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MOTS CLÉS
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RÉSUMÉ

La mécanique statistique a apporté des contributions significatives à l'étude des systèmes neuronaux
biologiques  en  les  modélisant  comme  des  réseaux  récurrents  d'unités  interconnectées  avec  des
interactions ajustables. Plusieurs algorithmes ont été proposés pour optimiser les connexions neuronales
afin  de  permettre  des  tâches  telles  que  le  stockage  d'informations  (i.e.  la  mémoire  associative)  et
l'apprentissage de distributions de probabilités à partir de données (i.e. la modélisation générative). Parmi
ces méthodes, l'algorithme du Unlearning, aligné sur les théories émergentes de la plasticité synaptique, a
été introduit par John Hopfield et ses collaborateurs. L'objectif principal de cette thèse est de comprendre
l'efficacité de l’Unlearning dans les modèles de mémoire associative et les modèles génératifs. 

Le  premier  chapitre  sert  d'introduction  à  trois  types  fondamentaux  de  modélisation  :  la  mémoire
associative, la classification et la modélisation générative (en particulier l'apprentissage par Boltzmann
Machine). Il analyse également les différences substantielles entre la mémoire et la classification dans les
réseaux neuronaux, ainsi que certaines similitudes formelles. 

Le deuxième chapitre examine un algorithme simple de formation par injection de bruit pour les réseaux
neuronaux récurrents, connu sous le nom de Training-with-Noise, dans le contexte du bruit structuré.
Alors  que  l'injection  d'une  quantité  maximale  de  bruit  aléatoire  pourrait  être  préjudiciable  dans  le
scénario  standard,  l'incorporation  de  dépendances  internes  entre  les  caractéristiques  des  données
d'apprentissage bruyantes améliore considérablement le pouvoir d'associativité du réseau. Nous dérivons
une recette analytique pour optimiser la structure du bruit et la validons numériquement. En outre, nous
élucidons l'émergence de la règle d’Unlearning de l'algorithme de Training-with-Noise en présence de
bruit structuré, en examinant divers types de données d'apprentissage, y compris des chiffres manuscrits
et des données corrélés dans l'espace.

Le  troisième  chapitre  présente  une  nouvelle  technique  de  régularisation  pour  l'apprentissage  par
Boltzmann  Machine.  Nous  explorons  une  limite  spécifique  de  cette  régularisation,  qui  conduit  à  la
récupération de l’Unlearning à moyenne thermique. En outre, nous démontrons l'équivalence de la règle
d’Unlearning  avec  une  Boltzmann  Machine  à  deux  étapes.  Enfin,  nous  établissons  une  équivalence
formelle  entre  les  Boltzmann Machines  (i.e.  les  modèles  génératifs),  les  Support  Vector  Machines  et
l'algorithme d’Unlearning (i.e. les modèles à mémoire associative).

Dans la discussion qui suit, nous analysons les résultats et donnons un aperçu des orientations potentielles
de la recherche future.
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ABSTRACT

Statistical  mechanics  has  made significant  contributions  to  the  study  of  biological  neural  systems by
modeling  them  as  recurrent  networks  of  interconnected  units  with  adjustable  interactions.  Several
algorithms have been proposed to optimize the neural  connections to  enable  network tasks  such as
information  storage  (i.e.  associative  memory)  and  learning  probability  distributions  from  data  (i.e.
generative modeling). Among these methods, the Unlearning algorithm, aligned with emerging theories of
synaptic plasticity, was introduced by John Hopfield and collaborators. The primary objective of this thesis
is  to  understand  the  effectiveness  of  Unlearning  in  both  associative  memory  models  and  generative
models. 
Chapter  one serves as  an introduction to three fundamental  types of  modeling:  associative memory,
classification,  and  generative  modeling  (specifically  Boltzmann  Machine  learning).  It  also  analyses
substantial differences between memory retrieval and classification in neural networks, as well as some
formal similarities. 
The second chapter delves into an examination of a simple noise-injection training algorithm for recurrent
neural networks, known as Training-with-noise, within the context of structured noise. While injecting a
maximal amount of random noise could be detrimental in the standard scenario, incorporating internal
dependencies  among  the  features  of  the  noisy  training  data  significantly  enhances  the  network's
associativity  power.  We derive  an  analytical  recipe  for  optimizing  the  noise  structure  and validate  it
numerically.  Furthermore, we elucidate the emergence of the Unlearning rule from the Training-with-
noise  algorithm in  the  presence  of  structured  noise,  investigating  various  types  of  training  datasets,
including handwritten digits and spatially correlated patterns.

Chapter three introduces a novel regularization technique for Boltzmann Machine learning. We explore a
specific  limit  of  this  regularization,  which  leads  to  the  recovery  of  a  thermally  averaged  Unlearning.
Additionally, we demonstrate the equivalence of the Unlearning rule with a two-step Boltzmann Machine.
Ultimately,  we establish a formal equivalence between Boltzmann Machines (i.e.,  generative models),
Support Vector Machines, and the Unlearning algorithm (i.e., associative memory models).

In the subsequent discussion, we will analyze the results and offer insights into potential future research
directions.
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Chapter 1

Introduction: modeling
intelligence with Recurrent
Neural Networks

Understanding the functioning of the human brain has been a central topic of
investigation since a long time [1, 2, 3]. Among the main themes that have attracted
the attention of scientists there are: the capability of the brain to store information
and retrieve it from external stimulation (i.e. associative memory), its ability at
separating stimuli into different categories (i.e. classification) and understanding
the underlying structure that is necessary to generate new coherent information (i.e.
generation). All these tasks belong to the broader concept of intelligence, which is
responsible for adaptation and survival in animals [4].
Early studies on the physiology of the brain [1, 2, 3] pointed out its particular
composition: an ensemble of neuronal cells linked by wires (i.e. the synaptic appara-
tus) reciprocally exchanging electric signals at deferred times (i.e. the postsynaptic
potentials). The underlying network structure is generally sparse, asymmetric in the
connections, and it can contain closed loops. We call this type of system recurrent
neural network [3]. Given the experimental observations and the study of the perfor-
mance of the brain, one might be encouraged to consider recurrent neural networks
as a successful starting point to describe intelligence.
No wonder that mathematicians, simultaneously with the development of neuro-
science, discovered that some optimization problems could be mapped into graphical
representations sharing important similarities with real neural networks. In this
case stimuli experienced by the system were replaced by data-points belonging
to a data-set. The most emblematic example is Rosenblatt’s perceptron and its
generalizations [5, 6]. The perceptron problem consists in separating clusters of
data-points into different classes depending on reciprocal similarities: this operation
is called classification and the perceptron is a classifier. One of the contact points
with biology is the way artificial and real neurons work: the neuronal spike, i.e. the
abrupt emission of a postsynaptic potential by a neuron, is triggered when the sum
of all signals received by its neighbours overcomes a threshold in tension; at the same
way, the perceptron assigns a class to an input vector depending on whether the
full incoming field to an output unit overcomes a fixed value or not. Another aspect



2 1. Introduction: modeling intelligence with Recurrent Neural Networks

involves what neuroscientists refer to as synaptic plasticity of the network [1, 2]:
synapses tend to modify their conductivity in time, in response of both external and
internal endogenous stimuli. Such modifications are associated to the act of learning
to accomplish a particular task [7].
At this point, it came natural to statistical physicists, who are specialists in applying
probability and statistics for the study of interacting systems, to start contributing
to the theory of neural networks. At first, it was a simplification effort [8]: real
systems of neurons were reduced to simple recurrent networks, where a number of
binary variables, representing the two possible active/silent states of the neuron, are
mutually coupled by pairwise interactions. These models strongly resembled what
people called spin glasses [9]: the competition among the different strength of the
interactions implies a dynamic multistability of the neural activity and a complex va-
riety of possible equilibrium configurations. Most likely, a boost in the study of these
very ancestral types of complex systems [10], taking place across the 70s, encouraged
John Hopfield, with his pioneering work about Hebbian networks [11] published in
1982, to set a bridge between the statistical mechanics of disordered systems and
neuro-physiology. According to these models, the more correlated neurons are, while
reacting to external stimuli, the stronger is the synapse that connects them. Three
years later, Daniel Amit, Hanoch Gutfreund and Haim Sompolinsky applied the
physics of spin glasses to compute the thermodynamics and the critical capacity of
a plausible memory model [12]. Further progresses on this line were made until the
most recent years, giving an important boost in the field of theoretical neuroscience
and the study of associative memory.
In parallel with John Hopfield, Geoffrey Hinton and Terrence Sejnowski (a former
Hopfield’s doctoral student) proposed another spin glass-like model that encoded
the statistics of the stimuli in its parameters (i.e. the interactions and the external
fields)[13, 14]. From sampling the typical configurations of the model one could
create a new data-set being perfectly indistinguishable from the learnt one. This
system, known as Boltzmann-Machine, was the first example of neural network-based
generative model, and also a notable case of physics connecting the biological learning
with the artificial one.
Nevertheless, the early most important success in connecting artificial with biological
networks, was made by Elizabeth Gardner, in her late works from 1988-1989 [15, 16],
where she mapped the Rosemblatt’s perceptron into a recurrent neural network,
computed its critical capacity and advanced a training algorithm for the synaptic
strength. The type of computation that she proposed is based on optimizing the
interactions rather than fixing them a-priori. Once again, this optimization mecha-
nism reflects the synaptic plasticity of a natural neural system.

This thesis is centered on the Unlearning algorithm, a training procedure for re-
current neural networks introduced by John Hopfield and collaborators in 1983 to
enhance the associativity of a memory model [17]. The original idea, from which
the algorithm is generated, consists in pruning the system from spurious states, i.e.
local attractors of the dynamics responsible for disturbing memory retrieval [3, 18].
This removal of the spurious attractors is performed by iterating an anti-Hebbian
learning rule over the synapses: the more neurons are correlated across spurious
states, the the more their connection will be weakened by the algorithm. Since
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the moment that this technique was proposed, interesting similarities between the
Unlearning procedure and neuroscience emerged, in particular concerning the way
sleep is supposed to affect the functionality of the brain [19]. Even Hinton himself
noticed that a mechanism similar to the Unlearning rule contributed to the training
of a Boltzmann Machine [20].
The goal of this work is thus threefold:

1. Showing that the Unlearning rule naturally emerges from a perceptron al-
gorithm regularized through noise injection, and that it reaches an optimal
associative memory performance. Unlearning appears to be a valuable unsu-
pervised alternative to the training of a maximally stable perceptron, i.e. a
Support Vector Machine. These results are published into [21, 22].

2. Proposing a new type of regularization for Boltzmann Machines, that can be
generalized to the Unlearning rule. We also investigate the inferential power of
the standard Unlearning procedure, and the importance of the initialization of
the parameters in a Boltzmann Machine. These results are contained into [23].

3. Using the Unlearning algorithm as a connection between two learning frame-
works of artificial intelligence: associative memory (with its formal mapping
to classification problems) and generative modeling, specifically Boltzmann
Machine learning. In particular, we want to show a formal equivalence be-
tween three learning algorithms: Unlearning, Support Vector Machines, and
Boltzmann Machines. These results are contained into [24].

This thesis is placed at the interface between statistical mechanics, theoretical
neuroscience and artificial intelligence, and it provides some useful insights for the
unification of these three fields of knowledge.

The manuscript is structured as follows:

• Chapter 1: an introduction to various learning algorithms associated to different
tasks performed by neural networks. A distinction is made between three
fundamental types of modeling: associative memory, classification and the
generative one.

• Chapter 2: a simple noise-injection training algorithm for recurrent neural
networks, named Training-with-noise, is studied in the case of structured noise.
While injecting a maximal amount of random noise would be deleterious in
the standard scenario, including internal dependencies among the features
of the noisy training data significantly improves the associativity power of
the network. An analytical recipe for the best noise structure is derived and
tested numerically. We display the emergence of the Unlearning rule from the
Training-with-noise algorithm in presence of structured noise and study the
cases of different types of training data-sets.

• Chapter 3: a new regularization for Boltzmann Machine learning is proposed.
A particular limit of the regularization, that recovers a thermally averaged
Hebbian Unlearning, is studied and the equivalence of the Unlearning rule with
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a two-steps Boltzmann Machine is displayed. Eventually, we show a formal
equivalence between Boltzmann Machines (i.e. generative models), Support
Vector Machines and the Hebbian Unlearning algorithm (i.e. associative
memory models).

• Chapter 4: we discuss the results and give some future perspectives of the
research.

Each chapter starts with an introduction explaining the research goals and ends
with a summary listing the main points discussed in the text. Each section of the
thesis ends with a checkpoint paragraph briefly summarizing the main results of the
analysis.

For what concerns this chapter, its structure will be the following. The idea
of associative memory modeling is introduced in section 1.1 together with the
description of a recurrent neural network prototype that will be utilized in our
analysis. The main observables representing the quality of the memory retrieval are
also presented in detail. Three learning rules regarding associative memory are then
described: Hebbian Learning, Hebbian Unlearning (HU), Linear perceptrons and
Support Vector Machines (SVMs).
Furthermore, section 1.2 defines what is meant for classification in statistical learning
and discusses the differences and analogies between classifiers and associative memory
models.
Eventually, section 1.3 treats the generative modeling approach and gives an example
of a celebrated energy-based model, namely the Boltzmann Machine (BM).
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1.1 Associative Memory Task
With the term associative memory we define the capability of the neural system of
recalling a given concept (i.e. a memory) when a corrupted version of it is displayed
as an input [3, 25]. Associative memory is extensively studied by neuroscience, in
the terms of the capability of precise regions of the brain (e.g. prefrontal cortex,
hippocampus) to perform long term and short term storage of information [2, 26].
We will limit ourselves to the main class of simple models implemented by physicists
i.e. a network of N Ising variables Si mutually interacting through the couplings
Jij with Jii = 0. Fig. 1.1 depicts an example of fully connected recurrent neural
network with symmetric couplings, which is similar to the ones employed in our
further analysis. The memory retrieval operation implies an evolution of the network

Figure 1.1. Graphical representation of a simple fully connected recurrent neural network
of N = 10 neurons with symmetric couplings Jij = Jji. Autapses Jii are absent.

in time, i.e. a rule for the neural dynamics. An emblematic rule is

Si(t + 1) = sign




NX

j=1
JijSj(t)


 , i = 1, .., N (1.1)

which can be run either in parallel (i.e. synchronously) or in series (i.e. asyn-
chronously in a random order) over the i indices [27]. We will mainly concentrate
on asynchronous dynamics, in which case equation (1.1) can only converge to fixed
points, when they exist [3]. This kind of network can be used as an associative
memory device, namely for reconstructing a number p of configurations {ξ⃗µ}p

µ=1
called memories, when the dynamics is initialized on configurations similar enough
to them. Memories have binary entries ξµ

i = ±1, µ ∈ [1, ..., p]. In this work, we will
concentrate on Rademecher random memories, generated with a probability

P (ξµ
i = +1) = P (ξµ

i = −1) = 1/2 ∀i, µ (1.2)



6 1. Introduction: modeling intelligence with Recurrent Neural Networks

With an appropriate choice of the couplings, the model can store an extensive number
of memories p = αN , where α is called load of the network. This category of models,
that aim at retrieving memories as stable fixed points of the dynamics, are called
attractor neural networks.
We generally want to benchmark the neural network performance, specifically in
terms of the dynamic stability achieved by the memory vectors and the ability of
the system to retrieve them from blurry examples. Thus, some useful definitions
and observables are now introduced for this purpose.

We define perfect-retrieval as the capability to perfectly retrieve each memory when
the dynamics is initialized on the memory itself. It is here convenient to define a
quantity, called stability, defined as

∆µ
i = ξµ

i√
Nσi

X

j=1
Jijξµ

j , σi =

vuut
NX

j=1
J2

ij/N. (1.3)

We call nSAT the fraction of ξµ
i units that satisfy the following inequality

∆µ
i > 0, (1.4)

i.e. that are stable according to one step of the dynamics (1.1). Perfect-retrieval is
reached when nSAT = 1. It is thus important to remark the following implication of
statements

nSAT = 1 ⇐⇒ ∆µ
i > 0 ∀i, µ. (1.5)

The label SAT derives from the nomenclature used in celebrated optimization prob-
lems [28, 6] computing the limits of satisfiability of the condition in eq. (1.5). The
phase of the model where eq. (1.5) is satisfied was called SAT phase, as opposed to
the UNSAT phase.

We furthermore define robustness as the capability to retrieve the memory, or
a configuration that is strongly related to it, by initializing the dynamics on a
noise-corrupted version of the memory. This property of the neural network is
related to the size of the basins of attraction to which the memories belong, and
does not imply nSAT = 1. A good measure of the performance in this sense is the
retrieval map

mf (m0, J) :=
D 1

N

NX

i=1
ξµ

i Sµ
i (∞)

E
. (1.6)

Here, S⃗µ(∞) is the stable fixed point reached by the network having couplings J ,
when it exists, when the dynamics is initialized on a configuration S⃗µ(0) having
overlap m0 with a given memory ξ⃗µ. The symbol · denotes the average over different
realizations of the memories and ⟨·⟩ the average over different realizations of S⃗µ(0).
In the perfect-retrieval regime, one obtains mf = 1 when m0 = 1. The analytical
computation of the retrieval map might be challenging for some networks. Hence
one can introduce another indicative observable for the robustness, i.e. the one-step
retrieval map m1(m0) [29], defined by applying a single step of synchronous dynamics
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(1.1):

m1(m0, J) := 1
N

NX

i=1

D
ξµ

i sign
� NX

j=1
JijSµ

j (0)
�E

, (1.7)

We now provide a list of notable learning prescriptions in attractor neural net-
works that will be useful for the rest of the dissertation.

1.1.1 Hebbian Learning
Hebb’s (or Hebbian) learning prescription [11, 30] consists in building up the con-
nections between the neurons as an empirical covariance of the memories, i.e.

JH
ij = 1

N

pX

µ=1
ξµ

i ξµ
j . (1.8)

This rudimentary yet effective rule allows to retrieve memories up to a critical
capacity αH

c = 0.138. [12]. Notably, when α < αH
c memories are not perfectly

recalled, but only reproduced with a small number of errors. In this phase, named
retrieval phase, memories show some robustness since they belong to large basins of
attraction. On the other hand, when α > αH

c the statistical interference between the
random memories impedes the dynamics to retrieve them, shifting the system into
an oblivion regime. Notably, the landscape of attractors given by this rule is rugged
and disseminated with spurious states, i.e. stable fixed points of the dynamics barely
overlapped with the original memories [18].
An important notion to keep in mind for the rest of this work is that, whenever the
network interactions are symmetric, as in the current case, the Lyapunov function of
the dynamics, that is minimized by the attractor states, coincides with the energy
function of the model. Consequently, attractors are local minima of the energy
landscape. For recurrent neural networks, the energy can be defined as

E[S⃗|J ] = −
X

i,j>i

SiJijSj , (1.9)

equivalently to Ising spin systems in statistical mechanics [3, 25].

1.1.2 Hebbian Unlearning
Inspired by the brain functioning during REM sleep [19], the Hebbian Unlearn-
ing algorithm (HU) [17, 19, 31, 32, 21, 33, 34] is a training procedure leading to
perfect-retrieval and good robustness in a symmetric neural network. This paragraph
contains an introduction to the algorithm as well as a description of the gained
performance in terms of perfect-retrieval. The robustness capability of the algorithm
will be adressed further in the work.

Training starts by initializing the connectivity matrix according to the Hebb’s
rule eq. (1.8) (i.e. J (0) = JH). Then, the following procedure is iterated at each
time step d:
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1. Initialize the network on a random neural state.

2. Run the asynchronous dynamics (1.1) until convergence to a stable fixed point
S⃗∗.

3. Update couplings according to:

δJ
(d)
ij = − λ

N
S∗

i S∗
j Jii = 0 ∀i. (1.10)

This algorithm was first introduced to prune the landscape of attractors from
proliferating spurious states, i.e. fixed points of (1.1) not coinciding with the
memories [18, 3]. Such spurious states are only weakly correlated with the memories.
Even though this pruning action leads to the full stabilization of the memories, the
exact mechanism behind this effect is not completely understood.
HU is an unsupervised algorithm, in the sense that it does not need to be provided
explicitly with the memories {ξ⃗µ}p

µ=1, and only exploits the information encoded
in Hebbian initialization (see eq. (2.44)). The total number of iterations D is a
parameter of the algorithm, and must be chosen as to maximize the recognition
performance at a given load α. We report here the analysis of the perfect-retrieval
properties of the resulting network, with an estimate of the critical capacity and the
amount of iterations for an effective early-stopping of the algorithm, contained in
[21].
The performance of the algorithm has been studied in terms of the stabilities ∆µ

i .
This approach has already been attempted [35], but the following analysis pushes it
further and reveals new unexpected features. Fig. 1.2 shows the typical behavior of
the minimum stability ∆min, the average one ∆av and the maximum stability ∆max

as the Unlearning procedure unfolds. The horizontal axis represents the number of
steps d performed by the algorithm, rescaled by a factor λ/N . Focusing on ∆min,
we can see a non-monotonic behavior: the minimal stability grows to positive values,
peaks at some value d = Dtop and then decreases back to negative values. Between
Din and Dfin every stability is positive or, equivalently, every memory is a fixed point
for the dynamics. As we increase α, the interval [Din, Dfin] shrinks, and the height
of the peak at Dtop lowers, until we reach a critical load αc, above which ∆min never
goes above zero. Collecting data for networks of size N = 300, 400, 500, 600, 800
and different values of α and ϵ it is possible to extrapolate the position of Din, Dtop

and Dfin as a function of α, λ and N , as well as the critical capacity αc. By fitting
the data with respect to the model parameters one can find that the number of
iterations is in every case linear in N and 1/λ. Moreover, Dtop also depends linearly
on α. At the critical capacity,

αHU
c = 0.589 ± 0.003 ,

and the value of ∆min(Dtop) approaches zero. The value of the critical capacity
αHU

c as well as the linear dependence of Din, Dtop, Dfin on N/λ are consistent with
evidence provided by past literature [32, 31, 35].
Because the ∆min(D) curve is quadratic around Dtop, as illustrated in fig. 1.2, Din

and Dfin both tend to Dtop at the critical capacity with a critical exponent 1/2.
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Figure 1.2. Values of the minimal stability ∆min (orange), maximal stability ∆max (blue)
and average stability ∆av (green) computed during Hebbian unlearning, averaged over
50 realizations of the memories at N = 800, α = 0.3, λ = 10−2. The black dotted line
represents the zero-stability threshold to be overcome by ∆min to have all memories
perfectly recalled. We denote the corresponding value of the number of iterations D by
Din. Dtop is for the point where the algorithm reaches the maximum value of ∆min,
while Dfin is the end of the perfect perfect-retrieval regime of the network. We used red
arrows to point at Din, Dtop and Dfin.

The resulting scaling relations are:

Dtop(λ, α, N) = N

λ
(a · α + b) , (1.11)

Din(λ, α, N) = Dtop − N

λ
(c · α + d)1/2 , (1.12)

Dfin(λ, α, N) = Dtop + N

λ
(e · α + f)1/2 , (1.13)

with
a = 1.02 ± 0.02 , b = −0.05 ± 0.01 ,

c = −0.039 ± 0.003 , d = 0.023 ± 0.002 ,

e = −0.022 ± 0.001 , f = 0.013 ± 0.001 .

All the statistical errors have been evaluated using the jackknife method [36].

The study of the evolution of the basins of attraction during Unlearning is one
of the main contribution of this manuscript, and it will be deepened in detail in the
next Chapter.



