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Louis-Pierre CHAINTRON

Composition du jury:

M. François DELARUE Rapporteur
Professeur, Université Côte d’Azur
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cautiously. (Opening lines of States of Matter, by D.L. Goodstein).
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CHAPTER 1

Introduction

No one really knows what entropy really is, so in a

debate you will always have the advantage.

— John von Neumann

This thesis is devoted to the study of constrained dynamics in finite and infinite-
dimensional settings, using tools from large deviation and control theory. The main goal is
to modify a given dynamical system to produce trajectories that satisfy some constraints,
which can be thought of as measurements. Some covered examples are the stochastic
filtering problem, extensions of the Gibbs principle from statistical mechanics, and con-
strained versions of the Schrödinger bridge problem. This introductory chapter presents
how to extend classical tools for constraining Ordinary Differential Equations (ODEs) to
measure-valued dynamics.
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Chapter 1. Introduction

The need for constrained dynamics is ubiquitous in real life applications. When mod-
elling a dynamical phenomenon, a discrepancy is often measured between the model pre-
diction and the targeted quantity. Knowing this discrepancy, it is then natural to look for
an improved version of the model that takes into account the measurement, by imposing
this measurement as a constraint on the model. Famous examples originate from statisti-
cal mechanics, like the Gibbs principle presented in Section 1.3.3.1 which searches for the
most likely configuration of a particle system when only knowing average quantities on
it. Another example in Section 1.3.3.1 is the Schrödinger bridge problem, which looks for
the most likely evolution of a stochastic process when only knowing its law at initial and
terminal times. This last problem enjoys thriving applications with the recent use of diffu-
sion models in machine learning Ho et al. [2020]; Song et al. [2020]; Albergo et al. [2023].
Let us also mention the famous filtering problem of finding the conditional distribution
of a system in real-time given a noisy measurement on it. More broadly, our framework
includes many kinds of deterministic and stochastic estimation problems. A further mo-
tivation of this thesis was the study of conditioned systems of interacting diffusions for
cardiac modelling, following the works Chaintron et al. [2023a,c], which were done before
starting this thesis – see Section 1.4.4 for more precisions.

The present chapter introduces the context of this thesis by progressively presenting
motivations and technical elements. A detailed literature review is done along the way.
The main objective is to show how to extend classical tools for constraining ODEs

to measure-valued dynamics. Section 1.1 describes some deterministic approaches for
constraining finite-dimensional toy-model dynamics. Section 1.1 serves as a pretext for
introducing many tools from optimisation and control theory and paves the way for many
analogies with measure-valued dynamics, which are developed in Section 1.3. This pre-
sentation is strongly inspired from Gentil et al. [2020]. Section 1.2 describes stochastic
approaches that randomise the dynamics before conditioning it. Many tools from large
deviation theory are introduced there, together with the stochastic filtering problem. A
main contribution of this thesis is the adaptation of these methods to measure-valued dy-
namics, as presented in Section 1.3. The ODE formalism from Sections 1.1-1.2 allows for
many analogies with measure-valued dynamics at the level of both statements and proofs.
The large deviation theory induces connections between conditioning problems and en-
tropy minimisation problems on path space. The Girsanov theory described in Section
1.3.3.2 converts these minimisation problems into stochastic control problems. Recent de-
velopments presented in Section 1.3.3.3 allow for geometric interpretations of these results
using Wasserstein gradient flows and the formalism of Newton equations on the Wasser-
stein space. We emphasise that Sections 1.1-1.2-1.3 are expository, their purpose being
to introduce general ideas using a framework that is not always rigorous, contrary to the
subsequent chapters.

A recap of the different contributions of this thesis is done in Section 1.4, summarising
the different chapters. The chapters are preprints or articles, which are reproduced without
any change. In particular, a detailed presentation of motivations and existing literature
can be found at the beginning of each chapter. Thus, some notations may change from
a chapter to another, always with a clear specification of it. Chapters 2 presents some
results on stochastic filtering for reflected diffusions in the small noise limit. Chapter 3
develops a method for proving large deviations and central limit theorems for mean-field
interacting diffusions, improving existing results along the way. Chapters 4-5 contain a
detailed study of (extensions of) the Gibbs principle on path space with infinitely many
constraints, using tools from the mean-field control theory. In particular, a quantitative
stability result is established. Chapter 6 eventually proves new regularity estimates on
Hamilton-Jacobi equations using viscosity solution methods. Some perspectives for future
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1.1. Deterministic correction for ODEs

works are listed in Section 1.4.4.

1.1 Deterministic correction for ODEs

In this section, we describe several strategies for constraining dynamics using a finite-
dimensional toy-model. This toy-model is given by an ODE that we want to modify to
produce trajectories that satisfy a given constraint. We can think of this as improving
a physical model by including some measurement performed on the target phenomenon.
Depending on the chosen strategy, the constrained dynamics will be given by a first-order
or a second-order dynamics. This toy-model is well-suited for introducing many tools from
optimisation and control theory, paving the way for measure-valued extensions in Section
1.3.

Let us start with an ordinary differential equation (ODE) in Rd,

ẋt = b(xt), (1.1)

that we want to modify to produce a trajectory (xt)t�0 that stays in a sub-domain N ⇢ Rd.
The initial condition x0 is imposed. To stay consistent with the probabilistic framework
adopted throughout this thesis, the time variable t is written as an index. We can choose
the drift b as being a globally Lipschitz vector field for (1.1) to be well-posed. However, we
will not be concerned with regularity aspects throughout this section, keeping computations
at a formal level. Similarly, we write (1.1) in Rd for the sake of simplicity, but any complete
d-dimensional manifold M would suit as well. We can think of N as a sub-manifold of Rd.
Recurrent examples will be N 2 {G,N 0

 
,N�

 
}, where G ⇢ Rd is a closed bounded domain

and
N

0
 
:= {x 2 Rd,  (x) = 0}, N

�

 
:= {x 2 Rd,  (x)  0},

for a regular function  : Rd
! R. The standard assumption for N

0
 

to be a smooth sub-
manifold is  being smooth with never vanishing gradient. Similarly, suitable assumptions
ensure that N

�

 
is a sub-manifold of Rd with boundary.

Generically, we look for corrected trajectories of the kind

ẋ!t = b(x!t ) + !t, (1.2)

for ! : R�0 ! Rd, which is e.g. locally square-integrable. Equation (1.2) can be seen as a
controlled ODE where ! is the control parameter. We shall now specify some optimisation
criterion that will select the corrected curve (xt)t�0, among all the x! that stay in N at
each time. We distinguish between two plausible criteria, which produce different curves:

• Optimality at each time. A first natural idea is to require the minimal change for the
drift b at each-time, so that the corrected curve (xt)t�0 satisfies

ẋt = argminv2TxtN
|v � b(xt)|

2, (1.3)

at each time, when N is a manifold with tangent space TxtN at xt. Thus, ẋt is the
minimal correction of b(xt) (in the least-square sense), so that xt stays in N at each
time. This simple natural setting yields a first-order dynamics similar to (1.1), which
is described in Section 1.1.1.

• Optimality on a time-window. If we want to correct (1.2) on a fixed time-window
[0, T ] only, it is natural to look at

(xt)0tT := argmin (xt)0tT

8t2[0,T ], xt2N

Z
T

0
|ẋt � b(xt)|

2dt, (1.4)

3



Chapter 1. Introduction

corresponding to the control problem (1.2) with quadratic cost under state con-
straints. This standard problem produces second-order dynamics much richer than
(1.1), as described in Section 1.1.2. This framework also allows for constraints on
the whole path of the kind  ((xt)0tT ) = 0, which are more general than imposing
xt 2 N at each time.

The main drawback of (1.4) compared to (1.3) is the loss of recursivity. If T < T 0, the
solution produced by solving (1.4) on [0, T 0] may not be compatible with the one obtained
by optimising on [0, T ] (although the dynamic programming provides a partial replacement,
see Section 1.1.2.2). However, (1.4) has the advantage of a better trajectorial accuracy,
since the curve produced by (1.3) can be fairly different from a typical trajectory of the
dynamical system (1.1). We also emphasise the greater generality of constraints compatible
with the path-approach (1.4). For instance, it is possible to impose both the initial and
terminal states in (1.2).

The Euclidean distance is used for (1.3)-(1.4) throughout this section, but it could be
replaced by a general Riemannian distance up to minor changes.

Remark 1.1.1 (Non-additive control problem). From the objective of constraining (1.1),
it is natural to look at controlled curves of type (1.2), but this setting can be embedded into
non-linear control problems of the kind

ẋ!t = b(x!t ) + �(x!t )!t or ẋ!t = b(x!t ,!t).

However, we preferred keeping (1.2) for simplifying this expository section.

1.1.1 First order approach

We here give examples to illustrate (1.3). First, we notice that this dynamics corresponds
to the ODE in N ,

ẋt = ⇡TxtN
[b(xt)], (1.5)

where ⇡TxtN
denotes the orthogonal projection on the tangent space at xt. A simple way

to visualise (1.5) is through its explicit Euler discretisation with time step h > 0, given by

yt+h = argminy2N |y � yt � hb(yt)|
2. (1.6)

Roughly speaking, the initial dynamics (1.1) is followed at each time-step, before adding
a projection step. This definition is non-ambiguous under suitable assumptions on N

like convexity. To alleviate the presentation, we will not precise these assumptions in the
following. An implicit discretisation could be written as well.

1.1.1.1 Gradient flows

A relevant example is the case b(x) = �rU(x) in (1.1) for some smooth potential U . In
this case, (1.5) corresponds by definition to

ẋt = �rNU(xt),

where rN is the Riemannian gradient in the sub-manifold N . Thus, the gradient flow
structure is preserved. Gradient flows are known to have the unconditionally stable back-
ward discretisation

yt+h = argminy2Rd
|y � yt|2

2h
+ U(y),
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1.1. Deterministic correction for ODEs

which reduces the dynamics to a step-wise variational formula [Ambrosio et al., 2005,
Chapter 2]. A nice feature of (1.5) is then its compatibility with this discretisation, a
useful scheme for (1.5) being

yt+h = argminy2N
|y � yt|

2

2h
+ U(y).

This interesting alternative to (1.6) is compatible with the gradient flow structure.

1.1.1.2 Sub-differential dynamics

Let us think of N as a smooth convex domain G ⇢ Rd with outward normal vector n(x)
at x 2 @G. We assume that G is closed with non-empty interior. The tangent space at x
is then the hyperplane orthogonal to n(x), so that computing the projection rewrites (1.5)
as

ẋt = b(xt)� xt2@G[b(xt) · n(xt)]n(xt).

In particular, nothing changes while xt is in the interior of G, a correction being applied
only at the boundary. The correction appears as a sticky reflection, the dynamics being
stuck at the boundary as long as it tries to escape G. The problem of correcting (1.1) in
this way is sometimes referred to as the deterministic Skorokhod problem, by analogy with
Skorokhod’s problem of reflecting stochastic diffusions Skorokhod [1961] – see also Chapter
2 for further illustrations. This behaviour can be re-casted as a sub-differential dynamics.
The sub-differential at x of a convex function F : Rd

! R is defined as

@F (x) := {p 2 Rd, 8y 2 Rd, F (y) � p · (y � x) + F (x)}.

It is the set of sub-gradients of F at x. A sub-differential dynamics is then a continuous
dynamics of the kind

ẋt 2 @F (xt).

This enters the broader setting of dynamics driven by maximal monotone operators Brezis
[1973], or the framework of variational inequalities Kinderlehrer and Stampacchia [2000].
Our dynamics constrained to stay in G enters the above setting by choosing F = �G

as being the convex characteristic function of G, defined by �G(x) = 0 if x 2 G, and
�G(x) = +1 otherwise. Such dynamics have many physical applications, modelling e.g.
dry friction or elasto-plasticity Duvaut and Lions [1976]; Bastien et al. [2000].

1.1.1.3 Equality constraints and Lagrange multiplier

Let us detail the case where N = N
0
 

is the 0-level set of a smooth function  . The tangent
space TxN

0
 

is the hyperplane orthogonal to r (x), so that n(x) = |r (x)|�1r (x) and

ẋt = b(xt)� |r (xt)|
�2[b(xt) ·r (xt)]r (xt), (1.7)

under the non-degeneracy assumption r (xt) 6= 0.
Alternatively, this expression can be obtained from the constrained minimisation (1.3)

using the formalism of Lagrange multipliers:

inf
v·r (xt)=0

1
2 |v � b(xt)|

2 = inf
v2Rd

⇥
1
2 sup
�2R

|v � b(xt)|
2 + �v ·r (xt)

⇤
,

equality holding because the supremum equals +1 if v ·r (xt) 6= 0. The duality relation

inf
v2Rd

sup
�2R

⇥
1
2 |v � b(xt)|

2 + �v ·r (xt)
⇤
� sup

�2R
inf
v2Rd

⇥
1
2 |v � b(xt)|

2 + �v ·r (xt)
⇤
, (1.8)
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Chapter 1. Introduction

is then always true and becomes an equality if a saddle point (vt,�t) exists with �tvt ·
r (xt) = 0. This condition is called the complementary slackness condition. Writing the
first-order optimality conditions yields

(
ẋt = b(xt)� �tr (xt),

ẋt ·r (xt) = 0.
(1.9)

This is a particular instance of a differential algebraic system of equations Kunkel [2006],
the ODE being coupled to an implicit equation. It is then standard to compute �t by
writing that

0 =
d

dt
 (xt) = b(xt) ·r (xt)� �t|r (xt)|

2.

If r (xt) 6= 0, this gives an expression for �t as a feedback of xt, recovering (1.7). In the
optimisation setting (1.3), r (xt) 6= 0 is called a constraint qualification condition.

In the case of inequality constraints N = N
�

 
, the same reasoning can be adapted. The

constraint in (1.8) becomes v ·r (xt)  0 when  (xt) = 0, to ensure that xt stays in N
�

 
.

The main difference is that we impose � � 0 instead of � 2 R, so that the supremum in
(1.8) is +1 only if v ·r (xt) > 0. The complementary slackness condition �tv ·r (xt) = 0
now means that the correction activates (i.e. �t 6= 0) only when touching the boundary.
The corrected dynamics reads

(
ẋt = b(xt)� |r (xt)|�2[b(xt) ·r (xt)]r (xt), if  (xt) = 0,

ẋt = b(xt), if  (xt) < 0,

under the qualification assumption that r (xt) 6= 0 when  (xt) = 0.

1.1.2 Second order approach

We now turn to the pathwise procedure (1.4). To fix ideas, we focus on the specific example
N = N

�

 
, so that (1.4) amounts to solving

inf
(xt)0tT

8t2[0,T ], (xt)0

Z
T

0

1

2
|ẋt � b(xt)|

2dt.

This enters the classical framework of Lagrangian mechanics, the integral cost being then
referred to as an action functional. To solve this constrained minimisation problem, we
use Lagrange multipliers as previously. The constraint is imposed on the continuous curve
t 2 [0, T ] 7!  (xt). Since the Lagrange multiplier must be taken in the dual space of the
constraint, we end up looking at the variational problem

inf
(xt)0tT

Z
T

0

1

2
|ẋt � b(xt)|

2dt+

Z
T

0
 (xt)�(dt), (1.10)

where the multiplier � is a positive Radon measure on [0, T ] and the initial condition x0 is
imposed. Along the optimal curve x := (xt)0tT , � satisfies the complementary slackness
condition

 (xt) = 0, for � -.a.e t 2 [0, T ]. (1.11)

Existence for such a multiplier can be a tough question, which requires a constraint qualifi-
cation assumption. Existence often follows from a suitable application of the Hahn-Banach
theorem. For sufficient conditions and existence theorems for (x,�), we refer to Barbu and
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1.1. Deterministic correction for ODEs

Precupanu [2012]. For some dynamics analogous to (1.1) in infinite dimension, existence
of a Lagrange multiplier is studied in Chapter 4, see Section 1.3.3 below for further expla-
nations.

To alleviate the presentation, we now assume that � has a (non-negative) density
(�t)0tT w.r.t. the Lebesgue measure. In the following, we derive an equation for x and
we describe how bounds can be obtained on �, yielding regularity properties for x.

1.1.2.1 Newton equation

To get an equation on the optimal curve x = (xt)0tT , we must write first-order optimality
conditions for (1.10). This is a standard problem from calculus of variations, see e.g.
Ekeland and Temam [1999]. The classical method for action functionals uses the optimality
of x compared to small perturbations of x, first with fixed endpoints and then perturbing
the endpoints. After integration by parts, this provides the second-order equation

ẍt =
1
2 r|b|

2(xt) + �tr (xt), (1.12)

with initial condition x0 and terminal relation ẋT = b(xT ). Indeed, a second-order equation
requires two boundary conditions to be well-posed. This equation must be seen as a
perturbation of the acceleration of the initial process (1.1). Indeed, differentiating (1.1)
in time precisely yields the equation ẍt =

1
2 r|b|

2(xt) on the acceleration. The terminal
condition ẋT = b(xT ) is then natural since it is inherited from (1.1).

Compared to the first-order setting, we notice that the non-negative multiplier �t enters
the dynamics with a + sign contrary to (1.9). This is an artefact of the second-order dynam-
ics due to the forward-backward structure of the Hamiltonian system, see the Hamiltonian
description below. From (1.11), we know that �t (xt) = 0 for Lebesgue-a.e. t 2 [0, T ]. On
intervals where  (xt) is identically 0, we can compute �t by writing that

0 =
d2

dt2
 (xt) = ẋt ·r

2 (xt) ẋt +
1

2
r|b|2(xt) ·r (xt) + �t|r (xt)|

2,

so that the corrected equation reads

ẍt =
1
2r|b|

2(xt)�  (xt)=0
1
2 |r (xt)|

�2[r|b|2 ·r (xt)]r (xt)

�  (xt)=0|r (xt)|
�2[ẋt ·r

2 (xt) ẋt]r (xt), (1.13)

still under the qualification condition r (xt) 6= 0. We emphasise that this expression
can only be obtained if regularity properties on � are known beforehand. Otherwise, this
cannot be achieved because � does not always have a density.

Remark 1.1.2 (Geometric interpretation). In a Riemannian geometry framework, Equa-
tion (1.13) on ẍt has a clear interpretation. To make things simpler, let us consider the
case of equality constraints N = N

0
 
. This change removes the characteristic functions in

(1.13) since  (xt) = 0 at each time.
Differentiating (1.1) had given ẍt = 1

2r|b(xt)|
2. ẍt describes the acceleration of the

curve t 7! xt in the ambient manifold M = Rd. To obtain the corrected curve xt, we
project this second-order equation in the sub-manifold N to formally get that

ProjN [ẍt] = ⇡TxtN
[12r|b(xt)|

2] =: 1
2rN |b(xt)|

2. (1.14)

The l.h.s. corresponds to the acceleration of t 7! xt in the sub-manifold N . The second-
order projection (1.14) is the analogous of the first-order projection (1.5) in Section 1.1.1.
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Chapter 1. Introduction

Let us further formalise. The intrinsic acceleration in M is defined as the covariant
derivative rM

ẋt
ẋt of the velocity vector ẋt in the direction ẋt. rM is the Levi-Civita

connection on the Riemannian manifold M (we simply have rRd

X
Y = DY · X in Rd).

The intrinsic acceleration in the sub-manifold N is then rN

ẋt
ẋt, where rN is the induced

connection on N : rN is defined as the orthogonal projection of rM on the tangent space
of N . The projected equation (1.14) now reads

r
N

ẋt
ẋt =

1
2rN |b(xt)|

2.

To recover the equation on the acceleration ẍt := rM

ẋt
ẋt in M, we need the difference

II(X,Y ) := rM

X Y �rN

XY,

also known as the second fundamental form of the sub-manifold N [Lee, 2018, Chapter 8].
Comparing with (1.13) shows that

II(ẋt, ẋt) = �|r (xt)|
�2[ẋt ·r

2 (xt) ẋt]r (xt),

since the first line in (1.13) only corresponds to the projection of the gradient. This pro-
vides the geometric interpretation of (1.13). This further shows that the multiplier �t in
(1.12) gathers two operations: projection of the acceleration and computation of the second
fundamental form.

Example 1.1.3 (Geodesics and bridges). Let us recall a fundamental advantage of (1.4):
it allows for pathwise constraints on the whole trajectory (xt)0tT , possibly more involved
than constraining xt at each t. A natural constraint, would be to impose both endpoints of
the curve, looking at the interpolation cost

d2(x, y) := inf
x0=x, xT=y,

8t2[0,T ], xt2N

Z
T

0
|ẋt � b(xt)|

2dt. (1.15)

When N = Rd and b ⌘ 0, this simply produces the square Euclidean distance between x
and y. When b ⌘ 0 and N is a general sub-manifold of Rd, d2(x, y) is the square induced
distance on N , the minimisers being the geodesic curves in N . When b ⌘ 0 and N = N

0
 
,

(1.13) then corresponds to the geodesic equation in N , given by the Christoffel symbols of
the Levi-Civita connection rN (see Remark 1.1.2 and [Lee, 2018, Chapter 4]).

When b 6= 0, (1.15) defines an interpolation cost w.r.t. the reference dynamics (1.1).
For discussions of such interpolations and connections with the Schrödinger bridge problem,
we refer to Section 1.3.2 and [Gentil et al., 2020, Section 2]. Problem (1.15) is similar
to Zermelo’s navigation problem of finding the quickest path between two points given an
external forcing field, which may slower the travel. The prototype example is a ship on the
sea subject to the wind. In this setting, the drift b is considered as a perturbation of the
straight-line rather than a dynamics. d(x, y) is then known as a Randers metric Cheng and
Shen [2013].

1.1.2.2 Hamilton-Jacobi-Bellman equation

Since the initial dynamics (1.1) was a first-order ODE, it is natural to look for a first-order
formulation of (1.12). This gives the forward-backward Hamiltonian system (with imposed
x0) (

ẋt = b(xt) + pt,

ṗt = �rb(xt) · pt + �t (xt), pT = 0.
(1.16)

8



1.1. Deterministic correction for ODEs

Differentiating the equation satisfied by ẋt w.r.t. t recovers back (1.12). (1.16) fits the
setting of (1.2), the optimal control being ! = p. A standard way to obtain (1.16) is to
rewrite (1.10) as

inf
(xt)0tT , (!t)0tT

8t2[0,T ], ẋt=b(xt)+!t

Z
T

0

1

2
|!t|

2 + �t (xt) dt,

seeing the dynamics (1.2) as an equality constraint for the above minimisation. pt then
corresponds to a Lagrange multiplier for this constraint at time t. (1.16) is known as the
Pontryagin Maximum Principle (PMP) in the control literature, see e.g. [Fleming and
Soner, 2006, Section I.6]. Alternatively, it is customary to introduce the value function,

8(t, x) 2 [0, T ]⇥ Rd, 't(x) := inf
(!s)tsT

x
!
t =x

Z
T

t

1

2
|!s|

2 + �t (x
!

s ) ds.

The value 't(x) is the cost for controlling x! from x at time t till time T . Following [Flem-
ing and Soner, 2006, Section I.4], we can show that ' satisfies the dynamic programming
or Bellman principle

8⌧ 2 [0, T � t], 't(x) = inf
(!s)tst+⌧

Z
t+⌧

t

1

2
|!s|

2 + �s (x
!

s ) ds+ 't+⌧ (x
!

t+⌧ ).

This simply means that an optimal path from t till T remains optimal from t + ⌧ till T .
As a consequence, a partial differential equation (PDE) can be derived for ' [Fleming and
Soner, 2006, Chapter I.5],

@t't + b ·r't �
1

2
|r't|

2 = ��t , 'T = 0, (1.17)

which is known as the Hamilton-Jacobi-Bellman equation (HJB). The optimal control then
reads pt = �r't(xt). Indeed, using (1.17) to differentiate pt recovers the previous relation
in (1.16). The terminal condition 'T = 0 is compatible with the relation ẋT = b(xT ),
which was computed in Section 1.1.2.1. All this can be made rigorous if some regularity
property is known beforehand on the solution of (1.17). Otherwise, some extra care is
needed, using the theory of viscosity solutions Crandall and Lions [1983]; Fleming and
Soner [2006].

1.1.2.3 Estimates on the multiplier

We now briefly sketch how the control formalism of Section 1.1.2.2 enables estimates on
the density �t of the multiplier. By optimality of (xt)0tT in (1.10), using (1.16) and
pt = �r'(xt), we have

Z
T

0
[ (xs)�  (x

!

s )]�sds 
1

2

Z
T

0
[|!s|

2
� |r's(xt)|

2]ds, (1.18)

for any square-integrable control (!t)0tT . Let us fix 0  t < t0  T . If we manage to
build ! such that (

 (xs)�  (x!s ) > 0, for s 2 (t, t0),

xs = x!s , for s /2 (t, t0),

then (1.18) provides a bound on
R
t
0

t
�sds. If t and t0 can be chosen arbitrarily close, this

bound implies in turn a local estimate for �t. This reduces the problem to building a control
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!h
s arbitrarily close to !0

s := �r's(xs) such that  (xhs ) <  (x0s), where xh := x!h . We
now present a non-rigorous scheme of this construction, which will be crucial in Chapter
5.

Step 1. Gradient flow. A natural geometric idea is to use the gradient flow (Ts)s�0 of
 , defined as the solution of

8s � 0, 8x 2 Rd, @sTs(x) = �(r � Ts)(x), T0(x) = x.

On the interval [t, t0], we then push the optimal process (x0s)0sT along this flow, defining

8s 2 [t, t0], xhs := Ths(x
0
s).

for a smooth function s 7! hs with ht = ht0 = 0. We have

ẋhs = �ḣsr (x
h

s ) +rThs · [b(x
0
s)�r's(x

0
s)],

hence the related control reads

!h

s := �ḣsr (x
h

s ) +rThs · [b(x
0
s)�r's(x

0
s)]� b(xhs ).

We now use this competitor in (1.18), and we turn to the computation of the r.h.s.

Step 2. Expansion. Since Th = Id� hr2 + o(h) (writing h for suptst0 |hs|), we get

!h

s = �r's(x
0
s)� ḣsr (x

h

s ) + hsrb ·r (x
0
s) + hsr

2 · [r's � b](x0s) + o(h),

hence

|!h

s |
2
� |r's(x

0
s)|

2 = |ḣsr (x
h

s )|
2 + 2ḣsr (x

0
s) ·r's(x

0
s)

� 2hsr's · [rb ·r +r2 ·r's �r
2 · b](x0s) + o(h).

This suggests to choose hs so that |ḣs|2 is of order h. The leading order term is now
ḣsr (x0s) ·r's(x0s) and we have to get rid of it.

Step 3. Integration by parts. The trick is to use the integral in (1.18), noticing that

r (x0s) ·r's(x
0
s) = b(x0s) ·r (x

0
s)�

d

ds
 (x0s).

Integrating by parts and using that ht = ht0 = 0,
Z

t
0

t

ḣsr (x
0
s) ·r's(x

0
s)ds =

Z
t
0

t

hs


d2

ds2
 (x0s)�

d

ds
b(x0s) ·r (x

0
s)

�
ds.

From Section 1.1.2.1, the behaviour of �t can be grasped by looking at the second-order
derivative of  (x0s), hence the above computation was expected. Moreover, this second
derivative is 0 on intervals where �s 6= 0 using (1.11). At this stage, the last task for
showing that the r.h.s. of (1.18) is of order h would be to prove bounds on r's.

Step 4. Conclusion. Looking at the l.h.s. of (1.18),

 (x0s)�  (x
h

s ) = hs|r (x
0
s)|

2 + o(h).

To lower bound  (x0s)�  (xhs ), we thus need the usual qualification condition:

r (x0s) 6= 0 if  (x0s) = 0.

Gathering everything in (1.18) eventually yields a bound on
R
t
0

t
�sds. Up to regularisation

procedures, this bound can be used to show that � in (1.10) has a bounded density.
The above construction shares analogies with [Erbar et al., 2015, Section 4]. Its adap-

tation to infinite-dimensional settings will be a key-ingredient in Chapter 5.
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1.1.2.4 Relaxed formulation

Let us sketch an alternative approach to (1.4). A natural penalisation of the constraint is

inf
(xt)0tT

Z
T

0

1

2
|ẋt � b(xt)|

2dt+

Z
T

0



2
| (xt)|

2
+dt, (1.19)

for some large  > 0 and | (xt)|+ := max(0, (xt)). The constraint is no more forced, but
it is “softly” introduced in the problem with a strength . As ! +1, (1.19) recovers the
constrained formulation (1.4) (a �-convergence result can be proved).

Let (xt )0tT be an optimal curve for (1.19). As in Section 1.1.2.1, writing optimality
condition yields

ẍt = 1
2r|b(x



t )|
2 + | (xt )|+r (x



t ).

The comparison with (1.12) is striking. As  ! +1, (xt )0tT is expected to converge
towards (xt)0tT , and we deduce that | (xt )|+ is an approximation of the Lagrange
multiplier �s. We underline that any smooth positive penalisation Jk( (xt)) could have
been used instead of the quadratic one, yielding the same approximation result. This
actually holds for any type of minimisation problem under constraints.

In some regular situations, sending  ! +1 is not needed because (1.12) with large
enough – but finite –  already selects the optimal solution. We refer to Cannarsa et al.
[2018] for an example in deterministic control under constraints, and to Daudin [2023b] for
an infinite-dimensional extension.

At this stage, the constraint-free problem (1.10) with Lagrange multiplier � appears as
an analogous of (1.19). � can be seen as the optimal weight giving the importance of the
constraint w.r.t. the dynamics. There is a fidelity trade-off between the constraint and
the dynamics. We will refer to any minimisation problem similar to (1.19) as a relaxed
problem, for any type of penalisation. This terminology of relaxed problem directly extends
to general pathwise constraints of type  ((xt)0tT ) = 0.

1.1.3 Mortensen observer

A recurrent drawback of the second-order approach (1.4) is its incapacity to produce recur-
sive dynamics: the optimiser for (1.4) on [0, T ] does not help for solving (1.4) on [0, T 0] with
T 0 > T . This is because the solution 't to the HJB equation in Section 1.1.2.2 depends
on T through its terminal condition.

To circumvent this, an approach was proposed in Mortensen [1968] in the context of
deterministic estimation. The purpose is to estimate the state of a physical system x!

modelled by (1.2), ! being an unknown parameter. The known data is a measurement
ẏs = h(x!s ) on the system. In the terminology of Section 1.1.2.4, we rely on a relaxed
formulation

inf
x
!
0 ,!

J(x!0 ) +

Z
T

0

1

2
|!s|

2 +
1

2
|ẏs � h(x!s )|

2ds,

the optimisation being a trade-off between model accuracy and observation accuracy. Con-
trary to (1.4), the initial condition is now an optimisation parameter. We could impose
it as well, but this extra degree of freedom comes for free in Mortensen’s approach. The
penalisation J(x!0 ) can be used to incorporate a priori knowledge on the initial condition,
for instance J(x!0 ) =

1
2(x

!

0 � x̂0)2 where x̂0 is a plausible initial condition for the system.
We emphasise that this setting is fully compatible with the penalisation approach (1.19)
in Section 1.1.2.4.
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Chapter 1. Introduction

The key-idea of Mortensen is to introduce the cost-to-come value function

Vt(x) := inf
x
!
0 ,!

x
!
t =x

J(x!0 ) +

Z
t

0

1

2
|!s|

2 +
1

2
|ẏs � h(x!s )|

2ds, (1.20)

which is the cost for being at x at time t, seen as the likelihood of being at x at t. The
main difference compared to ' in Section 1.1.2.2 is that x is the arrival point at t of the
controlled curve and no more the initial point, which is now free. The estimator at time t
is then defined by

x̂t 2 argminx2Rd Vt(x),

up to usual verifications to make this definition rigorous. x̂t is the most likely position for
the system at time t, because x̂t has the lowest cost. This estimator is non-anticipative in
time (causality); it is an observer in the terminology of Krener [1999]. Up to penalising as
in Section 1.1.2.4, this provides an alternative to (1.4) for correcting (1.1).

Remark 1.1.4 (Minimisers). If the initial condition x0 were imposed in (1.20), then the
minimising curve would be given by

ẍ!s = 1
2r|b|

2(x!s )�rh(x
!

s ) · [ẏs � h(x!s )], x!0 = x0, x!t = x,

as in Section 1.1.2.1. This is reminiscent of the interpolations introduced in Example 1.1.3.

As in Section 1.1.2.2, V satisfies a HJB equation, which is now forward in time,

@tVt + b ·rVt +
1

2
|rVt|

2
�

1

2
|ẏt � h|2 = 0, V0 = J. (1.21)

In particular, Vt0 for t0 > t can now be computed by starting back from Vt. At this stage, it
becomes possible to compute a recursive ODE for x̂t, by differentiating in time the relation
rVt(x̂t) = 0: x̂t is fully determined from time-to-time by the 0-level set of rVt. Assuming
that r2Vt(x̂t) is invertible, the HJB equation yields

˙̂xt = b(x̂t)� [r2Vt(x̂t)]
�1
rh(x̂t) · [ẏt � h(x̂t)]. (1.22)

Noticeably, this perturbed dynamics is of type (1.2). When b and h are linear, explicit
expressions are given in Example 1.1.5 below. In non-linear settings, it is uneasy to make
all this rigorous. We refer to Rockafellar and Wolenski [2000a,b] for a setting with strong
convexity assumptions, and to Breiten and Schröder [2023] for a quadratic setting with a
specific structure. The Hessian term being uneasy to compute, this approach is computa-
tionally costly in spite of recent works towards numerical implementation Moireau [2018];
Breiten et al. [2023].

The whole structure of Mortensen’s observer is deeply connected to stochastic filtering,
see Section 1.2.3. An infinite-dimensional generalisation is proposed in Example 1.3.7.

Example 1.1.5 (Deterministic Kalman filter). In the linear-quadratic setting

b(x) = Ax, h(x) = Cx, J(x) =
1

2
[x� x̂0] · P

�1
0 [x� x̂0],

the HJB equation has an explicit quadratic solution

Vt(x) =
1

2
[x� x̂t] · P

�1
t

[x� x̂t] +
1

2

Z
t

0
|ẏs � h(x̂s)|

2ds, (1.23)

12



1.2. Conditioning and filtering

where
˙̂xt = Ax̂t + PtC

>[ẏt � Cx̂t], (1.24)

and the symmetric matrix Pt solves the Riccati equation

Ṗt = Id +APt + PtA
>
� P>t CC>Pt. (1.25)

This is the ideal scenario for numerics, since Pt can be computed beforehand independently
of ẏ, while x̂t can be computed on the fly by solving an ODE. Following Fleming [1997],
this deterministic setting is the analogous of the Kalman-Bucy stochastic filter, see Example
1.2.4 in Section 1.2.3.

1.2 Conditioning and filtering

The main idea of Section 1.1 was to embed the ODE (1.1) into the wider class of dynamics
(1.2), before selecting the closest dynamics in this class satisfying the constraint. If (1.1)
were a stochastic dynamics, a natural alternative would be to impose the constraint by
conditioning. In this section, we describe a stochastic-based strategy by adding noise to
(1.1), before conditioning and then removing the noise. Links with the different examples of
Section 1.1 are emphasised throughout the text. This setting is well-suited for introducing
some tools related to large deviations and the setting of stochastic filtering.

We will be mainly interested in randomised versions of (1.1) of the kind

dX"

t = b(X"

t )dt+
p
"dBt, (1.26)

where (Bt)0tT is a Brownian motion, and the amplitude parameter " > 0 is small. An
advantage of (1.26) is the regularising effect of the noise: (1.26) is known to be well-posed
under less restrictive assumptions than (1.1), see Flandoli [2011] for a detailed survey. The
random variable

p
"Bt has a Gaussian density w.r.t. the Lebesgue measure

p"t (x) :=
1

(2⇡"t)d/2
exp


�

x2

2"t

�
.

As "! 0, the law L(
p
"Bt) of

p
"Bt converges to the Dirac mass at 0. More precisely, we

can write this concentration on the density at the exponential-in-" scale:

p"t (x) ⇣ e�x
2
/2"t, as "! 0,

the ⇣ symbol meaning that taking " times the logarithm of each side gives the same "! 0
limit. The Laplace principle then reads, for every measurable A ⇢ Rd,

P(
p
"Bt 2 A) ⇣ e� infx2A x

2
/2"t.

This can be formalised by proving that (L(
p
"Bt))">0 satisfies the Large Deviation Principle

(LDP) with rate function x 7! x
2

2t Dembo and Zeitouni [2009].
The Freidlin-Wentzell theory Freidlin and Wentzell [1998] extends this result to the law

of the full random path (X"
t )0tT . More precisely, these laws satisfy the LDP with rate

function

IT : (xt)0tT 2 C([0, T ],Rd) 7!

(R
T

0
1
2 |ẋt � b(xt)|2dt, if (xt)0tT 2 AC([0, T ],Rd),

+1, otherwise,

where AC([0, T ],Rd) denotes the space of absolutely continuous curves. Roughly speaking,

P((X"

t )0tT ' (xt)0tT ) ⇣ e�"
�1

IT ((xt)0tT ). (1.27)

13



Chapter 1. Introduction

As "! 0, L((X"
t )0tT ) concentrates on the unique minimiser of IT , which corresponds to

the dynamics (1.1). In the following sections, we use this LDP to study the "! 0 limit of
conditional laws. A notable example is the case of stochastic filtering developed in Section
1.2.3, which is closely related to Section 1.1.3.

Remark 1.2.1 (Quadratic structure). The quadratic structure of the rate function IT is
a consequence of the Gaussian structure of the noise. A multiplicative noise of the form
p
"�(X"

t )dBt would replace the Euclidean norm in IT by a Riemannian metric with weight
[��>]�1. Similarly, considering another Markov process instead of (Bt)0tT would yield
another rate function. The Brownian noise is well-suited to recover the setting of Section
1.1 as "! 0. However, Section 1.1 itself could be adapted by considering some other cost
functions, which may be related to other rate functions.

Remark 1.2.2 (Norton dynamics). In the following, we impose the constraint by condi-
tioning the law of X". An alternative would be to directly project the dynamics of X" onto
the sub-manifold N , as we did for the deterministic dynamics (1.5). In the case of equality
constraints N = N

0
 
, this approach is known as the Norton dynamics Evans and Mor-

riss [1985]; Blassel and Stoltz [2024]. See Lelièvre et al. [2008] for a related discretisation
approach.

1.2.1 Point-wise conditioning

We here present how the discrete-time dynamics (1.6) introduced in Section 1.1.1 can be
recovered as the "! 0 limit of a conditioning procedure. The (explicit) Euler-Maruyama
discretisation for (1.26) reads

Y "

t+h
� Y "

t = hb(Y "

t ) +
p

h"G,

where G ⇠ N (0, Id) is a standard Gaussian variable. Setting " = 0 recovers the explicit
Euler scheme for (1.1). The law of Y "

t+h
kwowing that Y "

t = y has a density

K"

h
(x|y) :=

1

(2⇡"h)d/2
exp


�

(x� y � hb(y))2

2"h

�
.

To constrain the dynamics to stay in N , we condition the Gaussian variable G so that
Y "

t+h
stays in N at each step. This amounts to replacing the kernel K"

h
by

K
"

h(x|y) := Z�1" x2NK"

h
(x|y),

where Z" > 0 is a normalising constant. As " ! 0, the measure K
"

h(x|y)dx concentrates
on

argminx2N |x� y � hb(y)|2.

This precisely recovers the discrete scheme (1.6). Sending h! 0 then recovers the projected
dynamics (1.5).

Remark 1.2.3 (Gradient flow from large deviations). In the gradient case b = �rU , let
us show how the discrete scheme from Section 1.1.1.1 can be deduced from the Freidlin-
Wentzell rate function. We consider the initial time-step, starting from X"

0 = y. As "! 0,
the LDP tells that L(X"

h
) concentrates on argminx2Rd Jh(x), where

Jh(x) := inf
(xs)0sh
x0=y, xh=x

Ih((xs)0sh).

14



1.2. Conditioning and filtering

However, the gradient structure allows us to rewrite the action functional as

Ih((xs)0sh) = U(xh)� U(x0) +

Z
h

0

1

2
|ẋs|

2 +
1

2
|rU(xs)|

2ds. (1.28)

When h is small, the constraints x0 = y and xh = x impose that ẋs ' h�1(x� y). At the
leading order, we hence get that

Jh(x) ' U(x)� U(y) +
(x� y)2

2h
,

recovering the minimisation scheme from Section 1.1.1.1. A rigorous way to state this is
to prove the �-convergence of x 7! Jh(x) � (x � y)2/2h towards U � U(y). This result is
extended to an infinite-dimensional setting in Erbar et al. [2015].

1.2.2 Pathwise conditioning

We now condition the full path X" := (X"
t )0tT rather than the increments at each step.

This allows for general constraints of the kind  ((xt)0tT ) = 0. From (1.27), we can
formally compute the law of X" conditionally on  (X") = 0. Indeed, for any measurable
A ⇢ C([0, T ],Rd),

P(X"
2 A| (X") = 0) =

P({X"
2 A} \ { (X") = 0})

P( (X") = 0)

⇣ exp


� "�1 inf

x2A, (x)=0
IT (x) + "�1 inf

x0, (x0)=0
IT (x

0)

�
.

This suggests that the family of the conditional laws L(X"
| (X") = 0) satisfies the

LDP with rate function x 7! IT (x) � infx0, (x0)=0 IT (x
0). As " ! 0, this shows that

L(X"
| (X") = 0) concentrates on the minimisers for

inf
x=(xt)0tT

 (x)=0

Z
T

0
|ẋt � b(xt)|

2dt.

This precisely recovers the deterministic strategy (1.4). The minimisers are now interpreted
as the most likely configurations of X" knowing  (X") = 0, in the " ! 0 limit. The
developments of Section 1.1.2 can then be adapted.

Making this rigorous often requires extra care, because the event { (X") = 0} may
have 0-probability hence the conditioning is ill-defined. To circumvent this, a standard
strategy is to thicken the constraint into {| (X")|  �} with � > 0, before taking the
" ! 0 limit and then � ! 0. In the Gibbs principle setting of Section 1.3.3, we refer
to Stroock and Zeitouni [1991] for this thickening. It is also possible to modify  into a
well-chosen  " that converges as " ! 0, or to make � depend on " Cattiaux and Gozlan
[2007]. The case N = N

�

 
of inequality constraints of type

8t 2 [0, T ],  (X"

t )  0,

avoids this difficulty, as in Chapter 4.
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Chapter 1. Introduction

1.2.3 Stochastic filtering

We now describe the problem of small noise stochastic filtering and its connection with
Mortensen’s observer from Section 1.1.3. The filtering problem consists in estimating the
state of X"

t defined by (1.26), given the realisation of the observation process

dY "

s = h(X"

s )ds+
p
"dB0s,

from time 0 to time t, (B0s)0st being a Brownian motion independent from the one
driving X" Kushner [1967]; Kallianpur and Striebel [1968]; Jazwinski [1970]. The noise
in (1.26) models an uncertainty on the dynamics of the signal, whereas (B0s)0st is an
observation noise. In a physical setting, it seems reasonable to assume that these noises
are independent.

1.2.3.1 Zakai equation

The mathematical object of interest is the conditional law ⇡"t of X"
t given (Y "

s )0st, which
is the random probability measure defined by

8' 2 Cb(Rd),

Z

Rd
' d⇡"t = E['(X"

t )|�(Y
"

s , 0  s  t)].

Under suitable assumptions, ⇡"t is the solution of a non-linear stochastic PDE driven by Y "
t ,

known as the Kushner-Stratonovich equation Kushner [1967]. Alternatively, a standard
approach computes the density of the joint path-law of (Xs, Ys)0st w.r.t. the law of
(Bs, B0s)0st using the Girsanov transform. From this explicit expression, the conditional
density can be computed using the Bayes formula. This yields the definition of a non-
normalised positive random measure ⇢"t such that

⇡"t =
⇥
⇢"t (R

d)
⇤�1

⇢"t ,

this relation being known as the Kallianpur-Striebel formula Kallianpur and Striebel [1968].
The main point is that ⇢"t can be computed as the solution of the linear Zakai equation
Zakai [1969]; Pardoux [1980],

d⇢"t = (L")?⇢"t dt+ "�1⇢"th · dY "

t , (1.29)

where (L")? is the (formal) L2-adjoint of the infinitesimal generator L" := b ·r + "

2� of
the Markov process X" defined by (1.26).

Example 1.2.4 (Kalman-Bucy filter). Let us consider the linear case of Example 1.1.5,

b(x) = Ax, h(x) = Cx,

initialising X"

0 from the Gaussian law N (x̂0, "P0). It turns out that the processes (X"
t , Y

"
t )

stay Gaussian at each time, so that the conditional law ⇡"t is Gaussian with parameters
(X̂"

t , P
"
t ). Standard computations Kalman and Bucy [1961]; Jazwinski [1970]; Davis and

Davis [1977] then show that P "
t = "Pt is deterministic and X̂"

t solves the linear SDE

dX̂"

t = AX̂"

t + PtH
>[dY "

t �HX̂"

t dt], X̂"

0 = x̂0,

where Pt is the solution to the Riccati equation (1.25). As a consequence,

⇡"t (dx) = Z�1" exp


�

[x� X̂"
t ] · P

�1
t

[x� X̂"
t ]

2"

�
dx,

where Z" > 0 is a normalising constant. As " ! 0, this shows that ⇡"t concentrates on
the Mortensen observer x̂(t) satisfying (1.24), defined as the minimiser of the quadratic
function (1.23). We refer to Carrillo et al. [2022]; Burger et al. [2023] for approximation
procedures using particles and gradient flow interpretations.
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1.2. Conditioning and filtering

1.2.3.2 Small noise limit

In non-linear situations, the "! 0 limit and the related large deviations are due to Hijab
[1984]; James and Baras [1988]; Fleming [1997]. Under suitable assumptions Pardoux
[1980], the solution ⇢"t of the Zakai equation has a density q"t (x) w.r.t. to the Lebesgue
measure. The theory of pathwise filtering Davis [1981] then introduces the random function
p"t defined by

p"t (x) := [�"�1Y "

t h(x)]q
"

t (x), (1.30)

which solves the robust Zakai equation

@tp
"

t = �[b�rhY
"

t ]·rp
"

t+
"

2
�p"t�

1

"

⇢
1

2
|h|2+Y "

t ·L
"h�

1

2
|rh·Y "

t |
2+"r·[b�rhY "

t ]

�
. (1.31)

The randomness of p"t only comes from the Y "
t -dependent coefficients. For each continuous

realisation y = (yt)t�0 of (Y "
t )t�0, (1.31) has a unique (deterministic) solution p" : (t, x) 7!

p"(t, x), which continuously depends on y [Fleming and Pardoux, 1982, Lemma 3.2]. The
random function p"t can then be recovered by solving (1.31) for each continuous path y.
The seminal work Clark and Crisan [2005] further shows that ⇡"t continuously depends on
(Y "

s )0st.
This approach is used in James and Baras [1988] to study the " ! 0 limit: a C1

realisation (yt)t�0 of the process (Y "
t )t�0 is frozen, before studying the " ! 0 behaviour

of the related solution p" of (1.31). Alternatively, q" can be deduced back from p" using
(1.30), for each continuous realisation y = (yt)t�0 of (Y "

t )t�0, so that q" is a continuous
function of y. In [Fleming, 1997, Section 5], a C1 realisation y is frozen to obtain that

@tq
"(t, x) = (L"t )

?q"(x)�
1

"


1

2
|h(t, x)|2 � ẏt · h(x)

�
q"(t, x), (1.32)

corresponding to the Stratonovich form of (1.29) with (Y "
t )t�0 replaced by (yt)t�0. We

then define

q̃"t (x) := exp


�

1

2"

Z
t

0
|ẏs|

2ds

�
q"(t, x), V "

t (x) := �" log q̃
"

t (x).

The exponential factor is a normalising term, which does not affect the minimisation of
x 7! V "

t (x). The following key-result from [Fleming, 1997, Lemma 5.1] then makes the
connection with the cost-to-come function V from Section 1.1.3.

Theorem 1.2.5 (Small noise limit). For every compact set K ⇢ Rd, if

sup
x2K

|�" log q"0(x)� J(x)|  CK"
1/2, (1.33)

for some CK > 0 independent of ", then for every t > 0,

sup
(s,x)2[0,t]⇥K

|V "

s (x)� Vs(x)|  C 0K"
1/2,

for some C 0
K

> 0 that only depends on (t,K).

This result precisely says that q̃" concentrates on the Mortensen observer from Section
1.1.3 as "! 0. This can be rephrased as a large deviation principle with rate function V ,
see e.g. [James and Baras, 1988, Lemma 6.1]. Theorem 1.2.5 relies on the Hamilton-Jacobi
equation for V "

t ,

@tV
"

t + b ·rV "

t +
1

2
|rV "

t |
2
�

1

2
|ẏt � h|2 = "r · b+

"

2
�V "

t , V "

0 = � log q"0,
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before taking the vanishing-viscosity limit to recover (1.21). This logarithmic transform of
(1.31) is known as the Cole-Hopf transform. Following [Fleming, 1997, Section 5], V "

t can
be interpreted as the value function

V "

t (x) := inf
(us)0st

Y
",u
t =x

E

V "

0 (Y
",u

0 ) +

Z
t

0

1

2
|us|

2 + "r · b(Y ",u

s ) +
1

2
|ẏs � h(Y ",u

s )|2ds

�
, (1.34)

the controlled curve being defined through the backward equation

dY ",u

s = b(Y ",u

s )ds+ usds+
p
"d�s,

where (�s)0st is a backward Brownian motion, see [Fleming, 1997, Lemma 5.1] for more
precisions. Formally, the " ! 0 limit in (1.34) recovers the deterministic problem of
controlling the ODE (1.2) backward in time. From the usual Cauchy-Lispchitz theory,
forward and backward ODEs are equivalent, hence this recovers the cost-to-come function
(1.20) as desired. Note, however, the importance of time-reversal in backward control
interpretations for forward filtering equations, see also Section 1.4.1.

1.3 Constrained dynamics on measures

We now turn to the infinite-dimensional setting, replacing the toy-model ODE (1.1) by
a Partial Differential Equation (PDE). In some particular smooth settings, we could try
to directly adapt the methods from Section 1.1-1.2. However, PDE structures are more
complex than ODE ones, hence further restrictions are needed. In the following, we will be
mainly interested in PDEs describing the flow of marginal laws of a continuous stochastic
process. The main examples will be Fokker-Planck equations of type

@tµt = r · [�µtb+
1
2r · [µt��

>]], (1.35)

which gives the flow of time-marginals µt = L(Xt) of the diffusion process

dXt = b(Xt)dt+ �(Xt)dBt, (1.36)

where (Bt)0tT is a Brownian motion. We will also consider the non-linear version

@tµt = r · [�µtb(·, µt) +
1
2r · [µt��

>]], (1.37)

corresponding to the McKean-Vlasov process

dXt = b(Xt,L(Xt))dt+ �(Xt)dBt, (1.38)

which interacts with its own law. In many cases, the relevant object to understand the
constrained flow will be the path-law of (Xt)0tT in P(C([0, T ],Rd)). Before going further
into stochastic analysis, let us introduce the crucial setting of Wasserstein gradient flows.
This setting will enable us to include many other examples and to draw strong parallels
with Section 1.1.

Wasserstein distance. For p � 1 and any metric space (E, dE) endowed with its
Borel �-algebra, Pp(E) is defined as the set of probability measures µ 2 P(E) with finiteR
E
dp
E
(x, x0)dµ(x), for some (and thus any) x0 2 E Villani et al. [2009]. The p-Wasserstein

distance Wp is then defined on Pp(E) as

W p

p (µ, ⌫) := inf
X⇠µ, Y⇠⌫

E[|X � Y |
p].
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1.3. Constrained dynamics on measures

In the following, we fix p = 2. Relevant examples will be E = Rd or E = C([0, T ],Rd). The
Benamou-Brenier Benamou and Brenier [2000] formula gives the variational representation

W 2
2 (µ, ⌫) := inf

(µs,vs)0s1

Z 1

0

Z

Rd
|vs|

2dµsds,

where the infimum runs over curves (µs, vs)0s1 such that µs 2 P2(Rd), (µ0, µ1) = (µ, ⌫),
and satisfying the transport equation

@sµs +r · [µsvs] = 0, (1.39)

in the sense of distributions. The square velocity of the curve (µs)0s1 at t 2 [0, 1] can
be defined as

|µ̇t|
2
µt

:= inf

⇢Z

Rd
|vt|

2dµt, (vs)0s1 s.t. (1.39)
�
.

Although uniqueness does not holds for (vs)0s1 in (1.39), this definition is non-ambiguous
and

W 2
2 (µ, ⌫) = inf

(µs)0s1
µ0=µ, µ1=⌫

Z 1

0
|µ̇s|

2
µs
ds. (1.40)

This strongly reminds us of the geodesic distance on a Riemannian manifold. By anal-
ogy with the Riemannian setting, we can then define Wasserstein geodesics, gradients,
Hessians... see Gentil et al. [2020] for a formal presentation.

Gradient flow. Alternatively, W2-gradient flows can be defined from the general
theory of gradient flows in metric spaces, see Ambrosio et al. [2005] for a detailed rigorous
exposition. At the end of the day, computations show that a curve (µs)0s1 in P2(Rd) is
the W2-gradient flow of a functional F : P2(Rd)! (�1,+1] if

@sµs +r ·
⇥
µsr

�F

�µ

⇤
= 0,

in the sense of distributions, where the linear functional derivative �F

�µ
(µ) : x 7! �F

�µ
(µ, x)

is defined (when it exists) by

8⌫ 2 P2(Rd), lim
"!0

"�1
⇥
F((1� ")µ+ "⌫)� F(µ)

⇤
=

Z

Rd

�F

�µ
(µ)d[⌫ � µ].

In particular, �F

�µ
(µ, x) can be computed by taking ⌫ = �x. Since this only gives �F

�µ
(µ) up

to an additive constant, it is customary to impose
R

Rd
�F

�µ
(µ) dµ = 0. See e.g. Ambrosio

et al. [2005]; Cardaliaguet et al. [2019] for a detailed construction of differential calculus
on measures.

Example 1.3.1 (Linear function). For linear functions F(µ) :=
R

Rd Udµ, where U : Rd
!

R is measurable with sub-quadratic growth, the linear derivative simply reads �F

�µ
(µ) =

U �
R

Rd Udµ.

From Jordan et al. [1998], a seminal example of such gradient flows is (1.35) with
b(x) = �rU(x) and � ⌘ Id, which turns out to be the W2-gradient flow of

F(µ) :=

Z

Rd
Udµ+

1

2

Z

Rd
log

dµ

dLeb
dµ, (1.41)

with the convention F(µ) = +1 if µ has no density w.r.t. the Lebesgue measure. The
Fokker-Planck equation (1.35) then reads

µ̇t = �rW2F(µt), (1.42)
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Chapter 1. Introduction

which can be seen as an infinite dimensional ODE. To constrain the dynamics (1.35),
Section 1.1 can now be adapted using this formalism. An analogous rewriting can be done
for the non-linear equation (1.37), when e.g. b(x, µ) = �r[W ⇤ µ]. The function DµF :=
r
�F

�µ
is often referred to as the intrinsic derivative or Lions-derivative Cardaliaguet et al.

[2019], so that (1.42) reads

@tµt +r · [µtDµF(µt)] = 0,

in the sense of distributions. In the setting of Example 1.3.1, this yields DµF = rU .

Remark 1.3.2 (More general gradient flows). In the following, we develop the above ex-
ample of W2-gradient flows. Further examples could be obtained by considering gradient
flows w.r.t. other metrics, see e.g. [Gentil et al., 2020, Section 3.2]. We could also include
non-constant � by considering a Riemannian metric on Rd weighted by ��> instead of the
Euclidean distance.

1.3.1 First order approach

We now aim at constraining the Fokker-Planck equations (1.35)-(1.37) to stay in the sub-
domain

N
�

 := {µ 2 P2(Rd),  (µ)  0},

for some (regular)  : P2(Rd) ! R. When these dynamics fit in (1.42), the analogy with
Section 1.1.1.1 suggests the corrected dynamics

µ̇t = �rN
�
 
F(µt), (1.43)

where r
N

�
 

is the gradient corresponding to the geodesic distance induced by (1.40) on
N
�

 .

Discrete-time approach. Following Ambrosio et al. [2005], a discrete-time scheme
for (1.42) is

⌫t+h = argmin⌫2P2(Rd)
W 2

2 (⌫, ⌫t)

2
+ F(⌫),

under suitable assumptions on F , like convexity, for this to be well-posed. In the current
Wasserstein setting, this is known as the Jordan-Kinderlehrer-Otto (JKO) scheme for the
Fokker-Planck equation (1.35) Jordan et al. [1998]. The corresponding scheme for the
corrected curve (µt)t�0 reads

⌫t+h = argmin
⌫2N

�
 

W 2
2 (⌫, ⌫t)

2
+ F(⌫),

which is the direct analogous of (1.6). This simply corresponds to the JKO scheme in the
sub-manifold N

�

 . In a one-dimensional setting with  (µ) =
R

R x dµ(x), an exhaustive
study of this construction is performed in Eberle et al. [2017]. For constraining (1.42)
to stay on a sphere in P2(Rd), we refer to the seminal works Carlen and Gangbo [2003];
Tudorascu [2008].

Constrained gradient flow. The W2-structure provides a suitable way to compute
projections on the sub-manifold N

�

 . Following Section 1.1.1.3, (1.43) can be rewritten as

µ̇t = �rW2F(µt)� �trW2 (µt),
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1.3. Constrained dynamics on measures

using a non-negative Lagrange multiplier �t satisfying the slackness condition �t (µt) = 0.
As for (1.9), the multiplier can be computed writing that

0 =
d

dt
 (µt) =

Z

Rd

� 

�µ
(µt)d[@tµt] =

Z

Rd

⇥
�DµF(µt) ·Dµ (µt)� �t|Dµ (µt)|

2
⇤
dµt,

on intervals where �t is identically 0. The analogous of the constraint qualification condi-
tion in Section 1.1.1.3 is now that Dµ (µt) 6= 0 on a set with positive µt-measure.

Mean reflected SDE. The above projection procedure can be used to constrain equa-
tions (1.35)-(1.37) without requiring the gradient structure (1.42) anymore. In terms of
SDEs, this amounts to replacing (1.36) by

dXt = b(Xt)dt� �tDµ (L(Xt), Xt)dt+ �(Xt)dBt, (1.44)

where �t is computed as above. We assumed till now that the Lagrange multiplier has
a density w.r.t. the Lebesgue measure. As in the setting of Section 1.1.2.3, this is not
always true and the right setting requires a non-negative Radon measure � 2M+([0, T ])
satisfying

8t 2 [0, T ],  (L(Xt))  0, and
Z

T

0
 (L(Xt))�(dt) = 0. (1.45)

The problem of constraining (1.36) in N
�

 using a (deterministic) � 2M+([0, T ]) satisfying
(1.44)-(1.45) is known as mean reflection for SDEs. It can be seen as an infinite-dimensional
generalisation of the Skorokhod problem described in Section 1.1.1.2. This problem was
initially introduced in Briand et al. [2018] for backward stochastic differential equations
(BSDE) and further developed in Briand et al. [2020b]. This last work also proposes an
approximating scheme using an interacting N -particle system with almost sure constraints.
This system can be seen as a reflected SDE in RdN which enters the framework of Remark
1.2.2. An exhaustive study of these reflected dynamics is done in Briand et al. [2020a],
which also includes mean reflection for SDEs with an additional common noise (in this last
setting, the multiplier � becomes random).

The specific constraint  (µ) := 1 � µ(G) for some measurable G ⇢ Rd amounts to
the support constraint µ(G) = 1. The corresponding problem of constraining (1.35) can
be seen as an infinite-dimensional extension of the sub-differential dynamics from Section
1.1.1.2. This problem is tackled using the above W2-approach in Jabir [2017], introducing
Wasserstein sub-differential dynamics. See also Ambrosio et al. [2005] for a generic notion
of Wasserstein sub-gradient. In all these examples, the initial dynamics (1.36) is a classical
SDE, whereas the corrected dynamics is a McKean-Vlasov process of type (1.44), corre-
sponding to a non-linear Fokker-Planck equation of type (1.37). This was expected since
the constraint acts on the law of the process, rather than the process itself. Constraining
directly non-linear equations of type (1.37) is then a natural extension, see Xiangdong and
Shaopeng [2023] for an exhaustive study of this setting.

Example 1.3.3 (Some applications). The idea of simulating constrained dynamics using
a projected N -particle approximation had been used in Samaey et al. [2011] for simulating
polymeric fluids. As mentioned above, such particle systems are reminiscent of the Norton
dynamics, which is a useful simulation tool in molecular dynamics, see Remark 1.2.2. We
also refer to Debrabant et al. [2017]; Lelièvre et al. [2020] for a related, but different,
approach using moment constraints for accelerating numerical simulations.
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1.3.2 Newton equation on measures

Looking back at the dynamics (1.42), the gradient flow (µs)0sT is the unique minimiser
for

inf
(⌫s)0sT

F(⌫T )� F(⌫0) +

Z
T

0


1

2
|⌫̇s|

2
⌫s

+

Z

Rd

1

2
|DµF(⌫s)|

2d⌫s

�
ds, (1.46)

the initial law µ0 being imposed. This property is an instance of the characterisation of
gradient flows as curves with maximal slope with respect to F , see Ambrosio et al. [2005].
Problem (1.46) can be seen as an infinite-dimensional generalisation of the variational
formula studied in Section 1.1.2, in the specific case of gradient dynamics. Looking at
Section 1.1.2.1, it is then natural to write optimality conditions for (1.46) as a Newton
equation in P2(Rd) satisfied by (µs)0sT . This equation has been first introduced by
the prominent work Conforti [2019] in the specific case (1.41), and further developed in
Gentil et al. [2020], as well as the related geometric framework. A main challenge is to
make sense of the acceleration µ̈t, defined as the covariant derivative Dµ̇t µ̇t in P2(Rd) of
µ̇t in the direction µ̇t, see Remark 1.1.2. From [Gentil et al., 2020, Section 3.3], formal
computations give the covariant derivative of ⌫̇t := r�t at µt in the direction µ̇t = r⇥t as

Dµ̇t ⌫̇t = ProjTµtP2(Rd)

⇥
r@t�t +r

2�tr⇥t

⇤
,

using the orthogonal projection in L2(µt) on the tangent space

TµtP2(Rd) := {r�, � 2 C1c (Rd)}
L
2(µt)

.

The Newton equation obtained by taking the (covariant) derivative of (1.42) reads

µ̈s =
1
2rW2 |DµF(µs)|

2, (1.47)

as computed in [Gentil et al., 2020, Proposition 22]. In the case (1.41), the computations
in Conforti [2019] yield

4|DµF(µs)|
2 =

Z

Rd
|r[logµs + 2V ]|2dµs.

This quantity is well-known as the (weighted) Fisher information of µs. This setting
corresponds to the famous Schrödinger bridge problem, see Section 1.3.3.1 below.

Remark 1.3.4 (F-interpolation). Following Gentil et al. [2020], we can extend the setting
of gradient flows by defining the interpolation cost

AF (µ, ⌫) := inf
(⌫s)0sT
⌫0=µ, ⌫T=⌫

Z
T

0


1

2
|⌫̇s|

2
⌫s

+

Z

Rd

1

2
|DµF(⌫s)|

2d⌫s

�
ds,

for any µ, ⌫ 2 P2(Rd). This notion of interpolation can be seen as an infinite-dimensional
generalisation of (1.15) in Example 1.1.3. As in the finite-dimensional setting, the optimal
curves for AF (µ, ⌫) satisfy the Newton equation (1.47). Finer properties, like convexity and
contraction inequalities, of these interpolations are studied in Gentil et al. [2020]. A no-
table example is the case (1.41) for which this interpolation corresponds to the Schrödinger
bridge introduced in Section 1.3.3.1. When F ⌘ 0, AF (µ, ⌫) reduces to the square distance
1
2W

2
2 (µ, ⌫), the minimisers being the Wasserstein geodesics, also known as McCann’s dis-

placement interpolations McCann [1995].
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1.3. Constrained dynamics on measures

Remark 1.3.5 (Link with Schrödinger’s equation). Equation (1.47) corresponds to the
time-derivative of the Fokker-Planck equation @tµt = r · [µtrU + 1

2rµt]. An interesting
connection with Schrödinger’s equation had been shown in von Renesse [2012] by chang-
ing the sign into µ̈s = �1

2rW2 |DµF(µs)|2. This last equation corresponds to the time-
derivative of a Schrödinger-type equation. This amounts to considering “imaginary time"
by performing the formal change of variable t = i⌧ – namely Wick’s rotation. This formal-
ism allows for many analogies with the behaviour of finite-dimensional Newton equations
(steady states, oscillations...).

From (1.46), let us go back to the problem of constraining (1.42) to stay in N
�

 .
Comparing with Section 1.1.2, the analogous of the second order procedure (1.4) now
reads

inf
(⌫s)0sT

8t2[0,T ], (⌫t)0

Z
T

0


1

2
|⌫̇s|

2
⌫s

+

Z

Rd

1

2
|DµF(⌫s)|

2d⌫s

�
ds,

the initial condition ⌫0 being possibly imposed. The study of this procedure is a

main contribution of this thesis, which is summarised in Section 1.4.3.2. A
convenient framework will be the one of entropy minimisation, the connection with the
above formulation being detailed in Section 1.3.3.3. In particular, it enables us to handle
more general dynamics, which need not be gradient, including (1.35)-(1.37).

1.3.3 Conditioning approach and entropy

Let us now present an infinite-dimensional analogous of the probabilistic approach of Sec-
tion 1.2. We mostly focus on the pathwise approach of Section 1.2.2. The main idea
is to randomise (1.35)-(1.37) in a suitable way, before using conditioning to impose the
constraint

8t 2 [0, T ],  (µt)  0,

and eventually letting the noise amplitude vanish. In the specific case where the infinite-
dimensional dynamics of interest can be written as an ODE in some Hilbert space, the pro-
cedure of Section 1.2 can be directly applied using the infinite-dimensional Freidlin-Wentzell
theory Budhiraja et al. [2008]. Otherwise, PDE structures require more care. There has
been much recent interest in adding noise to (1.35), often motivated by regularisation-by-
noise effects as in Stannat [2002]; Renesse and Sturm [2007]; Konarovskyi [2017]; Dello Schi-
avo [2022]; Delarue and Hammersley [2022]. In our present setting, we are rather interested
in the behaviour of the randomisation with respect to conditioning. Motivated by the fa-
mous Gibbs principle in statistical mechanics, we approximate the solution of (1.35) using
the empirical measure of independent copies of (1.36),

dXi

t = b(Xi

t)dt+ �(Xi

t)dB
i

t, i � 1, (1.48)

where (Bi)i�1 is a sequence of independent Brownian motions in Rd. For N � 1 and
t 2 [0, T ], we define the empirical measure of the N -particle system at time t as

⇡( ~XN

t ) :=
1

N

NX

i=1

�
X

i
t
2 P(Rd),

using the notation ~XN
t := (X1

t , . . . , X
N
t ). From the law of large numbers, almost surely,

8t 2 [0, T ], ⇡( ~XN

t )
weak
�����!
N!+1

µt,
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giving the consistency of our approximation of (1.35). From Ito’s formula, ⇡( ~XN
t ) a.s.

satisfies

d

Z

Rd
' d⇡( ~XN

t ) =

 Z

Rd
L' d⇡( ~XN

t )

�
dt+

1

N

NX

i=1

r'(Xi

t) · �(X
i

t)dB
i

t,

for any smooth test function ' : Rd
! R, the generator being defined by L' := b ·r' +

1
2Tr[��

>
r

2']. The last term on the r.h.s is a martingale whose quadratic variation is of
order N�1. This motivates the informal re-writing

d⇡( ~XN

t ) = L?⇡( ~XN

t )dt+N�1/2dMt, (1.49)

where (Mt)0tT is intended to be a measure-valued martingale term of order 1, and L?

is the formal L2-adjoint of L. As expected, (1.49) formally recovers (1.35) as N ! +1.
Equation (1.49) is known as the Dean-Kawasaki stochastic PDE, see e.g. Kawasaki [1994];
Dean [1996]; Konarovskyi et al. [2019]; Fehrman and Gess [2022]. This writing yields a
striking infinite-dimensional analogy (due to Dawson and Gärtner [1989]) with the Freidlin-
Wentzell diffusion (1.26), replacing b(X"

t ) by L?⇡( ~XN
t ) and " by N�1. In particular, this

motivates our choice of approximation for (1.35), by comparison with Section 1.2. This as
well extends to non-linear dynamics of type (1.37), replacing the independent copies Xi

by the interacting particles

dXi,N

t
= b(Xi,N

t
,⇡( ~XN

t ))dt+ �(Xi,N

t
)dBi

t, 1  i  N. (1.50)

In this case, the convergence of ⇡( ~XN
t ) towards the solution of (1.37) is known as a propaga-

tion of chaos result Sznitman [1991], see the survey articles Chaintron and Diez [2022a,b]
on this topic. The related Dean-Kasawaki equation can be written as well, replacing
L in (1.49) by the measure-dependent generator L

⇡( ~XN
t )'(x) := b(x,⇡( ~XN

t )) · r'(x) +
1
2Tr[��

>
r

2'(x)].
Following the procedure in Section 1.2, we now look for a constrained measure µt 2 N

�

 ,
obtained as the N ! +1 limit of ⇡( ~XN

t ) conditionally on the event

8t 2 [0, T ],  (⇡( ~XN

t ))  0. (1.51)

Since (1.51) involves the full path (⇡( ~XN
t ))0tT , the natural probabilistic object is the

pathwise empirical measure,

⇡( ~XN

[0,T ]) :=
1

N

NX

i=1

�
X

i,N
[0,T ]
2 P(C([0, T ],Rd)),

using the explicit notation Xi,N

[0,T ] := (Xi,N

t
)0tT . The measure ⇡( ~XN

t ) can be recovered as
the time-marginal law of ⇡( ~XN

[0,T ]) at time t. As in Section 1.2.2, large deviations provide
a convenient framework to study the N ! +1 behaviour of ⇡( ~XN

[0,T ]) conditionally on
(1.51).

1.3.3.1 Gibbs principle and Schrödinger bridge problems

Let us briefly describe two famous problems related to large deviations of mean-field sys-
tems.

Gibbs principle. Let us consider a system of N identically distributed random vari-
ables (Xi,N )1iN taking values in some Polish space E. For instance, E = P(C([0, T ],Rd))
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1.3. Constrained dynamics on measures

in the particle settings (1.48)-(1.50). We assume that the Xi,N are either independent or
interacting through their empirical measure ⇡( ~XN ) 2 P(E). Next, let us imagine that
some measurement is performed on the system’s configuration revealing that ⇡( ~XN ) be-
longs to a subset A ⇢ P(E). It is then natural to look for the most likely configuration
of the system or the law of X1,N conditionally on {⇡( ~XN ) 2 A}. Both questions can be
answered when the sequence of the L(⇡( ~XN )) satisfies a LDP with rate function I. This
answer is part of a meta-principle, called the Gibbs conditioning principle: an informal
statement of this principle is

lim
N!+1

L(X1,N
|⇡( ~XN ) 2 A) = argminA I.

In words, the conditional distribution converges to the minimiser (if well-defined) of the
rate function among all distributions compatible with the observation. Some reference
textbooks about the Gibbs conditioning principle are Lanford [1973]; Ruelle [1965]; Dembo
and Zeitouni [2009]; Ellis [2006]; Dupuis and Ellis [2011].

When the (Xi,N )1iN are independent with common law ⌫ 2 P(E), the LDP for
L(⇡( ~XN )) is the famous Sanov theorem (see e.g. Dembo and Zeitouni [2009]), the rate
function I being the relative entropy functional

H(µ|⌫) :=

(R
E
log dµ

d⌫ dµ, if µ⌧ ⌫,

+1, otherwise.

This function is always non-negative, strictly convex and has compact level sets for the
weak topology on probability measures. Moreover, ⌫ is the unique zero of µ 7! H(µ|⌫).
When E = P(C([0, T ],Rd)) and ⌫ is the path-law of the diffusion process (1.36), this covers
the case of the independent particles (1.48). The measurement then corresponds to

A := {µ[0,T ] 2 P(C([0, T ],Rd)), 8t 2 [0, T ],  (µt)  0}.

When the set A is convex (this holds if is convex in the above example), argminµ2AH(µ|⌫)
is well-defined and known as the entropic projection (or I-projection) of ⌫ onto the convex
set A, see the seminal works Csiszár [1975, 1984]. This projection enjoys many geometric
properties connected to information theory.

Example 1.3.6 (Tower property). A main property of entropic projections is the tower
property [Csiszár, 1975, Theorem 2.3]. It states that the entropic projection of argminµ2AH(µ|⌫)
onto a convex subset A0 ⇢ A coincides with the entropic projection of ⌫ onto A0. In our
constrained setting, defining

AT,T 0 := {µ[0,T 0] 2 P(C([0, T 0],Rd)), 8t 2 [0, T ],  (µt)  0}, 0  T  T 0,

the tower property tells us that the projection onto AT 0,T 0 can be computed by projecting
the projection onto AT,T 0 , onto AT 0,T 0 . This restores a kind of recursivity property at the
pathwise level.

When the (Xi,N )1iN correspond to the interacting system (1.50), the LDP is more
involved Tanaka [1984]; Dawson and Gärtner [1987]; Budhiraja et al. [2012]; Fischer [2014].
The rate function I is now µ[0,T ] 7! H(µ[0,T ]|�(µ[0,T ])), where �(µ[0,T ]) is the path-law of
the solution to

dXt = b(Xt, µt)dt+ �(Xt)dBt,

the interaction in the drift b being frozen at µ[0,T ]. Under mild (Lipschitz) assumptions on
the coefficients, we can check that the path-law of the McKean-Vlasov process (1.38) is the

25



Chapter 1. Introduction

unique zero of µ[0,T ] 7! H(µ[0,T ]|�(µ[0,T ])). Because of the non-linearity, proving this LDP
is more intricate than in the independent case. Its study is a major part of Chapter

3, see Section 1.4.2.

Schrödinger bridge. Equivalently, the distribution argminA I can be seen as the most
likely configuration of the system conditionally on the observation. This viewpoint was
the one adopted by E. Schrödinger in a celebrated thought experiment Schrödinger [1932]
motivating the formulation of the Schrödinger bridge problem, which is the prototype of a
stochastic mass transport problem. Given a reference path-law ⌫[0,T ], this problem looks
for the closest dynamics to this reference, knowing the initial and terminal laws µini and
µfin. Motivated by the Gibbs principle, Schrödinger naturally chose the relative entropy
as a distance criterion, leading to the formulation

inf
µ[0,T ]2P(C([0,T ],Rd))

µ0=µini, µT=µfin

H(µ[0,T ]|⌫[0,T ]).

This pathwise interpolation problem reminds us of Remark 1.3.4, see Section 1.3.3.3 below
for further connections. We refer to Dawson et al. [1990]; Cattiaux and Léonard [1994];
Föllmer and Gantert [1997] for connections with large deviations, and to Zambrini [1986,
1987]; Krener [1988] for links with quantum Euclidean mechanics. See also the survey
article Léonard [2014] and references therein. This formulation paves the way for natural
generalisations, replacing the relative entropy by any rate function I. The case µ[0,T ] 7!

H(µ[0,T ]|�(µ[0,T ])) is known as the mean-field Schrödinger problem Backhoff et al. [2020].

Generic constraints. At this stage, we obtained a generic procedure analogous to
(1.4) to constrain dynamics on measures that correspond to the time-marginals of a path-
law ⌫[0,T ]. The action functional used in the finite-dimensional setting from Section 1.1.2 is
now replaced by the relative entropy w.r.t. ⌫[0,T ] (or any convenient rate function), leading
to

inf
µ[0,T ]2P(C([0,T ],Rd))
8t2[0,T ], (µt)0

H(µ[0,T ]|⌫[0,T ]). (1.52)

Studying this constraint procedure is the main goal of Chapters 4-5, see Section

1.4.3. Any kind of pathwise constraint could be imposed as well. In the following, we
will mostly assume that ⌫[0,T ] is the path-law of a diffusion process of type (1.48). A
crucial question is then to describe path-measures that have a finite entropy w.r.t. ⌫[0,T ],
see Section 1.3.3.2 below. For elements on this question when ⌫[0,T ] is the path-law of a
general Markov process, we refer to Kraaij [2018] and references therein.

Example 1.3.7 (Support constraints and Mortensen observer). A notable example is
 (µ) = 1 � µ(G) for an open domain G ⇢ Rd, as mentioned in Section 1.3.1. If ⌫[0,T ]

is the law of (Xt)0tT given by (1.36), then the minimiser ⌫ [0,T ] of (1.52) is the law of
(Xt)0tT conditionally on

8t 2 [0, T ], Xt 2 G,

allowing for explicit computations Pinsky [1985]. In particular, Doob’s h-transform pro-
vides that ⌫[0,T ] is the law of the solution to

dYt = b(Yt)dt+ ��>r log ut(Yt)dt+ �(Yt)dBt,

where ut(x) := P(⌧x
G

> T � t), ⌧x
G

being the exit time from G when Xt is started at x.
Moreover, ut solves the Dirichlet problem

(
@tut + Lut = 0, in G,

ut|@G = 0.
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1.3. Constrained dynamics on measures

Looking back at Section 1.1.3, the analogous of Mortensen’s observer in this context is

⌫T := argmin
µ2P(Rd)
µ(G)=1

inf
µ[0,T ], µT=µ

8t2[0,T ], µt(G)=1

H(µ[0,T ]|⌫[0,T ]),

corresponding to the marginal law of ⌫ [0,T ] at the terminal time T . Since ⌫T is the law of
XT conditionally on {T < ⌧G}, a direct computation yields

(
@T ⌫T = L?⌫T � [ d

dT logP(T < ⌧G)]⌫T , in G,

⌫T |@G = 0.

This closed-form PDE is the infinite-dimension analogous of the Mortensen dynamics
(1.22). Remarkably, this allows us to condition on intervals [0, T ] with increasing T with-
out recomputing the full path-law ⌫ [0,T ] at each step. The existence of such a closed form
equation for more general constraints is a challenging open question.

1.3.3.2 Girsanov theory and stochastic control

Looking at (1.52), the next step is to characterise measures which have a finite entropy
w.r.t. the path-law ⌫[0,T ] of the diffusion process (1.48). This question is answered by the
famous Girsanov theory under finite entropy condition Jacod and Shiryaev [2013]; Föllmer
[1988]; Léonard [2012], and allows for connections with stochastic control.

Girsanov theory. If µ[0,T ] 2 P(C([0, T ],Rd)) satisfies H(µ[0,T ]|⌫[0,T ]) < +1 and
uniqueness holds for the solution of (1.48), [Léonard, 2012, Theorems 2.1-2.3] provide an
adapted process (ct)0tT such that the canonical process (Xt)0tT on ⌦ = C([0, T ],Rd)
satisfies

dXt = b(Xt)dt+ ��>(Xt)ctdt+ �(Xt)dBt, µ[0,T ]-a.s.,

where (Bt)0tT is a Brownian motion under µ[0,T ] and

H(µ[0,T ]|⌫[0,T ]) = H(µ0|⌫0) + E
Z

T

0

1

2
|�>(Xt)ct|

2dt.

This powerful tool reduces entropy minimisation problems to stochastic control problems,
connecting with the formalism of Section 1.1.2.

Constrained stochastic control. On a filtered probability space (⌦,FT , (Ft)0tT ,P),
we consider the controlled dynamics

dX↵

t = b(X↵

t )dt+ �(X↵

t )↵tdt+ �(X↵

t )dBt,

for any adapted square-integrable process (↵t)0tT . Problem (1.52) boils down to the
control problem with law constraints

inf
8t2[0,T ], (L(X↵

t ))0
H(L(X↵

0 )|⌫0) + E
Z

T

0

1

2
|↵t|

2dt, (1.53)

the minimisation being over ↵ and (X↵

0 ,↵). This type of control problem is non-standard
because of the constraints that act on the distribution of the controlled process, rather than
the process itself. A control problem close to (1.53) has been recently studied in Daudin
[2022, 2023b], see also references therein for applications in stochastic finance. These works
rely on PDE methods close to the mean-field game theory Huang et al. [2006]; Lasry and
Lions [2007]; Cardaliaguet et al. [2019], rather than our pathwise entropy approach. A

27



Chapter 1. Introduction

non-linear version of (1.53) can be obtained by replacing the above controlled dynamics
by the McKean-Vlasov dynamics

dX↵

t = b(X↵

t ,L(X
↵

t ))dt+ �(X↵

t )↵tdt+ �(X↵

t )dBt.

This precisely amounts (see Fischer [2014]) to replacing the relative entropy in (1.52) by the
mean-field entropy µ[0,T ] 7! H(µ[0,T ]|�(µ[0,T ])) defined in Section 1.3.3.1. An extensive

study of this non-linear problem is done in Chapter 5, see Section 1.4.3.2.

Similarly, the Schrödinger bridge problem can be recovered from (1.53) by replacing the
inequality constraints by L(X↵

0 ) = µini and L(X↵

T
) = µfin. This formulation was introduced

by P.-L. Lions in his courses at Collège de France as the planning problem for mean-field
games, see also Graber et al. [2019]; Bakaryan et al. [2021] and the recent variation Bertucci
[2023].

PDE formulation. Looking for a PDE formulation of (1.53) in the spirit of Section
1.3.2, we only consider feedback controls ↵t = ht(X↵

t ) for deterministic vector fields ht,
yielding

inf
(µh

0 ,h)
8t2[0,T ], (µh

t )0

H(µh

0 |⌫0) +

Z
T

0

Z

Rd

1

2
|ht|

2dµtdt, (1.54)

the controlled PDE being

@tµ
h

t = r · [�µh

t b� µh

t ht +
1
2r · [µh

t ��
>]],

in the sense of distributions. Following the seminal work Dawson and Gärtner [1987], we
can get rid of the control field h by introducing the norm on distributions T defined by

kTk2µ := sup
'2C1

c (Rd)
hT,'i � 1

2hµ, |r'|
2
i,

for any µ 2 P(Rd), the value +1 being allowed. Formally, this norm is realised by
some ' solving the Poisson problem �r · [µr'] = T. Alternatively, we can check that
kTk2µ coincides with the square-norm in the negative Sobolev space H�1(µ). Using the
contraction principle from the large deviation theory, Dawson and Gärtner [1987] proves
that for any absolutely continuous P(Rd)-valued curve (µt)0tT ,

inf
µ
0
[0,T ]2P(C([0,T ],Rd))

(µ0
t)0tT=(µt)0tT

H(µ0[0,T ]|⌫[0,T ]) = H(µ0|⌫0) +

Z
T

0
k@tµt � L?µtk

2
µt
dt,

the dual generator L? being the one in (1.49). Similarly, for the non-linear case (1.37),

inf
µ
0
[0,T ]2P(C([0,T ],Rd))

(µ0
t)0tT=(µt)0tT

H(µ0[0,T ]|�(µ
0

[0,T ])) = H(µ0|⌫0) +

Z
T

0
k@tµt � L?µt

µtk
2
µt
dt. (1.55)

This formula is the infinite-dimensional analogous of the Lagrangian formulation used in
Section 1.1.2. In particular, the above quantity is the large deviation functional for the
LDP satisfied by the L((⇡( ~XN

t ))0tT ) in P(C([0, T ],P(Rd))) Dawson and Gärtner [1987].
The PDE formulation corresponding to (1.52) then reads

inf
(µt)0tT

8t2[0,T ] (µt)0

H(µ0|⌫0) +

Z
T

0
k@tµt � L?µt

µtk
2
µt
dt,
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1.3. Constrained dynamics on measures

obtained as an infinite-dimensional analogous of the second-order procedure (1.4). As
previously, we refer to Section 1.4.3.2 and Chapter 5 for a detailed analysis of this problem.
To further emphasise the analogy with the relaxed formulation (1.10) in Section 1.1.2, we
notice that the relaxed formulation for the above problem reads

inf
(µt)0tT

H(µ0|⌫0) +

Z
T

0
k@tµt � L?µt

µtk
2
µt
dt+

Z
T

0
 (µt)�(dt),

for a suitable Lagrange multiplier � 2M+([0, T ]). Adapting the computations in Section
1.1.2.3 to this setting is a crucial ingredient in Chapter 5. Similarly to Section 1.1.2.4, a
penalisation approach can be used to approximate �, this strategy being applied in Daudin
[2023b].

Remark 1.3.8 (Link with gradient flows). As in Remark 1.2.3, when (1.37) corresponds
to the gradient flow dynamics (1.41)-(1.42), the JKO scheme described in Section 1.3.1
can be recovered from the large deviation functional (1.55). Let us first sketch an informal
argument from [Adams et al., 2013, Section 6.1]. If we look at independent Brownian
motions ~BN = (B1, . . . , BN ),

P
�
~BN

h
= ~yN | ~BN

0 = ~xN
�
⇣ exp


�

1

2h

NX

i=1

|xi � yi|2
�
,

as h ! 0. More rigorously, a LDP holds with rate function ~yN 7! 1
2 |~y

N
� ~xN |

2. Let us
denote by [~xN ] the equivalence class of ~xN in the quotient space (Rd)N/SN of indistin-
guishable N -tuples. The mapping ~xN 7! [~xN ] being continuous, the contraction principle
for large deviations yields

P
�
[ ~BN

h
] = [~yN ]

��[ ~BN

0 ] = [~xN ]
�
⇣ exp


� inf
⌧2SN

1

2h

NX

i=1

|xi � y⌧(i)|2
�
.

Remarkably, the embedding (
(Rd)N/SN ! P2(Rd),

[~xN ] 7! ⇡(~xN ),

is an isometry for the W2-distance, suggesting that

P
�
⇡( ~BN

h
) = µ|⇡( ~BN

0 ) = ⌫
�
⇣ exp


�

N

h
W 2

2 (µ, ⌫)

�
,

provided that µ, ⌫ are N -empirical measures. This motivates the use of the W2-distance
for handling empirical measures of Brownian particles. The entropy functional then gets
involved to go beyond N -empirical measures µ, ⌫. More rigorously, a �-convergence result
like the one mentioned in Remark 1.2.3 is proved in Adams et al. [2011]; Erbar et al. [2015],
stating that

µ 7!


inf

(µt)0th
µ0=⌫, µh=µ

Z
h

0
k@tµt � L?µt

µtk
2
µt
dt

�
�

1

2h
W 2

2 (µ, ⌫)
�
���!
h!0

µ 7! F(µ)� F(⌫),

where F is defined by (1.41).
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1.3.3.3 Time-reversal and optimal transport

Let us now sketch the connection between entropy minimisation problems and the transport
setting from Section 1.3.2. To do so, we briefly describe some fundamental results about
time-reversal of diffusion processes Cattiaux et al. [2023].

Time-reversal. Let ⌫[0,T ] be the path-law of the solution to

dX⌫

t = b⌫t (X
⌫

t )dt+ �t(X
⌫

t )dBt,

where (Bt)0tT is a Brownian motion and b⌫t (resp. �t) is a deterministic vector (resp.
matrix) field. Let µ[0,T ] be any path measure with H(µ[0,T ]|⌫[0,T ]) < +1. From Section
1.3.3.2, µ[0,T ] is the law of the solution to a similar SDE whose drift term is a perturbation
of b⌫t . We further assume that this drift is a deterministic vector field bµ

t
, so that µ[0,T ] is

the path-law of the solution to

dXµ

t
= bµ

t
(Xµ

t
)dt+ �t(X

µ

t
)dBt,

with bµ
t
= b⌫t + �t�>t ct. For the sake of simplicity, we assume that �t is invertible. This

yields

H(µ[0,T ]|⌫[0,T ]) = H(µ0|⌫0) + E
Z

T

0

1

2
|��1

t
[bµ
t
� b⌫t ](X

µ

t
)|2dt. (1.56)

Let us now introduce the law  ���⌫[0,T ] of the time-reversal (X⌫

T�t
)0tT . We similarly define

 ���µ[0,T ]. Under regularity assumptions on (b⌫ ,�), a fundamental result tracing back to
Haussmann and Pardoux [1986] is that  ���⌫[0,T ] is the path-law of the solution to

d
 �
X⌫

t =
 �
b⌫t (
 �
X⌫

t )dt+
 ��t(
 �
X⌫

t )dBt,

with
 �
X⌫

t = X⌫

T�t
,  ��t(x) := �T�t(x) and

 �
b⌫t (x) := �b

⌫

T�t(x) + ⌫�1
T�t

(x)r · [⌫T�t�T�t�
>

T�t(x)],

where µt(x) denotes the density of µt w.r.t. the Lebesgue measure and the divergence is
taken in the sense of distributions. The time-reversed drift

 �
bµ
t

can be similarly computed.
A formal computation then gives the time-reversal formula

[bµ
t
+
 ��
bµ
T�t

]� [b⌫t +
 ��
b⌫T�t] = �t�

>

t r log ⇢t,

where ⇢t := µt/⌫t is the density of µt w.r.t. ⌫t. Under suitable assumptions, this formula
is proved in [Cattiaux et al., 2023, Theorem 1.16]. As a consequence, the Girsanov theory
implies that

H( ���µ[0,T ]|
 ���⌫[0,T ]) = H(µT |⌫T ) + E

Z
T

0

1
2 |�
�1
T�t

[
 �
bµ
t
�
 �
b⌫t ](
 �
Xµ

t
)|2dt

= H(µT |⌫T ) + E
Z

T

0

1
2 |�
�1
t

[b⌫t � bµ
t
](Xµ

t
) + �>t r log ⇢t(X

µ

t
)|2dt.

