively which are greater than some constants. We quickly
review here the main physical ingredients.

One of the first work on breakup rate modeling was done by Coulaloglou et al. [47] in 1977.
They defined the breakup rate as

κb = 1
breakup time · fraction of drops breaking. (4.8)

The breakup time is a fraction of the eddy turnover time with possible corrections to account
for viscous effects. To model the fraction of breaking drops, they assume that eddies and drops
share the same distribution of kinetic energy. The fraction of breaking drops then corresponds to
the fraction of drops such that their average kinetic energy is greater than their surface tension
energy (ie We > O(1)). The distribution of kinetic energy gives the distribution of breaking
drops. Coulaloglou et al. [47] used a normal function, while Chatzi et al. [36] (and following
papers [37, 38]) used a Maxwell’s law. Both models fall into the first category of Liao et al.
[111].
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In the second category, which originates from the work of Narsimhan et al. [135], the particle
breaks under due to a difference in relative velocity at the particle interface. Narsimhan et al.
[135] modeled the probability distribution of velocity fluctuations at the particle scale with a
normal law. The breakage criterion compares the kinetic energy of the fluctuations with the
surface energy of the product of fragmentation assuming a symmetric binary breakup.

Finally, the third and fourth categories assume that drop/bubble breakage is controlled
by the collision with eddies. Prince et al. [148] proposed a model similar to the coalescence
frequency where the breakup rate results from the collision rate with eddies multiplied by the
collision efficiency. This model was later improved by Luo et al. [114] to include the dependency
on the child size.

Many refinements can be found in the literature which include viscous effects for instance,
the fact that turbulence is not a succession of discrete eddies etc.. For examples [104, 118, 214]
to cite only a few.

All these models assume that the effect of turbulence on the bubble can be modeled using the
single phase statistics. They also involve quantities which are not easily accessible in practice
such as the collision frequency or the collision efficiency. In this manuscript, we therefore use a
parallel approach and try to infer a breakup rate from the deformation statistics of bubbles.

3 Conclusion: outline of the part

In this part, we aim at obtaining an expression for the breakup rate of bubbles as a function
of the controlling parameters. From this expression, we would be able to derive an expression
for the critical Weber number as a function of the parameters and the residence time (question
Q1 ). To do so, we aim at describing bubble deformations in turbulence and infer the breakup
statistics and the breakup rate. We therefore start by investigating bubble deformations and
breakup in the model geometry of the uniaxial straining flow in chapter 5. This study allows
us to find a reduced dynamics for bubble deformations. We then follow a similar approach in
chapter 6 to infer a reduced dynamics for bubble deformations in isotropic turbulence. Finally,
in chapter 7, we use this reduced dynamics to obtain an expression for the probability for a
bubble to break, from which we define a critical Weber number depending on the residence
time.

53



Chapter 5
A simplified geometry:
The uniaxial straining flow 1

Extension of p4 of Landau.

A colleague

The equilibrium shape of bubbles in a uniaxial straining, as well as their linear
stability have been studied theoretically and numerically. However, a description
of the non linear dynamics as well as the influence of the initial conditions is still
lacking, while necessary to predict breakup under various initial conditions. In this
chapter, we investigate the bubble dynamics and breakup in such flows, starting
from initial shapes far from the equilibrium shapes. We evidence that the breakup
threshold is significantly smaller than the previous linear predictions and that it
depends on both the Reynolds number at the bubble size, and the initial bubble
shape (ellipsoids). To rationalize the bubble dynamics and the observed thresholds,
we propose a reduced model for the oblate/prolate oscillations (second Rayleigh
mode) based on an effective potential that depends on the control parameters and
the initial bubble shape. Our model successfully reproduces bubble oscillations,
the maximal deformation below the threshold and the bubble lifetime above the
threshold.
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1. Introduction

1 Introduction

Revuelta, Rodríguez-Rodríguez and co-authors [162] noticed that bubbles in turbulence tend
to elongate in a cigare-shape, especially before breakup. They hypothesized that this shape re-
sults from a local flow geometry mainly stretching along one direction, the bubble axis, combined
with a compression along the two other directions. As breakup is a fast event, they assumed
that the flow remains stationary during breakup and mainly axi-symmetric. They concluded
that the steady uniaxial straining flow could model the local flow geometry around stretched
and breaking bubbles. In order to model the breakup rate in turbulence, they focused on the
breakup time in the straining flow and, in particular, on the effect of the density and viscosity
ratios between the bubble and the surrounding liquid [162, 163, 170]. It is only recently, in
2021, that Masuk et al. [123] evidenced experimentally that uniaxial straining flows were indeed
one of the main local flow geometry controlling bubble deformations and breakup in turbulence.
As a consequence, before studying bubble deformations in turbulence, which is the subject of
chapter 6, we focus on the dynamics in this model flow geometry.

The stability of bubbles in a uniaxial straining point has been studied theoretically through
the help of linear stability analysis. By investigating the stationary shapes and their linear
stability, it has been shown that below a critical Weber number, WeS

c , a stable and an unstable
stationary solutions coexist. At WeS

c , the two solutions merge and no stationary solution remains
beyond WeS

c : any bubble will surely break [90, 129, 177, 183]. However, this transition, called a
saddle node bifurcation, only defines an upper bound for the critical Weber number, Wec, which
separates breaking from non breaking bubbles in a given experimental or numerical setup. In
sub-critical transitions, the knowledge of WeS

c is insufficient to predict the dynamics in realistic
conditions since finite amplitude perturbation can lead to a state change well below the critical
value of global stability loss. Such transitions have been evidenced for instance in parallel
flows [39], open flows [43] or in spatially extended systems [48] such as dissipative solitons [70,
78], and in viscous drop breakup [187, 188]. As a consequence, a dynamical description is
needed in order to predict whether the bubble breaks or not, depending on the initial conditions.
Kang et al. [91] predicted theoretically the small amplitude dynamics around the equilibrium
positions. However, a dynamical description of bubble deformations far from the stable states
is still lacking.

In this chapter, we thus investigate numerically the dynamics of a bubble in a uni-axial
straining flow, starting from initial shapes and flow configuration far from the equilibrium con-
figuration.

2 Sub-critical bubble breakup

2.1 Phenomenology

As describe in chapter 2, we first run single phase numerical simulations in order to create
a stagnation point flow. Then we use the result of these simulations as flow initial condition
for bubble injection. The bubble equivalent radius, R0, to box size ratio is 10. We create six
stagnation point flows, of characteristic shear E, at a given Reynolds number Re = Ed2/ν ∈
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Figure 5.1 – a) Enlargement around a bubble experiencing its maximum deformation at Re = 400
and We = 7.3 ≈ Wec(Re = 400). z is the axis of symmetry, r the radial direction. The blue line
denotes the bubble interface, black lines, isocontours of the stream function. b) Enlargement
around a typical breakup sequence, exemplified at Re = 200, We = 10. Pinch-off does not occur
on the plane of symmetry.

[25, 50, 100, 200, 400, 800], where d = 2R0 is the bubble equivalent diameter and ν the kinematic
viscosity of the fluid, plus an inviscid flow, by setting viscosity to zero. In units of R0 and E−1

the flow field is written as

uθ(R, θ) = −3
2R cos(θ) sin(θ) (5.1)

uR(R, θ) = 1
2R(3 cos(θ)2 − 1) (5.2)

where R and θ are defined on figure 5.1a. Once we have reached a stationary flow, we inject
a bubble at the center of the stagnation point flow. The bubble is characterized by its Weber
number We = ρE2d3/γ, where ρ is the liquid density and γ the gas-liquid surface tension. To
be consistent with the next chapters, density and viscosity ratios are 850 and 25 respectively,
close to the air-water ratios.

We first consider initially spherical bubbles. Figures 5.1 illustrate the deformation dynamics.
At low Weber number, the bubble first elongates, reaching its maximum deformation, and then
relaxes to an equilibrium shape, either via damped oscillations (for Re typically larger than 100),
or monotonic relaxation (Re < 50). Viscous shear at the bubble interface induces a recirculation
inside the bubble, which can be visualised in figure 5.1a for a bubble experiencing its maximum
deformation, at Re = 400 and We = 7.3. The equilibrium shape is not spherical [91, 129]
and the overall shape depends on the value of the Reynolds number. At low Reynolds number,
Re < 100, the equilibrium shape is mainly controlled by viscous shear at the interface. This field
being dipolar (see equations (5.1),(5.2)), the result is an elongated shape with pointy ends [3,
91, 177, 219]. On the contrary, for Re ≥ 100, pressure gives the dominant contribution to the
stress balance. From Bernouilli theorem, pressure is maximum at the two stagnation point (on
the two axis, see figure 5.1a). The interface is thus pushed inwards and the equilibrium shape is
closer to a cylinder [91, 177]. For sufficiently large We the bubble elongates along the z direction
and breaks, as illustrated on figure 5.1b at Re = 200 and We = 10. As can be visualized in
figure 5.1b, breakup does not occur on the axis of symmetry, creating at least one satellite bubble
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Figure 5.2 – a) Critical Weber number, Wec versus Re (crosses) with an error inferior to
10−2. The solid black line is the inviscid value We∞

c . The blue curve has expression
We∞

c exp(−100/(We∞
c Re)). Open circles and dashed line are WeS

c (Re) and its inviscid limit
as computed by Sierra-Ausin et al. [183] and Miksis [129] respectively. The inset shows the
viscous correction to We∞

c . The dotted line follows 100/ Re. b) Critical Weber number versus
the ellipsoid shape parameter a0, for inviscid simulations. The blue curve is a polynomial fit of
degree 2 with a maximum at a0 = 1. Initial (black) and critical (red) shapes are represented for
every a0.

whose size depends on both Re and We. The study of the generation of this satellite bubble will
be the subject of chapter 10.

2.2 Phase diagram: an initial-value problem

Lets first investigate the domain of stability of a bubble in this flow. We denote by Wec the
critical Weber number which separates breaking from non breaking configurations. We measure
Wec as a function of Re using a bisection method.

Role of inertia: The static critical Weber number WeS
c has previously been investigated by

several authors from quasi-static deformations [129, 177] or linear stability analysis [183]. The
recent computation of WeS

c as a function of the Reynolds number from Sierra-Ausin et al. [183]
is shown in figure 5.2a (open circles) together with the inviscid limit from Miksis [129] (dashed
line). We find that the critical Weber number Wec (black crosses) is significantly smaller than
WeS

c at all Reynolds number. Indeed, in practice, the threshold WeS
c would be observed for quasi-

static deformations of bubbles, henceforth neglecting inertial effects. Starting from an initially
spherical bubble, at large Reynolds number Re ≫ 1, inertia cannot be neglected. Above the
breakup threshold, Wec < We < WeS

c , there still exists a stable shape surrounded by a finite
basin of attraction, but the initial conditions, i.e. the initial shape and flow, lead to the escape
from this basin, and therefore, to breakup. The observed breakup transition is henceforth sub-
critical. For such bifurcations, the response to an initial finite perturbation is dramatic, and
the dynamics cannot be investigated using only linear stability analysis [43]. For viscous drops
in extensional flows at low Reynolds number, similar sub-critical breakups have been evidenced
experimentally and numerically [72, 155, 187, 188].
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Chapter 5. A simplified geometry: the uniaxial straining flow

Viscous correction: As Re increases, the critical Weber number converges to the inviscid
value (solid line), We∞

c , with a viscous correction, We∞
c − Wec, following 1/ Re (inset plot). We

observe that reducing Re for a fixed We allows the bubble to pass from a stable to an unstable
configuration. Indeed, viscosity not only damps the dynamics, it also plays a destabilizing
role through viscous shear at the interface. This correction can be understood heuristically by
looking at the initial stress balance at the spherical bubble interface. In particular, we focus on
the additional Laplace pressure necessary to compensate viscous stresses at the bubble interface.
Using 1/E as a time unit, d as a length unit and ρd3 as a mass unit, the initial dimensionless
normal stress jump at the interface of a bubble of negligible viscosity reads

−[p] + 2
Re∂nun = 1

Weκ (5.3)

where [·] denotes the difference across the interface, between liquid and gas, p is the dimensionless
pressure, n is an outward unit vector, normal to the bubble interface, ∂nun is evaluated in the
liquid phase, and κ is the dimensionless local curvature. In order to get the evolution of Wec

with Re, we develop equation (5.3) in power or 1/ Re.
Let us first consider an initially spherical inviscid bubble at Wec, in an inviscid flow. In this

case, at order 0 in 1/ Re, the initial dimensionless normal stress jump at the interface reads

−[p]∞ = 1
We∞

c

κ (5.4)

where the exponent ·∞ denotes the inviscid values.
For a large but finite Re, at criticality, We = Wec = We∞

c +δWec, we can develop the pressure
jump at first order in 1/ Re: [p] = [p]∞ + 1/ Re δ[p]. Equation (5.3) evaluated at We = Wec, at
first order in 1/ Re then reads

−[p]∞ − 1
Reδ[p] + 2

Re∂nun = 1
Wec

κ.

Using equation (5.4) into the previous balance, we get

κ
δWec

We∞
c

= 1
Re(δ[p] − 2∂nun)

and therefore,
|We∞

c − Wec| ∝ 1
Re . (5.5)

Importance of the initial conditions: To test the sensitivity to the initial conditions, and
the boundaries of the basin of attraction of the stable equilibrium, we also consider ellipsoids of
revolution of the same volume, 4/3πR3

0, with a local radius R(θ), in a inviscid flow (see figure 5.1a
for the definition of θ). The semi axis a0 = R(π/2)/R0 sets the whole initial shape from volume
conservation, with prolate shapes corresponding to a0 < 1 and oblate shapes to a0 > 1. We find
that the critical Weber number (fig. 5.2b) dramatically depends on the initial bubble shape, as
expected for a sub-critical transition. The critical Weber number is maximum for the sphere,
and decreases for both oblate and prolate shapes as the additional surface energy participate to

58



3. A reduced non linear model for bubble dynamics

the breakup process. Near the maximum at a0 = 1, we expect a linear dependency of Wec with
the surface increase compared to the sphere. This increase of surface should scale as (1 − a0)2.
It follows that Wec evolve quadratically with the distance to the sphere |1 − a0|, as shown by
the parabolic fit (blue line) in figure 5.2b. Note that plotting Wec as a function of the initial
surface instead of a0 does not restore the symmetry between oblate and prolate shape. Indeed,
Wec is controlled by the initial shape and the initial velocity at the bubble interface, the latter
also depends on the initial shape. Figure 5.2b also shows the initial bubble shape (in black) as
a function of a0. This shape are compared to the critical bubble shapes, corresponding to the
maximum bubble elongation. Strikingly, there is a large dependency on the initial bubble shape.
This variability might come from the different values of Wec or from the initial bubble shape
which also varies the dynamics. Assuming the variability only originates from We, we get that
changing the initial bubble shape allows us to explore the unstable branch of the bifurcation
diagram. Sierra-Ausin et al. [183] investigated the unstable shapes as a function of We, for fixed
Ohnesorge number Oh =

√
We/ Re. Qualitatively, they observed the same effect: the radius at

the plane of symmetry sinks when We decreases. Nevertheless, a watchful reader may notice
that the critical shape at a0 = 0.7 is more stretched and sank than its oblate counterpart at
a0 = 1.3, even though the latter corresponds to a lower We. Therefore, the point at which
the bubble shape leaves the basin of attraction of the stable shape also depend on the initial
conditions.

Bubble fate depends on its initial shape. As a consequence, one must take into account the
whole deformation dynamics in order to predict breakup. In the next section, we aim at finding
a reduced model to describe the dynamics which takes into account the initial bubble shape, the
Reynolds number and the Weber number.

3 A reduced non linear model for bubble dynamics

3.1 Temporal evolution of the oblate-prolate mode

To describe bubble deformations with a reduced model, we decompose the local bubble radius
into the spherical harmonics base Yℓ,m(θ, ϕ) and follow the amplitude of each mode xℓ,m in time.
Modes m = 0 are the only axi-symmetric modes. Therefore, in this axi-symmetric geometry
bubble radius reads

R(θ) = R0[1 +
∞∑

ℓ=2
xℓ,0(t)Yℓ,0(θ)]. (5.6)

This decomposition in modes decouples temporal evolution from spatial shape. More details
about the spherical harmonics decomposition can be found in chapter 3. Since oblate-prolate
deformations, corresponding to the mode ℓ = 2, dominate the dynamics, in this chapter, we
focus on the dynamics of this mode, that we denote x for the sake of simplicity.

Figure 5.3 illustrates three dynamics of mode ℓ = 2 for initially spherical bubbles at Re = 400:
a stable bubble far from Wec (blue curve in 5.3a), a stable bubble at We ≈ Wec (blue curve in
5.3b), and an unstable bubble at We ≈ Wec (grey curve in 5.3b). Time is made dimensionless
using the Rayleigh natural frequency [101, 159], ω2 = [12γ/(ρR3

0)]1/2. Far from Wec the mode
amplitude, x, exhibits damped oscillations and converges to a finite value x∞, corresponding to a
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Figure 5.3 – a) & b) Several typical temporal evolution of x at Re = 400. Simulation data are
in color, the model (5.7) is superimposed (black dotted line). The black star and the dashed red
lines correspond to the maximum, xmax, and equilibrium values, x∞, respectively for the two
blue trajectories (spheres). a) An initially spherical bubble at low We. b) Three evolutions close
to Wec(a0), for a stable sphere (blue line), an unstable sphere (grey line) and a stable ellipsoid
(orange line, a0 = 0.8).
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3. A reduced non linear model for bubble dynamics

non spherical stable shape, as shown in figure 5.3a for an initially spherical bubble at Re = 400.
Its maximum value is denoted by the black star. The same behaviour is also observed for
different initial conditions (not shown). Figure 5.3b illustrates the dynamics near the critical
threshold. Slightly below the critical Weber number Wec, for an initially spherical bubble (blue
curve), the amplitude first approaches a plateau and eventually converges to a stable shape. The
maximum value xmax (black star) is close to its critical value xc above which the bubble breaks.
Just above the threshold (grey curve), the dynamics is initially indistinguishable from the stable
case, until the amplitude grows exponentially and finally decays abruptly, right before breakup.
In the final stage, as the bubble pinches, all modes must be taken into account to describe bubble
deformations. In addition note that the spherical decomposition breaks down close to breakup
as the local radius is not mono-valued in θ anymore. The time spent close to the critical point
diverges as We approaches Wec. For a different initial shape, as illustrated in figure 5.3b with
a0 = 0.8 (orange curve), we observe the same behaviour, however the critical deformation xc at
threshold increases, as this behavior is obtained for a larger value of We (see figure 5.2b).

The behavior near xc is symptomatic of a sub-critical transition with a stable and a unstable
equilibrium positions, in which the stability depends on both the control parameters (We and
Re) and the initial conditions. In the next section, we rationalize these observations using the
reduced model.

3.2 Non linear oscillator equation

We assume that the dynamics of mode x can be described by a damped non linear oscillator
of the form

ẍ + λẋ = −∇V (x, We, Re, a0), (5.7)

where V (x, ...) is an effective potential that may depend on all control parameters (We, Re and
a0). Time is made dimensionless using the mode natural frequency ω2. The damping factor
λ = 20

√
2/3Oh, is the theoretical linear damping factor as computed by Lamb [101]. The case

of a harmonic potential was investigated by Kang et al. [91] by considering small amplitude
oscillations around the equilibrium shape. Here, we look for a stationary polynomial potential,
V , of degree 3, the minimum degree allowing to have two equilibrium positions. To do so we
minimize, for every simulation, the mismatch between left and right hand side of equation (5.7),
that is to say the quantity

I =
∫

(ẍ + λẋ − p0 − p1x − p2x2)2dt (5.8)

by optimizing p0, p1 and p2.
This model perfectly describes the temporal evolution of x, both far from Wec (see black

dotted line in figure 5.3a) and close to Wec (figure 5.3b), for both sphere and ellipsoids. Note
that to obtain the curves on figure 5.3, one has to estimate the initial position and velocity of
x. The initial value of x can be computed exactly from the initial bubble shape. Similarly, one
can estimate the initial velocity ẋ0 knowing the initial velocity along the bubble interface. The
initial velocity around the bubble corresponds to the theoretical uniaxial straining flow as it has
not yet been modified by the presence of the bubble. As an example, for an initially spherical
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Figure 5.4 – Evolution of the potential V , defined in equation (5.7), with We for initially spherical
bubbles at Re = 400. The range of explored x values have a more intense color. Stable
equilibrium positions, x∞, are denoted by red diamonds (red dashed lines in a and b). The
maximum values, xmax, are denoted by black stars (same in figures 5.3).

bubble, the normal velocity along the bubble interface un is written as,

un(θ) = 2√
6

We1/2[3 cos(θ)2 − 1] = 16
√

π

30We1/2 Y 0
2 (θ). (5.9)

Computing the spherical harmonic decomposition of un, and in particular its modes ℓ = 2,
gives the value of ẋ0. For the sphere, the spherical harmonics decomposition is particularly
simple, as shown by equation (5.9), as un is proportional to Y 0

2 (θ). Importantly, as un scales
as

√
We, we have ẋ0 ∝

√
We, regardless the initial bubble shape. The shape only changes the

numerical prefactor. Therefore, as We increases the initial velocity, ẋ0 increases. In practice,
to plot figure 5.3, far from Wec, we directly measure the initial velocity in the simulations as
the dynamics weakly depends on the initial conditions. On the contrary, close to criticality,
initial conditions dramatically affect the dynamics and small initial errors completely change
the outcome. For these cases, we use the theoretical initial value of x and then manually adjust
the initial velocity to best fit the temporal evolution of x.

For all cases, we find that the dynamics of mode 2 can indeed be described by a reduced
model in the form of a damped oscillator in a non linear potential. This model captures the
linear regime as well as the non linear dynamics, The shape of the potential depends on the
relevant dimensionless numbers, We and Re, as well as on the initial bubble shape. In the
next section, we investigate the influence of every parameter on the potential shape and their
consequences on the value of Wec.
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Figure 5.5 – Evolution of the potential V with Re for initially spherical bubbles at We = 5. The
range of explored x values have a more intense color. Stable equilibrium positions are denoted
by red diamonds (red dashed lines in a and b). The maximum values, xmax, are denoted by
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Figure 5.6 – Evolution of the potential V with the initial bubble shape a0, for prolate ellipsoid
at Re = 400 and We = 2.7. The range of explored x values have a more intense color. Stable
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3.3 Shape of the effective potential and Wec

The effective potential V depends on We (figure 5.4), as well as on Re (figure 5.5) and a0

(figure 5.6 for prolate shapes). It is interesting to investigate individually the effects of these
three parameters on the potential shape and bubble dynamics.

We-dependency: Figure 5.4 illustrates the We-dependency of the effective potential for Re =
400, where blue curves correspond to We → 0 and yellow curves to We → Wec. During one
simulation, a bubble only explore some values of x (up to xmax). The range of x values explored
by the bubble has a more intense color. This is the region where we expect the potential
shape to be more accurately determined. For a given Reynolds number, as Weber increases, the
stable equilibrium x∞ (red diamonds) increases, in agreement with the literature [91, 129, 183]:
increasing We leads to more elongated shapes at equilibrium. Concomitantly, as We increases,
the initial velocity, ẋ0 ∝

√
We, increases and the energy barrier decreases, leading to the critical

case where xmax = xc and We = Wec (yellow curve). As was anticipated in section 2.2, at the
critical Weber number, there still exists an equilibrium position but the bubble escapes from its
basin of attraction. The value of Wec results from a dynamical effect: initial velocity allows the
bubble to overcome the energy barrier and break. Increasing We further more would lead to the
merging of the two equilibrium positions at We = WeS

c , corresponding to the global stability
loss.

Re-dependency: Conversely, if we fix We and vary Re, we observe that, as Re decreases,
the equilibrium position shifts to the positive values [91] as illustrated in figure 5.5 for We = 5.
Indeed, at equilibrium, at low Re, the bubble is mainly elongated [3, 91, 177, 219] and mode
ℓ = 2 is large. On the contrary, for large Re, bubble shape is more cylindrical [91, 177]. As a
consequence, x is small (and mode ℓ = 4 will be dominant). We also find that the energy barrier
decreases with decreasing Reynolds number. This effect is consistent with the destabilizing role
of viscosity which leads to a decrease of Wec with Re, as can be seen on figure 5.2a.

a0-dependency: Eventually, we investigate the effect of the initial bubble shape, illustrated
on figure 5.6 for prolate shapes at Re = 400 and We = 2.7. As expected from the linear stability
analysis, the stable equilibrium shape does not depend on a0: all reds diamond lie on top of each
others. We observe a non monotonous dependency of the energy barrier with a0. Nevertheless,
on the range of explored values, the potential shape coincide for all a0. Indeed, increasing the
initial bubble deformation increases the range of explored x. The variability that we observe
originates from the limited range of explored x. Therefore, for prolate shapes, we find not effect
of a0 on V . Equation 5.7 is valid for all a0 and the initial bubble shape only influences the initial
conditions.

Potential coefficients: Figures 5.7 show the evolution of the three coefficients p0, p1 and p2

of equation (5.8) with We and Re, for initially spherical bubbles. Circles denote finite Reynolds
number simulations while black crosses are for inviscid simulations. For all Re, the constant
forcing p0, depends linearly on We (figure 5.7a), as was found theoretically in the inviscid
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Figure 5.7 – Evolution of the coefficients of the three parameters defined in (5.8) with Re and
We for initially spherical bubbles. Colored circles correspond to finite Re simulations and black
crosses to inviscid simulations. a) Constant coefficient p0 as a function of We. p0 evolves linearly
with We. b) Evolution of p0 with Re. The dotted black line is the average inviscid value. We
recover a more efficient forcing at small Re, compatible with a 1/ Re scaling (solid black line).
c) Evolution of the linear coefficient p1 with Re. The black dotted line is the prediction of the
pulsation from Kang et al. [91] found from a linear development. d) Evolution of the quadratic
coefficient p2 with We.
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case by Kang et al. [91]. However, there was no theoretical prediction for the Re-dependency.
Figure 5.7b shows that p0 decreases with Re, in agreement with the destabilizing effect of
viscosity and converges to its inviscid value (black dotted line). The shape is compatible with
a 1/ Re decay (solid black line), reminiscent of the Reynolds dependency of Wec. The linear
coefficient p1 is found to always be negative (figure 5.7c): the linear restoring force is positive,
and −p1 is the oscillator angular frequency. For all Reynolds number, we recover that −p1

converges to 1 as We converges to 0. At this limit, the bubble natural frequency is the bubble
natural frequency in a quiescent flow, as computed by Rayleigh et al. [159] and Lamb [101]. We
found a marginal dependency of p1 with Re ranging from 100 to 800. For the lowest Reynolds
number Re = 50, the value of p1 is under-determined, as the oscillations are overdamped. As
We increases, the angular frequency |p1| decreases, as can be visualized on figures 5.3. For
small We, We < 2, the dynamics is well approximated by a linear oscillator, and we recover
the theoretical prediction from Kang et al. [91] (black dotted line). By developing the modes
dynamics around the equilibrium position, they show that the coupling between modes ℓ = 2
and ℓ = 4 induces an effective modification of the natural frequency of mode 2 at linear order.
The nonlinear coefficient p2 is found to be always positive, in agreement with the existence of
an unstable equilibrium position for x. p2 is always of order 1, and exhibits non monotonic
evolution with the Weber number (figure 5.7d). However, p2 values are underdetermined for
small and moderate values of We, We < 4, for which the dynamics is mostly linear, as was
illustrated for prolate shapes on figure 5.6. We did not find a clear dependency of p2 with Re.
Indeed, at large Reynolds number, we expect non linear effects to come from the non linear term
of the Navier-Stokes equations, which do not depend on viscosity.

3.4 Equilibrium positions

In this section, we compare the equilibrium position of the effective potential with the linear
stability analysis equilibrium positions.

