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”The internet’s completely over.”

PRINCE (2010)
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Abstract

Today, music streaming services have become the primary means for people
to access and enjoy recorded music. These platforms rely on algorithmic rec-
ommendation systems to help users navigate vast music catalogs and provide a
personalized listening experience.

For these recommendations to be accurate, patterns must be identified, and
user preferences modeled accordingly. There are numerous ways to approach
this modeling process, and each method impacts the recommendation outcomes
differently. In turn, by consuming the recommended items, users’ preferences
and listening behaviors may be influenced in various ways. For instance, recom-
mendations may lead to a diversification of their music choices, exposing them
to new content, or, conversely, confine them to a niche. These influences may
also manifest in more subtle ways, making them harder to measure.

This thesis explores the feedback loop between musical taste and recom-
mendation systems through two main questions: how can we computationally
model individual musical preferences using behavioral data from streaming plat-
forms? how can we measure the influence that recommender systems have on
shaping those preferences?

We begin by providing an overview of the data that can be collected from
streaming platforms, exploring the types of information available about users,
music items, and their interactions. We also examine the structure and distribu-
tion of these data, which form the foundation for subsequent analysis.

Next, we review the literature on musical taste, a topic that has been widely
studied across various fields such as sociology, psychology, and cultural geogra-
phy, long before the advent of music recommender systems. By reviewing these
diverse approaches to measuring musical preferences, we identify insights that
can inform and improve recommendation algorithms.

We then address the challenges of representing the musical space. With
millions of tracks available on streaming platforms, it is crucial to categorize,
label, and identify common patterns among music items in order to accurately
model user preferences and generate relevant recommendations.

Finally, we present an overview of music recommendation systems, focus-
ing on the current methods, specific challenges in the music domain, and the
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role of fairness and bias in influencing user preferences and listening habits.
With this multidisciplinary and multi-modal background in place, we ad-

dress our research questions. First, we explore how to model musical taste us-
ing streaming data, constructing a ’fingerprint’ of user preferences based on two
different definitions of musical taste: one that highlights individual uniqueness
and another that reflects collective preferences. Then, we tackle the challenges
in measuring the influence of music recommender systems, using local music
consumption as a case study. Ultimately, this thesis aims to bridge the gap
between understanding musical taste and developing recommendation systems
that are not only personalized but also capable of fostering diverse and satisfying
listening experiences.



Résumé

Aujourd’hui, les services de streaming musical sont devenus le principal moyen
d’accéder à la musique enregistrée. Ces plateformes reposent sur des systèmes
de recommandation algorithmique pour aider les utilisateurs à naviguer dans des
catalogues immenses et leur offrir une expérience d’écoute personnalisée.

Pour que ces recommandations soient pertinentes, il faut d’abord identi-
fier les schémas de comportement et modéliser les préférences des utilisateurs.
Il existe plusieurs manières de procéder à cette modélisation, chaque méthode
peut influencer les recommandations de manière différente. Réciproquement,
les recommandations peuvent elles-mêmes affecter les goûts et les pratiques
d’écoute des utilisateurs, que ce soit en élargissant leurs horizons musicaux ou,
à l’inverse, en les enfermant dans une bulle. Parfois, ces effets sont plus subtils,
ce qui les rend plus difficiles à mesurer.

Cette thèse examine la relation entre le goût musical et les systèmes de
recommandation à travers deux questions: comment modéliser les préférences
musicales individuelles à partir des données comportementales issues des plate-
formes de streaming? comment mesurer l’impact des systèmes de recomman-
dation sur la formation de ces préférences?

Nous commençons par une présentation des données disponibles sur les
plateformes de streaming : les informations relatives aux utilisateurs aux morceaux
de musique et à leurs interactions. Nous examinons également la structure et la
distribution de ces données sur lesquelles reposent nos analyses.

Ensuite, nous passons en revue la littérature sur le goût musical, un sujet
largement exploré dans des domaines comme la sociologie, la psychologie et
la géographie culturelle, bien avant l’arrivée des systèmes de recommandation.
Que peut-on tirer des approches utilisées dans ces domaines pour mieux com-
prendre et modéliser les préférences musicales, notamment dans le cadre de la
recommandation algorithmique?

Nous abordons ensuite les défis liés à la représentation de l’espace musi-
cal. Avec des millions de morceaux disponibles, il est essentiel de catégoriser,
étiqueter et identifier les similarités entre les titres pour modéliser efficacement
les préférences et fournir des recommandations pertinentes.

Enfin, nous proposons une vue d’ensemble des systèmes de recomman-
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dation musicale, en présentant les méthodes actuelles et les défis propres à la
recommandation de musique, notamment les notions d’équité et de biais algo-
rithmiques qui peuvent influencer les préférences et les pratiques d’écoute des
utilisateurs.

Avec ce cadre pluridisciplinaire et multimodal en place, nous tentons de
répondre à nos questions de recherche. Nous commençons par explorer com-
ment modéliser le goût musical à partir des données de streaming, en con-
struisant une ’empreinte’ des préférences basée sur deux conceptions du goût
musical : l’une axée sur l’individualité l’autre reflétant des tendances collec-
tives. Ensuite, nous nous attaquons aux défis liés à la mesure de l’influence
des systèmes de recommandation, en prenant pour exemple la consommation
de musique locale. Au final, cette thèse vise à lier la compréhension du goût
musical et la création de systèmes de recommandation capables non seulement
de personnaliser les suggestions, mais aussi de permettre une écoute diversifiée
et enrichissante.
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Chapter 1

Introduction

1.1 General overview

1.1.1 Context
My parents have never been huge music fans. Sure, my mom had a couple
of songs that she would hum while doing chores, and my dad always repeated
Opus’ ’Life is Life’ chorus whenever he was in a good mood, but it was pretty
much it. As I could not really get any music influence from my family, I had to
get it from somewhere else.

Around the age of 5, I was introduced to classical music by my piano
teacher, and even through I liked to play the piano, I do not remember being
particularly involved with the music itself. Around 10, I started watching MTV
charts. I would write down the songs’ titles in a notebook in order to download
them from eMule1 later — this was a full on research task as I would do this with
any song, no matter if I liked it or not. I don’t remember why I started doing
this exactly, but I guess that I noticed that music became a subject among kids
of my age, and I probably felt the need to create my own music identity. During
this process, I bonded with several artists, but the main one was a Russian ’rock’
girls band2, which was very popular at the time.

Starting from there, a clear path was set: I will be a rock fan. I asked for a
guitar for my birthday, made friends with other kids who liked rock in my class,
and we even created a band of our own. The more I grew up, the more reckless
of a teenager I was becoming, the more ’heavy’ was the music I listened to. By
the age of 17, I was a fully set ’metalhead’.

After high-school, I moved to France to study in university, and slowly
started to shift from this label, digging more and more into different kinds of
music. For example, I started listening to russian pop, which I never really en-

1eMule
2the best music band that has ever existed (according to my 12 years old self)
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CHAPTER 1. INTRODUCTION 15

joyed before, out of nostalgia. Also, I met a lot of new friends, who definitely
influenced my preferences and introduced me to new genres and artists. Finally,
I gave a second chance to some music that I did not understand as a teenager,
like psychedelic rock or jazz, and some of it suddenly became my favorite.

We all have our own history with music, shaped by different influences and
experiences. But can we make generalizations about why we like the music we
do? Are there patterns common to all or most people? These are classic ques-
tions, and various fields of knowledge have attempted to address them. When I
began this thesis, I was driven by my personal experience with music and a de-
sire to understand other people’s musical journeys. I was curious about whether
there are shared paths in how we develop our musical tastes and how these pref-
erences evolve over time.

The ANR RECORDS project, of which this thesis is a part, was specifi-
cally launched to explore these questions in the streaming era. Beyond personal
feelings and experiences, streaming data allows us to analyze billions of digi-
tal traces from listeners across the globe. This, in theory, provides an almost
exhaustive view of music consumption on a massive scale.

With this unprecedented data, new opportunities arise to explore whether
computational methods can help us answer questions such as: Are there identi-
fiable pathways in how individuals develop their musical tastes? Can we detect
trends that transcend personal histories and social contexts? What role do algo-
rithms and platforms play in shaping these journeys, and can we measure this
influence? These are the questions that this thesis seeks to address.

1.1.2 At the origins of musical taste
Where does our musical taste come from?

A common assumption from psychology is that our music preferences mostly
form around our teenage years, and do not change that much after early 20s
(North and Hargreaves, 1995). The evolution of taste with aging has generally
been a big subject among psychologists, and for example it seems that our tol-
erance for novelty increases as we get older(Berlyne, 1973). Also, some corre-
lations were found between personality and preferred music styles, for example
extroverted people seem to usually enjoy energetic music, like hip-hop or funk
(Rentfrow and Gosling, 2003). Does all of this mean that I was condemned to
like rock and metal as a dreamy and dissident teenager? And was it only natural
that I approached more and more ’sophisticated’ music while growing up?

Beyond psychological factors, the outside world also has an influence on
how our music preferences are shaped. Many different theories have been ex-
plored by social scientists over the years. Starting from the 60s, sociologists
established correlations between individuals’ social background — education,
economic, cultural capitals — and their listening and appreciation of specific
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genres, artists or music pieces (Bourdieu, 1984). Later on, the omnivore/univore
theory emerged, linking a broader and more diverse music preferences to higher
social status, and vice versa (Peterson, 1992). More recent work suggests that
as we get to be around people from different backgrounds during our lives, this
unique set of connections helps us to build our own individual taste (Lahire,
2008). Conducting a proper review of this abundant scientific literature is obvi-
ously beyond the scope of this work, but later in this manuscript we will discuss
some of these past works.

Our music taste can fluctuate a lot all over our life course, influenced by
many things other than our social life. As we use music to regulate our emotions
(Saarikallio, 2008), our preferences can evolve according to our mood, activity,
minor and major life events. For example, listening to music from our homeland
out of nostalgia seems to be quite a typical human behavior (Barrett et al., 2010).

1.1.3 The evolution of available data
’Traditional’ data collection methods

As we will see in the following of this manuscript, many scientific studies that
aim to better understand human preferences, including when it comes to mu-
sic, have relied on declarative data collected through surveys and interviews. In
some cases, observational data has been used, but if was often recorded in some-
what unrealistic conditions of practice — arbitrary experiments conducted in a
lab, with people very involved in the activity being studied. This raises concerns
about the representativity of the results obtained from such data.

The first issue is scalability and sample representativeness: it is costly and
requires substantial resources, notably to find enough people willing to give their
time to participate in a study, and it is even more challenging to ensure that those
respondents are representative of a population in general. For example, many
psychology studies have been conducted on students, because they are readily
available, relatively free, and can be easily motivated to give some of their time
in exchange for credits or a small fee. However, such studies may be hard to
generalize because they often rely on a small and peculiar demographic group.

Second, the data collection process involves decisions that cannot be re-
vised later. Typically, researchers will decide on a set of questions in advance
and chose specific metrics for each, for example represent the preferred music
as a Likert scale for a predefined list of music genres. Once data collection is
completed, it is usually not possible to collect more data or alter the represen-
tation of the data, which can be quite inconvenient, especially considering that
these decisions can directly impact a study’s results.

Finally, the problem with declarative, self-reported data is that humans are
not the most reliable reporters. We all have our biases, we may forget, under
or overestimate things, and have a distorted perception of reality influenced by



CHAPTER 1. INTRODUCTION 17

social norms and personal subjective experiences. In addition, for such a fre-
quent activity like recorded music listening, very few people would practice
some kind of ’quantified self-tracking’ of when, what, how much they listen to,
etc., thereby producing data that might prove useful for the scientific study of
this social practice. All of these factors can compromise the accuracy of study
results.

The emergence of streaming data

Today, with the widespread use of the Internet and streaming services, the amount
of available data has vastly increased. We constantly share detailed information
with different companies — our locations, who we are with, what we post, like,
comment, and even how long we look at specific ads — all of our actions are
carefully stocked in databases counting billions of lines. Music streaming is
no exception, and services like Deezer3, Spotify4 or Apple Music5 do their best
to keep track of their users’ histories of interactions on their platforms. These
records, called logs, can typically include the type of action (e.g., stream, like,
click, skip, search query), its timestamp, location, duration, context and other
information. Considering that these platforms count millions of users, who in-
teract with millions of songs everyday, a tremendous volume of data has been
collected over the years.

This data, which accurately reflects real-life music listening behaviors, is
more reliable than data gathered from surveys where people report their own be-
haviors, which can be biased. In an ideal world, this wealth of data could answer
many longstanding questions researchers have about music listening habits.

While big data offers significant advantages, it also introduces new chal-
lenges. One major issue for research, particularly public-sector research, is
accessing this data, as it is primarily collected by private companies that of-
fer these digital services, and they are the ones who decide what data to share
and with whom. Fortunately, collaborations efforts like the ANR ’RECORDS’
project are more and more frequent, showing promise in bridging the gap be-
tween private data holders and public researchers. Still, sharing data with third
parties and making open-source datasets must be done with extra caution to en-
sure users’ privacy. A whole branch of research have developed to address this
issue, exploring techniques like hashing, partially deleting or adding noise to
data, to protect individual privacy while preserving the integrity and usability of
the data for research purposes.

Furthermore, while a large volume of data may initially seem advantageous,
it also introduces significant computational challenges. Methods and algorithms

3deezer.com
4spotify.com
5music.apple.com

https://www.deezer.com/
https://open.spotify.com/
https://music.apple.com/
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that work with smaller datasets can become impossible to use on much larger
datasets generated by streaming services.

Finally, as opposed to declarative data, where a respondent answers directly
to specific questions, behavioural data needs to be interpreted. Typically, a sin-
gle user action can have multiple explanations. For example, a user can skip
a song because they dislike it, but also because it does not suit their current
mood, even though they generally enjoy it. Similarly, the ’like’ button, typically
seen as an indicator of preference, might also be used to bookmark tracks that
a user has not actually listened to yet. In more advanced contexts, researchers
might want to get some additional information about the users through indirect
indices: for example, analyzing IP addresses to detect user relocation, or using
device type as an indicator of social class. This is a problem that usually does
not occur with declarative data, where the participants give explicit responses to
specific questions.

1.1.4 Recommender systems and musical taste

Streaming platforms have introduced more than just new tools for researchers
studying music listening behavior. Their emergence has intertwined these theo-
retical questions with practical challenges for the platforms themselves.

With millions of tracks available, streaming services rely on recommender
systems (Recommender Systems (RS)) (Lü et al., 2012) to help users navigate
these vast catalogs of music. These systems analyze past user behavior and
preferences to suggest music that listeners might enjoy, typically by finding pat-
terns based on similarities between users or music items. To build effective RS,
platforms need to model users’ preferences and detect patterns in their listen-
ing behaviors. The more accurately these systems understand and cater to user
tastes, the more likely users are to engage with the recommendations.

For a long time, the development of music recommender systems (Music
Recommender Systems (MRS)) evolved separately from research on musical
taste in other disciplines, and only occasional attempts have been made to bridge
the two fields. For example, Laplante (2014) conducted an extensive review of
studies on musical taste from the social sciences, focusing on how these insights
could enhance the design of RS. Soleymani et al. (2015) proposed and demon-
strated the success of combining content-based approaches with emotional and
psychological aspects of music perception to improve the recommendation of
less popular songs. Zangerle et al. (2018, 2020) explored how incorporating
users’ country-specific, culture-related, and socio-economic features could im-
prove recommendation quality. Separating ’theoretical’ research on musical
taste from work on MRS is problematic because understanding and modeling
users’ music preferences is essential for effectively feeding these systems. We
hope this thesis contributes to the growing interdisciplinary literature in this
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area.

In addition to understanding how to model music preferences for building
high-quality MRS, it is important to consider the impact these systems may have
on how people consume music. Just as friends or favorite radio stations shape
our music tastes, the growing reliance on algorithmic recommendations for dis-
covering new music means that these algorithms can influence our preferences
as well (Datta et al., 2018; Anderson et al., 2020). Algorithmic fairness has
become a significant concern within the RS community (Wang et al., 2023).

In the music context, algorithms seem to favor more popular artists, which
can disproportionately include male artists and those from more developed coun-
tries (Kowald et al., 2020; Shakespeare et al., 2020; Lesota et al., 2022). Addi-
tionally, these systems tend to perform better for users with more mainstream
tastes, potentially marginalizing those with niche preferences Kowald et al.
(2020). However, since these systems frequently lack explainability (the ability
to provide clear post-hoc explanations for their decisions) and interpretability
(the ease with which humans can directly understand how a model works) it is
not always easy to identify the source of certain biases Afchar (2023). More-
over, some biases may be difficult to measure due to incomplete, incorrect, or
initially biased datasets. We will explore these challenges throughout this thesis.

Music preferences and the way we choose to shape them in a recommenda-
tion setup can impact the outcome of recommendations, which might influence
our preferences in return. In this thesis, we will explore how streaming MRS
both respond to and influence user behavior.

1.2 Research objectives
In this thesis, we will focus specifically on two central questions :

How can we model individual musical taste, both to better understand
it and also to use it for recommendation purposes? Streaming platforms pro-
vide an overwhelming amount of data related to user preferences, and whether
for understanding these preferences or using them in RS, it is crucial to com-
press this information to extract its essence. Drawing from different definitions
in the humanities, we will focus on two in particular: what makes us unique and
what is representative of our general preferences. We will then attempt to apply
these definitions to streaming data in the form of a concise fingerprint for each
user.

How can we measure the influence that RS may have on musical taste?
We will begin by discussing the fairness of MRS in general and then address
this question through the specific example of local music bias. We will explore
population biases that may exist in different datasets, as well as the issues related
to the labeling of musical items, both of which can distort our understanding
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of algorithmic biases. Finally, we will discuss ways to mitigate these issues
in order to create a more accurate picture of existing biases and address them
accordingly.

Since these questions are embedded in a broad societal and technological
context, we will draw on literature from multiple disciplines to explore them,
which is what makes this thesis unique.

1.3 Thesis structure

To begin, we need to become familiar with the data generated by streaming plat-
forms. In Chapter 2, we will explore what this data looks like using Deezer as
an example. We will examine the available information about users, the struc-
ture of the music catalog and its metadata, and focus on the interactions between
users and the items within the catalog. We will discuss how these interactions
can be represented, the statistical distributions behind/sustaining these interac-
tions, and what additional insights, such as geographical location or context, can
be derived. We will then look at the specific characteristics of streaming data
and how it differs from other types of interaction data collected online. Next,
we will discuss how behavioral data from streaming can be supplemented with
declarative information collected in surveys or interviews. Finally, we will ad-
dress the importance of making this type of datasets publicly available, outlining
the challenges related to data anonymization and how they can be addressed.

Following this, we will move on to three literature review chapters. As
mentioned earlier, the topics covered in this thesis are multifaceted and have
been studied across different disciplines, so it is important to approach them
from multiple angles.

In Chapter 3, we will examine how musical taste has been studied and mea-
sured across various fields, including sociology, psychology, ethnomusicology,
and data science. We will explore the primary origins of our musical prefer-
ences, such as social background, personality traits, and sociological or cultural
origins, as well as how our tastes evolve over the course of our lives, both in the
short and long term. The goal of this chapter is to understand the different ways
we can quantify human, or user, behavior.

We will note throughout this chapter that there are many ways to represent
music, and the way we do so can influence how we perceive people’s tastes.
In Chapter 4, we will shift focus to the music catalog itself, exploring how we
can extract information from different musical objects, label them, categorize
them, or represent them in a continuous space. We will approach this from
two perspectives: first, by using the characteristics of the music itself, either
through human experts or automated audio analysis, and second, by relying on
aggregated human behaviors and preferences.
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Once we have established how to represent both users and music items and
how they are interconnected, we will proceed to Chapter 5, where we will dis-
cuss how these interactions can be initiated and influenced by RS. We will first
provide an overview of the different types of recommendation algorithms. Then,
we will discuss the main challenges in RS, both generally and in the specific
context of music. Key issues such as the cold start problem, contextual recom-
mendation, balancing novelty with familiarity, and biases and fairness will be
covered.

With these foundations in place, we will attempt to answer our two main
research questions through two studies that I have conducted during my PhD.

In the first study, we will explore how to model users’ musical taste and
capture it in a fingerprint, from their behavior on a streaming platform. To
construct this fingerprint, we will rely on two definitions of musical taste from
the literature — one defining taste as what makes us unique, and the other as
what is representative of our overall preferences — and we will show how these
two definitions lead to contradictory solutions. Additionally, we will address
the users’ identifiability through their interactions with music.

In the second study, we will tackle the issue of fairness in MRS, using the
specific example of local music consumption. Building on a previous study, we
will demonstrate how biases and missing labels in data can lead to a misinter-
pretation of algorithmic bias, and discuss potential solutions to address these
issues.

To conclude, we will summarize the key findings of the thesis and discuss
possible future research directions, some directly related to the questions ex-
plored in this thesis and some more broadly related to the topic of music con-
sumption and streaming.

1.4 Publications
To conclude this introductory chapter, in this section we list the author’s publi-
cations that occurred during the PhD thesis :

• Matrosova, K., Marey, L., Salha-Galvan, G., Louail, T., Bodini, O., &
Moussallam, M. (2024). Do Recommender Systems Promote Local Mu-
sic? A Reproducibility Study Using Music Streaming Data. In Proceed-
ings of the 18th ACM Conference on Recommender Systems (pp. -).

• Matrosova, K., Moussallam, M., Louail, T., & Bodini, O. (2024). De-
pict or discern? Fingerprinting musical taste from explicit preferences.
Transactions of the International Society for Music Information Retrieval
(TISMIR), 7(1), 15-29.
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Chapter 2

Getting familiar with data from
streaming platforms

A music streaming platform is a service, most often accessible through a website
and/or a mobile app, that allows users to listen to audio content online in real
time, without having to download music files. Platforms, like Deezer, Spotify
or Apple Music, operate by hosting large libraries of tens of millions audio files,
which users can access via a subscription or ’freemium’1 model.

The central actors involved include the users (that are supposed to be hu-
man listeners), artists (content creators), record labels (rights holders), and the
platform itself (as an Internet service provider) 2. Each actor contributes to, or
benefits from, the streaming ecosystem in different ways. Artists provide the
content, record labels manage the licensing and royalties, and platforms curate,
deliver, and recommend the content to listeners. Users can interact with the
platform in multiple ways, such as searching for music, streaming songs, liking
different music items (songs, albums, artists) or creating playlists. They can also
explore curated playlists and receive recommendations based on their listening
behavior. Each of these actions generates data that platforms use to understand
preferences and provide personalized experiences.

Data collection on music streaming platforms occurs through a variety of
mechanisms. During user registration, platforms typically gather basic informa-
tion such as the user’s age, location, gender, and sometimes even musical pref-
erences, which helps create an initial personalized experience. On the content
side, music providers (such as artists or record labels) submit audio files, along
with some metadata, including details like the song title, artist name, genre, re-
lease date, and album information. Users can interact with the catalog in many
different ways. First, they can use the search bar or simply navigate through

1A business model where basic services are provided for free, typically supported by ads,
while advanced features or content require payment.

2The Music Streaming Economy – Part 1: The International Music Streaming Boom
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the platform in order to find the music they are interested in. They can listen to
music by playing (or streaming) and skipping (going to the next track). Finally,
they can save the items (tracks, albums, artists) of their choice by liking them
(saving it to a list of favourite items) or by adding songs to a specific playlist.
All of these interactions are recorded in timestamped logs, that link a unique
user ID to a specific item ID. These logs also capture the type of action and
the context of each interaction, such as the duration, device used, location, app
context (how has the item been accessed by the user) and other relevant details.

In this chapter, our goal is to provide an overview of what data from a mu-
sic streaming platform can look like, in order to better understand how we can
use it in research and for recommendation. In the following sections, we will
describe, and also highlight the challenges and limitations of the available data
about users, music items, and user-items interactions. To do so we will take the
example of different datasets extracted from Deezer, as well as some external
studies. We will compare music streaming data to other types of online con-
tent consumption and recommendation datasets, to identify common patterns
and highlight those that are unique to music consumption. Then, we will take
interest in the differences that can occur between behavioral data from stream-
ing platforms, and declarative data collected in surveys about music preferences
and listening habits. Finally, we will discuss the importance of making music
streaming datasets public, and we will underline the challenges associated with
doing so without compromising user privacy.

2.1 Users
Later on in the manuscript, we will talk about the processes sustaining the for-
mation of our music preferences, which include social, geographical and cul-
tural factors. In this section we provide an overview of a subset of the total
population of Deezer users, and see what information can possibly be used to
know more about them, beyond their music preferences.

At the time of writing this manuscript, Deezer counts about 16M active
users, located in more than 180 countries, and among them around 7M are pay-
ing users. Like most platforms, Deezer collects data concerning its users. This
data includes straightforward information, like self-declared gender and age,
country of registration, as well as less obvious things like the type of subscrip-
tion or the device used for streaming, through which some assumptions can be
made on the social status or wealth for example. In the following paragraphs,
we use a set of 50,000 random users as an example.

Before diving into the numbers, we have to keep in mind that a significant
number of users choose not to disclose personal information, so all numbers
should be taken with a grain of salt. For example, in a random sample of 50,000
users, only 31.1% have specified their gender, 27.1% their date of birth, and
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Figure 2.1: Deezer users’ demographics (gender and age) of 50,000 random
Deezer users.

59.4% their country of residence. However, as the platform now requires these
fields to be filled in, we can assume that among active or more recent users, this
information is generally available. Even with this, the accuracy of the provided
data remains uncertain.

Figure 2.1 illustrates the gender and age distributions of Deezer users who
have declared these information. Of these users, 26.7% are female and 65.4%
are male. The users’ are 33.89 years on average, with a median of 32 years.
The most represented demographic overall is young males (18-35 years old).
Deezer’s largest markets are France, Brazil, and Germany. For users whose
country is unknown, or to pinpoint a more precise location, listening history can
be analyzed, as each stream is linked to an IP address. Location detection will
be discussed further in the section on user-item interactions.

Other types of platforms often collect a lot of data related to the users’ social
or economic capital. On social networks apps, users usually fill in their univer-
sity, place of work, share places they have visited, and connect with other users.
Shopping websites can use the users’ purchasing history to make assumptions
on their financial and social position. In comparison, music streaming services
collect way less personal data. However some assumptions about the user can be
made, for example through variables like the subscription plan and the type of
device used to stream music. Deezer has several subscription plans: freemium,
premium, duo, family, student. Some users may have temporary access to the
premium account through a 3-6-12 months voucher. The type of device, and
sometimes connected devices like Bluetooth speakers are registered for each
stream. By combining all of this data, some assumptions can be made about the
users. To put it simple, a user having a self-paid premium account and using
an iPhone is probably wealthier than a person with a freemium account and an
Android phone.
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Figure 2.2: Macro genres distribution among favourite artists of 1M active
Deezer users.

2.2 Music items

Streaming services usually have huge catalogs of music items : tracks, albums
and artists. These items are supplied to streaming platforms by music majors,
such as Universal, Warner, Sony and independent distribution services, like Dis-
trokid for example. Each item is usually accompanied by metadata — data that
describes the music item. For a track, metadata traditionally includes the re-
lated album and artist(s) IDs, release date, release country, information about
the provider. Additionally, metadata can contain tags related to the item’s genre,
mood or country. On Deezer, for example, there are two types of genre tags :
macro genres, which are 25 and represent a broad classification, as well as a
list of 250 more specific genre tags, where several tags can be associated to one
music item. Figure 2.2 represents the distribution of macro genres among the
favourite artists of 1M active users from our paper Matrosova et al. (2024b).

Unfortunately, such tags are not provided systematically. In order to make
up for the lack of provider tags, platforms (and researchers) often use a variety
of techniques, including human annotations, audio analysis and web scrapping
(Sordo and Serra, 2014; Humphrey et al., 2013). We will discuss in more detail
the existing techniques and challenges of music annotation in Chapter 4. For
now we will simply show an example of how tags can be ambiguous or incom-
plete, on the example of the dataset used in one of our research papers Matrosova
et al. (2024a). This dataset contains three months of streaming logs of a total of
30,000 Deezer users, more specifically 10,000 users from each of three coun-
tries where Deezer is an important actor in the streaming market — France,
Germany and Brazil — in 2019. For each track, we extracted three different
country-related tags, from two different information sources: the artist’s active
country and country of origin (two distinct variables, coming both from internal
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Country Label Source Labeled
Streams

Local Streams
Among Labeled

Local Streams
Among All

France
Deezer - Activity 76 % 50 % 38 %
Deezer - Origin 75 % 34 % 26 %

MusicBrainz 76 % 38 % 29 %

Germany
Deezer - Activity 60 % 40 % 24 %
Deezer - Origin 62 % 30 % 18 %

MusicBrainz 69 % 33 % 23 %

Brazil
Deezer - Activity 41 % 48 % 19 %
Deezer - Origin 36 % 37 % 13 %

MusicBrainz 38 % 38 % 14 %

Table 2.1: Percentages of (i) labeled streams, (ii) local streams (among the la-
beled streams) and (iii) local streams (among all streams) in the Deezer dataset
used in Matrosova et al. (2024a), by country and label source. A labeled stream
corresponds to a stream of a music track that is tagged with a country label. A
local stream corresponds to a stream where the user and the streamed artist have
the same country label.

Deezer tags), as well as the artist’s country according to MusicBrainz3 (a pub-
lic music database). Table 2.1 presents the proportions of labeled streams and
local streams (among the labeled ones, and among all streams) in this dataset,
according to the three label sources.

As we can see, none of the labeling sources provides complete label cov-
erage. Across the three considered countries and label sources, between 24%
and 64% of the streams are unlabeled. Also, the proportions of local consump-
tion vary depending on the label source. For example, the artist’s country is
identified in about 75-76% of streams made by French users, depending on the
label source, while for streams from Brazil, this coverage drops to only 36-41%.
Country labels are just one example of metadata, but we can assume that the sit-
uation is similar in the case of genre and other tags. In the next section about
user-items interactions, we will discuss the inequalities in the items’ popular-
ity distributions. Later on in Chapter 7, we will explain how those popularity
distributions and lack of labels can, together, lead to misinterpretation of users’
preferences.

2.3 User-item interactions
The main data that will be of interest for us along this manuscript is the data
encoding the interactions between users and items, as it is the most helpful to

3musicbrainz.org

https://musicbrainz.org/
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understand people’s behavior on the service, as long as (possibly) their prefer-
ences, and to perform recommendation.

There are two main types of activity we can observe on a streaming platform
— streaming, which is often considered as an implicit marker of preference, and
liking, which can be viewed as an explicit marker of preference.

Additionally, skips and bans can be viewed as implicit and explicit markers
of distaste. However, they are less often used in research or for recommendation
: bans are quite rare, as they only occur in a context of algorithmic recommen-
dation, and for skips it is hard to know if the reason was the user not liking the
song, or if the song simply does not fit into the current user’s listening context.

Representing user-item interactions

In the following we will denote by U the set of users, and I the set of music
items. Let V (u) be the set of liked or streamed items of user u ∈ U .

One way to represent user-items interactions is through a bipartite graph
(Figure 2.3a): let G(U, I;L) be this graph, where U is the set of vertices rep-
resenting the users, I is the set of vertices representing the items, and L are
the edges linking users and items: there is an edge (u, i) ∈ L if the user u has
liked or streamed the item i. For a vertex u in U , V (u) are the vertices in I that
are connected with u by an edge. For each item i, let W (i) be the set of users
connected to i, and d(i) = |W (i)| its degree.

Another way is to view user-items interactions as a sparse matrix (Figure
2.3b): let M be this adjacency matrix. A matrix is called sparse when most cells
are empty, meaning the majority of users interact with only a small subset of the
total available items. M can be binary, then M [u, i]=1 if the user u has liked or
streamed the artist i, and zero otherwise. For streams, it can also be non-binary,
then M [u, i] will contain the number of times a user u has streamed an item i
(weighted graph).

Likes distributions

We can first take interest in the distribution of likes, on the example of the dataset
we use in Matrosova et al. (2024b), which includes liked artists and songs of
about 1M randomly selected users, who have been active (have streamed at least
once) during October 2022.

On most music streaming platforms, users can explicitly ’like’ songs, al-
bums, and artists, which then appear in their personal ’favorites’ collection.
However, not all users engage with the liking feature. Among these 1M ran-
domly sampled Deezer users, 87.1% have explicitly liked at least one artist, and
88.9% have liked at least one song. All together the users had liked 586,512
artists and 10,822,633 unique songs.
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(a) (b)

Figure 2.3: User-items interactions represented as (a) a bipartite graph
G(U, I;L) and (b) its adjacent matrix M .

(a) (b)

Figure 2.4: Heavy-tailed empirical distributions in the items liked by 1M users.
(a)Distribution of artists’ and songs’ number of ’fans’ (i.e. users who coined
these artists/songs as ’liked). A large proportion of items is liked by only a
few users, while some items are very popular (hundreds of thousands of fans).
(b) The distribution of the number of given likes per user follows here again a
heavy-tailed distribution, with some users liking ten thousand more items than
other users. The proportion of users liking many items drops faster for artists
than for songs.
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The distribution of users according to the number of artists they have liked
follows a heavy-tailed distribution (Figure 2.4a). Half of the users have liked 10
artists or less, with an average of 26 liked artists per user. Some outliers exist,
such as one user who has liked 7,497 artists. Users tend to like songs more
than artists, with 215 favorite songs by user on average. The user experience on
the platform contributes to this gap between explicitly liking artists and songs:
indeed, the like button can be easily hit on a song while the user is listening
to it, while liking an artist requires the user to specifically go to the artist’s
page. Also, liking a track is a practical move, as it adds the track into a playlist
’Favourite tracks’ which can be listened as a regular playlist, while liking an
artist may pursue solely a bookmarking purpose. However most users have still
liked at least some artists as it has been a mandatory step during the on-boarding
process for the past few years on the platform.

The distribution of music items according to the number of users who like
them similarly follows a heavy-tailed distribution (Figure 2.4b). For artists, the
median value is equal to one — which means that at least half of them have
been liked by only one user — while the average is around 38. The most pop-
ular artist has been liked by 86,877 users among the million users which were
randomly sampled. We can thus see a huge disparity between the artists, with a
few extremely popular artists that attract lots of users, and the majority of artists
that are almost unknown. The songs follow a similar popularity distribution,
with a median of 1, an average around 18, and a maximum of 75,453 likes.

We did not collect users’ favorite albums in this specific dataset, but it is
generally observed that albums tend to be liked less than tracks or artists. For
example, in a dataset from the RECORDS project, 95% and 92% of users have
liked at least one song or artist, respectively, while only 84% have liked at least
one album. A Deezer study suggests that people listen to fewer albums than 5-10
years before. It it possible that this habit, that was common among generations
raised with LPs and CDs, might today be more typical of ’connoisseurs’. Even
fewer users have liked at least one playlist (77%). However, the same Deezer
study indicates that the popularity of playlists has increased in recent years,
progressively replacing albums in user preferences.

Streams distributions

A fuller knowledge can be extracted from streaming activity, not only because
streams occur more often than likes and thus represent more data (every day,
Deezer collects 195M rows of streaming logs, which corresponds to 130G of
data), but also because they are logged in by the platform along with all the
possible information about the context in which the stream was made (more
than 50 attributes are recorded for each stream). We will observe the streams’
distributions on the example of another Deezer dataset, taken from Matrosova
et al. (2024b), describing the streaming activity of 60,000 users from April 1st
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Median Mean SD Max Total
Day 13 19 20 430 615,373
Week 45 62 59 1,503 2,717,914
Month 123 160 143 3,477 7,714,374
Year 521 655 564 9,274 33,966,616

Table 2.2: Distribution of the number of streams per user (and in total), over a
day, a week, a month and a year.

(a) (b)

Figure 2.5: (a) Total number of unique tracks streamed by 16M users over dif-
ferent time periods. (b) Distribution of the number of streams per track over a
year.

2022 to March 31st 2023.
The intensity of streaming activity varies widely among users (Table 2.2).

An average user streams 19 (unique) songs per day, 62 per week, 160 per month
and 655 per year. However, some users have an extremely intensive usage of
the platform, with up to 430 songs per day, on average, for one of them. With
the existence of such active users, the total number of streams quickly builds up,
reaching a total of 40M streams for 60,000 users over a year (Figure 2.5a). In the
same way as for likes, the distribution of the number of streams per musical item
follows a long tail distribution. For example, over a year, more than 100,000
items have been streamed less than 10 times (all 60,000 users considered), while
the top 1,000 tracks have been streamed between 10,000 and 100,000 times each
(Figure 2.5b). If we look at it in terms of proportion of streams, 12M streams
— which is equivalent to 1/3 of all streams — concern the top 1,000 songs.

Streaming context

For each single stream a user makes, numerous attributes are logged in by the
streaming platform, including :

• the timestamp
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• the duration
• the IP address
• the type of network connection (WIFI, LAN, mobile)
• the (lat, long) coordinates inferred from the geolocation of the IP address

(as provided by a third-party service)
• the type of device
• the in-app context in which the stream was originated (there are about

15-20 basic contexts — such as playlist page, album page, flow, etc. —
that can be grouped in three main classes: organic (the user searched for it
themselves), editorial recommendation and algorithmic recommendation)

Duration. Often users do not listen to a track till the end, and in this case
it might be complicated to say if they liked it or not. A common practice in
research and recommendation is to only take in account streams that lasted 30
seconds or more (Datta et al., 2018; Anderson et al., 2020, 2021).

Geographical location. Geographical location is often a key variable in re-
search on music geography, such as studying regional preferences or the spatial
propagation of music. The location of an internet-connected device can be esti-
mated through its IP address, which is assigned by ISPs and mapped to regions
via external databases. The accuracy of IP geolocation varies: WiFi/LAN con-
nections, which use more stable IPs, tend to provide reliable location data, while
mobile networks, with dynamically assigned IPs, are less reliable. In France,
around 35% of streams come from WiFi/LAN connections, typically in home
or work settings. However, focusing only on these streams may introduce bias,
as connection type can correlate with factors like age, access to a computer, or
occupation.

Context. The user can access music on the platform in many different ways.
For each stream, Deezer collects hundreds of specific contexts that can be split
in three main types. If the user found the track autonomously, for example by
using the search bar, or through their own library of playlists, this stream is con-
sidered ’organic’. According to Villermet et al. (2021), organic streams are the
most common, with 80% of the users who access at least half of their plays au-
tonomously. Editorial streaming involves selections curated by human experts
or editors employed by the platform. They are usually take the form of playlists
created around moods, activities, genres, or cultural events. It is the least pop-
ular way of streaming, with only 8% of the users who stream 38% of editorial
content. Last but not least, algorithmic streaming involves music recommenda-
tions generated by the platform’s recommendation algorithms based on a variety
of factors, such as the user’s previous listening habits, similar users’ preferences,
and other data-driven insights. Unlike editorial playlists, algorithmically created
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playlists aim to propose personalised selections for each user. 11% of the users
mostly stream through algorithmic recommendation, with 58% of algorithmic
streams. It may seem that editorial and algorithmic recommendations encom-
pass only a small section of all streams. However, these playlists are often used
in the specific context of discovery, and once users have liked a song that was
recommended in a playlist, they will most likely access it through their own li-
brary the next time. In the same logic, a user can run into a song they already
like in a playlist. The context tags only represent the local context of one specific
stream, but does not necessarily correspond to the way the user has discovered
the song initially.

2.4 Specificity of music streaming data in the con-
text of broader online consumption

After exploring music streaming data through the example of Deezer, to provide
some perspective we think it is useful to situate it within the broader context of
online consumption, to determine if techniques from other fields can be ap-
plied to music, and to uncover the unique characteristics of music streaming
data. Many other platforms, such as movie and video streaming services or e-
commerce sites, also involve users interacting with large catalogs of items, and
it would be interesting to compare music streaming data with several other types
of online consumption datasets.

For the sake of simplicity in the scope of this section we chose to focus on
the MovieLens (Harper and Konstan, 2015) dataset as an example, for several
reasons. First, it is an open-source dataset which has been widely used in re-
search on RS (He et al., 2017; Zheng et al., 2021b). Second, it provides a large
set of user interactions with a catalog of movies, which, like music streaming
platforms, involves media consumption based on individual preferences. This
makes it an good candidate for a comparison with data from a major music
streaming platform, even though it is important to keep in mind that similar
analyses could be conducted with other datasets from various domains.

More specifically, in this section we will rely upon the ’MovieLens 100K
dataset’ 4, developed by the GroupLens research group at the University of Min-
nesota, which contains 100,000 ratings from 1,000 users on 1,700 movies, as
well as movie metadata (e.g., genre tags), and user information. We will com-
pare it to a subset of 1,000 users from the Matrosova et al. (2024b) dataset.

Number of items and interactions. The first thing that makes the two types
of data different is the catalog size: the MovieLens dataset counts a total of 27K

4Movielens 100K dataset

https://grouplens.org/datasets/movielens/100k/
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(a) (b)

Figure 2.6: Long-tailed distributions in the ’MovieLens 100K dataset’ ratings.
(a) Distribution of number of ratings per movie. A large proportion of movies
have been rated by only a few users, while some movies are very popular (hun-
dreds of ratings). (b) The distribution of the number of given ratings per user.
Most users have only rated a few movies, while a few are extremely active raters.

items (674K on IMDb 5, the world’s most popular source for movie ratings),
while the Deezer catalog counts around 120M unique tracks. Consequently,
the ratio between the number of users and items is also different. A thousand
users on MovieLens have rated 1,700 movies, meaning users and items have
approximately the same order of magnitude, while the same amount of users
on Deezer like 10,000 artists, and 133K songs on average. And that is only
considering likes, not to mention the vastly larger number of streams. Users
on Deezer like songs approximately twice as often as MovieLens users rate a
movie.

Naturally, the number of interactions with music are more frequent than
with movies, not only because there are more available items, but also because
listening to a song simply takes less time then watching a movie or a show, and
music listening is often practiced to accompany other activities, while watching
a movie is usually a self-sufficient occupation. The vast amount of data gener-
ated by music streaming, both due to the size of the catalog and the frequency
of user-item interactions, presents significant computational challenges. These
include the need for efficient storage, processing, and retrieval of data, as well
as the development of scalable algorithms capable of handling the large volume
of interactions Bertin-Mahieux et al. (2011); Hidasi et al. (2016).