Taking the half-sum with (1.56) now yields

[H(µ[0,T ]|⌫[0,T ]) +H( ���µ[0,T ]|
 ���⌫[0,T ])]/2 = [H(µ0|⌫0) +H(µT |⌫T )]/2

+ E
Z

T

0

1
2 |�
�1
t

[b⌫t � bµ
t
](Xµ

t
) + 1

2�
>

t r log ⇢t(X
µ

t
)|2dt+ E

Z
T

0

1
8 |�
>

t r log ⇢t(X
µ

t
)|2dt.
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1.3. Constrained dynamics on measures

Since time-reversal is a one-to-one mapping, we have H(µ[0,T ]|⌫[0,T ]) = H( ���µ[0,T ]|
 ���⌫[0,T ]).

Let us further introduce the current velocity v⌫t := �b⌫t +
1
2⌫
�1
t
r · [⌫t�t�>t ], so that

@t⌫t +r · [⌫tv
⌫

t ] = 0,

in the sense of distributions. If v⌫t is a gradient field, this recovers the notion of Wasserstein
velocity introduced in Section 1.3.2. We similarly define vµ

t
. This yields

H(µ[0,T ]|⌫[0,T ]) =
1
2 [H(µ0|⌫0) +H(µT |⌫T )] + E

Z
T

0

1
2 |�
�1
t

[vµ
t
� v⌫t ](X

µ

t
)|2dt

+ E
Z

T

0

1
8 |�
>

t r log dµt
d⌫t

(Xµ

t
)|2dt. (1.57)

The first term on the r.h.s. only depends on marginal laws at times 0 and T . The second
term is the weighted L2-norm of the relative current velocity of µ w.r.t. ⌫. In Nelson’s
formalism of stochastic mechanics Nelson [2020], this term is interpreted as a kinetic action
by analogy with classical mechanics, whereas the last term is the osmotic action. This last
term is the integrated (weighted) Fisher information of µt w.r.t. ⌫t: it only depends on
marginal laws. It can also be written as the L2-norm of the relative osmotic velocity using
Nelson’s formalism of stochastic velocities, see e.g. [Cattiaux et al., 2023, Section 4]. To
get rid of the �t-factors, let us point out that a common framework – which traces back
to Dawson and Gärtner [1987] – replaces the Euclidean norm by a Riemannian metric
weighted by �t�>t . We refrained to do so for preserving the consistency of our notations.

Back to gradient flows. Let us now recover the gradient flow formalism from Section
1.3.2. We first assume that �t ⌘ Id, before noticing that

|vµ
t
� v⌫t |

2 + 1
4 |r log dµt

d⌫t
|
2 = |vµ

t
|
2 + 1

4 |r[logµt + 2U ]|2

� 2vµ
t
· v⌫t + |v⌫t |

2
�

1
4r[log ⌫t + 2U ] ·r[2 logµt � log ⌫t + 2U ], (1.58)

for any smooth potential U : Rd
! R. We now assume that b⌫t = �rU , so that (⌫t)0tT is

the gradient flow (1.42) of the free energy F defined by (1.41). Under suitable integrability
conditions on U , the stationary measure of this flow is ⌫1(dx) := Z�11 e�2U(x)dx, Z1 being
a normalising constant. We then notice that

F(µ) = 1
2 [H(µ|⌫1)� logZ1],

so that (1.41)-(1.42) appear as the gradient flow of the relative entropy w.r.t. to ⌫1. We
eventually impose that ⌫0 = ⌫1. Since ⌫[0,T ] is ⌫1-reversible, this implies that ⌫[0,T ] =
 ���⌫[0,T ]. In particular, ⌫t = ⌫1 at any time, so that v⌫t = 0 using the expression of (b⌫t , ⌫1).
Since all the terms in the second line of (1.58) vanish, the decomposition (1.57) becomes

H(µ[0,T ]|⌫[0,T ]) =
1
2 [H(µ0|⌫1)+H(µT |⌫1)]+E

Z
T

0

1
2 |v

µ

t
(Xµ

t
)|2+ 1

8 |r[logµt+2U ](Xµ

t
)|2dt.

Noticing that
R

Rd |v
µ

t
|
2dµt corresponds to |µ̇s|

2
µs

, the above quantity precisely recovers the
variational formula (1.46) from Section 1.3.2, up to an additive term that only depends on
(µ0, µT ). This recovers the setting of Conforti [2019] described in Section 1.3.2, so that
the Newton equation in P2(Rd) follows. Similarly, the above formula for H(µ[0,T ]|⌫[0,T ])
coincides (up to a constant) with the interpolation cost AF (µ0, µT ) defined in Remark
1.3.4 with the choice (1.41) for F .
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Conclusion. At this stage, we completed the links between the finite-dimensional
settings in Sections 1.1-1.2 and the measure setting in Section 1.3. The analogous of the
first-order strategy (1.3) is the constrained gradient formalism in Section 1.3.1, together
with its non-gradient extension. The Lagrangian in the second-order approach (1.4) in
Section 1.1.2 has been replaced by the relative entropy (1.52). The Mortensen observer
can be defined in this context, see Example 1.3.7. The links with conditioning described in
Section 1.2 when adding a small Gaussian noise corresponds to the Gibbs principle from
Section 1.3.3. This as well includes non-linear dynamics of type (1.37). In particular, the
Dawson-Gärtner formula (1.55) extends the classical Lagrangian mechanics to spaces of
probability measures. At the end of the day, optimality conditions can be written in terms
on Newton equations on the Wasserstein space.

Remark 1.3.9 (Geometric interpretation). We can look for a geometric interpretation of
the second-order procedure (1.52) on measures. As in Remark 1.1.2, the Newton equa-
tion obtained in writing optimality conditions for (1.46) tells us that the time-marginals
(µt)0tT of a minimiser µ[0,T ] for (1.52) formally satisfy the Newton equation

µ̈t =
1
2rN

�
 
|DµF(µt)|

2,

the gradient being taken w.r.t. to the Riemannian distance induced on the sub-manifold N
�

 
of P2(Rd). In particular, the l.h.s. is the covariant derivative in N

�

 of µ̇t in the direction
µ̇t. As in Remark 1.1.2, the computation of the Lagrange multiplier � performed in Chapter
5 amounts to identifying the second fundamental form of the Wasserstein sub-manifold N

�

 .

1.4 Recap of contributions

Let us now summarise the contributions of this thesis, in the light of the constraint pro-
cedures introduced in Sections 1.1-1.2-1.3. Section 1.4.1 studies the small noise filtering
for reflected diffusions in the spirit of Section 1.2.3. Section 1.4.2 establishes new results
in large deviation theory needed by Section 1.3.3. Section 1.4.3 studies the second-order
procedure on measures introduced in Sections 1.3.2-1.3.3.2. Some perspectives for future
works are listed in Section 1.4.4.

1.4.1 Small noise filtering for reflected diffusions

This part is concerned with the filtering problem
(
dX"

t + @�G(X"
t )(dt) 3 bt(X"

t )dt+
p
"dBt,

dY "
t = ht(X"

t ) +
p
"dB0t,

(1.59)

where (Bt)t�0 and (B0t)t�0 are independent Brownian motions and bt, ht are Lipschitz
vector fields in Rd. The signal process X"

t is the solution of a SDE that is reflected on
the boundary of a smooth domain G ⇢ Rd in the Skorokhod sense, see Section 1.1.1.2 and
Chapter 2 for finer descriptions. We are interested in the "! 0 limit of the law ⇡"t of X"

t

conditionally on the observation (Y "
s )0st up to time t. More precisely, we aim at proving

a LDP with rate function

V (t, x) := inf
(x!0 ,!)
x
!
t =x

J(x!0 ) +

Z
t

0

1

2
|!s|

2 +
1

2
|ẏt � hs(x

!

s )|
2ds, (1.60)

where (x!s )0st satisfies the deterministic dynamics

ẋ!s + @�G(x
!

s ) 3 bs(x
!

s ) + !s, (1.61)

32



1.4. Recap of contributions

for a L2-control parameter (!s)0st. The curve (ys)0st stands for a fixed C1 realisation
of (Y "

s )0st, see Section 1.2.3.2 for a justification of this procedure. The function V is
introduced as the cost-to-come function in Section 1.1.3, its minimiser (if well-defined)
being the Mortensen observer Mortensen [1968]. In the setting of Section 1.2.3.2, the
study of the conditional density is brought back to the one of the solution q̃" of
(
@tq̃"(t, x) = r · [�q̃"(t, x)bt(x) +

"

2rq̃
"(t, x)]� 1

2" |ẏ(t)� ht(x)|2q̃"(t, x), x 2 G

�q̃"(t, x)bt(x) · n(x) +
"

2
@q̃
"

@n
(t, x) = 0, x 2 @G,

(1.62)
where n(x) is the outward normal vector at x 2 @G. When the differential inclusion (1.59)
is replaced by an equality, there is no more boundary condition and �" log q̃" is known to
converge towards V uniformly on compact sets James and Baras [1988]; Fleming [1997],
as stated in Theorem 1.2.5.

The purpose of Chapter 2 is to address the same question for the reflected dynamics
(1.59) and to establish large deviation results. Contrary to the equality setting, the "! 0
limit of (1.59) has deep implications. For instance, X"

t always spends a Lebesgue-negligible
time on @G when " > 0, whereas the " = 0 limit can stay stuck at the boundary and evolve
on it. Reversibility effects are also involved in the definition of V , since two curves following
(1.61) can be equal at time t without having the same initial condition. In particular, (1.61)
is not well-posed when imposing a terminal condition: the initial data must be specified
instead.

This study was initiated during the summer school CEMRACS 2022, yielding the article
Chaintron et al. [2023b] in collaboration with Alvaro Gonzales, Laurent Mertz and Philippe
Moireau. This article studied the small noise limit for the filtering problem (1.59) in the
1D simplified setting b ⌘ 0 and G = R�0. Chapter 2 tackles the general setting (1.59), G
being a convex open domain which is smooth and bounded. This work is a collaboration
with Laurent Mertz, Philippe Moireau and Hasnaa Zidani. Our first result reveals the
delicate nature of the boundary conditions for V .

Theorem 1.4.1 (Viscosity solution). Let V be defined by (1.60).

(i) V is a viscosity sub-solution of the HJB equation
(
@tV (t, x) + bt(x) ·rV (t, x) + 1

2 |rV (t, x)|2 � 1
2 |ẏ(t)� ht(x)|2 = 0, x 2 G,

b(t, x) · n(x) + @V

@n
(t, x) = 0, x 2 @G.

(ii) V is a viscosity super-solution of the HJB equation
(
@tV (t, x) + bt(x) ·rV (t, x) + 1

2 |rV (t, x)|2 � 1
2 |ẏ(t)� ht(x)|2 = 0, x 2 G,

b(t, x) · n(x) + 1
2
@V

@n
(t, x) = 0, x 2 @G.

In general, the two boundary conditions do not coincide. However, if b · n  0 on @G,
we can check that any viscosity sub-solution of the HJB equation in (i) is also a viscosity
sub-solution of the HJB equation in (ii). This HJB equation then has a unique viscosity
solution from [Barles and Lions, 1991, Theorem 3]. The case b · n  0 corresponds to an
initial model ẋt = b(xt) that leaves the domain G stable without needing the reflection
at the boundary. If b · n  0 does not hold, Theorem 1.4.1 has far-reaching consequences
since it prevents the uniform convergence of �" log q̃" towards V , contrary to the

standard case of differential equality . Indeed, the vanishing viscosity limit in the
log-transform of (1.62) would imply that the equations (i) and (ii) coincide in Theorem
1.4.1: this is not true in general. However, we still managed to prove the targeted result
of large deviations for the conditional law.
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Theorem 1.4.2 (Laplace principle). If

sup
x2G

|�" log q̃"(0, x)� J(x)| ���!
"!0

0,

then for every continuous � : G! R,

8t � 0, �" log

Z

G

e��(x)/"q̃"(t, x)dx ���!
"!0

inf
x2G

�(x) + V (t, x).

As " ! 0, this tells us that the conditional density concentrates on the minimisers
of x 7! V (t, x), recovering the Mortensen observer from Section 1.1.3. Chapter 2 further
contains an approximation result of V by the cost-to-come function obtained by replacing
(1.61) by the penalised dynamics

ẋ,!
t

+ [x,!
t
� ⇡

G
(x,!

t
)] = bt(x

,!

t
) + !t,

where ⇡
G

denotes the orthogonal projection onto G. The uniform rate of convergence
�1/4 is obtained for the cost-to-come as ! +1. A discretisation strategy and numerical
illustrations are further given at the end of Chapter 2.

1.4.2 Quasi-continuity method for mean-field diffusions: large devia-
tions and central limit theorem

The content of Chapter 3 is a preprint proving large deviation results, which were used in
Section 1.3.3. Let us consider a mean-field system of interacting diffusions in Rd,

dXi,N

t
= bt(X

i,N ,⇡( ~XN ))dt+ �t(X
i,N ,⇡( ~XN ))dBi

t, 1  i  N, (1.63)

starting from i.i.d. initial conditions Xi

0, the Bi := (Bi
t)0tT being i.i.d. Brownian

motions in Rd
0 . These particles interact through their empirical measure

⇡( ~XN ) :=
1

N

NX

i=1

�Xi,N 2 P(C([0, T ],Rd)),

using the notation ~XN := (Xi,N )1iN . The coefficients b and � are globally Lipschitz
functions which are path-dependent in a non-anticipative way and � is globally bounded
but possibly degenerate. As N ! +1, ⇡( ~XN ) converges to the path-law L(X) of the
McKean-Vlasov equation

dXt = bt(X,L(X))dt+ �t(X,L(X))dB1
t , X0 ⇠ X1

0 ,

such a mean-field limit being known as a propagation of chaos result Sznitman [1991];
Chaintron and Diez [2022a,b].

When the coefficients are no more path-dependent, the Dean-Kasawaki stochastic PDE
(1.49) formally reads

d⇡( ~XN

t ) = L?
⇡( ~XN

t )
⇡( ~XN

t )dt+N�1/2dMt,

for a suitable measure-dependent generator L
⇡( ~XN

t )⇡(
~XN
t ), as detailed in Section 1.3.3.

This provides a striking analogy with the well-known Freidlin-Wentzell dynamics (1.26),
X"

t being replaced by the empirical measure ⇡( ~XN
t ). It is tempting to go beyond analogies

by using this structure within proofs. Indeed, using the contraction principle when � ⌘ Id,
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the Freidlin-Wentzell theory classically computes the large deviations of (X"
t )0tT by

taking the continuous image of the large deviations of (
p
"Bt)0tT .

When � ⌘ Id, a pathwise construction due to Tanaka [1984] builds X and the Xi,N

in a unified framework. In particular, the empirical measure ⇡( ~XN ) of the particles is
a continuous function of the one of the driving noises ⇡( ~BN ). This powerful approach
rephrases the mean-field limit as a mere continuity result and allows for computing large
deviations by contraction as in the Freidlin-Wentzell approach.

When � 6= Id, the contraction approach cannot be directly used for (X"
t )0tT because

the stochastic integral is not a continuous function of the Brownian motion – we refer to
the introduction of Chapter 3 for alternatives using rough path theory. However, a solution
was proposed by Azencott et al. [1980] known as the quasi-continuity method, the main
idea being to approximate the noise by a smoother path and to show that the resulting
error is negligible at the large deviation scale. The objectives of Chapter 3 are three-fold:

• We extend Tanaka’s construction to non-constant � using an Euler scheme for

(1.63) for which we prove strong consistency estimates : this provides a quasi-
continuity method in the setting (1.63) of mean-field diffusions.

• We compute the first-order fluctuations of ⇡( ~XN ) by proving a pathwise central

limit theorem (CLT), i.e. the convergence of N�1/2[⇡( ~XN )�L(X)] towards a Gaus-
sian field. The proof relies on a first-order expansion of the path-wise construction
together with uniform fluctuation estimates on the Euler scheme.

• We prove a large deviation principle (LDP), estimating P(⇡( ~XN ) 2 A) at the
exponential scale for any measurable A ⇢ P(C([0, T ],Rd)). The proof relies on the
contraction principle and uniform estimates at the exponential scale on the Euler
scheme.

As a by-product of our path-wise construction, we prove mean-field limits, central limit the-
orems and large deviations for discretised systems with general driving noises, which may
not be Brownian. Exchangeability is not required either. These results are already useful
as such, the practitioner being interested in the behaviour of the numerically implemented
model, rather than the theoretical one.

In the Brownian case, we extend these results to the continuum by proving uniform
fluctuation estimates. Following the weak convergence approach Dupuis and Ellis [2011],
the exponential approximation relies on a stochastic control interpretation of exponential
moments. Thus, our estimates also have an interest from a mean-field control perspec-
tive. They provide a uniform-in-N discrete-time approximation for mean-field control with
quadratic cost. The CLT and LDP results for diffusions are not the first ones of their kind,
but they are new at the considered level of generality, see Chapter 3 for a detailed review
of existing literature.

1.4.3 Constrained dynamics on measures

This section is devoted to the pathwise minimisation problem (1.52):

inf
µ[0,T ]2P(C([0,T ],Rd))
8t2[0,T ], (µt)0

H(µ[0,T ]|⌫[0,T ]), (1.64)

given some reference measure ⌫[0,T ] 2 P(C([0, T ],Rd)). This problem was motivated in
Section 1.3.3.1 as finding the most likely configuration of a large system of N i.i.d. particles
given the observation that  (⇡( ~XN

t ))  0 for t 2 [0, T ]. We are mainly concerned with
two questions:
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• What are the regularity properties of the corrected dynamics?

• Is the corrected dynamics stable w.r.t. perturbations of  ?

The regularity question is natural for practical purposes and numerical applications. It is
reasonable to expect a regular corrected dynamics when starting from a regular ⌫[0,T ]. In
all physical experiments, measurements are affected by uncertainties of different nature.
Thus, the stability question is of paramount importance too.

The contents of Chapters 4-5 are two preprints in collaboration with Giovanni Conforti
and Julien Reygner. Chapter 4 studies abstract minimisation problems generalising (1.64),
including Schrödinger bridges with additional inequality constraints. Sufficient conditions
are given for minimisers to be Gibbs measures involving a Lagrange multiplier and a general
stability result is proved. Chapter 5 focuses on the case where ⌫[0,T ] is the path-law of a
diffusion process. Fine regularity properties are proved for the dynamics and the Lagrange
multiplier, together with quantitative stability results w.r.t.  . The results also apply
when replacing H(µ[0,T ]|⌫[0,T ]) by the mean-field entropy H(µ[0,T ]|�(µ[0,T ])), as motivated
in Section 1.3.3.1.

The content of Chapter 6 is the article Chaintron [2023], which was recently accepted
in Annales de la faculté des sciences de Toulouse. This work proves gradient estimates for
unbounded solutions of viscous Hamilton-Jacobi PDEs using viscosity solution methods.
These estimates are a main ingredient of Chapters 4-5. They have an independent interest
in stochastic control, allowing for lighter regularity assumptions on coefficients which are
natural in a probabilistic setting.

1.4.3.1 Gibbs principle with infinitely many constraints: optimality conditions
and stability

Let E be a Polish space and � : E ! R�0 be continuous. We define the set

P�(E) := {µ 2 P(E) ,
R
E
� dµ < +1},

which we endow with the topology of weak convergence plus the convergence of moments
against �. Let us fix a reference measure ⌫ 2 P�(E). Let F : P�(E) ! (�1,+1] be
lower semi-continuous and

DI := {µ 2 P�(E), H(µ|⌫) + F(µ) < +1}.

Let (⇣s)s2S be any family of continuous functions E ! R, such that

8s 2 S, 8x 2 E, |⇣s(x)|  Cs[1 + �(x)],

for some constant Cs > 0. Let ( t)t2T be a family of lower semi-continuous functions
P�(E)! R, T being a compact topological space. We define the (closed) constrained sets

A
⇣ := {µ 2 P�(E), 8s 2 S,

R
E
⇣s dµ = 0}, A := {µ 2 P�(E), 8t 2 T ,  t(µ)  0}.

A main result of Chapter 4 is the following one, in the spirit of Csiszár [1975, 1984]; Léonard
[2000].

Theorem 1.4.3 (Gibbs density for minimisers). Under regularity assumptions detailed in
Chapter 4, let µ be a minimiser for

inf
µ2A⇣\A 

H(µ|⌫) + F(µ),

which satisfies a constraint qualification assumption. The following results hold:
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1. Any µ 2 DI \A
⇣ is absolutely continuous w.r.t. µ.

2. There exist (⇣,�) 2 L1(E, dµ) ⇥M+(T ) and a measurable set S ⇢ E such that
µ(S) = 1,

dµ

d⌫

�
x
�
=

1

Z S
(x) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
(1.65)

with respect to ⌫, Z being a finite normalising constant.

3. The above ⇣ belongs to the closure of Span(⇣s, s 2 S) in L1(E, dµ), hence
R
E
⇣ dµ = 0,

and the complementary slackness condition is satisfied:

 t(µ) = 0 for �-a.e. t 2 T . (1.66)

The above statement uses the formalism of linear derivatives introduced in Section 1.3.
The proof of Theorem 1.4.3 relies on a suitable linearisation procedure and the Hahn-
Banach theorem. A conditional LDP is proved as well in Chapter 4. When F and  
are convex, uniqueness holds for µ and (1.65)-(1.66) turn out to be sufficient conditions
to characterise µ. Theorem 1.4.3 includes (1.64) as the particular case E = C([0, T ],Rd),
S = ; and  t(µ[0,T ]) =  (µt). It is noteworthy that this correction procedure induces non-
trivial behaviours, even when ⌫[0,T ] is a simple Gaussian process, see examples in Chapter
4. If E is a product space like G⇥ F or C([0, T ],Rd), the equality constraints allow us to
impose as many marginal laws as we wish. In particular, this includes the Schrödinger

bridge problem introduced in Section 1.3.3.1 as well as constrained versions of it.
A stability result for µ is proved in Chapter 4 when perturbing (⌫,F , ). Other

technical results are also proved, paving the way for Chapter 5.

1.4.3.2 Regularity and stability for the Gibbs conditioning principle on path
space via McKean-Vlasov control

Let us now describe our results on (1.64). Let �(µ[0,T ]) denote the path-law of the solution
to

dXt = b(Xt, µt)dt+ �(Xt)dBt, X0 ⇠ ⌫0,

where (Bt)0tT is a Brownian motion and the coefficients are continuous functions b :
[0, T ]⇥ Rd

! Rd, � : [0, T ]⇥ Rd
! Rd⇥d. The generalisation of (1.64) we are interested in

is
inf

µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)0

H(µ[0,T ]|�(µ[0,T ])),

where  : P1(Rd) ! R is lower semi-continuous. Let us assume that for every ↵ > 0,
x 7! e↵|x| is ⌫0-integrable. For simplifying the presentation, we restrict ourselves to

b(x, µ) = b(x),  (µ) =

Z

Rd
 dµ,

so that �(µ[0,T ]) =: ⌫[0,T ] does not depend on µ[0,T ], recovering (1.64). However, we
emphasise that the above restriction is not made in Chapter 5. We further assume
that b, �,  , r are globally Lipschitz, and that � is bounded and invertible with bounded
��1.
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Theorem 1.4.4 (Structure of optimisers). Let us assume that µ[0,T ] is an optimal measure
satisfying the constraint qualification r 6= 0, µt-a.s. Then, there exists a Radon measure
� 2M+([0, T ]), ' : [0, T ]⇥ Rd

! R and Z > 0 such that µ0(dx) = Z
�1

e�'0(x)⌫0(dx) and
8
<

:
@tµt �r · [�µtb+ µt��

>
r't +

1
2r · [µt��

>]] = 0,

�'t +
R
T

t
b ·r's �

1
2

���>r's

��2 + 1
2Tr[��

>
r

2's] ds+
R
[t,T ]  �(ds) = 0.

(1.67)

Furthermore, the complementary slackness condition holds,
Z

Rd
 dµt = 0, for �-a.e. t 2 [0, T ],

and we have the pathwise representation

dµ[0,T ]

d⌫[0,T ]
(x[0,T ]) = Z

�1
exp


�

Z
T

0
 (xt)�(dt)

�
.

Theorem 1.4.5 (Density for the multiplier). In the setting of Theorem 1.4.4, there exists
(�,') satisfying (1.67) such that x 7! r't(x) is Lipschitz-continuous and

�(dt) = �0�0(dt) + �tdt+ �T �T (dt),

for t 7! �t in L1(0, T ), if we assume that ⌫0 has a differentiable density (still denoted
⌫0) w.r.t. the Lebesgue measure, and that "0 > 0 exists such that either (i) or (ii) holds,
where:

(i) r2 is Lipschitz and
R

Rd

⇥
(log ⌫0)1+"0 + |r log ⌫0|2+"0

⇤
d⌫0 < +1.

(ii) rb, r�, r2� are Lipschitz andR
Rd

⇥
(log ⌫0)1+"0 + |r log ⌫0|4+"0 + |r

2 log ⌫0|2+"0
⇤
d⌫0 < +1.

If (ii) holds, x 7! r
2't(x) is Lipschitz-continuous and the densities of time-marginals

satisfy


sup
t2[0,T ]

Z

Rd

⇥
logµt + |r logµt|

4 + |r
2 logµt|

2
⇤
dµt

�
+

Z
T

0

Z

Rd
|r

3 logµt|
2dµtdt < +1.

(1.68)

The results on the density of � can be seen as a regularity trade-off between the

constraint and the coefficients . They rely on the new technical estimate (1.68) for dif-
fusions, together with the analogous of estimates in Section 1.1.2.3. The proof of Theorem
1.4.5 further shows that t 2 (0, T ] 7! r't(x) is continuous and t 2 [0, T ] 7!

R
Rd  µt is C1

under (i), whereas t 2 (0, T ] 7! r2't(x) is continuous under (ii). Depending on where the
regularity is assumed, on the constraints or on the coefficients, we thus get more smooth-
ness on either the constrained curve or the optimal control. Requiring more derivatives on
coefficients would improve the regularity in (t, x).

Theorem 1.4.6 (Quantitative stability). In the setting of Theorem 1.4.4, we assume that
(ii) holds, that  is C4 with bounded derivatives and that

R
Rd e"0|x|

2
⌫0(dx) < +1. For

" � 0, let µ"[0,T ] denote the unique minimiser for

inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)"

H(µ[0,T ]|⌫[0,T ]).

Let ('"t ,�"t ,�"0,�"T ) be related to µ"[0,T ] by Theorems 1.4.4-1.4.5. We assume that the number
of non-trivial intervals where

R
Rd  dµ0

t is identically zero is finite. Then, there exists C > 0
independent of " such that uniformly in " 2 [0, 1],
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(i) Entropic stability: H(µ"[0,T ]|µ
0
[0,T ])  C".

(ii) Multiplier stability: |�"0 � �00|+ k�0 � �"kL1(0,T ) + |�"
T
� �0

T
|  C"1/4.

(iii) Control stability: sup(t,x)2[0,T ]⇥Rd |r'"t (x)�r'
0
t (x)|  C"1/4.

The Gaussian bound is only used to simplify the convergence rate (otherwise, additional
log " factors would have been needed). Similarly, the assumption on the finite number of
intervals can be removed if we deteriorate the rate, see Chapter 5.

1.4.3.3 Existence and global Lipschitz estimates for unbounded classical solu-
tions of a Hamilton-Jacobi equation

The main objective of Chapter 6 is the following result.

Theorem 1.4.7. If b, � and f are Lipschitz-continuous functions, with � bounded and
��> uniformly elliptic, then the HJB equation

@tu(t, x) + b ·ru(t, x) + 1
2Tr[��

>
r

2u(t, x)]� 1
2 |�
>
ru(t, x)|2 + f(t, x) = 0, (1.69)

with globally Lipschitz terminal data u(T, x) = g(x), has a unique linear growth C1,2 solu-
tion u, which has a uniformly bounded gradient.

The need for classical solutions of (1.69) is a recurrent issue in stochastic control,
as detailed in the introduction of Chapter 6. In particular, Theorem (1.4.7) is used in
Chapters 4-5 for studying (1.67). If we assume that

8(t, x, y) 2 [0, T ]⇥ Rd
⇥ Rd, |f(t, x)� f(t, y)|  �(t)|x� y|, � 2 L1(0, T ),

it is proved in Chapter 6 that the bound on ru only depends on f through k�kL1(0,T ).
This fact is crucial in (1.67) since we only have a priori bounds on the total mass �([0, T ])
of the multiplier.

The Lipschitz assumptions in Theorem 1.4.7 are natural in a probabilistic setting, the
global bound on � being required for the solution to be Lipschitz. Surprisingly, it seems
that this useful result had not been stated before in the literature. The main difficulty
compared to standard settings is that � 6= Id, implying that the x-differential of the
Hamiltonian does not have a linear growth w.r.t. ru. A second major task is the long
literature review in the introduction of Chapter 6. The proof combines several tricks from
the viscosity solution theory to obtain this result at the edges of what the setting allows
for.

1.4.4 Perspectives

In the light of Sections 1.3-1.4, let us now describe some possible perspectives and research
axes for future works.

Quantitative convergence. Section 1.4.3.2 has proved many regularity properties on
the minimiser µ[0,T ] when ⌫[0,T ] is the law of the diffusion process (1.50). From the large
deviation results proved in Chapter 4, µ[0,T ] is the limit of the empirical measure ⇡( ~XN

[0,T ])
of i.i.d. ⌫[0,T ]-distributed particles conditionally on

8t 2 [0, T ],  (⇡( ~XN

t ))  0. (1.70)
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It is then natural to look for a quantitative rate of convergence for the conditioned particles.
For some quantitative versions of the general Gibbs principle, we refer to Dembo and
Zeitouni [1996]; Dembo and Kuelbs [1998]; Cattiaux and Gozlan [2007].

Let us introduce the controlled N -particle system

dY ↵,i,N

t
= b(Y ↵,i,N

t
)dt+ �(Y ↵,i,N

t
)↵i,N

t
dt+ �(Y ↵,i,N

t
)dBi

t, 1  i  N,

the control process being ~↵N
t := (↵i,N

t
)1iN . From Example 1.3.7 and the control inter-

pretation in Section 1.3.3.2, the path-law of ~XN

[0,T ] conditionally on (1.70) is the law of the
optimally controlled process for V N (0, ~xN ), where

V N (t, ~xN ) := inf
(~↵N

s )tsT , ~Y
↵,N
t =~xN

8s2[t,T ], (⇡(~Y ↵,Ns ))0 a.s.

E
Z

T

t

1

2N
|~↵N

s |
2ds.

Moreover, V N (t, ~xN ) = � logP(⌧~x
N

 < T � t) following Example 1.3.7, where the stopping
time ⌧~xN

 is the first time s at which  (⇡( ~XN
s )) � 0 when ~XN starts at ~xN . As N ! +1

and ⇡(~xN )! µ, V N (t, ~xN ) converges at each t 2 [0, T ] towards the value function

V (t, µ) := inf
(↵s)tsT , X

↵
t ⇠µ

8s2[t,T ], (L(X↵
s ))0

E
Z

T

t

1

2
|↵s|

2ds,

using the notations from Section 1.3.3.2. This convergence result is proved in Daudin
[2023a]. The function V is expected to be a viscosity solution of

@tV (t, µ)�
1

2

Z

Rd
|DµV (t, µ, x)|2dµ(x) +

1

2

Z

Rd
[r ·DµV (t, µ, x)]dµ(x) = 0,

in the spirit of Daudin and Seeger [2024]; Conforti et al. [2024], with some additional
boundary condition to be determined. This equation can be formally obtained as the
limit of the HJB equation satisfied by V N which can be deduced from Example 1.3.7.
Quantifying the convergence of V N towards V can be linked to the regularity properties of
this equation and the related master equation, see Cardaliaguet et al. [2019, 2023]; Daudin
et al. [2023].

Long-time behaviour. Another natural question is the study of (1.64) as T ! +1.
In the control formulation (1.53), we conjecture that the value function normalised by T
converges towards the value function

⌘ := inf
↵, 8t�0, (L(X↵

t ))0
lim sup
T!+1

1

2T
E
Z

T

0
|↵t|

2dt,

corresponding to an ergodic control problem, by analogy with the finite-dimensional setting
Lasry and Lions [1989]. When  (µ) =

R
Rd  dµ, we further conjecture the existence of

a stationary solution with law µ1 corresponding to the feedback control process ↵t =
��>ru(X↵

t ), u being the solution of the stationary HJB equation

�⌘ + b ·ru+ 1
2Tr[��

>
r

2u]� 1
2 |�
>
ru|2 = �� ,

for a Lagrange multiplier � � 0. The probability density ' := Z�1' e�u then satisfies

b ·r'+ 1
2Tr[��

>
r

2'] = �⌘'+ �' ,
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which corresponds to a “twisted eigenvalue problem". Introducing the dual (normalised)
eigenfunction ⇢ such that

r · [�⇢b ·r'+ 1
2r · [⇢��>]] = �⌘⇢+ �⇢ ,

we eventually conjecture that ⇢ � 0 and µ1 has a density proportional to '⇢ w.r.t. the
Lebesgue measure. For support constraints as in Example 1.3.7, boundary conditions are
needed and the above conjectures correspond to known results on Q-processes and quasi-
stationary distributions Pinsky [1985]; Budhiraja et al. [2022].

Particle approximation. Section 1.4.3 has shed lights on many properties of the
corrected measure µ[0,T ] obtained from (1.64), but is does not tell us how to numerically
simulate µ[0,T ]. In our mean-field setting, it is natural to look for a particle system whose
empirical measure approximates µ[0,T ]. For the sake of simplicity, we assume that  (µ) =R

Rd  dµ is linear. Let us introduce the solution µ[0,T ] to the relaxed problem

inf
µ[0,T ]

H(µ[0,T ]|⌫[0,T ]) +

Z
T

0

| (µt)|2+
2

dt.

As ! +1, µ[0,T ] is expected to converge towards µ[0,T ]. Linearising at µ[0,T ] yields

inf
µ[0,T ]

H(µ[0,T ]|⌫[0,T ]) +

Z
T

0
| (µt )|+

 Z

Rd
 dµt

�
dt,

the minimiser being µ[0,T ] which can be written as a Gibbs measure.
Let us now introduce a system of N particles (X1, . . . , XN ), each particle being equipped

with a Poisson death clock and a Poisson birth clock. The evolution is the following one:

• Between two clock rings, each particle evolves independently of the others like the
Markov process with law ⌫[0,T ].

• For every 1  i  N , the death clock of Xi
t rings at rate | (⇡( ~XN

t ))|+| (Xi
t)|+. If

the death clock of Xi
t rings at time t, the particle Xi is killed and another one Xj

is chosen at random. The whole history (Xj
s )0st of Xj is then copied to produce

a new particle Xi which has the same history as Xj . From now on, Xi and Xj

will evolve independently of each other, except for the coupling through birth/death
rates.

• For every 1  i  N , the birth clock of Xi
t rings at rate | (⇡( ~XN

t ))|+| (Xi
t)|�.

If the birth clock of Xi
t rings at time t, another particle Xj is chosen at random

and killed. The whole history (Xi
s)0st of Xi is then copied to produce a new

particle Xj which has the same history as Xi. From now on, Xi and Xj will evolve
independently of each other, except for the coupling through birth/death rates.

This defines a mean-field system of branching particles, which interact through their
branching rates. This kind of particle system is reminiscent of Fleming-Viot algorithms
used to simulate processes conditioned to stay in a bounded domain as in Example 1.3.7, see
e.g. Villemonais [2014] and references therein. We conjecture that the pathwise empirical
measure ⇡( ~XN

[0,T ]) ot this system at time T converges towards µ[0,T ] as N ! +1.
An alternative approach would be to discretise the time and to project iteratively each

marginal constraint as in the Sinkhorn algorithm, in the spirit of [Benamou et al., 2019,
Section 5].
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Chapter 1. Introduction

Application to cardiac simulation. This part is motivated by the previous works
Chaintron et al. [2023a,c] on stochastic modelling for the cardiac muscle, which were done
before starting this thesis. The first article was published in collaboration with Matthieu
Caruel and François Kimmig. The second one was published in collaboration with François
Kimmig, Matthieu Caruel and Philippe Moireau. The elementary contractile unit respon-
sible for muscle contraction is called sarcomere. For detailed biological context and il-
lustrations, we refer to the aforementioned articles and references therein. These works
were focusing on stochastic modelling of the cross-bridges, which are myosin filaments that
attach and detach on actin sites, generating contraction along the way. Assembling the N
cross-bridges generates coupled equations which involve the elongation Yt of the sarcomere
as well as the ones Xi,N

t
of the cross-bridges, 1  i  N . We refer to [Caruel, 2011,

Chapter 2.5] for mechanical modelling of the sarcomere and to [Caruel, 2011, Chapter 6]
for the derivation of these equations. When considering N cross-bridges connected to an
external load F , the energy landscape reads

WN (~xN , y, f) :=
k

2

NX

i=1

(xi � y)2 � Fy,

where k is a stiffness parameter. To simplify the system without loss of its fundamental
properties, it is customary to eliminate the variable y by assuming the equilibrium condition
@W

N

@y
= 0 , y = (Nk)�1F + N�1

P
N

i=1 x
i. The resulting equations for the cross-bridges

in an environment at temperature T read, for 1  i  N ,

dXi,N

t
= �@iW

N
�
~XN
t , y, (Nk)�1F +N�1

P
N

i=j
Xj,N

t

�
dt+

p
2⌘�1kBTdB

i

t,

where kB is the Boltzmann constant, ⌘ is a damping coefficient and the (Bi
t)t�0 are in-

dependent Brownian motions. This gives a mean-field system of interacting diffusions
of the Curie-Weiss type, as studied in Pra and Hollander [1996]. For numerical simula-
tions, reduced models are needed in the different elongation regimes studied in Caruel and
Truskinovsky [2016], when imposing that the reaction coordinate N�1

P
N

j=1X
j,N

t
stays

either big or small. A possible approach is given by the particle approximation in the
previous paragraph.

Mortensen observer on measures. Extending the settings of Section 1.1.3 and
Example 1.3.7, it is natural to define the Mortensen observer on measures

⌫T := argmin
µ2P(Rd)
 (µ)0

inf
µ[0,T ], µT=µ

8t2[0,T ], (µt)0

H(µ[0,T ]|⌫[0,T ]),

corresponding to the endpoint of the optimal path-measure µ[0,T ]. This definition is non-
ambiguous if e.g.  is convex. The study of ⌫T is a challenging question. In particular,
it would be useful to obtain a closed-form equation for the evolution of ⌫T as in Example
1.3.7.

Wasserstein sub-manifolds. Remark 1.3.9 in Section 1.3.3.3 suggested that the
flow (µt)0tT of time-marginals of the minimiser in (1.64) formally satisfies the Newton
equation

µ̈t =
1
2rN

�
 
|DµF(µt)|

2,

the gradient being taken w.r.t. to the Riemannian distance induced on the sub-manifold
N
�

 of P2(Rd). The l.h.s. is the covariant derivative in N
�

 of µ̇t in the direction µ̇t. An
interesting challenge would be to give a rigorous meaning to this equation in the spirit of
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Conforti [2019]; Gentil et al. [2020], building further tools of Riemannian geometry in this
setting of Wasserstein sub-manifold. In particular, as in Remark 1.1.2, the computation of
the Lagrange multiplier � in Chapter 5 shall correspond to a notion of second fundamental
form of the sub-manifold N

�

 .
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Introduction (Français)

Cocorico.

— Un coq en Armorique

Cette thèse porte sur l’étude de dynamiques contraintes dans différents contextes, en di-
mension finie et à valeurs dans des espaces de mesures. Les méthodes utilisées combinent
des outils issus de la théorie des grandes déviations, du calcul des variations, du contrôle,
des systèmes de particules en interaction et du filtrage stochastique. L’objectif principal
est de modifier un système dynamique donné pour produire de nouvelles trajectoires sa-
tisfaisant certaines contraintes. Parmi les exemples abordés se trouvent le problème du
filtrage stochastique, des extensions du principe de Gibbs en mécanique statistique et des
versions contraintes du problème du pont de Schrödinger. Au travers de ces exemples, on
montre comment les outils classiques pour contraindre des équations différentielles ordi-
naires (EDOs) s’étendent naturellement aux dynamiques à valeurs mesures.
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Les dynamiques contraintes interviennent dans de nombreuses applications du quoti-
dien. Lorsqu’on modélise un phénomène physique, il est fréquent de mesurer un écart entre
la prédiction du modèle et la quantité ciblée. Connaissant cet écart, il devient naturel de
chercher une version améliorée du modèle qui prenne en compte la mesure, en imposant
cette mesure comme une contrainte sur le modèle. Des exemples célèbres proviennent de
la mécanique statistique, comme le principe de Gibbs introduit en Section 1.3.3.1, qui re-
cherche la configuration la plus probable d’un système de particules lorsqu’on ne connaît
que des quantités moyennes à son sujet. Un autre exemple est donné par le problème
du pont de Schrödinger en Section 1.3.3.1, qui cherche l’évolution la plus probable d’un
processus stochastique dont la loi n’est connue qu’aux instants initial et terminal. Ce der-
nier problème connaît des applications florissantes avec l’utilisation récente, notamment en
apprentissage automatique, des modèles de diffusion Ho et al. [2020]; Song et al. [2020]; Al-
bergo et al. [2023]. Mentionnons également le célèbre problème du filtrage qui recherche la
loi conditionnelle d’un système en temps réel à partir d’une mesure incomplète et bruitée.
Le cadre de cette thèse inclut de nombreux problèmes d’estimation déterministes et sto-
chastiques. Une motivation supplémentaire provenait des travaux Chaintron et al. [2023a,c]
portant sur la modélisation du muscle cardiaque, où les contraintes proviennent directe-
ment des conditions de mesure expérimentale (cf. Section 1.4.4 pour plus de détails).

Le Chapitre 1 présente des éléments de motivation et de contexte, en introduisant
progressivement certains outils techniques. Une analyse de littérature s’y trouve égale-
ment. L’objectif principal est de montrer comment étendre les outils classiques pour

contraindre des EDOs à des dynamiques à valeurs mesures. La Section 1.1 décrit
certaines approches déterministes pour modifier des dynamiques en dimension finie et les
illustre sur des exemples-jouet. Cette section introduit de nombreux outils de la théorie
de l’optimisation et du contrôle, tout en ouvrant la voie pour de nombreuses analogies
avec les dynamiques à valeurs mesures, développées en Section 1.3. Cette présentation est
fortement inspirée de Gentil et al. [2020]. La Section 1.2 décrit des approches stochastiques
qui bruitent la dynamique pour pouvoir la conditionner. De nombreux outils issus de la
théorie des grandes déviations sont introduits ici, ainsi que le problème du filtrage sto-
chastique. Une des contributions majeures de cette thèse est l’adaptation de ces méthodes
aux dynamiques à valeurs mesures, comme présenté en Section 1.3. Le formalisme EDO
des Sections 1.1-1.2 autorise de nombreuses analogies avec les dynamiques à valeurs me-
sures, tant au niveau des énoncés que des preuves. La théorie des grandes déviations induit
des connexions entre les problèmes de conditionnement et de minimisation de l’entropie
sur l’espace des trajectoires. La théorie de Girsanov décrite en Section 1.3.3.2 transforme
ces problèmes de minimisation en problèmes de contrôle stochastique. Les développements
récents présentés en Section 1.3.3.3 permettent des interprétations géométriques de ces
résultats en utilisant les flots de gradient de Wasserstein et le formalisme des équations
de Newton dans l’espace de Wasserstein. Insistons sur le fait que le contenu des Sections
1.1-1.2-1.3 peut être assez formel, le but étant d’introduire les idées-clef dans un cadre
parfois non-rigoureux, contrairement aux chapitres suivants.

Un résumé des différentes contributions de cette thèse est donné en Section 1.4, syn-
thétisant les différents chapitres. Ces chapitres sont des prépublications ou des articles,
reproduits sans modification. En particulier, une présentation détaillée des motivations
et de la littérature existante est disponible en tête de chaque chapitre. Certaines nota-
tions peuvent changer d’un chapitre à l’autre, toujours avec une spécification claire de ces
changements. Le Chapitre 2 présente des résultats sur le filtrage stochastique de diffusions
réfléchies dans la limite petit bruit. Le Chapitre 3 développe une nouvelle méthode pour
établir des principes de grandes déviations et théorèmes de la limite centrale pour des dif-
fusions en interaction, permettant une améliorant des résultats connus. Les Chapitres 4-5
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1.5. Estimation et filtrage à petit bruit pour des dynamiques réfléchies

contiennent une étude détaillée du principe de Gibbs (et de ses extensions) sur l’espace
des chemins avec un nombre infini de contraintes, par des méthodes de contrôle champ-
moyen. Un résultat de stabilité quantitative est notamment prouvé. Le Chapitre 6 établit
finalement de nouvelles estimées de régularité pour les équations de Hamilton-Jacobi par
des méthodes de solutions de viscosité.

1.5 Estimation et filtrage à petit bruit pour des dynamiques

réfléchies

Le problème du filtrage cherche à estimer l’état d’un système modélisé par une EDS

dX"

t = b(X"

t )dt+
p
"dB1

t , (1.71)

à partir d’une observation incomplète et bruitée

dY "

t = h(X"

t )dt+
p
"dB2

t ,

les mouvements Browniens B1 et B2 étant indépendants. Le but du filtrage stochastique
est de calculer la loi ⇡"t de X"

t conditionnellement aux observations passées (Y "
s )0st :

le filtre ⇡"t 2 P(Rd) est donc une mesure aléatoire. Le filtre ⇡"t peut être calculé en
normalisant la mesure positive ⇢"t solution de l’équation de Zakai Zakai [1969]; Pardoux
[1980].

Pour calculer la limite " ! 0, James and Baras [1988]; Fleming [1997] fixent une réa-
lisation (ys)0st de l’observation, supposée C1 par simplicité (même si ce point demande
justification Davis [1981]; Clark and Crisan [2005]). Après renormalisation de la solution
de l’EDP, cette procédure produit une famille de densités de probabilité (q"t )">0, qui est
un analogue déterministe de (⇡"t )">0 à observation fixée. Sous certaines conditions de ré-
gularité, Hijab [1984]; James and Baras [1988] montrent alors que (q"t (x)dx)">0 satisfait
un principe de grandes déviations pour la fonction de taux

x 7! V (t, x) = inf
(xs)0st2AC([0,t],Rd)

xt=x

J(x0) +

Z
t

0

1

2
|ẋs � b(xs)|

2 +
1

2
|ẏs � h(xs)|

2ds,

où on minimise sur les courbes absolument continues à valeurs dans Rd. La pénalisation
initiale J provient du choix des lois initiales (q"0)">0. Ceci définit la fonction valeur V
d’un problème de contrôle progressif en temps. Si V est strictement convexe, C2 et
coercive, on montre que V admet un unique minimiseur x̂t qui vérifie

˙̂xt = b(x̂t)� [r2V (t, x̂t)]
�1
rh(x̂t)[ẏt � h(x̂t)].

Ceci définit un estimateur, ou observateur, analogue déterministe de ⇡"t dû à Mortensen
Mortensen [1968]. Cet estimateur présente l’intérêt d’être calculable récursivement si
V est connue, et coïncide avec le filtre de Kalman Kalman and Bucy [1961] dans le cas
linéaire gaussien. L’approche de James and Baras [1988]; Fleming [1997] consiste à prouver
que (t, x) 7! �" log q"t (x) converge uniformément sur tout compact vers (t, x) 7! V (t, x),
ce qui correspond à une limite de viscosité évanescente dans l’équation de Hamilton-Jacobi
satisfaite par �" log q"t .

Le Chapitre 2 s’intéresse à l’analogue de cette procédure lorsqu’on remplace (1.71) par
la dynamique

dX"

t + @�G(X
"

t )(dt) 3 b(X"

t )dt+
p
"dB1

t , (1.72)
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qui est réfléchie au sens de Skorokhod sur le bord d’un ouvert convexe, borné et régulier
G. Dans la dynamique ci-dessus, @�G(X"

t ) est le sous-différentiel de l’indicatrice convexe
du domaine G (cf. Pardoux and Răşcanu [2014] pour l’étude de ce type de dynamiques).
La fonction V dans (1.5) est alors remplacée par

W (t, x) := inf
x
!
0 ,!

x
!
t =x

J(x0) +

Z
t

0

1

2
|!s|

2 +
1

2
|ẏs � h(x!s )|

2ds,

où (x!s )0st est la dynamique déterministe contrôlée

ẋ!s + @�G(x
!

s ) 3 b(x!s ) + !s,

pour ! 2 L2((0, t),Rd). Avec un léger abus de notation, on continue d’appeler q"t la solution
renormalisée de l’équation de Zakai pour une réalisation C1 fixée (ys)0st de l’observation.
Suivant la méthode de James and Baras [1988]; Fleming [1997], il est naturel de calculer
la limite " ! 0 en montrant que W est une solution de viscosité de l’équation de
Hamilton-Jacobi

@tW (t, x) + b(t, x) ·rW (t, x) +
1

2
|rW (t, x)|2 �

1

2
|ẏt � h(x)|2 = 0, x 2 G, (1.73)

complétée par une condition au bord adéquate, obtenue en prenant la limite de l’équation
satisfaite par �" log q". L’article Chaintron et al. [2023b] en collaboration avec Alvaro
Gonzales, Laurent Mertz et Philippe Moireau, montre la convergence de �" log q" vers W
dans le cas 1D G = R+ et b ⌘ 0, à la suite d’un travail initié lors de l’école d’été CEMRACS
2021. L’équation (1.73) est alors complétée par la condition de Neumann @xW (t, 0) = 0.
Les théorèmes suivants issus du Chapitre 2 traitent le cas général et font partie d’un travail
en collaboration avec Laurent Mertz, Philippe Moireau et Hasnaa Zidani.

Theorem 1.5.1. Au sens de Barles and Lions [1991],

(i) W est une sous-solution de viscosité de (1.73) avec la condition au bord

b(t, x) · n(x) +
@W

@n
(t, x) = 0, x 2 @G.

(ii) W est une sur-solution de viscosité de (1.73) avec la condition différente

b(t, x) · n(x) +
1

2

@W

@n
(t, x) = 0, x 2 @G,

où n(x) désigne le vecteur normal sortant en x 2 @G.

On peut montrer que ces deux conditions au bord au sens de viscosité coïncident lorsque
b(x) · n(x)  0 pour tout x 2 @G, et suffisent alors à garantir le principe de comparaison
et l’unicité de la solution – on retombe sur une notion classique de solution de viscosité
contrainte Soner [1986]; Capuzzo-Dolcetta and Lions [1990]. En dehors de ce cas, la
question de l’unicité reste ouverte, et montrer le principe de comparaison fera l’objet
de travaux futurs. En particulier, on ne peut plus espérer une convergence uniforme sur
tout compact de �" log q" vers W . Le résultat de grandes déviations (1.5) reste cependant
vrai.

Theorem 1.5.2. Sous des hypothèse adéquates sur (q"0)">0, pour tout t � 0, (q"t (x)dx)">0

satisfait un principe de grandes déviations pour la fonction de taux x 7!W (t, x).

Nous avons également montré un résultat d’approximation quantitative lorsqu’on
approche (1.72) par une dynamique pénalisée du type (1.71). Comprendre finement le
défaut de convergence de �" log q" dans le cas réfléchi fera l’objet de travaux futurs.
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1.6. Fluctuations et grandes déviations de diffusions en interaction

1.6 Fluctuations et grandes déviations de diffusions en inter-

action

La notion de propagation du chaos remonte aux travaux fondateurs de Boltzmann en
mécanique statistique. Dans Boltzmann [1872], Boltzmann introduisit l’idée qu’il est im-
possible et inutile de garder trace de toutes les particules (ou plutôt molécules) ~XN :=
(X1,N , . . . , XN,N ) qui composent un gaz, N étant considérablement grand, mais qu’une
description statistique est suffisante. Il est alors naturel d’introduire la densité empi-
rique des particules

⇡( ~XN ) :=
1

N

NX

i=1

�Xi,N ,

et de se demander si elle converge vers un objet limite lorsque N ! +1. Dans un système
champ-moyen, les particules sont échangeables et n’interagissent entre elles qu’au tra-
vers de ⇡( ~XN ). En particulier, lorsque N ! +1, les corrélations individuelles entre les
particules disparaissent : ce phénomène correspond au chaos moléculaire introduit par
Boltzmann, hypothèse nécessaire à la dérivation de l’équation qui porte son nom.

Dans le cadre mathématique introduit par Kac [1956]; McKean [1969]; Sznitman [1991],
les particules sont des trajectoires Xi,N = (Xi,N

t
)0tT dans C([0, T ],Rd), dont l’évolution

est stochastique. Une dynamique récurrente dans ce document est le système

dXi,N

t
= bt(X

i,N ,⇡( ~XN ))dt+ �t(X
i,N ,⇡( ~XN ))dBi,N

t
, 1  i  N, (1.74)

les (Bi,N )1iN étant des mouvements Browniens indépendants. Les coefficients b et � sont
typiquement Lipschitz, et dépendent des trajectoires de manière non-anticipative : par
exemple, bt(Xi,N ,⇡( ~XN )) ne dépend de Xi,N qu’au travers de (Xi,N

s )0st. Dans un cadre
similaire, le travail fondateur Sznitman [1991] a montré la convergence faible de ⇡( ~XN )
vers la loi trajectorielle du processus de McKean-Vlasov solution de

dXt = bt(X,Loi(X))dt+ �t(X,Loi(X))dBt, (1.75)

pourvu que la moyenne empirique ⇡( ~XN

0 ) des conditions initiales converge dans P(Rd)
vers Loi(X0). La convergence de la loi trajectorielle ⇡( ~XN ) vers Loi(X) implique celle des
mesures empiriques ⇡( ~XN

t ) vers la loi marginale Loi(Xt) à tout t 2 [0, T ], d’où le terme
de propagation du chaos Chaintron and Diez [2022a,b]. Des questions naturelles sont
alors les fluctuations dans la convergence de (1.74) vers (1.75), ainsi que les grandes
déviations associées.

Si les coefficient b et � dans (1.74) ne dépendent que du présent, un calcul formel
montre que la mesure empirique ⇡( ~XN

t ) de (1.74) à l’instant t satisfait

d⇡( ~XN

t ) = Q(⇡( ~XN

t ))dt+N�1/2dMN

t ,

où le terme MN
t correspond à une martingale bornée, et l’opérateur Q est donné par

l’EDP non-linéaire satisfaite à la limite. Cette équation, vue comme une EDP stochastique,
est connue sous le nom d’équation de Dean-Kasawaki Kawasaki [1994]; Dean [1996];
Fehrman and Gess [2022]. Elle peut être considérée comme un analogue en dimension
infinie de la dynamique de Freidlin-Wentzell

dX"

t = b(X"

t )dt+
p
"dBt, (1.76)

exemple classique en théorie des grandes des grandes déviations. Le but du Chapitre 3
est de pousser cette analogie au niveau même des preuves, afin d’établir des résultats de
convergence, de fluctuations et de grandes déviations pour (1.74).
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Dans l’article fondateur Tanaka [1984], Tanaka construit, pour chaque P dans P(C([0, T ],Rd)),
une application XP : C([0, T ],Rd)! C([0, T ],Rd) telle que

8! 2 C([0, T ],Rd)), 8t 2 [0, T ], XP

t (!) =

Z
t

0
bs(X

P (!), XP

#P )ds+ !t,

et montre la continuité de  : P 7! XP

#P . Cette application permet d’obtenir le système
de particules (1.74) de manière trajectorielle en posant

Xi,N = X⇡( ~XN )(Bi,N ), ⇡( ~XN ) =  (⇡( ~BN )).

L’application  étant continue, la limite champ moyen découle alors de la convergence
de la mesure empirique des Browniens indépendants. De plus, Tanaka [1984] obtient un
théorème central limite pour ⇡( ~XN ) en calculant le développement à l’ordre 1 de  . De
même, les grandes déviations de ⇡( ~XN ) découlent de celles de ⇡( ~BN ) par contraction,
comme c’est le cas pour la dynamique classique (1.76).

Lorsqu’on ajoute une matrice de diffusion � non constante à (1.76), les choses se com-
pliquent car X" n’est plus une fonction continue de (Bt)0tT . Une solution a été proposée
par Azencott Azencott et al. [1980], connue sous le nom de quasi-continuité : Azencott
et al. [1980] montre que l’erreur commise en régularisant la trajectoire du Brownien est né-
gligeable à l’échelle exponentielle. Le Chapitre 3 étend cette méthode à (1.74) en utilisant
le système de particules discrétisé en temps

dXh,i,N

t
= bth(X

h,i,N ,⇡( ~Xh,N ))dt+ �th(X
h,i,N ,⇡( ~Xh,N ))dBi,N

t
, 1  i  N, (1.77)

où h > 0 est un pas de discrétisation et th := hbt/hc. La convergence et les fluctuations
de (1.77) sont uniformes en h, ce qui permet de faire commuter les limites N ! +1
et h! 0. Ces résultats sont précisés dans les théorèmes suivants, où (1.74) est identifié à
~X0,N (i.e. (1.77) pour h = 0) avec un léger abus. On suppose que E[e↵|X

i,N
0 |] est finie pour

tout ↵ > 0.

Theorem 1.6.1 (Grandes déviations uniformes). Sous des hypothèses Lipschitz sur les
coefficients précisées dans [Chaintron, 2024, Theorems 2.7-2.9], pour tout h 2 [0, 1], la
suite des Loi(⇡( ~Xh,N )) satisfait un principe de grandes déviations dans Pp(C([0, T ],Rd)),
p 2 [1, 2), pour la bonne fonction de taux

Ih : P 2 Pp(C([0, T ],Rd)) 7! H(P |�h(P )),

où H est l’entropie relative usuelle et �h(P ) est la loi trajectorielle de la solution de l’EDS

dY h

t = bth(Y
h, P )dt+ �th(Y

h, P )dBt.

De plus, pour toute F : Pp(C([0, T ],Rd))! R bornée Lipschitz,

sup
N�1

��N�1 logE
⇥
exp

⇥
NF (⇡( ~Xh,N )

⇤⇤
�N�1 logE

⇥
exp

⇥
NF (⇡( ~X0,N )

⇤⇤�� ���!
h!0

0,

et la fonction de taux Ih �-converge vers I0 lorsque h! 0.

La preuve de l’estimée uniforme repose sur des arguments de contrôle stochastique
champ-moyen, en utilisant la formule de représentation de Boué-Dupuis Boué and Dupuis
[1998]. Dans l’énoncé suivant, Xh,i désigne la limite de Xh,i,N lorsque N ! +1, qui est
solution d’une équation de McKean-Vlasov analogue à (1.75) dirigée par Bi,N .
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1.7. Stabilité du principe de Gibbs et contrôle sous contraintes

Theorem 1.6.2 (Fluctuations uniformes). Sous des hypothèses de structure et de diffé-
rentiabilité des coefficients précisées dans [Chaintron, 2024, Theorem 2.11], il existe C > 0
telle que pour tout h 2 (0, 1],

sup
N�1

1
p
N

NX

i=1

E


sup
0tT

��Xh,i,N

t
�X

h,i

t � [X0,i,N
t

�X
0,i
t ]
��
�
 C|h log h|1/2,

De plus, pour tout ' 2 C1,1
b

(C([0, T ],Rd),R) et h 2 [0, 1],

p

N


1

N

NX

i=1

'(Xh,i,N )� E['(X
h,1

)]

�

converge en loi vers une gaussienne centrée de variance �2
h,'

explicite.

Ces théorèmes s’inscrivent dans la suite des résultats de fluctuations et grandes dé-
viations Jourdain and Méléard [1998]; Budhiraja et al. [2012]; Coghi et al. [2020]. . .pour
(1.74). Le caractère uniforme en la discrétisation est nouveau. Pour le cas continu h = 0,
il n’existait pas de principe de grandes déviations trajectorielle en topologie de
Wasserstein au niveau de généralité de (1.74), de même pour les fluctuations. La mé-
thode de Tanaka autorise de nombreuses généralisations, notamment pour des systèmes
non-échangeable en environnement aléatoire Coghi et al. [2020].

1.7 Stabilité du principe de Gibbs et contrôle sous contraintes

Dans l’esprit de la section précédente, considérons un système de N particules aléatoires
(Xi,N )1iN dans un ensemble E, indépendantes ou qui interagissent via leur moyenne
empirique ⇡( ~XN ) 2 P(E). Supposons qu’une mesure sur ce système révèle que ⇡( ~XN )
reste confinée dans un sous-ensemble A ⇢ P(E). Il est alors naturel de chercher la configura-
tion la plus probable du système connaissant cette mesure. Lorsque la suite des Loi(⇡( ~XN ))
satisfait un principe de grandes déviations pour la fonction de taux I, une réponse est don-
née par le principe conditionnel de Gibbs, qui montre que

lim
N!+1

Loi(X1,N
|⇡( ~XN ) 2 A) �����!

N!+1
argminµ2AI(µ).

Si E = C([0, T ],Rd) est un espace de trajectoires et les particules sont données par (1.74),
un tel principe de grandes déviations est montrée par le Théorème 1.6.1 en Partie 1.6. Un
des principaux objectifs de ma thèse était l’étude de ce principe conditionnel lorsque

A = {µ[0,T ] 2 P(C([0, T ],Rd)), 8t 2 [0, T ], (µt)  0}, (1.78)

où  : P(Rd) ! R est une fonction non-nécessairement convexe, vue comme une
contrainte sur les lois marginales en temps. En d’autres termes, il s’agit d’une version du
principe de Gibbs avec une infinité de contraintes. Un exemple typique est le cas
linéaire  (µ) =

R
Rd  dµ, qui revient à imposer qu’une statistique du système (typiquement

son énergie moyenne) ne dépasse pas un certain seuil au cours du temps. Des questions
naturelles sont alors les suivantes :

• À quel processus contraint correspond la loi optimale ?

• Quelle est la régularité de ce processus par rapport à celles du système et de la
contrainte ?
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• Le processus est-il stable lorsqu’on perturbe la contrainte ?

La motivation physique de cette dernière question provient du fait qu’une mesure expéri-
mentale est souvent teintée d’incertitude, donc on souhaite donc que le modèle soit stable
par rapport aux erreurs de mesure.

La Section 1.7.1 ci-dessous résume le Chapitre 4, travail en collaboration avec Giovanni
Conforti et Julien Reygner. Ce chapitre étudie une large classe de problèmes de minimisa-
tion dans un espace abstrait P(E) sous une infinité de contraintes, et montre notamment
des résultats de stabilité faible. Le cas E = C([0, T ],Rd) de trajectoires en interaction
champ-moyen est traité dans le Chapitre 5 en collaboration avec Giovanni Conforti, in-
cluant notamment des résultats de stabilité quantitative présentés en Section 1.7.2. Ces
résultats nécessitent des estimées de régularité sur une équation de Hamilton-Jacobi mon-
trées dans le Chapitre 6 par des méthodes de solutions de viscosité. Ce dernier chapitre
est résumé en Section 1.7.3.

1.7.1 Principe de Gibbs avec une infinité de contraintes

Le Chapitre 4 considère un espace Polonais E général, ainsi que � 2 Cb(E,R+) et l’ensemble

P�(E) := {µ 2 P(E) ,
R
E
� dµ < +1},

muni de la topologie de la convergence faible, plus la convergence contre � (le cas particulier
�(x) = dp(x, x0) correspond à la topologie de Wasserstein-p). Étant données une mesure
de référence ⌫ 2 P�(E) et F : P�(E) ! (�1,+1] semi-continue inférieurement, le
domaine de définition de la fonction de taux I(µ) := H(µ|⌫) + F(µ) est

DI := {µ 2 P�(E), H(µ|⌫) + F(µ) < +1}.

On introduit ensuite une famille de fonctions continues (⇣s)s2S telle que

8s 2 S, 9Cs > 0 : 8x 2 E, |⇣s(x)|  Cs[1 + �(x)],

ainsi qu’une famille ( t)t2T de fonctions semi-continues inférieurement P�(E) ! R, T

étant un espace topologique compact. On définit enfin les ensembles contraints (qui
sont des fermés)

A
⇣ := {µ 2 P�(E), 8s 2 S,

R
E
⇣s dµ = 0}, A := {µ 2 P�(E), 8t 2 T ,  t(µ)  0}.

Le théorème suivant [Chaintron et al., 2024, Theorem 2.13] établit les conditions d’opti-
malité dans un cadre abstrait autorisant une infinité de contraintes d’égalité linéaires et
une infinité de contraintes d’inégalité possiblement non-convexes.

Theorem 1.7.1 (Conditions d’optimalité). Soit µ un minimiseur pour le problème

inf
µ2A⇣\A 

H(µ|⌫) + F(µ). (1.79)

Sous des hypothèses de régularité et une condition de qualification détaillées dans [Chain-
tron et al., 2024, Section 2.3],

1. Tout µ dans DI \A
⇣ est absolument continue par rapport à µ.

2. Il existe (⇣,�) 2 L1(E, dµ) ⇥M+(T ) et un ensemble mesurable S ⇢ E tel que
µ(S) = 1 et

dµ

d⌫

�
x
�
=

1

Z S
(x) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
, (1.80)

où Z 2 (0,+1) est une constante de normalisation.
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1.7. Stabilité du principe de Gibbs et contrôle sous contraintes

3. La fonction ⇣ ci-dessus appartient à la fermeture de Vect(⇣s, s 2 S) dans L1(E, dµ),
donc

R
E
⇣ dµ = 0, et la condition de relâchement suivante est satisfaite :

 t(µ) = 0 pour �-presque tout t 2 T . (1.81)

Les fonctions �F

�µ
et � 

�µ
sont les dérivées linéaires (Gâteaux) de F et  par rapport à µ.

La preuve repose sur une utilisation adéquate du théorème de Hahn-Banach, dans l’esprit
de Csiszár [1975, 1984]; Léonard [2000]. Un principe de grandes déviations pour la loi
conditionnelle de ⇡( ~XN ) est également montré dans [Chaintron et al., 2024, Theorm 2.7].
Ce théorème inclut (1.78) qui correspond au cas E = C([0, T ],Rd), S = ; et  t(µ[0,T ]) =
 (µt). Plusieurs exemples gaussiens sont explicitement détaillés dans [Chaintron et al.,
2024, Section 3.4], donnant lieu à des comportements originaux. Si E est un ensemble
produit du type E = F ⇥ G ou E = C([0, T ],Rd), les contraintes d’égalité permettent
d’imposer autant de lois marginales que l’on souhaite. En particulier, ce cadre couvre le
problème du pont de Schrödinger Léonard [2014] ainsi que des extensions comportant
davantage de contraintes.

Lorsque les fonctions F et  t sont convexes, il y a unicité du minimiseur µ et les
conditions (1.80)-(1.81) suffisent à le caractériser [Chaintron et al., 2024, Theorem 2.17].
Dans ce cadre, on obtient le résultat de stabilité suivant [Chaintron et al., 2024, Theorem
2.22].

Theorem 1.7.2 (Stabilité faible). Soit ((⌫k, Fk, ))k�1 une suite qui tend vers (⌫,F , )
en satisfaisant les hypothèses de régularité détaillées dans [Chaintron et al., 2024, Section
2.4]. La suite des minimiseurs (µk)k�1 converge alors vers le minimiseur µ de (1.79). De
plus, la suite des multiplicateur de Lagrange (�k)k�1 associée à (µk)k�1 par (1.80) est
pré-compacte dans M+(T ), et toute valeur adhérence est un mutliplicateur � satisfaisant
(1.80) pour µ.

Plusieurs autres résultats techniques sont prouvés dans les Chapitres 4 et 6, en prépa-
ration des résultats de stabilité quantitative du Chapitre 5.

1.7.2 Régularité et stabilité quantitative par le contrôle champ-moyen

Cette partie présente les résultats du Chapitre 5, qui étudie la stabilité quantitative du prin-
cipe de Gibbs pour (1.78) et des diffusions en interaction. Pour µ[0,T ] 2 P(C([0, T ],Rd),
soit �(µ[0,T ]) la loi trajectorielle de la solution de l’EDS

dXt = b(Xt, µt)dt+ �(Xt)dBt, X0 ⇠ ⌫0,

où (Bt)0tT est un mouvement Browniene et les coefficients sont des fonctions continues
b : [0, T ]⇥Rd

! Rd et � : [0, T ]⇥Rd
! Rd⇥d. Dans l’esprit du Théorème 1.6.1, on s’intéresse

au problème
inf

µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)0

H(µ[0,T ]|�(µ[0,T ])),

pour  : P1(Rd) ! R semi-continue inférieurement. Ce problème correspond Budhiraja
et al. [2012]; Fischer [2014] au problème de contrôle sous contraintes en lois

inf
↵, X

↵
0 ,

8t2[0,T ], (Loi(X↵
t ))0

H(Loi(X↵

0 )|⌫0) + E
Z

T

0

1

2
|↵t|

2dt,
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de la dynamique de McKean-Vlasov

dX↵

t = b(X↵

t ,Loi(X
↵

t ))dt+ �(X↵

t )↵tdt+ �(X↵

t )dBt.

On suppose que pour tout ↵ > 0, x 7! e↵|x| est ⌫0-integrable. Pour simplifier la présentation
des résultats tout en restant dans un cadre rigoureux, on se restreint ici à

b(x, µ) = b(x),  (µ) =

Z

Rd
 dµ,

même si le Chapitre 5 traite le cas non-linéaire général. En particulier, �(µ[0,T ]) =:
⌫[0,T ] ne dépend maintenant plus de µ[0,T ]. On suppose également que b, �,  , r sont
globalement Lipschitz, et � est bornée inversible et d’inverse bornée.

Theorem 1.7.3 (Structure des minimiseurs). Soit µ[0,T ] un minimiseur satisfaisant la
contrainte de qualification r 6= 0, µt-a.s. Il existe alors une mesure de Radon positive
� 2M+([0, T ]), ' : [0, T ]⇥ Rd

! R et Z > 0 tels que µ0(dx) = Z
�1

e�'0(x)⌫0(dx) et
8
<

:
@tµt �r · [�µtb+ µt��

>
r't +

1
2r · [µt��

>]] = 0,

�'t +
R
T

t
b ·r's �

1
2

���>r's

��2 + 1
2Tr[��

>
r

2's] ds+
R
[t,T ]  �(ds) = 0.

(1.82)

De plus la contrainte de relâchement suivante est satisfaite
Z

Rd
 dµt = 0, pour �-presque tout t 2 [0, T ],

et la densité trajectorielle admet l’expression

dµ[0,T ]

d⌫[0,T ]
(x[0,T ]) = Z

�1
exp


�

Z
T

0
 (xt)�(dt)

�
.

Ce théorème et le suivant généralisent des résultats de Daudin [2022, 2023] pour un
problème de contrôle stochastique (cas b ⌘ 0 et � ⌘ Id) avec contraintes en lois régulières
et convexes.

Theorem 1.7.4 (Densité du multiplicateur). Dans le cadre du Théorème 1.7.3, il existe
(�,') satisfaisant (1.82) tel que x 7! r't(x) soit Lipschitz et

�(dt) = �0�0(dt) + �tdt+ �T �T (dt),

pour t 7! �t in L1(0, T ), si on suppose que ⌫0 admet une densité par rapport à Lebesgue
presque partout différentiable (toujours notée ⌫0), et qu’il existe "0 > 0 tel que ou bien (i)
ou bien (ii) est satisfaite :

(i) r2 est Lipschitz et
R

Rd

⇥
(log ⌫0)1+"0 + |r log ⌫0|2+"0

⇤
d⌫0 < +1.

(ii) rb, r�, r2� sont Lipschitz et
R

Rd

⇥
(log ⌫0)1+"0+|r log ⌫0|4+"0+|r

2 log ⌫0|2+"0
⇤
d⌫0 <

+1.

Si (ii) est satisfaite, x 7! r2't(x) est de plus Lipschitz et la densité des marginales en
temps µt satisfait


sup
t2[0,T ]

Z

Rd

⇥
logµt + |r logµt|

4 + |r
2 logµt|

2
⇤
dµt

�
+

Z
T

0

Z

Rd
|r

3 logµt|
2dµtdt < +1.

(1.83)
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1.7. Stabilité du principe de Gibbs et contrôle sous contraintes

Ces résultats sur la densité de � sont un compromis entre la régularité des co-
efficients et celle de la contrainte. Les ingrédient-clefs sont l’estimée (1.83) pour
des processus de diffusion, ainsi qu’une procédure géométrique [Chaintron and Conforti,
2024, Section 3.1] qui construit des mesures admissibles en poussant la mesure optimale
le long du flot-gradient de la contrainte. La preuve de ce théorème montre également
que t 2 (0, T ] 7! r't(x) est continue et t 2 [0, T ] 7!

R
Rd  µt est C1 sous (i), et que

t 2 (0, T ] 7! r
2't(x) est continue sous (ii). En fonction de l’origine de la régula-

rité (contrainte ou coefficients), on obtient plus de régularité sur la courbe contrainte ou le
contrôle optimal. On pourrait en obtenir encore davantage en supposant que les coefficients
ont davantage de dérivées bornées.

Theorem 1.7.5 (Stabilité quantitative ). Dans le cadre du Theorem 1.7.3, on suppose
que (ii) est satisfaite, que  est C4 à dérivées bornées et que

R
Rd e"0|x|

2
⌫0(dx) < +1. Pour

" � 0, soit µ"[0,T ] le minimiseur de

inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)"

H(µ[0,T ]|⌫[0,T ]).

Soit ('"t ,�"t ,�"0,�"T ) donné par l’application à µ"[0,T ] du Théorème 1.7.3-1.7.4. On suppose
que le nombre d’intervalles non-triviaux où

R
Rd  dµ0

t est identiquement nulle est fini. Il
existe alors C > 0 telle que pour tout " 2 [0, 1],

(i) Stabilité entropique : H(µ"[0,T ]|µ
0
[0,T ])  C".

(ii) Stabilité du multiplicateur : |�"0 � �00|+ k�0 � �"kL1(0,T ) + |�"
T
� �0

T
|  C"1/4.

(iii) Stabilité du contrôle : sup(t,x)2[0,T ]⇥Rd |r'"t (x)�r'
0
t (x)|  C"1/4.

L’hypothèse de moment gaussien pour ⌫0 ne sert qu’à simplifier les taux de convergence
(sans elle, on aurait des facteurs logarithmiques supplémentaires). De même, l’hypothèse
sur le nombre fini d’intervalles peut être omise si on accepte un taux moins bon [Chaintron
and Conforti, 2024, Remark 4.10].

1.7.3 Existence et estimées Lipschitz pour la solution d’une équation de
HJB

L’objectif principal du Chapitre 6 est le résultat suivant.

Theorem 1.7.6. Si b, � et f sont des fonctions Lipschitz, avec � bornée et ��> unifor-
mément elliptique, alors l’équation de HJB

@tu+ b ·ru+ 1
2Tr[��

>
r

2u]� 1
2 |�
>
ru|2 + f = 0, (1.84)

avec la donnée initiale Lipschitz u(T, x) = g(x), admet une unique solution C1,2 à crois-
sance linéaire, qui est par ailleurs globalement Lipschitz.

De telles solutions classiques sont très utiles pour la résolution de problèmes de contrôle
stochastique. Ce résultat est crucial dans les articles Chaintron et al. [2024]; Chaintron
and Conforti [2024] ainsi que le raffinement suivant : si de plus

8(t, x, y) 2 [0, T ]⇥ Rd
⇥ Rd, |f(t, x)� f(t, y)|  �(t)|x� y|, � 2 L1(0, T ),

alors la borne sur ru only ne dépend de f qu’au travers k�kL1(0,T ). Cette propriété permet
d’obtenir des estimées sur la solution de (1.82) ne dépendant que de la masse totale
�([0, T ]) du multiplicateur.
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Bibliographie

Les hypothèses Lipschitz ci-dessus sont naturelles dans un cadre probabiliste, et la
borne sur � est nécessaire pour que ru soit bornée. Étonnamment, ce résultat utile ne
semble pas avoir été prouvée dans la littérature antérieure, comme longuement détaillée
dans l’introduction de Chaintron [2023]. La difficulté principale est que � 6= Id, ce qui
implique une croissance quadratique en ru pour la dérivée en x du hamiltonien. La preuve
de ce résultat combine plusieurs techniques et astuces autour des solutions de viscosité,
donnant une estimée qui semble à la limites des hypothèses.
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CHAPTER 2

Constrained non-linear estimation and links with stochas-

tic filtering

Ma mission première est de te maintenir en vie.

— Philippe Moireau, CIRM 2022

This work is a collaboration with Laurent Mertz, Philippe Moireau, and Hasnaa Zidani.
This article studies the problem of estimating the state of a non-smooth sub-differential
dynamics in a domain given some real-time observation on it. We show that the small
noise limit of the corresponding stochastic filtering problem recovers the deterministic
smooth framework of Mortensen, which was recently extended to sub-differential dynamics.
Contrary to the smooth setting already studied by Baras and James, intricate phenomena
appear at the boundary of the domain, because of the non-reversibility of our non-smooth
dynamics. In particular, the value function is a viscosity solution of a Hamilton-Jacobi
equation with Neumann-type boundary conditions that are different for the sub-solution
and the super-solution. Using a dual formulation, we establish a large deviation result
in the small noise limit. We further prove a quantitative approximation result, when
replacing the non-smooth dynamics by a smooth penalised one. We eventually provide
a numerical illustration in a 1D configuration with a discretisation strategy that benefits
from an adapted Bellman principle introduced at the discrete level.
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2.1. Introduction

2.1 Introduction

Sequential estimation aims to combine a dynamical system with some measurements as
they become available, to reduce potential uncertainties in the dynamics and thus produce
a model prediction that is more consistent with available data. Such a goal can be pursued
for a wide range of dynamical systems: finite dimensional (ODE) or infinite dimensional
(PDE), linear or non-linear dynamics, unconstrained (smooth dynamics) or constrained
(non-smooth dynamics combined with variational inequality), deterministic (observer the-
ory) or stochastic (filtering theory). In the present paper, we focus on constrained dynamics
in finite dimension, and we link the framework of stochastic filtering with the determinis-
tic framework aiming at defining observer dynamics. Stochastic filtering for unconstrained
ODEs has been known since the 1960s with the seminal work of Kalman and Bucy [1961]
for linear dynamics, and then generalized for nonlinear dynamics, see Kushner [1967];
Duncan [1967]; Zakai [1969]; Jazwinski [1970]... These results were then extended to some
constrained dynamics, in particular for the Skorokhod problem with the series of works by
Pardoux [1978a,b]; Hucke [1990]. As for the deterministic view, the observer theory based
on Minimum Energy Estimation has been known since the pioneering work of Mortensen
[1968], see also the presentation proposed by Fleming [1997]. While the unconstrained case
has been well understood since James and Baras [1988b], with an asymptotic connection
to stochastic filtering introduced in Hijab [1984] and further justified in Fleming [1997],
the case of constrained dynamics was not studied until a recent attempt Chaintron et al.
[2023] for a simple one-dimensional dynamics. The constraint is there introduced using
the formalism of non-smooth sub-differential dynamics Moreau [1971]; Tyrrell Rockafellar
[1970]. A main difficulty of this setting is the loss of time reversibility: in contrast with
smooth dynamics, the non-smooth dynamics is well-posed in forward time only, making
the connection harder between stochastic filtering and deterministic estimation. Chaintron
et al. [2023] was able to make a few strides to reconcile both points of view.

In this paper, we generalize the works of Willems [2004]; James and Baras [1988b];
Chaintron et al. [2023] to non-smooth dynamics associated with trajectories that must
remain in a bounded domain. In particular, we fully connect the deterministic represen-
tation to stochastic filtering by extending the results of James and Baras [1988b] in a
suitable way: we show that the deterministic view corresponds to the small noise limit of
the stochastic framework by proving a large deviation result. Following James and Baras
[1988b]; Fleming [1997], we rely on a viscosity solution setting to deal with the under-
lying Hamilton-Jacobi-Bellman (HJB) equations. However, due to the non-reversibility
of non-smooth dynamics, our approach differs from them. In particular, the sub-solution
and the super-solution satisfy different Neumann-type boundary conditions in the viscosity
sense, and the comparison principle is unknown to our knowledge. To circumvent this dif-
ficulty, the small noise limit is established using a dual formulation. We also show how the
penalized estimator developed in Chaintron et al. [2023] to deal with the constraint con-
verges to the fully constrained estimator in a quantitative way, and we provide numerical
illustrations.

2.1.1 Problem statement

Let G ⇢ n be a bounded open domain that is convex with C2 boundary. We consider a
class of non-smooth dynamical systems of the form

ẋ!(s) + @�G(x!(s)) 3 b(s, x!(s)) + �(s, x!(s))!(s), s > 0, (2.1)

with an initial condition x!(0) 2 G.
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Chapter 2. Constrained non-linear estimation

Here, the state variable at time s is denoted x!(s), while the functions b : +⇥G! n

and � : +⇥G! n⇥r are Lipschitz-continuous functions. The term !(s) 2 r represents
the state disturbance, �G : n

! {0,+1} is the characteristic function of the domain
G, and @�G(x!(s)) is the subdifferential of the convex function �G at x!(s). Recall that
this subdifferential corresponds to the normal cone N

G
(x!(s)) to G at x!(s). This means

that when the state x!(s) reaches the boundary of G, the dynamics are reflected, ensuring
that x!(s) remains within G. In particular, the dynamics are driven by the vector field
b(s, x!(s))+�(s, x!(s))!(s), but whenever x!(s) approaches the boundary of G, the normal
cone prevents it from leaving the domain, reflecting the trajectory back into the domain
in the sense of Skorokhod.

In the sequel, we assume that the disturbance belongs to the Lebesgue space L2(0,+1;Rm)
that consists of all measurable functions w : (0,+1) �! Rr that are square integrable,
i.e. the norm

kwkL2(0,+1;Rm) :=

✓Z +1

0
kw(s)k2 ds

◆ 1
2

is finite, and where functions which agree almost everywhere are identified.
For square-integrable disturbances !, given any initial data x!(0) 2 G, the existence

and uniqueness of an absolutely continuous solution to the system (2.1) are established in
[Clarke et al., 2008, Section 4.1] and [Pardoux and Răşcanu, 2014, Section 4.2.3], ensuring
that the differential inclusion (2.1) holds for almost every s � 0.

We consider a measurement procedure h : + ⇥G! m, so that observations associ-
ated with a trajectory of the dynamics (2.1) are given by

8t � 0, ẏ(t) = h(t, x!(t)) + ⌘(t), (2.2)

where ⌘(t) 2 m is the observation disturbance, which is assumed to be square-integrable.
Our purpose is to build an estimator at time t for the state of a dynamics described by
(2.1) given the measurement (ẏ(s))0st produced by (2.2). We want this estimator to be
causal in the sense of Krener [1998], meaning that the computed state only depends on
the past measurements.

Remark 2.1.1. In most deterministic observation problems, the observation is usually
denoted y. Here, we denote by y a primitive of the observation for consistency with the
stochastic filtering setting. As in practice, only ẏ will appear in the estimator equations,
defining the observation with a time-derivative is a mere notation convention.

An iconic case of non-smooth dynamics in an unbounded domain is G = +. It was
studied in Chaintron et al. [2023]. Solutions in this case are given by Skorokhod [1961]:

x(t) +�(t) = x(0) +

Z
t

0
!(s) ds,

where �(t) = min
0st

min

✓
0 ; x(0) +

Z
s

0
!(⌧) d⌧

◆
,

and illustrated in Figure 2.1.
Before describing our results, we briefly review some existing methods in linear and

non-linear estimation.

2.1.2 Unconstrained linear dynamics: Kalman filter

In the linear case, the system is characterized by the following dynamics:

b(t, x) = Ax, �(t, x) = ⌃, h(t, x) = Hx,  (x) =
1

2
[x� x̂0]

>P�10 [x� x̂0],
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x(t)
x(t) +�(t)
�(t)

Figure 2.1: Example of trajectory

where A 2 Rn⇥n, ⌃ 2 Rn⇥r, H 2 Rm⇥n, P0 2 S++
n (R) is a positive-definite matrix, and

x̂0 2 Rn. The unconstrained linear dynamics, with a linear observation operator, serves as
a classical example for defining a sequential estimator in both deterministic and stochastic
systems. This was first introduced by Kalman and Bucy [1961], and a full treatment of
stochastic filtering in this case can be found in Jazwinski [1970]; Davis and Davis [1977].
For a deterministic perspective, we refer to Willems [2004]. Essentially, both approaches
lead to the definition of the estimator given by

(
˙̂x(t) = Ax̂(t) + P (t)H>[ẏ(t)�Hx̂(t)], t > 0,

x̂(0) = x̂0,
(2.3)

where the symmetric positive matrix P 2 S+
n (R) is a solution of the following Riccati

equation
(
Ṗ (t) = A(t)P + P (t)A> + ⌃⌃> � P (t)>HH>P (t), t > 0,

P (0) = P0.
(2.4)

Equation (2.3) provides a recursive estimator that can be computed in real time, the matrix
P (t) being pre-computed beforehand.

2.1.3 Non-linear dynamics: Mortensen observer

If we now consider a general non-linear unconstrained dynamics of the form

ẋ!(s) = b(s, x!(s)) + �(s, x!(s))!(s), s > 0, (2.5)

the Mortensen estimator Mortensen [1968] generalises the Kalman estimator in the deter-
ministic setting. Given an observation ẏ 2 L2((0, t);Rm), we introduce a value function
called cost-to-come as the function defined by

U (t, x) , inf
!2L

2((0,t); m)
x!(t)=x

 (x!(0)) +

Z
t

0
`(s, x!(s),!(s)) ds, (2.6)

where  : n
! R+ is Lipschitz and such that  (x)! +1 as |x|! +1,

`(s, x,!) , 1

2
|!|2 +

1

2
|ẏ(s)� h(s, x)|2.
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The Mortensen observer x̂ is defined as a minimiser of x 7! U (t, x). If uniqueness holds
for this minimiser, we simply define

8t � 0, x̂(t) , argminx2Rn U (t, x). (2.7)

For a well-posedness result in a non-linear setting, we refer to Breiten and Schröder [2023].
If moreover U (t, x) is C2 at (t, x̂(t)) with invertible Hessian, the optimality conditions for
x̂(t) yield

˙̂x(t) = b(t, x̂(t)) + [r2U (t, x̂(t))]�1rh(t, x̂(t))[ẏ(t)� h(t, x̂(t))], t > 0. (2.8)

This recursive feed-back structure extends the one of the Kalman estimator. Indeed, (2.8)
precisely corresponds to (2.3) in the linear setting of Section 2.1.2. In this linear setting,
the cost-to-come reads

U (t, x) =
1

2
[x� x̂(t)] · P�1(t)[x� x̂(t)] +

Z
t

0

1

2
|ẏ(s)�Hx(s)|2ds,

enabling us to recover the Kalman estimator.

2.1.4 Outline of the article

We adapt Mortensen’s approach to the setting of non-smooth dynamics. The cost-to-
come function for the constrained setting is defined in Section 2.2.1 and characterised as
a viscosity solution with intricate boundary conditions. An approximation procedure is
further introduced to bring the problem back to the setting of Section 2.1.3, the sub-
differential being replaced by a penalisation term that pulls the dynamics back in G when
it escapes. A quantitative rate of convergence is obtained, the proof being done in Section
2.3.1. We then describe the link with non-smooth stochastic filtering. Existing links
between stochastic filtering and deterministic estimation are recalled in Sections 2.2.3.1-
2.2.3.2. Our results for the non-smooth setting are stated in Section 2.2.3.3 and proved in
Section 2.4. A numerical illustration is given in Section 2.5.

2.2 Description of the results

Following James and Baras [1988a]; Rockafellar and Wolenski [2000], we introduce the
following value function.

Definition 2.2.1 (Cost-to-come). The cost-to-come to the point x 2 G at time t 2 [0, t],
given an observation ẏ 2 L2((0, t); m), is the function defined by

V (t, x) , inf
(x!(0),!)2AG

t,x

 (x!(0)) +

Z
t

0
`(s, x!(s),!(s)) ds, (2.9)

where
`(x,!, s) , 1

2
|!|2 +

1

2
|ẏ(s)� h(s, x)|2,

and the admissible set is defined by

A
G

t,x , {(x!(0),!) 2 G⇥ L2((0, t);Rm) : x! follows (2.1) with x!(t) = x}.

The admissible set is always non-empty. By standard arguments for value functions in
control theory (see e.g. [Clarke et al., 2008, Chapter 4, Section 7] for non-smooth dynam-
ics), V is a continuous function. Before studying V itself, we describe an approximating
procedure that brings the problem back to smooth unconstrained dynamics.
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Remark 2.2.2 (Inward pointing drift). Let us assume that b(x)·n(x)  0 for every x 2 @G,
n(x) being the outward normal vector at x. For simplicity, we further assume that n = r
and � ⌘ Id. In this setting, the control problem (2.9) of the differential inclusion (2.1)
reduces to a standard control problem for a differential equation under state constraints.
Indeed, introducing the solution z! of

ż!(s) = b(s, z!(s)) + !(s), (2.10)

we notice that

V (t, x) = inf
!, z!(t)=x

8s2[0,t], z!(s)2G

 (z!(0)) +

Z
t

0
`(s, z!(s),!(s)) ds.

The  inequality stems from the fact that any trajectory of (2.10) that stays in G is a
trajectory of (2.1). The � inequality results from the fact that any trajectory of (2.1) can
be realised by a trajectory of (2.10) for a ! that has a lower L2-norm, using that b · n  0.

2.2.1 Penalisation approach

In this section, we introduce an estimation problem for an approximation of (2.1) defined in
the whole space n. With a slight abuse of notations, we assume that our coefficients b, �,  
and h are defined and Lipschitz-continuous on n. Let ⇡

G
denote the orthogonal projection

on the closed convex set G. For  > 0, we introduce the penalisation f : G! Rn of @�G

defined by f(x) , [x � ⇡
G
(x)]. Since G is convex, we can follow the Moreau-Yosida

regularisation Moreau [1971], which was extended to more general domains in Thibault
[2008]; Jourani and Vilches [2017]. We also refer to de Pinho et al. [2019] for an alternative
exponential penalisation that is smooth. We thus introduce the penalised dynamics

ẋ!(t) + f(x


!(t)) = b(t, x!(t)) + �(t, x!(t))!(t), t > 0. (2.11)

The penalised cost-to-come is defined as

V (t, x) , inf
!2L

2(0,t),
x

!(t)=x

 (x!(0)) +

Z
t

0
`(s, x!(s),!(s)) ds. (2.12)

By standard arguments in control theory [Fleming and Soner, 2006, Section II.10], V  is
a continuous function. Our first main results are the following.