Figure 5.8 shows the theoretical inviscid equilibrium positions from Kang et al. [91]. At
a given Weber number, there are two equilibrium position. The lower branch represents the
stable position, while the upper branch is the unstable position. At a critical Weber number,
WeS

c = 11, the two branches merge and there is no stable position anymore.
Figure 5.8a shows the stable equilibrium positions of the effective potential for every Reynolds

and Weber number, for spheres. The rightest symbol for every Re corresponds to the critical
Weber number. We recover the results from the previous section: stretching increases with
increasing We and decreasing Re. As Re increases, the stable equilibrium converges to the
linear inviscid prediction from Kang et al. [91].

In our simulations, the best estimate of xc is obtained with the maximum deformation, xmax,
at Wec. Figure 5.8b shows the maximum deformation as a function of We for each Re, as well
as the inviscid simulation (black stars), for initially spherical bubbles. As Weber increases,
for all Reynolds, the maximum deformation increases. The maximum deformation for each Re
corresponds to xc. As Re increases, xc converges to the inviscid value (red star). However, the
inviscid critical value does not lie on the unstable (upper) branch from Kang et al. [91]. We
conclude that xc does not correspond to the unstable position predicted by the linear stability

66



4. Dynamics close to the critical point

analysis. This result confirms the observation made on figure 5.2b, that critical shapes vary
with the initial bubble shape. Inertial effects allows the bubble to explore other branches of the
bifurcation diagram.
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Figure 5.8 – Comparison between the equilibrium values of the effective potential for spheres and
the linear stability values. The black dotted line represents the theoretical inviscid prediction
from Kang et al. [91]. The stable branch is the lower one. The unstable branch the upper one.
Re is color-coded (See colorbar of figure 5.7). a) Stable equilibrium positions as a function of
We for each Re. b) Maximum deformations for spheres. Black symbols represent the inviscid
simulations. The red star is inviscid value of xc.

4 Dynamics close to the critical point

We have identified an effective potential which describes the full dynamics of mode ℓ = 2.
We now use the reduced model to investigate the dynamics close to the critical point xc, for
both stable bubbles and unstable bubbles at We ≈ Wec.

4.1 Maximum deformation

First, we use the effective potential V description for the dynamics of x, to quantify the
evolution of the maximal deformation as We → We−

c . For the sake of simplicity, we consider
the limit of negligible dissipation, in which energy is conserved,

1
2 ẋ2

0 + V (x0, We) = 1
2 ẋ2 + V (x, We), (5.10)

with the initial condition ẋ0 =
√

2We. Without any loss of generality we set V (x0, We) = 0 for
all We. We define max(x) = xmax. At the maximum deformation, velocity is zero ẋmax = 0. It
results from equation (5.10) that xmax is solution of

We = V (xmax, We). (5.11)
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Chapter 5. A simplified geometry: the uniaxial straining flow

As xc is one of the equilibrium position of V , ∂xV |xc = 0, developing (5.11) around the unstable
position xc, at the lowest orders in Wec − We and xc − xmax gives

Wec + (We − Wec) = Vc + (We − Wec)∂WeV |c + 1
2(xc − xmax)2∂xxV |c (5.12)

where Vc = V (xc, Wec) and |c = |xc,Wec . Since, by definition, Wec = Vc we get:

(xc − xmax)2 = A(Wec − We) (5.13)

with A = 2(∂WeV |c − 1)/∂xxV |c and A > 0 by definition. Figures 5.4, 5.5 and 5.6 show that
∂xxV |c is always negative, (xc is a maximum), and that ∂WeV |c < 0 (the energy barrier decreases
with increasing We). This confirms that A > 0 so that xc − xmax reads

xc − xmax =
√

A
√

Wec − We. (5.14)

In this article, we use the spherical mode decomposition which allows to decouple different
modes of deformations. However, in experiments, reconstructing the whole bubble shape is
challenging as it requires the use of several high speed cameras. Measuring the length of the
main bubble axis is more accessible. To give a simpler description of the shapes close to the
critical point, we introduce the deformation parameter D = 1−R(π/2, t)/R(0, t) with D < 0 for
oblate shapes, D > 0 for prolate shapes and D → 1 for an infinitely long gas filament along z.
This quantity could be evaluated experimentally from pictures. Figure 5.9a shows D for both
the inviscid ellipsoids (triangles) and the spheres at finite Re (circles). For We → 0, the bubble
is insensitive to the surrounding flow and Dmax → D0 = 1 − a3

0 when a0 ≤ 1. Conversely, for
We → Wec the maximum deformation converges to a critical value Dc, which depends on both
Re and a0. We find that both the initial bubble deformation and the Reynolds number increases
the critical deformation Dc, with a slight difference between oblate and prolate shapes for the
same distance to the sphere |1 − a0|. As already discussed, the discrepancy between oblate and
prolate shapes comes from the different We values at which the critical shapes are reached. The
total deformation being mainly given by the amplitude x, we expect D to follow

Dc − Dmax = α
√

1 − We/Wec, (5.15)

as We approaches Wec. For each Re and a0 values, we fit the two parameters α and Dc of
equation (5.15). All data sets collapse on the same master curve as represented in the inset
of figure 5.9a for sphere, showing that equation (5.15) also holds for non conservative systems
(finite Re). Figures 5.9b and 5.9c show the evolution of Dc with Re and a0 respectively, while
5.9d and 5.9e present the evolution of the slope α. In both 5.9b and 5.9d, the black dotted line
(which corresponds to a0 = 1 in 5.9c and 5.9e) represents inviscid values. Dc increases with
Re and decreases with the distance to the sphere. These dependencies are reminiscent of the
evolution of Wec with both Re and a0. Indeed, since larger deformations need to be reached in
order to break for larger Re or distance to the sphere, Wec increases. The deformation Dc varies
strongly with a0, which implies that bubble fate is highly dependent on history. The critical
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Figure 5.9 – a) Maximal deformation as a function of the distance to Wec. Finite Re simulations
are denoted with circles, inviscid ellipsoids by triangles and inviscid spheres by diamonds. As
We → Wec, the maximal deformation converges to its critical value Dc. Inset plot: Rescaled
Dmax for the spheres, with two parameters that depend on Re: Dc and α. In b) the black dotted
line denotes the inviscid value for spheres (and correspond to a0 = 1 in c). b) & c) Evolution
of Dc with Re and a0 respectively. d) & e) Similar plots for the evolution of the slope with Re
and a0.
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Chapter 5. A simplified geometry: the uniaxial straining flow

shapes show that bubbles are more deformed at criticality when the initial shape is not spherical
(see figure 5.2b), revealing the importance of inertial effect in the breakup process.

4.2 Bubble lifetime

Similar developments can be performed to model the lifetime slightly above the critical Weber
number. Indeed, for unstable bubbles, when We → We+

c , the bubble lifetime is dominated by
the time spent close to the unstable shape, as visualized on figure 5.3b. In comparison bubble
pinch-off in itself is extremely fast. We show in Appendix A, by developing the minimum speed
reached at xc, that this time can be expressed as

ET = ET (2We) − β log(We/Wec − 1) (5.16)

where ET (2We) and β are two numerical constants, and We > Wec. Figure 5.10a shows the
dimensionless lifetime, ET , as a function of the distance to the critical point. In the limit of large
Weber number, for all cases, the lifetime converges to the advection time 1/E with a viscous
correction following 1/ Re, as reported previously [162]. Near We = Wec, the lifetime diverges
logarithmically. In this range of Re, the breakup time close to the critical We marginally depends
on Re. Breakup is primarily controlled by the potential shape and the initial velocity. For both
oblate and prolate shapes, breakup occurs faster than for spheres. Indeed, capillary effects
accelerate the dynamics. After adjusting the two constants of equation (5.16) for each dataset,
all the data collapse onto a single curve, as shown on the inset plot of figure 5.10a for initially
spherical bubbles. Similarly to the maximum deformation, we find that equation (5.16) also
holds at finite Reynolds number even though is was derived in the inviscid limit. Figures 5.10b-
e show the evolution of β and ET (2We) with both Re for spheres and a0 for inviscid ellipsoids.
Again, the black dotted line is figures 5.10b and 5.10d corresponds to the inviscid spheres (a0 = 1
in figures 5.10c and 5.10e). Figures 5.10b and 5.10c show that ET (2We) ≈ 1 a value that is
independent on both Re and a0. On the contrary, the slope β increases as the initial shape gets
away from the sphere (see figure 5.10e) and slightly increases with Re (figure 5.10d).
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Figure 5.10 – a) Dimensionless lifetime, ET , as a function of the distance to Wec. Finite Re
simulations are denoted with circles, inviscid ellipsoids by triangles and inviscid spheres by
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respectively. d) & e) Similar plots for the evolution of the slope β with Re and a0.
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Chapter 5. A simplified geometry: the uniaxial straining flow

5 Conclusion: Call for a dynamical description

In this chapter, we evidenced that inertia cannot be neglected when predicting bubble
breakup. Indeed, even when there exists a stable equilibrium position, the initial bubble shape
and flow configuration can allow the bubble to break. As a consequence, we find that critical
Weber number above which the bubble breaks depends on the Reynolds number, as the linear
stability analysis predicted [90, 91, 183], but also on the initial bubble shape. The critical Weber
number is selected dynamically by the initial conditions. Since, in real configurations bubbles
dynamics are rarely quasi-static, these results have practical important consequences: history
matters. The critical Weber number at which bubbles break should always be considered to-
gether with a set of initial conditions. For non steady flows, the critical Weber number must be
defined in a statistical sense: one can define the distribution of initial bubble shapes and deduce
the probability to break.

We also demonstrated that the dynamics of the second spherical harmonics mode, corre-
sponding to oblate-prolate oscillations, can be described by a simple uncoupled one dimensional
oscillator, which depends on We, Re and on the initial bubble shape. We evidence that We and
Re control the shape of the effective potential, while the initial conditions are controlled by We
and the initial bubble shape. This reduced dynamics reproduces the maximum deformation for
stable bubbles as well as the lifetime for unstable bubbles, for We close to its critical value. In
addition, we evidenced that the energy barrier is always finite. For all We and Re there exists a
set of initial conditions for which the bubble breaks. As a consequence, in turbulent flows, even
though the probability that a bubble encounters a large pressure or velocity fluctuation depends
on its size (i.e. Re and We), all bubbles can in principle break.

The uniaxial straining flow is one of the most relevant flow geometry for bubble breakup
in turbulence. To model bubble dynamics in these turbulent environment, one could model
the flow as a succession of uniaxial straining flows of random amplitude and duration. For
each of these local geometries, knowing the amplitude of the local strain and the initial bubble
shape, one can simulate the one dimensional equation to predict whether or not the bubble
breaks. This approach is similar to the work of Revuelta et al. [163] who modeled turbulence
as a succession of uniaxial straining flow with random orientations, except that we solve a one-
dimensional equation instead of the full Navier-Stokes equations. In order to capture the correct
statistics for the flow surrounding bubbles, one could measure the statistics of E around bubbles
as was done by Masuk et al. [124]. The statistics of the local strain are non trivial (temporally
correlated and non Gaussian), but it is important to provide the right statistics of E, in order
to capture the correct bubble dynamics.

The success of the reduced dynamics in the stagnation point flow encourages us to follow
the same approach for the turbulent case. In the next chapter, we will investigate the linear
deformations of bubbles in a turbulent flow and look for a reduced model in the form of a
stochastic linear oscillator on the oblate-prolate mode of deformations.
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Chapter 6
Bubble deformations in turbulence

Everything which comes from numerics must be trashed.

A colleague

In this chapter, we investigate bubble deformations in the homogeneous and isotropic
turbulent flow. We examine interface deformations by decomposing bubble shapes
into the spherical harmonics base. We show that the dynamics of each mode, for low
Weber numbers, can be modeled by a forced stochastic linear oscillator. We measure
the coefficients of the model directly from the modes’ statistics. We find that the
natural frequency corresponds to the Rayleigh frequency, derived in a quiescent flow.
However, dissipation increases by a factor 7 compared to the quiescent case, at Reλ =
55. This enhanced dissipation originates from a thick boundary layer surrounding the
bubble. We demonstrate that the effective forcing, originating from the integration of
pressure over the bubble surface, is independent on bubble deformability. Therefore,
the interface deformations are only one-way coupled to the flow. Eventually, we
investigate the pressure modes’ statistics in the absence of bubbles and compare
them to the effective forcing statistics. We show that both fields share the same pdf,
characterized by exponential tails, and a characteristic timescale corresponding to
the eddy turnover time at the mode scale.
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Chapter 6. Bubble deformations in turbulence

1 Introduction: Infer bubble deformations dynamics from data

We know from the pioneering works of Kolmogorov [97] and Hinze [84] that, for bubble
size lying within the inertial range of the turbulent cascade, there exists a critical size, the
Kolmogorov-Hinze scale dh statistically separating breaking d > dh from non breaking bubbles
d < dh. However, the main physical mechanism leading to breakup remained to be understood.
Sevik et al. [180] proposed a resonant mechanism, in which bubble breaks due to series of
excitation at its natural frequency, while other authors argue that large fluctuations are necessary
for a bubble to break [103, 114, 214]. To address this question, several authors describe bubble
deformation dynamics, either with the help of a linear damped harmonic oscillator [123, 158,
165] on the bubble Rayleigh modes [159], or via a tensorial equation for the main bubble axis of
deformations [122]. The latter assumes that bubble shape is mostly ellipsoidal while the former
allows any bubble shape and describes each mode dynamics.

In the last chapter, we showed that we can successfully reproduce most of bubble defor-
mations using a non linear oscillator model on the oblate prolate modes. In this chapter, we
therefore follow a similar approach. In this chapter, following Risso et al. [165], we assume a
linear damped oscillator equation with a stochastic forcing for the oscillations of each mode of
bubble deformation. However, we do not presume any values for the coefficients of equation (4.6)
and the form of the forcing. Instead, we directly measure from the deformations dynamics, the
effective natural frequency and damping rate and compare them to the quiescent values. We
then deduce the statistical properties of the effective forcing. To identify the origin of the effec-
tive forcing, we study the statistics of the pressure field evaluated on a sphere of bubble radius
R0. Eventually, we investigate the flow structure around bubbles and the local dissipation rate
to discuss the origin of bubble dynamics dissipation in turbulent flows.

2 Bubble deformations in HIT

2.1 Numerical set-up: DNS of a single bubble in HIT

The numerical set-up is described in details in chapter 2. We recall here the main ingredients.
We perform direct numerical simulations of an incompressible gas bubble immersed in an ho-
mogeneous and isotropic turbulent flow of an incompressible liquid. Density and viscosity ratios
are set to 850 and 25, respectively, close to air-water ratios. The simulation goes in two steps.
We first create an homogeneous isotropic turbulent flow by solving the one phase incompress-
ible Navier-Stokes equations with an additional forcing term proportional to the velocity [172].
After a transient regime, the flow reaches a statistically stationary homogeneous and isotropic
turbulent state. In this chapter, the Taylor Reynolds number of the flow is Reλ = urmsλ/ν = 55.
We then extract snapshots of the flow and use them as flow initial conditions for bubble injec-
tion. Snapshots are separated by at least 6 tc to make sure initial conditions are independent.
The spherical bubble is injected at the center of the simulation box by changing locally the
density and viscosity. The bubble size is chosen so that it lies within the inertial range of the
turbulent cascade where the flow is scale invariant. The bubble diameter to box length ratio
is 0.13. During this second stage, forcing is maintained to sustain turbulence, but only in the
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We 2.9 2 1.43 1 0.71 0.46 0.36 0.27
N 5 5 3 3 5 3 3 5

Ttot/tc(d) 62 126 94 94 156 94 84 94

Table 6.1 – Number of simulations and total simulated time per values of the Weber number.

0 5 10 15
f2t

0.4

0.2

0.0

0.2

0.4
x

2
,0

We = 1.4

We = 0.35

Figure 6.1 – Typical temporal evolution for the mode (2, 0) at two different Weber numbers.
Time is made dimensionless using the Rayleigh frequency f2. Modes exhibit random oscillations,
with an amplitude increasing with We.

liquid phase to guaranty that bubble deformations only come from the fluid forcing. In both
steps, we use adaptive meshgrid refinement in order to save computational time while resolving
all the physical length scales of the problem. The minimum grid size corresponds to 34 points
per bubble radius.

In this study we keep the flow Reynolds number constant and we vary the bubble Weber
number by changing the value of the surface tension coefficient. The bubble Reynolds number is
Re(d) = 124. We explore eight values of We ranging from Wec ≈ 3 to 0.1Wec. For each Weber
number, we run between 3 and 5 simulations. Except when the bubble breaks (at We = 2.9),
we run every simulation for at least 20 tc, so that the total time per ensemble is about 100 tc.
Table 6.1 summarizes the exact number of simulations and total computational time per Weber
number we perform.

2.2 Modes of deformations

To quantify bubble deformations, we decompose the local bubble radius R into the real
spherical harmonics base Y m

ℓ (θ, ϕ), where ℓ and m are the principal and secondary numbers
respectively, and θ and ϕ the co-latitude and longitude,

R(θ, ϕ, t) = R0
[
1 +

∞∑
ℓ=2

ℓ∑
m=−ℓ

xℓ,m(t)Y m
ℓ (θ, ϕ)

]
, (6.1)
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Chapter 6. Bubble deformations in turbulence

and we track the modes’ amplitude xℓ,m over time. Bubble shape is described in the bubble
frame of reference so that all harmonics ℓ = 1, corresponding to bubble translation, are null by
definition. The procedure to compute the spherical harmonics is described in detail in [141] as
well as in chapter 3.

Figure 6.1 shows two typical temporal evolution for the mode (ℓ, m) = (2, 0), at two different
Weber numbers. Time is made dimensionless using the Rayleigh frequency f2. For both We, we
observe random oscillations around zero and the predominance of the bubble resonant frequency
f2. The amplitude of the oscillations increases with We.

Since we do not prescribe any special orientation relative to the bubble shape, all modes with
the same principal number ℓ are statistically equivalent. Indeed, one can verify that a rotation of
a mode can be expressed as a linear combination of all the other modes with the same principal
number. As a consequence, we omit m in what follows. For instance xℓ(t) represents a typical
temporal evolution of one of the modes ℓ. In addition, assuming that xℓ,m are independent, the
ensemble averaging operation ⟨·⟩ is computed over different simulations and over the m values
for a given ℓ. Roa et al. [169] used a reference frame dynamically oriented with the bubble
principal axis of deformations. In practice, their reference frame maximizes the amplitude of
mode (2, 0), such that the differential elongation can be studied as the invariance by rotation is
broken.

3 Determination of the reduced dynamics

3.1 Model: a stochastic linear oscillator

Following Risso et al. [165], we introduce a linear stochastic model to describe each mode
dynamics,

ẍℓ + Λℓ(We)ẋℓ + Ωℓ(We)2xℓ = Tℓ(We, t), (6.2)

where Λℓ and Ωℓ are the damping rate and natural frequency respectively and Tℓ is a random
variable which models the turbulent forcing. In this section, we aim at measuring Λℓ, Ωℓ and
the statistical properties of Tℓ from the deformation dynamics. Both parameters Λℓ and Ωℓ, as
well as the forcing statistics, may depend on the Weber number We. Conversely to what other
authors have done, time is made dimensionless using the eddy turnover time at the bubble scale
tc(d) = ϵ−1/3d2/3 and, from now on, ·̇ denotes derivatives with respect to this dimensionless
time. This choice avoid a priori to have a forcing term depending on bubble properties such as
surface tension. It decorrelates the turbulent forcing (righ hand side), from the bubble response
(the left hand side). In these units, the Rayleigh frequency and the Lamb damping rate write
ω2

ℓ = 16(ℓ − 1)(ℓ + 1)(ℓ + 2)/We and λℓ = 8
√

2(ℓ + 2)(2ℓ + 1) Re(d)−1 respectively. Note that,
in this study, we have not varied the eddy turnover time. When the bubble size lies within the
inertial range of the turbulent cascade its dynamics is primarily controlled by inertial effects, and
the parameters may not depend explicitly on the bubble Reynolds number, as long as Re(d) ≫ 1.

In order to measure the coefficients and the force statistics of equation (6.2), we make the
following assumptions:

(H1): Modes dynamics are linear and uncoupled, which is valid for xℓ ≪ 1, corresponding to
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We ≪ 1.

(H2): The bubble deformation is one way-coupled to the flow. This hypothesis is discussed in
section 3.5.

(H3): The forcing Tℓ is statistically stationary.

(H4): The damping rate and the natural frequency do not depend on time.

From hypothesis (H2) the effective Tℓ in unit of the eddy turnover time, is independent of We.
From hypothesis (H3), the effective forcing is completely determined by its auto-correlation
function (or equivalently its spectrum), and its probability distribution function (pdf).

Under these hypothesis, in the next sections, we will show that

1. The natural frequency is not modified by the presence of the flow: Ωℓ = ωℓ.

2. There is an effective viscosity, driven by turbulence, so that Λℓ = 0.6(ℓ + 2)(2ℓ + 1) for
Re(d) = 124.

Combining (1), (2) and equation (6.2) we will deduce the statistical properties of the forcing Tℓ.

3.2 Frequency response of the oscillator - Amplitude of the Fourier transform

To rationalize the qualitative observations of figure 6.1 and identify the angular frequency
Ωℓ, we investigate the frequency response of the bubble. To do so, we compute the temporal
Fourier transform, x̂ℓ of xℓ for all ℓ and We,

x̂ℓ(ω) =
∫ ∞

−∞
x(t)e−iωtdt, (6.3)

where x̂ℓ is also a random variable. Similarly, we introduce T̂ℓ, the Fourier transform of the
effective forcing,

T̂ℓ(ω) =
∫ ∞

−∞
T (t)e−iωtdt (6.4)

Figures 6.2 shows the ensemble average ⟨|x̂ℓ|⟩ as a function of the frequency, f = ω/(2π),
normalized by the corresponding Rayleigh frequency, fℓ.

For f < fℓ, for every We, ⟨|x̂ℓ|⟩ is approximately constant. The low frequency dynamics is
similar to that of a white noise.

At f = fℓ (back dotted line), for We ≤ 0.46 we observe a peak that resembles the resonant
response of an oscillator at its natural frequency. This peak does not exist for larger values of
We. Nevertheless, for every ℓ, we observe a transition at this very frequency.

For f > fℓ, at all We, we report a sharp power-law decay, following at least (f/fℓ)−4.
Finally, for f > 3fℓ, the spectrum amplitude is above the noise level. Note that this part

also corresponds to the end of the inertial range.
Dimensional measurements of bubble deformation dynamics were performed by Ravelet et al.

[158] in the context of bubbles rising in turbulence. They measured the temporal spectrum of
the horizontal bubble main axis, a proxy for the amplitude of the second Rayleigh mode. The
overall shape of their power spectrum was similar : weak variation for f < f2, no resonance at
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Figure 6.2 – Amplitude of the modes’ Fourier transform for all We as a function of the frequency
normalized by the corresponding Rayleigh frequency. The Weber number value is color-coded.

f2 and an a strong decay for f > f2. In the absence of gravity, Risso et al. [165] also reported a
transition at f2, with a rapid decay for f > f2 of the projected area spectrum.

The cut-off frequency being fℓ for all considered cases, we deduce that the bubble natural
frequency in turbulence, Ωℓ of equation (6.2), is not modified by the presence of the surrounding
turbulent flow and that,

Ωℓ = ωℓ = 4
[(ℓ − 1)(ℓ + 1)(ℓ + 2)

We

]1/2
(6.5)

It is surprising that the bubble natural frequency remains unchanged. Indeed, Prosperetti [150]
showed, for a bubble in an initially quiescent flow, that viscous effects induces an additional
memory term in bubble dynamics. This memory term can be modeled by an effective natural
frequency and damping term. The surrounding flow field can also modify the natural frequency.
In a uniaxial straining flow for instance, Kang et al. [91] demonstrated that a coupling between
modes ℓ = 2 and ℓ = 4 decreases the mode 2 natural frequency at linear order, with a corrective
term linear in We. We hypothesize that the stochastic nature of turbulence cancels, in average,
these contributions. In the following, we use the theoretical expression of ωℓ, for the bubble
natural frequency, Ωℓ.

3.3 Zero frequency limit and We-dependency of the forcing

In this section, we investigate the zero frequency limit, and discuss the consequence for the
We-dependency of the forcing. By computing the Fourier transform of equation (6.2), combined
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with (6.5), we obtain an expression linking x̂ℓ and T̂ℓ,

|x̂ℓ|(We, ω) = |T̂ℓ|(We, ω)√
(ω2 − ωℓ(We)2)2 + Λℓ(We)2ω2 (6.6)

The spectral behavior of each xℓ is a combination of the forcing spectrum T̂ℓ and the bubble
response. In the limit case ω = 0, using the expression of the bubble natural frequency (6.5),
we have

|x̂ℓ|(We, 0) = |T̂ℓ|(We, 0)
ωℓ(We)2 = We

16(ℓ − 1)(ℓ + 1)(ℓ + 2) |T̂ℓ|(We, 0). (6.7)

We can use this expression to investigate the We-dependency and ℓ-dependency of T̂ℓ at ω = 0.
We extract ⟨|x̂ℓ|⟩(We, 0) by averaging ⟨|x̂ℓ|⟩(We, ω) over the range 5.10−3 < f/fℓ < 10−1 where
the spectrum is constant.

Figure 6.3a shows ⟨|x̂ℓ|⟩(We, 0) as a function of We. Solid lines of slope 1 are superimposed,
showing that ⟨|x̂ℓ|⟩(We, 0) increases linearly with We for ℓ < 4, up to We = 2.9 ≈ Wec, when
non-linear effects start to be important. This effect might originate from non-linear coupling
with lower order modes. It follows from equation (6.7) that ⟨|T̂ℓ|⟩(We, 0) is independent of We for
ℓ < 4, the most energetic modes. This result justifies that the effective forcing from turbulence
does not depend on bubble deformability at low frequency. The modification of the flow induced
by bubble oscillations does not impinge back on bubble dynamics. A similar phenomenon has
been observed for drops by Vela-Martín et al. [200]. They investigated the interfacial stress
generated by eddies depending on their distance to the interface. They concluded that eddies
further that 0.2d from the drop interface (outer eddies) generate most of the stress. They
reported that these contributions are, in addition, independent of We, as these eddies are too far
from the interface to be affected by drop deformations. We can assume that a similar mechanism
may hold also for bubble dynamics so that T̂ℓ does not depend on We either. These results justify
hypothesis (H2) at low frequency, and we assume that (H2) holds for all frequencies. From now
on, we therefore assume that Tℓ does not depend on We. This hypothesis will be further validated
and tested in section 3.5. The zero frequency limit also depends on the mode order ℓ. Figure 6.3b
shows the compensated spectrum limit ⟨|x̂ℓ|⟩(ω = 0)/We as a function of ℓ. We find that the
zero frequency limit decreases slightly faster than ω−2

ℓ ∼ [(ℓ−1)(ℓ+1)(ℓ+2)]−1 of equation (6.7)
(red line). It suggests that |T̂ℓ| weakly decreases with ℓ, with |T̂ℓ| ∼ 1/

√
ℓ. Higher order modes

are associated with smaller scales that are less energetic. However, the direct investigation of
pressure modes in section 5.2 showed a much faster decrease of the mode energy with ℓ. The
high order modes ℓ ≥ 3 may also be indirectly forced from non linear coupling with the mode 2
changing the ℓ-dependency of the forcing.

3.4 Determination of the effective damping factor: Additional damping due
to turbulence

In this section, we present a method to compute the damping factor Λℓ of equation (6.2)
from the numerical data.

Let us consider x̂a and x̂b the Fourier transform x̂ℓ of the same mode ℓ for two Weber numbers
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Figure 6.3 – a) Zero frequency limit of the modes’ Fourier transform as a function of We for
all ℓ. Theoretical prediction ⟨|x̂ℓ|⟩(ω = 0) ∝ We is superimposed in solid lines. Error bars
are estimated using the standard deviation of the spectrum value for 5.10−3 < f/fℓ < 10−1.
b) Compensated limit ⟨|x̂ℓ|⟩(ω = 0)/We, as a function of ℓ. Colors encode the We (see figure 6.2).
Assuming Tℓ independent of ℓ gives the scaling plotted in red. Assuming |Tℓ| ∼ 1/

√
ℓ gives the

scaling plotted in black.

