
HAL Id: tel-04842326
https://hal.science/tel-04842326v2

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardness of Structured Lattices Problems for
Post-Quantum Cryptography

Joël Felderhoff

To cite this version:
Joël Felderhoff. Hardness of Structured Lattices Problems for Post-Quantum Cryptography. Com-
puter science. Ecole normale supérieure de lyon - ENS LYON, 2024. English. �NNT : 2024ENSL0059�.
�tel-04842326v2�

https://hal.science/tel-04842326v2
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivrée par

l’ÉCOLE NORMALE SUPERIEURE DE LYON

École Doctorale N◦512
INFOMATHS

Discipline : Informatique

Soutenue publiquement le 26/11/2024, par :

Joël Felderhoff

Difficultés de Problèmes de Réseaux Structurés
pour la Cryptographie Post-Quantique

Devant le jury composé de :

CASTRYCK, Wouter Research Expert Rapporteur
Katholieke Universiteit Leuven

THOMÉ, Emmanuel Directeur de Recherche Rapporteur
Inria Nancy

BOUDGOUST, Katharina Chargée de Recherche Examinatrice
LIRMM, Montpellier

HANROT, Guillaume Chercheur Examinateur
CryptoLab

KIRSHANOVA, Elena Chercheuse Examinatrice
Technology Innovation Institute

STÉHLE, Damien Chercheur Examinateur
CryptoLab

SALVY, Bruno Directeur de Recherche Directeur de thèse
Inria Lyon

À Mamie Dolly qui aurait sans doute été catastrophée par mon accent et mes fautes d’accords
lors de la soutenance mais - j’espère - quand même été un peu fière.

À mes parents, parce que je sais tout ce que je leur dois.

À toutes les personnes dont j’ai la chance et le bonheur d’être aimé.

5

Foreword

My official PhD advisor is Bruno Salvy, but since he is thematically far from what this manuscript
is about, I need to comment on my supervisory context.

I started my PhD in late 2021 under the supervision of Damien Stehlé. He left the ENS
de Lyon for CryptoLab in early 2023, a little more than a year after. At this stage, Guillaume
Hanrot took over my supervision. When Guillaume also left for CryptoLab in late 2023, the
official PhD advisor became Bruno Salvy.

Bruno Salvy did provide an administrative supervision (and precious advices) but all the
scientific one was done by Damien and Guillaume even after they left for Cryptolab. In the
scientific sense, my PhD advisors are Damien Stehlé and Guillaume Hanrot, even if they are not
noted as such on the front page of this manuscript for administrative reasons.

Acknowledgements/Remerciements

My PhD position was funded by the Direction Générale de l’Armement (Pôle de Recherche
CYBER).

Je souhaite pour commencer remercier mes encadrants. Merci Damien de m’avoir recruté à
l’issue de mon stage de PLR (et d’avoir permis que ma thèse commence en septembre malgré
les difficultés administratives), merci pour ton encadrement, tes conseils et nos discussions plus
informelles, et aussi d’avoir été mon tuteur dès mon entrée à l’ENS, ton aide et tes conseils à
cette époque ont grandement contribué à mes choix de sujets et de carrière.

Merci Guillaume pour ton encadrement à partir de ma 2e année. Ça a été un plaisir d’ajou-
ter des aspects plus « Théorie Analytique des Nombres » à mon travail, et de manière générale
d’échanger (et de digresser) régulièrement avec toi. Je veux aussi te remercier pour les conseils que
tu as pu me donner toi aussi dès mes premières années à l’ENS, où mon profil de « vrai informa-
ticien/faux matheux » (ou l’inverse) me faisaient me poser beaucoup de questions. Merci à tous
les deux d’être restés disponible pour répondre à mes questions et m’encadrer scientifiquement
même après votre départ du LIP.

Pour finir, et même si je sais que tu ne te considères pas comme mon encadrant, merci Bruno
de m’avoir accepté comme doctorant lors du départ de Guillaume et Damien. Merci pour tes
conseils et tes retours lors de la préparation de la soutenance, et de manière générale d’avoir été
là pour la gestion administrative de la fin de thèse.

Now, I want to thank Emmanuel Thomé and Wouter Castryck for reviewing this manuscript
and for their helpful comments. I also want to thank a lot Katharina Boudgoust and Elena
Kirshanova for accepting to be part of my jury.

Écrire des remerciements pour un travail qui a duré 3.5 ans est une tâche condamnée à la
non-exhaustivité. J’ai essayé de mettre le plus de monde possible et j’ai évidemment échoué,
toutes mes excuses.

Je voudrais commencer par remercier Alice Pellet--Mary. J’ai été très heureux de travailler
avec toi pendant ces 3.5 ans, et ton oreille attentive et tes conseils durant la thèse m’ont énormé-
ment aidé. J’espère vraiment pouvoir continuer à travailler avec toi dans la suite de ma carrière.

Merci beaucoup à Alid, Arthur, Danaé, Mahshid, Maman, Pouria et Xavier qui ont participé
à la relecture de l’introduction de ce manuscrit (et à la chasse aux fautes).

Merci à l’équipe des MALIPs pour toute l’aide qu’elles m’ont apporté durant mes années de
thèse. Le LIP a énormément de chance de vous avoir. En particulier un énorme merci à Chiraz.
Merci à mes co-doctorant·es (qui, pour certain·es, sont maintenant docteur·es !) de la « sous-
équipe crypto » d’AriC : Arthur (si, si, t’es toujours AriC dans mon cœur), Calvin, Emily (yeah,

6

you don’t do crypto, but you have long been adopted), Julien, Mahshid et Pouria1. Je retiendrai
les voyages en conférence, les moresques, le support quand ça n’allait pas bien, les cafés, la
procrastination et les batailles de nerf aléatoires au bureau. Ça a été génial de faire ma thèse
avec vous. Et puisque certain·es choisissent de travailler sur autre chose que de la cryptographie
(étrange, mais je vais pas juger), merci énormément à Adrien, Amélie, Alaa, Esther, Johann,
Léo, Louis, Meriem, Thaïs ainsi qu’à tous·tes les autres avec qui j’ai eu le plaisir de papoter,
râler, débattre et rigoler au coin café.

Un autre grand merci aux autres collègues avec qui j’ai eu la chance de travailler, d’enseigner,
ou simplement de discuter pendant ces quelques années au LIP, et notamment à Benjamin,
Claude-Pierre, Cyril, Daniel, Fabrice, Gilles, Jean-Michel, Michaël, Nathalie, Nicolas et Vincent.

A bit further from Lyon, I want to thank Léo, Koen and Yael. I am very happy to have had
the chance to work with you, and I really hope we continue working together in the future !

En m’éloignant du bureau pour mes remerciements, je me dois de remercier chaleureusement
l’équipe de Maths en Jeans, et en tout particulier Stéphanie pour la bouffée d’air frais que cette
activité a représenté durant la thèse. Merci aussi à tous·tes les élèves de Jean Perrin et de la
Tourette que j’ai eu le plaisir d’encadrer. N’arrêtez jamais d’être aussi formidables.

Maintenant que je suis sorti du bureau, il faut que je parle des potes. J’ai la chance incroyable
d’avoir été très entouré dans ma thèse et d’avoir trop de bons souvenirs avec chacun·es d’entre
vous pour pouvoir tout dire sans dépasser ma limite de page. Merci George, Janelle, Malo, Simon,
Xavier et les chatons, vous savez pourquoi. Merci à Aaren, Adrien, Alban, Alexandra, Alix, Alyd,
Antoine, Arnaud, Avril, Bertrand, Charline, Corentin, Élodie, Florian, Florine, Gabriel, Gabrielle,
Garance, Guillaume, Henry, Juliette, Lambert, Laureline, Marie, Mista, Morgan, Nattes, Octave,
Solène, Thomas, Yohann et tous·tes les autres pour votre affection et votre soutien constant
pendant ces années de thèse et avant.

Merci aux potes de la CRF69, en particulier à Ambre, Aurore, Cecile, Margot, Maya, Mickaël,
Roxane, Sarah, ainsi qu’à tous·tes les potes de la formation CI. Pouvoir travailler sur des choses
plus pratiques que la difficulté des problèmes de réseaux structurés pendant 3 ans m’a aidé à
garder un minimum les pieds sur terre et a été un vrai plaisir.

Je dois aussi remercier les pauvres hères qui m’ont supporté au quotidien pendant la thèse :
merci Dana, Marlysa et Youssef. Vous êtes les meilleurs colocs du monde et vivre avec vous a
été fantastique.

Évidemment, merci à ma famille pour tout leur soutien. Merci Papa, Maman, Noé, Laura
(j’espère que vous apprécierez ma petite référence lors de la soutenance), Mamette, Papet, Papi,
Tatie, Tonton, Léna et tous les autres. Merci pour votre écoute et vos encouragements, et toutes
mes excuses pour les descriptions incompréhensibles de mon travail aux repas de famille2.

Finalement, merci Danaé. Ce n’est pas vraiment possible pour moi de mettre en mots à quel
point ta présence, ton soutien, nos discussions, et de manière générale notre vie commune ont
été importantes pour moi pendant ces années de thèse. Tu es fantastique et j’ai hâte de voir ce
que l’avenir nous réserve. Je t’aime.

Merci également à Claire Martinod et à Guillaume Labeille.
Je voudrais pour finir, remercier, les personnels de ménage, de cuisine et de gardiennage

de l’ENS, qui m’ont permis de travailler dans de bonnes conditions, les artistes (notamment
musicaux) dont j’ai profité des créations, ainsi que les auteurs et autrices des travaux que je cite
dans ce manuscrit.

1You know exactly what dwells beneath Zürichsee...
2Non pas que je prévoie de m’arrêter.

Contents

Contents 7

I Introduction 9
I.1 Introduction (Français) . 9
I.2 Introduction (English) . 24

II Preliminaries 39
II.1 Lattices . 39
II.2 Number Theory . 44
II.3 Modules . 49
II.4 Computational Problems . 51
II.5 Probabilities . 54

IIICounting Small Ideals 57
III.1 Preliminaries . 57
III.2 Bounds on the Dedekind’s Zeta Function of K 59
III.3 Bounds on the integral . 60
III.4 Bounding the ideal-counting function . 63

IV Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals 65
IV.1 Introduction . 65
IV.2 Preliminaries . 68
IV.3 Self-Reducibility of id-HSVP to Inverses . 70
IV.4 The Sampling Set . 77
IV.5 Wrapping Up . 85
IV.6 NTRU with Polynomial Modulus . 87

V On Module Unique-SVP and NTRU 91
V.1 Introduction . 91
V.2 Preliminaries . 96
V.3 New Tools on Module Lattices . 97
V.4 From mod-uSVP2 to NTRU . 99
V.5 Randomization of Rank-2 Modules with Gaps . 103
V.6 Random Self-Reducibility of Module uSVP . 110

VI Conclusion and Perspectives 113
VI.1 Summary of Contributions . 113
VI.2 Perspective and open problems . 114

7

8 CONTENTS

Bibliography 117

A Appendices of Chapter II 123
A.1 Missing Proofs . 123

B Appendices of Chapter III 125
B.1 Analysis proofs . 125
B.2 Proof of Theorem III.1.8 . 128
B.3 Bounds for |ln ζK | . 128

C Appendices of Chapter IV 129
C.1 Proof of Lemma IV.2.3 . 129
C.2 Proof of Theorem IV.2.4 . 132

D Appendices of Chapter V 139
D.1 Properties of the Rényi Divergence . 139
D.2 Missing proofs from Section V.2 . 140
D.3 Missing Proofs from Section V.3 . 145
D.4 Missing Proofs from Section V.4 . 147
D.5 Removing ζK(2) from Theorem V.4.1 . 154
D.6 Missing Proofs from Section V.5 . 162
D.7 Missing Proofs from Section V.6 . 169

Chapter I

Introduction

I.1 Introduction (Français)

« Du coup... T’es mathématicien
ou informaticien ? »

J.M. Felderhoff (mon père), 2022

La notion de « communication sécurisée » recouvre un grand nombre de problématiques,
comme l’authentification des messages (garantir la provenance d’un message reçu) ou le chiffre-
ment de ceux-ci (rendre le contenu d’un message inintelligible pour d’autres que son destina-
taire), et on en trouve des proto-exemples datant de l’Antiquité. De nos jours, les ordinateurs
modernes rendent caduques les techniques naïves de sécurisation (telles que les chiffrements
mono-alphabétiques, où on remplace simplement une lettre par une autre).

La démocratisation de l’outil informatique et d’internet s’est accompagnée de la mise en place
de nombreux protocoles de chiffrement et de signatures numériques, tels que le protocole TLS
(standard, utilisé notamment dans le HTTPS), le standard OpenPGP (utilisé pour signer des
emails) ou encore les protocoles de chiffrement bout-en-bout (utilisés dans WhatsApp ou Signal).
Dans ce contexte d’utilisation de grande ampleur, il est nécessaire de trouver des moyens de
garantir la sécurité des communications utilisant des protocoles cryptographiques.

Nous nous placerons dans ce manuscrit dans le cadre de la cryptographie à clé publique, qui
permet de communiquer de manière sécurisée lorsque les deux parties ne peuvent pas partager une
clé au préalable (ce qui est régulièrement le cas des échanges sur internet). Dans ce paradigme, on
distingue clé secrète (qui n’est à disposition que d’une seule partie) et clé publique (à disposition
de tout le monde). La sécurité des protocoles à clés publiques repose sur la difficulté de deviner
une clé secrète en ayant connaissance des données publiques (clé publique et messages transitant
sur le réseau par exemple). De nos jours, garantir la sécurité de protocoles de cryptographie à
clé publique se fait au moyen de preuves de sécurité.

I.1.1 Garantir la sécurité d’un protocole

Prenons l’exemple d’un protocole de chiffrement permettant à deux parties d’échanger des mes-
sages de manière incompréhensible pour une tierce personne. Prouver la sécurité d’un tel proto-
cole se fait en trois étapes.

9

10 CHAPTER I. INTRODUCTION

La première est la définition de l’adversaire, c’est-à-dire l’entité abstraite contre qui on veut
garantir la sécurité de notre système, par exemple une agence de renseignement ou une entreprise
(légale ou non) voulant revendre des données... Les questions à se poser sont typiquement :

• Quel serait l’objectif de l’adversaire pour « casser » mon protocole ? Pour notre exemple,
cela pourrait être de déchiffrer un message, ou de distinguer un chiffré d’une chaine de bits
aléatoires.

• À quelle puissance de calcul l’adversaire a-t-elle accès ? Pendant combien de temps veut-on
lui résister ?

• Peut-elle interagir avec le système cryptographique ? Par exemple, peut-elle envoyer de faux
messages et observer le comportement de son interlocutrice ? A-t-elle accès à une partie de
la clé secrète ?

La seconde étape est de définir une ou plusieurs « hypothèses de sécurité ». Ce sont des
énoncés mathématiques de la forme : « il est impossible de résoudre tel problème en un temps
raisonnable ». Un exemple classique est la factorisation : « Étant donné un grand nombre N , il
est impossible en un temps raisonnable de trouver p et q différents de 1 tel que N = p · q ».1

La troisième étape est de faire le lien entre les deux. En pratique, cela consiste à prouver
un énoncé mathématique de la forme : « Supposons qu’il existe une adversaire cassant notre
protocole, alors il existe aussi forcément un algorithme qui casse l’hypothèse de sécurité ». Ce
genre d’énoncé est appelé une réduction de sécurité. Il faut l’interpréter comme la formalisation
mathématique du fait que « tant que l’hypothèse de sécurité est vérifiée, le protocole est sécurisé
contre ce type d’adversaires ». On dit qu’étudier la sécurité du protocole contre cet adversaire se
réduit à étudier la validité de l’hypothèse de sécurité.

I.1.2 L’adversaire quantique et la cryptographie Post-Quantique

Dans ce manuscrit, nous nous plaçons sous l’hypothèse d’une adversaire ayant accès à un calcu-
lateur quantique (contrairement à nous). L’informatique quantique s’intéresse au calcul par des
ordinateurs quantiques (par opposition à nos ordinateurs « classiques », fonctionnant avec des
transistors). Il n’est pas question dans cette introduction d’expliquer précisément le fonction-
nement de possibles ordinateurs quantiques. Il suffit de dire qu’ils effectuent des calculs d’une
manière différente d’un ordinateur classique dans le même sens qu’une calculatrice mécanique fait
des calculs différemment qu’une calculatrice numérique. Cette différence fait que certains pro-
blèmes qui étaient supposés difficiles pour des ordinateurs classiques sont résolubles efficacement
avec des ordinateurs quantiques.

En particulier, l’algorithme quantique de Shor [Sho94] permet de résoudre avec une quantité
raisonnable de ressources le problème de la factorisation et celui du logarithme discret. Les
protocoles de sécurités basés sur la difficulté de ces problèmes sont alors caducs dans le cas où
l’adversaire dispose d’un calculateur quantique. Étant donné que les protocoles les plus largement
déployés (par exemple TLS et OpenPGP) dépendent fortement de la difficulté à résoudre ces
problèmes, la possibilité (largement débattue...) de l’apparition d’un ordinateur quantique dans
les années à venir a poussé les instituts de standardisation, les autorités étatiques et les industriels
à augmenter l’effort de recherche autour d’hypothèses de sécurité résistantes aux ordinateurs
quantiques.

1Bien sûr, la notion de « grand » et de « temps raisonnable » doivent être définies plus précisément, voir
Section II.4.

I.1. INTRODUCTION (FRANÇAIS) 11

Figure I.1 : Couche de graphène au niveau atomique [Ale09] et réseau euclidien associé.

On peut citer notamment le processus de standardisation, sous forme d’une compétition,
de cryptographie post-quantique du NIST (l’institut de standardisation et des technologies aux
États-Unis) commencé en 2016 et terminé en 2022 [NIST]. À l’issue de cette compétition, il
apparait quatre grandes familles de protocoles de chiffrements semblant résister aux ordinateurs
quantiques (les hypothèses sur lesquels ils sont basés sont dites post-quantiques). Les protocoles
basés sur les systèmes polynomiaux, sur les codes correcteurs d’erreurs, sur les isogénies entre
courbes elliptiques et sur les réseaux euclidiens. Le travail effectué durant cette thèse concerne
les hypothèses de sécurité reliées aux réseaux euclidiens.

I.1.3 Réseaux euclidiens

Le problème du plus court vecteur.

Informellement, un réseau euclidien (on parlera souvent simplement de réseau) est un ensemble
infini de points de l’espace répartis de manière régulière. On peut par exemple s’en servir en
2 ou 3 dimensions pour représenter la répartition des atomes dans un cristal (voir Figure I.1).
En cryptographie, on utilise des réseaux de haute dimension (n ≈ 500) pour leurs propriétés
algorithmiques.

Soit B = [b1, . . . , bn] ∈ Rn×n une matrice (inversible), qu’on appelle une base. Le réseau
euclidien défini par cette matrice, noté L(B) est l’ensemble des combinaisons entières des vecteurs
colonnes de (bi)1≤i≤n. Mathématiquement, on écrira

L(B) = B · Zn =

{
n∑

i=1

bi · xi, (xi)1≤i≤n ∈ Zn

}
,

Un exemple de réseau euclidien L est donné en Figure I.2. Ce réseau particulier est généré par
les vecteurs en bleus sur la figure, soit la matrice(

1.1 −0.1
−0.1 1

)
.

Il est à noter que les vecteurs bleus ne sont pas les seuls à générer L, c’est aussi le cas des vecteurs
rouges : un réseau possède plusieurs bases.

De nombreux problèmes algorithmiques sont associés aux réseaux euclidiens. Certains sont
utilisables pour construire de la cryptographie (une présentation des principaux ainsi que de leurs

12 CHAPTER I. INTRODUCTION

Figure I.2 : Un exemple de réseau euclidien.

relations peut être trouvée dans une revue de littérature par Peikert [Pei16]). Dans ce manuscrit,
nous étudierons le problème consistant à trouver un ou plusieurs vecteurs les plus courts possibles
dans un réseau euclidien, étant donné une base de celui-ci. On définit le problème SVPγ (Shortest
Vector Problem) comme suit :

Definition I.1.1 (SVPγ). Pour γ ≥ 1, étant donné une matrice inversible B ∈ Zn×n, le
problème SVPγ demande de trouver v ∈ L(B) \ {0} tel que

∥v∥ ≤ γ · λ1(L(B)),

où λ1(L(B)) est la taille du plus petit vecteur non-nul du réseau euclidien L(B).

En particulier, SVP1 (aussi nommé « exact-SVP ») demande de trouver un des vecteurs les
plus courts de L(B). Dans le cas du réseau de la Figure I.2, le vecteur vert serait une solution
à SVP1. Ce problème est difficile à résoudre. En effet, les meilleurs algorithmes connus (que ce
soit classiques ou quantiques) résolvant SVP1 en dimension n nécessitent soit de faire de l’ordre
de nO(n) opérations (algorithmes d’énumération, voir par exemple [FP85, Kan87, HS07]), soit
de l’ordre de 2O(n) opérations, au prix d’une quantité de mémoire de 2O(n) bits (algorithmes de
crible [AKS01] ou basé sur les cellules de Voronoï [MV13]). Cet état de l’art rend SVP1 insoluble
avec des ressources raisonnables (disons moins de 1010 ans en utilisant l’ensemble des ordinateurs
du monde) dès que la dimension n devient plus grande que quelques centaines (le plus grand
record enregistré sur [Nam] au moment de la rédaction de ce manuscrit est n = 190).

Comparer les problèmes algorithmiques. La notion centrale pour comparer la difficulté
de deux problèmes algorithmiques est la notion de réduction. En théorie de la complexité, on
dit qu’un problème B est aussi ou plus difficile qu’un problème A si, étant donné un algorithme
efficace résolvant le problème B, on peut écrire un algorithme efficace2 (appellé réduction) pour
résoudre le problème A. On dira que le problème A se réduit au problème B. Deux problèmes A
et B sont dits équivalents si A se réduit à B et B se réduit à A.

2S’exécutant en temps polynomial en la taille de son entrée.

I.1. INTRODUCTION (FRANÇAIS) 13

Figure I.3 : Compromis temps/approximation pour SVP avec BKZ en dimension n. En vert
les facteurs d’approximation utilisés en cryptographie.

Plus γ est grand, plus SVPγ est facile à résoudre, au sens où une solution de SVPγ est
également une solution de SVPγ′ si γ′ ≥ γ. Il a été démontré que SVP1 est NP-difficile3, ce qui
implique qu’il est plausible qu’un algorithme efficace pour le résoudre en toute généralité n’existe
pas, y compris avec un calculateur quantique4. Sa difficulté en fonction de γ peut être décrite plus
précisément comme suit. Si n est la dimension du réseau et β un entier entre 1 et n, il existe un
algorithme (l’algorithme BKZ [SE94]) résolvant SVPγ pour γ = 2Õ(n/β) en temps proportionnel
à 2β (le résultat est volontairement simplifié dans cette introduction : pour les conditions sur β
et une valeur précise de γ, voir le Lemme II.1.14). Cet algorithme nous permet de donner un
gradient de difficulté pour SVPγ en fonction de γ, représenté en Figure I.3.

Cela dit, il n’a pas été prouvé que SVPγ est NP-difficile pour les facteurs d’approximation γ
utilisés dans les constructions cryptographiques. Il est même peu probable que ce soit le cas, car il
a été prouvé [AR05] que pour γ =

√
n, SVPγ appartient à la classe de complexité NP

⋂
coNP. La

construction de cryptographie basée sur la difficulté d’un problème NP-difficile est un problème
ouvert à l’heure actuelle.

Un autre problème central dans la cryptographie à base de réseaux euclidiens est le pro-
blème SIVPγ , qui demande, grossièrement, de trouver une famille de rang plein de petits vec-
teurs dans un réseau donné (leur taille est contrôlée par γ comme pour SVPγ). Il a été prouvé
que SIVP1 et SVP1 sont équivalents [GMSS99, Mic08] et que SIVP√n·γ se réduit à SVPγ [Ste15].

Problèmes cas-moyen

Un protocole cryptographique à clé publique basé sur les réseaux euclidiens fonctionne typique-
ment comme suit : on tire un réseau L au hasard (selon une certaine distribution de probabilité)
avec de petits vecteurs de celui-ci ; on publie ensuite une base du réseau comme clé publique et

3Pour les réductions randomisées [Ajt98], ou pour la norme ℓ∞ [Emd].
4La NP-difficulté et sa relation avec le calcul quantique est un large sujet que nous n’avons pas le temps

d’introduire en détails ici. La lectrice intéressée est redirigée vers [AB09].

14 CHAPTER I. INTRODUCTION

on utilise les petits vecteurs comme clé secrète. La sécurité du système repose alors sur l’impossi-
bilité pour l’adversaire de trouver des petits vecteurs du réseau étant donné sa base, c’est-à-dire
sur la difficulté de SVPγ pour le réseau qui a été tiré. Il faut noter que dans ce cas, la sécurité du
protocole ne repose pas exactement sur la difficulté de SVPγ , qui consiste à trouver un vecteur
court dans n’importe quel réseau, mais sur la difficulté de SVPγ sur un réseau tiré au hasard
selon cette distribution de probabilité. Résoudre SVPγ sur un réseau au hasard est un problème
dit cas-moyen (ou moyen-cas). Il est plus facile que résoudre SVPγ sur tous les réseaux, que l’on
qualifie de problème pire-cas.

Un des intérêts de la cryptographie à base de réseaux euclidiens est que la difficulté de SVPγ

sur certaines de ces distributions peut être reliée à la difficulté de SVPγ dans le pire-cas. Nous
en décrivons deux dans cette introduction.

Short Integer Solution (SIS). Le premier exemple de problème cas-moyen que nous pré-
sentons est le problème Short Integer Solutions, introduit en 1996 par Miklós Ajtai [Ajt96]. Il
consiste à résoudre un système linéaire avec une condition sur la taille de la solution. Dans tout
ce qui suit, Zq désignera l’anneau Z/qZ.

Definition I.1.2 (SISq,n,m,β). Soit q ≥ 2, n ≥ 1, m ≥ n log(q), et β ≥
√
n log(q). On définit le

problème SISq,n,m,β comme suit. Étant donné une matrice A une matrice uniforme dans Zn×m
q ,

trouver un vecteur x ∈ Zm \ {0} tel que ∥x∥ ≤ β tel que

A · x = 0 mod q.

On peut noter que l’entrée de ce problème est une matrice tirée uniformément sur Zn×m
q :

c’est un problème cas-moyen. On peut relier SIS à un problème de réseaux euclidiens en notant
que si A ∈ Zn×m

q une matrice, alors l’ensemble des solutions possibles de SIS sur l’entrée A est
l’ensemble

Λ⊥q (A) = {x ∈ Zm, A · x = 0 mod q} ,

qui est un réseau euclidien. Trouver un petit vecteur dans Λ⊥q (A) est équivalent à trouver une
solution de SIS. On peut donc reformuler le problème SIS comme « résoudre SVP dans un
réseau Λ⊥q (A) pour A uniforme ».

Lors de l’introduction [Ajt96] de SIS, sa difficulté est reliée à SVPnc pour un certain c > 1.
Des résultats ultérieurs [MR04, GPV08, MP13] ont précisé cette dépendance : si m = poly(n)

et q ≥ β · nε pour ε > 0, alors SIVPγ en dimension n se réduit à SISq,n,m,β pour γ = β · Õ(
√
n).

Learning with Errors (LWE). Un autre problème cas-moyen central dans la cryptographie
à base de réseaux moderne est le problème Learning With Errors5, introduit par Oded Regev en
2005 [Reg05].

Definition I.1.3. Soient 1 ≤ n ≤ m et q ≥ 2 trois entiers, et α ∈ [0, 1] un paramètre réel. Le
problème LWEn,m,q,α demande de distinguer avec une probabilité ≥ 2/3 entre les distributions

(A,u) et (A,A · s+ e),

où A est une matrice uniforme dans Zm×n
q , u est un vecteur uniforme de Zm

q , s est un vecteur
uniforme de Zn

q et e est un vecteur gaussien de paramètre α · q dans Zm
q .

5Nous présentons ici le problème LWE avec secret uniforme et erreur Gaussienne, d’autres variantes sont
considérées dans la littérature, notamment avec des restrictions sur s [Mic18] et d’autres distributions sur e.

I.1. INTRODUCTION (FRANÇAIS) 15

Le problème LWE peut être résumé au fait de distinguer entre un vecteur uniforme et un
vecteur proche d’un réseau, comme représenté en Figure I.4. LWE est également présent dans la
littérature sous une version « Recherche », où seul le couple (A,A · s + e) est donné, et il est
demandé de retrouver s.

Figure I.4 : Les deux distributions de LWE.

Comme pour SIS, on peut relier la difficulté de LWE au problème pire-cas SIVP. Si q > 2
√
n/α

et m = poly(n), alors SIVPγ se réduit quantiquement6 [Reg05] à LWEn,m,q,α pour γ = Õ(n/α).
Nous résumons dans la Figure I.5 les relations de difficultés des problèmes présentés pré-

cédemment. La partie pire-cas du diagramme est extraite de la revue de littérature de Noah
Stephens-Davidowitz [Ste15, Page 1] et de [Mic08]. Une flèche du problème A au problème B
indique que A se réduit à B (donc « A est au mieux aussi difficile que B »). Une flèche en tirets
désigne une réduction utilisant un calculateur quantique.

Worst-case Average-case

SVP1 SIVP1

SVPγ SIVPγ LWEn,m,q,α SISn,m,q,β

Folklore, see [Ste15]
γ 7→

√
n · γ.

[GMSS99, Mic08]

q > 2
√
n/α

γ = Õ(n/α)
[Reg05]

q ≥ β · ω(
√

n log(n)), γ = β · Õ(
√
n) [GPV08]

αβ
√
m < 1/4

β = O(γ ·
√
m · q n

m)

Figure I.5 : Difficulté relative de quelques problèmes de réseaux.

6La réduction nécessite un calculateur quantique.

16 CHAPTER I. INTRODUCTION

I.1.4 Les réseaux structurés

Polynômes et réseaux euclidiens

Dans les problèmes décrits précédemment, les réseaux sont représentés par leurs bases, sous la
forme d’une matrice. Pour un réseau en dimension n, cela fait alors n2 entiers à manipuler pour
faire nos opérations cryptographiques (chiffrement, déchiffrement, signatures...), ce qui rend le
temps d’exécution des protocoles important quand n devient grand. Une méthode trouvée pour
diminuer ces temps d’exécution est d’utiliser des matrices présentant une structure.

Définissons une version du problème SIS sur l’anneau polynomial Z[X]/(Xn + 1).

Definition I.1.4 (Ring-SISq,n,m,β [Mic02, LM06, PR06]). Soit q ≥ 2, n ≥ 1, m ≥ n log(q),
et β ≥

√
n log(q). Le problème Ring-SISq,n,m,β est défini comme suit. Étant donné des polynômes

uniformes P1, . . . , Pk ∈ Zq[X]/(Xn+1), trouver des polynômes Q1, . . . , Qk ∈ Z[X]/(Xn+1) non
tous nuls avec7 ∥(Qi)i∥ ≤ β tel que

P1(X) ·Q1(X) + . . .+ Pk(X) ·Qk(X) = 0 mod (Xn + 1, q). (I.1)

Si on choisit de représenter les polynômes comme des vecteurs, l’équation (I.1) peut se réécrire

[nrot(P1)| . . . |nrot(Pk)] · [Q1, . . . , Qk]
T = 0 mod q,

où nrot(P) désigne la matrice néga-circulante associée au polynôme P (X) = p0 + p1 ·X + . . .+
pn−1 ·Xn−1 :

nrot(P) :=

p0 −pn−1 −pn−2 · · · −p1
p1 p0 −pn−1 · · · −p2
...

...
...

. . .
...

pn−2 pn−3 pn−4 · · · −pn−1
pn−1 pn−2 pn−3 · · · p0

 .

Avec cette précision, on voit que le problème Ring-SIS est exactement le problème SIS restreint
aux matrices de la forme [nrot(P1)| . . . |nrot(Pk)] avec les Pi uniformes dans Z[X]/(q,Xn +
1). L’arithmétique dans l’anneau Zq[X]/(Xn + 1) étant rendue plus rapide par l’utilisation
de la transformée de Fourier discrète (qui permet une multiplication de deux polynômes en
temps quasi linéaire), les systèmes cryptographiques construits à partir de Ring-SIS seront
plus efficaces que ceux construits à partir de SIS. Il est également possible de définir le pro-
blème Ring-LWE [SSTX09, LPR10, PRS17] de manière similaire.

Cela étant dit, la plus grande efficacité des protocoles utilisant des réseaux structurés vient
avec des hypothèses de sécurités plus fortes, qu’il faut étudier spécifiquement.

Théorie algébrique des nombres

Une manière naturelle de définir des hypothèses de sécurités plus génériques serait d’étendre nos
problèmes calculatoires structurés aux anneaux de polynômes génériques de la forme Z[X]/P (X)
pour P un polynôme entier quelconque. Cette approche peut cependant mener, selon le choix
du polynôme P , à des problèmes de faible difficulté (par exemple, sur l’anneau Z[X]/(Xn − 1)
le problème Ring-SIS est résoluble en temps raisonnable avec bonne probabilité sous certaines
conditions sur n [PR06]). Pour construire des anneaux de polynômes avec de bonnes propriétés,

7Il y a plusieurs façons de définir les normes sur Z[X]/(Xn + 1), pour une présentation de la norme que nous
utilisons dans ce manuscrit, se référer à la Section II.2.1. Si n = 2k, cette norme est identique - à un facteur
multiplicatif près - à la norme euclidienne du vecteur des coefficients du polynôme.

I.1. INTRODUCTION (FRANÇAIS) 17

Figure I.6 : Visualisation des matrices.
Non structurées (n = 9) ; Module de rang 1 (d = 9, k = 1) ; Module de rang 3 (d = 3, k = 3).

nous allons nous reposer sur la théorie des nombres. Si P ∈ Z[X] est un polynôme irréductible
de degré d, l’anneau K = Q[X]/P (X) est un corps, dit « corps de nombres de degré d » et on
peut définir son anneau d’entiers OK comme l’ensemble de ses éléments vérifiant une équation
polynomiale unitaire entière. Cet anneau d’entiers est toujours un sous-anneau d’un anneau de
polynômes et possède un certain nombre de propriétés, notamment d’être de Dedekind et d’être
le seul ordre maximal de K. Nous ne rentrerons pas dans les détails sur ce que ces propriétés
signifient, pour nous, elles sont une garantie que OK n’a pas de propriété algébrique « trop
différente de Z ». En particulier, si K est le corps cyclotomique de degré d = 2n, l’anneau OK

est alors exactement l’anneau de polynôme Z[X]/(X2n +1). Dans toute la suite du manuscrit, la
lectrice plus habituée aux anneaux polynomiaux qu’à la théorie des nombres pourra remplacer
toutes les occurrences de OK par Z[X]/(Xd + 1) pour d = 2n.

Dans tout le reste de cette introduction, K est un corps de nombres de degré d ≥ 2 et
d’anneau d’entiers OK . Un réseau module sur K de rang k ≥ 1 est sous-ensemble de Kk, stable
par addition, soustraction et multiplication par un élément de OK

8. Un réseau module M ⊂ Kk

est associé à un réseau euclidien Φ(M) ⊂ Rd·k via Φ(·), le plongement canonique du corps9,
on peut donc restreindre tous les problèmes de réseaux euclidiens présentés précédemment aux
réseaux modules, avec l’avantage que la structure de K permet d’effectuer les opérations sur les
réseaux modules de manière plus efficace que sur des réseaux non-modules de même dimension.

Le corps le plus utilisé en pratique est le corps cyclotomique de conducteur une puissance
de 2, c’est-à-dire le corps K = Q(ζ2n). Avec ce choix de corps, les réseaux modules libres10 de
rang k sont exactement11 les réseaux euclidiens générés par les matrices par blocs de la forme

B =

nrot(P1,1) . . . nrot(P1,k)
...

...
nrot(Pk,1) . . . nrot(Pk,k)

pour (Pi,j)1≤i,j≤k ∈ Q[X]/(X2n−1

+1)k×k (voir Figure I.6). La structure de ce corps a notamment
été utilisée pour les algorithmes de signature (CRYSTALS-Dilithium [LDK+20]) et d’échange de
clés (CRYSTALS-Kyber [ABD+19]) sélectionnés par la compétition du NIST [NIST].

Certaines particularités des corps cyclotomiques (en particulier son grand nombre de sous-
corps) ont mené certain·es auteur·ices à proposer d’utiliser des corps différents pour les protocoles

8Dans ce manuscrit, on ne parlera que de OK -modules sans torsion
9Ou le plongement par coefficients.

10Tous les modules ne sont pas libre, mais nous nous restreignons aux modules libres pour cette introduction.
11À rotation et homothétie près.

18 CHAPTER I. INTRODUCTION

cryptographiques, de manière à « diminuer la surface d’attaque » [BCLV17] (le corps proposé
dans [BCLV17] est le corps défini par le polynôme Xp − X − 1, pour p un nombre premier).
Nous nous sommes efforcés d’être agnostique sur le choix du corps dans ce manuscrit. Lorsque
des résultats plus précis sont disponibles sur les cyclotomiques, nous le mentionnerons.

On peut alors, comme pour les réseaux euclidiens non structurés, définir le problème SVPγ

restreint aux réseaux modules. Si K est un corps de nombres, γ ≥ 1 un facteur d’approximation
et k ≥ 1 un rang, le problème modSVPK

k,γ est le problème SVPγ restreint aux réseaux modules
de rang k sur le corps K. Comme dit précédemment, modSVPK

k,γ est un sous-problème de SVPγ

en dimension d · k.
Il faut noter que contrairement au cas des réseaux non structurés, il y a ici deux variables à

ajuster pour augmenter la difficulté du problème : le rang k du réseau et le degré d du corps.
Contrairement aux réseaux non structurés, ici, c’est le degré du corps que nous ferons augmenter
pour accroître la difficulté des problèmes. En particulier, nous nous intéressons aux réseaux
de rang 1 et 2 dans des corps de plus en plus grands. Les variables desquelles dépendront le
temps d’exécution de nos algorithmes et nos facteurs d’approximation seront le degré d du corps,
qui correspondra à la dimension des réseaux, et le discriminant-racine ∆

1/(2d)
K du corps, qui -

grossièrement - représentera la taille du corps de nombres.

Le problème id-HSVP

Le cas le plus élémentaire de réseau module est le cas du rang 1, qui correspond à trouver un
vecteur court dans un idéal fractionnaire de K. Ce problème est donc nommé id-HSVPγ

12 La
difficulté de ce problème n’est pas encore précisément comprise. Il semble que pour certains
paramètres γ grands, id-HSVPγ soit plus facile que SVPγ : il existe des algorithmes pour le
résoudre en temps polynomial quantique pour des facteurs d’approximation γ ≥ 2Õ(

√
d) dans le

cas des corps cyclotomiques [CDPR16, CDW17] ou sur n’importe quel corps K si des pré-calculs
ont été effectués [PHS19]. Pour γ = poly(d) les meilleurs algorithmes connus actuellement sont
toutefois ceux utilisés sur les réseaux non structurés (voir la Figure I.7).

Les idéaux sont l’exemple le plus simple de réseaux modules, ce qui met en avant l’importance
de la compréhension de la difficulté de id-HSVP. La structure algébrique des réseaux idéaux a
également permis de développer des réductions pire-cas vers cas-moyen les concernant.

Relation entre id-HSVP et les autres problèmes de réseaux structurés. Les problèmes
moyens-cas Ring-SIS et Ring-LWE on été reliés à la recherche de petits vecteurs dans des réseaux
idéaux. Il a été prouvé que id-HSVPγ se réduisait au problème Ring-LWE [SSTX09, LPR10] et au
problème Ring-SIS [PR06, LM06] pour des facteurs d’approximation polynomiaux. Ces résultats
doivent être vus comme des bornes inférieures de difficulté sur Ring-SIS et Ring-LWE : ces
problèmes n’étant pas définis sur des réseaux idéaux directement, les attaques sur id-HSVP ne
s’étendent pas à Ring-SIS ou Ring-LWE.

Auto-réduction pire-cas vers cas-moyen pour id-HSVP. Dans [Gen09], Gentry prouve
que (avec un oracle de factorisation), id-HSVP dans le pire-cas se réduit à résoudre id-HSVP
avec bonne probabilité sur l’inverse d’un petit idéal premier tiré au hasard.

12Le H - pour "Hermite" Short Vector Problem - vient du fait que pour les réseaux idéaux, il est plus naturel
de chercher des vecteurs petits par rapport à la norme algébrique de l’idéal et non par rapport au λ1. On peut
montrer que ces deux approches sont équivalentes, voir le Lemme II.4.9.

I.1. INTRODUCTION (FRANÇAIS) 19

Figure I.7 : Compromis temps/approximation pour id-HSVP pour deg(K) = d avec pré-calcul
exponentiel en d [PHS19, Fig. 2].

Un résultat similaire a été prouvé en 2022 par de Boer et. al. [BDPW20], où id-HSVP dans
le pire-cas est réduit à id-HSVP pour l’arrondi gaussien d’un idéal uniforme dans l’ensemble des
idéaux replets13 de norme 1.

Le problème NTRU

Le problème NTRU14 introduit en 1998 [HPS98] (dans une version légèrement différente de
celle présentée ici) est un autre problème d’équation polynomiale modulaire, où, étant donné un
polynôme h ∈ Z[X]/(Xn + 1), il faut trouver une écriture h = g/f mod q avec f et g de petits
polynômes (avec la promesse que de tels polynômes existent) :

Definition I.1.5 ((γ, γ′, q)-NTRU). Soit q ≥ 2, γ ≥ γ′ > 0. Une instance (γ, q)-NTRU est un
polynôme h ∈ Z[X]/(Xn+1) tel que h = g/f mod q avec ∥f∥, ∥g∥ ≤ √q/γ. Le problème (γ, γ′, q)-
NTRU demande, étant donné une instance (γ, q)-NTRU h, de trouver f̃ , g̃ de norme ≤ √q/γ′

vérifiant h = g̃/f̃ mod q.

Le problème NTRU peut être généralisé en prenant f, g, h ∈ OK pour un corps de nombres K.
On a remarqué très tôt que le problème NTRU peut être interprété en termes de réseaux eucli-
diens [HPS98, CS97]. En effet, l’ensemble

Lh :=

[
1
h

]
OK +

[
0
q

]
OK =

{
(f̃ , g̃)T ∈ OK

2, h · f̃ = g̃ mod q
}

est un réseau module de rang 2. Ce module est défini par h, à partir duquel une base peut être
calculée, et possède une particularité : il contient un vecteur non nul inhabituellement court (f, g).
En effet, pour la plupart des h, on a detLh = ∆K · qd, (où ∆K désigne le discriminant du corps).

13« Replete ideal » en anglais, la dénomination française n’est pas fixe.
14La signification du nom semble avoir été perdue.

20 CHAPTER I. INTRODUCTION

Figure I.8 : À gauche un réseau quelconque, à droite un réseau possédant un vecteur particu-
lièrement court.

En conséquence, on s’attendrait15 à ce que les vecteurs non nuls les plus courts aient une norme
autour de q1/2, à quelques facteurs près en fonction de ∆K et d. Cependant, (f, g)T est par
hypothèse beaucoup plus court. Nous avons donc un module de rang 2 sur OK avec la promesse
qu’il contient un vecteur non nul inhabituellement court, c’est-à-dire un sous-module de rang 1
inhabituellement dense. Nous appelons mod-uSVP2 le problème qui consiste à trouver un vecteur
non nul court dans un module de rang 2 contenant un vecteur court (voir Figure I.8).

Difficulté de NTRU. Les problèmes NTRU et mod-uSVP2 existent en fait sous deux formes.
La plus naturelle, décrite ci-dessus, demande de récupérer un vecteur court du module de rang 2
correspondant. C’est la variante que nous considérons implicitement dans cette introduction
lorsque nous discutons de NTRU et de mod-uSVP2. D’autres versions existent et sont considé-
rées dans ce manuscrit, elles demandent de trouver une base du sous-module le plus dense (donc
généré par le vecteur inhabituellement court) plutôt que de trouver le vecteur court directement
et serons désignées avec un exposant mod : NTRUmod et mod-uSVPmod

2 . Les deux versions de
ce problème sont équivalentes si un oracle à id-HSVP est donné. Comme on l’a vu plus haut,
le problème NTRU peut être considéré comme un cas particulier du problème de réseaux mo-
dules mod-uSVP2, cependant, il n’est pas clair si ses instances sont représentatives de toutes
les instances de mod-uSVP2. Dans [Pei16, Section 4.4.4], Peikert esquisse une réduction d’une
version décisionnelle du problème NTRU au problème Ring-LWE [SSTX09, LPR10] ; cette ré-
duction peut être adaptée au problème NTRU de recherche que nous considérons ici. Il convient
de noter que sous certaines contraintes de paramètres, le problème Ring-LWE est équivalent
à mod-SIVP2 [LS15, AD17], qui est la restriction aux réseaux modules de rang 2 du problème
SIVP décrit précédemment.

Liens entre NTRU et id-HSVP

Dans l’autre direction, Pellet-Mary et Stehlé [PS21] ont présenté une réduction du problème du
vecteur le plus court pour les réseaux correspondant à des idéaux de OK (id-HSVP) vers NTRU.

15C’est une conséquence de l’heuristique Gaussienne (voir par exemple [GNR10]), qui décrit à quoi un réseau
« typique » ressemble.

I.1. INTRODUCTION (FRANÇAIS) 21

Dans l’ensemble, on voit que NTRU se situe entre id-SVP et mod-SIVP. Comme noté précé-
demment, id-HSVP admet des algorithmes plus performants que les algorithmes de réduction
de réseaux génériques [LLL82, Sch87] pour certaines plages de paramètres [CDW21, PHS19].
Comme un tel phénomène est inconnu dans le cas du mod-SIVP, il pourrait y avoir un grand
saut de difficulté entre id-HSVP et mod-SIVP. Il n’est pas clair actuellement lequel de ces pro-
blèmes capture la véritable difficulté de NTRU, ou si NTRU se situe quelque part entre les
deux.

Pire-cas Cas-moyen

modSVP2 mod-SIVP2

mod-uSVP2

NTRU

id-HSVP

Ring-LWE

Ring-SIS

avg-id-HSVP
[Gen09, BDPW20]

[Pei16]

[LS15, AD17]

[SSTX09]

[PR06, LM06][PS21]

Figure I.9 : Difficulté relative de quelques problèmes de réseaux modules (facteurs d’approxi-
mation omis).

Une présentation partielle de la difficulté de certains problèmes de réseaux structurés est
disponible en Figure I.9. Tous les problèmes décrits le sont pour un même corps K. Pour des rai-
sons de lisibilité, nous ne représentons ni les pertes de facteurs d’approximation, ni les conditions
d’applications. Comme précédemment, une flèche de A vers B indique que A se réduit à B. Les
flèches en tiret désignent les réductions quantiques, les flèches sans citation sont les réductions
triviales ou folklore.

I.1.5 Contribution de cette thèse

Publications

Ce manuscrit est basé sur les deux publications réalisées pendant mon doctorat :

• [FPS22] On Module Unique-SVP and NTRU. Joël Felderhoff, Alice Pellet-Mary and
Damien Stehlé. ASIACRYPT 2022.

• [FPSW23] Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals. Joël Fel-
derhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski. TCC 2023.

22 CHAPTER I. INTRODUCTION

Difficulté de id-HSVP pour des idéaux entiers aléatoires

Les deux distributions moyen-cas d’idéaux pour lesquelles une réduction pire-cas vers moyen-cas
existe dans la littérature ne sont pas satisfaisantes. La première [Gen09] est une distribution
d’idéaux inverses ce qui, en plus d’être peu naturel d’un point de vue algébrique, ne permet pas
d’utiliser la réduction de [PS21] (valide uniquement pour les idéaux entiers) pour décrire une dis-
tribution NTRU dont la difficulté est basée sur id-HSVP dans le pire-cas. La seconde [BDPW20]
est bien une distribution d’idéaux entiers, mais le processus d’arrondi au cœur de la réduction
ne permet d’espérer que des idéaux de très grandes normes algébriques (de l’ordre de 2O(d2)).
Utiliser des idéaux de cette taille pour faire de la cryptographie mènerait à des coûts de calculs
tels que l’utilisation des réseaux structurés perdrait tout intérêt.

Nous proposons dans le Chapitre IV (tiré de [FPSW23]) une nouvelle réduction moyen-cas vers
moyen-cas (avec oracle de factorisation) de id-HSVP. Soit W un ensemble quelconque d’idéaux
et W−1 l’ensemble des inverses des éléments de W. Nous prouvons dans le Théorème IV.5.1 que
résoudre id-HSVP sur un idéal uniforme deW−1 se réduit à résoudre id-HSVP sur un petit idéal
entier uniforme et sur un idéal uniforme de W. En particulier, appliquer la réduction de [PS21]
à cette distribution donne des instances de NTRU avec module exponentiel.

En spécialisant ce résultat avecW l’ensemble des idéaux premiers de petites normes (de l’ordre
de poly(d,∆

1/d
K)d), nous démontrons dans le Corollaire IV.5.4 que la difficulté de id-HSVP sur

la distribution décrite dans [Gen09] n’est pas différente de celle de id-HSVP sur la distribution
uniforme sur les petits idéaux premiers, et donc que id-HSVP dans le pire-cas se réduit à id-HSVP
sur un petit idéal premier uniforme.

Cette nouvelle distribution nous permet, grâce à la réduction de [PS21], de définir une dis-
tribution sur les instances NTRU de module polynomial basée sur la difficulté de id-HSVP dans
le pire-cas, c’est le Corollaire IV.6.2. Cette distribution nécessite cependant un oracle de factori-
sation pour pouvoir être utilisée dans un contexte cryptographique.

Liens entre NTRU et mod-uSVP2 et distribution cas-moyen pour mod-uSVP2

Comme indiqué précédemment, le problème NTRU est un cas particulier du problème de mo-
dules mod-uSVP2, où le module est de la forme (1, h)T · OK + (0, q)T · OK . Dans le Chapitre V,
nous prouvons que ces modules NTRU sont en fait représentatifs des réseaux mod-uSVP2 gé-
néraux, au sens où tout module mod-uSVP2 peut être transformé en temps polynomial en un
réseau NTRU de géométrie similaire, c’est le Théorème V.4.1. Nous accompagnons ce résultat
avec des réductions pour les variantes pire-cas et cas-moyen de NTRUmod et de NTRUvec.

Nous proposons ensuite dans le Théorème V.6.1 une réduction pire-cas vers cas-moyen pour les
réseaux mod-uSVP2, qui tourne en temps polynomial avec appel à un oracle de factorisation (donc
en temps polynomial quantique). Ce résultat permet de donner une autre distribution moyen-
cas NTRU dont la difficulté est basée sur un problème pire-cas en combinant les Théorèmes V.4.1
et V.6.1. Cette distribution nécessite cependant un oracle de factorisation pour pouvoir être
utilisée et semble assez artificielle.

Apports de ce manuscrit par rapport à [FPS22, FPSW23]

Comme mentionné précédemment, ce manuscrit est en grande partie issu des deux articles publiés
pendant ma thèse : [FPS22, FPSW23]. Nous avons néanmoins rajouté un résultat additionnel
au Chapitre III qui nous permet de préciser certains théorèmes de [FPS22] et [FPSW23].

Soit K un corps de nombres de degré ≥ 3. Suivant un résultat classique de théorie analytique
des nombres, lorsque X tend vers l’infini, le nombre d’idéaux de norme algébrique inférieure
à X, noté NK(X), est équivalent à ρK ·X, où ρK est le résidu en s = 1 de la fonction zêta de

I.1. INTRODUCTION (FRANÇAIS) 23

Dedekind associé à K. Dans certain de nos résultats, nous avons eu besoin de borner le terme
d’erreur dans cette approximation, mais les bornes de la littérature ne faisaient pas apparaitre
explicitement la dépendance en K. Nous proposons au Chapitre III une explicitation, nouvelle
à notre connaissance, de la borne sur cette erreur où la dépendance dans le corps est précisée,
c’est le Théorème III.1.2.

Dans [FPSW23], le temps d’exécution de la réduction de id-HSVP dans le pire-cas vers
id-HSVP pour un idéal premier uniforme [FPSW23, Corollaire 5.4] dépend d’un paramètre ad
hoc ρ̃A, qui est la proportion inverse d’idéaux premiers du corps de norme inférieure à A. Il
est connu que ρ̃A se comporte asymptotiquement comme ρK · ln(A), mais les bornes d’erreurs
sur cette approximation dans la littérature ne nous permettaient pas d’appliquer ce résultat
pour les valeurs de A qui nous intéressent. Le Corollaire III.1.3 nous permet de donner une
réduction dont le temps d’exécution ne dépend que de ρK , et non plus de ρ̃A. Cela mène à
une taille d’idéaux et des facteurs d’approximation plus importants, qui sont présentés dans le
Corollaire IV.5.5. Nous utilisons également notre résultat concernant NK(·) dans le Chapitre V.
La réduction de mod-uSVP2 à NTRU (Théorème V.4.1, ou [FPS22, Théorème 4.1]) avait un
temps d’exécution dépendant de ζK(2) qui, en fonction du corps de nombres considéré, peut être
exponentiel en le degré. Nous utilisons les résultats du Chapitre III pour proposer une nouvelle
version de ce théorème où le temps d’exécution ne dépend plus de ζK(2) (au prix d’une perte de
facteur d’approximation plus grande). Le théorème en question est le Théorème V.4.2, dont la
preuve est en Section D.5.

Une deuxième modification a été apportée au Théorème V.4.1 par rapport à [FPS22, Théo-
rème 4.1]. Dans [FPS22, Théorème 4.1], une condition sur le corps de nombres K est présente :
on demande que ζK(2) = 2o(d). Cette condition est non triviale, car elle a des implications sur
l’arithmétique de K (on peut l’interpréter comme le fait que « OK n’ait pas trop de petits
idéaux »). Cette condition était issue de la preuve du Lemme 4.3 de [FPS22], et était purement
technique. Nous avons modifié la preuve de ce lemme (dans ce manuscrit, le Lemme V.4.4) pour
la retirer.

24 CHAPTER I. INTRODUCTION

I.2 Introduction (English)

“So... Are you a mathematician
or a computer scientist?”

J.M. Felderhoff (my father), 2022

The notion of “secure communication” covers a wide range of problematics, such as message
authentication (guaranteeing the origin of a received message) or message encryption (making
the content of a message unintelligible to anyone other than the recipient), with proto-examples
dating back to Antiquity. Nowadays, modern computers render naïve security techniques (such
as mono-alphabetic encryption, where one letter is simply replaced by another) obsolete.

The democratization of computers and the Internet has been accompanied by the intro-
duction of numerous encryption and digital signature protocols, such as TLS (the standard
used in HTTPS), OpenPGP (used to sign emails) and end-to-end encryption protocols (used in
WhatsApp, Telegram and Signal). In this context of widespread use, we need to find ways of
guaranteeing the security of cryptographic protocols.

In this manuscript, we are working within the framework of public-key cryptography, which
enables secure communication when both parties are unable to share a key beforehand (which
is regularly the case in Internet exchanges). In this paradigm, a distinction is made between a
secret key (available to only one party) and a public key (available to everyone). The security
of public-key protocols is based on the difficulty of guessing the secret key with knowledge of
public data, such as public key and messages transiting the network. Nowadays, the security of
public-key cryptographic protocols is guaranteed by means of security proofs.

I.2.1 Guaranteeing the security of a protocol

Let us take the example of an encryption protocol that enables two parties to exchange messages
in a way that is unintelligible to a third party. Proving the security of such a protocol involves
three steps.

The first is to define the adversary, i.e. the abstract entity against which we want to guarantee
the security of our system, such as an intelligence agency or a company (legal or not) wishing to
resell data... The questions to ask are typically:

• What would be the adversary’s goal in breaking my protocol? For our example, it could
be to decrypt a message, or to distinguish an encrypted message from a random bit string.

• How much computing power does the adversary have access to? How long do we want to
resist them?

• Can they interact with the cryptographic system? For example, can they send false mes-
sages and observe their interlocutor’s behavior? Does they have access to part of the secret
key?

The second step is to define one or more security assumptions. These are mathematical state-
ments of the form: “it is impossible to solve such and such a problem in a reasonable time”. A
classic example is factorization: “Given a large number N , it is impossible in a reasonable time
to find p and q different from 1 such that N = p · q”.16

16Of course, the notion of “large” and “reasonable time” need to be defined more precisely, see Section II.4.

I.2. INTRODUCTION (ENGLISH) 25

The third step is to make the connection between the two. In practice, this means proving a
mathematical statement of the form : “Suppose there is an adversary that breaks our protocol,
then there must also be an algorithm that breaks the security assumption”. This kind of state-
ment is called a security reduction. It should be interpreted as the mathematical formalization
of the fact that, as long as the security assumption holds, the protocol is secure against this type
of adversary. We say that studying the security of the protocol against this adversary reduces to
studying the validity of the security assumption.

I.2.2 Quantum adversary and post-quantum cryptography

In this manuscript, we assume that our adversary has access to a quantum computer (as opposed
to our classical transistor-based computers) and that we do not. It is beyond the scope of this
introduction to precisely explain how a possible quantum computer would work. Suffice it to
say that they perform calculations differently from a classical computer, in the same way that a
mechanical calculator performs calculations differently from a digital calculator. This difference
in particular implies that certain problems that were thought to be difficult for classical computers
can be solved efficiently with quantum computers.

In particular, Shor’s quantum algorithm [Sho94] allows the factorization and discrete loga-
rithm problems to be solved with a reasonable amount of resources. Security protocols based on
the difficulty of these problems are therefore obsolete if the adversary has access to a quantum
computer. Given that the most widely deployed protocols (e.g., TLS and OpenPGP) depend
heavily on the difficulty of solving these problems, the (widely debated...) possibility of a quan-
tum computer appearing in the next few years has prompted standardization institutes, national
authorities and industry to intensify research into quantum-proof security assumptions (we talk
about post-quantum security assumptions).

In particular, the NIST (the U.S. Institute of Standards and Technology) post-quantum
cryptography standardization process, in the form of a competition, began in 2016 and has
been completed in 2022 [NIST]. As a result of this competition, four main families of encryption
protocols appear to be resistant to quantum computers. These are protocols based on polynomial
systems, error-correcting codes, isogenies between elliptic curves and lattices. The work carried
out in this thesis deals with security assumptions related to lattices.

I.2.3 Lattices

The Shortest Vector Problem

Informally, a lattice is an infinite set of regularly distributed points in space. It can be used in 2
or 3 dimensions, for example, to represent the distribution of atoms in a crystal (see Figure I.10).
In cryptography, high-dimensional lattices (n ≈ 500) are used for their algorithmic properties.