Interactions distributions. Similarly to interactions with music, interactions
between users and movies follow a long-tail distribution (Figure 2.6a). How-
ever, there are way more disparities between users and between items on Deezer
than on MovieLens. While MovieLens users rated between 1 and 700 movies,

5IMDb

https://www.imdb.com/
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with a median of 65 ratings per user, Deezer users have liked between 1 and
4000 songs, with a median of 65 song per user. Even though the average user
makes a comparable number of interactions on both platforms, the distribu-
tion of interactions is much more spread out (or skewed) on Deezer, showing
a greater variation in how actively users engage with items, whereas MovieLens
interactions are more consistent across users.

A similar situation can be observed in the items’ popularity distributions
(Figure 2.6b). The number of ratings per movie ranges from 27 to 583, with
a median of 59, while the number of likes per song ranges from 1 to 90, with
a very low median of 1.6. MovieLens shows a narrower and more balanced
distribution, meaning that user interactions are more evenly spread across items
(movies). Even lesser-known movies still get a decent number of ratings, reduc-
ing the disparity between popular and less popular items. Deezer, on the other
hand, exhibits a highly skewed distribution: a few popular songs dominate user
interactions, while most songs remain under-interacted with, reflecting a much
more pronounced popularity gap.

This pronounced long-tail distribution on Deezer means that the data is
particularly sparse, which implies several challenges when manipulating such
data. Sparse datasets can make it more difficult for models to learn meaning-
ful patterns or create effective recommendations for less popular users or items.
Techniques like matrix factorization (Matrix Factorization (MF)) or collabora-
tive filtering (Collaborative Filtering (CF)) might need additional methods (like
regularization or data augmentation) to handle the sparsity effectively.

Different representations of preferences. In the MovieLens dataset interac-
tions consist of ratings, providing a straightforward and nuanced viewpoint on
both the users’ preferences and dislikes. Ratings are widely used in various do-
mains (e.g., online shopping platforms) to reflect varying degrees of satisfaction.

However, when it comes to music streaming, there is no universal stan-
dard for representing user preferences. ’Likes’, which may serve as an explicit
marker of preference, are binary and lack the nuance of ratings. Alternatively,
streaming frequency can act as a proxy for a user’s connection with a song, serv-
ing as an implicit indicator of preference strength. Unlike movies or products,
which are seldom consumed repeatedly within short time frames, it is common
for users to listen to the same track multiple times, sometimes within the same
day. As noted by Sguerra et al. (2022), the frequency with which a song is
listened to correlates with the level of arousal it provides, and users tend to in-
crease listening as they grow more attached to a track, until they reach a point
of ’saturation’. The number of repetitions, or the total time spent listening to a
song, could thus be used as an implicit form of rating.

As we can see, data from music streaming services require more interpre-
tation compared to explicit ratings. Researchers must decide how to model
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user-item interactions — whether based on binary likes, play counts, time spent
listening, or a combination of factors. The choice of representation can signif-
icantly impact the outcomes of future research and RS, potentially influencing
how accurately preferences are captured and predictions are made.

2.5 Enhancing streaming data with surveys
Streaming data are observational data that provide a rich, quantitative insight
into user behaviors, and can reveal what users listen to, how often, and their pat-
terns of music consumption over time. However, this type of data alone lacks
the qualitative depth that is essential for understanding the broader social, de-
mographic, and psychological contexts influencing these behaviors. Surveys
can complement streaming data by providing this missing context, offering in-
sights into why users may prefer certain types of music, how these preferences
relate to other types of cultural consumption, to their social position and origins,
and more broadly to various social factors that may influence their consumption
habits.

Coupling observational data such as streams with self-declared information
collected in surveys is not a very common practice, as it requires to both have
access to users’ streaming history data and have means to contact these people
massively, but some researchers managed to do so. For example, Anderson et al.
(2021) made users from Spotify answer to psychology tests online in order to
investigate the link between music preferences and personal traits. However,
most of the time studies use either streaming data or surveys, not both.

Recently, colleagues from the RECORDS project (Renisio et al., 2024) col-
lected traces of online music consumption combined with survey and interview
data from the same users, in order to compare the declared and observed listen-
ing behaviours. For the study, 100,000 Deezer users had their streaming history
data extracted and analyzed. Out of these, about 20,000 responded to the survey.
Furthermore, about a hundred of these survey respondents also participated in a
detailed individual interview.

The first interesting finding was the nuances between people’s declared pref-
erences (what they reported in surveys and interviews) and their observed lis-
tening habits (as indicated by their individual streaming history data on Deezer).
The integration of digital trace data allowed the researchers to see real-time, ac-
tual music consumption that often differed from what participants reported in
surveys.

One of the most notable findings was the over-reporting of certain genres
and artists in survey respondents, when compared to other music genres (includ-
ing classical music, and inside jazz and french hip hop, the older, most legiti-
mated/consecrated artists of theses fields). While many participants claimed to
frequently listen to classical music, their streaming histories showed that they
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actually engaged with this genre far less frequently than other genres they did
not declare they listen to. Conversely, some genres like electronic dance music
that are widely listened to were under-reported in surveys. Some individuals
reported listening to a variety of genres, but their streaming histories showed a
narrower range of music preferences. Even though classical music might have
been over-declared partially because users may listen to it on other platforms
or media than Deezer (because of a poor representation of this specific genre
on classic streaming platforms), Renisio et al. (2024) claim that these discrep-
ancies between declared and observed preferences could also be attributed to
social desirability bias.

The preferences and listening practices declared by respondents conform to
their representation of themselves, their taste and their listening habits, and these
representations are embedded within their social or cultural context. This bias
is particularly significant in contexts where the social representations of certain
music genres are associated with higher social or cultural capital. Another factor
contributing to the difference between declared preferences and actual streaming
is recall bias. Participants may not accurately remember their listening habits, or
may generalize their answers in a way that does not reflect their actual, specific
listening behaviors.

Furthermore, the study highlighted significant differences between the so-
licited users who responded to the survey and those who did not. For example,
respondents and non-respondents tended to stream different types of music. Re-
spondents often listened to more English or American rock music, often older
bands, whereas non-respondents favored contemporary French rap and R&B,
indicating a cultural and possibly generational divide.

Also, based on the music preferences noted, the researchers inferred that
non-respondents might include a higher proportion of younger individuals or
those from different cultural or socio-economic backgrounds compared to re-
spondents (Figure 2.7). For example, the previously mentioned preference for
contemporary French genres might suggest a younger demographic, which is
typically less likely to engage in surveys. The same goes for educational lev-
els compared to respondents, based on the correlation typically seen between
educational attainment and certain music preferences. Respondents’ preference
for genres like classical music and older rock might indicate higher educational
levels, whereas the non-respondents’ preferences could imply a different educa-
tional profile.

These differences in social characteristics and preferences between respon-
dents and non-respondents raise important questions about the biases that can
occur in survey-based studies, especially considering that a lot of studies on
music preferences are made on pre-selected populations (students for example
(Rentfrow and Gosling, 2003; Brown, 2012; Langmeyer et al., 2012)). More-
over, this kind of human bias may not only concern surveys, but also data col-
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Figure 2.7: Differences in social characteristics of online survey respondents,
according to their willingness to take part to an interview (from Renisio et al.
(2024)).
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lected online — depending on the service/website, or on the way the sampling
is done, the users may represent different socio-demographics. Simply focus-
ing on users of streaming platforms already introduces bias, as they typically
represent younger demographics from developed countries.

In research about music consumption, only a few datasets are made public,
as they are most of the time collected through private streaming services. Most
papers then either rely on the same few publicly accessible datasets, possibly re-
producing the same biases over and over, or using private datasets, which limits
the possibility of reproducing their results by peers. Thus, in order for a more
qualitative and reproducible research, opening datasets containing users’ online
behaviour seems necessary. We will discuss the challenges and limitations of
this process in the next section.

2.6 Anonymization challenges in streaming data
As we have seen in the previous sections, streaming data contains a lot of differ-
ent information that is more or less private and may compromise the identity of
users. Accordingly, it should not be disclosed as it is. Most often, datasets are
anonymized by simply hashing users’ unique IDs on the platform. This method
may be sufficient, but it all depends on what kind of data is disclosed.

First, there is the time and geolocation that the stream is tied to. A major
work by De Montjoye et al. (2013) explored the privacy implications of indi-
vidual human mobility data. They collected 15 months of data from 1.5 million
individuals, recording spatio-temporal points based on mobile phone interac-
tions, specifically whenever a user initiated or received a call or a text message.
The study found that just four spatio-temporal points, selected at random, were
sufficient to uniquely identify 95% of individuals in the dataset. Their dataset
counts an average of 114 interactions per month per person, which is a little less
than streaming activity (160 monthly streams on average per user on Deezer for
example). Therefore, streaming data, if shared with the timestamps and loca-
tions, can be compromising. Based on the same principle, different variables
like age, genre, type of used device etc. may, combined together, identify users
in a unique way.

Moreover, the interactions with the music content itself can be unique for
each user. Narayanan and Shmatikov (2008) applied de-anonymization tech-
niques to the Netflix Prize dataset, which consists of anonymized movie ratings
from 500,000 subscribers, demonstrating that minimal knowledge about an in-
dividual could easily identify their record in the dataset. With knowledge of just
2-8 movie ratings and some approximate dates (with a possible 14-day error),
an adversary could most of the time uniquely identify a user’s record within the
dataset. Two exact ratings and dates (with a 3-day error tolerance) were suf-
ficient to uniquely identify 68% of the records in the dataset. With 8 movie
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ratings, where two could be completely wrong, and dates that might have up
to a 14-day error, the adversary could uniquely identify 99% of the records in
the dataset. Once again, considering people more often stream or like songs
than they leave ratings to movies, users’ interactions with music on streaming
platforms are most likely unique.

What are the possible ways to anonymize such data? Traditional anonymiza-
tion methods include data masking (i.e. hashing users’ IDs), generalization (i.e.
aggregating items by broader categories) direct suppression of sensitive data,
of mixed, aggregation techniques like k-anonymity (Sweeney, 2002). However,
these techniques seem inefficient when applied to high-dimensional datasets like
movie (or music) streaming data. The uniqueness and sparsity characteristic of
high-dimensional data mean that even when direct identifiers are removed, the
unique combinations of attributes can still uniquely identify individuals.

Additionally, the high dimensionality adds to the challenge, as increasing
the number of attributes in a dataset amplifies the likelihood of each record
being unique or nearly unique. In response to these limitations, Narayanan
and Shmatikov (2008) advocate for more sophisticated privacy-preserving tech-
niques such as differential privacy. This approach consists in integrating ran-
domness into the data release process, ensuring that the presence or absence of
any single individual in the dataset does not significantly affect the overall out-
come of data queries. For example, in the case of the Netflix Prize dataset, the
date or exact ratings could be changed slightly. In the case of music, we can
imagine changing some songs in one’s streaming history to similar tracks.

However, adding noise to data inherently reduces the accuracy of the data,
which means a middle ground must be found in order to protect users’ privacy
while preserving enough patterns from the initial data to perform the intended
task.

An important thing to note — some of the data, on Deezer and other plat-
forms, are publicly available by default, and collectable through APIs, like for
example liked items. Thus, when thinking of anonymization, it is important to
not only look at a dataset alone, but also take in account the context of this pub-
licly available information. We will discuss this in more detail later on in the
manuscript.



Chapter 3

Understanding and modeling
musical taste

”Musical taste is the full mix of musical and cultural dimensions—from the
macro level of genre, style, and era to the micro level of distinct musicologi-
cal attributes—that at any given moment and in any particular configuration
correspond to an individual’s liking and appreciation.” Gasser (2019)

Streaming platforms are particularly interested in understanding their users’
music preferences, as it is a necessary step in order to make coherent recommen-
dations. Though, capturing musical taste patterns and understanding why people
like the music they consume is a challenge that was taken up by scientists from
many different fields long before the emergence of streaming services.

A lot of the research conducted prior to 2010 was constrained by data limi-
tations. Today, the availability of large volumes of streaming data enhances our
comprehension of musical preferences, which in turn helps in the advancement
of MRS. The concept of musical taste and its possible origins is vast, and it is
impossible to describe all the existing studies that deal with it, at least within
the scope of this manuscript. That is why this chapter is intended as a starting
point into the topic, without claiming to be exhaustive.

First, we will examine the connection between musical taste and various
aspects of human identity, drawing from research across sociology, psychology,
and cultural studies. We will start with sociological studies that show how one’s
social background, including factors like social position and education, can in-
fluence their musical preferences. Then, we will look at psychological research
to understand the relationship between what psychologists in this field call per-
sonal traits, and the music people prefer, exploring whether our music choices
reflect our personalities or shape them. Finally, we will discuss how cultural
differences affect music preferences, highlighting how music tastes can vary
significantly across different regions and cultures. Through this discussion, we
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aim to shed light on how music preferences are not just personal choices but are
shaped by a complex interplay of social, psychological, and cultural factors.

In a second section, we will explore the changing nature of musical taste.
Why and how does it evolve during different periods of our life? How do we
choose music depending on our activity, entourage, or even weather? Also,
since the spread of streaming services, how do recommendation algorithms in-
fluence our music choices?

Last but not least, this chapter focuses on the methods used to capture and
quantify people’s music taste, a task that is often more complex than it initially
appears. To cite a few examples, differences between declared and observed
preferences, the lack of consensus to label music styles, and the difficulty of
interpreting users’ online behaviour are some of the struggles that researchers
can run into. We will explore how these methods can be adjusted to navigate
and overcome these obstacles.

3.1 Primary origins of music preferences

3.1.1 Social background
Highbrow and lowbrow culture

In 1984, Bourdieu (1984) writes ’La Distinction: Critique Sociale du Juge-
ment’, a pioneering work in sociological literature. The book stands out for its
unprecedented approach in examining the intricate relationship between cultural
preferences and social stratification, which Bourdieu defines through a multi-
dimensional analysis of social, cultural, and economic capitals 3.1. This book
was among the first to use a rich array of data, dissecting cultural preferences
across various domains such as music, painting, and even clothing, food, inte-
riors, etc., thereby offering a nuanced understanding of how culture serves as a
means of social reproduction.

’La distinction’ is based on a detailed survey on the cultural practices and
preferences of 692 (in 1963), and later an additional 1217 (in 1967-1968) people
from Paris, Lille and a small provincial town in France. In the case of music,
some pieces were pre-selected by the author, in a way to present a gradient
within different genres : for example, classical music ranges from the composi-
tions of highly regarded composers, like Bach’s ’The Well-Tempered Clavier’,
to more commercialized forms such as Viennese waltzes. The participants were
then asked questions about the selected music items.

First, respondents were asked to name the composers of a list of 16 music
pieces :

• George Gershwin — Rhapsody in Blue
• Giuseppe Verdi — La Traviata
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Figure 3.1: Social class stratification according to Bourdieu (1984). He discerns
three main groups: the dominant class (high level of cultural and economic
capital), the middle classes (lower level of overall capital), and the working
class (low level of capital). Within each group, some smaller categories exist,
for example the ’intellectual segments of the dominant class’ are people with
high level of overall capital, and high cultural capital in particular (e.g., higher
education teachers).
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• Maurice Ravel — Concerto for the Left Hand
• Wolfgang Amadeus Mozart — A Little Night Music
• Georges Bizet — L’Arlésienne
• Aram Khachaturian — Sabre Dance
• Igor Stravinsky — The Firebird
• Nikolai Rimsky-Korsakov — Scheherazade
• Johann Sebastian Bach — The Art of Fugue
• Franz Liszt — Hungarian Rhapsody
• Maurice Ravel — The Child and the Spells
• Johann Strauss II — The Blue Danube
• Richard Wagner — Twilight of the Gods
• Antonio Vivaldi — The Four Seasons
• Johann Sebastian Bach — The Well-Tempered Clavier
• Pierre Boulez — The Hammer without a Master
A mere 67% of individuals with only a primary education (French CEP or

CAP diplomas) could identify two out of sixteen composers, in contrast to just
7% among those with a degree higher than a bachelor’s. In a more striking
example, none of the surveyed workers or employees could identify more than
twelve of the sixteen composers , while this task was completed by more than
half of the artist and teacher demographic. This illustrates a clear disparity in
cultural knowledge across different educational and occupational backgrounds.
Activities like practicing an art or playing a musical instrument, which often
require cultural capital acquired outside of school, also show a strong correlation
with social class.

Then, through a set of questions about music preferences, Bourdieu iden-
tifies three main categories of taste, each associated with different social and
educational backgrounds:

• Legitimate Taste: This category corresponds to the highest educational
levels and the dominant social class. It includes classic and highly re-
garded works such as ’The Well-Tempered Clavier’ and ’The Art of Fugue’
by Johann Sebastian Bach or ’Concerto for the Left Hand’ by Maurice
Ravel. This taste extends to emerging legitimate arts like cinema, jazz,
and even certain forms of ’chanson’ (french pop music), as like Léo Ferré
and Jacques Douai, recording French artists at the time the survey was
conducted. Legitimate taste is most prevalent among those with the high-
est education.

• Middle Taste: This taste encompasses less known works of ’major’ arts,
and major works of ’minor’ arts. Examples include George Gershwin’s
’Rhapsody in Blue’ and Franz Liszt ’Hungarian Rhapsody’, or artists like
Jacques Brel and Gilbert Bécaud. Middle taste is more common in the
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middle classes than in either the lower classes or the ’intellectual segments
of the dominant class’ (Bourdieu, 1984, p. 22).

• Popular Taste: Characterized by a preference for either ’devalued’ classi-
cal music, due to its widespread popularity, such as Johann Strauss’s ’The
Blue Danube’ or ’La Traviata’ by Giuseppe Verdi, or ’light’ music by
artists like Mariano, Guétary, or Petula Clark (that Bourdieu interestingly
calls ’completely devoid of ambition or artistic pretense’ (Bourdieu, 1984,
p. 22)). This taste reaches its highest frequency in the lower classes.

While Bourdieu’s work offers interesting insights into the relationship be-
tween cultural tastes and social stratification, its methodology and scope present
notable limitations. First, the classification of music within the study lacks a co-
herent structure, oscillating between broad genre categorizations and specific
music pieces or composers, without offering a unified framework for under-
standing musical preferences. Bourdieu has been criticized for his ’miserablism’
— a vision of lower classes through the lack (of culture) instead of difference.
And indeed, in the case of music, rating the cultural knowledge through a fixed
list of composers or music pieces might create bias and show only a part of the
picture.

Second, the temporal context of Bourdieu’s research significantly limits the
applicability of his findings to contemporary audiences. The classification of
music as ’legitimate’ and ’popular’ made sense at the time the book was writ-
ten, however, it might not hold the same validity in contemporary times. Bour-
dieu himself states that, between the two waves of survey, the only results that
changed were those about music, specifically ’chanson’ (french popular music),
which is ’subject to more rapid renewal’ (Bourdieu, 1984, p. 665). The evo-
lution of cultural norms and the blurring of lines between ’high’ and ’low’ art
have challenged these classifications, a point that will be explored further in this
section.

Finally, even though Bourdieu’s methods can be applied more broadly, ’La
distinction’ only focuses on French society. Other countries may show different
patterns between musical preferences and social distinctions, because of their
particular social structure.

Omnivorism and univorism

In 1992, Peterson (1992)’s ’Understanding audience segmentation: From elite
and mass to omnivore and univore’ challenges the traditional view of cultural
stratification in terms of audience segmentation in the arts, particularly music.
Peterson sought to move beyond the elite-mass distinction, as conceived by
Bourdieu, proposing a new framework of ’omnivores’ and ’univores’ to better
capture the complexity of cultural consumption patterns.

The study was based on the 1992 Survey of Public Participation in the Arts,
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conducted by the United States Bureau of the Census, which offers information
on participation in the arts, such as ballet, opera, plays, museums, and concerts,
paired with demographic information including age, sex, race, marital status
and education level, of 18,775 Americans aged 12 and older. Peterson defines
nineteen distinct groups of occupations, similarly to Bourdieu. To examine and
quantify the relationships between different occupational groups and their music
preferences, a log-multiplicative model was used, which is a type of regression
analysis that converts the original data into a series of multiplicative terms ex-
pressed on a logarithmic scale.

The key finding of Peterson’s research is the identification of what he calls
cultural omnivores and univores. In the case of music, omnivores are people
who listen and are open to different genres, while univores are those who stick
to a specific music style. Contrary to Bourdieu’s result, stating that high-status
groups prefer elite cultural forms such as symphonic music and opera, the study
showed that individuals in higher occupational groups appear to have eclectic
tastes. They enjoy a wide range of music genres, encompassing both elite and
non-elite forms, such as country and rock. This challenged the traditional view
of a cultural elite disengaged from popular culture, revealing a more diverse
and inclusive approach to cultural engagement among the higher social strata.
In contrast, lower occupational groups demonstrated more specific and limited
tastes.

Peterson’s study introduced a new paradigm in understanding cultural tastes
and preferences. By moving beyond the simplistic binary of elite versus mass
to a more subtle omnivore-univore classification, his research provided a better
understanding of the contemporary cultural landscape. Later on, a similar study
in France (Coulangeon, 2005) examined the distribution of musical preferences
across not only different social groups but also generational lines. Multiple
Correspondence Analysis on answers of 4,074 participants of the 1997 French
Cultural Participation survey revealed that the omnivore-univore classification
was observed mostly among younger generations, confirming that it is indeed
an emerging cultural consumption pattern.

Taste and distaste

In 1996, Bryson (1996) extends prior studies by concentrating on dislikes in-
stead of preferences. She bases her study on data from the US 1993 General
Social Survey, which includes a set of questions on musical taste, where 1606 re-
spondents were asked to evaluate each of 18 music genres on a five-point Likert
scale, ranging from ’like very much’ to ’dislike very much.’ This approach al-
lowed Bryson to derive a measure of musical exclusiveness by counting the ’dis-
like’ and ’dislike very much’ responses for each respondent. Statistical methods,
such as Ordinary Least Squares regression analysis, were used to understand the
relationship between musical dislikes and various socio-demographic factors,
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including education, political liberalism, and racial attitudes.
Like Peterson, Bryson found that higher education correlates with a broader

acceptance of diverse musical genres, challenging Pierre Bourdieu’s theory of
higher social status leading to more exclusiveness in cultural tastes. Moreover,
the study showed a strong correlation between political liberalism and musical
tolerance: more educated and liberal individuals were generally more accepting
of a wide range of musical styles.

However, the study revealed a nuanced aspect of cultural tolerance among
more educated individuals. While they generally showed a broader acceptance
of diverse musical genres, indicating a higher level of cultural openness, there
was a concurrent trend of exclusion towards certain music styles. Specifically,
genres like heavy metal, gospel and rap, often associated with lower educational
levels, were excluded from their range of preferred music.

The study also showed that racist tendencies increased the likelihood of
disliking genres whose fans are disproportionately non-white. By taking interest
in dislikes, Bryson’s work brings a new perspective to Perterson’s omnivore-
univore theory, showing that while cultural tolerance can indicate higher social
status, it also maintains class-based and racial exclusions in cultural preferences.

An individualistic approach

While previous research predominantly attributed specific behavior to differ-
ent social groups, Lahire (2008) introduces an interesting shift in perspective,
questioning how cultural practices and preferences vary on an individual level.
He suggests that individual choices in culture go beyond class distinctions, and
people’s interactions with culture are more personal and varied than class-based
models suggest. This approach does not contradict Bourdieu’s elite-mass theory
or Peterson’s univore-omnivore model, but rather complements them.

First, rubbing shoulders with people from a different social or cultural back-
ground, for example, interacting with people from different social or cultural
backgrounds at school, at work, or within personal relationships is not uncom-
mon and may expose individuals to art forms that are atypical for their social
class.

Lahire also views cultural consumption as dynamic and situational rather
than static and exclusively tied to class identity. Depending on one’s mood,
company, or social setting, preferences may vary. However, the role of context is
an aspect previously overlooked by sociologists (we will explore the importance
of context in music consumption later in this chapter).

Finally, he observes that individuals often exhibit a wide range of cultural
practices and preferences. They may have a penchant for a certain aesthetic not
influenced by their social circle, which might be explained on an intra-individual
level. This naturally leads us from the social model of taste to a more psycho-
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logical definition, which is the subject of the following subsection.

3.1.2 Psychology and personal traits
Survey-based pioneering studies

Some of the intra-individual preferences and perceptions of aesthetics can be
linked to personal traits, rather than by the surrounding social context. This
subject has been of interest for psychologists, starting from the late 90s. One
of the first studies that aimed to explore the link between music preferences
and personality traits was ’The Do Re Mi’s of Everyday Life: The Structure and
Personality Correlates of Music Preferences’ Rentfrow and Gosling (2003).

1,704 students from an American university had to complete different per-
sonality tests, as well as questionnaires about self-esteem, depression, self-
views and cognitive abilities. In particular, the Big Five Inventory (Big Five
Inventory (BFI)) was used, which is a popular tool for assessing the major di-
mensions of personality, commonly referred to as the Big Five traits: Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Developed
to measure these traits in a straightforward and efficient manner, the BFI in-
cludes 44 items that respondents rate on a Likert scale, reflecting how much
they agree with statements about themselves. Here are a few example of state-
ments that reflect the different personality traits:

• Openness to Experience: ’I have an active imagination.’
• Conscientiousness: ’I am always prepared.’
• Extraversion: ’I am the life of the party.’
• Agreeableness: ’I sympathize with others’ feelings.’
• Neuroticism: ’I get upset easily.’
Through another experiment from the same study, authors identified four

music preferences dimensions. A more detailed discussion of this segmentation
of music can be found in Section 4.2.1, here we will simply take it as a given.
To explore the relationship between music preferences and personality, scale
scores were calculated for each dimension, and then analyzed the correlations
between these dimensions and the scores obtained from the various personality
tests. Table 3.1 shows the found patterns.

Interestingly, the ’Intense and Rebellious’ dimension would be expected
to be correlated with emotional stability, depression, and self-esteem, as it is
associated with emphasizing negative emotions. However, there were no such
correlations with this or any other music dimensions, suggesting that chronic
emotional states might not strongly influence music preferences.

1Tendency to express thoughts and feelings as soon as they come to mind (from the acronym
B.L.I.R.T. for ’Brief Loquacious and Interpersonal Responsiveness Test’ (Swann Jr and Rent-
frow, 2001)).
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Dimension Genres Positive correlation Negative correlation

Reflective
and Complex

Blues,
Jazz,

Classical,
Folk

Openness to new
experiences, self-
perceived intelli-
gence, verbal ability,
political liberalism

Social dominance ori-
entation, athleticism

Intense
and Rebellious

Rock,
Alternative,
Heavy Metal

Openness to new ex-
periences, athleticism,
self-perceived intelli-
gence, verbal ability

-

Upbeat
and Conventional

Country,
Soundtracks,

Religious,
Pop

Extraversion, Agree-
ableness, Conscien-
tiousness, conser-
vatism, self-perceived
physical attractive-
ness, and athleticism

Openness to New
Experiences, social
dominance orien-
tation, liberalism,
verbal ability

Energetic
and Rhythmic

Hip-hop,
Soul,
Funk,

Electronic

Extraversion,
agreeableness,
blirtatiousness1, liber-
alism, self-perceived
attractiveness, athleti-
cism

Social dominance
orientation, conser-
vatism

Table 3.1: Music preferences dimensions, corresponding music genres, and their
correlation with personality traits found in Rentfrow and Gosling (2003).



CHAPTER 3. UNDERSTANDING AND MODELING MUSICAL TASTE 50

Similar studies were replicated in the US (Zweigenhaft, 2008), Canada
(George et al., 2007; Miranda and Claes, 2008), Netherlands (Delsing et al.,
2008), Germany (Langmeyer et al., 2008), Brazil (Pimentel and Donnell, 2008),
Malaysia (Chamorro-Premuzic and Furnham, 2007) and Japan (Brown, 2012),
overall leading to similar results. However, a few cultural specificities were also
observed, which we will discuss later in this chapter.

Scaling up using online data

In all previously cited studies, the measurement of musical preferences relies
on self-reported likes of musical genres. This approach can be problematic due
to the lack of consensus on genre categorization, variability in genre interpreta-
tion among participants, and the questionable representation of actual listening
behavior. Moreover, the reliance on college student samples might lead to bi-
ased results due to the social influences prevalent among young adults’ musical
choices.

The spread of the Internet and social media has launched a massive wave
of data collection. People became willing to fill in personal information for
the whole world to see. Massive datasets, including socio-demographic infor-
mation, likes, online tests provided a propitious setup for scaling up previous
studies and giving new answers to old research questions.

Nave et al. (2018) conducted two studies aiming to predict personality traits
from musical preferences, using data collected online.

The research included a large, diverse group of 22,252 users from 153 coun-
tries, who used MyPersonality, a Facebook app. To gather data, the study used
the International Personality Item Pool questionnaire for personality traits and
evaluated musical preferences in two ways: first, through listening to 25 differ-
ent 15-second music clips categorized according to the Mellow, Unpretentious,
Sophisticated, Intense, and Contemporary (Rentfrow et al.’s five-factor model)
(MUSIC) model (Rentfrow and Gosling, 2003); and second, through music-
related Facebook ’likes’.

The prediction was made using LASSO regression (Tibshirani, 1996). For
the 15-second music listening data, participants’ preference ratings for the mu-
sical excerpts were used as direct inputs. The large Facebook ’likes’ dataset was
reduced through Singular Value Decomposition (Singular Value Decomposition
(SVD)). Demographic variables like age and gender were also incorporated in
the model. The model’s accuracy was evaluated using Pearson’s correlation.

Even though Facebook ’likes’ of artists outperformed the 15-second music
excerpts in predicting personality traits, both methods showed significant corre-
lations with personality. While both methods similarly predicted openness and
extraversion, traits like neuroticism and agreeableness were less consistently
predicted across the two studies.
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This result is particularly interesting because it is among the first to reveal a
divergence between ’declared’ and ’observed’ preferences: as Facebook ’likes’
are public, and users might ’like’ certain artists to align with peer preferences
or convey a particular self-image, rather than because they genuinely enjoy the
music, they may not necessarily be correlated with the reactions to 15-second
music excerpts, which were unfamiliar and lacked any social context. Unfor-
tunately, the comparison between the two methods was only made in terms of
their ability to predict personality traits, and authors did not confront the two
types of data directly.

Overall, the study’s findings align with Rentfrow et al. (2011)’s five-factor
MUSIC model, demonstrating that personality traits are stronger predictors of
music preferences compared to gender and age alone. This challenges the con-
clusions of North (2010) and Schäfer and Mehlhorn (2017), who suggested oth-
erwise. However, the found correlations between personality traits and music
preferences were moderate, indicating that personality only partially explains
individual differences in musical tastes.

Behavioural data from streaming platforms

In contrast to earlier methods, Nave et al. (2018) introduced two key innova-
tions: first, by using behavioral data where participants actively listened to and
rated music based solely on the audio, free from labels like genre or artist name.
This avoids the subjective interpretation of genre labels, which can vary widely
between individuals, ensuring that everyone is evaluating the same musical con-
tent.

Second, he incorporated online data, in the form of Facebook ’likes’, al-
lowing the collection of huge amounts of data compared to traditional methods
like surveys and interviews. However, this data is still somewhat declarative, as
these ’likes’ are public and might be influenced by how individuals want to be
perceived. With the rise of streaming platforms, researchers now have access to
real-life listening histories, offering the most authentic data yet. This eliminates
the need for controlled lab listening sessions or self-reported preferences.

In 2021, Anderson et al. (2021) aimed to predict personal traits through
a big and diverse set of metrics derived from streaming data, including mood,
genre, and behavioral metrics, marking a significant shift from previous research
methods.

Like in several previously discussed papers, this study uses the BFI to deter-
mine personal traits. 5,808 US Spotify users participated, their answers to the
test were collected, as well as all their activity on the platform over a three-
month period (age, gender, free/premium Spotify plan, streamed music and
overall in-app behaviors). Listening data was mapped to Spotify’s 66 genres
and 25 mood categories (according to Gracenote (2016) classification), normal-
ized to percentage terms per user. In addition to that, authors computed 123
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derived metrics to capture users’ music listening behaviors.
These metrics go beyond simple genre preferences and dive into aspects

like diversity and discovery, such as genre entropy, which measures the variety
of genres a user explores, or track discovery rate, tracking how often users listen
to new songs. Listening habits were quantified by metrics like skip rate, showing
how frequently users skip songs, and time of day concentration, which indicates
whether a user listens consistently at the same times.

Platform usage was also measured, such as the diversity of devices used
(e.g., phone, computer, speaker). Other metrics captured contextual listening
behaviors, including playlist following rate and the extent to which users listen
to music from their formative years. Finally, the study examined audio attributes
like tempo, loudness, and danceability to map a user’s acoustic profile, as well as
mood and emotion metrics, to track engagement with music that elicits specific
emotional responses(e.g., lively or sentimental).

In total, 211 mood, genre, demographic, and behavioral metrics were used
to predict personality traits. In comparison to previous studies, which relied on
a limited selection of artists, genres, or short music clips paired with basic scales
like Likert ratings or binary like/dislike options, this study marks a turning point
in methodology, proposing an unprecedented amount and diversity of metrics,
which not only focus on the music itself but also on the ways it is consumed.

Given the varying distributions of the predictors, the numerical values of
each predictor were transformed to achieve a standardized distribution. The
appropriate standardization technique was selected based on the distribution of
each feature — for example, a log transformation was used for values that span
several orders of magnitude, like the number of plays in the last three months.

Having many predictors increases the risk of overfitting. Two common
methods were considered: LASSO regression and ridge regression. LASSO
regression is preferred for its interpretability and ability to reduce model dimen-
sionality. Ridge regression, on the other hand, performs better when predictors
are highly correlated but does not eliminate any predictors. Since the two meth-
ods performed equally well, authors ended up using elastic net regularization,
which combines both techniques, and outperforms them individually.

To account for potential nonlinear relationships between variables (e.g., dif-
ferences in behavior between free and premium users), the study also performed
random forest regression. Both models were optimized by tuning their hyper-
parameters using grid search to minimize the root-mean-square error. Despite
nonlinear models occasionally outperforming the linear ones, the overall per-
formance between the two was similar, and the best-performing results were
reported.

The study found that personality traits, based on the BFI, could be predicted
from Spotify users’ music listening behaviors with moderate to high accuracy,
outperforming Nave et al. (2018)’s model based on Facebook ’likes’. Emotional
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Stability and Conscientiousness were the most predictable traits, with emotion-
ally stable users favoring soothing or emotionally satisfying genres like Blues
and Soul, while avoiding intense or aggressive music such as Emo. People high
in Openness tended to explore diverse and less mainstream genres. Extroverts
leaned on social music choices, listening to others’ playlists and enjoying ener-
getic genres like Reggaeton, while agreeable users preferred mellow music like
Jazz, steering clear of aggressive genres like Punk.

It was also found that habitual behaviors, such as skip rates and music dis-
covery patterns, played an important role in predicting personality, with emo-
tionally stable users skipping less, and open users discovering more new music.

These findings demonstrated greater predictive accuracy compared to previ-
ous studies, highlighting the value of real-life music streaming data for research.
However, the study was conducted solely on Spotify users from the U.S., which
may not be representative of a broader, global audience. Music preferences and
listening habits can vary across cultures, and Spotify users themselves represent
a specific demographic that may not reflect the general population, potentially
limiting the generalizability of the findings.

The role of lyrics

In addition to musical attributes, lyrics are also an important part of a song,
and can drive different emotions. Several studies take interest in lyrics specifi-
cally, using natural language processing (Natural Language Processing (NLP))
techniques. For example, Mishra et al. (2021) explore differences in emotional
language among fan communities of different music genres, linking these differ-
ences to the emotions contained in the lyrics, and suggest that extreme emotional
expressions in certain genres could serve as a cathartic release for fans. Another
study (Alaei et al., 2022) shows that individuals’ favorite songs’ lyrics reflect
their attachment style.

3.1.3 Cultural and geographical environment

Alongside social background and personal traits of character, the place where
we grow up and live can play a role in shaping our musical taste. For one, we
are emotionally more sensitive to our mother tongue than to any other language
(Caldwell-Harris, 2014), suggesting a stronger bond with music with lyrics in
our native language.

Musically speaking, timbre, tonality, rhythm are often region specific (Gómez
et al., 2009), and being exposed to music with certain patterns in childhood
makes us more likely to enjoy these patterns in adulthood (Pereira et al., 2011).

Also, not all areas offer the same opportunities for music discovery and cul-
tural activities : for example, the presence of cultural infrastructure like concert
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halls, music schools or conservatories, and the diversity of the people living in
that area, may also play a role in the shaping of one’s musical taste.

Historically, since the late 1960s, geographers have taken an interest in map-
ping musical preferences across different regions of the world. These studies,
however, have often lacked a structured approach and tended to focus on specific
regions or music genres. For instance, DeHart (2018) examined the global pop-
ularity of metal music, Ford (1971) traced the spread of rock’n’roll in the US,
and Oduro-Frimpong (2009) analyzed the local adaptation of U.S. rap music in
Ghana. Music geography has various objectives, including the delimitation of
musical regions (Nash, 1968), tracing the origins and diffusion of musical phe-
nomena (Ford, 1971; Carney, 1977), and examining the evolution of a music
style in response to its geographical context (Oduro-Frimpong, 2009; Oh and
Park, 2013). Comprehensive reviews and categorizations of these, and other
studies have been attempted by Nash and Carney (1996) and Carney (1998),
who sought to organize the field into different thematic axes.

Also, unlike sociology and psychology, where a lot of studies rely on sur-
veys, geographers mostly rely on data from/about industry stakeholders such as
artists, radio stations, record stores, and music labels. This is especially the case
for studies that were made before the advent of streaming technologies, when
localized data on music consumption was not yet available.

Cultural differences in music perception

Do we all experience music in the same way, no matter our cultural background?
Are our listening habits innate or learned? Research suggests that our experi-
ences with music are heavily influenced by cultural exposure.

For instance, McDermott et al. (2016)’s study conducted on Tsimane people
— an isolated native Amazonian population — revealed that they did not show
a preference for consonance, unlike populations familiar with Western music.
This suggests that exposure to musical harmony significantly shapes our aes-
thetic responses to music.

Further research by Cowen et al. (2020) explored how Western and Chi-
nese music evoke distinct subjective experiences, identifying 13 different types
of subjective reactions in both cultures. This study indicates that while spe-
cific emotions triggered by music are consistently recognized across cultures,
broader affective features such as valence and arousal are less universally expe-
rienced.

Additionally, a study by Liu et al. (2023) shows that native speakers of tonal
languages excel in melodic discrimination but have a harder time with beat per-
ception compared to speakers of non-tonal and pitch-accented languages. This
suggests that linguistic background can influence specific musical abilities, fur-
ther indicating that our musical experiences are not universal but rather shaped
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by a combination of innate abilities and cultural influences.

Also, as mentioned in the previous section, some studies on the relationship
between personal traits and musical taste have been replicated in different coun-
tries and reveal some cultural differences. While these studies have found that
many patterns in music preferences are similar across different cultures, they
have also revealed notable differences.

For instance, the positive relationship between openness and liking reflec-
tive music seems to be universal, while the positive correlation between ener-
getic and rhythmic music and extraversion, which was found in western coun-
tries, was not found in Japan (Brown, 2012). The study by Delsing et al. (2008)
also highlighted how the same genre can be perceived differently depending on
the country.

They found that trance and techno were associated with pop music in the
Netherlands, while in the U.S. it was perceived as a genre of its own. Gospel, on
the other hand, was associated with elite culture in the Netherlands, while per-
ceived as conventional in the United States. These differences can be explained
by the popularity of these genres in each country : while gospel originates and
remains a well-known and popular genre in the US, it is not part of the com-
mon culture in the Netherlands. The same goes with electronic music, which is
quite mainstream in the Netherlands, and probably considered more niche in the
United States.

Given these differences in how music can be perceived depending on the
region, it is crucial not to generalize findings on musical taste based on stud-
ies conducted in one specific area. This also underscores the importance of
diversifying research locations to better capture the full spectrum of musical
preferences across cultures.

Preferences specific to geographic areas

As mentioned previously, for a long time, music geography studies relied on
data from music distributors, as data about listeners was difficult to obtain. With
the rise of the Internet, however, such data has become more accessible, whether
by reaching people through surveys or directly accessing vast amounts of geolo-
cated listening data from music streaming platforms. This shift in data collec-
tion allowed the emergence of research that specifically focuses on the musical
preferences of people in various locations.

For example, Mellander et al. (2018) aimed to explore music preferences
across 95 large metropolitan areas in the U.S. using an online survey, which
included Rentfrow and Gosling (2003)’s Short Test of Music Preferences and
the MyPersonality test, with approximately 120,000 participants. This sample
size is notably large compared to previous geographic studies of music prefer-
ences. Through factor analysis, correlation, and regression analyses, the authors
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examined how music preferences relate to economic, demographic, and psycho-
logical variables.

The results indicate that regions favoring sophisticated and contemporary
music tend to be more affluent, educated, and liberal, whereas areas preferring
unpretentious and intense music are typically less advantaged, more working-
class, and conservative. However, the study focuses only on large U.S. metropoli-
tan areas (with populations over 500,000), potentially overlooking patterns in
smaller or rural areas where different dynamics may be at play. For instance,
recent streaming data based research by Lee et al. (2024) suggests that both col-
lective and individual music diversity increases with population size. It is pos-
sible that factors other than diversity also differ between densely and sparsely
populated regions. Additionally, the data was collected between 2001 and 2013,
which may not fully capture the impact of more recent changes in music con-
sumption trends, especially with the rise of streaming platforms.

Another study by Way et al. (2019) analyzed music consumption patterns
across different U.S. states using data from over 16 million Spotify users. By
examining the most-streamed artists and genres, they uncovered significant re-
gional differences in musical preferences.

For example, genres like ranchera and mariachi were more popular in south-
ern states with larger Hispanic populations, while gospel and soul had a stronger
presence in the southeastern states. In contrast, states with more urban popula-
tions, such as New York and California, exhibited a greater diversity of genres.
While state-level musical diversity — the range of genres consumed within a
state — varied significantly, the diversity of individual listeners’ tastes remained
similar across states. However, as already noted, Lee et al. (2024) suggests that
individual diversity increases with city population size, meaning that when ag-
gregating listeners by state, which includes both smaller and larger cities, these
differences in individual diversity might be blurred.