Wea and Web. For simplicity here, we denote ωa and λa, the natural frequency and damping
rate associated with Wea at this ℓ. Under hypothesis (H2), the ratio Rab

Rab(ω) =
(⟨|x̂a|⟩

⟨|x̂b|⟩

)2
= (ω2 − ω2

b )2 + Λ2
bω2

(ω2 − ω2
a)2 + Λ2

aω2 (6.8)

is independent on T̂ℓ.
Since the two natural frequencies ωa and ωb are known (equation (6.5)), one can estimate

the two damping factors, Λa and Λb, using Rab(ωa) and Rab(ωb), the ratios at the two natural
frequencies

Rab(ωa) = (ω2
a − ω2

b )2 + Λ2
bω2

a

Λ2
aω2

a

(6.9)

Rab(ωb) = Λ2
bω2

b

(ω2
a − ω2

b )2 + Λ2
aω2

b

(6.10)

by solving this two-equations system. Note that an optimization of Λa and Λb on the whole
range of frequencies was less reliable. The signal over noise ratio is optimal near the resonance,
and decreases both at high and low frequencies. Indeed, high frequencies, which are the more
noisy, then dominate the optimization procedure.

Figure 6.4a illustrates the computation of Λℓ. The ratio R0.71,0.27 for ℓ = 2, Wea = 0.71
and Web = 0.27 is represented as a function of the frequency f (grey curve). The black and red
vertical lines denote the position of the two natural frequencies ωa and ωb respectively, at which
we measure R0.71,0.27. Inverting system (6.9)-(6.10) gives an estimate of Λ0.71 and Λ0.27. Using
these computed values of Λ0.71 and Λ0.27 we plot the theoretical expression of equation (6.8) at
all frequencies (black line). This expression captures the main features of the ratio R0.71,0.27(ω):
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We 2.9 2 1.43 1 0.71 0.46 0.36 0.27
Λ2 14.2 11.7 11.9 11.1 11.0 13.8 11.9 17.1
σ2

Λ 1.1 1.6 1.8 2.2 2.9 3.6 3.1 5.9
Λ3 20.1 16.7 17.2 16.2 17.0 30.5 25.4 29.7
σ3

Λ 3.4 4.0 4.6 4.4 5.3 13.2 12.6 18.4

Table 6.2 – Average damping parameter Λℓ and corresponding standard deviation, for every We.

the low frequency limit, the position and amplitude of the peak.
We then follow this procedure for every pair (Wea, Web) and obtain 14 estimations of Λℓ per

Weber number per mode ℓ. We did not find a significant bias on the estimated value of Λℓ(We)
as a function of the Weber ratio Wea/Web. We then average over all values of Web values to
estimate Λℓ(Wea). The values of Λℓ for ℓ = 2 and ℓ = 3 as a function of We, and their standard
deviation are reported in table 6.2. For ℓ ≥ 4, equation (6.6) fails to describe the ratio Rab.
Figure 6.4b shows Λℓ as a function of We for ℓ = 2 and ℓ = 3 with errorbars encoding the
standard deviation σℓ

Λ. We find no clear variation of Λℓ with We, especially for ℓ = 2. When ℓ

increases, the dissipation also increases, as smaller scales are more efficient to dissipate energy.
The increase of Λℓ with ℓ is compatible with the ℓ-dependency in a quiescent environment from
Lamb [101]. From our observations we found the following expression for the damping factor,

Λℓ = 0.6(ℓ + 2)(2ℓ + 1). (6.11)

In quiescent environments, the damping coefficient is also independent on We, λℓ = 8
√

2(ℓ +
2)(2ℓ + 1) Re(d)−1, as it originates from molecular diffusion in the liquid. However, we find
Λ2 ≈ 6.6λ2. The surrounding flow field induces an additional effective damping. Experimentally,
Ravelet et al. [158] also observed an additional damping for bubbles rising in turbulence but
attributed it to the presence of the wake. Yet, similar observations come from drop oscillations
in space. In the presence of a turbulent internal flow, drop oscillations are significantly damped
[17, 20]. This additional damping is interpreted in terms of a turbulent eddy viscosity [217].
In addition, Vela-Martín et al. [200] showed that there is a transfer of energy from the drop
interface to eddies closer than 0.2 d from the drop interface and inside the drop. They call them
inner eddies. These small eddies efficiently dissipate energy. This transfer of energy suggests
that the enhanced damping comes from an increase in the local effective diffusivity.

It is advantageous to estimate the size of an equivalent mixing length Lt. This characteristic
length of momentum transport has first been introduced by Prandtl [22, 147, 217] to describe, in
a turbulent flow, the logarithmic profile of velocity near a wall. By dimensional considerations,
one can estimate the effective turbulent viscosity νt, using Lt and a typical velocity scale of
velocity fluctuations at that scale, ⟨δu(Lt)2⟩1/2,

νt = ⟨δu(Lt)2⟩1/2Lt =
√

2ϵ1/3L
4/3
t . (6.12)
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Figure 6.4 – a) Ratio between the Fourier spectrum at Wea = 0.71 and Web = 0.27 for the mode
ℓ = 2. The red and black vertical lines denotes the position of the Rayleigh frequency at these
two We where we evaluate Rab. The black line is the prediction from equation (6.8). b) Damping
factor as a function of We for ℓ = 2 and ℓ = 3. The error bars represent the standard deviations.
The solid black line corresponds to Λ2 = 12.

Expressing the effective damping rate in terms of this effective turbulent viscosity gives,

Λℓ = 8(ℓ + 2)(2ℓ + 1)νtd
2/3

d2ϵ1/3 = 8
√

2(ℓ + 2)(2ℓ + 1)
[

Lt

d

]4/3
. (6.13)

Injecting equation (6.11), gives an estimate for Lt,

Lt = d

10 = R0
5 . (6.14)

Being of the same order of magnitude as the bubble radius, we hypothesize that the mixing length
originates from a geometric effect, similar to the separation between inner and outer eddies from
Vela-Martín et al. [200]. We further investigate the origin of this additional damping in the last
section, by looking at the local velocity gradients close to the bubble interface.

3.5 Effective forcing statistics: Temporal correlations and distribution

Since the left hand side of equation (6.2) is now completely determined, we can compute the
right hand side, and interpret it as a forcing term from the turbulent flow.

To interpret and comment the statistics of the forcing term we will obtain, let briefly discuss
the physical origin of the forces acting on a bubble in a turbulent flow. To the best of our
knowledge, there is no theoretical description of the forcing statistics acting on a bubble. For
particles lying within the inertial range, the force exerted by the flow is often modeled by the
Eulerian pressure gradient, integrated over the particle surface [28], a framework that can also
be applied to bubbles [212]. Decomposed in the spherical harmonics base, the pressure on a
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sphere of radius R reads

p(θ, ϕ) = Pc
[ ∞∑

ℓ=0

ℓ∑
m=−ℓ

Pℓ,m(t) Y m
ℓ (θ, ϕ)

]
, (6.15)

where Pc = ρδu(d)2 is a characteristic pressure fluctuations. There is no direct experimental
measurement of these pressure coefficients. In practice, only two point pressure measurements
(pressure increments) have been studied. From force balance on a finite-size particle in a tur-
bulent flow, the modes ℓ = 1 are the components of the hydrodynamic force, equal to the La-
grangian particle acceleration. Practically speaking, the pressure increments are a good proxy
for the Lagrangian particle acceleration.

For the higher order modes (ℓ ≥ 2) there is no measurements in turbulence. Moreover, to
describe deformations rather than motions, the framework used for particle acceleration cannot
be simply extended. The interface deformations are primarily driven by the velocity gradients
at the interface, which themselves depend on the presence of the bubble. Still, these gradients
are closely related to the pressure statistics at the bubble scale.

Therefore, from time to time, we will compare our statistics of Tℓ (ℓ ≥ 2) with statistical
quantities closely related to P1, namely the Lagrangian acceleration statistics and the pressure
increments. A direct measure of the statistics of Pℓ (ℓ ≥ 2) in the absence of bubble is provided
in section 5.

Practically, we compute Tℓ from the modes’ Fourier transform x̂ℓ using the following relation

Tℓ(t) = 1
2π

∫ ∞

−∞
x̂ℓ(ω)(Ω2

ℓ − ω2 + iΛℓω)eiωtdω, (6.16)

where we use the expressions of Λℓ and Ωℓ from Eqs. (6.5) and (6.11).
As expected from rotational invariance, we find that the average forcing ⟨Tℓ⟩ vanishes for all

We. The standard deviation of Tℓ, σℓ
T is shown in figure 6.5 as a function of We for ℓ = 2 and 3

(color-coded). σℓ
T is found to be almost independent of the Weber number. We found that the

effective forcing from the turbulent flow does not depend on bubble deformability. Therefore,
bubble deformations are only one-way coupled to the flow.

In physical units, the force Tℓ then scales as α(ℓ)ϵ2/3d−1/3, where αℓ is a function of the
mode order. The standard deviation slightly decreases with ℓ, compatible with αℓ ∼ ℓ−1/2.

In the context of Lagrangian particle acceleration in turbulence, the standard deviation of
acceleration also decreases with particle size as d−1/3. This scaling can be predicted using a scale
invariant pressure fluctuations argument [154, 211, 213]. In addition, Lagrangian acceleration
statistics do not depend explicitly on the Reynolds number at the particle size Re(d), as long
as the particle lies within the inertial range. Only a marginal effect of the flow Taylor Reynolds
number Reλ on the variance of the acceleration [213] was found. As a consequence, we expect
the effective forcing to be independent of Reλ, Re(d) and the Weber number.

Beyond the first two moments of the effective forcing distribution, it is interesting to look
at the full distribution. Figures 6.6a and 6.6b show the probability distribution of T2 and T3

respectively for all We, normalized by their standard deviation σℓ
T . We find that the shape of

the distribution is also independent of the Weber number. These distributions are characterized
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Figure 6.5 – Standard deviation of T as a function of We for ℓ = 2 and ℓ = 3. No We-dependency
is observed, while σT decreases slightly for larger ℓ.
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by exponential tails, and are well described by the hyperbolic secant distribution (black dashed
line),

pdf(T ) = 1
2σℓ

T
sech

(
π

2
T
σℓ

T

)
(6.17)

which depends on a single parameter, the standard deviation σℓ
T . The probability that a large

forcing occurs is way larger than that of a Gaussian distribution (solid black line).
It is again tantalizing to compare this distribution to Lagrangian acceleration statistics for

both particles and bubbles [85, 146, 154, 178, 212, 213]. For small, neutral tracers and particles
of Kolmogorov scale size, the acceleration distributions exhibit larger tails, decreasing slower
than exponential. However, for larger particles (d/η > 10), the shape exhibits exponential
tail, independent of bubble size and therefore of Re(d) [154, 211, 213]. The pdf shape of the
Lagrangian acceleration is well described by the following expression, initially proposed for tracer
particles [131, 154]

pdf(x) = e3s2/2

4
√

3

1 − erf
( log

(
|x/

√
3|
)

+ 2s2

√
2x

) (6.18)

where x is the standardized variable and s an additional fitting parameter. In the range of
resolved scale, the two expressions, equations (6.17) and (6.18), are compatible with our exper-
imental data.

To characterize the temporal evolution of the effective forcing Tℓ, we study its ensemble
averaged Fourier transform ⟨|T̂ℓ|⟩. Injecting equations (6.5) and (6.11) within equation (6.6) we
obtain an expression in Fourier space for ⟨|T̂ℓ|⟩:

⟨|T̂ℓ|⟩ = ⟨|x̂ℓ|⟩.
[
(ω2 − Ωℓ(We)2)2 + Λ2

ℓω2
]1/2

. (6.19)

Figure 6.7a and 6.7b show ⟨|T̂2|⟩ and ⟨|T̂3|⟩ respectively as a function of fℓ−2/3, where ℓ2/3 is the
eddy turnover time at scale d/ℓ (in units of tc(d)). For all frequencies, we found that the effective
forcing spectrum does not depend on the Weber number. At low frequencies (f < 0.2 ℓ2/3), the
forcing amplitude is constant, corresponding to a white noise. For f > ℓ2/3, the decay of ⟨|T̂ℓ|⟩ is
compatible with 1/f2. The limit between these two regimes is set by the eddy turnover time at
scale d/ℓ. We found that the spectrum of the effective forcing only depends on the turbulence
parameters, and is therefore independent of the bubble deformations. As was anticipated in
section 3.1, model (6.2) decouples the turbulent forcing (the right hand side) from the bubble
response (the left hand side). The observation of a cut off frequency at the characteristic time
scale of turbulent fluctuations at the mode scale d/ℓ can be interpreted as a filtering process
originating from the integration over the bubble surface. This filtering operation is further
discussed in section 5.

From the previous observations, we propose the following expression for the forcing spectrum,

⟨|T̂ℓ|⟩(f) = τℓ

1 + [fℓ−2/3]2
, (6.20)

where τℓ is a numerical constant, accounting for the ℓ-dependency of Tℓ, that is adjusted on the
data. From equation 6.7 and figure 6.3, we estimate τℓ ∼ ℓ−1/2. The expression (6.20) captures
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Figure 6.7 – Effective forcing spectrum for ℓ = 2 (a) and ℓ = 3 (b) deduced from equation (6.19)
as a function of the frequency normalized by the eddy turnover time at scale d/ℓ. The Weber
number is color-coded with the same colorbar as in figure 6.2).

quantitatively the effective forcing spectrum (solid black line in figures 6.7a and 6.7b).
In the context of Lagrangian particle accelerations, Voth et al. [213] followed by Volk et al.

[212], computed the temporal autocorrelation of inertial particle accelerations in turbulence.
The temporal acceleration statistics of a finite size particle is usually attributed to a filtering
effect of the small scale turbulent fluctuations at the particle scale [154]. As a consequence,
the correlation time of acceleration for neutrally buoyant particle is given by the eddy turnover
time tc(d). This result has been recently extended to buoyant particle that exhibits a modified
correlation time t ∼ tc(d)β−1/2 [67], where β = 3ρ/(2ρ + ρp) is a function of the fluid density ρ

and the particle density ρp. For a bubble, we have β = 3, corresponding to a correlation time
of order tc. In our case, the temporal auto-correlation function CTℓ

(t) = ⟨Tℓ(0)Tℓ(t)⟩/(σℓ
T )2 for

the modes ℓ > 1 can be deduced from the spectrum T̂ℓ and is written as:

CTℓ
(t) = exp

(
−2πℓ2/3t

)
(1 + 2πℓ2/3t). (6.21)

We found that the correlation time in physical units is given by tc(d)ℓ−2/3/(2π), which also
scales as tc(d), with an additional dependency in the mode order ℓ. The prefactor being smaller
than one, the mode oscillations decorrelate faster that the velocity fluctuations at the bubble
scale.

In summary, we found that all the statistics of Tℓ are independent of We which confirms the
initial intuition of Risso et al. [165] that bubble dynamics and turbulent forcing are decoupled.
We found that the bubble deformation by the flow field can be described by a one-way coupling
model: the flow field generated by bubble oscillations does not significantly impinges back
on bubble dynamics. In addition, experimental results from the literature suggest that these
statistics are likely to be independent on Re(d), as long as we consider bubbles larger than the
Kolmogorov scale.

From the stationary hypothesis (H3), the forcing is completely characterized by its distri-
bution and temporal autocorrelation function. The combination of an explicit form for the pdf
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(eq. (6.17)) and for the autocorrelation function (eq. (6.21)) then provides a complete model of a
synthetic stochastic effective forcing for bubbles deformations in turbulence. Previous modelling
approaches have used two points velocity measurements to model an effective forcing term [100,
123, 165], following the original idea from Kolmogorov [97] and Hinze [84]. Here we found that
the statistics of the effective forcing differ significantly from two points statistics, in particular
due to the volumetric filtering effect at the particle size.

4 Model validation

To describe the bubble deformation, we have inferred step by step an equation including,
damping, natural frequency and a statistical model for the effective forcing term Tℓ. To validate
and draw the limits of our model, we compare the output of the linear model to our DNS data

4.1 Modes’ standard deviation and distributions

We first look at the modes’ standard deviation σℓ
x and statistics. Figure 6.8a shows the

modes’s standard deviation as a function of the Weber number for ℓ ∈ [2, 5]. We find that σℓ
x

can be approximated by σℓ
x ≈ We/[(ℓ − 1)(ℓ + 1)(ℓ + 2)], with a constant of order one. We

compute σℓ
x from the model in Fourier space using expressions of equations (6.5), (6.11) and

(6.20) and the Parseval identity. The results are superimposed in solid line for ℓ = 2 and 3,
showing a quantitative agreement with the numerical data.

A scaling for σℓ
x as a function of We and ℓ can be deduced analytically in model cases. One

natural case is to consider Tℓ as a Gaussian white noise of autocorrelation function C(t) = Dδ(t),
where δ is the Dirac function, and D is independent of the Weber number. In this case, from
the analysis of stochastic harmonic oscillators [76] the standard deviation reads

σℓ
x ∼

[
D

ΛℓΩ2
ℓ

]1/2

. (6.22)

From the coefficients Λℓ and Ωℓ we extracted, this model predicts σℓ
x ∝ We1/2, which does

not correspond to the observed scaling. A finite correlation time has be taken into account.
We then consider Tℓ as an exponentially correlated Gaussian noise of autocorrelation function
⟨Tℓ(t)Tℓ(t′)⟩ = (σℓ

T )2 exp(−|t − t′|/tℓ), where tℓ = ℓ−2/3/(2π) is the correlation time of the
effective forcing deduced from equation 6.21, and D is independent of We. In this case the
mode’s standard deviation is written as [76],

σℓ
x = σℓ

T

[
tℓ(1 + Λℓtℓ)

Ω2
ℓΛℓ(1 + Λℓtℓ + Ω2

ℓ t2
ℓ )

]1/2

. (6.23)

The scaling of σℓ
x now becomes a function of the ratios Λℓtℓ and Ωℓtℓ. In practice, we have

Ωℓtℓ ≫ 1 and Ωℓtℓ ≫ Λℓtℓ for sufficiently small Weber. Considering the limit Λℓtℓ ≫ 1,
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Figure 6.8 – a) Modes standard deviation as a function of the Weber number for all ℓ. The two
straights lines are the predictions from our linear model, for modes ℓ = 2 and ℓ = 3. b) Modes’
standard deviation compensated by We as a function of the mode principal number.

equation (6.23) simplifies as

σℓ
x = σℓ

T
Ω2

ℓ

= σℓ
T

(ℓ − 1)(ℓ + 1)(ℓ + 2)We. (6.24)

We then recover the observed scaling for small Weber number. For larger Weber number, the
ratio Ωℓtℓ decreases, and we expect a transition to a shallower increase of σℓ

x with We. This
transition should occur for larger Weber number as ℓ increases, an interpretation compatible
with the numerical data shown in figure 6.8a. The observed scaling of σℓ

x with Weber thus
corresponds to a saturation of the bubble deformations dominated rather by the long correlation
time of the forcing (frozen turbulence hypothesis applied to bubble deformations [176]) than an
accumulation of random forcing events on a time scale 1/Λℓ. It is worth noticing that the
estimate of the correlation time of the forcing is therefore essential to predict the amplitude of
bubble deformations.

To further check the dependency in ℓ, figure 6.8b shows the compensated standard deviation
σℓ

x/We. We recover that the decrease of the modes’ amplitude with ℓ can be mainly attributed
to the increase of the natural frequency with ℓ, with a small correction originating from the weak
dependency of Tℓ with ℓ. Eventually, we found a quantitative agreement between the standard
deviation xℓ and the result from the linear model. The model captures the evolution of σℓ

x with
both We and ℓ.

The linear increase of σℓ
x with We, up to the critical Weber number (We ≈ 3 in our case) has

important consequences when modelling bubble breakup. Risso et al. [165] suggested that the
threshold for breakup is close to the value above which the deformations start to be non linear.
A linear model would then be sufficient to describe bubble deformations up to the breakup
threshold.

We then look at the entire statistics of the xℓ. Figures 6.9 show the probability density func-
tions of the modes ℓ = 2 for all Weber numbers (6.9a) normalized by their standard deviation.
We find that the shape of the pdf does not depend on the Weber number and corresponds to
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the hyperbolic secant distribution (black dashed line), equivalent to the pdf of the effective force
Tℓ. Both the forcing and the mode amplitude share the same pdf that deviates from gaussianity
(solid black line) with exponential tails. As the distributions exhibit fat tails, the probability
that bubbles experience large deformations leading to breakup is large compared to a Gaussian
distribution (black dotted line). Moreover, for larger ℓ, the deviation from gaussian distribution
increases, as shown in figure 6.9b for We = 1.

4.2 Deformation spectrum

Figure 6.10 compares the modes’ Fourier transforms with the model prediction (6.6) com-
bined with equations (6.11), (6.5) and (6.20) (dotted lines). For all Weber numbers, the model
accurately reproduces the zero-limit frequency as well as the amplitude of the spectrum at the
bubble natural frequency f2 and the position and slope of the decay at larger frequencies. At
the lowest Weber number (We = 0.27), the model overestimates the spectrum just below the
resonance. We remind here that for frequencies larger than 2.5f2 the spectrum is dominated
by numerical noise. For all the other We, in the absence of resonance, the model captures the
spectrum close to the bubble natural frequency.

4.3 Consequences for bubble breakup

Thanks to the quantitative model we develop, we can revisit the breakup scenario and the
criterion for breakup. Two main breakup scenarios have been proposed for bubbles in turbulence.
Bubbles can break either when they encounter a pressure fluctuation larger than some threshold
values [103, 114, 122, 214] or after series of small excitation at their natural frequency which
induce a resonance [165, 180]. The ability for a bubble to store energy on a mode ℓ, is quantified
by the quality factor Qℓ = Ωℓ/Λℓ. The quality factor Qℓ sets the number of periods over which
energy can be stored. For large Qℓ, energy can be accumulated while it is dissipated in a few
bubble periods for low Qℓ. Our linear model provides a quantitative measure of Qℓ. Combining
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Figure 6.10 – Comparison of the Fourier spectrum amplitude between the DNS and the model
(dotted line). The model spectrum is obtained by combining equations (6.11), (6.5) and (6.20)
in (6.6), for the mode ℓ = 2. The model captures the low frequency limit, the position of the
transition as well as the high frequency decay for all We.

equations (6.5) and (6.11) we have an explicit expression for Qℓ as a function of We and ℓ,

Qℓ = 4
√

(ℓ − 1)(ℓ + 1)
0.6(ℓ + 2)(2ℓ + 1)2 We−1/2. (6.25)

In turbulence, bubbles mainly break after oblate-prolate deformations, meaning deformations
along their second modes ℓ = 2 [123, 141, 158, 165]. For the typical critical Weber numbers
reported in the literature, 0.1 < Wec < 10 [118, 165, 167, 180], our estimate of the quality factor
for the mode ℓ = 2 ranges from 0.3 (Wec = 10) to 3 (Wec = 0.1). These quality factors are too
low to observe significant energy storage over several period of oscillations. Resonance can still
occur for the largest Qℓ ≈ 3. However, we expect the resonant mechanism to be subdominant
at this quality factor. We conclude that large pressure fluctuations set the value of the critical
Weber number rather than resonant mechanism.

Note that a sequence of oscillations at the bubble natural frequency may be observed for
sufficiently large quality factor, typically Q2 > 10, corresponding to We < 8.10−3. Even though
such a Weber number corresponds to bubbles size much smaller than the Kolmogorov Hinze
scale, which will never break, it may be observed experimentally.

5 Link between model coefficients and surrounding turbulent
fields

In this section, we aim at connecting the effective variables we identified, namely the forcing
Tℓ and the damping coefficient Λℓ, to flow statistics in turbulence. The presence of a bubble
modifies the flow statistics in its surrounding, through dynamical boundary conditions at the
interface and incompressibility. Nevertheless, for drops, it has been shown that the outer eddies
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(further than 0.2d from the interface) generate most of the normal stress [200]. These outer
eddies may be less affected by the presence of the interface. Therefore, it is natural to compare
the flow statistics on a sphere in the absence of a bubble to the effective force statistics. In
section 3.5, we argued that the pressure modes are a good proxy for the effective forcing. In this
section, we then compare the statistics of Tℓ to the pressure modes statistics in the single phase
case. On the other hand, the damping is expected to arise eddies contained in the boundary
layer near the interface [200]. To rationalise the origin of the additional damping from the flow
statistics, we will therefore study the local dissipation in the bubble boundary layer.

5.1 Point statistics of the pressure field

As a reference case, we first consider the Eulerian point statistics of pressure in homogeneous
and isotropic turbulence, at the same Taylor Reynolds number Reλ = 55, corresponding to the
two phases flow case. To compare with the bubble dynamics, we will still express length scales
in units of d, timescales in units of tc(d) and therefore velocity in term of velocity increments at
the bubble scale ⟨δu(d)2⟩1/2.

We run single phase direct numerical simulations and record the Eulerian pressure fluctua-
tions p(x, t) at seven different fixed location well separated in space. We run three simulations
for a total of 245tc(d). Resolution is increased compared to the two-phase problem and would be
equivalent to 68 points per bubble radius and 3.6 points per Kolmogorov length. Note that in-
creasing the resolution was not necessary but allows us to obtain more precise results, especially
in the viscous range. In this section, ensemble averages are performed over the three simulations
and the seven locations.

Figure 6.11a illustrates two temporal evolution of pressure, normalized by the characteristic
pressure difference at the bubble scale, Pc = ρδu(d)2. We found a pressure standard deviation
σp = 0.67Pc. Pressure exhibits random oscillations of small amplitude around zero, together
with large negative drops. This asymmetry between positive and negative pressure fluctuations
is better observed on the pressure pdf plotted on figure 6.11b. We recover that negative values are
exponentially distributed, while positive pressure values follow a Gaussian distribution (dashed
black line). The existence of the large negative peaks leading to an asymmetric pdf is well
known and has been reported both in experiments [1, 27, 152] and direct numerical simulations
of homogeneous isotropic turbulence [31, 198]. It has been shown that these large negative peaks
correspond to vorticity filaments [27, 59, 69] passing through the measurement point. As the
bubble moves in the fluid, it may experience different pressure statistics and the Lagrangian
pressure statistics could also be relevant.

Lagrangian pressure statistics have also been investigated numerically. Numerical studies
involve measuring pressure statistics along the paths of point particles [9], as well as (sub-
Kolmogorov) finite-size bubbles [10, 11] whose dynamics are modeled using a pure advection or
a Maxey-Riley equation [125, 192] respectively. They found that larger particles have a higher
probability to be within low pressure regions. Nevertheless, the overall shape of the pressure
pdf, with an exponential tail for negative values and a Gaussian distribution of positive values,
is conserved.

To investigate the frequency statistics of the local pressure, we compute the temporal Fourier
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Figure 6.11 – a) Typical temporal evolution of the pressure at two points in space. We observe
small amplitude oscillations together with rare intense negative peaks. b) Local pressure dis-
tribution normalized by its standard deviation σp = 0.67Pc. The solid black line follows the
hyperbolic secant distribution centered while the black dashed line follows a Gaussian distribu-
tion with standard deviation 4/5.

transform of each pressure signal p̂,

p̂(ω) =
∫ ∞

−∞
p(t)e−iωtdt. (6.26)

The average amplitude of its Fourier transform ⟨|p̂|⟩ is plotted on figure 6.12. The corresponding
inertial range in frequency space is delimited by the inverse of the eddy turnover time at the
integral scale fc(L) = 1/tc(L) (black dotted line) and the inverse of the eddy turnover time at
the Kolmogorov scale, fc(η) (dashed line). For low frequencies, f < fc(L), ⟨|p̂|⟩ slowly decreases
with f . Abry et al. [1] have shown that this evolution at low frequencies originates from the
contribution of vorticity filaments, since their typical lifetime is the integral timescale [59, 152].
Removing their contributions flattens the low frequency spectrum [1].