Theorem 2.2.3 (Quantitative convergence of V ). For every t > 0,

sup
(s,x)2[0,t]⇥G

|V (s, x)� V (s, x)|  C�1/4,

for some constant C > 0 that only depends on t.

Corollary 2.2.3.1 (Convergence of observers). For every t > 0, any limit point of a family
(x̂(t))>0 of minimisers for x 7! V (t, x) is a minimiser of x 7! V (t, x).

Theorem 2.2.3 and its corollary are proved in Section 2.3.1. These consistency re-
sults show that the estimation problem for (2.11) is indeed a good approximation of the
estimation problem for (2.1), and provide the convergence of Mortensen observers.
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Chapter 2. Constrained non-linear estimation

2.2.2 Hamilton-Jacobi-Bellman equation

Since our estimation procedure is based on the functions V  and V , we need a way
to characterise them. Using the standard dynamic programming approach, the cost-to-
come is the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. The
notion of viscosity solution is standard to deal with the lack of regularity of solutions to
HJB equations. The needed definitions are reminded in Appendix 2.A. For the sake of
simplicity, we assume that n = r and � ⌘ Id. The following result corresponds to [James
and Baras, 1988b, Theorem 3.1]. It is proved in [Fleming, 1997, Section 2], under the
additional assumption that h is bounded. However, the result still holds under our running
assumptions, an appropriate comparison principle for unbounded viscosity solutions being
provided by Da Lio and Ley [2006].

Theorem 2.2.4 (Viscosity solution). V  is the unique viscosity solution in [0, T ]⇥ Rn of
the following HJB equation in the sense of Definition 2.A.1,

@tV
(t, x) + (b(t, x)� f(x)) ·rV (t, x) +

1

2
|rV (t, x)|2 �

1

2
|ẏ(t)� h(t, x)|2 = 0,

with the initial condition V (0, x) =  (x).

Formally taking the ! +1 limit, we prove that this equation still holds for V within
the open domain G,

@tV (t, x) + b(t, x) ·rV (t, x) +
1

2
|rV (t, x)|2 �

1

2
|ẏ(t)� h(t, x)|2 = 0. (2.13)

However, intricate boundary conditions now appear.

Theorem 2.2.5 (Viscosity solution). In the sense of Definition 2.A.2,

(i) V is a viscosity sub-solution of the HJB equation (2.13) with the boundary condition

b(t, x) · n(x) +
@V
@n

(t, x) = 0, x 2 @G. (2.14)

(ii) V is a viscosity super-solution of the HJB equation (2.13) with the different boundary
condition

b(t, x) · n(x) +
1

2

@V
@n

(t, x) = 0, x 2 @G. (2.15)

In the boundary conditions (2.14)-(2.15), n(x) denotes the outward normal vector at
the point x 2 @G. Theorem 2.2.5 is proved in Section 2.3.2. The notion of viscosity solution
used in Theorem 2.2.5 is detailed in Appendix 2.A; it is the standard notion of viscosity
solution with Neumann boundary condition Lions [1985]; Barles and Lions [1991], in which
the boundary condition is relaxed by allowing the equation to hold at the boundary. In
general, the boundary conditions (2.14) and (2.15) do not coincide. Up to our knowledge,
proving a comparison principle for this setting is an open question, which will be the
subject of future works.

However, if b · n  0 on @G, Definition 2.A.2 shows that any viscosity sub-solution of
(2.13) with the boundary condition (2.14) is also a viscosity sub-solution of (2.13) with the
boundary condition (2.15). The comparison principle is then proved in [Barles and Lions,
1991, Theorem 3] and uniqueness holds for the viscosity solution of the HJB equation
(2.13)-(2.15). Furthermore, Remark 2.3.4 shows in this case that V is a viscosity super-
solution of (2.13) on the closed domain [0, T ] ⇥ G, with no further boundary condition.
This recovers the notions of constrained viscosity solution introduced in Soner [1986]; Ishii
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and Koike [1996]. This was expected, since the assumption b · n  0 reduces the control
problem (2.9) to the standard control problem of (2.10) under state constraints using
Remark 2.2.2, and (2.10) satisfies the inward pointing condition from Soner [1986]. The
related comparison principle is proved in [Capuzzo-Dolcetta and Lions, 1990, Theorem
III.2].

2.2.3 Links with stochastic filtering

In general, viscosity solutions of HJB equations lack regularity; this may hinder an ef-
ficient computation of their minimisers. To circumvent this, a standard approach is
to smooth them by adding a (small) laplacian term. Interestingly, Hijab [1984]; James
and Baras [1988b]; Fleming [1997] proved that this smoothing procedure is connected to
the renowned stochastic filtering problem Kallianpur and Striebel [1968]; Kushner [1967];
Jazwinski [1970]... In our constrained setting, this amounts to replacing the model dynam-
ics (2.1) by the stochastic reflected dynamics

dX"

t + @�G(X
"

t )(dt) 3 b(t,X"

t )dt+
p
"�(t,X"

t )dBt, (2.16)

on a filtered probability space (⌦,F ,P, (Ft)t�0), the law of X"

0 being q"0(x)dx. The integral
of the deterministic model noise ! in (2.1) has been replaced by an adapted Brownian
motion (Bt)0tT in r. Under our current Lipschitz assumptions, well-posedness for
(2.16) is proved in [Pardoux and Răşcanu, 2014, Section 4.2.2]. We complement (2.16)
with the observation process defined by

dY "

t = h(t,X"

t )dt+
p
"dB0t, Y "

0 = 0, (2.17)

where (B0t)0tT is an adapted Brownian motion in m independent of (Bt)0tT . Equa-
tion (2.17) is the stochastic analogous of (2.2). The purpose of stochastic filtering is to
compute the law ⇡"t of X"

t knowing the observation up to time t, i.e. the law of X"
t

conditionally to the filtration �(Y "
s , 0  s  t):

8' 2 Cb(G,R),
Z

G

' d⇡"t = E
⇥
'(X"

t )|�(Y
"

s , 0  s  t)
⇤
.

Hence,
R
G
' d⇡"t is the optimal estimator in the least-square sense of '(X"

t ) given (Y "
s )0st.

From [Pardoux, 1978a, Section 3], ⇡"t is expected to have a density w.r.t. the Lebesgue
measure, and thus ⇡"t does not charge the boundary @G. We are now interested in the "! 0
behavior of ⇡"t . In particular, we show that ⇡"t concentrates on minimisers of x 7! V (t, x) as
"! 0, corresponding to the Mortensen observer x̂(t) when it is uniquely defined. We first
review the existing results for non-constrained systems in Sections 2.2.3.1-2.2.3.2, before
stating our new results for the non-smooth case in Section 2.2.3.3.

2.2.3.1 Kalman-Bucy filter

We go back to the linear setting of Section 2.1.2,

b(t, x) = Ax, �(t, x) = ⌃, h(t, x) = Hx,

and we initialise X"

0 from the Gaussian law N (x̂0, "P0). The processes defined by (2.16) and
(2.17) are then Gaussian at each time, so that the same goes for the conditioned process:
it is thus sufficient to compute the conditional mean and covariance matrix (X̂"

t , P
"
t ). Clas-

sically Kalman and Bucy [1961]; Jazwinski [1970]; Davis and Davis [1977], the covariance
P "
t = "P (t) is deterministic, and

dX̂"

t = AX̂"

t dt+ P (t)H>[dY "

t �HX̂"

t dt], X̂"

0 = x̂0, (2.18)
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where P (t) is the solution to the Riccati equation (2.4). As a consequence,

⇡"t (dx) = Z�1" exp


�

[x� X̂"
t ] · P

�1(t)[x� X̂"
t ]

2"

�
dx,

where Z" is a normalisation constant. As "! 0, this density concentrates on the solution
x̂(t) of the deterministic equation (2.3). If we freeze a C1 realisation (y(t))t�0 of the
process (Y "

t )t�0, Equation (2.18) exactly correspond to (2.3), and the related quadratic
cost-to-come corresponds to the logarithm of the density of ⇡"t . The Mortensen observer
in this linear setting thus appears as a maximum-likelihood estimator.

2.2.3.2 Small noise filtering for the penalised dynamics

Let us apply the results of James and Baras [1988b] to (a variation of) the penalised
dynamics (2.11) from Section 2.2.1, in the case n = r and � ⌘ Id. In this setting, the
analogous of (2.16)-(2.17) reads

(
dX,"

t
= b(t,X,"

t
)dt� f(X

,"

t
)dt+

p
"dBt,

dY ,"

t
= h(t,X,"

t
)dt+

p
"dB0t,

where (X,"

t
)t�0 is a diffusion process in Rn with initial law q,"0 . The results of James and

Baras [1988b] assume that the coefficients are smooth bounded functions with bounded
derivatives, and we assume the same for b, f and h in this sub-section, up to replacing
the penalisation f from Section 2.2.1 by a suitable regularisation. Since the present sub-
section is mainly here for illustration and comparison purposes, we did not try to improve
these assumptions.

The filtering density ⇡,"
t

can be computed as the solution of a non-linear stochastic
PDE known as the Kushner-Stratonovich equation Kushner [1967]. Alternatively, ⇡,"

t
(dx)

can be computed by normalising the positive (random) measure q,"
t

(x)dx that solves the
Zakai equation Zakai [1969]; Pardoux [1980]:

dq,"
t

(x) = (L,"
t

)?q,"
t

(x)dt+
1

"
q,"
t

h(t, x) · dY ,"

t
, (2.19)

where (L,"
t

)? is the formal L2-adjoint of the infinitesimal generator L,"
t

of the Markov
process (X,"

t
)t�0, which is given on C2 test functions ' : !

! by

L,"
t
'(x) = [b(t, x)� f(x)] ·r'(x) +

"

2
�'(x).

Following the theory of pathwise filtering Davis [1981], we introduce the random function
p,"
t

defined by

p,"
t

(x) ,

�

1

"
Y ,"

t
h(t, x)

�
q,"
t

(x), (2.20)

which solves the robust Zakai equation

@tp
,"

t
(x) = �[b(t, x)� f(x)�rh(t, x)Y

,"

t
] ·rp,"

t
+
"

2
�p,"

t
�

1

"

⇢
1

2
|h(t, x)|2

+ Y ,"

t
· [@t + L,"

t
]h(t, x)�

1

2
|rh(t, x)Y "

t |
2 + "r · [b(t, x)� f(x)�rh(t, x)Y

"

t ]

�
.

(2.21)

For each continuous realisation y = (y(t))t�0 of the process (Y ,"

t
)t�0, Equation (2.21)

has a unique (deterministic) solution p," which continuously depends on y [Fleming and
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Pardoux, 1982, Lemma 3.2]. This allows us to recover the random function p,"
t

by solving
(2.21) for each continuous path y. This result motivates the approach of James and Baras
[1988b]: they freeze a C1 realisation (y(t))t�0 of the process (Y ,"

t
)t�0, before to study

the related solution p," of (2.21) to make a connection with V  as " ! 0. Alternatively,
Equation (2.20) gives a meaning to q," from p," for each continuous realisation y =
(y(t))t�0 of (Y ,"

t
)t�0: q," is now a continuous function of y. [Fleming, 1997, Section 5]

then freezes a C1 realisation y to obtain that

@tq
,"(t, x) = (L,"

t
)?q,"(t, x)dt�

1

"


1

2
|h(t, x)|2 � ẏ(t) · h(t, x)

�
q,"(t, x), (2.22)

which corresponds to the Stratonovich form of (2.19) where (Y ,"

t
)t�0 was replaced by

(y(t))t�0. Let now

q̃,"(t, x) , exp


�

1

2"

Z
t

0
|ẏ(s)|2ds

�
q,"(t, x), V ,"(t, x) , �" log q̃,"(t, x).

The exponential factor is a normalisation term that does not affect the minimisation of
x 7! V ,"(t, x). The following result [Fleming, 1997, Lemma 5.1] makes the connection
with the penalised cost-to-come V  defined in (2.6).

Theorem 2.2.6 (Small noise limit). For every compact set K ⇢ n, if

sup
x2K

|�" log q,"0 (x)�  (x)|  CK"
1/2, (2.23)

for some CK > 0 independent of ", then for every t > 0,

sup
(s,x)2[0,t]⇥K

|V ,"(s, x)� V (s, x)|  C 0K"
1/2,

for some constant C 0
K

> 0 that only depends on (t,,K).

As a consequence (see e.g. [James and Baras, 1988b, Lemma 6.1]), we get the following
large deviation result.

Corollary 2.2.6.1 (Laplace principle). If (2.23) holds for every compact set, then for
every bounded continuous � : n

! ,

8t � 0, �" log

Z

n
e��(x)/"q̃,"(t, x)dx ���!

"!0
inf

x2 n
�(x) + V (t, x).

This statement is equivalent to a large deviation principle for q̃,"(t, x)dx, see e.g.
Dembo [2009]. As " ! 0, this tells that the non-normalised density q",

t
concentrates on

the minimisers of x 7! V (t, x). When uniqueness holds for this minimiser, this precisely
corresponds to the Mortensen observer (2.7) as defined in Section 2.1.3. This extends the
observation that we made in the Gaussian setting of Section 2.2.3.1. A stronger large
deviation result for the conditional density q,"

t
given y is proved in Hijab [1984].

2.2.3.3 Small noise filtering for reflected dynamics

We now extend the previous results to the setting of reflected dynamics:
(
dX"

t + @�G(X"
t )(dt) 3 b(t,X"

t )dt+
p
"dBt,

dY "
t = h(t,X,"

t
)dt+

p
"dB0t,
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Chapter 2. Constrained non-linear estimation

the initial law of x being q"0(x)dx. As previously, the filtering density ⇡"t (dx) can be
computed by normalising the solution q"t (x)dx of the Zakai equation. In this setting, the
Zakai equation was studied in Pardoux [1978a,b]; Hucke [1990]. Equation (2.19) is now
completed with a “no-flux” boundary condition:

(
dq"t (x) = r · [�q"t (x)b(t, x) +

"

2rq
"
t (x)] +

1
"
q"t (x)h(x) · dY

"
t , x 2 G,

�q"t (x)b(t, x) · n(x) +
"

2
@q
"
t

@n
(x) = 0, x 2 @G,

As previously, we freeze a C1 realisation y = (y(t))t�0 to bring the study back to a
deterministic function q" that continuously depends on y. After normalising

q̃"(t, x) , exp


�

1

2"

Z
t

0
|ẏ(s)|2ds

�
q"(t, x),

we end up with the following equation:
(
@tq̃"(t, x) = r · [�q̃"t (x)b(t, x) +

"

2rq̃
"
t (x)]�

1
2" |ẏ(t)� h(t, x)|2q̃"(t, x),

�q̃"(t, x)b(t, x) · n(x) + "

2
@q̃

@n
(t, x) = 0, x 2 @G.

(2.24)

We assume that q"0 is defined and C1 in a neighbourhood of @G, so that existence
and uniqueness for a solution of (2.24) in C([0, T ] ⇥ G) \ C1,2((0, T ] ⇥ G) stems from
[Friedman, 2008, Chapter 5,Corollary 2]. If we define V " , �" log q̃" as previously, we
obtain the boundary condition

b(t, x) · n(x) +
1

2

@V "

@n
(t, x)(x) = 0, x 2 @G,

which differs from the one of the sub-solution in Theorem 2.2.5. This suggests that the
analogous of Theorem 2.2.6 is no more true in the present setting (except if b · n  0
on @G). However, we still managed to prove the large deviation result corresponding to
Corollary 2.2.6.1.

Theorem 2.2.7 (Laplace principle). If

sup
x2G

|�" log q"0(x)�  (x)| ���!
"!0

0,

then for every continuous � : G! ,

8t � 0, �" log

Z

G

e��(x)/"q̃"(t, x)dx ���!
"!0

inf
x2G

�(x) + V (t, x).

As "! 0, this tells that the non-normalised density q"t concentrates on the minimisers
of x 7! V (t, x), recovering the desired Mortensen observer. Theorem 2.2.7 is proved in
Section 2.4.

Remark 2.2.8 (Loss of the boundary condition). Interestingly, the boundary condition
for V " differs from the one of the sub-solution in Theorem 2.2.5. This reminds us of a
fundamental difference between X" and x! around the boundary @G. Indeed, the time spent
by X" on @G has 0 Lebesgue-measure, whereas x! can have a continuous dynamics on @G.
This is also related to the non-reversibility of non-smooth dynamics.

2.3 Study of the value function

This section is devoted to the proofs of Theorems 2.2.3 and 2.2.5, i.e. the uniform conver-
gence of V  and the viscosity solution description of V .
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2.3. Study of the value function

2.3.1 Convergence of the penalised problem

Lemma 2.3.1 (Control of the penalisation). For every (x!(0),!) in G⇥ L2((0, t),Rr):

(i) sup>0 sup0st|x

!(s)|  C,

(ii) sup>0 sup0st
R
t

0 |f(x

!(s))|ds  C,

(iii) sup0st dist(x

!(s), G)  C�1/2,

for a constant C > 0 that only depends on (t, k!kL2).

Proof. First, we write that

|x!(t)|  |x!(0)|+

Z
t

0
|f(x



!(s))|+ |b(s, x!(s)) + �(s, x!(s))!(s)|ds. (2.25)

We define p(x) , 1
2dist(x,G)2 = 1

2(x�⇡G(x))
2. Since G is closed and convex, p is C1 with

rp = �1f, so that

p(x!(t)) + 

Z
t

0
|rp(x!(s))|

2ds

=

Z
t

0
rp(x!(s)) · [b(s, x



!(s)) + �(s, x!(s))!(s)]ds,

and then
✓Z

t

0
|rp(x!(s))|

2ds

◆1/2

 �1
✓Z

t

0
|b(s, x!(s)) + �(s, x!(s))!(s)|

2ds

◆1/2

,

p(x!(t))  
�1

✓Z
t

0
|b(s, x!(s)) + �(s, x!(s))!(s)|

2ds

◆1/2

.

(2.26a)

(2.26b)

Plugging the square of (2.26a) into the square of (2.25), the Gronwall lemma yields (i) using
that coefficients are Lipschitz. Plugging (i) into (2.26a)-(2.26b) then yields (ii)-(iii).

Lemma 2.3.2 (Convergence of penalised curves). For (x!(0),!) in G⇥ L2((0, t),Rr),

sup
0st

|x!(s)� x!(s)|  C�1/4,

for a constant C > 0 that only depends on (t, k!kL2).

Proof. We define the curves y, y and y by

y(t) , x!(0) +

Z
t

0
b(s, x!(s)) + �(s, x!(s))!(s)ds,

y(t) , x!(0) +

Z
t

0
b(s, x!(s)) + �(s, x!(s))!(s)ds,

y(t) , ⇡
G
(x!(t))� x!(t) + y(t),

together with the correction terms

'(t) , x!(t)� y(t), '(t) , �
Z

t

0
f(x



!(s))ds.
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Chapter 2. Constrained non-linear estimation

We then apply [Tanaka, 1979, Lemma 2.2] to ⇡
G
(x!) = y + ' and x! = y + ':

|⇡
G
(x!(t))� x!(t)|

2

 |y(t)� y(t)|2 + 2

Z
t

0
[y(t)� y(t)� y(s) + y(s)]d('k

� ')(s)

 |y(t)� y(t)|2 + 2

Z
t

0
[y(t)� y(t)� y(s) + y(s)]d('k

� ')(s)

+ 2

Z
t

0
[y(t)� y(t)� y(s) + y(s)]d('k

� ')(s).

The first integral is bounded by

2 sup
0st

|⇡
G
(x!(s))� x!(s)|

Z
t

0
d|'|(s) + d|'|(s)  C�1/2,

where we used Lemma 2.3.1-(iii), and Lemma 2.3.1-(ii) to bound
R
t

0 d|'

|(s) =

R
t

0 |f(x

!(s))|ds

uniformly in . Integrating by parts, the second integral becomes
Z

t

0
['k(s)� '(s)]d(y � y)(s) =

Z
t

0
[x!(s)� x!(s)� y(s) + y(s)]d(y � y)(s)

=

Z
t

0
[x!(s)� x!(s)]d(y


� y)(s)�

1

2
|y(t)� y(t)|2.

We now notice that y � y is absolutely continuous w.r.t. the Lebesgue measure, and we
bound the remaining integral by

2

Z
t

0
|x!(s)� x!(s)|

2 + |b(s, x!(s))

+ �(s, x!(s))!(s)� b(s, x!(s))� �(s, x!(s))!(s)|
2ds,

where we also used that ab  2(a2 + b2). Lemma 2.3.1-(iii) gives C 0 > 0 such that

|x!(s)� x!(s)|  C 0�1/2 + |⇡
G
(x!(s))� x!(s)|.

Gathering all the terms and using that coefficients are Lipschitz, the Gronwall lemma gives
the desired result.

Corollary 2.3.2.1 (Time-regularity). For every (x!(0),!) in G⇥ L2((0, t),Rr),

(i) 8s 2 [0, t],
R
t

s
|ẋ!(r)|2dr  C(t� s) +

R
t

s
|!(r)|2dr,

(ii) 8r, s 2 [0, t], |x!(r)� x!(s)|  C|r � s|1/2,

for a constant C > 0 that only depends on (t, k!kL2).

Proof. Starting from the penalised dynamics:

ẋ!(r) = �f(x


!(r)) + b(r, x!(r)) + �(r, x!(r))!(r).

We now take the square and we integrate. Using Lemma 2.3.1-(i) and (2.26a) to bound
the penalisation, we obtain a bound on x! in H1((s, t), n) that does not depend on .
Since x! uniformly converges towards x!, this bound implies weak convergence towards
x! in H1((s, t), n). The H1-norm being lower semi-continuous w.r.t. weak convergence,
this proves (i). Using the Cauchy-Schwarz inequality, (ii) is a consequence of (i).
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2.3. Study of the value function

Proof of Theorem 2.2.3. From Lemma 2.3.2-(i), V  can be bounded by a constant M > 0
uniformly in . As a consequence, we can restrict the minimisation (2.12) to controls !
with square L2-norm lower than 2M . We then plug the result of Lemma 2.3.2 into the
minimisation (2.12): since  and h are Lipschitz-continuous, this completes the proof.

Proof of Corollary 2.2.3.1. Let (x̂(t))>0 be any family of minimisers for x 7! V (t, x).
As in the above proof, we restrict the minimisation (2.12) to controls ! with square L2-norm
lower than 2M . The coefficients being Lipschitz, it is standard to show that V (t, x̂(t))
is realised by some ! 2 L2(0, t) with k!k2

L2(0,t)  2M . Lemma 2.3.1-(i) then shows
that (x̂(t))>0 is bounded, hence pre-compact. Since uniform convergence implies �-
convergence, the result follows.

2.3.2 Viscosity solution

The key-ingredient is the following dynamic programming principle.

Lemma 2.3.3 (Bellman principle). For any x in G and 0  t � ⌧  t  T , the dynamic
programming holds:

V (t, x) = inf
(x!(0),!)2AG

t,x

V (t� ⌧, x!(t� ⌧)) +

Z
t

t�⌧

`(s, x!(s),!(s))ds.

The proof of this result is very standard in control theory, and we omit it. We now
turn to the proof of Theorem 2.2.5.

Proof for the sub-solution part. Given t > 0 and x 2 G, let ' : + ⇥G! be a C1 test
function such that V � ' has a local maximum at (t, x). We now use that the control
additively enters the dynamics (� ⌘ Id). If x 2 G, for every every !̃ 2 n we can find
(x!(0),!) 2 A

G
t,x such that ! is continuous, !(t) = !̃ and x!(s) 2 G for s < t. If x 2 @G,

this is still possible provided that [b(t, x)+!̃]·n(x) � 0. From the local maximum condition,

'(t, x)� '(t� ⌧, x!(t� ⌧))  V (t, x)� V (t� ⌧, x!(t� ⌧))



Z
t

t�⌧

`(s, x!(s),!(s))ds,

where the second inequality stems from Lemma 2.3.3. By construction of !, s 7! x!(s) is
differentiable at t. Dividing by ⌧ and taking the ⌧ ! 0+ limit gives that

@t'(t, x) + [b(t, x) + !̃] ·r'(t, x)�
1

2
|!̃|2 �

1

2
|ẏ(t)� h(t, x)|2  0.

If x 2 G, maximising over !̃ 2 n gives the sub-solution property; moreover, the maximum
is realised by !̃ = r'(t, x). If x 2 @G, we can assume that [b(t, x) +r'(t, x)] · n(x) � 0
from Definition 2.A.2. This allows us to take !̃ = r'(t, x) to realise the maximum. In
both cases, we obtained the sub-solution property.

Proof for the super-solution part. Given (t, x) in + ⇥ G, we consider a C1 test function
' : +⇥G! such that V �' has a local minimum at (t, x). Positive numbers �, h > 0
exist such that

|t� t0|  � and |x� x0|  h) V (t0, x0)� '(t0, x0) � V (t, x)� '(t, x). (2.28)

Fix now " > 0. Since V is bounded on G by some M > 0, we can restrict the minimisation
(2.9) to controls ! with square L2-norm lower than 2M . From Corollary 2.3.2.1-(ii),
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Chapter 2. Constrained non-linear estimation

s 7! x!(s) is continuous on [0, t] uniformly in (x!(0),!) 2 A
G
t,x such that k!k2

L2(0,t)  2M .
This provides ⌘ > 0 such that for every (x!(0),!) 2 A

G
t,x with k!k2

L2(0,t)  2M ,

0  ⌧  ⌘ ) |x!(t� ⌧)� x|  h.

Let (⌧k)k�1 be a sequence that converges to 0 with 0 < ⌧k  min(�, ⌘). In Lemma 2.3.3, it
is sufficient to minimise over (x!(0),!) 2 A

G
t,x with k!k2

L2(0,t)  2M . By definition of the
infimum, there exists (x!k(0),!k) 2 A

G
t,x such that k!kk

2
L2(0,t)  2M and

V (t, x) + "⌧k � V (t� ⌧k, x!k(t� ⌧k)) +

Z
t

t�⌧k

`(s, x!k(s),!k(s))ds. (2.29)

Using (2.28), we get that

'(t, x)� '(t� ⌧k, x!k(t� ⌧k)) � V (t, x)� V (t� ⌧k, x!k(t� ⌧k))

� �"⌧k +

Z
t

t�⌧k

`(s, x!k(s),!k(s))ds.

Since ' is C1 and s 7! x!k(s) is absolutely continuous, this yields
Z

t

t�⌧k

@s'(s, x!k(s)) + ẋ!k(s) ·r'(s, x!k(s))� `(s, x!k(s),!k(s))ds � �"⌧k. (2.30)

We now carefully handle the boundary.

Case x 2 G: the uniform in k continuity of x!k provides that for large enough k,

8s 2 [t� ⌧k, t], x!k(s) 2 G, hence ẋ!k(s) = b(s, x!k(s)) + !k(s).

Moreover,

b(s, x!k(s)) ·r'(s, x!k(s)) +
1

2
|r'(s, x!k(s))|

2

� [b(s, x!k(s)) + !k(s)] ·r'(s, x!k(s))�
1

2
|!k(s)|

2,

hence from (2.30),

Z
t

t�⌧k

⇥
@s'(s, x!k(s)) + b(s, x!k(s)) ·r'(s, x!k(s)) +

1

2
|r'(s, x!k(s))|

2

�
1

2
|ẏ(s)� h(s, x!k(s))|

2
⇤
ds � �"⌧k. (2.31)

Using again that s 7! x!k(s) is continuous at s = t uniformly in k, we divide by ⌧k and we
take the k ! +1 limit to obtain that

@t'(t, x) + b(t, x) ·r'(t, x) +
1

2
|r'(t, x)|2 �

1

2
|ẏ(t)� h(t, x)|2 � �".

Since this holds for every " > 0, this gives the super-solution property.

Case x 2 @G and r'(t, x) · n(x) > 0: since G has a C2 boundary, there exists a
neighbourhood U of x in Rn such that

G \ U = {y 2 U , �(y) < 0}, @G \ U = {y 2 U , �(y) = 0},
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2.3. Study of the value function

for a C2 function � : U ! R with n(x) = r�(x). We now decompose

ẋ!k(s) ·r'(s, x!k(s)) = [ẋ!k(s) ·r�(x!k(s))][r'(s, x!k(s)) ·r�(x!k(s)]

+ ⇡?
r�(x!k (s))

(ẋ!k(s)) · ⇡
?

r�(x!k (s))
(r'(s, x!k(s))),

where ⇡?
r�

denotes the orthogonal projection on the hyperplane with normal vector r�.
To alleviate notations, we write r� instead of r�(x!k(s)). We have ⇡?

r�
(ẋ!k(s)) =

⇡?
r�

(b(s, x!k(s))) + ⇡?
r�

(!k(s)) hence

⇡?r�(b(s, x!k(s))) · ⇡
?

r�(r'(s, x!k(s))) +
1

2
|⇡?r�(r'(s, x!k(s)))|

2

� [⇡?r�(b(s, x!k(s))) + ⇡?r�(!k(s))] · ⇡
?

r�(r'(s, x!k(s)))�
1

2
|⇡?r�(!k(s))|

2. (2.32)

On the other hand, the uniform in k continuity guarantees that for large enough k,

8s 2 [t� ⌧k, t], r'(s, x!k(s)) ·r�(x!k(s)) � 0,

so that, for almost every s 2 [t� ⌧k, t],

[ẋ!k(s) ·r�][r'(s, x!k(s)) ·r�]  [b(s, x!k(s)) ·r� + !k(s) ·r�][r'(s, x!k(s)) ·r�],

and we can reason as in (2.32). Gathering all the terms in (2.30) gives (2.31), and we
conclude as before.

Case x 2 @G and r'(t, x) · n(x) = 0: the Cauchy-Schwarz inequality yields
����
Z

t

t�⌧k

[ẋ!k(s) ·r�][r'(s, x!k(s)) ·r�]ds

����



✓Z
t

t�⌧k

[ẋ!k(s) ·r�]
2ds

◆1/2✓Z t

t�⌧k

[r'(s, x!k(s)) ·r�]
2ds

◆1/2

, (2.33)

where we write r� instead of r�(x!k(s)) as in the previous case. From Corollary 2.3.2.1-
(i), the first integral on the r.h.s can be bounded in terms of

R
t

t�⌧k
|!k(s)|2ds. From (2.29),

using the continuity of V together with the continuity of x!k uniformly in k, this integral
goes to 0 as k ! +1.

In the current viscosity setting, we can always assume that ' is C2. Moreover, � is
C2 too. Using r'(t, x) ·r�(x) = 0 and Corollary 2.3.2.1-(ii), this yields |r'(s, x!k(s)) ·
r�(x!k(s))|

2
 C⌧k, for C > 0 independent of (s, k). From (2.33), this implies

⌧�1
k

Z
t

t�⌧k

[ẋ!k(s) ·r�(x!k(s))][r'(s, x!k(s)) ·r�(x!k(s))(x!k(s))]ds ����!
k!+1

0.

From (2.30)-(2.32) and r'(t, x) · n(x) = 0, reasoning as in the previous case concludes.

Case x 2 @G and r'(t, x) · n(x) < 0: we notice that
Z

t

t�⌧k

ẋ!k(s)r�(x!k(s))ds = �(x)� �(x!k(t� ⌧k)) � 0,

hence
Z

t

t�⌧k

[ẋ!k(s) ·r�(x!k(s))][r'(x!k(s)) ·r�(x!k(s)]ds



Z
t

t�⌧k

[ẋ!k(s) ·r�(x!k(s))][r'(x!k(s)) ·r�(x!k(s))�r'(t, x) ·r�(x)]ds.

81



Chapter 2. Constrained non-linear estimation

The integral on the r.h.s. can be handled as we did for (2.33) to get that

lim sup
k!+1

⌧�1
k

Z
t

t�⌧k

[ẋ!k(s) ·r�(x!k(s))][r'(x!k(s)) ·r�(x!k(s))]ds  0.

Going back to (2.30)-(2.32), we reason as before, we send k ! +1 and then "! 0. This
gives the incomplete property:

@t'(t, x) + ⇡?
n(x)(b(t, x)) · ⇡

?

n(x)(r'(t, x)) +
1

2
|⇡?

n(x)(r'(t, x))|
2
�

1

2
|ẏ(t)� h(t, x)|2 � 0.

The boundary condition being imposed in the viscosity sense, Definition 2.A.2 allows us
to assume that b(t, x) · n(x) + 1

2r'(t, x) · n(x)  0, hence

[b(t, x) · n(x)][r'(t, x) · n(x)] +
1

2
|r'(t, x) · n(x)|2 � 0,

because r'(t, x) · n(x)  0. Adding this to the incomplete property concludes.

Remark 2.3.4 (Super-solution property at the boundary). When b · n  0 on @G, we
deduce from the last case of the above proof that V is actually a viscosity super-solution of

@tV (t, x) + b(t, x) ·rV (t, x) +
1

2
|rV (t, x)|2 �

1

2
|ẏ(t)� h(t, x)|2 = 0,

on the full [0, T ]⇥G for every T > 0 (no more boundary condition). The related comparison
principle then enters the scope of [Capuzzo-Dolcetta and Lions, 1990, Theorem III.2].

2.4 Small noise filtering for reflected dynamics

This section is devoted to the proof of Theorem 2.2.7. Let us a fix a continuous � : G! 0
and t > 0. By regularisation and density, we can assume that � is defined and C1 on a
neighbourhood of G. This allows us to apply [Friedman, 2008, Chapter 5, Corollary 2] to
get that

8
><

>:

@s�"(s, x) + b(s, x) ·r�"(s, x) + "

2��
"(s, x)� 1

2" |ẏ(s)� h(s, x)|2�"(s, x) = 0,

�"(t, x) = e��(x)/", x 2 G,
@�"

@n
(s, x) = 0, (s, x) 2 [0, t)⇥ @G.

has a unique solution �" in C([0, t] ⇥ G) \ C1,2([0, t) ⇥ G). From [Hucke, 1990, Lemma
3.2], we get the duality relation

Z

G

�"(0, x)q̃"(t, x)dx =

Z

G

�"(t, x)q̃"(0, x)dx. (2.34)

The log-transform V "

� , �" log�" then satisfies
8
>>>><

>>>>:

@sV "

�(s, x) + b(s, x) ·rV "

�(s, x) +
"

2�V "

�(s, x)�
1
2 |rV

"

�(s, x)|
2

+1
2 |ẏ(s)� h(s, x)|2 = 0, (s, x) 2 [0, t)⇥G,

V "

�(t, x) = �(x), x 2 G,
@V

"
�

@n
(s, x) = 0, (s, x) 2 [0, t)⇥ @G.

From this, we proceed as in [Fleming, 1997, Section 5] to give a control representation
for V "

�. On a filtered probability space (⌦,F ,P, (Fs)0st), let (Bs)0st be an adapted
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2.4. Small noise filtering for reflected dynamics

Brownian motion. For 0  s  t, x 2 G and any square-integrable adapted process
(↵r)srt, we define the controlled reflected dynamics

dY ",↵

r + �G(Y
",↵

r )(ds) 3 b(s, Y ",↵

r )dr + ↵rdr +
p
"dBr, s  r  t,

with initial condition Y ",↵
s = x. Since V "

� is C1,2, a standard verification argument now
gives that

V "

�(s, x) = inf
x,↵

Y
",↵
s =x

E
 Z

t

s

1

2
|↵r|

2 +
1

2
|ẏ(r)� h(r, Y ",↵

r )|2dr + �(Y ",↵

t
)

�
. (2.35)

The next result is the analogous of [Fleming, 1997, Lemma 5.1] or Theorem 2.2.6.

Lemma 2.4.1. There exists C > 0 independent of " such that

sup
(s,x)2[0,t]⇥G

|V "

�(s, x)� V 0
�(s, x)|  C"1/4.

Proof. Since G is bounded, choosing e.g. ↵ = 0 in (2.35), we get that V "

� is uniformly
bounded by some M > 0 independent of ". Thus, we can restrict the minimisation to
control processes (↵r)srt with square L2-norm lower than 2M . From [Pardoux and
Răşcanu, 2014, Proposition 4.16-I] we get that

E
⇥
sup
srt

|Y ",↵

r |
2
⇤
 CM ,

and from [Pardoux and Răşcanu, 2014, Proposition 4.16-II] that

E
⇥
sup
srt

|Y ",↵

r � Y 0,↵
r |

2
⇤
 CM"

1/2,

for CM > 0 independent of ". We then plug this into the minimisation (2.35): since � and
h are Lipschitz-continuous, we conclude by using the Cauchy-Schwarz inequality for the
1
2 |ẏ(r)� h(r, Y ",↵

r )|2 term.

Proof of Theorem 2.2.7. Going back to (2.34), the assumption on q"0(x) = q̃"(0, x) and
Lemma 2.4.1 give that

�" log

Z

G

e��(x)/"q"(t, x)dx = �" log

Z

G

e�[V
0
�(0,x)+ (x)+r

"(x)]/"dx,

for some continuous r" that uniformly converges to 0 as "! 0. The standard Laplace prin-
ciple (see e.g. [James and Baras, 1988b, Lemma 6.1]) now shows that the r.h.s. converges
towards inf

x2G
V 0
�(0, x) +  (x). However,

inf
x2G

V 0
�(0, x) +  (x)

= inf
x!(0),!

�(x!(t)) +  (x!(0)) +

Z
t

0

1

2
|!(s)|2 +

1

2
|ẏ(s)� h(s, x!(s))|

2ds

= inf
x2G

�(x) + V (t, x),

concluding the proof.
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2.5 Numerical illustrations

2.5.1 Discrete-time setting

Finally, we propose a numerical illustration of the estimation problem in a simplified con-
figuration corresponding to the Skorokhod problem presented in Section 2.1.1, albeit with
constrained on 0 and 1. Therefore, m = n = 1, G = [0, 1], b ⌘ 0 and � = Id. Here, we
pursue a discretization strategy based on the principle discretize-then-optimize as reviewed
in Moireau [2023]. A time-discretization of the dynamics (2.1) is given by

(
xk+1
⇣,!

+�t @�G(x
k+1
⇣,!

) 3 xk
⇣,!

+ !k+1,

x0
⇣,!

= ⇣,
(2.36)

and we set yk = y(tk).

2.5.2 Convergent discretization

A discrete-time cost-to-come is defined by

V k

�t(x) = inf
(⇣,!)2AG

k,x

 (⇣) +
1

2

k�1X

j=0

�t|yj � h(xj
⇣,!

)|2 +
1

2

kX

j=1

1

�t
|!j

|
2, (2.37)

where here

A
G

k,x
, {(⇣, (!j)j) 2 G⇥ Rk : xk

⇣,!
follows (2.36) with xk

⇣,!
= x}.

Under convexity assumptions on x 7! |yk � h(x)|2 for all k, the discrete-time cost-to-come
is strictly convex, and the minimizer is denoted by

x̂k = argminx2G V k

�t(x). (2.38)

This definition provides a discretization for the continuous-time estimator as soon as we can
compute V k

�t
. From Bellman’s principle, it is straightforward to verify that the discrete-

time cost-to-come can be computed from a splitting procedure that first computes

Ṽ k

�t(x) = V k

�t(x) +
1

2
�t|yk � h(x)|2, (2.39)

followed by

V k+1
�t

(x) = inf
z2G

⇢
Ṽ k

�t(z) +
1

2�t
|x� z|2

�
. (2.40)

This inf-convolution can be computed using the Hopf-Lax formula, by solving
8
>><

>>:

@sv(s, x) +
1

2
|@xv(s, x)|2 = 0, (s, x) 2 (0,�t)⇥ (0, 1)

@sv(s, 0) = @sv(s, 1) = 0,

v(0, x) = Ṽ k

�t
(x),

(2.41)

and defining
V k+1
�t

(x) = v(�t, x). (2.42)
Regarding the spatial discretization, the procedure is rather straightforward. The do-

main G = [0, 1] is discretized with a regular grid (xi)0iN such that

0 = x0 < xi =
i

�x
< xN = 1.

Then, we introduce the following space-time discretization. Let (V k,i

�t,�x
)0iN be defined

on the grid by
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• Correction:
Ṽ k,i

�t,�x
= V k,i

�t,�x
+

1

2
�t|yk � h(xi)|

2.

• Prediction:
V k+1,i
�t,�x

= S�t,�xV
k,i

�t,�x
,

where S�t,�x is the discrete flow associated with a discretization of (2.41).

Here, we propose to rely on the Hopf-Cole formula to define the scheme associated that
gives S�t,�x. Indeed, we know that v" is the solution of

8
>><

>>:

@sv"(s, x) +
1

2
|@xv"(s, x)|2 =

"

2
�v"(s, x), (s, x) 2 (0,�t)⇥ (0, 1),

@sv"(s, 0) = @sv"(s, 1) = 0, s 2 (0,�t),

v"(0, x) = Ṽ k

�t
(x), x 2 (0, 1),

(2.43)

is a vanishing viscosity approximation of v. Moreover, p" , exp(�v"/") is the solution of
8
>><

>>:

@sp"(s, x) =
"

2
�p"(s, x), (s, x) 2 (0,�t)⇥ (0, 1),

@sp"(s, 0) = @sp"(s, 1) = 0, s 2 (0,�t),

p"(0, x) = exp
⇣
�

Ṽ k
�t(x)
"

⌘
, x 2 (0, 1.)

(2.44)

We then choose an explicit time-discretization (2.44) for a time-discretization of the interval

0 = s0 < sn = n�s < sN�s
= �t,

of the form S�t,�xV
k,i

�t,�x
, " log(pN�s,i

" ), for an adequate choice of " as a function �s and
an adequate choice of �s a function of �x, where

8
>>>>>><

>>>>>>:

pn+1,i
" � pn,i"
�s

=
"

2

pn,i+1
" � 2pn,i" + pn,i�1"

�x2
, 0 < i < N�x, 0  n  N�s,

pn,0" = pn,1" , 0  n < N�s,

pn,N�x
" = pn,N�x�1

" , 0  n  N�s,

p0,i" = exp
⇣
�
⇧(Ṽ k

�t)(xi)
"

⌘
, 0 < i < N�x,

(2.45)

where ⇧ is the linear interpolator on the grid (xi)0iN . Choosing " = O(
p
�s) and

"�t  �x2 then provides a stable, monotone – the consistency being easy to verify –,
hence convergent, approach to compute the continuous-time V .

Note finally that as an alternative to (2.45), which may suffer from floating-point
error mitigation, we could rely on a direct monotone approximation of (2.43) with a Lax-
Friedrichs like scheme of the form

8
>>>>>>>>><

>>>>>>>>>:

vn+1,i
" � vn,i"
�s

+
1

2

���
vn,i+1
" � vn,i�1"

2�x

���
2

=
"

2

vn,i+1
" � 2vn,i" + vn,i�1"

�x2
, 0 < i < N�x, 0  n < N�s � 1,

vn,0" = vn,1" ,

vn,N�x
" = vn,N�x�1

" ,

v0,i" = ⇧(Ṽ k

�t
)(xi).
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Chapter 2. Constrained non-linear estimation

2.5.3 Numerical result

As an illustration, we consider a configuration where T = 1, �t = 10�2 and �x =
10�2. Moreover, we choose �s = 10�3�t and " = 510�2 for a discretization of the inf-
convolution using the Hopf-Lax scheme (2.45). The target trajectory starts at 1

2 with a
model disturbance

! = cos(2⇡t) + cos(4⇡t) = cos(8⇡t).

The observations of the trajectory are produced using h(x) = x, and an additional obser-
vation noise defined at the discrete level as a random variable with law N (0, 0.01).

The numerical results are presented in Figure 2.2, where we plot the target trajectory
k 7! xk!, and the estimated trajectory built from k 7! x̂k with an additional confidence
interval built from the region {(x, k) |V k

�t
(x) � minx V k

�t
(x)  2}, which generalizes the

95% confidence interval for classical Gaussian models. Moreover, in Figure 2.3, we plot
the associated value function V k

�t
re-centered around 0 by plotting the time-interpolation

function built from x 7! V k

�t
(x)� [minx0 V k

�t
(x0)], where k 2 {0, · · · , N�t}.
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Figure 2.2: Target and estimated trajectory with confidence interval

Appendix

2.A Viscosity solutions

We recall here the classical notions of viscosity solution that are used throughout the
article. We consider Hamilton-Jacobi equations of the kind

@tV (t, x) +H(t, x,rV (t, x)) = 0, (2.46)

with an initial condition V (0, x) =  (x).

Definition 2.A.1 (Viscosity solution). Let V : [0, T ]⇥ d
! be a continuous function.

• V is a viscosity sub-solution of (2.46) if for every (t, x,') 2 [0, T ]⇥ d
⇥C1([0, T ]⇥

d) such that V � ' has a local maximum at (t, x),

@t'(t, x) +H(t, x,r'(t, x))  0.
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Figure 2.3: Cost-to-come value function of the estimation problem as a function of space and time

• V is a viscosity super-solution of (2.46) if for every (t, x,') 2 [0, T ]⇥ d
⇥C1([0, T ]⇥

d) such that V � ' has a local minimum at (t, x),

@t'(t, x) +H(t, x,r'(t, x)) � 0.

• V is a viscosity solution of (2.46) if it is both a viscosity sub-solution and a viscosity
super-solution.

Under mild assumptions, existence and uniqueness for such a viscosity solution is proved
in Crandall and Lions [1983]. We now consider (2.46) in a Lipschitz domain G, and we
add the boundary condition

b(t, x) · n(x) +
@V
@n

(t, x) = 0, (2.47)

for some b : [0, T ]⇥G! , n(x) being the outward normal vector at x 2 @G.

Definition 2.A.2 (Viscosity solution with boundary condition). Let V : [0, T ]⇥G !
be a continuous function.

• V is a viscosity sub-solution of (2.46)-(2.47) if for every (t, x,') 2 [0, T ] ⇥ d
⇥

C1([0, T ]⇥G) such that V � ' has a local maximum at (t, x),
(
@t'(t, x) +H(t, x,r'(t, x))  0, if x 2 G,

min
⇥
(b(t, x) +r'(t, x)) · n(x), @t'(t, x) +H(t, x,r'(t, x))

⇤
 0, if x 2 @G.

• V is a viscosity super-solution of (2.46) if for every (t, x,') 2 [0, T ]⇥ d
⇥C1([0, T ]⇥

d, ) such that V � ' has a local minimum at (t, x),
(
@t'(t, x) +H(t, x,r'(t, x)) � 0, if x 2 G,

max
⇥
(b(t, x) +r'(t, x)) · n(x), @t'(t, x) +H(t, x,r'(t, x))

⇤
� 0, if x 2 @G.

• V is a viscosity solution of (2.46)-(2.47) if it is both a viscosity sub-solution and a
viscosity super-solution.

Under mild assumptions, existence and uniqueness for such a viscosity solution is proved
in Barles and Lions [1991].
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CHAPTER 3

Quasi-continuity method for mean-field diffusions:

large deviations and central limit theorem

Entropy is a figure of speech then. . . a metaphor.

— T. Pynchon, The Crying of Lot 49

A pathwise large deviation principle in the Wasserstein topology and a pathwise central
limit theorem are proved for the empirical measure of a mean-field system of interacting
diffusions. The coefficients are path-dependent. The framework allows for degenerate dif-
fusion matrices, which may depend on the empirical measure, including mean-field kinetic
processes. The main tool is an extension of a pathwise construction due to Tanaka to
non-constant diffusion matrices. This can be seen as a mean-field analogous of Azencott’s
quasi-continuity method for the Freidlin-Wentzell theory. As a by-product, uniform-in-
time-step fluctuation and large deviation estimates are proved for a discrete-time version
of the mean-field system. Uniform-in-time-step convergence is also proved for the value
function of some mean-field control problems with quadratic cost.
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3.1. Introduction

3.1 Introduction

We consider a mean-field system of interacting diffusions in Rd,

dXi,N

t
= bt(X

i,N ,⇡( ~XN ))dt+ �t(X
i,N ,⇡( ~XN ))dBi

t, 1  i  N, (3.1)

starting from i.i.d. initial conditions Xi

0, the Bi := (Bi
t)0tT being i.i.d. Brownian

motions in Rd
0 . These particles interact through their empirical measure

⇡( ~XN ) :=
1

N

NX

i=1

�Xi,N 2 P(C([0, T ],Rd)),

using the notation ~XN := (Xi,N )1iN . The coefficients b and � are globally Lipschitz
functions which are path-dependent in a non-anticipative way, and � is globally bounded
(precise conditions are listed in Assumption (A.1) below). As N ! +1, ⇡( ~XN ) converges
to the path-law L(X) of the McKean-Vlasov equation

dXt = bt(X,L(X))dt+ �t(X,L(X))dB1
t , X0 ⇠ X1

0 .

Such a mean-field limit is often referred to as a propagation of chaos result Sznitman
[1991]. Under suitable assumptions on (b,�), the mean-field limit holds with rate N�1/2

for the mean-square convergence, see e.g. [Sznitman, 1991, Theorem 1.4]. When � ⌘ Id, a
pathwise construction due to Tanaka [1984] builds X and the Xi,N in a unified framework.
In particular, the empirical measure ⇡( ~XN ) of the particles is a continuous function of the
one of the driving noises ⇡( ~BN ). This powerful approach rephrases the mean-field limit
as a mere continuity result. Furthermore, Tanaka’s construction allows for computing the
fluctuations of ⇡( ~XN ) directly from the ones of ⇡( ~BN ). From there, the objectives of this
article are three-fold:

• We extend Tanaka’s construction to non-constant � using an Euler scheme for (3.1)
for which we prove strong consistency estimates.

• We compute the first-order fluctuations of ⇡( ~XN ) by proving a pathwise central limit
theorem (CLT), i.e. the convergence of N�1/2[⇡( ~XN ) � L(X)] towards a Gaussian
field.

• We prove a large deviation principle (LDP), estimating P(⇡( ~XN ) 2 A) at the expo-
nential scale for any measurable A ⇢ P(C([0, T ],Rd)), which may not contain L(X).

These three points correspond to Theorems 3.2.4-3.2.8-3.2.10 below. The CLT quantifies
the normal fluctuations of ⇡( ~XN ) in the N ! +1 limit, whereas the LDP quantifies large
deviations. The CLT and the LDP are first proved for the Euler approximation of (3.1),
before being transferred to the continuous-time system. The CLT is proved for binary
interactions of type b(x, P ) =

R
b̃(x, y)dP (y). The LDP is proved in the Wasserstein-p

topology, for every p 2 [1, 2). These CLT and LDP results are not the first ones of their
kind, but they are new at the considered level of generality, see Section 3.1.1 below for a
detailed review of existing literature. The main challenge of our work is to include non-
constant � that depend on the measure argument and may be degenerate. In particular,
our results cover kinetic systems like mean-field interacting Langevin dynamics. We refer
to our extended construction as a quasi-continuity result, by analogy with the seminal
Freidlin-Wentzell theory Freidlin and Wentzell [1998] and the Azencott quasi-continuity
method Azencott et al. [1980].
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To motivate this terminology, let us recall the analogy made in the introduction of
Dawson and Gärtner [1989]. To simplify the presentation, we assume that bt(x, P ) =
b(xt, Pt) and � ⌘ Id. From Ito’s formula, the empirical measure ⇡( ~XN

t ) of the particles at
time t a.s. satisfies

d

Z

Rd
' d⇡( ~XN

t ) =

 Z

Rd
L
⇡( ~XN

t )' d⇡( ~XN

t )

�
dt+

1

N

NX

i=1

r'(Xi,N

t
) · dBi

t,

for any smooth test function ' : Rd
! R, the measure-dependent generator being defined

by L⇡'(x) := b(x,⇡) ·r'(x) + 1
2�'(x). The last term on the r.h.s is a martingale whose

quadratic variation is of order N�1. This motivates the informal re-writing

d⇡( ~XN

t ) = L?
⇡( ~XN

t )
⇡( ~XN

t )dt+N�1/2dMt, (3.2)

where (Mt)0tT is intended to be a measure-valued martingale term of order 1, and L?⇡
is the formal L2-adjoint of L⇡. Equation (3.2) is known as the Dean-Kawasaki stochastic
partial differential equation, see e.g. Kawasaki [1994]; Dean [1996]; Konarovskyi et al.
[2019]; Fehrman and Gess [2022]. This writing draws an (infinite-dimensional) analogy
with the famous Freidlin-Wentzell diffusion

dX"

t = b(X"

t )dt+
p
"dBt, (3.3)

where b is now a vector field in Rd and B := (Bt)0tT is a Brownian motion. Let us
describe how our approach enables us to push this analogy beyond qualitative statements,
at the very level of proofs. We first recall some basic notions about the Freidlin-Wentzell
theory.

Pathwise Freidlin-Wentzell theory. If b is globally Lipschitz in (3.3), setting C
d :=

C([0, T ],Rd), the Cauchy-Lipschitz theory provides a map X : Cd
! C

d, such that for every
! = (!t)0tT , X(!) is the solution to the ordinary differential equation (ODE),

8t 2 [0, T ], Xt(!) =

Z
t

0
b(Xs(!))ds+ !t.

This allows us to build the diffusion (3.3) by simply setting X" := X(
p
"B). As " ! 0,

the a.s. pathwise convergence of X" towards X0 is then a simple consequence of the
continuity of X. Looking back at (3.2), this convergence corresponds to the N ! +1
limit. Classically, the Freidlin-Wentzell LDP is obtained from the contraction principle,
using the continuous map X to push the large deviations of (

p
"B)">0 given by Schilder’s

theorem. The first-order expansion follows by formally writing that

X"
�X0 =

p
"Y + o(

p
"),

where the Gaussian process Y = (Yt)0tT solves the SDE dYt = Db(X0
t ) · Ytdt + dBt,

differentiating X using the standard theory of flow maps, see e.g. [Friedman, 1975, Chapter
5.5] or [Freidlin and Wentzell, 1998, Chapter 2].

Azencott’s quasi-continuity method. The above construction does not allow for
non-constant diffusion matrices � in (3.3) because the stochastic integral is not a continuous
function of the driving path. More precisely, a measurable map X : Cd

! C
d could be

defined as above on a set of full Wiener-measure but X would not be continuous, preventing
us from computing large deviations by contraction. In the seminal work Azencott et al.
[1980], a solution is developed which is by now referred to as the quasi-continuity method.
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The main idea is to approximate the Brownian path by a curve in the Sobolev space
H1([0, T ],Rd), before defining a continuous contraction map H1

! H1. The key-result is
then an approximation estimate stating that the made error is negligible at the exponential
scale in terms of ". Thus, the large deviations can still be computed by contraction. A
similar argument can be found in [Deuschel and Stroock, 2001, Lemma 1.4.21], using
an Euler-approximation of the stochastic integral, and showing that the made error is
negligible.

An alternative approach relies on the rough-path theory which was first introduced by
Lyons [1998]. Extending the notion of stochastic process, this theory makes the stochastic
integral be a continuous function of the driving noise. The flow map is then built on a
space of rough paths, yielding the large deviations by continuous contraction Ledoux et al.
[2002]. We emphasise that such a result is very strong, because it provides large deviations
at the level of rough paths in addition to the process’s level. As a consequence, there is a
technical price to pay to use this sophisticated machinery.

Tanaka’s pathwise construction. Going back to the setting of (3.2), the key-
element of Tanaka [1984] is the construction of XP : Cd

! C
d, for every P 2 P(Cd), such

that

8! 2 C
d, 8t 2 [0, T ], XP

t (!) =

Z
t

0
b(Xs(!), (X

P

s )#P )ds+ !t.

We emphasise that the above equation is non-local, because the drift term depends on
the whole map XP through the push-forward. Tanaka [1984] then proves that the map
 : P 7! XP

#P is continuous in a suitable topology, before building the particle system in
a pathwise way as

Xi,N := X⇡( ~BN )(Bi), ⇡( ~XN ) =  (⇡( ~BN )),

the dependence on the empirical measure ⇡( ~BN ) of the driving noises being continuous.
Looking at (3.2)-(3.3), there is a striking analogy with the pathwise Freidlin-Wentzell
theory. As a by-product, Tanaka [1984] directly obtains the large deviations by contraction
from the Sanov theorem, and the CLT is obtained by performing a first-order expansion of
 – this is reminiscent of the delta method in statistics. This framework is very convenient
for mean-field limits of any kind: extensions are developed in Coghi et al. [2020] for non-
exchangeable systems, general driving noises, systems with common noise, càdlàg processes,
reflected processes... Similarly to the Freidlin-Wentzell theory, a crucial limitation is the
difficulty to handle non-constant diffusion matrices �, because of the need for stochastic
integration.

Up to our knowledge, there is no existing rough-path approach for extending Tanaka’s
construction. However, we mention Bailleul et al. [2021] which proves the mean-field limit
for interacting rough paths, and Deuschel et al. [2018] for a related LDP. This last LDP
was proved for � ⌘ Id using the Girsanov transform and a standard large deviation result
for Gibbs measures: this prevents it from going beyond the case of non-degenerate � that
do not depend on the measure argument.

Quasi-continuity method for mean-field systems. Motivated by Tanaka’s and
Azencott’s approaches, it is natural to extend Tanaka’s construction to handle non-constant
�. We first design a pathwise construction for a Euler-Maruyama approximation of (3.1)
with general driving noises that may not be Brownian (Theorem 3.2.4). Exchangeability
is not required either. This allows us to prove mean-field limits, central limit theorems
and large deviations for discretised systems at a great level of generality. These novel
results are already useful as such, the practitioner being interested in the behaviour of the
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numerically implemented model, rather than the theoretical one. When the driving noises
are i.i.d. Brownian motions, we extend these results to the continuous setting, by showing:

• A uniform-in-time-step fluctuation estimate to recover the CLT (Theorem 3.2.10).

• A uniform approximation at the exponential scale to recover the LDP (Theorem
3.2.8).

These uniform estimates are quantitative and new up to our knowledge. They are of in-
dependent interest from a numerical analysis perspective. Following the weak convergence
approach Dupuis and Ellis [2011], the exponential approximation relies on a stochastic
control interpretation of exponential moments. Thus, our estimates also have an interest
from a mean-field control perspective. They provide a uniform-in-N discrete-time approx-
imation for mean-field control with quadratic cost. Detailed statements of our results are
given in Section 3.2.

3.1.1 Review of related litterature

For general results about mean-field limits and propagation of chaos, we refer to the survey
articles Chaintron and Diez [2022a,b] and references therein. For the specific case of the
path-dependent setting, we refer to e.g. Lacker [2018]; Bernou and Liu [2022]; Lacker
[2023], which cover slightly less general settings. There is a lot of references for discretised
versions of systems like (3.1), among which Bossy and Talay [1997]; Antonelli and Kohatsu-
Higa [2002]; Bao and Huang [2019]; Bernou and Liu [2022] and references therein. To the
best of our knowledge, our LDP and CLT results in the discrete-time setting are new.

Tanaka’s pathwise construction. Up to our knowledge, there are surprisingly few
instances of Tanaka’s pathwise construction in the mean-field literature. We mention
[Backhoff et al., 2020, Section 3.1] where the LDP is proved in the Wasserstein-p topology
(p 2 [1, 2)) in a path-dependent setting with � ⌘ Id and binary interactions of type
b(x, P ) =

R
Cd b̃(x, y)dP (y). An exhaustive treatment of the � ⌘ Id setting is done in Coghi

et al. [2020] with extensions to many related situations (general noises, jump processes...).
The path-construction is also used in Delarue et al. [2020] with � ⌘ Id to prove the LDP
in the Wasserstein-1 topology, before extending it to prove the LDP in a common noise
setting. This last framework is particularly intricate because the rate function no more
has compact level sets.

Central limit theorem. Untill recently, there has been much interest in proving the
CLT for mean-field systems close to (3.1). The first related work seems to be McKean
[1975], computing fluctuations for interacting particles in the two-state space. A seminal
work is then Braun and Hepp [1977] for a deterministic Vlasov system, which inspired
Tanaka’s CLT Tanaka [1984] on path space (with � ⌘ Id). The fundamental works Sznit-
man [1984, 1985] prove the CLT on path space for binary interactions, starting from a
Girsanov formula to compute symmetric statistics and multiple Wiener integrals. Many
following works re-used this approach. An alternative method for large deviations and CLT
for Gibbs measures is Bolthausen [1986], which relies on embeddings in suitable Banach
spaces. This method was further developed and applied to diffusion systems in Arous and
Brunaud [1990]; Pra and Hollander [1996]. A by now classical approach Fernandez and
Méléard [1997]; Méléard [1998]; Jourdain and Méléard [1998] computes the fluctuations
of the random curve t 7! ⇡( ~XN

t ) in weighted Sobolev spaces. Some tightness estimates
are first proved, before identifying the limit as an infinite-dimensional Ornstein-Uhlenbeck
process. Such results are weaker than the pathwise CLT, but this approach can take ben-
efit of PDE structures to get sharper estimates. A fairly general CLT for t 7! ⇡( ~XN

t ) is
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thus proved in Jourdain and Tse [2021], by careful analysis of a measure-valued flow. The
very recent work Bernou and Duerinckx [2024] uses analogous methods to prove (among
many other results) a uniform-in-time and quantitative version of this CLT. In the setting
of mean-field games with common noise, we also mention the CLT result Delarue et al.
[2018]. To the best of our knowledge, our pathwise CLT for a system as general as (3.1) is
new.

Large deviations. There is an abundant literature for large deviations of the empirical
measure of systems like (3.1). The seminal work Tanaka [1984] covers the case � ⌘ Id with
binary interactions b(x,⇡) =

R
Cd b̃(x, y)d⇡(y). When b̃(x, y) = �rV (x� y), the Girsanov

transform computes the density of the law of ~XN w.r.t. to the law of the corresponding
system of i.i.d. drift-less particles. The gradient structure further removes the stochastic
integral term from the density given by Girsanov’s theorem. The resulting density being
a Gibbs measure, large deviations are then a standard result. This method is applied in
e.g Arous and Brunaud [1990]; Del Moral and Guionnet [1998], and in Pra and Hollander
[1996] in a more general setting including environment noises. For an extension of this
method to non-gradient binary interactions, we refer to Del Moral and Zajic [2003].

For more general drifts b, the LDP is a harder task: it was initially proved in Dawson
and Gärtner [1987] under Lipschitz conditions and non-degeneracy of �, using an extended
version of the weak topology on measures. The result is strengthened in Budhiraja et al.
[2012] under much weaker assumptions (martingale problem framework), notably allowing
for path-dependent settings. In both works, the initial data are assumed to be determin-
istic, and there is no direct way to handle random initial data from there. We also refer
to Orrieri [2020]; Budhiraj and Conroy [2022], which prove the LDP for (3.2) in a setting
combining both mean-field and small-noise limits.

Computing the large deviation rate function as a relative entropy can be intricate,
depending on the chosen approach for proving the LDP. The link with stochastic control
traces back to Föllmer [1988]. We refer to Cattiaux and Léonard [1995]; Pra and Hollander
[1996]; Cattiaux and Léonard [1996] for seminal results in this direction. An exhaustive
account of these links is given by Léonard [2012]; Fischer [2014].

The question of establishing the LDP in the Wasserstein-p topology is more recent. A
necessary and sufficient condition for Sanov’s theorem to hold in the Wasserstein topology
is proved in Wang et al. [2010]. In the Brownian setting, this forces p 2 [1, 2). We already
referred to Backhoff et al. [2020]; Delarue et al. [2020]. For large deviations in the strong
topology, we refer to Dawson and Del Moral [2005]. For Gibbs measures in the Wasserstein
topology, we also mention Léonard [1987]; Reygner [2018]; Dupuis et al. [2020]; Liu and Wu
[2020]. To the best of our knowledge, our LDP in the Wasserstein topology for a system
as general as (3.1) is a new result.

3.1.2 Notations

• P(E) denotes the space of probability measures over a Polish space E, the default
topology on it being the one of weak convergence.

• L(X) denotes the law in P(E) of a E-valued random variable X.

• T#P denotes the push-forward (or image) measure of P 2 P(E) by a measurable
T : E ! F .

• When E and F are Banach spaces, C1(E,F ) denotes the space of Fréchet-differentiable
functions E ! F . C

1,1(E,F ) is the sub-space of functions in C
1(E,F ) with globally
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Lipschitz derivative DF . C
1,1
b

(E,F ) is the space of bounded functions in C
1,1(E,F )

with bounded derivative.

• �x denotes the Dirac measure at some point x 2 E.

• Given N variables x1, . . . , xN in some product space EN , we will use the notations
~xN := (x1, . . . , xN ) and

⇡(~xN ) :=
1

N

NX

i=1

�xi 2 P(E).

• ⇡(~xN , ~yN ) will similarly denote the empirical measure

⇡(~xN , ~yN ) :=
1

N

NX

i=1

�(xi,yi) 2 P(E ⇥ E),

with a slight abuse of notation.

• H(P |Q) denotes the relative entropy of P w.r.t. Q, for P,Q 2 P(E), defined as
H(P |Q) = EP [log

dP
dQ ] if P ⌧ Q, and H(P |Q) = +1 otherwise.

• �PF (P ) : x 7! �PF (P, x) denotes the linear functional derivative at P of a func-
tion F : P(E) ! R, see Definition 3.1.1 below. The convention is adopted thatR
E
�PF (P )dP = 0.

• Pp(E) denotes the set of measures P 2 P(E) such that
R
E
dp
E
(x, x0)dP (x) < +1

for the distance dE on E, x0 2 E and p � 1.

• Lp

P(⌦, E) denotes the space of E-valued random variables X : ⌦ ! E, on a proba-
bility space (⌦,F ,P) such that L(X) belongs to Pp(E).

• Wp denotes the Wasserstein distance on Pp(E), defined by

W p

p (P,Q) := inf
X⇠P, Y⇠Q

E[dp
E
(X,Y )].

• d, d0 � 1 are fixed integers, and T > 0 is a given finite time horizon.

• btc is the image of t 2 R by the floor function. We similarly write dte for the ceiling
function. We recall that btc and dte are integers.

• C
d denotes the space C([0, T ],Rd) of continuous paths, endowed with the uniform

topology. A typical path in C
d will be denoted by x, and a typical one in C

d
0 by �.

• C
d

M
denotes the space of paths x 2 C

d with sup0tT |xt| M , for some M > 0.

• x^t denotes the path (xs^t)0sT , for any t 2 [0, T ] and x 2 C
d. We recall that s ^ t

is the minimum of s and t.

• P^t denotes the push-forward measure of P 2 P(Cd) by the map x 7! x^t.

• Pt 2 P(Rd) denotes the marginal-law at time t of a path-measure P 2 P(Cd).

• P· 2 C([0, T ],P(Rd)) denotes the related curve (Pt)0tT of time-marginals.
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• ⌃ =
�
⌦, (Ft)0tT ,P, (Bt)0tT

�
denotes a reference probability system in the ter-

minology of [Fleming and Soner, 2006, Chapter 4]: (⌦,FT ,P) is a probability space,
(Ft)0tT is a filtration satisfying the usual conditions, and (Bt)0tT is a (Ft)0tT -
Brownian motion.

• |a| denotes the Frobenius norm
p
Tr[aa>] of a matrix a.

• r · a is the vector field whose i-entry is the divergence of the vector field (ai,j)1jd,
for a matrix field a = (ai,j)1i,jd. We similarly define differential operators on
matrices.

Definition 3.1.1 (Linear functional derivative). A map F : Pp(E) ! R is differentiable
at P if there exists a measurable map

�PF (P ) :

(
E ! R,

x 7! �PF (P, x),

such that for every Q in Pp(E), �PF (P ) is Q-integrable and satisfies

"�1
⇥
F ((1� ")P + "Q)� F (P )

⇤
����!
"!0+

Z

E

�PF (P ) d[Q� P ].

The map �PF (P ) being defined up to an additive constant, we adopt the usual convention
that

R
E
�PF (P )dP = 0. This map is called the linear functional derivative of F at P . We

notice that this definition does not depend on the behaviour of F outside of an arbitrary
small neighbourhood of P .

By direct integration, the definition implies

8P,Q 2 Pp(E), F (P )� F (Q) =

Z 1

0

Z

E

�PF ((1� r)Q+ rP )d[P �Q]dr,

provided that the integral on the r.h.s. is well-defined.

Example 3.1.2 (Linear case). In the particular case F (P ) =
R
E
fdP for some measurable

f : E ! R with polynomial growth of order p, we have �PF (P, x) = f(x)�
R
E
fdP .

3.2 Statement of the main results

Let us fix p � 1, together with positive integers d and d0. We will restrict ourselves
to p 2 [1, 2) for large deviation results in Sections 3.2.2-3.2.3-3.2.4. The coefficients are
continuous functions

b : [0, T ]⇥ C
d
⇥ Pp(C

d)! Rd, � : [0, T ]⇥ C
d
⇥ Pp(C

d)! Rd⇥d
0
.

For P 2 Pp(Cd), we recall that P^t 2 Pp(Cd) denotes the push-forward measure of P under
the map x 2 C

d
7! x^t := (xs^t)0sT 2 C

d. We make the following assumption on the
coefficients.

Assumption (A.1) (Coefficients). There exist Lb, L� > 0 and

b : [0, T ]⇥ C
d
⇥ Pp(C

d)! Rd, � : [0, T ]⇥ C
d
⇥ Pp(C

d)! Rd⇥d
0
,

which are respectively globally Lb- and L�-Lipschitz and such that, for every (t, x, P ),

bt(x, P ) = bt(x^t, P^t), �t(x, P ) = �t(x^t, P^t).

Moreover, � is globally bounded by some M� > 0.
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In particular, this includes standard Lipschitz coefficients of the kind bt(x, P ) = bt(xt, Pt).
Our framework further includes pathwise settings which are non-Markov but still non-
anticipative like models with delay. The Lipschitz-continuity w.r.t. t will only be needed
in the time-continuous settings of Sections 3.2.3-3.2.4, but we keep (A.1) as such for the
sake of simplicity.

Lemma 3.2.1. Under (A.1), for any Brownian motion (Bt)0tT and initial data X0

with finite E[|X0|
p], strong existence and pathwise-uniqueness hold for solutions of the the

path-dependent McKean-Vlasov equation

dXt = bt(X,L(X))dt+ �t(X,L(X))dBt

that satisfy E[sup0tT |Xt|
p] < +1.

This result is contained in [Djete et al., 2022, Appendix A]. See Lacker et al. [2022];
Bernou and Liu [2022] for similar results.

3.2.1 Discretised system with general driving noise

Let h > 0 be a fixed discretisation parameter. Given t � 0, we define th := hbt/hc. On a
probability space (⌦,F ,P), we study the discretised McKean-Vlasov SDE

(
dXh

th
= bth(X

h,L(Xh))dt+ �th(X
h,L(Xh))dWt,

Xh

0 = ⇣,
(3.4)

the input being the random variable

(⇣,W ) : ⌦! Rd
⇥ C

d
0
,

which belongs to Lp

P(⌦,R
d
⇥ C

d
0
). The driving noise W can be any continuous random

path, which does not have to be a Brownian motion. In particular, (3.4) does not involve
any stochastic integral, the differential being a mere notation. To be non-ambiguous, we
specify the notion of solution for (3.4). For every P 2 Pp(Cd), (⇣,W ) 2 Rd

⇥ C
d
0 , X 2 C

d,
we define the path fh,P (⇣,W,X) in C

d by

fh,P

t
(⇣,W,X) = ⇣ + bth(X,P )[t� th] + �th(X,P )[Wt �Wth ]

+

bt/hc�1X

i=0

hbih(X,P ) + �ih(X,P )[W(i+1)h �Wih],

for every t in [0, T ]. We use the usual convention that an empty sum equals 0.

Definition 3.2.2. A pathwise solution of (3.4) with input (⇣,W ) 2 Lp

P(⌦,R
d
⇥ C

d
0
), is a

random variable Xh : ⌦! C
d that belongs to Lp

P(⌦, C
d) such that for P-a.e. ! in ⌦,

8t 2 [0, T ], Xh

t (!) = fh,L(Xh)
t

(⇣(!),W (!), Xh(!)).

Closely related to (3.4) is the discretised system of interacting particles ~Xh,N = (Xh,i,N )1iN
defined by

(
dXh,i,N

t
= bth(X

h,i,N ,⇡( ~Xh,N ))dt+ �th(X
h,i,N ,⇡( ~Xh,N ))dW i,N

t
,

Xh,i,N

0 = ⇣i,N ,
(3.5)

for 1  i  N , with given inputs

(~⇣N , ~WN ) : ! 7!
�
⇣i,N (!),W i,N (!))1iN ,

in Lp

P(⌦, (R
d
⇥C

d
0
)N ). We emphasise that no independence nor exchangeability are required.
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Remark 3.2.3 (Heterogeneous mean-field). This formalism includes heterogeneous parti-
cle systems of the type

dXh,i,N

t
= bth(X

h,i,N , Ri,N ,⇡( ~Xh,N , Ri,N ))dt+ �th(X
h,i,N , Ri,N ,⇡(Xh,i,N , Ri,N ))dW i,N

t
,

for any family (Ri,N )1iN,N�1 of random paths in Lp

P(⌦, C
k) under natural Lispchitz as-

sumptions on (b,�). Indeed, this amounts to replacing the random path Xh,i,N
2 C

d by
Zh,i,N := (Xh,i,N , Ri,N ) 2 C

d+k. The following results can then be written in this setting,
see [Coghi et al., 2020, Section 3.4]. This extends some results of Pra and Hollander [1996]
for McKean-Vlasov processes that interact with random media. See also [Coghi et al., 2020,
Section 3.3] for adding a common noise to (3.5).

We consider time-discretised systems because the h ! 0 limit would require some
notion of stochastic integral that is not available at this level of generality. However, when
� ⌘ Id, all the following results hold for h = 0, because the flow maps are still continuous
functions of the driving noise. Adapting our proofs to this setting can be done readily, and
we refer to Coghi et al. [2020] for an exhaustive discussion of this setting.

Theorem 3.2.4 (Pathwise construction). Under (A.1),

(i) There exists a pathwise unique strong solution ~Xh,N of (3.5).

(ii) There exists a unique pathwise solution Xh of (3.4) in the sense of Definition 3.2.2,
and

 h :

(
Pp(Rd

⇥ C
d
0
)! Pp(Cd),

L(⇣,W ) 7! L(Xh),

is continuous.

(iii) P-almost surely, ⇡( ~Xh,N ) =  h(⇡(~⇣N , ~WN )).

The above setting reduces the mean-field limit to a simple continuity result. No ex-
changeability nor other specific structures are required. Since the map  h is continuous,
the following result is a direct consequence of the contraction principle [Dupuis and Ellis,
2011, Theorem 1.3.2]. For general definitions about large deviations, see Deuschel and
Stroock [2001]; Dupuis and Ellis [2011].

Corollary 3.2.4.1 (Mean-field limit and large deviations).

(i) If Wp(⇡(~⇣N , ~WN ),L(⇣,W ))! 0, P-a.s. as N ! +1, then

Wp(⇡( ~X
h,N ),L(Xh))! 0, P-a.s. as N ! +1.

(ii) If the sequence of the L(⇡(~⇣N , ~WN )) satisfies the LDP with good rate function I :
Pp(Rd

⇥ C
d
0
)! [0,+1], then the sequence of the L(⇡( ~Xh,N )) satisfies the LDP with

good rate function
P 2 Pp(C

d) 7! inf
R2P(Rd

⇥C
d0 )

 h(R)=P

I(R).

Theorem 3.2.4 is proved in Section 3.3.2. For proving the CLT, we need further as-
sumptions on the coefficients.

Assumption (A.2) (Strenghtening of (A.1)). (A.1) holds and for every (t, x) 2 [0, T ]⇥Cd,
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(i) x 7! bt(x, P ),�t(x, P ) are Fréchet-differentiable and (x, P ) 7! Dxbt(x, P ), Dx�t(x, P )
are globally Lipschitz uniformly in t.

(ii) P 7! bt(x, P ),�t(x, P ) have linear derivatives y 7! �P bt(x, P, y), �P�t(x, P, y), in the
sense of Definition 3.1.1, which are Fréchet-differentiable w.r.t. y.

(iii) (x, P, y) 7! Dy�P bt(x, P, y), Dy�P�t(x, P, y) are globally Lipschitz uniformly in t.

Under (A.1)-(A.2), we notice that bt(x, P ) and �t(x, P ) are differentiable w.r.t. (x, P )
too, with derivatives only depending on x^t and P^t. For the sake of simplicity, we further
assume that all the particles start at 0: we remove the dependence of  h on the initial
condition. To state a result at this level of generality, we restrict ourselves to bounded
noises taking values in the space C

d
0

M 0 of paths with norm bounded by M 0 > 0. This
restriction is not needed if � ⌘ Id, see [Coghi et al., 2020, Section 5].

Theorem 3.2.5 (Central Limit Theorem). Under (A.2), let (W i)i�1 be an i.i.d. sequence
of Cd

0
M 0-valued variables with common law R. Let ~Xh,N be the related system of particles

starting at 0 given by (3.5), and let Xh be the solution of (3.4) driven by W 1. Then, for
every ' 2 C

1,1
b

(Cd,R), the random variable

p

N


1

N

NX

i=1

'(Xh,i,N )� E['(Xh)]

�

converges in law towards a centred Gaussian variable whose variance �2' is explicit in terms
of  h(R), see Corollary 3.3.7.2 below.

Theorem 3.2.5 is proved in Section 3.3.3.

3.2.2 Discretised setting with Brownian noise

First, we apply Corollary 3.2.4.1 to Brownian noises. To clearly separate this Brownian
setting from the generic one of the previous section, we will write (Xi

0)1iN for the initial
conditions instead of (⇣i,N )1iN . Since we aim for a LDP in the Wasserstein topology,
Wang et al. [2010] tells us that we must restrict ourselves to p 2 [1, 2) and that we need
the following assumption.

Assumption (A.3) (Initial exponential moments). p 2 [1, 2) and the particles are ini-
tialised from a i.i.d. sequence (Xi

0)i�1 such that

8↵ > 0, E
⇥
e↵|X

1
0 |

p⇤
< +1.

For any P in Pp(Cd), we define �h(P ) as being the path-law of the solution to

dY h

t = bth(Y
h, P )dt+ �th(Y

h, P )dBt, Y h

0 = X1
0 , (3.6)

where (Bt)0tT is a Rd
0-valued Brownian motion. Since � is globally bounded and b has

linear growth, (A.1)-(A.3) imply that

8↵ > 0, E
⇥
exp

⇥
↵ sup

0tT
|Y h

t |
p
⇤⇤

< +1,

as required by [Wang et al., 2010, Theorem 1.1].
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Proposition 3.2.6 (Discretised LDP). Under (A.1)-(A.3), let (Bi)i�1 be an i.i.d. se-
quence in C

d
0 of Brownian motions. Let ~Xh,N be the related system of particles starting

from (Xi

0)i�1. Then, the sequence of the L(⇡( ~Xh,N )) satisfies the LDP with good rate
function

Ih : P 2 Pp(C
d) 7! H(P |�h(P )).

We recall that the relative entropy H is defined in Section 3.1.2. Proposition 3.2.6
is proved in Section 3.3.2. We then extend Theorem 3.2.5 to the Brownian setting. We
rely on an approximation procedure by truncating the noises. To do so, we need uniform
estimates for fluctuation processes given by Proposition 3.3.9. In particular, we need
uniform propagation of chaos estimates with rate N�1/2. For such estimates to hold, it is
convenient to restrict ourselves to binary interactions.

Assumption (A.4) (Binary interactions). There exist functions b̃ : [0, T ]⇥ C
d
⇥ C

d
! Rd

and �̃ : [0, T ]⇥ C
d
⇥ C

d
! Rd⇥d

0 such that

bt(x, P ) =

Z

Cd
b̃t(x^t, y) dP^t(y), �t(x, P ) =

Z

Cd
�̃t(x^t, y) dP^t(y).

Moreover, b̃, �̃ are C
1,1 and �̃ is bounded, so that b, � satisfy (A.1)-(A.2).

Let (Bt)0tT , (B̃t)0tT be independent Brownian motions in Rd. Let Xh denote the
strong solution of the discretised McKean-Vlasov equation

dXh

th
= bth(X

h,L(Xh))dt+ �th(X
h,L(Xh))dBt, Xh

0 = 0,

which corresponds to (3.4) driven by B. We recall that strong existence and pathwise-
uniqueness are provided by Theorem 3.2.4. Let X̃h denote the solution of the same equation
driven by B̃. We introduce the solution �Xh of the McKean-Vlasov SDE

d�Xh

th
=
⇥
Dx�th(X

h,L(Xh))·�Xh+�P�th(X
h,L(Xh), X̃h)

⇤
dBt+

�
Dxbth(X

h,L(Xh))·�Xh

+ �P bth(X
h,L(Xh), X̃h) + E

⇥
Dy�P bth(X

h,L(Xh), Xh) · �Xh
��(B̃s)0sth

⇤ 
dt

+ E
⇥
Dy�P�th(X

h,L(Xh), Xh) · �Xh
��(B̃s)0sth

⇤
dBt, �Xh

0 = 0. (3.7)

Well-posedness for (3.7) is a direct induction (similar to Lemma 3.3.2 below). This can
be seen as a discretised version of a McKean-Vlasov SDE with common noise like the one
studied in [Djete et al., 2022, Appendix A].

Proposition 3.2.7. Under (A.4), let (Bi)i�1 be an i.i.d. sequence in C
d
0 of Brownian

motions. Let ~Xh,N be the related system of particles starting from 0 given by (3.5). Then,
for every ' 2 C

1,1
b

(Cd,R), the random variable

p

N


1

N

NX

i=1

'(Xh,i,N )� E['(Xh)]

�

converges in law towards a centred Gaussian variable with variance �2
h,'

given by

�2
h,'

:= E
�
['(X̃h) + E[D'(Xh) · �Xh

� '(Xh)|B̃]]2
 
.

The underlying Gaussian field can be described in terms of an infinite-dimensional SDE,
see [Tanaka, 1984, Section 4]. Proposition 3.2.7 is proved in Section 3.3.4, using results
from Appendix 3.A.
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3.2.3 Continuous setting with Brownian noise

We now extend Proposition 3.2.6 to the continuous setting. For P 2 Pp(Cd), we define
�0(P ) as being the path-law of the solution to

dYt = bt(Y, P )dt+ �t(Y, P )dBt, Y0 = X1
0 ,

where (Bt)0tT is a Rd
0-valued Brownian motion. We notice that �0(P ) can be seen as

the h! 0 limit of �h(P ) given by (3.6). In the following, we will use the same convention
for extending definitions to h = 0.

Theorem 3.2.8 (Exponential approximation and LDP). Let us assume that �t(x, P ) =
�t(P ) does not depend on x. Under (A.1)-(A.3), let (Bi)i�1 be an i.i.d. sequence in C

d
0 of

Brownian motions. For h 2 [0, 1], let ~Xh,N be the related system of particles starting from
(Xi

0)i�1. Then, for every bounded Lipschitz F : Pp(Cd)! R,

sup
N�1

��N�1 logE
⇥
exp

⇥
NF (⇡( ~Xh,N )

⇤⇤
�N�1 logE

⇥
exp

⇥
NF (⇡( ~X0,N )

⇤⇤�� ���!
h!0

0.

Moreover, the sequence of the L(⇡( ~X0,N )) satisfies the LDP with good rate function

I0 : P 2 Pp(C
d) 7! H(P |�0(P )).

Moreover, Ih �-converges towards I0 as h! 0.

Theorem 3.2.11 below provides the LDP when � does depend on x but not on P . The
above result can be rephrased as the quantitative convergence of the value function of
a mean-field control problem with quadratic cost, see Proposition 3.4.3 below. Theorem
3.2.8 is proved in Section 3.4.1. Some technical results about rate functions are deferred
to Appendix 3.B (in particular, links with stochastic control).

Remark 3.2.9 (Mean-field limit and scheme convergence). From Lemma 3.4.2-(iv) and
Lemma 3.4.5, we have the consistency results, for every h 2 [0, 1], N � 1 and 1  i  N ,

E[ sup
0tT

|Xh,i,N

t
�X0,i,N

t
|
2]  C|h log h|, E[ sup

0tT
|Xh,i,N

t
�X

h,i

t |
2]  CN�1,

for C > 0 independent of (h,N). In particular, the h ! 0 and N ! +1 limits commute
with quantitative rates of convergence, see Lemma 3.4.5. Theorem 3.2.8 proves the same
commutation at the level of large deviations, whereas Theorem 3.2.10 proves it for normal
fluctuations.

We now extend Proposition 3.2.7 to the continuous setting. As previously, let (Bt)0tT ,
(B̃t)0tT be independent Brownian motions in Rd. Let X denote the strong solution of
the McKean-Vlasov equation given by Lemma 3.2.1,

dXt = bt(X,L(X))dt+ �t(X,L(X))dBt, X0 = 0,

which corresponds to the h = 0 extension of (3.4) driven by B. Let X̃ denote the solution
of the same equation driven by B̃. We then introduce the solution �X of

d�Xt =
⇥
Dx�t(X,L(X)) · �X + �P�t(X,L(X), X̃)

⇤
dBt +

�
Dxbt(X,L(X)) · �X

+ �P bt(X,L(X), X̃) + E
⇥
Dy�P bt(X,L(X), X) · �X

��(B̃s)0st
⇤ 
dt

+ E
⇥
Dy�P�t(X,L(X), X) · �X

��(B̃s)0st
⇤
dBt, �X0 = 0. (3.8)

Well-posedness for such a path-dependent McKean-Vlasov SDE with common noise can
be found in [Djete et al., 2022, Appendix A].

104



3.2. Statement of the main results

Theorem 3.2.10. Under (A.4), let (Bi)i�1 be an i.i.d. sequence in C
d
0 of Brownian

motions. Let ~Xh,N be the related system of particles starting from 0 given by (3.5). Let
further X

h,i denote the solution of (3.4) with driving noise Bi. There exists C > 0 such
that

sup
N�1

1
p
N

NX

i=1

E


sup
0tT

��Xh,i,N

t
�X

h,i

t � [X0,i,N
t

�X
0,i
t ]
��
�
 C|h log h|1/2,

for every h 2 [0, 1]. Moreover, for every ' 2 C
1,1
b

(Cd,R),

p

N


1

N

NX

i=1

'(X0,i,N )� E['(X
0,1

)]

�

converges in law towards a centred Gaussian variable with variance �2' given by

�2' := E
�
['(X̃) + E[D'(X) · �X � '(X)|B̃]]2

 
.

The underlying Gaussian field can be described in terms of an infinite-dimensional
SDE, see [Tanaka, 1984, Section 4]. Theorem 3.2.10 is proved in Section 3.4.3.

3.2.4 Contraction

Since the map (
Pp(Cd) ! C([0, T ],Pp(Rd)),

P 7! P· := (Pt)0tT ,

is continuous, Proposition 3.2.6 and Theorem 3.2.8 induce by contraction the LDP for the
sequence of the L(⇡·( ~Xh,N )) with good rate function

Ih : P· 2 C([0, T ],Pp(Rd)) 7! inf
Q2Pp(Cd)
Q·=P·

H(Q|�h(Q)),

where h 2 [0, 1]. The random curve ⇡·( ~X0,N ) precisely corresponds to (3.2) in the In-
troduction, this framework being natural by comparison with (3.3). In this setting, the
following result allows for a dependence of � on x.

Assumption (A.5). The coefficients are globally Lipschitz functions independent of the
history bt(x, P ) = bt(xt, Pt) and �t(x, P ) = �t(xt). Moreover, � is globally bounded.

Theorem 3.2.11. Under (A.3)-(A.5), let (Bi)i�1 be an i.i.d. sequence in C
d
0 of Brownian

motions. For h 2 [0, 1], let ~Xh,N be the related system of particles starting from (Xi

0)i�1.
Then, for every bounded Lipschitz F : C([0, T ],Pp(Rd))! R,

sup
N�1

��N�1 logE
⇥
exp

⇥
NF (⇡·( ~X

h,N )
⇤⇤
�N�1 logE

⇥
exp

⇥
NF (⇡·( ~X

0,N )
⇤⇤�� ���!

h!0
0.

Moreover, the sequence of the L(⇡·( ~Xh,N )) satisfies the LDP with good rate function Ih.

This estimate is reminiscent (but different) of log-efficiency estimates developed in the
work Bezemek and Heldman [2024] for importance sampling. From Lemma 3.B.1, we can
intuit the representation formula

I0(P·) = H(P0|L(X
1
0 )) +

Z
T

0

Z

Rd

1

2
|vt|

2dPtdt,
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if there exists v 2 L2([0, T ]⇥ Rd,Rd
0
, dt⌦ dPt) such that

@tPt = r ·
⇥
� Ptbt(·, Pt)� Pt�t(·, Pt)vt +

1
2r · [Pt�t�

>

t (·, Pt)]
⇤
,

in the sense of distributions, and I0(P·) = +1 otherwise. When d = d0, this formula is
proved in [Delarue et al., 2020, Lemma 6.17] when � ⌘ Id, and in [Dawson and Gärtner,
1987, Lemma 4.8] under a non-degeneracy assumption on �. Theorem 3.2.11 is proved in
Section 3.4.2.

3.3 Constructions on the path space

This section is devoted to the discretised setting. The construction of the map  h is
performed in Section 3.3.1. The results about mean-field limit and large deviations are
proved in Section 3.3.2. The central limit theorem is eventually proved in Section 3.3.3.

3.3.1 Construction of the discretised system

We follow the presentation of [Coghi et al., 2020, Section 2], adapting their notations to our
setting. Before studying the non-linear SDE (3.4), we show well-posedness for the related
ODE obtained by freezing the random inputs (⇣(!),W (!)) and the measure argument
L(X).

Lemma 3.3.1 (Measure-frozen equation).