Currently, streaming is predominantly used in Western countries, and much
of this research focuses on them, or even solely on the U.S.. There are challenges
in conducting this type of regional analysis, especially in smaller countries, due
to difficulties in accurately geolocating mobile Internet users. A recent study
by Lesota et al. (2021) has a more global approach, and explores the place of
local music and U.S. music in different countries, analyzing both the number of
streams and the number of artists using Last.fm data. However, as we will show
in Chapter 7, there is potential bias in such studies as users of a niche service
like Last.fm may not represent the broader population of a country. This calls
for caution in generalizing these findings to the entire population.

The effect of globalization

With technological advancements, people around the world now have access to
more or less the same music. Globalization extends beyond music — it affects
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nearly every aspect of our lives. But how exactly does it influence the music
industry? Do geographical differences in music preferences progressively fade
away?

From the 1960s through the early 1990s, this seemed to be the case (Achter-
berg et al., 2011). In countries like France, Germany, and the Netherlands,
American music increasingly dominated the charts, pushing local music aside.
However, in the 1990s, a shift occurred, and local music began to make a strong
comeback. One major explanation is the geopolitical and cultural changes fol-
lowing the end of the Cold War in 1989. As American influence waned, Eu-
ropean countries experienced a resurgence of national identity, reflected in the
growing popularity of local music. Some governments even passed laws to sup-
port this trend, like France’s ’loi Toubon,’ which requires a minimum of 40% of
music with french lyrics on the radio and other media.

Additionally, shifts in the music industry and technology contributed to this
change. As production costs dropped, it became easier for local artists to pro-
duce and distribute their music. MTV, which had initially promoted a more
global (primarily American) music agenda, also began to focus more on locally
oriented content, helping fuel the rise of national music scenes.

Achterberg et al. (2011)’s study, which analyzed data up until 2006, pre-
dates the rise of streaming platforms. Did the advent of streaming reverse the
trends they observed? While U.S. music still holds a presence in many coun-
tries’ charts, Bello and Garcia (2021) claim that the share of local music and
overall diversity kept increasing in the charts of most countries in the last years.
By analyzing large-scale datasets from Spotify and iTunes, the study examined
trends in song, artist, and label diversity across 39 countries from 2017 to 2020.
Their findings reveal a growing cultural divergence, as national charts have be-
come more distinct, with more unique, and increasingly local, songs and artists
populating the charts.

Both these studies focus on chart data, but do charts accurately reflect what
people choose to listen to? A recent paper by Lesota et al. (2022) shifts focus to
actual music consumption patterns to examine the role of local and U.S. music
in different countries. The authors used a subset of the LFM-2b dataset from
2018-2019, covering 12,875 users from 20 countries, and introduced two key
measures to quantify music consumption. The first measure looks at the share
of streams in each country that come from local, U.S., or other foreign artists.
The second examines how much of the music produced by artists from a spe-
cific country is consumed domestically versus internationally. According to the
study, U.S. music holds a strong global presence, accounting for around 40% of
music consumption in many countries, while local music’s popularity depends
on the country, ranging from 20% (in Germany) to 80% (in Brazil).

While focusing on actual consumption data is a step in the right direction,
several limitations in the study make its results less conclusive. First, the sam-
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ple size is relatively small, with around 500 users per country on average, and
as few as 115 users in some cases (like Turkey or Japan), making it hard to
generalize the findings. Additionally, the users come from Last.fm2, a relatively
niche platform, meaning the audience may not represent typical listeners in each
country, including the preference for local music. Finally, the authors excluded
unlabelled streams — streams from artists whose country of origin could not be
identified. Since it is unclear how many artists and streams were affected by this
exclusion, and considering that artists from the U.S. and other Western countries
are likely better labeled, the results may be biased in favor of these regions. We
will come back to this study and its limitations in Chapter 7, extending the dis-
cussion to recommendation fairness for local music recommendation.

A final concept worth mentioning is glocalization (Hebert and Rykowski,
2018). While it is relatively straightforward to estimate the amount of produced
and consumed music by local artists within a country, using charts, surveys or
streaming data, evaluating the full impact of globalization is far more complex,
as it manifests in various ways. For instance, music trends originating from the
U.S. (or other countries) often spread and are adopted by local artists worldwide.
A prime example is K-pop Oh and Park (2013), a genre that incorporates classic
elements of Western pop — from the music itself to its visuals and music videos
— yet it was absorbed into Korean local culture and re-exported globally, in-
cluding back to the U.S.. Similar trends can be observed everywhere: reggaeton
beats, originally from Puerto Rico, are now used by artists across the globe; rap
has been localized in nearly every country, performed in countless languages.
Many genres have traveled overseas, giving birth to styles like Japanese funk
or Russian rock, which borrow the original codes of the genre but eventually
evolve into distinct styles of their own. These patterns are much harder to quan-
tify, but they are essential to consider when attempting to measure the music
globalization process.

3.2 Musical taste as a dynamic concept

Previously discussed literature mostly considers music preferences at a given
moment. However, our musical preferences are subject to change. We can dis-
cover new music through emergent artists, fresh releases and trends, or through
new environments that we find ourselves in, offline and online. We might revisit
old favorites driven by nostalgia, or get bored of an album that a short time be-
fore was our favourite. Our music selections can also vary with the activity we
are engaged in, the place we are at, the time of day, the season, or the company
we keep. In this section, we will explore how and why musical taste can evolve,
both on the long and the short term.

2Last.fm

https://www.last.fm/
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3.2.1 Aging
In the field of psychology, many studies explore the relationship humans have
with music at different ages, from early childhood to later adulthood. In their lit-
erature review on music preferences of different age listeners, Hargreaves et al.
(2006) try to dig to the root by understanding how and why do aesthetic pref-
erences form in general. They refer to two main theories: the arousal-based
approach, mostly associated with Berlyne (1973), and the cognitive approach,
with researchers like Martindale & Moore (Martindale and Moore, 1989; Mar-
tindale et al., 1990).

Berlyne’s ’inverted-U’ hypothesis suggests that people prefer stimuli, in-
cluding music, with a moderate level of complexity, enjoying it most when it
hits an optimal level of arousal. Hargreaves et al. (2006) apply this theory to
musical taste, explaining how preferences evolve with age. Similar to develop-
ing a taste for more complex flavors in food, children start with simpler music
because it’s easier to process, but over time, exposure to diverse genres helps
them appreciate more intricate music. Just like how our tolerance for spicy food
grows, our ability to enjoy complex music expands with experience, though too
much complexity can still be overwhelming.

The cognitive approach, on the other hand, focuses on how the brain cate-
gorizes and recognizes patterns in music. People prefer music that fits familiar
mental categories. As we age and our musical ’library’ expands, our preferences
shift to match our growing cognitive understanding of genres. This approach ar-
gues that it’s not just complexity but also how well music aligns with our mental
expectations that determines preference.

Initially, the cognitive approach was presented as competing to the arousal
theory. However, Hargreaves et al. (2006) propose to consider the two theories
as complementary, pointing out that arousal potential can also influence a piece
of music’s typicality within its genre. For instance, the music of Stockhausen,
known for its high arousal potential due to its complexity and novelty, is con-
sidered atypical for classical music, which could explain its lesser popularity
compared to more traditional composers like Beethoven.

In support of these theories, Hargreaves (1984) experimentally confirms the
idea that exposure plays a key role in how we develop preferences for music,
particularly in relation to complexity. The study consisted in two experiments
involving a total of 99 participants. In the first experiment, 59 adults from dif-
ferent backgrounds, including adult education students and psychology under-
graduates, were exposed to two musical pieces: an ’easy-listening’ track and an
avant-garde jazz track. These were played three times within a single session,
and participants rated their liking and familiarity of each piece after every lis-
tening. The second experiment involved 40 undergraduate students aged 18–22,
who listened to three different music pieces: a pop song, a classical piece, and
an avant-garde jazz track. Over three weekly sessions, each piece was played
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four times per session, and participants again rated their familiarity and liking.
The study found that while participants preferred simpler, familiar music ini-
tially, their liking for more complex pieces, such as avant-garde jazz, increased
with repeated exposure. This suggests that repeated listening can enhance one’s
ability to process and enjoy more complex music, aligning with the idea that
exposure plays a key role in evolving musical preferences as we age.

However, several studies support the idea that ’open-earedness’ — a ten-
dency to be more receptive to a wide range of musical styles — decreases be-
tween childhood and adolescence, possibly due to a growing understanding of
cultural norms and what is considered socially acceptable.

For instance, Hargreaves (1982) aimed to explore the evaluation criteria
and language used to describe aesthetic reactions in children of different ages.
A total of 127 children between the ages of 7 and 15 were asked to make freely
formulated statements about the differences or similarities between 9 pairs of
musical pieces. The authors claimed that sensitivity to stylistic categories of
music increased with age, as older children more frequently used specific genre
names to describe music.

LeBlanc and Cote (1983) conducted a study on 354 fifth- and sixth-grade
students, asking them to rate their preferences for 36 excerpts of traditional jazz.
Fifth-graders showed significantly higher preference ratings overall compared
to sixth-graders, which the authors linked to a slight decrease in openness or
enthusiasm for the music with age.

LeBlanc et al. (1996) examined how music preferences for art music, tra-
ditional jazz, and rock vary across age groups in a sample of 2,262 participants
ranging from 6 to 91 years old. Participants listened to 18 excerpts with similar
tempos across the three genres and rated them using a five-point scale. Rock
music was consistently liked across all age groups, while art music and jazz
were appreciated less during middle school years but showed peaks of higher
preference among younger children and college students, suggesting that ’open-
earedness’ declines during adolescence and partially rebounds in adulthood.

Despite their reputation and high citation rates, all of these papers have
significant limitations. For example, Hargreaves (1982) did not account for
whether the children appreciated the music, and the use of more genre names as
they grew older could simply reflect their expanding vocabulary. Although cov-
ering various tempos and both vocal and instrumental performances, LeBlanc
and Cote (1983) only considered jazz music — it seems difficult to draw con-
clusions about ’open-earedness’ based on the appreciation of a single genre.
LeBlanc et al. (1996), though it has the most robust methodology, with a large
and varied participant sample and an understandable choice of music genres,
still has limitations: participants were primarily from middle-class backgrounds,
which may not reflect broader trends, and the number of considered genres was
too small. Additionally, the number of music excerpts in all studies was limited.
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More recently, Louven (2016) offered a critique of Hargreaves’ ’open-earedness’
and the work that followed, highlighting the lack of consensus on the term’s
definition. He developed the ’Osnabrück Open-Earedness Index’ to empirically
measure ’open-earedness,’ defined as the willingness to engage with unfamiliar
or disliked music. In the experiment, 961 participants, ranging from children
to adults with varying levels of music education, listened to 17 diverse music
samples (classical, pop, avant-garde, ethnic). Participants controlled how long
they listened to each piece, and preference ratings were collected afterward. The
open-earedness index was calculated by comparing listening times for disliked
music with overall listening duration, with higher scores indicating greater tol-
erance or curiosity.

Results showed that age had no significant impact on ’open-earedness’.
However, again, the range of genres was limited, participants were predomi-
nantly middle-class, and the metric used is debatable — there was no consider-
ation of the amount of liked or disliked, for example. In summary, it is unclear
from existing research whether there is a fundamental change in our perception
of music as we age, and the subject requires more robust studies.

One finding however persists across different studies and even fields: mu-
sical taste seems to primarily form during adolescence. Several survey-based
studies report that music plays a particularly important role in teenagers’ life.
Teens spend 20% of their time listening to music, compared to 13% for adults
(Bonneville-Roussy et al., 2013), and consider listening to music more impor-
tant than indoor activities, such as chatting with parents or reading North et al.
(2000).

Music plays a key role in fulfilling adolescents’ emotional needs North et al.
(2000); Saarikallio (2007). Listening to music is associated with emotional ex-
pression, relieving boredom, managing stress, and helping them get through
difficult times. Females, in particular, report using music more for emotional
regulation, while males are more concerned with using music to create an exter-
nal impression or social identity.

According to North and Hargreaves (1999), adolescents use music to form
their social identity by aligning their musical preferences with their self-concept
and using these preferences to communicate their values and characteristics to
others. Music acts as a ’badge’ that helps teens express who they are and what
they stand for. Adolescents not only judge others based on the music they like
but also choose musical styles that reflect their self-image. This alignment with
a particular music genre can boost self-esteem and influence how they are per-
ceived socially, such as their likelihood of having friends or being seen as suc-
cessful.

Probably because of this strong connection to music during adolescence,
the patterns and preferences developed in these years tend to persist into adult-
hood. Numerous studies show that people favor music released during their
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adolescence or early adulthood. A pioneering study by Holbrook and Schindler
(1989), involving 108 participants aged 16 to 86, had respondents rate their pref-
erences for 28 popular songs from 1932 to 1986. The study found that musical
preferences follow an inverted U-shaped curve, peaking when participants were
around 24 years old.

A more recent study by Jakubowski et al. (2020) explored the ’reminiscence
bump,’ where music evokes strong autobiographical memories. Involving 470
participants (ages 18 to 82), who rated 111 popular songs from 1950 to 2015,
the study found that the reminiscence bump peaked at age 14, with participants
reporting stronger memories tied to music from their adolescence. Interestingly,
younger participants showed a ’cascading reminiscence bump,’ displaying in-
creased liking for music from their parents’ youth.

A 2019 study based on streaming data Way et al. (2019) found similar re-
sults. It explored how a listener’s age predicts the age of the music they con-
sume, showing that while trends affect listeners of all ages—about 28% of tracks
streamed across age groups were recent hits—listeners tend to favor music from
their adolescence, between the ages of 10 and 20. These findings align with
psychological research showing that adolescence is a key period for forming
musical identity, reinforcing the lasting impact of music from this stage of life.

3.2.2 Change of environment
Relocation

Changes in music preferences may not only naturally occur with aging, but
could also be triggered by a big change in life, like relocation. Not a lot of
research explores the impact of environmental changes on individuals’ musi-
cal preferences, however, it is addressed locally in some ethnic and migration
studies. Several studies show that migration often triggers a sense of nostalgia,
and music plays a significant role in this experience (Khorsandi and Saarikallio,
2013). It can intensify and stimulate nostalgic memories, and is used as a tool
for coping with loneliness and finding meaning in life. Music also helps mi-
grants construct social imaginaries and express themselves (Pistrick, 2017).

A more recent study by Way et al. (2019) examines how taste evolves fol-
lowing relocation based on online traces. Using streaming and location data
from 16M U.S. Spotify users, the research analyzes shifts in musical preferences
as individuals move from one state to another. First, authors calculated similar-
ities among the top 10,000 most-streamed artists in the U.S. and grouped them
into 200 clusters, or genres. Each user was then assigned a 200-dimensional
vector representing their streaming activity across these genres. To assess the
influence of interstate relocation on musical taste, the study summed the stream-
ing data in each of the 200 defined genres from listeners of each state, creating
a profile of ’typical’ musical preferences for each state.
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Migrations were identified using location data. The initial phase of the study
focused on short-term relocation effects. Summertime is the most common pe-
riod to relocate in the US, so the authors chose to analyse musical preferences
from March to May and from September to November for users whose main
streaming location has changed between these two periods. Then, a comparison
was made between pairs of people who listened to similar music from March
to May, with one person who has moved and one person who has not. The
results have shown no significant differences between movers and non-movers,
meaning that relocation has little effect on the evolution of musical taste, at least
during the first months after the relocation.

Assessing long-term relocation effects posed challenges due to the rela-
tively recent widespread adoption of streaming services. The researchers cir-
cumvented this by examining users who spent both Christmas and Thanksgiv-
ing in the same state, different from their usual location, hypothesizing that
these users likely lived in those states previously. By comparing the musical
tastes of relocated users to both their original and new states, and to those of
non-relocated individuals of the same age and gender, it was found that while
the musical preferences of relocated individuals more closely aligned with their
original state (64%), there was a slight shift towards the preferences of their new
state compared to non-movers (57.5%).

The study is however limited as it only considers relocation within the US.
The change in music listening habits between different states might not be sig-
nificant, as there are no language barriers, for instance. Studying individuals
who move to another country could potentially show more variation in mu-
sic preferences. However, a lot of people who move, especially those fleeing
their home countries, come from places where international streaming services
aren’t widely used. They often download music, use sites like YouTube or lo-
cal streaming services, which makes it hard to track what they listened to be-
fore moving. But, as some streaming services are becoming more widespread,
there’s hope that we will be able to get such data in the near future.

Mid-term variations: travels, lockdowns

Recent study by Kim et al. (2024) suggests that temporal routine changes are
also capable of influencing music listening habits. The authors focused on two
specific events — travel and the COVID-19 lockdown — to explore how they
impact music consumption, particularly in terms of diversity. The study ana-
lyzed over 100 million streams from Deezer, examining the listening behavior
of 44,794 users from nine countries (France, Germany, United Kingdom, Brazil,
Australia, Russia, South Africa, Morocco, Mexico), with sample sizes ranging
from 1,000 to 10,000 users per country.

To identify when users traveled, the researchers used their geographical lo-
cation, determined from the IP addresses linked to their streams. The city where
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a user streamed the most during the year was designated as their ’home city.’
A change in the primary streaming location was considered travel. The geo-
graphical distance between a user’s home city and the cities they visited was
then calculated to analyze how travel influenced their musical preferences. For
the COVID-19 lockdowns, the study focused on the period from March to April
2020, when strict lockdowns were imposed globally.

Each user’s musical preferences were represented as a ’taste vector’ using
a Song2Vec model, which mapped each song to a vector based on its context
within playlists. A user’s taste vector was the average of the vectors for the
songs they listened to during a specific period. The researchers also computed
regional and global music profiles by aggregating the vectors of users from spe-
cific regions or across all users globally.

For users who traveled, the study compared their music preferences during
the travel month (or shortly after) with their preferences over the six months
leading up to the travel. To isolate the impact of travel, they paired users with
similar music preferences before the travel period, then compared the changes
in musical tastes between those who traveled and those who did not. For the
COVID-19 analysis, the study compared users’ taste vectors during the lock-
down months (primarily March to June 2020) with their vectors from the six
months before. A higher cosine distance indicated a greater divergence from
previous preferences, suggesting more musical exploration or a shift toward
new genres or styles. In both cases, users’ taste profiles were also compared
with regional and global vectors.

The study revealed that travel was strongly associated with musical explo-
ration. When users visited new cities or countries, their music preferences di-
versified, often shifting toward regional music rather than global or mainstream
trends. The greater the geographical distance from their home city, the more
significant the change in their musical tastes. Those who traveled further were
more likely to listen to music different from what they typically consumed. Ad-
ditionally, users with more non-conforming musical tastes (those whose prefer-
ences already deviated from the global average) showed even greater exploration
when traveling compared to users with more mainstream preferences. During
the COVID-19 lockdown, users’ musical preferences also diversified signifi-
cantly, similarly gravitating toward regional content as seen with travelers.

Although the study suggests that events like travel or lockdowns had long-
term effects on musical preferences, this conclusion is based on data from only
one month following the event. Therefore, it remains uncertain whether these
changes are truly long-term, and they may be more accurately described as mid-
term shifts, at least until proven otherwise. While the methodology and findings
appear robust, the study would benefit from larger sample sizes (some countries
were only represented by 1,000 users) and data from different sources, as Deezer
users may represent a particular demographic that is not fully generalizable.
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3.2.3 Short-term variations: mood, activity, context

Music is a powerful tool for mood regulation, offering various strategies that
individuals use to manage their emotions. Saarikallio (2008) identified seven
key strategies for mood regulation through music listening — entertainment, re-
vival, strong sensation, diversion, discharge, mental work, and comfort — based
on a large set of adolescents’ self-reported data. Research on music’s role in re-
ducing anxiety shows it can lower physiological markers of stress, such as heart
rate and cortisol levels (De Witte et al., 2020). Ferwerda et al. (2015) placed
359 participants in various emotional states using film clips and asked to rate
different emotionally laden music pieces based on their likelihood of listening
to them, considering their emotional state, and their personality traits. Individ-
uals with higher scores in openness, extraversion, and agreeableness tended to
listen to happy music when feeling sad, aiming to improve their mood, while
those scoring high in neuroticism preferred music reinforcing their sadness.

Because music is effective in regulating emotions, it can be used in different
contexts and for varied purposes, with preferences often shifting depending on
the specific listening situation. However for a long time research presented a
’pharmaceutical’ model of music consumption, considering listeners as passive
recipients of musical stimuli, and did not explore their active role in choosing
music based on the situational context of listening.

North and Hargreaves (1996) were one on the first who tried to understand
how musical preferences shift depending on the listening context. The study in-
volved 393 psychology undergraduates who were presented with one of 17 dif-
ferent hypothetical listening situations (such as ’jogging,’ ’at a nightclub,’ or ’in
church’). Participants rated the importance of 27 musical characteristics (such
as ’loud,’ ’sad,’ ’invigorating,’ or ’relaxing’) in terms of how much they would
like music with these qualities in each context. Results showed that musical
preferences were highly context-dependent; for example, participants preferred
’loud’ and ’invigorating’ music in active situations like jogging or parties, while
they preferred ’relaxing’ and ’quiet’ music in more subdued settings like bed-
time or church. A factor analysis revealed key underlying dimensions of these
preferences, such as arousal, sensuality, and melancholia, suggesting that music
is chosen not just to match emotions but to enhance the mood of the situation.

In contrast to the hypothetical scenarios used in North and Hargreaves (1996),
where participants were asked to imagine how they would choose music in
different situations, Sloboda (1999) focused on real-life behavior through self-
reported data. The study used the Mass-Observation Project, where 249 respon-
dents, mainly adults from diverse backgrounds, provided detailed descriptions
of how they actually used music in their daily lives, during various activities
such as driving, housework, or unwinding after a stressful day. Like North and
Hargreaves (1996), he found that music preferences vary by context, with more
invigorating music preferred in active situations and relaxing music in quieter
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settings. However, he also showed that music is often used to transform moods,
such as alleviating stress, which goes beyond simply matching the context’s
emotional tone. Also, while situational factors influenced music choices, in-
dividual preferences and emotional needs played a significant role, leading to
variation in the type of music people chose even within the same context.

These studies were conducted at a time when music listening required more
effort and planning, such as carrying CDs or tapes and accessing playback de-
vices. However, with the popularity of mp3 players in the 2000s and, subse-
quently, smartphones and streaming services in the 2010s, most people in the
Western world became able to access any music at any time and place, dramati-
cally changing how music accompanies daily activities.

The 2018 study by Volokhin and Agichtein (2018), also survey-based, re-
flects this evolution in music consumption by demonstrating how the widespread
availability of personal devices like smartphones has expanded the range of ac-
tivities that can be accompanied by music. Their study shows that music is now
an integral part of everyday life for activities such as commuting, working, ex-
ercising, and even eating. Unlike earlier times when people were more depen-
dent on the music provided in public spaces—such as cafes or stores—today
individuals often choose to listen to their own music via headphones or mobile
speakers, giving them control over the sound environment and allowing them to
tailor the music to their personal preferences or emotional needs.

Most studies, like those discussed previously, rely on self-reported data,
which raises questions about the accuracy and how closely it reflects real behav-
ior. Unfortunately, detecting individual listening contexts automatically, based
on streaming behavior for example, is a difficult, if not impossible task.

A few studies have attempted to detect context automatically, likeKaminskas
et al. (2013) and Cheng and Shen (2014) using GPS data from mobile phones to
identify users’ geographical locations and surroundings, however, their primary
goal was to provide context-aware music recommendations rather than analyz-
ing users’ listening behavior in specific contexts.

The analysis of changes in IP addresses combined with timestamps asso-
ciated directly with streams, as in Way et al. (2019) and Kim et al. (2024),
could offer a way to infer activities like commuting or being at work or home,
but determining the exact user’s activity or mood remains a challenge. A mix of
self-reported contexts, combined with streaming histories, could provide a more
accurate picture of user behavior in different situations. However, collecting this
kind of data on a large scale is logistically difficult, as it requires a substantial
number of users from streaming platforms who are willing to report their exact
activities over an extended period.

Another possible method would be to analyze user behavior in context-
oriented playlists, where the context can often be inferred from the playlist’s
title (e.g., ’Work Focus’ or ’Relaxation’). By examining which tracks users
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engage with or skip, we could identify patterns in the music users prefer for
specific activities. However, since these playlists are curated to fit a particular
context, the music selection might not be diverse enough, and users are likely
selecting from a pre-filtered set of tracks. This can introduce bias, as the playlist
may influence user choices, limiting our understanding of their broader listening
preferences in those contexts.

One situation in which behavioural data can be used to understand context-
related variations in music preferences is if the context is known to be common
to all users in a given time and place. An example of such context is weather.
Anglada-Tort et al. (2023) conducted a large-scale study analyzing over 23,000
songs that reached the UK Top 100 charts between 1953 and 2019, combining it
with weather data (e.g., daily temperature, hours of sunshine, rainfall) from the
UK Meteorological Office, and music feature data (e.g., energy, valence, tempo)
extracted from Spotify’s API. Music features were aggregated on a monthly
level and reduced to two key components representing high-arousal positive mu-
sic and low-arousal negative music using Principal Component Analysis (Prin-
cipal Component Analysis (PCA)). They explored potential nonlinear relation-
ships between weather and music features using generalized additive models,
controlling for confounding factors like seasonal trends. The results suggest
that songs with high energy and positive emotional valence, such as upbeat
and danceable tracks, are more likely to rise in popularity during warm, sunny
weather, while rainy days were associated with a preference for lower-energy
music. This methodology allows to reveal the existence of mood-regulation
mechanisms at a population level.

3.2.4 The role of streaming
The availability of music on the internet, starting with (often illegal) down-
loading and later the widespread use of streaming platforms, has dramatically
changed how we experience and engage with music. In the past, people pur-
chased individual albums, and thus had to chose wisely what they wanted to pay
for and listen to. By 2023, physical records accounted for only 17.8% of global
recorded music revenues, and considering the persistence of illegal downloading
and streaming, the actual share of physical media in overall listening is likely
even smaller. Streaming, on the other hand, represented 67.3% of global music
revenues in 2023.

With a streaming platform account, users gain immediate access to vast
music catalogs of tens of millions of tracks at no extra cost. To assist listeners
in navigating these enormous libraries, platforms use various recommendation
methods, including editorial (similar to traditional radio) and the novel algorith-
mic recommendations. These technological advances can not only shift con-
sumption patterns but also have the potential to shape our music preferences
over time.
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The transition to streaming services

Datta et al. (2018) was one of the first to investigate how the adoption of mu-
sic streaming services, impacts individual consumption patterns. They aimed
to understand if streaming generates additional music consumption, affects the
variety of music consumed, and influences the discovery of new music. The
data, collected from a third-party service tracking platform choices and listen-
ing behavior across various platforms, included over 123 million plays for 4,033
users over a 2.5-year period, encompassing both streaming and ownership-based
consumption.

First, users who began using Spotify during the study period were identified
and labeled as ’adopters.’ To isolate the effect of the adoption of streaming plat-
forms, these users were compared to ’control’ users who did not adopt stream-
ing services. The identification was based on users’ platform usage, ensuring
that adopters were recognized only if they demonstrated a clear shift to Spo-
tify after a period of non-use. To account for pre-existing differences between
adopters and non-adopters, the study employed a matching procedure based on
a range of observed characteristics, including demographic information and pre-
adoption music consumption behaviors. The two groups were compared using
a difference-in-differences approach, attributing changes in music consumption
behaviors post-adoption to the effect of streaming. Authors analysed both user-
level fixed effects, which account for time-invariant individual characteristics,
and time-varying effects that might influence music consumption trends gener-
ally.

The study measured a user’s music consumption as the number of songs
they played across all platforms, including both streaming services like Spotify
and ownership-based platforms such as iTunes and locally stored media play-
ers. To ensure meaningful consumption, the authors excluded any song that was
played for less than 30 seconds or skipped before reaching halfway through the
track. They observed a 49% increase in overall music consumption across all
platforms, on average per user, six months after the adoption of streaming ser-
vices. It also led to consumers expanding their listening across a larger variety
of music, for example number of unique genres increased by 43%. Addition-
ally, streaming facilitated the discovery of new music, with users encountering
an average of 27 new artists per month. Despite a general trend towards less re-
peat consumption for newly discovered music, there was more engagement with
users’ top discoveries, indicating valuable exploration facilitated by streaming.

Also, streaming seems to have changed the relationship people have with
different music items. In a 2020 commercial study made by Deezer 3, 54% of
8000 respondents declared listening to less albums than 5-10 years ago. Instead,
40% of people preferred playlists. This preliminary study offers an interesting

3Deezer study on albums consumption.

https://newsroom-deezer.com/2020/01/over-half-admit-to-listening-to-less-albums-in-last-five-years/
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insight, however, it would be valuable to confirm these findings through actual
consumption data.

Different use cases of streaming services

All users may not have the same ways to use streaming services, and thus can
be affected differently by them. Villermet et al. (2021) categorize users from
Deezer into four distinct groups based on their predominant method of discov-
ering and consuming music on streaming platforms. These methods include
algorithmically generated playlists, editorially curated playlists, and organic dis-
covery through direct searches or previously liked songs.

The categories and their proportions are as follows: rather ’Algorithmic’
users represent 11% of the sample, showing a preference for automated rec-
ommendations; ’Editorial’ users, who prefer human-curated playlists, make up
8%; ’Organic’ users, who mostly use search functions and browse their exist-
ing collections, account for 19%; and ’Very Organic’ users, who heavily rely
on manual selection and browsing, form the majority at 62%. This distribu-
tion highlights a continued preference for traditional, organic methods of music
consumption among the majority of users.

Notable differences were found in the diversity of music consumption among
the four user groups. Algorithmic users often experienced lower song dispersion
and predominantly listened to niche artists, suggesting a push towards more
unique content by algorithms. In contrast, editorial users showed similar song
dispersion but favored popular artists, reflecting a human curatorial bias towards
well-known music. Organic users displayed moderate diversity in both song
dispersion and artist popularity, balancing mainstream and less-known choices.
Very organic users exhibited the highest diversity, exploring a wide array of both
popular and niche tracks, indicating their use of the platform as a broad digital
library.

It is important to note that the study finds correlations between users’ pre-
ferred streaming modes and their music consumption patterns, but does not es-
tablish causalities — for example, users who frequently rely on algorithmic rec-
ommendations tend to listen to less popular artists, though it is unclear if the
recommendations shape their preferences or reflect existing tendencies.

Algorithmic recommendation

Internet services provide access to an unprecedented volume of data, and to
navigate this vast information landscape, users can rely on RS. However, while
these systems aim to personalize content to our tastes, they can also lead to the
creation of so-called filter bubbles. (Pariser, 2011; Nguyen et al., 2014; Haim
et al., 2018). These bubbles occur when the RS filter information to such an
extent that users are predominantly exposed to content that aligns with their
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existing preferences, thereby limiting exposure to new and diverse types of in-
formation.

Anderson et al. (2020) focus on music algorithmic recommendations, in-
vestigating whether they narrow down user preferences into filter bubbles or if
they encourage a broader exploration of musical content.

Authors use a dataset collected directly from Spotify, including the listening
history of over 100 million users and their interactions with millions of songs
in a one-year time-frame. Musical diversity was quantified using song embed-
dings that capture the similarity between songs based on user listening patterns.
These embeddings enabled the researchers to assign a diversity score to each
user, distinguishing between organic and algorithmically-driven listening. The
study employed statistical analyses to compare these diversity scores and their
relation to user engagement metrics. Furthermore, a randomized experiment
was conducted to assess the effectiveness of different song ranking algorithms
on user satisfaction, measured through song streams and skips.

The study found that algorithm-driven listening is typically less diverse
compared to organic listening. This suggests that while algorithms are good
at suggesting tracks similar to past user behavior, they might limit exposure to
a broader array of music styles and genres. Generalists (users with broad and
diverse music preferences) and specialists (users who prefer a narrower selec-
tion of music) respond differently to algorithmic recommendations. Specialists
benefit more from relevance-based recommendations because these recommen-
dations align closely with their existing preferences. In contrast, generalists do
not benefit as much from relevance-based algorithms and may need more di-
verse recommendation strategies that encourage exploration beyond their past
behaviors. Over time, users who increase their diversity in music listening tend
to shift away from algorithmic recommendations and lean more towards organic
methods of discovering music, such as direct searches or choosing from person-
ally curated playlists. This shift implies that users seeking more variety in their
listening habits may find algorithmic recommendations too restrictive.

However, Villermet et al. (2021) raise the question of whether the reduced
diversity of content consumption, which contributes to confinement and ’bub-
ble’ dynamics, is actually caused by RS, or if it originates from users’ pre-
existing preferences or their online activities.

Apart from general diversity, the field of algorithmic fairness investigates
and quantifies biases that may be produced by RS. In the context of music, one
of the most extensively studied biases is popularity bias (Celma and Cano, 2008;
Kowald et al., 2020). This bias is intrinsically linked to the long-tail distribution
of music data, where a small number of tracks accumulate most of the plays,
while a large number of other tracks are seldom heard. This tendency can skew
recommendations towards already popular tracks, reinforcing their visibility and
neglecting lesser-known music. Other biases in MRS include the preference for
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U.S. over local music (Lesota et al., 2021), biases related to the gender of artists
(Shakespeare et al., 2020), and biases that may arise from the user’s side, such
as the gender (Lesota et al., 2021) or personality of the listeners (Melchiorre
et al., 2020). We will dive deeper in the subject algorithmic fairness in Chapter
7.

3.3 Conclusion
Understanding and modeling musical taste, its origins, patterns and variations,
is essential for both the advancement of social sciences and the development
of more personalized and effective MRS. Musical preferences are not just per-
sonal or aesthetic choices — they are shaped by a mix of social, psychological,
and cultural factors. For researchers in social sciences, investigating these pat-
terns offers a window into human behavior, revealing how social class, personal
traits or cultural background influence what we listen to. From this perspec-
tive, musical taste becomes a valuable lens through which we can better under-
stand broader questions about social structures, individual identity, and cultural
norms.

At the same time, for streaming platforms, understanding musical prefer-
ences is crucial for improving user experiences. Music recommendations are
central to how streaming platforms engage users, and the better these systems
can capture and anticipate the nuances of musical taste, the more personalized
and satisfying the user experience will be. However, as musical taste is such a
subjective and dynamic concept, quantifying it remains challenging, and despite
the vast amounts of data available through streaming services, it is not always
easy to translate it into meaningful insights about individual taste.

To this day, there is a big gap between research in social sciences and the
field of MRS. Although sociologists, psychologists, musicologists and even ge-
ographers have conducted extensive research on musical taste and its many in-
fluences, their findings have rarely informed the development of RS. Conversely,
the algorithms powering these systems often overlook the rich theoretical frame-
works developed in social sciences. Only recently have some researchers begun
to bridge this gap, recognizing the potential for cross-disciplinary collabora-
tion, like for example Laplante (2014)’s essay on how insights from psychology
could improve music recommendation. Our own RECORDS project is another
step in this direction, bringing together researchers from both social science and
computer science to leverage streaming data in understanding music preferences
and enhancing RS.

This chapter has aimed to contribute to bridging this gap. By reviewing
the different aspects that shape musical taste, such as social background, per-
sonality traits, cultural environment, and diverse life events, it seeks to better
understand the broader human behaviors that contribute to the formation of our
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music preferences. Equally important, we have explored the methods available
for quantifying and evaluating these preferences and the ways in which they
evolve. Traditionally, surveys and interviews were used to this end, but these
methods, even though they have their advantages, were limited by their reliance
on usually small, specific populations and the declarative, thus possibly biased
nature of the data. The rise of the Internet and streaming platforms has opened
the door to massive collections of behavioral data, offering new opportunities
to study music consumption. Yet, with these new data sources came new chal-
lenges — such as interpreting behavioral signals and managing large datasets
— that require new approaches.

In Chapter 6, we will come back to the subject of musical taste, explor-
ing how individual and shared patterns in music preferences can be represented
through computational methods on streaming data, both for research and rec-
ommendation purposes.

To conclude, we summarized, in Table 3.2, the key studies discussed in this
chapter, demonstrating the evolution of data and methodologies used in research
on musical taste from different fields.
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Discipline Type of
data

Paper/Book Data Population Methods

Sociology Declarative
(survey)

Bourdieu
(1984)

Identifying
and rating
of music
pieces titles

1,909 French
individuals
(1963–1968)

Descriptive
analysis, social
class stratifica-
tion

Sociology Declarative
(survey)

Peterson
(1992)

Rating
19 music
genres

18,775 U.S.
adults (1992)

Log-
multiplicative
model, regres-
sion analysis

Psychology Declarative
(survey)

Rentfrow
and
Gosling
(2003)

Rating
14 music
genres +
BFI

1,704 Ameri-
can university
students
(2001)

Factor analysis,
correlation
analysis

Psychology Declarative
(survey
+ online
likes)

Nave et al.
(2018)

Ratings
of 25 15-
sec music
excerpts
+ artists
Facebook
’likes’

22,252 users
from 153
countries
(2012–2015)

LASSO regres-
sion, Pearson’s
correlation

Psychology Behavioral
(stream-
ing data)

Anderson
et al. (2021)

3 months of
Spotify ac-
tivity logs

5,808 U.S.
Spotify users
(2021)

Elastic net
regression,
random forest,
demographic
analysis

Cultural
Geogra-
phy

Declarative
(online
survey)

Mellander
et al. (2018)

Rating
14 music
genres +
MyPer-
sonality
test

120,000 U.S.
participants
(2001–2013)

Factor analysis,
correlation, re-
gression analy-
sis

Cultural
Geogra-
phy

Behavioral
(stream-
ing data)

Way et al.
(2019)

2 years of
geolocated
streaming
data

16M Spo-
tify users
in the U.S.
(2017–2019)

Genre clus-
tering, cosine
distance analy-
sis

Music In-
formation
Retrieval
(MIR)

Behavioral
(stream-
ing data)

Lesota et al.
(2021)

3 months
of stream-
ing data
+ artists’
origin
country

12,875 users
from 20
countries
(2018–2019)

Stream share
analysis, geo-
graphic artist
origin analysis
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Social
Sciences

Behavioral
(stream-
ing data)

Kim et al.
(2024)

1 year of
geolocated
streaming
data

44,794
Deezer users
across 9
countries
(2019–2020)

Song2Vec
model, co-
sine distance,
geographic dis-
tance analysis

Psychology Radio
charts

Anglada-
Tort et al.
(2023)

UK chart
data from
1953–2019

— PCA, gener-
alized addi-
tive models,
weather corre-
lation

Marketing Behavioral
(stream-
ing +
own-
ership
data)

Datta et al.
(2018)

2.5 years of
streaming +
ownership-
based
data

4,033 users,
123M plays
(2015–2017)

Difference-in-
differences,
matching
procedure

Psychology Behavioral
(stream-
ing data)

Anderson
et al. (2020)

Spotify
listening
history:
song em-
beddings
and diver-
sity scores
over 1 year

100M Spotify
users (2018)

Song embed-
dings, diversity
scores, ran-
domized
experiment

MRS Behavioral
(stream-
ing data)

Villermet
et al. (2021)

1 year of
contex-
tualized
streaming
data

9,000 Deezer
users from
France (2020)

Cluster anal-
ysis, song
dispersion, lis-
tening pattern
analysis

Table 3.2: Overview of data and methodologies used in research on musical
taste from different fields.



Chapter 4

Representing, categorising, and
labelling the musical space

When studying musical taste and music consumption, researchers usually have
to make the choice to represent music in a certain way. As we have seen in
the Chapter 3, most sociology and psychology studies on musical taste either
directly manipulate names of musical pieces, like songs, albums, artists or com-
posers (Bourdieu, 1984; Nave et al., 2018), or use categories, like genres or
moods (Peterson, 1992; Bryson, 1996; Rentfrow and Gosling, 2003).

Recommender systems often represent music in a continuous, multidimen-
sional space, where each song is represented as an embedding — a vector that
captures latent features of these items. These embeddings can be derived from
the music’s inherent features (van den Oord et al., 2013) or from user-item in-
teractions, where songs frequently shared in streaming histories by users are
considered similar (Shakirova, 2017; Sánchez-Moreno et al., 2016). Several
psychological studies also aggregate music by audience preferences (Rentfrow
and Gosling, 2003; Rentfrow et al., 2012).

The choice of a given music representation in a study can have a big impact
on its outcome, and can be considered as a research question on its own. Actors
from different academic domains, as well as industry, take specific interest in
ways to represent and segment the musical space.

For musicologists, categorizing music is essential for the systematic study
of its historical and cultural significance. It aims to provide a structured frame-
work for analyzing musical influences and trends over time, supporting schol-
arly research and contributing to the preservation of cultural heritage. These
taxonomies also shape the way music is understood, for better or for worse: for
example it can confine some of it in problematic and stigmatizing categories,
like ’world music’ (Feld, 2000) or ’urban music’ (Forman, 2002), minimizing
its actual diversity.

For music creators, categorization facilitates the marketing of their music.

75
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Understanding their niche helps in targeting specific audiences more effectively
and can guide the development of new musical styles by positioning themselves
between existing genres.

For music distributors, such as music labels and streaming platforms, mu-
sic classification helps in organizing large music libraries, making it easier to
deliver music to audiences. Specifically for streaming platforms, a well-labeled
catalog allows users to search for music more efficiently and enables the creation
of customized editorial or algorithmic playlists and radio stations that match in-
dividual listeners’ tastes, thereby increasing user engagement and satisfaction.

Researchers in music information retrieval (MIR) look for ways to au-
tomate music classification, usually to label huge datasets for research, or to
serve previously mentioned actors from the industry, like streaming platforms
or music labels.

Finally, some psychologists also propose their own ways to classify music
in order to study correlation between music preferences and personal traits.

Several authors have summarized existing approaches (Kaminskas and Ricci,
2012; Knees and Schedl, 2013) from previous studies. In this chapter, we aim to
make an overview of our own, that spans between several research domains, and
discuss the advantages and limitations of different ways to represent and dissect
the musical space. In the first section, we will explore ways to label music based
on specific features, like audio or lyrics, from human annotations to automatic
classifications. In the second part, we will see how the musical space can be built
through taste aggregation, from psychological surveys to collaborative filtering
(CF) for RS.