10 1. Introduction: modeling intelligence with Recurrent Neural Networks

1.1.3 Linear Perceptrons & Support Vector Machines
The linear perceptron algorithm [15, 37, 6], which is one of the pillars of modern
artificial intelligence, is an iterative procedure allowing to fully stabilize the memories
and tune their robustness capabilities. Specifically, we are going to refer to linear
perceptron as the adaptation of the classical perceptron to recurrent neural networks,
already introduced in [15, 37, 38, 39, 40]. In this case a N -dimensional input
layer is fully connected by the connections J to a N -dimensional output layer. This
architecture can thus be mapped into a biologically inspired recurrent neural network.
Further details about this mapping will be provided in the next paragraph about
classification.
Given the fully connected architecture, we want to find a set of couplings that satisfy
the constraints

∆µ
i > k, ∀µ, i . (1.14)

with k being a parameter called margin. An elegant way to interpret this problem
is to recast it in terms of a linear regression [6] in the J . In terms of the network
dynamics the larger k ≥ 0 is, the more robust memories will be under perturbation
of the dynamics. Specifically, given a value of α all memories will be stable up to
a maximum value of kmax(α). The solution of the problem such that k = kmax(α)
can be proved to be unique, given one realization of the memories. The maximum
capacity achievable by the network is αP

c = 2 such that kmax(2) = 0. Following
previous work, we call SAT phase the region in the space (α, k) such that eq. (1.14)
is satisfied, while the rest of the phase space will be said to be UNSAT.
Inside these limits all constraints in (1.14) will be satisfied after a number of iterations
of the following serial update for the couplings

δJ
(d)
ij = +λ

pX

µ=1
ϵµ

i (d)ξµ
i ξµ

j , Jii = 0, λ > 0 (1.15)

ϵµ
i (d) = 1

2 (1 + sign(k − ∆µ
i (d))) ,

where λ is the learning rate, considered to be small, d is the descrete algorithm time
on which the mask ϵµ

i depends. One can also symmetrize equation (1.15) to train
symmetric couplings by redefining the mask ϵµ

i as

ϵµ
i → ϵµ

ij = 1
2(ϵµ

i + ϵµ
j ), (1.16)

where the dependence on d has been removed for clarity. The perceptron algorithm
is supervised, because it needs to be provided explicitly with the memories {ξ⃗µ}p

µ=1
to update the couplings. In the symmetric case, that will be shortened as SP for the
rest of the manuscript, the function kmax(α) has been determined analytically [37]
for slightly diluted recurrent networks, i.e. networks with an average connectivity
scaling as log N . Numerical results from the study of the algorithm defined in
eq. (1.15) on networks that are both fully connected and fully symmetric suggest
that, for the same degree of symmetry, kmax at a given α is located slightly above
the one predicted by [37]. This finding, discussed in fig. 1.3, suggests to reconsider
previous interesting analyses [42] and opens the road to further investigations of the
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Figure 1.3. Phase diagram of the linear symmetric perceptron in the plane defined by the
load parameter α and the margin k. The dashed line is the analytical result for kmax(α)
obtained for slightly diluted networks [37]. Squares show numerical results for kmax(α)
in a fully connected model at α ∈ {0.3, 0.4, 0.5, 0.55}. Simulations have been run at
different sizes of the network to measure the probability for the algorithm to converge
before 103 steps of the training (hence providing a lower bound to the actual value of
stability). A standard finite size scaling analysis [41, 28] has been used to extrapolate
the value of kmax(α) to the thermodynamic limit.

critical capacity as a function of the network connectivity [43]. It has been proved
numerically that, given α, the larger k, with 0 < k < kmax(α), the wider the basins
of attraction [44, 21]. In line with previous literature [38, 45] we call a maximally
stable perceptron, such that k = kmax(α), a Support Vector Machine (SVM).

Checkpoint
In this section we have seen that:

• Associative memory, i.e. the ability of a system to store information and
retrieve it when stimulated, can be modeled by recurrent neural networks.

• The definition of memory performance used in this work is based on two
properties: perfect-retrieval, i.e. the capability of the network to retrieve a
memory vector with no errors; robustness, the capability to associate corrupted
versions of a memory to the memory itself.

• Learning algorithms can build the neural network from a specific realization
of the memory in an iterative way: Hebbian learning does not reach perfect-
retrieval, yet its retrieval phase extends up to αH

c ≃ 0.14; Hebbian Unlearning
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(HU) reaches perfect-retrieval up to αHU
c ≃ 0.6 and it is unsupervised; the

linear perceptron gains perfect-retrieval up to αP
c = 2 and it is supervised.
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1.2 Classification Task
In the classification problem we have a set of N dimensional data-points {S⃗µ}M

µ=1
assigned to C possible classes by an unknown function ϕ(S⃗µ), i.e.

S⃗µ ϕ−→ ξµ with ξµ ∈ {class 1, class 2, ..., class C}, ∀µ. (1.17)

Generally speaking, each class is associated to a number, as data-points are also
encoded in vector of numbers (i.e. the features), allowing proper statistical calcula-
tions to be performed. The goal of a classifier, as a method to solve the classification
problem, is to learn the class to which each data-point belongs and how to assign
new unseen data to their most suitable classes. Literature usually refer to the act
of learning as training of the model: the data used for this purpose are named
training-set while the ones used to test the classification performance form the
testing-set.
Let us consider the case of only C = 2 classes, that we translate into two possible
values for ξµ, i.e. ξµ ∈ {−1, +1}, ∀µ. This problem can be translated into a sim-
ple neural network problem, with nodes and couplings. Yet in this case there is
not recurrency in the graph and the simplest classification method is called linear
regression. Fig. 1.4 provides a graphical representation of a classification problem

Figure 1.4. Graphical representation of a simple classification problem with two classes.
Data-points are separated by a hyperplane in the space of the data features.

translated into a neural network. Given the classes for each data-point, we can
search for the realization of the parameters J⃗ such that

ξµ = sign
�
J⃗ · S⃗µ

�
, ∀µ. (1.18)

It is now evident that the N − 1 dimensional hyperplane orthogonal to J⃗ separates
the two classes in the space of the features. In principle there is not one single
solution to the problem (i.e. one realization of J⃗ and the hyperplane), and one
can modify the classification rule to make the separation even more robust to new
data to be showed to the system. In statistical learning the capability of a network
to classify unseen data belonging to the testing-set is called generalization. The
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absence of generalization is called overfitting. A broader description of the concepts
of overfitting and generalization will be provided further in the manuscript.
This model coincides with the linear perceptron that we previously introduced in the
context of associative memory. Though, as a difference with the previous case, now
we have an input layer that converges into an output variable through a single vector
J⃗ . The practical method to learn J⃗ from the knowledge of the classes is analogous
to the one introduced in eq. (1.15), i.e.

δJ
(d)
i = +λ

MX

µ=1
ϵµ

i (d)Sµ
i ξµ λ > 0, (1.19)

ϵµ
i (d) = 1

2
�
1 − sign(ξµJ⃗(d) · S⃗µ)

�
,

where λ is the learning rate, considered to be small, and d is the discrete algorithm
time, on which the mask ϵµ

i depends. It can be proved that, after a suitable number
of iterations, and up to a maximum amount of training data that is the double of
the number of neurons, the matrix J converges to one configuration that satisfies
eq. (1.18) [15, 46].

1.2.1 The formal analogies between associative memory and classi-
fication

The strong similarity between the concepts of associative memory and classification
now looks clear from the previous sections. Nevertheless, it is important to recognize
the mutual differences as well as their points of contact.
Associative memory is a dynamic process, because the retrieval of a memory from
an example relies on the existence of a basin of attraction, which is a pure dynamic
entity. Hence we might think to use basins of attraction as dynamic classes, areas
of influence of the memories to which new unseen neural configurations belong.
In other words, we might treat each memory as a distinct dynamic class. If this
is the case, each class would be no more encoded into one numerical variable, as
it was for classification, but rather into a vector, having the same dimension of
the neural configurations. Fig. 1.5a graphically represents an associative memory
model as a feed-forward neural network with a N dimensional input layer and a
N dimensional output layer being fully connected by the elements of the couplings
matrix J . The output is no more a single label but, instead, a collection of labels ξ⃗µ.
This feed-forward representation can be mapped into a recurrent neural network, of
the same kind as in fig. 1.1.
Furthermore, an associative memory model is built by learning J directly from
the memories, i.e. the dynamic classes are learnt by means of the dynamic classes
themselves. This means that the classification rule is no more the one expressed in
eq. (1.17) but it is instead given by

ξµ
i = sign

�
J⃗i · ξ⃗µ

�
∀i, µ, (1.20)

where J⃗i is the i line of the connectivity matrix of the recurrent neural network.
This picture can be interpreted as a Cartesian product of N classifiers where each
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(a) Associative memory model (b) Gardner’s linear perceptron

Figure 1.5. Graphical representations of associative memory models, in analogy with
traditional classification problems.

class is a memory: perfect-retrieval is obtained when each memory is fitted by the
intersection of the hyper-planes found by the rows of the connectivity matrix J ,
i.e. when N parallel classification problems are correctly solved. In principle, if
no assumptions about the structure of the couplings are made, such classification
problems are independent, but this is not always the case, especially when the
symmetry of the connections is constrained by the network model.

By contrast with the associative memory picture explained above, classifiers are
not dynamic machines. In fact, once the classes have been learned, new data to be
classified are instantaneously associated to one or the other side of the hyperplane
(or to one of the multiple half-planes if more than two classes are provided). Hence
they are not classified by any dynamic process.
We might propose two points of contact between the two types of problems. Classi-
fiers usually rely on a number of classes C that is much smaller than the dimension
of the data-points, i.e. C ≪ N . On the other hand, associative memory models
have been developed with the explicit aim of dealing with a number of memories
p = O(N): this implies the emergence of spurious attractors and similar dynamic
phenomena that, apparently, have nothing to share with classification problems.
However, when p ≪ N memories are well separated with each other, their basins of
attraction are large, and new unseen configurations are rapidly associated to one
memory. In this manner we can relate the concepts of perfect-retrieval in memory
models and classification as well as the ones of robustness and generalization.
Another case where the two tasks overlap significantly is when we map a linear per-
ceptron into a recurrent neural network, i.e. when we solve the perceptron problem à
la Gardner [15, 40]. In this case we want to perfectly retrieve p randomly generated
memories. To do so, we build N independent perceptrons: each of them receives
one memory as an input and returns one of the entries of the same memory as an
output. This picture is depicted, once again, in fig. 1.5a. However, if perceptrons are
independent, and memories are generated by the same random process, we can treat
the N parallel problems as one single perceptron classification problem, represented



16 1. Introduction: modeling intelligence with Recurrent Neural Networks

in fig. 1.5b. It is not a case that, by construction, Gardner’s perceptron algorithm
[15, 37, 44] forces memories to be retrieved in one step of the dynamics, when the
network is initialized elsewhere in their basins of attraction (see eq. (1.15)). This
problem is thus a clear connection between dynamic classes embodied by basins of
attraction and standard, static classes used in classifiers.

Checkpoint
In this section we have seen that:

• Classification can be performed by feed-forward neural networks. Classic
perceptron models are examples of classifiers.

• Classification and Associative memory are different tasks since the former
relies on one step of the network dynamics, the latter needs convergence into
a fixed point. Associative memory resembles classifiers when the number of
memories is small and dynamics easily converges onto attractors.
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1.3 Data Generation Task
By referring to generative modeling we describe the capacity of specific neural
networks to learn the probability distribution of a data-set and generate brand new
data that exhibit maximum coherence with the same statistics [47, 46]. Imagine to
have a collection of N variables in a vector S⃗ = (S1, ..., SN ). Data are realizations
of such a vector grouped into a set {S⃗µ}M

µ=1 and sampled from a joint distribution
Ptrue(S⃗). Given M data, we have access to the frequency of occurrence of a certain
variable, i.e. the empirical distribution

Pdata(S⃗) = 1
M

MX

µ=1
δ

�
S⃗µ − S⃗

�
. (1.21)

The generative approach finds the model described by the joint distribution Pmod(S⃗|θ̂)
where the parameters θ̂ are inferred from the training data such that Pmod is the
closest possible to Pdata. However, Pdata might still differ from the ground-truth
distribution Ptrue. As a remedy, it is useful to reduce the number of degrees of
freedom of the problem by designing the model depending on some hints that we
have about Ptrue. For instance one might choose a graphical model, where variables
are sketched as the nodes of graph [46] with interactions to be inferred, rather than
setting a prior distribution for the variables as a mixture of Gaussians of unknown
means and unit variances [48]. Regularization techniques are used for this purpose,
i.e. to reduce the number of parameters, and thus allowing Pmod to get closer to
Ptrue.
The generative approach is largely implemented across several disciplines such as
computational neuroscience [49, 50], bio-informatics [51], animal behaviour [52],
physical simulations [53], image and text synthesis [54, 55, 56].

1.3.1 Boltzmann Machine Learning
We now describe a specific graphical model of generative neural networks which
will be particularly relevant to the rest of our dissertation. It is inspired by the
statistical mechanics at the equilibrium and it is called Boltzmann Machine (BM)
[57, 20, 58, 46].
Consider a fully connected network of binary N Ising variables S⃗ ∈ {−1, +1}N with
the following energy function

E[S⃗|J, h⃗] = −
NX

i,j>i

SiJijSj −
NX

i

hiSi, (1.22)

where Jij are symmetric couplings and hi are the fields acting on each neuron
site. We know, from statistical mechanics, that such a system at equilibrium at a
temperature β−1 will obey the following joint probability density function

Pmod(S⃗|J, h⃗, β) = 1
Zβ

exp
�

−βE[S⃗|J, h⃗]
�

, Zβ =
X

S⃗

exp
�

−βE[S⃗|J, h⃗]
�

, (1.23)

which is the Gibbs-Boltzmann distribution, where β can be set to one without any
effect in the training. Imagine a data-set {S⃗µ}M

µ=1 satisfying the following empirical
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distribution

Pdata(S⃗) = 1
M

MX

µ=1

NY

i=1
δSµ

i ,Si
. (1.24)

Training a Boltzmann Machine means finding the parameters J and h⃗ that mini-
mize the distance between Pdata and Pmod. Thus it comes natural to impose the
minimization of the Kullback-Leibler divergence between Pdata and Pmod, i.e.

L(J, h⃗) = −
X

S⃗

Pdata(S⃗) log
 

Pmod(S⃗|J, h⃗)
Pdata(S⃗)

!
, (1.25)

which is equivalent to maximize the cross-entropy of Pmod with respect to the
empirical distribution Pdata. Derivating eq. (1.25) with respect to Jij and hi we
obtain the gradient of the Loss, i.e.

∇ijL = ⟨SiSj⟩mod − ⟨SiSj⟩data, (1.26)

∇iL = ⟨Si⟩mod − ⟨Si⟩data, (1.27)

where ⟨ · ⟩data and ⟨ · ⟩mod are the averages over the respective probability distribu-
tions. Therefore, the parameters can be found by iterating the following gradient
descent equations

δJij = −λ∇ijL = λ (⟨SiSj⟩data − ⟨SiSj⟩mod) , (1.28)

δhi = −λ∇iL = λ (⟨Si⟩data − ⟨Si⟩mod) , (1.29)

with λ being a small positive learning rate.
To go technical in the training algorithm, the mean and covariance over the data can
be computed upstream, because they only depend on the training data-set; on the
other hand, the moments of Pmod must be sampled step-by-step during the process,
because their exact calculation would involve a sum over all possible S⃗. Sampling
can be performed by a sufficient number of Monte Carlo chains at the equilibrium at
β = 1, implying an algorithm time that is long enough to ensure ergodicity for each
chain. Usually the number of chains should be of the same order of magnitude of
M , the number of training data-points, in order for the corrections to the empirical
averages not to be sub-dominant with respect to the sampled ones.
When the process converges to the fixed points of eq. (1.28) and eq. (1.29) we
obtain a condition of moment matching, i.e. the first and the second moments of
the two probability distributions coincide. In principle the training of a BM is a
convex problem [57], however there might be some initial conditions that push the
parameters closer to their target configuration. A good choice is, for instance

J
(0)
ij = ⟨SiSj⟩data − ⟨Si⟩data⟨Sj⟩data, (1.30)

and
h

(0)
i = asinh (⟨Si⟩data) . (1.31)

because eq. (1.30) and eq. (1.31) are generally close to the fixed point of equations
(1.28) and (1.29).
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In order to measure the quality of the training of a BM one can measure whether the
moment matching condition is met or not. The observable to measure in this case is
the Pearson coefficient between the moments of the Pmod and Pdata distributions
at the end of the training. Let us collect the 2-point correlation matrices ⟨SiSj⟩ in
a vector c⃗ where each entry runs over the indices i, j > i. Let us group the means
⟨Si⟩ in a similar vector µ⃗ where each entry runs over the index i. Then the Pearson
coefficients will be defined as

ρJ =
P

i cmod
i cdata

iqP
i(cmod

i )2
qP

i(cdata
i )2

ρh =
P

i µmod
i µdata

iqP
i(µmod

i )2
qP

i(µdata
i )2

. (1.32)

Checkpoint
In this section we have seen that:

• Generative models learn from data a joint probability distribution which can
be used to sample new examples. Efficient models generate examples that are
indistinguishable from the training data.

• A good generative model does not learn the probability distribution of the
visible data, but rather the ground-truth distribution that generated them.

• Boltzmann-Machines are generative models that can be mapped into a recurrent
neural network. The parameters of the model, i.e. couplings and fields, help a
Gibbs-Boltzmann distribution to fit the statistics of the data. The training of
the neural network is unsupervised.
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1.4 Summary & Conclusions
In this chapter we have seen that:

• An associative memory model is a recurrent neural network that stores in-
formation in form of binary configurations of the neurons, named memories.
These models can be characterized in terms of two properties of the memories:
perfect-retrieval and robustness. Hebbian networks are simple memory models
that never reach the perfect-retrieval condition. Hebbian Unlearning (HU)
is an unsupervised learning algorithm that reaches perfect-retrieval up to a
critical value of the load αHU

c ≃ 0.6. Linear perceptrons, instead, reach both
perfect-retrieval and robustness through a full supervised training procedure,
also up to a critical capacity αP

c = 2 (when the symmetry of the couplings is
not constrained a-priori).

• There are some differences and formal analogies between the associative memory
task, accomplished by recurrent neural networks, and the classification one,
performed by feed-forward networks. The main difference is: memory models
use a neural dynamics, to be iterated for several steps, to associate one given
neural state to a memory, when the former state belongs to the basin of
attraction of the latter; classifiers associate each data-point to a class in
one single step of the neural dynamics. Associative memory tend to behave
similarly to classifiers when the number of memories is subdominant with
respect to the number of neurons. In this case one can relate perfect-retrieval
to accomplished classification and robustness to the generalization properties
of classifiers. The mapping of linear perceptrons into recurrent neural networks
established by Elisabeth Gardner is a successful bridge between these two
learning frameworks.

• Boltzmann Machines (BMs) are generative models that share the same archi-
tecture of associative memory models. As a conceptual difference, BMs learn
the probability distribution of a data-set, without storing the data themselves.
Once the distribution is learned, one can sample new examples that are statis-
tically coherent to the training data. The way a BM can learn the unknown
distribution of data can be improved by regularizing the Loss function of the
problem.

In the next section we will extensively analyze the associative memory performance
of HU, highlighting its excellent robustness properties. We advance a theoretical
explanation for the approaching of such wide basins of attraction by employing the
theory behind a noise-injection based learning algorithm resembling a supervised
linear perceptron. Eventually, the analytical argument is tested on different types of
data-set, such as MNIST or spatially correlated Euclidean maps.
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Chapter 2

Unlearning as noise injection:
approaching maximally stable
Perceptrons

An important challenge for modern artificial neural networks is to improve their
performance by means of regularization techniques. One class of techniques relies
on injecting noise in the training process, with the idea of teaching the machine
how to better infer the hidden data structure from errors. Examples of these types
of regularization are the drop-out [59, 60, 61, 62] or data-augmentation procedures
[63, 64]. The former consists in stochastically deactivating neurons across the network,
the latter acts on the training data themselves, by performing transformations (e.g.
translations, rotations and other symmetries) to increase the heterogeneity of the
data-set.
Even if such procedures are practical and successful in the world of deep networks,
there are only few examples of theory-based criteria for choosing how to engineer
noise to inject in the training [60, 64]. Our work considers a simple learning algorithm
for attractor neural networks (see section 1.1), employing noise-injection during
training. We are interested in this type of networks for multiple reasons: they are
suitable to be modeled through the tools of statistical mechanics; they constitute a
simplified version of modern neural networks, and yet they present a resemblance
with biological neuronal systems. In the context of attractor neural networks, noise-
injection refers to a random alteration of the neuronal activity encoding the memories.
The objective of this chapter is twofold:

1. To establish a theoretical criterion for generating the most effective noise to
be utilized in training, thereby optimizing the performance of an associative
memory model. Specifically, we demonstrate that generating optimal noise
translates into producing training data-points whose features adhere to specific
constraints, which we refer to as the structure of the noise.

2. To show that injecting a maximal amount of noise, subject to specific con-
straints, turns the learning process into an unsupervised procedure, which is
faster and more biologically plausible. We will also delineate some important
connections between training procedures with optimally structured noise and
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other consolidated learning prescriptions present in literature, such as the
Hebbian Unlearning rule. Specifically we will re-interpret the Unlearning
algorithm in terms of an effective noise-injection regularization for a Hebbian
network.

The structure of the chapter will be the following. Gardner’s original training-with-
noise algorithm is presented in section 2.1 and the consistency of the numerical
results with the theory developed by [65, 66] is showed; we will deal in particular with
the perfect-retrieval and robustness capabilities of the algorithm on fully connected
networks.
We then propose a derivation of the constraints that should be satisfied by maximally
noisy training data for the same algorithm in order to mimic SVM learning. This
will be treated in section 2.2 where we also show how relevant the initial conditions
over the couplings are to sample the good training configurations. Specifically, we
conclude that low saddles in an initially Hebbian-shaped energy landscape are the
most effective data for the training-with-noise algorithm.
Furthermore, section 2.3 focuses on the use of stable fixed points of the neural
dynamics as training data, proving that the celebrated Unlearning rule is contained
into the training-with-noise procedure when noise is maximal. Both the perfect-
retrieval and robustness properties of the trained network are examined: consistently
with the theoretical results, the system correctly reproduces a SVM for α up to αHU

c ≃
0.6. Eventually, the original Unlearning routine is generalized by implementing
a training-with-noise procedure with a moderate amount of noise, showing an
improvement in the critical capacity.
Section 2.4 deals with the case of correlated memories, such as the pictures from
a MNIST data-set and the paramagnetic configurations of a 2-dimensional Ising
model.
Section 2.5 follows up with the evaluation of another type of data, i.e. spatial maps
in a D-dimensional Euclidean space. The performance of the Unlearning algorithm
is yet again compared to the one of a SVM in terms of robustness and diffusive
dynamics in the real Euclidean space.
To end up, a sampling procedure for optimal noisy training data in the case of
maximal noise is proposed and implemented in section 2.6, proving to outperform
both the training-with-noise and the HU learning procedures.
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2.1 Training with noise
The concept of learning from noisy examples, introduced for the first time in [67],
is at the basis of a study performed by Gardner and co-workers [68], a pioneering
attempt to increase and control robustness through the introduction of noise during
the training phase of recurrent neural networks. Here, we report the algorithm and
characterize, for the first time, its performance over fully connected neural networks.
All the observables used for this purpose have been defined in section 1.1.
The training-with-noise (TWN) algorithm [68] consists in starting from any initial
coupling matrix J

(0)
ij with null entries on the diagonal, and updating recursively the

couplings according to

δJ
(d)
ij = λ

N
ϵµd
i ξµd

i Sµd
j , δJ

(d)
ii = 0 ∀i, (2.1)

where λ is a small learning rate, µd ∈ [1, ..., p] is a randomly chosen memory index
and the mask ϵµd

i is defined as

ϵµd
i = 1

2
�
1 − sign

�
ξµd

i

NX

k=1
JikSµd

k

��
. (2.2)

In this setting, S⃗µd is a noisy memory, generated according to a Bernoulli process

P (Sµd

i = x) = (1 + mt)
2 δ(x − ξµd

i ) + (1 − mt)
2 δ(x + ξµd

i ). (2.3)

The training overlap mt is a control parameter for the level of noise injected during
training, corresponding to the expected overlap between S⃗µd and ξ⃗µd , i.e.

mt = 1
N

NX

j=1
ξµd

j Sµd
j + O

� 1√
N

�
. (2.4)

Each noisy configuration can be expressed in terms of a vector of noise units χ⃗, such
that

Sµd
i = χµd

i ξµd
i . (2.5)

In this setting, noise units are i.i.d variables, distributed according to

P (χµd
i = x) = (1 + mt)

2 δ(x − 1) + (1 − mt)
2 δ(x + 1). (2.6)

The algorithm would converge when every configuration with overlap mt with a
memory generates on each site a local field aligned with the memory itself. Let us
define the function

L(m, J) = − 1
αN2

N,pX

i,µ

erf
 

m∆µ
ip

2(1 − m2)

!
. (2.7)

Calculations contained in appendix A prove that −L(m = m0, J) is equal to the one-
step retrieval map for one realization of J and averaged over all the configurations
having an overlap m0 with the memories, that we refer to as m1(m0, J). Wong and
Sherrington [65, 66] propose an elegant analysis of a network designed to optimize
L(m, J), i.e. whose couplings JW S(m) correspond to the global minimum of L(m, J).
Some of their findings, relevant to this work, are:
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1. For any m0, the maximum value of m1(m0, JW S(m)) with respect to m is
obtained when m = m0. This result is important because it suggests that a
network with J = JW S(m) tends to increase the influence of the memory over
the surrounding configurations, possibly increasing the basins of attraction to
which they belong.