In the inertial range of the turbulent cascade, fc(L) < f < fc(η), ⟨|p̂|⟩ decays down to the
noise level near fc(η). In the spatial Fourier space, and a fortiori in the temporal Fourier space,
there is no consensus for the scaling of the pressure power spectrum within the inertial range
[151]. A Kolmogorov-like scaling predicts |p̂(k)|2 ∼ ϵ4/3k−7/3 (reported by Ishihara et al. [88] for
instance) but other authors have also reported a k−5/3 scaling [79, 198]. To transform the spatial
power spectrum into a temporal power spectrum, a classical way is to consider that the small
scale structures are advected by the large scales. This is the sweeping hypothesis [99, 189], which
has been successfully used to reproduce pressure temporal autocorrelation [218]. Combining this
argument with the Kolmogorov prediction, we find that ⟨p̂⟩ should scale as p̂K ∼ ϵ2/3u

5/6
rmsω−4/3,

with a proportionality constant of order 1. We find a reasonable agreement, as shown by the
compensated spectrum ⟨p̂⟩/p̂K in the inset of figure 6.12. As evidenced by Pullin et al. [151],
Pumir [152], and Vedula et al. [198] the Kolmogorov scaling might only hold in a narrow range
of frequencies, corresponding to scales just below the integral scale, due to the limited inertial
range. The proportionality constant is around 3 in our case (solid black line) lower than the
value of 7 proposed by Pumir [152]. The third regime f > fc(η), corresponds to the end of the
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inertial range and is close to the limit of resolution of our DNS, as fc(∆x) = 3fc(η), where ∆x

is the minimum grid size.

5.2 Pressure field on a sphere

To compare the pressure statistics with the effective forcing Tℓ, we interpolate the pressure
field pS(θ, ϕ) in the single phase DNS on a sphere of radius R0, and compute its spherical
harmonics decomposition

pS(θ, ϕ) = Pc
[ ∞∑

ℓ=0

ℓ∑
m=−ℓ

Pℓ,m(t) Y m
ℓ (θ, ϕ)

]
. (6.27)

Similarly to the modes of deformation xℓ,m, the statistics of Pℓ,m are independent of m. Ensemble
averages are then computed over the three simulations and the m values. For pressure, the modes
ℓ = 0 and ℓ = 1 are non zero, however we focus in the following on modes ℓ ≥ 2 which are relevant
for bubble deformations. Figure 6.13a shows that the standard deviation of each mode ℓ, σℓ

P ,
varies exponentially with ℓ. A higher ℓ is associated with fluctuations at a smaller scale, which
are known to be less energetic. However we have no explanation for the exponential scaling. We
also observed a decay of σℓ

T with ℓ (figure 6.5). The symmetry between positive and negative
values is restored, as shown on figure 6.13b. Distributions now show exponential tails for both
negative and positive pressure values. The shape of the distribution is found independent of ℓ,
corresponding to the same hyperbolic secant distribution (eq. (6.17)) than the effective forcing
distribution we previously identified.

Eventually, we compute the temporal Fourier transform P̂ℓ of the spherical pressure modes
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Figure 6.13 – a) Pressure standard deviation, σℓ
P as a function of ℓ, showing an exponential

decay with ℓ (black dotted line) b) Distributions of Pℓ, normalized by σℓ
P , as a function of ℓ. All

the pressure modes share the forcing distribution given in equation (6.17).

Pℓ. Figure 6.14a shows the ensemble average of the norm, ⟨|P̂ℓ|⟩ as a function of the frequency.
For each ℓ, we recover the three regimes we observed for the point pressure spectrum and Tℓ.
The transition between the two first regimes depends on the mode ℓ. Considering that the
pressure spectrum share the same characteristic frequency than the effective forcing spectrum,
we expect the transition to occur at f = ℓ2/3, the frequency associated with eddies of size d/ℓ,
in units of tc(d). We show in figure 6.14b the spectra ⟨|P̂ℓ|⟩ normalized by their low frequency
limit, P̂ 0

ℓ , as a function of the frequency normalized by ℓ2/3, the eddy turnover time at scale d/ℓ.
All curves collapse on a single master curve, showing that pressure and effective forcing share
the same time scales. Below the critical frequency (f < fℓ), the spectrum amplitude converges
to a constant value, significantly above the integral frequency fL. Similarly to Abry et al. [1],
the pressure spectrum at low frequency is now constant. We can assume that the averaging over
the sphere has filtered the contribution from localized structures, and in particular the vorticity
filaments. A flat spectrum in the range fc(L) < f < ℓ2/3 also indicates that the contribution
of eddies larger than d/ℓ, which are roughly homogeneous at the mode scale, has also been
filtered out: a bubble is mainly deformed by eddies at its scale. For ℓ2/3 < f < fη, ⟨|P̂ℓ|⟩ follows
f−3. This decay is steeper than the ℓ-dependency of ⟨|T̂ℓ|⟩ which follows f−2. This might be
attributed to the discrepancy between Eulerian and Lagrangian statistics. From sweeping effect
[99], the temporal decorrelation of Eulerian quantities are expected to occur faster than their
Lagrangian counterpart.

To summarize, we have shown that the effective forcing Tℓ deforming a bubble shares the
same statistics as the corresponding pressure modes integrated over a sphere of same radius. As
a consequence of the filtering effect induced by the integration over a sphere, the characteristic
frequency associated with each mode ℓ is the eddy turnover time at scale d/ℓ, the frequencies
smaller than ℓ2/3 are well described by a white noise, and the forcing amplitude decreases with
ℓ.
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Figure 6.14 – a) Amplitude of the pressure Fourier transform ⟨|P̂ℓ|⟩ for each mode ℓ as a function
of the frequency in unit of the eddy turn over time at the bubble scale. The black dashed line is
represents the eddy turnover time at scale η. The black dotted line is the eddy turnover time at
the integral length scale. b) Normalised pressure Fourier transform as a function of frequency
in unit of the eddy turnover time at scale d/ℓ. The black line follows f−3.

5.3 Dissipation profiles

Our analysis of bubble deformation shows that (i) The effective forcing originates from
pressure fluctuations near the bubble, and it is not affected by bubble deformability. (ii) The
damping of bubble oscillations is significantly enhanced compare to the quiescent case. This
damping can either originate from additional dissipation in the turbulent boundary layer or an
energy transfer from the bubble oscillations to the turbulent flow. Both mechanisms depend on
the boundary layer thickness. Using a turbulent viscosity hypothesis we estimated that energy
was transported on a boundary layer of size Lt = R0/5, independent of We. In this section we
investigate the velocity gradient profile near the bubble, on a distance comparable to bubble
typical deformation. To do so, we need to compute a local distance r to the interface, which is
not provided by the Basilisk VOF algorithm. This computation, as well as the investigation of
the dissipation profile, was the internship of Kamel Abhari, a master student from ENSTA.

The method principle is the following. For every bulk point, we find the closest grid point
on the interface. We then interpolate the bubble surface around this point, using a quadratic
interpolation on the 20 closest neighbouring interfacial points. To find the neighbours efficiently,
the interfacial grid points are stored in a k-d tree structure. The distance r to the interface is
then found by minimizing the distance from the bulk point to the quadratic manifold. We follow
this procedure for both outside (r > 0) and inside (r < 0) bulk points.

We diagnose the additional dissipative term of the linear model by investigating the local
dissipation rate profile around the bubble. The energy dissipation rate per unit of mass in a
elementary volume is related to the local velocity gradients by

⟨ϵ⟩(x) = 2ν⟨(∂iuj + ∂jui)2⟩, (6.28)

where we use Einstein notations. For each run, we output snapshots of the full flow field at
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We 2 1.43 1 0.71 0.46 0.36 0.27
N 48 68 68 27 46 24 52

Table 6.3 – Number of snapshots per Weber number used to compute the flow profiles.
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Figure 6.15 – Example of the distance computation on a slice of a bubble at We = 2. The red
points are on the interface. Isocontours are separated by 0.0625R0. We also show the association
between one bulk point and the corresponding interfacial point.

times separated by at least one eddy turnover time at the bubble scale, to ensure statistical
independence. We then compute profiles of the local dissipation near the interface by averaging
on shells of constant distance from the bubble interface, as illustrated on figure 6.15. Eventually,
for each Weber number, we ensemble average the flow snapshots (see table 6.3) to extract a mean
profile.

Figure 6.16a shows the average local dissipation, divided by the kinematic viscosity, ⟨ϵ⟩(r)/ν,
as a function of the distance r to the bubble interface. Far from the bubble interface, for r > R0/2
and r < −R0/2, the local dissipation converges to a constant. In the gas, velocity gradients are
maximum at r = −R0/15. The existence of a maximum inside the bubble near the interface
originates from the nearly no slip boundary condition imposed by the denser fluid on the gas
inside the bubble. Similar boundary layer has indeed been observed near solid particle surface
(no slip boundary condition) [41, 181]. For bubbles, we therefore expect that decreasing the
gas density increases the amplitude of the peak. The velocity gradients inside and outside the
bubble share the same order of magnitude: the dissipation hence mainly takes place outside the
bubble, in the liquid, where the dynamical viscosity is much larger. To understand the origin of
the additional damping we then focus on the outside boundary layer.

For r > 0, we observe a thick boundary layer of typical size R0/5 (see figure 6.16a), com-
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Figure 6.16 – a) Local velocity gradient inside and outside the bubble as a function of the
distance to the interface, for all We. b) Limit of the dissipation rate at the bubble interface in
the liquid phase as a function of the Weber number.

patible with our estimation of Lt (see equation (6.14)). Figure 6.16b shows the dissipation rate
value at the interface, in the liquid ⟨ϵ⟩|0+ as a function of the Weber number. At vanishing
Weber number, we find a non zero dissipation originating from a geometrical boundary layer.
The interfacial value varies between 3 times (We = 0.27) and four times (We = 2) larger than in
the bulk. In addition, we find an increase compatible with a linear dependency of the interfacial
dissipation with We. If we interpret this additional dissipation as an energy transfer rate from
the surface deformation to the flow, it would scale as Λℓ(ẋℓ)2. We have (ẋℓ)2 ∼ (ωℓσ

ℓ
x)2 ∝ We.

This interpretation is therefore compatible with a damping coefficient Λ independent of We.
In the absence of flow, the thickness of the boundary layer of the oscillating bubble can be

estimated by
√

2ν/ω2. For a Weber number ranging from 2.9 to 0.27, this estimation gives a
boundary layer of size ranging from 0.07R0 to 0.04R0, which is much thinner than the boundary
layer thickness we measured. We conclude that the boundary layer originates from a geometrical
turbulent boundary layer, and not from bubble oscillations. The existence of a thick boundary
layer was completely disregarded in the computation of Lamb [101] for a potential flow far from
the interface. The thick boundary layer we observed for the dissipation profile is then consistent
with an effective damping one order of magnitude larger than in the quiescent case.

6 Conclusion

In summary, we have shown that the deformations of bubbles in turbulence can be described
in terms of a stochastic linear oscillator on the Rayleigh modes of oscillations up to a Weber
of order unity. Conversely to previous works, we have directly measured using DNS of bubbles
in turbulence the coefficients of this reduced model, namely, the damping rate and the natural
frequency, together with the statistical properties of the effective forcing. We have shown that
the natural frequency associated with each mode of deformation is not modified compared to
the quiescent case. For the effective dissipation, we found that the damping is one order of
magnitude larger than the laminar viscous dissipation computed by Lamb. Looking at the
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dissipation profiles near the interface, we confirmed that the additional dissipation originates
from a thick geometrical boundary layer of size Lt ≈ R0/5. In physical units, we expect the
damping coefficients Λℓ to scale as urms/d. Eventually, we found that the effective forcing does
not depend on the Weber number. This observation confirms that bubble deformations are one-
way coupled to the flow: the back-reaction of bubble deformations on the surrounding turbulent
flow can be neglected. This effective forcing is characterized by a probability distribution with
exponential tails and a typical correlation time which scales with the eddy turnover time at
the mode’s scale tc(d/ℓ). We also looked at the statistics of pressure fluctuations on a sphere
in the absence of bubbles, and we showed that the effective forcing shares the same pdf as
the pressure modes’ pdf as well as the same characteristic timescale. Due to the enhanced
dissipation compared to the quiescent case, we showed that the resonant oscillation mechanism
is not statistically relevant to explain break-ups. Indeed, at Weber of order unity, the bubble
cannot accumulate deformation energy on several periods of oscillations as the quality factor
Q = ω2/λ of the main bubble oscillations is too small. As a consequence, bubbles break rather
from short and large turbulent fluctuations than from series of small amplitude excitations at
the bubble natural frequency (resonant mechanism).

In the next chapter, we use this reduced dynamics to predict the breakup statistics.
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Chapter 7
Bubble breakup rate in turbulence

The sex of angels.

A colleague

Bubble fate in turbulence is controlled by the Weber number, but also by the time
spent within the turbulent region. In real flows, which are inhomogeneous and time-
dependent by essence, the residence time significantly affects the survival probability.
In this chapter, we use the stochastic linear model derived in chapter 6 to infer the
breakup probability of bubbles in turbulence as function of both the Weber number
and the residence time. Our model shows that bubble breakup is a memoryless
process, whose breakup rate varies exponentially with We−1. This linear model
successfully reproduces breakup rates from the literature on experiments in bubbles
breakups. The explicit expression for the breakup rate can be used in population
model equations. Finally, we propose a new definition for the critical Weber number,
which depends on the residence time.

Abstract

Contents
1 Introduction: Infer bubble deformations dynamics from data . . . . . . . . . . . . . . . . . . . 74
2 Bubble deformations in HIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.1 Numerical set-up: DNS of a single bubble in HIT . . . . . . . . . . . . . . . . . . . . . 74
2.2 Modes of deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Determination of the reduced dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1 Model: a stochastic linear oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Frequency response of the oscillator - Amplitude of the Fourier transform . . . . . . . 77
3.3 Zero frequency limit and We-dependency of the forcing . . . . . . . . . . . . . . . . . . 78
3.4 Determination of the effective damping factor: Additional damping due to turbulence 79
3.5 Effective forcing statistics: Temporal correlations and distribution . . . . . . . . . . . 82

4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Modes’ standard deviation and distributions . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Deformation spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Consequences for bubble breakup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Link between model coefficients and surrounding turbulent fields . . . . . . . . . . . . . . . . . 90
5.1 Point statistics of the pressure field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Pressure field on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Dissipation profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

99



Chapter 7. Bubble breakup rate in turbulence

1 Introduction

In turbulence, since any bubble can encounter a large enough pressure fluctuation and break,
Wec, is only defined in a statistical sense [138, 201]. In addition, in practical situations, flows
are inhomogeneous (bubble columns) or unsteady (breaking waves) or both, and the time spent
by a bubble within a homogeneous turbulent region, called the residence time, strongly affects
the critical Weber number Wec. In this chapter, using the stochastic linear model inferred in
chapter 6, we propose to link the individual bubble deformation dynamics to the probability
of breakup. Our approach is based on the reminiscent idea that non linear effects may be
negligible before the critical deformation for breakup is reached [165], and that bubble lifetime
is given by a linear timescale, as pinch-off is a fast process. The linear oscillator model has been
used previously by several authors for bubbles [71, 100, 123, 165] and drops [169]. However,
all authors used the quiescent theoretical parameters [101, 159], in particular for the damping
rate, which turns out to be at least one order of magnitude larger in the presence of a turbulent
background flow. In addition, turbulent forcing was estimated using temporal sequences of a
velocity increment at scale d, measured in single phase flows. These two key differences will
impact the breakup statistics.

The chapter is organized as follows: We first recall the main features of the stochastic linear
model before discussing the breakup criterion. Then, running our reduced dynamics, we measure
the probability for a bubble to break as a function of We and the residence time. We eventually
compare the predicted breakup rate to experimental datasets and discuss practical applications
in inhomogeneous and unsteady flows. Finally, we introduce a new definition of the critical
Weber number, which depends explicitly on the residence time.

2 From a linear model to breakup quantification

2.1 Bubble deformations dynamics

In chapter 6, we investigated the linear deformations of bubbles in turbulence at low and
moderate Weber number. We demonstrated that each mode of deformation follows a linear
stochastic oscillator equation, and inferred the coefficient values as well as the forcing statistics
from the data. In this chapter we extrapolate this linear dynamics at all Weber number with
the aim of describing bubble breakup.

As said earlier, the five modes ℓ = 2, illustrated on figure 7.1a, dominate the deformation
dynamics [141, 165]. Consequently, we focus on their dynamics in this chapter. Since they all
share the same dynamics, in this chapter, we denote by x the amplitude of any of these modes.
As in the previous chapter, time is made dimensionless using the eddy turnover time tc(d). In
these units, we have shown that x evolves following

ẍ + λẋ + ω2x = T (t), (7.1)

with ω2 = 192/We the natural frequency in a quiescent flow [101, 159], λ = 12, the damp-
ing rate, about 15 times larger than the Lamb prediction [101] and the forcing term, T , a
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Figure 7.1 – a) Shape of deformation of the five modes ℓ = 2. b) Typical temporal evolution of
a mode ℓ = 2, at We = 0.71. c) Typical temporal evolution given by the linear stochastic model
defined by equation (6.2), at We = 0.71.

random variable which represents the stochastic forcing from turbulence. Being statistically
stationary, the forcing T is completely characterized by its probability distribution function
(PDF), and its auto-correlation function. The forcing PDF is the hyperbolic secant distribu-
tion 1/(2σT )/ cosh (π/2x/σT ), which depends on a single parameter, the standard deviation
σT = 20. The autocorrelation function of T is exp

(
−2π.22/3t

)
(1 + 2π.22/3t), where the 22/3

factor comes from the eddy turnover time at the scale d/ℓ with ℓ = 2. The strength of this
model is that we can generate arbitrarily many artificial temporal signals of the forcing without
relying on experimental measurements. The procedure to generate random forcing sequences
with the correct PDF and auto-correlation function, using Gaussian Copulas, can be found
in Appendix B. Figure 7.1 compares qualitatively one temporal evolution of the mode x2,0 at
We = 0.71 measured both in the DNS (7.1b) and generated from the data (7.1c). Since the two
signals share the same pdf and temporal correlation, we recover qualitatively the same behavior.
Small amplitude oscillations are followed by large amplitude events corresponding to the inter-
action between the bubble and large pressure events. These large events are generally followed
by a few large amplitude oscillations, before the energy is completely dissipated.

2.2 Breakup criterion

When breakup occurs due to a linear instability, the drop or bubble lifetime is essentially
given by the growth rate of the most unstable mode. Indeed, in comparison, the non-linear
pinch-off dynamics is order of magnitudes faster. The Rayleigh-Plateau instability, for instance,
governs the timescales of filament breaking [207], including in the turbulent case, as we will
see in chapter 9. As a consequence, bubble lifetime can be estimated by the time taken by
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Chapter 7. Bubble breakup rate in turbulence

deformations to reach a critical value which needs to be estimated.
In a previous work [141], we investigated the short term deformation dynamics of modes

and the breakup time of bubbles at large Weber number. We found that, at short times, the
average deformation ζ = (

∑
ℓ

∑
m x2

ℓ,m)1/2 grows linearly in time for all simulations. In addition,
the ensemble average slope is independent of the Weber number. We showed that this linear
increase originates from an advection of the interface by the surrounding velocity: for times
small compared to the capillary time scale or equivalently the mode period, surface tension does
not play any role. The initial dynamics is only driven by the initial conditions, and therefore
the statistics of the initial velocity increments at the bubble surface. In the limit of zero surface
tension, or infinite We, we expect the deformations to grow linearly in time until it reaches a
maximum deformation and breaks. One can then transform the velocity statistics, which control
the linear increase of deformations, into lifetime statistics.

In order to predict the threshold value, in Perrard et al. [141], for the large Weber number
data (15 ≤ We ≤ 45), we approximated the bubble shape at breakup by an ellipsoid of same
volume and whose longest axis corresponds to the maximum distance between two points on the
bubble interface. The average standard deviation of the local bubble radius gives an estimate
of the maximum deformation experienced by the bubble and, as a consequence, of the critical
mode amplitude. In the limit of very large Weber numbers, this critical value, combined with
the velocity statistics measured on a sphere of radius R0 allowed us to successfully reproduce
the average lifetime. In this chapter, we extend this criterion to every Weber number.

As a consequence, in this chapter, we use the critical value measured in Perrard et al. [141],
xc = 0.74 (but the breakup phenomenology does not depend on the value of xc).

3 Memoryless bubble breakup

We now simulate thousands of reduced dynamics and investigate the breakup statistics
emerging from the model.

3.1 Single mode breakup probability and breakup rate

We define the breakup time of each oscillator as the first time at which the amplitude reaches
xc. Accordingly, we introduce pb(t), the probability that the amplitude of one mode reaches xc

before a certain observation time t. pb is the cumulative breakup probability. Figure 7.2 shows
the survival probability, 1−pb(t), as a function of the observation time, for several Weber numbers
in the toy model. For each Weber number, the survival probability decays exponentially in time,
as expected for a memoryless process, with a constant breakup rate κ(We) associated with one
mode of deformation. For a breakup time much larger than the correlation time of both the
pressure fluctuations at the bubble scale and the bubble deformation, the evolution of the forcing
can indeed be modeled as a succession of independent fluctuations. Eventually, the cumulative
breakup probability associated with one mode x reads

pb(t) = 1 − exp[−κ(We)t], (7.2)
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Figure 7.2 – Survival probability as a function of time for several We (solid color lines) in the
model (7.1). Black dotted lines are exponential fits for each Weber number. Inset plot: breakup
rate as a function of We. The black dotted line is an exponential fit, see equation (7.3).

which extends the previous experimental observation of memoryless bubble breakups at large
Weber number by Ravelet et al. [158]. Such a memoryless breakup process was also observed
numerically for drop breakups [201].

These results quantify one of the physical process driving fragmentation. Indeed, in turbu-
lence, fragmentation involves two steps [168, 175]: first, inertial deformations from turbulence,
governed by equation (7.2), second, a cascade of capillary fragmentation. In population balance
equations, the first stage is described by the breakup rate, while the second one is encoded in
the breakup kernel and the number of child bubbles. The number of child bubbles produced
during the second stage depends on We. It varies from two at low We (We ∼ 1), to dozens at
large We (typically We > 15) [167]. These rapid correlated events do not fall under the scope
of model (7.1), which describes independent events but will be deeply investigated in chapter 9.

The breakup rate, κ varies exponentially with We−1 (see inset figure 7.2),

κ = α exp
[
−βWe−1

]
(7.3)

with α = 0.314 and β = 7.20, two numerical factors obtained by a least-square fit. This law,
which suggests a mechanism of random activation process, was first proposed by Coulaloglou
et al. [47] in 1977, in the context of emulsions, based on the idea of drop-eddy collisions. Note
that the dependency on the bubble Reynolds number is not included. When bubble size lies
within the inertial range of the turbulent cascade, large bubble breakups are purely inertial and
we expect equation (7.3) to hold for any Reynolds, as for drops [201].
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Figure 7.3 – Comparison between our predicted breakup rate and several experimental
datasets [6, 118, 167, 199]. Without any fitting parameters, the predicted breakup rate lies
on top of the experimental data.

3.2 Comparison with experimental datasets

To compare the breakup rates with the experimental data, one has to remember that a
bubble can deform through five modes ℓ = 2, represented on figures 7.1a. These modes, in
the linear limit, are uncoupled and follow the same dynamics given by equation (7.1). As a
consequence, in the model, a bubble breaks as soon as one of the five modes reaches xc. The
bubble lifetime is the minimum of the lifetime associated with each mode ℓ = 2. As they all share
the same law, the probability that a bubble breaks before t is given by Pb(t) = 1 − (1 − pb(t))5.
Combining equations (7.2) and (7.3) we find that the bubble breakup rate κb is five times larger
than that of one single oscillator: κb = 5κ. Similar developments for fiber breakup in turbulence
can be found in Brouzet et al. [25]. In their case, since a fiber is described as a collection
of N elementary rigid elements, the number of breakup modes can be approximated by the
number N of fragments. Figure 7.3 compares κb with the breakup rates, κexp

b in s−1, measured
in various experimental conditions [6, 118, 199], together with the DNS data from our previous
work [167]. Note that, experimental breakups rates are estimated using different expressions,
which induces an additional scattering of the data [81]. Even though the datasets come from
different experimental facilities, with different turbulence intensities and heterogeneities, our
linear model follows experimental points. In particular, it predicts a convergence of the lifetime
with We toward a time of order the eddy turnover time, and a divergence of the lifetime at small
We, in agreement with all breakup rates models that can be found in the literature [114, 118,
196, 214, 220]. We emphasize here that the linear model does not contain any fitting parameters,
every parameter of the dynamics have been determined independently at low Weber numbers,
and the threshold was estimated in the limit of large Weber numbers. This result confirms the
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intuition of Risso and Fabre [165] that bubble lifetime distribution can be predicted using a
linear model.

4 Breakup probability and Wec

In real flows, homogeneous turbulent regions have a finite extent in both space and time. As
a consequence, bubbles remain only a finite time, the residence time, tR in second, within the
turbulent region with a probability to break of

Pb(tR, We) = 1 − exp
[ −5αtR

ϵ−1/3d2/3 exp
(

− β

We

)]
. (7.4)

Using the previous equation, we can now rigorously define Wec(tR) as the Weber number for
which Pb(tR, Wec) = 0.5. This equation is an implicit equation for Wec. As shown in figure 7.4,
by the red line, Wec strongly depends on tR for tR < 10tc(d). As time goes to infinity, as in
principle any bubble can break, Wec logarithmically converges to zero. In practice, the evolution
of Wec with time is so slow (in log(t)) that low Weber number bubbles (We < 0.1) will never
break. Note that, in some situations, for instance when buoyancy is important, tR might depend
on We and must be modeled accordingly. Figure 7.4 also shows the probability to break as a
function of both We and the residence time in unit of the eddy turnover time. For short residence
times, Pb gently varies with We. As a consequence, there is a diverging range of We for which a
bubble may break (0.1 < Pb < 0.9). The stochastic forcing has smoothed the transition around
Pb = 0.5. Conversely, at long residence time compared to the eddy turnover time (tR > 40tc),
the limit between breaking and non breaking bubbles is sharp.

Even though other mechanisms might dominate over turbulent fluctuations in some practical
situations, such as shear and vorticity [46, 89, 133, 166], it is tantalizing to compare the results
from our linear stochastic model to time-dependent and inhomogeneous flows. In what fol-
lows, we discuss three different situations - plunging jets, oceanic bubbles and industrial bubble
columns - which correspond to three different regions of the diagram of figure 7.4. For example,
for a typical plunging jet, with speed 5 m.s−1 [94] at the interface, the bubble jet depth is about
50 mm, leading to a residence time of 0.01 s. The energy dissipation rate can be estimated
using the velocity fluctuations u′, which is typically 0.1% of the entrance velocity [94], and the
integral lengthscale which is the nozzle radius D ∼ 10 mm, giving ϵ = (u′)3/D ∼ 10 m2s−3. As
a consequence, the residence time is of the order of two eddy turnover times. At this residence
time merely all bubbles can break (see figure 7.4). We expect the coexistence of large bubbles
with much smaller ones, leading to a broad bubble size distribution, which is indeed the case
below plunging jets and waterfalls. In the oceans, underneath breaking waves, turbulence is
sustained for approximately 1/3 of the wave period, which is of the order of one to few seconds,
with a turbulent intensity of 1 m2s−3. For centimetric to millimetric bubbles the residence time
ranges from 6 to 30 eddy turnover time, corresponding to a critical Weber number between 3
and 5, consistent with the experimental datasets [52]. In industrial bubble columns, bubbles
rise with a velocity of about 0.1 m.s−1 on meter columns, inducing a weak turbulence of around
0.1 m2s−3 [92]. The residence time for millimetric bubbles is then of the order of 1000 eddy
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Figure 7.4 – Probability for a bubble to break depending on its We and the residence time
normalize by the eddy turnover time. Black lines are isoprobability separated by 0.1. The red
line corresponds to a breakup probability of 1/2.

turnover time, where the breaking transition is extremely sharp. In this regime, all bubbles will
have We < Wec ≈ 1.