4.1 Using music features
An obvious approach to classify and label music involves using the knowledge
we have about the its musical properties, like rhythmic patterns, instruments,
specific techniques or scales. Additionally, classification can be based on textual
analysis of the lyrics or insights into the artist’s background, considering how
their music connects with historical or cultural influences. In this section, we
will explore the various features that can be used to determine a song’s genre,
mood, and geographical or cultural origin, whether through human analysis or
in an automated setup.

4.1.1 Human annotations

Human experts are valued for their knowledge and contextual understanding of
one or several music genres, based on extensive experience and often academic
or professional background in musicology.
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The most commonly used music taxonomy, by different experts and people
in general, are music genres. Categorizing music into genres is a seemingly
trivial exercise, that turns out to be a daunting task. In 1982, Fabbri (1982)
defines musical genre as ”a set of musical events (real or possible) whose course
is governed by a definite set of socially accepted rules”.

The same year, Tagg (1982) proposes a set of precise characteristics to dis-
tinguish folk, art and popular music. In 1996, Frith (1996) states that ”popular
music genres are constructed — and must be understood — within a commer-
cial/cultural process, they are not the result of detached academic analyses or
formal musicological histories”. And indeed, today, the music industry is the
most interested in genre classification.

Pachet et al. (2000) mention the following actors of the music industry who
resort to music classification :

• Record Company Catalogs (Universal, Sony Music, EMI, BMG): These
companies have vast archives and their classification often sets industry
standards.

• Record Shops and Megastores (Virgin Megastore, Tower Records, Fnac):
These retail environments categorize music to facilitate consumer brows-
ing, influenced by both market trends and historical data.

• Music Charts (Billboard, Top 50, Cashbox): These organizations catego-
rize music based on sales, radio play, and streaming statistics, impacting
genre perceptions through popularity metrics.

• Musical Websites and Online Record Shops (Amazon, All Music, Sonic-
Net, Mzz, Listen, Netbeat): These platforms provide digital categoriza-
tion, often using detailed metadata and user-generated tags.

• Specialized Press and Books: Publications dedicated to music critique
and history, which often provide in-depth analysis and genre classification
based on stylistic and historical research.

• Specialized Web Radios: Internet radio stations that often focus on spe-
cific genres, offering curated playlists that reflect nuanced understanding
of genre distinctions.

• Online collaborative databases (Wikipedia, Discogs): Individuals who
contribute to collective knowledge platforms, offering categorizations based
on community consensus and personal expertise.

Such a vast amount of different parties leads to a lack of consensus on the
taxonomy to use. In the same article, authors compare 3 Internet genre tax-
onomies: allmusic.com, amazon.com and mp3.com. The first problem they
observe is that the three sources propose a different number of existing genres :
531, 719 and 430 respectively. This is primarily due to the fact that genres often
lack clear, universally agreed-upon definitions.

Today, genres are often represented by a hierarchical tree structure (Figure
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4.1), going from macro-genres (rock, jazz, classical etc.) to micro-genres (chill-
wave, seapunk, lo-fi house etc.) (Raimond and Sandler, 2012; Tzanetakis and
Cook, 2002; Anderson et al., 2021; Way et al., 2019). Even macro-genres like
’rock’ or ’pop’ do not denote the same set of songs in different taxonomies, let
alone more specific sub-genres. This hierarchical system raises the question of
how deep the classification should go or at what point a genre should be dis-
tinctly recognized.

Additionally, the contemporary music scene is characterized by an om-
nipresent mixing of genres. On one side, niche artists are creating unique styles
by merging multiple genres, often giving them very specific names. For exam-
ple, today, the Every Noise at Once website1 — an initiative of Glenn McDon-
ald, former Spotify engineer — counts 1300 genres. On the other side, main-
stream music frequently blends various genre influences but is often broadly
categorized under the label ’pop’. It is also common for multiple genres to be
assigned to a single album, song, or artist, as seen in platforms like Wikipedia
and other music tags’ sources.

In response to this lack of structure, Yves et al. (2007) created the Music
Ontology, a framework designed for structuring and publishing music-related
data on the web. It consists of a comprehensive set of classes and properties to
represent information about musical works, their performances, and recordings,
integrating with other ontologies for enhanced richness and flexibility. Later in a
separate study, they demonstrated the framework’s effectiveness using a unique,
query-driven evaluation methodology (Raimond and Sandler, 2012).

This method involves aggregating a large set of real-world, music-related
user queries and evaluating how well these can be expressed within the Mu-
sic Ontology framework. The key measure used, termed ’ontology fit’, quan-
titatively assessed how the ontology could represent the features found in user
queries, thereby serving as an indicator of its practical utility in real-life appli-
cations. The ontology’s design is particularly aimed at addressing real-world
user needs in the music domain, as evidenced by its evaluation against a dataset
of user queries. Despite its robust design and practical utility (it was used on
BBC Music website and the DBTune project, for example), the Music Ontol-
ogy still struggles with subjective, emotional, cultural and contextual specific
descriptions of music.

Beyond the inconsistency of taxonomies, the demographic composition of
human annotators presents a deeper challenge. For example, Glott et al. (2010)
show that most Wikipedia contributors are male, from Western countries, and
with high education level. We can assume that a similar demographic distribu-
tion exists among other music annotation actors. This skew can influence genre
recognition and appreciation. For example, Western music genres tend to be de-
scribed and categorized with greater precision and nuance, while non-Western

1Every Noise at Once

https://everynoise.com/
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(a) (b)

(c)

Figure 4.1: Examples of music classification in (a) Tzanetakis and Cook (2002),
(b) Zhang (2021), and (c) Wallace (2015).
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music might not be as accurately or comprehensively labeled.
These biases are further exacerbated by cultural differences in annotators.

Epure et al. (2020) explore the challenge of accurately annotating music genres
across different cultures, particularly those defined by language boundaries. The
study combines language-specific semantic representations with several music
genre ontologies, creating a cross-lingual, culture-specific music annotation sys-
tem. Through this workflow, authors found that music genres are not consis-
tently defined across languages. For example, a genre well-recognized in one
language might not even have an exact equivalent in another, or it might be clas-
sified differently. Music genres often carried different connotations in different
cultures, even if the same terms were used. There were also some disparities in
the amount and detail of genre annotations across languages, often influenced by
the popularity of certain music styles within those linguistic communities and
the volume of content available on platforms like Wikipedia in those languages.

Related to these cultural inconsistencies is the difficulty in appropriately
identifying and labeling an artist’s country, which is another type of label that
is often used to classify music. It raises the question of how this country should
be chosen : based on where the artist was born, where they perform most often,
or where they are most popular? Here again it often occurs that artists who are
not from first-world countries are poorly labeled, and consequently have less
visibility on different platforms.

Even when annotations are available, they tend to focus overwhelmingly on
popular music, leaving a vast majority of less mainstream music from the ’long-
tail’ unannotated. This creates a vicious cycle: less popular music is poorly
labeled or ignored altogether, making it harder for people to discover it, which
in turn reduces its visibility and chances of being properly annotated. The prob-
lem is, most of the popular music is from Western countries, disproportionately
made by males2, and usually fits within the most mainstream genres. Therefore,
this self-perpetuating cycle disproportionately affects music from niche genres,
underrepresented regions and countries, as well as non-male artists.

On top of that, human-based classification systems present obvious scalabil-
ity issues: manual classification is laborious and difficult to perform on larger
datasets, especially with the continuous growth of music production and dis-
tribution. To address this challenge, Prockup et al. (2015) proposed a model
to scale up human annotations from the Music Genome Project (Castelluccio,
2006) for predicting musical genres. They trained a machine learning model,
based on logistic regression, using rhythm and timbre attributes labeled by ex-
perts, achieving an impressive average Area Under the Curve (AUC) (area un-
der the curve) of 0.918. However, distinguishing between certain overlapping
subgenres (e.g., Dance vs. Trance, or Hard Rock vs. Punk Rock) remained

2Between 2012 and 2017, only 22.4% of performers, and 12.3% of songwriters across 600
of the most popular songs were female. Smith et al. (2021)
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challenging. In another model, they combined human annotations with audio
features derived directly from the music signals, making the model even more
effective. This leads us into the next section on the use of audio-based methods
for scalable music labeling.

4.1.2 Automatic classification
Human annotations are highly impractical for large datasets, such as those found
on streaming platforms for instance. Researchers in MIR explore ways to auto-
mate music labelling using audio features analysis. For music streaming plat-
forms, this approach can be particularly valuable in ’cold-start’ situations, where
a track is new to the platform and has not been played sufficiently to gather
enough user data to use for recommendation. By examining the intrinsic prop-
erties of the music itself — such as tempo, rhythm, and harmony — it becomes
possible to gather information about a track, that can then be used to make pre-
liminary recommendations and categorize music effectively even without exten-
sive user interaction data. Also, lyrics analysis can be helpful in some cases, for
example to detect the mood, or the language of a song.

Genre

Several studies have aimed to automate the classification of musical genres us-
ing audio signals to enhance music information retrieval systems, thereby re-
ducing or eliminating the need for manual genre annotation.

Tzanetakis and Cook (2002) was a pioneering study in the field. Authors
used 1000 tracks from various sources, including compact discs, radio, and on-
line platforms, representing a total of 10 distinct music genres. They repre-
sented each track by a vector that combined timbral texture, rhythmic content,
and pitch content features, all extracted from audio signals. These vectors were
then used to train various classifiers, such as Gaussian mixture models (Gaus-
sian Mixture Models (GMM)s) and k-nearest neighbors (k-nearest neighbors
(k-NN)). The classification system they developed achieved an accuracy of 61%
across the ten genres, a rate comparable to human performance in similar genre
classification tasks Perrot (1999). Their study also highlighted the fuzzy nature
of genre boundaries as a significant challenge, noting that the diversity within
genres sometimes leads to misclassifications. For example, the genre of rock
was identified as having particularly broad and overlapping characteristics with
other genres, illustrating the complexity of accurately categorizing musical gen-
res using automated systems.

Audio recording is about capturing the sound of the actual performance.
Musical Instrument Digital Interface (MIDI) (Musical Instrument Digital Inter-
face) recording or ’sequencing’ is about capturing the actual notes of the perfor-
mance. McKay and Fujinaga (2004) used MIDI recordings to extract features
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like instrumentation, texture, rhythm, dynamics, pitch statistics, melody and
chords. Neural network and k-NN based classifications were performed hier-
archically, using different sets of features at different levels of the hierarchy,
reaching a 90% classification success rate for 1049 tracks of 9 genres.

Cataltepe et al. (2007) experimented with different combinations of MIDI
and audio data, testing various segments of music files and audio quality set-
tings to see how these factors influenced genre classification. Their findings
suggested that a hybrid approach using both MIDI and audio could enhance the
performance of music genre classification systems, however, they do not out-
perform the results of McKay and Fujinaga (2004).

Baniya et al. (2014) address the complexities of automatic music genre
classification within large datasets. Their work focuses on refining the clas-
sification process through improved audio feature extraction and classifier de-
sign. They explore a diverse set of audio features categorized into dynamics,
rhythm, spectral, and harmony, applying advanced statistical techniques to dis-
till these into a compact, informative representation. Their method involves
evaluating each feature’s effectiveness using the Minimum Redundancy Maxi-
mum Relevance (Minimum Redundancy Maximum Relevance (MRMR)) algo-
rithm, which ranks features based on their importance for genre classification.
The researchers use Support Vector Machine (Support Vector Machine (SVM))
classifiers to assess the efficacy of their feature selection method, finding that
the MRMR-based feature selection outperforms PCA in terms of classification
accuracy.

Recent studies on automatic genre classification focus on big datasets ex-
tracted from streaming platforms, and mostly use deep learning techniques.
Bahuleyan (2018) use 10-second sound clips extracted from YouTube music
videos of 7 different genres, on which they employ two distinct approaches.
The first is a deep learning model using convolutional neural networks (Convo-
lutional Neural Network (CNN)) trained on spectrograms of audio signals. The
second involves traditional machine learning classifiers trained on hand-crafted
audio features. The combination of the two approaches produced an AUC value
of 0.894.

Over the years, music genre detection has advanced, using larger and more
diverse datasets encompassing a broader range of genres. Despite these im-
provements, significant limitations persist. One common issue is that the music
excerpts used for training models are typically short, potentially missing style
variations that occur throughout a track. Additionally, most studies still rely on
a taxonomy of ten genres or fewer, often choosing genres that are easily distin-
guishable from one another to simplify the classification task. This approach
will not work in a real-life scenario, for example on the catalog of any steam-
ing service. Finally, the inherent difficulties that humans face in consistently
identifying music genres translate into similar ambiguities for automatic genre
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classification.

Mood

Humans naturally associate specific music features with particular emotions or
contexts, often independently of the genre. One effective way to categorize mu-
sic is by identifying its ’mood.’ This approach focuses on the emotional impact
and the atmosphere conveyed by a piece, allowing for a categorization that res-
onates with the listener’s experience regardless of musical style or structure.

Lu et al. (2005) is a pioneering study in predicting mood from audio fea-
tures, using supervised learning. They used a dataset of 800 music clips selected
for their representative emotional expressions, extracted from about 250 pieces
of music, primarily from the classical and romantic periods.

The corpus was labeled prior to machine learning analysis using a detailed
process involving three experts. These experts, knowledgeable in music theory
and psychology, worked together to annotate the clips, categorizing them into
four primary mood clusters: Contentment, Depression, Exuberance, and Anx-
ious/Frantic. To ensure the accuracy of the mood labels, any music clip that
did not receive unanimous agreement among the experts was excluded from the
dataset. This method minimized subjectivity and ensured that each selected clip
clearly represented its assigned mood, providing a strong foundation for training
the hierarchical mood detection system effectively.

Three primary types of audio features are analyzed to classify music ac-
cording to its mood: intensity, timbre, and rhythm. Intensity features focus
on the energy across different frequency subbands of the music, reflecting the
dynamic range and overall loudness that can indicate the emotional intensity
of a piece. Timbre features capture the quality of the sound that distinguishes
different types of sounds and instruments, independent of pitch and loudness;
these include spectral shape characteristics like brightness and spectral contrast,
which help in identifying the unique color or tone quality of the music. Lastly,
rhythm features assess aspects such as rhythm strength, regularity, and tempo,
which are crucial for understanding how the timing and pace of music convey
mood.

A hierarchical classification framework is used to initially group music clips
into broad mood categories using intensity features, which capture the energy
and loudness of the music. This prepares the ground for a more detailed clas-
sification within these groups using additional timbre and rhythm features. To
model the complex relationships between audio features and mood categories,
GMMs are employed, using the expectation maximization algorithm to effi-
ciently estimate the parameters of Gaussian components. Additionally, k-means
clustering is applied at the beginning of the GMM process to help set ini-
tial parameters, enhancing the performance and convergence of the expectation
maximization algorithm in fitting the model accurately to the data. Together,
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these techniques create a robust system for recognizing and categorizing the
emotional nuances in music, achieving an average mood detection accuracy of
86.3%.

The study set a strong baseline for further research in the field. However
limited in terms of music diversity, focusing exclusively on classical and roman-
tic music. Also they didn’t keep the music pieces that were mood-ambigious,
which is far from a real-life scenario, on music streaming platforms for instance.

13 years later, Delbouys et al. (2018) propose a sophisticated approach to
predict music moods, using neural networks on a substantial and diverse dataset.
This dataset included 18,000 tracks sourced from the Million Song Dataset and
the Deezer catalog, notable for its size and diversity, marking it as one of the
largest datasets used for multimodal mood detection to date.

The labeling was derived from the Million Song Dataset, which includes
various descriptive tags, including those related to mood. These tags were con-
verted into a two-dimensional space of valence (from positive to negative mood)
and arousal (from calm to energetic mood), based on a psychological model by
Russell (1980) commonly used in music information retrieval. To achieve this
two-dimensional embedding, a database by Warriner et al. (2013) was used,
which provided valence and arousal scores for thousands of English words. For
tracks with multiple tags, the mean of these scores was calculated to assign a
consistent mood descriptor to each track, allowing efficient labeling of the large
dataset without the need for direct human annotation.

Authors considered both audio and lyrics as features that can determine
the mood of a song. First, separate models were trained for audio and lyrics
data. These models learned to predict mood from each type of data indepen-
dently. Various deep learning architectures were employed, including CNNs
for audio and different configurations of recurrent neural networks like LSTM
(Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014) for lyrics. Af-
ter training unimodal models, a multimodal approach was used where the out-
puts of the audio and lyrics models were combined. This combination was done
through fusion techniques such as mid-level and late fusion, aiming to leverage
the strengths of both modalities. The fusion of modalities resulted in more ac-
curate mood predictions compared to models using either audio or lyrics alone.
The study found that audio models were particularly strong in detecting arousal,
which relates to the energy and intensity of the music. Lyrics, while useful for
detecting arousal to some degree, proved especially valuable for enhancing va-
lence predictions, which relate to the emotional positivity or negativity conveyed
by a track.

The innovative aspect of this study is shown by its application of deep learn-
ing techniques to a large and varied dataset, effectively enabling mood predic-
tions across diverse music styles. Recently, a similar method — training CNNs
on audio-based song embeddings — has been implemented for mood-specific
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music recommendations in the Deezer app (Bontempelli et al., 2022). In this
case they take in account the fact that the mood has to fit the overall user’s
preferences.

Overall, it seems like detecting the global mood of a song somewhat more
realistic than to determine a specific genre. However, a common limitation to
most papers on the topic is the cultural specificity in the perception of music.
Research shows that the emotions attributed to a music piece can vary depend-
ing on the country and culture of the listener (Brown, 2012; Laplante, 2014;
Cowen et al., 2020). Bhat et al. (2014) addresses this concern, aiming to clas-
sify both Western music and Hindi film music. The paper highlights that the
threshold values for classifying moods based on extracted audio features such
as intensity, timbre, pitch, and rhythm vary between Western and Hindi music.
This suggests that cultural differences in music composition and listening prac-
tices might influence the perception of mood. For instance, what constitutes a
’happy’ or ’sad’ song in Western music might have different acoustic profiles
compared to Hindi music, reflecting divergent cultural expressions of emotion
through music.

Language and country

Genre and mood are not the only properties that can be used to segment a music
catalog. In some cases, like for example to make country specific recommenda-
tions, determining the language or the artist’s country can be relevant as well.

When lyrics are available in written form, natural language processing (NLP)
techniques can be employed to detect the language Mahedero et al. (2005). If
the lyrics are not available in text, they may first need to be transcribed from
audio Gao et al. (2021).

Lyrics language can be used as a proxy to determine the artist’s country,
which is a frequently missing piece of metadata in big music catalogs, whether
it’s the artist’s country of origin, their primary area of activity, or their main
market. Although some languages are spoken in multiple countries, and artists
might use languages like English to reach a global audience, the language of the
lyrics can still serve as a valuable clue, especially when other data sources are
unavailable.

However, it’s important to note that NLP and transcription techniques tend
to be more efficient for widely spoken languages, which could inadvertently
reinforce existing biases. Artists from non-English speaking countries or those
singing in less common languages often have smaller fan bases and lack detailed
metadata. These artists, especially local ones from regions with less widely
spoken languages, are typically the hardest hit by annotation gaps and also the
most challenging to support with automated metadata completion techniques.
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4.2 Using taste aggregation

4.2.1 Declarative data
A series of studies was made, mostly by psychologists, in order to classify mu-
sic based on people’s preferences and the emotions they get from listening to
different kinds of music.

A significant early work by Rentfrow and Gosling (2003) involved six dis-
tinct studies that explored common beliefs about music, the underlying structure
of music preferences, and the links between music tastes and personality traits.
One of these experiments aims to categorize music based on people’s musical
taste, without any pre-existing theories or expectations about the number of di-
mensions or the nature of the underlying structure.

1,704 undergraduates from the University of Texas at Austin, were asked
to complete a survey comprising 14 music genres: alternative, blues, classical,
country, electronica/dance, folk, heavy metal, rap/hip-hop, jazz, pop, religious,
rock, soul/funk, and soundtracks. Participants rated their preference for each
genre on a 7-point Likert-type scale, with endpoints at 1 (Not at all) and 7 (A
great deal). Principal-components analysis of the answers led to a four-factor
solution that accounted for 59% of the total variance, each encompassing differ-
ent genres of music:

• Reflective and Complex: This dimension includes genres like blues, jazz,
classical, and folk music, which are known for facilitating introspection
and are structurally complex.

• Intense and Rebellious: Rock, alternative, and heavy metal. These genres
are characterized by high energy and often emphasize themes of rebellion.

• Upbeat and Conventional: Country, soundtrack, religious, and pop music.
These genres tend to emphasize positive emotions and are structurally
simple.

• Energetic and Rhythmic: Includes genres that are lively and rhythm-
focused, often featuring rap/hip-hop, soul/funk, and electronic/dance mu-
sic.

Several methods were used to to choose the appropriate number of factors
to retain: scree test, Kaiser rule, parallel analyses of Monte Carlo simulations
(Horn, 1965), and the interpretability of the solutions (Zwick and Velicer, 1986),
all converging towards this four categories classification.

Rentfrow and Gosling (2003) introduced a novel approach to structuring
music preferences, providing a comprehensive framework that has significantly
influenced further research in music psychology. Over time, their experiment
was replicated in various forms as evidenced by multiple studies (Delsing et al.,
2008; Brown, 2012; Langmeyer et al., 2012; Schäfer and Sedlmeier, 2009;
George et al., 2007). These replications revealed a broad consistency in results,
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yet they also highlighted some inconsistencies in the number of factors identi-
fied and how music genres were categorized. These variations are attributable
to several factors: cultural differences (as Rentfrow and Gosling (2003) initial
studies were confined to the United States, while subsequent studies spanned
different countries), demographic limitations (original studies focused on col-
lege students, who do not represent the broader population), and methodological
discrepancies.

A significant issue with previously mentioned studies is their reliance on
genre classification, which itself can introduce bias and limit the scope of re-
sults. Genres, being pre-established categories, might influence how respon-
dents perceive and evaluate the music, due to preconceived notions or biases
associated with those genres. Moreover, different individuals might categorize
the same music under different genre labels, leading to inconsistencies in data
collection and analysis. Furthermore, while these studies often categorize music
based on general preferences, such as liking or disliking a piece, they typically
overlook the specific emotions and feelings that the music evokes in listeners.

In 2011 and 2012, Rentfrow and peers Rentfrow et al. (2011, 2012) repli-
cated their study with an updated methodology. Instead of asking to rate genres
directly, they picked several music samples from different genres that the re-
spondents had to listen to, and then rate them on different levels : auditory fea-
tures, affect, energy level, perceived complexity etc. Several experiments where
made for each paper. Both studies converged towards a five-factor solution:
Mellow, Unpretentious, Sophisticated, Intense, and Contemporary (MUSIC).

In order to address the cultural specificities in music perception, Cowen
et al. (2020) explore the diverse emotional responses that music evokes in lis-
teners from the U.S. and China. The research investigated how music across
these cultures triggers specific emotions and broader affective states like va-
lence (the emotional value associated with a stimulus) and arousal (the intensity
of emotion provoked by a stimulus). The primary aim was to understand the tax-
onomy of emotional responses to music and whether these responses are consis-
tent across different cultural contexts. Specifically, it sought to determine how
music induces a range of emotions and how these are conceptually organized
across cultures.

1,591 U.S. participants and 1,258 Chinese participants listened to 2,168 mu-
sic samples from modern and classical Western music as well as traditional Chi-
nese music. They then had to describe their feelings using terms from a list of
28 emotions (sad, dreamy etc.) and along scales that captured 11 affective fea-
tures (valence, arousal etc.). Statistical methods were used to analyze and cat-
egorize the types of emotional responses evoked by the music samples. Factor
analysis helped uncover underlying relationships between emotional responses
and music, while hierarchical clustering grouped similar emotional expressions.
Regression analysis was used to investigate the correlation between musical fea-
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Figure 4.2: Interactive music emotions map, representing the 13 music emotions
(in China) from Cowen et al. (2020). Each point corresponds to a music excerpt.
The map is available on Alan Cowen’s website3.

tures and emotional reactions.

The research identified 13 distinct emotional experiences that music can
induce: amazement, joy, beauty, nostalgia, sadness, peacefulness, power, ten-
derness, transcendence, tension, wonder, triumph, and longing (Figure 4.2). In
comparison to the MUSIC model, this segmentation offers a more detailed tax-
onomy. Specific emotions were better preserved across cultures than general-
ized affective states like valence and arousal. Both U.S. and Chinese listeners
reported similar emotional responses to a wide array of music samples, indi-
cating some level of universality in emotional responses to music. However,
certain emotions differed: for example, when U.S. participants reported feeling
triumph, participants from China experienced feelings of beauty and transcen-
dence. These results recall that cultural background might have an impact on
one’s perception of music, and thus has to be taken in account when labelling
and classifying music.

4.2.2 Behavioural data

Unlike content-based features, context-based features do not require access to
the actual music file. Therefore, systems such as music information systems can
be developed without needing an acoustic representation of the music, simply
by using a list of music items. However, this approach requires access to exten-
sive, clear, and ideally noise-free user-generated data. If this condition is met,
community data offers a valuable source of information on social context, cap-
turing the ’collective wisdom of the crowd’ without requiring explicit or direct
human input.
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With the rise of the Internet and streaming platforms, data on users’ listen-
ing histories, likes and ratings has become accessible. This data can be used to
compute similarities between musical items, positioning them in either a con-
tinuous or discrete space. This approach is central to my own work and publi-
cations, thus deserves special attention. We will address the choice of the data,
normalization techniques, diverse similarity metrics, and clustering algorithms,
specifying the nuances of each step, and giving examples of existing literature
and/or practical examples on Deezer data.

Choosing the data and similarity criteria

The initial step is to decide which data to analyze, beginning with the choice
of music items, e.g. tracks, albums, artists. For example, tracks are more spe-
cific but present computational challenges due to their high volume. On the
other hand, artists and albums are broader categories that might simplify analy-
sis. However, the same artist might have explored different styles, and different
tracks from the same artists may address to different audiences.

Then depending on the source of data, a criteria for determining similarity
must be established. For example, before the streaming era, Cohen and Fan
(2000); Zadel and Fujinaga (2004); Schedl et al. (2005) and Schedl (2008) stud-
ied the co-occurrence of artists names on web pages, considering that the more
often two artists are mentioned on the same web pages, the more similar they
are. Pachet et al. (2001) used playlists from a French radio station and CD
compilation databases to analyze co-occurrences between artists and tracks.

Cano and Koppenberger (2004) and Aizenberg et al. (2012) also used the
co-occurrence of artists in playlists. Baccigalupo et al. (2008) introduced a dis-
tance function to account for how closely two artists appear in playlists. Later,
the co-occurrence of tracks in playlists started serving recommendation pur-
poses (Kim et al., 2018; Bendada et al., 2023). The advantage is that playlists
are not only created by editorial teams, but also by simple users, which means
the reflect a more realistic picture.

Last but not least obviously the behaviour of users of streaming platforms
can tell us a lot about the music items they interact with. It includes streaming
data — if a lot of people listened to the same tracks those tracks must be similar.
This is a nice approach, but we have to be careful about the complexity because
of huge amount of data. A stronger factor are likes — people didn’t just listen,
they have a special relationship with this musical item (Bendada et al., 2023;
Matrosova et al., 2024b). Also it allows to reduce the number of items, and to
not have to consider the temporality factor, like how far should we go in the
streaming history.

Regardless of the chosen data, it can typically be represented as a mn matrix
M , with items as rows, and terms, playlists, or users as columns (Figure 4.3).
Depending on the nature of the data, the matrix can be binary or non-binary. For
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Figure 4.3: Examples of interaction matrices.

binary data, we simply consider the occurrence of an event, such as whether a
song is in a playlist or if a user has liked or listened to a song. For non-binary
data, we count the occurrences, such as the number of times a user has listened
to a particular song. From now on, if not specified otherwise, M will denote an
item-user interaction matrix.

Normalizing the data

If we keep the matrix as it is, it can contain a certain amount of biases that we
might want to diminish. For example, if we count the number of times a user
streamed a certain song, not all users have the same intensity in usage of stream-
ing platforms, so for one user 5 streams may be 50% of their weekly streams,
while for another it will be 1%. This case, we want to make a column-wise
normalisation of M . An even stronger bias might be caused by the popularity of
the music items. As we know the popularity of music items follow a ’long-tail’
distribution, which means that a very small amount of most popular items end
up as the most cited/listened/liked. In the matrix, the row corresponding to a
top artist will be very dense, while for most, less popular artists the row will
be very sparse. A stream of a major artist then ’counts less’ that a stream of
a niche one. In order to diminish this bias we normalize the interaction matrix
row-wise. There are two ways to normalise a matrix by vector norms.

L1 normalization, also known as Manhattan normalization, consists in
dividing each element by the sum of the absolute values of all elements in the
row (or column).

ML1 =
M∑n

j=1 |Mij|

L2 normalization, also known as Euclidean normalization, normalizes
the data by dividing each element by the square root of the sum of the squares
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of all elements in the row (or column).

ML2 =
M√∑n
j=1 M

2
ij

‘

Dimensionality reduction

A problem that can occur with huge datasets, is that calculating similarity met-
rics on M as it is might be impossible because of the high complexity of sim-
ilarity algorithms. In this case, item vectors can be reduced to embeddings —
lower-dimensional vectors that capture the main aspects of their original matrix
relationships and properties. Let’s dive into the most common dimensionality
reduction techniques.

Singular value decomposition (SVD) is probably the most widely used
matrix factorization (MF) technique, one of it’s applications being dimension-
ality reduction. MF techniques are widely used in RS to discover latent features
underlying the interactions between users and items. These techniques consist
in approximating M by the product of two (or more) smaller matrices that cap-
ture latent factors about users and items. SVD breaks down matrix M into three
matrices as follows:

M = PΣQT

where :
• P (left singular vectors) is an m ×m orthogonal matrix, where columns

are eigenvectors of MMT .
• Σ (singular values) is an m × n diagonal matrix with non-negative real

numbers are sorted in descending order, representing the square roots of
the eigenvalues of MTM or MMT .

• Q (right singular vectors) is an n × n orthogonal matrix, where columns
are eigenvectors of MTM .

The idea is that, as the singular values in Σ follow a descending order, and
eigenvectors in P and Q are sorted accordingly, the first eigenvectors contains
the biggest part of information (and variance) of the initial matrix, and the last
ones are the least informative. By discarding the smallest eigenvalues, and cor-
responding eigenvectors, the dimensionality can be reduced without loosing too
much information (Figure 4.4). In order to know ’where to cut’, i.e. choose
the optimal number of components, a middle ground must be found between
minimizing the number of dimensions, while maximizing cumulative explained
variance ratio. There are several ways of achieving this:

• One common approach is to choose the number of dimensions such that
a desired percentage of the total variance in the data is explained. For in-
stance, retaining enough dimensions to explain 90% of the variance often
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Figure 4.4: Discarding the smallest eigenvalues and corresponding eigenvectors
in SVD.

Figure 4.5: Illustration of the ’elbow’ method to select the optimal number of
dimensions/components in SVD.

provides a good balance between information retention and dimensional-
ity reduction. This is calculated by summing the squares of the singular
values.

• A scree plot, which shows the eigenvalues or singular values in descend-
ing order, can be used to visually assess where the values start to level off
(often referred to as the ’elbow’ method). The point at which the decrease
in singular values becomes less pronounced is typically a good choice for
cutting off the number of dimensions (Figure 4.5).

Here, we only take interest the items, i.e. the rows in M . In this specific
case, SVD can be performed both directly on M , or on MMT , as it decomposes
into:

MMT = PΣP T

where U contains the eigenvectors (also the left singular vectors of M , and Σ
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is a diagonal matrix with the square roots of the eigenvalues of MMT (which
are also the singular values of M2). Either way, the item vectors in matrix
P form so-called embeddings, that represent the items’ latent features. These
embeddings can then be used to compute similarity metrics and/or to perform
clustering algorithms.

Unlike recommendation tasks, where MF techniques like SVD are an end
in themselves, usually, when the final goal is to simply understand the items
similarities and correlations, SVD is used only as a step for dimensionality re-
duction. However, an interesting finding by Afchar et al. (2023) suggests that
in the case of music data specifically — as it is particularly prone to exhibit-
ing community effects linked to its many historical and cultural groundings —
SVD embeddings are interpretable and can directly reveal existing item commu-
nities. They observed (on 6 different datasets) that embedding vectors tend to
self-organize along lines that pass through the origin, a pattern that is no longer
visible once similarity metrics are performed.

To explore this behaviour, authors used the degree-corrected block model
(Degree-Corrected Block Model (DCBM)) (Karrer and Newman, 2011), a ex-
tension of the stochastic block model (Stochastic Block Model (SBM)) (Hol-
land et al., 1983). The SBM is a probabilistic model for network data that
groups nodes into blocks or communities, with the connection probability be-
tween any two nodes depending on their respective community memberships.
The DCBM extends this by allowing node degrees to vary, acknowledging that
nodes within the same community can have different levels of connectivity. This
degree correction makes DCBM particularly suited for modeling networks like
music streaming data, where both community affiliation and individual popular-
ity (degree) play crucial roles.

Prior literature (Jin, 2013; Lei and Rinaldo, 2015) suggested that the di-
agonalization of DCBM matrices leads to the appearance of spikes. Afchar
et al. (2023) not only confirmed this, but also demonstrated the reciprocal re-
lationship, showing how such spikes in SVD embeddings are indicative of the
community structures modeled by DCBM. Finally, they show that on real-life
streaming data, the spikes indeed correspond to similar music items, i.e. com-
munities.

Principal Component Analysis (PCA) is a technique that is closely related
to SVD, however PCA is specifically aimed at reducing the dimensionality of a
dataset, while SVD is a more general matrix decomposition technique which can
be used for many other purposes. Because the primary goal of PCA to identify
the directions in which the data varies most significantly, it uses the covariance
matrix: it is a key tool in understanding these variances and the correlations
between different variables in the dataset. The eigenvectors and eigenvalues
are then computed on the covariance matrix using SVD, picking up the first
few eigenvectors, which capture the most variance, as principal components /
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Figure 4.6: Parallel between spikes in SVD and communities in DCBM (illus-
tration from Afchar et al. (2023))

dimensions.
The embeddings on their own are autonomous and represent the items in

a space. Then they can be used to compute similarity metrics or clustering
algorithms.

Computing similarity

Once the matrix M is set, each musical item is defined by a vector in a multi-
dimensional space. One straightforward way to identify the distances between
musical items is to compute the similarity between two item vectors. A lot of
similarity / distance metrics exist for this purpose.

Euclidean distance is a measure of the straight-line distance between two
points in Euclidean space. It is used by Slaney and White (2007) on music
items’ ratings, by Shavitt and Weinsberg (2009) on co-occurrences of peer-to-
peer music sharing.

dist(Mi,Mj) =

√√√√ n∑
k=0

(Mik −Mjk)2

Cosine similarity measures the cosine of the angle between two vectors,
indicating how similar they are, with values ranging from -1 (completely dis-
similar) to 1 (identical). Sometimes, cosine distance is used, which is derived
from cosine similarity and is defined as 1− cosine similarity. For example,
Knees et al. (2004); Anderson et al. (2020) use cosine similarity on music items
rating vectors and songs’ co-occurrence in playlists respectively.

simcos(Mi,Mj) =
Mi ·Mj

∥Mi∥ · ∥Mj∥

Pearson’s correlation coefficient measures the linear relationship between
two vectors, giving a value between -1 and 1, where 1 means a perfect positive
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linear correlation, -1 means a perfect negative linear correlation, and 0 indicates
no linear correlation. Pachet et al. (2001) songs’ co-occurrence in playlists.
Sánchez-Moreno et al. (2016) use both cosine similarity and Pearson correlation
for music recommendation, representing the items through users’ and socio-
demographic data.

P (Mi,Mj) =
1
n

∑n
k=0(Mik − M̄i)(Mjk − M̄j)

σMi
σMj

Jaccard Coeffcient measures the proportion of shared elements (for binary
vectors only) relative to the total number of elements that have a 1 in at least
one of the vectors. McFee et al. (2012) apply Jaccard coefficient on a matrix
recording if users’ have interacted with music items. Afchar et al. (2023) uses it
on SVD embeddings of artists’ co-occurrence in playlists.

J(Mi,Mj) =
|Mi ∩Mj|
|Mi ∪Mj|

Clustering

Finally, music items can be automatically split into distinct categories, using
either the original interaction matrix M or embeddings derived from it.

K-means (MacQueen et al., 1967) is one of the most popular clustering al-
gorithms. It is a centroid-based algorithm that partitions a dataset into k distinct,
non-overlapping clusters.

The algorithm starts by selecting k data points as the initial centroids (ran-
domly, or though more effective centroid initialization techniques like k-means++).
Then, it assigns each data point to the nearest cluster centroid, usually based on
Euclidean distance, but other distance metrics can be used as well. Once all data
points have been assigned to clusters, the centroids of these clusters are recal-
culate as the mean of all data points that belong to each cluster. The steps are
reiterated until the centroids do not change significantly between iterations, or a
maximum number of iterations is reached.

K-means is particularly efficient on large datasets, with a complexity of
O(mkt), where k is the number of clusters and t the number of iterations. Sev-
eral techniques exist to identify the optimal value of k, however most of them
require to perform the algorithm several times with different values of k before-
hand, which can add computational time. To cite a few — the elbow method
involves plotting the sum of squared errors against different values of k and
looking for the ’elbow’ where improvements in the sum of squared errors di-
minish; the Silhouette score measures how similar an item is to its own cluster
compared to other clusters for different values of k, and the k that maximizes
the average Silhouette score is considered optimal.
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K-means algorithm has been broadly used with music data. For exam-
ple, Kim et al. (2007); Shavitt and Weinsberg (2009); Pavitha et al. (2022);
Mukhopadhyay et al. (2024) use k-means clustering for MRS. Pavitha et al.
(2022) in particular compare the performance of different clustering algorithms
and finds k-means to perform better than other algorithms. Way et al. (2019) use
k-means among other clustering methods to detect music genres from streaming
data and state that all of the used clustering techniques produce similar-scoring
partitions of the data. Cai et al. (2021) propose a method based on k-means to
study the evolution of music genres.

A very similar method, k-medoids, is based on the same principle, but it
uses the most centrally located item in a cluster as the centroid, instead of using
the mean of the items in each cluster. Privandhani et al. (2022), for instance,
compares the results of k-means and k-medoids clustering on streaming data
from Spotify, suggesting that k-medoids tends to be more robust against outliers
and might provide a more representative clustering by focusing on the most
centrally located objects in a cluster. Also the medoids can be used to extract
knowledge about the clusters, as they can be interpreted as the most representa-
tive items of their clusters Matrosova et al. (2024b).

Another popular approach is hierarchical clustering. It is a group of clus-
tering methods (Murtagh and Contreras, 2012), that can be categorized into two
main types :

• Agglomerative clustering is a bottom-up approach. It starts with each
data point as its own cluster. Thus, if there are m items, we begin with
m clusters. Recurrently, the closest pair of clusters are merged into one,
until all points are merged into a single cluster or until a specified number
of clusters is achieved. This merging is based on a defined distance met-
ric (similarity between individual items) and linkage criterion (distance
between clusters). This approach is the most commonly used.

• Divisive clustering is a top-down approach. It starts with all data points in
a single cluster. Recurrently, each cluster is split into two smaller clusters
using a flat clustering method, like k-means for example, until each cluster
contains only a single data point or until a specified number of clusters is
achieved.

In both cases, the result can be visualized using a dendrogram, a tree-like
diagram that records the sequences of merges and shows the distance at which
each merge occurred (bottom-up approach) or how large clusters were divided
(top-down approach). This visual summary can be particularly useful in the
case of music data, as music genres are classically represented and understood
in a dendrogram shape. The advantage of this method is that it does not require
specification of the number of clusters in advance. Some disadvantages however
exist : hierarchical clustering is sensitive to noise and outliers, and, especially
for agglomerative clustering, the algorithm can be computationally expensive,



CHAPTER 4. REPRESENTING, CATEGORISING, AND LABELLING THE MUSICAL SPACE 97

with complexity (O(m3)), making it impractical for large datasets.
Li et al. (2011) organize music data based on user-assigned tags, artist-

related style, and mood labels, extracted from Last.fm and All Music Guide4

websites. They show that agglomerative clustering outperforms divisive clus-
tering in this task. Way et al. (2019) use agglomerative clustering, among other
clustering algorithms, based on streaming data from Spotify to identify different
music genres. In this study, all clustering methods gave similar results. Pavitha
et al. (2022) states that though agglomerative clustering is effective on stream-
ing data, it suffers from its computational complexity, and the use of k-means
is preferable with big datasets. With a nod to the previous section, a range of
studies have used hierarchical clustering based on music features : for exam-
ple Cilibrasi et al. (2004) effectively distinguished between musical genres and
composers by transcribing music pieces into strings, and Le Bel (2017) uses
agglomerative clustering for audio classification.

Other clustering methods exist, however they seem to be less popular when
it comes to music data classification.

Spectral Clustering (Von Luxburg, 2007) uses the items similarity graph
and segments it into several small groups with similar values. It starts by con-
structing a similarity graph, where each node represents an item, connected to
others based on a similarity measure, often Gaussian similarity. A key step in-
volves calculating the graph’s Laplacian matrix, defined as L = D−S, where S
is the matrix of similarities between items of size m×m and D is the degree ma-
trix, sums all the similarities between item i and all other items. In the Laplacian
matrix the smallest eigenvalues (excluding zero) and their corresponding eigen-
vectors capture the most significant structure of the data. These eigenvectors are
used as principle components, and form new features that reposition the original
data into a space where clusters are more distinguishable. The clusters can then
be effectively identified using standard clustering techniques like k-means.

In comparison to traditional methods like k-means, that assume that clusters
are separable linearly, spectral clustering can be helpful in identifying clusters
with complex shapes and connectivity patterns. In the case of music items, we
can assume that they can group into non-convex clusters, for example if a genre
is a fusion between several others, items from this genre will be surrounded by
items from other genres.