2. When m → 1−, the minimization of the L(m, J) trains a linear perceptron with
maximal stability, i.e. a SVM. This result translates into having JW S(m →
1−) = JSV M . This result is not trivial, since m = 1 would reproduce a linear
perceptron with zero margin.

3. When m → 0+, the minimization of L(m, J) leads to a Hebbian connectivity
matrix. This result translates into having JW S(m → 0+) ∝ JH . On the other
hand, the case m = 0 would be trivial, since no learning would be possible.

Now, we want to examine the TWN procedure defined above in light of the results
obtained by Wong and Sherrington. When the network is trained through TWN, the
resulting coupling matrix depends on mt, i.e. J = J(mt). It is crucial to stress the
difference between the variables m and mt: the former is a parameter of eq. (2.7),
the latter is the level of noise used by the training algorithm (2.1). Eq. 2.7 is relevant
to the TWN procedure, since eq. (2.1) leads to a reduction of L(m, J(mt)), for any
value of m and mt. In fact, considering a small variation of the stabilities induced
by the algorithm update

∆µ
i → ∆µ

i + δ∆µ
i ,

and performing a Taylor expansion of (2.7) at first order in O(N−1/2), one obtains
(see Appendix B.1)

L′ = L +
NX

i=1
δLi (2.8)

where

δLi = − ϵµd

i λ

ασiN5/2

√
2m · mtp

π(1 − m2)
exp

 
− m2∆µ2

d
i

2(1 − m2)

!
. (2.9)

Hence, δLi is strictly non-positive when λ
N is small, so that the Taylor expansion

is justified. Moreover, we numerically find that iterating (2.1) with a given value
of mt drives L(m, J(mt)) to its theoretical absolute minimum computed in [66], as
reported in fig. 2.1 for one choice of N, α and m. This means that the performance
of the TWN algorithm can be completely described in the analytical framework
of [66] and, that L(m, J(mt)) can be considered as the Loss function optimized
by the TWN algorithm. As a technical comment, note that standard deviation
along one row of the couplings matrix σi (see eq. (1.3)) is a variable quantity over
time, and numerics suggest that it is slowly decreasing. As a result, the expansion
performed to determine the variation of L (see eq. (B.2) in Appendix B.1) might not
be justified after a certain number of steps, leading to a non-monotonic trend of the
Loss function. The non-monotonic trend of L(m, J(mt)) due to this effect is showed
in the inset of fig. 2.1. However, this inconvenience can be overcome by rescaling the
learning rate λ into λi = λ · σi at each iteration, as also the curves in fig. 2.1 display.
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Figure 2.1. The lines in the main plot report the function L(m = 0.5, J(mt)) for different
training overlaps as functions of the number of algorithm steps d. The dotted line
represents the theoretical minimum value from [66]. The learning strength λ has been
rescaled by the standard deviation of the couplings as described in the text. The subplot
reports the case mt = 0.5 when the learning strength is not rescaled: L is in blue, while
a measure of the standard deviation of the couplings, defined as σ = 1

N

P
σi, is reported

in red. The value λ · N−1/2 of the standard deviation is also depicted in light gray to
properly signal the moment when equation (2.9) loses its validity. All measures are
averaged over 5 realizations of the couplings J . Choice of the parameters: N = 100,
α = 0.3, λ = 1, the initial couplings are Gaussian with unitary mean, zero variance and
J

(0)
ii = 0 ∀i.

2.1.1 Perfect-retrieval
The computations contained in [66], and resumed in appendix C, are now used to
calculate nSAT as a function of mt and α in the TWN problem. The probability
distribution function of the stabilities in the trained network (see equation (C.2)) has
always a tail in the negative values, implying that perfect-retrieval is never reached.
The only exception to this statement is the trivial case of mt = 1−, where nSAT = 1
for α ≤ 2. Nevertheless, the values of nSAT remain close to unity for relatively high
values of mt and relatively low values of α (see fig. 2.2).

2.1.2 Robustness
The robustness properties of a network trained through TWN are now discussed.
The color map in fig. 2.3 reports the estimate of the retrieval map mf (m0) at m0 = 1
in the limit N → ∞, i.e. a measure of the distance between a given memory and the
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Figure 2.2. nSAT as a function of mt and α. Warmer shades of colour are associated to
higher retrieval performances.

closest attractor. Notice the emergent separation between two regions: one where
mf (1) is mostly smaller than 0.5, and memories are far from being at the bottom of
the basin; another region where mf (1) is mostly close to unity, i.e. the memory is
very close to the center of the basin. Such separation reminds the typical division
between retrieval and non retrieval phases in fully connected neural networks [12],
differently from sparse neural networks [66, 69] where the possible topologies of the
basins result more various yet harder to get measured by experiments. In appendix D
we propose an empirical criterion to separate these two regions and so limit ourselves
to the retrieval one. Consider the retrieval map mf (m0) measured with respect to
the attractor of the basin to which the memory belongs and not to the memory
itself. Then one must have mf (1) = 1. Our criterion is based on assuming that
mf (m0) always develops a plateau starting in m0 = 1 and ending in some mc < 1
when N → ∞. The behavior of the basin radius can be observed numerically as a
function of mt: when the plateau disappears (i.e. mc = 1) then one can suppose
that basins get shattered in the configurations space due to the interference with the
other attractors. Given α, this occurs at some value of mt. The empirical transition
line is reported in a dashed style in fig. 2.3. Limiting ourselves to the retrieval region
we employ a procedure also described in appendix D to compute the typical size of
the basins of attraction. White dots in fig. 2.3 signal the combinations of (mt, α)



2.1 Training with noise 27

��� ��� ��� ��� ���

��

���

���

���

���

���

���

���

������

���

���

���

���

���

���

Figure 2.3. mf (1) as a function of mt and α. Warmer shades of color are associated to
higher retrieval performances. The black dashed line represents the boundary of the
retrieval regime according to the criterion in appendix D, white dots signal the points
where basins of attraction to which memories belong are larger than those obtained from
a SVM at N = 200.

where the basins of attraction found by TWN algorithm resulted larger than the
ones obtained by a SVM at the same value of α. We want to stress the importance
of a comparison between the TWN and the corresponding SVM, since numerical
investigations have shown the latter to achieve extremely large basins of attraction,
presumably due to the maximization of the stabilities [44, 21]. One can conclude that
for most of the retrieval region the robustness performance is worse than the SVM,
which maintains larger basins of attraction; on the other hand, at higher values of α
the trained-with-noise network sacrifices its perfect-retrieval property to achieve a
basin that appears wider than the SVM one. In conclusion, the TWN algorithm
never outperforms the relative SVM without reducing its retrieval capabilities.

Checkpoint
In this section we have seen that:

• The TWN algorithm can be interpreted as a linear perceptron that learns to
align noisy versions of one memory to the memory itself, enhancing associativity.
The control parameter of the algorithm is the training overlap mt.

• The TWN algorithm trains a network that solves the optimization problem
studied by Wong and Sherrington. Hence, by tuning the training overlap one
can interpolate between the Hebbian model (i.e. mt = 0+) and a SVM (i.e.
mt = 1−).

• The TWN never reaches perfect retrieval when mt < 1−. In all this region
of the network configurations the TWN algorithm never outperforms the
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robustness performance of a SVM without moving each memory away from
the closest attractor.
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2.2 Optimal noisy data-points
As previously stated, SVMs are considered to be highly efficient associative memory
models, due to their very good classification and generalization capabilities. Wong
and Sherrington’s analytical argument proves that minimization of L(m = 1−, J(mt))
trains a SVM. The TWN procedure proposed by Gardner and collaborators, re-
lying on a Bernoulli process to generate noise, accomplishes this task only when
mt = 1− (see section 2.1). Injecting a larger amount of noise during training would
deteriorate the performance: specifically, mt = 0+ trains a Hebbian neural network.
Nevertheless, training a network with examples that are nearly uncorrelated with
the memories can significantly speed up the sampling process, since such states can
be generated in an unsupervised fashion, without knowledge of the memories (as
seen for HU in section 1.1.2). Such unsupervised processes are also considered more
biologically plausible.
In this section, we show that it is possible to use maximally noisy configurations
(i.e. mt = 0+) to train a network approaching the performance of a SVM, by
means of the TWN algorithm. For this purpose, one must change the way noisy
data are generated: they need to meet specific constraints which lead to internal
dependencies among the features (i.e. a structure). We derive a theoretical condition
characterizing the optimal structure of noise, and show that specific configurations
in the Hebbian energy landscape, including local minima, match well the theoretical
requirements.

It will be helpful for our purposes to implement a symmetric version of rule (2.1),
i.e.

δJ
(d)
ij = λ

N

�
ϵµd
i ξµd

i Sµd
j + ϵµd

j ξµd
j Sµd

i

�
. (2.10)

Equation (2.10) can be rewritten explicitly making use of (2.2), leading to

δJ
(d)
ij = λ

2N

�
ξµd

i Sµd
j + Sµd

i ξµd
j

�
+

− λ

2N

�
S1,µd

i Sµd
j + Sµd

i S1,µd
j

� (2.11)

where S1,µd
i = sign

�PN
k=1 JikSµd

k

�
. The total update to the coupling at time D can

be decomposed as a sum of two contributions

∆Jij(D) = ∆JN
ij (D) + ∆JU

ij (D). (2.12)

The first term on right-hand side, which will be referred to as noise contribution, is
expressed in terms of noise units as

∆JN
ij (D) = λ

2N

DX

d=1
ξµd

i ξµd
j χµd

j + λ

2N

DX

d=1
ξµd

j ξµd
i χµd

i , (2.13)

while the second term, which will be referred to as unlearning contribution, is given
by

∆JU
ij (D) = − λ

2N

DX

d=1

�
S1,µd

i Sµd
j + Sµd

i S1,µd
j

�
. (2.14)
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In the maximal noise case mt = 0+, ∆JN
ij (D) averages to zero over the process

because its variance is λ/N when the number of steps D is proportional to N/λ,
leading to

∆JN
ij (D) = 0+ + O



s

λ

N


 . (2.15)

2.2.1 Characterizing the good training configurations

The variation of L(m, J) can be expressed (see Appendix B.2) as

δL = δLN + δLU .

As detailed in Appendix B.2, in the case of maximal noise (i.e. mt = 0+) δLN is
negligible, and the only relevant contribution is

δLU ∝ mp
2π(1 − m2)

N,pX

i,µ

ωµ
i exp

 
− m2∆µ2

i

2(1 − m2)

!
, (2.16)

where ωµ
i play the role of weights to the positive Gaussian terms and they are given

by

ωµ
i = 1

2σi

�
mµχ1,µ

i + m1,µχµ
i

�
, (2.17)

with
χµ

i = ξµ
i Sµd

i χ1,µ
i = ξµ

i S1,µd
i , (2.18)

and

mµ = 1
N

NX

j=1
Sµd

j ξµ
j m1,µ = 1

N

NX

j=1
S1,µd

j ξµ
j . (2.19)

For the case of fixed points, we have ωµ
i = mµχµ

i . We know that minimization of
L(m, J(mt)) trains a SVM when m → 1−. When m → 1−, the Gaussian terms
contained in the sum become very peaked around 0. Since we want δL to be negative,
we need, for most of the pairs i, µ,

ωµ
i < 0 when |∆µ

i | < 0+. (2.20)

The more negative ωµ
i is when ∆µ

i ∼ 0, the more powerful is its contribution to
approach the SVM performances. Selecting training data that satisfy equation (2.20)
amounts to imposing specific internal dependencies among the noise units χ⃗, which
are no more i.i.d. random variables, as it was in [68]. We refer to such dependencies
as structure of the noise. One should also bear in mind that training is a dynamic
process: to reduce L(m = 1−, J(mt = 0+)) condition (2.20) should hold during
training.
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2.2.2 Position of good training configurations in the energy land-
scape

The HU algorithm is based on choosing training configurations on a dynamical
basis, namely as fixed points of zero temperature dynamics in the energy landscape
dictated by Hebb’s learning rule. On the other hand, traditional TWN relies on
fully random states, i.e. very high states in the energy landscape. In this section,
we generalize this dynamical approach by evaluating the performance of training
configurations which lie at different altitudes in the energy landscape of a symmetric
neural network, i.e. states that are not limited to be stable fixed points or random
states. To do so, we sample training configurations by means of a Monte Carlo
routine at temperature T . Temperature acts as a control parameter: when T = 0
training configurations are stable fixed points of eq. (1.1), as in standard HU. Higher
values of T progressively reduce the structure of noise in training configurations,
and in the limit T → ∞, training configurations are the same as in the TWN
algorithm. The Monte Carlo of our choice is of the Kawasaki kind [70], to ensure
that all training configurations are at the prescribed overlap mt = 0+. We are
going to use this technique to probe the states across two types of landscapes: the
one resulting from a Hebbian initialization and the one resulting from a SK model [71].

Regarding the Hebbian initialization of the network, numerical results are re-
ported in fig. 2.4 for four different temperatures. Each panel shows the distribution
of (ωµ

i , ∆µ
i ). Data points are collected over fifteen realizations of the network, then

plotted and smoothed to create a density map. We are interested in the typical
behavior of ωµ

i when ∆µ
i ∼ 0, which can be estimated by a linear fit of the data. We

consider the intercept of the best fit line as an indicator ωemp(0) of the typical value
of ωµ

i around ∆µ
i = 0. We find that at lower temperatures the sampled configurations

favor both perfect-retrieval and robustness because ωemp(0) is more negative. As
temperature becomes too high, ωemp(0) gets closer to zero, suggesting low quality in
terms of training performance.
One can also study how the distribution of (ωµ

i , ∆µ
i ) evolves during the training

process. Fig. 2.5a shows the value of ωemp(0) at different time steps of the training
process, for different values of α, when configurations at T = 0 are given to the
algorithm. We find that ωemp(0) < 0 for α ≤ 0.6. The progressive increase of ωemp(0)
means that the structure of the fixed points is more effective in the starting Hebbian
landscape compared to intermediate stages of training. In the last part of training,
points reacquire more negative values, but this is not a reliable indication of good
performance: as shown in fig. 2.5c, in this part of the process the standard deviation
of the couplings σi is comparable to O(λ · N−1/2), and the expansion of the L in
eq. (2.16) is not valid. The last part of the training, where σi ≃ 0 ∀i, has been
neglected from the plot. The experiment is thus consistent with the characterization
of the HU algorithm presented in [21], which showed decreasing perfect-retrieval
and robustness when increasing α. This is confirmed by the study of the Pearson
correlation coefficient between ωµ

i and the associated stabilities ∆µ
i (see fig. 2.5,b).

High values of the Pearson coefficient show a strong dependence of the structure
of noise on the relative stabilities. For all α, the Pearson coefficient is highest at
d = 0, and progressively decreases during training, suggesting that the quality of
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(c)

Figure 2.5. The TWN algorithm is implemented by sampling stable fixed points of the
network dynamics with mt = 0+. (a) The empirical measure of ωµ

i around ∆µ
i = 0 for

the case of stable fixed points as a function of the rescaled number of iterations of the
learning algorithm. Errorbars are given by the standard deviations of the measures. (b)
Pearson coefficient measured between ωµ

i and ∆µ
i . (c) The standard deviation of the

couplings during learning, defined as σ = 1
N

P
σi. Points are averaged over 50 samples

and the choice of the parameters is: N = 100, λ = 10−2.
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(a) T = 0

��� ��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

��� ��� ���

(b) T = 8
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(d)

Figure 2.6. (a), (b): Distribution of ωµ
i as a function of ∆µ

i for training configurations
sampled with a Monte Carlo at temperature T = 0 i.e. stable fixed points only (a),
and T = 8 (b) on a SK model. Warmer colors represent denser region of data points.
The full black line is the non-weighted best fit line for the points, the dotted white line
represents ω = 0, the red spot is the value of the best fit line associated with ∆ = 0.
Sub-panels to each panel report a zoom of the line around ∆ = 0. (c), (d): Comparison
between the Hebbian initialization and the Random one through evaluation of: the
Pearson coefficient between ωµ

i and ∆µ
i (c) and the estimated value of ωemp(0) from

the dispersion plots (d). Measures have been collected over 15 samples of the network.
Choice of the parameters: N = 500, α = 0.5.

configurations are expected to have f = 1/2. In order to check whether a particular
f is capturing relevant features of the virtuous training configurations, we sampled
training data according to the requirement that their saddle fraction assumes a
specific value f and mt = 0+. Saddles are then employed for training the network
according to eq. (2.1). Sampling is performed by randomly initializing the network
on a configuration having training overlap mt = 0+ with a reference memory, and
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performing a zero temperature dynamics on the landscape defined by the energy

E(S⃗|f, J) = 1
2


 1

N

NX

i=1
Θ(Si

NX

j=1
JijSj) − f




2

, (2.21)

where Θ(x) is the Heaviside function. Yet again, the value of mt was maintained
constant during the descent. The left panel in fig. 2.7 shows how the minimum
stability evolves during the training process while a symmetric TWN algorithm
is initialized in the Hebbian matrix and learns saddles of different indices. For a
network of N = 100 and α = 0.35, we found that perfect-retrieval is reached until a
certain value of f , suggesting that saddles belonging to this band are indeed good
training data. The band of saddles that are suitable for learning is reduced when α
increases until such states do not significantly satisfy eq. (2.20) anymore. Such limit
capacity is located around the critical one for HU. It should be stressed that the
precise performance as a function of f is quite sensitive to the sampling procedure.
Simulated annealing routines [73] have also been employed to minimize (2.21),
obtaining qualitatively similar results yet not coinciding with the ones reported in
fig. 2.7. A qualitative study of the basins of attraction of the network has been
performed and reported in the right panel in fig. 2.7. In particular, the retrieval
map mf (m0) has been measured relatively to the saddle indices f at the first time
they reached perfect-retrieval, in analogy to what has been measured in [21]. The
curves coincide quite well, suggesting that finite sized networks trained with different
f assume similar volumes of the basins of attraction when they are measured at
the very first instant they reach perfect-retrieval. The plot also shows that the
robustness performance is comparable with the one of a SVM trained with the same
choice of the control parameters.

2.2.4 Going unsupervised
It is essential to note that, since the training overlap under consideration is close
to 0, stable fixed points and saddles in their proximity can be sampled in a full
unsupervised fashion: when the dynamics (e.g. zero temperature Monte Carlo or
gradient descent over (2.21)) is initialized at random, which implies having an overlap
mt = 0+ with some memory, it will typically conserve a small overlap with the same
memory even at convergence [29]. As a consequence, the argument presented above
holds, and a supervised algorithm as TWN can be reduced to a more biologically
plausible and faster unsupervised learning rule. This aspect will be deepened by the
next section, where we show a particular scenario where TWN coincides with the
HU rule, a fully unsupervised learning procedure [17].

Checkpoint
In this section we have seen that:

• While the standard TWN employed random noise to train a SVM by tuning
mt = 1−, one can approach a SVM using structured noise with mt = 0+. At
each step of the TWN algorithm, the best training data are the ones satisfying
condition (2.20). Maximizing the noise is useful because it can be sampled
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Figure 2.7. Left: Minimum stability ∆min as a function of the algorithm steps on a network
trained with the symmetric TWN routine that learns saddles of various indices f . The
initial matrix is assembled according to the Hebb’s rule. Full dots report the amount
of iterations needed to accomplish perfect-retrieval. Right: the retrieval map mf (m0)
as measured on the positions of the colored dots from the right panel, with the same
color code being used. A comparison with a SVM trained with the same choice of the
parameters is also presented through the dashed blue line. All measures are averaged
over 5 samples with the shaded region indicating the experimental errors. The choice of
the parameters is: N = 100, α = 0.35, λ = 10−3.

in an unsupervised manner, i.e. by initializing the dynamics on a random
network state and then descending the energy function.

• While the energy landscape of random networks contain few good training data,
a Hebbian landscape contains many of these states in form of local minima
and surrounding saddle points. A Hebbian initialization of the couplings is
thus a good starting point for the TWN algorithm.
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2.3 Quasi-optimality of the Unlearning algorithm
As shown in section 2.2, local minima of the Hebbian energy landscape are good
training configurations, yet they are necessarily not the optimal ones (see fig. 2.6).
In this section, we analyze the performance of TWN when training data are minima
in the energy landscape characterized by an overlap mt with the memories. Local
minima in the energy landscape are convenient training data, since they can be easily
and efficiently sampled by the asynchronous dynamics in eq. (1.1). After initializing
the couplings according to the Hebbian rule, we will study two different scenarios:
we firstly evaluate training in the maximal noise case mt = 0+, when stable fixed
points can be sampled in a unsupervised fashion, i.e. by the network dynamics when
started on a fully random state. In this setting, where the considerations of section
2.2.1 apply, we show that the TWN algorithm converges to the traditional HU rule
in the small λ/N limit. Then, we examine in detail training with finite overlap
(i.e. mt > 0+), providing an estimate of the critical capacity reached by the neural
network, and showing that results from the previous section about the effectiveness
of stable fixed points can be generalized to this case.

As mentioned in sec. 2.2, in this case the only relevant contribution to the up-
date rule is

∆JU
ij (D) = − λ

N

TX

d=1
Sµd

i Sµd
j , (2.22)

which is the classic HU update rule. As a result, when λ/N → 0 the TWN algorithm
and the HU algorithm will converge to the same updating rule for the couplings when
stable fixed points of the dynamics are used in the training. The same argument
can be applied to the original asymmetric rule (2.1), however asymmetric networks
may have no stable fixed points of (1.1) that can be easily reached and employed in
the learning.
We now perform a numerical test of the argument above, in the case of a symmetric
connectivity matrix. At each step of the algorithm, the network is initialized with
an initial overlap contained in (0, N−1/2) with one memory ξ⃗µd . Then, asynchronous
dynamics (1.1) is run until convergence, and the final overlap mt is measured. If
mt ∈ (0, N−1/2), we use the sampled configuration for training, otherwise the pro-
cess is repeated. Typically, an initial overlap equal to 0+ implies a similar order of
magnitude for the final overlap, hence no reiteration is usually needed.
The algorithm (2.10) is repeated for D = O(N/λ) steps. The order of magnitude of
∆JU

ij (D) is supposed to be the same of J
(0)
ij , in order to see significant modifications

to the initial connectivity matrix. The network is initialized according to the Hebb’s
rule (1.8), i.e. J

(0)
ij = O(N−1/2) which implies ∆JU

ij (D) = O(N−1/2) at leading order.
The contributions U and N are compared by computing the norm of the relative ∆J
matrix and evaluating the ratio |∆JU |/|∆JN |. From our previous considerations
we expect |∆JU |/|∆JN | to be linear in λ−1/2 when corrections vanish. Results
are reported in fig. 2.8: |∆JU |/|∆JN | grows when N increases and λ decreases,
according to the scaling relation predicted by our argument. In addition to this,
curves are collapsing on the expected line when λ → 0 and N → ∞.
We also measured ∆min at its maximum over the course of the algorithm (as de-
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scribed in 2.1.1). Results are reported in fig. 2.9. ∆min produced by TWN and
HU are found to coincide when λ is sufficiently small. Moreover, the number of
steps necessary to reach the maximum are the same for both algorithms, confirming
that couplings are transforming at the same way. This last aspect is corroborated
by the subplot in fig. 2.9, representing the set of Jij obtained with the traditional
HU algorithm as a function of the one resulting from the TWN algorithm, for one
realization of the network. The strong correlation is evident, as predicted from our
pseudo-analytical arguments.