(i) For every (x0, �, P ) 2 Rd
⇥ C

d
0
⇥ Pp(Cd), the map x 7! fh,P (x0, �, x) has a unique

fixed-point Sh,P (x0, �) in C
d.

(ii) For any � 2 C
d
0 , there exists L(�) such that for every (x0, P ) 2 Rd

⇥ Pp(Cd) and
(x00, �

0, P 0) 2 Rd
⇥ C

d
0
⇥ Pp(Cd), |Sh,P (x0, �)� Sh,P

0
(x00, �

0)|  L(�)[|x0 � x00|+ |� �
�0|+Wp(P, P 0)], and � 7! L(�) is bounded on bounded sets.

(iii) For (⇣,W ) 2 Lp

P(⌦,R
d
⇥ C

d
0
) and P 2 Pp(Cd), the path-dependent SDE

dYt = bth(Y, P )dt+ �th(Y, P )dWt, Y0 = ⇣, (3.9)

has a pathwise-unique strong solution in Lp

P(⌦, C
d), given by Sh,P (⇣,W ).

The proof of Lemma 3.3.1 is simple, because (3.9) is an explicit Euler scheme for a
SDE.

Proof. (i) If (Sh,P
s (x0, �))0sih is uniquely defined for some i � 0, then

Sh,P

t
(x0, �) = Sh,P

ih
(x0, �) + (t� ih)bih(S

h,P

^ih
(x0, �), P ) + �ih(S

h,P

^ih
(x0, �), P )[�t � �ih],

for ih  t  (i + 1)h, uniquely extending the definition till time (i + 1)h. All this makes
sense because bih(x, P ) and �ih(x, P ) only depend on (xs)0sih using (A.1). By induction,
this proves existence and uniqueness for the fixed-point Sh,P (x0, �).

(ii) We consider (x0, �, P ), (x00, �
0, P 0) 2 Rd

⇥ C
d
0
⇥ Pp(Cd). By induction, if

sup
0sih

|Sh,P

s (x0, �)� Sh,P
0

s (x00, �
0)|  Li

⇥
|x0 � x00|+ |� � �0|+Wp(P^ih, P

0

^ih)
⇤
, (3.10)
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for some Li > 0, then (A.1) yields, for ih  t  (i+ 1)h,

|Sh,P

t
(x0, �)� Sh,P

0

t
(x00, �

0)|  |Sh,P

ih
(x0, �)� Sh,P

0

ih
(x00, �

0)|+ 2M� sup
ihst

|�s � �
0

s|

+
⇥
hLb + 2L� sup

ihs(i+1)h
|�s|
⇤⇥

sup
0sih

|Sh,P

s (x0, �)� Sh,P
0

s (x00, �
0)|+Wp(P^ih, P

0

^ih)
⇤
.

As a consequence, using that Wp(P^ih, P 0^ih) Wp(P^(i+1)h, P
0

^(i+1)h), (3.10) holds till time
(i+1)h for Li+1 := Li[1+hLb+2L� supihs(i+1)h|�s|]+max{2M�, hLb+2L� supihs(i+1)h|�s|}.

(iii) As a consequence of (ii), Y : ! 7! Sh,P (⇣(!),W (!)) is measurable. Using (A.1)
and taking expectations, there exists C > 0 such that

E sup
iht(i+1)h

|Yt|
p
 C


1+E sup

0sih
|Ys|

p+Mp

�E sup
iht(i+1)h

|Wt�Wih|
p+

Z

Cd
sup

0sih
|xs|

pdP^ih(x)

�
.

By induction, E[sup0tT |Yt|
p] is thus finite if E[|⇣|p] and E[sup0tT |Wt|

p] are finite. The
fact that Y is the pathwise-unique strong solution of (3.9) then stems from (i).

We now turn to the discretised McKean-Vlasov equation (3.4).

Lemma 3.3.2 (Pathwise solution map). For any R 2 Pp(Rd
⇥ C

d
0
), there exists a unique

map

S
h,R

:

(
Rd
⇥ C

d
0
! C

d,

(x0, �) 7! S
h,R

(x0, �),

that is everywhere well-defined, that belongs to Lp

R
(Rd
⇥ C

d
0
, Cd), and that satisfies

8(x0, �, t) 2 Rd
⇥ C

d
0
⇥ [0, T ], S

h,R

t (x0, �) = f
h,S

h,R
# R

t
(x0, �, S

h,R
(x0, �)). (3.11)

Moreover, for (⇣,W ) 2 Lp

P(⌦,R
d
⇥ C

d
0
), (3.4) has a unique solution in the sense of Defini-

tion 3.2.2, given by S
h,L(⇣,W )

(⇣,W ).

In particular, Sh,R

# R belongs to Pp(Cd). In the case R = L(⇣,W ), Sh,R

# R is the law of
the solution of (3.4). Following [Coghi et al., 2020, Section 2], Sh,R

# R can be characterised
as the unique fixed-point of the map

P 7! Sh,P

# R.

In [Tanaka, 1984, Section 2.1], [Coghi et al., 2020, Lemma 13] and [Backhoff et al., 2020,
Lemma 3.1], the fixed-point is built by showing convergence for an iterative scheme. The
result is much easier for our explicit Euler scheme.

Proof. We first show that (3.4) has a pathwise unique strong solution, before using this
solution to build S

h,R
(x0, �).

By induction, if (Xh
s )0sih is P-a.s. uniquely defined for some i � 0, then

Xh

t = Xh

ih
+ (t� ih)bih(X

h

^ih,L(X
h

^ih)) + �ih(X
h

^ih,L(X
h

^ih))[Wt �Wih],

for ih  t  (i + 1)h, uniquely extending the definition till time (i + 1)h. All this
makes sense because bih(x, P ) and �ih(x, P ) only depend on x^ih and P^ih using (A.1). By
induction, the above Euler scheme builds (Xh

^ih
,L(Xh

^ih
)) for every i � 0, proving existence

and pathwise uniqueness for (3.4). In particular, this proves existence and uniqueness for
L(Xh).
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To obtain an everywhere-defined solution, we set Sh,R
(x0, �) := Sh,L(Xh)(x0, �), where

L(Xh) is the path-law of the solution of (3.4) for any (⇣,W ) with law R. S
h,R

(⇣,W ) a.s.
satisfies (3.9) with P = L(Xh), so that S

h,R
(⇣,W ) is the pathwise solution of (3.4). Con-

sequently, Sh,R

# R = L(Xh), and S
h,R

(x0, �) satisfies (3.11) for every (x0, �). Uniqueness
stems from using Lemma 3.3.1-(i) with P = S

h,R

# R.

We now state the main result of this section.

Proposition 3.3.3 (Continuous fixed-point map). The map

 h :

(
Pp(Rd

⇥ C
d
0
) ! Pp(Cd),

R 7! S
h,R

# R,

is continuous. Moreover, for (⇣,W ) 2 Lp

P(⌦,R
d
⇥ C

d
0
),  h(L(⇣,W )) is the law of the

unique solution of (3.4).

When the matrix � is constant, we can show that  h is globally Lipschitz-continuous
(see Lemma 3.4.1 below), as in [Coghi et al., 2020, Theorem 7] and [Backhoff et al., 2020,
Lemma 3.4]. In a setting that includes common noise, [Delarue et al., 2020, Lemma 6.16]
could also be adapted to show that  h is uniformly continuous, but still requiring that �
is constant. To handle general �, we rely on a compactness approach.

Proof. In view of Lemma 3.3.2, we only have to prove the continuity of  h. We use
the sequential characterisation in the metric space (Pp(Rd

⇥ C
d
0
),Wp). Let (Rk)k�1 be

a sequence in Pp(Rd
⇥ C

d
0
) that converges towards some R. Since the Wp-convergence

implies weak convergence [Villani et al., 2009, Definition 6.8], the Skorokhod representation
theorem provides a probability space (⌦̃, F̃ , P̃) that supports a sequence (⇣k,W k)k�1, where
(⇣k,W k) is Rk-distributed and a.s. converges towards some R-distributed (⇣,W ). Let Xh,k

denotes the pathwise solution of (3.4) driven by (⇣k,W k), and let Xh denote the one driven
by (⇣,W ).

Step 1. Uniform in k bounds. As in the proof of Lemma 3.3.1-(iii), (A.1) yields

sup
ihs(i+1)h

|Xh,k

s |
p
 C

⇥
1 + sup

0sih
|Xh,k

s |
p + sup

ihs(i+1)h
|W k

s |
p + EP̃ sup

0sih
|Xh,k

s |
p
⇤
,

for every i � 0 and a constant C > 0 that does not depend on k. From [Villani et al., 2009,
Definition 6.8-(i)], (EP̃[|⇣

k
|
p])k�1 and (EP̃[sup0tT |W k

t |
p])k�1 are converging sequences,

hence bounded ones. We now take expectations to get by induction that

sup
k�1

EP̃ sup
0tT

|Xh,k

t
|
p < +1, (3.12)

and then P̃-a.s.,
sup

0tT
|Xh,k

t
|
p
 C

⇥
1 + |⇣k|p + sup

0tT
|W k

t |
p
⇤
, (3.13)

for some C > 0 independent of k. For s, t 2 [0, T ] with th  s  t  th + h, using (A.1),

|Xh,k

t
�Xh,k

s |  (t� s)|bth(X
h,k,L(Xh,k))|+M�|W

k

t �W k

s |.

Using (A.1) and the bound (3.12), EP̃[sup0tT |bt(Xh,k,L(Xh,k))|] is bounded uniformly
in k. Taking expectations, we deduce that for every � 2 (0, h],

EP̃ sup
|t�s|�

|Xh,k

t
�Xh,k

s |  C� + CEP̃ sup
|t�s|�

|W k

t �W k

s |, (3.14)
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for a constant C > 0 that does not depend on k and �.

Step 2. Weak relative compactness. For ",M > 0, we decompose

EP̃ sup
|t�s|�

|W k

t �W k

s |
p
 "p + (2M)pP̃


sup

|t�s|�

|W k

t �W k

s | > "

�

+ 2pEP̃


sup

0tT
|W k

t |
p

sup0tT |Wk
t |�M

�
.

Since (Rk)k�1 converges in (Pp(Rd
⇥ C

d
0
),Wp), we deduce from [Villani et al., 2009, Defi-

nition 6.8-(iii)] that M" > 0 exists such that

sup
k�1

EP̃ sup
0tT

|W k

t |
p

sup0tT |Wk
t |�M"

 ".

Since (Rk)k�1 converges in Wp, it is tight, and [Billingsley, 2013, Theorem 7.3] provides
that

sup
k�1

P̃


sup
|t�s|�

|W k

t �W k

s | > "

�
 "/Mp

" ,

for every small enough � > 0. Gathering everything, we get that

sup
k�1

EP̃ sup
|t�s|�

|W k

t �W k

s |
p
���!
�!0

0.

From (3.14), using p � 1 and Jensen’s inequality, we obtain that

sup
k�1

EP̃ sup
|t�s|�

��Xh,k

t
�Xh

t

�� ���!
�!0

0.

Using this together with (3.12), [Billingsley, 2013, Theorem 7.3] now gives that the Sh,Rk
# Rk =

L(Xh,k) form a relatively compact sequence in P(Cd) for the weak topology.

Step 3. Wp-convergence. Since Rk converges in the Wp-topology, (|⇣k|p)k�1 and
(|W k

|
p)k�1 are uniformly integrable [Villani et al., 2009, Definition 6.8-(iii)]. From (3.13),

we then deduce that (sup0tT |Xh,k

t
|
p)k�1 is uniformly integrable. Using Step 2. and the

characterisation [Villani et al., 2009, Definition 6.8-(iii)], this implies that (L(Xh,k))k�1 is
relatively compact in (Pp(Cd),Wp). Let P be any limit point in Pp(Cd).

Using the P̃-a.s. convergence of (⇣k,W k), and the continuity of (x0, �, P ) 7! Sh,P (x0, �),
which is implied by Lemma 3.3.1-(ii), S

h,Rk(⇣k,W k) = Sh,L(Xh,k)(⇣k,W k) has a sub-
sequence that P̃-a.s. converges towards Sh,P (⇣,W ). Along such a sub-sequence, we
deduce that L(Xh,k) = L(S

h,Rk(⇣k,W k)) weakly converges towards L(Sh,P (⇣,W )), so
that P = Sh,P

# R. This implies that Sh,P (⇣,W ) is a solution of (3.4). The pathwise

uniqueness in Lemma 3.3.2 then gives that Sh,P (⇣,W ) = S
h,R

(⇣,W ), P̃-a.s., so that
P = S

h,R

# R =  h(R). The unique limit point in Wp of the relatively compact sequence
(S

h,Rk
# Rk)k�1 is thus  h(R); hence  h(Rk) = S

h,Rk
# Rk converges towards  h(R).

To prove the central limit theorem, we will need a stronger continuity result.

Lemma 3.3.4 (Lipschitz-continuous restriction). For any M 0 > 0, the restriction of  h

to Pp(Rd
⇥ C

d
0

M 0) is Lipschitz-continuous.
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Proof. Let us consider R and R0 in Pp(Rd
⇥ C

d
0

M 0). On any probability space (⌦̃, F̃ , P̃), let
(⇣,W ) and (⇣ 0,W 0) be respectively R and R0-distributed variables. W and W 0 are P̃-a.s.
bounded by M 0, hence using (A.1),

sup
iht(i+1)h

|S
h,R

t (⇣,W )� S
h,R

0

t (⇣ 0,W 0)|p  Ci,M 0
⇥

sup
0tih

|S
h,R

t (⇣,W )� S
h,R

0

t (⇣ 0,W 0)|p

+ sup
iht(i+1)h

|Wt �W 0t |
p + EP̃ sup

0tih
|S

h,R

t (⇣,W )� S
h,R

0

t (⇣ 0,W 0)|p
⇤
,

for Ci,M 0 > 0 that only depends on (i,M 0). Taking expectations, we get by induction that

EP̃

⇥
sup

0tT
|S

h,R

t (⇣,W )� S
h,R

0

t (⇣ 0,W 0)|p
⇤
 LM 0EP̃

⇥
|⇣ � ⇣ 0|p

⇤
+ LM 0E

⇥
sup

0tT
|Wt �W 0t |

p
⇤
,

for some LM 0 > 0. We then use (S
h,R

(⇣,W ), S
h,R

0
(⇣ 0,W 0)) as a coupling to get the bound

W p

p ( h(R), h(R
0)) = W p

p (S
h,R

# R,S
h,R

0

# R0)  LM 0EP̃

⇥
|⇣�⇣ 0|p

⇤
+LM 0EP̃

⇥
sup

0tT
|Wt�W

0

t |
p
⇤
.

Minimising over all possible couplings eventually gives that

W p

p ( h(R), h(R
0))  LM 0W p

p (R,R0),

concluding the proof.

Remark 3.3.5 (Inverse map). If we assume that d = d0 and �t(x, P ) is always invertible,
we can define the solution map Uh,P (�) for the ODE

8t 2 [0, T ], xt = xdt/heh�h + ��1
th

(�, P )


�t � �0 � bth(�, P )[t� th]

�

dt/he�2X

i=0

hbih(�, P ) + �ih(�ih, P )[x(i+1)h � xih]

�
,

with the convention x�h = 0. If ��1 is uniformly bounded, we can show as in Lemma 3.3.1
that Uh,P

# P belongs to Pp(Cd) if P belongs to Pp(Cd). Moreover, by construction,

8(x0, �) 2 Rd
⇥ C

d, (x0, S
h,P (x0, U

h,P (�))) = (x0, U
h,P (Sh,P (x0, �)) = (x0, �).

From this, similarly to [Coghi et al., 2020, Lemma 31] or [Backhoff et al., 2020, Proof of
Theorem 3.1], we can show that  h is one-to-one with

8P 2 Pp(C
d),  �1

h
(P ) = (X0, U

h,P )#P,

for X0 : Cd
! Rd, (xt)0tT 7! x0.

3.3.2 Mean-field limit and large deviations

We now analyse the discretised particle system (3.5) using the the results of Section 3.3.1,
and we prove the mean-field limit and the large deviations from (3.4).
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Proof of Theorem 3.2.4. Following [Coghi et al., 2020, Section 3.1], we can see (3.5) as a
special instance of the generalised McKean-Vlasov equation (3.4). Indeed, let us consider
the space (⌦N ,FN ,PN ), where ⌦N := {1, . . . , N}, FN := 2⌦N is the power set of ⌦N ,
and PN := 1

N

P
N

i=1 �i. On this space, a N -tuple ~xN in some product space EN can be
identified to the E-valued random variable i 2 ⌦N 7! xi 2 E. In this setting, the empirical
measure ⇡(~xN ) is precisely the law of ~xN under PN . Going back to (3.5), for each ! 2 ⌦,
we apply this to the N -tuples

(~⇣N , ~WN )(!) = (⇣i,N (!),W i,N (!))1iN and ~XN (!) = (Xi,N (!))1iN .

For fixed ! 2 ⌦, the empirical measure ⇡((~⇣N , ~WN )(!)) is the law of (~⇣N , ~WN )(!) under
PN . Similarly, ⇡( ~XN (!)) is the law of ~XN (!) under PN . The empirical measure ⇡( ~XN (!))
is precisely the one that appears in (3.5), so that the particle system (3.5) appears as
an instance of the generalised McKean-Vlasov equation (3.4) on the probability space
(⌦N ,FN ,PN ). Using the notations of Proposition 3.3.2, we eventually get that

L(Xh) =  h(L(⇣,W )) and ⇡( ~Xh,N ) =  h(⇡(~⇣
N , ~WN )) P-a.s.,

together with, P-a.s.,

Xh = Sh,L(Xh)(⇣,W ) and Xh,i,N = Sh,⇡( ~Xh,N )(⇣i,W i),

for 1  i  N . In particular, the continuity of  h and Lemma 3.3.1-(ii) guarantee that
! 7! ~Xh,N (!) is measurable. This unified formalism gives the desired results (i)-(ii)-(iii),
using Proposition 3.3.2 and the continuity proved in Proposition 3.3.3.

Proof of Proposition 3.2.6. From the Sanov theorem in the Wp-topology [Wang et al., 2010,
Theorem 1.1], the sequence of the L(⇡( ~XN

0 , ~BN )) satisfies the LDP with good rate function
R0 2 Pp(Rd

⇥ C
d
0
) 7! H(R0|R), where R := L(X1

0 , B
1). By contraction [Dupuis and Ellis,

2011, Theorem 1.3.2], Corollary 3.2.4.1 proves that the L(⇡( ~Xh,N )) satisfies the LDP with
good rate function

Ih : P 7! inf
R

0
2Pp(Rd

⇥C
d0 )

 h(R0)=P

H(R0|R).

From Lemma 3.3.2,  h(R0) = P implies  h(R0) = Sh,P

# R0. [Fischer, 2014, Lemma A.1]
now gives that

Ih(P ) = H(P |Sh,P

# R).

By definition of �h, we notice that Sh,P

# R = �h(P ), concluding the proof.

3.3.3 CLT for the discretised system

This section adapts the results of [Tanaka, 1984, Section 2] and [Coghi et al., 2020, Section
5] to our discretised setting. The CLT will result from the following key-result which is a
mere rewriting of [Tanaka, 1984, Theorem 1.1] or [Coghi et al., 2020, Theorem 35], using
the linear derivative from Definition 3.1.1.

Theorem 3.3.6 (Tanaka). Given a Polish space E, let f : E ⇥ Pp(E) ! R be a bounded
function such that P 7! f(x, P ) has a linear functional derivative y 7! �P f(x, P, y) that is
bounded and Lipschitz in P uniformly in (x, y). Then, given any i.i.d. sequence (Xi)i�1
with common law P 2 P(E), the random variable

p

N


1

N

NX

i=1

f(Xi,⇡( ~XN ))�

Z

E

f(x, P )dP (x)

�
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converges in law towards a centred Gaussian variable with variance �2
f

given by

�2
f
:=

Z

E


f(y, P ) +

Z

E

[�P f(x, P, y)� f(x, P )]dP (x)

�2
dP (y).

Throughout this section, we assume that (A.2) holds. All the particles now start at 0,
so that we can remove the dependence on the initial condition. As required by Theorem
3.2.5, we restrict ourselves to bounded driving paths � 2 C

d
0

M 0 . As a consequence of (A.1),
the paths Sh,P (�) stay in C

d

M
for some M > 0 that only depend on (h,M 0) (see Lemma

3.3.1-(ii)). To alleviate notations, we remove all the h-exponents in the remainder of this
section, writing

 : Pp(C
d
0

M 0)! Pp(C
d

M ),

for the fixed-point map from Proposition 3.3.3. Let us fix R 2 Pp(Cd
0

M 0). We recall that for
� 2 C

d
0

M 0 ,

8t 2 [0, T ], S (R)
t

(�) =

Z
t

0
bsh
�
S (R)(�), S (R)

# R
�
ds+ �sh

�
S (R)(�), S (R)

# R
�
d�s.

(3.15)
The linear derivative of SR

= S (R) w.r.t. R can be computed (if well-defined) writing
that

�PS
R
(�, �̃) = lim

"!0
"�1
⇥
S
(1�")R+"��̃ (�)� S

R
(�)
⇤
, (3.16)

where we recall the convention
R
Cd0
M0
�PS

R
(�, �0)dR(�0) = 0 from Definition 3.1.1. After

careful differentiation of each term in (3.15), this suggests that for every t 2 [0, T ],

�PS
R

t (�, �̃) =

Z
t

0

⇥
Dxbsh

�
S
R
(�), S

R

#R
�
· �PS

R
(�, �̃) + �P bsh

�
S
R
(�), S

R

#R,S
R
(�̃)
�⇤
ds

+

Z
t

0

Z

Cd0
Dy�P bsh

�
S
R
(�), S

R

#R,S
R
(�0)

�
· �PS

R
(�0, �̃) dR(�0)ds

+

Z
t

0

⇥
Dx�sh

�
S
R
(�), S

R

#R
�
· �PS

R

t (�, �̃) + �P bsh
�
S
R
(�), S

R

#R,S
R
(�̃)
�⇤
d�s

+

Z
t

0

Z

Cd0
Dy�P�sh

�
S
R
(�), S

R

#R,S
R
(�0)

�
· �PS

R

t (�
0, �̃) dR(�0)d!s.

To rigorously build �PS
R we follow the approach of [Tanaka, 1984, Section 2.1]. For

(P, x, x̃,X) 2 Pp(Cd

M
)⇥ C

d

M
⇥ C

d

M
⇥ C(Cd

M
, Cd), let us define the path gP (x, x̃,X) in C

d by

gPt (x, x̃,X) :=

Z
t

0


Dxbsh(x, P )·X(x)+�P bsh(x, P, x̃)+

Z

Cd0
Dy�P bsh(x, P, x

0)·X(x0) dP (x0)

�
ds

+

Z
t

0


Dx�sh(x, P ) ·X(x) + �P�sh(x, P, x̃) +

Z

Cd0
Dy�P�sh(x, P, x

0) ·X(x0) dP (x0)

�
d�s.

We then introduce an intermediary ODE.

Lemma 3.3.7 (Differential map). We assume (A.2).

(i) For every (P, x̃) 2 Pp(Cd

M
)⇥ C

d

M
, the equation

8x 2 C
d

M , UP

t (x, x̃) = gPt (x, x̃, U
P (·, x̃)),

has unique solution x 7! UP
t (x, x̃) in C(Cd

M
, Cd).
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(ii) The map (P, x, x̃) 7! UP
t (x, x̃) is globally bounded and Lipschitz-continuous.

The global bound on UP (x, x̃) is only possible because we restricted ourselves to C
d

M
.

Proof. These result are the analogous of [Tanaka, 1984, Lemma 2.2] in a simpler setting
(we consider discretised dynamics instead of ODEs). Alternatively, (i) can be obtained by
readily adapting the induction in the proof of Lemma 3.3.2, while (ii) is a direct adaptation
of the induction in the proof of Lemma 3.3.4.

We can now define �PS
R by setting

�PS
R
(�, �̃) := US

R
#R
�
S
R
(�), S

R
(�̃)
�
. (3.17)

We notice that �PS
R defined by (3.17) indeed satisfies the equation computed above. From

this and (3.15), it is a standard ODE-like computation to verify that (3.16) indeed holds
(see e.g. [Coghi et al., 2020, Lemma 42]).

Corollary 3.3.7.1 (Lispchitz-continuity). Under (A.2), the map (R, �, �̃) 7! �PS
R
(�, �̃)

is globally bounded and Lipschitz-continuous on Pp(Cd
0

M 0)⇥ C
d
0

M 0 ⇥ C
d
0

M 0 .

Proof. From (3.17), this result is a mere concatenation of Lemma 3.3.1-(ii), Lemma 3.3.4
and Lemma 3.3.7-(ii).

The following result is a detailed version of Theorem 3.2.5, obtained as a consequence
of Theorem 3.3.6.

Corollary 3.3.7.2. Under (A.2), let (W i)i�1 be an i.i.d. sequence of Cd
0

M 0-valued variables
with common law R. Let ~Xh,N be the related system of particles starting from 0 given
by (3.5), and let Xh be a related solution of (3.4). Then, for every ' 2 C

1,1
b

(Cd,R), the
random variable

p

N


1

N

NX

i=1

'(Xh,i,N )� E['(Xh)]

�

converges in law towards a centred Gaussian variable with variance �2' given by

�2' :=

Z

Cd0
M0


'(S

R
(�̃)) +

Z

Cd0
M0

[D'(S
R
(�)) · �PS

R
(�, �̃)� '(S

R
(�))]dR(�)

�2
dR(�̃).

Proof. The function f : Cd
0

M 0 ⇥ Pp(Cd
0

M 0) ! R defined by f(�, R) := '(S
R
(�)) has a linear

derivative given by �P f(�, R, �̃) = D'(S
R
(�)) ·�PS

R
(�, �̃). Using Lemma 3.3.4 and Corol-

lary 3.3.7.1, f satisfies the assumptions of Theorem 3.3.6, which now gives the result.

3.3.4 Extension to the Brownian setting

Throughout this section, we assume that (A.4) holds. Our purpose is to extend the results
of the previous section for proving Proposition 3.2.7. Let (Bi)i�1 be a countable sequence
in C

d
0 of i.i.d. Brownian motions. We rely on an approximation procedure by stopping the

Bi when they reach a given threshold, and by showing that the fluctuations of the related
particle system can be uniformly controlled. For M > 0, we introduce the stopping time

⌧ iM := inf{t 2 [0, T ], |Bi

t| �M},
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with the convention ⌧ i
M

= T if the set on the r.h.s. is empty. The related particle system
given by (3.5) is

dXh,M,i,N

t
= bth(X

h,M,i,N ,⇡( ~Xh,M,N ))dt+ �th(X
h,M,i,N ,⇡( ~Xh,M,N ))dBi

t^⌧ iM
,

with Xh,M,i,N

0 = 0, 1  i  N . Since we discretised with the time step h > 0, we recall that
stochastic integration is not needed to make sense of the above SDE. The limit particle
system (3.5) when ⇣i = 0 and W i = Bi corresponds to ~Xh,1,N . For each 1  i  N , let
us introduce the McKean-Vlasov process X

h,M,i solution of

dX
h,M,i

t = bth(X
h,M,i

,L(X
h,M,i

))dt+ �th(X
h,M,i

,L(X
h,M,i

))dBi

t^⌧ iM
, X

h,M,i

0 = 0,

which corresponds to (3.4) for the stopped Brownian motions. Let us introduce the differ-
ence process �h,M,i,N := Xh,M,i,N

� X
h,M,i, together with �h,1,i,N := Xh,1,i,N

� X
h,1,i

when M = +1. We first need that the mean-field limit holds uniformly in M , and that
the obtained approximation is uniform in N .

Lemma 3.3.8 (Uniform limit). There exists Ch > 0 such that for every N � 1, M > 0,
1  i  N ,

(i) E[sup0tT |Xh,M,i,N

t
|
2]  Ch.

(ii) E[sup0tT |�h,M,i,N

t
|
2]  ChN�1.

(iii) E[sup0tT |�h,1,i,N

t
|
2]  ChN�1.

(iv) E[sup0tT |Xh,M,i,N

t
�Xh,1,i,N

t
|
2]  ChE[

⌧
1
M<T

sup0tT |B1
t |

2].

(v) E[sup0tT |X
h,M,i

t �X
h,1,i

t |
2]  ChE[

⌧
1
M<T

sup0tT |B1
t |

2].

We then strengthen these results for controlling the fluctuations.

Proposition 3.3.9. There exists Ch > 0 such that for every M > 0,

sup
N�1

1
p
N

NX

i=1

E


sup
0tT

���h,M,i,N

t
� �h,1,i,N

t

��
�
 ChE1/2

⇥
⌧
1
M<T

sup
0tT

|B1
t |

2
⇤
.

With these results at hand, Proposition 3.2.7 will easily follow. The proofs of the
approximation results rely on the classical coupling method from [Sznitman, 1991, Theorem
1.4]. To alleviate notations, we drop the exponents (h,N) in the remainder of this section
(although the dependence on N is crucial). We will repeatedly use the technical estimates
proved in Appendix 3.A. In the following, Ch is a generic constant that may change from
line to line, but staying independent of (M,N).

Proof of Lemma 3.3.8. (i) By symmetry, all the XM,i have the same law. The bound is
then a straight-forward induction very close to Step 1. in the proof of Proposition 3.3.3,
using that E[sup0tT |Bi

t^⌧ iM
|
2] is bounded uniformly in M .

(ii) By definition of XM,i and X
M,i, for 0  t  T ,

�M,i

t
=

Z
t

0
[bsh(X

M,i,⇡( ~XM ))� bsh(X
M,i

,L(X
M,i

))]ds

+

Z
t

0
[�sh(X

M,i,⇡( ~XM ))� �sh(X
M,i

,L(X
M,i

))]dBi

s^⌧ iM
.
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We then take the square of this expression and we use Jensen’s inequality, before taking
the supremum in time and expectations to get

E
⇥
sup
0st

|�M,i

t
|
2
⇤
 2t

Z
t

0
E|bsh(X

M,i,⇡( ~XM ))� bsh(X
M,i

,L(X
M,i

))|2ds

+ 2E sup
0st

����
Z

s

0
[�rh(X

M,i,⇡( ~XM ))� �rh(X
M,i

,L(X
M,i

))]dBi

r^⌧ iM

����
2

. (3.18)

For the drift term, we split

bsh(X
M,i,⇡( ~XM ))� bsh(X

M,i
,L(X

M,i
)) = bsh(X

M,i,⇡( ~XM ))� bsh(X
M,i

,⇡(~X
M

))

+ [bsh(X
M,i

,⇡(~X
M

))� bsh(X
M,i

,L(X
M,i

))].

Using (i), (A.4), and Lemma 3.A.3 with the i.i.d. variables (X
i
, Y

i
) = (X

M,i
, 0), we get

that
E
��bsh(X

M,i
,⇡(~X

M

))� bsh(X
M,i

,L(X
M,i

))
��2  ChN

�1.

Further using the Lipschitz assumption (A.4) on b, Jensen’s inequality, and the fact that
((XM,j , X

M,j
))1jM is identically distributed, we deduce that

E
��bsh(X

M,i,⇡( ~XM ))� bsh(X
M,i

,L(X
M,i

))
��2  ChE

⇥
sup

0rsh

|XM,i

r �X
M,i

r |
2
⇤
+ ChN

�1.

To handle the second line in (3.18), we rely on stochastic integration. From the optional
stopping theorem, (Bi

t^⌧ iM
)0tT is a square-integrable martingale; its quadratic variation

is the process (t ^ ⌧ i
M
)0tT . The Burkholder-Davis-Gundy (BDG) inequality then yields

E sup
0st

����
Z

s

0
[�rh(X

M,i,⇡( ~XM ))� �rh(X
M,i

,L(X
M,i

))]dBi

r^⌧ iM

����
2

 ChE
Z

t^⌧
i
M

0
|�sh(X

M,i,⇡( ~XM ))� �sh(X
M,i

,L(X
M,i

))|2ds

 Ch

Z
t

0
E|�sh(X

M,i,⇡( ~XM ))� �sh(X
M,i

,L(X
M,i

))|2ds.

We can now handle the r.h.s. as we did for the drift term. Gathering the terms in (3.18),

E
⇥
sup
0st

|�M,i

t
|
2
⇤
 ChN

�1 + Ch

Z
t

0
E
⇥
sup

0rs
|�M,i

r |
2
⇤
ds.

The conclusion then follows from the Gronwall Lemma.
(iii) If ⌧ i

M
= T in the above proof of (ii), we notice that all the computations remain

valid when replacing (Bi

t^⌧ iM
)0tT by (Bi

t)0tT . This yields the result.
(iv) As for proving (ii), for 0  t  T ,

XM,i

t
�X1,i

t
=

Z
t

0
[�sh(X

M,i,⇡( ~XM ))� �sh(X
1,i,⇡( ~X1))]dBi

s^⌧ iM

�

Z
t

0
�sh(X

1,i,⇡( ~X1))]d[Bi

s�Bi

s^⌧ iM
] +

Z
t

0
[bsh(X

M,i,⇡( ~XM ))� bsh(X
1,i,⇡( ~X1))]ds.
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Setting Bi,M
s := Bi

s �Bi

⌧
i
M

, the second integral on the r.h.s. is bounded by

M�

��
⌧
i
M<t

Bi,M

t
�

⌧
i
M<th

Bi,M

th

��+
bt/hc�1X

j=0

M�

��
⌧
i
M<(j+1)hB

i,M

(j+1)h � ⌧
i
M<jh

Bi,M

jh

��, (3.19)

and further by Ch ⌧
i
M<T

sup0st |B
i
s|. The result then follows by reproducing the esti-

mates and the Gronwall argument in the proof of (ii).
(v) By symmetry, we recall that E[sup0tT |Xh,M,i,N

t
� Xh,1,i,N

t
|
2] does not depend

on i. The result follows by taking the N ! +1 limit in the uniform estimate (iv), using
(ii)-(iii).

Proof of Proposition 3.3.9. For every 0  t  t0  T , we have the decomposition

�M,i

t0 � �
1,i

t0 = �M,i

t
� �1,i

t
+

Z
t
0

t

bM,i

s ds+

Z
t
0

t

�M,i

s dBi

s +

Z
t
0

t

�M,i

s d[Bi

s^⌧ iM
�Bi

s],

where

bM,i

s := bsh(X
M,i,⇡( ~XM ))�bsh(X

M,i
,L(X

M,i
))�[bsh(X

1,i,⇡( ~X1))�bsh(X
1,i

,L(X
1,i

))],

�M,i

s := �sh(X
M,i,⇡( ~XM ))��sh(X

M,i
,L(X

M,i
))�[�sh(X

1,i,⇡( ~X1))��sh(X
1,i

,L(X
1,i

))],

�M,i

s := �sh(X
M,i,⇡( ~XM ))� �sh(X

M,i
,L(X

M,i
)).

Taking absolute values, supremum in time and expectations gives

E
⇥

sup
tst0

|�M,i

s � �1,i

s |
⇤
 E

⇥
|�M,i

t
� �1,i

t
|
⇤
+

Z
t
0

t

E[|bM,i

s |]ds+ E sup
tst0

����
Z

s

t

�M,i

r dBi

r

����

+ E sup
tst0

����
Z

s

t

�M,i

r d[Bi

r^⌧ iM
�Bi

r]

����. (3.20)

In the following, Ch is a generic constant, which may change from line to line but staying
independent of (M,N) and (t, t0). To handle the bM,i

s -term, we use the splitting

bM,i

s = bsh(X
M,i,⇡( ~XM ))� bsh(X

M,i
,⇡(~X

M

))� [bsh(X
1,i,⇡( ~X1))� bsh(X

1,i
,⇡(~X

1

))]

+ bsh(X
M,i

,⇡(~X
M

))� bsh(X
M,i

,L(X
M,i

))� [bsh(X
1,i

,⇡(~X
1

))� bsh(X
1,i

,L(X
1,i

))].

Let b1
s (resp. b2

s) denote the first (resp. the second) line. To control b1
s, we use (A.4) and

Lemma 3.A.2 applied to (Xi, Y i) = (XM,i, X1,i) and (X
i
, Y

i
) = (X

M,i

s , X
1,i

s ) to get

|b1
s| 

1

N

NX

j=1

kb̃shkLip
⇥
sup

0rs
|�M,i

r � �1,i

r |+ sup
0rs

|�M,j

r � �1,j

r |
⇤

+ kDb̃shkLipR
i,j

s

⇥
sup

0rs
|�1,i

r |+ sup
0rs

|�1,j

r |
⇤
,

where

Ri,j

s := sup
0rs

|XM,i

r �X1,i

r |+ sup
0rs

|X
M,i

r �X
1,i

r |+ sup
0rs

|XM,j

r �X1,j

r |+ sup
0rs

|X
M,j

r �X
1,j

r |
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We then take supremum in time and expectations, and we use the Cauchy-Schwarz in-
equality and the bounds from Lemma 3.3.8 to get

E
⇥
sup
trs

|b1
r |
⇤
 ChE

⇥
sup

0rs
|�M,i

r � �1,i

r |
⇤
+

Ch

N

NX

j=1

E
⇥
sup

0rs
|�M,j

r � �1,j

r |
⇤

+
Ch
p
N

E1/2
⇥

⌧
1
M<T

sup
0rT

|B1
r |

2
⇤
.

We recall that (�M,j)1jM is identically distributed. The supremum in time was not
needed to estimate E[|b1

s|], but it will be useful for performing the same computation with
the �1

s -term below. We control b2
s using Lemma 3.A.3 applied to the i.i.d. processes

(X
j
, Y

j
) = (X

M,j
, X
1,j

), 1  j  N . From the bounds in Lemma 3.3.8,

sup
0rs

E[|b2
r |
2]  ChN

�1E
⇥

⌧
1
M<T

sup
0rT

|B1
r |

2
⇤
.

For the �M,i
s -term in (3.20), we bound the integral using (3.19) with suptst0 |�

M,i
s | instead

of M�. We then split

E
⇥

sup
tst0

|�M,i

s |
2
⇤
 2E

⇥
sup

0sT
|�sh(X

M,i,⇡( ~XM ))� �sh(X
M,i

,⇡(~X
M

))|2
⇤
+

2E
⇥

sup
0sT

|�sh(X
M,i

,⇡(~X
M

))� �sh(X
M,i

,L(X
M,i

))|2
⇤
.

Using (A.1) and Lemma 3.3.8-(ii), the first term is bounded by ChN�1. From (A.4) and
Lemma 3.A.3, the same bound holds for the second term. From the Cauchy-Schwarz
inequality,

E sup
tst0

����
Z

s

t

�M,i

r d[Bi

r^⌧ iM
�Bi

r]

���� 
Ch
p
N

E1/2
⇥

⌧
1
M<T

sup
0rT

|B1
r |

2
⇤
.

For the �M,i
s -term in (3.20), we split �M,i

s = �1
s + �2

s as we did for bM,i
s . Using the BDG

inequality,

E sup
tst0

����
Z

s

t

�1
rdB

i

r

����  ChE
✓Z

t
0

t

|�1
s |

2ds

◆1/2�
 Ch(t

0
� t)1/2E

⇥
sup

tst0
|�1

s |
⇤
.

We then handle E
⇥
suptst0 |�

1
s |
⇤

as we did for E
⇥
suptst0 |b

1
s|
⇤
. Using the BDG inequal-

ity and Jensen’s inequality,

E sup
tst0

����
Z

s

0
�2
rdB

i

r

����  Ch

✓Z
t
0

t

E[|�2
s |

2]ds

◆1/2

,

and we handle E[|�2
s |

2] as we did for E[|b2
s|
2]. Let us gather all the terms in (3.20), using

that

8s 2 [t, t0], sup
0rs

|�M,i

r � �1,i

r |  sup
0rt

|�M,i

r � �1,i

r |+ sup
trs

|�M,i

r � �1,i

r |. (3.21)

Setting fM (t, t0) :=
p
N E[suptst0 |�

M,i
s � �1,i

s |], for any 0  t  t0  T ,

fM (t, t0)  Chf
M (0, t)+ChE1/2

⇥
⌧
1
M<T

sup
0sT

|B1
s |

2
⇤
+Ch(t

0
�t)1/2fM (t, t0)+Ch

Z
t
0

t

fM (t, s)ds,

for a constant Ch that does not depend on (t, t0). Using (3.21), Lemma 3.A.1 now gives
the desired bound on fM (0, T ).
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Chapter 3. Quasi-continuity method for mean-field diffusions

Proof of Proposition 3.2.7. Let us fix ' in C
1,1(Cd,R), before defining

�M' := N�1
P

N

i=1

⇥
'(XM,i)� E['(X

M,i
)]
⇤
.

We then decompose

�M' � �
1

' =N�1
P

N

i=1

⇥
'(XM,i)� '(X

M,i
)
⇤
�N�1

P
N

i=1

⇥
'(X1,i)� '(X

1,i
)
⇤

+N�1
P

N

i=1

⇥
'(X

M,i
)� E['(X

M,i
)]
⇤
�N�1

P
N

i=1

⇥
'(X

1,i
)� E['(X

1,i
)]
⇤
.

As previously, we control the first line using Lemma 3.A.2, Lemma 3.3.8 and Proposition
3.3.9. Similarly, we handle the second line using Lemma 3.A.3 and Lemma 3.3.8. At the
end of the day, we obtain that

sup
N�1

p

N E
⇥
|�M' � �

1

' |
⇤
�����!
M!+1

0.

As a consequence, the convergence given by Corollary 3.3.7.2 holds uniformly in M , with
variance �2

M,'
. Let (Bt)0tT , (B̃t)0tT be independent Brownian motions in Rd

0 . Let
XM denote the strong solution of the discretised McKean-Vlasov (3.4) with driving noise
(Bt^⌧M )0tT . Similarly, let X̃M denote the strong solution of (3.4) with driving noise
(B̃t^⌧̃M )0tT , the definition of ⌧̃M being straightforward. Let us then introduce the solu-
tion �XM of the McKean-Vlasov SDE with common noise

d�XM

th
=
⇥
Dx�th(X

M ,L(XM )) · �XM + �P�th(X
M ,L(XM ), X̃h)

⇤
dBt^⌧M

+
⇥
Dxbth(X

M ,L(XM )) · �XM + �P bth(X
M ,L(XM ), X̃M )

⇤
dt

+ E
⇥
Dy�P bth(X

M ,L(XM ), XM ) · �XM
��(B̃s)0sth

⇤
dt

+ E
⇥
Dy�P�th(X

M ,L(XM ), XM ) · �XM
��(B̃s)0sth

⇤
dBt^⌧M , �XM

0 = 0.

Well-posedness for the above equation is given by Lemma 3.3.7. This can be seen as a
discretised version of a McKean-Vlasov SDE with common noise. From Corollary 3.3.7.2
and the equation (3.17) satisfied by S

h,M,R, we deduce that

�2M,' := E
�
['(X̃M ) + E[D'(XM ) · �XM

� '(XM )|B̃]]2
 
.

Using synchronous coupling and a Gronwall argument (as in the above proofs), we can
show that

E[ sup
0tT

|�XM

t � �X
h

t |] �����!
M!+1

0,

where �Xh is the solution of (3.7) with the same (B, B̃). From this, we can deduce that
�2
M,'

converges to �2
h,'

as required by Proposition 3.2.7. This completes the proof.

3.4 Extension to the continuous setting

3.4.1 Large deviations and stochastic control

Throughout this section, we assume (A.1)-(A.3) and p 2 [1, 2). We recall that the notion
of reference system ⌃ = (⌦, (Ft)t0T ,P, ( ~BN

t )0tT ) is defined in Section 3.1.2. For such
a ⌃, h 2 [0, 1] and N � 1, we define the controlled system ~Xh,N,~u

N by

dXh,i,N,~u
N

t
= bth(X

h,i,N,~u
N
,⇡( ~Xh,N,~u

N
))dt+ �th(X

h,i,N,~u
N
,⇡( ~Xh,N,~u

N
))ui,N

t
dt

+ �th(X
h,i,N,~u

N
,⇡( ~Xh,N,~u

N
))dBi

t, ~Xh,i,N,~u
N
= Xh,i,N

0 , 1  i  N, (3.22)
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where ~Xh,N

0 2 Lp

P(⌦,R
d) and ~uN = (~uNt )0tT is any (Rd

0
)N -valued square-integrable

progressively measurable process. Such a process will be called an admissible control. Fol-
lowing [Budhiraja et al., 2012, Section 3, page 9], strong existence and pathwise uniqueness
for (3.22) is given by the Girsanov transform if

R
T

0 |~uNt |
2dt M a.s. for some M > 0, and

still holds otherwise using a localisation argument.
Let F : Pp(Cd) ! R be a bounded and Lipschitz-continuous function. Using the

notations

E(~uN ) :=
1

N

NX

i=1

E(ui,N ), E(ui,N ) :=

Z
T

0

1

2
|ui,N

t
|
2dt,

we introduce the stochastic control problem F
h,N := inf

⌃, ~Xh,N
0 ,~uN Jh

⌃(
~Xh,N

0 , ~uN ), where

Jh

⌃( ~X
h,N

0 , ~uN ) := N�1H(L( ~Xh,N

0 )|L(X1
0 )
⌦N ) + E

⇥
E(~uN ) + F (⇡( ~Xh,N,~u

N
))
⇤
,

and L(X1
0 ) is given by (A.3). Let us fix a reference system ⌃. We first restrict the class

of controls ( ~Xh,N

0 , ~uN ). We recall that (Xh,i,N

0 , ui,N )1iN is exchangeable if the law of
(Xh,⌧(i),N

0 , u⌧(i),N )1iN is the same for any permutation ⌧ of {1, . . . , N}.

Lemma 3.4.1 (Exchangeability). We can restrict the minimisation defining F
h,N to con-

trols ( ~Xh,N

0 , ~uN ) such that for every 1  i  N ,

(i) (Xh,i,N

0 , ui,N )1iN is exchangeable and E[E(u1,N )]  2kFk1.

(ii) E[|Xh,1,N
0 |

p]  C, where C only depends on (p, kFk1,L(X1
0 )).

Proof. By choosing L( ~Xh,N

0 ) = L(X1
0 )
⌦N and ~uN ⌘ 0, we get that F

h,N
 kFk1. This

allows us to restrict ourselves to admissible controls ~uN with E[E(~uN )]  2kFk1. Let us
fix such a ( ~Xh,N

0 , ~uN ). Let ⌧ be a uniformly distributed random permutation of {1, . . . , N}

that is independent of ~BN , ~Xh,N

0 , and ~uN . Defining Xh,⌧,i,N

0 := Xh,⌧(i),N
0 and u⌧,i,N :=

u⌧(i),N , we notice that (Xh,⌧,i,N

0 , u⌧,i,N )1iN is exchangeable. The symmetry of (3.22)
then implies that ⇡(Xh,⌧,N,~u

⌧,N
) has the same law as ⇡(Xh,N,~u

N
). For any permutation ⌧ 0,

we define
fN

⌧ 0 : (x1, ..., xN ) 7! (x⌧ 0(1), . . . , x⌧ 0(N)).

The contraction property of entropy [Fischer, 2014, Lemma A.1] gives that

H(L( ~Xh,⌧
0
,N

0 )|L(X1
0 )
⌦N ) = H((fN

⌧ 0 )#L( ~X
h,N

0 )|(fN

⌧ 0 )#L(X
1
0 )
⌦N )  H(L( ~Xh,N

0 )|L(X1
0 )
⌦N ).

Since L( ~Xh,⌧,N

0 ) = E[(fN
⌧ )#L( ~X

h,N

0 )] and P 7! H(P |Q) is convex, Jensen’s inequality then
implies that

H(L( ~Xh,⌧,N

0 )|L(X1
0 )
⌦N )  E[H((fN

⌧ )#L( ~X
h,N

0 )|L(X1
0 )
⌦N )]  H(L( ~Xh,N

0 )|L(X1
0 )
⌦N ).

From all this, we can restrict oursleves to assuming (i). Similarly, we can assume that

N�1H(L( ~Xh,N

0 )|L(X1
0 )
⌦N )  2kFk1.

Using the symmetry assumption (i), the tensorisation property [Csiszár, 1984, Equation
(2.10)] yields

H(L(Xh,1,N
0 )|L(X1

0 ))  N�1H(L( ~Xh,N

0 )|L(X1
0 )
⌦N ).
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Chapter 3. Quasi-continuity method for mean-field diffusions

Let us use the dual representation [Léonard, 2012, Proposition 3.1-(iii)] for the relative
entropy

H(L(Xh,1,N
0 )|L(X1

0 )) = sup
� measurable

E[�(X1
0 )]<+1

E[�(Xh,1,N
0 )]� logE[e�(X

1
0 )], (3.23)

with �(x) := |x|p, E[e|X
1
0 |

p
] being finite from (A.3). Gathering inequalities now allows us

to assume the bound (ii) on E[|Xh,1,N
0 |

p].

Lemma 3.4.2 (Uniform approximation). There exists C > 0 such that for every N � 1,
h 2 [0, 1], every ( ~Xh,N

0 , ~uN ) satisfying (i)-(ii) in Lemma 3.4.1, and 1  i  N ,

(i) E[sup0tT |Xh,i,N,~u
N

t
|
p]  C.

(ii) E[sup0tT |Xh,i,N,~u
N

t
�Xh,i,N,~u

N

th
|
p]  C|h log h|p/2.

(iii) E[sup0tT |X0,i,N,~u
N

t
�X0,i,N,~u

N

th
|
p]  C|h log h|p/2.

(iv) E[sup0tT |Xh,i,N,0
t

�X0,i,N,0
t

|
p]  C|h log h|p/2.

In the above estimates, we assume that ~Xh,N,~u
N

0 = ~X0,N,~u
N

0 = ~Xh,N

0 .

Proof. In the following proof, C > 0 is a constant that may change from line to line,
but always satisfying the requirements of Lemma 3.4.2. With a slight abuse, we use the
convention t0 = t. We write Xh,i = Xh,i,N,~u

N for conciseness.
(i) Using (A.1), for 1  i  N , 0  t  T ,

|bth(X
h,i,⇡( ~Xh))|p  C[1 + sup

0sth

|Xh,i

s |
p +N�1

P
N

j=1 sup0sth |X
h,j
s |

p]. (3.24)

From Lemma 3.4.1-(i), all the Xh,i have the same law. Moreover, ~uN is square-integrable
and � is bounded. When h > 0 a direct induction shows that E

⇥
sup0st |X

h,i
s |

p
⇤

is finite
under (A.1). When h = 0, this is still true as a classical consequence of the Gronwall
lemma. Integrating in (3.22), taking the p-power and using Jensen’s inequality, before
taking supremum in time and expectations, we get that

E
⇥
sup
0st

|Xh,i

s |
p
⇤
 C + CT p�1

Z
t

0
E
⇥
sup

0rs
|Xh,i

r |
p
⇤
ds+ CMp

�

Z
t

0
E[|ui,Ns |

p]ds,

+ CE sup
0st

����
Z

s

0
�rh(X

i,h,⇡( ~Xh))dBi

r

����
p

.

Since p 2 [1, 2], the penultimate term is bounded by C[1 + E[E(ui,N )]]. From the BDG
inequality and (A.1),

E sup
0st

����
Z

s

0
�rh(X

i,h,⇡( ~Xh))dBi

r

����
p

 CE
✓Z

t

0
|�sh(X

i,h,⇡( ~Xh))|2ds

◆
p/2�

 C.

Gathering the terms, the Gronwall lemma now gives the desired uniform-in-h bound.
(ii)-(iii) Let h0 be in {0, h}. For 1  i  N and 0  t  T ,

Xh
0
,i

t
�Xh

0
,i

th
=

Z
t

th

bsh0 (X
h
0
,i,⇡( ~Xh

0
,N ))ds+

Z
t

th

�sh0 (X
h
0
,i,⇡( ~Xh

0
,N ))ui,Ns ds

+

Z
t

th

�sh0 (X
h
0
,i,⇡( ~Xh

0
,N ))dBi

s.
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We then take the p-power and supremum in time. Taking supremum in time and expecta-
tions in (3.24), (A.1) and (i) yield

E sup
0tT

����
Z

t

th

bsh0 (X
h
0
,i,⇡( ~Xh

0
,N ))ds

����
p

 Chp.

Similarly, using p 2 [1, 2], Jensen’s inequality and the bound on �,

E sup
0tT

����
Z

t

th

�sh0 (X
h
0
,i,⇡( ~Xh

0
,N ))ui,Ns ds

����
p

 Chp/2E
✓Z

T

0
|ui,N

t
|
2dt

◆
p/2�

 Chp/2Ep/2[2E(ui,N )],

and E[E(ui,N )] is bounded using Lemma 3.4.1-(i). Since � is bounded, the estimate [Fischer
and Nappo, 2009, Theorem 1] for the continuity modulus of Ito processes yields

E sup
0tT

����
Z

t

th

�sh0 (X
h
0
,i,⇡( ~Xh

0
,N ))dBi

s

����
p

 C|h log h|p/2.

Gathering all the terms gives the desired bound.
(iv) We now write Xh,i = Xh,i,N,0, for h 2 [0, 1]. For every 0  t  t0  T and

1  i  N ,

Xh,i

t0 �X0,i
t0 = Xh,i

t
�X0,i

t
+

Z
t
0

t

bh,is ds+

Z
t
0

t

�h,is dBi

s,

where
bh,is := bsh(X

h,i,⇡( ~Xh,N ))� bs(X
0,i,⇡( ~X0,N )),

and �h,is is similarly defined. We then take the p-power of each side and supremum in time.
We decompose as

bh,is = bsh(X
h,i

^sh
,⇡( ~Xh,N

^sh
))� bsh(X

0,i
^sh

,⇡( ~X0,N
^sh

)) + bsh(X
0,i
^sh

,⇡( ~X0,N
^sh

))� bs(X
0,i
^s ,⇡( ~X

0,N
^s )).

Hence, using (A.1),

|bh,is |
p
 C sup

0rsh

|Xh,i

r �X0,i
r |

p + CN�1
P

N

j=1 sup0rsh |X
h,j
r �X0,j

r |
p

+ Chp + C sup
0rs

|X0,i
r �X0,i

rh
|
p + CN�1

P
N

j=1 sup0rsh |X
0,j
r �X0,j

rh |
p. (3.25)

We recall that ((Xh,j , X0,j))1jN is exchangeable, and we now take expectations. Using
the BDG inequality,

E
���� sup
tst0

Z
s

0
�h,ir dBi

r

����
p

 CE
✓Z

t
0

t

|�h,is |
2ds

◆
p/2�

 C(t0 � t)p/2E
⇥

sup
tst0

|�h,is |
p
⇤
,

and we handle |�h,is |
p as we did for |bh,is |

p. We further use (iii) to bound the expectation of
the two last terms in (3.25). Noticing that

8s 2 [t, t0], sup
0rs

|Xh,i

r �X0,i
r |  sup

0rt
|Xh,i

r �X0,i
r |+ sup

trs

|Xh,i

r �X0,i
r |, (3.26)

we set f(t, t0) := E
⇥
suptst0 |X

h,i
s �X0,i

s |
p
⇤

and we gather all the terms to obtain

80  t  t0  T, f(t, t0)  Cf(0, t) +C|h log h|p/2 +C(t0 � t)p/2f(t, t0) +C

Z
t
0

t

f(t, s)ds,

for a constant C > 0 that does not depend on (t, t0). The desired bound on f(0, T ) now
follows from (3.26) and Lemma 3.A.1.
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Chapter 3. Quasi-continuity method for mean-field diffusions

Proposition 3.4.3 (Quantitative convergence for mean-field control). Under (A.1)-(A.3),
if �t(x, P ) = �t(P ) does not depend on x, then

sup
N�1

|F
h,N
� F

0,N
| ���!

h!0
0.

Proof. In the following, C > 0 is a constant that may change from line to line, but always
satisfying the requirements of Proposition 3.4.3.

Step 1. Coupling of controls. For " > 0, let (⌃, ~Xh,N

0 , ~uh,N ), satisfying (i)-(ii) in
Lemma 3.4.1, be "-optimal for F

h,N , meaning that Jh

⌃(
~Xh,N

0 , ~uh,N )  F
h,N + ". For any

( ~X0,N
0 , ~u0,N ),

F
0,N
� F

h,N
 "+ J0

⌃( ~X
0,N
0 , ~u0,N )� Jh

⌃( ~X
h,N

0 , ~uh,N ). (3.27)

We choose ~X0,N
0 = ~Xh,N

0 and ~u0,N = ~uh,N . For conciseness, we write Xh,i instead of
Xh,i,N,~u

h,N , and ui for uh,i,N . For M > 0, let us control E
⇥

E(~uh,N )M sup0tT |Xh,i

t
�

X0,i
t
|
p
⇤

as in Lemma 3.4.2-(iv). Setting ~vh,N := E(~uh,N )M~u
h,N , we notice that

E
⇥

E(~uh,N )M sup
0tT

|Xh,i,~u
h,N

t
�X0,i,~uh,N

t
|
p
⇤
= E

⇥
E(~uh,N )M sup

0tT
|Xh,i,~v

h,N

t
�X0,i,~vh,N

t
|
p
⇤

 E
⇥

sup
0tT

|Xh,i,~v
h,N

t
�X0,i,~vh,N

t
|
p
⇤
.

Thus, it is sufficient to perform the estimate while assuming that E(~uh,N )  M a.s.; this
corresponds to replacing ~uh,N by ~vh,N , removing E(~uh,N )M from the expectation. As in
the proof of Lemma 3.4.2-(iv), for 0  t  t0, we decompose

Xh,i

t0 �X0,i
t0 = Xh,i

t
�X0,i

t
+

Z
t
0

t

bh,is ds+

Z
t
0

t

[�sh(⇡(
~Xh))� �s(⇡( ~X

0))]uisds+

Z
t
0

t

�h,is dBi

s.

We then take p-power, supremum in time and expectations, and we get as previously that

E
⇥
|bh,is |

p]  Chp + CE
⇥
sup

0rs
|Xh,i

r �X0,i
r |

p + sup
0rs

|X0,i
r �X0,i

rh
|
p
⇤
,

E
���� sup
tst0

Z
s

t

�h,ir dBi

r

����
p

 Chp + C(t0 � t)p/2E
⇥
sup

0rs
|Xh,i

r �X0,i
r |

p + sup
0rs

|X0,i
r �X0,i

rh
|
p
⇤
.

Using p 2 [1, 2) with Hölder’s and Jensen’s inequalities, we further get

����
Z

t
0

t

[�sh(⇡(
~Xh))��s(⇡( ~X

0))]uisds

����
p



 Z
t
0

t

|�sh(⇡(
~Xh))��s(⇡( ~X

0))|p
0
ds

�
p/p

0 Z
t
0

t

|uis|
pds,

 (t0 � t)p/2 sup
tst0

|�sh(⇡(
~Xh))� �s(⇡( ~X

0))|p
 Z

0
tt

0
|uis|

2ds

�
p/2

,

denoting by p0 the conjugate exponent of p. From Jensen’s inequality,

1

N

NX

i=1

 Z
t
0

t

|ui|2ds

�
p/2

 [2E(~uh,N )]p/2  (2M)p/2.

Using the same splitting as (3.25), we finally get

E
⇥

sup
tst0

|�sh(⇡(
~Xh))��s(⇡( ~X

0))|p
⇤
 Chp+CE

⇥
sup

0rs
|Xh,i

r �X
0,i
r |

p+ sup
0rs

|X0,i
r �X

0,i
rh
|
p
⇤
.
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Using (3.26) and setting f(t, t0) := E
⇥
suptst0 |X

h,i
s �X0,i

s |
p
⇤
, as in the proof of Lemma

3.4.2-(iv), we get that for every 0  t  t0  T ,

f(t, t0)  Cf(0, t) + C[1 +M ]|h log h|p/2 + C[1 +M ](t0 � t)p/2f(t, t0) + C

Z
t
0

t

f(t, s)ds,

for C > 0 independent of (t, t0), and we conclude as previously using Lemma 3.A.1.
At the end of the day, we deduce that for every M > 0,

8h 2 [0, 1], E
⇥

E(~uh,N )M sup
0tT

|Xh,i

t
�X0,i

t
|
p
⇤
 CM |h log h|p/2,

for a constant CM > 0 independent of (h,N).
Step 2. Difference of the costs. For M > 0, F being Wp-Lipschitz,

E(~uh,N )M |F (⇡( ~X0))� F (⇡( ~Xh))|p 
kFkpLip

N

NX

i=1
E(~uh,N )M sup

0tT
|X0,i

t
�Xh,i

t
|
p.

Using Step 1., this implies

J0
⌃( ~X

h,N

0 , ~uh,N )� Jh

⌃( ~X
h,N

0 , ~uh,N )  CM |h log h|1/2 + 2kFk1P(E(~uh,N ) > M).

We bound the last term by Markov’s inequality and Lemma 3.4.1-(i). Plugging this into
(3.27),

F
0,N
� F

h,N
 "+ CM |h log h|1/2 + CM�1,

and we send " to 0. Since C does not depend on (h,M,N) and CM does not depend on
(h,N), this implies that lim suph!0 supN�1F

0,N
� F

h,N
 0.

Step 3. Conclusion. Inverting the roles of F0,N and F
h,N , we readily adapt Steps

1-2. to obtain that lim suph!0 supN�1F
h,N
� F

0,N
 0, completing the proof.

End of the proof of Theorem 3.2.8. For h 2 [0, 1], as a particular case of Corollary 3.B.3.2,

F
h,N = inf

RN2Pp((Rd⇥Cd0 )N )
N�1H(RN |L(X1

0 , B
1)⌦N ) +N�1

Z

Rd⇥Cd
[F � h]dRN .

From [Dupuis and Ellis, 2011, Proposition 1.4.2], this implies that

F
h,N = �N�1 logE

⇥
exp

⇥
�NF ( h(⇡( ~X

N

0 , ~BN )))
⇤
.

Proposition 3.4.3 then yields the uniform-in-N convergence stated in Theorem 3.2.8, as
h! 0.

For h 2 (0, 1], Proposition 3.2.6 gives that the sequence of the L( h(⇡( ~XN

0 , ~BN )))
satisfies the LDP with good rate function P 2 Pp(Cd) 7! H(P |�h(P )). Varadhan’s lemma
[Dupuis and Ellis, 2011, Theorem 1.2.1] then gives that

�N�1 logE
⇥
exp

⇥
�NF ( h(⇡( ~X

N

0 , ~BN )))
⇤⇤
�����!
N!+1

inf
P2Pp(Cd)

H(P |�h(P )) + F (P ).

From Proposition 3.B.4, the r.h.s converges to infP2Pp(Cd)H(P |�0(P )) + F (P ) as h ! 0.
The uniform-in-N convergence now allows us to invert the N ! +1 and h! 0 limits, so
that

�N�1 logE
⇥
exp

⇥
�NF (⇡( ~X0,N ))

⇤⇤
�����!
N!+1

inf
P2Pp(Cd)

H(P |�0(P )) + F (P ),

for every bounded Lipschitz F : Pp(Cd) ! R. From [Dupuis and Ellis, 2011, Corollary
1.2.5], this proves that the sequence of the L(⇡( ~X0,N )) satisfies the LDP with good rate
function P 7! H(P |�0(P )), this rate function being indeed good from Corollary 3.B.3.1.
The �-convergence of Ih towards I0 precisely corresponds to the proof of Proposition 3.B.4
with F ⌘ 0.
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Chapter 3. Quasi-continuity method for mean-field diffusions

3.4.2 Markov setting

In the setting of Theorem 3.2.11, still for p 2 [1, 2), let now F : C([0, T ],Pp(Rd))! R denote
a bounded Lipschitz-continuous function. We keep all the notations from the previous
section, replacing F (⇡( ~Xh,N,~u

N
)) by F (⇡·( ~Xh,N,~u

N
)) in the definition of Jh. As previously,

we fix a reference system ⌃, and we start all the processes from the same initial condition
~Xh,N

0 .

Proposition 3.4.4 (Quantitative convergence). Under (A.3)-(A.5), for every M > 0,
there exists CM > 0 such that for every N � 1,

8h 2 [0, 1], E


E(~uN )M sup
0tT

1

N

NX

i=1

|Xh,i,N,~u
N

t
�X0,i,N,~u

N

t
|
p

�
 CM |h log h|

p(1�p/2)
2 ,

for every admissible ( ~Xh,N

0 , ~uN ) satisfying (i)-(ii) in Lemma 3.4.1.

Proof. As in Step 1. in the proof of Proposition 3.4.3, we can assume, up to modifying
~uN , that E(~uN )  M almost surely, thus removing E(~uN )M from the expectation. Let
us fix " 2 (0, 1]. We are going to control errors in a suitably weighted norm that allows us
to get rid of the controls.

Step 1. Notations. In the following, we write ~Xh,N = ~Xh,N,~u
N and we introduce

⇤h,i

t
:= Xh,i

t
�Xh,i

th
, �h,i

t
:= Xh,i

t
�X0,i

t
, ⌘Nt := exp


�

2pLp
�

N

NX

i=1

Z
t

0
[1 + |ui,Ns |

2]ds

�
,

together with

⇤
h

t :=
1

N

NX

i=1

|⇤h,i

t
|
p, �

h

t :=
1

N

NX

i=1

|�h,i

t
|
p.

For 1  i  N , we have the decomposition

d�h,i

t
= bh,i

t
dt+ �h,i

t
ui,N
t

dt+ �h,i
t

dBi

t,

where
bh,i
t

:= bth(X
h,i

th
,⇡
�
~Xh,N

th
))� bt(X

0,i
t
,⇡( ~X0,N

t
)),

and �h,i
t

is similarly defined. Let |�h,i

t
|" := (|�h,i

t
|
2 + "2)1/2.

Step 2. Differentiation. Using Ito’s formula,

d[⌘Nt |�h,i

t
|
p

"] =� ⌘
N

t 2pLp

�|�
h,i

t
|
p

"N
�1PN

i=1[1 + |ui,N
t

|
2]dt+ p ⌘Nt |�h,i

t
|
p�2
" �h,i

t
· bh,i

t
dt

+ p ⌘Nt |�h,i

t
|
p�2
" �h,i

t
· �h,i

t
ui,N
t

dt+ p ⌘Nt |�h,i

t
|
p�2
" �h,i

t
· �h,i

t
dBi

t

+ p

2 ⌘
N

t |�h,i

t
|
p�2
" Tr

⇥
�h,i
t

(�h,i
t

)>[Id + (p� 2)|�h,i

t
|
�2
" (�h,i

t
⌦�h,i

t
)]
⇤
dt.

We now integrate in time. First, b being Lipschitz-continuous in (t, x, Pt) from (A.5),

|bh,i
t
|
p
 C[hp + |�h,i

t
|
p +�

h

t + |⇤h,i

t
|
p + ⇤

h

t ],

using a decomposition similar to (3.25). Since p 2 [1, 2) and |�h,i

t
|  |�h,i

t
|", this yields

p|�h,i

t
|
p�2
" �h,i

t
· bh,i

t
 p|�h,i

t
|
p�1

|bh,i
t
|  (p� 1)|�h,i

t
|
p + |bh,i

t
|
p

 C[hp + |�h,i

t
|
p +�

h

t + |⇤h,i

t
|
p + ⇤

h

t ], (3.28)
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where the second inequality uses Young’s inequality. Similarly, using that �t(x, P ) = �t(x)

and |�h,i
t

|  2M�,

|�h,i
t

(�h,i
t

)>|  (2M�)
2
^ [Ch2+C|�h,i

t
|
2+C|⇤h,i

t
|
2]  C[h2+ |�h,i

t
|
2]+ (4M2

�)^ (C|⇤h,i

t
|
2).

We then use (4M2
�) ^ (C|⇤h,i

t
|
2)  (4M2

�)
1�p/2Cp/2

|⇤h,i

t
|
p, |�h,i

t
|  |�h,i

t
|" and |�h,i

t
|" � ",

p|�h,i

t
|
p�2
" |�h,i

t
(�h,i

t
)>|  C["p�2h2 + "p�2|⇤h,i

t
|
p + |�h,i

t
|
p]. (3.29)

Step 3. Gathering and cancellations. At this stage, using |�h,i

t
|  |�h,i

t
|" and h2  hp,

we get that for every 0  t  t0  T ,

⌘N
t0 |�

h,i

t0 |
p
 ⌘Nt |�h,i

t
|
p

" +

Z
t
0

t

C⌘Ns [(1 + "p�2)hp + |�h,i

s |
p +�

h

s + (1 + "p�2)|⇤h,i

s |
p + ⇤

h

s ]ds

+

Z
t
0

t

�
� ⌘Ns 2pLp

�|�
h,i

s |
pN�1

P
N

i=1[1 + |ui,Ns |
2] + p ⌘Ns |�h,i

s |
p�2
" �h,i

s · �h,i
t

ui,Ns
 
ds

+

Z
t
0

t

p ⌘Ns |�h,i

s |
p�2
" �h,i

s · �h,is dBi

s,

integrating all the pieces from Step 2.. Reasoning as in (3.28)-(3.29),

p|�h,i

s |
p�2
" �h,i

s ·�h,is ui,Ns  (p�1)|�h,i

s |
p+2pLp

�|�
h,i

s |
p
|ui,Ns |

p+|ui,Ns |
p[Chp+(2M�)

p
^(C|⇤h,i

s |
p)].

We now sum over i and we divide by N . Since |ui,Ns |
p
 1 + |ui,Ns |

2, this cancels the
2pLp

�|�
h,i
s |

p
|uis|

p terms. We then use that ⌘Nt  1, |�h,i

t
|"  " + |�h,i

t
|, and we take

supremum in time to obtain

sup
tst0

⌘Ns �
h

s  C["p+�
h

t ]+

Z
t
0

t

C
�
(1+"p�2)[hp+ sup

0rs
⇤
h

r ]+ sup
0rs

�
h

r+hpN�1
P

N

i=1 |u
i,N
s |

p
 
ds

+

Z
t
0

t

N�1
P

N

i=1 |u
i,N
s |

p[(2M�)p ^ (C|⇤h,i
s |

p)]ds+ sup
tst0

Z
s

t

p⌘Nr N�1
P

N

i=1|�
h,i
r |

p�2
" �h,i

r · �h,ir dBi
r.

Let Bt denote the last term on the r.h.s. Since E(~uN ) M , we have
Z

t
0

t

hpN�1
P

N

i=1 |u
i,N
s |

pds  2T [1 +M ]hp.

Using p < 2, Hölder’s inequality further yields

Z
t
0

t

N�1
P

N

i=1 |u
i,N
s |

p[(2M�)p ^ (C|⇤h,i
s |

p)]ds

 [2E(~uN )]p/2
 Z

t
0

t

N�1
P

N

i=1[(2M�)p ^ (C|⇤h,i
s |

p)]2/(2�p)
�1�p/2

 CMp/2

 Z
t
0

t

⇤
h

sds

�1�p/2
.

Jensen’s inequality then bounds the expectation of the r.h.s. by CMp/2E1�p/2[T sup0st ⇤
h

s ].

Step 4. Gronwall argument. Using the BDG inequality, and ⌘Nr  1,

E[Bt]  CE
✓Z

t
0

t

��N�1
P

N

i=1 p |�
h,i
r |

p�2
" �h,i

r · �h,ir

��2ds
◆1/2�

 C(t0 � t)1/2E
⇥
hp + sup

0st
�

h

s + sup
0st

⇤
h

s

⇤
,
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where we reasoned as in (3.28) for the second inequality. Noticing that

80  t  s  t0  T, sup
0rs

�
h

r  sup
0rt

�
h

r + sup
trs

�
h

r , (3.30)

we set fh(t, t0) := E[suptst0 �
h

s ], and we gather all the pieces from Step 3. to get

e�2
p
L
p
�(2M+T )fh(t, t0)  C"p + Cfh(0, t) + C[1 + "p�2]

⇥
(1 +M)hp + E

⇥
sup

0sT
⇤
h

s

⇤⇤

+ CMp/2E1�p/2
⇥

sup
0sT

⇤
h

s

⇤
+ (t0 � t)1/2fh(t, t0) +

Z
t
0

t

fh(t, s)ds,

where we used that ⌘Nt � e�2
p
L
p
�(2M+T ) a.s., and C is independent of (t, t0). Using (3.30)

and Lemma 3.A.1, we get

fh(0, T )  CM"
p + CM [1 + "p�2]

⇥
hp + E

⇥
sup

0sT
⇤
h

s

⇤⇤
+ CME1�p/2

⇥
sup

0sT
⇤
h

s

⇤
,

for CM > 0 independent of (h,N). Since E[sup0sT ⇤
h

s ] is bounded by C|h log h|p/2 from
Lemma 3.4.2-(ii), taking " = |h log h|1/2 concludes.

End of the proof of Theorem 3.2.11. Reasoning as in Step 2. in the proof of Proposition
3.4.3, Proposition 3.4.4 gives that for every M > 0, CM > 0 exists such that

8h 2 (0, 1], 8N � 1, |F
h,N
� F

0,N
|  2kFk1M�1 + CM |h log h|

p(1�p/2)
2 .

As a consequence,
sup
N�1

|F
h,N
� F

0,N
|

h!0
���! 0.

Inverting the limits, the result is then a direct adaptation of the proof of Theorem 3.2.8.

3.4.3 Uniform fluctuation estimates

We here extend Proposition 3.2.7 to the continuous setting h = 0. Throughout this section,
we assume that (A.4) holds. The structure of the following proofs is very close to Section
3.3.4, studying the h ! 0 limit instead of M ! +1. We essentially emphasise the main
differences and the needed adaptations.

Let (Bi)i�1 be a countable sequence in C
d
0 of i.i.d. Brownian motions. Let ~Xh,N denote

the related particle system (3.5), starting at 0. We will write ~X0,N for the continuous
particle system, where (3.5) now involves stochastic integrals. For each 1  i  N , let
us introduce the McKean-Vlasov process X

h,i solution of (3.4) with the driving noise Bi,
starting at 0. We write X

0,i for the related McKean-Vlasov process. Let us introduce the
difference process �h,i := Xh,i,N

�X
h,i. We first need a uniform in h mean-field limit.

Lemma 3.4.5 (Uniform limit). There exists C > 0 such that for every N � 1, h 2 (0, 1],
and 1  i  N ,

(i) E[sup0tT |Xh,i,N

t
|
2]  C.

(ii) E[sup0tT |�h,i,N
t

|
2]  CN�1.

(iii) E[sup0tT |�0,i
t
|
2]  CN�1.
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(iv) E[sup0tT |Xh,i,N

t
�X0,i,N

t
|
2]  C|h log h|.

(v) E[sup0tT |X
h,i

t �X
0,i
t |

2]  C|h log h|.

We then strengthen these results for controlling the fluctuations.

Proposition 3.4.6. There exists C > 0 such that for every M > 0,

sup
N�1

1
p
N

NX

i=1

E


sup
0tT

���h,M,i,N

t
� �h,1,i

t

��
�
 C|h log h|1/2.

With these results at hand, Theorem 3.2.10 will easily follow. As previously, we rely on
the classical coupling method from [Sznitman, 1991, Theorem 1.4]. To alleviate notations,
we drop the exponents N in the remainder of this section (although the dependence on
N is crucial). We will repeatedly use the technical estimates proved in Appendix 3.A.
In the following, C is a generic constant that may change from line to line, but staying
independent of (h,N).

Proof of Lemma 3.4.5. (i) is obtained by noticing that the proof of Lemma 3.4.2-(i) still
works with p = 2.

(ii) We adapt the classical coupling argument, as in e.g. Bernou and Liu [2022]. By
definition of Xh,i and X

h,i, for 0  t  T ,

�h,i
t

=

Z
t

0
[bsh(X

h,i,⇡( ~Xh))� bsh(X
h,i
,L(X

h,i
))]ds

+

Z
t

0
[�sh(X

h,i,⇡( ~Xh))� �sh(X
h,i
,L(X

h,i
))]dBi

s.

We then take the square, supremum in time, and expectations. Using (A.2), reasoning as
for proving Lemma 3.3.8-(ii) yields

E
��bsh(X

h,i,⇡( ~Xh))� bsh(X
h,i
,L(X

h,i
))
��2  CE

⇥
sup

0rsh

|Xh,i

r �X
h,i

r |
2
⇤
+ CN�1.

Using the BDG inequality,

E sup
0st

����
Z

s

0
[�rh(X

h,i,⇡( ~Xh))� �rh(X
h,i
,L(X

h,i
))]dBi

r

����
2

 C

Z
t

0
|�sh(X

h,i,⇡( ~Xh))� �sh(X
h,i
,L(X

h,i
))|2ds,

and we similarly handle the r.h.s. We then gather everything to get that

E
⇥
sup
0st

|�h,is |
2
⇤
 CN�1 + C

Z
t

0
E
⇥
sup

0rs
|�h,ir |

2
⇤
ds.

The conclusion follows from the Gronwall Lemma.
(iii) If h = 0 in the above proof of (ii), we notice that all the computations remain valid

when replacing sh by s. This yields the result.
(iv) is obtained by noticing that the proof of Lemma 3.4.2-(iv) still works with p = 2.
(v) By symmetry, we recall that E[sup0tT |Xh,i,N

t
� X0,i,N

t
|
2] does not depend on

i. The result follows by taking the N ! +1 limit in the uniform estimate (iv), using
(ii)-(iii).
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Proof of Proposition 3.4.6. For every 0  t  t0  T , we have the decomposition

�h,i
t0 � �

0,i
t0 = �h,i

t
� �0,i

t
+

Z
t
0

t

bh,is ds+

Z
t
0

t

�h,is dBi

s,

where

bh,is := bsh(X
h,i,⇡( ~Xh))� bsh(X

h,i
,L(X

h,i
))� [bs(X

0,i,⇡( ~X1))� bs(X
1,i

,L(X
0,i
))],

�h,is := �sh(X
h,i,⇡( ~Xh))� �sh(X

h,i
,L(X

h,i
))� [�s(X

0,i,⇡( ~X1))� �s(X
1,i

,L(X
0,i
))].

We then take absolute values, supremum in times and expectations. For the drift, we split

bh,is = bsh(X
h,i,⇡( ~Xh))� bsh(X

h,i
,⇡(~X

h

))�
⇥
bs(X

h,i,⇡( ~Xh))� bs(X
h,i
,⇡(~X

h

))
⇤

+ bsh(X
h,i
,⇡(~X

h

))� bsh(X
h,i
,L(X

h,i
))�

⇥
bs(X

h,i
,⇡(~X

h

))� bs(X
h,i
,L(X

h,i
))
⇤

+ bs(X
h,i,⇡( ~Xh))� bs(X

h,i
,⇡(~X

h

))�
⇥
bs(X

i,0,⇡( ~X0
s ))� bs(X

i,0
,⇡(~X

0
))
⇤

+ bs(X
h,i
,⇡(~X

h

))� bs(X
h,i
,L(X

h,i
))�

⇥
bs(X

i,0
s ,⇡(~X

0

s))� bs(X
i,0
,L(X

i,0
))
⇤
.

For each line of bh,is , we now reason as we did for proving Proposition 3.3.9. For the first
line, we use the differentiability assumption (A.4) to write

bsh(X
h,i,⇡( ~Xh))� bs(X

h,i,⇡( ~Xh)) =

Z 1

0
(sh � s)@sb(1�r)sh+rs(X

h,i,⇡( ~Xh))dr,

and we similarly rewrite bsh(X
h,i
,⇡(~X

h

)) � bs(X
h,i
,⇡(~X

h

)). Using the C
1,1 assumption

(A.4) on b and Lemma 3.4.5, this yields

sup
0sT

E
⇥
|bsh(X

h,i,⇡( ~Xh))�bsh(X
h,i
,⇡(~X

h

))�[bs(X
h,i,⇡( ~Xh))�bs(X

h,i
,⇡(~X

h

))]|
⇤
 ChN�1/2.

We similarly handle the second line of bh,is , using Lemma 3.A.3 to get that

max
0r1

E
⇥��@sb(1�r)sh+rs(X

h,i
,⇡(~X

h

))� @sb(1�r)sh+rs(X
h,i
,L(X

h,i
))
��⇤  CN�1/2.

To handle the third line in bh,is , we use Lemma 3.A.2 with (Xi, Y i) = (Xh,i, X0,i) and
(X

i
, Y

i
) = (X

h,i

s , X
0,i
s ), together with Lemma 3.4.5. To handle the last line, we use Lemma

3.A.3 with the i.i.d. processes (X
i
, Y

i
) = (X

h,i
, X

0,i
), 1  i  N . Gathering everything

yields
sup

tst0
E[|bh,is |]  CN�1/2|h log h|1/2 + CE[ sup

0st0
|�h,is |].

We use a similar splitting for �h,is and we reason as in the proof of Proposition 3.3.9 to
obtain

E sup
tst0

����
Z

s

t

�h,ir dBi

r

����  CN�1/2|h log h|1/2 + C(t0 � t)1/2E[ sup
0st0

|�h,is |].

Setting fh(t, t0) :=
p
N E[suptst0 |�

h,i
s |], we gather terms as previously to get that

80  t  t0  T, fh(t, t0)  Cf(0, t)+C|h log h|1/2+C(t0�t)1/2fh(t, t0)+C

Z
t
0

t

fh(t, s)ds,

and we conclude using Lemma 3.A.1, as in the proof of Proposition 3.3.9.
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End of the proof of Theorem 3.2.10. Let us fix ' in C
1,1(Cd,R), before defining

�h' := N�1
P

N

i=1

⇥
'(Xh,i)� E['(X

h,i
)]
⇤
.

We then decompose

�h' � �
0
' =N�1

P
N

i=1

⇥
'(Xh,i)� '(X

h,i
)
⇤
�N�1

P
N

i=1

⇥
'(X0,i)� '(X

0,i
)
⇤

+N�1
P

N

i=1

⇥
'(X

h,i
)� E['(X

h,i
)]
⇤
�N�1

P
N

i=1

⇥
'(X

0,i
)� E['(X

0,i
)]
⇤
.

As previously, we control the first line using Lemma 3.A.2, Lemma 3.4.6 and Proposition
3.4.6. Similarly, we handle the second line using Lemma 3.A.3 and Lemma 3.4.6. At the
end of the day, we obtain that

sup
N�1

p

N E
⇥
|�h' � �

0
'|
⇤
���!
h!0

0.

As a consequence, the convergence given by Proposition 3.2.7 holds uniformly in h. Let
(Bt)0tT , (B̃t)0tT be independent Brownian motions in Rd. Let Xh denote the strong
solution of the discretised McKean-Vlasov (3.4) with driving noise B. Similarly, let X̃h

denote the strong solution of (3.4) with driving noise B̃. Let us then introduce the solution
�Xh of the McKean-Vlasov SDE with common noise given by (3.7),

d�Xh

th
=
⇥
Dx�th(X

h,L(Xh)) · �Xh + �P�th(X
h,L(Xh), X̃h)

⇤
dBt

+
⇥
Dxbth(X

h,L(Xh)) · �Xh + �P bth(X
h,L(Xh), X̃h)

⇤
dt

+ E
⇥
Dy�P bth(X

h,L(Xh), Xh) · �Xh
��(B̃s)0sth

⇤
dt

+ E
⇥
Dy�P�th(X

h,L(Xh), Xh) · �Xh
��(B̃s)0sth

⇤
dBt, �Xh

0 = 0.

As previously, synchronous coupling and a Gronwall argument give that

E[ sup
0tT

|�Xh

t � �Xt|] ���!
h!0

0,

where �X is the solution of (3.8) with the same (B, B̃). From this, we conclude that �2
h,'

given by Proposition 3.2.7 converges to �2' as required by Theorem 3.2.10.

Appendix

3.A Some useful estimates

First, let us state a variation on the Gronwall lemma, which is used throughout the article.

Lemma 3.A.1. Let f : [0, T ] ⇥ [0, T ] ! R, g : [0, T ] ! R be continuous functions, and
↵, C > 0 be such that

80  t  t0  T, f(t, t0)  g(t) + Cf(0, t) + C(t0 � t)↵f(t, t0) + C

Z
t
0

t

f(t, s)ds,

together with
80  t  s  t0, f(0, s)  f(0, t) + f(t, s).

Then, there exists C 0 > 0 that only depends on (↵, C, T ), such that sup0tT f(0, t) 
C 0[f(0, 0) + sup0tT g(t)].
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Proof. Let us fix t0 2 (0, T ] such that 1�Ct↵0 � 1/2. For any k � 0 with kt0  T , we get
that for every t 2 [kt0, (k + 1)t0 ^ T ],

f(kt0, t)  2g(t) + 2Cf(0, kt0) + 2C

Z
t

kt0

f(kt0, s)ds.

The usual Gronwall lemma then provides the bound

sup
kt0t(k+1)t0^T

f(kt0, t)  2e2Ct0
⇥
Cf(0, kt0) + sup

0tT
g(t)

⇤
.

Since
f(0, (k + 1)t0)  f(0, kt0) + f(kt0, (k + 1)t0),

the desired bound on f(0, T ) follows by (finite) induction.

Let now (E, |.|) be a Banach space. For k � 1, let F : E ⇥E ! Rk be a C1,1 function.
For P 2 P1(E), we define

8x 2 E, F (x, P ) :=

Z

E

F (x, y)dP (y),

with a slight abuse of notation.

Lemma 3.A.2. Let (Xi)1iN , (Xi
)1iN , (Y i)1iN , (Y i

)1iN be triangular arrays of
E-valued random variables. Then, for every 1  i  N ,

|F (Xi,⇡( ~XN ))� F (X
i
,⇡(~X

N

))� [F (Y i,⇡(~Y N ))� F (Y
i
,⇡(~Y

N

))]|


1

N

NX

j=1

kFkLip[|X
i
�X

i
� [Y i

� Y
i
]|+ |Xj

�X
j
� [Y j

� Y
j
]|]

+ kDFkLip[|Y
i
� Y

i
|+ |Y j

� Y
j
|][|Xi

� Y i
|+ |Xj

� Y j
|+ |X

i
� Y

i
|+ |X

j
� Y

j
|]

Proof. Since F is differentiable,

F (Xi,⇡( ~XN ))�F (X
i
,⇡(~X

N

)) =
1

N

NX

j=1

Z 1

0
(Xi
�X

i
)·@1F ((1�r)(X

i
, X

j
)+r(Xi, Xj))dr

+
1

N

NX

j=1

Z 1

0
(Xj
�X

j
) · @2F ((1� r)(X

i
, X

j
) + r(Xi, Xj))dr,

and the same decomposition holds writing Y instead of X. We then subtract the decom-
position for Y to the above one. The difference of the first terms reads

1

N

NX

j=1

Z 1

0
[Xi
�X

i
� (Y i

� Y
i
)] · @1F ((1� r)(X

i
, X

j
) + r(Xi, Xj))

+ (Y i
� Y

i
) · [@1F ((1� r)(X

i
, X

j
) + r(Xi, Xj))� @1F ((1� r)(Y

i
, Y

j
) + r(Y i, Y j))]dr.

We similarly handle the difference of the second terms. The result follows using the assumed
bounds on DF .
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Lemma 3.A.3. Let (X
i
, Y

i
)1iN be an i.i.d. sequence of E ⇥ E-valued variables with

marginal laws (⇡X ,⇡Y ). There exists C > 0 that only depends on kFkLip such that

max
1iN

E |F (X
i
,⇡(~X

N

))�F (X
i
,⇡X)�[F (Y

i
,⇡(~Y

N

))�F (Y
i
,⇡Y )]|

2
 CN�1E[|X

1
�Y

1
|
2].

Proof. By definition,

F (X
i
,⇡(~X

N

))� F (X
i
,⇡X)� [F (Y

i
,⇡(~Y

N

))� F (Y
i
,⇡Y )]

=
1

N

NX

j=1

F (X
i
, X

j
)� F (Y

i
, Y

j
)� [F (X

i
,⇡X)� F (Y

i
,⇡Y )] =:

1

N

NX

j=1

FN

i,j .

Following the classical argument in [Sznitman, 1991, Theorem 1.4], we take the expectation
of the square of this sum. By independence of the (Xi, Y i), we have for k 6= l,

E[FN

i,k
FN

i,l
] = E[E[FN

i,k
FN

i,l
|(Xi, Y i)]] = E[E[FN

i,k
|(Xi, Y i)]E[FN

i,l
|(Xi, Y i)]].

By definition of (⇡X ,⇡Y ), E[FN

i,k
|(Xi, Y i)] = 0 as soon as k 6= i. Since (k, l) 6= (i, i) because

k 6= l, this implies E[FN

i,k
FN

i,l
] = 0. Thus, we only keep the diagonal terms:

E
����
1

N

NX

j=1

FN

i,j

����
2

=
1

N2

NX

j=1

E[|FN

i,j |
2] 

C 0

N

�
E
⇥
|X

1
� Y

1
|
2
⇤
+
⇥
E[|X

1
� Y

1
|]
⇤2 

,

for some C 0 > 0. Using Jensen’s inequality, the result follows with C := 2C 0.

3.B Some results on rate functions

3.B.1 Representation formulae

The following result is a slight variation of [Fischer, 2014, Theorem 5.2]. We recall that
the notion of reference system ⌃ = (⌦, (Ft)t0T ,P, (Bt)0tT ) is defined in Section 3.1.2.
For such a ⌃, h 2 [0, 1] and any square-integrable progressively measurable process u =

(ut)0tT on ⌃, we say that Xh,u := (Xh,u

t
)0tT is a solution of the McKean-Vlasov SDE

dXh,u

s = bsh(X
h,u,L(Xh,u))ds+�sh(X

h,u,L(Xh,u))usds+�sh(X
h,u,L(Xh,u))dBs, (3.31)

if Xh,u is (Ft)t0T -adapted and the integrated version of (3.31) holds P-a.s. Let W
denote the Wiener measure on the canonical space ⌦ = C

d, with initial law L(X1
0 ), and let

P 2 Pp(Cd). From (3.6), �h(P ) is the law of the strong solution under W to

dY h,P

t
= bth(Y

h,P , P )dt+ �th(Y
h,P , P )d!t, Y h,P

0 = !0,

where (!t)0tT is the canonical process. Indeed, strong existence and pathwise-uniqueness
for this SDE are standard under (A.1)-(A.3).