In practice, however, this specificity has not been much explored. Karydis
et al. (2009) perform spectral clustering on music items from Last.fm in three
different way : considering only the item-tag relationship, user-item relation-
ship, and tripartite relationship among users, music items, representing the data
as 3D tensors (which are multi-dimensional embeddings, so to say). The 3-
dimensional approach showed a better Silhouette score, however, the spectral
clustering was not compared to other algorithms. Way et al. (2019) state that

4All Music Guide

http://www.allmusic.com/
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spectral clustering performs similarly to k-means and agglomerative algorithms
on Spotify artists, whose similarity was derived from the frequency with which
listeners stream two artists in succession.

On the other side, Darke and Below Blomkvist (2021), who use spectral
clustering on Spotify data, where each song was represented as 30-dimensional
vectors based on the songs’ metadata, ended up with one cluster of 40,718 songs
and 22 groups of /approx 100 songs, suggesting that the method is not suitable
for this kind of datasets.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
an algorithm that groups together closely packed points and identifies outliers in
noisy datasets (Ester et al., 1996). It operates based on two key parameters: eps
(epsilon), which defines the radius of a neighborhood around each point, and
MinPts (minimum points), which specifies the minimum number of points
required to form a dense region. Each point in the dataset is classified as a core
point, border point, or noise point based on these parameters. Core points have
at least MinPts within their eps neighborhood, border points have fewer than
MinPts but are in the neighborhood of a core point, and noise points are those
that do not meet the criteria to be either core or border points. DBSCAN then
iteratively expands clusters starting from core points, incorporating all directly
reachable points, and thus effectively handles clusters of varying shapes and
sizes while robustly filtering out noise and outliers.

The effectiveness of the DBSCAN algorithm for clustering music, particu-
larly with streaming data, presents mixed findings. Several studies highlight its
shortcomings: Nordström and Håkansson (2012) found that DBSCAN produced
less favorable outcomes than k-means, attributing this to the varied densities of
data points in the dataset, and Pavitha et al. (2022) concluded that DBSCAN
is not well-suited for music classification. Conversely, Kużelewska and Wi-
chowski (2015) introduced a modified version of DBSCAN that outperformed
CF approaches in the context of music recommendation. This suggests poten-
tial for tailored versions of DBSCAN in specific applications despite its general
limitations.

4.3 Conclusion
In this chapter, we have explored the ways in which musical space can be cate-
gorized, labeled, and represented, drawing from a diverse array of fields includ-
ing musicology, the music industry, streaming platforms, MIR, and psychology.
Each field brings its own priorities and methodologies to the classification and
organization of music, influencing the approaches to music representation.

One of the key conclusions of this analysis is the recognition that no single
method of music classification can fully encapsulate the complexity and diver-
sity of musical expressions. The categorization systems that prioritize technical
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musical features, such as rhythm and timbre, do not always align with those
that categorize music by genres or emotional impact. This divergence under-
scores the challenge of creating a universal system of music classification that
is culturally and contextually inclusive.

Human annotations obviously bring a depth of understanding that auto-
mated systems often struggle to achieve. Expert musicologists can discern nu-
ances in genre, historical significance, and cultural context that are crucial for a
comprehensive music taxonomy. However, the scalability of human annotation
is limited; as music databases expand exponentially, relying solely on human
expertise becomes impractical. This limitation is particularly significant given
the pace at which new music is produced and consumed on digital platforms.

The Internet provides an excessive amount of data, ranging from tags to ac-
tual listening traces. One might think that with such an abundance of data, the
possibilities for music classification and recommendation are nearly limitless.
However, because this data is reflective of real-life human behaviors, it inher-
ently introduces biases related to the popularity of artists or songs. As noted by
Celma Herrada et al. (2009), the majority of music catalogs fall into the long tail;
they are unpopular and therefore less likely to be well-documented or tagged.
This scenario is known in RS as the ’cold-start’ problem, which will be further
explored in Chapter 5.

For these lesser-known and sparsely tagged tracks, audio-based solutions
can provide significant aid. By analyzing the intrinsic properties of music—such
as tempo, melody, and rhythm—these methods enable the labeling of large por-
tions of a catalog, thereby making them more accessible to users. This increased
accessibility not only enhances the user experience by diversifying the music
they encounter but also generates more data on these tracks, potentially increas-
ing their visibility and popularity. In turn, this can lead to a more equitable
representation of diverse musical expressions within digital platforms, gradu-
ally mitigating the long-tail issue and fostering a richer, more inclusive musical
ecosystem.



Chapter 5

Recommending music

Today, when we think about music streaming platforms, we almost immediately
think about algorithmic recommendation. Algorithmically generated playlists
are usually put forward by the platforms, in more and more different ways —
mixes inspired by a certain genre, artist, song, mood, or the users’ streaming
history as a whole — the chances are maximized for users to find what they are
looking for. Indeed, the music catalogs, interfaces, and even subscription plans
proposed by most streaming services (Deezer, Spotify, Apple Music, Tidal etc.)
are quite similar, making the quality of music recommendations a potentially
important factor in the users’ choice of platform. As more and more people
join music streaming platforms, more data is available to improve algorithmic
recommendations. Conversely, the more users resort to algorithmic recommen-
dations, the more these algorithms might have an impact on the music they listen
to.

At its core, a recommender system (RS) connects users with items, which
means that an effective music recommender system (MRS) must be able to de-
tect and use patterns in both user preferences and the musical space. In the
previous chapters, we explored these two key dimensions. In Chapter 3, we
focused on understanding, quantifying, and modeling musical taste, exploring
how user preferences are formed, how they evolve over time, and how they
can be computationally represented. This understanding is critical for tailor-
ing recommendations to individual users. On the other hand, the system also
needs to capture similarities between music items to make accurate suggestions.
In Chapter 4, we examined how knowledge about music can be extracted —
whether based on audio features, metadata, or user interaction — enabling the
system to navigate the vast music catalog and make meaningful connections
between music items.

With these foundations in place, we can now dive deeper into understanding
not only how MRS work, but also how they can influence our music preferences.
As we have seen, there are many ways to represent both user preferences and the
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space of music items. Every decision in designing a RS — the data we choose
to provide, how we structure and represent it, how the algorithms uses it — di-
rectly affects the recommendations users receive. Over time, this may contribute
to reinforcing or altering users’ musical tastes, for example driving users toward
certain types of music and reducing exposure to niche or local content. The im-
pact of these systems is not limited to individual user preferences: they can also
shape broader trends in music consumption, promoting certain artists or genres
while potentially sidelining others. This makes it essential to carefully consider
how the technical choices made in MRS affect not only user satisfaction, but
also diversity, discovery, and fairness.

This chapter is structured as follows. First, we will make an overview of
the methods used by MRSs, highlighting the advantages and limitations of each
method. Following that, we will address the specific challenges associated with
music recommendation and ways to address them. These include the cold-start
problem, which concerns not only music but any RS in general, the ratio of
repetition and discovery there should be in the recommended music, the role of
context, and finally the fairness of MRS and the possible biases that algorithmic
recommendation can create or emphasize.

5.1 Recommender systems overview
A RS is an information filtering system that predicts and provides a set of recom-
mended items for a user based on their known preferences or other data (Ado-
mavicius and Tuzhilin, 2005; Ricci et al., 2011). Let:

• U be the set of users.
• I be the set of items available for recommendation.
• V (u) ⊆ I be the set of items that user u ∈ U has previously interacted

with or expressed a preference for.
• R(u) ⊆ I be the set of items recommended to user u by the system.
The goal of the RS is to find the set R(u) that maximizes the likelihood

of user u interacting positively with the items, given their known preferences
V (u). Mathematically, this can be expressed as a function f : U × I → R that
computes a relevance score for each item i ∈ I for a given user u, based on their
past behavior or other data:

f(u, i) → score(u, i)

The set of recommended items R(u) is then defined as the top k items from
the set I that have the highest predicted scores according to the function f(u, i):

R(u) = arg max
i∈I

(f(u, i)) , |R(u)| = k



CHAPTER 5. RECOMMENDING MUSIC 102

The primary recommendation approaches include Content-Based Filtering
(CBF) — which focuses on the features of the items a user has interacted with,
collaborative filtering (CF) — which leverages the behavior of similar users to
predict preferences, and hybrid approaches, which combine both these methods.

5.1.1 Content-based filtering
The fundamental principle behind content-based filtering (CBF) is that recom-
mendations are made by analyzing the features or attributes of the items that a
user has interacted with in the past. For example, in a MRS, if a user frequently
listens to tracks with similar genres, rhythms, or tempos, the system will rec-
ommend other songs with those same features (Pazzani and Billsus, 2007; Lops
et al., 2011). To this end, the items and user profiles are represented through
feature vectors. Each item i is described by a vector v⃗i ∈ Rj , where j is the
number of features. In a music streaming service, the features might include
taxonomies like genre or mood, or audio characteristics such as pitch, tempo,
and rhythm Schedl et al. (2015). The profile of a user u can typically be com-
puted as the average of vectors corresponding to music items V (u) that the user
has liked or interacted with in the past:

v⃗u =
1

|V (u)|
∑

v⃗i∈V (u)

The RS then suggests new items by computing the similarity between the
user’s profile vector v⃗u and other item vectors v⃗i, using a similarity metric like
cosine similarity:

similarity(v⃗u, v⃗i) =
v⃗u · v⃗i

∥v⃗u∥∥v⃗i∥

De Gemmis et al. (2015) presents the high-level architecture of a content-
based RS as three main components: the Content Analyzer, the Profile Learner,
and the Filtering Component (Figure 5.1).

• The Content Analyzer is responsible for processing unstructured infor-
mation, such as text or audio data, to extract structured and relevant fea-
tures. Its main task is to convert items, such as songs, into feature vectors
v⃗i using feature extraction techniques. This structured data produced by
the Content Analyzer is then used as input for both the Profile Learner
and the Filtering Component.

• The Profile Learner collects data representative of user preferences and
generalizes this data to construct a user profile. For instance, the user
profile v⃗u is created based on the feature vectors of songs the user has
liked. This generalization can be done through machine learning methods,
which infer user preferences from past interactions.
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Figure 5.1: High level architecture of a CBF system by De Gemmis et al. (2015).

• The Filtering Component uses the user profile u⃗ to suggest relevant items
by matching the profile against the items’ feature vectors v⃗i. The matching
process involves calculating a similarity score (e.g., cosine similarity), to
rank items based on how well they match the user’s preferences.

In summary, the Content Analyzer takes unstructured data and converts it
into structured feature vectors v⃗i. The Profile Learner aggregates these vectors to
create a user profile v⃗u using machine learning techniques. Finally, the Filtering
Component matches this profile with new items by computing similarity scores,
producing a ranked list of recommendations.

Advantages

• No need for other users’ interactions data: as it does not rely on user-
item interactions in order to determine the similarity between items, CBF
only needs the user’s own interaction history with items, making it effec-
tive even when user data is sparse.

• Items cold start problem: CBF relies on the items’ intrinsic properties,
making it efficient even for new items.

• Interpretability: It is relatively easy to understand and explain why a
particular item was recommended, as the recommendations are based on
item features.

Limitations

• Limited discovery: Users may be limited to recommendations that are
very similar to what they have already interacted with, reducing the po-
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tential for discovering new or diverse items.

• Feature engineering: The effectiveness of CBF relies heavily on the
quality and completeness of the item features. Poor feature selection can
lead to poor recommendations.

• Users cold start problem: While CBF can handle new items better than
CF, it still struggles with new users that have not yet interacted enough
with the platform.

5.1.2 Collaborative filtering

The fundamental principle behind CF is that users who have had similar pref-
erences in the past will continue liking similar things in the future (Herlocker
et al., 2000). This means that it is possible to predict a user’s preference for
an item by finding similar users or similar items and aggregating their ratings
or interactions. The approach relies on large datasets of user-item interactions
to identify patterns and similarities, enabling the system to make personalized
recommendations. CF techniques can be split into two main types (Ricci et al.,
2011). Memory-based approach includes user-based CF, which finds users with
similar tastes to recommend items, and item-based CF, which finds similar items
based on users’ past interactions. Model-based approaches like matrix factoriza-
tion (MF) leverage latent factor models to uncover hidden patterns in user-item
interactions, providing a scalable way to handle large datasets and sparse inter-
actions (Koren et al., 2009; Adomavicius and Tuzhilin, 2005).

User-based collaborative filtering

User-based CF predicts a user’s interest in an item by finding similar users who
have shown similar preferences in the past (Herlocker et al., 2000). The primary
assumption is that if user u has a similar rating pattern to user u′, then user u is
likely to rate new items similarly to how user u′ has rated them. Let:

• M ∈ R|U |×|I| be the user-item interaction matrix, where Mu,i is the rating
or interaction of user u with item i.

• similarity(u, u′) denote the similarity between two users u and u′.

The predicted rating of user u for an item i can be estimated by aggregating
the ratings of similar users u′ ∈ U , typically weighted by their similarity to u:

M̂u,i =

∑
u′∈N(u) similarity(u, u′) ·Mu′,i∑

u′∈N(u) |similarity(u, u′)|

where N(u) represents the set of nearest neighbors (similar users) to user u.
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Item-based collaborative filtering

Item-based CF focuses on the similarity between items rather than users. Schafer
et al. (1999) describe item-based CF as looking at the items a user has liked and
recommending similar items, assuming that items rated similarly by different
users are likely to be perceived as similar in quality or taste. Let similarity(i, i′)
denote the similarity between items i and i′. The predicted rating of user u for
an item i can be estimated by aggregating the ratings Mu,i′ of the user for similar
items i′ ∈ I:

M̂u,i =

∑
i′∈N(i) similarity(i, i′) ·Mu,i′∑

i′∈N(i) |similarity(i, i′)|

Here, N(i) represents the set of nearest neighbor items to item i.

Matrix factorization

MF represents a more sophisticated approach to RSs by building predictive
models based on user-item interactions (Koren et al., 2009). The idea is to ’fill-
in’ the gaps in the interaction matrix M , that correspond to a user that has not
interacted with an item, by predicting hypothetical scores, based on the patterns
observed in the interactions that have actually been made. To achieve this, we
approximate M by decomposing it into two lower-dimensional matrices, P and
Q, which represent the latent factors of users and items, respectively (Figure
5.2). These latent factors are intended to capture hidden patterns or traits in the
data that help explain the relationship between users and items. In a RS, they
capture the underlying reasons (e.g., genre preferences) why a user might like
or dislike certain items. Mathematically, we decompose M as:

M ≈ PΣQT

where:
• P ∈ R|U |×k is a matrix representing users, with k latent factors.
• Q ∈ R|I|×k is a matrix representing items, with k latent factors.
• Σ ∈ Rk×k is a diagonal matrix containing singular values, which scales

the latent factors.
Once we decompose M , the product of the matrices P and QT approxi-

mates M , ’filling’ the empty cells with predicted values. These predicted values
represent the estimated ratings or interaction scores for user-item pairs that were
previously unobserved.

Several techniques exist to decompose the interaction matrix M . One de-
terministic approach is using SVD-based methods, which factorize M into sin-
gular vectors and values. However, pure SVD assumes a fully observed ma-
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Figure 5.2: Illustration of MF by Liu et al. (2017).

trix, so variants like Truncated SVD are typically used in recommendation tasks
with sparse data (Koren et al., 2009). Other techniques, like alternating least
squares (Alternating Least Squares (ALS)) (Hu et al., 2008), iteratively opti-
mize user and item latent factors Zhou et al. (2008), while neural network based
MF methods extend traditional MF by leveraging deep learning to capture non-
linear interactions between users and items , (He et al., 2017). These usually
aim to minimize a loss function, such as the squared error, to find matrices P
and Q that minimize the error between the actual user-item interactions Mu,i

and the predicted interactions P T
u Qi :

min
P,Q

∑
(u,i)∈K

(Mu,i − P T
u Qi)

2 + λ(∥Pu∥2 + ∥Qi∥2)

where:
• K is the set of existing user-item interactions.
• λ is a regularization parameter that controls overfitting (which would lead

to recreating the exact matrix M , without filling the empty cells) by pe-
nalizing large values in the latent vectors.

In practice, MF is one of the most widely used techniques in RSs because
effectiveness in handling large-scale, sparse datasets, making it suitable for large
platforms, like those of music streaming (Koren et al., 2009; Zhang et al., 2019;
He et al., 2017).

Advantages

• No need for item metadata: Unlike CBF, CF does not require detailed
information about the items themselves. It relies solely on user-item in-
teractions, making it applicable to a wide range of domains.
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• Discovering unobvious patterns: Since CF relies on the behavior of
other users, it can recommend items that are not necessarily similar in
content but have been liked by similar users. This helps in introducing
users to new and diverse items that they might not have found through
CBF alone.

• Scalability with user base growth: As the number of users and their in-
teractions grow, the system can improve its recommendations by learning
from more data. More user interactions generally lead to better accuracy.

Limitations

• Cold start problem: CF struggles with both new users and new items
due to the lack of interaction data. Without sufficient historical data, it is
challenging to make accurate recommendations.

• Popularity bias: CF tends to favor popular items that have been inter-
acted with by many users. This can result in a lack of diversity in recom-
mendations, overshadowing less popular but potentially interesting items.

• Interpretability: CF algorithms, especially those based on MF or deep
learning, often act as black boxes, making it difficult to understand and
interpret why a particular item was recommended.

5.1.3 Hybrid approaches

Hybrid RSs combine CF and CBF to provide more accurate and diverse recom-
mendations (Burke, 2002). By blending CF to capture patterns in user behavior
with CBF to recommend new items based on their attributes, hybrid systems
can overcome common challenges like the cold start problem and data sparsity.
Common hybridization strategies include:

• Weighted hybrids, where CF and CBF outputs are combined with as-
signed weights.

• Switching hybrids, which switch between CF and CBF based on available
data.

• Feature augmentation, where one method enhances the input to the other.

Pandora’s Music Genome Project is an example of a hybrid approach, lever-
aging both CF and CBF by analyzing up to 450 musical attributes and refining
recommendations based on user behavior Lops et al. (2011). This method al-
lows for a more personalized and exploratory experience. Hybrid models like
Pandora’s are known for outperforming pure CF or CBF models, balancing the
recommendation of familiar items with the discovery of new content (Burke,
2007).
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5.2 Challenges in music recommendation

5.2.1 Data scarcity
Recommendation systems often face challenges related to data scarcity, which
can be divided into two main categories: the cold-start problem and the long-tail
issue. These challenges impact the ability of RSs to provide accurate and diverse
recommendations, especially in domains like music streaming where users may
want to explore both popular and niche content.

Cold-start problem

The cold-start problem (Schein et al., 2002) is a common challenge for any RS
Lam et al. (2008); Lika et al. (2014), including music recommendation Ferraro
(2019); Schedl et al. (2018). It arises when the system lacks sufficient infor-
mation about a new user or item, making it difficult to provide personalized
recommendations.

• New Users: When a new user signs up for a music streaming platform,
the system has no prior knowledge of their preferences due to the ab-
sence of user-item interactions. To mitigate this, streaming services often
use onboarding questionnaires to collect information about users’ favorite
genres, artists, or songs during the sign-up process. Demographic infor-
mation, such as age, gender, and location, can also be used to suggest pop-
ular music among similar user groups. Additionally, popular and trending
tracks are often recommended as an introductory mechanism.

• New Items: For new tracks or artists, the system faces a cold-start prob-
lem as there are no prior interactions with these items. This is particularly
problematic for emerging artists and niche content, as their music is less
likely to be discovered. To address this, content-based, or hybrid RS can
be used to leverage the intrinsic properties of the new item (e.g., rhythm,
timbre, or metadata) to generate recommendations. For instance, systems
like Pandora’s Music Genome Project use manually curated features to
classify and recommend new songs.

Cross-domain recommendation is another strategy that aims to improve
recommendations in one domain by transferring user preference information
from another domain (Zhu et al., 2021). Some commercial systems have suc-
cessfully implemented cross-domain recommendations. For instance, platforms
like Amazon use cross-domain techniques to recommend products across cat-
egories (e.g., ’customers who bought this book also bought this movie’) (He
and McAuley, 2016). Despite the potential benefits, cross-domain recommen-
dations come with challenges, as the success of these systems often depends on
the degree of overlap between the domains.

Lastly, active learning techniques can be used to directly tackle the cold start
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problem by eliciting specific user feedback to enhance the system’s understand-
ing of user preferences (Elahi et al., 2016). Active learning can involve soliciting
ratings on items predicted to be of interest to the user or exploring novel ways to
interact with users to gather valuable data. However, traditional active learning
methods often introduce biases, as users may only rate items they are interested
in, leading to skewed data. Despite these challenges, each approach provides
valuable tools for improving recommendations in cold start scenarios, although
they often need to be combined or enhanced with personalization techniques to
address the inherent limitations of each method effectively.

Unpopular items

The long-tail issue affects items that are not new but are simply less popular,
including niche tracks and emerging artists. These items are less likely to be
recommended by traditional CF systems because they lack sufficient interaction
data to be ranked highly. However, these items might be of interest to users
looking to explore beyond mainstream content. As such, this is not just a cold-
start issue but a continuous challenge for items with limited engagement. To
address this, RSs need to balance exploration and exploitation — offering users
both familiar and novel content. Previously discussed techniques like content-
based or hybrid RSs can also be used in this case. Additionally, techniques like
latent factor models (e.g., MF) can capture hidden relationships between users
and unpopular items, improving recommendations for items in the long tail.

5.2.2 Context
In Chapter 3, we explored how music preferences can vary significantly de-
pending on the context, such as the time of day, day of the week, season, ac-
tivity, mood, or even the weather. Streaming platforms have recognized the
importance of these contextual factors, leading to a growing number of efforts
to develop context-aware MRSs.

However, creating these systems poses two main challenges. The first chal-
lenge is accurately detecting the user’s context; while some factors like weather
or time are relatively easy to determine as they are consistent across users, oth-
ers like mood or activity are highly personal and much harder to infer. The
second challenge is personalization: determining what a specific user wants to
listen to in a given context. This is particularly complex because individuals
have unique preferences and different ways of responding to various situations.
The core goal of algorithmic recommendations is to tailor suggestions to these
individual preferences, making context-aware recommendations a demanding
yet crucial task in the evolution of music streaming services.

Over the past decade, researchers have explored various methods to predict
user context and adapt music recommendations accordingly, enhancing the per-
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sonalization and relevance of music streaming services. For example, Baltrunas
et al. (2011) developed a RS that detects in-car contexts by leveraging sensors
and user inputs to gather information such as driving speed, traffic conditions,
and driver mood, subsequently tailoring music suggestions to improve the driv-
ing experience.

Similarly, Kaminskas et al. (2013); Cheng and Shen (2014) investigated
location-based recommendations by utilizing GPS data from mobile phones to
identify the user’s geographical position and surroundings, enabling the system
to suggest music that aligns with the cultural and environmental aspects of the
location, such as playing upbeat tracks in urban settings or tranquil melodies in
natural landscapes.

Further expanding on contextual factors, Wang et al. (2012); Schedl et al.
(2014) proposed systems that incorporate a diverse range of contexts including
time of day, weather conditions, and user activities, by collecting data from
sensors on mobile phones; these systems dynamically generate playlists that
adapt in real-time to the user’s changing circumstances, aiming to provide a
more engaging and contextually appropriate listening experience. However, a
key limitation of these studies is scalability; they often rely on specific sensors
and contexts that may not work well across all users and environments, making
it challenging to implement these solutions broadly on streaming platforms.

In recent years, auto-tagging (Choi et al., 2016) has emerged as a power-
ful approach to context-aware music recommendation, using machine learning
techniques to automatically assign context-specific tags to tracks based solely
on their audio content. Ibrahim et al. (2020) proposed a method that leverages
playlist titles to label tracks with contextual tags, creating a large dataset of
approximately 50,000 tracks across 15 different contexts (e.g.: ’car’, ’happy’,
’workout’). Using this dataset, they trained a CNN to predict the context in
which a track is most suitable. This method overcomes some of the limita-
tions of previous context-aware systems by bypassing the need to access sensor
data from mobile devices or user interactions, and instead focusing on the audio
characteristics.

While many strategies have been developed to detect contexts suitable for
playing certain tracks, accurately determining a user’s current mood, activity, or
environment based solely on interaction patterns or mobile device data remains
challenging. As a result, many streaming platforms, including Deezer, resort to
user-assisted approaches to enhance contextual recommendations. For instance,
Deezer’s ’Flow Moods’ feature (Bontempelli et al., 2022) allows users to manu-
ally select their current mood from predefined categories such as ’Chill’ or ’Mo-
tivation.’ This selection then informs the algorithm, which curates personalized
playlists using contextual scores attributed to songs through audio auto-tagging
techniques.



CHAPTER 5. RECOMMENDING MUSIC 111

5.2.3 Balancing discovery and familiarity

The primary objective of any RS is to assist users in discovering new items
that may align with their interests, based on specific requests or past prefer-
ences. Most recommendation algorithms operate on similarity metrics, using
the users’ preferences as input and delivering the most similar items as out-
put. The accuracy and precision of these systems are typically evaluated based
on how closely the recommended items match the users’ known preferences.
However, this approach can inadvertently lead to the formation of filter bubbles
(Pariser, 2011), where users are repeatedly exposed to the same types of items,
limiting their experience to a narrow range of content. To prevent this and to
keep the user experience fresh and engaging, it is crucial to diversify the recom-
mended items. Yet, it is equally important to avoid recommending items that
are too dissimilar from the users’ usual consumption, as this can confuse users
and discourage them from engaging with the platform. In the context of music,
the challenge becomes even more complex, as listeners often expect to be rec-
ommended tracks they are already familiar with and enjoy. Therefore, a balance
must be found between the familiarity and novelty of the recommended content,
ensuring that users remain comfortable, yet stimulated by new discoveries.

Discovery and diversity

As previously mentioned, most classic recommendation algorithms are based on
similarity metrics, thus plenty approaches exist to find items similar to the users’
preferences. As the usage of search engines and RSs increased, researchers
realised the need to diversify the output data, which triggered the development
of different diversifying algorithms.

The earliest strategies focused on post-processing methods, where relevance
was primarily determined first, followed by a re-ranking process to incorporate
diversity. Maximal marginal relevance (Carbonell and Goldstein, 1998) was
among the first to use a greedy algorithm to balance relevance and diversity by
iteratively selecting items that maximize a combination of the two (Carbonell
and Goldstein, 1998). Later, more sophisticated post-processing methods like
determinantal point processes Kulesza et al. (2012) offered a probabilistic model
to optimize diversity across the entire set of recommended items, considering
global item relationships rather than just pairwise similarities (Kulesza et al.,
2012).

Moving forward, in-processing methods started to incorporate diversity di-
rectly into the model training phase. For instance, Wasilewski and Hurley
(2016) proposed incorporating diversity as a regularization term within the loss
function during model training. This approach allowed the RS to learn to bal-
ance relevance and diversity simultaneously. Another example is the work by
Chen et al. (2020), which introduced an intent-aware diversity method, adjust-
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ing the relevance of items based on their contribution to the overall diversity of
the recommendation list, ensuring a more balanced output.

In more recent years, pre-processing methods have also gained attention,
focusing on structuring the input to the recommendation models to inherently
promote diversity. For example, Zheng et al. (2021a) proposed sampling strate-
gies that prioritize less popular items during the graph neural network-based
recommendation, ensuring that these items are adequately learned and repre-
sented in the final recommendations. Kwon et al. (2020) categorized users into
distinct types based on their purchasing behaviors, and developed hybrid rec-
ommendation strategies to ensure a diverse set of recommendations tailored to
each user type.

When it comes to music consumption, novelty and diversity are particularly
important as they significantly influence the listener’s engagement and enjoy-
ment. Preference for musical novelty is tied to the brain’s reward system, where
new and unexpected musical elements activate regions associated with pleasure
and reward (Salimpoor et al., 2015). This explains why listeners often seek
out new music or variations of familiar genres to maintain interest and excite-
ment. Exposure to a diverse range of music genres and styles can enhance cog-
nitive flexibility, allowing listeners to appreciate and adapt to different musical
structures and cultural contexts (Krause et al., 2015). The need for diversity in
music is also linked to the concept of ’optimal distinctiveness,’ where individ-
uals try to balance the need for belonging with the desire for uniqueness, often
achieved through the exploration of varied musical experiences (North and Har-
greaves, 1995). Therefore, diversifying music recommendations seems crucial
for streaming platforms in order to increase user satisfaction.

While most of the diversification methods discussed earlier can be applied
to MRS, research in the music domain tends to focus more on personalization
than on specific diversification techniques. Indeed, users have varying levels of
tolerance and demand for novelty, making it essential for MRS to consider in-
dividual preferences. For example, Schedl and Hauger (2015) propose to group
users into different categories based on individual diversity, mainstreaminess,
and novelty scores, and then applying different recommendation algorithms tai-
lored to each group to enhance accuracy. Lu and Tintarev (2018) developed a
re-ranking algorithm that adjusts the diversity of a recommendation list based on
the user’s personality traits, demonstrating improvements in both diversity and
user satisfaction. In Robinson et al. (2020)’s exploratory user study, participants
made a clear difference between ’inner diversity’ (within existing preferences)
and ’outer diversity’ (introducing new, unfamiliar genres), a distinction not well
captured by current diversity metrics. The same study suggests that the need for
novelty and discovery can vary not only between users but also within the same
user, depending on their mood and context. To address this, giving users the
ability to control the level of diversity in their recommendations could enhance
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their experience. Such interactive interfaces, which allow users to adjust the
novelty or diversity in their music recommendations, have been explored by Jin
et al. (2018); Millecamp et al. (2018); Knees et al. (2020), offering promising
solutions for aligning recommendations with individual user preferences.

Familiarity and repetition

It is not uncommon to listen to the same music several times within a month, a
week a day or even an hour. Berlyne (1973)’s inverted U-shape theory suggests
that as familiarity with a song increases, so does the listener’s enjoyment, up
to a certain point. Beyond this peak, further exposure may lead to a decline in
preference due to over-familiarity. This pattern indicates that initial exposure
to a novel song is often not the most enjoyable experience; instead, repeated
listens are necessary for the song to fully resonate with the listener (Hargreaves,
1984). Moreover, familiarity has been shown to significantly influence music
listening behavior. Ward et al. (2014) demonstrates that listeners tend to prefer
familiar songs over unfamiliar ones, even when they express a desire to explore
new music. This consumption pattern differentiates music from other types of
content — people rarely re-watch the same movie or repeatedly purchase the
same item online within a short time frame. Consequently, MRS must adapt to
this specificity by finding a balance between recommending familiar and new
songs.

Garcia-Gathright et al. (2018) conducted a comprehensive study to under-
stand user satisfaction with music discovery on streaming platforms, particu-
larly focusing on the role of familiarity in recommendations. Initially, they con-
ducted face-to-face interviews with 10 participants, which revealed that users
have varying goals when interacting with music recommendations, such as find-
ing new music or listening to familiar favorites. These insights were further
validated through a large-scale survey of 18,547 users, which measured satis-
faction with both overall music recommendations and specific weekly playlists.
The survey revealed that users were significantly more satisfied when the recom-
mendations included at least one familiar track they loved, with 74.2% of those
users reporting high satisfaction, compared to only 29.0% among those who did
not find any familiar tracks they loved. The analysis of user interactions with the
platform, such as saving tracks, skipping, and downstream listening, validated
the insights gained from the user interviews and surveys.

Building on the idea that repetition of familiar tracks enhances user satis-
faction, Manolovitz and Ogihara (2021) extend this concept to the repetition of
new, unfamiliar songs as a critical factor in helping users develop a liking for
them. Through an experiment involving 19 Spotify users, the authors inves-
tigated how repeated exposure to new tracks influences user engagement and
retention. Participants were given playlists containing a mix of both new and
repeated songs from their ’Discover Weekly’ selections, and their listening be-
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haviors were tracked during six weeks. The study found that just one additional
listen to a new, initially liked song increased the likelihood of the user revisiting
it by 10%. This finding demonstrates that a single exposure to a novel song is
often insufficient for it to fully resonate with the listener, and repetition is key
to fostering a connection between users and new music.

To conclude, no study, to our knowledge, has yet explored the optimal pro-
portion of familiar songs or the frequency of repetition needed to maximize
user satisfaction in MRSs. This remains an important area for future research,
as understanding these factors could significantly enhance the effectiveness of
personalized music recommendations.

5.2.4 Fairness

Fairness in RSs focuses on ensuring that the algorithms and models used do
not introduce or perpetuate biases, providing equitable recommendations to all
users. It is crucial to maintain users’ trust, promote diversity, and ensure that
all demographic groups are fairly represented and served by the recommenda-
tions. In recent years, this has become a growing subject of research, driven by
the increasing awareness of the ethical implications and social impact of recom-
mendation algorithms (Wang et al., 2023).

In the realm of MRS, fairness is an important issue due to the impact these
systems have on both users and artists. The primary stakeholders involved in
MRS fairness include platform users, item providers (artists and their labels),
and the music streaming platforms themselves (Dinnissen and Bauer, 2022). For
users, fairness typically involves ensuring that recommendations are unbiased
and equitable across different demographic groups. Item providers, often the
artists, are affected by how frequently their music is recommended, which can
influence their exposure and revenue. Finally, the platforms, which facilitate the
interaction between users and artists, must balance the interests of both parties
to maintain a fair ecosystem.

Various biases can affect the fairness of MRSs. Popularity bias is one of the
most common, where popular songs are recommended more frequently, poten-
tially marginalizing lesser-known artists. Demographic biases also exist, where
the quality of recommendations may differ based on user characteristics such
as age, gender, or country, often resulting in a preference for mainstream users
or certain demographic groups. Gender bias specifically affects both users and
artists, with male artists typically receiving more recommendations than female
artists, and women users experiencing lower recommendation quality (Shake-
speare et al., 2020; Lesota et al., 2021). Understanding and addressing these
biases is crucial for developing fairer MRSs that can cater equitably to the di-
verse needs of all stakeholders involved.
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Artists

A lot of existing studies on MRS fairness focus on artists and more generally
music distributors, in particular because their revenues are directly correlated
with their exposure and popularity on streaming platforms.

Several qualitative studies aim to understand the artists’ perception of the
fairness of music streaming platforms, particularly focusing on how these plat-
forms and their embedded RSs impact artists.

For example, Ferraro et al. (2021b) conducted semi-structured interviews
with 9 music artists from different countries and levels of popularity. The study
revealed that artists feel their profiles are often inadequately presented on mu-
sic platforms, with a lack of contextual information and a bias towards older
tracks. Artists expressed difficulty in reaching new audiences due to the preva-
lent popularity bias in recommendation algorithms, which favor more estab-
lished artists. There was a unanimous call for greater transparency in how these
algorithms function and why certain music is promoted. Some artists suggested
implementing quotas for local music to help lesser-known artists gain visibility.
Opinions were divided on whether larger repertoires should result in more fre-
quent recommendations. Most artists preferred that new releases be promoted
more heavily, emphasizing the importance of balancing the discovery of new
artists with the promotion of existing popular tracks.

A similar study with 14 artists from the Netherlands (Dinnissen and Bauer,
2023) also highlights artists’ calls for greater transparency in algorithmic func-
tioning and a more equitable approach to promoting new and lesser-known
artists. Both studies provide valuable insights into the artists’ perspectives on
MRS fairness, however the small sample sizes restrict the generalizability of
the findings to the broader artist community. Additionally, while the samples
included diverse nationalities and popularity levels, they may not fully capture
the wide range of experiences and genres present in the music industry. More-
over, the participants’ awareness of the interviewers might have influenced their
responses, potentially biasing the findings.

Some studies with computational methodologies seem to converge with the
artists’ perceptions about the popularity bias in MRS, especially those based
on CF techniques. For example, Celma and Cano (2008) show that item-based
CF is positively biased towards popular artists, while CBF exhibit more diverse
connections between artists of different popularity levels. Kowald et al. (2020)
applied user-based, item-based and MF-based CF algorithms on the LFM-1b
dataset and show that all of the methods tend to predominantly recommend
popular artists, as evidenced by the positive correlation between artist popu-
larity and recommendation frequency. Turnbull et al. (2022) show that among
three algorithms, SLIM (Ning and Karypis, 2011), Multi-VAE (Liang et al.,
2018) and WRMF Hu et al. (2008), applied also on LFM-1b, the most accurate
model (SLIM) has the most popularity bias while less accurate models have less
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popularity bias.

On the other hand, a simulated user experiment in the same study, based on
data from Spotify, Amazon Music, and YouTube Music, shows little to no bias
in commercial MRS.

In this experiment, twelve simulated user accounts were created on each
streaming service, based on real user data from the Last.fm 1-Billion dataset.
These accounts were divided into three categories (low, medium, and high main-
stream users), with four accounts per category. Each simulated account followed
and listened to the top ten most-listened-to artists for their respective user group.
The protocol involved listening to the top songs of these seed artists, after which
the accounts were logged out and returned to the next day to analyze the given
recommendations. Recommendations generated by the streaming services were
collected by sequentially noting the top artists from each generated mix (e.g.,
Daily Mix on Spotify) until ten recommended artists were recorded for each
simulated user account. The average popularity of recommended artists was
measured using Spotify’s proprietary score and Last.fm user data.

The comparison between average popularity of recommended artists with
that of artists in the user profiles showed minimal to no bias. Even though
this experiment raises an important question about whether simulated ’sterile’
recommendation experiments can accurately represent real-life scenarios, the
proposed methodology is still far from reflecting the complexity and nuances of
actual user interactions and behaviors on commercial streaming platforms. In-
deed, the relatively small scale and simplified nature of the simulated user pro-
files may not fully capture the complexity of real user interactions with stream-
ing services. The study also relies on a short-term dataset, whereas commercial
services utilize extensive long-term user data and advanced algorithms to refine
recommendations.

Apart from popularity, gender biases have also been a growing concern. For
example, Shakespeare et al. (2020) seeks to determine if CF algorithms influ-
ence the exposure and representation of male and female artists differently. They
conduct two separate experiments, both performing CF algorithms (UserKN-
NAvg (Desrosiers and Karypis, 2011) and Non-Negative MF (Lee and Seung,
1999)) and selecting top 5 artists on the LFM-1b and LFM-360k datasets. The
first experiment was run on a representative set of users, the second — on users
with extreme preferences towards artists of a specific gender. Then, authors
compared proportion of artists of different genders in the initial users’ prefer-
ences and their recommended music.

In both experiments male artists tended to receive more recommendations
than female artists, with a more pronounced bias in datasets with higher initial
preference towards male artists. Several factors, mostly data related, can be at
the origin of the observed gender bias. First, the researchers were only able to
identify the gender for about 27-31% artists in the dataset, and approximately
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82% of the identified artists were labeled as males. Moreover, a majority of the
most popular artists were labeled as males (85% of the top 20% most popular
artists), consequently, male artists receive more play counts and are thus more
likely to be recommended by the algorithms. This creates a feedback loop that
perpetuates the visibility and dominance of male artists in recommendations.
Additionally, as CF algorithms are known to emphasize popularity bias, they
can indirectly extend gender related bias.

Ferraro et al. (2021a) goes beyond simply exploring how gender biases man-
ifest in music platforms and propose methods to mitigate them. In ’Break the
Loop: Gender Imbalance in Music Recommenders,’ the authors highlight how
CF algorithms, like ALS, contribute to the uneven exposure of male and female
artists. Through interviews with artists, the study uncovers a strong consensus
for the need to address gender bias by promoting more equitable exposure of
female artists. Ferraro et al. (2021a) introduce a progressive re-ranking method
designed to gradually increase the visibility of female artists in recommenda-
tion lists, addressing the feedback loop that favors male artists. Their approach
emphasizes a gradual shift to avoid user pushback while maintaining recom-
mendation accuracy. By simulating feedback loops, they demonstrate that such
re-ranking can improve gender balance over time without significantly impact-
ing the quality of recommendations.

Finally, some recent attempts have been made to evaluate algorithmic biases
on local music recommendation. Lesota et al. (2022) applied two algorithms,
ItemKNN (Sarwar et al., 2001), and item-based CF algorithm, and NeuMF (He
et al., 2017), a neural network based MF algorithm, on users from n different
countries from the LFM-2b dataset. According to the study, item-based algo-
rithms promote local artists, while MF algorithms reinforce popularity biases
and thus promote U.S. music as it is the most streamed music in all countries
in the dataset. However, the dataset and methodology used in the study present
several problems, that we will debunk in Chapter 7.

Users

An equally important aspect is the fairness to users, which is particularly of in-
terest for streaming services as users’ satisfaction with the music recommended
to them can be directly correlated with their engagement and retention on the
platform. Fairness to users typically implies providing equally qualitative rec-
ommendations to users of different demographics (e.g. gender, age, country)
and different music consumption profiles (e.g. different levels of mainstream-
ness or omnivorism).

In terms of demographics, several studies focus on the impact of MRS on
users of different genders. For example, two studies from the same group of re-
searchers, Melchiorre et al. (2021) and Lesota et al. (2021), investigate how male
and female users are affected by algorithmic popularity bias. The researchers
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evaluated several CF algorithms, such as ItemKNN, ALS, BPR (Rendle et al.,
2009), SLIM, and MultiVAE (Liang et al., 2018), to assess their performance
across male and female user groups from subsets of the LFM-2b dataset. They
measured bias by quantifying performance disparities between user groups.

Their findings revealed significant gender bias, with most algorithms fa-
voring male users, particularly in terms of accuracy metrics. Interestingly, the
most accurate algorithm, SLIM, showed the greatest unfairness, whereas less
accurate algorithms, like BPR, showed more homogeneous results across gen-
der groups. The substantial difference in user representation, with 71.5% male
users in Lesota et al. (2021)’s dataset and 77.9% in Melchiorre et al. (2021)’s
dataset, is probably the main cause of the observed gender bias in RS perfor-
mance, as algorithms tend to be optimized for the majority user group.

Authors proposed a debiasing strategy, involving resampling female users’
data to equalize gender representation. Specifically, they increased the repre-
sentation of female users by duplicating their data points until they matched the
number of data points for male users. This strategy allowed to slightly improve
the fairness for female users, without compromising overall accuracy.