Let B = [b1, . . . , bn] ∈ Rn×n be an (invertible) matrix, which we call a basis. The lattice
spanned by this matrix, denoted by L(B), is the set of integer combinations of the column vectors
of (bi)1≤i≤n. Mathematically, we write

L(B) = B · Zn =

{
n∑

i=1

bi · xi, (xi)1≤i≤n ∈ Zn

}
,

An example of lattice L is given in Fig. I.11. This particular lattice is spanned by the blue
vectors in the figure, i.e., the matrix (

1.1 −0.1
−0.1 1

)
.

26 CHAPTER I. INTRODUCTION

Figure I.10: Graphene layer at atomic level [Ale09] and corresponding lattice.

Note that not only blue vectors, but also red vectors generate L: a lattice has multiple bases.

Figure I.11: An example of lattice.

Numerous computational problems are associated with lattices, some of which can be used to
construct cryptography (a presentation of the main ones and their relationships can be found in
a literature review by Peikert [Pei16]). In this manuscript, we study the problem of finding one
or many shortest vectors in a lattice, given a basis of it. We define the Shortest Vector Problem
as follows:

Definition I.2.1 (SVPγ). Let γ ≥ 1. The problem SVPγ asks, given B ∈ Zn×n, to find v ∈
L(B) \ {0} satisfying

∥v∥ ≤ γ · λ1(L(B)),

where λ1(L(B)) is the Euclidean norm of a shortest non-zero vector of the lattice L(B).

In particular, SVP1 (also called “exact-SVP ”) asks to find one of the shortest vectors of L(B).
In the case of the lattice shown in Figure I.11, the green vector would be an answer to SVP1.
This problem is difficult to solve. In fact, the best known algorithms (whether classical or

I.2. INTRODUCTION (ENGLISH) 27

quantum) solving SVP1 in dimension n either require nO(n) operations (enumeration algorithms,
see for example [FP85, Kan87, HS07]) or 2O(n) operations, but at the cost of a memory amount
of 2O(n) bits (sieving algorithms [AKS01] or based on Voronoï cells [MV13]). This state-of-the-
art makes SVP1 intractable with reasonable resources (say, less than 1010 years using all the
world’s computers) as soon as the dimension n becomes larger than a few hundred (the largest
record recorded on [Nam] at the time of writing this manuscript is n = 190).

Comparing algorithmic problems The central notion for comparing the difficulty of two
algorithmic problems is the notion of reduction. In complexity theory, we say that a problem B
is harder or as hard as a problem A if, given an efficient algorithm solving problem B, we can
write an efficient algorithm17 (called reduction) to solve problem A. We’ll say that problem A
reduces to problem B. Two problems A and B are said to be equivalent if A reduces to B and B
reduces to A.

The larger γ is, the easier SVPγ becomes, in the sense that a solution of SVPγ is also a
solution of SVPγ′ if γ′ ≥ γ. It has been shown that SVP1 is NP-hard18, which implies that it
is plausible that an efficient algorithm to solve every instance of it does not exist, even with a
quantum calculator19. We can go even further in describing its difficulty as a function of γ: for
a lattice L of dimension n and an integer β between 1 and n, there exists an algorithm (the BKZ
algorithm [SE94]) solving SVPγ for γ = 2Õ(n/β) on input L in time proportional to 2β (the result
is deliberately simplified in this introduction, for conditions on β and a precise value of γ, see
Lemma II.1.14). This algorithm enables us to give a difficulty gradient for SVPγ as a function
of γ, shown in Figure I.12.

That being said, it has not been proved that SVPγ is NP-hard for the approximation factors γ
used in cryptographic constructions. In fact, it is unlikely, as it has been proved [AR05] that
for γ =

√
n, SVPγ is in the complexity class NP

⋂
coNP. The construction of cryptography

based on the difficulty of an NP-hard problem is still an open problem.
Another central problem in lattice-based cryptography is SIVPγ , which asks, roughly speak-

ing, to find a full-rank family of small (their size is controlled by γ as for SVPγ) vectors
in a given lattice. It has been proved that SIVP1 and SVP1 are computationally equiva-
lent [GMSS99, Mic08] and that SIVP√n·γ reduces to SVPγ [Ste15].

Average-case problems

A public-key cryptographic protocol based on lattices typically works as follows: we sample a
lattice L at random (according to a certain distribution) with small vectors inside of it ; we then
publish a basis of the lattice as our public key, and use the small vectors as our secret key. The
security of the system then relies on the fact that an adversary cannot find small non-zero vectors
of the lattice given its basis, i.e., on the difficulty of SVPγ for the lattice that has been drawn.
Note that in this case, the security of the protocol is not exactly based on the difficulty of SVPγ ,
where you have to be able to find a short vector in all lattices, but on the difficulty of SVPγ on a
randomly chosen lattice. Solving SVPγ on a random lattice is a so-called average-case problem,
which is easier than solving SVPγ on all lattices, a so-called worst-case problem.

One of the interests of lattice-based crytography is that the difficulty of SVPγ on some of
these distributions can be related to the difficulty of SVPγ in the worst case. We describe two
of these in this introduction.

17Executing in time polynomial in the size of its input.
18For randomized reductions [Ajt98], or for the ℓ∞ norm [Emd].
19NP-difficulty and its relation to quantum computation is a broad topic that is outside the scope of this

manuscript. The interested reader is redirected to [AB09].

28 CHAPTER I. INTRODUCTION

Figure I.12: Time/approximation trade-off for SVP with BKZ in dimension n. Approximation
factors used in cryptography are shown in green.

Short Integer Solution (SIS). The first example of an average-case problem we give is the
Short Integer Solutions problem, introduced in 1996 by Miklós Ajtai [Ajt96]. It consists in solving
a linear system with a condition on the size of the solution. In what follows, Zq denotes the
ring Z/qZ.

Definition I.2.2 (SISq,n,m,β). Let q ≥ 2, n ≥ 1, m ≥ n log(q), and β ≥
√
n log(q). The

problem SISq,n,m,β is defined as follows. Given A a uniform matrix in Zn×m
q , find x ∈ Zm \ {0}

such that ∥x∥ ≤ β satisfying
A · x = 0 mod q.

Note that the input to this problem is a matrix sampled uniformly from Zn×m
q : this is an

average-case problem. We can relate SIS to a lattice problem by observing that for a matrix A ∈
Zn×m
q , the set of possible solutions of SIS on input A is the set

Λ⊥q (A) = {x ∈ Zm, A · x = 0 mod q} ,

which is a lattice. Finding a small vector in Λ⊥q (A) is equivalent to finding a solution of SIS. We
can therefore reformulate the problem SIS as “solving SVP in the lattice Λ⊥q (A) for an uniform
matrix A ∈ Zn×m

q ”.
When SIS was introduced [Ajt96], its hardness was related to SVPnc for a certain c > 1.

Further results [MR04, GPV08, MP13] have refined this dependency: if m and q satisfy m =
poly(n) and q ≥ β · nε for ε > 0, then SIVPγ in dimension n reduces to SISq,n,m,β for γ =

β · Õ(
√
n).

Learning With Errors (LWE). Another average-case problem central to modern lattice-
based cryptography is the Learning With Errors problem 20, introduced by Oded Regev in
2005 [Reg05].

20We present here the LWE problem with uniform secret and Gaussian error; other variants are considered in
the literature, notably with restrictions on s [Mic18] and other distributions on e.

I.2. INTRODUCTION (ENGLISH) 29

Definition I.2.3. Let 1 ≤ n ≤ m and q ≥ 2 three integers and α ∈ [0, 1] a real parameter.
The LWEn,m,q,α problem ask to distinguish with probability ≥ 2/3 between the two following
distributions:

(A,u) and (A,A · s+ e),

where A is a uniform matrix in Zm×n
q , u a uniform vector in Zm

q , s a uniform vector in Zn
q

and e a vector of Zm
q sampled from the discrete Gaussian distribution of parameter α · q.

The LWE problem can be seen as distinguishing between a uniform vector and a vector close
to a lattice, as shown in Figure I.13. It is also present in the literature in a “search” version,
where only the pair (A,A · s+ e) is given, and we are asked to find s.

Figure I.13: The two distribution of LWE.

As with SIS, one can relate the hardness of LWE to the worst-case problem SIVP. If q >
2
√
n/α and m = poly(n), then SIVPγ quantumly reduces21 [Reg05] to LWEn,m,q,α for γ =

Õ(n/α).
Figure I.14 summarizes the hardness relationships between the problems presented above.

The worst-case part of the diagram is taken from the literature review by Noah Stephens-
Davidowitz [Ste15, Page 1] and from [Mic08]. An arrow from problem A to problem B indicates
that A reduces to B (so “ A is at most as difficult as B”). A dashed arrow indicates a quantum
reduction.

I.2.4 Structured lattices

Polynomials and lattices

In the problems described previously, the lattices are represented by their bases, in the form of
a matrix. For a lattice of dimension n, this makes n2 integers to be manipulated to perform our
cryptographic operations (encryption, decryption, signatures...), which makes protocol running-
time important when n becomes large. One way of solving this problem is to use matrices with
a structure.

Let us define a version of the SIS problem over the polynomial ring Z[X]/(Xn + 1).

Definition I.2.4 (Ring-SISq,n,m,β [Mic02, LM06, PR06]). Let q ≥ 2, n ≥ 1, m ≥ n log(q),
and β ≥

√
n log(q). The Ring-SISq,n,m,β problem is defined as follows. Given uniform poly-

nomials P1, . . . , Pk ∈ Zq[X]/(Xn + 1), Find Q1, . . . , Qk ∈ Z[X]/(Xn + 1) not all equal to zero

21The reduction requires a quantum calculator.

30 CHAPTER I. INTRODUCTION

Worst-case Average-case

SVP1 SIVP1

SVPγ SIVPγ LWEn,m,q,α SISn,m,q,β

Folklore, see [Ste15]
γ 7→

√
n · γ.

[GMSS99, Mic08]

q > 2
√
n/α

γ = Õ(n/α)
[Reg05]

q ≥ β · ω(
√

n log(n)), γ = β · Õ(
√
n) [GPV08]

αβ
√
m < 1/4

β = O(γ ·
√
m · q n

m)

Figure I.14: Relative hardness of some lattice problems.

with ∥(Qi)i∥ ≤ β satisfying22

P1(X) ·Q1(X) + . . .+ Pk(X) ·Qk(X) = 0 mod (Xn + 1, q). (I.2)

If one chooses to represent polynomials as vectors, Equation (I.2) can be rewritten as follows

[nrot(P1)| . . . |nrot(Pk)] · [Q1, . . . , Qk]
T = 0 mod q,

where nrot(P) is the nega-circulant matrix associated with the polynomial P (X) = p0+p1 ·X+
. . .+ pn−1 ·Xn−1:

nrot(P) :=

p0 −pn−1 −pn−2 · · · −p1
p1 p0 −pn−1 · · · −p2
...

...
...

. . .
...

pn−2 pn−3 pn−4 · · · −pn−1
pn−1 pn−2 pn−3 · · · p0

 .

With this rephrasing, we can see that the Ring-SIS problem is exactly the SIS problem restricted
to matrices of the form [nrot(P1)| . . . |nrot(Pk)] with the Pi uniform in Z[X]/(q,Xn + 1). As
arithmetic in the ring Zq[X]/(Xn+1) is made faster by the use of the discrete Fourier transform
(which allows multiplication of two polynomials in quasi-linear time), cryptographic systems
built from Ring-SIS will be more efficient than those built from SIS. It is also possible to define
the Ring-LWE [SSTX09, LPR10, PRS17] problem in a similar fashion.

That being said, the increased efficiency of protocols using structured lattices comes with
stronger security assumptions, which need to be studied specifically.

22There are multiple ways to define norms over Z[X]/(Xn +1), for a presentation of the norm we actually use,
see Section II.2.1. If n = 2k, this norm is the same - up to a multiplicative factor - to the Euclidean norm of the
coefficient vector of the polynomial.

I.2. INTRODUCTION (ENGLISH) 31

Figure I.15: Graphical representation of matrices.
Unstructured (n = 9) ; Rank-1 module (d = 9, k = 1) ; Rank-3 module (d = 3, k = 3).

Algebraic number theory

A natural way of defining more generic security assumptions is be to extend our structured
computational problems to generic polynomial rings of the form Z[X]/P (X) for any polyno-
mial P ∈ Z[X]. However, depending on the choice of the polynomial P , this approach can lead
to security problems (for example, in the ring Z[X]/(Xn − 1) the problem Ring-SIS is solvable
in reasonable time with good probability under certain conditions on n [PR06]). To construct
polynomial rings with good properties, we rely on number theory. If P ∈ Z[X] is an irreducible
polynomial of degree d, the ring K = Q[X]/P (X) is a field, called “number field of degree d”,
and we can define its ring of integers OK as the set of its elements satisfying a monic integer
polynomial equation. This ring of integers is always a sub-ring of a polynomial ring and has
a number of properties, including being a Dedekind domain and the only maximal order of K.
We do not go into details about what these properties mean; intuitively, they are a guarantee
that OK does not have algebraic properties “too different from Z”. In particular, if K is the cy-
clotomic field of degree d = 2n, then the ring OK is exactly the polynomial ring Z[X]/(X2n +1).
Throughout the rest of the manuscript, readers more familiar with polynomial rings than with
number theory are encouraged to replace all occurrences of OK by Z[X]/(Xd + 1) for d = 2n.

In the rest of this introduction, K is a number field of degree d ≥ 2 and ring of integers OK . A
module over K of rank k ≥ 1 is a subset of Kk, stable by addition, subtraction and multiplication
by elements of OK

23. A module M ⊂ Kk is associated with a lattice Φ(M) ⊂ Rd·k via Φ(·), the
canonical embedding of the field24, we can therefore restrict all the lattice problems presented
above to module lattices, with the advantage that the structure of K allows us to perform
operations on module lattices more efficiently than on non-module lattices of the same dimension.

The most commonly used field in practice is the cyclotomic field of conductor a power of 2,
i.e. the field K = Q(ζ2n). With this choice of field, the free25 modules of rank k are (up to
rotation and scaling) exactly the lattices generated by block matrices of the form

B =

nrot(P1,1) . . . nrot(P1,k)
...

...
nrot(Pk,1) . . . nrot(Pk,k)

for (Pi,j)1≤i,j≤k ∈ Q[X]/(X2n−1

+ 1)k×k (see Fig. I.15). The structure of this field was no-

23In this manuscript, we only talk about finitely generated OK -modules without torsion
24Or the embedding by coefficients.
25All modules are not free, but we restrict ourselve to free modules for this introduction.

32 CHAPTER I. INTRODUCTION

tably used for the signature (CRYSTALS-Dilithium [LDK+20]) and key exchange (CRYSTALS-
Kyber [ABD+19]) algorithms selected by the NIST [NIST] competition.

Some particularities of the cyclotomic field (in particular its large number of sub-fields) have
led some authors to propose the use of different fields for cryptographic protocols, in order to
“reduce the attack surface” (the field proposed in [BCLV17] is the field defined by the polyno-
mial Xp −X − 1, for p a prime number). We have tried to be agnostic about the choice of field
in this manuscript. When more precise results are available on cyclotomics, we mention it.

As with unstructured lattices, we can then define the problem SVPγ restricted to module
lattices. If K is a number field, γ ≥ 1 an approximation factor and k ≥ 1 a rank, the prob-
lem modSVPK

k,γ is the problem SVPγ restricted to rank k modules over the field K. As previously
stated, modSVPK

k,γ is a subproblem of SVPγ in dimension d · k.
Note that unlike the case of unstructured lattices, here there are two variables to adjust

to increase problem difficulty: the rank k of the lattice and the degree d of the field. Unlike
unstructured lattices, here it is the degree of the field that we increase to increase problem
difficulty. In particular, we are interested in rank-1 and rank-2 lattices in increasingly large
fields. The variables on which the running-time of our algorithms and our approximation factors
depend on are the degree d of the field, which corresponds to the size of the lattices, and the
root-discriminant ∆1/(2d)

K of the field, which - roughly speaking - represents the size of the number
field.

On id-HSVP

The most elementary case of a module lattice is the rank 1 case, which corresponds to finding
a short vector in a fractional ideal of K. This problem is therefore called id-HSVPγ

26. The
difficulty of this problem is not yet precisely understood. It seems that for some large param-
eters, id-HSVPγ is easier than SVPγ : there are algorithms to solve in polynomial time it for
approximation factors γ ≥ 2Õ(

√
d) for cyclotomic fields [CDPR16, CDW17] or on any field K if

pre-calculations have been performed [PHS19]. For γ = poly(d) however, the best algorithms
currently known are those used on unstructured lattices (see Figure I.16).

Ideals are the simplest example of lattice modules, so understanding the difficulty of id-HSVP
is an important matter. Their algebraic structure has also made it possible to develop worst-case
to average-case reductions.

Relationship between id-HSVP and other module lattice problems. The average-case
problems Ring-SIS and Ring-LWE have been linked to the search for small vectors in ideal
lattices. It has been proved that id-HSVPγ reduces to the Ring-LWE [SSTX09, LPR10] problem
and the Ring-SIS [PR06, LM06] problem for polynomial approximation factors. These results
should be seen as lower bounds of difficulty on Ring-SIS and Ring-LWE: as these problems
are not defined on ideal lattices directly, attacks on id-HSVP do not extend to Ring-SIS or
Ring-LWE.

Worst-case to average-case self reduction for id-HSVP. In [Gen09], Gentry proves that
(with a factorization oracle), id-HSVP in the worst-case reduces to solving id-HSVP with good
probability when the input is the inverse of a small uniform prime ideal.

26The H - for “Hermite” Short Vector Problem - comes from the fact that for ideal lattices, it is more natural
to look for small vectors with respect to the algebraic norm of the ideal and not with respect to λ1. It can be
shown that those two approaches are equivalent, see Lemma II.4.9.

I.2. INTRODUCTION (ENGLISH) 33

Figure I.16: Time/approximation trade-off for id-HSVP with deg(K) = d and exponential
pre-computations in d [PHS19, Fig. 2].

A similar result was proven in 2022 by de Boer et. al. [BDPW20], where id-HSVP in the
worst-case is reduced to id-HSVP with good probability when the input is the Gaussian rounding
of a uniform ideal in the set of norm 1 replete ideals.

The NTRU problem

The NTRU27 problem, introduced in 1998 [HPS98] (in a version slightly different from the one
presented here) is another modular polynomial equation problem, where given a polynomial h ∈
Z[X]/(Xn + 1), we have to find a writing h = g/f mod q with f and g small polynomials (with
the promise that such polynomials exist):

Definition I.2.5 ((γ, γ′, q)-NTRU). Let q ≥ 2 and γ ≥ γ′ > 0. A (γ, q)-NTRU instance is a
polynomial h ∈ Z[X]/(Xn + 1) such that h = g/f mod q with ∥f∥, ∥g∥ ≤ √q/γ. The (γ, γ′, q)-
NTRU problem asks, given a (γ, q)-NTRU instance h, to find f̃ , g̃ with norm ≤ √q/γ′ satisfy-
ing h = g̃/f̃ mod q.

The NTRU problem can be generalized by taking f, g, h ∈ OK for a number field K. It was
noticed early on that the NTRU problem can be interpreted in terms of lattices [HPS98, CS97].
Indeed, the set

Lh :=

[
1
h

]
OK +

[
0
q

]
OK =

{
(f̃ , g̃)T ∈ OK

2, h · f̃ = g̃ mod q
}

is a module lattice of rank 2. This lattice is described by h, from which a basis can be computed,
and has a particular property: it contains an unusually short non-zero vector (f, g). Indeed,
for most h’s, we have detLh = ∆K · qd, where ∆K refers to the field discriminant; our running
example satisfies ∆K = dd. As a result, one would expect the shortest non-zero vectors to have ℓ2-
norm around q1/2, up to limited factors depending on ∆K and d;28 but (f, g)T is much shorter,

27The meaning of the name seems to have been lost.
28This is a consequence of the Gaussian heuristic (see, e.g., [GNR10]), which describes how a “typical” looks

like.

34 CHAPTER I. INTRODUCTION

Figure I.17: On the left a typical lattice, on the right a lattice with an unusually short non-zero
vector.

by assumption. We therefore have a rank 2 module on OK with the promise that it contains an
unusually short non-zero vector, i.e. an unusually dense rank 1 submodule. We call the problem
of finding a short non-zero vector in a rank 2 module containing a short vector mod-uSVP2 (see
Figure I.17).

NTRU’s hardness. The NTRU and mod-uSVP2 problems actually exist in two forms. The
most natural, described above, involves recovering a short vector of the corresponding rank 2
module. This is the variant we implicitly consider in this introduction when discussing NTRU
and mod-uSVP2. The other versions considered in this manuscript require finding a basis of the
densest submodule (i.e. generated by the unusually short vector) rather than finding the short
vector directly: they will be written with a mod exponent: NTRUmod and mod-uSVPmod

2 . Both
versions of this problem are equivalent if a id-HSVP oracle is given. As seen above, the NTRU
problem can be considered a special case of mod-uSVP2, however, it is not clear whether its
instances are representative of all mod-uSVP2 instances. In [Pei16, Section 4.4.4], Peikert
sketches a reduction from a decision version of the NTRU problem to the Ring-LWE [SSTX09,
LPR10] problem; this reduction can be adapted to the search NTRU problem we are consider-
ing here. Note that under certain parameter constraints, the Ring-LWE problem is equivalent
to mod-SIVP2 [LS15, AD17], which is the restriction to rank 2 module lattices of the SIVP
problem described above.

Links between NTRU and id-HSVP

In the other direction, Pellet-Mary and Stehlé [PS21] presented a reduction of the shortest vector
problem for ideal lattices over OK (id-HSVP) to NTRU. Overall, we see that NTRU lies between
id-HSVP and mod-SIVP. As noted earlier, id-HSVP admits better algorithms than generic lattice
reduction algorithms [LLL82, Sch87] for certain parameter ranges [CDW21, PHS19]. Since such
a phenomenon is unknown in the case of mod-SIVP, there could be a big jump in difficulty
between id-HSVP and mod-SIVP. It is currently unclear which of these problems captures the
true difficulty of NTRU, or whether NTRU lies somewhere in between.

A partial presentation of the difficulty of some module lattices problems is available in Fig-
ure I.18. All the problems described are for the same field K; for the sake of readability, we

I.2. INTRODUCTION (ENGLISH) 35

Worst-case Average-case

modSVP2 mod-SIVP2

mod-uSVP2

NTRU

id-HSVP

Ring-LWE

Ring-SIS

avg-id-HSVP
[Gen09, BDPW20]

[Pei16]

[LS15, AD17]

[SSTX09]

[PR06, LM06][PS21]

Figure I.18: Relative hardness of some module-lattices problems (approximations factors omit-
ted).

do not show approximation factor losses or application conditions. As before, an arrow from A
to B indicates that A reduces to B. Dashed arrows denote quantum reductions, arrows without
associated citation are trivial or folklore reductions.

I.2.5 Contribution of this PhD

Publications

This manuscript is based on the two publications produced during my thesis:

• [FPS22] On Module Unique-SVP and NTRU. Joël Felderhoff, Alice Pellet-Mary and
Damien Stehlé. ASIACRYPT 2022.

• [FPSW23] Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals. Joël Felder-
hoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski. TCC 2023.

Hardness of id-HSVP for random integral ideals

The two average-case distributions of ideals for which a worst-case to average-case reduction
exists in the literature are not satisfying. The first [Gen09] is a distribution of inverse ideals
which, in addition to being unnatural from an algebraic point of view, does not allow us to use
the reduction of [PS21] (which is valid only for integral ideals) to describe a distribution NTRU
whose difficulty is based on id-HSVP in the worst-case. The second [BDPW20] is indeed a
distribution of integral ideals, but the rounding process at the heart of the reduction only allows
us to expect ideals of very large algebraic norm (of the order of 2O(d2)). Using ideals of this size
for cryptography would lead to such high computational costs that the use of structured lattices
would lose all interest. In particular, if the reduction of [PS21] is applied with this distribution,
it leads to NTRU instances with exponential modulus.

36 CHAPTER I. INTRODUCTION

We propose in Chapter IV (from [FPSW23]) a new average-case to average-case reduction
(with factorization oracle) for id-HSVP. Let W be any set of ideals and W−1 the set of inverses
of the elements of W. We prove in Theorem IV.5.1 that solving id-HSVP over a uniform ideal
of W−1 reduces to solving id-HSVP over a small uniform integral ideal and over a uniform ideal
of W.

By specializing this result withW being the set of prime ideals of small norm (poly(d,∆1/d
K)d)

we show in Corollary IV.5.4 that the difficulty of id-HSVP on the distribution described in [Gen09]
is no different from that of id-HSVP on the uniform distribution on small prime ideals, and thus
that id-HSVP in the worst-case reduces to id-HSVP on a small uniform prime ideal.

Thanks to the reduction of [PS21], this new distribution allows us to define a distribution
on polynomial modulus NTRU instances based on the difficulty of id-HSVP in the worst case
(Corollary IV.6.2). However, this distribution requires a factoring oracle in order to be used in
a cryptographic context.

Relationship between NTRU and mod-uSVP2, and average-case distribution
for mod-uSVP2

As mentioned earlier, the NTRU problem is a special case of the mod-uSVP2 problem, where the
module is of the form (1, h)T ·OK+(0, q)T ·OK . In Chapter V, we prove that these NTRU modules
are in fact representative of general mod-uSVP2 lattices, in the sense that any mod-uSVP2

module can be transformed in polynomial time into a NTRU lattice of similar geometry, this
is Theorem V.4.1. We accompany this result with reductions for worst-case and average-case
variants of mod-uSVPmod

2 (respectively mod-uSVPvec
2) to NTRUmod (respectively NTRUvec).

We then propose in Theorem V.6.1 a worst-case to average-case reduction for mod-uSVP2

instances, which runs in polynomial time with a call to a factorization oracle (hence in quantum
polynomial time). This result allows us to give another average-case distribution on NTRU in-
stances whose hardness is based on a worst-case problem by combining Theorems V.4.1 and V.6.1.
However, this distribution requires a factoring oracle to be used and seems rather artificial.

Contributions of this manuscript compared to [FPS22, FPSW23]

As mentioned earlier, this manuscript is largely based on the two papers published during my
thesis: [FPS22, FPSW23]. However, we have added an additional result in Chapter III which
allows us to refine certain theorems of [FPS22] and [FPSW23].

Let K be a number field of degree ≥ 3. A classical result of analytic number theory is that,
when X tends to infinity, the number of ideals of algebraic norm less than X, denoted by NK(X),
is equivalent to ρK ·X, where ρK is the residue in s = 1 of the Dedekind zeta function associated
with K. In some of our results, we needed to bound the error term in this approximation, but
the literature bounds did not explicitly show the dependence on K. In chapter III we propose a,
new to our knowledge, expression of the bound on this error where the dependence in the field
is specified, this is Theorem III.1.2.

In [FPSW23], the running time of the worst-case reduction from id-HSVP to id-HSVP for a
uniform prime ideal [FPSW23, Corollary 5.4] depends on an ad hoc parameter ρ̃A, which is the
inverse proportion of prime ideals in the field of norm less than A. It is known that ρ̃A behaves
asymptotically as ρK · ln(A), but the error bounds on this approximation in the literature did
not allow us to apply this result for the values of A that interest us. Corollary III.1.3 allows us
to give a reduction whose running-time depends only on ρK , and no longer on ρ̃A. This leads
to larger ideal sizes and approximation factors, which are presented in Corollary IV.5.5. We
also use our result about NK(·) in Chapter V. The reduction of mod-uSVP2 to NTRU (in this
manuscript, Theorem V.4.1 or [FPS22, Theorem 4.1]) had a running-time depending on ζK(2)

I.2. INTRODUCTION (ENGLISH) 37

which, depending on the number field considered, can be exponential in degree. We use the
results of Chapter III to propose a new version of this theorem where the running-time no longer
depends on ζK(2) (at the cost of a larger approximation factor loss). The theorem in question is
Theorem V.4.2, the proof of which is in Section D.5.

A second modification has been made to Theorem V.4.1 in comparison with [FPS22, The-
orem 4.1]. In [FPS22, Theorem 4.1], a condition on the number field K is present: we require
that ζK(2) = 2o(d). This condition is non-trivial, as it has implications on the arithmetic of K (it
can be interpreted as the fact that “ OK does not have too many small ideals”). This condition
originated from the proof of [FPS22, Lemma 4.3] and was purely technical. We have modified
the proof of this lemma (in this manuscript, Lemma V.4.4) to remove it.

Chapter II

Preliminaries

We let Z denote the set of integers, Q the rationals, R the real numbers and C the complex
plane. In this manuscript, the notation ln will refer to the base-e logarithm and the log notation
will refer to the base-2 logarithm. For any positive function f : X → R≥0 and S ⊆ X with S
countable, we define f(S) :=

∑
x∈S f(x).

Let f and g two functions depending on several variables x1, . . . , xn varying over some
set X1, . . . , Xn. We will use in this work both the Vinogradov notation f ≪ g and the most
classical Landau notation f = O(g) (we mostly use Vinogradov notation in Chapter III and
Landau notation in the rest of the manuscript). Writing f ≪ g or f = O(g) means that there
exists an absolute constant C (i.e., a constant independent of any variable of the context) such
that |f | ≤ C · |g| for any x1, . . . , xn in X1, . . . , Xn except maybe a finite number of them inde-
pendent of any variable of the context.

We consider column vectors (unless they are explicitly transposed). Vectors and matrices are
respectively written in bold lowercase and uppercase fonts. For a vector x ∈ Ck, we let ∥x∥
denote its Hermitian norm. When M = [M1, . . . ,Mn] is a matrix, we denote its norm ∥M∥ =
maxi ∥Mi∥ the maximal norm of its columns. Note that for any vector x ∈ Cn, it holds that

∥M · x∥ ≤
√
n · ∥M∥ · ∥x∥.

The Hermitian product will be denoted, for any x,y ∈ Cn, by

⟨x,y⟩ =
n∑

i=1

xi · yi.

For any integer n ≥ 0, we will denote by [n] the set {1, . . . , n}.

II.1 Lattices

II.1.1 Definitions and bases

Lattices are the mathematical object we will be the more concerned with in this work. We
define them and state some of their properties here. For a more detailed presentation of those
properties, including proof, the reader is referred to [Coh93] and [MG02].

We define a lattice as follows (other equivalent definitions exist).

Definition II.1.1. Let n ≥ m ≥ 1 be integers. A lattice in Rn is a set of the form L =
∑m

i=1 Z·bi
for (bi)1≤i≤m a R-linearly independent family of vectors in Rn.

39

40 CHAPTER II. PRELIMINARIES

If, for an R-linearly independent family (b)1≤i≤m, one has L =
∑m

i=1 Z·bi, the family (b)1≤i≤m
is called a basis of L; we shall write L = L(B) where B is the matrix whose columns are
the (bi)i. The integer m is then called the rank of L, and the lattice is said to be full rank
if m = n, the lattice L is said to be full rank. We will often give the basis of a lattice L ⊂ Rn as
a matrix B ∈ Rn×m, in that case we have

L = L(B) := B · Zm

Two bases B1,B2 ∈ Rn×m define the same lattice in Rn if and only if there exists U ∈ GLm(Z)
such that B1 = B2 · U . If L is a lattice in Zn, then it has a special basis called its Hermite
Normal Form (HNF):

Lemma II.1.2. For 1 ≤ n ≤ m, let B = (b1, . . . , bm) ∈ Zn×m be m integral vectors spanning a
full rank lattice L(B) ⊆ Zn. There exists a unique matrix H = (hi,j) ∈ Zn×n

≥0 satisfying

• H is lower triangular;

• 0 ≤ hi,j < hi,i for any 1 ≤ j < i ≤ n;

• L(H) = L(B).

This matrix, that we call the Hermite Normal Form (HNF) of B, is computable in polynomial
time in n and in log(∥B∥).

If the matrix associated to a basis of a lattice is in Hermite normal form, we say that the
basis is in HNF.

If L ⊆ Qn, there exists a smallest integer a ≥ 1 such that a · L ⊂ Zn, and hence we call
the Hermite normal form of L the matrix H/a. Note that such HNF does not exist for lattices
in Rn. The Hermite normal form gives the lattice a canonical basis, which allows to decide if
two bases span the same lattice in polynomial time.

For any basis (b1, . . . , bk) ∈ Rn×k of a lattice, we let (b∗1, . . . , b
∗
k) denote its Gram-Schmidt

vectors, that is to say

b∗i = bi −
∑

1≤j<i

〈
b∗j , bi

〉〈
b∗j , b

∗
j

〉 · b∗j , (II.1)

for 1 ≤ j ≤ k. We will often let B∗ denotes the Gram-Schmidt vectors of the columns of a
matrix B. Equivalently, Equation (II.1) shows that B = B∗ ·S, where S is upper-triangular; by
dividing each column of B∗ by its norm, this identity becomes B = Q ·R where Q is orthogonal
and R upper-triangular, the QR-factorization of B.

Definition II.1.3. Let L ⊂ Rn be a lattice, the (Z-)dual of this lattice is

L⋆ = {x ∈ span(L), ⟨x, l⟩ ∈ Z for any l ∈ L} ,

where span(L) = L⊗Z R is the subspace of Rn spanned by L.

If B is a basis of L, then B · (BT ·B)−1 is a basis of L. Note that if L is full rank in Rn (so
that the matrix B is square), this reduces to B−T = (BT)−1.

II.1. LATTICES 41

II.1.2 Lattice invariants

If L is a lattice with basis B ∈ Rn×m, we define its (co-)volume as

Vol(L) =
√

det(B ·BT).

This quantity is independent on the choice of basis. It holds that

Vol(L⋆) = Vol(L)−1.

For any 1 ≤ i ≤ m, the ith successive minimum of a lattice L is

λi(L) = min {max(∥x1∥, . . . , ∥xi∥), x1, . . . ,xi ∈ L are linearly independent} .

The relationship between the λi(L) and the volume is given by Minkowski’s theorem.

Theorem II.1.4 (Minkowski’s theorems). Let L ⊂ Rn be a lattice of rank k. Then it holds that

λ1(L) ≤
√
k ·Vol(L) 1

k , (Minkowski’s First Theorem)∏
1≤i≤k

λi(L) ≤ k
k
2 ·Vol(L). (Minkowski’s Second Theorem)

We denote by µ(L) the covering radius of a lattice L:

µ(L) = max
x∈R

d(x, L).

Theorem II.1.5 (Banaszczyk’s transference theorem [Ban93]). For any rank lattice L ⊂ Rn of
rank k, the following holds for any 1 ≤ i ≤ k

1 ≤ λi(L) · λk−i+1(L
⋆) ≤ k.

II.1.3 The Gaussian distribution

Let ς > 0 be a real number, the Gaussian weight of parameter ς of a vector x ∈ Rn is

ρς(x) = exp

(
−π · ∥x∥

2

ς2

)

Given an n-dimensional lattice L, a vector u ∈ Rn and a parameter ς > 0, we define the discrete
Gaussian distribution DL,ς,u over L with center u and standard deviation parameter ς by

DL,ς,u(x) := ρs(x− u)/ρs(L− u)

for all x ∈ L.
If L is a lattice and ε > 0, the smoothing parameter is defined as

ηε(L) := inf
{
ς > 0, ρ1/ς(L

⋆\{0}) ≤ ε
}
.

This parameter measures how large ς needs to be for the lattice Gaussian distribution to behave
like a continuous Gaussian distribution.

42 CHAPTER II. PRELIMINARIES

Lemma II.1.6 (Proof of [MR07, Lemma 4.4]). Let L be a rank n lattice, u ∈ span(L) and ς ≥
ηε(L) for some ε > 0. Then it holds that

ρς(L+ u) ∈ [1− ε, 1 + ε] · ςn

Vol(L)
.

Lemma II.1.7 ([Reg05, Claim 3.8]). For any ε > 0, lattice L, center u ∈ spanR(L) and
parameter ς ≥ ηε(L), it holds that

ρς(L+ u) ∈
[
1− ε

1 + ε
, 1

]
· ρς(L).

The smoothing parameter is related to the nth minimum of the lattice and to the Gram-
Schmidt of their basis.

Lemma II.1.8 ([GPV08, Lemmas 3.1 and 3.2]). Let L ⊂ Rn be a full rank lattice given by a
basis B ∈ Rn×n. Let B∗ be the Gram-Schmidt of the columns of B. For any ε ∈ (0, 1), it holds
that

ηε(L) ≤ min(λn(L), ∥B∗∥) ·

√
log
(
2n
(
1 + 1

ε

))
π

The following lemma shows that most of the weight of the discrete Gaussian distribution is
within distance O(ς ·

√
n) of its center:

Lemma II.1.9 ([Ban93, Lemma 1.5]). For any c > 1/
√
2π, ς > 0, any n-dimensional lattice L

and any u ∈ span(L), we have

ρς((L− u) \ c ·
√
n · ς · B)

ρς(L)
≤ 2Cn,

where B denotes the Euclidean ball of radius 1 and C = c
√
2πe · e−πc2 < 1.

Corollary II.1.10. Let L be a rank n lattice, B be a basis of L, u ∈ span(L) and ς ≥
√
n ·

maxi ∥b∗i ∥. For any ε ∈ (0, 1], it holds that

Pr
x←DL,ς,u

(∥x− u∥ ≥ ς ·
√
ln(1/ε) + 4n) ≤ ε.

Proof. Without loss of generality, we can scale everything so that ς = 1. Let us define c :=√
(1/n) · ln(1/ε) + 4. Then, we have

Pr
x←DL,1,u

(
∥x− u∥ ≥

√
ln(1/ε) + 4n

)
=

ρ1
(
(L− u) \ c

√
nB
)

ρ1(L− u)
.

Since c ≥
√
4 > 1/

√
2π, we can apply Lemma II.1.9 to bound the numerator from above. In

order to simplify the computations, we use the fact that c · e−πc2 ≤ e−c
2

for all c > 1/
√
2π. Then

we see that 6 ·Cn ≤ 6n ·Cn ≤ e− ln(1/ε)+(ln(
√
2πe)+ln(6)−4)n ≤ e− ln(1/ε) = ε. Using Lemma II.1.9,

we hence obtain the bound

ρ1
(
(L− u) \ c

√
nB
)
≤ ε/3 · ρ1(L).

Let us now bound the quantity ρ1(L − u) from below. Using Lemma II.1.7 with ε = 1/2
(observe that ς ≥ η1/2(L) by observing that ln(6n/π) ≤ n for all n ≥ 1 and Lemma II.1.8), we
see that ρ1(L− u) ≥ 1/3 · ρ1(L). Combining both inequalities provides the desired result.

II.1. LATTICES 43

Sampling along discrete Gaussian distribution for lattices is an active field of research. In
this work, we will use two different Gaussian samplers: one which sample from the exact discrete
Gaussian distribution, and the other which is tail-cut in order to garanty the size of the output.
We now present the exact sampler.

Lemma II.1.11 (Exact Gaussian Sampler, from [BLP+13, Lemma 2.3]). There is a probabilistic
polynomial-time algorithm that, given a basis B of an n-dimensional lattice L, a center u ∈
spanR(L), and a parameter ς ≥

√
ln(2n+ 4)/π · ∥B∗∥, outputs a sample distributed according

to DL,ς,u.

The following lemma is adapted from [GPV08, Theorem 4.1] and [PS21, Lemma 2.2]. We will
notably be interested in values of ε that are 2−ω(n), a case which is not captured in the typical
variants of this statement. For the sake of completeness, a proof is available in Appendix A.1.5.

Lemma II.1.12. There exists a probabilistic polynomial time algorithm that takes as input a
basis B of an n-dimensional lattice L, an error bound ε ∈ (0, 1/2], a parameter ς ≥

√
n · ∥B∗∥

and a center u ∈ span(L) and outputs a sample from a distribution D̃B,s,u such that

• SD(DL,ς,u, D̃B,ς,u) ≤ ε;

• for all v ← D̃B,ς,u, it holds that ∥v − u∥ < ς ·
√

ln(1/ε) + 4n;

where SD is denotes the statistical distance between two distributions (see Definition II.5.1).

II.1.4 The LLL and BKZ algorithms

Two algorithms will be used in this work to find relatively short vectors in lattices: the LLL
(introduced in [LLL82]) and BKZ (introduced in [SE94]) algorithms. We will not present them
in full generality, but will rather highlight their relevant properties for our work.

Lemma II.1.13 ([Gal12, Theorem 17.2.12]). The LLL algorithm takes as input a basis of a full
rank lattice L ⊂ Qn and output a basis B = [b1, . . . , bn] ∈ Qn×n of L satisfying:

• ∥bi∥ ≤ 2(n−1)/2 · λi(L) for 1 ≤ i ≤ n,

• ∥b1∥ ≤ 2(n−1)/4 ·Vol(L)1/n,

•
∏

1≤i≤n ∥bi∥ ≤ 2n(n−1)/4 ·Vol(L).

It runs in polynomial time in n and in log(B) where B is a bound on the norm of the vectors of
the input basis.

In particular, note that the LLL algorithm solves in polynomial time the 2(n−1)/2-SVP and
the 2(n−1)/4-HSVP. Better approximation factors can be obtained at the cost of a higher running
time using the BKZ algorithm.

Lemma II.1.14 ([Sch87, Theorem 2.3, Corollary 2.5]). For any β ≥ 1, there exists αβ ∈ R>0

such that for any n ≥ 1, such that β − 1|n − 1, on input a basis of a full rank lattice L ⊂ Qn,
the BKZ algorithm with size block β outputs a basis B = [b1, . . . , bn] ∈ Qn×n of L with

∥b1∥ ≤ α
n−1

2(β−1)

β · λ1(L),

where αβ ≤ β1+ln(β) for any β. Furthermore, the BKZ algorithm with size block β runs in time
polynomial in 2β, n and log(B) where B is a bound on the norm of the vectors of the input basis.

44 CHAPTER II. PRELIMINARIES

In particular, the BKZ algorithm solves SVPγ for γ = 2Õ(n/β) in time polynomial in 2β . By
increasing the dimension n by at most β − 1, the condition β − 1|n− 1 can be removed and the
bound on ∥b1∥ becomes

∥b1∥ ≤ α
n−1

2(β−1)
+ 1

2

β · λ1(L).

II.2 Number Theory

II.2.1 Number fields and their geometry

We briefly introduce here the number theoretic objects we will use throughout this work. For an
in-depth introduction to the field and the proofs of the mentioned results, the reader is referred,
e.g., to [Coh93, Neu13].

A number field K is a finite field extension of Q. Its degree is the dimension of the extension,
its ring of integer is the integral closure of Z in K, namely

OK = {x ∈ K, ∃P ∈ Z[X] monic, P (x) = 0} .

In the rest of this section, we let K be a number field of degree d, OK its ring of integers, Φ =
(σi)1≤i≤d : K → Cd its canonical embedding. We order the σi so that σi(K) ⊂ R for 1 ≤ i ≤ dR
(the real embeddings of K), and σdR+i = σdR+dC+i for any 1 ≤ i ≤ dC (the complex embeddings),
in particular it holds that d = dR + 2dC. We let O×K = {x ∈ OK : N (x) = 1} denote the set of
units of OK . The structure of the group of units of OK is given by the following theorem.

Theorem II.2.1 (Dirichlet’s unit theorem). If K is a number field of degree d = dR+2dC, then

O×K ≃ µK × ZdR+dC−1,

where µK is the (finite) set of roots of unity of K.

Let KR = K ⊗ R; by abuse of notation, we shall also denote Φ = (σi)i the extension of Φ
to KR. The set KR is a R-algebra of dimension d containing K, and its image by Φ is the set

Φ(KR) = RdR ×
{
(y, y), y ∈ CdC

}
.

The function Φ is a ring homorphism in the sense that for any x, y ∈ KR, Φ(x · y) = Φ(x)⊙Φ(y)
where ⊙ is the coordinate-wise multiplication. By abuse of notation, we will often identify KR,
K and OK with their image by Φ(·). For x ∈ KR, we define x ∈ KR as the element obtained
by componentwise complex conjugation of the canonical embedding vector of x. We extend
this notation to vectors and matrices over KR, and let x† denote xT for any x ∈ Kn

R . We
define K and OK as the subsets of KR obtained by applying complex conjugation to elements
of K and OK , respectively.

The set Φ(OK) is a full-rank lattice in KR. The discriminant of K by ∆K = Vol(Φ(OK))2.
The canonical embedding endows KR with an Euclidean structure, where the norm of x ∈ KR
is ∥Φ(x)∥; by abuse of notation, we will write ∥x∥ = ∥Φ(x)∥ and ∥x∥∞ = ∥Φ(x)∥∞. We de-
fine the algebraic norm of any element of KR as N (x) =

∣∣∣∏d
i=1 σi(x)

∣∣∣; this definition extends

the algebraic norm to KR in the sense that for x ∈ K, N (x) =
∣∣NK/Q(x)

∣∣. We let K×R =
{x ∈ KR, ∀i, σi(x) ̸= 0} denote the set of invertible elements of KR, K0

R the set of norm-1 ele-
ments of KR and K+

R the set of elements of KR whose image by Φ lies in Rd
+. We define the

logarithmic embedding of KR, by taking the natural logarithm of every embedding of an element:

Ln : K×R −→ Ln(KR) ⊆ Rd

x 7−→ (ln |σi(x)|)1≤i≤d

II.2. NUMBER THEORY 45

Note that

spanR(LnO×K) = Ln(K0
R) := {y ∈ Rd :

∑
yi = 0 ∧ ∀i ∈ [dC], ydR+dC+i = ydR+i}.

For ζ ∈ Ln(K×R), we define Exp(ζ) as the element of K+
R whose i-th embedding is exp(ζi), for all i.

II.2.2 Ideals

In this subsection, we introduce the ideal arithmetic needed in this work.

Definition II.2.2. A fractional ideal I of K is a discrete subgroup of (K,+) stable by multipli-
cation by OK such that there exists n ∈ Z \ {0} such that n · I ⊆ OK . A fractional ideal included
in OK is called integral.
An (oriented) replete ideal is a subset of KR of the form I = x · a, where x ∈ K×R and a is an
integral ideal.
If a replete ideal can be written I = x · OK , it is said to be principal.

Equivalently, an oriented replete ideal is a finitely generated OK-submodule of KR. Unless
specified otherwise, by default, an ideal will refer to an oriented replete ideal.
In this work, we will take the convention that gothic letters (such as a, b, p) correspond to integral
ideals, while upper-case letters (such as I, J) refer to ideals that are not necessarily integral.

For any replete ideals I, J , we define the product I ·J as the ideal generated by all products a·b
for a ∈ I, b ∈ J and the inverse I−1 as the ideal I−1 = {x ∈ KR, x · I ⊆ OK}. Note that if I
is a fractional ideal, then so is I−1. An integra ideal p is said to be prime if OK/p is integral.
This is equivalent (because OK is a Dedekind domain) to saying that there do not exist a and b
integral and distinct from p such that p = ab. Similarly to the integers, every fractional ideal
can be uniquely written as a product of prime ideals up to reordering.

We define the algebraic norm of an integral ideal a by N (a) = [OK : a]. We have N (ab) =
N (a)N (b) for all integral ideals a and b. If I is a replete ideal, there exists x ∈ KR such that x ·I
is integral, and we define N (I) = N (x · I)/N (x) (this is independent of the choice of x). The
multiplicativity property of the norm carries over to replete ideals. For some ideal I of K, we
define the ideal I = {x : x ∈ I} of K. For any real 2 ≤ A ≤ B, we denote by IA,B the set of
integral ideal with norm in [A,B] and by PA,B the set of prime ideals with norm in [A,B].

II.2.3 Embedding and ideal lattices.

Every non-zero replete ideal I corresponds to a full-rank lattice Φ(I). Such a lattice is called
an ideal lattice (with respect to K). By abuse of notation, we will often identify I and Φ(I).
It holds that Vol(Φ(I)) =

√
∆K · N (I). We define IdLat0K as the set of replete ideal lattices of

norm 1.
Ideals lattices are not typical lattices in the sense that their geometry cannot be too skew. This
is summarized in next lemma

Lemma II.2.3. Let I be an ideal lattice, then it holds that
√
d · N (I)1/d ≤ λ1(I) ≤

√
d ·∆1/(2d)

K · N (I)1/d,

and
λd(I) ≤

√
d · λd(OK) ·∆1/(2d)

K · N (I)1/d,

furthermore, λd(OK) ≤
√
d ·∆1/d

K .

46 CHAPTER II. PRELIMINARIES

Proof. The lower bound on λ1 comes from the arithmetic-geometric inequality, the upper bound
on λd from [BDPW20, Lemma 2.8]. The upper bound on λd(OK) comes from [Boe22, Theorem
A.4] and usual norm inequalities.

This particular geometry allows us to bound the covering radius in ℓ∞ of ideal lattices:

Lemma II.2.4. Let I be an ideal lattice, then it holds that

µ∞(I) ≤ d · λ(∞)
d (I) ≤ d · λ(∞)

1 (I) · λ∞d (OK) ≤ d ·∆3/(2d)
K · N (I)1/d,

Proof. We bounded λ1(I) by ∆
1/(2d)
K ·N (I)1/d using Minkowski’s theorem and λ∞d (OK) by ∆

1/d
K

using [BST+20, Theorem 3.1] (adapted to the ℓ∞ norm in [Boe22, Theorem A.4]).

Their geometry also allows us to give bounds on ηε(I) depending only on the field and
on N (I).

Lemma II.2.5 ([PRS17, Lemma 6.9]). For any ideal I and ε ∈ (0, 1), it holds that

ηε(I) ≤ ∆
1/d
K · N (I)1/d ·max

(
1,

√
ln(1/ε)

d

)
. (II.2)

Corollary II.2.6. Let I be a fractional ideal, a be an integral ideal and ε ∈ (0, 1). Let u ∈
span(I) and ς ≥ ∆

1/d
K · N (a · I)1/d ·

√
ln(3/ε). Then

DI,ς,u(a · I) ∈ [1− ε, 1 + ε] · N (a)−1.

Proof. Note that since a is integral, then a · I is a sub-lattice of I and DI,ς,u(a · I) is well-defined.
By Lemma II.2.5 and the lower bound on ς, we have ς ≥ ηε′(a · I) ≥ ηε′(I), for ε′ = ε/3. We
can thus apply Lemma II.1.6 to both lattices I and a · I. We obtain DI,ς,u(a · I) = ρς(a · I −
u)/ρς(I −u) ∈ [(1− ε′)/(1+ ε′), (1+ ε′)/(1− ε′)] ·Vol(I)/Vol(a · I). We conclude using the fact
that Vol(a · I)/Vol(I) = N (a) and the choice of ε′.

II.2.4 Riemann hypotheses

Riemann zeta function is defined over {s ∈ C,Re(s) > 1} by

ζ(s) =
∑
n≥1

1

ns
,

and extended meromorphically to C \ {1} with a simple pole at s = 1. A lot of results have been
proven under the following (unproven) hypothesis:

Definition II.2.7 (The Riemann Hypothesis (RH)). The only zeros of ζ in the (so called)
critical strip {s ∈ C,Re(s) ∈ (0, 1)} lie on the line {s ∈ C,Re(s) = 1/2}.

Even if not proven, the RH has been verified numerically for |Im(s)| ≤ 3 · 1012 ([PT21]). A
particular zeta function can be associated to numerous arithmetic objects. For a number field K,
the Dedekind zeta function of K is defined over {s ∈ C,Re(s) > 1} by

ζK(s) =
∑

a⊆OK

1

N (a)s
,

II.2. NUMBER THEORY 47

where the sum is taken over the nonzero integral ideals and extended meromorphically to C\{1}
with a simple pole at s = 1. Note that ζQ is the Riemann zeta function. As for ζ, the analytic
properties of the function ζK encode many arithmetic properties of the field K. It is often
convenient to assume that the following conjecture holds:

Definition II.2.8 (Riemann Hypothesis for ζK). The only zeros of ζK in the critical strip lie
on the line {s ∈ C,Re(s) = 1/2}.

This Dedekind zeta function can be generalized further. Let χ be a Hecke character on K
(a precise definition of Hecke character is beyond the scope of this manuscript. See, e.g.,
[Neu13, Definition 6.1] for an introduction), the Hecke L function associated to χ is defined
over {s ∈ C,Re(s) > 1} by

L(s, χ) =
∑

a⊆OK

χ(a)

N (a)s
,

where the sum is taken over the nonzero integral ideals and extended meromorphically to C\{1}
with a simple pole at s = 1. Note that if χ is the trivial character, we recover ζK .

Definition II.2.9 (Extended Riemann Hypothesis [Bac90] for the field K). For any Hecke
character χ on K, the only zeros of L(·, ζ) in the critical strip lie on the line {s ∈ C,Re(s) = 1/2}.

The Extended Riemann Hypothesis (denoted by ERH in this manuscript) asserts that this
holds for all number field K. Several of our results depend on ERH; in this case, only the
Extended Riemann Hypothesis for the underlying field K is needed.

Residue at s = 1. We let ρK denote the residue at s = 1 of ζK . Then, we have:

ρK := lim
s→1

(s− 1)ζK(s) =
2dR · (2π)dC ·RK · |ClK |

|µK | ·
√
|∆K |

.

Were ClK is the class group of K (see Section II.2.5), µK is the set of its roots of unity and RK

is its regulator (a field invariant related to the volume of Ln(O×K)1).
This residue ρK can be bounded depending on simple field invariants (discriminant, degree).

Theorem II.2.10 ([Lou00, Theorem 1]). Let K be a number field of degree d ≥ 2 and discrim-
inant ∆K . It holds that

ρK ≤
(
e · log(∆K)

2(d− 1)

)d−1

.

The quantity ρK is known to be poly(log∆K) for some families of number fields such as
cyclotomic family (under ERH, see [Boe22, Theorem A.5]).

II.2.5 Class group and norm-1 ideals

The properties about multiplication and inverse give the set of replete ideals a group structure.
The quotient of the group of replete ideals by the subgroup of principal replete ideals is called
the class group of K and is denoted by ClK . It is a finite group, and for any replete ideal I, we
denote its image in ClK by [I] ∈ ClK . Two ideals I and J are in the same coset of ClK if and
only if there exists x ∈ K×R such that I = x · J .

1Not introduced in this work, see [Neu13, § 7.5] for a precise definition.

48 CHAPTER II. PRELIMINARIES

The set of norm-1 ideals IdLat0K is a compact subgroup of the set of replete ideals, it therefore
has a Haar measure U(IdLat0K). An algorithm to sample from this measure has been proposed
in [BDPW20], and consist in performing a random walk in IdLat0K . We present here a specialized
version of this theorem where the walk has only one step. We will use algorithms from [BDPW20]
to sample among different classes of ideals.

Lemma II.2.11 (Adapted from [BDPW20, Lemma 2.2], Assuming ERH). There exists an
absolute constant c and an algorithm SamplePrimeIdeal such that for any B ≥ (log∆K)c, the
algorithm SamplePrimeIdeal runs in time poly(logB, d) on input B and returns a prime ideal
uniform among prime ideals of norm ≤ B.

We will also rely on Algorithm II.2.1, which is adapted from [BDPW20, Theorem 3.3], to
sample (essentially) uniformly in the set of norm-1 ideals lattices, in time polynomial in logB.
Note that [BDPW20] considers norm-1 ideals xI with I integral and all σi(x)’s being positive
integers. This discrepancy is handled by introducing u at Step 3. The standard deviation
in Step 2 and tail-cut may seem arbitrary at first sight: these choices simplify the analysis
of the module randomization (in Section V.5.3). A proof of the following lemma is given in
Appendix A.1.1.

Algorithm II.2.1 Ideal-SampleB
1: Let p← SamplePrimeIdeal(B) (see Lemma II.2.11) an uniform prime ideals of norm ≤ B;
2: Sample ζ ∈ Ln(K×R) from the centered normal law with standard deviation d−3/2, conditioned

on ∥ζ∥ ≤ 1/d;
3: Sample u uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1};
4: Return u · Exp(ζ) · p/N 1/d(p).

Lemma II.2.12 (Adapted from [BDPW20, Theorem 3.3], Assuming ERH). There exists an
absolute constant c such that for any B ≥ (dd∆k)

c, Ideal-SampleB runs in time polynomial
in logB and its output distribution is within 2−Ω(d) statistical distance from U(IdLat0K).

Lemma II.2.13. Let J be a replete ideal, then

Pr
I←U(IdLat0K)

(
∃x ∈ K×R : J = I · (x)

)
=

1

|ClK |

Proof. For any replete ideal I = (x) · a with a integral, we recall that [I] = [a] ∈ ClK , which
does not depend on the choices of a and x. The function I 7→ [I] for I ∈ IdLat0K is a surjective
morphism whose kernel is the set of principal replete ideals of norm 1 in KR. The lemma states
that if I is sampled from U(IdLat0K), then the probability that it belongs to a fixed coset of ClK
is |ClK |−1, which follows directly from the fact that [·] is a surjective morphism.

II.2.6 Computations with number theoretic objects

Representing field elements and ideals. In all this work, when working with a number
field K, we assume that we know a Z-basis BOK

= [bOK
1 , . . . , bOK

d] of OK , and that it is LLL-
reduced with respect to the geometry induced by Φ (in some cases, a much better basis could be
known). We define δK := ∥BOK

∥. Since BOK
is LLL-reduced, we have that δK ≤ 2d ·λd(OK) ≤√

d · 2d ·∆1/d
K by Lemma II.2.3, which implies that log δK = O(log∆K).

Elements of K will be represented as vectors of Qd, corresponding to their coordinates in
the basis BOK

. Fractional ideals of K will be represented by a Z-basis, i.e., d elements of K

II.3. MODULES 49

generating the ideal (each element being represented as a vector of Qd as described above).
The bases we obtain for a fractional ideal I are in Qd×d, so they admit a Hermite Normal
Form (HNF), which provides a canonical representation for I. When replete ideals are used in
algorithms, they will be represented by an arbitrary basis with size polynomial in the log of their
norm and in log∆K (with a polynomial number of bits of precision).

Ideal Arithmetic. We will often manipulate ideals and their bases. We will use the following
results on how to derive a short basis from a full-rank set of vectors.

Lemma II.2.14 (Corollary of [MG02, Lemma 7.1]). There exists a polynomial time algorithm
that takes as input a basis B of an n-dimensional lattice L and a set of n linearly independent
vectors s1, · · · , sn ∈ L and outputs a new basis C of L such that ∥C∗∥ ≤ maxi ∥s∗i ∥ and ∥C∥ ≤√
n ·maxi ∥si∥.

We will use Lemma II.2.14 to perform arithmetic over ideals while bounding the sizes of the
outputs.

Lemma II.2.15. There exist polynomial-time algorithms performing ideal inversion, reduction
and multiplications InvertIdeal, ReduceIdeal and MultiplyIdeals with the following speci-
fications.