Lemma 3.B.1. Under (A.1)-(A.3), for h 2 [0, 1] and P 2 Pp(Cd),

H(P |�h(P )) = inf
⌃

inf
L(Xh,u)=P

H(L(Xh,u

0 )|L(X1
0 )) + E

Z
T

0

1

2
|ut|

2dt.

where we minimise over (Xh,u, u) satisfying (3.31) in the reference system ⌃, with the
convention that an infimum over an empty set equals +1.
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Proof. We notice that �h(P ) = Y h,P

# W is the push-forward of W by Y h,P . Following the
proof of [Fischer, 2014, Theorem 5.2], we use the contraction property of entropy [Fischer,
2014, Lemma A.1] to write that

H(P |�h(P )) = inf
R2P(Cd0 )

P=Y
h,P
# R

H(R|W ).

For R 2 P(Cd
0
) with finite H(R|W ), we now claim that

H(R|W ) = H(R0|L(X
1
0 )) + inf

⌃
inf

L(Zu)=R

E
Z

T

0

1

2
|ut|

2dt, (3.32)

where we minimise over processes Zu = (Zu
t )0tT satisfying L(Zu) = R, and P-a.s.

8t 2 [0, T ], Zu

t = Zu

0 +

Z
t

0
usds+Bt.

Equation (3.32) can be obtained as a consequence of the Girsanov transform [Léonard,
2012, Theorem 2.3], or by adding an initial condition in [Fischer, 2014, Lemma B.1] (Zu

is no more a non-linear process, contrary to Xh,u). As a consequence,

H(P |�h(P )) = inf
⌃

inf
P=Y

h,P
# R

inf
L(Zu)=R

H(R0|L(X
1
0 )) + inf

L(Zu)=R

E
Z

T

0

1

2
|ut|

2dt.

This yields the desired result, by noticing that Y h,P (Zu) is a strong solution of (3.31) if
P = Y h,P

# R, and that uniqueness in law holds for the solution of

dXh,u

s = bsh(X
h,u, P )ds+ �sh(X

h,u, P )usds+ �sh(X
h,u, P )dBs,

using the Girsanov transform as for (3.22). This unique law is precisely Y h,P

# L(Zu).

We now prove a useful tightness result. The next result shows pre-compactness for
sequences of processes of type (3.31), for which strong existence may not always hold.

Lemma 3.B.2. For p 2 [1, 2) and every k � 1, on a reference system ⌃k, let us assume
that

dXk

t = bthk (X
k,L(Xk))dt+ �thk (X

k,L(Xk))ukt dt+ �thk (X
k

t ,L(X
k))dBk

t ,

has a strong solution with path-law Pk, (ukt )0tT being a control. We assume (A.1)-(A.3)
and

sup
k�1

H(L(Xk

0 )|L(X
1
0 )) + E

Z
T

0

1

2
|ukt |

2dt < +1.

Then, for any sequence (hk)k�1 in [0, 1], (Pk)k�1 is pre-compact in Pp(Cd).

Proof. As in Lemma 3.4.2-(i), a Gronwall argument gives that

sup
0sT

|Xk

s |
p
 C


1 + |Xk

0 |
p +

Z
T

0
|uks |

pds+ sup
0tT

����
Z

t

0
�shk (X

k,L(Xk))dBk

s

����
p
�
, (3.33)

for C > 0 independent of k. From the BDG inequality,

E sup
0tT

����
Z

t

0
�shk (X

k,L(Xk))dBk

s

����
p

 E
✓Z

T

0
|�shk (X

k,L(Xk))|2ds

◆
p/2�

 T p/2M�.

(3.34)
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Taking expectations in (3.33), we get the moment bound

sup
k�1

E[ sup
0tT

|Xk

t |
p
⇤
< +1.

For 0  s  t  T ,

Xk

t �Xk

s =

Z
t

s

brhk (X
k,L(Xk))dr+

Z
t

s

�rhk (X
k,L(Xk))ukrdr+

Z
t

s

�rhk (X
k,L(Xk))dBk

r .

We use the sub-linear growth of b and the moment bound to control the first term. The last
term can be controlled using (3.34) again. For the middle term, we use the Cauchy-Schwarz
inequality to write that

E
����
Z

t

s

�rhk (X
k,L(Xk))ukrdr

����  (t� s)1/2M�E
 Z

T

0
|ukr |

2dr

�
.

At the end of the day, we deduce that

sup
k�1

E
⇥

sup
|s�t|�

|Xk

t �Xk

s |
⇤
���!
�!0

0.

Together with the moment bound, this shows that (Pk)k�1 is tight [Billingsley, 2013,
Chapter 2,Theorem 7.3], and thus relatively compact for the weak convergence of measures.
To obtain pre-compactness in Pp(Cd), it is now sufficient to show uniform integrability for
(sup0tT |Xk

t |
p)k�1 [Villani et al., 2009, Definition 6.8-(iii)]. To do so, we show that each

term on the r.h.s. of (3.33) is uniformly integrable. The dual representation (3.23) for
relative entropy reads

H(L(Xk

0 )|L(X
1
0 )) = sup

� measurable
E[�(X1

0 )]<+1

E[�(Xk

0 )]� logE[e�(X
1
0 )],

Applying this to �(x) = ↵|x|p |�|�M for every ↵,M > 0, uniform integrability for (|Xk

0 |
p)k�1

follows from (A.3) and the bound on (H(L(Xk

0 )|L(X
1
0 )))k�1. For the uniform integrability

of Z
T

0
|uks |

pds and sup
0tT

����
Z

t

0
�shk (X

k,L(Xk))dBk

s

����
p

,

we use that p < 2 and that
Z

T

0
|uks |

2ds and sup
0tT

����
Z

t

0
�shk (X

k,L(Xk))dBk

s

����
2

are bounded uniformly in k, using Ito’s isometry and the bound on � for the second term.
This concludes the proof.

Remark 3.B.3. We notice that the same proof actually works if the coefficients b = bk

and � = �k depend on k, provided the linear growth of bk and the bound on �k are uniform
in k.

Combined with Lemma 3.B.1, Lemma 3.B.2 then allows us to extend the compactness
result from [Fischer, 2014, Remark 5.2] to the topology on Pp(Cd).

Corollary 3.B.3.1. Under (A.1)-(A.3), for every p 2 [1, 2) and h 2 [0, 1], P 7! H(P |�h(P ))
has compact level sets in Pp(Cd); it is a good rate function.
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Proof. Let (Pk)k�1 be a sequence in Pp(Cd) such that (H(P |�h(P )))k�1 is bounded. From
Lemma 3.B.1, for every k � 1, there exist a reference system ⌃k, a progressively measurable
process uk and a strong solution Xh,k on ⌃k with path-law Pk for

dXh,k

t
= bth(X

h,k,L(Xh,k))dt+ �th(X
h,k,L(Xh,k))ukt dt+ �th(X

h,k

t
,L(Xh,k))dBk

t ,

satisfying

sup
k�1

H(L(Xk

0 )|L(X
1
0 )) + E

Z
T

0

1

2
|ukt |

2dt < +1.

Lemma 3.B.2 then shows that (Pk)k�1 is pre-compact in Pp(Cd).

3.B.2 Gamma-convergence

As a consequence of Lemma 3.B.1, we get the following result, which can be seen as an
extension of [Budhiraja and Dupuis, 2000, Theorem 3.6] to our setting.

Corollary 3.B.3.2. For every h 2 [0, 1] and every bounded measurable F : Pp(Cd)! R,

inf
P2Pp(Cd)

H(P |�h(P )) + F (P ) = inf
⌃,u,Xu

0

F (L(Xh,u)) +H(L(Xu

0 )|L(X
1
0 )) + E

Z
T

0

1

2
|ut|

2dt.

Proposition 3.B.4. For p 2 [1, 2) and every bounded continuous F : Pp(Cd)! R,

inf
P2Pp(Cd)

H(P |�h(P )) + F (P ) ���!
h!0

inf
P2Pp(Cd)

H(P |�0(P )) + F (P ).

Proof. The lower limit is quite direct, while the upper limit requires extra care to build
approximate minimisers.

Step 1. Lower limit. For every h 2 (0, 1], Corollary 3.B.3.1 provides a minimiser Ph

for
Fh := inf

P2Pp(Cd)
H(P |�h(P )) + F (P ).

Since Fh is bounded by kFk1 independently of H, Lemma 3.B.2 provides pre-compactness
in Pp(Cd) for (Ph)h�0. From any sub-sequence of (Ph)h�0, we can thus extract a sub-
sequence which converges towards some P in Pp(Cd). Along this sub-sequence, it is a
standard stability result in the spirit of Lemma 3.4.2-(iv) that �h(Ph) weakly converges
towards �0(P ). Since F is continuous and (P,Q) 7! H(P |Q) is lower semi-continuous, this
shows that lim infh!0F

h
� F

0.

Step 2. Discretised minimiser. Reciprocally, let us fix P with finite H(P |�0(P )). From
the Girsanov transform [Léonard, 2012, Theorem 2.1], there exists a square-integrable
process (ut)0tT on the canonical space C

d such that the canonical process (X0
t )0tT

satisfies

H(P |�0(P )) = EP

Z
T

0

1

2
|ut|

2dt, dX0
t = bt(X

0, P )dt+ �t(X
0, P )utdt+ �t(X

0, P )dBP

t ,

where (BP
t )0tT is a Brownian motion under P . For M > 0, let uMt := ut Et(u)M , where

Et(u) :=
R
t

0 |us|
2ds. From Lemma 3.3.2, for every h 2 (0, 1], the McKean-Vlasov equation

dXh,M

t
= bth(X

h,M ,L(Xh,M ))dt+ �th(X
h,M ,L(Xh,M ))uMt dt+ �th(X

h,M ,L(Xh,M ))dBP

t ,
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with Xh,M

0 = X0, has a pathwise-unique strong solution under P . Lemma 3.B.2 shows
that (LP (Xh,M ))h�0 is pre-compact in Pp(Cd). From any sub-sequence of (LP (Xh,M ))h�0,
we can thus extract a sub-sequence that converges towards some PM in Pp(Cd). Up to
reindexing, let us assume that LP (Xh,M )! PM as h! 0. Using the Girsanov transform,
the SDE

dXM

t = bt(X
M , PM )dt+ �t(X

M , PM )uMt dt+ �t(X
M , PM )dBP

t , XM

0 = X0

has a patwhise-unique strong solution under P . We now make the change of measure

dQ

dP
(X0) = exp


�

Z
T

0
uMt dBP

t �
1

2

Z
T

0
|uMt |

2dt

�
. (3.35)

The Girsanov theorem provides a Brownian motion (BQ

t
)0tT under Q such that

dXh,M

t
= bth(X

h,M ,LP (X
h,M ))dt+ �th(X

h,M ,LP (X
h,M ))dBQ

t
, Xh,M

0 = X0,

dXM

t = bt(X
M , PM )dt+ �t(X

M , PM )dBQ

t
, XM

0 = X0,

these equations holding Q-.a.s. As previously, a coupling argument yields the stability re-
sult EQ[sup0tT |Xh,M

t
�XM

t |
p]! 0 as h! 0. By (3.35) and dominated convergence, we

deduce that LP (Xh,M ) weakly converges towards LP (XM ), proving that PM = LP (XM ).
Thus, XM is the strong solution of a McKean-Vlasov equation under P .

Step 3. Coupling in L2. Subtracting and integrating, (A.1) and the moment bound
from Lemma 3.4.2-(i) yield

sup
0st

|X0
s �XM

s |  C + C

Z
t

0
sup

0rs
|X0

r �XM

r |+ |uMs |ds+ C sup
0st

����
Z

s

0
�Mr dBP

r

����,

for some �M with |�Mr |  2M� and some C > 0 independent of h that may change from
line to line. Since this holds for every t 2 [0, T ], Gronwall’s lemma yields

sup
0tT

|X0
t �XM

t |  C + C

Z
T

0
|uMt |dt+ C sup

0tT

����
Z

t

0
�Ms dBP

s

����,

Taking the square and using the BDG inequality, this shows that E[sup0tT |Xh,M

t
�XM

t |
2]

is finite. Since p 2 [1, 2), the Jensen inequality yields

(Wp(L(X
0),L(XM )))2  CE

⇥
sup

0tT
|Xh,M

t
�XM

t |
2
⇤
,

and we can now use coupling arguments in L2. At this stage, we use the definition of
uM and the proof of [Fischer, 2014, Proposition C.1] to obtain that EP [sup0tT |X0

t^⌧M
�

XM
t^⌧M

|
2] = 0, where ⌧M := inf{t 2 [0, T ], Et(u) �M}. From Lemma 3.B.2, (LP (XM ))M>0

is pre-compact in Pp(Cd). Sending M ! +1, we eventually deduce that PM = LP (XM )
converges towards P = LP (X0).

Step 4. Upper limit. Using Corollary 3.B.3.2,

Fh  F (L(Xh,M )) + EP

Z
T

0
|uMt |

2dt.

Taking the h! 0 limit,

lim sup
h!0

Fh  F (PM ) + EP

Z
T

0
|uMt |

2dt.
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Sending M ! +1

lim sup
h!0

Fh  F (P ) + EP

Z
T

0
|ut|

2dt = F (P ) +H(P |�0(P )).

Since this holds for every P , lim suph!0F
h
 F

0, completing the proof.
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CHAPTER 4

Gibbs principle with infinitely many constraints:

optimality conditions and stability

He would challenge them to explain the second law

of thermodynamics. The response was invariably a

cold negative silence.

— E. E. Daub, Maxwell’s demon

This work is a collaboration with Giovanni Conforti and Julien Reygner.
We extend the Gibbs conditioning principle to an abstract setting combining infinitely
many linear equality constraints and non-linear inequality constraints, which need not be
convex. A conditional large large deviation principle (LDP) is proved in a Wasserstein-type
topology, and optimally conditions are written in this abstract setting. This setting further
includes versions of the Schrödinger bridge problem with marginal non-linear inequality
constraints at every time. In the particular case of convex constraints, stability results are
proved when perturbing both the constraints and the reference measure. We then specify
our results when the reference measure is the path-law of a continuous diffusion process,
whose law is constrained at each time. We obtain a complete description of the constrained
process, involving a modified drift that satisfies a HJB equation reminiscent of stochastic
control.
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4.1. Introduction

4.1 Introduction

4.1.1 Motivation

A fundamental question in statistical mechanics is to estimate the most likely config-
uration of a large system of exchangeable particles, given some macroscopic observa-
tion on it. More precisely, let us consider a N -tuple of exchangeable random variables
~XN := (X1,N , . . . , XN,N ) in some abstract Polish space E. We assume that the Xi,N are
either independent or interact through their empirical measure

⇡( ~XN ) :=
1

N

NX

i=1

�Xi,N 2 P(E).

The purpose is then to estimate ⇡( ~XN ) as N ! +1, given the knowledge that {⇡( ~XN ) 2
A} for some measurable A ⇢ E. This amounts to determining the behaviour of a typical
particle in the system given the observation that {⇡( ~XN ) 2 A}. In a physical context,
measurements are often submitted to uncertainties. Therefore, a closely related question
is the stability of the computed behaviour when perturbing the observation.

These questions can be specified when L(⇡( ~XN )) satisfy the large deviation principle
(LDP) with rate function I. Informally speaking, the LDP states that

P(⇡( ~XN ) 2 B) ⇣ exp
⇥
�N inf

µ2B

I(µ)
⇤
, (4.1)

at the exponential-in-N scale, for any sufficiently regular B ⇢ E. In this setting, the Gibbs
conditioning principle suggests the heuristic

L(X1,N
|⇡( ~XN ) 2 A) �����!

N!+1
argminA I, (4.2)

provided that argminA I is well-defined, and argminA I is also the weak limit of ⇡( ~XN )
conditionally on {⇡( ~XN ) 2 A}. More precisely, a LDP can be established for the condi-
tional law. Some reference textbooks on this approach are Lanford [1973]; Ruelle [1965];
Dembo and Zeitouni [2009]; Dupuis and Ellis [2011]; Ellis [2006]. To explicitly compute
argminA I, some further knowledge of I is needed.

The scope of this article is to establish (4.2), to compute minimisers of I, and to prove
stability properties when I is the sum of relative entropy and an interaction term:

I(µ) := H(µ|⌫) + F(µ),

the definition of the relative entropy H(µ|⌫) being recalled in Section 4.1.5, and A = A
⇣

 ,
where

A
⇣

 :=
�
µ 2 P(E), 8s 2 S,

R
E
⇣sdµ = 0, 8t 2 T ,  t(µ)  0

 

is given by (possibly) infinitely many linear equality constraints and non-linear inequality
constraints. Precise assumptions on F , (⇣s)s2S and ( t)t2T are detailed in Section 4.2,
under which we prove that minimisers are Gibbs measures, whose density involves suit-
able Lagrange multipliers. Our approach relies on the Hahn-Banach theorem, combining
tools from functional analysis in the spirit of Csiszár [1984]; Léonard [2000]; Pennanen and
Perkkiö [2019] with differential calculus on P(E). In particular, F and the  t need not
be convex. When F ⌘ 0, the LDP (4.1) is the well-known Sanov theorem Dembo and
Zeitouni [2009] for independent particles. The case F 6= 0 allows for mean-field interac-
tion, modelling particles that are distributed according to mean-field Gibbs measures as in
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Léonard [1987]; Arous and Brunaud [1990]; Wang et al. [2010]; Dupuis et al. [2015]. When
S = ;, our results extend the standard Gibbs principle to settings with infinitely many
constraints, see Section 4.1.2 below. When E is a product space, we can further impose
marginal laws for argmin

A
⇣
 
I through the linear equality constraints. This last setting

includes the famous Schrödinger bridge problem, with additional inequality constraints,
see Section 4.1.3 below. A notable example, which is studied in Section 4.3, is given by
the space of continuous paths E = C([0, T ],Rd).

When F and the  t are convex, uniqueness holds for the minimiser argmin
A
⇣
 
I, corre-

sponding to the notion of entropic projection introduced by Csiszár [1975, 1984]. Stability
results for entropic projections have enjoyed many recent developments Ghosal et al. [2022];
Eckstein and Nutz [2022]; Nutz and Wiesel [2023]; Chiarini et al. [2023]; Divol et al. [2024],
mainly motivated by the surge of interest around the Schrödinger problem and its appli-
cations in machine learning. In our abstract setting, we prove two kinds of apparented
results:

• A quantitative stability result when changing  t into  t � " for small " > 0.

• A weak stability result when perturbing ⌫, F , ( t)t2T at the same time, when S = ;.

These new stability results hold in P(E) at a great level of generality, under minimal
assumptions on ⌫, F , ( t)t2T that are stated in Section 4.2.4.

Let us now illustrate our results with the examples of the Gibbs conditioning principle
and the Schrödinger bridge problem. For the clarity of exposition, the next two subsections
provide an overview of our results only in the particular case F ⌘ 0 with linear constraints
 t(µ) =

R
E
 tdµ.

4.1.2 The Gibbs conditioning principle

When I(µ) = H(µ|⌫) and the constraints are given by a finite number of moments against
 1, . . . T : E ! R, namely

A =
�
µ 2 P(E), 8t 2 {1, . . . T},

R
E
 tdµ  0

 
,

then it is well-known that the density of µ := argminµ2AH(µ|⌫) is given by

dµ

d⌫
(x) = Z

�1
exp


�

TX

t=1

�t t(x)

�
, (4.3)

where Z is a normalising constant, and the �1, . . . ,�T are non-negative Lagrange multipli-
ers. A similar result holds when imposing

R
E
 tdµ = 0 instead of inequalities, correspond-

ing to the canonical ensemble in statistical physics. In addition to the aforementioned
textbooks on the Gibbs principle, we mention the prominent contributions Borel [1906];
Diaconis and Freedman [1987]; Stroock and Zeitouni [1991] for precise statements, and
Dembo and Zeitouni [1996]; Dembo and Kuelbs [1998]; Cattiaux and Gozlan [2007] for
quantitative versions of (4.1) in this setting.

Our abstract results now allow for an infinite number of constraints ( t)t2T , provided
a continuous dependence on t in the compact space T . In particular, Theorem 4.2.13 pro-
vides existence for a positive Radon measure � 2M+(T ), which generalises the previous
multipliers, such that

dµ

d⌫
(x) = Z

�1
exp


�

Z

T

 t(x)�(dt)

�
.
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In the particular setting E = C([0, T ],Rd) and T = [0, T ], x = (xt)t2[0,T ] being a continuous
path, a natural choice is  t(x) =  (xt), for some continuous  : Rd

! R. In this case, if ⌫
is the path-law of the solution to the stochastic differential equation (SDE), (Bt)t�0 being
a Brownian motion,

dXt = bt(Xt)dt+ �t(Xt)dBt,

under standard Lipschitz assumptions, Theorem 4.3.6 further identifies µ as being the
path-law of the solution to the SDE

dXt = bt(Xt)dt� �t�
>

t r't(Xt)dt+ �t(Xt)dBt, X0 ⇠ Z
�1

e�'0(x)dx,

where ' is the weak solution of the Hamilton-Jacobi-Bellman (HJB) equation

�'t +

Z
T

t

bs ·r's �
1

2
|�>s r's|

2 +
1

2
Tr[�s�

>

s r
2's] ds+

Z

[t,T ]
 s �(ds) = 0,

for which we prove well-posedness in a suitable sense detailed in Section 4.3.3. This HJB
approach is reminiscent of mean-field control problems under constraints that were recently
studied in Daudin [2022, 2023b,a].

4.1.3 Schrödinger bridge with additional constraints

When E = C([0, T ],Rd) and T = [0, T ], another famous example is the Schrödinger bridge
problem Schrödinger [1932], which is the prototype of a stochastic mass transport problem.
For this problem,

A =
�
µ 2 P(C([0, T ],Rd)), µ0 = µini, µT = µfin

 
,

where the marginal laws µini, µfin 2 P(Rd) are imposed. The literature on Schrödinger
bridges has recently enjoyed thriving developments. Some seminal references are Csiszár
[1975]; Cattiaux and Léonard [1995]; Cattiaux and Léonard [1996]. For more recent results,
we refer to the survey article Léonard [2013], the lecture notes Nutz [2021], and references
therein. We also mention Backhoff et al. [2020] for an extension to a more general rate
function I. Denoting µ := argminµ2AH(µ|⌫), a standard result Nutz [2021] is the existence
of measurable functions ⇠0, ⇠T : Rd

! R, called Schrödinger potentials, such that

dµ

d⌫
(x) = exp

⇥
� ⇠0(x0)� ⇠T (xT )

⇤
,

under suitable assumptions on (⌫, µini, µfin). Our results extend this decomposition to the
case

A =
�
µ 2 P(C([0, T ],Rd), µ0 = µini, µT = µfin, 8t 2 [0, T ],

R
Rd  dµt  0

 
.

In this setting, as a consequence of Theorem 4.2.13, Theorem 4.3.3 provides � 2M+([0, T ])
and measurable ⇠0, ⇠T : Rd

! R such that

dµ

d⌫
(x) = exp


� ⇠0(x0)� ⇠T (xT )�

Z

[0,T ]
 (xt)�(dt)

�
.

In fact, Theorem 4.3.3 states a stronger result, since it allows for non-linear and non-convex
constraints  (µt)  0 instead of

R
Rd  dµt  0.
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4.1.4 Outline

This article is organised as follows. Our main abstract results are stated in Section 4.2.
The optimality conditions are presented in Section 4.2.3, whereas the stability results are
given in Section 4.2.4. Section 4.3 develops the case of continuous paths E = C([0, T ],Rd).
Our results on the Schrödinger bridge problem with additional constraints are stated in
Section 4.3.2. The specific case of Gibbs principle for diffusion processes is further studied
in Section 4.3.3, and some examples for Gaussian processes can be found in Section 4.3.4.
The proofs of the results are written in Sections 4.4-4.5. Appendix 4.B finally presents an
alternative proof of Theorem 4.2.13 (from Section 4.2.3) in the linear setting of Section
4.1.2, with improved assumptions.

4.1.5 Notations

• ~xN denotes a generic element of a product set EN , for an integer N � 1. We also
write ~xN = (xi)1iN .

• P(E) denotes the set of probability measures over a Polish space E endowed with
its Borel �-algebra.

• �x denotes the Dirac measure at some point x in E.

• ⇡ denotes the function that maps a vector ~xN in EN to the empirical measure

⇡(~xN ) :=
1

N

NX

i=1

�xi 2 P(E).

• hµ, fi denotes the integral (when it exists) of a measurable function f against the
measure µ. The convention will often be adopted that hµ, fi = +1 if the integral is
not well-defined.

• µ(·|A) stands for the conditional measure µ(A)�1 Aµ, for µ in P(E) and A measur-
able with µ(A) > 0.

• M+(T ) denotes the convex cone of positive Radon measures. In this setting, a Radon
measure is defined as a signed finite measure that is both inner and outer regular as
defined in [Rudin, 1970, Definition 2.15].

• P�(E) denotes the set of measures µ 2 P(E) with hµ,�i < +1 for some measurable
� : E ! R. When �(x) = d(x, x0)p for some distance d on E, some x0 in E and
some p � 1, we will often write Pp(E) instead.

• Wp denotes the Wasserstein distance on Pp(E), defined by

Wp(µ, µ
0) :=


inf

X⇠µ, Y⇠µ0
E[|X � Y |

p]

�1/p
.

• T > 0 is a given real number, and d � 1 is an integer.

• x[0,T ] 2 C([0, T ],Rd) denotes a continuous function x[0,T ] : [0, T ]! Rd.

• µ[0,T ] denotes a path measure in P(C([0, T ],Rd)). Its marginal measure at time t will
be denoted by µt.
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• µ· denotes a continuous curve t 7! µt in C([0, T ],P(Rd)).

• Xt denotes the coordinate map x[0,T ] 7! xt. It can be seen as a random variable on
the canonical space ⌦ = C([0, T ],Rd).

• � 
�µ

(µ) : x 7! � 
�µ

(µ, x) denotes the linear functional derivative at µ (when it exists)
of a function  : P(Rd) ! R. See Definition 4.A.1 below for more details. The
convention is adopted throughout the paper that hµ, � 

�µ
(µ)i = 0.

• ·
> and Tr[·] respectively denote the transpose and the trace of matrices.

4.2 Abstract setting and main results

This section contains our main two theorems for the generalisation of the Gibbs principle.
We first present our abstract setting in Section 4.2.1, allowing for interaction terms and
infinitely many linear equality constraints and nonlinear inequality constraints. We then
establish a conditional LDP (Theorem 4.2.7), taking only inequality constraints into ac-
count, in Section 4.2.2. Next, we establish a Gibbs-like formula for the minimiser of the
rate function of the conditional LDP (Theorem 4.2.13) in Section 4.2.3, and study more
properties, in particular stability, of this minimiser in the case where the rate function and
the inequality constraints are convex, in Section 4.2.4.

4.2.1 Global setting

4.2.1.1 The rate function

Let E be a complete separable metric space, endowed with its Borel �-algebra. The space
P(E) of probability measures over E is endowed with the weak topology [Billingsley, 2013,
Chapter 2]. We recall that a sequence (µk)k�1 weakly converges towards µ in P(E) if and
only if

hµk,'i ����!
k!+1

hµ,'i,

for every bounded continuous ' : E ! R. The space P(E) is endowed with its Borel
�-algebra. For any continuous � : E ! R+, we define the set

P�(E) := {µ 2 P(E) , hµ,�i < +1}.

The topology on P�(E) is now defined through its converging sequences.

Definition 4.2.1 (Weak convergence in P�(E)). A sequence (µk)k�1 weakly converges
towards µ in P�(E) if and only if

hµk,�i ����!
k!+1

hµ,�i and hµk,'i ����!
k!+1

hµ,'i,

for every bounded continuous ' : E ! R.

This topology on P�(E) is stronger than the one induced by the weak topology on
P(E). It was used for instance in Léonard [1987]. When �(x) = 1 for every x in E, we
notice that P(E) and P�(E) coincide, together with their topology. When �(x) = d(x, x0)p

for some x0 in E and p � 1, this topology corresponds to the one defined in [Villani et al.,
2009, Definition 6.8]. This latter topology can be metrised using the p-Wasserstein distance
Wp [Villani et al., 2009, Theorem 6.9].
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The dual representation formula

H(µ|⌫) = sup
� measurable
h⌫,e

�
i<1

hµ,�i � log h⌫, e�i (4.4)

of the relative entropy [Léonard, 2012, Proposition 3.1-(iii)] yields the following statement.

Lemma 4.2.2 (Integrability condition). Let � : E ! R+ be a continuous function and
⌫ 2 P(E). If there exists ↵ > 0 such that h⌫, e↵�i < 1, then any probability measure
µ 2 P(E) such that H(µ|⌫) < +1 is in P�(E).

We now fix a continuous function � : E ! R+ and a reference probability measure
⌫ 2 P(E).

Lemma 4.2.3 (Relative entropy as a good rate function on P�(E)). If the condition

8↵ > 0, h⌫, e↵�i <1 (4.5)

holds, then µ 7! H(µ|⌫) is lower semi-continuous on P�(E), with compact level sets.

In the terminology of [Dembo and Zeitouni, 2009, Section 1.2], under the condi-
tion (4.5), the relative entropy with respect to ⌫ is a good rate function on P�(E).

Proof. The compactness of the level sets of H for the usual weak topology is part of the
Sanov theorem. From (4.4) applied to � = ↵� |�|�M for every ↵,M > 0, � is uniformly
integrable over any level set of H. The compactness for the weak topology on P�(E) then
follows from [Billingsley, 2013, Theorem 3.5].

As is stated in the proof of Lemma 4.2.3, by Sanov’s theorem, the relative entropy
describes the large deviations of systems of independent particles. To take interaction be-
tween particles into account, we now consider a measurable map F : P�(E)! (�1,+1],
and define the function I : P�(E)! (�1,+1] by

I(µ) := H(µ|⌫) + F(µ), (4.6)

the domain of I being the set

DI := {µ 2 P�(E), H(µ|⌫) < +1, F(µ) < +1}. (4.7)

Assumption (A.1) (Rate function). Condition (4.5) holds and I is lower semi-continuous
on P�(E).

This assumption tells that I is a rate function on P�(E). Of course, by Lemma 4.2.3, I
is lower semi-continuous on P�(E) as soon as F is lower semi-continuous on P�(E). Then
a sufficient condition for I to be a good rate function on P�(E) is given as follows. The
proof is omitted.

Lemma 4.2.4 (Sufficient condition for I to be a good rate function). Under Assump-
tion (A.1), if F is bounded from below on P�(E), then I has compact level sets in P�(E).
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4.2.1.2 Constraints

The first goal of this article is to study the minimisation of the rate function I on the
space P�(E), subject to two types of constraints: linear equality constraints, and non-
linear inequality constraints.

Linear equality constraints are encoded by a family (⇣s)s2S of functions E ! R, where
S is an arbitrary set. They will be assumed to satisfy the following properties.

Assumption (A.2) (On the linear equality constraints). For any s 2 S, ⇣s is continuous
on E, and there exists C⇣

s 2 [0,1) such that

8x 2 E, |⇣s(x)|  C⇣

s [1 + �(x)].

We define the associated constrained subset of P�(E) by

A
⇣ := {µ 2 P�(E), 8s 2 S, hµ, ⇣si = 0}.

Nonlinear inequality constraints are encoded by a family ( t)t2T of functions P�(E)!
R, where T is a compact metric space. The basic assumption on these functions is the
following.

Assumption (A.3) (On the nonlinear inequality constraints). For any t 2 T , the function
 t is lower semi-continuous on P�(E).

We define the associated constrained subset of P�(E) by

A := {µ 2 P�(E), 8t 2 T ,  t(µ)  0}.

Remark 4.2.5 (Linear inequality constraints). A particular case of inequality constraints
is given by linear functions  t(µ) = hµ, ti for some function  t : E ! R. Then Assump-
tion (A.3) holds as soon as, for any t 2 T ,  t is lower semi-continuous and there exists
C 

t
2 [0,1) such that

8x 2 E, [ t(x)]�  C 

t
[1 + �(x)].

Our assumptions on the linear equality and nonlinear inequality constraints yield the
following statement.

Lemma 4.2.6. Under (A.2)-(A.3), the constrained sets A
⇣ , A and A

⇣

 := A
⇣
\A are

closed in P�(E).

The elements of DI \ A
⇣

 are the admissible measures. Under (A.1)-(A.2)-(A.3), the
sequel of this section is dedicated to the study of the minimisation problem

I
⇣

 := inf
µ2DI\A

⇣
 

I(µ). (4.8)

By Lemma 4.2.6, any limit µ of a minimising sequence for this problem belongs to DI\A
⇣

 ,
and by the semi-continuity assumption (A.1) it satisfies

I(µ) = I
⇣

 <1.

We call µ a minimiser for (4.8). If DI \A
⇣

 is non-empty and I is a good rate function,
as in Lemma 4.2.4, then there exists at least one minimiser.
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4.2.2 Conditional LDP for nonlinear inequality constraints

As is explained in Section 4.1, the first step of the proof of the Gibbs principle is the
derivation of a LDP for the conditional distribution of the empirical measure of the particle
system under inequality constraints. Thus, in this section, we consider a sequence (⇧N )N�1
of probability measures on P�(E), which is assumed to satisfy a LDP with rate function
I defined in (4.6). Under the assumption that

8N � 1, ⇧N (A ) > 0, (4.9)

we may define the conditional distribution ⇧N (·|A ). The goal of this section is to state
a LDP for the sequence ⇧N (·|A ).

4.2.2.1 Statement of the result

In order to state the LDP for this sequence, we need to introduce the following assumptions.

Assumption (A.4) (Regularity of  t). The function µ 7! supt2T  t(µ) is well-defined
and continuous on P�(E).

Assumption (A.5) (Constraint qualification). For any µ 2 DI \A , there exists µ̃ 2 DI

such that:

(i) for every " > 0 small enough, we have  t(µ+ "(µ̃� µ)) < 0 for all t 2 T ;

(ii) lim sup"!0F(µ+ "(µ̃� µ))  F(µ).

Theorem 4.2.7 (Conditional LDP). Let (A.1)-(A.3)-(A.4)-(A.5) hold, and assume that

I := inf
µ2DI\A 

I(µ) < +1. (4.10)

Let (⇧N )N�1 be a sequence of probability measures on P�(E) which satisfies a LDP with
rate function I, such that (4.9) holds. Then (⇧N (·|A ))N�1 satisfies a LDP with rate
function I : P�(E)! [0,+1] defined by

I (µ) :=

(
I(µ)� I , if µ 2 A ,
+1, otherwise.

Theorem 4.2.7 is proved in Section 4.4.1. This result can be seen as a variation of
[La Cour and Schieve, 2015, Theorem 1] or [Chafaï et al., 2021, Theorem 3.1], without
requiring the rate function to be good. Under the assumptions of Theorem 4.2.7, if I is
a good rate function (as in Lemma 4.2.4), then by Lemma 4.2.6, so is I and therefore
(⇧N (·|A ))N�1 satisfies the LDP with a good rate function. In particular, there is at
least one minimiser for (4.10). If this minimiser µ is moreover unique, then ⇧N (·|A )
weakly converges towards �µ. Therefore, in this case, the Gibbs principle holds in the
general setting of Theorem 4.2.7, namely with infinitely many constraints  t, which need
not be linear functionals of µ, and interaction between particles, which are encoded by the
functional F . Moreover, it is stated in the abstract metric space E, for the Wasserstein-like
topology on P�(E) which is stronger than the usual weak topology.

The detailed study of minimisers for (4.10) is carried out in Sections 4.2.3 and 4.2.4,
in the more general setting of (4.8) which takes equality constraints into account. In the
sequel of the present section, we discuss how to check the continuity assumption (A.4)
when the functions  t have a certain regularity property, and then we provide an example
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of application of Theorem 4.2.7, when F = 0. We therefore obtain a conditional version
of Sanov’s Theorem, which is stated in Wasserstein topology. Some examples with F 6= 0
are LDPs for Gibbs measures like Arous and Brunaud [1990] which typically enter the
framework of Theorem 4.2.7, and suitable examples in the Wasserstein topology are given
in Léonard [1987]; Liu and Wu [2020]; Dupuis et al. [2015]; Chaintron [2024].

4.2.2.2 Checking (A.4) for differentiable constraints

In the sequel of this article, we shall be particularly interested in the case where the func-
tions  t are differentiable with respect to µ, using the notion of linear functional derivative,
whose definition and basic properties are gathered in Appendix 4.A. In this context, ex-
plicit, sufficient conditions for the continuity assumption (A.4) may be formulated.

Proposition 4.2.8 (Assumption (A.4) for differentiable constraints). Assume that for any
µ 2 P�(E), for any t 2 T , the function  t is differentiable at µ w.r.t. the set of directions
P�(E), in the sense of Definition 4.A.1. If the conditions:

(i) for any compact set K ⇢ P�(E), there exists D 
K
2 [0,1) such that

8x 2 E, sup
(t,µ)2T ⇥K

����
� t

�µ
(µ, x)

����  D K [1 + �(x)];

(ii) for any compact set K ⇢ P�(E), the family of functions (x 7! � t
�µ

(µ, x))t2T ,µ2K is
equi-continuous;

(iii) for any x 2 E, the family of functions (µ 7! � t
�µ

(µ, x))t2T is (sequentially) equi-
continuous on P�(E);

are satisfied, then Assumption (A.4) holds.

Proposition 4.2.8 is proved in Section 4.4.1.

Remark 4.2.9 (Linear constraints). In the setting of Remark 4.2.5, the conditions (i,ii,iii)
hold as soon as the family ( t)t2T is equi-continuous on E and there exists D 

2 [0,1)
such that

8x 2 E, sup
t2T

| t(x)|  D [1 + �(x)].

4.2.2.3 Application: the conditional Sanov Theorem with linear constraints

A particular setting where Theorem 4.2.7 may be applied is the case where ⇧N is the law of
the empirical measure of independent random variables distributed according to ⌫. In this
case, the LDP is known to hold with I(µ) = H(µ|⌫) on P�(E), either with � ⌘ 1 (this is the
usual Sanov Theorem), or with �(x) = d(x, x0)p, p � 1 under the exponential integrability
assumption (4.5) in (A.1) (this is the Sanov Theorem in Wasserstein distance [Wang et al.,
2010, Theorem 1.1]).

In this case, and if the inequality constraints are actually linear, as in Remark 4.2.5,
then defining

E⌘ := {x 2 E : 8t 2 T ,  t(x)  �⌘},

we have that a sufficient condition for (A.5)-(i) to hold is

9⌘ > 0 : ⌫(E⌘) > 0, (4.11)

because then we may take µ̃ = ⌫(·|E⌘), which satisfies hµ̃, ti  �⌘ for any t. This
condition also guarantees that the conditions (4.9) and (4.10) are satisfied. Thus, the
combination of this observation with Remark 4.2.9 yields the following statement.
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Chapter 4. Gibbs principle with infinitely many constraints

Proposition 4.2.10 (Conditional Sanov Theorem with linear constraints). Let �(x) =
d(x, x0)p for p = 0 or p � 1, and let ⌫ 2 P(E) be such that the integrability condition (4.5)
holds. Let ⇧N be the law of the empirical measure of N independent random variables
distributed according to ⌫. Let ( t)t2T be a family of functions E ! R satisfying the
conditions of Remark 4.2.9, and let the set A be defined accordingly. If this family satis-
fies (4.11), then the sequence (⇧N (·|A ))N�1 is well-defined and satisfies a LDP on P�(E)
with good rate function

8
<

:
H(µ|⌫)� inf

µ02A 
H(µ0|⌫), if µ 2 A ,

+1, otherwise.

In the setting of Proposition 4.2.10, the set A is convex and the (good) rate function
is strictly convex, so it admits a unique minimiser µ and ⇧N (·|A ) converges to �µ. A
more general discussion on the convex case is postponed to Section 4.2.4.

Remark 4.2.11 (Convergence for conditioned particles). Denoting by ~XN = (X1, . . . , XN )
the underlying particle system, whose empirical measure ⇡( ~XN ) has distribution ⇧N , this
statement implies that the conditional distribution L(X1

|⇡( ~XN ) 2 A ) of the first particle
converges weakly to µ. This convergence can be quantified: we deduce from [Csiszár, 1984,
Theorem 1] that

8N � 1, H(L(X1
|⇡( ~XN ) 2 A )|µ)  �

1

N
log⇧N (A )�H(µ|⌫).

More explicit rates are given in Dembo and Zeitouni [1996]; Dembo and Kuelbs [1998];
Cattiaux and Gozlan [2007].

4.2.3 Gibbs density for minimisers

In this section we focus on the minimisation problem (4.8), which takes both equality and
inequality constraints into account. We show that minimisers, if they exist, have a density
with respect to ⌫, whose form generalises (4.3) to the infinite-dimensional setting. To
take into account both the interaction part F in the rate function, and the nonlinearity
of the inequality constraints  t, we need to assume differentiability properties of these
functionals, at a given µ 2 P�(E).

Assumption (A.6) (Differentiability of F at µ). The set DI is convex, and F is differ-
entiable at µ w.r.t. the set of directions DI .

Assumption (A.7) (Regularity of  t and constraint qualification at µ).

(i) The function t 7!  t(µ) is continuous.

(ii) For any t 2 T ,  t is differentiable at µ w.r.t. the set of directions P�(E), uniformly
in t, in the sense that for any µ 2 P�(E),

lim
"!0

sup
t2T

����
 t((1� ")µ+ "µ)� t(µ)

"
�

⌧
µ� µ,

� t

�µ
(µ)

����� = 0.

(iii) For any x 2 E, the function t 7! � t
�µ

(µ, x) is continuous.

(iv) There exists D 2 [0,1) such that

8x 2 E, sup
t2T

����
� t

�µ
(µ, x)

����  D [1 + �(x)].
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(v) There exist µ̃ in DI \A
⇣ and "̃ > 0 such that

8t 2 T ,  t(µ) + "̃

⌧
µ̃� µ,

� t

�µ
(µ)

�
< 0.

Remark 4.2.12. By (A.7)-(i,iii,iv), for any µ 2 P�(E) and any " > 0, the function
t 7!  t(µ) + "hµ� µ, � t

�µ
(µ)i is continuous. In particular, (A.7)-(v) equivalently rewrites

sup
t2T

 t(µ) + "̃

⌧
µ̃� µ,

� t

�µ
(µ)

�
< 0.

The condition (A.7)-(ii) can be verified under equi-continuity assumptions on � t
�µ

in the
spirit of Proposition 4.2.8.

The proof of Theorem 4.2.13 also requires the following technical condition.

Assumption (A.8). Every probability measure on E that has a bounded density with
respect to µ or to the measure µ̃ given by (A.7)-(v) belongs to DI .

For instance, Assumption (A.8) holds when F ⌘ 0, as in Sanov’s theorem.

Theorem 4.2.13 (Gibbs density for minimisers of (4.8)). Let (A.1)-(A.2)-(A.3) hold, and
let µ be a minimiser for (4.8), which satisfies (A.6)-(A.7)-(A.8). Then, the following holds

1. Any µ 2 DI \A
⇣ is absolutely continuous w.r.t. µ.

2. There exist (⇣,�) 2 L1(E, dµ)⇥M+(T ) and a measurable S ⇢ E such that µ(S) = 1,

Z :=

Z

E
S
(x) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
⌫(dx) 2 (0,1), (4.12)

and µ has density

dµ

d⌫

�
x
�
=

1

Z S
(x) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
(4.13)

with respect to ⌫.

3. The function ⇣ belongs to the closure of Span(⇣s, s 2 S) in L1(E, dµ) hence
Z

E

⇣ dµ = 0, (4.14)

and the complementary slackness condition is satisfied:

 t(µ) = 0 for �-a.e. t 2 T . (4.15)

The proof of Theorem 4.2.13 is detailed in Section 4.4.2. Remark 4.4.4 there provides
a bound on the total mass of � in terms of µ, µ̃, "̃ and �F

�µ
(µ). In the particular case F ⌘ 0

and T = ; (no inequality constraint), we recover the result of [Csiszár, 1975, Theorem 3].

Remark 4.2.14 (Equivalence between µ and ⌫). In general, µ is not equivalent to ⌫; the
set S where dµ

d⌫ is positive is thus needed, contrary to the Gibbs density (4.3) in Section
4.1.2. This loss of equivalence only comes from the equality constraints. Indeed, if S = ;,
we notice that ⌫ 2 DI \A

⇣ , so that ⌫ ⌧ µ and ⌫(S) = 1 from Theorem 4.2.13-1. If S = ;,
we of course have ⇣ ⌘ 0. The need for S for handling equality constraints is well-known
in the setting of the Schrödinger bridge, see Section 4.3.2. From Theorem 4.2.13-1, we
eventually deduce that a necessary and sufficient condition for µ ⇠ ⌫ is the existence of
⌫̃ 2 DI \A

⇣ such that ⌫̃ ⇠ ⌫.
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Remark 4.2.15 (Assumption (A.7) for linear inequality constraints). In the case of linear
inequality constraints of Remark 4.2.5, Assumption (A.7)-(ii) always holds true. Assump-
tions (A.7)-(i,iii,iv) are satisfied as soon as for any x 2 E, t 7!  t(x) is continuous and
there exists D 

2 [0,1) such that

8x 2 E, sup
t2T

| t(x)|  D [1 + �(x)].

Last, Assumption (A.7)-(v) amounts to assuming that there exists µ̃ 2 DI \A
⇣ such that

hµ̃, ti < 0 for all t 2 T . For the present case of linear constraints, the assumptions
of Theorem 4.2.13 may be relaxed. In particular, no upper bound on the  t needs to be
assumed. This alternative result is detailed in Appendix 4.B.

Remark 4.2.16 (Sufficient condition for (A.7)-(v) without equality constraints). If S = ;
(no equality constraints), and µ gives a positive measure to the set

U :=

⇢
x 2 E, 8t 2 T ,

� t

�µ
(µ, x) < 0

�
,

we notice that µ̃ := µ(·|U) satisfies (A.7)-(v), for any "̃ > 0, if we know that F(µ̃) < +1.
The latter condition may follow from (A.8) since µ̃ has a bounded density w.r.t. µ.

4.2.4 Sufficient conditions and stability in the convex case

In this section, we work under the following assumption.

Assumption (A.9) (Convexity). The functions F and  t, t 2 T , are convex on P�(E).

Then, the function µ 7! H(µ|⌫) being strictly convex, the sets DI and A
⇣

 are convex,
and there is at most one minimiser for (4.8).

In this setting, we first show a converse statement to Theorem 4.2.13, namely that an
admissible measure which satisfies the conditions (4.13)-(4.15) is the minimiser for (4.8).

Theorem 4.2.17 (Sufficient conditions in the convex case). Let (A.1)-(A.2)-(A.3)-(A.9)
hold. Let µ 2 DI \A

⇣

 satisfy the following conditions.

(i) The functions F and  t, t 2 T , are differentiable at µ w.r.t. the set of directions
DI \A

⇣

 .

(ii) The function (t, x) 7! � t
�µ

(µ, x) is measurable, and there exists D 2 [0,1) such that

8x 2 E, sup
t2T

����
� t

�µ
(µ, x)

����  D [1 + �(x)].

(iii) There exist ⇣ in the L1(E, dµ)-closure of Span(⇣s, s 2 S) (which necessarily sat-
isfies (4.14)), � 2 M+(T ) and a measurable subset S ⇢ E such that µ(S) = 1
and (4.12)-(4.13)-(4.15) hold.

(iv) ⌫(S) = 1 and for any µ 2 DI \A
⇣

 , ⇣ 2 L1(E, dµ) and hµ, ⇣i = 0.

Then, the measure µ is the unique minimiser for (4.8).

When only equality constraints are considered, corresponding to T = ;, Condition (iv)
can be verified using [Nutz, 2021, Lemma 2.18].

We now prove stability for (4.8) when moving the inequality constraints  t or the
reference measure. To this aim, we will use the following sufficient condition for the
qualification condition (A.7)-(v) to hold.
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Lemma 4.2.18 (Sufficient condition for qualification). Under (A.9), if there exists µ̃ 2
DI \A

⇣ such that
8t 2 T ,  t(µ̃) < 0,

then the condition (A.7)-(v) holds, with "̃ = 1, at any µ 2 DI \A
⇣

 at which all the  t are
differentiable (w.r.t. the set of directions DI \A

⇣).

Lemma 4.2.18 is an immediate consequence of the convexity of the constraints (see
e.g. (4.51) below) and we do not detail it.

We first state a quantitative result when only the inequality constraints are relaxed.
To this aim, for any " � 0, we introduce the notation

A ," := {µ 2 P�(E), 8t 2 T ,  t(µ)  "}, A
⇣

 ," := A
⇣
\A ,".

Proposition 4.2.19 (Quantitative stability w.r.t. inequality constraints). Let (A.1)-
(A.2)-(A.3)-(A.9) hold, and assume that F is bounded from below on P�(E), and that
for any µ 2 A

⇣ , the function t 7!  t(µ) is measurable. We consider the minimisation
problem

I
⇣

 ," := inf
µ2DI\A

⇣
 ,"

I(µ). (4.16)

We assume that there is "⇤ > 0 such that (A.6), (A.7)-(i,ii,iii,iv) hold at every µ 2 DI \

A
⇣

 ,"⇤
, that the condition of Lemma 4.2.18 is satisfied, and that (A.8) holds for every

µ 2 DI \A
⇣

 ,"⇤
and for µ̃ given by Lemma 4.2.18.

1. For every " 2 [0, "⇤], (4.16) has a unique minimiser µ", and this minimiser satisfies
the conclusions of Theorem 4.2.13 for some (⇣",�") 2 L1(E, dµ") ⇥M+(T ) and a
measurable set S" ⇢ E.

2. Assume in addition that for any " 2 [0, "⇤], ⌫(S") = 1, and that for any µ 2 A
⇣ ,

⇣" 2 L1(E, dµ) with hµ, ⇣"i = 0. Then the function " 7! I
⇣

 ," is absolutely continuous,

d

d"
I
⇣

 ," = ��"(T ), Lebesgue-a.e.,

and there exists Cstab 2 [0,1) such that, for any " 2 [0, "⇤],

0  I
⇣

 ,0 � I
⇣

 ,"  Cstab". (4.17)

In the case F ⌘ 0, the estimate (4.17) reads 0  H(µ0|⌫) � H(µ"|⌫)  Cstab". The
Pythagorean identity for entropic projections [Csiszár, 1975, Theorem 2.2] then provides
the following quantitative stability estimate on the minimiser µ" of (4.16).

Corollary 4.2.19.1. If F ⌘ 0 in the setting of Proposition 4.2.19, then

H(µ0|µ")  Cstab".

We finally address weak stability when ⌫, F and the  t are perturbed at the same
time. Since interesting results already exist in the setting of equality constraints Ghosal
et al. [2022]; Eckstein and Nutz [2022]; Nutz and Wiesel [2023]; Chiarini et al. [2023]; Divol
et al. [2024], we only focus on inequality constraints; therefore, we assume that S = ;. Let
(⌫k)k�1 and ⌫ be in P�(E), and (Fk)k�1 and F be functions P�(E) ! (�1,+1]. Let
Ik : µ 7! H(µ|⌫k) + Fk(µ) be the related rate function with domain DIk . For each t 2 T ,
let ( t,k)k�1 be functions P�(E)! R.
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Assumption (A.10) (Setting for stability).

(i) The functions I, (Ik)k�1, ( t)t2T and ( t,k)t2T ,k�1 are lower semi-continuous.
Moreover, for every k � 1, Ik has compact level sets in P�(E).

(ii) The functions F , (Fk)k�1, ( t)t2T and ( t,k)t2T ,k�1 are convex.

(iii) For every k � 1, any measure that has a bounded density w.r.t. ⌫k belongs to DIk .

(iv) ⌫k ! ⌫ in P�(E), and supk�1h⌫, e
↵�
i+ h⌫k, e↵�i is finite, for every ↵ > 0.

(v) For any µ 2 P�(E), limk!+1 supt2T  t,k(µ)  supt2T  t(µ).

(vi) If (µl)l�1 converges to µ in P�(E), then supk�1 | supt2T  t,k(µl)� supt2T  t,k(µ)|!
0, and | supt2T  t(µl)� supt2T  t(µ)|! 0.

(vii) There exists µ̃ 2 DI such that supt2T  t(µ̃) < 0.

We notice that (A.10)-(i,iv) make Ik, ⌫k and ( t,k)t2T enter the framework of (A.1)-
(A.3). We define the sets (A ,k)k�1 accordingly. As previously, (A.10)-(vi) can be verified
using Proposition 4.2.8. Similarly, a sufficient condition for the compactness of level sets in
(A.10)-(i) is given by Lemma 4.2.4. From (A.10)-(i), the (Ik)k�1 are good rate functions.
Therefore, using the the convexity assumption (A.10)-(ii) (which corresponds to (A.9)),
the minimisation problem

I ,k := inf
µ2DIk\A ,k

Ik(µ),

has a unique minimiser denoted by µk, for every k � 1. Let us now verify the qualification
condition in Lemma 4.2.18.

Lemma 4.2.20 (Qualification). Under (A.10), there exist (µ̃k)k�1 and k0 � 1 such that
µ̃k 2 DIk , (H(µ̃k|⌫k))k�1 is bounded, and

sup
k�k0

sup
t2T

 t,k(µ̃k) < 0.

To obtain Gibbs measures and show their stability, we need differentiability assump-
tions.

Assumption (A.11) (Local regularity).

(i) For every large enough k, the regularity assumptions (A.6) and (A.7)-(i,ii,iii,iv) hold
at µk for (Ik, ( t,k)t2T ).

(ii) For every k � k0, (A.8) holds at µk and µ̃k, given by Lemma 4.2.20, for (Ik, ( t,k)t2T ).

(iii) There exists DF , 
2 [0,1) such that

8x 2 E, sup
k�1

⇢����
�Fk

�µ
(µk, x)

����+ sup
t2T

����
� t,k

�µ
(µk, x)

����

�
 DF , [1 + �(x)].

(iv) For any sub-sequence (µlk
)k�1 that converges towards some µ1 in P�(E), µ1 belongs

to DI , (A.6) and (A.7)-(i,ii,iii,iv) hold at µ1 for (I, ( t)t2T ), and for every x 2 E,
����
�Flk

�µ
(µlk

, x)�
�F

�µ
(µ1, x)

���� ����!
k!+1

0,

sup
t2T

�� t,lk
(µlk

)� t(µ1)
��+
����
� t,lk

�µ
(µlk

, x)�
� t

�µ
(µ1, x)

���� ����!
k!+1

0.

Moreover, (x 7!
�Flk
�µ

(µlk
, x))k�1, (x 7!

 t,lk
�µ

(µlk
, x))t2T ,k�1 are equi-continuous on

E.
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The regularity assumptions in (A.11)-(iv) are similar to the ones in Proposition 4.2.8.

Theorem 4.2.21 (Weak stability).

1. Under (A.10) and (A.11)-(i,ii,iii), for every large enough k, µk writes as Gibbs mea-
sure (4.13)-(4.15) for some �k 2 M+(T ). Moreover, the sequence (�k)k is weakly
precompact in M+(T ).

2. Under (A.10)-(A.11), I has a unique minimiser µ in DI \A , which is the limit of
(µk)k�1 in P�(E). Moreover, (4.13)-(4.15) hold at µ for any limit point �1 of (�k)k.

Since we are working with S = ;, following Remark 4.2.14, in the statement of Theorem
4.2.21-1, there is no need to for introducing neither the set Sk nor the function ⇣k.

Theorem 4.2.17, Proposition 4.2.19, Lemma 4.2.20 and Theorem 4.2.21 are proved in
Section 4.4.3.

4.3 Application to stochastic processes

In this section we fix T > 0 and d � 1. We consider the case where E is the set of
continuous trajectories C([0, T ],Rd), endowed with the sup norm. In this setting, we denote
by x[0,T ] = (xt)t2[0,T ] typical elements of C([0, T ],Rd), and by µ[0,T ] typical elements of
P(C([0, T ],Rd)). If X[0,T ] is a random variable in C([0, T ],Rd) with law µ[0,T ], then the
marginal distribution of Xt is denoted by µt. We focus on inequality constraints of the
form

8t 2 T = [0, T ],  t(µ[0,T ]) =  (µt), (4.18)

for some function  : P(R)! R. We moreover focus on the case F ⌘ 0, so that minimisers
of (4.8) describe the asymptotic behaviour of large systems of independent and identically
distributed continuous stochastic processes, conditionally on the constraint (4.18) on their
empirical distribution at all times t 2 [0, T ].

In Section 4.3.1, we provide conditions on the function  and on the reference measure
⌫[0,T ] ensuring that the assumptions of the main theorems of Section 4.2 are satisfied. We
next present two examples of applications of these theorems: in Section 4.3.2, we construct
and study a constrained version of the Schrödinger bridge, and in Section 4.3.3, we state
a Gibbs principle for i.i.d. diffusion processes under constraints of the form (4.18). In
particular, we provide a detailed description of the law of the minimiser µ[0,T ] as the law of
a diffusion process with tilted initial condition and modified drift coefficient with respect
to the reference measure ⌫[0,T ]. To illustrate the latter result, we present simple examples
in Section 4.3.4.

4.3.1 Constraints on time marginal laws

4.3.1.1 Global setting

Throughout Section 4.3, we work with E = C([0, T ],Rd) and set �(x[0,T ]) := sup0tT |xt|p

for some p 2 [1,+1), so that the topology on P�(E) = Pp(C([0, T ],Rd)) corresponds to
the one induced by the p-Wasserstein distance Wp. In this context, we have the following
standard properties, which follow from elementary coupling arguments.

Lemma 4.3.1 (Metric properties of time marginal distributions).
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(i) For any t 2 [0, T ], the map
�
Pp(C([0, T ],Rd)),Wp

�
!

�
Pp(Rd),Wp

�

µ[0,T ] 7! µt

is 1-Lipschitz continuous.

(ii) For any µ[0,T ] 2 Pp(C([0, T ],Rd)), the map t 7! µt is continuous.

We shall always take F ⌘ 0, so that given a reference probability measure ⌫[0,T ] on
C([0, T ],Rd), Assumption (A.1) holds as soon as

8↵ > 0, E⌫[0,T ]

h
e↵ sup0tT |Xt|

p
i
<1, (4.19)

where the notation E⌫[0,T ]
[· · · ] means that the process X[0,T ] has distribution ⌫[0,T ]. More-

over, the set DI rewrites

DI =
n
µ[0,T ] 2 Pp(C([0, T ],Rd)), H(µ[0,T ]|⌫[0,T ]) <1

o
.

Equality constraints are represented by a family (⇣s)s2S of functions C([0, T ],Rd)! R
which satisfy (A.2). Last, we fix a function  : Pp(Rd) ! R and define the functions
 t, t 2 [0, T ], by (4.18). Then (A.3) holds as soon as  is lower semi-continuous on
Pp(Rd). Overall, we deduce that in this setting, (A.1)-(A.2)-(A.3) hold under the following
condition.

Assumption (B.1) (Condition for (A.1)-(A.2)-(A.3)). F ⌘ 0, (4.19) holds, (⇣s)s2S sat-
isfies (A.2) and  : Pp(Rd)! R is lower semi-continuous.

Notice that under (B.1), I(µ[0,T ]) = H(µ[0,T ]|⌫[0,T ]) is always a good rate function
thanks to Lemma 4.2.4, so minimisers to (4.8) exist as soon as DI \A

⇣

 is nonempty.

4.3.1.2 Differentiability of the constraints

In the assumptions of Theorem 4.2.7 (via Proposition 4.2.8) and Theorem 4.2.13, the linear
functional derivative of the function  t plays a central role. The next lemma, whose proof is
straightforward, links the linear functional derivatives of  t (defined on Pp(C([0, T ],Rd)))
to that of  (defined on Pp(Rd)).

Lemma 4.3.2 (Linear functional derivative of  t). Let µ 2 Pp(Rd) be such that  is
differentiable at µ w.r.t. the set of directions Pp(Rd), and let t 2 [0, T ]. For any µ[0,T ] 2

Pp(C([0, T ],Rd)) such that µt = µ,  t is differentiable at µ[0,T ] w.r.t. the set of directions
Pp(C([0, T ],Rd)), and for any x[0,T ] 2 C([0, T ],Rd),

� t

�µ[0,T ]

�
µ[0,T ], x[0,T ]

�
=
� 

�µ
(µt, xt).

As a consequence of Lemma 4.3.2, we get that the assumptions of Proposition 4.2.8 are
satisfied under the following condition on  .

Assumption (B.2) (Global differentiability of  ). For any µ 2 Pp(Rd),  is differentiable
at µ w.r.t. the set of directions Pp(Rd). Moreover,

(i) for any compact set K ⇢ Pp(Rd), there exists D 
K
2 [0,1) such that

8x 2 Rd, sup
µ2K

����
� 

�µ
(µ, x)

����  D K [1 + |x|p];
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(ii) for any compact set K ⇢ Pp(Rd), the family of functions (x 7! � 
�µ

(µ, x))µ2K is
equi-continuous;

(iii) for any compact set ⌅ ⇢ Rd, the family of functions (µ 7! � 
�µ

(µ, x))x2⌅ is uniformly
equi-continuous on Pp(Rd).

The fact that the assumptions of Proposition 4.2.8 are satisfied under (B.2) essentially
follows from Lemma 4.3.2, together with the observation that if K[0,T ] is a compact subset
of Pp(C([0, T ],Rd)), then K := {µt : t 2 [0, T ], µ[0,T ] 2 K[0,T ]} is a compact subset of
Pp(Rd). The latter statement is an easy consequence of Lemma 4.3.1 (i) and (ii).

Hence, since we are working with F ⌘ 0, Theorem 4.2.7 applies as soon as (B.1)-
(B.2) hold (with S = ;), together with the constraint qualification condition that for
any µ[0,T ] 2 DI \ A , there exists µ̃[0,T ] 2 DI such that, for any " > 0 small enough,
 (µt + "(µ̃t � µt)) < 0 for all t 2 [0, T ].

We now turn our attention to the assumptions of Theorem 4.2.13. Since F ⌘ 0, (A.6)
and (A.8) necessarily hold true, at any µ[0,T ] 2 DI\A

⇣

 . On the other hand, Lemmata 4.3.1
and 4.3.2 again show that given µ[0,T ], (A.7) is satisfied under the following conditions on
 .

Assumption (B.3) (Regularity of  and constraint qualification at µ[0,T ]).

(i) The function  is continuous on Pp(Rd).

(ii) For any t 2 T ,  is differentiable at µt w.r.t. the set of directions Pp(Rd), uniformly
in t, in the sense that for any µ[0,T ] 2 Pp(C([0, T ],Rd)),

lim
"!0

sup
t2[0,T ]

����
 ((1� ")µt + "µt)� (µt)

"
�

⌧
µt � µt,

� 

�µ
(µt)

����� = 0.

(iii) The function (t, x) 7! � 
�µ

(µt, x) is continuous on [0, T ]⇥ Rd.

(iv) There exists D 2 [0,1) such that

8x 2 Rd, sup
t2[0,T ]

����
� 

�µ
(µt, x)

����  D [1 + |x|p].

(v) There exist µ̃[0,T ] in DI \A
⇣ and "̃ > 0 such that

8t 2 [0, T ],  (µt) + "̃

⌧
µ̃t � µt,

� 

�µ
(µt)

�
< 0.

This condition allows to apply Theorem 4.2.13 to characterise minimisers of (4.8). Let
us finally mention that, as soon as  is convex, then (A.9) holds and the minimiser is
therefore unique. Moreover, in this case, Lemma 4.2.18 implies that (B.3)-(v) holds (with
"̃ = 1) as soon as there exists µ̃[0,T ] in DI \A

⇣ such that  (µ̃t) < 0 for any t 2 [0, T ].

4.3.1.3 Example of a nonlinear inequality constraint

A typical example of a nonlinear function  is given as follows. Let W : Rd
! R be a

measurable function, bounded from below, which satisfies W (x)  C(1 + |x|p). For any
µ 2 Pp(Rd), set

 (µ) = hµ,W ? µi =

Z

Rd⇥Rd
W (x� y)µ(dx)µ(dy). (4.20)
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Then  is well-defined, and lower semi-continuous, on Pp(Rd). Moreover, it is differentiable
on Pp(Rd) w.r.t. the set of directions Pp(Rd), and its linear functional derivative writes

� 

�µ
(µ, x) = (W +W�) ? µ(x)� 2 (µ), W�(x) := W (�x).

However, in general, it is not convex. For example, if p � 2, then one may take W (x) =
1
2 |x|

2
�M , for some M � 0, so the condition that  (µ)  0 means that the variance of µ

(understood, for d � 2, as the trace of the covariance matrix) is bounded from above by
M . Then  is concave.

4.3.2 Constrained Schrödinger bridge

Given a reference probability measure ⌫[0,T ] 2 Pp(C([0, T ],Rd)), for example the law of the
d-dimensional Brownian motion on [0, T ], and two probability measures µini, µfin

2 Pp(Rd),
such that µini

⌧ ⌫0 and µfin
⌧ ⌫T , the standard Schrödinger bridge is the continuous

process on [0, T ] whose law µ[0,T ] is the minimiser of the problem

inf
µ[0,T ]2Pp(C([0,T ],Rd)),

µ0=µ
ini

, µT=µ
fin

H(µ[0,T ]|⌫[0,T ]).

In this section, we address the dynamically constrained version of this problem, namely, for
a lower semi-continuous function  : Pp(Rd)! R, we consider the minimisation problem

inf
µ[0,T ]2Pp(C([0,T ],Rd)),

µ0=µ
ini

, µT=µ
fin

,

8t2[0,T ],  (µt)0

H(µ[0,T ]|⌫[0,T ]). (4.21)

We call minimisers of this problem constrained Schrödinger bridges. Our main result for
this constrained problem reads as follows.

Theorem 4.3.3 (Constrained Schrödinger bridge). Let ⌫[0,T ] 2 Pp(C([0, T ],Rd)) sat-
isfy (4.19), and  : Pp(Rd) ! R be a lower semi-continuous function. Let µini, µfin

2

Pp(Rd) be such that ⌫0,T ⇠ µini
⌦ µfin, where ⌫0,T denotes the marginal distribution of the

pair (X0,XT ) under ⌫[0,T ].

1. If the infimum in (4.21) is finite, then it is reached at some µ[0,T ] which satisfies
µ0 = µini, µT = µfin, and  (µt)  0 for any t 2 [0, T ]. Moreover, if  is convex,
then this minimiser is unique.

2. If µ[0,T ] is a minimiser at which (B.3) holds, then there exist � 2 M+([0, T ]) and
measurable ⇣0, ⇣T : Rd

! R such that

dµ[0,T ]

d⌫[0,T ]
(x[0,T ]) = Z

�1
exp


�⇣0(x0)� ⇣T (xT )�

Z

[0,T ]

� 

�µ
(µt, xt)�(dt)

�
, (4.22)

where Z 2 (0,1) is a normalising constant, and the slackness condition holds

 (µt) = 0 for �-a.e. t 2 [0, T ].

The proof of Theorem 4.3.3 follows from the application of Theorem 4.2.13 to the case
where the equality constraints are defined as follows: let (�k)k�1 be a countable family of
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bounded continuous functions Rd
! R which separates measures. For k � 1, we define

�k0,�
k

T
: C([0, T ],Rd)! R by

�k0(x[0,T ]) := �k(x0)�

Z

Rd
�kdµini, �kT (x[0,T ]) := �k(xT )�

Z

Rd
�kdµfin.

We finally set (⇣s)s2S := (�k0)k�1 [ (�k
T
)k�1. The details of the proof are postponed to

Section 4.5.1.
Compared to Theorem 4.2.13, a major improvement of Theorem 4.3.3 is that µ[0,T ] ⇠

⌫[0,T ], see Remark 4.2.14.

Remark 4.3.4 (Multi-marginal constraints and support constraints). We could easily
adapt the above result to impose marginal laws at arbitrarily many instants. We could also
consider time-dependent constraints  (t, µt).

4.3.3 Gibbs principle for diffusion processes

In this section, we focus on the Gibbs principle for i.i.d. diffusion processes under con-
straints of the form (4.18) on the empirical distribution.

Assumption (C.1) (On the reference SDE). The functions b : [0, T ] ⇥ Rd
! Rd, � :

[0, T ]⇥ Rd
! Rd⇥d are measurable and locally bounded, ⌫0 2 P(Rd), and in addition:

(i) uniformly in t 2 [0, T ], x 7! bt(x) and x 7! �t(x) are Lipschitz continuous;

(ii) there exists M� � 0 such that |�t(x)| M� for all (t, x) 2 [0, T ]⇥Rd, and t 7! �t(x)
is locally Hölder-continuous;

(iii) for all ↵ > 0,
R

Rd e↵|x|
p
⌫0(dx) <1.

Under (C.1), for a given d-dimensional Brownian motion (Bt)t2[0,T ], it is standard that
the SDE

dXt = bt(Xt)dt+ �t(Xt)dBt, X0 ⇠ ⌫0, (4.23)

has a pathwise unique strong solution X[0,T ], whose law in C([0, T ],Rd) is denoted by ⌫[0,T ].
Moreover, if p < 2 then this measure satisfies (4.19).

As a consequence, the law ⇧N of the empirical distribution of N iid copies of the
SDE (4.23) satisfies a LDP on Pp(C([0, T ],Rd)), with good rate function given by H(µ[0,T ]|⌫[0,T ]) Wang
et al. [2010]. Thus, if  is such that the functions ( t)t2[0,T ] satisfy the assumptions of
Theorem 4.2.7, the conditional law ⇧N (·|A ) satisfies a LDP with good rate function given
by

H(µ[0,T ]|⌫[0,T ])� inf
µ
0
[0,T ]2DI\A 

H(µ0[0,T ]|⌫[0,T ])

on DI\A , and as soon as this good rate function has a unique minimiser µ[0,T ], ⇧N (·|A )
converges weakly to �µ[0,T ]

. For such a minimiser, if  satisfies (B.3), Theorem 4.2.13 yields
the existence of � 2M+([0, T ]) such that

dµ[0,T ]

d⌫[0,T ]

�
x[0,T ]

�
=

1

Z
exp


�

Z

[0,T ]

� 

�µ
(µt, xt)�(dt)

�
, Z 2 (0,+1).

Starting from this expression, the goal of the present section is to express µ[0,T ] as the law
of the solution X [0,T ] to some SDE of the form

dXt = bt(Xt)dt+ �t(Xt)dBt, X0 ⇠ µ0, (4.24)
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Chapter 4. Gibbs principle with infinitely many constraints

and to express the drift coefficient bt and the probability measure µ0 in terms of the
original SDE (4.23). We shall actually work in the more general setting in which there
exist measurable functions c : [0, T ] ⇥ Rd

! R and  : [0, T ] ⇥ Rd
! R, and a positive

Radon measure � 2M+([0, T ]), such that the measure µ[0,T ] satisfies

dµ[0,T ]

d⌫[0,T ]

�
x[0,T ]

�
=

1

Z
exp


�

Z
T

0
ct(xt)dt�

Z

[0,T ]
 t(xt)�(dt)

�
, Z 2 (0,+1), (4.25)

which would thus allow us to take a nonzero interaction functional F into account. We
postpone the detail of our assumptions on c and  to (C.2) below, and first provide an
informal sketch of our argument.

Let us assume that � has a density (�t)0tT w.r.t. to the Lebesgue measure. Under
very weak regularity assumptions, [Léonard, 2022, Theorem 5.24] shows that µ[0,T ] is the
law of the solution to (4.24), with

bt(x) = bt(x) + at(x)↵t(x),

for at := �t�>t and a measurable ↵ : [0, T ]⇥ Rd
! Rd. Moreover,

↵t = �r't,
dµ0

d⌫0
(x) = Z�1e�'0(x),

where ' is the solution to the Hamilton-Jacobi equation (HJB)

@t't + bt ·r't �
1

2
|�>t r't|

2 +
1

2
Tr[atr

2't] = �ct �  t�t, 'T = 0, (4.26)

in a generalised sense. Formally, the Feynman-Kac formula tells that the solution of (4.26)
can be represented as

't(x) := � logE exp

 Z
T

t

cs(Z
t,x

s )ds+

Z

[t,T ]
 s(Z

t,x

s )�(ds)

�
,

where (Zt,x
s )tsT is the solution of dZt,x

s = bs(Z
t,x
s )ds + �s(Z

t,x
s )dBs, t  s  T , with

Zt,x

t
= x. We now prove an analogous of this result in a more classical sense, and without

assuming existence of a density for �.

Assumption (C.2) (Regularity of the coefficients of (4.26)). Assumption (C.1) holds with
p = 1,  , c : [0, T ]⇥ Rd

! R are measurable and locally bounded, and in addition:

(i) the function (t, x) 7!  t(x) is continuous;

(ii) uniformly in t 2 [0, T ], ct and  t are Lipschitz-continuous, and ��1
t

is bounded;

(iii) the families (x 7! rbt(x))0tT , (x 7! r�t(x))0tT , (x 7! rct(x))0tT , and
(x 7! r t(x))0tT are equi-continuous.

We now fix a positive Radon measure � 2M+([0, T ]). To make sense of the analogous
of (4.26) when � may not have a density, we rely on the integrated version

�'t +

Z
T

t

✓
bs ·r's �

1

2
|�>s r's|

2 +
1

2
Tr[asr

2's] + cs

◆
ds+

Z

[t,T ]
 s�(ds) = 0. (4.27)

If �({t}) 6= 0, an arbitrary choice has been made when considering integrals over [t, T ]
rather than (t, T ]. However, the set of atoms of � is at most countable; hence the choice of
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the interval does not matter if we only require equality Lebesgue-a.e. For approximation
and stability purposes, we introduce a specific notion of solution, which relies on the
following construction.

Under the assumptions made on � in (C.1)-(C.2), a consequence of [Rubio, 2011, The-
orem 2.1] is that for any 0 < s  T and any continuous ' : Rd

! R with linear growth,
the parabolic equation

(
@t't +

1
2Tr
⇥
atr2't

⇤
= 0, 0  t  s,

's = ',

has a unique solution ' 2 C([0, s]⇥ Rd) \C1,2((0, s)⇥ Rd) with linear growth. From this,
we define the evolution system (St,s)0tsT by

St,s['](x) = 't(x),

for any continuous ' : Rd
! R with linear growth, St,s['] being a C2 function with linear

growth as soon as t < s.

Definition 4.3.5. We say that a measurable ' : [0, T ]⇥Rd
! R is a mild solution of (4.27)

if for Lebesgue-a.e. t 2 [0, T ], x 7! 't(x) is C1, (t, x) 7! r't(x) is bounded measurable,
and for a.e. t 2 [0, T ],

't =

Z
T

t

St,s

⇥
bs ·r's �

1
2 |�
>

s r's|
2 + cs

⇤
ds+

Z

[t,T ]
St,s[ s]�(ds). (4.28)

This implies that x 7! 't(x) is C2 for Lebesgue-a.e. t.

The above definition is a natural extension of the Duhamel formula for perturbations of
a linear PDE, which was already used in Daudin [2023b]. Lebesgue-almost sure uniqueness
always holds for (4.27) in the sense of Definition 4.3.5 because the difference of two solutions
solves a classical linear parabolic equation without source term.

Theorem 4.3.6. Under (C.2), let µ[0,T ] be given by (4.25). Then, µ[0,T ] is the path-law
of a solution to the SDE

dXt = bt(Xt)dt� at(Xt)r't(Xt)dt+ �t(Xt)dBt, X0 ⇠ Z�1e�'0(x)⌫0(dx),

where 't is given by

't(x) := � logE exp

 Z
T

t

cs(Z
t,x

s )ds+

Z

[t,T ]
 s(Z

t,x

s )�(ds)

�
, (4.29)

where (Zt,x
s )tsT is the path-wise unique solution to

dZt,x

s = bs(Z
t,x

s )ds+ �s(Z
t,x

s )dBs, t  s  T, (4.30)

with Zt,x

t
= x. Moreover, ' is the mild solution of (4.27) in the sense of Definition 4.3.5.

Theorem 4.3.6 is proved in Section 4.5.2.

Remark 4.3.7. If one wants to apply Theorem 4.3.6 with  t(x) = � 
�µ

(µt, x) in order
to describe the measure µ[0,T ] obtained by Theorem 4.2.13, with a function  that satis-
fies (B.3), then the global Lipschitz assumption made on  t in (C.2) implies that � 

�µ
(µt, x)

must grow at most linearly in x. In the case of a linear constraint, where  (µ) = hµ, i
for some function  : Rd

! R, this implies that  must grow at most linearly in x. In this
case, and if  is continuous, then (B.3) is satisfied already for p = 1. Therefore, there is
no need to require (C.1) to hold with some p > 1 in the statement of (C.2).
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4.3.4 Gaussian examples with inequality constraint on the expectation

In this section, we provide examples of one-dimensional diffusion processes X[0,T ], for
which the results of Theorems 4.2.7 and 4.2.13 hold, with the linear inequality constraint
 (µ[0,T ]) = hµt, i, where we fix  (x) = x. In other words, we consider cases where the
conditional distribution of X1,N

[0,T ] given the event

8t 2 [0, T ],
1

N

NX

i=1

Xi,N

t
 0

converges as N ! +1 towards the measure µ[0,T ] with density w.r.t. to ⌫[0,T ] := L(X[0,T ])
given by

dµ[0,T ]

d⌫[0,T ]
(x[0,T ]) =

1

Z
exp

"
�

Z

[0,T ]
xt�(dt)

#
,

for some Lagrange multiplier � 2M+([0, T ]). Then by Theorem 4.3.6, µ[0,T ] is the law of
a corrected diffusion process X [0,T ] with modified drift and tilted initial condition. On our
examples, we are able to give explicit formulas for these corrections, as well as for �.

4.3.4.1 Time-inhomogeneous drifted Brownian motion

Let m : [0, T ] ! R be a C2 function such that m(0) = 0, ṁ � 0 and m̈  0, where
ṁ := d

dtm. Let ⌫[0,T ] be the path-law of the Gaussian process given by

dXt = ṁ(t)dt+ dBt, X0 ⇠ N (x0,�
2).

To avoid situations in which ⌫[0,T ] already satisfies the constraints, we assume that x0 +
m(T ) > 0 and � > 0. The corrected process given by Theorems 4.2.13-4.3.6 shall be the
solution to

dXt = ṁ(t)dt�r't(Xt)dt+ dBt, X0 ⇠ Z�1e�'0(x)⌫0(dx), (4.31)

where ' solves the HJB equation (4.27). In the current simple case, we can look for
solutions of (4.27) with r't independent of x. Several options appear, depending on the
function

m : t 7! x0 +m(t)� [�2 + t]ṁ(t).

Our assumptions on m make m non-decreasing.

1. If m(T ) < 0: we can verify that

�(dt) =
x0 +m(T )

�2 + T
�T (dt), r't(x) =

x0 +m(T )

�2 + T
,

satisfy the HJB equation (4.27), and that the process X [0,T ] given by (4.31) satisfies
X0 ⇠ N ( T

T+�2 (x0 � �2ṁ(T )),�2), E[Xt] < 0 for t 2 [0, T ), and E[XT ] = 0. From
Theorem 4.3.6 and the sufficient condition given by Theorem 4.2.17, this shows that
L(X [0,T ]) is indeed the corrected law µ[0,T ]. Both the velocity and the initial condition
are tilted by the effect of the multiplier at the final time.
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2. If m(0)  0  m(T ): let ⌧ be the first time at which m vanishes. We similarly obtain
a solution of (4.27) by considering

�(dt) = � [⌧ ,T ]m̈(t)dt+ ṁ(T )�T (dt), r't(x) =

(
ṁ(⌧), if t  ⌧ ,
ṁ(t), if t > ⌧ .

The related process X [0,T ] satisfies X0 ⇠ N (x0��2ṁ(⌧),�2), E[Xt] < 0 for t 2 [0, ⌧),
and E[Xt] = 0 for t 2 [⌧ , T ]. As previously, this shows that L(X [0,T ]) = µ[0,T ]. Both
the velocity and the initial condition are tilted. The continuous part of the multiplier
activates at the first time where E[Xt] vanishes. Its effect is to decrease the correction
r't(x) of the velocity, which is generated by the atom at the terminal time. The
process is corrected at the second order in time (the acceleration is modified), as it
is customary in control theory.

3. If m(0) > 0: similarly, we verify that the corrected process is given by (4.31) with

�(dt) =
x0 � �2ṁ(0)

�2
�0(dt)�m̈(t)dt+ṁ(T )�T (dt), r't(x) =

(
x0
�2 , at t = 0,

ṁ(t), if t > 0,

together with X0 ⇠ N (0,�2). The corrected process now satisfies E[Xt] = 0 at each
time. The atom at time 0 generates a discontinuity that pushes the initial law on
the constraint before starting the dynamics.

The transition between the different cases is continuous. Interestingly, � having a density
on (0, T ) is directly related to the (second order) regularity of the input. If we decrease
the C2 regularity of m, other atoms may appear within �.

4.3.4.2 Ornstein-Uhlenbeck process

We now assume that ⌫[0,T ] is the path-law of the Gaussian process given by

dXt = (1�Xt)dt+ dBt, X0 ⇠ N (x0,�
2).

To avoid situations in which ⌫[0,T ] already satisfies the constraints, we assume that 1 +

(x0� 1)e�T > 0 and � > 0. The corrected process shall still be the solution of (4.31) with
' solving the HJB equation (4.27). In this simple case, we can still look for affine solutions
of (4.27) with r't independent of x. As in Section 4.3.4.1, several options appear, now
depending on the functions

m⌧,� : t 2 R�0 7! 1 + (x0 � 1� �2�e�⌧ )e�t � �e�⌧ sinh(t),

for ⌧ � 0 and � 2 [0, 1]. Since e2tmt,1(t) is a second-order polynomial in et, we easily get
that x0  �2 implies the existence of a unique ⌧ > 0 such that m⌧ ,1(⌧) = 0. Using that
cosh(⌧) � 0, this implies that x0 � 1� �2e�⌧  0. We can then check that t 7! m⌧ ,1(t) is
increasing on [0, ⌧ ].

1. If x0  �2 and T < ⌧ : from m⌧ ,1(⌧) = 0, we get m⌧ ,1(T ) < 0. Since T < ⌧ , this
implies that mT,1(T ) < 0. Since we assumed that mT,0(T ) > 0, there exists a unique
�T 2 (0, 1) such that mT,�T (T ) = 0. Since etmT,�T (t) is a second-order polynomial
in et, we easily deduce that mT,�T (t) < 0 for every t 2 [0, T ). At this stage, we can
verify that

�(dt) = �T �T (dt), r't(x) = �T e
t�T ,
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satisfy the HJB equation (4.27). The process X [0,T ] given by (4.31) then satisfies
X0 ⇠ N (x0 � �T�2e�T ,�2), and E[Xt] = mT,�T (t) for every t 2 [0, T ]. From
Theorem 4.3.6 and the sufficient condition given by Theorem 4.2.17, this shows that
L(X [0,T ]) is indeed the corrected law µ[0,T ]. This situation is similar to the first case
in Section 4.3.4.1.

2. x0  �2 and ⌧  T : we obtain a solution of (4.27) by considering

�(dt) = t2[⌧,T ]dt+ �T (dt), r't(x) =

(
et�⌧ , if t  ⌧,
1, otherwise.

The related process X [0,T ] satisfies X0 ⇠ N (x0 � �2e�⌧ ,�2), E[Xt] = m⌧ ,1(t) for t 2
[0, ⌧ ], and E[Xt] = 0 for t 2 [⌧ , T ]. As previously, this shows that L(X [0,T ]) = µ[0,T ].
The continuous part of the multiplier activates at the first time where E[Xt] vanishes.
Its effect is to decrease the correction r't(x) of the velocity, which is generated by
the atom at the terminal time.

3. If x0 > �2: similarly, we verify that the corrected process is given by (4.31) with

�(dt) =
x0 � �2

�2
�0(dt)� dt+ �T (dt), r't ⌘ 1 for t > 0, X0 ⇠ N (x0,�

2).

As previously, the atom at time 0 generates a discontinuity that pushes the initial law
on the constraint before starting the dynamics. Then, the correction compensates
the +1 component of the velocity, so that E[Xt] = 0 for every t 2 [0, T ].

The transition between the different cases is continuous. Past the first vanishing of E[Xt],
the corrected process corresponds to a shifted Ornstein-Uhlenbeck process, whose new
stationary distribution is N (0,�2). Interestingly, Sections 4.3.4.1-4.3.4.2 show that quite
different behaviours can happen with specific transitions.

4.4 Proofs of the results of Section 4.2

4.4.1 Proofs of the results of Section 4.2.2

The proof of Theorem 4.2.7 relies on the following preliminary lemma.

Lemma 4.4.1 (Continuity sets). Under the assumptions of Theorem 4.2.7, for any open
set U in P�(E),

inf
µ2U\Å 

I(µ) = inf
µ2U\A 

I(µ).

Proof. Since U \ Å ⇢ U \ A , it is sufficient to show that the l.h.s. is lower than the
r.h.s. Let us fix µ in U \A . There is no loss of generality in assuming that µ 2 DI . Let µ̃
be given by the constraint qualification (A.5), and let µ" := (1� ")µ+ "µ̃. From (A.5)-(i),

8t 2 T ,  t(µ") < 0,

for every small enough " > 0. By (A.4), the mapping µ 2 P�(E) 7! supt2T  t(µ) is
continuous and µ" belongs to the pre-image of the open set (�1, 0), which is contained
in A . Therefore, for every " small enough, µ" 2 Å . Since µ" converges towards µ as
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"! 0 and U is open, we eventually get that µ" belongs to U \ Å for every small enough
". Moreover, by convexity of H,

I(µ") = H(µ"|⌫) + F(µ")  (1� ")H(µ|⌫) + "H(µ̃|⌫) + F(µ"),

and (A.5)-(ii) implies that

lim sup
"!0

H(µ"|⌫) + F(µ")  H(µ|⌫) + F(µ) = I(µ),

completing the proof.

We may now present the proof of Theorem 4.2.7.

Proof of Theorem 4.2.7. For any measurable subset A of P�(E),

log⇧N (A|A ) = log⇧N (A \A )� log⇧N (A ).

If A is closed, we write

log⇧N (A|A )  log⇧N (A \A )� log⇧N (Å ).

Since, by Lemma 4.2.6, A \A is closed and Å is open, we get that

lim sup
N!+1

N�1 log⇧N (A|A )  � inf
µ2A\A 

I(µ) + inf
µ2Å 

I(µ),

using the LDP satisfied by (⇧N )N�1. Similarly, if A is open,

log⇧N (A|A ) � log⇧N (A \ Å )� log⇧N (A ),

and the LDP satisfied by (⇧N )N�1 yields

lim inf
N!+1

N�1 log⇧N (A|Å ) � � inf
µ2A\Å 

I(µ) + I .

We get the desired large deviation upper bound by using Lemma 4.4.1 with U = P�(E),
and the lower bound using Lemma 4.4.1 with U = A.

We now turn to the proof of Proposition 4.2.8. We start with an elementary measure
theoretical result.

Lemma 4.4.2. Let (µk)k�1 be a sequence that weakly converges towards µ in P(E). Let
(fk

t )t2T , k�1 be an equi-continuous family in C(E,R), such that

8x 2 E, sup
t2T

|fk

t (x)� ft(x)| ����!
k!+1

0,

for some (necessarily equi-continuous) family (ft)t2T in C(E,R). If the following uniform
integrability criterion holds

sup
t2T , k�1

Z

E

|ft| |ft|>Mdµ+

Z

E

|fk

t | |fk
t |>M

dµk �����!
M!+1

0,

then
sup
t2T

����
Z

E

fk

t dµk �

Z

E

ftdµ

���� ����!
k!+1

0.
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Proof. Since E is separable, the Skorokhod representation theorem provides a probability
space (⌦,F ,P) together with a sequence (Xk)k�1 of random variables on it with Xk ⇠ µk

that P-a.s. converges towards some X ⇠ µ. As a consequence:

sup
t2T

����
Z

E

fk

t dµk �

Z

E

ftdµ

����  E
⇥
sup
t2T

|fk

t (X
k)� ft(X)|

⇤
. (4.32)

Writing

sup
t2T

|fk

t (X
k)� ft(X)|  sup

t2T

|fk

t (X
k)� fk

t (X)|+ sup
t2T

|fk

t (X)� ft(X)|,

we have by equi-continuity that, a.s.,

sup
t2T

|fk

t (X
k)� fk

t (X)|  sup
t2T ,k0�1

|fk
0

t (Xk)� fk
0

t (X)| ����!
k!+1

0,

while by assumption, a.s.,

sup
t2T

|fk

t (X)� ft(X)| ����!
k!+1

0.

As a consequence, defining

Mk := sup
t2T

|fk

t (X
k)| _ |ft(X)|,

we get, by dominated convergence, for any M > 0,

E
⇥
sup
t2T

|fk

t (X
k)� ft(X)| MkM

⇤
����!
k!+1

0.

On the other hand, the uniform integrability assumption implies that

sup
k�1

E
⇥
sup
t2T

|fk

t (X
k)� ft(X)| Mk>M

⇤
�����!
M!+1

0,

concluding the proof.

We may now prove Proposition 4.2.8.

Proof of Proposition 4.2.8. Let (µk)k�1 be a sequence that weakly converges towards µ in
P�(E). The condition (i) in Proposition 4.2.8 allows us to apply Lemma 4.A.4 to get, for
any t 2 T :

 t(µk)� t(µ) =

Z 1

0

⌧
µk � µ,

� t

�µ
((1� r)µ+ rµk)

�
dr =:

Z

E

fk

t dµk �

Z

E

ftdµ,

with

fk

t (x) :=

Z 1

0


� t

�µ
((1� r)µ+ rµk, x)�

⌧
µ,
� t

�µ
((1� r)µ+ rµk)

��
dr,

ft(x) :=
� t

�µ
(µ, x)�

⌧
µ,
� t

�µ
(µ)

�
.