5 Conclusion: A new definition of Wec

In this chapter we have explored the statistics of bubble breakup in HIT. We show that a set
of five uncoupled stochastic linear oscillators combined with a critical deformation is sufficient to
reproduce bubble breakup statistics when bubble damping and forcing statistics are adequately
modeled. We evidence that, for times larger than the eddy turnover time at the bubble scale,
bubble breakup is a memoryless process. The associated breakup rate varies exponentially with
We−1 similar to a transition rate in bistable systems with noise. The Weber number plays the
role of the ratio of a noise amplitude to the energy barrier size. Note that in chapter 5, We was
already controlling the size of the energy barrier. Thanks to this simple model, we obtain an
explicit expression for the breakup probability as a function of both We and the residence time.
Provided that turbulent fluctuations dominate over other breaking mechanisms, this model can
then be applied to many practical situations which are time-dependent and inhomogeneous by
nature. In particular, one can use the explicit expression for the breakup rate in a population
model equation. Finally, using this expression, we could rigorously define Wec(tR), the Weber
number at which, for a given residence time, the probability to break is 1/2.
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Chapter 8
Fragmentation - Introduction

The authors really don’t do themselves (nor the community) a
good service by sending this incremental paper.

A reviewer

In this part, we aim at identifying the physical processes leading to the production
of sub-Hinze bubbles. There exists two independent approaches to obtain a bubble
size distribution of child sizes. The first one consists in modeling the breakup kernel
in turbulence, through either statistical or phenomenological models. The second
one, widely used in the absence of flow, investigates the size distribution generated
by surface instabilities. We argue that both approaches should be combined to
understand the sub-Hinze BSD.
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Chapter 8. Fragmentation - Introduction

1 Modeling bubble fragmentation

The phenomenon of bubble breakup in turbulence has received considerable attention both
experimentally and theoretically. To understand the BSD and its evolution, together with
breakup rate models, one must describe the products of fragmentation by modeling the number
and the size distribution of child bubbles. We introduce here two different approaches to describe
a child size distribution.

1.1 Bubble fragmentation in turbulence

To close the population balance equation, one needs to provide models for the average number
of child bubbles m(∆) and the breakup kernel f(d, ∆). We recall here the main approaches,
reviewed by both Lasheras et al. [102] and Liao et al. [111]. The latter classified the modeling
strategies into three categories: empirical, statistical and phenomenological, the two last ones
being the most popular.

Statistical models consider the child size as a random variable whose distribution follows
a simple law. Delta, normal [37, 38, 47], beta [103] and uniform distributions [135, 148, 157]
are often used. In statistical models, the parameters describing the shape of the distribution
are empirically fitted on the data, in order to reproduce the empirical distributions. Statistical
models perform well for stochastic systems, in which a large number of independent random
events happen. However, when only a finite number of bubbles are present or only a few can
break, for instance, if their size is close to dh, the statistical description fails. In addition, most of
these models completely disregard the physical mechanisms leading to the proposed distribution.

Phenomenological models aim at reproducing empirical correlations between the statistical
properties of turbulence and the distribution of child bubbles. Liao et al. [111] identified three
shapes of breakup kernel: Bell-shape [120], U-shape [114, 196] and M-shape [105, 214], illustrated
on figure 8.1. U-shape gives a larger probability for symmetric breakups, whereas it is not
observed in practice, while U-shape favors very asymmetric breakups. Lastly, for M-shape,
there exists an optimum breakup. As summarized by Lasheras et al. [102], the phenomenological
models are based on the change in surface energy of the breaking bubble. They are either based
on the probability of sufficiently energetic eddy collision or rely on a stress balance at the
bubble interface. In practice, these models rely on quantities which are hardly accessible, such
as the eddy collision frequency or efficiency making the validation difficult or even impossible.
Importantly, none of them predict the N (d) ∝ d−3/2 for the sub-Hinze BSD.

The interaction with turbulence is not the only physical process driving breakup in turbu-
lence. Indeed, as soon as a bubble is deformed, surface instabilities can be triggered, leading to
their own child size distribution.

1.2 Surface instabilities

It is noted that bubbles can break due to surface instabilities even in the absence of a
surrounding flow field, as Chu et al. [46] emphasized. For instance, very large bubbles rising in
a quiescent flow are unstable and can break into several child bubbles. A canonical instability
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Figure 8.1 – Schematic representation of the three phenomenological breakup kernel identified
by Liao et al. [111].

is the destabilisation of a gas or liquid thread by surface tension. This instability, originally
described for liquid threads in void, is know as the Rayleigh-Plateau instability. It is known to
produce a bimodal distribution of drop sizes in the liquid case (see for instance Pal et al. [140],
for the drop size distribution of rough liquid threads). The largest bubble size corresponds to
the most unstable capillary wavelength. The smallest size corresponds to the satellite bubble
created to accommodate for the asymmetry around pinch-off [63, 64, 107].

In turbulence, pressure and velocity fluctuations produce highly deformed bubble shapes
on which surface instabilities can develop. When these instabilities lead to fragmentation, the
resulting children size distribution combines the distribution from turbulence and instabilities.
However, to our knowledge, no model takes into account surface instabilities when modeling the
breakup kernel, while they might be at the origin of the production of sub-Hinze bubbles.

2 Conclusion : Focus on elementary breakup process

In this work, we aim at rationalizing the child size distribution of sub-Hinze bubbles by
identifying the elementary physical process leading to their formation. This identification would
constrain the shape of the breakup kernel associated with sub-Hinze bubbles.

To identify the elementary breakup processes leading to the formation of sub-Hinze bubble,
in chapter 9 we study the fragmentation of bubbles in turbulence. We decompose the sequence of
breakups into binary events. We focus on the lifetime of bubbles producing one sub-Hinze bubble.
We find that these tiny bubbles originate from the rupture of gas filaments. In chapter 10, we
focus on the generation of these gas filaments in the model flow geometry to understand in which
configurations they are produced. Lastly, in chapter 11, we study the fragmentation of a single
gas filament and deduce the shape of the breakup kernel, for sub-Hinze bubbles.
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Chapter 9
Sub-Hinze bubble formation 1

Extremely badly written.

A colleague

In dilute environments, the bubble size distribution (BSD), N (d), is solely controlled
by breakups. A typical situation where breakup controls the BSD is bubble fragmen-
tation below breaking waves. In this configuration, the BSD exhibits two power-law
regimes: the well-known N (d) ∝ d−10/3 for super-Hinze bubbles (d > dh), and a
shallower slope for sub-Hinze bubbles (d < dh), which remained to be understood.
The latter drive mass fluxes across the ocean-atmosphere interface even though indi-
vidually these bubbles are negligible in volume. Thus, it is essential to understand its
origin to quantify mass fluxes. Combining experimental and numerical approaches,
we report a power law scaling d−3/2 for the small bubble size distribution, for suffi-
ciently large separation of scales between the injection size and the Hinze scale. From
an analysis of individual bubble breakups, we show that small bubbles are generated
by capillary effects, and that their breakup time scales as d3/2, which physically ex-
plains the sub-Hinze scaling observed. We conclude that two breakup mechanisms
happen concomitantly: one local in size, controlled by turbulence, and another, non-
local, which results from the capillary fragmentation of filaments generated during
the deformation of large super-Hinze bubbles.
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1 Introduction: BSD in dilute medium -
The case of breaking waves

In view of its importance for mass transfers between the atmosphere and the ocean, bubble
fragmentation below breaking waves has received a considerable attention over the last decades.
Indeed, bubble fragmentation drives gas dissolution, in particular of low-solubility gases, such as
O2, by drastically increasing the exchange surface between phases. For instance, up to 40% of the
total CO2 uptake by the ocean is due to bubble-mediated gas transfer [55, 93, 160]. Bubbles also
play a major role in clouds formation. Indeed, bubble bursting at the surface of the ocean is the
primary mechanism for aerosols production, which can serve as cloud condensation nuclei [51,
53, 109, 185]. More specifically, it is the bubble size distribution that controls gas transfer [8, 53,
106] and spray production as bubbles burst at the surface [15, 53, 54, 75, 185]. As a consequence,
the fragmentation of bubbles has been extensively studied in model experiments [100, 119, 153,
165] as well as under breaking waves both experimentally [19, 52, 113, 171] and numerically [33,
56, 132].
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Figure 3

Energy dissipation and bubble size distribution from laboratory experiments and numerical

simulations of canonical breaking waves. Black and grey symbols are experimental data; while
colored symbols are numerical work. (a) Breaking parameter b as a function of the initial wave

slope S, for DNS, LES and laboratory experiments. The solid line is the semi-empirical

formulation based on the inertial argument, Eq. 3, b = 0.4(S � 0.08)5/2 (Romero et al. 2012). All
data are very well captured by the solid line given the complexity of the process and the

di↵erences in initiating breaking. (b) Bubble size distributions, as a function of Rb/RH , over the

active breaking time, normalized following eq. 6 (Deike et al. 2016; Mostert et al. 2021) for their
data and for the experimental data from Deane & Stokes (2002) (other data are arbitrary scaled

vertically since not enough information is provided). Data collapse onto a single curve, for the

super-Hinze regime, R
�10/3
b and sub-Hinze regime R

�3/2
b (for most data).

and numerical simulations (Iafrati 2009; Deike et al. 2015, 2016; Derakhti & Kirby 2016;

De Vita et al. 2018). Figure 3a shows b as a function of the slope S, with the data very

well described by the semi-empirical scaling accounting for a breaking threshold defined by

a critical slope S0 (Romero et al. 2012),

b = �T (S � S0)
5/2, (3)

where �T = 0.4 and S0 = 0.08 adjusted to the data.

We note that the breaking speed has been observed to move at a velocity cb slightly

below the phase velocity, 0.8c  cb  c (Rapp & Melville 1990; Banner & Peirson 2007;

Saket et al. 2017). This has motivated discussions on the definition of the slope, either

from upstream conditions, or closer to the breaking point which impacts the coe�cients �T

and S0. This underlines the fact that a critical slope is an imperfect breaking criteria, with

scatter between various experiments and types of breakers, and has prompted extensive

work on kinematic thresholds (Perlin et al. 2013; Saket et al. 2017; Derakhti et al. 2020).

Nevertheless, this formulation for the breaking parameter and energy dissipation pro-

vides constraints on wave breaking energy budget, and in the following, we will consider

that the breaking speed c and the wave-number k can be related to the dispersion relation

of ocean gravity waves in deep water, c =
p

g/k. Note that scaling arguments, using the

breaking height and speed as the controlling scales, have been proposed to describe the

generation of vorticity (Pizzo & Melville 2013), current (Pizzo et al. 2016), and surface

drift induced by breaking (Deike et al. 2017b; Pizzo et al. 2019).

6 Luc Deike

Figure 9.1 – Figure adapted from Deike [53]. Review of the reported bubble size distribution
below experimental and numerical breaking waves, as a function of bubble radii normalized by
the Kolmogorov-Hinze scale rh (dh in the text).

As discussed earlier, there exists a critical Weber number, Wec, of typical value between
0.5 and 8 [52, 84, 118, 165, 180, 199], or equivalently a size, dh = (γWec/(2ρϵ2/3))3/5 called
the Kolmogorov-Hinze scale [84, 97], which separates statistically breaking from non breaking
bubbles. In oceans, dh lies typically between 500 µm to 2 mm [52, 53]. Starting from the
seminal work of Deane et al. [52], most experimental and numerical studies have reported two
power-law scalings for the BSD, N (d), (see figure 9.1) depending on the value of d/dh. For
large bubbles, d > dh, a consensus has been reached on the bubble size distribution, described

113



Chapter 9. Sub-Hinze bubble formation

as N (d) ∝ d−10/3 [19, 113, 132, 171]. Garrett et al. [73] argued that this law arises from a
self-similar breakup cascade, driven by turbulence with a bubble lifetime controlled by the eddy
turnover time at the bubble scale tc(d) = ϵ−1/3d2/3. Far small bubbles d < dh, the bubble size
distribution always exhibits a gentler slope than N (d) ∝ d−10/3 and most of the data collapse
on a d−3/2 scaling, although there is variability among the experimental studies [19, 52, 113,
171]. As detailed in the introduction, chapter 1, Deane et al. [52] showed that the two power-
laws of the bubble size distribution strongly depend on the time at which the distribution is
measured. For sub-Hinze bubbles, they found a robust d−3/2 scaling when measuring the BSD
in the fragmentation phase, while other power-laws were reported in the quiescent phase. They
argue that the quiescent power-laws, which vary in time, originate from the aging of the BSD
due to bubble-size-dependent rising speeds. Therefore, bubble fragmentation produces a d−3/2

scaling for the sub-Hinze bubbles which needs to be understood to describe the latter evolution
of the BSD. This scaling was still lacking a physical explanation [52] despite being the most
important when quantifying gas exchanges and aerosol production.

In this chapter, in order to understand the physical mechanisms leading to two different
power-law scalings for the BSD, we run direct numerical simulations of a single bubble breaking
in turbulence. We then conduct an analysis of the individual breakup events happening within
the cascade of breakups and focus, in particular, on the timescale setting bubble lifetime.

2 From breaking waves to a single bubble breakup

Studying bubble fragmentation below breaking waves is challenging due to the unsteadiness
and inhomogeneity of the flow underneath the surface. Nevertheless, during the fragmentation
cascade, the flow has developed into a fully 3D turbulent flow [132]. One can then test whether
the model configuration involving a single bubble deforming and breaking in a homogeneous
flow is able to reproduce the key physical ingredients below breaking waves.

2.1 A minimum experimental configuration

In order to test the validity of the single bubble breakup for modeling BSD below breaking
waves Luc Deike, Stéphane Perrard and Daniel Ruth designed an experiment to inject a unique
large air cavity inside a homogeneous and isotropic turbulent flow, as described in [168]. In
a water tank, they create a turbulent flow using four pumps pointing toward the center. The
resulting velocity field is characterized by ϵ = 0.7m2.s−3, urms = 0.25m.s−1, Reλ = 340±40. The
large initial bubble is created by filling with air a thin latex membrane (a balloon) at the bottom
of the tank. The ratio between the initial bubble size d0 and the Kolmogorov-Hinze scale in
the experiment is d0/dh = 8.3 (using Wec = 3). They release the air by piercing the membrane
which triggers a rapid opening of the cavity. A typical breakup sequence can be visualized on
snapshots figure 9.2. At very short times, the retraction of the latex sheet shears the air-water
interface triggering transiently a Kelvin-Helmoltz instability. The surface modulation is rapidly
damped by viscous effects. The large bubble then rises and deforms due to the combined action
of buoyancy and turbulence. Compared to the quiescent case, the initial cavity experiences large
deformations and a broad range of bubble sizes is obtained.
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2. From breaking waves to a single bubble breakup

Figure 9.2 – (Pictures from L.D., S.P. and D.R.) Successive snapshots of the release of a large
bubble in turbulence. The initial cavity diameter is 4 cm. Initially, an air pocket is trapped
within an extended thin rubber sheet. At t = 0, the latex sheet is pierced by the needle (the
vertical black line). The sheet opening triggers a Kelvin-Helmoltz instability, visible after 2 ms,
which is eventually damped by dissipation. Then, the bubble deforms and breaks under the
action of buoyancy and the turbulent background flow creating a broad distribution of bubble
sizes.

Figure 9.3 compares the balloon BSD with the seminal data set from Deane et al. [52],
measured experimentally below breaking waves, and the numerical BSD from Mostert et al.
[132]. The agreement between the three data sets is excellent. For bubbles larger than dh, the
balloon BSD shows a short range of scales following N (d) ∝ d−10/3 in agreement with previous
measurements below breaking waves [19, 52, 113, 171]. For bubbles smaller than dh, the balloon
BSD presents a clear N (d) ∝ d−3/2 scaling (red dashed line) over slightly less than two decades.

The fact that the bubble size distribution measured under breaking waves is in close agree-
ment with the data obtained from single bubble breakup in turbulence, suggests that the same
underlying mechanisms are at play for the sub-Hinze bubble production. As a consequence,
single bubble breakup experiment will allow us to identify the origin of sub-Hinze bubbles in
the open ocean.

2.2 Importance of the scale separation

In a previous study [167], we investigated numerically the breaking mechanisms depending
on the scale separation between the initial bubble size and the Kolmogorov-Hinze scale d0/dh.
To do so, we ran direct numerical simulation of a single bubble in homogeneous and isotropic
turbulence. We have shown that the succession of breaking events differs tremendously depend-
ing on the value of d0/dh, leading to very different child bubble sizes. In particular, the largest
the initial scale separation, not only the largest the number of child bubbles but also the largest
the proportion of sub-Hinze bubbles produced [167]. This result was later confirmed experimen-
tally by Ruth et al. [175]. Daniel Ruth designed an experiment to control precisely the initial
bubble size. The experiment is analogous to the balloon experiment. The main difference is the
bubble creation. In this experiment, a reversed spoon is put directly within the turbulent zone.
The initial bubble size is controlled by monitoring the amount of air injected in the reversed
spoon. At the beginning of the experiment, the spoon flips and the air is released within the
turbulent region. He found that, for initial bubbles such that d0/dh > 3, more sub-Hinze bubbles
are produced than super-Hinze bubbles, even though the range of reachable super-Hinze sizes
increases with d0. He then performed a systematic experimental study of the evolution of the
BSD with the scale separation between the injection size and the Kolmogorov-Hinze scale d0/dh.
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Figure 9.3 – BSD obtained both experimentally and numerically in two different geometries:
under breaking waves and for a single bubble breaking. The black dotted line follows (d/dh)−10/3

while the red dashed line follows (d/dh)−3/2.

We report here his results (published in Ruth et al. [175]).
Figure 9.4 (extracted from Ruth et al. [175]) shows the evolution of the BSD with d0/dh.

Figure 9.4a shows that, as the initial bubble size increases, the number of sub-Hinze bubbles
is increased and the sub-Hinze power-law distribution steepens. When plotted against d/d0

(figure 9.4b) the BSD of the largest cavities (d0/dh > 3) exhibit N (d) ∝ d−3/2 for all bubble
sizes. Figure 9.4c shows the exponent obtained from a power-law fit of the portion of curves
above the noise limit (data below the red dotted line are not considered statistically converged)
as a function of d0/dh. It shows a −3/2 scaling for all initial cavity sizes greater than 3dh.

Hence, a large scale separation between the injection size and dh is essential to obtain the
d−3/2 scaling for sub-Hinze bubbles. In addition, as only a few sub-Hinze bubbles are pro-
duced for smaller initial cavities, we deduce that sub-Hinze bubbles are directly produced by
the breakup of large super-Hinze bubbles through a non-local (in size) cascade. The breakup
mechanism producing sub-Hinze bubbles remains to be identified. In what follows, we perform
direct numerical simulations of a large initial bubble compared to the Kolmogorov-Hinze scale
and aim at identifying the process leading to the small bubble generation.

2.3 Numerical set-up: DNS of a single bubble in turbulence

To investigate the statistics of individual bubble breakup, we run direct numerical simulations
(DNS) of a single bubble in homogeneous isotropic turbulence. The details of the numerical set-
up are given in chapter 2 (as well as in [167]). We only recall here the main information. We first
create a homogeneous and isotropic turbulent flow, at Reλ = 38, following the method described
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Figure 9.4 – Extracted from Ruth et al. [175]. Evolution of the BSD with the scale separation
between the initial bubble and the Hinze scale (dH = dh), as a function of d/dh (in a) or d/d0
(in b). The initial bubble size, d0, is denoted by the position of the coloured notches along the
bottom axis. c) Exponent of the sub-Hinze distribution for the portion above the noise threshold
above which the BSD is statistically converged (red dotted line) as a function of d0/dh.

by Rosales et al. [172]. Then, we inject a spherical bubble at the center of the numerical domain
by changing locally density and viscosity, while maintaining turbulence in the liquid phase.
Density and viscosity ratios are 850 and 25 respectively, close to water-air ratios. Bubble radius
to box size ratio is 1/15. The air volume fraction is then 1.2%, small enough so that coalescence
is effectively negligible in our DNS. We perform at least ten simulations per value of the initial
bubble size d0/dh (1, 1.5, 2.9, 4.1, 5.2) with a spatial resolution of 135 points per diameter.
These ratios correspond to Weber numbers 3, 6, 15, 30 and 45 respectively, with Wec = 3. We
analyze the breakup of all bubbles of diameter larger than four grid points.

We first compute the bubble size distribution for the largest value of d0/dh = 5.2. We have
previously shown in Rivière et al. [167], by measuring the temporal evolution of the number of
bubbles in the DNS, that most of bubble fragmentation happen before 4tc(d0) in our DNS, where
tc(d0) is the eddy turnover time at the initial bubble scale. After this time, only a few bubbles
are generated, no matter the initial Weber number. Figure 9.3 reports the DNS BSD measured
at t = 4tc(d0). Even though statistical convergence is difficult to achieve in the numerical
configuration, the numerical BSD is compatible with the experimental power-laws.

3 Individual breakup study

Before investigating the individual breakups, we recall the main theoretical ingredients
needed to describe the BSD and its evolution.
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3.1 Modeling BSD

To predict the scaling of the BSD, one should build a population model equation, or popula-
tion balance equation (PBE), which describes how the BSD evolves in time. The PBE involves
fluxes between scales encoding for the different physical mechanisms at stake, as detailed in the
general introduction, chapter 1. In particular, in dilute media, the bubble size distribution is
only controlled by bubble breakups. The associated bubble flux Φ(∆, d, t) from scale ∆ to scale
d at time t is the production rate of bubbles of diameter d from the breakup of a bubble of
size ∆. The mean bubble flux can be decomposed into the product of an average number of
child bubbles m(∆), a breakup rate κ(∆) and a child size probability density f(∆, d) per unit
of diameter and can be written as [66, chapter 4, equation 2.1],[156],

Φ(∆, d, t) = m(∆)f(∆, d)κ(∆)N (∆, t), (9.1)

where N (∆, t) is the number density of bubbles of size ∆ at time t. The factor m(∆) is usually
taken as 2 (binary breakups) as discussed in greater details in [111, 119, 121, 153]. The breakup
rate κ(∆) is the average number of breakup events of bubble of size ∆ per unit of time, also
called breakup frequency. The probability density f is often referred to as the child bubble size
distribution and is the probability density function to generate a child of size d from the breakup
of a bubble of size ∆.

From equation 9.1, we obtain the temporal evolution of the bubble size distribution from the
fragmentation of an initial bubble of size d0 as the difference between a birth term and a death
term [119]

∂N (d, t)
∂t

=
∫ d0

d
Φ(∆, d, t)d∆ − κ(d)N (d), (9.2)

considering the total bubble size distribution in a spatially homogeneous configuration, hence-
forth neglecting the spatial advection terms, due, for instance, to buoyancy. The birth term
integrates the contribution of breakups of all bubbles larger than d, which has a child of size d.
The death term encode the decrease of the number of bubble of size d due to their breakup.

In this chapter, we aim at modelling the production of sub-Hinze bubbles, hence the flux
Φ(∆, d, t) where d < dh. Two characteristic timescales may control the breakup rate κ(d): first,
the correlation time of velocity fluctuations at scale d, the eddy turnover at the bubble size

tc(d) = ϵ−1/3d2/3. (9.3)

The eddy turnover time is known to control the breakup of large super-Hinze bubbles [73, 118,
199]. The second characteristic time is the capillary time T2(d),

T2(d) = 1
2
√

3

(
ρ

γ

)1/2
d3/2. (9.4)

The capillary time T2(d) is the inverse of the angular frequency of oscillation of the principal
mode of oscillation of an inviscid bubble in a quiescent fluid [101]. The capillary time also
corresponds to the growth rate of Rayleigh Plateau instability of a bubble filament of radius
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Figure 9.5 – Illustration of the binary breakup decomposition. A bubble of size ∆ breaks into
two bubbles, the smallest having size δ, in a time T (∆, δ). In the breakup schematized here,
δ < dh and the smallest child bubble does not break anymore.

d [207]. It is the relevant timescale for drops fragmentation [207] and might play a role in gas
fragmentation as well.

In order to understand what physical mechanism controls the production of sub-Hinze bub-
bles, we now focus on individual bubble breakup. In particular, we develop an algorithm to
identify for each breakup, the bubble lifetime and the child bubbles.

3.2 Family trees

We decompose the succession of breakup events into binary breakups and associate a lifetime
T (∆, δ) to each parent bubble of size ∆ producing two child bubbles, the smallest having size
δ. Figure 9.5 schematize a binary breakup where δ < dh. In this case, the smallest bubble does
not break anymore. The originality of this procedure is to consider that bubble lifetime is also a
function of the child bubble size. This is a non causal approach which allows us to discriminate
between breakups producing large bubbles, which would feed the d > dh part of the distribution
and breakups producing sub-Hinze bubbles, which will contribute to N (d < dh). Note that a
bubble lifetime that depends on both the parent and the child bubble size was introduced by
Wang et al. [214]. We compute the values of the equivalent diameters ∆ and δ from parent and
child bubble volumes. The second child bubble size is 3√∆3 − δ3 from volume conservation. For
equal-size child bubbles we have δ = c∆ with c = 2−1/3 ≈ 0.79 a numerical constant. Such binary
decomposition is always possible as no two breakups happen exactly at the same time. Doing
so, we expect some breakups to be correlated as they originate from the same breakup sequence.
The algorithm to reconstruct each breaking events is detailed in chapter 3. The processing is
systematically applied to simulations where d0/dh ≥ 2.9, and leads to the identification of 4329
breaking events, using 78 different 3D DNS realizations of bubble breakup. In the following, we
focus on events happening before 4tc(d0), during the fragmentation cascade.
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Figure 9.6 – Illustration of the self-similar breakup process from Garrett et al. [73]. A bubble of
size d breaks into m fragments of equal size in one eddy turnover time tc(d). The same scenario
repeats itself for each child bubble.

4 Super-Hinze distribution

Before investigating the small bubble production, we test the validity of Garrett’s et al.
model for super-Hinze bubbles.

4.1 Garrett’s et al. model: a self-similar cascade

For super-Hinze bubbles d > dh, we recall the argument proposed by Garrett et al. [73]
and illustrated on figure 9.6. In this self similar model, a bubble of size d breaks, in a time
given by the eddy turnover time at its scale tc(d) = ϵ−1/3d2/3, into m fragments of equal
diameter, m−1/3d, from volume conservation. Each of these child bubbles then breaks in a time
tc(d/m1/3) = ϵ−1/3(m−1/3d)2/3. In the classic decomposition given in equation 9.1, it means
that κ(d) = 1/tc(d) and f(d, δ, t) is the Dirac function at δ = m−1/3d. Assuming that the BSD
is stationary, the bubble flux from size d to size m−1/3d, must equal the flux from m−1/3d to
smaller sizes. This condition imposes that

1
tc(d)mN (d)dd = 1

tc(m−1/3d)
N (m−1/3d) d

(
m−1/3d

)
. (9.5)

The left hand side represents the production of bubbles at size m−1/3d originating from the
breakup of bubbles of size d. The right hand side encodes the loss of bubbles of size m−1/3d due
to their own breakup. Injecting the expression of tc(d) in the above expression and simplifying
we obtain a relation between the number of bubbles at size d and the number of bubbles at size
m−1/3d

N (d) = m−10/9N (m−1/3d). (9.6)

Assuming a power-law distribution, N (d) ∝ dα, the previous expression imposes,

α = −10
3 , (9.7)
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Figure 9.7 – Average lifetime of the initial bubble in units of the eddy turnover time at scale dh,
as a function of scale separation d0/dh. Error bars encode the standard error. The solid black
is the prediction from chapter 7, reminded in equation (9.8). As d0/dh increases the average
lifetime converges to the eddy turnover time at scale tc(d0) with a prefactor of order 1. On the
contrary, when d0 → 0, the average bubble lifetime diverges.

the exponent of super-Hinze BSD.

4.2 Average bubble lifetime

Garrett’s et al. model works as long as the breakup rate κ(d), or equivalently the average
bubble lifetime ⟨T (d, δ⟩δ) ∼ 1/κ(d), is controlled by turbulence. In what follows, we compute
the average bubble lifetime in two situations: (i) for the initial bubble and (ii) for bubbles within
the fragmentation cascade for which history effects might become important.