• InvertIdeal takes as input an integral ideal a and outputs a basis B of a−1 satisfy-
ing ∥B∗∥ ≤ δK and ∥B∥ ≤

√
d · δK .

• ReduceIdeal takes as input a basis B of an ideal I ⊂ KR and a vector v ∈ I \ {0} and
returns a basis BI of I such that ∥B∗I ∥ ≤ δK · ∥v∥ and ∥BI∥ ≤

√
d · δK · ∥v∥.

• MultiplyIdeals takes as input bases BI and BJ of two ideals I, J ⊆ KR and output BIJ

a basis of I · J such that ∥B∗IJ∥ ≤ ∥BI∥ · ∥BJ∥ and ∥BIJ∥ ≤
√
d · ∥BI∥ · ∥BJ∥.

Proof. InvertIdeal starts by computing a basis B of a−1, which can be done in polynomial
time from a representation of a by generators. Then, the algorithm runs the algorithm from
Lemma II.2.14 with input the basis B of a−1 and the vectors of the known basis BOK

of OK (in
the role of the short vectors si). Note that since a is integral, we have that OK ⊆ a−1, and hence
the vectors of BOK

are indeed in a−1. Also, the euclidean norm of those vectors is bounded from
above by δK , by definition. We conclude by using Lemma II.2.14.

For ReduceIdeal, note that the set v ·BOK
is a free subset of I whose vectors have norms ≤

∥v∥ · δK . We can then define ReduceIdeal as the application of Lemma II.2.14 with input B, v ·
BOK

.
Let BI = (b

(I)
i)i,BJ = (b

(J)
i)i be the inputs to MultiplyIdeals. Then the set (b

(I)
i · b

(J)
j)i,j

generates IJ and has size d2, this implies that there exists a Q-free family (ri)i=1,...d inside it,
which can be found in polynomial time and satisfies maxi ∥ri∥ ≤ ∥BI∥·∥BJ∥. Further, a basis B
of IJ can be found in polynomial time. We then apply Lemma II.2.14 with input B, (ri)i.

II.3 Modules

II.3.1 General definitions

For x,y ∈ Kn
R , we define x† = (x1, . . . , xn)

T , the scalar product in ⟨x,y⟩KR
= x† · y ∈

KR, ∥x∥KR
=
√
⟨x,x⟩KR

∈ K+
R where the square root is taken component-wise, and ∥x∥ =

∥Φ(∥x∥KR
)∥. The algebraic norm of x ∈ Kn

R is defined as N (x) = N (∥x∥KR
). In analogy with

50 CHAPTER II. PRELIMINARIES

lattices, which are Z-modules, we define module-lattices, which are OK-modules (though we
will often just call them modules when the context is clear). The OK-modules we will consider
throughout this work will always be finitely generated and torsion-free.

Definition II.3.1 (OK-module). Let 1 ≤ k ≤ m. In this work, a (finitely generated and torsion-
free) module-lattice is a subset of Km

R of the form M =
∑

i≤k biIi where the Ii’s are non-zero
ideals and the bi’s are KR-linearly independent. This is written compactly as M = B ·I (where B
is the matrix whose columns are the bi and I = (I1, . . . , Ik)).

One can see that if K = Q, this is the definition of lattices, and that if k = m = 1 a module
is simply an ideal. During all this manuscript, when talking about modules, it will refer to
modules-lattices (so, finitely generated and torsion-free OK-modules).

The tuple ((I1, b1), . . . , (Ik, bk)) is called a pseudo-basis of M and is written compactly
as (B, I). Two pseudo-bases (B, I) and (B′, I′) define the same module if and only if there
exists a matrix U = (uij)1≤i,j≤k ∈ GLk(KR) with uij ∈ I−1i · Jj such that B · U = B′. The
integer k is the rank of M .

We define the norm of a module M as N (M) =
√
det(B† ·B) ·

∏
i≤kN (Ii). Note that

for k = m = 1, this matches the norm of an ideal. Using the canonical embedding, any rank-k
module-lattice is identified to a (kd)-dimensional lattice. In particular, we define det(M) as the
determinant of the module lattice. Note that det(M) = N (M) · ∆k/2

K . We will be interested
in the module norm-minimum λN1 (M) = inf{N (N) : N rank-1 submodule of M}. A rank-1
submodule of M is said densest if it reaches λN1 (M).

The dual of a module is defined in the same way as the dual of any lattice L, but with
base-ring OK :

Definition II.3.2. The dual of a module M is defined as

M∨ = {b∨ ∈ spanKR
(M) : ∀b ∈M, ⟨b∨, b⟩KR

∈ OK}.

Note that M∨ is an OK-module, Φ(M∨) is the dual lattice of Φ(M) and (B · I)∨ = (B−† ·J),
where Ji = (Ii)

−1 for all i ≤ k.
The Hermite Normal Form can be generalized to modules over OK (because it is a Dedekind

domain). For any full-rank torsion-free module M ⊆ Km, there exists a pseudo-basis (B, I) such
that B ∈ Km×m is lower-triangular with ones on the diagonal. It is called a Hermite Normal
Form of M and can be computed in polynomial time from any finite set of pairs {(Ii, bi)}i such
that M =

∑
i biIi and the bi’s are not necessarily independent (see, e.g., [Coh00, §1.4.2].

Definition II.3.3. Let M be a module. A submodule N ⊆M is said to be primitive if it satisfies
any of the three equivalent conditions:

• the module N is maximal for the inclusion in the set of submodules of M of rank at
most rank(N);

• there is a module N ′ with M = N +N ′ and rank(M) = rank(N) + rank(N ′);

• we have N = M ∩ spanK(N).

In particular, any densest rank-1 submodule of M is primitive.

A proof that the three conditions are equivalent is provided in Appendix A.1.2. The last
statement follows from Condition 1.

II.4. COMPUTATIONAL PROBLEMS 51

II.3.2 Rank-2 Modules with a Gap

In this work, we will be interested in rank-2 modules that contain an unexpectedly dense rank-1
submodule, i.e., in modules M with λN1 (M) significantly smaller than

√
N (M). We define the

gap of M by

γ(M) =

(
N (M)

1
2

λN1 (M)

) 1
d

.

The following lemma shows that if the gap is sufficiently large, then the densest rank-1 submodule
(meaning the rank-1 submodule with the lowest algebraic norm) is unique.

Lemma II.3.4. Let M be a rank-2 module with gap γ > 0 and N a densest rank-1 submodule
of M . If N ′ is a rank-1 submodule of M with N (N ′) < γd

√
N (M), then N ′ ⊆ N .

In particular, for γ > 1, the densest rank-1 submodule is unique and any vector b ∈ M
with ∥b∥ < γ · N (M)1/(2d) belongs to it.

Proof. See Appendix A.1.3.

In the following, when a rank-2 module M has a gap larger than 1, we will implicitly use
Lemma II.3.4 when referring to the densest rank-1 submodule of M . Most rank-2 modules we
will consider will have gap larger than 1.

The latter lemma allows us to conclude that the module norm-minimum is reached (see
Appendix A.1.4 for a proof).

Lemma II.3.5. For any module M , there exists a rank-1 submodule N of M such that N (N) =
λN1 (M).

Proof. See Appendix A.1.4.

II.4 Computational Problems

In this section, we introduce the main computational problems over lattices. The complexity of
the algorithm on unstructured lattices will be a function of the dimension n of the lattice and
the log of the norm of their basis. Let γ ≥ 1 be an approximation factor. All the lattices and
modules in this section are supposed full rank and represented by their HNF basis.

II.4.1 The Shortest Vector Problem

Definition II.4.1 (Variants of SVP). The Shortest Vector Problem SVPγ asks, given as input
a lattice L ⊂ Qn, to find a non-zero element x ∈ L such that ∥x∥ ≤ γ · λ1(L).
The Hermite Shortest Vector Problem HSVPγ asks, given as input a lattice L ⊂ Qn, to find a
non-zero element x ∈ L such that ∥x∥ ≤ γ ·Vol(L)1/n.
The Short Independant Vectors Problem SIVPγ asks, given as input a lattice L ⊂ Qn, to find a
free set v1, . . . ,vn ∈ L such that ∥vi∥ ≤ γ · λn(L) for 1 ≤ i ≤ n.

II.4.2 Structured lattice problems

We now introduce short vector problems for structured lattices, as well as related algorithmic
problems.

52 CHAPTER II. PRELIMINARIES

Definition II.4.2 (Variants of id-HSVP). The ideal Hermite Shortest Vector Problem id-HSVPγ

asks, given as input a fractional ideal I represented by its HNF basis, to find a non-zero ele-
ment x ∈ I such that ∥x∥ ≤ γ ·Vol(I)1/d.
For a finite set X of fractional ideals, the average-case variant X-avg-id-HSVPγ asks to solve
the problem id-HSVPγ when the input ideal I is uniformly sampled in X. The success probability
of a probabilistic algorithm A when solving X-avg-id-HSVPγ is defined as

Pr
I←↩X

[
x ∈ I and ∥x∥ ≤ γ ·Vol(I)1/d | A(I) = x

]
,

where the probability is taken over the choice of I and the randomness used by A.
The problem inv-HSVPγ is id-HSVPγ restricted to inverses of integral ideal lattices.

We now define different variants of the unique-SVP problem for rank-2 modules, as well as
variants of the NTRU problem.

Definition II.4.3 (γ-mod-uSVP2 instance). Let γ > 0. A γ-mod-uSVP2 instance consists in
a pseudo-basis (B, I) of a rank-2 module M ⊂ K2 such that M contains a non-zero vector s
with ∥s∥ ≤ γ−1 · N (M)1/(2d).

Note that any module M associated to a γ-mod-uSVP2 instance contains the rank-1 sub-
module sOK whose norm is ≤

√
N (M)/γd. By Lemma II.3.4, this implies that if γ > 1, then

the module M has a unique densest rank-1 submodule.

Definition II.4.4 ((D, γ, γ′)-mod-uSVPvec
2 and (γ, γ′)-wc-mod-uSVPvec

2). Let γ ≥ γ′ > 0 and D
be a distribution over γ-mod-uSVP2 instances. The (D, γ, γ′) average-case unique SVP prob-
lem for rank-2 modules ((D, γ, γ′)-mod-uSVPvec

2 for short) asks, given as input a pseudo-basis
of some rank-2 module M sampled from D, to compute a vector s ∈ M \ {0} such that ∥s∥ ≤
N (M)1/(2d)/γ′. The advantage of a probabilistic algorithm A against the (D, γ, γ′)-mod-uSVPvec

2 problem
is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = s with

∣∣∣∣ s ∈M \ {0}
∥s∥ ≤ N (M)1/(2d)/γ′

)
,

where the probability is also taken over the internal randomness of A.
The variant (γ, γ′)-wc-mod-uSVPvec

2 asks to solve this problem for any γ-mod-uSVP2 in-
stance (B, I).

Definition II.4.5 ((D, γ)-mod-uSVPmod
2 and γ-wc-mod-uSVPmod

2). Let γ > 0 and D be a dis-
tribution over γ-mod-uSVP2 instances. The (D, γ) unique SVP problem for rank-2 modules
((D, γ)-mod-uSVPmod

2 for short) asks, given as input a γ-mod-uSVP2 module M sampled from D,
to recover a densest rank-1 submodule N ⊂ M . The advantage of a probabilistic algorithm A
against the (D, γ)-mod-uSVPmod

2 problem is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = N with

∣∣∣∣ N ⊂M with rk(N) = 1
N (N) = λN1 (M)

)
,

where the probability is also taken over the internal randomness of A.
The worst-case variant (γ-wc-mod-uSVPmod

2) asks to solve this problem for any γ-mod-uSVP2

instance (B, I).

We can now define the NTRU problems, as special cases of the mod-uSVP2 variants above.

Definition II.4.6 (NTRU instance). Let q ≥ 2 be an integer, and γ > 0 a real number.
A (γ, q)-NTRU instance is a γ-mod-uSVP2 instance whose pseudo-basis is required to be of
the form ((b1,OK), (b2,OK)) with b1 = (1, h)T for some h ∈ OK and b2 = (0, q)T .

II.4. COMPUTATIONAL PROBLEMS 53

Comparison with [PS21]. In order to emphasize the similarities between mod-uSVP2 and NTRU,
we adopted slightly different definitions from [PS21] for NTRU problems. The problems corre-
sponding to those definitions can easily be reduced to one another; we thus elected to keep
the same problem names. In [PS21], an NTRU instance consists in the single element h ∈ Rq,
whereas we consider it as a basis of a rank-2 module in this work. Both formalisms are equivalent,
since one can reconstruct the basis of the rank-2 module from h (and also q, which is a param-
eter of the problem). A second difference comes from the fact that [PS21] requires the short
vector s = (s1, s2)

T to satisfy ∥s1∥, ∥s2∥ ≤
√
q/γ, whereas we require that ∥s∥ ≤ √q/γ. This

means that a (γ, q)-NTRU instance for us is a (γ, q)-NTRU instance for [PS21], but the converse
does not hold: a (γ, q)-NTRU instance for [PS21] is only guaranteed to be a (γ/

√
2, q)-NTRU

instance for us.

Definition II.4.7 (NTRU problems). Let q ≥ 2, γ ≥ γ′ > 0 and D a distribution over (γ, q)-
NTRU instances. The (D, γ, γ′, q)-NTRUvec problem, (γ, γ′, q)-wc-NTRUvec problem, (D, γ, q)-
NTRUmod problem and (γ, q)-wc-NTRUmod problem are the restrictions of the mod-uSVP2 prob-
lems to (γ, q)-NTRU instances.

From the definitions of the NTRU and mod-uSVP2 problems, one can see that the average
case mod-uSVPvec

2 and NTRUmod problems reduce to wc-mod-uSVPvec
2 and wc-mod-uSVPmod

2 .
In fact, we will show that the converse also holds, provided we have an oracle solving ideal-SVP.

Finally, we also recall the definition of the Hermite shortest vector problem in ideal lattices
(id-HSVP).

Definition II.4.8 (γ-id-HSVP). Let γ ≥
√
d ·∆1/(2d)

K . Given as input a fractional ideal I ⊂ K,
the γ-id-HSVP problem asks to find an element x ∈ I \ {0} such that ∥x∥ ≤ γ · N (I)1/d.

By Lemma II.2.3, this problem is well-defined for any γ ≥
√
d·∆1/(2d)

K . The problem id-HSVP
is equivalent (up to a small change in the approximation factor) to SVP restricted to ideal lattices
(which is denoted id-SVP).

Lemma II.4.9. Let γ ≥ 1, then id-HSVPγ′ reduces to id-SVPγ for γ′ = γ ·
√
d ·∆1/(2d)

K .
Let γ ≥

√
d ·∆1/(2d)

K , then id-SVPγ′ reduces to id-HSVPγ for γ′ = γ/
√
d.

Proof. This is a consequence of Lemma II.2.3. If x is a id-SVPγ solution for an ideal I, then it
holds that

∥x∥ ≤ γ · λ1(I) ≤ γ ·
√
d ·∆1/(2d)

K · N (I)1/d.

If x is now a id-HSVPγ solution for an ideal I, then it holds that

∥x∥ ≤ γ · N (I)1/d ≤ γ · λ1(I)√
d

,

which concludes the proof.

II.4.3 Complexity parameters of algorithms over K

As said, in the unstructured case, the asymptotic complexity of problems are given as functions
of the dimension n of the lattice and of the bit-size of the basis. In contrast, in the structured
case, we shall study the asymptotic complexity of problems using as parameters the degree d
and the root-discriminant of the underlying number field rather than the rank of the modules.
The parameters d and ∆K are related by Minkowski’s bound.(π

4

) d
2 · d

d

d!
≤
√

∆K ,

54 CHAPTER II. PRELIMINARIES

which in particular implies that log(∆K) = Ω(d). In actual cryptographic constructions, the
number field used usually satisfy log(∆K) = Õ(d) (e.g. cyclotomics). This implies that we will
consider acceptable to have algorithm running-time/approximation factors with a polynomial
bound on ∆

1/d
K .

However, fields of fixed degree with arbitrarily large ∆K do exist, the simplest example
being the field Q(

√
D) for large square free D ∈ Z. On the contrary, there exists a family of

fields (Kn)n≥1 such that deg(Kn) goes to infinity and ∆
1/(deg(Kn))
Kn

is constant. These fields
are given by constructing number field with an infinite number of unramified extensions. A
construction of such field can be found in [Mai00], but it should be noted that none of these field
is actually used in actual cryptographic construction to our knowledge.

The most widely used field for constructions is the power-of-two cyclotomic fields Kn =
Q(ζ2n), for any n ≥ 1, where ζ2n is a 2n-th root of unity. It holds that for any n ≥ 1, deg(Kn) =
2n−1, OK = Z[ζ2n] and

∆Kn
= ±2(n−1)·2

n−1

= ±deg(Kn)
deg(Kn).

II.5 Probabilities

In this manuscript, we will always work with probability distributions which are discrete or
absolutely continuous with respect to the Lebesgue measure over Rn for some n. When writing∫

t∈Supp(D)

f(D(t)) dt,

for D a probability distribution and some function f , we will mean it either as a sum over Supp(D)
(if D is discrete), or as an integral over Rn.

Let X be a set which is finite or has finite Lebesgue measure. Throughout this manuscript
we will denote by U(X) the uniform distribution over X.

In order to measure the differences between two probability distributions, we shall use, de-
pending on the circumstances, both the statistical distance and the Renyi divergence.

Definition II.5.1. Let D1 and D2 be two probablity distributions defined over the same σ-algebra.
The statistical distance between D1 and D2 is defined by:

SD(D1, D2) =
1

2

∫
t∈Supp(D1)∪Supp(D2)

|D1(t)−D2(t)|dt.

Assume that Supp(D1) ⊆ Supp(D2). The Rényi divergence of order 2 is

RD2(D1 ∥ D2) =

∫
t∈Supp(D1)

D1(t)
2

D2(t)
dt,

and the Rényi divergence of infinite order is

RD∞(D1 ∥ D2) = max
x∈Supp(D1)

D1(x)/D2(x).

These quantities allow to compare the respective probability of events sampled from different
distributions.

II.5. PROBABILITIES 55

Lemma II.5.2 (Data processing inequality for SD and RD). Let D1, D2 be two probability
distributions. For any event E ⊆ Supp(D1) ∪ Supp(D2), we have

D2(E) ≥ D1(E)− SD(D1, D2).

If Supp(D1) ⊆ Supp(D2), then for any event E ⊆ Supp(D1), we have

D2(E) ≥ D1(E)2

RD2(D1 ∥ D2)
and D2(E) ≥ D1(E)

RD∞(D1 ∥ D2)
.

Chapter III

Counting Small Ideals

During our work on module lattices, we needed multiple times to have precise estimates on NK(B),
the number of integral ideals whose norm is less or equal than B ≥ 0. It is known that when B
goes to infinity NK(B) ∼ ρK ·B, but the error term in this previous equivalence heavily depends
on K. The bounds we found on the literature were unusable for values of B that we used in our
work (e.g., B = poly(d,∆

1/(2d)
K)d) or had their dependence on the field K not made explicit.

In this chapter, we give new (to the extent of our knowledge) result about the size of the
error on the approximation NK(B) ∼ ρK ·B for a number field K of degree d ≥ 3. In particular,
we are explicit about the error’s dependence on the field invariants.

III.1 Preliminaries

In this chapter we manipulate functions depending on an underlying number field K. We em-
phasize that when writing f ≪ g or f = O(g), the implicit constant in the ≪ and O(·) symbol
does not depend on the number field.

For any B ≥ 0, we let NK(B) (respectively πK(B)) denote the number of integral ideals
(respectively prime ideals) with algebraic norm ≤ B. As in the rational case, it is possible to
give estimate on these quantities. The RH for ζK allows us to give tighter bounds. The easiest
to estimate is πK(B), which is ∼ B/ log(B) with explicit bounds on the error.

Lemma III.1.1 ([BS96, Theorem 8.7.4], Assuming ERH). There exists an absolute constant c1
such that for any B ≥ (log∆K)c1 , we have

πK(B) ∈ B

logB
· [0.9, 1.1].

It seems that NK(B) is trickier to estimate. It is known that it is equivalent to ρK ·B when B
goes to infinity, but the error term depends on the field K in a non-trivial manner. We prove in
this chapter the following two results whose proof can be found in Section III.4 and which are,
to the extent our knowledge, new contributions.

Theorem III.1.2 (Assuming ERH). Let K be a number field of degree d ≥ 3 and NK(·) be its
ideal-counting function. For any X ≥ 2d, it holds that

|NK(X)− ρKX| ≤M(K) ·X1−η,

for η = 1/(16 ln(d)) and some M(K) satisfying

ln(M(K))≪ ln(|∆K |) + d ln(d).

57

58 CHAPTER III. COUNTING SMALL IDEALS

Corollary III.1.3 (Assuming ERH). Let K be a number field of degree d ≥ 3 and NK(·) be its
ideal-counting function. There exists a field independent constant c2 > 1 such that for any C ≥ 1,
if

X ≥ (C · dd · |∆K |)c2·ln(d)

then it holds that
|NK(X)− ρK ·X|

ρK ·X
≤ 1

C
.

III.1.1 Analysis preliminaries

Lemma III.1.4. Let d ≥ 1 be an integer and α ∈ (0, 1) a real number. Then, for any x ≥ e, we
have

(ln lnx)d

xα
≤
(
ln

(
1 +

d

α

))d

.

Proof. See Appendix B.1.1.

Lemma III.1.5 ([Ten95, Lemma II.2.1.1]). For any T, κ > 0 and x ∈ R>0 \ {1},∣∣∣∣∣ 1

2iπ

∫ κ−iT

κ+iT

xs

s
ds− 1>1(x)

∣∣∣∣∣ ≤ xκ

π · T · |ln(x)|
,

where 1>1 is the indicator function of the set {x ∈ R, x > 1}.

III.1.2 Analytic number theory preliminaries

Let K be a number field of degree d = dR+2dC ≥ 3 and of discriminant ∆K . Recall that |∆K | ≥ 1
and d≪ ln(|∆K |). For any X ≥ 1, we recall the ideal-counting function

NK(X) = |{a integral ideal of K,N (a) ≤ X}|.

Recall that ζK denotes the Dedekind zeta function associated to K. Note that ζK(s) = ζK(s).
We first recall classical results concerning ζK .

Lemma III.1.6. The residue ρK satisfies

ρK ≥ 0.5 · |∆K |−1/2.

Proof. See Appendix B.2.1.

The following theorem follows from [Rad59, Theorem 4] with η = 1/2.

Theorem III.1.7. For any s = σ + it ∈ C with σ ∈ (−1/2, 3/2), we have

|ζK(s)| ≤ 3 · ζ
(
3

2

)d

·
∣∣∣∣1 + s

1− s

∣∣∣∣ · |∆K |
3/2−σ

2 · |1 + s|
3/2−σ

2 ·d
.

Now, we define some field-dependent objects. Let

cK = 5.545|∆K |1/d and T0 = 104 + 103 · ln ln cK .

Note that Minkowski’s lower bound for |∆K | implies that cK > e, and then that T0 ≥ 104. For
any t ∈ R \ {0}, we define the set

It =

(
1

2
+

1

2 ln ln(cK |t|)
, 1 +

1

2 ln ln(cK |t|)

)
.

III.2. BOUNDS ON THE DEDEKIND’S ZETA FUNCTION OF K 59

Theorem III.1.8 (Assuming ERH). Let η = 1/(16 ln(d)). For any t satisfying |t| ≥ T0 and σ ∈
It satisfying σ ≥ 1− 2η, we have

|ζK(σ + it)| ≤ B(K) · |t|η/4

for some B(K) satisfying

lnB(K)≪ ln(|∆K |)
d

+ d ln d.

Proof. See Appendix B.2.

Note that the proof of Theorem III.1.8 gives in fact lnB(K)≪ ln(|∆K |)/(d ln(d)) + d ln(d),
but we simplified the bound to be of the same order of magnitude of the rest of the expressions.

III.2 Bounds on the Dedekind’s Zeta Function of K

From now on, we let X ≥ 2d > ζK(3)1/4/T0
1 and T = X4 · ζK(3) > T0. We also define η =

1/(16 ln(d)) ∈ (0, 1/16) (note that this choice is only valid if d ≥ 3, as we assume for this work).

Lemma III.2.1 (Assuming ERH). For any σ ∈ [1− 2η, 3], we have

|ζK(σ + iT)| ≤M1(K) · T η/4,

for some M1(K) satisfying

ln(M1(K))≪ ln(|∆K |)
d

+ d ln d.

Proof. Let σ0 = 1+
(
2 ln ln

(
6|∆K |1/d · T

))−1
. For σ ∈ [1−2η, σ0], it can be checked that σ ∈ IT ,

so that Theorem III.1.8 gives us that |ζK(σ + iT)| ≤ B(K) · T η/4.
We will use the inequality |ζK(s)| ≤ ζ(Re(s))d, which holds for any s ∈ C satisfying Re(s) > σ0 >
1. It is obtained using the Eulerian product form of the Dedekind and Riemann zeta functions.
Note that for any x ∈ (1, 3), we have ζ(x) ≤ 3/(x− 1). We have

|ζK(σ + it)| ≤ ζ(σ)d ≤ ζ(σ0)
d

≤
(
6 ln ln

(
6|∆K |1/d · T

))d
≤ 6d

(
ln

(
1 +

4d

η

))d

·
(
6|∆K |1/d · T

) η
4

(by Lemma III.1.4)

≤ 6d (ln(1 + 64d ln(d)))
d
(6|∆K |)

1
64d ln(d) · T

η
4 .

We have that

d ln(6) + d ln ln(1 + 64d ln(d)) + ln
(
6|∆K |

1
64d ln(d)

)
≪ d ln ln(d) +

ln(|∆K |)
d ln(d)

≪ d ln(d) +
ln(|∆K |)

d
,

from which our claim follows.
1The bound ζK(3)1/4/T0 is obtained by noticing that T0 ≥ 1 and ζK(3)1/4 ≤ 2d.

60 CHAPTER III. COUNTING SMALL IDEALS

Lemma III.2.2 (Assuming ERH). For any t ∈ [−T0, T0], we have that

|ζK(1− 2η + it)| ≤M2(K),

for some M2(K) satisfying
ln(M2(K))≪ ln(|∆K |).

Proof. Let s = 1− 2η + it with |t| ≤ T0. By applying Theorem III.1.7, and noting that:

• |1− s| ≥ 2η,

• |1 + s| ≤ 2 · T0,

• (3/2− Re(s))/2 ≤ 1/3,

• d/3 + 1 ≤ d− 1,

it holds that

|ζK(1− 2η + it)| ≤
3 · ζ

(
3
2

)d
2η

· |∆K |
1
3 · (2 · T0)

d−1 := M2(K).

Then it holds that
ln(M2(K))≪ d+ ln ln(d) + ln |∆K |+ d ln(T0).

As d≪ ln(|∆K |) and
d ln(T0)≪ d ln

(
|∆K |1/d

)
= ln(|∆K |),

the result follows.

III.3 Bounds on the integral

σ

t

11− 2η 3

T0

T

−T0

−T

γ3

γ4

γ1

γ2

Figure III.1: DT,η

III.3. BOUNDS ON THE INTEGRAL 61

An estimate of NK(B) is given by integrating the function ζK along the contour presented
in Fig. III.1. In this subsection, we give bounds on the different parts of the integral. Through
all this section, we will keep the notations of Section III.2.

Lemma III.3.1 (Assuming ERH). It holds that∣∣∣∣∫ 3

σ=1−2η
ζK(σ + iT) · Xσ

|σ + iT |
dσ

∣∣∣∣ ≤ 3 ·M1(K) ·X− 9
10 ,

where M1(K) is defined in Lemma III.2.1.

Proof. By Lemma III.2.1 we have,∣∣∣∣∫ 3

σ=1−η
ζK(σ + iT) · Xσ

√
σ2 + T 2

dσ

∣∣∣∣ ≤M1(K) · T
η
4−1

∫ 3

σ=1−2η

Xσ√
(σ/T)2 + 1

dσ

≤ 3 ·M1(K) · T
η
4−1 ·X3.

= 3 ·M1(K) · ζK(3)
η
4−1 ·Xη−4+3

≤ 3 ·M1(K) ·X− 9
10

where the last inequalities come from the fact that η/4− 1 < 0 and ζK(3) ≥ 1.

Lemma III.3.2 (Assuming ERH). We have that∣∣∣∣∣
∫ t=T0

t=−T0

ζK(1− 2η + it)
X1−2η+it

1− 2η + it
dt

∣∣∣∣∣ ≤M ′2(K) ·X1−2η,

for some M ′2(K) satisfying
ln (M ′2(K))≪ ln(|∆K |).

Proof. By Lemma III.2.2, we have that∣∣∣∣∣
∫ t=T0

t=−T0

ζK(1− 2η + it)
X1−2η+it

1− 2η + it
dt

∣∣∣∣∣ ≤ X1−2η ·M2(K) ·
∫ t=T0

t=−T0

1√
(1− 2η)2 + t2

dt

≤ X1−2η ·M2(K) ·
∫ t=T0

t=−T0

1√
(7/8)2 + t2

dt

≤ X1−2η ·M2(K) · 16
7
T0.

The definition of T0 allows us to conclude.

Lemma III.3.3 (Assuming ERH). We have that∣∣∣∣∣
∫ t=T

t=T0

ζK(1− 2η + it)
X1−2η+it

1− 2η + it
dt

∣∣∣∣∣ ≤M ′3(K) ·X1−η,

for some M ′3(K) satisfying

ln(M ′3(K))≪ d ln(d) +
ln(|∆K |)

d
.

62 CHAPTER III. COUNTING SMALL IDEALS

Proof. By Theorem III.1.8, we have that∣∣∣∣∣
∫ t=T

t=T0

ζK(1− 2η + it)
X1−2η+it

1− 2η + it
dt

∣∣∣∣∣ ≤ X1−2η ·B(K) ·
∫ t=T

t=T0

t
η
4√

(1− 2η)2 + t2
dt

≤ X1−2η ·B(K) · 4
η
· T

η
4

≤ 64 ·B(K) · ln(d) ·X1−2η+η · ζK(3)
η
4

Now, we have that ln
(
ζK(3)3η/4

)
≪ d/ ln(d), which gives the result.

Lemma III.3.4. If X ∈ Z>0 + 1/2, we have∣∣∣∣∣ 1

2iπ

∫ 3+iT

3−iT
ζK(s) · X

s

s
ds−NK(X)

∣∣∣∣∣ ≤ 1.

Proof. This proof is in large part extracted from the proof of [Lan13, Theorem 6]. For any s =
3 + it, the series

∑
a⊆OK

N (a)−s is absolutely convergent. This and Lemma III.1.5 imply that
(note that since X ∈ Z>0 + 1/2, it is never equal to the norm of an integral ideal)∣∣∣∣∣ 1

2iπ

∫ 3+iT

3−iT
ζK(s) · X

s

s
ds−NK(X)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

N (a)≤X

1

2iπ

∫ 3+iT

3−iT

(X/N (a))s

s
ds−NK(X)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

N (a)>X

1

2iπ

∫ 3+iT

3−iT

(X/N (a))s

s
ds

∣∣∣∣∣∣
≤

∑
a⊆OK

(
X
N (a)

)3
π · T ·

∣∣∣ln(X
N (a)

)∣∣∣
=

X3

π · T
·
∑

a⊆OK

1

N (a)3 ·
∣∣∣ln(X

N (a)

)∣∣∣ .
For any a ideal of OK , we have that if X < N (a), then ⌊X⌋ + 1 ≤ N (a). Furthermore,
as X ∈ Z+ 1/2, we have X = ⌊X⌋+ 1/2, and then∣∣∣∣ln(X

N (a)

)∣∣∣∣ = ln

(
N (a)

⌊X⌋+ 1/2

)
≥ ln

(
⌊X⌋+ 1

⌊X⌋+ 1/2

)
= ln

(
1 +

1

2X

)
.

Now, if X > N (a), we have ⌊X⌋ ≥ N (a), and hence∣∣∣∣ln(X

N (a)

)∣∣∣∣ = ln

(
⌊X⌋+ 1/2

N (a)

)
≥ ln

(
⌊X⌋+ 1/2

⌊X⌋

)
= ln

(
1 +

1

2⌊X⌋

)
.

It can be checked that for any X > 1, we have (ln(1 + 1/(2⌊X⌋)))−1 and (ln(1 + 1/(2X)))−1 are
both ≤ 3X. Finally, we obtain∣∣∣∣∣ 1

2iπ

∫ 3+iT

3−iT
ζK(s) · X

s

s
ds−NK(X)

∣∣∣∣∣ ≤ 3

π
· X

4

T
·
∑

a⊆OK

1

N (a)3
≤ X4 · ζK(3)

T
,

which completes the proof.

III.4. BOUNDING THE IDEAL-COUNTING FUNCTION 63

III.4 Bounding the ideal-counting function

We recall the statement of Theorem III.1.2.

Theorem III.1.2 (Assuming ERH). Let K be a number field of degree d ≥ 3 and NK(·) be its
ideal-counting function. For any X ≥ 2d, it holds that

|NK(X)− ρKX| ≤M(K) ·X1−η,

for η = 1/(16 ln(d)) and some M(K) satisfying

ln(M(K))≪ ln(|∆K |) + d ln(d).

Proof. We first prove the theorem if X ∈ Z+1/2. Let γ1 = [3−iT, 3+iT], γ2 = [3+iT, 1−2η+iT],
γ3 = [1 − 2η + iT, 1 − 2η − iT] and γ4 = [1 − 2η − iT, 3 − iT]. We let the path obtained by
concatenating γ1, γ2, γ3 and γ4 be denoted by DT,2η (see Fig. III.1). Let Ij be the integral

Ij =
1

2iπ

∫
γj

ζK(s) · X
s

s
ds, for j ∈ {1, 2, 3, 4} .

By the residue theorem, since 1− 2η < 1 < 3 we have that

1

2iπ

∫
DT,2η

ζK(s) · X
s

s
ds = ρK ·X.

By Lemma III.3.4, we have
|I1 −NK(X)| ≤ 1.

By Lemma III.3.1 and the fact that I2 = I4, we have that

|I2|, |I4| ≤ 3 ·M1(K) ·X− 9
10 .

By Lemmas III.3.2 and III.3.3, we have that

|I3| ≤ 2 ·M ′3(K) ·X1−η +M ′2(K) ·X1−2η.

As ln(M1(K)), ln(M ′2(K)), ln(M ′3(K))≪ ln |∆K |+d ln d, the result follows, we denote by M ′(K)
the constant for X ∈ Z+ 1/2.
Now, we generalize to X ∈ R>0. For any X ∈ R>0, we have that NK(X) = NK(⌊X⌋ + 1/2),
which implies that

|NK(X)− ρKX| ≤ |NK(⌊X⌋+ 1/2)− ρK · (⌊X⌋+ 1/2)|+ ρK |⌊X⌋+ 1/2−X|
≤M ′(K) · (2X)1−η + ρK ≤ (2M ′(K) + ρK) ·X1−η.

By Theorem II.2.10, we have that ρK ≤ (e · log(∆K)/(2(d − 1)))d−1). The result follows by
taking M(K) = 2M ′(K) + ρK .

We recall the statement of Corollary III.1.3.

Corollary III.1.3 (Assuming ERH). Let K be a number field of degree d ≥ 3 and NK(·) be its
ideal-counting function. There exists a field independent constant c2 > 1 such that for any C ≥ 1,
if

X ≥ (C · dd · |∆K |)c2·ln(d)

then it holds that
|NK(X)− ρK ·X|

ρK ·X
≤ 1

C
.

64 CHAPTER III. COUNTING SMALL IDEALS

We make use of the following lemma, which transforms the additive error on NK to a multi-
plicative one.

Lemma III.4.1 (Assuming ERH). Let C ≥ 1 and X ≥ 2d. If

X ≥ (2C · |∆K |
1
2 ·M(K))16 ln(d)

(where M(K) is defined in Theorem III.1.2), then we have

|NK(X)− ρK ·X|
ρK ·X

≤ 1

C
.

Proof. Theorem III.1.2 and Lemma III.1.6 give that

|NK(X)− ρK ·X|
ρK ·X

≤
2
√
|∆K | ·M(K)

Xη
,

which is ≤ 1/C given our assumption on X.

Proof of Corollary III.1.3. This follows directly from Lemma III.4.1 and the bound on ln(M(K))
from Theorem III.1.2.

Chapter IV

Ideal-SVP is Hard for Small-Norm
Uniform Prime Ideals

This chapter is extracted from [FPSW23]. This work was done in collaboration with Alice
Pellet-Mary, Damien Stehlé and Benjamin Wesolowski. I took care of most of the technical
aspects of the reduction, and extracted and rewrote in more modern notations the worst-case to
average-case reduction from Gentry’s thesis [Gen09].

IV.1 Introduction

Contributions of this chapter.

We describe a new quantum self-reduction for id-HSVP. We prove that if W is a set of ideals
and W−1 is the set of inverses of the ideals of W, then solving id-HSVP for the uniform distri-
bution over W−1 reduces to solving id-HSVP for the uniform distribution over W and to solving
id-HSVP for a uniform ideal within those having their norms in a prescribed interval. Both the
cost of the reduction and the loss in the approximation factor are polynomially bounded in the
degree d and the root-discriminant ∆

1/d
K of the number field. The precise statement is provided

in Theorem IV.5.1.
When specialized withW chosen as the set of prime ideals of algebraic norm ∆

O(1)
K ·dO(d), our

reduction implies that solving id-HSVP for the inverse of uniform primes ideals is no harder than
solving it for uniform prime ideals (still for those of algebraic norm ∆

O(1)
K · dO(d)). The success

probability of this reduction is proportional to the proportion of prime ideals among all integral
ideals of norm bounded by some A = poly(∆K). Combined with Gentry’s reduction [Gen09],
our work implies the random self-reducibility of id-HSVP for the uniform distribution over prime
ideals. As Gentry’s original reduction considers the bounded distance decoding problem, we
present an adaptation to the shortest vector problem in Appendix C.2. Note that the polynomial
dependency in the proportion of prime ideals may have a considerable impact on the cost of this
reduction (there exists number fields for which the proportion of prime ideals is exponentially
small in the degree).

This new reduction, along with the Karp reduction of [PS21], gives a new distribution over
NTRU instances with modulus polynomial in d and ∆

1/d
K whose difficulty relies on the worst-case

problem id-HSVP. To our knowledge this is the first time a distribution over NTRU instance
with polynomial modulus is based on a worst-case problem, even though this distribution needs
a factoring oracle to be sampled from.

65

66 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Technical overview.

We now give an overview of the average-case to average-case reduction for id-HSVP. Let W be
a set of fractional ideals represented by their Hermite Normal Form. The goal of our reduction
is to find (with non-negligible probability) a short non-zero vector in a given uniform element
of W−1, given access to two oracles: OW which solves id-HSVP with non-negligible probability
for a uniform element ofW, and OI which solves it with non-negligible probability for a uniform
integral ideal with norm between A and 4A, for A = ∆

O(1/d)
K · dO(1). In everything that follows

we assume that we have a factoring oracle (for integers, or equivalently, for integral ideals).
Such an oracle can be instantiated in quantum polynomial time with Shor’s algorithm, or in
sub-exponential time with the number field sieve algorithm.

Before diving into our contribution, let us explain a key idea developed in [Boe22, Chap. 6].
By ideal of norm 1, we mean a (replete) ideal1 of the form I/N (I)1/d. The space of ideals of
norm 1 has a natural notion of uniformity. Let Br denote the ℓ∞ ball of radius r. In [Boe22,
Theorem 6.21], it is proved that if J is sampled uniformly in the set of ideals of norm 1, and x is
uniform in Br ∩ J , then the integral ideal x · J−1 is almost uniform in the set of integral ideals
of norm less than rd.

Now, our reduction follows the following structure. We are given a uniform I ∈ W, and
tasked with finding a short non-zero vector vI−1 ∈ I−1.

1. Find a short non-zero vector vI ∈ I with the oracle OW .

2. Generate a uniform norm-1 ideal I ′, together with a non-zero vector vI′ ∈ I ′ as short as
possible. The ideal J = I ′ · I/N (I)1/d is also uniform in the space of ideals of norm 1, and
we can compute a short basis BJ of J thanks to the short non-zero vectors vI and vI′ .

3. Sample x ∈ Br ∩ J ; this uses our knowledge of the good basis BJ . Hopefully, the integral
ideal b = x · J−1 is almost uniform in the set of integral ideals of bounded norm.

4. Find a short non-zero vector vb ∈ b with the oracle OI .

5. Return the vector vI−1 = x−1 · vI′ · vb · N (I)−1/d ∈ I−1.

One can check that vI−1 ∈ I−1, but is it short? Its factors are short by construction, except
possibly x−1. Indeed, the element x itself is bounded (it is in the set Br), but its inverse may
not be. To circumvent this issue, we would like to replace the ℓ∞ ball Br with another shape X
which contains only balanced vectors (i.e., close to a vector of the form λ · (1, . . . , 1)), so that
for any short x ∈ X, we have that x−1 is small. We prove that the result of [Boe22] holds for
general sets X satisfying certain conditions. We consider a new shape BηA,B (see Figure IV.1
and Definition IV.4.1) that satisfies the conditions, and contains only balanced elements. Now,
replacing Br with BηA,B in Step 3, we sample an element x such that x−1 is small, hence all the
factors of vI−1 are small, and vI−1 is indeed a solution to id-HSVP in I−1.

While Step 3 constitutes the main difficulty of the reduction, and the technical core of our
paper, let us briefly comment on Step 2. We need to sample a uniform norm-1 ideal I ′, together
with a short non-zero vector vI′ ∈ I ′. In [BDPW20], it is proven that if an ideal p is sampled
uniformly in the set of prime ideals with norm less than (dd ·∆K)c for some constant c, then, up
to a small Gaussian factor, the ideal p/N (p)1/d is close to uniform in the set of norm-1 ideals. It
is therefore sufficient to generate such a prime ideal p together with a short element vp ∈ p. The
technique is extracted from [Gen09, Chap. 17], and requires a factoring oracle. It first samples

1A replete ideal is a subset of KR := K ⊗Q R of the form α · I where I ⊆ OK is an integral ideal of OK

and α ∈ K×
R is invertible. More details can be found in the preliminaries.

IV.1. INTRODUCTION 67

Figure IV.1: A plot of BηA,B intersected with the subspace K+
R := {x ∈ KR |σi(x) ∈

R>0 for all i}. Here we have (dR, dC) = (3, 0), A = 20, B = 40 and η = exp(1).

a small element x ∈ OK with the Gaussian distribution. It then factors (x) = pe11 · . . . · p
ek
k and

uniformly selects one of the factors pi. Finalizing with a rejection sampling step, it can be proved
that the chosen p is almost uniform in the set of primes of norm ≲ N (x).

We now have a reduction from id-HSVP for inverses of ideal of a set W, to id-HSVP for
ideals of W and id-HSVP for a uniform ideal of norm in some interval [A, 4A] for A as small
as ∆

O(1))
K · dO(d). This gives a trivial reduction from id-HSVP for a uniform ideal to id-HSVP

for an uniform prime ideal, with a success probability decrease of a factor O(1/ρ̃A), where 1/ρ̃A
is the proportion of prime ideals among the set of all integral ideals of norm ≤ A. We can now
combine this last reduction with our main result (taking W to be the set of prime ideals of norm
in [A, 4A]) in order to reduce id-HSVP for inverses of prime ideals to id-HSVP for prime ideals.
This, combined with the worst-case to average-case reduction of [Gen09] gives a worst-case to
average-case reduction for id-HSVP where the average-case is the uniform distribution over prime
ideals of norm in [A, 4A].

Finally, note that a reduction from id-HSVP to NTRU was recently given in [PS21]. It trans-
forms an integral ideal I into an NTRU instance of modulus polynomialy larger than N (I)1/d.
Our self-reduction (in contrast with the one from [Gen09]) applies to integral ideals and can be
composed with the one from [PS21]. The distribution of NTRU instances obtained by sampling
a uniform prime ideal of norm in [A, 4A] and applying [PS21, Alg. 4.1] is at least as difficult
to solve as worst-case id-HSVP. By setting A = ∆

O(1)
K · dO(d), we obtain an NTRU modulus

bounded as ∆O(1/d)
K · dO(1). Note that “overstretched NTRU” attacks [ABD16, CJL16, KF17] do

not apply for this distribution as, among others, they require a much larger modulus.

Related works on the hardness of id-HSVP.

On the upper bound front, it has been shown that id-HSVP is susceptible to better algorithms
than the generic HSVP. Cramer et al. [CDPR16] described an algorithm for id-HSVP in cy-
clotomic fields for principal ideals with an approximation factor exp Õ(

√
d) in quantum poly-

nomial time. It was later generalized to all ideals [CDW17] of cyclotomic fields and (with
pre-processing) to all number fields [PHS19]. Note that in the present work, all our reduc-
tions feature polynomial losses on the approximation factor, and hence apply to id-HSVP for
polynomial approximation factors, a regime that is not impacted by these algorithms. Still,
families of easy instances for id-HSVP have been identified even for polynomial approximation
factors [PXWC21, PML21, BEP22], specifically ideals stabilized by many field automorphisms.

68 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

While these families are very sparse, their existence further motivates the study of different
distributions of id-HSVP instances.

IV.2 Preliminaries

When using oracles with a non-zero probability of failing, we assume without loss of generality
that either the oracle returns a valid result or ⊥ (as in our cases, the validity of the output can
always be checked efficiently).

IV.2.1 Balanced elements.

For the reductions presented in this article, it will sometimes be convenient to use balanced
elements of KR, i.e., elements whose ℓ∞ norm and the one of their inverse are not far from
the geometric mean of their coordinates: in other terms they do not have an exceptionally
small or large coordinate in comparison to the others. This property is convenient as it implies
that multiplying an ideal by one of these elements will not change its geometry significantly, in
particular if x is balanced and v is small in the ideal x · I, then x−1 · v will be small in I. The
formal definition is as follows.

Definition IV.2.1. Let η > 1. An element x in KR is said to be η-balanced if

∥x∥∞ ≤ η · |N (x)|
1
d and ∥x−1∥∞ ≤ η · |N (x)|−

1
d .

IV.2.2 Density of prime ideals.

For any A ≥ 1, we let ρ̃A denote the inverse of the proportion of prime ideals among all integral
ideals of K of norm ≤ A, i.e.,

ρ̃A :=
|{a ⊂ OK | N (a) ≤ A}|

|{p ⊂ OK prime | N (p) ≤ A}|
.

In this article, we will mostly be interested in ρ̃A for values of A of the order of poly(∆K).
Unfortunately, we are not aware of estimates for ρ̃A when A is this “small”. However, it is known
that when the number field K is fixed and A tends to infinity, it holds that

ρ̃A ∼
A→∞

ρK · ln(A),

where ρK is the residue of the Dedekind zeta function at 1. This comes from the fact that

|{p ⊂ OK prime | N (p) ≤ A}| ∼ A/ ln(A)

(see [BS96, Theorem 8.7.4]), and that |{a ⊂ OK | N (a) ≤ A}| ∼ ρK · A. (see [Web08]). We can
though give a bound on ρ̃A when A ≥ (2 ·∆K · d)c2·ln(d) using Corollary III.1.3. In this case, we
have

ρ̃A ∈ [0.5, 1.5] · ρK ln(A)

IV.2.3 Algorithmic problems

Algorithmic problems in ideals.

Lemma IV.2.2 (Folklore). For any γ ≥ 1, there is a Karp polynomial-time reduction from the
problem id-HSVPγ to inv-HSVPγ .

IV.2. PRELIMINARIES 69

Proof. Let I be a fractional ideal for which we want to solve the id-HSVPγ problem. We will
show that there exists x ∈ Q such that xI = a−1 is the inverse of an integral ideal a ⊆ OK .
If such an element x can be computed efficiently, then the reduction simply computes x, then
compute a−1 = xI and runs the inv-HSVPγ solver on a−1 (which is a valid input for inv-HSVP).
Since multiplication by x ∈ Q consists in scaling the lattice corresponding to I, then a solution
to id-HSVPγ in xI provides a solution to id-HSVPγ in I (by multiplying it by x−1). Note that
the reduction preserves the approximation factor γ.

Let us then show that such an x exists and can be computed in polynomial time. Write I =
ab−1, with a, b ⊆ OK integral ideals, and define x = N (a)−1. Note that such a, b and x can be
computed in polynomial time from I (we do not require that a and b are coprime, so the choice we
make is not unique). Let us show that for such x, it holds that (xI)−1 ⊆ OK is an integral ideal.
By definition, we have (xI)−1 = N (a) · a−1b. Since a is integral, it holds that N (a) · OK ⊆ a.
Indeed, note that the group OK/a has cardinality N (a). Lagrange’s theorem then gives that any
element of OK/a has order dividing N (a), i.e., for any x ∈ OK , we have N (a) · x ∈ a. We hence
obtain that the ideal N (a) · a−1 ⊆ OK is integral. Since b is integral by construction, this proves
that (xI)−1 is integral.

IV.2.4 Algorithms on ideals

For I = OK , the following lemma states that one can quantumly and efficiently sample a random
prime ideal together with a short element in it, hence the name. We give a proof based on [PS21]
but note that a similar statement was already given as [Gen09, Theorem 16.3.4, Lemma 17.2.1]
(see also [Gen10, Se. 3.3]).

Lemma IV.2.3 (Adapted from [PS21, Lemma C.1]). There exists an algorithm SampleWithTrap
that on input integers 2 ≤ A < B, a real ε ∈ (0, 1) and a basis BI of a fractional ideal I, samples
a pair (p, w) such that

1. the distribution of p is within statistical distance ε from the uniform distribution over PA,B;

2. the element w belongs to I · p \ {0};

3. we have ∥w∥ ≤ 2
√

4d+ ln(24B/ε) · ς with ς = max (ςsample, ςsmooth) and

• ςsample =
√
d · ∥B∗I ∥.

• ςsmooth = (∆K ·B · N (I))
1/d ·

√
ln(24B/ε).

Furthermore, if the algorithm is given access to an oracle factoring integral ideals of norm smaller
than (2

√
4d+ ln(24B/ε) · ς)d · N (I)−1, then the algorithm runs in expected time polynomial

in B/|PA,B |, B/A, log∆K , logB, log(1/ε) and in the size of I.

The proof is available in Appendix C.1. Note that we will use this result with ε = exp(−d)
in order to simplify computations and subsequently omit this input.

Factoring ideals. Factoring an integral ideal a in OK can be done by factoring the algebraic
norm N (a) of a over the integers; computing, for all the prime factors p | N (a), the set of prime
ideals whose norm is a power of p (there are at most d of those); and testing for each of these prime
if they divide a. Factoring N (a) can be performed quantumly in time polynomial in logN (a)
(using Shor’s algorithm [Sho94]). Computing the set of prime ideals of norm a given prime
integer p can be performed classically in time polynomial in log p and log∆K using Buchmann-
Lenstra’s algorithm [BL94], described in details in [Coh93, Sec. 6.2.5]. Finally, testing whether

70 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

a prime ideal p divides a can be done in time polynomial in the bit-sizes of p and a. Overall,
factoring ideals can be done in quantum-polynomial time (using Shor’s algorithm) or in classical
sub-exponential time (using the Number Field Sieve).

IV.2.5 Worst-case to average-case reduction for inverse of primes

In [Gen09, Ch. 16 & 17], Gentry described a self-reduction for a variant of the bounded distance
decoding problem, from worst-case ideals to prime ideals taken uniformly at random with their
norm in some interval [A,B] (for a suitable choice of A and B). This reduction can be adapted to
the shortest vector problem (instead of the bounded distance decoding problem), but it requires
to take the inverse of the ideals, implying that the average-case distribution we obtain is over
the inverses of prime ideals uniformly chosen in the interval [A,B]. Below, we state the result
of Gentry’s reduction adapted to SVP, and provide a proof in Appendix C.2 for the sake of
completeness.

Theorem IV.2.4 (Adapted from [Gen09, Ch. 16 & 17]). There exist some field dependent
constant C1,K = poly(∆

1/d
K , log∆K , δK) and C2,K = poly(log∆K , δK) such that the following

holds. Let γavg ∈ [1, 2d], A ≥ Cd
1,K · γd

avg satisfying A ≤ (∆K)d
O(1)

and γ = A1/d · C2,K . Then

id-HSVPγ reduces to P−1A,4A-avg-id-HSVPγavg .

The reduction is probabilistic and, assuming it has access to an oracle factoring integral ideals
whose norms have bit-size poly(log∆K), it runs in expected time polynomial in its input size,
log∆K and 1/δ, where δ is the success probability of the P−1A,4A-avg-id-HSVPγavg oracle.2

IV.3 Self-Reducibility of id-HSVP to Inverses

Let W be a finite set of fractional ideals. In this section, we provide a framework for reduc-
ing id-HSVP for the uniform distribution over W to id-HSVP for the uniform distribution
over W−1 = {I−1 : I ∈ W}. The reduction, provided in Theorem IV.3.4 relies on three oracles
(beyond the one for id-HSVP for U(W)). The first one factors integral ideals, and can be instan-
tiated with a quantum polynomial-time algorithm. The second one samples from I ∩X, where I
is an arbitrary norm-1 replete ideal and X is a well-chosen set: this oracle will be instantiated in
Section IV.4. The last one finds short non-zero vectors in integral ideals uniformly distributed
within those having their norms in a prescribed interval. Overall, this will lead to a quantum
polynomial-time reduction from W−1-avg-id-HSVP to W-avg-id-HSVP and IA,4A-avg-id-HSVP
for a well-chosen A.

The reduction is built in several steps. First, we show how to map a uniform norm-1 replete
ideal to an integral ideal uniform among those with norms in [A, 4A], using a new approach
introduced in [Boe22, Sec. 6]. This is parameterized by a set X that will be instantiated in
Section IV.4. The second step gives a way to randomize an arbitrary ideal to an integral ideal
uniform among those with norms in [A, 4A], along with a hint that allows to map a short vector
of the resulting ideal to a short vector in the inverse of the input ideal. Finally, this allows to
describe the reduction.

2The choice of 4A for the upper bound on the norm of the ideals is not a strict requirement of this theorem.
We instantiated the theorem with this value in order to simplify its statement.

IV.3. SELF-REDUCIBILITY OF id-HSVP TO INVERSES 71

IV.3.1 From a uniform norm-1 ideal to a uniform integral ideal

In this subsection, we present a way to sample uniformly among integral ideals whose norms
belong to a prescribed interval. Given a compact set X satisfying certain properties, our sampler
takes as input a uniform ideal I ∈ IdLat0K , samples a point uniformly in I ∩X and outputs (x) ·
I−1 ⊆ OK . It holds that if X is well-designed, then the output distribution is close to the
uniform distribution over the set of integral ideals in terms of Rényi divergence. Our sampler
generalizes [Boe22, Theorem 6.9], where the set X is assumed to be the ℓ∞ ball. This new
degree of freedom will allow us (in Section IV.4) to choose a set X whose points are balanced,
which will be essential for the proof of Theorem IV.5.1. Note that we do not use the Arakelov
ray divisor formalism to state our results: those of [Boe22, Sec. 6] are stated with respect to a
modulus m ⊆ OK and here we take m = OK .

Definition IV.3.1. Let X ⊂ KR. We say that X is compact and invariant by complex rotations
if the following hold:

• Φ(X) is a compact subset of Cd;

• for any ζ = (ζ1, . . . , ζd) ∈ Φ(KR) with |ζ1| = · · · = |ζd| = 1, it holds that Φ−1(ζ) · X =
Φ−1(ζ) · x |x ∈ X} ⊆ X.

We consider the IdealRound algorithm (Algorithm IV.3.1), whose output distribution gen-
eralizes the distribution presented in [Boe22, Theorem 6.9]. It is parametrized by an arbitrary
compact set X ⊂ KR, takes as input a norm-1 replete ideal (i.e., an element of IdLat0K) and re-
turns an integral ideal. We define DIdeal(X) as the distribution IdealRoundX(U(IdLat0K)). For
the moment, we are not interested in the efficiency of IdealRoundX , but only in the relationship
between DIdeal(X) and the uniform distribution over ideals with norms belonging to an interval.
This is the purpose of the following result.

Algorithm IV.3.1 IdealRound

Input: I ∈ IdLat0K .
Parameter: X ⊂ KR compact.
Output: An integral ideal a.
1: Sample x← U(I

⋂
X).

2: Return a = (x) · I−1.

Lemma IV.3.2. For any t ∈ R, let Ht = {x ∈ LnKR |
∑

i xi = t}. Let X be a compact subset
of KR invariant by complex rotations (as per Definition IV.3.1) and B > A > 2. Assume that:

• There exist some real numbers C ≥ 1 and C ′ > 0 such that we have |I ∩X| ∈ C ′ · [1, C]
for any I ∈ IdLat0K ;

• there exists C ′′ ∈ R such that for any t ∈ [ln(A), ln(B)] we have

Vol
(
Ln(X)

⋂
Ht

)
= C ′′;

• for any t /∈ [ln(A), ln(B)], we have Vol(Ln(X) ∩Ht) = 0.

Then the support of DIdeal(X) is contained in IA,B and

RD∞(U(IA,B) ∥ DIdeal(X)) ≤ C.

72 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

We now comment the conditions of Lemma IV.3.2. The second and third conditions state
that, when embedded in Ln(KR) the set Ln(X) should be contained between the two hyper-
planes Hlog(A) and Hlog(B), and that between those hyperplanes, the slices Ln(X) ∩Ht should
have constant volume. Those conditions will yield the bounds on the norm of the output ideal.
The first condition states that for any norm-1 replete ideal I, the number of points in X∩I should
be non-zero and almost independent of I. Conditions 1 and 2 will imply the near-uniformity of
the output distribution. The proof below is adapted from [Boe22, Theorem 6.9].

Proof. Fix an integral ideal b and a norm-1 replete ideal I. We are going to compute bounds on

pI,b = Pr
x

(
(x) · I−1 = b

)
= Pr

x
((x) = I · b) = Pr

x
(x generates I · b) ,

where the randomness is over x← U(I ∩X). For an ideal J , we define GJ = {x ∈ KR : (x) = J}
as the set of generators of J (if J is not principal, it is the empty set). Note that GI·b =
{x ∈ KR : (x) = I · b} ⊆ I. We have

pI,b =
|GI·b ∩X|
|I ∩X|

∈
∣∣∣GI·b

⋂
X
∣∣∣ · C ′−1 · [C−1, 1],

where the inclusion follows from the first assumption of the lemma. For any I that is not in
the class of b−1 modulo principal ideals, we have that GI·b is empty, since I · b is not principal.
Let [b−1]0 be the set of all norm-1 replete ideals of the form (α) · b−1 for some α ∈ KR (i.e., the
coset of b−1 in IdLat0K modulo principal ideals). Let I0 = N (b)1/d ·b−1, which belongs to [b−1]0.
There is a bijection between K0

R/O
×
K and [b−1]0 given by u 7→ (u) · I0. This implies that

E
I←U(IdLat0K)

(∣∣∣GI·b
⋂

X
∣∣∣) = Pr

I←U(IdLat0K)
(I ∈ [b−1]0) · E

u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣)

=
1

|ClK |
· E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) ,

where u← U(K0
R/O

×
K) and the second equality comes from Lemma II.2.13. Let µK be the set of

roots of unity in K. Using the fact X is invariant by complex rotations and that the Ln function
is |µK |-to-1 when its input is restricted to generators of a principal replete ideal I, it holds that
the Ln function is |µK |-to-1 on GI

⋂
X, and then we have:

∀I ∈ IdLat0K :
∣∣∣GI

⋂
X
∣∣∣ = |µK | ·

∣∣∣Ln(GI)
⋂

Ln(X)
∣∣∣.