During the rest of the section we will drop the noisy part of the synaptic update
and use the traditional rule

δJij = − ϵ

N
S∗

i S∗
j

where we renamed λ with ϵ not to confuse it with the learning rate used for the
linear perceptron. Specifically the symmetric perceptron (SP) rule with a tunable
margin k will be applied (see eq. (1.15), eq. (1.16)). We also substituted the index µd

with a star since, for the rest of this section, the HU procedure will be implemented
in a fully unsupervised fashion.
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Figure 2.8. Estimates of the ratio |∆JU |/|∆JN | as a function of λ− 1
2 and N for α = 0.5.

Measures are averaged over 5 samples. Error bars are not indicated because smaller
than the symbols.

2.3.1 Robustness performance and basins of attraction
We have compared the performance of SP and HU by measuring the shape of the
basins of attraction around each memory. This is done by measuring the retrieval map
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Figure 2.9. The quantity maxd (∆min) as a function of λ−1/2. Colors are: red for N = 100
and blue for N = 500. The gray line represents the null value for the stability. Symbols
are: circles for the TWN rule, triangles for the HU rule. In the subplot on the center
right, the couplings obtained through the HU algorithm are plotted as a function of
the ones resulting from the TWN, at the same amount of iterations, for one sample at
N = 500 and λ = 5 · 10−3. Measures are averaged over 50 samples. The choice of the
parameters is: α = 0.5, mt = 0+ for TWN.

mf (m0). In fig. 2.10 we plot mf as a function of m0. Colored dashed curves refer to
SP for different values of k, up to the highest k that allows the algorithm to converge
in O(103) iterations. This slight underestimations of the real kmax(α) bares very
little consequences to our results. Related to this, we underline the importance of the
choice of λ at a given value of N . This is another crucial topic that is rarely discussed
in the literature. Higher values of λ imply larger learning steps, while smaller values
are associated to a finer exploration of space of coupling matrices during training.
It is observed that the algorithm, operating at λ = {1, 10−1, 10−2}, converges to
almost identical matrices already when k is equal to the maximal stability for diluted
networks [37] that, according to fig. 1.3, is slightly lower than the actual kmax. This
suggests that the final state lies very closely to the unique optimal solution even
when we are not exactly at kmax. Hence, no significant changes are expected in
our numerical results when k is pushed further towards its maximal value. On the
other hand, when λ assumes smaller values, i.e. λ = {10−3, 10−4, 10−5}, basins are
observed to be smaller in size and the volume of solutions is larger, indicating that
the final state remains further from the maximal performance. In order to recover
the numerical results obtained at a larger λ, one needs to progressively increase k
to values that are difficult to reach numerically. As a result, the choice of λ = 1 in
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network needs to memorize, while the HU is not, and only exploits the topology of
the spurious states generated by Hebb’s prescription. These findings are robust to
change in the load α and to finite size effects, as illustrated in fig. 2.11. The mean
basin radius at finite N is defined as 1 − m0, selecting the value of m0 below which
more than 30% of the memories are reconstructed with more then 5% error. The
dots represent our extrapolation of this quantity to the limit N → ∞, for different
values of α. The lower dots relative to the SP correspond to k < kmax, and the value
of the mean basin radius gets higher as k is increased up to k ≃ kmax. Again, one
can see that even in the thermodynamic limit, our simulations suggest that in their
optimal regime the two algorithms perform essentially in the same way.
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Figure 2.11. Mean attraction basin radius for symmetric perceptron (SP) and Hebbian
Unlearning (HU) measured as in [44] and extrapolated to N → ∞, for α = 0.3, 0.4, 0.5
and λ = 1. Points for the SP correspond to the following values of k: α = 0.3 →
k ∈ {0.4, 0.5, 0.7, 0.9, 1.1, 1.296, 1.32}; α = 0.4 → k ∈ {0.4, 0.5, 0.6, 0.75, 0.9, 0.988, 1.05};
α = 0.5 → k ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.768, 0.85}. Error bars are smaller than the symbols
size.

2.3.2 Learning paths in the space of the interactions

One way to visualize the solutions of the optimization problem, and the way these
solutions are reached by means of the algorithm, is to exploit the space of interactions
as conceived by Gardner [15]. Consider a spherical surface in N(N − 1)/2 − 1
dimensions where each point J⃗ is a vector composed by the off-diagonal elements
Jj>i of the connectivity matrix normalized by their standard deviation. These
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position vectors hence will be
r⃗ = J⃗/σJ , (2.23)

with

σJ =

vuuut 2
N(N − 1)

1,NX

i<j

J2
ij . (2.24)

For what concerns the SP, after fixing the value of α and a set of memories, one can
imagine the sphere as composed by an UNSAT and a SAT region. These regions are
connected sub-spaces of the original sphere, so that one can go from a matrix to
another one in a continuous fashion. The SAT region contains the point relative to
the unique solution at k = kmax(α).

We now define an overlap parameter quantifying the covariance of two generic
symmetric matrices Jij and Uij

q = 2
N(N − 1)

1,NX

i<j

JijUij

σJσU
, (2.25)

where · is the average over the disorder.
We first evaluate the final points where the two algorithms converge in the space

of interactions. HU is stopped at d = Din as that is the relevant amount of iterations
identified in section 1.1.2. The SP is run at λ = 1. Fig. 2.12a, displays the overlap
between the resulting matrices when the SP is performed at different values of k
before reaching kmax(α). The plot shows that q increases with k, suggesting that
HU pushes the system to the same region of solutions where the SP converges when
k is close to kmax. Finite size effects evidently appear near the abrupt transition
from SAT to UNSAT, but the increase of q with the size of the network suggests
that the maximum overlap might be associated to the maximal stabilities when N
becomes large enough.

The plot of q as a function of α, see fig. 2.12b, shows how the distance between the
final points and the initial Hebbian matrix increases when the number of memories
becomes larger, while the distance between the two final points remains small and
stable for α < αHU

c . By comparing the final states of convergence we conclude
that two networks, starting from the same initial matrix, end up in very similar
configurations of the couplings Jij . Now we analyze the whole trajectory traced by
the two algorithms in the space of interactions.

We set α = 0.55, so that the overlap between the initial and the final state is
small enough, i.e. they are distant on the sphere, N = 800, λ = 10−4 and k close to
kmax in one single sample. The choice of a small value of the learning rate λ allows
to trace a continuous path in the space of the interactions. HU is run choosing
d = Din for 10 samples in total. Fig. 2.13a reports the projection of the resulting
trajectories in the space of J along three randomly chosen directions. The plot
shows that the two algorithms explore the same region of the space of interactions,
proceeding along a similar direction. We also observe that the convergence velocities
of the two algorithms are very different. Indicating with t the time steps for both
processes, fig. 2.13b shows the logarithm of the absolute value of the variation of
vector J⃗ , defined as

∆J⃗ (t) = J⃗ (t+1)/σ
(t+1)
J − J⃗ (t)/σ

(t)
J . (2.26)
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Figure 2.12. (a) Overlap q between the final states of Hebbian Unlearning (HU) with
ϵ = 10−2 at d = Din and symmetric perceptron (SP) with λ = 1 having reached a
stability k. Measures are for different values of N and α and points represent the mean
computed over 5 realizations of the disorder. Error bars are smaller than the data
symbol. Values of k range from 0 to slightly below kmax(α). For each α, q peaks around
kmax(α), indicating that the two algorithms converge to coupling matrices which are
closest near to the value k = kmax(α). (b) Overlap q as a function of α at N = 800.
Points represent the mean of 10 realizations of the disorder and error bars are smaller
than the data symbol. The orange symbols correspond to the overlap between the final
states of SP with λ = 1, k ≃ kmax(α) and HU with ϵ = 10−2. For HU we chose d = Din

for α < αc, while for α > αc we chose d = Dtop (αc is represented by the gray dotted
line). The overlap between the initial Hebbian matrix and the final state of the HU
(green) or SP (blue) with the same choice of the parameters is also shown. While in
both algorithms the distance between initial and final matrix increases as α is increased,
the distance between the final points remains small up to αc.

The direction of this vector coincides with the one of the gradient followed by the
algorithm in the space of interactions at a given time step.

While the convergence speed of the HU does not significantly vary, the SP shows,
at any scale of λ, an acceleration in time that resembles an exponential law. In other
words, while HU explores the space of interactions nearly uniformly in speed, the
SP takes about 15 ÷ 20 time steps to reach a smaller condensed region where it gets
confined until convergence.

The different speeds of the algorithms imply an inherent difficulty in comparing
the trajectories point-by-point. Our analysis will thus rely on defining a particular
direction v̂ in the space of interactions that we will use to compare the two trajectories
and their gradients. Such a direction is defined by the line that connects the initial
Hebbian matrix with the point of convergence of the SP,

v̂ = J⃗
(tmax)
SP /σ

(tmax)
SP − J⃗ (0)/σ(0)

|J⃗ (tmax)
SP /σ

(tmax)
SP − J⃗ (0)/σ(0)|

. (2.27)
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Figure 2.13. (a) 3-dimensional projection of the trajectories followed by the system in the
space of interactions during the dynamics of Hebbian Unlearning (HU) and symmetric
perceptron (SP). Numerical measurements have been taken for one sample at N = 800
and α = 0.55, ϵ = 10−2, λ = 10−4. 10 trajectories of the HU are drawn in light blue,
while the average Unlearning path is in blue. The path followed by the SP is depicted
in red. Points represent different steps of the algorithms. HU has been resampled at
regular intervals along the trajectory for simplicity of the data analysis. (b) Absolute
value of the variation ∆J⃗ in logarithmic scale as a function of the normalized time scale
t/tmax where tmax is the maximum number of steps reached by the algorithm in a given
sample. Numerical measurements are for one sample at N = 800 and α = 0.55, ϵ = 10−2,
λ = 1, 10−2, 10−4. Three samples were simulated for the SP and one sample for the HU
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Figure 2.14. (a) qv, angular distance of the trajectory from the reference direction v̂, as a
function of time. (b) q∆,v, projection of the variation along the direction v̂, as a function
of time. (c) q∆,v as a function of qv. Numerical measurements are collected from one
single sample at N = 800 and α = 0.55 at ϵ = 10−2 for the Hebbian Unlearning (HU)
(circles) and different values of λ for the symmetric perceptron (SP) (triangles).

We can now define two time-dependent observables that can help us in the analysis
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of the trajectories:

qv(t) = J⃗ (t)/σ(t) − J⃗ (0)/σ(0)

|J⃗ (tmax)/σ(tmax) − J⃗ (0)/σ(0)|
· v̂ , (2.28)

which is a measure of the angular distance of any point of the trajectory from the
line traced by the direction v̂ at time t. The smaller this quantity is, the more
evidently the trajectory is diverging from v̂. One can also introduce

q∆,v(t) = J⃗ (t+1)/σ(t+1) − J⃗ (t)/σ(t)

|J⃗ (t+1)/σ(t+1) − J⃗ (t)/σ(t)|
· v̂ , (2.29)

that is, the projection of the variation of J⃗ at the step t along the direction v̂. The
larger this quantity is, the more aligned to v̂ the trajectory is.

Fig. 2.14a represents the values of qv during the same trajectory that is depicted
in fig. 2.13a. One can see that qv(0) is small for both the HU and the SP. This
means that they both start in the wrong direction: this is particularly reasonable
for the HU, which involves a random picking of the initialization state. However,
while the SP rapidly reaches qv = 1 because of its high initial acceleration at all the
considered values of λ, in the HU algorithm qv is increasing at lower rate. An initial
overshooting of the SP at high values of λ is signaled by an anomalously high value
of qv at the second step of the process.

The directions followed by the two algorithms with respect to v̂ are shown in
fig. 2.14b. The SP at λ = 10−4 has a peak in q∆,v in the first part of the trajectory,
signaling a high degree of alignment between the gradient and v̂. Later on, the
SP rapidly converges towards the condensed region, where gradients lose their
polarization with v̂, but the convergence point has already been reached. When
higher values of λ are used, no relevant polarization is measured. The HU shows
a similar behavior: the trajectory starts along a direction that is barely aligned
with v̂ but a consistently high degree of alignment is obtained after more or less
half of the iterations. Eventually, the HU also converges towards the final state
losing the alignment with v̂. Fig. 2.14c displays the direction of the variation as a
function of the distance from v̂. Three different behaviors of the trajectory can be
thus recognized for both algorithms. First the trajectory moves away from v̂ after a
bad start, in a second phase it aligns to v̂, and in a third phase the matrix plunges
towards the convergence state.

2.3.3 A geometric interpretation of the effective weights

Considering our analysis of the optimal structure of noise and the robustness
properties of a network trained via HU, we provide for a physical interpretation of
the effective weights ωµ

i that were so fundamental for the TWN algorithm (and so
to HU when fixed points are employed) to reproduce the SVM performance.
Let us introduce the vector J⃗i as the collection of the elements contained in the ith

row of the connectivity matrix, η⃗i
µ as the memory pattern defined as

η⃗i
µ = ξµ

i ξ⃗µ, (2.30)
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Figure 2.15. Mean values assumed by the perceptron overlap ω for SAT, UNSAT and
min patterns during the Hebbian Unlearning process. Measurements are performed at
N = 800, α = 0.3, ϵ = 10−2 over 200 spurious states and several realizations of the
disorder. Error bars are indicated by the shaded region.

and eventually the glassy pattern, defined in analogy with the memory patterns as

η⃗i
∗ = S∗

i S⃗∗. (2.31)

Let us now rewrite a positive perceptron update, i.e. one where the mask ϵµ
ij assumes

a non-zero value, as
δJ⃗P,d

i = + λ

N
η⃗i

µ. (2.32)

We can also rewrite the HU update in the same vectorial fashion, i.e.

δJ⃗i
HU,d = − ϵ

N
η⃗i

∗ , (2.33)

Hence, the effective weights ωµ
i , for the case of data-points being fixed points of the

dynamics, are
ωµ

i = 1
N

η⃗i
∗ · η⃗i

µ . (2.34)

It comes natural to reinterpret ωµ
i as the projection of the synaptic update for HU

on the SP positive one, i.e.

ωµ
i ∝ −δJ⃗i

SP · δJ⃗i
HU (2.35)

at each iteration d. This implies that the more negative ωµ
i the higher is its

contribution to align HU with SP learning. We know that each pair (i, µ) is related
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to a given constraint of the associated optimization problem, with ∆µ
i ≥ 0 for SAT

constraints, and ∆µ
i < 0 for UNSAT ones. Fig. 2.15 shows ⟨ωµ

i ⟩, with the brackets
indicating the average over the spurious states in a given realization of the disorder,
at α = 0.3 and N = 800 for the three types of constraints: SAT, UNSAT and
minimally satisfied, i.e. the SAT constraints with the lowest measured stability. The
fact that the perceptron overlap is negative for both UNSAT and min constraints,
but positive for SAT constraints, suggests that the distribution of the η⃗µ

i looks
anisotropic from the reference frame of the glassy patterns. This is certainly induced
by the fact that glassy patterns η⃗i

∗ are SAT by definition, so they are more likely
to be contained in the same half of hyperspace, defined by the orthogonal plane to
J⃗i, that contains SAT memory patterns. Consequently, since there is a minus sign
on r.h.s. of eq. (2.33), HU is performing the same geometric transformation of the
perceptron in order to align the J⃗i vectors to the memory patterns η⃗i

µ. By only
exploiting the rugged shape of the Hebbian landscape out of the retrieval regime,
the HU algorithm manages to accomplish this task in an quasi-optimal way.

2.3.4 Evolution of the Unlearning algorithm

When training configurations are fixed points of the dynamics with mt > 0+, the
considerations of the previous section no longer apply. Such configurations can be
generated by initializing the network at an overlap m > 0+ with a memory, and let it
evolve according to (1.1). The connectivity matrix is initialized according to Hebb’s
learning rule (1.8). In this setting, if at some point during training m happens
to enter the basin of attraction of the memories, the fixed point reached by the
dynamics will be the memory itself, and the noise contribution will cancel exactly the
learning contribution, giving δJ = 0. On the other hand, for sufficiently high values
of the load α, at the start of the training procedure memories will have zero size
basins of attraction and trajectories will drift away from the memories following the
dynamics. In this scenario, the two contributions δJN and δJU decorrelate, and δJN

will take again a similar role to what described in the previous section. The result
is an algorithm which interpolates between HU when d is small and a supervised
algorithm when basins increase to a size close to (1 −m). In this regime, δJN acts as
a breaking term, preventing the algorithm to further modify the coupling matrix J .
A similar mechanism has been studied in [74] where a supervised term was added to
the standard HU update rule, leading to δJij ∝ −Sµd

i Sµd
j + ξµd

i ξµd
j . Notice that the

term ξµd
i ξµd

j is deterministically reproducing Hebb’s learning rule, while in our study
the HU is modified by a stochastic term, whose nature we have already discussed.
Given a sufficiently small learning rate λ, there will exist a characteristic number of
steps of the algorithm over which the coupling matrix does not change significantly.
We will refer to this timescale as epoch. Averaging the effect of training steps over
an epoch, we get a snapshot of how the algorithm is affecting the couplings at a
given point during training. This can be used to study the relation between δJN

and δJU , quantified by the connected correlation coefficient

CovN-U := 2
N(N − 1)

X

i,j>i

�
⟨δJN

ij δJU
ij ⟩epoch − ⟨δJN

ij ⟩epoch⟨δJU
ij ⟩epoch

�
, (2.36)
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Figure 2.16. Correlation between noise and unlearning contributions to δJ as a function
of the rescaled number of training steps dλ

p , for two values of the training parameter m,
and different values of α. When CovN-U = 1, the algorithm stops modifying the coupling
matrix. Results are averaged over 100 samples. Choice of the parameters: N = 400,
λ = 10−2.

where the average is computed over an epoch. When this quantity equals one, there
is no effective update of the couplings over an epoch. Results are presented in
fig. 2.16 for different values of m and of α, as a function of the number of training
steps d. The number of iterations has been rescaled by a factor p/λ for clarity of the
plot. At any given α, training with higher m results in a faster increase of CovN-U,
i.e. a faster convergence of the algorithm. If the value of m is too low, the algorithm
never manages to build a big enough basin of attraction, and never stops. As α is
increases, higher and higher values of m are required for the algorithm to stop, since
the typical size of the basins of attraction shrinks.
The network performance can be benchmarked by tracking the evolution of the

lowest stability ∆min throughout the training procedure. Results are presented
in fig. 2.17 for different values of α and m. For sufficiently low values of α and
sufficiently high values of m, ∆min surpasses the zero. Once this condition is met,
the value ∆min becomes essentially constant, even if CovN-U < 1, signaling that the
update of the coupling matrix is still in progress. The result is a curve ∆min(d) which
barely surpasses zero. For each value of m there exists a critical value αc(m) beyond
which no amount of steps is able to produce ∆min > 0. Extrapolating empirical
results to the N → ∞ limit, one finds

αc(m) = A · (m)B + C,

where
A = 0.35 ± 0.01, B = 6.9 ± 0.5, C = 0.58 ± 0.01
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Figure 2.17. Minimum stability as a function of the rescaled number of training steps dλ
p ,

for two values of the training parameter m, and different values of α. When ∆min ≥ 0,
each memory is a stable fixed point of the dynamics. Results are averaged over 100
samples. Choice of the parameters: N = 400, λ = 10−2.

Consistently with what presented in the previous section, in the limit m → 0+ one
finds the critical capacity of the Unlearning algorithm [31, 21]. The critical capacity
increases up to a value αc(1) = 0.93 ± 0.01 when m reaches unity.

Regardless of whether ∆min > 0 is obeyed, one can monitor the network perfor-
mance as an associative memory device by measuring the retrieval map mf (m0).
We find that the best performance always corresponds to the number of training
step maximizing ∆min, hence the curves mf (m0) are all relative to this number of
steps. Results are presented in fig. 2.18. When perfect-retrieval is achieved (i.e.
α < αc(m)), lower values of m increase the degree of robustness of the network (i.e.
enlarge the basins of attraction), at the cost of a lower critical capacity.

Checkpoint
In this section we have seen that:

• The TWN algorithm formally converges to HU when training data are stable
fixed points having an overlap mt = 0+ with the memories.

• Consistently with the theory, the HU algorithm approaches the performance of a
SVM (both in terms of perfect-retrieval and robustness) in a full unsupervised
way: it is thus faster and more biologically relatable. This behaviour is
conserved until a critical capacity αHU

c ≃ 0.6.

• An explanation for the quality of the stable fixed points that can be sampled
from a landscape initialized with the Hebbian rule can be found in the dispo-
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Figure 2.18. Retrieval map mf (m0) for two values of α and different values of the training
parameter m. At α = 0.4, every m leads to stable memories, i.e. mf (1) = 1. At α = 0.8,
only the highest values of m lead to stable memories, while for low values of m one has
mf (1) < 1. Results are averaged over 100 samples. Choice of the parameters: N = 400,
λ = 10−2.

sition of this states in the configuration space. When applying a particular
transformation of the space of the network configurations (see eq. (2.31)), stable
fixed points appear to be distributed anisotropically around the memories.

• The TWN algorithm has be exploited to propose a supervised version of the
HU algorithm that is fast (because it keeps sampling the stable fixed points of
the landscape) and reaches a higher critical capacity, i.e. αc ≃ 0.93.
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2.4 The case of correlated memories

We now consider two sets of memories {ξ⃗µ}αN
µ=1 that contain different types of internal

correlations and evaluate whether the new regularization technique we found in
terms of noise structure can be applied in the case of correlated memories.
One set is composed by MNIST images representing handwritten digits, conveniently
reshaped into one-dimensional arrays. Each image is a square matrix of N = 282 =
784 pixels assuming values between 0 and 255. Each pixel ξµ

i is then transformed
into −1 if its original value is 0 and +1 if its original value is larger than 0. In
addition to this we flip the entries of the vector with a probability p = 0.1 to inject
some disorder in the data-point. This operation is necessary to smooth the very
strong biases that might cancel σi, standard deviation of the coupling matrix along
line i, inducing some relevant quantities to diverge.
The other set of memories under consideration is composed by configurations sampled
from a 2-dimensional Ising model in the paramagnetic phase (i.e. with at different
temperatures larger than the critical one). Each configuration is also presented as a
N = 784 sized array with ξi ∈ {−1, +1}. Figures 2.19a and 2.20a show examples of
training configurations from these collections.

(a) Data-point
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(b) Correlation matrix

Figure 2.19. Representation of the disordered MNIST set. The data-point is represented
in the matrix shape, while the correlation matrix is computed with 10 examples and the
unitary diagonal entries is set to 0 to enhance the off-diagonal terms.

Both types of memories have internal correlations among their elements. MNIST
data are very regular: the digit is written in the middle of the image and each digit
is sufficiently symmetric, under the geometric point of view. On the other hand,
Ising configurations have thermal correlations. Moreover, different memories can be
mutually correlated across the set. In particular, MNIST digits are repeated across
the set, and they might be generally similar with each other (e.g. a ’four’ does not
look very different from a ’one’, as well as a ’eight’ might look similar to a ’zero’).
On the contrary, Ising configurations have low mutual correlations, because they are
sampled in the paramagnetic phase, where there are no biases due to the non-zero



2.4 The case of correlated memories 51

(a) Data-point
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(b) Correlation matrix

Figure 2.20. Representation of the Ising set. The data-point is represented in the matrix
shape, while the correlation matrix is computed with 10 examples and the unitary
diagonal entries is set to 0 to enhance the off-diagonal terms.

magnetization. These aspects appear evident from the correlation matrices reported
in figures 2.19b, 2.20b.