We shall check that the functions fk
t and ft satisfy the assumptions of Lemma 4.4.2,

which thus yields

sup
t2T

���� t(µk)� t(µ)

���� ����!
k!+1

0
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and completes the proof. We first show that the family (fk
t )t2T , k�1 is equi-continuous.

Let (xl)l�1 be a sequence of elements of E converging to some x 2 E. For any t 2 T and
k � 1,

|fk

t (xl)� fk

t (x)| =

����
Z 1

0


� t

�µ
((1� r)µ+ rµk, xl)�

� t

�µ
((1� r)µ+ rµk, x)

�
dr

���� ,

so that, setting K = [k�1{(1� r)µ+ rµk, r 2 [0, 1]} which is easily seen to be compact,

sup
t2T ,k�1

|fk

t (xl)� fk

t (x)|  sup
t2T ,⇢2K

����
� t

�µ
(⇢, xl)�

� t

�µ
(⇢, x)

���� ����!
l!+1

0,

thanks to the condition (ii) in Proposition 4.2.8. Let us now show that fk
t (x) ! ft(x),

uniformly in t 2 T . For any x 2 E, we have

sup
t2T

���fk

t (x)� ft(x)
��� 

Z 1

0
[%k,r(x) + hµ, %k,ri]dr,

with
%k,r(x) := sup

t2T

����
� t

�µ
((1� r)µ+ rµk, x)�

� t

�µ
(µ, x)

���� .

The condition (iii) in Proposition 4.2.8 implies that, for any r 2 [0, 1] and x 2 E,

%k,r(x) ����!
k!+1

0.

Since, in addition, the condition (i) in Proposition 4.2.8 yields %k,r(x)  2D 
K
[1+�(x)] with

the same compact set K as above, we deduce from the dominated convergence theorem
that Z 1

0
[%k,r(x) + hµ, %k,ri]dr ����!

k!+1
0.

It remains to check the uniform integrability condition of Lemma 4.4.2. The latter easily
follows from the condition (i) in Proposition 4.2.8 and the fact that, from [Bogachev and
Ruas, 2007, Theorem 4.5.6], the weak convergence of µk in P�(E) implies that

sup
k�1

Z

E

� �>Mdµk �����!
M!+1

0,

so the proof is completed.

4.4.2 Proofs of the results of Section 4.2.3

As a preliminary step for the proof of Theorem 4.2.13, we first show that any minimiser
for (4.8) is also a minimiser for a linearised version of this problem.

Lemma 4.4.3 (Linearisation of F and  t). Let µ be a minimiser for (4.8) at which the
regularity condition (A.6) and the constraint qualification (A.7) hold. Let "̃ > 0 be given
by (A.7)-(v).

1. For any µ 2 DI \A
⇣ that satisfies

8t 2 T ,  t(µ) + "̃

⌧
µ� µ,

� t

�µ
(µ)

�
 0, (4.33)

we have ⌧
µ,

����log
dµ

d⌫

����

�
< +1.
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2. The measure µ is a minimiser for

inf
µ2DI\A⇣ s.t. (4.33) holds

⌧
µ, log

dµ

d⌫
+
�F

�µ
(µ)

�
,

and the minimum value is H(µ|⌫).

Proof. Let "̃ be given by (A.7)-(v). Let µ be any measure in DI \A
⇣ that satisfies (4.33)

with a strict inequality, namely

8t 2 T ,  t(µ) + "̃

⌧
µ� µ,

� t

�µ
(µ)

�
< 0. (4.34)

For " in (0, "̃], we define the probability measure µ" := (1 � ")µ + "µ, which belongs to
DI \A

⇣ by (A.6). By Remark 4.2.12 and the choice of µ, we have

�⌘ := sup
t2T

⇢
 t(µ) + "̃

⌧
µ� µ,

� t

�µ
(µ)

��
< 0.

Moreover, by (A.7)-(ii), we have, for every small enough " and every t 2 T ,

 t(µ")   t(µ) + "

✓⌧
µ� µ,

� t

�µ
(µ)

�
+

⌘

2"̃

◆


"

"̃

✓
 t(µ) + "̃

⌧
µ� µ,

� t

�µ
(µ)

�
+
⌘

2

◆
 �

"⌘

2"̃
,

where we have used the fact that "  "̃ and  t(µ)  0, for any t 2 T , at the second line.
This shows that µ" 2 A for every small enough ".

Step 1. Linearisation. For small enough ", µ" is admissible for (4.8), hence

H(µ|⌫) + F(µ)  H(µ"|⌫) + F(µ") < +1,

by optimality of µ. We then divide by " and we send it to 0. Using (A.6),

"�1[F(µ")� F(µ)] ���!
"!0

⌧
µ� µ,

�F

�µ
(µ)

�
,

and we deduce from Lemma 4.A.5 that

0 

Z

E

log
dµ

d⌫
dµ�H(µ|⌫) +

⌧
µ� µ,

�F

�µ
(µ)

�
,

the integral belonging to R [ {�1}. However H(µ|⌫) < +1, hence the sign condition
gives the finiteness of the integral: we have proved that the first part of Lemma 4.4.3 holds
under the condition (4.34). Moreover, recalling that hµ, �F

�µ
(µ)i = 0, we conclude that

H(µ|⌫)  inf
µ2DI\A⇣ s.t. (4.34) holds

⌧
µ, log

dµ

d⌫
+
�F

�µ
(µ)

�
.

Step 2. Closure. Let now µ be any measure in DI \A
⇣ which satisfies (4.33). Let µ̃ be

given by (A.7)-(v). For " in (0, 1], µ" := (1� ")µ+ "µ̃ belongs to DI \A
⇣ from (A.6), and

since, for any t 2 T ,

 t(µ) + "̃

⌧
µ" � µ,

� t

�µ
(µ)

�

= (1� ")

✓
 t(µ) + "̃

⌧
µ� µ,

� t

�µ
(µ)

�◆
+ "

✓
 t(µ) + "̃

⌧
µ̃� µ,

� t

�µ
(µ)

�◆
,
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then µ" satisfies (4.34). Since µ̃ also satisfies (4.34), we deduce from Step 1. that
hµ, | log dµ

d⌫ |i < +1, which is the first part of Lemma 4.4.3. Moreover, using the con-
clusion of Step 1. applied to µ", we get

H(µ|⌫) 

⌧
µ", log

dµ

d⌫
+
�F

�µ
(µ)

�

= (1� ")

⌧
µ, log

dµ

d⌫
+
�F

�µ
(µ)

�
+ "

⌧
µ̃, log

dµ

d⌫
+
�F

�µ
(µ)

�
.

Sending " to 0 eventually yields
⌧
µ, log

dµ

d⌫
+
�F

�µ
(µ)

�
= H(µ|⌫) 

⌧
µ, log

dµ

d⌫
+
�F

�µ
(µ)

�
,

which completes the proof of the second part of Lemma 4.4.3.

We may now present the proof of Theorem 4.2.13.

Proof of Theorem 4.2.13. Since, by definition, µ 2 DI , µ is absolutely continuous w.r.t. ⌫.
We fix a (measurable) density dµ

d⌫ and define

S :=

⇢
x 2 E,

dµ

d⌫
(x) > 0

�

which by construction is measurable and satisfies µ(S) = 1.

Step 1. Absolute continuity. Let µ be any measure in DI \ A
⇣ . From Remark 4.2.12,

t 7!  t(µ) + "̃hµ � µ, � t
�µ

(µ)i is continuous on the compact set T , hence bounded. As a
consequence, µ̃" := (1� ")µ̃+ "µ satisfies (4.34) for " > 0 small enough, where µ̃ is given
by the constraint qualification (A.7)-(v). Lemma 4.4.3-1 applied to µ̃" then implies thatR
E
log dµ

d⌫ dµ̃" > �1, hence dµ
d⌫ is µ̃"-a.s. positive and then µ-a.s. positive. Any µ 2 DI\A

⇣

is thus absolutely continuous w.r.t. µ, or equivalently µ(S) = 1, proving Theorem 4.2.13-1.
This holds in particular for µ̃.

Step 2. Computation of the density. Let us consider the map

� :

(
E ! R,

x 7! log dµ
d⌫ (x) +

�F

�µ
(µ, x)�H(µ|⌫)

which belongs to L1(E, dµ). We notice that � is finite on S. From Lemma 4.4.3-1, � also
belongs to L1(E, dµ̃). We define C as the convex cone generated by the set

{±⇣s, s 2 S} [

⇢
� t(µ)� "̃

� t

�µ
(µ), t 2 T

�
,

i.e. the elements of C are the (finite) linear combinations with non-negative coefficients of
elements from the above set. We then set C+ := C+Cb(E,R+). Let us show that � belongs
to the closure of C+ in L1(E, dµ) \L1(E, dµ̃). If it were not the case, using the geometric
Hahn-Banach theorem [Barbu and Precupanu, 2012, Corollary 4.5], � could be strictly
separated from the closure of C+, which is a closed convex set, by an affine hyperplane.
Since L1(E, dµ) \ L1(E, dµ̃) is dense in L1(E, dµ) and L1(E, dµ̃), the topological dual of
L1(E, dµ)\L1(E, dµ̃) is L1(E, dµ)+L1(E, dµ̃) from [Bergh and Löfström, 2012, Theorem
2.7.1]. The strict separation thus provides (h1, h2) 2 L1(E, dµ)⇥ L1(E, dµ̃) such that

Z

E

�h1 dµ+

Z

E

�h2 dµ̃ < inf
'2C+

Z

E

'h1 dµ+

Z

E

'h2 dµ̃. (4.35)
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The infimum on the r.h.s. is non-positive because the function ' ⌘ 0 belongs to C
+. If

this infimum were negative, it would be �1 because, for every ' 2 C
+, ↵' 2 C

+ for every
↵ > 0. Since the l.h.s. of (4.35) is finite, the infimum on the r.h.s. thus equals 0.

From Step 1., µ̃ is absolutely continuous w.r.t. µ, so that we can define

h := h1 + h2
dµ̃

dµ
2 L1(E, dµ).

Since C
+ contains Cb(E,R+) and the r.h.s. of (4.35) is non-negative (it equals 0), h is µ-

a.s. non-negative. Up to modifying the bounded functions h1 and h2, we can then assume
that h1 and h2 are µ-a.s. non-negative. Similarly, (4.35) can be divided by any positive
constant; hence we can assume that

R
E
h dµ = 1.

Let µh denote the measure with density h w.r.t. µ. Let µ1
h

(resp. µ2
h
) denote the

probability measure with density w.r.t. µ (resp. µ̃) proportional to h1 (resp. h2). From
the definition of h, µh is a convex combination of µ1

h
and µ2

h
. Since µ1

h
(resp. µh

2) has a
bounded density w.r.t. to µ (resp. µ̃) and H(µ|⌫) (resp. H(µ̃|⌫)) is finite, this implies
that H(µh|⌫) is finite. Using the same argument and (A.6)-(A.8), we further get that µh

belongs to DI . For every s 2 S, we now use that the r.h.s. of (4.35) is non-negative when
considering the test functions ' = ⇣s and ' = �⇣s, which belong to C

+. This shows that
hµh, ⇣si = 0 for every s 2 S, so that µh 2 A

⇣ . We can thus apply Lemma 4.4.3-2 to µh,
yielding

0 

Z

E

log
dµ

d⌫
dµh +

⌧
µh,

�F

�µ
(µ)

�
�H(µ|⌫) =

Z

E

h� dµ.

Since the r.h.s. of (4.35) is 0, this gives the desired contradiction.

Step 3. Lagrange multiplier. From Step 2., there exists a sequence ((fk, gk))k�1 in
C ⇥ Cb(E,R+) such that

fk + gk
L
1(µ)\L1(µ̃)
��������!

k!+1
�.

By definition of C,
R
E
fk dµ � 0 because µ 2 A

⇣

 . Since
R
E
� dµ = 0, this yields

kgkkL1(µ) =

Z

E

gk dµ ����!
k!+1

0,

so that � belongs to the closure of C in L1(E, dµ). By definition of C, each fk can be
decomposed as

fk = �⇠k �
nkX

i=1

�i,k


 ti,k(µ) + "̃

� ti,k

�µ
(µ)

�
, (4.36)

where ⇠k 2 Span(⇣s, s 2 S), {ti,k, 1  i  nk} is a finite subset of T and the �i,k are
non-negative real numbers. We then define

�k :=
nkX

i=1

�i,k�ti,k 2 M+(T ).

By Remark 4.2.12, we have

�⌘ := sup
t2T

⇢
 t(µ) + "̃

⌧
µ̃� µ,

� t

�µ
(µ)

��
< 0.

Hence, integrating (4.36) against µ̃ and using that gk � 0,
Z

E

[fk + gk] dµ̃ =

Z

E

gkdµ̃�

Z

T

 t(µ) + "̃

⌧
µ̃� µ,

� t

�µ
(µ)

�
�k(dt) � ⌘�k(T ).
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Since
R
E
[fk + gk] dµ̃ converges, this shows that (�k(T ))k�1 is bounded. Up to extracting

a sub-sequence, we can assume that (�k(T ))k�1 converges towards some �̃(T ) � 0. If
�̃(T ) = 0, we set �̃ := 0. Otherwise, ( �k

�k(T ))k2N is a sequence of probability measures over
the compact set T ; hence, it is relatively compact by the Prokhorov theorem [Billingsley,
2013, Theorem 5.1]. Consequently, we can always assume that (�k)k2N weakly converges
towards some �̃ 2 M+(T ) with mass �̃(T ). Thus, for any x 2 E, by the continuity
assumptions (A.7)-(i,iii),

Z

T


 t(µ) + "̃

� t

�µ
(µ, x)

�
�k(dt) ����!

k!+1

Z

T


 t(µ) + "̃

� t

�µ
(µ, x)

�
�̃(dt),

and by the domination (A.7)-(iv), this convergence holds in L1(E, dµ). Since fk converges
in L1(E, dµ), (4.36) now shows that ⇠k converges in L1(E, dµ) towards some ⇣ in the
closure of Span(⇣s, s 2 S). As a consequence, we may choose ⇣ such that, for all x 2 S,

�(x) = �⇣(x)�

Z

T


 t(µ) + "̃

� t

�µ
(µ, x)

�
�̃(dt). (4.37)

Since ⇠k 2 Span(⇣s, s 2 S) and µ 2 A
⇣ , we have

R
E
⇠k dµ = 0; hence we get

R
E
⇣ dµ =

0, by L1(E, dµ)-convergence of ⇠k to ⇣. Moreover,
R
E
� dµ =

R
E

�F

�µ
(µ) dµ = 0 andR

E

� t
�µ

(µ) dµ = 0, so that integrating (4.37) against µ yields
Z

T

 t(µ) �̃(dt) = 0.

Since  t(µ)  0 for every t 2 T , we get  t(µ) = 0 for �̃-a.e. t 2 T . Setting � := "̃�̃, this
proves Theorem 4.2.13-3. We now take the exponential of (4.37) to obtain that

8x 2 S,
dµ

d⌫
(x) = eH(µ|⌫) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
,

while dµ
d⌫ (x) = 0 for x 62 S. Since

R
E

dµ
d⌫ d⌫ = 1, we get that

Z :=

Z

E
S
(x) exp


�
�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
⌫(dx) = e�H(µ|⌫)

2 (0,1).

This implies that µ is the Gibbs measure (4.13), completing the proof of Theorem 4.2.13-
2.

Remark 4.4.4 (Bound on the Lagrange multiplier). The computations in Step 3. show
that

�(T )  "̃⌘�1
⌧
µ̃, log

dµ

d⌫
+
�F

�µ
(µ)

�
� "̃⌘�1H(µ|⌫),

where ⌘ := � supt2T [ t(µ) + "̃hµ̃� µ, � t
�µ

(µ)i]. This gives a bound on the mass of �.

4.4.3 Proofs of the results of Section 4.2.4

Proof of Theorem 4.2.17. Let µ 2 DI\A
⇣

 . Since H(µ|⌫) <1 and ⌫(S) = 1, [Nutz, 2021,
Lemma 1.4-(b)] ensures that the identity

H(µ|⌫)�H(µ|µ) =

Z

E


� logZ �

�F

�µ
(µ, x)� ⇣(x)�

Z

T

� t

�µ
(µ, x)�(dt)

�
dµ(x)
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holds in [�1,+1). The differentiability assumption (i) on F and  t, together with
domination (ii) and the assumption (iv) on ⇣ imply that

⌧
µ,

����
�F

�µ
(µ)

����

�
<1,

⌦
µ, |⇣|

↵
<1,

Z

T

⌧
µ,

����
� t

�µ
(µ)

����

�
�(dt) <1,

which shows that H(µ|µ) <1 and that

H(µ|⌫)�H(µ|µ) = � logZ �

⌧
µ,
�F

�µ
(µ)

�
�

Z

T

⌧
µ,
� t

�µ
(µ)

�
�(dt),

since hµ, ⇣i = 0 from (iv). On the other hand, using that µ is a Gibbs measure from (iii),

H(µ|⌫) = � logZ �

⌧
µ,
�F

�µ
(µ)

�
�

Z

T

⌧
µ,
� t

�µ
(µ)

�
�(dt).

We deduce that

H(µ|⌫) = H(µ|µ) +H(µ|⌫) +

⌧
µ� µ,

�F

�µ
(µ)

�
+

Z

T

⌧
µ� µ,

� t

�µ
(µ)

�
�(dt).

By the convexity assumption (A.9), the differentiability (i) of F and  t at µ, and (4.51),

F(µ) � F(µ) +

⌧
µ� µ,

�F

�µ
(µ)

�
,  t(µ) �  t(µ) +

⌧
µ� µ,

� t

�µ
(µ)

�
.

Since µ is admissible and the slackness condition (4.15) holds, we have
⌧
µ� µ,

� t

�µ
(µ)

�
  t(µ)� t(µ)  0, for �(dt)-a.e. t 2 T ,

so that Z

T

⌧
µ� µ,

� t

�µ
(µ)

�
�(dt)  0

and therefore
H(µ|⌫) + F(µ) � H(µ|µ) +H(µ|⌫) + F(µ),

which concludes because H(µ|µ) � 0.

Proof of Proposition 4.2.19. For any " > 0, the minimisation problem (4.16) is the same
as (4.8), with  t replaced by  t � ". Therefore, since F is bounded from below, Lem-
mata 4.2.4 and 4.2.6 for (4.16) show that this problem admits a minimiser µ", which is
unique by convexity of F and  t � ". Since A

⇣

 ," ⇢ A
⇣

 ,"⇤
for " 2 [0, "⇤], the regular-

ity assumptions (A.6), (A.7)-(i,ii,iii,iv) and (A.8) are satisfied at µ" for  t � ". Last,
Lemma 4.2.18 trivially implies that the qualification condition (A.7)-(v) holds for  t � ",
therefore Theorem 4.2.13 applies to µ". This proves Theorem 4.2.17-1.

For " 2 [0, "⇤] and (µ,�) 2 A
⇣
⇥M+(T ), we define

L
"(µ,�) := I(µ) +

Z

T

[ t(µ)� "]�(dt).

By the convexity assumption (A.9) and (4.51), for any (µ,�) 2 A
⇣
⇥M+(T ),

 t(µ) �  t(µ") +

⌧
µ� µ",

� t

�µ
(µ")

�
,
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and by the domination assumption (A.7)-(iv) for µ", there is D " 2 [0,1) such that
Z

T

����

⌧
µ� µ",

� t

�µ
(µ")

������(dt)  �(T )D " hµ, 1 + �i.

We deduce that

L
"(µ,�) � H(µ|⌫) + inf F +

Z

T

[ t(µ")� "]�(dt)� �(T )D " hµ, 1 + �i.

By the continuity assumption (A.7)-(i) for µ", the integral on the r.h.s. is finite, and by the
dual representation for entropy (4.4), H(µ|⌫)� �(T )D " hµ, 1 + �i is bounded from below,
uniformly in µ 2 P�(E). We conclude that, for any � 2M+(T ),

inf
µ2A⇣

L
"(µ,�) > �1.

Moreover, it follows from the semi-continuity assumption (A.3), the convexity (A.9), (4.51)
and Fatou’s lemma that µ 7!

R
T
[ t(µ) � "]�(dt) is lower semi-continuous on P�(E).

Therefore, since F is bounded from below, by Lemma 4.2.4, the level sets of µ 7! L
"(µ,�)

are compact in P�(E). Since A
⇣ is closed by Lemma 4.2.6, we deduce that there is a

minimiser for infµ2A⇣ L
"(µ,�), and this minimiser does not depend on " because of the

shape L
". Moreover, " 7! infµ2A⇣ L

"(µ,�) is continuously differentiable with constant
derivative ��(T ).

The assumptions on ⇣" and S" now allow us to use the same arguments as in the proof
of Theorem 4.2.17 to get that

inf
µ2A⇣

L
"(µ,�") = L

"(µ",�"),

which then yields that sup� infµ L"(µ,�) is reached at �" and takes the value L
"(µ",�") =

I
⇣

 ,". The envelope theorem [Milgrom and Segal, 2002, Theorem 2] now states that " 7!
I
⇣

 ," is absolutely continuous with derivative a.e. equal to ��"(T ).
To show that �

"
(T ) is bounded from above uniformly in ", we recall that, using

Lemma 4.2.18 and Remark 4.4.4,

�"(T )  ⌘�1
⌧
µ̃, log

dµ"
d⌫

+
�F

�µ
(µ")

�
,

where
⌘ := � sup

t2T

 t(µ) +

⌧
µ̃� µ, � t

�µ
(µ)

�
.

By convexity of  , the bound still holds with ⌘ := � supt2T  t(µ̃), which is positive from
(A.7)-(i) and does not depend on ". Since H(µ̃|⌫) is finite, [Nutz, 2021, Lemma 1.4-(b)]
yields ⌧

µ̃, log
dµ"
d⌫

�
 H(µ̃|⌫) < +1,

while using the convexity (A.9) and (4.51),
⌧
µ̃,
�F

�µ
(µ")

�
 F(µ̃)� F(µ")  F(µ̃)� inf F < +1.

We therefore deduce that there exists Cstab 2 [0,1) such that for any " 2 [0, "⇤], �"(T ) 
Cstab. This yields the upper bound in (4.17), while the lower bound simply follows from
the fact that A ⇢ A ,".
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Remark 4.4.5 (Towards improved bounds on �"). The mass of �" should be very small
in regions where  t(µ") = " and  t(µ0) < 0, because the "-relaxed problem should not
correct much when the non-relaxed problem needs no correction. This can been seen by
writing the Lagrangian duality: we have shown in the proof of Proposition 4.2.19 that µ"
is a minimiser for

inf
µ2A⇣

I(µ) +

Z

T

[ t(µ)� "]�
"
(dt).

Let us use µ0 as a competitor for this problem: using the complementary slackness (4.15)
for µ", we get

�

Z

T

 t(µ0)�
"
(dt)  I(µ0)� I(µ")� "�

"
(T ),

and the r.h.s. is negligible in front of " because d
d"I(µ") = ��

"
(T ). However, deducing

local bounds on �
" from this seems non-obvious.

Proof of Lemma 4.2.20. From (A.10)-(vii), there exists µ̃ 2 DI such that supt2T  t(µ̃) <
0. For M > 1, let us define the probability measure µ̃M by

dµ̃M

d⌫
(x) :=

1

ZM


dµ̃

d⌫
(x) ^M

�
, where ZM :=

Z

E


dµ̃

d⌫
(x) ^M

�
d⌫(x) 2 (0,1).

By dominated convergence, µ̃M converges towards µ̃ in P�(E) as M ! +1. Using the
continuity assumption (A.10)-(vi), this implies that supt2T  t(µ̃M ) < 0, for every large
enough M . For every small enough " > 0, the Lusin theorem for Borel measures (see e.g.
[Bogachev and Ruas, 2007, Theorem 7.1.13]) provides a closed set CM," such that dµ̃M

d⌫ |CM,"

is continuous and ⌫(E\CM,") < ". The Tietze-Urysohn extension theorem [Munkres, 2018,
Theorem 35.1] then provides a continuous ⇢M," : E ! [0,M/ZM ] that coincides with dµ̃M

d⌫

on CM,". In particular, ⇢M," converges to dµ̃M

d⌫ , ⌫-a.e., as " ! 0. We then define the
probability measure µ̃M," by

dµ̃M,"

d⌫
(x) :=

1

ZM,"

["+ ⇢M,"(x)], where ZM," :=

Z

E

["+ ⇢M,"(x)]d⌫(x) 2 (0,+1).

By dominated convergence, µ̃M," converges to µ̃M in P�(E), as " ! 0. Using (A.10)-(vi)
again, we deduce that supt2T  t(µ̃M,") < 0, for every small enough ". From now on, we
fix (M, ") such that this property holds. Let µ̃? denote the related measure µ̃M,", and let
%? denote its density w.r.t. ⌫, which is positive, continuous and bounded.

For any k � 1, we define the probability measure µ̃k by

dµ̃k

d⌫k
:=

1

Zk

%?(x), where Zk :=

Z

E

%?(x)d⌫k(x) 2 (0,+1).

Since ⌫k converges to ⌫ in P�(E) from (A.10)-(iv), and %? is continuous and bounded,
µ̃k converges to µ̃? in P�(E). Similarly, H(µ̃k|⌫k) converges towards H(µ̃?|⌫); hence
(H(µ̃k|⌫k))k�1 is bounded. Since %? is bounded, (A.10)-(iii) gives that µ̃k 2 DIk . We
now write

sup
t2T

 t,k(µ̃k) 

����sup
t2T

 t,k(µ̃k)� sup
t2T

 t,k(µ̃
?)

����+ sup
t2T

 t,k(µ̃
?).

From (A.10)-(vi), the first term on the r.h.s. vanishes as k ! +1. From (A.10)-(v), the
limsup of the second term is lower than supt2T  t(µ̃?). Since this last quantity is negative
by construction of µ̃?, this completes the proof.
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Proof of Theorem 4.2.21-1. From (A.10), Lemma 4.2.20 and the regularity assumptions
(A.11)-(i,ii), µk satisfies the assumptions of Theorem 4.2.13, for every large enough k. As
a consequence, µk has the Gibbs form (4.13)-(4.15) for some �k 2M+(T ). It remains to
show that (�k)k�1 is weakly pre-compact. Using the Prokhorov theorem as in the proof of
Theorem 4.2.13, it is sufficient to show that (�k(T ))k�1 is bounded. Let (µ̃k)k�k0 be given
by Lemma 4.2.20. Using Remark 4.4.4,

�k(T )  ⌘�1
k

⌧
µ̃k, log

dµk

d⌫k
+
�Fk

�µ
(µk)

�
,

where ⌘k := � supt2T  t,k(µk) + hµ̃k � µk,
� t,k

�µ
(µk)i. By convexity of  t,k and (4.51), the

bound still holds with ⌘ := � supk�k0 supt2T  t,k(µ̃k) instead of ⌘k, which is positive by
Lemma 4.2.20 and independent of k. By optimality of µk, [Nutz, 2021, Lemma 1.4-(b)]
gives the estimate ⌧

µ̃k, log
dµk

d⌫k

�
 H(µ̃k|⌫k),

and (H(µ̃k|⌫k))k�k0 is bounded from Lemma 4.2.20. The bound on (H(µ̃k|⌫k))k�k0 to-
gether with the dual representation for entropy (4.4), the domination (A.11)-(iii) on �Fk

�µ
(µk),

and the exponential integrability (A.10)-(iv) then give that hµ̃k,
�Fk
�µ

(µk)i is bounded uni-
formly in k. This shows that (�k(T ))k�1 is indeed bounded.

Proof of Theorem 4.2.21-2. For k � 1, we set

Pk(x) := exp


�
�Fk

�µ
(µk, x)�

Z

T

� t,k

�µ
(µk, x)�k(dt)

�
, Zk :=

Z

E

Pkd⌫k,

so that dµk
d⌫k

= Z
�1
k Pk. Using the domination (A.11)-(iii) and the bound on (�k(T ))k�1

given by Theorem 4.2.21-1, there exist DP ,� > 0 such that

8x 2 E, 8k � 1, (DP )�1 exp[���(x)]  Pk(x)  DP exp[��(x)]. (4.38)

Since (⌫k)k�1 weakly converges to ⌫, the lower bound in (4.38) shows that (Z
�1
k )k�1 is

bounded. Since (⌫k)k�1 converges in P�(E), it is a tight sequence. Using the upper bound
in (4.38) and the exponential integrability (A.10)-(iv), we deduce that (µk)k�1 is also tight,
and thus pre-compact in P(E). The same argument yields

lim
M!1

sup
k�1

Z

��M

� dµk = 0,

which eventually gives that (µk)k�1 is pre-compact in P�(E). Up to re-indexing, we can
assume that (µk)k�1 converges towards some µ1 in P�(E), and that (�k)k�1 weakly con-
verges towards some �1 2M+(T ). From (A.11)-(iv), µ1 2 DI .

We now show that, for all x 2 E, Pk(x) converges towards

P1(x) := exp


�
�F

�µ
(µ1, x)�

Z

T

� t

�µ
(µ1, x)�1(dt)

�
.

The convergence of �Fk
�µ

(µk, x) to �F

�µ
(µ1, x) is given by (A.11)-(iv). Besides, for every

x 2 E,
����
Z

T

� t,k

�µ
(µk, x)�k(dt)�

Z

T

� t

�µ
(µ1, x)�1(dt)

����

 �k(T ) sup
t2T

����
� t,k

�µ
(µk, x)�

� t

�µ
(µ1, x)

����+
����
Z

T

� t

�µ
(µ1, x)[�k(dt)� �1(dt)]

����,
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and the second term goes to 0 using the weak convergence of (�k)k�1, because t 7!
� t
�µ

(µ1, x) is continuous using (A.11)-(iv). Since (�k(T ))k�1 is bounded, the point-wise
convergence to 0 of the first term (along the considered sub-sequence) then follows from
(A.11)-(iv).

Let us show that for any bounded continuous ' : E ! R,
Z

E

'Pkd⌫k ����!
k!+1

Z

E

'P1d⌫. (4.39)

To do so, we set fk := 'Pk. The upper bound in (4.38) and the equi-continuity assumption
(A.11)-(iv) w.r.t. x give that (fk)k�1 is equi-continuous. Moreover, the upper bound in
(4.38) and the integrability assumption (A.10)-(iv) ensure that

sup
k�1

Z

E

|fk|�M
|fk|d⌫k �����!

M!+1
0.

Lemma 4.4.2 (with no dependence on t) then provides (4.39). Taking ' = 1 further shows
that Zk converges to Z1 :=

R
E
P1d⌫.

We now write

sup
t2T

 t(µ1) =
⇥
sup
t2T

 t(µ1)� sup
t2T

 t,k(µk)
⇤
+ sup

t2T

 t,k(µk).

By (A.11)-(iv), the first term on the r.h.s. vanishes as k ! +1. By definition of µk, the
second term is non-positive. Therefore, supt2T  t(µ1)  0. Using (A.11)-(iv) and the
bound on (�k(T ))k�1,

0 =

Z

T

 t,k(µk)�k(dt) ����!
k!+1

Z

T

 t(µ1)�1(dt),

where we also used that t 7!  t(µ1) is continuous from (A.11)-(iv). This shows that
(µ1,�1) satisfies (4.13)-(4.15). Since µ1 2 DI from (A.11)-(iv), Theorem 4.2.17 now
proves that µ1 is the unique minimiser µ of I in DI \ A . In particular, µ satisfies
(4.13)-(4.15) for any limit point �1 of (�k)k�1. Since µ1 was any limit point of (µk)k�1,
this finally proves the convergence of the full sequence (µk)k�1 towards µ.

4.5 Proofs of the results of Section 4.3

4.5.1 Proof of Theorem 4.3.3

With the family of functions (⇣s)s2S introduced after the statement of Theorem 4.3.3, the
minimisation problem (4.21) is exactly (4.8) in the setting of the condition (B.1). As a
consequence, the first part of Theorem 4.3.3 is straightforward.

Let us now fix a minimiser µ[0,T ] for (4.21), at which (B.3) holds. Let ⇣, � and S be
given by Theorem 4.2.13. To complete the proof of the second part of Theorem 4.3.3, we
need to prove the following two statements.

Lemma 4.5.1 (Completion of the proof of Theorem 4.3.3).

(i) ⌫[0,T ](S) = 1;

(ii) there exist (⇣0, ⇣T ) 2 L1(Rd, dµini) ⇥ L1(Rd, dµfin) such that ⇣(x[0,T ]) = ⇣0(x0) +

⇣T (xT ), for ⌫[0,T ]-a.e. x[0,T ].
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Proof. To prove the first claim, we consider the static Schrödinger problem

inf
µ2Pp(Rd

⇥Rd)
µ1=µ

ini
, µ2=µ

fin

H(µ|⌫0,T ).

The above infimum is finite, because the law of (X0,XT ) when X[0,T ] ⇠ µ[0,T ] has finite
entropy w.r.t. ⌫0,T , using the additivity property of entropy [Dembo and Zeitouni, 2009,
Theorem D.13]. Since ⌫0,T ⇠ µini

⌦ µfin, [Nutz, 2021, Theorem 2.1] provides an optimal
measure ⇡? ⇠ ⌫0,T for this static problem. From e.g. [Dembo and Zeitouni, 2009, The-
orem D.3], the disintegration ⌫x,y[0,T ] of ⌫[0,T ] given (X0,XT ) = (x, y) is well-defined. The
path-measure ⌫x0,xT

[0,T ] (dx[0,T ])⇡
?(dx0, dxT ) is then an admissible measure for (4.21) that is

equivalent to ⌫[0,T ]. From Theorem 4.2.7-1, this shows that µ[0,T ] is equivalent to ⌫[0,T ],
and thus that ⌫[0,T ](S) = 1.

We now prove the existence of (⇣0, ⇣T ). Let (⇠k)k�1 be a sequence in Span((�k0)k�1 [
(�k

T
)k�1) that converges in L1(C([0, T ],Rd), dµ[0,T ]) towards ⇣. Up to extracting a sub-

sequence, we can assume that this convergence holds µ[0,T ]-a.s. Since µ[0,T ] ⇠ ⌫[0,T ], this
convergence also holds ⌫[0,T ]-a.s. By definition, ⇠k only depends on (X0,XT ); hence, the
convergence holds ⌫0,T -a.s. Since ⌫0,T ⇠ µini

⌦ µfin, the convergence eventually holds
µini
⌦ µfin-a.s. As a consequence, [Nutz, 2021, Corollary 2.12] gives that ⇣ = ⇣0 + ⇣T as

desired, completing the proof.

4.5.2 Proof of Theorem 4.3.6

The main obstacle in the proof of Theorem 4.3.6 being the time-regularity of the coeffi-
cients, we are going to smooth them to produce solutions ('k)k�1 of approximated equa-
tions. For every t 2 [0, T ], we will then show local compactness estimates for (r'k

t )k�1 in
C1(Rd,Rd). To identify the limit as a function of t, the representation formula (4.29) will
be needed. We first prove a general stability result.

Proposition 4.5.2 (Limit HJB equation). Under (C.2)-(i), let (bk)k�1, (�k)k�1, (ck)k�1,
( k)k�1 be measurable functions [0, T ] ⇥ Rd

! Rd, [0, T ] ⇥ Rd
! Rd⇥d, [0, T ] ⇥ Rd

!

R, [0, T ] ⇥ Rd
! R, and (�k)k�1 be a sequence in M+([0, T ]), satisfying the following

conditions.

(i) t 7! bkt (0), t 7! �kt (0), t 7! ckt (0), t 7!  k
t (0) are bounded uniformly in k � 1.

(ii) bk, �k, ck,  k satisfy (C.1)-(i,ii) and (C.2)-(ii) uniformly in k � 1.

(iii) For Lebesgue-a.e. t 2 [0, T ], for every x 2 Rd, (bkt (x),�kt (x), ckt (x)) converges towards
(bt(x),�t(x), ct(x)) as k ! +1.

(iv) ( k)k�1 converges towards  uniformly on every compact set of [0, T ]⇥ Rd.

(v) (�k)k�1 weakly converges towards � in M+([0, T ]).

Let 'k be given by

'k

t (x) := � logE exp

 Z
T

t

cks(Z
t,x,k

s )ds+

Z

[t,T ]
 k

s (Z
t,x,k

s )�k(ds)

�
, (4.40)

where (Zt,x,k
s )tsT is the path-wise unique solution to

dZt,x,k

s = bks(Z
t,x,k

s )ds+ �ks (Z
t,x,k

s )dBs, t  s  T, Zt,x,k

t
= x.
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For every k � 1, we assume that 'k is the mild solution of

�'k

t +

Z
T

t

✓
bks ·r'

k

s �
1

2
|(�ks )

>
r'k

s |
2 +

1

2
Tr[�ks (�

k

s )
>
r

2'k

s ] + cks

◆
ds+

Z

[t,T ]
 k

s�
k(ds) = 0,

(4.41)
in the sense of Definition 4.3.5, and that (r'k)k�1 is uniformly bounded. For every t 2
[0, T ] and every compact set K ⇢ Rd, we assume that (r'k

t )k�1 is pre-compact in C(K,Rd).
Then, for t = 0 and every t 2 (0, T ] with �({t}) = 0, ('k

t )k�1 point-wise converges towards
't given by (4.29), and ' is the solution of (4.27) in the sense of Definition 4.3.5.

Proof. Using (i,ii), the coefficients have linear growth uniformly in k, and (�k)k�1 is uni-
formly bounded. For every (t, x) 2 [0, T ]⇥ Rd, this implies that

8↵ > 0, sup
k�1

E exp


↵ sup

tsT

|Zt,x,k

s |

�
< +1.

From (ii,iii), a standard coupling argument (a variation of the proof of [Friedman, 1975,
Chapter 5, Theorem 5.2]) implies that

E
⇥

sup
tsT

|Zt,x,k

s � Zt,x

s |
⇤
����!
k!+1

0,

where (Zt,x
s )tsT is given by (4.30). Let us fix t = 0 or any t 2 (0, T ] that is not an atom

of �. Since the number of atom is always countable, this includes Lebesgue a.e. t 2 [0, T ].
For such a t, (v) and [Billingsley, 2013, Theorem 2.7] imply that

8� 2 C([0, T ],R),
Z

[t,T ]
�(s)�k(ds) ����!

k!+1

Z

[t,T ]
�(s)�(ds).

As a consequence, using (ii,iii,iv) and the continuity (C.2)-(i) of  , (4.40) shows that
('k

t )k�1 point-wise converges towards 't given by (4.29). The pre-compactness of (x 7!
r'k

t (x))k�1 on every compact set further shows that 't is C1. We then deduce that
(r'k

t )k�1 converges towards r't, uniformly on every compact set. The uniform bound on
r't is inherited from the one on (r'k

t )k�1.
From Definition 4.3.5, for Lebesgue-a.e. t 2 [0, T ],

�'k

t +

Z
T

t

Sk

t,s

⇥
bks ·r'

k

s �
1

2
|(�ks )

>
r'k

s |
2 + cks

⇤
ds+

Z

[t,T ]
Sk

t,s

⇥
 k

s

⇤
�k(ds) = 0. (4.42)

The Feynman-Kac representation formula (see e.g. [Friedman, 1975, Chapter 6.5]) yields

8x 2 Rd, Sk

t,s[�](x) = E[�(⇠t,x,ks )],

for every continuous � : Rd
! R with linear growth, where ⇠t,x,k is the solution of d⇠t,x,ks =

�ks (⇠
t,x,k
s )dBs, ⇠t,x,kt

= x. As for Zt,x,k, we get that

E
⇥

sup
tsT

|⇠t,x,ks � ⇠t,xs |
⇤
����!
k!+1

0,

where the definition of ⇠t,x involves � instead of �k. Setting �ks := bks ·r'
k
s�

1
2 |(�

k
s )
>
r'k

s |
2+

cks , the pre-compactness assumption, the bound on (r'k)k�1 and (ii) show that (x 7!
�ks(x))k�1 is equi-continuous. By dominated convergence, this provides the point-wise
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convergence of Sk
t,s[�

k
s ] as k ! +1, and then of the middle term in (4.42). Similarly, we

split

Z

[t,T ]
Sk

t,s

⇥
 k

s

⇤
(x)�k(ds)�

Z

[t,T ]
St,s

⇥
 s

⇤
(x)�(ds) =

Z

[t,T ]
E
⇥
 k

s (⇠
t,x,k

s )�  s(⇠
t,x

s )
⇤
�k(ds) +

Z

[t,T ]
E
⇥
 s(⇠

t,x

s )
⇤
[�k � �](ds).

Since (�k([0, T ]))k�1 is bounded, the first term on the r.h.s. goes to 0 using the path-wise
convergence of ⇠t,x,k and the uniform convergence (iv) of  k on compact sets. From the
continuity (C.2)-(i) of  and the weak convergence of (�k)k�1, the second term goes to 0
too as k ! +1. Taking the limit in (4.42) now shows that ' is the solution of (4.27) in
the sense of Definition 4.3.5.

Lemma 4.5.3. Under (C.2)-(i) and (i,ii,iii,iv,v) in Proposition 4.5.2, let us assume that
t 7! bkt (x), �kt (x), ckt (x),  k

t (x) are C1, and that �k(dt) = �kt dt + �T �T (dt) for some
t 7! �kt in C1([0, T ],R+). Then, the function 'k given by (4.40) belongs to C([0, T ]⇥Rd)\
C1,2((0, T )⇥Rd) and is the solution of (4.41) in the sense of Definition 4.3.5. If (r'k

t )k�1
is furthermore pre-compact in C(K,Rd), for every compact K ⇢ Rd and t 2 [0, T ], then
the conclusion of Theorem 4.3.6 holds.

Proof. From [Chaintron, 2023, Theorem 2.2], the Hamilton-Jacobi-Bellman (HJB) equa-
tion

@tu
k

t + bkt ·ru
k

t +
1

2
Tr[aktr

2ukt ]�
1

2
|(�kt )

>
rukt |

2 = �ckt � �
k

t 
k

t , ukT = �T 
k

T , (4.43)

where akt := �kt (�
k
t )
>, has a unique solution uk in C([0, T ]⇥ Rd) \ C1,2((0, T )⇥ Rd), and

sup
(t,x)2[0,T ]⇥Rd

|rukt (x)|  C,

for a constant C that does not depend on k, because (�k([0, T ]))k�1 is bounded. Using the
Cole-Hopf transform vk := e�u

k , vk is a C1,2 solution of the linear parabolic equation

@tv
k

t + bkt ·rv
k

t +
1

2
Tr[aktr

2vkt ] = ckt v
k

t + �kt 
k

t v
k

t .

From the Feynman-Kac representation formula [Friedman, 1975, Chapter 6.5], for (t, x) 2
[0, T ]⇥ Rd,

vkt (x) = E exp


�T 

k

T (Z
t,x,k

T
) +

Z
T

t

[cks(Z
t,x,k

s ) +  k

s (Z
t,x,k

s )�ks ]ds

�
. (4.44)

From (4.40), this yields uk = 'k. Classically, the solution uk of (4.43) is the mild solution
of (4.41) in the sense of Definition 4.3.5. Under the pre-compactness assumption, ('k)k�1
thus satisfies the assumptions of Proposition 4.5.2, yielding that ' given by (4.29) is the
solution of (4.27) in the sense of Definition 4.3.5. Let us now finish the proof of Theorem
4.3.6 by identifying the process with law µ[0,T ].

On the canonical space ⌦ = C([0, T ],Rd), the canonical process satisfies

dXt = bt(Xt)dt+ �t(Xt)dBt, ⌫[0,T ]-a.s.
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where (Bt)0tT is a Brownian motion under ⌫[0,T ]. Let µ̃[0,T ] be the measure over
C([0, T ],Rd) defined by

dµ̃[0,T ]

d⌫[0,T ]
(X[0,T ]) := exp


�

Z
T

0
r't(Xt) · �t(Xt)dBt �

1

2

Z
T

0
|�>t (Xt)r't(Xt)|

2dt

�
. (4.45)

The bounds on � and r', inherited from the one (r'k)k�1, guarantee that the Novikov
condition holds

E⌫[0,T ]
exp


1

2

Z
T

0
|�>t (Xt)r't(Xt)|

2dt

�
< +1,

so that the Girsanov transform (see e.g. [Léonard, 2012, Theorem 2.3]) tells us that µ̃[0,T ]

is a probability measure such that

dXt = bt(Xt)dt� at(Xt)r't(Xt)dt+ �t(Xt)dB̃t, µ̃[0,T ]-a.s.,

the process (B̃t)0tT being a Brownian motion under µ̃[0,T ]. Moreover, uniqueness in law
holds for the above SDE.

Under ⌫[0,T ], let now Xk denote the strong solution of the SDE

dXk

t = bkt (X
k

t )dt+ �kt (X
k

t )dBt, Xk

0 = X0.

Using (4.43), Ito’s formula applied to 'k = uk yields

'k

0(X
k

0 )�

Z
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0
[ckt (X

k

t ) +  k

t (X
k

t )�
k

t ]dt� �T 
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T (X
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T ) =
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Z
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t (X
k

t ) · �
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t (X
k

t )dBt �
1

2

Z
T

0
|(�kt )

>(Xk

t )r'
k

t (X
k

t )|
2dt.

As previously, we can show that E[sup0tT |Xk
t � Xt|] ! 0. We then take the k ! +1

limit (in probability) in the above equality, as we did in the proof of Proposition 4.5.2, to
get

dµ̃[0,T ]

d⌫[0,T ]
(X[0,T ]) = exp


'0(X0)�

Z
T

0
ct(Xt)dt�

Z

[0,T ]
 t(Xt)�(dt)

�
.

Noticing that µ(dx[0,T ]) = Z�1e�'0(x0)µ̃(dx[0,T ]), this concludes.

To complete the proof of Theorem 4.3.6, it remains to build approximations of the
coefficients that are C1 in time and satisfy the assumptions of Lemma 4.5.3.

Lemma 4.5.4. By convolution with a non-negative approximation of unity with compact
support, let (�k)k�1 be a sequence of functions in C1([0, T ],R+) that weakly converges
towards �. Similarly, let t 7! ct(x), t 7! bt(x), t 7!  t(x) be regularisations by convolution
of t 7! ckt (x), t 7! bkt (x), t 7!  k

t (x), which are now C1 in time. Then (i,ii,iii,iv,v) in
Proposition 4.5.2 are satisfied.

Proof. The convolution in time does not change the x-dependence: x 7! ckt (x), x 7! bkt (x)
and x 7!  k

t (x) are globally Lipschitz uniformly in (k, t). From (C.1)-(C.2), the coef-
ficients were locally bounded; hence, for every x 2 Rd, for Lebesgue-a.e. t 2 [0, T ],
(bkt (x),�

k
t (x), c

k
t (x)) converges to (bt(x),�t(x), ct(x)). Using the uniform Lipschitz regu-

larity, this implies that for Lebesgue-a.e. t 2 [0, T ] and every x 2 Rd, (bkt (x),�kt (x), ckt (x))
converges to (bt(x),�t(x), ct(x)), giving (iii) in Proposition 4.5.2. From (C.2)-(i), (t, x) 7!
 t(x) is uniformly continuous and bounded on every compact set; hence,  k converges to-
wards  uniformly on every compact set. The uniform bounds on �kt are similarly obtained.
We thus verified items (ii,iii,iv,v) in Proposition 4.5.2. Item (i) further holds because the
coefficients are locally bounded.
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To conclude the proof of Theorem 4.3.6 using Lemma 4.5.3, it remains to show pre-
compactness.

Lemma 4.5.5 (Equi-continuity for the gradients). Under (C.2), for every t in [0, T ] and
any compact K ⇢ Rd, (x 7! r'k

t (x))k�1 is pre-compact in C(K,R), where 'k is defined by
(4.40).

Proof. From the proof of Lemma 4.5.3, (r'k
t )k�1 is uniformly bounded. From the Arzelà-

Ascoli theorem, pre-compactness will follow if we show that (x 7! r'k
t (x))k�1 is equi-

continuous.
Let us fix x 2 Rd. From (C.2)-(iii), the coefficients bk and �k have derivatives w.r.t.

x, which are equi-continuous w.r.t. k. From [Friedman, 1975, Chapter 5,Theorem 5.3],
x 7! Zt,x,k

s is a.s. differentiable and the gradient process rZt,x,k is the solution of the
linear SDE

(
d(rZt,x,k

s ) = rbks(Z
t,x,k
s )rZt,x,k

s ds+r�ks (Z
t,x,k
s )rZt,x,k

s dBs,

Zt,x,k

t
= Id.

(4.46)

We now fix (t, x) in [0, T ] ⇥ Rd. From the Lipschitz assumptions, the derivatives of the
coefficients are globally bounded. We then define

�k

t (x) :=

Z
T

t

⇥
cks(Z

t,x,k

s ) + �ks 
k

s (Z
t,x,k

s )
⇤
ds,

whose gradient w.r.t. x writes
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s rcks(Z
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s ) + �ksrZ
t,x,k

s r k

s (Z
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s )
⇤
ds.

Setting vk := E[e�
k
t (x)], we can write that

r'k

t (x) = �
rvkt (x)

vk
t
(x)

= �
E
⇥
e�

k
t (x)r�k

t (x)
⇤

vk
t
(x)

. (4.47)

To prove the equi-continuity of r'k
t at x, let us consider a sequence (xl)l�1 that converges

in Rd towards x as l ! +1. We want to show that r'k
t (xl) converges towards r'k

t (x)
uniformly in k. From (4.44), we obtain as previously that (vkt (0))k�1 converges towards
a positive number, so that ('k

t (0))k�1 is bounded; the uniform bound on r'k then gives
that 'k

t has linear growth uniformly in k. As a consequence, vkt (xl) is bounded from above,
and bounded from below by a positive constant, uniformly in (k, l). Similarly, rvkt (xl) is
uniformly bounded, and vkt (xl) converges towards vkt (x) uniformly in k. The convergence
of rvkt (xl) remains to be studied. First,

��rvkt (xl)�rvkt (x)
�� =

��E
⇥
(e�

k
t (xl) � e�

k
t (x))r�k

t (x) + e�
k
t (xl)(r�k

t (xl)�r�
k

t (x))
⇤��,

 E
⇥
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t (x)||r�
k

t (x)|
⇤

+ E
⇥
|r�k

t (xl)�r�
k

t (x)|e
�
k
t (xl)

⇤
.

We now show how to control the second term on the r.h.s., the first one being similar
(and even easier because it does not involve r�k

t (xl)). Since (xl)l�1, rbk, r�k and �k are
bounded uniformly in k, it is standard from (4.46) that for any ↵ > 0 and q � 1,

E


sup
tsT

��rZt,xl,k
s

��q
�

and E exp


↵ sup

tsT

��Zt,xl,k
s

��
�
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are bounded uniformly in (k, l). From the linear growth of ck and  k (uniformly in k)
together with the uniform bound on k�kkL1(0,T ), we deduce analogous uniform bounds on
E[|r�k

t (xl)|
q] and E[e↵|�

k
t (xl)|]. For M > 0, we then write

E
⇥
|r�k

t (xl)�r�
k

t (x)|e
�
k
t (xl)

⇤
= E
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s |+|Z
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t (x)|e
�
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t (xl)|

suptsT |Z
t,xl,k
s |+|Z

t,x,k
s |>M

⇤
.

The moment bounds ensure that the second term can be made arbitrarily small by choosing
a large enough M , uniformly in (k, l). Moreover,

|r�k

t (xl)�r�
k

t (x)|  T sup
tsT

|rZt,xl,k
s rcks(Z

t,xl,k
s )�rZt,x,k
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+ k�kkL1(0,T ) sup
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|rZt,xl,k
s r k

s (Z
t,xl,k
s )�rZt,x,k

s r k

s (Z
t,x,k

s )|.

When M is fixed, the conditioning ensures that Zt,xl,k
s remain in a compact set K that

does not depend on (k, l). Since convolution in time does not affect the space regularity,
the continuous functions x 7! rcks(x) and x 7! r k

s (x) are uniformly continuous on K,
uniformly in (s, k, l). From [Friedman, 1975, Chapter 5,Lemma 3.3],

E


sup
tsT

��Zt,xl,k
s � Zt,x,k

s

��2
�
����!
l!+1

0, (4.48)

and this holds uniformly in k, because the Lipschitz constant of bk and �k are independent
of k. Using the Cauchy-Schwarz inequality, we can now conclude if we prove that

E


sup
tsT

��rZt,xl,k
s �rZt,x,k

s

��2
�
����!
l!+1

0,

uniformly in k. Following [Friedman, 1975, Chapter 5,Theorem 5.2] for this proof, we use
(4.46) to write that for every t  s  T ,

rZt,xl,k
s �rZt,x,k

s = �k,xl
s + �k,xl

s +

Z
s

t

rbkr (Z
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r ]dBr, (4.49)

where
�k,xl
s :=

Z
s

t

[rbkr (Z
t,xl,k
r )�rbkr (Z
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r )]rZt,x,k

r dr,
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[r�kr (Z
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r )�r�kr (Z
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r )]rZt,x,k

r dBr.

We recall that rbk and r�k are bounded uniformly in k. We now take the square of
(4.49), and we use the Jensen and the Burkholder-Davis-Gundy (BDG) inequalities to get
that for every t  s  T ,

E
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for a constant C > 0 that does not depend on (k, l). Using Gronwall’s lemma, we can
conclude if we show that the first term on the r.h.s. of (4.50) goes to 0 as l ! +1,
uniformly in k. As previously, we write that

E


sup
trT

|�k,xl
r |

2

�
= E


sup
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|�k,xl
r |

2
suptsT |Z
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trT

|�k,xl
r |

2
suptsT |Z

t,xl,k
s |+|Z

t,x,k
s |+|rZ

t,x,k
r |>M

�
,

and the second term can be made arbitrarily small by choosing a large enough M , uniformly
in (k, l). For the first term, when M is fixed, Zt,xl,k

s , Zt,x,k
s and rZt,xl,k

s remain in a
compact set K that does not depend on (k, l), and x 7! rbks(x) is uniformly continuous
on K, uniformly in (s, k, l). The uniform vanishing of E[suptrT |�k,xl

r |
2] then results

from (4.48). Using the BDG inequality, the same reasoning gives the uniform vanishing of
E[suptrT |�k,xl

r |
2], completing the proof.

Iterating the method of the above proof for differentiating x 7! rZt,x,k within (4.44),
we get the following corollary.

Corollary 4.5.5.1. In the setting of Lemma 4.5.3, if the coefficients bk, �k, ck and  k

are C1 in x with bounded derivatives, then 'k is C1 in x.

Appendix

4.A Linear functional derivative

This appendix gathers some useful tools for differentiating functions on measures. Let E
be a complete metric space, endowed with its Borel �-algebra.

Definition 4.A.1 (Linear functional derivative). Let C be a convex subset of P(E) and
let µ 2 C. A map F : C ! R is differentiable at µ w.r.t. to the set of directions C if there
exists a measurable map

�F

�µ
(µ) :

(
E ! R,

x 7! �F

�µ
(µ, x),

such that for every µ0 in C, �F

�µ
(µ) is µ0-integrable and satisfies

"�1
⇥
F ((1� ")µ+ "µ0)� F (µ)

⇤
����!
"!0+

⌧
µ0 � µ,

�F

�µ
(µ)

�
.

To alleviate notations, the dependence on C is not emphasised in the notation �F

�µ
(µ).

The map �F

�µ
(µ) being defined up to an additive constant, we adopt the usual convention

that hµ, �F
�µ

(µ)i = 0. This map is called the linear functional derivative of F at µ (w.r.t.
the set of directions C). We notice that this definition does not depend on the behaviour of
F outside of an arbitrary small neighbourhood of µ.

Example 4.A.2 (Linear case). In the particular case F (µ) = hµ, fi for some measurable
f : E ! R that is µ-integrable for every µ in C, we have �F

�µ
(µ, x) = f(x)� hµ, fi.

Remark 4.A.3 (Convex case). If F is convex on C and differentiable at µ 2 C w.r.t. C,
Definition 4.A.1 implies that

8µ0 2 C, F (µ0) � F (µ) +

⌧
µ0 � µ,

�F

�µ
(µ)

�
. (4.51)
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Lemma 4.A.4 (Integration). Let µ, µ0 2 C. Assume that for any r 2 [0, 1], F is differen-
tiable at (1� r)µ0 + rµ w.r.t. the set of directions C, and that

Z 1

0

����

⌧
µ� µ0,

�F

�µ
((1� r)µ0 + rµ)

����� dr <1.

Then
F (µ)� F (µ0) =

Z 1

0

⌧
µ� µ0,

�F

�µ
((1� r)µ0 + rµ)

�
dr.

Notably, the relative entropy does not fit in the setting of Definition 4.A.1, because
the directional derivative may be �1. However, the following classical result still holds,
whose proof traces back to [Csiszár, 1975, Lemma 2.1].

Lemma 4.A.5 (Derivative of H). Let µ and µ0 be measures in P(E) with H(µ|⌫), H(µ0|⌫) <
+1. For " 2 [0, 1], we define µ" := (1� ")µ+ "µ0. Then,

d

d"

����
"=0

H(µ"|⌫) =

Z

E

log
dµ

d⌫
dµ0 �H(µ|⌫),

the integral on the r.h.s. being in R [ {�1}.

4.B A variant of Theorem 4.2.13 for linear constraints

In this section we only work with linear inequality constraints as in Remarks 4.2.5-4.2.15.
We present a set of relaxed assumptions on the family ( t)t2T which ensures that the
conclusion of Theorem 4.2.13 remains in force, in the absence of equality constraints (S =
;).

Proposition 4.B.1 (Lagrange multiplier for linear constraints). Let us consider ⌫ in
P(E), a continuous � : E ! R+, and a measurable F : P�(E) ! R. Let ( t)t2T be a
family of measurable functions E ! R. We assume that there exists C � 0 such that,

8x 2 E, inf
t2T

 t(x) � �C [1 + �(x)]. (4.52)

Then the  t : P�(E) ! (�1,+1], µ 7!  t(µ) are measurable functions. Let the set A 
be defined accordingly. We further assume that for ⌫-a.e. x in E, the map t 2 T 7!  t(x)
is continuous, and that there exist µ̃ 2 P�(E) and ⌘ > 0 such that

8t 2 T , hµ̃, ti  �⌘. (4.53)

In this setting, let µ 2 A be a minimiser for (4.8) (with S = ;). We assume that F is
differentiable at µ w.r.t. the set of directions P�(E) in the sense of Definition 4.A.1, and
that CF 2 R exists such that for ⌫-a.e. x in E,

�F

�µ
(µ, x) � �CF [1 + �(x)].

We eventually assume that
h⌫, e↵�i < +1, (4.54)

for some ↵ 2 R with CF + C C(⌫,F , ⌘, µ̃, µ) < ↵, where

C(⌫,F , ⌘, µ̃, µ) := ⌘�1

log

⌧
⌫, exp


�
�F

�µ
(µ)

��
+H(µ̃|⌫) +

⌧
µ̃,
�F

�µ
(µ)

��
.
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Then, there exists a positive Radon measure � on T such that

dµ

d⌫

�
x
�
= Z

�1
exp


�
�F

�µ
(µ, x)�

Z

T

 t(x)�(dt)

�
, (4.55)

where Z 2 (0,+1) is a normalising constant. Moreover, �(T )  C(⌫,F , ⌘, µ̃, µ) and the
complementary slackness condition is satisfied:

hµ, ti = 0 for �-a.e. t 2 T . (4.56)

Notice that, contrarily to the remainder of this work, here the functions  t are not
required to be l.s.c. on P�(E), but under (4.52) they are so if the  t are l.s.c. on E;
furthermore, they are allowed to take the value +1 on P�(E). The main strength of
Proposition 4.B.1 is to remove the upper bound condition in Remark 4.2.15. Only lower
bounds are required, as in [Liu and Wu, 2020, Assumption (A1)]. Another advantage of
Proposition 4.B.1 is that its proof is elementary, in the sense that it does not rely on the
use of the Hahn-Banach theorem.

Proof of Proposition 4.B.1. Since F is not assumed to be convex, µ may not be unique.

Step 1. Linearisation. Let us consider µ in A . Then F(µ) is finite by assumption. We
first assume that H(µ|⌫) < +1. For " 2 (0, 1], we set µ" := (1 � ")µ + "µ. Since P�(E)
is convex, we write for any " 2 (0, 1],

H(µ|⌫) + F(µ)  H(µ"|⌫) + F(µ")  (1� ")H(µ|⌫) + "H(µ|⌫) + F(µ"),

where we used the convexity of H in the second inequality. This rewrites

H(µ|⌫)�H(µ|⌫)  "�1
⇥
F(µ")� F(µ)

⇤
,

which yields, thanks to Definition 4.A.1,

H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
 H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
.

This inequality still holds if H(µ|⌫) = +1. We thus proved that µ is a minimiser for

inf
µ2A 

H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
. (4.57)

By strict convexity of H, µ is the unique minimiser for (4.57).

Step 2. Dual problem. For any � in M+(T ) with CF +C �(T ) < ↵, we define the Gibbs
free energy

G(�) := � log

⌧
⌫, exp


�
�F

�µ
(µ)�

Z

T

 t�(dt)

��
,

together with the Gibbs measure µ� such that

dµ�
d⌫

�
x
�
= eG(�) exp


�
�F

�µ
(µ, x)�

Z

T

 t(x)�(dt)

�
.

From (4.54), µ� is well-defined and satisfies H(µ�|⌫) < +1; thus, µ� belongs to P�(E)
thanks to Lemma 4.2.2. For every µ in P�(E), we get as in the proof of Theorem 4.2.17
that

H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
+

Z

T

hµ, ti�(dt) = H(µ|µ�) +G(�)
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this equality being in R [ {+1}. Since H(µ|µ�) � 0, this proves that

G(�) = inf
µ2P�(E)

H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
+

Z

T

hµ, ti�(dt), (4.58)

the unique minimiser being µ�. We now study the Lagrange dual problem

sup
�2M+(T )

CF+C �(T )<↵

G(�). (4.59)

The following weak duality relation is verified

sup
�2M+(T )

CF+C �(T )<↵

G(�)  inf
µ2A 

H(µ|⌫) +

⌧
µ,
�F

�µ
(µ)

�
, (4.60)

guarantying the finiteness of the supremum (4.59).

Step 3. Existence for �. Let (�k)k2N be a maximising sequence for (4.59). Noticing that

sup
�2M+(T )

CF+C �(T )<↵

G(�) � G(0) = � log

⌧
⌫, exp


�
�F

�µ
(µ)

��
,

we get that for every " > 0, G(�k) � G(0)� ⌘" for k large enough. Using (4.58),

G(�k)  H(µ̃|⌫) +

⌧
µ̃,
�F

�µ
(µ)

�
+

Z

T

hµ̃, ti�k(dt),

with hµ̃, ti  �⌘, hence
�k(T )  "+ C(⌫,F , ⌘, µ̃, µ). (4.61)

Using the Prokhorov theorem as in the proof of Theorem 4.2.13, the bound on (�k(T ))k�1
implies that (�k)k�1 is relatively compact for the weak convergence of measures. Up to
re-indexing, we can thus assume that (�k)k2N weakly converges towards some � 2M+(T ).
By assumption, t 7!  t(x) is ⌫-a.e. continuous, and ⌫-a.e. bounded because T is compact.
As a consequence,

Z

T

 t(x)�k(dt) ����!
k!+1

Z

T

 t(x)�(dt) for ⌫-a.e. x 2 E.

Fatou’s lemma then yields
⌧
⌫, exp


�
�F

�µ
(µ)�

Z

T

 t�(dt)

��
 lim inf

k!+1

⌧
⌫, exp


�
�F

�µ
(µ)�

Z

T

 t�k(dt)

��
,

proving that � realises the supremum (4.59). Since (4.61) was true for every " > 0 provided
that k was large enough, we get that �(T )  C(⌫,F , ⌘, µ̃, µ). In particular, CF+C �(T ) <
↵ from our assumption on ↵.

Step 4. Admissibility for the Gibbs measure µ
�
. Let "̃ > 0 be such that CF+C [�(T )+"̃] <

↵. Given any (t0, ") in T ⇥ (0, "̃], the perturbation � + "�t0 is admissible for (4.59), �t0
being the Dirac mass at t0. The optimality of � yields

log

⌧
⌫, exp


�
�F

�µ
(µ)�

Z

T

 t�(dt)

��
 log

⌧
⌫, exp


�
�F

�µ
(µ)�

Z

T

 t

⇥
�(dt) + "�t0(dt)

⇤��
,
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so that subtracting the r.h.s., and dividing by ",

"�1
⌦
µ
�
, 1� e�" t0

↵
 0,

that we rewrite as

"�1
⌦
µ
�
, 1� e�"| t0 |+

↵
 "�1

⌦
µ
�
, e"| t0 |� � 1

↵
. (4.62)

By the mean value theorem,

8" 2
�
0, "̃2
⇤
, "�1|e"| t0 |� � 1|  | t0 |�e

"| t0 |�  Ce"̃| t0 |� ,

for some constant C > 0 that does not depend on ". The integrability condition (4.54)
and our choice of "̃ guarantee that e"̃| t0 |� is µ

�
-integrable, so that

"�1
⌦
µ
�
, e"| t0 |� � 1

↵
���!
"!0

hµ
�
, | t0 |�i.

To send " to 0 in the l.h.s. of (4.62) which is non-negative, we apply Fatou’s lemma. At
the end of the day, gathering everything,

hµ
�
, t0i  0.

Since the above inequality holds for every t0 in T , µ
�

belongs to A .

Step 5. Complementary slackness condition. For any " in (0, 1), the perturbation �� "�
is admissible for (4.59). As above, the optimality of � implies

⌧
µ
�
, exp


"

Z

T

 t�(dt)

�
� 1

�
� 0.

Dividing by " and sending " to 0, the same splitting and domination arguments as above
provide that Z

T

hµ
�
, ti�(dt) � 0.

From the previous step, hµ
�
, ti is always non-positive. This proves that hµ

�
, ti = 0 for

�-a.e. t in T .

Step 6. Conclusion. Since µ
�

is the unique minimiser for (4.58), (4.60) and the previous
step show that µ

�
is a minimiser for (4.57). From the uniqueness proved in Step 1., we

eventually get that µ
�
= µ.

The same method could be adapted when the  t are non-linear convex functions.
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CHAPTER 5

Regularity and stability for the Gibbs conditioning

principle on path space via McKean-Vlasov control

Attention, les calculs sont un peu lourds.

— Giovanni Conforti, private communication

This work is a collaboration with Giovanni Conforti.
We consider a system of diffusion processes interacting through their empirical distribution.
Assuming that the empirical average of a given observable can be observed at any time,
we derive regularity and quantitative stability results for the optimal solutions in the
associated version of the Gibbs conditioning principle. The proofs rely on the analysis of
a McKean-Vlasov control problem with distributional constraints. Some new estimates
are derived for Hamilton-Jacobi-Bellman equations and the Hessian of the log-density of
diffusion processes, which are of independent interest.
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Chapter 5. Regularity and stability for Gibbs principle on path space

5.1 Introduction

Consider a system of identically distributed random variables

X1, X2, . . . , XN ,

taking values in a topological space E. For example, as it is the case in this article, E
may be the space of continuous trajectories over Rd and the Xi are sample paths from a
system of interacting diffusion processes. Furthermore, assume that the variables Xi are
either independent or interacting through their empirical distribution (or configuration)

µN :=
1

N

NX

i=1

�Xi 2 P(E).

Next, imagine that some measurement is made on the system configuration revealing that
µN belongs to a subset O. Then, one is naturally led to the question of computing either
the most likely configuration of the system or the law of X1 conditionally on {µN

2 O}. A
detailed answer to both questions can be given when the empirical distribution satisfies a
large deviation principle (henceforth, LDP) with rate function I. This answer is part of a
meta-principle, called Gibbs conditioning principle, which we now briefly describe. To this
aim, recall that the LDP holds if for any closed set A ✓ P(E),

lim sup
N!+1

N�1 logP(µN
2 A)  � inf

A

I,

and the converse inequality holds for open sets. Then, an informal statement of the Gibbs
conditional principle is

lim
N!+1

L(X1
|µN
2 O) = µ, with µ := argminO I.

In words, the conditional distribution converges to the minimiser of the rate function among
all distributions compatible with the observation.

Equivalently, the distribution µ may be regarded as the most likely configuration of
the system conditionally on the observation: this viewpoint is the one adopted by E.
Schrödinger in a celebrated thought experiment Schrödinger [1932] motivating the formu-
lation of the Schrödinger problem, which is the prototype of a stochastic mass transport
problem. In all physical experiments, measurements are affected by uncertainties of differ-
ent nature. Thus, it is of paramount importance to quantify how much the sought most
likely evolution or conditional law µ is stable with respect to variations in the observed
values. The scope of this article is to address this problem and the tightly related ques-
tion of quantifying the regularity properties of µ when the Xi are Rd-valued interacting
diffusion processes such as, e.g.

dXi

t =
⇥
b(Xi

t)�
1

N

X

j 6=i

rW (Xi

t �Xj

t
)
⇤
dt+ �(Xi

t)dB
i

t, t 2 [0, T ], i = 1, . . . , N,

and what is observed is whether or not at any time t 2 [0, T ] the value of a certain observ-
able  (µN

t ) is below a threshold ", where µN
t := 1

N

P
i
�
X

i
t

is the particle configuration at
time t. To fix ideas, the observation may be the empirical average of a given observable  ,

 (µN

t ) =
1

N

NX

i=1

 (Xi

t),
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which can be thought of as a mean energy in a physical setting. However, our framework
is more general as we shall see below, encompassing non-linear convex constraints. In this
setting, the LDP is known to hold with rate function in relative entropy form.

For clarity of exposition, let us now describe our results in the simplified setting W ⌘ 0.
The LDP is now directly given by Sanov’s Theorem. The most likely evolution µ then
reduces to the problem of computing the entropic projection in the sense of Cszisár Csiszár
[1975] of the path measure ⌫[0,T ] describing the law of X1 onto the admissible set (clearly,
⌫[0,T ] does not depend on N when W ⌘ 0). We are therefore looking at the problem

inf
µ[0,T ]2P(C([0,T ],Rd))
8t2[0,T ],  (µt)"

H(µ[0,T ]|⌫[0,T ]), (5.1)

where H is the relative entropy on path space, defined in Section 5.1.2 below. Our approach
takes benefit from classical duality results for entropic projections. In particular, these
results suggest that there exists a non-negative measure �" with finite mass on [0, T ] playing
the role of a Lagrange multiplier and such that the density of the minimiser µ"[0,T ] for (5.1)
reads

dµ"[0,T ]

d⌫[0,T ]
(x[0,T ]) = Z�1" exp


�

Z
T

0
 (xt)�

"
(dt)

�
,

where Z" is a normalising constant. We then rely on the classical connection between
entropy minimisation and stochastic control Föllmer [1988]; Dawson and Gärtner [1987];
Dai Pra [1991]; Budhiraja et al. [2012]; Léonard [2012]. This connection allows us to
view the optimal measure µ"[0,T ] as an optimal state in a stochastic control problem (of
McKean-Vlasov type) with distributional constraints. The optimal control policy (t, x) 7!
r'"t (x) can be computed from the path-density through the Feynman-Kac formula, see
e.g. Léonard [2022]. Leaving all general and rigorous statements to the next section, let us
informally showcase our contributions in the simple though relevant setting we have just
described:

• Regularity: we show at Theorem 5.2.2 and Theorem 5.2.3 that under suitable regu-
larity assumptions on the coefficients:

– The optimal marginal flow (µ"t )t2[0,T ], together with the Lagrange multiplier �"

and the optimal control policy (r'"t )t2[0,T ] form the unique solution of a coupled
forward-backward PDE system, whose precise form is given at (5.3) below. As
it is customary in mean-field control, the forward equation is a Fokker-Planck
equation and the backward equation is a Hamilton-Jacobi-Bellman equation
(henceforth, HJB). The non-standard nature of the equations we study here lies
in the presence of the Lagrange multiplier �", accounting for the distributional
constraints in the underlying control problem.

– The restriction of �" to the open interval (0, T ) is an absolutely continuous
measure with globally bounded density. Atoms may exist at the endpoints of
the interval.

• Stability: strengthening the regularity assumptions of Theorem 5.2.3 and adding a
convexity assumption on  we show at Theorem 5.2.6:

– Entropic stability: the relative entropy H(µ0
[0,T ]|µ

"

[0,T ]) is O("). As a corollary
of Pinsker’s inequality, the total variation distance is of order O("1/2). Further-
more, as a consequence of our assumptions, we prove that the 1-Wasserstein
distance is also O("1/2).
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– Multiplier stability: we show that the total variation distance between the non-
negative measures �" and �0 is O("1/4).

– Control stability: we establish that, uniformly in t 2 [0, T ], the L1-difference
between the optimal Markov policies r'"t (·) and r'0

t (·) is O("1/4).

Both the Schrödinger problem and (5.1) aim at computing some kind of entropic projec-
tion and originate from the Gibbs conditioning principle. However, they fundamentally
differ in the type of available observations. Whereas the former problem provides the full
configuration of the particle system but only at initial and final times, (5.1) only has very
partial information on the particle configuration, namely the sign of the empirical average
of  , but at all times t 2 [0, T ]. Thus, passing from one problem to the other, there is
a trade-off between how rich is the observation we have and the set of times at which
observations are made. This difference has deep implications in terms of how to approach
the stability problem. For example, most stability results for the Schrödinger problem (see
Section 5.1.1 below for references) rely on a static equivalent formulation in terms of an
optimization problem over couplings on Rd

⇥ Rd. Because of the dynamic nature of the
constraints we deal with in (5.1), such reduction to a static problem is impossible and the
proof approach has to be different.

The backbone of our proof strategy consists of two main ingredients. The first one is a
careful analysis of the regularity properties of the HJB equations that arise in connection
with a relaxed version of (5.1). This relaxation employs a Lagrange multiplier to get rid
of the distributional constraints. The analysis of these PDEs is rather delicate due the low
regularity of the involved cost functionals, which are typically only L1 in time. Moreover,
in order to obtain quantitative stability estimates, we have to push the analysis of these
HJB equations up to the third derivative in Section 5.3.1, thus obtaining novel bounds (up
to our knowledge) that are of independent interest. We combine these regularity bounds
with new estimates (up to our knowledge) for the Hessian of the log-density of diffusion
processes. These estimates are also of independent interest; they are proved in Appendix
5.A using time-reversal in the spirit of Haussmann and Pardoux [1986], extending results
from Fontbona and Jourdain [2016].

The second key-ingredient in Section 5.3.1 is a procedure to construct good competi-
tors for the regularised stochastic control problems, by slightly pushing optimal processes
along the gradient flow generated by the observable  and reinterpreting the result as an
admissible control. This construction is crucial for showing that the optimal multiplier has
a bounded density.

We conclude this introduction by highlighting that the results of this paper open the
door for obtaining quantitative versions of the Gibbs conditioning principle in which one
computes the rate of convergence of the conditional distribution of the N -particle system
towards the law of the optimal solution in (5.1).

5.1.1 Literature review

Some reference textbooks about the Gibbs conditioning principle are Lanford [1973]; Ruelle
[1965]; Dembo and Zeitouni [2009]; Dupuis and Ellis [2011]; Ellis [2006]. Some prominent
contributions are Borel [1906]; Diaconis and Freedman [1987]; Stroock and Zeitouni [1991],
which are summarised and deepened in the aforementioned textbooks. The related notion
of entropic projection was introduced and studied in Csiszár [1975, 1984]. For quantitative
versions of the Gibbs principle in convex settings, we refer to Dembo and Zeitouni [1996];
Dembo and Kuelbs [1998]; Cattiaux and Gozlan [2007]. All theses settings study the case
of a finite number of constraints. Existence of a Lagrange multiplier for abstract equality
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constraints is proved in Léonard [2000]. The case of an infinite number of inequality
constraints is treated in Chaintron et al. [2024].

There has been an abundant literature on Schrödinger bridges, some seminal works
being Csiszár [1975]; Cattiaux and Léonard [1995]; Cattiaux and Léonard [1996]. We also
refer to the survey article Léonard [2014], the lecture notes Nutz [2021] and references
therein. The analogous problem when replacing the relative entropy by the rate function
of an interacting particle system (case W 6= 0 of the introduction) is known as the mean-
field Schrödinger problem Backhoff et al. [2020]. Up to our knowledge, the first result on
Schrödinger bridges with distributional constraints is Chaintron et al. [2024].

Recently, important progresses on the stability problem for entropic projections have
been achieved Eckstein and Nutz [2022]; Nutz and Wiesel [2023]; Chiarini et al. [2023];
Divol et al. [2024], mostly if not exclusively driven by the surge of interest around the
Schrödinger problem and its applications in machine learning. However, the proofs in our
setting are quite different as explained in the introduction.

Stochastic control problems under distributional constraints have received some atten-
tion, mostly motivated by mathematical finance, see e.g. Föllmer and Leukert [1999]; Guo
et al. [2022] and references therein. For problems with expectation constraints, we refer
to Chow et al. [2020]; Guo et al. [2022]; Pfeiffer et al. [2021] and related works. In what
concerns the regularity results, the closest works to ours are the recent works Daudin
[2022, 2023b], which study the problem of controlling the drift of a Brownian motion un-
der convex distributional constraints , and sparked renewed interest around constrained
stochastic control problems. Their approach is purely PDE-oriented:existence and regu-
larity are obtained for a Lagrange multiplier using a penalisation method, following some
constructions put forward in the deterministic setting in Cannarsa et al. [2018]. The main
challenge of our framework compared to these works is the addition of a non-constant
diffusion matrix and the McKean-Vlasov setting. In particular, our results rely on novel
estimates for HJB equations, whose starting points are our recent works Chaintron [2023]
and Chaintron et al. [2024]. The related (non-quantitative) mean-field limit is proved in
Daudin [2023a], adapting the method of Lacker [2017] to the constrained setting. When
it comes to the stability results we obtained, they appear to be the first of this kind that
apply to dynamically constrained McKean-Vlasov control problems, at least to the best of
our knowledge and understanding.

5.1.2 Frequently used notations

• P(E) denotes the set of probability measures over a probability space E.

• L(X) denotes the law in P(E) of a E-valued random variable X.

• �x denotes the Dirac measure at some point x in E.

• H(µ|⌫) is the relative entropy of µ, ⌫ 2 P(E), defined by H(µ|⌫) :=
R
E
log dµ

d⌫ dµ if
µ⌧ ⌫, and H(µ|⌫) := +1 otherwise.

• P1(E) denotes the set of measures µ 2 P1(E) such that
R
E
d(x, x0)µ(dx) < +1 for

some distance d on E and x0 2 E.

• W1 denotes the Wasserstein distance on P1(E), defined by

W1(µ, µ
0) := inf

X⇠µ, Y⇠µ0
E[d(X,Y )].

• k·kTV denotes the total variation distance on P(E), defined by

kµ� µ0kTV := inf
X⇠µ, Y⇠µ0

P(X 6= Y ).
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• f ⇤ µ is the convolution of a measurable f : E ! E0 and µ 2 P(E), defined by
f ⇤ µ(x) :=

R
E
f(x� y)µ(dy).

• �F

�µ
(µ) : x 7! �F

�µ
(µ, x) denotes the linear functional derivative at µ of a function F :

P(E)! R, see Definition 5.1.1 below. The convention is adopted that
R
E

�F

�µ
(µ)dµ =

0.

• T > 0 is a given real number, and d � 1 is an integer.

• x[0,T ] 2 C([0, T ],Rd) denotes a continuous function x[0,T ] : [0, T ]! Rd.

• µ[0,T ] denotes a path measure in P(C([0, T ],Rd). The related marginal measure at
time t will be denoted by µt.

• Xt denotes the coordinate map x[0,T ] 7! xt. It can be seen as a random variable on
the canonical space ⌦ = C([0, T ],Rd).

• ⌃ =
�
⌦, (Ft)0tT ,P, (Bt)0tT

�
denotes a reference probability system in the ter-

minology of [Fleming and Soner, 2006, Chapter 4]: (⌦,FT ,P) is a probability space,
(Ft)0tT is a filtration satisfying the usual conditions, and (Bt)0tT is a (Ft)0tT -
Brownian motion.

• M+([0, T ]) denotes the convex cone of positive Radon measures over [0, T ]. In this
setting, a Radon measure is a signed finite measure that is both inner and outer
regular as defined in [Rudin, 1970, Definition 2.15].

• ·
> and Tr[·] respectively denote the transpose and the trace of matrices.

• |a| denotes the Frobenius norm
p
Tr[aa>] of a matrix a.

• r · a for a matrix field a = (ai,j)1i,jd is the vector field whose i entry is the
divergence of the vector field (ai,j)1jd. We similarly define differential operators
on matrices.

• When using coordinates, we will always use the summing convention of repeated
indices.

Definition 5.1.1 (Linear functional derivative). Let C be a convex subset of P(E), and
let µ 2 C. A map F : C ! R is differentiable at µ if there exists a measurable map

�F

�µ
(µ) :

(
E ! R,

x 7! �F

�µ
(µ, x),

such that for every µ0 in C, �F

�µ
(µ) is µ0-integrable and satisfies

"�1
⇥
F ((1� ")µ+ "µ0)� F (µ)

⇤
����!
"!0+

Z

E

�F

�µ
(µ)d[µ0 � µ].

The map �F

�µ
(µ) being defined up to an additive constant, we adopt the usual convention

that
R
E

�F

�µ
(µ)dµ = 0. This map is called the linear functional derivative of F at µ (w.r.t.

the set of directions C). We notice that this definition does not depend on the behaviour of
F outside of an arbitrary small neighbourhood of µ.
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By direct integration, the definition implies

8µ, µ0 2 C, F (µ)� F (µ0) =

Z 1

0

Z

E

�F

�µ
((1� r)µ0 + rµ)d[µ� µ0]dr,

provided that the integral on the r.h.s. is well-defined.

Example 5.1.2 (Linear case). In the particular case F (µ) =
R
E
fdµ for some measurable

f : E ! R that is µ-integrable for every µ in C, we have �F

�µ
(µ, x) = f(x)�

R
E
fdµ.

5.2 Statement of the main results

For ⌫0 2 P1(Rd) and µ[0,T ] 2 P1(C([0, T ],Rd)), let �(µ[0,T ]) denote the path-law of the
pathwise unique strong solution to

dXt = bt(Xt, µt)dt+ �t(Xt)dBt, X0 ⇠ ⌫0,

where (Bt)0tT is a Brownian motion and the coefficients are continuous functions b :
[0, T ]⇥Rd

⇥P1(Rd)! Rd, � : [0, T ]⇥Rd
! Rd⇥d satisfying (A.2) below. The generalisation

of (5.1) we are interested in is

H := inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)0

H(µ[0,T ]|�(µ[0,T ])), (5.2)

where  : P1(Rd)! R is lower semi-continuous. The map µ[0,T ] 7! H(µ[0,T ]|�(µ[0,T ])) is a
large deviation rate function, which is studied in e.g. Fischer [2014]; Backhoff et al. [2020].
Under (A.1)-(A.2) below, this map has compact level sets in P1(C([0, T ],Rd) from [Fischer,
2014, Remark 5.2] or [Chaintron, 2024, Corollary B.4] (it is a good rate function in the
large deviation terminology). Since  is lower semi-continuous, existence of a minimiser
always holds for (5.2) if H is finite. We now detail the regularity assumptions that are
needed for writing optimality conditions for (5.2).

Assumption (A.1) (Initial condition). For every ↵ > 0, x 7! e↵|x| is ⌫0-integrable.

Assumption (A.2) (Coefficients). There exists C > 0 such that:

(i) 8(t, x, y, µ, µ0) 2 [0, T ]⇥ Rd
⇥ Rd

⇥ P1(Rd)⇥ P1(Rd),
|bt(x, µ)� bt(y, µ0)|+ |�t(x)� �t(y)|  C[|x� y|+W1(µ, µ0)].

(ii) 8(t, x) 2 [0, T ]⇥ Rd, |�t(x)|  C, and t 7! �t(x) is locally Hölder-continuous.

(iii) 8(t, x, ⇠) 2 [0, T ]⇥ Rd
⇥ Rd, ⇠>�t�>t (x)⇠ � C�1|⇠|2.

Assumption (A.3) (Linear derivatives). The functions µ 7!  (µ) and µ 7! bt(x, µ) have
a linear functional derivative in the sense of Definition 5.1.1. Moreover, (x, µ) 7! � 

�µ
(µ, x)

and (t, x, µ, y) 7! �bt
�µ

(x, µ, y) are jointly continuous, and for every compact set K ⇢ P1(Rd),

8(t, µ, x, y, z) 2 [0, T ]⇥K⇥(Rd)3,
�� �bt
�µ

(x, µ, y)� �bt
�µ

(x, µ, z)
��+
�� � 
�µ

(µ, y)� � 
�µ

(µ, z)
��  CK |y�z|,

for CK > 0 that only depends on K. Finally, x 7! r � 
�µ

(µ, x) is CK-Lipschitz for any
µ 2 K.

In the statement of our results, we shall require the following assumption, called con-
straint qualification, to be satisfied at a given µ[0,T ] 2 P1(C([0, T ],Rd)) such that  (µt)  0
for every t 2 [0, T ].
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Chapter 5. Regularity and stability for Gibbs principle on path space

Assumption (A.4) (Qualification). There exists "̃ > 0, µ̃[0,T ] 2 P1(C([0, T ],Rd)) such
that H(µ̃[0,T ]|�(µ[0,T ])) < +1 and

8t 2 [0, T ],  (µt) + "̃

Z

Rd

� 

�µ
(µt)dµ̃t < 0.

An analytical equivalent of this assumption is given by Remark 5.2.5 below.

Remark 5.2.1. When  is convex, a condition equivalent to (A.4) is the existence of
µ̃[0,T ] 2 P1(C([0, T ],Rd)) such that H(µ̃[0,T ]|�(µ[0,T ])) < +1 and

8t 2 [0, T ],  (µ̃t) < 0,

see [Chaintron et al., 2024, Lemma 2.17]. Another sufficient condition is given by [Chain-
tron et al., 2024, Remark 2.15].

We now provide a control interpretation of (5.2) for which we write optimality condi-
tions.

Theorem 5.2.2 (Structure of optimisers). Under (A.1)-(A.2)-(A.3), let us assume that
µ[0,T ] is an optimal measure for (5.2) that satisfies (A.4).

(i) McKean-Vlasov control: consider the control problem with law constraints

V  := inf
(X↵

t )0tT ,↵

8t2[0,T ], (L(X↵
t ))0

H(L(X↵

0 )|⌫0) + E
Z

T

0

1

2
|↵t|

2dt,

on a filtered probability space (⌦,FT , (Ft)0tT ,P) satisfying the usual conditions,
where ↵ is progressively measurable, (X↵

t )0tT is adapted, and P-a.s.

dX↵

t = bt(X
↵

t ,L(X
↵

t ))dt+ �t(X
↵

t )↵tdt+ �t(X
↵

t )dBt, 0  t  T,

for a given (Ft)0tT -Brownian motion (Bt)0tT in Rd. We have the correspon-
dence:

H = V  ,

and µ[0,T ] is the path-law of an optimally controlled process.

(ii) Optimality conditions: there exists � 2M+([0, T ]) and ' : [0, T ]⇥Rd
! R such that

µ0(dx) = Z
�1

e�'0(x)⌫0(dx) and
8
>>><

>>>:

@tµt �r · [�µtbt(·, µt) + µt�t�
>
t r't +

1
2r · [µt�t�

>
t ]] = 0,

�'t +
R
T

t
bs(·, µs) ·r's �

1
2

���>s r's

��2 + 1
2Tr[�s�

>
s r

2's] + csds

+
R
[t,T ]

� 
�µ

(µs)�(ds) = 0,

(5.3)

where
cs(x) :=

Z

Rd

�b

�µ
(y, µs, x) ·r's(y)µs(dy).

Moreover, V  is realised by the optimal control in feed-back form ↵t = ��t�>t r't(X
↵
t ).

In the above, solutions to the Fokker-Planck equation have to be understood in the
weak sense, and solutions to the Hamilton-Jacobi-Bellman (HJB) equation have to
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be understood in the sense of Definition 5.C.1. Furthermore, the complementary
slackness condition holds,

 (µt) = 0, for �-a.e. t 2 [0, T ], (5.4)

and we have the pathwise representation

dµ[0,T ]

d�(µ[0,T ])
(x[0,T ]) = Z

�1
exp


�

Z
T

0
ct(xt)dt�

Z
T

0

� 

�µ
(µt, xt)�(dt)

�
.

Let us further study the Lagrange multiplier �. To do so, we need to strengthen our
regularity assumptions.

Assumption (A.5) (Strengthening of (A.1)). Assumption (A.1) holds and ⌫0 has a pos-
itive density w.r.t. the Lebesgue measure, still denoted by ⌫0. Moreover, C, "0 > 0 exist
such that

(i) log ⌫0 is (a.e.) differentiable and
R

Rd

⇥
(log ⌫0)1+"0 + |r log ⌫0|2+"0

⇤
d⌫0  C.

(ii) r log ⌫0 is differentiable and
R

Rd

⇥
(log ⌫0)1+"0 + |r log ⌫0|4+"0 + |r

2 log ⌫0|2+"0
⇤
d⌫0 

C.

(iii) We further have
R

Rd e"0|x|
2
⌫0(dx)  C.

Assumption (A.6) (Strengthening of (A.2)-(A.3)). Assumptions (A.2)-(A.3) hold, and
µ 7! � 

�µ
(µ, x) has a linear derivative y 7! �

2 
�µ2 (µ, x, y). Moreover, the functions

t 7! bt(x, µ), t 7! �t(x), x 7! r�t(x),

(µ, x, y) 7! �bt
�µ

(x, µ, y), (µ, x) 7! � 
�µ

(µ, x), x 7! r � 
�µ

(µ, x), y 7! �
2 
�µ2 (µ, x, y),

are well-defined and Lipschitz-continuous uniformly in (t, x, µ).