Ekstrand et al. (2018)’s work, later reproduced by Neophytou et al. (2022),
investigates not only gender, but also age bias of CF algorithms, using the
MovieLens and Last.fm datasets. The study finds that younger users, partic-
ularly those in the 18-24 age group, often receive more accurate recommenda-
tions compared to older age groups. One possible reason for this bias is the
over-representation and higher activity levels of younger users in the datasets,
providing richer interaction data for algorithms to learn from. Additionally, the
algorithms may inherently favor popular items, which align more closely with
the preferences of the larger, younger demographic.

Several studies show evidence of significant variations in users’ represen-
tation and music consumption between countries, which can be at the origin
of algorithmic recommendation bias on music streaming platforms (Bauer and
Schedl, 2018, 2019; Neophytou et al., 2022). Neophytou et al. (2022) show, on
the LFM360K dataset, that users from countries with higher representation gen-
erally receive more accurate recommendations, similarly to users of different
age or gender. Bauer and Schedl (2018, 2019) propose measures for local and
global mainstreamness in the LFM-1b dataset, and find that different countries
exhibit quite unique characteristics regarding what music is considered popular
or mainstream.

Bauer and Schedl (2019) finds that countries with listening habits closely
aligned with the global mainstream generally received more accurate recom-
mendations compared to those with distinct local music tastes. In order to miti-
gate this bias, authors proposed to tailor the CF process by integrating country-
specific mainstreamness models into it. They developed several mainstreamness
measures using artist play counts and artist listener counts, applied both globally
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and country-specifically. CF was then adjusted to focus on nearest neighbors
within the same mainstreamness level and country, ensuring that recommen-
dations were tailored to users with similar local preferences. This approach
improved recommendation accuracy by reducing bias and better capturing re-
gional music tastes, compared to applying the same recommendation algorithm
on users altogether.

Study by Melchiorre et al. (2020) moves beyond simple demographics, and
finds that music recommendation algorithms exhibit biases based on users’ per-
sonality traits. Unlike gender, age, or country, personality traits are challenging
to gather at scale on streaming platforms, making it difficult to study and address
these biases. Nonetheless, it’s important to recognize their existence, as person-
ality traits are known to significantly influence music preferences Rentfrow and
Gosling (2003).

Another thing that varies from user to user is their behaviour on the music
platform, including their music preferences, which can be for example more or
less mainstream or diverse, or the intensity of their interactions. Because of the
long-tail distribution of artists, it is natural to expect CF algorithms to differently
affect users with more or less mainstream preferences.

Kowald et al. (2020) work with a subset of 3000 users from the LFM-1b
dataset and split them into three equal size categories based on their main-
streaminess score. This score is calculated as followed: the popularity of an
artist is defined as the proportion of users in the dataset who have listened to
that artist, and for each user, the mainstreaminess score is the average popular-
ity of all the artists that the user has listened to. Low-mainstreaminess users
(LowMS) were found to listen to at least 20% of the 80% least popular artists;
medium-mainstreaminess users (MedMS) had scores around the median; and
high-mainstreaminess users (HighMS) had the highest mainstreaminess scores.

Then the study tested six recommendation algorithms to evaluate the pres-
ence and degree of popularity bias in these different types of users. Random rec-
ommendation was used as a baseline, and performed equally for all user types.
Expectedly, the MostPopular algorithm displayed the strongest bias, consis-
tently recommending popular artists and significantly disadvantaging LowMS
users. UserItemAvg and the KNN-based approaches (UserKNN and UserKN-
NAvg) showed moderate bias, also leaning towards popular artists, with LowMS
users receiving consistently poorer recommendations. Non-negative MF per-
formed the best for LowMS users compared to other algorithms.

Interestingly, for most of the tested algorithms, the accuracy generally fol-
lowed a pattern where MedMS users received the most accurate recommenda-
tions, followed by HighMS users, and then LowMS users. This is not neces-
sarily intuitive, as we would expect an algorithm that reinforces popularity bias,
like MostPopular for example, to perform better for users with the most main-
stream taste. However, as it is not the case, we can make the hypothesis that
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the high accuracy for MedMS users is due to the fact that most algorithms per-
form better for the average users, and not for those who simply prefer the most
popular artists.

In another study by Li et al. (2021), based on ratings of both music and
videos from Amazon, authors indirectly categorized users into mainstream and
non-mainstream groups based on the distribution of recommendation accuracy,
more specifically root mean square error scores across users. The bins were
distributed as follows: the top 10% of users with the lowest scores were con-
sidered mainstream, as the recommendations were highly accurate for them; the
next 40% were a mix of mainstream and some non-mainstream users; the fol-
lowing 40% primarily consisted of non-mainstream users with higher scores,
indicating less accurate recommendations; and the bottom 10% were the most
non-mainstream users, whose preferences were the hardest to predict, resulting
in the highest scores.

This method of categorizing users raises some concerns, as it is doubtful that
a direct parallel can be drawn between accuracy and mainstreaminess, especially
considering that some studies like the previously discussed paper byKowald
et al. (2020) show that the best accuracy concerns average users, and not the
most mainstream ones.

Despite these concerns, it is still worth discussing the debiasing method
proposed in the study. This method is based on autoencoders, which are neu-
ral networks that learn to compress input data, like user reviews, into a smaller
representation (encoding) and then reconstruct the original data from this com-
pressed version. As they focus on the reconstruction of original input data,
rather than relying solely on co-occurrence patterns typically used in CF, au-
toencoders might help reduce bias for less mainstream users by ensuring that
the unique details of their preferences are preserved. The model outperformed
traditional methods like MF and DeepCoNN (Zheng et al., 2017), significantly
enhancing recommendation accuracy for the bins of users authors labeled as
less mainstream, while maintaining or only slightly reducing accuracy for main-
stream users. While it remains uncertain whether the user groups in this study
truly correspond to varying levels of mainstream taste, the proposed debiasing
method appears effective in adjusting recommendation scores for users with dif-
ferent music consumption patterns.

In addition to the popularity of the music consumed, the size of a user’s
streaming history or music library can also affect recommendation quality. We
know that new users, who have had little interaction with the platform, face the
cold-start problem, which intuitively leads to the assumption that the more we
know about a user, the better the recommendations we can make. However,
Ekstrand et al. (2018) finds a negative relationship between the size of a user’s
profile and recommendation accuracy. Authors suspect that users with more
items in their profile have already rated the ‘easy’ items, so recommending for
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them is a harder problem. Supposedly, this could also be related to the diver-
sity of the user’s musical preferences. So-called omnivores, who have larger
and more varied libraries, might confuse recommendation algorithms due to
the heterogeneity of their tastes. Unfortunately, to our knowledge, no studies
have specifically examined bias in recommendations for univore versus omni-
vore music listeners, but this is undoubtedly an area worth exploring.

Balance between stakeholders

In an ideal scenario, MRS should to be equally fair both to users and to mu-
sic providers, however, aligning the two can be challenging. Approaches to
maximize user satisfaction can lead to unfair exposure for less popular item
providers. Conversely, approaches which aim to ensure equitable exposure for
all item providers can reduce user satisfaction because the recommendations
may not align closely with individual user preferences.

Several strategies can be applied in order to find a middle ground that would
satisfy both users and artists specifically on music streaming platforms Mehrotra
et al. (2018). One strategy consists in balancing relevance and fairness by as-
signing weights to each factor, allowing the system to introduce fairness without
significantly compromising relevance. Another way is to incorporate a degree
of randomness by probabilistically choosing between prioritizing relevance or
fairness in each recommendation. This method aims to maintain overall user
satisfaction while ensuring fairer exposure for less popular items. Also, a min-
imum threshold of relevance can be fixed before considering fairness, thereby
ensuring user satisfaction while still promoting fairness. Finally, recommenda-
tions can be personalized based on the user’s individual tolerance for fairness,
tailoring the balance between relevance and fairness to each user’s preferences.
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Introduction

At the beginning of this thesis, we formulated two main research questions to
which we aim to contribute :

• How can we model musical taste, both to better understand it and to
use it for recommendation purposes?

• How can we measure the influence that recommendation systems may
have on musical preferences?

These questions are not only central to understanding individual and col-
lective music consumption patterns, but they also have broader implications for
the development of fair, transparent, and diverse RSs. The way musical taste
is modeled impacts how users are exposed to new music, which in turn shapes
their long-term preferences and listening habits. Similarly, the second question
addresses an important ethical dimension: RSs have the power to reinforce or
mitigate biases, both in terms of promoting mainstream content over local or
niche music, and in how they influence the visibility of underrepresented artists
and genres.

The preceding chapters have laid the groundwork for addressing these ques-
tions. We have begun by exploring the nature of streaming data, highlighting its
unique features such as the large volume of user interactions and the diversity
of musical items available. Then we have surveyed literature on musical taste
across multiple disciplines, identifying how preferences can be measured—from
cognitive psychology to social science perspectives. Additionally, we have ex-
amined methods for labeling and categorizing music, as well as representing the
vast space of musical items in ways that can inform recommendation algorithms.
Finally, we have discussed RSs, and specifically how they can influence music
consumption, potentially introducing biases or amplifying existing preferences.

With this context established, we now turn to our contributions to these
research questions through two specific studies I conducted, both of which cul-
minated in published papers.
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Chapter 6

Modeling music preferences from
streaming data

At the outset of my PhD journey, our goal was to study the dynamics of musical
taste — how preferences evolve over time and how geographical factors may
influence them. As we began exploring data from Deezer, we quickly realized
the volume was overwhelming. To meaningfully capture a user’s preferences
at a given moment, we needed a proxy — a summarized representation of their
musical taste. This raised an important question: what exactly can be considered
as an individual’s ’musical taste’ within all this data? How do we define and
measure it?

We were inspired by a paper published in a very different field, De Mon-
tjoye et al. (2013)’s ’Unique in the Crowd’, that is concerned with individual
human mobility, as it can be measured and understood from ICT-based data,
such as mobile phone data, transportation cards, georeferenced posts on social
media platforms, etc. . Based on the location data of 1.5 million people over 15
months, obtained from a mobile phone operator, the authors of this study found
that 95% of individuals in the dataset could be uniquely identified with only four
spatiotemporal points, sampled at random in the location history data. Such a
set of points can be seen as some kind of ’fingerprint’, a unique set of informa-
tion that is personal, distinctive, and possibly representative of one’s mobility
: even though they do not focus on the nature of the locations, authors touch
on the idea that certain significant places, like home or work, can be frequented
more often, making them highly identifiable.

This made us wonder: could we apply this concept to music streaming?
Could we find a set of music items — artists or songs — that uniquely identify
a user? And if so, might this unique combination of items reflect their musical
taste? Drawing on Lahire (2008)’s definition of musical taste as a unique blend
of influences and experiences accumulated through one’s life course, we aimed
to define a ’musical fingerprint’ that could reflect a user’s distinct taste. For
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example, when I thought about my own personal music habits, I realized there
probably aren’t many Deezer users who listen to a mix of Russian pop, French
rap, and Algerian blues, alongside some doom-metal from my teenage years and
neo-soul from more recent times (here you can see a bit of Nault et al. (2021)’s
snobivorism at play). So, I imagined that my musical fingerprint would reflect
this unique combination of genres.

Since streaming history involved a large amount of fluctuating data and
likely included music that users didn not always like, we initially focused on
’likes’, specifically artist likes, assuming they better reflected core preferences
— almost as if the users had done a pre-selection for us (later, we incorpo-
rated liked songs and then streaming data to explore user identifiability for
anonymization purposes, though this is beyond the scope of this discussion).
Our first goal was to understand how unique people’s preferences actually were.

We developed a greedy algorithm designed to find the smallest combination
of favorite artists that could uniquely identify a user. Surprisingly, we discov-
ered that users could often be identified with a very small number of artists —
on average, two artists in a dataset of 1M users, and even fewer when using liked
songs or streams. However, this did not feel like a true ’fingerprint’, represen-
tative of such a complex thing as a user’s musical taste. The issue lays in the
long-tail distribution of item popularity: liking one or two obscure artists was
often enough to make a user identifiable, but these niche artists did not neces-
sarily reflect the user’s broader musical preferences — or at least we could not
detect it, as most of these unpopular artists lacked genre labels/tags.

This limitation led us to rethink our approach. Instead of focusing on the
smallest unique set of items, we aimed for a set that would be more representa-
tive of a user’s preferences, regardless of its size. After all, our original vision
for the fingerprint was to track the evolution of musical taste over time, com-
pare preferences across geographical regions, and potentially use this informa-
tion for recommendation purposes. Imagine, for example, how practical would
it be if we could transfer a well-chosen set of artists when switching streaming
platforms, rather than spending weeks retraining a new RS through extensive
listening.

This shift in focus led us to adopt an approach very close to a recommen-
dation setup. We aimed to find a set of items that could be used to recover, or
predict, the user’s known broader preferences through CF, i.e. user similarity.
Do the two approaches lead to convergent or diverging solutions, i.e. are the
items that best represent a user’s preferences the ones that make them unique?

This work resulted in a paper entitled ”Depict or Discern? Fingerprinting
Musical Taste from Explicit Preferences”, published in the TISMIR journal in
January 2024.

The study was co-authored by Manuel Moussallam (Deezer Research), Thomas
Louail (CNRS, Géographie-cités), and Olivier Bodini (Université Sorbonne Paris
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Nord). We collaboratively designed the study. I conducted the data analysis and
experiments. The manuscript was drafted by myself, Manuel Moussallam, and
Thomas Louail. All authors contributed to the final version of the paper.

This research contributes to the broader literature on musical taste by ex-
amining it from two perspectives: as something unique and distinctive of each
individual (in line with Lahire (2008)’s definition), or as something shaped by
shared patterns and similarities within a group (similarly to Bourdieu (1984)
or Peterson (1992)). We propose data structures and algorithms for both views,
linking these different perspectives on musical taste to practical algorithmic rec-
ommendation.
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1. INTRODUCTION

An increasing proportion of people rely upon streaming 
services to listen to music, and large amounts of 
detailed, individual data collected by these services 
are becoming available to scientists. These data open 
the door to an improved understanding of spatial and 
temporal dynamics related to music consumption, such 
as the long-term evolution of people’s listening behavior 
through the course of their life, or the geographical 
spread of different songs, artists and music genres at 
different periods of time. However, in order to study such 
high-level dynamics, it is necessary to have quantitative 
tools that are able to capture and expressively summarize 
these enormous amounts of listening data and musical 
preferences produced by millions of users.

Quantitative research on people’s musical taste spans 
over many scientific disciplines. From a sociological 
standpoint, musical taste has been long studied as a 
self-declared, differentiating feature among individuals 
and social groups (Bourdieu, 1984; Peterson, 1992; 
Bryson, 1996). Psychological studies have been 
investigating correlations between musical preferences 
and personality traits (George et al., 2007; North, 2010). 
More recently, the concept has been used in the music 
recommender systems literature, as the distinctive part 
of the musical space from which a user is likely to enjoy a 
recommendation (Laplante, 2014; Ferwerda and Schedl, 
2014; Uitdenbogerd and Schyndel, 2002). While in its 
general understanding, musical taste is an individual’s set 
of musical preferences, when it comes to the literature we 
observe conflicting approaches that can be broken down 
into three dichotomies. The first one lies in the empirical 
data supporting the research – declarative information 
collected in questionnaire surveys or interview-based 
research, versus interaction traces assumed as implicit 
and explicit preferences that can be retrieved from 
online activity logs. The second dichotomy is related 
to the “resolution” of the information at hand: either 
aggregated (generally at the level of music genres), or 
directly at the “atomic” level of musical items, namely 
songs, albums and artists. Finally, the third dichotomy of 
musical taste is the focus on either its distinctive features 
– what in their taste makes individuals or groups different 
from one another? – or the focus onto its essence – what, 
among an individual’s appreciations, best sums them up?

In recommendation, usage data and explicit 
preferences collected by platforms are used to derive 
average “taste profiles” from which new items can 
be sampled and proposed. There are also examples 
of recommender algorithms that treat each user as a 
mixture of profiles (Vargas and Castells, 2013), or which 
use contextual cues to modulate recommendations 
(Liang et al., 2018). This is somehow a reductionist vision 
of what makes personal taste, as it assumes that it can be 
summarized. It can also be said that it is an operational 

definition that basically reverts the problem of providing 
a comprehensive definition: in a recommendation 
setting, taste is what can be leveraged to make relevant 
recommendations. It is also interesting to notice that 
it is not consistent with the relational approach that 
is used in sociology, where taste and distaste have 
traditionally been represented as a set of preferences 
that distinguish one social group from another – social 
groups being constituted on the basis of the economic, 
educational and cultural capital of individuals (measured 
through variables such as their occupation, their parents’ 
occupations, or the highest degree they obtained). In 
the end, practitioners of both fields share the common 
objective to capture what distinguish people when it 
comes to their musical preferences. People engineering 
recommender systems are more interested in building 
systems able to predict items that people will like, while 
sociologists of taste are interested in finding what are 
the variables that best explain social differences in taste 
and distaste. Both are interested in building a system 
able to summarize and predict an individual’s musical 
preferences.

Getting back to the tools required to study high-
level dynamics of music listening in societies, it would 
be extremely useful to be able to capture some kind of 
“fingerprint” of an individual’s musical preferences. From 
a computational perspective, a good fingerprint should 
possess different desirable properties. It should be 
expressive, and provide a good summary of the diversity 
of the music appreciated by the user. It should also be 
concise, i.e. be composed of as much information as 
necessary but not more. Most of all, it should be able 
to serve as a fingerprint, i.e. a signature able to identify 
a user among others. These properties may prove 
to be difficult to achieve simultaneously via a single 
fingerprinting procedure, and in the remainder of this 
paper we will investigate this question experimentally.

More precisely, we are interested in formalizing and 
comparing different views of taste, and in order to do 
so we will formalize these views in a fingerprinting 
problem, that is, an information summarization problem 
that we will study by considering two distinct sets of 
constraints. The first set is designed to capture a user’s 
identity, in the sense of its identifiability among others. 
Identifiability through music is also a topic of interest 
for privacy purposes: with explicit preference data being 
ubiquitous on the open internet, measuring to what 
extent individuals can be uniquely identified through 
their portfolio of content preferences is important. We 
will try to answer the following questions:

RQ1: To what extent are users identifiable through 
their online activity data (favorite items and 
streaming history)?
RQ2: What information (content and size) is 
needed to identify people?
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We wish to answer these questions by assigning users 
a so-called fingerprint – a small set of items that allows 
us to identify users in a unique way.

The second set of constraints is expressed as a 
representativeness problem, i.e. finding the essence 
of one’s preferences. We will adopt a data-driven 
approach, and propose one formalization of what a 
taste fingerprinting procedure could be, similar to a 
classic recommendation setup, and evaluated through 
a prediction task. We will then confront the two sets of 
constraints, in order to answer the following question:

RQ3: Are the items that make one’s preferences 
unique representative of these preferences?

In our experimental setup, we will use a dataset 
containing the explicit preferences (e.g. artists and songs 
that have been deliberately liked by users, by clicking 
on a heart-shaped icon) of about 1M users of a music 
streaming platform, as well as liked and streamed artists 
for another 50K users.

The remainder of the paper is organized as follows: in 
the next section we provide an overview of the previous 
work in social science and recommender systems related 
to the measure of the notion of “musical taste”. Section 3 
presents the data, while sections 4 and 5 present the 
experiments we conducted and the results we obtained 
for the fingerprinting problem with the two different sets 
of constraints. Section 6 concludes the paper.

2. RELATED WORK

In order to measure and quantify musical taste, we need 
to understand all the aspects that this term can describe. 
In this section, we make an overview of characteristics 
necessary to study musical taste through three axes. First, 
we dive through existing ways of collecting data. Then, 
we discuss different representations of music. Finally, 
we overview two diverging views of musical taste found 
in the literature – as an attribute of distinction among 
others, or as a set of characteristics of our preferences.

2.1 MUSIC PREFERENCE DATA COLLECTION
In sociology and psychology, collecting declarative data 
about musical preferences and consumption habits 
through surveys and interviews is common. Interacting 
directly with the respondents is advantageous for 
several reasons. The use of a Likert scale for instance 
allows to have a deeper understanding of how much 
respondents do or do not like certain music (Peterson, 
1992; Bryson, 1996). Information about context of music 
consumption can be collected (DeNora, 2000), as well 
as sociodemographics, that can then be crossed with 
declared music preferences (Bourdieu, 1984; Peterson, 

1992; Bryson, 1996; Coulangeon, 2017; Lahire, 2008). 
However, the sample of surveyed individuals is usually 
limited, and the results can be biased as such surveys 
are often run either in a specific country, or on a specific 
social group, like students for example (Delsing et al., 
2008; Brown, 2012; Langmeyer et al., 2012). Additionally, 
the respondents may find it difficult to realistically assess 
what music they like to listen to and in what proportion. 
Flegal et al. (2019) show that some people struggle to 
estimate their own weight, and we can imagine that 
there might be a gap between declared preferences 
and the music that respondents actually listen to. For 
instance, it is possible that people tend to overstate 
listening to some more socially appealing music genres, 
and neglect to mention the less socially accepted music 
they like.

On the other hand, recommender systems mostly 
rely on observable data, often collected as traces 
of activity in online platforms. The huge amount of 
collected data should allow a good understanding 
of the users’ listening practices, and even though 
the context or sociodemographics are not explicitly 
collected, the data could be used to deduce some 
implicit information. For example, Way et al. (2019) 
estimate the relocation of certain users by analysing 
the changes in their IP address. However, the collected 
traces are often ambiguous and considered as implicit 
markers of preference (or negative markers, in the case 
of skipped songs for example) (Oard and Kim, 1998; 
Majumdar et al., 2009).

A way to have a complete understanding of people’s 
preferences would be to cross observable and declared 
data. This idea has been recently proposed (Cura et al., 
2022) in the form of “augmented interviews” leveraging 
digital traces to inform and assist social science 
researchers conducting interviews.

2.2 MUSIC REPRESENTATION
In order to quantify musical taste, one must first be 
able to segment the musical space itself. For this, music 
preferences can be assessed either directly using music 
items, like artists or songs (Bourdieu, 1984), or through 
the mediation of aggregated categories. In surveys, 
for the sake of brevity, preferences are often collected 
via set of music genres (Peterson, 1992; Bryson, 1996; 
Coulangeon, 2017). Even though representing music 
through genres may seem obvious, it is important to keep 
in mind that no universal genre taxonomy exists, thus 
using genres to depict people’s musical taste can create 
bias (Sordo et al., 2008). Music can also be classified by 
so called “mood”, that can be identified either through 
audio features (Soleymani et al., 2015; Delbouys et al., 
2018) or through declared data (Rentfrow and Gosling, 
2003). Bogdanov et al. (2013) used audio features in 
order to depict people’s musical taste.
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2.3 DISTINCTION AND ESSENCE
In the literature, taste is often defined as a set of 
traits that distinguishes us from others and marks 
our individuality. In sociology, musical taste has long 
been studied in association with social class belonging. 
Bourdieu (1984), Peterson (1992), Bryson (1996) and 
Coulangeon (2017) show the connection between 
musical preferences and social class – people present 
their taste as a mark of belonging to their “in-group” 
while differentiating themselves from an “out-group”. 
Similar conclusions have been found in psychological 
studies, like Hargreaves et al. (2006), who studied 
adolescents and how they use music to build their social 
identity. Later, Lahire (2008) studies intra-individual 
behavioral variations and emphasizes that most people 
have preferences that are not typical for their social 
group, and thus taste is an individual characteristic. The 
need people have for distinctiveness or “uniqueness” in 
order to self-identify has been studied in psychology as 
well (Fromkin and Snyder, 1980).

The notion of distinctive identity is also reminiscent 
of that of digital identifiability, that is, to what extent 
people’s behavior (and digital traces of it) can be 
used to uniquely identify individuals. For example, De 
Montjoye et al. (2013) use mobility data and show that 
four spatio-temporal points are enough to uniquely 
identify 95% of individuals. Narayanan and Shmatikov 
(2008) use the Netflix Prize dataset to de-anonimize 
users through the movies they have watched on the 
platform. They show that 5–10 movie ratings are 
enough to identify most users. These studies present 
an extreme form of distinction, where each individual 
is literally identified in a unique way among all others. 
However, no such experiment has been run on music 
streaming data.

An alternate definition of musical taste would be 
a set of factors that characterize listening behavior of 
an individual. This is typically the definition implicitly 
adopted as the core principle for designing recommender 
systems, where the goal is to understand the essence of 
the user’s preferences in order to suggest them similar 
music. Two main approaches exist in recommender 
systems. In collaborative filtering, the idea is to assign 
users a descriptive vector, or embedding, based on 
similarities between other users. The same process is 
applied to determine the similarity between items. This 
can be done through matrix factorization (Koren et al., 
2009) based on either implicit feedback, like streaming 
activity logs, or explicit feedback such as users’ collections 
of favorite items and playlisting of songs. Content-based 
recommendation, on the other hand, tries to define the 
items’ features that a user will respond positively to. These 
features can be represented by various tags (Pazzani and 
Billsus, 2007) that can be automatically computed based 

on audio features in the case of music (Cano et al., 2005; 
Van den Oord et al., 2013; Schedl et al., 2015) or social 
tags that can furnished by music providers or collected 
from the Web (Eck et al., 2007).

As concluding remarks, one may point out that 
the literature is rich with attempts to characterize 
musical taste, but they seem to be hard to reconcile, 
as they diverge on several key aspects. The first one is 
quantization of the musical space, the second being 
the data collected and the analysis methods. But most 
importantly there are conflicting hypothesis on the very 
nature of an individual’s musical taste. While social 
sciences emphasize the importance it bears in the 
construct of one’s self-identity, the emerging field of 
recommender systems assumes a form of homogeneity, 
even predictability of one’s taste.

This raises a series of open questions: to what extent 
is it possible to identify people based on their musical 
preferences? Assuming there are distinctive traits in one’s 
musical consumption, are these truly reflective of their 
global behavior?

3. DATASET

3.1 OVERVIEW
For this study, we work with data obtained from the 
music streaming service Deezer,1 that currently counts 
about 16M active subscribing users worldwide and 
has a catalog of 90M tracks. First, we collected explicit 
feedback data (i.e. “likes”) from 1M randomly selected 
users, who have been active during October 2022. Let us 
call this data sample DL. Users can explicitly “like” songs, 
albums, and artists which then appear in their “favorites” 
collection. As of the date of the data collection, among 
these 1M users 87.1% of them had explicitly liked at 
least one artist, and 88.9% had liked at least one song. 
All together the users had liked 586 512 artists and 10 
822 633 unique songs.

3.2 DISTRIBUTION OF MUSICAL ITEMS BY 
RECEIVED LIKES
The distribution of these items according to the number 
of unique users who like them follows a heavy-tailed 
distribution (Figure 1, top). For artists, the median value 
is equal to one — which means that at least half of them 
have been liked by only one user — while the average 
is around 38. The most popular artist has been liked by 
86 877 users. We can thus see a huge disparity between 
the artists, with a few extremely popular artists that 
attract most of the users, and many artists that are 
almost unknown. The songs follow a similar popularity 
distribution, with a median of 1, an average around 18, 
and a maximum of 75 453 likes.
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3.3 DISTRIBUTION OF USERS ACCORDING TO 
THE SIZE OF THEIR FAVORITES’ COLLECTION
The distribution of users according to the number of 
artists they have liked similarly follows a heavy-tailed 
distribution (Figure 1, bottom). Half of the users have 
liked 10 artists or less, with an average of 26 liked artists 
per user. Some outliers exist, such as one user who has 
liked 7 497 artists. Users tend to like songs more than 
artists, with 215 favorite songs by user on average. The 
user experience on the platform contributes to this gap 
between explicitly liking artists and songs: indeed, the 
like button can be easily hit on a song while the user is 
listening to it, while liking an artist requires the user to 
specifically go to the artist’s page.

3.4 ITEM POPULARITY METRIC
In our experiments, we will need to consider items’ 
popularity, and we found it would be easier to 
represent it with a discrete variable. We decided to split 
items into popularity bins, from the least to the most 
popular, in a way such that in each bin the sum of likes 
received by all items is the same. We arbitrarily fixed 

the number of bins to 6. Table 1 shows the distribution 
of the number of artists in each bin, as well as the 
maximum and minimum number of fans for artists in  
the bin.

3.5 GENRE TAGS
Internally, Deezer uses a taxonomy of 33 main genres 
to classify music, and attributes one main genre 
tag to most musical items in the catalog. These tags 
are mostly provided by music labels and recording 
providers, but can also be manually annotated by 
human editors. According to main genre tags, rock, 
hip-hop, pop and electronic music are the most 
popular music genres among the users in our dataset 
(Figure 2).

3.6 STREAMING DATA
In RQ3, we want to compare the users’ fingerprints 
calculated from their favorite items with those calculated 
on their streaming activity. To do so, we also use a 
separate data sample, DS, containing 1 year of streaming 
logs from April 1st 2022 to March 31st 2023 (DS_year) and 
favorite artists (DS_favart) for 60K active users. We made 
sure that all users were active during the entire year, in 
order to make comparable sub-samples for a day (DS_day), 
week (DS_week), and month (DS_month) with the same users 
in each subset.

Figure 1 Heavy-tailed empirical distributions in the DL data 
sample. Top: Distribution of artists’ and songs’ number of 

“fans” (i.e. users who coined these artists/songs as “liked”). A 
large proportion of items is liked by only a few users, while 
some items are very popular (hundreds of thousands of fans). 
Bottom: The distribution of the number of given likes per user 
follows here again a heavy-tailed distribution, with some 
users liking ten thousand more items than other users. The 
proportion of users liking many items drops faster for artists 
than for songs.

Figure 2 Proportion of DL users’ favorite artists in each 
music genre.

Bin Number of artists Number of likes

0 116 19283 – 86877

1 308 8534 – 19283

2 676 3690 – 8534

3 1865 1253 – 3690

4 7925 196 – 1253

5 575622 1 – 196

Table 1 DL’s artists split in 6 popularity bins. The sum of likes 
for all artists is constant in each bin.
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3.7 OPENING THE DATASET
Unless a user configured otherwise, the artists and songs 
that they have clicked as “liked” are publicly visible on 
the website using the user’s ID, and can be retrieved 
thanks to the streaming service API.2 We personally did 
not use the Deezer API and got anonymized data directly 
from Deezer, containing both private and public users. In 
section 4, we show that some users can be identified in 
a unique way through their favorite items. Sharing the 
dataset could thus raise some serious privacy concerns 
and we have decided not to do it in this form. Further 
work on means to effectively anonymize this data is 
required. For example, Cormode et al. (2008) obtained 
promising results for anonymization of sparse bipartite 
graphs, which is exactly the structure of our data, and it 
would be interesting to consider how such anonymization 
methods would impact our experimental results.

4. DISTINCTIVE MUSICAL TASTE 
FINGERPRINTS

4.1 PROBLEM DEFINITION
Previous work in the cultural sociology literature (Lahire, 
2008) has focused on musical taste uniqueness and 
individuality. Adopting this standpoint, we wonder if it is 
possible to find for each user a subset of their liked or 
streamed items, a fingerprint, that could be assigned 
to them only – that is, that would make them unique 
in the crowd. This raises several questions, that include: 
how many items need to be selected for each user to 
discriminate him/her from all the others? Are certain 
music genres more discriminative than others?

4.1.1 Problem formulation
Let V(u) be the set of liked or streamed items of user u. 
We look for a method to derive for each u a fingerprint, 
that is a subset F(u) ⊂ V(u) which meets the following 
conditions:

•	 Non-inclusiveness: ∀u′ ≠ u, F(u) ⊄ V(u′). A fingerprint 
of one user can not be included in the favorite 
items of another user. This means that if a user’s 
fingerprint is composed of artists a and b, this user is 
the only one in the dataset to like both artists a and 
b. Therefore, it means F(u) can be used to uniquely 
identify u.

•	 Minimal size: if for one user several fingerprints 
validate the previous constraint, the smallest one 
should be chosen.

4.1.2 Problem complexity
We are planning to perform a polynomial reduction from 
SET COVER to FINGERPRINT.

Let us revisit the SET COVER decision problem, which is 
defined as follows: Given a finite universe U, a collection 

S of subsets of U, and a positive integer k, the problem is 
to determine whether there exists a sub-collection S’ of 
S such that the union of the sets in S’ covers the entire 
universe U, and the size of S’ is at most k. It is important 
to note that SET COVER is known to be NP-complete.

Now, we introduce the decision problem called 
FINGERPRINT associated to our problem: Given V1, …, Vn, 
respectively the set of liked items of n individuals u1, …, 
un, and an integer k, we want to ascertain whether it is 
possible for the size of a fingerprint of u1 to be less than 
or equal to k.

Now, let us describe a polynomial reduction from SET 
COVER to FINGERPRINT. To do this, let us represent the 
collection S1,…Sn in SET COVER as a matrix MS, where each 
row corresponds to the indicator vector of Si. Essentially, 
SET COVER is about determining if it is possible to select 
at most k rows of MS in a way that ensures each column 
contains at least one “1”.

Now, let us also reformulate FINGERPRINT in matrix 
form. For 2≤ i≤ n, the (i-1)-th column of the matrix MF 
represents the indicator vector of Vi, limited to the 
elements in V1. In other words, the matrix MF has |V1| 
rows corresponding to items in V1 . The concept of non-
inclusiveness translates into ensuring that there is at 
least one “0” in each column of MF. FINGERPRINT aims to 
find out if it is possible to select fewer than k rows of MF 
while maintaining this property.

It is worth noting that if we interchange the “0” and 
“1” in the matrix MS and define the V1, …, Vn in such a way 
that the matrix MF=MS, solving the SET COVER instance can 
be achieved by solving the corresponding FINGERPRINT 
instance. As a result, FINGERPRINT is also NP-hard.

So, as of now (and possibly indefinitely), there 
is no polynomial algorithm available to resolve the 
fingerprinting problem. First, we propose a simple 
baseline, by randomly selecting items. This method 
matches the first constraint of non-inclusiveness, 
however it does not guarantee a minimal size of the 
fingerprints. Considering the broad-tail distribution of the 
number of likes received by items, scaling up the dataset 
by adding users increases the risk for two users to like 
the same items, meaning that, for each user, the size 
and content of its fingerprint totally depend on the total 
number of users in the dataset and the items they have 
liked. Therefore, we propose a greedy algorithm that will 
calculate the fingerprints globally, taking into account all 
other users, while minimizing their sizes locally, for each 
user.

4.2 METHODS
As already mentioned, the constraint of finding 
fingerprints of minimal size makes the problem hard 
to solve, and no method exists to do it in a reasonable 
time. Therefore, we first propose a baseline method that 
matches only the constraints of non-inclusiveness, and 
then present an approximate method to minimize the 
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fingerprints’ sizes. We compute fingerprints based on 
favorite songs and artists on the 1M-user dataset, as well 
as favorite artists and streamed artists on a day, week, 
month and year time period on the 50K-user dataset. 
In the case of streams, we consider any user-artist 
interaction only once, no matter the number of times the 
user has streamed the artist.

4.2.1 Baseline: random selection
This first method, that we name Funiq_rand builds fingerprints 
following our two constraints: uniqueness and non-
inclusiveness. Following the same idea as De Montjoye 
et al. (2013), for a user u, random items from V(u) are 
sampled and added to the fingerprint F(u), as long as 
there exists at least one other user u′ such that F(u) ⊆ 
V(u′) and |F(u)| < |V(u)|.

4.2.2 Minimizing fingerprints’ size
The random sampling method is simple, but it likely 
creates fingerprints that are larger than necessary. 
In order to minimize the sizes of the fingerprints, 
we propose a greedy approach. Let G(U, I; L) be 
the user-item bipartite graph, where U is the set of 
vertices representing the users, I is the set of vertices 
representing the items, and L are the edges linking 
users and items: there is an edge (u, i) ∈ L if the user 
u has liked the item i. For a vertex u in U, V(u) are the 
vertices in I that are connected with u by an edge. For 
each item i, let W(i) be the set of users connected to i, 
and d(i) = |W(i)| its degree.

For a user u, we first compute the weights of each 
item in V(u), or, in other words the number of users that 
have liked each item in V(u). Then, the item imin with the 
smallest weight is selected and appended to F(u). Then 
all the users that have not liked imin are removed from 
the graph, as well as the item imin, and the weights of the 
remaining items in V(u) are recalculated. The steps are 
repeated while there are other users than u remaining 
and |F(u)| < |V(u)|. The full algorithm, called Funiq_minsize, is 
given in Algorithm 1.

We assume that, depending on the size of the 
dataset, the number of uniquely identifiable users will 
not be the same, and the same goes for the average 
fingerprint size. As the complexity of our algorithm is 
O(n*m), the computation time will be strongly impacted 
by the number of users in the dataset, as well as the 
number of musical items they have liked, which makes 
it complicated to run on huge datasets, like the whole 
population of a streaming platform for example. In order 
to estimate how the number of identifiable users and 
their fingerprint sizes evolve with the dataset size and 
the two algorithms, Funiq_rand and Funiq_minsize, we run both 
algorithms on subsets of 10n users of DL, with n going 
from 3 to 6, and for each n we repeat the procedure on 
106/n different random subsets.

Also, we want to see the impact of the streaming 
period on those metrics, so we separately run Funiq_minsize on 
DS_day, DS_week, DS_month and DS_year, and, additionally, DS_favart.

4.3 RESULTS
4.3.1 Users’ identifiability
To answer RQ1, we took interest in the number of users 
who are identifiable through their online activity. In the 
following sections, we will denote DL_uniq the subset of DL 
that contains uniquely identifiable users. As expected, 
songs seem to be more discriminative than artists: in DL, 
60% of users can be identified by their favorite artists, 
and 90% by their favorite songs.

However, users differ according to the number of 
items they have liked: the fewer favorite items users 
have, the harder they will be to identify (Figure 3). For 
instance, only 15% of the users with 5 favorite artists 
or less can be identified, while users who have liked 
more than 25 artists can be identified more than 95% 
of the time. The more items a user has liked, the more 
they become a so-called “power-user”, i.e. a user whose 
collection of items fully contains all the favorite items of 
other users who have smaller collections (Figure 4). In a 
dataset of 1M users, a user who has liked one thousand 
or more artists covers, on average, the favorite artists 
of more than 1% of all the users. Overall, users with at 
least one hundred favorite artists cover the likes of 41% 
of the users from the dataset, and users with more than 
one thousand favorite artists cover the likes of 32% of 
the users (Figure 5). However, “power-users” of different 
ranges mostly cover the same users. For instance, 93% 

Algorithm 1 Funiq _minsize(u)

Input: u - user
Output: fingerprint - list of items
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of the users covered by users with 1000+ liked artists 
are also covered by users with 100–1000 liked artists, 
and 86% of the users covered by users with 1000+ liked 
artists are also covered by users with 100–250 liked 
artists. Therefore, the size of the dataset is a much more 
important factor for identifiability of the dataset than so-
called “power-users”.

Additionally, we computed Funiq_minsize on DS. Expectedly, 
streams allow a much higher identifiability than likes, as 
users like much fewer artists and songs than they stream 
(Figure 6). Extending the time period for retaining stream 
logs strongly increases identifiability: one month of 
stream logs is enough to identify 95% of the users.

4.3.2 Fingerprint size
To answer RQ2, we first looked at the size of the 
assigned fingerprints. In DL, we find unique fingerprints 
of an average size of 6.7 artists and 3.6 songs by drawing 
random items (Figure 7). For songs, the maximum size 
fingerprint is huge (176 songs to discriminate one user). 
Indeed, the dataset contains a few users with huge 
collections of liked items, up to almost 105 favorite songs. 
The favorite items of such users are most likely to cover 
a lot of other users’ collections, which is why we would 
need this many items to discriminate them from others. 
However, considering the average and the median 
fingerprint size, which is 3 (for songs), we can assume 
that such a high fingerprint size is more of an exception 
than a rule.

With Funiq_minsize, we find unique fingerprints of an 
average size of 2.3 artists and 1.4 songs. Among 1M 
users, 45% of them are identifiable with only one song. 

Figure 3 Share of identifiable users in DL depending on the 
number of items they have liked. For example, among users 
with 10 favorite artists and more, about 60% can be identified.

Figure 4 Distributions of how many users (in proportion 
of DL) have all their favorite artists included in those of a 

“power-user”, for various ranges of “power-user” collection 
size. For example, the likes of 1% of users are fully included on 
average in those of a user with 750–1000 favorite artists.

Figure 5 Proportion of users (from DL) whose favorite artists 
are included in the favorite artists of “power-users”. For 
example, 40% of users are included in users with more than 
250 favorite artists.

Figure 6 Ratio of users (from DS) identifiable through their 
liked and streamed artists, for different time periods. For 
example, 97% of the users are identifiable via their yearly 
streamed artists.

Figure 7 Distributions of fingerprint sizes, computed with 
Funiq_rand and Funiq_minsize based on users’ favorite artists (DL).
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Table 2 shows that the average size of fingerprints 
based on songs increases only slightly with the size of 
the dataset. It can thus be assumed that even though 
the number of identifiable users will decrease in a larger 
dataset (Table 2), the average size of unique minimum 
size fingerprints based on songs will remain around 1.5.

The fingerprints’ size based on favorite artists DS_favart 
(average 1.9, median 2) is comparable to one day of 
streams for the same users DS_day (average 1.8, median 2), 
and slightly decreases with larger time periods (average 
1.4, median 1 for a year of streams DS_year).

4.3.3 Composition of the fingerprints
Another metric of interest to answer RQ2 is the 
fingerprints’ content. First, we compare the artists 
found in the fingerprints based on likes and streams, 
respectively DS_favart and DS_year. To this extent, we divide, 
for each user, the number of common artists by the total 
number of unique artists in both fingerprints. The found 
average ratio is around 1%, which means that there is 
no redundancy between the two kinds of fingerprints. 
Therefore, in a situation where anonymized streaming 
logs are shared, crossing this data with open access likes 
data should not lead to deanonymization, at least with 
the Funiq_minsize method.

To have a deeper understanding of what kind of 
music is more discriminative, we compare the popularity 

and genre distributions of the fingerprint items with the 
users’ favorite items in general (on DL). Unsurprisingly, 
the popularity of an artist or a song is an important 
indicator of whether or not it might be included in one’s 
fingerprint (Figure 8): the less popular the item, the 
more discriminative it is. As for the genres, the most 
popular ones, such as hip-hop, pop, rock and electronic 
music, seem to be underrepresented, while other, less 
popular genres, are overrepresented in the fingerprints 
(Figure 9).