In our context, this implies that for any u ∈ K0
R,∣∣∣GN (b)1/d·(u)

⋂
X
∣∣∣ =|µK | ·

∣∣∣Ln(X)
⋂{

Ln(x) : x = v · u · N (b)1/d, v ∈ O×K
}∣∣∣

=|µK | ·
∣∣∣Ln(X)

⋂
(ΛK + Ln(u) + Ln(N (b)1/d))

∣∣∣
=|µK | ·

∣∣∣(Ln(X)− Ln(N (b)1/d))
⋂

(ΛK + Ln(u))
∣∣∣,

where ΛK = LnO×K . Note that ΛK is full rank in H0, and that Ln(u) ∈ H0 for any u ∈ K0
R.

Moreover, the vector Ln(u) is uniform in H0/ΛK when u is uniform in K0
R/O

×
K . We are hence

considering a uniform lattice shift and, for any measurable set S ⊆ H0, we have:

E
u

(∣∣∣(ΛK + Ln(u))
⋂
S
∣∣∣) =

Vol(S)
Vol(ΛK)

.

IV.3. SELF-REDUCIBILITY OF id-HSVP TO INVERSES 73

Applying this to the set S = (Ln(X)− Ln(N (b)1/d)) ∩H0, we obtain

E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) = |µK | ·

Vol((Ln(X)− Ln(N (b)1/d))
⋂

H0)

Vol(ΛK)
.

Observe that by definition of Ht for t ∈ R, it holds that

(Ln(X)− Ln(N (b)1/d))
⋂

H0 =
(
Ln(X)

⋂
HlnN (b)

)
− Ln(N (b)1/d).

Since shifting by Ln(N (b)1/d) does not change the volume, we obtain

E
u

(∣∣∣GN (b)1/d·(u)
⋂

X
∣∣∣) = |µK | ·

Vol(Ln(X)
⋂

HlnN (b))

Vol(ΛK)
.

Recall from the second and third assumptions that

Vol
(
Ln(X)

⋂
HlnN (b)

)
=

{
C ′′ if lnN (b) ∈ [lnA, lnB],

0 otherwise.

Let p = C ′′ · |µK |/(C ′ · |ClK | ·Vol(ΛK)). Combining everything, this proves that

pb := E
I←U(IdLat0K)

(pb,I) ∈

{
p · [C−1, 1] if N (b) ∈ [A,B],

{0} otherwise.

Observe that pb is equal to DIdeal(X)(b), the probability of the ideal b for the distribu-
tion DIdeal(X). The equation above then means that DIdeal(X) outputs ideals with norm in [A,B]
with probability essentially equal to p (up to a factor C), and other ideals with probability 0.
We quantify this using the Rényi divergence. As 1 =

∑
b∈IA,B

pb ∈ p · |IA,B | · [C−1, 1], we have
that p ∈ |IA,B |−1 · [1, C], and hence:

∀b ∈ IA,B :
pb

U(IA,B)(b)
∈ [C−1, C],

hence RD∞(U(IA,B) ∥ DIdeal(X)) ≤ C, which complete the proof.

IV.3.2 From an arbitrary ideal to a uniform integral ideal

Below, we give an algorithm, RandomizeIdealA,X (see Algorithm IV.3.2), which on input an
arbitrary ideal I, returns a uniform integral ideal b and a short non-zero vector y ∈ b−1 ·
I−1. The algorithm is parameterized by an integer A and a set X satisfying the conditions of
Lemma IV.3.2. RandomizeIdealA,X starts by sampling a uniform norm-1 ideal J , i.e., with
distribution equal to U(IdLat0K), along with a small element vJ in it, using the SampleWithTrap
algorithm. Since U(IdLat0K) is the Haar distribution on a compact group, the ideal I ′ =
J · (I/N (I)1/d) is also uniform. We then use IdealRound to map U(IdLat0K) to the uniform
distribution over integral ideals with norms in [A, 4A]. In more details, a uniform point x

in I ′ ∩X is sampled and Lemma IV.3.2 implies that b := x · I ′−1 is almost uniform, and vJ ·x−1
is a small element in b−1 · N (I)1/d · I−1 if x is balanced. We note that Steps 7 and 8 below are
exactly the IdealRound algorithm applied to the ideal I ′. However, we cannot call this algorithm
in a blackbox way, as we need to know the intermediate value x for Step 9 of the algorithm.

74 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Algorithm IV.3.2 RandomizeIdeal

Input: A basis BI of an ideal I.
Parameters: A integer and X ⊂ KR \ {0} compact.
Oracles: F for factoring integral ideals, S for sampling from U(I ∩X) for I ∈ IdLat0K .
Output: b an integral ideal, y ∈ b−1 · I−1 \ {0}.
1: Sample (q, vq)← SampleWithTrapA,4A(BOK

), using F .
2: Sample ζ ← G(0, d−3/2) in span(Ln(O×K)) conditioned on ∥ζ∥ ≤ 1/d .
3: Sample u uniform in

{
x ∈ K×R : ∀i ≤ d, |xi| = 1

}
.

4: Let J = u · Exp(ζ) · N (q)−1/d · q and vJ = u · Exp(ζ) · N (q)−1/d · vq.
5: Compute BJ = ReduceIdeal(J, vJ).
6: Let I ′ = J · I · N (I)−1/d and BI′ = MultiplyIdeals(BJ , N (I)−1/d ·BI).
7: Sample x← U(I ′ ∩X), using S.
8: Let b = x · I ′−1.
9: Let y = x−1 · N (I)−1/d · vJ .

10: Return (b, y).

D1
SD=2−Ω(d)

←−−−−−−→D2
RD∞=O(1)−−−−−−−→D3

SD=2−Ω(d)

←−−−−−−→D4

IdealRound(·) ↓ ↓ ↓ ↓

D =D̃1
SD=2−Ω(d)

←−−−−−−→D̃2
RD∞=O(1)−−−−−−−→D̃3

SD=2−Ω(d)

←−−−−−−→D̃4
RD∞=O(1)−−−−−−−→ U(IA,4A)

Figure IV.2: Relations between the distributions of the proof of Lemma IV.3.3.

Lemma IV.3.3. Let A ≥ max(δdK , dd∆c
K) for c as in Lemma II.2.12. Let X be a compact

subset of KR \ {0} whose elements are η-balanced for some η > 1 and satisfy the assumptions of
Lemma IV.3.2 for A and B = 4A. Assume that |P0,A|/|P0,4A| ≤ c′ for some c′ < 1. On input a
basis BI of an ideal I, RandomizeIdealA,X runs in time polynomial in logA, log∆K , A/|PA,4A|
and the size of its input, and returns (b, y) satisfying

b ∈ IA,4A,

y ∈ b−1I−1 \ {0},

∥y∥ ≤ 85 · d · η ·∆1/d
K · N (Ib)−1/d.

Finally, if D and U respectively denote the distribution of b and the uniform distribution
over IA,4A, then the following holds for any event E ⊆ IA,4A:

D(E) ≥ U(E)

Θ(1)
− 2−Ω(d).

Proof. We first bound the Euclidean norms of the variables occurring during the execution of
the algorithm. By Lemma IV.2.3 and the assumption that A ≥ δdK , we have that 0 < ∥vq∥ ≤
51 · d · (A∆K)1/d. Now, note that ∥u∥∞ = 1, ∥Exp(ζ)∥∞ ≤ exp(1/2) and N (q)−1/d ≤ A−1/d.
We then have ∥vJ∥ ≤ 85 · d ·∆1/d

K (and vJ ̸= 0). Then, by Lemma II.2.15, we have 0 < ∥BJ∥ ≤
85 · d1.5 · δK ·∆1/d

K and

∥BI′∥ ≤ 85 · d2 · δK ·∆1/d
K · N (I)−1/d · ∥BI∥.

IV.3. SELF-REDUCIBILITY OF id-HSVP TO INVERSES 75

As elements of X are non-zero and η-balanced, we have that ∥x−1∥∞ ≤ η ·N (x)−1/d. Also, note
that since N (I ′) = 1, we have N (b) = N (x). As a result, we obtain that y ̸= 0 and:

∥y∥ ≤ N (I)−1/d · ∥x−1∥∞ · ∥vJ∥

≤ N (I)−1/d · η · N (x)−1/d · 85 · d ·∆1/d
K

= 85 · d · η ·∆1/d
K · N (Ib)−1/d.

The latter and the fact that N (b) = N (x) belongs to [A, 4A] (by assumption on X) provide the
first statement on the output.

The previous computations show that every quantity manipulated by the algorithm has size
polynomial in logA, log∆K and the bit-size of the input. Note that SampleWithTrapA,4A runs
in polynomial time in A/|PA,4A|. The overall running time is then polynomial in logA, log∆K ,
A/|PA,4A| and the size of the input.

We now analyze the distribution of b. For this purpose, we define the following distributions
(see also Figure IV.2):

• D1 is the distribution of J at Step 4;

• D2 is the distribution u · Exp(ζ) · q · N (q)−1/d where q is uniform in PA,4A, and u, ζ are
sampled as in Steps 2 and 3;

• D3 is the same as D2 but with q uniform in P0,4A;

• D4 is U(IdLat0K).

Note that we have the following relationships between the Di’s:

• SD(D1, D2) = 2−Ω(d), thanks to Lemma IV.2.3 and the data processing inequality;

• RD∞(D3 ∥ D2) = Θ(1), thanks to the assumption on |P0,A|/|P0,4A|;

• SD(D3, D4) = 2−Ω(d) thanks to Lemma II.2.12.

We also define D̃i (for i ≤ 4) as the distribution of b obtained by sampling J from Di,
setting I ′ = J ·I ·N (I)−1/d, sampling x from U(I ′∩X) and returning x ·I ′−1. Note that D̃1 is D
and that D̃4 is DIdeal(X). Indeed, as U(IdLat0K) is invariant by multiplication by a fixed norm-1
replete ideal, the ideal I ′ = J · I · N (I)−1/d is then distributed from U(IdLat0K). The data-
processing inequalities of the statistical distance and Rényi divergence imply that the above
relations also hold for D̃i in place of Di, for all i. Furthermore, by choice of X, the Rényi
divergence from U(IA,4A) to D̃4 is equal to Θ(1).

Using the probability preservation properties of the statistical distance and Rényi divergence,
we obtain that for any event E ⊆ IA,4A, we have:

D̃1(E) ≥ U(E)− 2−Ω(d)

Θ(1)
− 2−Ω(d) =

U(E)

Θ(1)
− 2−Ω(d)

which completes the proof.

76 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

IV.3.3 From ideal to their inverses

Let W be a set of fractional ideals. Below, we reduce W−1-avg-id-HSVP to W-avg-id-HSVP
and IA,4A-avg-id-HSVP for some appropriate integer A and approximation factors. Recall
that W−1 refers to the set

{
I−1, I ∈ W

}
.

The reduction is described as an algorithm, InverseToIntegralWA,X (Algorithm IV.3.3),
which takes as input the inverse I−1 of an integral ideal I ∈ W and returns a short non-
zero element of I−1. It is parameterized by an integer A and a compact set X satisfying the
conditions of Lemma IV.3.2. It relies on four oracles: oracle OW for solving W-avg-id-HSVP,
oracle OI for IA,4A-avg-id-HSVP, oracle F for factoring integral ideals; and oracle S for sampling
from I ∩ X for I ∈ IdLat0K . Recall that F can be instantiated as a quantum polynomial time
algorithm. An instantiation of oracle S will be provided in Section IV.4, based on the design
of a nice set X for Lemma IV.3.2. The reduction first uses OW on the inverse I of its input,
which gives a short non-zero vector vI ∈ I. Then RandomizeIdealA,X (introduced in the previ-
ous subsection) is invoked to randomize I into a uniform integral ideal b with norm in [A, 4A].
RandomizeIdealA,X also returns a short non-zero y(Ib)−1 in (Ib)−1. Then OI is invoked on b

and returns a short non-zero vb in b. The reduction finally outputs vb · y(Ib)−1 ∈ I−1 that is
short and non-zero.

The astute reader will notice that, in the above description, the vector vI and hence the
oracle OW do not seem to be used in the subsequent steps. In fact, we will be able to instantiate S
only if given a short basis of I (see Lemma IV.4.9). The approximation factor reached by OW
will lead to a lower bound condition on A: the smaller the approximation factor, the smaller the
lower bound on A.

Algorithm IV.3.3 InverseToIntegralW

Input: I−1 with I ∈ W.
Parameters: A integer and X ⊂ KR \ {0} compact.
Oracles: OW for W-avg-id-HSVPγW , OI for IA,4A-avg-id-HSVPγI ,
F for factoring integral ideals and S for sampling from U(I ∩X) for I ∈ IdLat0K .

Output: x ∈ I−1 \ {0}.
1: Compute vI ← OW(I).
2: If vI = ⊥, then return ⊥.
3: Compute BI = ReduceIdeal(I, vI).
4: Sample (b, y(Ib)−1)← RandomizeIdealA,X(BI), using F and S.
5: Compute vb ← OI(b).
6: If vb = ⊥, then return ⊥.
7: Return vb · y(Ib)−1 .

Theorem IV.3.4. LetW be a finite set of fractional ideals. Let γW , γI ≥ 1 and A satisfying A ≥
max(δdK , dd∆c

K) for c as in Lemma II.2.12. Let X be a compact subset of KR \ {0} whose
elements are η-balanced for some η > 1 and satisfy the assumptions of Lemma IV.3.2 for A
and B = 4A. Assume that |P0,A|/|P0,4A| ≤ c′ for some constant c′ < 1. Let OW an oracle
for W-avg-id-HSVPγW with success probability εW and OI an oracle for IA,4A-avg-id-HSVPγI

with success probability εI .
When given access to OW , OI , an integral ideal-factoring oracle F and an oracle S for sam-

pling from U(I ∩X) for I ∈ IdLat0K , InverseToIntegralWA,X runs in expected time polynomial
in logA, log∆K , A/|PA,4A| and the size of its input. Further, if its input I is such that I is
distributed from U (W), it outputs x ̸= ⊥ with probability ≥ εI · (εW/Θ(1)− 2−Ω(d)). If x ̸= ⊥,

IV.4. THE SAMPLING SET 77

then we have
x ∈ I−1 \ {0} and ∥x∥ ≤ γ′ ·Vol(I−1)1/d,

for γ′ = 85 · γI ·∆1/d
K · d · η.

Proof. Assume first that neither vI nor vb is equal to ⊥. As the assumptions of Lemma IV.3.3
are satisfied, we have y(Ib)−1 ∈ (Ib)−1 \ {0} and

∥y(Ib)−1∥ ≤ 85 · d · η ·∆1/d
K · N (Ib)−1/d.

Now, by assumption, we have that vb ∈ b \ {0} satisfies ∥vb∥ ≤ γI ·∆1/(2d)
K · N (b)1/d. We then

obtain that x = vb · y(Ib)−1 ∈ I−1 is non-zero and satisfies:

∥x∥ ≤ ∥vb∥ ·
∥∥y(Ib)−1

∥∥ ≤ γI ·∆3/(2d)
K · 85 · d · η · N (I)−1/d.

Towards completing the proof, not that the algorithm succeeds if and only if neither vI nor vb
is equal to ⊥. The probability that vI is not ⊥ is exactly εI . Using Lemma IV.3.3 with the
event E set to OI(b) succeeding, we obtain that vb is not ⊥ with probability ≥ εW/Θ(1)−2−Ω(d).
Note that the second probability is over the internal randomness of RandomizeIdealA,X(BI).

IV.4 The Sampling Set

Lemma IV.3.2 states that if a compact X satisfies a certain number of conditions, then the output
distribution of IdealRoundX resembles the uniform distribution over integral ideals whose norms
belong to a prescribed interval. In this subsection, we show that the set BηA,B defined below
satisfies those constraints. We will later also use the fact that its elements are η-balanced. An
instantiation of the set BηA,B can be visualized in Figure IV.1.

Definition IV.4.1. Let B > A > 0 and η > 1. We define the set:

BηA,B =

{
x ∈ K×R

∣∣∣N (x) ∈ [A,B],

∥∥∥∥Ln(x

N (x)1/d

)∥∥∥∥
2

≤ ln(η)

}
.

The purpose of this section is to prove the following theorem.

Theorem IV.4.2. Let A,B, η, δ > 0 satisfying A1/d ≥ d3 · η · max(∆
3/(2d)
K , δ), B/A ≥ 4

and η ≥ e. The set BηA,B is compact and invariant by complex rotations, satisfies the con-
ditions of Lemma IV.3.2 and its elements are η-balanced. Furthermore, there exists an al-
gorithm SampleUniformηA,B that, given as input a basis BI of a norm-1 replete ideal satisfy-
ing ∥B∗I ∥ ≤ δ, samples uniformly in I ∩ BηA,B and whose expected running time is polynomial
in logB, d and B/A.

IV.4.1 Volume of the set BηA,B

Before proving that the assumptions of Lemma IV.3.2 are satisfied by BηA,B , we first study its
volume and its approximate invariance under translation.

Lemma IV.4.3. For any B > A > 0 and η > 1, we have

Vol
(
BηA,B

)
=

2dR · (2
√
2π)dC · VdR+dC−1√

d
· (B −A) · (ln η)dR+dC−1,

where Vn is the volume of the n-dimensional unit ℓ2 hyperball for any n ≥ 1.

78 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

The computation of the volume proceeds by a change of variable, between Rd and Φ(KR).
The relevant aspect of the volume formula for the present work is the linear dependency in (B−
A) · (ln η)dR+dC−1.

Proof. Let ej denote the j-th elementary unit vector, we fix C = (c1, . . . , cd) ∈ Cd×d an or-
thonormal R-basis of Φ(KR) ⊂ Cd defined by

cj = ej for 1 ≤ j ≤ dR,

cdR+j = 1/
√
2 · (edR+j + edR+dC+j) for 1 ≤ j ≤ dC,

cdR+dC+j = i/
√
2 · (edR+j − edR+dC+j) for 1 ≤ j ≤ dC.

We let ϕ be the isomorphism sending an element of Φ(KR) to its coordinates in the basis C.
Since C is orthonormal, the map ϕ preserves the geometry. In particular, the volume of BηA,B is
the same as the volume of ϕ(BηA,B) (which is a d-dimensional object in Rd).

In order to compute this volume, we first introduce the set

Bη+
A,B =

{
x ∈ BηA,B

∣∣∣σi(x) > 0 for all 1 ≤ i ≤ dR

}
,

i.e., the elements of BηA,B whose real embeddings are all positive. Since BηA,B is invariant by
complex rotations, the set BηA,B is the union of 2dR distinct copies of Bη+

A,B , hence we can focus on
computing the volume of the latter. In order to compute this volume, we will exhibit a function F
transforming a “nice box” of Rd into the set ϕ(Bη+

A,B). We will then use this function to perform
a change of variable and compute the volume of ϕ(Bη+

A,B) from the volume of the nice box.

Defining the function F . Let H be the (dR + dC − 1)-dimensional subspace of Rd spanned
by Ln(O×K), i.e.,

H =
{
x ∈ Rd

∣∣∣ ∑
j≤d

xj = 0 ∧ ∀dR < j ≤ dR + dC : xj+dC = xj

}
,

and let B = (bi,j) ∈ Rd×(dR+dC−1) be any orthonormal basis of H. We define the following
function f from R× RdR+dC−1 × RdC to Φ(KR) as:

f(N, z,θ) = exp(N/d) · exp
(
B · z + iθ̂

)
,

where the second function exp is applied coordinate-wise to the vector B · z + iθ̂, and where
θ̂ = (0dR | θT | −θT)T ∈ Rd. Note that f is injective on the set R×RdR+dC−1× [0, 2π)dC , and that
its image indeed lies in Φ(KR) (it even lies in the subset of Φ((KR) whose first dR coordinates
are positive).

In order to obtain a transformation from Rd to itself, we compose the above function f with
the function ϕ, and we obtain F = ϕ◦f : Rd → Rd, which is injective on R×RdR+dR−1× [0, 2π)dC .
Moreover, by letting Ball(n)(R) denote the Euclidean ball of radius R in Rn, we have that

ϕ(Bη+
A,B) = F

(
[lnA, lnB]× Ball(dR+dC−1)(ln η)× [0, 2π)dC

)
.

Indeed, let (N, z,θ) ∈ R×RdR+dC−1× [0, 2π)dC and let x = Φ−1(f(N, z,θ)) ∈ KR. Then N (x) =
exp(N) (because B ·z belongs to H, so the sum of its coordinates is zero) and Ln(x/N (x)1/d) =
B ·z, which implies that

∥∥Ln(x/N (x)1/d)
∥∥
2
= ∥z∥2 since B is orthonormal. The inclusion from

right to left follows from these two observations and the definition of BηA,B . For the inclusion

IV.4. THE SAMPLING SET 79

from left to right, it suffices to observe that a pre-image of x ∈ Bη+
A,B is obtained by taking N =

ln(N (x)), z equal to the coordinates of Ln(x/N (x)1/d) in basis B, and θ equal to the arguments
of σi(x).

The set [lnA, lnB] × Ball(dR+dC−1)(ln η) × [0, 2π)dC is the “nice set” we mentioned above.
To compute the volume of Bη+

A,B , we will change variables, using the function F , in order to
transform ϕ(Bη+

A,B) into this nice set. In order to perform this change of variables, we first
compute the Jacobian matrix of F and its determinant.

Computing the Jacobian matrix of F . For 1 ≤ i ≤ d, let Fi be the function corresponding
to the i-th coordinate of F (note that Fi goes from Rd to R). By definition of F and choice of C
(which defines ϕ), one can check that the following holds, for (N, z,θ) ∈ Rd:

Fi(N, z,θ) = exp
(
N/d+

∑
j bi,jzj

)
for 1 ≤ i ≤ dR,

FdR+i(N, z,θ) =
√
2 · exp

(
N/d+

∑
j bdR+i,jzj

)
· cos(θi) for 1 ≤ i ≤ dC,

FdR+dC+i(N, z,θ) =
√
2 · exp

(
N/d+

∑
j bdR+dC+i,jzj

)
· sin(θi) for 1 ≤ i ≤ dC.

Note that here, we used the fact that for all 1 ≤ j ≤ dR + dC − 1 and all 1 ≤ i ≤ dC, it holds
that bdR+i,j = bdR+dC+i,j since the columns of B are in H. We then obtain that:

∂N (Fi(N, z,θ)) = Fi(N, z,θ) · 1d for i ≤ d,
∂zj (Fi(N, z,θ)) = Fi(N, z,θ) · bi,j for i ≤ d and j ≤ dR + dC − 1,

∂θj(FdR+j(N, z,θ)) = FdR+j(N, z,θ) · − sin θj
cos θj

for j ≤ dC,

∂θj(FdR+dC+j(N, z,θ)) = FdR+dC+j(N, z,θ) · cos θjsin θj
for j ≤ dC,

∂θj (Fi(N, z,θ)) = 0 else.

In short, the Jacobian matrix of F is DF (N, z,θ) = diagi(Fi(N, z,θ)) ·M , where

M =

1
d 0
... B diagi

(
− sin θi
cos θi

)
1
d diagi

(
cos θi
sin θi

)
 .

Computing the Jacobian determinant. We now compute the determinant of the ma-
trix DF (N, z,θ). First, we have

det
(
diagi

(
Fi(N, z, θ)

))
= exp(N) · (

√
2)2dC ·

∏
i≤dC

(
sin θi · cos θi

)
,

where we used again the fact that the sum of the coordinates of B · z is zero. We now focus
on M . Let M̂i,j be the matrix M where we have removed the i-th line and j-th column. Observe
that for i ≤ dC, the (dR + i)-th row of M and the (dR + dC + i)-th row of M coincide except in
the (dR+dC+ i)-th column. So developing the determinant of M on the (dR+dC+ i)-th column
leads to

|detM | =
∣∣∣∣ sin θicos θi

+
cos θi
sin θi

∣∣∣∣ · ∣∣∣detM̂dR+dC+i,dR+dC+i

∣∣∣
=

1

| sin θi · cos θi|
·
∣∣∣detM̂dR+dC+i,dR+dC+i

∣∣∣.

80 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Here, to check that the signs are correct, we observe that we can permute the rows of M
without changing the absolute value of the determinant, and move the row with index dR + i
to position dR + dC + i + 1 (so that it follows directly the row dR + dC + i). This ensures that
both minor matrices are the same, and that the signs are opposite when we develop according
to the (dR + dR + i)-th column. Repeating the process on the dC last columns of M , we obtain
that

|detM | =
(∏

i

1

| sin θi · cos θi|

)
· | detM̂ |,

where M̂ is the top-left square sub-matrix of M of dimension dR + dC. Let B0 ∈ RdR×(dR+dC−1)

and B1 ∈ RdC×(dR+dC−1) be sub-blocks of the matrix B such that B = (BT
0 |BT

1 |BT
1)

T (recall
that B is an arbitrary orthonormal basis of H). Then all the entries of the first column of M̂
are equal to 1/d and the remaining dR + dC − 1 are (BT

0 |BT
1)

T . Let us consider the following
distortion of M̂ :

N =

(1
d · 1dR B0√
2
d · 1dC

√
2 ·B1

)
,

where 1k refers to the k-dimensional all-1 vector. Then detM̂ =
√
2
−dC · detN . Furthermore,

note that NT ·N = diag(1/d, 1, . . . , 1), because the columns of B are orthonormal and in H
(so the sums of their coordinates are zero). This gives us that |detN | = 1/

√
d. Unrolling the

above, we obtain

|detM | = 1
√
d ·
√
2
dC ·

∏
i | sin θi · cos θi|

,

and

|det(DF (N, z,θ))| = exp(N) ·
√
2
dC

√
d

.

Change of variables. We finally perform the change of variables using the function F to
compute the volume of Bη+

A,B (recall that Vol(BηA,B) = 2dR ·Vol(Bη+
A,B)). Letting 1S(·) denote the

indicator function of a set S, we have

Vol(Bη+
A,B) =

∫
x∈Rd

1ϕ(Bη +
A,B)(x) dx

=

∫
N∈[lnA,lnB]

z∈Ball(dR+dC−1)(ln η)

θ∈[0,2π)dC

|det(DF (N, z, θ))|dθ dz dN

=

√
2
dC

√
d
·
∫
N∈[lnA,lnB]

exp(N) dN ·
∫
z∈Ball(dR+dC−1)(ln η)

dz ·
∫
θ∈[0,2π)dC

dθ

=

√
2
dC

√
d
· (B −A) · VdR+dC−1 · (ln η)dR+dC−1 · (2π)dC ,

as desired.

The proof of Lemma IV.4.3 gives us the volume of the set BηA,B , but it also a way to sample
uniformly in it.

Lemma IV.4.4. There exists a probabilistic algorithm that samples from U(BηA,B) for any B >
A > 0 and η > 1. The expected running time of this algorithm is polynomial in logB, d (the
degree of K) and B/A.

IV.4. THE SAMPLING SET 81

Proof. Let ϕ and F be the same functions as in the proof of Lemma IV.4.3. Recall that

F
(
[lnA, lnB]× Ball(dR+dC−1)(ln η)× [0, 2π)dC

)
= ϕ(Bη+

A,B), (IV.1)

and that F is injective on this set. It can be observed from their definitions that F , ϕ and ϕ−1

can be computed in time polynomial in d.
Note that if we can sample from U(ϕ(Bη+

A,B)) in time T , then we can sample from U(BηA,B)

in time T + poly(d). Indeed, it suffices to sample x from U(ϕ(Bη+
A,B)); compute ϕ−1(x) (which

can be done in time poly(d)); sample uniform signs (εi)i ∈ {−1, 1}dR ; and finally output ϕ−1(x) ·
Φ−1

(
(ε1, . . . , εdR , 1, . . . 1)

)
. In the rest of this proof, we then focus on sampling the random

variable U(ϕ(Bη+
A,B)).

Let Y be a random variable distributed over [lnA, lnB]×Ball(dR+dC−1)(ln η)× [0, 2π)dC with
density probability fY (N, z, θ) proportional to |det(DF (N, z, θ))|, i.e., proportional to exp(N).
From Equation (IV.1) above, we know that F (Y) is distributed as U(ϕ(Bη+

A,B)). We are then
reduced to sampling such a random variable Y .

Note that the domain of Y is a “nice box”: [lnA, lnB] × Ball(dR+dC−1)(ln η) × [0, 2π)dC . In
this domain, we can sample a uniformly random variable Z in time poly(d) (to sample from
the ball Ball(dR+dC−1)(ln η), one can sample a Gaussian element and then renormalize it inside
the ball). To obtain a sample from Y , we then keep Z with probability exp(ZN)/B, where ZN

is the first coordinate of Z. Note that the rejection probability is indeed between 0 and 1
since ZN ≤ ln(B).

It only remains to estimate the cost of the rejection step. Since ZN ≥ ln(A), the probability
of keeping Z is at least A/B, and so the expected number of rejections before acceptance is
bounded from above by B/A.

IV.4.2 Properties of the set BηA,B

The goal of this subsection is to prove that the set BηA,B satisfies the properties needed to apply
Lemma IV.3.2.

Lemma IV.4.5. For any B > A > 0 and η > 1, the set BηA,B is compact, invariant by complex
rotations and its elements are η-balanced.

Proof. Compactness follows from the fact that BηA,B is closed and contained in the ball in infinity
norm with radius η ·B1/d. Invariance by complex rotations follows from the fact that both N (·)
and Ln(·) are invariant by complex rotations (i.e., we have N (ζx) = N (x) and Ln(ζx) = Ln(x)
if x ∈ KR and ζ ∈ KR is such that |σi(ζ)| = 1 for all i’s). Let x ∈ BηA,B , we have that∥∥∥∥ x

N (x)1/d

∥∥∥∥
∞

= exp

(∥∥∥∥Ln(x

N (x)1/d

)∥∥∥∥
∞

)
≤ exp

(∥∥∥∥Ln(x

N (x)1/d
)

∥∥∥∥
2

)
≤ η.

The same holds for N (x)1/d/x since
∥∥Ln (x/N (x)1/d

)∥∥
∞ =

∥∥Ln (N (x)1/d/x
)∥∥
∞, which proves

that x is η-balanced.

We now prove that the slices Ln(BηA,B)∩Ht are empty when t /∈ [lnA, lnB] and have constant
volume otherwise.

Lemma IV.4.6. Let B > A > 0 and η > 1. For t ∈ R, we define Ht = {x ∈ LnKR|
∑

i xi = t}.
Then Ln(BηA,B) ∩ Ht = ∅ for t /∈ [lnA, lnB], and the volume of Ln(BηA,B) ∩ Ht is constant
for t /∈ [lnA, lnB].

82 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Proof. By definition of BηA,B , we have that

Ln
(
BηA,B

)
=

x ∈ Ln(KR) :
∑
i≤d

xi ∈ [lnA, lnB],
∥∥∥x− (∑

i≤d

xi

)
· 1d

∥∥∥
2
≤ ln η

 ,

where 1d refers to the d-dimensional all-1 vector. The intersection with Ht is the empty set
if t /∈ [lnA, lnB]. Otherwise, it is the ball centered in t · 1 with radius ln(η), whose volume do
not depend on t.

At this stage, only the first condition of Lemma IV.3.2 remains to be proved. We start by
an auxiliary lemma, where we prove that if we shift the set BηA,B by some small vector, then

the resulting set is included in another slightly larger set Bη
′

A′,B′ . The parameter f in the lemma
below quantifies how small the shift vector needs to be, as a function of the parameters A and η.
For the rest of the article, one can think of f as being of the order of poly(d).

Lemma IV.4.7. Let B > A > 0, η > 1 and v ∈ KR. Assume that A1/d ≥ η · f · ∥v∥∞ for
some f > 1. Then

BηA,B + v ⊂ Bη′

A′,B′

with A′ = A · (1− 1/f)d, B′ = B · (1 + 1/f)d and η′ = η · exp(2
√
d/(f − 1)).

Proof. Let x ∈ Bη
A,B , we are going to show that x+ v ∈ Bη′

A′,B′ . The definition of BηA,B and the
fact that A1/d ≥ η · f · ∥v∥∞ imply that we have, for every i,

|vi|
|xi|
≤
∥v∥∞
|xi|

≤
∥v∥∞ · η
N (x)1/d

≤
∥v∥∞ · η
A1/d

≤ 1

f
.

The triangle inequality then gives that |xi + vi| > 0 for all i, and hence that x+v ∈ K×R . Further,
note that

N (x+ v)

N (x)
=
∏
i

∣∣∣∣xi + vi
xi

∣∣∣∣ =∏
i

∣∣∣∣1 + vi
xi

∣∣∣∣.
Since |vi/xi| ≤ 1/f holds for all i, this implies that N (x+ v)/N (x) ∈ [(1 − 1/f)d, (1 + 1/f)d],
which in turn shows that N (x+ v) ∈ [A′, B′].

Towards completing the proof, note that∥∥∥∥Ln(x+ v

N (x+ v)1/d

)
− Ln

(x

N (x)1/d

)∥∥∥∥ =

∥∥∥∥Ln (1 + v

x

)
− 1

d
ln
(N (x+ v)

N (x)

)
· 1
∥∥∥∥

≤
∥∥∥Ln (1 + v

x

)∥∥∥+ 1√
d
·
∣∣∣ ln (N (x+ v)

N (x)

)∣∣∣
≤
√
d ·

∥v/x∥∞
1− ∥v/x∥∞

+
√
d · 1/f

1− 1/f

≤ 2
√
d

f − 1
,

where we used the fact that

| ln(1 + y)| = max
(
ln(1 + y), ln

(
1 +

−y
1 + y

))
≤ |y|

1− |y|
,

IV.4. THE SAMPLING SET 83

for any y ∈ (−1, 1). This implies that∥∥∥∥Ln(x+ v

N (x+ v)1/d

)∥∥∥∥ ≤ ln(η) +
2
√
d

f − 1
= ln(η′).

We conclude that x+ v belongs to Bη
′

A′,B′ .

We are now ready to prove that the first condition of Lemma IV.3.2 is satisfied. To count
the number of points of the ideal lattice I that belong to BηA,B , we tile the space with shifts
of a fundamental domain of the lattice (concretely, the Voronoi cell for the ℓ∞ norm). Using
Lemma IV.4.7, we show that the union of Voronoi cells corresponding to elements of I ∩ BηA,B

contains a smaller version Bη0

A0,B0
of the set, and is contained in a larger version Bη1

A1,B1
. By

carefully choosing parameters, we can ensure that the ratio of volumes of these two sets is
bounded from above by a constant. In the lemma statement, note that C ′ is independent of
the ideal I, but may depend on the other parameters, such as A, B, η and K. This proof is an
adaptation of [Boe22, Lemma 6.13] with BηA,B instead of the ℓ∞ ball.

Lemma IV.4.8. Let A,B, η satisfying A1/d ≥ η · d3 · ∆3/(2d)
K , B/A ≥ 4 and η ≥ e. There

exists C ′ > 0 such that for any replete ideal I ∈ IdLat0K , we have∣∣∣I⋂BηA,B

∣∣∣ ∈ C ′ · [1, 340].

Proof. Let I be a norm-1 ideal, and let V∞(I) be its ℓ∞-norm Voronoi cell, i.e., V∞(I) = {y ∈
KR : ∀x ∈ I \ {0}, ∥y + x∥∞ ≥ ∥y∥∞}. We let µ∞(I) denote the (ℓ∞-norm) radius of V∞(I).
By (II.2.4), we have that µ∞(I) ≤ d · ∆3/(2d)

K . As a consequence, Lemma IV.4.7 instantiated
with f = d2 gives that since A1/d ≥ η · d3 ·∆3/(2d)

K

BηA,B + V∞(I) ⊂ Bη1

A1,B1
,

with A1 = A · (1− 1/d2)d, B1 = B · (1 + 1/d2)d and η1 = η · exp(2
√
d/(d2 − 1)). Recall that we

assumed that d ≥ 2 in all the article, so that we have f > 1 as needed for Lemma IV.4.7.
Let A0 = A · (1 − 1/d2)−d, B0 = B · (1 + 1/d2)−d and η0 = η · exp(−2

√
d/(d2 − 1)). From

the lower bound on η (and d ≥ 2), one can check that η0 > 1. Moreover, we have that B0/A0 ≥
1/3 · B/A ≥ 4/3 and hence that B0 > A0. Finally, from A0 ≥ A and η0 ≤ η, we obtain
that A

1/d
0 ≥ η0 · f · µ∞(I) with f = d2. This implies that we can apply Lemma IV.4.7 again

on A0, B0, η0 and f = d2 and we obtain:

Bη0

A0,B0
+ V∞(I) ⊂ BηA,B .

Note that for any x ∈ Bη0

A0,B0
, there exists some (not necessarily unique) ℓx ∈ I such that x−

ℓx ∈ V∞(I). This implies that ℓx ∈ (Bη0

A0,B0
+ V∞(I)) ∩ I. Therefore, we have

Bη0

A0,B0
⊆

⋃
ℓ∈(Bη0

A0,B0
+V∞(I))∩I

ℓ+ V∞(I) ⊆
⋃

ℓ∈Bη
A,B∩I

ℓ+ V∞(I).

The above union is made of sets that are disjoints except for volume-0 intersections, so we have

Vol(Bη0

A0,B0
) ≤ Vol

(⋃
ℓ∈Bη

A,B∩I

ℓ+ V∞(I)
)
=
∣∣∣BηA,B

⋂
I
∣∣∣ ·Vol(V∞(I))

=
∣∣∣BηA,B

⋂
I
∣∣∣ ·√∆K .

84 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Similarly, we have: ∣∣∣BηA,B

⋂
I
∣∣∣ ·√∆K ≤ Vol(Bη1

A1,B1
).

This gives us ∣∣∣BηA,B

⋂
I
∣∣∣ ∈ C ′ ·

[
1,

Vol(Bη1

A1,B1
)

Vol(Bη0

A0,B0
)

]
,

where C ′ = Vol(Bη0

A0,B0
)/
√
∆K > 0. It remains to bound the right boundary of the interval. By

using Lemma IV.4.3, we obtain that

Vol(Bη1

A1,B1
)

Vol(Bη0

A0,B0
)
=

(B1 −A1) · (ln η1)dR+dC−1

(B0 −A0) · (ln η0)dR+dC−1
≤ B1 −A1

B0 −A0
·
(
ln η1
ln η0

)d−1

.

Recall that we have already seen that B0/A0 ≥ 4/3. This implies that

B1 −A1

B0 −A0
≤ B1

B0 −A0
=
(
1 +

1

d2

)2d
· 1

1− (A0/B0)
≤ 5

2
· 1

1− 3/4
= 10.

Using the fact that ln η ≥ 1, we also have:(ln η1
ln η0

)d−1
=
(ln η + 2

√
d/(d2 − 1)

ln η − 2
√
d/(d2 − 1)

)d−1
≤
(1 + 2

√
d/(d2 − 1)

1− 2
√
d/(d2 − 1)

)d−1
≤ 34.

This completes the proof.

IV.4.3 Sampling uniform ideal elements in BηA,B

We now show how to uniformly sample in I ∩ BηA,B , where I is a norm-1 ideal. For this
purpose, SampleUniformηA,B (Algorithm IV.4.1) uniformly samples in a larger Bη1

A1,B1
(using

Lemma IV.4.4) and deterministically round to I using Babai’s nearest plane algorithm [Bab86,
Theorem 3.1]. The sample is kept if it belongs to BηA,B .

Algorithm IV.4.1 SampleUniformηA,B

Input: BI a basis of an ideal I ∈ IdLat0K .
Output: x ∈ I

⋂
BηA,B .

1: Let A1 = A · (1− 1/d2)d, B1 = B · (1 + 1/d2)d and η1 = η · exp(2
√
d/(d2 − 1)).

2: repeat
3: Sample y ← U(Bη

′

A′,B′).
4: Run Babai’s nearest plane algorithm on (BI , y); let x ∈ I be the output.
5: until x ∈ BηA,B .
6: Return x.

Lemma IV.4.9. Let A,B, η with B/A ≥ 4 and η ≥ e. Let I ∈ IdLat0K given by a basis BI

and δ = ∥B⋆
I ∥. Assume that A1/d ≥ d2.5 · η · δ. Then SampleUniformηA,B samples uniformly

in I ∩ BηA,B and its expected running time is polynomial in logB, d and B/A.

Proof. Let P(BI) = B⋆
I ·(−1/2, 1/2]d be the rounding cell of Babai’s nearest plane algorithm. In

order to prove that the output distribution is uniform, it suffices to prove that for any point x ∈

IV.5. WRAPPING UP 85

I ∩Bη
A,B , we have P(BI)+x ⊂ Bη1

A1,B1
. The definition of the nearest-plane algorithm’s rounding

cell implies that the ℓ∞ norm of vectors in P(BI) is at most
√
dδ. The definitions of A1, B1, η1

and Lemma IV.4.7 (with f = d2) allow us to conclude.
The running time follows from Lemma IV.4.4 and from bounding the probability that after

Step 4, we have x /∈ BηA,B . This occurs if y /∈ ∪x∈Bη
A,B∩I (x+ P(BI)). As in the proof of

Lemma IV.4.8, we have that:

Bη0

A0,B0
⊂

∑
x∈Bη

A,B∩I

x+ P(BI),

where A0 = A ·(1+1/d2)d, B0 = B ·(1−1/d2)d and η0 = η ·exp(−2
√
d/(d2−1)). The probability

of exiting the loop is then bounded from below by

Vol(Bη0

A0,B0
)

Vol(Bη1

A1,B1
)
≥ B0 −A0

B1 −A1
· (ln η0)

d−1

(ln η1)d−1
≥ Ω(1),

where the inequalities are as in the proof of Lemma IV.4.8.

IV.5 Wrapping Up

We combine Theorems IV.3.4 and IV.4.2 to obtain the main result from this work. To simplify the
statement, we instantiate the integral ideal-factoring oracle with a quantum polynomial-time al-
gorithm, and use the Extended Riemann Hypothesis. The latter allows us to bound |P0,A|/|P0,4A|
by a constant that is < 1 when A ≥ (log∆K)Ω(1) and A/|PA,4A| by O(lnA) (see [BS96, Theo-
rem 8.7.4]).

Theorem IV.5.1 (Assuming ERH). There exists CK = (dδK∆
1/d
K)O(1) such that the following

holds. Let W be a finite set of fractional ideals. Let γW , γI ≥ 1 and A with A1/d ≥ CK · γW .
Let OW an oracle for W-avg-id-HSVPγW with success probability εW and OI an oracle for the
problem IA,4A-avg-id-HSVPγI with success probability εI .

There exists a quantum algorithm making one call to OW and one call to OI whose running
time is polynomial in logA, log∆K and the size of its input, such that the following holds. Given
as input I ∼ U(W), it outputs x ∈ I−1 \{0} with probability ≥ εI · (εW/Θ(1)−2−Ω(d)) such that

∥x∥ ≤ γ′ ·Vol(I−1)1/d with γ′ = 232 · d ·∆1/d
K · γI .

Proof. The algorithm is InverseToIntegralW (Algorithm IV.3.3) instantiated with the set BηA,B

with B = 4A and η = e.
Note that at Step 3 of InverseToIntegralW , we have ∥BI∥ ≤ δK · ∥vI∥ (by Lemma II.2.15).

By definition of OW , this implies that ∥BI∥ ≤ δK ·γW ·∆1/(2d)
K ·N (I)1/d. InverseToIntegralW

then calls RandomizeIdeal (Algorithm IV.3.2), which at its Step 6 computes a basis BJ of an
ideal J that was showed in the proof of Lemma IV.3.3 to satisfy:

∥BJ∥ ≤ 85 · d2 · δK ·∆1/d
K · N (I)−1/d · ∥BI∥

≤ 85 · d2 · δ2K ·∆
3/(2d)
K · γW =: δ.

The result follows from Theorems IV.3.4 and IV.4.2, using δ as above.

86 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

As a corollary, we obtain two quantum self-reductions, one from the problem I−1A,4A-avg-id-HSVPγ′

to the problem IA,4A-avg-id-HSVPγ and the other from P−1A,4A-avg-id-HSVPγ′ to PA,4A-avg-id-HSVPγ

if A1/d ≥ (dδK∆
1/d
K)Ω(1) · γ and γ′ = O(d∆

1/d
K) · γ. Note that in the case of prime ideals, the

success probability decreases with ρ̃A (the inverse of the proportion of prime ideals among all
ideals of norm ≤ A), which may or may not be small depending on the choice of the field K.
This dependency arises from hoping that a uniform integral ideal is prime.

Corollary IV.5.2 (Assuming ERH). There exists CK = (dδK∆
1/d
K)O(1) such that the following

holds. Let γ ≥ 1 and A with A1/d ≥ CK · γ. Let O an oracle for IA,4A-avg-id-HSVPγ with
success probability ε ≥ 2−Ω(d).

There exists a quantum algorithm making two calls to O whose running time is polynomial
in logA, log∆K and the size of its input, such that, given as input a ∼ U(IA,4A), it outputs x ∈
a−1 \ {0} with probability Ω(ε2) with

∥x∥ ≤ γ′ ·Vol(a−1)1/d with γ′ = 232 · d ·∆1/d
K · γ.

Corollary IV.5.3 (Assuming ERH). There exists CK = (dδK∆
1/d
K)O(1) such that the following

holds. Let γ ≥ 1 and A with A1/d ≥ CK · γ. Let O an oracle for PA,4A-avg-id-HSVPγ with
success probability ε ≥ 2−Ω(d).

There exists a quantum algorithm making two calls to O whose running time is polynomial
in logA, log∆K and the size of its input, such that, given as input p ∼ U(PA,4A), it outputs x ∈
p−1 \ {0} with probability Ω(ε2/ρ̃A) with

∥x∥ ≤ γ′ ·Vol(p−1)1/d with γ′ = 232 · d ·∆1/d
K · γ.

Combining Corollary IV.5.3 with Theorem IV.2.4, we obtain a quantum worst-case to average-
case reduction for ideal-HSVP, where the average-case distribution is the uniform distribution
over prime ideals with norm in some interval [A, 4A].

Corollary IV.5.4 (Assuming ERH). Let γ ≥ 1. There exists some γ′ = γ · poly(∆1/d
K ,

log∆K , δK) and A = γd · poly(∆K , (log∆K)d, δdK) such that

id-HSVPγ′ reduces to PA,4A-avg-id-HSVPγ .

The reduction is quantum and runs in expected time polynomial in its input size, log∆K , ρ̃A
and 1/ε, where ε is the success probability of the oracle solving PA,4A-avg-id-HSVPγ .

Proof. We assume without loss of generality that γ ≤ 2d, since otherwise we can solve id-HSVPγ′

in polynomial time using the LLL algorithm, for γ′ = γ ·
√
d. We also assume that the success

probability ε of the oracle solving PA,4A-avg-id-HSVPγ is ≥ 2−Ω(d), since otherwise one can run
an exact SVP solver in time 1/ε.

Let C ′1,K be the max of the C1,K from Theorem IV.2.4 and the CK from Corollary IV.5.3.

Then C ′1,K = poly(∆
1/d
K , log∆K , δK) since both quantities are. Let A =

(
C ′1,K ·(232d·∆

1/d
K)·γ

)d.
One can check that A = γd · poly(∆K , (log∆K)d, δdK) as desired. Let also γ′ = A1/d · C2,K =

γ · (232d · ∆1/d
K) · C ′1,K · C2,K , where C2,K is as in Theorem IV.2.4. Similarly, one can check

that γ′ = γ · poly(∆1/d
K , log∆K , δK) as desired. Finally, let γavg = 232d ·∆1/d

K · γ.
Note that A, γ and ε satisfy the conditions from Corollary IV.5.3. So there is a quantum

reduction
from P−1A,4A-avg-id-HSVPγavg to PA,4A-avg-id-HSVPγ ,

IV.6. NTRU WITH POLYNOMIAL MODULUS 87

which succeeds with probability δ = Ω(ε2/ρ̃A) and runs in time polynomial in log∆K . Now,
observe that γavg, A and γ′ satisfy the conditions from Theorem IV.2.4, so there is a quantum
reduction

from id-HSVPγ′ to P−1A,4A-avg-id-HSVPγavg ,

which runs in expected time polynomial in its input size, log∆K and 1/δ. Combining both
reductions and instantiating with the lower bound on δ completes the proof.

We now give a version of Corollary IV.5.4 with larger A, whose running time does not depend
on the ad hoc parameter ρ̃A.

Corollary IV.5.5 (Assuming ERH). Let γ ≥ 1. There exists γ′ = γ·poly(∆log(d)/d
K , (log∆K)log(d), δK)

and A = γd · poly(∆log(d)
K , (log∆K)d ln(d), δdK) such that

id-HSVPγ′ reduces to PA,4A-avg-id-HSVPγ .

The reduction is quantum and runs in expected time polynomial in its input size, log∆K , ρK
and 1/ε, where ε is the success probability of the oracle solving PA,4A-avg-id-HSVPγ .

Proof. The proof is the same as the one of Corollary IV.5.4. We highlight the changes in blue.
We define

A = max
((

C ′1,K · 232d ·∆
1/d
K · γ

)d
, (2 · dd ·∆K)c2 ln(d)

)
,

where C ′1,K is the max of the C1,K from Theorem IV.2.4 and CK from Corollary IV.5.3, and c2

is defined in Corollary III.1.3. It holds that A = γd · poly(∆log(d)
K , (log∆K)d ln(d), δdK) as desired.

Let also γ′ = A1/d ·C2,K , where C2,K is as in Theorem IV.2.4. Similarly, one can check that γ′ =
γ · poly(∆log(d)/d

K , (log∆K)log(d), δK) = γ · poly(∆log(d)/d
K , (log∆K)log(d), δK) . Finally, let γavg =

232d ·∆1/d
K · γ as desired. Note that A, γ and ε satisfy the conditions from Corollary IV.5.3. So

there is a quantum reduction

from P−1A,4A-avg-id-HSVPγavg to PA,4A-avg-id-HSVPγ ,

which succeeds with probability δ = Ω(ε2/ρ̃A) and runs in time polynomial in log∆K . We have by
Corollary III.1.3 (with C = 2) and the lower bound on A that ρ̃A ≥ 0.5 · ρK · ln(A) . Now, ob-
serve that γavg, A and γ′ satisfy the conditions from Theorem IV.2.4, so there is a quantum
reduction

from id-HSVPγ′ to P−1A,4A-avg-id-HSVPγavg ,

which runs in expected time polynomial in its input size, log∆K and 1/δ. Combining both
reductions and instantiating with the lower bound on δ completes the proof.

IV.6 NTRU with Polynomial Modulus

The main result of this section is Corollary IV.6.2. It gives a distribution over NTRU instances
with small modulus q that is hard on average, under the worst-case id-HSVP hardness assump-
tion.

Note that in this work we are only interested in the vector version of NTRU. We denote [PS21,
Alg. 4.1] by IdealToNTRU. It takes as input a basis of an integral ideal a and a modulus q and
outputs an instance of (γ, q)-NTRU whose solution is related to a short non-zero vector of a.
The following result is a consequence of [PS21, Lemma 4.3], whose proof is very similar to [PS21,
Theorem 4.1]. We provide a proof for the sake of completeness.

88 CHAPTER IV. IDEAL-SVP IS HARD FOR SMALL-NORM UNIFORM PRIME IDEALS

Theorem IV.6.1 (Adapted from [PS21, Theorem 4.1]). Let γ ≥ γ′ ≥ 1 be real numbers, q ≥ 2
be an integer, and

N =
1

2d+2
·

(√
q

√
2 · γ · d1.5 · δK ·∆1/(2d)

K

)d

.

Let a be an integral ideal of norm in [N, 2d+2 ·N] and h = IdealToNTRU(a, q). Then h is a (γ, q)-
NTRU instance. If (f, g) is a solution to (γ, γ′, q)-NTRU on instance h, then g is a solution
to γHSVP-id-HSVP for instance a, where γHSVP = γ/γ′ · 4

√
2 · d1.5 · δK .

Further, IdealToNTRU runs in time polynomial in its input size and in log∆K .

Note that the statement is void if 2d+2 ·N < 1 (no integral ideal has norm in (0, 1)): an extra
parameter constraint is implicily required for it to be meaningful.

Proof. Recall that for our definition of NTRU, a (γ, q)-NTRU instance for [PS21] is a (γ/
√
2, q)-

NTRU instance for us. We adapted the values on the theorem to take this fact into account.
The running time of IdealToNTRU is stated in [PS21, Lemma 4.3].

By [PS21, Lemma 4.3], there exists (f, g) ∈ OK
2 \ {(0, 0)} such that g · h = f mod q

and ∥f∥, ∥g∥ ≤ d1.5 · δK · ∆1/(2d)
K · N (a)1/d. (Note that δK in the present work is an upper

bound on the quantity δK from [PS21].) Using N (a) ≤ 2d+2 · N and the definition of N , this
gives that h is a (γ, q)-NTRU instance.

Assume now that (f, g) ∈ OK \ {(0, 0)} is a solution to (γ′, γ, q)-NTRU for instance h. Then
we have

∥f∥, ∥g∥ ≤
√
q

γ′
≤ q
√
2 · d1.5 · δK ·∆1/(2d)

K · (2d+2 ·N)1/d

≤ q
√
2 · d1.5 · δK ·∆1/(2d)

K · N (a)1/d
,

where the second inequality comes the definition of N , and the third one comes from the as-
sumption N (a) ≤ 2d+2 ·N . By [PS21, Lemma 4.3], we obtain that g ∈ a \ {0}. Finally, the fact
that g is a solution to γHSVP follows from

∥g∥ ≤
√
q

γ′
=

2(d+2)/d ·N1/d ·
√
2 · γ · d1.5 · δK ·∆1/(2d)

K

γ′

≤ 4
√
2 · γ · d1.5 · δK

γ′
·∆1/(2d)

K · N (a)1/d,

where the last inequality follows from the inequalities N (a) ≥ N and d ≥ 2.

For A, q ≥ 2, we define DA,q
NTRU = IdealToNTRU(U(PA,4A), q). Theorem IV.6.1 implies a

polynomial-time reduction from IA,4A-avg-id-HSVP to (DA,q
NTRU, γ, γ

′, q)-NTRU for well chosen γ,
γ′, A and q. Combining Corollary IV.5.4 and Theorem IV.6.1 give the following result.

Corollary IV.6.2 (Assuming ERH). Let γ ≥ γ′ ≥ 1. There exists an integer q = (γ4/γ′2) ·
poly(∆

1/d
K , log∆K , δK), and real numbers γHSVP = (γ/γ′) · poly(∆1/d

K , log∆K , δK) and A =
(γ/γ′)d · poly(∆K , (log∆K)d, δdK) such that

id-HSVPγHSVP
reduces to (DA,q

NTRU, γ, γ
′, q)-NTRU.

The reduction is quantum and runs in expected time polynomial in its input size, log q, log∆K ,
1/ρ̃A and 1/ε, where ε is the success probability of the oracle solving (DA,q

NTRU, γ, γ
′, q)-NTRU.

IV.6. NTRU WITH POLYNOMIAL MODULUS 89

Proof. Without loss of generality, we can assume that γ/γ′ ≤ 2d, since otherwise we have a
polynomial time algorithm solving id-HSVPγHSVP

for γHSVP = γ/γ′. Let Γ = (γ/γ′) · 4d1.5 ·
δK . Let A = Γd · poly(∆K , (log∆K)d, δdK) be as in Corollary IV.5.4, with “γ = Γ”. Similarly,
let γHSVP = Γ · poly(∆1/d

K , log∆K , δK) be the quantity γ′ from Corollary IV.5.4, with “γ = Γ”.
Finally, let X = γ · 2 · (4A)1/d · d1.5 · δK · ∆1/(2d)

K and q = ⌊X2⌋. Note that q ≥ X2/4. Note
that γHSVP = (γ/γ′) · poly(∆1/d

K , log∆K , δK) and that q = (γ4/γ′2) · poly(∆1/d
K , log∆K , δK).

Let N = 1
2d+2 ·

(√
q

γ·d1.5·δK ·∆1/(2d)
K

)d be as in Theorem IV.6.1. Using the fact that X/2 ≤ √q ≤

X and the definition of X, we have that [A, 4A] ⊆ [N, 2d+2 · N]. Hence, the support of the
distribution U(PA,4A) is contained in the set of integral ideals with norm in [N, 2d+2 ·N].

Recall that DA,q
NTRU is the distribution IdealToNTRU(U(PA,4A), q). By Theorem IV.6.1, there

is a reduction from PA,4A-avg-id-HSVPΓ to (DA,q
NTRU, γ, γ

′, q)-NTRU, which runs in time poly-
nomial in log q, log∆K and logA = poly(log∆K) (since γ/γ′ ≤ 2d) and preserves the the
success probability of the algorithm. Moreover, from Corollary IV.5.4, id-HSVPγHSVP reduces
to PA,4A-avg-id-HSVPΓ, which is quantum and runs in expected time polynomial in its input
size, log∆K , 1/ρ̃A and 1/ε. Combining both reductions gives the desired result.

Note that the distribution DA,q
NTRU can be sampled from along with a trapdoor by run-

ning SampleWithTrap with appropriate parameters (in order to generate an ideal from U(PA,4A)
together with a short non-zero vector in it), and then running the IdealToNTRU algorithm. This,
however, requires an access to a factoring oracle (for the SampleWithTrap algorithm). Finding
a classical algorithm to efficiently sample from DA,q

NTRU with a trapdoor is an interesting open
problem.

Chapter V

On Module Unique-SVP and NTRU

This chapter is extracted from [FPS22], which is a join work with Alice Pellet-Mary and Damien
Stehlé. My main contribution to this work is the worst-case to average-case reduction for
mod-uSVP2. I also adapted the mod-uSVP2-to-NTRU reduction for using on ideal-counting
of Chapter III.