First bubble lifetime: We measure the first bubble lifetime T (d0, δ), as a function of d0/dh

for the six values of d0/dh, and average over the realizations. Figure 9.7 shows the average
lifetime of bubble of size d0, ⟨ T (d0, δ) ⟩δ, in units of tc(d0), as a function of d0/dh. As d0/dh

increases, ⟨ T (d0, δ) ⟩δ converges to the eddy turnover time tc(d0) with a prefactor of order 1,
as reported experimentally [118, 199]. When capillary effects are negligible, bubble lifetime is
given by the advection of its interface by turbulence. This time scales as the eddy turnover time
at the bubble scale. Conversely, as d0 decreases, the average lifetime increases, reaches 4tc(d0)
for d0/dh = 1 and would diverge for d0 → 0. Indeed, as discussed in chapter 5, in turbulence, all
bubbles can break. When d0 is of the order of dh or smaller, we expect capillary effects to come
into play and to modify bubble lifetime. The solid black line is the prediction from chapter 7,

κ−1
b = tc(d0)

5α
exp(β/We) (9.8)

where α = 0.314 and β = 7.20 are two numerical constants determined previously (see chapter 7).
This expression holds for independent breakup events and therefore captures the lifetime of the
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Figure 9.8 – Average bubble lifetime within the fragmentation cascade in units of the capillary
timescale at scale dh as a function of the scale separation ∆/dh. Error bars encode the standard
error. The green dashed line scales as ∆, a scaling which does not correspond to any character-
istic timescale of the problem. The black dotted line is the eddy-turnover time at scale ∆.

initial bubble for all scale separation d0/dh. As long as d0/dh > 1.5, it predicts that capillary
effects are negligible. Breakup rate (henceforth bubble lifetime) is driven by the eddy turnover
time at the bubble scale, confirming the assumption of Garrett’s et al..

Bubble lifetime within the fragmentation cascade: We compute the average bubble
lifetime ⟨T (∆, δ)⟩δ for arbitrary parent size ∆, within the fragmentation cascade. Figure 9.8
shows ⟨T (∆, δ)⟩δ, in units of the capillary timescale at the Kolmogorov-Hinze scale dh, T2(dh),
as a function of the scale separation ∆/dh. The average lifetime is found to be one order of
magnitude smaller than the eddy turnover time at scale ∆. Within the fragmentation cascade,
bubbles break much faster than the turbulent timescale in a succession of rapid correlated events.

In addition, for all parent sizes ∆, the average lifetime is proportional to the parent scale
∆. This scaling does not correspond to any characteristic timescale of the problem: nor the
turbulent timescale tc(∆) ∼ ∆2/3, nor the capillary timescale T2(∆) ∼ ∆3/2. The parent size is
not the physically relevant length scale for fragmentation within the fragmentation cascade. We
expect two types of breakup to occur within the fragmentation cascade: the turbulent breakups
described by Garrett et al. which are independent from one another, and other breakups, much
faster, whose nature needs to be determined.

5 Sub-Hinze distribution

We have seen that the lifetime of the first bubble is indeed controlled by the eddy turnover
time at the bubble scale, and falls into Garret’s et al. model. However, within the fragmentation
cascade, where sub-Hinze bubbles are created, breakups happen on a much faster time scale.
In this section we aim at identifying the breakup mechanisms leading to the sub-Hinze bubble
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Figure 9.9 – DNS snapshots of a typical break-up sequence, with the initial bubble size d0/dh =
2.9. The bubbles’ interface is represented in white. The first images (a,b) show large scale
deformation due to turbulence, happening over the eddy turn over time at the size of the
initial bubble scale d0, tc(d0) = ϵ−1/3d

2/3
0 , leading to the formation of thin filaments (c,d).

Successive splitting events of the filament are visible (e,f,g,h) leading to multiple child bubbles.
The filaments quickly break creating a wide range of bubble sizes, the smallest being orders of
magnitude smaller than the initial one.

production.

5.1 Capillary breakups

Figure 9.9 presents snapshots of a large bubble (giving an initial separation of scales d0/dh =
2.9) subject to large deformations. The initial breakup, which occurs within one eddy turnover
time at the bubble scale tc(d0) [167], is followed by the rapid fragmentation of elongated struc-
tures created during bubble deformations, and results in the production of dozens of sub-Hinze
bubbles. These events, which we call splitting events, occur on a much faster time scale than
the eddy turnover time at the parent size ∆. Indeed, as soon as the filaments are created, the
relevant characteristic length scale for fragmentation is the filament radius whose size is com-
parable to the sub-Hinze bubble size produced. In addition, as the filament radius are small
compared to the parent size capillary forces may dominate the dynamics.

Figure 9.10 shows the average lifetime of bubbles producing a child of size δ, ⟨T (∆, δ)⟩∆, as a
function of the child size δ. Error bars encode the standard error. The average lifetime is always
smaller than the eddy turnover time at the small child bubble’s scale, tc(δ) (black dotted line).
This suggests that these splitting events are not primarily instigated by turbulent deformations
at the small child scale. However, ⟨T (∆, δ)⟩∆ matches the capillary time scale T2(δ) i.e. the
typical capillary time at the length δ (shown in red dashed line), up to δ = dh, without any
adjustable parameters. We recall that this time scale corresponds to the growth rate of the
Rayleigh-Plateau instability on a gas cylinder of typical size δ [207]. For δ > dh, the breakup
time seems to converge to a value independent of δ.

Therefore, the production of small bubbles (d < dh) is controlled by bubble splitting events,
in which elongated filaments become unstable under a Rayleigh-Plateau-like mechanism [207].
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Figure 9.10 – Average lifetime of bubbles producing a child bubble of size δ, ⟨T (∆, δ)⟩∆ as a
function of the child size. Error bars encode the standard error. The black dotted line is the
eddy turnover time at scale δ. The red dashed line is the capillary timescale at scale δ.

This stems from the "freezing" in place of the turbulent flow relative to the accelerating collapse
dynamics in the final moments before rupture, which was shown experimentally in Ruth et al.
[176]. The cascade of splitting events leads to the formation of sub-Hinze bubbles, whose size
δ are comparable to the diameter of the filament, and one larger bubble. The exact geometry
of the filament and the splitting time varies from one realization to the other, but considering
an ensemble average, the splitting time T (∆, δ) will be given by the capillary time T2(δ). To
our knowledge, the Rayleigh Plateau instability dynamics for a gas filament in presence of an
external noise has never been investigated. A recent study on liquid filament [140] has shown
that indeed, initial noise on the filament shape induces a widening of the satellite drop size
distribution. The velocity fluctuations associated with the turbulent flow around the bubble
could also play a crucial role, by inducing various filament shapes. However, a study by Ruth
et al. [176] showed that for the final stage of evolution, i.e. the pinch-off of a single bubble in a
turbulent flow, the shrinking dynamics of the bubble neck is only slightly modified compared to
the quiescent case.

5.2 From the capillary timescale to BSD

By decomposing the fragmentation cascade into binary events, we have identified that the
relevant timescale for sub-Hinze bubble production is the capillary timescale at the child size δ.
From this knowledge, we propose a model to explain the origin of the sub-Hinze BSD.

In equation (9.1) the rate κ(∆) at which a bubble breaks up does not distinguish between
processes which produce equally sized child bubbles or highly asymmetrically sized child bubbles,
for which at least one child bubble is smaller than the Hinze scale. These two types of events,
however, occur on very different timescales, tc(∆) and T2(δ) respectively. Here, we consider
that the fragmentation statistics depends on both the parent size ∆ and smallest child size δ,
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5. Sub-Hinze distribution

a framework that has been used previously for models based on bubble-eddy interactions [214].
While the two breakup mechanisms we consider are happening concomitantly, O(10-100) split-
ting events follow a single breakup event for ∆ ≫ dh (see figure 9.9), so that the capillary
timescale dominates the production of sub-Hinze bubbles ⟨T (∆, δ)⟩ = T2(δ).

To integrate the splitting events within the population balance framework, we propose a
new decomposition of the flux Φ from equation (9.1) in terms of the newly introduced timescale,
⟨T (∆, δ)⟩,

Φ(∆, d, t) = 2 F (∆, δ(d))
⟨T (∆, δ(d))⟩N (∆, t) (9.9)

= 2F (∆, δ(d))
T2(δ(d)) N (∆, t), (9.10)

where m(∆) = 2 follows from the binary events decomposition, δ(d) = d if the child bubble
considered is the smaller one of the two produced (that is, if d < c∆ ) and δ(d) = 3√∆3 − d3 if it
is the larger of the two (that is, if d > c∆), since the production is controlled by the faster of the
two timescales. To alleviate notations, in the following we write δ instead of δ(d). The function
F (∆, δ) needs to be determined and arises from flux conservation. Equating equation (9.1), with
equation (9.10) (flux conservation) gives an interpretation of F (∆, δ)

f(∆, d)κ(∆) = F (∆, δ)
T2(δ) . (9.11)

Indeed, by integrating the previous equation over the possible child size, and remembering that,
by definition

∫∆
0 f(∆, d)dd = 1, we obtain

κ(∆) =
∫ ∆

0

F (∆, δ)
T2(δ) dd (9.12)

and F (∆, δ) is the weight associated with each breakup frequency T2(δ)−1. It can also be
interpreted as the likelihood of breakup of a bubble of size ∆ into a bubble of size δ. As δ ≪ ∆,
we expect the physics at the scale of the filament to be independent of the physics at the parent
scale. In addition, since there is no characteristic length scale in a turbulent flow, any filament
size can be selected. Therefore we assume that the weight associated with each filament radius
is independent of δ, F (∆, δ) ≡ F (∆). Proving the independence of the weight factor F (∆) on
δ would require a complete analysis of the filament geometry, which is not accessible with our
numerical dataset. Nevertheless, this question will be further addressed in the next chapter
(chapter 10) by looking at the filament radius selection in the model geometry of the stagnation
point flow. We will work with the assumption that F (∆), independent of δ, in the remaining of
the theoretical discussion.

For d < cdh, using equation (9.11) into equation (9.2), we split the birth term into two parts,
one term taking into account breaking for d < c∆ (d is the smallest child size) and one for
d > c∆ (d is the largest child size), and we obtain:

∂N (d, t)
∂t

=
∫ d0

d/c
2F (∆)

T2(d) N (∆, t) d∆ +
∫ d/c

d
2 F (∆)

T2( 3√∆3 − d3)
N (∆, t) d∆ − κ(d)N (d, t) (9.13)

125



Chapter 9. Sub-Hinze bubble formation

where d0 is the largest bubble size in the system. Assuming that bubbles smaller than dh do
not break implies that the second integral and the death term vanish, and that the lower bound
of the first integral is dh. We therefore obtain the evolution equation of the BSD of sub-Hinze
bubbles,

∂N (d, t)
∂t

=
∫ d0

dh

2F (∆)
T2(d) N (∆, t) d∆. (9.14)

Integrating over time, we obtain for d < cdh

N (d, t) = d−3/2
∫ t

0
IN (d0/dh, s)ds, (9.15)

with,

IN (d0/dh, t) =
∫ d0

dh

4
√

3F (∆)
(

ρ

γ

)−1/2
N (∆, t)d∆. (9.16)

The integral IN does not depend on the child bubble size d, so that the bubble size distribution
for d < cdh follows

N (d, t) ∝ d−3/2. (9.17)

We predict that the details of the breakup cascade above the Hinze scale and its temporal
evolution only affects the total number of sub-Hinze bubbles produced while the scaling exponent
d−3/2 is not affected and is independent of time.

6 Conclusion: A two steps breakup process

Below breaking waves, BSD exhibits two power-law scalings. For d > dh [52], the bubble
size distribution reads

N (d) = Qϵ−1/3d−10/3, for d > dh (9.18)

where Q is the volume of air injected to the breaking cascade per volume of water per second,
and can be evaluated from the breaker geometry and energetics [53, 56, 132]. For d < dh,
the bubble size distribution follows a shallower scaling N (d) ∝ d−3/2. The prefactor for the
sub-Hinze distribution can be evaluated using the continuity of N at dh, and reads

N (d) = Q

(Wec

2
γ

ρ

)−11/10
ϵ2/5d−3/2, for d < dh. (9.19)

More generally, these two scaling laws arise in dilute environments, where coalescence can
be neglected, provided there is a large scale separation between the injection size d0 and the
Kolmogorov-Hinze scale dh. When d0 ≫ dh, large-scale inertial breakups and small-scale cap-
illary splitting events occur concurrently and each of them result in one power-law scaling for
N (d). As schematized on figure 9.11, the background turbulence sets the geometry of each
breakup event over a time tc(∆) and then freezes relative to the capillary time scale [176], over
which a cascade of small-scale splitting events occur. From this fragmentation sequence results
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Figure 9.11 – Summary of the fragmentation processes in turbulence: The turbulent background
flow deforms large super-Hinze bubbles on a timescale given by tc(∆), creating two large bubbles
of sizes comparable with ∆ and an elongated structures. The first turbulent breakup is then
followed by dozens of splitting events, controlled by surface tension at the filament scale δ.

generally one or two large bubbles of similar size and dozens of sub-Hinze bubbles. The large
bubbles feed the self-similar cascade of Garrett et al. [73], as schematized by the black arrow
in figure 9.12. This self-similar cascade is local in size as large bubbles have sizes similar to
the parent size. The cascade stops when the parent size is of the order of dh. On the other
side, the sub-Hinze bubbles feed a non-local, in size, breakup cascade as there is a large scale
separation between ∆ and δ (red arrow in figure 9.12). This non-local cascade is controlled by
capillarity at the filament scale. Gas filaments break through a Rayleigh-Plateau like instability.
As dozens of sub-Hinze bubbles are produced during the fragmentation of a gas filament, and
are associated with short timescales, the averaged parent lifetime is not given by the turbulent
timescale. This fragmentation scenario extends to sub-Hinze bubble production the framework
of Villermaux [207], who stated that for liquids, ligaments may universally control fragmentation
processes. Contrary to many fragmentation processes in which a physical length scale sets the
average fragmentation size, there is no such specific length scale in turbulence, and a power-law
distribution is observed instead of a gamma distribution.

We have demonstrated that elongated structures are created during the deformation of large
super-Hinze bubbles. Nevertheless, the physical mechanism which selects the length and volume
of the filament remain unknown. To fully characterize the sub-Hinze production, in the next
chapter, we investigate the filament production in the model flow geometry of the uniaxial
straining flow.
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Chapter 9. Sub-Hinze bubble formation

Figure 9.12 – Schematic representation of the bubble size distribution below breaking waves and
the associated fluxes between sizes created by breakup. When a bubble breaks, it creates two
large child bubbles of size close to its size (black bubbles), and a large number of bubbles smaller
than dh, through the splitting of a filament (in red). The large bubbles feed a local cascade in
size generating a N (d) ∝ d−10/3 distribution for super-Hinze bubbles. The filament splitting
feeds a non-local cascade in size and creates a N (d) ∝ d−3/2 distribution of sub-Hinze sizes.
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Chapter 10
Filament characterization in a simplified
geometry

For once I might be interested.

A PhD advisor

In the previous chapter, we identified that sub-Hinze bubbles originate from the
fragmentation of gas filaments produced during the deformation of large super-Hinze
bubbles. In this chapter, we characterize the size of these filaments in the model
geometry of the stagnation point flow. We show that bubbles of size larger but close
to the Kolmogorov-Hinze scale are more efficient to feed the sub-Hinze BSD. The
larger the initial bubble size, the smaller the child bubbles. We show that viscous
effects at the filament scale control the filament volume and that the gas dynamics
may control the filament size selection.
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Chapter 10. Filament characterization in a simplified geometry

1 Introduction: Filament generation in model geometries

By investigating the breakup dynamics in turbulence, we have identified that sub-Hinze
bubbles originate from the fragmentation of long filaments produced during the deformation
of super-Hinze bubbles. Despite recent works to identify the bubble topology [42], identify-
ing a filament in the turbulent simulations remains a challenging task. In this context, the
model geometry of the uniaxial straining flow provides us with a convenient numerical set-up to
investigate the production of gas filaments.

Filament generation in two fluids configuration has been studied extensively. For drops in a
fluid of low inertia and viscosity, the filament production has received considerable attention due
to its importance for industrial processes like ink-jet printing or fiber spinning [64]. Experimental
configurations include jets (reviewed in Eggers et al. [65]), dripping drops [24, 182] and liquid
bridges [74, 117]. The interest for bubble pinch-off is more recent and focuses on the neck
dynamics. For bubbles, two main configurations are used: a bubble detaching from a needle in
an otherwise quiescent flow [21, 26, 77, 191] and a closing open cavity generated by an object
pulled through a liquid surface [13, 14, 61]. In the former, bubbles rise under the action of a
constant acceleration (gravity). In the latter, the air pocket is produced either with an object
moving at constant velocity [13, 14] or falling under gravity [61]. Most studies focus on the neck
dynamics close to breakup with the aim of finding critical exponents describing the singularity.
Burton et al. [26] investigated the neck dynamics of bubbles rising in a fluid of varying dynamic
viscosity. They showed that the critical exponent α, controlling the neck radius rneck evolution
in time, rneck ∼ τα, where τ = T − t is the time before breakup, undergoes a transition with
the liquid viscosity. For a liquid viscosity lower than 10 cP, the pinch-off dynamics results from
a balance between capillary forces and inertia, resulting in α ≈ 0.5. On the other limit, for
fluid viscosity larger than 100 cP, viscosity balances surface tension and α ≈ 1. They also
report the production of a long gas thread of constant radius, leading to the formation of a
least one gas bubble, for liquid viscosity in the intermediate range where 0.5 < α < 1. For low
viscosity fluid (water), they observed two satellite bubbles of size of the order of 10 µm, believed
to originate from a surface instability. Thoroddsen et al. [191] performed a similar study and
extended the characterization of the gas filament. Conversely to Burton et al. [26], they found
that gas filaments are always produced and that their length increases continuously with the
liquid viscosity.

Whereas there is some information on the filament length generation as a function of the
liquid viscosity, a quantification of the filament radius is still needed. In turbulence for instance,
the filament radius is believed to control the size of the sub-Hinze bubbles generated via filament
splitting (chapter 9). In addition, all the studies mentioned earlier, focus on bubble neck dy-
namics in a quiescent surrounding flow. However, one can expect the flow to modify the filament
production and its breaking dynamics via additional compression or stretching for instance, in
the presence of an extensional flow. In this chapter, we investigate the effect of uniaxial straining
on the production of gas filaments. In particular, we aim at understanding what controls the
filament volume in order to quantify the flux from super-Hinze to sub-Hinze sizes in turbulence,
as well as the length and radius selection.
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Figure 10.1 – Typical bubble shape at breakup, here for Re = 50 and We = 1250. We call
filament the blue part, ie the air located at the left of pinch-off. The black part is called the
head.

2 Filament shape

2.1 Numerical set-up and filament definition

We use in this chapter the extensional flow configuration introduced in chapter 2. As detailed
in chapter 2, we first generate a uniaxial straining flow at a given flow Reynolds number Re, by
varying the typical strain rate E. We then inject a spherical gas bubble, of radius R0, diameter
d = 2R0, centered at the stagnation point flow. The density ratio is ρR = 850. Conversely
to all the previous chapters, we use µR = 55, closer to the air-water ratio. We investigate six
precursor simulations associated with a Reynolds number at the bubble scale,

Re = Ed2

ν
(10.1)

ranging from 20 to 400. We vary the bubble Weber number

We = ρE2d3

γ
(10.2)

by varying the surface tension, γ. In this chapter, we focus on breaking bubbles, i.e., bubbles
such that We > Wec(Re), where, from chapter 5,

Wec(Re) = We∞
c exp(−100/(We∞

c Re)) (10.3)

with We∞
c = 7.8 the inviscid critical Weber number.

At all Reynolds and Weber numbers, when the bubble breaks it creates one small satellite
bubble and two larger bubbles, of size close to the initial bubble. Indeed, for small but finite gas
density, an angle asymmetry in between the two sides of the neck, as demonstrated theoretically
by Leppinen et al. [107]. In our numerical study, we impose symmetry with respect to the plane
z = 0, and simulate only the half-domain z ≥ 0. As a consequence, we will omit the symmetric
domain, and thus the second large child bubble, in the rest of the discussion. By convention,
we say that the satellite bubble is at the left of the pinch-off point, while the larger bubble is
at the right of the pinch-off point (see figure10.1). The satellite bubble can possibly break into
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smaller pieces depending on the value of the Reynolds and Weber number. In this chapter, we
use the following convention: we call filament the air encapsulated in the first satellite bubble
(blue part of figure 10.1), therefore the air which is at the left of the first pinch-off point which
will eventually fragment into smaller bubbles.

We first investigate how the filament volume varies with varying Reynolds and Weber number
before describing the filament shape at pinch-off.

2.2 Filament volume and consequences for bubbles in turbulence

We have seen in the previous chapter that large bubbles compared to the Kolmogorov-Hinze
scale, d/dh ≫ 1, produce sub-Hinze bubbles through a non-local breakup mechanism in scales.
In practice, satellite bubbles are therefore orders of magnitude smaller than their parent size.
However, at this point, we do not know what fraction of air feeds the non-local cascade at each
breakup event. To better quantify the volume flux from super-Hinze to sub-Hinze bubbles, we
measure the filament volume as a function of the Reynolds and Weber number in the model
configuration.

The evolution of the filament volume Vf , in units of the parent volume V0, with the Weber
number is presented on figure 10.2a. The Reynolds number is color-coded. Symbols encode
the maximum level of refinement as discussed in chapter 2. At a fixed Reynolds number, we
observe that the filament volume increases with We and converges to a constant when We → ∞.
The plateau value dramatically depends on the value of the Reynolds number. Strikingly, the
smallest the Reynolds number the largest the filament volume, which varies from 10−1 V0 at
Re = 20, to 10−5 V0 at Re = 400. In addition, as We approaches the critical Weber number,
we observe that the filament volume decreases. At this stage, we cannot conclude whether a
filament of finite size is produced at the critical Weber number or if the bubble breaks on the
plane of symmetry. Eggers [63] showed theoretically that predeformed axi-symmetric void cavity
in a fluid of low viscosity pinches on the plane of symmetry. Leppinen et al. [107] investigated
the case of an inviscid drop pinching in an inviscid fluid for moderate liquid to drop density
ratio (including the case of a liquid denser than the drop). The difference in angles between the
two sides of pinch-off generates a satellite bubble. These results suggest that at Wec, a finite
size tiny satellite bubble is likely to be generated.

By investigating the evolution of the plateau value as a function of Re, we found that
Vf /V0 ∝ Re−3 in the limit of infinite Weber number. Figure 10.2b shows the compensated
filament volume as a function of We/Wec(Re), where Wec(Re) is defined by equation (10.3). We
find that the compensated data follow a single master curve so that the Re−3 scaling holds at all
Weber number. The Weber number mainly affects the filament volume for We/Wec(Re) < 10.
We therefore propose the following parametrization for the volume encapsulated in the filament

Vf /V0 = A

Re3 f(We/Wec) (10.4)

where A is a numerical constant and f(x) an unknown function such that limx→∞ f(x) = 1,
which quantifies the impact of the Weber number. Assuming, for simplicity, that at the critical
Weber number, bubbles break on the plane of symmetry, we also impose f(1) = 0. To fix the
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Figure 10.2 – a) Filament volume Vf in unit of the initial bubble volume V0, as a function of
the Weber number. The Reynolds number is color-coded. Different symbols encode different
maximum level of refinements. b) Compensated filament volume Vf /V0 Re3 as a function of
We/Wec(Re). The expression of Wec(Re), derived in chapter 5, is recalled in equation (10.3).
The solid black line is an empirical law which reasonably describes our data set.

ideas, in the following of the discussion, we use f(x) = 1 − x−1/2 and A = 103. Using these
expressions for f and A equation (10.4) reasonably describes our data set, as illustrated by the
solid black line in figure 10.2. Complementary studies need to be performed in order to better
quantify f , in particular close to Wec. A qualitative explanation for the We−1/2 might be found
in Vincent et al. [210]. Vincent et al. [210] investigated the breakup of an axisymmetric liquid
column of low viscosity, driven at constant velocity in a capillary bridge experiment. They
argue that the typical wavelength of the wave travelling at the imposed velocity sets the length,
an henceforth the mass m, of the remnant drop, the liquid mass which stays attached to the
support. Equating the phase velocity of this capillary wave with the driving velocity predicts
m ∝ We−1/2, also observed experimentally. A theoretical derivation supporting this argument
can also be found in Duchemin et al. [60]. Applying the same reasoning to the bubble predicts
that the filament volume should scale as We−1/2.

In a turbulent flow, for a given pair of gas and liquid, we cannot vary independently the
bubble Reynolds and Weber numbers. Consequently, it is instructive to investigate the evo-
lution of the filament volume as a function of d/dh and the turbulent properties, predicted by
equation (10.4). Assuming we can replace the expression of Re, We and Wec with their turbulent
counterpart Ret =

√
2ϵ1/3d4/3/ν, Wet = 2ρϵ2/3d5/3/γ and Wet

c, we have Wet/Wet
c = (d/dh)5/3,

where dh = (Wet
c/2)3/5(γ/ρ)3/5ϵ−2/5. We define Vh = π/6d3

h the Kolmogorov-Hinze volume, the
volume of a bubble of diameter the Kolmogorov-Hinze size. By multiplying equation (10.4) by
d3/d3

h we obtain the following expression for the filament volume in unit of Vh as a function of
the scale separation d/dh and the Reynolds number

Vf /Vh = A

Re3
t

d3

d3
h

f((d/dh)5/3) = A

23/2
ν3

ϵd3
h

1
d

f((d/dh)5/3). (10.5)

In agreement with the previous discussion, we find that the filament volume increases as the
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Figure 10.3 – Evolution of the filament volume in unit of the Kolmogorov-Hinze volume, pre-
dicted by equation (10.5) as a function of the scale separation d/dh, for an air bubble in water.
Different colors indicate different turbulence intensity ϵ. To estimate Vf , we take Wec = 3.

liquid viscosity increases.
Figure 10.3 illustrates the evolution of the filament volume for an air bubble in water

(ρ = 1000 kg.m−3, γ = 72 mN.m−1, µ = 1.10−3 N.s.m−2 and Wec = 3), as a function of the
scale separation d/dh, for different turbulent intensity ϵ. Importantly, at a given scale separation
d/dh, we find that the filament volume increases with ϵ. Mathematically, as dh ∝ ϵ−2/5, expres-
sion (10.5) predicts that Vf /Vh ∝ ϵ1/5. Physically, increasing the turbulence intensity decreases
the Kolmogorov-Hinze scale. It follows that viscous effects close to dh become more important
as quantified by the Reynolds number at the Kolmogorov-Hinze scale Re(dh) ∼ ρ1/5γ4/3/(ϵ1/5µ).
We indeed find that Re(dh) decreases when ϵ increases.

At large scale separation, d/dh ≫ 1, since f ∼ 1, Vf /Vh decreases with the bubble size
following d−1. In terms of volume flux from super-Hinze bubbles to sub-Hinze bubbles, it follows
that the largest the initial bubble size, the smallest its contribution to the volume feeding the
sub-Hinze distribution and the smallest the child bubbles produced.

When d → dh, the filament volume also decreases as f converges to 0. From these two
results, it follows that there exist an optimum bubble size, at which the filament volume is the
largest. The position of this optimum depends on the exact expression of f . We conclude that
most of the air volume transferred to the sub-Hinze BSD originates from the breaking of bubbles
of size lying between dh and approximately 10dh.

2.3 Filament shape

In order to understand the origin of the Re−3 scaling for the filament volume we focus on
the filament shape at very large Weber number. Figure 10.4 shows the bubble shape at the

134



2. Filament shape

1

0

1
r/
R

0

Re = 400

1

0

1

r/
R

0

Re = 200

1

0

1

r/
R

0

Re = 100

1

0

1

r/
R

0

Re = 50

1

0

1

r/
R

0

Re = 30

7.5 5.0 2.5 0.0 2.5 5.0 7.5
z/R0

1

0

1

r/
R

0

Re = 20

Figure 10.4 – Evolution of the bubble shape at pinch-off with the Reynolds number, in the limit
of very large Weber number.
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pinch-off time as a function of the Reynolds number, in the limit of very large Weber number.
We observe that, as Re decreases, the filament elongates dramatically, in qualitative agreement
with bubble pinch-off experiments [26, 191]. The length varies from about 10−1 R0 at Re = 400
to approximately 10 R0 at Re = 20. The radius on the plane of symmetry, rp, is also a decreasing
function of the Reynolds number. Lastly, the large bubble shape varies close to the pinch-off
point. We find a pointy shape at large Reynolds number and a round shape when Re decreases.
At low Reynolds number, the slow breakup dynamics allows the main bubble shape to relax
before pinch-off.