Artists

Sampling 
method

Number 
of users 

Unique 
users (%) 

Min F(u) 
size 

Max F(u) 
size 

Median 
F(u) size 

Mean 
F(u) size 

Standard 
deviation

Funiq_rand 1000 87.3 1 13 2 2.4 1.4

10000 77.5 1 33 3 3.5 2.3

100000 67.7 1 58 4 4.9 3.6

871248 58.1 1 137 5 6.7 5.3

Funiq_minsize 1000 87.3 1 4 1 1.3 0.5

10000 77.5 1 7 1 1.6 0.7

100000 67.7 1 10 2 1.9 1.0

871248 58.1 1 14 2 2.3 1.2

Songs

Funiq_rand 1000 96.8 1 8 1.9 1.7 0.8

10000 94.4 1 33 2 2.2 1.2

100000 92 1 98 3 2.9 1.7

889017 89.9 1 176 3 3.6 2.4

Funiq_minsize 1000 96.8 1 2 1 1.0 0.1

10000 94.4 1 5 1 1.1 0.3

100000 92 1 8 1 1.3 0.5

889017 89.9 1 194 1 1.4 1.1

Table 2 Distributions of fingerprint sizes, computed with Funiq_rand and Funiq_minsize based on favorite artists and songs, for different 
numbers of users in the dataset.

Figure 8 Distribution of popularity among the artists in 
the fingerprints. We compare the distribution of popularity 
among users’ favorite artists, Funiq_rand fingerprints and Funiq_minsize 
fingerprints (DL).
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If we consider musical taste through individuality 
and uniqueness, as Lahire (2008) did, we are then able 
to create fingerprints of musical taste. However, is 
individuality on its own a sufficient definition of taste, 
and do these unique fingerprints capture the essence of 
the users’ preferences?

5. REPRESENTATIVE MUSICAL TASTE 
FINGERPRINTS

The method we describe in the previous section can be 
used to distinguish users and to capture what makes 
their musical taste unique. In the process, it seems to 
have selected elements that do not necessarily reflect 
the overall distribution of their preferences.

In the previous section, we use the term fingerprint; 
in this section, we will keep using this concept, by 
analogy to the previous section, even though we are 
not looking to identify users anymore. Here, we consider 
a representative fingerprint as a set of items that 
summarize a user’s preferences. We use items, and not 
embeddings or other latent variables, as we want our 
fingerprint to be easily interpretable, and again, as a 
mirror with the previous section.

We propose to measure the representativeness of a 
fingerprint by means of a prediction task: i.e. given the 
subset of items selected, can we reconstruct the full set 
of a user’s liked items? We then present a fingerprinting 
method that allows us to build a representative fingerprint 
according to two defined evaluation methods. Finally, 
we compare it with the unique fingerprints computed in 
Section 4.

5.1 PROBLEM DEFINITION
We formulate the problem in a way similar to 
recommendation: a subset F(u) is considered as 
representative of V(u) if there exists a method F⋆ such 
that ∀ u ∈ U, V(u) ≈ F⋆(F(u)), . In other words, we consider 

that a fingerprint is representative if a method that can 
recover the initial set of items from it exists. Building an 
F⋆ function is a ubiquitous task in recommender system 
research, where the problem is very similarly defined.

We chose to define F⋆ as a simple prediction function 
based on the nearest neighbor algorithm, computing the 
proximity between the artists using matrix factorisation 
(Koren et al., 2009). For favorite items, we start by 
building a sparse artist-user matrix M, where M[u,i]=1 if 
the user u has liked the artist i. For streams, M[u,i]=1 if 
the user u has streamed the artist i at least once during 
the given time span. We then compute a singular value 
decomposition (SVD), and use the first 128 dimensions of 
the SVD as our artists’ embeddings. The artists’ nearest 
neighbours are then computed based on the Euclidean 
distances between their embeddings.

Let N(i) be a list of i’s nearest neighbors ordered from 
the closest to the furthest. Let wi be a weight associated 
to each item i in a fingerprint F(u). This weight represents 
the number of items we need to recover from u. If all 
items in F(u) are equally important, then we want to 
recover the same number of items from each item in 
F(u): ∀ i ∈ F(U), wi = (|V(u)| – |F(u)|)/|F(u)|. For a user u, F⋆ 
returns a set of predicted items P(u) by simply taking, for 
each item i in F(u), the wi closest neighbors of i from the 
list of i’s 150 most similar artists.

5.2 EVALUATION PROXY
The representativeness score of a fingerprint is calculated 
based on how close the predicted items are to the user’s 
favorite items. We propose two methods to compare P(u) 
and V(u):

•	 Item-wise. This evaluation is the most strict. The 
predicted items P(u) are compared exactly to the 
actual user’s favorite items (except the ones included 
in the fingerprint). The prediction accuracy for a user 
u is thus equal to |P(u) ∩ (V(u)|F(u))|/|P(u)|. This metric 
is widely used in recommender systems for offline 
evaluation tasks, where ground truth user-item 
interactions are available.

•	 Genre-wise. Here, we compare if the predicted items 
follow similar distributions in terms of genre as the 
items from the user’s actual favorite items. The 
prediction score is thus simply the L1 distance between 
the distribution of genres in P(u) and the one in V(u).

Other metrics could also be used, based on the 
mainstreamness of the artists for example.

5.3 EXPERIMENTS
5.3.1 A method to sample representative 
fingerprints
We propose a simple method, that we name Frep_kmedoid, to 
compute fingerprints that would be representative of the 
users’ preferences.

Figure 9 Distribution of genres among the artists in the 
fingerprints. We compare the distribution of genres among 
users’ favorite artists, Funiq_rand fingerprints and Funiq_minsize 
fingerprints (DL).
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Considering that each artist is represented with an 
embedding of size 128 (computed in Section 5.1), the 
favorite artists of user u, V(u), are split into k clusters 
using the k-medoids algorithm. The medoids are then 
used as representative artists of each cluster to build 
the user’s fingerprint, and the weight w(i) associated to 
each artist i in the fingerprint is the size of the related 
cluster. We assume that the diversity of music genres in 
the users’ favorite artists varies from one user to another, 
thus the optimal k may not be the same for different 
users. In order to determine the optimal k for each user, 
we computed fingerprints with k going from 1 to 15% of 
|V(u)| (as we consider a fingerprint as concise information 
about the users’ preferences, we set maximum k limit 
to 20), then run the prediction task F⋆ on the obtained 
fingerprint. For each user, we retain the optimal k value 
that gave the highest prediction score with an item-to-
item evaluation.

As a baseline, we use a method Frep_rand, which 
consists in randomly sampling k items in V(u) for a user 
u, with u’s optimal k value for Frep_kmedoid. Table 3 shows 
that the prediction scores for Frep_kmedoid fingerprints on 
liked items are indeed higher than with Frep_rand, both 
with item-to-item and genre-wise evaluation, and the 
score is higher for users with larger music collections. 
A better prediction accuracy is achieved with streaming 
data (Table 4) – for yearly streaming logs, we can 
restore almost 40% of the exact items through the 
fingerprints. Reaching an accuracy of 1 with an item-
wise evaluation is not feasible within such a vast item 

space, and this level of precision is also uncommon in 
real-world recommendation systems. Based on the 
positive dynamics of the prediction accuracy on larger 
datasets, in the following, we will consider Frep_kmedoid as 
a method that aims to capture the essence of users’ 
musical taste.

An interesting thing to notice is the optimal k size in 
different datasets: a smaller average fingerprint size is 
observed with favorite artists and single-day streams. 
The average size then grows with larger streaming 
time spans, and so does the standard deviation 
(Table 4). The average size can be easily connected to 
the amount of data to recover. Complementarily, the 
growing standard deviation can be explained by the 
heterogeneity of the users: on a one year span, some 
users will listen to a large variety of different genres, 
and some will stick to only a few, which is why the ideal 
fingerprint size might be very different from one user 
to another.

5.3.2 Uniqueness vs essence
To answer RQ3, we now want to confront our two 
sampling methods, Funiq_minsize and Frep_kmedoid.

First, we run both sampling methods on uniquely 
identifiable users DL_uniq, then run the prediction on both 
obtained fingerprints: the prediction accuracy from 
the unique fingerprints is lower (3% with item-to-item 
evaluation, 42% genre-wise) than the representative 
fingerprints (10% with item-to-item evaluation, 50% 
genre-wise) (Figure 10), meaning that the most 
discriminative items in the users’ libraries are not 
representative of their overall preferences.

Second, we found that only 279 435 users remain 
identifiable from DL’s representative fingerprints, 
comparing to 507 037 in DL overall. Thus, extracting the 
essence of one’s musical library most likely leads to a loss 
of the information that makes them unique.

Trying to quantify the essence and the uniqueness of 
one’s musical taste seems to represent two diverging 
goals, which require distinct computation methods.

Frep_rand Frep_kmedoid

Evaluation Number of 
favourite 
artists

Mean 
accuracy 

Standard 
deviation 

Mean 
accuracy 

Standard 
deviation

Item- 
wise

<25 0.05 0.11 0.08 0.13

25–50 0.14 0.12 0.25 0.13

50–75 0.16 0.12 0.28 0.12

75–100 0.18 0.11 0.30 0.12

100–150 0.21 0.12 0.32 0.12

>150 0.26 0.12 0.37 0.10

Genre- 
wise

<25 0.38 0.31 0.40 0.28

25–50 0.65 0.14 0.73 0.09

50–75 0.70 0.13 0.78 0.08

75–100 0.71 0.12 0.81 0.07

100–150 0.77 0.10 0.83 0.08

>150 0.88 0.12 0.97 0.05

Table 3 Item-wise and genre-wise prediction accuracy with 
Frep_kmedoid fingerprints and randomly sampled fingerprints of the 
same sizes on DS_favart.

Accuracy Optimal k

Data sample Mean Standard 
deviation 

Mean Standard 
deviation

Favorite artists 0.09 0.12 2.66 3.26

Day streams 0.07 0.11 1.86 1.67

Week streams 0.13 0.11 5.03 4.42

Month streams 0.26 0.13 8.82 5.70

Year streams 0.35 0.12 9.73 6.23

Table 4 Prediction accuracy and optimal k with an item-to-item 
evaluation for Frep_kmedoid on favorite artists and streamed artists 
for different time periods (DS).
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6. DISCUSSION

6.1 CONCLUSION
Building on a large set of literature, we emphasize 
how preference elicitation encompasses several 
conflicting definitions. We propose to make two of 
them explicit, stressing constraints of uniqueness 
(respectively representativeness) as optimization goals 
adapted to distinction (respectively characterization) 
of an individual’s taste fingerprint. We show that these 
different constraints lead to diverging solutions which 
in turn suggests that scientific work addressing musical 
taste should probably reflect on their exact objectives 
and make their understanding of the term explicit.

We run our experiments using data from a major 
streaming platform, containing both explicitly liked 
content and streaming logs. In a first section of 
experiments, we show that in a sample of 1M active 
users, 90% can be identified by their favorite songs, and 
one or two songs is enough to identify 45% of the users. 
On another sample of 50K users, we also show that 
streaming logs are even more identifying, especially if 
collected for a long period of time – up to 97% of the 
users are identifiable via the artists they streamed for a 
year (RQ1).

However, the artists allowing to identify users are 
not the same when it comes to what they have liked or 
streamed. Also the more identifying items are expectedly 
the less popular ones, and by consequence, those from 
less popular genres (RQ2).

In a second section of experiments we propose 
a method to depict users’ preferences by creating 
representative subsets of users’ favorite items that we 
call fingerprints. This method can further be used in 
situations when concise information about the users’ 
preferences is needed: in recommendation systems, or 
scientific work that uses the concept of musical taste.

We show that the best items for identifying users are 
not the most representative of their preferences: using 
a prediction task, we can recover an average of 10% 
of the users’ favorite artists from the representative 
fingerprints against 3% from the unique fingerprints. 
Complementarily, only 279 435 users remain identifiable 
based on their representative fingerprints, against 507 
037 in the initial set. It thus seems that the essence and 
uniqueness of musical taste are opposite concepts (RQ3).

6.2 LIMITATIONS
The experiments proposed in this work are nonetheless 
limited by the nature of the data used to conduct them. 
As we have emphasized, observable data are handy 
to collect at scale, but arguably they are non-perfect 
proxies of an individual’s true preferences. In particular, 
the information of explicit distaste is missing, though 
it appears to be a highly relevant indicator. An intuitive 
approach would be to leverage implicit feedback such as 
skips, but these are even noisier signals.

A more promising approach would be to build a 
richer, multi-modal dataset, containing both declared 
and observed data for a sufficient number of individuals. 
This will be the focus of our future work. Additionally, 
the evaluation of the fingerprinting methods could 
also be improved, in particular by means of an 
experiment involving the users themselves, for instance 
using an interface such as the one presented by Cura et 
al. (2022).

6.3 ADDRESSING PRIVACY ISSUES
Unlike streaming logs, information about users’ likes 
is publicly accessible on the Deezer platform and most 
of their competitors, unless users specifically indicate 
their account as private. The fact that most users can be 
identified by their likes basically shows that a significant 
share of them are by default 1-anonymous Sweeney 
(2002), thus not anonymous. It reveals an important 
privacy issue – the usual practice of hashing the users’ 
IDs does not seem to be enough to anonymize a dataset. 
It can be especially compromising to share personal 
data, such as geolocation for example, combined with 
information about the users’ likes. Future work could be 
done to explore ways to aggregate or obfuscate such 

Figure 10 Item-wise (top) and genre-wise (bottom) prediction 
accuracy with Funiq_minsize fingerprints and Frep_kmedoid fingerprints, 
performed on DL_uniq.
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data in order to ensure k-anonymity, while keeping its 
expressiveness at the same time.

In the music information systems used on platforms, 
which must remain expressive for users, there is no 
category for describing music that would be both 
more precise than music genres (which are ill-defined 
categories) and more aggregated than the precise 
catalog items consumed by users: tracks, artists, and 
albums. Consequently, for lack of a better alternative, 
our results suggest that publicly available information 
about individuals’ music preferences should likely be 
aggregated at the level of music genres to strengthen 
anonymity (e.g. possibly defined as clusters of artists, 
whose size should be adjusted to ensure k-anonymity, 
with artist cluster sizes depending on k).

NOTES
1 www.deezer.com.

2 developers.deezer.com/api/user.
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Chapter 7

Measuring the influence of
recommendation on music listening

How we model music taste, shape the musical space, and choose algorithms
with specific parameters all significantly impact the outcomes of recommen-
dations. In turn, these recommendations can influence the users’ preferences
and listening habits, creating a feedback loop between the system and the user.
After exploring various approaches to modeling user preferences, we began to
question how the structure of the data itself, combined with the algorithm used,
might shape the recommendations, particularly concerning fairness issues.

Around this time, in 2022, Lesota et al. (2022) published a study exploring
how different algorithms affected the recommendation of local music on the
Last.fm platform. According to their experiments, ItemKNN, an item-based CF
algorithm, would tend to promote more local music, while NeuMF, a neural
network-based MF model, would lean towards recommending more American
content at the expense of local music. We found this finding interesting, but we
wondered why such bias was observed, an aspect that the authors did not explore
in their paper. We decided to take the subject of local music as an example to
understand where bias in music recommendation can come from.

To extend their work, we turned to streaming data from Deezer, which al-
lowed us to work with a broader and more diverse user base than the LFM-
2b dataset used by Lesota et al. (2022). Given the contrasting performance of
ItemKNN and NeuMF on the same data, we hypothesized that the bias might
arise from the interactions between the structure of the data and the specific
characteristics of each algorithm.

Initially, we attempted to model Deezer data using SBMs to detect struc-
tural patterns in user behavior. Our first approach was to split users from each
country into distinct categories (or blocks) based on the proportion of local mu-
sic they listened to. We then used a DCBM, which aimed to better reproduce
the distribution of local music preferences within these blocks. We were hoping
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that this approach would capture the underlying patterns of user preferences and
apply them to artist networks.

Next, we computed artist graphs based on both the real interaction matrix
and the one generated by the SBM. However, the generated graphs failed to
preserve genre and musical relationships between artists, which were present
in the original data. Moreover, the local music recommendation biases that we
observed in the real Deezer data, were not reproduced in the generated data.

This led us to question whether all music datasets share similar structural
patterns. We decided to compare the impact of recommendation algorithms
on both the Deezer and Last.fm datasets. Upon investigation, we found that the
biases present in the Deezer dataset were markedly different from those reported
in the Last.fm dataset by Lesota et al. (2022).

To explore these discrepancies further, we conducted a comparative analysis
of the LFM-2b and Deezer datasets, and uncovered key differences in data struc-
ture, user demographics, and local music consumption patterns. Ultimately, we
discovered a significant lack of country tags in both datasets. This raised impor-
tant questions about the feasibility of measuring algorithmic biases when crucial
metadata is lacking.

This work culminated in the paper entitled ”Do Recommender Systems
Promote Local Music? A Reproducibility Study Using Music Streaming Data”,
published in the Reproducibility track of the proceedings of the 18th ACM Con-
ference on Recommender Systems in 2024.

The paper was co-authored by Lilian Marey (Télécom Paris, Deezer Re-
search), Guillaume Salha-Galvan (Deezer Research), Thomas Louail (CNRS,
Géographie-cités), Olivier Bodini (Université Sorbonne Paris Nord), and Manuel
Moussallam (Deezer Research). The study was primarily designed by myself
and Manuel Moussallam, with early conceptual input from Thomas Louail and
Olivier Bodini, and later contributions from Guillaume Salha-Galvan. The ex-
periments were conducted by myself and Lilian Marey. I wrote the first draft of
the paper, Guillaume Salha-Galvan revised and refined the final version.

This study highlights the challenges of measuring the influence of RSs and
identifies critical aspects that need consideration in this task, such as the repre-
sentativeness of the population, the quality of metadata, and the specific param-
eters used in recommendation algorithms.
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ABSTRACT
This paper examines the influence of recommender systems on local
music representation, discussing prior findings from an empirical
study on the LFM-2b public dataset 1. This prior study argued that
different recommender systems exhibit algorithmic biases shift-
ing music consumption either towards or against local content.
However, LFM-2b users do not reflect the diverse audience of mu-
sic streaming services. To assess the robustness of this study’s
conclusions, we conduct a comparative analysis using proprietary
listening data from a global music streaming service, which we
publicly release alongside this paper. We observe significant differ-
ences in local music consumption patterns between our dataset and
LFM-2b, suggesting that caution should be exercised when drawing
conclusions on local music based solely on LFM-2b. Moreover, we
show that the algorithmic biases exhibited in the original work vary
in our dataset, and that several unexplored model parameters can
significantly influence these biases and affect the study’s conclusion
on both datasets. Finally, we discuss the complexity of accurately la-
beling local music, emphasizing the risk of misleading conclusions
due to unreliable, biased, or incomplete labels. To encourage further
research and ensure reproducibility, we have publicly shared our
dataset and code.

CCS CONCEPTS
• Information systems → Recommender systems; Personalization.

KEYWORDS
Music Recommendation, Fairness, Algorithmic Bias, Local Music.

1Previously available at http://www.cp.jku.at/datasets/LFM-2b/, the LFM-2b dataset
has recently been taken down due to license issues.
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1 INTRODUCTION
Recommender systems are essential for music streaming services
like Apple Music, Deezer, and Spotify [9, 26, 38, 39]. They help
mitigate information overload problems by showcasing the most
relevant content for each user, within large catalogs of millions of
songs, albums, and artists [7, 19, 23, 32, 39]. They also assist users
in discovering new music they might like on these services [6, 8,
19]. With the rise of streaming as the predominant form of music
consumption [25, 34], there has been, however, a noticeable increase
in debates about the responsibilities of these systems. Concerns
are also growing about their ability to promote a fair and diverse
musical landscape and the various biases they might introduce or
amplify when recommending music [2, 13, 14, 15, 17, 18, 29, 30, 40].

In particular, Lesota et al. [31] recently argued that some mu-
sic recommender systems might intensify the predominance of
US music consumption in other countries. Specifically, in an em-
pirical study focused on the LFM-2b dataset of listening actions
on Last.fm [37], these authors investigated the extent to which
standard recommender systems favor US-produced content over
local music from the country of origin of each user. Their findings
suggest that NeuMF [24], a neural network-based collaborative
filtering algorithm, recommends lower proportions of local music
than what users from each country actually listen to. In other words,
NeuMF exhibits an algorithmic bias [15, 22] against local music on
LFM-2b. On the contrary, the more classical ItemKNN [12] method
yields more calibrated recommendations, and even fosters the con-
sumption of local music in most countries under consideration.

This study undoubtedly raised essential issues regarding the un-
even impact of recommender systems on local music consumption.
Nonetheless, as big as it might be, the LFM-2b dataset used for eval-
uation is of a particular nature. Last.fm users tend to be active on
the Internet and social media, and are not evenly distributed across
countries. Therefore, they might not represent the full spectrum of
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music streaming service users. Moreover, as detailed in Section 2,
the study did not analyze how important parameters related to
model training impact these biases. For these reasons, it remains
unclear whether the conclusions of Lesota et al. [31] would hold in
other experimental settings and using a different dataset.

In this paper, we address this question by conducting a compre-
hensive comparative study using proprietary listening data from
the global music streaming service Deezer. Our study concentrates
on France, Germany, and Brazil – three countries where Deezer is
one of the leading market players. Our contributions are as follows:

• Firstly, we show that the Deezer and LFM-2b datasets present
different local music consumption patterns. This discrepancy
suggests caution when drawing conclusions about local mu-
sic representation based solely on one dataset like LFM-2b.

• Secondly, we demonstrate that NeuMF and ItemKNN exhibit
different algorithmic biases towards local music on Deezer
compared to LFM-2b when following the evaluation setup of
Lesota et al. [31]. Importantly, we also uncover several factors
that significantly influence these biases – including their
magnitude but also their direction – thereby affecting this
study’s overall conclusions on both datasets. These factors
include the number of tracks each model recommends, their
training variability, and whether they were trained on data
from individual countries or the entire dataset.

• Thirdly, we explain that accurately labeling local music is
a complex endeavor, and that the proportion of local music
consumed and recommended can vary significantly depend-
ing on the source of the labels, their level of completeness,
and the various biases introduced by human annotators. Con-
sequently, we recommend prioritizing the development of
comprehensive, transparent, and reliable local data labeling
in future research. We argue that this foundational step is
crucial for studies aiming to understand local music biases,
as results based on unreliable labels may be misleading.

• Lastly, along with this paper, we publicly release our Deezer
dataset as well as the source code of our experiments. This
release aims to ensure full reproducibility of our results and
to facilitate future studies on local music recommendation.

The remainder of this paper is organized as follows. In Section 2,
we introduce the problem more formally and review the related
work in more detail. In Section 3, we introduce our Deezer dataset
and compare it to LFM-2b in terms of local music consumption. We
report and discuss results from our empirical study on local music
recommendation and biases in Section 4, and conclude in Section 5.

2 PRELIMINARIES
We begin this section by formally presenting the problem under
consideration, before reviewing the related work.

2.1 Problem Formulation
2.1.1 Notation. In this paper, we consider a set V of music tracks
available in the catalog of a music streaming service, and a setU of
𝑀 ∈ N∗ users on this same service. We denote by 𝑁listened (𝑢) the
number of streams performed by each user𝑢 over a predefined time
period. Moreover, we denote by 𝑁local (𝑢) ∈ {0, . . . , 𝑁listened (𝑢)}
the number of these streams that are of music tracks from the

country of origin of 𝑢 according to some data labeling2. We refer to
𝑁local (𝑢) as the number of local streams of 𝑢. Using this formalism,
the proportion of local music listened to by 𝑢 is:

L(𝑢) = 𝑁local (𝑢)
𝑁listened (𝑢)

∈ [0, 1] . (1)

Additionally, we consider a music recommender system:

MRS𝐾 : U → V . (2)

MRS𝐾 recommends3 𝐾 music tracks from V to each user of the
music streaming service, for some fixed value 𝐾 < 𝑁 . The number
of local music tracks recommended to the user 𝑢 by MRS𝐾 among
these 𝐾 tracks is 𝑁local,MRS𝐾 (𝑢) ∈ {0, . . . , 𝐾}. The proportion of
local music tracks recommended to 𝑢 by MRS𝐾 is:

LMRS𝐾 (𝑢) =
𝑁local,MRS𝐾 (𝑢)

𝐾
∈ [0, 1] . (3)

2.1.2 Objective. Our main goal in this paper is to investigate the
impact of MRS𝐾 on local music representation. In line with Lesota
et al. [31], our main indicator of interest will be the algorithmic bias
of MRS𝐾 in favor or against local music, defined as follows:

BiasMRS𝐾 =
1
𝑀

∑︁
𝑢∈U

(
LMRS𝐾 (𝑢) − L(𝑢)

)
, (4)

with BiasMRS𝐾 ∈ [−1, 1]. In essence, a positive bias (respectively, a
negative bias) indicates that, on average, MRS𝐾 recommends more
local music (resp., less local music) than what users of the music
streaming service organically listen to. The remainder of this paper
will analyze this value for different datasets, recommender systems,
and settings. We will aim to uncover the various factors that might
influence the intensity or even the direction of this bias.

2.2 The study of Lesota et al. [31] on LFM-2b
Analyzing local music algorithmic biases was one of the key ob-
jectives of Lesota et al. [31], with a particular emphasis on the
predominance of US music consumption in other countries.

2.2.1 Context. Over the past decades, US music has dominated
the global music industry, with its cultural influence spreading
worldwide. Trends from the US have been widely adopted even in
local music productions [20], and the ratio of US music on radio
charts has been rapidly increasing4 since the 1960s [1]. The conse-
quences of this dominance are mixed [1, 10, 11]. On the one hand,
it can potentially stimulate local cultural development through the
adaptation to global trends and reinforcement of local identity, a
process known as glocalization [1, 10]. On the other hand, it is also
sometimes perceived as a threat, termed cultural imperialism, which
could lead to the decline of local cultures [11, 33, 42]. While music
has become more centralized with the rise of music streaming ser-
vices [5, 31], at the time of Lesota et al.’s study [31], limited research

2Wenote that associatingmusic trackswith specific countries can be an ambiguous task,
and that different data labeling rules may yield inconsistent results. The importance
of the labeling source will be pointed out and further discussed throughout this paper.
3At this stage, we do not formulate assumptions regarding the specific data or paradigm
(e.g., a collaborative filtering or content-based approach [7]) used to recommend tracks.
4However, this growth slowed down from the 1990s due to several factors, including
the emergence of CDs, which made music production more accessible worldwide,
content localization by MTV, and the introduction of laws in countries like France,
imposing local music quotas on radio station programming [1].
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had focused specifically on the impact of these services and their
recommender systems on local music consumption.

2.2.2 Results. In 2022, Lesota et al. [31] published results from
their empirical study conducted on a subset5 of the LFM-2b public
dataset, which includes listening events from users of the Last.fm
music website [37]. This study explored the prominence of US
cultural imperialism in online music consumption, revealing that
while the US maintains a strong position among Last.fm users, its
influence varies significantly across countries. The authors also ob-
served varying glocalization patterns depending on countries. The
final part of their study, which our reproducibility paper focuses on,
investigated whether recommender systems can increase existing
predominances and, overall, shift music consumption towards spe-
cific countries at the expense of local content. The authors answered
this question positively, explaining that the influence is uneven and
algorithm-dependent. Their experiments suggest that NeuMF [24],
a neural network-based collaborative filtering algorithm, recom-
mends lower proportions of local music than what Last.fm users
in each country organically listen to. In other words, NeuMF ex-
hibits a negative BiasMRS𝐾 local bias, as computed in Equation (4).
Conversely, the more traditional ItemKNN [12] method tends to
promote the consumption of local music in most countries, i.e., it is
associated with a positive BiasMRS𝐾 local music bias.

2.2.3 Limitations of Lesota et al. [31] and Motivations of our Work.
This study undoubtedly raises important issues regarding the un-
even impact of recommender systems on local music representation.
It positions itself within a growing body of scientific research focus-
ing on the fairness of music recommender systems and their biases,
not only regarding local music but also other aspects, including
gender and music genres [14, 15, 17, 18, 30, 40].

Nonetheless, we believe this study also suffers from limitations
that motivate our work. From an algorithmic perspective, the au-
thors investigated biases using a single number of recommended
tracks, 𝐾 = 10. The effect of varying 𝐾 , i.e., allowing their systems
to recommend different numbers of tracks, on the magnitude or
even the direction of biases is unclear. Additionally, systems like the
neural network-based NeuMF include randomness in training [24],
yet the robustness of the study’s conclusions to this randomness
remains unverified. Thirdly, their systems were trained on all users,
but using data solely from users of each specific country might alter
the findings. Bauer and Schedl [3, 4], for instance, suggest distin-
guishing between country-specific and global mainstreamness to
ensure a realistic representation of musical preferences in different
countries and promote less biased recommendations.

Beyond these algorithmic considerations, replicating this study
with a different dataset is also worthwhile. Indeed, Last.fm users
tend to be active on the internet and social media and are not
evenly distributed across countries [37]. Therefore, they might
not reflect the diverse audience of music streaming services. Fur-
thermore, Lesota et al. [31] relied on MusicBrainz, an open music
encyclopedia [16], to associate artists with country labels. How-
ever, MusicBrainz labels may not only be imprecise but are also

5The entire LFM-2b dataset includes approximately 2 billion listening events over
15 years from about 120 000 users. Lesota et al. [31] analyzed a subset of 14 million
interactions from 2018 and 2019, involving 13 000 users in 20 countries selected for
having at least 100 users and artists who had collectively created at least 1 000 tracks.

missing for some LFM-2b tracks, which were simply excluded by
Lesota et al. [31]. Zanger et al. [44] suggest that this exclusion
could lead to measurement errors due to label biases. Indeed, less
popular artists or those from locations or genres unrepresented
among MusicBrainz human annotators might lack more labels6,
leading to a distorted representation of local music in some coun-
tries. These factors raise the question of whether the findings of
Lesota et al. [31] would remain valid with actual listening data from
a music streaming service, or by using alternative labeling sources.
The remainder of this paper will aim to clarify these aspects.

3 COMPARING LFM-2B TO DEEZER DATA
In this section, we present our dataset of listening events from
Deezer and subsequently provide a comparative analysis with LFM-
2b.

3.1 The Deezer Dataset
3.1.1 Overview. We examine a proprietary dataset from the global
music streaming service Deezer, comprising the listening history
of 30 000 randomly selected users on this platform in March 2019.
The dataset features an equal distribution of users from the three
countries of our study – France, Germany, and Brazil – with 10 000
users from each. It includes approximately 4 million streams across
over 565 000 distinct music tracks. To maintain consistency with
Lesota et al. [31], we did not filter listening events by streaming
context. As a result, the dataset includes both organic streams and
recommendations, which we later discuss in Section 4.

3.1.2 Local Music Labeling. The country of each user is determined
based on their IP address. Determining an artist’s country may
sometimes be ambiguous, for example in the case of artists born
in a country but who gained fame in another one. To capture this
complexity, we consider three different country labels in our work:

• Our dataset includes the main country of activity and country
of origin of each artist, as provided by Deezer when available,
and compiled by this service from public and private sources.

• Moreover, we added the publicly accessible country labels
from the MusicBrainz open music encyclopedia [16] when
available. We recall that these labels were the ones used by
Lesota et al. [31] in their original study on LFM-2b.

3.2 Descriptive Analysis
We now provide a descriptive analysis of our Deezer dataset. We
compare it to the subset of LFM-2b7 of Lesota et al. [31] and addi-
tionally restrict this subset to the three countries of interest in this
study. The sample contains 254 users from France, 805 users from
Germany, and 1064 users from Brazil, for a total of over 3 million
listening events in 2018 and 2019, on around 100 000 music tracks.

3.2.1 LFM-2b vs Deezer. Overall, we observe that Deezer and LFM-
2b exhibit quite different patterns of local music consumption.

First of all, by plotting the proportion of local streams in both
datasets, using MusicBrainz labels and considering only labeled
6As an illustration, Jul, a French rapper, has no music genre annotation in MusicBrainz,
despite being one of the most-streamed artists on Deezer in France during 2018 and
2019.
7We use data kindly provided by the authors via private email communications.
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Figure 1: Proportion of local streams by country, according
to the LFM-2b and Deezer datasets. All values are computed
using MusicBrainz labels, by considering labeled tracks only.

Table 1: Top 10 most streamed music tracks by French users,
in the LFM-2b (top) andDeezer (bottom) datasets. All reported
country labels originate from MusicBrainz.

Dataset Artist/Band Title Country
Label

Singing
Language

Release
Year

Music
Genre

LFM-2b

Portishead Glory Box GB EN 1994 Trip Hop
Radiohead Karma Police GB EN 1997 Alt. Rock
The Verve Bitter Sweet Sym. GB EN 1997 Alt. Rock

Franz Ferdinand Take Me Out GB EN 2004 Indie Rock
a-ha Take On Me NL EN 1985 Synth Pop

Angèle Balance ton quoi BE FR 2018 Pop
The xx Intro GB EN 2009 Trip Hop

4 Non Blondes What’s Up? US EN 1993 Alt. Rock
Metronomy The Look GB EN 2010 Indie Rock
Wax Tailor Que Sera FR EN 2004 Trip Hop

Deezer

Ninho Goutte d’eau FR FR 2019 Rap
Angèle Tout oublier BE FR 2018 Pop

Lady Gaga Shallow US EN 2018 Folk Pop
Lomepal Trop beau FR FR 2018 Rap/Pop

David Guetta Say My Name FR EN 2018 EDM
Ariana Grande 7 rings US EN 2019 Pop

Alonzo Assurance vie FR FR 2019 Rap
DJ Snake Taki Taki FR EN 2018 EDM
Kaaris Gun salute FR FR 2019 Rap
Booba PGP FR FR 2019 Rap

tracks in both cases (Figure 1), we observe a significantly lower
rate of local music in the LFM-2b dataset. For Brazil, for instance,
LFM-2b exhibits 2.5 times fewer local streams compared to Deezer.
Moreover, we report in the first two columns of Figure 2 histograms
of the percentage of local streams per user, here again using Mu-
sicBrainz labels.We note that the distributions are different between
the two datasets. In the Deezer dataset, across all three countries,
users exhibit varying patterns: some do not listen to local music at
all, while others listen to local music only, with a large spectrum
of behaviors in between. Conversely, the LFM-2b dataset shows a
stark contrast, with few users listening to a majority of local music.

To go further, we present in Table 1 the top 10 most streamed
music tracks in France, in both datasets. The Deezer dataset not
only contains a higher proportion of French music (both in terms
of artists and lyrics), but also predominantly features recent re-
leases, from the year prior to, or the same year as the streams.
The prevalent genres include pop, rap, and electronic music. On

Table 2: Percentages of (i) labeled streams, (ii) local streams
(among the labeled streams) and (iii) local streams (among all
streams) in the Deezer dataset, by country and label source.
A labeled stream corresponds to a stream of a music track
associatedwith a country label. A local stream corresponds to
a stream where the user and the artist have the same country
label.

Country Label Source Labeled
Streams

Local Streams
Among Labeled

Local Streams
Among All

France
Deezer - Activity 76 % 50 % 38 %
Deezer - Origin 75 % 34 % 26 %
MusicBrainz 76 % 38 % 29 %

Germany
Deezer - Activity 60 % 40 % 24 %
Deezer - Origin 62 % 30 % 18 %
MusicBrainz 69 % 33 % 23 %

Brazil
Deezer - Activity 41 % 48 % 19 %
Deezer - Origin 36 % 37 % 13 %
MusicBrainz 38 % 38 % 14 %

the contrary, the top tracks in the LFM-2b dataset predominantly
consist of older releases (dating back one or more decades) with
English lyrics and genres such as indie, alternative rock, or trip
hop, which are more niche. These differences can be attributed
to several characteristics of the Last.fm website, upon which the
LFM-2b dataset is built [37]. Firstly, Last.fm caters primarily to
music enthusiasts who have a strong inclination towards collect-
ing and organizing their music libraries, potentially resulting in a
preference for less mainstream music genres. Secondly, this web-
site’s users are predominantly English-speaking persons, which
introduces a population bias. While the Deezer dataset may appear
to be more reflective of realistic music consumption patterns, it is
important to acknowledge the possibility of similar biases existing
within it, as well as in data from other streaming services. Hence,
it is crucial to proceed with caution when asserting the presence of
cultural patterns based on such data. Using multiple data sources
for cross-validation becomes imperative to ensure the reliability
and accuracy of conclusions.

3.2.2 Impact of Label Sources. Table 2 presents the proportions
of labeled streams and local streams (among the labeled ones, and
among all streams) in the Deezer dataset, according to the three
label sources, i.e., Deezer’s country of origin and country of ac-
tivity, as well as MusicBrainz labels. We observe that none of the
labeling sources provides complete coverage. Across the three coun-
tries considered, between 64% and 24% of the streams remain un-
labeled. Streams in different countries exhibit varying levels of
label coverage. For example, the artist’s country is identified in
75-76% of streams by French users, depending on the label source,
while for streams from Brazil, this coverage drops to only 36-41%.
Label coverage varies by country depending on the source. For
instance, Deezer’s activity labels provide the highest coverage for
streams from Brazil, but they offer the least coverage for streams
from Germany. Furthermore, the proportions of local consumption
strongly vary depending on the label source. For instance, consider-
ing only labeled streams, only 38% of French users’ streams consist
of French tracks according to MusicBrainz labels, whereas Deezer’s
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Figure 2: Histograms of the proportion of local streams per user (considering labeled tracks only). Results are split by dataset
(i.e., LFM-2b or Deezer), country (i.e., France, Germany, or Brazil), and labeling source (i.e., MusicBrainz labels, Deezer’s country
of activity, or Deezer’s country of origin).

activity labels indicate 50%. This difference is notable given that
both sources have identical label coverage rates for French streams.
Due to incomplete labeling, there’s a significant difference between
the proportions of local streams among labeled streams versus all
streams. Calculating local streams based solely on labeled data can
suggest higher local consumption than what is actually observed
across all streams. Moreover, these values aren’t proportional; for
instance, when considering only labeled streams, France and Brazil
vie for the title of the largest local consumer (depending on the label
source). However, when all streams are taken into account, Brazil
exhibits the lowest local consumption by a substantial margin.

In summary, obtaining a complete and universally unquestion-
able labeling of local music proves to be a challenging task. Overall,
we advocate against simply filtering out unlabeled tracks, as done
in the reference study [31]. Indeed, such an approach may result
in removing a majority of the streams from the study, potentially
undermining the validity of the study’s conclusion. As outlined
in Section 2.2.3, this filtering operation can also introduce label

biases [44], when annotators exhibit preferences for specific coun-
tries, music genres, or languages during the annotation process.
The extent to which these discrepancies between labels result in in-
consistencies regarding the measurement of local music algorithmic
biases will be analyzed in Section 4.

4 EXPERIMENTAL ANALYSIS OF LOCAL
MUSIC RECOMMENDATION AND BIASES

In this section, we now present our empirical analysis of local music
recommendation and biases on the LFM-2b and Deezer datasets.
We start by describing the experimental setting. Then, we report
and discuss our findings. Notably, we compare them with the main
conclusions of the original study of Lesota et al. [31].

4.1 Experimental Setting
4.1.1 Models. Weexamine the same two collaborative filtering [28]
recommender systems analyzed in the reference study:

• NeuMF [24] is a deep learning-based recommender system
that integrates traditional matrix factorization (MF) [28] with
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neural networks [21]. NeuMF first learns embedding vector
representations of users and music tracks in the same vector
space where proximity reflects similarity, by factorizing a
user-track interaction matrix. These embeddings are then
processed by a deep neural network architecture trained to
predict the most relevant tracks to recommend to each user.

• ItemKNN [12] is a more traditional recommender system
based on the nearest neighbor approach [28]. For each user, it
assigns similarity scores to tracks by evaluating how similar
these tracks are to those the user has previously listened
to. This similarity is determined in a collaborative filtering
fashion, by analyzing the interactions of other users. When
recommending a set of 𝐾 tracks, ItemKNN selects the top 𝐾
neighbors with the highest similarity scores. Unlike NeuMF,
ItemKNN operates directly on the user-track interaction
matrix and does not learn embedding representations.

Lesota et al. [31] trained their ItemKNN and NeuMF models
using the entire LFM-2b dataset, including users from all countries.
In contrast, our study not only trains these models on the complete
LFM-2b and Deezer datasets but also considers country-specific
variants. We developed these variants by using only listening data
from users within the same country – a realistic setting for a global
music streaming service. For instance, to recommend music to a
Deezer French user, we would employ the ItemKNN or NeuMF
variant trained on Deezer’s listening data from French users.

4.1.2 Task and Implementation Details. For both datasets, we train
all models on a top 10 track recommendation task, evaluated us-
ing mean reciprocal rank (MRR@10) scores [45] computed on a
validation set of 10% randomly selected users, masked during the
training phase. Afterwards, we compute the local biases BiasMRS𝐾 ,
as defined in Equation (4), for each model in each country, averaged
across all users in that country8. While in the reference study [31],
the authors only reported results for a single number of recom-
mended tracks (𝐾 = 10), here we consider the more general case of
a varying𝐾 , with𝐾 ranging from 10 to 100 with a step of five tracks.

As in the reference study, we use the implementation of ItemKNN
and NeuMF available in RecBole [46], a Python library based on Py-
Torch [36] that aims to provide a unified framework for developing
and reproducing recommendation algorithms. For ItemKNN, we re-
trieve nearest neighbors to recommend by using cosine similarities
computed from the user-track train interaction matrix, with a null
value for the shrink parameter [35]. We train all NeuMF models for
a maximum of 300 epochs using the Adam optimizer [27], with a
learning rate of 0.001, batch sizes of 512 items, a dropout rate of
0.1 [41], andminimizing a binary cross-entropy loss [24]. All NeuMF
models learn embedding vectors of dimension 64. For interested
readers, we provide exhaustive information on each layer of every
neural network in our public GitHub repository (see Section 4.3).