V.1 Introduction

Contributions of this chapter

We give evidence that the NTRU problem is not just a particular case of mod-uSVP2, but ac-
tually representative of it. More precisely, we show that worst-case NTRU is computationally
equivalent to worst-case mod-uSVP2, and that worst-case and an appropriately defined average-
case mod-uSVP2 are also computationally equivalent, provided we have an oracle for id-HSVP in
both cases (and up to reduction losses). Together, these results imply that worst-case mod-uSVP2

reduces to average-case NTRU, provided we have an oracle for id-HSVP. Combining this re-
sult with the reduction from worst-case id-HSVP to worst-case NTRU from [PS21], this also
implies that worst-case NTRU is computationally equivalent to worst-case mod-uSVP2, without
an id-HSVP oracle.

Our first result is a collection of four reductions from the four variants of mod-uSVP2 (average
case vs worst-case and vector vs module) to the corresponding four variants of NTRU, relying on
an approximate id-HSVP oracle. We give below a simplified version of one of these reductions,
in the special case of power-of-two cyclotomic fields. More details and the other reductions can
be found in Theorem V.4.1.

Theorem V.1.1 (Simplified version of Theorem V.4.1). Let K be a power-of-two cyclotomic
field of degree d. Let γSVP, γ

+, γNTRU > 1. For all q ≥ 2d · poly(γ+) and γ− ≥ poly(d) · γNTRU ·√
γHSVP, (worst-case) mod-uSVPmod

2 with gap in [γ−, γ+] reduces in polynomial time to (worst-
case) NTRUmod with modulus q and gap ≥ γNTRU and (worst-case) id-SVP with approximation
factor γSVP.

More concretely, when starting from a mod-uSVP2 instance for which the shortest non-zero
vectors are ≈ γ times smaller than the root determinant, the reduction produces an NTRU
instance satisfying √q/(∥f∥ + ∥g∥) ≈ γO(1), up to factors depending on field invariants. This
transformation can be used to derive a reduction from average-case mod-uSVP2 to average-case
NTRU (where the NTRU distribution is induced by the mod-uSVP2 distribution) and a reduction
from worst-case mod-uSVP2 to worst-case NTRU (and similarly for the variants searching a

91

92 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

dense rank-1 submodule). To achieve this transformation, an id-HSVP oracle is required to
find non-zero vectors in ideals within a factor γO(1) from optimal. Note that for cyclotomic
fields, the algorithm from [CDW21] allows to implement the oracle in quantum polynomial time
when γ ≈ 2

√
d. Note also that [PS21] showed a reduction from worst-case id-HSVP to worst-

case NTRU, which is compatible with the reduction from worst-case mod-uSVP2 to worst-case
NTRU (relying on an id-HSVP oracle). Combining both, we then obtain a reduction from
worst-case mod-uSVP2 to worst-case search NTRU which does not rely on an id-HSVP oracle.
A drawback of the reduction is that it results in an NTRU modulus q of the order of ≈ 2d,
even for small gap parameters γ. The modulus can be decreased by allowing the reduction to
be more costly. Using lattice reduction algorithms [Sch87], one can reach q ≈ γO(1) · βO(d/β)

if allowing for a reduction that runs in time polynomial in d, 2β , log∆K and ζK(2) (where ζK
refers to the Dedekind zeta function). The quantities log∆K and ζK(2) depend on the number
field, and may not be polynomially bounded in the field degree d. In our running example, we
have log∆K = O(d) and ζK(2) = O(1) (see [SS13]).

Second, we exhibit a random self-reducibility property for mod-uSVPmod
2 . More explicitly,

we give a reduction from worst-case mod-uSVPmod
2 for rank-2 modules to an average-case version

of itself, which can be efficiently sampled. The reduction preserves the gap parameter γ, up to
factors depending on field invariants, and runs in time polynomial in log∆K .

Theorem V.1.2 (Simplified version of Theorem V.6.1, under ERH). Let K be a power-of-
two cyclotomic field of degree d. For any gap poly(d) < γ ≤ 2O(d), there exists a distribu-
tion Dmod-uSVP2

γ over mod-uSVP2 instances with gap ≥ γ which can be sampled efficiently such
that worst-case mod-uSVPmod

2 with gap ≥ γ′ = γ ·poly(d) reduces in polynomial time to average-
case mod-uSVPmod

2 for instance distribution Dmod-uSVP2
γ .

Combined with the first reduction, the above allows to map a worst-case instance of NTRUmod

to an average-case instance of NTRUmod, where the NTRUmod instance distribution is inherited
from the average-case mod-uSVP2 distribution. This reduction relies on an id-HSVP oracle.
Since mod-uSVPmod

2 and mod-uSVP2 are computationally equivalent (up to polynomial losses)
when we have an id-HSVP oracle, this also provides a reduction from worst-case mod-uSVP2 to
average-case NTRU. Contrary to the reduction from worst-case uSVP to worst-case NTRU, we
cannot use the result of [PS21] to get rid of the id-HSVP oracle. This is because the average-case
distribution of NTRU instances that is produced by our reduction may not be compatible with
the one used in [PS21].

We summarize the known reductions between variants of mod-uSVP2 and NTRU in Fig-
ure V.1. Note that the reductions may not be composable due to incompatible parameter re-
strictions or instance distributions.

Technical overview

The NTRU problem is a restriction of mod-uSVP2 modules with a basis of a specific shape. In
general, a rank-2 module M is represented by a pseudo-basis, i.e., two vectors (b1, b2) in K2 and
two ideals I1, I2 of OK such that M = b1I1+b2I2. When the two ideals I1 and I2 are both equal
to OK , the pseudo-basis is a basis, and the module is said to be free (note that a free module
is a module that has at least one basis, but not all of its pseudo-bases will satisfy I1 = I2 =
OK). In the NTRU problem, the instance is a basis (b1, b2) of a free module contained in O2

K ,
with b1 = (1, h)T for some h ∈ OK and b2 = (0, q)T for some integer q which is a parameter of
the NTRU problem. Hence, the only degree of freedom in this basis comes from the choice of h.
The NTRU problem then asks to solve mod-uSVP2 in this very specific module.

V.1. INTRODUCTION 93

worst-case
id-HSVP

average-case
NTRUmod

decision
NTRU

worst-case
mod-uSVPmod

2

average-case
mod-uSVPmod

2

average-case
NTRU

worst-case
mod-uSVP2

worst-case
NTRU

Figure V.1: Known reductions between NTRU and mod-uSVP variants. Dashed arrows require
an id-HSVP oracle. Blue arrows are proven in [PS21] and red arrows are proven in this article.
The black arrows are folklore.

In the reduction from mod-uSVP2 to NTRU, we start with an arbitrary pseudo-basis of an
arbitrary module M , and transform it into an NTRU basis. We then call the NTRU solver on
this NTRU instance and lift the solution back to the original mod-uSVP2 module. In order to
meaningfully lift a short vector (or a dense rank-1 submodule) back, we require our transforma-
tion to preserve the geometry of the rank-2 module M as much as possible. Our transformation
proceeds in four main steps.

First of all, we transform the input module M ⊂ K2 into an integral module whose volume is
bounded from below and above by quantities depending only on the parameters of the reduction
(NTRU modules are in O2

K and have volume qd). This is done by scaling M to the desired
volume, and then rounding it to an integral module with a very close geometry. This rounding
is performed by sampling two quasi-orthogonal vectors in the dual of M , and multiplying M on
the left by the matrix whose rows are these two vectors. Multiplication on the left corresponds
to a distortion of the ambient space, but since the two vectors are quasi orthogonal, this does
not change the geometry too much. Also, as the row vectors of the sampled matrix belong to
the dual of M , the resulting module is integral.

Our second step aims at obtaining the triangular shape of the NTRU basis. To do so,
we compute the Hermite Normal Form of the pseudo-basis. With some probability, the two
coefficients on the first row of the pseudo-basis will be coprime, leading to an HNF basis with a 1
as a top-left coefficient, exactly what we need for an NTRU instance. This is where ζK(2) comes
into play, as it closely relates to the probability that two random elements of OK are coprime.

At this point, our pseudo-basis still has coefficient ideals. We remove them with an id-HSVP
solver: we compute short x1 and x2 in the ideals I1 and I2, respectively, and then replace
the pseudo-basis ((b1, b2), (I1, I2)) by the basis (x1b1, x2b2). This step has the effect of slightly
sparsifying the module, i.e., it leads to a rank-2 submodule whose determinant is not much larger.
If our gap is sufficiently large compared to the approximation factor of the id-HSVP solver, our
sparsified module will still contain an unexpectedly short non-zero vector.

We now have a basis of a free module with vectors of the form (1, h′)T and (0, b)T , with h′

and b in OK . Our last step consists in replacing b by the NTRU parameter q. This is done by
multiplying the second coordinates of both our basis vectors by q/b. If q/b ≈ 1 (which we can
ensure thanks to the id-HSVP solver), then this does not change the geometry of the module too
much.

94 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

To conclude, the transformation we have described allows us to transform any module of rank-
2 with an unexpectedly short vector into an NTRU module with roughly the same geometry.
The transformation is reversible, hence, we can lift any short vector or dense module found in
the NTRU module back to the original rank-2 module. Since this transformation is a Karp
reduction, it can be used to reduce average-case variants of mod-uSVP2 to average-case variants
of NTRU where the NTRU distribution is inherited from the one on the mod-uSVP2 instances.

For the random self-reducibility of mod-uSVPmod
2 , we start with an arbitrary rank-2 mod-

ule M and want to randomize it so that the distribution of the output module M ′ does not
depend on M . Once again, we design the transformation so that it preserves the geometry of
the module, to be able to meaningfully lift any dense rank-1 submodule of M ′ back to a dense
rank-1 submodule of M . For this reduction, we assume that all our worst-case modules live
in K2

R = (K⊗QR)2 and have fixed volume (which we can always achieve by scaling the module).
We also assume that the ℓ2-norm of their shortest non-zero vectors is exactly 1/γ < 1. This
restriction to modules with a known gap can be waived, by guessing the gap and sparsifying the
module (see Section V.6).

Let us explain the main ideas behind the randomization in the simpler case of K = Q. We have
a lattice M ⊂ R2 with volume 1 and shortest non-zero vector s with ∥s∥ = 1/γ. Up to rotation
of the ambient space, we can assume that s = (1/γ, 0)T . Let us take t ∈ R2 such that (s, t)
forms a basis of M . Since the volume of M is 1, we know that t = (t0, γ)

T for some t0 ∈ R. Up
to the rotation of the ambient space, the quantity t0 is the only degree of freedom. Note also
that the lattice only depends on t0 mod 1/γ. Let πs(t) denote the quantity t0, i.e., the norm of
the orthogonal projection of t onto span(s). This discussion shows that the lattice M is uniquely
determined by the span of its shortest non-zero vector and the quantity γ · πs(t) mod 1. Hence,
to “hide” the lattice M , it suffices to “hide” these two quantities. Note that we use the vectors s
and t for our reasoning, but we usually do not have access to them: we randomize our module
by performing only operations that can be done on any of the bases of M (for K2

R instead of R2,
we expect that finding the analogue of (s, t) is difficult).

In order to hide the span of s, one can apply a uniform orthonormal transformation to the
ambient space. To hide the quantity γ · πs(t) mod 1, we “blur” the ambient space, by applying
to it a transformation that is close to orthogonal, but not fully so. By appropriately choosing
the transformation, one can obliviously transform the quantity γ · πs(t) into x · γ · πs(t) + y,
where x and y are some random variables. Recall that this quantity only matters modulo 1.
Hence, if the standard deviation of y is sufficiently large compared to 1, then y mod 1 will be
uniformly distributed and will hide the original value of πs(t). The existence of a gap ensures
that a close-to-orthogonal transformation suffices for this purpose.

This intuition over R2 explains one component of our randomization procedure, which we call
the geometric randomization (see Section V.5.2). Another important part of our randomization,
which we call the coefficient randomization (Section V.5.1), focuses on the coefficient ideals of
the pseudo-basis (which are just Z for lattices). The transformation described above will have
the effect of randomizing the vectors b1 and b2 of a pseudo-basis of our module M , but will have
no impact on the coefficients ideals I1 and I2.

In order to hide those ideals, the first step is to multiply the module M by some uniformly
distributed ideal I, using [BDPW20]. Our new coefficient ideals I · I1 and I · I2 will then
be uniformly distributed too. This is however not sufficient to fully hide the ideals, since the
quotient (I · I1)/(I · I2) is constant. In order to hide this last quantity, or decouple the ideals, we
sparsify the module with respect to some prime ideal p: concretely, we take a uniformly random
rank-2 submodule of M among those of index p.1 This process generalizes lattice sparsification

1For two rank-2 modules M ′ ⊆ M with pseudo-bases ((b′1, I
′
1), (b

′
2, I

′
2)) and ((b1, I1), (b2, I2)) respectively, we

V.1. INTRODUCTION 95

as introduced in [Kho06]. Lattice sparsification is a classic tool to remove one (or several)
annoying vectors in a lattice. Here, the purpose is different: it has the effect of obliviously
multiplying I1 by p while leaving I2 unchanged (with probability close to 1). By [BDPW20], the
uniform distribution over bounded-norm prime ideals is close to the uniform distribution over
norm-1 ideals (after renormalization of their norm), in the sense that little remains to be done to
obtain the latter distribution. As a result, this sparsification enables us to (almost) randomize
both I1 and I2, independently of one another. The gap to perfect randomization is handled by
carefully studying the distribution resulting from the geometric and coefficient randomization
(Section V.5.3).

Summing up, our randomization consists in two main steps: a distortion of the ambient space,
which randomizes the vectors (b1, b2) and a sparsification, which hides the coefficient ideals I1
and I2 (together with the multiplication of the module by a random ideal I). Interestingly, we
note that these two operations are similar (though adapted to rank-2 modules) to the ones that
were used in [BDPW20] to randomize ideal lattices.

The transformation described above allows us to transform an arbitrary module M of K2
R

into a random module M ′ of K2
R whose distribution is independent of the input module. One last

subtlety to handle in order to have a full worst-case to average-case reduction is to compute a
canonical representation of the module M ′. Indeed, the pseudo-basis of the properly distributed
module M ′ that we have at the end of the randomization procedure might leak information about
the input module M . Unfortunately, one cannot compute HNF bases in K2

R (the HNF gives a
canonical representation of rational lattices). In order to obtain a canonical representation of M ′,
we then round it to a close module in O2

K for which we will be able to compute an HNF pseudo-
basis. The rounding procedure is the same as the one described in the reduction from mod-uSVP2

to NTRU, and the distribution of the output pseudo-basis only depends on the input module
and not on the specific pseudo-basis that is provided to represent it.

Discussion

A question arising from our reduction concerns the possibility to sample an NTRU instance
from the distribution obtained at the end of the reduction, together with a short secret vector
of the corresponding NTRU module. The difficulty stems from the fact that the output NTRU
distribution we obtain after the reduction is not easy to describe, except as “the distribution
obtained by running the reduction”. The same difficulty also appeared in [PS21], where it
was tackled by running the reduction to sample from the average-case NTRU distribution (and
keeping in mind some quantities generated during the reduction in order to create a short vector
of the output NTRU module). In our case, we face two additional difficulties when trying
to apply the same strategy. First, we note that even sampling from the NTRU distribution,
without asking for a short vector of the corresponding module, does not seem straightfoward.
Since our mod-uSVP2 to NTRU reduction requires an id-HSVP solver and takes subexponential
time if one wants to reach small NTRU modulus q, it does not provide an efficient sampling
algorithm for our final NTRU distribution. Secondly, our reduction allows us to lift a short
vector from the NTRU module back to the mod-uSVP2 module, but it is not so clear whether
the converse is also possible (i.e., starting with a known vector of the mod-uSVP2 module and
obtaining a short vector of the final NTRU module). This is because of the sparsification step:
when we sparsify a lattice, we can lift a vector from the sparser lattice back to the denser lattice
(this is actually the same vector), but the converse seems more difficult.

Another question we leave open is about the compatibility of our reduction with those
from [PS21]. Our worst-case mod-uSVPmod

2 to average-case NTRUmod reduction produces a

say that M ′ has index p in M if detK(b′1, b
′
2) · I′1I′2 = p · detK(b1, b2) · I1I2.

96 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

new distribution over NTRU instances. It is unclear whether this distribution is compatible with
the search to decision reduction for NTRU from [PS21, Definition 7.1]. It is also unclear how
it compares to the one produced by the worst-case id-HSVP to average-case NTRU reduction
from [PS21].

It should be noted that the regime where NTRU is provably secure (see [SS13]) is completely
distinct from the regime required by our reductions. Indeed, the regime of [SS13] requires that f
and g are slightly larger than √q, whereas our reduction requires f and g to be significantly
smaller than √q. In other words, we are in a regime where NTRU is a mod-uSVP2 instance
(and we are trying to show that in this regime, it is representative of all mod-uSVP2 instances),
whereas [SS13] works in a regime where an NTRU instance is statistically close to uniform; in
particular, in that regime, the underlying lattice is not a mod-uSVP2 instance. The regime of
the overstretch-NTRU attacks (including [KF17]) is also distinct from ours, but in the opposite
direction. In these attacks, it is assumed that ∥f∥ and ∥g∥ are poly(d) and q grows; whereas in
our case, we have ∥f∥ and ∥g∥ of the form √q/poly(d). Said differently, in those attacks, the
short vector is short in absolute terms, whereas in our case it is short relative to what it would
be for a random lattice of the same volume. We leave as an open problem to check whether these
two regimes can be made to intersect.

V.2 Preliminaries

V.2.1 Number Fields

For x ∈ K+
R , we define x1/2 as the element of K+

R obtained by taking the square-roots of the
embeddings.

Recall that elements of KR are represented as vector of Rd corresponding to their coordinates
in the Z-basis BOK

= [bOK
1 , . . . , bOK

d] of OK . For x =
∑

i xibi ∈ KR, we define ⌊x⌉ =
∑

i⌊xi⌉bi.
We will use the notation {x} = x−⌊x⌉. We have ∥{x}∥∞ ≤ d · δK , and hence ∥{x}∥ ≤ d3/2 · δK .

We will consider the following distributions over KR.

Definition V.2.1. Let ς ∈ RdR+dC
>0 . We define the normal distribution DKR(c, ς) of center c ∈

KR and standard deviation vector ς as the distribution obtained by independently sampling real
numbers (y)i∈[d] with {

yj ∼ D(0, ςj) for j ∈ [dR]

ydR+j , ydR+dC+j ∼ D(0, ςdR+j) for j ∈ [dC]

and then returning c + y where y ∈ KR is such that σj(y) = yj for j ∈ [dR] and σdR+j(y) =
ydR+j + iydR+dC+j for j ∈ [dC].
We define χKR as the distribution of (⟨x,x⟩KR

)1/2 for x ∈ K2
R sampled according to DKR(0, 1)

2.

Note that for r ∈ K+
R , the distribution of r ·x for x ∼ DKR(c, ς) is DKR(r ·c, (σi(r) ·ςi)i). For a

matrix B ∈ Kn×n
R , we define det(B) = N (detKR(B)). We say that B is orthogonal if B† ·B = I,

which implies that det(B) = 1. We let On(KR) denote the set of orthogonal matrices. If a
matrix B ∈ Kn×n

R has KR-linearly independent columns (i.e., no non-trivial linear combination
is zero), then it admits a QR-factorization B = QR with Q ∈ On(KR) and R ∈ Kn×n

R upper
triangular with diagonal elements in K+

R (see, e.g., [LPSW19, Section 2.3]).

V.2.2 Rank-2 Modules with a Gap

The following result provides a lower bound on the probability that a rank-1 module v · OK

is primitive in a rank-k module M , when v ∈ M is sampled from a sufficiently wide Gaussian

V.3. NEW TOOLS ON MODULE LATTICES 97

distribution. Taking M = Ok
K , this provides in particular a lower bound on the probability

that k elements sampled independently of a Gaussian distribution in OK are relatively coprime.
This result generalizes [SS13, Lemma 4.4], which proved the result for k = 2 and M = O2

K (with
a proof inspired from [Sit10]). The proof for the general case with rank-k modules is very similar
to the special case M = O2

K , hence we postpone it to Appendix D.2.1. In this work, we will only
use Lemma V.2.2 for modules of rank-2, however, for the sake of re-usability, we state and prove
it for modules of arbitrary ranks.

Lemma V.2.2. There exists an absolute polynomial P such that the following holds. For any δ ≥
0, degree-d number field K, integer k ≥ 2, rank-k module M ⊂ Kk

R, if c ∈ spanKR
(M) and ς > 0

are such that ∥c∥ ≤ δ · ς and ς ≥ λkd(M) · P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
≥ 1

4ζK(k)
,

where ζK(·) is the Dedekind zeta function of K and the λi’s refer to the minima of the lat-
tice Φ(M).

This can be used to show that we can use the QR-factorization to precisely describe rank-2
modules (see Appendix D.2 for a proof).

Lemma V.2.3. Let M be a rank-2 module with gap γ > 0. Then M can be written as

N 1
2d (M)

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
,

where Q ∈ O2(KR), r ∈ KR, J1 and J2 are norm-1 ideals. We call this a QR-standard-form
for M .

We note that there are multiple QR-standard forms for any module M , as units of C can
be transferred from the ideal coefficients to the matrix Q. In the following section, we will be
interested in modules with specific distributions expressed in terms of QR-standard forms. It
will then be convenient to define a module by a (well-distributed) QR-standard form. Note that
the modules we define this way have norm 1.

Definition V.2.4. For any Q ∈ O2(KR), γ > 0, r ∈ KR and norm-1 ideals J1, J2, we define

QRSF-2-Mod(Q, γ, J1, J2, r) =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
.

We will use the following result on the first and last minimum of the dual of a rank-2 module
with a gap. The proof is provided in Appendix D.2.

Lemma V.2.5. Let M be a rank-2 module in K2
R with gap γ(M) ≥ 1. Then

λ2d(M
∨) ≤ 2

√
d · γ(M) · N (M)−

1
2d

λ1(M
∨)−1 ≤ 2d · γ(M) · N (M)1/(2d) · δK ·∆

1
2d

K .

V.3 New Tools on Module Lattices

In this section, we present new tools to manipulate module lattices. For the sake of re-usability,
we describe them for modules of arbitrary ranks, but we will use them only in rank 2 in the
reductions of the present work. The missing proofs of this section are available in Appendix D.3.

98 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

V.3.1 Module sparsification

An essential ingredient in the module randomization of Section V.5 is sparsification. In this
subsection, we extend to modules the definition and some properties of sparsification over lat-
tices [Kho06].

Definition V.3.1. Let M a module, p a prime ideal, b∨ ∈ (M∨/pM∨) \{0} and b∨ a lift of b∨

in M∨. The sparsification of M by (b∨, p) is the submodule

M ′ =
{
m ∈M, ⟨b∨,m⟩KR

∈ p
}
.

The submodule M ′ does not depend on the choice of the vector b∨ lifting b∨.

Note that M ⊆ M ′ ⊆ pM , implying that M ′ has the same rank as M . As showed by the
following two lemmas, sparsification increases the module norm by a factorN (p) and an arbitrary
rank-1 submodule of M is not contained in M ′ (except with probability ≤ 1/N (p)).

Lemma V.3.2. Let M a module, p a prime ideal and b∨ ∈ (M∨/pM∨) \ {0}. Let M ′ be the
sparsification of M by (b∨, p). Then N (M ′) = N (p) · N (M).

Lemma V.3.3. Let M a rank-k module, p a prime ideal and bI a primitive rank-1 submodule
of M . Let b∨ be uniformly distributed in (M∨/pM∨) \ {0} and M ′ be the sparsification of M
by (b∨, p). Then bpI ⊆M ′ and, except with probability 1/N (p)− 1/N (p)k, we have bI ̸⊂M ′.

The following lemma states that a module sparsification can be efficiently computed. The
algorithm generalizes the one for lattice sparsification, detailed, e.g., in [BSW16].

Lemma V.3.4. There exists a polynomial-time algorithm taking as inputs an arbitrary pseudo-
basis of M ⊂ Kk

R, a prime ideal p and b∨ ∈ (M∨/pM∨) \ {0} and computing a pseudo-basis of
the sparsification of M by (b∨, p).

V.3.2 Module rounding

In this section, we describe the DualRound algorithm that rounds a rank-k module contained
in Kk

R into a module contained in Ok
K (with a close geometry), in a way that does not depend

on how the module in Kk
R was represented. We do that by sampling almost orthogonal vectors

in the dual lattice, in a similar fashion to what was done in [BDPW20] in the context of ideal
lattices. We believe that this technique of rounding via the dual might have other applications,
especially in situations where one would like to have the analogue of an HNF basis for lattices
with real coefficients.

DualRound is parameterized by a standard deviation parameter ς > 0, a BKZ block-size β ∈
{2, . . . , kd} and an error bound ε > 0. It starts by computing a short Z-basis of C∨, by using
a provable variant of the BKZ algorithm [Sch87, HPS11, GN08, ALNS20]. This offers different
runtime-quality trade-offs. It then uses the discrete Gaussian sampler from Lemma II.1.12 with
orthogonal center parameters ti and a well-chosen error parameter.

Lemma V.3.5. Let (B, I) be a pseudo-basis of a rank-k module M ⊂ Kk
R. Let β ∈ {2, · · · , kd},

ε > 0, and ς be such that ς ≥ (kd)kd/β+3/2 · λkd(M
∨). Algorithm DualRound runs in time

polynomial in 2β , log(ς/ε) and the bitsize of its input. Further, on input (B, I), DualRoundς,β,ε
outputs a matrix Y ∈ Mk(KR) such that

• (Y ·B) · I is contained in Ok
K ;

V.4. FROM mod-uSVP2 TO NTRU 99

Algorithm V.3.1 Algorithm DualRoundς,β,ε
Input: A pseudo-basis (B, I) of a rank-k module M ⊂ Kk

R.
1: Compute a Z-basis of M∨;
2: Run BKZ with block-size β on it to obtain a new Z-basis C∨ of M∨;
3: Set R = ε−1 ·

√
5kdς;

4: For i ∈ [k], set ti = R · ei, where ei is the i-th canonical unit vector of Kk
R;

5: For i ∈ [k], sample yi ← D̃C∨,ς,ti using Lemma II.1.12 with error parameter 2−kd;
6: Return Y = (y1| . . . |yk)

†.

• Y = R · Ik +E for R = ε−1
√
5kdς > 0 and ∥eij∥ ≤ εR for all i, j ∈ [k].

• If Y = (y1| . . . |yk)
†, it holds that SD(yi, DM∨,ς,ti) ≤ 2−kd.

Moreover, if (B′, I′) is another pseudo-basis of M and if Y ′ is the output of DualRound given
this pseudo-basis as input, then

SD(Y ,Y ′) ≤ 2−Ω(kd).

Note that Lemma V.3.5 does not necessarily ensure that the matrix Y is invertible, hence
the module Y ·B · I might not be of rank k. However, by choosing ε sufficiently small and using
the second condition on Y , one can make sure that Y is indeed invertible. This is the purpose
of Lemma V.3.6.

Lemma V.3.6. Let Y ∈ Kk×k
R be such that Y = R ·Ik+E for some R > 0 and ∥eij∥ ≤ ε ·R for

all i, j ∈ [k]. Assume that ε ≤ 1/(2k). Then Y is invertible and we have Y −1 = R−1 · Ik +E′,
with ∥e′ij∥ ≤ (k + 1) · ε · R−1 for all i, j ∈ [k]. Further, it holds that det(Y) ∈ [(1 + (k + 1)(k +

2)ε)−d/2, (1 + 3ε)d/2] ·Rkd.

V.4 From mod-uSVP2 to NTRU

In this section, we prove the following two results (the blue boxes highlight the differences between
the two):

Theorem V.4.1. Let K be a number field of degree d and let γ+ > 0. There exists q0 =

poly(∆
1/d
K , d, δK , γ+) ∈ R≥0 and an algorithm uSVP-to-NTRU such that the following holds. For

any q ≥ q0, γNTRU ≥ γ′NTRU > 1 , γHSVP ≥
√
d∆

1/(2d)
K , let

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d3/2 · δK

γ′uSVP =
γ′NTRU

γ
3/2
HSVP · 150 · d7/2 · δ2K

.

For any distribution Dmod-uSVP2
over γuSVP-mod-uSVP2instances with gap ≤ γ+, let DNTRU be

the distribution uSVP-to-NTRU (Dmod-uSVP2
, q, γHSVP). We have four reductions

• from (Dmod-uSVP2
, γuSVP)-mod-uSVPmod

2 to (DNTRU, γNTRU, q)-NTRUmod;

• from γuSVP-wc-mod-uSVPmod
2 on modules with gap ≤ γ+ to (γNTRU, q)-wc-NTRUmod;

• from (Dmod-uSVP2
, γuSVP, γ

′
uSVP)-mod-uSVPvec

2 to (DNTRU, γNTRU, γ
′
NTRU, q)-NTRUvec;

100 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

• from (γuSVP, γ
′
uSVP)-wc-mod-uSVPvec

2 on modules with gap ≤ γ+ to (γNTRU, γ
′
NTRU, q)-

wc-NTRUvec.

Given access to an oracle solving γHSVP-id-HSVP, the four reductions run in time polynomial
in their input size, in exp(d log(d)

log(2q/q0)
) and in ζK(2).

Proof. See Appendix D.4.1.

The outline of the reduction is given in Figure V.2. Note that the quantity ζK(2) may be
exponential in d for some number fields (which may impact the running time of the reduction). In
the case of power-of-two cyclotomic fields, it was proven in [SS13, Lemma 4.2] that ζK(2) = O(1).
We also propose a version of Theorem V.4.1 whose running time does not depend on ζK(2), but
with a higher approximation factor (still polynomial in d and ∆

1/d
K).

Theorem V.4.2. Let κ > 0 be the constant defined in Lemma D.5.2 and K a number field of
degree d and let γ+ > 0. There exists q0 = poly(∆

1/d
K , d, δK , γ+) ∈ R≥0 and an algorithm uSVP-to-NTRU

such that the following holds. For any q ≥ q0, γNTRU ≥ γ′NTRU > 1 , γHSVP ≥
√
d∆

1/(2d)
K , let

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 ·d 3+κ

2 ·∆
κ
2d

K · δK

γ′uSVP =
γ′NTRU

γ
3/2
HSVP · 150 ·∆

κ
2d

K · d
7+3κ

2 · δ2K
.

For any distribution Dmod-uSVP2
over γuSVP-mod-uSVP2 instances with gap ≤ γ+, let DNTRU

be the distribution uSVP-to-NTRU (Dmod-uSVP2 , q, γHSVP). We have four reductions

• from (Dmod-uSVP2
, γuSVP)-mod-uSVPmod

2 to (DNTRU, γNTRU, q)-NTRUmod;

• from γuSVP-wc-mod-uSVPmod
2 on modules with gap ≤ γ+ to (γNTRU, q)-wc-NTRUmod;

• from (Dmod-uSVP2
, γuSVP, γ

′
uSVP)-mod-uSVPvec

2 to (DNTRU, γNTRU, γ
′
NTRU, q)-NTRUvec;

• from (γuSVP, γ
′
uSVP)-wc-mod-uSVPvec

2 on modules with gap ≤ γ+ to (γNTRU, γ
′
NTRU, q)-

wc-NTRUvec.

Given access to an oracle solving γHSVP-id-HSVP, the four reductions run in time polynomial
in their input size, in exp(d log(d)

log(2q/q0)
).

Proof. See Appendix D.5.2.

We describe in the next subsection the steps to prove Theorem V.4.1. The proof of Theo-
rem V.4.2 is postponed in Appendix D.5, as it is essentially the same. The missing proofs of this
section are available in Appendix D.4.

V.4.1 Pre-conditioning the mod-uSVP2 instance

In this section, we use algorithm DualRound to pre-process the input module and control its
volume. In order to have the Hermite Normal Form of our integral module look like an NTRU
instance, we slightly modify the geometry of our input module to make it have what we call the
coprime property (see Definition V.4.3). Hence, we describe an algorithm, called PreCond (see
Algorithm D.4.1), which combines all this and transform any mod-uSVP2 instance (with a lower
bounded gap) into a new mod-uSVP2 instance with roughly the same geometry and with all the
properties we will require in Section V.4.2.

V.4. FROM mod-uSVP2 TO NTRU 101

Definition V.4.3 (Coprime property). We say that a rank-2 module M ⊆ O2
K has the coprime

property if it holds that

{x ∈ OK | ∃ y ∈ OK , (x, y)T ∈M} = OK .

In other words, the module M has the coprime property if the ideal spanned by the first coordinate
of all the vectors of M is equal to OK .

We note that having the coprime property is not very constraining. In fact, any module
can be applied a small distorsion in order to ensure the coprime property. This is formalized in
Lemma V.4.4 below.

Lemma V.4.4. Let (B, I) be a pseudo-basis of a rank-2 module M ⊂ K2 with gap γ(M) ≥ 1.
There exists some V0 > 0 with V

1/(2d)
0 = poly(∆

1/d
K , d, δK , γ(M)) and an algorithm PreCond such

that the following holds. Let β ∈ {2, · · · , 2d} and V > 0 be such that V 1/(2d) ≥ (2d)2d/β ·V 1/(2d)
0 .

Then, on input (B, I), V and β, algorithm PreCond outputs a matrix Y ∈ GL2(K) such that

• if (B, I) is a γuSVP-mod-uSVP2 instance, then (Y B, I) is a γ′uSVP-mod-uSVP2 instance
for γ′uSVP = γuSVP/(2

√
2);

• the rank-2 module M ′ := Y B · I is contained in O2
K ;

• N (M ′) ∈ [1/2d, 2d] · V ;

• M ′ has the coprime property;

• Y = R·I2+E for some R = V 1/(2d) ·N (M)−1/(2d) > 0 and ∥eij∥ ≤ R/5 for all 1 ≤ i, j ≤ 2.

Algorithm PreCond runs in expected time polynomial in its input bitsize, in 2β and in ζK(2).

Proof. See Appendix D.4.2.

V.4.2 Transforming a mod-uSVP2 instance into an NTRU instance

As the NTRU modules are free, the second step of our reduction finds a free module containing
our mod-uSVP2 instance and transforms it into an NTRU instance. For this purpose, we use
the BalanceIdeal algorithm (cf Algorithm D.4.2) that takes as input any fractional ideal I and
uses a γHSVP-id-HSVP oracle to output a balanced element x such that ⟨x⟩ contains I but is not
much larger than it.

Lemma V.4.5. There exists an algorithm BalanceIdeal that takes as input a fractional ideal I ⊂
K and a parameter γHSVP ≥

√
d · ∆1/(2d)

K , and outputs an element x ∈ K such that I ⊆ ⟨x⟩
and |σi(x)| ∈ [1− 1/d, 1 + 1/d] · σ−1 for all i ≤ d, where σ = γHSVP · d2 · δK · N (I)−1/d.

Moreover, given access to a γHSVP-id-HSVP oracle, it runs in polynomial time and makes
one call to the γHSVP-id-HSVP oracle.

Proof. See Appendix D.4.3.

We can now describe our algorithm transforming a mod-uSVP2 instance into an NTRU
instance: Algorithm V.4.1. The operations done by this algorithm are summarised in Figure V.2
and proven in Lemma V.4.7.

102 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Algorithm V.4.1 Algorithm Conditioned-to-NTRU
Input: A pseudo-basis B1 · I of a rank-2 module in O2

K and some parameters q and γHSVP

Output: A basis B4 of a free rank-2 module and some auxiliary information aux
1: Compute the HNF pseudo-basis B2 · J of the rank-2 module spanned by B1 · I

Let a = B2[1, 0] ▷ # B2 =

(
1 0
a 1

)
2: Sample b← BalanceIdeal(J2, γHSVP)
3: Compute h = ⌊a · q/b⌉

4: Return B4 =

(
1 0
h q

)
and aux = (a, b, J1, J2)

Module Pseudo-basis Short vector

M1

 I1 I2(
b11 b12
b21 b22

) s1 =

(
u
v

)
yStep 1

HNF

M2 = M1

 J1 J2(
1 0
a 1

) s2 = s1

y Step 2
Principalization

M3 ⊇M2

 OK OK(
1 0
a b

) s3 = s2

y Step 3
distorsion
+ rounding

M4

 OK OK(
1 0

⌊a · q/b⌉ q

) s4 =

(
u

v · q/b− u · {a · q/b}

)
Figure V.2: Outline of algorithm Conditioned-to-NTRU.

Lemma V.4.6. Let γHSVP ≥
√
d∆

1/(2d)
K , q ∈ Z>0 and (B, I) be a pseudo-basis of a rank-2

module M ⊆ O2
K . Assume that we have access to a γHSVP-id-HSVP oracle. On input γHSVP, q

and (B, I), algorithm Conditioned-to-NTRU runs in polynomial time in the bitsize of its input
and makes one call to the γHSVP-id-HSVP oracle.

Proof. See Appendix D.4.4.

Lemma V.4.7. Let γHSVP ≥
√
d ·∆1/(2d)

K , γNTRU > 1 and q ∈ Z>0 be some parameters. Define

V = γd
HSVP · qd · dd

and γuSVP = γNTRU ·
√
γHSVP · 8 · d3/2 · δK .

V.5. RANDOMIZATION OF RANK-2 MODULES WITH GAPS 103

Let (B, I) be any γuSVP-mod-uSVP2 instance in O2
K , with the coprime property and with

norm in [1/22d ·V, 22d ·V]. Then on input (B, I), γHSVP, q, the algorithm Conditioned-to-NTRU
outputs (B4, aux) such that B4 is a (γNTRU, q)-NTRU instance.

Proof. See Appendix D.4.5.

The aux information output by algorithm Conditioned-to-NTRU will be used in the Algo-
rithms D.4.3 and D.4.4 to lift any short vector / dense submodule from the NTRU instance back
to the mod-uSVP2 instance. The proofs of Lemmas V.4.6 and V.4.7 are available in Appen-
dices D.4.4 and D.4.5 respectively.

V.4.3 Lifting back short vectors and dense submodules

In this section, we prove that using the auxiliary information aux produced by Algorithm
Conditioned-to-NTRU, one can lift a short vector or a densest submodule from the output NTRU
instance back to the input mod-uSVP2 instance. The proofs of Lemmas V.4.8 and V.4.9 are
available in Appendices D.4.6 and D.4.7 respectively.

Lemma V.4.8. There exists an algorithm LiftMod such that the following holds. Let q, γHSVP

and (B, I) be as in Lemma V.4.7. Let M1 denote the rank-2 module generated by (B, I),
[C, (a, b, J1, J2)] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let M4 denote the rank-2 free
module generated by C.

Let (v, J) be a pseudo-basis of the densest rank-1 submodule of M4. Then, on input a, b,
(C,O2

K) and (v, J), algorithm LiftMod outputs w ∈ K such that spanK(w)∩M1 is the densest
rank-1 submodule of M1.

Moreover, algorithm LiftMod runs in polynomial time.

Proof. See Appendix D.4.6.

Lemma V.4.9. There exists an algorithm LiftVec such that the following holds. Let q, γHSVP

and (B, I) be as in Lemma V.4.7. Let M1 denote the rank-2 module generated by (B, I),
[C, aux] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let M4 denote the rank-2 free module
generated by C.

Let s ∈M4. Then, on input aux, γHSVP, (C,O2
K) and s, algorithm LiftVec outputs a vector

t ∈M such that ∥t∥ ≤ ∥s∥ · 68 · γ2
HSVP · d4 · δ2K .

If given access to a γHSVP-id-HSVP oracle, algorithm LiftVec runs in polynomial time and
makes 1 call to the oracle.

Proof. See Appendix D.4.7.

Combining all the results of this section, one can prove Theorem V.4.1.

V.5 Randomization of Rank-2 Modules with Gaps

A rank-2 module with a gap can, by Lemma V.2.3 and the fact that densest submodules are
primitive, be written as M = u · J1 + v · J2 where u · J1 is a densest rank-1 submodule of M .
Informally, the goal of this section is to randomize u,v, J1, J2 without changing the gap too
much. The missing proofs of this section are available in Appendix D.6.

We first describe the average-case distribution we are considering. Note that the gap param-
eter γ′ is itself a random variable.

104 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Definition V.5.1. Let γ > 0 and B > 2. We define the distribution Dmodule
B,γ over rank-2 and

norm-1 modules by:
Dmodule

B,γ = QRSF-2-Mod(Q, γ′, I1, I2, r),

where

• the matrix Q is uniform in O2(KR);

• the gap parameter γ′ is set as γ′ = γ · N (c/a)1/(2d)/B1/(2d) with (a, c) ∈ K2
R distributed

as χKR ×D(0, 1) conditioned on the event that for all i ∈ [d] we have |σi(a · c)| ≥ 1/d;

• the ideals I1, I2 are uniform in I1 (the set of norm-1 ideals);

• the element r is uniform in KR mod γ′−2 · I1I
−1
2 .

We now state the main theorem of this section, which can be viewed as a worst-case to
average-case reduction for rank-2 modules with a gap.

Theorem V.5.2 (Assuming ERH). For all B ≥ (dd∆k)
Ω(1) and γ ≥ B1/(2d) there exists a

procedure RandomizeB that runs in time polynomial in logB and the bitsize of its input, and
such that on input a pseudo-basis (B, I) of a rank-2 and norm-1 module M of gap γ outputs a
pair ((B′, I′), aux) such that

• the pseudo-basis (B′, I′) spans a rank-2 and norm-1 module M ′;

• any event that holds for Dmodule
B,γ with probability ε ≥ 2−o(d) also holds for M ′ with proba-

bility Ω(ε4) over the internal randomness of RandomizeB.

Further, there exists a deterministic algorithm Recover that runs in time polynomial in
the bitsize of its input such that for M ′ as above, if U ′ is a densest rank-1 submodule of M ′,
then Recover(U ′, aux) returns the densest rank-1 submodule of M , with probability 1 − 2−Ω(d)

over the randomness of RandomizeB.

We emphasize that the theorem does not state that the output distribution of RandomizeB
is Dmodule

B,γ , but only that they are close in the sense that any event that holds with sufficient
probability for Dmodule

B,γ also holds for the output distribution of RandomizeB with a polynomially
related probability.

RandomizeB is described in Algorithm V.5.6. It consists of two main steps: a coefficient
randomization (described in Section V.5.1), whose purpose is to randomize the ideal coefficients;
and a geometric randomization (described in Section V.5.2), whose purpose is to randomize the
pseudo-basis matrix. Section V.5.3 compares the distribution that would ideally be returned
by the composition of the coefficient and geometric randomizations, with the distribution of
the pseudo-basis in Definition V.5.1. Finally, we complete the proof of Theorem V.5.2 in Sec-
tion V.5.4.

V.5.1 Coefficient randomization

In the coefficient randomization step, our aim is to randomize the ideal coefficients of a good
pseudo-basis (i.e., whose first pair corresponds to the densest rank-1 submodule), given an arbi-
trary pseudo-basis of a rank-2 module. One may multiply the whole pseudo-basis by a random
ideal, but this only randomizes the pair of ideal coefficients. More precisely, this leaves the ratio
of the ideal coefficients unchanged. To decouple the ideal coefficients, we use module sparsifica-
tion, as described in Section V.3. This first step towards coefficient randomization is formally

V.5. RANDOMIZATION OF RANK-2 MODULES WITH GAPS 105

Algorithm V.5.1 Partial Coefficient Randomization: Partial-CRB
Input: A pseudo-basis of a rank-2 module M .
1: Sample p uniformly among prime ideals of norms ≤ B;
2: Sample b∨ uniformly in (M∨/pM∨) \ {0};
3: Return a pseudo-basis of the sparsification of M by (b∨, p) along with p.

described in Algorithm V.5.1. Steps 1 and 3 are respectively performed using Lemmas II.2.11
and V.3.4.

Theorem V.5.3 (Assuming ERH). Let B ≥ (log∆K)Ω(1). The runtime of Partial-CRB is
polynomial in logB and the bitsize of its input. Let (B, I) be a pseudo-basis of a rank-2 module M ,
and let (J1,u), (J2,v) be an arbitrary pseudo-basis of M . Let M ′ be the rank-2 module spanned
by the pseudo-basis output by Partial-CRB when given (B, I) as input, let b∨ be the element
of (M∨/pM∨) \ {0} sampled in Partial-CRB and let b∨ be a lift of b∨ in M∨.
Then, with probability 1 − (1/B)Ω(1), we have ⟨b∨,u⟩KR

/∈ pJ−11 . In that case, there exists x ∈
J1J

−1
2 such that

M ′ = u · pJ1 + (v + xu) · J2.

Assume further that γ(M) ≥ B1/(2d) and that u · J1 is the densest rank-1 submodule of M .
Then, still when ⟨b∨,u⟩KR

/∈ pJ−11 , we have that γ(M ′) = γ(M)/N (p)1/(2d) > 1 and u · pJ1 is
the densest rank-1 submodule of M ′.

The result follows from Lemmas V.5.4 and V.5.5, whose proofs are postponed to Appendix D.6.

Lemma V.5.4. Borrowing the notations of Theorem V.5.3, we have

u · pJ1 ⊂M ′ and u · J1 ̸⊂M ′,

with probability 1− (1/B)Ω(1) over the choices of p and b∨.

Lemma V.5.5. Borrowing the notations of Theorem V.5.3 and assuming that u ·J1 ̸⊂M ′, there
exists x ∈ J1J

−1
2 such that (v + xu) · J2 ⊂M ′.

We now describe the coefficient randomization. Ideally, we would have access to a pseudo-
basis ((J1,u), (J2,v)) of the module M under scope, for which the densest rank-1 submodule
is u·J1. We would multiply J1 by a random ideal and J2 by another random ideal. Unfortunately,
given only access to an arbitrary pseudo-basis ((I1, b1), (I2, b2)) of M , this seems difficult to
achieve obliviously. Instead, we use algorithm Ideal-Sample (Algorithm II.2.1) to obtain a
uniform norm-1 ideal I, and multiply M by it. This will obliviously multiply J1 and J2 by I.
As this distribution is invariant by ideal multiplication, the ideal J2I/N (J2)

1/d will be uniform
among norm-1 ideals. It remains to obliviously randomize the first ideal independently of the
second one. For this purpose, we use Partial-CR (Algorithm V.5.1), which has the effect of
obliviously multiplying the first ideal with a random prime ideal p while leaving the second one
unchanged (with overwhelming probability). Note that multiplying by a random prime ideal
is the main component of the ideal randomization algorithm Ideal-Sample. In a sense, this
“almost” randomizes J1.

Algorithm V.5.2 describes the process on the input basis ((I1, b1), (I2, b2)). The correspond-
ing randomization performed on the hidden pseudo-basis ((J1,u), (J2,v)) is described in Algo-
rithm V.5.3. Note that there is no need for Algorithm V.5.3 to be efficient as its sole purpose is
to describe the behavior of Algorithm V.5.2 on the hidden pseudo-basis.

106 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Algorithm V.5.2 Real Coefficient Randomization: Real-CRB,B′

Input: A pseudo-basis ((I1, b1), (I2, b2)) of a module M ⊂ K2
R.

1: Let ((I ′1, b
′
1), (I

′
2, b
′
2)), p be the output of Partial-CRB on input ((I1, b1), (I2, b2));

2: Sample q using Ideal-SampleB′ ;
3: Let b′′i = b′i/N (p)1/(2d) for i ∈ [2];
4: Return ((qI ′1, b

′′
1), (qI

′
2, b
′′
2)), p, q.

Algorithm V.5.3 Ideal Coefficient Randomization: Ideal-CRB
Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Let M = QRSF-2-Mod(Q, γ, J1, J2, r);
2: Let u = 1/γ ·Q · (1, 0)T and v = γ ·Q · (r, 1)T ;
3: Sample p uniformly among prime ideals of norms ≤ B;
4: Sample b∨ in M∨, uniform in M∨/pM∨ conditioned on ⟨b∨,u⟩KR

̸∈ pJ−11 ;
5: Find x ∈ J1J2

−1 such that ⟨b∨,v + x · u⟩KR
∈ pJ−12 ;

6: Sample J uniformly among norm-1 ideals;
7: Return (Q, γ/N (p)1/(2d), J1J2

−1Jp/N 1/d(p), J, r + x).

In Theorem V.5.6, we show that the resulting distributions on the output modules are sta-
tistically close, and describe the evolution of the densest rank-1 submodule.

Theorem V.5.6 (Assuming ERH). Assume that B′ ≥ (dd∆K)Ω(1) and B ≥ (log∆K)Ω(1). The
runtime of Real-CRB,B′ is polynomial in log(BB′) and the bitsize of its input.

Let M = 1
γ ·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R a module with norm 1, in QR-standard form.

Then the distribution of the module output by Real-CRB,B′ on input an arbitrary pseudo-basis
of M is within statistical distance (1/B)Ω(1) + 2−d of QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).

Assume further that γ ≥ B1/(2d) and let U denote the densest rank-1 submodule of M .
Let (M ′, p, q) be the output of Real-CRB,B′ on input M . Then, with probability 1 − (1/B)Ω(1),
we have that γ(M ′) = γ(M)/N (p)1/(2d) > 1 and the densest rank-1 submodule of M ′ is

N (p)
1
2d · U · q p

N 1/d(p)
.

V.5.2 Geometric randomization

In the geometric module randomization, we will use a distribution Ddistort over K2×2
R whose

purpose is to distort the geometric relationship between the densest rank-1 submodule and the
complementing rank-1 submodule of the rank-2 module under scope. We define Ddistort as
DKR(0, 1)

2×2 conditioned on the event that |det(σi(D))| > 1/d holds for all i ∈ [d].
The following lemmas describe useful properties of the distribution Ddistort.

Lemma V.5.7. The following properties hold.

• The distribution Ddistort can be sampled from in time polynomial in d.

• The distribution Ddistort is invariant by multiplication on the left and the right by matrices
in O2(KR).

V.5. RANDOMIZATION OF RANK-2 MODULES WITH GAPS 107

Lemma V.5.8. Let D be the distribution over K2×2
R of

Q ·
(
a b
0 c

)
where Q ← U(O2(KR)), a ← χKR and b, c ← DKR(0, 1), conditioned on the event that for
all i ∈ [d] we have |σi(a · c)| ≥ 1/d. Then D = Ddistort.

Let ((J1,u), (J2,v)) be a pseudo-basis of a rank-2 module M . Assume that u · J1 is the
densest rank-1 submodule, but that we have access to this pseudo-basis only indirectly, via an
arbitrary pseudo-basis of M . Write

(u|v) = Q ·
(
1 r
0 1

)
,

for some r ∈ KR. The purpose of the geometric randomization is to map r to some r′ that is
uniform modulo J1J

−1
2 , while at the same time not distorting the module M too much, so that

the randomized M still has a gap and its rank-1 densest submodule is related to u · J1. For
this purpose, we multiply M on the left by a matrix sampled from Ddistort. For the analysis, it
is convenient to take it Gaussian, and to avoid a potentially large distortion, we avoid matrix
samples with small determinant. This corresponds to algorithm Real-GR (Algorithm V.5.4).
The effect on the hidden pseudo-basis ((J1,u), (J2,v)) is described in algorithm Ideal-GR (Al-
gorithm V.5.5). In Theorem V.5.9, we show that the resulting module distributions are identical,
and describe the evolution of the densest rank-1 sublattice.

Algorithm V.5.4 Real Geometric Randomization: Real-GR

Input: A pseudo-basis ((I1, b1), (I2, b2)) of a norm-1 module M ⊂ K2
R.

1: Sample D ← Ddistort (using Lemma V.5.7);
2: (b′1|b′2)← det(D)

−1/(2d) ·D · (b1|b2);
3: Return ((I1, b

′
1), (I2, b

′
2)),D.

Algorithm V.5.5 Ideal Geometric Randomization: Ideal-GR

Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Sample a← χKR and c← D(0, 1) conditioned on the event that for all i ∈ [d] we have |σi(a ·

c)| ≥ 1/d;
2: Sample b← D(0, 1);
3: Sample Q′ ← U(O2(KR));
4: Set J ′1 = a/N 1/d(a) · J1 and J ′2 = c/N 1/d(c) · J2;
5: Set γ′ = γ · N (c/a)1/(2d);
6: Set r′ = (b+ ar)/c;
7: Return (Q′, γ′, J ′1, J

′
2, r
′).

Theorem V.5.9. Algorithm Real-GR runs in polynomial time. Let

M =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R

a module with norm 1, in QR-standard-form. Let M ′ be the module spanned by the output of
Real-GR on input an arbitrary pseudo-basis of M . Then the distribution of M ′ is identical to
the distribution QRSF-2-Mod(Ideal-GR(Q, γ, J1, J2, r)).

108 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Further, if γ > d and U is the densest rank-1 submodule of M , then, with probability 1−2−Ω(d),
we have γ(M ′) > 1 and the densest rank-1 submodule of M ′ is det(D)

−1/(2d) ·D · U , where D
is the Gaussian matrix sampled during the execution of Real-GR.

V.5.3 On the Ideal-GR ◦ Ideal-CR distribution

We define a few probability distributions over the inputs of QRSF-2-Mod, which we will use to
show that the operations performed on the available arbitrary pseudo-basis randomize the rank-2
module, so that the input module is “forgotten” in the output module distribution while at the
same time controlling the evolution of the densest rank-1 submodule.

Definition V.5.10. Let B ≥ 2 and γ > 0. We consider the following random variables, which
are assumed independent (unless stated otherwise).

• Q uniform in O2(KR);

• b ∈ KR distributed as DKR(0, 1);

• (a, c) ∈ K2
R distributed as χKR ×DKR(0, 1) conditioned on the event that for all i ∈ [d] we

have |σi(a · c)| ≥ 1/d; we define γ′ = γ · N (c/a)1/(2d)/B1/(2d);

• p uniform among prime ideals of norms ≤ B;

• I1, I2, J uniform in I1 (the set of norm-1 ideals);

• ζ ∈ E sampled from the centered normal law of standard deviation d−3/2, conditioned
on ∥ζ∥ ≤ 1/d;

• u uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1};

• r′ uniform in KR mod γ′−2 · I1I
−1
2 .

Let J1, J2 ∈ I1 and r ∈ KR arbitrary. Let x be as in Step 5 of Ideal-CRB, when given as
input (Q, γ, J1, J2, r) and with the variable p of Ideal-CRB being the random variable above. In
order to simplify the notations, we define the random variable:

I(J1, J2) = N
1
d

(c
a

)
· au

cExp(ζ)
· J1J2−1J

p

N 1/d(p)
∈ I1.

Let r′′(J1, J2) be uniformly distributed in KR mod γ′−2 · I(J1, J2) · J−1.

V.5. RANDOMIZATION OF RANK-2 MODULES WITH GAPS 109

Drand
B,γ = D

(1)
B,γ

RD2=O(1)−−−−−−−→ D
(2)
B,γ

RD2=O(1)−−−−−−−→ D
(3)
B,γ

SD=2−Ω(d)

←−−−−−−→ D
(4)
B,γ

SD=2−Ω(d)

←−−−−−−→ Dtarget
B,γ

Figure V.3: The relations between the distributions of Definition V.5.10, proved in Lem-
mas D.6.1, D.6.2, D.6.3, D.6.4 and D.6.6. Here D

RD2=O(1)−−−−−−−→ D′ means RD2(D
′ ∥ D) = O(1)

and D
SD=2−Ω(d)

−−−−−−−→ D′ means SD(D,D′) = 2−Ω(d).

We define the following distributions of the form (Q̃, γ̃, Ĩ1, Ĩ2, r̃), where the random variables r̃
is defined modulo γ̃−2 · Ĩ1 · Ĩ2

−1
:

Drand
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1/d(a)
J1J2

−1J
p

N 1/d(p)
,

c

N 1/d(c)
· J,

b+ a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

(c
a

)
· au
c
·J1J2−1J

p

N 1/d(p)
, J, u

b+ a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ ·

N
(
c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b+ a(r + x)

cExp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1/d(p)
· u

b+ a(r + x)

cExp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Note that Drand
B,γ is the distribution obtained by composing Ideal-CRB (Algorithm V.5.3)

and Ideal-GR (Algorithm V.5.5), on an input of the form (Q0, γ, J1, J2, r) with (γ, J1, J2, r) as
above and Q0 ∈ O2(KR) arbitrary. These algorithms significantly randomize the QR-standard
form, but it still depends on (J1, J2, r). On the other hand, the distribution Dtarget

B,γ is independent
of (J1, J2, r). Our goal is to show that these two distributions are similar, in the sense that any
event that holds with some probability ε ≥ 2−o(d) for one holds with probability εO(1) for the
other one.

For this purpose, we consider the intermediate (hybrid) distributions of Definition V.5.10.
To help the reader, we use two colours in the definition of the successive distributions. The
entries of the tuples that are in red are those that change compared to the previous distribution.
The variables with blue background are those that depend on (J1, J2, r). The relations between
the distributions of Definition V.5.10 are pictorially summarized in Figure V.3. The lemmas
formally stating these relations and their proofs are provided in Appendix D.6. Some of the
relations require B ≥ (dd∆K)Ω(1) or γ ≥ d1/4 ·∆1/(2d)

K .

V.5.4 Full module randomization

The full randomization algorithm RandomizeB (Algorithm V.5.6) is the composition of algo-
rithms Real-CR and Real-GR.

Let ((B′, I′), aux) be an output of RandomizeB , and U ′ be a rank-1 submodule of the module
spanned by (B′, I′). We define:

Recover(U ′, aux = (p, q, D)) = (N (p) · det(D))
1
2d ·D−1 · U ′ · q−1p−1.

With these choices of algorithms RandomizeB and Recover, we can finally prove Theo-
rem V.5.2. For this purpose, we show that the module distribution that is output from the ran-

110 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Algorithm V.5.6 (Real) Full Randomization: RandomizeB
Input: A pseudo-basis (B, I) of a norm-1 module M ⊂ K2

R.
1: Apply Real-CRB,(dd∆K)Ω(1) to (B, I) and let ((B◦, I◦), p, q) be the output;
2: Apply Real-GR to (B◦, I◦) and let ((B′, I′),D) be the output;
3: Return ((B′, I′), aux) with aux = (p, q,D).

domization algorithm (on an arbitrary input) and the distribution Dmodule
B,γ from Definition V.5.1

are close in the mixed “SD plus RD” sense of Figure V.3. The full proof is available in Ap-
pendix D.6.1.

V.6 Random Self-Reducibility of Module uSVP

The main result of this section is the worst-case to average-case reduction for mod-uSVPmod
2 of The-

orem V.6.1.

Theorem V.6.1 (Assuming ERH). There exist γ0 = (d∆
1/d
K)O(1) and (Dmod-uSVP2

γ)γ≥γ0
a

family of distributions such that the following properties hold for any γ ≥ γ0:

• if γ ≤ (2d∆
1/d
K)O(1), then Dmod-uSVP2

γ can be sampled from in time polynomial in log∆K ;

• with probability 1− 2−Ω(d), a sample from Dmod-uSVP2
γ is a pseudo-basis of a rank-2 mod-

ule M ⊆ O2
K with gap γ(M) ≥ γ ·

√
d∆K

1/(2d); in particular, these are γ-mod-uSVP2

instances;

• there exists a Karp reduction from γ′-wc-mod-uSVPmod
2 to (Dmod-uSVP2

γ , γ)-mod-uSVPmod
2 ,

with γ′ = γ · (d ·∆1/d
K)O(1); the reduction runs in time polynomial in log∆K and the input

bitsize.