Assumption (A.7) (Strengthening of (A.6)). Assumption (A.6) holds and there exists
C > 0 such that for every (t, x, µ) 2 [0, T ]⇥ Rd

⇥ P1(Rd),

(i) x 7! rxbt(x, µ), x 7! r
2�t(x) and y 7! ry

�bt
�µ

(x, µ, y) are well-defined and C-
Lipschitz.

(ii) x 7! � 
�µ

(x, µ) is C2 with C-Lipschiz derivatives which are continuous in (x, µ).

(iii) x 7! � 
�µ

(µ, x) is C4 and y 7! �
2 
�µ2 (µ, x, y) is C2, both with derivatives bounded by C

and jointly Lipschitz-continuous in (µ, x, y).

We now state sufficient conditions for � having a density.

Theorem 5.2.3 (Density for the multiplier). Under (A.4) at µ[0,T ], there exists (�,')
satisfying Theorem 5.2.2-(ii) such that x 7! r't(x) is Lipschitz-continuous and

�(dt) = �0�0(dt) + �tdt+ �T �T (dt),

for t 7! �t in L1(0, T ), if we assume that either (A.5)-(i) and (A.7)-(ii) hold, or that
(A.5)-(ii) and (A.7)-(i) hold. In the second case, x 7! r2't(x) is Lipschitz-continuous
and the densities of the time-marginals of µ[0,T ] satisfy


sup
t2[0,T ]

Z

Rd

⇥
logµt+|r logµt|

4+|r
2 logµt|

2
⇤
dµt

�
+

Z
T

0

Z

Rd
|r

3 logµt|
2dµtdt < +1. (5.5)
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Remark 5.2.4. As highlighted in the introduction, constrained mean field control problems
have recently been studied by Daudin in a series of articles. More specifically, optimality
conditions of the form (5.3) and the existence of a bounded Radon-Nikodym density for
Lagrange multipliers are established in [Daudin, 2023b, Theorem 2.2]. These results are
very similar in spirit to Theorem 5.2.2 and Theorem 5.2.3 and have partially inspired our
work. One should note that the control problems considered here are slightly different: in
Daudin [2023b], the objective function includes an additional mean field term in both the
running and terminal costs, the reference dynamics has zero drift and a constant diffusion
matrix, and the initial distribution is fixed. Here, the initial distribution is a variable over
which we optimize, and the controlled dynamics corresponds to a stochastic differential
equation of McKean-Vlasov-type with non constant diffusions coefficient. Regarding the
constraint function  , we are able to work under weaker regularity assumptions and do not
require convexity. We also rephrase the transversality conditions from Daudin’s work in
terms of a constraint qualification condition, see Remark 5.2.5. Our proof approaches are
rather different too. We study regularity properties by pushing the optimal process along
the gradient flow of the constraint to build suitable competitors, whereas Daudin [2023b]
approximates the constrained problem by relaxing the constraint and penalising the flows
that violate it. Then, he shows that if the penalisation strength is sufficiently large, the
penalised problem and the constrained problem are equivalent.

The results on the density of � can be seen as a regularity trade-off between the con-
straint and the coefficients. They rely on the new technical estimate (5.5) for diffusions,
which is proved in Proposition 5.A.4. The proof of Theorem 5.2.3 and Corollary 5.4.2.1
further show that t 2 (0, T ] 7! r't(x) is continuous and t 2 [0, T ] 7!  (µt) is C1 under
(A.7)-(ii), whereas t 2 (0, T ] 7! r2't(x) is continuous under (A.7)-(i). Depending on
where the regularity is assumed (constraints or coefficients), we thus get more smoothness
on either the constrained curve or the optimal control. Requiring more derivatives on
coefficients would still improve the regularity in (t, x).

Remark 5.2.5 (Equivalent qualification condition). A consequence of (A.4) is that

8t 2 [0, T ],  (µt) = 0)

Z

Rd

����r
� 

�µ
(µt)

����
2

dµt 6= 0.

In the setting of Theorem 5.2.3, this condition is equivalent to (A.4) from Corollary 5.3.5.1.

We now prove quantitative stability with respect to the constraint  . To guarantee
that uniqueness holds for (5.2), we restrict ourselves to bt(x, µ) = bt(x) and  convex. This
setting still includes the entropic projection (5.1) of the introduction. Let ⌫[0,T ] denote the
path-law of the solution to

dXt = bt(Xt)dt+ �t(Xt)dBt, X0 ⇠ ⌫0,

where (Bt)0tT is a Brownian motion. To alleviate notations, optimal measures will be
denoted by µ"[0,T ] in the following statement, instead of µ[0,T ]. The same goes for '" and
�".

Theorem 5.2.6 (Quantitative stability). We assume (A.4)-(A.5)-(A.7) and that  is
convex. For " � 0, let µ"[0,T ] denote the unique minimiser for

inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)"

H(µ[0,T ]|⌫[0,T ]).
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Let ('"t ,�"t ,�"0,�"T ) be related to µ"[0,T ] by Theorems 5.2.2-5.2.3. We assume that the number
of non-trivial intervals where  (µ0

t ) is identically zero is finite. Then, there exists C > 0
independent of " such that uniformly in " 2 [0, 1],

(i) Entropic stability: H(µ0
[0,T ]|µ

"

[0,T ])  C".

(ii) Multiplier stability: |�"0 � �00|+ k�" � �0kL1(0,T ) + |�"
T
� �0

T
|  C"1/4.

(iii) Control stability: sup(t,x)2[0,T ]⇥Rd |r'"t (x)�r'
0
t (x)|  C"1/4.

We notice that the l.h.s. of (ii) corresponds to the total variation distance between the
multipliers, seen as measures over [0, T ]. The Gaussian bound (A.5)-(iii) is only used to
simplify the convergence rate (otherwise, additional log " factors would have been needed).
Similarly, the assumption on the finite number of intervals can be removed if we deteriorate
the rate, see Remark 5.4.9 below.

Remark 5.2.7 (L1-stability). From the proof of Proposition 5.4.8, the L1-estimate on
�" is actually a L1-one on intervals where  (µ0

t ) = 0 and  (µ"t ) = " simultaneously.
We cannot expect a global L1-estimate, since moving the constraint can produce strong
discontinuities for �"t at the boundary of {t 2 [0, T ] ,  (µ"t ) = "}. However, under stronger
assumptions on coefficients, Lemma 5.4.6 can provide continuity for �"t within intervals
where  (µ"t ) = " identically.

The proofs are organised as follows. Section 5.3 proves bounds on the multiplier in a
linearised setting with smooth coefficients. However, we precisely keep track of regularity
constants along the estimates. The main results are then proved in Section 5.4. The proof
of Theorem 5.2.2 essentially relies on results from Chaintron et al. [2024]. To cope with
the delicate regularity assumptions of Theorem 5.2.3, a careful smoothing procedure is
detailed in Section 5.4.2. The non-linear problem (5.2) is first approximated by smooth
non-linear problems. These smooth problems are then linearised to enter the scope of
Section 5.3. Theorem 5.2.3 is obtained by taking the limit in the bounds therein. Starting
from Theorems 5.2.2-5.2.3, Theorem 5.2.6 is proved in an independent way in Section 5.4.3.

5.3 Regularity bounds on the multiplier

This section is concerned with the strictly convex minimisation problem

inf
µ[0,T ]2P1(C([0,T ],Rd))

8t2[0,T ],
R

Rd  tdµt0

H(µ[0,T ]|⌫[0,T ]) +

Z
T

0

Z

Rd
ctdµtdt, (5.6)

where ⌫[0,T ] is the path-law of the pathwise unique strong solution to

dXt = bt(Xt)dt+ �t(Xt)dBt, X0 ⇠ ⌫0,

under the following assumption.

Assumption (A.8) (Smooth setting).

(i) ⌫0 satisfies (A.1), and � satisfies (A.2)-(ii)-(iii).

(ii) bt, �t, ct,  t are C1 function of x, with bounded derivatives of all orders indepen-
dently of t. Moreover, all derivatives of bt, �t,  t are locally Hölder-continuous in
(t, x).
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(iii) @tbt, @t�t are well-defined, C1 and bounded independently of t, as well as of all their
derivatives.

(iv) There exists a minimiser µ[0,T ] for (5.6), which is necessarily unique by strict con-
vexity of the relative entropy. Moreover,  satisfies

8t 2 [0, T ],

Z

Rd
@t tdµt = 0. (5.7)

and constraint qualification holds at µ[0,T ]: there exists "̃ > 0, µ̃[0,T ] 2 P1(C([0, T ],Rd))
with H(µ̃[0,T ]|⌫[0,T ]) < +1 such that

8t 2 [0, T ]

Z

Rd
 tdµt + "̃

Z

Rd
 td(µ̃t � µt) < 0. (5.8)

This setting satisfies the assumptions of Theorem [Chaintron et al., 2024, Theorem
2.12] with E = C([0, T ],Rd), �(x[0,T ]) = supt2[0,T ] |xt|, F(µ[0,T ]) =

R
T

0

R
Rd ctdµtdt, the

inequality constraints  t : µ[0,T ] 7!
R

Rd  tdµt with T = [0, T ], and no equality constraint.
Indeed, ct has linear growth uniformly in t, implying that x[0,T ] 7!

R
T

0 ct(xt) has linear
growth, and thus [Chaintron et al., 2024, Assumptions (A6)-(A8)] are satisfied. Moreover,
[Chaintron et al., 2024, Assumptions (A7)] is satisfied using (A.8) and [Chaintron et al.,
2024, Remark 2.14]. Since (5.8) provides the qualification condition, we obtain a Lagrange
multiplier � 2M+([0, T ]) such that

dµ[0,T ]

d⌫[0,T ]
(x[0,T ]) = Z

�1
exp


�

Z
T

0
ct(xt)dt�

Z
T

0
 t(xt)�(dt)

�
, (5.9)

with the complementary slackness condition
Z

Rd
 tdµt = 0, for �-a.e. t 2 [0, T ]. (5.10)

This section aims to show that the restriction of � to (0, T ) has a bounded density w.r.t.
the Lebesgue measure. Up to changing ⌫0(dx) into Z�10 e��({0}) 0(x)⌫0(dx), we can assume
that �({0}) = 0. Indeed, under (A.6), ⌫0 still satisfies (A.5) after this change. In the
following, we set �T := �({T}) and we will use the convenient notation a := ��>.

5.3.1 Smoothed multiplier and stochastic control

Let ⌃ = (⌦, (Ft)0tT ,P, (Bt)0tT ) be a reference probability system as defined in Section
5.1.2. For (t, x) 2 [0, T ]⇥ Rd, we consider the controlled dynamics

(
dXt,x,↵

s = bs(X
t,x,↵
s )ds+ �s(X

t,x,↵
s )↵sds+ �s(X

t,x,↵
s )dBs, t  s  T,

Xt,x,↵

t
= x,

(5.11)

where ↵ = (↵s)tsT is any progressively measurable square-integrable process on ⌃. Such
a process will be called an open-loop control. Following [Budhiraja et al., 2012, Section
3, page 9], strong existence and pathwise uniqueness for (5.11) is given by the Girsanov
transform if

R
T

0 |↵t|
2dt  M a.s. for some M > 0, and still holds otherwise using a

localisation argument. In the following, we will often consider consider feed-back controls
↵s = ↵(s,X↵

s ), as it is customary in control theory. In this case, regularity properties will
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be needed on the function ↵ to prove strong existence and pathwise uniqueness for the
SDE

dY t,x,↵

s = bs(Y
t,x,↵

s )ds+ �s(Y
t,x,↵

s )↵(s, Y t,x,↵

s )ds+ �s(Y
t,x,↵

s )dBs, t  s  T, (5.12)

with Y t,x,↵

t
= x. If well-posedness is granted for this SDE, we will still denote its solution by

Xt,x,↵, with a slight abuse of notations, and we may write ↵s(X
t,x,↵
s ) instead of ↵(s,Xt,x,↵

s )
when it is non-ambiguous. Furthermore, we will use the infinitesimal generator L↵t defined
on C2 functions � : Rd

! R by

L↵t � := bt ·r�+ �t↵t ·r�+
1

2
Tr[atr

2�].

Given any (µ0,�) 2 P1(Rd)⇥M+([0, T ]), we define the value functions:

V �

⌃ (t, x) := inf
↵

E
Z

T

t

1

2
|↵s|

2 + cs(X
t,x,↵

s )ds+

Z

[t,T ]
 s(X

t,x,↵

s )�(ds),

V �

⌃ (µ0) := inf
X0,↵

X0⇠µ0

E
Z

T

0

1

2
|↵s|

2 + cs(X
0,X0,↵
s )ds+

Z

[0,T ]
 s(X

0,X0,↵
s )�(ds),

where we minimise over open-loop controls ↵, and F0-adapted X0 with law µ0 for V �

⌃ . We
have to keep track of ⌃ here, because the proof of Proposition 5.3.5 below will require a
change of reference system. Throughout this subsection, we fix (µ0,�) and we make the
following assumption in addition to (A.8).

Assumption (A.9).

(i) There exists a C1 non-negative function (�s)0sT such that �(ds) = �sds+�T �T (ds).

(ii) (t, x) 7! ct(x) is locally Hölder-continuous, as well as all its derivatives w.r.t. x.

Under (A.9) the above control problem is standard. To solve it, we introduce the HJB
equation in [0, T ]⇥ Rd:

(
@t't + L0

t't �
1
2 |�
>
t r't|

2 + ct = ��t t, 0  t < T,

'T = �T T .
(5.13)

From [Chaintron, 2023, Theorem 2.2], (5.13) has a unique C1,2 solution ', and

sup
t2[0,T ]

kr'tk1  C, (5.14)

for C > 0 that only depends on �([0, T ]) and the uniform norms of �, ��1, rb, r�, rc,
and r . Moreover, ' and its derivatives are Hölder-continuous, and

8(t, x) 2 [0, T ]⇥ Rd, |'t(x)|  C[1 + |x|], (5.15)

using [Chaintron, 2023, Lemma 3.1]. Since the coefficients are C1, 't is in fact C1

from [Chaintron et al., 2024, Corollary 5.6]. We can now introduce the feed-back control
↵0
s := ��>s r's, because strong existence and pathwise-uniqueness holds for the related

SDE (5.12) using (A.8), (5.14) and the fact that ' is C2.

Lemma 5.3.1 (Verification). For every (t, x) in [0, T ]⇥Rd, V �

⌃ (t, x) is uniquely realised by
the feed-back control ↵0. As a consequence, V �

⌃ (µ0) =
R

Rd V �

⌃ (0, x)dµ0(x) does not depend
on ⌃.
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This result is classical in control theory, see e.g. [Fleming and Soner, 2006, Chapter
III.8, Theorem 8.1], but we still provide the proof for the sake of completeness.

Proof. Let ↵ = (↵s)tsT be an open-loop control. The regularity of ' allows us to apply
Ito’s formula:

'T (X
t,x,↵

T
)� 't(x) =

Z
T

t

(@s + L0
s)'s(X

t,x,↵

s ) + �s(X
t,x,↵

s )↵s ·r's(X
t,x,↵

s )ds

+

Z
T

t

r's · �s(X
t,x,↵

s )dBs.

The stochastic integral is a true martingale because of the uniform bounds on � and r'.
The HJB equation (5.13) yields

't(x) =

Z
T

t

�↵s · �
>

s r's(X
t,x,↵

s )�
1

2
|�>s r's(X

t,x,↵

s )|2 + cs(X
t,x,↵

s ) +  s(X
t,x,↵

s )�sds

�

Z
T

t

r's · �s(X
t,x,↵

s )dBs + �T T (X
t,x,↵

T
).

Moreover,
Z

T

t

�↵s · �
>

s r's(X
t,x,↵

s )�
1

2
|�>s r's(X

t,x,↵

s )|2ds 

Z
T

t

1

2
|↵s|

2ds a.s,

with equality if and only if ↵s = �asr's(X
t,x,↵
s ) for a.e. s 2 [t, T ], so that taking

expectations,

't(x)  E
Z

T

t

1

2
|↵s|

2 + cs(X
t,x,↵

s ) +  s(X
t,x,↵

s )�sds+ �T T (X
t,x,↵

T
),

with equality if and only if ↵s = �asr's(X
t,x,↵
s ), ds⌦ P-a.s.

We now prove further regularity bounds. For R � 0, let B(0, R) denote the centred
ball of Rd with radius R. For technical reasons, we need to introduce the matrix

aRt (x) := ⇢R(x)at(x) + [1� ⇢R(x)]Id,

where (⇢R)R�0 is any family of smooth functions Rd
! [0, 1] such that ⇢R|B(0,R) ⌘ 1

and ⇢R|Bc(0,R+1) ⌘ 0, the derivatives of ⇢R being globally bounded uniformly in R. Let
�Rt denote the positive definite square-root of aRt . Let 'R

t denote the solution of (5.13)
when replacing � by �R. We notice that �R and (�R)�1 satisfy the same bounds as �
and ��1, for regularity constants that are independent of R. As a consequence, r'R

satisfies the bound (5.14)-(5.15) independently of R. Let us consider the feed-back control
↵R
t := �(�Rt )

>
r'R

t , the related SDE (5.12) having a pathwise unique strong solution
because 'R is C2 with bounded r'R. Since ' is the classical solution of (5.13), it is also
the mild solution of (5.13) in the sense of Definition 5.C.1, which is given by [Chaintron
et al., 2024, Theorem 3.6]. As a consequence of [Chaintron et al., 2024, Lemma 5.3], for
Lebesgue-a.e. t 2 [0, T ],

'R

t �����!
R!+1

't, r'R

t �����!
R!+1

r't, (5.16)

uniformly on every compact set of Rd, if we show that (r'R
t )R�0 is pre-compact on any

compact set. From the uniform bound on (r'R
t )R�0 and the Arzelà–Ascoli theorem, a

sufficient condition for this is (r2'R
t )R�0 being uniformly bounded.
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5.3. Regularity bounds on the multiplier

To the best of our knowledge the following estimate is new in the stochastic control
literature. Based on [Conforti, 2023, Proposition 3.2], its key element is a gradient estimate
that is proved in Priola and Wang [2006] using reflection coupling.

Proposition 5.3.2 (Hessian bound). The following estimate holds

sup
t2[0,T ]

kr'tk1 + sup
t2[0,T ]

kr
2'tk1  C,

for a constant C that only depends on coefficients through �([0, T ]) and the uniform norms
of �, ��1, rb, r�, rc, r s and r2 s.

Proof. Starting from (5.14), we have to prove the Hessian bound. Since we do not know
that r2't is bounded beforehand, we first reason on 'R

t . Differentiating the HJB equation,
for 1  i  d,

(@t+L↵
R

t )@i'
R

t = �@ibt ·r'
R

t +
1

2
r'R

t ·@ia
R

t r'
R

t �
1

2
Tr[@ia

R

t ·r
2'R

t ]�@ict��t@i t. (5.17)

With a slight abuse, we still write L↵
R

t for the operator where �t has been replaced by �Rt .
Similarly, we write Xt,x,↵

R for the process (5.12) controlled by the feed-back ↵R, where
the diffusion matrix has been replaced by �Rt . From [Chaintron, 2023, Theorem 2.2],
'R is C1,2 with Hölder-continuous derivatives. Since rb, rc, r�R and r are Hölder-
continuous, [Friedman, 2008, Chapter 3, Theorem 13] guarantees that r'R is C1,2 with
Hölder-continuous derivatives. Ito’s formula applied to @i'R

s (X
t,x,↵

R

s ) then yields

@i'
R

t (x) = �T@i T (X
t,x,↵

R

T
) +

Z
T

t

�
fs +

1

2
Tr[@ia

R

s r
2'R

s ] + �s@i s

 
(Xt,x,↵

R

s )ds

+

Z
T

t

(�Rs )
>
r@i'

R

s (X
t,x,↵

R

s )dBs, (5.18)

where
fs := @ibs ·r'

R

s �
1

2
r'R

s · @ia
R

s r'
R

s + @ics.

Using the uniform bound onr'R
s , fs is bounded by a constant C > 0 independent of (s,R),

which satisfies the requirements of Proposition 5.3.2. In the following, C may change from
line to line, but still satisfying these requirements. For y 2 Rd, we similarly decompose
@i'R

t (y) and we subtract this expression to (5.18), before taking expectations to get rid of
the martingale. Since ↵R is bounded continuous, we can use the estimate from [Priola and
Wang, 2006, Theorem 3.4 (a)]. Strictly speaking, [Priola and Wang, 2006, Theorem 3.4
(a)] only allows for time-homogeneous coefficients, but the adaptation of these arguments
to the time-dependent setting is straight-forward. This yields

8(x, y) 2 Rd
⇥ Rd, |E[fs(Xt,x,↵

R

s )]� E[fs(Xt,y,↵
R

s )]| 
C|x� y|

1 ^
p
t� s

. (5.19)

We similarly handle the other terms to obtain that

|@i'
R

t (x)� @i'
R

t (y)|  C�T |x� y|+

Z
T

t

C|x� y|

1 ^
p
s� t

[1 + k@ia
R

s r
2'R

s k1 + �s]ds,

where k@iaRs r2'R
s k1 is finite because r2'R is continuous and @iaRs ⌘ 0 out of B(0, R +

1). Dividing by |x � y| and taking the supremum over (x, y) and i, this proves that
sup0tT kr

2'R
t k1 is finite.
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We now perform the same reasoning, but applying Ito’s formula to @i'R
s (X

t,x,0
s ) instead

of @i'R
s (X

t,x,↵
R

s ), still with �R instead of � in the definition of Xt,x,0. Using that L↵
R

t =
L0
t + �Rt ↵

R
t ·r in (5.17), this yields

@i'
R

t (x) =

Z
T

t

�
fs + �Rs ↵

R

s ·r@i'
R

s +
1

2
Tr[@ia

R

s r
2'R

s ] + �s@i s

 
(Xt,x,0

s )ds

+ �T@i T (X
t,x,0
T

) +

Z
T

t

(�Rs )
>
r@i'

R

s (X
t,x,0
s )dBs,

Using (5.19) as previously, with Xt,x,0 instead of Xt,x,↵
R , we obtain

|@i'
R

t (x)� @i'
R

t (y)|  C�T |x� y|+

Z
T

t

C|x� y|

1 ^
p
s� t

[1 + kr2'R

s k1]ds

+

Z
T

t

�s|E[@i s(X
t,x,0
s )]� E[@i s(X

t,y,0
s )]|ds. (5.20)

Using e.g. synchronous coupling, it is standard that

|E[@i s(X
t,x,0
s )]� E[@i s(X

t,y,0
s )]|  Ckr@i sk1|x� y|.

The last term in (5.20) can then be bounded using that �([0, T ])  C. We now divide by
|x� y|, and we take the supremum over (x, y) and i to get that

8t 2 [0, T ], kr
2'R

t

��
1
 C +

Z
T

t

C

1 ^
p
s� t

[1 + kr2'R

s k1]ds.

Using the Gronwall lemma, we eventually obtain

sup
0tT

kr
2'R

t

��
1
 C


1 +

Z
T

0

ds

1 ^
p
s

�
exp

 Z
T

0

C

1 ^
p
s
ds

�
,

where the constant C is independent of R and satisfies the requirements of Proposition
5.3.2. This uniform bound on (r2'R

t )R�0 implies the convergence (5.16), for Lebesgue-
a.e. t 2 [0, T ]. From the Banach-Alaoglu theorem, (r2'R

t )R�0 has a weakly-? converging
sub-sequence as R! +1 for the �(L1, L1)-topology, whose limit still satisfies the above
bound. Since r2't was already well-defined, this proves that r2'R

t ! r
2't weakly-?. In

particular, r2't satisfies the above bound, for Lebesgue-a.e. t 2 [0, T ]. Since t 7! r2't(x)
is continuous, this concludes the proof.

In the above proof, the dependence on r2 s for C is needed because we want an
estimate that only depends on � through �([0, T ]). Otherwise, instead of synchronous
coupling, we would use reflection coupling to handle the last term in (5.20) as the other
ones. Still relying on the estimate from Priola and Wang [2006], the next result is a new
third-order bound for HJB equations. In contrast with the previous bound, which only
depends on �([0, T ]), the next bound depends on sup0tT |�t|. However, it is crucial for
the sequel that this dependence comes through a multiplicative constant that can be taken
as small as desired.

Lemma 5.3.3 (Third-order bound). For every " > 0, there exists C" > 0 such that

sup
t2[0,T ]

kr
3'tk1  C" + " sup

0tT
|�t|,

for a constant C" that only depends on coefficients through �([0, T ]) and the uniform norms
of �, ��1, rb, r�, rc, r s, r2b, r2�, r2c and r2 s.
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Proof. As in the proof of Proposition 5.3.2, we first reason on 'R. For 1  i, j  d, we
differentiate (5.17) and we use the bounds that were proved on 'R to get as previously
that

(@t + L↵
R

t )@i,j'
R

t = �ft �
1

2
Tr[@ia

R

t @jr
2'R

t ]� �t@i,j t,

for some measurable f : [0, T ]⇥Rd
! R that is bounded by a constant C > 0 independent

of R, which satisfies the requirements of Lemma 5.3.3. In the following, C may change from
line to line, but still satisfying these requirements. Since r2b, r2c, r2�R and r2 are
Hölder-continuous, [Friedman, 2008, Chapter 3, Theorem 13] guarantees as previously that
r

2'R is C1,2 with Hölder-continuous derivatives. Ito’s formula applied to @i,j'R
s (X

t,x,↵
R

s )
then yields

@i,j'
R

t (x) = �T@i,j T (X
t,x,↵

R

T
) +

Z
T

t

�
fs +

1

2
Tr[@ia

R

s @jr
2'R

s ] + �s@i,j s

 
(Xt,x,↵

R

s )ds

+

Z
T

t

(�Rs )
>
r@i,j'

R

s (X
t,x,↵

R

s )dBs.

As previously, we subtract @i,j'R
t (y), we take expectations, and we use (5.19) to get that

|@i,j'
R

t (x)� @i,j'
R

t (y)|  C|x� y|+

Z
T

t

C|x� y|

1 ^
p
s� t

⇥
1 + k@ia

R

s r
3'R

s k1 + �s
⇤
ds,

where k@iaRs r3'R
s k1 is finite because r3'R is continuous and @iaRs ⌘ 0 out of B(0, R +

1). Dividing by |x � y| and taking the supremum over (x, y) and (i, j), this proves that
sup0tT kr

3'R
t k1 is finite. For any " 2 (0, 1), we split the last integral between t and

t+ "2: Z
T

t

�s
p
t� s

ds  2" sup
tst+"2

|�s|+
1

"

Z
T

t+"2
�sds,

so that

8t 2 [0, T ], kr
3'R

t

��
1
 C +

Z
T

t

C

1 ^
p
s� t

⇥
"�1 + kr3'R

s k1 + " sup
0rT

|�r|
⇤
ds.

Using the Gronwall lemma, we eventually obtain

sup
0tT

kr
3'R

t

��
1
 C

⇥
"�1 + " sup

0tT
|�t|
⇤
1 +

Z
T

0

ds

1 ^
p
s

�
exp

 Z
T

0

C

1 ^
p
s
ds

�
,

where the constant C is independent of R and satisfies the requirements of Lemma 5.3.3.
We conclude the proof using the convergence (5.16) as previously.

We fix X0 ⇠ µ0, and we shall write X0 := X0,X0,↵
0 . Since µ0(dx) = Z

�1
e�'0(x)⌫0(dx)

from [Chaintron et al., 2024, Theorem 3.6], and '0 has linear growth from (5.15), (A.1)
implies the following useful result.

Lemma 5.3.4 (Initial bound). If any of the bounds (A.5)-(i)-(ii)-(iii) is satisfied by ⌫0
for some "0 > 0, then the same property holds for µ0 with "0 = 0, for a constant C > 0
that satisfies the same requirements as the one in (5.15).

The following result is crucial to obtain density estimates on the multiplier.
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Proposition 5.3.5. There exist � 2 (0, 1) and C > 0 such that for any C1 function
h : [t, t0]! [0, 1] with 0  t < t0  T , ht = ht0 = 0 and khk1 + k d

dshk
2
1  �,

Z
t
0

t

hsE[|�sr s(X
0
s )|

2]�sds 

Z
t
0

t

C(hs+ |
d
dshs|

2)�2
�

d
dsE[ s(X

0
s )]�E[@s s(X

0
s )]
 

d
dshsds.

Moreover, under (A.5)-(i), � and C only depend on � through �([0, T ]), and C only depends
on the other coefficients through the uniform norms of �, ��1, @sb, @s�, @s , rb, r�, rc,
r , r@s , r2�, r2 and r3 . Under (A.5)-(ii), for every " > 0, there further exists
C" > 0 satisfying the same requirements except that C" depends on r2b and r3� but not
on r3 , such that the bound holds for the constant C := C" + " sup0sT |�s|.

In order to prove the above upper bound, we are going to construct a competitor in the
stochastic control problem by pushing the marginal flow of the optimal solution along the
gradient flow generated by  . Such construction shares some analogies with earlier results
obtained e.g. in [Erbar et al., 2015, Section 4] or Monsaingeon et al. [2023] in the context
of the sudy of (an abstract version of) the Schrödinger problem.

Proof. Let (µ0
s)0sT be the flow of marginal laws of (X0

s )0sT . To prove the bound, we
build a competitor ↵h for V �

⌃ (µ0) in Step 1., by perturbing the optimal flow on [t, t0] only.
The related controlled process Xh is such that E[ s(Xh

s )] < E[ s(X0
s )] for s 2 (t, t0). The

related cost E
R
T

0
1
2 |↵

h
s (X

h
s )|

2ds is computed in Step 2. and Step 3.. The comparison
between X0 and Xh is done in Step 4., yielding the desired estimate. Final computations
are done in Step 5. to obtain the wanted dependence on the coefficients.

Step 1. Perturbation. For s 2 [0, T ], let (Ss,t)t�0 be the flow defined by

8x 2 Rd, 8t � 0,
d

dt
Ss,t(x) = �asr s(Ss,t(x)), Ss,0(x) = x,

where as := �s�>s . Since  s is C4 and as is bounded and C3, both with uniformly
bounded derivatives, the Cauchy-Lipschitz theory guarantees that x 7! Ss,t(x) is a C3-
diffeomorphism. We define the perturbed flow as

µh

s := µ0
s � S

�1
s,hs

, 0  s  T.

Writing h0s :=
d
dshs, Ito’s formula yields

dSs,hs(X
0
s ) = [�h0sasr s(Ss,hs(X

0
s )) + (@s + L↵

0

s )Ss,hs(X
0
s )]ds+rSs,hs(X

0
s ) · �s(X

0
s )dBs.

Since a is uniformly elliptic and the coefficients are smooth from (A.8), it is standard that
µ0
s has a positive C2 density for s > 0. Since x 7! Ss,t(x) is a C3-diffeomorphism, µh

s also
has a positive C2 density that we still write x 7! µh

s (x) with a slight abuse. We then define

Ah

s := �h0sasr s, Bh

s := (@s + L↵
0

s )[Ss,hs ] � S
�1
s,hs
� bs,

Ch

s := �1
2(µ

h

s )
�1
r · [µh

s (rSs,hsasrS
>

s,hs
� S�1

s,hs
� as)], �hs := Ah

s +Bh

s + Ch

s .

We refer to the notation section 5.1.2 for the meaning of operators applied to vector fields
or matrices. Let us now define the feed-back ↵h

s := ��1s �hs . Since the law of Ss,hs(X
0
s )

is precisely µh
s , we get that @sµh

s = L↵
h

s µh
s in the sense of distributions. To obtain an

admissible control from ↵h, we need to show that ↵h has a finite L2(ds ⌦ µh
s )-norm by

computing E[|↵h
s (Ss,hs(X

0
s ))|

2]. This computation is done in Step 3., after computing
E[|�hs (Ss,hs(X

0
s ))|

2] in Step 2..
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Step 2. Expansion. In the following, we write O(his) for quantities that are bounded
by C|hs|i where the constant C is allowed to depend only on the uniform norm of the
coefficients and their derivatives (of any order). For (i, j) 2 {0, 1} ⇥ {0, 1, 2}, we will
repeatedly use the (uniform in x) expansion

@isr
jSs,hs = @isr

jId� hsr
j@is(asr s) +O(h2s),

which stems from a uniform bound on rj+1@is(ar ) (we will always have i = 0 when
j = 2). Let us start the expansion of �hs � Ss,hs : for x in Rd,

Ah

s (Ss,hs(x)) = �h
0

sasr s(x) +O(h0shs),

Bh

s (Ss,hs(x)) = �s↵
0
s(x)� hs[(@s + L↵

0

s )[asr s]�rbsasr s](x) +O((1 + |x|)h2s),

using that b is globally Lipschitz. Similarly,

rSs,hsasrS
>

s,hs
� S�1

s,hs
� as = �hs[as[r(asr s)]

> +r(asr s)as �ras · asr s] +O(h2s),

using that r2(ar ) is uniformly bounded. Using the bound on r3(ar ), we turn this
into

Ch

s (Ss,hs(x)) =
hs
2 [as[r(asr s)]

> +r(asr s)as �ras · asr s][(r logµh

s ) � Ss,hs ]

+ hs
2 r · [as[r(asr s)]

> +r(asr s)as �ras · asr s] +O(h2s)

=: Dh

s [(r logµh

s ) � Ss,hs ] + Eh

s +O(h2s).

Gathering everything:

�hs (Ss,hs(X
0
s )) = �0s (X

0
s )� h0sasr s(X

0
s )� hs[(@s + L↵

0

s )[asr s]�rbsasr s](X
0
s )

+Dh

s (X
0
s )r logµh

s (Ss,hs(X
0
s )) + Eh

s (X
0
s ) +O((1 + |X0

s |)h
2
s + h0shs). (5.21)

Since µh
s = µ0

s � S
�1
s,hs

:

r logµh

s (Ss,hs(X
0
s )) = rS

�1
s,hs

(Ss,hs(X
0
s ))r logµ0

s(X
0
s ) +r log|detrS�1

s,hs
|(Ss,hs(X

0
s ))

= r logµ0
s(X

0
s ) +O((1 + |r logµ0

s(X
0
s )|)h),

where we used that r2(ar ) is uniformly bounded to get the O(h) term. Using Lemma
5.3.4 and the bound on r↵0 given by Proposition 5.3.2, we can apply Lemma 5.A.2 to
(µ0

s)0sT . This provides a bound on E[|r logµ0
s(X

0
s )|] involving

R
Rd |r log ⌫0|2+"0d⌫0.

Bounding E[|X0
s |] is then standard from (A.2) and the bound onr↵0, so that E[|�hs (Ss,hs(X

0
s ))|

2]
is finite.

Step 3. Integrations by parts. Since E[|r logµ0
s(X

0
s )|] is bounded, we can integrate by

parts the density µ0
s to obtain that

E[Dh

s (X
0
s )r logµ0

s(X
0
s )] = �E[Eh

s (X
0
s )].

Plugging this cancellation within (5.21) yields

E[|�hs (Ss,hs(X
0
s ))|

2
� |�0s (X

0
s )|

2] = �2h0sE[�s↵
0
s · asr s(X

0
s )]

� 2hsE{�s↵0
s · [@s(asr s) +

1
2Tr[asr

2(asr s)]](X
0
s )}+ C 0hs +O(h2s + (h0s)

2),

where C 0 is a constant that satisfies the requirements of Proposition 5.3.5. In the following,
C 0 may change from line to line but still satisfying these requirements. The quantities
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Chapter 5. Regularity and stability for Gibbs principle on path space

r@s s and r3 s appear in the first term of the second line. To get rid of them, we use
coordinates (and the summing convention of repeated indices) to rewrite this term as

�2hsE{�i,js (↵0
s)

j [@sa
i,k

s @k s + ai,ks @k@s s +
1
2a

l,m

s @l,m(ai,ks @k s)](X
0
s )}.

As above, we integrate by parts the @k-derivative to get that

E[|�hs (Ss,hs(X
0
s ))|

2
� |�0s (X

0
s )|

2] = �2h0sE[�s↵
0
s · asr s(X

0
s )] + C 0hs +O(h2s + (h0s)

2).

We can now write that

↵h

s (Ss,hs(X
0
s )) = ��1s (X0

s )�
h

s (Ss,hs(X
0
s ))� hs�

h

s (Ss,hs(X
0
s )) ·r�

�1
s asr s(X

0
s )

+O(h2s�
h

s (Ss,hs(X
0
s ))),

using that r��1 is uniformly bounded, and the same computations as above yield

E[|↵h

s (Ss,hs(X
0
s ))|

2]� E[|↵0
s(X

0
s )|

2] = �2h0sE[�s↵
0
s ·r s(X

0
s )] + C 0hs +O(h2s + (h0s)

2).

In particular, we obtained that
R
T

0 E[|↵h
s (Ss,hs(X

0
s ))|

2]ds is finite.

Step 4. Comparison. Using Step 3. and [Trevisan, 2015, Theorem 2.5], there exists a
weak solution for the SDE (5.12) with the feed-back control ↵ = ↵h and the initial law µ0

([Trevisan, 2015, Theorem 2.5] actually shows existence of a solution for the related mar-
tingale problem, but this is equivalent, see e.g. [Daudin, 2022, Proposition 2.1]). As a con-
sequence, there exists a reference probability system ⌃0 and an adapted process (Xh

s )0sT
on it satisfying (5.12) with ↵ = ↵h and L(Xh

0 ) = µ0. In particular, (↵h
s (X

h
s ))0sT can be

seen as a specific open-loop control for (5.11). Thus,

V �

⌃ (µ0) = V �

⌃0(µ0)  E
 Z

T

0

1

2
|↵h

s (X
h

s )|
2 + cs(X

h

s ) +  s(X
h

s )�sds+ �T T (X
h

T )

�

=

Z
T

0
E
⇥1
2
|↵h

s (Ss,hs(X
0
s ))|

2 + cs(Ss,hs(X
0
s )) +  s(Ss,hs(X

0
s ))�s

⇤
ds+ �TE[ T (X

0
T )],

using that Xh
s and Ss,h(s)(X

0
s ) have the same law µh

s , and Xh

T
= X0

T
. We further expand

cs(Ss,hs(X
0
s )) = cs(X

0
s )� hsrcs · asr s(X

0
s ) +O(h2s) = C 0hs +O(h2s),

 s(Ss,hs(X
0
s )) =  s(X

0
s )� hsr s · asr s(X

0
s ) +O(h2s),

using that r2c and r2 are uniformly bounded. Using Step 3. to expand ↵h
s , we obtain

� > 0 that only depends on � through �([0, T ]) such that khk1 + kh0k21  � implies
Z

t
0

t

hsE[|�>s r s(X
0
s )|

2]�sds 

Z
t
0

t

C 0(hs + |h0s|
2)� 2h0sE[�s↵

0
s ·r s(X

0
s )]ds.

The first term in the integral on the r.h.s. has the desired shape, but the second one still
involves the leading order term h0s, so we must integrate it.

Step 5. Last integrations by parts. Ito’s formula gives that

E[�s↵0
s ·r s(X

0
s )] =

d

ds
E[ s(Xs)]� E[(@s + L0

s) s(X
0
s )],

and we integrate by parts in time using that ht = ht0 = 0:

�

Z
t
0

t

h0sE[L
0
s s(X

0
s )]ds =

Z
t
0

t

hs
d

ds
E[L0

s s(X
0
s )]ds =

Z
t
0

t

hsE[(@s + L↵
0
s)L0

s s(X
0
s )]ds.
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5.3. Regularity bounds on the multiplier

As previously, we integrate by parts the density to get rid of the r2@s s term:

ETr[asr
2@s s(X

0
s )] = C 0 � E [ai,js @i@s s@j logµ

0
s(X

0
s )].

Similarly, we get rid of ther2bs andr4 s terms. The resulting C 0 involves
R
|r log ⌫0|2+"0d⌫0

and a r3 s term. To get rid of this last term, we can integrate by parts one more time:

ETr{asr
2Tr[asr

2 s]}(X
0
s )  C 0 � ETr[asr

2 s]Tr[asr
2 logµ0

s](X
0
s ).

We deduce from Proposition 5.A.4 applied to (µ0
s)0sT that

sup
0sT

E[|r2 logµ0
s(X

0
s )|]  C[1 + sup

0sT
kr

3'sk1],

where the constant C now involves
R
|r log ⌫0|4+"0d⌫0 and

R
|r

2 log ⌫0|2+"0 too. The de-
sired dependence on " sup0sT |�s| eventually results from Lemma 5.3.3.

Corollary 5.3.5.1 (Qualification condition). A sufficient condition for (5.8) is that

8s 2 [0, T ],

Z

Rd
 sdµs = 0)

Z

Rd
|r s|

2dµs 6= 0. (5.22)

This condition is also necessary from Remark 5.2.5.

Proof. We follow the proof of Proposition 5.3.5, defining the perturbed flow

µh

s := µs � S
�1
s,h

, 0  s  T,

for h > 0. As previously, we can show that for h small enough, (µh
s )0sT are the marginal

laws of a process of type (5.11), for a square-integrable control process. Moreover,

d

dh

Z

Rd
 sdµ

h

s = �

Z

Rd
|�>s r s|

2dµh

s  0.

Since ��1 is bounded from (A.2), (5.22) guarantees that the derivative is negative at points
where

R
Rd  sdµs (which is always non-positive) is not already negative. As a consequence

(5.8) is satisfied, choosing ⌫̃[0,T ] as being the path-law of a controlled process with marginal
laws (µh

s )0sT , for h small enough.

5.3.2 Existence of a density for the Lagrange multiplier

In our smooth setting (A.8), [Chaintron et al., 2024, Theorem 3.6] gives that the measure
µ[0,T ] satisfying (5.9) is the path-law of the solution to

dXt = bt(Xt)dt� atr't(Xt)dt+ �t(Xt)dBt, X0 ⇠ Z
�1

e�'0(x)⌫0(dx),

in a reference system ⌃ = (⌦, (Ft)0tT ,P, (Bt)0tT ), where ' is the solution to

�'t +

Z
T

t

bs ·r's �
1

2
|�>s r's|

2 + cs +
1

2
Tr[asr

2's]ds+

Z

[t,T ]
 s�(ds) = 0,

in the sense of Definition 5.C.1.
Using convolution with a smooth kernel, let us consider approximations of � � �T �T

given by measures that have C1 densities (�k)k�1 w.r.t. the Lebesgue measure. We
similarly regularise t 7! ct(x) into t 7! ckt (x). Since convolution in time does not affect
x-regularity, ck still satisfies (A.8), with regularity constants independent of k. (�k, ck)

further satisfy (A.9). Let (Xk
s )0sT be the optimal process for V �

k

⌃ (µ0) obtained from
the solution 'k of (5.13), and let us consider the feed-back control ↵k := ��>r'k. We
recall that the number of atoms of the measure � is at most countable.
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Chapter 5. Regularity and stability for Gibbs principle on path space

Lemma 5.3.6. For t = 0 and every t 2 (0, T ] with �({t}) = 0,

'k

t ����!
k!+1

't, r'k

t ����!
k!+1

r't,

uniformly on every compact set of Rd. Moreover, the bounds in Proposition 5.3.2 extend
to r' and r2',

E[ sup
0tT

|Xk

t �Xt|] ����!
k!+1

0,

and for every 1  i  d, x 2 Rd, and t 2 [0, T ] with �({t}) = 0,

@i't(x) =

Z
T

t

E
�
@ibs ·r's �

1

2
r's · @iasr's +

1

2
Tr[@iasr

2's] + @ics
 
(Xt,x,↵

s )ds

+

Z

[t,T ]
E[@i k

s (X
t,x,↵

s )]�(ds) + �TE[@i T (X
t,x,↵

T
)].

Proof. For every t 2 [0, T ], Proposition 5.3.2 provides equi-continuity for (r'k
t )k�1, and 'k

has linear growth uniformly in k from (5.15). The stability result [Chaintron et al., 2024,
Lemma 5.3] then provides the convergence of ' and r', and the bounds are inherited
from Proposition 5.3.2. Using this and our Lipschitz assumptions, a standard coupling
argument (a variation of the proof of [Friedman, 1975, Chapter 5, Theorem 5.2]) shows
that E[sup0tT |Xk

t �Xt|]! 0.
From [Billingsley, 2013, Theorem 2.7], the measures �ksds+�T �T (ds) restricted to [t, T ]

weakly converges towards the restriction of � to [t, T ], for every t with �({t}) = 0. The
equation on r't then results from taking the k ! +1 limit within (5.18).

Let us now show that � can only have atoms at 0 and T .

Lemma 5.3.7. � has no atom in (0, T ).

Proof. For every t 2 (0, T ), we can write that � = �t�t+�0, for �t 2 R and �0 2M+([0, T ])
with �0({t}) = 0. From the complementary slackness condition (5.10), we can assume that
E[ t(Xt)] = 0. Let (t0, t00) be in (0, T )2 with t0 < t < t00. By induction, we define a
sequence (tl, t0l)l�0 in (0, T )2 such that tl < t < t0

l
and

tl+1 = inf
�
s 2 [ tl+t

2 , t], 8r 2 [s, t], E[ s(Xs)]  E[ r(Xr)]
 
,

t0
l+1 = sup

�
s0 2 [t,

t+t
0
l

2 ], 8r 2 [t, s0], E[ s0(Xs0)]  E[ r(Xr)]
 
.

The iterations are well-defined because s 7! E[ s(Xs)] is a non-positive continuous function
and E[ t(Xt)] = 0. Let now hl : [tl, t0l]! [0, 1] be a C2 function such that

hltl = hl
t
0
l
= 0, d

ds

��
s=t

hls = 0, and 8s 2 [tl, t
0

l
], d2

ds2h
l

s  0.

Thus, hl has a global maximum at t. Let us choose hlt = kh
l
k1  2min[(t� tl)2, (t0l � t)2]

and such that k d
dsh

l
k
2
1  2khlk1.

Let now �, C > 0 be given by Proposition 5.3.5 for �(ds) = �ksds + �T �T (ds): these
constants do not depend on (k, l) because they only depend on � through �([0, T ]), which
is unaffected by the regularisation procedure. From (5.7), E[@s s(Xs)] = 0 for s 2 [0, T ],
hence Z

t
0
l

tl

E[@s s(X
k

s )]
d

ds
hlsds ����!

k!+1
0. (5.23)
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Integrating by parts,

�

Z
t
0
l

tl

d

ds
E[ s(X

k

s )]
d

ds
hlsds

=

Z
t

tl

{E[ s(X
k

s )]� E[ tl(X
k

tl
)]}

d2

ds2
hlsds+

Z
t
0
l

t

{E[ s(X
k

s )]� E[ t
0
l
(Xk

t
0
l
])}

d2

ds2
hlsds,

(5.24)

where we used that d
ds

��
s=t

hls = 0. Since d2

ds2h
l
s  0, and E[ s(Xs)] � E[ tl(Xtl)]  0,

E[ s(Xs)]� E[ t
0
l
(Xt

0
l
)]  0 by definition of (tl, t0l), the above integrals are non-positive as

k ! +1. Plugging (5.23)-(5.24) into Proposition 5.3.5 yields
Z

(tl,t0l)
hls E[|�>s r s(Xs)|

2]�(ds)  lim sup
k!+1

Z
t
0
l

tl

hls E[|�sr s(X
k

s )|
2]�ksds 

Z
t
0
l

tl

C|hls|ds,

where we used that k�kkL1(0,T ) is bounded uniformly in k. Moreover, the constant C

does not depend on l. From the decomposition � = �t�t + �0, the l.h.s. is lower-
bounded by hlt�tE[|�tr t(Xt)|2]. From the qualification condition (5.8) and Remark 5.2.5,
E[|�tr t(Xt)|2] 6= 0. Since hlt = kh

l
k1, dividing by hlt and sending l ! +1 shows that

�t = 0. We thus proved that �({t}) = 0, for any t in (0, T ).

Proposition 5.3.8 (Density). The multiplier has the following decomposition

�(dt) = �0�0(dt) + �tdt+ �T �T (dt).

Moreover, k�kL1(0,T )  C, for C > 0 independent of � that only depends on the coefficients
through the uniform norms of �, ��1, @sb, @s�, @s , rb, r�, rc, r , r@s , r2�, r2 ,
and either r3 or r2b and r3�.

We recall that we restricted ourselves to �({0}) = 0 at the beginning of Section 5.3,
without loss of generality.

Proof. Let us define the set

F := {t 2 [0, T ] , E[ t(Xt)] = 0}.

From the complementary slackness condition (5.10), we only need to study the restriction
of � to F . Since t 7! E[ t(Xt)] is continuous, F is a closed set, and F is a (at most)
countable union of disjoint intervals. Since � has no atom in (0, T ) from Lemma 5.3.7, we
only need to look at intervals [t0, t00] ⇢ F with t0 < t00. Let us fix such a [t0, t00], and let
�0, C > 0 be given by Proposition 5.3.5, so that
Z

t
0
1

t1

hs E[|�>s r 
k

s (X
k

s )|
2]�ksds 

Z
t
0
1

t1

C[hs+|
d
dshs|

2]�2 d
dshs

�
d
dsE[ s(X

k

s )]�E[@s s(X
k

s )]
 
ds,

for every C2 function h : [t1, t01] ! [0, 1] with 0  t1  t01  T , ht1 = ht01 = 0 and
khk1 + k d

dshk
2
1  �0.

We first allow C to depend on r3 in the setting of Proposition 5.3.5, so that (C, �0)
does not depend on k, because (k�kkL1(0,T ))k�1 is bounded. Similarly to (5.24),

�

Z
t
0
1

t1

d

ds
E[ s(X

k

s )]
d

ds
hsds = E[ s(X

k

t1
)]

d

ds

��
s=t�

hs � E[ s(X
k

t
0
1
)]

d

ds

��
s=t

0
1
hs

+

Z
t
0
1

t1

E[ s(X
k

s )]
d2

ds2
hsds ����!

k!+1
0,

215



Chapter 5. Regularity and stability for Gibbs principle on path space

if we assume that [t01, t
0
1] ⇢ F . From the qualification condition (5.8) and Remark 5.2.5,

the continuous function s 7! E[|�>s r s(Xs)|2] is positive on the compact set F (F is a
closed subset of the compact [0, T ]), so that there exists ⌘ > 0 such that

8s 2 F, 0 < ⌘  E[|�>s r s(Xs)|
2].

Taking the k ! +1 limit and using (5.23), as in the proof of Lemma 5.3.7,

⌘

Z

[t1,t01]
hs�(ds)  C

Z
t
0
1

t1

[hs + |
d
dshs|

2]ds,

for every h as above with [t1, t01] ⇢ F . For � 2 (0, (t00 � t0)/2) and [t, t0] ⇢ [t0 � �, t00 + �]
with t0 � t < �, we apply this estimate to t1 = t � (t0 � t) and t01 = t + (t0 � t), so that
[t, t0] ⇢ [t1, t01] ⇢ [t0, t00]. We further choose hs = �"0(s � t1)(s � t01), for "0 2 (0, 1) small
enough so that khk1+ k d

dshk
2
1  �0. In particular, hs  "0[2(t0� t)]2, and hs � "0|t0� t|2

for s 2 [t, t0]. As a consequence,

"0⌘|t
0
� t|2�([t, t0])  ⌘

Z

[t,t0]
hs�(ds)  C

Z
t
0
1

t1

[hs + |
d
dshs|

2]ds  5"0C[2(t0 � t)]3.

We deduce that

8 0 < � <
t
0
0�t0

2 , 8 [t, t0] ⇢ [t0 � �, t
0

0 + �], t0 � t < � ) �([t, t0])  40⌘�1C|t0 � t|.

The cumulative distribution function of � is thus absolutely continuous on every compact
subset of (t0, t00), with a.s. derivative bounded by 40⌘�1C. This shows that � has a
density bounded by 40⌘�1C on (t0, t0). Since �({0}) = 0, Lemma 5.3.7 extends the result
to [t0, t00), and then to [t0, t00] if t00 6= T . Since (⌘, C) does not depend on [t0, t00], the result
holds on the whole set F \ (0, T ), and thus on (0, T ).

To refine the bound, we now allow for C = C"+ " sup0tT �
k
s when applying Proposi-

tion 5.3.5. Since we now know that � restricted to (0, T ) has a bounded density �|(0,T ) 2

L1(0, T ), and the continuous function �k was obtained from �� �T �T by convolution, we
can bound sup0sT �

k
s by k�|(0,T )kL1(0,T ). Since there is no more dependence on k in the

bounds, we then perform the same computations as above to obtain that

k�|(0,T )kL1(0,T )  40⌘�1[C" + "k�|(0,T )kL1(0,T )].

By choosing " small enough beforehand, this yields the desired bound on k�|(0,T )kL1(0,T ).

5.4 Proof of the main results

We now turn to the proofs of the results stated in Section 5.2. The proof of Theorem
5.2.2 essentially relies on results from Chaintron et al. [2024], see Section 5.4.1 below. For
Theorem 5.2.3, a smoothing procedure is detailed in Section 5.4.2 to enter the framework
of Section 5.3. Theorem 5.2.6 is proved independently in Section 5.4.3. We recall the
convenient notation a := ��>.

5.4.1 Optimality conditions

This section is devoted to the proof of Theorem 5.2.2. Let µ[0,T ] be an optimiser for (5.2)
that satisfies (A.4). We first rewrite (5.2) to make it enter the framework of Chaintron
et al. [2024].
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Lemma 5.4.1. For any µ[0,T ] in P1(C([0, T ],Rd)) such that H(µ[0,T ]|�(µ[0,T ])), H(µ[0,T ]|�(µ[0,T ]))
are finite, we define

F(µ[0,T ]) := H(µ[0,T ]|�(µ[0,T ]))�H(µ[0,T ]|�(µ[0,T ])).

F is differentiable at µ[0,T ], its linear functional derivative being given by

�F

�µ
(µ[0,T ], x[0,T ]) = �Eµ[0,T ]

Z
T

0
a�1
t

(Xt)
�bt
�µ

(Xt, µt, xt)[dXt � bt(Xt, µt)dt]. (5.25)

Moreover, there exists a measurable c : [0, T ]⇥ Rd
! R such that

�F

�µ
(µ[0,T ], x[0,T ]) =

Z
T

0

Z

Rd
ct(xt)µt(dx)dt,

and ct is globally Lipschitz uniformly in t.

We recall that (Xt)0tT denotes the canonical process on C([0, T ],Rd), see Section
5.1.2.

Proof. The finiteness of the entropy allows us to write

H(µ[0,T ]|�(µ[0,T ])) = H(µ[0,T ]|�(µ[0,T ]))�

Z

C([0,T ],Rd)
log

d�(µ[0,T ])

d�(µ[0,T ])
dµ[0,T ].

Since ��1 is bounded and b is globally Lipschitz in µ from (A.2), the Novikov condition

E�(µ[0,T ])
exp


1

2

Z
T

0
|��1

t
(Xt)[bt(Xt, µt)� bt(Xt, µt)]|

2dt

�
< +1,

is satisfied, and the Girsanov transform [Léonard, 2012, Theorem 2.3] gives that

d�(µ[0,T ])

d�(µ[0,T ])
= exp

 Z
T

0
��1
t

(Xt)[bt(Xt, µt)� bt(Xt, µt)]dBt

�
1

2

Z
T

0
|��1

t
(Xt)[bt(Xt, µt)� bt(Xt, µt)]|

2dt

�
,

where (Bt)0tT is a Brownian motion under �(µ[0,T ]), and �(µ[0,T ])-almost surely,

dXt = bt(Xt, µt)dt+ �t(Xt)dBt.

Using this to rewrite dBt,

F(µ[0,T ]) =
1

2

Z
T

0

Z

Rd
|��1

t
(x)[bt(x, µt)� bt(x, µt)]|

2µt(dx)dt

� Eµ[0,T ]

Z
T

0
a�1
t

(Xt)[bt(Xt, µt)� bt(Xt, µt)][dXt � bt(Xt, µt)dt],

and it is direct that F(µ[0,T ]) = 0. For any µ[0,T ] with H(µ[0,T ]|�(µ[0,T ])) < +1, the
differentiability of b yields

d

d"

����
"=0

F((1� ")µ[0,T ] + "µ[0,T ]) =

� Eµ[0,T ]

Z
T

0
a�1
t

(Xt)

Z

Rd

�bt
�µ

(Xt, µt, x)[µt(dx)� µt(dx)][dXt � bt(Xt, µt)dt].
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Since
R

Rd
�bt
�µ

(Xt, µt, x)µt(dx) = 0 by definition of �b

�µ
, this proves that F admits a lin-

ear functional derivative at µ[0,T ] given by (5.25), in the sense of Definition 5.1.1. Since
H(µ[0,T ]|�(µ[0,T ])) is finite, [Léonard, 2012, Theorem 2.1] provides an adapted process
(ct)0tT on the canonical space ⌦ = C([0, T ],Rd) such that

Eµ[0,T ]

Z
T

0
|�>t (Xt)ct|

2dt < +1,

where
dXt = bt(Xt, µt)dt+ at(Xt)ctdt+ �t(Xt)dBt, µ[0,T ]-a.s., (5.26)

the process (Bt)0tT being a Brownian motion under µ[0,T ]. For x in Rd, we then define

ct(x) := �Eµ[0,T ]
ct ·

�bt
�µ

(Xt, µt, x). (5.27)

From (A.3), ct is globally Lipschitz in x uniformly in t. Plugging this into (5.25) concludes.

Proof of Theorem 5.2.2-(ii). Using Lemma 5.4.1,

H = inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)0

H(µ[0,T ]|�(µ[0,T ])) + F(µ[0,T ]).

This setting satisfies the assumptions of Theorem [Chaintron et al., 2024, Theorem 2.12]
with E = C([0, T ],Rd), �(x[0,T ]) = supt2[0,T ] |xt|, F as above, the inequality constraints
 t : µ[0,T ] 7!  (µt) with T = [0, T ], and no equality constraint. Indeed, µ[0,T ] 7!

H(µ[0,T ]|�(µ[0,T ])) is lower semi-continuous, so that [Chaintron et al., 2024, Assumptions
(A1)-(A2)-(A3)] are satisfied. From Corollary 5.B.1.1, the domain of F is convex and
F(µ[0,T ]) < +1 implies F(µ0[0,T ]) < +1 for any µ0[0,T ] that has a bounded density w.r.t.
µ[0,T ]. Using Lemma 5.4.1, this implies [Chaintron et al., 2024, Assumptions (A6)-(A8)].
The regularity assumptions (A.2)-(A.3) and the qualification condition (A.4) eventually
imply [Chaintron et al., 2024, Assumption (B3)], and thus [Chaintron et al., 2024, As-
sumptions (A7)]. As a consequence, we obtain a Lagrange multiplier � 2M+([0, T ]) such
that

dµ[0,T ]

d�(µ[0,T ])
(x[0,T ]) = Z

�1
exp


�

Z
T

0
cs(xs)ds�

Z
T

0

� 

�µ
(µs, xs)�(ds)

�
,

together with the complementary slackness condition (5.4).
By convolution with a smooth kernel with compact support, we regularise (t, x) 7!

bt(x, µt), ct(x), �t(x), � 
�µ

(µt, x) into C1 functions bk, ck, �k,  k. We similarly obtain a
weak approximation of � given by a sequence (�k)k�1 of functions in C1([0, T ],R+). Since
we assumed (A.2)-(A.3) and convolution preserves already existing regularity properties,
bk, ck, �k,  k satisfy (A.2)-(A.3) for regularity constants independent of k. We thus enter
the setting of Section 5.3, and let 'k denote the solution of the corresponding HJB equation
(5.13) with regularised coefficients. For every t 2 [0, T ], Proposition 5.3.2 shows that
(r'k

t )k�1 and (r2'k
t )k�1 are uniformly bounded. Hence, from the Arzelà-Ascoli theorem,

(r'k
t )k�1 is pre-compact on any compact set. Using [Chaintron et al., 2024, Lemma

5.4], [Chaintron et al., 2024, Lemma 5.3] now shows that for Lebesgue-a.e. t 2 [0, T ], 'k
t

converges towards 't on any compact set, where ' is the mild solution of (5.3) in the sense
of Definition 5.C.1. Moreover, µ[0,T ] is the law of the solution to

dXt = bt(Xt)dt� atr't(Xt)dt+ �t(Xt)dBt, X0 ⇠ Z
�1

e�'0(x)⌫0(dx),
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which we now identify to (5.26). This yields ct = �r't(Xt) a.s., giving the desired
expression for ct using (5.27).

From [Chaintron et al., 2024, Remark 4.4], we further have

�([0, T ])  "̃⌘�1
Z

P1(C([0,T ],Rd)


log

dµ[0,T ]

d�(µ[0,T ])
+
�F

�µ
(µ[0,T ])

�
d(µ̃[0,T ] � µ[0,T ]), (5.28)

where ⌘ := � sup0tT  (µt) +
R
� 
�µ

(µt)dµ̃t.

Proof of Theorem 5.2.2-(i). From Lemma 5.B.1,

H = inf
⌃

V  .

From the above proof of Theorem 5.2.2-(ii), this infimum is realised on any reference
system ⌃ by the initial law µ0 and the feed-back control ↵t = �atr't. Consequently,
H = V  = H(µ0|⌫0) + V⌃(µ0).

5.4.2 Existence of a density for the Lagrange multiplier

Under (A.6) and (A.5)-(i), let µ[0,T ] be an optimiser for (5.2) that satisfies (A.4). We
are going to smooth Problem (5.2) to make it enter the framework of Section 5.3. Let
⇢ : Rd

! [0, 1] be a C1 symmetric function with compact support and
R

Rd ⇢(x)dx = 1.
For k � 1, we define ⇢k(x) := kd⇢(kx), and the regularised coefficients

bkt (x, µ) := [bkt (·, ⇢
k
⇤ µ)] ⇤ ⇢k(x), �kt (x) := �kt ⇤ ⇢

k(x),  k(µ) :=  (⇢k ⇤ µ).

The convolution against vectors or matrices is done component-wise. This mollifying pro-
cedure of the measure argument well behaves w.r.t. linear derivatives, as recalled in Lemma
5.B.2. Since the coefficients were already Lipschitz-continuous, bk, �k,  k, �

�µ
bk and �

�µ
 k

converge towards b, �,  , �

�µ
b and �

�µ
 uniformly on [0, T ]⇥Rd

⇥P1(Rd). Moreover, since
convolution preserves already existing regularity properties, (A.6) holds for bk, �k, �

�µ
bk

and �

�µ
 k with regularity bounds independent of k. For µ[0,T ] in P1(C([0, T ],Rd)), let

�k(µ[0,T ]) denote the path-law of the pathwise unique strong solution to

dY k

t = bkt (Y
k

t , µt)dt+ �kt (Y
k

t )dBt, Y k

0 ⇠ ⌫0,

where (Bt)0tT is a Brownian motion. From Theorem 5.2.2, on the canonical space
⌦ = C([0, T ],Rd), there exists an essentially bounded process (↵t)0tT such that the
canonical process satisfies

dXt = bt(Xt, µt)dt+ �t(Xt)↵tdt+ �t(Xt)dBt, µ[0,T ]-a.s.,

where (Bt)0tT is a Brownian motion under µ[0,T ]. In our Lipschitz setting, ↵ being
essentially bounded, the following McKean-Vlasov equation

dXk

t = bkt (X
k

t ,L(X
k

t ))dt+ �kt (X
k

t )↵tdt+ �kt (X
k

t )dBt, Xk

0 = X0,

has a pathwise-unique strong solution, and let µk

[0,T ] denote its law. Using the Girsanov
transform,

H(µk

[0,T ]|�(µ
k

[0,T ])) = H(µ[0,T ]|�(µ[0,T ])) = H(µ0|⌫0) + Eµ[0,T ]

Z
T

0

1

2
|↵t|

2dt. (5.29)
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Using the uniform convergence of coefficients, a standard coupling argument yields

Eµ[0,T ]

⇥
sup

0tT
|Xt �Xk

t |
⇤
����!
k!+1

0. (5.30)

As a consequence,  k(µk
t ) converges towards  (µt), and we can assume that

8k � 1, 8t 2 [0, T ],  k(µk

t )   (µt)  0, (5.31)

up to subtracting a small constant to  k that vanishes as k ! +1. Let now (�i)i�1 be
a countable set of C1 functions Rd

! R that separates measures, with krj�ik1  1 for
any j � 0. We further define

8µ[0,T ] 2 P1(C([0, T ],Rd)), �(µ[0,T ]) :=
X

i�1

2�i�1
Z

T

0

✓Z

Rd
�i d(µt � µt)

◆2

dt.

This positive term only vanishes when (µt)0tT = (µt)0tT , hence

H = inf
µ[0,T ]2P1(C([0,T ],Rd))
8t2[0,T ],  (µt)0

H(µ[0,T ]|�(µ[0,T ])) + �(µ[0,T ]),

and the r.h.s. is uniquely realised by µ[0,T ]. Indeed, �(µ[0,T ]) only depends on (µt)0tT ,
and there is only one path-measure with given time-marginals and minimal entropy (be-
cause H is strictly convex). We now approximate this problem.

Lemma 5.4.2 (Non-linear approximation). For large enough k � 1,

H
k

 := inf
µ[0,T ]2P1(C([0,T ],Rd))

8t2[0,T ],  k(µt)0

H(µ[0,T ]|�
k(µ[0,T ])) + �(µ[0,T ]),

is realised by at least one measure µk

[0,T ] at which the qualification constraint (A.4) holds.
Moreover, (µk

[0,T ])k�1 converges towards µ[0,T ] in P1(C([0, T ],Rd)).

Proof. We first prove existence and convergence, before to show constraint qualification.

Step 1. Convergence of minimisers. From (5.29)-(5.31), the competitor µk

[0,T ] that

we previously built shows that H
k

 is finite and bounded uniformly in k. Since � is non-
negative continuous and µ[0,T ] 7! H(µ[0,T ]|�

k(µ[0,T ])) has compact level sets in P1(C([0, T ],Rd))

(see e.g. [Chaintron, 2024, Corollary B.4]), existence holds for at least one minimiser µk

[0,T ].
Since H(µk

[0,T ]|�
k(µk

[0,T ])) is finite, there exists a square-integrable process (↵k
t )0tT on

the canonical space such that

dXt = bkt (Xt, µ
k

t )dt+ �kt (Xt)↵
k

t dt+ �kt (Xt)dB
k

t , µk

[0,T ]-a.s.,

where (Bk
t )0tT is a Brownian motion under µk

[0,T ] (this argument was detailed in the
proof of Lemma 5.4.1). This is a McKean-Vlasov equation whose coefficients are Lipschitz
uniformly in k. Since E[

R
T

0 |↵k
t |

2dt] and �kt are furthermore uniformly bounded, a standard
Gronwall argument yields

sup
k�1

E
µ
k
[0,T ]

⇥
sup

0tT
|Xt|
⇤
< +1,

hence the Lipschitz function x 7! bkt (x, µ
k
t ) has linear growth uniformly in k. Using [Chain-

tron, 2024, Lemma B.2 and Remark B.3], we deduce that (µk

[0,T ])k�1 is pre-compact in
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P1(C([0, T ],Rd)). Up to re-indexing, we can assume that it converges towards some µ1[0,T ].
Using a coupling argument as for (5.30), we get that �k(µk

[0,T ]) converges towards �(µ1[0,T ])

in P1(C([0, T ],Rd)). Moreover, by optimality of µk

[0,T ],

8k � 1, H(µk

[0,T ]|�
k(µk

[0,T ])) + �(µ
k

[0,T ])  H(µk

[0,T ]|�
k(µk

[0,T ])) + �(µ
k

[0,T ]).

From (5.29)-(5.30), the r.h.s. converges to H as k ! +1. Since (µ[0,T ], ⌫[0,T ]) 7!
H(µ[0,T ]|⌫[0,T ]) is lower semi-continuous, we get

H(µ1[0,T ]|�(µ
1

[0,T ])) + �(µ
1

[0,T ])  H ,

and using the uniform convergence of  k:

8t 2 [0, T ],  k(µ1t )  0.

By uniqueness for the problem defining H , we get µ1[0,T ] = µ[0,T ]. By uniqueness of limit
points, the full sequence (µk

[0,T ])k�1 thus converges towards µ[0,T ].

Step 2. Constraint qualification. From (A.4), we have existence of µ̃[0,T ] with finite
H(µ̃[0,T ]|�(µ[0,T ])) such that

8t 2 [0, T ],  (µt) + "̃

Z

Rd

� 

�µ
(µt)d[µ̃t � µt] < 0.

Reasoning as we did to build µk

[0,T ], we can produce µ̃k

[0,T ] with supk�1H(µ̃k

[0,T ]|�
k(µk

[0,T ])) <

+1 such that (µ̃k

[0,T ])k�1 converges towards µ̃[0,T ] in P1(C([0, T ],Rd)). The uniform con-
vergence of  k and �

�µ
 k then implies that

sup
k�1

H(µ̃k

[0,T ]|�
k(µk

[0,T ])) < +1, sup
k�k0

sup
t2[0,T ]

 k(µk

t ) + "̃

Z

Rd

� k

�µ
(µk

t )dµ̃
k

t < 0, (5.32)

for a large enough k0, hence constraint qualification holds at µk

[0,T ].

We now set  k
t (x) :=  k(µk

t ) +
� k

�µ
(µk

t , x) and  t(x) :=  (µt) +
� 
�µ

(µt, x). We then

linearise the problem defining H
k

 at µk

[0,T ] using Lemma 5.4.1 and [Chaintron et al., 2024,
Lemma 4.3]. We obtain that µk

[0,T ] is the unique minimiser of the strictly convex problem

inf
µ[0,T ]2P1(C([0,T ],Rd))

8t2[0,T ],
R

Rd  
k
t dµt0

H(µ[0,T ]|�
k(µk

[0,T ])) +

Z
T

0

Z

Rd
ckt dµtdt, (5.33)

where

ckt (x) := ckt (x) + �
k

t (x), �k

t (x) :=
X

i�1

2�i
✓Z

Rd
�i d(µ

k

t � µt)

◆
�i(x).

The ckt term is produced using Lemma 5.4.1 applied to µk

[0,T ]. The second term results from
computing the linear derivative of �. Noticing that  k(µk

t ) =
R

Rd  k
t dµ

k
t , differentiating

yields that
R

Rd @t k
t dµ

k
t = 0, as required by (5.7). Since our regularised coefficients satisfy
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(A.8), Problem (5.33) now enters the scope of Section 5.3 for the drift coefficient bkt (x) :=

bkt (x, µ
k
t ). Let (�

k
,'k) be related to µk

[0,T ] as in (5.9): the path-density reads

dµk

[0,T ]

d�k(µk

[0,T ])
(x[0,T ]) = Z

�1
k exp


�

Z
T

0
ckt (xt)dt�

Z
T

0
 k

t (xt)�
k
(dt)

�
, (5.34)

and 'k is the solution to

�'k

t +

Z
T

t

bks ·r'
k

s �
1

2

��(�ks )>r'k

s

��2 + cks +
1

2
Tr[�ks (�

k

s )
>
r

2'k

s ]ds+

Z

[t,T ]
 k

s �
k
(ds) = 0,

in the sense of Definition 5.C.1. Moreover, reasoning as in the proof of Theorem 5.2.2-(ii),

cks(x) =

Z

Rd

�bks
�µ

(y, µk

s , x) ·r'
k

sµ
k

s(dy). (5.35)

Let us further define ↵k
t := �(�kt )

>
r'k

t , akt := �kt (�
k
t )
> and

8� 2 C2(Rd), L↵
k

t � := bkt ·r�+ �kt ↵
k

t ·r�+
1

2
Tr[aktr

2�], (5.36)

the operator L↵k
t

being the infinitesimal generator of the process with path-law µk

[0,T ].

Proof of Theorem 5.2.3. Since µk

[0,T ] converges to µ[0,T ] in P1(C([0, T ],Rd)), �k
t (x) con-

verges to 0 uniformly in (t, x). Similarly, using our Lipschitz assumptions,  k uniformly
converges towards  . Since convolution preserves already existing regularity properties,
the regularity properties w.r.t. x assumed by Theorem 5.2.3 hold for bk, �k, �

�µ
bk and

�

�µ
 k, with regularity bounds independent of k. To take the k ! +1 limit within Propo-

sition 5.3.8, we still have to check that the time-derivatives of the coefficients are bounded
uniformly in k. This is clear for �kt because x-convolution does not affect time-regularity.
Moreover, from e.g. [Daudin, 2023b, Proposition 1.3],

d

dt
bkt (x, µ

k

t ) = @tb
k

t (x, µ
k

t ) +

Z

Rd
L↵

k

t

⇥
y 7!

�bt
�µ

(x, µt, y)
⇤
dµt,

@t 
k

t (x) =

Z

Rd

� 

�µ
(µk

t ) + L↵
k

t

⇥
y 7!

�2 

�µ
(µt, x, y)

⇤
dµk

t .

From Lemma 5.3.6, ↵k is bounded and Lipschitz uniformly in k. Using the bounds on 'k,
we similarly deduce that µk

0 satisfies Lemma 5.3.4 with bounds independent of k. Applying
Lemma 5.A.2 to (µk

t )0tT thus provides a bound on E[|r logµk
t (X

0
t )|] that is uniform in

k. Integrating by parts, we get rid of second order derivatives in y, so that @tbkt and @t k
t

are bounded uniformly in k using (A.6). From Proposition 5.3.8, we can now decompose

�
k
(dt) = �

k

0�0(dt) + �
k

t dt+ �
k

T �T (dt),

for some bounded measurable t 7! �
k, whose L1-norm only depends on �k([0, T ]) and the

regularity constants allowed by Theorem 5.2.3.
In the proof of Lemma 5.4.2, qualification was obtained using µ̃k

[0,T ] converging to µ̃[0,T ]

with bounded H(µ̃k

[0,T ]|�
k(µk

[0,T ])) uniformly in k. Using (5.28) and (5.32), there exists
⌘ > 0 independent of k such that

�
k
([0, T ])  "̃⌘�1

Z

P1(C([0,T ],Rd)


log

dµk

[0,T ]

d�k(µk

[0,T ])
+
�Fk

�µ
(µk

[0,T ])

�
dµ̃k

[0,T ].
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Since µ̃k

[0,T ] converges in P1(C([0, T ],Rd)) and �F
k

�µ
has linear growth uniformly in k from

Lemma 5.4.1 and (5.35),
R
�F

k

�µ
(µk

[0,T ])dµ̃
k is bounded uniformly in k. From [Nutz, 2021,

Lemma 1.4-(b)],

Z

P1(C([0,T ],Rd)
log

dµk

[0,T ]

d�k(µk

[0,T ])
dµ̃k

[0,T ]  H(µ̃k

[0,T ]|�
k(µk

[0,T ])),

which is bounded uniformly in k. This implies a bound on (�
k
([0, T ]))k�1. From (a vari-

ant of) the Prokhorov theorem, up to re-indexing, we can thus assume that �k converges
towards some � in M+([0, T ]). In particular, we assume that (�k0)k�1 and (�

k

T )k�1 respec-
tively converge towards �({0}) and �({T}). This shows that

�(dt) = �0�0(dt) + �tdt+ �T �T (dt),

for some bounded measurable function t 7! �t, which is the weak-? limit of (�k)k�1 (for
the �(L1, L1)-topology).

From Lemma 5.3.6, r'k
t and r2'k

t are bounded uniformly in (t, k). Moreover, for
every 1  i  d and 0 < t  T ,

@i'
k

t (x) = �
k

TE[@i k

T (X
t,x,↵

k

T
)] +

Z
T

t

E
�
@ib

k

s ·r'
k

s �
1

2
r'k

s · @ia
k

sr'
k

s +
1

2
Tr[@ia

k

sr'
k

s ]

+ @ic
k

s + �
k

s@i
� k

�µ
(µk

s)
 
(Xt,x,↵

k

s )ds. (5.37)

Since (�
k
)k�1 is now bounded in L1(0, T ), we deduce that (r'k)k�1 is equi-continuous on

every compact set of (0, T ]⇥ Rd. Up to-reindexing, the Arzelà-Ascoli allows us to assume
that 'k converges towards ' 2 C1((0, T ]⇥ Rd) uniformly on every compact set. Similarly,
we can define '0 so that r'k

0 uniformly converges towards r'0 on every compact set of
Rd. Going back to (5.35), ck uniformly converges towards c defined by

ct(x) :=

Z

Rd

�bs
�µ

(y, µs, x) ·r's(y)µs(dy).

From the stability result [Chaintron et al., 2024, Proposition 5.2], we get that ' is a solution
of (5.3), so that (µ[0,T ],�,') satisfies Theorem 5.2.2-(ii).

Taking the k ! +1 limit in Lemma 5.3.6 applied to 'k, we get that r't is bounded
and Lipschitz uniformly in t. Under (A.5)-(ii) and (A.7)-(i), we can further take the limit in
Lemma 5.3.3 and get that r2't is globally Lipschitz-continuous. Similarly, the analogous
of (5.37) yields that t 7! r2't(x) is continuous on (0, T ]. The bound (5.5) results from
Proposition 5.A.4.

As a consequence we get the following result, (Xt)0tT denoting the optimally con-
trolled process for the feed-back ↵ := ��>r'.

Corollary 5.4.2.1 (First order regularity). Under (A.7)-(ii),

(i) t 7! 't(x) is continuous on (0, T ]. Moreover, (r't(Xt))0<tT is almost surely con-
tinuous, and for 1  i  d,

d@i't(Xt) = {�@ibt ·r't +
1
2r't · @iatr't �

1
2Tr[@iatr

2't]

� @ict � �t@i
� 
�µ

(µt)}(Xt)dt� �tr@i't(Xt)dBt.
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(ii) t 7!  (µt) is C1 on [0, T ], with bounded derivative given by

d

dt
 (µt) = E


L↵t

� 

�µ
(µt, Xt)

�
, t 2 (0, T ].

Proof. We follow the regularisation procedure in the above proof of Theorem 5.2.3. Since
� has a bounded density, the continuity of t 7! 't(x) can be read directly on (5.3). To get
(i), we simply take the k ! +1 limit within (5.37) initialised at x = Xt.

For (ii), we differentiate  k(µk
s) to get that for every 0 < t < t0 < T ,

 k

t0(µ
k

t0)� 
k

t (µ
k

t ) = E
Z

t
0

t

L↵
k

s

� k

�µ
(µk

s , X
↵
k

s )ds.

Taking the k ! +1 limit and using that (r's(Xs))0<sT is continuous on (0, T ], t 7!
 (µt) is C1 on (0, T ] with derivative given by (ii). From (i), we see that s 7! E[L↵s

� 
�µ

(µs, Xs)]
has a finite limit as s ! 0. By continuous prolongation, t 7!  (µt) is thus differentiable
on the full [0, T ] with continuous derivative.

Remark 5.4.3 (Linearising before regularising). In the proof of Theorem 5.2.3, we regu-
larised the non-linear problem before to linearise it and to take the limit in the optimality
conditions. An alternative (and easier) way is to linearise before to regularise. In particu-
lar, this avoids using Lemma 5.B.2. However, this approach requires additional derivatives
w.r.t. µ to bound the time-derivatives @sbks and @s k

s uniformly in k.

5.4.3 Quantitative stability

We can apply Theorem 5.2.2 to µ"[0,T ] and the constraints  � ", because µ0
[0,T ] provides

constraint qualification using Remark 5.2.1. Let us fix a reference probability system
⌃ = (⌦, (Ft)0tT ,P, (Bt)0tT ). From Theorem 5.2.2, µ"[0,T ] is the law of the solution to
the SDE

dX"

t = bt(X
"

t )dt+ �t↵
"

t (X
"

t )dt+ �t(X
"

t )dBt,

where ↵"t = ��>t r'
"
t is the optimal feed-back control. In the following, C is a positive

constant that may change from line to line, but always independent of ". From (5.28), we
thus have �"([0, T ])  C. Using Theorem 5.2.3, we further get

sup
0tT

kr'"tk1 + kr2'"tk1  C, sup
0tT

k↵"tk1 + kr↵"tk1  C, (5.38)

and a straightforward consequence is that E[sup0tT |X"
t |

2]  C.

Lemma 5.4.4 (L2-stability).

(i) H(µ0
[0,T ]|µ

"

[0,T ]) = H(µ0
0|µ

"

0) + E
R
T

0
1
2 |↵

"
t (X

0
t )� ↵

0
t (X

0
t )|

2dt  C".

(ii) sup0tT W1(µ"t , µ
0
t )  C"1/2.

(iii) Let r"t (x) := ft(x)gt(x)ht(↵"t (x)), for measurable f, g, h : [0, T ] ⇥ Rd
! R. If f is

bounded, g is globally Lipschitz in x and h is locally-Lipschitz (uniformly in t),

E
Z

T

0
|r"t (X

"

t )� r0t (X
0
t )|dt  C"1/4.
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Proof. First, (i) is a direct application of the stability result proved [Chaintron et al.,
2024, Proposition 2.18 and Remark 2.19], the relative entropy being computed using the
Girsanov transform. Let us bound W1(µ"0, µ

0
0). Since '"0 has linear growth independently of

", Lemma 5.3.4 implies that the bound (A.5)-(iii) holds for µ" with a constant independent
of ". This Gaussian bound is known to imply a transport-entropy inequality: C > 0
independent of " exists such that

8µ0 2 P1(Rd), W 2
1 (µ

0, µ"0)  CH(µ0|µ"0).

Together with (i), this implies W1(µ"0, µ
0
0)  C"1/2. Using Ito’s formula, our Lipschitz

assumptions on the coefficients and the uniform bound on ↵"t :

E[|X"

t �X0
t |]  E[|X"

0 �X0
0 |] + C

Z
t

0
E[|X"

s �X0
s |]ds+ C

Z
t

0
E[|↵"s � ↵

0
s|]ds.

Using (i) and Gronwall’s Lemma, we establish (ii). To prove (iii), we decompose:

E
Z

T

0
|r"t (X

"

t )� r0t (X
0
t )|dt  E

Z
T

0
|gt(X

"

t )[ft(X
"

t )ht(↵
"

t (X
"

t ))� ft(X
0
t )ht(↵

"

t (X
0
t ))]|dt

+E
Z

T

0
|ft(X

0
t )gt(X

"

t )[ht(↵
"

t (X
0
t ))�ht(↵

0
t (X

0
t ))]|+|ft(X

0
t )ht(↵

0
t (X

0
t ))[gt(X

"

t )�gt(X
0
t )]|dt.

Using the Cauchy-Schwarz inequality, the first term is bounded by

C


E
Z

T

0
|gt(X

"

t )|
2dt

�1/2
sup

0tT
k(ht � ↵

"

t )ftk1kµ
"

t � µ0
t k

1/2
TV.

This term is bounded by C"1/4 using (5.38), (i) and Pinsker’s inequality. Similarly, we
bound the second term by

C


E
Z

T

0
|gt(X

"

t )|
2dt

�1/2
E
Z

T

0
|↵"t (X

0
t )� ↵

0
t (X

0
t )|

2dt

�1/2
,

using that ht is locally Lispchitz and ↵" is bounded. This quantity is smaller than C"1/2

using (i) and the fact that E[sup0tT |X"
t |

2]  C. Since gt is Lipschitz and (ht � ↵0
t )ft

is bounded, the third term is bounded by C sup0tT W1(µ"t , µ
0
t ), which we bound using

(ii).

In the following, we use the notation  "t :=  (µ"t )+"+
� 
�µ

(µ"t ). We recall that � 
�µ

(µ"t ) :

x 7! � 
�µ

(µ"t , x) is defined in Definition 5.1.1. The Lipschitz assumption (A.7)-(iii) and
Lemma 5.4.4-(iii) imply that  is Lipschitz in W1 (see e.g. [Cardaliaguet et al., 2019,
Section 2.2.1]). From Lemma 5.4.4-(ii), we get that

sup
0sT

| (µ"s)� (µ
0
s)|  C"1/2. (5.39)

Similarly,
max
0i4

sup
0sT

kr
i "s �r

i 0
sk1  C"1/2. (5.40)

As a consequence, we can readily adapt the proof of Lemma 5.4.4-(iii) to include the
derivatives of  "t .
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Lemma 5.4.5. Lemma 5.4.4-(iii) still holds if

r"t (x) = ft(x) 
"

t (x)ht(↵
"

t (x)) or r"t (x) = ft(x)gt(x)ht(↵
"

t (x))k
"

t (x),

where k"t is any of the four derivatives of  "t .

To make �"t explicit, we differentiate twice  (µ"t ). We recall the definition (5.36) of the
infinitesimal generator L↵

"

t .

Lemma 5.4.6 (Second order regularity). Under (A.7) there exists (a linear combination
of terms) r" as in Lemma 5.4.5 such that for every 0  t < t0  T ,

E[L↵
"

t0  
"

t0(X
"

t0)]� E[L↵
"

t  "t (X
"

t )] = t=0�
"

0E[|�
>

0 r 
"

0|
2(X"

0)] + t0=T�
"

TE[|�>Tr 
"

T |
2(X"

T )]

+

Z
t
0

t

E[r"s(X
"

s )� s"s(X
"

s ) + �"s|�
>

s r 
"

s|
2(X"

s )]ds,

where

s"s = ai,js r@i 
"

s · asr@j'
"

s + @i 
"

sra
i,j

t
· asr@j'

"

s �
1
2a

i,j

s @ja
k,l

s @i 
"

s@
2
k,l
'"s.

As a consequence of Corollary 5.4.2.1-(ii), E[L↵
"

t  "t (X
"
t )] =

d
dt (µ

"
t ) when t > 0, hence

t 7!  (µ"t ) is a.e. twice differentiable, and C2 on intervals where �"t = 0 identically.

Proof. Using Lemma 5.3.6, we can compute on a regularised version of the multiplier before
to take the limit (and then recover the atoms at t 2 {0, T}). We thus assume that �" is
C1, and we use Ito’s formula to write that

E[L↵
"

t0  
"

t0(X
"

t0)]� E[L↵
"

t  "t (X
"

t )] =

Z
t
0

t

E[(@s + L↵
"

s )L↵
"

s  "s(X
"

s )]ds.

In the following, r"s is a remainder of the desired shape which may change from line one to
another. Decomposing L↵

"

s = L0
s + �s↵"s ·r,

(@s + L↵
"

s )L↵
"

s  "s = (@s + L↵
"

s )�s↵
"

s ·r 
"

s + (@s + L↵
"

s )L0
s 

"

s

= (@s + L↵
"

s )�s↵
"

s ·r 
"

s + r"s.

We now use coordinates:

(@s + L↵
"

s )�s↵
"

s·r 
"

s = (@s + L↵
"

s )(�s↵
"

s)
i@i 

"

s

= @i 
"

s(@s + L↵
"

s )(�s↵
"

s)
i + (�s↵

"

s)
i(@s + L↵

"

s )@i 
"

s +r@i 
"

s · asr(�s↵
"

s)
i

= (@s + L↵
"

s )(�s↵
"

s)
i + r"s.

Since (�s↵"s)
i = �(asr'"s)

i = �ai,js @j'"s, we further get

(@s + L↵
"

s )(�s↵
"

s)
i = �@j'

"

s(@s + L↵
"

s )ai,js � ai,js (@s + L↵
"

s )@j'
"

s �ra
i,j

s · asr@j'
"

s

= �ai,js (@s + L↵
"

s )@j'
"

s + r"s.

We eventually differentiate she HJB equation satisfied by '":

(@s + L↵
"

s )@j'
"

s = �@jbs ·r'
"

s +
1

2
r'"s@jasr'

"

s �
1

2
Tr[@jasr

2'"s]� �
"

s@j 
"

s.

Gathering everything, we get r" such that

(@s + L↵
"

s )L↵
"

s  "s = r"s �r@i 
"

s · asr(asr'
"

s)
i
� @i 

"

sra
i,j

s · asr@j'
"

s

+
1

2
ai,js @i 

"

sTr[@jas ·r
2'"s] + �"sa

i,j

s @i 
"

s@j 
"

s.

We eventually obtain the desired s" after a slight modification of r".
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We will repeatedly use the following result.

Lemma 5.4.7. For any global maximum or minimum t0 2 (0, T ) of s 7!  (µ0
s), we have

����
d

ds

��
s=t0

 (µ"s)

����  C"1/4,

for C > 0 that does not depend on " nor t0.

The result still holds if we exchange the roles of  (µ"s) and  (µ0
s).

Proof. We prove the result for a maximum, the case of a minimum being very similar. For
any �, � > 0,

8s 2 [0, T ] \ [t0 � �, t0 + �],  (µ0
t0
) �  (µ0

s)� �(s� t0)
2 + ��2.

Using (5.39), this implies

8s 2 [0, T ] \ [t0 � �, t0 + �],  (µ"t0) �  (µ
"

s)� �(s� t0)
2 + ��2 � 2C"1/2.

If ��2 � 2C"1/2, this proves that s 7!  (µ"s) � �(s � t0)2 has a global maximum at some
point t00 2 [t0 � �, t0 + �]. As a consequence d

ds |s=t
0
0
 (µ"s) = 2�(t00 � t0). From Lemma

5.4.6, d2

ds2 (µ
"
s) is bounded on [0, T ] by some K > 0 independent of ", hence

����
d

ds

��
s=t0

 (µ"s)

����  2�� +K�,

for any �, � > 0 such that ��2 � 2C"1/2. Optimising over (�, �) concludes.

By continuity of t 7!  (µ"t ), the sets F" := {t 2 [0, T ] ,  (µ"t ) = "} are closed.
Moreover, F" is a countable union of singletons and non-trivial intervals, and we know that
F" contains the support of �" from the complementary slackness condition (5.4) with  �"
in place of  . From (A.4) and Remark 5.2.5, the continuous function s 7! E[|�>s r 

0
s(Xs)|2]

is positive on the closed set F0, hence lower-bounded by a positive number. Using this and
Lemma 5.4.4-(ii), there exists ⌘ > 0 such that for every small enough ",

8t 2 F", E[|�>t r 
"

t |
2(X"

t )] � ⌘ > 0. (5.41)

We now prove the main stability estimate on �".

Proposition 5.4.8. There exists C > 0 independent of " such that k�" � �0kL1(0,T ) 

C"1/4.

Proof. We decompose the norm using F" and F0.