2.4.1 Numerical analysis
In order to characterize the quality of the noise contained into the training data,
we generate Hebbian couplings JH

ij from the memories and perform a Monte Carlo
routine at different temperatures T , to probe the energy landscape at different levels,
as previously done for the set of random memories. As we know from the theory in
appendix B.2 the gradient of the Loss function of a SVM is given by

δL ∝ lim
m→1−

N,pX

i,µ

1
2σi

h
(mµχ1,µ

i + m1,µχµ
i ) − (mµξµ

i ξµd

i + Mµd
µ χµ

i )
i

exp
 

− m2∆µ2

i

2(1 − m2)

!

(2.37)
that can be rewritten in a more compact fashion as

δL = δLN + δLU . (2.38)

The quantity indicated as Mµd
µ is an overlap between two memories, defined as

Mµd
µ = 1

N

PN
i=1 ξµ

i ξµd
i , while m1,µ is the overlap between the one-step evolution of

the picked data-point and the µth memory, namely m1,µ = 1
N

PN
j=1 S1,µd

j ξµ
j (see

appendix B.2 for further details). The main contribution to the gradient are then
given by the two following quantities

ωµ
i = 1

2σi

�
mµχ1,µ

i + m1,µχµ
i

�
, (2.39)

and
Ωµ

i = 1
2σi

�
mµξµ

i ξµd
i + Mµd

µ χµ
i

�
. (2.40)
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One is specifically interested in two features: the order of magnitude of ωµ
i and Ωµ

i

in (B.4) and their values when |∆µ
i | < 0+. In order for the optimal noise condition

to apply, ωµ
i should be dominant with respect to Ωµ

i and negative in the relevant
interval of values. Hence we measure the Pearson coefficient between ωµ

i , Ωµ
i and

the stabilities ∆µ
i across different levels of the Hebbian landscape as well as the

representative value for the same two quantities around ∆µ
i = 0, i.e. ωemp(0) and

Ωemp(0). We perform such measures for both the two sets of memories, across the
Hebbian landscape.
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(a) Pearson coefficient
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(b) Quality of noise indicator

Figure 2.21. Numerical analysis of the noise contained in the configurations sampled from
the Hebbian landscape for the MNIST data-set. The panel on the left reports a measure
of the dependence of the relevant observables on the stabilities. The panel on the right
reports an interpolation of the relevant observable for very small stabilities, indicating
whether the optimal noise condition is well satisfied or not. Measures are averaged over
50 landscapes. Choice of the parameters: N = 784, α = 0.5.

From the study of the disordered MNIST set shows we can conclude that such
configurations would not lead to a good minimization of the SVM Loss at altitude in
the Hebbian landscape. This is implied by two observations: the noise contribution to
the gradient is not negligible due to a rather significant dependence on the stabilities
(see fig. 2.21a), and the values assumed by the same contribution relatively to small
stabilities are large and negative (see fig. 2.21b).
On the other hand, Ising configurations are good training configurations at low
temperatures T , showing a similar scenario to the one encountered with random
configurations: the noise contribution does not depend on stabilities, suggesting it is
going to cancel step by step in learning (see fig. 2.22a), and ωemp(0) is negative and
dominant with respect to Ωemp(0) in the sensible range of ∆µ

i (see fig. 2.22b).
The interpretation of the results is straight-forward. In contrast with the Unlearning
contribution, the Noise contribution to the gradient of the Loss depends on the
mutual correlations among memories in the set. Since digits in the MNIST set
are similar with each other, such points result difficult to be learned by the TWN
algorithm. On the contrary, Ising configuration are sufficiently separated with each
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(a) Pearson coefficient
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(b) Quality of noise indicator

Figure 2.22. Numerical analysis of the noise contained in the configurations sampled from
the Hebbian landscape for the Ising data-set. The panel on the left reports a measure of
the dependence of the relevant observables on the stabilities. The panel on the right
reports an interpolation of the relevant observable for very small stabilities, indicating
whether the optimal noise condition is well satisfied or not. Measures are averaged over
10 landscapes. Choice of the parameters: N = 784, α = 0.5.

other, implying the optimal noise condition to be satisfied for some regions of the
landscape. We can also conclude that internal dependencies in the memories, which
were present in both the MNIST and Ising data, are not relevant in the process,
since they do not enter in both ω and Ω.

Checkpoint
In this section we have seen that:

• The paramagnetic bi-dimensional Ising configurations are correctly memorized
by the TWN algorithm with structured noise with mt = 0+ because, similarly
to the random data scenario, the Hebbian landscape generated from these data
contain good training configurations; the MNIST data, on the other hand,
fail at reaching a good memory performance because the relative Hebbian
landscape is poor of good training configurations.

• One can approach a SVM that solidly stores a set of memories by means of
the TWN algorithm as far as these memories are well separated from each
other, i.e. they overlap weakly. Internal correlations inside the features of the
memories are allowed as far as memories are mutually distant in the space of
network configurations.
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2.5 Unlearning on Continuous Attractor Neural Net-
works

A Continuous Attractor Neural Network (CANN) represents a successful model that
reproduces spatial associative memory [38, 75, 76, 77, 78, 79], i.e. the ability to
retrieve real environments embedded in a Euclidean space.
This time we consider a neural network of N binary units Si ∈ {0, 1}. In analogy
with the biology of the hippocampus, units are associated to place cells i.e. special
neurons associated to particular positions in space. We can generate such positions
at random for each one of the L environments that can be memorized by the neural
network. We will employ the so called remapping ansatz, i.e.

r⃗l
i ∈ [−1/2, +1/2]D , i = 1, .., N l = 1, .., L.

Each place cell monitors a D-dimensional sphere of volume w, called place field,
also indicating the average fraction of the whole amount of place fields seen by
that particular neuron. The radius of such a sphere is dc. The radius for D = 1, 2
measures

dc = 1
2w

, D = 1 dc =
r

w

π
, D = 2. (2.41)

Imagining to pin one position in the real space x⃗ in one of the environments l, the
relative neural activity configuration S⃗ will be given by the following rule

(
Si = 1 if |r⃗i

l − x⃗| ≤ dc

Si = 0 otherwise
(2.42)

where | · | is the Euclidean norm operator. The spatial maps to be learnt by the
network are assembled in the following manner: consider a number L of physical
environments in a dimension D; such environments have a cubic shape of unitary sides
and periodic boundary conditions; then p positions are generated in the environment,
i.e.

R⃗l,µ ∈ [−1/2, +1/2]D , l = 1, .., L µ = 1, .., p.

The real space maps to be stored can be transferred in the activity configuration
space in the shape of memories by applying the usual rule

(
ξl,µ

i = 1 if |r⃗i
l − R⃗l,µ| ≤ dc

ξl,µ
i = 0 otherwise

(2.43)

2.5.1 Hebbian Learning
Once there is a set of memories the Hebbian framework can be generalized to CANNs
to build the couplings Jij among neurons as

Jij = 1
pL

L,pX

l,µ

(ξl,µ
i − w)(ξl,µ

j − w) Jii = 0 ∀i (2.44)

Also in this case we must define a particular dynamic rule to let the system evolve
in time. The most reliable choice is the Glauber dynamics at temperature T [70].
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According to this rule we start from an initial configuration of the units and we
update them asynchronously according to the following prescription

P (S(t+1)
i = x) = 1

1 + e−2βh
(t)
i ·(2x−1)

, (2.45)

with x ∈ {0, 1}, β = 1/T and h
(t)
i = PN

j=1 JijS
(t)
j being the local field. The

correspondent dynamic rule at T = 0 is then

S
(t+1)
i = 1

2
h
1 + sign

�
h

(t)
i

�i
(2.46)

According to the rule (2.44), for α smaller than a critical value and T > 0, the
system explores the real space as a moving bump of activity, when Glauber dynamics
is implemented [77, 75]. Notice that the average activity contained in the moving
bump is, by construction

w = 1
N

NX

i=1
Si (2.47)

When T = 0, in the same region of the phase diagram, memories are closed to
be fixed points of the dynamics. At larger values of a certain threshold αc(T ) the
system falls in a glassy phase where maps are not correctly recalled [76, 75].

2.5.2 Support Vector Machines Vs. Hebbian Rule at T = 0
We are now interested in the numerical study of the CANN at T = 0. Let us pick a
random position x⃗ in one of the environments and build an activity configuration
from that, i.e. by doing





S
(0)
i = 1 if |x⃗ − r⃗l

i| ≤ dc

S
(0)
i = 0 otherwise

(2.48)

The spatial error ϵ is defined as the average distance between the center of mass of
the activity in space at the fixed point reached by implementation of rule (2.46) by
initializing the network in S⃗(0) and the center of mass at the activity at initialization.
The position of the center of mass of the bump in a given map l at time t of the
dynamics is computed in the following way

r⃗(l)
c.o.m.(t) =

PN
i=1 S

(t)
i r⃗

(l)
iPN

i=1 S
(t)
i

. (2.49)

Since both initial positions and maps are generated at random one expects that a
good memory retrieves the stored positions in the environment by attracting the
dynamics in their basins of attraction. In this case the maximal extension of the
basins of attraction is expected to equal the average distance among the random
stored positions, that is ϵ ∼ p− 1

D , in order for them to span the map uniformly.
It has been showed by [38] that this scenario is not reached by the more canonical
CANNs by making use of a Hebbian-like criterion but rather by an optimized neural
network such as a Support Vector Machine (SVM), where all the memories are
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Figure 2.23. Spatial error ϵ measured as a function of L and p for both the SVM and
Hebbian prescriptions. Measures have been averaged over 10 samples for p = 1, 5 and
1 sample for p = 20 for SVM, 10 samples at all p in the Hebbian case. Choice of the
parameters: N = 103, w = 0.3, D = 2.

perfectly retrieved by (2.46) and the stability of the fixed points is maximized (i.e.
local fields in the memory configurations are maximal in absolute value).
These results are reproduced in fig. 2.23 for D = 2 and w = 0.3. Notice that ϵ(L, p)

is an increasing quantity in L that does not depend on p in the Hebbian network,
while the optimal packing scenario is obtained in the SVM case.

2.5.3 Hebbian Unlearning
We now generalize the HU algorithm [17] for the case of a CANN. J (0) is chosen to
be the Hebbian connectivity matrix according to rule (2.44).
Then the following three steps are iterated:

1. Random shooting: a random initial configuration of the neurons is generated.

2. The initial configuration evolves until convergence into a stable state S⃗∗ by
implementation of the dynamics (2.46).

3. The connectivity matrix is updated as

δJ
(d)
ij = − λ

N
(S∗

i − w)(S∗
j − w) J

(d)
ii = 0 ∀i (2.50)

where λ is a small learning rate and d is the number of the algorithm iteration.

We can now characterize the Unlearning network by measuring three relevant
quantities, i.e.
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(a) L = 5, p = 1
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(b) L = 5, p = 5
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(c) L = 5, p = 20
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(d) L = 5, p = 50

Figure 2.24. Left: Spatial error ϵ as a function of the Unlearning steps. Center: average
stabilities ∆ as a function of the Unlearning steps. Right: fraction of satisfied constraints
nSAT as a function of the Unlearning steps. Measures averaged over 10 samples. Choice
of the parameters: D = 2, w = 0.3, λ = 10−2.
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• The spatial error ϵ(L, p) as a function of the Unlearning steps.

• The average stabilities of the memories defined as

∆l,µ
i = (2ξl,µ

i − 1)
NX

j=1

JijqP
k J2

i,k

ξl,µ
j (2.51)

and we are specifically interested in ∆min = min(i,l,µ)(∆l,µ
i ).

• The fraction of satisfied constraints in the relative percepton problem nSAT : a
constraint labelled by (i, l, µ) is SAT when ∆l,µ

i ≥ 0, UNSAT otherwise.
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Figure 2.25. (a): Spatial error ϵ measured as a function of L and p for both the SVM
and after Hebbian Unlearning (HU). Measures have been averaged over 10 samples for
p = 1, 5 and 1 sample for p = 20 for SVM, with N = 103, 10 samples at all p in the
Unlearning case, with N = 500. (b): log-log plot of ϵ versus p at L = 5 for HU, best fit
line in grey. Choice of the parameters: w = 0.3, D = 2, λ = 10−2.

The behaviour of these three quantities is represented in fig. 2.24 for L = 5 and
p = 1, 5, 20, 50. As one can see, the minimum value of the spatial error is reached in
correspondence of the peak of ∆min and nSAT . However, perfect-retrieval is reached
by the system only for small values of p, signaling the presence of a critical capacity
for the HU procedure, as it was valid for random memories studied in [21, 31].
At this point we can experimentally extrapolate the number of iterations at which ϵ
reaches its minimum value and we measure such value at different values of L to
compare it with the results from the SVM. It should be noticed that the spatial
error ϵ does not depend on L and N but only on p, as found for SVMs in [38]: this
result is displayed in fig. 2.25a. Numerical values are also comparable between the
SVM and the Unlearning network. Figure 2.25b reports the expected behaviour of
ϵ(L, p). The opposite of the coefficient of the best fit line is found to be consistent
in a 3σ confidence interval with the real dimension of space D. In fact, we have

D−1
exp = 0.41 ± 0.03
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Another experiment is performed in order to show the effectiveness of HU in approach-
ing the CANN to the optimal SVM scenario. A single 2-dimensional environment
with p = 20 points disposed on a regular grid and learned by the network according
to the Hebbian learning SVM and HU. Then the map is scanned in space and neurons
are initialized according to the usual criterion (see eq. (2.43)): T = 0 dynamics
is iterated until convergence and the node of the grid that is closest to the final
position of the center of mass of the neural activity labels the starting point. Figure
2.26 reports the results. Same colours are associated to same basins of attraction of
the stored points on the grid. Notice that Hebbian learning (fig. 2.26a) completely
destroys the regularity of the grid, while HU and SVM (fig. 2.26b, fig. 2.26c) center
basins of attraction, that are squared in shape with each side ∼ (1/p) 1

2 , around the
grid points, maximizing their size. SVM performs this job optimally, as it could be
predicted from [38] but HU seems to approach that limit very well.

(a) Hebbian Learning (b) Hebbian Unlearning (c) SVM Learning

Figure 2.26. Representation of the basins of attraction in the real space after the three types
of learning. Stored positions are disposed on a regular grid. Choice of the parameters:
D = 2, w = 0.3, L = 1, p = 20, N = 500, λ = 10−2.

2.5.4 Diffusion dynamics at T > 0
We now switch on the temperature T > 0 and study the dynamics of the activity
bump in the space map as done in [76, 75]. Since we are interested in the diffusion in
space of the bump only one environment will be stored in the network (α = 0 case)
in order to impede the activity to change map [78]. Figure 2.27 represents diffusion
when p is low, i.e. p = 20, for all the three considered learning rules: the position
of the center of mass of the neuronal activity is plotted as a function of the time
steps. Before choosing the temperature it has been checked whether the network
is in the clump phase [76, 77], i.e. neuronal activity is well clustered on the map.
Dynamics is initialized in one given stored position on the map. Disorder appears to
be very strong as the system is stuck for a very long time in one basin of attraction
separated by the others by high barriers in free energy. The SVM explores a region
that is well centered around the stored position, that is reasonable since all memories
are stable fixed points of the T = 0 dynamics. On the other hand, when Hebbian
Learning and HU are implemented the clump descends a bit in the Lyapunov function
before finding a metastable minimum to probe. Another experiment is performed
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Figure 2.27. Diffusive trajectories of the moving bump in the landscape resulting from the
Hebbian Learning, Hebbian Unlearning and SVM. Each time step is chosen to be one
sweep of the network, i.e. N spins being evaluted by the the MCMC algorithm, and
simulations have been run over 5 · 104 sweeps in total. Choice of the parameters: D = 2,
w = 0.3, λ = 10−2, N = 500, L = 1, p = 20, T = 1.0.

by increasing the number of stored positions to p = 200. Just HU and Hebbian
Learning are evaluated this time, because of the high computational cost needed to
find the connectivity matrix of the SVM.
Figure 2.28 displays the results for one realization of the network and one common
initial condition. We notice that diffusion of the Hebbian network is still ineffective
since it gets easily stuck in one metastable state. On the other hand diffusion of the
system after the performance of HU is more efficient since it explores a wider portion
of space. The 2-dimensional track of the center of mass is represented in fig. 2.28a
while the motion in the two separated dimensions are reported in fig. 2.28b.

A diffusion coefficient D can be measured by simulations as done in [77]. In
particular, for D = 2, one has

D = 1
4Nsweeps

Nsweeps−1X

t=1

�
δx2

t + δy2
t

�
(2.52)

where δxt = x(t + 1) − x(t) and δyt = y(t + 1) − y(t).
We thus analyse the case of N = 500, D = 2, w = 0.3, L = 1, p = 200 at a
temperature T = 1 for both the learning procedures. Ten samples of the system are
evaluated. We obtain

DHebbs = (7.0 ± 2.0) · 10−5, DHU = (3.23 ± 0.51) · 10−3, (2.53)

where errors are the standard deviation of the mean over the samples. To prove that
we can effectively refer to the motion as a pure diffusive process, the mean square
displacement of the bump after HU is reported in fig. 2.29 as a function of time:
notice the good agreement of data with the Einstein relation for Brownian motion.
One concludes that diffusion with Unlearning is ∼ 102 times more effective than in the
standard Hebbian scenario, given this choice of the parameters. The supplemental
material in [38] suggests that this is the case for SVM too. In conclusion, HU
reproduces, yet again, the optimal conditions for diffusion in one single environment.

Checkpoint
In this section we have seen that:
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(a)

(b)

Figure 2.28. Hebbian Unlearning (blue) and Hebbian Learning (red). Each time step is
chosen to be one sweep of the network, i.e. N spins being evaluated by the the MCMC
algorithm, and simulations have been run over 5 · 104 sweeps in total. Choice of the
parameters: D = 2, w = 0.3, λ = 10−2, N = 500, L = 1, p = 200, T = 1.

• HU approaches the performance of a SVM even when implemented on spatially
correlated memories. This result is consistent with the analysis advanced in
section 2.2.

• When spatial maps are learned through SVM, or nearly equivalently HU, a
Monte Carlo samples the real Euclidean space very effectively, without getting
trapped in a limited region.
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Figure 2.29. Mean square displacement of the bump after the optimal amount of Unlearning.
The diffusion coefficient DHU has been fitted from the data. Data have been averaged
over 10 realizations. Choice of the parameters: D = 2, w = 0.3, λ = 10−2, N = 500,
L = 1, p = 200, T = 1.

2.6 Sampling the optimal noise
Selecting training data that satisfy equation (2.20) amounts to imposing specific
internal dependencies among the noise units χ⃗, which are no more i.i.d. random
variables, as it was in [68]. We refer to such dependencies an structure of noise, and
this is what apparently characterizes particular states in the Hebbian landscape of
attractors, such as stable fixed points and surrounding saddle points.
Insights from the previous sections on the structure of well performing training data
can be used to sample good training configurations according to other strategies.
Namely, one can use a supervised Monte Carlo routine that searches for maximally
noisy configurations (i.e. mt = 0+) satisfying condition (2.20). The coupling matrix
is initialized according to Hebb’s rule (1.8), and updated recursively according to
either TWN (see eq. (2.1)) or HU (see eq. (1.10)). We first introduce the sampling
algorithm and then report some numerical results regarding both the TWN and HU
routines. We sample maximally noisy training configurations mt = 0+ such that
E(χ⃗|m, J) < 0, where

E(χ⃗|m, J) := mp
2π(1 − m2)

N,pX

i,µ

ωµ
i exp

 
− m2∆µ2

i

2(1 − m2)

!
, (2.54)

that is a function of the noisy variables χµ
i , conditioned on a reference overlap m

and the couplings J . Sampling is done through the following procedure:
1. The network is initialized in a random configuration and the asynchronous

dynamics in eq. (1.1) is run until convergence on a fixed point. The final state
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S⃗µd must have an overlap mt in the interval (0, 1/
√

N) with one memory µd,
otherwise the procedure is repeated.

2. A T = 0 temperature dynamics in the landscape of E(χ⃗|m, J) is performed
until E(χ⃗|m, J) < 0. We use a Kawasaki kind of dynamics over the noisy
variables χ⃗ to make sure that mt maintains the prescribed value.

Since E(χ⃗|m, J) is proportional to δLU (see eq. (2.16)), the procedure will lead to a
reduction in the Loss in eq. (2.7). In this setting, the perfect-retrieval and robustness
properties can be tuned by the parameter m, while the training configurations always
have a fixed value of mt = 0+. In particular, to require a performance that is most
similar to the one of a SVM, we will set m → 1−.
The sampling procedure starts from fixed points because we know, from the previous
sections, that they are close to be the most effective configurations. Interestingly, the
described procedure results significantly more effective than a standard minimization
of L(m = 1−, J): in the latter case training stops when L = −1, while the former
technique apparently pushes the stabilities further in the positive values.

2.6.1 Algorithm performance
The sampling procedure results in a better performance for both TWN and the HU
update rules. Results for TWN are reported in fig. 2.30. Panel (a) shows that
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(c)

Figure 2.30. Performance of the TWN algorithm taught with noisy configurations sampled
according to section 2.6 regarding four progressing values of the load α. (a) Minimum
stability as a function of the algorithm time: full line is the HU with sampling, dotted
line is the traditional HU. (b) Retrieval map mf (m0), relatively to the circles in panel
(a) for α ∈ [0.35, 0.7, 0.8]: full line is the HU with sampling, dashed line is a SVM
trained with no symmetry constraints with the same control parameters. (c) Saddle
index f as a function of the algorithm steps for α ∈ [0.35, 0.7, 0.8]. The sub-panel zooms
over α = 0.35 alone. All data points have been averaged over 20 samples in (a),(b)
and 5 samples in (c). Errors are neglected for clarity of the image. The choice of the
parameters: N = 100, λ = 10−3, m = 0.9999.

perfect-retrieval is reached up to α ≃ 0.8 for a network of size N = 100. Panel
(b) shows the retrieval map mf (m0), for different values of α and for the lowest
number of algorithm iterations leading to perfect-retrieval. The high values of mf

for m0 ∼ 1 indicates that the network, while achieving perfect-retrieval, maintains





2.6 Sampling the optimal noise 65

Checkpoint
In this section we have seen that:

• Instead of sampling specific states in the energy landscape of the model, i.e.
saddles of a given index or local minima, one can directly sample the optimal
noisy training configurations, i.e. the best configurations satisfying eq. (2.20)
for each step of the training algorithm.

• The network obtained by sampling directly the best noisy training data out-
performs both the TWN algorithm and HU in terms of maximum retrieval
capacity and robustness.
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2.7 Summary & Conclusions
In this chapter we have seen that:

• The training-with-noise algorithm [68] converges to a network that is fully
described by the statistical mechanics developed by Wong and Sherrington
in [65, 66]. For any value of α, when the training overlap is mt = 0+ the
algorithm trains a Hebbian network; when mt = 1− the same procedure trains
a Support Vector Machine.

• The symmetric version of the training-with-noise algorithm can modified to
learn configurations having mt = 0+ and satisfying the condition (2.20): while
Gardner’s standard algorithm would have trained a Hebbian network, now the
resulting network approaches a Support Vector Machine.

• The initial conditions for the algorithm are important. When the model is
initialized in a Hebbian network, stable fixed points and low saddles in the
energy landscape having mt = 0+ with respect to the memories abundantly
satisfy the optimal noise condition in eq. (2.20), favouring the training of a
Support Vector Machine. Since these states are very far from the memories the
procedure can go fully unsupervised (by means of a relaxation dynamics or a
Monte Carlo sampling at low temperatures), increasing in speed and biological
plausibility.

• The traditional Hebbian Unlearning algorithm is contained into the training-
with-noise algorithm, when mt = 0+ and the sampled states are stable fixed
points of the dynamics. Since such states are good noisy configurations,
according to the criterion in eq. (2.20), the Unlearning routine must train a
network that resembles a Support Vector Machine. This statement is supported
by detailed numerical evidence.