Note that the restriction on γ for the first condition is very mild, as in this parameter range,
mod-uSVPmod

2 can be solved in polynomial time using the LLL algorithm [LLL82]. We now
proceed in two steps. We first define and study the distribution Dmod-uSVP2 , and then prove
Theorem V.6.1.

V.6.1 A distribution over uSVP instances

Let γ > 1. The distribution Dmod-uSVP2
γ is defined as follows:

• sample a module from Dmodule
B,γ′ along with a pseudo-basis (B, I), with B = (dd∆K)O(1)

and γ′ = 2γ ·
√
d∆K

1/(2d) ·
√
dB1/d (see Definition V.5.1) and using Ideal-Sample to

sample from I1;

• call DualRoundς,β,ε(B, I) with ς = (2d∆
1/d
K)O(1), β = 2 and ε = 1/(2d)3/2, and let Y

denote the output;

• return HNF(Y ·B, I).

The first two statements of Theorem V.6.1 are implied by the following lemmas, whose proofs
can be found in Appendix D.7.

V.6. RANDOM SELF-REDUCIBILITY OF MODULE USVP 111

Lemma V.6.2. A sample M from Dmodule
B,γ′ has gap γ(M) ≥ γ′/(

√
dB1/d), with probability 1−

2−Ω(d).

Using the latter result and Lemma V.2.5, we obtain that the assumptions of Lemma V.3.5
are satisfied. This implies that the above sampling algorithm runs in time polynomial in log∆K .
By Lemmas V.3.5 and V.3.6, the output is a pseudo-basis of a rank-2 module in O2

K .

Lemma V.6.3. Let γ > 2. Let (B, I) be a pseudo-basis of a rank-2 module M with gap γ. Let Y
denote the output of DualRoundς,β,ε(B, I) with ς = γ · (2d)2d+3, β = 2 and ε = 1/(2d)3/2. Then
the module spanned by (Y ·B, I) has gap ≥ γ/2.

The definition of Dmod-uSVP2
γ and Lemmas V.6.2 and V.6.3 implies that the modules whose

pseudo-basis are sampled from Dmod-uSVP2
γ have gap ≥ γ ·

√
d∆K

1/(2d), and hence are γ-
mod-uSVP2 instances with overwhelming probability.

V.6.2 Reducing worst-case instances to Dmod-uSVP2 instances

We first introduce intermediate problems, that will allow us to split the reduction into several
steps.

Definition V.6.4. Let γ > 1. A γ-mod-uSVPN instance consists in a pseudo-basis (B, I) of a
rank-2 module M ⊂ K2 such that γ(M) ≥ γ.

Let D a distribution over γ-mod-uSVPN instances. The (D, γ)-mod-uSVPN ,mod
2 problem asks,

given as input a sample (B, I) from D, to recover a densest rank-1 submodule of the module
spanned by (B, I).

The variant γ-wc-mod-uSVPN ,mod
2 asks to solve this problem for any γ-mod-uSVPN instance.

The γ≈-wc-mod-uSVPN ,mod
2 variant is the restriction of γ-wc-mod-uSVPN ,mod

2 to the instances
of γ-mod-uSVPNwhose spanned modules M satisfy γ(M) ∈ [γ, γ · (1 + 1/d)].

Note that worst-case wc-mod-uSVPmod
2 reduces to wc-mod-uSVPN ,mod

2 as the existence of a
short non-zero vector implies the one of a dense rank-1 module. Similarly, mod-uSVPN ,mod

2 reduces
to mod-uSVPmod

2 with a loss of a (
√
d∆

1/d
K) factor in the parameters, thanks to Minkoswki’s theo-

rem. To prove the third statement of Theorem V.6.1, it hence suffices to reduce wc-mod-uSVPN ,mod
2 to

mod-uSVPN ,mod
2 for distribution Dmod-uSVP2

γ . The result follows from Lemmas V.6.5 and V.6.7.
The first lemma states that to solve γ-wc-mod-uSVPN ,mod

2 (in which the gap is only bounded
from below), then it suffices to solve γ≈-wc-mod-uSVPN ,mod

2 (in which the gap is almost known).
It relies on sparsification.

Lemma V.6.5 (Assuming ERH). Let γ, γ′ > 1 satisfying γ′ ≥ 2 log(∆K)
O(1/d) · γ. Then the

problem γ′-wc-mod-uSVPN ,mod
2 reduces to γ≈-wc-mod-uSVPN ,mod

2 . The reduction runs in time
polynomial in (log∆K)O(1) and its input bitsize and succeeds with probability Ω(1/(d2+log∆K)).

Using the Rényi divergence, it is possible to relate the success probability of an algorithm to-
wards solving mod-uSVPN ,mod

2 for samples from Dmod-uSVP2
γ with the same probability for Dmod-uSVP2

γ′ ,
when γ and γ′ are sufficiently close.

Lemma V.6.6. Let γ, γ′, γ′′ > 1 with γ′ ∈ γ ·[1, 1+1/d] and γ′′ = γ/(d∆
1/d
K)O(1). Then any algo-

rithm that solves (Dmod-uSVP2
γ , γ′′)-mod-uSVPN ,mod

2 with probability ε also solves (Dmod-uSVP2

γ′ , γ′′)-
mod-uSVPN ,mod

2 with probability Ω(ε2).

112 CHAPTER V. ON MODULE UNIQUE-SVP AND NTRU

Equipped with the latter result, we are now able to state the worst-case to average case
component of the reduction.

Lemma V.6.7 (Assuming ERH). Let γ, γ′, γ′′ > 1 with γ′ = γ·(d∆1/d
K)O(1) and γ′′ = γ/(d∆

1/d
K)O(1)

. Then there is a reduction from γ≈-wc-mod-uSVPN ,mod
2 to (Dmod-uSVP2

γ′ , γ′′)-mod-uSVPN ,mod
2 .

The reduction runs in time polynomial in log∆K and the input bitsize, and if the (Dmod-uSVP2

γ′ , γ′′)-
mod-uSVPN ,mod

2 oracle succeeds with probability ε ≥ 2−o(d), then the reduction succeeds with
probability εO(1).

Chapter VI

Conclusion and Perspectives

VI.1 Summary of Contributions

We give a summary of the contributions of this manuscript in Figure VI.1. An arrow from A
to B means that A reduces to B, dashed arrows indicate quantum reductions and blue arrows
are contributions of this work. An arrow with a star means that the reduction needs a id-HSVP
oracle.

Worst-case Average-case

mod-uSVP2

NTRU avg-NTRU

avg-mod-uSVP2

id-HSVP U(P)-id-HSVP

[PS21] [PS21]

⋆

⋆

Figure VI.1: Summary of the reductions proven in this manuscript.

Overall, in this thesis, we worked in the direction of giving a broader understanding of struc-
tured lattice problems. We worked on low-rank modules, i.e., with rank 1 or 2.

On id-HSVP. We gave a general reduction from id-HSVP on ideals to id-HSVP on their in-
verses. More precisely, we showed that (up to solving id-HSVP on uniform small-norm integral
ideals), solving id-HSVP on a set of ideals and solving it on their inverses is computationally the
same. This implies, in particular, that solving SVP on random small prime ideals is enough to
solve it for any ideal of a given number field (using the reduction of [Gen09]). This result can
be seen in two ways: the “attacker way” which is that in order to solve id-HSVP, only focusing
on prime ideals of small norm is enough, or the “protocol-designer way”, that such “algebraically
natural” distribution of ideals yields hard SVP instances.

This result should not be seen, in our opinion, as a security statement, since cryptographic
protocols based on id-HSVP are not really the ones that are used in practice now, and (to our

113

114 CHAPTER VI. CONCLUSION AND PERSPECTIVES

knowledge) no attack on id-HSVP has been used to break protocols whose security relies on
related problems, such as Ring-SIS.

The reduction of [PS21] and our result yield a new distribution over NTRU instances with
polynomial modulus whose security is based on id-HSVP in the worst-case, namely the distri-
bution yielded by sampling a random prime ideal and running the reduction of [PS21]. This
distribution is not suited for cryptographic purposes yet, since a short vector in the random ideal
should be sampled along with it, in order to be used as a private key.

On mod-uSVP2 and NTRU. We showed that the problems NTRU and mod-uSVP2 are compu-
tationally equivalent for some range of parameters. This indicates that the biggest particularity
of NTRU modules compared to other more generic modules are their gap: NTRU modules are
representative of generic mod-uSVP2 modules. This gives an indication about the fact that
the NTRU problem is not “ad hoc”, in the sense that it is closely related to other more generic
module-lattice security problems.

We proposed a worst-case to average-case self-reduction for mod-uSVP2 using id-HSVP oracle
calls. The average-case distribution over mod-uSVP2 can efficiently be sampled. This, along with
the previous reduction, gives a new distribution over NTRU instances.

Understanding the gap between rank-1 and rank-2 modules. Taking a step back, work-
ing on mod-uSVP2 can be seen as working on modSVP instances whose difficulty lies between
the rank-1 and the rank-2 cases. As said in introduction, there seems to be a big gap of difficulty
between rank-1 and rank-2 modSVP. When the gap of a rank-2 module M is larger than 2O(d)

(where d is the degree of the underlying number field), the LLL algorithm allows finding the
densest submodule N of M , and finding a short vector in M reduces to finding a short vector
in N , which can be done with a call to a id-HSVP oracle. In the other direction, 1-mod-uSVP2 is
exactly modSVP2. The γ-mod-uSVP2 problem then gives a difficulty gradient between id-HSVP
and modSVP2.

VI.2 Perspective and open problems

Understanding and improvement of the reductions of this work. The reductions pre-
sented Figure VI.1 do not compose, since the distribution yielded by sampling random ideals and
applying [PS21] has no reason to match with the distribution obtained from taking a mod-uSVP2

instance from Dmodule
B,γ and applying the mod-uSVP2 to NTRU reduction. In particular, in order

to work in polynomial-time, the reduction of Theorem V.4.1 needs q to be exponential in the de-
gree of the field. A possible improvement on our results would be to study discrepancies between
the two distributions. A first step could be to try to extend the reduction of Theorem V.4.1 to
smaller values of q (e.g., q = poly(d)).

A better understanding of the difference between those distributions could also lead to re-
moving the id-HSVP oracle call used in the reduction from the average-case mod-uSVP2 to
average-case NTRU.

Find how to efficiently sample hard NTRU instances. As said before, in order to use
the NTRU distribution described in Corollary IV.6.2 (DA,q

NTRU) in a cryptographic context, one
would have to sample the associated prime ideal along with a small vector in it. Currently,
the only way to do it is to use a factoring oracle (and hence a quantum computer), which
is not of interest in the post-quantum cryptographic setting, where the protocols should not
require a quantum computer. An improvement compared to our work would be to sample such

VI.2. PERSPECTIVE AND OPEN PROBLEMS 115

distribution without having to factor integers, which could be done in two different ways: either
by sampling a prime ideal along with a small vector in it without factoring oracle (said otherwise,
implementing a function such as SampleWithTrap without quantum computers); or by relating
the distribution DA,q

NTRU and the more classical NTRU distribution used in cryptography (where h
is computed from f and g that are sampled beforehand). Maybe ways of sampling f and g could
be found such that the distribution of h = g/f mod q would relate to the distribution described
in Corollary IV.6.2.

Another direction in sampling hard NTRU instances would be to understand how to ran-
domize an NTRU instance h in a reversible way. This would lead to a worst-case to average-case
reduction for NTRU without having to rely on intermediate problems.

Study other distributions for modSVP instances. The distribution Dmodule
B,γ of Defini-

tion V.5.1 is a natural distribution over the set of mod-uSVP2 instances with gap approxi-
mately γ, in the sense that almost all elements composing the mod-uSVP2 instances are sampled
from a uniform distribution. This kind of distribution could be generalized to distributions over
other kinds of module lattices.

In the same way that the set of all rank-n lattices is isomorphic to the set GLn(R)/GLn(Z),
the set of module-lattices of rank k and norm 1 is isomorphic to the set{

(B, I), B ∈ GLk(KR), I ∈ (IdLat0K)k,det(B) = 1
}
/ ∼,

where (B, I) ∼ (B′, I′) if they span the same module. Even if it can be proven that this
set is not compact, it is locally compact. It would be interesting to study the link between
(rounding of) Haar distributions on compact subsets of it and more computationally friendly
distributions such as Module-SIS modules [LS15]. A first step could be to study the link between
the distribution Dmodule

B,γ and the Haar distribution over the set of module lattices of gap γ.

Generalization to mod-NTRU. The problem mod-NTRUm,k has been first introduced in
2019 [CKKS19] as a generalization of NTRU: instead of taking h = g/f mod q, the public key is
a matrix H ∈ OK

m×k satisfying H = F−1 ·G mod q for F ∈ OK
m×m and G ∈ OK

m×k small-
norm matrices. It has a natural interpretation in terms of modules lattices of rank m + k, but
its link standard problems about them has not been widely studied yet. It would be interesting
to study the place of mod-NTRUm,k relatively to other module lattices problems. The first
reduction to generalize would be the one of [PS21]. We think that it might be generalized to a
reduction from mod-SIVPm to mod-NTRUm,k (the analogue of id-HSVP for high rank modules
is mod-SIVP). The second reduction to generalize would be the one presented in this manuscript,
namely a reduction from mod-uSVP2 to generalizations of mod-NTRU. It should be noted that,
in contrast with mod-uSVP2, the module associated with mod-NTRUm,k has m short vectors
inside of it. A more subtle control over the parameters of the module is to be expected.

Other computational problems relying on module lattices. In 2022, a new family of
lattice-based computational problems is proposed by Ducas and van Woerden [DW22], the Lat-
tice Isomorphism Problem, which asks to decide whether two bases span the same lattice up to
rotation. Soon after, a module version is proposed to be used in practice in the context of sig-
natures [DPPW22]. This module version (in the rank-2) was cryptanalysed recently [MPPW24]
in the case of real number fields, and its analysis is still an active research question.

It would be interesting to relate LIP (respectively Module-LIP) to more standard lattices
(respectively module-lattices) problems.

116 CHAPTER VI. CONCLUSION AND PERSPECTIVES

Better bounds on the error of NK(·). This last direction has far fewer cryptographic
implications than the others, but nevertheless raises my curiosity. The bound on the error on
the approximation NK(X) ∼ ρK · X depends on X1−η with η = Θ(1/ ln(d)). This choice of η
appears in the proof in order to balance the bound of Theorem III.1.8. It would be interesting
to see if η can be taken to go to zero slower (or even η = Ω(1)), or to see if one can reach
better bounds by constraining the considered field (Galois, or even Abelian). It would also be
interesting to characterize families of fields where using the heavy machinery of Chapter III is
not necessary. For example to find fields where good bounds on ρK or ζK(2) are known (for
example, it is known that ζK(2) is bounded when K is a power-of-two cyclotomic field [SS13,
Lemma 4.2]).

Bibliography

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[ABD16] M. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched NTRU
assumptions. In CRYPTO, 2016.

[ABD+19] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. Crystals-kyber algorithm specifications and
supporting documentation. NIST PQC Round, 2019.

[AD17] M. R. Albrecht and A. Deo. Large Modulus Ring-LWE ≥ Module-LWE. In ASI-
ACRYPT, 2017.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. STOC, 1996.

[Ajt98] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In STOC, 1998.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In STOC, New York, NY, USA, 2001.

[Ale09] AlexanderAlUS. Graphen.jpg, 2009. [https://commons.wikimedia.org/wiki/
File:Graphen.jpg; accessed 20-08-2024].

[ALNS20] D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide reduction,
revisited - filling the gaps in SVP approximation. In CRYPTO, 2020.

[Apo98] T. M. Apostol. Introduction to analytic number theory. 1998.

[AR05] D. Aharonov and O. Regev. Lattice problems in NP
⋂

coNP. Journal of the ACM,
2005.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 1986.

[Bac90] E. Bach. Explicit bounds for primality testing and related problems. 1990.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Math Ann, 1993.

[BCLV17] D. Bernstein, C. Chuengsatiansup, T. Lange, and C. v. Vredendaal. NTRU prime:
reducing attack surface at low cost. SAC, 2017.

117

 https://commons.wikimedia.org/wiki/File:Graphen.jpg
 https://commons.wikimedia.org/wiki/File:Graphen.jpg

118 BIBLIOGRAPHY

[BDPW20] K. Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-reducibility of
Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.

[BEP22] K. Boudgoust, G. E., and A. Pellet-Mary. Some easy instances of Ideal-SVP and
implications on the partial Vandermonde knapsack problem. In CRYPTO, 2022.

[BL94] J. A. Buchmann and H. W. Lenstra. Computing maximal orders and factoring over
Zp. Preprint, 1994.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In STOC, 2013.

[Boe22] K. Boer. Random Walks on Arakelov Class Groups. PhD thesis, Leiden University,
2022. Available on request from the author.

[BS96] E. Bach and J. O. Shallit. Algorithmic Number Theory: Efficient Algorithms. MIT
Press, 1996.

[BST+20] M. Bhargava, A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman, and Y. Zhao.
Bounds on 2-torsion in class groups of number fields and integral points on elliptic
curves. Journal of the AMS, 2020.

[BSW16] S. Bai, D. Stehlé, and W. Wen. Improved reduction from the bounded distance
decoding problem to the unique shortest vector problem in lattices. In ICALP,
2016.

[CDPR16] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators of
principal ideals in cyclotomic rings. In EUROCRYPT, 2016.

[CDW17] R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class relations and
application to Ideal-SVP. In EUROCRYPT, 2017.

[CDW21] R. Cramer, L. Ducas, and B. Wesolowski. Mildly short vectors in cyclotomic ideal
lattices in quantum polynomial time. J ACM, 2021.

[CJL16] J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and cryptanal-
ysis of the GGH multilinear map without a low-level encoding of zero. LMS Journal
of Computation and Mathematics, 2016.

[CKKS19] J. Cheon, D. Kim, T. Kim, and Y. Son. A new trapdoor over module-NTRU lattice
and its application to ID -based encryption. Cryptology ePrint Archive, Paper
2019/1468, 2019. URL https://eprint.iacr.org/2019/1468.

[Coh93] H. Cohen. A course in computational algebraic number theory. Springer, 1993.

[Coh00] H. Cohen. Advanced Topics in Computational Number Theory. Springer, 2000.

[CS97] D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In EUROCRYPT, 1997.

[DPPW22] L. Ducas, E. W. Postlethwaite, L. N. Pulles, and W. v. Woerden. Hawk: Module
LIP makes lattice signatures fast, compact and simple. (2022/1155), 2022. URL
https://eprint.iacr.org/2022/1155. Publication info: Preprint.

[DW22] L. Ducas and W. v. Woerden. On the lattice isomorphism problem, quadratic forms,
remarkable lattices, and cryptography. In EUROCRYPT, 2022.

https://eprint.iacr.org/2019/1468
https://eprint.iacr.org/2022/1155

BIBLIOGRAPHY 119

[Emd] P. v. Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Tecnical Report, Department of Mathematics, University
of Amsterdam.

[FP85] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length
in a lattice , including a complexity analysis. Mathematics of Computation, 1985.

[FPS22] J. Felderhoff, A. Pellet-Mary, and D. Stehlé. On module unique-SVP and NTRU.
In ASIACRYPT, 2022.

[FPSW23] J. Felderhoff, A. Pellet-Mary , D. Stehlé, and B. Wesolowski. Ideal-SVP is hard for
small-norm uniform prime ideals. In TCC, 2023.

[Fri89] E. Friedman. Analytic formulas for the regulator of a number field. Inventiones
mathematicae, 1989.

[FS10] C. Fieker and D. Stehlé. Short bases of lattices over number fields. In Algorithmic
Number Theory, 2010.

[Gal12] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University
Press, 2012.

[GAL13] M. Gil, F. Alajaji, and T. Linder. Rényi divergence measures for commonly used
univariate continuous distributions. Inform Sciences, 2013.

[Gee14] Geek3. mplwp_lambert_w_branches.svg, 2014. [https://commons.wikimedia.
org/wiki/File:Mplwp_lambert_W_branches.svg; accessed 25-07-2024].

[Gen09] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford Uni-
versity, 2009.

[Gen10] C. Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, 2010.

[GMSS99] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors. Information
Processing Letters, 1999.

[GN08] N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality.
In STOC, 2008.

[GNR10] N. Gama, P. Q. Nguyen, and O. Regev. Lattice Enumeration Using Extreme Pruning.
2010.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public key cryp-
tosystem. In ANTS, 1998.

[HPS11] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In CRYPTO, 2011.

[HS07] G. Hanrot and D. Stehlé. Improved analysis of kannan’s shortest lattice vector
algorithm. In CRYPTO 2007, 2007.

 https://commons.wikimedia.org/wiki/File:Mplwp_lambert_W_branches.svg
 https://commons.wikimedia.org/wiki/File:Mplwp_lambert_W_branches.svg

120 BIBLIOGRAPHY

[Kan87] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research, 1987.

[KF17] P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched NTRU
parameters. In EUROCRYPT, 2017.

[Kho06] S. Khot. Hardness of approximating the shortest vector problem in high ℓp norms.
Journal of Computer and System Sciences, 2006.

[Lan13] S. Lang. Algebraic number theory. Springer, 2013.

[LDK+20] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé,
and S. Bai. Crystals-dilithium. Algorithm Specifications and Supporting Documen-
tation, 2020.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math Ann, 1982.

[LM06] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP, 2006.

[Lou00] S. Louboutin. Explicit bounds for residues of Dedekind zeta functions, values of
L-functions at s= 1, and relative class numbers. Journal of Number Theory, 2000.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT, 2010.

[LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, and A. Wallet. An LLL algorithm for module
lattices. In ASIACRYPT, 2019.

[LS15] A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices.
Design Code and Cryptography, 2015.

[Mai00] C. Maire. On infinite unramified extensions. Pacific Journal of Mathematics, 2000.

[MG02] D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryptographic
perspective. Springer, 2002.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions from worst-case complexity assumptions. In FOCS, 2002.

[Mic08] D. Micciancio. Efficient reductions among lattice problems. SODA ’08, 2008.

[Mic18] D. Micciancio. On the hardness of learning with errors with binary secrets. Theory
of Computing, 2018.

[MP13] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In
CRYPTO 2013, 2013.

[MPPW24] G. Mureau, A. Pellet-Mary, G. Pliatsok, and A. Wallet. Cryptanalysis of Rank-2
Module-LIP in totally real number fields. In EUROCRYPT, 2024.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian
measures. Foundations of Computer Science, 2004.

BIBLIOGRAPHY 121

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 2007.

[MV13] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. SIAM Journal on
Computing, 2013.

[Nam] N. Nam. Lattice challenge - SVP challenge. [https://latticechallenge.org/
svp-challenge/; accessed 06-09-2024].

[Neu13] J. Neukirch. Algebraic number theory. Springer, 2013.

[NIST] I. T. L. Computer Security Division. Selected algorithms 2022 - post-
quantum cryptography, 2022. URL https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[Pei16] C. Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 2016.

[PHS19] A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices with pre-
processing. In EUROCRYPT, 2019.

[PML21] C. Porter, A. Mendelsohn, and C. Ling. Subfield algorithms for Ideal- and Module-
SVP based on the decomposition group. IACR Cryptol. ePrint Arch., 2021.

[PR06] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In TCC, 2006.

[PRS17] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE
for any ring and modulus. In STOC, 2017.

[PS21] A. Pellet-Mary and D. Stehlé. On the hardness of the NTRU problem. In ASI-
ACRYPT, 2021.

[PT21] D. Platt and T. Trudgian. The Riemann hypothesis is true up to 3 · 1012. Bulletin
of the London Mathematical Society, 2021.

[PXWC21] Y. Pan, J. Xu, N. Wadleigh, and Q. Cheng. On the ideal shortest vector problem
over random rational primes. In EUROCRYPT, 2021.

[Rad59] H. Rademacher. On the Phragmén-Lindelöf theorem and some applications. Math-
ematische Zeitschrift, 1959.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 1987.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Mathematical Programming, 1994.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In FOCS, 1994.

 https://latticechallenge.org/svp-challenge/
 https://latticechallenge.org/svp-challenge/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

122 BIBLIOGRAPHY

[Sim23] A. Simonič. Estimates for L-functions in the critical strip under GRH with effective
applications. Mediterranean Journal of Mathematics, 2023.

[Sit10] B. D. Sittinger. The probability that random algebraic integers are relatively r-
prime. J Number Theory, 2010.

[SS13] D. Stehlé and R. Steinfeld. Making NTRUEncrypt and NTRUSign as secure as
standard worst-case problems over ideal lattices. In EUROCRYPT, 2013.

[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In ASIACRYPT, 2009.

[Ste15] N. Stephens-Davidowitz. Dimension-preserving reductions between lattice problems.
Available at http://noahsd.com/latticeproblems.pdf, 2015.

[Ten95] G. Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres :
Cours et exercices. Dunod, 1995.

[Web08] H. Weber. Lehrbuch der algebra, vol. II. Vieweg und Sohn, Braunschweig, 1908.

http://noahsd.com/latticeproblems.pdf

Appendix A

Appendices of Chapter II

A.1 Missing Proofs

A.1.1 Proof of Lemma II.2.12

Let ζ ′ ∈ E sampled from the centered normal law with standard deviation d−3/2, z′ = exp(ζ ′).
We use the notations from [BDPW20] and instantiate [BDPW20, Theorem 3.3] with ς = d−3/2,
ε = 2−d, N = 1 and

k =
Θ(d log d) + log

(
Vol(Pic0K)

)
log d

.

By the log-unit lattice smoothing analysis from [BDPW20, Appendix B.1], the condition on N
in [BDPW20, Theorem 3.3] is satisfied. Now, note that the bound on Vol(Pic0K) in [BDPW20,
Lemma 2.3] implies that k ≤ O(d+ log∆K/ log d). Therefore, our lower bound on B implies the
one in [BDPW20, Theorem 3.3]. By [BDPW20, Theorem 3.3], we deduce that the distribution of
the projection of z′·p/N 1/d(p) into Pic0K is within 2−d statistical distance from U(Pic0K), implying
by Gaussian tail-bounds that the distribution of Exp(ζ) · p/N 1/d(p) is within 2−Ω(d) statistical
distance from U(Pic0K). The proof can be completed by using [BDPW20, Lemma 2.7].

A.1.2 Equivalence of the conditions in Definition II.3.3

Assume that N is maximal for the inclusion. Let m = rank(M) and k = rank(N) and
write N =

∑
i∈[k] ciJi. By [FS10, Theorem 4], there exists a pseudo-basis (bi, Ii)i∈[m] of M

such that spani∈[k](biIi) = spani∈[k](ciJi) = span(N). By maximality of N this implies that
N =

∑
i∈[k] bi ·Ii. Taking N ′ =

∑
i>k bi ·Ii allows to conclude that M = N+N ′ and rank(M) =

rank(N) + rank(N ′).
Now, assume that there is a module N ′ with M = N + N ′ and rank(M) = rank(N) +

rank(N ′). As N ⊆ M , we have N ⊆ M ∩ spanK(N). Further, by the rank equality, we must
have N ′ ∩ spanK(N) = {0}. Then we have

N ⊆M ∩ spanK(N) = (N +N ′) ∩ spanK(N) = N ∩ spanK(N) ⊆ N.

Finally, assume that N = M ∩ spanK(N). Let P with rank(P) = rank(N) and N ⊆ P .
We have that spanK(N) ⊆ spanK(P), and hence spanK(N) = spanK(P) by equality of the
dimensions. Then we have

N ⊆ P ⊆M ∩ spanK(P) = M ∩ spanK(N) = N.

This completes the equivalency proof.

123

124 APPENDIX A. APPENDICES OF CHAPTER II

A.1.3 Proof of Lemma II.3.4

Let ((I1, b1), (I2, b2)) be a pseudo-basis of M and write N = s1J1 and N ′ = s2J2. There
exists Z ∈ K2×2 such that S = BZ. Assume by contradiction that spanK(N ′) ̸= spanK(N).
In that case, the matrix Z has rank 2, the vectors s1 and s2 are KR-linearly independent
and M ′ = s1J1 + s2J2 is a submodule of M . By using a QR-factorization S = QR, one sees
that det(S) = N (r11)N (r22) and N (M ′) ≤ N (N)N (N ′). We hence obtain:

N (M) ≤ N (M ′) ≤ N (N)N (N ′) <

√
N (M)

γd

(
γd
√
N (M)

)
= N (M),

which gives a contradiction. We thus have that spanK(N ′) = spanK(N). Definition II.3.3 allows
us to conclude that N ′ ⊆ N .

Assume now that γ > 1. Then the first statement implies that the densest rank-1 submod-
ule N is unique. Let b ∈ M with 0 < ∥b∥ < γ · N (M)1/(2d). Then bOK is a rank-1 submodule
of M and

N (bOK) ≤ ∥b∥d < γd ·
√
N (M).

By the above, we must have bOK ⊆ N , which is equivalent to b ∈ N .

A.1.4 Proof of Lemma II.3.5

Let k denote the rank of M . By Minkowski’s theorem, there exists a non-zero vector in M
of ℓ2-norm ≤

√
kd · (detM)1/(kd). By considering the rank-1 module that it spans, we obtain

that λN1 (M) ≤ (kd)d/2 · (detM)1/k. Now, by using Minkowski’s theorem again, we obtain that
all rank-1 submodules of norm ≤ (kd)d/2 · (detM)1/k contain a non-zero vector of M of ℓ2-
norm ≤

√
kd ·∆1/(2d)

K · (detM)1/(kd). By discreteness of M , the non-zero vectors {si}i≥1 of M
with ℓ2-norm ≤

√
kd · ∆1/(2d)

K · (detM)1/(kd) form a finite set. Now, we can consider all the
maximal rank-1 submodules of M containing at least one of these vectors. By Condition 3 of
Definition II.3.3, two maximal rank-1 submodules of M containing the same vector si must be
equal, hence there are only finitely many such submodules. This allows us to conclude that the
infimum corresponding to λN1 (M) is over a finite set and must be reached.

A.1.5 Proof of Lemma II.1.12

The algorithm from Lemma II.1.12 is obtained by running the algorithm from Lemma II.1.11
until the output v satisfies ∥v − u∥ < ς ·

√
ln(1/ε) + 4n. From Corollary II.1.10, this event

happens with probability at least 1 − ε ≥ 1/2, hence the algorithm resamples at most twice
on average, and the output distribution is within statistical distance ≤ ε from DL,ς,u (the
distribution before rejection). Finally, note that

√
ln(2n+ 4)/π ≤

√
n for all n ≥ 1, hence

we can indeed apply Lemma II.1.11, and we conclude that the expected running time of the
algorithm is polynomial.

Appendix B

Appendices of Chapter III

B.1 Analysis proofs

The equation y · ey = x has a solution for any x ∈ (−1/e,∞). These solutions are given by the
branches of the Lambert-W function (see Fig. B.1), which has two branches for x ∈ (−1/e, 0),
satisfying W−1(x) ∈ [2 ln(−x), ln(−x)] and W0(x) ∈ [−1, 0] for x ∈ (−1/e, 0). For x ≥ 0, there is
only one solution W (x) := W0(x) satisfying W (x) ∈ [ln(1 + x)/2, ln(1 + x)]. We have that

ln(−Wi(x)) = ln(−x)−Wi(x). (B.1)

for any x ∈ (−1/e, 0) and i ∈ {−1, 0}.

B.1.1 Proof of Lemma III.1.4

We bound the function

f(x) =
(ln lnx)d

xα

Figure B.1: Lambert-W function (figure borrowed from [Gee14]).

125

126 APPENDIX B. APPENDICES OF CHAPTER III

for x ∈ (e,∞). Note that f is not defined if x < e. Let g(x) = d ln ln(x)−αx. The maximum of g
is reached for x0 = exp(W (d/α)). Let us bound g(x0) using the bounds on W (x) for positive x.

g(x0) = d ln

(
W

(
d

α

))
− α exp

(
W

(
d

α

))
≤ d ln

(
ln

(
1 +

d

α

))
.

This last bound and the fact that f = exp ◦g ◦ ln allows us to conclude.

B.1.2 Comparisons between exp(ln(x)α ln ln(x)) and xε

Lemma B.1.1. Let d ≥ 2 be an integer and α(d) ∈ (0, 1/4) satisfying α(d) = Θ(1/ ln(d)). It
holds that,

exp
(
(lnx)α(d) · ln lnx

)
≤ B̃d · x

α(d)
96d

for any x > e, and for some B̃d satisfying

ln B̃d ≪ ln(d).

Proof. Let ε(d) = η(d)/(96d). For the sake of readability, we will omit the dependence in d
for η(d) and ε(d) and just write η and ε. To show the inequality of Lemma B.1.1, we bound the
function

f(x) =
exp((lnx)α · ln ln(x))

xε
= exp (ln(x)

α · ln ln(x)− ε · ln(x))

for x ∈ (0,∞). Let g(x) = xα · ln(x)− ε · x. The derivative of this function is

g′(x) = xα−1 + αxα−1 · ln(x)− ε,

whose zeros are (see Lemma B.1.2 below):

xi = −
(

α

1− α
· 1
ε
·
(
Wi

(
− exp

(
−1− α

α

)
· ε · 1− α

α

))) 1
1−α

for i ∈ {−1, 0}. We have x0 < x−1. The function g tends to −∞ when x tends to +∞ and to 0
when x tends to 0, which implies that its maximum is reached at x = x−1. Note that

xα−1
−1 + xα−1

−1 · α · ln(x−1) = ε

is equivalent to

xα−1
−1 ln(x1)− ε =

1

α
·
(
(1− α)ε− xα−1

−1
)
.

For the sake of readability, we let α′ = α/(1−α) = Θ(1/ ln(d)). Note that α = α′/(1+α′) and
that 1/(1−α) = 1+α′. We bound g(x−1) using the previous equality and the fact that W−1(x) ≥
2 ln(−x) for x ∈ (−1/e, 0):

g(x−1) = x−1 ·
(
xα−1
−1 lnx−1 − ε

)
=

x−1
α
·
(
(1− α)ε− xα−1

−1
)

≤ ε

α′
· x−1 = − ε

α′
·
(
α′

ε
·W−1

(
− exp

(
− 1

α′

)
· ε
α′

))1+α′

≤ 21+α′
·
(
α′

ε

)α′

·
(

1

α′
+ ln

(
α′

ε

))1+α′

≪ dα
′
· (ln(d) + ln(d))

1+α′

≪ ln(d).

B.1. ANALYSIS PROOFS 127

This last bound and the fact that f(x) = exp ◦g ◦ ln allow us to conclude.

Lemma B.1.2. Let α ∈ (0, 1/2) and ε ∈ (0, 1). Let

h(x) = xα−1 + α
ln(x)

x1−α − ε,

defined for x ∈ (0,∞). The function h is zero exactly at x = xi for i ∈ {−1, 0} with

xi = −
(

α

1− α
· 1
ε
·
(
Wi

(
− exp

(
−1− α

α

)
· ε · 1− α

α

))) 1
1−α

,

where W−1 and W0 are the branches of the Lambert-W function. We have x0 ≤ x−1.

Proof. Let α′ = α/(1 − α) ∈ (0, 1). By the change of variable x̃ = xα−1, proving this result is
equivalent to proving that the function

h̃(x) = x− α′ · x ln(x)− ε,

defined for any x ∈ (0,∞), has two zeros x̃0 and x̃−1 equal to

x̃i = −
ε

α′
·
(
Wi

(
− exp

(
− 1

α′

)
· ε
α′

))−1
.

For the sake of readability, we define y = −ε·exp(−1/α′)/α′. It can be checked that y ∈ (−1/e, 0),
so that x−1, x0, x̃−1 and x̃0 are well-defined. Also, for any x ∈ (−1/e, 0) we have W−1(x) <
W0(x), which gives that x̃−1 < x̃0, and hence x0 < x−1.
First, we prove that h̃ has exactly two zeros. We have that

h̃′(x) = 1− α′ − α′ ln(x),

which is positive on (0, exp((1− α′)/α′)) and negative on (exp((1− α′)/α′),∞). The maximum
of h̃ is then equal to

h̃

(
exp

(
1− α′

α′

))
= α′ · exp

(
1− α′

α′

)
− ε

≥ α′(1 +
1− α′

α′
)− ε

= 1− ε > 0.

Now, since h̃ tends to −ε when x tends to 0 and to −∞ when x tends to +∞, the in-
termediate value theorem implies that h̃ has exactly two zeros, one on (0, exp((1− α′)/α′))
and one on (exp((1− α′)/α′),∞). We now show that those zeros are x̃0 and x̃−1. Note
that ln(−y) = ln(ε/α′)− 1/α′. For i ∈ {−1, 0}, we have that

h̃(x̃i) = −ε−
ε

α′ ·Wi(y)
·
(
1− α′ ln

(ε

α′

)
+ α′ ln(−Wi(y))

)
= −ε− ε

α′ ·Wi(y)
·
(
1− α′ ln

(ε

α′

)
+ α′ ln

(ε

α′

)
− 1− α′Wi(y)

)
= −ε− ε

α′ ·Wi(y)
· (−α′Wi(y)) = 0,

where the second equality holds thanks to Eq. (B.1). This completes the proof.

128 APPENDIX B. APPENDICES OF CHAPTER III

B.2 Proof of Theorem III.1.8

Classical properties of the complex logarithm give that |ζK(s)| ≤ exp(|ln ζK(s)|). Note that if σ
satisfies the assumption of Theorem III.1.8, then we have 2(1− σ) ≤ 4η = 1/(4 ln(d)). The two
previous facts, along with Theorem B.3.1 and Lemma B.1.1, imply that for any s = σ+ it with σ
and t satisfying the conditions of Theorem III.1.8, we have

|ζK(s)| ≤ exp
(
6d · ln(cK |t|)2(1−σ) · ln ln(cK |t|)

)
≤ exp

(
6d · ln(cK |t|)4η · ln ln(cK |t|)

)
≤
(
B̃d · (cK |t|)

η
24d

)6d
= B̃6d

d · c
η/4
K · |t|η/4.

We set B(K) = B̃6d
d · c

η/4
K . The value of cK and the bound on ln B̃d allow us to conclude.

B.2.1 Proof of Lemma III.1.6

The class number formula gives that

ρK =
2dR · (2π)dC ·RK · |ClK |

|µK | ·
√
|∆K |

where RK is the regulator, µK is the set of roots of unity of K and ClK the class group of K.
By [Fri89, Theorem B] we have that RK/|µK | ≥ 0.08. It also holds that 2dR · (2π)dC ≥ 2d ≥ 8
and |ClK | ≥ 1, hence the claimed result.

B.3 Bounds for |ln ζK |

Theorem B.3.1 (Assuming ERH). Let s = σ + it. Assume that |t| ≥ T0 and σ ∈ It. Then

|ln ζK(s)| ≤ 6d · (ln(cK |t|))2(1−σ) · ln ln(cK |t|)

where ln ζK(s) denotes the complex logarithm of ζK(s)1.

Proof. This theorem is a subset of [Sim23, Corollary 3], with modified constants. We now
prove that our choice of constants is sound. It is stated in [Sim23, Corollary 3] that for T ′0 =
9650 + 103 log log(cK), s = σ + it satisfying |t| ≥ T ′0 and σ ∈ It, assuming the ERH (their
condition is more precise, but implied by the ERH), it holds that

|ln ζK(s)| ≤ 5.44d · (b1 · ln(cK |t|))2(1−σ) · ln ln(cK |t|),

where b1 ∈ (0.949, 0.95). Since T0 ≥ T ′0, the theorem is valid for |t| ≥ T0. One can check
that 5.44 · b2(1−σ)1 ≤ 6 for any σ ∈ It.

1It is well-defined for σ ∈ It, by the ERH.

Appendix C

Appendices of Chapter IV

C.1 Proof of Lemma IV.2.3

The SampleWithTrap algorithm is given below, as Algorithm C.1.1. It relies on an ideal-
factoring oracle which can be implemented either in quantum polynomial time or in classical
sub-exponential time. We prove the following statement, which can be viewed as a reformulation
of Lemma IV.2.3. (Recall that factoring ideals reduces in polynomial time to factoring integers.)

Algorithm C.1.1 SampleWithTrapA,B

Input: Integers 2 ≤ A ≤ B, a real δ ∈ (0, 1] and a basis BI of a non-zero ideal I.
Oracle: F for factoring integral ideals.
Output: (p, w) with p ∈ PA,B , and w ∈ Ip.

1: Set ε = δ/(8B).
2: Set M =

√
4 + ln(3/ε)/d.

3: Set ς = max(
√
d · ∥B∗I ∥, ∆

1/d
K ·B1/d · N (I)1/d ·

√
ln(3/ε)).

4: Set u = Mς · 1 with 1 = (1, . . . , 1)T ∈ Rd.
5: Set kmax = d · logA(2M ·

√
d · N (I)−1/d).

6: repeat
7: Sample w ← D̃BI ,ς,u using Lemma II.1.12 with error bound ε.
8: Compute a = I−1 · (w).
9: Factor a using F and let S be the set of distinct factors of a in PA,B .

10: until S ≠ ∅.
11: Sample p uniformly in S.
12: With probability 1− |S|·N (p)

kmax·B , go to Step 6.

13: Return (p, w)

Lemma C.1.1. Let F be an ideal-factoring oracle. Given as inputs two integers 2 ≤ A < B, a
real δ ∈ (0, 1] and the basis BI of a non-zero ideal I, SampleWithTrap outputs (p, w) such that

• the distribution of p is at statistical distance δ from the uniform distribution on PA,B;

129

130 APPENDIX C. APPENDICES OF CHAPTER IV

• the element w belongs to I · p \ {0} and satisfies ∥w∥ ≤ 2s ·
√
4d+ ln(24B/δ), where

ς = max
(√

d · ∥B∗I ∥, ∆
1/d
K ·B1/d · N (I)1/d ·

√
ln(24B/δ)

)
.

Furthermore, SampleWithTrap runs in expected time polynomial in B/|PA,B |, B/A, log∆K ,
logB, log(1/δ) and in the size of its input.

Proof. We first analyze the running time of SampleWithTrap and then its correctness.
Running time. Observe that every step of the algorithm can be performed in polynomial time.
For Step 7, we use Lemma II.1.12, whose assumptions are indeed satisfied. We further observe
that at Step 12, the rejection probability is always between 0 and 1, hence we can indeed reject
with this probability. Note that we have B ≥ N (p) since p ∈ PA,B . Also, we have |S| ≤
logAN (a). It hence suffices to show that for any non-zero ideal a computed at Step 8, we
have logAN (a) ≤ kmax. From Lemma II.1.12, we know that ∥w − u∥ < ς ·

√
ln(3/ε) + 4d.

As ∥u∥ =
√
d ·M ·ς = ς ·

√
ln(3/ε) + 4d, we have ∥w∥ ≤ 2∥u∥ = 2M ·

√
d ·ς , which in turn implies

that N (w) ≤ ∥w∥d ≤ (2M ·
√
d · ς)d. Hence, we conclude that N (a) ≤ (2M ·

√
d · ς)d · N (I)−1 =

Akmax . This shows that (|S| · N (p))/(kmax ·B) belongs to [0, 1], as desired.
We now study the probability of exiting the outer loop, from Step 6 to Step 12. It is bounded

from below by A/(kmaxB) (since we have |S| ≥ 1 when we exit the inner loop). Hence, the
expected number of iterations of this loop is at most kmax · B/A. Since A ≥ 2, then kmax is
polynomial in d = poly(log∆K), log(ς), log(M) and logN (I−1). From the definition of ς, one
can check that kmax is polynomial in log∆K , logB, log log(1/δ) and the size of the input.

It remains to bound from below the probability of exiting the inner loop, from Step 6 to
Step 10. The proof of this statement is an adaptation of the proof of [Gen09, Lemma 15.2.3].
This probability can be written as:

Pr
w←D̃BI ,ς,u

(
∃p ∈ PA,B : p divides I−1 · (w)

)
=
∑
w∈I

1W (w) · D̃BI ,ς,u(w) (C.1)

where W = ∪p∈PA,B
I · p and 1W (·) is the indicator function of W . For any w ∈ I \ {0}, we have

1W (w) ≥ 1

ln(N (w · I−1))
·
∑

p∈PA,B

p|w·I−1

ln(N (p)).

Indeed, either w /∈ W and the sum on the right is empty, or w ∈ W and the sum on the right
is bounded from above by 1 (since the norm of the product of all the primes dividing w · I−1 is
at most the norm of w · I−1 when w · I−1 is non-zero). Moreover, we have already seen that the
algebraic norm of a = w · I−1 is at most (2M ·

√
d · ς)d · N (I−1), and by assumption we know

that N (p) ≥ A for all p ∈ PA,B . Hence, letting 1I·p(·) be the indicator function of I · p, it holds
that

1W (w) ≥ ln(A)

ln
(
(2M ·

√
d · ς)d · N (I−1)

) · ∑
p∈PA,B

1I·p(w)

=
1

kmax
·
∑

p∈PA,B

1I·p(w),

where kmax is defined as in Step 5.

C.1. PROOF OF LEMMA IV.2.3 131

Before returning to (C.1), note that D̃B,ς,u(0) = 0. Indeed, we have seen that ∥w − u∥ <
M ·
√
d · ς and, by construction, we have ∥u∥ = M ·

√
d · ς. Using the above, we obtain:∑

w∈I
1W (w) · D̃BI ,ς,u(w) =

∑
w∈I\{0}

1W (w) · D̃BI ,ς,u(w)

≥ 1

kmax

∑
w∈I\{0}

∑
p∈PA,B

1I·p(w) · D̃BI ,ς,u(w)

=
1

kmax

∑
w∈I

∑
p∈PA,B

1I·p(w) · D̃BI ,ς,u(w)

=
1

kmax

∑
p∈PA,B

D̃BI ,ς,u(I · p).

From Lemma II.1.12, we know that SD(D̃BI ,ς,u, DI,ς,u) ≤ ε. Hence, it holds that D̃BI ,ς,u(I ·p) ≥
DI,ς,u(I · p) − ε. Moreover, observe that by definition of ς, it holds that for any p ∈ PA,B we
have ς ≥ N (I · p)1/d · ∆1/d

K ·
√
ln(3/ε). Hence, we can apply Corollary II.2.6 and we obtain

that DI,ς,u(p · I) ≥ (1− ε) · N (p)−1 ≥ 1/(2B). By choice of ε, we finally obtain

D̃BI ,ς,u(I · p) ≥
1

2B
− ε ≥ 1

4B
.

Plugging this back in our lower bound on the probability to exit the inner loop, we have

Pr
w←D̃BI ,ς,u

(∃p ∈ PA,B : p divides I−1 · (w)) ≥ 1

kmax

∑
p∈PA,B

1

4B
=

|PA,B |
4B · kmax

.

The expected number of iterations of the inner loop is then ≤ 4kmax ·B/|PA,B |.

Correctness. Let (p, w) be the output of SampleWithTrap on input (A,B, δ,BI). By construc-
tion, we have p ∈ PA,B . Further, as w ∈ I and p|I−1 · (w), we have that w ∈ I · p. The bound
on ∥w∥ comes from the fact that ∥w∥ ≤ 2∥u∥ = 2M ·

√
d · ς . It remains to prove that the

distribution D of the ideal p is within statistical distance ≤ δ/2 from uniform over PA,B .
Let us fix p ∈ PA,B and compute D(p). First, we compute the probability that p is chosen

at Step 11 of the algorithm. The distribution of the element w when exiting of the inner loop
is D̃B,ς,u conditioned on w ∈ W = ∪q∈PA,B

I · q (which is equivalent to S ̸= ∅). Moreover, the
ideal p belongs to S if and only if w ∈ I · q. So the probability that p belongs to S in Step 11 is

Pr (p ∈ S in Step 11) =
D̃B,ς,u(I · p)
D̃B,ς,u(W)

.

Note that the quantity D̃B,ς,u(W) is a fixed and independent of p (and non-zero, since the
algorithm terminates). In the rest of the computation, we will write it p0. After running Step 11,
we obtain

Pr (p is chosen in Step 11) =
D̃B,ς,u(I · p)
|S| · p0

.

By Lemma II.1.12, Corollary II.2.6 and the choice of ς, we know that

D̃B,ς,u(I · p) ∈ [1− ε, 1 + ε] · N (p)−1 + [−ε, ε]
⊆ [1− δ/4, 1 + δ/4] · N (p)−1,

132 APPENDIX C. APPENDICES OF CHAPTER IV

where in the last inequality we used the fact that ε = δ/(8 ·B) ≤ δ/8 · N (p)−1. Combining this
with the equation above, we obtain that

Pr (p is chosen in Step 11) ∈
[
1− δ

4
, 1 +

δ

4

]
· 1

N (p) · |S| · p0
.

Finally, because of the rejection sampling in Step 12, we have

Pr (p is selected after Step 12) ∈
[
1− δ

4
, 1 +

δ

4

]
· 1

N (p) · |S| · p0
· |S| · N (p)

kmax ·B
· 1
p′0

=

[
1− δ

4
, 1 +

δ

4

]
· 1

kmax ·B · p0 · p′0
,

where p′0 is the probability (over the random choice of w, the random choice of p and the rejection
probability of Step 12) that one exists the outer loop.

Overall, we have just proven that there exists some quantity C such that for any p ∈ PA,B ,
it holds that D(p) ∈ [1 − δ/4, 1 + δ/4] · C. Since

∑
p∈PA,B

D(p) = 1, it must be that C ∈[
1

1+δ/4 ,
1

1−δ/4

]
· 1
|PA,B | . It implies that for all p ∈ PA,B ,∣∣∣∣D(p)− 1

|PA,B |

∣∣∣∣ ≤ max

(
1− 1− δ/4

1 + δ/4
,
1 + δ/4

1− δ/4
− 1

)
· 1

|PA,B |
≤ δ

|PA,B |
.

The statistical distance between D and the uniform distribution satisfies

SD
(
D,U(PA,B)

)
=

1

2
·
∑

p∈PA,B

∣∣∣∣D(p)− 1

|PA,B |

∣∣∣∣
≤ δ

2
·
∑

p∈PA,B

1

|PA,B |
=

δ

2
.

This completes the proof.

C.2 Proof of Theorem IV.2.4

In this section, we provide a proof of Gentry’s reduction for SVP, as stated in Theorem IV.2.4.
The proof is similar to the one provided in Gentry’s thesis [Gen09], but we instantiate it directly
with the shortest vector problem, instead of the variant of the bounded distance decoding problem
used in [Gen09].

C.2.1 Balanced-ideal-HSVP

In the proof, we will make use of balanced elements (as defined in Definition IV.2.1). We
introduce the problem ideal-balanced-HSVP, and give a (folklore) proof that this problem is
equivalent to id-HSVP (up to a polynomial loss in the approximation factor). The balanced
version of id-HSVP will be more convenient to use in the following proof.

Definition C.2.1. Let η > 1 and γ ≥ 1. The problem id-BHSVPη
γ asks, given as input a

fractional ideal I, to find a non-zero element x ∈ I such that ∥x∥ ≤ γ · Vol(I)1/d and x is η-
balanced. The problem inv-BHSVPη

γ is the problem id-BHSVPη
γ restricted to inverses of integral

lattices.

C.2. PROOF OF THEOREM IV.2.4 133

Algorithm C.2.1 BalanceElement

Input: The HNF of a fractional ideal I, an element x ∈ I and M > 0.
Output: y ∈ I.
1: Let ς =

√
d · δK · ∥x∥∞.

2: Let BI = ReduceIdeal(I, x).
3: Let t = ς

√
d(M + 1)/2 · 1 with 1 = (1, . . . , 1) ∈ KR.

4: Run Babai’s nearest plane algorithm on (BI , t); let y ∈ I be the output.
5: Return y.

We describe in Algorithm C.2.1 a polynomial-time reduction from id-BHSVP to id-HSVP,
which relies on Babai’s nearest plane algorithm [Bab86].

Lemma C.2.2. Algorithm C.2.1 runs in polynomial time. On input I, x,M with x ∈ I \ {0}, it
outputs y ∈ I \ {0} that is (1 + 2/M)-balanced and satisfies

∥y∥ ≤ (1 +M/2) · d3/2 · δK · ∥x∥∞.

Proof. The running time follows directly from the description of the algorithm. Let y be the
output of Algorithm C.2.1 on input I, x and M . We have, by property of the nearest plane
algorithm (see [Bab86, Theorem 3.1]), that there exist µ1, . . . , µd in [−1/2, 1/2] such that

∥y − t∥∞ ≤ ∥y − t∥ ≤
(∑

i

µ2
i · ∥b∗i ∥

2
)1/2

.

By Lemma II.2.15, we have ∥B∗I ∥ ≤ δK · ∥x∥ ≤ ς. We hence obtain that ∥y − t∥∞ ≤
√
dς/2. As

a result, we have |yi| ∈ [ς
√
dM/2, ς

√
d(M + 2)/2] for all i.

We then have N 1/d(y) ≥ ς
√
dM/2 ≥M/(M + 2)∥y∥∞. The same holds for y−1, which gives

that y is (1 + 2/M)-balanced. Finally, the inequality ∥y∥ ≤
√
d · ∥y∥∞ gives the desired bound

on the norm of y.

Corollary C.2.3. For any γ ≥ 1 and η > 1, there is a Karp polynomial time reduction from
id-BHSVPη

γ′ to id-HSVPγ , where γ′ = γ · δK · d3/2 · η/(η − 1).

Note that the converse reduction holds without any parameter loss, by definition of id-BHSVP.

Proof. Let I be an instance of id-BHSVPη
γ′ , and assume we have an oracle O for id-HSVPγ . Let x

be the output of O on I. We let M = 2/(η − 1) and return y = BalanceElement(I, x,M). The
fact that y is a valid id-BHSVPη

γ′ solution follows from the definition of M and Lemma C.2.2.

Corollary C.2.4. For any constant η > 1, id-BHSVPη
γeasy(η)

can be solved in polynomial time
for γeasy(η) = δK · d3/2 · (η/(η − 1)) · 2d.

Proof. The result follows from Corollary C.2.3, by using the LLL algorithm to solve id-HSVPγ .

134 APPENDIX C. APPENDICES OF CHAPTER IV

C.2.2 Finding a non-trivial solution to inv-HSVP using a P−1
A,B-avg-HSVP

oracle

The reduction from Theorem IV.2.4 is an iterative reduction, which proceeds by iteratively
improving an existing solution with the usage of an oracle solving P−1A,B-avg-id-HSVPγavg . In this
subsection, we focus on the main ingredient of one iteration of the reduction, the SampleSmall
algorithm, presented in Algorithm C.2.2. The objective of this algorithm is, given as input b−1

the inverse of a prime ideal, to find a non-trivial short non-zero vector in b−1. Indeed, since b
is integral, we know that OK ⊆ b−1, so the short non-zero vectors of OK give trivial solutions
to short non-zero vectors in b−1. The objective of the SampleSmall algorithm is to find slightly
shorter vectors than those trivial short vectors lying in OK (which will exist if the norm of b
is large enough). In particular, we would like to obtain x ∈ b−1 \ {0} with ∥x∥ < 1, so that
multiplying by x decrease the euclidean norm. This will be used in the reduction to iteratively
decreases the norm of a short non-zero vector found in our input ideal I.

Algorithm C.2.2 SampleSmallA,B

Input: A basis of an integral ideal b.
Oracles: O for P−1A,B-avg-id-HSVPγavg , F for factoring integral ideals.
Output: x ∈ b−1 or x =⊥.
1: Compute a basis B of b−1 with ∥B∗∥ ≤ δK (using InvertIdeal).
2: Set (p, w) be the output of SampleWithTrapA,B on input (A,B, 2−(d+1),B) (this relies on F).
3: Set v = O(p−1).
4: If v ̸= ⊥, then return v · w.
5: Else, return ⊥.

Theorem C.2.5. Let γavg ≥ 1 and 3 ≤ A < B satisfying B/|PA,B |, B/A ≤ poly(log∆K).
Let O be an oracle solving P−1A,B-avg-id-HSVPγavg with success probability δ ≥ 2−d and let F be
an ideal-factoring oracle.

On input a non-zero integral ideal b and given access to O and F , Algorithm SampleSmallA,B

runs in expected time poly(log∆K , logB, logN (b)), and performs only one call to O and possibly
multiple calls to F for integral ideals of norm poly(log∆K , logB, logN (b)) bits. It outputs x ̸=⊥
with probability ≥ δ/2 and, when this is the case, it holds that x ∈ b−1 \ {0} and

∥x∥ ≤
10γavg(d+ lnB) ·∆1/(2d)

K

A1/d
·max

(
δK ,

(
B ·∆K · N (b−1)

)1/d)
.

Proof. We first focus on the running time of the algorithm. Every step can be performed in
polynomial time. For Step 1, we use Lemma II.2.15 and the fact that b is integral. For Step 2,
we use Lemma IV.2.3. Note that Step 3 is not inside a loop, hence the call to O is performed
only once.

Let us now prove that the algorithm returns an element x ̸=⊥ with probability at least δ/2.
Note that by Lemma IV.2.3, the distribution D of the ideal p given as input to O is within
statistical distance ≤ 2−(d+1) ≤ δ/2 from uniform over PA,B (here we used the lower bound δ ≥
2−d). Since we know that O has success probability δ when its input p−1 is distributed uniformly
in P−1A,B , this proves that the probability that O succeeds in solving id-HSVPγavg in Step 3 of
the algorithm is at least δ − δ/2 ≥ δ/2, as desired.

C.2. PROOF OF THEOREM IV.2.4 135

Finally, let us prove the upper bound on ∥x∥ when x ̸=⊥. In this case, we have x = v ·w and
use the upper bounds on v and on w (from Lemma IV.2.3) to obtain

∥x∥ ≤ ∥v∥ · ∥w∥

≤ γavg ·Vol(p−1)1/d · 2(5d+ lnB + ln(48)) ·max
(
δK ,

(
∆K ·B · N (b−1)

)1/d)
≤

10γavg(d+ lnB) ·∆1/(2d)
K

A1/d
·max

(
δK ,

(
B ·∆K · N (b−1)

)1/d)
,

where we used the fact that B ≥ 3. This completes the proof.

For simplicity, we will use the following corollary, where we use the Extended Riemann
Hypothesis in order to estimate the number of prime ideals in the set PA,B and simplify the
conditions.

Corollary C.2.6 (Assuming ERH). Let γavg ≥ 1 and 3 ≤ A ≤ (∆K)d
O(1)

. Let O be an oracle
solving P−1A,4A-avg-id-HSVPγavg with success probability δ ∈ (0, 1] and let F be an oracle factoring
integral ideals. Let ε ∈ (0, 1) and assume that

A1/d ≥ 10 · γavg · (d+ ln(4A)) ·∆1/d
K · δK · ε−1.