As a first approximation, one can model the filament shape as a combination of two cones
of basis radius rp, and height zp, the position of the pinch-off. The filament volume will then
scale as r2

pzp.
Figure 10.5 shows the evolution of the radius on the plane of symmetry rp and the pinch-off

position zp as a function of Re in the limit of large We.
The filament radius rp is found to decrease as 1/ Re (figure 10.5a). A similar tendency

has been observed experimentally by Mikami et al. [128] for a drop of liquid suspended in a
viscous plane hyperbolic flow. For an iso-dense drop of dynamic viscosity 15 times smaller
than the surrounding fluid, they also found that the filament radius at breakup decreases with
increasing straining rate E. Pulling faster creates thinner filaments. At large Reynolds number,
Re ≥ 100, the evolution of zp is compatible with Re−1 which corroborate the Re−3 scaling for
the filament volume. For Re ≤ 10, zp exhibits a steeper scaling and follows Re−4/3. Indeed,
as can be visualized on figure 10.4, for the three lowest Reynolds number, there is a very thin
thread of gas produced close to the pinch-off point, so that the cone approximation breaks down.
Kowalewski [98] investigated the liquid fragmentation of a viscous fluid in a liquid jet experiment.
Together with the presence of the filament, which he called macro-thread, he also reported the
existence of micro-thread, of micrometric radius, close to pinch-off. The length of this micro
thread is found to increase with decreasing Reynolds number. Similar structures were found
experimentally by Shi et al. [182] for viscous drops falling under the action of gravity. They
found that the process can repeat itself until breakup, leading to the formation of a cascade of
thin threads of decreasing radius. For these very small structures, the gas dynamics is likely
to play a role and is therefore visible only for the lowest Reynolds number in our simulations.
The volume encapsulated in these thin threads is however negligible compared to the cone part,
which results in a Re−3 scaling for the filament volume.

3 Deformation dynamics

In the previous section, we have shown that the filament volume evolves as Re−3 in the limit
of very large Weber number. This scaling can be understood by looking at the filament radius
rp and length zp. In this section, we aim at understanding when and how the filament radius
and length are selected.
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Figure 10.6 – Definition of the three points of interest: S, the radius on the plane of symmetry
(blue point), N, the neck position (red point) and H, the position of the head (orange point).

3.1 Characterization of the filament formation

To describe the shape evolution we follow the temporal evolution of three characteristic
points represented on figure 10.6:

• S: The interface position on the plane of symmetry, of coordinates (zs, rs), with zs = 0 by
definition (blue point). The radius rs coincides with rp at pinch-off.

• H: The head position, of coordinate (zhead, rhead) (orange point). We define it as the point
where the radius is maximum.

• N: The neck position, of coordinate (zneck, rneck) (red point). The neck corresponds to the
smallest radius position lying between zs = 0 and zhead. At pinch-off, we have rneck = 0 and
zneck = zp.

In each simulation, we follow the position of S, H and N in time to understand when the
filament is created. Figure 10.7 shows one example of the temporal evolution of rs, rneck and
rhead, for one simulation at Re = 50 and We = 25. We define τ = T − t, the time interval before
pinch-off, so that time goes from right to left on figure 10.7.

In the early dynamics, the three points coincide, and are located on the plane of symmetry.
Their radius decreases linearly in time. Indeed, at short times, the interface is purely advected
by the stagnation point flow at a rate given by the flow shear rate in the radial direction |E|/2.

At C1, corresponding to Eτ ≈ 0.5 (red triangle) the head position jumps from the axis to a
finite position zhead > 0. This the head formation. It conserves the same radius until pinch-off.
At this stage, N and S share the same position: N is on the plane of symmetry.

From C1 to Eτ ≈ 0.1, rs and rneck keep decreasing linearly in time. At Et ≈ 0.1 their
decrease accelerates.

137



Chapter 10. Filament characterization in a simplified geometry

10-3 10-2 10-1 100 101

Eτ

10-3

10-2

10-1

100

101

r/
R

0

head formationC1

start of pinch-off
C2

zhead

zneck

rhead

rs

rneck

Figure 10.7 – Typical temporal evolution of the three points of interest as a function of the time
interval before pinch-off τ , in units of the advective timescale 1/E, for Re = 50 and We = 25.
The red triangle corresponds to the time at which the head forms: the position of the head
zhead jumps to a finite value and rhead is constant. The blue circle denotes the beginning of the
pinch-off dynamics: the neck position jumps to a finite value zneck > 0 and rs is now constant.

At C2, which we call the critical point, corresponding to Eτ = 4.10−2 (blue circle), the neck
position jumps from the axis to zneck > 0. Similarly to the head dynamics, from this point, rs

freezes. This radius corresponds to the filament radius rp at pinch-off. The separation between
rs and rneck marks the beginning of the pinch-off dynamics. At this stage, the filament volume
is selected. The filament becomes unstable under Rayleigh-Plateau instability. The position of
pinch-off might results from a competition between the growth rate of the capillary instability
and the filament stretching by the flow. This competition would explain why the pinch-off
position exhibits a steeper dependency that Re−1 (figure 10.5), while modifying marginally the
filament volume. This mechanism is analogous to the formation of the Pele’s hair described
by Villermaux [206]. Hot filaments are stretched by violent air flows. When stretching is fast
compared to the capillary instability, long hair are produced.

From the previous dynamics we identify three phases in bubble deformations, illustrated on
figure 10.8 by the deformations of a bubble at Re = 50 and We = 25.

From the beginning of the simulation, to C1, the bubble shape is concave and evolves due to
an advection of its interface by the surrounding flow. The bubble shape associated with C1 is
represented in red on figure 10.8. When the head forms, the bubble shape is close to a cylinder.

In the second phase, the head, of constant radius, is advected by the flow while the bubble
shrinks on the axis of symmetry (grey curve in figure 10.8). At C2, the critical point, the air
filament is selected (blue shape in figure 10.8). One can clearly separate what will be contained
in the filament (cylinder of radius rs ≈ 0.05 R0 and length zneck ≈ 0.6 R0) from the head.

The last stage corresponds to the pinch-off dynamics. In the example presented in figure 10.8,
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Figure 10.8 – Typical shape evolution, illustrated at Re = 50 and We = 25. The initially
spherical bubble deforms in a succession of concave shape until the head forms. The red shape
corresponds to the position of C1 in figure 10.7. The bubble then shrinks on the plane of
symmetry, until pinch-off starts (blue curve, corresponding to the position of C2 in figure 10.7).
The last black shape is the shape at breakup.

as the Reynolds number is low, the pinch-off dynamics creates a thin thread of air and the final
length of the filament, zp ≈ 1.5 R0, is significantly longer than 0.6 R0, the initial filament length
selected at the critical point. However, when the Reynolds number is larger (Re ≥ 50), the
pinch-off dynamics is fast and the two lengths are comparable. Note that the filament shape,
for z < 0.6 R0 does not change between the critical point and pinch-off. The left part of the
filament is frozen during this stage.

3.2 Filament volume selection by viscous effects

In the previous section, we have shown that the volume selection happens at C2 when S and
N separate. The radius rs, and position zneck at the critical point control the filament volume.
We denote these two values by r⋆

s and z⋆
neck respectively. We now investigate the dynamics of rs

as a function of Re and We to understand the origin of C2.
Figure 10.9a shows the temporal evolution of rs in all the simulations performed at different

Weber numbers (color) and Reynolds number (color of the circle point) as a function of time,
in units of the advective timescale 1/E. The end of each curve indicates the breakup time. For
each curve, we denote by a colored circle the position of the critical point C2. At short times, for
Et ≤ 0.25, all curves superimpose on the prediction given by a pure advection of the interface
(dotted black line): assuming ṙs = ur(rs) = −E

2 rs we have

rs(t) = R0 exp
(

−E

2 t

)
, (10.6)

which simplifies into
rs(t) ≈ R0

(
1 − E

2 t

)
for t ≪ 2

E
. (10.7)

The linearized solution is shown by the solid black line in figure 10.9. At latter times, we observe
a clear ordering of the curves with We, no matter the value of the Reynolds number. Bubbles at
large Weber number (in red) break faster than bubbles of lower Weber number (green curves),
irrespective of their Reynolds number. In the limit of infinite Weber number, the bubble lifetime
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is given by the advective time scale 1/E. This is the time necessary to advect the bubble on a
distance R0 along the z axis.

On the contrary, the filament radius r⋆
s is mainly controlled by the Reynolds number and

scales as Re−1, as can be visualized on figure 10.9b, which represents the compensated radius
r⋆

s/R0 . Re as a function of the Weber number. In this range of Weber numbers, we find no
dependency of r⋆

s with We and we can approximate r⋆
s by

r⋆
s/R0 = 3

Re . (10.8)

Qualitatively, on the plane of symmetry, the outside pressure, scaling as ρU2, with U a charac-
teristic velocity, is balanced by the normal stress in the fluid. As the radius is small, the inside
stress is viscous and scales as (µ/µR) U/r⋆

s . At r⋆
s we thus have

r⋆
s ∼ µ

µR
.

1
ρU

. (10.9)

Assuming that the characteristic velocity is defined by the bubble scale, U = Ed, and dividing
by R0, we get

r⋆
s/R0 ∼ 1

µR
.

1
Re . (10.10)

The filament radius corresponds to the scale at which viscous effects dominate over inertia, at
the filament scale. This scaling argument also predicts that increasing the gas dynamic viscosity
increases the filament radius.

To discriminate between the influence of inertia and viscosity within the gas, in parallel of
this study, we run two simulations varying the density and viscosity ratios respectively, while
keeping the bubble Reynolds and Weber number constant, Re = 50 and We = 125. We therefore
only change the gas properties. The results are summarized in table 10.1.

When the density ratio is divided by approximately 5 (850/200 = 4.25), i.e. when the
gas is about 5 times denser, we observe a moderate increase of the filament volume compared
to the reference case. The volume is multiplied by two, while rp increases by 30%. Note
that

√
4.25 = 2.06, suggesting that the filament volume scales as ρR

−1/2. We also have that
4.251/6 = 1.27. This scaling suggests that rp follows ρ

−1/6
R . Experimentally, Thoroddsen et

al. [191] investigated the effect of the density ratio of the neck dynamics of a rising bubble in
water. They compared three gases, Helium, air and SF6, therefore changing the gas density,
and consequently the density ratio, by a factor 37, while keeping the liquid to gas density ratio
greater than 161. They found only little differences in the neck dynamics for these three gases.
They concluded that the gas density has minimal effect on the bubble shape at pinch-off in
agreement with our results.

We observe a dramatic increase of the filament volume when dividing the dynamic viscosity
ratio by approximately 5 (55/10 = 5.5), i.e. when increasing the gas dynamic viscosity. The
filament volume is multiplied by 21.6 while rp increases by a factor 2.3. Note that

√
5.5 = 2.3,

the change in filament radius. This result suggests that the filament radius is selected by
viscous effects occurring in the gas filament and that rp scales as µR

−1/2. The negative power
of µR is in agreement with the previous reasoning on stress balances. However, the power law

140



3. Deformation dynamics

0.0 0.5 1.0 1.5 2.0
Et

0.0

0.2

0.4

0.6

0.8

1.0
r s
/R

0
a) b)

exp(−Et/2)

1−Et/2

101 102 103 104

We

0

1

2

3

4

5

r s
/R

0
R

e

Re = 400

Re = 200

Re = 100

Re = 50

Re = 30

Re = 20

101

102

103

W
e

Figure 10.9 – a) Temporal evolution of rs in all simulations, for various Re and We. The
black line is the prediction given by the interface advection. The Weber number is color-coded
and trajectories clearly order according to its value. Points indicate the position and time at
which the pinch-off dynamics starts. b) Compensated radius r⋆

s/R0 Re as a function of the
Weber number. The Reynolds number is color-coded. Symbols indicate the maximum level of
refinement (see figure 10.2). We find no dependency with We.

differs from equation (10.10), suggesting that the filament selection is more complex. Additional
investigations need to be performed.

Case We Re µR ρR Vf /V0 Vf /V ref
f rp/R0 rp/rref

p

reference 125 50 55 850 8.61 10−3 - 7.12 10−2 -
dense bubble 125 50 55 200 1.79 10−2 2.08 9.26 10−2 1.3

viscous bubble 125 50 10 850 1.86 10−1 21.6 1.66 10−1 2.3

Table 10.1 – Evolution of the filament volume and radius with µR and ρR. All simulations are
performed at the same We and Re. We denote by V ref

f and rref
p the filament volume and radius

respectively obtained in the reference simulation.

We conclude that the filament volume is controlled by viscous dissipation occurring at the
filament scale and that the gas dynamics cannot be neglected when describing the filament
formation. However, at this stage, we have no argument to support the Re−3 scaling of the
filament volume, nor the µ

−1/2
R dependency of the radius.

3.3 Head shape

If the filament shape dramatically depends on viscous effects, this is not the case of the head
shape.

Figure 10.10 compares the critical shapes obtained for different Reynolds numbers, in the
limit of very large Weber number. To compare the head shapes, for each Reynolds number, we
have shifted the z-origin so that the positions of the rightest point on the head zr coincide. Note
that, on figure 10.10, the axis do not share the same scale and that bubbles do have the same
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Figure 10.10 – Critical profiles as a function of the Reynolds number, obtained in the limit of
very large Weber number. The shapes are shifted to the left so that their rightest point coincide.
While the filament shape and volume dramatically depend on Re, the head is nearly identical.
Note that axis do not share the same scale and that all bubbles do share the same volume.

volume. As emphasized previously, we observe a clear dependency of the filament radius and
length with the Reynolds number. However, the shape of the head only weakly depends on Re.
In particular, we find no dependency on the apparent angle of the left part of the head with Re.
This observation corroborates the remark made on figure 10.4: the different head shapes, and
apparent angles observed at pinch-off originate from the comparison between the breakup time
and the bubble relaxation time. When bubble relaxation is fast compared to the breakup time,
the bubble adopts a round shape at breakup (low Reynolds number limit), while a cone-like
shape is observed when breakup is fast (larger Reynolds number).

From these shapes, we conclude that the head shape, which controls the volume of the large
child bubble, is driven by inertial effects at the head scale. However, the filament generation
and shape is controlled by viscous effects at its scale. Note that, if capillarity does not control
the volume and shape of the filament, it will control the filament fragmentation.

4 Conclusion: A non-local cascade

To summarize, we investigated the filament production for a bubble immersed in a uniaxial
straining flow. We find that the bubble Reynolds number controls the volume encapsulated
in the ligament, which scales as Re−3, while the Weber number has only a marginal effect for
We ≥ 50. We characterized bubble deformations and found that the filament volume is selected
at the time at which the radius on the axis of symmetry stops to decrease. At this specific
time, the bubble shape exhibits a thin cylinder of gas close to the plane of symmetry. The
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4. Conclusion: A non-local cascade

Figure 10.11 – Schematic representation of the fluxes induced by breakup depending on the
parent size d/dh, on the BSD measured below breaking waves. When a bubble breaks, it creates
two large bubbles (in black), feeding a local cascade. It also produces a filament, whose size
largely depends on d/dh. The largest bubbles produce the smallest filament and therefore the
smallest child bubbles.

radius and length of this filament both scale as 1/ Re which decompose the origin of the Re−3

dependency for the filament volume into two simpler quantities. At the critical point, the head
shape however is only weakly affected by the value of the Reynolds number.

At this point, we have no clear explanation for the selection of the filament shape. However,
our analysis suggests that the gas dynamics, driven by viscosity, is probably not negligible. The
Reynolds number at the filament scale being of order unity, we also expect viscous effects at the
filament scale to drive the dynamics.

The model geometry informs us on the generation of sub-Hinze bubbles in turbulence. First,
we find that the largest the initial scale separation between the bubble size and the Kolmogorov
Hinze scale, d/dh, the smallest the filament volume, as schematized on figure 10.11. In terms of
volume, the largest amount of sub-Hinze bubbles originate from the fragmentation of bubbles of
size close to dh. It follows that most of the volume flux from super-Hinze to sub-Hinze bubbles,
comes from bubbles of turbulence Weber number Wet ≤ 50. Second, in agreement with the
previous chapter, we recover that the filament selection is a local phenomenon: its radius and
length are controlled by viscosity at the filament scale.

In this chapter, we identified that the largest volume flux from the super-Hinze to the sub-
Hinze distribution originate from bubbles at moderate Reynolds number. In the next chapter,
we focus on the fragmentation dynamics of a single filament at moderate Reynolds number, to
investigate the origin of the sub-Hinze distribution.
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Chapter 11
Filament fragmentation

There is not a single surprising finding in the paper.

A reviewer

In this chapter, we focus on the splitting of a gas filament in the model configuration
of the stagnation point flow. We show that a single sequence of filament splitting is
sufficient to produce a N (d) ∝ d−3/2, independently on the value of the Reynolds and
Weber number. We conclude that the sub-Hinze bubble size distribution comes from
the fragmentation of filaments, all creating a distribution following d−3/2. Eventually,
we discuss the shape of the breakup kernel and the relative contribution of different
parent bubble sizes.
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1. Introduction

1 Introduction

We have shown in chapter 9 that we can decompose each sequence of correlated breakups
into two stages: first, deformations by turbulence creating two large bubbles of similar size
and a filaments. The duration of this phase is given by the correlation time of turbulence at
the mother scale. Second, a rapid succession of splitting events within the filament, creating
a large number of sub-Hinze bubbles. We showed that the timescale of filament splitting is
controlled by capillarity at the filament scale. However, at this point, the bubble size distribution
generated by the fragmentation of a single filament is still unknown. For a single pinch-off
event, Ruth et al. [176] investigated experimentally the neck dynamics of bubbles in turbulence.
They showed that turbulence freezes relative to the capillary pinch-off and that the final neck
dynamics is universal, independent of the initial bubble shape and turbulent state. These results
suggest that the splitting dynamics of a single filament in turbulence may be independent of
the flow configuration which has generated it. Building on this idea, in this chapter, we aim
at characterizing the filament fragmentation and the bubble size distribution it produces in the
model flow configuration, hopping for a universal behavior.

The fragmentation of liquid ligaments has received a considerable amount of attention over
the last decades, owing to its important consequences for industrial applications [205, 207].
Understanding the drop size distribution originating from the ligament destabilization is key
for instance in the generation of sprays [208], or jets [65]. In comparison, only a few studies
report the fragmentation of gas filaments. To our knowledge, the only study describing the
fragmentation of a gas filament is from Thoroddsen et al. [191]. They observed that a bubble
detaching from a needle in a viscous quiescent fluid can generate a large number of child bubbles
of varying size, depending on the value of the liquid viscosity. No quantification of the bubble
size distribution is however reported.

We have shown in the previous chapter, that the largest filaments are produced by the frag-
mentation of parent bubbles of size close to the Kolmogorov-Hinze scale, due to the importance
of viscous effects. We expect sub-Hinze bubbles to predominantly originate from the fragmenta-
tion of these large filaments. In this chapter, we therefore restrain ourselves to the fragmentation
of bubbles at moderate Reynolds number, Re ≤ 50. We use the same numerical set-up as in the
previous chapter, with µR = 55 and ρR = 850. We first describe the phenomenology of filament
splitting. Then we discuss the corresponding breakup kernel and connect the result with the
BSD of sub-Hinze bubbles.

2 A fragmentation cascade

Regardless of the values of the Reynolds and Weber number, we always observe the pro-
duction of one satellite bubble, whose volume is described in chapter 10. We focus here on the
consequent splitting of this small bubble, called filament.
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g) h) i)

Figure 11.1 – Typical fragmentation cascade of a filament for a simulation at Re = 20, We = 10.
The bubble is in white, the liquid in black. The axis of symmetry is the horizontal axis. The
flow goes from top and bottom to the right. a) Initial conditions: the bubble is spherical. b) The
bubble deforms creating a head. c) Critical point when pinch-off starts. d) Breakup. e-f) A
few bubbles are ejected from the tip of the filament while the main satellite bubble deforms.
g-h) The satellite bubble breaks, creating new child bubbles. i) All bubbles are advected by the
flow.

2.1 Phenomenology

In this section, we illustrate the phenomenology of the filament splitting on one example
at Re = 20 and We = 10 but the dynamics is shared among simulations at Re ≤ 50 and
Weber values. For larger Reynolds number, the filament volume is so small, that the numerical
resolution we use is insufficient to resolve the filament fragmentation.

Figure 11.1 shows a typical fragmentation cascade occurring within the filament. The bubble
is represented in white and the liquid in black. The axis of symmetry is the horizontal axis.
We reconstruct the bottom plane by mirroring the simulation results from top to bottom. Each
snapshot is an enlargement, centered around the axis of symmetry of the whole simulation. The
initially spherical bubble (snapshot a) deforms under the action of the surrounding straining
flow, creating a filament whose shapes is described in chapter 10 (b to c). The critical shape
(c), defines the filament volume at the time of breakup (d), Et ∼ 1.75 = ET . Once the satellite
bubble is formed, due to the stretching imposed by the surrounding flow, and the flow generated
by the first pinch-off, it continuously deforms. A few very small bubbles are ejected from the
tip of the filament (in e), while the main satellite bubble shrinks in its middle. The size of
the bubble ejected from the tip increases from right to left, as the filament gets thicker. This
spatial distribution of sizes is more visible on figure f. In f, a new filament is also formed,
which leads to the formation of new child bubbles (g), which themselves fragment into smaller
bubbles (h). In the last snapshots, the snapshot resolution allows us to distinguish 15 child
bubbles of very different sizes, but more are probably generated. All the child bubbles are then
continuously advected by the surrounding flow field. The whole fragmentation process, from the
initial breakup to the last filament splitting, lasts approximately 0.35/E.

Thoroddsen et al. [191] reported similar breakup cascades for the fragmentation a gas filament
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Figure 11.2 – Typical spatio-temporal diagram of the position of the child bubbles as a function
of time, for a simulation at Re = 20, We = 10. Each continuous line corresponds to one bubble
whose volume is color-coded. Breakups corresponds to line discontinuity. The initial bubble,
visible on the top right, breaks at Et ≈ 1.75. Then, a large number of splitting events follow,
leading to a large number of small bubbles. The fragmentation cascade stops at Et ≈ 2.

generated by the pinch-off of a gas bubble in a viscous liquid. When the liquid viscosity is low,
for instance in water, they observed the generation of one satellite bubble of size 5 µm, close to
the resolution limit of their optical system. Increasing the liquid viscosity increases the length
and radius of the filament, as discussed in chapter 10, and also increases the number of child
bubbles generated.

2.2 Splitting dynamics

The fragmentation dynamics is illustrated on figure 11.2 showing the corresponding spatio-
temporal diagram of the position of the center of mass of every bubble in time, for the simulation
at Re = 20 and We = 10. Every continuous line corresponds to one bubble and its color encodes
the bubble volume. The darkest line shows the position of the initial bubble. While the bubble
deforms, its center of mass shifts to largest z-values. At Et ≈ 1.75, (corresponding to 11.1d) the
initial bubble breaks, creating a satellite of volume Vb ≈ 10−2 V0. This is the filament, whose
center of mass is located at z ≈ 0.5R0. From Et ≈ 1.75 to Et ≈ 1.9, dozens of splitting events
occur, leading to the formation of a large number of child bubbles (about 45). The rightest ones,
of volumes lying between 10−6 and 10−8 V0 correspond to the fragmentation of the filament tip.
For all the other ones, note the clear alternation of bubbles sizes: in between two larger bubbles,
between two and four bubbles smaller bubbles are produced. At Et ≈ 1.9, the bubble lying on
the axis of symmetry breaks, creating the third largest bubble (visible on snapshot 11.1g). Both
this bubble and the bubble on the axis of symmetry continue to break until Et ≈ 2, the end
of the fragmentation cascade. In total 68 child bubbles are produced by the filament splitting.
On this plot, we observe that every bubble, once formed, drifts to largest values of z due to
the presence of the surrounding flow. The drift velocity at a position z is given by the uniaxial
straining flow velocity Ez.

The spatio-temporal diagram suggests the existence of a cascade of breakups. After the
first breakup, a satellite bubble is produced. This satellite bubble breaks itself creating large
fragments and a satellite bubble. Each of these new child bubble can also break, creating large
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Figure 11.3 – Volume of the child bubbles Vb in units of the initial bubble volume as a function
of their position z/R0, at the end of the fragmentation cascade, for Re = 20 and We = 10.
The rightest point corresponds to the largest bubble (the head), while all the other points
correspond the bubble produced during the fragmentation of the filaments. Bubbles located
between z = 5R0 and z = 7R0 have been ejected at the tip of the filament (figs. 11.1e and
11.1f).

fragments of their size and small satellite bubbles. This breakup cascade results in a peculiar
spatial organization of bubble sizes illustrated on figure 11.3. Figure 11.3 shows the final volume
of each bubble in units of the initial bubble volume Vb/V0, as a function of the position of its
center of mass z/R0 at the end of the fragmentation cascade. The points are linked for clarity.
The point at z = 9R0, represents the position and volume of the largest bubble of size close
to the initial bubble size Vb ∼ V0. All the others points, for z < 7R0 correspond to bubbles
produced by the filament fragmentation. Bubbles located between z ≈ 5R0 and z ≈ 7R0, have
been produced by the fragmentation of the filament tip illustrated on snapshots 11.1e and 11.1f.
For z < 5R0, we recover the size alternation with at minimum one small bubble produced in
between two larger bubbles. Consecutive bubbles usually have one decade difference in bubble
volume, suggesting that the smaller one, the same splitting mechanism occurred at different
bubble scales in a self-similar manner.

2.3 Size distribution generated by filament splitting

For these Reynolds number, Re ≤ 50, each breakup sequence leads to the formation of a large
number of child bubbles, between 15 and 70. In order to quantify the size distribution within
the filament, we compute the BSD at the end of the fragmentation cascade for each individual
simulation. We observe no dependency of the bubble size distribution with the Weber number
in the range we consider (We > 10).

Figure 11.4a illustrates the volume distribution obtained for three individual simulations, at
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Figure 11.4 – Size distribution of bubbles originating from the filament fragmentation at three
different Reynolds number, from the darkest color to the lightest: Re = 20, 30 and 50. Each
data set at a given Re corresponds to a single simulation. a) Volume size distribution.The
distribution follows V

−7/6
b over six decades. b) The corresponding diameter distribution.

Re = 20, 30 and 50, and We = 10 (69 bubbles), We = 9 (27 bubbles) and We = 25 (37 bubbles)
respectively. Note that we independently investigated the effect of the Weber number of the
size distribution and found no effect on the distribution shape. Colors indicate the Reynolds
number. For each individual simulation, we observe that the volume distribution pdf(V ), scales
as V

−7/6
b (solid black line) over a large range of scales (six decades), independently of the value

of the Reynolds number. The filament splitting generates a universal power-law size distribution
scaling as V

−7/6
b , independent of both the Reynolds and the Weber number in the range of values

we consider.
Importantly, the V

−7/6
b scaling corresponds to a diameter distribution pdf(d) scaling as d−3/2,

shown in figure 11.4b. Indeed, by probability conservation pdf(d) relates to pdf(V ) through

pdf(d)dd = pdf(V )dV (11.1)

pdf(d)dd ∝ V −7/6d2dd (11.2)

pdf(d) ∝ d−3/2. (11.3)

Hence, a single filament splitting is sufficient to build a −3/2 distribution of bubble sizes. In
turbulence, the sub-Hinze bubble size distribution henceforth originates from the fragmentation
of a large number of filaments, all generating their own −3/2 BSD. As for the bubble pinch-off,
turbulence freezes relative to the filament splitting, which follows a universal dynamics.