• Memories containing an internal structure in the features (e.g. memories that
can be mapped into positions in a Euclidean space, hence having strong spatial
correlations), yet being well separated in the configuration space, can be learned
by the modified training-with-noise algorithm and Unlearning. Memories that
have both an internal structure and mutual correlations among each other fail
to be learned by the same methods.

For the purpose of statistical mechanics, our focus in this study is on disordered
systems, specifically in the context of associative memory, which is a prominent
area of research. The work by Abbott and Kepler [80] investigates the learning
of memory collections as a flux in Gardner’s space of interactions [15]. This flux
exhibits three distinct fixed points, or universality classes, representing unique (or
saturated) solutions to the perfect-retrieval problem: the Hebbian matrix [30, 11, 3],
the Pseudo-inverse matrix [81, 82], and the Support Vector Machine (SVM) [38, 6].
While we understand the retrieval properties of Hebbian networks, which do not
achieve proper perfect-retrieval, it is important to note that Pseudo-inverse matrices
achieve perfect-retrieval up to α being unity. However, they also represent overfitting
systems, as memories have null basins of attraction when α > 1/2. In this context,
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the training-with-noise algorithm serves as an interesting interpolation between two
of these fixed points: the Hebbian point (corresponding to mt = 0+) and the SVM
(corresponding to mt = 1−). By considering the noise injection of the training-with-
noise algorithm as a regularization in the perceptron learning process, we introduce
another degree of freedom, which is the noise structure. When the noise is i.i.d.,
an SVM can be trained with mt → 1−. However, if the training data satisfy the
condition for optimal noise, we only require mt = 0+ to approach the SVM fixed point,
at least for α values that are not too high. Our work demonstrates that Hebbian
Unlearning represents this type of flux in the space of interactions, challenging the
prevalent belief in the statistical mechanics community that Unlearning leads the
connectivity matrix to resemble a Pseudo-inverse matrix rather than a perceptron,
particularly the most stable one. This supports the idea that Unlearning serves as
an effective and unsupervised (hence more biologically relatable) training procedure
for associative memory models.

Moving on to the potential implications of our work in biology and artificial
intelligence, empirical observations indicate that the mammal brain is a highly
efficient learner. It requires only a few examples to memorize concepts and generalize
them [83, 84]. Some brain regions seem to function similarly to perceptrons [39, 40],
even though natural learning is unlikely to be supervised. Neuroscientists increasingly
emphasize the significance of sleep for memory consolidation [85, 86], and intriguing
connections emerge between unsupervised training algorithms in machines and the
necessity of specific synaptic plasticity processes occurring separately from daily
experiences [19, 87, 88, 20, 89, 90]. Hoel [91] speculates on the importance of dream-
sleep to avoid overfitting in the brain by injecting noise through hallucinoid contents,
thereby enhancing robustness. Based on these works, a local Hebbian-like action
on synapses can ensure decorrelation of stored memories and prevent confusion.
Contrary to past literature repeatedly stating Hebbian Unlearning as a form of
reverse learning, our research reveals that it is responsible for learning coherent noisy
versions of memories, helping minimize overfitting.

It is essential to emphasize that the theoretical neuroscientists [92, 93, 94]
simultaneously, yet independently, proposed the importance of an anti-Hebbian rule in
learning. This rule emerged as a useful mechanism for decorrelating information in the
system and maximizing the quality of the retrieval process. Scientists also conjectured
the potential homeostatic role of such inverse processes, observed indirectly in real
networks of neurons, indicating a tendency for the total synaptic volume to be
conserved in the brain [95, 96]. The fact that this inverse rule spontaneously arises
from noisy perceptron learning (see eq. (1.15)), encourages the possibility of observing
it in future neurophysiology experiments.

In light of these findings and the work presented in this article, one could conceive
natural learning as a two-phase process, making use of a single synaptic modification
rule. In the first online phase, external stimuli are processed by the network using
the standard training-with-noise algorithm. These stimuli can be imagined as
maximally noisy versions of unknown archetypes embedded in the environment.
Consequently, the training shapes a pure Hebbian landscape of attraction outside
the retrieval regime. In the second offline phase, the early-formed network samples
structured noisy neural configurations, weakly correlated with the archetypes, from
the landscape of attractors. These states could be lower saddles or stable fixed points
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of the neural dynamics. Subsequently, when these neural configurations undergo the
same kind of training-with-noise algorithm, memory is consolidated by centering the
unconscious archetypes in the middle of large basins of attraction.

In summary, our work makes progress on three fronts. Firstly, it advances a
new type of regularization for associative memory models that strongly relies on the
topology of the landscape of attractors in spin-glass-like neural networks. Future
developments of these studies might focus on characterizing the structure of noise
more rigorously, possibly computing a proper density distribution for the effective
weights in eq. (2.20).
Secondly, it sheds light on the specific structure of noise that is optimal for learning in
neural networks, which may contribute to develop a more refined theory underlying
the empirical techniques of noise injection used in training deep networks [62, 63,
97, 98]. Finally, it establishes a connection between unsupervised learning processes,
which are more biologically relevant, and the supervised ones that underpin most
modern neural network theory. This, in turn, encourages a deeper investigation into
the noise and its structure present in the stimuli used by the brain to effectively
shape associative memory.
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Chapter 3

The inferential power of
Unlearning

We are now going to deal with Boltzmann Machines (BMs), a class of neural networks
introduced in section 1.3.1. BMs accomplish a generative task, i.e. the typical neural
states are meant to be indistinguishable from the data that were used to train the
network. One can thus sample new data from the probability distribution of the
model. For what concerns this kind of systems it is useful to define the concepts of
overfitting and generalization.
In the context of BMs, three probability distributions play a role: the inferred
model Pmod, the empirical distribution of the training data Pdata and Ptrue, i.e. the
real hidden distribution from which data are sampled. We say that the inferred
model is overfitting (the data) when Pmod resembles Pdata more than Ptrue, i.e. the
model fits the training data better than it does with unseen examples generated
from the same distribution. This translates into an over-specialization of the model,
namely it becomes too focused on the details of the specific training-set, instead of
understanding the broader structure highlighted by the data. Conversely, when the
performance of the model does not change significantly when it is trained with a new
unseen set of data generated from the same source, we will say that it generalizes
well.
There are many aspects that impede neural networks to generalize well. For instance,
BMs always tends to overfit the training data, by construction. Though, if we
assume the data to satisfy the law of large number, and the size of the training-set
is sufficiently large, one can approach the true hidden distribution. In principle,
if all the possible data are used for training, all the realizable testing data will be
included in the statistics. However, when N is large enough, the number of available
data might not be enough to reach a good degree of generalization. A general
idea from statistics wants overfitting to be related to an over-parametrization of
the model: there are too many degrees of freedom that the model can employ to
reproduce the training data in detail. This argument holds for BMs, that fit the
first two moments of a probability distribution by minimizing a Loss is a simple way.
Nevertheless, this idea seems not to be valid in deep neural networks, which instead
benefit from over-parametrization [99, 100] . In this case the gradient of the Loss
must be performed by computing quantities over the several layers: this makes the
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process complex and barely controllable. Since real data are not generated by a
Boltzmann distribution, the real statistics of the data cannot be fully known, i.e. the
loss of the BM learning problem cannot be fully minimized. Nevertheless one can
employ regularization methods to minimize the distance between the the model and
the real statistics of the data while, at the meantime, selecting specific models in
this region of comparable loss. This provides different inferred systems with different
properties, depending on additional requirements imposed on the inferential problem.
For instance, some of these models can be sparse or even contain null parameters
(e.g. L0, L1-norm and information based regularization schemes [101]), others are
fully connected (e.g. L2-norm method). Past literature [102, 103, 104] highlighted
that critical models, i.e. inferred systems being highly susceptible to small changes
in the parameters, can be attractive for BM learning. In fact, if we consider training
as an homogeneous sampling of the models that minimize L, critical models have a
large basin of attraction and are thus sampled most often [104]. Criticality can be
problematic for data generation: it implies a long correlation time in the Monte Carlo
dynamics, slowing down the sampling process; it makes the model susceptible under
rescaling of the parameters, reducing its predictivity in real data applications. Hence,
avoiding criticality might help increasing generalization. To summarize, we define
the generalization performance of the model according to two properties: accuracy,
i.e. the capability of the model to be as similar as possible to the distribution that
generated the data; robustness, i.e. the tendency of the model not to change its
typical configurations when slightly changing (e.g., rescaling by a common tempera-
ture factor) the parameters. The goal of this chapter is to introduce a new type of
regularization in order to find a better compromise between these two requirements.
This new tool, that we named Unlearning regularization, appears to be more effective
than other techniques in approaching a higher generalization performance of the
neural network. The performance of the Unlearning regularization is evaluated from
artificial data generated by both a Curie-Weiss (CW) and a Sherrington-Kirkpatrick
(SK) model with a small number of neurons. In this way the original parameters
are known, the fixed points of the learning equations are reached precisely and the
useful quantities can be computed exactly.
A particular limit of this type of regularization coincides with a thermal version
of the traditional Hebbian Unlearning (HU) algorithm studied in chapter 2. We
hence evaluate this particular case of study and conclude that HU is able to infer the
original data distribution with a very good degree of generalization. The performance
shows an optimum in time that scales with the control parameters, as it was for the
associative memory task. We conclude that HU can be interpreted as a two-steps BM
learning procedure. Finally, our last contribution is a study of the under-sampling
regime of BMs in the case of random data, which provides for a new linking trait
between generative models and the best performing associative memory models.

The structure of this chapter is the following. Some extensively employed reg-
ularization techniques (i.e. L1 and L2) are firstly introduced in section 3.1. Then
the new Unlearning regularization is defined in section 3.2 and its generalization
performance is analyzed for two different data sources: a CW model (section 3.2.1)
and a SK model (3.2.2). The study of a particular limit of the regularization tech-
nique leading to Unlearning follows in 3.3, with an explanation for its inferential
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behaviour. Eventually, in section 3.4, we identify a common trait between SVMs
and BMs in their under-sampling regime, i.e. when the number of training data is
small.



72 3. The inferential power of Unlearning

3.1 Regularization in Boltzmann Machines
Lp regularizations are certainly the most famous regularization methods, also due to
their intuitive interpretation. This approach penalises high values of the parameters
by adding a Lp norm of the same variables in the expression of the Loss function. As
a consequence, the sparsity of the graph is incentivized: the redundant parameters
are weakened with respect to the relevant ones. The expression of the Loss of a BM
with L1 and L2 regularizations is given by the following equations

L1 = LBM (J, h⃗) + γ1
X

i,j>i

|Jij | + γ1
X

i

|hi|, (3.1)

L2 = LBM (J, h⃗) + γ2
2
X

i,j>i

J2
ij + γ2

2
X

i

h2
i , (3.2)

where LBM is defined in eq. (1.25) and γ1, γ2 two small regularization rates. This
translates into new updating rules for the parameters, i.e.

δJ
(1)
ij = δJBM

ij − λγ1sign(Jij) δh
(1)
i = δhBM

i − λγ1sign(hi), (3.3)

δJ
(2)
ij = δJBM

ij − λγ2Jij δh
(2)
i = δhBM

i − λγ2hi. (3.4)

We are now interested in a criterion that describes the generalization performance of
a BM. As mentioned before, we divide generalization into two features: accuracy, i.e.
the similarity of Pmod to Ptrue, in terms of a measure in the space of the probability
distributions; robustness, i.e. capability of the model to change slightly under
variations of the parameters.
The first aspect can be quantified by the Kullback-Leibler divergence DKL(true|mod)
between the inferred model and the original one, defined as

DKL(true|mod) =
X

S⃗

Ptrue(S⃗) log
 

Ptrue(S⃗)
Pmod(S⃗)

!
. (3.5)

This quantity is not symmetric under the exchange of the two distributions, which
can be inconvenient to define a distance. We can then adopt a symmetric version of
the divergence as

sDKL(true, mod) = DKL(true|mod) + DKL(mod|true). (3.6)

Even if numerical results do not show a significant difference between these two
quantities, we will mainly adopt sDKL.
Regarding the second trait, it is known that Ising-like models inferred via BM
learning are close to be critical [102, 103, 104]. Criticality is associated with a
susceptibility of the system to small variations of the temperature and can be
measured through the specific heat [105]. This observable is defined as

Cv(β) = −β
∂Sβ

∂β
= β2

�
⟨E2⟩β − ⟨E⟩2

β

�
, (3.7)

where Sβ is the entropy of the model at a given inverse temperature β. Notice that
eq. (3.7) defines a susceptibility with respect to the energy E, which also uniquely
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determines the model with its parameters. The fact that inferred neural networks
typically display a peak in Cv around the value of β used for training implies the
approaching of a critical behaviour at that same temperature (the finite size of the
system impedes Cv to properly diverge and to show a real criticality). Therefore,
since all parameters naturally scale with β in eq. (1.23), Cv is a measure of the
sensibility of the model to a small perturbation of the parameters: high values
reached by Cv suggest strong variations of the inferred statistics to small variations
of the parameters. From now on we will consider the quantity Cv(β)/β for β ̸= 1 or,
equivalently, Cv(1) since they properly represent the variation of a thermodynamic
quantity, i.e. the entropy of the model, with respect to the inverse temperature β.

Checkpoint
In this section we have seen that:

• Lp regularizations are used in BMs to weaken the redundant parameters with
respect to the relevant ones.

• The generalization capability of a BM is declined in two different properties: the
similarity between Pmod and Ptrue; the robustness of Pmod under perturbations
of the parameters.

• The distance between the inferred model and the true distribution of data can
be measured through the Kullback-Leibler divergence; the robustness of the
model under a perturbation of the parameters is signaled by a flattening of
the rescaled specific heat Cv(β)/β, or equivalently Cv(1) when the model is
inferred at β = 1.
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3.2 Unlearning regularization
We now propose a new type of regularization that has, as a goal, to impose the
maximum robustness under rescaling of the parameters, i.e.

J −→ aJ h⃗ −→ ah⃗ with a ≥ 0. (3.8)

We can interpret this operation as a redefinition of the inverse temperature β in
the model. We will evaluate the performance of this method on different types
of data-sets, then we will compare it to Lp regularizations showing a gain in the
generalization capability of the network.

For the model to be robust under a redefinition of the parameters, we can add
a regularization term to the traditional BM loss function that shifts the peak of the
specific heat (i.e. the critical temperature) away from β = 1, where the data are
generated. Hence, let us define the following loss function

L(J, h|a) = DKL(data|1) +
�

a − 1
a

�
DKL(data|a), (3.9)

with
DKL(data|β) =

X

S⃗

Pdata(S⃗) log
 

Pdata(S⃗)
Pβ(S⃗)

!
. (3.10)

Notice that the chosen distance between the two distributions is asymmetric, but the
reason for this choice will be evident in a few lines. The gradient descent equations
for this Loss function become

δJij = λ [a (⟨SiSj⟩data − ⟨SiSj⟩a) − (⟨SiSj⟩1 − ⟨SiSj⟩a)] , (3.11)

δhi = λ [a (⟨Si⟩data − ⟨Si⟩a) − (⟨Si⟩1 − ⟨Si⟩a)] . (3.12)

When a = 1 equations (3.11), (3.12) coincide with the original BM learning. In the
limit a → 0 one has ⟨SiSj⟩a=0 → 0 when N ≫ 1 and eq. (3.11) tends to a thermal
version of HU (see eq. (1.10)) performed at β = 1, i.e.

δJij = −λ⟨SiSj⟩1,

which is similar to previous attempts from the associative memory literature [106].
On the other hand, when a → ∞, and the learning rate is redefined as λ = O(a−1),
the algorithm becomes

δJij = λ (⟨SiSj⟩data − ⟨SiSj⟩∞)

which also resembles the Unlearning procedure. As a difference with the standard
routine, there is a Hebbian input term ⟨SiSj⟩data which impedes the couplings to
vanish at convergence.
At this point, the choice of the expression for L should appear more clear: we
search for an algorithm that interpolates between the BM learning algorithm and
HU. In this way HU emerges as a particular limit of a regularization method on BMs.
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For the rest of our study we will deal with a small sized network, i.e. N ∼ 18 ÷ 20,
which will allow to reach the fixed points of equations (3.11) and (3.12) precisely,
whether such points are admitted, with no errors due to the finite sampling. We can
then can compute the observables Cv/β or sDKL more easily, in order to determine
the generalization performance of the system. For simplicity of notation we will
rename

⟨SiSj⟩data = cd
ij ⟨SiSj⟩β = cβ

ij ,

where we will mainly deal with β = a and β = 1. The inverse temperature of the
generating model is β = βd. The generating models for the data will be of two
kinds: a mean field fully connected Ising network (i.e. Curie-Weiss [107]) and a
fully disordered network (i.e. Sherrington-Kirkpatrick [71]) which are both critical
in the thermodynamic limit, i.e. they admit a divergence of the specific heat. The
divergence appears as a peak in the finite size case. Solving the BM learning
algorithm equations would lead to the exact parameters of the generating model,
that approaches a criticality at finite N . Nevertheless, solving equations (3.11) and
(3.12) leads to a non-trivial network with its own generalization capability.

3.2.1 Data generated from a Curie-Weiss model
Let us consider the case of inferring a Curie-Weiss model (CW), that is defined by
the following energy function

ECW [S⃗|J ] = −
X

i,j>i

SiJijSj Jij = J

N
∀i, j. (3.13)

This model can be treated fully analytically in the finite size case, and the solution
procedure for the main quantities is here reported. We will make use of the algorithm
presented in eq. (3.11) and eq. (3.12). In this case correlations can be obtained
exactly even in the finite N case. Since fields are zero, by construction of the model,
we are interested in the evolution equation for the couplings, i.e.

J̇ = λ [a (cd − ca(t)) − (c1(t) − ca(t))] , (3.14)

where we used the fact that both couplings and correlation functions assume the
same values ∀i, j. Notice that all elements of the matrices are identical, because
each node receives the same fields from its neighbours. The fixed point equation for
the correlation functions from eq. (3.14) is

c∗
a = c∗

1
1 − a

− a

1 − a
cd, (3.15)

where the star indicates the value of the correlations at convergence. Moreover we
know that

ZβJ =
X

m

 
N

N
2 (1 + m)

!
exp

�
βJ

2 (Nm2 − 1)
�

, (3.16)

where m ∈ [−1, −1 + 2
N , .., 1 − 2

N , +1] and we used

E[S⃗] = −J


N

 
1
N

X

i

Si

!2

− 1


 = −J

�
Nm2 − 1

�
. (3.17)
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Then one has that the second moment of the magnetizations ⟨m2⟩β with respect to
the Gibbs-Boltzmann measure can be written as

IN (βJ) =
P

m m2� N
N
2 (1+m)

�
exp β

2 J(Nm2 − 1)
P

m

� N
N
2 (1+m)

�
exp β

2 J(Nm2 − 1)
= 1 + (N − 1)c(βJ)

N
. (3.18)

Thus
c(βJ) = NIN (βJ) − 1

N − 1 (3.19)

The fourth moment of the magnetization ⟨m4⟩β can be written as

I
(4)
N (βJ) =

P
m m4� N

N
2 (1+m)

�
exp β

2 J(Nm2 − 1)
P

m

� N
N
2 (1+m)

�
exp β

2 J(Nm2 − 1)
= 1 + (N3 − 1)k(βJ)

N3 , (3.20)

where k(βJ) is the fourth-order correlation among spins. Eq. (3.15) becomes

c(aJ) = c(J)
1 − a

− a

1 − a
c(βdJ), (3.21)

or equivalently
IN (aJ) = IN (J)

1 − a
− a

1 − a
IN (βdJ), (3.22)

that has be to solved for J .
The specific heat of the inferred model can be computed as

Cv(β) =
�

βNJ(a)
2

�2 �
I

(4)
N (βJ(a)) − I

(2)
N

2
(βJ(a))

�
. (3.23)

Equation (3.22) is solved for a network of N = 20 neurons and results are reported in
fig. 3.1. As showed in fig. 3.1a the specific heat has a peak slightly after β = 1 that
flattens progressively when a is decreased. Note that, for each value of a the couplings
J = J(a) are obtained from the calculations, but quantities are computed from the
Gibbs-Boltzmann distribution with the rescaled parameters β · J(a). Moreover, in
fig. 3.1b J(a) is computed and the quantity aJ(a)/βd is plotted as a function of a
for different choices of βd. As one can notice, the lines approach a linear regime
before reaching J(1)/βd = 1. This behaviour signals that J(a) is nearly constant in
a, hence the inferred model changes little passing from β = 1 to β = a, as required
by the regularization.

3.2.2 Data generated from a Sherrington-Kirkpatrick model
Let us consider the case of inferring a Sherrington-Kirkpatrick model (SK), i.e.

ESK [S⃗|J ] = −
X

i,j>i

SiJijSj Jij ∼ N (0, N−1/2) (3.24)

For clarity of the results, we will use only one realisation of the parameters for
the SK, having a peak in the specific heat represented in fig. 3.2. A network of
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Figure 3.1. Inferred couplings and specific heat for a small network trained with a CW
model with N = 20 spins. (a) The specific heat is reported in a window centered around
β = 1 at different values of the parameter a. (b) The inferred couplings multiplied by
a/βd as a function of a at different values of βd: the linear regime displays the robustness
the parameters under rescaling.
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Figure 3.2. Specific heat Cv/β as a function of the inverse temperature β for the single
SK spin-glass used in our study. The network contains N = 18 neurons.

N = 18 neurons is trained with a SK model at βd = 0.4 with the new BM learning
algorithm. The parameters are initialised as J (0) = cd and h⃗(0) = 0. Figure 3.3
plots the Pearson coefficient ρ for the 2-point correlation matrices and the sDKL

between the inferred model with β = a and β = 1 and the original SK, both as
functions of the algorithm steps and the parameter a. As one can conclude from
fig. 3.3a and fig. 3.3b, the quality of the correlation between cd and cβ is better for
β = 1 with respect to β = a. This is probably due to the fact that the gradient
deriving from DKL(data|a) in eq. (3.11) is weighted by the factor (a − 1)/a, that
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Figure 3.3. Relevant observables for a small network trained from a SK model as functions
of the parameter a and the algorithm time t. The generating model for the data has
a inverse temperature βd = 0.4. Parameters are initialized in the standard way, i.e.
J (0) = cd and h⃗(0) = 0. ρ(A, B) is the Pearson coefficient between the elements of the
matrices A and B, while sDKL(β, d) is the symmetrized Kullback-Leibler divergence
betwen the Gibbs-Boltzmann distribution at β and the original one that generated the
data. Choice of the parameters: N = 18, λ = 0.06.

in our experiment is smaller than unity. The same trend is observed with sDKL in
fig. 3.3c and fig. 3.3d: the model with β = 1 approaches the original system way
more closely than the one with β = a at any value of a. Another important aspect is
that both ρ and sDKL show a transient regime in the first few training steps. In this
regime ρ oscillates while the sDKL reaches its minimum value, pushing the model
to its best generalizing configuration of the parameters. This holds for both the
models with β = a and β = 1. Fig. 3.4 compares the standard Hebbian initialization
of the couplings with other kinds of initializations, when a = 0.3: J

(0)
ij = 0 and

Jij ∼ N (0, N−1/2) ∀i, j. The study is repeated for both β = 1 and β = a, showing
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a general better performance for β = 1, as was observed from the previous colour
plots. Since the transient regime does not appear in the other two initializations, we
conclude that the initialization of couplings plays a fundamental role in the training
of a BM.
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Figure 3.4. (a) The Pearson coefficient ρ between the correlation matrix cβ with β = a
and β = 1 and the data correlation matrix cd. (b) The symmetric Kullback-Leibler
divergence between the Gibbs-Boltzmann distribution at β = a and β = 1 and the one
that has generated the data, i.e. with βd = 0.4. The full line reports the case of Hebbian
initialization of the couplings; the dashed line corresponds to a random initialization; the
dotted line represents the initialization to J (0) = 0. Choice of the parameters: N = 18,
a = 0.3, λ = 0.06.
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Figure 3.5. Specific heat Cv/β as a function of the inverse temperature β for the original
SK spin-glass and the inferred one via the Unlearning regularization. Choice of the
parameters: N = 18, a = 0.3, βd = 0.4, λ = 0.06.
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In conclusion, we compare the specific heat Cv/β of the original model with
the curve obtained through the Unlearning regularization, at convergence of the
update equation (1.28), always for a = 0.3. We want to stress that the experiments
permits to compute the matrix J associated to the particular choice of a, but the
specific heat at each β is relative to a Gibbs-Boltzmann distribution with rescaled
parameters βJ . The results displayed in fig. 3.5 show that the inferred system has a
lower peak, that is also shifted towards higher values of β, as we had observed in
the CW case.
We conclude that the regularization has both reproduced the statistics of the original
spin system at β = βd and reached a higher robustness under variation of the
parameters, constructing a good generative model.