Step 1. On F" \ F0. We first write that

|E[�"t |�
>

t r 
"

t (X
"

t )|
2
� �0t |�

>

t r 
"

t (X
"

t )|
2]|  |E[�"t |�

>

t r 
"

t (X
"

t )|
2
� �0t |�

>

t r 
0
t (X

0
t )|

2]|

+ �0t |E[|�
>

t r 
"

t (X
"

t )|
2
� |�>t r 

0
t (X

0
t )|

2]|.

Moreover,

|E[|�>t r 
"

t (X
"

t )|
2
� |�>t r 

0
t (X

0
t )|

2]|  |E[|�>t r 
"

t (X
"

t )|
2
� |�>t r 

"

t (X
0
t )|

2]|

+ |E[|�>t r 
"

t (X
0
t )|

2
� |�>t r 

0
t (X

0
t )|

2]|  C"1/2,
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combining Lemma 5.4.4-(ii) and (5.40) for the second inequality. Using (5.41) and the
bound on �0t given by Theorem 5.2.3, this implies

⌘|�"t � �
0
t |  |E[�"t |�

>

t r 
"

t (X
"

t )|
2
� �0t |�

>

t r 
0
t (X

0
t )|

2]|+ C"1/2.

By continuity of  , F" \ F0 is a (at most) countable union of closed disjoint intervals.
 (µ"s) and and  (µ0

s) are identically 0 on F" \ F0, hence their second derivative is a.e. 0
on F" \ F0. From Lemmata 5.4.2.1 and 5.4.6,

0 =
d2

ds2
 (µ"s) = E[r"s(X

"

s )� s"s(X
"

s ) + �"s|�
>

s r 
"

s|
2(X"

s )] for a.e. s 2 F0 \ F",

hence
⌘|�"t � �

0
t |  |E[r"t (X

"

t )� r0t (X
0
t )]|+ |E[s"t (X

"

t )� s0t (X
0
t )]|. (5.42)

The term s"s can be written as a sum of terms of shape m"
s ·r@j'

"
s, where m" is uniformly

bounded with bounded @j-derivative. However, E[r@j'"s(X
"
s ) � r@j'

0
s(X

0
s )] cannot be

controlled using Lemma 5.4.5. To circumvent this, we integrate by parts:

E[m0
s ·r@j'

0
s(X

0
s )] = �E[@jm0

s ·r'
0
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0
s )]� E[(m0

s ·r'
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s)@j logµ
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"
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0
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s )]
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"
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0
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"

s �r'
0
s)(X

0
s )] + E[m0

s · (r'
"

s �r'
0
s)@j logµ

0
s(X

0
s )].

Using the Cauchy-Schwarz inequality and Lemmata 5.3.4-5.A.2 to bound E[|r logµ0
s(X

0
s )|

2],

Z
T

0
|E[m0

s · (r'
"

s �r'
0
s)@j logµ

0
s(X

0
s )]|dt

 km0
k1

⇢Z
T

0
E[|r logµ0

s(X
0
s )|

2]ds

�1/2⇢Z T

0
E[|r'"s(X

0
s )�r'

0
s(X

0
s )|

2]ds

�1/2

 C"1/2,

Lemma 5.4.4-(i) giving the last bound. We similarly show that
Z

T

0
|E[@jm0

s · (r'
"

s �r'
0
s)(X

0
s )]|ds  C"1/2.

We can now use Lemma 5.4.5 to write
Z

T

0
|E[m"

s ·r@j'
"

s(X
"

s )�m0
s ·r@j'

"

s(X
0
s )]|ds  C"1/4.

Gathering everything, we showed that
Z

T

0
|E[m"

s ·r@j'
"

s(X
"

s )�m0
s ·r@j'

0
s(X

0
s )]|ds  C"1/4,

hence the same holds when replacing m"
t by s"t . Going back to (5.42), Lemma 5.4.5 now

gives that
R
F"\F0

|�"s � �
0
s|ds  C"1/4.

Step 2. On F c
" \ F0. Using the complementary slackness condition
Z

(F"\F0)c
|�"s � �

0
s|ds =

Z

F c
"\F0

�0sds+

Z

F"\F
c
0

�"sds. (5.43)

Since t 7!  (µ"t ) and t 7!  (µ0
t ) are continuous, [0, T ] \ (F" \ F0) is a (at most) countable

union of disjoint intervals. Let I = (t, t0) be one them that is not trivial.
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If 0 < t < t0 < T , then  (µ"t ) =  (µ"
t0) = " and  (µ0

t ) =  (µ0
t0) = 0 by definition

of (F" \ F0)c. From Lemma 5.4.2.1, s 7! d
ds (µ

"
s) and s 7! d

ds (µ
0
s) are C1 at t and t0,

hence they vanish there (t and t0 are local maxima). We then set t0 := t and t00 := t0.
Otherwise, if t0 = 0 or t = T , we consider t0, t00 2 I such that 0 < t0 < t00 < T and
 (µ0

t0
) =  (µ0

t
0
0
) = 0.

Let us apply Lemma 5.4.7 at t0 and t00. Using Lemma 5.4.6 on [t0, t00], reasoning as in
Step 1. yields

Z
t
0
0

t0

�0sds�

Z
t
0
0

t0

�"sds  C"1/4,

hence Z
t
0
0

t0

�0sds  C"1/4 +

Z

I

�"sds.

Since this holds for every [t0, t00] ⇢ I with  (µ0
t0
) =  (µ0

t
0
0
) = 0, we deduce that

Z

I

�0sds  C"1/4 +

Z

I

�"sds,

recalling the complementary slackness condition (5.4). To bound
R
F c
"\F0

�0sds, it is thus
sufficient to control

R
F"\F

c
0
�"sds. This is the content of the next step.

Step 3. On F" \ F c

0 . We now use the assumption that there are a finite number
of non-trivial intervals where  (µ0

s) = 0 identically. Let [ak, bk] be these intervals in an
increasing order, with ak < bk and 1  k  m. We further set b0 := 0 and am+1 := T so
that Z

F"\F
c
0

�"sds =

Z

F
c
0

�"sds =
mX

k=0

Z
ak+1

bk

�"sds.

For 0  k  m, let us consider bk < tk < t0
k
< ak+1 with  (µ"tk) =  (µ

"

t
0
k
) = ". Indeed, if

such a (tk, t0k) does not exist,
R
ak+1

bk
�"sds = 0 from the complementary slackness condition

(5.4) with  � " in place of  . We then write

Z
t
0
k

tk

�"sds =

Z
t
0
k

tk

�"sds�

Z
t
0
k

tk

�0sds,

and we apply Lemma 5.4.7 at tk and t0
k
, as in Step 2.. Using Lemma 5.4.6 on [tk, t0k],

reasoning as in Step 1. shows that the r.h.s. is bounded by C"1/4. Since this holds for
every [tk, t0k] ⇢ [bk, ak+1] with  (µ"tk) =  (µ

"

t
0
k
) = ", we deduce that

Z
ak+1

bk

�"sds  C"1/4,

recalling the complementary slackness condition. Gluing the steps together in (5.43) con-
cludes.

Remark 5.4.9 (Infinite number of intervals). Without assuming that the number of [ak, bk]
is finite, we can still write that

Z

F"\F
c
0

�"sds =
X

k�0

Z

Ik

�"sds,
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the sum being possibly countable with no more required ordering on the Ik. For each k, let
us consider a maximal [tk, t0k] ⇢ Ik such that  (µ"tk) =  (µ"

t
0
k
) = ". Using Lemma 5.4.6

and Step 1., the problem boils down to controlling

X

k�0

d

ds

��
s=tk

 (µ0
s)�

d

ds

��
s=t

0
k
 (µ0

s). (5.44)

From Lemma 5.4.6, s 7!  (µ0
s) is C2 on each Ik. Let us assume that d2

ds2 (µ
0
s) has a

uniform continuity modulus m on the union of these intervals: for any ⌘ > 0,

8t, t0 2 [kIk, |t� t0|  m (⌘))
�� d2
ds2 |s=t (µ

0
s)�

d2

ds2 |s=t0 (µ
0
s)
��  ⌘.

We can then split the sum (5.44) between intervals of size smaller and bigger than m (⌘).
On intervals Ik smaller than m (⌘), | d

2

ds2 (µ
0
s)| is smaller than ⌘ because d2

ds2 (µ
0
s) vanishes

within Ik; this is indeed a consequence of Rolle’s theorem because d
ds (µ

0
s) vanishes at the

boundary of Ik (except possibly for the first and the last Ik). On intervals bigger than
m (⌘), we apply the error bound of Step 3. Since there are at most bTm�1 (⌘)c+ 1 such
intervals within [0, T ], we can bound (5.44) by

C

m (⌘)
"1/4 +

X

ak+1�bkm (⌘)

⌘[t0
k
� tk]  C[m�1 (⌘)"1/4 + ⌘]. (5.45)

Such a continuity modulus m can be obtained from Lemma 5.4.6 by differentiating once
again to get third-order time-regularity. Strengthening a bit the regularity assumptions on
coefficients, we could thus bound d3

ds3 (µ
0
s) and optimise over ⌘ in (5.45), to get that (5.44)

is of order "1/8.

Proof of Theorem 5.2.6. Let us first handle the convergence of the atom at 0. If  (µ0
0) < 0,

then the same holds for  (µ"0) < 0 for " small enough, hence �"0 = �00 = 0 and there is
nothing to do. We thus assume  (µ0

0) = 0. Reasoning as in Step 1. in the proof of
Proposition 5.4.8,

⌘|�"0 � �
0
0|  |E[�"0|�

>

0 r 
"

0(X
"

0)|
2
� �00|�

>

0 r 
0
0(X

0
0 )|

2]|+ C"1/2.

The first term on the r.h.s can be computed using Lemma 5.4.6, so that

⌘|�"0��
0
0|  |E[L↵

"

0  "0(X
"

0)�L↵
0

0  0
0(X

0
0 )]|+

����
d

dt

��
t=t0
 (µ"t )

����+
Z

t
0

0
|E[r"s(X

"

s )� r0s(X
0
s )]|ds

+ C"1/2 +

Z
t
0

0
|E[s"s(X

"

s )� s0s(X
0
s )]|+ |E[�"s|�

>

s r 
"

s|
2(X"

s )� �
0
s|�
>

s r 
0
s |

2(X0
s )]|ds,

(5.46)

for any t0 2 (0, T ) with d
dt |t=t0 (µ0

t ) = 0. The |E[r"s(X
"
s )� r0s(X

0
s )]| term can be bounded

using Lemma 5.3.6-(iii). We deal with the |E[s"s(X
"
s )� s0s(X

0
s )]| as previously in Step 1..

For the remaining terms, we distinguish between two cases.

1. Let us assume that t 7!  (µ0
t ) has a global minimum at t0 2 (0, T ), so that

d
dt |t=t0 (µ0

t ) = 0. Using Lemma 5.4.7, we get that |
d
dt |t=t0 (µ"t )|  C"1/4. It re-

mains to control the difference E[L↵
"

0  "0(X
"

0)]� E[L↵
0

0  0
0(X

0
0 )]. Since

L↵
"

0  "0 = L0
0 

"

0 + a0r'
"

0 ·r 
"

0, X"

0 ⇠ Z�1" e�'
"
0d⌫0,
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we notice that

E[L↵
"

0  "0(X
"

0)] = E[L0
0 

"

0(X
"

0)] + Z�1"

Z

Rd
�a0r[e

�'
"
0 ] ·r "0 d⌫0.

Integrating by parts:

Z�1"

Z

Rd
�a0r[e

�'
"
0 ] ·r "0 d⌫0 = E[r · (a0r 

"

0)(X
"

0)] + E[a0r "0 ·r log ⌫0(X
"

0)].

The first term on the r.h.s generates the difference E[r·(a0r "0)(X
"

0)�r·(a0r 
0
0)(X

0
0 )]

which enters the scope of Lemma 5.4.5. To handle the difference of the second second
terms, we first write that

E[|r log ⌫0(X
"

0)�r log ⌫0(X
0
0 )| |r log ⌫0(X"

0)|+|r log ⌫0(X0
0 )|M

]  CM"1/2,

using Lemma 5.4.4-(i) and Pinsker’s inequality. We then use that

E[|r log ⌫0(X
"

0)�r log ⌫0(X
0
0 )| |r log ⌫0(X"

0)|+|r log ⌫0(X0
0 )|>M

]

M�1{E[|r log ⌫0(X
"

0)|
2 + |r log ⌫0(X

0
0 )|

2]}3/2,

using the Cauchy-Schwarz and the Markov inequalities. We further bound the ex-
pectation using (A.5) and Lemma 5.3.4. Optimising in M , we get that

E[|r log ⌫0(X
"

0)�r log ⌫0(X
0
0 )|]  C"1/4.

Gathering everything, we deduce that

|E[L↵
"

0  "0(X
"

0)� L↵
0

0  0
0(X

0
0 )]|  C"1/4.

Going back to (5.46) and using Lemma 5.4.5, we eventually obtain that |�"0 � �
0
0| 

C"1/4.

2. If such a minimiser t0 does not exist in (0, T ), t 7!  (µ0
t ) is necessarily (strictly)

decreasing hence  (µ0
T
) < 0, and  (µ"

T
) < 0 for small enough ". We can then set

t0 = T , and (5.46) still holds using Lemma 5.4.6 because

d

dt

��
t=T
 (µ"t ) = �"TE[|�>Tr 

"

T |
2(X"

T )] = 0,

from the complementary slackness. Reasoning as above then yields |�"0��00|  C"1/4.

Since we now control |�"0��00| and k�"��0kL1(0,T ), Corollary 5.4.2.1-(ii) and Lemma 5.4.6
yield

8t 2 [0, T ),

����
d

dt
 (µ"t )�

d

dt
 (µ0

t )

����  C"1/4,

for C independent of (t, "). From Corollary 5.4.2.1-(ii), t 7!  (µ"t ) is C1 hence this identity
still holds for t = T . Since d

dt

��
t=T
 (µ"t ) = �"

T
E[|�>

T
r "

T
|
2(X"

T
)], we obtain using (5.41)

that |�"
T
� �"0|  C"1/4.

Since �" � �0 is now fully estimated, we can introduce u" := '" � '0, which satisfies

�u"t +

Z
T

t

b"s ·ru
"

s +
1

2
Tr[asr

2u"s]ds+

Z

[t,T ]
 "s�

"(ds)�

Z

[t,T ]
 0
s�

0(ds) = 0,

231



Chapter 5. Regularity and stability for Gibbs principle on path space

in the sense of Definition 5.C.1, where b"t := bt �
1
2atr['

"
t + '0

t ]. As for Proposition 5.3.2,
we can use a regularisation procedure to obtain the Feynman-Kac formula

u"t (x) = E
 Z

[t,T ]
 "s(Y

",t,x

s )�"(ds)�

Z

[t,T ]
 0
s(Y

",t,x

s )�0(ds)

�
,

using the solution to the following SDE,

dY ",t,x

s = b"s(Y
",t,x

s )ds+ �s(Y
",t,x

s )dBs, Y ",t,x

t
= x.

We can then estimate |u"t (x) � u"t (y)| using the gradient estimate from Priola and Wang
[2006] as in Proposition 5.3.2. Indeed, rb"t is bounded uniformly in (", t) using (5.38),
hence we get uniform in " estimates. Using (5.40) and our estimate of �" � �0, this yields
sup(t,x)2[0,T ]⇥Rd |ru"t (x)|  C"1/4 as desired.

Appendix

5.A Time-reversal and density estimates

In this section, we prove bounds on the density µt of the solution to

dXt = bt(Xt)dt+ �t(Xt)dBt.

Lemmata 5.A.1 and 5.A.2 can be rephrased in terms of entropy and Fisher information:
they are non-quantitative versions of results from Bakry et al. [2014]. Contrary to the
classical semi-group approach, our estimates rely on semi-martingale decompositions in
the spirit of Fontbona and Jourdain [2016]. They provide probabilistic counterparts to
PDE results of [Bogachev et al., 2022, Chapter 7.4]. To the best of our knowledge, the
third order estimate in Proposition 5.A.4 is new.

We work under global Lipschitz assumptions which are not optimal, see Haussmann and
Pardoux [1986]; Fontbona and Jourdain [2016] for sharper discussions. From [Haussmann
and Pardoux, 1986, Theorem 3.1], (A.2) is enough for existence of a density µt 2 H1(Rd).
In the forthcoming proofs, we assume that coefficients are smooth so that µt is the smooth
positive solution of @tµt = L?tµt. To get the estimates with the desired regularity, it is
classically sufficient to regularise coefficients and to take the limit.

We define
 �
X t := XT�t. From [Haussmann and Pardoux, 1986, Theorem 2.1], (

 �
X t)0tT

is a time-inhomogeneous Markov process with generator

 �
L t :=

 �
b j

t
@j +

1

2
 �a j,k

t
@2
j,k
,

where
 �
b j

t
:= �bj

T�t
+ µ�1

T�t
@k(a

j,k

T�t
µT�t),

 �a j,k

t
:= aj,k

T�t
.

Let  �µ t := µT�t be the density of the law of
 �
X t at time t. We then set ⌘t := log �µ t. After

simplifications, the Fokker-Planck equation @t �µ t =
 �
L ?

t

 �µ t yields

(@t +
 �
L t)⌘t = @jb

j

T�t
�

1

2
@j,k
 �a j,k

t
+

1

2
 �a j,k

t
@j⌘t@k⌘t. (5.47)

We then define Y i
t := @i⌘t(

 �
X t), for 1  i  d. In all what follows, we underly evaluation

at
 �
X t, writing e.g. d⌘t instead of d⌘t(

 �
X t).
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Lemma 5.A.1. Under (A.2), if µ0 satisfies (A.1) then

sup
t2[0,T ]

Z

Rd
logµt dµt +

Z
T

0

Z

Rd
|r logµt|

2dµtdt  C,

where C > 0 only depends on coefficients through their uniform norm or the one or their
derivatives.

Proof. Using Ito’s formula and (5.47),

d⌘t = [@jb
j

T�t
+ 1

2
 �a j,k

t
Y j

t
Y k

t �
1
2@j,k

 �a j,k

t
]dt+ Y j

t

 �� j,k

t
dBk

t . (5.48)

Let ⇢(x) := Z�1 exp[�
p
x2 + 1] be a probability density w.r.t. Lebesgue. A similar com-

putation yields

d log d �µ t
d⇢ = 1

2
 �a j,k

t
Y j

t
Y k

t dt+ @j log
d �µ t
d⇢
 �� j,k

t
dBk

t

+[@jb
j

T�t
�

1
2@j,k

 �a j,k

t
+bj

T�t
@j log ⇢�

1
2@k
 �a j,k

t
@j log ⇢�

 �a j,k

t
Y k

t @j log ⇢+
1
2
 �a j,k

t
@j,k log ⇢]dt.

We then integrate in time and we take expectations. We integrate by parts to get rid of
second order derivatives on  �a j,k

t
:

E[�1
2@j,k

 �a j,k

t
] = E[12@j

 �a j,k

t
Y k

t ] � �
"

2E[Y k

t Y
k

t ]�
"
�1

2 E[@j �a
j,k

t
@j
 �a j,k

t
],

for " small enough. Using (A.1) on µ0,
R
log d �µ T

d⇢ d �µ T =
R
log dµ0

d⇢ dµ0 is finite. Similarly,

E[� �a j,k

t
Y k

t @j⇢] � �
"

2E[Y k

t Y
k

t ]�
"
�1

2 E[ �a j,k

t
@j⇢
 �a j,k

t
@j⇢]. (5.49)

Using (A.2)-(iii),  �a j,k

t
Y j

t
Y k
t � C�1Y k

t Y
k
t for some C > 0, and we choose " such that

C�1 > 2": we thus obtain a bound on E[ �a j,k

t
Y j

t
Y k
t ]. This in turn gives a bound onR

log d �µ 0
d⇢ d �µ 0 =

R
log dµT

d⇢ dµT follows, and then on
R
logµTdµT . Integrating and taking

expectation in (5.48), the bound on
R
log µtdµt = E[⌘T�t] follows by a Gronwall argument.

We now differentiate (5.47). After simplifications:

(@t +
 �
L t)@i⌘t = @ib

j

T�t
@j⌘t � @i,k

 �a j,k

t
@j⌘t �

1
2@i
 �a j,k

t
@k⌘t@j⌘t �

1
2@i
 �a j,k

t
@j,k⌘t

+ @i,jb
j

T�t
�

1
2@i,j,k

 �a j,k

t
. (5.50)

Let us define Zj,k

t
:= @j,k⌘t(

 �
X t).

Lemma 5.A.2. Under (A.2) and (A.6)-(i), if µ0 satisfies (A.1) then

sup
t2[0,T ]

Z

Rd
|r logµt|

2 dµt +

Z
T

0

Z

Rd
|r

2 logµt|
2dµtdt  C,

where C > 0 only depends on coefficients through their uniform norm or the one or their
derivatives.

Proof. Using Ito’s formula and (5.50),

dY i

t = [@ib
j

T�t
Y j

t
+ @i,jb

j

T�t
�

1
2@i,j,k

 �a j,k

t
� @i,k

 �a j,k

t
Y j

t
]dt+ Zi,j

t

 �� j,k

t
dBk

t

�
1
2 [@i
 �a j,k

t
Zj,k

t
+ @i
 �a j,k

t
Y j

t
Y k

t ]dt.
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On the other hand

d �� j,i

t
= [@t

 �� j,i

t
� bkT�t@k

 �� j,i

t
+ @l
 �a k,l

t
@k
 �� j,i

t
+ �a k,l

t
Y l

t @k
 �� j,i

t
+ 1

2
 �a k,l

t
@k,l
 �� i,j

t
]dt

+ @k
 �� j,i

t

 �� k,ldBl.

We then define Y
i

t :=
 �� j,i

t
Y j

t
, so that

dY
i

t = Y j

t
d �� j,i

t
+ �� j,i

t
dY j

t
+ d[ �� j,i, Y j ]t

= [@t
 �� j,i

t
Y j

t
+ Bi

t + Yi

t + Yi

t + Zi

t]dt+ [Y j

t
@k
 �� j,i

t

 �� k,l

t
+ �� j,i

t
Zj,k

t

 �� k,l

t
]dBl

t,

with
Bi

t := �b
k

T�t@k
 �� j,i

t
Y j + �� j,i

t
[@jb

k

T�tY
k

t + @j,kb
k

T�t],

Zi

t := @k
 �� j,i

t

 �� k,lZ
j,m �� m,l

t
�

1
2
 �� j,i

t
@j
 �a k,l

t
Zk,l

t
, Yi

t := Y j

t

 �a k,l

t
Y l

t @k
 �� j,i

t
�

1
2
 �� j,i

t
@j
 �a k,l

t
Y k

t Y
l

t ,

Yi

t := Y j

t
[@l
 �a k,l

t
@k
 �� j,i

t
+ 1

2
 �a k,l

t
@k,l
 �� i,j

t
]� 1

2
 �� j,i

t
@j,k,l
 �a k,l

t
�
 �� j,i

t
@j,k
 �a k,l

t
Y l

t .

We now want to compute

d[Y
i

tY
i

t] = 2Y
i

tdY
i

t +
dX

i,l=1

[Y j

t
@k
 �� j,i

t

 �� k,l

t
+ �� j,i

t
Zj,k

t

 �� k,l

t
]2.

We first observe that

Y
i

tY
i

t = @k
 �� j,i

t

 �� m,i

t

 �a k,l

t
Y j

t
Y l

t Y
m

t �
1
2
 �� m,i

t

 �� j,i

t
@j
 �a k,l

t
Y k

t Y
l

t Y
m

t .

We then write that  �� m,i

t

 �� j,i

t
@j
 �a k,l

t
= �a j,m

t
(@j
 �� k,i

t

 �� l,i

t
+ �� k,i

t
@j
 �� l,i

t
), and we re-arrange

terms to get that Y
i

tY
i

t = 0. Using (A.2)-(iii), we get

dX

i,l=1

[Y j

t
@k
 �� j,i

t

 �� k,l

t
+ �� j,i

t
Zj,k

t

 �� k,l

t
]2 � �CY j

t
Y j

t
+DZj,l

t
Zj,l

t
,

for some C,D > 0. As for proving Lemma 5.A.1, we take expectation and we integrate by
parts to lower derivative orders:

E[�Y
i

t

 �� j,i

t
[@jb

k

T�tY
k

t + @j,kb
k

T�t]] = E[Y
i

t@k
 �� j,i

t
@jb

k

T�t + @k
 �� m,i

t
Y m

t

 �� j,i

t
@j
 �
b k

T�t

+ �� m,i

t
Zj,k

t

 �� j,i

t
@j
 �
b k

T�t],

and

E[�Y
i

t

 �� j,i

t
@j,k,l
 �a k,l

t
] = E[Y

i

t

 �� j,i

t
@j,k
 �a k,l

t
Y l

t + Y
i

t@l
 �� j,i

t
@j,k
 �a k,l

t
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t
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To handle product terms, we repeatedly use Y
i

tZ
j,k

t
� �

"

2(Z
j,k

t
)2 + "

�1

2 (Y
i

t)
2 as in (5.49),

for " small enough compared to D. Using bounds (A.2) and (A.6)-(i) on coefficients, we
eventually get

d
dtE[Y

i

tY
i

t] � �↵(1 + E[Y i

t Y
i

t ]) + �E[Zj,l

t
Zj,l] � ��(1 + E[Y

i

tY
i

t]) + �E[Zj,l

t
Zj,l], (5.51)

for some ↵,�, � > 0. Integrating in time, we conclude as in the proof of Lemma 5.A.1.
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5.A. Time-reversal and density estimates

Lemma 5.A.3. Under (A.2), (A.6)-(i), if µ0 satisfies (A.1) and
R
|r logµ0|

4dµ0 < +1
then

(i) supt2[0,T ] E[|Yt|
4] = supt2[0,T ]

R
|r logµt|

4dµt  C,

(ii) E[
R
T

0 Y j

t
Y j

t
Zi,l

t
Zi,l

t
]  C,

where C > 0 only depends on coefficients through their uniform norm or the one or their
derivatives.

Proof. We apply the same scheme as before writing that

d[Y
j

tY
j

tY
l

tY
l

t] = 2Y
j

tY
j

td[Y
l

tY
l

t] + d[Y
j
Y

j
, Y

l
Y

l
]t � 2Y

j

tY
j

td[Y
l

tY
l

t],

and we follow the same computations that yield to (5.51) in the proof of Lemma 5.A.2. In
particular, we lower bound product terms by writing that (Y j

t )
2Zi,l

t
� �

"
�1

2 (Y
j

t )
4+ "

2(Z
i,l

t
)2

for small enough " > 0. We end up to

d
dtE[Y

j

tY
j

tY
l

tY
l

t] � �↵E[(1 + Y i

t Y
i

t )
2] + �E[Y j

t
Y j

t
Zi,l

t
Zi,l],

for some ↵,� > 0. A Gronwall argument now gives the bound on E[Y
j

tY
j

tY
l

tY
l

t]. The
bound on E[Y j

t
Y j

t
Zi,l

t
Zi,l

t
] a posteriori follows.

We now differentiate (5.50). After computations, we get that (@t +
 �
L t)@i,l⌘t equals

� (@l
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where
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We define �i,j,k
t

:= @i,j,k⌘t(
 �
X t).

Proposition 5.A.4. Under (A.5) and (A.6), for every t 2 [0, T ],

sup
s2[0,t]

Z

Rd
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2
1

⇤
,

where C > 0 does not depend on kr2bsk1, and C only depends on coefficients through
their uniform norm or the one or their derivatives.

Proof. Using Ito’s formula and the above expression for (@t +
 �
L t)@i,l⌘t,
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Therefore,
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for some C > 0. Then using (A.6),
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for D > 0 and " > 0 small enough. We now take expectation. To lower derivative orders,
we integrate by parts:
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for some D > 0 that does not depend on kr2bT�tk1. Similarly, integrating E[� �a j,k
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by parts gives
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Choosing " small enough compared to C, we obtain that

d
dtE[Z
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],

for some ↵,� > 0. Using Lemma 5.A.3, a Gronwall-type argument concludes as previously.

5.B Relative entropy and regularity on measures

We recall that the notion of reference system ⌃ = (⌦, (Ft)t0T ,P, (Bt)0tT ) is defined
in Section 5.1.2. For such a ⌃ and any square-integrable progressively measurable process
↵ = (↵t)0tT on ⌃, we say that X↵

[0,T ] := (X↵
t )0tT is a solution of the McKean-Vlasov

SDE

dX↵

s = bs(X
↵,L(X↵))ds+ �s(X

↵,L(X↵))↵sds+ �s(X
↵,L(X↵))dBs, (5.52)

if (X↵
t )0tT is (Ft)t0T -adapted and the integrated version of (5.52) holds P-a.s. The

following result is [Chaintron, 2024, Lemma B.1].

Lemma 5.B.1. Under (A.1)-(A.2), for every measure µ[0,T ] in P1(C([0, T ],Rd)),

H(µ[0,T ]|�(µ[0,T ])) = inf
⌃

inf
L(X↵

[0,T ])=µ[0,T ]

H(L(X↵

0 )|⌫0) + E
Z

T

0

1

2
|↵t|

2dt.

where we minimise over (X↵

[0,T ],↵) satisfying (5.52) in the reference system ⌃, with the
convention that an infimum over an empty set equals +1.

This results allows us to extend [Backhoff et al., 2020, Lemma 5.2] to our setting.
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5.C. PDE notion of solution

Corollary 5.B.1.1 (Range of finiteness). Under (A.1)-(A.2), let us fix any ⌫[0,T ] 2

P1(C([0, T ],Rd)). Let W ⌫

[0,T ] denote the path-law of the solution to

dYt = bt(Yt, ⌫t)dt+ �t(Yt)dBt, Y0 ⇠ ⌫0.

Then for every µ[0,T ] 2 P1(C([0, T ],Rd)),

H(µ[0,T ]|�(µ[0,T ])) < +1 () H(µ[0,T ]|W
⌫

[0,T ]) < +1.

Proof. If H(µ[0,T ]|�(µ[0,T ])) < +1, [Léonard, 2012, Theorem 2.1] provides an adapted
square-integrable process (ct)0tT on the canonical space ⌦ = C([0, T ],Rd) such that

dXt = bt(Xt, µt)dt+ �t(Xt)ctdt+ �t(Xt)dBt, µ[0,T ]-a.s.,

the process (Bt)0tT being a Brownian motion under µ[0,T ]. We then apply Lemma 5.B.1
with x 7! bt(x, ⌫t) instead of b and ↵t := ct + ��1

t
(Xt)[bt(Xt, µt) � bt(Xt, ⌫t)]. Since b is

Lipschitz-continuous in µ independently of x, this ensures that H(µ[0,T ]|W
⌫

[0,T ]) < +1.
Reciprocally if H(µ[0,T ]|W

⌫

[0,T ]) < +1, we similarly obtain a square-integrable (ct)0tT
such that

dXt = bt(Xt, ⌫t)dt+ �t(Xt)ctdt+ �t(Xt)dBt, µ[0,T ]-a.s.,

where (Bt)0tT is a Brownian motion under µ[0,T ]. Setting ↵t := ct+��1
t

(Xt)[bt(Xt, ⌫t)�
bt(Xt, µt)], H(µ[0,T ]|�(µ[0,T ])) < +1 then results from Lemma 5.B.1.

The following result is used to regularise linear derivatives of functions defined on
P1(Rd). It is a slight variation of [Daudin et al., 2023, Lemma 4.2].

Lemma 5.B.2 (Mollification). Let F : P1(Rd) ! R be Lispchitz. Let ⇢ : Rd
! [0, 1] be a

C1 symmetric function with compact support and
R

Rd ⇢(x)dx = 1. For k � 1, we set

8x 2 Rd, ⇢k(x) := kd⇢(kx), 8µ 2 P1(Rd), Fk(µ) := F(⇢k ⇤ µ).

Then F
k is Lipschitz-continuous uniformly in k and

sup
µ2P1(Rd)

|F
k(µ)� F(µ)|  Ck�1,

for C > 0 independent of k. Moreover, if F has a jointly continuous linear derivative �F

�µ
,

then so has F
k and

8(x, µ) 2 Rd
⇥ P1(Rd),

�Fk

�µ
(µ, x) =


�Fk

�µ
(⇢k ⇤ µ, ·) ⇤ ⇢k

�
(x).

As a consequence, �F
k

�µ
(µ) : Rd

! R is C1.

5.C PDE notion of solution

The following notion of solution is extracted from [Chaintron et al., 2024, Section 3.3].

Assumption (A.10) (On the reference SDE). The functions b : [0, T ] ⇥ Rd
! Rd, � :

[0, T ] ⇥ Rd
! Rd⇥d,  , c : [0, T ] ⇥ Rd

! R are measurable and locally bounded, and in
addition:

(i) uniformly in t 2 [0, T ], x 7! bt(x) and x 7! �t(x) are Lipschitz continuous;
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(ii) there exists M� � 0 such that |�t(x)| M� for all (t, x) 2 [0, T ]⇥Rd, and t 7! �t(x)
is locally Hölder-continuous;

(iii) uniformly in t 2 [0, T ], ct and  t are Lipschitz-continuous, and ��1
t

is bounded.

We now fix a positive Radon measure � 2M+([0, T ]), and we want to make sense of
the equation

�'t +

Z
T

t

✓
bs ·r's �

1

2
|�>s r's|

2 +
1

2
Tr[asr

2's] + cs

◆
ds+

Z

[t,T ]
 s�(ds) = 0. (5.53)

If �({t}) 6= 0, an arbitrary choice has been made when considering integrals over [t, T ]
rather than (t, T ]. However, the set of atoms of � is at most countable; hence the choice of
the interval does not matter if we only require equality Lebesgue-a.e. For approximation
and stability purposes, we introduce a specific notion of solution, which relies on the
following heat semi-group.

Under the assumptions made on � in (A.10), a consequence of [Rubio, 2011, Theorem
2.1] is that for any 0 < s  T and any continuous ' : Rd

! R with linear growth, the
parabolic equation (

@t't +
1
2Tr
⇥
atr2't

⇤
= 0, 0  t  s,

's = ',

has a unique solution ' 2 C([0, s]⇥ Rd) \C1,2((0, s)⇥ Rd) with linear growth. From this,
we define the evolution system (St,s)0tsT by

St,s['](x) = 't(x),

for any continuous ' : Rd
! R with linear growth, St,s['] being a C2 function with linear

growth as soon as t < s.

Definition 5.C.1. We say that a measurable ' : [0, T ] ⇥ Rd
! R is a mild solution

of (5.53) if for Lebesgue-a.e. t 2 [0, T ], x 7! 't(x) is C1, (t, x) 7! r't(x) is bounded
measurable, and for a.e. t 2 [0, T ],

't =

Z
T

t

St,s

⇥
bs ·r's �

1
2 |�
>

s r's|
2 + cs

⇤
ds+

Z

[t,T ]
St,s[ s]�(ds).

This implies that x 7! 't(x) is C2 for Lebesgue-a.e. t.

Lebesgue-almost sure uniqueness always holds for (5.53) in the sense of Definition 5.C.1
because the difference of two solutions solves a classical linear parabolic equation without
source term.
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CHAPTER 6

Existence and global Lipschitz estimates for unbounded

classical solutions of a Hamilton-Jacobi equation

Je ne sais pas qui a posé la question, mais c’est

sûrement un matheux : il a probablement raison

mais cela n’apporte rien.

— S. F.

This work has been recently accepted for publication in Annales de la Faculté des Sciences
dee Toulouse.
The purpose of this article is to prove existence, uniqueness and uniform gradient estimates
for unbounded classical solutions of a Hamilton-Jacobi-Bellman equation. Such an equa-
tion naturally arises in stochastic control problems. Contrary to the classical literature
which handles the case of bounded regular coefficients, we only impose Lipschitz regular-
ity conditions, allowing for a linear growth of coefficients. These Lipschitz assumptions
are natural in a probabilistic setting. In principle, these assumptions are compatible with
global Lipschitz regularity for the solution. However, to the best of our knowledge, this
useful result had not been established before. Our proofs rely on the Ishii-Lions method.
We combine several elements from the viscosity solution theory to obtain estimates at the
edges of what seems possible.
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Chapter 6. Classical unbounded solutions for a HJB equation

6.1 Introduction

For any integer d � 1 and T > 0, we consider the following Hamilton-Jacobi-Bellman
(henceforth, HJB) equation:

8
><

>:

@tu(t, x) + cu(t, x) + 1
2Tr[�(t, x)�

>(t, x)D2u(t, x)]

+ inf↵2A[b(t, x,↵) ·Du(t, x) + f(t, x,↵)] = 0,

u(T, x) = g(x), (t, x) 2 (0, T )⇥ Rd.

(6.1)

for � : [0, T ]⇥ Rd
! Rd⇥d, b : [0, T ]⇥ Rd

⇥A! Rd, f : [0, T ]⇥ Rd
⇥A! R and c 2 R is a

constant. The control set A is a possibly unbounded closed domain in Rd. The semi-linear
equation (6.1) naturally arises in finite-time horizon stochastic control problems. More
specifically, on a filtered probability space (⌦, (Ft)0tT ,P), we consider the controlled
dynamics in Rd,

(
dXt,x,↵

s = b(t,Xt,x,↵
s ,↵s)ds+ �(s,Xt,x,↵

s )dBs, t  s  T,

Xt,x,↵

t
= x,

(6.2)

where (Bs)0sT is a (Ft)0tT -Brownian motion, and the control process ↵ := (↵s)0sT
is any (Ft)0tT -adapted A-valued stochastic process. The related cost function is

V (t, x) := inf
↵

E
Z

T

t

ec(s�t)f(s,Xt,x,↵

s ,↵s)ds+ g(Xt,x,↵

T
). (6.3)

If (6.1) has a C1,2 solution u which satisfies suitable bounds, then it is classical that u = V
(see e.g. [Fleming and Soner, 2006, Chapter III.8,Theorem III.8.1]), and it is possible to
compute optimal controls for (6.2)-(6.3) by looking for feed-back controls ↵s := ↵(s,Xt,x,↵

s )
such that

↵(s, x) 2 argmin↵2A[b(s, x,↵) ·Du(s, x) + f(s, x,↵)]. (6.4)

However, having such a classical solution often requires strong assumptions on the coef-
ficients. A standard reference on this issue is [Fleming et al., 1975, Theorem 6.2], which
provides classical solutions for (6.1) when b, f and � are at least C1,2

b
(bounded functions

with bounded continuous derivatives) and the control set A is compact. In the setting of
Fleming et al. [1975], the solution of (6.1) is a C1,2

b
function. Our main objective is the

following result:

Theorem 6.1.1. If b2, � and f2 are Lipschitz-continuous functions, with � bounded and
��> uniformly elliptic, then the HJB equation

@tu(t, x)+
1
2Tr[��

>(t, x)D2u(t, x)]+b2(t, x)·Du� 1
2 |�
>(t, x)Du(t, x)|2+f2(t, x) = 0, (6.5)

with globally Lipschitz terminal data u(T, x) = g(x), has a unique linear growth C1,2 solu-
tion u, which has a uniformly bounded gradient.

These Lipschitz assumptions on the coefficients are natural in a probabilistic setting.
Indeed, from the Itô theorem Stroock and Varadhan [1997], a natural sufficient assumption
for (6.2) to be well-posed is that both b and � are globally Lipschitz (↵ must satisfy
some moment bound too). In particular, this framework allows for a linear growth of the
coefficients, which implies that the solution of (6.5) can have linear growth. Equation (6.5)
is a particular case of (6.1) when specifying b(t, x,↵) = �>(t, x)↵ + b2(t, x), f(t, x,↵) =
1
2 |↵|

2+f2(t, x) together with the unbounded control set A = Rd. In this case, (6.4) reduces
to ↵(s, x) = ��>(s, x)Du(s, x). In particular, using the global bound on �, Theorem 6.1.1
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6.1. Introduction

proves that optimal controls are globally bounded. Theorem 6.1.1 will be a consequence
of Theorem 6.2.2 below, which is concerned with more general equations of type (6.1). We
now summarise the results in the literature that are close to ours.

Well-posedness for (6.5) is related to well-posedness for the linear parabolic equation

@tv + b2 ·Dv + 1
2Tr[��

>D2v]� f2v = 0, (6.6)

which can be obtained from (6.5) using the Cole-Hopf transform v = e�u. Standard
references for (6.6) are Gilbarg et al. [1977]; Ladyzhenskaia et al. [1988]; Friedman [2008]
which provide classical well-posedness and Hölder-regularity estimates when the coefficients
b, � and f2 are regular enough (at least Hölder-continuous), either in bounded domains, or
in Rd when the coefficients b, � and f2 are also globally bounded. Their work also handles
Lipschitz non-linear perturbations of (6.6). This latter extension includes (6.1) when the
control set A is compact. Similar results for (6.1) are proved in Krylov [1987, 2008] when
f is bounded uniformly in ↵ and the coefficients are twice differentiable.

Well-posedness for linear parabolic equations with unbounded coefficients is a long-
standing topic. Historical approaches Bodanko [1966]; Johnson [1971]; Besala [1975] rely
on the parametrix method and provide existence and bounds on a Green function for (6.6)
under a Lyapunov-type assumption, but they also require heavy differentiability conditions
on the coefficients. See also Deck and Kruse [2002] for a more recent generalisation. On
the other side, the solution of (6.6) admits a stochastic representation using the Feynman-
Kac formula. This formula can be used in turn to build a classical solution for (6.6),
but this approach Friedman [2012] also requires heavy differentiability assumptions on
the coefficients. Another noticeable limitation is the assumption that f2 is bounded from
below, which is necessary to guarantee that solutions do not explode. The removal of
this restriction on f2 can imply the loss of the maximum principle and non-uniqueness
situations.

More recently, the works Lunardi [1998]; Fornaro et al. [2004]; Bertoldi and Fornaro
[2004]; Bertoldi et al. [2007]; Hieber et al. [2007]... provide classical well-posedness, ex-
istence of Green functions and regularity estimates for linear parabolic equations with
unbounded coefficients. These results rely on semi-group methods, under a fairly general
Lyapunov-type condition. This framework also extends to Lipschitz non-linear pertur-
bations, see e.g. Addona et al. [2017]. However, these results mostly focus on globally
bounded solutions, a situation which cannot be expected in our framework for (6.1). In
Ito [2001], existence of generalised strong solutions with quadratic growth is shown for a
class of Hamilton-Jacobi equations whose non-linearity in Du includes the one in (6.5). A
uniform bound on Du is proved in [Ito, 2001, Theorem 2.3] in some situations where f2 is
Lipschitz and u is globally bounded, and [Ito, 2001, Theorem 2.7] proves linear growth for
Du when f2 has quadratic growth. However, these results require a strong confinement
assumption on the drift b2 and do not provide classical solutions.

An efficient method to prove global Lipschitz estimates on the solution u of an elliptic
or parabolic equation of the kind

@tu(t, x) +H(t, x,Du(t, x), D2u(t, x)) = 0, (6.7)

is the classical Bernstein method (see e.g. Gilbarg et al. [1977]). By differentiating the
equation, this approach looks for a linear equation satisfied by w := |Du|2, and esti-
mates are obtained using standard maximum principle-type arguments. In particular, this
method requires extra-regularity properties on u for the differential of (6.7) to make sense,
or it needs to approximate (6.7) by a smoothed version and to use continuation methods. A
successful application of this approach can be found in Daudin [2022] under assumptions on
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H which guarantee that u is C1,2
b

, namely coercivity and quadratic growth in Du, together
with Lipschitz-regularity of DxH w.r.t. D2u and the condition (6.8) below. This method is
extended to linear-growth solutions of (6.5) when � ⌘ Id in Daudin [2023], well-posedness
resulting from a fixed-point method. However, Daudin [2022, 2023] cannot handle more
general �, because the Bernstein method they use requires the structural assumption that

8p 2 Rd, sup
(t,x)2[0,T ]⇥Rd

|DxH(t, x, p, 0)|  C[1 + |p|], (6.8)

for some constant C > 0. This assumption is not satisfied by (6.5) in general if � 6= Id.
Another well-posedness approach for (6.1) is the viscosity solution theory Crandall and

Lions [1983]; Crandall et al. [1992]; Barles [1994]. Under suitable structural assumptions
like (6.8), existence and comparison principle (hence uniqueness) for bounded uniformly
continuous solutions of (6.1) are by now standard results (see e.g. [Fleming and Soner,
2006, Chapter 6]). Extensions to linear-growth (or more general growth) situations can be
found in e.g. Ishii [1984, 1989]; Crandall et al. [1989]; Crandall and Lions [1990]; Barles
et al. [2003]. A linear growth situation similar to ours is Giga et al. [1991], but still
keeping a structural condition of the kind (6.8). A general result that covers existence and
uniqueness for viscosity solutions of (6.1) in our Lipschitz setting (and far more general
settings) is Da Lio and Ley [2006].

The next step is to prove Lipschitz estimates on the obtained viscosity solution. A
seminal work to prove regularity estimates is Ishii and Lions [1990]: under uniformly elliptic
or parabolic assumptions, the Ishii-Lions method provides Hölder or Lipschitz estimates,
see Barles [2008] for a summarised presentation. When Lipschitz estimates are available,
the Ishii-Lions method even implies semi-concavity estimates. For Lipschitz estimates, the
main idea is to prove that

sup
(t,x,y)2[0,T ]⇥Rd⇥Rd

u(t, x)� u(t, y)�K|x� y|  0

for large enough K, by reasoning by contradiction and combining the PDE and the second-
order optimality conditions at a maximum point. Similarly, the analogous of the Bernstein
method can be developed for viscosity solutions: this is the weak Bernstein method Bar-
les [1991]. Contrary to the classical Bernstein method, this method does not require any
additional differentiability assumption on the solution, but it requires similar structure con-
ditions on the equation. In Giga et al. [1991], Lipschitz estimates and concavity-preserving
properties are shown for linear growth viscosity solutions of (6.7). However, their setting
does not allow for the linear growth of b in (6.5) and the structure condition (6.8) is re-
quired. Lipschitz estimates are also obtained for globally bounded solutions of an equation
similar to (6.1) in Papi [2002, 2003].
After proving existence, uniqueness, and Lipschitz estimates for viscosity solutions, it is
possible to obtain semi-concavity and higher-order regularity results using e.g. Caffarelli
[1989]; Wang [1989]; Cannarsa and Sinestrari [2004]; Imbert [2006]. This strategy is ap-
plied to (6.7) in Daudin [2022], under (6.8) and assumptions that guarantee the global
boundedness of solutions.

On the stochastic side, the representation formula (6.3) suggests a natural way to
obtain Lipschitz estimates by coupling the characteristic curves. If f(s, x,↵) is Lipschitz
in x uniformly in ↵ and E[|Xt,x,↵

s �Xt,y,↵
s |]  C|x� y| for some C > 0, then the estimate

easily follows. This method is successfully applied in the reference textbooks Krylov [2008];
Fleming and Soner [2006]; Yong and Zhou [2012] and generalised in Buckdahn and Li [2008].
In the setting of (6.5), the lack of a priori bounds on ↵ when � 6= Id does not allow for
such a control of E[|Xt,x,↵

s �Xt,y,↵
s |]. Nevertheless, the stochastic setting provides a further
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degree of freedom because the Brownian motion driving Xt,x,↵
s needs not be the same as the

one of Xt,y,↵
s . The reflection coupling Eberle [2016] exploits this fact to produce uniform

in time gradient estimates Priola and Wang [2006] for (6.6). This method is adapted
to HJB equations like (6.5) in Conforti [2023], but assuming � ⌘ Id. A correspondence
between reflection coupling and doubling of variables methods is established in Porretta
and Priola [2013], recovering and extending the results of Priola and Wang [2006] in a
viscosity solution setting. Another coupling method is developed in Buckdahn et al. [2010,
2012], exploiting the invariance of the Brownian motion under parabolic re-scaling. This
yields global Lipschitz and semi-concavity estimates in (t, x) for (6.5), the main novelty
being the Lipschitz-dependence in t. However, their work requires global boundedness
of coefficients and Lipschitz-regularity uniformly in ↵. Their setting can be extended to
include linear growth w.r.t. x [Buckdahn et al., 2010, Remark 2.1] but not w.r.t. ↵: this
does not cover the quadratic term in (6.5).

To the best of our knowledge, the closest results to our setting are the ones in Ru-
bio [2011], which provide classical well-posedness for polynomial-growth solutions of (6.6)
under polynomial-growth conditions on the coefficients. Their proof strategy combines
both stochastic representation formulae and classical domain truncation methods. More-
over, this work provides polynomial-growth solutions for (6.1) when the control set A is
compact.

At this point, our strategy for proving Theorem 6.1.1 is the following one. From Da Lio
and Ley [2006], comparison, hence uniqueness, already holds for viscosity solutions of (6.5).
We then prove a priori Lispchitz estimates for C1,2 solutions of (6.5). Existence follows
by truncating the non-linearity to make it enter the scope of Rubio [2011]. To obtain
the a priori bounds, we rely on the Ishii-Lions method Ishii [1984], exploiting the uniform
ellipticity in (6.5) by using a strictly concave test function. Since solutions are classical,
there is not need for the Jensen-Ishii lemma nor doubling of variables method. No new
method is developed, but several tricks from the viscosity solution theory must be combined
to obtain this estimate, at the edges of what the setting allows for. Up to our knowledge,
this delicate estimate has no equivalent using stochastic approaches: it would be interesting
to search for its analogous using coupling methods. Another challenging issue would be to
prove Hessian estimates for (6.5) under minor strengthening of our assumptions, similarly
to [Conforti, 2023, Proposition 3.2].

6.2 Assumptions and main result

In the following, the control set A is a possibly unbounded closed domain in Rd. The
notation |x| :=

p

x>x refers to the usual Euclidean norm on Rd. Similarly, we will use the
Euclidean norm |�| :=

p
Tr[��>] on matrices. We write the running cost f as

f(t, x,↵) = f1(t, x,↵) + f2(t, x).

In the following, we restrict ourselves to

b(t, x,↵) = b1(t, x,↵) + b2(t, x), (6.9)

the b1 part being uniformly bounded in x. Although we can handle some more general
equations, we emphasise that the main purpose of the following results is to prove Theorem
6.1.1 in the Introduction. We also handle the case of unbounded diffusion matrices �. Let
us now detail the needed regularity assumptions for our more general results.
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Assumption (A.1) (Regularity and growth). The coefficients b1, f1 (resp. b2, � and f2)
are continuous functions on [0, T ]⇥ Rd

⇥A (resp. [0, T ]⇥ Rd), which satisfy the following
conditions.

• Regularity and growth for b1 and b2: there exists Lb > 0 such that for every (t, x, y,↵)
in [0, T ]⇥ Rd

⇥ Rd
⇥A,

|b1(t, x,↵)� b1(t, y,↵)|  Lb(1+ |↵|)|x� y|, |b2(t, x)� b2(t, y)|  Lb|x� y|, (6.10)

|b1(t, x,↵)|  Lb[1 + |↵|], |b2(t, x)|  Lb[1 + |x|].

• Regularity and coercivity for f1: there exist Lf1 , cf1 , c
0

f1
, Cf1 , C

0

f2
> 0 such that for

every (t, x, y,↵) in [0, T ]⇥ Rd
⇥ Rd

⇥A,

|f1(t, x,↵)� f1(t, y,↵)|  Lf1 |x� y|, (6.11)

together with
cf1 |↵|

2
� c0

f1
 f1(t, x,↵)  Cf1 |↵|

2 + C 0
f1
. (6.12)

• Regularity and growth for f2: there exists Lf2 2 C([0, T ],R+) such that for every
(t, x, y) in [0, T ]⇥ Rd

⇥ Rd,

|f2(t, x)� f2(t, y)|  Lf2(t)|x� y|, |f2(t, x)|  Lf2(t)[1 + |x|]. (6.13)

• Regularity and growth for � and g: there exist L�, Lg > 0 such that for every (t, x, y)
in [0, T ]⇥ Rd

⇥ Rd,

|�(t, x)� �(t, y)|  L�|x� y|1/2, |g(x)� g(y)|  Lg|x� y|.

As explained in Section 6.1, Lipschitz assumptions on the coefficients are natural in a
probabilistic setting to guarantee well-posedness for (6.2). Assumption (A.1) is needed to
prove Lipschitz estimates on the solution u of (6.1).

Assumption (A.2) (Further assumptions on ��>).

• The matrix ��> is uniformly elliptic: there exists ⌘� > 0 such that for every (t, x) 2
[0, T ]⇥ Rd,

8⇠ 2 Rd, ⇠>��>(t, x) ⇠ � ⌘�|⇠|
2.

• The matrix ��> is uniformly continuous in x: there exists a uniform continuity
modulus m� : R+ ! R+ such that for every (t, x, y) in R+ ⇥ Rd

⇥ Rd,
����>(t, x)� ��>(t, y)

��  m�(|x� y|).

If (A.1) is satisfied, uniform continuity for ��> always holds if � is globally bounded
(as it is the case in Theorem 6.1.1). An unbounded � which satisfies (A.1)-(A.2) is e.g.
�(t, x) =

p
1 + |x|Id. Assumption (A.2) is needed to apply the Ishii-Lions method, and

we did not manage to alleviate it. In the presence of degeneracy, existence of classical
solutions to (6.1) can be lost.

Definition 6.2.1 (Local Hölder spaces). For integers n, n0 � 1 and �,�0 2 (0, 1], a func-
tion  in Cn,n

0
((0, T )⇥Rd) belongs to the local Hölder space Cn,n

0
,�,�

0

loc if for every compact
set F ⇢ (0, T )⇥ Rd, there exists KF > 0 such that  and all its derivatives satisfy

8(t, x), (s, y) 2 F, | (t, x)�  (s, y)|  KF [|t� s|� + |x� y|�
0
]. (6.14)
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For every differentiable  : [0, T ]⇥ Rd
! R, we define the set

A[ ](t, x) := argmin↵2A[b1(t, x,↵) ·D (t, x) + f1(t, x,↵)]. (6.15)

The following assumption is not required to prove Lipschitz estimates. This assumption
is copied from [Rubio, 2011, Assumption H3-(5)] to obtain existence of classical solutions
with Lipschitz non-linearity. It can be seen as a black-box to use results of Rubio [2011].

Assumption (A.3) (Hölder regularity). There exists � 2 (0, 1) such that the coefficients
b, � and f belong to C0,0,�,1

loc . The coefficients b1 and f1 are locally Lipschitz in ↵ in the
sense of (6.14). Moreover, for every �0 2 {�, 1} and every  in C0,1,�,�0

loc , A[ ] is a
singleton, defining a function of (t, x) which belongs to C0,0,�,�0

loc .
Denoting by B(0, R) the centred ball B of Rd with radius R, we eventually require that the
above property on A[ ] holds when replacing A by A \ B(0, R) for every R � RA, for a
large enough RA > 0.

In practice, regularity properties for A[ ] are easier to study when assuming convexity
properties in ↵ for the coefficients. Once again, we point out that (A.1)-(A.2)-(A.3) are
satisfied in the setting of Theorem 6.1.1.

Theorem 6.2.2 (Well-posedness and uniform gradient bound). Under (A.1)-(A.2)-(A.3),
Equation (6.1) has a unique linear growth solution u in C([0, T ]⇥Rd)\C1,2,�,�

loc . Moreover,
there exists a constant K > 0 such that

sup
(t,x)2(0,T )⇥Rd

|Du(t, x)|  K. (6.16)

The constant K only depends on the regularity constants introduced in (A.1)-(A.2)-(A.3),
and K only depends on f2 through kLf2kL1(0,T ).

The dependence on f2 is emphasised to compare Theorem 6.2.2 to [Daudin, 2023, The-
orem 1.1 and Lemma A.2], where a similar dependence is obtained under the additional
assumption (6.8). In [Daudin, 2023, Lemma A.2], this dependence is obtained using the
classical Bernstein method. However, this method does not work without (6.8) and The-
orem 6.2.2 extends the results of Daudin [2023] to our setting. In particular, following
Daudin [2023], it is possible to extend Theorem 6.2.2 to measure-valued source terms f2
that are useful when dealing with constrained stochastic control problems.

Under (A.1), for every (t, x,↵) in [0, T ]⇥Rd
⇥A, the quantity to minimise on the r.h.s.

of (6.15) is bounded from below by

F (|↵|) := �Lb[1 + |↵|]|D (t, x)|+ cf1 |↵|
2
� c0

f1
,

and bounded from above by

C(↵0) := Lb[1 + |↵0|]|D (t, x)|+ Cf1 |↵0|
2 + C 0

f1
,

for some (fixed) ↵0 2 A. As a consequence, minimisers for (6.15) belong to {↵ 2
A, F (|↵|)  C(↵0)}. Using standard computations for second-order polynomials, there
exists LA > 0 independent of  , such that for every (t, x) in [0, T ]⇥ Rd,

8↵ 2 A[ ](t, x), |↵|  LA[1 + |D (t, x)|]. (6.17)

This property will be crucial in the proofs of Lipschitz estimates. If Du is bounded, then
(6.17) guarantees using (6.4) that optimal controls for (6.2)-(6.3) are globally bounded. In
the following, all the estimates will only depend on A through LA.
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Remark 6.2.3 (About the coercivity assumption). The property (6.17) is the only reason
for the decomposition (6.9) and (6.12). The lower bound in (6.12) is a coercivity assumption
which is standard in stochastic control. The dependence on |↵| for the upper bound is not
really restrictive, since this term is only meant to bound the quantity to minimise in (6.15)
from above, independently of x. Any other assumption that guarantees (6.17) could replace
(6.9)-(6.12).

Remark 6.2.4 (Adding a linear term). It would be uneasy to handle a non-constant c =
c(t, x,↵), because we need cu to be globally-Lipschitz when u is only globally Lipschitz.
This is very restrictive, but it would be possible to adapt the result for e.g. c(t, x,↵) =

c0|↵|

(1+|↵|)(1+|x|) .

6.3 Proof of global Lipschitz estimates

As explained in Section 6.1, we are going to prove a priori global Lipschitz estimates on
linear growth C1,2 solutions of (6.1). We first start with a short lemma about the growth
of such solutions. inherited from Da Lio and Ley [2006].

Lemma 6.3.1. Let u in C([0, T ]⇥ Rd) \ C1,2((0, T )⇥ Rd) be a quadratic growth solution
of (6.1), in the sense that

9Cu > 0 : 8(t, x) 2 [0, T ]⇥ Rd, |u(t, x)|  Cu[1 + |x|2].

Then under (A.1), u has linear growth:

8(t, x) 2 [0, T ]⇥ Rd, |u(t, x)|  L[1 + |x|],

for a positive constant L which does not depend on u and only depends on (A, f2) through
(LA, kLf2kL1).

Proof. The function z 2 Rd
7! (1 + |z|2)1/2 is C2 and convex, and thus has non-negative

Hessian. From (A.1), (t, x) 7!
p
2(1 + |x|2)1/2[

R
t

0 Lf2(s)ds + Let] is a super-solution of
(6.1) for large enough L > 0. Similarly, (t, x) 7!

p
2(1 + |x|2)1/2[e��t �

R
t

0 Lf2(s)ds] is a
sub-solution of (6.1) for large enough � > 0. The result then follows from the comparison
principle proved in [Da Lio and Ley, 2006, Theorem 2.1].

Noticeably, the above result allows us to include quadratic growth solutions in the
uniqueness result of Theorem 6.2.2. We now prove Lipschitz estimates by showing that

sup
t,x,y

u(t, x)� u(t, y)�K|x� y|  0 (6.18)

for large enough K. The supremum is taken over t 2 [0, T ] and x, y 2 Rd. We reason
by contradiction and we aim at combining the PDE and the second-order optimality con-
ditions. The Ishii-Lions method provides a way to obtain a contradiction by making the
second-order terms explode at a maximum point (x, y). A key feature for this approach
is to prove that |x � y| ! 0 as K ! +1. Technical difficulties arise at this stage: there
is no guarantee that the supremum in (6.18) is finite and this supremum does not need
to be realised at some point. This latter difficulty is classically circumvented by adding
regularising terms to the supremum and progressively removing them. However, we need
to know a priori that the supremum is finite to ensure that |x� y|! 0 as K ! +1. To
do so, we reason as in [Crandall et al., 1992, Theorem 5.1] and we use the linear growth
to first prove a deteriorated estimate.
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Lemma 6.3.2 (Deteriorated estimate). Let u in C([0, T ] ⇥ Rd)
\C1,2((0, T )⇥Rd) be a solution of (6.1) and Lu > 0 such that for every (t, x) 2 [0, T ]⇥Rd,

|u(t, x)|  Lu[1 + |x|]. (6.19)

Under (A.1), there exist constants K̃, M̃ > 0 such that

sup
(t,x,y)2[0,T ]⇥Rd⇥Rd

u(t, x)� u(t, y)� K̃|x� y|  M̃, (6.20)

where (K̃, M̃) only depends on (u,A, f2) through (Lu, LA, kLf2kL1).

Proof. We proceed in several steps.

Step 1. Regularising parameters. For any � > 0, we notice that v : (t, x) 7! e�tu(t, x)
is C1,2. Moreover, v(T, x) = e�T g(x) and v satisfies

@tv(t, x)�(��c)v(t, x)+
1
2Tr[��

>(t, x)D2v(t, x)]+e�tf2(t, x)+ inf
↵2A

L↵[v](t, x) = 0, (6.21)

where for every ↵ in A, we define

L↵[v](t, x) := b(t, x,↵) ·Dv(t, x) + e�tf1(t, x,↵). (6.22)

It is equivalent to prove (6.20) for v instead of u. The growth condition (6.19) is satisfied
by v with e�TLu instead of Lu. As a consequence,

M := sup
t,x,y

v(t, x)� v(t, y)� "t�1

�


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[1 + |x� y|2]1/2 � "e��t[|x|2 + |y|2] (6.23)

is finite for every ", �, �, K̃ > 0, because of the quadratic term. To alleviate notations, we
do not emphasise the dependence on � for v, nor the dependence on (", �, �, K̃) for M . The
Lf2-term within the supremum will allow us to control the f2-term in (6.21) using only
kLf2kL1 . In the following, �, � and K̃ are fixed parameters whose values will be chosen
later on. On the contrary, " will be sent to 0, and we restrict ourselves to "  1. Using
the continuity and the linear growth of v, the quadratic term ensures that the supremum
(6.23) is realised for some (t, x, y) 2 [0, T ]⇥Rd

⇥Rd. Since M is a supremum, it is necessary
that t 6= 0. In the following, we restrict ourselves to K̃ � e�T kLf2kL1 .

Step 2. Bounds on the optimiser. If there existed a sequence ("k)k�1 of positive
parameters converging to 0 and such that the related sequence (tk)k�1 had a constant
sub-sequence equal to T , then for every t 2 [0, T ] and x, y 2 Rd, we would have (up to
re-labelling the sequence)

v(t, x)� v(t, y)� "kt
�1

�


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[1 + |x� y|2]1/2 � "ke

��t[|x|2 + |y|2]

 e�T g(x)� e�T g(y)� "kT
�1

�


K̃ � e�T

Z
T

0
Lf2(s)ds

�
[1 + |x� y|2]1/2 � "ke

��T [|x|2 + |y|2],
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and using the assumption on g in (A.1), the r.h.s. is negative as soon as K̃ � e�T (Lg +
kLf2kL1). Similarly, if there existed ("k)k�1 that converges to 0 while M  0 for every k,
then for every t 2 [0, T ] and x, y 2 Rd, we would have

v(t, x)� v(t, y)� "kt
�1
� "ke

��t[|x|2 + |y|2]�


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[1 + |x� y|2]1/2  0.

In both cases, taking the limit would yield

sup
t,x,y

v(t, x)� v(t, y)�


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[1 + |x� y|2]1/2  0.

In particular, this would imply the desired result.
We thus restrict ourselves to K̃ � e�T (Lg + kLf2kL1), and we can assume without loss

of generality that t 6= T and M > 0 for small enough ". From M > 0 and the linear growth
of v,

[K̃ � e�T kLf2kL1 ]|x� y|  v(t, x)� v(t, y), (6.24)

"e��t[|x|2 + |y|2]  v(t, x)� v(t, y)  2Lue
�T [2 + |x|+ |y|].

Up to changing Lu in max(1, Lu), the second equation implies the bound

"|x|+ "|y|  4e(�+�)TLu, (6.25)

which prevents "|x| and "|y| from exploding.

Step 3. Optimality conditions. Let us now define

p :=


K̃ � e�T

Z
t

0
Lf2(s)ds

�
Dz[1 + |z|2]1/2

���
z=x�y

.

We notice that |p|  K̃ � e�T kLf2kL1  K̃. Since t /2 {0, T}, the first-order optimality
conditions in (6.23) provide

8
>>>><

>>>>:

Dv(t, x) = p+ 2"e��tx,

Dv(t, y) = p� 2"e��ty,

@tv(t, x)� @tv(t, y) = �e�TLf2(t)[1 + |x� y|2]1/2

�"t�2 � "�e��t[|x|2 + |y|2].

(6.26)

We now write the second-order optimality conditions in (x, y) for (6.23):
 
D2v(t, x) 0

0 �D2v(t, y)

!



K̃ � e�T

Z
t

0
Lf2(s)ds

� 
A �A

�A A

!

+ 2"e��t
 
Id 0

0 Id

!
, (6.27)

where A := D2
z [1 + |z|2]1/2

��
z=x�y

, the inequality being understood in the sense of quadratic
forms. The matrix A is bounded by a constant C0 independent of x� y. We multiply the
l.h.s. of (6.27) by

⇣
�>(t, x) �>(t, y)

⌘
and the r.h.s. by the transpose of this matrix:

�>(t, x)D2v(t, x)�(t, x)� �>(t, y)D2v(t, y)�(t, y)  2"e��t[��>(t, x) + ��>(t, y)]

+


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[�(t, x)� �(t, y)]>A[�(t, x)� �(t, y)]. (6.28)
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We now take the trace and we use the assumption on � in (A.1). Since Lf2 � 0, ��> has
linear growth and "[|x|+ |x|] is bounded from (6.25), the symmetry property of the trace
yields

1
2Tr[��

>D2v(t, x)]� 1
2Tr[��

>D2v(t, y)]  C0L
2
�K̃|x� y] + C1, (6.29)

for constants C0, C1 which do not depend on (", K̃,A), and which only depends on (u, f2)
through (Lu, e�T kLf2kL1). Moreover, C0 does not depend on �.

Step 4. Gathering the PDE. We now write the PDE (6.21) at (t, x) and (t, y). Let ↵
be a minimiser in ↵ of L↵[v](t, x), defined in (6.22). Subtracting both PDEs, we get using
(6.29) that

(� � c)[v(t, x)� v(t, y)]  @tv(t, x)� @tv(t, y) + Lf2(t)e
�t[f2(t, x)� f2(t, y)]

+ L↵[v](t, x)� L↵[v](t, y) + C0L
2
�K̃|x� y] + C1.

We then replace @tv(t, x) � @tv(t, y) by its computed value in (6.26). Assumption (A.1)
ensures that the Lf2-term in (6.26) is greater than Lf2(t)e

�t[f2(t, x)� f2(t, y)], so that

(� � c)[v(t, x)� v(t, y)]  �"t�2 � "�e��t[|x|2 + |y|2]

+ L↵[v](t, x)� L↵[v](t, y) + C0L
2
�K̃|x� y] + C1. (6.30)

Since �"t�2  0, we can get rid of this term. Within (6.17), changing f2 in e�T f2 amounts
to replacing Lb by e��TLb. Since e��T  1, the bound |↵|  LA[1 + |Dv(t, y)|] still holds.
Moreover, from (6.25)-(6.26),

|Dv(t, y)|  K̃ + 8e(�+�)TLu and |Dv(t, x)�Dv(t, y)|  2"e��t[|x|+ |y|].

We then bound each term of L↵[v](t, x) � L↵[v](t, y). For the the b-term, we use the
Lipschitz assumption (6.10) on b2 and we simply bound b1:

b(t, x,↵) ·Dv(t, x)� b(t, y,↵) ·Dv(t, y)

 |Dv(t, y)||b(t, x,↵)� b(t, y,↵)|+ |b(t, x,↵)||Dv(t, x)�Dv(t, y)|

 Lb[K̃ + 8e(�+�)TLu][2 + 2|↵|+ |x� y|] + 2"e��tLb[2 + |x|+ |↵|][|x|+ |y|],

where "[|x|+ |y|] is bounded independently of " from (6.25). For the last term:

|e�tf1(t, x,↵)� e�tf1(t, y,↵)|  e�TLf2 |x� y|.

We recall that "  1. Gathering everything, (6.30) becomes

(� � c)[v(t, x)� v(t, y)]  �"�e��t[|x|2 + |y|2] + 2"�Lbe
��t

|x|[|x|+ |y|]

+ C2(K̃ + 1)(|↵|+ 1) + |x� y|[K̃(Lb + C0L
2
�) + Lf1e

�T + C3], (6.31)

for constants C2, C3 which do not depend on (", K̃,A), and which only depend on (u, f2)
through (Lu, kLf2kL1). Using the bound (6.17) on |↵|, we eventually get that

(�� c)[v(t, x)� v(t, y)]  "[��+2Lb]e
��t[|x|2 + |y|2] +C4 ++|x� y|[K̃(Lb +C0L

2
�)+C5],

for constants C4, C5 which do not depend on ", and which only depend on (u,A, f2) through
(Lu, LA, kLf2kL1).
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Step 5. Choice of parameters. Let us fix the values of parameters:

� := 2Lb, � := c+ Lb + C0L
2
� + 2,

K̃ := max(e�TLg + e�T kLf2kL1 , C5 + e�T kLf2kL1),

where we recall that C0 was not depending on anything. This yields

(� � c)[v(t, x)� v(t, y)]  [� � c� 1][K̃ � e�T kLf2kL1 ]|x� y|+ C4,

so that, using (6.24),
M  v(t, x)� v(t, y)  C4.

This uniform bound on M allows us to send " to 0 to get that

sup
t,x,y

v(t, x)� v(t, y)�


K̃ � e�T

Z
t

0
Lf2(s)ds

�
[1 + |x� y|2]1/2  C4.

We conclude the proof by choosing M̃ := K̃ + C4.

We are now ready to prove the Lipschitz estimate using the Ishii-Lions method. To
exploit the uniform ellipticity of ��>, we are going to use a strictly concave function  as
a test function.

Proposition 6.3.3 (Lipschitz estimate). Let u in C([0, T ]⇥ Rd) \ C1,2((0, T )⇥ Rd) be a
solution of (6.1) and Lu > 0 such that for every (t, x) 2 [0, T ]⇥ Rd,

|u(t, x)|  Lu[1 + |x|].

Under (A.1)-(A.2), there exists a positive constant K > 0 such that

8t 2 [0, T ], 8(x, y) 2 Rd
⇥ Rd, |u(t, x)� u(t, y)|  K|x� y|, (6.32)

where K only depends on (u,A, f2) through (Lu, LA, kLf2kL1).

Proof. As previously, we look for K > 0 such that

sup
t,x,y

u(t, x)� v(t, y)�K|x� y|  0.

We first introduce regularising parameters.

Step 1. Regularising parameters. As in the proof of Lemma 6.3.2, for any � > 0, we
introduce the C1,2 solution v : (t, x) 7! e�tu(t, x) of (6.21). It is equivalent to prove (6.3)
for v instead of u, and v has linear growth with constant e�TLu. To make use of uniform
ellipticity, we consider a smooth function ⇢ : R+ ! [0, 1] such that

(
⇢(z) = 1

3z
3/2 for z 2 [0, 1],

⇢(z) = 0 for z � 2,

and we define the non-negative function  (z) := z � ⇢(z). As previously, we introduce
regularising parameters ", �, " > 0, before considering the supremum

M := sup
t,x,y

v(t, x)� v(t, y)� "t�1 � "e��t[|x|2 + |y|2]

�


K � e�T

Z
t

0
Lf2(s)ds

�
 (|x� y|). (6.33)
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As previously, �, � and K are fixed parameters whose values will be chosen later on. On
the contrary, " will be sent to 0, and we restrict ourselves to "  1. The Lf2-term within
the supremum will allow us to control the f2-term in (6.21) using only kLf2kL1 . In the
following, we restrict ourselves to K � e�T kLf2kL1 .

The quadratic term ensures that the supremum (6.33) is realised for some (t, x, y) 2
[0, T ] ⇥ Rd

⇥ Rd. Moreover, t 6= 0 because the supremum is finite. If there existed a
sequence ("k)k�1 of positive parameters which converges to 0 such that the related sequence
(tk)k�1 had a constant sub-sequence equal to T , we would get the desired result as soon as
K � e�TLg + e�T kLf2kL1 , reasoning as in Step 2. in the proof of Lemma 6.3.2. Similarly,
the result would be direct if there existed ("k)k�1 which converges to 0 while M  0 for
every k.

Step 2. Bounds on the optimiser. We thus restrict ourselves to K � e�TLg +
e�T kLf2kL1 and we reason by contradiction, assuming that t 6= T and M > 0 for "
small enough: we are going to show that this cannot happen if K is larger than a certain
threshold which does not depend on ". From Lemma 6.3.2, we deduce that there exist
large enough constant K̃, M̃ > 0 such that

sup
t,x,y

v(t, x)� v(t, y)� K̃|x� y|  M̃,

where (K̃, M̃) only depends on (u,A, f2) through (Lu, LA, kLf2kL1). From M > 0, we get
that

K � e�T

Z
t

0
Lf2(s)ds� K̃

�
[|x� y|� ⇢(|x� y|)]

 v(t, x)� v(t, y)� K̃[|x� y|� ⇢(|x� y|)].

For every z � 0, we have 1
2z � ⇢(z) � 0 and ⇢(z)  1, hence

1
2


K � e�T

Z
t

0
Lf2(s)ds� K̃

�
|x� y|  K̃ + sup

t,x,y

v(t, x)� v(t, y)� K̃|x� y|  K̃ + M̃.

Up to increasing the value of K̃, we can thus assume that for K � K̃,

|x� y|  C0K
�1, (6.34)

for some C0 > 0 which only depends on (e�T , M̃ , K̃, kLf2kL1). Up to increasing K̃ again,
we can then assume that |x� y|  1 for K � K̃. Using the linear growth of v and M > 0,

"e��t[|x|2 + |y|2]  v(t, x)� v(t, y)  Lue
�T [2 + |x|+ |y|].

Up to changing Lu in max(1, Lu), this implies that

"|x|+ "|y|  4e(�+�)TLu, (6.35)

preventing "|x| and "|y| from exploding.

Step 3. Optimality conditions. To ease computations, we introduce the function
� : z 2 Rd

7! |z|. From M > 0, necessarily x 6= y. Since t /2 {0, T}, the first-order
optimality conditions in (6.33) provide

8
>>>><

>>>>:

Dv(t, x) =
⇥
K � e�T

R
t

0 Lf2(s)ds
⇤
 0(|x� y|)D�(x� y) + 2"e��tx,

Dv(t, y) =
⇥
K � e�T

R
t

0 Lf2(s)ds
⇤
 0(|x� y|)D�(x� y)� 2"e��ty,

@tv(t, x)� @tv(t, y)

= �e�TLf2(t)[1 + |x� y|2]1/2 � "t�2 � "�e��t[|x|2 + |y|2].

(6.36)
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Since |x � y|  1, we notice that 0   0(|x � y|)  1. We then write the second-order
optimality conditions in (x, y) for (6.33):

 
D2v(t, x) 0

0 �D2v(t, y)

!



K � e�T

Z
t

0
Lf2(s)ds

� 
A �A

�A A

!

+ 2"e��t
 
Id 0

0 Id

!
, (6.37)

where
A :=  00(|x� y|)D�(x� y)⌦D�(x� y) +  0(|x� y|)D2�(x� y).

For every (p, q) 2 Rd
⇥Rd, applying (6.37) to the vector

⇣
p q

⌘
and using Lf2 � 0, we get

that

p>D2v(t, x)p� q>D2v(t, y)q




K �

Z
t

0
Lf2(s)ds

�
(p� q)>A(p� q) + 2"e��t[|p|2 + |q|2]. (6.38)

Since |D�(z)|2 = 1 for every z, we get that D2�(z)D�(z) = 0. Using (6.38) with p =
�q = D�(x� y) thus yields

D�(x� y)>[D2v(t, x)�D2v(t, y)]D�(x� y)

 4


K � e�T

Z
t

0
Lf2(s)ds

�
 00(|x� y|) + 4"e��t.

Similarly, taking p = q in (6.38) gives that

8p 2 Rd, p>[D2v(t, x)�D2v(t, y)]p  4"e��t|p|2. (6.39)

Completing D�(x � y) in an orthornomal basis (D�(x � y), p2, . . . , pd) of Rd, this proves
that

Tr[D2v(t, x)�D2v(t, y)] = D�(x� y)>[D2v(t, x)�D2v(t, y)]D�(x� y)

+
dX

i=2

p>i [D
2v(t, x)�D2v(t, y)]pi

 4


K � e�T

Z
t

0
Lf2(s)ds

�
 00(|x� y|) + 4"de��t.

(6.40)

As K ! +1, |x � y| ! 0 from (6.34), and our specific choice of  makes the r.h.s. of
(6.40) go to �1: this is the main trick of the Ishii-Lions method.

Step 4. Control of the second-order terms. Let us introduce the matrix a := ��>.
From (A.2), (t, x) 7! a(t, x) is uniformly continuous with modulus m�. We decompose:

Tr[a(t, x)D2v(t, x)� a(t, y)D2v(t, y)]

= 1
2Tr
�
a(t, x)[D2v(t, x)�D2v(t, y)]

 
+ 1

2Tr
�
a(t, y)[D2v(t, x)�D2v(t, y)]

 

+ 1
2Tr
�
[a(t, x)� a(t, y)][D2v(t, x) +D2v(t, y)]

 
. (6.41)
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We now apply Lemma 6.A.1 in Appendix with A = a(t, x), B = D2v(t, x) � D2v(t, y),
m = ⌘�/2 and M = 4"e��t. The inequality A � mId stems from (A.2), while B  M Id
results from (6.39). This gives that

Tr
�
a(t, x)[D2v(t, x)�D2v(t, y)]

 


⌘�
2 Tr[D2v(t, x)�D2v(t, y)] + 4"e��tTr[a(t, x)],

and Tr[a(t, x)] has linear growth from (A.1). Using (6.35), 4"e��tTr[a(t, x)] is bounded
by a constant C1 which only depends on (L�, T, �, Lu). The same bound works for
Tr{a(t, y)[D2v(t, x)�D2v(t, y)]}. We then use that A 7! sup|⇠|=1 ⇠

>A⇠ is a sub-multiplicative
norm on symmetric matrices and that all norms are equivalent in finite dimension. By (A.1)
and the continuity of the trace, there exists a constant C2 > 0 which only depends on the
dimension d such that

Tr
�
[a(t, x)� a(t, y)][D2v(t, x) +D2v(t, y)]

 

 C2m�(|x� y|) sup
|⇠|=1

⇠>[D2v(t, x) +D2v(t, y)]⇠. (6.42)

Using (6.37), we now apply Lemma 6.A.2 with A = A, X = D2v(t, x), Y = �D2v(t, x),
m = 2"e��t and C = K�e�T

R
t

0 Lf2(s)ds. As a consequence, the r.h.s. of (6.42) is bounded
by

p
2C2m�(|x� y|)

⇢
4"e��t + 2


K � e�T

Z
t

0
Lf2(s)ds

�
+ sup

|⇠|=1
⇠>[D2v(t, x)�D2v(t, y)]⇠

�
.

The supremum that appears within the above quantity equals the spectral radius of the
symmetric matrix D2u(t, x)�D2u(t, y). From (6.39), any eigenvalue of D2v(t, x)�D2v(t, y)
is bounded from above by 4"e��t. As a consequence, any eigenvalue of D2v(t, x)�D2v(t, y)
is bounded from below by

Tr[D2v(t, x)�D2v(t, y)]� 4(d� 1)"e��t,

so that

sup
|⇠|=1

⇠>[D2v(t, x)�D2v(t, y)]⇠  |Tr[D2v(t, x)�D2v(t, y)]|+ 4d"e��t.

At the end of the day, gathering everything from (6.41) yields

Tr[a(t, x)D2v(t, x)� a(t, y)D2v(t, y)]  ⌘�
2 Tr[D2v(t, x)�D2v(t, y)] + C1

+
p
2C2m�(|x� y|)

⇥
2"e��t +K + 2d"e��t + 1

2 |Tr[D
2v(t, x)�D2v(t, y)]|

⇤
. (6.43)

Using (6.40), we see that the r.h.s. of (6.43) goes to �1 as K ! +1.

Step 5. Gathering the PDE. We now write the PDE (6.21) at (t, x) and (t, y). Let ↵
be a minimiser in ↵ of L↵[v](t, x), defined in (6.22). Subtracting both PDEs, we get that

(� � c)[v(t, x)� v(t, y)] = @tv(t, x)� @tv(t, y) + Lf2(t)e
�t[f2(t, x)� f2(t, y)]

+ L↵[v](t, x)� L↵[v](t, y) +
1
2Tr[a(t, x)D

2v(t, x)� a(t, y)D2v(t, y)].

Using (6.35)-(6.36), we now reason as in Step 4. in the proof of Lemma 6.3.2: we replace
@tv(t, x)�@tv(t, y) by its computed value in (6.36), we use it to get rid of Lf2(t)e

�t[f2(t, x)�

257



Chapter 6. Classical unbounded solutions for a HJB equation

f2(t, y)], we get rid of the �"t�2 term, and then we control the L↵[v](t, x) � L↵[v](t, y)
term. For the the b-term, we now use the Lipschitz assumption (6.10) on b1 and b2:

b(t, x,↵) ·Dv(t, x)� b(t, y,↵) ·Dv(t, y)

 |Dv(t, y)||b(t, x,↵)� b(t, y,↵)|+ |b(t, x,↵)||Dv(t, x)�Dv(t, y)|

 Lb[K̃ + 8e(�+�)TLu](1 + |↵|)|x� y|+ 2"e��tLb[1 + |x|+ |↵|][|x|+ |y|],

where from (6.35), "[|x|+ |y|] is bounded independently of ". Similarly,

|e�tf1(t, x,↵)� f1(t, y,↵)|  e�TLf2 |x� y|.

As in Step 4. in the proof of Lemma 6.3.2, we obtain using (6.17) that |↵|  LA[1 +
|Dv(t, y)|]. Gathering everything, the analogous of (6.31) now reads

(� � c)[v(t, x)� v(t, y)]  "[2Lb � �]�e
��t[|x|2 + |y|2]

+ 1
2Tr[a(t, x)D

2v(t, x)� a(t, y)D2v(t, y)]

+ Lb[K̃ + 8e(�+�)TLu](1 +K)|x� y|+ C3(1 +K + |x� y|),

for a constant C3 which does not depend on (",K), and which only depends on (u,A, f2)
through (Lu, LA, kLf2kL1).

Step 6. Contradiction. We now fix the values � := c and � := 2Lb. Using (6.34) and
imposing that K � 1, we get that

0  1
2Tr[a(t, x)D

2v(t, x)� a(t, y)D2v(t, y)]

+ 2C0Lb[K + 8e(�+�)TLu] + 2C3(1 +K + C0). (6.44)

Similarly, (6.43) becomes

Tr[a(t, x)D2v(t, x)� a(t, y)D2v(t, y)]  ⌘�
2 Tr[D2v(t, x)�D2v(t, y)] + C1

+
p
2C2m�(|x� y|)

⇥
2 +K + 2d+ 1

2 |Tr[D
2v(t, x)�D2v(t, y)]|

⇤
, (6.45)

and m�(|x� y|)! 0 as K ! +1. From (6.34)-(6.40),

Tr[D2v(t, x)�D2v(t, y)]  �3
p
C0K

3/2 + 4d,

proving that Tr[D2v(t, x)�D2v(t, y)] goes to �1 as K ! +1 uniformly in ". From (6.45),
Tr[a(t, x)D2v(t, x)� a(t, y)D2v(t, y)] goes to �1 at least as fast as �K3/2 as K ! +1,
uniformly in ". From this, there exists a finite value K 0 � max(1, K̃, e�T (Lg + kLf2kL1))
independent of " such that the r.h.s. of (6.44) is always negative for K � K 0. This gives
the desired contradiction. We moreover notice that K 0 only depends on (u,A, f2) through
(Lu, LA, kLf2kL1).

Proof of Theorem 6.2.2. From Lemma 6.3.1, there exists a growth constant L which is
valid for any C1,2 linear growth solution of (6.1), and L only depends on A through LA.
Let K be the value given by Proposition 6.3.3 for Lu = L: K only depends on A through
LA. K can thus be chosen as an increasing function of LA. Up to choosing a larger LA

in (6.17), we can assume that LA[1 +K] � RA, where RA is the constant given by (A.3).
Let us define the compact sub-set of A:

A
0 := A \B(0, LA[1 + L+K]).
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6.A. Linear algebra results

We now introduce a truncated version of (6.1): we truncate the non-linearity by using
the compact control set A

0 instead of A. From [Rubio, 2011, Theorem 3.1], the resulting
truncated equation has a unique linear growth solution ũ in C([0, T ]⇥Rd)\C1,2,�,�

loc . From
the definition of A0, (6.17) is still valid when replacing A by A

0, with the same constant
LA. Since the Lipschitz estimate of Proposition 6.3.3 only depends on A through LA, ũ
is K-Lipschitz continuous with the same constant K. This proves that ũ does not feel the
truncation, hence ũ is a C1,2 solution of (6.1).

Reciprocally, any linear growth solution in C([0, T ]⇥Rd)\C1,2,�,�
loc of (6.1) is K-Lipschitz

continuous from Lemma 6.3.1 and Proposition 6.3.3, hence it is a solution of the truncated
equation. Since uniqueness holds for the truncated equation, this concludes the proof.

Remark 6.3.4 (Possible improvements of Lipschitz hypotheses). The Lipschitz assump-
tions on the coefficients are two-fold. For instance, (6.11) provides a control of |f1(t, x,↵)�
f1(t, y,↵)| when |x� y| is large, together with local regularity when |x� y| is small. Both
these properties are needed in the proofs, but not simultaneously. The proof of Lemma 6.3.2
only uses this control when |x � y| is large, whereas the proof of Proposition 6.3.3 uses it
when |x � y| is small. This suggests a weakening of the assumption by separating these
properties: we could require that r0 > 0 exists such that

(
|f1(t, x,↵)� f1(t, y,↵)|  1 + Lf1 |x� y|+ h(|↵|), if |x� y| > r0,

|f1(t, x,↵)� f1(t, y,↵)|  Lf1(1 + |↵|2)|x� y|µ, if |x� y|  r0,

for any non-negative h : A ! R and µ 2 (0, 1]. Using this assumption instead of (6.11),
the proof of Lemma 6.3.2 would still work without any change. The proof of Proposition
6.3.3 should then be modified by considering ⇢(z) = z1+⌫ with ⌫ < µ, instead of ⇢(z) = z3/2.
We could split the condition (6.10) similarly. For the sake of clarity, we refrained ourselves
from adding these subtleties in (A.1).

Appendix

6.A Linear algebra results

This appendix gathers two linear algebra results that were needed for Step 4. in the
proof of Proposition 6.3.3. These lemmas correspond to intermediary results which can be
respectively found within the proofs of [Ishii and Lions, 1990, Proposition III.1] and [Ishii
and Lions, 1990, Lemma III.1]. We provide the proofs for the sake of completeness.
Lemma 6.A.1. Let A and B be two symmetric matrices in Rd with A � mId and B M Id
for real numbers m,M � 0. We have that

Tr[AB]  mTr[B] +M [Tr[A]� dm].

Proof. We first handle the case M = 0. Let us write A = P>DP for some orthogonal
matrix P and D := diag(d1, . . . , dd). The di are the eigenvalues of A and all satisfy di � m.
Moreover, using the symmetry property of the trace,

Tr[AB] = Tr[D(PBP>)] =
dX

i=1

die
>

i (PBP>)ei,

where (e1, . . . , ed) is an orthonormal basis of Rd. From the non-positiveness assumption
M  0 on B, we have e>

i
(PBP>)ei  0, so that

Tr[AB]  m
dX

i=1

e>i (PBP>)ei = mTr[PBP>] = mTr[B].
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In the general case B does not satisfy the non-positiveness condition, but B �M Id does.
The above result applied to B �M Id then yields

Tr[AB]�MTr[A]  mTr[B]�mMTr[Id] = mTr[B]� dmM,

concluding the proof.

Lemma 6.A.2. Let A, X and Y be symmetric matrices in Rd such that
 
X 0

0 Y

!
 C

 
A �A

�A A

!
+m

 
Id 0

0 Id

!
, (6.46)

for real numbers C,m > 0. Then

sup
|⇠|=1

⇠>(X � Y )⇠ 
p
2


2m+ 2C + sup

|⇠|=1
⇠>(X + Y )⇠

�
.

Proof. The inequality (6.46) is unchanged if we multiply each side on the left and on the

right by the symmetric matrix

 
Id Id

Id �Id

!
. This yields

 
X + Y X � Y

X � Y X + Y

!
 4C

 
0 0

0 A

!
+ 2m

 
Id 0

0 Id

!
.

For any (t, ⇠) in R⇥ Rd, we apply this to the vector
⇣
t⇠ ⇠

⌘
, so that

t2⇠>(X + Y )⇠ + 2t⇠>(X � Y )⇠ + ⇠>(X + Y )⇠  4C⇠>A⇠ + 2m(t2 + 1)|⇠|2.

Since this holds for every t in R, we get that

[⇠>(X � Y )⇠]2  [⇠>(X + Y )⇠ � 2m|⇠|2][⇠>(X + Y )⇠ � 4C⇠>A⇠ � 2m|⇠|2]


1
2 [⇠
>(X + Y )⇠ � 2m|⇠|2]2 + 1

2 [⇠
>(X + Y )⇠ � 4C⇠>A⇠ � 2m|⇠|2]2.

To conclude, we apply this to any normalised vector ⇠ and we take the square-root of each
side.
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