Then there exists an algorithm A that takes as input any integral ideal b with N (b) ≥ 4A and
outputs x ∈ b−1\{0} such that ∥x∥ ≤ ε. If given access to O and F , algorithm A runs in expected
time poly(log∆K , log(N (b)), 1/δ) and calls F on ideals of norm at most poly(log∆K , logN (b))
bits.

Proof. Algorithm A consists in repeatedly running SampleSmallA,B with B = 4A, on input b,
until it outputs x ̸=⊥. Let us prove that A and B satisfy the constraints required in Theo-
rem C.2.5. If A ≤ poly(log∆K), then 4A/|PA,4A| is polynomial. Else, the ERH implies that

4A

|PA,B |
≤ O(lnA) ≤ poly(log∆K).

The claim on the running time of algorithm A and the fact that x ∈ b−1 \ 0 follow from
Theorem C.2.5. Note that Theorem C.2.5 is guaranteed to work only if the success probability δ
of O is at least 2−d. If the success probability is smaller than this quantity, algorithm A simply
runs an SVP solver on ideal b−1 and returns a shortest non-zero vector. This shortest non-zero
vector will have Euclidean norm ≤

√
d ·∆1/(2d)

K · A1/d ≤ ε by assumption on A, and the call to
the SVP solver has a running time 2O(d) = poly(1/δ).

We now bound ∥x∥. From Theorem C.2.5 and by choice of B, we know that

∥x∥ ≤
10γavg(d+ ln(4A)) ·∆1/(2d)

K

A1/d
·max

(
δK ,

(
4A ·∆K · N (b−1)

)1/d)
.

Since N (b) ≥ 4A and δK ≥ λd(OK) ≥ ∆
1/(2d)
K , it holds that (4A ·∆K/N (b))1/d ≤ δK ·∆1/(2d)

K ,
and hence

∥x∥ ≤
10γavg · (d+ ln(4A)) ·∆1/d

K · δK
A1/d

≤ ε.

The last inequality follows from the assumption on A and ε.

136 APPENDIX C. APPENDICES OF CHAPTER IV

C.2.3 Iterating the reduction

In order to prove Theorem IV.2.4, we are going to use the id-BHSVP problem. Recall that the
id-BHSVP problem is equivalent to the id-HSVP problem, up to some polynomial loss, so we
can safely replace id-HSVP by id-BHSVP, which will make our reductions easier to prove. The
lemma below states that if we have an oracle solving P−1A,4A-avg-id-HSVPγavg and an algorithm

solving inv-BHSVPη
γ , then we can create an algorithm solving inv-BHSVPη′

γ′ where γ′ is slightly
smaller than γ and η′ is slightly larger than η (i.e., we can find smaller less balanced vectors in
our ideals). This corresponds to one iteration of the full reduction.

For the whole subsection, we fix γavg ≥ 1, ε ∈ (0, 1) and 3 ≤ A ≤ (∆K)d
O(1)

satisfying:

A1/d ≥ 10 · γavg · (d+ ln(4A)) ·∆1/d
K · δK · ε−1.

Lemma C.2.7 (Assuming ERH). Let γmin = (4A)1/d/(ε·∆1/(2d)
K), γ > γmin and η ∈ (1, γ/γmin].

inv-BHSVPη′

γ′ reduces to inv-BHSVPη
γ and P−1A,4A-avg-id-HSVPγavg

for η′ = η · (1 + 1/d) and γ′ = 2 · d5/2 · δK · ε · γ. If given access to an oracle F factoring integral
ideals, the expected running time of the reduction is polynomial in log∆K , log γ, 1/δ and the size
of its input, where δ is the success probability of the oracle for P−1A,4A-avg-id-HSVPγavg . Moreover,
the oracle F is called on ideals whose norms have a bit-size poly(log∆K , log γ).

Proof. Assume that we are given I = b−1 the inverse of an integral ideal. Let x be the output
of the inv-BHSVPη

γ oracle on input I. As η′ ≥ η, the element x is η′-balanced. If ∥x∥∞ ≤
ε · γ ·Vol(I)1/d, then it is a solution for inv-BHSVPη′

√
d·ε·γ

and we can output it. Else, we have

|N (x)| ≥ η−d · ∥x∥d∞ ≥ η−d · εd · γd ·∆1/2
K · N (I).

Now we set b = (x) · I−1. This ideal is the inverse of an integral ideal, and by the previous
inequality and the condition on η we have

N (b) =
N (x)

N (I)
≥

εd · γd ·∆1/2
K

ηd
≥ 4A.

This last inequality, and the definition of A meet the conditions of Corollary C.2.6, we then can
make a call to SampleSmallA,4A(b) and denote by y its output. The element y satisfies ∥y∥∞ ≤ ε

and y ∈ b−1 \ {0}.
We now denote y′ = BalanceElement(b−1, y, 2d). By Lemma C.2.2, we have that y′ ∈ b−1 \0

is (1 + 1/d)-balanced and that

∥y′∥ ≤ (1 + d) · d3/2 · δK · ε ≤ 2 · d5/2 · δK · ε

We then return y′ · x. We have that y′ · x ∈ I, and since x is η-balanced and y′ is (1 + 1/d)-
balanced, then xy′ is η′-balanced and

∥x · y′∥ ≤ ∥y′∥ · ∥x∥ ≤ 2 · d5/2 · δK · ε · γ ·Vol(I)1/d = γ′ ·Vol(I)1/d.

The running time of the algorithm comes from the running time of SampleSmallA,4A(b) and
the running time of BalanceElement(b−1, y, 2d). The former is polynomial in log∆K , logN (b)
and 1/δ and requires factoring ideals of norm at most poly(log∆K , logN (b)) bits. The latter
has a running time polynomial in log∆K and logN (b). Observe that N (b) = |N (x)|/N (I) ≤
∥x∥d/N(I) ≤ γd ·

√
∆K . The result follows.

C.2. PROOF OF THEOREM IV.2.4 137

We will now iterate Lemma C.2.7, instantiated with ε = 1/2 · (2 · d5/2 · δK)−1. This choice
of ε ensures that γ′ = γ/2, i.e., the approximation factor is divided by 2 at every iteration of
the reduction (at the cost of slightly less balanced elements). We will iterate this reduction
step until we obtain a reduction from inv-BHSVPη′

γ′ with an approximation factor γ′ as small
as possible, to inv-BHSVPη

γ with γ so large that it can be solved in polynomial time using the
LLL algorithm. Hence, the only oracle that will remain for the reduction to work is the one
solving P−1A,4A-avg-id-HSVPγavg (and the one factoring ideals, which can be quantumly efficiently
instantiated).

Lemma C.2.8. Let γavg ≥ 1, 3 ≤ A ≤ ∆dO(1)

K satisfying

A1/d ≥ γavg · 40 · d5/2 · (d+ ln(4A)) ·∆1/d
K · δ2K

and

γmin =
4 · d5/2 · δK · (4A)1/d

∆
1/(2d)
K

.

There exists a reduction

from inv-BHSVP2e
2eγmin

to P−1A,4A-avg-id-HSVPγavg .

Given access to an ideal-factoring oracle F , the expected running time of this reduction is poly-
nomial in its input bit-size, in log∆K and in 1/δ, where δ ∈ (0, 1] is the success probability
of the P−1A,4A-avg-id-HSVPγavg oracle. Moreover, the reduction calls F on integral ideals whose
algebraic norms have bit-size poly(log∆K).

Proof. Let ε = (4d5/2 · δK)−1. Define γ0 = γmin · 2e · 2d, η0 = 2, and for any k ∈ {1, . . . , d}
γk = γ0 · 2−k and ηk = η0 · (1 + 1/d)

k. Observe that, for any k, we have that γk > γmin

and ηk ∈ (1, γk/γmin]. Moreover, if we let ε = (4d5/2 · δK)−1, then our choice of γmin coincide
with the definition of γmin in Lemma C.2.7, and our choice of A satisfies the constraint A1/d ≥
10 · γavg · (d+ ln(4A)) ·∆1/d

K · δK · ε−1.
We can then apply Lemma C.2.7 and we get, for any 0 ≤ k < d, that

inv-BHSVPηk+1
γk+1

≤ inv-BHSVPηk
γk

+ P−1A,4A-avg-id-HSVPγavg .

By combining the reduction, we then have that

inv-BHSVPηd
γd
≤ inv-BHSVPη0

γ0
+ P−1A,4A-avg-id-HSVPγavg .

Now, from the definition of γmin and the lower bound on A1/d, one can check that γ0 ≥ δK ·d3/2 ·(
η0

η0−1

)
· 2d. Hence, by Corollary C.2.4 we have that inv-BHSVPη0

γ0
can be solved in polynomial

time.
Regarding the running time, our reduction consists in d consecutive reductions. Lemma C.2.7

implies that the k-th reduction has a running time polynomial in log∆K , log γk and 1/δ. Since
for every k we have that log γk ≤ log γ0 = poly(log∆K), we conclude that the total running
time of the reduction is polynomial in log∆K and 1/δ. The same argument also shows that the
ideal-factoring oracle is only called on integral ideals whose norm have a bit-size poly(∆K).

We are now ready to prove our main theorem of this section. To do so, we instantiate
Lemma C.2.8 with an appropriate value of A, and combine the reduction with the ones from
Appendix C.2.1 showing that inv-BHSVP is equivalent to id-HSVP (up to polynomial losses).

138 APPENDIX C. APPENDICES OF CHAPTER IV

of Theorem IV.2.4. Let C1,K be minimal such that C1,K ≥ 40·d5/2 ·(d+d2+ln
(
4Cd

1,K

)
)·∆1/d

K ·δ2K .
Then C1,K = poly(∆

1/d
K , log∆K , δK). Moreover, using the fact that γavg ≤ 2d, one can check

that
(γd

avg · Cd
1,K)1/d ≥ γavg · 40 · d5/2 · (d+ ln

(
4 · γd

avg · Cd
1,K

)
) ·∆1/d

K · δ2K .

This inequality also holds for any A ≥ γd
avg · Cd

1,K . Hence, any such A with A ≤ ∆dO(1)

K satisfies
the conditions of Lemma C.2.8. Now let

C2,K = 2e · 4 · d
5/2 · δK · 41/d

∆
1/(2d)
K

= poly(log∆K , δK).

We set γ = A1/d · C2,K and observe that γ ≥ 2e · γmin for γmin as in Lemma C.2.8. Then by the
Lemmas C.2.8 and IV.2.2 we have:

id-HSVPγ ≤ inv-HSVPγ ≤ inv-BHSVP2e
γ ≤ P−1A,4A-avg-id-HSVPγavg ,

where the second reduction comes from the definition of id-BHSVP (a solution to id-BHSVPη
γ

in any fractional ideal I is by definition also a solution of id-HSVPγ in L). This completes the
proof.

Appendix D

Appendices of Chapter V

D.1 Properties of the Rényi Divergence

We will use the following result that bounds the Rényi divergence between two zero-centered
normal distributions over KR. It follows from standard divergence bounds on Gaussians such as
in [GAL13, Table 2] (note that in this work the Rényi divergence is the logarithm of ours).

Lemma D.1.1. Let a, b ∈ K+
R . Let a = (σi(a))i∈[dR+dC] and b = (σi(b))i∈[dR+dC]. If 2bi− ai > 0

for all i ∈ [dR + dC], then we have

RD2(DKR(0,a) ∥ DKR(0, b)) ≤ N
(

b2

a(2b− a)

) 1
2

.

We will also use the following technical lemma on the Rényi divergence of a product of random
variables.

Lemma D.1.2. Let X,Y be independent random variables in R with respective probability dis-
tributions DX , DY . Assume that DX is non-zero over R (whereas Y can even be discrete). Then

RD2(X · Y ∥ X) ≤
(
Ey∼DY

(
RD2(X · y ∥ X)

) 1
2

)2
.

Proof. Let D′ be the distribution probability of X · Y . We have, for all t ∈ R:

D′(t) =

∫
y

DY (y)DX

(t
y

)
dy .

This implies that:

RD2(X · Y ∥ X) =

∫
t

1

DX(t)

(∫
y

DY (y)DX

(t
y

)
dy

)2

dt

=

∫
y1,y2

DY (y1)DY (y2)

∫
t

DX

(
t
y1

)
DX

(
t
y2

)
DX(t)

dtdy1 dy2 .

By the Cauchy-Schwartz inequality, we have(∫
t

DX

(
t
y1

)
DX

(
t
y2

)
DX(t)

dt

)2

≤
∫
t

(
DX

(
t
y1

))2
DX(t)

dt ·
∫
t

(
DX

(
t
y2

))2
DX(t)

dt

= RD2(X · y1 ∥ X) · RD2(X · y2 ∥ X).

139

140 APPENDIX D. APPENDICES OF CHAPTER V

Overall, we obtain that

RD2(X · Y ∥ X) ≤
(∫

y

DY (y)
(
RD2(X · y ∥ X)

) 1
2

dy

)2

,

which completes the proof.

D.2 Missing proofs from Section V.2

D.2.1 Proof of Lemma V.2.2

We first recall the lemma statement.

Lemma V.2.2. There exists an absolute polynomial P such that the following holds. For any δ ≥
0, degree-d number field K, integer k ≥ 2, rank-k module M ⊂ Kk

R, if c ∈ spanKR
(M) and ς > 0

are such that ∥c∥ ≤ δ · ς and ς ≥ λkd(M) · P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
≥ 1

4ζK(k)
,

where ζK(·) is the Dedekind zeta function of K and the λi’s refer to the minima of the lat-
tice Φ(M).

Before proving the lemma, we recall some facts regarding the Dedekind zeta function (see,
e.g., [Neu13, Chapter 7] for more details). First, let us define the Möbius function of a field K.
It is defined over integral ideals of OK by

µK

(
r∏

i=1

peii

)
:=

 1 if r = 0
(−1)r if e1 = · · · = er = 1
0 otherwise

where the pi’s are distinct prime ideals. For any s > 1, the two following equations holds, where
the sums are over integral ideals of OK :

ζK(s) =
∑

a⊆OK

1

N (a)s

ζK(s)−1 =
∑

a⊆OK

µK(a)

N (a)s
.

The Dedekind zeta function is well-defined for any s > 1 (i.e., the sums above are absolutely
converging for s > 1).

Lemma D.2.1. Let H(N) := |{a ⊆ OK ideal | N (a) ≤ N}|, for N ≥ 0. For any s > 1 and
number field K, it holds that H(N) ≤ ζK(s) ·Ns.

Proof. This follows from ζK(s) ≥
∑

a ,N (a)≤N
1

N (a)s ≥ H(N)/Ns.

Lemma D.2.2. For any s ≥ 3/2 and degree-d number field K, it holds that ζK(s) ≤ 22d.

D.2. MISSING PROOFS FROM SECTION V.2 141

Proof. We use the Euler product form of the Dedekind zeta function

ζK(s) =
∏

p⊂OK
p prime

1

1−N (p)−s

=
∏
p∈Z

p prime

∏
p|pOK

p prime

1

1−N (p)−s

≤
∏
p∈Z

p prime

∏
p|pOK

p prime

1

1− p−s

≤
∏
p∈Z

p prime

(1

1− p−s

)d
≤ ζQ(s)

d ≤ ζQ(3/2)
d ≤ 4d,

where we used the fact that ζQ(3/2) ≈ 2.6 ≤ 4.

Finally, we will use the following notations and facts regarding Gaussian distributions. We
let ρς,c(x) = exp

(
−π∥x− c∥2/ς2

)
. We also write DM,ς,c(x) the probability that the Gaussian

distribution DM,ς,c outputs the vector x, i.e., DM,ς,c(x) = ρς,c(x)/ρς,c(M):

• From [Ban93, Lemma 1.5], we know that for any rank-n lattice L and c > 1/
√
2π, we

have ρς,c({v ∈ L | ∥v − c∥ > c ·
√
n · ς}) ≤ 2Cn · ρς(L), where C = c ·

√
2πe · e−π·c2 < 1.

• From [MR07, Lemma 3.3], we know that for any ε > 0 and rank-n lattice L, the smoothing
parameter of L satisfies ηε(L) ≤

√
ln(2n(1 + 1/ε))/π · λn(L).

• Finally, from the proof of [MR07, Lemma 4.4], we know that if ς ≥ ηε(L), then it holds
that ρς,c(L) ∈ [1− ε, 1 + ε] · ςn/det(L).

Lemma V.2.2. We follow the same proof structure as in [SS13, Lemma 4.4]. Let us fix some
number field K of degree d, integer k ≥ 2, rank-k module M ⊂ Kk

R and real number δ ≥ 0. Let

ς0 = 245 ·∆7/(2d)
K · k8 · d4 · (k2 · d2 + δ3) · λ1(M)−3 · λkd(M)4.

Observe that ς0 = λkd(M) ·P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)) for some absolute polynomial P . We

will prove that the lemma holds for this polynomial P .
Let us then fix some ς and c ∈ spanKR

(M) such that ∥c∥ ≤ δ · ς and ς ≥ ς0. We define the
following quantities.

ε = 2−2kd−5

B1 =
ςd√

∆K · λkd(M)d ·max
(
ε−1/k, (2 ln(2/ε))d

)
B2 =

(
2 ·
√
kd · ς + ∥c∥

)d ·√∆K · λ1(M)−d.

With these notations, we are ready to bound from below the probability that a Gaussian
element in M is primitive. To do so, observe that for v ∈ M , the rank-1 module vOK is not
primitive in M if an only if there exists some prime ideal p such that v ∈ p ·M . Indeed, let

142 APPENDIX D. APPENDICES OF CHAPTER V

us define I = {x ∈ K |x · v ∈ OK}. One can check that I is a fractional ideal with OK ⊆ I.
Moreover, by definition of a primitive submodule, we have I = OK if and only if v · OK is a
primitive submodule of M . Let a = I−1, which is an integral ideal. By definition of I and a, we
have that v ∈ a ·M . If v · OK is not primitive, then a ̸= OK so there exists p|a, and it holds
that v ∈ p ·M . Reciprocally, if v ∈ p ·M for some prime ideal p, then v · p−1 ⊂ M , so I ̸= OK

and v · OK is not primitive in M .
From this observation, we can rewrite

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
= DM,ς,c

(
M \

⋃
p prime

pM
)

≥ DT
M,ς,c

(
M \

⋃
p prime

pM
)
,

with DT
M,ς,c being the truncated Gaussian function, defined as DT

M,ς,c(v) = DM,ς,c(v) if v ̸= 0

and ∥v − c∥ ≤ 2 ·
√
kd, and DT

M,ς,c(v) = 0 otherwise (note that DT
M,ς,c does not sum to 1 and is

not a probability distribution).
Let us then focus on p := DT

M,ς,c

(
M \

⋃
p prime pM

)
. Observe that for any distinct prime

ideals p1, . . . , pt, it holds that ∩i≤t(pi ·M) = (
∏

i≤t pi) ·M . Hence, from the inclusion-exclusion
principle, we obtain

p =
∑

a⊆OK

µK(a) ·DT
M,ς,c

(
a ·M

)
=

∑
a⊆OK

N (a)≤B2

µK(a) ·DT
M,ς,c

(
a ·M

)
,

where the sums are above the integral ideals a ⊆ OK and B2 was defined at the start of the
proof. The second equality comes from the fact that if N (a) > B2, then a ·M does not contain
any non-zero vector shorter than 2

√
kd · ς+∥c∥ (since otherwise M = a−1 · (a ·M) would contain

a non-zero vector smaller than (2
√
kd · ς + ∥c∥) · N (a)−1/d · ∆1/(2d)

K < λ1(M), contradicting
the definition of λ1(M)). This implies that a ·M does not contain any non-zero vector in the
ball {v | ∥v − c∥ ≤ 2

√
kd · ς}, hence DT

M,ς,c(a ·M) = 0.
Combining this with the equation recalled before the proof relating the Dedekind zeta function

and the Möbius function, we obtain

|p− ζK(k)−1| ≤
∑

a⊆OK

N (a)≤B1

∣∣∣DT
M,ς,c(a ·M)−N (a)−k

∣∣∣
+

∑
a⊆OK

B1<N (a)≤B2

DT
M,ς,c(a ·M) +

∑
a⊆OK

N (a)>B1

N (a)−k

Note that by definition of B1 and B2, it holds that B1 ≤ B2. We will bound each one of the
three sums above by ζK(k)−1/4, which will prove the result.

Let us start with the first sum. Let a be an integral ideal with N (a) ≤ B1. We know
that λkd(a ·M) ≤ λ∞1 (a) ·λkd(M) (since multiplying kd linearly independent vectors from M by a
shortest vector of a provides kd linearly independent vectors of aM). Moreover, since N (a) ≤ B1,
we know that λ∞1 (a) ≤ B

1/d
1 ·∆1/(2d)

K . By definition of B1 and ε, we have

ς ≥ B
1
d
1 ·∆

1
2d

K · λkd(M) · 2ln(2/ε) ≥ λkd(aM) · 2ln(2/ε) ≥ ηε(aM).

Since ς ≥ ηε(aM), we know that ρς,c(a ·M) ∈ [1 − ε, 1 + ε] · ςkd/det(aM). From [Ban93,
Lemma 1.5] (recalled above) with c = 2, we also know that ρς,c({v ∈ aM | ∥v−c∥ > 2·

√
kd·ς}) ≤

ε · ρς(aM) ≤ 2ε · ςkd/ det(aM).

D.2. MISSING PROOFS FROM SECTION V.2 143

Recall also that by definition of B1, we have ς ≥ ∆
1/(2d)
K · N (a)1/d · λkd(M) · ε−1/(kd). Hence,

we obtain that ρς,c(0) ≤ ε · ςkd/ det(aM). Combining everything, this implies that

ρς,c

(
a ·M \ {v |v = 0 or ∥v − c∥ > 2 ·

√
kd · ς}

)
∈ [1− 4ε, 1 + ε] · ςkd

det(aM)
.

By definition of DT
M,ς,c, this implies that

DT
M,ς,c(a ·M) ∈

[1− 4ε

1 + ε
,
1 + ε

1− ε

]
· det(M)

det(aM)
⊂ [1− 5ε, 1 + 4ε] · 1

N (a)k
,

where we used the identities det(M) = ∆
k/2
K · N (M) and det(aM) = ∆

k/2
K · N (aM). This

concludes the upper bound on the first sum∑
a⊆OK

N (a)≤B1

∣∣∣DT
M,ς,c(a ·M)−N (a)−k

∣∣∣ ≤ 5ε ·
∑

a⊆OK

N (a)≤B1

1

N (a)k
≤ 5εζK(k) ≤ 1

4ζK(k)
,

by definition of ε, and using Lemma D.2.2 to assert that ζK(k)2 ≤ 24d ≤ 22kd.

Let us now consider the second sum. Let a be an integral ideal with B1 < N (a) ≤ B2. Let us
define I = ⌈(N (a)/B1)

1/d⌉−1 · a. This is a fractional ideal with N (I) ∈ [1/2d, 1] ·B1. Moreover,
we have a ⊆ I, hence DT

M,ς,c(a ·M) ≤ DT
M,ς,c(I ·M), where we let DT

M,ς,c(v) := ρς,c(v)/ρς,c(M)
for any v ∈ KR, even those not in M (note that since I is a fractional ideal, then I ·M needs not
be contained in M). Observe that everything we did above when N (a) ≤ B1 can be adapted to
a fractional ideal I of norm N (I) ≤ B1. Hence, we have (using the analysis for the first sum):

DT
M,ς,c(I ·M) ≤ (1 + 4ε) · 1

N (I)k
≤ 2kd+1

Bk
1

.

We can hence bound the second sum from above by

∑
a⊆OK

B1<N (a)≤B2

DT
M,ς,c(a ·M) ≤ |{a ⊆ OK | N (a) ≤ B2}| · 2kd+1

Bk
1

≤ ζK(s0) ·Bs0
2 · 2kd+1

Bk
1

≤ B
−(k−s0)
1 ·

(
ζK(s0) · 2kd+1 · (B2/B1)

s0
)
,

where we used Lemma D.2.1 for the second inequality, with some s0 ∈ (1, k). Let us choose s0 =
max(3/2, k/2). This choice of s0 ensures that s0 ∈ [3/2, k) and that s0/(k − s0) ≤ 3 and k/(k −
s0) ≤ 4 for any k ≥ 2. Using Lemma D.2.2, the definitions of s0, B1, B2 and the lower bound
on ς, one can check that this is ≤ 1/4 · ζK(k)−1.

We are finally left with the last sum. Recall that H(N) denotes the number of integral ideals
of norm ≤ N . With this notation, we can rewrite∑

a⊆OK

N (a)>B1

N (a)−k =
∑

N>B1

H(N)−H(N − 1)

Nk
≤
∑

N>B1

H(N) ·
(1

Nk
− 1

(N + 1)k

)
.

144 APPENDIX D. APPENDICES OF CHAPTER V

Let us prove that the last sum above is absolutely converging (in order to prove that our
transformation was valid). Using Lemma D.2.1 with s = 1.5, we know that HN ≤ ζK(1.5) ·
N1.5, where the quantity ζK(1.5) depends on the number field but is fixed when N tends to
infinity. Hence, the quantity inside the sum is bounded by O(N1.5 ·Nk−1/N2k) = O(1/Nk−0.5) =
O(1/N1.5) since k ≥ 2. We conclude that the sum is converging absolutely as desired.

Let us now compute an upper bound on this sum. Since N ≥ B1 ≥ k, we know that (N +
1)k −Nk ≤ k2 ·Nk−1. Applying Lemma D.2.1 again with s = s0 ∈ (1, k), we obtain∑

N>B1

H(N) ·
(1

Nk
− 1

(N + 1)k

)
≤ ζK(s0) ·

∑
N>B1

k2 ·Ns0+k−1

N2k

≤ ζK(s0) · k2 ·
∫ +∞

⌊B1⌋
x−(k+1−s0)dx

= ζK(s0) · k2 · (k − s0)
−1 · ⌊B1⌋−(k−s0)

Using s0 = max(3/2, k/2) again, the definitions of B1, the lower bound on ς and Lemma D.2.2,
one can check that

∑
a⊆OK

N (a)>B1

N (a)−k ≤ 1/4 · ζK(k)−1 as desired.

D.2.2 Proof of Lemma V.2.3

Let N be a densest rank-1 submodule of M . By Definition II.3.3, there exists a rank-1 sub-
module N ′ such that M = N + N ′. Equivalently, we obtain a pseudo-basis ((I1, b1), (I2, b2))
of M such that N = b1I1. Wlog, we may assume that N (I1) = N (I2) = 1, by multiplying bi
by N−1/d(Ii) for i ∈ [2]. Let Q ∈ O2(KR) and R ∈ K2×2

R upper triangular such that B = QR.
Let D be the diagonal matrix with d1 = r11/N 1/d(r11) and d2 = r22/N 1/d(r22) as diagonal
coefficients. Let J1 = d1I1, J2 = d2I2 and

B′ =
N 1

2d (M)

γ
·Q ·R ·

(γ

N 1
2d (M)

D−1
)
.

It now suffices to prove that ((J1, b
′
1), (J2, b

′
2)) is a pseudo-basis of M of the desired form, i.e.,

to check that R′ = R · (γ/N 1/(2d)(M))D−1 has diagonal coefficients equal to 1 and γ. We
have r′ii = N 1/d(rii)(γ/N 1/(2d)(M)) for i ∈ [2], by construction. The fact that N (r11) = λN1 (M)
gives that r′11 = 1. The equality N (M) = det(B′) provides the result.

D.2.3 Proof of Lemma V.2.5

From Banaszczyk’s transference theorem (Theorem II.1.5), we know that 1 ≤ λ2d(M
∨)·λ1(M) ≤

2d. We also know that λ1(M)d ≥
√
d · λN1 (M), since for any vector v ∈ K2

R it holds that ∥v∥ ≥√
d · N (v · OK)1/d (by applying the inequality of arithmetic and geometric means to the squares

of the coordinates of ⟨v,v⟩KR). Further, from the definition of the gap of a module M , we
know that λN1 (M) = N (M)1/2/γ(M)d. Combining these relations provides the upper bound
on λ2d(M

∨).
In order to get the upper bound on λ1(M

∨)−1, we use the inequality 1 ≤ λ2d(M) · λ1(M
∨).

Hence, it suffices to bound λ2d(M) from above. To do so, we use Lemma V.2.3. We know that
there exist d Z-linearly independent vectors in J1 of norms ≤

√
d · ∆1/(2d)

K · δK , and similarly
in J2. Hence, from the representation of M in Lemma V.2.3, we obtain 2d linearly independent
vectors in M of norms ≤ (γ(M) ·

√
d+d/γ(M)) ·N (M)1/(2d) ·∆1/(2d)

K · δK (where we reduced the
last d vectors using the first d ones). Since γ(M) ≥ 1, this implies than λkd(M) ≤ 2d · γ(M) ·
N (M)1/(2d) ·∆1/(2d)

K · δK .

D.3. MISSING PROOFS FROM SECTION V.3 145

D.3 Missing Proofs from Section V.3

D.3.1 Proof of Lemma V.3.2

The fact that b∨ ̸= 0 implies that the map m 7→ ⟨b∨,m⟩KR
is a surjective homomorphism

from M to OK/p whose kernel is M ′. This gives the following exact sequence of OK-modules:

0→M ′ →M → OK/p→ 0.

Now, note that OK/p is isomorphic to the finite field of size N (p). The exact sequence and the
finiteness of OK/p imply that N (M ′) = N (M) · |OK/p|. The proof is completed by noting that
|OK/p| = N (p).

D.3.2 Proof of Lemma V.3.3

The fact that p ·M ⊂ M ′ implies that bpI ⊂ M ′. We now prove the second property. As bI
is primitive, there exists a pseudo-basis (B, I) of M such that b1 = b and I1 = I (see Defini-
tion II.3.3). We start by noting that ⟨M∨,u⟩KR

· I = OK . Indeed, as (B, I) is a pseudo-basis
of M , we have that (B−† · J) is a pseudo-basis of M∨, with Ji = (Ii)

−1 for all i. Therefore:

⟨M∨, b⟩KR
· I =

∑
i

〈
b−†i , b1

〉
KR
· OK = OK .

The fact that ⟨M∨, b⟩KR
· I = OK implies that the scalar product with b is a surjective

homomorphism M∨ → I−1. This induces a surjective homomorphism M∨/pM∨ → I−1/pI−1.
Because of their respective ranks as OK-modules, the cardinality of I−1/pI−1 is N (p) and the
cardinality of M∨/pM∨ is N (p)k. Lagrange’s theorem (for groups) then implies that every
element of I−1/pI−1 has exactly N (p)k/N (p) = N (p)k−1 pre-images in M∨/pM∨ by this ap-
plication. In particular, the zero element of I−1/pI−1 has N (p)k−1 pre-images, including 0.
Since b∨ is uniform in (M∨/pM∨) \ {0}, this implies that the probability that ⟨b∨, b⟩KR

∈ pI−1

is (N (p)k−1 − 1)/N (p)k = 1/N (p)− 1/N (p)k over the choice of b∨.
To complete the proof, note that ⟨b∨, b⟩KR

/∈ pI−1 is equivalent to bI ̸⊂ M ′, by definition
of M ′.

D.3.3 Proof of Lemma V.3.4

Let (B, I) be a pseudo-basis of M with integral coefficient ideals Ii. As seen in Section II.3, the
pair (B−†, J) is a pseudo-basis of M∨, where Ji = (Ii)

−1 for all i. Take u ∈ J such that B−† ·u
is a representative of b∨ in M∨. We have:

M ′ =
{
B · v : v ∈ I and

(
B−† · u

)† ·B · v ∈ p
}

=
{
B · v : v ∈ I and ⟨u,v⟩KR

∈ p
}
.

Let us define

N =
{
v ∈ I : ⟨u,v⟩KR

= 0
}

and N ′ =
{
v ∈ I : ⟨u,v⟩KR

∈ p
}
.

We use the Z-basis BOK
= (bi)i∈[d] of OK to identify N with a Z-lattice corresponding to the

orthogonal of an integer vector. A basis of this lattice can be computed in polynomial-time, and

146 APPENDIX D. APPENDICES OF CHAPTER V

the basis vectors provide a set (ni)i∈[kd] of (non K-linearly independent) vectors in Ok
K such

that N =
∑

i niOK . The module N ′ is the rank-k module generated by the pseudo-basis

N ′ =

kd∑
i=1

niOK +

k∑
i=1

eip,

where ei is the i-th canonical unit vector. From the pairs {(OK ,ni)}i and {(p, ei)}i, we compute
a Hermite Normal Form (B′, I′) of the integral module N ′. By definition of N ′, the pair (B·B′, I′)
is a pseudo-basis of M ′.

D.3.4 Proof of Lemma V.3.5

In Step 2, we use one of the provable variants of the BKZ algorithm mentioned above, which
allows us to obtain a basis C of M∨ such that maxi ∥ci∥ ≤ (kd)kd/β+1 · λkd(M

∨) in time
polynomial in the bitsize of the input basis of M∨ and in 2β . Note that these analyses of the
algorithm under scope only prove that the algorithm solves (kd)kd/β-SVP (i.e., outputs one short
non-zero vector) and do not mention the approximation factor obtained for SIVP (the Shortest
Independent Vector Problem). Hence, to obtain an upper bound on maxi ∥ci∥, we also use the
polynomial-time reduction from (

√
nγ)-SIVP to γ-SVP for lattices of rank-n (see [Ste15, Page 1]),

together with the fact that one can transform any set of n short linearly independent vectors
of norm ≤ B in a rank-n lattice L into a basis of L with vectors of norms ≤

√
n · B. Now, we

observe that ς ≥
√
kd ·maxi ∥ci∥ ≥

√
kd ·maxi ∥c∗i ∥, hence we can apply Lemma II.1.12. This

means in particular that the vectors yi can be sampled in polynomial time, which completes the
runtime analysis.

Let us now prove that the matrix Y satisfies the conditions of the theorem. First of all, note
that since the vectors yi are in M∨, then for all v ∈M we have Y ·v ∈ Ok

K , which proves the first
point. For the second point, recall that we use a tail-cut distribution D̃C∨,ς,ti with error 2d+3,
hence it holds by Lemma II.1.12 that

∥yi − ti∥ ≤
√
5kd · ς = ε ·R,

as desired.
Finally, recall from Lemma II.1.12 that the distribution D̃C∨,ς,ti (which might depend on C∨

and hence on (B, I)) is within statistical distance at most 2−kd from the Gaussian distribu-
tion DM∨,ς,ti , which is independent of the known basis of M∨. Hence, the distribution of Y is
within statistical distance at most k · 2−Ω(kd) = 2−Ω(kd) from a distribution independent of the
choice of the pseudo-basis (B, I).

D.3.5 Proof of Lemma V.3.6

Wlog, we prove the result for R = 1. Note that the operator norm of E satisfies ∥E∥ ≤ kε <
1. Therefore, the matrix

∑
i≥0(−E)i is well-defined, and satisfies Y −1 =

∑
i≥0(−E)i. We

have Y −1 = Ik +E′ with E′ = −E +
∑

i≥2(−E)i. Using the operator norm again, we obtain
that ∥e′ij + eij∥ ≤ (kε)2/(1− kε) ≤ kε for all i, j ∈ [k], by using assumption that kε ≤ 1/2. This
proves the first statement.

By Hadamard’s inequality, we have

det(Y) ≤
(√

(1 + ε)2 + (k − 1)ε2
)d

det
(
Y −1

)
≤
(√

(1 + ε′)2 + (k − 1)ε′2
)d

,

D.4. MISSING PROOFS FROM SECTION V.4 147

with ε′ = (k+1)ε. Simplifying the expressions using the facts that ε′ ≤ 1 and kε ≤ 1/2 leads to
the second statement.

D.4 Missing Proofs from Section V.4

D.4.1 Proof of Theorem V.4.1

Theorem V.4.1 is a direct corollary of the following more complete statement.

Theorem D.4.1. Let K be a number field of degree d and γ+ > 0. There exist three algorithms
uSVP-to-NTRU, LiftVecInternal and LiftModInternal and q0 = poly(∆

1/d
K , d, δK , γ+) ∈ R≥0

such that the following holds, for any q ≥ q0, γNTRU > 1 , γHSVP ≥
√
d∆

1/(2d)
K and a pseudo-

basis (B, I) of a rank-2 module M ⊂ K2 with γ(M) ≤ γ+.

• Algorithm uSVP-to-NTRU takes as input (B, I), q and γHSVP and outputs a (B′,O2
K), a

pseudo-basis of a rank 2 free module M ′ ⊂ O2
K , together with some auxiliary information

aux. If (B, I) is a γuSVP-mod-uSVP2 instance with

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d3/2 · δK ,

then (B′,O2
K) is a (γNTRU,q)-NTRU instance. If given access to a γHSVP-id-HSVP oracle,

it runs in time polynomial in its input bitsize, in ζK(2) and in exp(d log(d)
log(q/q0)

) and makes
one call to the oracle.

• Algorithm LiftVecInternal takes as input a non-zero vector s′ ∈ M ′ and the auxiliary
information aux. It outputs a non-zero vector s ∈M such that

∥s∥ ≤ 150 · γ3/2
HSVP · d

7/2 · δ2K ·
∥s′∥

N (M ′)
1
2d

· N (M)
1
2d .

If given access to a γHSVP-id-HSVP oracle, it runs in polynomial time and makes one call
to the oracle.

• Algorithm LiftModInternal takes as input a pseudo-basis of a rank-1 densest submod-
ule N ′ of M ′ and the auxiliary information aux and outputs a pseudo-basis of a rank-1
densest submodule N of M . It runs in polynomial time.

Proof. Let V0 =
(
poly(∆

1/d
K , d, δK , γ+)

)2d
be as in Lemma V.4.4 (defined using γ+ instead

of γ(M)). Define

q0 =
V

1/d
0 · 4d
γHSVP

.

One can check that q0 is indeed poly(∆
1/d
K , d, δK , γ+) as desired. We prove that the theorem

holds for this choice of q0.

Algorithm uSVP-to-NTRU. On input (B, I), q and γHSVP, uSVP-to-NTRU sets V = γd
HSVP·qd·dd

and β =
⌈ 2d log(2d)

log
(√

q/q0
)
+log(2d)

⌉
. It then runs PreCond on input (B, I), V and β, to obtain a

matrix Y ∈ GL2(K).
From the definition of q0, V and β, one can check that V 1/(2d) ≥ (2d)2d/β ·V 1/(2d)

0 . Moreover,
we have γ(M) ≤ γ+ by assumption, hence we can apply Lemma V.4.4. This implies in particular

148 APPENDIX D. APPENDICES OF CHAPTER V

that the call to the PreCond algorithm runs in time polynomial in the input bitsize, in 2β =
2O(d log(d)/ log(q/q0)) and in ζK(2).

Algorithm uSVP-to-NTRU then runs Conditioned-to-NTRU on input (Y B, I), q and γHSVP.
It obtains a basis B′ of a free module M ′ and some auxiliary information aux′. Algorithm
uSVP-to-NTRU finally outputs (B′,O2

K) and aux = (aux′,Y , γHSVP,B
′).

We know that the call to Conditioned-to-NTRU can be done in polynomial time, with one
call to the γHSVP-id-HSVP oracle. This completes the proof on the running time of algorithm
uSVP-to-NTRU.

Let us assume now that (B, I) was a γuSVP-mod-uSVP2 instance, for γuSVP as in the theorem.
We know from Lemma V.4.4 that (Y B, I) is a γuSVP/(2

√
2)-mod-uSVP2 instance. Moreover, still

from Lemma V.4.4, we know that the module spanned by (Y B, I) is a rank-2 module in O2
K , with

the coprime property and such that N (M ′) ∈ [1/2d, 2d] · V . Hence we can apply Lemma V.4.7
and conclude that (B′,O2

K) is a γNTRU instance, as desired (note that V and γuSVP/(2
√
2) have

the desired shape for applying Lemma V.4.7). This proves the first item of the theorem.

Algorithm LiftVecInternal. On input s′ ∈M ′ and aux = (aux’, Y , γHSVP, B′), algorithm
LiftVecInternal runs LiftVec(aux′, γHSVP,B

′, s′) and gets a nonzero vector t. It then out-
puts Y −1 ·t. By Lemma V.4.9, we know that the call to LiftVec can be performed in polynomial
time, with one call to the id-HSVP oracle. This proves the running time of LiftVecInternal.

By Lemma V.4.9 again, we know that ∥t∥ ≤ ∥s′∥ · 68 · γ2
HSVP · d4 · δ2K . From the shape of Y ,

Lemma V.3.6 instantiated with ε = 1/5 and Lemma D.4.2, we obtain1

∥Y −1 · t∥ ≤ 2.2 · N (M)
1
2d

V
1
2d

· ∥t∥ ≤ 150 · γ
3
2

HSVP · d
7
2 · δ2K ·

∥s′∥
√
q
· N (M)

1
2d .

Using the fact that N (M ′) = qd provides the desired upper bound on the output size. Note also
that by construction, Y −1 · t is indeed a non-zero vector in M .

Algorithm LiftModInternal. Let us call M̃ the intermediate module (Y ·B) · I computed
by algorithm uSVP-to-NTRU.

On input a pseudo-basis (v′, J ′) of a densest rank-1 module of M ′ and aux = (aux′,Y ,
γHSVP,B

′), algorithm LiftModInternal runs LiftMod(aux′,B′, (v′, J ′)) and gets a vector w.
It then computes J such that span(w) ∩ M̃ = w · J , sets v = Y −1 ·w and outputs the pseudo-
basis (v, J).

From Lemma V.4.8, we know that algorithm LiftModInternal runs in polynomial time.
Moreover, since (v′, J ′) was a densest submodule of M ′, we know that w·J is a densest submodule
of the module M̃ . Recall that we proved that M̃ is a γuSVP/(2

√
2)-mod-uSVP2 instance, hence

we have

N (w · J) 1
d = λN1 (M̃) ≤ 2

√
2

γuSVP
· N (M̃)

1
2d .

From the special shape of Y , Lemma V.3.6 implies that Y −1 = (1/R) · (I +E′) where E′ =
(e′i,j) satisfies maxi,j

∥∥e′i,j∥∥ ≤ 3/5 and R = V 1/(2d) · N (M)−1/(2d). It then holds that for any

1J: Constante vérifiée et mise à jour.
Pour avoir cette constante, on applique d’abord l’inégalité triangulaire avant Lemmas V.3.6 and D.4.2, et ça nous
donne 1 + 2 · 3/5 = 2.2.

D.4. MISSING PROOFS FROM SECTION V.4 149

embedding σi : KR → C (for 1 ≤ i ≤ d),∣∣σi

(
∥(I +E′) ·w∥KR

)∣∣ ≤ ∥(I2 + |σi(E
′)|) · σi(w))∥2

≤ 2 · ∥I + |σi(E
′)|∥∞ · ∥σi(w)∥

≤ 2 · (1 + 3/5) · ∥σi(w)∥
≤ 4 · ∥σi(w)∥.

Multiplying the previous inequality for i = 1, . . . , d and dividing it by Rd gives

N (Y −1 ·w) ≤ 4d ·R−d · N (w).

Hence, we obtain

N (v · J) 1
d ≤ 4 · 2

√
2

R · γuSVP
· N (M̃)

1
2d ≤ 16

γuSVP
· N (M)

1
2d ,

where we used the definition of R and the fact that N (M̃) ≤ 2d · V (by Lemma V.4.4).
Since γuSVP > 16, we conclude that v ·J is a rank-1 submodule of M with N (v ·J) < N (M)1/2.
From the fact that the densest module is unique, we conclude that v · J is indeed the densest
submodule of M .

We used the following norm inequalities for matrix in KR.

Lemma D.4.2. Let k ≥ 1, for any matrix A = (ai,j)1≤i,j≤k ∈ Kk×k
R and x ∈ Kk

R, we have

∥A · x∥ ≤ k ·max
i,j
∥ai,j∥ · ∥x∥.

Proof. By abuse of notation, we let Φ(A) denote the block-diagonal matrix in Cdk×dk where the
block (i, j) is diag(Φ(ai,j)) for 1 ≤ i, j ≤ k. For any n ≥ 1 and M ∈ Cn×n we let ∥M∥F =
(
∑

i,j M
2
i,j)

1/2 denote the Frobenius norm and |||M ||| the operator norm sup∥x∥=1 ∥M · x∥ of M .
It holds that |||M ||| ≤ ∥M∥F . We have

∥A · x∥ ≤ |||Φ(A)||| · ∥x∥

≤ ∥Φ(A)∥F · ∥x∥ =

 ∑
1≤i,j≤k

∥ai,j∥2
 1

2

· ∥x∥

≤
√
k2 ·

(
max
i,j
∥ai,j∥2

) 1
2

· ∥x∥

= k ·max
i,j
∥ai,j∥ · ∥x∥.

D.4.2 Proof of Lemma V.4.4

The algorithm PreCond is as follows.

Proof. Let P be the polynomial from Lemma V.2.2 and define

V
1
2d
0 = 10

√
10 · d · γ(M) ·

(
P
(
∆

1/d
K , 2, d, 5

√
2d, 4d3/2 · γ(M)2 · δK ·∆1/(2d)

K

)
+ (2d)3/2

)
.

150 APPENDIX D. APPENDICES OF CHAPTER V

Algorithm D.4.1 Algorithm PreCond
Input: A pseudo-basis (B, I) of a rank-2 module M ⊆ K2, two parameters V > 0, B ≥ 2 and a

block-size β ∈ [2, 2d]
Output: A matrix Y ∈ GL2(K)
1: Set ς = V 1/(2d) · (5

√
10d)−1 · N (M)−1/(2d)

2: repeat
3: Sample Y := (y1,y2)

T ← DualRound((B, I), ς, β, 1/5)
4: until y1 · OK is a primitive submodule of M∨

5: Return Y

We will prove that the lemma holds for this choice of V0. Note that V
1/(2d)
0 is indeed equal

to poly(∆
1/d
K , d, δK , γ(M)) as desired.

Let us first observe that, by using the lower bound on V , the definition of ς and V0 and
Lemma V.2.5, one can prove that the lower bound ς ≥ (2d)2d/β+3/2 · λ2d(M

∨) required in
Lemma V.3.5 is satisfied.

Applying Lemma V.3.5, we know that the calls to Algorithm DualRound will take a time
polynomial in the input bitsize and in 2β . To estimate the number of such calls, let us use
Lemma V.2.2. The definition of V0 ensures that the condition of Lemma V.2.2, namely ς ≥
λ2d(M

∨)·P (∆
1/d
K , 2, d, ∥t1∥/ς, λkd(M

∨)/λ1(M
∨)) are met. Hence, we know that Pry←DM∨,ς,t1

(y·
OK is primitive in M∨) ≥ 1/(4ζK(2)) Using the fact that SD(DM∨,ς,t1 , D̃M∨,ς,t1) ≤ 4−d by
Lemma V.3.5 and that for any d ≥ 2 we have 4−d ≤ (9/10) · (4ζK(2))−1 we conclude that the
probability to exit the while loop is at least 1/(4ζK(2)) − 4−d ≥ ζK(2)/40 at every iteration of
the algorithm. This proves the expected running time of the algorithm.

The fact that Y = R · I2 + E with ∥eij∥ ≤ R/5 and that M ′ := Y B · I is included in O2
K

follows from Lemma V.3.5 (instantiated with ε = 1/5). Since ε = 1/5 ≤ 1/4, we can also use
Lemma V.3.6. This implies in particular that det(Y) ∈ [1/2d, 2d] ·R2d, where R = 5 ·

√
10d · ς =

V 1/(2d) · N (M)−1/(2d) by definition of ς. This proves that Y is invertible, and so M ′ is indeed a
rank-2 module. This also proves that N (M ′) = det(Y) · N (M) ∈ [1/2d, 2d] · V .

Let us now show that if (B, I) was a γuSVP-mod-uSVP2 instance, then (Y B, I) is a γ′uSVP-
mod-uSVP2 instance. Let s ∈M be a short vector such that ∥s∥ ≤ 1/γuSVP · N (M)1/(2d) (such
a short vector exists if (B, I) is a γuSVP-mod-uSVP2 instance). Define s′ = Y · s, which is a
vector of M ′. We have

∥s′∥ ≤ R · ∥s∥+ ∥E · s∥ ≤ 2R · ∥s∥ ≤ 2R · γ−1uSVP · N (M)1/(2d).

Recall that N (M ′) = det(Y) · N (M) ≥ 1/2d · R2d · N (M). This finally implies that ∥s′∥ ≤
2
√
2 · γ−1uSVP · N (M ′)1/(2d), and so (Y B, I) is indeed a γ′uSVP-mod-uSVP2 instance.
It finally remains to show that the module M ′ has the coprime property. This is implied

by the fact that y1 · OK is primitive in M∨. Indeed, by definition of M ′, we have that {x ∈
OK | ∃ y ∈ OK s.t. (x, y)T ∈ M ′} = {⟨y1, z⟩KR | z ∈ M}. One can see from the definition that
this set is an ideal of OK . Assume by contradiction that it is not equal to OK and let p be
a prime ideal dividing it. Then it holds that y1 · p−1 ⊂ M∨. But this is a rank-1 submodule
of M∨ containing strictly the rank-1 module y1 · OK , contradicting the assumption that y1 · OK

is primitive in M∨. Hence, we conclude that M ′ has the coprime property.

D.4.3 Proof of Lemma V.4.5

The algorithm BalanceIdeal is as follows.

D.4. MISSING PROOFS FROM SECTION V.4 151

Algorithm D.4.2 Algorithm BalanceIdeal
Input: A Z-basis of a fractional ideal I ⊂ K and a parameter γHSVP ≥ 1
Output: An element x ∈ K

▷Using a γHSVP-id-HSVP oracle to get short linearly independent vectors of I−1
1: Call a γHSVP-id-HSVP solver on I−1 to get y ∈ I−1

2: Let B = (y · bOK
1 , · · · , y · bOK

d) (where (bOK
1 , . . . , bOK

d) is a Z-basis of OK . This is a Z-basis of ⟨y⟩)

▷Using the short vectors to find a balanced element in I−1 by solving CVP
3: Let σ = γHSVP · d2 · δK · N (I)−1/d and t = (σ, · · · , σ)
4: Write t =

∑
i ti · y · b

OK
i , with ti ∈ R

5: Define s =
∑

i⌊ti⌉ · y · b
OK
i

6: Return x = s−1

Proof. One can check that all the steps of the algorithm, except for the one call to the γHSVP-
HSVP oracle, can be performed in polynomial time.

Let us then prove correction, and start with I ⊆ ⟨x⟩. We know that s ∈ ⟨y⟩, by definition
of s. Since y ∈ I−1, it holds that ⟨s⟩ ⊆ I−1, which implies I ⊆ ⟨s⟩−1 = ⟨x⟩ as desired (provided
that s ̸= 0, which we will show below).

Let us know look at how balanced are the coordinates of s (and x). We have

∥s− t∥∞ ≤
∑
i

1/2 · ∥y · bOK
i ∥∞

≤ 1/2 ·
∑
i

∥y∥∞ · ∥bOK
i ∥∞

≤ d/2 · ∥y∥ · δK
≤ 1/(2d) · σ,

where we used in the last inequality the fact that y is the output of the γHSVP-id-HSVP solver
on I−1, and hence ∥y∥ ≤ γHSVP · N (I)−1/d. Since σi(s) is the i-th coordinate of s and all the
coordinates of t are equal to σ, this implies that |σi(s)| ∈ [σ · (1− 1/(2d)), σ · (1 + 1/(2d))] (and
in particular σi(s) ̸= 0 for all i’s, so s is invertible). Using the facts that σi(x) = σi(s)

−1 and
the convexity of the function x 7→ 1/x over [1/2, 2] conclude the proof.

D.4.4 Proof of Lemma V.4.6

We know from preliminaries (cf Section II.3) that the HNF basis of a module can be computed
in polynomial time. From Lemma V.4.5 we know that the algorithm BalanceIdeal runs in
polynomial time and make one call to the γHSVP oracle. Note that the input ideal J2 is indeed
fractional (and even integral) since M ⊂ O2

K and that γHSVP ≥
√
d∆

1/(2d)
K hence we can indeed

run algorithm BalanceIdeal. Finally, the multiplications and rounding in the third step of the
algorithm can be performed in polynomial time too.

D.4.5 Proof of Lemma V.4.7

Let us fix some δ, γHSVP, γNTRU and q as in the theorem and define V and γuSVP accordingly.
Let (B, I) be the input pseudo-basis, spanning a rank-2 module M1 ⊂ O2

K with N (M1) ∈
[1/22d, 22d] · V , with the coprime property, and which we know contains a non-zero vector s1 =
(u, v)T ∈ M1 such that ∥s1∥ ≤ 1/γuSVP · N (M1)

1/(2d). We will see step by step how the

152 APPENDIX D. APPENDICES OF CHAPTER V

module M1 is modified by the algorithm, and what happens to its short non-zero vectors. This
is summarized on Figure V.2.

First step: HNF. After the HNF computation, we have a new pseudo-basis of the form J1 J2(
1 0
a 1

)
for some a ∈ K and J1, J2 ⊂ K (cf Section II.3). This pseudo-basis generates a rank-2 module M2

which is the same as the input module M1. Hence, M2 contains a short non-zero vector s2 := s1.
Since our module M2 is integral, we know that both ideals J1 and J2 are integral. Also,

since module M2 = M1 has the coprime property, we know that J1 = OK . Finally, because
of the shape of the pseudo-basis, it holds that N (J1) · N (J2) = N (M2) = N (M1), which
yields N (J2) ≥ N (M1).

Second step: from pseudo-basis to basis. Let M3 be the free module generated by the
pseudo-basis OK OK(

1 0
a b

) ,

where b← BalanceIdeal(J2, γHSVP). Since J2 ⊆ ⟨b⟩ by Lemma V.4.5 and J1 = OK , we conclude
that M2 ⊆M3. Hence, the short vector s3 := s2 is still in M3.

Before moving to the next step, let us have a closer look at b. We know from Lemma V.4.5
that |σi(b)| ∈ [1− 1/d, 1+1/d] ·σ−1 for all i ≤ d, with σ = γHSVP ·d2 · δK ·N (J2)

−1/d. Using the
lower bound on N (J2) that we computed above, this shows that σ ≤ γHSVP ·d2 ·δK ·N (M1)

−1/d.

Third step: transforming b into q. Let M4 be the free module generated by the pseudo-basis OK OK(
1 0
h q

) ,

where h = ⌊a · q/b⌉. This is the basis output by Algorithm Conditioned-to-NTRU. The new
module M4 does not contain M1 anymore, however we will show that its geometry is close to the
one of M3, so that it has a short non-zero vector if M3 does.

Recall that M3 contains a short vector s3 = (u, v)T such that ∥s3∥ ≤ 1/γuSVP · N (M1)
1/(2d).

Let x ∈ OK be such that s3 = u · (1, a)T + x · (0, b)T . Define s4 = u · (1, h)T + x · (0, q)T ∈
M4 \ {0}. Unrolling the definition of h and using the equation u · a + x · b = v, one can
rewrite s4 = (u, v · q/b−u · {a · q/b})T . We can upper bound the euclidean norm of s4 as follows

∥s4∥ ≤ ∥u∥+ ∥v∥ · ∥q/b∥∞ + ∥u∥ · ∥{a · q/b}∥∞
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
1 + q · 2σ + dδK

)
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
q · 2σ + 2 · dδK

)
≤ 2γ−1uSVP · d · δK ·

(
N (M1)

1/(2d) + q · d · γHSVP · N (M1)
−1/(2d))

≤ 1/γNTRU ·
√
q,

where in the last step we used the fact that N (M1)
1/(2d) ∈ [1/2, 2] · V 1/(2d) and the definitions

of V and γuSVP. We conclude that the pseudo-basis output by Algorithm Conditioned-to-NTRU
is indeed a γNTRU-NTRU instance, as desired.

D.4. MISSING PROOFS FROM SECTION V.4 153

D.4.6 Proof of Lemma V.4.8

Algorithm LiftMod is as follows.

Algorithm D.4.3 Algorithm LiftMod
Input: Two elements a, b ∈ K, an NTRU instance ((c1, c2),O2

K) and a pseudo-basis (v, J) of a
rank-1 module in K2.

Output: A vector w ∈ K2

1: Compute x, y ∈ K such that v = x · c1 + y · c2
2: Define w = x · (1, a)T + y · (0, b)T
3: Return w

Proof. The running time follows from inspection of the algorithm.
Let s1 be a shortest vector of M1. Since γuSVP > 1, we know from Lemma II.3.4 that s1

belongs to the densest rank-1 submodule of M1, i.e., the densest submodule of M1 is equal
to spanK(s1) ∩M1.

We use the notations M1,M2,M3 and M4 as in Figure V.2 (and the proof of Lemma V.4.7).
Recall from the proof of Lemma V.4.7 that s1 is still a vector of the rank-2 module M3 spanned
by (1, a)T , (0, b)T . Let u, r ∈ OK be such that s1 = u · (1, a)T + r · (0, b)T . Recall again from the
proof of Lemma V.4.7 that s4 = u ·c1+r ·c2 is an unexpectedly short vector of the output NTRU
module M4. More precisely, we proved that ∥s4∥ ≤ 1/γNTRU · N (M4)

1/(2d).
Using Lemma II.3.4 again and the fact that γNTRU > 1, we know that s4 belongs to the

densest submodule of M4. Since (v, J) is a pseudo-basis of this densest submodule, it should be
that v and s4 are K-collinear, i.e., there exists z ∈ K such that v = z · s4 = zu · c1 + zr · c2.

Hence, the elements x, y computed in the algorithms are equal to zu and zr respectively.
This proves that w = x · (1, a)T + y · (0, b)T = z · s1. Hence, spanK(w) = spanK(s1) and the
densest submodule of M is spanK(w) ∩M1.

D.4.7 Proof of Lemma V.4.9

Algorithm LiftVec is as follows.

Algorithm D.4.4 Algorithm LiftVec
Input: Some auxiliary information aux = (a, b, J1, J2) , a parameter γHSVP, an NTRU in-

stance ((c1, c2),O2
K) and a vector s ∈ C · O2

K

Output: A vector w ∈ K2

1: Compute x, y ∈ OK such that s = x · c1 + y · c2
2: Run z ← BalanceIdeal(⟨b⟩ · J−11 · J−12 , γHSVP)

3: Compute t = z−1 ·
(
x · (1, a)T + y · (0, b)T

)
4: Return t

Proof. The running-time follows from inspection of the algorithm and from Lemma V.4.5.
Let us show that the output t of the algorithm is indeed in the module M1. Let us keep the

notations M1,M2,M3 and M4 from Figure V.2. In particular, M1 = M2 is the module generated
by the pseudo-basis ((1, a)T , (0, b)T), (J1, ⟨b−1⟩ · J2).