3.2.3 Comparing different regularization techniques

It is now necessary to compare the generalization performance of the Unlearning
method with other kinds of regularization. We will consider, in particular the L1
and L2 types described in section 3.1. Data will be generated from a SK model with
βd = 0.4, as in section 3.2.2.
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Figure 3.6. Results relative to a Boltzmann-Machine trained with the Unlearning regular-
ization. (a) Specific heat Cv/β of the model as a function of the inverse temperature
β. (b) Pearson coefficient between the correlation matrix of the model at β = 1 and
the data correlation matrix cd. (c) Symmetric Kullback-Leibler divergence between the
model at β = 1 and the generating model. Choice of the parameters: N = 18, λ = 0.06.

To confront the networks obtained by the different methods we require the
standard deviations of the coupling matrices to be comparable among each other.
The network is initialized in the Hebbian fashion, i.e. J (0) = cd. The value of a = 0.3
is thus chosen and the couplings are optimized through eq. (3.11) until convergence.
The standard deviation of the couplings is measured obtaining σJ ≃ 0.17. Conse-
quently the BM learning is repeated by adding the L1 and L2 regularizations. The
rates γ1 and γ2 are chosen in order to obtain the same standard deviation σJ at
convergence of the algorithm. At this point the specific heat Cv/β, the Pearson
ρ(c1, cd) and the symmetric divergence sDKL(1, d) are measured across the three
different techniques. The same procedure is reiterated at different values of a, γ1, γ2
that lead to the same value of σJ : the only difference with the original experiment
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Figure 3.7. Results relative to a Boltzmann-Machine trained with the L1 regularization.
(a) Specific heat Cv/β of the model as a function of the inverse temperature β. (b)
Pearson coefficient between the correlation matrix of the model at β = 1 and the data
correlation matrix cd. (c) Symmetric Kullback-Leibler divergence between the model at
β = 1 and the generating model. Choice of the parameters: N = 18, λ = 0.06.
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Figure 3.8. Results relative to a Boltzmann-Machine trained with the L2 regularization.
(a) Specific heat Cv/β of the model as a function of the inverse temperature β. (b)
Pearson coefficient between the correlation matrix of the model at β = 1 and the data
correlation matrix cd. (c) Symmetric Kullback-Leibler divergence between the model at
β = 1 and the generating model. Choice of the parameters: N = 18, λ = 0.06.

is that now eq. (3.11) is not iterated until convergence to the fixed point, but it is
instead early-stopped as soon as σJ ≃ 0.17 is reached by the system.
The results of the experiment are reported in figures 3.6, 3.7 and 3.8 for the three
methods. The general trend shows that one cannot obtain a minimum specific heat
(let us here consider Cv(1) as the most representative observable to measure) without
a Loss in the distance sDKL between the inferred and the original model. Regarding
the Pearson coefficient ρ, its behaviour can slightly change across the regularizations,
but it is in general anticorrelated with sDKL. Stronger fluctuations in the measures
of ρ and sDKL for the L1 and L2 regularizations are due to a the choice of λ that
needs to be improved for further experiments.
The same results are resumed by the scatter plot in fig. 3.9. The generalization per-
formance of each run is represented as a point with coordinates (sDKL(1, d), Cv(1)):
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Figure 3.9. Graphical representation of the comparison among the three regularization
techniques: U, L1 and L2. The performance of the network is benchmarked through
measuring the specific heat at β = 1 versus the symmetric Kullback-Leibler divergence
between the original model and the inferred one at β = 1. The point (0, 0) represents
the best generalization performance of the generative model. The resulting networks
from the three regularizations have the same standard deviation σJ of the couplings,
specifically darker colours are relative to σJ ≃ 0.17 while lighter colours are associated
to σJ ≃ 0.26. For each cluster of symbols, i.e. one regularization at a given σJ , only one
point is related to the fixed point of the BM learning equations: the rest of the points
are obtained by early-stopping the algorithm at different values of a (U), γ1 (L1) and γ2
(L2) when σJ matches the prescribed value.

each regularization has a different symbol and colour, darker colours represent the
previous experiment with σJ ≃ 0.17 while lighter ones refer to the same experi-
mental procedure with σJ ≃ 0.26. In both the experiments we can evidently see
the Unlearning method to be closest to the origin of the plane, i.e. the best, yet
unreachable, generalization power. The L2 method generally reaches a lower sDKL

while keeping the specific heat high. Conversely, the L1 technique flattens the specific
heat significantly, while gaining in distance between the original and the inferred
models. Unlearning, on the other hand, places itself in between the two methods,
appearing as the best choice to increase the way the network predicts the original
model.

Checkpoint
In this section we have seen that:

• The Unlearning regularization method requires the inferred model to be more
robust under variation of the temperature (i.e. a total rescaling of the pa-
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rameters) and at the same time interpolates between two different training
algorithms: the standard BM learning (i.e. a = 1) and HU (i.e. a = 0).

• Both the cases of data sampled from a Curie-Weiss and a Sherrington-Kirkpatrick
model show a good generalization performance obtained through the Unlearn-
ing regularization method.

• The Unlearning regularization outperforms L1 and L2 methods in generaliza-
tion.
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3.3 The Hebbian Unlearning limit
We will now study the specific limit of the Unlearning regularization leading to an
algorithm which strongly resembles the HU routine. The inferential performance of
the learning procedure is examined by measuring the distance between the inferred
model and the original one at different training steps. Results show, for the first
time, that HU can be employed as an inferential tool, due to the beneficial effect
of the Hebbian initialization of the couplings. We advance an explanation for its
performance that is supported by further numerical evidence.

In the limit a → 0 the updating rules (3.11) and (3.12) become

δJij = −λ⟨SiSj⟩1, (3.25)

δhi = −λ⟨Si⟩1. (3.26)

Eq. (3.25) strongly resembles the traditional HU algorithm in eq. (1.10). By contrast
with the original rule, the new regularization samples configurations at β = 1 instead
of stable fixed points of the neural dynamics, and makes use of a thermal average,
rather than summing each contribution at each time step. We will keep dealing
with small networks so that, given the initial conditions for the parameters, the Loss
function of the problem can be minimized exactly. As a numerical experiment, we
train a BM with N = 18 neurons to learn a SK model at βd = 0.4. The Unlearning
regularization is performed with a = 0 and the usual initial conditions for the
parameters, i.e. J (0) = cd and h

(0)
i = 0 ∀i.
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Figure 3.10. Three relevant observables to benchmark the inferential performance of the
Unlearning regularization with a = 0: the standard deviation of the couplings σJ (a),
the Kullback-Leibler divergence between the original SK model and the inferred one at
β = 1 (b), the Pearson coefficient between the data correlation matrix cd and c1, i.e.
the correlation matrix for the model at β = 1 (c). Choice of the parameters: N = 18,
λ = 0.06, βd = 0.4.

Even if training is performed over both the couplings and the fields, according
to the rules (3.25) and (3.26), the fields h⃗ do not contribute to the energy of the
original model, hence we will focus exclusively on the evolution of the interactions J .
Fig. 3.10a displays the standard deviation of the couplings: as we can see the general
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trend shows an exponential decay of the interactions, as one typically observes in
the HU algorithm [31]. The decay to zero is implied by the fact that the fixed
point of the gradient descent equations for the Boltzmann Machine must be found
when c1 ≡ 0. Fig. 3.10b depicts the symmetric Kullback-Leibler divergence between
the Gibbs-Boltzmann distribution of the original SK model, from which data were
sampled, and the inferred model with β = 1. The sDKL is high at the beginning, it
decreases until reaching a global minimum signaling an optimum in the inferential
performance, then it increases again and stabilizes on a plateau. The minimum is
sufficiently low to indicate a good statistical consistency between the model and
data. The Pearson coefficient between the correlation matrix of the data cd and
the one of the inferred model at unitary temperature c1 is measured step-by-step in
the learning process and reported in fig. 3.10c: as one can notice, there is a global
maximum near the position of the global minimum of the sDKL that we previously
identified. A sub-plot displays the good agreement between the two matrices, the
inferred c1 and cd, at the position of the peak.
This analysis suggests that the Unlearning regularization with a = 0 displays two
working regimes: one transient regime where the model at β = 1 shows a good
statistical agreement with the generating model; another regime where c1 → 0,
and the total performance deteriorates. The first transient regime is the most
important one, because it suggests that HU can be read as inferential tool, aside of
its associative memory use. We know from section 1.3.1 that in BM learning data are
shown to the model each time-step of the algorithm and this imposes the moment
matching. The co-existence of a positive Hebbian term and a negative Unlearning
one in the traditional BM learning has already been pointed out by different works
in the literature [20, 88]. In fact, the variation of each pair of couplings Jij is given
by

δJij = δHJij + δU Jij , (3.27)

where we neglected the dependence on time, and

δHJij = ⟨SiSj⟩data, (3.28)

δU Jij = −⟨SiSj⟩mod. (3.29)

We can interpret each step in the minimization of L as the result of two contributions,
one constant quantity deriving from the data, and another one deriving from the
evolving model. While a standard BM can start wherever in the space of the
parameters and ends up at the fixed point of eq. (3.27), in the HU case the update
is performed by using only the negative unlearning contribution. Nevertheless, the
data have been seen by the model, specifically through the Hebbian choice of the
initial conditions. This observation suggests that HU approaches the minimum of
the loss function in two temporally separated steps: by first descending along the
data direction and then, progressively, along the model one. As a consequence, we
can assume that such a two-steps minimization equals the standard BM learning
only while

|⟨SiSj⟩mod| ≫ |⟨SiSj⟩data| (3.30)

for most of the pairs i, j.
To test whether this condition holds while training a BM regularized with a = 0, and
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initialized with J (0) = cd, we measure the standard deviation of ratio between the
elements of c1 and cd as a function of time. Results are presented in fig. 3.11a, where
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Figure 3.11. (a) Standard deviation of the ratio between the elements of c1 and cd as
a function of the normalized time tλ; the subplot reports the values of tλ associated
to global minima of the symmetric Kullback-Leibler divergence (sDKL) between the
generating model and the inferred one for different choices of λ; both the vertical
and horizontal gray dotted lines report the mean of the points in subplot. (b) Global
minimum of the symmetric Kullback-Leibler divergence between the generating model
and the inferred one as a function of λ in log-scale. Choice of the parameters: N = 18,
a = 0, βd = 0.4.

the standard deviation of the matrix obtained from the ratio of the elements of c1
over cd is plotted as a function of tλ for different choices of λ. The curves collapse
well from λ smaller than O(10−2). The system starts with c1 generally being much
larger than cd, which satisfies the condition (3.30). Around t ∼ 0.2λ−1 the curves
reach a local minimum, then increases until a local maximum at t ∼ 0.29λ−1, to
start a slow decay right after. Both these two stationary points are located where c1
and cd share the same order of magnitude, i.e. where the condition for the two-steps
minimization of the Loss ceases to hold. Specifically, the second stationary point is
associated to the minimum of the sDKL between the original SK and the model, as
reported in the subplot contained in fig. 3.11a. Moreover, fig. 3.11b reports the values
assumed by sDKL at its global minimum for various choices of λ. As one can notice,
the generalization of the model increases when λ is small: we can imagine that the
smaller is λ the stronger is the effect of the initial overshooting at minimizing Ldata.
We have thus showed that, when the network is initialized in the Hebbian fashion,
the dominant contribution to the BM learning is the Unlearning one, and this is the
reason for the HU algorithm to be a good inferential device.

Checkpoint
In this section we have seen that:
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• The HU algorithm can be implemented as an inferential tool, i.e. to learn the
joint probability distribution of the data, instead of storing a small subset of
data-points.

• The quality of the inferential performance is due to the initial conditions for
the parameters. When couplings are initialized in the Hebbian way a BM can
significantly reduce the Loss function, and thus obtain a good neural network
in two separate steps, and this two-steps procedure is the HU algorithm.

• Similarly to the associative memory scenario, the best inferential performance
of HU is reached after an optimal amount of iterations of the training routine.
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3.4 The analogy between a SVM and a BM in the
under-sampling regime.

The aim of this section is to show that symmetric SVMs tend to satisfy the moment
matching condition cd = cβ when β is sufficiently large (i.e. β > 1 in our case of
study) and α is small, where we recall α to control the number of stored memories
p = αN . Since the moment matching condition must hold in BMs, the emergence of
this property in SVMs must underline an important similarity between the memory
performance of maximally stable linear perceptrons and networks trained through
BM learning. The analysis of the landscape of attractors of a SVM can be a hard
problem to tackle [29, 108]. However, the discovery of this new signature of the
model can shed light on new dynamic properties of this type of networks. A physical
interpretation of this observation, also given in the course of this section, relates this
property of SVMs to the depth reached by the memories in the energy landscape, a
topological trait that is, in turn, linked to the notable size of the basins of attraction.
Eventually, by reason of the detailed comparison between SVMs and the HU algo-
rithm advanced in chapter 2, we will conclude that the main learning algorithm
examined in this work, i.e. HU, SVMs and BMs, all tend to train the same types
of neural networks when the number of memories is small. This result is the very
conclusive point of this thesis and it will be reached at the end of this section.

As usual in the associative memory framework we consider a number p = αN
of N -dimensional memories that are generated as Rademacher variables {ξ⃗µ}p

µ=1
with

P (ξµ
i = +1) = P (ξµ

i = −1) = 1/2 ∀i, µ.

These memories are thus memorized by a symmetric linear perceptron with tunable
margin k, by means of the algorithm (1.16). Let us define

cd
ij = 1

p

pX

µ=1
ξµ

i ξµ
j , (3.31)

that is the Hebbian matrix of the memories. We also introduce

cβ
ij = ⟨SiSj⟩β , (3.32)

that is the thermal 2-point correlation matrix of the system, where ⟨ · ⟩β is the
probability measure according a Gibbs-Boltzmann distribution of the states at a
temperature β−1 (see eq. (1.23)). This quantity can be practically estimated through
a Monte Carlo routine.
We now provide for some numerical evidence that SVMs approach a good matching
between cd and cβ for high values of β and lower values of α. We first evaluate the
correlation between cd and cβ in the linear perceptron trained at different values
of k with the same set of memories. For this purpose, we measure the Pearson
coefficient between the elements of the two matrices (see eq. (1.32)). Fig. 3.12a
shows an increasing trend of ρ with respect to k. The maximum value is reached
when k = kmax(α). Moreover, the correlation is higher for smaller temperatures.
The same behaviour is displayed in fig. 3.12b for β = 1: cd is not related to c1 at all
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when k = 0, but the two quantities correlate very well when we tune the stability
to its maximal value kmax. We have also measured how the quality of the moment
matching approached when k = kmax(α) changes with α. Results are reported in
fig. 3.12c and display a deterioration of this property when α progressively increases.
As a conclusion, we expect the moment matching condition to be approached for
sufficiently low temperatures and lower values of α.
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Figure 3.12. Numerical measures relative to a symmetric linear perceptron trained
through (1.16). The maximum margin is estimated empirically for each realization of the
memories and random initial conditions of J . (a) Pearson coefficient between cd and cβ

as a function of the margin k, α = 0.3. The plots for different values of β are displayed.
(b) Correlation matrix cd plotted as a function of c∞, α = 0.3. The black dotted line
reports the line cd = cβ . All points are relative to one realization of the network. (c)
Pearson coefficient between the elements of cd and cβ in a SVM (i.e. k = kmax(α)) as a
function of α. Points are averaged over five realizations of both memories and random
initial conditions for J , the errors are the standard deviations of the measures. Choice
of the parameters: N = 100, λ = 0.01.

We also propose another equivalent experimental study, that compares the empirical
spectrum of the eigenvalues of the matrices cd and c1 for a symmetric SVM with
the theoretical expected distribution. The network is chosen to have N = 500 and
α = 0.3. Since cd is a Wishart matrix the density function of its eigenvalues if given
by the Marchenko-Pastur distribution

MP (e|α) = (1 − α) θ(1 − α)δ(e) + 1
2π

p
(e+ − e)(e − e−)

α−1e
, (3.33)

with
e± = (1 − α−1/2)2, (3.34)

and θ(x) being the Heaviside function. This suggests that, for an associative memory
model that stores a number of memories in a very robust way, i.e. resembling a
SVM, one can compute the thermal correlations at β ≥ 1 and measure the spectrum
of the eigenvalues of the covariance matrix. Whether this fits a MP distribution with
a parameter α∗, then one can infer the number of dominant basins of attraction. Of
course this is valid only if such robust memories, that are hidden in the landscape
of attractors, are treatable as random binary vectors, i.e. they do not contain a
particular internal structure or mutual dependencies.
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Figure 3.13. Comparison between the theoretical Marchenko-Pastur distribution of the
eigenvalues of a Wishart matrix with a parameter α = 0.3, and the empirical histogram
of the eigenvalues of c1 and cd for a SVM with N = 500.

A physical interpretation for the moment matching condition, and in particular why
cd ≃ cβ in the SVM is now proposed. The thermal correlation cβ can rewritten
explicetely as

cβ
ij =

P
S⃗ SiSj exp

�
−βE[S⃗]

�

P
S⃗ exp

�
−βE[S⃗]

� , (3.35)

that one can rewrite in terms of the typical states at that temperature

cβ
ij =

P
α Sα

i Sα
j exp (−βEα)

P
α exp (−βEα) . (3.36)

When β → ∞ the exponential terms in eq. (3.36) are peaked over the ground state
of the energy of the model EGS < 0. Such state can be single or degenerate with
multiplicity p. Hence, the index α is substituted with µ = 1, .., p, the degenerate
states are named ξ⃗µ obtaining

c∞
ij = lim

β→∞

Pp
µ=1 ξµ

i ξµ
j exp (−βEGS)

p exp (−βEGS) = 1
p

pX

µ=1
ξµ

i ξµ
j , (3.37)

that corresponds to
c∞ = cd, (3.38)

if {ξ⃗µ}p
µ are also the binary memories. As a result, approaching the condition (3.38)

implies that, when k → kmax(α), memories become close to be degenerate ground
states of the energy landscape. This condition is rare in recurrent neural networks.
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In a Hebbian network, for instance, eq. (3.38) holds exclusively for α = 0 in the
thermodynamic limit, and α ∼ 0 when N is finite. In the Pseudo-inverse model
[81, 82], that is represented by the following connectivity matrix

Jij = 1
N

X

µ,ν

ξµ
i C−1

µ,νξν
j Cµ,ν =

NX

k=1
ξµ

k ξν
k , (3.39)

perfect-retrieval is admitted up to α = 1, with memories lying at a fixed energy
E = −N independently of α; moreover, the fact that the basins of attraction are
absent when α > 1/2 implies that memories cannot be ground states of the landscape,
since one single step of the dynamics started in the proximity of each memory would
decrease the energy. A similar behaviour would be observed in a symmetric linear
perceptron with k = 0, where memories lack of basins of attraction.
The relation between the size of the basins of attraction and the depth of memo-
ries in the energy landscape is still an open question in the spin-glass community.
Previous studies [21, 44] relate the typical size of the basins of attraction to the
margin k of a linear perceptron. Hence, the moment matching condition reached at
certain values of α by SVMs must be connected to the size of the basins of attraction.

As we have seen from the previous sections, BMs satisfy a moment matching
condition. As a consequence, one can imagine to train a BM in a under-sampling
regime, i.e. when the number of data-points is small and Pdata must differ from
Ptrue (see the discussion in section 1.3). To be more specific, we are considering the
typical associative memory scenario, where data-points are also binary memories
{ξ⃗µ}p

µ=1 being randomly generated.
Since symmetric SVMs approach the moment matching condition for certain values
of α, we should expect that the same network can be found by training a BM with
the same control parameters. As a numerical experiment, we trained a BM with
β = ∞ and a SVM with the same set of memories, for different values of α. Even
if the couplings were initialized completely at random at each training for each
model, both the BMs and the SVM reached a mutual overlap of the final J being
superior to 90%. Figure 3.14 shows the retrieval map (see eq. (1.6)) for the three
final models with N = 500 neurons at α = {0.3, 0.5, 0.7}. As one can notice, they all
reach perfect-retrieval with comparable sizes of the basins of attraction. To be more
precise, BMs display basins that are slightly larger than SVMs, yet more detailed
numerical studies should be performed to exclude eventual finite size effects. The
memory performance of BMs with β = 1 appears to be experimentally consistent
with the one at β = ∞ for each choice of α.
Hence, numerical evidence suggests that BMs being trained on a small number of
random memories can reproduce the SVM performance pretty well, up to consistent
values of α. Since we proved in chapter 2 that HU tend to the SVM, and thus to
the same moment matching condition, for α < αc, one can conclude that the three
learning rules in question, i.e. HU, SVM and BM, must approach the same spot in
the space of the couplings.

Checkpoint
In this section we have seen that:
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Figure 3.14. Retrieval map mf (m0) for a symmetric SVM and BM with β = ∞ at different
values of α. BMs are reported with a full line while SVMs are represented by the dashed
line. Measures are averaged over 5 samples. Errors are neglected because small. Choice
of the parameters: N = 500, λ = 1.

• SVMs tend to match the 2-points correlation matrix measured at temperature
β (i.e. ⟨SiSj⟩β , with ⟨·⟩β being the Gibbs-Boltzmann measure) and the Hebbian
matrix of the memories. Specifically, this condition, named moment matching,
holds for high values of β and low values of α.

• The moment matching condition when β → ∞, with the 2-points correlations
being measured according by the Gibbs-Boltzmann distribution of the model,
means that memories are degenerate ground states of the energy. This condition
is peculiar of SVMs, with respect of other neural network models.

• Since moment matching is intrisically satisfied by BMs, we conclude that,
given the same choice of the control parameters, BM learning and SVMs train
similar recurrent neural networks. Moreover, because chapter 2 has proved
that HU approaches a SVM when α < αHU

c , we conclude that, given the same
choice of the control parameters, BM learning, SVM and HU train very similar
recurrent neural networks.
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3.5 Summary & Conclusions
In this chapter we have seen that:

• In the context of Boltzmann Machines, and specifically for what concerns the
generalization performance of the inferred network, the standard L1 and L2
regularization techniques are outperformed by the Unlearning regularization.

• A particular case of the Unlearning regularization reproduces a thermally
averaged Hebbian Unlearning rule, that shows good inferential capabilities
when initialized in the standard Hebbian fashion. Hebbian Unlearning can be
interpreted as a two-steps Boltzmann-Machine learning.

• In the framework of associative memory models, that learn how to retrieve an
extensive number of randomly generated memory vectors, there is a strong
analogy between Support Vector Machines, Boltzmann Machines and the
Unlearning algorithm. Such analogy lies into a moment matching condition
which is common to all these three learning routines. This property, and so the
similarity among the models, is stronger for smaller values of α, i.e. α < 0.6.

The goal of this chapter is twofold:

1. to show the effectiveness of Unlearning as a form of regularization in Boltzmann-
Machines;

2. to establish a connection between three learning rules: Support Vector Ma-
chines, Boltzmann Machines, Unlearning.