4.2 Results and Discussion
4.2.1 Results on LFM-2b. We begin our analysis with the results
obtained on the LFM-2b public dataset. We report in Figure 3 the

8We note that one might alternatively compute biases using only users from a test set.
However, reporting biases for all users not only aligns with the evaluation protocol
of Lesota et al. [31], but also reflects the practical goal of music streaming services,
which would typically aim to address local biases across their entire user base.

local music algorithmic biases of ItemKNN and NeuMF on LFM-
2b with MusicBrainz labels, averaged over 20 model runs with
standard deviations to assess variability in the training process.
Results are split by training variant, i.e., global or country-specific.
In particular, Figure 3(a) reports results for the global ItemKNN
and NeuMF variants trained on users from all countries, which
matches the specific setting of Lesota et al. [31] (with 𝐾 = 10 only
in their study). Overall, we reproduce results comparable to those
of the original study in this specific setting. NeuMF recommends
lower proportions of local music than what users from France,
Germany, and Brazil listen to, unveiling negative algorithmic biases.
In contrast, ItemKNN tends to foster the consumption of local music
in Brazil and Germany, while displaying a negative but relatively
small bias in France. Our results are consistent when modifying
the number 𝐾 of recommended tracks.

However, Figure 3(b) reveals that the results change drastically
when training ItemKNN and NeuMF in a country-specific fashion,
i.e., using data from LFM-2b but selecting users of a single country
only, instead of all users. For instance, for 𝐾 = 10, NeuMF now
shows a positive bias in Germany, while ItemKNN shows a negative
bias in Brazil. Interestingly, increasing the number of recommended
tracks 𝐾 can also reverse the bias direction. For example, NeuMF
exhibits a negative bias for 𝐾 ∈ {10, . . . , 45} but a positive bias for
𝐾 ∈ {50, . . . , 100}. This observation highlights the importance of
testing different values of 𝐾 to draw robust conclusions about the
potential biases of each recommender system against local music.
Lastly, Figure 3(b) underlines the importance of accounting for
variability in the training process, particularly for NeuMF, which
shows large ±1 standard deviation intervals (this variability primar-
ily stems from randomness in the initialization of neural weights,
dropout components, and the use of different training splits for each
model run). As an illustration, in France and for 𝐾 = 10, NeuMF’s
interval overlaps with the “No bias” horizontal dotted line. This em-
phasizes that NeuMF has shown both positive and negative biases
in our experiments, depending on each training instance.

4.2.2 Results on Deezer. We now compare these results with those
obtained using the proprietary Deezer dataset, which contains
streams from users of the music streaming service Deezer. Fig-
ure 4 presents the local music algorithmic biases of ItemKNN and
NeuMF on this dataset. Once again, all biases are averaged over 20
model runs with standard deviations. Results are categorized by
training variant (i.e., global or country-specific) and label source
(i.e., MusicBrainz labels, Deezer’s country of activity, or Deezer’s
country of origin). We begin our discussion with an inspection
of Figure 4(a), which displays results for the global ItemKNN and
NeuMF variants using MusicBrainz labels. This setting is consis-
tent with the one used in the reference study [31] and our earlier
Figure 3(a), but applied to the Deezer dataset instead of LFM-2b.
We observe that the algorithmic biases exhibited by ItemKNN and
NeuMF on LFM-2B vary significantly on Deezer. At 𝐾 = 10, for
instance, all models are associated with a positive average bias
value, contrary to previous results from Figure 3(a) and Lesota et
al. [31] on LFM-2b. We also notice that biases tend to be of higher
magnitude on Deezer users. These apparent discrepancies tend to
reinforce our discussion from Section 3, highlighting the need for
caution when drawing conclusions based solely on one dataset like
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Figure 3: Local music algorithmic biases of ItemKNN and NeuMF on LFM-2b users in France, Germany, and Brazil, computed for
numbers of recommended tracks 𝐾 varying from 10 to 100 with a step of 5 tracks. Results are split by training variant (“Global”
models are trained using listening data from users of all countries, while “Local” models are trained using only listening data
from users of the same country). All values are averaged over 20 model runs and reported with ± 1 standard deviation intervals.
Values above (respectively, under) the “No bias” 0-level horizontal dotted line indicate that the model exhibits a positive (resp.,
a negative) algorithmic bias towards local music.

LFM-2b. While this public dataset serves as a convenient starting
point for researchers, the observed biases may not be consistent
across different datasets with varying listening patterns.

Figure 4(b) reports comparable experiments using our local vari-
ants of ItemKNN and NeuMF with MusicBrainz labels. Below, Fig-
ure 4(c) and Figure 4(d) present results for global and local models,
respectively, but using Deezer’s country of activity labels instead of
MusicBrainz labels. Finally, Figure 4(e) and Figure 4(f) show results
for global and local models, respectively, but using Deezer’s country
of origin. Overall, these figures confirm our previous insights from
Section 4.2.1. Training models with data coming from one country
only can significantly alter local music biases in both magnitude
and direction. Additionally, changing the number of recommended
music tracks 𝐾 and using different user splits or weight initializa-
tions can also affect these biases. While these algorithmic factors
were not examined in the original work [31], our experiments reveal
that they can change the global picture and the study’s conclusion.
Properly accounting for these factors is, therefore, crucial to ensure
a robust and reliable analysis of local music algorithmic biases.

Figure 4 also highlights that changing the label sources can also
substantially affect conclusions. Section 3 had already uncovered
that the proportions of local music consumed by users may strongly
depend on the label source. Figure 4 further demonstrates that this
variation leads to inconsistencies in the measurement of local mu-
sic algorithmic biases. For instance, the global and local NeuMF
models are consistently associated with a negative bias in Germany
when relying upon the (country of) “Activity” label (Figure 4(c) and
Figure 4(d)), but on the opposite they are associated with a positive
bias when using the (country of) “Origin” label (Figure 4(e) and
Figure 4(f)). While changing the label source drastically impacts the
results, we acknowledge that, nonetheless, some findings remain ro-
bust to these changes. For example, Brazil is consistently associated
with the highest positive biases across almost all settings in Figure 4.
We hypothesize that this consistent behavior may be due to the
higher number of Brazilian Deezer users who listen exclusively

or almost exclusively to local music, according to all three label
sources (see Figure 2). This aspect might be reflected in our models,
although further analysis would be required for confirmation.

4.2.3 Limitations and Future Work. In concluding our discussion,
we acknowledge some limitations of our experimental analysis,
which also offer opportunities for future research. Firstly, as ex-
plained in Section 3.1.1, our Deezer dataset includes both organic
streams and recommended streams, to maintain consistency with
the original study. However, focusing solely on organic streams
for model training could be worthwhile. As Lesota et al. [31] have
also pointed out, incorporating recommended tracks may distort
the model’s insights about user preferences. Examining the impact
of this adjustment on biases towards local music would be an in-
teresting avenue for further investigation. Secondly, Villermet et
al. [43] showed that users are very different when it comes to their
use of the different features offered by streaming platforms – in-
cluding algorithmic recommendation – and that only a minority of
them primarily relies on algorithmic recommendation to select the
music they listened to on streaming platforms. Thus, reproducing
the experiment by considering only users who interact with mu-
sic recommender systems to a certain degree could provide more
relevant findings. Thirdly, while we used a specific definition of
bias, its perception might actually be subjective, and individual user
interviews may be useful to gain additional insights.

At first glance, one might also want to analyze the local mu-
sic algorithmic biases of numerous other recommender systems,
beyond ItemKNN and NeuMF. However, we believe that a more
crucial preliminary step for future work will be to improve the
accuracy of local music labels. Our study underscores the challenge
of accurately labeling local music, and demonstrates how variations
in label sources can substantially affect conclusions regarding local
music representation and recommendation. Conducting extensive
bias analyses on numerous recommender systems with the current
state of labeling – where no single label source covers more than
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Figure 4: Local music algorithmic biases of ItemKNN and NeuMF on Deezer users in France, Germany, and Brazil, computed for
numbers of recommended tracks 𝐾 varying from 10 to 100 with a step of 5 tracks. Results are split by training variant (“Global”
models are trained against listening data from users of all countries, while “Local” models are trained using only listening data
from users of the same country), and by label source (i.e., MusicBrainz labels, Deezer’s country of activity, or Deezer’s country
of origin). All values are averaged over 20 model runs and reported with ± 1 standard deviation intervals. Values above (resp.
under) the “No bias” 0-level dotted line indicate that the model exhibits a positive (resp. negative) algorithmic bias.

80% of streams, and where labels reflect biases from human annota-
tors [44] – could prove fruitless. Indeed, results obtained from mis-
leading labels could render such analyses unreliable. Consequently,
we recommend prioritizing the development of comprehensive and
reliable local data labeling in future research. We believe that cross-
referencing assumptions across multiple labels remains one of the
most reliable practices towards achieving this goal.

4.3 Open-Source Code and Data Release
Along with this paper we release two important resources. Firstly,
an anonymized version of our Deezer proprietary dataset, contain-
ing 4 million listening events from 30 000 Deezer users in France,
Germany, and Brazil, along with all three local music labels from
our work9. The release of this industrial dataset aims to foster future
research activities on music recommender systems and local music
consumption analysis. In addition, we are open-sourcing the entire
Python source code of our experimental analysis, to ensure the
9Dataset available at https://zenodo.org/records/13309698.
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reproducibility of our results. All materials are publicly available
on GitHub 10.

5 CONCLUSION
In conclusion, although LFM-2b [37] is publicly available and serves
as a convenient starting point for researchers inspecting music
recommender systems, caution should be exercised when drawing
conclusions about local music consumption based solely on this
dataset. Our paper has emphasized significant differences in local
music consumption patterns between LFM-2b and a proprietary
dataset comprising the listening history of French, German, and
Brazilian users of the music streaming service Deezer.

By replicating Lesota et al. [31]’s investigation of algorithmic
biases in recommender systems for local music, we have also demon-
strated that the two collaborative filtering models they analyzed,
NeuMF [24] and ItemKNN [12], display varying biases on Deezer
compared to LFM-2b. Moreover, we have identified several factors
related to model training that had not been examined in this pre-
vious work and can significantly influence these biases, thereby
modifying the study’s overall conclusions.

Importantly, we have also explained that the proportion of local
music consumed and recommended can vary significantly depend-
ing on the label source under consideration, its level of complete-
ness, and biases introduced by human annotators [44]. While ob-
taining complete and universally accepted local music labels proves
to be challenging, we have nonetheless recommended to prioritize
the research in this direction. We have argued that this foundational
labeling step is crucial for studies aiming to understand local music
biases, as results based on unreliable labels may be misleading.

Overall, our work highlights the importance of using multiple
model settings and data sources for cross-validation, and to ensure
robust conclusions regarding the biases of music recommender
systems – not only for local music but also potentially for other
aspects such as gender and music genres. As a consequence, we
have decided to publicly release our Deezer dataset along with this
paper, including listening logs and labels from all three sources
used in our experiments. We hope that this release of industrial
resources will foster further research. As discussed in Section 4.2.3,
our results come with certain limitations that open up interesting
avenues for future analyses. Investigating these future directions
would undoubtedly contribute to better measuring and enhancing
the fairness of recommender systems on music streaming services.

FUNDING INFORMATION
This paper has been realized in the framework of the ’RECORDS’
grant (ANR-2019-CE38-0013) funded by the ANR (French National
Agency of Research).

REFERENCES
[1] Peter Achterberg, Johan Heilbron, Dick Houtman, and Stef Aupers. 2011. A

Cultural Globalization of Popular Music? American, Dutch, French, and German
Popular Music Charts (1965 to 2006). American Behavioral Scientist 55, 5 (2011),
589–608.

[2] Christine Bauer, Marta Kholodylo, and Christine Strauss. 2017. Music Recom-
mender Systems Challenges and Opportunities for Non-Superstar Artists. In
Proceedings of the 30th Bled eConference. 21–32.

10Code available at https://github.com/kmatrosova/FairnessRecsys2024

[3] Christine Bauer and Markus Schedl. 2018. On the Importance of Considering
Country-Specific Aspects on the Online-Market: an Example of Music Recom-
mendation Considering Country-Specific Mainstream. In Proceedings of the 51st
Hawaii International Conference on System Sciences. 3647–3656.

[4] Christine Bauer and Markus Schedl. 2019. Global and Country-Specific Main-
streaminess Measures: Definitions, Analysis, and Usage for Improving Personal-
ized Music Recommendation Systems. PloS One 14, 6 (2019), e0217389.

[5] Pablo Bello and David Garcia. 2021. Cultural Divergence in Popular Music:
the Increasing Diversity of Music Consumption on Spotify across Countries.
Humanities and Social Sciences Communications 8, 1 (2021), 1–8.

[6] Walid Bendada, Théo Bontempelli, Mathieu Morlon, Benjamin Chapus, Thibault
Cador, Thomas Bouabça, and Guillaume Salha-Galvan. 2023. Track Mix Genera-
tion on Music Streaming Services using Transformers. In Proceedings of the 17th
ACM Conference on Recommender Systems. 112–115.

[7] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
2013. Recommender Systems Survey. Knowledge-Based Systems 46 (2013), 109–
132.

[8] Léa Briand, Théo Bontempelli, Walid Bendada, Mathieu Morlon, François Rigaud,
Benjamin Chapus, Thomas Bouabça, and Guillaume Salha-Galvan. 2024. Let’s Get
It Started: Fostering the Discoverability of New Releases on Deezer. In Proceedings
of the 46th European Conference on Information Retrieval. Springer, 286–291.

[9] Léa Briand, Guillaume Salha-Galvan, Walid Bendada, Mathieu Morlon, and Viet-
Anh Tran. 2021. A Semi-Personalized System for User Cold Start Recommendation
on Music Streaming Apps. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2601–2609.

[10] Manuel Castells. 2011. The Power of Identity. John Wiley & Sons.
[11] Diana Crane. 2014. Cultural Globalization and the Dominance of the American

Film Industry: Cultural Policies, National Film Industries, and Transnational Film.
International Journal of Cultural Policy 20, 4 (2014), 365–382.

[12] Mukund Deshpande and George Karypis. 2004. Item-Based Top-N Recommenda-
tion Algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004),
143–177.

[13] Karlijn Dinnissen. 2022. Improving Fairness and Transparency for Artists in
Music Recommender Systems. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 3498–3498.

[14] Karlijn Dinnissen and Christine Bauer. 2022. Fairness in Music Recommender
Systems: A Stakeholder-Centered Mini Review. Frontiers in Big Data 5 (2022),
913608.

[15] Bora Edizel, Francesco Bonchi, Sara Hajian, André Panisson, and Tamir Tassa.
2020. FaiRecSys: Mitigating Algorithmic Bias in Recommender Systems. Interna-
tional Journal of Data Science and Analytics 9 (2020), 197–213.

[16] MusicBrainz: The Open Music Encyclopedia. 2024. https://musicbrainz.org/.
[17] Andres Ferraro. 2019. Music Cold-Start and Long-Tail Recommendation: Bias in

Deep Representations. In Proceedings of the 13th ACMConference on Recommender
Systems. 586–590.

[18] Andres Ferraro, Dmitry Bogdanov, Xavier Serra, and Jason Yoon. 2019. Artist and
Style Exposure Bias in Collaborative Filtering Based Music Recommendations.
In ISMIR 2019 Workshop on Designing Human-Centric MIR Systems.

[19] Andres Ferraro, Peter Knees, Massimo Quadrana, Tao Ye, and Fabien Gouyon.
2023. MuRS: Music Recommender Systems Workshop. In Proceedings of the 17th
ACM Conference on Recommender Systems. 1227–1230.

[20] Michael Fuhr. 2015. Globalization and Popular Music in South Korea: Sounding
Out K-Pop. Routledge.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT.
[22] Sara Hajian, Francesco Bonchi, and Carlos Castillo. 2016. Algorithmic Bias: From

Discrimination Discovery to Fairness-Aware Data Mining. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2125–2126.

[23] Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost,
Federico Tomasi, and Mounia Lalmas. 2020. Contextual and Sequential User
Embeddings for Large-Scale Music Recommendation. In Proceedings of the 14th
ACM Conference on Recommender Systems. 53–62.

[24] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[25] R Scott Hiller and Jason M Walter. 2017. The Rise of Streaming Music and
Implications for Music Production. Review of Network Economics 16, 4 (2017),
351–385.

[26] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon.
2016. Music Personalization at Spotify. Proceedings of the 10th ACM Conference
on Recommender Systems, 373–373.

[27] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference on Learning Represen-
tations.

[28] Yehuda Koren and Robert Bell. 2015. Advances in Collaborative Filtering. Rec-
ommender Systems Handbook (2015), 77–118.

[29] Dominik Kowald, Markus Schedl, and Elisabeth Lex. 2020. The Unfairness of Pop-
ularity Bias in Music Recommendation: A Reproducibility Study. In Proceedings



RecSys ’24, October 14–18, 2024, Bari, Italy Matrosova, et al.

of the 42nd European Conference on Information Retrieval. Springer, 35–42.
[30] Oleg Lesota, Alessandro Melchiorre, Navid Rekabsaz, Stefan Brandl, Dominik

Kowald, Elisabeth Lex, and Markus Schedl. 2021. Analyzing Item Popularity Bias
of Music Recommender Systems: are Different Genders Equally Affected?. In
Proceedings of the 15th ACM Conference on Recommender Systems. 601–606.

[31] Oleg Lesota, Emilia Parada-Cabaleiro, Stefan Brandl, Elisabeth Lex, Navid Rekab-
saz, and Markus Schedl. 2022. Traces of Globalization in Online Music Consump-
tion Patterns and Results of Recommendation Algorithms. In Proceedings of the
23rd International Society for Music Information Retrieval Conference. 291–297.

[32] Yang Li, Kangbo Liu, Ranjan Satapathy, Suhang Wang, and Erik Cambria. 2024.
Recent Developments in Recommender Systems: A Survey. IEEE Computational
Intelligence Magazine 19, 2 (2024), 78–95.

[33] David Morley. 2006. Globalisation and Cultural Imperialism Reconsidered. Rout-
ledge, London and New York.

[34] International Federation of the Phonographic Industry. 2023. Engaging with
Music. IFPI Technical Report.

[35] ItemKNN Page on RecBole Documentation. 2024. https://recbole.io/docs/user_
guide/model/general/itemknn.html.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32 (2019).

[37] Markus Schedl, Stefan Brandl, Oleg Lesota, Emilia Parada-Cabaleiro, David Penz,
and Navid Rekabsaz. 2022. LFM-2b: A Dataset of Enriched Music Listening Events
for Recommender Systems Research and Fairness Analysis. In Proceedings of the
2022 Conference on Human Information Interaction and Retrieval. 337–341.

[38] Markus Schedl, Peter Knees, BrianMcFee, and Dmitry Bogdanov. 2021. Music Rec-
ommendation Systems: Techniques, Use Cases, and Challenges. In Recommender

Systems Handbook. Springer, 927–971.
[39] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi

Elahi. 2018. Current Challenges and Visions in Music Recommender Systems
Research. International Journal of Multimedia Information Retrieval 7, 2 (2018),
95–116.

[40] Dougal Shakespeare, Lorenzo Porcaro, Emilia Gómez, and Carlos Castillo. 2020.
Exploring Artist Gender Bias in Music Recommendation. In RecSys 2020Workshop
on the Impact of Recommender Systems.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[42] John Tomlinson. 2001. Cultural Imperialism: A Critical Introduction. A&C Black.
[43] Quentin Villermet, Jérémie Poiroux, Manuel Moussallam, Thomas Louail, and

Camille Roth. 2021. Follow the Guides: Disentangling Human and Algorithmic
Curation inOnlineMusic Consumption. In Proceedings of the 15th ACMConference
on Recommender Systems. 380–389.

[44] Michael Zanger-Tishler, Julian Nyarko, and Sharad Goel. 2024. Risk Scores,
Label Bias, and Everything but the Kitchen Sink. Science Advances 10, 13 (2024),
eadi8411.

[45] Eva Zangerle and Christine Bauer. 2022. Evaluating Recommender Systems:
Survey and Framework. ACM Computing Surveys 55, 8 (2022), 1–38.

[46] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,
Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. 2021. RecBole: Towards
a Unified, Comprehensive and Efficient Framework for Recommendation Algo-
rithms. In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management. 4653–4664.



Conclusion

Summary

In this thesis, we have explored some challenges related to the modeling and in-
fluencing of musical preferences through the lens of music streaming platforms.
Our investigation spanned from understanding the nature of music streaming
data to developing novel methods for quantifying musical taste and assessing
the impact of recommendation algorithms. The work presented across the chap-
ters of this thesis collectively addresses the complexity of these tasks and con-
tributes to the broader understanding of how music preferences are shaped and
can be analyzed in the digital age.

We began by examining the unique characteristics of music streaming data.
This chapter focused on the inherent challenges of working with such data, in-
cluding issues like missing information, the long-tail distribution of music con-
sumption, and the complexities in interpreting user behavior. Understanding
these challenges is crucial as they directly impact the design and effectiveness
of computational methods used in subsequent analyses.

Moving further, we took interest in the interdisciplinary approaches to un-
derstanding musical taste. We examined sociological, psychological, cultur-
ological theories and computational models, highlighting the complexities in
quantifying such a subjective and culturally nuanced concept as musical taste.
This chapter set the stage for my own work by underscoring the limitations of
current methods in capturing the richness of individual musical preferences.

Additionally, we reviewed existing methodologies for categorizing and rep-
resenting music within computational frameworks. We explored how music is
labeled and the different techniques used to measure similarity between music
items. These representations are foundational for any subsequent analysis of
musical preferences, as they shape how music is understood and processed by
algorithms.

We then went through a technical overview of MRSs, and discussed the core
challenges these systems face. These include the cold start problem, context
awareness, balancing familiarity with discovery, and ensuring fairness towards
different stakeholders. This review underscored the importance of how musical
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data and preferences are modeled, as these factors significantly influence the
performance and biases of RSs. This chapter also set the stage for my own
work by highlighting the limitations and biases that can arise in these systems,
particularly in relation to how they influence and reflect musical preferences.

Finally, we went through my original contributions to the field. First, we
introduced a novel approach to modeling musical taste through the concept
of ’musical taste fingerprint’ — a method to quantify and capture an individ-
ual’s musical preferences using data from a music streaming platform. This
research tackled two contrasting perspectives on musical taste: one that em-
phasizes uniqueness, where a fingerprint is defined by the items that uniquely
identify an individual, and another that focuses on representativeness, summa-
rizing the breadth of a user’s preferences in a way that can be leveraged for rec-
ommendation. Through extensive experimentation, we demonstrated that these
two perspectives often lead to conflicting solutions, underscoring the complex-
ity of accurately modeling musical taste. The findings also revealed significant
privacy implications, as users could be uniquely identified by only a small set of
preferences, raising important questions about data privacy on streaming plat-
forms. This work highlighted the importance of explicitly acknowledging the
objectives when defining and computing musical taste in computational set-
tings, providing a foundational method for future work in both personalized
recommendations and privacy-preserving systems.

The second major contribution of this thesis involved exploring the influ-
ence of RSs on local music consumption, particularly examining how algo-
rithmic biases can shift music recommendations either towards or against lo-
cal content. By reproducing the findings of a prior study using both public and
proprietary datasets, it became clear that the impact of these biases varies sig-
nificantly depending on the dataset, model parameters, and labeling accuracy.
The analysis revealed discrepancies between different datasets and their associ-
ated sets of users, emphasizing the importance of using multiple data sources to
ensure robust conclusions. Additionally, the complexity of accurately labeling
music was underscored, as variations in labeling methods can lead to different
interpretations and outcomes. This work emphasizes the need for careful con-
sideration of algorithmic choices in RSs to support a fair and culturally diverse
music landscape.

Future work
In this thesis, we have addressed several important questions, but many others
remain unresolved. While our contributions have provided valuable insights,
there is still room for improvement, and they have also raised new questions
that warrant further investigation. Additionally, throughout this work, we have
touched upon numerous topics in the literature that, while relevant, could not
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be fully explored within the limited time frame of a PhD thesis. They however
represent potential areas for future exploration.

Toward an ideal musical taste fingerprint

In our study on musical taste fingerprints, we highlighted how different defini-
tions can lead to diverging solutions. While this analysis is insightful, it raises
a fundamental question: what constitutes the ’ideal’ fingerprint? Does such an
ideal exist, or is it context-dependent? A potential approach to answering this
would involve directly engaging users. For instance, users could be asked to
rate generated fingerprints based on their relevance, or create their own finger-
prints, which we could then analyze to understand the underlying patterns or
preferences. This user-driven approach could provide valuable insights into the
characteristics that make a fingerprint effective and pave the way for computa-
tional methods to replicate these characteristics.

Additionally, it would be beneficial to evaluate the performance of these
fingerprints in real-world recommendation scenarios. For example, could these
fingerprints help users transition seamlessly from one platform to another? Cur-
rently, most streaming platforms represent users as vectors within their own
distinct recommendation space, built from interaction histories and preferences.
As each platform develops its own approach to modeling user preferences, this
creates a barrier for users who wish to transfer their music profiles between ser-
vices. While some platforms now allow users to import favorite tracks or artists
from another service, this rarely provides the depth of personalization needed
for high-quality recommendations. Typically, users must rebuild their listen-
ing history on a new platform to receive accurate suggestions. Introducing a
universal musical taste fingerprint, independent of platform-specific algorithms,
could help resolve this issue. Such a fingerprint would be a standardized rep-
resentation of a user’s musical preferences that could be transferred between
platforms, allowing for a seamless experience across services. This could not
only improve the user experience by providing better recommendations immedi-
ately upon switching platforms but also enhance interoperability in the stream-
ing ecosystem.

Ensuring privacy in open-access datasets

While data anonymization was not the primary focus of this thesis, it emerged
as a critical area for further exploration, especially given the growing demand
within the research community for publicly available datasets.

Most datasets today originate from private streaming services, which face
significant challenges when it comes to data sharing. These companies are of-
ten particularly concerned about sharing data because of the financial stakes
involved; the data may reveal proprietary insights or compromise competitive
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advantages. Moreover, they have a responsibility to protect their users’ privacy,
which adds another layer of complexity to public research. To address these con-
cerns, future research should investigate advanced anonymization techniques
that balance the need for data utility with the protection of personal informa-
tion.

Differential privacy (DP), for instance, could be a valuable tool in this con-
text. By adding some noise to the data, or partially removing some users or
user-item interactions, DP allows for the sharing of useful aggregated informa-
tion without revealing specific user details, thereby protecting both the com-
pany’s proprietary knowledge and user privacy. An even more secure variation,
local differential privacy (LDP), introduces noise directly on each user’s data
locally before it is transferred to the server, offering stronger privacy guaran-
tees by ensuring that even the data collectors cannot reconstruct the original
data accurately. This makes LDP particularly useful for scenarios where highly
sensitive information is involved.

However, even when data is aggregated or pseudonymized (where identifi-
able details are replaced with fake identifiers) it may not fully guarantee privacy.
For example, membership inference attacks - a type of privacy breach where an
attacker attempts to determine whether a specific individual’s data is included in
a dataset - can re-identify individuals within an anonymized dataset. Troncoso
et al. (2020) demonstrated that aggregate location data is vulnerable to such at-
tacks because patterns in the data, such as frequent visits to certain locations or
unique movement behaviors, can still be linked back to specific individuals.

Another promising avenue is the use of generated data or synthetic models
that can replicate the characteristics of actual data without exposing sensitive
information. By training models on real data and then using these models to
generate synthetic datasets, researchers could have access to valuable insights
while ensuring that the original data remains secure. This approach could help
bridge the gap between the need for data sharing in public research and the pri-
vacy and commercial concerns of streaming services. Developing such privacy-
preserving methods is essential not only for fostering collaboration and innova-
tion within the field but also for ensuring that public research can access the data
necessary to drive advancements without compromising commercial interests or
user trust.

Addressing the lack of labels in music catalogs

One of the key challenges uncovered in this thesis is the significant lack of re-
liable spatial information associated with artists (such as country/region/city of
origin, city of ”residence”, history of tour locations, etc.) for artists, which poses
a fundamental problem for understanding the global music landscape. Without
accurate country information, it is difficult to answer simple questions, such as
estimate how many artists from different origins are represented in streaming
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platforms’ catalogs. This, in turn, means we cannot accurately assess the num-
ber of streams that artists from different countries receive. Consequently, we
are unable to study the importance of local music in various countries, making
it difficult to understand and support the cultural diversity and significance of lo-
cal music scenes globally. This labeling issue also directly impacts the fairness
of music recommendations. Without reliable data on artists’ origins, it becomes
impossible to measure whether local artists are being fairly represented in rec-
ommendations, both within their home countries and internationally. The lack
of accurate spatial information hinders our ability to analyze and improve RSs
to ensure they promote local music appropriately, or more generally are able to
add geographical ingredients in content recommendation. Associated features
could include the recommendation of local bands to a user when traveling, or
spatial operators in search for musical content.

There have been some efforts towards addressing these issues. For exam-
ple, the open music encyclopedia MusicBrainz offers a large-scale, community-
driven database of artist metadata, including artist origin. Wikidata1 provides
a more general-purpose, structured knowledge base that includes detailed geo-
graphical data on artists and can be cross-referenced with other datasets. Discogs2

contributes by providing an extensive user-curated database of discographies,
focusing on release and label information that can help trace music distribution
and cultural impact. Freesound3 emphasizes audio content and annotations, of-
fering metadata related to sound samples that could help in music classification
and analysis. Despite these varied approaches, significant gaps remain, particu-
larly for lesser-known artists.

To address these challenges, future work should focus on two main strate-
gies:

1. Crossing different information sources: A multi-source approach could
help mitigate the gaps in data that currently prevent us from understanding
local music consumption and recommendation fairness. By gathering data
from a variety of sources, we can cross-check and enrich the information
available, improving the accuracy of artist labeling.

2. Collective effort in labeling: Unfortunately, the artists who are least likely
to have accurate labels are often those who are less popular or come from
more ’niche’ countries. This means that even with additional datasets,
certain artists will likely continue to be underrepresented. To combat this,
a collective effort is needed to label as many artists as possible. Tech-
niques such as web scraping, lyrics language detection, and other auto-
mated methods could be employed to generate country labels where they
are missing. By systematically improving the coverage of artist country

1wikidata.org
2discogs.com
3freesound.org

https://www.wikidata.org/
https://www.discogs.com/
https://freesound.org/
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labels, we can better estimate the representation and consumption of local
music, ultimately leading to more equitable RSs.

In summary, enhancing the accuracy of artist labels is crucial for both un-
derstanding local music consumption patterns and ensuring fairness in music
recommendations. By addressing these data gaps, we can enable more compre-
hensive research and more equitable outcomes in music streaming in general.

Addressing diverse users’ expectations in music recommendations

All users may not have the same expectations from algorithmic recommenda-
tions: some might prefer to stay within their comfort zone, using algorithmically
generated playlists to listen to familiar songs and artists, with minimal interest
in discovery. Others might seek primarily discovery, not limited to similar mu-
sic to their usual preferences — similarly to the experience of exploring random
vinyls in a record store. It is likely that most users fall somewhere along a
spectrum between these two extremes.

Given this possible diversity in expectations, it seems unlikely that a single
recommendation algorithm could satisfy all users equally. For instance, algo-
rithms that favor familiar content might not appeal to users who are looking for
novelty, and vice versa. This mismatch could potentially lead to dissatisfaction
among users whose expectations are not met, which could be perceived as a
form of unfairness.

Studies like Celma (2010) and Schedl and Hauger (2015) explore the fair-
ness of MRS toward users with different music consumption patterns, often as-
suming users’ expectations based solely on streaming behavior, such as prefer-
ences for mainstream versus niche content.

Yet, it’s uncertain if we can draw direct parallels like these. For example,
a user with narrow, mainstream tastes might still be open to more diverse rec-
ommendations, but streaming history alone may not reveal this. Mehrotra et al.
(2019) address a similar challenge by jointly leveraging both user intent and
interaction signals. Their study demonstrates that relying solely on behavioral
data — such as streaming logs — without accounting for user intent can lead
to inaccurate predictions of user satisfaction, emphasizing the need for more
nuanced, mixed-method approaches.

Colleagues from the RECORDS project have collected and analyzed rich
interview data that could provide deeper insights into user expectations beyond
what streaming logs reveal. While incorporating this interview data was beyond
the scope of my PhD due to time and resource constraints, I believe it holds
great potential for future work. In general, I hope to explore personalizing and
diversifying recommendations further in future research.
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Exploring diffusion of music through time and space

Although this thesis did not directly address the topic, the propagation of music
through time and space is a subject of personal interest to me. During my PhD,
I co-supervised two internships that explored related areas.

Predicting a song’s popularity evolution. In the first internship, conducted
by Basile Leretaille, we aimed to understand whether it is possible to predict and
model the evolution of a song’s popularity over time. On an individual level,
research suggests that interest in a song often follows an inverted U-shaped
curve: as we repeatedly listen to a song, our enjoyment typically increases until
it reaches a peak, after which we become saturated and our interest gradually
declines Berlyne (1973); Sguerra et al. (2022). We wondered if a similar pattern
could be observed on a collective level.

We were initially inspired by models from epidemiology, which have been
widely used to study the spread of information and behaviors across popula-
tions Pastor-Satorras and Vespignani (2001). To avoid black-box solutions like
neural networks, which, despite their effectiveness, often lack transparency in
how they make predictions, we decided not to pursue well-established neural
network-based approaches such as Andreas et al. (2020). Instead, we turned to
compartmental models, which allow us to divide populations into different cate-
gories and simulate how songs ”spread” through user interactions. Additionally,
we explored graph-based propagation models that account for the structure of
the listener network (Kempe et al., 2003), as well as cellular automata models,
inspired by systems like Conway’s Game of Life (Gardner, 1970), which of-
fer transparent mechanisms for simulating local interactions between users and
songs.

However, we observed, through both techniques, that there was no universal
pattern for collective consumption like there seems to exist on an individual
level. While some songs do experience a gradual rise and fall in popularity,
many follow entirely different trajectories. For instance, a song released years
ago may suddenly gain popularity ’overnight’ due to external factors, such as
being featured by a popular influencer on social media or appearing in a movie 4.
This type of sudden surge in popularity is often driven by external circumstances
rather than the music itself, making it difficult to predict.

The decline in popularity, on the other hand, might be influenced by fac-
tors like the song’s complexity or catchiness. However, demonstrating this link
would require a deep dive into the audio characteristics of the music itself, which
we did not have the time or resources to explore in this study. This aspect also
connects to the broader question of the ’hit formula’ — to date, research has
not identified any specific musical pattern or audio trait that guarantees a track’s

4RailsConf 2016 - Closing Keynote: Paul Lamere
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success Raza and Nanath (2020); Zangerle et al. (2019). Understanding these
dynamics would likely require extensive research, combining large-scale data
analysis with detailed audio feature studies. Moreover, some songs experience
multiple revivals, becoming popular again at different points in time, often due
to changing cultural contexts or trends. Others follow more predictable cycles,
such as summer hits or Christmas songs that consistently resurface during cer-
tain seasons. When we began this internship, we were perhaps overly optimistic,
not fully appreciating the complexity of these patterns. In hindsight, I realize
that understanding a song’s popularity evolution could be a PhD subject in itself,
given the many layers and variables involved.

Spatial dynamics of new releases. In another internship, conducted by Alvin
Opler, we explored the geographical patterns in the spatial propagation of music,
that is the propagation of the listening of a new musical piece from the moment it
is made available on a global streaming platform, therefore available at the same
time in all the countries where this platform operates. Our focus was on several
artists and songs, both French and global, across different levels of popularity,
to determine if there were differences in the speed and geographical trajectory
of their diffusion.

To better understand these diffusion patterns, we used the Family and Vic-
sek (1985) scaling method, a model from statistical physics, to observe how
roughness or unevenness in the spread of new music evolves over time and dis-
tance. This approach helped us quantify the spatial spread of a song’s popularity,
analyzing the simultaneous growth of its reach in both local and distant regions.

For globally famous artists, as expected, we found that when they launch
an album or single, their music tends to become popular simultaneously across
various regions. This is due to their established notoriety and the power of
the internet, which ensures that fans around the world are aware of the release
at the same time. A similar pattern was observed in France for very famous
French artists. However, we hypothesized that the situation would be different
for emerging French artists, particularly those whose musical identity, as ex-
pressed by their style or lyrics, is closely tied to their place of origin, such as
rap from Marseille or Breton music. We expected that these artists would first
gain popularity in their local region, with their music gradually spreading to the
rest of the country, similarly to an epidemic caused by a virus. This hypothe-
sis was inspired by older studies, like Ford (1971)’s 1970 qualitative study on
the diffusion of rock music in the US, over a much larger timescale of several
decades.

To test our hypothesis, we attempted to map the listening of the successive
releases of recently emerging artists, from the beginning of their careers. How-
ever, we did not find strong confirmation of our expectations. This preliminary
study suggests that, in the current digital age, music diffusion may rely less on
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local, physical, human-to-human interactions and more on global virtual chan-
nels. Music seems to spread primarily through digital platforms rather than fol-
lowing the traditional patterns of geographic diffusion. Despite these findings, it
is important to explore this subject further to draw more definitive conclusions.
It’s possible that our methodology had limitations, or that the scale of our study
was too narrow. For example, examining music diffusion on a larger scale, such
as between countries, might reveal patterns that are not evident within a rela-
tively small country like France.

That being said, we still observed some discrepancies in music preferences
across different geographic areas, with clustering by geographic proximity often
correlating with genre. This indicates that there are still local specificities in mu-
sic preferences, suggesting that geography does play a role in shaping musical
tastes. There is definitely room for further exploration in this area, particularly
in understanding how geographic location influences music preferences and vice
versa.

Even though these two internship projects did not necessarily lead conclusive
results or match our initial expectations, they laid important groundwork for
these questions. These foundational efforts have opened up exciting possibilities
for future research, which would be valuable to explore further.
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Lüke, and R. Schwaiger. Incarmusic: Context-aware music recommenda-
tions in a car. In E-Commerce and Web Technologies: 12th International
Conference, EC-Web 2011, Toulouse, France, August 30-September 1, 2011.
Proceedings 12, pages 89–100. Springer, 2011.

B. K. Baniya, J. Lee, and Z.-N. Li. Audio feature reduction and analysis for
automatic music genre classification. In 2014 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pages 457–462. IEEE, 2014.

F. S. Barrett, K. J. Grimm, R. W. Robins, T. Wildschut, C. Sedikides, and
P. Janata. Music-evoked nostalgia: affect, memory, and personality. Emo-
tion, 10(3):390, 2010.

C. Bauer and M. Schedl. On the importance of considering country-specific
aspects on the online-market: an example of music recommendation consid-
ering country-specific mainstream. 2018.

C. Bauer and M. Schedl. Global and country-specific mainstreaminess mea-
sures: Definitions, analysis, and usage for improving personalized music rec-
ommendation systems. PloS one, 14(6):e0217389, 2019.

P. Bello and D. Garcia. Cultural divergence in popular music: the increasing
diversity of music consumption on spotify across countries. Humanities and
Social Sciences Communications, 8(1):1–8, 2021.

W. Bendada, T. Bontempelli, M. Morlon, B. Chapus, T. Cador, T. Bouabça, and
G. Salha-Galvan. Track mix generation on music streaming services using
transformers. In Proceedings of the 17th ACM Conference on Recommender
Systems, pages 112–115, 2023.

D. E. Berlyne. Aesthetics and psychobiology. Journal of Aesthetics and Art
Criticism, 31(4), 1973.

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In Proceedings of the 12th international society for music informa-
tion retrieval conference (ISMIR), volume 11, pages 591–596, 2011.

A. S. Bhat, V. Amith, N. S. Prasad, and D. M. Mohan. An efficient classification
algorithm for music mood detection in western and hindi music using audio
feature extraction. In 2014 fifth international conference on signal and image
processing, pages 359–364. IEEE, 2014.

A. Bonneville-Roussy, P. J. Rentfrow, M. K. Xu, and J. Potter. Music through
the ages: Trends in musical engagement and preferences from adolescence
through middle adulthood. Journal of personality and social psychology, 105
(4):703, 2013.



BIBLIOGRAPHY 165

T. Bontempelli, B. Chapus, F. Rigaud, M. Morlon, M. Lorant, and G. Salha-
Galvan. Flow moods: Recommending music by moods on deezer. In Pro-
ceedings of the 16th ACM Conference on Recommender Systems, pages 452–
455, 2022.

P. Bourdieu. Distinction – A Social Critique of the Judgement of Taste. Harvard
University Press, 1984.

R. A. Brown. Music preferences and personality among Japanese university
students. International Journal of Psychology, 47(4):259–268, 2012.

B. Bryson. “Anything but heavy metal”: Symbolic exclusion and musical dis-
likes. American Sociological Review, pages 884–899, 1996.

R. Burke. Hybrid recommender systems: Survey and experiments. User mod-
eling and user-adapted interaction, 12(4):331–370, 2002.

R. Burke. Hybrid web recommender systems. In The adaptive web, pages 377–
408. Springer, 2007.

Z. Cai, L. Fu, and W. Li. Research and analysis of music development based
on k-means and pca algorithm. In Journal of Physics: Conference Series,
volume 2083, page 032044. IOP Publishing, 2021.

C. L. Caldwell-Harris. Emotionality differences between a native and foreign
language: Theoretical implications. Frontiers in psychology, 5:93402, 2014.

P. Cano and M. Koppenberger. The emergence of complex network patterns in
music artist networks. In Proceedings of the 5th international symposium on
music information retrieval (ISMIR 2004), pages 466–469, 2004.

J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st
annual international ACM SIGIR conference on Research and development
in information retrieval, pages 335–336, 1998.

G. Carney. Music geography. Journal of Cultural Geography, 18(1):1–10, 1998.

G. O. Carney. From down home to uptown: the diffusion of country-music radio
stations in the united states. Journal of Geography, 76(3):104–110, 1977.

M. Castelluccio. The music genome project. Strategic Finance, pages 57–59,
2006.

Z. Cataltepe, Y. Yaslan, and A. Sonmez. Music genre classification using midi
and audio features. EURASIP Journal on Advances in Signal Processing,
2007:1–8, 2007.

O. Celma. Music recommendation. In Music recommendation and discovery:
The long tail, long fail, and long play in the digital music space, pages 43–85.
Springer, 2010.
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