From Lemma V.4.5, we know that ⟨b⟩·J−11 ·J
−1
2 ⊆ ⟨z⟩, i.e., z−1 ∈ J1 ·J2 ·⟨b−1⟩. Using the fact

that J1 and J2 · ⟨b−1⟩ are both integral (recall that J2 ⊆ ⟨b⟩ and that M1 is in O2
K), this implies

154 APPENDIX D. APPENDICES OF CHAPTER V

that z−1 ∈ J1 ∩J2 · ⟨b−1⟩. Since x, y ∈ OK , we conclude that t = z−1 ·x · (1, a)T + z−1 · y · (0, b)T
is in M1 as desired.

Let us now upper bound the size of t. Let us write s = (s1, s2)
T and express the coordinates

of t in terms of s1 and s2. From the equation s = x · (1, ⌊a · q/b⌉)T + y · (0, q)T , we obtain x = s1

and s2 = x⌊a · q/b⌉+ yq. This implies that t = z−1 ·
(
s1, b/q · (s2 + s1 · {a · q/b})

)T . From this,
we can upper bound

∥t∥ ≤ ∥z−1∥∞ · ∥s∥ ·
(
1 + ∥b/q∥∞ · (1 + dδK)

)
.

Recall from the proof of Lemma V.4.7 that for all i ≤ d, we have |σi(b)| ∈ [1−1/d, 1+1/d]·σ−1,
with σ = γHSVP · d2 · δK · N (J2)

−1/d. Hence,

∥b/q∥∞ ≤
2 · N (J2)

1/d

γHSVP · d2 · δK · q
and |N (b)| ≥ N (J2)

(2γHSVP · d2 · δK)d
.

From Lemma V.4.5, we similarly know that |σi(z)| ∈ [1 − 1/d, 1 + 1/d] · σ−1z for all i ≤ d,
where σz = γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d. Hence we obtain

∥z−1∥∞ ≤ 2 · γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d ≤ 4 · γ2
HSVP · d4 · δ2K ,

where we used the fact that J1 = OK thanks to the coprime property of M1.
Finally, recall that N (J2) = N (M1) ≤ 22d ·V , with V 1/d = q ·γHSVP ·d. Combining everything

provides the desired upper bound on ∥t∥.

D.5 Removing ζK(2) from Theorem V.4.1

D.5.1 Tail-cut of ζK(2) and B-coprime property

In order to remove the dependence in ζK(2) in the running-time of Theorem V.4.1, we will relax
the coprime property.

Definition D.5.1 (B-coprime property). We say that a rank-2 module M ⊆ O2
K has the B-

coprime property if it holds that

N
(
{x ∈ OK | ∃ y ∈ OK , (x, y)T ∈M}

)
≤ B.

In other words, the module M has the coprime property if the ideal spanned by the first
coordinate of all the vectors of M has norm at most B.
To decide which B to use, we have to give bounds on the tail of the defining serie of ζK(2).

Lemma D.5.2. There exists an absolute constant κ > 1 such that∑
N (a)>B

1

N (a)2
≤ (∆K · dd)κ

B

for every B ≥ 2d.

Proof. We have, that for any α > 1 and n ≥ 1,

1

(n+ 1)α
≤
∫ n+1

n

dx

xα
≤ 1

nα
,

D.5. REMOVING ζK(2) FROM THEOREM V.4.1 155

and then, as α > 1 we have for any a ≥ 1∑
n>a

1

nα
=
∑
n≥a

1

(n+ 1)α
≤
∫ ∞
a

dx

xα
=

1

(α− 1) · aα−1
.

Let an be the number of ideals of OK with norm exactly n. Note that NK(x) =
∑

k≤x ak. Note
also that (2n+ 1)/(n2(n+ 1)2) ≤ 3/n3 for any n ≥ 1. Let 2d < a < b two integers; it holds that∑

a<k≤b

ak
k2

=
∑

a<k≤b

NK(k)−NK(k − 1)

k2

=
∑

a<k≤b

NK(k)

k2
−

∑
a−1<k≤b−1

NK(k)

(k + 1)2

=
∑

a<k≤b−1

NK(k) · 2k + 1

k2 · (k + 1)2
+

NK(b)

b2
− NK(a)

(a+ 1)2

≤
∑

a<k≤b−1

3 ·NK(k)

k3
+

NK(b)

b2
.

The asymptotic growth of NK(b) as ρK · b when b goes to infinity implies that (with η =
1/(16 ln(d))) ∑

k>a

ak
k2
≤
∑
k>a

3 ·NK(k)

k3

≤ 3ρK ·
∑
k>a

1

k2
+ 3 ·M ′(K) ·

∑
k>a

1

k2+η
(Theorem III.1.2)

≤ 3ρK
a

+
3 ·M ′(K)

(1 + η) · a1+η

≤ 3ρK + 3M ′(K)

a
.

By Theorem II.2.10, we have that ρK ≤ (e · log(∆K)/(2(d− 1)))d−1), so there exists κ ≥ 1 such
that 3(M ′(K) + ρK) ≤ (∆K · dd)κ.

We make use of the following lemmas.

Lemma D.5.3. Let M ⊂ Kk
R be a rank-k module and let y1 ∈M∨. We define

y1 ·M :=
{
⟨y1,m⟩KR

,m ∈M
}
⊆ OK .

It holds that y1 ·M is an integral ideal of K. Furthermore, for any integral ideal a,

y1 ·M = a ⇔ y1 · OK primitive in a ·M∨.

Proof. The fact that y1 ·M is an integral ideal comes from its definition. Assume that y1 ·OK is
primitive in a·M∨. The fact that y1 ∈ aM∨ implies that y1·M ⊆ a. Now assume that y1·M = b·a
for some integral ideal b. Then if b ̸= OK , it holds that y1 · b−1 ⊂ aM∨, contradicting the
primitivity of y1 · OK .

Conversely, assume that y1 ·M = a. This implies that y1 ·OK ⊂ a ·M∨. Assume that y1 ·OK

is not primitive in a ·M∨, i.e., there exists an integral ideal b ̸= OK such that y1 · b−1 ⊂ a ·M∨,
i.e., y1 · OK ⊂ ab ·M∨. In particular, it holds that a = y1 ·M ⊂ a · b which contradicts b ̸= OK ,
hence the result.

156 APPENDIX D. APPENDICES OF CHAPTER V

We can now give a bound on the probability to be B-coprime for a random module.

Lemma D.5.4. Let κ as in Lemma D.5.2. There exists an absolute polynomial P̃ such that
the following holds. For any degree-d number field K, real B ≥

(
∆K · dd

)κ, δ ≥ 0 and rank-2
module M ⊂ K2

R, if c ∈ spanKR
(M∨) and ς > 0 are such that ∥c∥ ≤ δ · ς and

ς ≥ λkd(M
∨) · P̃

(
B1/d, δ,

λ2d(M
∨)

λ1(M∨)

)
,

then it holds that

Pr
[y1,y2]T←D2

M∨,ς,c

(
[y1,y2]

T ·M has the B-Coprime property
)
≥ 1

10
.

Proof. Let κ be the same as defined in Lemma D.5.2, B as in the statement (note that B ≥ 2d),
a an integral ideal of norm less than B and

ς ≥
√
d∆

1/(2d)
K ·B1/d · λ2d(M

∨) · P

(
∆

1/d
K , 2, d, δ,

B1/d ·
√
d ·∆1/(2d)

K · λ2d(M
∨)

λ1(M∨)

)
,

where P is the polynomial defined in Lemma V.2.2. It holds that λ1(a ·M∨) ≥ λ1(M
∨) and that

λ2d(a ·M∨) ≤ λ
(∞)
1 (a) · λ2d(M

∨) ≤
√
d · N (a)

1
d ·∆

1
2d

K · λ2d(M
∨).

The standard deviation ς satisfies the hypothesis of Lemma V.2.2 for the module a ·M∨. Note
that the definition of P also implies (See the proof of Lemma V.2.2) that ς ≥ ηε(aM

∨) ≥ ηε(M
∨)

for ε = 2−4d−5. This, along with Lemma II.1.6, give that

Pr
y←DM∨,ς,c

(y ∈ aM∨) ≥ 1− ε

1 + ε
· Vol(M

∨)

Vol(aM∨)
≥ 9

10 · N (a)2
.

For any event E(·) depending on some y ∈ M∨, by the definition of the Gaussian distribution,
it holds that

Pr
y←DM∨,ς,c

(E(y) | y ∈ aM∨) = Pr
y←Da·M∨,ς,c

(E(y)) .

Let Y = [y1,y2]
T ← D2

M∨,ς,c and M ′ = Y ·M . The ideal spanned by first coordinates of the
vectors of Y ·M is the ideal y1 ·M . By Lemma D.5.3, we have y1 ·M = a if and only if y1 is
primitive in a ·M∨, by Lemma V.2.2 it then holds that

Pr
y←DM∨,ς,c

(y ·M = a)

= Pr
y←DM∨,ς,c

(y primitive in a ·M∨ | y ∈ a ·M∨) · Pr
y←DM∨,ς,c

(y ∈ a ·M∨)

= Pr
y←Da·M∨,ς,c

(y primitive in a ·M∨) · Pr
y←DM∨,ς,c

(y ∈ a ·M∨)

≥ 1

4 · ζK(2)
· 9

10 · N (a)2

≥ 1

5 · ζK(2) · N (a)2
.

D.5. REMOVING ζK(2) FROM THEOREM V.4.1 157

The fact that the events [y ·M = a] are pairwise exclusive for every a implies that

Pr
Y =[y1,y2]T←D2

M∨,ς,c

(
Y ·M has the B-coprime property

)
=

∑
N (a)≤B
a integral

Pr
y1←DM∨,ς,c

(y ·M = a)

≥ 1

5ζK(2)
·
∑

N (a)≤B
a integral

1

N (a)2

=
1

5
·

1− 1

ζK(2)
·
∑

N (a)>B
a integral

1

N (a)2

≥ 1

5
·

(
1−

(
∆K · dd

)κ
B · ζK(2)

)
, by Lemma D.5.2.

Note that ζK(2) ≤ ζ(2)d. Taking B ≥
(
∆K · dd

)κ ≥ 2 ·
(
∆K · dd

)κ
/ζK(2) gives the claimed

result.

D.5.2 Proof of Theorem V.4.2

Theorem V.4.2 is a direct corollary of the following more complete statement (the blue back-
ground highlight the difference with the results of the previous sections).

Theorem D.5.5 (Updated Theorem D.4.1). Let κ > 1 as defined in Lemma D.5.2, K a number
field of degree d, let γ+ > 0. There exist three algorithms uSVP-to-NTRU, LiftVecInternal and
LiftModInternal (the same as in Theorem D.4.1) and q0 = poly(∆

1/d
K , d, δK , γ+) ∈ R≥0 such

that the following holds. For any q ≥ q0, γNTRU > 1 , γHSVP ≥
√
d ·∆1/(2d)

K and (B, I) pseudo-
basis of a rank-2 module M ⊂ K2 with γ(M) ≤ γ+.

• Algorithm uSVP-to-NTRU takes as input (B, I), q and γHSVP and outputs (B′,O2
K) a

pseudo-basis of a rank 2 free module M ′ ⊂ O2
K , together with some auxiliary informa-

tion aux. If (B, I) is a γuSVP-mod-uSVP2 instance with

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d 3+κ

2 ·∆
κ
2d

K · δK ,

then (B′,O2
K) is a (γNTRU,q)-NTRU instance. If given access to a γHSVP-id-HSVP or-

acle, it makes one call to the oracle and runs in time polynomial in its input bitsize and
in exp(d log(d)

log(q/q0)
).

• Algorithm LiftVecInternal takes as input a non-zero vector s′ ∈ M ′ and the auxiliary
information aux. It outputs a non-zero vector s ∈M such that

∥s∥ ≤ 150 · γ3/2
HSVP ·∆

κ
2d

K · d
7+3κ

2 · δ2K ·
∥s′∥

N (M ′)
1
2d

· N (M)
1
2d .

If given access to a γHSVP-id-HSVP oracle, it runs in polynomial time and makes one call
to the oracle.

158 APPENDIX D. APPENDICES OF CHAPTER V

• Algorithm LiftModInternal takes as input a pseudo-basis of a rank-1 densest submod-
ule N ′ of M ′ and the auxiliary information aux and outputs a pseudo-basis of a rank-1
densest submodule N of M . It runs in polynomial time.

It should be noted that κ in Theorem D.5.5 is directly related to the decrease rate of the
tail

∑
N (a)>B N (a)−2 when B goes to infinity. We state here the theorem in full generality (the

constant κ applies to all number fields), but for some family of fields it might be possible prove
that

∑
N (a)>B N (a)−2 converges to 0 quicker than (∆K · dd)κ/B, leading to a smaller κ in the

theorem.

Proof of Theorem D.5.5. This proof is a modified version of the proof of Theorem D.4.1.
We fix B =

(
∆K · dd

)κ for the rest of the proof.

Let V0 =
(
poly(B1/d, δK , γ+)

)2d
be as in Lemma D.5.6 (defined using γ+ instead of γ(M)).

Define

q0 =
V

1/d
0 · 4d
γHSVP

.

One can check that q0 is indeed poly(∆
1/d
K , d, δK , γ+) as desired. We prove that the theorem

holds for this choice of q0.

Algorithm uSVP-to-NTRU. On input (B, I), q and γHSVP, uSVP-to-NTRU sets V = γd
HSVP·qd·dd

and β =
⌈ 2d log(2d)

log
(√

q/q0
)
+log(2d)

⌉
. It then runs PreCond on input (B, I), V and β, to obtain a

matrix Y ∈ GL2(K).
From the definition of q0, V and β, one can check that V 1/(2d) ≥ (2d)2d/β ·V 1/(2d)

0 . Moreover,
we have γ(M) ≤ γ+ by assumption, hence we can apply Lemma D.5.6. This implies in particular
that the call to the PreCond algorithm runs in time polynomial in the input bitsize and in 2β =
2O(d log(d)/ log(q/q0)).

Algorithm uSVP-to-NTRU then runs Conditioned-to-NTRU on input (Y B, I), q and γHSVP.
It obtains a basis B′ of a free module M ′ and some auxiliary information aux′. Algorithm
uSVP-to-NTRU finally outputs (B′,O2

K) and aux = (aux′,Y , γHSVP,B
′).

We know that the call to Conditioned-to-NTRU can be done in polynomial time, with one
call to the γHSVP-id-HSVP oracle. This completes the proof on the running time of algorithm
uSVP-to-NTRU.

Let us assume now that (B, I) was a γuSVP-mod-uSVP2 instance, for γuSVP as in the theorem.
We know from Lemma D.5.6 that (Y B, I) is a γuSVP/(2

√
2)-mod-uSVP2 instance. Moreover, still

from Lemma D.5.6, we know that the module spanned by (Y B, I) is a rank-2 module in O2
K , with

the B-coprime property and such that N (M ′) ∈ [1/2d, 2d] ·V . Hence we can apply Lemma D.5.7
and conclude that (B′,O2

K) is a γNTRU instance, as desired (note that V and γuSVP/(2
√
2) have

the desired shape for applying Lemma D.5.7). This proves the first item of the theorem.

Algorithm LiftVecInternal. On input s′ ∈M ′ and aux = (aux’, Y , γHSVP, B′), algorithm
LiftVecInternal runs LiftVec(aux′, γHSVP,B

′, s′) and gets a nonzero vector t. It then out-
puts Y −1 ·t. By Lemma D.5.8, we know that the call to LiftVec can be performed in polynomial
time, with one call to the id-HSVP oracle. This proves the running time of LiftVecInternal.

D.5. REMOVING ζK(2) FROM THEOREM V.4.1 159

By Lemma D.5.8 again, we know that ∥t∥ ≤ ∥s′∥ ·68 ·B3/(2d) ·γ2
HSVP ·d4 ·δ2K . From the shape

of Y , Lemma V.3.6 instantiated with ε = 1/5, the value of B and Lemma D.4.2, we obtain2

∥Y −1 · t∥ ≤ 2.2 · N (M)
1
2d

V
1
2d

· ∥t∥

≤ 150 · γ
3
2

HSVP ·∆
κ
2d

K · d
7+3κ

2 · δ2K ·
∥s′∥
√
q
· N (M)

1
2d .

Using the fact that N (M ′) = qd provides the desired upper bound on the output size. Note also
that by construction, Y −1 · t is indeed a non-zero vector in M .

Algorithm LiftModInternal. The proof is identical to the one of Theorem D.4.1.

D.5.3 Updating Lemma V.4.4

We can now state Algorithm D.5.1, which is the equivalent of Lemma V.4.4 for the algo-
rithm PreCond′.

Lemma D.5.6 (Updated Lemma V.4.4). Let B ≥
(
∆K · dd

)κ. Let (B, I) be a pseudo-basis of

a rank-2 module M ⊂ K2 with gap γ(M) ≥ 1. There exists some V0 > 0 with V
1/(2d)
0 =

poly(B1/d , δK , γ(M)) and an algorithm PreCond’ such that the following holds.
Let β ∈ {2, · · · , 2d} and V > 0 be such that V 1/(2d) ≥ (2d)2d/β ·V 1/(2d)

0 . Then, on input (B, I),
V and β, algorithm PreCond outputs a matrix Y ∈ GL2(K) such that

• if (B, I) is a γuSVP-mod-uSVP2 instance, then (Y B, I) is a γ′uSVP-mod-uSVP2 instance
for γ′uSVP = γuSVP/(2

√
2);

• the rank-2 module M ′ := Y B · I is contained in O2
K ;

• N (M ′) ∈ [1/2d, 2d] · V ;

• M ′ has the B-coprime property;

• Y = R·I2+E for some R = V 1/(2d) ·N (M)−1/(2d) > 0 and ∥eij∥ ≤ R/5 for all 1 ≤ i, j ≤ 2.

Algorithm PreCond’ runs in expected time polynomial in its input bitsize and in 2β.

Proof. The proof is the same as the one of Lemma V.4.4, with the difference that V0 has to be
chosen so that ς matches the hypothesis of Lemma D.5.4 and that the expected running number
of repeat event is ≤ 10.

2J: Pour avoir cette constante, on applique d’abord l’inégalité triangulaire avant Lemmas V.3.6 and D.4.2, et
ça nous donne 1 + 2 · 3/5 = 2.2.

160 APPENDIX D. APPENDICES OF CHAPTER V

Algorithm D.5.1 Algorithm PreCond’
Input: A pseudo-basis (B, I) of a rank-2 module M ⊆ K2, two parameters V > 0, B ≥ 2 and a

block-size β ∈ [2, 2d]
Output: A matrix Y ∈ GL2(K)
1: Set ς = V 1/(2d) · (5

√
2d)−1 · N (M)−1/(2d)

2: repeat
3: Sample Y := (y1,y2)

T ← DualRound((B, I), ς, β, 1/5)
4: until The norm of the first row of Y · (B, I) is at most B.
5: Return Y

D.5.4 Updating Lemma V.4.7

Lemma D.5.7. Let B ≥ 1, γHSVP ≥
√
d ·∆1/(2d)

K , γNTRU > 1 and q ∈ Z>0 be some parameters.
Define

V = γd
HSVP · qd · dd

and γuSVP = γNTRU ·
√
γHSVP · 8 · B1/(2d) · d3/2 · δK .

Let (B, I) be any γuSVP-mod-uSVP2 instance in O2
K , with the B-coprime property and with

norm in [1/22d ·V, 22d ·V]. Then on input (B, I), γHSVP, q, the algorithm Conditioned-to-NTRU
outputs (B4, aux) such that B4 is a (γNTRU, q)-NTRU instance.

Proof. Modified version of the proof of Lemma V.4.7. Let us fix some δ, γHSVP, γNTRU and q as
in the theorem and define V and γuSVP accordingly.

Let (B, I) be the input pseudo-basis, spanning a rank-2 module M1 ⊂ O2
K with N (M1) ∈

[1/22d, 22d]·V , with the B-coprime property, and which we know contains a non-zero vector s1 =
(u, v)T ∈ M1 such that ∥s1∥ ≤ 1/γuSVP · N (M1)

1/(2d). We will see step by step how the
module M1 is modified by the algorithm, and what happens to its short non-zero vectors.

First step: HNF. After the HNF computation, we have a new pseudo-basis of the form J1 J2(
1 0
a 1

)
for some a ∈ K and J1, J2 ⊂ K. This pseudo-basis generates a rank-2 module M2 which is the
same as the input module M1. Hence, M2 contains a short non-zero vector s2 := s1.

Since our module M2 is integral, we know that both ideals J1 and J2 are integral. Also,
since module M2 = M1 has the B-coprime property, we know that N (J1) ≤ B. Finally, because
of the shape of the pseudo-basis, it holds that N (J1) · N (J2) = N (M2) = N (M1), which
yields N (J2) ≥ N (M1)/B .

Second step: from pseudo-basis to basis. Let M3 be the free module generated by the
pseudo-basis OK OK(

1 0
a b

) ,

D.5. REMOVING ζK(2) FROM THEOREM V.4.1 161

where b← BalanceIdeal(J2, γHSVP). Since J2 ⊆ ⟨b⟩ by Lemma V.4.5 and J1 is an integral ideal ,
we conclude that M2 ⊆M3. Hence, the short vector s3 := s2 is still in M3.

Before moving to the next step, let us have a closer look at b. We know from Lemma V.4.5
that |σi(b)| ∈ [1− 1/d, 1+1/d] ·σ−1 for all i ≤ d, with σ = γHSVP ·d2 · δK ·N (J2)

−1/d. Using the
lower bound on N (J2) that we computed above, this shows that σ ≤ γHSVP · d2 · δK · B1/(2d) ·
N (M1)

−1/d.

Third step: transforming b into q. Let M4 be the free module generated by the pseudo-basis OK OK(
1 0
h q

) ,

where h = ⌊a · q/b⌉. This is the basis output by algorithm Conditioned-to-NTRU. The new
module M4 does not contain M1 anymore, however we will show that its geometry is close to the
one of M3, so that it has a short non-zero vector if M3 does.

Recall that M3 contains a short vector s3 = (u, v)T such that ∥s3∥ ≤ 1/γuSVP · N (M1)
1/(2d).

Let x ∈ OK be such that s3 = u · (1, a)T + x · (0, b)T . Define s4 = u · (1, h)T + x · (0, q)T ∈
M4 \ {0}. Unrolling the definition of h and using the equation u · a + x · b = v, one can
rewrite s4 = (u, v · q/b−u · {a · q/b})T . We can upper bound the Euclidean norm of s4 as follows

∥s4∥ ≤ ∥u∥+ ∥v∥ · ∥q/b∥∞ + ∥u∥ · ∥{a · q/b}∥∞
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
1 + q · 2σ + dδK

)
≤ γ−1uSVP · N (M1)

1/(2d) ·
(
q · 2σ + 2 · dδK

)
≤ 2γ−1uSVP · d · δK ·

(
N (M1)

1/(2d) + q · d · γHSVP · B1/(2d) · N (M1)
−1/(2d))

≤ 1/γNTRU ·
√
q,

where in the last step we used the fact that N (M1)
1/(2d) ∈ [1/2, 2] · V 1/(2d) and the definitions

of V and γuSVP. We conclude that the pseudo-basis output by Conditioned-to-NTRU is indeed
a γNTRU-NTRU instance, as desired.

Note that Lemma V.4.8 still works when replacing Lemma V.4.7 by Lemma D.5.7: except
from the gap variation, the densest submodule is not changed by taking modules with the B-
coprime property. We now state the modified version of Lemma V.4.9.

D.5.5 Updating Lemma V.4.9

Lemma D.5.8 (Updated Lemma V.4.9). There exists an algorithm LiftVec3 such that the
following holds. Let q, γHSVP and (B, I) be as in Lemma D.5.7. Let M1 denote the rank-2 module
generated by (B, I), [C, aux] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let M4 denote the
rank-2 free module generated by C.

Let s ∈M4. Then, on input aux, γHSVP, (C,O2
K) and s, algorithm LiftVec outputs a vector

t ∈M such that ∥t∥ ≤ ∥s∥ · 68 · B3/(2d) · γ2
HSVP · d4 · δ2K .

If given access to a γHSVP-id-HSVP oracle, algorithm LiftVec runs in polynomial time and
makes 1 call to the oracle.

3The algorithm is the same.

162 APPENDIX D. APPENDICES OF CHAPTER V

Proof. Modified version of the proof of Lemma V.4.9. The running-time of the algorithm follows
from inspection and from Lemma V.4.5.

Let us show that the output t of the algorithm is indeed in the module M1. Let us keep the
notations M1,M2,M3 and M4 from Figure V.2. In particular, M1 = M2 is the module generated
by the pseudo-basis ((1, a)T , (0, b)T), (J1, ⟨b−1⟩ · J2).

From Lemma V.4.5, we know that ⟨b⟩·J−11 ·J
−1
2 ⊆ ⟨z⟩, i.e., z−1 ∈ J1 ·J2 ·⟨b−1⟩. Using the fact

that J1 and J2 · ⟨b−1⟩ are both integral (recall that J2 ⊆ ⟨b⟩ and that M1 is in O2
K), this implies

that z−1 ∈ J1 ∩J2 · ⟨b−1⟩. Since x, y ∈ OK , we conclude that t = z−1 ·x · (1, a)T + z−1 · y · (0, b)T
is in M1 as desired.

Let us now upper bound the size of t. Let us write s = (s1, s2)
T and express the coordinates

of t in terms of s1 and s2. From the equation s = x · (1, ⌊a · q/b⌉)T + y · (0, q)T , we obtain x = s1

and s2 = x⌊a · q/b⌉+ yq. This implies that t = z−1 ·
(
s1, b/q · (s2 + s1 · {a · q/b})

)T . From this,
we can upper bound

∥t∥ ≤ ∥z−1∥∞ · ∥s∥ ·
(
1 + ∥b/q∥∞ · (1 + dδK)

)
.

Recall from the proof of Lemma D.5.7 that for all i ≤ d, we have |σi(b)| ∈ [1−1/d, 1+1/d]·σ−1,
with σ = γHSVP · d2 · δK · B1/(2d) · N (J2)

−1/d. Hence,

∥ b
q
∥∞ ≤

2 · N (J2)
1/d

γHSVP · B1/(2d) · d2 · δK · q
and |N (b)| ≥ N (J2)√

B · (2γHSVP · d2 · δK)d
.

From Lemma V.4.5, we similarly know that |σi(z)| ∈ [1 − 1/d, 1 + 1/d] · σ−1z for all i ≤ d,
where σz = γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d. Hence we obtain

∥z−1∥∞ ≤ 2 · γHSVP · d2 · δK · N (J1 · J2 · ⟨b−1⟩)1/d ≤ 4 · γ2
HSVP · d4 · δ2K · B3/(2d) ,

where we used the fact that N (J1) ≤ B thanks to the B-coprime property of
the module M1 .

Finally, recall that N (J2) ≤ N (M1) ≤ 22d ·V , with V 1/d = q ·γHSVP ·d. Combining everything
provides the desired upper bound on ∥t∥.

D.6 Missing Proofs from Section V.5

D.6.1 Proof of Theorem V.5.2

Note that the assumptions on B and γ in the theorem statement enable the use of all theorems
and lemmas from Sections V.5.1, V.5.2 and V.5.3. The runtime statement follows from the
runtime statements in Theorems V.5.6 and V.5.9. By using Theorems V.5.6 and V.5.9, we also
obtain that the pseudo-basis output by Randomize spans a rank-2 and norm-1 module.

Let M ′ be the module spanned by the output (B′, I′) of Randomize, when given as input
a module with gap γ. By Theorems V.5.6 and V.5.9, the distribution of M ′′ (over the inter-
nal randomness of Randomize) is within statistical distance 2−Ω(d) from QRSF-2-Mod(Drand

B,γ),
where Drand

B,γ is as defined in Definition V.5.10. Now, we apply QRSF-2-Mod to all the distribu-
tions of Definition V.5.10. By the probability preservation properties of the statistical distance
and Rényi divergence, and by Lemmas D.6.1, D.6.2, D.6.3, D.6.4 and D.6.6, any event that
occurs with probability ε ≥ 2−Ω(d) for QRSF-2-Mod(Dtarget

B,γ) also holds with probability Ω(ε4)

for QRSF-2-Mod(Drand
B,γ). By observing that QRSF-2-Mod(Drand

B,γ) is exactly Dmodule
B,γ , we obtain

that any event that holds for Dmodule
B,γ with probability ε ≥ 2−o(d) also holds for M ′ with proba-

bility Ω(ε4) over the internal randomness of Randomize.

D.6. MISSING PROOFS FROM SECTION V.5 163

We now analyze Recover. Let M be the module spanned by (B, I). Let U be its densest
rank-1 submodule. Let ((B′, I′), aux) be an output of Randomize when given (B, I) as input,
and U ′ be a densest rank-1 submodule of M ′. By Theorems V.5.6 and V.5.9, we have that with
probability 1−2−Ω(d), the module M ′ has gap larger than 1 and its densest rank-1 submodule is

U ′ = (N (p) · det(D))
− 1

2d ·D · U · qp.

This completes the proof.

D.6.2 Proof of Theorem V.5.3

Assume that u ·J1 ̸⊂M ′ , which holds with probability 1− (1/B)Ω(1) by Lemma V.5.4. We fix x
as in Lemma V.5.5. Let M ′′ = u · pJ1 + (v + xu) · J2. By Lemmas V.5.4 and V.5.5, we have
that M ′′ ⊆M ′. By construction, the norm of M ′′ is N (p) · N (M), which is equal to N (M ′) by
Lemma V.3.2, leading to the equality M ′ = M ′′. This completes the proof of the first statement.

Assume that we have M ′ = u · pJ1 +(v+ xu) · J2 and γ(M) ≥ B1/(2d), and that u · J1 is the
densest rank-1 submodule of M . As u · pJ1 is a rank-1 submodule of M ′, we have:

γ(M ′) ≥

(√
N (M ′)

N (u · pJ1)

) 1
d

=
1

N (p)
1
2d

(√
N (M)

N (u · J1)

) 1
d

=
γ(M)

N (p)
1
2d

.

As N (p) ≤ B, we obtain that γ(M ′) ≥ γ(M)/B1/(2d) > 1. By Lemma II.3.4, we know that M ′

has a unique densest rank-1 submodule. Now, using the equalities above and the inequalities
γ(M) ≥ B1/(2d) and N (p) ≤ B, we have

N (u · pJ1) = N (p)
1
2 · N (M ′)

1
2

γ(M)d
≤ N (M ′)

1
2 .

Lemma II.3.4 then implies that u · pJ1 is contained in the densest rank-1 submodule of M ′. By
primitivity (see Definition II.3.3), we conclude that it is the densest rank-1 submodule of M ′.

D.6.3 Proof of Lemma V.5.4

As upJ1 is a primitive rank-1 submodule of M , we can use Lemma V.3.3. It implies that the
result holds, except with probability 1/N (p)− 1/N (p)2 over the choice of b∨.

The overall probability (including over the choice of p) that u · J1 ⊂M ′ holds satisfies:∑
N (p)≤B

Pr(p) · Pr
(
⟨b∨,u⟩KR

∈ pJ−11 | p
)
=

1

πK(B)

∑
N (p)≤B

(
1

N (p)
− 1

N (p)2

)
≤ 1

πK(B)

∑
p≤B

∑
p|p

1

N (p)

≤ d

πK(B)

∑
p≤B

1

p
,

where the sums indexed by p are over the prime ideals of OK and the sums indexed by p are
over the prime integers. The last inequality comes from the facts that there are at most d
ideals p over p, and each of them has norm ≥ p. As

∑
p≤B 1/p = log logB + O(1) (see, e.g.,

[Apo98, Theorem 4.2]) and πK(B) = Θ(B/ logB), we obtain that the probability above is ≤
(1/B)Ω(1).

164 APPENDIX D. APPENDICES OF CHAPTER V

D.6.4 Proof of Lemma V.5.5

Let j ∈ J1 with ju /∈ M ′. Since ⟨b∨, ju⟩KR
belongs to OK \ p (by definition of j), we can

take a representative a ∈ OK of its inverse in OK/p. We define y = −⟨b∨,v⟩KR
· a ∈ J−12 .

By construction, we have ⟨b∨,v + jyu⟩KR
∈ pJ−12 . This implies that (v + jyu) · J2 ⊂ M ′.

Setting x = jy provides the result.

D.6.5 Proof of Theorem V.5.6

The running time bound follows from Theorem V.5.3 and Lemma II.2.12. Now, we write

M =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
= u · J1 + v · J2.

Let p, b∨ and q refer to the random variables sampled during the execution of Real-CR
and let b∨ be a representative of b∨ in M∨. By Theorem V.5.3, we have ⟨b∨,u⟩KR

/∈ pJ−11

with probability 1 − (1/B)Ω(1). In the following, we assume that this holds. We also replace
the distribution of q by the uniform distribution over norm-1 ideals. By Lemma II.2.12, these
two distributions are within 2−d statistical distance from one another. These two assumptions
account for the statistical distance upper bound in the theorem statement.

Let x ∈ J1J2
−1 as in Theorem V.5.3. We have ⟨b∨,v + xu⟩KR

∈ pJ−12 . For any choice
of x such that the latter holds, the module M ′ corresponding to the output of Real-CR is, by
Theorem V.5.3:

M ′ =
1

N (p)
1
2d

· (u · J1pq+ v′ · J2q) ,

where v′ = v + xu. Note that the QR-factorization of the matrix [u|v′] is:

[u|v′] = Q ·
(1

γ γ · (r + x)

0 γ

)
.

We define the norm-1 ideal J = J2q. We have:

M ′ =
1

γ · N (p)
1
2d

·Q ·
([

1
0

]
· J1J2−1Jp+ γ2 ·

[
r + x
1

]
· J
)

=
1√
γ′
·Q ·

([
1
0

]
· J1J2−1J

p

N 1/d(p)
+ γ′2 ·

[
r + x
1

]
· J
)
,

where γ′ = γ/N (p)1/(2d). As the ideal q is distributed uniformly over the set of norm-1 ideals,
so is J . This implies that the distribution of M ′ is the same as the distribution of

QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).

Still assuming that we have ⟨b∨,u⟩KR
/∈ pJ−11 , Theorem V.5.3 gives us that the densest

rank-1 submodule of M ′ is:

1

N (p)
1
2d

· 1
γ
u · J1pq =

N (p)
1
2d

γ
·Q ·

[
1
0

]
· J1q

p

N 1/d(p)
.

This completes the proof of the theorem.

D.6. MISSING PROOFS FROM SECTION V.5 165

D.6.6 Proof of Lemma V.5.7

For the first statement, we prove that for D0 ∈ R2×2 sampled from D(0, 1)2×2, we have |detD0| ≥
1/d with probability 1−O((log d)/d). As Ddistort consists in ≤ d independent copies of the latter
distribution, the probability of accepting a sample from DKR(0, 1)

2×2 when rejecting to Ddistort

is at least 1/dO(1).
Observe that D0 = ∥d1∥ · ∥d∗2∥, where d1 ∼ D(0, 1)2 is the first column of D0 and d∗2 is the

projection of the second column orthogonally to the first. As D0 is invariant under rotations,
conditioned on d1, the vector d∗2 is distributed as a sample from D(0, 1) multiplied with a unit
vector orthogonal to d1. For these reasons, it suffices to show that with probability O((log d)/d),
the product of two iid samples x, y from D(0, 1) has magnitude ≥ 1/d. We have

Pr
x,y←D(0,1)

[|xy| < 1/d] ≤ O(1/d) + 4 · Pr
x,y←D(0,1)

[xy < 1/d ∧ x, y ∈ [1/d, 1]]

≤ O(1/d) + c · Pr
x,y←U([1/d,1])

[xy < 1/d] ,

for some constant c. The latter is O((log d)/d), allowing to complete the proof of the first
statement.

The second statement comes from the invariances of the determinant and vector Gaussian
distribution under multiplication by an orthogonal matrix.

D.6.7 Proof of Lemma V.5.8

We first show that without the conditioning, the matrix D from the lemma statement is dis-
tributed from DKR(0, 1)

2×2. Let us write D = [d1|d2]. Then d1 is the product of a uniform unit
vector and an element sampled from χKR . It is hence distributed as a Gaussian vector. Now,
as the Gaussian vector distribution is invariant by multiplication by an orthogonal matrix, the
distribution of d2 = Q · (b, c)T is DKR(0, 1)

2, independently of Q and a.
To conclude, note that the conditioning is with respect to the event “∀i : |det(σi(D))| ≥ 1/d”,

for both D and Ddistort.

D.6.8 Proof of Theorem V.5.9

The runtime claim follows from Lemma V.5.8. Now, let D ← Ddistort be the matrix sampled
in Step 1 of Real-GR. The matrix D ·Q is also distributed from Ddistort, by Lemma V.5.7. By

Lemma V.5.8 we can write DQ = Q′ ·
(
a b
0 c

)
with Q′ ← U(O2(KR)), a ← χKR and b, c ←

D(0, 1), conditioned on the event that for all i ∈ [d] we have |σi(a · c)| ≥ 1/d. We can then write:

D ·M = Q′ ·
(
a b
0 c

)
·
(
1 r
0 1

)
·
[
1/γ · J1
γ · J2

]
= Q′ ·

(
a b+ ar + b
0 c

)
·
[
1/γ · J1
γ · J2

]
.

Using the equality detD = N (ab), we obtain:

M ′ = |detD|−
1
2d ·D ·M = Q′ ·

(
1 r′

0 1

)
·
[
1/γ′ · J ′1
γ′ · J ′2

]
,

where r′ = (b+ ar)/c, γ′ = N (c/a)1/(2d) · γ, J ′1 = (a/N 1/d(a))J1 and J ′2 = (c/N 1/d(c))J2. This
proves the equality of distributions.

166 APPENDIX D. APPENDICES OF CHAPTER V

We now study γ(M ′). For this, by the above, we can consider Ideal-GR. Thanks to the
conditioning on the distribution of (a, c), we have:

γ′ = N
(c
a

) 1
2d · γ =

N (ac)
1
2d

N (a)
1
d

γ ≥ 1√
d · N (a)

1
d

γ.

Now, note that without the conditioning, the coefficient a would be normally distributed, and
the Gaussian tailbound would imply that N (a)1/d ≤

√
d with probability 1 − 2−Ω(d). As the

rejection occurs with probability at most 1 − 1/dO(1) over the choice of (a, c) Gaussian, we
still have that N (a)1/d ≤

√
d with probability 1 − 2−Ω(d) for (a, c) distributed as in Ideal-GR.

Overall, we obtain that γ′ ≥ γ/d with probability 1 − 2−Ω(d). Using to the QR-standard form
of M ′ with J ′1 and J ′2 of norm 1, we obtain that γ(M ′) ≥ γ′ > 1. By Lemma II.3.4, the
module M ′ has a unique rank-1 densest submodule. The QR-standard form leads us to consider
the following rank-1 submodule of M ′:

U ′ =
1

γ′
·Q′ ·

[
1
0

]
· J ′1 = |detD|−1/(2d) ·D · U.

It satisfies N (U ′) = 1/γ′d ≤ γ(M ′)d. By Lemma II.3.4, it is contained in the unique densest
rank-1 submodule of M . By primitivity, we have equality.

D.6.9 Relations between the distributions of Definition V.5.10

Let us first recall the definitions of the considered distributions.

Drand
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1/d(a)
J1J2

−1J
p

N 1/d(p)
,

c

N 1/d(c)
· J,

b+ a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

(c
a

)
· au
c
·J1J2−1J

p

N 1/d(p)
, J, u

b+ a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ ·

N
(
c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b+ a(r + x)

cExp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1/d(p)
· u

b+ a(r + x)

cExp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Where B, γ, J1, J1 and the random variables Q, a, b, c, x, p, I1, I2, I(·, ·), J, ζ, u, r′, r′′ are de-
fined in Definition V.5.10.

Lemma D.6.1. For any B ≥ 2, γ > 0, r ∈ KR and J1, J2 ∈ I1, we have

Drand
B,γ (J1, J2, r) = D

(1)
B,γ(J1, J2, r).

Proof. Let

A =
(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1/d(a)
J1J2

−1J
p

N 1/d(p)
,

c

N 1/d(c)
· J, b+ a(r + x)

c

)

D.6. MISSING PROOFS FROM SECTION V.5 167

be a sample from Drand
B,γ (J1, J2, r). As the distribution U(I1) is invariant by multiplication by a

norm-1 ideal, the random variable J ′ = c/N 1/d(c) · J is uniformly distributed in I1 (over the
randomness of J , which is statistically independent of all other random variables). We have

A =
(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

(c
a

)
· a
c
· J1J2−1J ′

p

N 1/d(p)
, J ′,

b+ a(r + x)

c

)
.

Now let u be uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1}, and c′ = cu. As the distribu-
tion DKR(0, 1) is invariant by multiplication by an element in this set, and the conditioning
on (a, c) translates identically to (a, c′), the random variable (a, c′) follows the same distribution
as the random variable (a, c) (which is statistically independent of all other random variables).
We have

A =
(
Q, γ

N
(

c′

a

) 1
2d

N (p)
1
2d

, N 1
d

(c
a

)
· au
c′
· J1J2−1J ′

p

N 1/d(p)
, J ′, u

b+ a(r + x)

c′

)
.

We recognize the distribution D
(1)
B,γ(J1, J2, r).

Lemma D.6.2. For any B ≥ 2, γ > 0, r ∈ KR and J1, J2 ∈ I1, we have:

RD2

(
D

(2)
B,γ(J1, J2, r)

∥∥∥ D
(1)
B,γ(J1, J2, r)

)
= O(1).

Proof. The result follows from the fact that N (c ·Exp(ζ)) = N (c), the data processing inequality
and the bound:

RD2(c · Exp(ζ) ∥ c) = O(1).

The rest of the proof is devoted to establishing the latter.
Let ζ ∈ E fixed with ∥ζ∥∞ ≤ 1/d. When d ≥ 2, we have that 2 − exp(ζi) > 0 for all i.

Therefore, by Lemma D.1.1 and the fact that N (Exp(ζ)) = 1, we have:

RD2(DKR(0,Exp(ζ)) ∥ DKR(0, 1)) = N (2− Exp(ζ))−
1
2 .

As |ζi| ≤ 1/d holds for all i, each embedding coefficient of |(2−Exp(ζ))| is ≤ 1− 1/d. We hence
obtain that

N (2− Exp(ζ))−
1
2 ≤ (1− 1/d)

− d
2 = O(1).

To complete the proof, let us consider ζ as a random variable again. We use Lemma D.1.2
with KR in place of R (which is fine, by the multiplicativity property of the Rényi divergence),
to obtain:

RD2(c · Exp(ζ) ∥ c) ≤ Eζ

(
RD2(DKR(0,Exp(ζ)) ∥ DKR(0, 1))

1
2

)2
.

By the analysis above, the latter upper bound is O(1).

Lemma D.6.3 (Assuming ERH). For any B ≥ (log∆K)Ω(1), γ > 0, r ∈ KR and J1, J2 ∈ I1,
we have:

RD2

(
D

(3)
B,γ(J1, J2, r)

∥∥∥ D
(2)
B,γ(J1, J2, r)

)
= O(1).

168 APPENDIX D. APPENDICES OF CHAPTER V

Proof. Note that D(3) is obtained from D(2) by replacing all occurrences of c by c ·N 1/d(p)/B1/d.
The result then follows from the data processing inequality and the bound:

RD2

(
c · N

1/d(p)

B
1
d

∥∥∥∥ c

)
= O(1)

The rest of the proof is devoted to proving the latter.
Let us fix a p of norm ≤ B, this implies that 2 − N 1/d(p)/B

1
d > 0 so by Lemma D.1.1 we

have

RD2

(
c · N

1/d(p)

B
1
d

∥∥∥∥ c

)
≤ N

(
N 1/d(p)

B
1
d

·
(
2− N

1/d(p)

B
1
d

))− 1
2

≤
(

B

N (p)

) 1
2

.

Now, we consider p as a random variable again. Thanks to the above, we have:

Ep

(
RD2

(
c · N

1/d(p)

B
1
d

∥∥∥∥ c

) 1
2

)
≤ B

1
4

πK(B)

∑
N (p)≤B

1

N (p)
1
4

.

Abel’s summation formula gives (see, e.g., [Apo98, Theorem 4.2]):

∑
N (p)≤B

1

N (p)
1
4

=
πK(B)

B
1
4

+
1

4

∫ B

2

πK(t)t−
5
4 dt

≤1.1 B
3
4

logB
+ 1.1

∫ B

B0

t−1/4

log(t)
dt+

∫ B0

2

πK(t)t−
5
4 dt ,

where B0 = (log∆K)Ω(1) is such that for B ≥ B0 we have πK(B) ≤ 1.1B/ logB (see Section V.2).
The last term in the upper bound is ≤ 2−1/4πK(B0) ≤ B0. Assuming that B ≥ B2

0 , the latter
is ≤ B1/2. Overall, we obtain that

∑
N (p)≤B

1

N (p)
1
4

≤ 5
B

3
4

log(B)
.

Using the lower bound πK(B) ≥ 0.9B/ logB from Section V.2, we then obtain that

Ep

(
RD2

(
c · N

1/d(p)

B
1
d

∥∥∥∥ c

) 1
2

)
≤ O(1).

Finally, Lemma D.1.2 allows us to conclude.

Lemma D.6.4. For B ≥ 2, γ ≥ d1/4∆
1/(2d)
K , r ∈ KR and J1, J2 ∈ I1, we have:

SD
(
D

(3)
B,γ(J1, J2, r), D

4
B,γ(J1, J2)

)
≤ 2−Ω(d).

To prove Lemma D.6.4, we will use the following result on the closeness to uniformity of a
Gaussian distribution over KR, when it is folded modulo an ideal lattice.

Lemma D.6.5 (Adapted from [PRS17, Lemma 6.9]). Let I an ideal, s ∈ K+
R and s = (σi(s))i∈[d].

If N (s) ≥ ∆K · N (I), then we have:

SD (DKR(0, s) mod I,U(KR mod I)) ≤ 2−Ω(d).

D.7. MISSING PROOFS FROM SECTION V.6 169

Proof of Lemma D.6.4. We consider the following sample from D
(3)
B,γ(J1, J2, r):(

Q, γ′, I(J1, J2), J, B
1
d · u b+ a(r + x)

cExp(ζ)N 1/d(p)

)
.

Note that b ∼ DKR(0, 1) is independent of all other variables and occurs only once in the sample
above. Let b′ = B1/d · sb/(cExp(ζ)N 1/d(p)). Over the randomness of b (and assuming all
other random variables are fixed), it is distributed as DKR(0, B

1/d/(|c|Exp(ζ)N 1/d(p))). We
now consider the folding of b′ modulo the ideal I ′ := γ′−2I(J1, J2) · J−1. Lemma D.6.5 implies
that if

B

N (c)N (p)
≥ ∆K · N (I ′),

then SD(c′ mod I ′,U(KR mod I ′) ≤ 2−Ω(d), leading to the result. It hence suffices to prove the
premise.

As I(J1, J2), J ∈ I1 and N (p) ≤ B, using the definition of γ′, it suffices that we have γ2d ≥
∆KN (a). By the Gaussian tail bound, we have N (a) ≤ dd/2 with probability 1− 2−Ω(d), which
suffices for our purposes.

Lemma D.6.6. For B ≥ (dd∆k)
Ω(1), γ > 0 and J1, J2 ∈ I1, we have:

SD
(
D

(4)
B,γ(J1, J2), D

target
B,γ

)
≤ 2−Ω(d).

Proof. By Lemma II.2.12, we have that the distribution of p
N 1/d(p)

·u exp(−ζ) is within statistical
distance 2−Ω(d) from U(I1). The latter distribution being invariant by multiplication by norm-1
ideals, we obtain that the distribution of I(J1, J2) is at statistical distance 2−Ω(d) from U(I1),
over the random choices of p, s and ζ. As they are independent of Q, γ′ and J , and as the
distribution of the last tuple entry is a function of the others, we obtain the result.

D.7 Missing Proofs from Section V.6

D.7.1 Proof of Lemma V.6.2

Using the notations from Definition V.5.1, the gap of the module M is equal to γ(M) =
γ′N (c/a)1/(2d)/B1/(2d). Now, by the conditioning on the pair (a, c), we have N (c) ≥ 1/(ddN (a)).
Also, by the Gaussian tail bound, we have ∥a∥ ≤

√
d with probability 1− 2−Ω(d). The inequal-

ity N (a) ≤ ∥a∥/
√
d then leads to the result.

D.7.2 Proof of Lemma V.6.3

Let us write (B, I) = Q · ((1, 0)T · 1/γJ1 + (r, 1)T · γJ2) and Y = R · (I + (2d)−3/2 ·E) with R
as define in DualRound (Algorithm V.3.1) and ∥eij∥ ≤ 1 for all i, j ∈ [2] (see Lemma V.3.5). We
consider the QR-factorization of Q−1 · Y ·Q:

Q−1 · Y ·Q = R ·Q′ ·
[
x y
0 z

]
,

for some x, y, z ∈ KR. In particular, we have that N (x) is the algebraic norm of the first
column of I2 + E′, where E′ = Q−1 · E ·Q satisfies

∥∥e′ij∥∥∞ ≤ √2d for i, j ∈ [2]. This implies
that N (x) ≤ 1 + 1/(2d). In the same vein as in the proof of Theorem V.5.9, this implies that

N
(
Y · U

)
≤ Rd ·

(
1 +

1

2d

)d · N (U) ≤ Rd ·
√
e · N (U),

170 APPENDIX D. APPENDICES OF CHAPTER V

where U = Q ·(1, 0)T ·1/γJ1. The result then follows from Lemma V.3.6 and the fact that N (Y ·
M) = det(Y) · N (M).

D.7.3 Proof of Lemma V.6.5

Wlog, we may assume that the gap of the γ′-wc-mod-uSVPN ,mod
2 instance (B, I) satisfies γ′ ≤

2d∆
O(1/d)
K , as otherwise the problem can be solved in polynomial time using LLL [LLL82]. We

cover the interval [2 log(∆K)
O(1/d) · γ, 2d∆O(1/d)

K] by at most O(d2 + log∆K) intervals of the
form γ · [(1 + 1/(3d))i, (1 + 1/(3d))i+1], and guess uniformly the i for which contains the gap of
the module M spanned by (B, I). The guess is correct with probability Ω(1/(d2+log∆K)) and,
in the following, we only analyze what happens when this occurs.

The next step is to find a prime ideal p such thatN (p)1/(2d) ∈ γ′·[(1+1/(3d))i−1, (1+1/(3d))i].
As γ′ ≥ 2 log(∆K)

O(1/d), we can use Lemma II.2.11 to sample p uniformly among the prime ideals
with norms ≤ (1+1/(3d))di. By the estimates on πK stated in Section V.2, the value N (p)1/(2d)

belongs to the appropriate interval with probability Ω(1). We assume this is the case. Note that
we then have that γ′/N (p) ∈ γ · [1, 1 + 1/d].

We then sample b∨ uniformly in (M∨/pM∨) \ {0}, and sparsify the module M by (b∨, p),
using Lemma V.3.4. By Lemmas V.3.2 and V.3.3, the gap of the sparsified module M ′ is γ′/N (p),
with probability Ω(1), and the pseudo-basis of M ′ is a valid γ≈-wc-mod-uSVPN ,mod

2 instance.
Finally, note that when the latter event occurs, if U is the densest rank-1 submodule of M ,
then pU is the densest rank-1 submodule of M ′ (as in the proof of Theorem V.5.6). This
completes the description and the analysis of the reduction.

D.7.4 Proof of Lemma V.6.6

By Lemma V.6.2, samples from Dmod-uSVP2
γ and Dmod-uSVP2

γ′ are indeed γ-mod-uSVPN instances.
Now, note that Dmod-uSVP2

γ′ is obtained from Dmod-uSVP2
γ by replacing all the occurences of c

by c · (γ′/γ)2 in Definition V.5.1. The result then follows from the data processing inequality
and the bound:

RD2

(
c
∥∥ c · (γ′/γ)2

)
= O(1)

The rest of the proof is devoted to proving the latter. We have γ′/γ ≥ 1, implying that 2(γ′/γ)2−
1 ≥ 1. By Lemma D.1.1 this implies that

RD2

(
c
∥∥ c · (γ′/γ)2

)
≤ N

(
(γ′/γ)4

2(γ′/γ)2 − 1

)1/2

≤ (1 + 1/d)
2d

= O(1).

D.7.5 Proof of Lemma V.6.7

The reduction first runs algorithm RandomizeB from Theorem V.5.2. It then calls the algo-
rithm DualRoundς,β,ε and HNF. The parameters B, ς, β and ε are set exactly as in the sampling
algorithm for Dmod-uSVP2 . It then calls the (Dmod-uSVP2

γ′ , γ′′)-mod-uSVPN ,mod
2 oracle and pulls

the returned rank-1 submodule back to a rank-1 submodule of the input module, using the Y
matrix from DualRound and the aux output from Randomize.

The runtime bound comes from Theorem V.5.2 and Lemma V.3.5. Correctness follows from
Theorem V.5.2, Lemmas V.6.3 and Lemma V.6.6.

	Page de Garde
	Dedication
	Acknowledgements/Remerciements
	Contents
	Introduction
	Introduction (Français)
	Garantir la sécurité d'un protocole
	L'adversaire quantique et la cryptographie Post-Quantique
	Réseaux euclidiens
	Le problème du plus court vecteur.
	Problèmes cas-moyen

	Les réseaux structurés
	Polynômes et réseaux euclidiens
	Théorie algébrique des nombres
	Le problème id-HSVP
	Le problème NTRU
	Liens entre NTRU et id-HSVP

	Contribution de cette thèse
	Publications
	Difficulté de id-HSVP pour des idéaux entiers aléatoires
	Liens entre NTRU et mod-uSVP2 et distribution cas-moyen pour mod-uSVP2
	Apports de ce manuscrit par rapport à FPS22,FPSW23

	Introduction (English)
	Guaranteeing the security of a protocol
	Quantum adversary and post-quantum cryptography
	Lattices
	The Shortest Vector Problem
	Average-case problems

	Structured lattices
	Polynomials and lattices
	Algebraic number theory
	On id-HSVP
	The NTRU problem
	Links between NTRU and id-HSVP

	Contribution of this PhD
	Publications
	Hardness of id-HSVP for random integral ideals
	Relationship between NTRU and mod-uSVP2, and average-case distribution for mod-uSVP2
	Contributions of this manuscript compared to FPS22,FPSW23

	Preliminaries
	Lattices
	Definitions and bases
	Lattice invariants
	The Gaussian distribution
	The LLL and BKZ algorithms

	Number Theory
	Number fields and their geometry
	Ideals
	Embedding and ideal lattices.
	Riemann hypotheses
	Class group and norm-1 ideals
	Computations with number theoretic objects

	Modules
	General definitions
	Rank-2 Modules with a Gap

	Computational Problems
	The Shortest Vector Problem
	Structured lattice problems
	Complexity parameters of algorithms over K

	Probabilities

	Counting Small Ideals
	Preliminaries
	Analysis preliminaries
	Analytic number theory preliminaries

	Bounds on the Dedekind's Zeta Function of K
	Bounds on the integral
	Bounding the ideal-counting function

	Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals
	Introduction
	Contributions of this chapter.
	Technical overview.
	Related works on the hardness of id-HSVP.

	Preliminaries
	Balanced elements.
	Density of prime ideals.
	Algorithmic problems
	Algorithms on ideals
	Worst-case to average-case reduction for inverse of primes

	Self-Reducibility of id-HSVP to Inverses
	From a uniform norm-1 ideal to a uniform integral ideal
	From an arbitrary ideal to a uniform integral ideal
	From ideal to their inverses

	The Sampling Set
	Volume of the set
	Properties of the set
	Sampling uniform ideal elements in

	Wrapping Up
	NTRU with Polynomial Modulus

	On Module Unique-SVP and NTRU
	Introduction
	Contributions of this chapter
	Technical overview
	Discussion

	Preliminaries
	Number Fields
	Rank-2 Modules with a Gap

	New Tools on Module Lattices
	Module sparsification
	Module rounding

	From mod-uSVP2 to NTRU
	Pre-conditioning the mod-uSVP instance
	Transforming a mod-uSVP instance into an NTRU instance
	Lifting back short vectors and dense submodules

	Randomization of Rank-2 Modules with Gaps
	Coefficient randomization
	Geometric randomization
	On the Ideal-GR Ideal-CR distribution
	Full module randomization

	Random Self-Reducibility of Module uSVP
	A distribution over uSVP instances
	Reducing worst-case instances to Dmod-uSVP2 instances

	Conclusion and Perspectives
	Summary of Contributions
	Perspective and open problems

	Bibliography
	Appendices of Chapter II
	Missing Proofs
	Proof of Lemma II.2.12
	Equivalence of the conditions in Definition II.3.3
	Proof of Lemma II.3.4
	Proof of Lemma II.3.5
	Proof of Lemma II.1.12

	Appendices of Chapter III
	Analysis proofs
	Proof of Lemma III.1.4
	Comparisons between exp(ln(x)^alpha ln(ln(x))) and x^epsilon

	Proof of Theorem III.1.8
	Proof of Lemma III.1.6

	Bounds for K

	Appendices of Chapter IV
	Proof of Lemma IV.2.3
	Proof of Theorem IV.2.4
	Balanced-ideal-HSVP
	Finding a non-trivial solution to inv-HSVP using a P-1A, B-avg-HSVP oracle
	Iterating the reduction

	Appendices of Chapter V
	Properties of the Rényi Divergence
	Missing proofs from Section V.2
	Proof of Lemma V.2.2
	Proof of Lemma V.2.3
	Proof of Lemma V.2.5

	Missing Proofs from Section V.3
	Proof of Lemma V.3.2
	Proof of Lemma V.3.3
	Proof of Lemma V.3.4
	Proof of Lemma V.3.5
	Proof of Lemma V.3.6

	Missing Proofs from Section V.4
	Proof of Theorem V.4.1
	Proof of Lemma V.4.4
	Proof of Lemma V.4.5
	Proof of Lemma V.4.6
	Proof of Lemma V.4.7
	Proof of Lemma V.4.8
	Proof of Lemma V.4.9

	Removing K(2) from Theorem V.4.1
	Tail-cut of K(2) and B-coprime property
	Proof of Theorem V.4.2
	Updating Lemma V.4.4
	Updating Lemma V.4.7
	Updating Lemma V.4.9

	Missing Proofs from Section V.5
	Proof of Theorem V.5.2
	Proof of Theorem V.5.3
	Proof of Lemma V.5.4
	Proof of Lemma V.5.5
	Proof of Theorem V.5.6
	Proof of Lemma V.5.7
	Proof of Lemma V.5.8
	Proof of Theorem V.5.9
	Relations between the distributions of Definition V.5.10

	Missing Proofs from Section V.6
	Proof of Lemma V.6.2
	Proof of Lemma V.6.3
	Proof of Lemma V.6.5
	Proof of Lemma V.6.6
	Proof of Lemma V.6.7