For what concerns the first goal, we have used small networks that allowed to
compute all quantities in closed form. Precisely, the ground-truth distribution
belonged to two models, such as the Curie-Weiss and then Sherrington-Kirkpatrick,
known to approach criticality even for finite N . As a result, we could not only test
the proximity of the inferred model to the original one, but also the susceptibility
of the network under variations of the parameters, by comparing the original true
trend of the specific heat with respect to the inverse temperature, with the trend
obtained after training. We could conclude that the two main components that
define the generalization of the model, i.e. its consistency with the ground-truth
distribution and its stability under rescaling of the parameters, are enhanced by the
Unlearning regularization.
Moreover we analyzed the particular limit of the regularization that gives as learning
rules the ones expressed in equations (3.25) and (3.26). This procedure, which
provides that a thermal 2-point correlation is computed at β = 1, strongly resembles
the traditional Hebbian Unlearning routine: previous works in literature [106] support
the fact that the associative memory performance of a thermal or paramagnetic
Unlearning does not deviate much from the original rule (see eq. (1.10)). As a new
contribution to the Unlearning literature we tested its inferential power, i.e. the
capability of reproducing the original model by evaluating the entire set of data
(which remains feasible due to the reduced dimension of the network). So far the
Unlearning algorithm was exclusively tested in an associative memory framework,
where data are actually memories, that are sub-dominant in number with respect
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to the entire set of possibile configurations. Results show a good generalization
performance of the algorithm. The explanation for this success relies on the choice of
the initialization of the parameters. An initial Hebbian network (where the Hebbian
matrix is constructed over the entire set of data), by contrast with other types of
initialization, implies that the contribution to the gradient descent of the Loss (see
??) deriving from the data (i.e. the positive Hebbian contribution in the Boltzmann
Machine learning) is much smaller than the contribution deriving from the cross-
entropy of the model given the data (i.e. the negative Unlearning contribution in
the Boltzmann Machine learning). This condition holds until an optimal amount of
iterations that can be estimated from the numerical simulations. We conclude that
Boltzmann Machine learning can be performed in two steps: an initial abrupt descent
over the Loss (i.e. overshooting) along the direction of the data and then a gradual
adjustment along the direction of the model with increments being updated at each
step of the algorithm. The effectiveness of a two-step training for a Boltzmann
Machine encourages a biological interpretation of this kind of training, as many
members in the artificial intelligence and computational neuroscience community
seem convinced that optimization of synapses in the brain must occur through the
alternation of the daily online experience and offline sleep [109, 87]. This point,
together with the importance of the Hebbian initialization of the network, appears
to be consistent with our previous conclusions regarding Unlearning from the point
of view of the associative memory modeling, treated in chapter 2.
At last, we have showed a new property of Support Vector Machines. These types of
models satisfy the same moment matching condition that Boltzmann Machines meet.
This implies that using the Boltzmann Machine learning algorithm or training a
Support Vector Machine should lead to similar outcomes in terms of an associative
memory model at least when data are randomly generated, they are few in number,
and training is performed at sufficiently low temeperature. Moment matching for
high β and low α is related to stable and deep memories, with the depth directly
associated to large basins of attraction. This aspect also gives interesting insights
regarding the under-sampling regime of a Boltzmann Machine, where the model
is overfitting the data while surrounding them with wide basins of attraction. An
interesting approach to the overfitting regime of generative recurrent neural network
models has already been tackled in [110] for a controlled set-up where data were
learned in a Hebbian fashion: in this case overfitting did not imply perfect-retrieval
and robustness as it actually does for a proper Boltzmann Machine.
Eventually, since we have evidence that Boltzmann Machine learning in the under-
sampling regime can be effectively trained in two steps and thus reproduced by
the Hebbian Unlearning algorithm at the same temperature, the similarity between
Support Vector machines and Boltzmann Machines implies that these two methods,
along with Unlearning, belong to the same kind of training procedures. This is the
most important contribution of this thesis work.
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Chapter 4

Discussion & Future
perspectives

We will now discuss the future perspectives for this research, dedicated to the study
of the Unlearning rule across different learning frameworks.

Concerning the study of the optimal noise structure to train linear perceptrons,
contained in chapter 2, the future will certainly see a simplification of the model
possibly aimed at obtaining an analytical phase diagram for the network perfor-
mance. One possible way would be the generalization of the calculations contained
in appendix C with some structured data that can be treated rigorously. One might
start by trying different types of structure and see how the phase diagram changes.
Two possible candidates are memories containing combinatorial disorder [111] or
memories embedded in a manifold [112, 113]. These types of data-set would even
satisfy the requirement for the functioning of the training-with-noise algorithm in
presence of structured noise: the memories can contain internal correlations among
their features, but they should be well separated from each other in the space of
configurations. This aspect has been clearly pointed out in section 2.4.
Another important point stressed by the analysis in chapter 2 is the importance
of the Hebbian initialization of the network, due to its topological properties. The
disposition of the glassy states and the surrounding saddles in a Hebbian network out
of the retrieval regime appears non-trivial and extremely important in the perspective
of finding beneficial noisy configurations to employ in the training. Specifically, the
distribution of the observables ωµ

i with respect to the stabilities ∆µ
i (see section 2.2)

was crucial to determine whether the class of configurations under consideration
decreased the Loss of a maximally stable perceptron problem or not. The physical
interpretation of this quantity emerges more clearly in the case of fixed points, where
ωµ

i = ξµ
i Si(ξ⃗µ · S⃗)/N : while a normal projection of the memories over the glassy

states would show an isotropic scenario in the landscape, this new scalar product
shows a peculiar anisotropy that is responsible for the functioning of the Unlearning
algorithm and its generalizations. Understanding the reason for this particular
topological property would be fundamental to close the Unlearning problem.
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In chapter 3 we have showed that the negative learning principle behind Unlearn-
ing exceeds the associative memory application and it can be applied to inferential
problems, where the goal is to use a model to reproduce the real distribution of a
data-set. Even though this idea was already suggested by past works by Hinton
[20, 88], nobody in literature had isolated and singularly evaluated the Unlearning
contribution to Boltzmann Machine learning. A follow-up of our study will be
testing the Unlearning regularization in the case of real data-sets, and comparing it
to the usual regularization techniques. This would imply to deal with the empirical
sampling errors and the intrinsic noise contained into data.
Moreover, the moment-matching property of Support Vector Machines needs further
investigations. From the point of view of statistical mechanics, calculations are hard
to perform when symmetry is constrained: Gardner solved the issue by limiting
the problem to a diluted network [37]. Even though it has been showed that this
regime of connectivity affects the perfect-retrieval behaviour of the Support Vector
Machine [21], things in practice do not qualitatively change. One should be now
interested in computing the distribution of the energy for the memories as a function
of the load parameter α, and compare it with the one of the ground state. In light
of our results, we would expect the memories to be close to the ground state for
small values of α and then to be progressively lifted up when α increases. For what
concerns the inferential problem instead, and the reason why Boltzmann Machines in
the under-sampling regime can resemble maximally stable perceptrons, the attention
should be focused on the topological properties of the Hebbian energy landscape.
Since this type of model can be seen as an interpolation (controlled by α) between
the a Curie-Weiss and a Sherrington-Kirkpatrick model, it might be that fixed points
sampled by the dynamics at β = ∞ are still representative of the ground states of
the energy. As a consequence Hebbian landscapes, especially at lower values of α can
be employed to train a Support Vector Machine in a faster unsupervised manner, by
means of a Boltzmann Machine algorithm or, equivalently, the Hebbian Unlearning
routine.

Ideally, this research line would lead to the construction of a model that is able
to perform both the associative memory and the generative task at the same time:
one single training algorithm assembling a network that both retrieves a number of
important concepts, and generates new examples that are consistent with the stimuli
received from the environment. This idea is close to what specialists in statistical
learning call benign overfitting [114, 115]: the model can both remember the data
and correctly fit new unseen examples. As a further speculation, we might conjecture
that, by implementing algorithms that reach deeper states in the Hebbian energy
landscape (e.g. [73, 116]) at higher values of α, we might use such states to train a
Boltzmann Machine. At this point, if moment matching is satisfied (i.e. eq. (3.38))
we might reach a condition of benign overfitting: a robust associative memory
coexisting with an inferential device. This objective might be gained through the
choice of continuous neural representations, as it is done for the rate models used in
theoretical neuroscience [26, 117], that would make the dynamics smoother in the
landscape. On the other hand, the maximum storage limit of the symmetric Support
Vector Machine, i.e. αc ≃ 1.3 as obtained by [37] for diluted symmetric perceptrons,
would be overcome by imposing sparser representation of the memories [118].
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Finally, another aim of this thesis is to incentive a stronger experimental effort
for the investigation of anti-Hebbian synaptic mechanisms in the brain. We believe
that, in light of the analysis exposed in this work, and consistently with the intuition
of a series of scientists from past to recent times [92, 93, 19, 109, 87, 119], this
counter-intuitive and apparently not biological mechanism could, instead, be at the
basis of the formation and the consolidation of memory in the brain.
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Appendix A

Analytical expression of the
one-step retrieval map

As done in [29, 16], one can define the following quantity

hµ
i = ξµ

i√
N

NX

j=1
JijSj , (A.1)

that we will call cross-stability of the configuration S⃗. Configurations S⃗ have an
overlap m0 with the memory ξ⃗µ and they are generated by the probability distribution
in eq. (2.3). As a consequence, hµ

i is a random variable distributed according to

P (hµ
i |m0, J) =

P
S⃗

h
δ

�
m0 − 1

N

PN
k=1 Skξµ

k

�
δ

�
hµ

i − ξµ
i√
N

P
k ̸=i JikSk

�i

P
S⃗

h
δ

�
m0 − 1

N

PN
k=1 Skξµ

k

�i , (A.2)

which can computed by using the Fourier transform of the Dirac-delta function and
summing over {−1, +1}N . This leads to the following probability density function

P (hµ
i |m0, J) = 1q

2π(1 − m2
0)

exp
 

−(hµ
i − m0∆µ

i (J))2

2(1 − m2
0)

!
, (A.3)

where the neuron index i was also dropped for simplicity, and the stabilities depend
on the realization of the couplings. The one-step retrieval map averaged over all the
possible S⃗ configurations is a function of m0 and J , and it is given by

m1(m0, J) = 1
αN2

N,pX

i,µ

Z
dhµ

i P (hµ
i |m0, J)sign (hµ

i ) = 1
αN2

N,pX

i,µ

erf
 

m0∆µ
ip

2(1 − m2
0)

!
, (A.4)

and this result is fully general and it is relative to one realization of the network. If we
assume that stabilities are self-averaging quantities and they satisfy the probability
distribution function ρ(∆), then we can compute the one-step overlap as averaged
over many realizations of the network, i.e. for many training processes. One obtains

m1(m0) = lim
N→∞

1
αN2

N,pX

i,µ

erf
 

m0∆µ
ip

2(1 − m2
0)

!
=
Z +∞

−∞
d∆ρ(∆)erf

 
m0∆p

2(1 − m2
0)

!
, (A.5)
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which is the quantity defined in eq. (1.7). This observable can provide with some
rough intuition about the shape of the basins of attraction in any fully connected
neural network, where no exact calculation exists to estimate their typical radius. It
will also be crucial for the definition of a Loss function for the training-with-noise
algorithm [68] presented in section 2.1.
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Appendix B

Gradient of the Loss function of
the Training-with-noise
algorithm

B.1 Training with noise

At each step of the algorithm a memory label µd is sampled at random and the
update (2.1) is performed over the couplings. The new value of the L function (2.7)
is

L′ = − 1
αN2

N,pX

i,µ

erf


 m∆µ

ip
2(1 − m2)

+ λm

Nσi

p
2N(1 − m2)

ϵµd
i ξµ

i ξµd
i

X

j ̸=i

Sµd
j ξµ

j


 . (B.1)

Since δσi ∝ λ
N

Ji
σi

+ O
�

λ
N

�3
and the mean Ji of the couplings along line i equals zero

by initialization and it is naturally maintained null during the algorithm, we have
considered σ′

i ≃ σi. Then L′ can be rewritten as

L′ = − 1
αN2

N,pX
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erf
 

m∆µ
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−

− 1
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2N(1 − m2)

ϵµd
i + O

� 1
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�!
, (B.2)

where we have used that 1
N

P
j ̸=i ξµ

j Sµd
j = O(N−1/2) when µ ̸= µd and mt = O(1).

We thus expand the error-function at the first order in O(N−1/2) obtaining the
variations to L in equation (2.9).
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B.2 Training with structured noise
The new value of L is derived by using equation (2.10) to evaluate the variation of
stabilities

L′ = − 1
αN2
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erf
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where σ
′
i ≃ σi as in the previous paragraph. We now recall χµ

i = ξµ
i Sµd

i , χ1,µ
i =

ξµ
i S1,µd

i , mµ = 1
N

PN
j=1 Sµd

j ξµ
j and m1,µ = 1

N

PN
j=1 S1,µd

j ξµ
j and expand the error-

function at the first order in O(N −1/2) obtaining

δL = mλp
2πα2N5(1 − m2)
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1
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where Mµd
µ = 1

N

PN
i=1 ξµ

i ξµd
i . Equation (B.4) can be decomposed in

δL = δLN + δLU (B.5)

where δLU contains the weight

ωµ
i = 1

2σi

�
mµχ1,µ

i + m1,µχµ
i

�
, (B.6)

while δLN contains
Ωµ

i = 1
2σi

�
mµξµ

i ξµd
i + Mµd

µ χµ
i

�
. (B.7)

We study the two contributions numerically, on a Hebbian network, i.e. with no
learning going on, for the case of mt = 0+. The Pearson coefficient is measured
between the vector of the stabilities ∆µ

i and the weights ωµ
i as well as with Ωµ

i

separately. This quantity should underline an eventual reciprocal dependence
between ωµ

i , Ωµ
i and ∆µ

i . The test is repeated over states sampled by a Monte Carlo
at different temperatures T . Results are reported in fig. B.1a where it is evident
that Ωµ

i does not have any correlation with ∆µ
i , while the dependence of ωµ

i on
the stabilities is evident. Moreover, we measured the indicator ωemp(0), signaling
the typical values of the weights ωµ

i and Ωµ
i when ∆µ

i ∼ 0 (see section 2.2.1 for
further details), as reported in fig. B.1b. The plot clearly shows that Ωµ

i is small and
generally fluctuating around zero. These aspects hold during the training procedure
also, as it can be observed by performing the same measure at different step of the
TWN procedure over states with mt = 0+. We will thus refer to δLU as the relevant
contribution to the variation of the function L.



B.2 Training with structured noise 103

� � � � � � � � �

�

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�
��
�
�
��
�

���

���

(a)

� � � � � � � � �

�

����

����

����

����

����

����

����

�
�
�
��

�

���

���

(b)

Figure B.1. (a) Pearson coefficient between ωµ
i , Ωµ

i and the stabilities ∆µ
i , (b) ωemp(0) for

the case of a Hebbian network at different temperatures T . Configurations at a given
temperature T have been sampled by a Monte Carlo of the Kawasaki kind, in order to
choose only maximally noisy states (mt = 0+). Points are collected from 15 samples of
the network. Choice of the parameters: N = 500, α = 0.5.
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Appendix C

Replica symmetric analysis of
the Training-with-noise
algorithm

In this Appendix we resume the replica calculations in the replica-symmetric ansatz
[9] performed by [65, 66] showing their agreement with the numerical results obtained
through Gardner’s TWN algorithm [68].

C.1 Analytics
The partition function of the model is given by

Z =
Z Y
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dJijδ
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while the distribution of the stabilities is

ρ(∆) = 1
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(C.2)
where we have neglected the factorization over i, since we treat the optimization
process as independent along the lines of the Jij matrix. Index i will be nevertheless
indicated for the sake of completeness.
Replicas can be used to evaluate the normalisation, i.e.

1/Z = lim
n→0

Zn−1 (C.3)

Consequently, equation (C.2) can be rewritten as
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that becomes

ρ(∆) = lim
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by rewriting the Dirac delta in its integral representation we get

ρ(∆) = lim
n→0
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We will now compute the averages over the disorder, i.e. the random memories. The
first one, relative to µ ̸= 1 variables, becomes
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where we have Taylor expanded at the second order around the O(1/
√

N) term and
we have introduced the overlap matrix Qab defined as

Qab = 1
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ij (C.8)

The second averaged expression becomes
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where, once again, a Taylor expansion at the second order in O(1/
√

N) has been
performed. We now make the following change of variables

ỹ1
1 = y1

1 + z dỹ1
1 = dy1

1 (C.10)

Hence equation (C.9) becomes

= exp
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Qaby
a
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!
(C.11)

where, instead of y1
1 one considers the new one given by (C.10).

The averaged expression for the distribution of the stabilities is now given by
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with
DQ = dQ

Y

a

δ (Qaa − 1)

We now assume the replica symmetry of Qab, i.e.

Qab = δab + (1 − δab)q (C.13)

Hence the computation follows
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where
Dqw = 1√

2πq
e

− w2
2q (C.15)

and gn(q) is the Cramer function, given by
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The limit for n → 0 of gn(q) gives
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Consequently, the distribution of the stabilities becomes
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where q∗ is the particular value of the overlap s.t.
dgβ,m

dq
|q=q∗ = 0

Following the same procedure one is able to compute the replica symmetric free-
energy of the model, being

fRS,β(m, α) = − 1
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log (Zβ) = − lim
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(C.19)

We are now interested in the β → ∞ limit with q = 1. Such a limit reproduces the
ground truth of the problem, i.e. the very minimum of the Loss function.
One can thus couple q with the annealing temperature T = 1/β by introducing an
interaction susceptibility χ, such that

χ = 1
T

h
⟨J2⟩T − ⟨J⟩2

T

i
= 1

T
(1 − q) (C.20)

where ⟨ · ⟩T is the thermal average and the last passage is justified by the spherical
constraint over the couplings. One can now substitute the recurrent term (1 − q) in
both the g function and the ρ with χT . The first one becomes

gT,m(χ) = 1
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One can now substitute g into the expression for the free energy given by (C.19) and
perform the T → 0 limit which simultaneously pushes q → 1 according to (C.20),
since χ ≥ 0 by definition. We get

fm(α, χ) = − 1
2χ

− α
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where x∗ is obtained by a saddle point equation and χ should be found by partial
derivation of the free energy. By identifying the exponent in the gaussian integral of
the energetic contribution to the free energy with

em(χ, x) = −erf
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mx√
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�
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(C.23)

we have

∂em(χ, x)
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√

2mχp
π(1 − m2)

exp
 

− m2x2

2(1 − m2)

!
(C.24)



C.2 Numerics 109

from which one gets x∗ as a function of w and χ. On the other hand, one must
differentiate the entire free energy in χ to obtain χ∗. Hence we get

∂fm(χ, x∗)
∂χ

= 0 =⇒
Z

Dw (x∗(w, χ) − w)2 = α−1 (C.25)

Equation (C.24) leads to the graphic intersection problem depicted in figure (C.1).
Given w and χ, one finds x∗. Then one uses such a x∗ to solve equation (C.25),
which permits to find χ∗. Once one has χ and x∗(w, χ), the free energy in (C.22)
can be computed. Nevertheless, the support of the function in x in figure (C.1)
is not monotonic, and so not invertible, which makes the solution of the second
saddle equation (C.25) not feasible. Hence one can exploit the Maxwell construction
of the thermodynamics, as represented by the dashed curve in figure (C.1), while
solving the problem. It can be verified easily that the new expression for the density

Figure C.1. Graphic representation of the saddle point equation (C.24). The choice of the
parameters is: α = 0.3, m = 0.7, χ = 7.89.

function of ∆µ
i when T → 0 and q → 1 is given by

ρ(∆) =
Z

Dwδ (∆ − x∗(w, χ∗)) =

= 1√
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r
2
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exp −w(∆)2
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where we have made use of the invertibility of w(x, χ) and also the following property
of the Dirac delta

δ (∆ − x∗(w, χ)) = δ(F (w)) = δ(w − w(x∗, χ∗))dw(x∗, χ∗)
dx∗ |x∗=∆ (C.27)

C.2 Numerics
The numerical procedure has consisted of a random initialization of the couplings Jij

followed by the implementation of the rule described in section 2.1. The values of the
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parameters are N = 100, α = 0.3, m = 0.7, λ = 10−2 and tmax = 5 · 105. Data have
been collected over five repetitions of the experiments. The histogram of stabilities
(1.3) is empirically measured and compared to equation (C.26), as reported in figure
(C.2). There is a good accordance between theory and experiment. Fig. C.3a shows
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Figure C.2. Normalised histogram of the stabilities measured from the experiment compared
with Wong and Sherrington’s prevision. The choice of the parameters is: N = 100,
α = 0.3, m = 0.7, λ = 10−2.

the evolution of the mean, variance and skewness of the pdf of the stabilities as a
function of the algorithm steps. Fig. C.3b, instead, depicts the evolution of the
overlap q measured between couples of connectivity matrices obtained from the
same realisation of the memories, as a function of the algorithm steps: q correctly
converges to unity while approaching the global minimum of the Loss.
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Figure C.3. Moments of the empirical distribution of the stabilities (a) and overlap q
(b) as a function of the normalised time λt/N while implementing the TWN algorithm.
Errorbars are not indicated because smaller than the symbols. The choice of the
parameters is: N = 100, α = 0.3, m = 0.7, λ = 10−2.
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Appendix D

Measure of the basins of
attraction in a recurrent neural
network

We report here a general experimental procedure to measure the average size of the
basins of attraction of a fully connected neural network of finite size N and a given
choice of the control parameters.
The network is firstly trained according to an algorithm of our choice. Once the
couplings have been found, the asynchronous version of dynamics (1.1) is initialized
in one of the memories. The dynamics is run until convergence onto the attractor
associated to the basin of belonging of the memory. Now the retrieval map mf (m0)
is measured with respect to that particular attractor and the procedure is repeated
over different memories and realizations of the network. The average radius of the
basin of attraction is then measured as the value of 1 − m0 where mf (m0) equals a
reference value. In our case such value is mf = 0.98.
We have applied this procedure on networks trained either as SVMs and with the
TWN algorithm. In the former case a convex algorithm contained in the cvxpy
Python domain [120] is implemented to train the network. To be more specific, N
independent machines are trained to correctly classify p = αN binary memories of
the kind of ξ⃗µ ∈ {−1, +1}N having as labels ξµ

i with i ∈ [1, .., N ].
Regarding the dynamics, the stability of fixed points is in general implied by some
properties of the couplings, mainly their degree of symmetry. For the case of the
TWN algorithm we start from a random symmetric matrix, as done in [29]: the
update of the couplings will only perturb the initial symmetry yet allowing the
measures to be still consistent with the theory. On the other hand, numerics show
that SVMs are sufficiently symmetric to let the asynchronous dynamics converge.
The comparison between the retrieval maps obtained for the two algorithms with
α = 0.45 and N = 200 is reported in fig. D.1. The curve relative to the SVM is fixed,
while the one associated with the TWN is changing with respect to the training
overlap mt.
Even if the SVM always reaches perfect-retrieval of the memories for α < 2 [15], a
network trained with noise might show two different behaviors: one associated to
retrieval where each memory is close to an attractor, and one related to non-retrieval
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where the memory is far from its attractor and the basins of attraction might contain
orthogonal configurations with respect to the central attractor. In particular network
models where couplings are assembled according to particular rules (e.g. [11], [82])
the transition between these two regimes can be computed analytically. In the case
of TWN this cannot be done. It is then important to find an empirical criterion to
divide the two behaviors as a function of (α, mt).
Let us assume that when N ≫ 1 the retrieval map mf (m0) develops a plateau
starting from m0 = 1 and ending in some limit value mc < 1 such that mf = 1 along
all this interval. Hence one can associate the formation of such a plateau with the
existence of a cohesive basin of attraction, where close configurations in hamming
distance to the attractor converge to the attractor. One then wants to measure the
value of mt at which such property of the basin disappears. As a possible estimate,
it is convenient to consider the m∗

t such that

dmf

dm0
(m∗

t )
���
m0=1

= 1. (D.1)

The numerical extrapolation of the overlap in fig. 2.3 at different values of N shows
a good agreement between the approximate separation between the two regions
showed in fig. 2.3 and the line estimated by condition (D.1).
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Figure D.1. Retrieval map mf (m0) in the case of networks trained through SVM and
TWN algorithms. Curves are shown as a function of mt and compared with the bisector,
indicated with a dashed black line. Points are averaged over 10 samples. Choice of the
parameters: N = 200, α = 0.45.
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