Power-law scalings are the signature of a scale-invariant physical process. The length slide
of avalanches, the intensity of earthquakes or the energy distribution among scales in fully
developed turbulence are ones over many examples of scale invariant processes. Hence, the power
law scaling for the size distribution generated by a filament supports the idea of a self-similar
breakup cascade, in which the same breakup scenario replicates at smaller and smaller scales.
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Chapter 11. Filament fragmentation

This scenario is very different from breakups observed in liquid ligaments. When the surrounding
liquid has negligible inertia and viscosity, the ligament breakup is controlled by instabilities.
These instabilities select a wavelength and therefore a discrete set of sizes corresponding to the
most unstable wavelength in the system. This is for instance the case in liquid jets, where
the Rayleigh-Plateau instability controls the ligament destabilization [65]. Noise on the initial
conditions widens the distribution around these selected sizes but the overall shape remains the
same (see for instance Pal et al. [140] for the study of the size distribution generated by the
fragmentation of a rough liquid cylinder).

3 From filament breakups to sub-Hinze BSD

3.1 Breakup kernel

In a dilute environment, we showed that the bubble size distribution is driven by breakups
only. In chapter 7, we demonstrated that, provided the residence time is long enough compared
to the turbulent timescale, there is a sharp separation between breaking and non breaking
bubbles. In this situation, only bubbles larger than the Kolmogorov Hinze scale dh are likely to
break. We showed in chapter 9 that, for bubbles of size d smaller than cdh, where c = 2−1/3,
the population balance equation simplifies and reads

∂tN (d, t) =
∫ d0

dh

m(∆)f(d, ∆)κ(∆)N (∆, t)d∆ (11.4)

where d0 is the largest bubble size in the system. During one sequence of breakups, which lasts
about one eddy turnover time, a bubble of size ∆, produces m(∆) children. Two of them have
size comparable to ∆. The others result from filaments splitting and are smaller than dh. The
breakup kernel f(d, ∆) quantifies the fraction of bubbles of size d produced by the breaking of a
bubble of size ∆. The previous study suggests that, for bubbles produced via filaments splitting,
this fraction universally scales as d−3/2, independently of the physical parameters. We deduce
that

f(d, ∆) ∝ d−3/2 (11.5)

for bubbles generated by the filament splitting. Note that this forms assumes that there exists
a minimum bubble size below which the cascade stops.

We introduce g(∆) = f(d, ∆)d3/2. From this decomposition, the PBE reads

∂tN (d, t) = d−3/2
∫ d0

dh

m(∆)g(∆)κ(∆)N (∆)d∆. (11.6)

Since the integral does not depend on d, we have identified the origin of the −3/2 scaling for
the sub-Hinze bubbles. The sub-Hinze BSD results from the sum of the contribution of gas
filaments, all producing a d−3/2 distribution.
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4. Conclusion: Sub-Hinze bubbles generation

3.2 Origin of sub-Hinze bubbles at size d

For a given size d < cdh, it is interesting to compare fluxes from super Hinze bubbles to d,
depending on the parent size ∆/dh. For a given size ∆, we recall that the flux from size ∆ to
size d reads

Φ(d, ∆) = m(∆)f(d, ∆)κ(∆)N (∆). (11.7)

Lets recall the evolution of each term with ∆.

1. m(∆): As shown in the previous chapter, the filament volume Vf (∆/dh) decreases with
∆/dh. As the breakup process is scale invariant, we expect m(∆) to decrease with de-
creasing Vf (∆/dh) and therefore with increasing ∆/dh. We also found that there is an
optimal parent size, close to dh, where the filament volume Vf is maximum, and hence the
number of child bubbles m(∆) is maximum.

2. κ(∆): For ∆ ≥ 1.5dh the breakup rate is given by the inverse of the eddy turnover time
tc(∆)−1 = ϵ1/3d−2/3 (see chapters 7 and 9). The larger ∆/dh, the smaller the breakup
rate. In addition, for ∆ → 0, κ → 0. Hence, there exists an optimal bubble size close to
dh which maximizes the breakup rate.

3. f(d, ∆): The breakup kernel exhibits the same scaling for sub-Hinze bubbles, no matter
the initial bubble size.

4. N (d): The BSD of super-Hinze bubbles follows N (d) ∝ d−10/3: There are significantly
more bubbles of size close the Kolmogorov-Hinze scale.

We conclude that, for a given size d < cdh, the largest flux comes from bubbles of size close
to dh. These bubbles produce more child bubbles, break more often and are significantly more
numerous.

4 Conclusion: Sub-Hinze bubbles generation

In this chapter, we have demonstrated that the rupture of a single gas filament is sufficient
to generate a power-law distribution of bubble sizes following d−3/2. This power-law suggests
that the filament breakup is self-similar, so that the same breaking scenario repeats itself at
each splitting event. We find that the generated bubble size distribution is independent of the
physical parameters controlling the problem, namely the Weber and Reynolds, in the range of
explored values.

This power-law scaling coincides with the N (d) ∝ d−3/2 scaling observed for the sub-Hinze
BSD measured below breaking waves. As we have identified in chapter 9, that sub-Hinze bubbles
comes from the fragmentation of gas filaments, we conclude that the filament splitting dynamics
is universal, independent of the surrounding turbulent flow. Hence, the number of sub-Hinze
bubbles at size d sums all the contribution of filaments of varying length and size, which all
produce the same size distribution, as schematize on figure 11.5. Importantly, for a given sub-
Hinze size d, we predict that most of the generated bubbles comes from the fragmentation of
bubbles close to the sub-Hinze scale, no matter the value of d, as indicated by the width of the
colored line in figure 11.5.
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Chapter 11. Filament fragmentation

Figure 11.5 – Summary of the fluxes leading to the BSD distribution below breaking waves.
A local (black arrow), and non-local (colored arrow) cascade co-exists. The non-local cascade
arises from the fragmentation of gas ligaments. Each ligament splitting creates a d−3/2 BSD.
The smaller the parent bubble size, the larger the flux from super-Hinze to sub-Hinze bubbles
(schematize by the width of the colored lines).

In this chapter, we have identified the origin of the sub-Hinze BSD power-law. However, the
scale invariant physical mechanism, leading to the emergence of the d−3/2 scaling remains to be
identified. It would be of particular interest to investigate the sequence of breakups to identify
the elementary breaking scenario.
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Conclusion and perspectives

The word Bubble appears 1515 times in this manuscript.

Turbulence/Turbulent is only used 510 times.

In this thesis, we investigated the deformation and fragmentation dynamics of bubbles in
fully developed 3D turbulence by means of numerical simulations. We performed 3D direct
numerical simulations of bubbles in isotropic turbulence as well as simulations of model flows
configurations to combine complex realistic simulations with very controlled ones. Starting from
the example of the bubble size distribution measured below breaking waves, we identified two
main questions which guided the redaction of this manuscript. First, can we define a critical
Weber number in turbulence? Second, what is the origin of sub-Hinze bubbles?

We summarize here the main results and the remaining questions.

From deformations to breakup probability and Wec

In part I we aimed at defining a critical Weber number depending of the physical properties
and the residence time of bubbles within turbulent regions. With this goal in mind, we looked
for a probabilistic description of bubble breakup and aimed at quantifying the probability for
a bubble to break, i.e. to reach a critical deformation, in a given time window. A dynamical
description of bubble deformation was therefore needed.

Before investigating bubble deformations in turbulence, in chapter 5, we first focused on the
deformations of a bubble in the model flow configuration of the uniaxial straining flow. We
showed that most of bubble deformations can be reproduced with the help of a one dimensional
ordinary differential equation on the amplitude of the oblate-prolate mode of deformation. This
equation takes the form of a non linear oscillator equation. Both the Weber and Reynolds
number control the shape of the effective potential. As the height of the energy barrier is finite
for all Weber numbers, we find that there always exists a set of initial conditions allowing the
bubble to break. This result confirms the need for a probabilistic description of bubble breakup.

Building on this success, in chapter 6 we investigated the linear deformations dynamics of
bubbles in turbulence, by running DNS of fully developed 3D turbulence. We showed that, as
in the uniaxial straining flow, the dynamics of each mode of deformation can be captured by
a 1D linear oscillator equation randomly forced by turbulence. We measured that the natural
frequency associated with each mode is unchanged compared to the quiescent case. However,
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turbulence enhances the energy transport from the interface to the flow, which leads to dramati-
cally more dissipation and hence a larger damping rate. We showed that the effective stochastic
forcing statistics corresponds to the pressure statistics on a sphere.

Using this one dimensional model, in chapter 7, combined with a critical value for breakup,
we found that, for residence times larger than the correlation time of turbulence at the bubble
scale, bubble breakup is a memoryless process, hence a Poisson process. We also gave an
expression for the breakup rate at a function of the Weber number. From this expression, we
derived an expression for the cumulative breakup probability as a function of both We and
the residence time tR. Eventually, we defined the critical Weber number as the one at which
the survival probability is 1/2, and were able to quantify its evolution with the residence time.
We found that Wec diverges at short residence times and the transition between statistically
breaking and non breaking bubbles is smooth. As the residence time increases, Wec decreases
and the transition becomes sharp.

In chapter 6 and 7 we focused on the effect of the Weber number on bubble dynamics.
This parameter is believed to be the main controlling parameter for bubble sizes lying within
the inertial range of the turbulence cascade. Nevertheless, chapter 6 shows that turbulence
significantly enhances the effective damping of bubble oscillations. We argued that the effective
damping can be modeled by a turbulent dissipation. At this point, further studies, varying the
energy dissipation rate ϵ, need to be performed in order to confirm this argument and to find
the evolution of the damping rate with the Reynolds number.

Sub-Hinze bubble production

In part II, we focused on the generation of sub-Hinze bubbles, for which the BSD below
breaking waves exhibits N (d) ∝ d−3/2.

In chapter 9, we showed that the breakage of a single bubble in turbulence is sufficient
to reproduce the BSD measured below breaking waves, provided there is a large enough scale
separation between the initial bubble size and the Kolmogorov-Hinze scale. This result confirms
BSD below breaking waves are controlled by breakups. We then took advantage of bubble
lifetimes to identify the origin of sub-Hinze bubbles. We found that breakup sequences, in
which all the events are correlated, happen in two concomitant stages, each of them being
responsible for one exponent of the total BSD. First, the initial bubble deforms on a time given
by the eddy turnover time at its scale. This time sets the bubble lifetime, in agreement with
part II. The bubble shape then exhibits filament structures, surrounded by larger structures.
The two larger structures create two bubbles of size close to the initial bubble, which will feed
the super-Hinze distribution. Filaments split into a large number of bubbles in times given
by the capillary timescale at the filament scale. The bubbles generated by these splitting are
dramatically smaller than the Kolmogorov-Hinze size and feed the sub-Hinze distribution.

Chapter 10 focuses on the generation of filaments in the model geometry. We found that the
filament shape is mostly controlled by the Reynolds number, and we have the intuition that the
gas dynamics may not be negligible to understand the filament formation. From the evolution
of the filament volume with the controlling parameters, we found that bubbles of size close to
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the Kolmogorov Hinze scale produce larger filaments than very large super-Hinze bubbles.
Lastly, in chapter 11, we demonstrated that the fragmentation of a single filament is sufficient

to produce a d−3/2 bubble size distribution. We argued that this power-law distribution arises
from a cascade of scale invariant breakups. Extrapolating this result to bubbles in turbulence
suggests that the breakup kernel must scale as d−3/2 for child bubbles generated by the splitting
of an air filament. We concluded that for a given sub-Hinze size d, the largest flux from super-
Hinze size to d originates from bubbles of size close to dh, as they are more numerous, break
faster and produce more child bubbles.

In this part, we have elucidated the origin of sub-Hinze bubbles as coming from the scale
invariant fragmentation of air filaments. However, at this stage we do not know where the
scaling law comes from. Further investigations, both numerical and experimental are necessary
to identify the splitting mechanism. In addition, it would be interesting to know how this
distribution evolves in the presence of more complex flows. In particular, in the whole study, we
neglected the importance of vorticity. While vorticity seems to be unimportant at the bubble
scale, it might stabilize a filament and change the pinch-off dynamics.
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Appendix A
Dynamics close to a critical point

We consider the one dimensional dynamics of a particle in a potential V which has
at least one unstable equilibrium position at x = xc. The particle starts from a
given position with an initial velocity which depends on a control parameter p. The
potential shape also depends on p. For a critical value pc of p, the particle reaches
the unstable position of the potential. We show that the time spent close to the
unstable point scales as − log(|p − pc|) when p → pc both in the stable case when
the particle does not reach xc and in the unstable case where the particle crosses xc.
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1. Notations and physical configuration

1 Notations and physical configuration

Let us consider the following conservative dynamics:

ẍ = f(x, p) = −∂xV (x, p) (A.1)

where p is some control parameter. Dots represent time derivatives. V (x, p) is a potential
which for some p has at least one unstable position in xc. In the simplest case, this means that
f(xc, p) = 0 and ∂xf(xc, p) > 0. The particle starts from x0 < xc, with a positive initial velocity
which depends on p. When p < pc the particle does not reach xc and turns back at x = xmax(p).
For p > pc, the particle crosses xc. We want to find how the time spent in the vicinity of xc

depends on p − pc.
We set u = xc − x, ϵ = pc − p. At lowest order in u and ϵ, equation (A.1) reads:

ü = u∂xf |c + ϵ∂pf |c (A.2)

Since ∂xf(xc, pc) = ∂xf |c > 0, in the following we write: γ =
√

∂xf |c.

2 Stable case, p < pc

Let us first consider the case when the particle does not reach xc. In this case, we know that
xc − xmax = umin ∝

√
pc − p (see the main text).

2.1 Forcing independent of p

When f is independent of p, equation (A.2) simplifies to:

ü = u∂xf |c (A.3)

whose solutions are of the form:
u(t) = u0eγt + u1e−γt

where u0 and u1 are some constants that depend on the initial conditions. Since we are con-
sidering a stable trajectory, there exists a point at which the particle turns around and moves
away from xc. To simplify notations, this time is taken as the origin of times. Then, we have

u(0) = umin

u̇(0) = 0

Which gives the solution of (A.3):

u(t) = umin
2 (eγt + e−γt) = umin cosh(γt)
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Let U be an arbitrary distance from xc reached at t = T . U reads:

U = umin cosh(γT )

When p → pc, since umin ∝
√

pc − p (showed in the main text), umin → 0 and so cosh(γT ) → ∞.
In this limit: cosh(γT ) ∼ eγT . And so:

γT ∝ − log (umin) ∝ − log (pc − p) (A.4)

As p gets closer and closer to pc, the time spent close to xc diverges as − log(pc − p). Let us
now consider the case where the potential also depends on the control parameter p.

2.2 General expression

If now the potential also depends on p, we have to introduce a new variable v such that
v = u + ϵ

∂pf |c
∂xf |c = u + ϵC. v is a solution of equation (A.3):

v̈ = v∂xf |c (A.5)

with the following initial conditions:

v(0) = vmin = umin + ϵC

v̇(0) = 0

As previously, the solution reads:

v(t, p) = vmin cosh(γt)

Using the definition of v and the fact that vmin = umin + ϵC we get:

u(t, p) = umin cosh(γt) + ϵC cosh(γt) − ϵC

As before, we fix U , an arbitrary distance from xc, reached at T .

U = umin cosh(γT ) + ϵC cosh(γT ) − ϵC

Since we still have umin ∝
√

ϵ and so, at lowest order in ϵ, when p → pc, since γT → ∞:

γT ∝ − log umin

We get again the same divergence of T : γT ∝ − log(pc − p).

3 Unstable Case, p > pc

When p > pc, the particle crosses xc. We then choose as the origin of times the moment
where x = xc, which corresponds to u = 0 and to the minimum of u̇, written u̇min. We first look
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3. Unstable Case, p > pc

for the scaling of u̇min with ϵ.
By conservation of energy we get:

1
2 ẋ2 + V (x, p) = 1

2 ẋ2
0

where V is redefined so that V (x0) = 0. Let us define g(p) such that ẋ0 =
√

2g(p). The previous
equation now reads:

1
2 ẋ2 = g(p) − V (x, p)

Since xc is a maximum of V , ẋ is minimum at x = xc and reads:

1
2 ẋ2

min = g(p) − V (xc, p)

We develop the right hand side at lowest order in ϵ taking advantage of the fact that g(pc) =
V (xc, pc). We get:

1
2 ẋ2

min = −ϵ(g′(pc) − ∂pV (xc, pc))

And so:
ẋmin = u̇min =

√
−2ϵ(g′(pc) − ∂pV (xc, pc)) ∝

√
p − pc (A.6)

Now, equation (A.5) still holds in the unstable case with the new initial conditions

v(0) = u(0) + ϵC = ϵC

v̇(0) = u̇(0) = u̇min

Using the same trick as in the previous section we obtain the general solution in this case:

u(t, p) = ϵC cosh(γt) + u̇min
γ

sinh(γt) − ϵC (A.7)

As before, let us take U , an arbitrary distance from the critical point which is reached at time
T .

U = ϵC cosh(γT ) + u̇min
γ

sinh(γT ) − ϵC (A.8)

When ϵ → 0, since u̇min ∝
√

−ϵ, as previously, we get:

U ∝ u̇min
γ

eγT (A.9)

and we recover:
γT ∝ − log (p − pc) (A.10)
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Appendix B
How to generate a sequence of random
forcing with Gaussian Copulas

In this appendix, we explain how to generate a realisation of T (t), the effective
forcing from turbulence on bubble shape, using Gaussian copula.
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1. Principle and notations

1 Principle and notations

1.1 Constructing T from a vector of Gaussian variables

Let T be the forcing evolution that we want to evaluate and {Ti}i∈[1,N ] its discrete coun-
terpart, defined at times {ti}i∈[1,N ]. We assume the statistics of T to be stationary, so that all
Ti share the same distribution and the covariance matrix of {Ti}i∈[1,N ] is such that Cov(Ti, Tj)
only depends on |ti − tj |. We introduce the following notations:

— ΦσT : probability density function of T

— σT : standard deviation of T

— A(t): autocorrelation function of T

— Yi = Ti/σT

— Σ: covariance matrix of {Yi}i∈[1,N ].

By definition of {Yi}i∈[1,N ], we have the following properties:

— Yi has distribution Φ1, denoted Φ in what follows

— Σi,j = A(|ti − tj |)

— Σii = 1, ie the standard deviation of Yi is 1 for all i.

Finally, we introduce FΦ the cumulative distribution of Φ and F −1
Φ its inverse.

There is no method to directly compute {Yi}i∈[1,N ]. Instead, we will construct {Yi}i∈[1,N ]

using a vector of centered gaussian variables {Xi}i∈[1,N ]: this is a gaussian copula method. Since
we aim at constructing a stationary process, all the Xi also share the same normal distribution
N with average 0 and standard deviation σ′. We introduce these additional notations:

— Σ′: covariance matrix of {Xi}i∈[1,N ]

— FN : cumulative distribution function of N

— F −1
N : inverse cumulative distribution function of N

We can easily generate a Gaussian random vector {Xi}i∈[1,N ] of any covariance matrix Σ′. The
idea is then to transform {Xi}i∈[1,N ] into {Yi}i∈[1,N ]. We know that we can construct Zi of
distribution Φ through

Zi = F −1
Φ (FN (Xi)).

However, the covariant matrix of {Zi}i∈[1,N ] is not known a priori. As a consequence, the
difficulty is to find the right Σ′ so that after applying F −1

Φ (FN (.)) to each Xi, we get a vector
with covariance matrix Σ. In what follows we will determine Σ′ and then deduce Yi using,

Yi = F −1
Φ (FN (Xi)). (B.1)

The following expression will also be useful:

Xi = F −1
N (FΦ(Yi)). (B.2)
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Appendix B. How to generate a sequence of random forcing with Gaussian Copulas

1.2 Explicit expression of each function

The distribution Φ is the hyperbolic secant distribution with standard deviation 1:

Φ(x) = 1
2

1
cosh

(
πx
2
)

Its associated cumulative distribution function is,

FΦ = 2
π

arctan
(

exp
(

πx

2

))
,

whose inverse is
F −1

Φ = 2
π

log
(

tan
(

πx

2

))
.

The centered normal distribution, N is

N (x) = 1
σ′

√
2π

exp
[

− 1
2

(
x

σ′

)2]
.

Its cumulative distribution function is,

FN (x) = 1
2

[
1 + erf(− x√

2σ′ )
]

whose inverse reads
F −1

N (x) = σ′√2 erf−1[2x − 1].

We also introduce the joint law of two centered Gaussian variable Xi, Xj such that Var(Xi) =
Var(Xj) = Σ′

ii = (σ′)2 and Cov(Xi, Xj) = Cov(Xj , Xi) = Σ′
ij :

fij(x, y) = 1
2π
√

∆ij
exp

(
−

Σ′
ii(x2 + y2) − 2Σ′

ijxy

2
√

∆ij

)
(B.3)

where ∆ij = (Σ′
ii)2 − (Σ′

ij)2.
Finally, the autocorrelation function of the forcing is,

A(t) = exp
(
−2π.22/3t

)
(1 + 2π.22/3t)
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2. Determination of the Covariance matrix Σ′

2 Determination of the Covariance matrix Σ′

2.1 Diagonal terms

We can explicitly compute Σ′
ii from Σii using equation (B.2):

Σ′
ii = Var(Xi) = (σ′)2

= Var(F −1
N (FΦ(Yi)))

=
∫

R
F −1

N (FΦ(y))2Φ(y)dy −
[ ∫

R
F −1

N (FΦ(y))Φ(y)dy

]2

= I1(Σii) − (I2(Σii))2

We estimate numerically these two integral and find I1 = 1 and I2 = 0 (indeed the integrand of
I2 is odd). It follows,

Σ′
ii = (σ′)2 = Σii = 1, ∀i (B.4)

2.2 Off-Diagonal terms

This time, we want to evaluate Σ′
ij with i ̸= j. We do not know the joint law of (Yi, Yj),

which is too costly to be evaluated, but we have an expression for the joint law of two Gaussian
variables (equation (B.3)). We then use equation (B.1) to express Σij as a function of Σ′

ij :

Σi,j = Cov(Yi, Yj)

= Cov[F −1
Φ (FN (Xi)), F −1

Φ (FN (Xj))]

=
∫∫

R2
F −1

Φ (FN (x1))F −1
Φ (FN (x2))fij(x1, x2)dx1dx2 −

[ ∫
R

F −1
Φ (FN (x))N (x)dx

]2

= Ia(Σ′
ij) + I2

b

Numerically, we find Ib = 0 (the integrand is odd).
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Figure B.1 – Variation of Σij with Σ′
ij . The blue line is Ia. The black dotted line follows

Σij = Σ′
ij .
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Appendix B. How to generate a sequence of random forcing with Gaussian Copulas

We estimate Ia numerically (see figure B.1) and find that Ia(Σ′
ij) = Σ′

ij is an excellent
approximation. It follows that:

Σij = Σ′
ij , ∀i ̸= j (B.5)

2.3 Conclusion

Combining equations (B.4) and (B.5) we have

Σ = Σ′ (B.6)

making the evaluation of Σ′ in our case extremely fast and cheap.

3 Verification

To summarize, we first generate a Gaussian random vector {Xi}i∈[1,N ] with covariant matrix,

Σ′
ij = A(|ti − tj |). (B.7)

Then we use equation (B.1) to get {Yi}i∈[1,N ]. Finally, Ti is obtained using

Ti = σT Yi. (B.8)

Figures B.2 and B.3 compare the autocorrelation function and the distribution of Ti, respec-
tively, obtained with the above procedure, to their theoretical expressions. The agreement is
excellent.
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Figure B.2 – Autocorrelation of Ti, ie Σ′
ij as a function of time. The black dotted line is the

targeted function. The blue line corresponds to the generated forcing signal.
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3. Verification
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Figure B.3 – Comparison between the distribution of the generated noise (in blue) and the
theoretical target distribution (in black). The agreement is excellent.
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MOTS CLÉS

bulle, turbulence, fragmentation, déformation, simulations numériques, modélisation

RÉSUMÉ

La présence de bulles dans des écoulements contribuent à augmenter le mélange, ainsi que les échanges de matière et
de chaleur entre les deux phases. Leur présence est ainsi primordiale dans un grand nombre de procédés industriels ainsi
que dans des contextes environnementaux, caractérisés par des écoulements inertiels voire turbulents. Pour quantifier
l’impact des bulles, il faut d’abord comprendre et modéliser leur distribution de taille, et son évolution temporelle. Dans
des environements dilués, où l’évolution de la distribution est contrôlée par la fragmentation, la distribution présente deux
lois de puissance séparées par une taille critique.
Dans un premier temps, nous nous intéressons à l’origine de la taille critique. Celle-ci correspond à la limite entre les
bulles stables et instables, appelée échelle de Kolmogorov-Hinze. Les écoulements turbulents étant intrinsèquement
caractérisés par de larges fluctuations, à la fois de pression et de vitesse, cette taille critique reste mal définie. Ici, nous
proposons une nouvelle définition, probabiliste, de cette limite, qui inclue le temps de résidence des bulles dans les
zones turbulentes. Pour cela, nous étudions numériquement la déformation d’une bulle, d’abord dans une géométrie
d’écoulement modèle puis dans un écoulement turbulent homogène isotrope. Dans les deux cas, nous montrons que
la dynamique de déformation peut être reproduite par une dynamique 1D sur le mode de déformation oblate-prolate.
En extrapolant la dynamique obtenue dans le cas turbulent à des bulles qui cassent, nous quantifions la probabilité de
fracture en un temps donné et en déduisons l’évolution de la taille critique au cours du temps.

Dans un second temps, nous nous intéressons à la génération de bulles sous l’échelle de Kolmogorov-Hinze. En effet,

s’il y a un consensus sur l’origine de la distribution des bulles plus grandes que la taille critique, l’origine de la distribution

pour les petites bulles restait à déterminer. Grâce à des simulations numériques directes, nous identifions que ces bulles

proviennent de la rupture de filaments gazeux produits lors de la déformation de bulles plus grandes que l’échelle critique.

Nous caractérisons ensuite la production et la fragmentation de ces filaments dans une géométrie d’écoulement modèle.

Nous découvrons que la fragmentation de ligaments sous contrainte d’étirement conduit à une distribution de taille de

bulles en loi de puissance qui coïncide avec la distribution sous l’échelle critique en turbulence.

ABSTRACT

Through their contributions to mixing, gas and heat transfers and aerosol production, bubbles play a central role in many
industrial and environmental contexts, characterized by inertial flows, possibly turbulent. Understanding the physical
processes controlling the bubble size distribution (BSD) and its temporal evolution, is key to quantify these exchanges.
In dilute environments, in which breakup dominates, the BSD is characterized by two power laws separated by a critical
size.
We first focus on the origin of this critical size. This size is known to be related to the Kolmogorov-Hinze scale, the size
separating statistically stable, from unstable bubbles in turbulence. As a turbulent flow is characterized by large velocity
and pressure fluctuations, this size is only defined in a statistical sense. We give here a new definition of this critical
size, in terms of survival probability, which includes the residence time of bubbles within turbulent regions. To do so, we
investigate numerically bubble deformations first in a model flow geometry and then in 3D homogeneous and isotropic
turbulence (HIT). In both cases, we find that most of bubble deformation dynamics can be reproduced by a 1D model of
the oblate-prolate mode. By extrapolating the deformation model obtained in turbulence to breaking bubbles, we deduce
the probability of breaking and the evolution of the critical size in time.

We then investigate the generation of sub-Hinze bubbles. While there is a consensus for the origin of the power-law scaling

for the super-Hinze BSD, the sub-Hinze BSD remained to be understood. By running DNS of bubbles in turbulence, we

identify that sub-Hinze bubbles come from the fracture of gas filaments produced during the deformations of super-Hinze

bubbles. We characterize filament production in a model flow configuration, as well as filament splitting. We find that

filament breaking under stretching universally produces a power-law distribution, which coincides with the one obtained

below breaking waves. This mechanism explains the origin of the sub-Hinze BSD.
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